hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
e6cd191f4e7eeaa1d075d528c9e2ada0827d674f
4,618
py
Python
HW2/dbsys-hw2/Database.py
yliu120/dbsystem
d1b008f411929058a34a1dd2c44c9ee2cf899865
[ "Apache-2.0" ]
null
null
null
HW2/dbsys-hw2/Database.py
yliu120/dbsystem
d1b008f411929058a34a1dd2c44c9ee2cf899865
[ "Apache-2.0" ]
null
null
null
HW2/dbsys-hw2/Database.py
yliu120/dbsystem
d1b008f411929058a34a1dd2c44c9ee2cf899865
[ "Apache-2.0" ]
null
null
null
import json, io, os, os.path from Catalog.Schema import DBSchema, DBSchemaEncoder, DBSchemaDecoder from Query.Plan import PlanBuilder from Storage.StorageEngine import StorageEngine if __name__ == "__main__": import doctest doctest.testmod()
31.848276
107
0.707016
e6cda14ca91ba1556d929a926bfc87a16ab1f726
371
py
Python
tests/test_arr_add_value.py
dboyliao/TaipeiPy-pybind11-buffer-array
22e764d9fbf605950c0de10e3a341de36bc9bf89
[ "MIT" ]
1
2022-03-17T10:01:45.000Z
2022-03-17T10:01:45.000Z
tests/test_arr_add_value.py
dboyliao/TaipeiPy-pybind11-buffer-array
22e764d9fbf605950c0de10e3a341de36bc9bf89
[ "MIT" ]
null
null
null
tests/test_arr_add_value.py
dboyliao/TaipeiPy-pybind11-buffer-array
22e764d9fbf605950c0de10e3a341de36bc9bf89
[ "MIT" ]
null
null
null
import numpy as np import mylib
28.538462
80
0.638814
e6ce056f0a84e4b655921e3c42a24774c81e07e4
619
py
Python
moderngl_window/resources/data.py
DavideRuzza/moderngl-window
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
[ "MIT" ]
142
2019-11-11T23:14:28.000Z
2022-03-29T08:37:03.000Z
moderngl_window/resources/data.py
DavideRuzza/moderngl-window
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
[ "MIT" ]
107
2019-10-31T20:31:45.000Z
2022-03-23T15:01:41.000Z
moderngl_window/resources/data.py
DavideRuzza/moderngl-window
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
[ "MIT" ]
36
2019-12-12T16:14:10.000Z
2022-01-18T22:58:21.000Z
""" Registry general data files """ from typing import Any from moderngl_window.resources.base import BaseRegistry from moderngl_window.meta import DataDescription data = DataFiles()
23.807692
99
0.678514
e6cea1b013c7155bc06629fbf31e017bbe14f52f
658
py
Python
tests/test_units/test_mapper_str.py
frewsxcv/routes
7690fc1016e56739855435fb54c96acccfa29009
[ "MIT" ]
1
2015-11-08T12:58:16.000Z
2015-11-08T12:58:16.000Z
tests/test_units/test_mapper_str.py
frewsxcv/routes
7690fc1016e56739855435fb54c96acccfa29009
[ "MIT" ]
null
null
null
tests/test_units/test_mapper_str.py
frewsxcv/routes
7690fc1016e56739855435fb54c96acccfa29009
[ "MIT" ]
null
null
null
import unittest from routes import Mapper
34.631579
91
0.582067
e6cebeadc3ade385a017e0f9c9ce037d2f450345
2,106
py
Python
quarkchain/tools/config_slave.py
HAOYUatHZ/pyquarkchain
b2c7c02e4415aa26917c2cbb5e7571c9fef16c5b
[ "MIT" ]
1
2018-10-23T05:48:42.000Z
2018-10-23T05:48:42.000Z
quarkchain/tools/config_slave.py
skji/pyquarkchain
090f9981b89b8873daaed36171a9bc9f27b10473
[ "MIT" ]
3
2020-03-12T18:09:40.000Z
2021-02-26T02:33:09.000Z
quarkchain/tools/config_slave.py
skji/pyquarkchain
090f9981b89b8873daaed36171a9bc9f27b10473
[ "MIT" ]
null
null
null
""" python config_slave.py 127.0.0.1 38000 38006 127.0.0.2 18999 18002 will generate 4 slave server configs accordingly. will be used in deployment automation to configure a cluster. usage: python config_slave.py <host1> <port1> <port2> <host2> <port3> ... """ import argparse import collections import json import os FILE = "../../testnet/2/cluster_config_template.json" if "QKC_CONFIG" in os.environ: FILE = os.environ["QKC_CONFIG"] if __name__ == "__main__": main()
28.459459
111
0.597816
e6cfd0714854720779418d4a80b8997e25e611e3
3,227
py
Python
python-function-files-dictionaries/week4-assignment1.py
MauMendes/python3-programming-specialization
8bd259f0ac559c6004baa0e759b6ec4bc25e1320
[ "MIT" ]
null
null
null
python-function-files-dictionaries/week4-assignment1.py
MauMendes/python3-programming-specialization
8bd259f0ac559c6004baa0e759b6ec4bc25e1320
[ "MIT" ]
null
null
null
python-function-files-dictionaries/week4-assignment1.py
MauMendes/python3-programming-specialization
8bd259f0ac559c6004baa0e759b6ec4bc25e1320
[ "MIT" ]
null
null
null
#1) Write a function, sublist, that takes in a list of numbers as the parameter. In the function, use a while loop to return a sublist of the input list. # The sublist should contain the same values of the original list up until it reaches the number 5 (it should not contain the number 5). #2) Write a function called check_nums that takes a list as its parameter, and contains a while loop that only stops once the element of the # list is the number 7. What is returned is a list of all of the numbers up until it reaches 7.def check_nums(input_lst): #3) Write a function, sublist, that takes in a list of strings as the parameter. In the function, use a while loop to return a sublist of the input list. # The sublist should contain the same values of the original list up until it reaches the string STOP (it should not contain the string STOP). #4) Write a function called stop_at_z that iterates through a list of strings. Using a while loop, append each string to a new list until the string that # appears is z. The function should return the new list. #5) Below is a for loop that works. Underneath the for loop, rewrite the problem so that it does the same thing, but using a while loop instead of a for loop. # Assign the accumulated total in the while loop code to the variable sum2. Once complete, sum2 should equal sum1. lst = [65, 78, 21, 33] lenght = len(lst) i = 0 sum2 = 0 while i<lenght: sum2 += lst[i] i+=1 #6) Challenge: Write a function called beginning that takes a list as input and contains a while loop that only stops once the element of the list is the string bye. # What is returned is a list that contains up to the first 10 strings, regardless of where the loop stops. (i.e., if it stops on the 32nd element, the first 10 are # returned. If bye is the 5th element, the first 4 are returned.) If you want to make this even more of a challenge, do this without slicing
37.091954
168
0.664084
e6d14bad54d6d5d7401435412b7045fd99c1fc0a
25,605
py
Python
saas/backend/apps/group/views.py
Canway-shiisa/bk-iam-saas
73c3770d9647c9cc8d515427cd1d053d8af9d071
[ "MIT" ]
null
null
null
saas/backend/apps/group/views.py
Canway-shiisa/bk-iam-saas
73c3770d9647c9cc8d515427cd1d053d8af9d071
[ "MIT" ]
null
null
null
saas/backend/apps/group/views.py
Canway-shiisa/bk-iam-saas
73c3770d9647c9cc8d515427cd1d053d8af9d071
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making -(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from functools import wraps from typing import List from django.shortcuts import get_object_or_404 from django.utils.translation import gettext as _ from drf_yasg.utils import swagger_auto_schema from pydantic.tools import parse_obj_as from rest_framework import serializers, status, views from rest_framework.pagination import LimitOffsetPagination from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet, mixins from backend.account.permissions import RolePermission, role_perm_class from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ from backend.apps.group import tasks # noqa from backend.apps.group.models import Group from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ from backend.apps.template.models import PermTemplatePolicyAuthorized from backend.audit.audit import audit_context_setter, view_audit_decorator from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz from backend.biz.policy_tag import ConditionTagBean, ConditionTagBiz from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker from backend.biz.template import TemplateBiz from backend.common.error_codes import error_codes from backend.common.filters import NoCheckModelFilterBackend from backend.common.serializers import SystemQuerySLZ from backend.common.time import PERMANENT_SECONDS from backend.service.constants import PermissionCodeEnum, RoleType, SubjectType from backend.service.models import Subject from backend.trans.group import GroupTrans from .audit import ( GroupCreateAuditProvider, GroupDeleteAuditProvider, GroupMemberCreateAuditProvider, GroupMemberDeleteAuditProvider, GroupMemberRenewAuditProvider, GroupPolicyDeleteAuditProvider, GroupPolicyUpdateAuditProvider, GroupTemplateCreateAuditProvider, GroupTransferAuditProvider, GroupUpdateAuditProvider, ) from .constants import OperateEnum from .filters import GroupFilter, GroupTemplateSystemFilter from .serializers import ( GroupAddMemberSLZ, GroupAuthoriedConditionSLZ, GroupAuthorizationSLZ, GroupCreateSLZ, GroupDeleteMemberSLZ, GroupIdSLZ, GroupMemberUpdateExpiredAtSLZ, GroupPolicyUpdateSLZ, GroupSLZ, GroupTemplateDetailSchemaSLZ, GroupTemplateDetailSLZ, GroupTemplateSchemaSLZ, GroupTemplateSLZ, GroupTransferSLZ, GroupUpdateSLZ, MemberSLZ, SearchMemberSLZ, ) permission_logger = logging.getLogger("permission") def check_readonly_group(operation): """""" return decorate
36.216407
117
0.696348
e6d16a8a093216b78956e0c3642e48c0a64c8778
5,188
py
Python
towers.py
fillest/7drl2013
96d291dce08a85d3871713c99f3a036de482d6ca
[ "MIT" ]
1
2015-05-19T08:12:49.000Z
2015-05-19T08:12:49.000Z
towers.py
fillest/7drl2013
96d291dce08a85d3871713c99f3a036de482d6ca
[ "MIT" ]
null
null
null
towers.py
fillest/7drl2013
96d291dce08a85d3871713c99f3a036de482d6ca
[ "MIT" ]
null
null
null
import util import libtcodpy as tcod import enemies import operator
24.018519
92
0.664418
e6d351ce6a88251c74a7d12532c34a2b0ba6f8b1
795
py
Python
python/mandelbrot.py
lukasjoc/random
5be080b424f02491fb219634902fc0cc192aff6c
[ "0BSD" ]
1
2020-11-09T19:32:43.000Z
2020-11-09T19:32:43.000Z
python/mandelbrot.py
lukasjoc/random
5be080b424f02491fb219634902fc0cc192aff6c
[ "0BSD" ]
null
null
null
python/mandelbrot.py
lukasjoc/random
5be080b424f02491fb219634902fc0cc192aff6c
[ "0BSD" ]
null
null
null
#!/usr/bin/python3 from PIL import Image from numpy import complex, array from tqdm import tqdm import colorsys W=512 #W=142 if __name__ == "__main__": img = Image.new("RGB", (W, int(W / 2))) pixels = img.load() for x in tqdm(range(img.size[0])): for y in tqdm(range(img.size[1])): xx = (x - (0.75 * W)) / (W / 4) yy = (y - (W / 4)) / (W / 4) pixels[x, y] = mandelbrot(xx, yy) img.show() img.save("mandelbrot.jpg")
22.714286
69
0.52956
e6d3938d66694895ff110b11b2560698b6722338
9,672
py
Python
tests/unit/commands/test_deploy.py
tonyreina/mlt
ee490ebdeb5aa6924dbfc0a067a0653754c470f4
[ "Apache-2.0" ]
1
2021-11-29T10:35:20.000Z
2021-11-29T10:35:20.000Z
tests/unit/commands/test_deploy.py
tonyreina/mlt
ee490ebdeb5aa6924dbfc0a067a0653754c470f4
[ "Apache-2.0" ]
null
null
null
tests/unit/commands/test_deploy.py
tonyreina/mlt
ee490ebdeb5aa6924dbfc0a067a0653754c470f4
[ "Apache-2.0" ]
1
2020-02-22T01:04:15.000Z
2020-02-22T01:04:15.000Z
# # -*- coding: utf-8 -*- # # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: EPL-2.0 # from __future__ import print_function import uuid import pytest from mock import call, MagicMock from mlt.commands.deploy import DeployCommand from test_utils.io import catch_stdout def deploy(no_push, skip_crd_check, interactive, extra_config_args, retries=5): deploy = DeployCommand( {'deploy': True, '--no-push': no_push, '--skip-crd-check': skip_crd_check, '--interactive': interactive, '--retries': retries, '--logs':False}) deploy.config = {'name': 'app', 'namespace': 'namespace'} deploy.config.update(extra_config_args) with catch_stdout() as caught_output: deploy.action() output = caught_output.getvalue() return output def verify_successful_deploy(output, did_push=True, interactive=False): """assert pushing, deploying, then objs created, then pushed""" pushing = output.find('Pushing ') push_skip = output.find('Skipping image push') deploying = output.find('Deploying ') inspecting = output.find('Inspect created objects by running:\n') pushed = output.find('Pushed to ') pod_connect = output.find('Connecting to pod...') if did_push: assert all(var >= 0 for var in ( deploying, inspecting, pushing, pushed)) assert deploying < inspecting, pushing < pushed else: assert all(var == -1 for var in (pushing, pushed)) assert all(var >= 0 for var in (deploying, inspecting, push_skip)) assert push_skip < deploying, deploying < inspecting if interactive: assert pod_connect > inspecting
34.791367
85
0.652089
e6d61cff66c7d3846169dfff6eca952a90b72ddd
1,940
py
Python
packages/mccomponents/tests/mccomponentsbpmodule/sample/Broadened_E_Q_Kernel_TestCase.py
mcvine/mcvine
42232534b0c6af729628009bed165cd7d833789d
[ "BSD-3-Clause" ]
5
2017-01-16T03:59:47.000Z
2020-06-23T02:54:19.000Z
packages/mccomponents/tests/mccomponentsbpmodule/sample/Broadened_E_Q_Kernel_TestCase.py
mcvine/mcvine
42232534b0c6af729628009bed165cd7d833789d
[ "BSD-3-Clause" ]
293
2015-10-29T17:45:52.000Z
2022-01-07T16:31:09.000Z
packages/mccomponents/tests/mccomponentsbpmodule/sample/Broadened_E_Q_Kernel_TestCase.py
mcvine/mcvine
42232534b0c6af729628009bed165cd7d833789d
[ "BSD-3-Clause" ]
1
2019-05-25T00:53:31.000Z
2019-05-25T00:53:31.000Z
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2006-2010 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # standalone = True import unittestX as unittest import journal debug = journal.debug( "Broadened_E_Q_Kernel_TestCase" ) warning = journal.warning( "Broadened_E_Q_Kernel_TestCase" ) import mcni from mccomposite import mccompositebp from mccomponents import mccomponentsbp if __name__ == "__main__": main() # version __id__ = "$Id: TestCase.py 696 2010-11-09 06:23:06Z linjiao $" # End of file
23.373494
80
0.491753
e6d6837b46baf712793275d6754e0dab0bf209be
602
py
Python
baseline/ns-vqa/reason/options/test_options.py
robinzixuan/Video-Question-Answering-HRI
ae68ffee1e6fc1eb13229e457e3b8e3bc3a11579
[ "MIT" ]
52
2019-12-04T22:26:56.000Z
2022-03-31T17:04:15.000Z
reason/options/test_options.py
guxiwuruo/VCML
5a0f01a0baba238cef2f63131fccd412e3d7822b
[ "MIT" ]
6
2020-08-25T07:35:14.000Z
2021-09-09T04:57:09.000Z
reason/options/test_options.py
guxiwuruo/VCML
5a0f01a0baba238cef2f63131fccd412e3d7822b
[ "MIT" ]
5
2020-02-10T07:39:24.000Z
2021-06-23T02:53:42.000Z
from .base_options import BaseOptions
43
107
0.699336
e6d751bc3f23bc91c2716777ca9ac12139d4b799
6,325
py
Python
Model_setup/NEISO_data_file/downsampling_generators_v1.py
keremakdemir/ISONE_UCED
11ce34c5ac5d34dcab771640f41c0d2ce4ab21f9
[ "MIT" ]
null
null
null
Model_setup/NEISO_data_file/downsampling_generators_v1.py
keremakdemir/ISONE_UCED
11ce34c5ac5d34dcab771640f41c0d2ce4ab21f9
[ "MIT" ]
null
null
null
Model_setup/NEISO_data_file/downsampling_generators_v1.py
keremakdemir/ISONE_UCED
11ce34c5ac5d34dcab771640f41c0d2ce4ab21f9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Apr 24 18:45:34 2020 @author: kakdemi """ import pandas as pd #importing generators all_generators = pd.read_excel('generators2.xlsx', sheet_name='NEISO generators (dispatch)') #getting all oil generators all_oil = all_generators[all_generators['typ']=='oil'].copy() #getting all generators in every zone CT_oil = all_oil[all_oil['zone']=='CT'].copy() ME_oil = all_oil[all_oil['zone']=='ME'].copy() NEMA_oil = all_oil[all_oil['zone']=='NEMA'].copy() NH_oil = all_oil[all_oil['zone']=='NH'].copy() RI_oil = all_oil[all_oil['zone']=='RI'].copy() SEMA_oil = all_oil[all_oil['zone']=='SEMA'].copy() VT_oil = all_oil[all_oil['zone']=='VT'].copy() WCMA_oil = all_oil[all_oil['zone']=='WCMA'].copy() #defining zones zones = ['CT','ME','NEMA','NH','RI','SEMA','VT','WCMA'] #getting all slack generators all_slack = all_generators[all_generators['typ']=='slack'].copy() #getting generators other than slack and oil all_other = all_generators[(all_generators['typ']!='oil') & (all_generators['typ']!='slack')].copy() #defining a function to downsample oil generators #downsampling oil generators in every zone by using the defined function for z in zones: globals()[z+'_agg_oil_df'] = oil_downsampler(z) #adding downsampled oil generators to create a complete list of generators final_generators = pd.concat([all_other, CT_agg_oil_df, ME_agg_oil_df, NEMA_agg_oil_df, NH_agg_oil_df, RI_agg_oil_df, SEMA_agg_oil_df, VT_agg_oil_df, WCMA_agg_oil_df, all_slack], ignore_index=True) #exporting the generators as an Excel file final_generators.to_excel('generators.xlsx', sheet_name='NEISO generators (dispatch)', index=False)
47.201493
100
0.68253
e6d7ef175de941485b4682919229774de09d58bb
307
py
Python
GUI1.py
otmanabdoun/IHM-Python
624e961c2f6966b98bf2c1bc4dd276b812954ba1
[ "Apache-2.0" ]
3
2021-12-08T10:34:55.000Z
2022-01-17T21:02:40.000Z
GUI1.py
otmanabdoun/IHM-Python
624e961c2f6966b98bf2c1bc4dd276b812954ba1
[ "Apache-2.0" ]
null
null
null
GUI1.py
otmanabdoun/IHM-Python
624e961c2f6966b98bf2c1bc4dd276b812954ba1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Nov 16 19:47:41 2021 @author: User """ import tkinter as tk racine = tk . Tk () label = tk . Label ( racine , text ="J ' adore Python !") bouton = tk . Button ( racine , text =" Quitter ", command = racine . destroy ) label . pack () bouton . pack ()
23.615385
80
0.579805
e6d83253f8c1c21cef502fbe86bb43dc1f2be4ac
2,579
py
Python
app/routes/v1/endpoints/clickup.py
ertyurk/bugme
5a3ef3e089e0089055074c1c896c3fdc76600e93
[ "MIT" ]
null
null
null
app/routes/v1/endpoints/clickup.py
ertyurk/bugme
5a3ef3e089e0089055074c1c896c3fdc76600e93
[ "MIT" ]
null
null
null
app/routes/v1/endpoints/clickup.py
ertyurk/bugme
5a3ef3e089e0089055074c1c896c3fdc76600e93
[ "MIT" ]
null
null
null
from fastapi import APIRouter, status, Body, HTTPException from fastapi.encoders import jsonable_encoder from starlette.responses import JSONResponse from app.models.common import * from app.models.clickup import * from app.database.crud.clickup import * router = APIRouter()
31.839506
88
0.6867
e6d9219a9f3da8435460a41632a908023dbaa338
2,668
py
Python
cellfinder_core/main.py
npeschke/cellfinder-core
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
[ "BSD-3-Clause" ]
5
2021-01-22T11:40:01.000Z
2021-09-10T07:16:05.000Z
cellfinder_core/main.py
npeschke/cellfinder-core
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
[ "BSD-3-Clause" ]
38
2021-01-22T11:50:29.000Z
2022-03-11T11:04:06.000Z
cellfinder_core/main.py
npeschke/cellfinder-core
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
[ "BSD-3-Clause" ]
12
2021-06-18T09:57:24.000Z
2022-03-06T13:03:18.000Z
""" N.B imports are within functions to prevent tensorflow being imported before it's warnings are silenced """ import os import logging from imlib.general.logging import suppress_specific_logs tf_suppress_log_messages = [ "multiprocessing can interact badly with TensorFlow" ] def suppress_tf_logging(tf_suppress_log_messages): """ Prevents many lines of logs such as: "2019-10-24 16:54:41.363978: I tensorflow/stream_executor/platform/default /dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1" """ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" for message in tf_suppress_log_messages: suppress_specific_logs("tensorflow", message)
25.653846
78
0.664168
e6d9b9257b4bb7dd1463fcb578829bc893311e39
1,378
py
Python
server.py
rezist-ro/rezistenta.tv
0c0dfa4842061baf2b575688588c5d77cfdba427
[ "MIT" ]
null
null
null
server.py
rezist-ro/rezistenta.tv
0c0dfa4842061baf2b575688588c5d77cfdba427
[ "MIT" ]
null
null
null
server.py
rezist-ro/rezistenta.tv
0c0dfa4842061baf2b575688588c5d77cfdba427
[ "MIT" ]
null
null
null
# coding=utf-8 import dateutil.parser import flask import json import os import time import urllib import yaml EPISODES = yaml.load(open("episodes.yaml").read()) app = flask.Flask(__name__, static_path="/assets", static_folder="assets") app.jinja_env.filters["strftime"] = \ lambda str, fmt: dateutil.parser.parse(str).strftime(fmt) app.jinja_env.filters["quote_plus"] = lambda u: urllib.quote_plus(u) ASSETS = os.path.join(app.root_path, "assets")
25.054545
68
0.592163
e6dbab8094c7c2aea35411b5ea545eabb3be8db0
273
py
Python
problem020.py
mazayus/ProjectEuler
64aebd5d80031fab2f0ef3c44c3a1118212ab613
[ "MIT" ]
null
null
null
problem020.py
mazayus/ProjectEuler
64aebd5d80031fab2f0ef3c44c3a1118212ab613
[ "MIT" ]
null
null
null
problem020.py
mazayus/ProjectEuler
64aebd5d80031fab2f0ef3c44c3a1118212ab613
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from functools import * import operator print(sum(digits(factorial(100))))
19.5
52
0.70696
e6dce6f716b933d2a36c1e77462d5b0eb2326793
5,449
py
Python
transformer.py
ghafran/KerasPersonLab
fcd80b62247aee8bd1d41ff91e31c822950f561e
[ "MIT" ]
null
null
null
transformer.py
ghafran/KerasPersonLab
fcd80b62247aee8bd1d41ff91e31c822950f561e
[ "MIT" ]
null
null
null
transformer.py
ghafran/KerasPersonLab
fcd80b62247aee8bd1d41ff91e31c822950f561e
[ "MIT" ]
null
null
null
import numpy as np from math import cos, sin, pi import cv2 import random from config import config, TransformationParams from data_prep import map_coco_to_personlab class Transformer:
41.915385
142
0.599193
e6ddfeb2d231878165ecef38a814ab51e23d6978
412
py
Python
enan/__init__.py
mizuno-group/enan
3c9dbe60bebf98e384e858db56980928b5897775
[ "MIT" ]
null
null
null
enan/__init__.py
mizuno-group/enan
3c9dbe60bebf98e384e858db56980928b5897775
[ "MIT" ]
null
null
null
enan/__init__.py
mizuno-group/enan
3c9dbe60bebf98e384e858db56980928b5897775
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Dec 25 15:46:32 2019 @author: tadahaya """ from .binom import BT from .connect import Connect from .fet import FET from .gsea import GSEA from .ssgsea import ssGSEA __copyright__ = 'Copyright (C) 2020 MIZUNO Tadahaya' __version__ = '1.0.3' __license__ = 'MIT' __author__ = 'MIZUNO Tadahaya' __author_email__ = '[email protected]'
22.888889
56
0.662621
e6de80977f40faa2f17ffea735e4529c245402b4
320
py
Python
app/helpers/__init__.py
Hacker-1202/Selfium
7e798c23c9f24aacab6f6a485d6355f1045bc65c
[ "MIT" ]
14
2021-11-05T11:27:25.000Z
2022-02-28T02:04:32.000Z
app/helpers/__init__.py
CssHammer/Selfium
7e798c23c9f24aacab6f6a485d6355f1045bc65c
[ "MIT" ]
2
2022-01-24T22:00:44.000Z
2022-01-31T13:13:27.000Z
app/helpers/__init__.py
CssHammer/Selfium
7e798c23c9f24aacab6f6a485d6355f1045bc65c
[ "MIT" ]
5
2022-01-02T13:33:17.000Z
