hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
813cfc21850f486d6ac29f7b86826c89d492a555
41,687
py
Python
core/models.py
uktrade/great-cms
f13fa335ddcb925bc33a5fa096fe73ef7bdd351a
[ "MIT" ]
10
2020-04-30T12:04:35.000Z
2021-07-21T12:48:55.000Z
core/models.py
uktrade/great-cms
f13fa335ddcb925bc33a5fa096fe73ef7bdd351a
[ "MIT" ]
1,461
2020-01-23T18:20:26.000Z
2022-03-31T08:05:56.000Z
core/models.py
uktrade/great-cms
f13fa335ddcb925bc33a5fa096fe73ef7bdd351a
[ "MIT" ]
3
2020-04-07T20:11:36.000Z
2020-10-16T16:22:59.000Z
import hashlib import mimetypes from urllib.parse import unquote from django.conf import settings from django.core.exceptions import ValidationError from django.db import models from django.http import HttpResponseRedirect from django.template.loader import render_to_string from django.urls import reverse from django.utils.functional import cached_property from django.utils.safestring import mark_safe from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _ from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField from great_components.mixins import GA360Mixin from modelcluster.contrib.taggit import ClusterTaggableManager from modelcluster.models import ClusterableModel, ParentalKey from taggit.managers import TaggableManager from taggit.models import ItemBase, TagBase, TaggedItemBase from wagtail.admin.edit_handlers import ( FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface, ) from wagtail.contrib.redirects.models import Redirect from wagtail.contrib.settings.models import BaseSetting, register_setting from wagtail.core import blocks from wagtail.core.blocks.stream_block import StreamBlockValidationError from wagtail.core.fields import RichTextField, StreamField from wagtail.core.models import Orderable, Page from wagtail.images import get_image_model_string from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.images.models import AbstractImage, AbstractRendition, Image from wagtail.snippets.models import register_snippet from wagtail.utils.decorators import cached_classmethod from wagtailmedia.models import Media from core import blocks as core_blocks, mixins from core.case_study_index import delete_cs_index, update_cs_index from core.constants import BACKLINK_QUERYSTRING_NAME, RICHTEXT_FEATURES__MINIMAL from core.context import get_context_provider from core.utils import PageTopicHelper, get_first_lesson from exportplan.core.data import ( SECTION_SLUGS as EXPORTPLAN_SLUGS, SECTIONS as EXPORTPLAN_URL_MAP, ) # If we make a Redirect appear as a Snippet, we can sync it via Wagtail-Transfer register_snippet(Redirect) class TimeStampedModel(models.Model): """Modified version of django_extensions.db.models.TimeStampedModel Unfortunately, because null=True needed to be added to create and modified fields, inheritance causes issues with field clash. """ created = CreationDateTimeField('created', null=True) modified = ModificationDateTimeField('modified', null=True) # Content models def hero_singular_validation(value): if value and len(value) > 1: raise StreamBlockValidationError( non_block_errors=ValidationError('Only one image or video allowed in Hero section', code='invalid'), ) def _get_backlink_title(self, backlink_path): """For a given backlink, see if we can get a title that goes with it. For now, this is limited only to Export Plan pages/links. """ # We have to re-arrange EXPORT_PLAN_SECTION_TITLES_URLS after import # because it features lazily-evaluated URLs that aren't ready when # models are imported if backlink_path and len(backlink_path.split('/')) > 3: _path = backlink_path.split('/')[3] return self._export_plan_url_map.get(_path) class PageView(TimeStampedModel): page = models.ForeignKey(DetailPage, on_delete=models.CASCADE, related_name='page_views') list_page = models.ForeignKey(ListPage, on_delete=models.CASCADE, related_name='page_views_list') sso_id = models.TextField() # TODO: deprecate and remove # TODO: deprecate and remove # If you're wondering what's going on here: # https://docs.wagtail.io/en/stable/reference/pages/model_recipes.html#custom-tag-models def _high_level_validation(value, error_messages): TEXT_BLOCK = 'text' # noqa N806 MEDIA_BLOCK = 'media' # noqa N806 QUOTE_BLOCK = 'quote' # noqa N806 # we need to be strict about presence and ordering of these nodes if [node.block_type for node in value if node.block_type != QUOTE_BLOCK] != [MEDIA_BLOCK, TEXT_BLOCK]: error_messages.append( ( 'This block must contain one Media section (with one or ' 'two items in it) and/or a Quote section, then one Text section following it.' ) ) return error_messages def _low_level_validation(value, error_messages): # Check content of media node, which should be present here MEDIA_BLOCK = 'media' # noqa N806 VIDEO_BLOCK = 'video' # noqa N806 for node in value: if node.block_type == MEDIA_BLOCK: subnode_block_types = [subnode.block_type for subnode in node.value] if len(subnode_block_types) == 2: if set(subnode_block_types) == {VIDEO_BLOCK}: # Two videos: not allowed error_messages.append('Only one video may be used in a case study.') elif subnode_block_types[1] == VIDEO_BLOCK: # implicitly, [0] must be an image # video after image: not allowed error_messages.append('The video must come before a still image.') return error_messages def case_study_body_validation(value): """Ensure the case study has exactly both a media node and a text node and that the media node has the following content: * One image, only * One video, only * One video + One image * (video must comes first so that it is displayed first) * Two images """ error_messages = [] if value: error_messages = _high_level_validation(value, error_messages) error_messages = _low_level_validation(value, error_messages) if error_messages: raise StreamBlockValidationError( non_block_errors=ValidationError('; '.join(error_messages), code='invalid'), )
32.491816
120
0.614052
813ec18cfeb4f9f63d67da715da440d160d1cd07
9,860
py
Python
CV/Effective Transformer-based Solution for RSNA Intracranial Hemorrhage Detection/easymia/transforms/transforms.py
dumpmemory/Research
30fd70ff331b3d9aeede0b71e7a691ed6c2b87b3
[ "Apache-2.0" ]
null
null
null
CV/Effective Transformer-based Solution for RSNA Intracranial Hemorrhage Detection/easymia/transforms/transforms.py
dumpmemory/Research
30fd70ff331b3d9aeede0b71e7a691ed6c2b87b3
[ "Apache-2.0" ]
null
null
null
CV/Effective Transformer-based Solution for RSNA Intracranial Hemorrhage Detection/easymia/transforms/transforms.py
dumpmemory/Research
30fd70ff331b3d9aeede0b71e7a691ed6c2b87b3
[ "Apache-2.0" ]
null
null
null
# -*-coding utf-8 -*- ########################################################################## # # Copyright (c) 2022 Baidu.com, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################## """ """ import numpy as np import numbers import collections import random import math import cv2 from . import functional as F from easymia.core.abstract_transforms import AbstractTransform from easymia.libs import manager
34.840989
136
0.596349
813efba40d450227c03f83890923f36f0af07beb
1,370
py
Python
tests/ui/terms/test_views.py
galterlibrary/InvenioRDM-at-NU
5aff6ac7c428c9a61bdf221627bfc05f2280d1a3
[ "MIT" ]
6
2019-09-02T00:01:50.000Z
2021-11-04T08:23:40.000Z
tests/ui/terms/test_views.py
galterlibrary/InvenioRDM-at-NU
5aff6ac7c428c9a61bdf221627bfc05f2280d1a3
[ "MIT" ]
72
2019-09-04T18:52:35.000Z
2020-07-21T19:58:15.000Z
tests/ui/terms/test_views.py
galterlibrary/InvenioRDM-at-NU
5aff6ac7c428c9a61bdf221627bfc05f2280d1a3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of menRva. # Copyright (C) 2018-present NU,FSM,GHSL. # # menRva is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Test terms views.py""" from cd2h_repo_project.modules.terms.views import serialize_terms_for_edit_ui
28.541667
77
0.642336
813f340b009c015cf7a900f2f532f4b131c3414d
1,766
py
Python
main.py
alamin3637k/Searcher
bb948b373d1bd1261930a47c37fa9210a98e9ef3
[ "MIT" ]
1
2021-12-13T06:30:54.000Z
2021-12-13T06:30:54.000Z
main.py
alamin3637k/Searcher
bb948b373d1bd1261930a47c37fa9210a98e9ef3
[ "MIT" ]
null
null
null
main.py
alamin3637k/Searcher
bb948b373d1bd1261930a47c37fa9210a98e9ef3
[ "MIT" ]
null
null
null
import webbrowser import wikipedia import requests def test_site(search: str): """please enter site name with http information""" try: r = requests.get(search) except Exception as error: print(error) return "site not working" if r.status_code == 200: print("site working") return "site working"
30.448276
85
0.701586
813ffa71bdba0211d608c2b11546d97e7ed15b73
9,307
py
Python
hw1.py
ptsurko/coursera_crypt
ec952800c441a9b07ac427045851285fee8c6543
[ "MIT" ]
null
null
null
hw1.py
ptsurko/coursera_crypt
ec952800c441a9b07ac427045851285fee8c6543
[ "MIT" ]
null
null
null
hw1.py
ptsurko/coursera_crypt
ec952800c441a9b07ac427045851285fee8c6543
[ "MIT" ]
null
null
null
import string from timeit import itertools s1 = '315c4eeaa8b5f8aaf9174145bf43e1784b8fa00dc71d885a804e5ee9fa40b16349c146fb778cdf2d3aff021dfff5b403b510d0d0455468aeb98622b137dae857553ccd8883a7bc37520e06e515d22c954eba5025b8cc57ee59418ce7dc6bc41556bdb36bbca3e8774301fbcaa3b83b220809560987815f65286764703de0f3d524400a19b159610b11ef3e' s2 = '234c02ecbbfbafa3ed18510abd11fa724fcda2018a1a8342cf064bbde548b12b07df44ba7191d9606ef4081ffde5ad46a5069d9f7f543bedb9c861bf29c7e205132eda9382b0bc2c5c4b45f919cf3a9f1cb74151f6d551f4480c82b2cb24cc5b028aa76eb7b4ab24171ab3cdadb8356f' s3 = '32510ba9a7b2bba9b8005d43a304b5714cc0bb0c8a34884dd91304b8ad40b62b07df44ba6e9d8a2368e51d04e0e7b207b70b9b8261112bacb6c866a232dfe257527dc29398f5f3251a0d47e503c66e935de81230b59b7afb5f41afa8d661cb' s4 = '32510ba9aab2a8a4fd06414fb517b5605cc0aa0dc91a8908c2064ba8ad5ea06a029056f47a8ad3306ef5021eafe1ac01a81197847a5c68a1b78769a37bc8f4575432c198ccb4ef63590256e305cd3a9544ee4160ead45aef520489e7da7d835402bca670bda8eb775200b8dabbba246b130f040d8ec6447e2c767f3d30ed81ea2e4c1404e1315a1010e7229be6636aaa' s5 = '3f561ba9adb4b6ebec54424ba317b564418fac0dd35f8c08d31a1fe9e24fe56808c213f17c81d9607cee021dafe1e001b21ade877a5e68bea88d61b93ac5ee0d562e8e9582f5ef375f0a4ae20ed86e935de81230b59b73fb4302cd95d770c65b40aaa065f2a5e33a5a0bb5dcaba43722130f042f8ec85b7c2070' s6 = '32510bfbacfbb9befd54415da243e1695ecabd58c519cd4bd2061bbde24eb76a19d84aba34d8de287be84d07e7e9a30ee714979c7e1123a8bd9822a33ecaf512472e8e8f8db3f9635c1949e640c621854eba0d79eccf52ff111284b4cc61d11902aebc66f2b2e436434eacc0aba938220b084800c2ca4e693522643573b2c4ce35050b0cf774201f0fe52ac9f26d71b6cf61a711cc229f77ace7aa88a2f19983122b11be87a59c355d25f8e4' s7 = '32510bfbacfbb9befd54415da243e1695ecabd58c519cd4bd90f1fa6ea5ba47b01c909ba7696cf606ef40c04afe1ac0aa8148dd066592ded9f8774b529c7ea125d298e8883f5e9305f4b44f915cb2bd05af51373fd9b4af511039fa2d96f83414aaaf261bda2e97b170fb5cce2a53e675c154c0d9681596934777e2275b381ce2e40582afe67650b13e72287ff2270abcf73bb028932836fbdecfecee0a3b894473c1bbeb6b4913a536ce4f9b13f1efff71ea313c8661dd9a4ce' s8 = '315c4eeaa8b5f8bffd11155ea506b56041c6a00c8a08854dd21a4bbde54ce56801d943ba708b8a3574f40c00fff9e00fa1439fd0654327a3bfc860b92f89ee04132ecb9298f5fd2d5e4b45e40ecc3b9d59e9417df7c95bba410e9aa2ca24c5474da2f276baa3ac325918b2daada43d6712150441c2e04f6565517f317da9d3' s9 = '271946f9bbb2aeadec111841a81abc300ecaa01bd8069d5cc91005e9fe4aad6e04d513e96d99de2569bc5e50eeeca709b50a8a987f4264edb6896fb537d0a716132ddc938fb0f836480e06ed0fcd6e9759f40462f9cf57f4564186a2c1778f1543efa270bda5e933421cbe88a4a52222190f471e9bd15f652b653b7071aec59a2705081ffe72651d08f822c9ed6d76e48b63ab15d0208573a7eef027' s10 = '466d06ece998b7a2fb1d464fed2ced7641ddaa3cc31c9941cf110abbf409ed39598005b3399ccfafb61d0315fca0a314be138a9f32503bedac8067f03adbf3575c3b8edc9ba7f537530541ab0f9f3cd04ff50d66f1d559ba520e89a2cb2a83' s11 = '32510ba9babebbbefd001547a810e67149caee11d945cd7fc81a05e9f85aac650e9052ba6a8cd8257bf14d13e6f0a803b54fde9e77472dbff89d71b57bddef121336cb85ccb8f3315f4b52e301d16e9f52f904' MSGS = (s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11) MSGS_DECODED = [s.decode('hex') for s in MSGS] # def main(): # for c in combinations('ABCD', 2): # print c def output_combinations_table(): comb = [(i1, i2, strxor(s1.decode('hex'), s2.decode('hex'))) for i1, i2, (s1,s2) in combinations(MSGS, 2)] html = '<html><body>' html += '<table style="white-space:nowrap" border="1">' html += '<thead>' html += '<tr>' # WTF??? # max_len = max(combinations, key=lambda x: len(x)) max_len = 0 for i1, i2, c in comb: if len(c) > max_len: max_len = len(c) # print max_len html += '<th></th>' for i in xrange(max_len): html += '<th>' + str(i) + '</th>' html += '</tr>' html += '</thead>' for i1, i2, c in comb: html += '<tr>' html += '<td>(%s, %s)</td>' % (i1 + 1, i2 + 1) for ch in c: html += '<td>' html += '%02d' % ord(ch) if ch in string.printable: html += '<br />' html += '&#%d;' % ord(ch) html += '</td>' html += '</tr>' html += '<tr>' html += '<th></th>' for i in xrange(max_len): html += '<th>' + str(i) + '</th>' html += '</tr>' html += '</table>' html += '</body>' html += '</html>' with open('combinations.html', 'w') as f: f.write(html) if __name__ == "__main__": main()
44.745192
379
0.659933
81411abc782bf9b1f6f3f22e5119bf12fc73f345
5,777
py
Python
moe/bandit/ucb/ucb_interface.py
dstoeckel/MOE
5b5a6a2c6c3cf47320126f7f5894e2a83e347f5c
[ "Apache-2.0" ]
966
2015-01-10T05:27:30.000Z
2022-03-26T21:04:36.000Z
moe/bandit/ucb/ucb_interface.py
dstoeckel/MOE
5b5a6a2c6c3cf47320126f7f5894e2a83e347f5c
[ "Apache-2.0" ]
46
2015-01-16T22:33:08.000Z
2019-09-04T16:33:27.000Z
moe/bandit/ucb/ucb_interface.py
dstoeckel/MOE
5b5a6a2c6c3cf47320126f7f5894e2a83e347f5c
[ "Apache-2.0" ]
143
2015-01-07T03:57:19.000Z
2022-02-28T01:10:45.000Z
# -*- coding: utf-8 -*- """Classes (Python) to compute the Bandit UCB (Upper Confidence Bound) arm allocation and choosing the arm to pull next. See :mod:`moe.bandit.bandit_interface` for further details on bandit. """ import copy from abc import abstractmethod from moe.bandit.bandit_interface import BanditInterface from moe.bandit.utils import get_winning_arm_names_from_payoff_arm_name_list, get_equal_arm_allocations def get_winning_arm_names(self, arms_sampled): r"""Compute the set of winning arm names based on the given ``arms_sampled``.. Throws an exception when arms_sampled is empty. :param arms_sampled: a dictionary of arm name to :class:`moe.bandit.data_containers.SampleArm` :type arms_sampled: dictionary of (str, SampleArm()) pairs :return: set of names of the winning arms :rtype: frozenset(str) :raise: ValueError when ``arms_sampled`` are empty. """ if not arms_sampled: raise ValueError('arms_sampled is empty!') # If there exists an unsampled arm, return the names of the unsampled arms unsampled_arm_names = self.get_unsampled_arm_names(arms_sampled) if unsampled_arm_names: return unsampled_arm_names number_sampled = sum([sampled_arm.total for sampled_arm in arms_sampled.itervalues()]) ucb_payoff_arm_name_list = [(self.get_ucb_payoff(sampled_arm, number_sampled), arm_name) for arm_name, sampled_arm in arms_sampled.iteritems()] return get_winning_arm_names_from_payoff_arm_name_list(ucb_payoff_arm_name_list)
41.561151
171
0.701229
8141278e8aec7ffc16f0909af9f0862c9b9fc0df
296
py
Python
Hedge/Shell.py
RonaldoAPSD/Hedge
2a1550ea38a0384f39ed3541c8a91f9ca57f5a64
[ "Apache-2.0" ]
2
2020-08-16T01:42:32.000Z
2020-08-28T21:10:03.000Z
Hedge/Shell.py
RonaldoAPSD/Hedge
2a1550ea38a0384f39ed3541c8a91f9ca57f5a64
[ "Apache-2.0" ]
null
null
null
Hedge/Shell.py
RonaldoAPSD/Hedge
2a1550ea38a0384f39ed3541c8a91f9ca57f5a64
[ "Apache-2.0" ]
null
null
null
import Hedge while True: text = input('Hedge > ') if text.strip() == "": continue result, error = Hedge.run('<stdin>', text) if (error): print(error.asString()) elif result: if len(result.elements) == 1: print(repr(result.elements[0])) else: print(repr(result))
19.733333
44
0.60473
81433f45286c6ca7869898f63194549b86792d2f
14,420
py
Python
yt/frontends/enzo/io.py
Xarthisius/yt
321643c3abff64a6f132d98d0747f3558f7552a3
[ "BSD-3-Clause-Clear" ]
1
2021-05-20T13:03:57.000Z
2021-05-20T13:03:57.000Z
yt/frontends/enzo/io.py
Xarthisius/yt
321643c3abff64a6f132d98d0747f3558f7552a3
[ "BSD-3-Clause-Clear" ]
31
2017-04-19T21:07:18.000Z
2017-04-20T01:08:43.000Z
yt/frontends/enzo/io.py
Xarthisius/yt
321643c3abff64a6f132d98d0747f3558f7552a3
[ "BSD-3-Clause-Clear" ]
1
2021-04-21T07:01:51.000Z
2021-04-21T07:01:51.000Z
import numpy as np from yt.geometry.selection_routines import GridSelector from yt.utilities.io_handler import BaseIOHandler from yt.utilities.logger import ytLogger as mylog from yt.utilities.on_demand_imports import _h5py as h5py _convert_mass = ("particle_mass", "mass") _particle_position_names = {}
38.867925
85
0.499792
81434230700195b62a622200418ac9737e7bcf37
1,275
py
Python
cidr_enum.py
arisada/cidr_enum
1908f20ac15a83738fc1ff74ff17a7280bec769f
[ "BSD-2-Clause" ]
null
null
null
cidr_enum.py
arisada/cidr_enum
1908f20ac15a83738fc1ff74ff17a7280bec769f
[ "BSD-2-Clause" ]
null
null
null
cidr_enum.py
arisada/cidr_enum
1908f20ac15a83738fc1ff74ff17a7280bec769f
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 """ cidr_enum.py is a very simple tool to help enumerate IP ranges when being used with other tools """ import argparse import netaddr if __name__ == '__main__': main()
25
95
0.677647
81434e0f75802811d789efae93fbec2c949725b8
7,469
py
Python
configs/k400-fixmatch-tg-alignment-videos-ptv-simclr/8gpu/r3d_r18_8x8x1_45e_k400_rgb_offlinetg_1percent_align0123_1clip_no_contrast_precisebn_ptv.py
lambert-x/video_semisup
8ff44343bb34485f8ad08d50ca4d8de22e122c1d
[ "Apache-2.0" ]
null
null
null
configs/k400-fixmatch-tg-alignment-videos-ptv-simclr/8gpu/r3d_r18_8x8x1_45e_k400_rgb_offlinetg_1percent_align0123_1clip_no_contrast_precisebn_ptv.py
lambert-x/video_semisup
8ff44343bb34485f8ad08d50ca4d8de22e122c1d
[ "Apache-2.0" ]
null
null
null
configs/k400-fixmatch-tg-alignment-videos-ptv-simclr/8gpu/r3d_r18_8x8x1_45e_k400_rgb_offlinetg_1percent_align0123_1clip_no_contrast_precisebn_ptv.py
lambert-x/video_semisup
8ff44343bb34485f8ad08d50ca4d8de22e122c1d
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='Semi_AppSup_TempSup_SimCLR_Crossclip_PTV_Recognizer3D', backbone=dict( type='ResNet3d', depth=18, pretrained=None, pretrained2d=False, norm_eval=False, conv_cfg=dict(type='Conv3d'), norm_cfg=dict(type='SyncBN', requires_grad=True, eps=1e-3), act_cfg=dict(type='ReLU'), conv1_kernel=(3, 7, 7), conv1_stride_t=1, pool1_stride_t=1, inflate=(1, 1, 1, 1), spatial_strides=(1, 2, 2, 2), temporal_strides=(1, 2, 2, 2), zero_init_residual=False), cls_head=dict( type='I3DHead', num_classes=400, in_channels=512, spatial_type='avg', dropout_ratio=0.5, init_std=0.01), cls_head_temp=None, temp_backbone='same', temp_sup_head='same', train_cfg=dict( warmup_epoch=10, fixmatch_threshold=0.3, temp_align_indices=(0, 1, 2, 3), align_loss_func='Cosine', pseudo_label_metric='avg', crossclip_contrast_loss=[], crossclip_contrast_range=[], ), test_cfg=dict(average_clips='score')) # dataset settings dataset_type = 'VideoDataset' dataset_type_labeled = 'VideoDataset_Contrastive' dataset_type_unlabeled = 'UnlabeledVideoDataset_MultiView_Contrastive' # dataset_type_appearance = 'RawframeDataset_withAPP' data_root = 'data/kinetics400/videos_train' data_root_val = 'data/kinetics400/videos_val' labeled_percentage = 1 ann_file_train_labeled = f'data/kinetics400/videossl_splits/kinetics400_train_{labeled_percentage}_percent_labeled_videos.txt' ann_file_train_unlabeled = 'data/kinetics400/kinetics400_train_list_videos.txt' ann_file_val = 'data/kinetics400/kinetics400_val_list_videos.txt' ann_file_test = 'data/kinetics400/kinetics400_val_list_videos.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='DecordInit'), dict(type='SampleFrames_Custom', clip_len=8, frame_interval=8, num_clips=1, total_frames_offset=-1), dict(type='DecordDecode_Custom', extra_modalities=['tempgrad']), dict(type='Resize', scale=(-1, 256), lazy=True), dict(type='RandomResizedCrop', lazy=True), dict(type='Resize', scale=(224, 224), keep_ratio=False, lazy=True), dict(type='Flip', flip_ratio=0.5, lazy=True), dict(type='Fuse_WithDiff'), dict(type='Normalize', **img_norm_cfg), dict(type='Normalize_Diff', **img_norm_cfg, raw_to_diff=False, redist_to_rgb=False), dict(type='FormatShape', input_format='NCTHW'), dict(type='FormatShape_Diff', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label', 'imgs_diff'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label', 'imgs_diff']) ] # Get the frame and resize, shared by both weak and strong train_pipeline_weak = [ dict(type='DecordInit'), dict(type='SampleFrames_Custom', clip_len=8, frame_interval=8, num_clips=1, total_frames_offset=-1), dict(type='DecordDecode_Custom', extra_modalities=['tempgrad']), dict(type='Resize', scale=(-1, 256), lazy=True), dict(type='RandomResizedCrop', lazy=True), dict(type='Resize', scale=(224, 224), keep_ratio=False, lazy=True), dict(type='Flip', flip_ratio=0.5, lazy=True), dict(type='Fuse_WithDiff'), ] # Only used for strong augmentation train_pipeline_strong = [ dict(type='Imgaug', transforms='default'), dict(type='Imgaug_Custom', transforms='default', modality='imgs_diff') ] # Formating the input tensors, shared by both weak and strong train_pipeline_format = [ dict(type='Normalize', **img_norm_cfg), dict(type='Normalize_Diff', **img_norm_cfg, raw_to_diff=False, redist_to_rgb=False), dict(type='FormatShape', input_format='NCTHW'), dict(type='FormatShape_Diff', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label', 'imgs_diff'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label', 'imgs_diff']) ] val_pipeline = [ dict(type='DecordInit'), dict( type='SampleFrames', clip_len=8, frame_interval=8, num_clips=1, test_mode=True), dict(type='DecordDecode'), dict(type='Resize', scale=(-1, 256), lazy=True), dict(type='CenterCrop', crop_size=224, lazy=True), dict(type='Flip', flip_ratio=0, lazy=True), dict(type='Fuse'), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict(type='DecordInit'), dict( type='SampleFrames', clip_len=8, frame_interval=8, num_clips=10, test_mode=True), dict(type='DecordDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='ThreeCrop', crop_size=256), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=8, # NOTE: Need to reduce batch size. 16 -> 5 workers_per_gpu=4, # Default: 4 train_dataloader=dict(drop_last=True, pin_memory=True), train_labeled=dict( type=dataset_type_labeled, ann_file=ann_file_train_labeled, data_prefix=data_root, pipeline=train_pipeline, contrast_clip_num=1 ), train_unlabeled=dict( type=dataset_type_unlabeled, ann_file=ann_file_train_unlabeled, data_prefix=data_root, pipeline_weak=train_pipeline_weak, pipeline_strong=train_pipeline_strong, pipeline_format=train_pipeline_format, contrast_clip_num=1 ), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline, test_mode=True), test=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=test_pipeline, test_mode=True), precise_bn=dict( type=dataset_type, ann_file=ann_file_train_unlabeled, data_prefix=data_root, pipeline=val_pipeline), videos_per_gpu_precise_bn=5 ) # optimizer optimizer = dict( type='SGD', lr=0.2, momentum=0.9, weight_decay=0.0001) # this lr 0.2 is used for 8 gpus optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2)) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0, warmup='linear', warmup_ratio=0.1, warmup_by_epoch=True, warmup_iters=10) total_epochs = 45 # Might need to increase this number for different splits. Default: 180 checkpoint_config = dict(interval=5, max_keep_ckpts=3) evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5)) # Default: 5 log_config = dict( interval=20, # Default: 20 hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook'), ]) precise_bn = dict(num_iters=200, interval=5, bn_range=['backbone', 'cls_head']) dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = None load_from = None resume_from = None workflow = [('train', 1)] find_unused_parameters = False
33.95
126
0.664078
8143df98ebce82100584c4d53ea2d04b4dccafa6
3,351
py
Python
experiments/rpi/gertboard/dtoa.py
willingc/pingo
0890bf5ed763e9061320093fc3fb5f7543c5cc2c
[ "MIT" ]
null
null
null
experiments/rpi/gertboard/dtoa.py
willingc/pingo
0890bf5ed763e9061320093fc3fb5f7543c5cc2c
[ "MIT" ]
1
2021-03-20T05:17:03.000Z
2021-03-20T05:17:03.000Z
experiments/rpi/gertboard/dtoa.py
willingc/pingo
0890bf5ed763e9061320093fc3fb5f7543c5cc2c
[ "MIT" ]
null
null
null
#!/usr/bin/python2.7 # Python 2.7 version by Alex Eames of http://RasPi.TV # functionally equivalent to the Gertboard dtoa test by Gert Jan van Loo & Myra VanInwegen # Use at your own risk - I'm pretty sure the code is harmless, but check it yourself. # This will not work unless you have installed py-spidev as in the README.txt file # spi must also be enabled on your system import spidev import sys from time import sleep board_type = sys.argv[-1] # reload spi drivers to prevent spi failures import subprocess unload_spi = subprocess.Popen('sudo rmmod spi_bcm2708', shell=True, stdout=subprocess.PIPE) start_spi = subprocess.Popen('sudo modprobe spi_bcm2708', shell=True, stdout=subprocess.PIPE) sleep(3) spi = spidev.SpiDev() spi.open(0,1) # The Gertboard DAC is on SPI channel 1 (CE1 - aka GPIO7) channel = 3 # set initial value to force user selection common = [0,0,0,160,240] # 2nd byte common to both channels voltages = [0.0,0.5,1.02,1.36,2.04] # voltages for display while not (channel == 1 or channel == 0): # channel is set by user input channel = int(which_channel()) # continue asking until answer 0 or 1 given if channel == 1: # once proper answer given, carry on num_list = [176,180,184,186,191] # set correct channel-dependent list for byte 1 else: num_list = [48,52,56,58,63] print "These are the connections for the digital to analogue test:" if board_type == "m": print "jumper connecting GPIO 7 to CSB" print "Multimeter connections (set your meter to read V DC):" print " connect black probe to GND" print " connect red probe to DA%d on D/A header" % channel else: print "jumper connecting GP11 to SCLK" print "jumper connecting GP10 to MOSI" print "jumper connecting GP9 to MISO" print "jumper connecting GP7 to CSnB" print "Multimeter connections (set your meter to read V DC):" print " connect black probe to GND" print " connect red probe to DA%d on J29" % channel raw_input("When ready hit enter.\n") for i in range(5): r = spi.xfer2([num_list[i],common[i]]) #write the two bytes to the DAC print "Your meter should read about %.2fV" % voltages[i] raw_input("When ready hit enter.\n") r = spi.xfer2([16,0]) # switch off channel A = 00010000 00000000 [16,0] r = spi.xfer2([144,0]) # switch off channel B = 10010000 00000000 [144,0] # The DAC is controlled by writing 2 bytes (16 bits) to it. # So we need to write a 16 bit word to DAC # bit 15 = channel, bit 14 = ignored, bit 13 =gain, bit 12 = shutdown, bits 11-4 data, bits 3-0 ignored # You feed spidev a decimal number and it converts it to 8 bit binary # each argument is a byte (8 bits), so we need two arguments, which together make 16 bits. # that's what spidev sends to the DAC. If you need to delve further, have a look at the datasheet. :)
45.90411
110
0.664279
d48ba98f343e96c0da8c5db735d6d98bd7a3e3d3
5,370
py
Python
modules/statusbar.py
themilkman/GitGutter
355b4480e7e1507fe1f9ae1ad9eca9649400a76c
[ "MIT" ]
null
null
null
modules/statusbar.py
themilkman/GitGutter
355b4480e7e1507fe1f9ae1ad9eca9649400a76c
[ "MIT" ]
null
null
null
modules/statusbar.py
themilkman/GitGutter
355b4480e7e1507fe1f9ae1ad9eca9649400a76c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sublime from . import blame from . import templates
33.354037
78
0.570577
d48c84bf13aa3330a9778d95947b20e6d95dfadf
194
py
Python
polls/tests.py
bunya017/Django-Polls-App
7b71ac9d1ffb66518e1d0345bc0f11ee5907c1be
[ "MIT" ]
null
null
null
polls/tests.py
bunya017/Django-Polls-App
7b71ac9d1ffb66518e1d0345bc0f11ee5907c1be
[ "MIT" ]
4
2020-06-05T18:14:33.000Z
2022-01-13T00:45:05.000Z
polls/tests.py
bunya017/Django-Polls-App
7b71ac9d1ffb66518e1d0345bc0f11ee5907c1be
[ "MIT" ]
1
2018-05-23T11:36:36.000Z
2018-05-23T11:36:36.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TestCase
14.923077
39
0.742268
d48e8d3a34a96d0df0efeeb8e07e14864978dc32
1,115
py
Python
test.py
LeonHodgesAustin/video_stream_processor
8014705edc37599716eb1320d46c99136fe3e262
[ "BSD-3-Clause" ]
null
null
null
test.py
LeonHodgesAustin/video_stream_processor
8014705edc37599716eb1320d46c99136fe3e262
[ "BSD-3-Clause" ]
null
null
null
test.py
LeonHodgesAustin/video_stream_processor
8014705edc37599716eb1320d46c99136fe3e262
[ "BSD-3-Clause" ]
null
null
null
# import logging # import hercules.lib.util.hercules_logging as l # from hercules.lib.util import sso as sso import opencv2 as cv2 import urllib import numpy as np # log = l.setup_logging(__name__) if __name__ == "__main__": main()
27.875
102
0.6287
d48ee17b3f638f1522292d248a4e2094be89792e
1,244
py
Python
ribbon/exceptions.py
cloutiertyler/RibbonGraph
000864dd0ee33da4ed44af2f4bd1f1a83d5a1ba4
[ "MIT" ]
2
2017-09-20T17:49:09.000Z
2017-09-20T17:55:43.000Z
ribbon/exceptions.py
cloutiertyler/RibbonGraph
000864dd0ee33da4ed44af2f4bd1f1a83d5a1ba4
[ "MIT" ]
null
null
null
ribbon/exceptions.py
cloutiertyler/RibbonGraph
000864dd0ee33da4ed44af2f4bd1f1a83d5a1ba4
[ "MIT" ]
null
null
null
from rest_framework.exceptions import APIException from rest_framework import status
28.272727
103
0.762058
d48f61239e116e08f567623063b6adca1886ef91
3,792
py
Python
kobe-trading-bot/app.py
LeonardoM011/kobe-trading-bot
83a84ee0fb8dab3d9ae174be91e96de6d5f2d823
[ "MIT" ]
null
null
null
kobe-trading-bot/app.py
LeonardoM011/kobe-trading-bot
83a84ee0fb8dab3d9ae174be91e96de6d5f2d823
[ "MIT" ]
null
null
null
kobe-trading-bot/app.py
LeonardoM011/kobe-trading-bot
83a84ee0fb8dab3d9ae174be91e96de6d5f2d823
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Crypto trading bot using binance api # Author: LeonardoM011<[email protected]> # Created on 2021-02-05 21:56 # Set constants here: DELTA_TIME = 300 # How long can we check for setting up new trade (in seconds) # ---------------------- # Imports: import os import sys import time as t import datetime # Adding python-binance to path and importing python-binance sys.path.insert(1, "../deps/binance") from binance.client import Client from fun import * import candles as can # Globals: client = None # Main program loop if __name__ == "__main__": main()
36.461538
219
0.620781
d4910ca755a73b263041c7cd3c681f6108d61901
13,061
py
Python
imported_files/plotting_edh01.py
SoumyaShreeram/Locating_AGN_in_DM_halos
1cfbee69b2c000faee4ecb199d65c3235afbed42
[ "MIT" ]
null
null
null
imported_files/plotting_edh01.py
SoumyaShreeram/Locating_AGN_in_DM_halos
1cfbee69b2c000faee4ecb199d65c3235afbed42
[ "MIT" ]
null
null
null
imported_files/plotting_edh01.py
SoumyaShreeram/Locating_AGN_in_DM_halos
1cfbee69b2c000faee4ecb199d65c3235afbed42
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Plotting.py for notebook 01_Exploring_DM_Halos This python file contains all the functions used for plotting graphs and maps in the 1st notebook (.ipynb) of the repository: 01. Exploring parameters in DM halos and sub-halos Script written by: Soumya Shreeram Project supervised by Johan Comparat Date created: 23rd February 2021 Last updated on 30th March 2021 """ # astropy modules import astropy.units as u import astropy.io.fits as fits from astropy.table import Table, Column from astropy.coordinates import SkyCoord from astropy.cosmology import FlatLambdaCDM, z_at_value import numpy as np # scipy modules from scipy.spatial import KDTree from scipy.interpolate import interp1d import os import importlib # plotting imports import matplotlib from mpl_toolkits import axes_grid1 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm from matplotlib.collections import PatchCollection from matplotlib.patches import Rectangle import Exploring_DM_Haloes as edh def setLabel(ax, xlabel, ylabel, title, xlim, ylim, legend=True): """ Function defining plot properties @param ax :: axes to be held @param xlabel, ylabel :: labels of the x-y axis @param title :: title of the plot @param xlim, ylim :: x-y limits for the axis """ ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if xlim != 'default': ax.set_xlim(xlim) if ylim != 'default': ax.set_ylim(ylim) if legend: l = ax.legend(loc='best', fontsize=14) for legend_handle in l.legendHandles: legend_handle._legmarker.set_markersize(12) ax.grid(False) ax.set_title(title, fontsize=18) return def plotAgnClusterDistribution(pos_z_clu, pos_z_AGN, pos_z_halo, cluster_params): """ Function to plot the AGN cluster distribution @pos_z_clu :: postion and redshifts of all the selected 'clusters' @pos_z_AGN :: postion and redshifts of all the selected AGNs @pos_z_gal :: postion and redshifts of all the selected galaxies """ halo_m_500c = cluster_params[0] fig, ax = plt.subplots(1,1,figsize=(9,8)) # plotting halos halos = ax.plot(pos_z_halo[0], pos_z_halo[1], '.', color='#fcd16d', markersize=0.2, label=r'All DM Halos', alpha=0.2) # plotting clusters cluster = ax.plot(pos_z_clu[0], pos_z_clu[1], 'o', color= '#03a351', markersize=3, label=r'Clusters $M_{500c}> 10^{%.1f} M_\odot$ '%(np.log10(halo_m_500c))) # plotting AGNs agn = ax.plot(pos_z_AGN[0], pos_z_AGN[1], '*', color='k', markersize=3.5, label=r'AGN', alpha=0.7) # labeling axes and defining limits xlim = [np.min(pos_z_halo[0]), np.max(pos_z_halo[0])] ylim = [np.min(pos_z_halo[1]), np.max(pos_z_halo[1])] setLabel(ax, 'R.A. (deg)', 'Dec (deg)', '', xlim, ylim, legend=True) print('Redshift z<%.2f'%(np.max(pos_z_clu[2]))) return def plotHostSubHalos(pos_z_cen_halo, pos_z_sat_halo, pos_z_AGN): """ Function to plot the host and satellite halo distribution @hd_halo :: table with all relevant info on halos, clusters, and galaxies within them --> divided into 3 because each hd_halo holds info on 1000 halos alone @pos_z_AGN :: postion and redshifts of all the selected AGNs """ ra_cen, dec_cen = pos_z_cen_halo[0], pos_z_cen_halo[1] ra_sat, dec_sat = pos_z_sat_halo[0], pos_z_sat_halo[1] fig, ax = plt.subplots(1,1,figsize=(9,8)) # plotting host halos host_halos = ax.plot(ra_cen, dec_cen, '.', color= 'k', markersize=0.06, label=r'Host-halos $P_{id}=-1$', alpha=0.4) # plotting sat halos sat_halos = ax.plot(ra_sat, dec_sat, 'o', color='#07d9f5', markersize=0.07, label=r'Satellite halos $P_{id} \neq -1$', alpha=0.7) # plotting AGNs agn = ax.plot(pos_z_AGN[0], pos_z_AGN[1], '*', color='#fff717', markersize=6.5, label=r'AGN', markeredgecolor='w', markeredgewidth=0.4) # labeling axes and defining limits xlim = [np.min(pos_z_AGN[0]), np.max(pos_z_AGN[0])] ylim = [np.min(pos_z_AGN[1]), np.max(pos_z_AGN[1])] setLabel(ax, 'R.A. (deg)', 'Dec (deg)', '', xlim, ylim, legend=True) print('AGNs: %d, Host (central) halos: %.2e, Sattelite halos: %.2e'%(len(pos_z_AGN[0]), len(ra_cen), len(ra_sat))) return def plotAGNfraction(pos_z_AGN, pos_z_gal, redshift_limit_agn, bin_size): """ Function to plot the agn fraction in the given pixel @pos_z_AGN :: postion and redshifts of all the selected AGNs @pos_z_gal :: postion and redshifts of all the selected galaxies @redshift_limit_agn :: upper limit on redshift based on the clusters found """ fig, ax = plt.subplots(1,2,figsize=(19,7)) # getting the useful histogram properties counts_agn, redshift_bins_agn = np.histogram(pos_z_AGN[2], bins = bin_size) counts_gal, redshift_bins_gal = np.histogram(pos_z_gal[2], bins = bin_size) # plotting the galaxy and agn distribution as a function of redshift ax[0].plot(redshift_bins_gal[1:], counts_gal, 'ks', ms=4, label=r'DM Halos') ax[0].plot(redshift_bins_agn[1:], counts_agn, 'bs', ms=4, label=r'AGNs') # axis properties - 0 xlim = [np.min(redshift_bins_agn[1:]), np.max(redshift_bins_agn[1:])] setLabel(ax[0], r'Redshift$_R$', 'Counts','', xlim, 'default', legend=True) ax[0].set_yscale("log") # agn fraction as a function of redshift f_agn, idx = [], [] for c, c_gal in enumerate(counts_gal): if c_gal != 0: f_agn.append(((counts_agn[c]*100)/c_gal)) idx.append(c) z_bin_modified = redshift_bins_gal[1:][np.array(idx)] # plot agn fraction ax[1].plot(z_bin_modified, f_agn, 's', color='#6b0385', ms=4) # axis properties - 1 xlim = [np.min(redshift_bins_agn[1:])-0.02, np.max(redshift_bins_agn[1:])] setLabel(ax[1], r'Redshift$_R$', r'$f_{AGN}$ (%s)'%"%", '', xlim, 'default', legend=False) ax[1].set_yscale("log") plt.savefig('figures/agn_frac.pdf', facecolor='w', edgecolor='w') print( 'Reddhift z<%.2f'%redshift_limit_agn ) return redshift_bins_gal[1:] def plotRedshiftComovingDistance(cosmo, redshift_limit, resolution = 0.0001): """Function to plot the relation between redshift and the comoving distance @cosmo :: cosmology package loaded @redshift_limit :: upper limit in redshift --> end point for interpolation @resolution :: resolution of time steps (set to e-4 based of simulation resolution) @Returns :: plot showing the dependence of redshift on comoving distance """ fig, ax = plt.subplots(1,1,figsize=(7,6)) distance_Mpc = cosmo.comoving_distance(np.arange(0,redshift_limit, resolution)) redshifts = np.arange(0,redshift_limit, resolution) ax.plot(redshifts, distance_Mpc, 'k.', ms=1) setLabel(ax, 'Redshift (z)', 'Comoving distance (Mpc)', '', 'default', 'default', legend=False) print('Redshift-Comoving distance relationship') return def plotMergerDistribution(merger_val_gal, counts_gal, merger_val_agn, counts_agn, cosmo, redshift_limit): """ Function to plot the distribution (counts) of the merger scale factor/redshift """ fig, ax = plt.subplots(1,1,figsize=(7,6)) ax1 = plt.gca() ax2 = ax1.twiny() # plot the merger distribution for galaxies and agns ax1.plot(merger_val_gal, counts_gal, 'kx', label='DM Halos') ax1.plot(merger_val_agn, counts_agn, 'bx', label='AGNs') setLabel(ax1, r'Scale, $a(t)$, of last Major Merger', 'Counts', '', 'default', 'default', legend=True) ax.set_yscale("log") # setting the x-label on top (converting a to redshift) a_min, a_max = np.min(merger_val_gal), np.max(merger_val_gal) scale_factor_arr = [a_max, a_min*4, a_min*2, a_min] ax2.set_xticks([(1/a) -1 for a in scale_factor_arr]) ax2.invert_xaxis() ax2.set_xlabel('Redshift (z)') ax2.xaxis.set_major_formatter(FormatStrFormatter('%.1f')) print("Objects with merger redshifts z < %.2f"%z_at_value(cosmo.scale_factor, a_min)) plt.savefig('figures/merger_distribution_z%.2f.pdf'%redshift_limit, facecolor='w', edgecolor='w') return def plotCentralSatelliteScaleMergers(cen_sat_AGN, cen_sat_halo, redshift_limit): """ Function to plot the central and sattelite scale factors for mergers """ fig, ax = plt.subplots(1,1,figsize=(7,6)) labels = [r'central AGNs', r'satellite AGNs', 'central DM halos', 'satellite DM halos'] c, m, ms = ['b', '#38cee8', 'k', 'grey'], ['^', '*', '^', '*'], [9, 15, 5, 9] mec, mew = ['w', 'k', 'k', '#abaeb3'], [0.7, 0.4, 1, 0.7] for i in [0, 1]: s_m_agn, c_agn = np.unique(cen_sat_AGN[i]['HALO_scale_of_last_MM'], return_counts=True) s_m_gal, c_gal = np.unique(cen_sat_halo[i]['HALO_scale_of_last_MM'], return_counts=True) # agns ax.plot(s_m_agn, c_agn, color=c[i], marker=m[i], ls='', ms=ms[i], label=labels[i], markeredgecolor=mec[i], markeredgewidth=mew[i]) # DM halos j = i + 2 ax.plot(s_m_gal, c_gal, color=c[j], marker=m[j], ls='', ms=ms[j], label=labels[j], markeredgecolor=mec[j], markeredgewidth=mew[j]) # set label setLabel(ax, r'Scale, $a(t)$, of last Major Merger', 'Counts', '', 'default', 'default', legend=True) ax.set_yscale("log") plt.savefig('figures/merger_dist_cenAndsat_z%.2f.pdf'%redshift_limit, facecolor='w', edgecolor='w') print('Objects below z: ', redshift_limit) return [labels, c, m, ms, mec, mew] def plotTimeSinceMergerDist(scale_merger_AGN, scale_merger_gal, z_AGN, z_gal, cosmo, bin_size, redshift_limit): """ Plot the distribution of halos with respective galaxies & agns given the time since merger """ # get the time difference since merger events in the halos t_merger_agn = edh.getMergerTimeDifference(scale_merger_AGN, z_AGN, cosmo) t_merger_gal = edh.getMergerTimeDifference(scale_merger_gal, z_gal, cosmo) # get the t since merger bins and counts if bin_size[0]: c_t_agn, merger_bins_agn = np.histogram(np.array(t_merger_agn), bins = bin_size[1]) c_t_gal, merger_bins_gal = np.histogram(np.array(t_merger_gal), bins = bin_size[1]) merger_bins_agn = merger_bins_agn[:-1] merger_bins_gal = merger_bins_gal[:-1] else: merger_bins_agn, c_t_agn = np.unique(t_merger_agn, return_counts=True) merger_bins_gal, c_t_gal = np.unique(t_merger_gal, return_counts=True) fig, ax = plt.subplots(1,1,figsize=(7,6)) # plot the time since merger distribution for galaxies and agns ax.plot(merger_bins_gal, np.cumsum(c_t_gal), 'k^', label='DM Halos', ms=4) ax.plot(merger_bins_agn, np.cumsum(c_t_agn), 'b^', label='AGNs', ms=4) # set labels/legends setLabel(ax, r'$\Delta t_{merger} = t(z_{merger})-t(z_{current})$ [Gyr]', 'Cumulative counts', '', 'default', 'default', legend=False) ax.legend(loc='lower left', fontsize=14) ax.set_yscale("log") ax.set_xscale("log") return ax, fig, t_merger_agn, t_merger_gal def mergerRedshiftPlot(cen_sat_AGN, cen_sat_halo, dt_m, plot_params, redshift_limit): """ Function to plot the time since merger as a function of the redshift @cen_sat_AGN(gal) :: handels to access the central and satellite AGNs(galaxies) @dt_m :: time difference after merger for cen/sat AGNs(galaxies) @plot_params :: to keep consistency between plots, array containing [labels, c, m, ms] """ fig, ax = plt.subplots(1,1,figsize=(7,6)) # change marker size for central DM halos plot_params[3][1] = 9 z_R = [cen_sat_AGN[0]['redshift_R'], cen_sat_AGN[1]['redshift_R'], cen_sat_halo[0]['redshift_R'], cen_sat_halo[1]['redshift_R']] # plot central, satellite merger distributions as per visual preference for i in [2, 3, 0, 1]: ax.plot(dt_m[i], z_R[i], plot_params[2][i], color=plot_params[1][i], ms=plot_params[3][i], label=plot_params[0][i], markeredgecolor=plot_params[4][i], markeredgewidth=plot_params[5][i]) # set labels/legends setLabel(ax, r'$\Delta t_{merger} = t(z_{merger})-t(z_{current})$ [Gyr]', r'Redshift$_R$', '', 'default', 'default', legend=True) ax.set_xscale("log") plt.savefig('figures/t_since_merger_z_plot_%.2f.pdf'%redshift_limit, facecolor='w', edgecolor='w') return ax def plotMergerTimeCuts(ax, t_merger_cut_arr, l): """ Function to plot the defined cuts in merger times within the concerned plot @t_merger_cut_arr :: array that defines the cuts in the merger times @l :: array that defines the linestyles used to denote these cuts (refer to the initial codeblock in the notebook) """ for i, t_m_cut in enumerate(t_merger_cut_arr): ax.axvline(x=t_m_cut, color='r', linestyle= l[i], label='%.1f Gyr'%t_m_cut) ax.legend(fontsize=14, loc='lower left') return
