hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e67e2b8d5cc36e4de07019122375c2f2fc7e621b
| 765 |
py
|
Python
|
ucs-python/create_ucs_sp_template.py
|
movinalot/ucs
|
dc0d37784592d6d78f46efee40c86b6f7ac928b4
|
[
"MIT"
] | null | null | null |
ucs-python/create_ucs_sp_template.py
|
movinalot/ucs
|
dc0d37784592d6d78f46efee40c86b6f7ac928b4
|
[
"MIT"
] | null | null | null |
ucs-python/create_ucs_sp_template.py
|
movinalot/ucs
|
dc0d37784592d6d78f46efee40c86b6f7ac928b4
|
[
"MIT"
] | 2 |
2020-06-17T15:49:37.000Z
|
2021-01-28T07:21:21.000Z
|
"""
create_ucs_sp_template.py
Purpose:
UCS Manager Create a UCS Service Profile Template
Author:
John McDonough ([email protected]) github: (@movinalot)
Cisco Systems, Inc.
"""
from ucsmsdk.ucshandle import UcsHandle
from ucsmsdk.mometa.ls.LsServer import LsServer
from ucsmsdk.mometa.org.OrgOrg import OrgOrg
HANDLE = UcsHandle(
"sandbox-ucsm1.cisco.com",
"admin",
"password"
)
HANDLE.login()
ORG_ORG = OrgOrg(
parent_mo_or_dn='org-root',
name="devnet",
)
HANDLE.add_mo(ORG_ORG, modify_present=True)
HANDLE.commit()
SP_TEMPLATE = LsServer(
parent_mo_or_dn='org-root/org-devnet',
name="devcore_template",
type="updating-template"
)
HANDLE.add_mo(SP_TEMPLATE, modify_present=True)
HANDLE.commit()
HANDLE.logout()
| 19.125 | 60 | 0.732026 |
e67f72e9b27124ae9fe286846ee45d52e71dc993
| 4,105 |
py
|
Python
|
epab/core/config.py
|
132nd-etcher/epab
|
5226d3a36580f8cc50cf5dcac426adb1350a2c9b
|
[
"MIT"
] | 2 |
2018-12-13T06:49:10.000Z
|
2018-12-13T07:37:49.000Z
|
epab/core/config.py
|
etcher-be/epab
|
5226d3a36580f8cc50cf5dcac426adb1350a2c9b
|
[
"MIT"
] | 109 |
2018-08-22T04:25:56.000Z
|
2019-10-17T05:10:21.000Z
|
epab/core/config.py
|
etcher-be/epab
|
5226d3a36580f8cc50cf5dcac426adb1350a2c9b
|
[
"MIT"
] | 1 |
2018-02-25T05:53:18.000Z
|
2018-02-25T05:53:18.000Z
|
# coding=utf-8
"""
Handles EPAB's config file
"""
import logging
import pathlib
import elib_config
CHANGELOG_DISABLE = elib_config.ConfigValueBool(
'changelog', 'disable', description='Disable changelog building', default=False
)
CHANGELOG_FILE_PATH = elib_config.ConfigValuePath(
'changelog', 'file_path', description='Path to changelog file', default='CHANGELOG.md'
)
CHANGELOG_FILE_PATH.must_be_file()
TEST_RUNNER_OPTIONS = elib_config.ConfigValueString(
'test', 'runner_options', description='Additional options for test run', default=''
)
TEST_DURATION_COUNT = elib_config.ConfigValueInteger(
'test', 'duration_count', description='Amount of "slow" tests to show', default=10
)
TEST_DURATION_COUNT.set_limits(min_=0, max_=50)
TEST_TARGET = elib_config.ConfigValueString(
'test', 'target', description='Target of pytest', default='test'
)
TEST_COVERAGE_FAIL_UNDER = elib_config.ConfigValueInteger(
'test', 'coverage_fail_under', description='Minimal coverage to pass tests', default=20
)
TEST_COVERAGE_FAIL_UNDER.set_limits(min_=0, max_=100)
TEST_PYTEST_TIMEOUT = elib_config.ConfigValueInteger(
'test', 'timeout', description='Timeout in seconds for pytest runner', default=300
)
TEST_PYTEST_TIMEOUT.set_limits(min_=0, max_=3600)
LINT_LINE_LENGTH = elib_config.ConfigValueInteger(
'lint', 'line_length', description='Linter max line width', default=120
)
LINT_LINE_LENGTH.set_limits(min_=0, max_=500)
PACKAGE_NAME = elib_config.ConfigValueString(
'package_name', description='Package name'
)
FREEZE_ENTRY_POINT = elib_config.ConfigValueString(
'freeze', 'entry_point', description='Main entry point for pyinstaller', default=''
)
FREEZE_DATA_FILES = elib_config.ConfigValueList(
'freeze', 'data_files', description='PyInstaller data-files list', element_type=str, default=[]
)
DOC_REPO = elib_config.ConfigValueString(
'doc', 'repo', description='Documentation repository on Github', default=''
)
DOC_FOLDER = elib_config.ConfigValuePath(
'doc', 'folder', description='Local documentation directory', default='./doc'
)
DOC_FOLDER.must_be_dir()
QUIET = elib_config.ConfigValueBool(
'quiet', description='Less console output', default=False
)
VERBOSE = elib_config.ConfigValueBool(
'verbose', description='More console output', default=False
)
TEST_AV_RUNNER_OPTIONS = elib_config.ConfigValueString(
'appveyor', 'test_runner_options', description='Additional command line options for tests run on AV',
default='--long'
)
ARTIFACTS = elib_config.ConfigValueList(
'appveyor', 'artifacts', description='List of artifacts for Appveyor', element_type=str, default=[]
)
FLAKE8_EXCLUDE = elib_config.ConfigValueString(
'lint', 'flake8_exclude', description='List of comma separated files for flake8 to exclude', default=''
)
MYPY_ARGS = elib_config.ConfigValueString(
'lint', 'mypy_args', description='Additional MyPy arguments', default=''
)
QT_RES_SRC = elib_config.ConfigValueString(
'qt', 'res_src', description='Qt resource file (.qrc) location', default=''
)
QT_RES_TGT = elib_config.ConfigValueString(
'qt', 'res_tgt', description='Compiled Qt resource file (.py) target location', default=''
)
UPLOAD_TO_TWINE = elib_config.ConfigValueBool(
'twine', 'upload', description='Upload package to Twine after build',
default=True,
)
MAKE_GRAPH = elib_config.ConfigValueBool(
'graph', 'make',
description='Generate graphs using PyReverse',
default=True,
)
def setup_config(epab_version: str):
"""
Set up elib_config package
:param epab_version: installed version of EPAB as as string
"""
logger = logging.getLogger('EPAB')
logger.debug('setting up config')
elib_config.ELIBConfig.setup(
app_name='EPAB',
app_version=epab_version,
config_file_path='pyproject.toml',
config_sep_str='__',
root_path=['tool', 'epab']
)
elib_config.write_example_config('pyproject.toml.example')
if not pathlib.Path('pyproject.toml').exists():
raise FileNotFoundError('pyproject.toml')
elib_config.validate_config()
| 34.495798 | 107 | 0.747138 |
e67fead92c8110015c821a38623a6b98e6c63185
| 5,793 |
py
|
Python
|
create_flask_app.py
|
Creativity-Hub/create_flask_app
|
4c4e2c7360c7773f6f5e3d2fd30e310777650f57
|
[
"MIT"
] | 2 |
2020-08-05T04:33:20.000Z
|
2020-08-06T23:03:40.000Z
|
create_flask_app.py
|
Creativity-Hub/create_flask_app
|
4c4e2c7360c7773f6f5e3d2fd30e310777650f57
|
[
"MIT"
] | null | null | null |
create_flask_app.py
|
Creativity-Hub/create_flask_app
|
4c4e2c7360c7773f6f5e3d2fd30e310777650f57
|
[
"MIT"
] | null | null | null |
import os
import argparse
if __name__ == '__main__':
create_flask_app()
| 39.141892 | 335 | 0.666494 |
e680d5976ff70e83c58f67740990b745a8b0973b
| 1,835 |
py
|
Python
|
examples/flaskr/flaskr/__init__.py
|
Flared/flask-sqlalchemy
|
e73abd51d957a4436bca6b5eadbf5d63771cf5ef
|
[
"BSD-3-Clause"
] | 2 |
2020-04-09T15:28:49.000Z
|
2020-04-18T02:55:16.000Z
|
examples/flaskr/flaskr/__init__.py
|
Flared/flask-sqlalchemy
|
e73abd51d957a4436bca6b5eadbf5d63771cf5ef
|
[
"BSD-3-Clause"
] | null | null | null |
examples/flaskr/flaskr/__init__.py
|
Flared/flask-sqlalchemy
|
e73abd51d957a4436bca6b5eadbf5d63771cf5ef
|
[
"BSD-3-Clause"
] | 1 |
2020-06-19T11:49:30.000Z
|
2020-06-19T11:49:30.000Z
|
import os
import click
from flask import Flask
from flask.cli import with_appcontext
from flask_sqlalchemy import SQLAlchemy
__version__ = (1, 0, 0, "dev")
db = SQLAlchemy()
def create_app(test_config=None):
"""Create and configure an instance of the Flask application."""
app = Flask(__name__, instance_relative_config=True)
# some deploy systems set the database url in the environ
db_url = os.environ.get("DATABASE_URL")
if db_url is None:
# default to a sqlite database in the instance folder
db_url = "sqlite:///" + os.path.join(app.instance_path, "flaskr.sqlite")
# ensure the instance folder exists
os.makedirs(app.instance_path, exist_ok=True)
app.config.from_mapping(
# default secret that should be overridden in environ or config
SECRET_KEY=os.environ.get("SECRET_KEY", "dev"),
SQLALCHEMY_DATABASE_URI=db_url,
SQLALCHEMY_TRACK_MODIFICATIONS=False,
)
if test_config is None:
# load the instance config, if it exists, when not testing
app.config.from_pyfile("config.py", silent=True)
else:
# load the test config if passed in
app.config.update(test_config)
# initialize Flask-SQLAlchemy and the init-db command
db.init_app(app)
app.cli.add_command(init_db_command)
# apply the blueprints to the app
from flaskr import auth, blog
app.register_blueprint(auth.bp)
app.register_blueprint(blog.bp)
# make "index" point at "/", which is handled by "blog.index"
app.add_url_rule("/", endpoint="index")
return app
| 27.38806 | 80 | 0.689918 |
e681d9f0d0bbcd56a55111fcb8b7b0c2f584018e
| 142 |
py
|
Python
|
simulator/cc.py
|
mcfx/trivm
|
5b77ea157c562cfbfe87f7e7d256fb9702f8ceec
|
[
"MIT"
] | 6 |
2022-02-21T15:49:52.000Z
|
2022-02-23T07:16:02.000Z
|
simulator/cc.py
|
mcfx/trivm
|
5b77ea157c562cfbfe87f7e7d256fb9702f8ceec
|
[
"MIT"
] | null | null | null |
simulator/cc.py
|
mcfx/trivm
|
5b77ea157c562cfbfe87f7e7d256fb9702f8ceec
|
[
"MIT"
] | null | null | null |
import os, sys
fn = sys.argv[1]
if os.system('python compile.py %s __tmp.S' % fn) == 0:
os.system('python asm.py __tmp.S %s' % fn[:-2])
| 20.285714 | 55 | 0.598592 |
e6820129758b4a88f3d5692d1d9e3fcd58b99051
| 3,806 |
py
|
Python
|
ad2/Actor.py
|
ariadnepinheiro/Disease_Simulator
|
e875036f4b0485575327463a17f4282487350cb3
|
[
"MIT"
] | 4 |
2020-11-06T22:28:51.000Z
|
2022-02-24T10:40:26.000Z
|
ad2/Actor.py
|
ariadnepinheiro/Disease_Simulator
|
e875036f4b0485575327463a17f4282487350cb3
|
[
"MIT"
] | null | null | null |
ad2/Actor.py
|
ariadnepinheiro/Disease_Simulator
|
e875036f4b0485575327463a17f4282487350cb3
|
[
"MIT"
] | 2 |
2021-03-07T20:26:42.000Z
|
2021-12-14T03:17:22.000Z
|
#!/usr/bin/env python
# coding: UTF-8
#
# @package Actor
# @author Ariadne Pinheiro
# @date 26/08/2020
#
# Actor class, which is the base class for Disease objects.
#
##
| 27.781022 | 86 | 0.584078 |
e6821c09b4a2b0ae38dad98719d218377bec1dfe
| 1,516 |
py
|
Python
|
conversions/decimal_to_binary.py
|
smukk9/Python
|
5f4da5d616926dbe77ece828986b8d19c7d65cb5
|
[
"MIT"
] | 6 |
2020-06-23T11:56:55.000Z
|
2021-10-03T17:21:34.000Z
|
conversions/decimal_to_binary.py
|
smukk9/Python
|
5f4da5d616926dbe77ece828986b8d19c7d65cb5
|
[
"MIT"
] | 3 |
2020-06-08T07:03:15.000Z
|
2020-06-08T08:41:22.000Z
|
conversions/decimal_to_binary.py
|
smukk9/Python
|
5f4da5d616926dbe77ece828986b8d19c7d65cb5
|
[
"MIT"
] | 2 |
2020-06-26T09:16:11.000Z
|
2020-07-01T08:55:48.000Z
|
"""Convert a Decimal Number to a Binary Number."""
def decimal_to_binary(num: int) -> str:
"""
Convert a Integer Decimal Number to a Binary Number as str.
>>> decimal_to_binary(0)
'0b0'
>>> decimal_to_binary(2)
'0b10'
>>> decimal_to_binary(7)
'0b111'
>>> decimal_to_binary(35)
'0b100011'
>>> # negatives work too
>>> decimal_to_binary(-2)
'-0b10'
>>> # other floats will error
>>> decimal_to_binary(16.16) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> # strings will error as well
>>> decimal_to_binary('0xfffff') # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: 'str' object cannot be interpreted as an integer
"""
if type(num) == float:
raise TypeError("'float' object cannot be interpreted as an integer")
if type(num) == str:
raise TypeError("'str' object cannot be interpreted as an integer")
if num == 0:
return "0b0"
negative = False
if num < 0:
negative = True
num = -num
binary = []
while num > 0:
binary.insert(0, num % 2)
num >>= 1
if negative:
return "-0b" + "".join(str(e) for e in binary)
return "0b" + "".join(str(e) for e in binary)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25.266667 | 77 | 0.558047 |
e68358c694510e180fb49e743ec559c977aea7b6
| 1,467 |
py
|
Python
|
src/HandNetwork.py
|
xausky/hand-network
|
e885003c5bb9157cd06dc3ea3aabddbb7162a0ab
|
[
"MIT"
] | 2 |
2017-04-18T03:31:06.000Z
|
2017-06-08T10:27:59.000Z
|
src/HandNetwork.py
|
xausky/hand-network
|
e885003c5bb9157cd06dc3ea3aabddbb7162a0ab
|
[
"MIT"
] | null | null | null |
src/HandNetwork.py
|
xausky/hand-network
|
e885003c5bb9157cd06dc3ea3aabddbb7162a0ab
|
[
"MIT"
] | null | null | null |
#!/usr/bin/python3
#-*- coding: utf-8 -*-
import urllib.parse
import json
import base64
import requests
import logging
| 36.675 | 84 | 0.657805 |
e684146ff5ca787d26fd1c2feebd83d974744890
| 1,725 |
py
|
Python
|
algorithms_keeper/parser/rules/use_fstring.py
|
Fongeme/algorithms-keeper
|
ea80d9342b4d2efd246a6bc409889ed780accf08
|
[
"MIT"
] | 50 |
2021-02-27T04:13:11.000Z
|
2022-03-29T04:34:01.000Z
|
algorithms_keeper/parser/rules/use_fstring.py
|
dedsec-9/algorithms-keeper
|
0d98e4e24e239524c48d9eab19c493ac288ecf83
|
[
"MIT"
] | 52 |
2021-08-09T22:40:20.000Z
|
2022-03-07T16:56:36.000Z
|
algorithms_keeper/parser/rules/use_fstring.py
|
dedsec-9/algorithms-keeper
|
0d98e4e24e239524c48d9eab19c493ac288ecf83
|
[
"MIT"
] | 22 |
2021-04-28T06:56:27.000Z
|
2022-03-13T07:27:45.000Z
|
import libcst as cst
import libcst.matchers as m
from fixit import CstLintRule
from fixit import InvalidTestCase as Invalid
from fixit import ValidTestCase as Valid
| 33.173077 | 85 | 0.576232 |
e6848af64f5fa82bd5d7d5132ff08186219ab513
| 15,634 |
py
|
Python
|
bert_multitask_learning/model_fn.py
|
akashnd/bert-multitask-learning
|
aee5be006ef6a3feadf0c751a6f9b42c24c3fd21
|
[
"Apache-2.0"
] | null | null | null |
bert_multitask_learning/model_fn.py
|
akashnd/bert-multitask-learning
|
aee5be006ef6a3feadf0c751a6f9b42c24c3fd21
|
[
"Apache-2.0"
] | null | null | null |
bert_multitask_learning/model_fn.py
|
akashnd/bert-multitask-learning
|
aee5be006ef6a3feadf0c751a6f9b42c24c3fd21
|
[
"Apache-2.0"
] | null | null | null |
# AUTOGENERATED! DO NOT EDIT! File to edit: source_nbs/13_model_fn.ipynb (unless otherwise specified).
__all__ = ['variable_summaries', 'filter_loss', 'BertMultiTaskBody', 'BertMultiTaskTop', 'BertMultiTask']
# Cell
from typing import Dict, Tuple
from inspect import signature
import tensorflow as tf
import transformers
from .modeling import MultiModalBertModel
from .params import BaseParams
from .top import (Classification, MultiLabelClassification, PreTrain,
Seq2Seq, SequenceLabel, MaskLM)
from .utils import get_embedding_table_from_model, get_transformer_main_model
def variable_summaries(var, name):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.compat.v1.name_scope(name):
mean = tf.reduce_mean(input_tensor=var)
tf.compat.v1.summary.scalar('mean', mean)
with tf.compat.v1.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(
input_tensor=tf.square(var - mean)))
tf.compat.v1.summary.scalar('stddev', stddev)
tf.compat.v1.summary.scalar('max', tf.reduce_max(input_tensor=var))
tf.compat.v1.summary.scalar('min', tf.reduce_min(input_tensor=var))
tf.compat.v1.summary.histogram('histogram', var)
# Cell
# Cell
| 42.368564 | 114 | 0.623321 |
e685406479e82ae52847e5dad03d1463ba77358b
| 5,000 |
py
|
Python
|
SiMon/visualization.py
|
Jennyx18/SiMon
|
522432ff708954ac37050609cfd6f42dd96467e4
|
[
"BSD-2-Clause"
] | 9 |
2017-03-04T08:00:58.000Z
|
2021-04-03T18:18:40.000Z
|
SiMon/visualization.py
|
Jennyx18/SiMon
|
522432ff708954ac37050609cfd6f42dd96467e4
|
[
"BSD-2-Clause"
] | 52 |
2016-09-23T14:06:06.000Z
|
2021-08-05T12:21:29.000Z
|
SiMon/visualization.py
|
Jennyx18/SiMon
|
522432ff708954ac37050609cfd6f42dd96467e4
|
[
"BSD-2-Clause"
] | 4 |
2016-09-15T02:09:42.000Z
|
2021-06-15T11:42:58.000Z
|
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import math
from datetime import datetime
from matplotlib.colors import ListedColormap, BoundaryNorm
from matplotlib.collections import LineCollection
from matplotlib import cm
from SiMon.simulation import Simulation
from SiMon.callback import Callback
from matplotlib.ticker import MaxNLocator
import time
| 32.894737 | 102 | 0.4948 |
e6855e47f2ad7aa6ba42d8fa11c100eb19915033
| 3,700 |
py
|
Python
|
bin/psm/oil_jet.py
|
ChrisBarker-NOAA/tamoc
|
c797cbb6fee28d788b76d21cc5b0cc0df5444ba8
|
[
"MIT"
] | 18 |
2016-02-24T01:48:41.000Z
|
2021-11-05T03:18:24.000Z
|
bin/psm/oil_jet.py
|
ChrisBarker-NOAA/tamoc
|
c797cbb6fee28d788b76d21cc5b0cc0df5444ba8
|
[
"MIT"
] | 16 |
2016-08-09T07:06:35.000Z
|
2021-12-23T19:38:37.000Z
|
bin/psm/oil_jet.py
|
ChrisBarker-NOAA/tamoc
|
c797cbb6fee28d788b76d21cc5b0cc0df5444ba8
|
[
"MIT"
] | 9 |
2017-03-01T01:22:27.000Z
|
2021-09-17T12:13:40.000Z
|
"""
Particle Size Models: Pure Oil Jet
===================================
Use the ``TAMOC`` `particle_size_models` module to simulate a laboratory
scale pure oil jet into water. This script demonstrates the typical steps
involved in using the `particle_size_models.PureJet` object, which requires
specification of all of the fluid properties of the jet.
"""
# S. Socolofsky, March 2020, Texas A&M University <[email protected]>.
from __future__ import (absolute_import, division, print_function)
from tamoc import seawater, particle_size_models
import numpy as np
import warnings
warnings.filterwarnings("ignore")
if __name__ == '__main__':
print('\n---------------------------------------------------------------')
print('Demonstration using the PureJet class in the')
print('particle_size_models module of TAMOC for the ')
print('experiments in the paper by Brandvik et al. (2013).')
print('\nComparisons are for the data reported in Table 3')
print('of the paper')
print('---------------------------------------------------------------')
# Simulate an experiment from Brandvik et al. (2013). Their data uses
# Oseberg oil, with the following reported properties
rho_oil = 839.3
mu_oil = 5.e-3
sigma = 15.5e-3
# We will simulate data from Table 3 in the Brandvik et al. (2013) paper.
# These experiments have a nozzle diameter of 1.5 mm
d0 = 0.0015
# They also used seawater (assumed salinity of 34.5 psu) and released the
# oil from a depth of about 6 m at a temperature of 13 deg C
T = 273.15 + 13.
S = 34.5
rho = seawater.density(T, S, 101325.)
P = 101325. + rho * 9.81 * 6.
rho = seawater.density(T, S, P)
mu = seawater.mu(T, S, P)
# With this information, we can initialize a
# `particle_size_models.PureJet` object
jet = particle_size_models.PureJet(rho_oil, mu_oil, sigma, rho, mu,
fp_type = 1)
# Brandvik et al. (2013) report the exit velocity at the nozzle. We
# need to convert this to a mass flow rate. The mass flow rate should
# always be reported within a numpy array, which allows for different
# mass fluxes for different pseudocomponents of the oil.
u_oil = 11.3
A_oil = np.pi * (d0 / 2.)**2
q_oil = u_oil * A_oil
md_oil = np.array([rho_oil * q_oil])
# To simulate the no-dispersant case, all of the oil properties in the
# jet object are currently correct. Hence, we may use:
jet.simulate(d0, md_oil)
# We compare the result to the measured data as follows:
print('\nThe median droplet size for the no-disperant experiment is:')
print(' Measured: %3.3d um' % 237)
print(' Modeled : %3.3d um\n' % (jet.get_d50() * 1.e6))
# When dispersant is added in sufficient quantities, the interfacial
# tension reduces and the droplet size gets smaller. At a dispersant
# to oil ratio of 50, sigma is:
sigma = 0.05e-3
# We can run this case by updating the properties of the jet object and
# re-running the simualtion
jet.update_properties(rho_oil, mu_oil, sigma, rho, mu, fp_type = 1)
jet.simulate(d0, md_oil)
# We compare the result to the measured data as follows:
print('\nThe median droplet size for an experiments with a')
print('dispersant to oil ratio of 50 is:')
print(' Measured: %3.3d um' % 170)
print(' Modeled : %3.3d um\n' % (jet.get_d50() * 1.e6))
# We can also plot the size distribution
print('\nThe corresponding size distribution is plotted in Figure 1')
jet.get_distributions(15)
jet.plot_psd(1)
| 38.947368 | 78 | 0.635946 |
e6862496cf199e7f27dd40deb80fa8e54704b966
| 1,121 |
py
|
Python
|
tron/Nubs/hal.py
|
sdss/tron
|
886c5c5fb6341ad85e4a9f5d6f5ecb6bbc0d8322
|
[
"BSD-3-Clause"
] | null | null | null |
tron/Nubs/hal.py
|
sdss/tron
|
886c5c5fb6341ad85e4a9f5d6f5ecb6bbc0d8322
|
[
"BSD-3-Clause"
] | null | null | null |
tron/Nubs/hal.py
|
sdss/tron
|
886c5c5fb6341ad85e4a9f5d6f5ecb6bbc0d8322
|
[
"BSD-3-Clause"
] | null | null | null |
import os.path
import tron.Misc
from tron import g, hub
from tron.Hub.Command.Encoders.ASCIICmdEncoder import ASCIICmdEncoder
from tron.Hub.Nub.SocketActorNub import SocketActorNub
from tron.Hub.Reply.Decoders.ASCIIReplyDecoder import ASCIIReplyDecoder
name = 'hal'
| 24.369565 | 77 | 0.637823 |
e68682ac6ba97f9b172ff277c3a2a87e5c65354c
| 1,761 |
py
|
Python
|
tests/fixtures/defxmlschema/chapter15.py
|
gramm/xsdata
|
082c780757c6d76a5c31a6757276ef6912901ed2
|
[
"MIT"
] | null | null | null |
tests/fixtures/defxmlschema/chapter15.py
|
gramm/xsdata
|
082c780757c6d76a5c31a6757276ef6912901ed2
|
[
"MIT"
] | null | null | null |
tests/fixtures/defxmlschema/chapter15.py
|
gramm/xsdata
|
082c780757c6d76a5c31a6757276ef6912901ed2
|
[
"MIT"
] | null | null | null |
from dataclasses import dataclass, field
from decimal import Decimal
from typing import Optional
from xsdata.models.datatype import XmlDate
| 20.241379 | 42 | 0.473027 |
e68781e0de8404ad5b22f8d2f250a25084af55ff
| 1,092 |
py
|
Python
|
extensions/domain.py
|
anubhavsinha98/oppia
|
9a64ea2e91d2f471ce22bd39da77b43dccd5b51f
|
[
"Apache-2.0"
] | 1 |
2019-08-31T17:06:41.000Z
|
2019-08-31T17:06:41.000Z
|
extensions/domain.py
|
anubhavsinha98/oppia
|
9a64ea2e91d2f471ce22bd39da77b43dccd5b51f
|
[
"Apache-2.0"
] | null | null | null |
extensions/domain.py
|
anubhavsinha98/oppia
|
9a64ea2e91d2f471ce22bd39da77b43dccd5b51f
|
[
"Apache-2.0"
] | null | null | null |
# coding: utf-8
#
# Copyright 2014 The Oppia Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Domain objects used within multiple extensions."""