2022-02-26T13:09:50.000Z
""" Selfium Helper Files ~~~~~~~~~~~~~~~~~~~ All Helper Files used in Selfium project; :copyright: (c) 2021 - Caillou and ZeusHay; :license: MIT, see LICENSE for more details. """ from .getUser import * from .getGuild import * from .params import * from .notify import * from .sendEmbed import * from .isStaff import *
21.333333
44
0.6875
e6dee5544a49eb20feb56cbcfdbdf81cda6aae63
10,859
py
Python
NLP/UNIMO/src/finetune/visual_entailment.py
zhangyimi/Research
866f91d9774a38d205d6e9a3b1ee6293748261b3
[ "Apache-2.0" ]
1,319
2020-02-14T10:42:07.000Z
2022-03-31T15:42:18.000Z
NLP/UNIMO/src/finetune/visual_entailment.py
green9989/Research
94519a72e7936c77f62a31709634b72c09aabf74
[ "Apache-2.0" ]
192
2020-02-14T02:53:34.000Z
2022-03-31T02:25:48.000Z
NLP/UNIMO/src/finetune/visual_entailment.py
green9989/Research
94519a72e7936c77f62a31709634b72c09aabf74
[ "Apache-2.0" ]
720
2020-02-14T02:12:38.000Z
2022-03-31T12:21:15.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model for visual_entailment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import time import numpy as np import paddle.fluid as fluid from model.unimo_finetune import UNIMOModel from eval import glue_eval from collections import OrderedDict from utils.utils import print_eval_log def kl_divergence_with_logits(q_logits, p_logits): """ symmetric KL-divergence (See SMART, Sec 3.1) q_logits: logits p_logits: delta_logits """ q = fluid.layers.softmax(input=q_logits) p = fluid.layers.softmax(input=p_logits) kl_qp = fluid.layers.reduce_sum(q * (fluid.layers.log(q) - fluid.layers.log(p)), -1) kl_pq = fluid.layers.reduce_sum(p * (fluid.layers.log(p) - fluid.layers.log(q)), -1) vat_loss = fluid.layers.mean(x=kl_qp+kl_pq) return vat_loss def create_model(args, config, pyreader_name="train_reader", is_train=True): """create_model""" shapes = [[-1, args.max_seq_len, 1], # src_ids [-1, args.max_seq_len, 1], # pos_ids [-1, args.max_seq_len, 1], # sent_ids [-1, args.max_img_len + args.max_seq_len, args.max_img_len + args.max_seq_len], # input_mask [-1, args.max_img_len, 1], # v_mask [-1, args.max_seq_len, 1], # t_mask [-1, args.max_img_len, config["image_embedding_size"]], # image_embedding [-1, args.max_img_len, 5], # image_loc [-1, 1] # labels ] dtypes = ['int64', 'int64', 'int64', 'float32', 'float32', 'float32', 'float32','float32', 'int64'] lod_levels = [0, 0, 0, 0, 0, 0, 0, 0, 0] pyreader = fluid.layers.py_reader( capacity=70, shapes=shapes, dtypes=dtypes, lod_levels=lod_levels, name=pyreader_name, use_double_buffer=True) (src_ids, pos_ids, sent_ids, input_mask, v_mask, t_mask, image_embedding, image_loc, labels) \ = fluid.layers.read_file(pyreader) emb_ids = {"word_embedding": src_ids, "sent_embedding": sent_ids, "pos_embedding": pos_ids} image_input = {"image_embedding": image_embedding, "loc_embedding": image_loc} adv_step, adv_lr, norm_type, adv_max_norm, adv_init_mag = \ args.adv_step, args.adv_lr, args.norm_type, args.adv_max_norm, args.adv_init_mag assert adv_step > 0 and adv_init_mag > 0 if is_train: text_emb_shape = [-1, args.max_seq_len, config['hidden_size']] text_delta = init_delta(src_ids, t_mask, text_emb_shape, name='text') image_emb_shape = [-1, args.max_img_len, config['image_embedding_size']] image_delta = init_delta(image_embedding, v_mask, image_emb_shape, name='img') else: text_delta, image_delta = None, None loss = None for iter in range(adv_step): vl_pure = UNIMOModel( emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_text = UNIMOModel( text_adv_delta=text_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_image = UNIMOModel( image_adv_delta=image_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) h_pure_text, h_pure_image = vl_pure.get_pooled_output() h_text_text, h_text_image = vl_text.get_pooled_output() h_image_text, h_image_image = vl_image.get_pooled_output() loss_pure, logit_pure, probs_pure = get_loss_and_logits(h_pure_text, h_pure_image) loss_text, logit_text, probs_text = get_loss_and_logits(h_text_text, h_text_image) loss_image, logit_image, probs_image = get_loss_and_logits(h_image_text, h_image_image) if is_train: text_delta = pgd_with_l2(loss_text, text_delta) image_delta = pgd_with_l2(loss_image, image_delta) kl_adv_text_loss = kl_divergence_with_logits(logit_pure, logit_text) kl_adv_image_loss = kl_divergence_with_logits(logit_pure, logit_image) cur_loss = loss_pure + loss_text + loss_image + kl_adv_text_loss + kl_adv_image_loss loss = cur_loss if loss is None else loss + cur_loss num_seqs = fluid.layers.create_tensor(dtype='int64') accuracy = fluid.layers.accuracy(input=probs_pure, label=labels, total=num_seqs) graph_vars = { "loss": loss, "probs": probs_pure, "accuracy": accuracy, "labels": labels, "num_seqs": num_seqs } for k, v in graph_vars.items(): v.persistable = False return pyreader, graph_vars def evaluate(args, exe, test_pyreader, graph_vars, eval_phase, dev_count=1, gpu_id=0): """evaluate""" all_mat = [] test_pyreader.start() time_begin = time.time() fetch_list = [graph_vars["probs"].name, graph_vars["labels"].name] while True: try: np_probs, np_labels = exe.run(fetch_list=fetch_list) np_preds = np.argmax(np_probs, axis=1).reshape((-1, 1)) np_labels = np_labels.reshape((-1, 1)) mat = np.concatenate([np_preds, np_labels], axis=1) all_mat.extend(mat.tolist()) except fluid.core.EOFException: test_pyreader.reset() break all_mat = np.array(all_mat) time_end = time.time() save_file = "%s/%s.trainers_%d.part_%d.npy" % (args.eval_dir, eval_phase, dev_count, gpu_id) np.save(save_file, all_mat) tmp_file = "%s/%s.trainers_%d.part_%d.finish" % (args.eval_dir, eval_phase, dev_count, gpu_id) tmp_writer = open(tmp_file, "w") tmp_writer.close() if gpu_id == 0: while True: ret = os.popen('find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"' % (args.eval_dir, eval_phase, dev_count)).readlines() if len(ret) != dev_count: time.sleep(1) continue else: break all_mats = [] save_files = glob.glob("%s/%s.trainers_%d.part_*.npy" % (args.eval_dir, eval_phase, dev_count)) for cur_save_file in save_files: mat = np.load(cur_save_file).tolist() all_mats.extend(mat) all_mats = np.array(all_mats) cur_time = str(int(time.time())) os.system("mkdir %s/%s" % (args.eval_dir, cur_time)) os.system("mv %s/%s.trainers_%d.* %s/%s" % (args.eval_dir, eval_phase, dev_count, args.eval_dir, cur_time)) ret = OrderedDict() ret['phase'] = eval_phase ret['loss'] = -1 ret['data_num'] = all_mats.shape[0] ret['used_time'] = round(time_end - time_begin, 4) metrics = OrderedDict() metrics["simple_accuracy"] = glue_eval.simple_accuracy if args.eval_mertrics in metrics: ret_metric = metrics[args.eval_mertrics](all_mats[:, 0], all_mats[:, 1]) ret.update(ret_metric) print_eval_log(ret) else: raise ValueError('unsupported metric {}'.format(args.eval_mertrics)) return ret else: return None
38.644128
115
0.634773
e6df360b607f7a2f24c1ab6bf355ca5d23eb73f0
856
py
Python
src/records.py
oth-datapipeline/ingestion-scripts
48eecf63b0bf06200aa59be63de6839599ec51df
[ "Apache-2.0" ]
null
null
null
src/records.py
oth-datapipeline/ingestion-scripts
48eecf63b0bf06200aa59be63de6839599ec51df
[ "Apache-2.0" ]
4
2022-03-31T16:41:33.000Z
2022-03-31T22:58:11.000Z
src/records.py
oth-datapipeline/ingestion-scripts
48eecf63b0bf06200aa59be63de6839599ec51df
[ "Apache-2.0" ]
null
null
null
from faust import Record
18.608696
46
0.627336
e6df6e5deaed8c701c0957596bd842d1b7c2b65f
923
py
Python
leetcode/102-Medium-Binary-Tree-Level-Order-Traversal/answer.py
vaishali-bariwal/Practice-Coding-Questions
747bfcb1cb2be5340daa745f2b9938f0ee87c9ac
[ "Unlicense" ]
25
2018-05-22T15:18:50.000Z
2022-01-08T02:41:46.000Z
leetcode/102-Medium-Binary-Tree-Level-Order-Traversal/answer.py
vaishali-bariwal/Practice-Coding-Questions
747bfcb1cb2be5340daa745f2b9938f0ee87c9ac
[ "Unlicense" ]
1
2019-05-24T16:55:27.000Z
2019-05-24T16:55:27.000Z
leetcode/102-Medium-Binary-Tree-Level-Order-Traversal/answer.py
vaishali-bariwal/Practice-Coding-Questions
747bfcb1cb2be5340daa745f2b9938f0ee87c9ac
[ "Unlicense" ]
18
2018-09-20T15:39:26.000Z
2022-03-02T21:38:22.000Z
#!/usr/bin/python3 #------------------------------------------------------------------------------ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None #------------------------------------------------------------------------------ #Testing
26.371429
79
0.40195
e6dfce648d291a8622a4863d4137f07d19b0910a
320
py
Python
setup.py
shirayu/fitbit-dumper
21cee614e294d84204ad06d81dae9adf9853a135
[ "Apache-2.0" ]
null
null
null
setup.py
shirayu/fitbit-dumper
21cee614e294d84204ad06d81dae9adf9853a135
[ "Apache-2.0" ]
null
null
null
setup.py
shirayu/fitbit-dumper
21cee614e294d84204ad06d81dae9adf9853a135
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from setuptools import setup, find_packages setup( name="", version="0.01", packages=find_packages(), install_requires=[ "fitbit" ], dependency_links=[ ], extras_require={ "tests": [ "flake8", "autopep8", ] } )
15.238095
43
0.515625
e6dfe1b17aaabced195ba909adb862f6d72a3bd2
214
py
Python
src/main.py
mtnmunuklu/SigmaToExcel
7d11fda19c0075122928ff5f1dbaab7775d30fe9
[ "MIT" ]
10
2021-05-26T11:24:27.000Z
2022-01-14T16:42:25.000Z
src/main.py
mtnmunuklu/SigmaToExcel
7d11fda19c0075122928ff5f1dbaab7775d30fe9
[ "MIT" ]
null
null
null
src/main.py
mtnmunuklu/SigmaToExcel
7d11fda19c0075122928ff5f1dbaab7775d30fe9
[ "MIT" ]
null
null
null
import sys sys.path.append("../") from src.app.sigma import SigmaConverter if __name__ == "__main__": sigmaconverter = SigmaConverter() sigmaconverter.read_from_file() sigmaconverter.write_to_excel()
21.4
40
0.742991
e6e002827d5c227b7c36fcd9b7c86eda019324e4
449
py
Python
server/processes/migrations/0132_auto_20201108_0540.py
CloudReactor/task_manager
464ca74371064fabb9a21b1f5bacba30360932ab
[ "Fair" ]
null
null
null
server/processes/migrations/0132_auto_20201108_0540.py
CloudReactor/task_manager
464ca74371064fabb9a21b1f5bacba30360932ab
[ "Fair" ]
6
2021-11-01T01:35:40.000Z
2022-02-11T03:33:06.000Z
server/processes/migrations/0132_auto_20201108_0540.py
CloudReactor/task_manager
464ca74371064fabb9a21b1f5bacba30360932ab
[ "Fair" ]
null
null
null
# Generated by Django 2.2.14 on 2020-11-08 05:40 from django.db import migrations
24.944444
134
0.623608
e6e0a15a9ec84da1c3d497af8bd4ec8d117edbbd
4,291
py
Python
sparsely_lstmvae_main.py
pengkangzaia/usad
937a29c24632cfa31e0c626cd5b058b3af74ef94
[ "BSD-3-Clause" ]
null
null
null
sparsely_lstmvae_main.py
pengkangzaia/usad
937a29c24632cfa31e0c626cd5b058b3af74ef94
[ "BSD-3-Clause" ]
null
null
null
sparsely_lstmvae_main.py
pengkangzaia/usad
937a29c24632cfa31e0c626cd5b058b3af74ef94
[ "BSD-3-Clause" ]
null
null
null
from model.sparsely_lstm_vae import * import torch.utils.data as data_utils from sklearn import preprocessing from utils.eval_methods import * device = get_default_device() # Read data # normal = pd.read_csv("data/SWaT_Dataset_Normal_v1.csv") # , nrows=1000) normal = pd.read_csv("data/SWaT/SWaT_Dataset_Normal_v1.csv", nrows=10000) # , nrows=1000) normal = normal.drop(["Timestamp", "Normal/Attack"], axis=1) # normal.shape # Transform all columns into float64 for i in list(normal): normal[i] = normal[i].apply(lambda x: str(x).replace(",", ".")) normal = normal.astype(float) # min_max_scaler = preprocessing.MinMaxScaler() x = normal.values x_scaled = min_max_scaler.fit_transform(x) normal = pd.DataFrame(x_scaled) # Read data # attack = pd.read_csv("data/SWaT_Dataset_Attack_v0.csv", sep=";") # , nrows=1000) attack = pd.read_csv("data/SWaT/SWaT_Dataset_Attack_v0.csv", sep=";", nrows=10000) # , nrows=1000) labels = [float(label != 'Normal') for label in attack["Normal/Attack"].values] attack = attack.drop(["Timestamp", "Normal/Attack"], axis=1) # Transform all columns into float64 for i in list(attack): attack[i] = attack[i].apply(lambda x: str(x).replace(",", ".")) attack = attack.astype(float) x = attack.values x_scaled = min_max_scaler.transform(x) attack = pd.DataFrame(x_scaled) ############## windows ################### window_size = 12 # np.arange(window_size)[None, :] 1*12 (0,1,2,3,4,5,6,7,8,9,10,11)12 # np.arange(normal.shape[0] - window_size)[:, None] (1000-12)*1 (0,1,2,3,4,5...) 988 # np.arange(window_size)[None, :] + np.arange(normal.shape[0] - window_size)[:, None] (1000-12)*12 windows_normal = normal.values[np.arange(window_size)[None, :] + np.arange(attack.shape[0] - window_size)[:, None]] windows_attack = attack.values[np.arange(window_size)[None, :] + np.arange(attack.shape[0] - window_size)[:, None]] ############## training ################### # BATCH_SIZE = 7919 BATCH_SIZE = 200 N_EPOCHS = 100 hidden_size = 100 latent_size = 40 # w_size = windows_normal.shape[1] * windows_normal.shape[2] # window_size * feature_size # z_size = windows_normal.shape[1] * hidden_size # window_size * hidden_size windows_normal_train = windows_normal[:int(np.floor(.8 * windows_normal.shape[0]))] windows_normal_val = windows_normal[int(np.floor(.8 * windows_normal.shape[0])):int(np.floor(windows_normal.shape[0]))] train_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_normal_train).float().view(([windows_normal_train.shape[0], windows_normal_train.shape[1], windows_normal_train.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) val_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_normal_val).float().view(([windows_normal_val.shape[0], windows_normal_train.shape[1], windows_normal_train.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) test_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_attack).float().view(([windows_attack.shape[0], windows_attack.shape[1], windows_attack.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) model = SparselyLstmVae(BATCH_SIZE, window_size, windows_normal.shape[2], hidden_size, latent_size, former_step=3) model = to_device(model, device) val_loss, train_loss = training(N_EPOCHS, model, train_loader, val_loader) plot_simple_history(val_loss) plot_train_loss(train_loss) torch.save({'ae': model.state_dict()}, "saved_model/model.pth") ############ testing ################# checkpoint = torch.load("model.pth") model.load_state_dict(checkpoint['ae']) # batchresultresult results = testing(model, test_loader) windows_labels = [] for i in range(len(labels) - window_size): windows_labels.append(list(np.int_(labels[i:i + window_size]))) # 1 y_test = [1.0 if (np.sum(window) > 0) else 0 for window in windows_labels] # y_pred = np.concatenate( [torch.stack(results[:-1]).flatten().detach().cpu().numpy(), results[-1].flatten().detach().cpu().numpy()]) y_pred = (y_pred - y_pred.min()) / (y_pred.max() - y_pred.min()) threshold = ROC(y_test, y_pred) t, th = bf_search(y_pred, y_test, start=0, end=1, step_num=1000, display_freq=50)
41.660194
152
0.723141
e6e20c3e769f1a5e89011c872f7f4c1dc10d94e8
542
py
Python
src/demo/tasks.py
MexsonFernandes/AsynchronousTasks-Django-Celery-RabbitMQ-Redis
b64b31cec4ccf8e0dca2cfe9faba40da647b94f7
[ "Apache-2.0" ]
1
2019-01-17T09:16:06.000Z
2019-01-17T09:16:06.000Z
src/demo/tasks.py
MexsonFernandes/Asynchronous_Tasks-Django-Celery-RabbitMQ-Redis
b64b31cec4ccf8e0dca2cfe9faba40da647b94f7
[ "Apache-2.0" ]
7
2019-10-20T18:47:34.000Z
2022-02-10T07:42:18.000Z
src/demo/tasks.py
MexsonFernandes/AsynchronousTasks-Django-Celery-RabbitMQ-Redis
b64b31cec4ccf8e0dca2cfe9faba40da647b94f7
[ "Apache-2.0" ]
2
2019-10-20T18:47:59.000Z
2022-03-02T12:31:54.000Z
from __future__ import absolute_import, unicode_literals from dcs.celeryconf import app import time from django.core.mail import EmailMessage
25.809524
91
0.680812
e6e370a3613328a0a9c46c0e262a69e05fcae601
355
py
Python
pytorch_translate/models/__init__.py
Ayansam1152/translate
33d397fc25fb1072abd2975c77c602a2d031c6c4
[ "BSD-3-Clause" ]
748
2018-05-02T17:12:53.000Z
2022-03-26T04:44:44.000Z
pytorch_translate/models/__init__.py
Ayansam1152/translate
33d397fc25fb1072abd2975c77c602a2d031c6c4
[ "BSD-3-Clause" ]
352
2018-05-02T19:05:59.000Z
2022-02-25T16:54:27.000Z
pytorch_translate/models/__init__.py
Ayansam1152/translate
33d397fc25fb1072abd2975c77c602a2d031c6c4
[ "BSD-3-Clause" ]
193
2018-05-02T17:14:56.000Z
2022-02-24T21:10:56.000Z
#!/usr/bin/env python3 import importlib import os # automatically import any Python files in the models/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module("pytorch_translate.models." + model_name)
29.583333
73
0.712676
e6e3cdee410d18c73bf42cae95012d7ea773e4ae
808
py
Python
app/config/secure.py
mapeimapei/awesome-flask-webapp
d0474f447a41e9432a14f9110989166c6595f0fa
[ "MIT" ]
2
2020-05-08T15:58:44.000Z
2020-05-09T19:36:34.000Z
app/config/secure.py
mapeimapei/awesome-flask-webapp
d0474f447a41e9432a14f9110989166c6595f0fa
[ "MIT" ]
null
null
null
app/config/secure.py
mapeimapei/awesome-flask-webapp
d0474f447a41e9432a14f9110989166c6595f0fa
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = '' SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:[email protected]:3306/awesome' SECRET_KEY = '\x88D\xf09\x91\x07\x98\x89\x87\x96\xa0A\xc68\xf9\xecJ:U\x17\xc5V\xbe\x8b\xef\xd7\xd8\xd3\xe6\x98*4' # Email MAIL_SERVER = 'smtp.exmail.qq.com' MAIL_PORT = 465 MAIL_USE_SSL = True MAIL_USE_TSL = False MAIL_USERNAME = '[email protected]' MAIL_PASSWORD = 'Bmwzy1314520' MAIL_SUBJECT_PREFIX = '[]' MAIL_SENDER = ' <[email protected]>' # SQLALCHEMY_RECORD_QUERIES = True # DATABASE_QUERY_TIMEOUT = 0.5 SQLALCHEMY_TRACK_MODIFICATIONS = True WTF_CSRF_CHECK_DEFAULT = False SQLALCHEMY_ECHO = True from datetime import timedelta REMEMBER_COOKIE_DURATION = timedelta(days=30) PROXY_API = 'http://ip.yushu.im/get' # PERMANENT_SESSION_LIFETIME = 3600
22.444444
113
0.762376
e6e519c34806df836f150fb2649703603da92026
1,580
py
Python
src/users/migrations/0014_auto_20200801_1008.py
aliharby12/Simple-vezeeta-project
feb6df8b354ac284edc645059bea17021169dcfa
[ "MIT" ]
null
null
null
src/users/migrations/0014_auto_20200801_1008.py
aliharby12/Simple-vezeeta-project
feb6df8b354ac284edc645059bea17021169dcfa
[ "MIT" ]
5
2021-03-19T12:06:16.000Z
2022-02-10T11:44:27.000Z
src/users/migrations/0014_auto_20200801_1008.py
aliharby12/Simple-vezeeta-project
feb6df8b354ac284edc645059bea17021169dcfa
[ "MIT" ]
null
null
null
# Generated by Django 2.2 on 2020-08-01 08:08 from django.db import migrations, models import django.db.models.deletion
49.375
444
0.599367
e6e54d8b26245cebf1276442b433cc49edf1fc78
762
py
Python
caller_v3/app/api/v1/docker.py
tienthegainz/pipeline_executor_docker_call
b2b9478056e4b818f5963b0b266375fe6d39627a
[ "MIT" ]
null
null
null
caller_v3/app/api/v1/docker.py
tienthegainz/pipeline_executor_docker_call
b2b9478056e4b818f5963b0b266375fe6d39627a
[ "MIT" ]
null
null
null
caller_v3/app/api/v1/docker.py
tienthegainz/pipeline_executor_docker_call
b2b9478056e4b818f5963b0b266375fe6d39627a
[ "MIT" ]
null
null
null
from typing import Any, List, Callable from fastapi import APIRouter, HTTPException, status, BackgroundTasks from app import schemas from app.core import docker_client import json from copy import deepcopy router = APIRouter()
28.222222
99
0.732283
e6e829827c4e2ffcbb07be400f025860fb9ae813
10,409
py
Python
keras/models.py
kalyc/keras-apache-mxnet
5497ebd50a45ccc446b8944ebbe11fb7721a5533
[ "MIT" ]
300
2018-04-04T05:01:21.000Z
2022-02-25T18:56:04.000Z
keras/models.py
kalyc/keras-apache-mxnet
5497ebd50a45ccc446b8944ebbe11fb7721a5533
[ "MIT" ]
163
2018-04-03T17:41:22.000Z
2021-09-03T16:44:04.000Z
keras/models.py
kalyc/keras-apache-mxnet
5497ebd50a45ccc446b8944ebbe11fb7721a5533
[ "MIT" ]
72
2018-04-21T06:42:30.000Z
2021-12-26T06:02:42.000Z