41.996785
193
0.674298
d49130f40117c9ae1a6661a583616d08186beb75
2,239
py
Python
asv_bench/benchmarks/omnisci/io.py
Rubtsowa/modin
6550939753c76e896ef2bfd65bb9468d6ad161d7
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
asv_bench/benchmarks/omnisci/io.py
Rubtsowa/modin
6550939753c76e896ef2bfd65bb9468d6ad161d7
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
asv_bench/benchmarks/omnisci/io.py
Rubtsowa/modin
6550939753c76e896ef2bfd65bb9468d6ad161d7
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """IO Modin on OmniSci storage format benchmarks.""" import modin.pandas as pd from ..utils import ( generate_dataframe, RAND_LOW, RAND_HIGH, ASV_USE_IMPL, IMPL, get_shape_id, trigger_import, get_benchmark_shapes, ) from ..io.csv import TimeReadCsvTrueFalseValues # noqa: F401
33.924242
87
0.663243
d4913a27e63bc4d452b162e06717cf43b3cf28c7
7,730
py
Python
benchmarks/rotation/rotated_cifar.py
ypeng22/ProgLearn
671ff6a03c156bab3eedbd9e112705eeabd59da7
[ "MIT" ]
1
2021-02-02T03:18:46.000Z
2021-02-02T03:18:46.000Z
benchmarks/rotation/rotated_cifar.py
ypeng22/ProgLearn
671ff6a03c156bab3eedbd9e112705eeabd59da7
[ "MIT" ]
null
null
null
benchmarks/rotation/rotated_cifar.py
ypeng22/ProgLearn
671ff6a03c156bab3eedbd9e112705eeabd59da7
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import random import pickle from skimage.transform import rotate from scipy import ndimage from skimage.util import img_as_ubyte from joblib import Parallel, delayed from sklearn.ensemble.forest import _generate_unsampled_indices from sklearn.ensemble.forest import _generate_sample_indices import numpy as np from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from itertools import product import keras from keras import layers from joblib import Parallel, delayed from multiprocessing import Pool import tensorflow as tf from numba import cuda import sys sys.path.append("../../proglearn/") from progressive_learner import ProgressiveLearner from deciders import SimpleArgmaxAverage from transformers import TreeClassificationTransformer, NeuralClassificationTransformer from voters import TreeClassificationVoter, KNNClassificationVoter ### MAIN HYPERPARAMS ### model = "dnn" granularity = 2 reps = 4 ######################## (X_train, y_train), (X_test, y_test) = keras.datasets.cifar100.load_data() data_x = np.concatenate([X_train, X_test]) data_y = np.concatenate([y_train, y_test]) data_y = data_y[:, 0] if model == "dnn": for angle_adder in range(30, 180, granularity * 4): angles = angle_adder + np.arange(0, granularity * 4, granularity) with Pool(4) as p: p.map(perform_angle, angles) elif model == "uf": angles = np.arange(30,180,2) Parallel(n_jobs=-1)(delayed(LF_experiment)(data_x, data_y, angle, model, granularity, reps=20, ntrees=16, acorn=1) for angle in angles)
40.684211
139
0.625356
d4925b374376cf8c3d1b5d0d5ddbaf90cc28fafd
3,763
py
Python
sklearn_pandas/transformers/monitor.py
toddbenanzer/sklearn_pandas
36e24c55ef4829aa261963201c346869097d4931
[ "MIT" ]
null
null
null
sklearn_pandas/transformers/monitor.py
toddbenanzer/sklearn_pandas
36e24c55ef4829aa261963201c346869097d4931
[ "MIT" ]
null
null
null
sklearn_pandas/transformers/monitor.py
toddbenanzer/sklearn_pandas
36e24c55ef4829aa261963201c346869097d4931
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn_pandas.util import validate_dataframe
38.010101
140
0.543981
d4928bbc94c4225d834897ba151f5d1146c73aa7
10,842
py
Python
Packs/ProofpointThreatResponse/Integrations/ProofpointThreatResponse/ProofpointThreatResponse_test.py
cbrake1/content
5b031129f98935c492056675eeee0fefcacbd87b
[ "MIT" ]
1
2020-11-25T00:42:27.000Z
2020-11-25T00:42:27.000Z
Packs/ProofpointThreatResponse/Integrations/ProofpointThreatResponse/ProofpointThreatResponse_test.py
cbrake1/content
5b031129f98935c492056675eeee0fefcacbd87b
[ "MIT" ]
22
2022-03-23T10:39:16.000Z
2022-03-31T11:31:37.000Z
Packs/ProofpointThreatResponse/Integrations/ProofpointThreatResponse/ProofpointThreatResponse_test.py
cbrake1/content
5b031129f98935c492056675eeee0fefcacbd87b
[ "MIT" ]
null
null
null
import pytest from CommonServerPython import * from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, \ pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, \ get_incidents_batch_by_time_request, get_new_incidents, get_time_delta MOCK_INCIDENT = { "id": 1, "type": "Malware", "summary": "Unsolicited Bulk Email", "description": "EvilScheme test message", "score": 4200, "state": "Open", "created_at": "2018-05-26T21:07:17Z", "event_count": 3, "event_sources": [ "Proofpoint TAP" ], "users": [ "" ], "assignee": "Unassigned", "team": "Unassigned", "hosts": { "attacker": [ "" ], "forensics": [ "", ] }, "incident_field_values": [ { "name": "Attack Vector", "value": "Email" }, { "name": "Classification", "value": "Spam" }, { "name": "Severity", "value": "Critical" }, { "name": "Abuse Disposition", "value": "Unknown" } ], "events": [ { "id": 3, "category": "malware", "severity": "Info", "source": "Proofpoint TAP", "threatname": "", "state": "Linked", "description": "", "attackDirection": "inbound", "received": "2018-05-26T21:07:17Z", "malwareName": "", "emails": [ { "sender": { "email": "test" }, "recipient": { "email": "test" }, "subject": "test", "messageId": "test", "messageDeliveryTime": { "chronology": { "zone": { "id": "UTC" } }, "millis": 1544640072000, }, "abuseCopy": "false", "body": "test", 'bodyType': "test", 'headers': "test", 'urls': "test" } ], } ], "quarantine_results": [], "successful_quarantines": 0, "failed_quarantines": 0, "pending_quarantines": 0 } INCIDENT_FIELD_CONTEXT = { "Attack_Vector": "Email", "Classification": "Spam", "Severity": "Critical", "Abuse_Disposition": "Unknown" } INCIDENT_FIELD_INPUT = [ (MOCK_INCIDENT, INCIDENT_FIELD_CONTEXT) ] FETCH_RESPONSE = get_fetch_data() EMAIL_RESULT = [ { 'sender': "test", 'recipient': "test", 'subject': "test", 'message_id': "test", 'message_delivery_time': 1544640072000, 'body': "test", 'body_type': "test", 'headers': "test", 'urls': "test" } ] EMAILS_CONTEXT_INPUT = [ (MOCK_INCIDENT['events'][0], EMAIL_RESULT) ] SOURCE_LIST_INPUT = [ (["Proofpoint TAP"], True), ([], True), (["No such source"], False), (["No such source", "Proofpoint TAP"], True) ] ABUSE_DISPOSITION_INPUT = [ (["Unknown"], True), ([], True), (["No such value"], False), (["No such value", "Unknown"], True) ] DEMISTO_PARAMS = [({'event_sources': "No such source, Proofpoint TAP", 'abuse_disposition': "No such value, Unknown"}, [MOCK_INCIDENT]), ({'event_sources': "", 'abuse_disposition': ""}, [MOCK_INCIDENT]), ({'event_sources': "No such source", 'abuse_disposition': "No such value, Unknown"}, []), ({'event_sources': "No such source, Proofpoint TAP", 'abuse_disposition': "No such value"}, []), ({'event_sources': "No such source", 'abuse_disposition': "No such value"}, [])] INGEST_ALERT_ARGS = { "attacker": "{\"attacker\":{\"key\":\"value\"}}", "cnc_host": "{\"cnc_host\":{\"key\":\"value\"}}", "detector": "{\"detector\":{\"key\":\"value\"}}", "email": "{\"email\":{\"key\":\"value\"}}", "forensics_hosts": "{\"forensics_hosts\":{\"key\":\"value\"}}", "target": "{\"target\":{\"key\":\"value\"}}", "threat_info": "{\"threat_info\":{\"key\":\"value\"}}", "custom_fields": "{\"custom_fields\":{\"key\":\"value\"}}", "post_url_id": "value", "json_version": "value", "summary": "value" } EXPECTED_RESULT = { "attacker": {"key": "value"}, "cnc_host": {"key": "value"}, "detector": {"key": "value"}, "email": {"key": "value"}, "forensics_hosts": {"key": "value"}, "target": {"key": "value"}, "threat_info": {"key": "value"}, "custom_fields": {"key": "value"}, "post_url_id": "value", "json_version": "value", "summary": "value" } def test_fetch_incidents_limit_exceed(mocker): """ Given - a dict of params given to the function which is gathered originally from demisto.params() The dict includes the relevant params for the fetch e.g. fetch_delta, fetch_limit, created_after, state. - response of the api When - a single iteration of the fetch is activated with a fetch limit set to 5 Then - validate that the number or incidents that is returned is equal to the limit when the api returned more. """ params = { 'fetch_delta': '6 hours', 'fetch_limit': ' 5', 'created_after': '2021-03-30T11:44:24Z', 'state': 'closed' } mocker.patch('ProofpointThreatResponse.get_incidents_request', return_value=FETCH_RESPONSE) incidents_list = get_incidents_batch_by_time_request(params) assert len(incidents_list) == 5 def test_fetch_incidents_with_same_created_time(mocker): """ Given - a dict of params given to the function which is gathered originally from demisto.params() The dict includes the relevant params for the fetch e.g. fetch_delta, fetch_limit, created_after, state and last_fetched_id. - response of the api When - when a fetch occurs and the last fetched incident has exactly the same time of the next incident. Then - validate that only one of the incidents appear as to the fetch limit. - validate that the next incident whose time is exactly the same is brought in the next fetch loop. ( e.g. 3057 and 3058) """ expected_ids_to_fetch_first = [3055, 3056, 3057] expected_ids_to_fetch_second = [3058, 3059, 3060] params = { 'fetch_delta': '2 hours', 'fetch_limit': '3', 'created_after': '2021-03-30T10:44:24Z', 'state': 'closed' } mocker.patch('ProofpointThreatResponse.get_incidents_request', return_value=FETCH_RESPONSE) new_fetched_first = get_incidents_batch_by_time_request(params) for incident in new_fetched_first: assert incident.get('id') in expected_ids_to_fetch_first params = { 'fetch_delta': '2 hour', 'fetch_limit': '3', 'created_after': '2021-03-30T11:21:24Z', 'last_fetched_id': '3057', 'state': 'closed' } new_fetched_second = get_incidents_batch_by_time_request(params) for incident in new_fetched_second: assert incident.get('id') in expected_ids_to_fetch_second def test_get_new_incidents(mocker): """ Given - a dict of request_params to the api. - The last fetched incident id. When - Get new incidents is called during the fetch process. Then - validate that the number of expected incidents return. - validate that all of the returned incident have a bigger id then the last fetched incident. """ last_incident_fetched = 3057 request_params = { 'state': 'closed', 'created_after': '2021-03-30T10:21:24Z', 'created_before': '2021-03-31T11:21:24Z', } mocker.patch('ProofpointThreatResponse.get_incidents_request', return_value=FETCH_RESPONSE) new_incidnets = get_new_incidents(request_params, last_incident_fetched) assert len(new_incidnets) == 14 for incident in new_incidnets: assert incident.get('id') > 3057 def test_get_time_delta(): """ Given - input to the get_time_delta function which is valid and invalid When - run the get_time_delta function. Then - validate that on invalid input such as days or no units relevant errors are raised. - validate that on valid inputs the return value is as expected. """ time_delta = get_time_delta('1 minute') assert str(time_delta) == '0:01:00' time_delta = get_time_delta('2 hours') assert str(time_delta) == '2:00:00' try: get_time_delta('2') except Exception as ex: assert 'The fetch_delta is invalid. Please make sure to insert both the number and the unit of the fetch delta.' in str( ex) try: get_time_delta('2 days') except Exception as ex: assert 'The unit of fetch_delta is invalid. Possible values are "minutes" or "hours' in str(ex)
32.558559
128
0.603394
d492fd9d00437e877a4501964cd431bb0546c438
3,522
py
Python
macholib/macho_methname.py
l1haoyuan/macholib
48c59841e2ca5aa308eab67f72faed384a2c0723
[ "MIT" ]
null
null
null
macholib/macho_methname.py
l1haoyuan/macholib
48c59841e2ca5aa308eab67f72faed384a2c0723
[ "MIT" ]
null
null
null
macholib/macho_methname.py
l1haoyuan/macholib
48c59841e2ca5aa308eab67f72faed384a2c0723
[ "MIT" ]
null
null
null
import sys import os import json from enum import Enum from .mach_o import LC_SYMTAB from macholib import MachO from macholib import mach_o from shutil import copy2 from shutil import SameFileError def replace_methname(macho_file, methname_json, output_dir): """ Map method names in Mach-O file with the JSON file """ if not os.path.isfile(macho_file): raise("passing not exist file " + macho_file) if not os.path.isfile(methname_json): raise("passing not exist file " + methname_json) if output_dir is not None and not os.path.isdir(output_dir): raise("passing not exist dir " + output_dir) macho = MachO.MachO(macho_file) name_dict = None with open(methname_json) as json_file: name_dict = json.load(json_file) for header in macho.headers: ch_methname_sect(header, name_dict) ch_symtab(header, name_dict) ori_dir, filename = os.path.split(macho_file) if output_dir is None: output_dir = ori_dir output = os.path.join(output_dir, filename) try: copy2(macho_file, output_dir) except SameFileError: pass with open(output, 'r+b') as fp: macho.write(fp) os.chmod(output, 0o755) if __name__ == '__main__': main()
30.102564
111
0.635434
d493c88653dfc14a4b19dd601e82fe9c227bb1db
123
py
Python
archive/data-processing/archive/features/sd1.py
FloFincke/affective-chat
241c2b555541968f7e5e70b022fdb71102aed510
[ "MIT" ]
null
null
null
archive/data-processing/archive/features/sd1.py
FloFincke/affective-chat
241c2b555541968f7e5e70b022fdb71102aed510
[ "MIT" ]
10
2020-01-28T22:17:46.000Z
2022-02-09T23:30:57.000Z
archive/data-processing/archive/features/sd1.py
FloFincke/affective-chat
241c2b555541968f7e5e70b022fdb71102aed510
[ "MIT" ]
null
null
null
#!/usr/bin/env python import math import numpy as np
15.375
36
0.674797
d493cf85a9cb37a46e9d38eab9f5e238cbe228b0
1,515
py
Python
forms/snippets/delete_watch.py
soheilv/python-samples
4443431261dbcd88408dcc89d5702eeb1ac18ffd
[ "Apache-2.0" ]
255
2020-10-16T16:27:54.000Z
2022-03-31T14:26:29.000Z
forms/snippets/delete_watch.py
soheilv/python-samples
4443431261dbcd88408dcc89d5702eeb1ac18ffd
[ "Apache-2.0" ]
58
2020-10-16T14:24:27.000Z
2022-03-19T13:27:27.000Z
forms/snippets/delete_watch.py
soheilv/python-samples
4443431261dbcd88408dcc89d5702eeb1ac18ffd
[ "Apache-2.0" ]
316
2020-10-16T17:06:00.000Z
2022-03-30T19:18:31.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START forms_delete_watch] from __future__ import print_function from apiclient import discovery from httplib2 import Http from oauth2client import client, file, tools SCOPES = "https://www.googleapis.com/auth/drive" API_KEY = "<YOUR_API_KEY>" DISCOVERY_DOC = f"https://forms.googleapis.com/$discovery/rest?version=v1beta&key={API_KEY}&labels=FORMS_BETA_TESTERS" store = file.Storage('credentials.json') creds = None if not creds or creds.invalid: flow = client.flow_from_clientsecrets('client_secret.json', SCOPES) creds = tools.run_flow(flow, store) service = discovery.build('forms', 'v1beta', http=creds.authorize( Http()), discoveryServiceUrl=DISCOVERY_DOC, static_discovery=False) form_id = '<YOUR_FORM_ID>' watch_id = '<YOUR_WATCH_ID>' # Print JSON response after deleting a form watch result = service.forms().watches().delete(formId=form_id, watchId=watch_id).execute() print(result) # [END forms_delete_watch]
36.95122
118
0.770297
d49496c9213106a0918889d0e3a6aa3992ff1641
1,829
py
Python
data_structures/disjoint_set/disjoint_set.py
egagraha/python-algorithm
07a6a745b4ebddc93ab7c10b205c75b2427ac1fb
[ "MIT" ]
null
null
null
data_structures/disjoint_set/disjoint_set.py
egagraha/python-algorithm
07a6a745b4ebddc93ab7c10b205c75b2427ac1fb
[ "MIT" ]
null
null
null
data_structures/disjoint_set/disjoint_set.py
egagraha/python-algorithm
07a6a745b4ebddc93ab7c10b205c75b2427ac1fb
[ "MIT" ]
null
null
null
""" Disjoint set. Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure """ def make_set(x: Node) -> None: """ Make x as a set. """ # rank is the distance from x to its' parent # root's rank is 0 x.rank = 0 x.parent = x def union_set(x: Node, y: Node) -> None: """ Union of two sets. set with bigger rank should be parent, so that the disjoint set tree will be more flat. """ x, y = find_set(x), find_set(y) if x == y: return elif x.rank > y.rank: y.parent = x else: x.parent = y if x.rank == y.rank: y.rank += 1 def find_set(x: Node) -> Node: """ Return the parent of x """ if x != x.parent: x.parent = find_set(x.parent) return x.parent def find_python_set(node: Node) -> set: """ Return a Python Standard Library set that contains i. """ sets = ({0, 1, 2}, {3, 4, 5}) for s in sets: if node.data in s: return s raise ValueError(f"{node.data} is not in {sets}") def test_disjoint_set() -> None: """ >>> test_disjoint_set() """ vertex = [Node(i) for i in range(6)] for v in vertex: make_set(v) union_set(vertex[0], vertex[1]) union_set(vertex[1], vertex[2]) union_set(vertex[3], vertex[4]) union_set(vertex[3], vertex[5]) for node0 in vertex: for node1 in vertex: if find_python_set(node0).isdisjoint(find_python_set(node1)): assert find_set(node0) != find_set(node1) else: assert find_set(node0) == find_set(node1) if __name__ == "__main__": test_disjoint_set()
21.517647
73
0.556042
d494b4ecc12674b178766fec7fe530877b75b17d
1,391
py
Python
cw_EPR.py
tkeller12/spin_physics
271f3081bc8ca87b159ed3e3494dbd0ffdea8fa5
[ "MIT" ]
null
null
null
cw_EPR.py
tkeller12/spin_physics
271f3081bc8ca87b159ed3e3494dbd0ffdea8fa5
[ "MIT" ]
null
null
null
cw_EPR.py
tkeller12/spin_physics
271f3081bc8ca87b159ed3e3494dbd0ffdea8fa5
[ "MIT" ]
null
null
null
# Timothy Keller # S = 1/2, I = 1/2 # Spin 1/2 electron coupled to spin 1/2 nuclei import numpy as np from scipy.linalg import expm from matplotlib.pylab import * from matplotlib import cm sigma_x = 0.5*np.r_[[[0, 1],[1, 0]]] sigma_y = 0.5*np.r_[[[0,-1j],[1j, 0]]] sigma_z = 0.5*np.r_[[[1, 0],[0, -1]]] Identity = np.eye(2) Sx = np.kron(sigma_x, Identity) Sy = np.kron(sigma_y, Identity) Sz = np.kron(sigma_z, Identity) Ix = np.kron(Identity, sigma_x) Iy = np.kron(Identity, sigma_y) Iz = np.kron(Identity, sigma_z) SxIx = np.kron(sigma_x,sigma_z) SxIx2 = np.dot(Sx,Iz) print(SxIx) print(SxIx2) print(np.allclose(SxIx,SxIx2)) omega_S = 1.76e11 # rad / (s * T) omega_I = 267.522e6 # rad / (s * T) Aiso = 2*np.pi * 50.e6 # Isotropic Hyperfine coupling rad / s B0 = 0.35# T H = omega_S/(2.*np.pi)*B0*Sz + omega_I/(2.*np.pi)*B0*Iz + Aiso * np.dot(Sz,Iz) #H = omega_S/(2.*np.pi)*B0*Sz + omega_I/(2.*np.pi)*B0*Iz + Aiso * (np.dot(Sx,Ix) + np.dot(Sy,Iy) + np.dot(Sz,Iz)) print('Hamiltonian:') print(H) out = np.linalg.eig(H) E = out[0] print(E) E12 = E[0] - E[1] E34 = E[2] - E[3] E13 = E[0] - E[2] E24 = E[1] - E[3] print(E12) print(E34) print(E13) print(E24) print('Nuclear') print('%0.05f MHz'%(E12 / 1e6)) print('%0.05f MHz'%(E34 / 1e6)) print('Electron') print('%0.05f GHz'%(E13 / 1e9)) print('%0.05f GHz'%(E24 / 1e9)) matshow(abs(H), cmap = cm.jet) title('Hamiltonian') show()
21.075758
113
0.62473
d494b73023a37a848160341332c0ded7a2a24518
1,787
py
Python
V2RaycSpider0825/MiddleKey/VMes_IO.py
TOMJERRY23333/V2RayCloudSpider
0647db8c7b67e4393d1f65dadc08d7e16c1dc324
[ "MIT" ]
1
2020-09-16T12:59:32.000Z
2020-09-16T12:59:32.000Z
V2RaycSpider0825/MiddleKey/VMes_IO.py
TOMJERRY23333/V2RayCloudSpider
0647db8c7b67e4393d1f65dadc08d7e16c1dc324
[ "MIT" ]
null
null
null
V2RaycSpider0825/MiddleKey/VMes_IO.py
TOMJERRY23333/V2RayCloudSpider
0647db8c7b67e4393d1f65dadc08d7e16c1dc324
[ "MIT" ]
null
null
null
from spiderNest.preIntro import * path_ = os.path.dirname(os.path.dirname(__file__)) + '/dataBase/log_information.csv' def save_login_info(VMess, class_): """ VMess class_: ssr or v2ray """ now = str(datetime.now()).split('.')[0] with open(path_, 'a', encoding='utf-8', newline='') as f: writer = csv.writer(f) # Vmess,:0 writer.writerow(['{}'.format(now), '{}'.format(VMess), class_, '0']) def vmess_IO(class_): """ class_: ssr ; v2ray """ try: with open(path_, 'r', encoding='utf-8') as f: reader = csv.reader(f) vm_q = [vm for vm in reader] new_q = vm_q for i, value in enumerate(reversed(vm_q)): if value[-1] == '0' and value[-2] == class_: vm = value[1] new_q[-(i + 1)][-1] = '1' break refresh_log(new_q) return vm except UnboundLocalError: return ''
28.365079
84
0.525462
d494cc4fdc66704176b1bdb14e2b8bf08f6d120c
29,585
py
Python
paddlespeech/s2t/frontend/audio.py
AK391/PaddleSpeech
8cdbe3a6c0fe447e54cfbcfd82139d2869f5fc49
[ "Apache-2.0" ]
null
null
null
paddlespeech/s2t/frontend/audio.py
AK391/PaddleSpeech
8cdbe3a6c0fe447e54cfbcfd82139d2869f5fc49
[ "Apache-2.0" ]
null
null
null
paddlespeech/s2t/frontend/audio.py
AK391/PaddleSpeech
8cdbe3a6c0fe447e54cfbcfd82139d2869f5fc49
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the audio segment class.""" import copy import io import random import re import struct import numpy as np import resampy import soundfile from scipy import signal from .utility import convert_samples_from_float32 from .utility import convert_samples_to_float32 from .utility import subfile_from_tar def superimpose(self, other): """Add samples from another segment to those of this segment (sample-wise addition, not segment concatenation). Note that this is an in-place transformation. :param other: Segment containing samples to be added in. :type other: AudioSegments :raise TypeError: If type of two segments don't match. :raise ValueError: If the sample rates of the two segments are not equal, or if the lengths of segments don't match. """ if isinstance(other, type(self)): raise TypeError("Cannot add segments of different types: %s " "and %s." % (type(self), type(other))) if self._sample_rate != other._sample_rate: raise ValueError("Sample rates must match to add segments.") if len(self._samples) != len(other._samples): raise ValueError("Segment lengths must match to add segments.") self._samples += other._samples def to_bytes(self, dtype='float32'): """Create a byte string containing the audio content. :param dtype: Data type for export samples. Options: 'int16', 'int32', 'float32', 'float64'. Default is 'float32'. :type dtype: str :return: Byte string containing audio content. :rtype: str """ samples = self._convert_samples_from_float32(self._samples, dtype) return samples.tostring() def to(self, dtype='int16'): """Create a `dtype` audio content. :param dtype: Data type for export samples. Options: 'int16', 'int32', 'float32', 'float64'. Default is 'float32'. :type dtype: str :return: np.ndarray containing `dtype` audio content. :rtype: str """ samples = self._convert_samples_from_float32(self._samples, dtype) return samples def gain_db(self, gain): """Apply gain in decibels to samples. Note that this is an in-place transformation. :param gain: Gain in decibels to apply to samples. :type gain: float|1darray """ self._samples *= 10.**(gain / 20.) def change_speed(self, speed_rate): """Change the audio speed by linear interpolation. Note that this is an in-place transformation. :param speed_rate: Rate of speed change: speed_rate > 1.0, speed up the audio; speed_rate = 1.0, unchanged; speed_rate < 1.0, slow down the audio; speed_rate <= 0.0, not allowed, raise ValueError. :type speed_rate: float :raises ValueError: If speed_rate <= 0.0. """ if speed_rate == 1.0: return if speed_rate <= 0: raise ValueError("speed_rate should be greater than zero.") # numpy # old_length = self._samples.shape[0] # new_length = int(old_length / speed_rate) # old_indices = np.arange(old_length) # new_indices = np.linspace(start=0, stop=old_length, num=new_length) # self._samples = np.interp(new_indices, old_indices, self._samples) # sox, slow try: import soxbindings as sox except: try: from paddlespeech.s2t.utils import dynamic_pip_install package = "sox" dynamic_pip_install.install(package) package = "soxbindings" dynamic_pip_install.install(package) import soxbindings as sox except: raise RuntimeError("Can not install soxbindings on your system." ) tfm = sox.Transformer() tfm.set_globals(multithread=False) tfm.speed(speed_rate) self._samples = tfm.build_array( input_array=self._samples, sample_rate_in=self._sample_rate).squeeze(-1).astype( np.float32).copy() def normalize(self, target_db=-20, max_gain_db=300.0): """Normalize audio to be of the desired RMS value in decibels. Note that this is an in-place transformation. :param target_db: Target RMS value in decibels. This value should be less than 0.0 as 0.0 is full-scale audio. :type target_db: float :param max_gain_db: Max amount of gain in dB that can be applied for normalization. This is to prevent nans when attempting to normalize a signal consisting of all zeros. :type max_gain_db: float :raises ValueError: If the required gain to normalize the segment to the target_db value exceeds max_gain_db. """ gain = target_db - self.rms_db if gain > max_gain_db: raise ValueError( "Unable to normalize segment to %f dB because the " "the probable gain have exceeds max_gain_db (%f dB)" % (target_db, max_gain_db)) self.gain_db(min(max_gain_db, target_db - self.rms_db)) def normalize_online_bayesian(self, target_db, prior_db, prior_samples, startup_delay=0.0): """Normalize audio using a production-compatible online/causal algorithm. This uses an exponential likelihood and gamma prior to make online estimates of the RMS even when there are very few samples. Note that this is an in-place transformation. :param target_db: Target RMS value in decibels. :type target_bd: float :param prior_db: Prior RMS estimate in decibels. :type prior_db: float :param prior_samples: Prior strength in number of samples. :type prior_samples: float :param startup_delay: Default 0.0s. If provided, this function will accrue statistics for the first startup_delay seconds before applying online normalization. :type startup_delay: float """ # Estimate total RMS online. startup_sample_idx = min(self.num_samples - 1, int(self.sample_rate * startup_delay)) prior_mean_squared = 10.**(prior_db / 10.) prior_sum_of_squares = prior_mean_squared * prior_samples cumsum_of_squares = np.cumsum(self.samples**2) sample_count = np.arange(self.num_samples) + 1 if startup_sample_idx > 0: cumsum_of_squares[:startup_sample_idx] = \ cumsum_of_squares[startup_sample_idx] sample_count[:startup_sample_idx] = \ sample_count[startup_sample_idx] mean_squared_estimate = ((cumsum_of_squares + prior_sum_of_squares) / (sample_count + prior_samples)) rms_estimate_db = 10 * np.log10(mean_squared_estimate) # Compute required time-varying gain. gain_db = target_db - rms_estimate_db self.gain_db(gain_db) def resample(self, target_sample_rate, filter='kaiser_best'): """Resample the audio to a target sample rate. Note that this is an in-place transformation. :param target_sample_rate: Target sample rate. :type target_sample_rate: int :param filter: The resampling filter to use one of {'kaiser_best', 'kaiser_fast'}. :type filter: str """ self._samples = resampy.resample( self.samples, self.sample_rate, target_sample_rate, filter=filter) self._sample_rate = target_sample_rate def pad_silence(self, duration, sides='both'): """Pad this audio sample with a period of silence. Note that this is an in-place transformation. :param duration: Length of silence in seconds to pad. :type duration: float :param sides: Position for padding: 'beginning' - adds silence in the beginning; 'end' - adds silence in the end; 'both' - adds silence in both the beginning and the end. :type sides: str :raises ValueError: If sides is not supported. """ if duration == 0.0: return self cls = type(self) silence = self.make_silence(duration, self._sample_rate) if sides == "beginning": padded = cls.concatenate(silence, self) elif sides == "end": padded = cls.concatenate(self, silence) elif sides == "both": padded = cls.concatenate(silence, self, silence) else: raise ValueError("Unknown value for the sides %s" % sides) self._samples = padded._samples def shift(self, shift_ms): """Shift the audio in time. If `shift_ms` is positive, shift with time advance; if negative, shift with time delay. Silence are padded to keep the duration unchanged. Note that this is an in-place transformation. :param shift_ms: Shift time in millseconds. If positive, shift with time advance; if negative; shift with time delay. :type shift_ms: float :raises ValueError: If shift_ms is longer than audio duration. """ if abs(shift_ms) / 1000.0 > self.duration: raise ValueError("Absolute value of shift_ms should be smaller " "than audio duration.") shift_samples = int(shift_ms * self._sample_rate / 1000) if shift_samples > 0: # time advance self._samples[:-shift_samples] = self._samples[shift_samples:] self._samples[-shift_samples:] = 0 elif shift_samples < 0: # time delay self._samples[-shift_samples:] = self._samples[:shift_samples] self._samples[:-shift_samples] = 0 def subsegment(self, start_sec=None, end_sec=None): """Cut the AudioSegment between given boundaries. Note that this is an in-place transformation. :param start_sec: Beginning of subsegment in seconds. :type start_sec: float :param end_sec: End of subsegment in seconds. :type end_sec: float :raise ValueError: If start_sec or end_sec is incorrectly set, e.g. out of bounds in time. """ start_sec = 0.0 if start_sec is None else start_sec end_sec = self.duration if end_sec is None else end_sec if start_sec < 0.0: start_sec = self.duration + start_sec if end_sec < 0.0: end_sec = self.duration + end_sec if start_sec < 0.0: raise ValueError("The slice start position (%f s) is out of " "bounds." % start_sec) if end_sec < 0.0: raise ValueError("The slice end position (%f s) is out of bounds." % end_sec) if start_sec > end_sec: raise ValueError("The slice start position (%f s) is later than " "the end position (%f s)." % (start_sec, end_sec)) if end_sec > self.duration: raise ValueError("The slice end position (%f s) is out of bounds " "(> %f s)" % (end_sec, self.duration)) start_sample = int(round(start_sec * self._sample_rate)) end_sample = int(round(end_sec * self._sample_rate)) self._samples = self._samples[start_sample:end_sample] def random_subsegment(self, subsegment_length, rng=None): """Cut the specified length of the audiosegment randomly. Note that this is an in-place transformation. :param subsegment_length: Subsegment length in seconds. :type subsegment_length: float :param rng: Random number generator state. :type rng: random.Random :raises ValueError: If the length of subsegment is greater than the origineal segemnt. """ rng = random.Random() if rng is None else rng if subsegment_length > self.duration: raise ValueError("Length of subsegment must not be greater " "than original segment.") start_time = rng.uniform(0.0, self.duration - subsegment_length) self.subsegment(start_time, start_time + subsegment_length) def convolve(self, impulse_segment, allow_resample=False): """Convolve this audio segment with the given impulse segment. Note that this is an in-place transformation. :param impulse_segment: Impulse response segments. :type impulse_segment: AudioSegment :param allow_resample: Indicates whether resampling is allowed when the impulse_segment has a different sample rate from this signal. :type allow_resample: bool :raises ValueError: If the sample rate is not match between two audio segments when resample is not allowed. """ if allow_resample and self.sample_rate != impulse_segment.sample_rate: impulse_segment.resample(self.sample_rate) if self.sample_rate != impulse_segment.sample_rate: raise ValueError("Impulse segment's sample rate (%d Hz) is not " "equal to base signal sample rate (%d Hz)." % (impulse_segment.sample_rate, self.sample_rate)) samples = signal.fftconvolve(self.samples, impulse_segment.samples, "full") self._samples = samples def convolve_and_normalize(self, impulse_segment, allow_resample=False): """Convolve and normalize the resulting audio segment so that it has the same average power as the input signal. Note that this is an in-place transformation. :param impulse_segment: Impulse response segments. :type impulse_segment: AudioSegment :param allow_resample: Indicates whether resampling is allowed when the impulse_segment has a different sample rate from this signal. :type allow_resample: bool """ target_db = self.rms_db self.convolve(impulse_segment, allow_resample=allow_resample) self.normalize(target_db) def add_noise(self, noise, snr_dB, allow_downsampling=False, max_gain_db=300.0, rng=None): """Add the given noise segment at a specific signal-to-noise ratio. If the noise segment is longer than this segment, a random subsegment of matching length is sampled from it and used instead. Note that this is an in-place transformation. :param noise: Noise signal to add. :type noise: AudioSegment :param snr_dB: Signal-to-Noise Ratio, in decibels. :type snr_dB: float :param allow_downsampling: Whether to allow the noise signal to be downsampled to match the base signal sample rate. :type allow_downsampling: bool :param max_gain_db: Maximum amount of gain to apply to noise signal before adding it in. This is to prevent attempting to apply infinite gain to a zero signal. :type max_gain_db: float :param rng: Random number generator state. :type rng: None|random.Random :raises ValueError: If the sample rate does not match between the two audio segments when downsampling is not allowed, or if the duration of noise segments is shorter than original audio segments. """ rng = random.Random() if rng is None else rng if allow_downsampling and noise.sample_rate > self.sample_rate: noise = noise.resample(self.sample_rate) if noise.sample_rate != self.sample_rate: raise ValueError("Noise sample rate (%d Hz) is not equal to base " "signal sample rate (%d Hz)." % (noise.sample_rate, self.sample_rate)) if noise.duration < self.duration: raise ValueError("Noise signal (%f sec) must be at least as long as" " base signal (%f sec)." % (noise.duration, self.duration)) noise_gain_db = min(self.rms_db - noise.rms_db - snr_dB, max_gain_db) noise_new = copy.deepcopy(noise) noise_new.random_subsegment(self.duration, rng=rng) noise_new.gain_db(noise_gain_db) self.superimpose(noise_new) def _convert_samples_to_float32(self, samples): """Convert sample type to float32. Audio sample type is usually integer or float-point. Integers will be scaled to [-1, 1] in float32. """ return convert_samples_to_float32(samples) def _convert_samples_from_float32(self, samples, dtype): """Convert sample type from float32 to dtype. Audio sample type is usually integer or float-point. For integer type, float32 will be rescaled from [-1, 1] to the maximum range supported by the integer type. This is for writing a audio file. """ return convert_samples_from_float32(samples, dtype)
41.204735
84
0.598378
d49613fe0b2e81e10d722fc25f0c3fd9aa1b0a51
4,119
py
Python
tornado_debugger/debug.py
bhch/tornado-debugger
4adeead7a45506eda34fc8d1e91dd32acc8cfe4e
[ "BSD-3-Clause" ]
1
2022-03-21T11:52:30.000Z
2022-03-21T11:52:30.000Z
tornado_debugger/debug.py
bhch/tornado-debugger
4adeead7a45506eda34fc8d1e91dd32acc8cfe4e
[ "BSD-3-Clause" ]
null
null
null
tornado_debugger/debug.py
bhch/tornado-debugger
4adeead7a45506eda34fc8d1e91dd32acc8cfe4e
[ "BSD-3-Clause" ]
null
null
null
import os.path import re import sys import traceback from pprint import pformat import tornado from tornado import template SENSITIVE_SETTINGS_RE = re.compile( 'api|key|pass|salt|secret|signature|token', flags=re.IGNORECASE )
31.442748
77
0.571255
d496568fcdd0e4278b5c17076444af1d96c25b39
2,426
py
Python
base/pylib/seq_iter.py
jpolitz/lambda-py-paper
746ef63fc1123714b4adaf78119028afbea7bd76
[ "Apache-2.0" ]
1
2017-12-10T00:05:54.000Z
2017-12-10T00:05:54.000Z
base/pylib/seq_iter.py
jpolitz/lambda-py-paper
746ef63fc1123714b4adaf78119028afbea7bd76
[ "Apache-2.0" ]
null
null
null
base/pylib/seq_iter.py
jpolitz/lambda-py-paper
746ef63fc1123714b4adaf78119028afbea7bd76
[ "Apache-2.0" ]
null
null
null
___assign("%SeqIter", SeqIter) ___assign("%iter", iter) ___assign("%next", next) ___assign("%FuncIter", FuncIter)
22.462963
58
0.490107
d496c50445b160bee65444aedffd5152e26bcfa5
1,542
py
Python
caseworker/open_general_licences/enums.py
code-review-doctor/lite-frontend-1
cb3b885bb389ea33ef003c916bea7b03a36d86bb
[ "MIT" ]
null
null
null
caseworker/open_general_licences/enums.py
code-review-doctor/lite-frontend-1
cb3b885bb389ea33ef003c916bea7b03a36d86bb
[ "MIT" ]
null
null
null
caseworker/open_general_licences/enums.py
code-review-doctor/lite-frontend-1
cb3b885bb389ea33ef003c916bea7b03a36d86bb
[ "MIT" ]
null
null
null
from lite_content.lite_internal_frontend.open_general_licences import ( OGEL_DESCRIPTION, OGTCL_DESCRIPTION, OGTL_DESCRIPTION, ) from lite_forms.components import Option
29.09434
117
0.647211
d496c9cfdd316aad01a20acdae3c9c7e998fb11f
887
py
Python
Matrix/Python/rotatematrix.py
pratika1505/DSA-Path-And-Important-Questions
a86a0774f0abf5151c852afd2bbf67a5368125c8
[ "MIT" ]
26
2021-08-04T17:03:26.000Z
2022-03-08T08:43:44.000Z
Matrix/Python/rotatematrix.py
pratika1505/DSA-Path-And-Important-Questions
a86a0774f0abf5151c852afd2bbf67a5368125c8
[ "MIT" ]
25
2021-08-04T16:58:33.000Z
2021-11-01T05:26:19.000Z
Matrix/Python/rotatematrix.py
pratika1505/DSA-Path-And-Important-Questions
a86a0774f0abf5151c852afd2bbf67a5368125c8
[ "MIT" ]
16
2021-08-14T20:15:24.000Z
2022-02-23T11:04:06.000Z
# -*- coding: utf-8 -*- """RotateMatrix.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1LX-dZFuQCyBXDNVosTp0MHaZZxoc5T4I """ #Function to rotate matrix by 90 degree if __name__ == '__main__': #Declaring matrix mat = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ] rotate(mat) #printing matrix for i in mat: print(i)
19.282609
77
0.500564
d49731577779af0d944350934f9656734de31c66
319
py
Python
sort.py
EYH0602/FP_Workshop
866b180b411c1ef439e1a2d039c6d6333e91cd39
[ "MIT" ]
1
2021-10-21T02:15:03.000Z
2021-10-21T02:15:03.000Z
sort.py
EYH0602/FP_Workshop
866b180b411c1ef439e1a2d039c6d6333e91cd39
[ "MIT" ]
null
null
null
sort.py
EYH0602/FP_Workshop
866b180b411c1ef439e1a2d039c6d6333e91cd39
[ "MIT" ]
null
null
null
xs = [1, 3, 2, 4, 5, 2] sorted_xs = quicksort(xs)
17.722222
40
0.526646
d49737aed7a2d03e7911f282302b8766a0010d5f
9,372
py
Python
bddtests/steps/bdd_test_util.py
TarantulaTechnology/fabric5
6da971177ab7d74f1e1cfa6f7fc73e75768e5686
[ "Apache-2.0" ]
4
2018-01-02T04:26:16.000Z
2018-10-25T08:51:06.000Z
bddtests/steps/bdd_test_util.py
TarantulaTechnology/fabric5
6da971177ab7d74f1e1cfa6f7fc73e75768e5686
[ "Apache-2.0" ]
null
null
null
bddtests/steps/bdd_test_util.py
TarantulaTechnology/fabric5
6da971177ab7d74f1e1cfa6f7fc73e75768e5686
[ "Apache-2.0" ]
9
2016-11-17T07:40:04.000Z
2020-03-16T16:11:39.000Z
