hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
86bcd2890d4f11513d628469a8efe8d1af2d7195 | 65 | py | Python | src/cicd_sim/artifact/__init__.py | Software-Natives-OSS/cicd_sim | 19452a5b06a6c6d99322c9b6777c501025e954f1 | [
"MIT"
] | null | null | null | src/cicd_sim/artifact/__init__.py | Software-Natives-OSS/cicd_sim | 19452a5b06a6c6d99322c9b6777c501025e954f1 | [
"MIT"
] | 8 | 2020-03-12T05:51:56.000Z | 2020-03-15T17:31:12.000Z | src/cicd_sim/artifact/__init__.py | Software-Natives-OSS/cicd_sim | 19452a5b06a6c6d99322c9b6777c501025e954f1 | [
"MIT"
] | null | null | null | from . artifactory import Artifactory
__all__ = ['Artifactory']
| 16.25 | 37 | 0.769231 |
86bd70e7874de4b570ed32325f28d65eaa058486 | 4,544 | py | Python | mandoline/line_segment3d.py | Spiritdude/mandoline-py | 702cd1f9264c7d5d814600ff919406387fd86185 | [
"BSD-2-Clause"
] | 5 | 2021-09-16T10:41:44.000Z | 2021-11-04T14:45:24.000Z | mandoline/line_segment3d.py | Spiritdude/mandoline-py | 702cd1f9264c7d5d814600ff919406387fd86185 | [
"BSD-2-Clause"
] | null | null | null | mandoline/line_segment3d.py | Spiritdude/mandoline-py | 702cd1f9264c7d5d814600ff919406387fd86185 | [
"BSD-2-Clause"
] | null | null | null |
# vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
| 28.223602 | 79 | 0.53015 |
86bd7ed417f64120a297b91ba487086bf72ccb3f | 2,328 | py | Python | cacheable/adapter/PeeweeAdapter.py | d1hotpep/cacheable | 9ea97d6504965179f8fe495b67e466c068719445 | [
"MIT"
] | null | null | null | cacheable/adapter/PeeweeAdapter.py | d1hotpep/cacheable | 9ea97d6504965179f8fe495b67e466c068719445 | [
"MIT"
] | null | null | null | cacheable/adapter/PeeweeAdapter.py | d1hotpep/cacheable | 9ea97d6504965179f8fe495b67e466c068719445 | [
"MIT"
] | null | null | null | import peewee
import playhouse.kv
from time import time
from . import CacheableAdapter
| 24.25 | 72 | 0.537371 |
86bf8dc5885e11ca632362fcec2e79f7e5e74050 | 6,006 | py | Python | mmgen/models/architectures/arcface/helpers.py | plutoyuxie/mmgeneration | 0a7f5d16c970de1766ebf049d7a0264fe506504b | [
"Apache-2.0"
] | null | null | null | mmgen/models/architectures/arcface/helpers.py | plutoyuxie/mmgeneration | 0a7f5d16c970de1766ebf049d7a0264fe506504b | [
"Apache-2.0"
] | null | null | null | mmgen/models/architectures/arcface/helpers.py | plutoyuxie/mmgeneration | 0a7f5d16c970de1766ebf049d7a0264fe506504b | [
"Apache-2.0"
] | null | null | null | from collections import namedtuple
import torch
from torch.nn import (AdaptiveAvgPool2d, BatchNorm2d, Conv2d, MaxPool2d,
Module, PReLU, ReLU, Sequential, Sigmoid)
# yapf: disable
"""
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) # isort:skip # noqa
"""
# yapf: enable
def l2_norm(input, axis=1):
"""l2 normalization.
Args:
input (torch.Tensor): The input tensor.
axis (int, optional): Specifies which axis of input to calculate the
norm across. Defaults to 1.
Returns:
Tensor: Tensor after L2 normalization per-instance.
"""
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
def get_block(in_channel, depth, num_units, stride=2):
"""Get a single block config.
Args:
in_channel (int): Input channels.
depth (int): Output channels.
num_units (int): Number of unit modules.
stride (int, optional): Conv2d stride. Defaults to 2.
Returns:
list: A list of unit modules' config.
"""
return [Bottleneck(in_channel, depth, stride)
] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
def get_blocks(num_layers):
"""Get block configs of backbone.
Args:
num_layers (int): Number of ConvBlock layers in backbone.
Raises:
ValueError: `num_layers` must be one of [50, 100, 152].
Returns:
list: A list of block configs.
"""
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)
]
else:
raise ValueError(
'Invalid number of layers: {}. Must be one of [50, 100, 152]'.
format(num_layers))
return blocks
| 30.180905 | 106 | 0.585914 |
86bfaf5a13f46371cddc52c365f2b99eb199e27e | 1,694 | py | Python | createplaylist.py | mahi0601/SpotifyPlaylist | 55e30bb4c13f291693b892d6eeccc70b4a769805 | [
"MIT"
] | 47 | 2020-09-21T11:35:10.000Z | 2022-01-17T21:25:39.000Z | createplaylist.py | mahi0601/SpotifyPlaylist | 55e30bb4c13f291693b892d6eeccc70b4a769805 | [
"MIT"
] | 2 | 2021-03-31T17:02:24.000Z | 2021-07-30T08:17:37.000Z | createplaylist.py | mahi0601/SpotifyPlaylist | 55e30bb4c13f291693b892d6eeccc70b4a769805 | [
"MIT"
] | 24 | 2020-09-21T16:45:38.000Z | 2022-03-02T10:50:47.000Z | import os
from spotifyclient import SpotifyClient
if __name__ == "__main__":
main() | 42.35 | 118 | 0.725502 |
86c0f5e44bffc70a506881987c3f56e4e3ef7cdd | 30,797 | py | Python | tests/contrib/flask/test_request.py | thieman/dd-trace-py | 1e87c9bdf7769032982349c4ccc0e1c2e6866a16 | [
"Apache-2.0",
"BSD-3-Clause"
] | null | null | null | tests/contrib/flask/test_request.py | thieman/dd-trace-py | 1e87c9bdf7769032982349c4ccc0e1c2e6866a16 | [
"Apache-2.0",
"BSD-3-Clause"
] | null | null | null | tests/contrib/flask/test_request.py | thieman/dd-trace-py | 1e87c9bdf7769032982349c4ccc0e1c2e6866a16 | [
"Apache-2.0",
"BSD-3-Clause"
] | 1 | 2021-02-11T10:20:14.000Z | 2021-02-11T10:20:14.000Z | # -*- coding: utf-8 -*-
from ddtrace.compat import PY2
from ddtrace.constants import ANALYTICS_SAMPLE_RATE_KEY
from ddtrace.contrib.flask.patch import flask_version
from ddtrace.ext import http
from ddtrace.propagation.http import HTTP_HEADER_TRACE_ID, HTTP_HEADER_PARENT_ID
from flask import abort
from . import BaseFlaskTestCase
from ...utils import assert_span_http_status_code
base_exception_name = 'builtins.Exception'
if PY2:
base_exception_name = 'exceptions.Exception'
| 39.892487 | 117 | 0.618437 |
86c23c7616ed380cf3c80ae082afe689a1c8e0b9 | 7,318 | py | Python | ConvDR/data/preprocess_cast19.py | blazejdolicki/CHEDAR | e4819775e7f6ffa2d6f1ad798ee262f01370b236 | [
"MIT"
] | 1 | 2021-11-10T13:39:16.000Z | 2021-11-10T13:39:16.000Z | ConvDR/data/preprocess_cast19.py | blazejdolicki/CHEDAR | e4819775e7f6ffa2d6f1ad798ee262f01370b236 | [
"MIT"
] | null | null | null | ConvDR/data/preprocess_cast19.py | blazejdolicki/CHEDAR | e4819775e7f6ffa2d6f1ad798ee262f01370b236 | [
"MIT"
] | null | null | null | import argparse
from trec_car import read_data
from tqdm import tqdm
import pickle
import os
import json
import copy
from utils.util import NUM_FOLD
def parse_sim_file(filename):
"""
Reads the deduplicated documents file and stores the
duplicate passage ids into a dictionary
"""
sim_dict = {}
lines = open(filename).readlines()
for line in lines:
data = line.strip().split(':')
if len(data[1]) > 0:
sim_docs = data[-1].split(',')
for docs in sim_docs:
sim_dict[docs] = 1
return sim_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--car_cbor", type=str)
parser.add_argument("--msmarco_collection", type=str)
parser.add_argument("--duplicate_file", type=str)
parser.add_argument("--cast_dir", type=str)
parser.add_argument("--out_data_dir", type=str)
parser.add_argument("--out_collection_dir", type=str)
args = parser.parse_args()
# INPUT
sim_file = args.duplicate_file
cast_topics_raw_file = os.path.join(args.cast_dir,
"evaluation_topics_v1.0.json")
cast_topics_manual_file = os.path.join(
args.cast_dir, "evaluation_topics_annotated_resolved_v1.0.tsv")
cast_qrels_file = os.path.join(args.cast_dir, "2019qrels.txt")
# OUTPUT
out_topics_file = os.path.join(args.out_data_dir, "eval_topics.jsonl")
out_raw_queries_file = os.path.join(args.out_data_dir, "queries.raw.tsv")
out_manual_queries_file = os.path.join(args.out_data_dir,
"queries.manual.tsv")
out_qrels_file = os.path.join(args.out_data_dir, "qrels.tsv")
car_id_to_idx_file = os.path.join(args.out_collection_dir,
"car_id_to_idx.pickle")
car_idx_to_id_file = os.path.join(args.out_collection_dir,
"car_idx_to_id.pickle")
out_collection_file = os.path.join(args.out_collection_dir,
"collection.tsv")
# 1. Combine TREC-CAR & MS MARCO, remove duplicate passages, assign new ids
car_id_to_idx = {}
car_idx_to_id = []
if os.path.exists(out_collection_file) and os.path.exists(
car_id_to_idx_file) and os.path.exists(car_idx_to_id_file):
print("Preprocessed collection found. Loading car_id_to_idx...")
with open(car_id_to_idx_file, "rb") as f:
car_id_to_idx = pickle.load(f)
else:
sim_dict = parse_sim_file(sim_file)
car_base_id = 10000000
i = 0
with open(out_collection_file, "w", encoding="utf-8") as f: #FIX change 'a' to 'w' in normal run
print("Processing TREC-CAR...")
for para in tqdm(
read_data.iter_paragraphs(open(args.car_cbor, 'rb'))):
car_id = "CAR_" + para.para_id
text = para.get_text()
text = text.replace("\t", " ").replace("\n",
" ").replace("\r", " ")
idx = car_base_id + i
car_id_to_idx[
car_id] = idx # e.g. CAR_76a4a716d4b1b01995c6663ee16e94b4ca35fdd3 -> 10000044
car_idx_to_id.append(car_id)
f.write("{}\t{}\n".format(idx, text))
i += 1
print("Processing MS MARCO...")
removed = 0
with open(args.msmarco_collection, "r") as m:
for line in tqdm(m):
marco_id, text = line.strip().split("\t")
if ("MARCO_" + marco_id) in sim_dict:
removed += 1
continue
f.write("{}\t{}\n".format(marco_id, text))
print("Removed " + str(removed) + " passages")
print("Dumping id mappings to {} and {}...".format(car_id_to_idx_file, car_idx_to_id_file))
with open(car_id_to_idx_file, "wb") as f:
pickle.dump(car_id_to_idx, f)
with open(car_idx_to_id_file, "wb") as f:
pickle.dump(car_idx_to_id, f)
# 2. Process queries
print("Processing CAsT utterances...")
with open(cast_topics_raw_file, "r") as fin:
raw_data = json.load(fin)
with open(cast_topics_manual_file, "r") as fin:
annonated_lines = fin.readlines()
out_raw_queries = open(out_raw_queries_file, "w")
out_manual_queries = open(out_manual_queries_file, "w")
all_annonated = {}
for line in annonated_lines:
splitted = line.split('\t')
out_manual_queries.write(line)
topic_query = splitted[0]
query = splitted[1].strip()
topic_id = topic_query.split('_')[0]
query_id = topic_query.split('_')[1]
if topic_id not in all_annonated:
all_annonated[topic_id] = {}
all_annonated[topic_id][query_id] = query
out_manual_queries.close()
topic_number_dict = {}
data = []
for group in raw_data:
topic_number, description, turn, title = str(
group['number']), group.get('description',
''), group['turn'], group.get(
'title', '')
queries = []
for query in turn:
query_number, raw_utterance = str(
query['number']), query['raw_utterance']
queries.append(raw_utterance)
record = {}
record['topic_number'] = topic_number
record['query_number'] = query_number
record['description'] = description
record['title'] = title
record['input'] = copy.deepcopy(queries)
record['target'] = all_annonated[topic_number][query_number]
out_raw_queries.write("{}_{}\t{}\n".format(topic_number,
query_number,
raw_utterance))
if not topic_number in topic_number_dict:
topic_number_dict[topic_number] = len(topic_number_dict)
data.append(record)
out_raw_queries.close()
with open(out_topics_file, 'w') as fout:
for item in data:
json_str = json.dumps(item)
fout.write(json_str + '\n')
# Split eval data into K-fold
topic_per_fold = len(topic_number_dict) // NUM_FOLD
for i in range(NUM_FOLD):
with open(out_topics_file + "." + str(i), 'w') as fout:
for item in data:
idx = topic_number_dict[item['topic_number']]
if idx // topic_per_fold == i:
json_str = json.dumps(item)
fout.write(json_str + '\n')
# 3. Process and convert qrels
print("Processing qrels...")
with open(cast_qrels_file, "r") as oq, open(out_qrels_file, "w") as nq:
for line in oq:
qid, _, pid, rel = line.strip().split()
if pid.startswith("CAR_"):
assert car_id_to_idx[pid] != -1
pid = car_id_to_idx[pid]
elif pid.startswith("MARCO_"):
pid = int(pid[6:])
else:
continue
nq.write(qid + "\t0\t" + str(pid) + "\t" + rel + "\n")
print("End")
| 39.556757 | 104 | 0.562859 |
86c253258ad8f50c39a576db2e17ac13da5ea1c7 | 15,207 | py | Python | coord_convert/geojson_utils.py | brandonxiang/example-pyQGIS | a61d0321d223d0b82e44bb809521965858fde857 | [
"MIT"
] | 3 | 2017-02-23T08:35:30.000Z | 2018-12-11T05:50:54.000Z | coord_convert/geojson_utils.py | brandonxiang/example-pyQGIS | a61d0321d223d0b82e44bb809521965858fde857 | [
"MIT"
] | null | null | null | coord_convert/geojson_utils.py | brandonxiang/example-pyQGIS | a61d0321d223d0b82e44bb809521965858fde857 | [
"MIT"
] | 2 | 2019-10-22T02:16:50.000Z | 2020-09-28T11:37:48.000Z | __doc__ = 'github: https://github.com/brandonxiang/geojson-python-utils'
import math
from coordTransform_utils import wgs84togcj02
from coordTransform_utils import gcj02tobd09
def linestrings_intersect(line1, line2):
"""
To valid whether linestrings from geojson are intersected with each other.
reference: http://www.kevlindev.com/gui/math/intersection/Intersection.js
Keyword arguments:
line1 -- first line geojson object
line2 -- second line geojson object
if(line1 intersects with other) return intersect point array else empty array
"""
intersects = []
for i in range(0, len(line1['coordinates']) - 1):
for j in range(0, len(line2['coordinates']) - 1):
a1_x = line1['coordinates'][i][1]
a1_y = line1['coordinates'][i][0]
a2_x = line1['coordinates'][i + 1][1]
a2_y = line1['coordinates'][i + 1][0]
b1_x = line2['coordinates'][j][1]
b1_y = line2['coordinates'][j][0]
b2_x = line2['coordinates'][j + 1][1]
b2_y = line2['coordinates'][j + 1][0]
ua_t = (b2_x - b1_x) * (a1_y - b1_y) - \
(b2_y - b1_y) * (a1_x - b1_x)
ub_t = (a2_x - a1_x) * (a1_y - b1_y) - \
(a2_y - a1_y) * (a1_x - b1_x)
u_b = (b2_y - b1_y) * (a2_x - a1_x) - (b2_x - b1_x) * (a2_y - a1_y)
if not u_b == 0:
u_a = ua_t / u_b
u_b = ub_t / u_b
if 0 <= u_a and u_a <= 1 and 0 <= u_b and u_b <= 1:
intersects.append({'type': 'Point', 'coordinates': [
a1_x + u_a * (a2_x - a1_x), a1_y + u_a * (a2_y - a1_y)]})
# if len(intersects) == 0:
# intersects = False
return intersects
def _bbox_around_polycoords(coords):
"""
bounding box
"""
x_all = []
y_all = []
for first in coords[0]:
x_all.append(first[1])
y_all.append(first[0])
return [min(x_all), min(y_all), max(x_all), max(y_all)]
def _point_in_bbox(point, bounds):
"""
valid whether the point is inside the bounding box
"""
return not(point['coordinates'][1] < bounds[0] or point['coordinates'][1] > bounds[2]
or point['coordinates'][0] < bounds[1] or point['coordinates'][0] > bounds[3])
def _pnpoly(x, y, coords):
"""
the algorithm to judge whether the point is located in polygon
reference: https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html#Explanation
"""
vert = [[0, 0]]
for coord in coords:
for node in coord:
vert.append(node)
vert.append(coord[0])
vert.append([0, 0])
inside = False
i = 0
j = len(vert) - 1
while i < len(vert):
if ((vert[i][0] > y) != (vert[j][0] > y)) and (x < (vert[j][1] - vert[i][1])
* (y - vert[i][0]) / (vert[j][0] - vert[i][0]) + vert[i][1]):
inside = not inside
j = i
i += 1
return inside
def point_in_polygon(point, poly):
"""
valid whether the point is located in a polygon
Keyword arguments:
point -- point geojson object
poly -- polygon geojson object
if(point inside poly) return true else false
"""
coords = [poly['coordinates']] if poly[
'type'] == 'Polygon' else poly['coordinates']
return _point_in_polygon(point, coords)
def point_in_multipolygon(point, multipoly):
"""
valid whether the point is located in a mulitpolygon (donut polygon is not supported)
Keyword arguments:
point -- point geojson object
multipoly -- multipolygon geojson object
if(point inside multipoly) return true else false
"""
coords_array = [multipoly['coordinates']] if multipoly[
'type'] == "MultiPolygon" else multipoly['coordinates']
for coords in coords_array:
if _point_in_polygon(point, coords):
return True
return False
def number2radius(number):
"""
convert degree into radius
Keyword arguments:
number -- degree
return radius
"""
return number * math.pi / 180
def number2degree(number):
"""
convert radius into degree
Keyword arguments:
number -- radius
return degree
"""
return number * 180 / math.pi
def draw_circle(radius_in_meters, center_point, steps=15):
"""
get a circle shape polygon based on centerPoint and radius
Keyword arguments:
point1 -- point one geojson object
point2 -- point two geojson object
if(point inside multipoly) return true else false
"""
steps = steps if steps > 15 else 15
center = [center_point['coordinates'][1], center_point['coordinates'][0]]
dist = (radius_in_meters / 1000) / 6371
# convert meters to radiant
rad_center = [number2radius(center[0]), number2radius(center[1])]
# 15 sided circle
poly = []
for step in range(0, steps):
brng = 2 * math.pi * step / steps
lat = math.asin(math.sin(rad_center[0]) * math.cos(dist) +
math.cos(rad_center[0]) * math.sin(dist) * math.cos(brng))
lng = rad_center[1] + math.atan2(math.sin(brng) * math.sin(dist)
* math.cos(rad_center[0]), math.cos(dist) - math.sin(rad_center[0]) * math.sin(lat))
poly.append([number2degree(lng), number2degree(lat)])
return {"type": "Polygon", "coordinates": [poly]}
def rectangle_centroid(rectangle):
"""
get the centroid of the rectangle
Keyword arguments:
rectangle -- polygon geojson object
return centroid
"""
bbox = rectangle['coordinates'][0]
xmin = bbox[0][0]
ymin = bbox[0][1]
xmax = bbox[2][0]
ymax = bbox[2][1]
xwidth = xmax - xmin
ywidth = ymax - ymin
return {'type': 'Point', 'coordinates': [xmin + xwidth / 2, ymin + ywidth / 2]}
def point_distance(point1, point2):
"""
calculate the distance between two point on the sphere like google map
reference http://www.movable-type.co.uk/scripts/latlong.html
Keyword arguments:
point1 -- point one geojson object
point2 -- point two geojson object
if(point inside multipoly) return true else false
"""
lon1 = point1['coordinates'][0]
lat1 = point1['coordinates'][1]
lon2 = point2['coordinates'][0]
lat2 = point2['coordinates'][1]
deg_lat = number2radius(lat2 - lat1)
deg_lon = number2radius(lon2 - lon1)
a = math.pow(math.sin(deg_lat / 2), 2) + math.cos(number2radius(lat1)) * \
math.cos(number2radius(lat2)) * math.pow(math.sin(deg_lon / 2), 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
return (6371 * c) * 1000
def geometry_within_radius(geometry, center, radius):
"""
To valid whether point or linestring or polygon is inside a radius around a center
Keyword arguments:
geometry -- point/linstring/polygon geojson object
center -- point geojson object
radius -- radius
if(geometry inside radius) return true else false
"""
if geometry['type'] == 'Point':
return point_distance(geometry, center) <= radius
elif geometry['type'] == 'LineString' or geometry['type'] == 'Polygon':
point = {}
# it's enough to check the exterior ring of the Polygon
coordinates = geometry['coordinates'][0] if geometry['type'] == 'Polygon' else geometry['coordinates']
for coordinate in coordinates:
point['coordinates'] = coordinate
if point_distance(point, center) > radius:
return False
return True
def area(poly):
"""
calculate the area of polygon
Keyword arguments:
poly -- polygon geojson object
return polygon area
"""
poly_area = 0
# TODO: polygon holes at coordinates[1]
points = poly['coordinates'][0]
j = len(points) - 1
count = len(points)
for i in range(0, count):
p1_x = points[i][1]
p1_y = points[i][0]
p2_x = points[j][1]
p2_y = points[j][0]
poly_area += p1_x * p2_y
poly_area -= p1_y * p2_x
j = i
poly_area /= 2
return poly_area
def centroid(poly):
"""
get the centroid of polygon
adapted from http://paulbourke.net/geometry/polyarea/javascript.txt
Keyword arguments:
poly -- polygon geojson object
return polygon centroid
"""
f_total = 0
x_total = 0
y_total = 0
# TODO: polygon holes at coordinates[1]
points = poly['coordinates'][0]
j = len(points) - 1
count = len(points)
for i in range(0, count):
p1_x = points[i][1]
p1_y = points[i][0]
p2_x = points[j][1]
p2_y = points[j][0]
f_total = p1_x * p2_y - p2_x * p1_y
x_total += (p1_x + p2_x) * f_total
y_total += (p1_y + p2_y) * f_total
j = i
six_area = area(poly) * 6
return {'type': 'Point', 'coordinates': [y_total / six_area, x_total / six_area]}
def destination_point(point, brng, dist):
"""
Calculate a destination Point base on a base point and a distance
Keyword arguments:
pt -- polygon geojson object
brng -- an angle in degrees
dist -- distance in Kilometer between destination and base point
return destination point object
"""
dist = float(dist) / 6371 # convert dist to angular distance in radians
brng = number2radius(brng)
lon1 = number2radius(point['coordinates'][0])
lat1 = number2radius(point['coordinates'][1])
lat2 = math.asin(math.sin(lat1) * math.cos(dist) +
math.cos(lat1) * math.sin(dist) * math.cos(brng))
lon2 = lon1 + math.atan2(math.sin(brng) * math.sin(dist) *
math.cos(lat1), math.cos(dist) - math.sin(lat1) * math.sin(lat2))
lon2 = (lon2 + 3 * math.pi) % (2 * math.pi) - math.pi # normalise to -180 degree +180 degree
return {'type': 'Point', 'coordinates': [number2degree(lon2), number2degree(lat2)]}
def simplify(source, kink=20):
"""
source[] array of geojson points
kink in metres, kinks above this depth kept
kink depth is the height of the triangle abc where a-b and b-c are two consecutive line segments
"""
source_coord = map(lambda o: {"lng": o.coordinates[0], "lat": o.coordinates[1]}, source)
# count, n_stack, n_dest, start, end, i, sig;
# dev_sqr, max_dev_sqr, band_sqr;
# x12, y12, d12, x13, y13, d13, x23, y23, d23;
F = (math.pi / 180.0) * 0.5
index = [] # aray of indexes of source points to include in the reduced line
sig_start = [] # indices of start & end of working section
sig_end = []
# check for simple cases
count = len(source_coord)
if count < 3:
return source_coord # one or two points
# more complex case. initialize stack
band_sqr = kink * 360.0 / (2.0 * math.pi * 6378137.0) # Now in degrees
band_sqr *= band_sqr
n_dest = 0
sig_start[0] = 0
sig_end[0] = count - 1
n_stack = 1
# while the stack is not empty
while n_stack > 0:
# ... pop the top-most entries off the stacks
start = sig_start[n_stack - 1]
end = sig_end[n_stack - 1]
n_stack -= 1
if (end - start) > 1: #any intermediate points ?
# ... yes, so find most deviant intermediate point to either side of line joining start & end points
x12 = source[end]["lng"] - source[start]["lng"]
y12 = source[end]["lat"] - source[start]["lat"]
if math.fabs(x12) > 180.0:
x12 = 360.0 - math.fabs(x12)
x12 *= math.cos(F * (source[end]["lat"] + source[start]["lat"])) # use avg lat to reduce lng
d12 = (x12 * x12) + (y12 * y12)
i = start + 1
sig = start
max_dev_sqr = -1.0
while i < end:
x13 = source[i]["lng"] - source[start]["lng"]
y13 = source[i]["lat"] - source[start]["lat"]
if math.fabs(x13) > 180.0:
x13 = 360.0 - math.fabs(x13)
x13 *= math.cos(F * (source[i]["lat"] + source[start]["lat"]))
d13 = (x13 * x13) + (y13 * y13)
x23 = source[i]["lng"] - source[end]["lng"]
y23 = source[i]["lat"] - source[end]["lat"]
if math.fabs(x23) > 180.0:
x23 = 360.0 - math.fabs(x23)
x23 *= math.cos(F * (source[i]["lat"] + source[end]["lat"]))
d23 = (x23 * x23) + (y23 * y23)
if d13 >= (d12 + d23):
dev_sqr = d23
elif d23 >= (d12 + d13):
dev_sqr = d13
else:
dev_sqr = (x13 * y12 - y13 * x12) * (x13 * y12 - y13 * x12) / d12 # solve triangle
if dev_sqr > max_dev_sqr:
sig = i
max_dev_sqr = dev_sqr
i += 1
if max_dev_sqr < band_sqr: # is there a sig. intermediate point ?
#... no, so transfer current start point
index[n_dest] = start
n_dest += 1
else: # ... yes, so push two sub-sections on stack for further processing
n_stack += 1
sig_start[n_stack - 1] = sig
sig_end[n_stack - 1] = end
n_stack += 1
sig_start[n_stack - 1] = start
sig_end[n_stack - 1] = sig
else: # ... no intermediate points, so transfer current start point
index[n_dest] = start
n_dest += 1
# transfer last point
index[n_dest] = count - 1
n_dest += 1
# make return array
r = []
for i in range(0, n_dest):
r.append(source_coord[index[i]])
return map(lambda o: {"type": "Point","coordinates": [o.lng, o.lat]}, r)
def wgs2gcj(geometry):
"""
convert wgs84 to gcj
referencing by https://github.com/wandergis/coordTransform_py
"""
# TODO: point linestring point
if geometry['type'] == 'MultiLineString':
coordinates = geometry['coordinates']
for lines in coordinates:
for line in lines:
line[0], line[1] = wgs84togcj02(line[0], line[1])
return geometry
def gcj2bd(geometry):
"""
convert gcj to bd
referencing by https://github.com/wandergis/coordTransform_py
"""
# TODO: point linestring point
if geometry['type'] == 'MultiLineString':
coordinates = geometry['coordinates']
for lines in coordinates:
for line in lines:
line[0], line[1] = gcj02tobd09(line[0], line[1])
return geometry
| 31.290123 | 125 | 0.572105 |
86c29a98e5b655839d8db00b70a6a8da9b1ef8d8 | 388 | py | Python | config.py | Rinku92/Mini_Project3 | eab11ce3743fddda2ccc158367a37d4522ba1e39 | [
"MIT"
] | null | null | null | config.py | Rinku92/Mini_Project3 | eab11ce3743fddda2ccc158367a37d4522ba1e39 | [
"MIT"
] | null | null | null | config.py | Rinku92/Mini_Project3 | eab11ce3743fddda2ccc158367a37d4522ba1e39 | [
"MIT"
] | null | null | null | import os
'''
user = os.environ['POSTGRES_USER']
password = os.environ['POSTGRES_PASSWORD']
host = os.environ['POSTGRES_HOST']
database = os.environ['POSTGRES_DB']
port = os.environ['POSTGRES_PORT']
'''
user = 'test'
password = 'password'
host = 'localhost'
database = 'example'
port = '5432'
DATABASE_CONNECTION_URI = f'postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}' | 24.25 | 93 | 0.716495 |
86c368ef733994c7aa8778c60fbe8e4bdf94dac9 | 347 | py | Python | 10_days_of_statistics_8_1.py | sercangul/HackerRank | e6d7056babe03baafee8d7f1cacdca7c28b72ded | [
"Apache-2.0"
] | null | null | null | 10_days_of_statistics_8_1.py | sercangul/HackerRank | e6d7056babe03baafee8d7f1cacdca7c28b72ded | [
"Apache-2.0"
] | null | null | null | 10_days_of_statistics_8_1.py | sercangul/HackerRank | e6d7056babe03baafee8d7f1cacdca7c28b72ded | [
"Apache-2.0"
] | null | null | null | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 3 19:26:47 2019
@author: sercangul
"""
n = 5
xy = [map(int, input().split()) for _ in range(n)]
sx, sy, sx2, sxy = map(sum, zip(*[(x, y, x**2, x * y) for x, y in xy]))
b = (n * sxy - sx * sy) / (n * sx2 - sx**2)
a = (sy / n) - b * (sx / n)
print('{:.3f}'.format(a + b * 80)) | 24.785714 | 71 | 0.501441 |
86c4016c71680c25695f7a5d4e332b95ab4759b0 | 450 | py | Python | rlutils/gym/envs/reset_obs/hopper.py | vermouth1992/rl-util | 4c06ab8f5c96a44e58f88cf30146bcb837057112 | [
"Apache-2.0"
] | null | null | null | rlutils/gym/envs/reset_obs/hopper.py | vermouth1992/rl-util | 4c06ab8f5c96a44e58f88cf30146bcb837057112 | [
"Apache-2.0"
] | null | null | null | rlutils/gym/envs/reset_obs/hopper.py | vermouth1992/rl-util | 4c06ab8f5c96a44e58f88cf30146bcb837057112 | [
"Apache-2.0"
] | null | null | null | import gym.envs.mujoco.hopper as hopper
import numpy as np
| 25 | 40 | 0.591111 |
86c445a03cb1fedcfaa9af4175640a3d81afd9b9 | 8,505 | py | Python | reco_utils/recommender/deeprec/io/iterator.py | yutian-zhao/recommenders | 17b9c1280a79019dd91f50b3a7e66f25cb5004b1 | [
"MIT"
] | null | null | null | reco_utils/recommender/deeprec/io/iterator.py | yutian-zhao/recommenders | 17b9c1280a79019dd91f50b3a7e66f25cb5004b1 | [
"MIT"
] | null | null | null | reco_utils/recommender/deeprec/io/iterator.py | yutian-zhao/recommenders | 17b9c1280a79019dd91f50b3a7e66f25cb5004b1 | [
"MIT"
] | null | null | null | # Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import numpy as np