"""Model-related utilities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from . import backend as K from .utils.generic_utils import has_arg from .utils.generic_utils import to_list from .engine.input_layer import Input from .engine.input_layer import InputLayer from .engine.training import Model from .engine.sequential import Sequential from .engine.saving import save_model from .engine.saving import load_model from .engine.saving import model_from_config from .engine.saving import model_from_yaml from .engine.saving import model_from_json from .engine.saving import save_mxnet_model try: import h5py except ImportError: h5py = None def _clone_functional_model(model, input_tensors=None): """Clone a functional `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Model`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Model): raise ValueError('Expected `model` argument ' 'to be a `Model` instance, got ', model) if isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a functional `Model` instance, ' 'got a `Sequential` instance instead:', model) layer_map = {} # Cache for created layers. tensor_map = {} # Map {reference_tensor: (corresponding_tensor, mask)} if input_tensors is None: # Create placeholders to build the model on top of. input_layers = [] input_tensors = [] for layer in model._input_layers: input_tensor = Input(batch_shape=layer.batch_input_shape, dtype=layer.dtype, sparse=layer.sparse, name=layer.name) input_tensors.append(input_tensor) # Cache newly created input layer. newly_created_input_layer = input_tensor._keras_history[0] layer_map[layer] = newly_created_input_layer for _original, _cloned in zip(model._input_layers, input_layers): layer_map[_original] = _cloned else: # Make sure that all input tensors come from a Keras layer. # If tensor comes from an input layer: cache the input layer. input_tensors = to_list(input_tensors) _input_tensors = [] for i, x in enumerate(input_tensors): if not K.is_keras_tensor(x): name = model._input_layers[i].name input_tensor = Input(tensor=x, name='input_wrapper_for_' + name) _input_tensors.append(input_tensor) # Cache newly created input layer. original_input_layer = x._keras_history[0] newly_created_input_layer = input_tensor._keras_history[0] layer_map[original_input_layer] = newly_created_input_layer else: _input_tensors.append(x) input_tensors = _input_tensors for x, y in zip(model.inputs, input_tensors): tensor_map[x] = (y, None) # tensor, mask # Iterated over every node in the reference model, in depth order. depth_keys = list(model._nodes_by_depth.keys()) depth_keys.sort(reverse=True) for depth in depth_keys: nodes = model._nodes_by_depth[depth] for node in nodes: # Recover the corresponding layer. layer = node.outbound_layer # Get or create layer. if layer not in layer_map: # Clone layer. new_layer = layer.__class__.from_config(layer.get_config()) layer_map[layer] = new_layer layer = new_layer else: # Reuse previously cloned layer. layer = layer_map[layer] # Don't call InputLayer multiple times. if isinstance(layer, InputLayer): continue # Gather inputs to call the new layer. reference_input_tensors = node.input_tensors reference_output_tensors = node.output_tensors # If all previous input tensors are available in tensor_map, # then call node.inbound_layer on them. computed_data = [] # List of tuples (input, mask). for x in reference_input_tensors: if x in tensor_map: computed_data.append(tensor_map[x]) if len(computed_data) == len(reference_input_tensors): # Call layer. if node.arguments: kwargs = node.arguments else: kwargs = {} if len(computed_data) == 1: computed_tensor, computed_mask = computed_data[0] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_mask output_tensors = to_list( layer(computed_tensor, **kwargs)) output_masks = to_list( layer.compute_mask(computed_tensor, computed_mask)) computed_tensors = [computed_tensor] computed_masks = [computed_mask] else: computed_tensors = [x[0] for x in computed_data] computed_masks = [x[1] for x in computed_data] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_masks output_tensors = to_list( layer(computed_tensors, **kwargs)) output_masks = to_list( layer.compute_mask(computed_tensors, computed_masks)) # Update tensor_map. for x, y, mask in zip(reference_output_tensors, output_tensors, output_masks): tensor_map[x] = (y, mask) # Check that we did compute the model outputs, # then instantiate a new model from inputs and outputs. output_tensors = [] for x in model.outputs: assert x in tensor_map, 'Could not compute output ' + str(x) tensor, _ = tensor_map[x] output_tensors.append(tensor) return Model(input_tensors, output_tensors, name=model.name) def _clone_sequential_model(model, input_tensors=None): """Clone a `Sequential` model instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Sequential`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Sequential` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a `Sequential` model instance, ' 'but got:', model) layers = [clone(layer) for layer in model.layers] if input_tensors is None: return Sequential(layers=layers, name=model.name) else: if len(to_list(input_tensors)) != 1: raise ValueError('To clone a `Sequential` model, we expect ' ' at most one tensor ' 'as part of `input_tensors`.') x = to_list(input_tensors)[0] if K.is_keras_tensor(x): origin_layer = x._keras_history[0] if isinstance(origin_layer, InputLayer): return Sequential(layers=[origin_layer] + layers, name=model.name) else: raise ValueError('Cannot clone a `Sequential` model on top ' 'of a tensor that comes from a Keras layer ' 'other than an `InputLayer`. ' 'Use the functional API instead.') input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name)) input_layer = input_tensor._keras_history[0] return Sequential(layers=[input_layer] + layers, name=model.name) def clone_model(model, input_tensors=None): """Clone any `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Model` (could be a functional model or a Sequential model). input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if isinstance(model, Sequential): return _clone_sequential_model(model, input_tensors=input_tensors) else: return _clone_functional_model(model, input_tensors=input_tensors)
41.142292
77
0.593525
e6e833fb51a1ec7a1130669c82455b2f1f57a22e
53,602
py
Python
pythonFiles/tests/testing_tools/adapter/test_functional.py
erinxocon/vscode-python
e53f9061d16467a9ae2d8995a9a5f3cfa0f444e1
[ "MIT" ]
null
null
null
pythonFiles/tests/testing_tools/adapter/test_functional.py
erinxocon/vscode-python
e53f9061d16467a9ae2d8995a9a5f3cfa0f444e1
[ "MIT" ]
null
null
null
pythonFiles/tests/testing_tools/adapter/test_functional.py
erinxocon/vscode-python
e53f9061d16467a9ae2d8995a9a5f3cfa0f444e1
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from __future__ import unicode_literals import json import os import os.path import subprocess import sys import unittest import pytest from ...__main__ import TESTING_TOOLS_ROOT CWD = os.getcwd() DATA_DIR = os.path.join(os.path.dirname(__file__), '.data') SCRIPT = os.path.join(TESTING_TOOLS_ROOT, 'run_adapter.py') COMPLEX = { 'root': None, 'rootid': '.', 'parents': [ # {'id': fix_path('./tests'), 'kind': 'folder', 'name': 'tests', 'parentid': '.', }, # +++ {'id': fix_path('./tests/test_42-43.py'), 'kind': 'file', 'name': 'test_42-43.py', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_42.py'), 'kind': 'file', 'name': 'test_42.py', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_doctest.txt'), 'kind': 'file', 'name': 'test_doctest.txt', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_foo.py'), 'kind': 'file', 'name': 'test_foo.py', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_mixed.py'), 'kind': 'file', 'name': 'test_mixed.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_mixed.py::MyTests'), 'kind': 'suite', 'name': 'MyTests', 'parentid': fix_path('./tests/test_mixed.py'), }, {'id': fix_path('./tests/test_mixed.py::TestMySuite'), 'kind': 'suite', 'name': 'TestMySuite', 'parentid': fix_path('./tests/test_mixed.py'), }, # +++ {'id': fix_path('./tests/test_pytest.py'), 'kind': 'file', 'name': 'test_pytest.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_pytest.py::TestEggs'), 'kind': 'suite', 'name': 'TestEggs', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestParam'), 'kind': 'suite', 'name': 'TestParam', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest.py::TestParam'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll'), 'kind': 'suite', 'name': 'TestParamAll', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), 'kind': 'function', 'name': 'test_spam_13', 'parentid': fix_path('./tests/test_pytest.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam'), 'kind': 'suite', 'name': 'TestSpam', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::TestHam'), 'kind': 'suite', 'name': 'TestHam', 'parentid': fix_path('./tests/test_pytest.py::TestSpam'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::TestHam::TestEggs'), 'kind': 'suite', 'name': 'TestEggs', 'parentid': fix_path('./tests/test_pytest.py::TestSpam::TestHam'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture_param'), 'kind': 'function', 'name': 'test_fixture_param', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_01'), 'kind': 'function', 'name': 'test_param_01', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_11'), 'kind': 'function', 'name': 'test_param_11', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers'), 'kind': 'function', 'name': 'test_param_13_markers', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat'), 'kind': 'function', 'name': 'test_param_13_repeat', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped'), 'kind': 'function', 'name': 'test_param_13_skipped', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13'), 'kind': 'function', 'name': 'test_param_23_13', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises'), 'kind': 'function', 'name': 'test_param_23_raises', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33'), 'kind': 'function', 'name': 'test_param_33', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids'), 'kind': 'function', 'name': 'test_param_33_ids', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture'), 'kind': 'function', 'name': 'test_param_fixture', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), 'kind': 'function', 'name': 'test_param_mark_fixture', 'parentid': fix_path('./tests/test_pytest.py'), }, # +++ {'id': fix_path('./tests/test_pytest_param.py'), 'kind': 'file', 'name': 'test_pytest_param.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll'), 'kind': 'suite', 'name': 'TestParamAll', 'parentid': fix_path('./tests/test_pytest_param.py'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), 'kind': 'function', 'name': 'test_spam_13', 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest_param.py::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest_param.py'), }, # +++ {'id': fix_path('./tests/test_unittest.py'), 'kind': 'file', 'name': 'test_unittest.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests'), 'kind': 'suite', 'name': 'MyTests', 'parentid': fix_path('./tests/test_unittest.py'), }, {'id': fix_path('./tests/test_unittest.py::OtherTests'), 'kind': 'suite', 'name': 'OtherTests', 'parentid': fix_path('./tests/test_unittest.py'), }, ## {'id': fix_path('./tests/v'), 'kind': 'folder', 'name': 'v', 'parentid': fix_path('./tests'), }, ## +++ {'id': fix_path('./tests/v/test_eggs.py'), 'kind': 'file', 'name': 'test_eggs.py', 'parentid': fix_path('./tests/v'), }, {'id': fix_path('./tests/v/test_eggs.py::TestSimple'), 'kind': 'suite', 'name': 'TestSimple', 'parentid': fix_path('./tests/v/test_eggs.py'), }, ## +++ {'id': fix_path('./tests/v/test_ham.py'), 'kind': 'file', 'name': 'test_ham.py', 'parentid': fix_path('./tests/v'), }, ## +++ {'id': fix_path('./tests/v/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/v'), }, ## {'id': fix_path('./tests/w'), 'kind': 'folder', 'name': 'w', 'parentid': fix_path('./tests'), }, ## +++ {'id': fix_path('./tests/w/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/w'), }, ## +++ {'id': fix_path('./tests/w/test_spam_ex.py'), 'kind': 'file', 'name': 'test_spam_ex.py', 'parentid': fix_path('./tests/w'), }, ## {'id': fix_path('./tests/x'), 'kind': 'folder', 'name': 'x', 'parentid': fix_path('./tests'), }, ### {'id': fix_path('./tests/x/y'), 'kind': 'folder', 'name': 'y', 'parentid': fix_path('./tests/x'), }, #### {'id': fix_path('./tests/x/y/z'), 'kind': 'folder', 'name': 'z', 'parentid': fix_path('./tests/x/y'), }, ##### {'id': fix_path('./tests/x/y/z/a'), 'kind': 'folder', 'name': 'a', 'parentid': fix_path('./tests/x/y/z'), }, ##### +++ {'id': fix_path('./tests/x/y/z/a/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/x/y/z/a'), }, ##### {'id': fix_path('./tests/x/y/z/b'), 'kind': 'folder', 'name': 'b', 'parentid': fix_path('./tests/x/y/z'), }, ##### +++ {'id': fix_path('./tests/x/y/z/b/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/x/y/z/b'), }, #### +++ {'id': fix_path('./tests/x/y/z/test_ham.py'), 'kind': 'file', 'name': 'test_ham.py', 'parentid': fix_path('./tests/x/y/z'), }, ], 'tests': [ ########## {'id': fix_path('./tests/test_42-43.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_42-43.py:2'), 'markers': [], 'parentid': fix_path('./tests/test_42-43.py'), }, ##### {'id': fix_path('./tests/test_42.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_42.py:2'), 'markers': [], 'parentid': fix_path('./tests/test_42.py'), }, ##### {'id': fix_path('./tests/test_doctest.txt::test_doctest.txt'), 'name': 'test_doctest.txt', 'source': fix_path('./tests/test_doctest.txt:1'), 'markers': [], 'parentid': fix_path('./tests/test_doctest.txt'), }, ##### {'id': fix_path('./tests/test_foo.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_foo.py:3'), 'markers': [], 'parentid': fix_path('./tests/test_foo.py'), }, ##### {'id': fix_path('./tests/test_mixed.py::test_top_level'), 'name': 'test_top_level', 'source': fix_path('./tests/test_mixed.py:5'), 'markers': [], 'parentid': fix_path('./tests/test_mixed.py'), }, {'id': fix_path('./tests/test_mixed.py::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_mixed.py:9'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_mixed.py'), }, {'id': fix_path('./tests/test_mixed.py::TestMySuite::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_mixed.py:16'), 'markers': [], 'parentid': fix_path('./tests/test_mixed.py::TestMySuite'), }, {'id': fix_path('./tests/test_mixed.py::MyTests::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_mixed.py:22'), 'markers': [], 'parentid': fix_path('./tests/test_mixed.py::MyTests'), }, {'id': fix_path('./tests/test_mixed.py::MyTests::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_mixed.py:25'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_mixed.py::MyTests'), }, ##### {'id': fix_path('./tests/test_pytest.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:6'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_failure'), 'name': 'test_failure', 'source': fix_path('./tests/test_pytest.py:10'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_runtime_skipped'), 'name': 'test_runtime_skipped', 'source': fix_path('./tests/test_pytest.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_runtime_failed'), 'name': 'test_runtime_failed', 'source': fix_path('./tests/test_pytest.py:18'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_raises'), 'name': 'test_raises', 'source': fix_path('./tests/test_pytest.py:22'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_pytest.py:26'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_maybe_skipped'), 'name': 'test_maybe_skipped', 'source': fix_path('./tests/test_pytest.py:31'), 'markers': ['skip-if'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_known_failure'), 'name': 'test_known_failure', 'source': fix_path('./tests/test_pytest.py:36'), 'markers': ['expected-failure'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_warned'), 'name': 'test_warned', 'source': fix_path('./tests/test_pytest.py:41'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_custom_marker'), 'name': 'test_custom_marker', 'source': fix_path('./tests/test_pytest.py:46'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_multiple_markers'), 'name': 'test_multiple_markers', 'source': fix_path('./tests/test_pytest.py:51'), 'markers': ['expected-failure', 'skip', 'skip-if'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_dynamic_1'), 'name': 'test_dynamic_1', 'source': fix_path('./tests/test_pytest.py:62'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_dynamic_2'), 'name': 'test_dynamic_2', 'source': fix_path('./tests/test_pytest.py:62'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_dynamic_3'), 'name': 'test_dynamic_3', 'source': fix_path('./tests/test_pytest.py:62'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:70'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestSpam'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_pytest.py:73'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::TestSpam'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::TestHam::TestEggs::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:81'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestSpam::TestHam::TestEggs'), }, {'id': fix_path('./tests/test_pytest.py::TestEggs::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:93'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestEggs'), }, {'id': fix_path('./tests/test_pytest.py::test_param_01[]'), 'name': 'test_param_01[]', 'source': fix_path('./tests/test_pytest.py:103'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_01'), }, {'id': fix_path('./tests/test_pytest.py::test_param_11[x0]'), 'name': 'test_param_11[x0]', 'source': fix_path('./tests/test_pytest.py:108'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_11'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest.py:113'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest.py:113'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest.py:113'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat[x0]'), 'name': 'test_param_13_repeat[x0]', 'source': fix_path('./tests/test_pytest.py:118'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_repeat'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat[x1]'), 'name': 'test_param_13_repeat[x1]', 'source': fix_path('./tests/test_pytest.py:118'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_repeat'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat[x2]'), 'name': 'test_param_13_repeat[x2]', 'source': fix_path('./tests/test_pytest.py:118'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_repeat'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33[1-1-1]'), 'name': 'test_param_33[1-1-1]', 'source': fix_path('./tests/test_pytest.py:123'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33[3-4-5]'), 'name': 'test_param_33[3-4-5]', 'source': fix_path('./tests/test_pytest.py:123'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33[0-0-0]'), 'name': 'test_param_33[0-0-0]', 'source': fix_path('./tests/test_pytest.py:123'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids[v1]'), 'name': 'test_param_33_ids[v1]', 'source': fix_path('./tests/test_pytest.py:128'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33_ids'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids[v2]'), 'name': 'test_param_33_ids[v2]', 'source': fix_path('./tests/test_pytest.py:128'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33_ids'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids[v3]'), 'name': 'test_param_33_ids[v3]', 'source': fix_path('./tests/test_pytest.py:128'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33_ids'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[1-1-z0]'), 'name': 'test_param_23_13[1-1-z0]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[1-1-z1]'), 'name': 'test_param_23_13[1-1-z1]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[1-1-z2]'), 'name': 'test_param_23_13[1-1-z2]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[3-4-z0]'), 'name': 'test_param_23_13[3-4-z0]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[3-4-z1]'), 'name': 'test_param_23_13[3-4-z1]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[3-4-z2]'), 'name': 'test_param_23_13[3-4-z2]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[0-0-z0]'), 'name': 'test_param_23_13[0-0-z0]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[0-0-z1]'), 'name': 'test_param_23_13[0-0-z1]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[0-0-z2]'), 'name': 'test_param_23_13[0-0-z2]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers[x0]'), 'name': 'test_param_13_markers[x0]', 'source': fix_path('./tests/test_pytest.py:140'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_markers'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers[???]'), 'name': 'test_param_13_markers[???]', 'source': fix_path('./tests/test_pytest.py:140'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_markers'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers[2]'), 'name': 'test_param_13_markers[2]', 'source': fix_path('./tests/test_pytest.py:140'), 'markers': ['expected-failure'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_markers'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped[x0]'), 'name': 'test_param_13_skipped[x0]', 'source': fix_path('./tests/test_pytest.py:149'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_skipped'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped[x1]'), 'name': 'test_param_13_skipped[x1]', 'source': fix_path('./tests/test_pytest.py:149'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_skipped'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped[x2]'), 'name': 'test_param_13_skipped[x2]', 'source': fix_path('./tests/test_pytest.py:149'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_skipped'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises[1-None]'), 'name': 'test_param_23_raises[1-None]', 'source': fix_path('./tests/test_pytest.py:155'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_raises'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises[1.0-None]'), 'name': 'test_param_23_raises[1.0-None]', 'source': fix_path('./tests/test_pytest.py:155'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_raises'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises[2-catch2]'), 'name': 'test_param_23_raises[2-catch2]', 'source': fix_path('./tests/test_pytest.py:155'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_raises'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:164'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest.py:167'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest.py:167'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest.py:167'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest.py:175'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest.py:175'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest.py:175'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13[x0]'), 'name': 'test_spam_13[x0]', 'source': fix_path('./tests/test_pytest.py:178'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13[x1]'), 'name': 'test_spam_13[x1]', 'source': fix_path('./tests/test_pytest.py:178'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13[x2]'), 'name': 'test_spam_13[x2]', 'source': fix_path('./tests/test_pytest.py:178'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture'), 'name': 'test_fixture', 'source': fix_path('./tests/test_pytest.py:192'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_mark_fixture'), 'name': 'test_mark_fixture', 'source': fix_path('./tests/test_pytest.py:196'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture[x0]'), 'name': 'test_param_fixture[x0]', 'source': fix_path('./tests/test_pytest.py:201'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture[x1]'), 'name': 'test_param_fixture[x1]', 'source': fix_path('./tests/test_pytest.py:201'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture[x2]'), 'name': 'test_param_fixture[x2]', 'source': fix_path('./tests/test_pytest.py:201'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture[x0]'), 'name': 'test_param_mark_fixture[x0]', 'source': fix_path('./tests/test_pytest.py:207'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture[x1]'), 'name': 'test_param_mark_fixture[x1]', 'source': fix_path('./tests/test_pytest.py:207'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture[x2]'), 'name': 'test_param_mark_fixture[x2]', 'source': fix_path('./tests/test_pytest.py:207'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture_param[spam]'), 'name': 'test_fixture_param[spam]', 'source': fix_path('./tests/test_pytest.py:216'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_fixture_param'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture_param[eggs]'), 'name': 'test_fixture_param[eggs]', 'source': fix_path('./tests/test_pytest.py:216'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_fixture_param'), }, ###### {'id': fix_path('./tests/test_pytest_param.py::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest_param.py:8'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest_param.py:8'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest_param.py:8'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest_param.