from __future__ import absolute_import # pylint: disable=import-only-modules
import python_utils
| 35.225806 | 77 | 0.746337 |
e6885b17b97915311f8a8bd86b9f72a31641ef6d
| 7,392 |
py
|
Python
|
plugins/modules/oci_database_management_object_privilege_facts.py
|
LaudateCorpus1/oci-ansible-collection
|
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
|
[
"Apache-2.0"
] | null | null | null |
plugins/modules/oci_database_management_object_privilege_facts.py
|
LaudateCorpus1/oci-ansible-collection
|
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
|
[
"Apache-2.0"
] | null | null | null |
plugins/modules/oci_database_management_object_privilege_facts.py
|
LaudateCorpus1/oci-ansible-collection
|
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/python
# Copyright (c) 2020, 2022 Oracle and/or its affiliates.
# This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license.
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
# Apache License v2.0
# See LICENSE.TXT for details.
# GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN
from __future__ import absolute_import, division, print_function
__metaclass__ = type
ANSIBLE_METADATA = {
"metadata_version": "1.1",
"status": ["preview"],
"supported_by": "community",
}
DOCUMENTATION = """
---
module: oci_database_management_object_privilege_facts
short_description: Fetches details about one or multiple ObjectPrivilege resources in Oracle Cloud Infrastructure
description:
- Fetches details about one or multiple ObjectPrivilege resources in Oracle Cloud Infrastructure
- Gets the list of Object Privileges granted for the specified user.
version_added: "2.9.0"
author: Oracle (@oracle)
options:
managed_database_id:
description:
- The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the Managed Database.
type: str
required: true
user_name:
description:
- The name of the user whose details are to be viewed.
type: str
required: true
name:
description:
- A filter to return only resources that match the entire name.
type: str
sort_by:
description:
- The field to sort information by. Only one sortOrder can be used. The default sort order
for 'NAME' is ascending. The 'NAME' sort order is case-sensitive.
type: str
choices:
- "NAME"
sort_order:
description:
- The option to sort information in ascending ('ASC') or descending ('DESC') order. Ascending order is the default order.
type: str
choices:
- "ASC"
- "DESC"
extends_documentation_fragment: [ oracle.oci.oracle ]
"""
EXAMPLES = """
- name: List object_privileges
oci_database_management_object_privilege_facts:
# required
managed_database_id: "ocid1.manageddatabase.oc1..xxxxxxEXAMPLExxxxxx"
user_name: user_name_example
# optional
name: name_example
sort_by: NAME
sort_order: ASC
"""
RETURN = """
object_privileges:
description:
- List of ObjectPrivilege resources
returned: on success
type: complex
contains:
name:
description:
- The name of the privilege on the object.
returned: on success
type: str
sample: name_example
schema_type:
description:
- The type of the object.
returned: on success
type: str
sample: schema_type_example
owner:
description:
- The owner of the object.
returned: on success
type: str
sample: owner_example
grantor:
description:
- The name of the user who performed the grant
returned: on success
type: str
sample: grantor_example
hierarchy:
description:
- Indicates whether the privilege was granted with the HIERARCHY OPTION (YES) or not (NO)
returned: on success
type: str
sample: YES
object:
description:
- The name of the object. The object can be any object, including tables, packages, indexes, sequences, and so on.
returned: on success
type: str
sample: object_example
grant_option:
description:
- Indicates whether the privilege was granted with the GRANT OPTION (YES) or not (NO)
returned: on success
type: str
sample: YES
common:
description:
- "Indicates how the grant was made. Possible values:
YES if the role was granted commonly (CONTAINER=ALL was used)
NO if the role was granted locally (CONTAINER=ALL was not used)"
returned: on success
type: str
sample: YES
inherited:
description:
- Indicates whether the role grant was inherited from another container (YES) or not (NO)
returned: on success
type: str
sample: YES
sample: [{
"name": "name_example",
"schema_type": "schema_type_example",
"owner": "owner_example",
"grantor": "grantor_example",
"hierarchy": "YES",
"object": "object_example",
"grant_option": "YES",
"common": "YES",
"inherited": "YES"
}]
"""
from ansible.module_utils.basic import AnsibleModule
from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils
from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import (
OCIResourceFactsHelperBase,
get_custom_class,
)
try:
from oci.database_management import DbManagementClient
HAS_OCI_PY_SDK = True
except ImportError:
HAS_OCI_PY_SDK = False
ObjectPrivilegeFactsHelperCustom = get_custom_class("ObjectPrivilegeFactsHelperCustom")
if __name__ == "__main__":
main()
| 30.92887 | 133 | 0.626759 |
e6889a8d19aba99a640a29f5b573f28a57dbd412
| 1,727 |
py
|
Python
|
rbc/externals/stdio.py
|
guilhermeleobas/rbc
|
4b568b91c6ce3ef7727fee001169302c3803c4fd
|
[
"BSD-3-Clause"
] | null | null | null |
rbc/externals/stdio.py
|
guilhermeleobas/rbc
|
4b568b91c6ce3ef7727fee001169302c3803c4fd
|
[
"BSD-3-Clause"
] | null | null | null |
rbc/externals/stdio.py
|
guilhermeleobas/rbc
|
4b568b91c6ce3ef7727fee001169302c3803c4fd
|
[
"BSD-3-Clause"
] | null | null | null |
"""https://en.cppreference.com/w/c/io
"""
from rbc import irutils
from llvmlite import ir
from rbc.targetinfo import TargetInfo
from numba.core import cgutils, extending
from numba.core import types as nb_types
from rbc.errors import NumbaTypeError # some errors are available for Numba >= 0.55
int32_t = ir.IntType(32)
| 28.783333 | 92 | 0.682687 |
e689526fba8d369acce37c9eab4574f56f8a1f4b
| 991 |
py
|
Python
|
setup.py
|
clach04/discoverhue
|
8f35cbc8ff9b5aab80b8be0443427058c1da51ed
|
[
"MIT"
] | 10 |
2017-09-26T22:34:38.000Z
|
2021-11-19T22:37:59.000Z
|
setup.py
|
clach04/discoverhue
|
8f35cbc8ff9b5aab80b8be0443427058c1da51ed
|
[
"MIT"
] | 7 |
2018-02-04T19:38:03.000Z
|
2021-10-30T13:20:33.000Z
|
setup.py
|
clach04/discoverhue
|
8f35cbc8ff9b5aab80b8be0443427058c1da51ed
|
[
"MIT"
] | 4 |
2019-06-28T15:26:45.000Z
|
2022-01-20T02:26:05.000Z
|
from setuptools import setup
try:
import pypandoc
long_description = pypandoc.convert_file('README.md', 'rst', extra_args=())
except ImportError:
import codecs
long_description = codecs.open('README.md', encoding='utf-8').read()
long_description = '\n'.join(long_description.splitlines())
setup(
name='discoverhue',
description='Auto discovery of Hue bridges',
long_description=long_description,
version='1.0.2',
url='https://github.com/Overboard/discoverhue',
author='Overboard',
author_email='[email protected]',
license='MIT',
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
],
keywords='philips hue',
packages=['discoverhue'],
install_requires=['httpfind'],
)
| 26.078947 | 79 | 0.649849 |
e68a7efe5fb704c535ff7a5982b5a18ddc07817d
| 6,024 |
py
|
Python
|
utils/logmmse.py
|
dbonattoj/Real-Time-Voice-Cloning
|
7ce361b0e900cb0fad4289884f526578ba276481
|
[
"MIT"
] | 3 |
2020-07-10T02:23:00.000Z
|
2021-08-17T12:35:09.000Z
|
utils/logmmse.py
|
amoliu/Real-Time-Voice-Cloning
|
7808d6f80aa9bbaffe367fde07b1c6f96cd3697e
|
[
"MIT"
] | 1 |
2020-09-30T09:29:57.000Z
|
2020-10-31T15:38:50.000Z
|
utils/logmmse.py
|
amoliu/Real-Time-Voice-Cloning
|
7808d6f80aa9bbaffe367fde07b1c6f96cd3697e
|
[
"MIT"
] | 5 |
2020-04-23T10:52:30.000Z
|
2021-08-17T12:35:19.000Z
|
# The MIT License (MIT)
#
# Copyright (c) 2015 braindead
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I
# simply modified the interface to meet my needs.
import numpy as np
import math
from scipy.special import expn
from collections import namedtuple
NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2")
def profile_noise(noise, sampling_rate, window_size=0):
"""
Creates a profile of the noise in a given waveform.
:param noise: a waveform containing noise ONLY, as a numpy array of floats or ints.
:param sampling_rate: the sampling rate of the audio
:param window_size: the size of the window the logmmse algorithm operates on. A default value
will be picked if left as 0.
:return: a NoiseProfile object
"""
noise, dtype = to_float(noise)
noise += np.finfo(np.float64).eps
if window_size == 0:
window_size = int(math.floor(0.02 * sampling_rate))
if window_size % 2 == 1:
window_size = window_size + 1
perc = 50
len1 = int(math.floor(window_size * perc / 100))
len2 = int(window_size - len1)
win = np.hanning(window_size)
win = win * len2 / np.sum(win)
n_fft = 2 * window_size
noise_mean = np.zeros(n_fft)
n_frames = len(noise) // window_size
for j in range(0, window_size * n_frames, window_size):
noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0))
noise_mu2 = (noise_mean / n_frames) ** 2
return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2)
def denoise(wav, noise_profile: NoiseProfile, eta=0.15):
"""
Cleans the noise from a speech waveform given a noise profile. The waveform must have the
same sampling rate as the one used to create the noise profile.
:param wav: a speech waveform as a numpy array of floats or ints.
:param noise_profile: a NoiseProfile object that was created from a similar (or a segment of
the same) waveform.
:param eta: voice threshold for noise update. While the voice activation detection value is
below this threshold, the noise profile will be continuously updated throughout the audio.
Set to 0 to disable updating the noise profile.
:return: the clean wav as a numpy array of floats or ints of the same length.
"""
wav, dtype = to_float(wav)
wav += np.finfo(np.float64).eps
p = noise_profile
nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2))
x_final = np.zeros(nframes * p.len2)
aa = 0.98
mu = 0.98
ksi_min = 10 ** (-25 / 10)
x_old = np.zeros(p.len1)
xk_prev = np.zeros(p.len1)
noise_mu2 = p.noise_mu2
for k in range(0, nframes * p.len2, p.len2):
insign = p.win * wav[k:k + p.window_size]
spec = np.fft.fft(insign, p.n_fft, axis=0)
sig = np.absolute(spec)
sig2 = sig ** 2
gammak = np.minimum(sig2 / noise_mu2, 40)
if xk_prev.all() == 0:
ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
else:
ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
ksi = np.maximum(ksi_min, ksi)
log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi)
vad_decision = np.sum(log_sigma_k) / p.window_size
if vad_decision < eta:
noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
a = ksi / (1 + ksi)
vk = a * gammak
ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
hw = a * np.exp(ei_vk)
sig = sig * hw
xk_prev = sig ** 2
xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0)
xi_w = np.real(xi_w)
x_final[k:k + p.len2] = x_old + xi_w[0:p.len1]
x_old = xi_w[p.len1:p.window_size]
output = from_float(x_final, dtype)
output = np.pad(output, (0, len(wav) - len(output)), mode="constant")
return output
| 36.957055 | 100 | 0.659529 |
e68aea4ed97106ccbd90e2eca6ee1a3772751cb0
| 3,780 |
py
|
Python
|
lib/core/session.py
|
6un9-h0-Dan/CIRTKit
|
58b8793ada69320ffdbdd4ecdc04a3bb2fa83c37
|
[
"MIT"
] | 97 |
2017-12-18T15:19:28.000Z
|
2022-03-25T07:10:00.000Z
|
lib/core/session.py
|
robertdigital/CIRTKit
|
58b8793ada69320ffdbdd4ecdc04a3bb2fa83c37
|
[
"MIT"
] | 1 |
2019-01-29T16:29:27.000Z
|
2019-01-29T16:29:27.000Z
|
lib/core/session.py
|
robertdigital/CIRTKit
|
58b8793ada69320ffdbdd4ecdc04a3bb2fa83c37
|
[
"MIT"
] | 21 |
2018-04-04T18:12:13.000Z
|
2021-06-12T09:40:58.000Z
|
# This file is part of Viper - https://github.com/viper-framework/viper
# See the file 'LICENSE' for copying permission.
import time
import datetime
from lib.common.out import *
from lib.common.objects import File
from lib.core.database import Database
from lib.core.investigation import __project__
__sessions__ = Sessions()
| 36 | 101 | 0.603439 |
e68c436db086a9f75f4ec9a1c59f8bdd8afa7f45
| 1,028 |
py
|
Python
|
src/simple_report/xls/document.py
|
glibin/simple-report
|
1e68b2fe568d6f7a7d9332d0e83b9a21661419e0
|
[
"Apache-2.0"
] | null | null | null |
src/simple_report/xls/document.py
|
glibin/simple-report
|
1e68b2fe568d6f7a7d9332d0e83b9a21661419e0
|
[
"Apache-2.0"
] | null | null | null |
src/simple_report/xls/document.py
|
glibin/simple-report
|
1e68b2fe568d6f7a7d9332d0e83b9a21661419e0
|
[
"Apache-2.0"
] | null | null | null |
#coding: utf-8
import xlrd
from simple_report.core.document_wrap import BaseDocument, SpreadsheetDocument
from simple_report.xls.workbook import Workbook
from simple_report.xls.output_options import XSL_OUTPUT_SETTINGS
| 25.7 | 79 | 0.614786 |
e68c5bbc6721a5ef393bdd04f567f863f9c93e3b
| 3,810 |
py
|
Python
|
tests/ut/datavisual/common/test_error_handler.py
|
zengchen1024/mindinsight
|
228a448b46707e889efc1fb23502158e27ab56ca
|
[
"Apache-2.0"
] | null | null | null |
tests/ut/datavisual/common/test_error_handler.py
|
zengchen1024/mindinsight
|
228a448b46707e889efc1fb23502158e27ab56ca
|
[
"Apache-2.0"
] | null | null | null |
tests/ut/datavisual/common/test_error_handler.py
|
zengchen1024/mindinsight
|
228a448b46707e889efc1fb23502158e27ab56ca
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Function:
Test error handler.
Usage:
pytest tests/ut/datavisual
"""
from unittest.mock import patch
from werkzeug.exceptions import MethodNotAllowed, NotFound
from ...backend.datavisual.conftest import TRAIN_ROUTES
from ..mock import MockLogger
from ....utils.tools import get_url
from mindinsight.datavisual.processors import scalars_processor
from mindinsight.datavisual.processors.scalars_processor import ScalarsProcessor
| 36.990291 | 98 | 0.683727 |
e68c634de73f166e370b403383fc377943dc8b21
| 4,796 |
py
|
Python
|
pipeline_sdk/api/build/cancel_build_pb2.py
|
easyopsapis/easyops-api-python
|
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
|
[
"Apache-2.0"
] | 5 |
2019-07-31T04:11:05.000Z
|
2021-01-07T03:23:20.000Z
|
pipeline_sdk/api/build/cancel_build_pb2.py
|
easyopsapis/easyops-api-python
|
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
|
[
"Apache-2.0"
] | null | null | null |
pipeline_sdk/api/build/cancel_build_pb2.py
|
easyopsapis/easyops-api-python
|
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: cancel_build.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='cancel_build.proto',
package='build',
syntax='proto3',
serialized_options=None,
serialized_pb=_b('\n\x12\x63\x61ncel_build.proto\x12\x05\x62uild\x1a\x1bgoogle/protobuf/empty.proto\"!\n\rCancelRequest\x12\x10\n\x08\x62uild_id\x18\x01 \x01(\t\"o\n\x15\x43\x61ncelResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12$\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\x16.google.protobuf.Emptyb\x06proto3')
,
dependencies=[google_dot_protobuf_dot_empty__pb2.DESCRIPTOR,])
_CANCELREQUEST = _descriptor.Descriptor(
name='CancelRequest',
full_name='build.CancelRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='build_id', full_name='build.CancelRequest.build_id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=58,
serialized_end=91,
)
_CANCELRESPONSEWRAPPER = _descriptor.Descriptor(
name='CancelResponseWrapper',
full_name='build.CancelResponseWrapper',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='code', full_name='build.CancelResponseWrapper.code', index=0,
number=1, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='codeExplain', full_name='build.CancelResponseWrapper.codeExplain', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='error', full_name='build.CancelResponseWrapper.error', index=2,
number=3, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='data', full_name='build.CancelResponseWrapper.data', index=3,
number=4, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=93,
serialized_end=204,
)
_CANCELRESPONSEWRAPPER.fields_by_name['data'].message_type = google_dot_protobuf_dot_empty__pb2._EMPTY
DESCRIPTOR.message_types_by_name['CancelRequest'] = _CANCELREQUEST
DESCRIPTOR.message_types_by_name['CancelResponseWrapper'] = _CANCELRESPONSEWRAPPER
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
CancelRequest = _reflection.GeneratedProtocolMessageType('CancelRequest', (_message.Message,), {
'DESCRIPTOR' : _CANCELREQUEST,
'__module__' : 'cancel_build_pb2'
# @@protoc_insertion_point(class_scope:build.CancelRequest)
})
_sym_db.RegisterMessage(CancelRequest)
CancelResponseWrapper = _reflection.GeneratedProtocolMessageType('CancelResponseWrapper', (_message.Message,), {
'DESCRIPTOR' : _CANCELRESPONSEWRAPPER,
'__module__' : 'cancel_build_pb2'
# @@protoc_insertion_point(class_scope:build.CancelResponseWrapper)
})
_sym_db.RegisterMessage(CancelResponseWrapper)
# @@protoc_insertion_point(module_scope)
| 35.791045 | 399 | 0.755004 |
e68dece75266882db686c493e81051a931627936
| 5,118 |
py
|
Python
|
src/.ipynb_checkpoints/headpose_model-checkpoint.py
|
geochri/Intel_Edge_AI-Computer_Pointer_controller
|
068947fa0cbe0c5d1b74e2c0eb69a85bbc439131
|
[
"MIT"
] | null | null | null |
src/.ipynb_checkpoints/headpose_model-checkpoint.py
|
geochri/Intel_Edge_AI-Computer_Pointer_controller
|
068947fa0cbe0c5d1b74e2c0eb69a85bbc439131
|
[
"MIT"
] | 3 |
2021-03-19T14:38:26.000Z
|
2022-03-12T00:43:27.000Z
|
src/.ipynb_checkpoints/headpose_model-checkpoint.py
|
geochri/Intel_Edge_AI-Computer_Pointer_controller
|
068947fa0cbe0c5d1b74e2c0eb69a85bbc439131
|
[
"MIT"
] | null | null | null |
'''
This is a sample class for a model. You may choose to use it as-is or make any changes to it.
This has been provided just to give you an idea of how to structure your model class.
'''
from openvino.inference_engine import IENetwork, IECore
import numpy as np
import os
import cv2
import sys
| 41.609756 | 107 | 0.59789 |
e691c0247838523436befe1e1ccaf96b1e1135db
| 374 |
py
|
Python
|
src/minisaml/internal/constants.py
|
HENNGE/minisaml
|
d96aa5d294eee60521ad3c7084e8659b25935cee
|
[
"Apache-2.0"
] | 2 |
2020-09-13T15:55:50.000Z
|
2021-01-07T07:40:24.000Z
|
src/minisaml/internal/constants.py
|
HENNGE/minisaml
|
d96aa5d294eee60521ad3c7084e8659b25935cee
|
[
"Apache-2.0"
] | 11 |
2020-08-26T12:27:39.000Z
|
2021-11-17T16:10:00.000Z
|
src/minisaml/internal/constants.py
|
HENNGE/minisaml
|
d96aa5d294eee60521ad3c7084e8659b25935cee
|
[
"Apache-2.0"
] | 1 |
2021-10-07T11:49:28.000Z
|
2021-10-07T11:49:28.000Z
|
NAMES_SAML2_PROTOCOL = "urn:oasis:names:tc:SAML:2.0:protocol"
NAMES_SAML2_ASSERTION = "urn:oasis:names:tc:SAML:2.0:assertion"
NAMEID_FORMAT_UNSPECIFIED = "urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
BINDINGS_HTTP_POST = "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
DATE_TIME_FORMAT = "%Y-%m-%dT%H:%M:%SZ"
DATE_TIME_FORMAT_FRACTIONAL = "%Y-%m-%dT%H:%M:%S.%fZ"
| 53.428571 | 83 | 0.759358 |
e692205969e07efd17736b63f7c1d2bf34e22ac0
| 833 |
py
|
Python
|
Contests/Snackdown19_Qualifier/CHEFPRMS.py
|
PK-100/Competitive_Programming
|
d0863feaaa99462b2999e85dcf115f7a6c08bb8d
|
[
"MIT"
] | 70 |
2018-06-25T21:20:15.000Z
|
2022-03-24T03:55:17.000Z
|
Contests/Snackdown19_Qualifier/CHEFPRMS.py
|
An3sha/Competitive_Programming
|
ee7eadf51939a360d0b004d787ebabda583e92f0
|
[
"MIT"
] | 4 |
2018-09-04T13:12:20.000Z
|
2021-06-20T08:29:12.000Z
|
Contests/Snackdown19_Qualifier/CHEFPRMS.py
|
An3sha/Competitive_Programming
|
ee7eadf51939a360d0b004d787ebabda583e92f0
|
[
"MIT"
] | 24 |
2018-12-26T05:15:32.000Z
|
2022-01-23T23:04:54.000Z
|
import math
for _ in range(int(input())):
n=int(input())
flag=0
for i in range(2,n//2+1):
if check(i)==True and check(n-i)==True:
#print(i,n-i,square(i),square(n-i),"Yes")
print("YES")
flag=1
break
if flag==0:
#print(i,n-i,square(i),square(n-i),"No")
print("NO")
| 21.921053 | 53 | 0.457383 |
e692cff5589dc59f4785c76fbfa11c53ff5a1d4e
| 305 |
py
|
Python
|
setup.py
|
arokem/afq-deep-learning
|
61d7746f03914d63c56253d10d0f6a21e6c78e90
|
[
"BSD-3-Clause"
] | null | null | null |
setup.py
|
arokem/afq-deep-learning
|
61d7746f03914d63c56253d10d0f6a21e6c78e90
|
[
"BSD-3-Clause"
] | null | null | null |
setup.py
|
arokem/afq-deep-learning
|
61d7746f03914d63c56253d10d0f6a21e6c78e90
|
[
"BSD-3-Clause"
] | 2 |
2021-12-01T17:04:39.000Z
|
2022-01-20T22:53:40.000Z
|
from setuptools import find_packages, setup
setup(
name='src',
packages=find_packages(),
version='0.1.0',
description='This repository hosts some work-in-progress experiments applying deep learning to predict age using tractometry data.',
author='Joanna Qiao',
license='BSD-3',
)
| 27.727273 | 136 | 0.718033 |
e692fc94ab5c1ffa86ca1f2d1e72224d55aaebca
| 8,474 |
py
|
Python
|
make_base_container.py
|
thiagodasilva/runway
|
a5455e885302df534fcfff0470881fbd2ad8eed5
|
[
"Apache-2.0"
] | null | null | null |
make_base_container.py
|
thiagodasilva/runway
|
a5455e885302df534fcfff0470881fbd2ad8eed5
|
[
"Apache-2.0"
] | null | null | null |
make_base_container.py
|
thiagodasilva/runway
|
a5455e885302df534fcfff0470881fbd2ad8eed5
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python3
import argparse
import os
import random
import requests
import sys
import tempfile
import uuid
from libs import colorprint
from libs.cli import run_command
SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__))
# assume well-known lvm volume group on host
# ...later we'll figure out how to make this dynamic
VG_NAME = "swift-runway-vg01"
SWIFTSTACK_IMAGES_PREFIX = "ss-"
SWIFTSTACK_IMAGES_BASE_URL = \
"https://tellus.swiftstack.com/v1/AUTH_runway/lxd-images"
IMAGE_MANIFEST_OBJECT_NAME = "manifest.json"
UNIFIED_TARBALL_TYPE = "unified"
SPLIT_TARBALL_TYPE = "split"
TARBALL_TYPES = [UNIFIED_TARBALL_TYPE, SPLIT_TARBALL_TYPE]
def import_image(manifest, alias):
'''
There are 2 possible image formats: unified and split. We support both.