# import tensorflow as tf
import abc
# class FFMTextIterator(BaseIterator):
# """Data loader for FFM format based models, such as xDeepFM.
# Iterator will not load the whole data into memory. Instead, it loads data into memory
# per mini-batch, so that large files can be used as input data.
# """
# def __init__(self, hparams, graph, col_spliter=" ", ID_spliter="%"):
# """Initialize an iterator. Create necessary placeholders for the model.
# Args:
# hparams (obj): Global hyper-parameters. Some key settings such as #_feature and #_field are there.
# graph (obj): the running graph. All created placeholder will be added to this graph.
# col_spliter (str): column splitter in one line.
# ID_spliter (str): ID splitter in one line.
# """
# self.feature_cnt = hparams.FEATURE_COUNT
# self.field_cnt = hparams.FIELD_COUNT
# self.col_spliter = col_spliter
# self.ID_spliter = ID_spliter
# self.batch_size = hparams.batch_size
# self.graph = graph
# with self.graph.as_default():
# self.labels = tf.placeholder(tf.float32, [None, 1], name="label")
# self.fm_feat_indices = tf.placeholder(
# tf.int64, [None, 2], name="fm_feat_indices"
# )
# self.fm_feat_values = tf.placeholder(
# tf.float32, [None], name="fm_feat_values"
# )
# self.fm_feat_shape = tf.placeholder(tf.int64, [None], name="fm_feat_shape")
# self.dnn_feat_indices = tf.placeholder(
# tf.int64, [None, 2], name="dnn_feat_indices"
# )
# self.dnn_feat_values = tf.placeholder(
# tf.int64, [None], name="dnn_feat_values"
# )
# self.dnn_feat_weights = tf.placeholder(
# tf.float32, [None], name="dnn_feat_weights"
# )
# self.dnn_feat_shape = tf.placeholder(
# tf.int64, [None], name="dnn_feat_shape"
# )
# def parser_one_line(self, line):
# """Parse one string line into feature values.
# Args:
# line (str): a string indicating one instance
# Returns:
# list: Parsed results,including label, features and impression_id
# """
# impression_id = 0
# words = line.strip().split(self.ID_spliter)
# if len(words) == 2:
# impression_id = words[1].strip()
# cols = words[0].strip().split(self.col_spliter)
# label = float(cols[0])
# features = []
# for word in cols[1:]:
# if not word.strip():
# continue
# tokens = word.split(":")
# features.append([int(tokens[0]) - 1, int(tokens[1]) - 1, float(tokens[2])])
# return label, features, impression_id
# def load_data_from_file(self, infile):
# """Read and parse data from a file.
# Args:
# infile (str): text input file. Each line in this file is an instance.
# Returns:
# obj: An iterator that will yields parsed results, in the format of graph feed_dict.
# """
# label_list = []
# features_list = []
# impression_id_list = []
# cnt = 0
# with tf.gfile.GFile(infile, "r") as rd:
# for line in rd:
# label, features, impression_id = self.parser_one_line(line)
# features_list.append(features)
# label_list.append(label)
# impression_id_list.append(impression_id)
# cnt += 1
# if cnt == self.batch_size:
# res = self._convert_data(label_list, features_list)
# yield self.gen_feed_dict(res), impression_id_list, self.batch_size
# label_list = []
# features_list = []
# impression_id_list = []
# cnt = 0
# if cnt > 0:
# res = self._convert_data(label_list, features_list)
# yield self.gen_feed_dict(res), impression_id_list, cnt
# def _convert_data(self, labels, features):
# """Convert data into numpy arrays that are good for further operation.
# Args:
# labels (list): a list of ground-truth labels.
# features (list): a 3-dimensional list, carrying a list (batch_size) of feature array,
# where each feature array is a list of [field_idx, feature_idx, feature_value] tuple.
# Returns:
# dict: A dictionary, contains multiple numpy arrays that are convenient for further operation.
# """
# dim = self.feature_cnt
# FIELD_COUNT = self.field_cnt
# instance_cnt = len(labels)
# fm_feat_indices = []
# fm_feat_values = []
# fm_feat_shape = [instance_cnt, dim]
# dnn_feat_indices = []
# dnn_feat_values = []
# dnn_feat_weights = []
# dnn_feat_shape = [instance_cnt * FIELD_COUNT, -1]
# for i in range(instance_cnt):
# m = len(features[i])
# dnn_feat_dic = {}
# for j in range(m):
# fm_feat_indices.append([i, features[i][j][1]])
# fm_feat_values.append(features[i][j][2])
# if features[i][j][0] not in dnn_feat_dic:
# dnn_feat_dic[features[i][j][0]] = 0
# else:
# dnn_feat_dic[features[i][j][0]] += 1
# dnn_feat_indices.append(
# [
# i * FIELD_COUNT + features[i][j][0],
# dnn_feat_dic[features[i][j][0]],
# ]
# )
# dnn_feat_values.append(features[i][j][1])
# dnn_feat_weights.append(features[i][j][2])
# if dnn_feat_shape[1] < dnn_feat_dic[features[i][j][0]]:
# dnn_feat_shape[1] = dnn_feat_dic[features[i][j][0]]
# dnn_feat_shape[1] += 1
# sorted_index = sorted(
# range(len(dnn_feat_indices)),
# key=lambda k: (dnn_feat_indices[k][0], dnn_feat_indices[k][1]),
# )
# res = {}
# res["fm_feat_indices"] = np.asarray(fm_feat_indices, dtype=np.int64)
# res["fm_feat_values"] = np.asarray(fm_feat_values, dtype=np.float32)
# res["fm_feat_shape"] = np.asarray(fm_feat_shape, dtype=np.int64)
# res["labels"] = np.asarray([[label] for label in labels], dtype=np.float32)
# res["dnn_feat_indices"] = np.asarray(dnn_feat_indices, dtype=np.int64)[
# sorted_index
# ]
# res["dnn_feat_values"] = np.asarray(dnn_feat_values, dtype=np.int64)[
# sorted_index
# ]
# res["dnn_feat_weights"] = np.asarray(dnn_feat_weights, dtype=np.float32)[
# sorted_index
# ]
# res["dnn_feat_shape"] = np.asarray(dnn_feat_shape, dtype=np.int64)
# return res
# def gen_feed_dict(self, data_dict):
# """Construct a dictionary that maps graph elements to values.
# Args:
# data_dict (dict): a dictionary that maps string name to numpy arrays.
# Returns:
# dict: a dictionary that maps graph elements to numpy arrays.
# """
# feed_dict = {
# self.labels: data_dict["labels"],
# self.fm_feat_indices: data_dict["fm_feat_indices"],
# self.fm_feat_values: data_dict["fm_feat_values"],
# self.fm_feat_shape: data_dict["fm_feat_shape"],
# self.dnn_feat_indices: data_dict["dnn_feat_indices"],
# self.dnn_feat_values: data_dict["dnn_feat_values"],
# self.dnn_feat_weights: data_dict["dnn_feat_weights"],
# self.dnn_feat_shape: data_dict["dnn_feat_shape"],
# }
# return feed_dict
| 38.310811 | 112 | 0.55485 |
86c692ea321aa5d6632c79b6a92f458cad0e5a70 | 2,723 | py | Python | ncm/api.py | SDhuangao/netease-cloud-music-dl | 4a970504e1fec0a9848f3920b392aa507d6b3879 | [
"MIT"
] | null | null | null | ncm/api.py | SDhuangao/netease-cloud-music-dl | 4a970504e1fec0a9848f3920b392aa507d6b3879 | [
"MIT"
] | null | null | null | ncm/api.py | SDhuangao/netease-cloud-music-dl | 4a970504e1fec0a9848f3920b392aa507d6b3879 | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
import requests
from ncm.encrypt import encrypted_request
from ncm.constants import headers
from ncm.constants import song_download_url
from ncm.constants import get_song_url
from ncm.constants import get_album_url
from ncm.constants import get_artist_url
from ncm.constants import get_playlist_url
| 27.505051 | 84 | 0.589791 |
86c7301877ec46ff5d214d67d7d24373229e91aa | 15,337 | py | Python | book/trees/binary_search_tree.py | Web-Dev-Collaborative/algos | d280581d74ded382094283d931a202eb55fd8369 | [
"CC0-1.0"
] | 153 | 2015-12-24T00:32:23.000Z | 2022-02-24T06:00:29.000Z | book/trees/binary_search_tree.py | Web-Dev-Collaborative/algos | d280581d74ded382094283d931a202eb55fd8369 | [
"CC0-1.0"
] | 78 | 2015-11-17T11:46:15.000Z | 2021-06-28T18:37:58.000Z | book/trees/binary_search_tree.py | rhivent/algo-books-python | c4fa29616ca9a8a15ba40fa12d21fd8f35096d40 | [
"CC0-1.0"
] | 66 | 2015-11-02T03:38:02.000Z | 2022-03-05T17:36:26.000Z | # -*- coding: utf-8 -*-
"""
The `TreeNode` class provides many helper functions that make the work
done in the `BinarySearchTree` class methods much easier. The
constructor for a `TreeNode`, along with these helper functions, is
shown below. As you can see, many of these helper functions help to
classify a node according to its own position as a child, (left or
right) and the kind of children the node has. The `TreeNode` class will
also explicitly keep track of the parent as an attribute of each node.
You will see why this is important when we discuss the implementation
for the `del` operator.
One of the more interesting methods of `TreeNode` provides an interface
to simply iterate over all the keys in the tree in order. You already
know how to traverse a binary tree in order, using the `inorder`
traversal algorithm. However, because we want our iterator to operate
lazily, in this case we use the `yield` keyword to define our `__iter__`
method as a Python generator. Pay close attention to the `__iter__`
implementation as at first glance you might think that the code is
not recursive: in fact, because `__iter__` overrides the `for x
in` operation for iteration, it really is recursive!
Our full implementation of `TreeNode` is provided below. It includes
three further methods `find_successor`, `find_min` and `splice_out`
which you can ignore for now as we will return to them later when
discussing deletion.
"""
| 37.775862 | 78 | 0.684684 |
86c7d4acbb62e0447380b9c4c68ef07bbf5ead1b | 28,677 | py | Python | fire/core.py | adamruth/python-fire | 6912ccd56f50e0f4bb30a0725d95858ef29f3bde | [
"Apache-2.0"
] | 1 | 2020-02-05T04:43:03.000Z | 2020-02-05T04:43:03.000Z | fire/core.py | chesnjak/python-fire | 72604f40314008e562ba47936dcc183b51166b72 | [
"Apache-2.0"
] | null | null | null | fire/core.py | chesnjak/python-fire | 72604f40314008e562ba47936dcc183b51166b72 | [
"Apache-2.0"
] | 1 | 2020-07-15T22:58:25.000Z | 2020-07-15T22:58:25.000Z | # Copyright (C) 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Python Fire is a library for creating CLIs from absolutely any Python object.
You can call Fire on any Python object:
functions, classes, modules, objects, dictionaries, lists, tuples, etc.
They all work!
Python Fire turns any Python object into a command line interface.
Simply call the Fire function as your main method to create a CLI.
When using Fire to build a CLI, your main method includes a call to Fire. Eg:
def main(argv):
fire.Fire(Component)
A Fire CLI command is run by consuming the arguments in the command in order to
access a member of current component, call the current component (if it's a
function), or instantiate the current component (if it's a class). The target
component begins as Component, and at each operation the component becomes the
result of the preceding operation.
For example "command fn arg1 arg2" might access the "fn" property of the initial
target component, and then call that function with arguments 'arg1' and 'arg2'.
Additional examples are available in the examples directory.
Fire Flags, common to all Fire CLIs, must go after a separating "--". For
example, to get help for a command you might run: `command -- --help`.
The available flags for all Fire CLIs are:
-v --verbose: Include private members in help and usage information.
-h --help: Provide help and usage information for the command.
-i --interactive: Drop into a Python REPL after running the command.
--completion: Write the Bash completion script for the tool to stdout.
--separator SEPARATOR: Use SEPARATOR in place of the default separator, '-'.
--trace: Get the Fire Trace for the command.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import inspect
import json
import os
import pipes
import shlex
import sys
import types
from fire import completion
from fire import decorators
from fire import helputils
from fire import inspectutils
from fire import interact
from fire import parser
from fire import trace
import six
def Fire(component=None, command=None, name=None):
"""This function, Fire, is the main entrypoint for Python Fire.
Executes a command either from the `command` argument or from sys.argv by
recursively traversing the target object `component`'s members consuming
arguments, evaluating functions, and instantiating classes as it goes.
When building a CLI with Fire, your main method should call this function.
Args:
component: The initial target component.
command: Optional. If supplied, this is the command executed. If not
supplied, then the command is taken from sys.argv instead. This can be
a string or a list of strings; a list of strings is preferred.
name: Optional. The name of the command as entered at the command line.
Used in interactive mode and for generating the completion script.
Returns:
The result of executing the Fire command. Execution begins with the initial
target component. The component is updated by using the command arguments
to either access a member of the current component, call the current
component (if it's a function), or instantiate the current component (if
it's a class). When all arguments are consumed and there's no function left
to call or class left to instantiate, the resulting current component is
the final result.
Raises:
ValueError: If the command argument is supplied, but not a string or a
sequence of arguments.
FireExit: When Fire encounters a FireError, Fire will raise a FireExit with
code 2. When used with the help or trace flags, Fire will raise a
FireExit with code 0 if successful.
"""
name = name or os.path.basename(sys.argv[0])
# Get args as a list.
if isinstance(command, six.string_types):
args = shlex.split(command)
elif isinstance(command, (list, tuple)):
args = command
elif command is None:
# Use the command line args by default if no command is specified.
args = sys.argv[1:]
else:
raise ValueError('The command argument must be a string or a sequence of '
'arguments.')
# Determine the calling context.
caller = inspect.stack()[1]
caller_frame = caller[0]
caller_globals = caller_frame.f_globals
caller_locals = caller_frame.f_locals
context = {}
context.update(caller_globals)
context.update(caller_locals)
component_trace = _Fire(component, args, context, name)
if component_trace.HasError():
for help_flag in ['-h', '--help']:
if help_flag in component_trace.elements[-1].args:
command = '{cmd} -- --help'.format(cmd=component_trace.GetCommand())
print(('WARNING: The proper way to show help is {cmd}.\n'
'Showing help anyway.\n').format(cmd=pipes.quote(command)),
file=sys.stderr)
print('Fire trace:\n{trace}\n'.format(trace=component_trace),
file=sys.stderr)
result = component_trace.GetResult()
print(
helputils.HelpString(result, component_trace, component_trace.verbose),
file=sys.stderr)
raise FireExit(2, component_trace)
elif component_trace.show_trace and component_trace.show_help:
print('Fire trace:\n{trace}\n'.format(trace=component_trace),
file=sys.stderr)
result = component_trace.GetResult()
print(
helputils.HelpString(result, component_trace, component_trace.verbose),
file=sys.stderr)
raise FireExit(0, component_trace)
elif component_trace.show_trace:
print('Fire trace:\n{trace}'.format(trace=component_trace),
file=sys.stderr)
raise FireExit(0, component_trace)
elif component_trace.show_help:
result = component_trace.GetResult()
print(
helputils.HelpString(result, component_trace, component_trace.verbose),
file=sys.stderr)
raise FireExit(0, component_trace)
else:
_PrintResult(component_trace, verbose=component_trace.verbose)
result = component_trace.GetResult()
return result
def CompletionScript(name, component):
"""Returns the text of the Bash completion script for a Fire CLI."""
return completion.Script(name, component)
def _PrintResult(component_trace, verbose=False):
"""Prints the result of the Fire call to stdout in a human readable way."""
# TODO: Design human readable deserializable serialization method
# and move serialization to it's own module.
result = component_trace.GetResult()
if isinstance(result, (list, set, types.GeneratorType)):
for i in result:
print(_OneLineResult(i))
elif inspect.isgeneratorfunction(result):
raise NotImplementedError
elif isinstance(result, dict):
print(_DictAsString(result, verbose))
elif isinstance(result, tuple):
print(_OneLineResult(result))
elif isinstance(result,
(bool, six.string_types, six.integer_types, float, complex)):
print(result)
elif result is not None:
print(helputils.HelpString(result, component_trace, verbose))
def _DictAsString(result, verbose=False):
"""Returns a dict as a string.
Args:
result: The dict to convert to a string
verbose: Whether to include 'hidden' members, those keys starting with _.
Returns:
A string representing the dict
"""
result = {key: value for key, value in result.items()
if _ComponentVisible(key, verbose)}
if not result:
return '{}'
longest_key = max(len(str(key)) for key in result.keys())
format_string = '{{key:{padding}s}} {{value}}'.format(padding=longest_key + 1)
lines = []
for key, value in result.items():
line = format_string.format(key=str(key) + ':',
value=_OneLineResult(value))
lines.append(line)
return '\n'.join(lines)
def _ComponentVisible(component, verbose=False):
"""Returns whether a component should be visible in the output."""
return (
verbose
or not isinstance(component, six.string_types)
or not component.startswith('_'))
def _OneLineResult(result):
"""Returns result serialized to a single line string."""
# TODO: Ensure line is fewer than eg 120 characters.
if isinstance(result, six.string_types):
return str(result).replace('\n', ' ')
try:
# Don't force conversion to ascii.
return json.dumps(result, ensure_ascii=False)
except (TypeError, ValueError):
return str(result).replace('\n', ' ')
def _Fire(component, args, context, name=None):
"""Execute a Fire command on a target component using the args supplied.
Arguments that come after a final isolated '--' are treated as Flags, eg for
interactive mode or completion script generation.
Other arguments are consumed by the execution of the Fire command, eg in the
traversal of the members of the component, or in calling a function or
instantiating a class found during the traversal.
The steps performed by this method are:
1. Parse any Flag args (the args after the final --)
2. Start with component as the current component.
2a. If the current component is a class, instantiate it using args from args.
2b. If the current component is a routine, call it using args from args.
2c. Otherwise access a member from component using an arg from args.
2d. Repeat 2a-2c until no args remain.
3a. Embed into ipython REPL if interactive mode is selected.
3b. Generate a completion script if that flag is provided.
In step 2, arguments will only ever be consumed up to a separator; a single
step will never consume arguments from both sides of a separator.
The separator defaults to a hyphen (-), and can be overwritten with the
--separator Fire argument.
Args:
component: The target component for Fire.
args: A list of args to consume in Firing on the component, usually from
the command line.
context: A dict with the local and global variables available at the call
to Fire.
name: Optional. The name of the command. Used in interactive mode and in
the tab completion script.
Returns:
FireTrace of components starting with component, tracing Fire's execution
path as it consumes args.
Raises:
ValueError: If there are arguments that cannot be consumed.
ValueError: If --completion is specified but no name available.
"""
args, flag_args = parser.SeparateFlagArgs(args)
argparser = parser.CreateParser()
parsed_flag_args, unused_args = argparser.parse_known_args(flag_args)
verbose = parsed_flag_args.verbose
interactive = parsed_flag_args.interactive
separator = parsed_flag_args.separator
show_completion = parsed_flag_args.completion
show_help = parsed_flag_args.help
show_trace = parsed_flag_args.trace
# component can be a module, class, routine, object, etc.
if component is None:
component = context
initial_component = component
component_trace = trace.FireTrace(
initial_component=initial_component, name=name, separator=separator,
verbose=verbose, show_help=show_help, show_trace=show_trace)
instance = None
remaining_args = args
while True:
last_component = component
initial_args = remaining_args
if not remaining_args and (show_help or interactive or show_trace
or show_completion):
# Don't initialize the final class or call the final function unless
# there's a separator after it, and instead process the current component.
break
saved_args = []
used_separator = False
if separator in remaining_args:
# For the current component, only use arguments up to the separator.
separator_index = remaining_args.index(separator)
saved_args = remaining_args[separator_index + 1:]
remaining_args = remaining_args[:separator_index]
used_separator = True
assert separator not in remaining_args
if inspect.isclass(component) or inspect.isroutine(component):
# The component is a class or a routine; we'll try to initialize it or
# call it.
isclass = inspect.isclass(component)
try:
target = component.__name__
filename, lineno = inspectutils.GetFileAndLine(component)
component, consumed_args, remaining_args, capacity = _CallCallable(
component, remaining_args)
# Update the trace.
if isclass:
component_trace.AddInstantiatedClass(
component, target, consumed_args, filename, lineno, capacity)
else:
component_trace.AddCalledRoutine(
component, target, consumed_args, filename, lineno, capacity)
except FireError as error:
component_trace.AddError(error, initial_args)
return component_trace
if last_component is initial_component:
# If the initial component is a class, keep an instance for use with -i.
instance = component
elif isinstance(component, (list, tuple)) and remaining_args:
# The component is a tuple or list; we'll try to access a member.
arg = remaining_args[0]
try:
index = int(arg)
component = component[index]
except (ValueError, IndexError):
error = FireError(
'Unable to index into component with argument:', arg)
component_trace.AddError(error, initial_args)
return component_trace
remaining_args = remaining_args[1:]
filename = None
lineno = None
component_trace.AddAccessedProperty(
component, index, [arg], filename, lineno)
elif isinstance(component, dict) and remaining_args:
# The component is a dict; we'll try to access a member.
target = remaining_args[0]
if target in component:
component = component[target]
elif target.replace('-', '_') in component:
component = component[target.replace('-', '_')]
else:
# The target isn't present in the dict as a string, but maybe it is as
# another type.
# TODO: Consider alternatives for accessing non-string keys.
found_target = False
for key, value in component.items():
if target == str(key):
component = value
found_target = True
break
if not found_target:
error = FireError(
'Cannot find target in dict:', target, component)
component_trace.AddError(error, initial_args)
return component_trace
remaining_args = remaining_args[1:]
filename = None
lineno = None
component_trace.AddAccessedProperty(
component, target, [target], filename, lineno)
elif remaining_args:
# We'll try to access a member of the component.
try:
target = remaining_args[0]
component, consumed_args, remaining_args = _GetMember(
component, remaining_args)
filename, lineno = inspectutils.GetFileAndLine(component)
component_trace.AddAccessedProperty(
component, target, consumed_args, filename, lineno)
except FireError as error:
component_trace.AddError(error, initial_args)
return component_trace
if used_separator:
# Add back in the arguments from after the separator.
if remaining_args:
remaining_args = remaining_args + [separator] + saved_args
elif (inspect.isclass(last_component)
or inspect.isroutine(last_component)):
remaining_args = saved_args
component_trace.AddSeparator()
elif component is not last_component:
remaining_args = [separator] + saved_args
else:
# It was an unnecessary separator.
remaining_args = saved_args
if component is last_component and remaining_args == initial_args:
# We're making no progress.
break
if remaining_args:
component_trace.AddError(
FireError('Could not consume arguments:', remaining_args),
initial_args)
return component_trace
if show_completion:
if name is None:
raise ValueError('Cannot make completion script without command name')
script = CompletionScript(name, initial_component)
component_trace.AddCompletionScript(script)
if interactive:
variables = context.copy()
if name is not None:
variables[name] = initial_component
variables['component'] = initial_component
variables['result'] = component
variables['trace'] = component_trace
if instance is not None:
variables['self'] = instance
interact.Embed(variables, verbose)
component_trace.AddInteractiveMode()
return component_trace
def _GetMember(component, args):
"""Returns a subcomponent of component by consuming an arg from args.
Given a starting component and args, this function gets a member from that
component, consuming one arg in the process.
Args:
component: The component from which to get a member.
args: Args from which to consume in the search for the next component.
Returns:
component: The component that was found by consuming an arg.
consumed_args: The args that were consumed by getting this member.
remaining_args: The remaining args that haven't been consumed yet.
Raises:
FireError: If we cannot consume an argument to get a member.
"""
members = dict(inspect.getmembers(component))
arg = args[0]
arg_names = [
arg,
arg.replace('-', '_'), # treat '-' as '_'.
]
for arg_name in arg_names:
if arg_name in members:
return members[arg_name], [arg], args[1:]
raise FireError('Could not consume arg:', arg)
def _CallCallable(fn, args):
"""Calls the function fn by consuming args from args.
Args:
fn: The function to call or class to instantiate.
args: Args from which to consume for calling the function.
Returns:
component: The object that is the result of the function call.
consumed_args: The args that were consumed for the function call.
remaining_args: The remaining args that haven't been consumed yet.
capacity: Whether the call could have taken additional args.
"""
parse = _MakeParseFn(fn)
(varargs, kwargs), consumed_args, remaining_args, capacity = parse(args)
result = fn(*varargs, **kwargs)
return result, consumed_args, remaining_args, capacity
def _MakeParseFn(fn):
"""Creates a parse function for fn.
Args:
fn: The function or class to create the parse function for.
Returns:
A parse function for fn. The parse function accepts a list of arguments
and returns (varargs, kwargs), remaining_args. The original function fn
can then be called with fn(*varargs, **kwargs). The remaining_args are
the leftover args from the arguments to the parse function.
"""
fn_spec = inspectutils.GetFullArgSpec(fn)
all_args = fn_spec.args + fn_spec.kwonlyargs
metadata = decorators.GetMetadata(fn)
# Note: num_required_args is the number of positional arguments without
# default values. All of these arguments are required.
num_required_args = len(fn_spec.args) - len(fn_spec.defaults)
required_kwonly = set(fn_spec.kwonlyargs) - set(fn_spec.kwonlydefaults)
def _ParseFn(args):
"""Parses the list of `args` into (varargs, kwargs), remaining_args."""
kwargs, remaining_kwargs, remaining_args = _ParseKeywordArgs(
args, all_args, fn_spec.varkw)
# Note: _ParseArgs modifies kwargs.
parsed_args, kwargs, remaining_args, capacity = _ParseArgs(
fn_spec.args, fn_spec.defaults, num_required_args, kwargs,
remaining_args, metadata)
if fn_spec.varargs or fn_spec.varkw:
# If we're allowed *varargs or **kwargs, there's always capacity.
capacity = True
extra_kw = set(kwargs) - set(fn_spec.kwonlyargs)
if fn_spec.varkw is None and extra_kw:
raise FireError('Unexpected kwargs present:', extra_kw)
missing_kwonly = set(required_kwonly) - set(kwargs)
if missing_kwonly:
raise FireError('Missing required flags:', missing_kwonly)
# If we accept *varargs, then use all remaining arguments for *varargs.
if fn_spec.varargs is not None:
varargs, remaining_args = remaining_args, []
else:
varargs = []
for index, value in enumerate(varargs):
varargs[index] = _ParseValue(value, None, None, metadata)
varargs = parsed_args + varargs
remaining_args += remaining_kwargs
consumed_args = args[:len(args) - len(remaining_args)]
return (varargs, kwargs), consumed_args, remaining_args, capacity
return _ParseFn
def _ParseArgs(fn_args, fn_defaults, num_required_args, kwargs,
remaining_args, metadata):
"""Parses the positional and named arguments from the available supplied args.
Modifies kwargs, removing args as they are used.
Args:
fn_args: A list of argument names that the target function accepts,
including positional and named arguments, but not the varargs or kwargs
names.
fn_defaults: A list of the default values in the function argspec.
num_required_args: The number of required arguments from the function's
argspec. This is the number of arguments without a default value.
kwargs: Dict with named command line arguments and their values.
remaining_args: The remaining command line arguments, which may still be
used as positional arguments.
metadata: Metadata about the function, typically from Fire decorators.
Returns:
parsed_args: A list of values to be used as positional arguments for calling
the target function.
kwargs: The input dict kwargs modified with the used kwargs removed.
remaining_args: A list of the supplied args that have not been used yet.
capacity: Whether the call could have taken args in place of defaults.
Raises:
FireError: if additional positional arguments are expected, but none are
available.
"""
accepts_positional_args = metadata.get(decorators.ACCEPTS_POSITIONAL_ARGS)
capacity = False # If we see a default get used, we'll set capacity to True
# Select unnamed args.
parsed_args = []
for index, arg in enumerate(fn_args):
value = kwargs.pop(arg, None)
if value is not None: # A value is specified at the command line.
value = _ParseValue(value, index, arg, metadata)
parsed_args.append(value)
else: # No value has been explicitly specified.
if remaining_args and accepts_positional_args:
# Use a positional arg.
value = remaining_args.pop(0)
value = _ParseValue(value, index, arg, metadata)
parsed_args.append(value)
elif index < num_required_args:
raise FireError(
'The function received no value for the required argument:', arg)
else:
# We're past the args for which there's no default value.
# There's a default value for this arg.
capacity = True
default_index = index - num_required_args # index into the defaults.
parsed_args.append(fn_defaults[default_index])
for key, value in kwargs.items():
kwargs[key] = _ParseValue(value, None, key, metadata)
return parsed_args, kwargs, remaining_args, capacity
def _ParseKeywordArgs(args, fn_args, fn_keywords):
"""Parses the supplied arguments for keyword arguments.
Given a list of arguments, finds occurences of --name value, and uses 'name'
as the keyword and 'value' as the value. Constructs and returns a dictionary
of these keyword arguments, and returns a list of the remaining arguments.
Only if fn_keywords is None, this only finds argument names used by the
function, specified through fn_args.
This returns the values of the args as strings. They are later processed by
_ParseArgs, which converts them to the appropriate type.
Args:
args: A list of arguments
fn_args: A list of argument names that the target function accepts,
including positional and named arguments, but not the varargs or kwargs
names.
fn_keywords: The argument name for **kwargs, or None if **kwargs not used
Returns:
kwargs: A dictionary mapping keywords to values.
remaining_kwargs: A list of the unused kwargs from the original args.
remaining_args: A list of the unused arguments from the original args.
"""
kwargs = {}
remaining_kwargs = []
remaining_args = []
if not args:
return kwargs, remaining_kwargs, remaining_args
skip_argument = False
for index, argument in enumerate(args):
if skip_argument:
skip_argument = False
continue
arg_consumed = False
if argument.startswith('--'):
# This is a named argument; get its value from this arg or the next.
got_argument = False
keyword = argument[2:]
contains_equals = '=' in keyword
is_bool_syntax = (
not contains_equals and
(index + 1 == len(args) or args[index + 1].startswith('--')))
if contains_equals:
keyword, value = keyword.split('=', 1)
got_argument = True
elif is_bool_syntax:
# Since there's no next arg or the next arg is a Flag, we consider
# this flag to be a boolean.
got_argument = True
if keyword in fn_args:
value = 'True'
elif keyword.startswith('no'):
keyword = keyword[2:]
value = 'False'
else:
value = 'True'
else:
if index + 1 < len(args):
value = args[index + 1]
got_argument = True
keyword = keyword.replace('-', '_')
# In order for us to consume the argument as a keyword arg, we either:
# Need to be explicitly expecting the keyword, or we need to be
# accepting **kwargs.
if got_argument:
skip_argument = not contains_equals and not is_bool_syntax
arg_consumed = True
if keyword in fn_args or fn_keywords:
kwargs[keyword] = value
else:
remaining_kwargs.append(argument)
if skip_argument:
remaining_kwargs.append(args[index + 1])
if not arg_consumed:
# The argument was not consumed, so it is still a remaining argument.
remaining_args.append(argument)
return kwargs, remaining_kwargs, remaining_args
def _ParseValue(value, index, arg, metadata):
"""Parses value, a string, into the appropriate type.
The function used to parse value is determined by the remaining arguments.
Args:
value: The string value to be parsed, typically a command line argument.
index: The index of the value in the function's argspec.
arg: The name of the argument the value is being parsed for.
metadata: Metadata about the function, typically from Fire decorators.
Returns:
value, parsed into the appropriate type for calling a function.
"""
parse_fn = parser.DefaultParseValue
# We check to see if any parse function from the fn metadata applies here.
parse_fns = metadata.get(decorators.FIRE_PARSE_FNS)
if parse_fns:
default = parse_fns['default']
positional = parse_fns['positional']
named = parse_fns['named']
if index is not None and 0 <= index < len(positional):
parse_fn = positional[index]
elif arg in named:
parse_fn = named[arg]
elif default is not None:
parse_fn = default
return parse_fn(value)
| 36.577806 | 80 | 0.706873 |
86c845d512d008bf07b10c93c9a059cfaa7474a0 | 1,668 | py | Python | app.py | AmirValeev/auto-ml-classifier | e803fe92d1ec71e87509845ea61ecc46b363bae6 | [
"Apache-2.0"
] | null | null | null | app.py | AmirValeev/auto-ml-classifier | e803fe92d1ec71e87509845ea61ecc46b363bae6 | [
"Apache-2.0"
] | null | null | null | app.py | AmirValeev/auto-ml-classifier | e803fe92d1ec71e87509845ea61ecc46b363bae6 | [
"Apache-2.0"
] | null | null | null | import os, ast
import pandas as pd
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline
import pickle
if __name__ == "__main__":
main()
| 33.36 | 126 | 0.668465 |
86c8b4810cb292d6be03cbb1ee7d68143bb6929f | 512 | py | Python | util/headers.py | giuseppe/quay | a1b7e4b51974edfe86f66788621011eef2667e6a | [
"Apache-2.0"
] | 2,027 | 2019-11-12T18:05:48.000Z | 2022-03-31T22:25:04.000Z | util/headers.py | giuseppe/quay | a1b7e4b51974edfe86f66788621011eef2667e6a | [
"Apache-2.0"
] | 496 | 2019-11-12T18:13:37.000Z | 2022-03-31T10:43:45.000Z | util/headers.py | giuseppe/quay | a1b7e4b51974edfe86f66788621011eef2667e6a | [
"Apache-2.0"
] | 249 | 2019-11-12T18:02:27.000Z | 2022-03-22T12:19:19.000Z | import base64
def parse_basic_auth(header_value):
"""
Attempts to parse the given header value as a Base64-encoded Basic auth header.
"""
if not header_value:
return None
parts = header_value.split(" ")
if len(parts) != 2 or parts[0].lower() != "basic":
return None
try:
basic_parts = base64.b64decode(parts[1]).split(":", 1)
if len(basic_parts) != 2:
return None
return basic_parts
except ValueError:
return None
| 21.333333 | 83 | 0.599609 |
86c9f566a6eb8b7449c2eceeae4f2a4b402b56f5 | 3,115 | py | Python | indico/core/signals/event/core.py | tobiashuste/indico | c1e6ec0c8c84745988e38c9b1768142a6feb9e0e | [
"MIT"
] | null | null | null | indico/core/signals/event/core.py | tobiashuste/indico | c1e6ec0c8c84745988e38c9b1768142a6feb9e0e | [
"MIT"
] | null | null | null | indico/core/signals/event/core.py | tobiashuste/indico | c1e6ec0c8c84745988e38c9b1768142a6feb9e0e | [
"MIT"
] | null | null | null | # This file is part of Indico.
# Copyright (C) 2002 - 2020 CERN
#
# Indico is free software; you can redistribute it and/or
# modify it under the terms of the MIT License; see the
# LICENSE file for more details.
from indico.core.signals.event import _signals
sidemenu = _signals.signal('sidemenu', """
Expected to return ``MenuEntryData`` objects to be added to the event side menu.
A single entry can be returned directly, multiple entries must be yielded.
""")
deleted = _signals.signal('deleted', """
Called when an event is deleted. The *sender* is the event object.
The `user` kwarg contains the user performing the deletion if available.
""")
updated = _signals.signal('updated', """
Called when basic data of an event is updated. The *sender* is the event.
A dict of changes is passed in the `changes` kwarg, with ``(old, new)``
tuples for each change. Note than the `person_links` change may happen
with `old` and `new` being the same lists for technical reasons. If the
key is present, it should be assumed that something changed (usually
the order or some data on the person link).
""")
cloned = _signals.signal('cloned', """
Called when an event is cloned. The *sender* is the `Event` object of
the old event, the new event is passed in the `new_event` kwarg.
""")
type_changed = _signals.signal('type-changed', """
Called when the type of an event is changed. The `sender` is the event,
the old type is passed in the `old_type` kwarg.
""")
moved = _signals.signal('moved', """
Called when an event is moved to a different category. The `sender` is the event,
the old category is in the `old_parent` kwarg.
""")
created = _signals.signal('created', """
Called when a new event is created. The `sender` is the new Event.
""")
session_updated = _signals.signal('session-updated', """
Called when a session is updated. The *sender* is the session.
