hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
867bbaa4b747400e8e0dce95ef2502b3a1d6e3df | 188 | py | Python | app/helpers/geocode.py | Soumya117/finnazureflaskapp | 794f82596a329ff1a2e4dc23d49903a0ef474f95 | [
"MIT"
] | null | null | null | app/helpers/geocode.py | Soumya117/finnazureflaskapp | 794f82596a329ff1a2e4dc23d49903a0ef474f95 | [
"MIT"
] | 2 | 2021-03-31T20:43:02.000Z | 2021-12-13T20:13:40.000Z | app/helpers/geocode.py | Soumya117/finnparser | e89ff6e1a0c08b57a1b2f971d5f7bb888c2f4a05 | [
"MIT"
] | null | null | null | import googlemaps
gmaps = googlemaps.Client(key='google_key')
| 20.888889 | 52 | 0.75 |
868018c92dba01d6288623e8f84851ac57ade115 | 3,427 | py | Python | tf/estimators/keras_estimator.py | aspratyush/dl_utils | c067831f3c72aba88223c231c7fbc249d997e222 | [
"Apache-2.0"
] | null | null | null | tf/estimators/keras_estimator.py | aspratyush/dl_utils | c067831f3c72aba88223c231c7fbc249d997e222 | [
"Apache-2.0"
] | null | null | null | tf/estimators/keras_estimator.py | aspratyush/dl_utils | c067831f3c72aba88223c231c7fbc249d997e222 | [
"Apache-2.0"
] | null | null | null | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Imports
import os
import numpy as np
import tensorflow as tf
def run(model, X, Y, optimizer=None, nb_epochs=30, nb_batches=128):
"""
Run the estimator
"""
if optimizer is None:
optimizer = tf.keras.estimators.SGD(
lr=0.0009, decay=1e-5, momentum=0.9, nesterov=True)
# 1. Compile the model
model.compile(
optimizer=optimizer, loss='categorical_crossentropy',
metrics=['accuracy'])
# 2. Create an estimator
model_est = tf.keras.estimator.model_to_estimator(
keras_model=model, model_dir='./lenet')
# Training
# 3a. Create the training function
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={model.input_names[0]: X['train'].astype(np.float32)},
y=Y['train'].astype(np.float32),
batch_size=nb_batches,
num_epochs=nb_epochs,
shuffle=True
)
# 3b. Train the model
model_est.train(input_fn=train_input_fn, steps=nb_epochs*nb_batches)
# Evaluate
# 4a. Evaluate the model
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={model.input_names[0]: X['test'].astype(np.float32)},
y=Y['test'].astype(np.float32),
batch_size=nb_batches,
num_epochs=nb_epochs,
shuffle=True
)
# 4b. Evaluate the model
model_eval = model_est.evaluate(input_fn=eval_input_fn)
print(model_eval)
return model_est, model_eval
def run_from_generator(
model, input_func=None, input_func_dict=None,
eval_func_dict=None, nb_epochs=10, optimizer=None, model_dir=None):
"""
Overloaded function to create an estimator using tf.data.Dataset
:param model : uncompiled keras model
:param input_fn : input function providing tf.data.Dataset to the estimator
:param input_fn_dict : dictionary containing input params for input_fn
:param eval_fn_dict : dictionary containing params for eval input_fn
:param model_dir : directory to store the trained model
"""
# 1. Create optimizer and compile model if optimizer is None
if (optimizer is None):
optimizer = tf.keras.optimizers.SGD(
lr=1e-3, decay=1e-5, momentum=0.9, nesterov=True)
# 2. compile the model
model.compile(
optimizer=optimizer, loss='categorical_crossentropy',
metrics=['accuracy'])
# 3. create estimator
dir_path = os.path.join(os.getcwd(), model_dir)
print("Model path chosen : ", dir_path)
if (not os.path.exists(dir_path)):
os.mkdir(dir_path)
print("Creating estimator...")
est = tf.keras.estimator.model_to_estimator(
keras_model=model, model_dir=dir_path)
# 4. Train and Evaluate the model
print("Training...")
# training spec
train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_func(input_func_dict),
max_steps=500)
# evaluation spec
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_func(eval_func_dict))
# Run the training
model_est = tf.estimator.train_and_evaluate(est, train_spec, eval_spec)
#est.train(input_fn=lambda: input_func(input_func_dict),
# steps=None)
#
#est.evalute(input_fn=lambda: input_func(eval_func_dict))
return est
| 31.731481 | 85 | 0.66443 |
8681c3c33618ecd1ae623aef1502da24ff44d7f8 | 15,279 | py | Python | isign/archive.py | l0ui3/isign | c0730ac1ce1b32defe8c6016e19b9701184b0f5a | [
"Apache-2.0"
] | 1 | 2020-03-24T14:22:17.000Z | 2020-03-24T14:22:17.000Z | isign/archive.py | l0ui3/isign | c0730ac1ce1b32defe8c6016e19b9701184b0f5a | [
"Apache-2.0"
] | null | null | null | isign/archive.py | l0ui3/isign | c0730ac1ce1b32defe8c6016e19b9701184b0f5a | [
"Apache-2.0"
] | 1 | 2021-08-16T04:03:25.000Z | 2021-08-16T04:03:25.000Z | """ Represents an app archive. This is an app at rest, whether it's a naked
app bundle in a directory, or a zipped app bundle, or an IPA. We have a
common interface to extract these apps to a temp file, then resign them,
and create an archive of the same type """
import abc
import biplist
from bundle import App, Bundle, is_info_plist_native
from exceptions import MissingHelpers, NotSignable, NotMatched
from distutils import spawn
import logging
import os
from os.path import abspath, dirname, exists, isdir, isfile, join, normpath
import tempfile
import re
from subprocess import call
from signer import Signer
import shutil
import zipfile
REMOVE_WATCHKIT = True
helper_paths = {}
log = logging.getLogger(__name__)
def get_helper(helper_name):
""" find paths to executables. Cached in helper_paths """
if helper_name not in helper_paths or helper_paths[helper_name] is None:
# note, find_executable returns None is not found
# in other words, we keep retrying until found
helper_paths[helper_name] = spawn.find_executable(helper_name)
log.debug("got executable {} for {}".format(helper_paths[helper_name],
helper_name))
return helper_paths[helper_name]
def get_watchkit_paths(root_bundle_path):
""" collect sub-bundles of this bundle that have watchkit """
# typical structure:
#
# app_bundle
# ...
# some_directory
# watchkit_extension <-- this is the watchkit bundle
# Info.plist
# watchkit_bundle <-- this is the part that runs on the Watch
# Info.plist <-- WKWatchKitApp=True
#
watchkit_paths = []
for path, _, _ in os.walk(root_bundle_path):
if path == root_bundle_path:
continue
try:
bundle = Bundle(path)
except NotMatched:
# this directory is not a bundle
continue
if bundle.info.get('WKWatchKitApp') is True:
# get the *containing* bundle
watchkit_paths.append(dirname(path))
return watchkit_paths
def process_watchkit(root_bundle_path, should_remove=False):
""" Unfortunately, we currently can't sign WatchKit. If you don't
care about watchkit functionality, it is
generally harmless to remove it, so that's the default.
Remove when https://github.com/saucelabs/isign/issues/20 is fixed """
watchkit_paths = get_watchkit_paths(root_bundle_path)
if len(watchkit_paths) > 0:
if should_remove:
for path in watchkit_paths:
log.warning("Removing WatchKit bundle {}".format(path))
shutil.rmtree(path)
else:
raise NotSignable("Cannot yet sign WatchKit bundles")
def unarchive_to_temp(self):
containing_dir = make_temp_dir()
log.debug("unarchiving to temp... %s -> %s", self.path, containing_dir)
shutil.rmtree(containing_dir) # quirk of copytree, top dir can't exist already
shutil.copytree(self.path, containing_dir)
process_watchkit(containing_dir, REMOVE_WATCHKIT)
return UncompressedArchive(containing_dir, '.', self.__class__)
class AppZipArchive(Archive):
""" Just like an app, except it's zipped up, and when repackaged,
should be re-zipped. """
app_dir_pattern = r'^([^/]+\.app/).*$'
extensions = ['.zip']
helpers = ['zip', 'unzip']
def __init__(self, path):
self.path = path
zipfile_obj = zipfile.ZipFile(path)
self.relative_bundle_dir = self.find_bundle_dir(zipfile_obj)
self.bundle_info = self.get_info(self.relative_bundle_dir,
zipfile_obj)
def unarchive_to_temp(self):
containing_dir = make_temp_dir()
call([get_helper('unzip'), "-qu", self.path, "-d", containing_dir])
app_dir = abspath(join(containing_dir, self.relative_bundle_dir))
process_watchkit(app_dir, REMOVE_WATCHKIT)
return UncompressedArchive(containing_dir, self.relative_bundle_dir, self.__class__)
def archive_factory(path):
""" Guess what kind of archive we are dealing with, return an
archive object. Returns None if path did not match any archive type """
archive = None
for cls in [IpaArchive, AppZipArchive, AppArchive]:
if cls.precheck(path):
archive = cls(path)
log.debug("File %s matched as %s", path, cls.__name__)
break
return archive
def view(input_path):
if not exists(input_path):
raise IOError("{0} not found".format(input_path))
ua = None
bundle_info = None
try:
archive = archive_factory(input_path)
if archive is None:
raise NotMatched('No matching archive type found')
ua = archive.unarchive_to_temp()
bundle_info = ua.bundle.info
finally:
if ua is not None:
ua.remove()
return bundle_info
def resign(input_path,
certificate,
key,
apple_cert,
provisioning_profile,
output_path,
info_props=None,
alternate_entitlements_path=None):
""" Unified interface to extract any kind of archive from
a temporary file, resign it with these credentials,
and create a similar archive for that resigned app """
if not exists(input_path):
raise IOError("{0} not found".format(input_path))
log.debug('Signing with apple_cert: {}'.format(apple_cert))
log.debug('Signing with key: {}'.format(key))
log.debug('Signing with certificate: {}'.format(certificate))
log.debug('Signing with provisioning_profile: {}'.format(provisioning_profile))
signer = Signer(signer_cert_file=certificate,
signer_key_file=key,
apple_cert_file=apple_cert)
ua = None
bundle_info = None
try:
archive = archive_factory(input_path)
if archive is None:
raise NotSignable('No matching archive type found')
ua = archive.unarchive_to_temp()
if info_props:
# Override info.plist props of the parent bundle
ua.bundle.update_info_props(info_props)
ua.bundle.resign(signer, provisioning_profile, alternate_entitlements_path)
bundle_info = ua.bundle.info
ua.archive(output_path)
except NotSignable as e:
msg = "Not signable: <{0}>: {1}\n".format(input_path, e)
log.info(msg)
raise
finally:
if ua is not None:
ua.remove()
return bundle_info
| 37.540541 | 97 | 0.638458 |
8681dc9beb7ce1fcfe008337221dc6feb16aedb5 | 1,888 | py | Python | conan/tools/env/virtualrunenv.py | dscole/conan | ff7b8e6703e8407773968517d68424b9ec59aa30 | [
"MIT"
] | null | null | null | conan/tools/env/virtualrunenv.py | dscole/conan | ff7b8e6703e8407773968517d68424b9ec59aa30 | [
"MIT"
] | 1 | 2019-06-07T03:02:02.000Z | 2019-06-07T03:02:02.000Z | conan/tools/env/virtualrunenv.py | dscole/conan | ff7b8e6703e8407773968517d68424b9ec59aa30 | [
"MIT"
] | 1 | 2021-08-20T19:47:51.000Z | 2021-08-20T19:47:51.000Z | from conan.tools.env import Environment
def runenv_from_cpp_info(conanfile, cpp_info):
""" return an Environment deducing the runtime information from a cpp_info
"""
dyn_runenv = Environment(conanfile)
if cpp_info is None: # This happens when the dependency is a private one = BINARY_SKIP
return dyn_runenv
if cpp_info.bin_paths: # cpp_info.exes is not defined yet
dyn_runenv.prepend_path("PATH", cpp_info.bin_paths)
# If it is a build_require this will be the build-os, otherwise it will be the host-os
if cpp_info.lib_paths:
dyn_runenv.prepend_path("LD_LIBRARY_PATH", cpp_info.lib_paths)
dyn_runenv.prepend_path("DYLD_LIBRARY_PATH", cpp_info.lib_paths)
if cpp_info.framework_paths:
dyn_runenv.prepend_path("DYLD_FRAMEWORK_PATH", cpp_info.framework_paths)
return dyn_runenv
| 37.76 | 94 | 0.697034 |
868508f96e8daab66111c1b9c301708733421f4d | 652 | py | Python | src/api/api_lists/models/list.py | rrickgauer/lists | 371de6af332789ef386392fd24857702794d05a6 | [
"Apache-2.0"
] | null | null | null | src/api/api_lists/models/list.py | rrickgauer/lists | 371de6af332789ef386392fd24857702794d05a6 | [
"Apache-2.0"
] | 67 | 2021-12-14T22:30:56.000Z | 2022-03-15T18:28:27.000Z | src/api/api_lists/models/list.py | rrickgauer/lists | 371de6af332789ef386392fd24857702794d05a6 | [
"Apache-2.0"
] | null | null | null | """
**********************************************************************************
List model
**********************************************************************************
"""
from enum import Enum
from dataclasses import dataclass
from uuid import UUID
from datetime import datetime
| 23.285714 | 82 | 0.460123 |
86852eaa353d7f71b07181e8c40327dffa81fc7f | 12,985 | py | Python | config/appdaemon/apps/power_alarm.py | azogue/hassio_config | 591f158794c173d6391179ab2f52348d58c49aad | [
"MIT"
] | 18 | 2018-07-22T15:19:20.000Z | 2022-01-09T20:57:43.000Z | config/appdaemon/apps/power_alarm.py | azogue/hassio_config | 591f158794c173d6391179ab2f52348d58c49aad | [
"MIT"
] | 1 | 2020-04-30T08:33:36.000Z | 2020-05-03T08:25:00.000Z | config/appdaemon/apps/power_alarm.py | azogue/hassio_config | 591f158794c173d6391179ab2f52348d58c49aad | [
"MIT"
] | 8 | 2018-07-21T09:29:53.000Z | 2021-11-10T19:06:32.000Z | # -*- coding: utf-8 -*-
"""
Automation task as a AppDaemon App for Home Assistant -
current meter PEAK POWER notifications
"""
import datetime as dt
from enum import IntEnum
import appdaemon.plugins.hass.hassapi as hass
LOG_LEVEL = "INFO"
LOG_LEVEL_ALERT = "WARNING"
LOGGER = "special_event_log"
COEF_CRITICAL_LIMIT = 1.1 # 10% over limit
MIN_TIME_TURN_OFF_AC = 60 # secs
# Big power consumers
BIG_CONSUMER_1_CLIMATE = "switch.ac_dry_contact"
BIG_CONSUMER_1_LABEL = "aire acondicionado"
BIG_CONSUMER_2 = "switch.calentador"
BIG_CONSUMER_2_LABEL = "calentador"
_IOS_SOUND_POWER_PEAK = "US-EN-Morgan-Freeman-Vacate-The-Premises.wav"
# noinspection PyClassHasNoInit
| 35.285326 | 79 | 0.5196 |
86857d42e426b63b37d2aa71caa37b9b57dd862e | 13,391 | py | Python | mailmynet/Maildir/proxy_postfix/Twisted-11.0.0/build/lib.linux-x86_64-2.6/twisted/internet/gtk2reactor.py | SPIN-UMass/SWEET | 1b0f39222e7064f70812e3293ca023619295741d | [
"MIT"
] | 3 | 2020-04-02T06:23:44.000Z | 2020-08-13T20:32:31.000Z | mailmynet/Maildir/proxy_postfix/Twisted-11.0.0/twisted/internet/gtk2reactor.py | SPIN-UMass/SWEET | 1b0f39222e7064f70812e3293ca023619295741d | [
"MIT"
] | null | null | null | mailmynet/Maildir/proxy_postfix/Twisted-11.0.0/twisted/internet/gtk2reactor.py | SPIN-UMass/SWEET | 1b0f39222e7064f70812e3293ca023619295741d | [
"MIT"
] | 1 | 2020-04-02T06:26:10.000Z | 2020-04-02T06:26:10.000Z | # -*- test-case-name: twisted.internet.test -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""
This module provides support for Twisted to interact with the glib/gtk2
mainloop.
In order to use this support, simply do the following::
| from twisted.internet import gtk2reactor
| gtk2reactor.install()
Then use twisted.internet APIs as usual. The other methods here are not
intended to be called directly.
When installing the reactor, you can choose whether to use the glib
event loop or the GTK+ event loop which is based on it but adds GUI
integration.
"""
# System Imports
import sys, signal
from zope.interface import implements
try:
if not hasattr(sys, 'frozen'):
# Don't want to check this for py2exe
import pygtk
pygtk.require('2.0')
except (ImportError, AttributeError):
pass # maybe we're using pygtk before this hack existed.
import gobject
if hasattr(gobject, "threads_init"):
# recent versions of python-gtk expose this. python-gtk=2.4.1
# (wrapping glib-2.4.7) does. python-gtk=2.0.0 (wrapping
# glib-2.2.3) does not.
gobject.threads_init()
# Twisted Imports
from twisted.python import log, runtime, failure
from twisted.python.compat import set
from twisted.internet.interfaces import IReactorFDSet
from twisted.internet import main, base, posixbase, error, selectreactor
POLL_DISCONNECTED = gobject.IO_HUP | gobject.IO_ERR | gobject.IO_NVAL
# glib's iochannel sources won't tell us about any events that we haven't
# asked for, even if those events aren't sensible inputs to the poll()
# call.
INFLAGS = gobject.IO_IN | POLL_DISCONNECTED
OUTFLAGS = gobject.IO_OUT | POLL_DISCONNECTED
def install(useGtk=True):
"""
Configure the twisted mainloop to be run inside the gtk mainloop.
@param useGtk: should glib rather than GTK+ event loop be
used (this will be slightly faster but does not support GUI).
"""
reactor = Gtk2Reactor(useGtk)
from twisted.internet.main import installReactor
installReactor(reactor)
return reactor
def portableInstall(useGtk=True):
"""
Configure the twisted mainloop to be run inside the gtk mainloop.
"""
reactor = PortableGtkReactor()
from twisted.internet.main import installReactor
installReactor(reactor)
return reactor
if runtime.platform.getType() != 'posix':
install = portableInstall
__all__ = ['install']
| 33.394015 | 92 | 0.633933 |
86864787ee128fda8f0e696df8fc12952938543c | 4,356 | py | Python | run_mod.py | fpl-analytics/gr_crypto | 2b0ab451c9c205a9f572c4bca23fffbb68ca188f | [
"MIT"
] | null | null | null | run_mod.py | fpl-analytics/gr_crypto | 2b0ab451c9c205a9f572c4bca23fffbb68ca188f | [
"MIT"
] | null | null | null | run_mod.py | fpl-analytics/gr_crypto | 2b0ab451c9c205a9f572c4bca23fffbb68ca188f | [
"MIT"
] | null | null | null | """
Setup:
- Import Libraries
- Setup tf on multiple cores
- Import Data
"""
import pandas as pd
import numpy as np
import tensorflow as tf
import seaborn as sns
from time import time
import multiprocessing
import random
import os
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, ConvLSTM2D, Flatten
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from joblib import dump, load
from mod.prep import log_return, log_return_np, preprocess
from mod.model import return_pred
from mod.eval import evaluate_regression, evaluate_up_down
cores = multiprocessing.cpu_count()
tf.config.threading.set_inter_op_parallelism_threads(cores-1)
root_folder = "data"
wide_close = pd.read_csv(root_folder + "/working/wide_close.csv")
wide_target = pd.read_csv(root_folder + "/working/wide_target.csv")
asset_details = pd.read_csv(root_folder + "/asset_details.csv")
assets = [str(i) for i in asset_details["Asset_ID"]]
"""
Preprocess
"""
close_returns = wide_close[assets].apply(log_return)
close_returns["time"] = wide_close["time"]
close_returns[assets] = close_returns[assets].replace([np.inf,-np.inf],np.nan)
"""
Linear Regression
"""
x_steps, y_steps = 60, [1, 15]
col_in, col_out = "1", "1"
train_x, test_x, train_y, test_y, time_d = preprocess(data_in = wide_close, col_in,
col_out, time_col="time", x_steps, y_steps)
# 1 step
lr_1 = LinearRegression()
lr_1.fit(train_x.reshape(-1, x_steps), train_y[:,0,:].reshape(-1, 1))
true, pred = return_pred(test_x, test_y[:,0,:], lr_1)
evaluate_regression(true, pred)
evaluate_up_down(true, pred)
# 15 step
lr_15 = LinearRegression()
lr_15.fit(train_x.reshape(-1, x_steps), train_y[:,1,:].reshape(-1, 1))
true, pred = return_pred(test_x, test_y[:,1,:], lr_1)
evaluate_regression(true, pred)
evaluate_up_down(true, pred)
"""
calculate and store components seperately
process:
- first, get rolling values for each timestamp
- then, predict 1 and 15 gaps and store in array
"""
# Production
"""
Steps:
- Get train, val test and test indices. Importantly, this
needs to cover all assets (even though not all assets exist)
for the whole time period.
- Build models
"""
assets = list(asset_details["Asset_ID"].astype(str))
# Get indexes
i = np.select(
[
(wide_close.index >= 0) & (wide_close.index <= (len(wide_close)*0.7)),
(wide_close.index > (len(wide_close)*0.7)) & (wide_close.index <= (len(wide_close)*0.8))
],
["train", "val"],
default = "test")
indexes = pd.DataFrame({"time":wide_close["time"],
"set":i})
for a in assets:
print("asset", a)
filt = indexes["set"][~pd.isna(wide_close[a])]
counts = filt.value_counts()
df = pd.DataFrame({"counts":counts,
"pct":counts/np.sum(counts)})
print(df, "\n\n")
indexes_d = {}
for s in indexes["set"].unique():
indexes_d[s] = indexes["time"][indexes["set"] == s]
mkdir "model_files"
mkdir "model_files/linear_regression"
for a in assets:
print("Asset", a)
x_steps, y_steps = 60, [1, 16]
cols_in, cols_out = a, a
train_x, test_x, train_y, test_y, time_d = preprocess(wide_close, cols_in,
cols_out, "time", x_steps, y_steps)
# 1 step
lr_1 = LinearRegression()
lr_1.fit(train_x.reshape(-1, x_steps), train_y[:,0,:].reshape(-1, 1))
true, pred = return_pred(test_x, test_y[:,0,:], lr_1)
print("Model 1 Metrics")
evaluate_regression(true, pred)
evaluate_up_down(true, pred)
# 16 step
lr_16 = LinearRegression()
lr_16.fit(train_x.reshape(-1, x_steps), train_y[:,1,:].reshape(-1, 1))
true, pred = return_pred(test_x, test_y[:,1,:], lr_16)
print("Model 16 Metrics")
evaluate_regression(true, pred)
evaluate_up_down(true, pred)
dump(lr_1, f"model_files/linear_regression/lr_{a}_1")
dump(lr_16, f"model_files/linear_regression/lr_{a}_16")
dump(time_d, "model_files/linear_regression/lr_times")
"""
Random Forest
"""
rf = RandomForestRegressor(n_jobs=-1)
# start = time.time()
rf.fit(train_x.reshape(-1, x_steps), train_y.reshape(-1))
# print("Took:", round(start-time.time()))
| 25.623529 | 93 | 0.677456 |
8687420e46b4f12f33134641d5dcf6986b995994 | 4,012 | py | Python | bot.py | menlen/one | e24f1489d98faa9b548ebd668f2860c8d671b489 | [
"Apache-2.0"
] | null | null | null | bot.py | menlen/one | e24f1489d98faa9b548ebd668f2860c8d671b489 | [
"Apache-2.0"
] | null | null | null | bot.py | menlen/one | e24f1489d98faa9b548ebd668f2860c8d671b489 | [
"Apache-2.0"
] | null | null | null | # This example show how to use inline keyboards and process button presses
import telebot
import time
from telebot.types import InlineKeyboardMarkup, InlineKeyboardButton
import os, sys
from PIL import Image, ImageDraw, ImageFont
import random
TELEGRAM_TOKEN = '1425859530:AAF5MQE87Zg_bv3B2RLe3Vl2A5rMz6vYpsA'
bot = telebot.TeleBot(TELEGRAM_TOKEN)
channelId = -1001390673326
user_dict = {}
bot.polling(none_stop=True)
| 30.861538 | 181 | 0.592722 |
86878499d4795f1de654ad30bc93467d3e84cd3c | 261 | py | Python | novice/python-unit-testing/answers/test_rectangle2.py | Southampton-RSG/2019-03-13-southampton-swc | 1f07d82c1bd1f237a19fa7a17bb4765e0364dc88 | [
"CC-BY-4.0"
] | 1 | 2021-06-20T11:51:37.000Z | 2021-06-20T11:51:37.000Z | novice/python-unit-testing/answers/test_rectangle2.py | Southampton-RSG/2019-03-13-southampton-swc | 1f07d82c1bd1f237a19fa7a17bb4765e0364dc88 | [
"CC-BY-4.0"
] | 1 | 2019-09-30T21:15:32.000Z | 2019-09-30T21:15:32.000Z | novice/python-unit-testing/answers/test_rectangle2.py | Southampton-RSG/2019-03-13-southampton-swc | 1f07d82c1bd1f237a19fa7a17bb4765e0364dc88 | [
"CC-BY-4.0"
] | null | null | null | from rectangle2 import rectangle_area
| 23.727273 | 47 | 0.67433 |
8687b3a09f22f924b0323932d63831d4c09242d4 | 3,081 | py | Python | tests/requestreply.py | unclechu/py-radio-class | 8f96d8bcb398693d18a4ebd732415a879047edee | [
"MIT"
] | null | null | null | tests/requestreply.py | unclechu/py-radio-class | 8f96d8bcb398693d18a4ebd732415a879047edee | [
"MIT"
] | null | null | null | tests/requestreply.py | unclechu/py-radio-class | 8f96d8bcb398693d18a4ebd732415a879047edee | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
from unittest import TestCase, TestLoader
from radio import (Radio, ListenerNotFound, ReplyHandlerAlreadyBound,
HandlerAlreadyBound)
suite = TestLoader().loadTestsFromTestCase(TestRadioRequestReplyMethods)
| 28.794393 | 75 | 0.627069 |
86880b5b73b7634f999e8879e1b07c2360a00ae8 | 6,256 | py | Python | tests/unit/types/message/test_message.py | Immich/jina | 1f5f7cf4d82029d76ab41df157526fe6f6e0da50 | [
"Apache-2.0"
] | 1 | 2021-02-25T19:28:50.000Z | 2021-02-25T19:28:50.000Z | tests/unit/types/message/test_message.py | Immich/jina | 1f5f7cf4d82029d76ab41df157526fe6f6e0da50 | [
"Apache-2.0"
] | 4 | 2020-09-01T17:47:27.000Z | 2021-04-16T23:11:57.000Z | tests/unit/types/message/test_message.py | Immich/jina | 1f5f7cf4d82029d76ab41df157526fe6f6e0da50 | [
"Apache-2.0"
] | null | null | null | import sys
from typing import Sequence
import pytest
from jina import Request, QueryLang, Document
from jina.clients.request import request_generator
from jina.proto import jina_pb2
from jina.proto.jina_pb2 import EnvelopeProto
from jina.types.message import Message
from jina.types.request import _trigger_fields
from tests import random_docs
| 32.082051 | 111 | 0.634431 |
8688ffb74b8525b0642bda0ae7e8535617771ade | 243 | py | Python | tabnine-vim/third_party/ycmd/ycmd/tests/python/testdata/project/settings_extra_conf.py | MrMonk3y/vimrc | 950230fb3fd7991d1234c2ab516ec03245945677 | [
"MIT"
] | 10 | 2020-07-21T21:59:54.000Z | 2021-07-19T11:01:47.000Z | tabnine-vim/third_party/ycmd/ycmd/tests/python/testdata/project/settings_extra_conf.py | MrMonk3y/vimrc | 950230fb3fd7991d1234c2ab516ec03245945677 | [
"MIT"
] | null | null | null | tabnine-vim/third_party/ycmd/ycmd/tests/python/testdata/project/settings_extra_conf.py | MrMonk3y/vimrc | 950230fb3fd7991d1234c2ab516ec03245945677 | [
"MIT"
] | 1 | 2021-01-30T18:17:01.000Z | 2021-01-30T18:17:01.000Z | import os
import sys
DIR_OF_THIS_SCRIPT = os.path.abspath( os.path.dirname( __file__ ) )
| 20.25 | 69 | 0.691358 |
868928ba8707be83d375694167add597b520a225 | 616 | py | Python | SmartCache/sim/Utilities/setup.py | Cloud-PG/smart-cache | 467987abece3fd4830fd615288046359761229f8 | [
"Apache-2.0"
] | 1 | 2019-10-13T09:05:24.000Z | 2019-10-13T09:05:24.000Z | SmartCache/sim/Utilities/setup.py | Cloud-PG/smart-cache | 467987abece3fd4830fd615288046359761229f8 | [
"Apache-2.0"
] | null | null | null | SmartCache/sim/Utilities/setup.py | Cloud-PG/smart-cache | 467987abece3fd4830fd615288046359761229f8 | [
"Apache-2.0"
] | 1 | 2019-05-16T11:53:38.000Z | 2019-05-16T11:53:38.000Z | from distutils.core import setup
setup(
name='utils',
version='1.0.0',
author='Mirco Tracolli',
author_email='[email protected]',
packages=[
'utils',
],
scripts=[],
url='https://github.com/Cloud-PG/smart-cache',
license='Apache 2.0 License',
description='Utils for the SmartCache project',
long_description="To do...",
install_requires=open("requirements.txt").read(),
classifier=[
"Operating System :: POSIX :: Linux",
"License :: OSI Approved :: Apache 2.0 License",
"Programming Language :: Python :: 3 :: Only"
]
)
| 26.782609 | 56 | 0.61039 |
868a5177cfe7a43dcc855371fdd275a394644658 | 2,074 | py | Python | homeassistant/components/eight_sleep/binary_sensor.py | liangleslie/core | cc807b4d597daaaadc92df4a93c6e30da4f570c6 | [
"Apache-2.0"
] | 2 | 2020-01-03T17:06:33.000Z | 2020-01-13T18:57:32.000Z | homeassistant/components/eight_sleep/binary_sensor.py | liangleslie/core | cc807b4d597daaaadc92df4a93c6e30da4f570c6 | [
"Apache-2.0"
] | 1,016 | 2019-06-18T21:27:47.000Z | 2020-03-06T11:09:58.000Z | homeassistant/components/eight_sleep/binary_sensor.py | liangleslie/core | cc807b4d597daaaadc92df4a93c6e30da4f570c6 | [
"Apache-2.0"
] | null | null | null | """Support for Eight Sleep binary sensors."""
from __future__ import annotations
import logging
from pyeight.eight import EightSleep
from homeassistant.components.binary_sensor import (
BinarySensorDeviceClass,
BinarySensorEntity,
)
from homeassistant.core import HomeAssistant
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
from homeassistant.helpers.update_coordinator import DataUpdateCoordinator
from . import EightSleepBaseEntity
from .const import DATA_API, DATA_HEAT, DOMAIN
_LOGGER = logging.getLogger(__name__)
| 28.805556 | 81 | 0.700579 |
868c6ea160dd2c056e7da123714e1987646a86cf | 9,215 | py | Python | ravem/tests/util_test.py | bpedersen2/indico-plugins-cern | c4f06d11d981c316fc8de2892758484deb58e2f5 | [
"MIT"
] | null | null | null | ravem/tests/util_test.py | bpedersen2/indico-plugins-cern | c4f06d11d981c316fc8de2892758484deb58e2f5 | [
"MIT"
] | null | null | null | ravem/tests/util_test.py | bpedersen2/indico-plugins-cern | c4f06d11d981c316fc8de2892758484deb58e2f5 | [
"MIT"
] | null | null | null | # This file is part of the CERN Indico plugins.