For unified format, the manifest will look like this:
{
"tarball_type": "unified",
"fingerprint": "629d2c18b7bb0b52b80dfe62ae309937123d05b563ef057233e7802c9e18c018",
"tarball-object": "centos7.5/629d2c18b7bb0b52b80dfe62ae309937123d05b563ef057233e7802c9e18c018.tar.gz"
}
For split format, the manifest will look like this:
{
"tarball_type": "split",
"fingerprint": "22abbefe0c68943f264a7139c7a699a0b2adfbcf46fc661d2e89b1232301a5de",
"metadata-object": "centos7.5/meta-22abbefe0c68943f264a7139c7a699a0b2adfbcf46fc661d2e89b1232301a5de.tar.xz",
"rootfs-object": "centos7.5/22abbefe0c68943f264a7139c7a699a0b2adfbcf46fc661d2e89b1232301a5de.squashfs"
}
'''
if manifest["tarball_type"] not in TARBALL_TYPES:
raise Exception("Invalid tarball type: {}".format(
manifest["tarball_type"]))
elif manifest["tarball_type"] == UNIFIED_TARBALL_TYPE:
import_unified_image(manifest, alias)
elif manifest["tarball_type"] == SPLIT_TARBALL_TYPE:
import_split_image(manifest, alias)
else:
raise Exception("Tarball type '{}' is valid, but a method to import "
"it has not been implemented yet.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('distro', type=str, help='Container distro')
parser.add_argument('cname', metavar='containername', help='Container '
'name')
parser.add_argument('volsize', help='Volume size')
parser.add_argument('volcount', type=int, help='Volume count')
parser.add_argument('baseimage', nargs='?',
help='Base image. Defaults: \'images:centos/7/amd64\' '
'for RHEL distro, \'ubuntu:16.04\' otherwise')
args = parser.parse_args()
distro = args.distro
container_name = args.cname
base_image = args.baseimage
volume_size = args.volsize
volume_count = args.volcount
if is_swiftstack_hosted_image(distro):
import_image_if_needed(distro)
default_image = distro
else:
default_image = get_default_image(distro)
if base_image is None:
base_image = default_image
try:
# make a container profile that maps 8 block devices to the guest
rand_file_name = str(uuid.UUID(int=random.getrandbits(128)))
run_command("./make_lxc_profile.py {} {} {} {} > "
"/tmp/{}".format(container_name, VG_NAME, volume_size,
volume_count, rand_file_name),
cwd=SCRIPT_DIR, shell=True)
run_command("lxc profile create {}-profile".format(container_name))
run_command("cat /tmp/{} | lxc profile edit {}-profile".format(
rand_file_name, container_name), cwd=SCRIPT_DIR, shell=True)
# launch the new container
print("Trying to launch container from base image "
"{}".format(base_image))
run_command("lxc launch {} {} -p {}-profile || "
"lxc launch {} {} -p {}-profile".format(base_image,
container_name,
container_name,
default_image,
container_name,
container_name),
shell=True)
except Exception as e:
exit_with_error(str(e))
| 36.683983 | 116 | 0.628039 |
e693812c79b01a653cf7ed97ebf4b0c9deae4584
| 1,687 |
py
|
Python
|
exercicios_antigos/ex_01.py
|
jfklima/prog_pratica
|
72c795e3372e46f04ce0c92c05187aec651777cf
|
[
"MIT"
] | null | null | null |
exercicios_antigos/ex_01.py
|
jfklima/prog_pratica
|
72c795e3372e46f04ce0c92c05187aec651777cf
|
[
"MIT"
] | null | null | null |
exercicios_antigos/ex_01.py
|
jfklima/prog_pratica
|
72c795e3372e46f04ce0c92c05187aec651777cf
|
[
"MIT"
] | null | null | null |
"""Criar uma funo que retorne min e max de uma sequncia numrica
aleatria.
S pode usar if, comparaes, recurso e funes que sejam de sua
autoria.
Se quiser usar laos tambm pode.
Deve informar via docstring qual a complexidade de tempo e espao da
sua soluo
"""
from math import inf
def minimo_e_maximo(sequencia_numerica):
''' Retorna o minimo e o maximo de uma sequncia numrica aleatria.
Complexidade:
execuo: O(n)
espao: O(3)
'''
maximo = -inf # 1
minimo = +inf # 1
for elem in sequencia_numerica: # 1
if elem > maximo: # 2
maximo = elem # 1
if elem < minimo: # 2
minimo = elem # 2
return minimo, maximo # 1
# print(minimo_e_maximo([1, 2, 3, 4]))
# print(minimo_e_maximo([1, 3, 10, 12, 44, 2, 24, 25]))
# print(minimo_e_maximo([88, 66, 10, 2, 8]))
print(recursivo_minmax([1, 2, 3, 4]))
| 23.760563 | 72 | 0.627742 |
e693c2c06b451b4433b40c8836d35627ae32d7b5
| 806 |
py
|
Python
|
docs/demos/theme_explorer/util.py
|
harisbal/dash-bootstrap-components
|
d7c91c08e0821ccfd81330db912cde71ec57c171
|
[
"Apache-2.0"
] | 1 |
2021-05-08T08:21:41.000Z
|
2021-05-08T08:21:41.000Z
|
docs/demos/theme_explorer/util.py
|
harisbal/dash-bootstrap-components
|
d7c91c08e0821ccfd81330db912cde71ec57c171
|
[
"Apache-2.0"
] | null | null | null |
docs/demos/theme_explorer/util.py
|
harisbal/dash-bootstrap-components
|
d7c91c08e0821ccfd81330db912cde71ec57c171
|
[
"Apache-2.0"
] | null | null | null |
import dash_bootstrap_components as dbc
import dash_html_components as html
DBC_DOCS = (
"https://dash-bootstrap-components.opensource.faculty.ai/docs/components/"
)
| 23.028571 | 78 | 0.473945 |
e693c649026985a8de2994906ab2b8b27870d123
| 2,858 |
py
|
Python
|
pytorch_toolbox/visualization/visdom_logger.py
|
MathGaron/pytorch_toolbox
|
2afd13e50ba71dfce66467a4b070d9b922668502
|
[
"MIT"
] | 10 |
2018-02-26T04:51:11.000Z
|
2021-10-01T02:30:37.000Z
|
pytorch_toolbox/visualization/visdom_logger.py
|
MathGaron/pytorch_toolbox
|
2afd13e50ba71dfce66467a4b070d9b922668502
|
[
"MIT"
] | 9 |
2017-11-16T16:11:16.000Z
|
2020-02-13T13:10:55.000Z
|
pytorch_toolbox/visualization/visdom_logger.py
|
MathGaron/pytorch_toolbox
|
2afd13e50ba71dfce66467a4b070d9b922668502
|
[
"MIT"
] | 7 |
2018-02-12T19:06:14.000Z
|
2021-03-25T19:13:51.000Z
|
'''
The visualization class provides an easy access to some of the visdom functionalities
Accept as input a number that will be ploted over time or an image of type np.ndarray
'''
from visdom import Visdom
import numpy as np
import numbers
| 35.283951 | 120 | 0.569979 |
e6957e411e3b025a67a76d0f0a74f5d86329bb6f
| 2,683 |
py
|
Python
|
analytical/conditionnumber.py
|
gyyang/olfaction_evolution
|
434baa85b91f450e1ab63c6b9eafb8d370f1df96
|
[
"MIT"
] | 9 |
2021-10-11T01:16:23.000Z
|
2022-01-13T14:07:08.000Z
|
analytical/conditionnumber.py
|
gyyang/olfaction_evolution
|
434baa85b91f450e1ab63c6b9eafb8d370f1df96
|
[
"MIT"
] | 1 |
2021-10-30T09:49:08.000Z
|
2021-10-30T09:49:08.000Z
|
analytical/conditionnumber.py
|
gyyang/olfaction_evolution
|
434baa85b91f450e1ab63c6b9eafb8d370f1df96
|
[
"MIT"
] | null | null | null |
"""Analyze condition number of the network."""
import numpy as np
import matplotlib.pyplot as plt
# import model
def _get_sparse_mask(nx, ny, non, complex=False, nOR=50):
"""Generate a binary mask.
The mask will be of size (nx, ny)
For all the nx connections to each 1 of the ny units, only non connections are 1.
Args:
nx: int
ny: int
non: int, must not be larger than nx
Return:
mask: numpy array (nx, ny)
"""
mask = np.zeros((nx, ny))
if not complex:
mask[:non] = 1
for i in range(ny):
np.random.shuffle(mask[:, i]) # shuffling in-place
return mask.astype(np.float32)
n_kc_claws = np.arange(1, 50)
conds = np.array([get_logcond(n_kc_claw=n) for n in n_kc_claws])
plt.figure()
plt.plot(n_kc_claws, conds, 'o-')
plt.xticks(n_kc_claws)
plt.xlabel('N_KC_claw')
plt.show()
| 27.10101 | 85 | 0.621319 |
e6960adb05d4b964e50fe6cceef1e01091d1811d
| 2,327 |
py
|
Python
|
FusionIIIT/applications/placement_cell/api/serializers.py
|
29rj/Fusion
|
bc2941a67532e183adeb0bc4042df0b182b9e3aa
|
[
"bzip2-1.0.6"
] | 29 |
2019-02-20T15:35:33.000Z
|
2022-03-22T11:10:57.000Z
|
FusionIIIT/applications/placement_cell/api/serializers.py
|
29rj/Fusion
|
bc2941a67532e183adeb0bc4042df0b182b9e3aa
|
[
"bzip2-1.0.6"
] | 409 |
2019-01-17T19:30:51.000Z
|
2022-03-31T16:28:45.000Z
|
FusionIIIT/applications/placement_cell/api/serializers.py
|
29rj/Fusion
|
bc2941a67532e183adeb0bc4042df0b182b9e3aa
|
[
"bzip2-1.0.6"
] | 456 |
2019-01-12T11:01:13.000Z
|
2022-03-30T17:06:52.000Z
|
from rest_framework.authtoken.models import Token
from rest_framework import serializers
from applications.placement_cell.models import (Achievement, Course, Education,
Experience, Has, Patent,
Project, Publication, Skill,
PlacementStatus, NotifyStudent)
| 27.376471 | 89 | 0.644607 |
e6973c5ea944d5bc8b7dc232052cd5073acf79bf
| 253 |
py
|
Python
|
concat_col_app/factories.py
|
thinkAmi-sandbox/django-datatables-view-sample
|
ac3df721089489e61c09ac75d320be3704c72105
|
[
"Unlicense"
] | null | null | null |
concat_col_app/factories.py
|
thinkAmi-sandbox/django-datatables-view-sample
|
ac3df721089489e61c09ac75d320be3704c72105
|
[
"Unlicense"
] | null | null | null |
concat_col_app/factories.py
|
thinkAmi-sandbox/django-datatables-view-sample
|
ac3df721089489e61c09ac75d320be3704c72105
|
[
"Unlicense"
] | null | null | null |
import factory
from concat_col_app.models import Color, Apple
| 18.071429 | 54 | 0.73913 |
e698cce58860b9d7c8249a1734c7596543b84bc7
| 1,843 |
py
|
Python
|
defects4cpp/errors/argparser.py
|
HansolChoe/defects4cpp
|
cb9e3db239c50e6ec38127cec117865f0ee7a5cf
|
[
"MIT"
] | 10 |
2021-06-23T01:53:19.000Z
|
2022-03-31T03:14:01.000Z
|
defects4cpp/errors/argparser.py
|
HansolChoe/defects4cpp
|
cb9e3db239c50e6ec38127cec117865f0ee7a5cf
|
[
"MIT"
] | 34 |
2021-05-27T01:09:04.000Z
|
2022-03-28T07:53:35.000Z
|
defects4cpp/errors/argparser.py
|
HansolChoe/defects4cpp
|
cb9e3db239c50e6ec38127cec117865f0ee7a5cf
|
[
"MIT"
] | 6 |
2021-09-03T07:16:56.000Z
|
2022-03-29T07:30:35.000Z
|
from pathlib import Path
from typing import Dict
from errors.common.exception import DppError
| 29.253968 | 90 | 0.683668 |
e6990f7310e89eaf51795fa05ea2ca52396ff9f9
| 161 |
py
|
Python
|
utils/__init__.py
|
wang97zh/EVS-Net-1
|
3a8457c2d5281b8805ec523f9ced738ccf49d5f5
|
[
"MIT"
] | null | null | null |
utils/__init__.py
|
wang97zh/EVS-Net-1
|
3a8457c2d5281b8805ec523f9ced738ccf49d5f5
|
[
"MIT"
] | null | null | null |
utils/__init__.py
|
wang97zh/EVS-Net-1
|
3a8457c2d5281b8805ec523f9ced738ccf49d5f5
|
[
"MIT"
] | null | null | null |
from .utility import *
from .tricks import *
from .tensorlog import *
from .self_op import *
from .resume import *
from .optims import *
from .metric import *
| 16.1 | 24 | 0.726708 |
e69960fc13118fa865fc6b90dfac61ac3e974383
| 1,290 |
py
|
Python
|
model-optimizer/extensions/front/mxnet/arange_ext.py
|
calvinfeng/openvino
|
11f591c16852637506b1b40d083b450e56d0c8ac
|
[
"Apache-2.0"
] | null | null | null |
model-optimizer/extensions/front/mxnet/arange_ext.py
|
calvinfeng/openvino
|
11f591c16852637506b1b40d083b450e56d0c8ac
|
[
"Apache-2.0"
] | 19 |
2021-03-26T08:11:00.000Z
|
2022-02-21T13:06:26.000Z
|
model-optimizer/extensions/front/mxnet/arange_ext.py
|
calvinfeng/openvino
|
11f591c16852637506b1b40d083b450e56d0c8ac
|
[
"Apache-2.0"
] | 1 |
2021-07-28T17:30:46.000Z
|
2021-07-28T17:30:46.000Z
|
"""
Copyright (C) 2018-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
from extensions.ops.range import Range
from mo.front.extractor import FrontExtractorOp
from mo.front.mxnet.extractors.utils import get_mxnet_layer_attrs
from mo.graph.graph import Node
| 32.25 | 73 | 0.694574 |
e69993a645167fee1fbafcf116e0729c914350fa
| 15,381 |
py
|
Python
|
fold_cur_trans.py
|
lucasforever24/arcface_noonan
|
9d805a0d4d478e347a9084ad6ce24fe4c8dc5e65
|
[
"MIT"
] | null | null | null |
fold_cur_trans.py
|
lucasforever24/arcface_noonan
|
9d805a0d4d478e347a9084ad6ce24fe4c8dc5e65
|
[
"MIT"
] | null | null | null |
fold_cur_trans.py
|
lucasforever24/arcface_noonan
|
9d805a0d4d478e347a9084ad6ce24fe4c8dc5e65
|
[
"MIT"
] | null | null | null |
import cv2
from PIL import Image
import argparse
from pathlib import Path
from multiprocessing import Process, Pipe,Value,Array
import torch
from config import get_config
from mtcnn import MTCNN
from Learner_trans_tf import face_learner
from utils import load_facebank, draw_box_name, prepare_facebank, save_label_score, label_binarize
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score
from sklearn.model_selection import KFold
import os
import glob
import shutil
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import datetime
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='for face verification')
parser.add_argument("-ds", "--dataset_dir", help="where to get data", default="noonan", type=str)
parser.add_argument('-sd','--stored_result_dir',help='where to store data as np arrays',
default="results/trans/", type=str)
parser.add_argument("-k", "--kfold", help="returns the number of splitting iterations in the cross-validator.",
default=10, type=int)
parser.add_argument("-e", "--epochs", help="training epochs", default=20, type=int)
parser.add_argument("-n", "--names_considered", help="names for different types considered, separated by commas",
default="normal,noonan,others", type=str)
parser.add_argument("-g", "--gpu_id", help="gpu id to use", default="", type=str)
parser.add_argument("-s", "--use_shuffled_kfold", help="whether to use shuffled kfold.", action="store_true")
parser.add_argument("-rs", "--random_seed", help="random seed used for k-fold split.", default=6, type=int)
parser.add_argument("-tta", "--tta", help="whether test time augmentation",action="store_true")
parser.add_argument("-a", "--additional_data_dir", help="where to get the additional data",
default="", type=str)
parser.add_argument("-ta", "--additional_test_or_train", help="use additional data in only train, or test, or both",
default="", type=str)
parser.add_argument("-as", "--stylegan_data_dir", help="where to get the additional data",
default="", type=str)
parser.add_argument("-ts", "--stylegan_test_or_train", help="use stylegan data in only train, or test, or both",
default="", type=str)
parser.add_argument("-tf", "--transfer", help="how many layer(s) used for transfer learning, "
"but 0 means retraining the whole network.", default=0, type=int)
parser.add_argument("-ac", "--arch", help="types of model used for encoder", default="mobile", type=str)
args = parser.parse_args()
for arg in vars(args):
print(arg+':', getattr(args, arg))
emore_dir = 'faces_emore'
conf = get_config(True, args)
conf.emore_folder = conf.data_path/emore_dir
mtcnn = MTCNN()
print('mtcnn loaded')
names_considered = args.names_considered.strip().split(',')
exp_name = args.dataset_dir[:4]
if args.additional_data_dir:
if 'LAG' in args.additional_data_dir:
exp_name += '_lag'
elif 'literature' in args.additional_data_dir:
exp_name += '_ltr'
if args.kfold != 10:
exp_name += ('_k' + str(args.kfold))
if args.epochs != 20:
exp_name += ('_e' + str(args.epochs))
if args.transfer != 0 and args.transfer != 1:
exp_name += ('_td' + str(args.transfer))
if args.use_shuffled_kfold:
exp_name += ('_s' + str(args.random_seed))
print(exp_name)
# prepare folders
raw_dir = 'raw_112'
verify_type = 'trans'
if args.use_shuffled_kfold:
verify_type += '_shuffled'
# train_dir = conf.facebank_path/args.dataset_dir/verify_type/'train'
train_dir = conf.emore_folder/'imgs'
test_dir = conf.emore_folder/'test'
conf.facebank_path = train_dir
if os.path.exists(train_dir):
shutil.rmtree(train_dir)
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.mkdir(train_dir)
os.mkdir(test_dir)
for name in names_considered:
os.makedirs(str(train_dir) + '/' + name, exist_ok=True)
os.makedirs(str(test_dir) + '/' + name, exist_ok=True)
if args.stylegan_data_dir:
#e.g. smile_refine_mtcnn_112_divi
full_stylegan_dir = str(conf.data_path/'facebank'/'stylegan'/args.stylegan_data_dir)
stylegan_folders = os.listdir(full_stylegan_dir)
if args.additional_data_dir:
full_additional_dir = str(conf.data_path/'facebank'/args.additional_data_dir)
# init kfold
if args.use_shuffled_kfold:
kf = KFold(n_splits=args.kfold, shuffle=True, random_state=args.random_seed)
else:
kf = KFold(n_splits=args.kfold, shuffle=False, random_state=None)
# collect and split raw data
data_dict = {}
idx_gen = {}
for name in names_considered:
tmp_list = glob.glob(str(conf.data_path/'facebank'/args.dataset_dir/raw_dir) +
'/' + name + '*')
if 'innm' in args.stylegan_data_dir:
tmp_list = tmp_list + glob.glob(str(full_stylegan_dir) + '/' + name + '*')
stylegan_folders = []
print(str(conf.data_path/'facebank'/args.dataset_dir/raw_dir))
data_dict[name] = np.array(tmp_list)
idx_gen[name] = kf.split(data_dict[name])
if 'literature' in args.additional_data_dir:
data_dict['ltr'] = np.array(glob.glob(str(full_additional_dir) + '/*'))
idx_gen['ltr'] = kf.split(data_dict['ltr'])
score_names = []
scores = []
wrong_names = []
args.stored_result_path = args.stored_result_dir + os.sep + str(datetime.datetime.now())[:19]
if not os.path.exists(args.stored_result_path):
os.mkdir(args.stored_result_path)
# for fold_idx, (train_index, test_index) in enumerate(kf.split(data_dict[names_considered[0]])):
for fold_idx in range(args.kfold):
train_set = {}
test_set = {}
for name in names_considered:
(train_index, test_index) = next(idx_gen[name])
train_set[name], test_set[name] = data_dict[name][train_index], data_dict[name][test_index]
if 'ltr' in data_dict.keys():
(train_index, test_index) = next(idx_gen['ltr'])
train_set['ltr'], test_set['ltr'] = data_dict['ltr'][train_index], data_dict['ltr'][test_index]
if 'train' in args.additional_test_or_train:
train_set['noonan'] = np.concatenate((train_set['noonan'], train_set['ltr']))
if 'test' in args.additional_test_or_train:
test_set['noonan'] = np.concatenate((test_set['noonan'], test_set['ltr']))
# remove previous data
prev = glob.glob(str(train_dir) + '/*/*')
for p in prev:
os.remove(p)
prev = glob.glob(str(test_dir) + '/*/*')
for p in prev:
os.remove(p)
# save trains to conf.facebank_path/args.dataset_dir/'train' and
# tests to conf.data_path/'facebank'/args.dataset_dir/'test'
# count unbalanced data
train_count = {}
test_count = {}
for name in names_considered:
train_count[name] = 0
for i in range(len(train_set[name])):
img_folder = str(train_set[name][i])
for img in os.listdir(img_folder):
shutil.copy(img_folder + os.sep + str(img),
os.path.join(str(train_dir), name, str(img)))
train_count[name] += 1
# addition data from stylegan
if 'interp' not in data_dict.keys():
folder = os.path.basename(train_set[name][i])
if args.stylegan_data_dir and ('train' in args.stylegan_test_or_train) and (folder in stylegan_folders):
for img in os.listdir(full_stylegan_dir + os.sep + folder):
shutil.copy(os.path.join(full_stylegan_dir, folder, str(img)),
os.path.join(str(train_dir), name, str(img)))
# ('/'.join(train_set[name][i].strip().split('/')[:-2]) +
# '/' + verify_type + '/train/' + name + os.sep + img))
train_count[name] += 1
# test
for i in range(len(test_set[name])):
test_count[name] = 0
img_folder = str(test_set[name][i])
for img in os.listdir(img_folder):
shutil.copy(img_folder + os.sep + str(img),
os.path.join(str(test_dir), name, str(img)))
test_count[name] += 1
# addition data from stylegan
if 'interp' not in data_dict.keys():
folder = os.path.basename(test_set[name][i])
if args.stylegan_data_dir and ('test' in args.stylegan_test_or_train) and (folder in stylegan_folders):
# and
# (folder not in ['noonan7','noonan19','noonan23','normal9','normal20','normal23'])):
for img in os.listdir(full_stylegan_dir + os.sep + folder):
shutil.copy(os.path.join(full_stylegan_dir, folder, str(img)),
os.path.join(str(test_dir), name, str(img)))
test_count[name] += 1
print(train_count, test_count)
# deal with unbalanced data
"""
if train_count['normal'] // train_count['noonan'] > 1:
aug_num = train_count['normal'] // train_count['noonan'] - 1
for img in os.listdir(os.path.join(str(train_dir), 'noonan')):
for aug_idx in range(aug_num):
aug_img = img[:img.rfind('.')] + '_' + str(aug_idx) + img[img.rfind('.'):]
shutil.copy(os.path.join(str(train_dir), 'noonan', img),
os.path.join(str(train_dir), 'noonan', aug_img))
"""
if 'fake' in args.additional_data_dir:
fake_dict = {'noonan':'normal', 'normal':'noonan'}
full_additional_dir = conf.data_path/'facebank'/'noonan+normal'/args.additional_data_dir
add_data = glob.glob(str(full_additional_dir) + os.sep + '*.png')
print('additional:', args.additional_data_dir, len(add_data))
for name in names_considered:
for img_f in add_data:
if name in img_f.strip().split(os.sep)[-1]:
# print('source:', img_f)
# print('copy to:', img_f.replace(str(full_additional_dir),
# str(train_dir) + os.sep + fake_dict[name]))
# print('copy to:', img_f.replace(args.additional_data_dir,
# verify_type + '/train/' + name))
shutil.copy(img_f, os.path.join(str(train_dir), fake_dict[name], os.path.basename(img_f)))
print(fold_idx)
print('datasets ready')
conf_train = get_config(True, args)
conf_train.emore_folder = conf.data_path/emore_dir
conf_train.stored_result_dir = args.stored_result_path
learner = face_learner(conf=conf_train, transfer=args.transfer, ext=exp_name+'_'+str(fold_idx))
# conf, inference=False, transfer=0
if args.transfer != 0:
learner.load_state(conf.save_path, False, True)
print('learner loaded')
learner.train(conf_train, args.epochs)
print('learner retrained.')
learner.save_state()
print('Model is saved')
# prepare_facebank
targets, names, names_idx = prepare_facebank(conf, learner.model, mtcnn, tta = args.tta)
print('names_classes:', names)
noonan_idx = names_idx['noonan']
print('facebank updated')
for path in test_dir.iterdir():
if path.is_file():
continue
# print(path)
for fil in path.iterdir():
# print(fil)
orig_name = ''.join([i for i in fil.name.strip().split('.')[0].split('_')[0] if not i.isdigit()])
for name in names_idx.keys():
if name in orig_name:
score_names.append(names_idx[name])
"""
if orig_name not in names_considered:
print("Un-considered name:", fil.name)
continue
"""
frame = cv2.imread(str(fil))
image = Image.fromarray(frame)
faces = [image,]
distance = learner.binfer(conf, faces, targets, args.tta)
label = score_names[-1]
score = np.exp(distance.dot(-1))
pred = np.argmax(score, 1)
if pred != label:
wrong_names.append(orig_name)
scores.append(score)
score_names = np.array(score_names)
wrong_names = np.array(wrong_names)
score_np = np.squeeze(np.array(scores))
n_classes = score_np.shape[1]
score_names = label_binarize(score_names, classes=range(n_classes))
score_sum = np.zeros([score_np.shape[0], 1])
for i in range(n_classes):
score_sum += score_np[:, i, None] # keep the dimension
relative_scores = (score_np / score_sum)
total_scores = relative_scores.ravel()
total_names = score_names.ravel()
name_path = os.path.join(args.stored_result_path, 'wrong_names.npy')
save_label_score(name_path, wrong_names)
label_path = os.path.join(args.stored_result_path, 'labels_trans.npy')
save_label_score(label_path, score_names)
score_path = os.path.join(args.stored_result_path, 'scores_trans.npy')
save_label_score(score_path, relative_scores)
print('saved!')