""")
session_deleted = _signals.signal('session-deleted', """
Called when a session is deleted. The *sender* is the session.
""")
session_block_deleted = _signals.signal('session-block-deleted', """
Called when a session block is deleted. The *sender* is the session block.
This signal is called before the ``db.session.delete()`` on the block is
executed.
""")
timetable_buttons = _signals.signal('timetable-buttons', """
Expected to return a list of tuples ('button_name', 'js-call-class').
Called when building the timetable view.
""")
get_log_renderers = _signals.signal('get-log-renderers', """
Expected to return `EventLogRenderer` classes.
""")
get_feature_definitions = _signals.signal('get-feature-definitions', """
Expected to return `EventFeature` subclasses.
""")
metadata_postprocess = _signals.signal('metadata-postprocess', """
Called right after a dict-like representation of an event is created,
so that plugins can add their own fields.
The *sender* is a string parameter specifying the source of the metadata.
The *event* kwarg contains the event object. The metadata is passed in
the `data` kwarg.
The signal should return a dict that will be used to update the
original representation (fields to add or override).
""")
| 35.804598 | 81 | 0.741252 |
86ca3287dbcbbef744a382d06122c372e95e738d | 3,294 | py | Python | cinder/tests/unit/volume/drivers/emc/scaleio/test_delete_volume.py | aarunsai81/netapp | 8f0f7bf9be7f4d9fb9c3846bfc639c90a05f86ba | [
"Apache-2.0"
] | 11 | 2015-08-25T13:11:18.000Z | 2020-10-15T11:29:20.000Z | cinder/tests/unit/volume/drivers/emc/scaleio/test_delete_volume.py | aarunsai81/netapp | 8f0f7bf9be7f4d9fb9c3846bfc639c90a05f86ba | [
"Apache-2.0"
] | 5 | 2018-01-25T11:31:56.000Z | 2019-05-06T23:13:35.000Z | cinder/tests/unit/volume/drivers/emc/scaleio/test_delete_volume.py | aarunsai81/netapp | 8f0f7bf9be7f4d9fb9c3846bfc639c90a05f86ba | [
"Apache-2.0"
] | 11 | 2015-02-20T18:48:24.000Z | 2021-01-30T20:26:18.000Z | # Copyright (c) 2013 - 2015 EMC Corporation.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from six.moves import urllib
from cinder import context
from cinder import exception
from cinder.tests.unit import fake_constants as fake
from cinder.tests.unit import fake_volume
from cinder.tests.unit.volume.drivers.emc import scaleio
from cinder.tests.unit.volume.drivers.emc.scaleio import mocks
| 39.686747 | 78 | 0.610808 |
86ca3cb4e460e6fa964047e9d8e3d1c032b0dafb | 1,233 | py | Python | example-package/transportation_tutorials/__init__.py | chrisc20042001/python-for-transportation-modeling | 677129daa390fcaa6e5cde45960e27d9bd6ca4bf | [
"BSD-3-Clause"
] | null | null | null | example-package/transportation_tutorials/__init__.py | chrisc20042001/python-for-transportation-modeling | 677129daa390fcaa6e5cde45960e27d9bd6ca4bf | [
"BSD-3-Clause"
] | null | null | null | example-package/transportation_tutorials/__init__.py | chrisc20042001/python-for-transportation-modeling | 677129daa390fcaa6e5cde45960e27d9bd6ca4bf | [
"BSD-3-Clause"
] | null | null | null | # -*- coding: utf-8 -*-
__version__ = '1.0.2'
import os
import appdirs
import osmnx as ox
import joblib
import requests
from .files import load_vars, save_vars, cached, inflate_tar, download_zipfile
from .data import data, list_data, problematic
from .tools.view_code import show_file
from . import mapping
cache_dir = None
memory = None
def set_cache_dir(location=None, compress=True, verbose=0, **kwargs):
"""
Set up a cache directory for use with the tutorials.
Parameter
---------
cache_dir : Path-like or False, optional
A path for the cache files. Set to False to disable caching.
"""
global memory, cache_dir
if location is None:
location = appdirs.user_cache_dir('transportation_tutorials')
if location is False:
location = None
memory = joblib.Memory(location, compress=compress, verbose=verbose, **kwargs)
make_cache = (
(ox, 'gdf_from_place'),
(ox, 'graph_from_bbox'),
(requests, 'get'),
(requests, 'post'),
)
for module, func_name in make_cache:
try:
func = getattr(module, f"_{func_name}_orig")
except AttributeError:
func = getattr(module, func_name)
setattr(module, f"_{func_name}_orig", func)
setattr(module, func_name, memory.cache(func))
set_cache_dir()
| 20.55 | 79 | 0.721006 |
86ca8c2e422d5ab12a80680e14af6535e5befd05 | 2,146 | py | Python | common/common.py | czajowaty/curry-bot | 91bfbd884342a02c6defd057d27d5b1fcd78cb21 | [
"MIT"
] | 3 | 2019-10-09T23:17:55.000Z | 2022-02-01T17:34:27.000Z | common/common.py | czajowaty/curry-bot | 91bfbd884342a02c6defd057d27d5b1fcd78cb21 | [
"MIT"
] | 19 | 2019-10-09T20:42:05.000Z | 2022-02-01T08:22:25.000Z | common/common.py | czajowaty/curry-bot | 91bfbd884342a02c6defd057d27d5b1fcd78cb21 | [
"MIT"
] | 6 | 2020-08-09T20:17:13.000Z | 2022-01-27T23:59:28.000Z | from requests.models import PreparedRequest
| 32.029851 | 152 | 0.56384 |
86cbceec04afe24550cbee582258380f822dc77d | 5,265 | py | Python | hendrix/test/test_ux.py | anthonyalmarza/hendrix | eebd2a2183cc18ec2267d96a53a70d41b1630ce6 | [
"MIT"
] | null | null | null | hendrix/test/test_ux.py | anthonyalmarza/hendrix | eebd2a2183cc18ec2267d96a53a70d41b1630ce6 | [
"MIT"
] | null | null | null | hendrix/test/test_ux.py | anthonyalmarza/hendrix | eebd2a2183cc18ec2267d96a53a70d41b1630ce6 | [
"MIT"
] | null | null | null | import os
import sys
from . import HendrixTestCase, TEST_SETTINGS
from hendrix.contrib import SettingsError
from hendrix.options import options as hx_options
from hendrix import ux
from mock import patch
| 35.816327 | 77 | 0.637607 |
86cc1ac4bd0be7cfc736232b574de4d27f85e0ca | 6,656 | py | Python | discord/types/interactions.py | Voxel-Fox-Ltd/Novus | 3e254115daf1c09455b26dc7819b73fbf5ee56e5 | [
"MIT"
] | 61 | 2021-08-30T05:30:31.000Z | 2022-03-24T11:24:38.000Z | discord/types/interactions.py | Voxel-Fox-Ltd/Novus | 3e254115daf1c09455b26dc7819b73fbf5ee56e5 | [
"MIT"
] | 30 | 2021-08-31T10:16:42.000Z | 2022-03-09T22:53:15.000Z | discord/types/interactions.py | Voxel-Fox-Ltd/Novus | 3e254115daf1c09455b26dc7819b73fbf5ee56e5 | [
"MIT"
] | 15 | 2021-09-02T09:40:58.000Z | 2022-02-25T12:19:02.000Z | """
The MIT License (MIT)
Copyright (c) 2015-2021 Rapptz
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
"""
from __future__ import annotations
from typing import Optional, TYPE_CHECKING, Dict, TypedDict, Union, List, Literal
from .snowflake import Snowflake
from .components import Component, SelectOption
from .embed import Embed
from .channel import ChannelType, Channel
from .member import Member
from .role import Role
from .user import User
if TYPE_CHECKING:
from .message import AllowedMentions, Message
ApplicationCommandType = Literal[1, 2, 3]
ApplicationCommandOptionType = Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
ApplicationCommandPermissionType = Literal[1, 2]
InteractionType = Literal[1, 2, 3]
ApplicationCommandInteractionDataOption = Union[
_ApplicationCommandInteractionDataOptionString,
_ApplicationCommandInteractionDataOptionInteger,
_ApplicationCommandInteractionDataOptionSubcommand,
_ApplicationCommandInteractionDataOptionBoolean,
_ApplicationCommandInteractionDataOptionSnowflake,
_ApplicationCommandInteractionDataOptionNumber,
]
InteractionResponseType = Literal[1, 4, 5, 6, 7]
| 27.618257 | 99 | 0.790415 |
86cc747c2e5f0caead634114a98e5f4a747d16ea | 15,163 | py | Python | local/local_sign.py | EVAyo/chaoxing_auto_sign | 7ae91a5e9aa4d15f57a5419ff3f5a455e151930a | [
"MIT"
] | null | null | null | local/local_sign.py | EVAyo/chaoxing_auto_sign | 7ae91a5e9aa4d15f57a5419ff3f5a455e151930a | [
"MIT"
] | null | null | null | local/local_sign.py | EVAyo/chaoxing_auto_sign | 7ae91a5e9aa4d15f57a5419ff3f5a455e151930a | [
"MIT"
] | null | null | null | # -*- coding: utf8 -*-
import os
import re
import time
import json
import random
import asyncio
from typing import Optional, List, Dict
from aiohttp import ClientSession
from aiohttp.cookiejar import SimpleCookie
from lxml import etree
from bs4 import BeautifulSoup
from config import *
from message import server_chan_send
def save_cookies(self, cookies: dict):
"""cookies"""
with open(COOKIES_FILE_PATH, "r") as f:
data = json.load(f)
data[self.username] = cookies
with open(COOKIES_FILE_PATH, 'w') as f2:
json.dump(data, f2)
def check_activeid(self, activeid):
"""activeid"""
activeid += self.username
if "activeid.json" not in os.listdir(ACTIVEID_PATH):
with open(ACTIVEID_FILE_PATH, 'w+') as f:
f.write("{}")
with open(ACTIVEID_FILE_PATH, 'r') as f:
try:
#
data = json.load(f)
if data[activeid]:
return True
except BaseException:
# activeid
return False
def save_activeid(self, activeid):
"""activeid"""
activeid += self.username
if "activeid.json" not in os.listdir(ACTIVEID_PATH):
with open(ACTIVEID_FILE_PATH, 'w+') as f:
f.write("{}")
with open(ACTIVEID_FILE_PATH, 'r') as f:
data = json.load(f)
with open(ACTIVEID_FILE_PATH, 'w') as f2:
data[activeid] = True
json.dump(data, f2) | 33.770601 | 149 | 0.485722 |
86ccfd65a1bb34c39113feed67502cda22587b34 | 4,240 | py | Python | build/scripts-3.6/fit_background_model.py | stahlberggroup/umierrorcorrect | 8ceabe30a87811dad467d04eb5a08d0213065946 | [
"MIT"
] | null | null | null | build/scripts-3.6/fit_background_model.py | stahlberggroup/umierrorcorrect | 8ceabe30a87811dad467d04eb5a08d0213065946 | [
"MIT"
] | null | null | null | build/scripts-3.6/fit_background_model.py | stahlberggroup/umierrorcorrect | 8ceabe30a87811dad467d04eb5a08d0213065946 | [
"MIT"
] | 1 | 2022-01-12T13:51:59.000Z | 2022-01-12T13:51:59.000Z | #!python
import numpy as np
from numpy import inf
from numpy import nan
from scipy.optimize import fmin
from scipy.stats import beta
from scipy.special import beta as B
from scipy.special import comb
import argparse
import sys
def parseArgs():
'''Function for parsing arguments'''
parser = argparse.ArgumentParser(description="Pipeline for analyzing barcoded amplicon \
sequencing data with Unique molecular \
identifiers (UMI)")
parser.add_argument('-cons', '--cons_file', dest='cons_file', help='Path to cons file, for fitting parameters of the bgmodel')
parser.add_argument('-nonbgposfile', '--non-background-positions', dest='nonbgposfile',
help='Path to file with non-background positions')
parser.add_argument('-out', '--out_file',dest='out_file',help="name of output file, default = %(default)s]",default="bgmodel.params")
parser.add_argument('-f','--fsize',dest='fsize', help='Family size cutoff (consensus cutoff) for variant calling. [default = %(default)s]', default=3)
args = parser.parse_args(sys.argv[1:])
return(args)
if __name__=='__main__':
args=parseArgs()
run_fit_bgmodel(args)
| 35.932203 | 154 | 0.566274 |
86cdf766574c9c743ff631f5d4070feb9f763d2a | 7,654 | py | Python | caffe2/python/operator_test/partition_ops_test.py | KevinKecc/caffe2 | a2b6c6e2f0686358a84277df65e9489fb7d9ddb2 | [
"Apache-2.0"
] | 585 | 2015-08-10T02:48:52.000Z | 2021-12-01T08:46:59.000Z | caffe2/python/operator_test/partition_ops_test.py | mingzhe09088/caffe2 | 8f41717c46d214aaf62b53e5b3b9b308b5b8db91 | [
"Apache-2.0"
] | 27 | 2018-04-14T06:44:22.000Z | 2018-08-01T18:02:39.000Z | caffe2/python/operator_test/partition_ops_test.py | mingzhe09088/caffe2 | 8f41717c46d214aaf62b53e5b3b9b308b5b8db91 | [
"Apache-2.0"
] | 183 | 2015-08-10T02:49:04.000Z | 2021-12-01T08:47:13.000Z | # Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from caffe2.python import core, workspace
from caffe2.python.test_util import TestCase, rand_array
if __name__ == "__main__":
import unittest
unittest.main()
| 38.852792 | 80 | 0.468774 |
86ce2b47e96edc2e4a65e6684b182564c236c3d3 | 11,195 | py | Python | cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_fib_common_cfg.py | Maikor/ydk-py | b86c4a7c570ae3b2c5557d098420446df5de4929 | [
"ECL-2.0",
"Apache-2.0"
] | null | null | null | cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_fib_common_cfg.py | Maikor/ydk-py | b86c4a7c570ae3b2c5557d098420446df5de4929 | [
"ECL-2.0",
"Apache-2.0"
] | null | null | null | cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_fib_common_cfg.py | Maikor/ydk-py | b86c4a7c570ae3b2c5557d098420446df5de4929 | [
"ECL-2.0",
"Apache-2.0"
] | null | null | null | """ Cisco_IOS_XR_fib_common_cfg
This module contains a collection of YANG definitions
for Cisco IOS\-XR fib\-common package configuration.
This module contains definitions
for the following management objects\:
fib\: CEF configuration
Copyright (c) 2013\-2018 by Cisco Systems, Inc.
All rights reserved.
"""
from collections import OrderedDict
from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64
from ydk.filters import YFilter
from ydk.errors import YError, YModelError
from ydk.errors.error_handler import handle_type_error as _handle_type_error
| 34.875389 | 184 | 0.609915 |
86ce2bcecdfa6edd6bc5db700d444829470b263a | 2,888 | py | Python | action/combo.py | dl-stuff/dl9 | 1cbe98afc53a1de9d413797fb130946acc4b6ba4 | [
"MIT"
] | null | null | null | action/combo.py | dl-stuff/dl9 | 1cbe98afc53a1de9d413797fb130946acc4b6ba4 | [
"MIT"
] | null | null | null | action/combo.py | dl-stuff/dl9 | 1cbe98afc53a1de9d413797fb130946acc4b6ba4 | [
"MIT"
] | null | null | null | """Series of actions that form a combo chain"""
from __future__ import annotations
from typing import Optional, Sequence, TYPE_CHECKING
from action import Action
from core.utility import Array
from core.constants import PlayerForm, SimActKind, MomentType
from core.database import FromDB
if TYPE_CHECKING:
from entity.player import Player
| 42.470588 | 138 | 0.649584 |
86ce3c0225876fe3453133a9a0965f8f30c17a84 | 5,447 | py | Python | flask_unchained/bundles/session/config.py | achiang/flask-unchained | 12788a6e618904a25ff2b571eb05ff1dc8f1840f | [
"MIT"
] | null | null | null | flask_unchained/bundles/session/config.py | achiang/flask-unchained | 12788a6e618904a25ff2b571eb05ff1dc8f1840f | [
"MIT"
] | null | null | null | flask_unchained/bundles/session/config.py | achiang/flask-unchained | 12788a6e618904a25ff2b571eb05ff1dc8f1840f | [
"MIT"
] | null | null | null | import os
from datetime import timedelta
from flask_unchained import BundleConfig
try:
from flask_unchained.bundles.sqlalchemy import db
except ImportError:
db = None
| 27.371859 | 111 | 0.668258 |
86ce9b178e942f833e8db993afdcf0aface18b4a | 3,845 | py | Python | sktime/forecasting/base/adapters/_statsmodels.py | tombh/sktime | 53df0b9ed9d1fd800539165c414cc5611bcc56b3 | [
"BSD-3-Clause"
] | 1 | 2020-06-02T22:24:44.000Z | 2020-06-02T22:24:44.000Z | sktime/forecasting/base/adapters/_statsmodels.py | abhishek-parashar/sktime | 1dfce6b41c2acdb576acfc04b09d11bf115c92d1 | [
"BSD-3-Clause"
] | 1 | 2020-11-20T13:51:20.000Z | 2020-11-20T13:51:20.000Z | sktime/forecasting/base/adapters/_statsmodels.py | abhishek-parashar/sktime | 1dfce6b41c2acdb576acfc04b09d11bf115c92d1 | [
"BSD-3-Clause"
] | 3 | 2020-10-18T04:54:30.000Z | 2021-02-15T18:04:18.000Z | #!/usr/bin/env python3 -u
# -*- coding: utf-8 -*-
__author__ = ["Markus Lning"]
__all__ = ["_StatsModelsAdapter"]
import numpy as np
import pandas as pd
from sktime.forecasting.base._base import DEFAULT_ALPHA
from sktime.forecasting.base._sktime import _OptionalForecastingHorizonMixin
from sktime.forecasting.base._sktime import _SktimeForecaster
| 32.310924 | 79 | 0.628349 |
86cf3a0a9a0e45685f04435a33dcecfd088782c9 | 12,924 | py | Python | melodic/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetLinkProperties.py | Dieptranivsr/Ros_Diep | d790e75e6f5da916701b11a2fdf3e03b6a47086b | [
"MIT"
] | null | null | null | melodic/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetLinkProperties.py | Dieptranivsr/Ros_Diep | d790e75e6f5da916701b11a2fdf3e03b6a47086b | [
"MIT"
] | 1 | 2021-07-08T10:26:06.000Z | 2021-07-08T10:31:11.000Z | melodic/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetLinkProperties.py | Dieptranivsr/Ros_Diep | d790e75e6f5da916701b11a2fdf3e03b6a47086b | [
"MIT"
] | null | null | null | # This Python file uses the following encoding: utf-8
"""autogenerated by genpy from gazebo_msgs/GetLinkPropertiesRequest.msg. Do not edit."""
import codecs
import sys
python3 = True if sys.hexversion > 0x03000000 else False
import genpy
import struct
_struct_I = genpy.struct_I
# This Python file uses the following encoding: utf-8
"""autogenerated by genpy from gazebo_msgs/GetLinkPropertiesResponse.msg. Do not edit."""
import codecs
import sys
python3 = True if sys.hexversion > 0x03000000 else False
import genpy
import struct
import geometry_msgs.msg
_struct_I = genpy.struct_I
_struct_7dB7dB = None
| 37.031519 | 284 | 0.638502 |
86cfbb57e1ec13e6ae0711449af6c95612ae3139 | 2,268 | py | Python | jupytext/kernels.py | st--/jupytext | f8e8352859cc22e17b11154d0770fd946c4a430a | [
"MIT"
] | 5,378 | 2018-09-01T22:03:43.000Z | 2022-03-31T06:51:42.000Z | jupytext/kernels.py | st--/jupytext | f8e8352859cc22e17b11154d0770fd946c4a430a | [
"MIT"
] | 812 | 2018-08-31T08:26:13.000Z | 2022-03-30T18:12:11.000Z | jupytext/kernels.py | st--/jupytext | f8e8352859cc22e17b11154d0770fd946c4a430a | [
"MIT"
] | 380 | 2018-09-02T01:40:07.000Z | 2022-03-25T13:57:23.000Z | """Find kernel specifications for a given language"""
import os
import sys
from .languages import same_language
from .reraise import reraise
try:
# I prefer not to take a dependency on jupyter_client
from jupyter_client.kernelspec import find_kernel_specs, get_kernel_spec
except ImportError as err:
find_kernel_specs = reraise(err)
get_kernel_spec = reraise(err)
def set_kernelspec_from_language(notebook):
"""Set the kernel specification based on the 'main_language' metadata"""
language = notebook.metadata.get("jupytext", {}).get("main_language")
if "kernelspec" not in notebook.metadata and language:
try:
kernelspec = kernelspec_from_language(language)
except ValueError:
return
notebook.metadata["kernelspec"] = kernelspec
notebook.metadata.get("jupytext", {}).pop("main_language")
def kernelspec_from_language(language):
"""Return the python kernel that matches the current env, or the first kernel that matches the given language"""
if language == "python":
# Return the kernel that matches the current Python executable
for name in find_kernel_specs():
kernel_specs = get_kernel_spec(name)
cmd = kernel_specs.argv[0]
if (
kernel_specs.language == "python"
and os.path.isfile(cmd)
and os.path.samefile(cmd, sys.executable)
):
return {
"name": name,
"language": language,
"display_name": kernel_specs.display_name,
}
raise ValueError(
"No kernel found that matches the current python executable {}\n".format(
sys.executable
)
+ "Install one with 'python -m ipykernel install --name kernel_name [--user]'"
)
for name in find_kernel_specs():
kernel_specs = get_kernel_spec(name)
if same_language(kernel_specs.language, language):
return {
"name": name,
"language": language,
"display_name": kernel_specs.display_name,
}
raise ValueError("No kernel found for the language {}".format(language))
| 36 | 116 | 0.622575 |
86d025f02ce51457ef476e760c051f7660045f69 | 5,333 | py | Python | scipy/sparse/_matrix_io.py | dhruv9vats/scipy | 48e1dd7e604df3ae57d104b407c5b7a2a6a3247d | [
"BSD-3-Clause"
] | 1 | 2021-08-16T09:32:42.000Z | 2021-08-16T09:32:42.000Z | scipy/sparse/_matrix_io.py | dhruv9vats/scipy | 48e1dd7e604df3ae57d104b407c5b7a2a6a3247d | [
"BSD-3-Clause"
] | 44 | 2019-06-27T15:56:14.000Z | 2022-03-15T22:21:10.000Z | scipy/sparse/_matrix_io.py | dhruv9vats/scipy | 48e1dd7e604df3ae57d104b407c5b7a2a6a3247d | [
"BSD-3-Clause"
] | 4 | 2020-06-13T10:32:25.000Z | 2021-12-03T15:48:16.000Z | import numpy as np
import scipy.sparse
__all__ = ['save_npz', 'load_npz']
# Make loading safe vs. malicious input
PICKLE_KWARGS = dict(allow_pickle=False)
def save_npz(file, matrix, compressed=True):
""" Save a sparse matrix to a file using ``.npz`` format.
Parameters
----------
file : str or file-like object
Either the file name (string) or an open file (file-like object)
where the data will be saved. If file is a string, the ``.npz``
extension will be appended to the file name if it is not already
there.
matrix: spmatrix (format: ``csc``, ``csr``, ``bsr``, ``dia`` or coo``)
The sparse matrix to save.
compressed : bool, optional
Allow compressing the file. Default: True
See Also
--------
scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
numpy.savez: Save several arrays into a ``.npz`` archive.
numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.
Examples
--------
Store sparse matrix to disk, and load it again:
>>> import scipy.sparse
>>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],
[4, 0, 0]], dtype=int64)
>>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],
[4, 0, 0]], dtype=int64)
"""
arrays_dict = {}
if matrix.format in ('csc', 'csr', 'bsr'):
arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr)
elif matrix.format == 'dia':
arrays_dict.update(offsets=matrix.offsets)
elif matrix.format == 'coo':
arrays_dict.update(row=matrix.row, col=matrix.col)
else:
raise NotImplementedError('Save is not implemented for sparse matrix of format {}.'.format(matrix.format))
arrays_dict.update(
format=matrix.format.encode('ascii'),
shape=matrix.shape,
data=matrix.data
)
if compressed:
np.savez_compressed(file, **arrays_dict)
else:
np.savez(file, **arrays_dict)
def load_npz(file):
""" Load a sparse matrix from a file using ``.npz`` format.
Parameters
----------
file : str or file-like object
Either the file name (string) or an open file (file-like object)
where the data will be loaded.
Returns
-------
result : csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix
A sparse matrix containing the loaded data.
Raises
------
OSError
If the input file does not exist or cannot be read.
See Also
--------
scipy.sparse.save_npz: Save a sparse matrix to a file using ``.npz`` format.
numpy.load: Load several arrays from a ``.npz`` archive.
Examples
--------
Store sparse matrix to disk, and load it again:
>>> import scipy.sparse
>>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],
[4, 0, 0]], dtype=int64)
>>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],
[4, 0, 0]], dtype=int64)
"""
with np.load(file, **PICKLE_KWARGS) as loaded:
try:
matrix_format = loaded['format']
except KeyError as e:
raise ValueError('The file {} does not contain a sparse matrix.'.format(file)) from e
matrix_format = matrix_format.item()
if not isinstance(matrix_format, str):
# Play safe with Python 2 vs 3 backward compatibility;
# files saved with SciPy < 1.0.0 may contain unicode or bytes.
matrix_format = matrix_format.decode('ascii')
try:
cls = getattr(scipy.sparse, '{}_matrix'.format(matrix_format))
except AttributeError as e:
raise ValueError('Unknown matrix format "{}"'.format(matrix_format)) from e
if matrix_format in ('csc', 'csr', 'bsr'):
return cls((loaded['data'], loaded['indices'], loaded['indptr']), shape=loaded['shape'])
elif matrix_format == 'dia':
return cls((loaded['data'], loaded['offsets']), shape=loaded['shape'])
elif matrix_format == 'coo':
return cls((loaded['data'], (loaded['row'], loaded['col'])), shape=loaded['shape'])
else:
raise NotImplementedError('Load is not implemented for '
'sparse matrix of format {}.'.format(matrix_format))
| 35.553333 | 114 | 0.615976 |
86d07b07d670dc9caa0bd92708721764a364d527 | 1,423 | py | Python | src/simulator/services/resources/atlas.py | ed741/PathBench | 50fe138eb1f824f49fe1a862705e435a1c3ec3ae | [
"BSD-3-Clause"
] | 46 | 2020-12-25T04:09:15.000Z | 2022-03-25T12:32:42.000Z | src/simulator/services/resources/atlas.py | ed741/PathBench | 50fe138eb1f824f49fe1a862705e435a1c3ec3ae | [
"BSD-3-Clause"
] | 36 | 2020-12-21T16:10:02.000Z | 2022-01-03T01:42:01.000Z | src/simulator/services/resources/atlas.py | judicaelclair/PathBenchURO | 101e67674efdfa8e27e1cf7787dac9fdf99552fe | [
"BSD-3-Clause"
] | 11 | 2021-01-06T23:34:12.000Z | 2022-03-21T17:21:47.000Z | from typing import Dict, List
from simulator.services.resources.directory import Directory
from simulator.services.services import Services
| 29.040816 | 97 | 0.579761 |
86d18fa6bf233db205e6db3a19952144dd79aa36 | 1,427 | py | Python | ingestion/src/metadata/great_expectations/builders/table/row_count_to_equal.py | ulixius9/OpenMetadata | f121698d968717f0932f685ef2a512c2a4d92438 | [
"Apache-2.0"
] | null | null | null | ingestion/src/metadata/great_expectations/builders/table/row_count_to_equal.py | ulixius9/OpenMetadata | f121698d968717f0932f685ef2a512c2a4d92438 | [
"Apache-2.0"
] | null | null | null | ingestion/src/metadata/great_expectations/builders/table/row_count_to_equal.py | ulixius9/OpenMetadata | f121698d968717f0932f685ef2a512c2a4d92438 | [
"Apache-2.0"
] | null | null | null | # Copyright 2022 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TestCase builder
"""
from metadata.generated.schema.api.tests.createTableTest import CreateTableTestRequest
from metadata.generated.schema.tests.table import tableRowCountToEqual
from metadata.generated.schema.tests.tableTest import TableTestType
from metadata.great_expectations.builders.table.base_table_test_builders import (
BaseTableTestBuilder,
)
| 41.970588 | 86 | 0.756833 |
86d22671738e4b0cf43566c5aeec7cd2a5f04193 | 6,899 | py | Python | tensorflow/bbox/jrieke-tf-parse-v2/jrieke_tf_dataset.py | gustavovaliati/obj-det-experiments | e81774a18b34c22d971ad15d7ac6eb8663ac6f22 | [
"Apache-2.0"
] | null | null | null | tensorflow/bbox/jrieke-tf-parse-v2/jrieke_tf_dataset.py | gustavovaliati/obj-det-experiments | e81774a18b34c22d971ad15d7ac6eb8663ac6f22 | [
"Apache-2.0"
] | null | null | null | tensorflow/bbox/jrieke-tf-parse-v2/jrieke_tf_dataset.py | gustavovaliati/obj-det-experiments | e81774a18b34c22d971ad15d7ac6eb8663ac6f22 | [
"Apache-2.0"
] | null | null | null | '''
This code is based on https://github.com/jrieke/shape-detection/
'''
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import tensorflow as tf
import datetime
| 40.582353 | 142 | 0.59052 |
86d39cbeb38ed832359d8101e1462aeccc15eee8 | 1,400 | py | Python | src/knownnodes.py | skeevey/PyBitmessage | 196d688b138393d1d540df3322844dfe7e7c02ba | [
"MIT"
] | 1 | 2018-04-25T08:08:47.000Z | 2018-04-25T08:08:47.000Z | src/knownnodes.py | skeevey/PyBitmessage | 196d688b138393d1d540df3322844dfe7e7c02ba | [
"MIT"
] | null | null | null | src/knownnodes.py | skeevey/PyBitmessage | 196d688b138393d1d540df3322844dfe7e7c02ba | [
"MIT"
] | 1 | 2018-04-25T08:08:48.000Z | 2018-04-25T08:08:48.000Z | import pickle
import threading
from bmconfigparser import BMConfigParser
import state
knownNodesLock = threading.Lock()
knownNodes = {}
knownNodesTrimAmount = 2000
| 30.434783 | 120 | 0.648571 |
86d3d194e9e0137871f97d1ad57cf24e9f4a90e3 | 1,672 | py | Python | chroma_agent/action_plugins/manage_node.py | whamcloud/iml-agent | fecb2468fd6edc822f3ab37ced444d98d8725730 | [
"MIT"
] | 1 | 2020-04-22T16:43:09.000Z | 2020-04-22T16:43:09.000Z | chroma_agent/action_plugins/manage_node.py | AlexTalker/iml-agent | 5ebcfe96be670912d9a9b7fbb23431af0d54f768 | [
"MIT"
] | 53 | 2018-07-07T18:17:50.000Z | 2021-03-19T23:15:28.000Z | chroma_agent/action_plugins/manage_node.py | AlexTalker/iml-agent | 5ebcfe96be670912d9a9b7fbb23431af0d54f768 | [
"MIT"
] | 6 | 2018-06-18T08:51:38.000Z | 2019-10-24T12:16:42.000Z | # Copyright (c) 2018 DDN. All rights reserved.
# Use of this source code is governed by a MIT-style
# license that can be found in the LICENSE file.
import os
from chroma_agent.lib.shell import AgentShell
from chroma_agent.log import console_log
from chroma_agent.device_plugins.action_runner import CallbackAfterResponse
from chroma_agent.lib.pacemaker import PacemakerConfig
ACTIONS = [reboot_server, shutdown_server, fail_node, stonith]
| 27.866667 | 75 | 0.703947 |
86d45952adaab5e1d25729182d1ca80f64803a29 | 8,103 | py | Python | census_data_downloader/core/tables.py | ian-r-rose/census-data-downloader | f8ac9d773e6d3f52be87bf916a2e32249391f966 | [
"MIT"
] | null | null | null | census_data_downloader/core/tables.py | ian-r-rose/census-data-downloader | f8ac9d773e6d3f52be87bf916a2e32249391f966 | [
"MIT"
] | null | null | null | census_data_downloader/core/tables.py | ian-r-rose/census-data-downloader | f8ac9d773e6d3f52be87bf916a2e32249391f966 | [
"MIT"
] | null | null | null | #! /usr/bin/env python
# -*- coding: utf-8 -*
"""
A base class that governs how to download and process tables from a Census API table.