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest_param.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest_param.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13[x0]'), 'name': 'test_spam_13[x0]', 'source': fix_path('./tests/test_pytest_param.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13[x1]'), 'name': 'test_spam_13[x1]', 'source': fix_path('./tests/test_pytest_param.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13[x2]'), 'name': 'test_spam_13[x2]', 'source': fix_path('./tests/test_pytest_param.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), }, ###### {'id': fix_path('./tests/test_unittest.py::MyTests::test_dynamic_'), 'name': 'test_dynamic_', 'source': fix_path('./tests/test_unittest.py:54'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_failure'), 'name': 'test_failure', 'source': fix_path('./tests/test_unittest.py:34'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_known_failure'), 'name': 'test_known_failure', 'source': fix_path('./tests/test_unittest.py:37'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_maybe_not_skipped'), 'name': 'test_maybe_not_skipped', 'source': fix_path('./tests/test_unittest.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_maybe_skipped'), 'name': 'test_maybe_skipped', 'source': fix_path('./tests/test_unittest.py:13'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_unittest.py:6'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_unittest.py:9'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_skipped_inside'), 'name': 'test_skipped_inside', 'source': fix_path('./tests/test_unittest.py:21'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_with_nested_subtests'), 'name': 'test_with_nested_subtests', 'source': fix_path('./tests/test_unittest.py:46'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_with_subtests'), 'name': 'test_with_subtests', 'source': fix_path('./tests/test_unittest.py:41'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::OtherTests::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_unittest.py:61'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::OtherTests'), }, ########### {'id': fix_path('./tests/v/test_eggs.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_eggs.py'), }, {'id': fix_path('./tests/v/test_eggs.py::TestSimple::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:8'), 'markers': [], 'parentid': fix_path('./tests/v/test_eggs.py::TestSimple'), }, ###### {'id': fix_path('./tests/v/test_ham.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_ham.py'), }, {'id': fix_path('./tests/v/test_ham.py::test_not_hard'), 'name': 'test_not_hard', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_ham.py'), }, ###### {'id': fix_path('./tests/v/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_spam.py'), }, {'id': fix_path('./tests/v/test_spam.py::test_simpler'), 'name': 'test_simpler', 'source': fix_path('./tests/v/test_spam.py:4'), 'markers': [], 'parentid': fix_path('./tests/v/test_spam.py'), }, ########### {'id': fix_path('./tests/w/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/w/test_spam.py:4'), 'markers': [], 'parentid': fix_path('./tests/w/test_spam.py'), }, {'id': fix_path('./tests/w/test_spam_ex.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/w/test_spam_ex.py:4'), 'markers': [], 'parentid': fix_path('./tests/w/test_spam_ex.py'), }, ########### {'id': fix_path('./tests/x/y/z/test_ham.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/x/y/z/test_ham.py:2'), 'markers': [], 'parentid': fix_path('./tests/x/y/z/test_ham.py'), }, ###### {'id': fix_path('./tests/x/y/z/a/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/x/y/z/a/test_spam.py:11'), 'markers': [], 'parentid': fix_path('./tests/x/y/z/a/test_spam.py'), }, {'id': fix_path('./tests/x/y/z/b/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/x/y/z/b/test_spam.py:7'), 'markers': [], 'parentid': fix_path('./tests/x/y/z/b/test_spam.py'), }, ], }
43.828291
96
0.491605
e6e86dd990b3c5cac611e5ac9c031855b2eafefb
2,223
py
Python
mmgp/kernels/wavelet_slice.py
axdahl/SC-MMGP
c6cd9d9de66bb7074925a4b6485f10a74bdd9f68
[ "Apache-2.0" ]
null
null
null
mmgp/kernels/wavelet_slice.py
axdahl/SC-MMGP
c6cd9d9de66bb7074925a4b6485f10a74bdd9f68
[ "Apache-2.0" ]
null
null
null
mmgp/kernels/wavelet_slice.py
axdahl/SC-MMGP
c6cd9d9de66bb7074925a4b6485f10a74bdd9f68
[ "Apache-2.0" ]
null
null
null
''' Wavelet kernel slice allows kernel operation on feature subset active_dims is iterable of feature dimensions to extract input_dim must equal dimension defined by active_dims ''' import numpy as np import tensorflow as tf from .. import util from . import kernel from .kernel_extras import *
34.734375
113
0.597391
e6e91782ecbf3d082de6c4e80c1d94b9a36175e3
8,084
py
Python
transform.py
latenite4/python3
30e367471ba48e5fc0fb07327b636fcb9959e3e0
[ "Apache-2.0" ]
null
null
null
transform.py
latenite4/python3
30e367471ba48e5fc0fb07327b636fcb9959e3e0
[ "Apache-2.0" ]
null
null
null
transform.py
latenite4/python3
30e367471ba48e5fc0fb07327b636fcb9959e3e0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 #program to parse png images and change images # cmd: python3 transform.py # you must have local input/ and output/ directories # # name: R. Melton # date: 12/27/20 # cmdline: python transform.py cmd show image='city.png' --ulx=1 --uly=2 --brx=0 --bry=9 # python transform.py show city.png # python transform.py blur city.png from image import Image import numpy as np import time, os, argparse, string #from tkinter import * import imghdr import matplotlib.image as mpimg import matplotlib.pyplot as plt #adjust the contrast by increasing difference from user #defined midpoint # blur and image # check for necessary parts of the runtime environment # setup command line args and parms # optional args have -- # fixed (required args do not have --) #def show_image(filename): if __name__ == '__main__': args = arg_init() check_env(args.image) lake = Image(filename = 'lake.png') city = Image(filename='city.png') start_time = time.time() # brightened_im = adjust_brightness(lake, 1.7) # brightened_im.write_image('brightened.png') # darkened_im = adjust_brightness(lake, 0.3) # darkened_im.write_image('darkened.png') # incr_contrast = adjust_contrast(lake, 2,0.5) # incr_contrast.write_image('incr_contrast.png') # decr_contrast = adjust_contrast(lake, 0.5,0.5) # decr_contrast.write_image('decr_contrast.png') # blur_3 = blur(city,3) # blur_3.write_image('blur_k3.png') # blur_15 = blur(city,15) # blur_15.write_image('blur_k15.png') # let's apply a sobel kernel on the x and y axis # sobel_x = apply_kernel(city, np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])) # sobel_x.write_image('edge_x.png') # sobel_y = apply_kernel(city, np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])) # sobel_y.write_image('edge_y.png') # # this will show x and y edges # sobel_xy = combine_images(sobel_x, sobel_y) # sobel_xy.write_image('edge_xy.png') if args.cmd == "show" and args.image: show_image(args.image) if args.cmd == "blur" and args.image: blur_15 = blur(args.image,15) blur_15.write_image(args.image+'blur_k15.png') show_image(blur_k15.png) if args.v: print(f'total execution duration: {time.time() - start_time}s')
35.30131
162
0.671326
e6e98c6da8123831026901d34d51a2a66f9be3c8
4,563
py
Python
plugins/wyr.py
Jeglet/pcbot
89178d4982151adb2fadfacdc3080e46cda9e891
[ "MIT" ]
null
null
null
plugins/wyr.py
Jeglet/pcbot
89178d4982151adb2fadfacdc3080e46cda9e891
[ "MIT" ]
null
null
null
plugins/wyr.py
Jeglet/pcbot
89178d4982151adb2fadfacdc3080e46cda9e891
[ "MIT" ]
null
null
null
""" Would you rather? This plugin includes would you rather functionality """ import asyncio import random import re import discord import bot import plugins from pcbot import Config client = plugins.client # type: bot.Client db = Config("would-you-rather", data=dict(timeout=10, responses=["**{name}** would **{choice}**!"], questions=[]), pretty=True) command_pattern = re.compile(r"(.+)(?:\s+or|\s*,)\s+([^?]+)\?*") sessions = set() # All running would you rather's are in this set def get_choice(choices: list, choice: str): """ Get the chosen option. This accept 1 and 2 as numbers. """ if choice == "1": return 0 if choice == "2": return 1 choices = list(map(str.lower, choices)) words = list(map(str.split, choices)) # Go through all words in the given message, and find any words unique to a choice for word in choice.lower().split(): if word in words[0] and word not in words[1]: return 0 elif word in words[1] and word not in words[0]: return 1 # Invalid choice return None
34.308271
114
0.601359
e6e9911a23d6bd5acc93e8e6fe7c90d813721358
5,690
py
Python
suit_tool/argparser.py
bergzand/suit-manifest-generator
da82651a8b02fd4d7261e826cc70b5c862dd94ea
[ "Apache-2.0" ]
16
2018-03-16T23:56:47.000Z
2022-01-23T14:14:09.000Z
suit_tool/argparser.py
bergzand/suit-manifest-generator
da82651a8b02fd4d7261e826cc70b5c862dd94ea
[ "Apache-2.0" ]
23
2018-06-05T14:30:23.000Z
2021-02-15T20:53:09.000Z
suit_tool/argparser.py
bergzand/suit-manifest-generator
da82651a8b02fd4d7261e826cc70b5c862dd94ea
[ "Apache-2.0" ]
10
2018-03-16T23:56:52.000Z
2020-07-21T16:36:46.000Z
# -*- coding: utf-8 -*- # ---------------------------------------------------------------------------- # Copyright 2019-2020 ARM Limited or its affiliates # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- import sys, argparse, os from suit_tool import __version__ from suit_tool import keygen from suit_tool import get_pubkey import json import re
55.784314
142
0.649561
e6e9b0500db4a76f7cfddf89a8acd023b1673bdb
437
py
Python
python/process/process_pool.py
y2ghost/study
c5278611b0a732fe19e3d805c0c079e530b1d3b2
[ "MIT" ]
null
null
null
python/process/process_pool.py
y2ghost/study
c5278611b0a732fe19e3d805c0c079e530b1d3b2
[ "MIT" ]
null
null
null
python/process/process_pool.py
y2ghost/study
c5278611b0a732fe19e3d805c0c079e530b1d3b2
[ "MIT" ]
null
null
null
import random import time from multiprocessing import Pool if __name__ == '__main__': process_names = [f'computer_{i}' for i in range(15)] pool = Pool(processes=5) pool.map(worker, process_names) # pool.terminate()
24.277778
61
0.686499
e6e9e879bcf76ce5cfbee781823873ae94cc9222
45,541
py
Python
Project/Support-NotSourced/generic_pydicom_ns.py
mazalgarab-git/OSICpypy
003fb0b146c9ed711f05475e6cc7563bf549f230
[ "CC0-1.0" ]
1
2020-12-18T14:39:24.000Z
2020-12-18T14:39:24.000Z
Project/Support-NotSourced/generic_pydicom_ns.py
mazalgarab-git/OSICpypy
003fb0b146c9ed711f05475e6cc7563bf549f230
[ "CC0-1.0" ]
null
null
null
Project/Support-NotSourced/generic_pydicom_ns.py
mazalgarab-git/OSICpypy
003fb0b146c9ed711f05475e6cc7563bf549f230
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Sep 7 11:48:59 2020 @author: mazal """ """ ========================================= Support functions of pydicom (Not sourced) ========================================= Purpose: Create support functions for the pydicom project """ """ Test mode 1 | Basics testMode = True reportMode = False Test mode 2 | Function Report testMode = False reportMode = True Commisionning mode testMode = False reportMode = False """ testMode = False reportMode = False """ ========================================= Function 1: Aleatory Sampling ========================================= Purpose: Build an aleatory sample given a train dataset of Kaggle for competition and a sample size Raw code reference (see Tester.py): Test 5 """ if testMode == True: samplingSize = 5 resultFunction1 = trainDatasetSampler(samplingSize,testMode,reportMode) print("=========================================") print("Population dataset:") print("=========================================") print(resultFunction1[0]) print("=========================================") print("Population dataset:") print("=========================================") print(resultFunction1[1]) print("=========================================") print("Test result Function 1: Success") print("=========================================") """ ========================================= Function 2: Submission Builder ========================================= Purpose: Build a submission CSV file Raw code reference (see Tester.py): Test 8 """ if testMode == True: ProductType = 'population' filename = 'submissionRawFile_2020_09_19.csv' resultFunction2 = SubmissionBuilder(ProductType,filename,testMode) print("=========================================") print("Product Type:") print("=========================================") print(ProductType) print("=========================================") print("Submission File saved as:") print("=========================================") print(resultFunction2[1]) print("=========================================") print("Test result Function 2: Success") print("=========================================") """ ========================================= Function 3: Dataset builder (Stacking solution case) to process with ML models ========================================= Purpose: Build an input dataset to be processed with an stacking solution Raw code reference (see Tester.py): Test 15 """ if testMode == True: ProductType = 'prototype' PydicomMode = True reportMode = False resultFunction3 = stacking_Dataset_Builder(ProductType, PydicomMode, reportMode, testMode) print("=========================================") print("Function Report") print("=========================================") print("DataFrame") print("=========================================") print(resultFunction3[0]) print("=========================================") print("=========================================") print("Product Type: ", ProductType) print("=========================================") print("Pydicom Mode: ", PydicomMode) print("=========================================") print("Location of Input File:", resultFunction3[1]) print("=========================================") print("Input File saved as:", resultFunction3[2]) print("=========================================") print("Data type of the dataset") print("=========================================") print(resultFunction3[0].dtypes) print("=========================================") print("Test result Function 3: Success") print("=========================================") """ ========================================= Function 4: Submission dataset builder (Stacking solution case) after ML outcome ========================================= Purpose: Build a submission CSV file (Stacking solution case) Raw code reference (see Tester.py): Test 17 About the Shape Parameter: It amounts to c = 0.12607421874999922 for every instance in the oject of concern. c value has been computed deeming the following data fitting scope: (1) Data: FVC predictions; (2) Probability density function as follows (staistical function in scipy renowend as scipy.stats.loglaplace): loglaplace.pdf(x, c, loc=0, scale=1). """ if testMode == True: # Set Product type ProductType = 'prototype' # ShapeParameter_Dataframe example = False if (example == True): import pandas as pd shapeParameter_IDList = ['ID00419637202311204720264','ID00421637202311550012437','ID00422637202311677017371','ID00423637202312137826377','ID00426637202313170790466'] c_List1 = [3,3,3,3,3] c_List2 = [3,3,3,3,3] c_List3 = [3,3,3,3,3] c_List4 = [3,3,3,3,3] shapeParameter_dictionary = {'Random Forest':c_List1, 'Lasso':c_List2, 'Gradient Boosting':c_List3, 'Stacking Regressor':c_List4} shapeParameter_DataFrame = pd.DataFrame(data = shapeParameter_dictionary, index = shapeParameter_IDList) else: shapeParameter_DataFrame = [] # Set Pydicom mode pydicomMode = True resultFunction4 = Stacking_Submission_Dataset_Builder(ProductType,shapeParameter_DataFrame,pydicomMode,testMode) print("=========================================") print("Shape Parameter - Laplace Log Likelihood:") print("=========================================") print(resultFunction4[1]) print("Standard Deviation Clipped - Laplace Log Likelihood:") print("=========================================") print(resultFunction4[2]) print("=========================================") print("Test result Function 4: Success") print("=========================================") """ ========================================= Function 5: Get parameters given a must-usage of a log-laplace distribution (i.e. Laplace Log Likelihood) ========================================= Purpose: Get shape parameter visualization for loglaplace Raw code reference (see Tester.py): Test 17 """ if testMode == True: # Set Product type ProductType = 'prototype' # ShapeParameter_Dataframe resultFunction5 = shapeParameter_visualizer(ProductType, testMode = True) print("=========================================") print("Shape Parameter - Laplace Log Likelihood:") print("=========================================") print(resultFunction5) print("=========================================") print("Test result Function 4: Success") print("=========================================") # """ # ========================================= # Function : Dataset builder 2 (Stacking solution case) to process with ML models # ========================================= # Purpose: Build an input dataset to be processed with an stacking solution but including Pydicom image-processing solution # Raw code reference (see Tester.py): 15 # """ # def stacking_Dataset_Builder_PydicomSolution(productType, testMode): # # Set Product Type and its corresponding path # if ProductType == 'population': # path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' # if ProductType == 'prototype': # path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' # if ProductType == 'sampling': # path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/'
41.973272
186
0.603215
e6e9ffb5e0649025342ebb242012d9b21913b192
8,378
py
Python
paperscraper/scrapers/keywords.py
ahmed-shariff/scraper
52bed967db7e08e438daaa8dfa8d9338567ad7c2
[ "MIT" ]
1
2021-11-19T02:56:22.000Z
2021-11-19T02:56:22.000Z
paperscraper/scrapers/keywords.py
ahmed-shariff/scraper
52bed967db7e08e438daaa8dfa8d9338567ad7c2
[ "MIT" ]
1
2021-11-19T03:42:58.000Z
2022-03-29T16:32:16.000Z
paperscraper/scrapers/keywords.py
ahmed-shariff/scraper
52bed967db7e08e438daaa8dfa8d9338567ad7c2
[ "MIT" ]
1
2021-11-19T02:56:28.000Z
2021-11-19T02:56:28.000Z
import re regex = re.compile(r'[\n\r\t]')
38.608295
247
0.62509
e6ea376dac46236ea3d4ce92ad3215d1dbffb660
6,642
py
Python
topobank/publication/models.py
ContactEngineering/TopoBank
12710c24cc158801db20f030c3e0638060e24a0e
[ "MIT", "BSD-3-Clause" ]
3
2021-12-03T19:11:07.000Z
2021-12-27T17:14:39.000Z
topobank/publication/models.py
ContactEngineering/TopoBank
12710c24cc158801db20f030c3e0638060e24a0e
[ "MIT", "BSD-3-Clause" ]
268
2021-03-19T13:57:00.000Z
2022-03-31T20:58:26.000Z
topobank/publication/models.py
ContactEngineering/TopoBank
12710c24cc158801db20f030c3e0638060e24a0e
[ "MIT", "BSD-3-Clause" ]
null
null
null
from django.db import models from django.urls import reverse from django.utils import timezone from django.utils.safestring import mark_safe from django.conf import settings MAX_LEN_AUTHORS_FIELD = 512 CITATION_FORMAT_FLAVORS = ['html', 'ris', 'bibtex', 'biblatex'] DEFAULT_KEYWORDS = ['surface', 'topography']
36.696133
107
0.579645
e6ea40233a3bb49f837e23e4f39a0fd85da9fe09
489
py
Python
vendor/migrations/0003_store_password.py
rayhu-osu/vcube
ff1af048adb8a9f1007368150a78b309b4d821af
[ "MIT" ]
1
2019-02-20T18:47:04.000Z
2019-02-20T18:47:04.000Z
vendor/migrations/0003_store_password.py
rayhu-osu/vcube
ff1af048adb8a9f1007368150a78b309b4d821af
[ "MIT" ]
null
null
null
vendor/migrations/0003_store_password.py
rayhu-osu/vcube
ff1af048adb8a9f1007368150a78b309b4d821af
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-07-24 19:36 from __future__ import unicode_literals from django.db import migrations, models
22.227273
61
0.609407
e6eadd6e5aefadc0d052f84f6f0acadbd4bc7e84
440
py
Python
lec2.py
widnerlr/isat252
4196a8b1c6f4c75c3f5d8f64164014103b695077
[ "MIT" ]
null
null
null
lec2.py
widnerlr/isat252
4196a8b1c6f4c75c3f5d8f64164014103b695077
[ "MIT" ]
null
null
null
lec2.py
widnerlr/isat252
4196a8b1c6f4c75c3f5d8f64164014103b695077
[ "MIT" ]
null
null
null
""" Your module description """ """ this is my second py code for my second lecture """ #print ('hello world') # this is a single line commment # this is my second line comment #print(type("123.")) #print ("Hello World".upper()) #print("Hello World".lower()) #print("hello" + "world" + ".") #print(2**3) #my_str = "hello world" #print(my_str) #my_str = "Tom" #print(my_str) my_int = 2 my_float = 3.0 print(my_int + my_float)
12.941176
56
0.638636
e6eb31b711fe08af2de8afcc37c668f59c3bdd16
1,579
py
Python
day_22_b.py
Gyaha/AOC2020
fbabae9acd7d274b84bc0c64f2665dfba9f008ca
[ "MIT" ]
null
null
null
day_22_b.py
Gyaha/AOC2020
fbabae9acd7d274b84bc0c64f2665dfba9f008ca
[ "MIT" ]
null
null
null
day_22_b.py
Gyaha/AOC2020
fbabae9acd7d274b84bc0c64f2665dfba9f008ca
[ "MIT" ]
null
null
null
if __name__ == "__main__": run_tests() import time time_start = time.perf_counter() print(run()) time_end = time.perf_counter() - time_start print(f"Time: {time_end:0.4f} sec")
17.544444
62
0.542115
e6ecb90ea1c9f175831984d63548bf549ba7937d
335
py
Python
Auth/Constants/LoginOpCode.py
