hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
98e0601566ba652e64eedad746be214634e5e438
17,357
py
Python
MrWorldwide.py
AnonymousHacker1279/MrWorldwide
a782194e1ebe3a1cd73409e3d4dc9946700bcc0e
[ "MIT" ]
null
null
null
MrWorldwide.py
AnonymousHacker1279/MrWorldwide
a782194e1ebe3a1cd73409e3d4dc9946700bcc0e
[ "MIT" ]
null
null
null
MrWorldwide.py
AnonymousHacker1279/MrWorldwide
a782194e1ebe3a1cd73409e3d4dc9946700bcc0e
[ "MIT" ]
null
null
null
from PyQt6.QtWidgets import QApplication, QWidget, QFileDialog import PyQt6.QtCore as QtCore import PyQt6.QtGui as QtGui import sys, time, json, requests, traceback, configparser, os import MrWorldwideUI, ConfigurationUI, UpdateManagerUI version = "v1.0.0" class LangTypes: ENGLISH = "English" ARABIC = "Arabic" CHINESE = "Chinese" DUTCH = "Dutch" FRENCH = "French" GERMAN = "German" HINDI = "Hindi" INDONESIAN = "Indonesian" IRISH = "Irish" ITALIAN = "Italian" JAPANESE = "Japanese" KOREAN = "Korean" POLISH = "Polish" PORTUGUESE = "Portuguese" RUSSIAN = "Russian" SPANISH = "Spanish" TURKISH = "Turkish" UKRANIAN = "Ukranian" VIETNAMESE = "Vietnamese" class WorkerSignals(QtCore.QObject): callback = QtCore.pyqtSignal(str) class Worker(QtCore.QRunnable): def __init__(self, fn, *args, **kwargs): super(Worker, self).__init__() # Store constructor arguments (re-used for processing) self.fn = fn self.args = args self.kwargs = kwargs self.signals = WorkerSignals() # Add the callback to our kwargs self.kwargs['progressCallback'] = self.signals.callback @QtCore.pyqtSlot() def run(self): # Retrieve args/kwargs here; and fire processing using them try: result = self.fn(*self.args, **self.kwargs) except: print(traceback.print_exc()) else: self.signals.callback.emit(result) def readConfigurationFile(config): try: configFile = open("config.ini") configFile.close() return config.read("config.ini") except: config['general'] = {} config['general']['libretranslate_mirror'] = 'https://translate.astian.org/translate' config['defaults'] = {} config['defaults']['default_source_language'] = LangTypes.ENGLISH config['defaults']['default_target_language'] = LangTypes.SPANISH with open('config.ini', 'w') as configFile: config.write(configFile) configFile.close() return config class MrWorldwide(QWidget, MrWorldwideUI.Ui_Dialog, QtCore.QThread): selectedFile = "" selectedTargetLocation = "" sourceFileKeys = [] sourceFileValues = [] totalLangFileLines = 0 shouldAbort = False def run(self): # Setup resources logo = QtGui.QPixmap(resource_path("gui_resources/MrWorldwide.png")) icon = QtGui.QIcon(resource_path("gui_resources/MrWorldwide.png")) # Set the logos and images self.setWindowIcon(icon) # TODO: Custom icon self.logo.setPixmap(logo) self.config = configparser.ConfigParser() readConfigurationFile(self.config) # Setup button actions self.closeButton.clicked.connect(self.closeEvent) self.abortButton.clicked.connect(self.abortEvent) self.startButton.clicked.connect(self.preTranslate) self.openFileButton.clicked.connect(self.openFileEvent) self.targetLocationButton.clicked.connect(self.selectFileLocationEvent) self.configButton.clicked.connect(self.openConfiguration) # Setup dropdown boxes self.sourceLangBox.addItems([LangTypes.ENGLISH, LangTypes.ARABIC, LangTypes.CHINESE, LangTypes.DUTCH, LangTypes.FRENCH, LangTypes.GERMAN, LangTypes.HINDI, LangTypes.INDONESIAN, LangTypes.IRISH, LangTypes.ITALIAN, LangTypes.JAPANESE, LangTypes.KOREAN, LangTypes.POLISH, LangTypes.PORTUGUESE, LangTypes.RUSSIAN, LangTypes.SPANISH, LangTypes.TURKISH, LangTypes.UKRANIAN, LangTypes.VIETNAMESE]) self.targetLangBox.addItems([LangTypes.ENGLISH, LangTypes.ARABIC, LangTypes.CHINESE, LangTypes.DUTCH, LangTypes.FRENCH, LangTypes.GERMAN, LangTypes.HINDI, LangTypes.INDONESIAN, LangTypes.IRISH, LangTypes.ITALIAN, LangTypes.JAPANESE, LangTypes.KOREAN, LangTypes.POLISH, LangTypes.PORTUGUESE, LangTypes.RUSSIAN, LangTypes.SPANISH, LangTypes.TURKISH, LangTypes.UKRANIAN, LangTypes.VIETNAMESE]) self.sourceLangBox.setCurrentText(self.config["defaults"]["default_source_language"]) self.targetLangBox.setCurrentText(self.config["defaults"]["default_target_language"]) self.apiMirror = self.config["general"]["libretranslate_mirror"] # Open the configuration GUI def openConfiguration(self, event): self.configurationDialog = ConfigurationDialog() self.configurationDialog.setup(self) self.configurationDialog.show() # Refresh the configuration def refreshConfiguration(self): readConfigurationFile(self.config) self.sourceLangBox.setCurrentText(self.config["defaults"]["default_source_language"]) self.targetLangBox.setCurrentText(self.config["defaults"]["default_target_language"]) self.apiMirror = self.config["general"]["libretranslate_mirror"] # Close event, for handling closing of the program def closeEvent(self, event): global app self.close() app.exit() # Abort event, for shutting down translation functions def abortEvent(self, event): global shouldAbort global totalLangFileLines self.shouldAbort = True self.progressBar.setValue(0) self.progressBarLabel.setText("Idle") self.logAction("ABORT: Translation process canceled.") # Open file event, for selecting a language file and starting the read process def openFileEvent(self, event): self.totalLangFileLines = 0 self.selectedFile = QFileDialog.getOpenFileName(self, 'Select a Minecraft language file', '','JSON Files (*.json)')[0] self.fileSelectionBox.setText(str(self.selectedFile)) self.readLangFile() # Select output file location event, for setting the target location def selectFileLocationEvent(self, event): self.selectedTargetLocation = QFileDialog.getSaveFileName(self, 'Select an output location', 'target.json','JSON Files (*.json)')[0] self.targetLocationBox.setText(str(self.selectedTargetLocation)) # Read a language file and get the keys, values, and set various content on the GUI def readLangFile(self): global sourceFileValues global totalLangFileLines self.sourceFileValues = [] self.sourceFileKeys = [] # Read input JSON and make it usable startReadInputTime = time.time() if self.selectedFile != "": with open(self.selectedFile, 'r') as f: data = json.load(f) self.sourceFileKeys = data.keys() for item in data: if self.shouldAbort: return self.sourceFileValues.append(data[item]) self.totalLangFileLines = self.totalLangFileLines + 1 self.logAction("Reading input file took " + str(((time.time() - startReadInputTime) * 1000).__round__(3)) + " ms.") self.langFileEntryCounter.display(self.totalLangFileLines) self.logAction("Found " + str(self.totalLangFileLines) + " entries.") def preTranslate(self, event): global totalLangFileLines global selectedFile global selectedTargetLocation canProceed = True self.shouldAbort = False if self.selectedFile == "": self.logAction("ERROR: No language file selected.") canProceed = False elif self.totalLangFileLines == 0: self.logAction("ERROR: The selected language file is empty.") canProceed = False elif self.selectedTargetLocation == "": self.logAction("ERROR: No target location specified.") canProceed = False elif self.sourceLangBox.currentText() == self.targetLangBox.currentText(): self.logAction("ERROR: Target language is the same as the source") canProceed = False if canProceed: self.logAction("Beginning translations with a source language of " + self.sourceLangBox.currentText() + " and a target language of " + self.targetLangBox.currentText()) self.logAction("Using LibreTranslate mirror: " + self.config["general"]["libretranslate_mirror"]) self.disableButtonsDuringTranslations() self.threadpool = QtCore.QThreadPool() self.worker = Worker(self.startTranslations) self.worker.signals.callback.connect(self.threadCallbackHandler) self.threadpool.start(self.worker) def disableButtonsDuringTranslations(self): self.startButton.setDisabled(True) self.openFileButton.setDisabled(True) self.targetLocationButton.setDisabled(True) self.closeButton.setDisabled(True) self.configButton.setDisabled(True) def enableButtonsAfterTranslations(self): self.startButton.setDisabled(False) self.openFileButton.setDisabled(False) self.targetLocationButton.setDisabled(False) self.closeButton.setDisabled(False) self.configButton.setDisabled(False) def threadCallbackHandler(self, callback): try: exec(callback) except: traceback.print_exc() exctype, value = sys.exc_info()[:2] exctype, value, traceback.format_exc() app.exit() def startTranslations(self, progressCallback): global sourceFileValues global totalLangFileLines global shouldAbort progressCallback.emit('self.progressBarLabel.setText("Starting translations")') # Set query headers headers = { 'accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded', } # Really inefficient but it works ¯\_(ツ)_/¯ startQueryTime = time.time() responseJSON = [] progressCallback.emit('self.progressBarLabel.setText("Translating...")') itemLoopIteration = 1 try: requests.post(self.config["general"]["libretranslate_mirror"], headers=headers, data=None) hasFailedResolve = False except: requests.post('https://translate.astian.org/translate', headers=headers, data=None) progressCallback.emit('self.logAction("Failed to resolve LibreTranslate mirror. Defaulting to https://translate.astian.org/translate")') hasFailedResolve = True for item in self.sourceFileValues: if self.shouldAbort: return # Setup the progress bar, by mapping the total translation count to 100 progressCallback.emit('self.progressBar.setValue(int(((' + str(itemLoopIteration) + ' / self.totalLangFileLines) * 100).__round__(0)))') # Set query data data = { 'q': item, 'source': self.getLangIdentifier(self.sourceLangBox.currentText()), 'target': self.getLangIdentifier(self.targetLangBox.currentText()) } # Send the query and get the response if hasFailedResolve == True: response = requests.post('https://translate.astian.org/translate', headers=headers, data=data) else: response = requests.post(self.config["general"]["libretranslate_mirror"], headers=headers, data=data) responseData = json.loads(response.content.decode(response.encoding))["translatedText"] responseJSON.append(str(responseData).rstrip('"').replace('\u00ab', '').lstrip('"').replace('\u00bb', '')) itemLoopIteration = itemLoopIteration + 1 progressCallback.emit('self.logAction("Query time was " + str(time.time() - ' + str(startQueryTime) + ') + " seconds.")') progressCallback.emit('self.progressBarLabel.setText("Translations complete")') progressCallback.emit('self.saveToFile(' + str(responseJSON) + ')') # Save the JSON data to file def saveToFile(self, responseJSON): global sourceFileKeys global shouldAbort self.progressBarLabel.setText("Writing to file...") self.progressBar.setValue(0) with open(self.targetLocationBox.text(), 'w', encoding="UTF-8") as f: compiledDict = dict() responseJSONList = list(responseJSON) currentIteration = 0 for item in self.sourceFileKeys: if self.shouldAbort: return compiledDict.update({item: str(responseJSONList[currentIteration])}) currentIteration = currentIteration + 1 progBarVal = int(((currentIteration / self.totalLangFileLines) * 100).__round__(0)) self.progressBar.setValue(progBarVal) json.dump(compiledDict, f, separators=(',', ': '), indent=" ", ensure_ascii=False) self.enableButtonsAfterTranslations() self.logAction("Translations written to file.") self.progressBarLabel.setText("All tasks completed.") # Log information to the console def logAction(self, text: str): if self.logBox.text() == "No log information available. ": self.logBox.setText("") preparedLogText = ">> " + text else: preparedLogText = self.logBox.text() + "\n>> " + text self.logBox.setText(preparedLogText) self.logBoxScrollArea.verticalScrollBar().setValue(self.logBoxScrollArea.verticalScrollBar().maximum()) def getLangIdentifier(self, lang): if lang == LangTypes.ENGLISH: return "en" if lang == LangTypes.ARABIC: return "ar" if lang == LangTypes.CHINESE: return "zh" if lang == LangTypes.DUTCH: return "nl" if lang == LangTypes.FRENCH: return "fr" if lang == LangTypes.GERMAN: return "de" if lang == LangTypes.HINDI: return "hi" if lang == LangTypes.INDONESIAN: return "id" if lang == LangTypes.IRISH: return "ga" if lang == LangTypes.ITALIAN: return "it" if lang == LangTypes.JAPANESE: return "ja" if lang == LangTypes.KOREAN: return "ko" if lang == LangTypes.POLISH: return "pl" if lang == LangTypes.PORTUGUESE: return "pt" if lang == LangTypes.RUSSIAN: return "ru" if lang == LangTypes.SPANISH: return "es" if lang == LangTypes.TURKISH: return "tr" if lang == LangTypes.UKRANIAN: return "uk" if lang == LangTypes.VIETNAMESE: return "vi" # Initialize the program def __init__(self, parent=None): global app super(MrWorldwide, self).