# Copyright IBM Corp. 2016 All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import re import subprocess import devops_pb2 import fabric_pb2 import chaincode_pb2 from grpc.beta import implementations def cli_call(context, arg_list, expect_success=True): """Executes a CLI command in a subprocess and return the results. @param context: the behave context @param arg_list: a list command arguments @param expect_success: use False to return even if an error occurred when executing the command @return: (string, string, int) output message, error message, return code """ #arg_list[0] = "update-" + arg_list[0] # We need to run the cli command by actually calling the python command # the update-cli.py script has a #!/bin/python as the first line # which calls the system python, not the virtual env python we # setup for running the update-cli p = subprocess.Popen(arg_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, error = p.communicate() if p.returncode != 0: if output is not None: print("Output:\n" + output) if error is not None: print("Error Message:\n" + error) if expect_success: raise subprocess.CalledProcessError(p.returncode, arg_list, output) return output, error, p.returncode # Registerses a user on a specific composeService def registerUser(context, secretMsg, composeService): userName = secretMsg['enrollId'] if 'users' in context: pass else: context.users = {} if userName in context.users: raise Exception("User already registered: {0}".format(userName)) context.users[userName] = UserRegistration(secretMsg, composeService) # Registerses a user on a specific composeService def ipFromContainerNamePart(namePart, containerDataList): """Returns the IPAddress based upon a name part of the full container name""" ip = None containerNamePrefix = os.path.basename(os.getcwd()) + "_" for containerData in containerDataList: if containerData.containerName.startswith(containerNamePrefix + namePart): ip = containerData.ipAddress if ip == None: raise Exception("Could not find container with namePart = {0}".format(namePart)) return ip def getTxResult(context, enrollId): '''Returns the TransactionResult using the enrollId supplied''' assert 'users' in context, "users not found in context. Did you register a user?" assert 'compose_containers' in context, "compose_containers not found in context" (channel, userRegistration) = getGRPCChannelAndUser(context, enrollId) stub = devops_pb2.beta_create_Devops_stub(channel) txRequest = devops_pb2.TransactionRequest(transactionUuid = context.transactionID) response = stub.GetTransactionResult(txRequest, 2) assert response.status == fabric_pb2.Response.SUCCESS, 'Failure getting Transaction Result from {0}, for user "{1}": {2}'.format(userRegistration.composeService,enrollId, response.msg) # Now grab the TransactionResult from the Msg bytes txResult = fabric_pb2.TransactionResult() txResult.ParseFromString(response.msg) return txResult def getGRPCChannelAndUser(context, enrollId): '''Returns a tuple of GRPC channel and UserRegistration instance. The channel is open to the composeService that the user registered with.''' userRegistration = getUserRegistration(context, enrollId) # Get the IP address of the server that the user registered on ipAddress = ipFromContainerNamePart(userRegistration.composeService, context.compose_containers) channel = getGRPCChannel(ipAddress) return (channel, userRegistration) def getDeployment(context, ccAlias): '''Return a deployment with chaincode alias from prior deployment, or None if not found''' deployment = None if 'deployments' in context: pass else: context.deployments = {} if ccAlias in context.deployments: deployment = context.deployments[ccAlias] # else: # raise Exception("Deployment alias not found: '{0}'. Are you sure you have deployed a chaincode with this alias?".format(ccAlias)) return deployment def deployChaincode(context, enrollId, chaincodePath, ccAlias, ctor): '''Deploy a chaincode with the specified alias for the specfied enrollId''' (channel, userRegistration) = getGRPCChannelAndUser(context, enrollId) stub = devops_pb2.beta_create_Devops_stub(channel) # Make sure deployment alias does NOT already exist assert getDeployment(context, ccAlias) == None, "Deployment alias already exists: '{0}'.".format(ccAlias) args = getArgsFromContextForUser(context, enrollId) ccSpec = chaincode_pb2.ChaincodeSpec(type = chaincode_pb2.ChaincodeSpec.GOLANG, chaincodeID = chaincode_pb2.ChaincodeID(name="",path=chaincodePath), ctorMsg = chaincode_pb2.ChaincodeInput(function = ctor, args = args)) ccSpec.secureContext = userRegistration.getUserName() if 'metadata' in context: ccSpec.metadata = context.metadata try: ccDeploymentSpec = stub.Deploy(ccSpec, 60) ccSpec.chaincodeID.name = ccDeploymentSpec.chaincodeSpec.chaincodeID.name context.grpcChaincodeSpec = ccSpec context.deployments[ccAlias] = ccSpec except: del stub raise def getContainerDataValuesFromContext(context, aliases, callback): """Returns the IPAddress based upon a name part of the full container name""" assert 'compose_containers' in context, "compose_containers not found in context" values = [] containerNamePrefix = os.path.basename(os.getcwd()) + "_" for namePart in aliases: for containerData in context.compose_containers: if containerData.containerName.startswith(containerNamePrefix + namePart): values.append(callback(containerData)) break return values
40.747826
189
0.714789
d4973b8aa4822ac46365e7bcf3331ae6bf592f03
13,868
py
Python
1.0.0/hp/dict.py
cefect/SOFDA0
62c5566d0f388a5fd76a070ceb5ee3e38b0d7463
[ "MIT" ]
null
null
null
1.0.0/hp/dict.py
cefect/SOFDA0
62c5566d0f388a5fd76a070ceb5ee3e38b0d7463
[ "MIT" ]
null
null
null
1.0.0/hp/dict.py
cefect/SOFDA0
62c5566d0f388a5fd76a070ceb5ee3e38b0d7463
[ "MIT" ]
null
null
null
''' Created on Mar 6, 2018 @author: cef hp functions for workign with dictionaries ''' import logging, os, sys, math, copy, inspect from collections import OrderedDict from weakref import WeakValueDictionary as wdict import numpy as np import hp.basic mod_logger = logging.getLogger(__name__) #creates a child logger of the root def subset(d_big, l, #get a dictionary subset using standard user inputs #ordered = False, using containers instead set_type = 'sub', method = 'exact', container = dict, logger = mod_logger, *search_args): """ #=========================================================================== # INPUTS #=========================================================================== l: list of keys (within d_big) on which to erturn the sutset set_type: how to treat the set intersect: returna dictionary with only the common keys sub: raise a flag if not every item in 'l' is found in d_big.keys() method: what type of key search to perform (re.function) search: look for a key in the dictionary that contains the list entry. returned d is keyed by the list """ logger = logger.getChild('subset') #=========================================================================== # setup[] #========================================================================== d = container() """ #dictionary setup if ordered: d = OrderedDict() else: d = dict()""" #input list setup if isinstance(l, list): pass elif isinstance(l, basestring): l = [l] elif l is None: return d else: raise IOError nofnd_l = [] #=========================================================================== # determine subset by kwarg #=========================================================================== for k in l: try: #attempt teh direct match d[k] = d_big[k] except: #=================================================================== # try again using search functions #=================================================================== try: if method == 'search': #search and return this value v = value_by_ksearch(k, d_big, logger=logger, *search_args) if not v is None: d[k] = v continue #not sure this is needed else: raise ValueError else: raise ValueError #=================================================================== # nothing found. proceed based on set_type #=================================================================== except: logger.debug('unable to find \'%s\' in the dict with method \'%s\''%(k, method)) if set_type == 'sub': boolar = hp.basic.bool_list_in_list(d_big.keys(), l) if not np.all(boolar): logger.error('%i entries in list not found in big_d'%(len(l) - boolar.sum())) raise IOError elif set_type == 'intersect': nofnd_l.append(k) else: raise IOError #=========================================================================== # wrap up #=========================================================================== if len(nofnd_l) >0: logger.debug('%i of %i list entries DO NOT intersect: %s'%(len(nofnd_l), len(l), nofnd_l)) if set_type == 'sub': raise IOError #=========================================================================== # check #=========================================================================== if len(d) == 0: logger.warning('0 common values between d(%i) and l(%i)'%(len(d), len(l))) logger.debug('returning d with %i entries: %s \n'%(len(d), d.keys())) return container(d) #=============================================================================== # def subset(d_big, l, #get a dictionary subset using standard user inputs # ordered = False, set_type = 'sub', search = 'search', # logger = mod_logger): # """ # #=========================================================================== # # INPUTS # #=========================================================================== # l: list of keys (within d_big) on which to erturn the sutset # # set_type: how to treat the set # intersect: returna dictionary with only the common keys # sub: raise a flag if not every item in 'l' is found in d_big.keys() # # search: what type of key search to perform (re.function) # """ # logger = logger.getChild('subset') # # #=========================================================================== # # setup[] # #========================================================================== # #dictionary setup # if ordered: d = OrderedDict() # else: d = dict() # # #input list setup # if isinstance(l, list): pass # elif isinstance(l, basestring): l = [l] # elif l is None: return None # else: raise IOError # # #=========================================================================== # # determine subset by kwarg # #=========================================================================== # if set_type == 'sub': # try: # for k in l: # d[k] = d_big[k] # # except: # boolar = hp.basic.bool_list_in_list(d_big.keys(), l) # # if not np.all(boolar): # logger.error('%i entries in list not found in big_d'%(len(l) - boolar.sum())) # # raise IOError # # if len(d) == 0: raise IOError # # elif set_type == 'intersect': # nofnd_l = [] # for k in l: # try: # d[k] = d_big[k] # except: # nofnd_l.append(k) # # if len(nofnd_l) >0: # logger.debug('%i of %i list entries DO NOT intersect: %s'%(len(nofnd_l), len(l), nofnd_l)) # # #=========================================================================== # # check # #=========================================================================== # if len(d) == 0: logger.warning('0 common values between d(%i) and l(%i)'% # (len(d), len(l))) # # return d #=============================================================================== from collections import OrderedDict
36.687831
113
0.391477
d49b6df009b775a63c890cb5c9656357e0580e52
3,532
py
Python
Core/pre.py
Cyber-Dioxide/CyberPhish
bc2e39d8612ef657d481cdd40d676983f7bf190c
[ "Apache-2.0" ]
9
2021-12-28T08:17:41.000Z
2022-03-20T17:49:21.000Z
Core/pre.py
Cyber-Dioxide/CyberPhish
bc2e39d8612ef657d481cdd40d676983f7bf190c
[ "Apache-2.0" ]
null
null
null
Core/pre.py
Cyber-Dioxide/CyberPhish
bc2e39d8612ef657d481cdd40d676983f7bf190c
[ "Apache-2.0" ]
1
2021-12-27T08:13:50.000Z
2021-12-27T08:13:50.000Z
import os import random try: from colorama import Fore, Style except ModuleNotFoundError: os.system("pip install colorama") from urllib.request import urlopen from Core.helper.color import green, white, blue, red, start, alert Version = "2.2" yellow = ("\033[1;33;40m") all_col = [Style.BRIGHT + Fore.RED, Style.BRIGHT + Fore.CYAN, Style.BRIGHT + Fore.LIGHTCYAN_EX, Style.BRIGHT + Fore.LIGHTBLUE_EX, Style.BRIGHT + Fore.LIGHTCYAN_EX, Style.BRIGHT + Fore.LIGHTMAGENTA_EX, Style.BRIGHT + Fore.LIGHTYELLOW_EX] ran = random.choice(all_col) banner()
49.746479
144
0.473386
d49bc7fba6d65f4ec2d4a29ecf9e4f75e3ad24d1
10,163
py
Python
automatoes/authorize.py
candango/automatoes
fbfd01cfaa2c36e23a7251e333ef3fa86ef4bff9
[ "Apache-2.0" ]
13
2019-10-08T14:57:19.000Z
2022-01-12T10:01:30.000Z
automatoes/authorize.py
piraz/automatoes
fc6a20c317a8ac863bfb054c9541e310e0431e5f
[ "Apache-2.0" ]
125
2019-10-08T15:04:17.000Z
2022-03-29T19:27:12.000Z
automatoes/authorize.py
candango/automatoes
fbfd01cfaa2c36e23a7251e333ef3fa86ef4bff9
[ "Apache-2.0" ]
8
2019-10-14T15:18:57.000Z
2021-04-21T10:41:08.000Z
#!/usr/bin/env python # # Copyright 2019-2020 Flavio Garcia # Copyright 2016-2017 Veeti Paananen under MIT License # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The domain authorization command. """ from . import get_version from .acme import AcmeV2 from .crypto import generate_jwk_thumbprint from .errors import AutomatoesError from .model import Order from cartola import fs, sysexits import hashlib import os import sys
39.239382
79
0.546394
d49c1e0bb83e7c39fdece7542b9e2c9d25d03288
5,832
py
Python
rllib/agents/dqn/simple_q_torch_policy.py
jamesliu/ray
11ab412db1fa3603a3006e8ed414e80dd1f11c0c
[ "Apache-2.0" ]
3
2020-12-12T05:10:44.000Z
2021-04-12T21:52:47.000Z
rllib/agents/dqn/simple_q_torch_policy.py
jamesliu/ray
11ab412db1fa3603a3006e8ed414e80dd1f11c0c
[ "Apache-2.0" ]
227
2021-10-01T08:00:01.000Z
2021-12-28T16:47:26.000Z
rllib/agents/dqn/simple_q_torch_policy.py
gramhagen/ray
c18caa4db36d466718bdbcb2229aa0b2dc03da1f
[ "Apache-2.0" ]
1
2020-12-02T06:26:20.000Z
2020-12-02T06:26:20.000Z
"""PyTorch policy class used for Simple Q-Learning""" import logging from typing import Dict, Tuple import gym import ray from ray.rllib.agents.dqn.simple_q_tf_policy import ( build_q_models, compute_q_values, get_distribution_inputs_and_class) from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.models.torch.torch_action_dist import TorchCategorical, \ TorchDistributionWrapper from ray.rllib.policy import Policy from ray.rllib.policy.policy_template import build_policy_class from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.torch_policy import TorchPolicy from ray.rllib.utils.annotations import override from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.torch_utils import concat_multi_gpu_td_errors, huber_loss from ray.rllib.utils.typing import TensorType, TrainerConfigDict torch, nn = try_import_torch() F = None if nn: F = nn.functional logger = logging.getLogger(__name__) def build_q_losses(policy: Policy, model, dist_class, train_batch: SampleBatch) -> TensorType: """Constructs the loss for SimpleQTorchPolicy. Args: policy (Policy): The Policy to calculate the loss for. model (ModelV2): The Model to calculate the loss for. dist_class (Type[ActionDistribution]): The action distribution class. train_batch (SampleBatch): The training data. Returns: TensorType: A single loss tensor. """ target_model = policy.target_models[model] # q network evaluation q_t = compute_q_values( policy, model, train_batch[SampleBatch.CUR_OBS], explore=False, is_training=True) # target q network evalution q_tp1 = compute_q_values( policy, target_model, train_batch[SampleBatch.NEXT_OBS], explore=False, is_training=True) # q scores for actions which we know were selected in the given state. one_hot_selection = F.one_hot(train_batch[SampleBatch.ACTIONS].long(), policy.action_space.n) q_t_selected = torch.sum(q_t * one_hot_selection, 1) # compute estimate of best possible value starting from state at t + 1 dones = train_batch[SampleBatch.DONES].float() q_tp1_best_one_hot_selection = F.one_hot( torch.argmax(q_tp1, 1), policy.action_space.n) q_tp1_best = torch.sum(q_tp1 * q_tp1_best_one_hot_selection, 1) q_tp1_best_masked = (1.0 - dones) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = (train_batch[SampleBatch.REWARDS] + policy.config["gamma"] * q_tp1_best_masked) # Compute the error (Square/Huber). td_error = q_t_selected - q_t_selected_target.detach() loss = torch.mean(huber_loss(td_error)) # Store values for stats function in model (tower), such that for # multi-GPU, we do not override them during the parallel loss phase. model.tower_stats["loss"] = loss # TD-error tensor in final stats # will be concatenated and retrieved for each individual batch item. model.tower_stats["td_error"] = td_error return loss def extra_action_out_fn(policy: Policy, input_dict, state_batches, model, action_dist) -> Dict[str, TensorType]: """Adds q-values to the action out dict.""" return {"q_values": policy.q_values} def setup_late_mixins(policy: Policy, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, config: TrainerConfigDict) -> None: """Call all mixin classes' constructors before SimpleQTorchPolicy initialization. Args: policy (Policy): The Policy object. obs_space (gym.spaces.Space): The Policy's observation space. action_space (gym.spaces.Space): The Policy's action space. config (TrainerConfigDict): The Policy's config. """ TargetNetworkMixin.__init__(policy) SimpleQTorchPolicy = build_policy_class( name="SimpleQPolicy", framework="torch", loss_fn=build_q_losses, get_default_config=lambda: ray.rllib.agents.dqn.simple_q.DEFAULT_CONFIG, stats_fn=stats_fn, extra_action_out_fn=extra_action_out_fn, after_init=setup_late_mixins, make_model_and_action_dist=build_q_model_and_distribution, mixins=[TargetNetworkMixin], action_distribution_fn=get_distribution_inputs_and_class, extra_learn_fetches_fn=concat_multi_gpu_td_errors, )
35.779141
79
0.710905
d49d0bb7116e3f907afff13646fa7b6a2ac9aa13
66,873
py
Python
viphoneme/T2IPA.py
NoahDrisort/ViSV2TTS
bea6fa1f85527c824c85986d8b7bfa3e3efd120a
[ "MIT" ]
1
2021-09-23T15:46:14.000Z
2021-09-23T15:46:14.000Z
viphoneme/T2IPA.py
v-nhandt21/ViSV2TTS
bea6fa1f85527c824c85986d8b7bfa3e3efd120a
[ "MIT" ]
null
null
null
viphoneme/T2IPA.py
v-nhandt21/ViSV2TTS
bea6fa1f85527c824c85986d8b7bfa3e3efd120a
[ "MIT" ]
null
null
null
#Grapheme Rime_tone=[ "a","","","e","","i","o","","","u","","y","i","oa","o","oe","oo","u","u","u","u","uy","","uy","y", #blank "","","","","","","","","","","","","i","a","o","e","o","u","u","u","","y","","uy","y", #grave "o", "o","o", "u", "","","","","","","","","","","","","i","a","o","e","o","u","u","u","","y","","uy","y", #acute "o", "o","o", "u", "","","","","","","","","","","","","i","a","o","e","o","u","u","u","","y","","uy","y", #hook "o", "o","o", "u", "","","","","","","","","","","","","i","a","o","e","o","u","u","u","","y","","uy","y", #tilde "o", "o","o", "u", "","","","","","","","","","","","","i","a","o","e","o","u","u","u","","y","","uy","y", #dot "o", "o","o", "u"] Onset=["b","d","h","l","m","n","p","r","s","t","v","x","","p", "tr", "th", "ch", "ph","nh","kh","gi","qu", "ngh","ng","gh","g","k","c"] #coding: utf-8 #Custom phoneme follow the https://vi.wikipedia.org/wiki/%C3%82m_v%E1%BB%8B_h%E1%BB%8Dc_ti%E1%BA%BFng_Vi%E1%BB%87t #Improve pronoune between N C S Cus_onsets = { u'b' : u'b', u't' : u't', u'th' : u't', u'' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'', u'nh' : u'', u'ng' : u'', u'ph' : u'f', u'v' : u'v', u'x' : u's', u'd' : u'z', u'h' : u'h', u'p' : u'p', u'qu' : u'kw', u'gi' : u'j', u'tr' : u'', u'k' : u'k', u'c' : u'k', u'gh' : u'', u'r' : u'', u's' : u'', u'gi': u'j'} Cus_nuclei = { u'a' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'e' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'i' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'o' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'u' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'eo' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o': u'eo', u'o' : u'eo', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'ia' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'ia' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'ua' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', } Cus_offglides = { u'ai' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'ay' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'ao' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'au' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'u' : u'w', u'u' : u'w', u'u': u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'eo' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'iu' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'oi' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'ui' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', #u'uy' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'uy' : u'i', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', #thay hn ch trng m u'uy' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', 'u' : u'w', u'u' : u'w' } #Cc m vng y i chang khng vm: khng c w trc => Try to add Cus_onglides = { u'oa' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oe' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oe' : u'', u'e' : u'', u'e' : u'', u'e' : u'', u'e' : u'', u'e' : u'', u'ua' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'ue' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'uy' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'uya' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uyu' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uyu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'oen' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'oet' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et' } Cus_onoffglides = { u'oe' : u'j', u'o' : u'j', u'o' : u'j', u'o' : u'j', u'o' : u'j', u'o' : u'j', u'oai' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oay' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oao' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oeo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oeo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'ueo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uai' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'uay' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j' } Cus_codas = { u'p' : u'p', u't' : u't', u'c' : u'k', u'm' : u'm', u'n' : u'n', u'ng' : u'', u'nh' : u'', u'ch' : u't' } Cus_tones_p = { u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, } Cus_gi = { u'gi' : u'zi', u'g': u'zi', u'g' : u'zi', u'g' : u'zi', u'g' : u'zi', u'g' : u'zi'} Cus_qu = {u'quy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi'} ####################################################### # North # #coding: utf-8 N_onsets = { u'b' : u'b', u't' : u't', u'th' : u't', u'' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'', u'nh' : u'', u'ng' : u'', u'ph' : u'f', u'v' : u'v', u'x' : u's', u'd' : u'z', u'h' : u'h', u'p' : u'p', u'qu' : u'kw', u'gi' : u'z', u'tr' : u'c', u'k' : u'k', u'c' : u'k', u'gh' : u'', u'r' : u'z', u's' : u's', u'gi': u'z'} N_nuclei = { u'a' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'e' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'i' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'o' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'u' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'eo' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o': u'eo', u'o' : u'eo', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'ia' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'ia' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'ua' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', } N_offglides = { u'ai' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'ay' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'ao' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'au' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'u' : u'w', u'u' : u'w', u'u': u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'eo' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'iu' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'oi' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'ui' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'uy' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', 'u' : u'w', u'u' : u'w' } N_onglides = { u'oa' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oe' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'oe' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'ua' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'ue' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'uy' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'uya' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uyu' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uyu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'oen' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'oet' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et' } N_onoffglides = { u'oe' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'oai' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oay' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oao' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oeo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oeo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'ueo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uai' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'uay' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j' } N_codas = { u'p' : u'p', u't' : u't', u'c' : u'k', u'm' : u'm', u'n' : u'n', u'ng' : u'', u'nh' : u'', u'ch' : u'k' } #tones = { u'a' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'e' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'i' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'o' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'u' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # u'y' : 33, u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', # } N_tones = { u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', u'' : 24, u'' : 32, u'' : 312, u'' : u'35g', u'' : u'21g', } # used to use \u02C0 for the unicode raised glottal character N_tones_p = { u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 3, u'' : 6, } N_gi = { u'gi' : u'zi', u'g': u'zi', u'g' : u'zi', u'g' : u'zi', u'g' : u'zi', u'g' : u'zi'} N_qu = {u'quy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi', u'qy' : u'kwi'} ####################################################### #central.py #coding: utf-8 C_onsets = { u'b' : u'b', u't' : u't', u'th' : u't', u'' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'', u'nh' : u'', u'ng' : u'', u'ph' : u'f', u'v' : u'j', u'x' : u's', u'd' : u'j', u'h' : u'h', u'p' : u'p', u'qu' : u'w', u'gi' : u'j', u'tr' : u'', u'k' : u'k', u'c' : u'k', u'gh' : u'', u'r' : u'', u's' : u'', u'gi' : u'j' } C_nuclei = { u'a' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'e' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'i' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'o' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'u' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'eo' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o': u'eo', u'o' : u'eo', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'ia' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'ia' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'ua' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', } C_offglides = { u'ai' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'ay' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'ao' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'au' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'u' : u'w', u'u' : u'w', u'u': u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'eo' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'iu' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'oi' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'ui' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'uy' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', 'u' : u'w', u'u' : u'w' } C_onglides = { u'oa' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oe' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'oe' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'ua' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'ue' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'uy' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'uya' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uyu' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uyu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'oen' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'oet' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et' } C_onoffglides = { u'oe' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'oai' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oay' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oao' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oeo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oeo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'ueo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uai' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'uay' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j' } C_codas = { u'p' : u'p', u't' : u'k', u'c' : u'k', u'm' : u'm', u'n' : u'', u'ng' : u'', u'nh' : u'n', u'ch' : u'k' } # See Alves 2007 (SEALS XII), V 1982 C_tones = { u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', u'' : 13, u'' : 42, u'' : 312, u'' : 312, u'' : u'21g', } # used to use \u02C0 for raised glottal instead of g C_tones_p = { u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, } C_gi = { u'gi' : u'ji', u'g': u'ji', u'g' : u'ji', u'g' : u'ji', u'g' : u'ji', u'g' : u'ji' } C_qu = {u'quy' : u'wi', u'qy' : u'wi', u'qy' : u'wi', u'qy' : u'wi', u'qy' : u'wi', u'qy' : u'wi'} ############################################ #south.py #coding: utf-8 S_onsets = { u'b' : u'b', u't' : u't', u'th' : u't', u'' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'', u'nh' : u'', u'ng' : u'', u'ph' : u'f', u'v' : u'j', u'x' : u's', u'd' : u'j', u'h' : u'h', u'p' : u'p', u'qu' : u'w', u'gi' : u'j', u'tr' : u'', u'k' : u'k', u'c' : u'k', u'gh' : u'', u'r' : u'', u's' : u'', u'gi' : u'j' } S_nuclei = { u'a' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'a', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'e' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'' : u'e', u'i' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'o' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'u' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'u', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'' : u'i', u'eo' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o' : u'eo', u'o': u'eo', u'o' : u'eo', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'ia' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'a' : u'i', u'ia' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'i' : u'i', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oo' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'' : u'o', u'ua' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'a' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'a' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'' : u'', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'y' : u'i', u'u' : u'u', u'u' : u'u', u'u': u'u', u'u' : u'u', u'u' : u'u', u'u' : u'u', } S_offglides = { u'ai' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'i' : u'aj', u'ay' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'ao' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'o' : u'aw', u'au' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'y' : u'j', u'u' : u'w', u'u' : u'w', u'u': u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'eo' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'o' : u'ew', u'iu' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'u' : u'iw', u'oi' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'i' : u'oj', u'ui' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'i' : u'uj', u'uy' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'y' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'iu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'yu' : u'iw', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'ui' : u'uj', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'i' : u'j', u'u' : u'w', u'u' : u'w', u'u' : u'w', u'u' : u'w', 'u' : u'w', u'u' : u'w' } S_onglides = { u'oa' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'o' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'a' : u'a', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'o' : u'', u'oe' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'o' : u'e', u'oe' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'e' : u'e', u'ua' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'a', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'ue' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'e', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'u' : u'', u'uy' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'u' : u'i', u'uya' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uy' : u'i', u'uyu' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uy' : u'iu', u'uyu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'uu' : u'iu', u'oen' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'on' : u'en', u'oet' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et', u'ot' : u'et' } S_onoffglides = { u'oe' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'o' : u'ej', u'oai' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oi' : u'aj', u'oay' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oy' : u'j', u'oao' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oo' : u'aw', u'oeo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oo' : u'ew', u'oeo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'eo' : u'ew', u'ueo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uo' : u'ew', u'uai' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'ui' : u'aj', u'uay' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j', u'uy' : u'j' } S_codas = { u'p' : u'p', u't' : u't', u'c' : u'k', u'm' : u'm', u'n' : u'', u'ng' : u'', u'nh' : u'n', u'ch' : u't' } S_tones = { u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, u'' : 45, u'' : 32, u'' : 214, u'' : 214, u'' : 212, } S_tones_p = { u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, u'' : 5, u'' : 2, u'' : 4, u'' : 4, u'' : 6, } S_gi = { u'gi' : u'ji', u'g': u'ji', u'g' : u'ji', u'g' : u'ji', u'g' : u'ji', u'g' : u'ji' } S_qu = {u'quy' : u'wi', u'qy' : u'wi', u'qy' : u'wi', u'qy' : u'wi', u'qy' : u'wi', u'qy' : u'wi'} ################################################3 import sys, codecs, re from io import StringIO from optparse import OptionParser from string import punctuation def convert(word, dialect, glottal, pham, cao, palatals, delimit): """Convert a single orthographic string to IPA.""" ons = '' nuc = '' cod = '' ton = 0 seq = '' try: (ons, nuc, cod, ton) = trans(word, dialect, glottal, pham, cao, palatals) if None in (ons, nuc, cod, ton): seq = u'['+word+u']' else: seq = delimit+delimit.join(filter(None, (ons, nuc, cod, ton)))+delimit except (TypeError): pass return seq ########################333 from vinorm import * from underthesea import word_tokenize import eng_to_ipa SET=[S_onsets, S_nuclei, S_codas#, S_tones , S_onglides, S_offglides, S_onoffglides, S_qu, S_gi, C_onsets, C_nuclei, C_codas#, C_tones , C_onglides, C_offglides, C_onoffglides, C_qu, C_gi, N_onsets, N_nuclei, N_codas#, N_tones , N_onglides, N_offglides, N_onoffglides, N_qu, N_gi, Cus_onsets, Cus_nuclei, Cus_codas#, N_tones , Cus_onglides, Cus_offglides, Cus_onoffglides, Cus_qu, Cus_gi] DICT={} #144 in total syms=['j', 'j', 'i', 'w', 'w', 'et', 'iw', 'uj', 'en', 'tw', '', 'iu', 'kwi', 'm', 'kp', 'cw', 'jw', 'u', 'e', 'bw', 'oj', 'i', 'vw', 'w', 'w', 'w', 'a', 'fw', 'u', 't', 't', '', 'xw', '', '', 'w', '', 'zi', '', 'dw', 'e', 'a', 'ew', 'i', 'w', 'zw', 'j', '', 'w', 'j', ':', '', 'a', 'mw', ':', 'hw', 'j', 'uj', 'lw', '', 'j', 'u:', 'aw', 'j', 'iw', 'aj', ':', 'kw', 'nw', 't', 'w', 'eo', 'sw', 'tw', 'w', 'i', 'e', 'i:', '', 'd', '', '', '', 'l', 'w', '1', '', '', 'd', '', 'p', '', 'u', 'o', '3', '', '!', '', '', '6', '', '', 'z', 'v', 'g', '', '_', '', '', '2', '', 'i', '.', '', 'b', 'h', 'n', '', '', '', 'k', 'm', '5', ' ', 'c', 'j', 'x', '', ',', '4', '', 's', '', 'a', '', '?', 'r', ':', '', 'f', ';', 'e', 't', "'"] #print("Parsing",Parsing("default","iu iu","|")) EN={"a":"y","":"","":"","b":"bi","c":"si","d":"i","":"","e":"i","":"","f":"p","g":"giy","h":"ch","i":"ai","j":"giy","k":"cy","l":"eo","m":"em","n":"en","o":"u","":"","":"","p":"pi","q":"kiu","r":"a","s":"t","t":"ti","u":"diu","":"","v":"vi","w":"p liu","x":"t","y":"quai","z":"git"} import re ################################################### checkDict() #print(vi2IPA_split("!Singapo english? i hc l IUYE g khngtontaij NIYE BoOK","'")) #check cc ipa ca ting anh #print(vi2IPA_split("Another table was prepared to show available onsets. Onsets are splitted into 3 types. Type 1 are onsets which has one letter ","/")) #Lc b du nhn ca ting anh "'" #print(vi2IPA_split("speech? Secondly, we paper, we investigate work! One is that e language to another by","/").replace("/","")) #Case need to be deal: # NIYE BoOK #print(len(getSymbol())) #print(getSymbol()) ''' test="t" if test in syms: print(test) else: print("none") ''' ################################################### #Step #Vinorm #Underthesea #For each Convert to phoneme #Nu khng c check phoneme ting anh #Nu khng c trong t ting anh -> c tng k t #Now #+Thm k t IPA ca ting ANH #+Thm x l case khng c cng nh case Ting anh: => dng etrain cho ting anh #+Deal case thng nht m vc phoneme -> ok #+Get li b symbol
56.243061
821
0.384759
d49d9d1e84095417ae691e1ba67e4e09f88e34fb
505
py
Python
taskengine/sessions.py
retmas-dv/deftcore
23052549e8948bbedfb958a96683b84b46820b09
[ "Apache-2.0" ]
null
null
null
taskengine/sessions.py
retmas-dv/deftcore
23052549e8948bbedfb958a96683b84b46820b09
[ "Apache-2.0" ]
9
2019-05-24T08:10:59.000Z
2020-07-23T13:20:35.000Z
taskengine/sessions.py
retmas-dv/deftcore
23052549e8948bbedfb958a96683b84b46820b09
[ "Apache-2.0" ]
null
null
null
__author__ = 'Dmitry Golubkov' from django.contrib.sessions.base_session import AbstractBaseSession from django.contrib.sessions.backends.db import SessionStore as DBStore
24.047619
71
0.742574
d49e9592c8658910d6180947346f6788ba5fdb29
498
py
Python
tests/assignments/test_assign7.py
acc-cosc-1336/cosc-1336-spring-2018-vcruz350
0cee9fde3d4129c51626c4e0c870972aebec9b95
[ "MIT" ]
null
null
null
tests/assignments/test_assign7.py
acc-cosc-1336/cosc-1336-spring-2018-vcruz350
0cee9fde3d4129c51626c4e0c870972aebec9b95
[ "MIT" ]
1
2018-03-08T19:46:08.000Z
2018-03-08T20:00:47.000Z
tests/assignments/test_assign7.py
acc-cosc-1336/cosc-1336-spring-2018-vcruz350
0cee9fde3d4129c51626c4e0c870972aebec9b95
[ "MIT" ]
null
null
null
import unittest #write the import for function for assignment7 sum_list_values from src.assignments.assignment7 import sum_list_values #unittest.main(verbosity=2)
29.294118
71
0.736948
d49ef05ecf83504c528cca6ff6237271a4f54a56
4,957
py
Python
setec/__init__.py
kgriffs/setec
c6701ffd757cdfe1cfb9c3919b0fd3aa02396f54
[ "Apache-2.0" ]
null
null
null
setec/__init__.py
kgriffs/setec
c6701ffd757cdfe1cfb9c3919b0fd3aa02396f54
[ "Apache-2.0" ]
null
null
null
setec/__init__.py
kgriffs/setec
c6701ffd757cdfe1cfb9c3919b0fd3aa02396f54
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 by Kurt Griffiths # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from base64 import b64decode, b64encode import msgpack import nacl.encoding import nacl.secret import nacl.signing import nacl.utils from .version import __version__ # NOQA class Verifier: """Signature verifier based on Ed25519 and nacl.signing. Arguments: key (str): Base64-encoded verify key """ __slots__ = ('_verify_key',) def verifyb(self, message): """Verify a signed binary message. Arguments: message(bytes): Data to verify. Returns: bytes: The orignal message, sans signature. """ return self._verify_key.verify(message)
29.158824
86
0.656042
d49f62cf4c67498959f387338aa3e5ee4e7a2d59
382
py
Python
blender/arm/logicnode/native/LN_detect_mobile_browser.py
niacdoial/armory
3f9b633fbf772017c576a3f77695a6c28d9956e1
[ "Zlib" ]
null
null
null
blender/arm/logicnode/native/LN_detect_mobile_browser.py
niacdoial/armory
3f9b633fbf772017c576a3f77695a6c28d9956e1
[ "Zlib" ]
null
null
null
blender/arm/logicnode/native/LN_detect_mobile_browser.py
niacdoial/armory
3f9b633fbf772017c576a3f77695a6c28d9956e1
[ "Zlib" ]
null
null
null
from arm.logicnode.arm_nodes import *
34.727273
74
0.777487
d4a074467479872c4d6bb6745cf590f7c740594e
29,959
py
Python
corehq/apps/dump_reload/tests/test_sql_dump_load.py
andyasne/commcare-hq
c59a24e57bdd4d2536493f9ecdcc9906f4ae1b88
[ "BSD-3-Clause" ]
471
2015-01-10T02:55:01.000Z
2022-03-29T18:07:18.000Z
corehq/apps/dump_reload/tests/test_sql_dump_load.py
andyasne/commcare-hq
c59a24e57bdd4d2536493f9ecdcc9906f4ae1b88
[ "BSD-3-Clause" ]
14,354
2015-01-01T07:38:23.000Z
2022-03-31T20:55:14.000Z
corehq/apps/dump_reload/tests/test_sql_dump_load.py
andyasne/commcare-hq
c59a24e57bdd4d2536493f9ecdcc9906f4ae1b88
[ "BSD-3-Clause" ]
175
2015-01-06T07:16:47.000Z
2022-03-29T13:27:01.000Z