# Copyright (C) 2014 - 2022 CERN
#
# The CERN Indico plugins are free software; you can redistribute
# them and/or modify them under the terms of the MIT License; see
# the LICENSE file for more details.
from unittest.mock import MagicMock
import pytest
from requests.exceptions import HTTPError, Timeout
from indico.testing.util import extract_logs
from indico_ravem.plugin import RavemPlugin
from indico_ravem.util import has_access, ravem_api_call
| 39.549356 | 112 | 0.703527 |
868d3680b0c2bd4371570ee9b629404359f69eee | 1,220 | py | Python | apps/organization/urls.py | stormsha/StormOnline | 10983b7a9ee09958927731ee3fd74178d7534ff6 | [
"Apache-2.0"
] | 18 | 2018-03-16T07:11:01.000Z | 2021-11-18T08:42:11.000Z | apps/organization/urls.py | stormsha/StormOnline | 10983b7a9ee09958927731ee3fd74178d7534ff6 | [
"Apache-2.0"
] | 1 | 2018-03-15T11:40:25.000Z | 2018-03-15T11:40:25.000Z | apps/organization/urls.py | stormsha/StormOnline | 10983b7a9ee09958927731ee3fd74178d7534ff6 | [
"Apache-2.0"
] | 13 | 2018-03-16T07:11:05.000Z | 2020-06-23T09:27:49.000Z | # _*_ coding: utf-8 _*_
# ---------------------------
__author__ = 'StormSha'
__date__ = '2018/3/28 18:01'
# ---------------------------
# -------------------------django----------------------
from django.conf.urls import url
from .views import OrgView, AddUserAskView, OrgHomeView, OrgCourseView, OrgDescView, OrgTeacherView, AddFavView
from .views import TeacherListView, TeacherDetailView
urlpatterns = [
url(r'^list/$', OrgView.as_view(), name="org_list"),
url(r'^add_ask/$', AddUserAskView.as_view(), name="add_ask"),
url(r'^home/(?P<org_id>\d+)/$', OrgHomeView.as_view(), name="org_home"),
url(r'^course/(?P<org_id>\d+)/$', OrgCourseView.as_view(), name="org_course"),
url(r'^desc/(?P<org_id>\d+)/$', OrgDescView.as_view(), name="org_desc"),
url(r'^org_teacher/(?P<org_id>\d+)/$', OrgTeacherView.as_view(), name="org_teacher"),
# ---------------------------------------
url(r'^add_fav/$', AddFavView.as_view(), name="add_fav"),
# -----------------------teacher------------------------------
url(r'^teacher/list/$', TeacherListView.as_view(), name="teacher_list"),
url(r'^teacher/detail/(?P<teacher_id>\d+)/$', TeacherDetailView.as_view(), name="teacher_detail")
] | 48.8 | 111 | 0.566393 |
868dd694341f559c01703d972c3b261cb6620ffe | 571 | py | Python | tech_project/lib/python2.7/site-packages/filer/migrations/0010_auto_20180414_2058.py | priyamshah112/Project-Descripton-Blog | 8e01016c6be79776c4f5ca75563fa3daa839e39e | [
"MIT"
] | null | null | null | tech_project/lib/python2.7/site-packages/filer/migrations/0010_auto_20180414_2058.py | priyamshah112/Project-Descripton-Blog | 8e01016c6be79776c4f5ca75563fa3daa839e39e | [
"MIT"
] | 11 | 2019-11-02T20:57:52.000Z | 2020-09-27T09:08:33.000Z | tech_project/lib/python2.7/site-packages/filer/migrations/0010_auto_20180414_2058.py | priyamshah112/Project-Descripton-Blog | 8e01016c6be79776c4f5ca75563fa3daa839e39e | [
"MIT"
] | 4 | 2018-08-07T17:13:48.000Z | 2019-06-13T11:09:32.000Z | # -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
| 27.190476 | 187 | 0.670753 |
868dd7b75196bf80f589754ce91dc36872de638a | 12,166 | py | Python | SLHCUpgradeSimulations/Configuration/python/aging.py | ckamtsikis/cmssw | ea19fe642bb7537cbf58451dcf73aa5fd1b66250 | [
"Apache-2.0"
] | 852 | 2015-01-11T21:03:51.000Z | 2022-03-25T21:14:00.000Z | SLHCUpgradeSimulations/Configuration/python/aging.py | ckamtsikis/cmssw | ea19fe642bb7537cbf58451dcf73aa5fd1b66250 | [
"Apache-2.0"
] | 30,371 | 2015-01-02T00:14:40.000Z | 2022-03-31T23:26:05.000Z | SLHCUpgradeSimulations/Configuration/python/aging.py | ckamtsikis/cmssw | ea19fe642bb7537cbf58451dcf73aa5fd1b66250 | [
"Apache-2.0"
] | 3,240 | 2015-01-02T05:53:18.000Z | 2022-03-31T17:24:21.000Z | import FWCore.ParameterSet.Config as cms
# handle normal mixing or premixing
# change assumptions about lumi rate
# turnon = True enables default, False disables
# recalibration and darkening always together
# needs lumi to set proper ZS thresholds (tbd)
| 44.40146 | 176 | 0.715025 |
868de8e68215f41c7a22fbffe3549ae81cd16557 | 10,106 | py | Python | xml_parser.py | cbschaff/nlimb | f0564b00bab1b3367aaa88163e49bebc88f349bb | [
"MIT"
] | 12 | 2018-10-26T19:33:05.000Z | 2022-01-17T11:47:59.000Z | xml_parser.py | cbschaff/nlimb | f0564b00bab1b3367aaa88163e49bebc88f349bb | [
"MIT"
] | 9 | 2020-01-28T22:30:55.000Z | 2022-03-11T23:32:04.000Z | xml_parser.py | cbschaff/nlimb | f0564b00bab1b3367aaa88163e49bebc88f349bb | [
"MIT"
] | 3 | 2019-07-09T14:56:01.000Z | 2019-11-18T06:58:41.000Z | import numpy as np
import xml.etree.ElementTree as ET
if __name__ == '__main__':
robot = MuJoCoXmlRobot('mujoco_assets/hopper.xml')
params = list(1.0 * np.array(robot.get_params()))
robot.update(params, 'mujoco_assets/hopper_test.xml')
assert robot.get_params() == params
#assert robot.get_height() == 1.31
print(robot.get_param_limits())
print(robot.get_param_names())
robot = MuJoCoXmlRobot('mujoco_assets/walker2d.xml')
params = [.4,.04,.5,.05,.55,.055,.6,.06,.5,.05,.55,.055,.6,.06]
robot.update(params, 'mujoco_assets/walker2d_test.xml')
assert robot.get_params() == params
assert robot.get_height() == 1.31
print(robot.get_param_limits())
print(robot.get_param_names())
robot = MuJoCoXmlRobot('mujoco_assets/ant.xml')
params = [.2, .2,.06,.2,.06,.4,.06, .2,.06,.2,.06,.4,.06, .2,.06,.2,.06,.4,.06, .2,.06,.2,.06,.4,.06]
robot.update(params, 'mujoco_assets/ant_test.xml')
assert robot.get_params() == params
assert robot.get_height() == .2
print(robot.get_param_limits())
print(robot.get_param_names())
robot = MuJoCoXmlRobot('mujoco_assets/humanoid.xml')
params = list(.8 * np.array(robot.get_params()))
robot.update(params, 'mujoco_assets/humanoid_test.xml')
assert robot.get_params() == params
print(robot.get_height())
#assert robot.get_height() == .6085
print(robot.get_param_limits())
print(robot.get_param_names())
import gym, roboschool
env = gym.make("RoboschoolHopper-v1")
env.unwrapped.model_xml = 'mujoco_assets/hopper_test.xml'
env.reset()
#env.render()
import os
from scipy.misc import imsave
import subprocess as sp
outdir = 'xml_vid'
os.makedirs(outdir, exist_ok=True)
i = 0
for _ in range(10):
env.reset()
for _ in range(100):
env.step(env.action_space.sample())
rgb = env.render('rgb_array')
imsave(os.path.join(outdir, '{:05d}.png'.format(i)), rgb)
i+=1
sp.call(['ffmpeg', '-r', '60', '-f', 'image2', '-i', os.path.join(outdir, '%05d.png'), '-vcodec', 'libx264', '-pix_fmt', 'yuv420p', os.path.join(outdir, 'out.mp4')])
env.close()
| 33.574751 | 169 | 0.608351 |
868e31d3b6d09c73dfd001c290d85e56d3f9bb45 | 672 | py | Python | app/http/middleware/LoadUserMiddleware.py | josephmancuso/masonite-forum | a91c7386f3e0b02b0ac71623eb295a7543cb60fd | [
"MIT"
] | 11 | 2018-07-08T17:44:28.000Z | 2020-03-02T10:45:37.000Z | app/http/middleware/LoadUserMiddleware.py | josephmancuso/masonite-forum | a91c7386f3e0b02b0ac71623eb295a7543cb60fd | [
"MIT"
] | 2 | 2018-07-21T07:49:09.000Z | 2019-05-29T14:34:42.000Z | app/http/middleware/LoadUserMiddleware.py | josephmancuso/masonite-forum | a91c7386f3e0b02b0ac71623eb295a7543cb60fd | [
"MIT"
] | 5 | 2018-07-12T02:36:14.000Z | 2020-04-05T21:10:30.000Z | ''' Load User Middleware'''
from masonite.facades.Auth import Auth
| 29.217391 | 74 | 0.644345 |
868eb825011495edcc58f16f21e6e75e8ab1abc6 | 22,691 | py | Python | src/unittest/python/merciful_elo_limit_tests.py | mgaertne/minqlx-plugin-tests | 10a827fe063c86481560dcc00a8a3ce2ba60861b | [
"BSD-3-Clause"
] | 4 | 2017-11-01T04:49:27.000Z | 2020-08-08T12:11:51.000Z | src/unittest/python/merciful_elo_limit_tests.py | mgaertne/minqlx-plugin-tests | 10a827fe063c86481560dcc00a8a3ce2ba60861b | [
"BSD-3-Clause"
] | null | null | null | src/unittest/python/merciful_elo_limit_tests.py | mgaertne/minqlx-plugin-tests | 10a827fe063c86481560dcc00a8a3ce2ba60861b | [
"BSD-3-Clause"
] | 1 | 2021-04-26T09:04:36.000Z | 2021-04-26T09:04:36.000Z | from minqlx_plugin_test import *
import logging
import unittest
from mockito import *
from mockito.matchers import *
from hamcrest import *
from redis import Redis
from merciful_elo_limit import *
| 44.932673 | 117 | 0.677493 |
868f0e1cedcadcbc2d277dd9469765ca291fed6d | 689 | py | Python | meiduo_mall/celery_tasks/sms/tasks.py | Vent-Any/meiduo_mall_cangku | 5b3b7f029be267cb5d2d3666f99be166d27213f1 | [
"MIT"
] | null | null | null | meiduo_mall/celery_tasks/sms/tasks.py | Vent-Any/meiduo_mall_cangku | 5b3b7f029be267cb5d2d3666f99be166d27213f1 | [
"MIT"
] | null | null | null | meiduo_mall/celery_tasks/sms/tasks.py | Vent-Any/meiduo_mall_cangku | 5b3b7f029be267cb5d2d3666f99be166d27213f1 | [
"MIT"
] | null | null | null | from ronglian_sms_sdk import SmsSDK
from celery_tasks.main import app
#
# celerytask
# celery(main) | 32.809524 | 65 | 0.703919 |
868f63854096baf68c5ff8cc2009603138d30b30 | 5,195 | py | Python | delphiIDE.py | JeisonJHA/Plugins-Development | cccb58908eed6114c569e53d5710e70b8d53f5c5 | [
"MIT"
] | null | null | null | delphiIDE.py | JeisonJHA/Plugins-Development | cccb58908eed6114c569e53d5710e70b8d53f5c5 | [
"MIT"
] | null | null | null | delphiIDE.py | JeisonJHA/Plugins-Development | cccb58908eed6114c569e53d5710e70b8d53f5c5 | [
"MIT"
] | null | null | null | import sublime_plugin
| 26.237374 | 99 | 0.609047 |
86920ec1c0159b8548b81683e13e218d1875aaf1 | 33,860 | py | Python | python/test_pip_package.py | syt123450/tfjs-converter | a90fa59a44d9425beb7b1584fe753c62d62bbc4d | [
"Apache-2.0"
] | null | null | null | python/test_pip_package.py | syt123450/tfjs-converter | a90fa59a44d9425beb7b1584fe753c62d62bbc4d | [
"Apache-2.0"
] | null | null | null | python/test_pip_package.py | syt123450/tfjs-converter | a90fa59a44d9425beb7b1584fe753c62d62bbc4d | [
"Apache-2.0"
] | null | null | null | # Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test the Python API and shell binary of the tensorflowjs pip package."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import glob
import json
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_spec
from tensorflow.python.ops import variables
from tensorflow.python.training.tracking import tracking
from tensorflow.python.saved_model.save import save
import tensorflow_hub as hub
import tensorflowjs as tfjs
def _createKerasModel(layer_name_prefix, h5_path=None):
"""Create a Keras model for testing.
Args:
layer_name_prefix: A prefix string for layer names. This helps avoid
clashes in layer names between different test methods.
h5_path: Optional string path for a HDF5 (.h5) file to save the model
in.
Returns:
An instance of keras.Model.
"""
input_tensor = keras.layers.Input((3, ))
dense1 = keras.layers.Dense(
4,
use_bias=True,
kernel_initializer='ones',
bias_initializer='zeros',
name=layer_name_prefix + '1')(input_tensor)
output = keras.layers.Dense(
2,
use_bias=False,
kernel_initializer='ones',
name=layer_name_prefix + '2')(dense1)
model = keras.models.Model(inputs=[input_tensor], outputs=[output])
if h5_path:
model.save(h5_path)
return model
def _createTensorFlowSavedModelV1(name_scope, save_path):
"""Create a TensorFlow SavedModel for testing.
Args:
name_scope: Name scope to create the model under. This helps avoid
op and variable name clashes between different test methods.
save_path: The directory path in which to save the model.
"""
graph = tf.Graph()
with graph.as_default():
with tf.compat.v1.name_scope(name_scope):
x = tf.compat.v1.constant([[37.0, -23.0], [1.0, 4.0]])
w = tf.compat.v1.get_variable('w', shape=[2, 2])
y = tf.compat.v1.matmul(x, w)
output = tf.compat.v1.nn.softmax(y)
init_op = w.initializer
# Create a builder.
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(save_path)
with tf.compat.v1.Session() as sess:
# Run the initializer on `w`.
sess.run(init_op)
builder.add_meta_graph_and_variables(
sess, [tf.compat.v1.saved_model.tag_constants.SERVING],
signature_def_map={
"serving_default":
tf.compat.v1.saved_model.signature_def_utils.predict_signature_def(
inputs={"x": x},
outputs={"output": output})
},
assets_collection=None)
builder.save()
def _createTensorFlowSavedModel(name_scope, save_path):
"""Create a TensorFlow SavedModel for testing.
Args:
name_scope: Name scope to create the model under. This helps avoid
op and variable name clashes between different test methods.
save_path: The directory path in which to save the model.
"""
input_data = constant_op.constant(1., shape=[1])
root = tracking.AutoTrackable()
root.v1 = variables.Variable(3.)
root.v2 = variables.Variable(2.)
root.f = def_function.function(lambda x: root.v1 * root.v2 * x)
to_save = root.f.get_concrete_function(input_data)
save(root, save_path, to_save)
def _create_hub_module(save_path):
"""Create a TensorFlow Hub module for testing.
Args:
save_path: The directory path in which to save the model.
"""
# Module function that doubles its input.
graph = tf.Graph()
with graph.as_default():
spec = hub.create_module_spec(double_module_fn)
m = hub.Module(spec)
# Export the module.
with tf.compat.v1.Session(graph=graph) as sess:
sess.run(tf.compat.v1.global_variables_initializer())
m.export(save_path, sess)
class ConvertTfKerasSavedModelTest(tf.test.TestCase):
if __name__ == '__main__':
tf.test.main()
| 38.741419 | 88 | 0.674778 |
869310d00b7b8dcf8e18a56efd569e5ae8396471 | 7,195 | py | Python | script.ezclean/resources/lib/modules/skinz.py | rrosajp/script.ezclean | ed6fbe6441713a3c96ce15a595cdd5c69291355f | [
"MIT"
] | 5 | 2019-03-12T23:10:48.000Z | 2021-05-06T05:31:26.000Z | script.ezclean/resources/lib/modules/skinz.py | rrosajp/script.ezclean-1 | ed6fbe6441713a3c96ce15a595cdd5c69291355f | [
"MIT"
] | 3 | 2019-03-17T21:53:29.000Z | 2019-04-22T16:44:38.000Z | script.ezclean/resources/lib/modules/skinz.py | rrosajp/script.ezclean-1 | ed6fbe6441713a3c96ce15a595cdd5c69291355f | [
"MIT"
] | 4 | 2019-03-17T21:17:19.000Z | 2020-03-30T12:45:33.000Z | # -*- coding: UTF-8 -*-
import os, re, shutil, time, xbmc
from resources.lib.modules import control
try: import json as simplejson
except: import simplejson
ADDONS = os.path.join(control.HOMEPATH, 'addons')
| 46.720779 | 254 | 0.580542 |
86939231df10a74a6b6c8263b5d61c5806d7e19e | 10,360 | py | Python | pyhap/characteristic.py | bdraco/HAP-python | a2a5ce109d08af2f4f5bda4075f2176a98123806 | [
"Apache-2.0"
] | null | null | null | pyhap/characteristic.py | bdraco/HAP-python | a2a5ce109d08af2f4f5bda4075f2176a98123806 | [
"Apache-2.0"
] | null | null | null | pyhap/characteristic.py | bdraco/HAP-python | a2a5ce109d08af2f4f5bda4075f2176a98123806 | [
"Apache-2.0"
] | null | null | null | """
All things for a HAP characteristic.
A Characteristic is the smallest unit of the smart home, e.g.
a temperature measuring or a device status.
"""
import logging
from pyhap.const import (
HAP_PERMISSION_READ,
HAP_REPR_DESC,
HAP_REPR_FORMAT,
HAP_REPR_IID,
HAP_REPR_MAX_LEN,
HAP_REPR_PERM,
HAP_REPR_TYPE,
HAP_REPR_VALID_VALUES,
HAP_REPR_VALUE,
)
from .util import hap_type_to_uuid, uuid_to_hap_type
logger = logging.getLogger(__name__)
# ### HAP Format ###
HAP_FORMAT_BOOL = "bool"
HAP_FORMAT_INT = "int"
HAP_FORMAT_FLOAT = "float"
HAP_FORMAT_STRING = "string"
HAP_FORMAT_ARRAY = "array"
HAP_FORMAT_DICTIONARY = "dictionary"
HAP_FORMAT_UINT8 = "uint8"
HAP_FORMAT_UINT16 = "uint16"
HAP_FORMAT_UINT32 = "uint32"
HAP_FORMAT_UINT64 = "uint64"
HAP_FORMAT_DATA = "data"
HAP_FORMAT_TLV8 = "tlv8"
HAP_FORMAT_DEFAULTS = {
HAP_FORMAT_BOOL: False,
HAP_FORMAT_INT: 0,
HAP_FORMAT_FLOAT: 0.0,
HAP_FORMAT_STRING: "",
HAP_FORMAT_ARRAY: "",
HAP_FORMAT_DICTIONARY: "",
HAP_FORMAT_UINT8: 0,
HAP_FORMAT_UINT16: 0,
HAP_FORMAT_UINT32: 0,
HAP_FORMAT_UINT64: 0,
HAP_FORMAT_DATA: "",
HAP_FORMAT_TLV8: "",
}
HAP_FORMAT_NUMERICS = (
HAP_FORMAT_INT,
HAP_FORMAT_FLOAT,
HAP_FORMAT_UINT8,
HAP_FORMAT_UINT16,
HAP_FORMAT_UINT32,
HAP_FORMAT_UINT64,
)
# ### HAP Units ###
HAP_UNIT_ARC_DEGREE = "arcdegrees"
HAP_UNIT_CELSIUS = "celsius"
HAP_UNIT_LUX = "lux"
HAP_UNIT_PERCENTAGE = "percentage"
HAP_UNIT_SECONDS = "seconds"
# ### Properties ###
PROP_FORMAT = "Format"
PROP_MAX_VALUE = "maxValue"
PROP_MIN_STEP = "minStep"
PROP_MIN_VALUE = "minValue"
PROP_PERMISSIONS = "Permissions"
PROP_UNIT = "unit"
PROP_VALID_VALUES = "ValidValues"
PROP_NUMERIC = (PROP_MAX_VALUE, PROP_MIN_VALUE, PROP_MIN_STEP, PROP_UNIT)
| 33.099042 | 86 | 0.643629 |
8693c080676cb2787d00c99c4612bc9e39e2bff8 | 1,767 | py | Python | configs/_base_/datasets/uniter/vqa_dataset_uniter.py | linxi1158/iMIX | af87a17275f02c94932bb2e29f132a84db812002 | [
"Apache-2.0"
] | 23 | 2021-06-26T08:45:19.000Z | 2022-03-02T02:13:33.000Z | configs/_base_/datasets/uniter/vqa_dataset_uniter.py | XChuanLee/iMIX | 99898de97ef8b45462ca1d6bf2542e423a73d769 | [
"Apache-2.0"
] | null | null | null | configs/_base_/datasets/uniter/vqa_dataset_uniter.py | XChuanLee/iMIX | 99898de97ef8b45462ca1d6bf2542e423a73d769 | [
"Apache-2.0"
] | 9 | 2021-06-10T02:36:20.000Z | 2021-11-09T02:18:16.000Z | dataset_type = 'UNITER_VqaDataset'
data_root = '/home/datasets/mix_data/UNITER/VQA/'
train_datasets = ['train']
test_datasets = ['minival'] # name not in use, but have defined one to run
vqa_cfg = dict(
train_txt_dbs=[
data_root + 'vqa_train.db',
data_root + 'vqa_trainval.db',
data_root + 'vqa_vg.db',
],
train_img_dbs=[
data_root + 'coco_train2014/',
data_root + 'coco_val2014',
data_root + 'vg/',
],
val_txt_db=data_root + 'vqa_devval.db',
val_img_db=data_root + 'coco_val2014/',
ans2label_file=data_root + 'ans2label.json',
max_txt_len=60,
conf_th=0.2,
max_bb=100,
min_bb=10,
num_bb=36,
train_batch_size=20480, # 5120,
val_batch_size=40960, # 10240,
)
BUCKET_SIZE = 8192
train_data = dict(
samples_per_gpu=vqa_cfg['train_batch_size'],
workers_per_gpu=4,
pin_memory=True,
batch_sampler=dict(
type='TokenBucketSampler',
bucket_size=BUCKET_SIZE,
batch_size=vqa_cfg['train_batch_size'],
drop_last=True,
size_multiple=8,
),
data=dict(
type=dataset_type,
datacfg=vqa_cfg,
train_or_val=True,
),
)
test_data = dict(
samples_per_gpu=vqa_cfg['val_batch_size'],
workers_per_gpu=4,
batch_sampler=dict(
type='TokenBucketSampler',
bucket_size=BUCKET_SIZE,
batch_size=vqa_cfg['val_batch_size'],
drop_last=False,
size_multiple=8,
),
pin_memory=True,
data=dict(
type=dataset_type,
datacfg=vqa_cfg,
train_or_val=False,
),
)
post_processor = dict(
type='Evaluator',
metrics=[dict(type='UNITER_AccuracyMetric')],
dataset_converters=[dict(type='UNITER_DatasetConverter')],
)
| 24.205479 | 75 | 0.63837 |
869425b882c792777c4c9df4c4e4ede390b45006 | 752 | py | Python | students/k3340/laboratory_works/laboratory_works/Arlakov_Denis/laboratiry_work_2_and_3/lab/django-react-ecommerce-master/home/urls.py | TonikX/ITMO_ICT_-WebProgramming_2020 | ba566c1b3ab04585665c69860b713741906935a0 | [
"MIT"
] | 10 | 2020-03-20T09:06:12.000Z | 2021-07-27T13:06:02.000Z | students/k3340/laboratory_works/laboratory_works/Arlakov_Denis/laboratiry_work_2_and_3/lab/django-react-ecommerce-master/home/urls.py | TonikX/ITMO_ICT_-WebProgramming_2020 | ba566c1b3ab04585665c69860b713741906935a0 | [
"MIT"
] | 134 | 2020-03-23T09:47:48.000Z | 2022-03-12T01:05:19.000Z | students/k3340/laboratory_works/laboratory_works/Arlakov_Denis/laboratiry_work_2_and_3/lab/django-react-ecommerce-master/home/urls.py | TonikX/ITMO_ICT_-WebProgramming_2020 | ba566c1b3ab04585665c69860b713741906935a0 | [
"MIT"
] | 71 | 2020-03-20T12:45:56.000Z | 2021-10-31T19:22:25.000Z | from django.conf import settings
from django.conf.urls.static import static
from django.contrib import admin
from django.urls import path, include, re_path
from django.views.generic import TemplateView
urlpatterns = [
path('api-auth/', include('rest_framework.urls')),
path('rest-auth/', include('rest_auth.urls')),
path('rest-auth/registration/', include('rest_auth.registration.urls')),
path('admin/', admin.site.urls),
path('api/', include('core.api.urls')),
]
if settings.DEBUG:
urlpatterns += static(settings.MEDIA_URL,
document_root=settings.MEDIA_ROOT)
if not settings.DEBUG:
urlpatterns += [re_path(r'^.*',
TemplateView.as_view(template_name='index.html'))]
| 32.695652 | 78 | 0.678191 |
869447ef2f6a217e512b23fd0c00a4c4fa0f87a0 | 22,881 | py | Python | 20200416_Socialmail/mailserverUi.py | karta1782310/python-docx-automated-report-generation | f0e02a50a9e9547d131e583be0711aad72f08b51 | [
"MIT"
] | null | null | null | 20200416_Socialmail/mailserverUi.py | karta1782310/python-docx-automated-report-generation | f0e02a50a9e9547d131e583be0711aad72f08b51 | [
"MIT"
] | null | null | null | 20200416_Socialmail/mailserverUi.py | karta1782310/python-docx-automated-report-generation | f0e02a50a9e9547d131e583be0711aad72f08b51 | [
"MIT"
] | null | null | null | #!/bin/bash
# -*- coding: UTF-8 -*-
#
from PyQt5.QtWebEngineWidgets import QWebEngineView
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QGridLayout, QMessageBox, QFileDialog,
QLabel, QLineEdit, QPushButton, QComboBox, QCheckBox, QDateTimeEdit,
QTextEdit, QTabWidget, QTableWidget, QTableWidgetItem, QHeaderView)
from PyQt5.QtGui import QPalette, QColor, QBrush
from PyQt5.QtCore import Qt, QDateTime
from pyqtgraph import GraphicsLayoutWidget, setConfigOption, setConfigOptions
import qdarkstyle, sys
import mylibrary.genmail as gm
from GenAndSendMail import insert_send_mail
from server.database import Database
from server.sendmail import Smtp
from server.client import Client
from email import generator
from pandas import DataFrame
from copy import deepcopy
def main():
app = QApplication(sys.argv)
gui = MailserverUi()
gui.show()
sys.exit(app.exec_())
if __name__ == '__main__':
main() | 41.75365 | 151 | 0.617193 |
86947b6782d353d9c52f3c8165971a18131a9c5c | 3,869 | py | Python | nntools/layers/corrmm.py | 317070/nntools | 00e2865b1f8246254b3adc22c37989a8b77718d5 | [
"MIT"
] | null | null | null | nntools/layers/corrmm.py | 317070/nntools | 00e2865b1f8246254b3adc22c37989a8b77718d5 | [
"MIT"
] | null | null | null | nntools/layers/corrmm.py | 317070/nntools | 00e2865b1f8246254b3adc22c37989a8b77718d5 | [
"MIT"
] | null | null | null | """
GpuCorrMM-based convolutional layers
"""
import numpy as np
import theano
import theano.tensor as T
from theano.sandbox.cuda.basic_ops import gpu_contiguous
from theano.sandbox.cuda.blas import GpuCorrMM
from .. import init
from .. import nonlinearities
from . import base
# base class for all layers that rely on GpuCorrMM directly
| 37.931373 | 135 | 0.632205 |
8695dfaa20d2f47de4c76bf66aa5cf33728fae34 | 3,292 | py | Python | tests/python/correctness/simple_test_aux_index.py | dubey/weaver | 56a42fd2d0bbb14867ba792ca5461d16310a7387 | [
"BSD-3-Clause"
] | 163 | 2015-01-02T03:51:38.000Z | 2022-03-21T23:06:39.000Z | tests/python/correctness/simple_test_aux_index.py | dubey/weaver | 56a42fd2d0bbb14867ba792ca5461d16310a7387 | [
"BSD-3-Clause"
] | 1 | 2015-04-08T23:17:06.000Z | 2015-04-24T15:25:26.000Z | tests/python/correctness/simple_test_aux_index.py | dubey/weaver | 56a42fd2d0bbb14867ba792ca5461d16310a7387 | [
"BSD-3-Clause"
] | 20 | 2015-02-17T19:24:05.000Z | 2020-10-29T01:59:18.000Z | #! /usr/bin/env python