sundayz/idewave-core
5bdb88892173c9c3e8c85f431cf9b5dbd9f23941
[ "Apache-2.0" ]
null
null
null
Auth/Constants/LoginOpCode.py
sundayz/idewave-core
5bdb88892173c9c3e8c85f431cf9b5dbd9f23941
[ "Apache-2.0" ]
null
null
null
Auth/Constants/LoginOpCode.py
sundayz/idewave-core
5bdb88892173c9c3e8c85f431cf9b5dbd9f23941
[ "Apache-2.0" ]
null
null
null
from enum import Enum
18.611111
49
0.641791
e6ee19c46029883010bf024e3e8dd551854a83e8
80
py
Python
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
f03969c05427bc1804d05c42823a28725c7e38a0
[ "Apache-2.0" ]
null
null
null
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
f03969c05427bc1804d05c42823a28725c7e38a0
[ "Apache-2.0" ]
null
null
null
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
f03969c05427bc1804d05c42823a28725c7e38a0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from .LineApi import LINE from .lib.Gen.ttypes import *
20
29
0.6625
e6ee404e9353e9098c1662d7447e96af2b5999cf
164
py
Python
main.py
seton-develops/PDF-Camelot-Folder-Executable
168b5c24afe8884cf121a4207d7d3cb3ee7cc626
[ "MIT" ]
null
null
null
main.py
seton-develops/PDF-Camelot-Folder-Executable
168b5c24afe8884cf121a4207d7d3cb3ee7cc626
[ "MIT" ]
null
null
null
main.py
seton-develops/PDF-Camelot-Folder-Executable
168b5c24afe8884cf121a4207d7d3cb3ee7cc626
[ "MIT" ]
null
null
null
''' Created on Jun 17, 2021 @author: Sean ''' import PDF2CSV_GUI if __name__ == "__main__": main()
12.615385
34
0.591463
e6ee7c4e821041f353c4df40b51b9e9fed815d11
325
py
Python
Part1/bot_read.py
Mildlyoffbeat/RedditBot-1
f65c3c4d0f3d6d3a468069d4a009b44a20e33797
[ "MIT" ]
null
null
null
Part1/bot_read.py
Mildlyoffbeat/RedditBot-1
f65c3c4d0f3d6d3a468069d4a009b44a20e33797
[ "MIT" ]
null
null
null
Part1/bot_read.py
Mildlyoffbeat/RedditBot-1
f65c3c4d0f3d6d3a468069d4a009b44a20e33797
[ "MIT" ]
null
null
null
#!/usr/bin/python import praw reddit = praw.Reddit('mob-secondbot') subreddit = reddit.subreddit("learnpython") for submission in subreddit.hot(limit=5): print("Title: ", submission.title) print("Text: ", submission.selftext) print("Score: ", submission.score) print("---------------------------------\n")
25
48
0.618462
e6ee864c778e3c7bd05d01ccaa072084d9d7a6f7
1,052
py
Python
17/kazuate_liar.cpp.py
Siketyan/Programming-I
0749c1ae045d53cd8a67f0de7ab13c26030ddd74
[ "Apache-2.0" ]
null
null
null
17/kazuate_liar.cpp.py
Siketyan/Programming-I
0749c1ae045d53cd8a67f0de7ab13c26030ddd74
[ "Apache-2.0" ]
null
null
null
17/kazuate_liar.cpp.py
Siketyan/Programming-I
0749c1ae045d53cd8a67f0de7ab13c26030ddd74
[ "Apache-2.0" ]
null
null
null
from subprocess import Popen, PIPE, call name = "kazuate_liar.o" src = """ #include <iostream> #include <random> using namespace std; int main() { random_device rd; mt19937 mt(rd()); uniform_int_distribution<int> randfive(0, 4); uniform_int_distribution<int> randint(1, 100); int count = 0; int num = randint(mt); while (1) { int i; cout << " "; cin >> i; if (i < 1 || i > 100) { cout << "" << endl; continue; } count++; bool liar = randfive(mt) == 0; if (i == num) { cout << " (" << count << " )" << endl; break; } else if ((liar && i > num) || i < num) { cout << "" << endl; } else { cout << "" << endl; } } return 0; } """; proc = Popen(["g++", "-o", name, "-x", "c++", "-"], stdin = PIPE); proc.communicate(src.encode()); call(["./" + name]);
17.533333
66
0.439163
e6eeea99216e21aebde0241d03385a480d8c6df4
649
py
Python
src/terrafort/main.py
silvercar/terrafort
bdf9cb5d7f58d10a0c295c01b3a5620fdcc2876c
[ "MIT" ]
1
2019-06-18T00:40:40.000Z
2019-06-18T00:40:40.000Z
src/terrafort/main.py
silvercar/terrafort
bdf9cb5d7f58d10a0c295c01b3a5620fdcc2876c
[ "MIT" ]
null
null
null
src/terrafort/main.py
silvercar/terrafort
bdf9cb5d7f58d10a0c295c01b3a5620fdcc2876c
[ "MIT" ]
1
2021-08-25T02:15:28.000Z
2021-08-25T02:15:28.000Z
""" Terrafort Generate terraform templates for specific resources """ import click from .providers.aws import Aws cli.add_command(Aws.aws_db_instance) cli.add_command(Aws.aws_iam_instance_profile) cli.add_command(Aws.aws_instance) cli.add_command(Aws.aws_security_group) if __name__ == "__main__": # pylint: disable=unexpected-keyword-arg,no-value-for-parameter cli(obj={})
22.37931
76
0.731895
e6efe17c4e6e08ec55040433cf5ea1ff20fecb68
528
py
Python
src/ping.py
jnsougata/rich-embed
95901e590f00c4e4eabeb99c8f06bb5f90718d80
[ "MIT" ]
null
null
null
src/ping.py
jnsougata/rich-embed
95901e590f00c4e4eabeb99c8f06bb5f90718d80
[ "MIT" ]
null
null
null
src/ping.py
jnsougata/rich-embed
95901e590f00c4e4eabeb99c8f06bb5f90718d80
[ "MIT" ]
null
null
null
import discord import app_util
24
94
0.662879
e6f05425230fc70414cb78c1b2738e7f0e282ac0
2,017
py
Python
2020/24/visualization.py
AlbertVeli/AdventOfCode
3d3473695318a0686fac720a1a21dd3629f09e33
[ "Unlicense" ]
null
null
null
2020/24/visualization.py
AlbertVeli/AdventOfCode
3d3473695318a0686fac720a1a21dd3629f09e33
[ "Unlicense" ]
null
null
null
2020/24/visualization.py
AlbertVeli/AdventOfCode
3d3473695318a0686fac720a1a21dd3629f09e33
[ "Unlicense" ]
1
2021-12-04T10:37:09.000Z
2021-12-04T10:37:09.000Z
#!/usr/bin/env python3 import sys import re import numpy as np from PIL import Image moves = { 'e': (2, 0), 'se': (1, 2), 'sw': (-1, 2), 'w': (-2, 0), 'nw': (-1, -2), 'ne': (1, -2) } # Save (x, y): True/False in tiles. True = black, False = white. tiles = {} for line in open(sys.argv[1]).read().splitlines(): pos = np.array((0, 0)) for d in re.findall(r'e|se|sw|w|nw|ne', line): pos += moves[d] t = tuple(pos) if t in tiles: tiles[t] = not tiles[t] else: tiles[t] = True # Part 1 print('black:', sum(val == True for val in tiles.values())) # -- Part 2 -- # take a chance on how wide it needs to be width = 300 heigth = 300 board = np.zeros(width * heigth, dtype=np.int8) board = board.reshape(heigth, width) # Fill in tiles, move to center for key, value in tiles.items(): x, y = key x += width // 2 y += heigth // 2 board[y][x] = value save_image(0) for day in range(1, 101): game() save_image(day) print('Day %d: %d' % (day, len(np.where(board == True)[0]))) ys, xs = np.where(board) print(min(ys), max(ys), min(xs), max(xs))
24.901235
97
0.511155
e6f0fc4f8d5c7522b3b6e45957a0edd9bcec2662
16,451
py
Python
experimental/tracing/bin/diff_heap_profiler.py
BearerPipelineTest/catapult
3800a67cd916200046a50748893bbd0dcf3d7f4a
[ "BSD-3-Clause" ]
1,894
2015-04-17T18:29:53.000Z
2022-03-28T22:41:06.000Z
experimental/tracing/bin/diff_heap_profiler.py
BearerPipelineTest/catapult
3800a67cd916200046a50748893bbd0dcf3d7f4a
[ "BSD-3-Clause" ]
4,640
2015-07-08T16:19:08.000Z
2019-12-02T15:01:27.000Z
experimental/tracing/bin/diff_heap_profiler.py
atuchin-m/catapult
108ea3e2ec108e68216b1250a3d79cc642600294
[ "BSD-3-Clause" ]
698
2015-06-02T19:18:35.000Z
2022-03-29T16:57:15.000Z
#!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import from __future__ import print_function import argparse import gzip import json import os import shutil import six from six.moves import zip _OUTPUT_DIR = 'output' _OUTPUT_GRAPH_DIR = os.path.join(_OUTPUT_DIR, 'graph') def OpenTraceFile(file_path, mode): if file_path.endswith('.gz'): return gzip.open(file_path, mode + 'b') return open(file_path, mode + 't') def FindMemoryDumps(filename): processes = {} with OpenTraceFile(filename, 'r') as f: data = json.loads(f.read().decode('utf-8')) for event in data['traceEvents']: pid = event['pid'] if pid not in processes: processes[pid] = Process() processes[pid].pid = pid process = processes[pid] # Retrieve process informations. if event['ph'] == 'M': if event['name'] == 'process_name' and 'name' in event['args']: process.name = event['args']['name'] if event['name'] == 'process_labels' and 'labels' in event['args']: process.labels = event['args']['labels'] if event['name'] == 'typeNames': process.types = {} for type_id, t in six.iteritems(event['args']['typeNames']): process.types[int(type_id)] = t if event['name'] == 'stackFrames': process.stackframes = {} for stack_id, s in six.iteritems(event['args']['stackFrames']): new_stackframe = {} new_stackframe['name'] = s['name'] if 'parent' in s: new_stackframe['parent'] = int(s['parent']) process.stackframes[int(stack_id)] = new_stackframe # Look for a detailed memory dump event. if not ((event['name'] == 'periodic_interval' or event['name'] == 'explicitly_triggered') and event['args']['dumps']['level_of_detail'] == 'detailed'): continue # Check for a memory dump V1. if u'heaps' in event['args']['dumps']: # Get the first memory dump. if not process.allocators: process.version = 1 process.allocators = event['args']['dumps']['heaps'] # Check for a memory dump V2. # See format: [chromium] src/base/trace_event/heap_profiler_event_writer.h if u'heaps_v2' in event['args']['dumps']: # Memory dump format V2 is dumping information incrementally. Update # the cumulated indexes. maps = event['args']['dumps']['heaps_v2']['maps'] for string in maps['strings']: process.strings[string['id']] = string['string'] for node in maps['nodes']: node_v1 = {} node_v1['name'] = process.strings[node['name_sid']] if 'parent' in node: node_v1['parent'] = node['parent'] process.stackframes[node['id']] = node_v1 for t in maps['types']: process.types[t['id']] = process.strings[t['name_sid']] # Get the first memory dump. if not process.allocators: dump = event['args']['dumps'] process.version = 2 process.allocators = dump['heaps_v2']['allocators'] # Remove processes with incomplete memory dump. for pid, process in processes.items(): if not (process.allocators and process.stackframes and process.types): del processes[pid] return processes def ResolveMemoryDumpFields(entries, stackframes, types): for entry in entries: # Stackframe may be -1 (18446744073709551615L) when not stackframe are # available. if entry.stackframe not in stackframes: entry.stackframe = [] else: entry.stackframe = ResolveStackTrace(entry.stackframe, stackframes) entry.type = ResolveType(entry.type, types) def GetEntries(heap, process): """ Returns all entries in a heap, after filtering out unknown entries, and doing some post processing to extract the relevant fields. """ if not process: return [] entries = [] if process.version == 1: for raw_entry in process.allocators[heap]['entries']: # Cumulative sizes and types are skipped. see: # https://chromium.googlesource.com/chromium/src/+/a990af190304be5bf38b120799c594df5a293518/base/trace_event/heap_profiler_heap_dump_writer.cc#294 if 'type' not in raw_entry or not raw_entry['bt']: continue entry = Entry() entry.count = int(raw_entry['count'], 16) entry.size = int(raw_entry['size'], 16) entry.type = int(raw_entry['type']) entry.stackframe = int(raw_entry['bt']) entries.append(entry) elif process.version == 2: raw_entries = list(zip(process.allocators[heap]['counts'], process.allocators[heap]['sizes'], process.allocators[heap]['types'], process.allocators[heap]['nodes'])) for (raw_count, raw_size, raw_type, raw_stackframe) in raw_entries: entry = Entry() entry.count = raw_count entry.size = raw_size entry.type = raw_type entry.stackframe = raw_stackframe entries.append(entry) # Resolve fields by looking into indexes ResolveMemoryDumpFields(entries, process.stackframes, process.types) return entries def BuildGraphDumps(processes, threshold, size_threshold): """ Build graph for a sequence of pair of processes. If start_process is None, counts objects in end_trace. Otherwise, counts objects present in end_trace, but not in start_process. """ graph_dumps = [] for (start_process, end_process) in processes: pid = end_process.pid name = end_process.name if end_process.name else '' labels = end_process.labels if end_process.labels else '' print('Process[%d] %s: %s' % (pid, name, labels)) for heap in end_process.allocators: start_entries = GetEntries(heap, start_process) end_entries = GetEntries(heap, end_process) graph = GraphDump() graph.pid = pid graph.name = name graph.labels = labels graph.heap = heap graph_dumps.append(graph) # Do the math: diffing start and end memory dumps. root = {} root['count'] = 0 root['size'] = 0 root['children'] = {} root['count_by_type'] = {} for entry in start_entries: if entry.type: IncrementHeapEntry(entry.stackframe, - entry.count, - entry.size, entry.type, root) for entry in end_entries: if entry.type: IncrementHeapEntry(entry.stackframe, entry.count, entry.size, entry.type, root) CanonicalHeapEntries(root) graph.root = root # Find leaks leaks = [] FindLeaks(root, [], leaks, threshold, size_threshold) leaks.sort(reverse=True, key=lambda k: k['size']) if leaks: print(' %s: %d potential leaks found.' % (heap, len(leaks))) graph.leaks = leaks graph.leak_stackframes = len(leaks) for leak in leaks: graph.leak_objects += leak['count'] return graph_dumps if __name__ == '__main__': Main()
32.005837
152
0.636253
e6f21f20dc1c7283a540aac397169a7429e851b1
3,743
py
Python
mne_bids/commands/mne_bids_raw_to_bids.py
kingjr/mne-bids
3a4543076912cebbc89a5f0b9433cda1b9e288b8
[ "BSD-3-Clause" ]
null
null
null
mne_bids/commands/mne_bids_raw_to_bids.py
kingjr/mne-bids
3a4543076912cebbc89a5f0b9433cda1b9e288b8
[ "BSD-3-Clause" ]
null
null
null
mne_bids/commands/mne_bids_raw_to_bids.py
kingjr/mne-bids
3a4543076912cebbc89a5f0b9433cda1b9e288b8
[ "BSD-3-Clause" ]
null
null
null
"""Write raw files to BIDS format. example usage: $ mne_bids raw_to_bids --subject_id sub01 --task rest --raw data.edf --bids_root new_path """ # Authors: Teon Brooks <[email protected]> # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) import mne_bids from mne_bids import write_raw_bids, BIDSPath from mne_bids.read import _read_raw def run(): """Run the raw_to_bids command.""" from mne.commands.utils import get_optparser parser = get_optparser(__file__, usage="usage: %prog options args", prog_prefix='mne_bids', version=mne_bids.__version__) parser.add_option('--subject_id', dest='subject_id', help=('subject name in BIDS compatible format ' '(01, 02, etc.)')) parser.add_option('--task', dest='task', help='name of the task the data is based on') parser.add_option('--raw', dest='raw_fname', help='path to the raw MEG file') parser.add_option('--bids_root', dest='bids_root', help='The path of the BIDS compatible folder.') parser.add_option('--session_id', dest='session_id', help='session name in BIDS compatible format') parser.add_option('--run', dest='run', help='run number for this dataset') parser.add_option('--acq', dest='acq', help='acquisition parameter for this dataset') parser.add_option('--events_data', dest='events_data', help='events file (events.tsv)') parser.add_option('--event_id', dest='event_id', help='event id dict', metavar='eid') parser.add_option('--hpi', dest='hpi', help='path to the MEG marker points') parser.add_option('--electrode', dest='electrode', help='path to head-native digitizer points') parser.add_option('--hsp', dest='hsp', help='path to headshape points') parser.add_option('--config', dest='config', help='path to the configuration file') parser.add_option('--overwrite', dest='overwrite', help="whether to overwrite existing data (BOOLEAN)") parser.add_option('--line_freq', dest='line_freq', help="The frequency of the line noise in Hz " "(e.g. 50 or 60). If unknown, pass None") opt, args = parser.parse_args() if len(args) > 0: parser.print_help() parser.error('Do not specify arguments without flags. Found: "{}".\n' .format(args)) if not all([opt.subject_id, opt.task, opt.raw_fname, opt.bids_root]): parser.print_help() parser.error('Arguments missing. You need to specify at least the' 'following: --subject_id, --task, --raw, --bids_root.') bids_path = BIDSPath( subject=opt.subject_id, session=opt.session_id, run=opt.run, acquisition=opt.acq, task=opt.task, root=opt.bids_root) allow_maxshield = False if opt.raw_fname.endswith('.fif'): allow_maxshield = True raw = _read_raw(opt.raw_fname, hpi=opt.hpi, electrode=opt.electrode, hsp=opt.hsp, config=opt.config, allow_maxshield=allow_maxshield) if opt.line_freq is not None: line_freq = None if opt.line_freq == "None" else opt.line_freq raw.info['line_freq'] = line_freq write_raw_bids(raw, bids_path, event_id=opt.event_id, events_data=opt.events_data, overwrite=opt.overwrite, verbose=True) if __name__ == '__main__': run()
41.588889
77
0.594176
e6f290178fbe89e1c3a852359d5e4b95ce0dd4ec
1,460
py
Python
lab1oop.py
NastiaK/NewRepository
d1907fc2e159dc1831071d7c79e20bbfb47fb822
[ "MIT" ]
null
null
null
lab1oop.py
NastiaK/NewRepository
d1907fc2e159dc1831071d7c79e20bbfb47fb822
[ "MIT" ]
null
null
null
lab1oop.py
NastiaK/NewRepository
d1907fc2e159dc1831071d7c79e20bbfb47fb822
[ "MIT" ]
null
null
null
if __name__ == "__main__": main()
29.795918
119
0.489041
e6f2fef589655b9bf1c7a2c668ca919bfd152a24
460
py
Python
Arrays/cyclic_rotation.py
Jeans212/codility-dev-training
9c5118c6433ea210d1485a6127712a92496e2bc2
[ "MIT" ]
null
null
null
Arrays/cyclic_rotation.py
Jeans212/codility-dev-training
9c5118c6433ea210d1485a6127712a92496e2bc2
[ "MIT" ]
null
null
null
Arrays/cyclic_rotation.py
Jeans212/codility-dev-training
9c5118c6433ea210d1485a6127712a92496e2bc2
[ "MIT" ]
null
null
null
# you can write to stdout for debugging purposes, e.g. # print("this is a debug message") ''' Rotate an array A to the right by a given number of steps K. Covert the array to a deque Apply the rotate() method the rotate the deque in positive K steps Convert the deque to array ''' from collections import deque
23
70
0.669565
e6f36e3d6234b36ef09fd70fd1be755548b506ba
37,741
py
Python
tests/test_apis.py
hatzel/markdown-spoilers
1964f298f0e8b99f1202d36ccc7d8cf7d613ad26
[ "BSD-3-Clause" ]
2
2020-06-21T12:02:58.000Z
2020-09-02T15:21:19.000Z
tests/test_apis.py
hatzel/markdown-spoilers
1964f298f0e8b99f1202d36ccc7d8cf7d613ad26
[ "BSD-3-Clause" ]
null
null
null
tests/test_apis.py
hatzel/markdown-spoilers
1964f298f0e8b99f1202d36ccc7d8cf7d613ad26
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Python Markdown A Python implementation of John Gruber's Markdown. Documentation: https://python-markdown.github.io/ GitHub: https://github.com/Python-Markdown/markdown/ PyPI: https://pypi.org/project/Markdown/ Started by Manfred Stienstra (http://www.dwerg.net/). Maintained for a few years by Yuri Takhteyev (http://www.freewisdom.org). Currently maintained by Waylan Limberg (https://github.com/waylan), Dmitry Shachnev (https://github.com/mitya57) and Isaac Muse (https://github.com/facelessuser). Copyright 2007-2018 The Python Markdown Project (v. 1.7 and later) Copyright 2004, 2005, 2006 Yuri Takhteyev (v. 0.2-1.6b) Copyright 2004 Manfred Stienstra (the original version) License: BSD (see LICENSE.md for details). Python-Markdown Regression Tests ================================ Tests of the various APIs with the python markdown lib. """ from __future__ import unicode_literals import unittest import sys import os import markdown import warnings from markdown.__main__ import parse_options from logging import DEBUG, WARNING, CRITICAL import yaml import tempfile from io import BytesIO from xml.etree.ElementTree import ProcessingInstruction PY3 = sys.version_info[0] == 3 if not PY3:
36.081262
116
0.601123
e6f5ecde56dec14d70d3fec0b36dc822d497cba7
2,230
py
Python
nervous/utility/config.py
csxeba/nervous
f7aeb9b2ff875835c346c607722fab517ef6df61
[ "MIT" ]
1
2018-09-24T11:29:19.000Z
2018-09-24T11:29:19.000Z
nervous/utility/config.py
csxeba/nervous
f7aeb9b2ff875835c346c607722fab517ef6df61
[ "MIT" ]
null
null
null
nervous/utility/config.py
csxeba/nervous
f7aeb9b2ff875835c346c607722fab517ef6df61
[ "MIT" ]
null
null
null
import os
33.283582
98
0.673991
e6f658acae15a3e9ea6e4c377ee45743db7b0897
6,365
py
Python
mindspore/nn/optim/ftrl.py
XinYao1994/mindspore
2c1a2bf752a1fde311caddba22633d2f4f63cb4e
[ "Apache-2.0" ]
2
2020-04-28T03:49:10.000Z
2020-04-28T03:49:13.000Z
mindspore/nn/optim/ftrl.py
XinYao1994/mindspore
2c1a2bf752a1fde311caddba22633d2f4f63cb4e
[ "Apache-2.0" ]
null
null
null
mindspore/nn/optim/ftrl.py
XinYao1994/mindspore
2c1a2bf752a1fde311caddba22633d2f4f63cb4e
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """FTRL""" from mindspore.ops import functional as F, composite as C, operations as P from mindspore.common.parameter import Parameter from mindspore.common import Tensor import mindspore.common.dtype as mstype from mindspore._checkparam import Validator as validator from mindspore._checkparam import Rel from .optimizer import Optimizer, apply_decay, grad_scale ftrl_opt = C.MultitypeFuncGraph("ftrl_opt") def _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, loss_scale=1.0, weight_decay=0.0, prim_name=None): """Check param.""" validator.check_value_type("initial_accum", initial_accum, [float], prim_name) validator.check_number("initial_accum", initial_accum, 0.0, Rel.GE, prim_name) validator.check_value_type("learning_rate", learning_rate, [float], prim_name) validator.check_number("learning_rate", learning_rate, 0.0, Rel.GT, prim_name) validator.check_value_type("lr_power", lr_power, [float], prim_name) validator.check_number("lr_power", lr_power, 0.0, Rel.LE, prim_name) validator.check_value_type("l1", l1, [float], prim_name) validator.check_number("l1", l1, 0.0, Rel.GE, prim_name) validator.check_value_type("l2", l2, [float], prim_name) validator.check_number("l2", l2, 0.0, Rel.GE, prim_name) validator.check_value_type("use_locking", use_locking, [bool], prim_name) validator.check_value_type("loss_scale", loss_scale, [float], prim_name) validator.check_number("loss_scale", loss_scale, 1.0, Rel.GE, prim_name) validator.check_value_type("weight_decay", weight_decay, [float], prim_name) validator.check_number("weight_decay", weight_decay, 0.0, Rel.GE, prim_name)
50.11811
116
0.692066
e6f688088bfa1088bfe7257d2cece961dd478353
5,106
py
Python
aws_utils/region_selector.py
skimhub/aws-utils
5496a7594ab90b1e658e8f9f8137e8943a39be1e
[ "Apache-2.0" ]
null
null
null
aws_utils/region_selector.py
skimhub/aws-utils
5496a7594ab90b1e658e8f9f8137e8943a39be1e
[ "Apache-2.0" ]
13
2016-01-05T14:48:38.000Z
2017-08-14T10:17:41.000Z
aws_utils/region_selector.py
skimhub/aws-utils
5496a7594ab90b1e658e8f9f8137e8943a39be1e
[ "Apache-2.0" ]
null
null
null