import inspect import json import uuid from collections import Counter from datetime import datetime from io import StringIO import mock from django.contrib.admin.utils import NestedObjects from django.db import transaction, IntegrityError from django.db.models.signals import post_delete, post_save from django.test import SimpleTestCase, TestCase from nose.tools import nottest from casexml.apps.case.mock import CaseFactory, CaseIndex, CaseStructure from corehq.apps.commtrack.helpers import make_product from corehq.apps.commtrack.tests.util import get_single_balance_block from corehq.apps.domain.models import Domain from corehq.apps.dump_reload.sql import SqlDataDumper, SqlDataLoader from corehq.apps.dump_reload.sql.dump import ( get_model_iterator_builders_to_dump, get_objects_to_dump, ) from corehq.apps.dump_reload.sql.load import ( DefaultDictWithKey, constraint_checks_deferred, ) from corehq.apps.hqcase.utils import submit_case_blocks from corehq.apps.products.models import SQLProduct from corehq.apps.zapier.consts import EventTypes from corehq.apps.zapier.models import ZapierSubscription from corehq.apps.zapier.signals.receivers import ( zapier_subscription_post_delete, ) from corehq.blobs.models import BlobMeta from corehq.form_processor.backends.sql.dbaccessors import LedgerAccessorSQL from corehq.form_processor.interfaces.dbaccessors import ( CaseAccessors, FormAccessors, ) from corehq.form_processor.models import ( CaseTransaction, CommCareCaseIndexSQL, CommCareCaseSQL, LedgerTransaction, LedgerValue, XFormInstanceSQL, ) from corehq.form_processor.tests.utils import ( FormProcessorTestUtils, create_form_for_test, sharded, ) from corehq.messaging.scheduling.scheduling_partitioned.models import ( AlertScheduleInstance, ) def _check_signals_handle_raw(self, models): """Ensure that any post_save signal handlers have been updated to handle 'raw' calls.""" whitelist_receivers = [ 'django_digest.models._post_save_persist_partial_digests' ] for model in models: for receiver in post_save._live_receivers(model): receiver_path = receiver.__module__ + '.' + receiver.__name__ if receiver_path in whitelist_receivers: continue args = inspect.getargspec(receiver).args message = 'Signal handler "{}" for model "{}" missing raw arg'.format( receiver, model ) self.assertIn('raw', args, message) class TestSQLDumpLoad(BaseDumpLoadTest): def _normalize_object_counter(counter, for_loaded=False): """Converts a <Model Class> keyed counter to an model label keyed counter""" return Counter({ _model_class_to_label(model_class): count for model_class, count in counter.items() })
38.310742
124
0.647118
d4a08e8d4977972540a2be8547db892cc6d2f3ab
4,561
py
Python
tests/keras/test_activations.py
the-moliver/keras
4fa7e5d454dd4f3f33f1d756a2a8659f2e789141
[ "MIT" ]
150
2017-01-15T15:32:23.000Z
2021-11-23T15:07:55.000Z
tests/keras/test_activations.py
wdw110/keras
4fa7e5d454dd4f3f33f1d756a2a8659f2e789141
[ "MIT" ]
40
2017-01-15T15:41:05.000Z
2020-11-16T13:15:50.000Z
tests/keras/test_activations.py
wdw110/keras
4fa7e5d454dd4f3f33f1d756a2a8659f2e789141
[ "MIT" ]
38
2017-01-15T22:04:06.000Z
2019-11-01T22:35:35.000Z
import pytest import numpy as np from numpy.testing import assert_allclose from keras import backend as K from keras import activations def get_standard_values(): ''' These are just a set of floats used for testing the activation functions, and are useful in multiple tests. ''' return np.array([[0, 0.1, 0.5, 0.9, 1.0]], dtype=K.floatx()) def test_softmax(): ''' Test using a reference implementation of softmax ''' x = K.placeholder(ndim=2) f = K.function([x], [activations.softmax(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softmax(test_values) assert_allclose(result, expected, rtol=1e-05) def test_softplus(): ''' Test using a reference softplus implementation ''' x = K.placeholder(ndim=2) f = K.function([x], [activations.softplus(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softplus(test_values) assert_allclose(result, expected, rtol=1e-05) def test_softsign(): ''' Test using a reference softsign implementation ''' x = K.placeholder(ndim=2) f = K.function([x], [activations.softsign(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softsign(test_values) assert_allclose(result, expected, rtol=1e-05) def test_sigmoid(): ''' Test using a numerically stable reference sigmoid implementation ''' sigmoid = np.vectorize(ref_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05) def test_hard_sigmoid(): ''' Test using a reference hard sigmoid implementation ''' def ref_hard_sigmoid(x): ''' Reference hard sigmoid with slope and shift values from theano, see https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py ''' x = (x * 0.2) + 0.5 z = 0.0 if x <= 0 else (1.0 if x >= 1 else x) return z hard_sigmoid = np.vectorize(ref_hard_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.hard_sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = hard_sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05) def test_relu(): ''' Relu implementation doesn't depend on the value being a theano variable. Testing ints, floats and theano tensors. ''' x = K.placeholder(ndim=2) f = K.function([x], [activations.relu(x)]) test_values = get_standard_values() result = f([test_values])[0] # because no negatives in test values assert_allclose(result, test_values, rtol=1e-05) def test_linear(): ''' This function does no input validation, it just returns the thing that was passed in. ''' xs = [1, 5, True, None, 'foo'] for x in xs: assert(x == activations.linear(x)) if __name__ == '__main__': pytest.main([__file__])
26.062857
79
0.635825
d4a0dbe903b46f2ac15b321d70b46c5431fada6b
4,932
py
Python
scripts/H5toXMF.py
robertsawko/proteus
6f1e4c2ca1af85a906b35a5162430006f0343861
[ "NASA-1.3" ]
null
null
null
scripts/H5toXMF.py
robertsawko/proteus
6f1e4c2ca1af85a906b35a5162430006f0343861
[ "NASA-1.3" ]
null
null
null
scripts/H5toXMF.py
robertsawko/proteus
6f1e4c2ca1af85a906b35a5162430006f0343861
[ "NASA-1.3" ]
null
null
null
#import numpy #import os #from xml.etree.ElementTree import * import tables #from Xdmf import * if __name__ == '__main__': from optparse import OptionParser usage = "" parser = OptionParser(usage=usage) parser.add_option("-n","--size", help="number of processors for run", action="store", type="int", dest="size", default=1) parser.add_option("-s","--stride", help="stride for solution output", action="store", type="int", dest="stride", default=0) parser.add_option("-t","--finaltime", help="finaltime", action="store", type="int", dest="finaltime", default=1000) parser.add_option("-f","--filebase_flow", help="base name for storage files", action="store", type="string", dest="filebase", default="solution") (opts,args) = parser.parse_args() start = 0 if opts.stride == 0 : start = opts.finaltime opts.stride = 1 H5toXMF(opts.filebase,opts.size,start,opts.finaltime,opts.stride)
42.153846
172
0.491484
d4a110091d70cdb8869da346b91adb821033a70e
102,577
py
Python
pysnmp-with-texts/CISCO-TRUSTSEC-POLICY-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/CISCO-TRUSTSEC-POLICY-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/CISCO-TRUSTSEC-POLICY-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module CISCO-TRUSTSEC-POLICY-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-TRUSTSEC-POLICY-MIB # Produced by pysmi-0.3.4 at Wed May 1 12:14:36 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsUnion") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") Cisco2KVlanList, CiscoVrfName = mibBuilder.importSymbols("CISCO-TC", "Cisco2KVlanList", "CiscoVrfName") CtsAclNameOrEmpty, CtsAclList, CtsGenerationId, CtsAclName, CtsAclListOrEmpty, CtsSgaclMonitorMode, CtsSecurityGroupTag = mibBuilder.importSymbols("CISCO-TRUSTSEC-TC-MIB", "CtsAclNameOrEmpty", "CtsAclList", "CtsGenerationId", "CtsAclName", "CtsAclListOrEmpty", "CtsSgaclMonitorMode", "CtsSecurityGroupTag") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") InetAddressType, InetAddress, InetAddressPrefixLength = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddressType", "InetAddress", "InetAddressPrefixLength") VlanIndex, = mibBuilder.importSymbols("Q-BRIDGE-MIB", "VlanIndex") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") Counter32, Unsigned32, Bits, ObjectIdentity, iso, Counter64, Gauge32, Integer32, TimeTicks, MibIdentifier, ModuleIdentity, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "Unsigned32", "Bits", "ObjectIdentity", "iso", "Counter64", "Gauge32", "Integer32", "TimeTicks", "MibIdentifier", "ModuleIdentity", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress") DisplayString, StorageType, TruthValue, RowStatus, DateAndTime, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "StorageType", "TruthValue", "RowStatus", "DateAndTime", "TextualConvention") ciscoTrustSecPolicyMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 713)) ciscoTrustSecPolicyMIB.setRevisions(('2012-12-19 00:00', '2009-11-06 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoTrustSecPolicyMIB.setRevisionsDescriptions(('Added following OBJECT-GROUP: - ctspNotifCtrlGroup - ctspNotifGroup - ctspNotifInfoGroup - ctspIfSgtMappingGroup - ctspVlanSgtMappingGroup - ctspSgtCachingGroup - ctspSgaclMonitorGroup - ctspSgaclMonitorStatisticGroup Added new compliance - ciscoTrustSecPolicyMIBCompliances Modified ctspIpSgtSource to add l3if(6), vlan(7), caching(8).', 'Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoTrustSecPolicyMIB.setLastUpdated('201212190000Z') if mibBuilder.loadTexts: ciscoTrustSecPolicyMIB.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoTrustSecPolicyMIB.setContactInfo('Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoTrustSecPolicyMIB.setDescription('This MIB module defines managed objects that facilitate the management of various policies within the Cisco Trusted Security (TrustSec) infrastructure. The information available through this MIB includes: o Device and interface level configuration for enabling SGACL (Security Group Access Control List) enforcement on Layer2/3 traffic. o Administrative and operational SGACL mapping to Security Group Tag (SGT). o Various statistics counters for traffic subject to SGACL enforcement. o TrustSec policies with respect to peer device. o Interface level configuration for enabling the propagation of SGT along with the Layer 3 traffic in portions of network which does not have the capability to support TrustSec feature. o TrustSec policies with respect to SGT propagation with Layer 3 traffic. The following terms are used throughout this MIB: VRF: Virtual Routing and Forwarding. SGACL: Security Group Access Control List. ACE: Access Control Entries. SXP: SGT Propagation Protocol. SVI: Switch Virtual Interface. IPM: Identity Port Mapping. SGT (Security Group Tag) is a unique 16 bits value assigned to every security group and used by network devices to enforce SGACL. Peer is another device connected to the local device on the other side of a TrustSec link. Default Policy: Policy applied to traffic when there is no explicit policy between the SGT associated with the originator of the traffic and the SGT associated with the destination of the traffic.') ciscoTrustSecPolicyMIBNotifs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 0)) ciscoTrustSecPolicyMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1)) ciscoTrustSecPolicyMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 2)) ctspSgacl = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1)) ctspPeerPolicy = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2)) ctspLayer3Transport = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3)) ctspIpSgtMappings = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4)) ctspSgtPolicy = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5)) ctspIfSgtMappings = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6)) ctspVlanSgtMappings = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7)) ctspSgtCaching = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 8)) ctspNotifsControl = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 9)) ctspNotifsOnlyInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 10)) ctspSgaclGlobals = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1)) ctspSgaclMappings = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2)) ctspSgaclStatistics = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3)) ctspSgaclEnforcementEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("l3Only", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgaclEnforcementEnable.setStatus('current') if mibBuilder.loadTexts: ctspSgaclEnforcementEnable.setDescription("This object specifies whether SGACL enforcement for all Layer 3 interfaces (excluding SVIs) is enabled at the managed system. 'none' indicates that SGACL enforcement for all Layer 3 interfaces (excluding SVIs) is disabled. 'l3Only' indicates that SGACL enforcement is enabled on every TrustSec capable Layer3 interface (excluding SVIs) in the device.") ctspSgaclIpv4DropNetflowMonitor = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 2), SnmpAdminString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgaclIpv4DropNetflowMonitor.setStatus('current') if mibBuilder.loadTexts: ctspSgaclIpv4DropNetflowMonitor.setDescription('This object specifies an existing flexible netflow monitor name used to collect and export the IPv4 traffic dropped packets statistics due to SGACL enforcement. The zero-length string indicates that no such netflow monitor is configured in the device.') ctspSgaclIpv6DropNetflowMonitor = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 3), SnmpAdminString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgaclIpv6DropNetflowMonitor.setStatus('current') if mibBuilder.loadTexts: ctspSgaclIpv6DropNetflowMonitor.setDescription('This object specifies an existing flexible netflow monitor name used to collect and export the IPv6 traffic dropped packets statistics due to SGACL enforcement. The zero-length string indicates that no such netflow monitor is configured in the device.') ctspVlanConfigTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4), ) if mibBuilder.loadTexts: ctspVlanConfigTable.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigTable.setDescription('This table lists the SGACL enforcement for Layer 2 and Layer 3 switched packet in a VLAN as well as VRF information for VLANs in the device.') ctspVlanConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigIndex")) if mibBuilder.loadTexts: ctspVlanConfigEntry.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigEntry.setDescription('Each row contains the SGACL enforcement information for Layer 2 and Layer 3 switched packets in a VLAN identified by its VlanIndex value. Entry in this table is populated for VLANs which contains SGACL enforcement or VRF configuration.') ctspVlanConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1, 1), VlanIndex()) if mibBuilder.loadTexts: ctspVlanConfigIndex.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigIndex.setDescription('This object indicates the VLAN-ID of this VLAN.') ctspVlanConfigSgaclEnforcement = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1, 2), TruthValue()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanConfigSgaclEnforcement.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigSgaclEnforcement.setDescription("This object specifies the configured SGACL enforcement status for this VLAN i.e., 'true' = enabled and 'false' = disabled.") ctspVlanSviActive = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1, 3), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspVlanSviActive.setStatus('current') if mibBuilder.loadTexts: ctspVlanSviActive.setDescription("This object indicates if there is an active SVI associated with this VLAN. 'true' indicates that there is an active SVI associated with this VLAN. and SGACL is enforced for both Layer 2 and Layer 3 switched packets within that VLAN. 'false' indicates that there is no active SVI associated with this VLAN, and SGACL is only enforced for Layer 2 switched packets within that VLAN.") ctspVlanConfigVrfName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1, 4), CiscoVrfName()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanConfigVrfName.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigVrfName.setDescription('This object specifies an existing VRF where this VLAN belongs to. The zero length value indicates this VLAN belongs to the default VRF.') ctspVlanConfigStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1, 5), StorageType().clone('volatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanConfigStorageType.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigStorageType.setDescription('The objects specifies the storage type for this conceptual row.') ctspVlanConfigRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 1, 4, 1, 6), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanConfigRowStatus.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigRowStatus.setDescription("The status of this conceptual row entry. This object is used to manage creation and deletion of rows in this table. When this object value is 'active', other writable objects in the same row cannot be modified.") ctspConfigSgaclMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1), ) if mibBuilder.loadTexts: ctspConfigSgaclMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingTable.setDescription('This table contains the SGACLs information which is applied to unicast IP traffic which carries a source SGT and travels to a destination SGT.') ctspConfigSgaclMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingIpTrafficType"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingDestSgt"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingSourceSgt")) if mibBuilder.loadTexts: ctspConfigSgaclMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingEntry.setDescription('Each row contains the SGACL mapping to source and destination SGT for a certain traffic type as well as status of this instance. A row instance can be created or removed by setting the appropriate value of its RowStatus object.') ctspConfigSgaclMappingIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ipv4", 1), ("ipv6", 2)))) if mibBuilder.loadTexts: ctspConfigSgaclMappingIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingIpTrafficType.setDescription('This object indicates the type of the unicast IP traffic carrying the source SGT and travelling to destination SGT and subjected to SGACL enforcement.') ctspConfigSgaclMappingDestSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 2), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspConfigSgaclMappingDestSgt.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingDestSgt.setDescription('This object indicates the destination SGT value. Value of zero indicates that the destination SGT is unknown.') ctspConfigSgaclMappingSourceSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 3), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspConfigSgaclMappingSourceSgt.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingSourceSgt.setDescription('This object indicates the source SGT value. Value of zero indicates that the source SGT is unknown.') ctspConfigSgaclMappingSgaclName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 4), CtsAclList()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspConfigSgaclMappingSgaclName.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingSgaclName.setDescription('This object specifies the list of existing SGACLs which is administratively configured to apply to unicast IP traffic carrying the source SGT to the destination SGT.') ctspConfigSgaclMappingStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 5), StorageType().clone('volatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspConfigSgaclMappingStorageType.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingStorageType.setDescription('The storage type for this conceptual row.') ctspConfigSgaclMappingRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 6), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspConfigSgaclMappingRowStatus.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingRowStatus.setDescription('This object is used to manage the creation and deletion of rows in this table. ctspConfigSgaclName may be modified at any time.') ctspConfigSgaclMonitor = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 1, 1, 7), CtsSgaclMonitorMode().clone('off')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspConfigSgaclMonitor.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMonitor.setDescription('This object specifies whether SGACL monitor mode is turned on for the configured SGACL enforced traffic.') ctspDefConfigIpv4Sgacls = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 2), CtsAclListOrEmpty()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspDefConfigIpv4Sgacls.setStatus('current') if mibBuilder.loadTexts: ctspDefConfigIpv4Sgacls.setDescription('This object specifies the SGACLs of the unicast default policy for IPv4 traffic. If there is no SGACL configured for unicast default policy for IPv4 traffic, the value of this object is the zero-length string.') ctspDefConfigIpv6Sgacls = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 3), CtsAclListOrEmpty()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspDefConfigIpv6Sgacls.setStatus('current') if mibBuilder.loadTexts: ctspDefConfigIpv6Sgacls.setDescription('This object specifies the SGACLs of the unicast default policy for IPv6 traffic. If there is no SGACL configured for unicast default policy for IPv6 traffic, the value of this object is the zero-length string.') ctspDownloadedSgaclMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4), ) if mibBuilder.loadTexts: ctspDownloadedSgaclMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclMappingTable.setDescription('This table contains the downloaded SGACLs information applied to unicast IP traffic which carries a source SGT and travels to a destination SGT.') ctspDownloadedSgaclMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclDestSgt"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclSourceSgt"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclIndex")) if mibBuilder.loadTexts: ctspDownloadedSgaclMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclMappingEntry.setDescription('Each row contains the downloaded SGACLs mapping. A row instance is added for each pair of <source SGT, destination SGT> which contains SGACL that is dynamically downloaded from ACS server.') ctspDownloadedSgaclDestSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 1), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspDownloadedSgaclDestSgt.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclDestSgt.setDescription('This object indicates the destination SGT value. Value of zero indicates that the destination SGT is unknown.') ctspDownloadedSgaclSourceSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 2), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspDownloadedSgaclSourceSgt.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclSourceSgt.setDescription('This object indicates the source SGT value. Value of zero indicates that the source SGT is unknown.') ctspDownloadedSgaclIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: ctspDownloadedSgaclIndex.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclIndex.setDescription('This object identifies the downloaded SGACL which is applied to unicast IP traffic carrying the source SGT to the destination SGT.') ctspDownloadedSgaclName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 4), CtsAclName()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedSgaclName.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclName.setDescription('This object indicates the name of downloaded SGACL which is applied to unicast IP traffic carrying the source SGT to the destination SGT.') ctspDownloadedSgaclGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 5), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedSgaclGenId.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclGenId.setDescription('This object indicates the generation identification of downloaded SGACL which is applied to unicast IP traffic carrying the source SGT to the destination SGT.') ctspDownloadedIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 6), Bits().clone(namedValues=NamedValues(("ipv4", 0), ("ipv6", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedIpTrafficType.setDescription('This object indicates the type of the unicast IP traffic carrying the source SGT and travelling to destination SGT and subjected to SGACL enforcement by this downloaded default policy.') ctspDownloadedSgaclMonitor = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 4, 1, 7), CtsSgaclMonitorMode()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedSgaclMonitor.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclMonitor.setDescription('This object indicates whether SGACL monitor mode is turned on for the downloaded SGACL enforced traffic.') ctspDefDownloadedSgaclMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5), ) if mibBuilder.loadTexts: ctspDefDownloadedSgaclMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedSgaclMappingTable.setDescription('This table contains the downloaded SGACLs information of the default policy applied to unicast IP traffic.') ctspDefDownloadedSgaclMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDefDownloadedSgaclIndex")) if mibBuilder.loadTexts: ctspDefDownloadedSgaclMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedSgaclMappingEntry.setDescription('Each row contains the downloaded SGACLs mapping. A row instance contains the SGACL information of the default policy dynamically downloaded from ACS server for unicast IP traffic.') ctspDefDownloadedSgaclIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: ctspDefDownloadedSgaclIndex.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedSgaclIndex.setDescription('This object identifies the SGACL of downloaded default policy applied to unicast IP traffic.') ctspDefDownloadedSgaclName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5, 1, 2), CtsAclName()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefDownloadedSgaclName.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedSgaclName.setDescription('This object indicates the name of the SGACL of downloaded default policy applied to unicast IP traffic.') ctspDefDownloadedSgaclGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5, 1, 3), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefDownloadedSgaclGenId.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedSgaclGenId.setDescription('This object indicates the generation identification of the SGACL of downloaded default policy applied to unicast IP traffic.') ctspDefDownloadedIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5, 1, 4), Bits().clone(namedValues=NamedValues(("ipv4", 0), ("ipv6", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefDownloadedIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedIpTrafficType.setDescription('This object indicates the type of the IP traffic subjected to SGACL enforcement by this downloaded default policy.') ctspDefDownloadedSgaclMonitor = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 5, 1, 5), CtsSgaclMonitorMode()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefDownloadedSgaclMonitor.setStatus('current') if mibBuilder.loadTexts: ctspDefDownloadedSgaclMonitor.setDescription('This object indicates whether SGACL monitor mode is turned on for the default downloaded SGACL enforced traffic.') ctspOperSgaclMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6), ) if mibBuilder.loadTexts: ctspOperSgaclMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclMappingTable.setDescription('This table contains the operational SGACLs information applied to unicast IP traffic which carries a source SGT and travels to a destination SGT.') ctspOperSgaclMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspOperIpTrafficType"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclDestSgt"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclSourceSgt"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclIndex")) if mibBuilder.loadTexts: ctspOperSgaclMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclMappingEntry.setDescription('Each row contains the operational SGACLs mapping. A row instance is added for each pair of <source SGT, destination SGT> which contains the SGACL that either statically configured at the device or dynamically downloaded from ACS server.') ctspOperIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ipv4", 1), ("ipv6", 2)))) if mibBuilder.loadTexts: ctspOperIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspOperIpTrafficType.setDescription('This object indicates the type of the unicast IP traffic carrying the source SGT and travelling to destination SGT and subjected to SGACL enforcement.') ctspOperSgaclDestSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 2), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspOperSgaclDestSgt.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclDestSgt.setDescription('This object indicates the destination SGT value. Value of zero indicates that the destination SGT is unknown.') ctspOperSgaclSourceSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 3), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspOperSgaclSourceSgt.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclSourceSgt.setDescription('This object indicates the source SGT value. Value of zero indicates that the source SGT is unknown.') ctspOperSgaclIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: ctspOperSgaclIndex.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclIndex.setDescription('This object identifies the SGACL operationally applied to unicast IP traffic carrying the source SGT to the destination SGT.') ctspOperationalSgaclName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 5), CtsAclName()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspOperationalSgaclName.setStatus('current') if mibBuilder.loadTexts: ctspOperationalSgaclName.setDescription('This object indicates the name of the SGACL operationally applied to unicast IP traffic carrying the source SGT to the destination SGT.') ctspOperationalSgaclGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 6), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspOperationalSgaclGenId.setStatus('current') if mibBuilder.loadTexts: ctspOperationalSgaclGenId.setDescription('This object indicates the generation identification of the SGACL operationally applied to unicast IP traffic carrying the source SGT to the destination SGT.') ctspOperSgaclMappingSource = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("configured", 1), ("downloaded", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspOperSgaclMappingSource.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclMappingSource.setDescription("This object indicates the source of SGACL mapping for the SGACL operationally applied to unicast IP traffic carrying the source SGT to the destination SGT. 'downloaded' indicates that the mapping is downloaded from ACS server. 'configured' indicates that the mapping is locally configured in the device.") ctspOperSgaclConfigSource = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("configured", 1), ("downloaded", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspOperSgaclConfigSource.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclConfigSource.setDescription("This object indicates the source of SGACL creation for this SGACL. 'configured' indicates that the SGACL is locally configured in the local device. 'downloaded' indicates that the SGACL is created at ACS server and downloaded to the local device.") ctspOperSgaclMonitor = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 6, 1, 9), CtsSgaclMonitorMode()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspOperSgaclMonitor.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclMonitor.setDescription('This object indicates whether SGACL monitor mode is turned on for the SGACL enforced traffic.') ctspDefOperSgaclMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7), ) if mibBuilder.loadTexts: ctspDefOperSgaclMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspDefOperSgaclMappingTable.setDescription('This table contains the operational SGACLs information of the default policy applied to unicast IP traffic.') ctspDefOperSgaclMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperIpTrafficType"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperSgaclIndex")) if mibBuilder.loadTexts: ctspDefOperSgaclMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspDefOperSgaclMappingEntry.setDescription('A row instance contains the SGACL information of the default policy which is either statically configured at the device or dynamically downloaded from ACS server for unicast IP traffic.') ctspDefOperIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ipv4", 1), ("ipv6", 2)))) if mibBuilder.loadTexts: ctspDefOperIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspDefOperIpTrafficType.setDescription('This object indicates the type of the unicast IP traffic subjected to default policy enforcement.') ctspDefOperSgaclIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: ctspDefOperSgaclIndex.setStatus('current') if mibBuilder.loadTexts: ctspDefOperSgaclIndex.setDescription('This object identifies the SGACL of default policy operationally applied to unicast IP traffic.') ctspDefOperationalSgaclName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 3), CtsAclName()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefOperationalSgaclName.setStatus('current') if mibBuilder.loadTexts: ctspDefOperationalSgaclName.setDescription('This object indicates the name of the SGACL of default policy operationally applied to unicast IP traffic.') ctspDefOperationalSgaclGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 4), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefOperationalSgaclGenId.setStatus('current') if mibBuilder.loadTexts: ctspDefOperationalSgaclGenId.setDescription('This object indicates the generation identification of the SGACL of default policy operationally applied to unicast IP traffic.') ctspDefOperSgaclMappingSource = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("configured", 1), ("downloaded", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefOperSgaclMappingSource.setStatus('current') if mibBuilder.loadTexts: ctspDefOperSgaclMappingSource.setDescription("This object indicates the source of SGACL mapping for the SGACL of default policy operationally applied to unicast IP traffic. 'downloaded' indicates that the mapping is downloaded from ACS server. 'configured' indicates that the mapping is locally configured in the device.") ctspDefOperSgaclConfigSource = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("configured", 1), ("downloaded", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefOperSgaclConfigSource.setStatus('current') if mibBuilder.loadTexts: ctspDefOperSgaclConfigSource.setDescription("This object indicates the source of SGACL creation for the SGACL of default policy operationally applied to unicast IP traffic. 'downloaded' indicates that the SGACL is created at ACS server and downloaded to the local device. 'configured' indicates that the SGACL is locally configured in the local device.") ctspDefOperSgaclMonitor = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 7, 1, 7), CtsSgaclMonitorMode()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefOperSgaclMonitor.setStatus('current') if mibBuilder.loadTexts: ctspDefOperSgaclMonitor.setDescription('This object indicates whether SGACL monitor mode is turned on for the SGACL of default policy enforced traffic.') ctspDefConfigIpv4SgaclsMonitor = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 8), CtsSgaclMonitorMode()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspDefConfigIpv4SgaclsMonitor.setStatus('current') if mibBuilder.loadTexts: ctspDefConfigIpv4SgaclsMonitor.setDescription('This object specifies whether SGACL monitor mode is turned on for the default configured SGACL enforced Ipv4 traffic.') ctspDefConfigIpv6SgaclsMonitor = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 9), CtsSgaclMonitorMode()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspDefConfigIpv6SgaclsMonitor.setStatus('current') if mibBuilder.loadTexts: ctspDefConfigIpv6SgaclsMonitor.setDescription('This object specifies whether SGACL monitor mode is turned on for the default configured SGACL enforced Ipv6 traffic.') ctspSgaclMonitorEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 2, 10), CtsSgaclMonitorMode()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgaclMonitorEnable.setStatus('current') if mibBuilder.loadTexts: ctspSgaclMonitorEnable.setDescription('This object specifies whether SGACL monitor mode is turned on for the entire system. It has precedence than the per SGACL ctspConfigSgaclMonitor control. It could act as safety mechanism to turn off monitor in case the monitor feature impact system performance.') ctspSgtStatsTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1), ) if mibBuilder.loadTexts: ctspSgtStatsTable.setStatus('current') if mibBuilder.loadTexts: ctspSgtStatsTable.setDescription('This table describes SGACL statistics counters per a pair of <source SGT, destination SGT> that is capable of providing this information.') ctspSgtStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpTrafficType"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsDestSgt"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsSourceSgt")) if mibBuilder.loadTexts: ctspSgtStatsEntry.setStatus('current') if mibBuilder.loadTexts: ctspSgtStatsEntry.setDescription('Each row contains the SGACL statistics related to IPv4 or IPv6 packets carrying the source SGT travelling to the destination SGT and subjected to SGACL enforcement.') ctspStatsIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ipv4", 1), ("ipv6", 2)))) if mibBuilder.loadTexts: ctspStatsIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpTrafficType.setDescription('This object indicates the type of the unicast IP traffic carrying the source SGT and travelling to destination SGT and subjected to SGACL enforcement.') ctspStatsDestSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 2), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspStatsDestSgt.setStatus('current') if mibBuilder.loadTexts: ctspStatsDestSgt.setDescription('This object indicates the destination SGT value. Value of zero indicates that the destination SGT is unknown.') ctspStatsSourceSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 3), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspStatsSourceSgt.setStatus('current') if mibBuilder.loadTexts: ctspStatsSourceSgt.setDescription('This object indicates the source SGT value. Value of zero indicates that the source SGT is unknown.') ctspStatsIpSwDropPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspStatsIpSwDropPkts.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpSwDropPkts.setDescription('This object indicates the number of software-forwarded IP packets which are dropped by SGACL.') ctspStatsIpHwDropPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspStatsIpHwDropPkts.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpHwDropPkts.setDescription('This object indicates the number of hardware-forwarded IP packets which are dropped by SGACL.') ctspStatsIpSwPermitPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspStatsIpSwPermitPkts.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpSwPermitPkts.setDescription('This object indicates the number of software-forwarded IP packets which are permitted by SGACL.') ctspStatsIpHwPermitPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspStatsIpHwPermitPkts.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpHwPermitPkts.setDescription('This object indicates the number of hardware-forwarded IP packets which are permitted by SGACL.') ctspStatsIpSwMonitorPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspStatsIpSwMonitorPkts.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpSwMonitorPkts.setDescription('This object indicates the number of software-forwarded IP packets which are SGACL enforced & monitored.') ctspStatsIpHwMonitorPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 1, 1, 9), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspStatsIpHwMonitorPkts.setStatus('current') if mibBuilder.loadTexts: ctspStatsIpHwMonitorPkts.setDescription('This object indicates the number of hardware-forwarded IP packets which are SGACL enforced & monitored.') ctspDefStatsTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2), ) if mibBuilder.loadTexts: ctspDefStatsTable.setStatus('current') if mibBuilder.loadTexts: ctspDefStatsTable.setDescription('This table describes statistics counters for unicast IP traffic subjected to default unicast policy.') ctspDefStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpTrafficType")) if mibBuilder.loadTexts: ctspDefStatsEntry.setStatus('current') if mibBuilder.loadTexts: ctspDefStatsEntry.setDescription('Each row contains the statistics counter for each IP traffic type.') ctspDefIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ipv4", 1), ("ipv6", 2)))) if mibBuilder.loadTexts: ctspDefIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspDefIpTrafficType.setDescription('This object indicates the type of the IP traffic subjected to default unicast policy enforcement.') ctspDefIpSwDropPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefIpSwDropPkts.setStatus('current') if mibBuilder.loadTexts: ctspDefIpSwDropPkts.setDescription('This object indicates the number of software-forwarded IP packets which are dropped by default unicast policy.') ctspDefIpHwDropPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefIpHwDropPkts.setStatus('current') if mibBuilder.loadTexts: ctspDefIpHwDropPkts.setDescription('This object indicates the number of hardware-forwarded IP packets which are dropped by default unicast policy.') ctspDefIpSwPermitPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefIpSwPermitPkts.setStatus('current') if mibBuilder.loadTexts: ctspDefIpSwPermitPkts.setDescription('This object indicates the number of software-forwarded IP packets which are permitted by default unicast policy.') ctspDefIpHwPermitPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefIpHwPermitPkts.setStatus('current') if mibBuilder.loadTexts: ctspDefIpHwPermitPkts.setDescription('This object indicates the number of hardware-forwarded IP packets which are permitted by default unicast policy.') ctspDefIpSwMonitorPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefIpSwMonitorPkts.setStatus('current') if mibBuilder.loadTexts: ctspDefIpSwMonitorPkts.setDescription('This object indicates the number of software-forwarded IP packets which are monitored by default unicast policy.') ctspDefIpHwMonitorPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 1, 3, 2, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDefIpHwMonitorPkts.setStatus('current') if mibBuilder.loadTexts: ctspDefIpHwMonitorPkts.setDescription('This object indicates the number of hardware-forwarded IP packets which are monitored by default unicast policy.') ctspAllPeerPolicyAction = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("refresh", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspAllPeerPolicyAction.setStatus('current') if mibBuilder.loadTexts: ctspAllPeerPolicyAction.setDescription("This object allows user to specify the action to be taken with respect to all peer policies in the device. When read, this object always returns the value 'none'. 'none' - No operation. 'refresh' - Refresh all peer policies in the device.") ctspPeerPolicyTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2), ) if mibBuilder.loadTexts: ctspPeerPolicyTable.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyTable.setDescription('This table lists the peer policy information for each peer device.') ctspPeerPolicyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1), ).setIndexNames((1, "CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerName")) if mibBuilder.loadTexts: ctspPeerPolicyEntry.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyEntry.setDescription('Each row contains the managed objects for peer policies for each peer device based on its name.') ctspPeerName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 1), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 128))) if mibBuilder.loadTexts: ctspPeerName.setStatus('current') if mibBuilder.loadTexts: ctspPeerName.setDescription('This object uniquely identifies a peer device.') ctspPeerSgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 2), CtsSecurityGroupTag()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspPeerSgt.setStatus('current') if mibBuilder.loadTexts: ctspPeerSgt.setDescription('This object indicates the SGT value of this peer device.') ctspPeerSgtGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 3), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspPeerSgtGenId.setStatus('current') if mibBuilder.loadTexts: ctspPeerSgtGenId.setDescription('This object indicates the generation identification of the SGT value assigned to this peer device.') ctspPeerTrustState = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("trusted", 1), ("noTrust", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspPeerTrustState.setStatus('current') if mibBuilder.loadTexts: ctspPeerTrustState.setDescription("This object indicates the TrustSec trust state of this peer device. 'trusted' indicates that this is a trusted peer device. 'noTrust' indicates that this peer device is not trusted.") ctspPeerPolicyLifeTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 5), Unsigned32()).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ctspPeerPolicyLifeTime.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyLifeTime.setDescription('This object indicates the policy life time which provides the time interval during which the peer policy is valid.') ctspPeerPolicyLastUpdate = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 6), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspPeerPolicyLastUpdate.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyLastUpdate.setDescription('This object indicates the time when this peer policy is last updated.') ctspPeerPolicyAction = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 2, 2, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("refresh", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspPeerPolicyAction.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyAction.setDescription("This object allows user to specify the action to be taken with this peer policy. When read, this object always returns the value 'none'. 'none' - No operation. 'refresh' - Refresh this peer policy.") ctspLayer3PolicyTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1), ) if mibBuilder.loadTexts: ctspLayer3PolicyTable.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyTable.setDescription('This table describes Layer 3 transport policy for IP traffic regarding SGT propagation.') ctspLayer3PolicyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3PolicyIpTrafficType"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3PolicyType")) if mibBuilder.loadTexts: ctspLayer3PolicyEntry.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyEntry.setDescription('Each row contains the Layer 3 transport policies per IP traffic type per policy type.') ctspLayer3PolicyIpTrafficType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ipv4", 1), ("ipv6", 2)))) if mibBuilder.loadTexts: ctspLayer3PolicyIpTrafficType.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyIpTrafficType.setDescription("This object indicates the type of the IP traffic affected by Layer-3 transport policy. 'ipv4' indicates that the affected traffic is IPv4 traffic. 'ipv6' indicates that the affected traffic is IPv6 traffic.") ctspLayer3PolicyType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("permit", 1), ("exception", 2)))) if mibBuilder.loadTexts: ctspLayer3PolicyType.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyType.setDescription("This object indicates the type of the Layer-3 transport policy affecting IP traffic regarding SGT propagation. 'permit' indicates that the transport policy is used to classify Layer-3 traffic which is subject to SGT propagation. 'exception' indicates that the transport policy is used to classify Layer-3 traffic which is NOT subject to SGT propagation.") ctspLayer3PolicyLocalConfig = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1, 1, 3), CtsAclNameOrEmpty()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspLayer3PolicyLocalConfig.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyLocalConfig.setDescription('This object specifies the name of an ACL that is administratively configured to classify Layer3 traffic. Zero-length string indicates there is no such configured policy.') ctspLayer3PolicyDownloaded = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1, 1, 4), CtsAclNameOrEmpty()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspLayer3PolicyDownloaded.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyDownloaded.setDescription('This object specifies the name of an ACL that is downloaded from policy server to classify Layer3 traffic. Zero-length string indicates there is no such downloaded policy.') ctspLayer3PolicyOperational = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 1, 1, 5), CtsAclNameOrEmpty()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspLayer3PolicyOperational.setStatus('current') if mibBuilder.loadTexts: ctspLayer3PolicyOperational.setDescription('This object specifies the name of an operational ACL currently used to classify Layer3 traffic. Zero-length string indicates there is no such policy in effect.') ctspIfL3PolicyConfigTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 2), ) if mibBuilder.loadTexts: ctspIfL3PolicyConfigTable.setStatus('current') if mibBuilder.loadTexts: ctspIfL3PolicyConfigTable.setDescription('This table lists the interfaces which support Layer3 Transport policy.') ctspIfL3PolicyConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ctspIfL3PolicyConfigEntry.setStatus('current') if mibBuilder.loadTexts: ctspIfL3PolicyConfigEntry.setDescription('Each row contains managed objects for Layer3 Transport on interface capable of providing this information.') ctspIfL3Ipv4PolicyEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 2, 1, 1), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspIfL3Ipv4PolicyEnabled.setStatus('current') if mibBuilder.loadTexts: ctspIfL3Ipv4PolicyEnabled.setDescription("This object specifies whether the Layer3 Transport policies will be applied on this interface for egress IPv4 traffic. 'true' indicates that Layer3 permit and exception policy will be applied at this interface for egress IPv4 traffic. 'false' indicates that Layer3 permit and exception policy will not be applied at this interface for egress IPv4 traffic.") ctspIfL3Ipv6PolicyEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 3, 2, 1, 2), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspIfL3Ipv6PolicyEnabled.setStatus('current') if mibBuilder.loadTexts: ctspIfL3Ipv6PolicyEnabled.setDescription("This object specifies whether the Layer3 Transport policies will be applied on this interface for egress IPv6 traffic. 'true' indicates that Layer3 permit and exception policy will be applied at this interface for egress IPv6 traffic. 'false' indicates that Layer3 permit and exception policy will not be applied at this interface for egress IPv6 traffic.") ctspIpSgtMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1), ) if mibBuilder.loadTexts: ctspIpSgtMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtMappingTable.setDescription('This table contains the IP-to-SGT mapping information in the device.') ctspIpSgtMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtVrfName"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtAddressType"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtIpAddress"), (0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtAddressLength")) if mibBuilder.loadTexts: ctspIpSgtMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtMappingEntry.setDescription('Each row contains the IP-to-SGT mapping and status of this instance. Entry in this table is either populated automatically by the device or manually configured by a user. A manually configured row instance can be created or removed by setting the appropriate value of its RowStatus object.') ctspIpSgtVrfName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 1), CiscoVrfName()) if mibBuilder.loadTexts: ctspIpSgtVrfName.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtVrfName.setDescription('This object indicates the VRF where IP-SGT mapping belongs to. The zero length value indicates the default VRF.') ctspIpSgtAddressType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 2), InetAddressType()) if mibBuilder.loadTexts: ctspIpSgtAddressType.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtAddressType.setDescription('This object indicates the type of Internet address.') ctspIpSgtIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 3), InetAddress()) if mibBuilder.loadTexts: ctspIpSgtIpAddress.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtIpAddress.setDescription('This object indicates an Internet address. The type of this address is determined by the value of ctspIpSgtAddressType object.') ctspIpSgtAddressLength = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 4), InetAddressPrefixLength()) if mibBuilder.loadTexts: ctspIpSgtAddressLength.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtAddressLength.setDescription('This object indicates the length of an Internet address prefix.') ctspIpSgtValue = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 5), CtsSecurityGroupTag()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIpSgtValue.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtValue.setDescription('This object specifies the SGT value assigned to an Internet address.') ctspIpSgtSource = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("configured", 1), ("arp", 2), ("localAuthenticated", 3), ("sxp", 4), ("internal", 5), ("l3if", 6), ("vlan", 7), ("caching", 8)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIpSgtSource.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtSource.setDescription("This object indicates the source of the mapping. 'configured' indicates that the mapping is manually configured by user. 'arp' indicates that the mapping is dynamically learnt from tagged ARP replies. 'localAuthenticated' indicates that the mapping is dynamically learnt from the device authentication of a host. 'sxp' indicates that the mapping is dynamically learnt from SXP (SGT Propagation Protocol). 'internal' indicates that the mapping is automatically created by the device between the device IP addresses and the device own SGT. 'l3if' indicates that Interface-SGT mapping is configured by user. 'vlan' indicates that Vlan-SGT mapping is configured by user. 'cached' indicates that sgt mapping is cached. Only 'configured' value is accepted when setting this object.") ctspIpSgtStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 7), StorageType().clone('volatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIpSgtStorageType.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtStorageType.setDescription('The storage type for this conceptual row.') ctspIpSgtRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 4, 1, 1, 8), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIpSgtRowStatus.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtRowStatus.setDescription("This object is used to manage the creation and deletion of rows in this table. If this object value is 'active', user cannot modify any writable object in this row. If value of ctspIpSgtSource object in an entry is not 'configured', user cannot change the value of this object.") ctspAllSgtPolicyAction = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("refresh", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspAllSgtPolicyAction.setStatus('current') if mibBuilder.loadTexts: ctspAllSgtPolicyAction.setDescription("This object allows user to specify the action to be taken with respect to all SGT policies in the device. When read, this object always returns the value 'none'. 'none' - No operation. 'refresh' - Refresh all SGT policies in the device.") ctspDownloadedSgtPolicyTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2), ) if mibBuilder.loadTexts: ctspDownloadedSgtPolicyTable.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicyTable.setDescription('This table lists the SGT policy information downloaded by the device.') ctspDownloadedSgtPolicyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgtPolicySgt")) if mibBuilder.loadTexts: ctspDownloadedSgtPolicyEntry.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicyEntry.setDescription('Each row contains the managed objects for SGT policies downloaded by the device.') ctspDownloadedSgtPolicySgt = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2, 1, 1), CtsSecurityGroupTag()) if mibBuilder.loadTexts: ctspDownloadedSgtPolicySgt.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicySgt.setDescription('This object indicates the SGT value for which the downloaded policy is applied to. Value of zero indicates that the SGT is unknown.') ctspDownloadedSgtPolicySgtGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2, 1, 2), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedSgtPolicySgtGenId.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicySgtGenId.setDescription('This object indicates the generation identification of the SGT value denoted by ctspDownloadedSgtPolicySgt object.') ctspDownloadedSgtPolicyLifeTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2, 1, 3), Unsigned32()).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedSgtPolicyLifeTime.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicyLifeTime.setDescription('This object indicates the policy life time which provides the time interval during which this downloaded policy is valid.') ctspDownloadedSgtPolicyLastUpdate = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2, 1, 4), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedSgtPolicyLastUpdate.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicyLastUpdate.setDescription('This object indicates the time when this downloaded SGT policy is last updated.') ctspDownloadedSgtPolicyAction = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 2, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("refresh", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspDownloadedSgtPolicyAction.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgtPolicyAction.setDescription("This object allows user to specify the action to be taken with this downloaded SGT policy. When read, this object always returns the value 'none'. 'none' - No operation. 'refresh' - Refresh this SGT policy.") ctspDownloadedDefSgtPolicyTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3), ) if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyTable.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyTable.setDescription('This table lists the default SGT policy information downloaded by the device.') ctspDownloadedDefSgtPolicyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedDefSgtPolicyType")) if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyEntry.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyEntry.setDescription('Each row contains the managed objects for default SGT policies downloaded by the device.') ctspDownloadedDefSgtPolicyType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1))).clone(namedValues=NamedValues(("unicastDefault", 1)))) if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyType.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyType.setDescription("This object indicates the downloaded default SGT policy type. 'unicastDefault' indicates the SGT policy applied to traffic which carries the default unicast SGT.") ctspDownloadedDefSgtPolicySgtGenId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3, 1, 2), CtsGenerationId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicySgtGenId.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicySgtGenId.setDescription('This object indicates the generation identification of the downloaded default SGT policy.') ctspDownloadedDefSgtPolicyLifeTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3, 1, 3), Unsigned32()).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyLifeTime.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyLifeTime.setDescription('This object indicates the policy life time which provides the time interval during which this download default policy is valid.') ctspDownloadedDefSgtPolicyLastUpdate = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3, 1, 4), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyLastUpdate.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyLastUpdate.setDescription('This object indicates the time when this downloaded SGT policy is last updated.') ctspDownloadedDefSgtPolicyAction = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 5, 3, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("refresh", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyAction.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedDefSgtPolicyAction.setDescription("This object allows user to specify the action to be taken with this default downloaded SGT policy. When read, this object always returns the value 'none'. 'none' - No operation. 'refresh' - Refresh this default SGT policy.") ctspIfSgtMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 1), ) if mibBuilder.loadTexts: ctspIfSgtMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtMappingTable.setDescription('This table contains the Interface-to-SGT mapping configuration information in the device.') ctspIfSgtMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ctspIfSgtMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtMappingEntry.setDescription('Each row contains the SGT mapping configuration of a particular interface. A row instance can be created or removed by setting ctspIfSgtRowStatus.') ctspIfSgtValue = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 1, 1, 1), CtsSecurityGroupTag()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIfSgtValue.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtValue.setDescription('This object specifies the SGT value assigned to the interface.') ctspIfSgName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 1, 1, 2), SnmpAdminString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIfSgName.setStatus('current') if mibBuilder.loadTexts: ctspIfSgName.setDescription('This object specifies the Security Group Name assigned to the interface.') ctspIfSgtStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 1, 1, 3), StorageType().clone('volatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIfSgtStorageType.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtStorageType.setDescription('The storage type for this conceptual row.') ctspIfSgtRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 1, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspIfSgtRowStatus.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtRowStatus.setDescription('This object is used to manage the creation and deletion of rows in this table.') ctspIfSgtMappingInfoTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 2), ) if mibBuilder.loadTexts: ctspIfSgtMappingInfoTable.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtMappingInfoTable.setDescription('This table contains the Interface-to-SGT mapping status information in the device.') ctspIfSgtMappingInfoEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ctspIfSgtMappingInfoEntry.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtMappingInfoEntry.setDescription('Containing the Interface-to-SGT mapping status of the specified interface.') ctspL3IPMStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 6, 2, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("disabled", 1), ("active", 2), ("inactive", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ctspL3IPMStatus.setStatus('current') if mibBuilder.loadTexts: ctspL3IPMStatus.setDescription('This object indicates the Layer 3 Identity Port Mapping(IPM) operational mode. disabled - The L3 IPM is not configured. active - The L3 IPM is configured for this interface, and SGT is available. inactive - The L3 IPM is configured for this interface, and SGT is unavailable.') ctspVlanSgtMappingTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7, 1), ) if mibBuilder.loadTexts: ctspVlanSgtMappingTable.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtMappingTable.setDescription('This table contains the Vlan-SGT mapping information in the device.') ctspVlanSgtMappingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7, 1, 1), ).setIndexNames((0, "CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanSgtMappingIndex")) if mibBuilder.loadTexts: ctspVlanSgtMappingEntry.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtMappingEntry.setDescription('Each row contains the SGT mapping configuration of a particular VLAN. A row instance can be created or removed by setting ctspVlanSgtRowStatus.') ctspVlanSgtMappingIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7, 1, 1, 1), VlanIndex()) if mibBuilder.loadTexts: ctspVlanSgtMappingIndex.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtMappingIndex.setDescription('This object specifies the VLAN-ID which is used as index.') ctspVlanSgtMapValue = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7, 1, 1, 2), CtsSecurityGroupTag()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanSgtMapValue.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtMapValue.setDescription('This object specifies the SGT value assigned to the vlan.') ctspVlanSgtStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7, 1, 1, 3), StorageType().clone('volatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanSgtStorageType.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtStorageType.setDescription('The storage type for this conceptual row.') ctspVlanSgtRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 7, 1, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ctspVlanSgtRowStatus.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtRowStatus.setDescription('This object is used to manage the creation and deletion of rows in this table.') ctspSgtCachingMode = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 8, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 1), ("standAlone", 2), ("withEnforcement", 3), ("vlan", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgtCachingMode.setStatus('current') if mibBuilder.loadTexts: ctspSgtCachingMode.setDescription("This object specifies which SGT-caching mode is configured for SGT caching capable interfaces at the managed system. 'none' indicates that sgt-caching for all Layer 3 interfaces (excluding SVIs) is disabled. 'standAlone' indicates that SGT-caching is enabled on every TrustSec capable Layer3 interface (excluding SVIs) in the device. 'withEnforcement' indicates that SGT-caching is enabled on interfaces that have RBAC enforcement enabled. 'vlan' indicates that SGT-caching is enabled on the VLANs specified by ctspSgtCachingVlansfFirst2K & ctspSgtCachingVlansSecond2K") ctspSgtCachingVlansFirst2K = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 8, 2), Cisco2KVlanList()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgtCachingVlansFirst2K.setStatus('current') if mibBuilder.loadTexts: ctspSgtCachingVlansFirst2K.setDescription('A string of octets containing one bit per VLAN for VLANs 0 to 2047. If the bit corresponding to a VLAN is set to 1, it indicates SGT-caching is enabled on the VLAN. If the bit corresponding to a VLAN is set to 0, it indicates SGT-caching is disabled on the VLAN.') ctspSgtCachingVlansSecond2K = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 8, 3), Cisco2KVlanList()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspSgtCachingVlansSecond2K.setStatus('current') if mibBuilder.loadTexts: ctspSgtCachingVlansSecond2K.setDescription('A string of octets containing one bit per VLAN for VLANs 2048 to 4095. If the bit corresponding to a VLAN is set to 1, it indicates SGT-caching is enabled on the VLAN. If the bit corresponding to a VLAN is set to 0, it indicates SGT-caching is disabled on the VLAN.') ctspPeerPolicyUpdatedNotifEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 9, 1), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspPeerPolicyUpdatedNotifEnable.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyUpdatedNotifEnable.setDescription("This object specifies whether the system generates ctspPeerPolicyUpdatedNotif. A value of 'false' will prevent ctspPeerPolicyUpdatedNotif notifications from being generated by this system.") ctspAuthorizationSgaclFailNotifEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 9, 2), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ctspAuthorizationSgaclFailNotifEnable.setStatus('current') if mibBuilder.loadTexts: ctspAuthorizationSgaclFailNotifEnable.setDescription("This object specifies whether this system generates the ctspAuthorizationSgaclFailNotif. A value of 'false' will prevent ctspAuthorizationSgaclFailNotif notifications from being generated by this system.") ctspOldPeerSgt = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 10, 1), CtsSecurityGroupTag()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ctspOldPeerSgt.setStatus('current') if mibBuilder.loadTexts: ctspOldPeerSgt.setDescription('This object provides the old sgt value for ctspPeerPolicyUpdatedNotif, i.e., the sgt value before the policy is updated.') ctspAuthorizationSgaclFailReason = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 10, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("downloadACE", 1), ("downloadSrc", 2), ("downloadDst", 3), ("installPolicy", 4), ("installPolicyStandby", 5), ("installForIP", 6), ("uninstall", 7)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ctspAuthorizationSgaclFailReason.setStatus('current') if mibBuilder.loadTexts: ctspAuthorizationSgaclFailReason.setDescription("This object indicates the reason of failure during SGACL acquisitions, installations and uninstallations, which is associated with ctspAuthorizationSgaclFailNotif; 'downloadACE' - Failure during downloading ACE in SGACL acquisition. 'downloadSrc' - Failure during downloading source list in SGACL acquisition. 'downloadDst' - Failure during downloading destination list in SGACL acquisition. 'installPolicy' - Failure during SGACL policy installation 'installPolicyStandby' - Failure during SGACL policy installation on standby 'installForIP' - Failure during SGACL installation for specific IP type. 'uninstall' - Failure during SGACL uninstallation.") ctspAuthorizationSgaclFailInfo = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 713, 1, 10, 3), SnmpAdminString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ctspAuthorizationSgaclFailInfo.setStatus('current') if mibBuilder.loadTexts: ctspAuthorizationSgaclFailInfo.setDescription('This object provides additional information about authorization SGACL failure, which is associated with ctspAuthorizationSgaclFailNotif.') ctspPeerPolicyUpdatedNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 9, 713, 0, 1)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspOldPeerSgt"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerSgt")) if mibBuilder.loadTexts: ctspPeerPolicyUpdatedNotif.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyUpdatedNotif.setDescription('A ctspPeerPolicyUpdatedNotif is generated when the SGT value of a peer device has been updated.') ctspAuthorizationSgaclFailNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 9, 713, 0, 2)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspAuthorizationSgaclFailReason"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspAuthorizationSgaclFailInfo")) if mibBuilder.loadTexts: ctspAuthorizationSgaclFailNotif.setStatus('current') if mibBuilder.loadTexts: ctspAuthorizationSgaclFailNotif.setDescription('A ctspAuthorizationSgaclFailNotif is generated when the authorization of SGACL fails.') ciscoTrustSecPolicyMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 1)) ciscoTrustSecPolicyMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2)) ciscoTrustSecPolicyMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 1, 1)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspGlobalSgaclEnforcementGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefSwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpHwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefHwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclIpv4DropNetflowMonitorGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclIpv6DropNetflowMonitorGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyActionGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3TransportGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfL3PolicyConfigGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgtPolicyGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTrustSecPolicyMIBCompliance = ciscoTrustSecPolicyMIBCompliance.setStatus('deprecated') if mibBuilder.loadTexts: ciscoTrustSecPolicyMIBCompliance.setDescription('The compliance statement for the CISCO-TRUSTSEC-POLICY-MIB') ciscoTrustSecPolicyMIBComplianceRev2 = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 1, 2)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspGlobalSgaclEnforcementGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefSwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpHwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefHwStatisticsGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclIpv4DropNetflowMonitorGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclIpv6DropNetflowMonitorGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyActionGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3TransportGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfL3PolicyConfigGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgtPolicyGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfSgtMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanSgtMappingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgtCachingGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclMonitorGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclMonitorStatisticGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspNotifCtrlGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspNotifGroup"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspNotifInfoGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTrustSecPolicyMIBComplianceRev2 = ciscoTrustSecPolicyMIBComplianceRev2.setStatus('current') if mibBuilder.loadTexts: ciscoTrustSecPolicyMIBComplianceRev2.setDescription('The compliance statement for the CISCO-TRUSTSEC-POLICY-MIB') ctspGlobalSgaclEnforcementGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 1)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclEnforcementEnable")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspGlobalSgaclEnforcementGroup = ctspGlobalSgaclEnforcementGroup.setStatus('current') if mibBuilder.loadTexts: ctspGlobalSgaclEnforcementGroup.setDescription('A collection of object which provides the SGACL enforcement information for all TrustSec capable Layer 3 interfaces (excluding SVIs) at the device level.') ctspSgaclIpv4DropNetflowMonitorGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 2)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclIpv4DropNetflowMonitor")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspSgaclIpv4DropNetflowMonitorGroup = ctspSgaclIpv4DropNetflowMonitorGroup.setStatus('current') if mibBuilder.loadTexts: ctspSgaclIpv4DropNetflowMonitorGroup.setDescription('A collection of object which provides netflow monitor information for IPv4 traffic drop packet due to SGACL enforcement in the device.') ctspSgaclIpv6DropNetflowMonitorGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 3)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclIpv6DropNetflowMonitor")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspSgaclIpv6DropNetflowMonitorGroup = ctspSgaclIpv6DropNetflowMonitorGroup.setStatus('current') if mibBuilder.loadTexts: ctspSgaclIpv6DropNetflowMonitorGroup.setDescription('A collection of object which provides netflow monitor information for IPv6 traffic drop packet due to SGACL enforcement in the device.') ctspVlanConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 4)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigSgaclEnforcement"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanSviActive"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigVrfName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigStorageType"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanConfigRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspVlanConfigGroup = ctspVlanConfigGroup.setStatus('current') if mibBuilder.loadTexts: ctspVlanConfigGroup.setDescription('A collection of object which provides the SGACL enforcement and VRF information for each VLAN.') ctspConfigSgaclMappingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 5)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingSgaclName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingStorageType"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMappingRowStatus"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefConfigIpv4Sgacls"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefConfigIpv6Sgacls")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspConfigSgaclMappingGroup = ctspConfigSgaclMappingGroup.setStatus('current') if mibBuilder.loadTexts: ctspConfigSgaclMappingGroup.setDescription('A collection of objects which provides the administratively configured SGACL mapping information in the device.') ctspDownloadedSgaclMappingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 6)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedIpTrafficType"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefDownloadedSgaclName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefDownloadedSgaclGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefDownloadedIpTrafficType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspDownloadedSgaclMappingGroup = ctspDownloadedSgaclMappingGroup.setStatus('current') if mibBuilder.loadTexts: ctspDownloadedSgaclMappingGroup.setDescription('A collection of objects which provides the downloaded SGACL mapping information in the device.') ctspOperSgaclMappingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 7)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperationalSgaclName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperationalSgaclGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclMappingSource"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclConfigSource"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperationalSgaclName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperationalSgaclGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperSgaclMappingSource"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperSgaclConfigSource")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspOperSgaclMappingGroup = ctspOperSgaclMappingGroup.setStatus('current') if mibBuilder.loadTexts: ctspOperSgaclMappingGroup.setDescription('A collection of objects which provides the operational SGACL mapping information in the device.') ctspIpSwStatisticsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 8)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpSwDropPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpSwPermitPkts")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspIpSwStatisticsGroup = ctspIpSwStatisticsGroup.setStatus('current') if mibBuilder.loadTexts: ctspIpSwStatisticsGroup.setDescription('A collection of objects which provides software statistics counters for unicast IP traffic subjected to SGACL enforcement.') ctspIpHwStatisticsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 9)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpHwDropPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpHwPermitPkts")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspIpHwStatisticsGroup = ctspIpHwStatisticsGroup.setStatus('current') if mibBuilder.loadTexts: ctspIpHwStatisticsGroup.setDescription('A collection of objects which provides hardware statistics counters for unicast IP traffic subjected to SGACL enforcement.') ctspDefSwStatisticsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 10)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpSwDropPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpSwPermitPkts")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspDefSwStatisticsGroup = ctspDefSwStatisticsGroup.setStatus('current') if mibBuilder.loadTexts: ctspDefSwStatisticsGroup.setDescription('A collection of objects which provides software statistics counters for unicast IP traffic subjected to unicast default policy enforcement.') ctspDefHwStatisticsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 11)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpHwDropPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpHwPermitPkts")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspDefHwStatisticsGroup = ctspDefHwStatisticsGroup.setStatus('current') if mibBuilder.loadTexts: ctspDefHwStatisticsGroup.setDescription('A collection of objects which provides hardware statistics counters for unicast IP traffic subjected to unicast default policy enforcement.') ctspPeerPolicyActionGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 12)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspAllPeerPolicyAction")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspPeerPolicyActionGroup = ctspPeerPolicyActionGroup.