__init__(parent) self.setupUi(self) self.run() class ConfigurationDialog(QWidget, ConfigurationUI.Ui_Dialog): def __init__(self, parent=None): super(ConfigurationDialog, self).__init__(parent) self.setupUi(self) self.run() def run(self): # Setup resources logo = QtGui.QPixmap(resource_path("gui_resources/Configuration.png")) icon = QtGui.QIcon(resource_path("gui_resources/Configuration.png")) # Set the logos and images self.setWindowIcon(icon) # TODO: Custom icon self.logo.setPixmap(logo) # Read configuration self.config = configparser.ConfigParser() readConfigurationFile(self.config) # Setup dropdown boxes self.defaultSourceLangBox.addItems([LangTypes.ENGLISH, LangTypes.ARABIC, LangTypes.CHINESE, LangTypes.DUTCH, LangTypes.FRENCH, LangTypes.GERMAN, LangTypes.HINDI, LangTypes.INDONESIAN, LangTypes.IRISH, LangTypes.ITALIAN, LangTypes.JAPANESE, LangTypes.KOREAN, LangTypes.POLISH, LangTypes.PORTUGUESE, LangTypes.RUSSIAN, LangTypes.SPANISH, LangTypes.TURKISH, LangTypes.UKRANIAN, LangTypes.VIETNAMESE]) self.defaultTargetLangBox.addItems([LangTypes.ENGLISH, LangTypes.ARABIC, LangTypes.CHINESE, LangTypes.DUTCH, LangTypes.FRENCH, LangTypes.GERMAN, LangTypes.HINDI, LangTypes.INDONESIAN, LangTypes.IRISH, LangTypes.ITALIAN, LangTypes.JAPANESE, LangTypes.KOREAN, LangTypes.POLISH, LangTypes.PORTUGUESE, LangTypes.RUSSIAN, LangTypes.SPANISH, LangTypes.TURKISH, LangTypes.UKRANIAN, LangTypes.VIETNAMESE]) # Apply current configuration self.apiMirror.setText(self.config["general"]["libretranslate_mirror"]) self.defaultSourceLangBox.setCurrentText(self.config["defaults"]["default_source_language"]) self.defaultTargetLangBox.setCurrentText(self.config["defaults"]["default_target_language"]) # Setup button actions self.closeButton.clicked.connect(self.closeEvent) self.applyButton.clicked.connect(self.applyEvent) self.updateButton.clicked.connect(self.openUpdateManager) # Setup variables def setup(self, parent): self.parent = parent # Close event, for handling closing of the program def closeEvent(self, event): self.close() # Update event, for opening the update manager # Open the configuration GUI def openUpdateManager(self, event): self.updateManagerDialog = UpdateManagerDialog() self.updateManagerDialog.setup(self) self.updateManagerDialog.show() # Apply event, for handling applying of configurations def applyEvent(self, event): self.config = configparser.ConfigParser() self.config['general'] = {} self.config['general']['libretranslate_mirror'] = self.apiMirror.text() self.config['defaults'] = {} self.config['defaults']['default_source_language'] = self.defaultSourceLangBox.currentText() self.config['defaults']['default_target_language'] = self.defaultTargetLangBox.currentText() with open('config.ini', 'w') as configFile: self.config.write(configFile) configFile.close() self.parent.refreshConfiguration() self.close() class UpdateManagerDialog(QWidget, UpdateManagerUI.Ui_Dialog): def __init__(self, parent=None): super(UpdateManagerDialog, self).__init__(parent) self.setupUi(self) self.run() def run(self): # Setup resources logo = QtGui.QPixmap(resource_path("gui_resources/Updates.png")) icon = QtGui.QIcon(resource_path("gui_resources/Updates.png")) # Set the logos and images self.setWindowIcon(icon) # TODO: Custom icon self.logo.setPixmap(logo) # Setup button actions self.closeButton.clicked.connect(self.closeEvent) self.checkUpdatesButton.clicked.connect(self.checkForUpdatesEvent) global version self.currentVersionBox.setText(version) # Setup variables def setup(self, parent): self.parent = parent # Close event, for handling closing of the program def closeEvent(self, event): self.close() # Check for updates event def checkForUpdatesEvent(self, event): self.updateData = json.loads(requests.get("https://raw.githubusercontent.com/AnonymousHacker1279/MrWorldwide/master/update.json").text) self.latestVersionBox.setText(self.updateData["latest"]) self.changelogBox.setText(self.updateData["changelog"] + "\n\nDownload the update here: " + self.updateData["link"]) def main(): global app app = QApplication(sys.argv) app.setQuitOnLastWindowClosed(False) app.setStyle("Fusion") form = MrWorldwide() form.show() app.exec() def resource_path(relative_path): if hasattr(sys, '_MEIPASS'): return os.path.join(sys._MEIPASS, relative_path) return os.path.join(os.path.abspath('.'), relative_path) if __name__ == '__main__': main()
37.008529
399
0.75157
16,182
0.932089
0
0
239
0.013766
0
0
4,154
0.239272
98e15c2d42b427bf4ffb23842980cd80d4cd57bf
7,429
py
Python
tools/az_cli.py
google/cloud-forensics-utls
719093b4a229e5e97c30d93faabb1ccf3b6ee422
[ "Apache-2.0" ]
null
null
null
tools/az_cli.py
google/cloud-forensics-utls
719093b4a229e5e97c30d93faabb1ccf3b6ee422
[ "Apache-2.0" ]
null
null
null
tools/az_cli.py
google/cloud-forensics-utls
719093b4a229e5e97c30d93faabb1ccf3b6ee422
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Demo CLI tool for Azure.""" import os from datetime import datetime from typing import TYPE_CHECKING from Crypto.PublicKey import RSA from libcloudforensics import logging_utils from libcloudforensics.providers.azure.internal import account from libcloudforensics.providers.azure.internal import monitoring from libcloudforensics.providers.azure import forensics logging_utils.SetUpLogger(__name__) logger = logging_utils.GetLogger(__name__) if TYPE_CHECKING: import argparse def ListInstances(args: 'argparse.Namespace') -> None: """List instances in Azure subscription. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ az_account = account.AZAccount(args.default_resource_group_name) instances = az_account.compute.ListInstances( resource_group_name=args.resource_group_name) logger.info('Instances found:') for instance in instances.values(): boot_disk = instance.GetBootDisk() logger.info( 'Name: {0:s}, Boot disk: {1:s}'.format(instance.name, boot_disk.name)) def ListDisks(args: 'argparse.Namespace') -> None: """List disks in Azure subscription. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ az_account = account.AZAccount(args.default_resource_group_name) disks = az_account.compute.ListDisks( resource_group_name=args.resource_group_name) logger.info('Disks found:') for disk_name, disk in disks.items(): logger.info('Name: {0:s}, Region: {1:s}'.format(disk_name, disk.region)) def CreateDiskCopy(args: 'argparse.Namespace') -> None: """Create an Azure disk copy. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ logger.info('Starting disk copy...') disk_copy = forensics.CreateDiskCopy(args.default_resource_group_name, instance_name=args.instance_name, disk_name=args.disk_name, disk_type=args.disk_type, region=args.region, src_profile=args.src_profile, dst_profile=args.dst_profile) logger.info( 'Done! Disk {0:s} successfully created. You will find it in ' 'your Azure subscription under the name {1:s}.'.format( disk_copy.resource_id, disk_copy.name)) def StartAnalysisVm(args: 'argparse.Namespace') -> None: """Start forensic analysis VM. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ attach_disks = [] if args.attach_disks: attach_disks = args.attach_disks.split(',') # Check if attach_disks parameter exists and if there # are any empty entries. if not (attach_disks and all(elements for elements in attach_disks)): logger.error('error: parameter --attach_disks: {0:s}'.format( args.attach_disks)) return ssh_public_key = args.ssh_public_key if not ssh_public_key: # According to https://docs.microsoft.com/cs-cz/samples/azure-samples/ # resource-manager-python-template-deployment/resource-manager-python- # template-deployment/ there's no API to generate a new SSH key pair in # Azure, so we do this manually... ssh_public_key = _GenerateSSHKeyPair(args.instance_name) logger.info('Starting analysis VM...') vm = forensics.StartAnalysisVm(args.default_resource_group_name, args.instance_name, int(args.disk_size), ssh_public_key, cpu_cores=int(args.cpu_cores), memory_in_mb=int(args.memory_in_mb), region=args.region, attach_disks=attach_disks, dst_profile=args.dst_profile) logger.info('Analysis VM started.') logger.info('Name: {0:s}, Started: {1:s}'.format(vm[0].name, str(vm[1]))) def _GenerateSSHKeyPair(vm_name: str) -> str: """Generate a SSH key pair and returns its public key. Both public and private keys will be saved in the current directory. Args: vm_name (str): The VM name for which to generate the key pair. Returns: str: The public key for the generated SSH key pair. Raises: ValueError: If vm_name is None. """ if not vm_name: raise ValueError('Parameter vm_name must not be None.') logger.info('Generating a new SSH key pair for VM: {0:s}'.format(vm_name)) key = RSA.generate(2048) key_name = '{0:s}-ssh'.format(vm_name) public_key = key.publickey().exportKey('OpenSSH') path_public_key = os.path.join(os.getcwd(), key_name + '.pub') private_key = key.exportKey('PEM') path_private_key = os.path.join(os.getcwd(), key_name + '.pem') with open(path_private_key, 'wb') as f: f.write(private_key) with open(path_public_key, 'wb') as f: f.write(public_key) logger.info('SSH key pair generated. Public key saved in {0:s}, private key ' 'saved in {1:s}'.format(path_public_key, path_private_key)) return public_key.decode('utf-8') def ListMetrics(args: 'argparse.Namespace') -> None: """List Azure Monitoring metrics for a resource. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ az_account = account.AZAccount(args.default_resource_group_name) az_monitoring = monitoring.AZMonitoring(az_account) metrics = az_monitoring.ListAvailableMetricsForResource(args.resource_id) for metric in metrics: logger.info('Available metric: {0:s}'.format(metric)) def QueryMetrics(args: 'argparse.Namespace') -> None: """Query Azure Monitoring metrics for a resource. Args: args (argparse.Namespace): Arguments from ArgumentParser. Raises: RuntimeError: If from_date or to_date could not be parsed. """ az_account = account.AZAccount(args.default_resource_group_name) az_monitoring = monitoring.AZMonitoring(az_account) from_date, to_date = args.from_date, args.to_date if from_date and to_date: try: from_date = datetime.strptime(from_date, '%Y-%m-%dT%H:%M:%SZ') to_date = datetime.strptime(to_date, '%Y-%m-%dT%H:%M:%SZ') except ValueError as exception: raise RuntimeError( 'Cannot parse date: {0!s}'.format(exception)) from exception metrics = az_monitoring.GetMetricsForResource( args.resource_id, metrics=args.metrics, from_date=from_date, to_date=to_date, interval=args.interval, aggregation=args.aggregation or 'Total', qfilter=args.qfilter) for metric, metric_value in metrics.items(): logger.info('Metric: {0:s}'.format(metric)) for timestamp, value in metric_value.items(): logger.info(' Timestamp: {0:s}, value: {1:s}'.format(timestamp, value))
35.208531
79
0.679768
0
0
0
0
0
0
0
0
2,852
0.383901
98e581895367116db85fb5bcc24f1ed7b42ed751
2,181
py
Python
bbio/bbio.py
timgates42/PyBBIO
0d46115059ed7ec0c17afb6dd7ed2f507b4f2b8a
[ "MIT" ]
102
2015-01-29T04:28:49.000Z
2022-01-03T18:27:50.000Z
bbio/bbio.py
timgates42/PyBBIO
0d46115059ed7ec0c17afb6dd7ed2f507b4f2b8a
[ "MIT" ]
62
2015-01-29T11:05:13.000Z
2019-12-03T04:30:34.000Z
bbio/bbio.py
timgates42/PyBBIO
0d46115059ed7ec0c17afb6dd7ed2f507b4f2b8a
[ "MIT" ]
58
2015-02-10T14:31:18.000Z
2022-03-29T13:24:03.000Z