import datetime import boto3 US_EAST_REGION = {'us-east-1'} US_EAST_AVAILABILITY_ZONES = {'us-east-1a', 'us-east-1b', 'us-east-1c', 'us-east-1e'} # note d is missing INSTANCE_VERSION = 'Linux/UNIX (Amazon VPC)' def fetch_price_stats_per_availability_zone(region, start_time, end_time, instance_type, instance_version=INSTANCE_VERSION, filter_availability_zones=None): """Groups raw prices by region, returns min, max and avg price. Args: region (str): region to look for instances in start_time (datetime.datetime): end_time (datetime.datetime): instance_type (str): instance_version (str): the types of instances that we wish to return prices for. filter_availability_zones ({str}): if set then we only return a price if the availability zone is in this list Returns: dict, {'us-east-1b': {'min': 2.01, 'max': 3.53,'avg':2.8, 'latest':3.0}} """ by_zone = {} for zone, price in fetch_spot_prices(region, start_time, end_time, instance_type, instance_version): by_zone.setdefault(zone, []).append(price) prices_per_region = {} for zone, prices in by_zone.iteritems(): if filter_availability_zones is None or zone in filter_availability_zones: region_prices = {'min': min(prices), 'max': max(prices), 'avg': sum(prices) / float(len(prices)), 'latest': prices[0]} prices_per_region[zone] = region_prices return prices_per_region def get_cheapest_availability_zone(instance_type, search_regions=US_EAST_REGION, filter_availability_zones=US_EAST_AVAILABILITY_ZONES, expected_job_length=datetime.timedelta(days=1)): """Get the cheapest availability zone from a set of regions. Cheapest is determined by 'latest price + average price' over the duration that the job is expected to run for Args: filter_availability_zones ({str}): We only return results for zones in this set instance_type (str): Type of aws instance e.g. "m2.4xlarge" search_regions ({str}): Set of regions we want to look for availability zones in. expected_job_length (datetime.timedelta): The period we expect the job to run this is used as the amount of time to look back over for the average Returns: (str, {}) : e.g. ('us-east-1b': {'min': 2.01, 'max': 3.53,'avg':2.8, 'latest':3.0}) """ if isinstance(search_regions, str): search_regions = {search_regions} aggregated_prices = {} for region in search_regions: result_stats = fetch_price_stats_per_availability_zone(region, datetime.datetime.utcnow() - expected_job_length, datetime.datetime.utcnow(), instance_type, filter_availability_zones=filter_availability_zones) if not len(result_stats): raise Exception("No valid avialability zones found for region %s" % (region,)) aggregated_prices.update(result_stats) cheapest_availability_zone, stats = min(aggregated_prices.iteritems(), key=lambda x: x[1]['avg'] + x[1]['latest']) return cheapest_availability_zone, stats
44.4
138
0.604387
e6f6e592f45ce51ed72972736b1981a35d6ad662
81
py
Python
pynn/__init__.py
jkae/knn-exercise
ae569e3f6a0e23669369d99e032270e72f8fbb66
[ "MIT" ]
null
null
null
pynn/__init__.py
jkae/knn-exercise
ae569e3f6a0e23669369d99e032270e72f8fbb66
[ "MIT" ]
null
null
null
pynn/__init__.py
jkae/knn-exercise
ae569e3f6a0e23669369d99e032270e72f8fbb66
[ "MIT" ]
null
null
null
from .nearest_neighbor_index import NearestNeighborIndex from .kd_tree import *
20.25
56
0.851852
e6f7da2b0c80534457eb53c6aaa04a6eb69ac541
2,562
py
Python
tests/test_try.py
threecifanggen/python-functional-programming
bd17281e5f24db826266f509bc54b25362c0d2a1
[ "MIT" ]
3
2021-10-05T09:12:36.000Z
2021-11-30T07:11:58.000Z
tests/test_try.py
threecifanggen/python-functional-programming
bd17281e5f24db826266f509bc54b25362c0d2a1
[ "MIT" ]
14
2021-10-11T05:31:15.000Z
2021-12-16T12:52:47.000Z
tests/test_try.py
threecifanggen/python-functional-programming
bd17281e5f24db826266f509bc54b25362c0d2a1
[ "MIT" ]
null
null
null
''' Author: huangbaochen<[email protected]> Date: 2021-12-11 20:04:19 LastEditTime: 2021-12-11 21:46:16 LastEditors: huangbaochen<[email protected]> Description: Try No MERCY ''' import pytest from fppy.try_monad import Try, Success, Fail from fppy.option import Just, Nothing def test_try_monad_map(): assert Success(1).map(lambda x: x + 1) == Success(2) assert Success(1).map(lambda x: x / 0) ==\ Fail(ZeroDivisionError('division by zero'), 1) assert Fail(ZeroDivisionError('division by zero'), 1)\ .map(lambda x: x + 1) ==\ Fail(ZeroDivisionError('division by zero'), 1)
29.790698
66
0.673692
e6f805f6f11f261c37210a559213d4def9f1debd
952
py
Python
app/internal/daily_quotes.py
yammesicka/calendar
7c15a24883dbdffb563b6d3286c2d458e4a1c9c0
[ "Apache-2.0" ]
null
null
null
app/internal/daily_quotes.py
yammesicka/calendar
7c15a24883dbdffb563b6d3286c2d458e4a1c9c0
[ "Apache-2.0" ]
null
null
null
app/internal/daily_quotes.py
yammesicka/calendar
7c15a24883dbdffb563b6d3286c2d458e4a1c9c0
[ "Apache-2.0" ]
null
null
null
from datetime import date from typing import Dict, Optional from sqlalchemy.orm import Session from sqlalchemy.sql.expression import func from app.database.models import Quote TOTAL_DAYS = 366 def create_quote_object(quotes_fields: Dict[str, Optional[str]]) -> Quote: """This function create a quote object from given fields dictionary. It is used for adding the data from the json into the db""" return Quote( text=quotes_fields['text'], author=quotes_fields['author'] ) def quote_per_day( session: Session, date: date = date.today() ) -> Optional[Quote]: """This function provides a daily quote, relevant to the current day of the year. The quote is randomally selected from a set of quotes matching to the given day""" day_num = date.timetuple().tm_yday quote = session.query(Quote).filter( Quote.id % TOTAL_DAYS == day_num).order_by(func.random()).first() return quote
30.709677
74
0.711134
e6fa166658f7b4a5f652c93e09a1ac34583195f0
123
py
Python
src/789A.py
viing937/codeforces
d694eb6967cd56af02963c3a662066048cb78d07
[ "MIT" ]
2
2016-08-19T09:47:03.000Z
2016-10-01T10:15:03.000Z
src/789A.py
viing937/codeforces
d694eb6967cd56af02963c3a662066048cb78d07
[ "MIT" ]
null
null
null
src/789A.py
viing937/codeforces
d694eb6967cd56af02963c3a662066048cb78d07
[ "MIT" ]
1
2015-07-01T23:57:32.000Z
2015-07-01T23:57:32.000Z
n, k = map(int, input().split()) w = list(map(int, input().split())) r = sum(map(lambda x: (x+k-1)//k, w)) print((r+1)//2)
24.6
37
0.536585
e6fab2043b0b6fa907bee5da86873ddbf2cfe3cf
1,432
py
Python
platform/server/detect.py
leyyin/godot
68325d7254db711beaedddad218e2cddb405c42c
[ "CC-BY-3.0", "MIT" ]
24
2016-10-14T16:54:01.000Z
2022-01-15T06:39:17.000Z
platform/server/detect.py
leyyin/godot
68325d7254db711beaedddad218e2cddb405c42c
[ "CC-BY-3.0", "MIT" ]
17
2016-12-30T14:35:53.000Z
2017-03-07T21:07:50.000Z
platform/server/detect.py
leyyin/godot
68325d7254db711beaedddad218e2cddb405c42c
[ "CC-BY-3.0", "MIT" ]
9
2017-08-04T12:00:16.000Z
2021-12-10T06:48:28.000Z
import os import sys
17.679012
81
0.609637
e6fc051294ab288b08cbb146da00f8c04ac171dd
413
py
Python
telemetry/Truck.py
SnipsMine/ETS2-Speedrun-Tool
5ac87e4bc88be67ff4954b2b98772ff14a65eb48
[ "MIT" ]
null
null
null
telemetry/Truck.py
SnipsMine/ETS2-Speedrun-Tool
5ac87e4bc88be67ff4954b2b98772ff14a65eb48
[ "MIT" ]
null
null
null
telemetry/Truck.py
SnipsMine/ETS2-Speedrun-Tool
5ac87e4bc88be67ff4954b2b98772ff14a65eb48
[ "MIT" ]
null
null
null
from telemetry.TruckConstants import ConstantValues from telemetry.TruckCurrent import CurrentValues from telemetry.TruckPositioning import Positioning
21.736842
51
0.750605
e6fc32c8a31669a37234337e3418a714af3c26bd
1,483
py
Python
IntroToSpark/Assign4_Q1-6_action.py
petersontylerd/spark-courses
e8dcb4968ea31a50206739e6af3006889f8c3c6c
[ "MIT" ]
null
null
null
IntroToSpark/Assign4_Q1-6_action.py
petersontylerd/spark-courses
e8dcb4968ea31a50206739e6af3006889f8c3c6c
[ "MIT" ]
null
null
null
IntroToSpark/Assign4_Q1-6_action.py
petersontylerd/spark-courses
e8dcb4968ea31a50206739e6af3006889f8c3c6c
[ "MIT" ]
1
2021-03-26T11:47:37.000Z
2021-03-26T11:47:37.000Z
import csv from pyspark.sql import SparkSession from pyspark.sql.types import IntegerType spark = SparkSession.builder.appName("Assignment4").getOrCreate() sc = spark.sparkContext # load data to dataframe path = 'fake_data.csv' df = spark.read.format('csv').option('header','true').load(path) # cast income as an integer df = df.withColumn('Income', df['Income'].cast(IntegerType())) # Question 1 print('*' * 30) print('\nQuestion 1\n') print(df.rdd.map(lambda x: (x[1], x[0])).groupByKey().mapValues(lambda vals: len(set(vals))).sortBy(lambda a: a[1], ascending = False).take(1)) print('\n\n') # Question 2 print('*' * 30) print('\nQuestion 2\n') print(df.rdd.filter(lambda v: v[1] == 'United States of America').map(lambda x: (x[1], x[4])).groupByKey().mapValues(lambda x: sum(x) / len(x)).collect()) print('\n\n') # Question 3 print('*' * 30) print('\nQuestion 3\n') print(df.rdd.filter(lambda v: v[4] > 100000).filter(lambda v: v[7] == 'FALSE').count()) print('\n\n') # Question 4 print('*' * 30) print('\nQuestion 4\n') print(df.rdd.filter(lambda v: v[1] == 'United States of America').sortBy(lambda x: x[4], ascending = False).map(lambda x: (x[3], x[6], x[4], x[5])).take(10)) print('\n\n') # Question 5 print('*' * 30) print('\nQuestion 5\n') print(df.rdd.groupBy(lambda x: x[5]).count()) print('\n\n') # Question 6 print('*' * 30) print('\nQuestion 6\n') print(df.rdd.filter(lambda v: v[5] == 'Writer').filter(lambda x: x[4] < 100000).count()) print('\n\n')
26.017544
157
0.652057
e6fc5742d6236482be2f3020d03479a9c33e3222
274
py
Python
src/firebot/tests/factories.py
zipmex/fire
a41bbdbc86085c055ae4706fadea4f142e881a85
[ "Apache-2.0" ]
52
2017-03-15T16:25:14.000Z
2022-03-01T16:50:14.000Z
src/firebot/tests/factories.py
zipmex/fire
a41bbdbc86085c055ae4706fadea4f142e881a85
[ "Apache-2.0" ]
239
2017-03-16T17:10:22.000Z
2022-03-06T07:24:24.000Z
src/firebot/tests/factories.py
zipmex/fire
a41bbdbc86085c055ae4706fadea4f142e881a85
[ "Apache-2.0" ]
8
2017-03-15T17:45:18.000Z
2022-01-26T14:51:03.000Z
import factory from django.contrib.auth import get_user_model
21.076923
46
0.715328
e6fc7870ccb1bbdefca5d31e7c6358dd9b6c9578
482
py
Python
reamber/o2jam/O2JHold.py
Bestfast/reamberPy
91b76ca6adf11fbe8b7cee7c186481776a4d7aaa
[ "MIT" ]
null
null
null
reamber/o2jam/O2JHold.py
Bestfast/reamberPy
91b76ca6adf11fbe8b7cee7c186481776a4d7aaa
[ "MIT" ]
null
null
null
reamber/o2jam/O2JHold.py
Bestfast/reamberPy
91b76ca6adf11fbe8b7cee7c186481776a4d7aaa
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from reamber.base.Hold import Hold, HoldTail from reamber.o2jam.O2JNoteMeta import O2JNoteMeta
21.909091
54
0.73029
e6fc89e2fb95df50b778c64242f30654175e9df4
566
py
Python
peacebot/core/plugins/Miscellaneous/__init__.py
Peacebot-Development/Peacebot-v2
79ab87b12cd60b708631d96021ac3d3eaeee01c9
[ "MIT" ]
3
2021-11-13T06:26:06.000Z
2022-01-23T13:03:30.000Z
peacebot/core/plugins/Miscellaneous/__init__.py
Peacebot-Development/Peacebot-v2
79ab87b12cd60b708631d96021ac3d3eaeee01c9
[ "MIT" ]
32
2021-11-12T15:29:04.000Z
2022-01-23T14:44:19.000Z
peacebot/core/plugins/Miscellaneous/__init__.py
Peacebot-Development/Peacebot-v2
79ab87b12cd60b708631d96021ac3d3eaeee01c9
[ "MIT" ]
1
2021-11-13T06:34:03.000Z
2021-11-13T06:34:03.000Z
import lightbulb from apscheduler.schedulers.asyncio import AsyncIOScheduler from peacebot.core.utils.time import TimeConverter
25.727273
68
0.738516
e6fe319ea41fa303d91576c379f5911e22bf4307
855
py
Python
example/android/python/msite_simple_default_browser.py
laichimirum/docker-appium-emulator
3549c5f1fc09bbc650dd30351ad4f509a72a90fa
[ "Apache-2.0" ]
8
2019-04-26T04:09:40.000Z
2022-01-04T05:24:12.000Z
example/android/python/msite_simple_default_browser.py
laichimirum/docker-appium-emulator
3549c5f1fc09bbc650dd30351ad4f509a72a90fa
[ "Apache-2.0" ]
null
null
null
example/android/python/msite_simple_default_browser.py
laichimirum/docker-appium-emulator
3549c5f1fc09bbc650dd30351ad4f509a72a90fa
[ "Apache-2.0" ]
2
2019-12-16T15:34:57.000Z
2020-10-22T07:03:15.000Z
import unittest from appium import webdriver if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(MSiteDefaultBrowserAndroidUITests) unittest.TextTestRunner(verbosity=2).run(suite)
29.482759
90
0.65614
e6fe636ebee73df95de2568536aed7f6f3927fad
458
py
Python
src/nn/dataset_utils/types_processing.py
sola-st/Nalin
3a6f95cec95d9152a65af970cfbb145179b0bd72
[ "MIT" ]
null
null
null
src/nn/dataset_utils/types_processing.py
sola-st/Nalin
3a6f95cec95d9152a65af970cfbb145179b0bd72
[ "MIT" ]
null
null
null
src/nn/dataset_utils/types_processing.py
sola-st/Nalin
3a6f95cec95d9152a65af970cfbb145179b0bd72
[ "MIT" ]
null
null
null
""" Created on 17-June-2020 @author Jibesh Patra The types extracted during runtime usually look something like --> <class 'numpy.ndarray'> or <class 'seaborn.palettes._ColorPalette'> change them to --> ndarray, ColorPalette """ import re remove_chars = re.compile(r'>|\'|<|(class )|_|(type)')
24.105263
93
0.696507
e6fee516b4253e139cd1d42c7d2077b96248a564
4,254
py
Python
src/canvas.py
soootaleb/spare
b454b9a8861df55c29fe55b4b584248a2ffe79cb
[ "Apache-2.0" ]
1
2019-05-21T16:04:08.000Z
2019-05-21T16:04:08.000Z
src/canvas.py
soootaleb/school-spacial-relations
b454b9a8861df55c29fe55b4b584248a2ffe79cb
[ "Apache-2.0" ]
null
null
null
src/canvas.py
soootaleb/school-spacial-relations
b454b9a8861df55c29fe55b4b584248a2ffe79cb
[ "Apache-2.0" ]
null
null
null
from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from matplotlib import pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.ticker as ticker import numpy as np import random, matplotlib.pyplot as plt
35.157025
107
0.609074
fc0054805adf6c4edaa7b274d8d98323387b2aa1
7,561
py
Python
src/cpg_scpi/test/__init__.py
GeorgBraun/cpg_scpi_python
ec74c15beaac0b002fb996a42f4e66ea369e1fc6
[ "MIT" ]
null
null
null
src/cpg_scpi/test/__init__.py
GeorgBraun/cpg_scpi_python
ec74c15beaac0b002fb996a42f4e66ea369e1fc6
[ "MIT" ]
null
null
null
src/cpg_scpi/test/__init__.py
GeorgBraun/cpg_scpi_python
ec74c15beaac0b002fb996a42f4e66ea369e1fc6
[ "MIT" ]
null
null
null
'''Functional tests for CPG''' from .. import CircuitPlayground from .. import __version__ as CircuitPlaygroundVersion import time def test_led(cpg) -> None: '''Flash LEDs and run a short chasing light.''' _printFuncTestHeadingWithDeliLine('LED-Test: Flash LEDs and run a short chasing light...') print('flashing LEDs...') test_ledDemo(cpg) value=1 # print('| val | LEDs |') for i in range(10): # print(f'| {value:4} | {value:010b} |') cpg.led(value) cpg.wait(0.2) value <<= 1 # shift 1 bit to the left for i in range(10): value >>= 1 # shift 1 bit to the right # print(f'| {value:4} | {value:010b} |') cpg.led(value) cpg.wait(0.2) print('flashing LEDs...') test_ledDemo(cpg) def test_ledDemo(cpg) -> None: '''Flash LEDs three times.''' for i in range(3): cpg.ledDemo() cpg.wait(0.2) def testAccSpeed(cpg, iterations: int = 100) -> None: '''Measure how long it takes to do an accelerometer measurement.''' print(f'Testing acc measurement speed with {iterations} iterations. Please wait ...') import timeit result = timeit.Timer(stmt=lambda: cpg.acc(), setup='pass').timeit(number=iterations) print(f'Total time: {result:.1f} seconds.') print(f'On average {(result*1000/iterations):.1f} ms per measurement.') def testLightSpeed(cpg, iterations: int = 100) -> None: '''Measure how long it takes to do a light sensor measurement.''' print(f'Testing light measurement speed with {iterations} iterations. Please wait ...') import timeit result = timeit.Timer(stmt=lambda: cpg.light(), setup='pass').timeit(number=iterations) print(f'Total time: {result:.1f} seconds.') print(f'On average {(result*1000/iterations):.1f} ms per measurement.') def _testResponseWaitTime(cpg, iterations: int = 10000) -> None: '''Test it the wait time for additional, unexpected responses is long enough.''' print(f'Testing Response-Wait-Time with {iterations} iterations ...') for i in range(iterations): if i%100==0: print('try-count', i) try: # Request acc measurement values, but do not expect any response, even if the CPG will send one. cpg._query('MEAS:ACC?', 0) # If we are still here, we did not get a response. This is bad. print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') print('ERROR in testResponseWaitTime(): CPG-Response was too late.') print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') except Exception: # The normal behavior is a response, resulting in an exception. # This is what we expected. Therefore, just continue. pass
37.616915
151
0.61923
fc01125ff8253bbaef2b133518f03e3663e85d73
216
py
Python
main/models.py
yejun1060/SbjctSclctn
eca6a9d09cf81fce262ea58ca90e69ee5735ab16
[ "MIT" ]
null
null
null
main/models.py
yejun1060/SbjctSclctn
eca6a9d09cf81fce262ea58ca90e69ee5735ab16
[ "MIT" ]
null
null
null
main/models.py
yejun1060/SbjctSclctn
eca6a9d09cf81fce262ea58ca90e69ee5735ab16
[ "MIT" ]
1
2021-06-08T17:41:42.000Z
2021-06-08T17:41:42.000Z
from django.db import models
21.6
42
0.689815
fc01bbc538287134d61e574ed4af064a81cfdf43
1,307
py
Python
test/utils/test_geodesic.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
2
2020-12-06T13:10:52.000Z
2021-07-06T06:50:10.000Z
test/utils/test_geodesic.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
null
null
null
test/utils/test_geodesic.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
1
2019-05-31T02:45:38.000Z
2019-05-31T02:45:38.000Z
from math import sqrt import torch from torch_geometric.utils import geodesic_distance
30.395349
76
0.574598
fc01d88d24681ec66a1cf06a3a055252d072afd3
31,292
py
Python
gridfs/grid_file.py
naomielst/mongo-python-driver
e3d1d6f5b48101654a05493fd6eec7fe3fa014bd
[ "Apache-2.0" ]
2
2022-01-19T21:00:48.000Z
2022-01-27T05:54:13.000Z
gridfs/grid_file.py
naomielst/mongo-python-driver
e3d1d6f5b48101654a05493fd6eec7fe3fa014bd
[ "Apache-2.0" ]
1
2021-12-24T11:32:17.000Z
2021-12-24T11:32:17.000Z
gridfs/grid_file.py
naomielst/mongo-python-driver
e3d1d6f5b48101654a05493fd6eec7fe3fa014bd
[ "Apache-2.0" ]
null
null
null
# Copyright 2009-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for representing files stored in GridFS.""" import datetime import io import math import os from bson.int64 import Int64 from bson.son import SON from bson.binary import Binary from bson.objectid import ObjectId from pymongo import ASCENDING from pymongo.collection import Collection from pymongo.cursor import Cursor from pymongo.errors import (ConfigurationError, CursorNotFound, DuplicateKeyError, InvalidOperation, OperationFailure) from pymongo.read_preferences import ReadPreference from gridfs.errors import CorruptGridFile, FileExists, NoFile try: _SEEK_SET = os.SEEK_SET _SEEK_CUR = os.SEEK_CUR _SEEK_END = os.SEEK_END # before 2.5 except AttributeError: _SEEK_SET = 0 _SEEK_CUR = 1 _SEEK_END = 2 EMPTY = b"" NEWLN = b"\n" """Default chunk size, in bytes.""" # Slightly under a power of 2, to work well with server's record allocations. DEFAULT_CHUNK_SIZE = 255 * 1024 _C_INDEX = SON([("files_id", ASCENDING), ("n", ASCENDING)]) _F_INDEX = SON([("filename", ASCENDING), ("uploadDate", ASCENDING)]) def _grid_in_property(field_name, docstring, read_only=False, closed_only=False): """Create a GridIn property.""" if read_only: docstring += "\n\nThis attribute is read-only." elif closed_only: docstring = "%s\n\n%s" % (docstring, "This attribute is read-only and " "can only be read after :meth:`close` " "has been called.") if not read_only and not closed_only: return property(getter, setter, doc=docstring) return property(getter, doc=docstring) def _grid_out_property(field_name, docstring): """Create a GridOut property.""" docstring += "\n\nThis attribute is read-only." return property(getter, doc=docstring) def _clear_entity_type_registry(entity, **kwargs): """Clear the given database/collection object's type registry.""" codecopts = entity.codec_options.with_options(type_registry=None) return entity.with_options(codec_options=codecopts, **kwargs)
35.721461
103
0.599035
fc021cb14dd8b84a0a6873924f2194048e2791f0
1,415
py
Python
forte/processors/tests/stanfordnlp_processor_test.py
tcl326/forte
d0d7b8b97da5e1d507dfa7cd4ec51d96067770b8
[ "Apache-2.0" ]
null
null
null
forte/processors/tests/stanfordnlp_processor_test.py
tcl326/forte
d0d7b8b97da5e1d507dfa7cd4ec51d96067770b8
[ "Apache-2.0" ]
null
null
null
forte/processors/tests/stanfordnlp_processor_test.py
tcl326/forte
d0d7b8b97da5e1d507dfa7cd4ec51d96067770b8
[ "Apache-2.0" ]
null
null
null
"""This module tests Stanford NLP processors.""" import os import unittest from texar.torch import HParams from forte.pipeline import Pipeline from forte.data.readers import StringReader from forte.processors.stanfordnlp_processor import StandfordNLPProcessor from ft.onto.base_ontology import Token, Sentence
36.282051
77
0.638869
fc02e2f67f44eb696a821c6397117531267c2ddc
496
py
Python
src/serve_files.py
eventh/m3u8looper
9c4ae166e9af4679cf64b19e3c3efc7bbdaed5a5
[ "MIT" ]
null
null
null
src/serve_files.py
eventh/m3u8looper
9c4ae166e9af4679cf64b19e3c3efc7bbdaed5a5
[ "MIT" ]
null
null
null
src/serve_files.py
eventh/m3u8looper
9c4ae166e9af4679cf64b19e3c3efc7bbdaed5a5
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Serve current folder files in a HTTP webserver. """ import socketserver from threading import Thread from http.server import SimpleHTTPRequestHandler PORT = 8000 if __name__ == '__main__': thread = start_http_server() thread.join()
20.666667
76
0.709677
fc03078d9d14b23c740018bcdf9069c213af00f0
7,393
py
Python
pypy/module/__builtin__/test/test_compile.py
yxzoro/pypy
6e47b3d3e5513d9639a21554963a6ace172ccfee
[ "Apache-2.0", "OpenSSL" ]
null
null
null
pypy/module/__builtin__/test/test_compile.py
yxzoro/pypy
6e47b3d3e5513d9639a21554963a6ace172ccfee
[ "Apache-2.0", "OpenSSL" ]
null
null
null
pypy/module/__builtin__/test/test_compile.py
yxzoro/pypy
6e47b3d3e5513d9639a21554963a6ace172ccfee
[ "Apache-2.0", "OpenSSL" ]
null
null
null
# coding: utf-8 # TODO: Check the value of __debug__ inside of the compiled block! # According to the documentation, it should follow the optimize flag. # However, cpython3.5.0a0 behaves the same way as PyPy (__debug__ follows # -O, -OO flags of the interpreter).