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyActionGroup.setDescription('A collection of object which provides refreshing of all peer policies in the device.') ctspPeerPolicyGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 13)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerSgt"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerSgtGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerTrustState"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyLifeTime"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyLastUpdate"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyAction")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspPeerPolicyGroup = ctspPeerPolicyGroup.setStatus('current') if mibBuilder.loadTexts: ctspPeerPolicyGroup.setDescription('A collection of object which provides peer policy information in the device.') ctspLayer3TransportGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 14)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3PolicyLocalConfig"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3PolicyDownloaded"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspLayer3PolicyOperational")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspLayer3TransportGroup = ctspLayer3TransportGroup.setStatus('current') if mibBuilder.loadTexts: ctspLayer3TransportGroup.setDescription('A collection of objects which provides managed information regarding the SGT propagation along with Layer 3 traffic in the device.') ctspIfL3PolicyConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 15)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfL3Ipv4PolicyEnabled"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfL3Ipv6PolicyEnabled")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspIfL3PolicyConfigGroup = ctspIfL3PolicyConfigGroup.setStatus('current') if mibBuilder.loadTexts: ctspIfL3PolicyConfigGroup.setDescription('A collection of objects which provides managed information for Layer3 Tranport policy enforcement on capable interface in the device.') ctspIpSgtMappingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 16)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtValue"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtSource"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtStorageType"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIpSgtRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspIpSgtMappingGroup = ctspIpSgtMappingGroup.setStatus('current') if mibBuilder.loadTexts: ctspIpSgtMappingGroup.setDescription('A collection of objects which provides managed information regarding IP-to-Sgt mapping in the device.') ctspSgtPolicyGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 17)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspAllSgtPolicyAction"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgtPolicySgtGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgtPolicyLifeTime"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgtPolicyLastUpdate"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgtPolicyAction"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedDefSgtPolicySgtGenId"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedDefSgtPolicyLifeTime"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedDefSgtPolicyLastUpdate"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedDefSgtPolicyAction")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspSgtPolicyGroup = ctspSgtPolicyGroup.setStatus('current') if mibBuilder.loadTexts: ctspSgtPolicyGroup.setDescription('A collection of object which provides SGT policy information in the device.') ctspIfSgtMappingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 18)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfSgtValue"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfSgName"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspL3IPMStatus"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfSgtStorageType"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspIfSgtRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspIfSgtMappingGroup = ctspIfSgtMappingGroup.setStatus('current') if mibBuilder.loadTexts: ctspIfSgtMappingGroup.setDescription('A collection of objects which provides managed information regarding Interface-to-Sgt mapping in the device.') ctspVlanSgtMappingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 19)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanSgtMapValue"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanSgtStorageType"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspVlanSgtRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspVlanSgtMappingGroup = ctspVlanSgtMappingGroup.setStatus('current') if mibBuilder.loadTexts: ctspVlanSgtMappingGroup.setDescription('A collection of objects which provides sgt mapping information for the IP traffic in the specified Vlan.') ctspSgtCachingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 20)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgtCachingMode"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgtCachingVlansFirst2K"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgtCachingVlansSecond2K")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspSgtCachingGroup = ctspSgtCachingGroup.setStatus('current') if mibBuilder.loadTexts: ctspSgtCachingGroup.setDescription('A collection of objects which provides sgt Caching information.') ctspSgaclMonitorGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 21)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspSgaclMonitorEnable"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspConfigSgaclMonitor"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefConfigIpv4SgaclsMonitor"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefConfigIpv6SgaclsMonitor"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDownloadedSgaclMonitor"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefDownloadedSgaclMonitor"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspOperSgaclMonitor"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefOperSgaclMonitor")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspSgaclMonitorGroup = ctspSgaclMonitorGroup.setStatus('current') if mibBuilder.loadTexts: ctspSgaclMonitorGroup.setDescription('A collection of objects which provides SGACL monitor information.') ctspSgaclMonitorStatisticGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 22)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpSwMonitorPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspStatsIpHwMonitorPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpSwMonitorPkts"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspDefIpHwMonitorPkts")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspSgaclMonitorStatisticGroup = ctspSgaclMonitorStatisticGroup.setStatus('current') if mibBuilder.loadTexts: ctspSgaclMonitorStatisticGroup.setDescription('A collection of objects which provides monitor statistics counters for unicast IP traffic subjected to SGACL enforcement.') ctspNotifCtrlGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 23)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyUpdatedNotifEnable"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspAuthorizationSgaclFailNotifEnable")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspNotifCtrlGroup = ctspNotifCtrlGroup.setStatus('current') if mibBuilder.loadTexts: ctspNotifCtrlGroup.setDescription('A collection of objects providing notification control for TrustSec policy notifications.') ctspNotifGroup = NotificationGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 24)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspPeerPolicyUpdatedNotif"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspAuthorizationSgaclFailNotif")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspNotifGroup = ctspNotifGroup.setStatus('current') if mibBuilder.loadTexts: ctspNotifGroup.setDescription('A collection of notifications for TrustSec policy.') ctspNotifInfoGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 713, 2, 2, 25)).setObjects(("CISCO-TRUSTSEC-POLICY-MIB", "ctspOldPeerSgt"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspAuthorizationSgaclFailReason"), ("CISCO-TRUSTSEC-POLICY-MIB", "ctspAuthorizationSgaclFailInfo")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ctspNotifInfoGroup = ctspNotifInfoGroup.setStatus('current') if mibBuilder.loadTexts: ctspNotifInfoGroup.setDescription('A collection of objects providing the variable binding for TrustSec policy notifications.') mibBuilder.exportSymbols("CISCO-TRUSTSEC-POLICY-MIB", ctspDefDownloadedIpTrafficType=ctspDefDownloadedIpTrafficType, ctspLayer3PolicyType=ctspLayer3PolicyType, ctspPeerTrustState=ctspPeerTrustState, ctspIfSgtValue=ctspIfSgtValue, ctspDownloadedSgaclName=ctspDownloadedSgaclName, ctspSgtCachingVlansSecond2K=ctspSgtCachingVlansSecond2K, ctspDownloadedSgtPolicyLifeTime=ctspDownloadedSgtPolicyLifeTime, ctspSgacl=ctspSgacl, ctspDownloadedDefSgtPolicyLastUpdate=ctspDownloadedDefSgtPolicyLastUpdate, ctspLayer3PolicyLocalConfig=ctspLayer3PolicyLocalConfig, ctspSgaclMappings=ctspSgaclMappings, ctspAllPeerPolicyAction=ctspAllPeerPolicyAction, ctspDefOperationalSgaclGenId=ctspDefOperationalSgaclGenId, ctspSgaclStatistics=ctspSgaclStatistics, ctspDefStatsEntry=ctspDefStatsEntry, ctspOperSgaclMappingSource=ctspOperSgaclMappingSource, ctspDefIpSwPermitPkts=ctspDefIpSwPermitPkts, ciscoTrustSecPolicyMIBObjects=ciscoTrustSecPolicyMIBObjects, ctspIfSgtMappingGroup=ctspIfSgtMappingGroup, ctspVlanConfigStorageType=ctspVlanConfigStorageType, ctspOperSgaclSourceSgt=ctspOperSgaclSourceSgt, ctspDownloadedSgtPolicyLastUpdate=ctspDownloadedSgtPolicyLastUpdate, ctspPeerPolicyUpdatedNotifEnable=ctspPeerPolicyUpdatedNotifEnable, ctspIpSgtVrfName=ctspIpSgtVrfName, ctspConfigSgaclMappingEntry=ctspConfigSgaclMappingEntry, ctspDefIpHwDropPkts=ctspDefIpHwDropPkts, ctspDefOperSgaclMappingEntry=ctspDefOperSgaclMappingEntry, ctspOperIpTrafficType=ctspOperIpTrafficType, ctspStatsIpHwMonitorPkts=ctspStatsIpHwMonitorPkts, ctspDefDownloadedSgaclMappingTable=ctspDefDownloadedSgaclMappingTable, ctspOperSgaclDestSgt=ctspOperSgaclDestSgt, ctspIpSgtMappingGroup=ctspIpSgtMappingGroup, ctspIfSgtRowStatus=ctspIfSgtRowStatus, ctspDownloadedDefSgtPolicyType=ctspDownloadedDefSgtPolicyType, ctspLayer3PolicyDownloaded=ctspLayer3PolicyDownloaded, ctspStatsDestSgt=ctspStatsDestSgt, ctspPeerSgt=ctspPeerSgt, ctspVlanConfigIndex=ctspVlanConfigIndex, ctspDefDownloadedSgaclIndex=ctspDefDownloadedSgaclIndex, ctspConfigSgaclMappingStorageType=ctspConfigSgaclMappingStorageType, ctspPeerName=ctspPeerName, ctspDefIpTrafficType=ctspDefIpTrafficType, ctspOperSgaclMappingGroup=ctspOperSgaclMappingGroup, ctspPeerPolicyUpdatedNotif=ctspPeerPolicyUpdatedNotif, ctspSgtCaching=ctspSgtCaching, ciscoTrustSecPolicyMIBComplianceRev2=ciscoTrustSecPolicyMIBComplianceRev2, ciscoTrustSecPolicyMIBConformance=ciscoTrustSecPolicyMIBConformance, ctspDefOperSgaclIndex=ctspDefOperSgaclIndex, ctspOperSgaclMappingTable=ctspOperSgaclMappingTable, ctspDownloadedSgaclGenId=ctspDownloadedSgaclGenId, ctspIfSgtMappings=ctspIfSgtMappings, ctspSgaclIpv6DropNetflowMonitor=ctspSgaclIpv6DropNetflowMonitor, ciscoTrustSecPolicyMIBGroups=ciscoTrustSecPolicyMIBGroups, ctspNotifsOnlyInfo=ctspNotifsOnlyInfo, ctspVlanConfigEntry=ctspVlanConfigEntry, ctspPeerPolicy=ctspPeerPolicy, ctspDownloadedSgaclDestSgt=ctspDownloadedSgaclDestSgt, ctspDefIpHwMonitorPkts=ctspDefIpHwMonitorPkts, ctspLayer3TransportGroup=ctspLayer3TransportGroup, ctspGlobalSgaclEnforcementGroup=ctspGlobalSgaclEnforcementGroup, ctspDownloadedSgaclMappingEntry=ctspDownloadedSgaclMappingEntry, ctspPeerPolicyActionGroup=ctspPeerPolicyActionGroup, ctspSgaclGlobals=ctspSgaclGlobals, ctspNotifInfoGroup=ctspNotifInfoGroup, ctspSgaclMonitorEnable=ctspSgaclMonitorEnable, ctspStatsIpTrafficType=ctspStatsIpTrafficType, ctspConfigSgaclMonitor=ctspConfigSgaclMonitor, ctspDefConfigIpv4Sgacls=ctspDefConfigIpv4Sgacls, ctspVlanSgtMappingGroup=ctspVlanSgtMappingGroup, ctspSgtCachingGroup=ctspSgtCachingGroup, ctspIfL3PolicyConfigEntry=ctspIfL3PolicyConfigEntry, ctspConfigSgaclMappingRowStatus=ctspConfigSgaclMappingRowStatus, ctspIpSwStatisticsGroup=ctspIpSwStatisticsGroup, ctspDownloadedSgtPolicySgt=ctspDownloadedSgtPolicySgt, ctspDefConfigIpv6SgaclsMonitor=ctspDefConfigIpv6SgaclsMonitor, ctspOperSgaclIndex=ctspOperSgaclIndex, ctspVlanSgtMappingTable=ctspVlanSgtMappingTable, ctspIfSgtMappingEntry=ctspIfSgtMappingEntry, ctspAuthorizationSgaclFailNotif=ctspAuthorizationSgaclFailNotif, ctspConfigSgaclMappingGroup=ctspConfigSgaclMappingGroup, ctspIfSgtMappingTable=ctspIfSgtMappingTable, ctspStatsIpSwDropPkts=ctspStatsIpSwDropPkts, ctspIpSgtSource=ctspIpSgtSource, ctspConfigSgaclMappingSgaclName=ctspConfigSgaclMappingSgaclName, ctspLayer3PolicyEntry=ctspLayer3PolicyEntry, ctspDownloadedSgaclSourceSgt=ctspDownloadedSgaclSourceSgt, ctspVlanConfigSgaclEnforcement=ctspVlanConfigSgaclEnforcement, ctspDefDownloadedSgaclMappingEntry=ctspDefDownloadedSgaclMappingEntry, ctspIpSgtIpAddress=ctspIpSgtIpAddress, ctspDownloadedSgaclMappingTable=ctspDownloadedSgaclMappingTable, ctspDefOperSgaclMappingTable=ctspDefOperSgaclMappingTable, ctspL3IPMStatus=ctspL3IPMStatus, ctspIfL3Ipv6PolicyEnabled=ctspIfL3Ipv6PolicyEnabled, ctspOperSgaclMonitor=ctspOperSgaclMonitor, ctspIpSgtMappings=ctspIpSgtMappings, ctspPeerPolicyAction=ctspPeerPolicyAction, ctspDownloadedDefSgtPolicyTable=ctspDownloadedDefSgtPolicyTable, ctspPeerPolicyTable=ctspPeerPolicyTable, ctspIfSgtStorageType=ctspIfSgtStorageType, ctspConfigSgaclMappingTable=ctspConfigSgaclMappingTable, PYSNMP_MODULE_ID=ciscoTrustSecPolicyMIB, ctspVlanSgtMappings=ctspVlanSgtMappings, ctspSgtCachingVlansFirst2K=ctspSgtCachingVlansFirst2K, ctspDefOperIpTrafficType=ctspDefOperIpTrafficType, ctspVlanSgtMapValue=ctspVlanSgtMapValue, ctspAuthorizationSgaclFailInfo=ctspAuthorizationSgaclFailInfo, ctspVlanSviActive=ctspVlanSviActive, ctspDownloadedSgtPolicyTable=ctspDownloadedSgtPolicyTable, ctspLayer3PolicyTable=ctspLayer3PolicyTable, ctspDownloadedIpTrafficType=ctspDownloadedIpTrafficType, ctspDownloadedSgtPolicyEntry=ctspDownloadedSgtPolicyEntry, ctspDefOperSgaclMappingSource=ctspDefOperSgaclMappingSource, ctspPeerPolicyEntry=ctspPeerPolicyEntry, ctspSgtStatsTable=ctspSgtStatsTable, ctspIfL3Ipv4PolicyEnabled=ctspIfL3Ipv4PolicyEnabled, ctspSgaclMonitorStatisticGroup=ctspSgaclMonitorStatisticGroup, ctspOperationalSgaclName=ctspOperationalSgaclName, ctspIpSgtStorageType=ctspIpSgtStorageType, ctspStatsIpSwPermitPkts=ctspStatsIpSwPermitPkts, ctspVlanSgtMappingIndex=ctspVlanSgtMappingIndex, ctspNotifsControl=ctspNotifsControl, ctspVlanSgtRowStatus=ctspVlanSgtRowStatus, ctspStatsIpSwMonitorPkts=ctspStatsIpSwMonitorPkts, ctspDefHwStatisticsGroup=ctspDefHwStatisticsGroup, ctspDownloadedDefSgtPolicyEntry=ctspDownloadedDefSgtPolicyEntry, ctspIpSgtValue=ctspIpSgtValue, ctspLayer3PolicyOperational=ctspLayer3PolicyOperational, ctspDefIpSwMonitorPkts=ctspDefIpSwMonitorPkts, ctspSgaclIpv4DropNetflowMonitor=ctspSgaclIpv4DropNetflowMonitor, ciscoTrustSecPolicyMIBNotifs=ciscoTrustSecPolicyMIBNotifs, ctspAuthorizationSgaclFailReason=ctspAuthorizationSgaclFailReason, ciscoTrustSecPolicyMIBCompliance=ciscoTrustSecPolicyMIBCompliance, ctspIpSgtMappingEntry=ctspIpSgtMappingEntry, ctspSgtStatsEntry=ctspSgtStatsEntry, ctspIfL3PolicyConfigGroup=ctspIfL3PolicyConfigGroup, ctspSgtPolicyGroup=ctspSgtPolicyGroup, ctspSgtPolicy=ctspSgtPolicy, ctspVlanConfigTable=ctspVlanConfigTable, ctspStatsSourceSgt=ctspStatsSourceSgt, ctspLayer3PolicyIpTrafficType=ctspLayer3PolicyIpTrafficType, ctspPeerPolicyLifeTime=ctspPeerPolicyLifeTime, ctspDefDownloadedSgaclGenId=ctspDefDownloadedSgaclGenId, ctspStatsIpHwPermitPkts=ctspStatsIpHwPermitPkts, ctspIpHwStatisticsGroup=ctspIpHwStatisticsGroup, ctspIpSgtAddressLength=ctspIpSgtAddressLength, ctspDownloadedSgtPolicyAction=ctspDownloadedSgtPolicyAction, ctspAllSgtPolicyAction=ctspAllSgtPolicyAction, ctspDownloadedDefSgtPolicyLifeTime=ctspDownloadedDefSgtPolicyLifeTime, ctspVlanConfigVrfName=ctspVlanConfigVrfName, ctspDownloadedDefSgtPolicySgtGenId=ctspDownloadedDefSgtPolicySgtGenId, ctspPeerSgtGenId=ctspPeerSgtGenId, ctspIfSgName=ctspIfSgName, ctspSgaclMonitorGroup=ctspSgaclMonitorGroup, ctspVlanSgtStorageType=ctspVlanSgtStorageType, ctspSgaclEnforcementEnable=ctspSgaclEnforcementEnable, ctspDefOperSgaclMonitor=ctspDefOperSgaclMonitor, ctspDownloadedSgaclMappingGroup=ctspDownloadedSgaclMappingGroup, ctspPeerPolicyGroup=ctspPeerPolicyGroup, ctspDefDownloadedSgaclMonitor=ctspDefDownloadedSgaclMonitor, ctspIfL3PolicyConfigTable=ctspIfL3PolicyConfigTable, ctspDefDownloadedSgaclName=ctspDefDownloadedSgaclName, ctspDownloadedSgtPolicySgtGenId=ctspDownloadedSgtPolicySgtGenId, ciscoTrustSecPolicyMIB=ciscoTrustSecPolicyMIB, ctspVlanConfigRowStatus=ctspVlanConfigRowStatus, ctspIpSgtRowStatus=ctspIpSgtRowStatus, ctspAuthorizationSgaclFailNotifEnable=ctspAuthorizationSgaclFailNotifEnable, ctspConfigSgaclMappingSourceSgt=ctspConfigSgaclMappingSourceSgt, ctspVlanConfigGroup=ctspVlanConfigGroup, ctspDefConfigIpv4SgaclsMonitor=ctspDefConfigIpv4SgaclsMonitor, ctspDefIpSwDropPkts=ctspDefIpSwDropPkts, ctspDefConfigIpv6Sgacls=ctspDefConfigIpv6Sgacls, ctspConfigSgaclMappingIpTrafficType=ctspConfigSgaclMappingIpTrafficType, ciscoTrustSecPolicyMIBCompliances=ciscoTrustSecPolicyMIBCompliances, ctspStatsIpHwDropPkts=ctspStatsIpHwDropPkts, ctspVlanSgtMappingEntry=ctspVlanSgtMappingEntry, ctspDefIpHwPermitPkts=ctspDefIpHwPermitPkts, ctspOperationalSgaclGenId=ctspOperationalSgaclGenId, ctspDefOperationalSgaclName=ctspDefOperationalSgaclName, ctspOperSgaclMappingEntry=ctspOperSgaclMappingEntry, ctspIpSgtMappingTable=ctspIpSgtMappingTable, ctspIfSgtMappingInfoEntry=ctspIfSgtMappingInfoEntry, ctspLayer3Transport=ctspLayer3Transport, ctspSgaclIpv4DropNetflowMonitorGroup=ctspSgaclIpv4DropNetflowMonitorGroup, ctspSgtCachingMode=ctspSgtCachingMode, ctspOperSgaclConfigSource=ctspOperSgaclConfigSource, ctspDownloadedSgaclMonitor=ctspDownloadedSgaclMonitor, ctspDefSwStatisticsGroup=ctspDefSwStatisticsGroup, ctspIpSgtAddressType=ctspIpSgtAddressType, ctspPeerPolicyLastUpdate=ctspPeerPolicyLastUpdate, ctspDownloadedDefSgtPolicyAction=ctspDownloadedDefSgtPolicyAction, ctspOldPeerSgt=ctspOldPeerSgt, ctspNotifGroup=ctspNotifGroup, ctspDefOperSgaclConfigSource=ctspDefOperSgaclConfigSource, ctspDefStatsTable=ctspDefStatsTable, ctspSgaclIpv6DropNetflowMonitorGroup=ctspSgaclIpv6DropNetflowMonitorGroup, ctspConfigSgaclMappingDestSgt=ctspConfigSgaclMappingDestSgt, ctspIfSgtMappingInfoTable=ctspIfSgtMappingInfoTable, ctspNotifCtrlGroup=ctspNotifCtrlGroup, ctspDownloadedSgaclIndex=ctspDownloadedSgaclIndex)
166.79187
10,104
0.796192
d4a19a6793c7b81c31ff51744f9dee445aa534f8
1,685
py
Python
tests/test_cli/test_generate/test_generate.py
lrahmani/agents-aea
9bd1d51530fc21bf41b5adea031cda19a94b048b
[ "Apache-2.0" ]
null
null
null
tests/test_cli/test_generate/test_generate.py
lrahmani/agents-aea
9bd1d51530fc21bf41b5adea031cda19a94b048b
[ "Apache-2.0" ]
null
null
null
tests/test_cli/test_generate/test_generate.py
lrahmani/agents-aea
9bd1d51530fc21bf41b5adea031cda19a94b048b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the tests for the aea.cli.generate sub-module.""" from unittest import TestCase, mock from aea.cli.generate import _generate_item from tests.test_cli.tools_for_testing import ContextMock
37.444444
80
0.665282
d4a21ef2eb21f79e91184165f8bb407caaf1dcb1
17,126
py
Python
sphinx/ext/napoleon/__init__.py
PeerHerholz/smobsc
db34d2bb96b80579bd4a3f4c198a6b524c5a134a
[ "BSD-2-Clause" ]
3
2019-06-11T09:42:08.000Z
2020-03-10T15:57:09.000Z
sphinx/ext/napoleon/__init__.py
PeerHerholz/smobsc
db34d2bb96b80579bd4a3f4c198a6b524c5a134a
[ "BSD-2-Clause" ]
12
2019-01-09T15:43:57.000Z
2020-01-21T10:46:30.000Z
sphinx/ext/napoleon/__init__.py
PeerHerholz/smobsc
db34d2bb96b80579bd4a3f4c198a6b524c5a134a
[ "BSD-2-Clause" ]
10
2019-02-04T11:49:35.000Z
2020-03-21T13:32:20.000Z
""" sphinx.ext.napoleon ~~~~~~~~~~~~~~~~~~~ Support for NumPy and Google style docstrings. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from sphinx import __display_version__ as __version__ from sphinx.application import Sphinx from sphinx.ext.napoleon.docstring import GoogleDocstring, NumpyDocstring if False: # For type annotation from typing import Any, Dict, List # NOQA def setup(app): # type: (Sphinx) -> Dict[str, Any] """Sphinx extension setup function. When the extension is loaded, Sphinx imports this module and executes the ``setup()`` function, which in turn notifies Sphinx of everything the extension offers. Parameters ---------- app : sphinx.application.Sphinx Application object representing the Sphinx process See Also -------- `The Sphinx documentation on Extensions <http://sphinx-doc.org/extensions.html>`_ `The Extension Tutorial <http://sphinx-doc.org/extdev/tutorial.html>`_ `The Extension API <http://sphinx-doc.org/extdev/appapi.html>`_ """ if not isinstance(app, Sphinx): # probably called by tests return {'version': __version__, 'parallel_read_safe': True} _patch_python_domain() app.setup_extension('sphinx.ext.autodoc') app.connect('autodoc-process-docstring', _process_docstring) app.connect('autodoc-skip-member', _skip_member) for name, (default, rebuild) in Config._config_values.items(): app.add_config_value(name, default, rebuild) return {'version': __version__, 'parallel_read_safe': True} def _process_docstring(app, what, name, obj, options, lines): # type: (Sphinx, str, str, Any, Any, List[str]) -> None """Process the docstring for a given python object. Called when autodoc has read and processed a docstring. `lines` is a list of docstring lines that `_process_docstring` modifies in place to change what Sphinx outputs. The following settings in conf.py control what styles of docstrings will be parsed: * ``napoleon_google_docstring`` -- parse Google style docstrings * ``napoleon_numpy_docstring`` -- parse NumPy style docstrings Parameters ---------- app : sphinx.application.Sphinx Application object representing the Sphinx process. what : str A string specifying the type of the object to which the docstring belongs. Valid values: "module", "class", "exception", "function", "method", "attribute". name : str The fully qualified name of the object. obj : module, class, exception, function, method, or attribute The object to which the docstring belongs. options : sphinx.ext.autodoc.Options The options given to the directive: an object with attributes inherited_members, undoc_members, show_inheritance and noindex that are True if the flag option of same name was given to the auto directive. lines : list of str The lines of the docstring, see above. .. note:: `lines` is modified *in place* """ result_lines = lines docstring = None # type: GoogleDocstring if app.config.napoleon_numpy_docstring: docstring = NumpyDocstring(result_lines, app.config, app, what, name, obj, options) result_lines = docstring.lines() if app.config.napoleon_google_docstring: docstring = GoogleDocstring(result_lines, app.config, app, what, name, obj, options) result_lines = docstring.lines() lines[:] = result_lines[:] def _skip_member(app, what, name, obj, skip, options): # type: (Sphinx, str, str, Any, bool, Any) -> bool """Determine if private and special class members are included in docs. The following settings in conf.py determine if private and special class members or init methods are included in the generated documentation: * ``napoleon_include_init_with_doc`` -- include init methods if they have docstrings * ``napoleon_include_private_with_doc`` -- include private members if they have docstrings * ``napoleon_include_special_with_doc`` -- include special members if they have docstrings Parameters ---------- app : sphinx.application.Sphinx Application object representing the Sphinx process what : str A string specifying the type of the object to which the member belongs. Valid values: "module", "class", "exception", "function", "method", "attribute". name : str The name of the member. obj : module, class, exception, function, method, or attribute. For example, if the member is the __init__ method of class A, then `obj` will be `A.__init__`. skip : bool A boolean indicating if autodoc will skip this member if `_skip_member` does not override the decision options : sphinx.ext.autodoc.Options The options given to the directive: an object with attributes inherited_members, undoc_members, show_inheritance and noindex that are True if the flag option of same name was given to the auto directive. Returns ------- bool True if the member should be skipped during creation of the docs, False if it should be included in the docs. """ has_doc = getattr(obj, '__doc__', False) is_member = (what == 'class' or what == 'exception' or what == 'module') if name != '__weakref__' and has_doc and is_member: cls_is_owner = False if what == 'class' or what == 'exception': qualname = getattr(obj, '__qualname__', '') cls_path, _, _ = qualname.rpartition('.') if cls_path: try: if '.' in cls_path: import importlib import functools mod = importlib.import_module(obj.__module__) mod_path = cls_path.split('.') cls = functools.reduce(getattr, mod_path, mod) else: cls = obj.__globals__[cls_path] except Exception: cls_is_owner = False else: cls_is_owner = (cls and hasattr(cls, name) and # type: ignore name in cls.__dict__) else: cls_is_owner = False if what == 'module' or cls_is_owner: is_init = (name == '__init__') is_special = (not is_init and name.startswith('__') and name.endswith('__')) is_private = (not is_init and not is_special and name.startswith('_')) inc_init = app.config.napoleon_include_init_with_doc inc_special = app.config.napoleon_include_special_with_doc inc_private = app.config.napoleon_include_private_with_doc if ((is_special and inc_special) or (is_private and inc_private) or (is_init and inc_init)): return False return None
36.515991
88
0.608782
d4a24c39597d568e3ab31f3730cb741839a01aff
2,390
py
Python
plugins/similarity/rdkit/tanimoto/lbvs-entry.py
skodapetr/viset
87863ed6cde63392b2d503ceda53bb2cea367d69
[ "MIT" ]
1
2018-12-28T19:36:04.000Z
2018-12-28T19:36:04.000Z
plugins/similarity/rdkit/tanimoto/lbvs-entry.py
skodapetr/viset
87863ed6cde63392b2d503ceda53bb2cea367d69
[ "MIT" ]
14
2017-11-15T17:45:58.000Z
2018-12-10T17:52:23.000Z
plugins/similarity/rdkit/tanimoto/lbvs-entry.py
skodapetr/viset
87863ed6cde63392b2d503ceda53bb2cea367d69
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from rdkit import DataStructs import plugin_api __license__ = "X11"
29.506173
77
0.599582
d4a3f90c44e54f8024d6bee8196a0b29bb2aed61
2,849
py
Python
mall_spider/spiders/actions/proxy_service.py
524243642/taobao_spider
9cdaed1c7a67fc1f35ee2af2e18313cedf3b1e5e
[ "Unlicense" ]
12
2019-06-06T12:23:08.000Z
2021-06-15T17:50:07.000Z
mall_spider/spiders/actions/proxy_service.py
524243642/mall_spider
9cdaed1c7a67fc1f35ee2af2e18313cedf3b1e5e
[ "Unlicense" ]
3
2021-03-31T19:02:47.000Z
2022-02-11T03:43:15.000Z
mall_spider/spiders/actions/proxy_service.py
524243642/taobao_spider
9cdaed1c7a67fc1f35ee2af2e18313cedf3b1e5e
[ "Unlicense" ]
5
2019-09-17T03:55:56.000Z
2020-12-18T03:34:03.000Z
# coding: utf-8 import time from config.config_loader import global_config from mall_spider.spiders.actions.context import Context from mall_spider.spiders.actions.direct_proxy_action import DirectProxyAction __proxy_service = None
33.127907
208
0.601264
d4a46b8215ad96def234df7df255d9ac5c89bb08
965
py
Python
app/weather_tests.py
joedanz/flask-weather
fe35aa359da6f5d7f942d97837403e153b5c5ede
[ "Apache-2.0" ]
1
2017-08-25T18:55:11.000Z
2017-08-25T18:55:11.000Z
app/weather_tests.py
joedanz/flask-weather
fe35aa359da6f5d7f942d97837403e153b5c5ede
[ "Apache-2.0" ]
null
null
null
app/weather_tests.py
joedanz/flask-weather
fe35aa359da6f5d7f942d97837403e153b5c5ede
[ "Apache-2.0" ]
null
null
null
import os import weather import datetime import unittest import tempfile if __name__ == '__main__': unittest.main()
26.805556
71
0.631088
d4a58432909af220904a476edcdbf9bcba8bc8c1
984
py
Python
modules/sensors/Activator.py
memristor/mep2
bc5cddacba3d740f791f3454b8cb51bda83ce202
[ "MIT" ]
5
2018-11-27T15:15:00.000Z
2022-02-10T21:44:13.000Z
modules/sensors/Activator.py
memristor/mep2
bc5cddacba3d740f791f3454b8cb51bda83ce202
[ "MIT" ]
2
2018-10-20T15:48:40.000Z
2018-11-20T05:11:33.000Z
modules/sensors/Activator.py
memristor/mep2
bc5cddacba3d740f791f3454b8cb51bda83ce202
[ "MIT" ]
1
2020-02-07T12:44:47.000Z
2020-02-07T12:44:47.000Z
import asyncio
24
66
0.705285
d4a5dfe986967f5b7fa8e3f7e5dcaa1ed0f98f18
7,779
py
Python
examples/retrieval/evaluation/sparse/evaluate_deepct.py
ArthurCamara/beir
2739990b719f2d4814d88473cf9965d92d4f4c18
[ "Apache-2.0" ]
24
2022-03-20T18:48:52.000Z
2022-03-31T08:28:42.000Z
examples/retrieval/evaluation/sparse/evaluate_deepct.py
ArthurCamara/beir
2739990b719f2d4814d88473cf9965d92d4f4c18
[ "Apache-2.0" ]
9
2022-03-19T14:50:30.000Z
2022-03-30T17:31:18.000Z
examples/retrieval/evaluation/sparse/evaluate_deepct.py
ArthurCamara/beir
2739990b719f2d4814d88473cf9965d92d4f4c18
[ "Apache-2.0" ]
3
2022-03-25T15:45:14.000Z
2022-03-25T17:51:23.000Z
""" This example shows how to evaluate DeepCT (using Anserini) in BEIR. For more details on DeepCT, refer here: https://arxiv.org/abs/1910.10687 The original DeepCT repository is not modularised and only works with Tensorflow 1.x (1.15). We modified the DeepCT repository to work with Tensorflow latest (2.x). We do not change the core-prediction code, only few input/output file format and structure to adapt to BEIR formats. For more details on changes, check: https://github.com/NThakur20/DeepCT and compare it with original repo! Please follow the steps below to install DeepCT: 1. git clone https://github.com/NThakur20/DeepCT.git Since Anserini uses Java-11, we would advise you to use docker for running Pyserini. To be able to run the code below you must have docker locally installed in your machine. To install docker on your local machine, please refer here: https://docs.docker.com/get-docker/ After docker installation, please follow the steps below to get docker container up and running: 1. docker pull docker pull beir/pyserini-fastapi 2. docker build -t pyserini-fastapi . 3. docker run -p 8000:8000 -it --rm pyserini-fastapi Usage: python evaluate_deepct.py """ from DeepCT.deepct import run_deepct # git clone https://github.com/NThakur20/DeepCT.git from beir import util, LoggingHandler from beir.datasets.data_loader import GenericDataLoader from beir.retrieval.evaluation import EvaluateRetrieval from beir.generation.models import QGenModel from tqdm.autonotebook import trange import pathlib, os, json import logging import requests import random #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #### Download scifact.zip dataset and unzip the dataset dataset = "scifact" url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset) out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets") data_path = util.download_and_unzip(url, out_dir) corpus, queries, qrels = GenericDataLoader(data_path).load(split="test") #### 1. Download Google BERT-BASE, Uncased model #### # Ref: https://github.com/google-research/bert base_model_url = "https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip" out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "models") bert_base_dir = util.download_and_unzip(base_model_url, out_dir) #### 2. Download DeepCT MSMARCO Trained BERT checkpoint #### # Credits to DeepCT authors: Zhuyun Dai, Jamie Callan, (https://github.com/AdeDZY/DeepCT) model_url = "http://boston.lti.cs.cmu.edu/appendices/arXiv2019-DeepCT-Zhuyun-Dai/outputs/marco.zip" out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "models") checkpoint_dir = util.download_and_unzip(model_url, out_dir) ################################################## #### 3. Configure Params for DeepCT inference #### ################################################## # We cannot use the original Repo (https://github.com/AdeDZY/DeepCT) as it only runs with TF 1.15. # We reformatted the code (https://github.com/NThakur20/DeepCT) and made it working with latest TF 2.X! if not os.path.isfile(os.path.join(data_path, "deepct.jsonl")): ################################ #### Command-Line Arugments #### ################################ run_deepct.FLAGS.task_name = "beir" # Defined a seperate BEIR task in DeepCT. Check out run_deepct. run_deepct.FLAGS.do_train = False # We only want to use the code for inference. run_deepct.FLAGS.do_eval = False # No evaluation. run_deepct.FLAGS.do_predict = True # True, as we would use DeepCT model for only prediction. run_deepct.FLAGS.data_dir = os.path.join(data_path, "corpus.jsonl") # Provide original path to corpus data, follow beir format. run_deepct.FLAGS.vocab_file = os.path.join(bert_base_dir, "vocab.txt") # Provide bert-base-uncased model vocabulary. run_deepct.FLAGS.bert_config_file = os.path.join(bert_base_dir, "bert_config.json") # Provide bert-base-uncased config.json file. run_deepct.FLAGS.init_checkpoint = os.path.join(checkpoint_dir, "model.ckpt-65816") # Provide DeepCT MSMARCO model (bert-base-uncased) checkpoint file. run_deepct.FLAGS.max_seq_length = 350 # Provide Max Sequence Length used for consideration. (Max: 512) run_deepct.FLAGS.train_batch_size = 128 # Inference batch size, Larger more Memory but faster! run_deepct.FLAGS.output_dir = data_path # Output directory, this will contain two files: deepct.jsonl (output-file) and predict.tf_record run_deepct.FLAGS.output_file = "deepct.jsonl" # Output file for storing final DeepCT produced corpus. run_deepct.FLAGS.m = 100 # Scaling parameter for DeepCT weights: scaling parameter > 0, recommend 100 run_deepct.FLAGS.smoothing = "sqrt" # Use sqrt to smooth weights. DeepCT Paper uses None. run_deepct.FLAGS.keep_all_terms = True # Do not allow DeepCT to delete terms. # Runs DeepCT model on the corpus.jsonl run_deepct.main() #### Download Docker Image beir/pyserini-fastapi #### #### Locally run the docker Image + FastAPI #### docker_beir_pyserini = "http://127.0.0.1:8000" #### Upload Multipart-encoded files #### with open(os.path.join(data_path, "deepct.jsonl"), "rb") as fIn: r = requests.post(docker_beir_pyserini + "/upload/", files={"file": fIn}, verify=False) #### Index documents to Pyserini ##### index_name = "beir/you-index-name" # beir/scifact r = requests.get(docker_beir_pyserini + "/index/", params={"index_name": index_name}) ###################################### #### 2. Pyserini-Retrieval (BM25) #### ###################################### #### Retrieve documents from Pyserini ##### retriever = EvaluateRetrieval() qids = list(queries) query_texts = [queries[qid] for qid in qids] payload = {"queries": query_texts, "qids": qids, "k": max(retriever.k_values), "fields": {"contents": 1.0}, "bm25": {"k1": 18, "b": 0.7}} #### Retrieve pyserini results (format of results is identical to qrels) results = json.loads(requests.post(docker_beir_pyserini + "/lexical/batch_search/", json=payload).text)["results"] #### Retrieve RM3 expanded pyserini results (format of results is identical to qrels) # results = json.loads(requests.post(docker_beir_pyserini + "/lexical/rm3/batch_search/", json=payload).text)["results"] #### Evaluate your retrieval using NDCG@k, MAP@K ... logging.info("Retriever evaluation for k in: {}".format(retriever.k_values)) ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values) #### Retrieval Example #### query_id, scores_dict = random.choice(list(results.items())) logging.info("Query : %s\n" % queries[query_id]) scores = sorted(scores_dict.items(), key=lambda item: item[1], reverse=True) for rank in range(10): doc_id = scores[rank][0] logging.info("Doc %d: %s [%s] - %s\n" % (rank+1, doc_id, corpus[doc_id].get("title"), corpus[doc_id].get("text")))
56.781022
189
0.655354
d4a684609779826c5d7b8e2a668f0007ffd391fe
3,018
py
Python
Examples/Space Truss - Nodal Load.py
AmirHosseinNamadchi/PyNite
8cc1fe3262e1efe029c6860394d2436601272e33
[ "MIT" ]
2
2022-02-26T23:11:19.000Z
2022-02-26T23:11:21.000Z
Examples/Space Truss - Nodal Load.py
AmirHosseinNamadchi/PyNite
8cc1fe3262e1efe029c6860394d2436601272e33
[ "MIT" ]
null
null
null
Examples/Space Truss - Nodal Load.py
AmirHosseinNamadchi/PyNite
8cc1fe3262e1efe029c6860394d2436601272e33
[ "MIT" ]
2
2020-08-27T15:36:42.000Z
2020-10-02T00:29:22.000Z
# Engineering Mechanics: Statics, 4th Edition # Bedford and Fowler # Problem 6.64 # Units for this model are meters and kilonewtons # Import 'FEModel3D' and 'Visualization' from 'PyNite' from PyNite import FEModel3D from PyNite import Visualization # Create a new model truss = FEModel3D() # Define the nodes truss.AddNode('A', 1.1, -0.4, 0) truss.AddNode('B', 1, 0, 0) truss.AddNode('C', 0, 0, 0.6) truss.AddNode('D', 0, 0, -0.4) truss.AddNode('E', 0, 0.8, 0) # Define the supports truss.DefineSupport('C', True, True, True, True, True, True) truss.DefineSupport('D', True, True, True, True, True, True) truss.DefineSupport('E', True, True, True, True, True, True) # Create members # Member properties were not given for this problem, so assumed values will be used # To make all the members act rigid, the modulus of elasticity will be set to a very large value E = 99999999 truss.AddMember('AB', 'A', 'B', E, 100, 100, 100, 100, 100) truss.AddMember('AC', 'A', 'C', E, 100, 100, 100, 100, 100) truss.AddMember('AD', 'A', 'D', E, 100, 100, 100, 100, 100) truss.AddMember('BC', 'B', 'C', E, 100, 100, 100, 100, 100) truss.AddMember('BD', 'B', 'D', E, 100, 100, 100, 100, 100) truss.AddMember('BE', 'B', 'E', E, 100, 100, 100, 100, 100) # Release the moments at the ends of the members to make truss members truss.DefineReleases('AC', False, False, False, False, True, True, \ False, False, False, False, True, True) truss.DefineReleases('AD', False, False, False, False, True, True, \ False, False, False, False, True, True) truss.DefineReleases('BC', False, False, False, False, True, True, \ False, False, False, False, True, True) truss.DefineReleases('BD', False, False, False, False, True, True, \ False, False, False, False, True, True) truss.DefineReleases('BE', False, False, False, False, True, True, \ False, False, False, False, True, True) # Add nodal loads truss.AddNodeLoad('A', 'FX', 10) truss.AddNodeLoad('A', 'FY', 60) truss.AddNodeLoad('A', 'FZ', 20) # Analyze the model truss.Analyze() # Print results print('Member BC calculated axial force: ' + str(truss.GetMember('BC').MaxAxial())) print('Member BC expected axial force: 32.7 Tension') print('Member BD calculated axial force: ' + str(truss.GetMember('BD').MaxAxial())) print('Member BD expected axial force: 45.2 Tension') print('Member BE calculated axial force: ' + str(truss.GetMember('BE').MaxAxial())) print('Member BE expected axial force: 112.1 Compression') # Render the model for viewing. The text height will be set to 50 mm. # Because the members in this example are nearly rigid, there will be virtually no deformation. The deformed shape won't be rendered. # The program has created a default load case 'Case 1' and a default load combo 'Combo 1' since we didn't specify any. We'll display 'Case 1'. Visualization.RenderModel(truss, text_height=0.05, render_loads=True, case='Case 1')
44.382353
142
0.674619
d4a6c416bd8a2d26fc2585b919cf37090ef128d8
322
py
Python
Using Yagmail to make sending emails easier.py
CodeMaster7000/Sending-Emails-in-Python
2ec44f6520a6b98508c8adf372a191f2577fbf98
[ "MIT" ]
1
2021-12-23T15:42:01.000Z
2021-12-23T15:42:01.000Z
Using Yagmail to make sending emails easier.py
CodeMaster7000/Sending-Emails-in-Python
2ec44f6520a6b98508c8adf372a191f2577fbf98
[ "MIT" ]
null
null
null
Using Yagmail to make sending emails easier.py
CodeMaster7000/Sending-Emails-in-Python
2ec44f6520a6b98508c8adf372a191f2577fbf98
[ "MIT" ]
null
null
null
import yagmail receiver = "[email protected]" #Receiver's gmail address body = "Hello there from Yagmail" filename = "document.pdf" yag = yagmail.SMTP("[email protected]")#Your gmail address yag.send( to=receiver, subject="Yagmail test (attachment included", contents=body, attachments=filename, )
23
54
0.689441
d4a6cec9904df1ff0e2230e88f7f8978eeccd5f8
5,064
py
Python
pycad/py_src/transformations.py
markendr/esys-escript.github.io
0023eab09cd71f830ab098cb3a468e6139191e8d
[ "Apache-2.0" ]
null
null
null
pycad/py_src/transformations.py
markendr/esys-escript.github.io
0023eab09cd71f830ab098cb3a468e6139191e8d
[ "Apache-2.0" ]
null
null
null
pycad/py_src/transformations.py
markendr/esys-escript.github.io
0023eab09cd71f830ab098cb3a468e6139191e8d
[ "Apache-2.0" ]
null
null
null