#
# ===============================================================
# Description: Sanity check for fresh install.
#
# Created: 2014-08-12 16:42:52
#
# Author: Ayush Dubey, [email protected]
#
# Copyright (C) 2013, Cornell University, see the LICENSE file
# for licensing agreement
# ===============================================================
#
import sys
try:
import weaver.client as client
except ImportError:
import client
config_file=''
if len(sys.argv) > 1:
config_file = sys.argv[1]
# create client object
c = client.Client('128.84.167.220', 2002, config_file)
# check aux index
assert c.aux_index()
# 1. create node for user ayush
c.begin_tx()
c.create_node('ayush')
c.set_node_properties({'type': 'user', 'age': '25'}, 'ayush')
c.end_tx()
# 2. create node for user egs
c.begin_tx()
c.create_node('egs')
c.set_node_property('type', 'user', 'egs')
c.end_tx()
# 3. ayush follows egs
c.begin_tx()
c.create_edge('ayush', 'egs', 'e1')
c.set_edge_property(edge='e1', key='type', value='follows')
c.create_edge('egs', 'ayush', 'e2')
c.set_edge_property(edge='e2', key='type', value='followed_by')
c.end_tx()
# 4. add a post and restrict visibility to followers only
c.begin_tx()
c.create_node('post')
c.set_node_property('type', 'post', 'post')
c.set_node_property('visibility', 'followers', 'post')
e3 = c.create_edge('egs', 'post')
c.set_edge_property(edge=e3, key='type', value='posted')
c.end_tx()
# 5. 'like' the post
c.begin_tx()
e4 = c.create_edge('post', 'ayush')
c.set_edge_property(edge=e4, key='type', value='liked_by')
c.end_tx()
# 6. list all the people who like egs's post
return_nodes = c.traverse('egs', {'type': 'user'}).out_edge({'type': 'posted'}).node({'type': 'post'}).out_edge({'type': 'liked_by'}).node({'type': 'user'}).execute()
assert len(return_nodes) == 1, 'traversal returned incorrect #nodes'
assert 'ayush' in return_nodes, 'traversal returned bad node handle'
# 7. try to create node with same handle as before
c.begin_tx()
c.create_node('ayush')
try:
c.end_tx()
assert False, 'create node passed'
except client.WeaverError:
pass
# 8. try to create edge with same handle as before
c.begin_tx()
c.create_edge('ayush', 'egs', 'e1')
try:
c.end_tx()
assert False, 'create edge passed'
except client.WeaverError:
pass
# 9. add auxiliary handles to nodes
c.begin_tx()
c.add_alias('ad688', 'ayush')
c.add_alias('el33th4x0r', 'egs')
c.end_tx()
# 10. list all the people who like egs's post
# this time with aliases instead of handles
return_nodes = c.traverse('el33th4x0r', {'type': 'user'}).out_edge({'type': 'posted'}).node({'type': 'post'}).out_edge({'type': 'liked_by'}).node({'type': 'user'}).execute()
assert len(return_nodes) == 1, 'traversal returned incorrect #nodes'
assert 'ayush' in return_nodes, 'traversal returned bad node handle'
# 11. get node and check it is valid
ad = c.get_node('ayush')
assert 'ad688' in ad.aliases
assert 'type' in ad.properties
assert 'user' in ad.properties['type']
assert 'age' in ad.properties
assert '25' in ad.properties['age']
assert 'e1' in ad.out_edges
print 'Correctly executed 11 transactions of varying complexity, pass simple_test.'
print 'Success, you have a working Weaver setup!'
| 28.626087 | 173 | 0.663123 |
8696b91ed345a9efbc515a25e28bfe35f30846c8 | 3,831 | py | Python | ldtools/helpers.py | dmr/Ldtools | 9cc5474404a07bd4b7ad756d31306dfc37a39c7b | [
"BSD-2-Clause"
] | 3 | 2015-12-24T15:18:46.000Z | 2022-02-09T06:56:40.000Z | ldtools/helpers.py | dmr/Ldtools | 9cc5474404a07bd4b7ad756d31306dfc37a39c7b | [
"BSD-2-Clause"
] | 1 | 2016-10-10T17:26:05.000Z | 2016-10-10T17:26:05.000Z | ldtools/helpers.py | dmr/Ldtools | 9cc5474404a07bd4b7ad756d31306dfc37a39c7b | [
"BSD-2-Clause"
] | null | null | null | # -*- coding: utf-8 -*-
from __future__ import print_function, unicode_literals
try:
unicode
except NameError:
basestring = unicode = str # Python 3
import logging
import rdflib
from rdflib import compare
logger = logging.getLogger("ldtools")
RESET_SEQ = "\033[0m"
COLOR_SEQ = "\033[1;%dm"
BOLD_SEQ = "\033[1m"
# The background is set with 40 plus the number of the color, and
# the foreground with 30
# These are the sequences need to get colored ouput
BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8)
COL = {
'DEBUG': BLUE, 'INFO': MAGENTA,
'WARNING': YELLOW, 'CRITICAL': YELLOW, 'ERROR': RED}
def my_graph_diff(graph1, graph2):
"""Compares graph2 to graph1 and highlights everything that changed.
Colored if pygments available"""
# quick fix for wrong type
if not type(graph1) == type(graph2) == rdflib.Graph:
if type(graph1) == rdflib.ConjunctiveGraph:
g1contexts = list(graph1.contexts())
assert len(g1contexts) == 1
graph1 = g1contexts[0]
if type(graph2) == rdflib.ConjunctiveGraph:
g2contexts = list(graph2.contexts())
assert len(g2contexts) == 1
graph2 = g2contexts[0]
# Return if both graphs are isomorphic
iso1 = compare.to_isomorphic(graph1)
iso2 = compare.to_isomorphic(graph2)
if graph1.identifier == graph2.identifier:
str_bit = u"The 2 '%s' Graphs" % graph1.identifier
else:
str_bit = (u"Graphs '%s' and '%s'"
% (graph1.identifier, graph2.identifier))
if iso1 == iso2:
logger.debug(u"%s are isomorphic" % str_bit)
return
print(u"Differences between %s." % str_bit)
in_both, in_first, in_second = compare.graph_diff(iso1, iso2)
sorted_first = dump_nt_sorted(in_first)
sorted_second = dump_nt_sorted(in_second)
import difflib
diff = difflib.unified_diff(
sorted_first,
sorted_second,
u'Original',
u'Current',
lineterm=''
)
try:
from pygments import highlight
from pygments.formatters import terminal
from pygments.lexers import web
lexer = web.XmlLexer()
formatter = terminal.TerminalFormatter()
print(highlight(u'\n'.join(diff), lexer, formatter))
except ImportError:
logger.info("Install pygments for colored diffs")
print(u'\n'.join(diff))
except UnicodeDecodeError:
print(u"Only in first", unicode(sorted_first))
print(u"Only in second", unicode(sorted_second))
| 30.895161 | 79 | 0.631689 |
8696be28bebb97248ddd7aa9ff8ffc4d35ce9393 | 1,420 | py | Python | fakenet/diverters/debuglevels.py | AzzOnFire/flare-fakenet-ng | bafd7e97b61cd43190dee7f1d2c3f4388488af76 | [
"Apache-2.0"
] | null | null | null | fakenet/diverters/debuglevels.py | AzzOnFire/flare-fakenet-ng | bafd7e97b61cd43190dee7f1d2c3f4388488af76 | [
"Apache-2.0"
] | null | null | null | fakenet/diverters/debuglevels.py | AzzOnFire/flare-fakenet-ng | bafd7e97b61cd43190dee7f1d2c3f4388488af76 | [
"Apache-2.0"
] | null | null | null | # Debug print levels for fine-grained debug trace output control
DNFQUEUE = (1 << 0) # netfilterqueue
DGENPKT = (1 << 1) # Generic packet handling
DGENPKTV = (1 << 2) # Generic packet handling with TCP analysis
DCB = (1 << 3) # Packet handlign callbacks
DPROCFS = (1 << 4) # procfs
DIPTBLS = (1 << 5) # iptables
DNONLOC = (1 << 6) # Nonlocal-destined datagrams
DDPF = (1 << 7) # DPF (Dynamic Port Forwarding)
DDPFV = (1 << 8) # DPF (Dynamic Port Forwarding) Verbose
DIPNAT = (1 << 9) # IP redirection for nonlocal-destined datagrams
DMANGLE = (1 << 10) # Packet mangling
DPCAP = (1 << 11) # Pcap write logic
DIGN = (1 << 12) # Packet redirect ignore conditions
DFTP = (1 << 13) # FTP checks
DMISC = (1 << 27) # Miscellaneous
DCOMP = 0x0fffffff # Component mask
DFLAG = 0xf0000000 # Flag mask
DEVERY = 0x0fffffff # Log everything, low verbosity
DEVERY2 = 0x8fffffff # Log everything, complete verbosity
DLABELS = {
DNFQUEUE: 'NFQUEUE',
DGENPKT: 'GENPKT',
DGENPKTV: 'GENPKTV',
DCB: 'CB',
DPROCFS: 'PROCFS',
DIPTBLS: 'IPTABLES',
DNONLOC: 'NONLOC',
DDPF: 'DPF',
DDPFV: 'DPFV',
DIPNAT: 'IPNAT',
DMANGLE: 'MANGLE',
DPCAP: 'PCAP',
DIGN: 'IGN',
DFTP: 'FTP',
DIGN | DFTP: 'IGN-FTP',
DMISC: 'MISC',
}
DLABELS_INV = {v.upper(): k for k, v in DLABELS.items()}
| 33.023256 | 72 | 0.592958 |
869714958dec93fb87488625f1ab7000485c9fb2 | 3,175 | py | Python | multichannel_lstm/train.py | zhr1201/Multi-channel-speech-extraction-using-DNN | 4e48869e02b815a8b094acc9251ac6586fda350c | [
"MIT"
] | 65 | 2017-08-04T03:36:56.000Z | 2022-03-10T07:25:17.000Z | multichannel_lstm/train.py | zhr1201/Multi-channel-speech-extraction-using-DNN | 4e48869e02b815a8b094acc9251ac6586fda350c | [
"MIT"
] | 7 | 2017-10-10T02:34:08.000Z | 2019-09-27T08:59:27.000Z | multichannel_lstm/train.py | zhr1201/Multi-channel-speech-extraction-using-DNN | 4e48869e02b815a8b094acc9251ac6586fda350c | [
"MIT"
] | 39 | 2017-08-02T04:27:37.000Z | 2021-11-03T06:43:25.000Z | '''
Script for training the model
'''
import tensorflow as tf
import numpy as np
from input import BatchGenerator
from model import MultiRnn
import time
from datetime import datetime
import os
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import pyplot as plt
sum_dir = 'sum' # dir to write summary
train_dir = 'ckpt' # dir to store the model
data_dir = 'train.pkl' # dir of the data set
NEFF = 129 # effective FFT points
batch_size = 128
num_steps = 20
epochs = 2000
cell_type = 'NL_LSTM'
state_size = 256
output_size = 129
num_layer = 3
learning_rate = 0.0001
# build the model
rnn_model = MultiRnn(
cell_type, state_size, output_size,
batch_size, num_layer, learning_rate, num_steps)
# input data and referene data placeholder
in_data = tf.placeholder(
tf.float32, [batch_size, num_steps, 2 * NEFF])
ref_data = tf.placeholder(
tf.float32, [batch_size, num_steps, NEFF])
# make inference
init_state, final_state, inf_data = rnn_model.inference(in_data)
# compute loss
loss = rnn_model.loss(inf_data, ref_data)
saver = tf.train.Saver(tf.all_variables())
summary_op = tf.merge_all_summaries()
train_op = rnn_model.train(loss)
batch_gen = BatchGenerator(data_dir, batch_size, num_steps, epochs)
with tf.Session() as sess:
summary_writer = tf.train.SummaryWriter(
sum_dir, sess.graph)
sess.run(tf.initialize_all_variables())
steps = 0
# generator for epoch data
for idx, epoch in enumerate(batch_gen.gen_epochs()):
training_state = None
# generator for batch data
for f_data, b_data, r_data, v_data in epoch:
start_time = time.time()
steps += 1
in_data_np = np.concatenate((f_data, b_data), axis=2)
if steps % 100 == 0:
feed_dict = {in_data: in_data_np, ref_data: r_data}
if training_state is not None:
feed_dict[init_state] = training_state
# training the net
loss_value, training_state, _, summary_str, test_inf = sess.run(
[loss, final_state, train_op, summary_op, inf_data], feed_dict)
duration = time.time() - start_time
sec_per_batch = float(duration)
examples_per_sec = batch_size / duration
format_str = (
'%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch, epoch %d)')
print (format_str % (datetime.now(), steps, loss_value,
examples_per_sec, sec_per_batch,
idx))
summary_writer.add_summary(summary_str, steps)
else:
feed_dict = {in_data: in_data_np, ref_data: r_data}
if training_state is not None:
feed_dict[init_state] = training_state
loss_value, training_state, _ = sess.run(
[loss, final_state, train_op], feed_dict)
if steps % 10000 == 0:
checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=steps)
| 33.776596 | 83 | 0.624252 |
8697573e23a0bff4599f9e6ef4bcf4db3b6b315f | 4,002 | py | Python | python_modules/dagster/dagster/daemon/cli/__init__.py | elsenorbw/dagster | b38822d7463812624dab0b2dae7c62e2a8d59828 | [
"Apache-2.0"
] | null | null | null | python_modules/dagster/dagster/daemon/cli/__init__.py | elsenorbw/dagster | b38822d7463812624dab0b2dae7c62e2a8d59828 | [
"Apache-2.0"
] | null | null | null | python_modules/dagster/dagster/daemon/cli/__init__.py | elsenorbw/dagster | b38822d7463812624dab0b2dae7c62e2a8d59828 | [
"Apache-2.0"
] | null | null | null | import os
import sys
import threading
import time
import warnings
from contextlib import ExitStack
import click
import pendulum
from dagster import __version__
from dagster.core.instance import DagsterInstance
from dagster.daemon.controller import (
DEFAULT_DAEMON_HEARTBEAT_TOLERANCE_SECONDS,
DagsterDaemonController,
all_daemons_healthy,
all_daemons_live,
daemon_controller_from_instance,
debug_daemon_heartbeats,
get_daemon_status,
)
from dagster.utils.interrupts import capture_interrupts, raise_interrupts_as
def create_dagster_daemon_cli():
commands = {
"run": run_command,
"health-check": health_check_command,
"liveness-check": liveness_check_command,
"wipe": wipe_command,
"debug": debug_group,
}
return group
cli = create_dagster_daemon_cli()
| 28.183099 | 121 | 0.696902 |
869758494ec4227a029bca8c4e214109b3aea62a | 331 | py | Python | tests/exhaustive/nfl_tests.py | atklaus/sportsreference | 22a45ea83ce1608c3176f00d4f414d5b9463605c | [
"MIT"
] | 1 | 2020-03-08T20:17:39.000Z | 2020-03-08T20:17:39.000Z | tests/exhaustive/nfl_tests.py | atklaus/sportsreference | 22a45ea83ce1608c3176f00d4f414d5b9463605c | [
"MIT"
] | null | null | null | tests/exhaustive/nfl_tests.py | atklaus/sportsreference | 22a45ea83ce1608c3176f00d4f414d5b9463605c | [
"MIT"
] | null | null | null | import sys, os
sys.path.append(os.path.dirname(os.path.dirname(sys.path[0])))
from sportsreference.nfl.teams import Teams
for team in Teams():
print(team.name)
for player in team.roster.players:
print(player.name)
for game in team.schedule:
print(game.dataframe)
print(game.dataframe_extended)
| 27.583333 | 62 | 0.700906 |
86979f732a31535e5210a87577515eada4d424aa | 1,116 | py | Python | rust-old/python/examples/map_fields.py | SerebryakovMA/quelea | 4bac70d60852a454ad6533d08a02e018c75dc377 | [
"MIT"
] | 3 | 2021-03-01T15:35:49.000Z | 2021-04-04T17:24:48.000Z | rust-old/python/examples/map_fields.py | SerebryakovMA/quelea | 4bac70d60852a454ad6533d08a02e018c75dc377 | [
"MIT"
] | null | null | null | rust-old/python/examples/map_fields.py | SerebryakovMA/quelea | 4bac70d60852a454ad6533d08a02e018c75dc377 | [
"MIT"
] | null | null | null | import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sys
sys.path.append("../")
from quelea import *
nx = 217
ny = 133
x0 = 0
x1 = 30 # lambdas
y0 = 0
y1 = 20 # lambdas
xs = np.linspace(x0, x1, nx)
ys = np.linspace(y0, y1, ny)
# 2d array of (x, y, z, t)
coords = np.array( [ [x, y, 0, 0] for x in xs for y in ys ] )
# for map_fields function this should be converted from 2D to 1D array
coords = coords.reshape((4 * nx * ny,))
ftype = 1 # plane wave
a0 = 1 # normalized field amplitude
omega = 1 # frequency
fparam = [a0, 1, 0, 0, 0, 1, 0, 0, omega] # parameters of the plane wave
ex, ey, ez, bx, by, bz = map_fields(coords, ftype, fparam)
# now convert to 2d arrays
ex = ex.reshape((nx, ny))
ey = ey.reshape((nx, ny))
ez = ez.reshape((nx, ny))
bx = bx.reshape((nx, ny))
by = by.reshape((nx, ny))
bz = bz.reshape((nx, ny))
ex = ex.transpose()
ey = ey.transpose()
ez = ez.transpose()
bx = bx.transpose()
by = by.transpose()
bz = bz.transpose()
plt.imshow(ey, cmap = 'RdYlBu', origin = 'lower', extent = [x0, x1, y0, y1])
plt.colorbar()
plt.clim(-a0, a0)
plt.savefig("map_fields.pdf")
| 21.882353 | 76 | 0.641577 |
86981ef4c2dc9e662bd6493203efcef25a7c5284 | 4,709 | py | Python | test.py | t-kaichi/hyperspoof | 6effdf03be8489ba74154a12416c69948681aa51 | [
"MIT"
] | 10 | 2021-06-23T09:42:30.000Z | 2022-03-31T22:26:17.000Z | test.py | t-kaichi/hyperspoof | 6effdf03be8489ba74154a12416c69948681aa51 | [
"MIT"
] | null | null | null | test.py | t-kaichi/hyperspoof | 6effdf03be8489ba74154a12416c69948681aa51 | [
"MIT"
] | null | null | null | import os
from absl import app
from absl import flags
import numpy as np
import tqdm
from tensorflow.keras import Model
from albumentations import (
Compose, HorizontalFlip, RandomBrightness,RandomContrast,
ShiftScaleRotate, ToFloat, VerticalFlip)
from utils import reset_tf
from eval_utils import calc_score_variance
from models import build_seg_model, build_pixel_mlp_class_model
from VegetableSequence import VegetableDataset, VegetableSequence
from temporal_random_seed import TemporalRandomSeed
import myFlags
FLAGS = flags.FLAGS
if __name__ == "__main__":
app.run(main) | 36.503876 | 84 | 0.660437 |
8698961278b2541aa172b54c8053ea36ceff0d54 | 4,612 | py | Python | generator/apps.py | TheJacksonLaboratory/jaxid_generator | be5222d9c5ce57a169b94b0afd1ae9f7f10a66c1 | [
"Apache-2.0"
] | 2 | 2020-10-19T17:21:09.000Z | 2020-10-20T14:27:25.000Z | generator/apps.py | cometsong/jaxid_generator | be5222d9c5ce57a169b94b0afd1ae9f7f10a66c1 | [
"Apache-2.0"
] | null | null | null | generator/apps.py | cometsong/jaxid_generator | be5222d9c5ce57a169b94b0afd1ae9f7f10a66c1 | [
"Apache-2.0"
] | null | null | null | from django.conf import settings
from suit import apps
from suit.apps import DjangoSuitConfig
from suit.menu import ParentItem, ChildItem
APP_NAME = settings.APP_NAME
WIKI_URL = settings.WIKI_URL
| 37.803279 | 198 | 0.550954 |
869a0bbbdd3ad540b61675d429b25b1caee7f14d | 38,519 | py | Python | tiled-lutnet/training-software/MNIST-CIFAR-SVHN/models/MNIST/scripts/lutnet_init.py | awai54st/LUTNet | 81b044f31d1131bee1a7fae41fc4d2fb102ea73a | [
"BSD-2-Clause"
] | 38 | 2019-10-28T10:06:33.000Z | 2022-02-21T21:38:39.000Z | tiled-lutnet/training-software/MNIST-CIFAR-SVHN/models/MNIST/scripts/lutnet_init.py | awai54st/LUTNet | 81b044f31d1131bee1a7fae41fc4d2fb102ea73a | [
"BSD-2-Clause"
] | null | null | null | tiled-lutnet/training-software/MNIST-CIFAR-SVHN/models/MNIST/scripts/lutnet_init.py | awai54st/LUTNet | 81b044f31d1131bee1a7fae41fc4d2fb102ea73a | [
"BSD-2-Clause"
] | 13 | 2019-10-28T10:17:48.000Z | 2021-08-10T21:37:11.000Z | import h5py
import numpy as np
np.set_printoptions(threshold=np.nan)
from shutil import copyfile
copyfile("dummy_lutnet.h5", "pretrained_bin.h5") # create pretrained.h5 using datastructure from dummy.h5
bl = h5py.File("baseline_pruned.h5", 'r')
#dummy = h5py.File("dummy.h5", 'r')
pretrained = h5py.File("pretrained_bin.h5", 'r+')
# dense layer 1
bl_w1 = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_1:0"]
bl_pruning_mask = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["pruning_mask:0"]
bl_gamma = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable:0"]
zero_fill = np.zeros(np.shape(np.array(bl_w1)))
pret_w1 = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_1:0"]
pret_pruning_mask = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["pruning_mask:0"]
p_gamma = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable:0"]
pret_w1[...] = np.array(bl_w1)
p_gamma[...] = np.array(bl_gamma)
pret_pruning_mask[...] = np.array(bl_pruning_mask)
print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask))))
# dense layer 2
bl_w1 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_1:0"]
bl_rand_map_0 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_0:0"]
bl_pruning_mask = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["pruning_mask:0"]
bl_gamma = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable:0"]
bl_means = bl["model_weights"]["residual_sign_1"]["residual_sign_1"]["means:0"]
pret_rand_map_0 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_0:0"]
pret_rand_map_1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_1:0"]
pret_rand_map_2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_2:0"]
pret_pruning_mask = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["pruning_mask:0"]
p_gamma = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable:0"]
pret_means = pretrained["model_weights"]["residual_sign_1"]["residual_sign_1"]["means:0"]
pret_c1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_1:0"]
pret_c2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_2:0"]
pret_c3 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_3:0"]
pret_c4 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_4:0"]
pret_c5 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_5:0"]
pret_c6 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_6:0"]
pret_c7 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_7:0"]
pret_c8 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_8:0"]
pret_c9 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_9:0"]
pret_c10= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_10:0"]
pret_c11= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_11:0"]
pret_c12= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_12:0"]
pret_c13= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_13:0"]
pret_c14= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_14:0"]
pret_c15= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_15:0"]
pret_c16= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_16:0"]
pret_c17= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_17:0"]
pret_c18= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_18:0"]
pret_c19= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_19:0"]
pret_c20= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_20:0"]
pret_c21= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_21:0"]
pret_c22= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_22:0"]
pret_c23= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_23:0"]
pret_c24= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_24:0"]
pret_c25= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_25:0"]
pret_c26= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_26:0"]
pret_c27= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_27:0"]
pret_c28= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_28:0"]
pret_c29= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_29:0"]
pret_c30= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_30:0"]
pret_c31= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_31:0"]
pret_c32= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_32:0"]
pret_w1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_33:0"]
pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_exp_0:0"]
pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_exp_1:0"]
pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_exp_2:0"]
weight_shape = np.shape(bl_w1)
tile_shape = np.shape(pret_c1)
zero_fill = np.zeros(tile_shape)
one_fill = np.ones(tile_shape)
neg_one_fill = -np.ones(tile_shape)
# randomisation and pruning recovery
bl_w1_unroll = np.array(bl_w1)
bl_w1 = np.array(bl_w1)
rand_map_0 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_0)
rand_map_1 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_1)
rand_map_2 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_2)
pruning_mask = np.array(bl_pruning_mask).astype(bool)
init_mask = np.logical_not(pruning_mask[rand_map_0])
pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)]
pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover)
init_mask = np.reshape(init_mask, tile_shape)
# expand randomisation map across tiles
rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]])
rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]])
rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]])
for i in range(weight_shape[0]):
rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand]
bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape)
w1 = bl_w1
# connect1 only
c1 = one_fill
c2 = neg_one_fill
c3 = one_fill
c4 = neg_one_fill
c5 = one_fill
c6 = neg_one_fill
c7 = one_fill
c8 = neg_one_fill
c9 = one_fill
c10 = neg_one_fill
c11 = one_fill
c12 = neg_one_fill
c13 = one_fill
c14 = neg_one_fill
c15 = one_fill
c16 = neg_one_fill
c17 = neg_one_fill
c18 = one_fill
c19 = neg_one_fill
c20 = one_fill
c21 = neg_one_fill
c22 = one_fill
c23 = neg_one_fill
c24 = one_fill
c25 = neg_one_fill
c26 = one_fill
c27 = neg_one_fill
c28 = one_fill
c29 = neg_one_fill
c30 = one_fill
c31 = neg_one_fill
c32 = one_fill
pret_w1 [...] = w1
pret_c1 [...] = c1
pret_c2 [...] = c2
pret_c3 [...] = c3
pret_c4 [...] = c4
pret_c5 [...] = c5
pret_c6 [...] = c6
pret_c7 [...] = c7
pret_c8 [...] = c8
pret_c9 [...] = c9
pret_c10[...] = c10
pret_c11[...] = c11
pret_c12[...] = c12
pret_c13[...] = c13
pret_c14[...] = c14
pret_c15[...] = c15
pret_c16[...] = c16
pret_c17[...] = c17
pret_c18[...] = c18
pret_c19[...] = c19
pret_c20[...] = c20
pret_c21[...] = c21
pret_c22[...] = c22
pret_c23[...] = c23
pret_c24[...] = c24
pret_c25[...] = c25
pret_c26[...] = c26
pret_c27[...] = c27
pret_c28[...] = c28
pret_c29[...] = c29
pret_c30[...] = c30
pret_c31[...] = c31
pret_c32[...] = c32
pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float)
pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float)
pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float)
p_gamma[...] = np.array(bl_gamma)
pret_means[...] = np.array(bl_means)
pret_pruning_mask[...] = np.array(bl_pruning_mask)
rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float)
pret_rand_map_exp_0[...] = rand_map_0_expand
rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float)
pret_rand_map_exp_1[...] = rand_map_1_expand
rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float)
pret_rand_map_exp_2[...] = rand_map_2_expand
print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask))))
# dense layer 3
bl_w1 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_1:0"]
bl_rand_map_0 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_0:0"]
bl_pruning_mask = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["pruning_mask:0"]
bl_gamma = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable:0"]
bl_means = bl["model_weights"]["residual_sign_2"]["residual_sign_2"]["means:0"]
pret_rand_map_0 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_0:0"]
pret_rand_map_1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_1:0"]
pret_rand_map_2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_2:0"]
pret_pruning_mask = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["pruning_mask:0"]
p_gamma = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable:0"]
pret_means = pretrained["model_weights"]["residual_sign_2"]["residual_sign_2"]["means:0"]
pret_c1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_1:0"]
pret_c2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_2:0"]
pret_c3 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_3:0"]
pret_c4 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_4:0"]
pret_c5 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_5:0"]
pret_c6 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_6:0"]
pret_c7 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_7:0"]
pret_c8 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_8:0"]
pret_c9 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_9:0"]
pret_c10= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_10:0"]
pret_c11= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_11:0"]
pret_c12= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_12:0"]
pret_c13= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_13:0"]
pret_c14= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_14:0"]
pret_c15= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_15:0"]
pret_c16= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_16:0"]
pret_c17= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_17:0"]
pret_c18= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_18:0"]
pret_c19= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_19:0"]
pret_c20= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_20:0"]
pret_c21= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_21:0"]
pret_c22= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_22:0"]
pret_c23= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_23:0"]
pret_c24= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_24:0"]
pret_c25= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_25:0"]
pret_c26= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_26:0"]
pret_c27= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_27:0"]
pret_c28= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_28:0"]
pret_c29= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_29:0"]
pret_c30= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_30:0"]
pret_c31= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_31:0"]
pret_c32= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_32:0"]
pret_w1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_33:0"]
pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_exp_0:0"]
pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_exp_1:0"]
pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_exp_2:0"]
weight_shape = np.shape(bl_w1)
tile_shape = np.shape(pret_c1)