"""
import os
import logging
import pathlib
from . import geotypes
from . import decorators
logger = logging.getLogger(__name__)
| 28.038062 | 96 | 0.60817 |
86d61d512c3c9d47b1f63fe91873604a549e077d | 5,422 | py | Python | sgf2ebook.py | loujine/sgf2ebook | 13c87056646cc6c06485b129221ab2028e67ef95 | [
"MIT"
] | null | null | null | sgf2ebook.py | loujine/sgf2ebook | 13c87056646cc6c06485b129221ab2028e67ef95 | [
"MIT"
] | null | null | null | sgf2ebook.py | loujine/sgf2ebook | 13c87056646cc6c06485b129221ab2028e67ef95 | [
"MIT"
] | null | null | null | #!/usr/bin/env python3
import argparse
import os
from pathlib import Path
import shutil
import subprocess
import sys
from tempfile import TemporaryDirectory
from uuid import uuid4
from zipfile import ZipFile
import jinja2
import sente # type: ignore
__version__ = (1, 0, 0)
SGF_RENDER_EXECUTABLE = './sgf-render'
TEMPLATEDIR = Path(__file__, '..', 'epub_template').resolve()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='')
parser.add_argument('--input-path', '-i', help='Input files or directory')
parser.add_argument('--output-path', '-o', help='Output directory')
args = parser.parse_args()
path = Path(args.input_path)
outpath = Path(args.output_path)
if not path.exists():
print(f'Input path {path} not found')
sys.exit(1)
if path.is_file():
main(path, outpath)
if path.is_dir():
for filepath in sorted(path.rglob('*.sgf')):
main(filepath, outpath.joinpath(filepath.parent.relative_to(path)))
| 34.75641 | 142 | 0.574511 |
86d75a7478a79891b6baf0f18c7802c22b104725 | 918 | py | Python | dandeliondiary/household/urls.py | amberdiehl/dandeliondiary_project | e9bace5bd7980def6ca763840ab5b38f1e05cd3d | [
"FSFAP"
] | null | null | null | dandeliondiary/household/urls.py | amberdiehl/dandeliondiary_project | e9bace5bd7980def6ca763840ab5b38f1e05cd3d | [
"FSFAP"
] | 6 | 2020-04-29T23:54:15.000Z | 2022-03-11T23:25:24.000Z | dandeliondiary/household/urls.py | amberdiehl/dandeliondiary_project | e9bace5bd7980def6ca763840ab5b38f1e05cd3d | [
"FSFAP"
] | null | null | null | from django.conf.urls import include, url
from . import views
urlpatterns = [
url(r'^settings$', views.household_dashboard, name='household_dashboard'),
url(r'^myinfo$', views.my_info, name='my_info'),
url(r'^profile$', views.household_profile, name='maintain_household'),
url(r'^members$', views.household_members, name='maintain_members'),
url(r'^vehicles$', views.household_vehicles, name='maintain_vehicles'),
url(r'^ajax/models-by-make/(?P<make_id>\d+)/$', views.ajax_models_by_make),
url(r'^ajax/makes-by-type/(?P<type_id>\d+)/$', views.ajax_makes_by_type),
url(r'^ajax/add-make/(?P<type_key>\d+)/(?P<make>[\w ]{1,50})/$', views.ajax_add_make),
url(r'^ajax/add-model/(?P<make_key>\d+)/(?P<model>[\w -]{1,128})/$', views.ajax_add_model),
url(r'^ajax/delete-invite/$', views.ajax_delete_invite),
url(r'^ajax/change-member-status/$', views.ajax_change_member_status),
]
| 54 | 95 | 0.683007 |
86d75f7e9a302f49289d9be8498b550dc47650fa | 79,634 | py | Python | private/templates/NYC/config.py | devinbalkind/eden | d5a684eae537432eb2c7d954132484a4714ca8fb | [
"MIT"
] | null | null | null | private/templates/NYC/config.py | devinbalkind/eden | d5a684eae537432eb2c7d954132484a4714ca8fb | [
"MIT"
] | null | null | null | private/templates/NYC/config.py | devinbalkind/eden | d5a684eae537432eb2c7d954132484a4714ca8fb | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
try:
# Python 2.7
from collections import OrderedDict
except:
# Python 2.6
from gluon.contrib.simplejson.ordered_dict import OrderedDict
from gluon import current
from gluon.html import A, URL
from gluon.storage import Storage
from s3 import s3_fullname
T = current.T
settings = current.deployment_settings
"""
Template settings for NYC Prepared
"""
# Pre-Populate
settings.base.prepopulate = ("NYC",)
settings.base.system_name = T("NYC Prepared")
settings.base.system_name_short = T("NYC Prepared")
# Theme (folder to use for views/layout.html)
settings.base.theme = "NYC"
settings.ui.formstyle_row = "bootstrap"
settings.ui.formstyle = "bootstrap"
settings.ui.filter_formstyle = "table_inline"
settings.msg.parser = "NYC"
# Uncomment to Hide the language toolbar
settings.L10n.display_toolbar = False
# Default timezone for users
settings.L10n.utc_offset = "UTC -0500"
# Uncomment these to use US-style dates in English
settings.L10n.date_format = "%m-%d-%Y"
# Start week on Sunday
settings.L10n.firstDOW = 0
# Number formats (defaults to ISO 31-0)
# Decimal separator for numbers (defaults to ,)
settings.L10n.decimal_separator = "."
# Thousands separator for numbers (defaults to space)
settings.L10n.thousands_separator = ","
# Default Country Code for telephone numbers
settings.L10n.default_country_code = 1
# Enable this to change the label for 'Mobile Phone'
settings.ui.label_mobile_phone = "Cell Phone"
# Enable this to change the label for 'Postcode'
settings.ui.label_postcode = "ZIP Code"
# Uncomment to disable responsive behavior of datatables
# - Disabled until tested
settings.ui.datatables_responsive = False
# PDF to Letter
settings.base.paper_size = T("Letter")
# Restrict the Location Selector to just certain countries
# NB This can also be over-ridden for specific contexts later
# e.g. Activities filtered to those of parent Project
settings.gis.countries = ("US",)
settings.fin.currencies = {
"USD" : T("United States Dollars"),
}
settings.L10n.languages = OrderedDict([
("en", "English"),
("es", "Espaol"),
])
# Authentication settings
# These settings should be changed _after_ the 1st (admin) user is
# registered in order to secure the deployment
# Should users be allowed to register themselves?
settings.security.self_registration = "index"
# Do new users need to verify their email address?
settings.auth.registration_requires_verification = True
# Do new users need to be approved by an administrator prior to being able to login?
settings.auth.registration_requires_approval = True
# Always notify the approver of a new (verified) user, even if the user is automatically approved
#settings.auth.always_notify_approver = False
# Uncomment this to request the Mobile Phone when a user registers
settings.auth.registration_requests_mobile_phone = True
# Uncomment this to request the Organisation when a user registers
settings.auth.registration_requests_organisation = True
# Uncomment this to request the Site when a user registers
#settings.auth.registration_requests_site = True
# Roles that newly-registered users get automatically
#settings.auth.registration_roles = { 0: ["comms_dispatch"]}
#settings.auth.registration_link_user_to = {"staff":T("Staff"),
# #"volunteer":T("Volunteer")
# }
settings.auth.registration_link_user_to_default = "staff"
settings.security.policy = 5 # Controller, Function & Table ACLs
# Enable this to have Open links in IFrames open a full page in a new tab
settings.ui.iframe_opens_full = True
settings.ui.label_attachments = "Media"
settings.ui.update_label = "Edit"
# Uncomment to disable checking that LatLons are within boundaries of their parent
#settings.gis.check_within_parent_boundaries = False
# GeoNames username
settings.gis.geonames_username = "eden_nyc"
# Uncomment to show created_by/modified_by using Names not Emails
settings.ui.auth_user_represent = "name"
# Record Approval
settings.auth.record_approval = True
settings.auth.record_approval_required_for = ("org_organisation",)
# -----------------------------------------------------------------------------
# Audit
settings.security.audit_write = audit_write
# -----------------------------------------------------------------------------
# CMS
# Uncomment to use Bookmarks in Newsfeed
settings.cms.bookmarks = True
# Uncomment to use have Filter form in Newsfeed be open by default
settings.cms.filter_open = True
# Uncomment to adjust filters in Newsfeed when clicking on locations instead of opening the profile page
settings.cms.location_click_filters = True
# Uncomment to use organisation_id instead of created_by in Newsfeed
settings.cms.organisation = "post_organisation.organisation_id"
# Uncomment to use org_group_id in Newsfeed
settings.cms.organisation_group = "post_organisation_group.group_id"
# Uncomment to use person_id instead of created_by in Newsfeed
settings.cms.person = "person_id"
# Uncomment to use Rich Text editor in Newsfeed
settings.cms.richtext = True
# Uncomment to show Links in Newsfeed
settings.cms.show_links = True
# Uncomment to show Tags in Newsfeed
settings.cms.show_tags = True
# Uncomment to show post Titles in Newsfeed
settings.cms.show_titles = True
# -----------------------------------------------------------------------------
# Inventory Management
# Uncomment to customise the label for Facilities in Inventory Management
settings.inv.facility_label = "Facility"
# Uncomment if you need a simpler (but less accountable) process for managing stock levels
#settings.inv.direct_stock_edits = True
# Uncomment to call Stock Adjustments, 'Stock Counts'
settings.inv.stock_count = True
# Uncomment to not track pack values
settings.inv.track_pack_values = False
settings.inv.send_show_org = False
# Types common to both Send and Receive
settings.inv.shipment_types = {
1: T("Other Warehouse")
}
settings.inv.send_types = {
#21: T("Distribution")
}
settings.inv.send_type_default = 1
settings.inv.item_status = {
#0: current.messages["NONE"],
#1: T("Dump"),
#2: T("Sale"),
#3: T("Reject"),
#4: T("Surplus")
}
# -----------------------------------------------------------------------------
# Organisations
#
# Enable the use of Organisation Groups
settings.org.groups = "Network"
# Make Services Hierarchical
settings.org.services_hierarchical = True
# Set the label for Sites
settings.org.site_label = "Facility"
#settings.org.site_label = "Location"
# Uncomment to show the date when a Site (Facilities-only for now) was last contacted
settings.org.site_last_contacted = True
# Enable certain fields just for specific Organisations
# empty list => disabled for all (including Admin)
#settings.org.dependent_fields = { \
# "pr_person_details.mother_name" : [],
# "pr_person_details.father_name" : [],
# "pr_person_details.company" : [],
# "pr_person_details.affiliations" : [],
# "vol_volunteer.active" : [],
# "vol_volunteer_cluster.vol_cluster_type_id" : [],
# "vol_volunteer_cluster.vol_cluster_id" : [],
# "vol_volunteer_cluster.vol_cluster_position_id" : [],
# }
# Uncomment to use an Autocomplete for Site lookup fields
settings.org.site_autocomplete = True
# Extra fields to search in Autocompletes & display in Representations
settings.org.site_autocomplete_fields = ("organisation_id$name",
"location_id$addr_street",
)
# Uncomment to hide inv & req tabs from Sites
#settings.org.site_inv_req_tabs = True
# -----------------------------------------------------------------------------
def facility_marker_fn(record):
"""
Function to decide which Marker to use for Facilities Map
@ToDo: Legend
"""
db = current.db
s3db = current.s3db
table = db.org_facility_type
ltable = db.org_site_facility_type
query = (ltable.site_id == record.site_id) & \
(ltable.facility_type_id == table.id)
rows = db(query).select(table.name)
types = [row.name for row in rows]
# Use Marker in preferential order
if "Hub" in types:
marker = "warehouse"
elif "Medical Clinic" in types:
marker = "hospital"
elif "Food" in types:
marker = "food"
elif "Relief Site" in types:
marker = "asset"
elif "Residential Building" in types:
marker = "residence"
#elif "Shelter" in types:
# marker = "shelter"
else:
# Unknown
marker = "office"
if settings.has_module("req"):
# Colour code by open/priority requests
reqs = record.reqs
if reqs == 3:
# High
marker = "%s_red" % marker
elif reqs == 2:
# Medium
marker = "%s_yellow" % marker
elif reqs == 1:
# Low
marker = "%s_green" % marker
mtable = db.gis_marker
try:
marker = db(mtable.name == marker).select(mtable.image,
mtable.height,
mtable.width,
cache=s3db.cache,
limitby=(0, 1)
).first()
except:
marker = db(mtable.name == "office").select(mtable.image,
mtable.height,
mtable.width,
cache=s3db.cache,
limitby=(0, 1)
).first()
return marker
# -----------------------------------------------------------------------------
def org_facility_onvalidation(form):
"""
Default the name to the Street Address
"""
form_vars = form.vars
name = form_vars.get("name", None)
if name:
return
address = form_vars.get("address", None)
if address:
form_vars.name = address
else:
# We need a default
form_vars.name = current.db.org_facility.location_id.represent(form_vars.location_id)
# -----------------------------------------------------------------------------
settings.customise_org_facility_controller = customise_org_facility_controller
# -----------------------------------------------------------------------------
settings.customise_org_organisation_resource = customise_org_organisation_resource
# -----------------------------------------------------------------------------
settings.customise_org_organisation_controller = customise_org_organisation_controller
# -----------------------------------------------------------------------------
settings.customise_org_group_controller = customise_org_group_controller
# -----------------------------------------------------------------------------
# Persons
# Uncomment to hide fields in S3AddPersonWidget
settings.pr.request_dob = False
settings.pr.request_gender = False
# Doesn't yet work (form fails to submit)
#settings.pr.select_existing = False
settings.pr.show_emergency_contacts = False
# -----------------------------------------------------------------------------
# Persons
settings.customise_pr_person_controller = customise_pr_person_controller
# -----------------------------------------------------------------------------
# Groups
def chairperson(row):
"""
Virtual Field to show the chairperson of a group
"""
if hasattr(row, "pr_group"):
row = row.pr_group
try:
group_id = row.id
except:
# not available
return current.messages["NONE"]
db = current.db
mtable = current.s3db.pr_group_membership
ptable = db.pr_person
query = (mtable.group_id == group_id) & \
(mtable.group_head == True) & \
(mtable.person_id == ptable.id)
chair = db(query).select(ptable.first_name,
ptable.middle_name,
ptable.last_name,
ptable.id,
limitby=(0, 1)).first()
if chair:
# Only used in list view so HTML is OK
return A(s3_fullname(chair),
_href=URL(c="hrm", f="person", args=chair.id))
else:
return current.messages["NONE"]
# -----------------------------------------------------------------------------
settings.customise_pr_group_controller = customise_pr_group_controller
# -----------------------------------------------------------------------------
def customise_pr_group_resource(r, tablename):
"""
Customise pr_group resource (in group & org_group controllers)
- runs after controller customisation
- but runs before prep
"""
s3db = current.s3db
table = s3db.pr_group
field = table.group_type
field.default = 3 # Relief Team, to show up in hrm/group
field.readable = field.writable = False
table.name.label = T("Name")
table.description.label = T("Description")
table.meetings.readable = table.meetings.writable = True
# Increase size of widget
from s3 import s3_comments_widget
table.description.widget = s3_comments_widget
from gluon import Field
table.chairperson = Field.Method("chairperson", chairperson)
# Format for filter_widgets & imports
s3db.add_components("pr_group",
org_group_team = "group_id",
)
s3db.configure("pr_group",
# Redirect to member list when a new group has been created
create_next = URL(c="hrm", f="group",
args=["[id]", "group_membership"]),
)
settings.customise_pr_group_resource = customise_pr_group_resource
# -----------------------------------------------------------------------------
def pr_contact_postprocess(form):
"""
Import Organisation/Network RSS Feeds
"""
s3db = current.s3db
form_vars = form.vars
rss_url = form_vars.rsscontact_i_value_edit_0 or \
form_vars.rsscontact_i_value_edit_none
if not rss_url:
if form.record:
# Update form
old_rss = form.record.sub_rsscontact
import json
data = old_rss = json.loads(old_rss)["data"]
if data:
# RSS feed is being deleted, so we should disable it
old_rss = data[0]["value"]["value"]
table = s3db.msg_rss_channel
old = current.db(table.url == old_rss).select(table.channel_id,
table.enabled,
limitby = (0, 1)
).first()
if old and old.enabled:
s3db.msg_channel_disable("msg_rss_channel", old.channel_id)
return
else:
# Nothing to do :)
return
# Check if we already have a channel for this Contact
db = current.db
name = form_vars.name
table = s3db.msg_rss_channel
name_exists = db(table.name == name).select(table.id,
table.channel_id,
table.enabled,
table.url,
limitby = (0, 1)
).first()
no_import = current.request.post_vars.get("rss_no_import", None)
if name_exists:
if name_exists.url == rss_url:
# No change to either Contact Name or URL
if no_import:
if name_exists.enabled:
# Disable channel (& associated parsers)
s3db.msg_channel_disable("msg_rss_channel",
name_exists.channel_id)
return
elif name_exists.enabled:
# Nothing to do :)
return
else:
# Enable channel (& associated parsers)
s3db.msg_channel_enable("msg_rss_channel",
name_exists.channel_id)
return
# Check if we already have a channel for this URL
url_exists = db(table.url == rss_url).select(table.id,
table.channel_id,
table.enabled,
limitby = (0, 1)
).first()
if url_exists:
# We have 2 feeds: 1 for the Contact & 1 for the URL
# Disable the old Contact one and link the URL one to this Contact
# and ensure active or not as appropriate
# Name field is unique so rename old one
name_exists.update_record(name="%s (Old)" % name)
if name_exists.enabled:
# Disable channel (& associated parsers)
s3db.msg_channel_disable("msg_rss_channel",
name_exists.channel_id)
url_exists.update_record(name=name)
if no_import:
if url_exists.enabled:
# Disable channel (& associated parsers)
s3db.msg_channel_disable("msg_rss_channel",
url_exists.channel_id)
return
elif url_exists.enabled:
# Nothing to do :)
return
else:
# Enable channel (& associated parsers)
s3db.msg_channel_enable("msg_rss_channel",
url_exists.channel_id)
return
else:
# Update the URL
name_exists.update_record(url=rss_url)
if no_import:
if name_exists.enabled:
# Disable channel (& associated parsers)
s3db.msg_channel_disable("msg_rss_channel",
name_exists.channel_id)
return
elif name_exists.enabled:
# Nothing to do :)
return
else:
# Enable channel (& associated parsers)
s3db.msg_channel_enable("msg_rss_channel",
name_exists.channel_id)
return
else:
# Check if we already have a channel for this URL
url_exists = db(table.url == rss_url).select(table.id,
table.channel_id,
table.enabled,
limitby = (0, 1)
).first()
if url_exists:
# Either Contact has changed Name or this feed is associated with
# another Contact
# - update Feed name
url_exists.update_record(name=name)
if no_import:
if url_exists.enabled:
# Disable channel (& associated parsers)
s3db.msg_channel_disable("msg_rss_channel",
url_exists.channel_id)
return
elif url_exists.enabled:
# Nothing to do :)
return
else:
# Enable channel (& associated parsers)
s3db.msg_channel_enable("msg_rss_channel",
url_exists.channel_id)
return
elif no_import:
# Nothing to do :)
return
#else:
# # Create a new Feed
# pass
# Add RSS Channel
_id = table.insert(name=name, enabled=True, url=rss_url)
record = dict(id=_id)
s3db.update_super(table, record)
# Enable
channel_id = record["channel_id"]
s3db.msg_channel_enable("msg_rss_channel", channel_id)
# Setup Parser
table = s3db.msg_parser
_id = table.insert(channel_id=channel_id,
function_name="parse_rss",
enabled=True)
s3db.msg_parser_enable(_id)
# Check Now
async = current.s3task.async
async("msg_poll", args=["msg_rss_channel", channel_id])
async("msg_parse", args=[channel_id, "parse_rss"])
# -----------------------------------------------------------------------------
# Human Resource Management
# Uncomment to chage the label for 'Staff'
settings.hrm.staff_label = "Contacts"
# Uncomment to allow Staff & Volunteers to be registered without an email address
settings.hrm.email_required = False
# Uncomment to allow Staff & Volunteers to be registered without an Organisation
settings.hrm.org_required = False
# Uncomment to show the Organisation name in HR represents
settings.hrm.show_organisation = True
# Uncomment to disable Staff experience
settings.hrm.staff_experience = False
# Uncomment to disable the use of HR Certificates
settings.hrm.use_certificates = False
# Uncomment to disable the use of HR Credentials
settings.hrm.use_credentials = False
# Uncomment to enable the use of HR Education
settings.hrm.use_education = False
# Uncomment to disable the use of HR Skills
#settings.hrm.use_skills = False
# Uncomment to disable the use of HR Trainings
settings.hrm.use_trainings = False
# Uncomment to disable the use of HR Description
settings.hrm.use_description = False
# Change the label of "Teams" to "Groups"
settings.hrm.teams = "Groups"
# Custom label for Organisations in HR module
#settings.hrm.organisation_label = "National Society / Branch"
settings.hrm.organisation_label = "Organization"
# -----------------------------------------------------------------------------
settings.customise_hrm_human_resource_controller = customise_hrm_human_resource_controller
# -----------------------------------------------------------------------------
def customise_hrm_human_resource_resource(r, tablename):
"""
Customise hrm_human_resource resource (in facility, human_resource, organisation & person controllers)
- runs after controller customisation
- but runs before prep
"""
s3db = current.s3db
from s3 import S3SQLCustomForm, S3SQLInlineComponent
crud_form = S3SQLCustomForm("person_id",
"organisation_id",
"site_id",
S3SQLInlineComponent(
"group_person",
label = T("Network"),
link = False,
fields = [("", "group_id")],
multiple = False,
),
"job_title_id",
"start_date",
)
list_fields = ["id",
"person_id",
"job_title_id",
"organisation_id",
(T("Network"), "group_person.group_id"),
(T("Groups"), "person_id$group_membership.group_id"),
"site_id",
#"site_contact",
(T("Email"), "email.value"),
(settings.get_ui_label_mobile_phone(), "phone.value"),
]
s3db.configure("hrm_human_resource",
crud_form = crud_form,
list_fields = list_fields,
)
settings.customise_hrm_human_resource_resource = customise_hrm_human_resource_resource
# -----------------------------------------------------------------------------
settings.customise_hrm_job_title_controller = customise_hrm_job_title_controller
# -----------------------------------------------------------------------------
# Projects
# Use codes for projects (called 'blurb' in NYC)
settings.project.codes = True
# Uncomment this to use settings suitable for detailed Task management
settings.project.mode_task = False
# Uncomment this to use Activities for projects
settings.project.activities = True
# Uncomment this to use Milestones in project/task.
settings.project.milestones = False
# Uncomment this to disable Sectors in projects
settings.project.sectors = False
# Multiple partner organizations
settings.project.multiple_organisations = True
settings.customise_project_project_controller = customise_project_project_controller
# -----------------------------------------------------------------------------
# Requests Management
settings.req.req_type = ["People", "Stock"]#, "Summary"]
settings.req.prompt_match = False
#settings.req.use_commit = False
settings.req.requester_optional = True
settings.req.date_writable = False
settings.req.item_quantities_writable = True
settings.req.skill_quantities_writable = True
settings.req.items_ask_purpose = False
#settings.req.use_req_number = False
# Label for Requester
settings.req.requester_label = "Site Contact"
# Filter Requester as being from the Site
settings.req.requester_from_site = True
# Label for Inventory Requests
settings.req.type_inv_label = "Supplies"
# Uncomment to enable Summary 'Site Needs' tab for Offices/Facilities
settings.req.summary = True
# -----------------------------------------------------------------------------
def req_req_postprocess(form):
"""
Runs after crud_form completes
- creates a cms_post in the newswire
- @ToDo: Send out Tweets
"""
req_id = form.vars.id
db = current.db
s3db = current.s3db
rtable = s3db.req_req
# Read the full record
row = db(rtable.id == req_id).select(rtable.type,
rtable.site_id,
rtable.requester_id,
rtable.priority,
rtable.date_required,
rtable.purpose,
rtable.comments,
limitby=(0, 1)
).first()
# Build Title & Body from the Request details
priority = rtable.priority.represent(row.priority)
date_required = row.date_required
if date_required:
date = rtable.date_required.represent(date_required)
title = "%(priority)s by %(date)s" % dict(priority=priority,
date=date)
else:
title = priority
body = row.comments
if row.type == 1:
# Items
ritable = s3db.req_req_item
items = db(ritable.req_id == req_id).select(ritable.item_id,
ritable.item_pack_id,
ritable.quantity)
item_represent = s3db.supply_item_represent
pack_represent = s3db.supply_item_pack_represent
for item in items:
item = "%s %s %s" % (item.quantity,
pack_represent(item.item_pack_id),
item_represent(item.item_id))
body = "%s\n%s" % (item, body)
else:
# Skills
body = "%s\n%s" % (row.purpose, body)
rstable = s3db.req_req_skill
skills = db(rstable.req_id == req_id).select(rstable.skill_id,
rstable.quantity)
skill_represent = s3db.hrm_multi_skill_represent
for skill in skills:
item = "%s %s" % (skill.quantity, skill_represent(skill.skill_id))
body = "%s\n%s" % (item, body)
# Lookup series_id
stable = s3db.cms_series
try:
series_id = db(stable.name == "Request").select(stable.id,
cache=s3db.cache,
limitby=(0, 1)
).first().id
except:
# Prepop hasn't been run
series_id = None
# Location is that of the site
otable = s3db.org_site
location_id = db(otable.site_id == row.site_id).select(otable.location_id,
limitby=(0, 1)
).first().location_id
# Create Post
ptable = s3db.cms_post
_id = ptable.insert(series_id=series_id,
title=title,
body=body,
location_id=location_id,
person_id=row.requester_id,
)
record = dict(id=_id)
s3db.update_super(ptable, record)
# Add source link
url = "%s%s" % (settings.get_base_public_url(),
URL(c="req", f="req", args=req_id))
s3db.doc_document.insert(doc_id=record["doc_id"],
url=url,
)
# -----------------------------------------------------------------------------
settings.customise_req_req_resource = customise_req_req_resource
# -----------------------------------------------------------------------------
# Comment/uncomment modules here to disable/enable them
settings.modules = OrderedDict([
# Core modules which shouldn't be disabled
("default", Storage(
name_nice = T("Home"),
restricted = False, # Use ACLs to control access to this module
access = None, # All Users (inc Anonymous) can see this module in the default menu & access the controller
module_type = None # This item is not shown in the menu
)),
("admin", Storage(
name_nice = T("Admin"),
#description = "Site Administration",
restricted = True,
access = "|1|", # Only Administrators can see this module in the default menu & access the controller
module_type = None # This item is handled separately for the menu
)),
("appadmin", Storage(
name_nice = T("Administration"),
#description = "Site Administration",
restricted = True,
module_type = None # No Menu
)),
("errors", Storage(
name_nice = T("Ticket Viewer"),
#description = "Needed for Breadcrumbs",
restricted = False,
module_type = None # No Menu
)),
("sync", Storage(
name_nice = T("Synchronization"),
#description = "Synchronization",
restricted = True,
access = "|1|", # Only Administrators can see this module in the default menu & access the controller
module_type = None # This item is handled separately for the menu
)),
# Uncomment to enable internal support requests
#("support", Storage(
# name_nice = T("Support"),
# #description = "Support Requests",
# restricted = True,
# module_type = None # This item is handled separately for the menu
# )),
("gis", Storage(
name_nice = T("Map"),
#description = "Situation Awareness & Geospatial Analysis",
restricted = True,
module_type = 9, # 8th item in the menu
)),
("pr", Storage(
name_nice = T("Person Registry"),
#description = "Central point to record details on People",
restricted = True,
access = "|1|", # Only Administrators can see this module in the default menu (access to controller is possible to all still)
module_type = 10
)),
("org", Storage(
name_nice = T("Locations"),
#description = 'Lists "who is doing what & where". Allows relief agencies to coordinate their activities',
restricted = True,
module_type = 4
)),
# All modules below here should be possible to disable safely
("hrm", Storage(
name_nice = T("Contacts"),
#description = "Human Resources Management",
restricted = True,
module_type = 3,
)),
#("vol", Storage(
# name_nice = T("Volunteers"),
# #description = "Human Resources Management",
# restricted = True,
# module_type = 2,
# )),
("cms", Storage(
name_nice = T("Content Management"),
#description = "Content Management System",
restricted = True,
module_type = 10,
)),
("doc", Storage(
name_nice = T("Documents"),
#description = "A library of digital resources, such as photos, documents and reports",
restricted = True,
module_type = None,
)),
("msg", Storage(
name_nice = T("Messaging"),
#description = "Sends & Receives Alerts via Email & SMS",
restricted = True,
# The user-visible functionality of this module isn't normally required. Rather it's main purpose is to be accessed from other modules.
module_type = None,
)),
("supply", Storage(
name_nice = T("Supply Chain Management"),
#description = "Used within Inventory Management, Request Management and Asset Management",
restricted = True,
module_type = None, # Not displayed
)),
("inv", Storage(
name_nice = T("Inventory"),
#description = "Receiving and Sending Items",
restricted = True,
module_type = 10
)),
#("proc", Storage(
# name_nice = T("Procurement"),
# #description = "Ordering & Purchasing of Goods & Services",
# restricted = True,
# module_type = 10
# )),
("asset", Storage(
name_nice = T("Assets"),
#description = "Recording and Assigning Assets",
restricted = True,
module_type = 10,
)),
# Vehicle depends on Assets
#("vehicle", Storage(
# name_nice = T("Vehicles"),
# #description = "Manage Vehicles",
# restricted = True,
# module_type = 10,
# )),
("req", Storage(
name_nice = T("Requests"),
#description = "Manage requests for supplies, assets, staff or other resources. Matches against Inventories where supplies are requested.",
restricted = True,
module_type = 1,
)),
("project", Storage(
name_nice = T("Projects"),
#description = "Tracking of Projects, Activities and Tasks",
restricted = True,
module_type = 10
)),
("assess", Storage(
name_nice = T("Assessments"),
#description = "Rapid Assessments & Flexible Impact Assessments",
restricted = True,
module_type = 5,
)),
("event", Storage(
name_nice = T("Events"),
#description = "Activate Events (e.g. from Scenario templates) for allocation of appropriate Resources (Human, Assets & Facilities).",
restricted = True,
module_type = 10,
)),
("survey", Storage(
name_nice = T("Surveys"),
#description = "Create, enter, and manage surveys.",
restricted = True,
module_type = 5,
)),
#("cr", Storage(
# name_nice = T("Shelters"),
# #description = "Tracks the location, capacity and breakdown of victims in Shelters",
# restricted = True,
# module_type = 10
# )),
#("dvr", Storage(
# name_nice = T("Disaster Victim Registry"),
# #description = "Allow affected individuals & households to register to receive compensation and distributions",
# restricted = False,
# module_type = 10,
# )),
#("member", Storage(
# name_nice = T("Members"),
# #description = "Membership Management System",
# restricted = True,
# module_type = 10,
# )),
# @ToDo: Rewrite in a modern style
#("budget", Storage(
# name_nice = T("Budgeting Module"),
# #description = "Allows a Budget to be drawn up",
# restricted = True,
# module_type = 10
# )),
# @ToDo: Port these Assessments to the Survey module
#("building", Storage(
# name_nice = T("Building Assessments"),
# #description = "Building Safety Assessments",
# restricted = True,
# module_type = 10,
# )),
])
| 39.422772 | 187 | 0.470226 |
86d782fd2d0c71e606843e5d70887529cd2c5a40 | 106 | py | Python | experiments/issue561/v2.py | nitinkaveriappa/downward | 5c9a1b5111d667bb96f94da61ca2a45b1b70bb83 | [
"MIT"
] | 4 | 2019-04-23T10:41:35.000Z | 2019-10-27T05:14:42.000Z | experiments/issue561/v2.py | nitinkaveriappa/downward | 5c9a1b5111d667bb96f94da61ca2a45b1b70bb83 | [
"MIT"
] | null | null | null | experiments/issue561/v2.py | nitinkaveriappa/downward | 5c9a1b5111d667bb96f94da61ca2a45b1b70bb83 | [
"MIT"
] | 4 | 2018-01-16T00:00:22.000Z | 2019-11-01T23:35:01.000Z | #! /usr/bin/env python
# -*- coding: utf-8 -*-
from main import main
main("issue561-v1", "issue561-v2")
| 15.142857 | 34 | 0.632075 |
86d8ff6a04670083ea5d1c4de998cdc6916ada2c | 4,207 | py | Python | q2_qemistree/tests/test_fingerprint.py | tgroth97/q2-qemistree | 289c447a6c3a29478bb84212281ef0d7ffc1387a | [
"BSD-2-Clause"
] | null | null | null | q2_qemistree/tests/test_fingerprint.py | tgroth97/q2-qemistree | 289c447a6c3a29478bb84212281ef0d7ffc1387a | [
"BSD-2-Clause"
] | null | null | null | q2_qemistree/tests/test_fingerprint.py | tgroth97/q2-qemistree | 289c447a6c3a29478bb84212281ef0d7ffc1387a | [
"BSD-2-Clause"
] | null | null | null | # ----------------------------------------------------------------------------
# Copyright (c) 2016-2018, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
from unittest import TestCase, main
import qiime2
import os
from q2_qemistree import MGFDirFmt, SiriusDirFmt, ZodiacDirFmt, OutputDirs
from q2_qemistree import (compute_fragmentation_trees,
rerank_molecular_formulas,
predict_fingerprints)
from q2_qemistree._fingerprint import artifactory
if __name__ == '__main__':
main()
| 45.728261 | 78 | 0.548134 |
86d90c0ca6a5dbc266bca705498a4a9e3c8d3aac | 721 | py | Python | chroma-manager/tests/utils/__init__.py | GarimaVishvakarma/intel-chroma | fdf68ed00b13643c62eb7480754d3216d9295e0b | [
"MIT"
] | null | null | null | chroma-manager/tests/utils/__init__.py | GarimaVishvakarma/intel-chroma | fdf68ed00b13643c62eb7480754d3216d9295e0b | [
"MIT"
] | null | null | null | chroma-manager/tests/utils/__init__.py | GarimaVishvakarma/intel-chroma | fdf68ed00b13643c62eb7480754d3216d9295e0b | [
"MIT"
] | null | null | null | import time
import datetime
import contextlib
| 24.033333 | 74 | 0.629681 |
86d90c692c5aa920f75d361edbf2de1c22109ec8 | 3,518 | py | Python | tempo/worker.py | rackerlabs/Tempo | 60c2adaf5b592ae171987b999e0b9cc46b80c54e | [
"Apache-2.0"
] | 4 | 2015-04-26T01:46:51.000Z | 2020-11-10T13:07:59.000Z | tempo/worker.py | rackerlabs/Tempo | 60c2adaf5b592ae171987b999e0b9cc46b80c54e | [
"Apache-2.0"
] | null | null | null | tempo/worker.py | rackerlabs/Tempo | 60c2adaf5b592ae171987b999e0b9cc46b80c54e | [
"Apache-2.0"
] | null | null | null | # vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright 2012 Rackspace
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import kombu
from tempo import actions
from tempo import config
from tempo import db
from tempo import notifier
from tempo import queue as tempo_queue
from tempo.openstack.common import cfg
from tempo.openstack.common import exception as common_exception
CFG = config.CFG
logger = logging.getLogger('tempo.worker')
worker_opts = [
cfg.BoolOpt('daemonized',
default=False,
help='Run worker as a daemon'),
cfg.StrOpt('publisher_id',
default='host',
help='Where the notification came from')
]
worker_group = cfg.OptGroup(name='worker', title='Worker options')
CFG.register_group(worker_group)
CFG.register_opts(worker_opts, group=worker_group)
| 29.563025 | 77 | 0.673394 |
86d979010cd46ef001009b94be4cbd36b5242fa0 | 24,187 | py | Python | bin/basenji_motifs.py | AndyPJiang/basenji | 64e43570c8bece156b4ab926608014f489b7965e | [
"Apache-2.0"
] | 1 | 2020-05-22T20:53:37.000Z | 2020-05-22T20:53:37.000Z | bin/basenji_motifs.py | AndyPJiang/basenji | 64e43570c8bece156b4ab926608014f489b7965e | [
"Apache-2.0"
] | null | null | null | bin/basenji_motifs.py | AndyPJiang/basenji | 64e43570c8bece156b4ab926608014f489b7965e | [
"Apache-2.0"
] | null | null | null | #!/usr/bin/env python
# Copyright 2017 Calico LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
from __future__ import print_function
from optparse import OptionParser
import copy, os, pdb, random, shutil, subprocess, time
import h5py
import matplotlib
matplotlib.use('PDF')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.stats import spearmanr
import seaborn as sns
from sklearn import preprocessing
import tensorflow as tf
import basenji
'''
basenji_motifs.py
Collect statistics and make plots to explore the first convolution layer
of the given model using the given sequences.