############################################################################## # # Copyright (c) 2003-2020 by The University of Queensland # http://www.uq.edu.au # # Primary Business: Queensland, Australia # Licensed under the Apache License, version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # # Development until 2012 by Earth Systems Science Computational Center (ESSCC) # Development 2012-2013 by School of Earth Sciences # Development from 2014 by Centre for Geoscience Computing (GeoComp) # Development from 2019 by School of Earth and Environmental Sciences # ############################################################################## from __future__ import print_function, division __copyright__="""Copyright (c) 2003-2020 by The University of Queensland http://www.uq.edu.au Primary Business: Queensland, Australia""" __license__="""Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0""" __url__="https://launchpad.net/escript-finley" """ transformations :var __author__: name of author :var __copyright__: copyrights :var __license__: licence agreement :var __url__: url entry point on documentation :var __version__: version :var __date__: date of the version :var DEG: unit of degree :var RAD: unit of radiant """ __author__="Lutz Gross, [email protected]" import numpy import math _TYPE=numpy.float64 DEG=math.pi/180. RAD=1. def _cross(x, y): """ Returns the cross product of ``x`` and ``y``. """ return numpy.array([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]], _TYPE)
29.788235
124
0.610585
d4a6efea0d126676c34a41838cc4fe1e41395646
1,116
py
Python
example/complex_scalar_star_solver.py
ThomasHelfer/BosonStar
5442a6e6171122a3ba1d6b079e6483ab72aa7338
[ "MIT" ]
2
2021-04-07T13:20:11.000Z
2021-04-07T17:11:25.000Z
example/complex_scalar_star_solver.py
ThomasHelfer/BosonStar
5442a6e6171122a3ba1d6b079e6483ab72aa7338
[ "MIT" ]
1
2021-06-14T15:40:25.000Z
2021-06-14T15:40:25.000Z
example/complex_scalar_star_solver.py
ThomasHelfer/BosonStar
5442a6e6171122a3ba1d6b079e6483ab72aa7338
[ "MIT" ]
null
null
null
from bosonstar.ComplexBosonStar import Complex_Boson_Star # ===================== # All imporntnat definitions # ===================== # Physics defintions phi0 = 0.40 # centeral phi D = 5.0 # Dimension (total not only spacial) Lambda = -0.2 # Cosmological constant # Solver definitions Rstart = 3 Rend = 50.00 deltaR = 1 N = 100000 e_pow_minus_delta_guess = 0.4999 verbose = 2 eps = 1e-10 # Small epsilon to avoid r \neq 0 # ==================================== # Main routine # ==================================== pewpew = Complex_Boson_Star(e_pow_minus_delta_guess, phi0, D, Lambda, verbose) pewpew.print_parameters() alpha0 = pewpew.radial_walker(Rstart, Rend, deltaR, N, eps) # ===================================== # Output and plotting # ===================================== soldict = pewpew.get_solution() # Makes sure that lapse goes asymptotically to 1 # (Not an essential step, but recommended) pewpew.normalise_edelta() pewpew.check_Einstein_equation() # =============================== path = pewpew.get_path() pewpew.plot_solution() pewpew.print_solution()
24.26087
78
0.580645
d4a71c335f605cc7723cb3705f2699bfe1e1693b
796
py
Python
setup.py
ouyhlan/fastNLP
cac13311e28c1e8e3c866d50656173650eb5c7a1
[ "Apache-2.0" ]
2,693
2018-03-08T03:09:20.000Z
2022-03-30T07:38:42.000Z
setup.py
ouyhlan/fastNLP
cac13311e28c1e8e3c866d50656173650eb5c7a1
[ "Apache-2.0" ]
291
2018-07-21T07:43:17.000Z
2022-03-07T13:06:58.000Z
setup.py
ouyhlan/fastNLP
cac13311e28c1e8e3c866d50656173650eb5c7a1
[ "Apache-2.0" ]
514
2018-03-09T06:54:25.000Z
2022-03-26T20:11:44.000Z
#!/usr/bin/env python # coding=utf-8 from setuptools import setup, find_packages with open('README.md', encoding='utf-8') as f: readme = f.read() with open('LICENSE', encoding='utf-8') as f: license = f.read() with open('requirements.txt', encoding='utf-8') as f: reqs = f.read() pkgs = [p for p in find_packages() if p.startswith('fastNLP')] print(pkgs) setup( name='FastNLP', version='0.7.0', url='https://gitee.com/fastnlp/fastNLP', description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team', long_description=readme, long_description_content_type='text/markdown', license='Apache License', author='Fudan FastNLP Team', python_requires='>=3.6', packages=pkgs, install_requires=reqs.strip().split('\n'), )
26.533333
90
0.675879
d4a7c3329ad1568f426144783b7f79e1a58585b3
855
py
Python
clients/client/python/ory_client/__init__.py
ory/sdk-generator
958314d130922ad6f20f439b5230141a832231a5
[ "Apache-2.0" ]
null
null
null
clients/client/python/ory_client/__init__.py
ory/sdk-generator
958314d130922ad6f20f439b5230141a832231a5
[ "Apache-2.0" ]
null
null
null
clients/client/python/ory_client/__init__.py
ory/sdk-generator
958314d130922ad6f20f439b5230141a832231a5
[ "Apache-2.0" ]
null
null
null
# flake8: noqa """ Ory APIs Documentation for all public and administrative Ory APIs. Administrative APIs can only be accessed with a valid Personal Access Token. Public APIs are mostly used in browsers. # noqa: E501 The version of the OpenAPI document: v0.0.1-alpha.187 Contact: [email protected] Generated by: https://openapi-generator.tech """ __version__ = "v0.0.1-alpha.187" # import ApiClient from ory_client.api_client import ApiClient # import Configuration from ory_client.configuration import Configuration # import exceptions from ory_client.exceptions import OpenApiException from ory_client.exceptions import ApiAttributeError from ory_client.exceptions import ApiTypeError from ory_client.exceptions import ApiValueError from ory_client.exceptions import ApiKeyError from ory_client.exceptions import ApiException
29.482759
194
0.803509
d4a7d95a9f223064052da15a9a7a9eecfe46cfa7
3,810
py
Python
atmosphere/custom_activity/base_class.py
ambiata/atmosphere-python-sdk
48880a8553000cdea59d63b0fba49e1f0f482784
[ "MIT" ]
null
null
null
atmosphere/custom_activity/base_class.py
ambiata/atmosphere-python-sdk
48880a8553000cdea59d63b0fba49e1f0f482784
[ "MIT" ]
9
2021-02-21T21:53:03.000Z
2021-11-05T06:06:55.000Z
atmosphere/custom_activity/base_class.py
ambiata/atmosphere-python-sdk
48880a8553000cdea59d63b0fba49e1f0f482784
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from typing import Tuple from requests import Response from .pydantic_models import (AppliedExclusionConditionsResponse, BiasAttributeConfigListResponse, ComputeRewardResponse, DefaultPredictionResponse, ExclusionRuleConditionListResponse, PredictionResponsePayloadFormatListResponse) def format_prediction_payload_response( self, default_prediction_response: DefaultPredictionResponse, payload_format: str, # noqa pylint: disable=unused-argument ) -> dict: """ You can format the prediction the way you want based on the information returned by default """ return default_prediction_response def get_exclusion_rule_conditions(self) -> ExclusionRuleConditionListResponse: """ Define the exclusion rules for the activity """ return ExclusionRuleConditionListResponse(exclusion_rule_conditions=[]) def get_applied_exclusion_conditions( self, prediction_request: dict # noqa pylint: disable=unused-argument ) -> AppliedExclusionConditionsResponse: """ Define the exclusion rules for the activity """ return AppliedExclusionConditionsResponse(applied_exclusion_conditions=[]) def get_bias_attribute_configs(self) -> BiasAttributeConfigListResponse: """ Define the bias attribute configs, these decide which attributes may be used by atmospherex as bias attributes """ return BiasAttributeConfigListResponse(bias_attribute_configs=[])
36.634615
87
0.684777
d4a7f2382cdb35d8940e5dd478b2dac3b5b10bd0
752
py
Python
Module1/file3.py
modulo16/PfNE
9706afc42c44dcfd1490e5ac074156f41e5515a8
[ "Unlicense" ]
null
null
null
Module1/file3.py
modulo16/PfNE
9706afc42c44dcfd1490e5ac074156f41e5515a8
[ "Unlicense" ]
null
null
null
Module1/file3.py
modulo16/PfNE
9706afc42c44dcfd1490e5ac074156f41e5515a8
[ "Unlicense" ]
null
null
null
from __future__ import print_function, unicode_literals #Ensures Unicode is used for all strings. my_str = 'whatever' #Shows the String type, which should be unicode type(my_str) #declare string: ip_addr = '192.168.1.1' #check it with boolean:(True) ip_addr == '192.168.1.1' #(false) ip_addr == '10.1.1.1' #is this substring in this variable? '192.168' in ip_addr '1.1' in ip_addr '15.1' not in ip_addr #Strings also have indices starting at '0' #in the case below we get '1' which is the first character ip_addr[0] #we can also get the last using negative notation. The follow gets the last: ip_addr[-1] #second to last: ip_addr[-2] #show length of string: len(ip_addr) #Example string concatenation my_str = 'Hello' my_str + ' something'
18.8
76
0.731383
d4acef5631789f4b877955db52847e8e212a8725
10,411
py
Python
pp_io_plugins/pp_kbddriver_plus.py
arcticmatter/pipresents-beep
e5945f929b47249f19b0cb3433a138e874b592db
[ "CNRI-Python", "CECILL-B" ]
null
null
null
pp_io_plugins/pp_kbddriver_plus.py
arcticmatter/pipresents-beep
e5945f929b47249f19b0cb3433a138e874b592db
[ "CNRI-Python", "CECILL-B" ]
null
null
null
pp_io_plugins/pp_kbddriver_plus.py
arcticmatter/pipresents-beep
e5945f929b47249f19b0cb3433a138e874b592db
[ "CNRI-Python", "CECILL-B" ]
null
null
null
#enhanced keyboard driver import copy import os import configparser from pp_displaymanager import DisplayManager if __name__ == '__main__': from tkinter import * root = Tk() w = Label(root, text="pp_kbddriver_plus.py test harness") w.pack() idd=pp_kbddriver_plus() reason,message=idd.init('pp_kbddriver_plus.cfg','/home/pi/pipresents/pp_io_config/keys_plus.cfg',root,key_callback) print(reason,message) if reason != 'error': idd.start() root.mainloop()
41.979839
134
0.589761
d4ade5ab9af89265fbd2d849b58156e138f3d82c
452
py
Python
grocery/migrations/0003_alter_item_comments.py
akshay-kapase/shopping
7bf3bac4a78d07bca9a9f9d44d85e11bb826a366
[ "MIT" ]
null
null
null
grocery/migrations/0003_alter_item_comments.py
akshay-kapase/shopping
7bf3bac4a78d07bca9a9f9d44d85e11bb826a366
[ "MIT" ]
null
null
null
grocery/migrations/0003_alter_item_comments.py
akshay-kapase/shopping
7bf3bac4a78d07bca9a9f9d44d85e11bb826a366
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-09-03 15:48 from django.db import migrations, models
22.6
79
0.606195
d4ae07ad4070643d0ba3b0f74c8b5ba6215fad3c
2,770
py
Python
projects/objects/buildings/protos/textures/colored_textures/textures_generator.py
yjf18340/webots
60d441c362031ab8fde120cc0cd97bdb1a31a3d5
[ "Apache-2.0" ]
1
2019-11-13T08:12:02.000Z
2019-11-13T08:12:02.000Z
projects/objects/buildings/protos/textures/colored_textures/textures_generator.py
chinakwy/webots
7c35a359848bafe81fe0229ac2ed587528f4c73e
[ "Apache-2.0" ]
null
null
null
projects/objects/buildings/protos/textures/colored_textures/textures_generator.py
chinakwy/webots
7c35a359848bafe81fe0229ac2ed587528f4c73e
[ "Apache-2.0" ]
1
2020-09-25T02:01:45.000Z
2020-09-25T02:01:45.000Z
#!/usr/bin/env python # Copyright 1996-2019 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generate textures prepared for OSM, based on image templates.""" import glob import os from PIL import Image # change directory to this script directory in order to allow this script to be called from another directory. os.chdir(os.path.dirname(os.path.realpath(__file__))) # get all the template files in put them in a list of tuples templates = [] for f in glob.glob("*_diffuse_template.jpg"): templates.append((f, f.replace('_diffuse_', '_color_mask_'))) # target colors # ref: http://wiki.openstreetmap.org/wiki/Key:colour # TODO: is it sufficient? colors = { '000000': (0.0, 0.0, 0.0), 'FFFFFF': (0.84, 0.84, 0.84), '808080': (0.4, 0.4, 0.4), 'C0C0C0': (0.65, 0.65, 0.65), '800000': (0.4, 0.15, 0.15), 'FF0000': (0.45, 0.0, 0.0), '808000': (0.4, 0.4, 0.2), 'FFFF00': (0.7, 0.6, 0.15), '008000': (0.15, 0.3, 0.15), '00FF00': (0.55, 0.69, 0.52), '008080': (0.15, 0.3, 0.3), '00FFFF': (0.6, 0.7, 0.7), '000080': (0.2, 0.2, 0.3), '0000FF': (0.4, 0.4, 0.75), '800080': (0.5, 0.4, 0.5), 'FF00FF': (0.9, 0.75, 0.85), 'F5DEB3': (0.83, 0.78, 0.65), '8B4513': (0.3, 0.1, 0.05) } effectFactor = 0.5 # power of the effect, found empirically # foreach template for template in templates: # load the templates diffuse = Image.open(template[0]) mask = Image.open(template[1]) assert diffuse.size == mask.size width, height = diffuse.size # create an image per color for colorString, color in colors.iteritems(): image = Image.new('RGB', diffuse.size) pixels = image.load() for x in range(height): for y in range(width): dR, dG, dB = diffuse.getpixel((x, y)) mR, mG, mB = mask.getpixel((x, y)) r = dR + int(255.0 * (mR / 255.0) * (color[0] * 2.0 - 1.0) * effectFactor) g = dG + int(255.0 * (mG / 255.0) * (color[1] * 2.0 - 1.0) * effectFactor) b = dB + int(255.0 * (mB / 255.0) * (color[2] * 2.0 - 1.0) * effectFactor) pixels[x, y] = (r, g, b) image.save(template[0].replace('_diffuse_template', '_' + colorString))
35.063291
110
0.605415
d4af2a44bf54fabe00a0ec0f2c572fb0bf043633
92
py
Python
tutorial/test_env.py
viz4biz/PyDataNYC2015
066154ea9f1837c355e6108a28b85889f3020da3
[ "Apache-2.0" ]
11
2015-11-11T13:57:21.000Z
2019-08-14T15:53:43.000Z
tutorial/test_env.py
viz4biz/PyDataNYC2015
066154ea9f1837c355e6108a28b85889f3020da3
[ "Apache-2.0" ]
null
null
null
tutorial/test_env.py
viz4biz/PyDataNYC2015
066154ea9f1837c355e6108a28b85889f3020da3
[ "Apache-2.0" ]
6
2015-11-11T13:57:25.000Z
2018-09-12T07:53:03.000Z
""" test local env """ import os for k, v in os.environ.iteritems(): print k, '=', v
9.2
35
0.565217
d4b0acbd3ae55e6638c516e22ca4f69932aebab2
27,844
py
Python
project2/marriage.py
filipefborba/MarriageNSFG
d550301fbb9d80ddabf391a6168d2c8636113ed9
[ "MIT" ]
null
null
null
project2/marriage.py
filipefborba/MarriageNSFG
d550301fbb9d80ddabf391a6168d2c8636113ed9
[ "MIT" ]
null
null
null
project2/marriage.py
filipefborba/MarriageNSFG
d550301fbb9d80ddabf391a6168d2c8636113ed9
[ "MIT" ]
null
null
null
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import bisect import numpy as np import pandas as pd import scipy.stats import gzip import matplotlib.pyplot as plt from collections import defaultdict from collections import OrderedDict from collections import Counter import thinkstats2 import thinkplot import survival def ResampleResps(resps, remove_missing=False, jitter=0): """Resamples each dataframe and then concats them. resps: list of DataFrame returns: DataFrame """ # we have to resample the data from each cycle separately samples = [ResampleRowsWeighted(resp) for resp in resps] # then join the cycles into one big sample sample = pd.concat(samples, ignore_index=True, sort=False) # remove married people with unknown marriage dates if remove_missing: sample = sample[~sample.missing] # jittering the ages reflects the idea that the resampled people # are not identical to the actual respondents if jitter: Jitter(sample, 'age', jitter=jitter) Jitter(sample, 'agemarry', jitter=jitter) DigitizeResp(resp) return sample def ResampleRowsWeighted(df, column='finalwgt'): """Resamples the rows in df in accordance with a weight column. df: DataFrame returns: DataFrame """ weights = df['finalwgt'].copy() weights /= sum(weights) indices = np.random.choice(df.index, len(df), replace=True, p=weights) return df.loc[indices] def Jitter(df, column, jitter=1): """Adds random noise to a column. df: DataFrame column: string column name jitter: standard deviation of noise """ df[column] += np.random.uniform(-jitter, jitter, size=len(df)) def EstimateSurvival(resp, cutoff=None): """Estimates the survival curve. resp: DataFrame of respondents cutoff: where to truncate the estimated functions returns: pair of HazardFunction, SurvivalFunction """ complete = resp.loc[resp.complete, 'complete_var'].dropna() ongoing = resp.loc[~resp.complete, 'ongoing_var'].dropna() hf = survival.EstimateHazardFunction(complete, ongoing) if cutoff: hf.Truncate(cutoff) sf = hf.MakeSurvival() return hf, sf def PropensityMatch(target, group, colname='agemarry'): """Choose a random subset of `group` to matches propensity with `target`. target: DataFrame group: DataFrame colname: string name of column with propensity scores returns: DataFrame with sample of rows from `group` """ rv = scipy.stats.norm(scale=1) values = group[colname].fillna(100) indices = [ChooseIndex(value) for value in target[colname]] return group.loc[indices] def EstimateSurvivalByCohort(resps, iters=101, cutoffs=None, predict_flag=False, prop_match=None, error_rate=0): """Makes survival curves for resampled data. resps: list of DataFrames iters: number of resamples to plot predict_flag: whether to also plot predictions cutoffs: map from cohort to the first unreliable age_index returns: map from group name to list of survival functions """ if cutoffs == None: cutoffs = {} sf_map = defaultdict(list) # iters is the number of resampling runs to make for i in range(iters): sample = ResampleResps(resps) # group by decade grouped = sample.groupby('birth_index') if prop_match: last = grouped.get_group(prop_match) # and estimate (hf, sf) for each group hf_map = OrderedDict() for name, group in iter(grouped): if prop_match: group = PropensityMatch(last, group) if error_rate: AddErrors(group, 'complete_missing', error_rate) AddErrors(group, 'ongoing_missing', error_rate) # the amount of missing data is small; I think it is better # to drop it than to fill with random data #FillMissingColumn(group, 'complete_var', 'complete_missing') #FillMissingColumn(group, 'ongoing_var', 'ongoing_missing') cutoff = cutoffs.get(name, 100) hf_map[name] = EstimateSurvival(group, cutoff) # make predictions if desired if predict_flag: MakePredictions(hf_map) # extract the sf from each pair and accumulate the results for name, (hf, sf) in hf_map.items(): sf_map[name].append(sf) return sf_map def AddErrors(group, colname, error_rate): """ NOTE: This will not work if there are actual missing values! """ group[colname] = np.random.random(len(group)) < error_rate def FillMissingColumn(group, colname, missing_colname): """Fills missing values of the given column. group: DataFrame colname: string """ null = group[group[missing_colname]] if len(null) == 0: return # print(len(null), len(group)) valid = group[colname].dropna() fill = valid.sample(len(null), replace=True) fill.index = null.index group[colname].fillna(fill, inplace=True) def PlotSurvivalFunctions(sf_map, predict_flag=False, colormap=None): """Plot estimated survival functions. sf_map: map from group name to sequence of survival functions predict_flag: whether the lines are predicted or actual colormap: map from group name to color """ for name, sf_seq in sorted(sf_map.items(), reverse=True): if len(sf_seq) == 0: continue sf = sf_seq[0] if len(sf) == 0: continue ts, rows = MakeSurvivalCI(sf_seq, [10, 50, 90]) thinkplot.FillBetween(ts, rows[0], rows[2], color='gray', alpha=0.2) if not predict_flag: if colormap: color = colormap[name] thinkplot.Plot(ts, rows[1], label='%ds'%name, color=color) else: thinkplot.Plot(ts, rows[1], label='%ds'%name) def MakePredictions(hf_map): """Extends a set of hazard functions and recomputes survival functions. For each group in hf_map, we extend hf and recompute sf. hf_map: map from group name to (HazardFunction, SurvivalFunction) """ names = list(hf_map.keys()) names.sort() hfs = [hf_map[name][0] for name in names] # extend each hazard function using data from the previous cohort, # and update the survival function for i, name in enumerate(names): hf, sf = hf_map[name] if i > 0: hf.Extend(hfs[i-1]) sf = hf.MakeSurvival() hf_map[name] = hf, sf def MakeSurvivalCI(sf_seq, percents): """Makes confidence intervals from a list of survival functions. sf_seq: list of SurvivalFunction percents: list of percentiles to select, like [5, 95] returns: (ts, rows) where ts is a sequence of times and rows contains one row of values for each percent """ # find the union of all ts where the sfs are evaluated ts = set() for sf in sf_seq: ts |= set(sf.ts) ts = list(ts) ts.sort() # evaluate each sf at all times ss_seq = [sf.Probs(ts) for sf in sf_seq if len(sf) > 0] # return the requested percentiles from each column rows = thinkstats2.PercentileRows(ss_seq, percents) return ts, rows def ReadFemResp1982(): """Reads respondent data from NSFG Cycle 3. returns: DataFrame """ dat_file = '1982NSFGData.dat.gz' names = ['finalwgt', 'ageint', 'mar2p', 'cmmarrhx', 'fmarital', 'cmintvw', 'cmbirth', 'f18m1', 'cmdivorcx', 'cmstphsbx', 'fmarno'] colspecs = [(976-1, 982), (1001-1, 1002), (1268-1, 1271), (1037-1, 1040), (1041-1, 1041), (841-1, 844), (12-1, 15), (606-1, 606), (619-1, 622), (625-1, 628), (1142-1, 1143), ] df = pd.read_fwf(dat_file, colspecs=colspecs, names=names, header=None, nrows=7969, compression='gzip') df.cmintvw.replace([9797, 9898, 9999], np.nan, inplace=True) df.cmbirth.replace([9797, 9898, 9999], np.nan, inplace=True) df.cmmarrhx.replace([9797, 9898, 9999], np.nan, inplace=True) df.cmdivorcx.replace([9797, 9898, 9999], np.nan, inplace=True) df.cmstphsbx.replace([9797, 9898, 9999], np.nan, inplace=True) df.f18m1.replace([7, 8, 9], np.nan, inplace=True) # CM values above 9000 indicate month unknown df.loc[df.cmintvw>9000, 'cmintvw'] -= 9000 df.loc[df.cmbirth>9000, 'cmbirth'] -= 9000 df.loc[df.cmmarrhx>9000, 'cmmarrhx'] -= 9000 df.loc[df.cmdivorcx>9000, 'cmdivorcx'] -= 9000 df.loc[df.cmstphsbx>9000, 'cmstphsbx'] -= 9000 df['evrmarry'] = (df.fmarno > 0) df['divorced'] = (df.f18m1 == 4) df['separated'] = (df.f18m1 == 5) df['widowed'] = (df.f18m1 == 3) df['stillma'] = (df.fmarno==1) & (df.fmarital==1) df['cycle'] = 3 CleanResp(df) return df def ReadFemResp1988(): """Reads respondent data from NSFG Cycle 4. Read as if were a standard ascii file returns: DataFrame """ filename = '1988FemRespDataLines.dat.gz' names = ['finalwgt', 'ageint', 'currentcm', 'firstcm', 'cmintvw', 'cmbirth', 'f23m1', 'cmdivorcx', 'cmstphsbx', 'fmarno'] colspecs = [(2568-1, 2574), (36-1, 37), (1521-1, 1525), (1538-1, 1542), (12-1, 16), (26-1, 30), (1554-1, 1554), (1565-1, 1569), (1570-1, 1574), (2441-1, 2442), ] df = pd.read_fwf(filename, colspecs=colspecs, names=names, header=None, compression='gzip') df.cmintvw.replace([0, 99999], np.nan, inplace=True) df.cmbirth.replace([0, 99999], np.nan, inplace=True) df.firstcm.replace([0, 99999], np.nan, inplace=True) df.currentcm.replace([0, 99999], np.nan, inplace=True) df.cmdivorcx.replace([0, 99999], np.nan, inplace=True) df.cmstphsbx.replace([0, 99999], np.nan, inplace=True) # CM values above 9000 indicate month unknown df.loc[df.cmintvw>90000, 'cmintvw'] -= 90000 df.loc[df.cmbirth>90000, 'cmbirth'] -= 90000 df.loc[df.firstcm>90000, 'firstcm'] -= 90000 df.loc[df.currentcm>90000, 'currentcm'] -= 90000 df.loc[df.cmdivorcx>90000, 'cmdivorcx'] -= 90000 df.loc[df.cmstphsbx>90000, 'cmstphsbx'] -= 90000 # combine current and first marriage df['cmmarrhx'] = df.firstcm df.cmmarrhx.fillna(df.currentcm, inplace=True) # define evrmarry if either currentcm or firstcm is non-zero df['evrmarry'] = (df.fmarno > 0) df['divorced'] = (df.f23m1==2) df['separated'] = (df.f23m1==3) df['widowed'] = (df.f23m1==1) df['stillma'] = (df.fmarno==1) & (df.f23m1.isnull()) df['cycle'] = 4 CleanResp(df) return df def ReadFemResp1995(): """Reads respondent data from NSFG Cycle 5. returns: DataFrame """ dat_file = '1995FemRespData.dat.gz' names = ['cmintvw', 'timesmar', 'cmmarrhx', 'cmbirth', 'finalwgt', 'marend01', 'cmdivorcx', 'cmstphsbx', 'marstat'] colspecs = [(12360-1, 12363), (4637-1, 4638), (11759-1, 11762), (14-1, 16), (12350-1, 12359), (4713-1, 4713), (4718-1, 4721), (4722-1, 4725), (17-1, 17)] df = pd.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) invalid = [9997, 9998, 9999] df.cmintvw.replace(invalid, np.nan, inplace=True) df.cmbirth.replace(invalid, np.nan, inplace=True) df.cmmarrhx.replace(invalid, np.nan, inplace=True) df.cmdivorcx.replace(invalid, np.nan, inplace=True) df.cmstphsbx.replace(invalid, np.nan, inplace=True) df.timesmar.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.timesmar > 0) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.timesmar==1) & (df.marend01.isnull()) df['cycle'] = 5 CleanResp(df) return df def ReadFemResp2002(): """Reads respondent data from NSFG Cycle 6. returns: DataFrame """ usecols = ['caseid', 'cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'parity', 'finalwgt', 'mardat01', 'marend01', 'mardis01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2002FemResp.dct', '2002FemResp.dat.gz', usecols=usecols) invalid = [9997, 9998, 9999] df.cmintvw.replace(invalid, np.nan, inplace=True) df.cmbirth.replace(invalid, np.nan, inplace=True) df.cmmarrhx.replace(invalid, np.nan, inplace=True) df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['cycle'] = 6 CleanResp(df) return df def ReadFemResp2010(): """Reads respondent data from NSFG Cycle 7. returns: DataFrame """ usecols = ['caseid', 'cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'parity', 'wgtq1q16', 'mardat01', 'marend01', 'mardis01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2006_2010_FemRespSetup.dct', '2006_2010_FemResp.dat.gz', usecols=usecols) invalid = [9997, 9998, 9999] df.cmintvw.replace(invalid, np.nan, inplace=True) df.cmbirth.replace(invalid, np.nan, inplace=True) df.cmmarrhx.replace(invalid, np.nan, inplace=True) df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgtq1q16 df['cycle'] = 7 CleanResp(df) return df def ReadFemResp2013(): """Reads respondent data from NSFG Cycle 8. returns: DataFrame """ usecols = ['caseid', 'cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'parity', 'wgt2011_2013', 'mardat01', 'marend01', 'mardis01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2011_2013_FemRespSetup.dct', '2011_2013_FemRespData.dat.gz', usecols=usecols) invalid = [9997, 9998, 9999] df.cmintvw.replace(invalid, np.nan, inplace=True) df.cmbirth.replace(invalid, np.nan, inplace=True) df.cmmarrhx.replace(invalid, np.nan, inplace=True) df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgt2011_2013 df['cycle'] = 8 CleanResp(df) return df def ReadFemResp2015(): """Reads respondent data from NSFG Cycle 9. returns: DataFrame """ usecols = ['caseid', 'cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'parity', 'wgt2013_2015', 'mardat01', 'marend01', 'mardis01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2013_2015_FemRespSetup.dct', '2013_2015_FemRespData.dat.gz', usecols=usecols) invalid = [9997, 9998, 9999] df.cmintvw.replace(invalid, np.nan, inplace=True) df.cmbirth.replace(invalid, np.nan, inplace=True) df.cmmarrhx.replace(invalid, np.nan, inplace=True) df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgt2013_2015 df['cycle'] = 9 CleanResp(df) return df def ReadFemResp2017(): """Reads respondent data from NSFG Cycle 10. returns: DataFrame """ # removed 'cmmarrhx', 'cmdivorcx', 'cmbirth', usecols = ['caseid', 'cmintvw', 'ager', 'evrmarry', 'parity', 'wgt2015_2017', 'mardat01', 'marend01', 'mardis01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2015_2017_FemRespSetup.dct', '2015_2017_FemRespData.dat.gz', usecols=usecols) invalid = [9997, 9998, 9999] df.cmintvw.replace(invalid, np.nan, inplace=True) #df.cmbirth.replace(invalid, np.nan, inplace=True) #df.cmmarrhx.replace(invalid, np.nan, inplace=True) # since cmbirth and cmmarrhx are no longer included, # we have to compute them based on other variables; # the result can be off by up to 12 months df['cmbirth'] = df.cmintvw - df.ager*12 df['cmmarrhx'] = (df.mardat01-1900) * 12 df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgt2015_2017 df['cycle'] = 10 # Instead of calling CleanResp, we have to customize #CleanResp(df) df['agemarry'] = (df.cmmarrhx - df.cmbirth) / 12.0 df['age'] = (df.cmintvw - df.cmbirth) / 12.0 # if married, we need agemarry; if not married, we need age df['missing'] = np.where(df.evrmarry, df.agemarry.isnull(), df.age.isnull()) month0 = pd.to_datetime('1899-12-15') dates = [month0 + pd.DateOffset(months=cm) for cm in df.cmbirth] df['year'] = (pd.DatetimeIndex(dates).year - 1900) DigitizeResp(df) return df def ReadResp(dct_file, dat_file, **options): """Reads the NSFG respondent data. dct_file: string file name dat_file: string file name returns: DataFrame """ dct = thinkstats2.ReadStataDct(dct_file, encoding='iso-8859-1') df = dct.ReadFixedWidth(dat_file, compression='gzip', **options) return df def CleanResp(resp): """Cleans a respondent DataFrame. resp: DataFrame of respondents Adds columns: agemarry, age, decade, fives """ resp['agemarry'] = (resp.cmmarrhx - resp.cmbirth) / 12.0 resp['age'] = (resp.cmintvw - resp.cmbirth) / 12.0 # if married, we need agemarry; if not married, we need age resp['missing'] = np.where(resp.evrmarry, resp.agemarry.isnull(), resp.age.isnull()) month0 = pd.to_datetime('1899-12-15') dates = [month0 + pd.DateOffset(months=cm) for cm in resp.cmbirth] resp['year'] = (pd.DatetimeIndex(dates).year - 1900) #resp['decade'] = resp.year // 10 #resp['fives'] = resp.year // 5 DigitizeResp(resp) def DigitizeResp(df): """Computes indices for age, agemarry, and birth year. Groups each of these variables into bins and then assigns an index to each bin. For example, anyone between 30 and 30.99 year old is assigned age_index 30. Anyone born in the 80s is given the year_index 80. This function allows me to run the analysis with different levels of granularity. df: DataFrame """ age_min = 10 age_max = 55 age_step = 1 age_bins = np.arange(age_min, age_max, age_step) year_min = 0 year_max = 120 year_step = 10 year_bins = np.arange(year_min, year_max, year_step) df['age_index'] = np.digitize(df.age, age_bins) * age_step df.age_index += age_min - age_step df.loc[df.age.isnull(), 'age_index'] = np.nan df['agemarry_index'] = np.digitize(df.agemarry, age_bins) * age_step df.agemarry_index += age_min - age_step df.loc[df.agemarry.isnull(), 'agemarry_index'] = np.nan df['birth_index'] = np.digitize(df.year, year_bins) * year_step df.birth_index += year_min - year_step def ReadCanadaCycle5(): """ """ #age at first marriage: CC232 #age of respondent at interview: C3 #final weight: C1 #marital status: C5 #Respondent every married: CC227 pass def ReadCanadaCycle6(): """ """ #age at first marriage: CC232 #age of respondent at interview: C3 #final weight: C1 #marital status: C5 #Respondent every married: CC227 pass def ReadMaleResp2002(): """Reads respondent data from NSFG Cycle 6. returns: DataFrame """ usecols = ['caseid', 'mardat01', 'cmdivw', 'cmbirth', 'cmintvw', 'evrmarry', 'finalwgt', 'fmarit', 'timesmar', 'marrend4', #'marrend', 'marrend2', 'marrend3', marrend5', 'marrend6', ] df = ReadResp('2002Male.dct', '2002Male.dat.gz', usecols=usecols) #df.marrend.replace([8,9], np.nan, inplace=True) #df.marrend2.replace([8,9], np.nan, inplace=True) #df.marrend3.replace([8,9], np.nan, inplace=True) df.marrend4.replace([8,9], np.nan, inplace=True) #df.marrend5.replace([8,9], np.nan, inplace=True) #df.marrend6.replace([8,9], np.nan, inplace=True) df.timesmar.replace([98,99], np.nan, inplace=True) # the way marriage ends are recorded is really confusing, # but it looks like marrend4 is the end of the first marriage. df['marend01'] = df.marrend4 df['cmmarrhx'] = df.mardat01 df['evrmarry'] = (df.timesmar > 0) df['divorced'] = (df.marend01==2) | (df.marend01==3) df['separated'] = (df.marend01==4) df['widowed'] = (df.marend01==1) df['stillma'] = (df.timesmar== 1) & (df.fmarit==1) df['cycle'] = 6 CleanResp(df) return df def ReadMaleResp2010(): """Reads respondent data from NSFG Cycle 7. returns: DataFrame """ usecols = ['caseid', 'mardat01', 'cmdivw', 'cmbirth', 'cmintvw', 'evrmarry', 'wgtq1q16', 'marend01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2006_2010_MaleSetup.dct', '2006_2010_Male.dat.gz', usecols=usecols) df['cmmarrhx'] = df.mardat01 df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgtq1q16 df['cycle'] = 7 CleanResp(df) return df def ReadMaleResp2013(): """Reads respondent data from NSFG Cycle 8. returns: DataFrame """ usecols = ['caseid', 'mardat01', 'cmdivw', 'cmbirth', 'cmintvw', 'evrmarry', 'wgt2011_2013', 'marend01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2011_2013_MaleSetup.dct', '2011_2013_MaleData.dat.gz', usecols=usecols) df['cmmarrhx'] = df.mardat01 df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgt2011_2013 df['cycle'] = 8 CleanResp(df) return df def ReadMaleResp2015(): """Reads respondent data from NSFG Cycle 9. returns: DataFrame """ usecols = ['caseid', 'mardat01', 'cmdivw', 'cmbirth', 'cmintvw', 'evrmarry', 'wgt2013_2015', 'marend01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2013_2015_MaleSetup.dct', '2013_2015_MaleData.dat.gz', usecols=usecols) df['cmmarrhx'] = df.mardat01 df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgt2013_2015 df['cycle'] = 9 CleanResp(df) return df def ReadMaleResp2017(): """Reads respondent data from NSFG Cycle 10. returns: DataFrame """ usecols = ['caseid', 'mardat01', 'cmintvw', 'ager', 'evrmarry', 'wgt2015_2017', 'marend01', 'rmarital', 'fmarno', 'mar1diss'] df = ReadResp('2015_2017_MaleSetup.dct', '2015_2017_MaleData.dat.gz', usecols=usecols) # since cmbirth and cmmarrhx are no longer included, # we have to compute them based on other variables; # the result can be off by up to 12 months df['cmbirth'] = df.cmintvw - df.ager*12 df['cmmarrhx'] = (df.mardat01-1900) * 12 df['evrmarry'] = (df.evrmarry==1) df['divorced'] = (df.marend01==1) df['separated'] = (df.marend01==2) df['widowed'] = (df.marend01==3) df['stillma'] = (df.fmarno == 1) & (df.rmarital==1) df['finalwgt'] = df.wgt2015_2017 df['cycle'] = 10 # Instead of calling CleanResp, we have to customize #CleanResp(df) df['agemarry'] = (df.cmmarrhx - df.cmbirth) / 12.0 df['age'] = (df.cmintvw - df.cmbirth) / 12.0 # if married, we need agemarry; if not married, we need age df['missing'] = np.where(df.evrmarry, df.agemarry.isnull(), df.age.isnull()) month0 = pd.to_datetime('1899-12-15') dates = [month0 + pd.DateOffset(months=cm) for cm in df.cmbirth] df['year'] = (pd.DatetimeIndex(dates).year - 1900) DigitizeResp(df) return df if __name__ == '__main__': main()
29.064718
79
0.599196
d4b13f250b052bca7bffe7a5880d063d7c169a7e
3,955
py
Python
xfel/merging/application/reflection_table_utils.py
ErwinP/cctbx_project
58f9fb5ed38c7391510e892f0ca9520467b692c1
[ "BSD-3-Clause-LBNL" ]
null
null
null
xfel/merging/application/reflection_table_utils.py
ErwinP/cctbx_project
58f9fb5ed38c7391510e892f0ca9520467b692c1
[ "BSD-3-Clause-LBNL" ]
null
null
null
xfel/merging/application/reflection_table_utils.py
ErwinP/cctbx_project
58f9fb5ed38c7391510e892f0ca9520467b692c1
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import absolute_import, division, print_function from six.moves import range from dials.array_family import flex import math
40.357143
147
0.683439
d4b1cf0c1cabef461b1902ca1dbcbf5165c73bc9
45,496
py
Python
rpython/memory/test/test_transformed_gc.py
jptomo/pypy-lang-scheme
55edb2cec69d78f86793282a4566fcbc1ef9fcac
[ "MIT" ]
1
2019-11-25T10:52:01.000Z
2019-11-25T10:52:01.000Z
rpython/memory/test/test_transformed_gc.py
jptomo/pypy-lang-scheme
55edb2cec69d78f86793282a4566fcbc1ef9fcac
[ "MIT" ]
null
null
null
rpython/memory/test/test_transformed_gc.py
jptomo/pypy-lang-scheme
55edb2cec69d78f86793282a4566fcbc1ef9fcac
[ "MIT" ]
null
null
null
import py import inspect from rpython.rlib.objectmodel import compute_hash, compute_identity_hash from rpython.translator.c import gc from rpython.annotator import model as annmodel from rpython.rtyper.llannotation import SomePtr from rpython.rtyper.lltypesystem import lltype, llmemory, rffi, llgroup from rpython.memory.gctransform import framework, shadowstack from rpython.rtyper.lltypesystem.lloperation import llop, void from rpython.rlib.objectmodel import compute_unique_id, we_are_translated from rpython.rlib.debug import ll_assert from rpython.rlib import rgc from rpython.conftest import option from rpython.rlib.rstring import StringBuilder from rpython.rlib.rarithmetic import LONG_BIT WORD = LONG_BIT // 8 ARGS = lltype.FixedSizeArray(lltype.Signed, 3) # ________________________________________________________________ # ________________________________________________________________ # tagged pointers from rpython.rlib.objectmodel import UnboxedValue
31.904628
93
0.512638
d4b2424c1e77c6c44ed58c02c4ec0dcbec8b6934
132
py
Python
build/lib/rigidregistration/__init__.py
kem-group/rigidRegistration
cd6bef208d4b475954e2b3970d6ec11c15f61d70
[ "MIT" ]
3
2021-10-07T18:01:32.000Z
2022-03-10T17:01:32.000Z
build/lib/rigidregistration/__init__.py
kem-group/rigidRegistration
cd6bef208d4b475954e2b3970d6ec11c15f61d70
[ "MIT" ]
null
null
null
build/lib/rigidregistration/__init__.py
kem-group/rigidRegistration
cd6bef208d4b475954e2b3970d6ec11c15f61d70
[ "MIT" ]
1
2022-03-10T17:01:36.000Z
2022-03-10T17:01:36.000Z
from . import utils from . import display from . import save from . import FFTW from . import stackregistration __version__="0.2.1"
18.857143
31
0.765152
d4b2a9a044269ea09a095573c7237e7f034915c1
5,359
py
Python
torchmetrics/retrieval/retrieval_fallout.py
rudaoshi/metrics
c018348619bd7e375cb86abf7dfcaddb7208a36d
[ "Apache-2.0" ]
null
null
null
torchmetrics/retrieval/retrieval_fallout.py
rudaoshi/metrics
c018348619bd7e375cb86abf7dfcaddb7208a36d
[ "Apache-2.0" ]
null
null
null
torchmetrics/retrieval/retrieval_fallout.py
rudaoshi/metrics
c018348619bd7e375cb86abf7dfcaddb7208a36d
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Optional import pangu.core.backend as B from pangu.core.backend import Tensor, tensor from torchmetrics.functional.retrieval.fall_out import retrieval_fall_out from torchmetrics.retrieval.retrieval_metric import RetrievalMetric from torchmetrics.utilities.data import get_group_indexes
40.598485
120
0.630715
d4b30ff4f1cdba84270695cf02e3415880246ea6
5,458
py
Python
pydlm/tests/base/testKalmanFilter.py
onnheimm/pydlm
4693af6e621e3b75feda7ca15327b69a4ca622a7
[ "BSD-3-Clause" ]
423
2016-09-15T06:45:26.000Z
2022-03-29T08:41:11.000Z
pydlm/tests/base/testKalmanFilter.py
onnheimm/pydlm
4693af6e621e3b75feda7ca15327b69a4ca622a7
[ "BSD-3-Clause" ]
50
2016-09-14T19:45:49.000Z
2021-07-26T17:04:10.000Z
pydlm/tests/base/testKalmanFilter.py
onnheimm/pydlm
4693af6e621e3b75feda7ca15327b69a4ca622a7
[ "BSD-3-Clause" ]
99
2016-09-19T08:08:41.000Z
2022-03-07T13:47:36.000Z
import numpy as np import unittest from pydlm.modeler.trends import trend from pydlm.modeler.seasonality import seasonality from pydlm.modeler.builder import builder from pydlm.base.kalmanFilter import kalmanFilter if __name__ == '__main__': unittest.main()
35.212903
80
0.622756
d4b39516d2e47e56ba5e7898643ba4593ea3b27e
349
py
Python
change_threshold_migration.py
arcapix/gpfsapi-examples
15bff7fda7b0a576209253dee48eb44e4c0d565f
[ "MIT" ]
10
2016-05-17T12:58:35.000Z
2022-01-10T05:23:45.000Z
change_threshold_migration.py
arcapix/gpfsapi-examples
15bff7fda7b0a576209253dee48eb44e4c0d565f
[ "MIT" ]
null
null
null
change_threshold_migration.py
arcapix/gpfsapi-examples
15bff7fda7b0a576209253dee48eb44e4c0d565f
[ "MIT" ]
1
2016-09-12T09:07:00.000Z
2016-09-12T09:07:00.000Z
from arcapix.fs.gpfs.policy import PlacementPolicy from arcapix.fs.gpfs.rule import MigrateRule # load placement policy for mmfs1 policy = PlacementPolicy('mmfs1') # create a new migrate rule for 'sata1' r = MigrateRule(source='sata1', threshold=(90, 50)) # add rule to start of the policy policy.rules.insert(r, 0) # save changes policy.save()
23.266667
51
0.759312
d4b440c6e516a3bf9860aad41ef519824e8ea929
158
py
Python
1/puzzle1.py
tjol/advent-of-code-2021
16def395df091d5a8ae9ceb66ba3370554bdf40b
[ "0BSD" ]
1
2021-12-20T19:56:56.000Z
2021-12-20T19:56:56.000Z
1/puzzle1.py
tjol/advent-of-code-2021
16def395df091d5a8ae9ceb66ba3370554bdf40b
[ "0BSD" ]
null
null
null
1/puzzle1.py
tjol/advent-of-code-2021
16def395df091d5a8ae9ceb66ba3370554bdf40b
[ "0BSD" ]
null
null
null
#!/usr/bin/env python3 import sys depths = list(map(int, sys.stdin)) increased = [a > b for (a, b) in zip(depths[1:], depths[:-1])] print(sum(increased))
15.8
62
0.639241
d4b523573d56f337047743520fa550fd29576318
13,961
py
Python
project/app/paste/controllers.py
An0nYm0u5101/Pastebin
aef35abee69ce7ce240d3a3f64bb19446468d30d
[ "MIT" ]
1
2020-08-08T06:07:47.000Z
2020-08-08T06:07:47.000Z
project/app/paste/controllers.py
An0nYm0u5101/Pastebin
aef35abee69ce7ce240d3a3f64bb19446468d30d
[ "MIT" ]
null
null
null
project/app/paste/controllers.py
An0nYm0u5101/Pastebin
aef35abee69ce7ce240d3a3f64bb19446468d30d
[ "MIT" ]
1
2020-08-08T06:07:50.000Z
2020-08-08T06:07:50.000Z