zero_fill = np.zeros(tile_shape)
one_fill = np.ones(tile_shape)
neg_one_fill = -np.ones(tile_shape)
# randomisation and pruning recovery
bl_w1_unroll = np.array(bl_w1)
bl_w1 = np.array(bl_w1)
rand_map_0 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_0)
rand_map_1 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_1)
rand_map_2 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_2)
pruning_mask = np.array(bl_pruning_mask).astype(bool)
init_mask = np.logical_not(pruning_mask[rand_map_0])
pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)]
pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover)
init_mask = np.reshape(init_mask, tile_shape)
# expand randomisation map across tiles
rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]])
rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]])
rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]])
for i in range(weight_shape[0]):
rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand]
bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape)
w1 = bl_w1
# connect1 only
c1 = one_fill
c2 = neg_one_fill
c3 = one_fill
c4 = neg_one_fill
c5 = one_fill
c6 = neg_one_fill
c7 = one_fill
c8 = neg_one_fill
c9 = one_fill
c10 = neg_one_fill
c11 = one_fill
c12 = neg_one_fill
c13 = one_fill
c14 = neg_one_fill
c15 = one_fill
c16 = neg_one_fill
c17 = neg_one_fill
c18 = one_fill
c19 = neg_one_fill
c20 = one_fill
c21 = neg_one_fill
c22 = one_fill
c23 = neg_one_fill
c24 = one_fill
c25 = neg_one_fill
c26 = one_fill
c27 = neg_one_fill
c28 = one_fill
c29 = neg_one_fill
c30 = one_fill
c31 = neg_one_fill
c32 = one_fill
pret_w1 [...] = w1
pret_c1 [...] = c1
pret_c2 [...] = c2
pret_c3 [...] = c3
pret_c4 [...] = c4
pret_c5 [...] = c5
pret_c6 [...] = c6
pret_c7 [...] = c7
pret_c8 [...] = c8
pret_c9 [...] = c9
pret_c10[...] = c10
pret_c11[...] = c11
pret_c12[...] = c12
pret_c13[...] = c13
pret_c14[...] = c14
pret_c15[...] = c15
pret_c16[...] = c16
pret_c17[...] = c17
pret_c18[...] = c18
pret_c19[...] = c19
pret_c20[...] = c20
pret_c21[...] = c21
pret_c22[...] = c22
pret_c23[...] = c23
pret_c24[...] = c24
pret_c25[...] = c25
pret_c26[...] = c26
pret_c27[...] = c27
pret_c28[...] = c28
pret_c29[...] = c29
pret_c30[...] = c30
pret_c31[...] = c31
pret_c32[...] = c32
pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float)
pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float)
pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float)
p_gamma[...] = np.array(bl_gamma)
pret_means[...] = np.array(bl_means)
pret_pruning_mask[...] = np.array(bl_pruning_mask)
rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float)
pret_rand_map_exp_0[...] = rand_map_0_expand
rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float)
pret_rand_map_exp_1[...] = rand_map_1_expand
rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float)
pret_rand_map_exp_2[...] = rand_map_2_expand
print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask))))
# dense layer 4
bl_w1 = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_1:0"]
bl_rand_map_0 = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_0:0"]
bl_pruning_mask = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["pruning_mask:0"]
bl_gamma = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable:0"]
bl_means = bl["model_weights"]["residual_sign_3"]["residual_sign_3"]["means:0"]
pret_rand_map_0 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_0:0"]
pret_rand_map_1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_1:0"]
pret_rand_map_2 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_2:0"]
pret_pruning_mask = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["pruning_mask:0"]
p_gamma = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable:0"]
pret_means = pretrained["model_weights"]["residual_sign_3"]["residual_sign_3"]["means:0"]
pret_c1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_1:0"]
pret_c2 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_2:0"]
pret_c3 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_3:0"]
pret_c4 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_4:0"]
pret_c5 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_5:0"]
pret_c6 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_6:0"]
pret_c7 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_7:0"]
pret_c8 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_8:0"]
pret_c9 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_9:0"]
pret_c10= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_10:0"]
pret_c11= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_11:0"]
pret_c12= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_12:0"]
pret_c13= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_13:0"]
pret_c14= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_14:0"]
pret_c15= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_15:0"]
pret_c16= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_16:0"]
pret_c17= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_17:0"]
pret_c18= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_18:0"]
pret_c19= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_19:0"]
pret_c20= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_20:0"]
pret_c21= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_21:0"]
pret_c22= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_22:0"]
pret_c23= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_23:0"]
pret_c24= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_24:0"]
pret_c25= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_25:0"]
pret_c26= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_26:0"]
pret_c27= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_27:0"]
pret_c28= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_28:0"]
pret_c29= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_29:0"]
pret_c30= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_30:0"]
pret_c31= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_31:0"]
pret_c32= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_32:0"]
pret_w1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_33:0"]
pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_exp_0:0"]
pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_exp_1:0"]
pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_exp_2:0"]
weight_shape = np.shape(bl_w1)
tile_shape = np.shape(pret_c1)
zero_fill = np.zeros(tile_shape)
one_fill = np.ones(tile_shape)
neg_one_fill = -np.ones(tile_shape)
# randomisation and pruning recovery
bl_w1_unroll = np.array(bl_w1)
bl_w1 = np.array(bl_w1)
rand_map_0 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_0)
rand_map_1 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_1)
rand_map_2 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_2)
pruning_mask = np.array(bl_pruning_mask).astype(bool)
init_mask = np.logical_not(pruning_mask[rand_map_0])
pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)]
pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover)
init_mask = np.reshape(init_mask, tile_shape)
# expand randomisation map across tiles
rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]])
rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]])
rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]])
for i in range(weight_shape[0]):
rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand]
bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape)
w1 = bl_w1
# connect1 only
c1 = one_fill
c2 = neg_one_fill
c3 = one_fill
c4 = neg_one_fill
c5 = one_fill
c6 = neg_one_fill
c7 = one_fill
c8 = neg_one_fill
c9 = one_fill
c10 = neg_one_fill
c11 = one_fill
c12 = neg_one_fill
c13 = one_fill
c14 = neg_one_fill
c15 = one_fill
c16 = neg_one_fill
c17 = neg_one_fill
c18 = one_fill
c19 = neg_one_fill
c20 = one_fill
c21 = neg_one_fill
c22 = one_fill
c23 = neg_one_fill
c24 = one_fill
c25 = neg_one_fill
c26 = one_fill
c27 = neg_one_fill
c28 = one_fill
c29 = neg_one_fill
c30 = one_fill
c31 = neg_one_fill
c32 = one_fill
pret_w1 [...] = w1
pret_c1 [...] = c1
pret_c2 [...] = c2
pret_c3 [...] = c3
pret_c4 [...] = c4
pret_c5 [...] = c5
pret_c6 [...] = c6
pret_c7 [...] = c7
pret_c8 [...] = c8
pret_c9 [...] = c9
pret_c10[...] = c10
pret_c11[...] = c11
pret_c12[...] = c12
pret_c13[...] = c13
pret_c14[...] = c14
pret_c15[...] = c15
pret_c16[...] = c16
pret_c17[...] = c17
pret_c18[...] = c18
pret_c19[...] = c19
pret_c20[...] = c20
pret_c21[...] = c21
pret_c22[...] = c22
pret_c23[...] = c23
pret_c24[...] = c24
pret_c25[...] = c25
pret_c26[...] = c26
pret_c27[...] = c27
pret_c28[...] = c28
pret_c29[...] = c29
pret_c30[...] = c30
pret_c31[...] = c31
pret_c32[...] = c32
pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float)
pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float)
pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float)
p_gamma[...] = np.array(bl_gamma)
pret_means[...] = np.array(bl_means)
pret_pruning_mask[...] = np.array(bl_pruning_mask)
rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float)
pret_rand_map_exp_0[...] = rand_map_0_expand
rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float)
pret_rand_map_exp_1[...] = rand_map_1_expand
rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float)
pret_rand_map_exp_2[...] = rand_map_2_expand
print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask))))
# dense layer 5
bl_w1 = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_1:0"]
bl_rand_map_0 = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_0:0"]
bl_pruning_mask = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["pruning_mask:0"]
bl_gamma = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable:0"]
bl_means = bl["model_weights"]["residual_sign_4"]["residual_sign_4"]["means:0"]
pret_rand_map_0 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_0:0"]
pret_rand_map_1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_1:0"]
pret_rand_map_2 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_2:0"]
pret_pruning_mask = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["pruning_mask:0"]
p_gamma = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable:0"]
pret_means = pretrained["model_weights"]["residual_sign_4"]["residual_sign_4"]["means:0"]
pret_c1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_1:0"]
pret_c2 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_2:0"]
pret_c3 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_3:0"]
pret_c4 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_4:0"]
pret_c5 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_5:0"]
pret_c6 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_6:0"]
pret_c7 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_7:0"]
pret_c8 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_8:0"]
pret_c9 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_9:0"]
pret_c10= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_10:0"]
pret_c11= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_11:0"]
pret_c12= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_12:0"]
pret_c13= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_13:0"]
pret_c14= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_14:0"]
pret_c15= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_15:0"]
pret_c16= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_16:0"]
pret_c17= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_17:0"]
pret_c18= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_18:0"]
pret_c19= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_19:0"]
pret_c20= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_20:0"]
pret_c21= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_21:0"]
pret_c22= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_22:0"]
pret_c23= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_23:0"]
pret_c24= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_24:0"]
pret_c25= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_25:0"]
pret_c26= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_26:0"]
pret_c27= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_27:0"]
pret_c28= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_28:0"]
pret_c29= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_29:0"]
pret_c30= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_30:0"]
pret_c31= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_31:0"]
pret_c32= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_32:0"]
pret_w1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_33:0"]
pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_exp_0:0"]
pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_exp_1:0"]
pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_exp_2:0"]
weight_shape = np.shape(bl_w1)
tile_shape = np.shape(pret_c1)
zero_fill = np.zeros(tile_shape)
one_fill = np.ones(tile_shape)
neg_one_fill = -np.ones(tile_shape)
# randomisation and pruning recovery
bl_w1_unroll = np.array(bl_w1)
bl_w1 = np.array(bl_w1)
rand_map_0 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_0)
rand_map_1 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_1)
rand_map_2 = np.arange(tile_shape[0])
np.random.shuffle(rand_map_2)
pruning_mask = np.array(bl_pruning_mask).astype(bool)
init_mask = np.logical_not(pruning_mask[rand_map_0])
pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)]
pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover)
init_mask = np.reshape(init_mask, tile_shape)
# expand randomisation map across tiles
rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]])
rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]])
rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]])
for i in range(weight_shape[0]):
rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0])
bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand]
bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape)
w1 = bl_w1
# connect1 only
c1 = one_fill
c2 = neg_one_fill
c3 = one_fill
c4 = neg_one_fill
c5 = one_fill
c6 = neg_one_fill
c7 = one_fill
c8 = neg_one_fill
c9 = one_fill
c10 = neg_one_fill
c11 = one_fill
c12 = neg_one_fill
c13 = one_fill
c14 = neg_one_fill
c15 = one_fill
c16 = neg_one_fill
c17 = neg_one_fill
c18 = one_fill
c19 = neg_one_fill
c20 = one_fill
c21 = neg_one_fill
c22 = one_fill
c23 = neg_one_fill
c24 = one_fill
c25 = neg_one_fill
c26 = one_fill
c27 = neg_one_fill
c28 = one_fill
c29 = neg_one_fill
c30 = one_fill
c31 = neg_one_fill
c32 = one_fill
pret_w1 [...] = w1
pret_c1 [...] = c1
pret_c2 [...] = c2
pret_c3 [...] = c3
pret_c4 [...] = c4
pret_c5 [...] = c5
pret_c6 [...] = c6
pret_c7 [...] = c7
pret_c8 [...] = c8
pret_c9 [...] = c9
pret_c10[...] = c10
pret_c11[...] = c11
pret_c12[...] = c12
pret_c13[...] = c13
pret_c14[...] = c14
pret_c15[...] = c15
pret_c16[...] = c16
pret_c17[...] = c17
pret_c18[...] = c18
pret_c19[...] = c19
pret_c20[...] = c20
pret_c21[...] = c21
pret_c22[...] = c22
pret_c23[...] = c23
pret_c24[...] = c24
pret_c25[...] = c25
pret_c26[...] = c26
pret_c27[...] = c27
pret_c28[...] = c28
pret_c29[...] = c29
pret_c30[...] = c30
pret_c31[...] = c31
pret_c32[...] = c32
pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float)
pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float)
pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float)
p_gamma[...] = np.array(bl_gamma)
pret_means[...] = np.array(bl_means)
pret_pruning_mask[...] = np.array(bl_pruning_mask)
rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float)
pret_rand_map_exp_0[...] = rand_map_0_expand
rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float)
pret_rand_map_exp_1[...] = rand_map_1_expand
rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float)
pret_rand_map_exp_2[...] = rand_map_2_expand
print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask))))
# bn 1
bl_beta = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["beta:0"]
bl_gamma = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["gamma:0"]
bl_moving_mean = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_mean:0"]
bl_moving_variance = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_variance:0"]
p_beta = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["beta:0"]
p_gamma = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["gamma:0"]
p_moving_mean = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_mean:0"]
p_moving_variance = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_variance:0"]
p_beta[...] = np.array(bl_beta)
p_gamma[...] = np.array(bl_gamma)
p_moving_mean[...] = np.array(bl_moving_mean)
p_moving_variance[...] = np.array(bl_moving_variance)
# bn 2
bl_beta = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["beta:0"]
bl_gamma = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["gamma:0"]
bl_moving_mean = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_mean:0"]
bl_moving_variance = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_variance:0"]
p_beta = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["beta:0"]
p_gamma = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["gamma:0"]
p_moving_mean = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_mean:0"]
p_moving_variance = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_variance:0"]
p_beta[...] = np.array(bl_beta)
p_gamma[...] = np.array(bl_gamma)
p_moving_mean[...] = np.array(bl_moving_mean)
p_moving_variance[...] = np.array(bl_moving_variance)
# bn 3
bl_beta = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["beta:0"]
bl_gamma = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["gamma:0"]
bl_moving_mean = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_mean:0"]
bl_moving_variance = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_variance:0"]
p_beta = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["beta:0"]
p_gamma = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["gamma:0"]
p_moving_mean = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_mean:0"]
p_moving_variance = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_variance:0"]
p_beta[...] = np.array(bl_beta)
p_gamma[...] = np.array(bl_gamma)
p_moving_mean[...] = np.array(bl_moving_mean)
p_moving_variance[...] = np.array(bl_moving_variance)
# bn 4
bl_beta = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["beta:0"]
bl_gamma = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["gamma:0"]
bl_moving_mean = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_mean:0"]
bl_moving_variance = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_variance:0"]
p_beta = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["beta:0"]
p_gamma = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["gamma:0"]
p_moving_mean = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_mean:0"]
p_moving_variance = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_variance:0"]
p_beta[...] = np.array(bl_beta)
p_gamma[...] = np.array(bl_gamma)
p_moving_mean[...] = np.array(bl_moving_mean)
p_moving_variance[...] = np.array(bl_moving_variance)
# bn 5
bl_beta = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["beta:0"]
bl_gamma = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["gamma:0"]
bl_moving_mean = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_mean:0"]
bl_moving_variance = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_variance:0"]
p_beta = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["beta:0"]
p_gamma = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["gamma:0"]
p_moving_mean = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_mean:0"]
p_moving_variance = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_variance:0"]
p_beta[...] = np.array(bl_beta)
p_gamma[...] = np.array(bl_gamma)
p_moving_mean[...] = np.array(bl_moving_mean)
p_moving_variance[...] = np.array(bl_moving_variance)
pretrained.close()
| 47.731103 | 192 | 0.749708 |
869a42d471e5a0264cf98babfcdd88a6669b3cbc | 12,970 | py | Python | pkgs/nltk-3.2-py27_0/lib/python2.7/site-packages/nltk/classify/weka.py | wangyum/anaconda | 6e5a0dbead3327661d73a61e85414cf92aa52be6 | [
"Apache-2.0",
"BSD-3-Clause"
] | null | null | null | pkgs/nltk-3.2-py27_0/lib/python2.7/site-packages/nltk/classify/weka.py | wangyum/anaconda | 6e5a0dbead3327661d73a61e85414cf92aa52be6 | [
"Apache-2.0",
"BSD-3-Clause"
] | null | null | null | pkgs/nltk-3.2-py27_0/lib/python2.7/site-packages/nltk/classify/weka.py | wangyum/anaconda | 6e5a0dbead3327661d73a61e85414cf92aa52be6 | [
"Apache-2.0",
"BSD-3-Clause"
] | null | null | null | # Natural Language Toolkit: Interface to Weka Classsifiers
#
# Copyright (C) 2001-2015 NLTK Project
# Author: Edward Loper <[email protected]>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""
Classifiers that make use of the external 'Weka' package.
"""
from __future__ import print_function
import time
import tempfile
import os
import subprocess
import re
import zipfile
from sys import stdin
from nltk import compat
from nltk.probability import DictionaryProbDist
from nltk.internals import java, config_java
from nltk.classify.api import ClassifierI
_weka_classpath = None
_weka_search = ['.',
'/usr/share/weka',
'/usr/local/share/weka',
'/usr/lib/weka',
'/usr/local/lib/weka',]
if __name__ == '__main__':
from nltk.classify.util import names_demo, binary_names_demo_features
classifier = names_demo(make_classifier, binary_names_demo_features)
| 37.485549 | 85 | 0.562606 |
869a8a31a260884a519f22c5d9a29b22876f051f | 5,502 | py | Python | src/si/data/dataset.py | pg428/SIB | b887c2011eb3a04d119a93b3932785d182e331d3 | [
"Apache-2.0"
] | null | null | null | src/si/data/dataset.py | pg428/SIB | b887c2011eb3a04d119a93b3932785d182e331d3 | [
"Apache-2.0"
] | null | null | null | src/si/data/dataset.py | pg428/SIB | b887c2011eb3a04d119a93b3932785d182e331d3 | [
"Apache-2.0"
] | null | null | null | import pandas as pd
import numpy as np
from src.si.util.util import label_gen
__all__ = ['Dataset']
def hasLabel(self):
"""Returns True if the dataset constains labels (a dependent variable)"""
return self.Y is not None
def getNumFeatures(self):
"""Returns the number of features"""
return self.X.shape[1]
def getNumClasses(self):
"""Returns the number of label classes or 0 if the dataset has no dependent variable."""
return len(np.unique(self.Y)) if self.hasLabel() else 0
def writeDataset(self, filename, sep=","):
"""Saves the dataset to a file
:param filename: The output file path
:type filename: str
:param sep: The fields separator, defaults to ","
:type sep: str, optional
"""
fullds = np.hstack((self.X, self.Y.reshape(len(self.Y), 1)))
np.savetxt(filename, fullds, delimiter=sep)
def toDataframe(self):
""" Converts the dataset into a pandas DataFrame"""
if self.hasLabel():
df = pd.DataFrame(np.hstack((self.X, self.Y.reshape(len(self.Y), 1))), columns=self.xnames[:]+[self.yname]) #columns=np.hstack((self.xnames, self.yname)))
else:
df = pd.DataFrame(self.X.copy(), columns=self.xnames[:])
return df
def summary(dataset, format='df'):
""" Returns the statistics of a dataset(mean, std, max, min)
:param dataset: A Dataset object
:type dataset: si.data.Dataset
:param format: Output format ('df':DataFrame, 'dict':dictionary ), defaults to 'df'
:type format: str, optional
"""
if format not in ["df", "dict"]:
raise Exception("Invalid format. Choose between 'df' and 'dict'.")
if dataset.hasLabel():
data = np.hstack((dataset.X, dataset.Y.reshape(len(dataset.Y), 1)))
#data = np.hstack([dataset.X, np.reshape(dataset.Y, (-1, 1))])
columns = dataset.xnames[:] + [dataset.yname]
else:
data = dataset.X
columns = dataset.xnames[:]
stats = {}
if type(dataset.Y[0]) is str:
for i in range(data.shape[1]-1): #ve colunas
_means = np.mean(data[:, i], axis=0)
_vars = np.var(data[:, i], axis=0)
_maxs = np.max(data[:, i], axis=0)
_mins = np.min(data[:, i], axis=0)
stat = {"mean": _means,
"var": _vars,
"max": _maxs,
"min": _mins
}
stats[columns[i]] = stat
else:
for i in range(data.shape[1]): # ve colunas
_means = np.mean(data[:, i], axis=0)
_vars = np.var(data[:, i], axis=0)
_maxs = np.max(data[:, i], axis=0)
_mins = np.min(data[:, i], axis=0)
stat = {"mean": _means,
"var": _vars,
"max": _maxs,
"min": _mins
}
stats[columns[i]] = stat
# _means = np.mean(data, axis=0)
# _vars = np.var(data, axis=0)
# _maxs = np.max(data, axis=0)
# _mins = np.min(data, axis=0)
# stats = {}
# for i in range(data.shape[1]):
# stat = {"mean": _means[i],
# "var": _vars[i],
# "max": _maxs[i],
# "min": _mins[i]
# }
# stats[columns[i]] = stat
if format == "dict":
return stats
else:
return pd.DataFrame(stats)
| 32.364706 | 166 | 0.526172 |
869b1718c19f9cae150c01d7070087f780577bf0 | 3,357 | py | Python | stubs/m5stack_flowui-1_4_0-beta/display.py | RonaldHiemstra/micropython-stubs | d97f879b01f6687baaebef1c7e26a80909c3cff3 | [
"MIT"
] | 38 | 2020-10-18T21:59:44.000Z | 2022-03-17T03:03:28.000Z | stubs/m5stack_flowui-1_4_0-beta/display.py | RonaldHiemstra/micropython-stubs | d97f879b01f6687baaebef1c7e26a80909c3cff3 | [
"MIT"
] | 176 | 2020-10-18T14:31:03.000Z | 2022-03-30T23:22:39.000Z | stubs/m5stack_flowui-1_4_0-beta/display.py | RonaldHiemstra/micropython-stubs | d97f879b01f6687baaebef1c7e26a80909c3cff3 | [
"MIT"
] | 6 | 2020-12-28T21:11:12.000Z | 2022-02-06T04:07:50.000Z | """
Module: 'display' on M5 FlowUI v1.4.0-beta
"""
# MCU: (sysname='esp32', nodename='esp32', release='1.11.0', version='v1.11-284-g5d8e1c867 on 2019-08-30', machine='ESP32 module with ESP32')
# Stubber: 1.3.1
| 13.481928 | 141 | 0.49866 |
869c4c6a792894e8eb7116f05f76e9950b851051 | 364 | py | Python | dbclient/__init__.py | dmoore247/db-migration | cc75d491d7dd7e9e24b5a35dd3d1080317b25520 | [
"Apache-2.0"
] | null | null | null | dbclient/__init__.py | dmoore247/db-migration | cc75d491d7dd7e9e24b5a35dd3d1080317b25520 | [
"Apache-2.0"
] | null | null | null | dbclient/__init__.py | dmoore247/db-migration | cc75d491d7dd7e9e24b5a35dd3d1080317b25520 | [
"Apache-2.0"
] | null | null | null | import json, requests, datetime
from cron_descriptor import get_description
from .dbclient import dbclient
from .JobsClient import JobsClient
from .ClustersClient import ClustersClient
from .WorkspaceClient import WorkspaceClient
from .ScimClient import ScimClient
from .LibraryClient import LibraryClient
from .HiveClient import HiveClient
from .parser import *
| 30.333333 | 44 | 0.857143 |
869cca1a77b5e47ef9d5c83e59910c957d0e0eeb | 1,145 | py | Python | UI/ControlSlider/__init__.py | peerke88/SkinningTools | db761f569ba179231dc64183ebfca1684429ab96 | [
"MIT"
] | 7 | 2021-12-16T06:03:18.000Z | 2022-02-15T01:49:37.000Z | UI/weightEditor/__init__.py | peerke88/SkinningTools | db761f569ba179231dc64183ebfca1684429ab96 | [
"MIT"
] | null | null | null | UI/weightEditor/__init__.py | peerke88/SkinningTools | db761f569ba179231dc64183ebfca1684429ab96 | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
# SkinWeights command and component editor
# Copyright (C) 2018 Trevor van Hoof
# Website: http://www.trevorius.com
#
# pyqt attribute sliders
# Copyright (C) 2018 Daniele Niero
# Website: http://danieleniero.com/
#
# neighbour finding algorythm
# Copyright (C) 2018 Jan Pijpers
# Website: http://www.janpijpers.com/
#
# skinningTools and UI
# Copyright (C) 2018 Perry Leijten
# Website: http://www.perryleijten.com
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# See http://www.gnu.org/licenses/gpl.html for a copy of the GNU General
# Public License.
# --------------------------------------------------------------------------------------
| 36.935484 | 89 | 0.672489 |
869e135c2c869c0e98bb08d38ef8fc9d0c3c1530 | 11,744 | py | Python | homeassistant/components/fritz/sensor.py | EuleMitKeule/core | 3af54d96c7dcc3f7087d1196e6ab0db029301ee7 | [
"Apache-2.0"
] | 3 | 2022-02-18T14:03:39.000Z | 2022-03-26T20:26:55.000Z | homeassistant/components/fritz/sensor.py | EuleMitKeule/core | 3af54d96c7dcc3f7087d1196e6ab0db029301ee7 | [
"Apache-2.0"
] | 74 | 2020-08-05T07:20:27.000Z | 2022-03-23T12:47:28.000Z | homeassistant/components/fritz/sensor.py | marecabo/home-assistant | e33774a61e7fcc88aff752dfa4618dd26a746872 | [
"Apache-2.0"
] | 2 | 2020-06-06T21:55:32.000Z | 2022-03-06T04:18:21.000Z | """AVM FRITZ!Box binary sensors."""