34.226852
79
0.538212
fc035a3b69dad59dad81dc8e5b68a8db4a2f4aff
12,207
py
Python
tickers_graphing_module.py
huangbrandon432/Investing-Trading-Tool
370015b906b7ee90c0fb48ca69865ac7428b3917
[ "BSD-3-Clause" ]
null
null
null
tickers_graphing_module.py
huangbrandon432/Investing-Trading-Tool
370015b906b7ee90c0fb48ca69865ac7428b3917
[ "BSD-3-Clause" ]
null
null
null
tickers_graphing_module.py
huangbrandon432/Investing-Trading-Tool
370015b906b7ee90c0fb48ca69865ac7428b3917
[ "BSD-3-Clause" ]
null
null
null
import yfinance as yf import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd from IPython.display import Markdown import numpy as np from datetime import date, timedelta
35.178674
169
0.530843
fc045ba1073202cd1ab4f6738b3709fb28279ff8
5,008
py
Python
flexbe_navigation_states/src/flexbe_navigation_states/navigation_sm.py
amsks/generic_flexbe_states
f7be84105d3370c943ed17fc19af672b330726de
[ "BSD-3-Clause" ]
null
null
null
flexbe_navigation_states/src/flexbe_navigation_states/navigation_sm.py
amsks/generic_flexbe_states
f7be84105d3370c943ed17fc19af672b330726de
[ "BSD-3-Clause" ]
null
null
null
flexbe_navigation_states/src/flexbe_navigation_states/navigation_sm.py
amsks/generic_flexbe_states
f7be84105d3370c943ed17fc19af672b330726de
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ########################################################### # WARNING: Generated code! # # ************************** # # Manual changes may get lost if file is generated again. # # Only code inside the [MANUAL] tags will be kept. # ########################################################### from flexbe_core import Behavior, Autonomy, OperatableStateMachine, ConcurrencyContainer, PriorityContainer, Logger from flexbe_states.wait_state import WaitState from flexbe_navigation_states.turn_right_sm import turn_rightSM from flexbe_states.subscriber_state import SubscriberState from flexbe_utility_states.MARCO import Carbonara from flexbe_navigation_states.turn_left_sm import turn_leftSM from flexbe_navigation_states.go_straight_sm import go_straightSM from flexbe_navigation_states.obstacle_avoidance_sm import Obstacle_AvoidanceSM # Additional imports can be added inside the following tags # [MANUAL_IMPORT] # [/MANUAL_IMPORT] ''' Created on Sat Jul 18 2020 @author: TG4 '''
34.777778
131
0.659145
fc070f80801a319fdf697b23e027ce45aa2d558c
26,632
py
Python
text2cc/xml_assessment.py
dlehman83/text2cc
303798993590bceaeb5238a6cce82893c37cdfc7
[ "BSD-3-Clause" ]
1
2021-02-12T09:34:07.000Z
2021-02-12T09:34:07.000Z
text2cc/xml_assessment.py
dlehman83/text2cc
303798993590bceaeb5238a6cce82893c37cdfc7
[ "BSD-3-Clause" ]
null
null
null
text2cc/xml_assessment.py
dlehman83/text2cc
303798993590bceaeb5238a6cce82893c37cdfc7
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2021, Dana Lehman # Copyright (c) 2020, Geoffrey M. Poore # All rights reserved. # # Licensed under the BSD 3-Clause License: # http://opensource.org/licenses/BSD-3-Clause # from .quiz import Quiz, Question, GroupStart, GroupEnd, TextRegion BEFORE_ITEMS = '''\ <?xml version="1.0" encoding="UTF-8"?> <questestinterop xmlns="http://www.imsglobal.org/xsd/ims_qtiasiv1p2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.imsglobal.org/xsd/ims_qtiasiv1p2 http://www.imsglobal.org/profile/cc/ccv1p2/ccv1p2_qtiasiv1p2p1_v1p0.xsd"> <assessment ident="{assessment_identifier}" title="{title}"> <qtimetadata> <qtimetadatafield> <fieldlabel>cc_maxattempts</fieldlabel> <fieldentry>1</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel> cc_profile </fieldlabel> <fieldentry> cc.exam.v0p1 </fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel> qmd_assessmenttype </fieldlabel> <fieldentry> Examination </fieldentry> </qtimetadatafield> </qtimetadata> <section ident="root_section"> ''' AFTER_ITEMS = '''\ </section> </assessment> </questestinterop> ''' GROUP_START = '''\ <section ident="{ident}" title="{group_title}"> <selection_ordering> <selection> <selection_number>{pick}</selection_number> <selection_extension> <points_per_item>{points_per_item}</points_per_item> </selection_extension> </selection> </selection_ordering> ''' GROUP_END = '''\ </section> ''' TEXT = '''\ <item ident="{ident}" title="{text_title_xml}"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>cc_profile</fieldlabel> <fieldentry>text_only_question</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>points_possible</fieldlabel> <fieldentry>0</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>original_answer_ids</fieldlabel> <fieldentry></fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>assessment_question_identifierref</fieldlabel> <fieldentry>{assessment_question_identifierref}</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattext texttype="text/html">{text_html_xml}</mattext> </material> </presentation> </item> ''' START_ITEM = '''\ <item ident="{question_identifier}" title="{question_title}"> ''' END_ITEM = '''\ </item> ''' ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM = '''\ <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>cc_profile</fieldlabel> <fieldentry>{question_type}</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>points_possible</fieldlabel> <fieldentry>{points_possible}</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>original_answer_ids</fieldlabel> <fieldentry>{original_answer_ids}</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>assessment_question_identifierref</fieldlabel> <fieldentry>{assessment_question_identifierref}</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> ''' ITEM_METADATA_ESSAY = ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM.replace('{original_answer_ids}', '') ITEM_METADATA_UPLOAD = ITEM_METADATA_ESSAY ITEM_PRESENTATION_MCTF = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_lid ident="response1" rcardinality="Single"> <render_choice> {choices} </render_choice> </response_lid> </presentation> ''' ITEM_PRESENTATION_MCTF_CHOICE = '''\ <response_label ident="{ident}"> <material> <mattext texttype="text/html">{choice_html_xml}</mattext> </material> </response_label>''' ITEM_PRESENTATION_MULTANS = ITEM_PRESENTATION_MCTF.replace('Single', 'Multiple') ITEM_PRESENTATION_MULTANS_CHOICE = ITEM_PRESENTATION_MCTF_CHOICE ITEM_PRESENTATION_SHORTANS = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> ''' ITEM_PRESENTATION_ESSAY = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> ''' ITEM_PRESENTATION_UPLOAD = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> </presentation> ''' ITEM_PRESENTATION_NUM = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib fibtype="Decimal"> <response_label ident="answer1"/> </render_fib> </response_str> </presentation> ''' ITEM_RESPROCESSING_START = '''\ <resprocessing> <outcomes> <decvar maxvalue="100" minvalue="0" varname="SCORE" vartype="Decimal"/> </outcomes> ''' ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <other/> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="general_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MCTF_CHOICE_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <varequal respident="response1">{ident}</varequal> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="{ident}_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MCTF_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <varequal respident="response1">{ident}</varequal> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MCTF_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <varequal respident="response1">{ident}</varequal> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <other/> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="general_incorrect_fb"/> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_SHORTANS_CHOICE_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <varequal respident="response1">{answer_xml}</varequal> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="{ident}_fb"/> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> {varequal} </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> {varequal} </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_VAREQUAL = '''\ <varequal respident="response1">{answer_xml}</varequal>''' ITEM_RESPROCESSING_SHORTANS_INCORRECT_FEEDBACK = ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK ITEM_RESPROCESSING_MULTANS_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_MULTANS_CHOICE_FEEDBACK = ITEM_RESPROCESSING_MCTF_CHOICE_FEEDBACK ITEM_RESPROCESSING_MULTANS_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <and> {varequal} </and> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MULTANS_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <and> {varequal} </and> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_CORRECT = '''\ <varequal respident="response1">{ident}</varequal>''' ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_INCORRECT = '''\ <not> <varequal respident="response1">{ident}</varequal> </not>''' ITEM_RESPROCESSING_MULTANS_INCORRECT_FEEDBACK = ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK ITEM_RESPROCESSING_ESSAY_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_UPLOAD_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_NUM_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <or> <varequal respident="response1">{num_exact}</varequal> <and> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </and> </or> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <or> <varequal respident="response1">{num_exact}</varequal> <and> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </and> </or> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_NUM_INCORRECT_FEEDBACK = ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK ITEM_RESPROCESSING_ESSAY = '''\ <respcondition continue="No"> <conditionvar> <other/> </conditionvar> </respcondition> ''' ITEM_RESPROCESSING_END = '''\ </resprocessing> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_GENERAL = '''\ <itemfeedback ident="general_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_CORRECT = '''\ <itemfeedback ident="correct_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INCORRECT = '''\ <itemfeedback ident="general_incorrect_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INDIVIDUAL = '''\ <itemfeedback ident="{ident}_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' def assessment(*, quiz: Quiz, assessment_identifier: str, title_xml: str) -> str: ''' Generate assessment XML from Quiz. ''' xml = [] xml.append(BEFORE_ITEMS.format(assessment_identifier=assessment_identifier, title=title_xml)) for question_or_delim in quiz.questions_and_delims: if isinstance(question_or_delim, TextRegion): xml.append(TEXT.format(ident=f'text2qti_text_{question_or_delim.id}', text_title_xml=question_or_delim.title_xml, assessment_question_identifierref=f'text2qti_question_ref_{question_or_delim.id}', text_html_xml=question_or_delim.text_html_xml)) continue if isinstance(question_or_delim, GroupStart): xml.append(GROUP_START.format(ident=f'text2qti_group_{question_or_delim.group.id}', group_title=question_or_delim.group.title_xml, pick=question_or_delim.group.pick, points_per_item=question_or_delim.group.points_per_question)) continue if isinstance(question_or_delim, GroupEnd): xml.append(GROUP_END) continue if not isinstance(question_or_delim, Question): raise TypeError question = question_or_delim xml.append(START_ITEM.format(question_identifier=f'text2qti_question_{question.id}', question_title=question.title_xml)) if question.type in ('true_false_question', 'multiple_choice_question', 'short_answer_question', 'multiple_answers_question'): item_metadata = ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM original_answer_ids = ','.join(f'text2qti_choice_{c.id}' for c in question.choices) elif question.type == 'numerical_question': item_metadata = ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM original_answer_ids = f'text2qti_numerical_{question.id}' elif question.type == 'essay_question': item_metadata = ITEM_METADATA_ESSAY original_answer_ids = f'text2qti_essay_{question.id}' elif question.type == 'file_upload_question': item_metadata = ITEM_METADATA_UPLOAD original_answer_ids = f'text2qti_upload_{question.id}' else: raise ValueError #Type Change for Schoology CC Import if question.type == 'multiple_choice_question': typechange = 'cc.multiple_choice.v0p1' elif question.type == 'true_false_question': typechange = 'cc.true_false.v0p1' elif question.type == 'short_answer_question': typechange = 'cc.fib.v0p1' elif question.type == 'multiple_answers_question': typechange = 'cc.multiple_response.v0p1' elif question.type == 'essay_question': typechange = 'cc.essay.v0p1' else: typechange = question.type xml.append(item_metadata.format(question_type=typechange, points_possible=question.points_possible, original_answer_ids=original_answer_ids, assessment_question_identifierref=f'text2qti_question_ref_{question.id}')) if question.type in ('true_false_question', 'multiple_choice_question', 'multiple_answers_question'): if question.type in ('true_false_question', 'multiple_choice_question'): item_presentation_choice = ITEM_PRESENTATION_MCTF_CHOICE item_presentation = ITEM_PRESENTATION_MCTF elif question.type == 'multiple_answers_question': item_presentation_choice = ITEM_PRESENTATION_MULTANS_CHOICE item_presentation = ITEM_PRESENTATION_MULTANS else: raise ValueError choices = '\n'.join(item_presentation_choice.format(ident=f'text2qti_choice_{c.id}', choice_html_xml=c.choice_html_xml) for c in question.choices) xml.append(item_presentation.format(question_html_xml=question.question_html_xml, choices=choices)) elif question.type == 'short_answer_question': xml.append(ITEM_PRESENTATION_SHORTANS.format(question_html_xml=question.question_html_xml)) elif question.type == 'numerical_question': xml.append(ITEM_PRESENTATION_NUM.format(question_html_xml=question.question_html_xml)) elif question.type == 'essay_question': xml.append(ITEM_PRESENTATION_ESSAY.format(question_html_xml=question.question_html_xml)) elif question.type == 'file_upload_question': xml.append(ITEM_PRESENTATION_UPLOAD.format(question_html_xml=question.question_html_xml)) else: raise ValueError if question.type in ('true_false_question', 'multiple_choice_question'): correct_choice = None for choice in question.choices: if choice.correct: correct_choice = choice break if correct_choice is None: raise TypeError resprocessing = [] resprocessing.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK) for choice in question.choices: if choice.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_CHOICE_FEEDBACK.format(ident=f'text2qti_choice_{choice.id}')) if question.correct_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_SET_CORRECT_WITH_FEEDBACK.format(ident=f'text2qti_choice_{correct_choice.id}')) else: resprocessing.append(ITEM_RESPROCESSING_MCTF_SET_CORRECT_NO_FEEDBACK.format(ident=f'text2qti_choice_{correct_choice.id}')) if question.incorrect_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK) resprocessing.append(ITEM_RESPROCESSING_END) xml.extend(resprocessing) elif question.type == 'short_answer_question': resprocessing = [] resprocessing.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_GENERAL_FEEDBACK) for choice in question.choices: if choice.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_CHOICE_FEEDBACK.format(ident=f'text2qti_choice_{choice.id}', answer_xml=choice.choice_xml)) varequal = [] for choice in question.choices: varequal.append(ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_VAREQUAL.format(answer_xml=choice.choice_xml)) if question.correct_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_WITH_FEEDBACK.format(varequal='\n'.join(varequal))) else: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_NO_FEEDBACK.format(varequal='\n'.join(varequal))) if question.incorrect_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_INCORRECT_FEEDBACK) resprocessing.append(ITEM_RESPROCESSING_END) xml.extend(resprocessing) elif question.type == 'multiple_answers_question': resprocessing = [] resprocessing.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_GENERAL_FEEDBACK) for choice in question.choices: if choice.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_CHOICE_FEEDBACK.format(ident=f'text2qti_choice_{choice.id}')) varequal = [] for choice in question.choices: if choice.correct: varequal.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_CORRECT.format(ident=f'text2qti_choice_{choice.id}')) else: varequal.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_INCORRECT.format(ident=f'text2qti_choice_{choice.id}')) if question.correct_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_WITH_FEEDBACK.format(varequal='\n'.join(varequal))) else: resprocessing.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_NO_FEEDBACK.format(varequal='\n'.join(varequal))) if question.incorrect_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_INCORRECT_FEEDBACK) resprocessing.append(ITEM_RESPROCESSING_END) xml.extend(resprocessing) elif question.type == 'numerical_question': xml.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: xml.append(ITEM_RESPROCESSING_NUM_GENERAL_FEEDBACK) if question.correct_feedback_raw is None: if question.numerical_exact is None: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_NO_FEEDBACK else: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_NO_FEEDBACK else: if question.numerical_exact is None: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_WITH_FEEDBACK else: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_WITH_FEEDBACK xml.append(item_resprocessing_num_set_correct.format(num_min=question.numerical_min_html_xml, num_exact=question.numerical_exact_html_xml, num_max=question.numerical_max_html_xml)) if question.incorrect_feedback_raw is not None: xml.append(ITEM_RESPROCESSING_NUM_INCORRECT_FEEDBACK) xml.append(ITEM_RESPROCESSING_END) elif question.type == 'essay_question': xml.append(ITEM_RESPROCESSING_START) xml.append(ITEM_RESPROCESSING_ESSAY) if question.feedback_raw is not None: xml.append(ITEM_RESPROCESSING_ESSAY_GENERAL_FEEDBACK) xml.append(ITEM_RESPROCESSING_END) elif question.type == 'file_upload_question': xml.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: xml.append(ITEM_RESPROCESSING_UPLOAD_GENERAL_FEEDBACK) xml.append(ITEM_RESPROCESSING_END) else: raise ValueError if question.type in ('true_false_question', 'multiple_choice_question', 'short_answer_question', 'multiple_answers_question', 'numerical_question', 'essay_question', 'file_upload_question'): if question.feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_GENERAL.format(feedback=question.feedback_html_xml)) if question.correct_feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_CORRECT.format(feedback=question.correct_feedback_html_xml)) if question.incorrect_feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INCORRECT.format(feedback=question.incorrect_feedback_html_xml)) if question.type in ('true_false_question', 'multiple_choice_question', 'short_answer_question', 'multiple_answers_question'): for choice in question.choices: if choice.feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INDIVIDUAL.format(ident=f'text2qti_choice_{choice.id}', feedback=choice.feedback_html_xml)) xml.append(END_ITEM) xml.append(AFTER_ITEMS) return ''.join(xml)
40.474164
260
0.629769
fc072ef6a205b171dfc4d3510829d73d11a5f833
2,360
py
Python
tests/test_aggregate_stats_design.py
bids-standard/bids-statsmodels-design-synthesizer
d8a1dac3891760990082c2d3aa75a1edda44ffa0
[ "MIT" ]
null
null
null
tests/test_aggregate_stats_design.py
bids-standard/bids-statsmodels-design-synthesizer
d8a1dac3891760990082c2d3aa75a1edda44ffa0
[ "MIT" ]
1
2021-05-12T21:53:53.000Z
2021-05-12T22:26:09.000Z
tests/test_aggregate_stats_design.py
bids-standard/bids-statsmodels-design-synthesizer
d8a1dac3891760990082c2d3aa75a1edda44ffa0
[ "MIT" ]
3
2021-05-06T12:44:04.000Z
2021-05-12T21:42:59.000Z
#!/usr/bin/env python """Tests for `bids_statsmodels_design_synthesizer` package.""" import pytest import subprocess as sp from pathlib import Path SYNTHESIZER = "aggregate_stats_design.py" from bids_statsmodels_design_synthesizer import aggregate_stats_design as synth_mod # from bids_statsmodels_design_synthesizer import Path(SYNTHESIZER).stem as synth_mod EXAMPLE_USER_ARGS = { "OUTPUT_TSV": "aggregated_design.tsv", "MODEL": "data/ds000003/models/model-001_smdl.json", "EVENTS_TSV": "data/ds000003/sub-01/func/sub-01_task-rhymejudgment_events.tsv", "DURATION": 320, } def test_minimal_cli_functionality(): """ We roughly want to implement the equivalent of the following: from bids.analysis import Analysis from bids.layout import BIDSLayout layout = BIDSLayout("data/ds000003") analysis = Analysis(model="data/ds000003/models/model-001_smdl.json",layout=layout) analysis.setup() more specifically we want to reimplement this line https://github.com/bids-standard/pybids/blob/b6cd0f6787230ce976a374fbd5fce650865752a3/bids/analysis/analysis.py#L282 """ bids_dir = Path(__file__).parent / "data/ds000003" model = "model-001_smdl.json" arg_list = " " .join([f"""--{k.lower().replace("_","-")}={v}""" for k,v in EXAMPLE_USER_ARGS.items()]) cmd = f"{SYNTHESIZER} {arg_list}" output = sp.check_output(cmd.split())
36.875
199
0.715678
fc084ddbb4a5b92a2c3c4c62cd1d09d582bd5892
689
py
Python
skynet-agent/plugins/plugin_api.py
skynetera/skynet
24a50f2a2eb95b777802934a2b66f162bf4b2d53
[ "Apache-2.0" ]
3
2016-09-12T08:54:46.000Z
2016-09-18T07:54:10.000Z
skynet-agent/plugins/plugin_api.py
skynetera/skynet
24a50f2a2eb95b777802934a2b66f162bf4b2d53
[ "Apache-2.0" ]
null
null
null
skynet-agent/plugins/plugin_api.py
skynetera/skynet
24a50f2a2eb95b777802934a2b66f162bf4b2d53
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 __author__ = 'whoami' """ @version: 1.0 @author: whoami @license: Apache Licence 2.0 @contact: [email protected] @site: http://www.itweet.cn @software: PyCharm Community Edition @file: plugin_api.py @time: 2015-11-28 1:52 """ from linux import cpu,disk,iostats,loadavg,memory,netstats,swap
17.225
63
0.71553
fc09cc4c599dae963fa070fbe9dc0b9a5e9e17c9
1,425
py
Python
code/figure_warp.py
jwcarr/drift
a514c5970ba53025cc142257e953c1bda3cd049c
[ "CC-BY-4.0" ]
2
2021-11-19T10:12:58.000Z
2021-11-30T03:33:59.000Z
code/figure_warp.py
jwcarr/vertical_drift
5b4b6c475b5118950514dc01960391ef0d95bd19
[ "CC-BY-4.0" ]
null
null
null
code/figure_warp.py
jwcarr/vertical_drift
5b4b6c475b5118950514dc01960391ef0d95bd19
[ "CC-BY-4.0" ]
null
null
null
import numpy as np import eyekit import algorithms import core data = eyekit.io.load(core.FIXATIONS / 'sample.json') passages = eyekit.io.load(core.DATA / 'passages.json') original_sequence = data['trial_5']['fixations'] fixation_XY = np.array([fixation.xy for fixation in original_sequence], dtype=int) word_XY = np.array([word.center for word in passages['1B'].words(alphabetical_only=False)], dtype=int) start_times = np.array([i*100 for i in range(len(word_XY))], dtype=int) expected_sequence = eyekit.FixationSequence(np.column_stack([word_XY, start_times, start_times+100])) diagram = eyekit.vis.Image(1920, 1080) diagram.draw_text_block(passages['1B'], mask_text=True) diagram.draw_fixation_sequence(expected_sequence, color='#E32823', fixation_radius=6) diagram.draw_fixation_sequence(original_sequence, color='#205E84', fixation_radius=6) _, warping_path = algorithms.dynamic_time_warping(fixation_XY, word_XY) for fixation, mapped_words in zip(original_sequence, warping_path): for word_i in mapped_words: word_x, word_y = word_XY[word_i] diagram.draw_line(fixation.xy, (word_x, word_y), color='black', stroke_width=0.5, dashed=True) fig = eyekit.vis.Figure() fig.add_image(diagram) fig.set_crop_margin(2) fig.set_padding(vertical=2, horizontal=3, edge=1) fig.set_enumeration(False) fig.save(core.VISUALS / 'illustration_warp.pdf', width=83) # fig.save(core.FIGS / 'fig02_single_column.eps', width=83)
39.583333
102
0.781754
fc0a7d892ee7ccba2ec10d7aa3adc47150da3dac
98,817
py
Python
storm/Nimbus.py
krux/python-storm
1a9c06d3580a2b1bc2c27174d892a6dbcaa9e0bd
[ "BSD-3-Clause" ]
null
null
null
storm/Nimbus.py
krux/python-storm
1a9c06d3580a2b1bc2c27174d892a6dbcaa9e0bd
[ "BSD-3-Clause" ]
null
null
null
storm/Nimbus.py
krux/python-storm