""" PyBBIO - bbio.py Copyright (c) 2012-2015 - Alexander Hiam <[email protected]> Released under the MIT license https://github.com/graycatlabs/PyBBIO """ import sys, atexit from .platform import platform_init, platform_cleanup from .common import ADDITIONAL_CLEANUP, util_init def bbio_init(): """ Pre-run initialization, i.e. starting module clocks, etc. """ util_init() platform_init() def bbio_cleanup(): """ Post-run cleanup, i.e. stopping module clocks, etc. """ # Run user cleanup routines: for cleanup in ADDITIONAL_CLEANUP: try: cleanup() except Exception as e: # Something went wrong with one of the cleanup routines, but we # want to keep going; just print the error and continue print "*Exception raised trying to call cleanup routine '%s':\n %s" %\ (cleanup, e) platform_cleanup() # The following code detects if Python is running interactively, # and if so initializes PyBBIO on import and registers PyBBIO's # cleanup to be called at exit, otherwise it defines the run() and # stop() methods for the file based control flow: import __main__ if not hasattr(__main__, '__file__'): # We're in the interpreter, see: # http://stackoverflow.com/questions/2356399/tell-if-python-is-in-interactive-mode bbio_init() print "PyBBIO initialized" def interactive_cleanup(): bbio_cleanup() print "Finished PyBBIO cleanup" atexit.register(interactive_cleanup) else: bbio_init() atexit.register(bbio_cleanup) # Imported in a Python file, define run() and stop(): def run(setup, loop): """ The main loop; must be passed a setup and a loop function. First the setup function will be called once, then the loop function wil be called continuously until a stop signal is raised, e.g. CTRL-C or a call to the stop() function from within the loop. """ try: setup() while (True): loop() except KeyboardInterrupt: # Manual exit signal, clean up and exit happy exit(0) def stop(): """ Preferred way for a program to stop itself. """ raise KeyboardInterrupt # Expected happy stop condition in run()
32.073529
85
0.692343
0
0
0
0
0
0
0
0
1,384
0.634571
98e5e44eba98b059fc30bc12fb7cf43b26e82f78
365
py
Python
app/models/endeavors.py
theLaborInVain/kdm-manager-api
fa8744c9b8a739262d1b94900648254cc69d16e1
[ "MIT" ]
2
2020-03-04T13:43:45.000Z
2020-11-03T20:34:21.000Z
app/models/endeavors.py
theLaborInVain/kdm-manager-api
fa8744c9b8a739262d1b94900648254cc69d16e1
[ "MIT" ]
64
2019-07-19T19:19:50.000Z
2022-03-03T21:19:28.000Z
app/models/endeavors.py
theLaborInVain/kdm-manager-api
fa8744c9b8a739262d1b94900648254cc69d16e1
[ "MIT" ]
null
null
null
""" The Endeavors asset collection has a number of irregular assets. Be careful writing any custom code here. """ from app.assets import endeavors from app import models class Assets(models.AssetCollection): def __init__(self, *args, **kwargs): self.root_module = endeavors models.AssetCollection.__init__(self, *args, **kwargs)
20.277778
79
0.706849
180
0.493151
0
0
0
0
0
0
122
0.334247
98e710a1b1cb3e42d4cbdb66250958e21888c440
804
py
Python
interface/inter5.py
CeciliaDornelas/Python
883959ed2e10cd8e8ace2b640e1944edc0c1d8a3
[ "MIT" ]
null
null
null
interface/inter5.py
CeciliaDornelas/Python
883959ed2e10cd8e8ace2b640e1944edc0c1d8a3
[ "MIT" ]
null
null
null
interface/inter5.py
CeciliaDornelas/Python
883959ed2e10cd8e8ace2b640e1944edc0c1d8a3
[ "MIT" ]
null
null
null
import sys from PyQt5 import QtCore, QtWidgets from PyQt5.QtWidgets import QMainWindow, QLabel, QGridLayout, QWidget from PyQt5.QtCore import QSize class HelloWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.setMinimumSize(QSize(280, 120)) self.setWindowTitle("Olá, Mundo! Exemplo PyQT5") centralWidget = QWidget(self) self.setCentralWidget(centralWidget) gridLayout = QGridLayout(self) centralWidget.setLayout(gridLayout) title = QLabel("Olá Mundo para PyQt", self) title.setAlignment(QtCore.Qt.AlignCenter) gridLayout.addWidget(title, 0, 0) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) mainWin = HelloWindow() mainWin.show() sys.exit( app.exec_() )
26.8
69
0.691542
508
0.630273
0
0
0
0
0
0
60
0.074442
98e753afbcdb25feef4bb770897b167108c721b5
1,523
py
Python
setup.py
notwa/scipybiteopt
62e1510789b680483ad867984849af215a9848c5
[ "MIT" ]
null
null
null
setup.py
notwa/scipybiteopt
62e1510789b680483ad867984849af215a9848c5
[ "MIT" ]
null
null
null
setup.py
notwa/scipybiteopt
62e1510789b680483ad867984849af215a9848c5
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys import numpy from setuptools import setup, Extension #include markdown description in pip page this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() # https://github.com/pypa/packaging-problems/issues/84 # no sensible way to include header files by default headers = ['scipybiteopt/biteopt.h', 'scipybiteopt/biteoptort.h', 'scipybiteopt/spheropt.h', 'scipybiteopt/biteaux.h', 'scipybiteopt/nmsopt.h'] def get_c_sources(files, include_headers=False): return files + (headers if include_headers else []) module1 = Extension('scipybiteopt.biteopt', sources=get_c_sources(['scipybiteopt/biteopt_py_ext.cpp'], include_headers=(sys.argv[1] == "sdist")), language="c++", include_dirs=[numpy.get_include()], extra_compile_args=['-std=c++11', '-O3'] if os.name != 'nt' else ['-O3']) setup(name='scipybiteopt', version='1.1.1', description="Scipy style wrapper for Aleksey Vaneev's BiteOpt", author='dschmitz89', author_email='[email protected]', license='MIT', long_description=long_description, long_description_content_type='text/markdown', url = 'https://github.com/dschmitz89/scipybiteopt', packages = ['scipybiteopt'], ext_modules = [module1], install_requires=[ 'numpy'] )
35.418605
119
0.670387
0
0
0
0
0
0
0
0
601
0.394616
98e97be18c63f8ef9e8f59a9c1da5ea5229f6454
2,619
py
Python
qiskit_experiments/data_processing/__init__.py
yoshida-ryuhei/qiskit-experiments
82561acf86b407dcda0a9ec69fe18de2b0a592a2
[ "Apache-2.0" ]
null
null
null
qiskit_experiments/data_processing/__init__.py
yoshida-ryuhei/qiskit-experiments
82561acf86b407dcda0a9ec69fe18de2b0a592a2
[ "Apache-2.0" ]
null
null
null
qiskit_experiments/data_processing/__init__.py
yoshida-ryuhei/qiskit-experiments
82561acf86b407dcda0a9ec69fe18de2b0a592a2
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ =========================================================== Data Processing (:mod:`qiskit_experiments.data_processing`) =========================================================== .. currentmodule:: qiskit_experiments.data_processing Data processing is the act of taking the data returned by the backend and converting it into a format that can be analyzed. It is implemented as a chain of data processing steps that transform various input data, e.g. IQ data, into a desired format, e.g. population, which can be analyzed. These data transformations may consist of multiple steps, such as kerneling and discrimination. Each step is implemented by a :class:`~qiskit_experiments.data_processing.data_action.DataAction` also called a `node`. The data processor implements the :meth:`__call__` method. Once initialized, it can thus be used as a standard python function: .. code-block:: python processor = DataProcessor(input_key="memory", [Node1(), Node2(), ...]) out_data = processor(in_data) The data input to the processor is a sequence of dictionaries each representing the result of a single circuit. The output of the processor is a numpy array whose shape and data type depend on the combination of the nodes in the data processor. Uncertainties that arise from quantum measurements or finite sampling can be taken into account in the nodes: a standard error can be generated in a node and can be propagated through the subsequent nodes in the data processor. Correlation between computed values is also considered. Classes ======= .. autosummary:: :toctree: ../stubs/ DataProcessor DataAction TrainableDataAction Data Processing Nodes ===================== .. autosummary:: :toctree: ../stubs/ Probability MarginalizeCounts ToImag ToReal SVD AverageData BasisExpectationValue MinMaxNormalize """ from .data_action import DataAction, TrainableDataAction from .nodes import ( Probability, MarginalizeCounts, ToImag, ToReal, SVD, AverageData, BasisExpectationValue, MinMaxNormalize, ) from .data_processor import DataProcessor
31.178571
97
0.71974
0
0
0
0
0
0
0
0
2,345
0.89538
98e9db17617d3ce2f8dbdda50ebfbe93ce11f25b
10,064
py
Python
models/pointnet2_sem_seg_msg_haptic.py
yufeiwang63/Pointnet_Pointnet2_pytorch
f9078a71b973c13ae7ffa897e142dc7b1e8e88be
[ "MIT" ]
null
null
null
models/pointnet2_sem_seg_msg_haptic.py
yufeiwang63/Pointnet_Pointnet2_pytorch
f9078a71b973c13ae7ffa897e142dc7b1e8e88be
[ "MIT" ]
null
null
null
models/pointnet2_sem_seg_msg_haptic.py
yufeiwang63/Pointnet_Pointnet2_pytorch
f9078a71b973c13ae7ffa897e142dc7b1e8e88be
[ "MIT" ]
null
null
null
import torch.nn as nn import torch.nn.functional as F from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg,PointNetFeaturePropagation class get_shared_model(nn.Module): def __init__(self, use_batch_norm, num_classes, num_input_channel=7): super(get_shared_model, self).__init__() self.sa1 = PointNetSetAbstractionMsg(1024, [0.05, 0.1], [16, 32], num_input_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(256, [0.1, 0.2], [16, 32], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.sa3 = PointNetSetAbstractionMsg(64, [0.2, 0.4], [16, 32], 128+128, [[128, 196, 256], [128, 196, 256]], use_batch_norm=use_batch_norm) self.sa4 = PointNetSetAbstractionMsg(16, [0.4, 0.8], [16, 32], 256+256, [[256, 256, 512], [256, 384, 512]], use_batch_norm=use_batch_norm) self.fp4 = PointNetFeaturePropagation(512+512+256+256, [256, 256], use_batch_norm=use_batch_norm) self.fp3 = PointNetFeaturePropagation(128+128+256, [256, 256], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+256, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) self.conv1 = nn.Conv1d(128, 128, 1) if use_batch_norm: self.bn1 = nn.BatchNorm1d(128) self.drop1 = nn.Dropout(0.5) self.conv2 = nn.Conv1d(128, num_classes, 1) # for normal prediction self.conv_normal = nn.Conv1d(128, 3, 1) # for force prediction self.conv_force = nn.Conv1d(128, 1, 1) self.use_batch_norm = use_batch_norm def forward(self, xyz): l0_points = xyz l0_xyz = xyz[:,:3,:] l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l4_xyz, l4_points = self.sa4(l3_xyz, l3_points) l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points) l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) if self.use_batch_norm: x = self.drop1(F.relu(self.bn1(self.conv1(l0_points)))) else: x = F.relu(self.conv1(l0_points)) contact = self.conv2(x) normal = self.conv_normal(x) normal = F.normalize(normal, dim=1) force = self.conv_force(x) # this is not needed with BCElogit loss # x = F.log_softmax(x, dim=1) contact = contact.permute(0, 2, 1) normal = normal.permute(0, 2, 1) force = force.permute(0, 2, 1) return (contact, normal, force), l4_points class get_model(nn.Module): def __init__(self, use_batch_norm, num_out_channel, num_in_channel=7, target='contact', radius_list=[[0.05, 0.1], [0.1, 0.2], [0.2, 0.4], [0.4, 0.8]], npoint_list=[1024, 256, 64, 16], sample_point_1_list=[16, 16, 16, 16], sample_point_2_list=[32, 32, 32, 32], layer=4, downsample=True, dropout=True, track_running_stats=True, mlp1_size=[16, 16, 32], mlp2_size=[32, 32, 64], interpolation_mlp_size=[128, 128, 128] ): print("using layer: ", layer) super(get_model, self).