# Compute ROC curve and ROC area for noonan
fpr, tpr, _ = roc_curve(total_names, total_scores) #scores_np[:, noonan_idx]
roc_auc = auc(fpr, tpr)
# For PR curve
precision, recall, _ = precision_recall_curve(total_names, total_scores)
average_precision = average_precision_score(total_names, total_scores)
# plots
plt.figure()
colors = list(mcolors.TABLEAU_COLORS)
lw = 2
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.4f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC_{}'.format(exp_name))
plt.legend(loc="lower right")
plt.savefig(args.stored_result_path + os.sep + '/fp_tp_{}.png'.format(exp_name))
plt.close()
# plt.show()
plt.figure()
plt.step(recall, precision, where='post')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Average precision score ({}): AP={:0.4f}'.format(exp_name, average_precision))
plt.savefig(args.stored_result_path + os.sep + '/pr_{}.png'.format(exp_name))
plt.close()
| 44.453757 | 124 | 0.594565 |
e699c205aa18e90414c7e2eebb09f229e7cbf13e
| 2,603 |
py
|
Python
|
examples/tryclass.py
|
manahter/dirio
|
c33fcd6c114ffb275d7147156c7041389fab6cfc
|
[
"MIT"
] | null | null | null |
examples/tryclass.py
|
manahter/dirio
|
c33fcd6c114ffb275d7147156c7041389fab6cfc
|
[
"MIT"
] | null | null | null |
examples/tryclass.py
|
manahter/dirio
|
c33fcd6c114ffb275d7147156c7041389fab6cfc
|
[
"MIT"
] | null | null | null |
import time
def event_call(other_arg, kwarg="-", result=None):
"""Call this metod, on returned result"""
print(f"Bind Result, {result}\n"*10)
print("other_arg", other_arg)
print("kwarg", kwarg)
if __name__ == "__main__":
try:
from dirio import Dirio
except:
from ..dirio import Dirio
dr_cls = Dirio(target=TryClass, args=(888,), kwargs={}, worker=False)
print("Starting values :", dr_cls.value, dr_cls)
print("\n"*2)
print("Wait 1 sec for your reply. metod 1 :", dr_cls.metod1(5, val2="1", dr_wait=1))
print("Wait until the reply comes. metod 1 :", dr_cls.metod1(5, val2="1", dr_wait=-1))
code0 = dr_cls.metod1(5, val2="1", dr_code=True)
print("Metod 1, call, via bind to func", dr_cls.dr_bind(code0, event_call, args=("OtHeR aRg", ), kwargs={"kwarg": "KwArG"}))
while True:
#
dr_cls.dr_binds_check()
print("Run the method and give us the response reading code : dr_code=True")
code1 = dr_cls.metod1(5, val2="1", dr_code=True)
print("Is there data in the reading code? : dr_code=43534")
while not dr_cls.metod1(dr_code=code1):
print("We are waiting for the data with this code :", code1)
time.sleep(.5)
print("Returned metod 1 data :", dr_cls.metod1(dr_code=code1))
print("Methods called this way give the last return value : nothing or dr_code=False")
code2 = dr_cls.metod2(10, val2="2", dr_code=True)
print("Search by code only :", dr_cls.dr_code(code2, wait=1))
print("Trying metod 2, called and returned :", dr_cls.metod2(10, val2="2", dr_code=False))
print("Trying metod 3, called and returned :", dr_cls.metod3(15, val2="3"))
print("\n"*2)
time.sleep(3)
dr_cls.dr_terminate()
| 30.988095 | 128 | 0.594314 |
e69afae741859fe05b5f191d930aaa0cc0138694
| 3,204 |
py
|
Python
|
qiskit/providers/basebackend.py
|
ismaila-at-za-ibm/qiskit-terra
|
08303ec98ac7b33fde55266dc3a74466fbdcae95
|
[
"Apache-2.0"
] | 2 |
2021-09-06T19:25:36.000Z
|
2021-11-17T10:46:12.000Z
|
qiskit/providers/basebackend.py
|
ismaila-at-za-ibm/qiskit-terra
|
08303ec98ac7b33fde55266dc3a74466fbdcae95
|
[
"Apache-2.0"
] | null | null | null |
qiskit/providers/basebackend.py
|
ismaila-at-za-ibm/qiskit-terra
|
08303ec98ac7b33fde55266dc3a74466fbdcae95
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
# Copyright 2017, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
"""This module implements the abstract base class for backend modules.
To create add-on backend modules subclass the Backend class in this module.
Doing so requires that the required backend interface is implemented.
"""
from abc import ABC, abstractmethod
from qiskit.version import __version__
from .models import BackendStatus
def properties(self):
"""Return backend properties.
Returns:
BackendProperties: the configuration for the backend. If the backend
does not support properties, it returns ``None``.
"""
return None
def provider(self):
"""Return the backend Provider.
Returns:
BaseProvider: the Provider responsible for the backend.
"""
return self._provider
def status(self):
"""Return backend status.
Returns:
BackendStatus: the status of the backend.
"""
return BackendStatus(backend_name=self.name(),
backend_version=__version__,
operational=True,
pending_jobs=0,
status_msg='')
def name(self):
"""Return backend name.
Returns:
str: the name of the backend.
"""
return self._configuration.backend_name
def __repr__(self):
"""Official string representation of a Backend.
Note that, by Qiskit convention, it is consciously *not* a fully valid
Python expression. Subclasses should provide 'a string of the form
<...some useful description...>'. [0]
[0] https://docs.python.org/3/reference/datamodel.html#object.__repr__
"""
return "<{}('{}') from {}()>".format(self.__class__.__name__,
self.name(),
self._provider)
| 30.226415 | 80 | 0.604869 |
e69c64799a3175f6ca7da109f5305d614b082638
| 487 |
py
|
Python
|
arrays/jump2/Solution.py
|
shahbagdadi/py-algo-n-ds
|
ff689534b771ddb4869b001b20a0e21b4896bb0a
|
[
"MIT"
] | null | null | null |
arrays/jump2/Solution.py
|
shahbagdadi/py-algo-n-ds
|
ff689534b771ddb4869b001b20a0e21b4896bb0a
|
[
"MIT"
] | null | null | null |
arrays/jump2/Solution.py
|
shahbagdadi/py-algo-n-ds
|
ff689534b771ddb4869b001b20a0e21b4896bb0a
|
[
"MIT"
] | null | null | null |
from typing import List
import sys
s = Solution()
ans = s.jump([3,2,1,0,4])
print(ans)
| 27.055556 | 100 | 0.523614 |
e69c81543af0469c06adb5c970083f2d456e2ede
| 1,881 |
py
|
Python
|
share/tests.py
|
shared-tw/shared-tw
|
90dcf92744b4e0ec9e9aa085026b5543c9c3922c
|
[
"MIT"
] | 2 |
2021-12-09T10:39:37.000Z
|
2022-02-22T09:01:26.000Z
|
share/tests.py
|
shared-tw/backend
|
90dcf92744b4e0ec9e9aa085026b5543c9c3922c
|
[
"MIT"
] | 3 |
2021-07-03T12:56:38.000Z
|
2021-07-04T05:53:43.000Z
|
share/tests.py
|
shared-tw/shared-tw
|
90dcf92744b4e0ec9e9aa085026b5543c9c3922c
|
[
"MIT"
] | null | null | null |
import unittest
from . import states
| 33 | 80 | 0.700159 |
e69ec2353a5fed95b6dce8a05f828517c6009931
| 2,137 |
py
|
Python
|
app/extensions.py
|
grow/airpress
|
b46e951b27b8216f51f0fade3695049455866825
|
[
"MIT"
] | 1 |
2017-07-07T20:15:14.000Z
|
2017-07-07T20:15:14.000Z
|
app/extensions.py
|
grow/airpress
|
b46e951b27b8216f51f0fade3695049455866825
|
[
"MIT"
] | 4 |
2020-03-24T15:24:51.000Z
|
2021-06-01T21:42:43.000Z
|
app/extensions.py
|
grow/airpress
|
b46e951b27b8216f51f0fade3695049455866825
|
[
"MIT"
] | 1 |
2016-12-15T00:03:13.000Z
|
2016-12-15T00:03:13.000Z
|
from jinja2 import nodes
from jinja2.ext import Extension
| 37.491228 | 75 | 0.630323 |
e6a0c4454894632f570e8f7308cb8d060eed1f45
| 767 |
py
|
Python
|
modtox/Helpers/helpers.py
|
danielSoler93/modtox
|
757234140cc780f57d031b46d9293fc2bf95d18d
|
[
"Apache-2.0"
] | 4 |
2019-09-22T22:57:30.000Z
|
2020-03-18T13:20:50.000Z
|
modtox/Helpers/helpers.py
|
danielSoler93/ModTox
|
757234140cc780f57d031b46d9293fc2bf95d18d
|
[
"Apache-2.0"
] | 21 |
2019-09-16T11:07:13.000Z
|
2019-11-20T15:06:06.000Z
|
modtox/Helpers/helpers.py
|
danielSoler93/ModTox
|
757234140cc780f57d031b46d9293fc2bf95d18d
|
[
"Apache-2.0"
] | 2 |
2019-09-07T17:07:55.000Z
|
2020-03-18T13:20:52.000Z
|
import os
def retrieve_molecule_number(pdb, resname):
"""
IDENTIFICATION OF MOLECULE NUMBER BASED
ON THE TER'S
"""
count = 0
with open(pdb, 'r') as x:
lines = x.readlines()
for i in lines:
if i.split()[0] == 'TER': count += 1
if i.split()[3] == resname:
molecule_number = count + 1
break
return molecule_number
| 23.96875 | 68 | 0.573664 |
e6a0dd14d03a3e676bea433343d789bde96e6abd
| 666 |
py
|
Python
|
bbio/platform/beaglebone/api.py
|
efargas/PyBBIO
|
b0b15fc52befd56e817dbc5876f738e70ef05541
|
[
"MIT"
] | null | null | null |
bbio/platform/beaglebone/api.py
|
efargas/PyBBIO
|
b0b15fc52befd56e817dbc5876f738e70ef05541
|
[
"MIT"
] | null | null | null |
bbio/platform/beaglebone/api.py
|
efargas/PyBBIO
|
b0b15fc52befd56e817dbc5876f738e70ef05541
|
[
"MIT"
] | null | null | null |
# api.py
# Part of PyBBIO
# github.com/alexanderhiam/PyBBIO
# MIT License
#
# Beaglebone platform API file.
from bbio.platform.platform import detect_platform
PLATFORM = detect_platform()
if "3.8" in PLATFORM:
from bone_3_8.adc import analog_init, analog_cleanup
from bone_3_8.pwm import pwm_init, pwm_cleanup
from serial_port import serial_cleanup
elif "3.2" in PLATFORM:
from bone_3_2.adc import analog_init, analog_cleanup
from bone_3_2.pwm import pwm_init, pwm_cleanup
from serial_port import serial_cleanup
| 21.483871 | 54 | 0.77027 |
e6a1e01053fb282362b9b417d81cb0cf76a2bbed
| 21,947 |
py
|
Python
|
tryhackme/http.py
|
GnarLito/tryhackme.py
|
20b4dd6a15c13c57e7a7be7f59913b937a992e4b
|
[
"MIT"
] | null | null | null |
tryhackme/http.py
|
GnarLito/tryhackme.py
|
20b4dd6a15c13c57e7a7be7f59913b937a992e4b
|
[
"MIT"
] | 16 |
2021-11-22T07:51:32.000Z
|
2021-12-14T00:07:48.000Z
|
tryhackme/http.py
|
GnarLito/tryhackme.py
|
20b4dd6a15c13c57e7a7be7f59913b937a992e4b
|
[
"MIT"
] | null | null | null |
import re
import sys
from urllib.parse import quote as _uriquote
import requests
from . import __version__, errors, utils
from .converters import _county_types, _leaderboard_types, _vpn_types, _not_none
from . import checks
from .cog import request_cog
GET='get'
POST='post'
def get_public_paths(self, **attrs):
return self.request(RouteList.get_public_paths(), **attrs)
def get_path_summary(self, **attrs):
return self.request(RouteList.get_path_summary(), **attrs)
# * modules
# * games
# * VPN
# * VM
def get_machine_running(self, **attrs):
return self.request(RouteList.get_machine_running(), **attrs)
# * user -badge
def get_user_badges(self, username, **attrs):
return self.request(RouteList.get_user_badges(username=username), **attrs)
def get_all_badges(self, **attrs):
return self.request(RouteList.get_all_badges(), **attrs)
# * user -team
# * user -notifications
# * user -messages
# * user -room
def get_user_completed_rooms_count(self, username, **attrs):
return self.request(RouteList.get_user_completed_rooms_count(username=username), **attrs)
def get_user_completed_rooms(self, username, limit:int=10, page:int=1, **attrs):
return self.request(RouteList.get_user_completed_rooms(username=username, options={"limit": limit, "page": page}), **attrs)
def get_user_created_rooms(self, username, limit:int=10, page:int=1, **attrs):
return self.request(RouteList.get_user_created_rooms(username=username, options={"limit": limit, "page": page}), **attrs)
# * user
# * room
def get_room_votes(self, room_code, **attrs):
return self.request(RouteList.get_room_votes(room_code=room_code), **attrs)
def get_room_details(self, room_code, loadWriteUps: bool=True, loadCreators: bool=True, loadUser: bool=True, **attrs):
return self.request(RouteList.get_room_details(room_code=room_code, options={"loadWriteUps": loadWriteUps, "loadCreators": loadCreators, "loadUser": loadUser}), **attrs).get(room_code, {})
def get_room_tasks(self, room_code, **attrs):
return self.request(RouteList.get_room_tasks(room_code=room_code), **attrs)
| 48.879733 | 196 | 0.645008 |
e6a26bf564f5d9a437cee65264d1566e43a4893e
| 10,198 |
py
|
Python
|
flatlander/runner/experiment_runner.py
|
wullli/flatlander
|
2c7fbd3d025f2a05c40895ec735a92d7a6bfb1ad
|
[
"MIT"
] | 3 |
2020-12-30T04:18:42.000Z
|
2022-03-17T13:15:30.000Z
|
flatlander/runner/experiment_runner.py
|
wullli/flatlander
|
2c7fbd3d025f2a05c40895ec735a92d7a6bfb1ad
|
[
"MIT"
] | null | null | null |
flatlander/runner/experiment_runner.py
|
wullli/flatlander
|
2c7fbd3d025f2a05c40895ec735a92d7a6bfb1ad
|
[
"MIT"
] | null | null | null |
import os
from argparse import ArgumentParser
from pathlib import Path
import gym
import ray
import ray.tune.result as ray_results
import yaml
from gym.spaces import Tuple
from ray.cluster_utils import Cluster
from ray.rllib.utils import try_import_tf, try_import_torch
from ray.tune import run_experiments, register_env
from ray.tune.logger import TBXLogger
from ray.tune.resources import resources_to_json
from ray.tune.tune import _make_scheduler
from ray.tune.utils import merge_dicts
from flatlander.envs import get_eval_config
from flatlander.envs.flatland_sparse import FlatlandSparse
from flatlander.envs.observations import make_obs
from flatlander.envs.utils.global_gym_env import GlobalFlatlandGymEnv
from flatlander.envs.utils.gym_env_fill_missing import FillingFlatlandGymEnv
from flatlander.logging.custom_metrics import on_episode_end
from flatlander.logging.wandb_logger import WandbLogger
from flatlander.utils.loader import load_envs, load_models
ray_results.DEFAULT_RESULTS_DIR = os.path.join(os.getcwd(), "..", "..", "..", "flatland-challenge-data/results")
| 44.72807 | 115 | 0.585507 |
e6a4e0e5dfdac6166da22e4d8c2409f996b05e0d
| 7,273 |
py
|
Python
|
syslib/utils_keywords.py
|
rahulmah/sample-cloud-native-toolchain-tutorial-20170720084529291
|
08540c0f083a25b5b4e7a4c839080fe54383038c
|
[
"Apache-2.0"
] | 1 |
2019-01-19T09:32:18.000Z
|
2019-01-19T09:32:18.000Z
|
syslib/utils_keywords.py
|
rahulmah/sample-cloud-native-toolchain-tutorial-20170720084529291
|
08540c0f083a25b5b4e7a4c839080fe54383038c
|
[
"Apache-2.0"
] | null | null | null |
syslib/utils_keywords.py
|
rahulmah/sample-cloud-native-toolchain-tutorial-20170720084529291
|
08540c0f083a25b5b4e7a4c839080fe54383038c
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python
r"""
This module contains keyword functions to supplement robot's built in
functions and use in test where generic robot keywords don't support.
"""
import time
from robot.libraries.BuiltIn import BuiltIn
from robot.libraries import DateTime
import re
###############################################################################
def run_until_keyword_fails(retry, retry_interval, name, *args):
r"""
Execute a robot keyword repeatedly until it either fails or the timeout
value is exceeded.
Note: Opposite of robot keyword "Wait Until Keyword Succeeds".
Description of argument(s):
retry Max timeout time in hour(s).
retry_interval Time interval in minute(s) for looping.
name Robot keyword to execute.
args Robot keyword arguments.
"""
# Convert the retry time in seconds
retry_seconds = DateTime.convert_time(retry)
timeout = time.time() + int(retry_seconds)
# Convert the interval time in seconds
interval_seconds = DateTime.convert_time(retry_interval)
interval = int(interval_seconds)
BuiltIn().log(timeout)
BuiltIn().log(interval)
while True:
status = BuiltIn().run_keyword_and_return_status(name, *args)
# Return if keywords returns as failure.
if status is False:
BuiltIn().log("Failed as expected")
return False
# Return if retry timeout as success.
elif time.time() > timeout > 0:
BuiltIn().log("Max retry timeout")
return True
time.sleep(interval)
BuiltIn().log(time.time())
return True
###############################################################################
###############################################################################
def htx_error_log_to_list(htx_error_log_output):
r"""
Parse htx error log output string and return list of strings in the form
"<field name>:<field value>".
The output of this function may be passed to the build_error_dict function.
Description of argument(s):
htx_error_log_output Error entry string containing the stdout
generated by "htxcmdline -geterrlog".
Example of htx_error_log_output contents:
######################## Result Starts Here ###############################
Currently running ECG/MDT : /usr/lpp/htx/mdt/mdt.whit
===========================
---------------------------------------------------------------------
Device id:/dev/nvidia0
Timestamp:Mar 29 19:41:54 2017
err=00000027
sev=1
Exerciser Name:hxenvidia
Serial No:Not Available
Part No:Not Available
Location:Not Available
FRU Number:Not Available
Device:Not Available
Error Text:cudaEventSynchronize for stopEvent returned err = 0039 from file
, line 430.
---------------------------------------------------------------------
---------------------------------------------------------------------
Device id:/dev/nvidia0
Timestamp:Mar 29 19:41:54 2017
err=00000027
sev=1
Exerciser Name:hxenvidia
Serial No:Not Available
Part No:Not Available
Location:Not Available
FRU Number:Not Available
Device:Not Available
Error Text:Hardware Exerciser stopped on error
---------------------------------------------------------------------
######################### Result Ends Here ################################
Example output:
Returns the lists of error string per entry
['Device id:/dev/nvidia0',
'Timestamp:Mar 29 19:41:54 2017',
'err=00000027',
'sev=1',
'Exerciser Name:hxenvidia',
'Serial No:Not Available',
'Part No:Not Available',
'Location:Not Available',
'FRU Number:Not Available',
'Device:Not Available',
'Error Text:cudaEventSynchronize for stopEvent returned err = 0039
from file , line 430.']
"""
# List which will hold all the list of entries.
error_list = []
temp_error_list = []
parse_walk = False
for line in htx_error_log_output.splitlines():
# Skip lines starting with "#"
if line.startswith("#"):
continue
# Mark line starting with "-" and set parse flag.
if line.startswith("-") and parse_walk is False:
parse_walk = True
continue
# Mark line starting with "-" and reset parse flag.
# Set temp error list to EMPTY.
elif line.startswith("-"):
error_list.append(temp_error_list)
parse_walk = False
temp_error_list = []
# Add entry to list if line is not emtpy
elif parse_walk:
temp_error_list.append(str(line))
return error_list
###############################################################################
###############################################################################
def build_error_dict(htx_error_log_output):
r"""
Builds error list into a list of dictionary entries.
Description of argument(s):
error_list Error list entries.
Example output dictionary:
{
0:
{
'sev': '1',
'err': '00000027',
'Timestamp': 'Mar 29 19:41:54 2017',
'Part No': 'Not Available',
'Serial No': 'Not Available',
'Device': 'Not Available',
'FRU Number': 'Not Available',
'Location': 'Not Available',
'Device id': '/dev/nvidia0',
'Error Text': 'cudaEventSynchronize for stopEvent returned err = 0039
from file , line 430.',
'Exerciser Name': 'hxenvidia'
},
1:
{
'sev': '1',
'err': '00000027',
'Timestamp': 'Mar 29 19:41:54 2017',
'Part No': 'Not Available',
'Serial No': 'Not Available',
'Device': 'Not Available',
'FRU Number': 'Not Available',
'Location': 'Not Available',
'Device id': '/dev/nvidia0',
'Error Text': 'Hardware Exerciser stopped on error',
'Exerciser Name': 'hxenvidia'
}
},
"""
# List which will hold all the list of entries.
error_list = []
error_list = htx_error_log_to_list(htx_error_log_output)
# dictionary which holds the error dictionry entry.
error_dict = {}
temp_error_dict = {}
error_index = 0
# Loop through the error list.
for entry_list in error_list:
# Loop through the first error list entry.
for entry in entry_list:
# Split string into list for key value update.
# Example: 'Device id:/dev/nvidia0'
# Example: 'err=00000027'
parm_split = re.split("[:=]", entry)
# Populate temp dictionary with key value pair data.
temp_error_dict[str(parm_split[0])] = parm_split[1]
# Update the master dictionary per entry index.
error_dict[error_index] = temp_error_dict
# Reset temp dict to EMPTY and increment index count.
temp_error_dict = {}
error_index += 1
return error_dict
###############################################################################
| 32.61435 | 79 | 0.54063 |
e6a5916da8516ca978c7505bb56075d47bacaa77
| 826 |
py
|
Python
|
tools/webcam/webcam_apis/nodes/__init__.py
|
ivmtorres/mmpose
|
662cb50c639653ae2fc19d3421ce10bd02246b85
|
[
"Apache-2.0"
] | 1 |
2022-02-13T12:27:40.000Z
|
2022-02-13T12:27:40.000Z
|
tools/webcam/webcam_apis/nodes/__init__.py
|
ivmtorres/mmpose
|
662cb50c639653ae2fc19d3421ce10bd02246b85
|
[
"Apache-2.0"
] | null | null | null |
tools/webcam/webcam_apis/nodes/__init__.py
|
ivmtorres/mmpose
|
662cb50c639653ae2fc19d3421ce10bd02246b85
|
[
"Apache-2.0"
] | null | null | null |
# Copyright (c) OpenMMLab. All rights reserved.
from .builder import NODES
from .faceswap_nodes import FaceSwapNode
from .frame_effect_nodes import (BackgroundNode, BugEyeNode, MoustacheNode,
NoticeBoardNode, PoseVisualizerNode,
SaiyanNode, SunglassesNode)
from .helper_nodes import ModelResultBindingNode, MonitorNode, RecorderNode
from .mmdet_nodes import DetectorNode
from .mmpose_nodes import TopDownPoseEstimatorNode
from .xdwendwen_nodes import XDwenDwenNode
__all__ = [
'NODES', 'PoseVisualizerNode', 'DetectorNode', 'TopDownPoseEstimatorNode',
'MonitorNode', 'BugEyeNode', 'SunglassesNode', 'ModelResultBindingNode',
'NoticeBoardNode', 'RecorderNode', 'FaceSwapNode', 'MoustacheNode',
'SaiyanNode', 'BackgroundNode', 'XDwenDwenNode'
]
| 45.888889 | 78 | 0.74092 |
e6a5f147ff440a3daeccaecdee477658d01cb25a
| 4,044 |
py
|
Python
|
DBParser/DBMove.py
|
lelle1234/Db2Utils
|
55570a1afbe6d4abe61c31952bc178c2443f4e5b
|
[
"Apache-2.0"
] | 4 |
2020-02-27T13:56:37.000Z
|
2022-02-07T23:07:24.000Z
|
DBParser/DBMove.py
|
lelle1234/Db2Utils
|
55570a1afbe6d4abe61c31952bc178c2443f4e5b
|
[
"Apache-2.0"
] | null | null | null |
DBParser/DBMove.py
|
lelle1234/Db2Utils
|
55570a1afbe6d4abe61c31952bc178c2443f4e5b
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/python3
import ibm_db
import getopt
import sys
import os
from toposort import toposort_flatten
db = None
host = "localhost"
port = "50000"
user = None
pwd = None
outfile = None
targetdb = None
try:
opts, args = getopt.getopt(sys.argv[1:], "h:d:P:u:p:o:t:")
except getopt.GetoptError:
sys.exit(-1)
for o, a in opts:
if o == "-d":
db = a
if o == "-h":
host = a
if o == "-P":
port = a
if o == "-u":
user = a
if o == "-p":
pwd = a
if o == "-t":
targetdb = a
if db is None or user is None or pwd is None or targetdb is None:
print("Usage: DBMove.py [-h <host> -P <port>] -d <db> -u <user> -p <pwd> -t <target>")
sys.exit(1)
db = db.upper()
targetdb = targetdb.upper()
cfg = (db, host, port, user, pwd)
conn = ibm_db.connect("DATABASE=%s; HOSTNAME=%s; PORT=%s; PROTOCOL=TCPIP; UID=%s; PWD=%s" % cfg, "", "")
get_db_type = "values nya.get_db_type()"
find_edges = """
SELECT rtrim(t.tabschema) || '.' || rtrim(t.tabname)
, coalesce(rtrim(r.reftabschema) || '.' || rtrim(r.reftabname), 'dummy')
FROM syscat.tables t
LEFT JOIN syscat.references r
ON (t.tabschema, t.tabname) = (r.tabschema, r.tabname)
WHERE t.tabschema not like 'SYS%'
AND t.type = 'T'
AND rtrim(t.tabschema) not like 'NYA_%'
AND t.tabschema <> 'TMP'
ORDER BY 1
"""
identity_skip = """
select rtrim(tabschema) || '.' || rtrim(tabname) from syscat.columns
where identity = 'Y' and generated = 'D'
"""
stmt = ibm_db.prepare(conn, get_db_type)
ibm_db.execute(stmt, ())
tpl = ibm_db.fetch_tuple(stmt)
db_type = tpl[0]
edges = dict()
stmt = ibm_db.prepare(conn, find_edges)
ibm_db.execute(stmt, ())
tpl = ibm_db.fetch_tuple(stmt)
while tpl:
n1, n2 = tpl
try:
edges[n1].add(n2)
except KeyError:
edges[n1] = set()
edges[n1].add(n2)
tpl = ibm_db.fetch_tuple(stmt)
sorted_nodes = list(toposort_flatten(edges))
# print(sorted_nodes)
identity_skip_arr = []
edges = dict()
stmt = ibm_db.prepare(conn, identity_skip)
ibm_db.execute(stmt, ())
tpl = ibm_db.fetch_tuple(stmt)
while tpl:
identity_skip_arr.append(tpl[0])
tpl = ibm_db.fetch_tuple(stmt)
# print(identity_skip)
os.makedirs(db, exist_ok=True)
export_file = open("%s/export.sql" % db, "w")
load_file = open("%s/load.sql" % db, "w")
export_file.write("connect to %s;\n" % db)
load_file.write("connect to %s;\n" % targetdb)
if db_type == "N":
load_file.write("""set integrity for nya.person off;\n""")
load_file.write("""alter table nya.person
alter column EMAIL_UC drop generated
alter column NORMALIZED_FIRSTNAME drop generated
alter column NORMALIZED_LASTNAME drop generated;\n""")
load_file.write("""set integrity for nya.person immediate checked;\n""")
for t in sorted_nodes:
if t == "dummy":
continue
export_file.write("export to %s.ixf of ixf lobs to . modified by codepage=819 messages export_%s.msg select * from %s;\n" % (t,t,t))
identityskip = "identityoverride"
if t in identity_skip_arr:
identityskip = " "
load_file.write("load from %s.ixf of ixf lobs from . modified by generatedoverride %s messages load_%s.msg replace into %s;\n" % (t, identityskip, t, t))
if db_type == "N":
load_file.write("""set integrity for nya.person off;\n""")
load_file.write("""alter table nya.person
alter column EMAIL_UC set generated always as ( upper(email))
alter column NORMALIZED_FIRSTNAME set generated always as ( NYA.REMOVE_DIACRITICS( FIRSTNAME ) )
alter column NORMALIZED_LASTNAME set generated always as ( NYA.REMOVE_DIACRITICS( LASTNAME ) );\n""")
load_file.write("""set integrity for nya.person immediate checked force generated;\n""")
load_file.write("""echo set integrity for all tables;\n""")
export_file.write("connect reset;\n")
load_file.write("connect reset;\n")
export_file.close()
load_file.close()
| 29.304348 | 157 | 0.633778 |
e6a6b8f37ebe80036ee8d9a83872d377cb863d68
| 732 |
py
|
Python
|
utils/glove.py
|
MirunaPislar/Word2vec
|
e9dd01488f081a7b8d7c00a0b21efe0d401d4927
|
[
"MIT"
] | 13 |
2018-05-19T22:29:27.000Z
|
2022-03-25T13:28:17.000Z
|
utils/glove.py
|
MirunaPislar/Word2vec
|
e9dd01488f081a7b8d7c00a0b21efe0d401d4927
|
[
"MIT"
] | 1 |
2019-01-14T09:55:50.000Z
|
2019-01-25T22:17:03.000Z
|
utils/glove.py
|
MirunaPislar/Word2vec
|
e9dd01488f081a7b8d7c00a0b21efe0d401d4927
|
[
"MIT"
] | 6 |
2018-05-19T22:29:29.000Z
|
2022-03-11T12:00:37.000Z
|
import numpy as np
DEFAULT_FILE_PATH = "utils/datasets/glove.6B.50d.txt"
def loadWordVectors(tokens, filepath=DEFAULT_FILE_PATH, dimensions=50):
"""Read pretrained GloVe vectors"""
wordVectors = np.zeros((len(tokens), dimensions))
with open(filepath) as ifs:
for line in ifs:
line = line.strip()
if not line:
continue
row = line.split()
token = row[0]
if token not in tokens:
continue
data = [float(x) for x in row[1:]]
if len(data) != dimensions:
raise RuntimeError("wrong number of dimensions")
wordVectors[tokens[token]] = np.asarray(data)
return wordVectors
| 33.272727 | 71 | 0.577869 |
e6aa6635d278553660a8a5b50b4098367fae31a5
| 2,446 |
py
|
Python
|
composer/profiler/__init__.py
|
stanford-crfm/composer
|
4996fbd818971afd6439961df58b531d9b47a37b
|
[
"Apache-2.0"
] | null | null | null |
composer/profiler/__init__.py
|
stanford-crfm/composer
|
4996fbd818971afd6439961df58b531d9b47a37b
|
[
"Apache-2.0"
] | null | null | null |
composer/profiler/__init__.py
|
stanford-crfm/composer
|
4996fbd818971afd6439961df58b531d9b47a37b
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2021 MosaicML. All Rights Reserved.