'''
weblogo_opts = '-X NO -Y NO --errorbars NO --fineprint ""'
weblogo_opts += ' -C "#CB2026" A A'
weblogo_opts += ' -C "#34459C" C C'
weblogo_opts += ' -C "#FBB116" G G'
weblogo_opts += ' -C "#0C8040" T T'
################################################################################
# main
################################################################################
def get_motif_proteins(meme_db_file):
""" Hash motif_id's to protein names using the MEME DB file """
motif_protein = {}
for line in open(meme_db_file):
a = line.split()
if len(a) > 0 and a[0] == 'MOTIF':
if a[2][0] == '(':
motif_protein[a[1]] = a[2][1:a[2].find(')')]
else:
motif_protein[a[1]] = a[2]
return motif_protein
def info_content(pwm, transpose=False, bg_gc=0.415):
""" Compute PWM information content.
In the original analysis, I used a bg_gc=0.5. For any
future analysis, I ought to switch to the true hg19
value of 0.415.
"""
pseudoc = 1e-9
if transpose:
pwm = np.transpose(pwm)
bg_pwm = [1 - bg_gc, bg_gc, bg_gc, 1 - bg_gc]
ic = 0
for i in range(pwm.shape[0]):
for j in range(4):
# ic += 0.5 + pwm[i][j]*np.log2(pseudoc+pwm[i][j])
ic += -bg_pwm[j] * np.log2(
bg_pwm[j]) + pwm[i][j] * np.log2(pseudoc + pwm[i][j])
return ic
def make_filter_pwm(filter_fasta):
""" Make a PWM for this filter from its top hits """
nts = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
pwm_counts = []
nsites = 4 # pseudocounts
for line in open(filter_fasta):
if line[0] != '>':
seq = line.rstrip()
nsites += 1
if len(pwm_counts) == 0:
# initialize with the length
for i in range(len(seq)):
pwm_counts.append(np.array([1.0] * 4))
# count
for i in range(len(seq)):
try:
pwm_counts[i][nts[seq[i]]] += 1
except KeyError:
pwm_counts[i] += np.array([0.25] * 4)
# normalize
pwm_freqs = []
for i in range(len(pwm_counts)):
pwm_freqs.append([pwm_counts[i][j] / float(nsites) for j in range(4)])
return np.array(pwm_freqs), nsites - 4
def meme_add(meme_out, f, filter_pwm, nsites, trim_filters=False):
""" Print a filter to the growing MEME file
Attrs:
meme_out : open file
f (int) : filter index #
filter_pwm (array) : filter PWM array
nsites (int) : number of filter sites
"""
if not trim_filters:
ic_start = 0
ic_end = filter_pwm.shape[0] - 1
else:
ic_t = 0.2
# trim PWM of uninformative prefix
ic_start = 0
while ic_start < filter_pwm.shape[0] and info_content(
filter_pwm[ic_start:ic_start + 1]) < ic_t:
ic_start += 1
# trim PWM of uninformative suffix
ic_end = filter_pwm.shape[0] - 1
while ic_end >= 0 and info_content(filter_pwm[ic_end:ic_end + 1]) < ic_t:
ic_end -= 1
if ic_start < ic_end:
print('MOTIF filter%d' % f, file=meme_out)
print(
'letter-probability matrix: alength= 4 w= %d nsites= %d' %
(ic_end - ic_start + 1, nsites),
file=meme_out)
for i in range(ic_start, ic_end + 1):
print('%.4f %.4f %.4f %.4f' % tuple(filter_pwm[i]), file=meme_out)
print('', file=meme_out)
def meme_intro(meme_file, seqs):
""" Open MEME motif format file and print intro
Attrs:
meme_file (str) : filename
seqs [str] : list of strings for obtaining background freqs
Returns:
mem_out : open MEME file
"""
nts = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
# count
nt_counts = [1] * 4
for i in range(len(seqs)):
for nt in seqs[i]:
try:
nt_counts[nts[nt]] += 1
except KeyError:
pass
# normalize
nt_sum = float(sum(nt_counts))
nt_freqs = [nt_counts[i] / nt_sum for i in range(4)]
# open file for writing
meme_out = open(meme_file, 'w')
# print intro material
print('MEME version 4', file=meme_out)
print('', file=meme_out)
print('ALPHABET= ACGT', file=meme_out)
print('', file=meme_out)
print('Background letter frequencies:', file=meme_out)
print('A %.4f C %.4f G %.4f T %.4f' % tuple(nt_freqs), file=meme_out)
print('', file=meme_out)
return meme_out
def name_filters(num_filters, tomtom_file, meme_db_file):
""" Name the filters using Tomtom matches.
Attrs:
num_filters (int) : total number of filters
tomtom_file (str) : filename of Tomtom output table.
meme_db_file (str) : filename of MEME db
Returns:
filter_names [str] :
"""
# name by number
filter_names = ['f%d' % fi for fi in range(num_filters)]
# name by protein
if tomtom_file is not None and meme_db_file is not None:
motif_protein = get_motif_proteins(meme_db_file)
# hash motifs and q-value's by filter
filter_motifs = {}
tt_in = open(tomtom_file)
tt_in.readline()
for line in tt_in:
a = line.split()
fi = int(a[0][6:])
motif_id = a[1]
qval = float(a[5])
filter_motifs.setdefault(fi, []).append((qval, motif_id))
tt_in.close()
# assign filter's best match
for fi in filter_motifs:
top_motif = sorted(filter_motifs[fi])[0][1]
filter_names[fi] += '_%s' % motif_protein[top_motif]
return np.array(filter_names)
################################################################################
# plot_target_corr
#
# Plot a clustered heatmap of correlations between filter activations and
# targets.
#
# Input
# filter_outs:
# filter_names:
# target_names:
# out_pdf:
################################################################################
################################################################################
# plot_filter_seq_heat
#
# Plot a clustered heatmap of filter activations in
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
################################################################################
# plot_filter_seq_heat
#
# Plot a clustered heatmap of filter activations in sequence segments.
#
# Mean doesn't work well for the smaller segments for some reason, but taking
# the max looks OK. Still, similar motifs don't cluster quite as well as you
# might expect.
#
# Input
# filter_outs
################################################################################
################################################################################
# filter_motif
#
# Collapse the filter parameter matrix to a single DNA motif.
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
################################################################################
# filter_possum
#
# Write a Possum-style motif
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
################################################################################
# plot_filter_heat
#
# Plot a heatmap of the filter's parameters.
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
################################################################################
# plot_filter_logo
#
# Plot a weblogo of the filter's occurrences
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
################################################################################
# plot_score_density
#
# Plot the score density and print to the stats table.
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
################################################################################
# __main__
################################################################################
if __name__ == '__main__':
main()
# pdb.runcall(main)
| 29.282082 | 99 | 0.585687 |
86db53b7a1cf34f8c926e78563b430e45842c3b8 | 1,337 | py | Python | apps/shop/urls.py | Joetib/jshop | 810ce5dcf2cf2d23b45536dd0c8806efd3b7fc91 | [
"MIT"
] | 1 | 2021-09-29T18:48:00.000Z | 2021-09-29T18:48:00.000Z | apps/shop/urls.py | Joetib/jshop | 810ce5dcf2cf2d23b45536dd0c8806efd3b7fc91 | [
"MIT"
] | null | null | null | apps/shop/urls.py | Joetib/jshop | 810ce5dcf2cf2d23b45536dd0c8806efd3b7fc91 | [
"MIT"
] | null | null | null | from django.urls import path
from . import views
app_name = "shop"
urlpatterns = [
path('', views.HomePage.as_view(), name="home-page"),
path('shop/', views.ProductListView.as_view(), name="product-list"),
path('shop/<int:category_pk>/', views.ProductListView.as_view(), name="product-list"),
path('shop/products/<int:pk>/', views.ProductDetailView.as_view(), name="product-detail"),
path('cart/', views.cart_view, name="cart"),
path('cart/add/<int:product_pk>/', views.add_product_to_order, name="add-product-to-cart"),
path('cart/add/<int:product_pk>/json/', views.add_product_to_cart_json, name="add-product-to-cart-json"),
path('checkout/', views.CheckOut.as_view(), name="checkout"),
path('checkout/<int:address_pk>/', views.CheckOut.as_view(), name="checkout"),
path('payment/', views.PaymentChoice.as_view(), name="payment-choice"),
path('payment/order/<int:pk>/', views.MomoPayment.as_view(), name="momo-payment"),
path('payment/momo/<int:pk>/confirm/', views.ConfirmMomoPayment.as_view(), name="confirm-momo-payment"),
path('orders/', views.OrderList.as_view(), name="order-list"),
path('orders/<int:pk>/', views.OrderDetail.as_view(), name="order-detail"),
path('orders/<int:order_id>/items/<int:pk>/', views.OrderItemDetail.as_view(), name="order-item-detail"),
]
| 58.130435 | 109 | 0.691847 |
86db5b39f7333cdce223e5a0be6e734eb216f5d2 | 11,028 | py | Python | surpyval/parametric/expo_weibull.py | dfm/SurPyval | 014fba8f1d4a0f43218a3713ce80a78191ad8be9 | [
"MIT"
] | null | null | null | surpyval/parametric/expo_weibull.py | dfm/SurPyval | 014fba8f1d4a0f43218a3713ce80a78191ad8be9 | [
"MIT"
] | null | null | null | surpyval/parametric/expo_weibull.py | dfm/SurPyval | 014fba8f1d4a0f43218a3713ce80a78191ad8be9 | [
"MIT"
] | null | null | null | import autograd.numpy as np
from scipy.stats import uniform
from autograd import jacobian
from numpy import euler_gamma
from scipy.special import gamma as gamma_func
from scipy.special import ndtri as z
from scipy import integrate
from scipy.optimize import minimize
from surpyval import parametric as para
from surpyval import nonparametric as nonp
from surpyval.parametric.parametric_fitter import ParametricFitter
from .fitters.mpp import mpp
ExpoWeibull = ExpoWeibull_('ExpoWeibull') | 32.151603 | 228 | 0.537087 |
86db8d66e4f0f969e4dab6cb93ed65e00e44883f | 3,292 | py | Python | tests/test_base_table.py | stjordanis/datar | 4e2b5db026ad35918954576badef9951928c0cb1 | [
"MIT"
] | 110 | 2021-03-09T04:10:40.000Z | 2022-03-13T10:28:20.000Z | tests/test_base_table.py | sthagen/datar | 1218a549e2f0547c7b5a824ca6d9adf1bf96ba46 | [
"MIT"
] | 54 | 2021-06-20T18:53:44.000Z | 2022-03-29T22:13:07.000Z | tests/test_base_table.py | sthagen/datar | 1218a549e2f0547c7b5a824ca6d9adf1bf96ba46 | [
"MIT"
] | 11 | 2021-06-18T03:03:14.000Z | 2022-02-25T11:48:26.000Z | import pytest
from datar import stats
from datar.base import *
from datar import f
from datar.datasets import warpbreaks, state_division, state_region, airquality
from .conftest import assert_iterable_equal
| 31.056604 | 79 | 0.564702 |
86dbc8be4491e9aac31a1a68443d62ca3e952415 | 1,922 | py | Python | cqlengine/tests/statements/test_update_statement.py | dokai/cqlengine | a080aff3a73351d37126b14eef606061b445aa37 | [
"BSD-3-Clause"
] | null | null | null | cqlengine/tests/statements/test_update_statement.py | dokai/cqlengine | a080aff3a73351d37126b14eef606061b445aa37 | [
"BSD-3-Clause"
] | null | null | null | cqlengine/tests/statements/test_update_statement.py | dokai/cqlengine | a080aff3a73351d37126b14eef606061b445aa37 | [
"BSD-3-Clause"
] | null | null | null | from unittest import TestCase
from cqlengine.statements import UpdateStatement, WhereClause, AssignmentClause
from cqlengine.operators import *
| 44.697674 | 104 | 0.648283 |
86dbf2f275a336e7d12bde00e6cd729b126ef190 | 1,883 | py | Python | packages/facilities/diagnostics/py/custom_checkbox.py | Falcons-Robocup/code | 2281a8569e7f11cbd3238b7cc7341c09e2e16249 | [
"Apache-2.0"
] | 2 | 2021-01-15T13:27:19.000Z | 2021-08-04T08:40:52.000Z | packages/facilities/diagnostics/py/custom_checkbox.py | Falcons-Robocup/code | 2281a8569e7f11cbd3238b7cc7341c09e2e16249 | [
"Apache-2.0"
] | null | null | null | packages/facilities/diagnostics/py/custom_checkbox.py | Falcons-Robocup/code | 2281a8569e7f11cbd3238b7cc7341c09e2e16249 | [
"Apache-2.0"
] | 5 | 2018-05-01T10:39:31.000Z | 2022-03-25T03:02:35.000Z | # Copyright 2020 Jan Feitsma (Falcons)
# SPDX-License-Identifier: Apache-2.0
#!/usr/bin/python
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
| 33.625 | 117 | 0.601699 |
86dc7d357b174d6a4843f8edef2436d8cf30c367 | 742 | py | Python | generator.py | Axonny/HexagonalHitori | 582cb50b751796c30ed273f66c8ac9fa6f3dd089 | [
"MIT"
] | null | null | null | generator.py | Axonny/HexagonalHitori | 582cb50b751796c30ed273f66c8ac9fa6f3dd089 | [
"MIT"
] | null | null | null | generator.py | Axonny/HexagonalHitori | 582cb50b751796c30ed273f66c8ac9fa6f3dd089 | [
"MIT"
] | null | null | null | from hitori_generator import Generator
from argparse import ArgumentParser
if __name__ == '__main__':
main()
| 27.481481 | 120 | 0.628032 |
86dd7f5030a8b0c0b8c5d1166bbac51638b7d539 | 25,946 | py | Python | opaflib/xmlast.py | feliam/opaf | f9908c26af1bf28cc29f3d647dcd9f55d631d732 | [
"MIT"
] | 2 | 2019-11-23T14:46:35.000Z | 2022-01-21T16:09:47.000Z | opaflib/xmlast.py | feliam/opaf | f9908c26af1bf28cc29f3d647dcd9f55d631d732 | [
"MIT"
] | null | null | null | opaflib/xmlast.py | feliam/opaf | f9908c26af1bf28cc29f3d647dcd9f55d631d732 | [
"MIT"
] | 1 | 2019-09-06T21:04:39.000Z | 2019-09-06T21:04:39.000Z | from lxml import etree
from opaflib.filters import defilterData
#Logging facility
import logging,code
logger = logging.getLogger("OPAFXML")
#leaf
#tree
#Factory
PDF = PDFXMLFactory()
def create_leaf(tag, value, **kwargs):
return PDF.create_leaf(tag, value,**kwargs)
def create_tree(tag, childs, **kwargs):
return PDF.create_tree(tag, *childs, **kwargs)
if __name__=="__main__":
name = create_leaf('name', "Name")
string = create_leaf('string', "Felipe")
entry = create_tree('entry',[name,string])
dictionary = create_tree('dictionary',[entry])
stream_data = create_leaf('data',"A"*100)
stream = create_tree('stream',[dictionary,stream_data])
indirect = create_tree('indirect_object', [stream], obj=(1,0))
array = create_tree('array', [create_leaf('number', i) for i in range(0,10)])
xml=indirect
print etree.tostring(xml), xml.value
import code
code.interact(local=locals())
| 37.332374 | 172 | 0.582248 |
86dd8cfba25399e11b5e6b0c69e97eec2cc7d779 | 1,590 | py | Python | course-code/imooc-tf-mnist-flask/mnist/module.py | le3t/ko-repo | 50eb0b4cadb9db9bf608a9e5d36376f38ff5cce5 | [
"Apache-2.0"
] | 30 | 2018-12-06T02:17:45.000Z | 2021-04-07T09:03:36.000Z | course-code/imooc-tf-mnist-flask/mnist/module.py | Artister/tutorials-java | 50eb0b4cadb9db9bf608a9e5d36376f38ff5cce5 | [
"Apache-2.0"
] | 3 | 2019-08-26T13:41:57.000Z | 2019-08-26T13:44:21.000Z | course-code/imooc-tf-mnist-flask/mnist/module.py | Artister/tutorials-java | 50eb0b4cadb9db9bf608a9e5d36376f38ff5cce5 | [
"Apache-2.0"
] | 20 | 2018-12-27T08:31:02.000Z | 2020-12-03T08:35:28.000Z | import tensorflow as tf
# y=ax+b linear model
#
| 30.576923 | 72 | 0.620755 |
86dfb9b0ac538e587eb0952c661e061a843edff2 | 1,544 | py | Python | src/sol/handle_metaplex.py | terra-dashboard/staketaxcsv | 5793105488bf799c61aee64a45f44e9ae8fef397 | [
"MIT"
] | 140 | 2021-12-11T23:37:46.000Z | 2022-03-29T23:04:36.000Z | src/sol/handle_metaplex.py | terra-dashboard/staketaxcsv | 5793105488bf799c61aee64a45f44e9ae8fef397 | [
"MIT"
] | 80 | 2021-12-17T15:13:47.000Z | 2022-03-31T13:33:53.000Z | src/sol/handle_metaplex.py | terra-dashboard/staketaxcsv | 5793105488bf799c61aee64a45f44e9ae8fef397 | [
"MIT"
] | 52 | 2021-12-12T00:37:17.000Z | 2022-03-29T23:25:09.000Z | from common.make_tx import make_swap_tx
from sol.handle_simple import handle_unknown_detect_transfers
| 34.311111 | 98 | 0.709845 |
86e079c3cae2dd930094e58b47942d7cc71d011d | 11,293 | py | Python | dcor/independence.py | lemiceterieux/dcor | 205682a71463a2c6ab8f5b8b215ec12d44f0b5a6 | [
"MIT"
] | null | null | null | dcor/independence.py | lemiceterieux/dcor | 205682a71463a2c6ab8f5b8b215ec12d44f0b5a6 | [
"MIT"
] | null | null | null | dcor/independence.py | lemiceterieux/dcor | 205682a71463a2c6ab8f5b8b215ec12d44f0b5a6 | [
"MIT"
] | null | null | null | """
Functions for testing independence of several distributions.
The functions in this module provide methods for testing if
the samples generated from two random vectors are independent.
"""
import numpy as np
import scipy.stats
from . import _dcor_internals, _hypothesis
from ._dcor import u_distance_correlation_sqr
from ._utils import _random_state_init, _transform_to_2d
def distance_covariance_test(
x,
y,
*,
num_resamples=0,
exponent=1,
random_state=None,
n_jobs=1,
):
"""
Test of distance covariance independence.
Compute the test of independence based on the distance
covariance, for two random vectors.
The test is a permutation test where the null hypothesis is that the two
random vectors are independent.
Parameters
----------
x: array_like
First random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
y: array_like
Second random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
exponent: float
Exponent of the Euclidean distance, in the range :math:`(0, 2)`.
Equivalently, it is twice the Hurst parameter of fractional Brownian
motion.
num_resamples: int
Number of permutations resamples to take in the permutation test.
random_state: {None, int, array_like, numpy.random.RandomState}
Random state to generate the permutations.
Returns
-------
HypothesisTest
Results of the hypothesis test.
See Also
--------
distance_covariance
Examples
--------
>>> import numpy as np
>>> import dcor
>>> a = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... [13, 14, 15, 16]])
>>> b = np.array([[1, 0, 0, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [1, 1, 0, 1]])
>>> dcor.independence.distance_covariance_test(a, a)
HypothesisTest(p_value=1.0, statistic=208.0)
>>> dcor.independence.distance_covariance_test(a, b)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=1.0, statistic=11.75323056...)
>>> dcor.independence.distance_covariance_test(b, b)
HypothesisTest(p_value=1.0, statistic=1.3604610...)
>>> dcor.independence.distance_covariance_test(a, b,
... num_resamples=5, random_state=0)
HypothesisTest(p_value=0.5, statistic=11.7532305...)
>>> dcor.independence.distance_covariance_test(a, b,
... num_resamples=5, random_state=13)
HypothesisTest(p_value=0.3333333..., statistic=11.7532305...)
>>> dcor.independence.distance_covariance_test(a, a,
... num_resamples=7, random_state=0)
HypothesisTest(p_value=0.125, statistic=208.0)
"""
x = _transform_to_2d(x)
y = _transform_to_2d(y)
_dcor_internals._check_same_n_elements(x, y)
random_state = _random_state_init(random_state)
# Compute U-centered matrices
u_x = _dcor_internals._distance_matrix_generic(
x,
centering=_dcor_internals.double_centered,
exponent=exponent)
u_y = _dcor_internals._distance_matrix_generic(
y,
centering=_dcor_internals.double_centered,
exponent=exponent)
# Use the dcov statistic
return _hypothesis._permutation_test_with_sym_matrix(
u_x,
statistic_function=statistic_function,
num_resamples=num_resamples,
random_state=random_state,
n_jobs=n_jobs)
def partial_distance_covariance_test(
x,
y,
z,
*,
num_resamples=0,
exponent=1,
random_state=None,
n_jobs=1,
):
"""
Test of partial distance covariance independence.
Compute the test of independence based on the partial distance
covariance, for two random vectors conditioned on a third.
The test is a permutation test where the null hypothesis is that the first
two random vectors are independent given the third one.
Parameters
----------
x: array_like
First random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
y: array_like
Second random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
z: array_like
Observed random vector. The columns correspond with the individual
random variables while the rows are individual instances of the random
vector.
num_resamples: int
Number of permutations resamples to take in the permutation test.
random_state: {None, int, array_like, numpy.random.RandomState}
Random state to generate the permutations.
Returns
-------
HypothesisTest
Results of the hypothesis test.
See Also
--------
partial_distance_covariance
Examples
--------
>>> import numpy as np
>>> import dcor
>>> a = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... [13, 14, 15, 16]])
>>> b = np.array([[1, 0, 0, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [1, 1, 0, 1]])
>>> c = np.array([[1000, 0, 0, 1000],
... [0, 1000, 1000, 1000],
... [1000, 1000, 1000, 1000],
... [1000, 1000, 0, 1000]])
>>> dcor.independence.partial_distance_covariance_test(a, a, b)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=1.0, statistic=142.6664416...)
>>> dcor.independence.partial_distance_covariance_test(a, b, c)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=1.0, statistic=7.2690070...e-15)
>>> dcor.independence.partial_distance_covariance_test(b, b, c)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=1.0, statistic=2.2533380...e-30)
>>> dcor.independence.partial_distance_covariance_test(a, b, c,
... num_resamples=5, random_state=0)
HypothesisTest(p_value=0.1666666..., statistic=7.2690070...e-15)
>>> dcor.independence.partial_distance_covariance_test(a, b, c,
... num_resamples=5, random_state=13)
HypothesisTest(p_value=0.1666666..., statistic=7.2690070...e-15)
>>> dcor.independence.partial_distance_covariance_test(a, c, b,
... num_resamples=7, random_state=0)
HypothesisTest(p_value=1.0, statistic=-7.5701764...e-12)
"""
random_state = _random_state_init(random_state)
# Compute U-centered matrices
u_x = _dcor_internals._u_distance_matrix(x, exponent=exponent)
u_y = _dcor_internals._u_distance_matrix(y, exponent=exponent)
u_z = _dcor_internals._u_distance_matrix(z, exponent=exponent)
# Compute projections
proj = _dcor_internals.u_complementary_projection(u_z)
p_xz = proj(u_x)
p_yz = proj(u_y)
# Use the pdcor statistic
return _hypothesis._permutation_test_with_sym_matrix(
p_xz,
statistic_function=statistic_function,
num_resamples=num_resamples,
random_state=random_state,
n_jobs=n_jobs)
def distance_correlation_t_statistic(x, y):
"""
Transformation of the bias corrected version of distance correlation used
in :func:`distance_correlation_t_test`.
Parameters
----------
x: array_like
First random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
y: array_like
Second random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
Returns
-------
numpy scalar
T statistic.
See Also
--------
distance_correlation_t_test
Examples
--------
>>> import numpy as np
>>> import dcor
>>> a = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... [13, 14, 15, 16]])
>>> b = np.array([[1, 0, 0, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [1, 1, 0, 1]])
>>> with np.errstate(divide='ignore'):
... dcor.independence.distance_correlation_t_statistic(a, a)
inf
>>> dcor.independence.distance_correlation_t_statistic(a, b)
... # doctest: +ELLIPSIS
-0.4430164...
>>> with np.errstate(divide='ignore'):
... dcor.independence.distance_correlation_t_statistic(b, b)
inf
"""
bcdcor = u_distance_correlation_sqr(x, y)
n = x.shape[0]
v = n * (n - 3) / 2
return np.sqrt(v - 1) * bcdcor / np.sqrt(1 - bcdcor**2)
def distance_correlation_t_test(x, y):
"""
Test of independence for high dimension based on convergence to a Student t
distribution. The null hypothesis is that the two random vectors are
independent.
Parameters
----------
x: array_like
First random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
y: array_like
Second random vector. The columns correspond with the individual random
variables while the rows are individual instances of the random vector.
Returns
-------
HypothesisTest
Results of the hypothesis test.
See Also
--------
distance_correlation_t_statistic
Examples
--------
>>> import numpy as np
>>> import dcor
>>> a = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... [13, 14, 15, 16]])
>>> b = np.array([[1, 0, 0, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [1, 1, 0, 1]])
>>> with np.errstate(divide='ignore'):
... dcor.independence.distance_correlation_t_test(a, a)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=0.0, statistic=inf)
>>> dcor.independence.distance_correlation_t_test(a, b)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=0.6327451..., statistic=-0.4430164...)
>>> with np.errstate(divide='ignore'):
... dcor.independence.distance_correlation_t_test(b, b)
... # doctest: +ELLIPSIS
HypothesisTest(p_value=0.0, statistic=inf)
"""
t_test = distance_correlation_t_statistic(x, y)
n = x.shape[0]
v = n * (n - 3) / 2
df = v - 1
p_value = 1 - scipy.stats.t.cdf(t_test, df=df)
return _hypothesis.HypothesisTest(p_value=p_value, statistic=t_test)
| 33.411243 | 79 | 0.609493 |
86e150137bde5dca549d0321cdc857bd542bc500 | 3,878 | py | Python | cinemasci/cis/__init__.py | cinemascience/cinemasc | 5b00a0c2e3c886f65cfbf1f59e914fc458d7068b | [
"BSD-3-Clause"
] | null | null | null | cinemasci/cis/__init__.py | cinemascience/cinemasc | 5b00a0c2e3c886f65cfbf1f59e914fc458d7068b | [
"BSD-3-Clause"
] | 3 | 2020-04-22T16:26:44.000Z | 2020-04-22T16:30:12.000Z | cinemasci/cis/__init__.py | cinemascience/cinemasc | 5b00a0c2e3c886f65cfbf1f59e914fc458d7068b | [
"BSD-3-Clause"
] | 1 | 2020-03-06T21:21:19.000Z | 2020-03-06T21:21:19.000Z | from . import imageview
from . import cisview
from . import renderer
from . import convert
| 29.603053 | 84 | 0.555183 |
86e1817f75ca21dff7ecb06d87908e9887be1bfd | 2,172 | py | Python | applications/spaghetti.py | fos/fos-legacy | db6047668781a0615abcebc7d55a7164f3105047 | [
"BSD-3-Clause"
] | 2 | 2016-08-03T10:33:08.000Z | 2021-06-23T18:50:14.000Z | applications/spaghetti.py | fos/fos-legacy | db6047668781a0615abcebc7d55a7164f3105047 | [
"BSD-3-Clause"
] | null | null | null | applications/spaghetti.py | fos/fos-legacy | db6047668781a0615abcebc7d55a7164f3105047 | [
"BSD-3-Clause"
] | null | null | null | import numpy as np
import nibabel as nib
import os.path as op
import pyglet
#pyglet.options['debug_gl'] = True
#pyglet.options['debug_x11'] = True
#pyglet.options['debug_gl_trace'] = True
#pyglet.options['debug_texture'] = True
#fos modules
from fos.actor.axes import Axes
from fos import World, Window, WindowManager
from labeler import TrackLabeler
from fos.actor.slicer import Slicer
#dipy modules
from dipy.segment.quickbundles import QuickBundles
from dipy.io.dpy import Dpy
from dipy.io.pickles import load_pickle,save_pickle
from dipy.viz.colormap import orient2rgb
import copy
if __name__ == '__main__':
subject = 5
seeds = 1
qb_dist = 30
#load T1 volume registered in MNI space
img = nib.load('data/subj_'+("%02d" % subject)+'/MPRAGE_32/T1_flirt_out.nii.gz')
data = img.get_data()
affine = img.get_affine()
#load the tracks registered in MNI space
fdpyw = 'data/subj_'+("%02d" % subject)+'/101_32/DTI/tracks_gqi_'+str(seeds)+'M_linear.dpy'
dpr = Dpy(fdpyw, 'r')
T = dpr.read_tracks()
dpr.close()
#load initial QuickBundles with threshold 30mm
fpkl = 'data/subj_'+("%02d" % subject)+'/101_32/DTI/qb_gqi_'+str(seeds)+'M_linear_'+str(qb_dist)+'.pkl'
#qb=QuickBundles(T,30.,12)
qb=load_pickle(fpkl)
#create the interaction system for tracks
tl = TrackLabeler(qb,qb.downsampled_tracks(),vol_shape=data.shape,tracks_alpha=1)
#add a interactive slicing/masking tool
sl = Slicer(affine,data)
#add one way communication between tl and sl
tl.slicer=sl
#OpenGL coordinate system axes
ax = Axes(100)
x,y,z=data.shape
#add the actors to the world
w=World()
w.add(tl)
w.add(sl)
#w.add(ax)
#create a window
wi = Window(caption="Interactive Spaghetti using Diffusion Imaging in Python (dipy.org) and Free On Shades (fos.me)",\
bgcolor=(0.3,0.3,0.6,1),width=1200,height=800)
#attach the world to the window
wi.attach(w)
#create a manager which can handle multiple windows
wm = WindowManager()
wm.add(wi)
wm.run()
print('Everything is running ;-)')
| 31.941176 | 122 | 0.675414 |
86e1dc1697df65dd8302b1c8457579ff83a8e10d | 1,074 | py | Python | faceai/gender.py | dlzdy/faceai | 4b1e41d4c394c00da51533562b76306d86493f72 | [
"MIT"
] | 1 | 2021-05-18T07:31:14.000Z | 2021-05-18T07:31:14.000Z | faceai/gender.py | dlzdy/faceai | 4b1e41d4c394c00da51533562b76306d86493f72 | [
"MIT"
] | null | null | null | faceai/gender.py | dlzdy/faceai | 4b1e41d4c394c00da51533562b76306d86493f72 | [
"MIT"
] | null | null | null | #coding=utf-8
#
import cv2
from keras.models import load_model
import numpy as np
import chineseText
img = cv2.imread("img/gather.png")
face_classifier = cv2.CascadeClassifier(
"d:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140))
gender_classifier = load_model(
"classifier/gender_models/simple_CNN.81-0.96.hdf5")
gender_labels = {0: '', 1: ''}
color = (255, 255, 255)
for (x, y, w, h) in faces:
face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)]
face = cv2.resize(face, (48, 48))
face = np.expand_dims(face, 0)
face = face / 255.0
gender_label_arg = np.argmax(gender_classifier.predict(face))
gender = gender_labels[gender_label_arg]
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
img = chineseText.cv2ImgAddText(img, gender, x + h, y, color, 30)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
| 30.685714 | 103 | 0.691806 |
86e1dfa0c33f00a823a44b2f6b5cc3f12ae76c76 | 5,872 | py | Python | csm_web/scheduler/tests/utils.py | mudit2103/csm_web | 3b7fd9ca7269ad4cb57bf264cf62a620e02d3780 | [
"MIT"
] | null | null | null | csm_web/scheduler/tests/utils.py | mudit2103/csm_web | 3b7fd9ca7269ad4cb57bf264cf62a620e02d3780 | [
"MIT"
] | null | null | null | csm_web/scheduler/tests/utils.py | mudit2103/csm_web | 3b7fd9ca7269ad4cb57bf264cf62a620e02d3780 | [
"MIT"
] | null | null | null | from django.test import TestCase
from os import path
from rest_framework import status
from rest_framework.test import APIClient
import random
from scheduler.models import Profile
from scheduler.factories import (
CourseFactory,
SpacetimeFactory,
UserFactory,
ProfileFactory,
SectionFactory,
AttendanceFactory,
OverrideFactory,
create_attendances_for,
)
random.seed(0)
COURSE_NAMES = ("CS88", "CS61A", "CS61B", "CS70", "CS61C", "EE16A")
ROLE_MAP = Profile.ROLE_MAP
BASE_PATH = "/scheduler"
# ----- REQUEST UTILITIES -----
# ----- MODEL GENERATION -----
def random_objs(clazz, n=1):
"""
Generates N instances of the provided class, retrieved from the database.