__init__() self.layer = layer if self.layer == 4: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(npoint_list[1], radius_list[1], [sample_point_1_list[1], sample_point_2_list[1]], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.sa3 = PointNetSetAbstractionMsg(npoint_list[2], radius_list[2], [sample_point_1_list[2], sample_point_2_list[2]], 128+128, [[128, 196, 256], [128, 196, 256]], use_batch_norm=use_batch_norm) self.sa4 = PointNetSetAbstractionMsg(npoint_list[3], radius_list[3], [sample_point_1_list[3], sample_point_2_list[3]], 256+256, [[256, 256, 512], [256, 384, 512]], use_batch_norm=use_batch_norm) self.fp4 = PointNetFeaturePropagation(512+512+256+256, [256, 256], use_batch_norm=use_batch_norm) self.fp3 = PointNetFeaturePropagation(128+128+256, [256, 256], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+256, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) elif self.layer == 3: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(npoint_list[1], radius_list[1], [sample_point_1_list[1], sample_point_2_list[1]], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.sa3 = PointNetSetAbstractionMsg(npoint_list[2], radius_list[2], [sample_point_1_list[2], sample_point_2_list[2]], 128+128, [[128, 196, 256], [128, 196, 256]], use_batch_norm=use_batch_norm) self.fp3 = PointNetFeaturePropagation(128+128+256+256, [256, 256], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+256, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) elif self.layer == 2: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(npoint_list[1], radius_list[1], [sample_point_1_list[1], sample_point_2_list[1]], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+128+128, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) elif self.layer == 1: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [mlp1_size, mlp2_size], use_batch_norm=use_batch_norm, downsample=downsample, track_running_stats=track_running_stats) self.fp1 = PointNetFeaturePropagation(mlp1_size[-1] + mlp2_size[-1], interpolation_mlp_size, use_batch_norm=use_batch_norm, track_running_stats=track_running_stats) self.drop_out = dropout self.conv1 = nn.Conv1d(128, 128, 1) if use_batch_norm: self.bn1 = nn.BatchNorm1d(128, track_running_stats=track_running_stats) if self.drop_out: self.drop1 = nn.Dropout(0.5) self.conv2 = nn.Conv1d(128, num_out_channel, 1) self.use_batch_norm = use_batch_norm self.target = target def forward(self, xyz): l0_points = xyz l0_xyz = xyz[:,:3,:] if self.layer == 4: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l4_xyz, l4_points = self.sa4(l3_xyz, l3_points) l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points) l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) elif self.layer == 3: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) elif self.layer == 2: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) elif self.layer == 1: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) if self.use_batch_norm: if self.drop_out: x = self.drop1(F.relu(self.bn1(self.conv1(l0_points)))) else: x = F.relu(self.bn1(self.conv1(l0_points))) else: x = F.relu(self.conv1(l0_points)) x = self.conv2(x) # this is not needed with BCElogit loss # x = F.log_softmax(x, dim=1) if self.target == 'normal': x = F.normalize(x, dim=1) x = x.permute(0, 2, 1) # return x, l4_points return x, None class get_loss_original(nn.Module): def __init__(self): super(get_loss_original, self).__init__() def forward(self, pred, target, trans_feat, weight): total_loss = F.nll_loss(pred, target, weight=weight) return total_loss class get_loss(nn.Module): def __init__(self): super(get_loss, self).__init__() self.loss = nn.BCEWithLogitsLoss() def forward(self, pred, target, trans_feat, weight): total_loss = self.loss(pred, target) return total_loss if __name__ == '__main__': import torch model = get_model(13) xyz = torch.rand(6, 9, 2048) (model(xyz))
54.695652
207
0.64527
9,757
0.969495
0
0
0
0
0
0
244
0.024245
98eaf0ff524a7491427b7b19f617c3c6aaefc6a4
100
py
Python
backend/src/notifications/admin.py
YujithIsura/request-management
3c683274881ef7798779e03a24042034edcd941c
[ "MIT" ]
3
2021-11-21T20:46:00.000Z
2021-12-02T14:47:18.000Z
notification/admin.py
lautarianoo/django_social_network
ec83af7267f830a2463cb591138dae1a088f9a4e
[ "BSD-3-Clause" ]
169
2020-04-09T08:39:25.000Z
2021-09-03T01:07:01.000Z
notification/admin.py
lautarianoo/django_social_network
ec83af7267f830a2463cb591138dae1a088f9a4e
[ "BSD-3-Clause" ]
13
2020-04-05T20:53:11.000Z
2022-02-28T14:52:17.000Z
from django.contrib import admin from .models import Notification admin.site.register(Notification)
25
33
0.85
0
0
0
0
0
0
0
0
0
0
98eb89e6efe4554abbe1506f10c8ccfbcb3dedf8
2,234
py
Python
HoverSlam.py
GiantWaffleCode/WafflePython
d3e85ce6d9c792e7338eb825307f7bb48113742a
[ "MIT" ]
13
2020-10-13T00:19:21.000Z
2020-12-31T02:38:58.000Z
HoverSlam.py
GiantWaffleCode/WafflePython
d3e85ce6d9c792e7338eb825307f7bb48113742a
[ "MIT" ]
null
null
null
HoverSlam.py
GiantWaffleCode/WafflePython
d3e85ce6d9c792e7338eb825307f7bb48113742a
[ "MIT" ]
10
2020-10-13T00:19:52.000Z
2020-12-31T02:39:42.000Z
import krpc import time import math from simple_pid import PID conn = krpc.connect(name="UI Test") vessel = conn.space_center.active_vessel kerbin_frame = vessel.orbit.body.reference_frame orb_frame = vessel.orbital_reference_frame srf_frame = vessel.surface_reference_frame surface_gravity = vessel.orbit.body.surface_gravity current_met = conn.add_stream(getattr, vessel, 'met') current_roll = conn.add_stream(getattr, vessel.flight(), 'roll') current_pitch = conn.add_stream(getattr, vessel.flight(), 'pitch') current_heading = conn.add_stream(getattr, vessel.flight(), 'heading') current_alt = conn.add_stream(getattr, vessel.flight(), 'surface_altitude') lowest = conn.add_stream(vessel.bounding_box, srf_frame) current_drag = conn.add_stream(getattr, vessel.flight(), 'drag') current_aero = conn.add_stream(getattr, vessel.flight(), 'aerodynamic_force') current_speed = conn.add_stream(getattr, vessel.flight(kerbin_frame), 'speed') vessel.control.activate_next_stage() vessel.control.sas = True time.sleep(.2) vessel.control.sas_mode = conn.space_center.SASMode.retrograde def bottom_altitude(): return max(0, current_alt() - abs(lowest()[0][0])) for engine in vessel.parts.engines: engine.gimbal_locked = True while True: aero_amp = math.sqrt(current_aero()[0] ** 2 + current_aero()[1] ** 2 + current_aero()[2] ** 2) time_to_zero = current_speed() / ((((vessel.max_thrust * .9) + aero_amp) / vessel.mass) + vessel.orbit.body.surface_gravity) if (time_to_zero * current_speed()) >= bottom_altitude() - current_speed(): print(current_speed()) print(f"Start Hover Slam Burn") vessel.control.throttle = .9 break while current_speed() > 50: print(current_speed()) time.sleep(.01) pass print(f"Switch to Stab") for leg in vessel.parts.legs: leg.deployed = True pid1 = PID(.15, 0, .5, setpoint=0) pid1.output_limits = (0, 1) pid1.sample_time = 0.01 while bottom_altitude() > 1: vessel.control.throttle = pid1(bottom_altitude()) # pid1.setpoint *= .98 time.sleep(.01) vessel.control.sas_mode = conn.space_center.SASMode.radial vessel.control.throttle = 0
33.848485
91
0.705461
0
0
0
0
0
0
0
0
149
0.066697
98ee2fa044a20258e55e590fef0af310684f4e34
433
py
Python
tests/unit_tests/cx_core/integration/integration_test.py
clach04/controllerx
b5cd92d3371c352c50f7d5ba7dae4538d7c15dfe
[ "MIT" ]
204
2020-01-18T10:12:13.000Z
2022-03-27T09:40:17.000Z
tests/unit_tests/cx_core/integration/integration_test.py
clach04/controllerx
b5cd92d3371c352c50f7d5ba7dae4538d7c15dfe
[ "MIT" ]
329
2020-01-17T17:18:53.000Z
2022-03-29T11:20:30.000Z
tests/unit_tests/cx_core/integration/integration_test.py
clach04/controllerx
b5cd92d3371c352c50f7d5ba7dae4538d7c15dfe
[ "MIT" ]
66
2020-01-19T20:17:21.000Z
2022-03-13T15:03:41.000Z
from cx_core import integration as integration_module from cx_core.controller import Controller def test_get_integrations(fake_controller: Controller): integrations = integration_module.get_integrations(fake_controller, {}) inteagration_names = {i.name for i in integrations} assert inteagration_names == { "z2m", "zha", "deconz", "state", "mqtt", "lutron_caseta", }
27.0625
75
0.678984
0
0
0
0
0
0
0
0
46
0.106236
98ee487f9a2345f91b85bcae94f9855580455dc1
478
py
Python
asystem-adoc/src/main/template/python/script_util.py
ggear/asystem_archive
b97f67218e8aa60991fba386c9e73d27d20d6c47
[ "Apache-2.0" ]
null
null
null
asystem-adoc/src/main/template/python/script_util.py
ggear/asystem_archive
b97f67218e8aa60991fba386c9e73d27d20d6c47
[ "Apache-2.0" ]
2
2021-03-25T21:27:09.000Z
2022-02-11T03:38:48.000Z
asystem-adoc/src/main/template/python/script_util.py
ggear/asystem_archive
b97f67218e8aa60991fba386c9e73d27d20d6c47
[ "Apache-2.0" ]
null
null
null
############################################################################### # # Python script utilities as included from the cloudera-framework-assembly, # do not edit directly # ############################################################################### import os import re def qualify(path): return path if (re.match(r'[.]*://[.]*', path) or 'CF_HADOOP_DEFAULT_FS' not in os.environ) \ else os.environ['CF_HADOOP_DEFAULT_FS'] + path
29.875
79
0.433054
0
0
0
0
0
0
0
0
315
0.658996
98ee7596428318903272a404f3751220eec8a490
11,760
py
Python
datapackage_pipelines/web/server.py
gperonato/datapackage-pipelines
72b98918db1c19590586a3a85c5b087227cbbc3b
[ "MIT" ]
109
2016-09-01T08:41:55.000Z
2021-11-10T10:08:35.000Z
datapackage_pipelines/web/server.py
gperonato/datapackage-pipelines
72b98918db1c19590586a3a85c5b087227cbbc3b
[ "MIT" ]
144
2016-08-30T16:26:50.000Z
2021-04-18T09:06:12.000Z
datapackage_pipelines/web/server.py
gperonato/datapackage-pipelines
72b98918db1c19590586a3a85c5b087227cbbc3b
[ "MIT" ]
34
2016-09-05T12:46:53.000Z
2022-03-05T01:53:49.000Z
import datetime import os from io import BytesIO import logging from functools import wraps from copy import deepcopy from collections import Counter import slugify import yaml import mistune import requests from flask import \ Blueprint, Flask, render_template, abort, send_file, make_response from flask_cors import CORS from flask_jsonpify import jsonify from flask_basicauth import BasicAuth from datapackage_pipelines.status import status_mgr from datapackage_pipelines.utilities.stat_utils import user_facing_stats YAML_DUMPER = yaml.CDumper if 'CDumper' in yaml.__dict__ else yaml.Dumper def datestr(x): if x is None: return '' return str(datetime.datetime.fromtimestamp(x)) def yamlize(x): ret = yaml.dump(x, default_flow_style=False, Dumper=YAML_DUMPER) return ret markdown = mistune.Markdown(hard_wrap=True) status = status_mgr() def make_hierarchies(statuses): def group(lvl): pipelines = list(filter(lambda x: len(x['id']) == 1, lvl)) children_ = list(filter(lambda x: len(x['id']) > 1, lvl)) groups_ = {} for child in children_: child_key = child['id'].pop(0) groups_.setdefault(child_key, []).append(child) children_ = dict( (k, group(v)) for k, v in groups_.items() ) for p in pipelines: p['id'] = p['id'][0] return { 'pipelines': pipelines, 'children': children_ } def flatten(children_): for k, v in children_.items(): v['children'] = flatten(v['children']) child_keys = list(v['children'].keys()) if len(child_keys) == 1 and len(v['pipelines']) == 0: child_key = child_keys[0] children_['/'.join([k, child_key])] = v['children'][child_key] del children_[k] return children_ statuses = [ { 'id': st['id'].split('/'), 'title': st.get('title'), 'stats': st.get('stats'), 'slug': st.get('slug') } for st in statuses ] groups = group(statuses) children = groups.get('children', {}) groups['children'] = flatten(children) return groups def basic_auth_required(view_func): """ A decorator that can be used to protect specific views with HTTP basic access authentication. Conditional on having BASIC_AUTH_USERNAME and BASIC_AUTH_PASSWORD set as env vars. """ @wraps(view_func) def wrapper(*args, **kwargs): if app.config.get('BASIC_AUTH_ACTIVE', False): if basic_auth.authenticate(): return view_func(*args, **kwargs) else: return basic_auth.challenge() else: return view_func(*args, **kwargs) return wrapper blueprint = Blueprint('dpp', 'dpp') @blueprint.route("") @blueprint.route("<path:pipeline_path>") @basic_auth_required def main(pipeline_path=None): pipeline_ids = sorted(status.all_pipeline_ids()) # If we have a pipeline_path, filter the pipeline ids. if pipeline_path is not None: if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path pipeline_ids = [p for p in pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in pipeline_ids: pipeline_status = status.get(pipeline_id) ex = pipeline_status.get_last_execution() success_ex = pipeline_status.get_last_successful_execution() pipeline_obj = { 'id': pipeline_id.lstrip('./'), 'title': pipeline_status.pipeline_details.get('title'), 'stats': user_facing_stats(ex.stats) if ex else None, 'slug': slugify.slugify(pipeline_id), 'trigger': ex.trigger if ex else None, 'error_log': pipeline_status.errors(), 'state': pipeline_status.state(), 'pipeline': pipeline_status.pipeline_details, 'message': pipeline_status.state().capitalize(), 'dirty': pipeline_status.dirty(), 'runnable': pipeline_status.runnable(), 'class': {'INIT': 'primary', 'QUEUED': 'primary', 'INVALID': 'danger', 'RUNNING': 'warning', 'SUCCEEDED': 'success', 'FAILED': 'danger' }[pipeline_status.state()], 'ended': datestr(ex.finish_time) if ex else None, 'started': datestr(ex.start_time) if ex else None, 'last_success': datestr(success_ex.finish_time) if success_ex else