from __future__ import annotations
from collections.abc import Callable
from dataclasses import dataclass
from datetime import datetime, timedelta
import logging
from typing import Any, Literal
from fritzconnection.core.exceptions import (
FritzActionError,
FritzActionFailedError,
FritzConnectionException,
FritzInternalError,
FritzServiceError,
)
from fritzconnection.lib.fritzstatus import FritzStatus
from homeassistant.components.sensor import (
STATE_CLASS_MEASUREMENT,
STATE_CLASS_TOTAL_INCREASING,
SensorEntity,
SensorEntityDescription,
)
from homeassistant.config_entries import ConfigEntry
from homeassistant.const import (
DATA_GIGABYTES,
DATA_RATE_KILOBITS_PER_SECOND,
DATA_RATE_KILOBYTES_PER_SECOND,
DEVICE_CLASS_TIMESTAMP,
ENTITY_CATEGORY_DIAGNOSTIC,
SIGNAL_STRENGTH_DECIBELS,
)
from homeassistant.core import HomeAssistant
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.util.dt import utcnow
from .common import FritzBoxBaseEntity, FritzBoxTools
from .const import DOMAIN, DSL_CONNECTION, UPTIME_DEVIATION
_LOGGER = logging.getLogger(__name__)
def _uptime_calculation(seconds_uptime: float, last_value: datetime | None) -> datetime:
"""Calculate uptime with deviation."""
delta_uptime = utcnow() - timedelta(seconds=seconds_uptime)
if (
not last_value
or abs((delta_uptime - last_value).total_seconds()) > UPTIME_DEVIATION
):
return delta_uptime
return last_value
def _retrieve_device_uptime_state(
status: FritzStatus, last_value: datetime
) -> datetime:
"""Return uptime from device."""
return _uptime_calculation(status.device_uptime, last_value)
def _retrieve_connection_uptime_state(
status: FritzStatus, last_value: datetime | None
) -> datetime:
"""Return uptime from connection."""
return _uptime_calculation(status.connection_uptime, last_value)
def _retrieve_external_ip_state(status: FritzStatus, last_value: str) -> str:
"""Return external ip from device."""
return status.external_ip # type: ignore[no-any-return]
def _retrieve_kb_s_sent_state(status: FritzStatus, last_value: str) -> float:
"""Return upload transmission rate."""
return round(status.transmission_rate[0] / 1000, 1) # type: ignore[no-any-return]
def _retrieve_kb_s_received_state(status: FritzStatus, last_value: str) -> float:
"""Return download transmission rate."""
return round(status.transmission_rate[1] / 1000, 1) # type: ignore[no-any-return]
def _retrieve_max_kb_s_sent_state(status: FritzStatus, last_value: str) -> float:
"""Return upload max transmission rate."""
return round(status.max_bit_rate[0] / 1000, 1) # type: ignore[no-any-return]
def _retrieve_max_kb_s_received_state(status: FritzStatus, last_value: str) -> float:
"""Return download max transmission rate."""
return round(status.max_bit_rate[1] / 1000, 1) # type: ignore[no-any-return]
def _retrieve_gb_sent_state(status: FritzStatus, last_value: str) -> float:
"""Return upload total data."""
return round(status.bytes_sent / 1000 / 1000 / 1000, 1) # type: ignore[no-any-return]
def _retrieve_gb_received_state(status: FritzStatus, last_value: str) -> float:
"""Return download total data."""
return round(status.bytes_received / 1000 / 1000 / 1000, 1) # type: ignore[no-any-return]
def _retrieve_link_kb_s_sent_state(status: FritzStatus, last_value: str) -> float:
"""Return upload link rate."""
return round(status.max_linked_bit_rate[0] / 1000, 1) # type: ignore[no-any-return]
def _retrieve_link_kb_s_received_state(status: FritzStatus, last_value: str) -> float:
"""Return download link rate."""
return round(status.max_linked_bit_rate[1] / 1000, 1) # type: ignore[no-any-return]
def _retrieve_link_noise_margin_sent_state(
status: FritzStatus, last_value: str
) -> float:
"""Return upload noise margin."""
return status.noise_margin[0] / 10 # type: ignore[no-any-return]
def _retrieve_link_noise_margin_received_state(
status: FritzStatus, last_value: str
) -> float:
"""Return download noise margin."""
return status.noise_margin[1] / 10 # type: ignore[no-any-return]
def _retrieve_link_attenuation_sent_state(
status: FritzStatus, last_value: str
) -> float:
"""Return upload line attenuation."""
return status.attenuation[0] / 10 # type: ignore[no-any-return]
def _retrieve_link_attenuation_received_state(
status: FritzStatus, last_value: str
) -> float:
"""Return download line attenuation."""
return status.attenuation[1] / 10 # type: ignore[no-any-return]
SENSOR_TYPES: tuple[FritzSensorEntityDescription, ...] = (
FritzSensorEntityDescription(
key="external_ip",
name="External IP",
icon="mdi:earth",
value_fn=_retrieve_external_ip_state,
),
FritzSensorEntityDescription(
key="device_uptime",
name="Device Uptime",
device_class=DEVICE_CLASS_TIMESTAMP,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
value_fn=_retrieve_device_uptime_state,
),
FritzSensorEntityDescription(
key="connection_uptime",
name="Connection Uptime",
device_class=DEVICE_CLASS_TIMESTAMP,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
value_fn=_retrieve_connection_uptime_state,
),
FritzSensorEntityDescription(
key="kb_s_sent",
name="Upload Throughput",
state_class=STATE_CLASS_MEASUREMENT,
native_unit_of_measurement=DATA_RATE_KILOBYTES_PER_SECOND,
icon="mdi:upload",
value_fn=_retrieve_kb_s_sent_state,
),
FritzSensorEntityDescription(
key="kb_s_received",
name="Download Throughput",
state_class=STATE_CLASS_MEASUREMENT,
native_unit_of_measurement=DATA_RATE_KILOBYTES_PER_SECOND,
icon="mdi:download",
value_fn=_retrieve_kb_s_received_state,
),
FritzSensorEntityDescription(
key="max_kb_s_sent",
name="Max Connection Upload Throughput",
native_unit_of_measurement=DATA_RATE_KILOBITS_PER_SECOND,
icon="mdi:upload",
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
value_fn=_retrieve_max_kb_s_sent_state,
),
FritzSensorEntityDescription(
key="max_kb_s_received",
name="Max Connection Download Throughput",
native_unit_of_measurement=DATA_RATE_KILOBITS_PER_SECOND,
icon="mdi:download",
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
value_fn=_retrieve_max_kb_s_received_state,
),
FritzSensorEntityDescription(
key="gb_sent",
name="GB sent",
state_class=STATE_CLASS_TOTAL_INCREASING,
native_unit_of_measurement=DATA_GIGABYTES,
icon="mdi:upload",
value_fn=_retrieve_gb_sent_state,
),
FritzSensorEntityDescription(
key="gb_received",
name="GB received",
state_class=STATE_CLASS_TOTAL_INCREASING,
native_unit_of_measurement=DATA_GIGABYTES,
icon="mdi:download",
value_fn=_retrieve_gb_received_state,
),
FritzSensorEntityDescription(
key="link_kb_s_sent",
name="Link Upload Throughput",
native_unit_of_measurement=DATA_RATE_KILOBITS_PER_SECOND,
icon="mdi:upload",
value_fn=_retrieve_link_kb_s_sent_state,
connection_type=DSL_CONNECTION,
),
FritzSensorEntityDescription(
key="link_kb_s_received",
name="Link Download Throughput",
native_unit_of_measurement=DATA_RATE_KILOBITS_PER_SECOND,
icon="mdi:download",
value_fn=_retrieve_link_kb_s_received_state,
connection_type=DSL_CONNECTION,
),
FritzSensorEntityDescription(
key="link_noise_margin_sent",
name="Link Upload Noise Margin",
native_unit_of_measurement=SIGNAL_STRENGTH_DECIBELS,
icon="mdi:upload",
value_fn=_retrieve_link_noise_margin_sent_state,
connection_type=DSL_CONNECTION,
),
FritzSensorEntityDescription(
key="link_noise_margin_received",
name="Link Download Noise Margin",
native_unit_of_measurement=SIGNAL_STRENGTH_DECIBELS,
icon="mdi:download",
value_fn=_retrieve_link_noise_margin_received_state,
connection_type=DSL_CONNECTION,
),
FritzSensorEntityDescription(
key="link_attenuation_sent",
name="Link Upload Power Attenuation",
native_unit_of_measurement=SIGNAL_STRENGTH_DECIBELS,
icon="mdi:upload",
value_fn=_retrieve_link_attenuation_sent_state,
connection_type=DSL_CONNECTION,
),
FritzSensorEntityDescription(
key="link_attenuation_received",
name="Link Download Power Attenuation",
native_unit_of_measurement=SIGNAL_STRENGTH_DECIBELS,
icon="mdi:download",
value_fn=_retrieve_link_attenuation_received_state,
connection_type=DSL_CONNECTION,
),
)
| 33.458689 | 94 | 0.712364 |
869e772414d99f560741ba4d5f3b4440b61ae41b | 2,931 | py | Python | Ifc/IfcBase.py | gsimon75/IFC_parser | f9fbe2afa48795bbb502530bc9ab5c4db842e10f | [
"BSD-2-Clause"
] | 28 | 2019-12-02T11:41:14.000Z | 2022-03-02T22:53:24.000Z | Ifc/IfcBase.py | gsimon75/IFC_parser | f9fbe2afa48795bbb502530bc9ab5c4db842e10f | [
"BSD-2-Clause"
] | 4 | 2019-08-30T13:52:40.000Z | 2022-02-02T02:31:31.000Z | Ifc/IfcBase.py | gsimon75/IFC_parser | f9fbe2afa48795bbb502530bc9ab5c4db842e10f | [
"BSD-2-Clause"
] | 6 | 2020-07-11T22:35:07.000Z | 2022-03-18T15:12:46.000Z | from Ifc.ClassRegistry import ifc_class, ifc_abstract_class, ifc_fallback_class
class Omitted:
"""
Marked with '*' it states that some supertype had defined that attribute, but in the subtype it is a derived
(calculated) value, so it no longer makes sense to explicitely assign value to it.
"""
# TODO: Haven't tried if it can be handled 'just as expected'
# class-level, enough to reference, no need to create multiple instances (doesn't hurt though)
omitted = Omitted()
# vim: set sw=4 ts=4 et:
| 21.23913 | 132 | 0.624701 |
869e8784f6deaecfb703cc98502b159dc7530a96 | 5,330 | py | Python | middleware/io-monitor/recipes-common/io-monitor/io-monitor/io_monitor/utils/data_collector.py | xe1gyq/stx-utils | 93b7f7dc2c6732db8c8ae0eb3f52ace4df714dc9 | [
"Apache-2.0"
] | null | null | null | middleware/io-monitor/recipes-common/io-monitor/io-monitor/io_monitor/utils/data_collector.py | xe1gyq/stx-utils | 93b7f7dc2c6732db8c8ae0eb3f52ace4df714dc9 | [
"Apache-2.0"
] | null | null | null | middleware/io-monitor/recipes-common/io-monitor/io-monitor/io_monitor/utils/data_collector.py | xe1gyq/stx-utils | 93b7f7dc2c6732db8c8ae0eb3f52ace4df714dc9 | [
"Apache-2.0"
] | null | null | null | # vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (c) 2016 Wind River Systems, Inc.
#
# SPDX-License-Identifier: Apache-2.0
#
import logging
import os
from io_monitor.constants import DOMAIN
from io_monitor.utils.data_window import DataCollectionWindow
LOG = logging.getLogger(DOMAIN)
| 36.013514 | 77 | 0.630206 |
869e8ff896779ff36d9b024ced2d268e80c7682a | 19,793 | py | Python | examples/language-modeling/debias_lm_hps_tune.py | SoumyaBarikeri/transformers | 996c6e113404000f50444287aa8a31a174ebd92f | [
"Apache-2.0"
] | 1 | 2021-08-07T06:06:45.000Z | 2021-08-07T06:06:45.000Z | examples/language-modeling/debias_lm_hps_tune.py | SoumyaBarikeri/transformers | 996c6e113404000f50444287aa8a31a174ebd92f | [
"Apache-2.0"
] | null | null | null | examples/language-modeling/debias_lm_hps_tune.py | SoumyaBarikeri/transformers | 996c6e113404000f50444287aa8a31a174ebd92f | [
"Apache-2.0"
] | 2 | 2021-05-31T08:50:50.000Z | 2022-01-26T13:14:58.000Z | # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
"""
import logging
import math
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
HfArgumentParser,
# LineByLineTextDatasetLabels,
LineByLineTextDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
import ray
from ray import tune
from transformers.file_utils import is_torch_tpu_available
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from ray.tune.schedulers import PopulationBasedTraining
from ray.tune import CLIReporter
# if is_wandb_available():
# import wandb
ray.shutdown()
ray.init(log_to_driver=True, ignore_reinit_error=True)
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def get_dataset(
args: DataTrainingArguments,
tokenizer: PreTrainedTokenizer,
evaluate: bool = False,
cache_dir: Optional[str] = None,
):
file_path = args.eval_data_file if evaluate else args.train_data_file
if args.line_by_line:
return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
# return LineByLineTextDatasetLabels(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
else:
return TextDataset(
tokenizer=tokenizer,
file_path=file_path,
block_size=args.block_size,
overwrite_cache=args.overwrite_cache,
cache_dir=cache_dir,
)
class TuneTransformerTrainer(Trainer):
def recover_checkpoint(tune_checkpoint_dir, model_name=None):
if tune_checkpoint_dir is None or len(tune_checkpoint_dir) == 0:
return model_name
# Get subdirectory used for Huggingface.
subdirs = [
os.path.join(tune_checkpoint_dir, name)
for name in os.listdir(tune_checkpoint_dir)
if os.path.isdir(os.path.join(tune_checkpoint_dir, name))
]
# There should only be 1 subdir.
assert len(subdirs) == 1, subdirs
return subdirs[0]
# def train_transformer(config, checkpoint_dir=None):
# train_dataset, eval_dataset = get_datasets(config)
#
# training_args = TrainingArguments(
# output_dir=tune.get_trial_dir(),
# learning_rate=config["learning_rate"],
# do_train=True,
# do_eval=True,
# evaluate_during_training=True,
# # Run eval after every epoch.
# eval_steps=(len(train_dataset) // config["per_gpu_train_batch_size"]) +
# 1,
# # We explicitly set save to 0, and do checkpointing in evaluate instead
# save_steps=0,
# num_train_epochs=config["num_epochs"],
# max_steps=config["max_steps"],
# per_device_train_batch_size=config["per_gpu_train_batch_size"],
# per_device_eval_batch_size=config["per_gpu_val_batch_size"],
# warmup_steps=0,
# weight_decay=config["weight_decay"],
# logging_dir="./logs",
# )
#
# model_name_or_path = recover_checkpoint(checkpoint_dir, config["model_name"])
# # num_labels = glue_tasks_num_labels[config["task_name"]]
#
# config = AutoConfig.from_pretrained(
# model_name_or_path,
# num_labels=num_labels,
# finetuning_task=task_name,
# )
# model = AutoModelForSequenceClassification.from_pretrained(
# model_name_or_path,
# config=config,
# )
#
# # Use our modified TuneTransformerTrainer
# tune_trainer = TuneTransformerTrainer(
# model=model,
# args=training_args,
# train_dataset=train_dataset,
# eval_dataset=eval_dataset,
# compute_metrics=utils.build_compute_metrics_fn(task_name),
# )
# tune_trainer.train(model_name_or_path)
if __name__ == "__main__":
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
config = {
# These 3 configs below were defined earlier
"model_name": model_args.model_name_or_path,
"task_name": "CLM",
"data_dir": "",
"per_gpu_val_batch_size": 32,
"per_gpu_train_batch_size": tune.choice([16, 32, 64]),
"learning_rate": tune.uniform(1e-5, 5e-5),
"weight_decay": tune.uniform(0.0, 0.3),
"num_epochs": tune.choice([2, 3, 4, 5]),
"max_steps": -1, # We use num_epochs instead.
"wandb": {
"project": "pbt_transformers",
"reinit": True,
"allow_val_change": True
}
}
logger.info(config)
scheduler = PopulationBasedTraining(
time_attr="training_iteration",
metric="eval_loss",
mode="min",
perturbation_interval=2,
hyperparam_mutations={
"weight_decay": lambda: tune.uniform(0.0, 0.3).func(None),
"learning_rate": lambda: tune.uniform(1e-5, 5e-5).func(None),
"per_gpu_train_batch_size": [16, 32, 64],
})
reporter = CLIReporter(
parameter_columns={
"weight_decay": "w_decay",
"learning_rate": "lr",
"per_gpu_train_batch_size": "train_bs/gpu",
"num_epochs": "num_epochs"
},
metric_columns=[
"eval_acc", "eval_loss", "epoch", "training_iteration"
])
analysis = tune.run(
train_transformer,
resources_per_trial={
"cpu": 1,
"gpu": 1
},
config=config,
num_samples=3,
scheduler=scheduler,
keep_checkpoints_num=3,
checkpoint_score_attr="training_iteration",
progress_reporter=reporter,
local_dir="./ray_results/",
name="tune_trans")
best_config = analysis.get_best_config(metric="eval_loss", mode="min")
print(best_config)
| 38.210425 | 175 | 0.664477 |
869ee02cc744c1a084a226d08c1391e0d7881239 | 1,373 | py | Python | checksums.py | pgp/RootHelperClientTestInteractions | 6b9e9cc9f10eb2bf9b9dafa851ed56005f7666b5 | [
"Apache-2.0"
] | 1 | 2019-05-04T12:29:41.000Z | 2019-05-04T12:29:41.000Z | checksums.py | pgp/RootHelperClientTestInteractions | 6b9e9cc9f10eb2bf9b9dafa851ed56005f7666b5 | [
"Apache-2.0"
] | null | null | null | checksums.py | pgp/RootHelperClientTestInteractions | 6b9e9cc9f10eb2bf9b9dafa851ed56005f7666b5 | [
"Apache-2.0"
] | null | null | null | from net_common import *
import struct
import sys
if __name__ == "__main__":
sock = get_connected_local_socket()
path = encodeString('/dev/shm/exampleDir')
# path = encodeString('/dev/null')
sock.sendall(bytearray(b'\x0A')) # HASH request
# sock.sendall(bytearray(b'\x01')) # choose MD5 algorithm
sock.sendall(bytearray(b'\x06')) # choose SHA3-224 algorithm
sock.sendall(getDirHashOpts(withNames=True,ignoreUnixHiddenFiles=False)) # send dirHashOpts byte (unused for regular files)
sock.sendall(struct.pack("@H", len(path))) # len of path as unsigned short
sock.sendall(path)
resp = sock.recv(1) # response first byte: \x00 OK or \xFF ERROR
if resp != b'\x00':
print("Error byte received, errno is:", struct.unpack("@i", sock.recv(4))[0])
sys.exit(0)
# print(toHex(sock.recv(16))) # 128 bit (16 byte) md5 digest size
print(toHex(sock.recv(28))) # 224 bit (28 byte) sha3-224 digest size
sock.close()
| 40.382353 | 128 | 0.627822 |
869f105dabe3ba66d48901d5ab1ef89fe7052f2e | 624 | py | Python | investment_report/migrations/0020_auto_20180911_1005.py | uktrade/pir-api | 79747ceab042c42c287e2b7471f6dade70f68693 | [
"MIT"
] | 1 | 2021-02-02T19:08:55.000Z | 2021-02-02T19:08:55.000Z | investment_report/migrations/0020_auto_20180911_1005.py | uktrade/invest-pir-api | be56efddf9dfdf81c8557441a9a54d9a4dd4bab1 | [
"MIT"
] | 21 | 2018-07-10T10:20:47.000Z | 2022-03-24T09:36:29.000Z | investment_report/migrations/0020_auto_20180911_1005.py | uktrade/pir-api | 79747ceab042c42c287e2b7471f6dade70f68693 | [
"MIT"
] | 1 | 2021-02-04T11:28:37.000Z | 2021-02-04T11:28:37.000Z | # -*- coding: utf-8 -*-
# Generated by Django 1.11.13 on 2018-09-11 10:05
from __future__ import unicode_literals
import config.s3
from django.db import migrations, models
| 27.130435 | 155 | 0.653846 |
86a0198d73981242105ec1cd9a6582cfdecf35e4 | 317 | py | Python | tests/test-scripts/threadpools.py | whalesalad/filprofiler | 9c12cbe62ad1fed5d59d923013739bb3377bc24c | [
"Apache-2.0"
] | 521 | 2020-06-18T14:27:22.000Z | 2022-03-30T08:29:10.000Z | tests/test-scripts/threadpools.py | whalesalad/filprofiler | 9c12cbe62ad1fed5d59d923013739bb3377bc24c | [
"Apache-2.0"
] | 277 | 2020-06-18T14:11:36.000Z | 2022-03-28T09:51:11.000Z | tests/test-scripts/threadpools.py | sthagen/python-filprofiler | 5efe9fcca539d31f5423bbfa39a3f49176925350 | [
"Apache-2.0"
] | 17 | 2020-06-26T05:29:43.000Z | 2022-03-28T09:57:08.000Z | """Validate that number of threads in thread pools is set to 1."""
import numexpr
import blosc
import threadpoolctl
# APIs that return previous number of threads:
assert numexpr.set_num_threads(2) == 1
assert blosc.set_nthreads(2) == 1
for d in threadpoolctl.threadpool_info():
assert d["num_threads"] == 1, d
| 24.384615 | 66 | 0.747634 |
86a15534f296338602eb17c7dad23025e0241a4e | 3,208 | py | Python | scripts/viewStokespat.py | David-McKenna/AntPat | 45618659994b27e2654f1effd6d9baa15867b6d3 | [
"ISC"
] | 5 | 2016-06-21T14:54:23.000Z | 2021-04-06T06:23:25.000Z | scripts/viewStokespat.py | David-McKenna/AntPat | 45618659994b27e2654f1effd6d9baa15867b6d3 | [
"ISC"
] | null | null | null | scripts/viewStokespat.py | David-McKenna/AntPat | 45618659994b27e2654f1effd6d9baa15867b6d3 | [
"ISC"
] | 2 | 2019-10-25T03:16:06.000Z | 2020-11-15T14:18:46.000Z | #!/usr/bin/env python
"""A simple viewer for Stokes patterns based on two far-field pattern files.
(Possibly based on one FF pattern files if it has two requests: one for each
polarization channel.)"""
import os
import argparse
import numpy
import matplotlib.pyplot as plt
from antpat.reps.sphgridfun.tvecfun import TVecFields
from antpat.radfarfield import RadFarField
from antpat.dualpolelem import DualPolElem
FEKOsuffix = 'ffe'
GRASPsuffix = 'swe'
NECsuffix = 'out'
def Jones2Stokes(Jones):
"""Convert Jones matrix to Stokes vector. This assumes dual-pol antenna receiving unpolarized unit
valued radiation i.e. incoming Stokes = (1,0,0,0)."""
brightmat = numpy.matmul(Jones, numpy.swapaxes(numpy.conjugate(Jones),-1,-2))
StokesI = numpy.real(brightmat[...,0,0]+brightmat[...,1,1])
StokesQ = numpy.real(brightmat[...,0,0]-brightmat[...,1,1])
StokesU = numpy.real(brightmat[...,0,1]+brightmat[...,1,0])
StokesV = numpy.imag(brightmat[...,0,1]-brightmat[...,1,0])
return StokesI, StokesQ, StokesU, StokesV
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("p_chan_file",
help='Filename of polarization channel p')
parser.add_argument("q_chan_file",
help='Filename of polarization channel p')
parser.add_argument("freq", nargs='?', type=float,
help="Frequency in Hertz")
args = parser.parse_args()
if args.p_chan_file.endswith(FEKOsuffix):
plotStokes_fromFEKOfiles(args.p_chan_file, args.q_chan_file, args.freq)
elif args.p_chan_file.endswith(GRASPsuffix):
print("Not implemented yet.")
elif args.p_chan_file.endswith(NECsuffix):
print("Not implemented yet.")
else:
print("Far-field pattern file type not known")
exit(1)
| 36.044944 | 102 | 0.674564 |
86a15d2cf1ab721951e4abf4f4b561d571ed4d1c | 2,141 | py | Python | utils.py | lingjiao10/Facial-Expression-Recognition.Pytorch | f5ba0e527347af3778d44eb7045e4970d01641a6 | [
"MIT"
] | null | null | null | utils.py | lingjiao10/Facial-Expression-Recognition.Pytorch | f5ba0e527347af3778d44eb7045e4970d01641a6 | [
"MIT"
] | null | null | null | utils.py | lingjiao10/Facial-Expression-Recognition.Pytorch | f5ba0e527347af3778d44eb7045e4970d01641a6 | [
"MIT"
] | 1 | 2019-10-02T02:26:39.000Z | 2019-10-02T02:26:39.000Z | '''Some helper functions for PyTorch, including:
- progress_bar: progress bar mimic xlua.progress.
- set_lr : set the learning rate
- clip_gradient : clip gradient
'''
import os
import sys
import time
import math
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Function
#
if sys.platform == 'win32':
term_width = 80
else:
print('###', os.popen('stty size', 'r').read())
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 30.
last_time = time.time()
begin_time = last_time
#[==>........ 19/225 ...........] | Loss: 1.961 | Acc: 22.000% (537/2432)
| 27.101266 | 76 | 0.604858 |
86a1bd490fa794c86a7ba173a9dce9709f3eb600 | 2,236 | py | Python | string-method/src/analysis/FE_analysis/index_converter.py | delemottelab/gpcr-string-method-2019 | b50786a4a8747d56ad04ede525592eb31f1890fd | [
"MIT"
] | null | null | null | string-method/src/analysis/FE_analysis/index_converter.py | delemottelab/gpcr-string-method-2019 | b50786a4a8747d56ad04ede525592eb31f1890fd | [
"MIT"
] | null | null | null | string-method/src/analysis/FE_analysis/index_converter.py | delemottelab/gpcr-string-method-2019 | b50786a4a8747d56ad04ede525592eb31f1890fd | [
"MIT"
] | 3 | 2020-03-16T04:33:50.000Z | 2021-03-19T17:25:59.000Z | from __future__ import absolute_import, division, print_function
import logging
import sys
logging.basicConfig(
stream=sys.stdout,
level=logging.DEBUG,
format='%(asctime)s %(name)s-%(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
import numpy as np
import utils
logger = logging.getLogger("indexconverter")
| 38.551724 | 116 | 0.609123 |
86a2581b9feb29958228bc644f88e652dbe7a0fa | 38 | py | Python | Ex029 Aula 11-Cores no Terminal.py | andersontmachado/ExerciciosPython | ebd93eb4127dadedee8b719ccc4bc20fc151d0ad | [
"MIT"
] | 1 | 2020-04-30T14:47:15.000Z | 2020-04-30T14:47:15.000Z | Ex029 Aula 11-Cores no Terminal.py | andersontmachado/exerciciospython | ebd93eb4127dadedee8b719ccc4bc20fc151d0ad | [
"MIT"
] | null | null | null | Ex029 Aula 11-Cores no Terminal.py | andersontmachado/exerciciospython | ebd93eb4127dadedee8b719ccc4bc20fc151d0ad | [
"MIT"
] | null | null | null | print('\033[7;30mOla mundo\033[m!!!')
| 19 | 37 | 0.631579 |
86a37502649b0fcb2349b60e7e2d86e82dd233f5 | 12,050 | py | Python | cirq-pasqal/cirq_pasqal/pasqal_device.py | pavoljuhas/Cirq | b6d6577be61d216ce2f29f8c64ae5879cf3087d5 | [
"Apache-2.0"
] | 1 | 2022-02-05T22:17:39.000Z | 2022-02-05T22:17:39.000Z | cirq-pasqal/cirq_pasqal/pasqal_device.py | pavoljuhas/Cirq | b6d6577be61d216ce2f29f8c64ae5879cf3087d5 | [
"Apache-2.0"
] | null | null | null | cirq-pasqal/cirq_pasqal/pasqal_device.py | pavoljuhas/Cirq | b6d6577be61d216ce2f29f8c64ae5879cf3087d5 | [
"Apache-2.0"
] | null | null | null | # Copyright 2020 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import FrozenSet, Callable, List, Sequence, Any, Union, Dict
import numpy as np
import networkx as nx
import cirq
from cirq import _compat, GridQubit, LineQubit
from cirq.ops import NamedQubit
from cirq_pasqal import ThreeDQubit, TwoDQubit, PasqalGateset
| 37.42236 | 99 | 0.630954 |
86a3efacb490990d88c7dfa47acc3b8f0d98c63a | 22,798 | py | Python | command_line/show.py | huwjenkins/dials | 885a2f6ea3900dd0c9fcc15c03561fb45452c3bb | [
"BSD-3-Clause"
] | null | null | null | command_line/show.py | huwjenkins/dials | 885a2f6ea3900dd0c9fcc15c03561fb45452c3bb | [
"BSD-3-Clause"
] | 1 | 2019-06-03T16:09:12.000Z | 2019-06-04T12:47:20.000Z | command_line/show.py | rjgildea/dials | 0665a385d644bbef7541fb2d33c7a3c5a748e2b4 | [
"BSD-3-Clause"
] | null | null | null | import os
import sys
import numpy as np
import iotbx.phil
from cctbx import uctbx
from dxtbx.model.experiment_list import ExperimentListFactory
from scitbx.math import five_number_summary
import dials.util
from dials.array_family import flex
from dials.util import Sorry, tabulate
help_message = """
Examples::
dials.show models.expt
dials.show image_*.cbf
dials.show observations.refl
"""
phil_scope = iotbx.phil.parse(
"""\
show_scan_varying = False
.type = bool
.help = "Whether or not to show the crystal at each scan point."
show_shared_models = False
.type = bool
.help = "Show which models are linked to which experiments"
show_all_reflection_data = False
.type = bool
.help = "Whether or not to print individual reflections"
show_intensities = False
.type = bool
show_centroids = False
.type = bool
show_profile_fit = False
.type = bool
show_flags = False
.type = bool
.help = "Show a summary table of reflection flags"
show_identifiers = False
.type = bool
.help = "Show experiment identifiers map if set"
image_statistics{
show_corrected = False
.type = bool
.help = "Show statistics on the distribution of values in each corrected image"
show_raw = False
.type = bool
.help = "Show statistics on the distribution of values in each raw image"
}
max_reflections = None
.type = int
.help = "Limit the number of reflections in the output."