"""Performance profiling tools.
The profiler gathers performance metrics during a training run that can be used to diagnose bottlenecks and
facilitate model development.
The metrics gathered include:
* Duration of each :class:`.Event` during training
* Time taken by the data loader to return a batch
* Host metrics such as CPU, system memory, disk and network utilization over time
* Execution order, latency and attributes of PyTorch operators and GPU kernels (see :doc:`profiler`)
The following example demonstrates how to setup and perform profiling on a simple training run.
.. literalinclude:: ../../../examples/profiler_demo.py
:language: python
:linenos:
:emphasize-lines: 6, 27-49
It is required to specify an output ``profiler_trace_file`` during :class:`.Trainer` initialization to enable profiling.
The ``profiler_trace_file`` will contain the profiling trace data once the profiling run completes. By default, the :class:`.Profiler`,
:class:`.DataloaderProfiler` and :class:`.SystemProfiler` will be active. The :class:`.TorchProfiler` is **disabled** by default.
To activate the :class:`.TorchProfiler`, the ``torch_profiler_trace_dir`` must be specified *in addition* to the ``profiler_trace_file`` argument.
The ``torch_profiler_trace_dir`` will contain the Torch Profiler traces once the profiling run completes. The :class:`.Profiler` will
automatically merge the Torch traces in the ``torch_profiler_trace_dir`` into the ``profiler_trace_file``, allowing users to view a unified trace.
The complete traces can be viewed by in a Google Chrome browser navigating to ``chrome://tracing`` and loading the ``profiler_trace_file``.
Here is an example trace file:
.. image:: https://storage.googleapis.com/docs.mosaicml.com/images/profiler/profiler_trace_example.png
:alt: Example Profiler Trace File
:align: center
Additonal details an be found in the Profiler Guide.
"""
from composer.profiler._event_handler import ProfilerEventHandler
from composer.profiler._profiler import Marker, Profiler
from composer.profiler._profiler_action import ProfilerAction
# All needs to be defined properly for sphinx autosummary
__all__ = [
"Marker",
"Profiler",
"ProfilerAction",
"ProfilerEventHandler",
]
Marker.__module__ = __name__
Profiler.__module__ = __name__
ProfilerAction.__module__ = __name__
ProfilerEventHandler.__module__ = __name__
| 44.472727 | 146 | 0.780867 |
e6ab4939fc5a6bc71ee2ae80221a8f7dd6549b7a
| 2,753 |
py
|
Python
|
gremlin-python/src/main/jython/setup.py
|
EvKissle/tinkerpop
|
84195e38fc22a1a089c345fade9c75711e6cfdfe
|
[
"Apache-2.0"
] | null | null | null |
gremlin-python/src/main/jython/setup.py
|
EvKissle/tinkerpop
|
84195e38fc22a1a089c345fade9c75711e6cfdfe
|
[
"Apache-2.0"
] | null | null | null |
gremlin-python/src/main/jython/setup.py
|
EvKissle/tinkerpop
|
84195e38fc22a1a089c345fade9c75711e6cfdfe
|
[
"Apache-2.0"
] | null | null | null |
'''
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
'''
import codecs
import os
import sys
import time
from setuptools import setup
# Folder containing the setup.py
root = os.path.dirname(os.path.abspath(__file__))
# Path to __version__ module
version_file = os.path.join(root, 'gremlin_python', '__version__.py')
# Check if this is a source distribution.
# If not create the __version__ module containing the version
if not os.path.exists(os.path.join(root, 'PKG-INFO')):
timestamp = int(os.getenv('TIMESTAMP', time.time() * 1000)) / 1000
fd = codecs.open(version_file, 'w', 'utf-8')
fd.write("'''")
fd.write(__doc__)
fd.write("'''\n")
fd.write('version = %r\n' % os.getenv('VERSION', '?').replace('-SNAPSHOT', '.dev-%d' % timestamp))
fd.write('timestamp = %d\n' % timestamp)
fd.close()
# Load version
from gremlin_python import __version__
version = __version__.version
install_requires = [
'aenum==1.4.5',
'tornado==4.4.1',
'six==1.10.0'
]
if sys.version_info < (3,2):
install_requires += ['futures==3.0.5']
setup(
name='gremlinpython',
version=version,
packages=['gremlin_python', 'gremlin_python.driver',
'gremlin_python.driver.tornado', 'gremlin_python.process',
'gremlin_python.structure', 'gremlin_python.structure.io'],
license='Apache 2',
url='http://tinkerpop.apache.org',
description='Gremlin-Python for Apache TinkerPop',
long_description=codecs.open("README", "r", "UTF-8").read(),
test_suite="tests",
data_files=[("", ["LICENSE", "NOTICE"])],
setup_requires=[
'pytest-runner',
],
tests_require=[
'pytest',
'mock'
],
install_requires=install_requires,
classifiers=[
"Intended Audience :: Developers",
"License :: OSI Approved :: Apache Software License",
"Natural Language :: English",
"Programming Language :: Python :: 2.7",
"Programming Language :: Python :: 3.4",
"Programming Language :: Python :: 3.5",
]
)
| 32.388235 | 104 | 0.682528 |
e6ab63dd0a627fd5e3fd6b78f7716ef38a63c388
| 1,112 |
py
|
Python
|
src/_bar.py
|
yoshihikosuzuki/plotly_light
|
cef2465486e9147e27feae1193a1b4487e4fc543
|
[
"MIT"
] | null | null | null |
src/_bar.py
|
yoshihikosuzuki/plotly_light
|
cef2465486e9147e27feae1193a1b4487e4fc543
|
[
"MIT"
] | null | null | null |
src/_bar.py
|
yoshihikosuzuki/plotly_light
|
cef2465486e9147e27feae1193a1b4487e4fc543
|
[
"MIT"
] | null | null | null |
from typing import Optional, Sequence
import plotly.graph_objects as go
def bar(x: Sequence,
y: Sequence,
text: Optional[Sequence] = None,
width: Optional[int] = None,
col: Optional[str] = None,
opacity: float = 1,
name: Optional[str] = None,
show_legend: bool = False,
show_init: bool = True) -> go.Bar:
"""Create a simple Trace object of a histogram.
positional arguments:
@ x : Coordinates of data on x-axis.
@ y : Coordinates of data on y-axis.
optional arguments:
@ col : Color of bars.
@ opacity : Opacity of bars.
@ name : Display name of the trace in legend.
@ show_legend : Show this trace in legend.
@ show_init : Show this trace initially.
"""
return go.Bar(x=x,
y=y,
text=text,
width=width,
marker_color=col,
opacity=opacity,
name=name,
showlegend=show_legend,
visible=None if show_init else "legendonly")
| 31.771429 | 62 | 0.539568 |
e6acb4fde9c00fed8d158a1a19ae4c34b7d7d64e
| 4,029 |
py
|
Python
|
pennylane/templates/subroutines/arbitrary_unitary.py
|
doomhammerhell/pennylane
|
f147f22d8d99ba5891edd45a6a1f7dd679c8a23c
|
[
"Apache-2.0"
] | 3 |
2021-02-22T18:30:55.000Z
|
2021-02-23T10:54:58.000Z
|
pennylane/templates/subroutines/arbitrary_unitary.py
|
doomhammerhell/pennylane
|
f147f22d8d99ba5891edd45a6a1f7dd679c8a23c
|
[
"Apache-2.0"
] | null | null | null |
pennylane/templates/subroutines/arbitrary_unitary.py
|
doomhammerhell/pennylane
|
f147f22d8d99ba5891edd45a6a1f7dd679c8a23c
|
[
"Apache-2.0"
] | 1 |
2021-03-27T09:03:15.000Z
|
2021-03-27T09:03:15.000Z
|
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Contains the ArbitraryUnitary template.
"""
import pennylane as qml
from pennylane.operation import Operation, AnyWires
from pennylane.ops import PauliRot
_PAULIS = ["I", "X", "Y", "Z"]
def _tuple_to_word(index_tuple):
"""Convert an integer tuple to the corresponding Pauli word.
The Pauli operators are converted as ``0 -> I``, ``1 -> X``,
``2 -> Y``, ``3 -> Z``.
Args:
index_tuple (Tuple[int]): An integer tuple describing the Pauli word
Returns:
str: The corresponding Pauli word
"""
return "".join([_PAULIS[i] for i in index_tuple])
| 31.476563 | 107 | 0.647803 |
e6aec9eead70cf9709e4908f8e9466e087fc8de3
| 5,271 |
py
|
Python
|
vae_celeba.py
|
aidiary/generative-models-pytorch
|
c9ae23a4ecbe4bf8f82dbaf9e4e3e1e61530e6b0
|
[
"MIT"
] | null | null | null |
vae_celeba.py
|
aidiary/generative-models-pytorch
|
c9ae23a4ecbe4bf8f82dbaf9e4e3e1e61530e6b0
|
[
"MIT"
] | null | null | null |
vae_celeba.py
|
aidiary/generative-models-pytorch
|
c9ae23a4ecbe4bf8f82dbaf9e4e3e1e61530e6b0
|
[
"MIT"
] | null | null | null |
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from pytorch_lightning.loggers import TensorBoardLogger
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import CelebA
if __name__ == '__main__':
# data
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(148),
transforms.Resize(128),
transforms.ToTensor()
])
train_dataset = CelebA(root='data', split='train', transform=transform, download=False)
val_dataset = CelebA(root='data', split='test', transform=transform, download=False)
train_loader = DataLoader(train_dataset,
batch_size=32,
num_workers=8,
shuffle=True,
drop_last=True)
val_loader = DataLoader(val_dataset,
batch_size=32,
num_workers=8,
shuffle=False,
drop_last=True)
# model
model = VanillaVAE()
# training
tb_logger = TensorBoardLogger('lightning_logs', name='vanilla_vae_celeba', default_hp_metric=False)
trainer = pl.Trainer(gpus=[0], max_epochs=200, logger=tb_logger)
trainer.fit(model, train_loader, val_loader)
| 31.189349 | 103 | 0.592677 |
e6afcad02c1d49dbed0f7930d88f9219376906a4
| 2,686 |
py
|
Python
|
data/process_data.py
|
julat/DisasterResponse
|
140489e521a96dc2ff9c9a95f0ce4e99403f03af
|
[
"MIT"
] | null | null | null |
data/process_data.py
|
julat/DisasterResponse
|
140489e521a96dc2ff9c9a95f0ce4e99403f03af
|
[
"MIT"
] | null | null | null |
data/process_data.py
|
julat/DisasterResponse
|
140489e521a96dc2ff9c9a95f0ce4e99403f03af
|
[
"MIT"
] | null | null | null |
# Import libraries
import sys
import pandas as pd
from sqlalchemy import create_engine
def load_data(messages_filepath, categories_filepath):
"""
Load the data from the disaster response csvs
Parameters:
messages_filepath (str): Path to messages csv
categories_filepath (str): Path to categories csv
Returns:
Dataframe: Merged data
"""
messages = pd.read_csv(messages_filepath)
categories = pd.read_csv(categories_filepath)
df = pd.merge(messages,categories,on='id')
return df
def clean_data(df):
"""
Cleans the categories
Parameters:
df (DataFrame): Messy DataFrame
Returns:
Dataframe: Cleaned dataframe
"""
categories = df['categories'].str.split( pat=';', expand=True)
row = categories.iloc[[1]]
category_colnames = row.apply(lambda x : x.values[0].split("-")[0])
categories.columns = category_colnames
for column in categories:
categories[column] = categories[column].astype(str).str[-1:]
categories[column] = categories[column].astype(int)
categories[column] = categories[column].map(lambda x: 1 if x > 1 else x)
df.drop(['categories'], axis=1, inplace=True)
df = df = pd.concat([df,categories], axis=1)
df.drop_duplicates(inplace=True)
return df
def save_data(df, database_filename):
"""
Saves the DataFrame
Parameters:
df (DataFrame): Cleaned DataFrame
database_filename (DataFrame): Path to the SQLite Database
"""
engine = create_engine('sqlite:///' + database_filename + '.db')
df.to_sql(database_filename, engine, index=False, if_exists='replace')
if __name__ == '__main__':
main()
| 28.574468 | 80 | 0.652271 |
e6b027e44688ca01138133b153494c3bc7370758
| 3,658 |
py
|
Python
|
contrail-controller/files/plugins/check_contrail_status_controller.py
|
atsgen/tf-charms
|
81110aef700b2f227654d52709614ddb3d62ba17
|
[
"Apache-2.0"
] | null | null | null |
contrail-controller/files/plugins/check_contrail_status_controller.py
|
atsgen/tf-charms
|
81110aef700b2f227654d52709614ddb3d62ba17
|
[
"Apache-2.0"
] | null | null | null |
contrail-controller/files/plugins/check_contrail_status_controller.py
|
atsgen/tf-charms
|
81110aef700b2f227654d52709614ddb3d62ba17
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python3
import subprocess
import sys
import json
SERVICES = {
'control': [
'control',
'nodemgr',
'named',
'dns',
],
'config-database': [
'nodemgr',
'zookeeper',
'rabbitmq',
'cassandra',
],
'webui': [
'web',
'job',
],
'config': [
'svc-monitor',
'nodemgr',
'device-manager',
'api',
'schema',
],
}
WARNING = 1
CRITICAL = 2
if __name__ == '__main__':
cver = sys.argv[1]
if '.' in str(cver):
if cver == '5.0':
version = 500
elif cver == '5.1':
version = 510
else:
print("CRITICAL: invalid version: {}".format(cver))
sys.exit(CRITICAL)
elif not cver.isdigit():
print("CRITICAL: invalid version: {}".format(cver))
sys.exit(CRITICAL)
else:
version = int(cver)
check_contrail_status(SERVICES, version=version)
| 29.739837 | 193 | 0.54538 |
e6b042b87a1d5f3672a72f7fa6b5679e20f39682
| 2,693 |
py
|
Python
|
leaderboard-server/leaderboard-server.py
|
harnitsignalfx/skogaming
|
c860219c89149d686106dfb7a93d27df39830842
|
[
"MIT"
] | 1 |
2021-03-01T20:56:24.000Z
|
2021-03-01T20:56:24.000Z
|
leaderboard-server/leaderboard-server.py
|
harnitsignalfx/skogaming
|
c860219c89149d686106dfb7a93d27df39830842
|
[
"MIT"
] | null | null | null |
leaderboard-server/leaderboard-server.py
|
harnitsignalfx/skogaming
|
c860219c89149d686106dfb7a93d27df39830842
|
[
"MIT"
] | 1 |
2021-02-20T17:36:47.000Z
|
2021-02-20T17:36:47.000Z
|
from flask import Flask, jsonify, request
from flask_cors import CORS, cross_origin
import simplejson as json
from leaderboard.leaderboard import Leaderboard
import uwsgidecorators
import signalfx
app = Flask(__name__)
app.config['CORS_HEADERS'] = 'Content-Type'
cors = CORS(app)
highscore_lb_starship = Leaderboard('highscores-starship',host='redis-instance')
sfx = signalfx.SignalFx(ingest_endpoint='http://otelcol:9943').ingest('token-at-collector')
if __name__ == '__main__':
app.run(host='0.0.0.0', port=6001)
| 26.663366 | 95 | 0.649833 |
e6b183e72d2aff2b604bbf82d32e69244b409f59
| 1,591 |
py
|
Python
|
meshio/_cli/_info.py
|
jorgensd/meshio
|
0600ac9e9e8d1e1a27d5f3f2f4235414f4482cac
|
[
"MIT"
] | 1 |
2020-09-01T11:26:15.000Z
|
2020-09-01T11:26:15.000Z
|
meshio/_cli/_info.py
|
jorgensd/meshio
|
0600ac9e9e8d1e1a27d5f3f2f4235414f4482cac
|
[
"MIT"
] | null | null | null |
meshio/_cli/_info.py
|
jorgensd/meshio
|
0600ac9e9e8d1e1a27d5f3f2f4235414f4482cac
|
[
"MIT"
] | null | null | null |
import argparse
import numpy as np
from .._helpers import read, reader_map
from ._helpers import _get_version_text
| 26.966102 | 87 | 0.637335 |
e6b2c4874559385c0807dca69b9f07a62e9a1d08
| 1,324 |
py
|
Python
|
ccslink/Zip.py
|
Data-Linkage/ccslink
|
ee1105888d43c6a2b307deb96ddede34d03a965f
|
[
"MIT"
] | null | null | null |
ccslink/Zip.py
|
Data-Linkage/ccslink
|
ee1105888d43c6a2b307deb96ddede34d03a965f
|
[
"MIT"
] | null | null | null |
ccslink/Zip.py
|
Data-Linkage/ccslink
|
ee1105888d43c6a2b307deb96ddede34d03a965f
|
[
"MIT"
] | null | null | null |
import os, shutil
from CCSLink import Spark_Session as SS
def add_zipped_dependency(zip_from, zip_target):
"""
This method creates a zip of the code to be sent to the executors.
It essentially zips the Python packages installed by PIP and
submits them via addPyFile in the current PySpark context
E.g. if we want to submit "metaphone" package so that we
can do use `import metaphone` and use its methods inside UDF,
we run this method with:
- zip_from = /home/cdsw/.local/lib/python3.6/site-packages/
- zip_target = metaphone
"""
# change this to a path in your project
zipped_fpath = f'/home/cdsw/zipped_packages/{zip_target}'
if os.path.exists(zipped_fpath + '.zip'):
os.remove(zipped_fpath + '.zip')
shutil.make_archive(
# path to the resulting zipped file (without the suffix)
base_name=zipped_fpath, # resulting filename
# specifies the format --> implies .zip suffix
format='zip',
# the root dir from where we want to zip
root_dir=zip_from,
# the dir (relative to root dir) which we want to zip
# (all files in the final zip will have this prefix)
base_dir=zip_target,
)
# add the files to the executors
SS.SPARK().sparkContext.addPyFile(f'{zipped_fpath}.zip')
| 33.1 | 70 | 0.676737 |
e6b2fbff1fb4792ec87b5e0830c85e32ea769936
| 2,484 |
py
|
Python
|
moltemplate/nbody_Angles.py
|
Mopolino8/moltemplate
|
363df364fcb012e8e4beb7bc616a77d696b8b707
|
[
"BSD-3-Clause"
] | null | null | null |
moltemplate/nbody_Angles.py
|
Mopolino8/moltemplate
|
363df364fcb012e8e4beb7bc616a77d696b8b707
|
[
"BSD-3-Clause"
] | null | null | null |
moltemplate/nbody_Angles.py
|
Mopolino8/moltemplate
|
363df364fcb012e8e4beb7bc616a77d696b8b707
|
[
"BSD-3-Clause"
] | 1 |
2019-11-24T17:32:28.000Z
|
2019-11-24T17:32:28.000Z
|
try:
from .nbody_graph_search import Ugraph
except (SystemError, ValueError):
# not installed as a package
from nbody_graph_search import Ugraph
# This file defines how 3-body angle interactions are generated by moltemplate
# by default. It can be overridden by supplying your own custom file.
# To find 3-body "angle" interactions, we would use this subgraph:
#
#
# *---*---* => 1st bond connects atoms 0 and 1
# 0 1 2 2nd bond connects atoms 1 and 2
#
bond_pattern = Ugraph([(0, 1), (1, 2)])
# (Ugraph atom indices begin at 0, not 1)
# The next function eliminates the redundancy between 0-1-2 and 2-1-0:
def canonical_order(match):
"""
Before defining a new interaction, we must check to see if an
interaction between these same 3 atoms has already been created
(perhaps listed in a different, but equivalent order).
If we don't check for this this, we will create many unnecessary redundant
interactions (which can slow down he simulation).
To avoid this, I define a "canonical_order" function which sorts the atoms
and bonds in a way which is consistent with the symmetry of the interaction
being generated... Later the re-ordered list of atom and bond ids will be
tested against the list of atom/bond ids in the matches-found-so-far,
before it is added to the list of interactions found so far. Note that
the energy of an angle interaction is a function of the angle between.
three consecutively bonded atoms (referred to here as: 0,1,2).
This angle does not change when swapping the atoms at either end (0 and 2).
So it does not make sense to define a separate 3-body angle
interaction between atoms 0,1,2 AS WELL AS an interaction between 2,1,0.
So we sort the atoms and bonds so that the first atom has a always has
a lower atomID than the third atom. (Later we will check to see if we
have already defined an interaction between these 3 atoms. If not then
we create a new one.)
"""
# match[0][0:2] contains the ID numbers for the 3 atoms in the match
atom0 = match[0][0]
atom1 = match[0][1]
atom2 = match[0][2]
# match[1][0:1] contains the ID numbers for the 2 bonds
bond0 = match[1][0]
bond1 = match[1][1]
if atom0 < atom2:
# return ((atom0, atom1, atom2), (bond0, bond1)) same thing as:
return match
else:
return ((atom2, atom1, atom0), (bond1, bond0))
| 42.827586 | 79 | 0.68599 |
e6b3c1a04d6b23957a4328b1a4d335f1079479f3
| 8,099 |
py
|
Python
|
extras/usd/examples/usdMakeFileVariantModelAsset/usdMakeFileVariantModelAsset.py
|
DougRogers-DigitalFish/USD
|
d8a405a1344480f859f025c4f97085143efacb53
|
[
"BSD-2-Clause"
] | 3,680 |
2016-07-26T18:28:11.000Z
|
2022-03-31T09:55:05.000Z
|
extras/usd/examples/usdMakeFileVariantModelAsset/usdMakeFileVariantModelAsset.py
|
DougRogers-DigitalFish/USD
|
d8a405a1344480f859f025c4f97085143efacb53
|
[
"BSD-2-Clause"
] | 1,759 |
2016-07-26T19:19:59.000Z
|
2022-03-31T21:24:00.000Z
|
extras/usd/examples/usdMakeFileVariantModelAsset/usdMakeFileVariantModelAsset.py
|
DougRogers-DigitalFish/USD
|
d8a405a1344480f859f025c4f97085143efacb53
|
[
"BSD-2-Clause"
] | 904 |
2016-07-26T18:33:40.000Z
|
2022-03-31T09:55:16.000Z
|
#!/pxrpythonsubst
#
# Copyright 2016 Pixar
#
# Licensed under the Apache License, Version 2.0 (the "Apache License")
# with the following modification; you may not use this file except in
# compliance with the Apache License and the following modification to it:
# Section 6. Trademarks. is deleted and replaced with:
#
# 6. Trademarks. This License does not grant permission to use the trade
# names, trademarks, service marks, or product names of the Licensor
# and its affiliates, except as required to comply with Section 4(c) of
# the License and to reproduce the content of the NOTICE file.
#
# You may obtain a copy of the Apache License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the Apache License with the above modification is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the Apache License for the specific
# language governing permissions and limitations under the Apache License.
#
'''
Creates a top-level, referenceable asset USD file from one or more
'variant' files, each of which can contain arbitrary scene description.
When supplying multiple files, one must also provide the name for a
variantSet that will be constructed to switch between the files.