None, } statuses.append(pipeline_obj) def state_and_not_dirty(state, p): return p.get('state') == state and not p.get('dirty') def state_or_dirty(state, p): return p.get('state') == state or p.get('dirty') categories = [ ['ALL', 'All Pipelines', lambda _, __: True], ['INVALID', "Can't start", lambda _, p: not p['runnable']], ['QUEUED', 'Waiting to run', lambda state, p: p['state'] == state], ['RUNNING', 'Running', state_and_not_dirty], ['FAILED', 'Failed Execution', state_and_not_dirty], ['SUCCEEDED', 'Successful Execution', state_and_not_dirty], ] for item in categories: item.append([p for p in deepcopy(statuses) if item[2](item[0], p)]) item.append(len(item[-1])) item.append(make_hierarchies(item[-2])) return render_template('dashboard.html', categories=categories, yamlize=yamlize, markdown=markdown) @blueprint.route("api/raw/status") @basic_auth_required def pipeline_raw_api_status(): pipelines = sorted(status.all_statuses(), key=lambda x: x.get('id')) for pipeline in pipelines: # can get the full details from api/raw/<path:pipeline_id> for attr in ["pipeline", "reason", "error_log"]: if attr in pipeline: del pipeline[attr] return jsonify(pipelines) @blueprint.route("api/raw/<path:pipeline_id>") @basic_auth_required def pipeline_raw_api(pipeline_id): if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) if not pipeline_status.pipeline_details: abort(404) last_execution = pipeline_status.get_last_execution() last_successful_execution = pipeline_status.get_last_successful_execution() ret = { "id": pipeline_id, "cache_hash": pipeline_status.cache_hash, "dirty": pipeline_status.dirty(), "queued": last_execution.queue_time if last_execution else None, "started": last_execution.start_time if last_execution else None, "ended": last_execution.finish_time if last_execution else None, "reason": last_execution.log if last_execution else None, "error_log": pipeline_status.errors(), "stats": last_execution.stats if last_execution else None, "success": last_execution.success if last_execution else None, "last_success": last_successful_execution.finish_time if last_successful_execution else None, "trigger": last_execution.trigger if last_execution else None, "pipeline": pipeline_status.pipeline_details, "source": pipeline_status.source_spec, "message": pipeline_status.state().capitalize(), "state": pipeline_status.state(), } return jsonify(ret) @blueprint.route("api/<field>/<path:pipeline_id>") @basic_auth_required def pipeline_api(field, pipeline_id): if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) if not pipeline_status.pipeline_details: abort(404) ret = None if field == 'pipeline': ret = pipeline_status.pipeline_details ret = yamlize(ret) elif field == 'source': ret = pipeline_status.source_spec ret = yamlize(ret) elif field == 'log': ex = pipeline_status.get_last_execution() ret = ex.log if ex else '' else: abort(400) ret = ret.split('\n') ret = {'text': ret} return jsonify(ret) def _make_badge_response(subject, text, colour): image_url = 'https://img.shields.io/badge/{}-{}-{}.svg'.format( subject, text, colour) r = requests.get(image_url) buffer_image = BytesIO(r.content) buffer_image.seek(0) res = make_response(send_file(buffer_image, mimetype='image/svg+xml')) res.headers['Cache-Control'] = \ 'max-age=0, no-cache, no-store, must-revalidate' res.headers['Expires'] = '0' return res @blueprint.route("badge/<path:pipeline_id>") def badge(pipeline_id): '''An individual pipeline status''' if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) status_color = 'lightgray' if pipeline_status.pipeline_details: status_text = pipeline_status.state().lower() last_execution = pipeline_status.get_last_execution() success = last_execution.success if last_execution else None if success is True: stats = last_execution.stats if last_execution else None record_count = stats.get('count_of_rows') if record_count is not None: status_text += ' (%d records)' % record_count status_color = 'brightgreen' elif success is False: status_color = 'red' else: status_text = "not found" return _make_badge_response('pipeline', status_text, status_color) @blueprint.route("badge/collection/<path:pipeline_path>") def badge_collection(pipeline_path): '''Status badge for a collection of pipelines.''' all_pipeline_ids = sorted(status.all_pipeline_ids()) if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path # Filter pipeline ids to only include those that start with pipeline_path. path_pipeline_ids = \ [p for p in all_pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in path_pipeline_ids: pipeline_status = status.get(pipeline_id) if pipeline_status is None: abort(404) status_text = pipeline_status.state().lower() statuses.append(status_text) status_color = 'lightgray' status_counter = Counter(statuses) if status_counter: if len(status_counter) == 1 and status_counter['succeeded'] > 0: status_color = 'brightgreen' elif status_counter['failed'] > 0: status_color = 'red' elif status_counter['failed'] == 0: status_color = 'yellow' status_text = \ ', '.join(['{} {}'.format(v, k) for k, v in status_counter.items()]) else: status_text = "not found" return _make_badge_response('pipelines', status_text, status_color) app = Flask(__name__) app.config['JSONIFY_PRETTYPRINT_REGULAR'] = True if os.environ.get('DPP_BASIC_AUTH_USERNAME', False) \ and os.environ.get('DPP_BASIC_AUTH_PASSWORD', False): app.config['BASIC_AUTH_USERNAME'] = os.environ['DPP_BASIC_AUTH_USERNAME'] app.config['BASIC_AUTH_PASSWORD'] = os.environ['DPP_BASIC_AUTH_PASSWORD'] app.config['BASIC_AUTH_ACTIVE'] = True basic_auth = BasicAuth(app) CORS(app) url_prefix = os.environ.get('DPP_BASE_PATH', '/') if not url_prefix.endswith('/'): url_prefix += '/' logging.info('Serving on path %s', url_prefix) app.register_blueprint(blueprint, url_prefix=url_prefix)
33.696275
79
0.631463
0
0
0
0
8,090
0.687925
0
0
2,074
0.176361
98eec9960afb05f934f3e80b57d22d6b3147c3f1
1,425
py
Python
MoveSim/code/models/losses.py
tobinsouth/privacy-preserving-synthetic-mobility-data
fd4d1851b47e3e7304761a894b460e8345fae5db
[ "MIT" ]
null
null
null
MoveSim/code/models/losses.py
tobinsouth/privacy-preserving-synthetic-mobility-data
fd4d1851b47e3e7304761a894b460e8345fae5db
[ "MIT" ]
null
null
null
MoveSim/code/models/losses.py
tobinsouth/privacy-preserving-synthetic-mobility-data
fd4d1851b47e3e7304761a894b460e8345fae5db
[ "MIT" ]
null
null
null
# coding: utf-8 import numpy as np import torch.nn as nn class distance_loss(nn.Module): def __init__(self): with open('../data/raw/Cellular_Baselocation_baidu') as f: gpss = f.readlines() self.X = [] self.Y = [] for gps in gpss: x, y = float(gps.split()[0]), float(gps.split()[1]) self.X.append(x) self.Y.append(y) self.X = torch.Tensor(np.array(self.X)).float() self.Y = torch.Tensor(np.array(self.Y)).float() def forward(self, x): """ :param x: generated sequence, batch_size * seq_len :return: """ x1 = torch.index_select(self.X, 0, x[:, :-1].view(-1)) x2 = torch.index_select(self.X, 0, x[:, 1:].view(-1)) y1 = torch.index_select(self.Y, 0, x[:, :-1].view(-1)) y2 = torch.index_select(self.Y, 0, x[:, :-1].view(-1)) dx = x1 - x2 dy = y1 - y2 loss = dx**2 + dy**2 return loss class period_loss(nn.Module): def __init__(self, time_interval): self.time_interval = time_interval self.mse = nn.MSELoss() def forward(self, x): """ :param x: generated sequence, batch_size * seq_len :return: """ loss = 0. for i in range(0, x.size(1) - self.time_interval): loss += self.mse(x[:, i], x[:, i + self.time_interval]) return loss
27.403846
67
0.523509
1,362
0.955789
0
0
0
0
0
0
240
0.168421
98ef6a5aa62915725ae521746cef94f51adfcf47
1,316
py
Python
board/game.py
petthauk/chess_ml
2a66ca8511fd4eef71607a7f56417d039d94dbf9
[ "MIT" ]
null
null
null
board/game.py
petthauk/chess_ml
2a66ca8511fd4eef71607a7f56417d039d94dbf9
[ "MIT" ]
null
null
null
board/game.py
petthauk/chess_ml
2a66ca8511fd4eef71607a7f56417d039d94dbf9
[ "MIT" ]
null
null
null
import pygame as pg from pygame.locals import * import sys import board.chess_board as board w = 60 * 8 h = 60 * 8 class Game: """ Class to setup and start a game """ def __init__(self): self.b = board.Board(w, h) def get_board(self): """ Returns board :return: Board-class """ return self.b def run(self): """ Where the game is created and launched :return: """ # While loop to show display while True: for event in pg.event.get(): # Quitting game if event.type == QUIT: pg.quit() sys.exit() # If game can continue if self.b.get_status() == "-": # Pressing mouse if event.type == MOUSEBUTTONDOWN: pos = pg.mouse.get_pos() for r in self.b.get_board_array(): for square in r: if square.get_visual().collidepoint(pos): square.click() self.b.update_board() if __name__ == "__main__": # Launch main-function if running this script game = Game() game.run()
24.830189
73
0.458207
1,084
0.823708
0
0
0
0
0
0
331
0.25152
98efb4404db7ca8bc8ddf99fbe40494ec2e70aa1
2,515
py
Python
pix2pix/Dataset_util.py
Atharva-Phatak/Season-Tranfer
d6a0d4d42e396677920ffb81ab0086b0aa05d3c3
[ "MIT" ]
2
2019-07-02T14:00:15.000Z
2019-07-11T15:50:41.000Z
pix2pix/Dataset_util.py
Atharva-Phatak/Season-Tranfer
d6a0d4d42e396677920ffb81ab0086b0aa05d3c3
[ "MIT" ]
null
null
null
pix2pix/Dataset_util.py
Atharva-Phatak/Season-Tranfer
d6a0d4d42e396677920ffb81ab0086b0aa05d3c3
[ "MIT" ]
null
null
null
#importing libraries import torch import torch.utils.data as data import os import random from PIL import Image class CreateDataset(data.Dataset): def __init__(self , imagedir , subfolder='train' , direction = 'AtoB' , flip = False , transform = None ,resize_scale = None , crop_size = None): super(CreateDataset , self).__init__() self.images_path = os.path.join(imagedir , subfolder) self.image_filenames = [name for name in sorted(os.listdir(self.images_path))] self.flip = flip self.transform = transform self.resize_scale = resize_scale self.crop_size = crop_size self.direction = direction def __getitem__(self , index): image_path = os.path.join(self.images_path , self.image_filenames[index]) img = Image.open(image_path) if self.direction == 'AtoB': inp_img = img.crop((0,0,img.width//2 , img.height)) target_img = img.crop((img.width//2 , 0 , img.width , img.height)) elif self.direction == 'BtoA': inp_img = img.crop((img.width//2 , 0 , img.width , img.height)) target_img = img.crop((0,0,img.width//2 , img.height)) if self.resize_scale: inp_img = inp_img.resize((self.resize_scale , self.resize_scale) , Image.BILINEAR) target_img = target_img.resize((self.resize_scale , self.resize_scale) , Image.BILINEAR) if self.crop_size: x = random.randint(0 , self.resize_scale - self.crop_size + 1) y = random.randint(0 , self.resize_scale - self.crop_size + 1) inp_img = inp_img.crop((x , y , x + self.crop_size , y + self.crop_size)) target_img = target_img.crop((x , y , x + self.crop_size , y + self.crop_size)) if self.flip: if random.random() < 0.5: inp_img = inp_img.transpose(Image.FLIP_LEFT_RIGHT) target_img = target_img.transpose(Image.FLIP_LEFT_RIGHT) if self.transform is not None: inp_img = self.transform(inp_img) target_img = self.transform(target_img) return inp_img , target_img def __len__(self): return len(self.image_filenames)
36.985294
150
0.553082
2,360
0.93837
0
0
0
0
0
0
46
0.01829
98efd5c91e56c42872a45ff29528b847156d1400
20,126
py
Python
crslab/system/C2CRS_System.py
Zyh716/WSDM2022-C2CRS
8ef2fa7c44bdba1799ab79f379ae7394bd468c02
[ "MIT" ]
4
2022-03-24T02:14:50.000Z
2022-03-30T02:28:19.000Z
crslab/system/C2CRS_System.py
RUCAIBox/WSDM2022-C2CRS
8ef2fa7c44bdba1799ab79f379ae7394bd468c02
[ "MIT" ]
null
null
null
crslab/system/C2CRS_System.py
RUCAIBox/WSDM2022-C2CRS
8ef2fa7c44bdba1799ab79f379ae7394bd468c02
[ "MIT" ]
2
2022-03-23T02:24:24.000Z
2022-03-28T12:45:43.000Z