"""
src = clazz.objects.all()
for _ in range(n):
yield random.choice(src)
def make_test_courses():
"""Creates course objects and persists them to database."""
return [CourseFactory.create(name=name) for name in COURSE_NAMES]
def make_test_users(n):
"""Creates N test users and persists them to database."""
return UserFactory.create_batch(n)
def give_role(user, role, course):
"""
Creates a profile for USER in a given ROLE for the provided COURSE, and
saves the profile to database.
"""
return ProfileFactory.create(
user=user, course=course, leader=None, section=None, role=role
)
def create_empty_section_for(mentor):
"""
Creates a section for MENTOR without populated students.
"""
return SectionFactory.create(course=mentor.course, mentor=mentor)
def enroll_user_as_student(user, section):
"""
Creates a student profile for USER, and assigns them to the given SECTION.
Also creates blank attendances as necessary.
Returns the created profile.
"""
student = give_role(user, Profile.STUDENT, section.course)
student.section = section
student.leader = section.leader
create_attendances_for(student)
return student
def gen_test_data(cls, NUM_USERS=300):
"""
Adds NUM_USERS users to the database and initializes profiles for them as follows:
- 2 coords per course
- 4 SMs per coord, each with a section of 3-6 students
- 3 JMs per SM, each with a section of 3-6 students
"""
users = iter(make_test_users(NUM_USERS))
courses = make_test_courses()
# for sanity tests, everyone only has one role for now
num_courses = len(courses)
coords, seniors, juniors, students = [], [], [], []
COORD_COUNT = 2
SM_COUNT = 4
JM_COUNT = 3
try:
for c in courses:
# coords
for i in range(COORD_COUNT):
coord = assign(Profile.COORDINATOR, None, c, coords)
# SMs
for j in range(SM_COUNT):
sm = assign(Profile.SENIOR_MENTOR, coord, c, seniors)
section = create_empty_section_for(sm)
for k in range(random.randint(3, 6)):
students.append(enroll_user_as_student(next(users), section))
# JMs
for k in range(JM_COUNT):
jm = assign(Profile.JUNIOR_MENTOR, sm, c, juniors)
for _ in range(random.randint(3, 6)):
students.append(
enroll_user_as_student(next(users), section)
)
except StopIteration:
pass
cls.users = users
cls.courses = courses
cls.coords = coords
cls.seniors = seniors
cls.juniors = juniors
cls.students = students
| 32.804469 | 88 | 0.647309 |
86e1fd3bf7ee00e117356675760b13ae01e5890a | 3,282 | py | Python | coldtype/beziers.py | tallpauley/coldtype | c1811e1d3713ff9c3c804511d6cd607b1d802065 | [
"Apache-2.0"
] | null | null | null | coldtype/beziers.py | tallpauley/coldtype | c1811e1d3713ff9c3c804511d6cd607b1d802065 | [
"Apache-2.0"
] | null | null | null | coldtype/beziers.py | tallpauley/coldtype | c1811e1d3713ff9c3c804511d6cd607b1d802065 | [
"Apache-2.0"
] | null | null | null | import math
from fontTools.pens.recordingPen import RecordingPen, replayRecording
from fontTools.misc.bezierTools import calcCubicArcLength, splitCubicAtT
from coldtype.geometry import Rect, Point
__length_cache = {}
__split_cache = {} | 31.557692 | 85 | 0.482937 |
86e21cfc54ba4f492a89adb3a5ddc21c8d452d78 | 3,930 | py | Python | p1_navigation/train.py | nick0lay/deep-reinforcement-learning | 5af4daca9850b4e12aec5d8b0dad87f1e22a1f98 | [
"MIT"
] | null | null | null | p1_navigation/train.py | nick0lay/deep-reinforcement-learning | 5af4daca9850b4e12aec5d8b0dad87f1e22a1f98 | [
"MIT"
] | null | null | null | p1_navigation/train.py | nick0lay/deep-reinforcement-learning | 5af4daca9850b4e12aec5d8b0dad87f1e22a1f98 | [
"MIT"
] | null | null | null | """
Project for Udacity Danaodgree in Deep Reinforcement Learning
This script train an agent to navigate (and collect bananas!) in a large, square world.
A reward of +1 is provided for collecting a yellow banana, and a reward of -1 is provided for collecting a blue banana. Thus, the goal of your agent is to collect as many yellow bananas as possible while avoiding blue bananas.
The state space has 37 dimensions and contains the agent's velocity, along with ray-based perception of objects around the agent's forward direction. Given this information, the agent has to learn how to best select actions. Four discrete actions are available, corresponding to:
0 - move forward.
1 - move backward.
2 - turn left.
3 - turn right.
The task is episodic, and in order to solve the environment, your agent must get an average score of +13 over 100 consecutive episodes.
"""
from unityagents import UnityEnvironment
import numpy as np
from collections import deque
from dqn_agent import Agent
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
"""
Unity environment configuration
Mac: "path/to/Banana.app"
Windows (x86): "path/to/Banana_Windows_x86/Banana.exe"
Windows (x86_64): "path/to/Banana_Windows_x86_64/Banana.exe"
Linux (x86): "path/to/Banana_Linux/Banana.x86"
Linux (x86_64): "path/to/Banana_Linux/Banana.x86_64"
Linux (x86, headless): "path/to/Banana_Linux_NoVis/Banana.x86"
Linux (x86_64, headless): "path/to/Banana_Linux_NoVis/Banana.x86_64"
"""
# start Unity environment
env = UnityEnvironment(file_name="Banana.app")
# get the default brain
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
env_info = env.reset(train_mode=False)[brain_name]
action_size = brain.vector_action_space_size
state_size = len(env_info.vector_observations[0])
# initialize agent
agent = Agent(state_size=state_size, action_size=action_size, seed=0, device=device)
def train(n_episodes=2000, eps_start=1.0, eps_end=0.05, eps_decay=0.99):
"""Deep Q-Learning.
Params
======
n_episodes (int): maximum number of training episodes
eps_start (float): starting value of epsilon, for epsilon-greedy action selection
eps_end (float): minimum value of epsilon
eps_decay (float): multiplicative factor (per episode) for decreasing epsilon
"""
scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
eps = eps_start # initialize epsilon
for i_episode in range(1, n_episodes+1):
# reset environment
env_info = env.reset(train_mode=True)[brain_name]
# get initial state
state = env_info.vector_observations[0]
# set initial score
score = 0
while True:
action = agent.act(state, eps)
env_info = env.step(action)[brain_name]
next_state, reward, done = env_info.vector_observations[0], env_info.rewards[0], env_info.local_done[0]
agent.step(state, action, reward, next_state, done)
state = next_state
score += reward
if done:
break
scores_window.append(score) # save most recent score
scores.append(score) # save most recent score
eps = max(eps_end, eps_decay*eps) # decrease epsilon
print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="")
if i_episode % 100 == 0:
print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)))
if np.mean(scores_window)>=14:
print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_window)))
torch.save(agent.qnetwork_local.state_dict(), 'checkpoint.pth')
break
return scores
train() | 42.717391 | 279 | 0.689567 |
86e5087a507beef54f4930afdd98c56727fc0500 | 2,869 | py | Python | models/model_factory.py | jac99/Egonn | 075e00368a1676df741a35f42f6f38497da9d58f | [
"MIT"
] | 9 | 2021-10-31T07:11:58.000Z | 2022-03-29T14:06:49.000Z | models/model_factory.py | jac99/Egonn | 075e00368a1676df741a35f42f6f38497da9d58f | [
"MIT"
] | null | null | null | models/model_factory.py | jac99/Egonn | 075e00368a1676df741a35f42f6f38497da9d58f | [
"MIT"
] | 3 | 2021-11-12T17:42:41.000Z | 2022-03-11T00:41:47.000Z | # Warsaw University of Technology
from layers.eca_block import ECABasicBlock
from models.minkgl import MinkHead, MinkTrunk, MinkGL
from models.minkloc import MinkLoc
from third_party.minkloc3d.minkloc import MinkLoc3D
from misc.utils import ModelParams
| 36.782051 | 100 | 0.694319 |
86e596ecc94466fc1c8a56bb395c9ae7c14904e6 | 19,380 | py | Python | mdns/Phidget22Python/Phidget22/Phidget.py | rabarar/phidget_docker | ceca56c86d27f291a4300a1257c02096862335ec | [
"MIT"
] | null | null | null | mdns/Phidget22Python/Phidget22/Phidget.py | rabarar/phidget_docker | ceca56c86d27f291a4300a1257c02096862335ec | [
"MIT"
] | null | null | null | mdns/Phidget22Python/Phidget22/Phidget.py | rabarar/phidget_docker | ceca56c86d27f291a4300a1257c02096862335ec | [
"MIT"
] | null | null | null | import sys
import ctypes
from Phidget22.PhidgetSupport import PhidgetSupport
from Phidget22.Async import *
from Phidget22.ChannelClass import ChannelClass
from Phidget22.ChannelSubclass import ChannelSubclass
from Phidget22.DeviceClass import DeviceClass
from Phidget22.DeviceID import DeviceID
from Phidget22.ErrorEventCode import ErrorEventCode
from Phidget22.PhidgetException import PhidgetException
ANY_SERIAL_NUMBER = -1
ANY_HUB_PORT = -1
ANY_CHANNEL = -1
ANY_LABEL = None
INFINITE_TIMEOUT = 0
DEFAULT_TIMEOUT = 1000
| 26.083445 | 113 | 0.757482 |
86e649d303431093f68ab23ef3215809292e639b | 4,872 | py | Python | tests/integration/test_celery.py | crossscreenmedia/scout_apm_python | 5cd31bf21f5acd0be0df4f40ec0bd29ec050ec01 | [
"MIT"
] | null | null | null | tests/integration/test_celery.py | crossscreenmedia/scout_apm_python | 5cd31bf21f5acd0be0df4f40ec0bd29ec050ec01 | [
"MIT"
] | null | null | null | tests/integration/test_celery.py | crossscreenmedia/scout_apm_python | 5cd31bf21f5acd0be0df4f40ec0bd29ec050ec01 | [
"MIT"
] | null | null | null | # coding=utf-8
from __future__ import absolute_import, division, print_function, unicode_literals
from contextlib import contextmanager
import celery
import pytest
from celery.signals import setup_logging
import scout_apm.celery
from scout_apm.api import Config
# http://docs.celeryproject.org/en/latest/userguide/testing.html#py-test
skip_unless_celery_4_plus = pytest.mark.skipif(
celery.VERSION < (4, 0), reason="pytest fixtures added in Celery 4.0"
)
def test_hello_eager(tracked_requests):
with app_with_scout() as app:
result = app.tasks["tests.integration.test_celery.hello"].apply()
assert result.result == "Hello World!"
assert len(tracked_requests) == 1
tracked_request = tracked_requests[0]
assert "task_id" in tracked_request.tags
assert tracked_request.tags["is_eager"] is True
assert tracked_request.tags["exchange"] == "unknown"
assert tracked_request.tags["routing_key"] == "unknown"
assert tracked_request.tags["queue"] == "unknown"
assert tracked_request.active_spans == []
assert len(tracked_request.complete_spans) == 1
span = tracked_request.complete_spans[0]
assert span.operation == "Job/tests.integration.test_celery.hello"
def test_no_monitor(tracked_requests):
# With an empty config, "monitor" defaults to False.
with app_with_scout(config={}) as app:
result = app.tasks["tests.integration.test_celery.hello"].apply()
assert result.result == "Hello World!"
assert tracked_requests == []
| 34.553191 | 82 | 0.70936 |
86e65c540055ab2f761c3c998b140c5377b7f0c6 | 10,865 | py | Python | molly/apps/places/migrations/0001_initial.py | mollyproject/mollyproject | 3247c6bac3f39ce8d275d19aa410b30c6284b8a7 | [
"Apache-2.0"
] | 7 | 2015-05-16T13:27:21.000Z | 2019-08-06T11:09:24.000Z | molly/apps/places/migrations/0001_initial.py | mollyproject/mollyproject | 3247c6bac3f39ce8d275d19aa410b30c6284b8a7 | [
"Apache-2.0"
] | null | null | null | molly/apps/places/migrations/0001_initial.py | mollyproject/mollyproject | 3247c6bac3f39ce8d275d19aa410b30c6284b8a7 | [
"Apache-2.0"
] | 4 | 2015-11-27T13:36:36.000Z | 2021-03-09T17:55:53.000Z | # encoding: utf-8
import datetime
from south.db import db
from south.v2 import SchemaMigration
from django.db import models
| 60.698324 | 211 | 0.620985 |
86e6c529a13c62833d2d9d91e683f2c9cc85c2b8 | 16,246 | py | Python | sdk/python/pulumi_azure_native/servicebus/v20210601preview/get_subscription.py | polivbr/pulumi-azure-native | 09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7 | [
"Apache-2.0"
] | null | null | null | sdk/python/pulumi_azure_native/servicebus/v20210601preview/get_subscription.py | polivbr/pulumi-azure-native | 09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7 | [
"Apache-2.0"
] | null | null | null | sdk/python/pulumi_azure_native/servicebus/v20210601preview/get_subscription.py | polivbr/pulumi-azure-native | 09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7 | [
"Apache-2.0"
] | null | null | null | # coding=utf-8
# *** WARNING: this file was generated by the Pulumi SDK Generator. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import warnings
import pulumi
import pulumi.runtime
from typing import Any, Mapping, Optional, Sequence, Union, overload
from ... import _utilities
from . import outputs
__all__ = [
'GetSubscriptionResult',
'AwaitableGetSubscriptionResult',
'get_subscription',
]
def get_subscription(namespace_name: Optional[str] = None,
resource_group_name: Optional[str] = None,
subscription_name: Optional[str] = None,
topic_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSubscriptionResult:
"""
Description of subscription resource.
:param str namespace_name: The namespace name
:param str resource_group_name: Name of the Resource group within the Azure subscription.
:param str subscription_name: The subscription name.
:param str topic_name: The topic name.
"""
__args__ = dict()
__args__['namespaceName'] = namespace_name
__args__['resourceGroupName'] = resource_group_name
__args__['subscriptionName'] = subscription_name
__args__['topicName'] = topic_name
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('azure-native:servicebus/v20210601preview:getSubscription', __args__, opts=opts, typ=GetSubscriptionResult).value
return AwaitableGetSubscriptionResult(
accessed_at=__ret__.accessed_at,
auto_delete_on_idle=__ret__.auto_delete_on_idle,
client_affine_properties=__ret__.client_affine_properties,
count_details=__ret__.count_details,
created_at=__ret__.created_at,
dead_lettering_on_filter_evaluation_exceptions=__ret__.dead_lettering_on_filter_evaluation_exceptions,
dead_lettering_on_message_expiration=__ret__.dead_lettering_on_message_expiration,
default_message_time_to_live=__ret__.default_message_time_to_live,
duplicate_detection_history_time_window=__ret__.duplicate_detection_history_time_window,
enable_batched_operations=__ret__.enable_batched_operations,
forward_dead_lettered_messages_to=__ret__.forward_dead_lettered_messages_to,
forward_to=__ret__.forward_to,
id=__ret__.id,
is_client_affine=__ret__.is_client_affine,
lock_duration=__ret__.lock_duration,
max_delivery_count=__ret__.max_delivery_count,
message_count=__ret__.message_count,
name=__ret__.name,
requires_session=__ret__.requires_session,
status=__ret__.status,
system_data=__ret__.system_data,
type=__ret__.type,
updated_at=__ret__.updated_at)
| 45.253482 | 595 | 0.70048 |
86e708b4a5fa05856a6c8d0dde3c26f2006621e1 | 4,340 | py | Python | py_cfeve/module/CFAF240400E0-030TN-A1.py | crystalfontz/CFA-EVE-Python-Library | c5aca10b9b6ee109d4df8a9a692dcef083dafc88 | [
"Unlicense"
] | 1 | 2021-12-08T00:12:02.000Z | 2021-12-08T00:12:02.000Z | py_cfeve/module/CFAF240400E0-030TN-A1.py | crystalfontz/CFA-EVE-Python-Library | c5aca10b9b6ee109d4df8a9a692dcef083dafc88 | [
"Unlicense"
] | null | null | null | py_cfeve/module/CFAF240400E0-030TN-A1.py | crystalfontz/CFA-EVE-Python-Library | c5aca10b9b6ee109d4df8a9a692dcef083dafc88 | [
"Unlicense"
] | null | null | null | #===========================================================================
#
# Crystalfontz Raspberry-Pi Python example library for FTDI / BridgeTek
# EVE graphic accelerators.
#
#---------------------------------------------------------------------------
#
# This file is part of the port/adaptation of existing C based EVE libraries
# to Python for Crystalfontz EVE based displays.
#
# 2021-10-20 Mark Williams / Crystalfontz America Inc.
# https:#www.crystalfontz.com/products/eve-accelerated-tft-displays.php
#---------------------------------------------------------------------------
#
# This is free and unencumbered software released into the public domain.
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
# For more information, please refer to <http:#unlicense.org/>
#
#============================================================================
#EVE Device Type
EVE_DEVICE = 811
# EVE Clock Speed
EVE_CLOCK_SPEED = 60000000
# Touch
TOUCH_RESISTIVE = False
TOUCH_CAPACITIVE = False
TOUCH_GOODIX_CAPACITIVE = False
# Define RGB output pins order, determined by PCB layout
LCD_SWIZZLE = 2
# Define active edge of PCLK. Observed by scope:
# 0: Data is put out coincident with falling edge of the clock.
# Rising edge of the clock is in the middle of the data.
# 1: Data is put out coincident with rising edge of the clock.
# Falling edge of the clock is in the middle of the data.
LCD_PCLKPOL = 0
# LCD drive strength: 0=5mA, 1=10mA
LCD_DRIVE_10MA = 0
# Spread Spectrum on RGB signals. Probably not a good idea at higher
# PCLK frequencies.
LCD_PCLK_CSPREAD = 0
#This is not a 24-bit display, so dither
LCD_DITHER = 0
# Pixel clock divisor
LCD_PCLK = 5
#----------------------------------------------------------------------------
# Frame_Rate = 60Hz / 16.7mS
#----------------------------------------------------------------------------
# Horizontal timing
# Target 60Hz frame rate, using the largest possible line time in order to
# maximize the time that the EVE has to process each line.
HPX = 240 # Horizontal Pixel Width
HSW = 10 # Horizontal Sync Width
HBP = 20 # Horizontal Back Porch
HFP = 10 # Horizontal Front Porch
HPP = 209 # Horizontal Pixel Padding
# FTDI needs at least 1 here
# Define the constants needed by the EVE based on the timing
# Active width of LCD display
LCD_WIDTH = HPX
# Start of horizontal sync pulse
LCD_HSYNC0 = HFP
# End of horizontal sync pulse
LCD_HSYNC1 = HFP+HSW
# Start of active line
LCD_HOFFSET = HFP+HSW+HBP
# Total number of clocks per line
LCD_HCYCLE = HPX+HFP+HSW+HBP+HPP
#----------------------------------------------------------------------------
# Vertical timing
VLH = 400 # Vertical Line Height
VS = 2 # Vertical Sync (in lines)
VBP = 2 # Vertical Back Porch
VFP = 4 # Vertical Front Porch
VLP = 1 # Vertical Line Padding
# FTDI needs at least 1 here
# Define the constants needed by the EVE based on the timing
# Active height of LCD display
LCD_HEIGHT = VLH
# Start of vertical sync pulse
LCD_VSYNC0 = VFP
# End of vertical sync pulse
LCD_VSYNC1 = VFP+VS
# Start of active screen
LCD_VOFFSET = VFP+VS+VBP
# Total number of lines per screen
LCD_VCYCLE = VLH+VFP+VS+VBP+VLP | 38.070175 | 78 | 0.645392 |
86e79f3939b52fb2b048dd2d47804d7ba195c64a | 12,893 | py | Python | quapy/model_selection.py | OneToolsCollection/HLT-ISTI-QuaPy | 6a5c528154c2d6d38d9f3258e667727bf692fc8b | [
"BSD-3-Clause"
] | null | null | null | quapy/model_selection.py | OneToolsCollection/HLT-ISTI-QuaPy | 6a5c528154c2d6d38d9f3258e667727bf692fc8b | [
"BSD-3-Clause"
] | null | null | null | quapy/model_selection.py | OneToolsCollection/HLT-ISTI-QuaPy | 6a5c528154c2d6d38d9f3258e667727bf692fc8b | [
"BSD-3-Clause"
] | null | null | null | import itertools
import signal
from copy import deepcopy
from typing import Union, Callable
import numpy as np
import quapy as qp
from quapy.data.base import LabelledCollection
from quapy.evaluation import artificial_prevalence_prediction, natural_prevalence_prediction, gen_prevalence_prediction
from quapy.method.aggregative import BaseQuantifier
import inspect
from util import _check_sample_size
| 48.65283 | 119 | 0.649732 |
86e7d2f1d51490654abf153935c59b83db56caad | 597 | py | Python | flasky.py | ZxShane/slam_hospital | 302704b3a188cea07dddfb23595dd75f8d3cd636 | [
"Apache-2.0"
] | null | null | null | flasky.py | ZxShane/slam_hospital | 302704b3a188cea07dddfb23595dd75f8d3cd636 | [
"Apache-2.0"
] | 1 | 2020-11-17T16:47:19.000Z | 2021-01-26T10:16:33.000Z | flasky.py | ZxShane/slam_hospital | 302704b3a188cea07dddfb23595dd75f8d3cd636 | [
"Apache-2.0"
] | null | null | null | # -*- coding: utf-8 -*-
import os
from flask_migrate import Migrate
from app import create_app, db
from app.models import User, Role, PoseToLocation
app = create_app(os.getenv('FLASK_CONFIG') or 'default')
migrate = Migrate(app, db)
# migrate
#
| 22.111111 | 75 | 0.730318 |
86e7e28fd96ba38477835a4f1f9a0169efabb855 | 2,841 | py | Python | python/day09/smoke_basin.py | aesdeef/advent-of-code-2021 | 4561bcf12ac03d360f5b28c48ef80134f97613b9 | [
"MIT"
] | 2 | 2021-12-03T06:18:27.000Z | 2021-12-06T11:28:33.000Z | python/day09/smoke_basin.py | aesdeef/advent-of-code-2021 | 4561bcf12ac03d360f5b28c48ef80134f97613b9 | [
"MIT"
] | null | null | null | python/day09/smoke_basin.py | aesdeef/advent-of-code-2021 | 4561bcf12ac03d360f5b28c48ef80134f97613b9 | [
"MIT"
] | null | null | null | INPUT_FILE = "../../input/09.txt"
Point = tuple[int, int]
Heightmap = dict[Point, int]
Basin = set[Point]
def parse_input() -> Heightmap:
"""
Parses the input and returns a Heightmap
"""
with open(INPUT_FILE) as f:
heights = [[int(x) for x in line.strip()] for line in f]
heightmap: Heightmap = dict()
for (y, row) in enumerate(heights):
for (x, height) in enumerate(row):
heightmap[(x, y)] = height
return heightmap
def get_surrounding_points(heightmap: Heightmap, point: Point) -> set[Point]:
"""
Returns a set of surrounding points within the heightmap
"""
x, y = point
return {
(x - 1, y),
(x, y - 1),
(x, y + 1),
(x + 1, y),
} & heightmap.keys()
def get_surrounding_heights(heightmap: Heightmap, point: Point) -> set[int]:
"""
Returns the heights of points surrounding the given point
"""
surrounding_points = get_surrounding_points(heightmap, point)
return {heightmap[point] for point in surrounding_points}
def get_low_points(heightmap: Heightmap) -> set[Point]:
"""
Finds the low points on the heightmap
"""
low_points: set[Point] = set()
for point in heightmap:
surrounding_heights = get_surrounding_heights(heightmap, point)
if all(heightmap[point] < height for height in surrounding_heights):
low_points.add(point)
return low_points
def solve_part1(heightmap: Heightmap, low_points: set[Point]) -> int:
"""
Calculates the sum of the risk levels of all low points
"""
return sum(1 + heightmap[point] for point in low_points)
def get_basins(heightmap: Heightmap, low_points: set[Point]) -> list[Basin]:
"""
Finds all basins on the heightmap
"""
basins: list[Basin] = []
for low_point in low_points:
basin: Basin = set()
points_to_consider = {low_point}
while points_to_consider:
point = points_to_consider.pop()
if heightmap[point] == 9:
continue
surrounding_points = get_surrounding_points(heightmap, point)
points_to_consider.update(surrounding_points - basin)
basin.add(point)
basins.append(basin)
return basins
def solve_part2(heightmap: Heightmap, low_points: set[Point]) -> int:
"""
Calculates the product of the sizes of the three largest basins
"""
basins = get_basins(heightmap, low_points)
basin_sizes = sorted((len(basin) for basin in basins), reverse=True)
return basin_sizes[0] * basin_sizes[1] * basin_sizes[2]
if __name__ == "__main__":
heightmap = parse_input()
low_points = get_low_points(heightmap)
part1 = solve_part1(heightmap, low_points)
part2 = solve_part2(heightmap, low_points)
print(part1)
print(part2)
| 27.852941 | 77 | 0.642027 |
86e856cc4992e6f53fef41d1cfe0de4271ac6642 | 1,667 | py | Python | playground.py | NHGmaniac/voctoconfig | 55a803a5f9bc81b48eaa72ced1fddd402aa7a2e9 | [
"MIT"
] | null | null | null | playground.py | NHGmaniac/voctoconfig | 55a803a5f9bc81b48eaa72ced1fddd402aa7a2e9 | [
"MIT"
] | null | null | null | playground.py | NHGmaniac/voctoconfig | 55a803a5f9bc81b48eaa72ced1fddd402aa7a2e9 | [
"MIT"
] | null | null | null | #!/usr/bin/env python3
import signal
import logging
import sys
from gi.repository import GObject
GObject.threads_init()
import time
from lib.args import Args
from lib.loghandler import LogHandler
import lib.connection as Connection
if __name__ == '__main__':
main() | 24.514706 | 67 | 0.644271 |
86e873cdab8920252696e3d917e54b578dd9f428 | 3,220 | py | Python | tianshou/utils/logger/tensorboard.py | Aceticia/tianshou | 6377dc5006ba1111adac42472447b9de4a021c2d | [
"MIT"
] | 4,714 | 2018-04-16T22:52:05.000Z | 2022-03-31T14:14:51.000Z | tianshou/utils/logger/tensorboard.py | Aceticia/tianshou | 6377dc5006ba1111adac42472447b9de4a021c2d | [
"MIT"
] | 529 | 2020-03-26T00:58:03.000Z | 2022-03-31T01:59:14.000Z | tianshou/utils/logger/tensorboard.py | Aceticia/tianshou | 6377dc5006ba1111adac42472447b9de4a021c2d | [
"MIT"
] | 798 | 2018-05-26T23:34:07.000Z | 2022-03-30T11:26:19.000Z | import warnings
from typing import Any, Callable, Optional, Tuple
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils.logger.base import LOG_DATA_TYPE, BaseLogger
| 37.011494 | 87 | 0.647205 |
86e8affd139b8a4dffaf5cdc66c6797adccdf84b | 7,326 | py | Python | PythonAPI/pythonwrappers/jetfuel/gui/menu.py | InsightGit/JetfuelGameEngine | 3ea0bf2fb5e09aadf304b7b5a16882d72336c408 | [
"Apache-2.0"
] | 4 | 2018-02-05T03:40:10.000Z | 2021-06-18T16:22:13.000Z | PythonAPI/pythonwrappers/jetfuel/gui/menu.py | InsightGit/JetfuelGameEngine | 3ea0bf2fb5e09aadf304b7b5a16882d72336c408 | [
"Apache-2.0"
] | null | null | null | PythonAPI/pythonwrappers/jetfuel/gui/menu.py | InsightGit/JetfuelGameEngine | 3ea0bf2fb5e09aadf304b7b5a16882d72336c408 | [
"Apache-2.0"
] | null | null | null | # Jetfuel Game Engine- A SDL-based 2D game-engine
# Copyright (C) 2018 InfernoStudios
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ctypes import c_uint
from ctypes import c_int
from ctypes import c_void_p
from ctypes import c_bool
from ctypes import c_wchar_p
from jetfuel.draw.rectangleinterface import rectangle_interface
from jetfuel.draw.image import image
| 46.367089 | 81 | 0.590227 |
86ea235dbd8e630be7e48c8aa27ae5d388c7bc1d | 30,649 | py | Python | latent_programmer/decomposition_transformer_attention/train.py | ParikhKadam/google-research | 00a282388e389e09ce29109eb050491c96cfab85 | [
"Apache-2.0"
] | 2 | 2022-01-21T18:15:34.000Z | 2022-01-25T15:21:34.000Z | latent_programmer/decomposition_transformer_attention/train.py | ParikhKadam/google-research | 00a282388e389e09ce29109eb050491c96cfab85 | [
"Apache-2.0"
] | 110 | 2021-10-01T18:22:38.000Z | 2021-12-27T22:08:31.000Z | latent_programmer/decomposition_transformer_attention/train.py | admariner/google-research | 7cee4b22b925581d912e8d993625c180da2a5a4f | [
"Apache-2.0"
] | 1 | 2022-02-10T10:43:10.000Z | 2022-02-10T10:43:10.000Z | # coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# python3
"""Train seq-to-seq model on random supervised training tasks."""
# pytype: disable=wrong-arg-count
# pytype: disable=attribute-error
import collections
import functools
import json
import os
import random
import sys
import time
from absl import app
from absl import flags
from absl import logging
from flax import jax_utils
from flax import linen as nn
from flax import optim
from flax.metrics import tensorboard
from flax.training import checkpoints
from flax.training import common_utils
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow.compat.v2 as tf
from latent_programmer import decode
from latent_programmer import models as base_models
from latent_programmer.decomposition_transformer_attention import decomposition_models as models
from latent_programmer.decomposition_transformer_attention import input_pipeline
from latent_programmer.tasks.robust_fill import dsl
from latent_programmer.tasks.robust_fill import tokens as dsl_tokens
sys.path.append('../../')
gfile = tf.io.gfile
FLAGS = flags.FLAGS
flags.DEFINE_integer('seed', 0, 'Fixed random seed for training.')
flags.DEFINE_float('lr', 1e-3, 'Learning rate.')
flags.DEFINE_float('weight_decay', 1e-1,
'Decay factor for AdamW-style weight decay.')
flags.DEFINE_integer('embedding_dim', 256, 'Embedding dimension.')
flags.DEFINE_integer('hidden_dim', 512, 'Hidden dimension.')
flags.DEFINE_integer('num_heads', 4, 'Number of layers.')
flags.DEFINE_integer('num_layers', 3, 'Number of Transformer heads.')
flags.DEFINE_boolean('slow_decode', True, 'Use slow decoding for prediction?')
flags.DEFINE_string('dataset_filepattern', None,
'Filepattern for TFRecord dataset.')
flags.DEFINE_integer('per_device_batch_size', 16,
'Number of program tasks in a batch.')
flags.DEFINE_integer('num_strings_per_task', 4,
'Number of input/output strings per task.')
flags.DEFINE_integer('max_program_length', 100,
'Maximum number of tokens in program.')
flags.DEFINE_integer('max_characters', 120,
'Maximum number of characters in input/output strings.')
flags.DEFINE_string('save_dir', None, 'Directory to save results to.')
flags.DEFINE_integer('num_train_steps', 2000000, 'Number of training steps.')
flags.DEFINE_integer('num_eval_steps', 10, 'Number of evaluation steps.')
flags.DEFINE_integer('log_freq', 1000, 'Number of steps between training logs.')
flags.DEFINE_integer('eval_freq', 2000, 'Number of steps between eval.')
flags.DEFINE_integer('predict_freq', 50000,
'Number of steps between prediction (beam search).')
flags.DEFINE_integer('checkpoint_freq', 50000,
'Number of steps between checkpoint saves.')
flags.DEFINE_integer('finetune_start_step', -1,
'Step the initial checkpoint should start at for '
'finetuning, or -1 if not finetuning.')
flags.DEFINE_bool('restore_checkpoints', True,
'Whether to restore from existing model checkpoints.')
flags.DEFINE_string('attention_mask_type', 'bos_full_attention',
'The kind of attention mask to use. Options are: baseline, '
'bos_to_bos, bos_full_attention')
flags.DEFINE_bool('use_relative_attention', True,
'Whether to use relative positonal embeddings.')
flags.DEFINE_bool('bos_special_attention', False,
'Whether to use special relative attention computation for '
'BOS tokens.')
_internal = False
if not _internal:
flags.DEFINE_string('xm_parameters', None,
'String specifying hyperparamter search.')
def create_learning_rate_scheduler(
base_learning_rate=0.5,
factors='constant * linear_warmup * rsqrt_normalized_decay',
warmup_steps=16000,
decay_factor=0.5,
steps_per_decay=50000,
steps_per_cycle=100000):
"""Creates learning rate schedule.
Interprets factors in the factors string which can consist of:
* constant: interpreted as the constant value,
* linear_warmup: interpreted as linear warmup until warmup_steps,
* rsqrt_decay: divide by square root of max(step, warmup_steps)
* decay_every: Every k steps decay the learning rate by decay_factor.
* cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter.
Args:
base_learning_rate: float, the starting constant for the lr schedule.
factors: a string with factors separated by '*' that defines the schedule.
warmup_steps: how many steps to warm up for in the warmup schedule.
decay_factor: The amount to decay the learning rate by.
steps_per_decay: How often to decay the learning rate.
steps_per_cycle: Steps per cycle when using cosine decay.
Returns:
A function learning_rate(step): float -> {'learning_rate': float}, the
step-dependent lr.