The asset file will place the variant files behind a "payload", which will
enable consumers to defer loading and processing of the data when composed
onto a UsdStage.
The names of the created variations will be taken directly from the basename
of their corresponding input file.
'''
from __future__ import print_function
from pxr import Tf, Kind, Sdf, Usd
# ToDo:
# - handle multiple variantSets
# - layer multiple kinds of files (e.g. shading.usd over geom.usd)
# - allow output filename to be independently specifiable? (Breaks with Pixar
# convention)
# - allow variant names to be specified independently of variant file names
# - Compute and present (per-variant) UsdGeomModelAPI.extentsHint
# - Compute and author UsdModelAPI::SetPayloadAssetDependencies()
if __name__ == "__main__":
import argparse, os, sys
descr = __doc__.strip()
parser = argparse.ArgumentParser(prog=os.path.basename(sys.argv[0]),
description=descr)
parser.add_argument('assetName')
parser.add_argument('variantFiles', nargs='+')
parser.add_argument(
'-k', '--kind', default='component', action='store', metavar='kind',
help="Model kind, one of: component, group, or assembly")
parser.add_argument(
'-v', '--variantSet', default='', action='store', metavar='variantSet',
help="Variantset to create to modulate variantFiles. Can be elided "
"if only one file is supplied")
parser.add_argument(
'-i', '--identifier', default='', action='store', metavar='identifier',
help="The identifier you would expect your Ar asset-resolver plugin "
"to resolve to the (installed) assetName.usd file this script creates. "
" If unspecified, defaults to assetName.usd")
parser.add_argument(
'-d', '--defaultVariantSelection', default='', action='store',
metavar='defaultVariantSelection',
help="This variant will be selected by default when the asset is "
"added to a composition. If unspecified, will be the variant for "
"'variantFile1'")
args = parser.parse_args()
if not args.assetName or args.assetName == '':
parser.error("No assetName specified")
stage = CreateModelStage(args.assetName,
assetIdentifier=args.identifier,
kind=args.kind,
filesToReference=args.variantFiles,
variantSetName=args.variantSet,
defaultVariantSelection=args.defaultVariantSelection)
if stage:
stage.GetRootLayer().Save()
exit(0)
else:
exit(1)
| 44.256831 | 85 | 0.684159 |
e6b3c20df06992b958887a2ed1583c032b8b6295
| 7,079 |
py
|
Python
|
src/main.py
|
fbdp1202/pyukf_kinect_body_tracking
|
c44477149cfc22abfe9121c2604dc284c93fbd42
|
[
"MIT"
] | 7 |
2020-04-23T06:03:10.000Z
|
2022-01-16T21:16:23.000Z
|
src/main.py
|
fbdp1202/pyukf_kinect_body_tracking
|
c44477149cfc22abfe9121c2604dc284c93fbd42
|
[
"MIT"
] | null | null | null |
src/main.py
|
fbdp1202/pyukf_kinect_body_tracking
|
c44477149cfc22abfe9121c2604dc284c93fbd42
|
[
"MIT"
] | 3 |
2020-07-12T15:07:52.000Z
|
2021-12-05T09:27:18.000Z
|
import sys
import os
sys.path.append('./code/')
from skeleton import Skeleton
from read_data import *
from calibration import Calibration
from ukf_filter import ukf_Filter_Controler
from canvas import Canvas
from regression import *
import time
from functools import wraps
import os
def make_folder(folder_name):
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
return folder_name
def get_save_skeleton_data_folder_name(person_name, pos_mode, model):
folder_name = make_folder('result')
folder_name = make_folder(folder_name + '/' + person_name)
folder_name = make_folder(folder_name + '/' + pos_mode)
folder_name = make_folder(folder_name + '/' + model)
return folder_name + '/'
def save_sk_data_to_csv(folder_name, filename, data):
filename = folder_name + filename
f = open(filename, "w", encoding="UTF-8")
for i in range(len(data)):
for j in range(len(data[i])):
for k in range(3):
f.write(str(data[i][j][k]))
if j == (len(data[i])-1) and k == 2:
f.write('\n')
else:
f.write(',')
| 34.198068 | 368 | 0.759288 |
e6b3d6bc9a4bc463c1dd688594551748653895d4
| 2,683 |
py
|
Python
|
cfgov/scripts/initial_data.py
|
Mario-Kart-Felix/cfgov-refresh
|
7978fedeb7aaf4d96a87720e6545567085e056a9
|
[
"CC0-1.0"
] | 1 |
2019-12-29T17:50:07.000Z
|
2019-12-29T17:50:07.000Z
|
cfgov/scripts/initial_data.py
|
ascott1/cfgov-refresh
|
9c916aaed3a48110a199eb4675474290a51f815d
|
[
"CC0-1.0"
] | 1 |
2021-04-22T01:09:52.000Z
|
2021-04-22T01:09:52.000Z
|
cfgov/scripts/initial_data.py
|
ascott1/cfgov-refresh
|
9c916aaed3a48110a199eb4675474290a51f815d
|
[
"CC0-1.0"
] | 1 |
2021-02-02T08:59:38.000Z
|
2021-02-02T08:59:38.000Z
|
from __future__ import print_function
import json
import os
from django.conf import settings
from django.contrib.auth.hashers import make_password
from django.contrib.auth.models import User
from wagtail.wagtailcore.models import Page, Site
from v1.models import HomePage, BrowseFilterablePage
| 34.844156 | 97 | 0.666045 |
e6b40095f02ec8f60d6c2306673d054478953aba
| 1,456 |
py
|
Python
|
Scripts/compareOutputs.py
|
harmim/vut-avs-project1
|
d36e6b5cdebce748d2bdf2afc43950968ecf0a91
|
[
"MIT"
] | null | null | null |
Scripts/compareOutputs.py
|
harmim/vut-avs-project1
|
d36e6b5cdebce748d2bdf2afc43950968ecf0a91
|
[
"MIT"
] | null | null | null |
Scripts/compareOutputs.py
|
harmim/vut-avs-project1
|
d36e6b5cdebce748d2bdf2afc43950968ecf0a91
|
[
"MIT"
] | null | null | null |
# Simple python3 script to compare output with a reference output.
# Usage: python3 compareOutputs.py testOutput.h5 testRefOutput.h5
import sys
import h5py
import numpy as np
if len(sys.argv) != 3:
print("Expected two arguments. Output and reference output file.")
sys.exit(1)
filename = sys.argv[1]
ref_filename = sys.argv[2]
f = h5py.File(filename, 'r')
ref_f = h5py.File(ref_filename, 'r')
out = np.array(f['output_data'])
out_ref = np.array(ref_f['output_data'])
if out.shape != out_ref.shape:
print("The files do not contain the same number of outputs.")
print("The output size: {0}.".format(out.shape[0]))
print("The reference size: {0}.".format(out_ref.shape[0]))
sys.exit(1)
ref_value = np.copy(out_ref)
ref_value[ref_value == 0.0] = 1.0
error = (out_ref - out) / ref_value
maximal_error = np.amax(error)
print("Maximal error between the output and the reference is {0}.".format(maximal_error))
if maximal_error < 10**(-6):
print("OK:Output seems to match the reference.")
sys.exit(0)
print("Failure:Output does not match the reference.")
maximal_error = np.amax(error, axis=1)
print(maximal_error.shape)
for i in range(0, 5):
print("Image", i)
print("Expected:", end="")
for j in range(0, 10):
print(out_ref[i, j], end = " ")
print("\nGot:", end="")
for j in range(0, 10):
print(out[i, j], end=" ")
print("\nMaximal error:", maximal_error[i], "\n")
sys.exit(1)
| 26.472727 | 89 | 0.666896 |
e6b45faace1959ed1daf554b861e2a396b78702b
| 222 |
py
|
Python
|
sanctuary/tag/serializers.py
|
20CM/Sanctuary
|
14694d9bd6376bdc05248741a91df778400e9f66
|
[
"BSD-3-Clause"
] | 1 |
2017-05-29T11:53:06.000Z
|
2017-05-29T11:53:06.000Z
|
sanctuary/tag/serializers.py
|
20CM/Sanctuary
|
14694d9bd6376bdc05248741a91df778400e9f66
|
[
"BSD-3-Clause"
] | null | null | null |
sanctuary/tag/serializers.py
|
20CM/Sanctuary
|
14694d9bd6376bdc05248741a91df778400e9f66
|
[
"BSD-3-Clause"
] | null | null | null |
# -*- coding: utf-8 -*-
from rest_framework import serializers
from .models import Tag
| 18.5 | 49 | 0.689189 |
e6b462f3efa3e6e931f1a4ef9f1a10fd45f8f99c
| 571 |
py
|
Python
|
examples/management_api/aliveness_test.py
|
cloudamqp/amqpstorm
|
35eb8edc5f0c2ea3839e93940bf9d0e5f8f4242e
|
[
"MIT"
] | null | null | null |
examples/management_api/aliveness_test.py
|
cloudamqp/amqpstorm
|
35eb8edc5f0c2ea3839e93940bf9d0e5f8f4242e
|
[
"MIT"
] | null | null | null |
examples/management_api/aliveness_test.py
|
cloudamqp/amqpstorm
|
35eb8edc5f0c2ea3839e93940bf9d0e5f8f4242e
|
[
"MIT"
] | null | null | null |
from amqpstorm.management import ApiConnectionError
from amqpstorm.management import ApiError
from amqpstorm.management import ManagementApi
if __name__ == '__main__':
API = ManagementApi('http://127.0.0.1:15672', 'guest', 'guest')
try:
result = API.aliveness_test('/')
if result['status'] == 'ok':
print("RabbitMQ is alive!")
else:
print("RabbitMQ is not alive! :(")
except ApiConnectionError as why:
print('Connection Error: %s' % why)
except ApiError as why:
print('ApiError: %s' % why)
| 33.588235 | 67 | 0.635727 |
e6b741334252c43868c1ae3bb0661b811481f368
| 1,048 |
py
|
Python
|
src/zvt/recorders/em/meta/em_stockhk_meta_recorder.py
|
vishalbelsare/zvt
|
d55051147274c0a4157f08ec60908c781a323c8f
|
[
"MIT"
] | 2,032 |
2019-04-16T14:10:32.000Z
|
2022-03-31T12:40:13.000Z
|
src/zvt/recorders/em/meta/em_stockhk_meta_recorder.py
|
vishalbelsare/zvt
|
d55051147274c0a4157f08ec60908c781a323c8f
|
[
"MIT"
] | 162 |
2019-05-07T09:57:46.000Z
|
2022-03-25T16:23:08.000Z
|
src/zvt/recorders/em/meta/em_stockhk_meta_recorder.py
|
vishalbelsare/zvt
|
d55051147274c0a4157f08ec60908c781a323c8f
|
[
"MIT"
] | 755 |
2019-04-30T10:25:16.000Z
|
2022-03-29T17:50:49.000Z
|
# -*- coding: utf-8 -*-
from zvt.contract.api import df_to_db
from zvt.contract.recorder import Recorder
from zvt.domain.meta.stockhk_meta import Stockhk
from zvt.recorders.em import em_api
if __name__ == "__main__":
recorder = EMStockhkRecorder()
recorder.run()
# the __all__ is generated
__all__ = ["EMStockhkRecorder"]
| 33.806452 | 115 | 0.711832 |
e6b7cb0bb44951e0d2ab9c8433c064285f85c4f7
| 6,362 |
py
|
Python
|
src/main.py
|
yanwunhao/auto-mshts
|
7a4b690bbb6ae55e2f6fad77d176c2c0822db7a0
|
[
"MIT"
] | null | null | null |
src/main.py
|
yanwunhao/auto-mshts
|
7a4b690bbb6ae55e2f6fad77d176c2c0822db7a0
|
[
"MIT"
] | null | null | null |
src/main.py
|
yanwunhao/auto-mshts
|
7a4b690bbb6ae55e2f6fad77d176c2c0822db7a0
|
[
"MIT"
] | null | null | null |
from util.io import read_setting_json, read_0h_data, read_24h_data, draw_single_curve
from util.convert import split_array_into_samples, calculate_avg_of_sample, convert_to_percentage
from util.calculus import calculate_summary_of_sample, fit_sigmoid_curve
import matplotlib.pyplot as plt
import numpy as np
import csv
setting = read_setting_json()
setting = setting["rule"]
# load experiment parameter
# experiment parameter is stored in file of ./data/setting.json
initial_filename = setting["0h_datafile"]
final_filename = setting["24h_datafile"]
# sample width and height are the size of each sample area
sample_width = setting["sample_width"]
sample_height = setting["sample_height"]
dilution_protocol = setting["dilution_protocol"]
# width of each dilution
basic_width = setting["basic_width"]
# number of each control group
control_number_list = setting["control_number"]
# output directory
output_directory = setting["output_directory"]
# import initial concentration and calculate x_data
initial_concentration = setting["initial_concentration"]
repeat_times = int(sample_width / basic_width)
x_data = []
current_concentration = initial_concentration
for i in range(repeat_times):
x_data.append(current_concentration)
current_concentration /= dilution_protocol
# load raw data
initial_sd_data = read_0h_data()
final_sd_data = read_24h_data()
# reshape data into the size of board
rebuild_0h_data = initial_sd_data.reshape((32, -1))
rebuild_24h_data = final_sd_data.reshape((32, -1))
# reshape data into a 2-dimensional array contains each group data
sample_divided_list_0h = split_array_into_samples(rebuild_0h_data, sample_width, sample_height)
sample_divided_list_24h = split_array_into_samples(rebuild_24h_data, sample_width, sample_height)
# handle data of control groups
control_0h_summary = 0
for number in control_number_list:
number = number - 1
sample = sample_divided_list_0h[number]
control_0h_summary = control_0h_summary + calculate_summary_of_sample(sample)
control_0h_average = control_0h_summary / (sample_width * sample_height * len(control_number_list))
control_24h_summary = 0
for number in control_number_list:
number = number - 1
sample = sample_divided_list_24h[number]
control_24h_summary = control_24h_summary + calculate_summary_of_sample(sample)
control_24h_average = control_24h_summary / (sample_width * sample_height * len(control_number_list))
# calculate standard deviation of each grid
sd_matrix = []
for line in rebuild_24h_data:
new_line = []
for element in line:
sd_data = (float(element) - control_0h_average.item()) \
/ (control_24h_average.item() - control_0h_average.item())
new_line.append(sd_data)
sd_matrix.append(new_line)
sd_matrix = np.array(sd_matrix)
# split array into different samples
sd_groups = split_array_into_samples(sd_matrix, sample_width, sample_height)
sd_groups = np.array(sd_groups, dtype=float)
RESULT_LIST = []
for sample in sd_groups:
result = calculate_avg_of_sample(sample, sample_width, basic_width)
RESULT_LIST.append(result)
RESULT_LIST = np.array(RESULT_LIST)
FULL_RESULT_LIST = []
for group in sd_groups:
x_index = 0
y_index = 0
sample_buffer = []
data_buffer = []
while y_index < sample_height:
while x_index < basic_width:
x = x_index
while x < sample_width:
data_buffer.append(group[y_index][x])
x += basic_width
sample_buffer.append(data_buffer)
data_buffer = []
x_index += 1
y_index += 1
x_index = 0
FULL_RESULT_LIST.append(sample_buffer)
FULL_RESULT_LIST = np.array(FULL_RESULT_LIST, dtype=float)
optional_color = ['red', 'orange', 'yellow', 'green', 'cyan', 'blue', 'purple']
EC50_LIST = []
EC50_AVG_LIST = []
sample_num = 0
for SAMPLE in FULL_RESULT_LIST:
sample_num += 1
fig, ax = plt.subplots()
index = 0
ax.set_title('Sample '+str(sample_num))
x_buffer = []
x_sampling_buffer = []
y_sampling_buffer = []
for repeat in SAMPLE:
x, y, x_sampling, y_sampling = fit_sigmoid_curve(x_data, repeat)
x_buffer.append(x)
x_sampling_buffer.append(x_sampling)
y_sampling_buffer.append(y_sampling)
draw_single_curve(ax, x, y, x_sampling, y_sampling, optional_color[index])
index += 1
EC50_LIST.append(x_buffer)
# draw the average result
avg = np.mean(x_buffer)
EC50_AVG_LIST.append(avg)
# draw the average curve
x_sampling_buffer = np.array(x_sampling_buffer).T
y_sampling_buffer = np.array(y_sampling_buffer).T
x_sampling_avg = []
y_sampling_avg = []
for line in x_sampling_buffer:
x_sampling_avg.append(np.mean(line))
for line in y_sampling_buffer:
y_sampling_avg.append(np.mean(line))
ax.plot(avg, 0.5, 'o', color='black')
ax.plot(x_sampling_avg, y_sampling_avg, color='black')
plt.savefig("./output/" + output_directory + "/figs" + "/Sample " + str(sample_num))
plt.cla()
plt.close(fig)
# output grouped result
output_f_grouped = open("./output/" + output_directory + "/result_grouped.csv", "w")
csv_writer_grouped = csv.writer(output_f_grouped)
csv_writer_grouped.writerow(["initial concentration: " + str(initial_concentration), "dilution protocol: " + str(dilution_protocol)])
csv_writer_grouped.writerow("")
sample_num = 0
for SAMPLE in FULL_RESULT_LIST:
SAMPLE = SAMPLE.T
sample_num += 1
csv_writer_grouped.writerow(["Sample " + str(sample_num)])
for repeat in SAMPLE:
csv_writer_grouped.writerow(repeat)
csv_writer_grouped.writerow("")
ec50_result_list = []
for ec50_index in EC50_LIST[sample_num-1]:
ec50_result_list.append(10**ec50_index)
csv_writer_grouped.writerow(ec50_result_list)
average_ec50 = np.power(10, EC50_AVG_LIST[sample_num-1])
csv_writer_grouped.writerow([])
csv_writer_grouped.writerow(["Average EC50", "Std"])
csv_writer_grouped.writerow([average_ec50, np.std(ec50_result_list)])
csv_writer_grouped.writerow("")
output_f_grouped.close()
output_f_full = open("./output/" + output_directory + "/result_full.csv", "w")
csv_writer_full = csv.writer(output_f_full)
for line in sd_matrix:
csv_writer_full.writerow(line)
output_f_full.close()
print("Finished")
| 31.651741 | 133 | 0.735618 |
e6b8a82e6b0282dee965fc93d3c31abaae481d21
| 6,492 |
py
|
Python
|
twisted/names/root.py
|
twonds/twisted
|
d6e270a465d371c3bed01bf369af497b77eb9f1e
|
[
"Unlicense",
"MIT"
] | 1 |
2021-01-27T19:11:21.000Z
|
2021-01-27T19:11:21.000Z
|
twisted/names/root.py
|
twonds/twisted
|
d6e270a465d371c3bed01bf369af497b77eb9f1e
|
[
"Unlicense",
"MIT"
] | null | null | null |
twisted/names/root.py
|
twonds/twisted
|
d6e270a465d371c3bed01bf369af497b77eb9f1e
|
[
"Unlicense",
"MIT"
] | 3 |
2017-01-04T01:24:15.000Z
|
2020-06-18T16:14:56.000Z
|
# -*- test-case-name: twisted.names.test.test_rootresolve -*-
# Copyright (c) 2001-2009 Twisted Matrix Laboratories.
# See LICENSE for details.
"""
Resolver implementation for querying successive authoritative servers to
lookup a record, starting from the root nameservers.
@author: Jp Calderone
todo::
robustify it
break discoverAuthority into several smaller functions
documentation
"""
from twisted.internet import defer
from twisted.names import dns
from twisted.names import common
def lookupNameservers(host, atServer, p=None):
# print 'Nameserver lookup for', host, 'at', atServer, 'with', p
if p is None:
p = dns.DNSDatagramProtocol(_DummyController())
p.noisy = False
return retry(
(1, 3, 11, 45), # Timeouts
p, # Protocol instance
(atServer, dns.PORT), # Server to query
[dns.Query(host, dns.NS, dns.IN)] # Question to ask
)
def lookupAddress(host, atServer, p=None):
# print 'Address lookup for', host, 'at', atServer, 'with', p
if p is None:
p = dns.DNSDatagramProtocol(_DummyController())
p.noisy = False
return retry(
(1, 3, 11, 45), # Timeouts
p, # Protocol instance
(atServer, dns.PORT), # Server to query
[dns.Query(host, dns.A, dns.IN)] # Question to ask
)
def extractAuthority(msg, cache):
records = msg.answers + msg.authority + msg.additional
nameservers = [r for r in records if r.type == dns.NS]
# print 'Records for', soFar, ':', records
# print 'NS for', soFar, ':', nameservers
if not nameservers:
return None, nameservers
if not records:
raise IOError("No records")
for r in records:
if r.type == dns.A:
cache[str(r.name)] = r.payload.dottedQuad()
for r in records:
if r.type == dns.NS:
if str(r.payload.name) in cache:
return cache[str(r.payload.name)], nameservers
for addr in records:
if addr.type == dns.A and addr.name == r.name:
return addr.payload.dottedQuad(), nameservers
return None, nameservers
def discoverAuthority(host, roots, cache=None, p=None):
if cache is None:
cache = {}
rootAuths = list(roots)
parts = host.rstrip('.').split('.')
parts.reverse()
authority = rootAuths.pop()
soFar = ''
for part in parts:
soFar = part + '.' + soFar
# print '///////', soFar, authority, p
msg = defer.waitForDeferred(lookupNameservers(soFar, authority, p))
yield msg
msg = msg.getResult()
newAuth, nameservers = extractAuthority(msg, cache)
if newAuth is not None:
# print "newAuth is not None"
authority = newAuth
else:
if nameservers:
r = str(nameservers[0].payload.name)
# print 'Recursively discovering authority for', r
authority = defer.waitForDeferred(discoverAuthority(r, roots, cache, p))
yield authority
authority = authority.getResult()
# print 'Discovered to be', authority, 'for', r
## else:
## # print 'Doing address lookup for', soFar, 'at', authority
## msg = defer.waitForDeferred(lookupAddress(soFar, authority, p))
## yield msg
## msg = msg.getResult()
## records = msg.answers + msg.authority + msg.additional
## addresses = [r for r in records if r.type == dns.A]
## if addresses:
## authority = addresses[0].payload.dottedQuad()
## else:
## raise IOError("Resolution error")
# print "Yielding authority", authority
yield authority
discoverAuthority = defer.deferredGenerator(discoverAuthority)
def bootstrap(resolver):
"""Lookup the root nameserver addresses using the given resolver
Return a Resolver which will eventually become a C{root.Resolver}
instance that has references to all the root servers that we were able
to look up.
"""
domains = [chr(ord('a') + i) for i in range(13)]
# f = lambda r: (log.msg('Root server address: ' + str(r)), r)[1]
f = lambda r: r
L = [resolver.getHostByName('%s.root-servers.net' % d).addCallback(f) for d in domains]
d = defer.DeferredList(L)
d.addCallback(lambda r: Resolver([e[1] for e in r if e[0]]))
return DeferredResolver(d)
| 33.989529 | 91 | 0.59658 |
e6b8dc6f73954e378a1c4ed802de05ace9457d1e
| 2,056 |
py
|
Python
|
tools/apply_colormap_dir.py
|
edwardyehuang/iDS
|
36bde3a9e887eb7e1a8d88956cf041909ee84da4
|
[
"MIT"
] | null | null | null |
tools/apply_colormap_dir.py
|
edwardyehuang/iDS
|
36bde3a9e887eb7e1a8d88956cf041909ee84da4
|
[
"MIT"
] | null | null | null |
tools/apply_colormap_dir.py
|
edwardyehuang/iDS
|
36bde3a9e887eb7e1a8d88956cf041909ee84da4
|
[
"MIT"
] | null | null | null |
# ================================================================
# MIT License
# Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang)
# ================================================================
import os, sys
rootpath = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
sys.path.insert(1, rootpath)
import tensorflow as tf
import numpy as np
from PIL import Image
from absl import app
from absl import flags
from common_flags import FLAGS
from ids.voc2012 import get_colormap as get_voc2012_colormap
from ids.cityscapes_fine import get_colormap as get_cityscapes_colormap
flags.DEFINE_string("input_dir", None, "input dir path")
flags.DEFINE_string("output_dir", None, "output dir path")
flags.DEFINE_string("colormap", "voc2012", "colormap name")
flags.DEFINE_integer("ignore_label", 255, "ignore label")
if __name__ == "__main__":
app.run(main)
| 25.073171 | 89 | 0.651751 |
e6b94f55392b1866e86cdeb5f1344d92e8c4dea3
| 6,007 |
py
|
Python
|
EDScoutCore/JournalInterface.py
|
bal6765/ed-scout
|
0c2ee6141a5cd86a660c2319d7c4be61614b13fb
|
[
"MIT"
] | null | null | null |
EDScoutCore/JournalInterface.py
|
bal6765/ed-scout
|
0c2ee6141a5cd86a660c2319d7c4be61614b13fb
|
[
"MIT"
] | null | null | null |
EDScoutCore/JournalInterface.py
|
bal6765/ed-scout
|
0c2ee6141a5cd86a660c2319d7c4be61614b13fb
|
[
"MIT"
] | null | null | null |
from inspect import signature
import json
import time
import os
import glob
import logging
from pathlib import Path
from watchdog.observers import Observer
from watchdog.observers.polling import PollingObserver
from watchdog.events import PatternMatchingEventHandler
from EDScoutCore.FileSystemUpdatePrompter import FileSystemUpdatePrompter
default_journal_path = os.path.join(str(Path.home()), "Saved Games\\Frontier Developments\\Elite Dangerous")
journal_file_pattern = "journal.*.log"
logger = logging.getLogger('JournalInterface')
if __name__ == '__main__':
journalWatcher = JournalWatcher()
journalWatcher.set_callback(ReportJournalChange)
print('running')
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
print('done')
journalWatcher.stop()
| 34.522989 | 164 | 0.632096 |
e6ba0dc97e3a9015e73a33e1fbadd9852c0606ea
| 1,355 |
py
|
Python
|
labs-python/lab9/add_files.py
|
xR86/ml-stuff
|
2a1b79408897171b78032ff2531ab6f8b18be6c4
|
[
"MIT"
] | 3 |
2018-12-11T03:03:15.000Z
|
2020-02-11T19:38:07.000Z
|
labs-python/lab9/add_files.py
|
xR86/ml-stuff
|
2a1b79408897171b78032ff2531ab6f8b18be6c4
|
[
"MIT"
] | 6 |
2017-05-31T20:58:32.000Z
|
2021-02-16T23:13:15.000Z
|
labs-python/lab9/add_files.py
|
xR86/ml-stuff
|
2a1b79408897171b78032ff2531ab6f8b18be6c4
|
[
"MIT"
] | null | null | null |
import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()
import os
import hashlib
import time
get_dir_data('./')
# Save (commit) the changes
conn.commit()
conn.close()
| 22.966102 | 83 | 0.710701 |
e6ba0ea03b3d3e18b20568efd5fed882e88148ea
| 1,834 |
py
|
Python
|
lib/galaxy/model/migrate/versions/0073_add_ldda_to_implicit_conversion_table.py
|
blankenberg/galaxy-data-resource
|
ca32a1aafd64948f489a4e5cf88096f32391b1d9
|
[
"CC-BY-3.0"
] | null | null | null |
lib/galaxy/model/migrate/versions/0073_add_ldda_to_implicit_conversion_table.py
|
blankenberg/galaxy-data-resource
|
ca32a1aafd64948f489a4e5cf88096f32391b1d9
|
[
"CC-BY-3.0"
] | 1 |
2015-02-21T18:48:19.000Z
|
2015-02-27T15:50:32.000Z
|
lib/galaxy/model/migrate/versions/0073_add_ldda_to_implicit_conversion_table.py
|
blankenberg/galaxy-data-resource
|
ca32a1aafd64948f489a4e5cf88096f32391b1d9
|
[
"CC-BY-3.0"
] | 3 |
2015-02-22T13:34:16.000Z
|
2020-10-01T01:28:04.000Z
|
"""
Migration script to add 'ldda_parent_id' column to the implicitly_converted_dataset_association table.