# @Time : 2022/1/1 # @Author : Yuanhang Zhou # @email : [email protected] import os from math import floor import torch from loguru import logger from typing import List, Dict from copy import copy, deepcopy import pickle import os import numpy import ipdb from crslab.config import PRETRAIN_PATH, SAVE_PATH from crslab.data import get_dataloader, dataset_language_map from crslab.evaluator.metrics.base import AverageMetric from crslab.evaluator.metrics.gen import PPLMetric from crslab.system.base import BaseSystem from crslab.system.utils.functions import ind2txt, ind2txt2 import random from tqdm import tqdm class C2CRS_System(BaseSystem): """This is the system for TGReDial model""" def __init__(self, opt, train_dataloader, valid_dataloader, test_dataloader, vocab, side_data, restore_system=False, interact=False, debug=False): """ Args: opt (dict): Indicating the hyper parameters. train_dataloader (BaseDataLoader): Indicating the train dataloader of corresponding dataset. valid_dataloader (BaseDataLoader): Indicating the valid dataloader of corresponding dataset. test_dataloader (BaseDataLoader): Indicating the test dataloader of corresponding dataset. vocab (dict): Indicating the vocabulary. side_data (dict): Indicating the side data. restore_system (bool, optional): Indicating if we store system after training. Defaults to False. interact (bool, optional): Indicating if we interact with system. Defaults to False. debug (bool, optional): Indicating if we train in debug mode. Defaults to False. """ super(C2CRS_System, self).__init__(opt, train_dataloader, valid_dataloader, test_dataloader, vocab, side_data, restore_system, interact, debug) self._init_token_attribute(vocab) self._init_rec_attribute(side_data, vocab) self._init_conv_attribute(side_data, vocab) self._init_pretrain_attribute(side_data, vocab) self.language = dataset_language_map[self.opt['dataset']] self.pertrain_save_epoches = [epoch-1 for epoch in eval(opt['pertrain_save_epoches'])] def _init_token_attribute(self, vocab): self.ind2tok = vocab['rec']['ind2tok'] self.end_token_idx = vocab['rec']['end'] self.unk_token_idx = vocab['rec']['unk'] self.unk = self.ind2tok.get(self.unk_token_idx, '<unk>') def _init_rec_attribute(self, side_data, vocab): self.item_ids = side_data['rec']['item_entity_ids'] self.id2entity = side_data['rec']['entity_kg']['id2entity'] self.dpath = side_data['rec']['dpath'] self.rec_ind2tok = vocab['rec']['ind2tok'] self.rec_optim_opt = deepcopy(self.opt['rec']) self.rec_batch_size = self.opt['rec_batch_size'] if self.opt['rec_batch_size'] != -1 else self.rec_optim_opt['batch_size'] self.rec_epoch = self.opt['rec_epoch'] if self.opt['rec_epoch'] != -1 else self.rec_optim_opt['epoch'] def _init_conv_attribute(self, side_data, vocab): self.conv_optim_opt = self.opt['conv'] if self.conv_optim_opt.get('lr_scheduler', None) and 'Transformers' in self.conv_optim_opt['lr_scheduler']['name']: batch_num = 0 for _ in self.train_dataloader['rec'].get_conv_data(batch_size=self.conv_batch_size, shuffle=False): batch_num += 1 conv_training_steps = self.conv_epoch * floor(batch_num / self.conv_optim_opt.get('update_freq', 1)) self.conv_optim_opt['lr_scheduler']['training_steps'] = conv_training_steps self.conv_batch_size = self.opt['conv_batch_size'] if self.opt['conv_batch_size'] != -1 else self.conv_optim_opt['batch_size'] self.conv_epoch = self.opt['conv_epoch'] if self.opt['conv_epoch'] != -1 else self.conv_optim_opt['epoch'] def _init_pretrain_attribute(self, side_data, vocab): if 'pretrain' in self.opt: self.pretrain_optim_opt = deepcopy(self.opt['pretrain']) self.pretrain_epoch = self.opt['pretrain_epoch'] if self.opt['pretrain_epoch'] != -1 else self.pretrain_optim_opt['pretrain_epoch'] self.pretrain_batch_size = self.opt['pretrain_batch_size'] if self.opt['pretrain_batch_size'] != -1 else self.pretrain_optim_opt['batch_size'] def rec_evaluate(self, rec_predict, item_label): rec_predict = rec_predict.cpu() rec_predict = rec_predict[:, self.item_ids] _, rec_ranks = torch.topk(rec_predict, 50, dim=-1) rec_ranks = rec_ranks.tolist() item_label = item_label.tolist() for rec_rank, item in zip(rec_ranks, item_label): item = self.item_ids.index(item) self.evaluator.rec_evaluate(rec_rank, item) def rec_evaluate_and_return_score(self, rec_predict, item_label): rec_predict = rec_predict.cpu() rec_predict = rec_predict[:, self.item_ids] _, rec_ranks = torch.topk(rec_predict, 50, dim=-1) _, fully_rec_ranks = torch.topk(rec_predict, 50, dim=-1) rec_ranks = rec_ranks.tolist() fully_rec_ranks = fully_rec_ranks.tolist() item_label = item_label.tolist() scores = [] for rec_rank, item in zip(rec_ranks, item_label): item = self.item_ids.index(item) scores.append(self.evaluator.rec_evaluate_and_return_score(rec_rank, fully_rec_ranks, item, self.opt['score_type'])) return scores, rec_ranks def conv_evaluate(self, prediction, response): """ Args: prediction: torch.LongTensor, shape=(bs, response_truncate-1) response: torch.LongTensor, shape=(bs, response_truncate) the first token in response is <|endoftext|>, it is not in prediction """ prediction = prediction.tolist() response = response.tolist() for p, r in zip(prediction, response): p_str, p_ListStr = ind2txt2(p, self.ind2tok, self.end_token_idx) r_str, r_ListStr = ind2txt2(r[1:], self.ind2tok, self.end_token_idx) self.evaluator.gen_evaluate(p_str, [r_str], p_ListStr, [r_ListStr]) def step(self, batch, stage, mode, epoch=-1): batch, unbatchify_batch = batch self.step_default(batch, stage, mode, epoch) def step_default(self, batch, stage, mode, epoch=-1): """ stage: ['policy', 'rec', 'conv'] mode: ['train', 'val', 'test] """ for k, v in batch.items(): if isinstance(v, torch.Tensor): batch[k] = v.to(self.device) if stage == 'pretrain_rec': loss = self.rec_model.pretrain(batch, mode, epoch) if loss: if mode == "train": self.backward(loss) loss = loss.item() self.evaluator.optim_metrics.add("loss", AverageMetric(loss)) elif stage == 'policy': if mode == 'train': self.rec_model.train() else: self.rec_model.eval() policy_loss, policy_predict = self.rec_model.guide(batch, mode) if mode == "train" and policy_loss is not None: self.backward(policy_loss) else: self.policy_evaluate(policy_predict, batch[-1]) if isinstance(policy_loss, torch.Tensor): policy_loss = policy_loss.item() self.evaluator.optim_metrics.add("policy_loss", AverageMetric(policy_loss)) elif stage == 'rec': if mode == 'train': self.rec_model.train() else: self.rec_model.eval() rec_loss, rec_predict = self.rec_model.recommend(batch, mode) if mode == "train": self.backward(rec_loss) else: self.rec_evaluate(rec_predict, batch['movie_to_rec']) rec_loss = rec_loss.item() self.evaluator.optim_metrics.add("rec_loss", AverageMetric(rec_loss)) elif stage == "conv": if mode != "test": gen_loss, pred = self.rec_model.converse(batch, mode) if mode == 'train': self.backward(gen_loss) else: self.conv_evaluate(pred, batch['response']) gen_loss = gen_loss.item() self.evaluator.optim_metrics.add("gen_loss", AverageMetric(gen_loss)) self.evaluator.gen_metrics.add("ppl", PPLMetric(gen_loss)) else: # generate response in rec_model.step _, pred = self.rec_model.converse(batch, mode) response = batch['response'] self.conv_evaluate(pred, response) self.record_conv_gt_pred(response, pred, epoch) self.record_conv_gt(response, pred) self.record_conv_pred(response, pred, epoch) else: raise def record_conv_gt_pred(self, batch_response, batch_pred, epoch): # (bs, response_truncate), (bs, response_truncate) file_writer = self.get_file_writer(f'{epoch}_record_conv_gt_pred', '.txt') for response, pred in zip(batch_response, batch_pred): response_tok_list = self.convert_tensor_ids_to_tokens(response) pred_tok_list = self.convert_tensor_ids_to_tokens(pred) file_writer.writelines(' '.join(response_tok_list) + '\n') file_writer.writelines(' '.join(pred_tok_list) + '\n') file_writer.writelines('\n') file_writer.close() def record_conv_gt(self, batch_response, batch_pred): # (bs, response_truncate), (bs, response_truncate) file_writer = self.get_file_writer('record_conv_gt', '.txt') for response, pred in zip(batch_response, batch_pred): response_tok_list = self.convert_tensor_ids_to_tokens(response) file_writer.writelines(' '.join(response_tok_list) + '\n') file_writer.writelines('\n') file_writer.close() def record_conv_pred(self, batch_response, batch_pred, epoch): # (bs, response_truncate), (bs, response_truncate) file_writer = self.get_file_writer(f'{epoch}_record_conv_pred', '.txt') for response, pred in zip(batch_response, batch_pred): pred_tok_list = self.convert_tensor_ids_to_tokens(pred) file_writer.writelines(' '.join(pred_tok_list) + '\n') file_writer.writelines('\n') file_writer.close() def get_file_writer(self, file_keywords: str, file_type: str): file_name = file_keywords + file_type file_path = os.path.join(self.opt['LOG_PATH'], file_name) if os.path.exists(file_path): file_writer = open(file_path, 'a', encoding='utf-8') else: file_writer = open(file_path, 'w', encoding='utf-8') return file_writer def convert_tensor_ids_to_tokens(self, token_ids): tokens = [] token_ids = token_ids.tolist() # List[int] if not token_ids: return tokens for token_id in token_ids: if token_id == self.end_token_idx: return tokens tokens.append(self.ind2tok.get(token_id, self.unk)) return tokens def is_early_stop(self, valid_metric, epoch): early_stop_result = self.early_stop(valid_metric) # logger.info(f'valid_metric = {valid_metric}, early_stop_result = {early_stop_result}, stop_mode = {self.stop_mode}') if early_stop_result == 'Stop': return True elif early_stop_result == 'New Model': self.save_model(epoch=epoch, valid_metric=valid_metric) elif early_stop_result == 'Patience': pass return False def fit(self): self.extend_datasets() self.pre_training() self.train_recommender_default() self.train_conversation_using_rec_model() def extend_datasets(self): extend_train_dataset = self.train_dataloader['rec'].add_avi_info_to_init_dataset_u() self.train_dataloader['rec'].replace_dataset(extend_train_dataset) extend_train_dataset = self.valid_dataloader['rec'].add_avi_info_to_init_dataset_u() self.valid_dataloader['rec'].replace_dataset(extend_train_dataset) extend_train_dataset = self.test_dataloader['rec'].add_avi_info_to_init_dataset_u() self.test_dataloader['rec'].replace_dataset(extend_train_dataset) def pre_training(self): self.init_pretrain_optim() self.pretrain_recommender_convergence() def init_pretrain_optim(self): self.pretrain_optim_opt = deepcopy(self.opt['pretrain']) # get params and training setting bert_param = [p for n, p in self.rec_model.named_parameters() if 'bert' in n] other_param = [p for n, p in self.rec_model.named_parameters() if 'bert' not in n] params = [{'params': bert_param, 'lr': self.pretrain_optim_opt['lr_bert']}, {'params': other_param}] logger.info('There are {} bert parameters unit, {} other parameters unit' .format(len(bert_param), len(other_param))) self.init_optim(deepcopy(self.pretrain_optim_opt), params) def pretrain_recommender_convergence(self): for epoch in range(self.pretrain_epoch): self.pretrain_recommender_one_epoch(epoch) valid_metric = self.valid_pretrain_recommender(epoch) if epoch in self.pertrain_save_epoches: self.save_model(post_fix='epoch_{}'.format(epoch), epoch=epoch, valid_metric=valid_metric) if self.is_early_stop(valid_metric, epoch): break def pretrain_recommender_one_epoch(self, epoch): logger.info(f'[{self.log_prefix}][Recommender | Pretrain | Epoch {str(epoch)}]') self.evaluator.reset_metrics() for batch in self.train_dataloader['rec'].get_rec_data(self.pretrain_batch_size, shuffle=True): self.step(batch, stage='pretrain_rec', mode='train', epoch=epoch) self.evaluator.report() def valid_pretrain_recommender(self, epoch): logger.info(f'[{self.log_prefix}][Recommender | Valid | Epoch {str(epoch)}]') with torch.no_grad(): self.evaluator.reset_metrics() for batch in self.valid_dataloader['rec'].get_rec_data(self.pretrain_batch_size, shuffle=False): self.step(batch, stage='pretrain_rec', mode='val', epoch=epoch) self.evaluator.report() metric = self.evaluator.optim_metrics['loss'] return metric def train_recommender_default(self): self.init_rec_optim() self.train_recommender_convergence() # test if self.rec_epoch != 0: self.restore_model_from_save() self.test_recommender('final') def init_rec_optim(self): self.rec_optim_opt = deepcopy(self.opt['rec']) # get params and training setting bert_param = [p for n, p in self.rec_model.named_parameters() if 'bert' in n] other_param = [p for n, p in self.rec_model.named_parameters() if 'bert' not in n] params = [{'params': bert_param, 