"""
factors = [n.strip() for n in factors.split('*')]
def step_fn(step):
"""Step to learning rate function."""
ret = 1.0
for name in factors:
if name == 'constant':
ret *= base_learning_rate
elif name == 'linear_warmup':
ret *= jnp.minimum(1.0, step / warmup_steps)
elif name == 'rsqrt_decay':
ret /= jnp.sqrt(jnp.maximum(1.0, step - warmup_steps))
elif name == 'rsqrt_normalized_decay':
ret *= jnp.sqrt(warmup_steps)
ret /= jnp.sqrt(jnp.maximum(step, warmup_steps))
elif name == 'decay_every':
ret *= (decay_factor**(step // steps_per_decay))
elif name == 'cosine_decay':
progress = jnp.maximum(0.0,
(step - warmup_steps) / float(steps_per_cycle))
ret *= jnp.maximum(0.0,
0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0))))
else:
raise ValueError('Unknown factor %s.' % name)
return jnp.asarray(ret, dtype=jnp.float32)
return step_fn
def compute_weighted_cross_entropy(logits, targets, weights=None):
"""Compute weighted cross entropy and entropy for log probs and targets.
Args:
logits: `[batch, length, num_classes]` float array.
targets: categorical targets `[batch, length]` int array.
weights: None or array of shape [batch, length, 1]
Returns:
Tuple of scalar loss and batch normalizing factor.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' %
(str(logits.shape), str(targets.shape)))
onehot_targets = common_utils.onehot(targets, logits.shape[-1])
loss = -jnp.sum(onehot_targets * nn.log_softmax(logits), axis=-1)
normalizing_factor = jnp.prod(jnp.asarray(targets.shape))
if weights is not None:
loss = loss * weights
normalizing_factor = weights.sum()
return loss.sum(), normalizing_factor
def compute_weighted_accuracy(logits, targets, weights=None):
"""Compute weighted accuracy for log probs and targets.
Args:
logits: `[batch, length, num_classes]` float array.
targets: categorical targets `[batch, length]` int array.
weights: None or array of shape [batch, length, 1]
Returns:
Tuple of scalar accuracy and batch normalizing factor.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' %
(str(logits.shape), str(targets.shape)))
acc = jnp.equal(jnp.argmax(logits, axis=-1), targets)
normalizing_factor = jnp.prod(jnp.asarray(targets.shape))
if weights is not None:
acc = acc * weights
normalizing_factor = weights.sum()
return acc.sum(), normalizing_factor
def compute_metrics(logits, targets, weights):
"""Compute summary metrics."""
loss, weight_sum = compute_weighted_cross_entropy(logits, targets, weights)
acc, _ = compute_weighted_accuracy(logits, targets, weights)
metrics = {
'loss': loss,
'accuracy': acc,
'denominator': weight_sum,
}
metrics = jax.lax.psum(metrics, 'batch')
return metrics
# Train / eval / decode step functions.
# -----------------------------------------------------------------------------
def train_step(optimizer,
inputs,
outputs,
programs,
learning_rate_fn,
config,
dropout_rng):
"""Train on batch of program tasks."""
# We handle PRNG splitting inside the top pmap, rather
# than handling it outside in the training loop - doing the
# latter can add some stalls to the devices.
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
weights = jnp.where(programs > 0, 1, 0).astype(jnp.float32)
def loss_fn(params):
"""Loss function used for training."""
logits = models.DecomposeAttentionTransformer(config).apply(
{'params': params},
inputs,
outputs,
programs,
rngs={'dropout': dropout_rng})
loss, weight_sum = compute_weighted_cross_entropy(logits, programs, weights)
mean_loss = loss / weight_sum
return mean_loss, logits
step = optimizer.state.step
lr = learning_rate_fn(step)
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(_, logits), grad = grad_fn(optimizer.target)
grad = jax.lax.pmean(grad, 'batch')
new_optimizer = optimizer.apply_gradient(grad, learning_rate=lr)
# Get metrics.
metrics = compute_metrics(logits, programs, weights)
metrics['learning_rate'] = lr
return new_optimizer, metrics, new_dropout_rng
def eval_step(params, inputs, outputs, programs, eos_token, config):
"""Collect metrics for evaluation during training."""
weights = jnp.where(
jnp.logical_and(programs > 0,
jnp.logical_and(programs != config.base_config.bos_token,
programs != eos_token)),
1, 0).astype(jnp.float32)
logits = models.DecomposeAttentionTransformer(config).apply(
{'params': params}, inputs, outputs, programs)
return compute_metrics(logits, programs, weights)
def initialize_cache(inputs, outputs, programs, max_decode_len, config):
"""Initialize a cache for a given input shape and max decode length."""
target_shape = (programs.shape[0], max_decode_len)
dtype = config.base_config.dtype
initial_variables = models.DecomposeAttentionTransformer(config).init(
jax.random.PRNGKey(0),
jnp.ones(inputs.shape, dtype),
jnp.ones(outputs.shape, dtype),
jnp.ones(target_shape, dtype))
return initial_variables['cache']
def predict_step(params,
inputs,
outputs,
cache,
beam_size,
eos_token,
max_decode_len,
config,
slow_decode=True):
"""Predict translation with fast decoding beam search on a batch."""
# Prepare transformer fast-decoder call for beam search: for beam search, we
# need to set up our decoder model to handle a batch size equal to
# batch_size * beam_size, where each batch item's data is expanded in-place
# rather than tiled.
flat_encoded = decode.flat_batch_beam_expand(
models.DecomposeAttentionTransformer(config).apply(
{'params': params},
inputs,
outputs,
method=models.DecomposeAttentionTransformer.encode),
beam_size)
encoded_padding_mask = jnp.where(outputs > 0, 1, 0).astype(jnp.float32)
flat_encoded_padding_mask = decode.flat_batch_beam_expand(
encoded_padding_mask, beam_size)
if slow_decode:
def tokens_ids_to_logits(flat_ids):
"""Token slice to logits from decoder model."""
# --> [batch * beam, 1, vocab]
flat_logits = models.DecomposeAttentionTransformer(config=config).apply(
{'params': params},
flat_ids,
flat_encoded,
flat_encoded_padding_mask,
method=models.DecomposeAttentionTransformer.decode)
return flat_logits
else:
def tokens_ids_to_logits(flat_ids, flat_cache):
"""Token slice to logits from decoder model."""
# --> [batch * beam, 1, vocab]
flat_logits, new_vars = models.DecomposeAttentionTransformer(
config=config).apply(
{'params': params, 'cache': flat_cache},
flat_ids,
flat_encoded,
flat_encoded_padding_mask,
mutable=['cache'],
method=models.DecomposeAttentionTransformer.decode)
new_flat_cache = new_vars['cache']
# Remove singleton sequence-length dimension:
# [batch * beam, 1, vocab] --> [batch * beam, vocab]
flat_logits = flat_logits.squeeze(axis=1)
return flat_logits, new_flat_cache
# Using the above-defined single-step decoder function, run a
# beam search over possible sequences given input encoding.
beam_seqs, _ = decode.beam_search(
inputs,
cache,
tokens_ids_to_logits,
beam_size=beam_size,
alpha=0.6,
bos_token=config.base_config.bos_token,
eos_token=eos_token,
max_decode_len=max_decode_len,
slow_decode=slow_decode)
# Beam search returns [n_batch, n_beam, n_length] with beam dimension
# sorted in increasing order of log-probability.
return beam_seqs
# Util functions for prediction
# -----------------------------------------------------------------------------
def pad_examples(x, desired_batch_size):
"""Expand batch to desired size by repeating last slice."""
batch_pad = desired_batch_size - x.shape[0]
tile_dims = [1] * len(x.shape)
tile_dims[0] = batch_pad
return np.concatenate([x, np.tile(x[-1], tile_dims)], axis=0)
def tohost(x):
"""Collect batches from all devices to host and flatten batch dimensions."""
n_device, n_batch, *remaining_dims = x.shape
return x.reshape((n_device * n_batch,) + tuple(remaining_dims))
def per_host_sum_pmap(in_tree):
"""Execute psum on in_tree's leaves over one device per host."""
host2devices = collections.defaultdict(list)
for d in jax.devices():
host2devices[d.host_id].append(d)
devices = [host2devices[k][0] for k in host2devices]
host_psum = jax.pmap(lambda x: jax.lax.psum(x, 'i'), 'i', devices=devices)
return post_pmap(host_psum(pre_pmap(in_tree)))
def eval_predicted(predicted, inputs, outputs, parse_beam_fn):
"""Evaluate predicted program beams."""
best_p, best_score = None, -1
# predicted shape [beam_size, length]
for beam in predicted[::-1]:
try:
p = parse_beam_fn(beam)
p_outs = [p(inp) for inp in inputs]
score = np.sum([p_out == out for p_out, out in zip(p_outs, outputs)])
if score > best_score:
best_p, best_score = p, score
except: # pylint: disable=bare-except
pass
if best_score >= len(inputs): # Found solution.
break
return best_p, best_score
if __name__ == '__main__':
app.run(main)
| 38.263421 | 96 | 0.661131 |
86ebf47f1f35ac5baec5295be6bb6feebf67dc9a | 5,412 | py | Python | plot/profile_interpolation/plot_profile.py | ziyixi/SeisScripts | a484bc1747eae52b2441f0bfd47ac7e093150f1d | [
"MIT"
] | null | null | null | plot/profile_interpolation/plot_profile.py | ziyixi/SeisScripts | a484bc1747eae52b2441f0bfd47ac7e093150f1d | [
"MIT"
] | null | null | null | plot/profile_interpolation/plot_profile.py | ziyixi/SeisScripts | a484bc1747eae52b2441f0bfd47ac7e093150f1d | [
"MIT"
] | null | null | null | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import click
import numba
# def get_value_func(x_mesh, y_mesh, z_mesh, value_mesh):
# value_func = RegularGridInterpolator(
# (x_mesh, y_mesh, z_mesh), value_mesh, method="nearest")
# return value_func
def generate_vertical_profile_grids(lon_list, lat_list, dep_list, hnpts, vnpts):
lons = np.linspace(lon_list[0], lon_list[1], hnpts)
lats = np.linspace(lat_list[0], lat_list[1], hnpts)
deps = np.linspace(dep_list[0], dep_list[1], vnpts)
return lons, lats, deps
if __name__ == "__main__":
main()
| 34.037736 | 153 | 0.636179 |
86ebfc32e5da592e6e4c3fa48a02c7a3cbe0a2ce | 367 | py | Python | tests/test_heroku.py | edpaget/flask-appconfig | 5264719ac9229339070b219a4358a3203ffd05b0 | [
"MIT"
] | 61 | 2015-01-28T21:19:11.000Z | 2020-12-28T10:12:28.000Z | tests/test_heroku.py | edpaget/flask-appconfig | 5264719ac9229339070b219a4358a3203ffd05b0 | [
"MIT"
] | 3 | 2016-01-25T00:09:55.000Z | 2017-09-25T11:36:19.000Z | tests/test_heroku.py | edpaget/flask-appconfig | 5264719ac9229339070b219a4358a3203ffd05b0 | [
"MIT"
] | 14 | 2015-07-22T12:58:06.000Z | 2021-03-24T02:06:30.000Z | from flask import Flask
from flask_appconfig import HerokuConfig
| 22.9375 | 71 | 0.746594 |
86ec0f9bcbbfb50a7fe60cb1505775e1803a9dd4 | 396 | py | Python | flask/util/logger.py | Dev-Jahn/cms | 84ea115bdb865daff83d069502f6f0dd105fc4f0 | [
"RSA-MD"
] | null | null | null | flask/util/logger.py | Dev-Jahn/cms | 84ea115bdb865daff83d069502f6f0dd105fc4f0 | [
"RSA-MD"
] | 9 | 2021-01-05T07:48:28.000Z | 2021-05-14T06:38:27.000Z | flask/util/logger.py | Dev-Jahn/cms | 84ea115bdb865daff83d069502f6f0dd105fc4f0 | [
"RSA-MD"
] | 4 | 2021-01-05T06:46:09.000Z | 2021-05-06T01:44:28.000Z | import logging
"""
Formatter
"""
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d:%H:%M:%S')
"""
Set Flask logger
"""
logger = logging.getLogger('FLASK_LOG')
logger.setLevel(logging.DEBUG)
stream_log = logging.StreamHandler()
stream_log.setFormatter(formatter)
logger.addHandler(stream_log)
# if disabled
# logger.disabled = True
| 20.842105 | 114 | 0.699495 |
86ecab271dab8a62fddc0d43582d82c9d0efb150 | 1,592 | py | Python | utils/backups/backup_psql.py | Krovatkin/NewsBlur | 2a5b52984c9d29c864eb80e9c60c658b1f25f7c5 | [
"MIT"
] | null | null | null | utils/backups/backup_psql.py | Krovatkin/NewsBlur | 2a5b52984c9d29c864eb80e9c60c658b1f25f7c5 | [
"MIT"
] | null | null | null | utils/backups/backup_psql.py | Krovatkin/NewsBlur | 2a5b52984c9d29c864eb80e9c60c658b1f25f7c5 | [
"MIT"
] | null | null | null | #!/usr/bin/python3
import os
import sys
import socket
CURRENT_DIR = os.path.dirname(__file__)
NEWSBLUR_DIR = ''.join([CURRENT_DIR, '/../../'])
sys.path.insert(0, NEWSBLUR_DIR)
os.environ['DJANGO_SETTINGS_MODULE'] = 'newsblur_web.settings'
import threading
import time
import boto3
from django.conf import settings
BACKUP_DIR = '/srv/newsblur/backup/'
s3 = boto3.client('s3', aws_access_key_id=settings.S3_ACCESS_KEY, aws_secret_access_key=settings.S3_SECRET)
hostname = socket.gethostname().replace('-','_')
s3_object_name = f'backup_{hostname}/backup_{hostname}_{time.strftime("%Y-%m-%d-%H-%M")}.sql'
path = os.listdir(BACKUP_DIR)[0]
full_path = os.path.join(BACKUP_DIR, path)
print('Uploading %s to %s on S3 bucket %s' % (full_path, s3_object_name, settings.S3_BACKUP_BUCKET))
s3.upload_file(full_path, settings.S3_BACKUP_BUCKET, s3_object_name, Callback=ProgressPercentage(full_path))
os.remove(full_path)
| 34.608696 | 108 | 0.682161 |
86ecdb5499de55821a90a7d456c0a5f3e2bbff3c | 22,780 | py | Python | onap_tests/scenario/solution.py | Orange-OpenSource/xtesting-onap-tests | ce4237f49089a91c81f5fad552f78fec384fd504 | [
"Apache-2.0"
] | null | null | null | onap_tests/scenario/solution.py | Orange-OpenSource/xtesting-onap-tests | ce4237f49089a91c81f5fad552f78fec384fd504 | [
"Apache-2.0"
] | null | null | null | onap_tests/scenario/solution.py | Orange-OpenSource/xtesting-onap-tests | ce4237f49089a91c81f5fad552f78fec384fd504 | [
"Apache-2.0"
] | 2 | 2018-06-08T15:49:51.000Z | 2021-06-22T10:06:30.000Z | #!/usr/bin/python
#
# This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# pylint: disable=missing-docstring
# pylint: disable=duplicate-code
import logging
import time
import onap_tests.components.aai as aai
import onap_tests.components.so as so
import onap_tests.components.sdnc as sdnc
import onap_tests.components.nbi as nbi
import onap_tests.utils.stack_checker as sc
import onap_tests.utils.utils as onap_utils
PROXY = onap_utils.get_config("general.proxy")
| 42.342007 | 80 | 0.554478 |
86ecf5f6a01c26c5389153d1137d146050eff0e3 | 3,262 | py | Python | tutorials/Controls4Docs/ControlEventsGraph.py | dominic-dev/pyformsd | 23e31ceff2943bc0f7286d25dd14450a14b986af | [
"MIT"
] | null | null | null | tutorials/Controls4Docs/ControlEventsGraph.py | dominic-dev/pyformsd | 23e31ceff2943bc0f7286d25dd14450a14b986af | [
"MIT"
] | null | null | null | tutorials/Controls4Docs/ControlEventsGraph.py | dominic-dev/pyformsd | 23e31ceff2943bc0f7286d25dd14450a14b986af | [
"MIT"
] | null | null | null | #!/usr/bin/python
# -*- coding: utf-8 -*-
__author__ = "Ricardo Ribeiro"
__credits__ = ["Ricardo Ribeiro"]
__license__ = "MIT"
__version__ = "0.0"
__maintainer__ = "Ricardo Ribeiro"
__email__ = "[email protected]"
__status__ = "Development"
from __init__ import *
import random, time
from PyQt4 import QtCore
##################################################################################################################
##################################################################################################################
##################################################################################################################
#Execute the application
if __name__ == "__main__": pyforms.start_app( SimpleExample )
| 27.183333 | 116 | 0.62477 |
86ecf632226839fdabd506f9f83e9358864f79de | 4,447 | py | Python | annotation_gui_gcp/orthophoto_view.py | lioncorpo/sfm.lion-judge-corporation | 95fb11bff263c3faab62269cc907eec18b527e22 | [
"BSD-2-Clause"
] | 1 | 2019-05-31T13:50:41.000Z | 2019-05-31T13:50:41.000Z | annotation_gui_gcp/orthophoto_view.py | Pandinosaurus/OpenSfM | b892ba9fd5e7fd6c7a9e3c81edddca80f71c1cd5 | [
"BSD-2-Clause"
] | null | null | null | annotation_gui_gcp/orthophoto_view.py | Pandinosaurus/OpenSfM | b892ba9fd5e7fd6c7a9e3c81edddca80f71c1cd5 | [
"BSD-2-Clause"
] | 2 | 2017-03-31T16:54:34.000Z | 2018-07-10T11:32:22.000Z | from typing import Tuple
import numpy as np
import rasterio.warp
from opensfm import features
from .orthophoto_manager import OrthoPhotoManager
from .view import View
| 35.293651 | 83 | 0.613672 |
86eee025668f1ba4e581d9197ce7264211e57bc7 | 3,704 | py | Python | tempest/tests/lib/services/compute/test_security_group_default_rules_client.py | mail2nsrajesh/tempest | 1a3b3dc50b418d3a15839830d7d1ff88c8c76cff | [
"Apache-2.0"
] | 254 | 2015-01-05T19:22:52.000Z | 2022-03-29T08:14:54.000Z | tempest/tests/lib/services/compute/test_security_group_default_rules_client.py | mail2nsrajesh/tempest | 1a3b3dc50b418d3a15839830d7d1ff88c8c76cff | [
"Apache-2.0"
] | 13 | 2015-03-02T15:53:04.000Z | 2022-02-16T02:28:14.000Z | tempest/tests/lib/services/compute/test_security_group_default_rules_client.py | mail2nsrajesh/tempest | 1a3b3dc50b418d3a15839830d7d1ff88c8c76cff | [
"Apache-2.0"
] | 367 | 2015-01-07T15:05:39.000Z | 2022-03-04T09:50:35.000Z | # Copyright 2015 NEC Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from tempest.lib.services.compute import security_group_default_rules_client
from tempest.tests.lib import fake_auth_provider
from tempest.tests.lib.services import base
| 41.617978 | 78 | 0.704644 |
86ef419ce9a394c69c1d9d5b8bea2b3d98c02484 | 29,478 | py | Python | pirates/leveleditor/worldData/interior_spanish_npc_b.py | itsyaboyrocket/pirates | 6ca1e7d571c670b0d976f65e608235707b5737e3 | [
"BSD-3-Clause"
] | 3 | 2021-02-25T06:38:13.000Z | 2022-03-22T07:00:15.000Z | pirates/leveleditor/worldData/interior_spanish_npc_b.py | itsyaboyrocket/pirates | 6ca1e7d571c670b0d976f65e608235707b5737e3 | [
"BSD-3-Clause"
] | null | null | null | pirates/leveleditor/worldData/interior_spanish_npc_b.py | itsyaboyrocket/pirates | 6ca1e7d571c670b0d976f65e608235707b5737e3 | [
"BSD-3-Clause"
] | 1 | 2021-02-25T06:38:17.000Z | 2021-02-25T06:38:17.000Z | # uncompyle6 version 3.2.0
# Python bytecode 2.4 (62061)
# Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)]
# Embedded file name: pirates.leveleditor.worldData.interior_spanish_npc_b
from pandac.PandaModules import Point3, VBase3, Vec4, Vec3
objectStruct = {'Objects': {'1153420207.67dzlu01': {'Type': 'Building Interior', 'Name': '', 'Instanced': True, 'Objects': {'1165347933.66kmuller': {'Type': 'Log_Stack', 'DisableCollision': True, 'Hpr': VBase3(139.803, 0.0, 0.0), 'Pos': Point3(2.978, 25.796, 0.048), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/Log_stack_a'}}, '1166138034.99kmuller': {'Type': 'Log_Stack', 'DisableCollision': True, 'Hpr': VBase3(179.29, 0.0, 0.0), 'Pos': Point3(9.307, 24.592, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/Log_stack_b'}}, '1166138092.34kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(-90.005, 0.0, 0.0), 'Pos': Point3(18.672, 15.355, 0.009), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/cabinet_spanish_low'}}, '1166138151.37kmuller': {'Type': 'Pots', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(18.938, 13.997, 2.735), 'Scale': VBase3(1.464, 1.464, 1.464), 'Visual': {'Model': 'models/props/pot_A'}}, '1166138161.79kmuller': {'Type': 'Pots', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(18.511, 15.482, 3.364), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/pot_B'}}, '1166138390.93kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Holiday': '', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-0.303, 0.276, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.75, 0.9300000071525574, 1.0, 1.0), 'Model': 'models/props/table_bar_round'}}, '1166138443.79kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(-134.164, 0.0, 0.0), 'Pos': Point3(4.61, -3.84, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chair_bank'}}, '1166138454.85kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(54.358, 0.0, 0.0), 'Pos': Point3(-6.565, 0.327, 0.038), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chair_bar'}}, '1166138510.96kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(162.38, 0.0, 0.0), 'Pos': Point3(-3.36, -6.982, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chair_bank'}}, '1166138524.92kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(80.452, 0.0, 0.0), 'Pos': Point3(5.079, 5.725, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chair_bar'}}, '1166138537.42kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(25.255, 0.0, 0.0), 'Pos': Point3(-1.381, 6.177, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chair_bank'}}, '1166138621.31kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(0.672, -2.129, 3.008), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/bottle_green'}}, '1166138646.6kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-0.184, 1.377, 3.061), 'Scale': VBase3(1.429, 1.429, 1.429), 'Visual': {'Model': 'models/props/waterpitcher'}}, '1166138674.59kmuller': {'Type': 'Baskets', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(1.112, 0.235, 2.971), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/basket'}}, '1166138708.48kmuller': {'Type': 'Food', 'DisableCollision': False, 'Holiday': '', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(19.066, 23.998, 3.071), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/sausage'}}, '1166138742.6kmuller': {'Type': 'Food', 'DisableCollision': False, 'Hpr': VBase3(0.0, -4.607, 0.0), 'Pos': Point3(12.569, 24.56, 2.688), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/garlicString'}}, '1166138817.45kmuller': {'Type': 'Bucket', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(17.053, 10.72, 0.006), 'Scale': VBase3(0.665, 0.665, 0.665), 'Visual': {'Model': 'models/props/washtub'}}, '1166138973.9kmuller': {'Type': 'Tools', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(18.741, 7.367, 0.02), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/butter_churn'}}, '1166139009.4kmuller': {'Type': 'Tools', 'DisableCollision': False, 'Hpr': VBase3(-2.549, 12.708, -168.558), 'Pos': Point3(-7.195, -29.635, 4.369), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.5, 0.5, 0.5, 1.0), 'Model': 'models/props/broom'}}, '1166139125.65kmuller': {'Type': 'Furniture - Fancy', 'DisableCollision': True, 'Hpr': VBase3(179.014, 0.0, 0.0), 'Pos': Point3(-16.599, -28.46, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/cabinet_fancy_tall'}}, '1166139259.49kmuller': {'Type': 'Mortar_Pestle', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(19.246, 16.431, 3.391), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/mortar_pestle_stone'}}, '1166139339.62kmuller': {'Type': 'Prop_Groups', 'DisableCollision': True, 'Hpr': VBase3(57.552, 0.0, 0.0), 'Pos': Point3(15.438, -23.688, 0.048), 'Scale': VBase3(0.879, 0.879, 0.879), 'Visual': {'Color': (0.699999988079071, 0.699999988079071, 0.699999988079071, 1.0), 'Model': 'models/props/prop_group_G'}}, '1166139450.46kmuller': {'Type': 'Trunks', 'DisableCollision': True, 'Hpr': VBase3(-175.386, 0.0, 0.0), 'Pos': Point3(-11.623, -28.323, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/Trunk_rounded_2'}}, '1166139482.6kmuller': {'Type': 'Trunks', 'DisableCollision': False, 'Hpr': VBase3(-100.398, 0.0, 0.0), 'Pos': Point3(17.54, -12.363, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/Trunk_square'}}, '1166139534.14kmuller': {'Type': 'Furniture', 'DisableCollision': False, 'Hpr': VBase3(88.8, 0.0, 0.0), 'Pos': Point3(-19.032, -8.401, 0.172), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/bench_bank'}}, '1166139664.39kmuller': {'Type': 'Bucket', 'DisableCollision': True, 'Hpr': VBase3(-38.995, 0.0, 0.0), 'Pos': Point3(4.278, 24.282, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/bucket_handles'}}, '1166139726.17kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Hpr': VBase3(-56.33, 0.0, 0.0), 'Pos': Point3(20.726, 15.931, 4.923), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/candle_holder'}}, '1166139823.07kmuller': {'Type': 'Pan', 'DisableCollision': False, 'Hpr': VBase3(-45.198, -0.006, 0.006), 'Pos': Point3(21.602, 17.485, 4.688), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/pan'}}, '1166139883.79kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(2.971, 0.0, 0.0), 'Pos': Point3(21.796, 18.912, 4.7), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/largejug_B'}}, '1166140032.53kmuller': {'Type': 'Wall_Hangings', 'DisableCollision': False, 'Hpr': VBase3(0.0, 0.0, 0.0), 'Pos': Point3(-2.651, 29.91, 7.991), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/Map_01'}}, '1166143136.15kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Hpr': VBase3(87.919, 0.0, 0.0), 'Pos': Point3(-19.128, 10.233, 7.623), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/lamp_candle'}}, '1166143173.57kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Hpr': VBase3(87.919, 0.0, 0.0), 'Pos': Point3(-19.101, -8.222, 7.695), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/lamp_candle'}}, '1166143204.95kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Hpr': VBase3(-90.159, 0.0, 0.0), 'Pos': Point3(18.91, 9.923, 7.471), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/lamp_candle'}}, '1166143219.04kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-90.159, 0.0, 0.0), 'Pos': Point3(19.055, -9.027, 7.695), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/lamp_candle'}}, '1166143244.09kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-0.798, 10.488, 17.608), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chandelier_jail'}}, '1166143275.89kmuller': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-0.592, -10.927, 17.594), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chandelier_jail'}}, '1167972216.85kmuller': {'Type': 'Furniture', 'DisableCollision': True, 'Hpr': VBase3(44.958, 0.0, 0.0), 'Pos': Point3(-16.331, 26.168, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/bookshelf_spanish'}}, '1167972409.16kmuller': {'Type': 'Tools', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-19.259, 21.62, 0.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/butter_churn'}}, '1176423441.61dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '97.7273', 'DropOff': '6.8182', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(6.993, -61.677, 8.03), 'Intensity': '0.4242', 'LightType': 'SPOT', 'Pos': Point3(2.574, -18.447, 27.908), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.8700000047683716, 1.0, 1.0, 1.0), 'Model': 'models/props/light_tool_bulb'}}, '1176423539.22dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '64.3182', 'DropOff': '39.5455', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(5.763, -56.906, 6.972), 'Intensity': '0.4848', 'LightType': 'SPOT', 'Pos': Point3(-1.976, 15.649, 24.802), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.8700000047683716, 1.0, 1.0, 1.0), 'Model': 'models/props/light_tool_bulb'}}, '1176423736.28dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '60.0000', 'DropOff': '0.0000', 'FlickRate': 0.5, 'Flickering': True, 'Hpr': VBase3(0.0, 1.848, 0.0), 'Intensity': '0.5152', 'LightType': 'POINT', 'Pos': Point3(-0.034, -10.675, 13.873), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.95, 0.78, 0.64, 1.0), 'Model': 'models/props/light_tool_bulb'}}, '1176424160.2dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '60.0000', 'DropOff': '0.0000', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(0.0, 1.848, 0.0), 'Intensity': '0.6061', 'LightType': 'POINT', 'Pos': Point3(-0.105, 11.422, 13.384), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.95, 0.78, 0.64, 1.0), 'Model': 'models/props/light_tool_bulb'}}, '1185496415.31kmuller': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(4.727, 26.813, -0.119), 'Scale': VBase3(2.057, 1.302, 1.198), 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}}, '1185496487.15kmuller': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Hpr': VBase3(45.263, 0.0, 0.0), 'Pos': Point3(-15.061, 24.578, -0.449), 'Scale': VBase3(1.603, 1.0, 1.891), 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}}, '1185496538.15kmuller': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-15.225, -28.682, -0.316), 'Scale': VBase3(2.053, 0.567, 2.235), 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_cube'}}, '1185496598.36kmuller': {'Type': 'Barrel', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(8.521, -28.523, 0.0), 'Scale': VBase3(0.77, 0.77, 0.77), 'Visual': {'Color': (0.47999998927116394, 0.44999998807907104, 0.4099999964237213, 1.0), 'Model': 'models/props/barrel_grey'}}, '1185496634.87kmuller': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Hpr': VBase3(-105.442, 0.0, 0.0), 'Pos': Point3(6.902, -26.349, -0.415), 'Scale': VBase3(0.856, 1.0, 1.451), 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}}, '1185496663.32kmuller': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Hpr': VBase3(-134.387, 0.0, 0.0), 'Pos': Point3(11.183, -19.168, -0.394), 'Scale': VBase3(0.955, 1.0, 1.0), 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}}, '1185496695.84kmuller': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Hpr': VBase3(177.474, 0.0, 0.0), 'Pos': Point3(18.836, -16.153, -1.477), 'Scale': VBase3(0.944, 1.0, 1.196), 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}}, '1192813036.19akelts': {'Type': 'Effect Node', 'EffectName': 'torch_effect', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(16.066, 27.69, 0.728), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0, 0, 0.65, 1), 'Model': 'models/misc/smiley'}}, '1228171574.52kmuller': {'Type': 'Door Locator Node', 'Name': 'door_locator', 'Hpr': VBase3(-1.084, 0.0, 0.0), 'Pos': Point3(0.226, -30.04, -0.042), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1228171636.05kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(90.0, 0.0, 0.0), 'Pos': Point3(-19.562, -12.628, 9.043), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171658.06kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(90.0, 0.0, 0.0), 'Pos': Point3(-19.497, -4.055, 8.9), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171680.97kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(90.0, 0.0, 0.0), 'Pos': Point3(-19.522, 13.075, 8.571), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171681.0kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(90.0, 0.0, 0.0), 'Pos': Point3(-19.48, 6.987, 8.709), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171718.55kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(90.0, 0.0, 0.0), 'Pos': Point3(-23.464, 2.055, 9.623), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}}, '1228171851.33kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-90.0, 0.0, 0.0), 'Pos': Point3(19.558, 12.771, 8.257), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171851.36kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-90.0, 0.0, 0.0), 'Pos': Point3(19.6, 6.683, 8.394), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171851.37kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-90.0, 0.0, 0.0), 'Pos': Point3(19.605, -5.139, 8.562), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171851.39kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-90.0, 0.0, 0.0), 'Pos': Point3(19.519, -12.932, 8.729), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoSwag_winter08'}}, '1228171985.95kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-90.0, 0.0, 0.0), 'Pos': Point3(23.294, 2.108, 9.247), 'Scale': VBase3(1.749, 1.749, 1.749), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}}, '1228172029.81kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-22.915, 0.0, 0.0), 'Pos': Point3(-14.676, 27.506, 8.319), 'Scale': VBase3(0.745, 0.745, 0.745), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift03_winter08'}}, '1228172067.47kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(97.294, 0.0, 0.0), 'Pos': Point3(17.725, -11.752, 1.974), 'Scale': VBase3(0.877, 0.877, 0.877), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift03_winter08'}}, '1228172094.37kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(20.62, 0.0, 0.0), 'Pos': Point3(17.402, -13.417, 1.908), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift02_winter08'}}, '1228172137.52kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(22.222, 0.0, 0.0), 'Pos': Point3(-14.48, 27.114, 2.476), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift03_winter08'}}, '1228172150.87kmuller': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(43.198, 0.0, 0.0), 'Pos': Point3(-15.74, 26.194, 4.277), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift04_winter08'}}, '1257805377.33caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(29.215, 0.0, 0.0), 'Pos': Point3(-17.989, 24.828, 8.291), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift01_winter08'}}, '1257805389.23caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-80.692, 0.0, 0.0), 'Pos': Point3(-16.187, 26.439, 8.319), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoGift04_winter08'}}, '1257805548.61caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(179.828, 0.0, 0.0), 'Pos': Point3(0.134, -29.849, 16.921), 'Scale': VBase3(1.647, 1.647, 1.647), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoRibbon_winter08'}}, '1257805573.24caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-179.622, 0.0, 0.0), 'Pos': Point3(13.583, -29.761, 16.921), 'Scale': VBase3(1.647, 1.647, 1.647), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoRibbon_winter08'}}, '1257805604.96caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-3.461, -2.873, 38.03), 'Pos': Point3(1.516, -29.874, 17.264), 'Scale': VBase3(3.099, 3.099, 3.099), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}}, '1257805629.21caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(178.92, 6.382, 0.0), 'Pos': Point3(-13.08, -29.713, 16.646), 'Scale': VBase3(1.795, 1.795, 1.795), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}}, '1257805691.46caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-178.182, 2.38, 35.723), 'Pos': Point3(-1.065, -29.816, 17.292), 'Scale': VBase3(3.099, 3.099, 3.099), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}}, '1257805757.37caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(178.92, 6.382, 0.0), 'Pos': Point3(0.206, -29.526, 16.511), 'Scale': VBase3(1.795, 1.795, 1.795), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}}, '1257805801.97caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(178.92, 6.382, 0.0), 'Pos': Point3(13.537, -29.768, 16.596), 'Scale': VBase3(1.795, 1.795, 1.795), 'VisSize': '', 'Visual': {'Model': 'models/props/pir_m_prp_hol_decoBow_winter08'}}, '1257891327.63caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(40.405, 0.0, 0.0), 'Pos': Point3(-1.49, 0.401, 2.948), 'Scale': VBase3(0.743, 0.743, 0.743), 'VisSize': '', 'Visual': {'Color': (0.6000000238418579, 1.0, 0.800000011920929, 1.0), 'Model': 'models/props/pir_m_prp_hol_decoGift01_winter08'}}, '1257891346.66caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(-180.0, -89.326, -179.539), 'Pos': Point3(-2.572, 0.139, 2.984), 'Scale': VBase3(0.929, 0.929, 0.929), 'VisSize': '', 'Visual': {'Color': (0.800000011920929, 0.800000011920929, 1.0, 1.0), 'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}}, '1257891403.07caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-2.297, 1.647, 2.948), 'Scale': VBase3(0.515, 0.515, 0.515), 'VisSize': '', 'Visual': {'Color': (0.800000011920929, 0.800000011920929, 1.0, 1.0), 'Model': 'models/props/pir_m_prp_hol_decoGift01_winter08'}}, '1257891450.24caoconno': {'Type': 'Holiday', 'DisableCollision': False, 'Holiday': 'WinterFestival', 'Hpr': VBase3(180.0, -89.326, 138.895), 'Pos': Point3(-2.13, -0.697, 2.993), 'Scale': VBase3(0.929, 0.929, 0.929), 'VisSize': '', 'Visual': {'Color': (0.800000011920929, 0.800000011920929, 1.0, 1.0), 'Model': 'models/props/pir_m_prp_hol_candycane_winter09'}}}, 'Visual': {'Model': 'models/buildings/interior_spanish_npc'}}}, 'Node Links': [], 'Layers': {}, 'ObjectIds': {'1153420207.67dzlu01': '["Objects"]["1153420207.67dzlu01"]', '1165347933.66kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1165347933.66kmuller"]', '1166138034.99kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138034.99kmuller"]', '1166138092.34kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138092.34kmuller"]', '1166138151.37kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138151.37kmuller"]', '1166138161.79kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138161.79kmuller"]', '1166138390.93kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138390.93kmuller"]', '1166138443.79kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138443.79kmuller"]', '1166138454.85kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138454.85kmuller"]', '1166138510.96kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138510.96kmuller"]', '1166138524.92kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138524.92kmuller"]', '1166138537.42kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138537.42kmuller"]', '1166138621.31kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138621.31kmuller"]', '1166138646.6kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138646.6kmuller"]', '1166138674.59kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138674.59kmuller"]', '1166138708.48kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138708.48kmuller"]', '1166138742.6kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138742.6kmuller"]', '1166138817.45kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138817.45kmuller"]', '1166138973.9kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166138973.9kmuller"]', '1166139009.4kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139009.4kmuller"]', '1166139125.65kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139125.65kmuller"]', '1166139259.49kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139259.49kmuller"]', '1166139339.62kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139339.62kmuller"]', '1166139450.46kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139450.46kmuller"]', '1166139482.6kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139482.6kmuller"]', '1166139534.14kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139534.14kmuller"]', '1166139664.39kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139664.39kmuller"]', '1166139726.17kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139726.17kmuller"]', '1166139823.07kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139823.07kmuller"]', '1166139883.79kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166139883.79kmuller"]', '1166140032.53kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166140032.53kmuller"]', '1166143136.15kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166143136.15kmuller"]', '1166143173.57kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166143173.57kmuller"]', '1166143204.95kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166143204.95kmuller"]', '1166143219.04kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166143219.04kmuller"]', '1166143244.09kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166143244.09kmuller"]', '1166143275.89kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1166143275.89kmuller"]', '1167972216.85kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1167972216.85kmuller"]', '1167972409.16kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1167972409.16kmuller"]', '1176423441.61dzlu': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1176423441.61dzlu"]', '1176423539.22dzlu': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1176423539.22dzlu"]', '1176423736.28dzlu': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1176423736.28dzlu"]', '1176424160.2dzlu': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1176424160.2dzlu"]', '1185496415.31kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496415.31kmuller"]', '1185496487.15kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496487.15kmuller"]', '1185496538.15kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496538.15kmuller"]', '1185496598.36kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496598.36kmuller"]', '1185496634.87kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496634.87kmuller"]', '1185496663.32kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496663.32kmuller"]', '1185496695.84kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1185496695.84kmuller"]', '1192813036.19akelts': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1192813036.19akelts"]', '1228171574.52kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171574.52kmuller"]', '1228171636.05kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171636.05kmuller"]', '1228171658.06kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171658.06kmuller"]', '1228171680.97kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171680.97kmuller"]', '1228171681.0kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171681.0kmuller"]', '1228171718.55kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171718.55kmuller"]', '1228171851.33kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171851.33kmuller"]', '1228171851.36kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171851.36kmuller"]', '1228171851.37kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171851.37kmuller"]', '1228171851.39kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171851.39kmuller"]', '1228171985.95kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228171985.95kmuller"]', '1228172029.81kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228172029.81kmuller"]', '1228172067.47kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228172067.47kmuller"]', '1228172094.37kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228172094.37kmuller"]', '1228172137.52kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228172137.52kmuller"]', '1228172150.87kmuller': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1228172150.87kmuller"]', '1257805377.33caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805377.33caoconno"]', '1257805389.23caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805389.23caoconno"]', '1257805548.61caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805548.61caoconno"]', '1257805573.24caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805573.24caoconno"]', '1257805604.96caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805604.96caoconno"]', '1257805629.21caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805629.21caoconno"]', '1257805691.46caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805691.46caoconno"]', '1257805757.37caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805757.37caoconno"]', '1257805801.97caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257805801.97caoconno"]', '1257891327.63caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257891327.63caoconno"]', '1257891346.66caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257891346.66caoconno"]', '1257891403.07caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257891403.07caoconno"]', '1257891450.24caoconno': '["Objects"]["1153420207.67dzlu01"]["Objects"]["1257891450.24caoconno"]'}}
extraInfo = {'camPos': Point3(0, -14, 0), 'camHpr': VBase3(0, 0, 0), 'focalLength': 0.852765381336, 'skyState': -1, 'fog': 0} | 4,211.142857 | 29,056 | 0.664631 |
86ef4e909fe2cea39d77e8fe80f71f1e8cdcd676 | 1,844 | py | Python | main.py | Light-Lens/PassGen | 8f4f2ef08299d6243b939d0f08ac75bde3cabf5e | [
"MIT"
] | 3 | 2021-07-19T16:39:06.000Z | 2021-11-08T11:53:50.000Z | main.py | Light-Lens/PassGen | 8f4f2ef08299d6243b939d0f08ac75bde3cabf5e | [
"MIT"
] | null | null | null | main.py | Light-Lens/PassGen | 8f4f2ef08299d6243b939d0f08ac75bde3cabf5e | [
"MIT"