"""
from sqlalchemy import *
from sqlalchemy.orm import *
from migrate import *
from migrate.changeset import *
import logging
log = logging.getLogger( __name__ )
metadata = MetaData()
| 44.731707 | 134 | 0.741003 |
e6bacf59de7852cf3a5c740a8171a4aa7144b26c
| 4,083 |
py
|
Python
|
Replication Python and R Codes/Figure_6/cMCA_ESS2018_LABCON_org.py
|
tzuliu/Contrastive-Multiple-Correspondence-Analysis-cMCA
|
a59a5c36dd5d4ac04205627827e792322742462d
|
[
"MIT"
] | 3 |
2020-09-25T07:11:46.000Z
|
2022-02-08T05:07:34.000Z
|
Replication Python and R Codes/Figure_6/cMCA_ESS2018_LABCON_org.py
|
tzuliu/Contrastive-Multiple-Correspondence-Analysis-cMCA
|
a59a5c36dd5d4ac04205627827e792322742462d
|
[
"MIT"
] | null | null | null |
Replication Python and R Codes/Figure_6/cMCA_ESS2018_LABCON_org.py
|
tzuliu/Contrastive-Multiple-Correspondence-Analysis-cMCA
|
a59a5c36dd5d4ac04205627827e792322742462d
|
[
"MIT"
] | 1 |
2021-02-06T16:44:44.000Z
|
2021-02-06T16:44:44.000Z
|
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import prince
from sklearn import utils
from sklearn.cluster import DBSCAN
import itertools
from cmca import CMCA
from ccmca import CCMCA
from matplotlib import rc
plt.style.use('ggplot')
df = pd.read_csv("./uk2018.csv")
df["prtclcgb"].replace({5: 8, 9: 8, 10:8, 11:8, 12:8, 13:8, 15:8, 19:8}, inplace=True)
df["prtclcgb"].replace({6: 5}, inplace=True)
df["prtclcgb"].replace({7: 6}, inplace=True)
df["prtclcgb"].replace({8: 7}, inplace=True)
alpha = r'$ \alpha $'
tableau10 = {
'teal': '#78B7B2',
'blue': '#507AA6',
'orange': '#F08E39',
'red': '#DF585C',
'green': '#5BA053',
'purple': '#AF7BA1',
'yellow': '#ECC854',
'brown': '#9A7460',
'pink': '#FD9EA9',
'gray': '#BAB0AC',
7: '#9A7460',
1: '#507AA6',
2: '#F08E39',
3: '#DF585C',
4: '#5BA053',
0: '#78B7B2',
6: '#ECC854',
5: '#AF7BA1',
8: '#FD9EA9',
9: '#BAB0AC',
-1: '#BAB0AC',
99: '#BAB0AC',
'LDP': '#507AA6',
'DPJ': '#F08E39'
}
X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth = df_to_mat(df)
X = pd.concat([X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth])
print(X_con.shape, X_lab.shape, X_ldp.shape, X_snp.shape, X_gre.shape, X_uip.shape, X_oth.shape, X.shape)
##Disctionay for Level and Party
party = {1:"Con", 2:"Lab", 3:"LD", 4:"SNP", 5:"Green", 6:"UKIP", 7:"Other"}
##Fitting cMCA and export plots
cmca = CMCA(n_components=2, copy=True, check_input=True)
cmca = cmca.fit(fg=X_lab.iloc[:,0:(X_lab.shape[1]-3)], bg=X_con.iloc[:,0:(X_con.shape[1]-3)], alpha=1.5)
Y_fg = np.array(cmca.transform(X_lab.iloc[:,0:(X.shape[1]-3)]))
Y_bg = np.array(cmca.transform(X_con.iloc[:,0:(X.shape[1]-3)]))
Y_fg_col = np.array(cmca.transform(X_lab.iloc[:,0:(X.shape[1]-3)], axis='col'))
prefix_to_info = cmca.gen_prefix_to_info()
f_6 = plt.figure()
plt.xlim([-2.5, 2.5])
plt.ylim([-2.5, 2.5])
plt.scatter(Y_fg[:, 0], Y_fg[:, 1], c=tableau10[X_lab["prtclcgb"].iloc[0]], label=party[X_lab["prtclcgb"].iloc[0]], alpha=0.3, linewidths=0)
plt.scatter(Y_bg[:, 0], Y_bg[:, 1], c=tableau10[X_con["prtclcgb"].iloc[0]], label=party[X_con["prtclcgb"].iloc[0]], alpha=0.3, linewidths=0)
handles, labels = plt.gca().get_legend_handles_labels()
handles = [handles[1],handles[0]]
labels = ["Con","Lab"]
plt.legend(handles, labels, loc="lower right", shadow=False, scatterpoints=1, fontsize=8)
plt.xlabel('cPC1')
plt.ylabel('cPC2')
plt.title("cMCA (tg: LAB, bg: CON, " + str(alpha) + ": 1.5)")
plt.show()
f_6.savefig("cMCA_ESS2018_labcon_org.pdf", bbox_inches='tight')
| 35.198276 | 140 | 0.624051 |
e6bb99021b44144da731911de204a7afc66e8789
| 1,196 |
py
|
Python
|
Solutions/077.py
|
ruppysuppy/Daily-Coding-Problem-Solutions
|
37d061215a9af2ce39c51f8816c83039914c0d0b
|
[
"MIT"
] | 70 |
2021-03-18T05:22:40.000Z
|
2022-03-30T05:36:50.000Z
|
Solutions/077.py
|
ungaro/Daily-Coding-Problem-Solutions
|
37d061215a9af2ce39c51f8816c83039914c0d0b
|
[
"MIT"
] | null | null | null |
Solutions/077.py
|
ungaro/Daily-Coding-Problem-Solutions
|
37d061215a9af2ce39c51f8816c83039914c0d0b
|
[
"MIT"
] | 30 |
2021-03-18T05:22:43.000Z
|
2022-03-17T10:25:18.000Z
|
"""
Problem:
Given a list of possibly overlapping intervals, return a new list of intervals where
all overlapping intervals have been merged.
The input list is not necessarily ordered in any way.
For example, given [(1, 3), (5, 8), (4, 10), (20, 25)], you should return
[(1, 3), (4, 10), (20, 25)].
"""
from typing import List, Tuple
if __name__ == "__main__":
print(merge_intervals([(1, 3), (5, 8), (4, 10), (20, 25)]))
print(merge_intervals([(1, 3), (5, 8), (4, 10), (20, 25), (6, 12)]))
"""
SPECS:
TIME COMPLEXITY: O(n)
SPACE COMPLEXITY: O(n)
"""
| 26 | 84 | 0.622074 |
e6bbb3606fdfbd374577782a243b3f2af19f5e8d
| 3,163 |
py
|
Python
|
slackbot_wems/chris/slacklib.py
|
wray/wems
|
69caedfb8906f04175196d610a1ca516db01f72a
|
[
"MIT"
] | 4 |
2016-11-10T21:43:01.000Z
|
2017-02-24T21:36:45.000Z
|
slackbot_wems/chris/slacklib.py
|
wray/wems
|
69caedfb8906f04175196d610a1ca516db01f72a
|
[
"MIT"
] | 1 |
2019-04-26T10:48:34.000Z
|
2019-05-18T15:59:35.000Z
|
slackbot_wems/chris/slacklib.py
|
wray/wems
|
69caedfb8906f04175196d610a1ca516db01f72a
|
[
"MIT"
] | 8 |
2016-11-09T22:25:14.000Z
|
2019-04-26T19:53:37.000Z
|
import time
import emoji
# Put your commands here
COMMAND1 = "testing testing"
COMMAND2 = "roger roger"
BLUEON = str("blue on")
BLUEOFF = str("blue off")
REDON = str("red on")
REDOFF = str("red off")
GREENON = str("green on")
GREENOFF = str("green off")
YELLOWON = str("yellow on")
YELLOWOFF = str("yellow off")
CLOCK = str("update clock")
SCRAMBLE = str('scramble the 7')
HACKER = str('hack the 7')
SINGLEREADING = str('light')
setup = False
# Your handling code goes in this function
def handle_command(command):
"""
Determine if the command is valid. If so, take action and return
a response, if necessary.
"""
if not setup:
setup_gpio()
setup = True
response = ""
if command.find(COMMAND1) >= 0:
response = str("Surprise!")
elif command.find(COMMAND2) >= 0:
response = (emoji.emojize('Python\n is\n :thumbs_up: :thumbs_up: :thumbs_up:'))
# Blue LED Commands
elif command.find(BLUEON) >= 0:
GPIO.output(17, True)
response = emoji.emojize("" + "Turning :radio_button: ON...")
elif command.find(BLUEOFF) >= 0:
GPIO.output(17, False)
response = emoji.emojize("" + "Turning :radio_button: OFF...")
# Red LED Commands
elif command.find(REDON) >= 0:
GPIO.output(27, True)
response = emoji.emojize("" + "Turning :red_circle: ON...")
elif command.find(REDOFF) >= 0:
GPIO.output(27, False)
response = emoji.emojize("" + "Turning :red_circle: OFF...")
# Green LED Commands
elif command.find(GREENON) >= 0:
GPIO.output(5, True)
response = emoji.emojize("" + "Turning :green_apple: ON...")
elif command.find(GREENOFF) >= 0:
GPIO.output(5, False)
response = emoji.emojize("" + "Turning :green_apple: OFF...")
# Yellow LED Commands
elif command.find(YELLOWON) >= 0:
GPIO.output(22, True)
response = emoji.emojize("" + "Turning :sunny: ON...")
elif command.find(YELLOWOFF) >= 0:
GPIO.output(22, False)
response = emoji.emojize("" + "Turning :sunny: OFF...")
# 7 Segment Commands
elif command.find(CLOCK) >= 0:
print('Updating the clock!')
response = segment.updateClock()
elif command.find(SCRAMBLE) >= 0:
print(emoji.emojize(":egg: There is nothing better than scrambled eggs! :egg:"))
response = segment.scramble()
elif command.find(HACKER) >= 0:
print('Message')
response = segment.hacker()
elif command.find(SINGLEREADING) >= 0:
a = lite.printReading()
a = int(a)
time.sleep(1)
print(a)
response = ('Here is what the LDR Sensor said to me: ' + str(a))
return response
| 26.140496 | 88 | 0.607651 |
e6bc053f9c92b2bf8e29c294b8627f9ea57a47fd
| 29 |
py
|
Python
|
rses/__init__.py
|
iScrE4m/RSES
|
88299f105ded8838243eab8b25ab1626c97d1179
|
[
"MIT"
] | 1 |
2022-02-16T15:06:22.000Z
|
2022-02-16T15:06:22.000Z
|
rses/__init__.py
|
djetelina/RSES
|
88299f105ded8838243eab8b25ab1626c97d1179
|
[
"MIT"
] | null | null | null |
rses/__init__.py
|
djetelina/RSES
|
88299f105ded8838243eab8b25ab1626c97d1179
|
[
"MIT"
] | null | null | null |
# coding=utf-8
"""RSES :)"""
| 9.666667 | 14 | 0.482759 |
e6bdcee8c086f35e2a59b7fc819faaf2312d18c6
| 89,316 |
py
|
Python
|
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/operations/_gremlin_resources_operations.py
|
adewaleo/azure-sdk-for-python
|
169457edbea5e3c5557246cfcf8bd635d528bae4
|
[
"MIT"
] | 2 |
2019-08-23T21:14:00.000Z
|
2021-09-07T18:32:34.000Z
|
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/operations/_gremlin_resources_operations.py
|
adewaleo/azure-sdk-for-python
|
169457edbea5e3c5557246cfcf8bd635d528bae4
|
[
"MIT"
] | 2 |
2021-11-03T06:10:36.000Z
|
2021-12-01T06:29:39.000Z
|
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/operations/_gremlin_resources_operations.py
|
adewaleo/azure-sdk-for-python
|
169457edbea5e3c5557246cfcf8bd635d528bae4
|
[
"MIT"
] | 1 |
2021-05-19T02:55:10.000Z
|
2021-05-19T02:55:10.000Z
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from typing import TYPE_CHECKING
import warnings
from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpRequest, HttpResponse
from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.mgmt.core.exceptions import ARMErrorFormat
from azure.mgmt.core.polling.arm_polling import ARMPolling
from .. import models
if TYPE_CHECKING:
# pylint: disable=unused-import,ungrouped-imports
from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union
T = TypeVar('T')
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
| 52.538824 | 326 | 0.672242 |
e6bde93bee8b10728e74b15763f724d08484c86a
| 4,640 |
py
|
Python
|
homeassistant/components/tasmota/discovery.py
|
yura505/core
|
0fc5f4b0421c6c5204d3ccb562153ac3836441a9
|
[
"Apache-2.0"
] | null | null | null |
homeassistant/components/tasmota/discovery.py
|
yura505/core
|
0fc5f4b0421c6c5204d3ccb562153ac3836441a9
|
[
"Apache-2.0"
] | null | null | null |
homeassistant/components/tasmota/discovery.py
|
yura505/core
|
0fc5f4b0421c6c5204d3ccb562153ac3836441a9
|
[
"Apache-2.0"
] | null | null | null |
"""Support for MQTT discovery."""
import asyncio
import logging
from hatasmota.discovery import (
TasmotaDiscovery,
get_device_config as tasmota_get_device_config,
get_entities_for_platform as tasmota_get_entities_for_platform,
get_entity as tasmota_get_entity,
has_entities_with_platform as tasmota_has_entities_with_platform,
unique_id_from_hash,
)
from homeassistant.helpers.dispatcher import async_dispatcher_send
from homeassistant.helpers.typing import HomeAssistantType
from .const import DOMAIN
_LOGGER = logging.getLogger(__name__)
SUPPORTED_PLATFORMS = [
"switch",
]
ALREADY_DISCOVERED = "tasmota_discovered_components"
CONFIG_ENTRY_IS_SETUP = "tasmota_config_entry_is_setup"
DATA_CONFIG_ENTRY_LOCK = "tasmota_config_entry_lock"
TASMOTA_DISCOVERY_DEVICE = "tasmota_discovery_device"
TASMOTA_DISCOVERY_ENTITY_NEW = "tasmota_discovery_entity_new_{}"
TASMOTA_DISCOVERY_ENTITY_UPDATED = "tasmota_discovery_entity_updated_{}_{}_{}_{}"
def clear_discovery_hash(hass, discovery_hash):
"""Clear entry in ALREADY_DISCOVERED list."""
del hass.data[ALREADY_DISCOVERED][discovery_hash]
def set_discovery_hash(hass, discovery_hash):
"""Set entry in ALREADY_DISCOVERED list."""
hass.data[ALREADY_DISCOVERED][discovery_hash] = {}
| 37.419355 | 88 | 0.694612 |
e6be7a1b7add8b9481d98005ea50f939d83dd351
| 15,696 |
py
|
Python
|
tfx/components/infra_validator/executor.py
|
TimoKerr/tfx
|
10d13d57eeac21514fed73118cb43464dada67f1
|
[
"Apache-2.0"
] | 1 |
2021-05-10T10:41:06.000Z
|
2021-05-10T10:41:06.000Z
|
tfx/components/infra_validator/executor.py
|
TimoKerr/tfx
|
10d13d57eeac21514fed73118cb43464dada67f1
|
[
"Apache-2.0"
] | null | null | null |
tfx/components/infra_validator/executor.py
|
TimoKerr/tfx
|
10d13d57eeac21514fed73118cb43464dada67f1
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2019 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFX InfraValidator executor definition."""
import contextlib
import functools
import os
import signal
import threading
import time
from typing import Any, Dict, List, Optional
from absl import logging
from tfx import types
from tfx.components.infra_validator import error_types
from tfx.components.infra_validator import request_builder
from tfx.components.infra_validator import serving_bins
from tfx.components.infra_validator import types as iv_types
from tfx.components.infra_validator.model_server_runners import kubernetes_runner
from tfx.components.infra_validator.model_server_runners import local_docker_runner
from tfx.dsl.components.base import base_executor
from tfx.proto import infra_validator_pb2
from tfx.types import artifact_utils
from tfx.types.standard_component_specs import BLESSING_KEY
from tfx.types.standard_component_specs import EXAMPLES_KEY
from tfx.types.standard_component_specs import MODEL_KEY
from tfx.types.standard_component_specs import REQUEST_SPEC_KEY
from tfx.types.standard_component_specs import SERVING_SPEC_KEY
from tfx.types.standard_component_specs import VALIDATION_SPEC_KEY
from tfx.utils import io_utils
from tfx.utils import path_utils
from tfx.utils import proto_utils
from tfx.utils.model_paths import tf_serving_flavor
from tensorflow_serving.apis import classification_pb2
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_log_pb2
from tensorflow_serving.apis import regression_pb2
_DEFAULT_NUM_TRIES = 5
_DEFAULT_POLLING_INTERVAL_SEC = 1
_DEFAULT_MAX_LOADING_TIME_SEC = 300
_DEFAULT_MODEL_NAME = 'infra-validation-model'
# Proto message keys for oneof block.
_TENSORFLOW_SERVING = 'tensorflow_serving'
_LOCAL_DOCKER = 'local_docker'
_KUBERNETES = 'kubernetes'
# Artifact property keys
_BLESSED_KEY = 'blessed'
_MODEL_FLAG_KEY = 'has_model'
# Filename of infra blessing artifact on succeed.
_BLESSED_FILENAME = 'INFRA_BLESSED'
# Filename of infra blessing artifact on fail.
_NOT_BLESSED_FILENAME = 'INFRA_NOT_BLESSED'
def _create_model_server_runner(
model_path: str,
serving_binary: serving_bins.ServingBinary,
serving_spec: infra_validator_pb2.ServingSpec):
"""Create a ModelServerRunner from a model, a ServingBinary and a ServingSpec.
Args:
model_path: An IV-flavored model path. (See model_path_utils.py)
serving_binary: One of ServingBinary instances parsed from the
`serving_spec`.
serving_spec: A ServingSpec instance of this infra validation.
Returns:
A ModelServerRunner.
"""
platform = serving_spec.WhichOneof('serving_platform')
if platform == 'local_docker':
return local_docker_runner.LocalDockerRunner(
model_path=model_path,
serving_binary=serving_binary,
serving_spec=serving_spec
)
elif platform == 'kubernetes':
return kubernetes_runner.KubernetesRunner(
model_path=model_path,
serving_binary=serving_binary,
serving_spec=serving_spec
)
else:
raise NotImplementedError('Invalid serving_platform {}'.format(platform))
def _convert_to_prediction_log(request: iv_types.Request):
"""Try convert infra validation request to TF-Serving PredictionLog."""
if isinstance(request, classification_pb2.ClassificationRequest):
return prediction_log_pb2.PredictionLog(
classify_log=prediction_log_pb2.ClassifyLog(request=request))
elif isinstance(request, regression_pb2.RegressionRequest):
return prediction_log_pb2.PredictionLog(
regress_log=prediction_log_pb2.RegressLog(request=request))
elif isinstance(request, predict_pb2.PredictRequest):
return prediction_log_pb2.PredictionLog(
predict_log=prediction_log_pb2.PredictLog(request=request))
else:
raise NotImplementedError(
f'Cannot convert {type(request)} to PredictionLog')
| 39.24 | 83 | 0.73248 |
e6bf66183d1220ed94fa05bc46a4ec69c5cf4ba5
| 130 |
py
|
Python
|
learning_python/org/allnix/util.py
|
ykyang/org.allnix.python
|
f9d74db2db026b20e925ac40dbca7d21b3ac0b0f
|
[
"Apache-2.0"
] | null | null | null |
learning_python/org/allnix/util.py
|
ykyang/org.allnix.python
|
f9d74db2db026b20e925ac40dbca7d21b3ac0b0f
|
[
"Apache-2.0"
] | null | null | null |
learning_python/org/allnix/util.py
|
ykyang/org.allnix.python
|
f9d74db2db026b20e925ac40dbca7d21b3ac0b0f
|
[
"Apache-2.0"
] | null | null | null |
def read() -> str:
"""Returns a string"""
return "org.allnix"
| 16.25 | 32 | 0.6 |
e6bfbff8f4c4eb14d73dd394e1c8390a8c552bf9
| 18,474 |
py
|
Python
|
metr-la/model/Double_C_STTN.py
|
happys2333/DL-2021-fall
|
e110d737d1a70c8238f2de3278e6aebce07c7a66
|
[
"Apache-2.0"
] | 1 |
2022-02-11T12:24:08.000Z
|
2022-02-11T12:24:08.000Z
|
metr-la/model/Double_C_STTN.py
|
happys2333/DL-2021-fall
|
e110d737d1a70c8238f2de3278e6aebce07c7a66
|
[
"Apache-2.0"
] | null | null | null |
metr-la/model/Double_C_STTN.py
|
happys2333/DL-2021-fall
|
e110d737d1a70c8238f2de3278e6aebce07c7a66
|
[
"Apache-2.0"
] | null | null | null |
# from folder workMETRLA
# MODEL CODE
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 28 10:28:06 2020
@author: wb
"""
import torch
import torch.nn as nn
import math
# from GCN_models import GCN
# from One_hot_encoder import One_hot_encoder
import torch.nn.functional as F
import numpy as np
from scipy.sparse.linalg import eigs
from Param import *
from torchsummary import summary
DEVICE = 'cuda:1'
'''
Attention
ScaledDotProductAttention
dk
B,N,T,CattentionC=1 C ---> embedded size 32 or 64 dk = 32
328head832*8=256NIPS17 tranformerdk=64head = 8 all embeded size = 512
'''
'''
S spatial MultiHeadAttention
'''
'''
T Temporal MultiHeadAttention
'''
### STBlock
### Encoder
### ST Transformer: Total Model
def print_params(model_name, model):
param_count = 0
for name, param in model.named_parameters():
if param.requires_grad:
param_count += param.numel()
print(f'{model_name}, {param_count} trainable parameters in total.')