'lr': self.rec_optim_opt['lr_bert']}, {'params': other_param}] logger.info('There are {} bert parameters unit, {} other parameters unit' .format(len(bert_param), len(other_param))) self.init_optim(deepcopy(self.rec_optim_opt), params) def train_recommender_convergence(self) -> float: for epoch in range(self.rec_epoch): self.train_recommender_one_epoch(epoch) valid_metric = self.valid_recommender(epoch) if self.is_early_stop(valid_metric, epoch): break def train_recommender_one_epoch(self, epoch): logger.info(f'[{self.log_prefix}][Recommender | Train | Epoch {str(epoch)}]') self.evaluator.reset_metrics() for batch in self.train_dataloader['rec'].get_rec_data(self.rec_batch_size, shuffle=True): self.step(batch, stage='rec', mode='train', epoch=epoch) self.evaluator.report() def valid_recommender(self, epoch): logger.info(f'[{self.log_prefix}][Recommender | Valid | Epoch {str(epoch)}]') with torch.no_grad(): self.evaluator.reset_metrics() for batch in self.valid_dataloader['rec'].get_rec_data(self.rec_batch_size, shuffle=False): self.step(batch, stage='rec', mode='val', epoch=epoch) self.evaluator.report() metric = self.evaluator.rec_metrics['hit@1'] + self.evaluator.rec_metrics['hit@50'] return metric def test_recommender(self, epoch): logger.info(f'[{self.log_prefix}][Recommender | Test ]') with torch.no_grad(): self.evaluator.reset_metrics() for batch in self.test_dataloader['rec'].get_rec_data(self.rec_batch_size, shuffle=False): self.step(batch, stage='rec', mode='test', epoch=epoch) self.evaluator.report() def train_conversation_using_rec_model(self): self.init_optim(deepcopy(self.conv_optim_opt), self.rec_model.parameters()) if self.opt['freeze_parameters']: self.rec_model.freeze_parameters() self.train_conversation_convergence() if self.conv_epoch != 0: self.restore_model_from_save() self.test_conversation('final') def train_conversation_convergence(self): for epoch in range(self.conv_epoch): self.train_conversation_one_epoch(epoch) valid_metric = self.valid_conversation(epoch) self.test_conversation('final') if self.is_early_stop(valid_metric, epoch): break def train_conversation_one_epoch(self, epoch): logger.info(f'[{self.log_prefix}][Conversation | Train | epoch {str(epoch)}]') self.evaluator.reset_metrics() for batch in self.train_dataloader['rec'].get_conv_data( batch_size=self.conv_batch_size, shuffle=True): self.step(batch, stage='conv', mode='train', epoch=epoch) self.evaluator.report() def valid_conversation(self, epoch): logger.info(f'[{self.log_prefix}][Conversation | Valid | epoch {str(epoch)}]') with torch.no_grad(): self.evaluator.reset_metrics() for batch in self.valid_dataloader['rec'].get_conv_data( batch_size=self.conv_batch_size, shuffle=False): self.step(batch, stage='conv', mode='val', epoch=epoch) self.evaluator.report() valid_metric = self.get_sum_dist_metric() # early stop return valid_metric def get_sum_dist_metric(self): sum_dist = 0 for k in range(1, 5): try: sum_dist += self.evaluator.gen_metrics[f'dist@{k}'] except: pass return sum_dist def test_conversation(self, epoch): logger.info(f'[{self.log_prefix}][Conversation | Test]') with torch.no_grad(): self.evaluator.reset_metrics() for batch in self.test_dataloader['rec'].get_conv_data( batch_size=self.conv_batch_size, shuffle=False): self.step(batch, stage='conv', mode='test', epoch=epoch) self.evaluator.report() def interact(self): pass
42.549683
154
0.622131
19,494
0.968598
0
0
0
0
0
0
3,529
0.175345
98efe77eec76324cc9234c09e5f48bc8417b9d98
1,198
py
Python
morepath/__init__.py
hugovk/morepath
5596f9ce43ee4e5cd73eaa2ab9ef37825f88ae28
[ "BSD-3-Clause" ]
314
2015-01-01T01:42:52.000Z
2022-01-07T21:46:15.000Z
morepath/__init__.py
hugovk/morepath
5596f9ce43ee4e5cd73eaa2ab9ef37825f88ae28
[ "BSD-3-Clause" ]
369
2015-01-02T19:10:40.000Z
2021-07-03T04:37:27.000Z
morepath/__init__.py
hugovk/morepath
5596f9ce43ee4e5cd73eaa2ab9ef37825f88ae28
[ "BSD-3-Clause" ]
37
2015-01-11T09:22:02.000Z
2021-07-02T20:48:20.000Z
# flake8: noqa """This is the main public API of Morepath. Additional public APIs can be imported from the :mod:`morepath.error` and :mod:`morepath.pdbsupport` modules. For custom directive implementations that interact with core directives for grouping or subclassing purposes, or that need to use one of the Morepath registries, you may need to import from :mod:`morepath.directive`. The other submodules are considered private. If you find yourself needing to import from them in application or extension code, please report an issue about it on the Morepath issue tracker. """ from dectate import commit from .app import App, dispatch_method from .core import ( excview_tween_factory as EXCVIEW, poisoned_host_header_protection_tween_factory as HOST_HEADER_PROTECTION, model_predicate, name_predicate, request_method_predicate, ) from .core import request_method_predicate as LAST_VIEW_PREDICATE from .view import render_json, render_html, redirect from .request import Request, Response from .autosetup import scan, autoscan from .authentication import Identity, IdentityPolicy, NO_IDENTITY from .converter import Converter from .reify import reify from .run import run
37.4375
76
0.810518
0
0
0
0
0
0
0
0
581
0.484975
98f2204e0eeff6cafe4a1031fc879a4bec0db151
37
py
Python
src/AuShadha/demographics/email_and_fax/dijit_fields_constants.py
GosthMan/AuShadha
3ab48825a0dba19bf880b6ac6141ab7a6adf1f3e
[ "PostgreSQL" ]
46
2015-03-04T14:19:47.000Z
2021-12-09T02:58:46.000Z
src/AuShadha/demographics/email_and_fax/dijit_fields_constants.py
aytida23/AuShadha
3ab48825a0dba19bf880b6ac6141ab7a6adf1f3e
[ "PostgreSQL" ]
2
2015-06-05T10:29:04.000Z
2015-12-06T16:54:10.000Z
src/AuShadha/demographics/email_and_fax/dijit_fields_constants.py
aytida23/AuShadha
3ab48825a0dba19bf880b6ac6141ab7a6adf1f3e
[ "PostgreSQL" ]
24
2015-03-23T01:38:11.000Z
2022-01-24T16:23:42.000Z
EMAIL_AND_FAX_FORM_CONSTANTS = { }
12.333333
32
0.756757
0
0
0
0
0
0
0
0
0
0
98f428d0ea0b7f44539193898ee9647b5c6c689f
2,242
py
Python
marketDataRetrieval.py
amertx/Monte-Carlo-Simulation
6c3a616bc67e668d80a73247ca279e10f6d46cd5
[ "MIT" ]
null
null
null
marketDataRetrieval.py
amertx/Monte-Carlo-Simulation
6c3a616bc67e668d80a73247ca279e10f6d46cd5
[ "MIT" ]
null
null
null
marketDataRetrieval.py
amertx/Monte-Carlo-Simulation
6c3a616bc67e668d80a73247ca279e10f6d46cd5
[ "MIT" ]
null
null
null
#Prediction model using an instance of the Monte Carlo simulation and Brownian Motion equation #import of libraries import numpy as np import pandas as pd from pandas_datareader import data as wb import matplotlib.pyplot as plt from scipy.stats import norm #ticker selection def mainFunction(tradingSymbol): data = pd.DataFrame() data[tradingSymbol] = wb.DataReader(tradingSymbol, data_source='yahoo', start='2019-1-1')['Adj Close'] #percent change of asset price log_returns = np.log(1+ data.pct_change()) #graph showing growth over time beginning from 2015 data.plot(figsize = (10,6)); plt.show() #graph of log returns of input ticker #returns are normally distributed and have a consistent mean log_returns.plot(figsize = (10,6)) plt.show() #calculations averageDailyReturn = log_returns.mean() variance = log_returns.var() drift = averageDailyReturn-(variance/2) standardDeviation = log_returns.std() #Brownian Motion equation #r = drift + standardDeviation * (e^r) #prediction of future stock price based on simulation below using numpy for storing data into array np.array(drift) drift.values standardDeviation.values #Brownian motion variable correlating to the distance between the mean and the number of standard deviation norm.ppf(0.95) #10 x 2 Matrix x = np.random.rand(10,2) norm.ppf(x) #stores distances from the mean value, 0, into the 10 x 2 matrix Z = norm.ppf(np.random.rand(10,2)) #time interval for the stock price forecast timeInterval = 365 iterations = 5 #r = drift + standardDeviation * (e^r) #10 sets of 365 random future stock prices of the ticker symbol dailyReturns = np.exp(drift.values + standardDeviation.values * norm.ppf(np.random.rand(timeInterval,iterations))) #returns into price points presentPrice = data.iloc[-1] priceList = np.zeros_like(dailyReturns) priceList[0] = presentPrice #iteration for the time interavl of 365 for t in range(1, timeInterval): priceList[t] = priceList[t-1] * dailyReturns[t] #showcases 10 paths of the future stock price plt.figure(figsize =(10,6)) plt.plot(priceList) plt.show()
29.116883
118
0.711864
0
0
0
0
0
0
0
0
951
0.424175
98f43fcd4c7844a9b69d2baa890a95f4841f18e8
31,716
py
Python
HelloDeepSpeed/train_bert_ds.py
mrwyattii/DeepSpeedExamples
6bd444a7c62e9d7d320dd4c1e1142062f50c861d
[ "MIT" ]
null
null
null
HelloDeepSpeed/train_bert_ds.py
mrwyattii/DeepSpeedExamples
6bd444a7c62e9d7d320dd4c1e1142062f50c861d
[ "MIT" ]
null
null
null
HelloDeepSpeed/train_bert_ds.py
mrwyattii/DeepSpeedExamples
6bd444a7c62e9d7d320dd4c1e1142062f50c861d
[ "MIT" ]
null
null
null
""" Modified version of train_bert.py that adds DeepSpeed """ import os import datetime import json import pathlib import re import string from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, TypeVar, Union import random import datasets import fire import logging import loguru import numpy as np import pytz import sh import torch import torch.nn as nn import deepspeed from torch.utils.data import DataLoader, Dataset from torch.utils.tensorboard import SummaryWriter from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast from transformers.models.roberta import RobertaConfig, RobertaModel from transformers.models.roberta.modeling_roberta import ( RobertaLMHead, RobertaPreTrainedModel, ) def is_rank_0() -> bool: return int(os.environ.get("RANK", "0")) == 0 ###################################################################### ####################### Logging Functions ############################ ###################################################################### logger = loguru.logger def log_dist(message: str, ranks: List[int] = [], level: int = logging.INFO) -> None: """Log messages for specified ranks only""" my_rank = int(os.environ.get("RANK", "0")) if my_rank in ranks: if level == logging.INFO: logger.info(f'[Rank {my_rank}] {message}') if level == logging.ERROR: logger.error(f'[Rank {my_rank}] {message}') if level == logging.DEBUG: logger.debug(f'[Rank {my_rank}] {message}') ###################################################################### ############### Dataset Creation Related Functions ################### ###################################################################### TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] def collate_function(batch: List[Tuple[List[int], List[int]]], pad_token_id: int) -> Dict[str, torch.Tensor]: """Collect a list of masked token indices, and labels, and batch them, padding to max length in the batch. """ max_length = max(len(token_ids) for token_ids, _ in batch) padded_token_ids = [ token_ids + [pad_token_id for _ in range(0, max_length - len(token_ids))] for token_ids, _ in batch ] padded_labels = [ labels + [pad_token_id for _ in range(0, max_length - len(labels))] for _, labels in batch ] src_tokens = torch.LongTensor(padded_token_ids) tgt_tokens = torch.LongTensor(padded_labels) attention_mask = src_tokens.ne(pad_token_id).type_as(src_tokens) return { "src_tokens": src_tokens, "tgt_tokens": tgt_tokens, "attention_mask": attention_mask, } def masking_function( text: str, tokenizer: TokenizerType, mask_prob: float, random_replace_prob: float, unmask_replace_prob: float, max_length: int, ) -> Tuple[List[int], List[int]]: """Given a text string, randomly mask wordpieces for Bert MLM training. Args: text (str): The input text tokenizer (TokenizerType): The tokenizer for tokenization mask_prob (float): What fraction of tokens to mask random_replace_prob (float): Of the masked tokens, how many should be replaced with random tokens (improves performance) unmask_replace_prob (float): Of the masked tokens, how many should be replaced with the original token (improves performance) max_length (int): The maximum sequence length to consider. Note that for Bert style models, this is a function of the number of positional embeddings you learn Returns: Tuple[List[int], List[int]]: The masked token ids (based on the