""",
process_includes=True,
)
def _create_flag_count_table(table):
"""Generate a summary table of flag values in a reflection table.
:param table: A reflection table
:returns: A string of the formatted flags table
"""
# Calculate the counts of entries that match each flag
numpy_flags = table["flags"].as_numpy_array()
flag_count = {
flag: np.sum(numpy_flags & value != 0)
for value, flag in table.flags.values.items()
}
# Work out the numeric-value order of the flags
flag_order = sorted(table.flags.values.values(), key=lambda x: x.real)
# Build the actual table
flag_rows = [["Flag", "Count", "%"]]
max_count_len = max(5, len(str(max(flag_count.values()))))
last_flag = None
for flag in flag_order:
indent = ""
# As a hint for reading, indent any 'summary' flags.
# A summary flag is any flag which overlaps with the previous one.
if last_flag and (last_flag.real & flag.real):
indent = " "
last_flag = flag
# Add the row to the table we're building
flag_rows.append(
[
indent + flag.name,
"{:{:d}d}".format(flag_count[flag], max_count_len),
f"{100 * flag_count[flag] / len(table):5.01f}",
]
)
# Build the array of output strings
text = []
text.append("Reflection flags:")
text.append(tabulate(flag_rows, headers="firstrow"))
return "\n".join(text)
if __name__ == "__main__":
run()
| 32.992764 | 88 | 0.530485 |
86a477c71ec5eb0f689387ca230eaa223627c82b | 8,749 | py | Python | app/config/env_jesa.py | OuissalTAIM/jenkins | 7ea5bcdeb6c0bb3cc14c2826a68e4f521de163c1 | [
"BSD-1-Clause"
] | null | null | null | app/config/env_jesa.py | OuissalTAIM/jenkins | 7ea5bcdeb6c0bb3cc14c2826a68e4f521de163c1 | [
"BSD-1-Clause"
] | 6 | 2021-02-02T22:52:41.000Z | 2022-03-12T00:37:30.000Z | app/config/env_jesa.py | OuissalTAIM/jenkins | 7ea5bcdeb6c0bb3cc14c2826a68e4f521de163c1 | [
"BSD-1-Clause"
] | null | null | null | # -*- coding: utf-8 -*-
from enum import Enum, IntEnum, unique
import os
APP_NAME = "mine2farm"
NETWORK_NAME = "CenterAxis"
LOG_LEVEL_CONSOLE = "WARNING"
LOG_LEVEL_FILE = "INFO"
APP_FOLDER = os.getenv("JESA_MINE2FARM_HOME", "C:/GitRepos/mine2farm/")
LOG_FOLDER = APP_FOLDER + "app/log/"
LOG_FILE = "%(asctime)_" + APP_NAME + ".log"
OUTPUT_FOLDER = "%s%s" % (APP_FOLDER, "outputs/")
CANVAS_URL = "http://127.0.0.1/canvas.xlsm"
# DB
DB_NAME = None
DB_HOST = "172.29.161.208"
DB_PORT = 5006
DATA_SERVICE_ADD = "172.29.161.208"
DATA_SERVICE_PORT = 5001
# Results
DB_RESULT_NAME = "%s_results" % DB_NAME if DB_NAME is not None else None
DB_DETAILED_RESULT_COLLECTION_NAME = "detailed"
DB_GLOBAL_RESULT_COLLECTION_NAME = "global"
DB_GLOBAL_BEST_RESULT_COLLECTION_NAME = "global_best"
DB_DETAILED_BEST_RESULT_COLLECTION_NAME = "detailed_best"
DB_SENSITIVITY_COLLECTION_NAME = "sensitivity"
RESULT_BATCHES_SIZE = 25
HEAD_DATA_BITS = 17
DB_NAME_BITS = 20
RANDOMIZE_RESULTS = False
# RabbitMQ
RABBITMQ_SERVER = "localhost"
RABBITMQ_SIMULATOR_QUEUE_NAME = "SIMULATE"
RABBITMQ_CYCLE = 3
RABBITMQ_DETAILED_RESULT_QUEUE_NAME = "SAVE_DETAIL"
RABBITMQ_GLOBAL_RESULT_QUEUE_NAME = "SAVE_GLOBAL"
RABBITMQ_MAX_WORKER = RABBITMQ_CYCLE
RABBITMQ_PATH = "C:\\Program Files\\RabbitMQ Server\\rabbitmq_server-3.8.1\\sbin"
# Memcached
MEMCACHED_SERVER = 'localhost'
MEMCACHED_PORT = 11211
# Dashboard
DB_LOAD_FROM_SERVICE = True
# Monitoring
MONITORING_APP_NAME = "mine2farm_monitor"
MONITORING_SERVER = "172.29.161.208"
MONITORING_PORT = 5002
MONITORING_DB_NAME = "task_history"
MONITORING_COLLECTION_HISTORY_NAME = "task"
MONITORING_COLLECTION_HISTORY_BEST_NAME = "best_scenarios_history"
MONITORING_STEP = 1
MONITORING_NB_PAGE = 10
# Mongodb-bi
MONGODB_BI_PATH = "C:\\Program Files\\MongoDB\\Connector for BI\\2.13\\bin"
# Mongodb
MONGO_SERVER_PATH = "C:\\Program Files\\MongoDB\\Server\\4.0\\bin"
# params
LOGISTICS_LP = False
MODE_DEBUG = False
GRANUL_RELAX = False
# Model
MONIKER_SEPARATOR = "/"
WACC = 0.1
T0 = 2020
TMAX = 2031
PIPELINE_SCHEMA = {
PipelineLayer.COMMON: {
"type": PipelineType.COMMON,
"dico": ["location", "opex", "unit", "currency", "output", "names", "products"]
},
PipelineLayer.MINE: {
"type": PipelineType.PRODUCER,
"dico": ["mine.name", "mine.extraction", "mine.quality", "mine.capex"],
"options": "mining_options",
"production": "mining_specific_production",
"opex": "mining_opex___specific_consumptions",
"capex": "mining_capex",
"priority_mines": "prioritymines"
},
PipelineLayer.BENEFICIATION: {
"type": PipelineType.PRODUCER,
"dico": ["beneficiation.name", "beneficitation.process", "beneficitation.quality", "beneficitation.capex"],
"options": "beneficiation_options",
"production": "beneficiation_production",
"opex": "beneficiation_opex___specific_consumptions",
"capex": "beneficiation_capex"
},
PipelineLayer.SAP: {
"type": PipelineType.PRODUCER,
"dico": ["sap.name", "sap.process", "sap.product", "sap.capex", "sap.capacity[kt]"],
"options": "sap___power_plant_options",
"production": "sap___power_plant_production",
"opex": "sap___power_plant_opex___specific_consumptions",
"capex": "sap___power_plant_capex",
"product_type": "sap.product"
},
PipelineLayer.PAP: {
"type": PipelineType.PRODUCER,
"dico": ["pap.name", "pap.process", "pap.product", "pap.capex", "pap.size[kt]", "pap.input"],
"options": "pap_options",
"production": "pap_production",
"opex": "pap_opex___specific_consumptions",
"capex": "pap_capex",
"product_type": "pap.product"
},
PipelineLayer.GRANULATION: {
"type": PipelineType.PRODUCER,
"dico": ["granulation.name", "granulation.process", "granulation.product", "granulation.capex", "granulation.input"],
"options": "granulation_options",
"production": "granulation_production",
"opex": "granulation_opex",
"capex": "granulation_capex"
},
PipelineLayer.LOGISTICS: {
"type": PipelineType.TRANSPORT,
"dico": ["logistics.name", "logistics.process", "logistics.product", "logistics.capex"],
"options": "logistics_options",
"production": None,
"opex": "logistics_opex",
"capex": "logistics_capex"
},
PipelineLayer.RAW_MATERIALS: {
"type": PipelineType.PRICE,
"data": "raw_materials"
},
PipelineLayer.SALES_PLAN: {
"type": PipelineType.SALES,
"data": "sales_plan"
},
PipelineLayer.UNIT_CONVERSION_MATRIX: {
"type": PipelineType.COMMON,
"data": "conv_matrix"
},
}
SUPPLY_CHAIN = "mine2port"
DEPARTURE_ARRIVAL = {SUPPLY_CHAIN: (PipelineLayer.MINE),
"sap2pap": (PipelineLayer.SAP, PipelineLayer.PAP)}
COMBO_NODES = {
PipelineLayer.MINE_BENEFICIATION: {
"url": "mining_wp_connections",
"upstream_layer": PipelineLayer.MINE,
"downstream_layer": PipelineLayer.BENEFICIATION
}
}
COMBO_NODES_SEPARATION = "--"
SCENARIO_GEN_TYPE = ScenarioGeneratorType.FROM_OPTIONS
PIPELINE_METADATA = {
PipelineLayer.MINE: {
"type": PipelineType.PRODUCER,
"production": ["Name", "Extraction", "Quality", "Unit"],
"opex": ["Name", "Extraction", "Capacity", "Item", "Unit"],
"capex": ["Name", "Extraction", "Capacity", "Item", "Unit", "CAPEX"]
},
PipelineLayer.BENEFICIATION: {
"type": PipelineType.PRODUCER,
"production": ["Process", "InputQuality", "OutputQuality", "Humidity", "Unit"],
"opex": ["Process", "InputQuality", "OutputQuality", "Item", "Unit"],
"capex": ["Name", "Process", "Capacity", "Item", "Unit", "CAPEX"]
},
PipelineLayer.SAP: {
"type": PipelineType.PRODUCER,
"production": ["Location", "Process", "Product", "Unit"],
"opex": ["Location", "Process", "Item", "Unit"],
"capex": ["Location", "Process", "Capacity", "Item", "Unit", "CAPEX"]
},
PipelineLayer.PAP: {
"type": PipelineType.PRODUCER,
"production": ["Process", "Input", "Product", "Unit"],
"opex": ["Location", "Process", "Capacity", "Input", "Item", "Product", "Unit"],
"capex": ["Location", "Process", "Capacity", "Item", "Unit", "CAPEX"]
},
PipelineLayer.GRANULATION: {
"type": PipelineType.PRODUCER,
"production": ["Process", "Input", "Product", "Unit"],
"opex": ["Location", "ProductionSite", "Process", "Capacity", "Product", "Item", "Unit"],
"capex": ["Location", "ProductionSite", "Product", "Process", "Capacity", "Item", "Unit", "CAPEX"]
},
PipelineLayer.LOGISTICS: {
"type": PipelineType.TRANSPORT,
"opex": ["Upstream", "Downstream", "Method", "Product", "Capacity", "Item", "Unit"],
"capex": ["Upstream", "Downstream", "Method", "Product", "Capacity", "Item", "Unit", "CAPEX"]
},
PipelineLayer.RAW_MATERIALS: {
"type": PipelineType.PRICE,
"columns": ["Item", "Unit"]
},
PipelineLayer.SALES_PLAN: {
"type": PipelineType.PRICE,
"columns": ["Type", "Product", "Unit"]
},
PipelineLayer.UNIT_CONVERSION_MATRIX: {
"type": PipelineType.COMMON,
"columns": ["Initial Unit", "Uniform Unit", "Conversion Rate"]
},
}
SHUFFLE_LEVELS = {
PipelineLayer.MINE: ShuffleLevel.UNDEFINED,
PipelineLayer.BENEFICIATION: ShuffleLevel.UNDEFINED,
PipelineLayer.SAP: ShuffleLevel.SHUFFLE_WITH_UNNAMED,
PipelineLayer.PAP: ShuffleLevel.SHUFFLE_WITH_UNNAMED,
PipelineLayer.GRANULATION: ShuffleLevel.UNDEFINED,
PipelineLayer.LOGISTICS: ShuffleLevel.UNDEFINED,
PipelineLayer.MINE_BENEFICIATION: ShuffleLevel.UNDEFINED
} | 29.758503 | 125 | 0.65356 |
86a51a9e777416f598dec47e504f16a9b1fa7744 | 433 | py | Python | myFirstApp/travello/models.py | cankush625/Django | a3e874a69fbf34bf9123a7d60697a2449c7591c6 | [
"MIT"
] | null | null | null | myFirstApp/travello/models.py | cankush625/Django | a3e874a69fbf34bf9123a7d60697a2449c7591c6 | [
"MIT"
] | 10 | 2020-02-12T03:08:48.000Z | 2022-02-10T11:27:50.000Z | myFirstApp/travello/models.py | cankush625/Django | a3e874a69fbf34bf9123a7d60697a2449c7591c6 | [
"MIT"
] | null | null | null | from django.db import models
# Create your models here. | 22.789474 | 48 | 0.637413 |
86a5619ddeca5e16cc4b5d0ebb8500be1708f077 | 6,001 | py | Python | app/app.py | Moustique-bot/hands-on-2021 | fd023f0a431f72ef2c48e3a469be42e2de9e2957 | [
"MIT"
] | null | null | null | app/app.py | Moustique-bot/hands-on-2021 | fd023f0a431f72ef2c48e3a469be42e2de9e2957 | [
"MIT"
] | null | null | null | app/app.py | Moustique-bot/hands-on-2021 | fd023f0a431f72ef2c48e3a469be42e2de9e2957 | [
"MIT"
] | null | null | null | import base64
import io
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
import numpy as np
import tensorflow as tf
from PIL import Image
from constants import CLASSES
import yaml
with open('app.yaml') as yaml_data :
params = yaml.safe_load(yaml_data)
IMAGE_WIDTH = params['IMAGE_WIDTH']
IMAGE_HEIGHT = params['IMAGE_HEIGHT']
PATH_MODEL = params['PATH_MODEL']
# Load DNN model
classifier = tf.keras.models.load_model(PATH_MODEL)
def classify_image(image, model, image_box=None):
"""Classify image by model
Parameters
----------
content: image content
model: tf/keras classifier
Returns
-------
class id returned by model classifier
"""
images_list = []
image = image.resize((IMAGE_WIDTH, IMAGE_HEIGHT), box=image_box)
# box argument clips image to (x1, y1, x2, y2)
image = np.array(image)
images_list.append(image)
return model.predict_classes(np.array(images_list))
app = dash.Dash('Traffic Signs Recognition', external_stylesheets=[dbc.themes.BOOTSTRAP])
pre_style = {
'whiteSpace': 'pre-wrap',
'wordBreak': 'break-all',
'whiteSpace': 'normal'
}
# Define application layout
navbar = dbc.NavbarSimple(
children=[
dbc.DropdownMenu(
children=[
dbc.DropdownMenuItem('Rseau de Neurones', header=True),
dbc.DropdownMenuItem('SVM', href="#"),
],
nav=True,
in_navbar=True,
label='Modle',
),
],
brand="Menu",
brand_href="#",
color= "#d90054",
dark=True
)
cards = html.Div(
[
dbc.Card(
dbc.CardBody(
[
html.H5("Prsentation", className="card-title"),
html.P(
[
'Cette application pour but de raliser des modles capables de classer des panneaux de signalisation allemand partir d\'une image. L\'application fonctionne de la manire suivante : vous dposer une image l\'emplacement indiqu et la prdiction du modle apparait immdiatement en dessous. En haut droite vous pouvez slectionner le modle que vous voulez tester.',
],
className='card-text',
),
]
),
className='w-75 mb-3',
color='#f1cbd1',
outline='Black',
style={
'margin-top': '75px',
'margin-left': '185px'},
),
]
)
app.layout = html.Div([
html.Div([navbar]),
html.Div(cards),
dcc.Upload(
id='bouton-chargement',
children=html.Div([
'Cliquer-dposer ou ',
html.A('slectionner une image')
]),
style={
'width': '50%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin-top': '75px',
'margin-left': '370px',
}
),
html.Div(id='mon-image'),
html.Div(id='ma-zone-resultat')
])
# Manage interactions with callbacks
# Start the application
if __name__ == '__main__':
app.run_server(debug=True) | 31.920213 | 402 | 0.551408 |
86a57ddfcf5854e170f6cff9e4deb86cb8f9d464 | 1,214 | py | Python | books/rakutenapi.py | NobukoYano/LibraryApp | 623f60614f15ab760e1c0d2f18954ce948f2d2a3 | [
"MIT"
] | 1 | 2019-04-27T11:18:42.000Z | 2019-04-27T11:18:42.000Z | books/rakutenapi.py | NobukoYano/LibrayApp | 623f60614f15ab760e1c0d2f18954ce948f2d2a3 | [
"MIT"
] | 11 | 2020-02-12T00:11:23.000Z | 2022-02-10T07:59:24.000Z | books/rakutenapi.py | NobukoYano/LibrayApp | 623f60614f15ab760e1c0d2f18954ce948f2d2a3 | [
"MIT"
] | null | null | null | import json
import requests
from django.conf import settings
| 27.590909 | 74 | 0.559308 |
86a6435f792c7fc0f926b7e3c4e14710ea4c902b | 26 | py | Python | Random-Programs/optimization/root/v4.py | naumoff0/Archive | d4ad2da89abb1576dd5a7c72ded6bf9b45c3f610 | [
"MIT"
] | null | null | null | Random-Programs/optimization/root/v4.py | naumoff0/Archive | d4ad2da89abb1576dd5a7c72ded6bf9b45c3f610 | [
"MIT"
] | null | null | null | Random-Programs/optimization/root/v4.py | naumoff0/Archive | d4ad2da89abb1576dd5a7c72ded6bf9b45c3f610 | [
"MIT"
] | null | null | null | print(int(input(""))**0.5) | 26 | 26 | 0.576923 |
86a699aa985f4eb39369d4b317e19a2eb2706a0b | 18,710 | py | Python | sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2018_01_01_preview/models/_models_py3.py | rsdoherty/azure-sdk-for-python | 6bba5326677468e6660845a703686327178bb7b1 | [
"MIT"
] | 2,728 | 2015-01-09T10:19:32.000Z | 2022-03-31T14:50:33.000Z | sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2018_01_01_preview/models/_models_py3.py | rsdoherty/azure-sdk-for-python | 6bba5326677468e6660845a703686327178bb7b1 | [
"MIT"
] | 17,773 | 2015-01-05T15:57:17.000Z | 2022-03-31T23:50:25.000Z | sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2018_01_01_preview/models/_models_py3.py | rsdoherty/azure-sdk-for-python | 6bba5326677468e6660845a703686327178bb7b1 | [
"MIT"
] | 1,916 | 2015-01-19T05:05:41.000Z | 2022-03-31T19:36:44.000Z | # coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from typing import Any, List, Optional
from azure.core.exceptions import HttpResponseError
import msrest.serialization
| 32.147766 | 165 | 0.615446 |
86a6e60b85eb87efd2531834b58c525dde29390d | 21,322 | py | Python | school/views.py | pa-one-patel/college_managenment | be6f6dcac1f7e01f71d95f445e2118e8eec3fe3a | [
"MIT"
] | 1 | 2021-04-11T12:05:44.000Z | 2021-04-11T12:05:44.000Z | school/views.py | aliffauzi/schoolmanagement | 6a4477af01df148404d1ff2941f74accb5717b09 | [
"MIT"
] | 6 | 2021-03-19T04:10:49.000Z | 2021-09-22T19:06:14.000Z | school/views.py | aliffauzi/schoolmanagement | 6a4477af01df148404d1ff2941f74accb5717b09 | [
"MIT"
] | 1 | 2021-04-11T12:07:08.000Z | 2021-04-11T12:07:08.000Z | from django.shortcuts import render,redirect,reverse
from . import forms,models
from django.db.models import Sum
from django.contrib.auth.models import Group
from django.http import HttpResponseRedirect
from django.contrib.auth.decorators import login_required,user_passes_test
#for showing signup/login button for teacher(by sumit)
#for showing signup/login button for teacher(by sumit)
#for showing signup/login button for student(by sumit)
#for checking user is techer , student or admin(by sumit)
#for dashboard of adminnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn(by sumit)
#for teacher sectionnnnnnnn by adminnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn(by sumit)
#for student by adminnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn(by sumit)
#attendance related viewwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww(by sumit)
#fee related view by adminnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn(by sumit)
#notice related viewsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss(by sumit)
#for TEACHER LOGIN SECTIONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN(by sumit)
#FOR STUDENT AFTER THEIR Loginnnnnnnnnnnnnnnnnnnnn(by sumit)
# for aboutus and contact ussssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss (by sumit)
def aboutus_view(request):
return render(request,'school/aboutus.html')
def contactus_view(request):
sub = forms.ContactusForm()
if request.method == 'POST':
sub = forms.ContactusForm(request.POST)
if sub.is_valid():
email = sub.cleaned_data['Email']
name=sub.cleaned_data['Name']
message = sub.cleaned_data['Message']
send_mail(str(name)+' || '+str(email),message, EMAIL_HOST_USER, ['[email protected]'], fail_silently = False)
return render(request, 'school/contactussuccess.html')
return render(request, 'school/contactus.html', {'form':sub})
| 33.211838 | 123 | 0.710909 |
86a72a80401e7713121d2f9ca2a2d2dc62069b97 | 16,684 | py | Python | PaddleCV/tracking/pytracking/features/deep.py | weiwei1115/models | e2c96c5f64b1dc8f0d5d9aa121300b87150e11e3 | [
"Apache-2.0"
] | 2 | 2021-05-15T07:35:04.000Z | 2021-07-15T07:01:13.000Z | PaddleCV/tracking/pytracking/features/deep.py | weiwei1115/models | e2c96c5f64b1dc8f0d5d9aa121300b87150e11e3 | [
"Apache-2.0"
] | null | null | null | PaddleCV/tracking/pytracking/features/deep.py | weiwei1115/models | e2c96c5f64b1dc8f0d5d9aa121300b87150e11e3 | [
"Apache-2.0"
] | 4 | 2021-08-11T08:25:10.000Z | 2021-10-16T07:41:59.000Z | import os
import numpy as np
from paddle import fluid
from ltr.models.bbreg.atom import atom_resnet50, atom_resnet18
from ltr.models.siamese.siam import siamfc_alexnet
from ltr.models.siam.siam import SiamRPN_AlexNet, SiamMask_ResNet50_sharp, SiamMask_ResNet50_base
from pytracking.admin.environment import env_settings
from pytracking.features.featurebase import MultiFeatureBase
from pytracking.libs import TensorList
from pytracking.libs.paddle_utils import n2p
| 33.705051 | 98 | 0.552805 |
86a7a933257c5b58ca131b6e09db3e5af93d5f4e | 19,069 | py | Python | netesto/local/psPlot.py | fakeNetflix/facebook-repo-fbkutils | 16ec0c024322c163e7dbe691812ba8fdf5b511ad | [
"BSD-3-Clause"
] | 346 | 2016-04-08T17:04:29.000Z | 2021-09-30T06:05:47.000Z | netesto/local/psPlot.py | fakeNetflix/facebook-repo-fbkutils | 16ec0c024322c163e7dbe691812ba8fdf5b511ad | [
"BSD-3-Clause"
] | 38 | 2016-04-26T14:58:17.000Z | 2021-10-07T20:43:39.000Z | netesto/local/psPlot.py | fakeNetflix/facebook-repo-fbkutils | 16ec0c024322c163e7dbe691812ba8fdf5b511ad | [
"BSD-3-Clause"
] | 76 | 2016-04-08T17:59:23.000Z | 2021-09-05T13:18:27.000Z | #!/usr/bin/env python2
import sys
import random
import os.path
import shutil
import commands
import types
import math
#gsPath = '/usr/local/bin/gs'
gsPath = 'gs'
logFile = '/dev/null'
#logFile = 'plot.log'
#--- class PsPlot(fname, pageHeader, pageSubHeader, plotsPerPage)
#
#--- Main
#
def main():
tMin = 0
tMax = 100000
stateList = [0,1,2,2,3,3,3,3,4]
fname = 'sched.txt'
if len(sys.argv) == 2:
fname = sys.argv[1]
elif len(sys.argv) == 3:
tMin = int(sys.argv[1])
tMax = int(sys.argv[2])
elif len(sys.argv) == 4:
tMin = int(sys.argv[1])
tMax = int(sys.argv[2])
fname = sys.argv[3]
elif len(sys.argv) != 1:
print 'USAGE: psPlot.py [tMin tMax] [fname]'
sys.exit(1)
print 'tMin,tMax: ', tMin, tMax, 'fname: ', fname
p = PsPlot('./p', 'Header', 'SubHeader', 1)
fromStateList = []
toStateList = []
time1List = []
time2List = []
indx = 0
oldTime = 0
fin = open(fname, 'r')
for inputLine in fin:
inputLine = inputLine.replace(' ','')
inputLine = inputLine.replace("'", '')
i1 = inputLine.find('(')
i2 = inputLine.find(')')
inputList = inputLine[i1+1:i2-1].split(',')
s1 = stateList[int(inputList[0])]
s2 = stateList[int(inputList[1])]
t = int(inputList[2])
if indx != 0 and t >= tMin and t <= tMax:
fromStateList.append(s1)
toStateList.append(s2)
time1List.append(oldTime)
time2List.append(t)
oldTime = t
indx += 1
p.SetPlot(tMin, tMax, 0, 0, 2, 0, 'Time', 'Socket/State', 'Chavey\'s Plot')
state = 0
while state <= 4:
t1List = []
t2List = []
sList = []
indx = 0
for s in toStateList:
if s == state:
t1List.append(time1List[indx])
t2List.append(time2List[indx])
sList.append(0.10 + s*0.20)
indx += 1
p.PlotData(1,t1List, t2List, sList, 'Test',
'0.1 in 0 '+p.SetColor(p.colors[state])+' plotWbarsC',
sys.stdout)
state += 1
image = p.GetImage(sys.stdout)
print 'Image file: ', image
p.End()
if __name__ == "__main__":
main()
| 31.260656 | 147 | 0.457968 |
86a7e9fe107833a210f5b3b41b68cc42c51f48ee | 402 | py | Python | physio2go/exercises/migrations/0003_auto_20161128_1753.py | hamole/physio2go | ebd14c9406e2b6818dc649e4863a734bf812e9b0 | [
"MIT"
] | null | null | null | physio2go/exercises/migrations/0003_auto_20161128_1753.py | hamole/physio2go | ebd14c9406e2b6818dc649e4863a734bf812e9b0 | [
"MIT"
] | null | null | null | physio2go/exercises/migrations/0003_auto_20161128_1753.py | hamole/physio2go | ebd14c9406e2b6818dc649e4863a734bf812e9b0 | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
# Generated by Django 1.10.3 on 2016-11-28 06:53
from __future__ import unicode_literals
from django.db import migrations
| 20.1 | 49 | 0.621891 |
86a8e1ed877d30bb9fe2c31cbcb8f214021f1ba6 | 2,006 | py | Python | setup.py | pasinskim/mender-python-client | d6f3dc86ec46b0b249a112c5037bea579266e649 | [