return
import sys
import pandas as pd
if __name__ == '__main__':
main()
'''
1. only Spatial Transformer PEMSBAY 12 in 12 out
2. only Temporal Transformer PEMSBAY 12 in 12 out
3. Temporal-Spatial Transformer PEMSBAY 12 in 12 out
4. C 12C
B N T C=1 B,N,T,C=2 123 12 in 12 out PEMSBAY
'''
| 36.654762 | 228 | 0.566742 |
e6c28ea190ebaccb28d1869f9e2a7ef2b94d001d
| 2,079 |
py
|
Python
|
tetrisanim3.py
|
daniel-chuang/tetris
|
518bd7b1fd80babc34a1da323b2f50d88c31ed4a
|
[
"MIT"
] | null | null | null |
tetrisanim3.py
|
daniel-chuang/tetris
|
518bd7b1fd80babc34a1da323b2f50d88c31ed4a
|
[
"MIT"
] | null | null | null |
tetrisanim3.py
|
daniel-chuang/tetris
|
518bd7b1fd80babc34a1da323b2f50d88c31ed4a
|
[
"MIT"
] | null | null | null |
# animation for medium article
from termcolor import colored
import time
import imageio
import pyautogui
pyautogui.FAILSAFE = True
matrix = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 2, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 0, 1, 0, 0, 0, 0, 1, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 1, 0, 1, 0, 1, 0, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
lst = set()
for i in range(21):
for z in range(10):
for row in range(len(matrix)):
if 0 not in matrix[row]:
lst.add(row)
if (i == 20 or i > row) and row in lst:
print(colored("1 " * 10, "green"))
else:
for element in range(len(matrix[row])):
if i == row and z == element:
print(colored(matrix[row][element], "green"), end=" ", flush=False)
elif matrix[row][element] == 1:
print(colored(matrix[row][element], "red"), end=" ", flush=False)
elif matrix[row][element] == 2:
print(colored(matrix[row][element], "blue"), end=" ", flush=False)
else:
print(matrix[row][element], end=" ", flush=False)
print("")
print("")
# takes a screenshot
pyautogui.moveTo(338, 580, duration = 0)
pyautogui.hotkey('command', 'shift', '4')
pyautogui.dragTo(547, 1000, duration = 0, button = 'left')
| 37.8 | 91 | 0.398268 |
e6c3d9a702952ceabdb0472e2fb0bedbc90655bc
| 782 |
py
|
Python
|
inventories/models.py
|
destodasoftware/kately_api
|
89e4e80a93ebf8e5d2f2981d108ce5efde75d0dd
|
[
"MIT"
] | null | null | null |
inventories/models.py
|
destodasoftware/kately_api
|
89e4e80a93ebf8e5d2f2981d108ce5efde75d0dd
|
[
"MIT"
] | 10 |
2019-12-04T23:52:31.000Z
|
2022-02-10T08:34:15.000Z
|
inventories/models.py
|
destodasoftware/kately_api
|
89e4e80a93ebf8e5d2f2981d108ce5efde75d0dd
|
[
"MIT"
] | null | null | null |
from django.db import models
from products.models import Product
from utils.models import Utility
| 27.928571 | 91 | 0.751918 |
e6c4f83ee3a07eb68063b52c122a3a5c692004c3
| 276 |
py
|
Python
|
hierarchical_app/views.py
|
stephken/Hierarchical_assessment
|
537219903357d97d1354a8f262badba9729fb5e0
|
[
"MIT"
] | null | null | null |
hierarchical_app/views.py
|
stephken/Hierarchical_assessment
|
537219903357d97d1354a8f262badba9729fb5e0
|
[
"MIT"
] | null | null | null |
hierarchical_app/views.py
|
stephken/Hierarchical_assessment
|
537219903357d97d1354a8f262badba9729fb5e0
|
[
"MIT"
] | null | null | null |
from django.shortcuts import render
from hierarchical_app.models import Folder
# Create your views here.
| 30.666667 | 142 | 0.764493 |
e6c52e70a50ff76dae5fa9533aa70b45708e60ab
| 19,221 |
py
|
Python
|
bin/train_vit.py
|
ramizdundar/Chexpert
|
6a5f005f1df421538182ad8497725b78e6de29be
|
[
"Apache-2.0"
] | null | null | null |
bin/train_vit.py
|
ramizdundar/Chexpert
|
6a5f005f1df421538182ad8497725b78e6de29be
|
[
"Apache-2.0"
] | null | null | null |
bin/train_vit.py
|
ramizdundar/Chexpert
|
6a5f005f1df421538182ad8497725b78e6de29be
|
[
"Apache-2.0"
] | null | null | null |
import sys
import os
import argparse
import logging
import json
import time
import subprocess
from shutil import copyfile
import numpy as np
from sklearn import metrics
from easydict import EasyDict as edict
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.nn import DataParallel
from vit_pytorch import ViT
from tensorboardX import SummaryWriter
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../')
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
from data.dataset import ImageDataset # noqa
from model.classifier import Classifier # noqa
from utils.misc import lr_schedule # noqa
from model.utils import get_optimizer # noqa
parser = argparse.ArgumentParser(description='Train model')
parser.add_argument('cfg_path', default=None, metavar='CFG_PATH', type=str,
help="Path to the config file in yaml format")
parser.add_argument('save_path', default=None, metavar='SAVE_PATH', type=str,
help="Path to the saved models")
parser.add_argument('--num_workers', default=8, type=int, help="Number of "
"workers for each data loader")
parser.add_argument('--device_ids', default='0,1,2,3', type=str,
help="GPU indices ""comma separated, e.g. '0,1' ")
parser.add_argument('--pre_train', default=None, type=str, help="If get"
"parameters from pretrained model")
parser.add_argument('--resume', default=0, type=int, help="If resume from "
"previous run")
parser.add_argument('--logtofile', default=False, type=bool, help="Save log "
"in save_path/log.txt if set True")
parser.add_argument('--verbose', default=False, type=bool, help="Detail info")
if __name__ == '__main__':
main()
| 38.908907 | 78 | 0.542115 |
e6c580f84de62db4b9d20acb6cce98ce88761586
| 262 |
py
|
Python
|
Sets/the capaint s room.py
|
AndreasGeiger/hackerrank-python
|
a436c207e62b32f70a6b4279bb641a3c4d90e112
|
[
"MIT"
] | null | null | null |
Sets/the capaint s room.py
|
AndreasGeiger/hackerrank-python
|
a436c207e62b32f70a6b4279bb641a3c4d90e112
|
[
"MIT"
] | null | null | null |
Sets/the capaint s room.py
|
AndreasGeiger/hackerrank-python
|
a436c207e62b32f70a6b4279bb641a3c4d90e112
|
[
"MIT"
] | null | null | null |
groupSize = input()
groups = list(map(int,input().split(' ')))
tmpArray1 = set()
tmpArray2 = set()
for i in groups:
if i in tmpArray1:
tmpArray2.discard(i)
else:
tmpArray1.add(i)
tmpArray2.add(i)
for i in tmpArray2:
print(i)
| 18.714286 | 42 | 0.603053 |
e6c60d4fe212527f51e4cf099e6d8185c934aa4e
| 164 |
py
|
Python
|
tests/testsoma.py
|
gtmadureira/Python
|
38de6c56fec1d22662f30c1ff4d4f4f411678484
|
[
"MIT"
] | 4 |
2020-04-10T05:48:46.000Z
|
2021-07-14T10:56:19.000Z
|
tests/testsoma.py
|
gtmadureira/Python
|
38de6c56fec1d22662f30c1ff4d4f4f411678484
|
[
"MIT"
] | 1 |
2020-05-09T21:00:52.000Z
|
2020-05-09T21:00:52.000Z
|
tests/testsoma.py
|
gtmadureira/Python
|
38de6c56fec1d22662f30c1ff4d4f4f411678484
|
[
"MIT"
] | null | null | null |
import unittest
from hf_src.main import soma
| 20.5 | 42 | 0.743902 |
e6c6e8aaf6429afdb1edbeda8513d241f632fc14
| 6,867 |
py
|
Python
|
src/oictest/setup.py
|
rohe/oictest
|
f6f0800220befd5983b8cb34a5c984f98855d089
|
[
"Apache-2.0"
] | 32 |
2015-01-02T20:15:17.000Z
|
2020-02-15T20:46:25.000Z
|
src/oictest/setup.py
|
rohe/oictest
|
f6f0800220befd5983b8cb34a5c984f98855d089
|
[
"Apache-2.0"
] | 8 |
2015-02-23T19:48:53.000Z
|
2016-01-20T08:24:05.000Z
|
src/oictest/setup.py
|
rohe/oictest
|
f6f0800220befd5983b8cb34a5c984f98855d089
|
[
"Apache-2.0"
] | 17 |
2015-01-02T20:15:22.000Z
|
2022-03-22T22:58:28.000Z
|
import copy
import json
from oic.utils.authn.client import CLIENT_AUTHN_METHOD
from oic.utils.keyio import KeyJar
from oic.utils.keyio import KeyBundle
__author__ = 'roland'
import logging
logger = logging.getLogger(__name__)
def request_and_return(conv, url, response=None, method="GET", body=None,
body_type="json", state="", http_args=None,
**kwargs):
"""
:param url: The URL to which the request should be sent
:param response: Response type
:param method: Which HTTP method to use
:param body: A message body if any
:param body_type: The format of the body of the return message
:param http_args: Arguments for the HTTP _client
:return: A cls or ErrorResponse instance or the HTTP response
instance if no response body was expected.
"""
if http_args is None:
http_args = {}
_cli = conv._client
try:
_resp = _cli.http_request(url, method, data=body, **http_args)
except Exception:
raise
conv.position = url
conv.last_response = _resp
conv.last_content = _resp.content
if not "keyjar" in kwargs:
kwargs["keyjar"] = conv.keyjar
_response = _cli.parse_request_response(_resp, response, body_type, state,
**kwargs)
conv.protocol_response.append((_response, _resp.content))
return _response
| 28.6125 | 80 | 0.553371 |
e6c8040bae19150daa4afa3909164f31bd76f5c3
| 2,696 |
py
|
Python
|
HLTrigger/Configuration/python/HLT_75e33/modules/hltPFPuppiNoLep_cfi.py
|
PKUfudawei/cmssw
|
8fbb5ce74398269c8a32956d7c7943766770c093
|
[
"Apache-2.0"
] | 1 |
2021-11-30T16:24:46.000Z
|
2021-11-30T16:24:46.000Z
|
HLTrigger/Configuration/python/HLT_75e33/modules/hltPFPuppiNoLep_cfi.py
|
PKUfudawei/cmssw
|
8fbb5ce74398269c8a32956d7c7943766770c093
|
[
"Apache-2.0"
] | 4 |
2021-11-29T13:57:56.000Z
|
2022-03-29T06:28:36.000Z
|
HLTrigger/Configuration/python/HLT_75e33/modules/hltPFPuppiNoLep_cfi.py
|
PKUfudawei/cmssw
|
8fbb5ce74398269c8a32956d7c7943766770c093
|
[
"Apache-2.0"
] | 1 |
2021-11-30T16:16:05.000Z
|
2021-11-30T16:16:05.000Z
|
import FWCore.ParameterSet.Config as cms
hltPFPuppiNoLep = cms.EDProducer("PuppiProducer",
DeltaZCut = cms.double(0.1),
DeltaZCutForChargedFromPUVtxs = cms.double(0.2),
EtaMaxCharged = cms.double(99999.0),
EtaMaxPhotons = cms.double(2.5),
EtaMinUseDeltaZ = cms.double(-1.0),
MinPuppiWeight = cms.double(0.01),
NumOfPUVtxsForCharged = cms.uint32(0),
PUProxyValue = cms.InputTag("hltPixelClustersMultiplicity"),
PtMaxCharged = cms.double(-1.0),
PtMaxNeutrals = cms.double(200.0),
PtMaxNeutralsStartSlope = cms.double(0.0),
PtMaxPhotons = cms.double(20.0),
UseDeltaZCut = cms.bool(True),
UseFromPVLooseTight = cms.bool(False),
algos = cms.VPSet(
cms.PSet(
EtaMaxExtrap = cms.double(2.0),
MedEtaSF = cms.vdouble(1.0, 1.0),
MinNeutralPt = cms.vdouble(0.5105, 0.821),
MinNeutralPtSlope = cms.vdouble(9.51e-06, 1.902e-05),
RMSEtaSF = cms.vdouble(1.0, 1.0),
etaMax = cms.vdouble(2.5, 3.5),
etaMin = cms.vdouble(0.0, 2.5),
ptMin = cms.vdouble(0.0, 0.0),
puppiAlgos = cms.VPSet(cms.PSet(
algoId = cms.int32(5),
applyLowPUCorr = cms.bool(True),
combOpt = cms.int32(0),
cone = cms.double(0.4),
rmsPtMin = cms.double(0.1),
rmsScaleFactor = cms.double(1.0),
useCharged = cms.bool(True)
))
),
cms.PSet(
EtaMaxExtrap = cms.double(2.0),
MedEtaSF = cms.vdouble(0.75),
MinNeutralPt = cms.vdouble(3.656),
MinNeutralPtSlope = cms.vdouble(5.072e-05),
RMSEtaSF = cms.vdouble(1.0),
etaMax = cms.vdouble(10.0),
etaMin = cms.vdouble(3.5),
ptMin = cms.vdouble(0.0),
puppiAlgos = cms.VPSet(cms.PSet(
algoId = cms.int32(5),
applyLowPUCorr = cms.bool(True),
combOpt = cms.int32(0),
cone = cms.double(0.4),
rmsPtMin = cms.double(0.5),
rmsScaleFactor = cms.double(1.0),
useCharged = cms.bool(False)
))
)
),
applyCHS = cms.bool(True),
candName = cms.InputTag("particleFlowTmp"),
clonePackedCands = cms.bool(False),
invertPuppi = cms.bool(False),
puppiDiagnostics = cms.bool(False),
puppiNoLep = cms.bool(True),
useExistingWeights = cms.bool(False),
useExp = cms.bool(False),
usePUProxyValue = cms.bool(True),
vertexName = cms.InputTag("goodOfflinePrimaryVertices"),
vtxNdofCut = cms.int32(4),
vtxZCut = cms.double(24)
)
| 37.971831 | 65 | 0.563427 |
e6c80a99d05f2b6649c49c64c56164c81a82517f
| 29,212 |
py
|
Python
|
wizbin/build.py
|
RogueScholar/debreate
|
0abc168c51336b31ff87c61f84bc7bb6000e88f4
|
[
"MIT"
] | 97 |
2016-09-16T08:44:04.000Z
|
2022-01-29T22:30:18.000Z
|
wizbin/build.py
|
RogueScholar/debreate
|
0abc168c51336b31ff87c61f84bc7bb6000e88f4
|
[
"MIT"
] | 34 |
2016-09-20T00:42:45.000Z
|
2021-04-16T07:21:44.000Z
|
wizbin/build.py
|
RogueScholar/debreate
|
0abc168c51336b31ff87c61f84bc7bb6000e88f4
|
[
"MIT"
] | 24 |
2016-09-16T08:44:56.000Z
|
2021-07-29T11:32:47.000Z
|
# -*- coding: utf-8 -*-
## \package wizbin.build
# MIT licensing
# See: docs/LICENSE.txt
import commands, os, shutil, subprocess, traceback, wx
from dbr.functions import FileUnstripped
from dbr.language import GT
from dbr.log import DebugEnabled
from dbr.log import Logger
from dbr.md5 import WriteMD5
from fileio.fileio import ReadFile
from fileio.fileio import WriteFile
from globals.bitmaps import ICON_EXCLAMATION
from globals.bitmaps import ICON_INFORMATION
from globals.errorcodes import dbrerrno
from globals.execute import ExecuteCommand
from globals.execute import GetExecutable
from globals.execute import GetSystemInstaller
from globals.ident import btnid
from globals.ident import chkid
from globals.ident import inputid
from globals.ident import pgid
from globals.paths import ConcatPaths
from globals.paths import PATH_app
from globals.strings import GS
from globals.strings import RemoveEmptyLines
from globals.strings import TextIsEmpty
from globals.system import PY_VER_MAJ
from globals.tooltips import SetPageToolTips
from input.toggle import CheckBox
from input.toggle import CheckBoxESS
from startup.tests import UsingTest
from ui.button import CreateButton
from ui.checklist import CheckListDialog
from ui.dialog import DetailedMessageDialog
from ui.dialog import ShowErrorDialog
from ui.layout import BoxSizer
from ui.output import OutputLog
from ui.panel import BorderedPanel
from ui.progress import PD_DEFAULT_STYLE
from ui.progress import ProgressDialog
from ui.progress import TimedProgressDialog
from ui.style import layout as lyt
from wiz.helper import FieldEnabled
from wiz.helper import GetField
from wiz.helper import GetMainWindow
from wiz.helper import GetPage
from wiz.wizard import WizardPage
## Build page
| 28.251451 | 151 | 0.691736 |
e6c8ce8afe1fef7a0e2e19b44facdada82817d59
| 311 |
py
|
Python
|
__main__.py
|
maelstromdat/YOSHI
|
67e5176f24ff12e598025d4250b408da564f53d1
|
[
"Apache-2.0"
] | 6 |
2017-05-07T09:39:18.000Z
|
2021-10-07T01:46:08.000Z
|
__main__.py
|
maelstromdat/YOSHI
|
67e5176f24ff12e598025d4250b408da564f53d1
|
[
"Apache-2.0"
] | 1 |
2018-01-15T15:31:03.000Z
|
2018-01-15T15:31:03.000Z
|
__main__.py
|
maelstromdat/YOSHI
|
67e5176f24ff12e598025d4250b408da564f53d1
|
[
"Apache-2.0"
] | 5 |
2020-02-28T04:16:16.000Z
|
2021-04-30T09:35:19.000Z
|
from YoshiViz import Gui
if __name__ == '__main__':
#file director
gui = Gui.Gui()
"""
report_generator.\
generate_pdf_report(fileDirectory, repositoryName, tempCommunityType)
"""
print('the type of', repositoryName, 'is', tempCommunityType, '\n"check .\YoshiViz\output"')
| 25.916667 | 96 | 0.662379 |
e6c97a9ee684956ae509733d7e8dff568dd9da66
| 623 |
py
|
Python
|
hpotter/src/lazy_init.py
|
LarsenClose/dr.hpotter
|
ef6199ab563a92f3e4916277dbde9217126f36a9
|
[
"MIT"
] | 1 |
2021-08-15T09:24:20.000Z
|
2021-08-15T09:24:20.000Z
|
hpotter/src/lazy_init.py
|
LarsenClose/dr.hpotter
|
ef6199ab563a92f3e4916277dbde9217126f36a9
|
[
"MIT"
] | 18 |
2021-02-01T21:58:20.000Z
|
2021-05-24T17:10:25.000Z
|
hpotter/src/lazy_init.py
|
LarsenClose/dr.hpotter
|
ef6199ab563a92f3e4916277dbde9217126f36a9
|
[
"MIT"
] | 1 |
2021-06-19T12:49:54.000Z
|
2021-06-19T12:49:54.000Z
|
''' Wrap an __init__ function so that I don't have to assign all the
parameters to a self. variable. '''
# https://stackoverflow.com/questions/5048329/python-decorator-for-automatic-binding-init-arguments
import inspect
from functools import wraps
def lazy_init(init):
''' Create an annotation to assign all the parameters to a self.
variable. '''
arg_names = inspect.getfullargspec(init)[0]
# pylint: disable=E1101
return new_init
| 28.318182 | 99 | 0.686998 |
e6cb19760623f02a584f4187adb3490f5de6005b
| 781 |
py
|
Python
|
main.py
|
technojam/MLian
|
7632c5c7d4c44b1d87de9ab23c1ed7293962ca49
|
[
"MIT"
] | 1 |
2021-12-18T19:54:45.000Z
|
2021-12-18T19:54:45.000Z
|
main.py
|
technojam/MLian
|
7632c5c7d4c44b1d87de9ab23c1ed7293962ca49
|
[
"MIT"
] | 2 |
2021-12-18T19:50:08.000Z
|
2021-12-18T19:52:20.000Z
|
main.py
|
technojam/MLian
|
7632c5c7d4c44b1d87de9ab23c1ed7293962ca49
|
[
"MIT"
] | 1 |
2022-03-01T14:13:27.000Z
|
2022-03-01T14:13:27.000Z
|
# def register_feed():
import os
import cv2
path = '/UserImage'
cam = cv2.VideoCapture(0)
name=input("Name: ")
cv2.namedWindow("test")
img_counter = 0
while True:
ret, frame = cam.read()
if not ret:
print("failed to grab frame")
break
else:
cv2.imshow("test", frame)
k = cv2.waitKey(1)
if k%256 == 27:
# ESC pressed
print("Escape hit, closing...")
break
elif k%256 == 32:
# SPACE pressed
# img_name = "opencv_frame_{}.png".format(img_counter)
cv2.imwrite(name + ".jpg", frame)
# print("{} written!".format(img_name))
print("Image Captured! Proceed...")
img_counter += 1
cam.release()
cv2.destroyAllWindows()
| 22.314286 | 66 | 0.541613 |
e6cb563badebdde1d425f141d7f04f5b497ea2ae
| 2,643 |
py
|
Python
|
models/train.py
|
Hiwyl/keras_cnn_finetune
|
f424302a72c8d05056a9af6f9b293003acb8398d
|
[
"MIT"
] | 1 |
2019-09-30T01:07:03.000Z
|
2019-09-30T01:07:03.000Z
|
models/train.py
|
Hiwyl/keras_cnn_finetune
|
f424302a72c8d05056a9af6f9b293003acb8398d
|
[
"MIT"
] | null | null | null |
models/train.py
|
Hiwyl/keras_cnn_finetune
|
f424302a72c8d05056a9af6f9b293003acb8398d
|
[
"MIT"
] | null | null | null |
# -*- encoding: utf-8 -*-
'''
@Author : lance
@Email : [email protected]
'''
import time
from model_cx.inceptionresnet import inceptionresnet
from model_cx.vgg19two import vgg19_all_lr
from model_cx.inceptionv3 import inceptionv3
from model_cx.densenet import densenet
from model_cx.nasnet import nasnet
from model_cx.merge import merge
from model_cx.bcnn import bilinearnet
from model_cx.resnet import ResNet50
from model_cx.mobilenetv2 import mobilenetv2
from model_cx.senet import senet
if __name__=="__main__":
classes = 1
epochs = 100
steps_per_epoch = 113
validation_steps = 48
shape=(224,224)
print("...")
start = time.time()
#
# try:
# print("densenet")
# densenet(classes, epochs, steps_per_epoch, validation_steps, shape)
# except Exception as e:
# print(e)
# try:
# print("bcnn")
# bilinearnet(classes, epochs, steps_per_epoch, validation_steps, shape)
#
# except Exception as e:
# print(e)
# try:
# print("resnet")
# ResNet50(classes, epochs, steps_per_epoch, validation_steps, shape)
# except Exception as e:
# print(e)
try:
print("merge")
merge(classes, epochs, steps_per_epoch, validation_steps, shape)
except Exception as e:
print(e)
# try:
# print("ince_res")
# inceptionresnet(classes, epochs, steps_per_epoch, validation_steps, (299, 299))
# # inceptionresnet(classes, epochs, steps_per_epoch, validation_steps, shape)
# except Exception as e:
# print(e)
# try:
# print("mobilenetv2")
# mobilenetv2(classes, epochs, steps_per_epoch, validation_steps, shape)
# except Exception as e:
# print(e)
# try:
# print("inceptionv3")
# inceptionv3(classes, epochs, steps_per_epoch, validation_steps, (299, 299))
# # inceptionv3(classes, epochs, steps_per_epoch, validation_steps, shape)
# except Exception as e:
# print(e)
try:
print("nasnet")
nasnet(classes, epochs, steps_per_epoch, validation_steps, shape)
except Exception as e:
print(e)
try:
print("vgg19two")
vgg19_all_lr(classes, epochs, steps_per_epoch, validation_steps, shape)
except Exception as e:
print(e)
try:
print("senet")
vgg19_all_lr(classes, epochs, steps_per_epoch, validation_steps, (100,100))
except Exception as e:
print(e)
end = time.time()
print("ETA:", (end - start) / 3600)
| 31.094118 | 90 | 0.623156 |
e6cb633a5c540a02c577994bd8b8eebe64755249
| 3,275 |
py
|
Python
|
src/probnum/randprocs/markov/integrator/_preconditioner.py
|
alpiges/probnum
|
2e4153cb0df559984e09ec74487ef6c9d3f6d464
|
[
"MIT"
] | null | null | null |
src/probnum/randprocs/markov/integrator/_preconditioner.py
|
alpiges/probnum
|
2e4153cb0df559984e09ec74487ef6c9d3f6d464
|
[
"MIT"
] | 40 |
2021-04-12T07:56:29.000Z
|
2022-03-28T00:18:18.000Z
|
src/probnum/randprocs/markov/integrator/_preconditioner.py
|
alpiges/probnum
|
2e4153cb0df559984e09ec74487ef6c9d3f6d464
|
[
"MIT"
] | null | null | null |
"""Coordinate changes in state space models."""
import abc
try:
# cached_property is only available in Python >=3.8
from functools import cached_property
except ImportError:
from cached_property import cached_property
import numpy as np
import scipy.special # for vectorised factorial
from probnum import config, linops, randvars
| 34.114583 | 101 | 0.685802 |
e6cc468eac9d6881bb54cbc2d585ee21f2641f3f
| 2,345 |
py
|
Python
|
allauth/socialaccount/providers/linkedin/provider.py
|
mina-gaid/scp
|
38e1cd303d4728a987df117f666ce194e241ed1a
|
[
"MIT"
] | 1 |
2018-04-06T21:36:59.000Z
|
2018-04-06T21:36:59.000Z
|
allauth/socialaccount/providers/linkedin/provider.py
|
mina-gaid/scp
|
38e1cd303d4728a987df117f666ce194e241ed1a
|
[
"MIT"
] | 6 |
2020-06-05T18:44:19.000Z
|
2022-01-13T00:48:56.000Z
|
allauth/socialaccount/providers/linkedin/provider.py
|
mina-gaid/scp
|
38e1cd303d4728a987df117f666ce194e241ed1a
|
[
"MIT"
] | 1 |
2022-02-01T17:19:28.000Z
|
2022-02-01T17:19:28.000Z
|
from allauth.socialaccount import providers
from allauth.socialaccount.providers.base import ProviderAccount
from allauth.socialaccount.providers.oauth.provider import OAuthProvider
from allauth.socialaccount import app_settings
providers.registry.register(LinkedInProvider)
| 34.485294 | 78 | 0.594456 |
e6ccbdf212404d1bb840cdf710923204e7c1baa5
| 4,744 |
py
|
Python
|
game2048/myNew.py
|
CCTQL/2048-api
|
a75316a90e9a7c8c9171e39e1d1fc24cbac3ba1a
|
[
"Apache-2.0"
] | null | null | null |
game2048/myNew.py
|
CCTQL/2048-api
|
a75316a90e9a7c8c9171e39e1d1fc24cbac3ba1a
|
[
"Apache-2.0"
] | null | null | null |
game2048/myNew.py
|
CCTQL/2048-api
|
a75316a90e9a7c8c9171e39e1d1fc24cbac3ba1a
|
[
"Apache-2.0"
] | null | null | null |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets
from torch.autograd import Variable
from sklearn.model_selection import train_test_split
import time
import pandas as pd
import numpy as np
import csv
batch_size = 128
NUM_EPOCHS = 30
LR = 0.001
TIME_STEP = 4
#-----------------------------------------------
csv_data = pd.read_csv('./drive/My Drive/DATA.csv')
csv_data = csv_data.values
A = csv_data.shape[0]
board_data = csv_data[:,0:16]
# X = np.log2(X)
X = torch.FloatTensor(board_data)
X = np.int64(board_data)
#
X = np.reshape(X, (-1,4,4))
XT = X.transpose(0,2,1)
X = np.concatenate((X,XT),axis=1)
print(X.shape)
direction_data = csv_data[:,16]
Y = np.int64(direction_data)
#-------------------------------------------------------
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,shuffle=False)
X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
Y_train = torch.LongTensor(Y_train)
Y_test = torch.LongTensor(Y_test)
train_dataset = torch.utils.data.TensorDataset(X_train,Y_train)
# test_dataset = torch.utils.data.TensorDataset(X_test,Y_test)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True
)
# test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
# batch_size=batch_size,
# shuffle=False
# )
batch_size = 128
NUM_EPOCHS = 30
LR = 0.001
TIME_STEP = 4
#-----------------------------------------------
csv_data = pd.read_csv('./drive/My Drive/DATA.csv')
csv_data = csv_data.values
A = csv_data.shape[0]
board_data = csv_data[:,0:16]
# X = np.log2(X)
X = torch.FloatTensor(board_data)
X = np.int64(board_data)
#
X = np.reshape(X, (-1,4,4))
XT = X.transpose(0,2,1)
X = np.concatenate((X,XT),axis=1)
print(X.shape)
direction_data = csv_data[:,16]
Y = np.int64(direction_data)
model = CCRNN()
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr = 0.001)
if __name__ == '__main__':
for epoch in range(0, NUM_EPOCHS):
train(epoch)
| 27.421965 | 87 | 0.572513 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.