from flask import Blueprint, request, render_template, \ flash, g, session, redirect, url_for, jsonify from app import db, requires_auth from flask_cors import CORS from .models import Paste import uuid from datetime import datetime from app.user.models import User from pygments import highlight from pygments.lexers import get_lexer_by_name, guess_lexer from pygments.formatters import HtmlFormatter from functools import wraps from datetime import datetime from dateutil import parser mod_paste = Blueprint('paste', __name__) CORS(mod_paste) # @mod_paste.route('/<url>/embed', methods=['POST']) # def embed_code(url): # paste = Paste.query.filter(Paste.url == url).first() # return jsonify(paste_text = paste.text,paste_link = url) # @mod_paste.route('/paste', methods=['GET']) # @requires_auth # def get_all_pastes(): # # user_id = session['user_id'] # # pastes = paste.query.filter(paste.user_id == user_id).all() # curr_id = session['user_id'] # user = User.query.filter(User.id == curr_id).first() # paste_list = Paste.query.filter(curr_id == Paste.user_id).all() # url_pre = "/" # for paste in paste_list: # paste.url = url_pre + paste.url # if user.user_type == 1: # return render_template('mypaste.html', paste_list=paste_list) # return render_template('admin_mypaste.html',paste_list = paste_list) # # return jsonify(success=True, pastes=[paste.to_dict() for paste in # # pastes]) # # # @mod_paste.route('/api/paste', methods=['POST']) # @requires_auth # def get_all_pastes_object(): # user_id = session['user_id'] # user = User.query.filter(user_id == User.id).first() # pastes = Paste.query.filter(Paste.user_id == user_id).all() # active = [] # for paste in pastes: # temp_paste = {} # if paste.is_active(): # temp_paste['title'] = paste.title # temp_paste['add_time']=paste.add_time # temp_paste['expire_time']=paste.expire_time # temp_paste['lang']=paste.lang # temp_paste['url']=paste.url # active.append(temp_paste) # # return jsonify({'paste_list':active,'username':user.username}),200 # @mod_paste.route('/paste/<id>', methods=['GET']) # @requires_auth # def get_paste(id): # user_id = session['user_id'] # paste = paste.query.filter( # Paste.id == id, Paste.user_id == user_id).first() # if paste is None: # return render_template("index.html"),4044 # else: # return jsonify(success=True, paste=paste.to_dict()) # @mod_paste.route('/paste/<id>', methods=['POST']) # @requires_auth # def edit_paste(id): # user_id = session['user_id'] # paste = Paste.query.filter( # Paste.id == id, Paste.user_id == user_id).first() # if paste is None: # return render_template("index.html"),4044 # else: # paste.title = request.form['title'] # paste.text = request.form['text'] # paste.color = request.form['color'] # paste.lang = request.form['lang'] # db.session.commit() # return jsonify(success=True) # @mod_paste.route('/<url>', methods=['GET']) # def display_paste(url): # paste = Paste.query.filter(Paste.url == url).first() # style = HtmlFormatter().get_style_defs('.highlight') # lexer = get_lexer_by_name(paste.lang) # formatter = HtmlFormatter(linenos=True, cssclass="highlight") # result = highlight(paste.text, lexer, formatter) # return render_template("view_paste.html", paste_title=paste.title, # paste_lang=paste.lang, highlight_style=style, # @mod_paste.route('/<url>/add_report', methods=['POST']) # @requires_auth # def to_delete(url): # paste_to_delete = Paste.query.filter(Paste.url == url).first() # if paste_to_delete.report_count > 5: # db.session.delete(paste_to_delete) # else: # paste_to_delete.report_count = paste_to_delete.report_count + 1 # db.session.commit() # curr_id = session['user_id'] # paste_list = Paste.query.filter(Paste.user_id == curr_id).all() # url_pre = "/" # for paste in paste_list: # paste.url = url_pre + paste.url # return render_template('mypaste.html', paste_list=paste_list)
34.302211
197
0.698016
d4b56ca40567b39870ee94f1ef850a0b0b2f1d60
8,333
py
Python
control_drone/run_model_on_cam.py
Apiquet/DeepLearningFrameworkFromScratch
798ac42aa1a05286eb148576072e015fd94dbf94
[ "MIT" ]
1
2020-12-18T14:40:49.000Z
2020-12-18T14:40:49.000Z
control_drone/run_model_on_cam.py
Apiquet/DeepLearningFrameworkFromScratch
798ac42aa1a05286eb148576072e015fd94dbf94
[ "MIT" ]
null
null
null
control_drone/run_model_on_cam.py
Apiquet/DeepLearningFrameworkFromScratch
798ac42aa1a05286eb148576072e015fd94dbf94
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This script run neural network model on a camera live stream """ import argparse import cv2 import numpy as np import os import time import sys COMMANDS = {0: "move_forward", 1: "go_down", 2: "rot_10_deg", 3: "go_up", 4: "take_off", 5: "land", 6: "idle"} def send_command(anafi, command_id): """ Function to send commands to an Anafi drone in function of the command id """ if command_id not in COMMANDS: raise f"Command id not in COMMANDS choices: {command_id}" print("The following command will be sent: ", COMMANDS[command_id]) if COMMANDS[command_id] == "move_forward": anafi.move_relative(dx=1, dy=0, dz=0, dradians=0) if COMMANDS[command_id] == "go_down": anafi.move_relative(dx=0, dy=0, dz=-0.5, dradians=0) if COMMANDS[command_id] == "rot_10_deg": anafi.move_relative(dx=0, dy=0, dz=0, dradians=0.785) if COMMANDS[command_id] == "go_up": anafi.move_relative(dx=0, dy=0, dz=0.5, dradians=0) if COMMANDS[command_id] == "take_off": anafi.safe_takeoff(5) if COMMANDS[command_id] == "land": anafi.safe_land(5) return if __name__ == '__main__': main()
29.867384
78
0.531621
d4b5c94f17a9cee798f64b657926900668bb67f6
5,431
py
Python
classify_images.py
rmsare/cs231a-project
91776ada3512d3805de0e66940c9f1c5b3c4c641
[ "MIT" ]
2
2017-11-06T10:23:16.000Z
2019-11-09T15:11:19.000Z
classify_images.py
rmsare/cs231a-project
91776ada3512d3805de0e66940c9f1c5b3c4c641
[ "MIT" ]
null
null
null
classify_images.py
rmsare/cs231a-project
91776ada3512d3805de0e66940c9f1c5b3c4c641
[ "MIT" ]
null
null
null
""" Classification of pixels in images using color and other features. General pipeline usage: 1. Load and segment images (img_utils.py) 2. Prepare training data (label_image.py) 3. Train classifier or cluster data (sklearn KMeans, MeanShift, SVC, etc.) 4. Predict labels on new image or directory (classify_directory()) 5. Apply classification to 3D points and estimate ground plane orientation (process_pointcloud.py) Project uses the following directory structure: images/ - contains binary files of numpy arrays corresponding to survey images and segmentations labelled/ - contains labelled ground truth images or training data results/ - contains results of classification I store randomly split training and testing images in test/ and train/ directories. Author: Robert Sare E-mail: [email protected] Date: 8 June 2017 """ import numpy as np import matplotlib.pyplot as plt import skimage.color, skimage.io from skimage.segmentation import mark_boundaries from sklearn.svm import SVC from sklearn.cluster import KMeans, MeanShift from sklearn.metrics import confusion_matrix from sklearn.utils import shuffle import os, fnmatch def classify_directory(classifier, test_dir, train_dir='train/'): """ Classify all images in a directory using an arbitrary sklearn classifier. Saves results to results/ directory. """ # XXX: This is here if the classifier needs to be trained from scratch #print("Preparing training data...") #n_samples = 1000 #train_data, train_labels = load_training_images(train_dir, n_samples) # #print("Training classifier...") #classifier = ImageSVC() #classifier.fit(train_data, train_labels) files = os.listdir(test_dir) for f in files: image = skimage.io.imread(f) height, width, depth = image.shape print("Predicting labels for " + f.strip('.JPG') + ".jpg") features = compute_colorxy_features(image) features /= features.max(axis=0) pred_labels = classifier.predict(features) print("Saving predictions for " + f.strip('.JPG') + ".jpg") plt.figure() plt.imshow(image) plt.imshow(pred_labels.reshape((height, width)), alpha=0.5, vmin=0, vmax=2) plt.show(block=False) plt.savefig('results/' + f.strip('.JPG') + '_svm_pred.png') plt.close() np.save('results/' + f.strip('.JPG') + 'svm.npy', pred_labels.reshape((height,width))) def compute_colorxy_features(image): """ Extract and normalize color and pixel location features from image data """ height, width, depth = image.shape colors = skimage.color.rgb2lab(image.reshape((height*width, depth)) X, Y = np.meshgrid(np.arange(height), np.arange(width)) xy = np.hstack([X.reshape((height*width, 1)), Y.reshape((height*width, 1))]) colorxy = np.hstack([xy, colors]) colorxy /= colorxy.max(axis=0) return colorxy def load_ground_truth(filename): """ Load ground truth or training image array and redefine labelling for nice default colors """ truth = np.load(filename) # Change labels for nice default colorscale when plotted truth = truth - 1 truth[truth == -1] = 0 truth[truth == 0] = 5 truth[truth == 2] = 0 truth[truth == 5] = 2 return truth def load_image_labels(name): """ Load image and labels from previous labelling session """ fname = 'images/' + name + '_image.npy' image = np.load(fname) fname = 'labelled/' + name + '_labels.npy' labels = np.load(fname) return image, labels def plot_class_image(image, segments, labels): """ Display image with segments and class label overlay """ plt.figure() plt.subplot(1,2,1) plt.imshow(mark_boundaries(image, segments, color=(1,0,0), mode='thick')) plt.title('segmented image') plt.subplot(1,2,2) plt.imshow(image) plt.imshow(labels, alpha=0.75) cb = plt.colorbar(orientation='horizontal', shrink=0.5) plt.title('predicted class labels') plt.show(block=False) def load_training_images(train_dir, n_samples=1000, n_features=3): """ Load training images from directory and subsample for training or validation """ train_data = np.empty((0, n_features)) train_labels = np.empty(0) files = os.listdir(train_dir) for f in files: name = parse_filename(f) image, labels = load_image_labels(name) ht, wid, depth = image.shape train_data = np.append(train_data, compute_color_features(image), axis=0) train_labels = np.append(train_labels, labels.reshape(wid*ht, 1).ravel()) train_data, train_labels = shuffle(train_data, train_labels, random_state=0, n_samples=n_samples) return train_data, train_labels def save_prediction(name, pred_labels): """ Save predicted class labels """ np.save('results/' + name + '_pred', pred_labels) if __name__ == "__main__": # Load training data train_dir = 'train/' test_dir = 'test/' train_data, train_labels = load_training_data(train_dir) # Train classifier clf = SVC() clf.fit(train_data, train_labels) # Predict labels for test images classify_directory(clf, test_dir)
30.857955
104
0.662861
d4b78df5fd076f594376f0529e58415b66407a89
579
py
Python
quick_start/my_text_classifier/predictors/sentence_classifier_predictor.py
ramild/allennlp-guide
4cff916e7bc4629184bc70594e213ef56e14ec70
[ "MIT" ]
71
2020-06-06T03:12:44.000Z
2022-03-12T20:21:48.000Z
quick_start/my_text_classifier/predictors/sentence_classifier_predictor.py
ramild/allennlp-guide
4cff916e7bc4629184bc70594e213ef56e14ec70
[ "MIT" ]
50
2020-06-18T14:19:15.000Z
2022-03-28T07:04:16.000Z
quick_start/my_text_classifier/predictors/sentence_classifier_predictor.py
ramild/allennlp-guide
4cff916e7bc4629184bc70594e213ef56e14ec70
[ "MIT" ]
37
2020-06-05T19:08:44.000Z
2022-03-17T08:23:41.000Z
from allennlp.common import JsonDict from allennlp.data import DatasetReader, Instance from allennlp.models import Model from allennlp.predictors import Predictor from overrides import overrides
34.058824
65
0.775475
d4b832afc1a419832477a3ad699f701ea5d77522
3,357
py
Python
ciphers/SKINNY-TK2/SKINNY-TK2/skinnytk2.py
j-danner/autoguess
712a8dcfb259a277b2b2a499bd7c5fc4aab97b67
[ "MIT" ]
7
2021-11-29T07:25:43.000Z
2022-03-02T10:15:30.000Z
ciphers/SKINNY-TK2/SKINNY-TK2/skinnytk2.py
j-danner/autoguess
712a8dcfb259a277b2b2a499bd7c5fc4aab97b67
[ "MIT" ]
1
2022-03-30T16:29:50.000Z
2022-03-30T16:29:50.000Z
ciphers/SKINNY-TK2/SKINNY-TK2/skinnytk2.py
j-danner/autoguess
712a8dcfb259a277b2b2a499bd7c5fc4aab97b67
[ "MIT" ]
1
2022-03-30T13:40:12.000Z
2022-03-30T13:40:12.000Z
# Created on Sep 7, 2020 # author: Hosein Hadipour # contact: [email protected] import os output_dir = os.path.curdir def skinnytk2(R=1): """ This function generates the relations of Skinny-n-n for R rounds. tk ================================================> TWEAKEY_P(tk) ===> --- SB AC | P MC SB AC | x_0 ===> x_0 ===> x_0 ===> + ===> y_0 ===> P(y_0) ===> x_1 ===> x_1 ===> x_1 ===> + ===> y_1 ===> --- """ cipher_name = 'skinnytk2' P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12] TKP = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] tk1 = ['tk1_%d' % i for i in range(16)] tk2 = ['tk2_%d' % i for i in range(16)] # 1 round # recommended_mg = 8 # recommended_ms = 4 # 2 rounds # recommended_mg = 16 # recommended_ms = 8 # 3 rounds # recommended_mg = 19 # recommended_ms = 24 # 4 rounds # recommended_mg = 21 # recommended_ms = 27 # 5 rounds # recommended_mg = 22 # recommended_ms = 35 # 6 rounds # recommended_mg = 25 # recommended_ms = 40 # 7 rounds # recommended_mg = 26 # recommended_ms = 70 # 8 rounds # recommended_mg = 28 # recommended_ms = 80 # 9 rounds # recommended_mg = 28 # recommended_ms = 100 # 10 rounds recommended_mg = 30 recommended_ms = 100 # 11 rounds # recommended_mg = 31 # recommended_ms = 100 eqs = '#%s %d Rounds\n' % (cipher_name, R) eqs += 'connection relations\n' for r in range(R): xin = ['x_%d_%d' % (r, i) for i in range(16)] xout = ['x_%d_%d' % (r + 1, i) for i in range(16)] y = ['y_%d_%d' % (r, i) for i in range(16)] tk = ['tk_%d_%d' % (r, i) for i in range(8)] # Generaete AddTweakey relations for i in range(4): for j in range(4): if i < 2: eqs += '%s, %s, %s\n' % (tk1[j + 4*i], tk2[j + 4*i], tk[j + 4*i]) eqs += '%s, %s, %s\n' % (xin[j + 4*i], tk[j + 4*i], y[j + 4*i]) else: eqs += '%s, %s\n' % (xin[j + 4*i], y[j + 4*i]) # Apply ShiftRows py = [y[P[i]] for i in range(16)] # Generate MixColumn relations for j in range(4): eqs += '%s, %s, %s, %s\n' % (py[j + 0*4], py[j + 2*4], py[j + 3*4], xout[j + 0*4]) eqs += '%s, %s\n' % (py[j], xout[j + 1*4]) eqs += '%s, %s, %s\n' % (py[j + 1*4], py[j + 2*4], xout[j + 2*4]) eqs += '%s, %s, %s\n' % (py[j + 0*4], py[j + 2*4], xout[j + 3*4]) # Update Tweakey temp1 = tk1.copy() temp2 = tk2.copy() tk1 = [temp1[TKP[i]] for i in range(16)] tk2 = [temp2[TKP[i]] for i in range(16)] plaintext = ['x_0_%d' % i for i in range(16)] ciphertext = ['x_%d_%d' % (R, i) for i in range(16)] eqs += 'known\n' + '\n'.join(plaintext + ciphertext) eqs += '\nend' relation_file_path = os.path.join(output_dir, 'relationfile_%s_%dr_mg%d_ms%d.txt' % (cipher_name, R, recommended_mg, recommended_ms)) with open(relation_file_path, 'w') as relation_file: relation_file.write(eqs) if __name__ == '__main__': main()
33.909091
137
0.472148
d4bad788e453eaffecc4387f4afebe5f25e9867c
2,447
py
Python
tests/test_bmipy.py
visr/bmi-python
0fcca448d097bc001f7492094ce1fd95d041b81d
[ "MIT" ]
14
2015-01-13T16:26:12.000Z
2021-07-22T04:56:59.000Z
tests/test_bmipy.py
visr/bmi-python
0fcca448d097bc001f7492094ce1fd95d041b81d
[ "MIT" ]
11
2015-03-17T21:15:57.000Z
2021-03-24T21:31:00.000Z
tests/test_bmipy.py
visr/bmi-python
0fcca448d097bc001f7492094ce1fd95d041b81d
[ "MIT" ]
9
2015-03-13T15:59:52.000Z
2021-06-28T11:40:51.000Z
import pytest from bmipy import Bmi
16.993056
60
0.608909
d4bc5b3a862989ca34a4883d8781d87ac17bd277
592
py
Python
scrapy_compose/fields/parser/string_field.py
Sphynx-HenryAY/scrapy-compose
bac45ee51bf4a49b3d4a9902767a17072137f869
[ "MIT" ]
null
null
null
scrapy_compose/fields/parser/string_field.py
Sphynx-HenryAY/scrapy-compose
bac45ee51bf4a49b3d4a9902767a17072137f869
[ "MIT" ]
18
2019-10-17T10:51:30.000Z
2020-05-12T10:00:49.000Z
scrapy_compose/fields/parser/string_field.py
Sphynx-HenryAY/scrapy-compose
bac45ee51bf4a49b3d4a9902767a17072137f869
[ "MIT" ]
null
null
null
from scrapy_compose.utils.context import realize from .field import FuncField as BaseField
34.823529
96
0.6875
d4bc84fe21a49ee4da04551b3e65cc3308167280
2,449
py
Python
app/request.py
vincentmuya/News-highlight
67f61bb0bea69ec004c11a2148c62cd892a19615
[ "CNRI-Python" ]
null
null
null
app/request.py
vincentmuya/News-highlight
67f61bb0bea69ec004c11a2148c62cd892a19615
[ "CNRI-Python" ]
null
null
null
app/request.py
vincentmuya/News-highlight
67f61bb0bea69ec004c11a2148c62cd892a19615
[ "CNRI-Python" ]
null
null
null
import urllib.request import json from .models import News # Getting api key api_key = None # Getting the movie base url base_url = None def get_news_source(country,category): ''' Function that gets the json response to our url request ''' get_news_source_url = base_url.format(country,category,api_key) with urllib.request.urlopen(get_news_source_url)as url: get_news_source_data = url.read() get_news_source_response = json.loads(get_news_source_data) print(get_news_source_response) source_result = None if get_news_source_response['articles']: source_result_list = get_news_source_response['articles'] source_result = process_result(source_result_list) return source_result def process_result(source_list): ''' this function processes the results and converts them into a list the source list is a list of dictionaries containing news results ''' source_result= [] for source_item in source_list: source = source_item.get('source') author = source_item.get('author') title = source_item.get('title') description = source_item.get('description') url = source_item.get('url') urlToImage = source_item.get('urlToImage') publishedAt = source_item.get('publishedAt') if urlToImage: source_object = News(source,author,title,description,url,urlToImage,publishedAt) source_result.append(source_object) return source_result
33.094595
91
0.703144
d4bca411ec322bf0d2f4684e172c03b2076797b4
3,590
py
Python
hypernet/src/thermophysicalModels/reactionThermo/mixture/multiComponent.py
christian-jacobsen/hypernet
9f62e1531eb152cc08af0b0c6b09d6fde8d42400
[ "Apache-2.0" ]
null
null
null
hypernet/src/thermophysicalModels/reactionThermo/mixture/multiComponent.py
christian-jacobsen/hypernet
9f62e1531eb152cc08af0b0c6b09d6fde8d42400
[ "Apache-2.0" ]
null
null
null
hypernet/src/thermophysicalModels/reactionThermo/mixture/multiComponent.py
christian-jacobsen/hypernet
9f62e1531eb152cc08af0b0c6b09d6fde8d42400
[ "Apache-2.0" ]
null
null
null
import numpy as np from hypernet.src.general import const from hypernet.src.general import utils from hypernet.src.thermophysicalModels.reactionThermo.mixture import Basic
30.423729
79
0.479666
d4bd39d2862e151f45c3d33b0cd79ef62c908dbf
1,760
py
Python
Exercises/W08D04_Exercise_01_Django_Cat_Collector/main_app/models.py
Roger-Takeshita/Software_Engineer
ec647bb969aa02453dae1884b5787d2045f7b4e2
[ "MIT" ]
2
2019-12-27T06:15:26.000Z
2020-05-21T17:37:12.000Z
Exercises/W08D04_Exercise_01_Django_Cat_Collector/main_app/models.py
Roger-Takeshita/Bootcamp-Software-Engineer
ec647bb969aa02453dae1884b5787d2045f7b4e2
[ "MIT" ]
null
null
null
Exercises/W08D04_Exercise_01_Django_Cat_Collector/main_app/models.py
Roger-Takeshita/Bootcamp-Software-Engineer
ec647bb969aa02453dae1884b5787d2045f7b4e2
[ "MIT" ]
null
null
null
from django.db import models from django.urls import reverse from datetime import date from django.contrib.auth.models import User #! 1 - Import user models MEALS = ( ('B', 'Breakfast'), ('L', 'Lunch'), ('D', 'Dinner') )
28.852459
160
0.691477
d4bdefb01d0a762af075c93831d87a0e10dd81de
79
py
Python
kedro-airflow/kedro_airflow/__init__.py
kedro-org/kedro-plugins
ad0755f503b275b73aeb8feb592a0ec0ea1bca8e
[ "Apache-2.0" ]
6
2022-01-21T07:37:05.000Z
2022-03-31T09:41:29.000Z
kedro-airflow/kedro_airflow/__init__.py
kedro-org/kedro-plugins
ad0755f503b275b73aeb8feb592a0ec0ea1bca8e
[ "Apache-2.0" ]
7
2022-01-20T10:59:29.000Z
2022-03-30T17:59:12.000Z
kedro-airflow/kedro_airflow/__init__.py
kedro-org/kedro-plugins
ad0755f503b275b73aeb8feb592a0ec0ea1bca8e
[ "Apache-2.0" ]
1
2022-03-29T09:12:00.000Z
2022-03-29T09:12:00.000Z
""" Kedro plugin for running a project with Airflow """ __version__ = "0.5.0"
19.75
55
0.683544
d4be731c2fefcf29455273684888ea746824bba4
713
py
Python
soccer/gameplay/plays/testing/debug_window_evaluator.py
AniruddhaG123/robocup-software
0eb3b3957428894f2f39341594800be803665f44
[ "Apache-2.0" ]
1
2019-09-24T22:59:25.000Z
2019-09-24T22:59:25.000Z
soccer/gameplay/plays/testing/debug_window_evaluator.py
ananth-kumar01/robocup-software
4043a7f9590d02f617d8e9a762697e4aaa27f1a6
[ "Apache-2.0" ]
null
null
null
soccer/gameplay/plays/testing/debug_window_evaluator.py
ananth-kumar01/robocup-software
4043a7f9590d02f617d8e9a762697e4aaa27f1a6
[ "Apache-2.0" ]
null
null
null
import play import behavior import main import robocup import constants import time import math ## This isn't a real play, but it's pretty useful # Turn it on and we'll draw the window evaluator stuff on-screen from the ball to our goal
29.708333
90
0.678822
d4bf375fc83f7c0bd614c1589d9466c6217e84ec
331
py
Python
rainbowconnection/sources/phoenix/utils.py
zkbt/rainbow-connection
53828fd0b63a552a22a6aa38393cefda27c61b9a
[ "MIT" ]
6
2019-09-04T20:22:02.000Z
2020-12-30T05:00:10.000Z
rainbowconnection/sources/phoenix/utils.py
zkbt/rainbow-connection
53828fd0b63a552a22a6aa38393cefda27c61b9a
[ "MIT" ]
8
2019-05-23T18:06:51.000Z
2020-02-13T22:15:07.000Z
rainbowconnection/sources/phoenix/utils.py
zkbt/rainbow-connection
53828fd0b63a552a22a6aa38393cefda27c61b9a
[ "MIT" ]
null
null
null
from ...imports import * def stringify_metallicity(Z): """ Convert a metallicity into a PHOENIX-style string. Parameters ---------- Z : float [Fe/H]-style metallicity (= 0.0 for solar) """ if Z <= 0: return "-{:03.1f}".format(np.abs(Z)) else: return "+{:03.1f}".format(Z)
19.470588
54
0.531722
d4bffb102dcb1752fbd5cc9d9f62656784042e5e
1,506
py
Python
shipane_sdk/transaction.py
awfssv/ShiPanE-Python-SDK
678790e5eb220cf685e5f8d03ba3310f3fbb8d22
[ "MIT" ]
1
2016-12-19T16:05:23.000Z
2016-12-19T16:05:23.000Z
shipane_sdk/transaction.py
awfssv/ShiPanE-Python-SDK
678790e5eb220cf685e5f8d03ba3310f3fbb8d22
[ "MIT" ]
null
null
null
shipane_sdk/transaction.py
awfssv/ShiPanE-Python-SDK
678790e5eb220cf685e5f8d03ba3310f3fbb8d22
[ "MIT" ]
1
2021-05-21T02:12:04.000Z
2021-05-21T02:12:04.000Z
# -*- coding: utf-8 -*-
22.477612
55
0.581009
d4c06417dd5e89491398d91b568c1842895c3961
14,779
py
Python
tensorflow_probability/python/distributions/laplace_test.py
wataruhashimoto52/probability
12e3f256544eadea6e863868da825614f4423eb0
[ "Apache-2.0" ]
1
2020-04-13T12:31:12.000Z
2020-04-13T12:31:12.000Z
tensorflow_probability/python/distributions/laplace_test.py
wataruhashimoto52/probability
12e3f256544eadea6e863868da825614f4423eb0
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/laplace_test.py
wataruhashimoto52/probability
12e3f256544eadea6e863868da825614f4423eb0
[ "Apache-2.0" ]
1
2020-12-19T13:05:15.000Z
2020-12-19T13:05:15.000Z
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np from scipy import stats as sp_stats import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import samplers from tensorflow_probability.python.internal import test_util tfd = tfp.distributions if __name__ == '__main__': tf.test.main()
38.790026
109
0.66175
d4c0845bc0b80a14fbe5e783d9ed64b00db19bce
3,383
py
Python
app/__init__.py
credwood/bitplayers
4ca6b6c6a21bb21d7cd963c64028415559c3dcc4
[ "MIT" ]
1
2020-06-26T21:49:14.000Z
2020-06-26T21:49:14.000Z
app/__init__.py
credwood/bitplayers
4ca6b6c6a21bb21d7cd963c64028415559c3dcc4
[ "MIT" ]
2
2020-03-31T11:11:04.000Z
2021-12-13T20:38:48.000Z
app/__init__.py
credwood/bitplayers
4ca6b6c6a21bb21d7cd963c64028415559c3dcc4
[ "MIT" ]
null
null
null
import dash from flask import Flask from flask.helpers import get_root_path from flask_login import login_required from flask_wtf.csrf import CSRFProtect from flask_admin import Admin, BaseView, expose from flask_admin.contrib.sqla import ModelView from datetime import datetime from dateutil import parser import pytz from pytz import timezone from config import BaseConfig csrf = CSRFProtect()
35.610526
111
0.738693
d4c0decddfc9adf11a583ac3c85b167de4ffaed9
33,707
py
Python
selectinf/randomized/approx_reference_grouplasso.py
kevinbfry/selective-inference
4e846877b5c23969fc420b452f20cc3b16b6cb78
[ "BSD-3-Clause" ]
14
2015-09-01T19:31:25.000Z
2021-11-26T08:47:10.000Z
selectinf/randomized/approx_reference_grouplasso.py
kevinbfry/selective-inference
4e846877b5c23969fc420b452f20cc3b16b6cb78
[ "BSD-3-Clause" ]
7
2016-09-12T20:41:41.000Z
2018-06-26T02:10:30.000Z
selectinf/randomized/approx_reference_grouplasso.py
kevinbfry/selective-inference
4e846877b5c23969fc420b452f20cc3b16b6cb78
[ "BSD-3-Clause" ]
10
2015-09-01T19:31:28.000Z
2021-02-23T01:16:20.000Z
from __future__ import print_function from scipy.linalg import block_diag from scipy.stats import norm as ndist from scipy.interpolate import interp1d import collections import numpy as np from numpy import log from numpy.linalg import norm, qr, inv, eig import pandas as pd import regreg.api as rr from .randomization import randomization from ..base import restricted_estimator from ..algorithms.barrier_affine import solve_barrier_affine_py as solver from ..distributions.discrete_family import discrete_family def solve_barrier_affine_jacobian_py(conjugate_arg, precision, feasible_point, con_linear, con_offset, C, active_dirs, useJacobian=True, step=1, nstep=2000, min_its=500, tol=1.e-12): """ This needs to be updated to actually use the Jacobian information (in self.C) arguments conjugate_arg: \\bar{\\Sigma}^{-1} \bar{\\mu} precision: \\bar{\\Sigma}^{-1} feasible_point: gamma's from fitting con_linear: linear part of affine constraint used for barrier function con_offset: offset part of affine constraint used for barrier function C: V^T Q^{-1} \\Lambda V active_dirs: """ scaling = np.sqrt(np.diag(con_linear.dot(precision).dot(con_linear.T))) if feasible_point is None: feasible_point = 1. / scaling current = feasible_point current_value = np.inf for itercount in range(nstep): cur_grad = grad(current) # make sure proposal is feasible count = 0 while True: count += 1 proposal = current - step * cur_grad if np.all(con_offset - con_linear.dot(proposal) > 0): break step *= 0.5 if count >= 40: raise ValueError('not finding a feasible point') # make sure proposal is a descent count = 0 while True: count += 1 proposal = current - step * cur_grad proposed_value = objective(proposal) if proposed_value <= current_value: break step *= 0.5 if count >= 20: if not (np.isnan(proposed_value) or np.isnan(current_value)): break else: raise ValueError('value is NaN: %f, %f' % (proposed_value, current_value)) # stop if relative decrease is small if np.fabs(current_value - proposed_value) < tol * np.fabs(current_value) and itercount >= min_its: current = proposal current_value = proposed_value break current = proposal current_value = proposed_value if itercount % 4 == 0: step *= 2 hess = inv(precision + barrier_hessian(current)) return current_value, current, hess # Jacobian calculations def calc_GammaMinus(gamma, active_dirs): """Calculate Gamma^minus (as a function of gamma vector, active directions) """ to_diag = [[g] * (ug.size - 1) for (g, ug) in zip(gamma, active_dirs.values())] return block_diag(*[i for gp in to_diag for i in gp]) def jacobian_grad_hess(gamma, C, active_dirs): """ Calculate the log-Jacobian (scalar), gradient (gamma.size vector) and hessian (gamma.size square matrix) """ if C.shape == (0, 0): # when all groups are size one, C will be an empty array return 0, 0, 0 else: GammaMinus = calc_GammaMinus(gamma, active_dirs) # eigendecomposition #evalues, evectors = eig(GammaMinus + C) # log Jacobian #J = log(evalues).sum() J = np.log(np.linalg.det(GammaMinus + C)) # inverse #GpC_inv = evectors.dot(np.diag(1 / evalues).dot(evectors.T)) GpC_inv = np.linalg.inv(GammaMinus + C) # summing matrix (gamma.size by C.shape[0]) S = block_diag(*[np.ones((1, ug.size - 1)) for ug in active_dirs.values()]) # gradient grad_J = S.dot(GpC_inv.diagonal()) # hessian hess_J = -S.dot(np.multiply(GpC_inv, GpC_inv.T).dot(S.T)) return J, grad_J, hess_J def _check_groups(groups): """Make sure that the user-specific groups are ok There are a number of assumptions that group_lasso makes about how groups are specified. Specifically, we assume that `groups` is a 1-d array_like of integers that are sorted in increasing order, start at 0, and have no gaps (e.g., if there is a group 2 and a group 4, there must also be at least one feature in group 3). This function checks the user-specified group scheme and raises an exception if it finds any problems. Sorting feature groups is potentially tedious for the user and in future we might do this for them. """ # check array_like agroups = np.array(groups) # check dimension if len(agroups.shape) != 1: raise ValueError("Groups are not a 1D array_like") # check sorted if np.any(agroups[:-1] > agroups[1:]) < 0: raise ValueError("Groups are not sorted") # check integers if not np.issubdtype(agroups.dtype, np.integer): raise TypeError("Groups are not integers") # check starts with 0 if not np.amin(agroups) == 0: raise ValueError("First group is not 0") # check for no skipped groups if not np.all(np.diff(np.unique(agroups)) == 1): raise ValueError("Some group is skipped")
37.830527
116
0.556709
d4c1d2fbba6d7c550c2607f8f36af9eb36384e04
18,606
py
Python
internals/states.py
mattjj/pyhsmm-collapsedinfinite
81a60c025beec6fb065bc9f4e23cea43b6f6725c
[ "MIT" ]
null
null
null
internals/states.py
mattjj/pyhsmm-collapsedinfinite
81a60c025beec6fb065bc9f4e23cea43b6f6725c
[ "MIT" ]
null
null
null
internals/states.py
mattjj/pyhsmm-collapsedinfinite
81a60c025beec6fb065bc9f4e23cea43b6f6725c
[ "MIT" ]
1
2021-10-06T15:12:44.000Z
2021-10-06T15:12:44.000Z
from __future__ import division import numpy as np na = np.newaxis import collections, itertools import abc from pyhsmm.util.stats import sample_discrete, sample_discrete_from_log, combinedata from pyhsmm.util.general import rle as rle # NOTE: assumes censoring. can make no censoring by adding to score of last # segment SAMPLING = -1 # special constant for indicating a state or state range that is being resampled NEW = -2 # special constant indicating a potentially new label ABIGNUMBER = 10000 # state labels are sampled uniformly from 0 to abignumber exclusive #################### # States Classes # #################### # TODO an array class that maintains its own rle # must override set methods # type(x).__setitem__(x,i) classmethod # also has members norep and lens (or something) # that are either read-only or also override setters # for now, i'll just make sure outside that anything that sets self.stateseq # also sets self.stateseq_norep and self.durations # it should also call beta updates... class collapsed_stickyhdphmm_states(collapsed_states): class collapsed_hdphsmm_states(collapsed_states): ### label sampler stuff def _local_group(self,t,k): ''' returns a sequence of length between 1 and 3, where each sequence element is ((data,otherdata), (dur,otherdurs)) ''' # temporarily modifies members, like self.stateseq and maybe self.data assert self.stateseq[t] == SAMPLING orig_stateseq = self.stateseq.copy() # temporarily set stateseq to hypothetical stateseq # so that we can get the indicator sequence # TODO if i write the special stateseq class, this will need fixing self.stateseq[t] = k wholegroup, pieces = self._local_slices(self.stateseq,t) self.stateseq[t] = SAMPLING # build local group of statistics localgroup = [] self.stateseq[wholegroup] = SAMPLING for piece, val in pieces: # get all the other data otherdata, otherdurs = self.model._data_withlabel(val), self.model._durs_withlabel(val) # add a piece to our localgroup localgroup.append(((self.data[piece],otherdata),(piece.stop-piece.start,otherdurs))) # remove the used piece from the exclusion self.stateseq[piece] = orig_stateseq[piece] # restore original views self.stateseq = orig_stateseq # return return localgroup ####################### # Utility Functions # #######################
35.849711
110
0.577448
d4c20caa8c6caaf656d4639f0a7424aba4ba6e44
1,406
py
Python
exporters/contrib/writers/odo_writer.py
scrapinghub/exporters
b14f70530826bbbd6163d9e56e74345e762a9189
[ "BSD-3-Clause" ]
41
2016-06-16T15:29:39.000Z
2021-08-06T03:29:13.000Z
exporters/contrib/writers/odo_writer.py
bbotella/fluxo
c9fb01db1771ada4672bbffd67cb46e1f7802ab9
[ "BSD-3-Clause" ]
52
2016-06-20T12:46:57.000Z
2018-02-08T12:22:03.000Z
exporters/contrib/writers/odo_writer.py
bbotella/fluxo
c9fb01db1771ada4672bbffd67cb46e1f7802ab9
[ "BSD-3-Clause" ]
10
2016-06-23T08:49:36.000Z
2018-01-13T10:12:10.000Z
import six import json import gzip from exporters.default_retries import retry_long from exporters.writers.base_writer import BaseWriter
31.244444
93
0.642959
d4c271023ce05496e3aeca43f2ffb25c230ab172
184
py
Python
x7/geom/needs_test.py
gribbg/x7-geom
a01ef29dc47f1587e3390b552decf92db0bbaa20
[ "BSD-2-Clause" ]
null
null
null
x7/geom/needs_test.py
gribbg/x7-geom
a01ef29dc47f1587e3390b552decf92db0bbaa20
[ "BSD-2-Clause" ]
null
null
null
x7/geom/needs_test.py
gribbg/x7-geom
a01ef29dc47f1587e3390b552decf92db0bbaa20
[ "BSD-2-Clause" ]
null
null
null
""" Simple file to validate that maketests is working. Call maketests via: >>> from x7.shell import *; maketests('x7.sample.needs_tests') """
20.444444
71
0.695652
d4c391278bd0cf509c7b23a6660f7d6beb4dfdb7
3,960
py
Python
python/SHA3_hashlib_based_concept.py
feketebv/SCA_proof_SHA3-512
5a7689ea307463d5b797e49142c349b02cdcda03
[ "MIT" ]
1
2021-05-19T00:08:15.000Z
2021-05-19T00:08:15.000Z
python/SHA3_hashlib_based_concept.py
feketebv/SCA_proof_SHA3-512
5a7689ea307463d5b797e49142c349b02cdcda03
[ "MIT" ]
null
null
null
python/SHA3_hashlib_based_concept.py
feketebv/SCA_proof_SHA3-512
5a7689ea307463d5b797e49142c349b02cdcda03
[ "MIT" ]
null
null
null
''' Written by: Balazs Valer Fekete [email protected] [email protected] Last updated: 29.01.2021 ''' # the concept is to generate a side channel resistant initialisation of the hashing function based on # one secret key and several openly known initialisation vectors (IV) in a manner that the same input # is not hashed too more than two times, which is hopefully not sufficient for side channel # measurements based computations: the number of consecutive measurements for a successful attack on # the CHI function in a practically noiseless computer simulation (see "chi_cpa.py") takes around a # 100 measurements # this concept is achieved by taking a counter of a certain bitlength, and twice as many IVs as bits in # the counter: "IV0s" and "IV1s" and compute a series of hashes starting with the secret key then with a # correspong IV of the sets 0 and 1 based on whether the counter's corresponding bit - starting at MSB - # is 0 or 1; this way every hash output is exactly used 2 times if the intermediate values are STORTED # and the entire series of initial hashes are NOT fully recomputed only such whose corresponding # counter bits has changed and all the next levels too down to the LSB of the counter # the working solution is going to based on the algorithms presented here, although # in this file the algorithm here does the full padding so the results won't equal to # a scheme where the rate is fully filled with IVs and the data comes only afterwards... import hashlib # KEY DATA STRUCTURES' INTERPRETATION # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IV0s = [658678, 6785697, 254376, 67856, 1432543, 786, 124345, 5443654] IV1s = [2565, 256658, 985, 218996, 255, 685652, 28552, 3256565] # LSB ... MSB hash_copies = [None for i in range(len(IV0s))] # LSB ... MSB # counter # MSB ... LSB # COMPUTING HASHES FOR EVERY COUNTER VALUE INDIVIDUALLY # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for counter in range(11): hash = hashlib.sha3_512() # looping from MSB to LSB in counter too for i in range(len(IV0s)-1, -1, -1): if (counter>>i) & 1 == 1: IV = bytes(IV1s[i]) else: IV = bytes(IV0s[i]) hash.update(IV) print(hash.hexdigest()) print() # COMPUTING HASHES BASED ON THE NATURE OF BINARY INCREMENTATION: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # only fewer values need to be recomputed, those whose corresponding # bits have changed, down until LSB # initialize hash = hashlib.sha3_512() # looping from MSB to LSB for i in range(len(IV0s)-1, -1, -1): # addressing "MSB" of IVs at first, "LSB" at last! IV = bytes(IV0s[i]) hash.update(IV) # index 0 of hash_copies changes the most frequently ie. according to counter's LSB hash_copies[i] = hash.copy() # compute last_counter = 0 for counter in range(11): IV_mask = last_counter ^ counter last_counter = counter # determine the highest non-zero bit of IV_mask, LSB is 1, 0 means there was no change nz = 0 while IV_mask > 0: IV_mask >>= 1 nz += 1 # initialize hash to the last value whose corresponding counter bit didn't switch # have to copy object otherwise the originally pointed version gets updated! hash = hash_copies[nz].copy() # LSB is index 0 # compute only the remaining hashes while nz != 0: # nz=0 is the initial condition, nothing needs to be done nz -= 1 if (counter>>nz) & 1 == 1: IV = bytes(IV1s[nz]) else: IV = bytes(IV0s[nz]) hash.update(IV) # needs to be copied again because of object orientation hash_copies[nz] = hash.copy() # showing the hash copies' entire table after each computation #for hashes in hash_copies: # print(hashes.hexdigest()) print(hash_copies[0].hexdigest())
40
105
0.65303
d4c3adf62c8a44bad01c91e8ccec7e900d2597c3
1,573
py
Python
graphstar/utils.py
pengboomouch/graphstar
f7f3537aa92118765b358dd3a47b4fa5cea8587c
[ "MIT" ]
null
null
null
graphstar/utils.py
pengboomouch/graphstar
f7f3537aa92118765b358dd3a47b4fa5cea8587c
[ "MIT" ]
null
null
null
graphstar/utils.py
pengboomouch/graphstar
f7f3537aa92118765b358dd3a47b4fa5cea8587c
[ "MIT" ]
null
null
null
""" graphstar.utils ~~~~~~~~~~~~~~~ Cristian Cornea A simple bedirectional graph with A* and breadth-first pathfinding. Utils are either used by the search algorithm, or when needed :) Pretty self explainatory (I hope) For more information see the examples and tests folder """ def clean_route_list(route_stack: list, goal_node_id: int): """ Creates an ordered route list from start to finish with all node ids needed to traverse to the goal. :param route_stack: All routes found until goal :param goal_node: int ID of the goal node :return: list A ordered list from start to goal """ r = [] next_node = goal_node_id reversed_stack = reversed(route_stack) for c in reversed_stack: if c.to_node.id == next_node: r.append(c.to_node.id) r.append(c.from_node.id) next_node = c.from_node.id return list(set(r))
24.968254
68
0.688493
d4c411c2e8e16ded3277d3bfc3c35dd1f462b513
527
py
Python
jinchi/demo/foobar.py
jiz148/py-test
d976265d065c760f2e8b55302dedbfebd01bec28
[ "Apache-2.0" ]
null
null
null
jinchi/demo/foobar.py
jiz148/py-test
d976265d065c760f2e8b55302dedbfebd01bec28
[ "Apache-2.0" ]
null
null
null
jinchi/demo/foobar.py
jiz148/py-test
d976265d065c760f2e8b55302dedbfebd01bec28
[ "Apache-2.0" ]
1
2019-01-07T18:42:53.000Z
2019-01-07T18:42:53.000Z
import os def check_env(env_var_name): """ Check and return the type of an environment variable. supported types: None Integer String @param env_var_name: environment variable name @return: string of the type name. """ try: val = os.getenv(env_var_name) if val is None: return 'None' except Exception as ex: return "None" try: int_val = int(val) return 'Integer' except ValueError: return 'String'
18.821429
57
0.578748
d4c4c2df87ed6c462e4aab6092109b050d3d20d5
759
py
Python
sound/serializers.py
Anirudhchoudhary/ApnaGanna__backend
52e6c3100fdb289e8bf64a1a4007eeb2eb66a022
[ "MIT" ]
null
null
null
sound/serializers.py
Anirudhchoudhary/ApnaGanna__backend
52e6c3100fdb289e8bf64a1a4007eeb2eb66a022
[ "MIT" ]
null
null
null
sound/serializers.py
Anirudhchoudhary/ApnaGanna__backend
52e6c3100fdb289e8bf64a1a4007eeb2eb66a022
[ "MIT" ]
null
null
null
from .models import Sound , Album from rest_framework import serializers
27.107143
102
0.637681
d4c56f7b05d7fe221ca2f682d2bea0e270121b36
2,000
py
Python
tracking/utils.py
WGBH/django-tracking
80e8bc44521820eab956d2264d6df0b6987429e0
[ "MIT" ]
null
null
null
tracking/utils.py
WGBH/django-tracking
80e8bc44521820eab956d2264d6df0b6987429e0
[ "MIT" ]
null
null
null
tracking/utils.py
WGBH/django-tracking
80e8bc44521820eab956d2264d6df0b6987429e0
[ "MIT" ]
null
null
null
from datetime import datetime from django.conf import settings import pytz DEFAULT_TRACKER_POSITIONS = [ ('tracker-head-top', 'Head - near top'), ('tracker-head-bottom', 'Head - near bottom'), ('tracker-body-top', 'Body - near top'), ('tracker-body-bottom', 'Body - near bottom') ] def get_tracker_position_options(): """ This creates the dropdown in the Admin for where to put each tracker. It defaults to the obvious 4 location (top/bottom of the head/body); however the user can create more by adding a list of 3-ples in the settings file under ADDITIONAL_TRACKER_POSITIONS. (2-letter-code, description, block name), e.g. ('HN', 'Header Navigation', 'header-navigation-trackers') would allow for the user to have tracking code in a navbar (no, I don't know why they'd want this) if they put {% block header-navigation-trackers %}{% generate_trackers 'HN' %}{% endblock %} in their template. """ tracker_position_list = DEFAULT_TRACKER_POSITIONS additional_tracker_positions = getattr(settings, "ADDITIONAL_TRACKER_POSITIONS", []) full_list = list() for x in (tracker_position_list + additional_tracker_positions): full_list.append((x[0], x[1])) return full_list
35.087719
88
0.665
d4c5d71a8319e8e4743e5c7446b67b54ee62af61
256
py
Python
devtools/api/health.py
ankeshkhemani/devtools
beb9a46c27b6b4c02a2e8729af0c971cc175f134
[ "Apache-2.0" ]
null
null
null
devtools/api/health.py
ankeshkhemani/devtools
beb9a46c27b6b4c02a2e8729af0c971cc175f134
[ "Apache-2.0" ]
null
null
null
devtools/api/health.py
ankeshkhemani/devtools
beb9a46c27b6b4c02a2e8729af0c971cc175f134
[ "Apache-2.0" ]
null
null
null
import datetime from fastapi import APIRouter router = APIRouter()
17.066667
56
0.605469