"Apache-2.0"
] | null | null | null | setup.py | pasinskim/mender-python-client | d6f3dc86ec46b0b249a112c5037bea579266e649 | [
"Apache-2.0"
] | 71 | 2020-12-21T05:08:13.000Z | 2022-01-31T02:04:26.000Z | setup.py | pasinskim/mender-python-client | d6f3dc86ec46b0b249a112c5037bea579266e649 | [
"Apache-2.0"
] | 11 | 2020-12-02T14:46:58.000Z | 2021-12-02T06:43:25.000Z | # Copyright 2021 Northern.tech AS
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import setuptools
import re
VERSIONFILE = "src/mender/_version.py"
version_string_line = open(VERSIONFILE, "rt").read()
VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]"
match = re.search(VSRE, version_string_line, re.M)
if match:
version_string = match.group(1)
else:
raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,))
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
setuptools.setup(
name="mender-python-client-mendersoftware",
version=version_string,
license="Apache 2.0",
author="Mendersoftware",
author_email="[email protected]",
description="A Python implementation of the Mender client interface",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/mendersoftware/mender-python-client",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
],
keywords=["mender", "OTA", "updater"],
packages=setuptools.find_packages(where="src"),
install_requires=["cryptography", "requests", "msgpack", "websockets"],
entry_points={"console_scripts": ["mender-python-client=mender.mender:main"]},
package_dir={"": "src"},
python_requires=">=3.6",
zip_safe=False,
include_package_data=True,
)
| 37.849057 | 82 | 0.698903 |
86a985b6e0366a5f31612b64e590684791f59ced | 740 | py | Python | Q295-v2.py | Linchin/python_leetcode_git | 3d08ab04bbdbd2ce268f33c501fbb149662872c7 | [
"MIT"
] | null | null | null | Q295-v2.py | Linchin/python_leetcode_git | 3d08ab04bbdbd2ce268f33c501fbb149662872c7 | [
"MIT"
] | null | null | null | Q295-v2.py | Linchin/python_leetcode_git | 3d08ab04bbdbd2ce268f33c501fbb149662872c7 | [
"MIT"
] | null | null | null | """
295
find median from data stream
hard
"""
from heapq import *
sol = MedianFinder()
sol.addNum(1)
print(sol.findMedian())
sol.addNum(2)
print(sol.findMedian()) | 18.5 | 53 | 0.558108 |
86a988c6aa7f35cfd3902d0931e8d87597572497 | 3,445 | py | Python | raisimPy/examples/newtonsCradle.py | mstoelzle/raisimLib | 81f33a1b82f296e9622f950bc292f61bee2d2c2f | [
"Apache-2.0"
] | null | null | null | raisimPy/examples/newtonsCradle.py | mstoelzle/raisimLib | 81f33a1b82f296e9622f950bc292f61bee2d2c2f | [
"Apache-2.0"
] | null | null | null | raisimPy/examples/newtonsCradle.py | mstoelzle/raisimLib | 81f33a1b82f296e9622f950bc292f61bee2d2c2f | [
"Apache-2.0"
] | null | null | null | import os
import numpy as np
import raisimpy as raisim
import math
import time
raisim.World.setLicenseFile(os.path.dirname(os.path.abspath(__file__)) + "/../../rsc/activation.raisim")
world = raisim.World()
ground = world.addGround()
world.setTimeStep(0.001)
world.setMaterialPairProp("steel", "steel", 0.1, 1.0, 0.0)
pin1 = world.addSphere(0.1, 0.8)
pin1.setAppearance("1,0,0,0.3")
pin1.setPosition(0.0, 0.0, 3.0)
pin1.setBodyType(raisim.BodyType.STATIC)
pin2 = world.addSphere(0.1, 0.8)
pin2.setAppearance("0,1,0,0.3")
pin2.setPosition(0.3, 0.0, 3.0)
pin2.setBodyType(raisim.BodyType.STATIC)
pin3 = world.addSphere(0.1, 0.8)
pin3.setAppearance("0,0,1,0.3")
pin3.setPosition(0.6, 0.0, 3.0)
pin3.setBodyType(raisim.BodyType.STATIC)
pin4 = world.addSphere(0.1, 0.8)
pin4.setAppearance("1,0,0,0.3")
pin4.setPosition(0.9, 0.0, 3.0)
pin4.setBodyType(raisim.BodyType.STATIC)
pin5 = world.addSphere(0.1, 0.8)
pin5.setPosition(0.9, 0.0, 6.0)
pin5.setBodyType(raisim.BodyType.STATIC)
pin6 = world.addSphere(0.1, 0.8)
pin6.setPosition(-3., 0.0, 7.0)
pin6.setBodyType(raisim.BodyType.STATIC)
pin7 = world.addSphere(0.1, 0.8)
pin7.setPosition(-4., 0.0, 7.0)
pin7.setBodyType(raisim.BodyType.STATIC)
anymalB_urdf_file = os.path.dirname(os.path.abspath(__file__)) + "/../../rsc/anymal/urdf/anymal.urdf"
anymalC_urdf_file = os.path.dirname(os.path.abspath(__file__)) + "/../../rsc/anymal_c/urdf/anymal.urdf"
anymalC = world.addArticulatedSystem(anymalC_urdf_file)
anymalB = world.addArticulatedSystem(anymalB_urdf_file)
jointNominalConfig = np.array([-3, 0, 4.54, 1.0, 0.0, 0.0, 0.0, 0.03, 0.4, -0.8, -0.03, 0.4, -0.8, 0.03, -0.4, 0.8, -0.03, -0.4, 0.8])
jointVelocityTarget = np.zeros([anymalC.getDOF()])
jointPgain = np.ones(anymalC.getDOF()) * 100.0
jointDgain = np.ones(anymalC.getDOF()) * 1.0
anymalC.setGeneralizedCoordinate(jointNominalConfig)
anymalC.setPdGains(jointPgain, jointDgain)
anymalC.setPdTarget(jointNominalConfig, jointVelocityTarget)
anymalC.setName("anymalC")
jointNominalConfig[0] = -4
anymalB.setGeneralizedCoordinate(jointNominalConfig)
anymalB.setPdGains(jointPgain, jointDgain)
anymalB.setPdTarget(jointNominalConfig, jointVelocityTarget)
anymalB.setName("anymalB")
ball1 = world.addSphere(0.1498, 0.8, "steel")
ball1.setPosition(0, 0.0, 1.0)
ball2 = world.addSphere(0.1499, 0.8, "steel")
ball2.setPosition(0.3, 0.0, 1.0)
ball3 = world.addSphere(0.1499, 0.8, "steel")
ball3.setPosition(0.6, 0.0, 1.0)
ball4 = world.addSphere(0.1499, 0.8, "steel")
ball4.setPosition(2.9, 0.0, 3.0)
box = world.addBox(.1, .1, .1, 1)
box.setPosition(0.9, 0.0, 4.2)
world.addStiffWire(pin1, 0, np.zeros(3), ball1, 0, np.zeros(3), 2.0)
world.addStiffWire(pin2, 0, np.zeros(3), ball2, 0, np.zeros(3), 2.0)
world.addStiffWire(pin3, 0, np.zeros(3), ball3, 0, np.zeros(3), 2.0)
world.addStiffWire(pin4, 0, np.zeros(3), ball4, 0, np.zeros(3), 2.0)
wire5 = world.addCompliantWire(pin5, 0, np.zeros(3), box, 0, np.zeros(3), 2.0, 200)
wire5.setStretchType(raisim.StretchType.BOTH)
wire6 = world.addCompliantWire(pin6, 0, np.zeros(3), anymalC, 0, np.zeros(3), 2.0, 1000)
wire6.setStretchType(raisim.StretchType.BOTH)
wire7 = world.addCustomWire(pin7, 0, np.zeros(3), anymalB, 0, np.zeros(3), 2.0)
wire7.setTension(310)
server = raisim.RaisimServer(world)
server.launchServer(8080)
for i in range(500000):
time.sleep(0.001)
server.integrateWorldThreadSafe()
if i == 5000:
world.removeObject(wire7)
server.killServer()
| 32.196262 | 134 | 0.722787 |
86aa12779a6111083d5f447b8a7b523841c60e96 | 15,132 | py | Python | nova/virt/hyperv/volumeops.py | viveknandavanam/nova | 556377b6915936467436c9d5bb33bc0e22244e1e | [
"Apache-2.0"
] | 1 | 2019-07-29T10:30:24.000Z | 2019-07-29T10:30:24.000Z | nova/virt/hyperv/volumeops.py | viveknandavanam/nova | 556377b6915936467436c9d5bb33bc0e22244e1e | [
"Apache-2.0"
] | 11 | 2017-06-19T01:28:55.000Z | 2017-06-23T02:01:47.000Z | nova/virt/hyperv/volumeops.py | viveknandavanam/nova | 556377b6915936467436c9d5bb33bc0e22244e1e | [
"Apache-2.0"
] | 3 | 2018-04-04T15:15:01.000Z | 2018-04-19T18:14:25.000Z | # Copyright 2012 Pedro Navarro Perez
# Copyright 2013 Cloudbase Solutions Srl
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""
Management class for Storage-related functions (attach, detach, etc).
"""
import time
from os_brick.initiator import connector
from os_win import utilsfactory
from oslo_log import log as logging
from oslo_utils import strutils
import nova.conf
from nova import exception
from nova.i18n import _, _LE, _LI, _LW
from nova import utils
from nova.virt import driver
from nova.virt.hyperv import constants
LOG = logging.getLogger(__name__)
CONF = nova.conf.CONF
class FCVolumeDriver(BaseVolumeDriver):
_is_block_dev = True
_protocol = constants.STORAGE_PROTOCOL_FC
| 41.231608 | 79 | 0.630849 |
86aa70a303cf42efa31de488c8f84aac08996583 | 1,326 | py | Python | -Loan-Approval-Analysis/code.py | lakshit-sharma/greyatom-python-for-data-science | 55a6e5a4c54a4f7135cc09fb287d2f2fa1d36413 | [
"MIT"
] | null | null | null | -Loan-Approval-Analysis/code.py | lakshit-sharma/greyatom-python-for-data-science | 55a6e5a4c54a4f7135cc09fb287d2f2fa1d36413 | [
"MIT"
] | null | null | null | -Loan-Approval-Analysis/code.py | lakshit-sharma/greyatom-python-for-data-science | 55a6e5a4c54a4f7135cc09fb287d2f2fa1d36413 | [
"MIT"
] | null | null | null | # --------------
# Importing header files
import numpy as np
import pandas as pd
from scipy.stats import mode
# code starts here
bank = pd.read_csv(path)
categorical_var = bank.select_dtypes(include = 'object')
print(categorical_var)
numerical_var = bank.select_dtypes(include = 'number')
print(numerical_var)
banks = bank.drop(columns=['Loan_ID'])
bank_mode = banks.mode()
banks = banks.fillna(bank_mode.iloc[0])
print(banks.isnull().sum())
avg_loan_amount = pd.pivot_table(banks, index=['Gender', 'Married', 'Self_Employed'], values='LoanAmount', aggfunc = 'mean')
print(avg_loan_amount)
loan_approved_se = banks[ (banks['Self_Employed'] == "Yes") & (banks['Loan_Status'] == "Y") ]
loan_approved_nse = banks[ (banks['Self_Employed'] == "No") & (banks['Loan_Status'] == "Y") ]
percentage_se = (len(loan_approved_se) / 614) * 100
percentage_nse = (len(loan_approved_nse) / 614) * 100
# loan amount term
loan_term = banks['Loan_Amount_Term'].apply(lambda x: int(x)/12 )
big_loan_term=len(loan_term[loan_term>=25])
print(big_loan_term)
columns_to_show = ['ApplicantIncome', 'Credit_History']
loan_groupby=banks.groupby(['Loan_Status'])[columns_to_show]
# Check the mean value
mean_values=loan_groupby.agg([np.mean])
print(mean_values)
# code ends here
| 24.109091 | 125 | 0.69457 |
86aa77866191f8899234ee88d0a38f765c6e8d3e | 7,673 | py | Python | others/train_RNN.py | jacobswan1/Video2Commonsense | 4dcef76360a29702fd90b7030a39a123da6db19e | [
"MIT"
] | 31 | 2021-01-07T00:42:05.000Z | 2022-01-18T16:44:09.000Z | others/train_RNN.py | jacobswan1/Video2Commonsense | 4dcef76360a29702fd90b7030a39a123da6db19e | [
"MIT"
] | 7 | 2021-01-07T00:41:28.000Z | 2021-12-01T09:29:49.000Z | others/train_RNN.py | jacobswan1/Video2Commonsense | 4dcef76360a29702fd90b7030a39a123da6db19e | [
"MIT"
] | 4 | 2021-02-04T04:55:20.000Z | 2021-07-25T06:50:44.000Z | ''' Training Scropt for V2C captioning task. '''
__author__ = 'Jacob Zhiyuan Fang'
import os
import numpy as np
from opts import *
from utils.utils import *
import torch.optim as optim
from model.Model import Model
from torch.utils.data import DataLoader
from utils.dataloader import VideoDataset
from model.transformer.Optim import ScheduledOptim
if __name__ == '__main__':
opt = parse_opt()
opt = vars(opt)
main(opt) | 41.475676 | 121 | 0.571224 |
86ab2a7a0d57050e80f3f20e1f2f61131ca45a9a | 487 | py | Python | new-influx-client.py | benlamonica/energy-monitor | 86714a365c91cc05c265de81bce191ff4ab585f8 | [
"MIT"
] | null | null | null | new-influx-client.py | benlamonica/energy-monitor | 86714a365c91cc05c265de81bce191ff4ab585f8 | [
"MIT"
] | null | null | null | new-influx-client.py | benlamonica/energy-monitor | 86714a365c91cc05c265de81bce191ff4ab585f8 | [
"MIT"
] | null | null | null | import influxdb_client
from influxdb_client import InfluxDBClient
bucket = "python-client-sandbox"
org = "Energy Monitor"
token = "miQdAvNXHiNDVVzPzV5FpkCaR_8qdQ-L1FlPCOXQPI325Kbrh1fgfhkcDUZ4FepaebDdpZ-A1gmtnnjU0_hViA=="
url = "http://localhost:9999"
client = InfluxDBClient(url=url, token=token, org=org)
writeApi = client.write_api()
write_api.write("my-bucket", "my-org", [{"measurement": "h2o_feet", "tags": {"location": "coyote_creek"}, "fields": {"water_level": 1}, "time": 1}])
| 40.583333 | 148 | 0.755647 |
86ab8849571d80e31e545baaa8fc3a7e45faa001 | 6,176 | py | Python | tests/test_agent/test_manhole.py | guidow/pyfarm-agent | bb5d464f9f6549a3db3529a93e3d9f388b365586 | [
"Apache-2.0"
] | null | null | null | tests/test_agent/test_manhole.py | guidow/pyfarm-agent | bb5d464f9f6549a3db3529a93e3d9f388b365586 | [
"Apache-2.0"
] | null | null | null | tests/test_agent/test_manhole.py | guidow/pyfarm-agent | bb5d464f9f6549a3db3529a93e3d9f388b365586 | [
"Apache-2.0"
] | null | null | null | # No shebang line, this module is meant to be imported
#
# Copyright 2014 Oliver Palmer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import namedtuple
from pprint import pprint
from random import randint
from StringIO import StringIO
from textwrap import dedent
try:
from unittest.mock import patch
except ImportError: # pragma: no cover
from mock import patch
from twisted.internet.protocol import ServerFactory
from twisted.cred.portal import Portal
from twisted.conch.telnet import (
ITelnetProtocol, TelnetBootstrapProtocol, TelnetTransport)
from pyfarm.agent.testutil import TestCase
from pyfarm.agent.manhole import (
LoggingManhole, TransportProtocolFactory, TelnetRealm,
manhole_factory, show)
Peer = namedtuple("Peer", ("host", "port"))
| 32.505263 | 79 | 0.615771 |
86abdce88613d6ee71e638ae7487297146c3e7a8 | 338 | py | Python | func-button/klSigmode.py | xcgoo/uiKLine | 80683401d7dc66262ae645db4c2780d6e71be551 | [
"MIT"
] | 232 | 2017-10-11T09:19:03.000Z | 2022-03-09T01:34:49.000Z | func-button/klSigmode.py | DON-2020-LEE/uiKLine-2 | fd1d0dca5fd6b1542af4b10c110e39361b29d378 | [
"MIT"
] | 8 | 2017-12-09T09:10:15.000Z | 2021-04-22T03:35:26.000Z | func-button/klSigmode.py | DON-2020-LEE/uiKLine-2 | fd1d0dca5fd6b1542af4b10c110e39361b29d378 | [
"MIT"
] | 132 | 2017-10-11T09:16:29.000Z | 2022-02-09T10:37:57.000Z | # coding: utf-8
"""
"""
#----------------------------------------------------------------------
def klSigmode(self):
""""""
if self.mode == 'deal':
self.canvas.updateSig(self.signalsOpen)
self.mode = 'dealOpen'
else:
self.canvas.updateSig(self.signals)
self.mode = 'deal'
| 21.125 | 71 | 0.446746 |
86acd0c8a74d48d7a1cf116cc0a40300ec411cd2 | 16,459 | py | Python | utils/thin.py | BnF-jadis/projet | 212b1e7b179a564650fb959d9c2565648178f6b6 | [
"CC-BY-3.0"
] | 5 | 2021-06-17T12:48:45.000Z | 2022-01-22T22:23:44.000Z | utils/thin.py | BnF-jadis/projet | 212b1e7b179a564650fb959d9c2565648178f6b6 | [
"CC-BY-3.0"
] | 7 | 2020-11-13T18:42:14.000Z | 2022-02-10T01:31:07.000Z | utils/thin.py | BnF-jadis/projet | 212b1e7b179a564650fb959d9c2565648178f6b6 | [
"CC-BY-3.0"
] | 1 | 2021-10-17T10:49:45.000Z | 2021-10-17T10:49:45.000Z | # 2020, BackThen Maps
# Coded by Remi Petitpierre https://github.com/RPetitpierre
# For Bibliothque nationale de France (BnF)
import cv2, thinning, os
import numpy as np
import pandas as pd
import shapefile as shp
from skimage.measure import approximate_polygon
from PIL import Image, ImageDraw
from utils.utils import *
from utils.match import toLatLon
Image.MAX_IMAGE_PIXELS = 500000000
def skeletonize(road_network: np.ndarray, path: str = "workshop/vectorized.png", largest_component: bool = False):
''' Thinning/skeletonization of the road network image to a wired model.
Input(s):
road_network: black and white image of the road network (streets in white)
path: path where the skeletonized image should be saved
largest_component: if True, only the largest road network component will be kept
Output(s):
vectorized: skeletonized image
'''
assert len(road_network.shape) == 2, 'ERROR: road_network must be grayscale image'
img = cv2.resize(road_network, (road_network.shape[1]//2, road_network.shape[0]//2))
vectorized = thinning.guo_hall_thinning(img)
vectorized[vectorized > 100] = 255
vectorized[vectorized <= 100] = 0
if largest_component:
try:
_, labels, stats, _ = cv2.connectedComponentsWithStats(vectorized.copy(), connectivity=8, stats=cv2.CC_STAT_AREA)
stats = stats[1:]
main_component = (np.argmax(stats[:,4])+1).astype('int32')
vectorized = (labels == main_component).astype('uint8')*255
except:
'Warning: Skeletonization failed to apply largest_component = True param. Skipping.'
cv2.imwrite(path, vectorized)
return vectorized
def findNodes(image: np.ndarray):
''' Find the nodes in the road network skeleton image.
Input(s):
image: skeletonized image
Output(s):
nodes: array of nodes coordinates (x, y)
degree: degrees of the nodes (2=endpoint, 4=crossroads of 3 streets, 5=crossroads of 4 streets, etc.)
addresses: directions of the crossing roads, with regard to the node
'''
img = image.copy()
# Find row and column locations that are non-zero
(rows, cols) = np.nonzero(img)
nodes, degree, addresses = [], [], []
for (r,c) in zip(rows, cols):
if r > 0 and c > 0 and r < image.shape[0]-1 and c < image.shape[1]-1:
# Extract an 8-connected neighbourhood
(col_neigh, row_neigh) = np.meshgrid(np.array([c-1, c, c+1]), np.array([r-1, r, r+1]))
# Cast to int to index into image
col_neigh = col_neigh.astype('int')
row_neigh = row_neigh.astype('int')
# Convert into a single 1D array and check for non-zero locations
pix_neighbourhood = img[row_neigh, col_neigh].ravel() != 0
# If the number of non-zero locations equals 2, add this to our list of coordinates
n_neighbours = np.sum(pix_neighbourhood)
if (n_neighbours == 2) or (n_neighbours >= 4):
nodes.append((r, c))
degree.append(n_neighbours)
direction_set = np.where(pix_neighbourhood == True)[0]
direction_set = direction_set[direction_set != 4]
addresses.append(direction_set)
nodes = np.asarray(nodes)
return nodes, degree, addresses
def explorePath(start_x: int, start_y: int, start_dir: int, image: np.ndarray, nodes_grid: np.ndarray):
''' Follow the path from one given start node and direction until the next node, and stores the pixels
on the way.
Input(s):
start_x: start node x-coordinate
start_y: start node y-coordinate
start_dir: starting direction ({0, 1, 2,
3, -, 5,
6, 7, 8})
image: skeletonized image of the road network
nodes_grid: grid of the nodes of the skeletonized image
Output(s):
way: list of pixel coordinates on the way
direction: last direction to reach the 2nd node
nodes_grid[x, y]: degree of the arrival node
'''
direction = start_dir
x, y = start_x, start_y
assert image[x, y] != 0, 'ERROR: start point is not white'
end = False
way = [(x, y)]
# First iteration
new_x, new_y = absoluteWay(x, y, direction)
assert image[new_x, new_y] != 0, 'ERROR: 2nd point is not white'
way.append((new_x, new_y))
x, y = new_x, new_y
wrong_paths = noTurnBack(direction)
wrong_paths_active = True
if nodes_grid[x, y]:
end = True
direction = 8-start_dir
while not(end):
if x > 0 and y > 0 and x < image.shape[0]-1 and y < image.shape[1]-1:
# Extract an 8-connected neighbourhood
(row_neigh, col_neigh) = np.meshgrid(np.array([x-1, x, x+1]), np.array([y-1, y, y+1]))
# Cast to int to index into image
col_neigh, row_neigh = col_neigh.astype('int'), row_neigh.astype('int')
# Convert into a single 1D array and check for non-zero locations
try:
pix_neighbourhood = image[row_neigh, col_neigh].transpose().ravel() != 0
except:
print(x, y, image.shape, )
raise AssertionError()
# If the number of non-zero locations equals 2, add this to our list of coordinates
n_neighbours = np.sum(pix_neighbourhood)
direction_set = np.where(pix_neighbourhood == True)[0]
last_ds = [wrong_paths]
last_ds.append(direction_set)
direction_set = direction_set[direction_set != 4]
last_ds.append(direction_set)
direction_set = direction_set[direction_set != (8-direction)]
last_ds.append(direction_set)
direction_set = np.asarray(avoidDiagonalEdges(direction_set, direction))
last_ds.append(direction_set)
if wrong_paths_active:
for wrong_path in wrong_paths:
direction_set = direction_set[direction_set != wrong_path]
wrong_paths_active = False
if len(direction_set) != 1:
end = True
break
direction = direction_set[0]
new_x, new_y = absoluteWay(x, y, direction)
way.append((new_x, new_y))
x, y = new_x, new_y
if nodes_grid[x, y]:
end = True
else:
end = True
return way, direction, nodes_grid[x, y]
def findSegments(df_nodes: pd.DataFrame, image: np.ndarray, min_length: int = 30, return_simple_ways: bool = True):
''' Find all the road segments in the network. Keep the ones that are longer than a given length or non-terminal.
Optionally, compute the Douglas-Peucker simple itinerary of each segment and return it.
Input(s):
df_nodes: list of nodes
image: skeletonized image of the road network
min_length: min segment length if the segment is terminal
return_simple_ways: if True, compute the Douglas-Peucker simple itinerary of each segment and return it
Output(s):
(Optional)(simple_ways: the Douglas-Peucker simple itinerary of each segmenty)
ways: list of segments, containing all the pixels on the way between each couple of nodes
nodes_grid: image containing all the nodes found in the image and their degree
'''
img = image.copy()
done, ways = [], []
df_nodes = df_nodes.sort_values(by='degree').reset_index(drop=True)
nodes_grid = np.zeros(image.shape)
for ind, row in df_nodes[['x', 'y', 'degree']].iterrows():
nodes_grid[row['x'], row['y']] = row['degree']
nodes_grid = nodes_grid.astype('int')
for ind, node in df_nodes.iterrows():
for direct in node['address']:
code = str(node['x']) + '_' + str(node['y']) + '_' + str(direct)
if not(code in done):
way, last_direct, degree = explorePath(start_x=node['x'], start_y=node['y'],
start_dir=direct, image=img, nodes_grid=nodes_grid)
if not((len(way) <= min_length) and ((node['degree'] == 2) or (degree == 2))):
done.append(str(way[-1][0]) + '_' + str(way[-1][1]) + '_' + str(8-last_direct))
ways.append(way)
if return_simple_ways:
simple_ways = []
for way in ways:
inv_way = np.asarray([np.asarray(way)[:,1], image.shape[0]-np.asarray(way)[:,0]]).transpose()
simple_ways.append(approximate_polygon(np.asarray(inv_way), tolerance=1.6).tolist())
return simple_ways, ways, nodes_grid
else:
return ways, nodes_grid
def toPNG(segments: list, vectorized: np.ndarray, out_path: str):
''' Save a given set of segments as a bitmap image from the road network.