] | null | null | null | # PassGen
# These imports will be used for this project.
from colorama import Fore, Style
from colorama import init
import datetime
import string
import random
import sys
import os
# Initilaze File organizer.
os.system('title PassGen')
init(autoreset = True)
# Create Log Functions.
# This will Generate a Strong Password for the User!
def Generate(PassLen):
JoinChars = [] # Create an Empty List.
# Split the List of these String Operations, and Join them to JoinChars List.
JoinChars.extend(list(string.ascii_letters))
JoinChars.extend(list(string.digits))
JoinChars.extend(list(string.punctuation))
random.shuffle(JoinChars) # Shuffle the List.
# Get the random passoword.
return "".join(JoinChars[0:PassLen])
# Code Logic here.
LOG.WARN_LOG("Initialized PassGen!")
LOG.STATUS_LOG("Generating a Random Password for You.")
Password = Generate(random.randint(5, 17))
LOG.INFO_LOG(f"Your Password is: {Password}")
with open("Password.log", "a") as File: File.write(f"{Password}\n")
if (len(sys.argv) == 1) or (len(sys.argv) > 1 and sys.argv[1].lower() != "-o"):
os.system("start Password.log")
sys.exit() # Exiting the program successfully.
| 32.350877 | 80 | 0.691432 |
86ef847c1cba2674adc29aa5bed41c18d23f595a | 24,723 | py | Python | memos/memos/models/Memo.py | iotexpert/docmgr | 735c7bcbaeb73bc44efecffb175f268f2438ac3a | [
"MIT"
] | null | null | null | memos/memos/models/Memo.py | iotexpert/docmgr | 735c7bcbaeb73bc44efecffb175f268f2438ac3a | [
"MIT"
] | null | null | null | memos/memos/models/Memo.py | iotexpert/docmgr | 735c7bcbaeb73bc44efecffb175f268f2438ac3a | [
"MIT"
] | null | null | null | """
The model file for a Memo
"""
import re
import os
import shutil
import json
from datetime import datetime
from flask import current_app
from memos import db
from memos.models.User import User
from memos.models.MemoState import MemoState
from memos.models.MemoFile import MemoFile
from memos.models.MemoSignature import MemoSignature
from memos.models.MemoReference import MemoReference
from memos.models.MemoHistory import MemoHistory
from memos.models.MemoActivity import MemoActivity
from memos.revletter import b10_to_rev, rev_to_b10 | 39.367834 | 190 | 0.582049 |
86f060997b8a24b2a713e28d30aebb3fc5274d62 | 1,385 | py | Python | course_catalog/etl/conftest.py | mitodl/open-discussions | ab6e9fac70b8a1222a84e78ba778a7a065c20541 | [
"BSD-3-Clause"
] | 12 | 2017-09-27T21:23:27.000Z | 2020-12-25T04:31:30.000Z | course_catalog/etl/conftest.py | mitodl/open-discussions | ab6e9fac70b8a1222a84e78ba778a7a065c20541 | [
"BSD-3-Clause"
] | 3,293 | 2017-06-30T18:16:01.000Z | 2022-03-31T18:01:34.000Z | course_catalog/etl/conftest.py | mitodl/open-discussions | ab6e9fac70b8a1222a84e78ba778a7a065c20541 | [
"BSD-3-Clause"
] | 1 | 2020-04-13T12:19:57.000Z | 2020-04-13T12:19:57.000Z | """Common ETL test fixtures"""
import json
import pytest
| 32.209302 | 80 | 0.716245 |
86f07721893f6c50f28bc8f37736be7b92dba3a5 | 8,850 | py | Python | juliaset/juliaset.py | PageotD/juliaset | 7c1f98020eeff291fcf040cfcdf25a89e72f46a9 | [
"BSD-3-Clause"
] | null | null | null | juliaset/juliaset.py | PageotD/juliaset | 7c1f98020eeff291fcf040cfcdf25a89e72f46a9 | [
"BSD-3-Clause"
] | null | null | null | juliaset/juliaset.py | PageotD/juliaset | 7c1f98020eeff291fcf040cfcdf25a89e72f46a9 | [
"BSD-3-Clause"
] | 1 | 2021-08-09T06:45:43.000Z | 2021-08-09T06:45:43.000Z | import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import random
def julia(**kwargs):
"""
temp
"""
# Initialize Julia Set instance
juliaInstance = JuliaSet()
# If kwargs not empty update the attributes
if kwargs is not None:
juliaInstance.param(**kwargs)
return juliaInstance
if __name__ == "__main__":
# execute only if run as a script
genJuliaSet = JuliaSet()
genJuliaSet.param()
genJuliaSet.run()
| 32.417582 | 89 | 0.566328 |
86f0877f437e0d2341e2d9c4fb9323bda9c076fe | 1,212 | py | Python | eye_detection.py | ShivanS93/VAtest_withOKN | 8da76f4c3ff526c9e16268194accfdc6221b0a66 | [
"MIT"
] | null | null | null | eye_detection.py | ShivanS93/VAtest_withOKN | 8da76f4c3ff526c9e16268194accfdc6221b0a66 | [
"MIT"
] | null | null | null | eye_detection.py | ShivanS93/VAtest_withOKN | 8da76f4c3ff526c9e16268194accfdc6221b0a66 | [
"MIT"
] | null | null | null | #!python3
# eye_detection.py - detect eyes using webcam
# tutorial: https://www.roytuts.com/real-time-eye-detection-in-webcam-using-python-3/
import cv2
import math
import numpy as np
if __name__ == "__main__":
main()
| 24.734694 | 86 | 0.575908 |
86f0c522be62919400b4d5f2f8a78d4b4a38dcb9 | 399 | py | Python | scripts/make_gene_table.py | lmdu/bioinfo | 4542b0718410d15f3956c6545d9824a16608e02b | [
"MIT"
] | null | null | null | scripts/make_gene_table.py | lmdu/bioinfo | 4542b0718410d15f3956c6545d9824a16608e02b | [
"MIT"
] | null | null | null | scripts/make_gene_table.py | lmdu/bioinfo | 4542b0718410d15f3956c6545d9824a16608e02b | [
"MIT"
] | null | null | null | #!/usr/bin/env python
descripts = {}
with open('macaca_genes.txt') as fh:
fh.readline()
for line in fh:
cols = line.strip('\n').split('\t')
if cols[1]:
descripts[cols[0]] = cols[1].split('[')[0].strip()
else:
descripts[cols[0]] = cols[1]
with open('gene_info.txt') as fh:
for line in fh:
cols = line.strip().split('\t')
cols.append(descripts[cols[1]])
print "\t".join(cols)
| 19.95 | 53 | 0.611529 |
86f16e97aa13775a35aa0ced03caeac309db0c51 | 4,627 | py | Python | {{cookiecutter.repo_name}}/src/mix_with_scaper.py | nussl/cookiecutter | 5df8512592778ea7155b05e3e4b54676227968b0 | [
"MIT"
] | null | null | null | {{cookiecutter.repo_name}}/src/mix_with_scaper.py | nussl/cookiecutter | 5df8512592778ea7155b05e3e4b54676227968b0 | [
"MIT"
] | null | null | null | {{cookiecutter.repo_name}}/src/mix_with_scaper.py | nussl/cookiecutter | 5df8512592778ea7155b05e3e4b54676227968b0 | [
"MIT"
] | null | null | null | import gin
from scaper import Scaper, generate_from_jams
import copy
import logging
import p_tqdm
import nussl
import os
import numpy as np
def make_one_mixture(sc, path_to_file, num_sources,
event_parameters, allow_repeated_label):
"""
Creates a single mixture, incoherent. Instantiates according to
the event parameters for each source.
"""
check = False
while not check:
for j in range(num_sources):
sc.add_event(**event_parameters)
sc.generate(
path_to_file,
path_to_file.replace('.wav', '.jams'),
no_audio=False,
allow_repeated_label=allow_repeated_label,
save_isolated_events=True,
)
_reset_event_spec(sc)
check = check_mixture(path_to_file)
| 31.691781 | 87 | 0.612708 |
86f1999802fa178d60effb8dd046d22fbb0dd814 | 4,643 | py | Python | adventure-cards/package/main.py | DaneRosa/adventure-cards | 0685feeec8b56627795e685ff4fffad187881e1c | [
"MIT"
] | null | null | null | adventure-cards/package/main.py | DaneRosa/adventure-cards | 0685feeec8b56627795e685ff4fffad187881e1c | [
"MIT"
] | null | null | null | adventure-cards/package/main.py | DaneRosa/adventure-cards | 0685feeec8b56627795e685ff4fffad187881e1c | [
"MIT"
] | null | null | null | import json | 48.873684 | 92 | 0.420633 |
86f19d8269d91051babd1a81669ee8409fe871bc | 1,328 | py | Python | demo/cnn_predict.py | huynhtnhut97/keras-video-classifier | 3ea6a8d671f3bd3cc8eddef64ad75abc2a2d593a | [
"MIT"
] | 108 | 2018-03-01T10:03:22.000Z | 2022-03-27T03:00:30.000Z | demo/cnn_predict.py | drsagitn/lstm-video-classifier | 3d1bce6773e493bdff5d623883d47ca68d45e890 | [
"MIT"
] | 18 | 2020-01-28T22:13:07.000Z | 2022-03-11T23:54:10.000Z | demo/cnn_predict.py | drsagitn/lstm-video-classifier | 3d1bce6773e493bdff5d623883d47ca68d45e890 | [
"MIT"
] | 56 | 2018-03-01T10:03:22.000Z | 2022-02-23T08:19:10.000Z | import numpy as np
from keras import backend as K
import os
import sys
K.set_image_dim_ordering('tf')
if __name__ == '__main__':
main() | 30.883721 | 110 | 0.758283 |
86f2a90daa96d1b00a32e75d50fd040ca01ed705 | 172 | py | Python | pyconde/context_processors.py | EuroPython/djep | afcccbdda483e5f6962ac97f0dc4c4c5ea67fd21 | [
"BSD-3-Clause"
] | 5 | 2015-01-02T14:33:14.000Z | 2021-08-03T10:19:07.000Z | pyconde/context_processors.py | EuroPython/djep | afcccbdda483e5f6962ac97f0dc4c4c5ea67fd21 | [
"BSD-3-Clause"
] | null | null | null | pyconde/context_processors.py | EuroPython/djep | afcccbdda483e5f6962ac97f0dc4c4c5ea67fd21 | [
"BSD-3-Clause"
] | 3 | 2015-08-30T09:45:03.000Z | 2017-04-08T12:15:22.000Z | from django.conf import settings
| 21.5 | 89 | 0.732558 |
86f3b70aa2f3c882bdd1f178d6aa80fab1793aab | 5,898 | py | Python | pmdarima/preprocessing/endog/boxcox.py | tuomijal/pmdarima | 5bf84a2a5c42b81b949bd252ad3d4c6c311343f8 | [
"MIT"
] | 736 | 2019-12-02T01:33:31.000Z | 2022-03-31T21:45:29.000Z | pmdarima/preprocessing/endog/boxcox.py | tuomijal/pmdarima | 5bf84a2a5c42b81b949bd252ad3d4c6c311343f8 | [
"MIT"
] | 186 | 2019-12-01T18:01:33.000Z | 2022-03-31T18:27:56.000Z | pmdarima/preprocessing/endog/boxcox.py | tuomijal/pmdarima | 5bf84a2a5c42b81b949bd252ad3d4c6c311343f8 | [
"MIT"
] | 126 | 2019-12-07T04:03:19.000Z | 2022-03-31T17:40:14.000Z | # -*- coding: utf-8 -*-
from scipy import stats
import numpy as np
import warnings
from ...compat import check_is_fitted, pmdarima as pm_compat
from .base import BaseEndogTransformer
__all__ = ['BoxCoxEndogTransformer']
| 33.511364 | 78 | 0.598847 |
86f3e8f2399f57967d9da67546eaf7a9b7b31fb7 | 2,139 | py | Python | backend/src/baserow/api/user/registries.py | ashishdhngr/baserow | b098678d2165eb7c42930ee24dc6753a3cb520c3 | [
"MIT"
] | 1 | 2022-01-24T15:12:02.000Z | 2022-01-24T15:12:02.000Z | backend/src/baserow/api/user/registries.py | rasata/baserow | c6e1d7842c53f801e1c96b49f1377da2a06afaa9 | [
"MIT"
] | null | null | null | backend/src/baserow/api/user/registries.py | rasata/baserow | c6e1d7842c53f801e1c96b49f1377da2a06afaa9 | [
"MIT"
] | null | null | null | from baserow.core.registry import Instance, Registry
user_data_registry = UserDataRegistry()
| 28.905405 | 85 | 0.633006 |
86f4958fe557f64425c53fe4dff977306ba95b20 | 17,197 | py | Python | Week 2/code.py | aklsh/EE2703 | 546b70c9adac4a4de294d83affbb74e480c2f65d | [
"MIT"
] | null | null | null | Week 2/code.py | aklsh/EE2703 | 546b70c9adac4a4de294d83affbb74e480c2f65d | [
"MIT"
] | null | null | null | Week 2/code.py | aklsh/EE2703 | 546b70c9adac4a4de294d83affbb74e480c2f65d | [
"MIT"
] | 3 | 2020-07-15T08:02:05.000Z | 2021-03-07T06:50:07.000Z | '''
-------------------------------------
Assignment 2 - EE2703 (Jan-May 2020)
Done by Akilesh Kannan (EE18B122)
Created on 18/01/20
Last Modified on 04/02/20
-------------------------------------
'''
# importing necessary libraries
import sys
import cmath
import numpy as np
import pandas as pd
# To improve readability
CIRCUIT_START = ".circuit"
CIRCUIT_END = ".end"
RESISTOR = "R"
CAPACITOR = "C"
INDUCTOR = "L"
IVS = "V"
ICS = "I"
VCVS = "E"
VCCS = "G"
CCVS = "H"
CCCS = "F"
PI = np.pi
# Classes for each circuit component
# Convert a number in engineer's format to math
def enggToMath(enggNumber):
try:
return float(enggNumber)
except:
lenEnggNumber = len(enggNumber)
# Kilo
if enggNumber[lenEnggNumber-1] == 'k':
base = int(enggNumber[0:lenEnggNumber-1])
return base*1e3
# Milli
elif enggNumber[lenEnggNumber-1] == 'm':
base = int(enggNumber[0:lenEnggNumber-1])
return base*1e-3
# Micro
elif enggNumber[lenEnggNumber-1] == 'u':
base = int(enggNumber[0:lenEnggNumber-1])
return base*1e-6
# Nano
elif enggNumber[lenEnggNumber-1] == 'n':
base = int(enggNumber[0:lenEnggNumber-1])
return base*1e-9
# Mega
elif enggNumber[lenEnggNumber-1] == 'M':
base = int(enggNumber[0:lenEnggNumber-1])
return base*1e6
else:
sys.exit("Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000).")
if __name__ == "__main__":
# checking number of command line arguments
if len(sys.argv)!=2 :
sys.exit("Invalid number of arguments!")
else:
try:
circuitFile = sys.argv[1]
circuitFreq = 1e-100
circuitComponents = { RESISTOR: [], CAPACITOR: [], INDUCTOR: [], IVS: [], ICS: [], VCVS: [], VCCS: [], CCVS: [], CCCS: [] }
circuitNodes = []
# checking if given netlist file is of correct type
if (not circuitFile.endswith(".netlist")):
print("Wrong file type!")
else:
netlistFileLines = []
with open (circuitFile, "r") as f:
for line in f.readlines():
netlistFileLines.append(line.split('#')[0].split('\n')[0])
# Getting frequency, if any
if(line[:3] == '.ac'):
circuitFreq = float(line.split()[2])
# Setting Angular Frequency w
w = 2*PI*circuitFreq
try:
# Finding the location of the identifiers
identifier1 = netlistFileLines.index(CIRCUIT_START)
identifier2 = netlistFileLines.index(CIRCUIT_END)
circuitBody = netlistFileLines[identifier1+1:identifier2]
for line in circuitBody:
# Extracting the data from the line
lineTokens = line.split()
# Appending new nodes to a list
try:
if lineTokens[1] not in circuitNodes:
circuitNodes.append(lineTokens[1])
if lineTokens[2] not in circuitNodes:
circuitNodes.append(lineTokens[2])
except IndexError:
continue
# Resistor
if lineTokens[0][0] == RESISTOR:
circuitComponents[RESISTOR].append(resistor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3]))
# Capacitor
elif lineTokens[0][0] == CAPACITOR:
circuitComponents[CAPACITOR].append(capacitor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3]))
# Inductor
elif lineTokens[0][0] == INDUCTOR:
circuitComponents[INDUCTOR].append(inductor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3]))
# Voltage Source
elif lineTokens[0][0] == IVS:
if len(lineTokens) == 5: # DC Source
circuitComponents[IVS].append(voltageSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])))
elif len(lineTokens) == 6: # AC Source
if circuitFreq == 1e-100:
sys.exit("Frequency of AC Source not specified!!")
circuitComponents[IVS].append(voltageSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])/2, lineTokens[5]))
# Current Source
elif lineTokens[0][0] == ICS:
if len(lineTokens) == 5: # DC Source
circuitComponents[ICS].append(currentSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])))
elif len(lineTokens) == 6: # AC Source
if circuitFreq == 1e-100:
sys.exit("Frequency of AC Source not specified!!")
circuitComponents[ICS].append(currentSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])/2, lineTokens[5]))
# VCVS
elif lineTokens[0][0] == VCVS:
circuitComponents[VCVS].append(vcvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4], lineTokens[5]))
# VCCS
elif lineTokens[0][0] == VCCS:
circuitComponents[VCCS].append(vcvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4], lineTokens[5]))
# CCVS
elif lineTokens[0][0] == CCVS:
circuitComponents[CCVS].append(ccvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4]))
# CCCS
elif lineTokens[0][0] == CCCS:
circuitComponents[CCCS].append(cccs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4]))
# Erroneous Component Name
else:
sys.exit("Wrong Component Given. ABORT!")
try:
circuitNodes.remove('GND')
circuitNodes = ['GND'] + circuitNodes
except:
sys.exit("No ground node specified in the circuit!!")
# Creating a dictionary with node names and their numbers (to reduce the time taken by later parts of the program)
nodeNumbers = {circuitNodes[i]:i for i in range(len(circuitNodes))}
numNodes = len(circuitNodes)
numVS = len(circuitComponents[IVS])+len(circuitComponents[VCVS])+len(circuitComponents[CCVS])
# Creating Matrices M and b
matrixM = np.zeros((numNodes+numVS, numNodes+numVS), np.complex)
matrixB = np.zeros((numNodes+numVS,), np.complex)
# GND Equation
matrixM[0][0] = 1.0
# Resistor Equations
for r in circuitComponents[RESISTOR]:
if r.node1 != 'GND':
matrixM[nodeNumbers[r.node1]][nodeNumbers[r.node1]] += 1/r.value
matrixM[nodeNumbers[r.node1]][nodeNumbers[r.node2]] -= 1/r.value
if r.node2 != 'GND':
matrixM[nodeNumbers[r.node2]][nodeNumbers[r.node1]] -= 1/r.value
matrixM[nodeNumbers[r.node2]][nodeNumbers[r.node2]] += 1/r.value
# Capacitor Equations
for c in circuitComponents[CAPACITOR]:
if c.node1 != 'GND':
matrixM[nodeNumbers[c.node1]][nodeNumbers[c.node1]] += complex(0, w*c.value)
matrixM[nodeNumbers[c.node1]][nodeNumbers[c.node2]] -= complex(0, w*c.value)
if c.node2 != 'GND':
matrixM[nodeNumbers[c.node2]][nodeNumbers[c.node1]] -= complex(0, w*c.value)
matrixM[nodeNumbers[c.node2]][nodeNumbers[c.node2]] += complex(0, w*c.value)
# Inductor Equations
for l in circuitComponents[INDUCTOR]:
if l.node1 != 'GND':
matrixM[nodeNumbers[l.node1]][nodeNumbers[l.node1]] += complex(0, -1.0/(w*l.value))
matrixM[nodeNumbers[l.node1]][nodeNumbers[l.node2]] -= complex(0, -1.0/(w*l.value))
if l.node2 != 'GND':
matrixM[nodeNumbers[l.node2]][nodeNumbers[l.node1]] -= complex(0, -1.0/(w*l.value))
matrixM[nodeNumbers[l.node2]][nodeNumbers[l.node2]] += complex(0, -1.0/(w*l.value))
# Voltage Source Equations
for i in range(len(circuitComponents[IVS])):
# Equation accounting for current through the source
if circuitComponents[IVS][i].node1 != 'GND':
matrixM[nodeNumbers[circuitComponents[IVS][i].node1]][numNodes+i] = 1.0
if circuitComponents[IVS][i].node2 != 'GND':
matrixM[nodeNumbers[circuitComponents[IVS][i].node2]][numNodes+i] = -1.0
# Auxiliary Equations
matrixM[numNodes+i][nodeNumbers[circuitComponents[IVS][i].node1]] = -1.0
matrixM[numNodes+i][nodeNumbers[circuitComponents[IVS][i].node2]] = +1.0
matrixB[numNodes+i] = cmath.rect(circuitComponents[IVS][i].value, circuitComponents[IVS][i].phase*PI/180)
# Current Source Equations
for i in circuitComponents[ICS]:
if i.node1 != 'GND':
matrixB[nodeNumbers[i.node1]] = -1*i.value
if i.node2 != 'GND':
matrixB[nodeNumbers[i.node2]] = i.value
# VCVS Equations
for i in range(len(circuitComponents[VCVS])):
# Equation accounting for current through the source
if circuitComponents[VCVS][i].node1 != 'GND':
matrixM[nodeNumbers[circuitComponents[VCVS][i].node1]][numNodes+len(circuitComponents[IVS])+i] = 1.0
if circuitComponents[VCVS][i].node2 != 'GND':
matrixM[nodeNumbers[circuitComponents[VCVS][i].node2]][numNodes+len(circuitComponents[IVS])+i] = -1.0
matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node1]] = 1.0
matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node2]] = -1.0
matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node3]] = -1.0*circuitComponents[VCVS][i].value
matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node4]] = 1.0*circuitComponents[VCVS][i].value
# CCVS Equations
for i in range(len(circuitComponents[CCVS])):
# Equation accounting for current through the source
if circuitComponents[VCVS][i].node1 != 'GND':
matrixM[nodeNumbers[circuitComponents[CCVS][i].node1]][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = 1.0
if circuitComponents[VCVS][i].node2 != 'GND':
matrixM[nodeNumbers[circuitComponents[VCVS][i].node2]][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = -1.0
matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][nodeNumbers[circuitComponents[CCVS][i].node1]] = 1.0
matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][nodeNumbers[circuitComponents[CCVS][i].node2]] = -1.0
matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = -1.0*circuitComponents[CCVS][i].value
# VCCS Equations
for vccs in circuitComponents[VCCS]:
if vccs.node1 != 'GND':
matrixM[nodeNumbers[vccs.node1]][nodeNumbers[vccs.node4]]+=vccs.value
matrixM[nodeNumbers[vccs.node1]][nodeNumbers[vccs.node3]]-=vccs.value
if vccs.node2 != 'GND':
matrixM[nodeNumbers[vccs.node2]][nodeNumbers[vccs.node4]]-=vccs.value
matrixM[nodeNumbers[vccs.node3]][nodeNumbers[vccs.node3]]+=vccs.value
# CCCS Equations
for cccs in circuitComponents[CCCS]:
if cccs.node1 != 'GND':
matrixM[nodeNumbers[cccs.node1]][numNodes+getIndexIVS(cccs.vSource)]-=cccs.value
if cccs.node2 != 'GND':
matrixM[nodeNumbers[cccs.node2]][numNodes+getIndexIVS(cccs.vSource)]+=cccs.value
try:
x = np.linalg.solve(matrixM, matrixB)
circuitCurrents = []
# Formatting Output Data
for v in circuitComponents[IVS]:
circuitCurrents.append("current in "+v.name)
for v in circuitComponents[VCVS]:
circuitCurrents.append("current in "+v.name)
for v in circuitComponents[CCVS]:
circuitCurrents.append("current in "+v.name)
# Printing output in table format
print(pd.DataFrame(x, circuitNodes+circuitCurrents, columns=['Voltage / Current']))
print("The values given above are AMPLITUDE values and NOT RMS values.")
except np.linalg.LinAlgError:
sys.exit("Singular Matrix Formed! Please check if you have entered the circuit definition correctly!")
except ValueError:
sys.exit("Netlist does not abide to given format!")
except FileNotFoundError:
sys.exit("Given file does not exist!")
| 53.241486 | 209 | 0.51823 |
86f530cec67d3e933cfc6fd5269d65218a8b2c49 | 880 | py | Python | Lib/Co.py | M507/Guessing-passwords-using-machine-learning | da90cfa30ce2e7a5e08ee528f594fa047ecea75c | [
"Apache-2.0"
] | 6 | 2020-05-18T14:20:23.000Z | 2021-04-23T16:31:34.000Z | Lib/Co.py | M507/Guessing-passwords-using-machine-learning | da90cfa30ce2e7a5e08ee528f594fa047ecea75c | [
"Apache-2.0"
] | null | null | null | Lib/Co.py | M507/Guessing-passwords-using-machine-learning | da90cfa30ce2e7a5e08ee528f594fa047ecea75c | [
"Apache-2.0"
] | 1 | 2020-05-18T21:19:52.000Z | 2020-05-18T21:19:52.000Z | import subprocess
import os.path
"""
Stylish input()
"""
"""
Execute command locally
"""
"""
Get all subdirectories of a directory.
"""
"""
Rocket science
"""
| 20.952381 | 87 | 0.619318 |
86f661785147d1c962908ad8a5f0840e9e70661d | 446 | py | Python | project3_code/part_0/main.py | rachelbrown347/CS294-26_code | 72a20a9ab75345091d2a743b13857d7a88adf9be | [
"MIT"
] | 1 | 2022-03-12T00:55:52.000Z | 2022-03-12T00:55:52.000Z | project3_code/part_0/main.py | rachelbrown347/CS294-26_code | 72a20a9ab75345091d2a743b13857d7a88adf9be | [
"MIT"
] | null | null | null | project3_code/part_0/main.py | rachelbrown347/CS294-26_code | 72a20a9ab75345091d2a743b13857d7a88adf9be | [
"MIT"
] | null | null | null | import numpy as np
import matplotlib.pyplot as plt
from skimage.exposure import rescale_intensity
from unsharp import *
# Load file and normalize to 0-1
fname = 'iguana.jpg'
im = plt.imread(fname)
if im.mean() >= 1:
im = im/255.
sigma = 5
amplitude = 1.5
imsharp = unsharp_mask(im, sigma, amplitude)
imsharp = rescale_intensity(imsharp, in_range=(0, 1), out_range=(0,1))
new_fname = fname[:-4]+'_sharp.jpg'
plt.imsave(new_fname, imsharp) | 23.473684 | 70 | 0.726457 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.