1a9c06d3580a2b1bc2c27174d892a6dbcaa9e0bd
[ "BSD-3-Clause" ]
null
null
null
# # Autogenerated by Thrift Compiler (0.9.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None # HELPER FUNCTIONS AND STRUCTURES
30.182346
188
0.668508
fc0c40028b9c4945addfec469dd5871c8f82e05b
52
py
Python
gemucator/__init__.py
philipwfowler/genucator
d43a79afe1aa81ca24d7ab4370ed230e08aa89bf
[ "MIT" ]
null
null
null
gemucator/__init__.py
philipwfowler/genucator
d43a79afe1aa81ca24d7ab4370ed230e08aa89bf
[ "MIT" ]
null
null
null
gemucator/__init__.py
philipwfowler/genucator
d43a79afe1aa81ca24d7ab4370ed230e08aa89bf
[ "MIT" ]
null
null
null
#! /usr/bin/env python from .core import gemucator
13
27
0.730769
fc0db1d4c1d538c8a8da3398414e346edd37ebe8
166
py
Python
client/checkout/schema/types.py
daniel-waruo/e-commerse-api
6b080039398fb4099a34335317d649dd67783f63
[ "Apache-2.0" ]
6
2019-11-21T10:09:49.000Z
2021-06-19T09:52:59.000Z
client/checkout/schema/types.py
daniel-waruo/e-commerse-api
6b080039398fb4099a34335317d649dd67783f63
[ "Apache-2.0" ]
null
null
null
client/checkout/schema/types.py
daniel-waruo/e-commerse-api
6b080039398fb4099a34335317d649dd67783f63
[ "Apache-2.0" ]
null
null
null
import graphene from graphene_django import DjangoObjectType from graphene_django.converter import convert_django_field from pyuploadcare.dj.models import ImageField
33.2
58
0.89759
fc0e5695633a29e1789efba016b66fc96fcedf4a
15,518
py
Python
pangenome_fluidity.py
PlantDr430/CSU_scripts
8ed9e1dc014b099ce68d77ce5c8747217c230e61
[ "MIT" ]
1
2020-03-02T04:26:21.000Z
2020-03-02T04:26:21.000Z
pangenome_fluidity.py
PlantDr430/CSU_scripts
8ed9e1dc014b099ce68d77ce5c8747217c230e61
[ "MIT" ]
null
null
null
pangenome_fluidity.py
PlantDr430/CSU_scripts
8ed9e1dc014b099ce68d77ce5c8747217c230e61
[ "MIT" ]
null
null
null
#!/usr/bin/python3 ''' This script follows formulas put forth in Kislyuk et al. (2011) to calculate genome fluidity of a pangenome dataset. Variance and standard error are estimated as total variance containing both the variance due to subsampling all possible combinations (without replacement) of N genomes from the total pool of genomes and the variance due to the limited number of sampled genomes (variance of the pangenome)(Kislyuk et al. 2011). However, the script has a default max number of subsamples set to 250,000 for each N genomes. This can be altered with the -max_sub / --max_subsamples flag or turned off with the --max_off flag. Turning the max_off will force calculations to be done on all possible subsample combinations of N genomes. For samples of N genomes that were stopped at the max number of subsamples the subsamples are sampled WITH replacement and variance is calculated with a degree of freedom = 1 (i.e. n - 1). Results are a text file of fluidity, variance, and standard error for all N genome samples and a figure of pangenome fluidity with shaded regions showing total standard error with a exponential regression fit. Notes 1. This will only work if you have at least 5 isolates to make up your pangenome. 2. If you have 5 isolates your graph will probably not look pretty as it's difficult to fit with such a low number of samples. ''' import os, sys, re, argparse, random, itertools, scipy, warnings, subprocess import numpy as np import pandas as pd import matplotlib.pyplot as plt from multiprocessing import Pool from itertools import combinations from collections import OrderedDict from collections.abc import Iterable from scipy.optimize import curve_fit, differential_evolution rundir = os.getcwd() parser = argparse.ArgumentParser( usage='./%(prog)s [options] -i orthogroups -o output_folder', description = ''' Performs multiple bootstraps and calculates genome fluidity from a pangenome dataset (orthogroups).''', epilog = """Written by Stephen A. Wyka (2019)""", formatter_class = MyFormatter) parser.add_argument( '-i', '--input', required = True, help = 'Orthogroups file, see format in READ.me', metavar='' ) parser.add_argument( '-o', '--out', required = True, help = 'Output folder', metavar='' ) parser.add_argument( '-c', '--cpus', type=int, default=1, help = 'Number of cores to use for multiprocessing [default: 1]', metavar='' ) parser.add_argument( '-max_sub', '--max_subsamples', type=int, default=250000, help = 'Max number of subsamples to run on N genomes sampled. [default: 250000]', metavar='' ) parser.add_argument( '--max_off', action='store_true', help = 'Turn off the max subsamples. This will cause the script sample ALL possible combinations'\ 'for N genomes', ) parser.add_argument( '-p', '--prefix', help = 'Prefix to append to the result files (such as Genus, species, etc.)', metavar='' ) args=parser.parse_args() if not os.path.isdir(args.out): os.makedirs(os.path.join(args.out)) result_dir = os.path.abspath(os.path.join(rundir, args.out)) if args.input: input_file = os.path.abspath(args.input) else: print('ERROR: No orthogroups file was provided please provide on, -i or --input') sys.exit() if args.prefix: fluid_results = os.path.abspath(os.path.join(result_dir, args.prefix+'_fluidity.txt')) fluid_fig = os.path.abspath(os.path.join(result_dir, args.prefix+'_fluidity.png')) else: fluid_results = os.path.abspath(os.path.join(result_dir, 'Pangenome_fluidity.txt')) fluid_fig = os.path.abspath(os.path.join(result_dir, 'Pangenome_fluidity.png')) def create_ortho_dictionary(ortho_file): # create dictionary of gene clusters and isolates per cluster '''Genereate dictionary of Orthogroups.''' print('Creating ortholog dictionary') ortho_isolates_dict = OrderedDict() # {Protein Cluster : list of isolates represented in cluster} with open(ortho_file, 'r') as infile: ortho_list = [item.strip() for item in sorted(infile)] for line in ortho_list: iso_list = [] if ':' in line: cluster, genes = line.split(':') elif '\t' in line: cluster, genes = line.split('\t', 1) else: cluster, genes = line.split(' ', 1) for match in re.finditer(r'([^\s]+)', genes): isolate = match.group(0).split('_')[0] iso_list.append(isolate) ortho_isolates_dict[cluster] = list(set(iso_list)) return ortho_isolates_dict def create_pair_dictionary(ortho_dictionary): '''Create all possible unique pairs of isolates and get their unique sum gene clusters.''' print('Creating dictionary of paired ratio values') pair_dict = {} # {(Isolate1, Isolate2) : [ratio of sum(unique clusters)/sum(all clusters)]} for i in range(0, len(iso_list)): for x in range(0, len(iso_list)): if not iso_list[i] == iso_list[x]: pair = tuple(sorted([iso_list[i], iso_list[x]])) if not pair in pair_dict.keys(): cogs = {'Shared' : 0, 'Uk' : 0, 'Ul' : 0} for k,v in ortho_dictionary.items(): if pair[0] in v and pair[1] in v: cogs['Shared'] += 1 elif pair[0] in v and pair[1] not in v: cogs['Uk'] += 1 elif pair[0] not in v and pair[1] in v: cogs['Ul'] += 1 else: pass # don't need to count a cluster if both isolates are not present unique_pair = cogs['Uk'] + cogs['Ul'] all_pair = (cogs['Uk'] + cogs['Shared']) + (cogs['Ul'] + cogs['Shared']) pair_dict[pair] = unique_pair/all_pair return pair_dict def compute_fluidity_all_genomes(): ''' Computes the fluidity and variance for the pangenome in question from the max number of genomes in the pangenome. ''' N = iso_num fluidity_list = [ratio for ratio in pair_dict.values()] # list of ratios pangenome_fluidity = (2/(N*(N-1)))*sum(fluidity_list) # get fluidity from average of all ratios jack_samples = list(combinations(iso_list, N - 1)) # get list of all combos of N-1 from max num of genomes fluidity_i_list = [] for sample in jack_samples: jack_pairs = tuple(combinations(sample,2)) # get all pairs from current jackknife sample jack_sample_fluidity = [pair_dict[tuple(sorted(p))] for p in jack_pairs] # get ratios from pair_dict fluidity_i = (2/((N-1)*(N-2)))*sum(jack_sample_fluidity) # calculate fluidity_i fluidity_i_list.append(fluidity_i) fluidity_i_mean = np.mean(fluidity_i_list) # calculate fluidity_i_mean from all fluidity_i's fluidity_variance = ((N-1)/N)*sum([(i-fluidity_i_mean)**2 for i in fluidity_i_list]) # calculate variance return pangenome_fluidity, fluidity_variance def subsample_multiprocess(combo_list): ''' Takes portions of the full combo_list and runs them on separate threads for faster processing. Calcualtes fluidity for each sample and returns list of fluidities. ''' N = len(combo_list[0]) # get N from number of genomes present sample_process_list = [] for sample in combo_list: pairs = tuple(combinations(sample,2)) pair_fluidity_list = [pair_dict[tuple(sorted(p))] for p in pairs] sample_fluidity = (2/(N*(N-1)))*sum(pair_fluidity_list) sample_process_list.append(sample_fluidity) return sample_process_list def genome_subsamples_fluidities(perm_list): ''' Compute fluidities from all possible combinations of genomes from 3 to N randomly sampled genomes (N is the max number of gneomes in sample, so only sampled once). Has a cut off of max subsamples at which point variances are calcualted as sample variances (n-1) instead of full population variances. ''' sub_fluid_dict = {} # {N genomes sampled : [list of fluidities from subsamples]} for N in range(3, iso_num + 1): sub_fluid_dict[N] = [] N_combos = list(combinations(iso_list, N)) if args.max_off: combos = N_combos else: if len(N_combos) > args.max_subsamples: combos = random.choices(N_combos, k=args.max_subsamples) perm_list.append(N) else: combos = N_combos print('Performing fluidity calculations on {} subsample combinations of {} genomes'.format(len(combos),N)) if not len(N_combos) == 1: chunk = round(len(combos)/args.cpus) split_combos = [combos[i:i + chunk] for i in range(0, len(combos), chunk)] pool = Pool(processes=args.cpus) results = pool.imap(subsample_multiprocess, split_combos) pool.close() pool.join() sub_fluid_dict[N].append(results) else: last_run = subsample_multiprocess(N_combos) sub_fluid_dict[N].append(last_run) sub_fluid_dict[N]=list(flatten(sub_fluid_dict[N])) print(len(sub_fluid_dict[N])) return sub_fluid_dict if __name__ == "__main__": ortho_dict = create_ortho_dictionary(input_file) iso_num = max([len(v) for v in ortho_dict.values()]) iso_list = list(set(itertools.chain.from_iterable([v for v in ortho_dict.values() if len(v) == iso_num]))) pair_dict = create_pair_dictionary(ortho_dict) pan_results = compute_fluidity_all_genomes() pan_fluidity = pan_results[0] pan_variance = pan_results[1] permutation_list = [] sub_fluid_dict = genome_subsamples_fluidities(permutation_list) create_fluidity_results(fluid_fig, fluid_results)
46.322388
135
0.669738
fc100b64b37cc26f7af79a394d9e388ede43f204
7,610
py
Python
osvolbackup/backup.py
CCSGroupInternational/osvolbackup
d0d93812a729acdb6c961c6bdd1cc2cb5c9c87f5
[ "Apache-2.0" ]
1
2019-02-27T12:59:49.000Z
2019-02-27T12:59:49.000Z
osvolbackup/backup.py
CCSGroupInternational/osvolbackup
d0d93812a729acdb6c961c6bdd1cc2cb5c9c87f5
[ "Apache-2.0" ]
4
2019-03-07T09:31:51.000Z
2019-03-12T15:19:40.000Z
osvolbackup/backup.py
CCSGroupInternational/osvolbackup
d0d93812a729acdb6c961c6bdd1cc2cb5c9c87f5
[ "Apache-2.0" ]
null
null
null
# # This module provides the Instance class that encapsulate some complex server instances related operations # from __future__ import print_function from json import loads from neutronclient.v2_0 import client as neutron_client from novaclient import client as nova_client from cinderclient import client as cinder_client from osvolbackup.server import ServerInstance, ServerNotFound from osvolbackup.osauth import get_session, VERSION from osvolbackup.verbose import vprint from time import time, sleep
42.044199
107
0.642181
fc107e595b21342f82e5161a579e155e45e95a50
13,314
py
Python
gammapy/estimators/profile.py
JohannesBuchner/gammapy
48769519f04b7df7b3e4580ebb61396445790bc3
[ "BSD-3-Clause" ]
1
2021-02-02T21:35:27.000Z
2021-02-02T21:35:27.000Z
gammapy/estimators/profile.py
kabartay/gammapy
015206d2418b1d254f1c9d3ea819ab0c5ece99e9
[ "BSD-3-Clause" ]
2
2018-08-09T20:49:13.000Z
2019-01-23T17:30:49.000Z
gammapy/estimators/profile.py
kabartay/gammapy
015206d2418b1d254f1c9d3ea819ab0c5ece99e9
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Tools to create profiles (i.e. 1D "slices" from 2D images).""" import numpy as np import scipy.ndimage from astropy import units as u from astropy.convolution import Box1DKernel, Gaussian1DKernel from astropy.coordinates import Angle from astropy.table import Table from .core import Estimator __all__ = ["ImageProfile", "ImageProfileEstimator"] # TODO: implement measuring profile along arbitrary directions # TODO: think better about error handling. e.g. MC based methods def normalize(self, mode="peak"): """Normalize profile to peak value or integral. Parameters ---------- mode : ['integral', 'peak'] Normalize image profile so that it integrates to unity ('integral') or the maximum value corresponds to one ('peak'). Returns ------- profile : `ImageProfile` Normalized image profile. """ table = self.table.copy() profile = self.table["profile"] if mode == "peak": norm = np.nanmax(profile) elif mode == "integral": norm = np.nansum(profile) else: raise ValueError(f"Invalid normalization mode: {mode!r}") table["profile"] /= norm if "profile_err" in table.colnames: table["profile_err"] /= norm return self.__class__(table)
31.928058
84
0.570828
fc109f21dbb2efc4b477a59e275c911d6c56316e
221
py
Python
ABC/abc001-abc050/abc007/b.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
2
2020-06-12T09:54:23.000Z
2021-05-04T01:34:07.000Z
ABC/abc001-abc050/abc007/b.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
961
2020-06-23T07:26:22.000Z
2022-03-31T21:34:52.000Z
ABC/abc001-abc050/abc007/b.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- if __name__ == '__main__': main()
13
48
0.466063
fc1121d14735ee8c8c982d686f96751beb66af86
7,270
py
Python
env/lib/python3.8/site-packages/versatileimagefield/mixins.py
crimergio/linux_test
5e688a06884ab10b4eaaad10a5d0df417a1c9b31
[ "CC-BY-4.0" ]
1
2021-04-07T16:25:20.000Z
2021-04-07T16:25:20.000Z
env/lib/python3.8/site-packages/versatileimagefield/mixins.py
crimergio/linux_test
5e688a06884ab10b4eaaad10a5d0df417a1c9b31
[ "CC-BY-4.0" ]
9
2021-03-19T03:06:53.000Z
2022-03-12T00:37:04.000Z
myvenv/lib/python3.6/site-packages/versatileimagefield/mixins.py
yog240597/saleor
b75a23827a4ec2ce91637f0afe6808c9d09da00a
[ "CC-BY-4.0" ]
1
2021-04-23T15:01:05.000Z
2021-04-23T15:01:05.000Z
"""versatileimagefield Field mixins.""" import os import re from .datastructures import FilterLibrary from .registry import autodiscover, versatileimagefield_registry from .settings import ( cache, VERSATILEIMAGEFIELD_CREATE_ON_DEMAND, VERSATILEIMAGEFIELD_SIZED_DIRNAME, VERSATILEIMAGEFIELD_FILTERED_DIRNAME ) from .validators import validate_ppoi autodiscover() filter_regex_snippet = r'__({registered_filters})__'.format( registered_filters='|'.join([ key for key, filter_cls in versatileimagefield_registry._filter_registry.items() ]) ) sizer_regex_snippet = r'-({registered_sizers})-(\d+)x(\d+)(?:-\d+)?'.format( registered_sizers='|'.join([ sizer_cls.get_filename_key_regex() for key, sizer_cls in versatileimagefield_registry._sizedimage_registry.items() ]) ) filter_regex = re.compile(filter_regex_snippet + '$') sizer_regex = re.compile(sizer_regex_snippet + '$') filter_and_sizer_regex = re.compile( filter_regex_snippet + sizer_regex_snippet + '$' ) def get_filtered_root_folder(self): """Return the location where filtered images are stored.""" folder, filename = os.path.split(self.name) return os.path.join(folder, VERSATILEIMAGEFIELD_FILTERED_DIRNAME, '') def get_sized_root_folder(self): """Return the location where sized images are stored.""" folder, filename = os.path.split(self.name) return os.path.join(VERSATILEIMAGEFIELD_SIZED_DIRNAME, folder, '') def get_filtered_sized_root_folder(self): """Return the location where filtered + sized images are stored.""" sized_root_folder = self.get_sized_root_folder() return os.path.join( sized_root_folder, VERSATILEIMAGEFIELD_FILTERED_DIRNAME ) def delete_matching_files_from_storage(self, root_folder, regex): """ Delete files in `root_folder` which match `regex` before file ext. Example values: * root_folder = 'foo/' * self.name = 'bar.jpg' * regex = re.compile('-baz') Result: * foo/bar-baz.jpg <- Deleted * foo/bar-biz.jpg <- Not deleted """ if not self.name: # pragma: no cover return try: directory_list, file_list = self.storage.listdir(root_folder) except OSError: # pragma: no cover pass else: folder, filename = os.path.split(self.name) basename, ext = os.path.splitext(filename) for f in file_list: if not f.startswith(basename) or not f.endswith(ext): # pragma: no cover continue tag = f[len(basename):-len(ext)] assert f == basename + tag + ext if regex.match(tag) is not None: file_location = os.path.join(root_folder, f) self.storage.delete(file_location) cache.delete( self.storage.url(file_location) ) print( "Deleted {file} (created from: {original})".format( file=os.path.join(root_folder, f), original=self.name ) ) def delete_filtered_images(self): """Delete all filtered images created from `self.name`.""" self.delete_matching_files_from_storage( self.get_filtered_root_folder(), filter_regex ) def delete_sized_images(self): """Delete all sized images created from `self.name`.""" self.delete_matching_files_from_storage( self.get_sized_root_folder(), sizer_regex ) def delete_filtered_sized_images(self): """Delete all filtered sized images created from `self.name`.""" self.delete_matching_files_from_storage( self.get_filtered_sized_root_folder(), filter_and_sizer_regex ) def delete_all_created_images(self): """Delete all images created from `self.name`.""" self.delete_filtered_images() self.delete_sized_images() self.delete_filtered_sized_images()
34.454976
90
0.599037
fc11ec393a7dcebc05211e5be317a56b62dc07c0
9,450
py
Python
differential_privacy/run_federated.py
HanGuo97/federated
7e64bfe86bb606fad2ea7bc2a0f8ebdb565546f9
[ "BSD-3-Clause" ]
330
2020-09-14T23:10:16.000Z
2022-03-30T19:49:19.000Z
differential_privacy/run_federated.py
HanGuo97/federated
7e64bfe86bb606fad2ea7bc2a0f8ebdb565546f9
[ "BSD-3-Clause" ]
52
2020-09-30T06:10:51.000Z
2022-03-31T19:25:16.000Z
differential_privacy/run_federated.py
HanGuo97/federated
7e64bfe86bb606fad2ea7bc2a0f8ebdb565546f9
[ "BSD-3-Clause" ]
119
2020-09-24T04:54:46.000Z
2022-03-31T21:46:57.000Z
# Copyright 2020, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs federated training with differential privacy on various tasks.""" import functools from absl import app from absl import flags from absl import logging import tensorflow as tf import tensorflow_federated as tff from utils import task_utils from utils import training_utils from utils import utils_impl from utils.optimizers import optimizer_utils with utils_impl.record_hparam_flags() as optimizer_flags: # Defining optimizer flags optimizer_utils.define_optimizer_flags('client') optimizer_utils.define_optimizer_flags('server') with utils_impl.record_hparam_flags() as shared_flags: # Federated training hyperparameters flags.DEFINE_integer('client_epochs_per_round', 1, 'Number of epochs in the client to take per round.') flags.DEFINE_integer('client_batch_size', 20, 'Batch size on the clients.') flags.DEFINE_integer('clients_per_round', 10, 'How many clients to sample per round.') flags.DEFINE_integer('client_datasets_random_seed', 1, 'Random seed for client sampling.') flags.DEFINE_integer( 'max_elements_per_client', None, 'Maximum number of ' 'elements for each training client. If set to None, all ' 'available examples are used.') # Training loop configuration flags.DEFINE_integer('total_rounds', 200, 'Number of total training rounds.') flags.DEFINE_string( 'experiment_name', None, 'The name of this experiment. Will be append to ' '--root_output_dir to separate experiment results.') flags.DEFINE_string('root_output_dir', '/tmp/fed_opt/', 'Root directory for writing experiment output.') flags.DEFINE_integer( 'rounds_per_eval', 1, 'How often to evaluate the global model on the validation dataset.') flags.DEFINE_integer( 'num_validation_examples', -1, 'The number of validation' 'examples to use. If set to -1, all available examples ' 'are used.') flags.DEFINE_integer('rounds_per_checkpoint', 50, 'How often to checkpoint the global model.') with utils_impl.record_hparam_flags() as dp_flags: # Differential privacy flags flags.DEFINE_float( 'clip', None, 'Clip value for fixed clipping or initial clip for ' 'adaptive clipping. If None, no clipping is used.') flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier. If None, non-DP aggregator is used.') flags.DEFINE_float( 'adaptive_clip_learning_rate', None, 'Adaptive clip learning rate. If ' 'None, clip adaptation is not used.') flags.DEFINE_float('target_unclipped_quantile', 0.5, 'Target unclipped quantile.') flags.DEFINE_boolean('uniform_weighting', False, 'Whether to weigh clients uniformly.') # Task specification with utils_impl.record_hparam_flags() as task_flags: task_utils.define_task_flags() FLAGS = flags.FLAGS def _write_hparam_flags(): """Returns an ordered dictionary of pertinent hyperparameter flags.""" hparam_dict = utils_impl.lookup_flag_values(shared_flags) # Update with optimizer flags corresponding to the chosen optimizers. opt_flag_dict = utils_impl.lookup_flag_values(optimizer_flags) opt_flag_dict = optimizer_utils.remove_unused_flags('client', opt_flag_dict) opt_flag_dict = optimizer_utils.remove_unused_flags('server', opt_flag_dict) hparam_dict.update(opt_flag_dict) # Update with task flags task_flag_dict = utils_impl.lookup_flag_values(task_flags) hparam_dict.update(task_flag_dict) training_utils.write_hparams_to_csv(hparam_dict, FLAGS.root_output_dir, FLAGS.experiment_name) if __name__ == '__main__': app.run(main)
42.760181
91
0.742963
fc11f9759b82ea3a650e3c9261504b9c80e953f0
417
py
Python
waymo_kitti_converter/tools/visual_point_cloud.py
anhvth/Pseudo_Lidar_V2
d7a29ffc811e315df25bba2a43acf288d4ceb30e
[ "MIT" ]
null
null
null
waymo_kitti_converter/tools/visual_point_cloud.py
anhvth/Pseudo_Lidar_V2
d7a29ffc811e315df25bba2a43acf288d4ceb30e
[ "MIT" ]
null
null
null
waymo_kitti_converter/tools/visual_point_cloud.py
anhvth/Pseudo_Lidar_V2
d7a29ffc811e315df25bba2a43acf288d4ceb30e
[ "MIT" ]
null
null
null
import open3d as o3d import numpy as np pc_load_pathname = '/home/caizhongang/github/waymo_kitti_converter/007283-000.bin' pc = np.fromfile(pc_load_pathname, dtype=np.float32).reshape(-1, 3) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pc) axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1, origin=[0,0,0]) visual = [pcd, axis] o3d.visualization.draw_geometries(visual)
34.75
82
0.781775
fc11f9bf036f8314167de520f758c42b9fa4aa63
2,306
py
Python
designate-8.0.0/designate/tests/test_api/test_v2/test_limits.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
145
2015-01-02T09:35:53.000Z
2021-12-14T17:03:53.000Z
designate/tests/test_api/test_v2/test_limits.py
sapcc/designate
c3f084751006a2fe7562f137930542c4759d6fd9
[ "Apache-2.0" ]
6
2015-03-15T00:22:27.000Z
2019-12-16T09:37:38.000Z
designate/tests/test_api/test_v2/test_limits.py
sapcc/designate
c3f084751006a2fe7562f137930542c4759d6fd9
[ "Apache-2.0" ]
109
2015-01-13T16:47:34.000Z
2021-03-15T13:18:48.000Z
# Copyright 2013 Hewlett-Packard Development Company, L.P. # # Author: Kiall Mac Innes <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from designate.tests.test_api.test_v2 import ApiV2TestCase
41.927273
76
0.667823
fc1210baa0e8a8267a154dad6a47b17fe2942673
1,696
py
Python
pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGLContext/scenegraph/nodepath.py
alexus37/AugmentedRealityChess
7f600ad153270feff12aa7aa86d7ed0a49ebc71c
[ "MIT" ]
1
2015-07-12T07:24:17.000Z
2015-07-12T07:24:17.000Z
pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGLContext/scenegraph/nodepath.py
alexus37/AugmentedRealityChess
7f600ad153270feff12aa7aa86d7ed0a49ebc71c
[ "MIT" ]
null
null
null
pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGLContext/scenegraph/nodepath.py
alexus37/AugmentedRealityChess
7f600ad153270feff12aa7aa86d7ed0a49ebc71c
[ "MIT" ]
1
2016-02-19T21:55:53.000Z
2016-02-19T21:55:53.000Z
"""node-path implementation for OpenGLContext """ from vrml.vrml97 import nodepath, nodetypes from vrml.cache import CACHE from OpenGLContext import quaternion from OpenGL.GL import glMultMatrixf
32
69
0.630896