Input(s):
segments: list of segments, containing all the pixels on the way between each couple of nodes
vectorized: skeletonized image of the road network
out_path: the path, where the output bitmap image should be save
'''
canvas = (np.ones(vectorized.shape)*255).astype('uint8')
cv2.imwrite('workshop/canvas.png', canvas);
bitmap = Image.open('workshop/canvas.png')
draw = ImageDraw.Draw(bitmap)
for segment in segments:
coords = []
for point in segment:
coords.append((point[1], point[0]))
draw.line(coords, fill = 'black', width=0)
bitmap.save(out_path)
| 37.663616 | 125 | 0.584118 |
86acd82b514b30458fa54cefc7db6d72f32e8646 | 875 | py | Python | easy2fa/tests/test_checkinput.py | lutostag/otp | 0792548fa51c489cdc5fcb01a3c6dad1cd453154 | [
"MIT"
] | 3 | 2018-01-22T13:45:12.000Z | 2022-01-27T04:17:52.000Z | easy2fa/tests/test_checkinput.py | lutostag/otp | 0792548fa51c489cdc5fcb01a3c6dad1cd453154 | [
"MIT"
] | 1 | 2017-01-24T23:57:51.000Z | 2017-12-11T14:33:32.000Z | easy2fa/tests/test_checkinput.py | lutostag/otp | 0792548fa51c489cdc5fcb01a3c6dad1cd453154 | [
"MIT"
] | null | null | null | from unittest import TestCase
from unittest.mock import patch
from easy2fa import cli
| 33.653846 | 74 | 0.634286 |
86ad342de7b5dfdb142a5dff63b155f6c655c5c6 | 2,845 | py | Python | bert_finetuning/data_loader.py | nps1ngh/adversarial-bert-german-attacks-defense | 3cca292ec4c3c07945f4198ae81e1f671462ed90 | [
"Apache-2.0"
] | null | null | null | bert_finetuning/data_loader.py | nps1ngh/adversarial-bert-german-attacks-defense | 3cca292ec4c3c07945f4198ae81e1f671462ed90 | [
"Apache-2.0"
] | null | null | null | bert_finetuning/data_loader.py | nps1ngh/adversarial-bert-german-attacks-defense | 3cca292ec4c3c07945f4198ae81e1f671462ed90 | [
"Apache-2.0"
] | null | null | null | from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from bert_finetuning.data import GermanData
"""
** FOR DEBUGGING **
if __name__ == "__main__":
## define data paths
germeval_data_paths = {
"train": "./datasets/hasoc_dataset/hasoc_german_train.csv",
"dev": "./datasets/hasoc_dataset/hasoc_german_validation.csv",
"test": "./datasets/hasoc_dataset/hasoc_german_test.csv",
}
hasoc_german_data_paths = {
"train": "./datasets/hasoc_dataset/hasoc_german_train.csv",
"dev": "./datasets/hasoc_dataset/hasoc_german_validation.csv",
"test": "./datasets/hasoc_dataset/hasoc_german_test.csv",
}
## create dataloaders
print("creating germeval dataloaders...")
germ_eval_dataloader = GermanDataLoader(germeval_data_paths)
print("creating hasoc dataloaders...")
hasoc_german_dataloader = GermanDataLoader(hasoc_german_data_paths)
"""
| 31.966292 | 89 | 0.634798 |
86ae167dd0746f0077e0b0c327435fcca99f837b | 1,973 | py | Python | data/dirty_mnist.py | Karthik-Ragunath/DDU | b9daae9304bdeb222857884ef8cb3b6b3d004d33 | [
"MIT"
] | 43 | 2021-05-20T14:07:53.000Z | 2022-03-23T12:58:26.000Z | data/dirty_mnist.py | Karthik-Ragunath/DDU | b9daae9304bdeb222857884ef8cb3b6b3d004d33 | [
"MIT"
] | 3 | 2021-09-19T20:49:21.000Z | 2022-03-07T10:25:47.000Z | data/dirty_mnist.py | Karthik-Ragunath/DDU | b9daae9304bdeb222857884ef8cb3b6b3d004d33 | [
"MIT"
] | 8 | 2021-06-26T15:28:45.000Z | 2022-02-19T02:07:05.000Z | import torch
import numpy as np
import torch.utils.data as data
from torch.utils.data import Subset
from data.fast_mnist import create_MNIST_dataset
from data.ambiguous_mnist.ambiguous_mnist_dataset import AmbiguousMNIST
| 34.017241 | 113 | 0.737456 |
86ae868b0b9598e5f2e99607cce26d99b3a34dc3 | 4,147 | py | Python | vantage6/server/resource/recover.py | jaspersnel/vantage6-server | 88ad40d23cc36eaba57c170929f7ccdd0011720a | [
"Apache-2.0"
] | 2 | 2020-10-19T08:59:08.000Z | 2022-03-07T10:30:21.000Z | vantage6/server/resource/recover.py | jaspersnel/vantage6-server | 88ad40d23cc36eaba57c170929f7ccdd0011720a | [
"Apache-2.0"
] | 67 | 2020-04-15T09:43:31.000Z | 2022-03-18T08:29:17.000Z | vantage6/server/resource/recover.py | jaspersnel/vantage6-server | 88ad40d23cc36eaba57c170929f7ccdd0011720a | [
"Apache-2.0"
] | 2 | 2021-01-21T15:09:26.000Z | 2021-04-19T14:58:10.000Z | # -*- coding: utf-8 -*-
import logging
import datetime
from flask import request, render_template
from flask_jwt_extended import (
create_access_token,
decode_token
)
from jwt.exceptions import DecodeError
from flasgger import swag_from
from http import HTTPStatus
from pathlib import Path
from sqlalchemy.orm.exc import NoResultFound
from vantage6.common import logger_name
from vantage6.server import db
from vantage6.server.resource import (
ServicesResources
)
module_name = logger_name(__name__)
log = logging.getLogger(module_name)
# ------------------------------------------------------------------------------
# Resources / API's
# ------------------------------------------------------------------------------
| 30.718519 | 80 | 0.590306 |
86b032b82ee76fccb3eab7e57dd8b06b6868e592 | 2,633 | py | Python | examples/basic_examples/aws_sns_sqs_middleware_service.py | tranvietanh1991/tomodachi | a815fc718b6cc42dc3fe241abb0e5a5829eba0e8 | [
"MIT"
] | 1 | 2021-11-01T02:18:55.000Z | 2021-11-01T02:18:55.000Z | examples/basic_examples/aws_sns_sqs_middleware_service.py | tranvietanh1991/tomodachi | a815fc718b6cc42dc3fe241abb0e5a5829eba0e8 | [
"MIT"
] | 1 | 2020-12-28T16:16:53.000Z | 2020-12-28T16:16:53.000Z | examples/basic_examples/aws_sns_sqs_middleware_service.py | tranvietanh1991/tomodachi | a815fc718b6cc42dc3fe241abb0e5a5829eba0e8 | [
"MIT"
] | null | null | null | import os
from typing import Any, Callable, Dict
import tomodachi
from tomodachi import aws_sns_sqs, aws_sns_sqs_publish
from tomodachi.discovery import AWSSNSRegistration
from tomodachi.envelope import JsonBase
| 39.298507 | 122 | 0.692366 |
86b0a422c8bc9f85b86cb962da85b578f24f06e1 | 425 | py | Python | ex9.py | ThitsarAung/python-exercises | bca97875e25f9621fc5f58ab1d360426a21efc7f | [
"MIT"
] | null | null | null | ex9.py | ThitsarAung/python-exercises | bca97875e25f9621fc5f58ab1d360426a21efc7f | [
"MIT"
] | null | null | null | ex9.py | ThitsarAung/python-exercises | bca97875e25f9621fc5f58ab1d360426a21efc7f | [
"MIT"
] | null | null | null | types_of_people = 10
x = f"There are {types_of_people} types of people."
binary = "binary"
do_not = "don't"
y = f"Those who know {binary} and those who {do_not}."
print(x)
print(y)
print(f"I said: {x}")
print(f"I also said: '{y}'")
hilarious = False
joke_evaluation = "Isn't that joke so funny?! {}"
print(joke_evaluation.format(hilarious))
w="This is the left side of..."
e="a string with a right side."
print(w + e)
| 18.478261 | 54 | 0.672941 |
86b2f2b4446116811cbd5f27739dd93c92634c93 | 7,182 | py | Python | mmdnn/conversion/caffe/writer.py | 2yz/MMdnn | 13d909e4b591a5043b74b611e412c3c0a5eba0cc | [
"MIT"
] | 3,442 | 2017-11-20T08:39:51.000Z | 2019-05-06T10:51:19.000Z | mmdnn/conversion/caffe/writer.py | 2yz/MMdnn | 13d909e4b591a5043b74b611e412c3c0a5eba0cc | [
"MIT"
] | 430 | 2017-11-29T04:21:48.000Z | 2019-05-06T05:37:37.000Z | mmdnn/conversion/caffe/writer.py | 2yz/MMdnn | 13d909e4b591a5043b74b611e412c3c0a5eba0cc | [
"MIT"
] | 683 | 2017-11-20T08:50:34.000Z | 2019-05-04T04:25:14.000Z | import base64
from google.protobuf import json_format
from importlib import import_module
import json
import numpy as np
import os
import sys
from mmdnn.conversion.caffe.errors import ConversionError
from mmdnn.conversion.caffe.common_graph import fetch_attr_value
from mmdnn.conversion.caffe.utils import get_lower_case, get_upper_case, get_real_name
| 35.731343 | 92 | 0.589112 |
86b35d8336f90b1f441624f230053b48e0260a33 | 1,258 | py | Python | week1/85-maximal-rectangle.py | LionTao/algo_weekend | d25756761d47491b8c78ecf8a857080497910c76 | [
"Unlicense"
] | null | null | null | week1/85-maximal-rectangle.py | LionTao/algo_weekend | d25756761d47491b8c78ecf8a857080497910c76 | [
"Unlicense"
] | null | null | null | week1/85-maximal-rectangle.py | LionTao/algo_weekend | d25756761d47491b8c78ecf8a857080497910c76 | [
"Unlicense"
] | null | null | null | """
leetcode-85
0 1 , rows x cols , 1 ,
"""
from typing import List | 32.25641 | 81 | 0.509539 |
86b35f885b38c215bfc2684f695ba3ae9b742e9a | 9,347 | py | Python | pandapower/test/opf/test_costs_pwl.py | mathildebadoual/pandapower | 9ba4bcb78e84b644d2ba6df0c08e285c54af8ddc | [
"BSD-3-Clause"
] | 1 | 2020-10-19T06:39:15.000Z | 2020-10-19T06:39:15.000Z | pandapower/test/opf/test_costs_pwl.py | miek770/pandapower | de004efc1b7432a633792af4f551f7635a02db47 | [
"BSD-3-Clause"
] | null | null | null | pandapower/test/opf/test_costs_pwl.py | miek770/pandapower | de004efc1b7432a633792af4f551f7635a02db47 | [
"BSD-3-Clause"
] | null | null | null | # -*- coding: utf-8 -*-
# Copyright (c) 2016-2018 by University of Kassel and Fraunhofer Institute for Energy Economics
# and Energy System Technology (IEE), Kassel. All rights reserved.
import numpy as np
import pytest
from pandapower.optimal_powerflow import OPFNotConverged
import pandapower as pp
try:
import pplog as logging
except ImportError:
import logging
logger = logging.getLogger(__name__)
logger.setLevel("DEBUG")
def test_cost_piecewise_linear_gen():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_gen(net, 1, p_kw=-100, controllable=True, max_p_kw=-5, min_p_kw=-150, max_q_kvar=50,
min_q_kvar=-50)
pp.create_ext_grid(net, 0)
pp.create_load(net, 1, p_kw=20, controllable=False)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "gen", np.array([[-150, -100], [-75, -50], [0, 0]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert net.res_cost - net.res_gen.p_kw.values / 1.5 < 1e-3
def test_cost_piecewise_linear_eg():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10)
pp.create_ext_grid(net, 0, max_p_kw=0, min_p_kw=-50)
pp.create_gen(net, 1, p_kw=-10, max_p_kw=0, min_p_kw=-50, controllable=True)
# pp.create_ext_grid(net, 0)
pp.create_load(net, 1, p_kw=20, controllable=False)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "ext_grid", np.array([[-50, -500], [0, 0]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert net.res_cost - - net.res_ext_grid.p_kw.values * 10 < 1e-3
# check and assert result
def test_get_costs():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_gen(net, 1, p_kw=-100, controllable=True, max_p_kw=-5, min_p_kw=-150, max_q_kvar=50,
min_q_kvar=-50)
pp.create_ext_grid(net, 0)
pp.create_load(net, 1, p_kw=20, controllable=False)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "gen", np.array([[-150, -300], [0, 0]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert net.res_cost == 2 * net.res_gen.p_kw.values
# check and assert result
def test_cost_piecewise_linear_sgen():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_sgen(net, 1, p_kw=-100, controllable=True, max_p_kw=-5, min_p_kw=-150, max_q_kvar=50,
min_q_kvar=-50)
pp.create_ext_grid(net, 0)
pp.create_load(net, 1, p_kw=20, controllable=False)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "sgen", np.array([[-150, -100], [-75, -50], [0, 0]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert net.res_cost - net.res_sgen.p_kw.values / 1.5 < 1e-3
def test_cost_piecewise_linear_load():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_load(net, 1, p_kw=100, controllable=True, max_p_kw=150, min_p_kw=50, max_q_kvar=0,
min_q_kvar=0)
pp.create_ext_grid(net, 0)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "load", np.array([[0, 0], [75, 50], [150, 100]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert abs(net.res_cost - net.res_load.p_kw.values / 1.5) < 1e-3
def test_cost_piecewise_linear_sgen_uneven_slopes():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_sgen(net, 1, p_kw=-100, controllable=True, max_p_kw=-5, min_p_kw=-150, max_q_kvar=50,
min_q_kvar=-50)
pp.create_ext_grid(net, 0)
pp.create_load(net, 1, p_kw=20, controllable=False)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "sgen", np.array([[-150, -200], [-75, -50], [0, 0]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert net.res_cost - net.res_sgen.p_kw.values / 1.5 < 1e-3
def test_cost_piecewise_linear_load_uneven_slopes():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.05
vm_min = 0.95
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_load(net, 1, p_kw=100, controllable=True, max_p_kw=150, min_p_kw=50, max_q_kvar=0,
min_q_kvar=0)
pp.create_ext_grid(net, 0)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "load", np.array([[0, 0], [75, 51], [150, 101]]))
# run OPF
with pytest.raises(OPFNotConverged):
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
assert abs(net.res_cost - net.res_load.p_kw.values / 1.5) < 1e-3
def test_cost_piecewise_linear_sgen_very_unsteady_slopes():
""" Testing a very simple network for the resulting cost value
constraints with OPF """
# boundaries:
vm_max = 1.5
vm_min = 0.5
# create net
net = pp.create_empty_network()
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=10.)
pp.create_bus(net, max_vm_pu=vm_max, min_vm_pu=vm_min, vn_kv=.4)
pp.create_sgen(net, 1, p_kw=-1000, controllable=True, max_p_kw=0, min_p_kw=-1500,
max_q_kvar=50,
min_q_kvar=-50)
pp.create_ext_grid(net, 0)
pp.create_load(net, 1, p_kw=20, controllable=False)
pp.create_line_from_parameters(net, 0, 1, 50, name="line2", r_ohm_per_km=0.876,
c_nf_per_km=260.0, max_i_ka=0.123, x_ohm_per_km=0.1159876,
max_loading_percent=100 * 690)
pp.create_piecewise_linear_cost(net, 0, "sgen", np.array([[-1500, 2],[-750,1 ], [0,2]]))
# run OPF
pp.runopp(net, verbose=False)
assert net["OPF_converged"]
# assert net.res_cost - net.res_sgen.p_kw.values / 1.5 < 1e-3
if __name__ == "__main__":
# test_cost_piecewise_linear_sgen_very_unsteady_slopes()
pytest.main(["test_costs_pwl.py", "-s"])
| 37.09127 | 99 | 0.644378 |
86b3d8112beb6b385c29392912e1d48581db14c2 | 680 | py | Python | cookie_refresh.py | guoxianru/cookie_pool_lite | 02c4b2009b4c8aa3306ae1f5f7c5decde1eb5f3f | [
"Apache-2.0"
] | null | null | null | cookie_refresh.py | guoxianru/cookie_pool_lite | 02c4b2009b4c8aa3306ae1f5f7c5decde1eb5f3f | [
"Apache-2.0"
] | null | null | null | cookie_refresh.py | guoxianru/cookie_pool_lite | 02c4b2009b4c8aa3306ae1f5f7c5decde1eb5f3f | [
"Apache-2.0"
] | null | null | null | # -*- coding: utf-8 -*-
# @Author: GXR
# @CreateTime: 2022-01-20
# @UpdateTime: 2022-01-20
import redis
import config
import cookie_login
from cookie_api import app
red = redis.Redis(
host=config.REDIS_HOST,
port=config.REDIS_PORT,
db=config.REDIS_DB,
decode_responses=True,
)
# cookie
if __name__ == "__main__":
run_cookie_refresh()
| 18.888889 | 59 | 0.679412 |
86b46d24f10eba79c88afa632d31ceb83f18b3b1 | 292 | py | Python | feemodel/app/__init__.py | bitcoinfees/feemodel | 5d582d87eca6e54eb20b81f4e21c81273a59b468 | [
"MIT"
] | 12 | 2015-08-12T03:00:59.000Z | 2017-06-08T11:01:09.000Z | feemodel/app/__init__.py | bitcoinfees/feemodel | 5d582d87eca6e54eb20b81f4e21c81273a59b468 | [
"MIT"
] | 6 | 2015-11-10T04:02:25.000Z | 2016-03-16T02:57:14.000Z | feemodel/app/__init__.py | bitcoinfees/feemodel | 5d582d87eca6e54eb20b81f4e21c81273a59b468 | [
"MIT"
] | 3 | 2016-03-10T17:08:41.000Z | 2022-02-24T18:51:21.000Z | from feemodel.app.transient import TransientOnline
from feemodel.app.pools import PoolsOnlineEstimator
from feemodel.app.predict import Prediction
from feemodel.app.simonline import SimOnline
__all__ = [
'TransientOnline',
'PoolsOnlineEstimator',
'Prediction',
'SimOnline'
]
| 24.333333 | 51 | 0.784247 |
86b4af0033c71e00f4e30f0ac3bfd045c1932aa8 | 760 | py | Python | examples/server/models/image_file_upload.py | ParikhKadam/django-angular | 1fdd2ab3211ed1655acc2d172d826ed7f3ad0574 | [
"MIT"
] | 941 | 2015-01-01T18:17:43.000Z | 2022-02-26T07:45:40.000Z | examples/server/models/image_file_upload.py | ParikhKadam/django-angular | 1fdd2ab3211ed1655acc2d172d826ed7f3ad0574 | [
"MIT"
] | 228 | 2015-01-11T16:36:34.000Z | 2022-03-11T23:17:15.000Z | examples/server/models/image_file_upload.py | ParikhKadam/django-angular | 1fdd2ab3211ed1655acc2d172d826ed7f3ad0574 | [
"MIT"
] | 294 | 2015-01-04T09:01:33.000Z | 2022-02-26T07:45:41.000Z | # -*- coding: utf-8 -*-
from __future__ import unicode_literals
# start tutorial
from django.db import models
from djng.forms import NgModelFormMixin, NgFormValidationMixin
from djng.styling.bootstrap3.forms import Bootstrap3ModelForm
| 28.148148 | 82 | 0.728947 |
86b6adb997cbd21ec9e8e9a5843dcd2235408ae3 | 2,997 | py | Python | python/tvm/topi/hexagon/slice_ops/add_subtract_multiply.py | yangulei/tvm | d2cbdf381b68134951bfd7525c6a3a67838e5bdf | [
"Apache-2.0"
] | 4,640 | 2017-08-17T19:22:15.000Z | 2019-11-04T15:29:46.000Z | python/tvm/topi/hexagon/slice_ops/add_subtract_multiply.py | dmlc/tvm | 1e0e9548a6875241267481a4223b4dbf29fa1641 | [
"Apache-2.0"
] | 2,863 | 2017-08-17T19:55:50.000Z | 2019-11-04T17:18:41.000Z | python/tvm/topi/hexagon/slice_ops/add_subtract_multiply.py | yelite/tvm | 7ae919292d42f5858d4db04533bca67b4b5bb44f | [
"Apache-2.0"
] | 1,352 | 2017-08-17T19:30:38.000Z | 2019-11-04T16:09:29.000Z | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""Compute and schedule for add, multiply, subtract slice op
Please note the following assumptions made by the implementation:
1) The inputs will be multiple of crouton layout except for the axis that needs broadcasting."""
from tvm import te
from tvm import tir
from tvm import topi
from ..utils import get_layout_transform_fn
def add_broadcast_compute(input_a, input_b):
"""Call the add op from topi"""
return topi.add(input_a, input_b)
def subtract_broadcast_compute(input_a, input_b):
"""Call the subtract op from topi"""
return topi.subtract(input_a, input_b)
def multiply_broadcast_compute(input_a, input_b):
"""Call the multiply op from topi"""
return topi.multiply(input_a, input_b)
def tir_broadcast_schedule(
out_m,
input_a,
input_b,
output_layout: str,
input_a_layout: str,
input_b_layout: str,
op_name: str,
):
"""Schedule for input and output layout nhwc-8h2w32c2w-2d considering broadcast"""
func = te.create_prim_func([input_a, input_b, out_m])
s = tir.Schedule(func)
block_dict = {"add": "T_add", "subtract": "T_subtract", "multiply": "T_multiply"}
block = s.get_block(block_dict[op_name])
if input_a_layout == "nhwc-8h2w32c2w-2d":
input_a_transformed_layout = get_layout_transform_fn(input_a_layout)
s.transform_layout(block, buffer=("read", 0), index_map=input_a_transformed_layout)
if input_b_layout == "nhwc-8h2w32c2w-2d":
input_b_transformed_layout = get_layout_transform_fn(input_b_layout)
s.transform_layout(block, buffer=("read", 1), index_map=input_b_transformed_layout)
output_transformed_layout = get_layout_transform_fn(output_layout)
s.transform_layout(block, buffer=("write", 0), index_map=output_transformed_layout)
n, h, w, c = s.get_loops(block)
h_o, h_i = s.split(h, [None, 8])
w_o, w_i = s.split(w, [None, 4])
c_o, c_i = s.split(c, [None, 32])
wio, wii = s.split(w_i, [None, 2])
s.reorder(n, h_o, w_o, c_o, h_i, wio, c_i, wii)
fused = s.fuse(c_i, wii)
s.vectorize(fused)
return s
| 34.056818 | 97 | 0.703704 |
86b7ef11958dc926cec50bcec5a016a3d479c413 | 6,634 | py | Python | python_modules/automation/automation/docker/dagster_docker.py | jrouly/dagster | 2b3104db2fc6439050f7825d4b9ebaf39ddf6c0c | [
"Apache-2.0"
] | null | null | null | python_modules/automation/automation/docker/dagster_docker.py | jrouly/dagster | 2b3104db2fc6439050f7825d4b9ebaf39ddf6c0c | [
"Apache-2.0"
] | 1 | 2021-06-21T18:30:02.000Z | 2021-06-25T21:18:39.000Z | python_modules/automation/automation/docker/dagster_docker.py | jrouly/dagster | 2b3104db2fc6439050f7825d4b9ebaf39ddf6c0c | [
"Apache-2.0"
] | null | null | null | import contextlib
import os
from collections import namedtuple
import yaml
from dagster import __version__ as current_dagster_version
from dagster import check
from .ecr import ecr_image, get_aws_account_id, get_aws_region
from .utils import (
execute_docker_build,
execute_docker_push,
execute_docker_tag,
python_version_image_tag,
)
# Default repository prefix used for local images
DEFAULT_LOCAL_PREFIX = "dagster"
# Location of the template assets used here
IMAGES_PATH = os.path.join(os.path.dirname(__file__), "images")
| 38.569767 | 100 | 0.655412 |
86b8aba13af33d7534f429cc7d5eda4e95f58299 | 13,716 | py | Python | chrome/test/telemetry/chromeos/login_unittest.py | Fusion-Rom/android_external_chromium_org | d8b126911c6ea9753e9f526bee5654419e1d0ebd | [
"BSD-3-Clause-No-Nuclear-License-2014",
"BSD-3-Clause"
] | 231 | 2015-01-08T09:04:44.000Z | 2021-12-30T03:03:10.000Z | chrome/test/telemetry/chromeos/login_unittest.py | Fusion-Rom/android_external_chromium_org | d8b126911c6ea9753e9f526bee5654419e1d0ebd | [
"BSD-3-Clause-No-Nuclear-License-2014",
"BSD-3-Clause"
] | 1 | 2018-02-10T21:00:08.000Z | 2018-03-20T05:09:50.000Z | chrome/test/telemetry/chromeos/login_unittest.py | Fusion-Rom/android_external_chromium_org | d8b126911c6ea9753e9f526bee5654419e1d0ebd | [
"BSD-3-Clause-No-Nuclear-License-2014",
"BSD-3-Clause"
] | 268 | 2015-01-21T05:53:28.000Z | 2022-03-25T22:09:01.000Z | # Copyright (c) 2012 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import json
import logging
import os
import unittest
from telemetry.core import browser_finder
from telemetry.core import exceptions
from telemetry.core import extension_to_load
from telemetry.core import util
from telemetry.core.backends.chrome import cros_interface
from telemetry.unittest import options_for_unittests
| 42.203077 | 80 | 0.646544 |
86b8d88ae37a5647339fb11a5a98693e6a0c570d | 790 | py | Python | generator/database.py | Neotrinost/Neotrinost.ir | f501b8cf410c1e6ec6cc4e5fce935147b8be1e61 | [
"MIT"
] | 4 | 2021-05-02T17:35:30.000Z | 2021-11-08T12:55:14.000Z | generator/database.py | Neotrinost/Flask_Neotrinost | f501b8cf410c1e6ec6cc4e5fce935147b8be1e61 | [
"MIT"
] | 4 | 2021-07-12T19:08:01.000Z | 2021-08-13T19:37:50.000Z | generator/database.py | Neotrinost/Neotrinost.ir | f501b8cf410c1e6ec6cc4e5fce935147b8be1e61 | [
"MIT"
] | 2 | 2021-08-08T15:10:07.000Z | 2021-11-15T08:59:22.000Z | import sqlite3
| 35.909091 | 106 | 0.596203 |
86babfbac8b5c2af0dd5e02e52be427fd0ffce35 | 3,688 | py | Python | crits/backdoors/forms.py | frbapolkosnik/crits | 1278c034f2238e2fe34e65e32ce241128a014df2 | [
"MIT"
] | 22 | 2015-01-14T19:49:32.000Z | 2022-01-26T12:18:52.000Z | crits/backdoors/forms.py | frbapolkosnik/crits | 1278c034f2238e2fe34e65e32ce241128a014df2 | [
"MIT"
] | null | null | null | crits/backdoors/forms.py | frbapolkosnik/crits | 1278c034f2238e2fe34e65e32ce241128a014df2 | [
"MIT"
] | 6 | 2015-01-22T21:25:52.000Z | 2021-04-12T23:24:14.000Z | from django import forms
from django.forms.utils import ErrorList
from crits.campaigns.campaign import Campaign
from crits.core.forms import add_bucketlist_to_form, add_ticket_to_form
from crits.core.handlers import get_item_names, get_source_names
from crits.core.user_tools import get_user_organization
from crits.core import form_consts
from crits.vocabulary.relationships import RelationshipTypes
relationship_choices = [(c, c) for c in RelationshipTypes.values(sort=True)]
| 44.97561 | 117 | 0.629067 |
86bb18dffc0306993885a2bc13f98c2bb5b4a5b0 | 7,471 | py | Python | src/aprl/agents/monte_carlo.py | fkamrani/adversarial-policies | 53e129c2083f6557ddc18dbb39e4e633a2d7ab9b | [
"MIT"
] | 211 | 2019-02-22T08:07:25.000Z | 2022-03-14T10:44:20.000Z | src/aprl/agents/monte_carlo.py | fkamrani/adversarial-policies | 53e129c2083f6557ddc18dbb39e4e633a2d7ab9b | [
"MIT"
] | 51 | 2019-02-08T01:39:49.000Z | 2022-02-15T21:21:46.000Z | src/aprl/agents/monte_carlo.py | fkamrani/adversarial-policies | 53e129c2083f6557ddc18dbb39e4e633a2d7ab9b | [
"MIT"
] | 41 | 2019-04-23T05:01:49.000Z | 2022-03-16T06:51:19.000Z | """Monte Carlo receding horizon control."""
from abc import ABC, abstractmethod
from multiprocessing import Pipe, Process
import gym
from stable_baselines.common.vec_env import CloudpickleWrapper
from aprl.common.mujoco import MujocoState, ResettableEnv
def _worker(remote, parent_remote, dynamic_fn_wrapper, horizon, trajectories):
parent_remote.close()
dynamics = dynamic_fn_wrapper.var()
dynamics.reset()
mc = MonteCarloSingle(dynamics, horizon, trajectories)
try:
while True:
cmd, x = remote.recv()
if cmd == "seed":
mc.seed(x)
elif cmd == "search":
best_u, best_r = mc.best_action(x)
remote.send((best_u, best_r))
elif cmd == "close":
remote.close()
break
else:
raise NotImplementedError
except KeyboardInterrupt:
print("MonteCarloParallel worker: got KeyboardInterrupt")
finally:
dynamics.close()
| 37.355 | 99 | 0.63191 |
86bb2ac534bb948d97b846d6681e205945c4c9dd | 2,063 | py | Python | machineLearnInAction/bayes.py | xuwening/tensorflowDemo | 65687a61e16f947b7ec8a85d12213f954a71542b | [
"MIT"
] | null | null | null | machineLearnInAction/bayes.py | xuwening/tensorflowDemo | 65687a61e16f947b7ec8a85d12213f954a71542b | [
"MIT"
] | null | null | null | machineLearnInAction/bayes.py | xuwening/tensorflowDemo | 65687a61e16f947b7ec8a85d12213f954a71542b | [
"MIT"
] | null | null | null |
import numpy as np
if __name__ == '__main__':
postinList, classVec = loadDataSet()
myVocabList = createVocabList(postinList)
# print(setOfWords2Vec(myVocabList, postinList[0]))
trainMat = []
for postinDoc in postinList:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
print(trainMat)
p0V, p1V, pAb = trainNB0(trainMat, classVec)
print(p0V, p1V, pAb) | 31.738462 | 97 | 0.573921 |
86bbd227d8b7715b6a7438754f63aeb34b54d300 | 169 | py | Python | py/debug/__init__.py | segrids/arduino_due | f375020b81459eae9b325aa3646ff84efc2853e8 | [
"MIT"
] | 3 | 2021-08-20T16:03:37.000Z | 2022-03-23T20:23:30.000Z | py/debug/__init__.py | segrids/testbench | f375020b81459eae9b325aa3646ff84efc2853e8 | [
"MIT"
] | null | null | null | py/debug/__init__.py | segrids/testbench | f375020b81459eae9b325aa3646ff84efc2853e8 | [
"MIT"
] | null | null | null | from .swd import SWD
from .ahb import AHB
from .debugger import Debugger, HaltError, NotHaltedError
try:
from .dwarf import ELFDebugger
except ImportError:
pass
| 21.125 | 57 | 0.775148 |
86bc2f5f9e49100c67489c79936cc4b670708f66 | 72 | py | Python | HAP-NodeJS/Switch3_1.py | cbdunc2/pi-kit | bf7e9e118af7853d509e0a10c95ba5d8564bb157 | [
"MIT"
] | null | null | null | HAP-NodeJS/Switch3_1.py | cbdunc2/pi-kit | bf7e9e118af7853d509e0a10c95ba5d8564bb157 | [
"MIT"
] | null | null | null | HAP-NodeJS/Switch3_1.py | cbdunc2/pi-kit | bf7e9e118af7853d509e0a10c95ba5d8564bb157 | [
"MIT"
] | null | null | null | import subprocess
subprocess.Popen(['sh', '../Switches/Switch3_On.sh'])
| 24 | 53 | 0.736111 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.