tokenizer passed), and the output labels (padded with `tokenizer.pad_token_id`) """ # Note: By default, encode does add the BOS and EOS token # Disabling that behaviour to make this more clear tokenized_ids = ([tokenizer.bos_token_id] + tokenizer.encode(text, add_special_tokens=False, truncation=True, max_length=max_length - 2) + [tokenizer.eos_token_id]) seq_len = len(tokenized_ids) tokenized_ids = np.array(tokenized_ids) subword_mask = np.full(len(tokenized_ids), False) # Masking the BOS and EOS token leads to slightly worse performance low = 1 high = len(subword_mask) - 1 mask_choices = np.arange(low, high) num_subwords_to_mask = max( int((mask_prob * (high - low)) + np.random.rand()), 1) subword_mask[np.random.choice(mask_choices, num_subwords_to_mask, replace=False)] = True # Create the labels first labels = np.full(seq_len, tokenizer.pad_token_id) labels[subword_mask] = tokenized_ids[subword_mask] tokenized_ids[subword_mask] = tokenizer.mask_token_id # Now of the masked tokens, choose how many to replace with random and how many to unmask rand_or_unmask_prob = random_replace_prob + unmask_replace_prob if rand_or_unmask_prob > 0: rand_or_unmask = subword_mask & (np.random.rand(len(tokenized_ids)) < rand_or_unmask_prob) if random_replace_prob == 0: unmask = rand_or_unmask rand_mask = None elif unmask_replace_prob == 0: unmask = None rand_mask = rand_or_unmask else: unmask_prob = unmask_replace_prob / rand_or_unmask_prob decision = np.random.rand(len(tokenized_ids)) < unmask_prob unmask = rand_or_unmask & decision rand_mask = rand_or_unmask & (~decision) if unmask is not None: tokenized_ids[unmask] = labels[unmask] if rand_mask is not None: weights = np.ones(tokenizer.vocab_size) weights[tokenizer.all_special_ids] = 0 probs = weights / weights.sum() num_rand = rand_mask.sum() tokenized_ids[rand_mask] = np.random.choice(tokenizer.vocab_size, num_rand, p=probs) return tokenized_ids.tolist(), labels.tolist() class WikiTextMLMDataset(Dataset): """A [Map style dataset](https://pytorch.org/docs/stable/data.html) for iterating over the wikitext dataset. Note that this assumes the dataset can fit in memory. For larger datasets you'd want to shard them and use an iterable dataset (eg: see [Infinibatch](https://github.com/microsoft/infinibatch)) Args: Dataset (datasets.arrow_dataset.Dataset): The wikitext dataset masking_function (Callable[[str], Tuple[List[int], List[int]]]) The masking function. To generate one training instance, the masking function is applied to the `text` of a dataset record """ def __init__( self, dataset: datasets.arrow_dataset.Dataset, masking_function: Callable[[str], Tuple[List[int], List[int]]], ) -> None: self.dataset = dataset self.masking_function = masking_function def __len__(self) -> int: return len(self.dataset) def __getitem__(self, idx: int) -> Tuple[List[int], List[int]]: tokens, labels = self.masking_function(self.dataset[idx]["text"]) return (tokens, labels) T = TypeVar("T") class InfiniteIterator(object): def __init__(self, iterable: Iterable[T]) -> None: self._iterable = iterable self._iterator = iter(self._iterable) def __iter__(self): return self def __next__(self) -> T: next_item = None try: next_item = next(self._iterator) except StopIteration: self._iterator = iter(self._iterable) next_item = next(self._iterator) return next_item def create_data_iterator( mask_prob: float, random_replace_prob: float, unmask_replace_prob: float, batch_size: int, max_seq_length: int = 512, tokenizer: str = "roberta-base", ) -> InfiniteIterator: """Create the dataloader. Args: mask_prob (float): Fraction of tokens to mask random_replace_prob (float): Fraction of masked tokens to replace with random token unmask_replace_prob (float): Fraction of masked tokens to replace with the actual token batch_size (int): The batch size of the generated tensors max_seq_length (int, optional): The maximum sequence length for the MLM task. Defaults to 512. tokenizer (str, optional): The tokenizer to use. Defaults to "roberta-base". Returns: InfiniteIterator: The torch DataLoader, wrapped in an InfiniteIterator class, to be able to continuously generate samples """ wikitext_dataset = datasets.load_dataset("wikitext", "wikitext-2-v1", split="train") wikitext_dataset = wikitext_dataset.filter( lambda record: record["text"] != "").map( lambda record: {"text": record["text"].rstrip("\n")}) tokenizer = AutoTokenizer.from_pretrained(tokenizer) masking_function_partial = partial( masking_function, tokenizer=tokenizer, mask_prob=mask_prob, random_replace_prob=random_replace_prob, unmask_replace_prob=unmask_replace_prob, max_length=max_seq_length, ) dataset = WikiTextMLMDataset(wikitext_dataset, masking_function_partial) collate_fn_partial = partial(collate_function, pad_token_id=tokenizer.pad_token_id) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn_partial) return InfiniteIterator(dataloader) ###################################################################### ############### Model Creation Related Functions ##################### ###################################################################### class RobertaLMHeadWithMaskedPredict(RobertaLMHead): def __init__(self, config: RobertaConfig, embedding_weight: Optional[torch.Tensor] = None) -> None: super(RobertaLMHeadWithMaskedPredict, self).__init__(config) if embedding_weight is not None: self.decoder.weight = embedding_weight def forward( # pylint: disable=arguments-differ self, features: torch.Tensor, masked_token_indices: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """The current `transformers` library does not provide support for masked_token_indices. This function provides the support, by running the final forward pass only for the masked indices. This saves memory Args: features (torch.Tensor): The features to select from. Shape (batch, seq_len, h_dim) masked_token_indices (torch.Tensor, optional): The indices of masked tokens for index select. Defaults to None. Shape: (num_masked_tokens,) Returns: torch.Tensor: The index selected features. Shape (num_masked_tokens, h_dim) """ if masked_token_indices is not None: features = torch.index_select( features.view(-1, features.shape[-1]), 0, masked_token_indices) return super().forward(features) class RobertaMLMModel(RobertaPreTrainedModel): def __init__(self, config: RobertaConfig, encoder: RobertaModel) -> None: super().__init__(config) self.encoder = encoder self.lm_head = RobertaLMHeadWithMaskedPredict( config, self.encoder.embeddings.word_embeddings.weight) self.lm_head.apply(self._init_weights) def forward( self, src_tokens: torch.Tensor, attention_mask: torch.Tensor, tgt_tokens: torch.Tensor, ) -> torch.Tensor: """The forward pass for the MLM task Args: src_tokens (torch.Tensor): The masked token indices. Shape: (batch, seq_len) attention_mask (torch.Tensor): The attention mask, since the batches are padded to the largest sequence. Shape: (batch, seq_len) tgt_tokens (torch.Tensor): The output tokens (padded with `config.pad_token_id`) Returns: torch.Tensor: The MLM loss """ # shape: (batch, seq_len, h_dim) sequence_output, *_ = self.encoder(input_ids=src_tokens, attention_mask=attention_mask, return_dict=False) pad_token_id = self.config.pad_token_id # (labels have also been padded with pad_token_id) # filter out all masked labels # shape: (num_masked_tokens,) masked_token_indexes = torch.nonzero( (tgt_tokens != pad_token_id).view(-1)).view(-1) # shape: (num_masked_tokens, vocab_size) prediction_scores = self.lm_head(sequence_output, masked_token_indexes) # shape: (num_masked_tokens,) target = torch.index_select(tgt_tokens.view(-1), 0, masked_token_indexes) loss_fct = nn.CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), target) return masked_lm_loss def create_model(num_layers: int, num_heads: int, ff_dim: int, h_dim: int, dropout: float) -> RobertaMLMModel: """Create a Bert model with the specified `num_heads`, `ff_dim`, `h_dim` and `dropout` Args: num_layers (int): The number of layers num_heads (int): The number of attention heads ff_dim (int): The intermediate hidden size of the feed forward block of the transformer h_dim (int): The hidden dim of the intermediate representations of the transformer dropout (float): The value of dropout to be used. Note that we apply the same dropout to both the attention layers and the FF layers Returns: RobertaMLMModel: A Roberta model for MLM task """ roberta_config_dict = { "attention_probs_dropout_prob": dropout, "bos_token_id": 0, "eos_token_id": 2, "hidden_act": "gelu", "hidden_dropout_prob": dropout, "hidden_size": h_dim, "initializer_range": 0.02, "intermediate_size": ff_dim, "layer_norm_eps": 1e-05, "max_position_embeddings": 514, "model_type": "roberta", "num_attention_heads": num_heads, "num_hidden_layers": num_layers, "pad_token_id": 1, "type_vocab_size": 1, "vocab_size": 50265, } roberta_config = RobertaConfig.from_dict(roberta_config_dict) roberta_encoder = RobertaModel(roberta_config) roberta_model = RobertaMLMModel(roberta_config, roberta_encoder) return roberta_model ###################################################################### ########### Experiment Management Related Functions ################## ###################################################################### def get_unique_identifier(length: int = 8) -> str: """Create a unique identifier by choosing `length` random characters from list of ascii characters and numbers """ alphabet = string.ascii_lowercase + string.digits uuid = "".join(alphabet[ix] for ix in np.random.choice(len(alphabet), length)) return uuid def create_experiment_dir(checkpoint_dir: pathlib.Path, all_arguments: Dict[str, Any]) -> pathlib.Path: """Create an experiment directory and save all arguments in it. Additionally, also store the githash and gitdiff. Finally create a directory for `Tensorboard` logs. The structure would look something like checkpoint_dir `-experiment-name |- hparams.json |- githash.log |- gitdiff.log `- tb_dir/ Args: checkpoint_dir (pathlib.Path): The base checkpoint directory all_arguments (Dict[str, Any]): The arguments to save Returns: pathlib.Path: The experiment directory """ # experiment name follows the following convention # {exp_type}.{YYYY}.{MM}.{DD}.{HH}.{MM}.{SS}.{uuid} current_time = datetime.datetime.now(pytz.timezone("US/Pacific")) expname = "bert_pretrain.{0}.{1}.{2}.{3}.{4}.{5}.{6}".format( current_time.year, current_time.month, current_time.day, current_time.hour, current_time.minute, current_time.second, get_unique_identifier(), ) exp_dir = checkpoint_dir / expname if not is_rank_0(): return exp_dir exp_dir.mkdir(exist_ok=False) hparams_file = exp_dir / "hparams.json" with hparams_file.open("w") as handle: json.dump(obj=all_arguments, fp=handle, indent=2) # Save the git hash try: gitlog = sh.git.log("-1", format="%H", _tty_out=False, _fg=False) with (exp_dir / "githash.log").open("w") as handle: handle.write(gitlog.stdout.decode("utf-8")) except sh.ErrorReturnCode_128: log_dist( "Seems like the code is not running from" " within a git repo, so hash will" " not be stored. However, it" " is strongly advised to use" " version control.", ranks=[0], level=logging.INFO) # And the git diff try: gitdiff = sh.git.diff(_fg=False, _tty_out=False) with (exp_dir / "gitdiff.log").open("w") as handle: handle.write(gitdiff.stdout.decode("utf-8")) except sh.ErrorReturnCode_129: log_dist( "Seems like the code is not running from" " within a git repo, so diff will" " not be stored. However, it" " is strongly advised to use" " version control.", ranks=[0], level=logging.INFO) # Finally create the Tensorboard Dir tb_dir = exp_dir / "tb_dir" tb_dir.mkdir(exist_ok=False) return exp_dir ###################################################################### ################ Checkpoint Related Functions ######################## ###################################################################### def load_model_checkpoint( load_checkpoint_dir: pathlib.Path, model: torch.nn.Module, optimizer: torch.optim.Optimizer, ) -> Tuple[int, torch.nn.Module, torch.optim.Optimizer]: """Loads the optimizer state dict and model state dict from the load_checkpoint_dir into the passed model and optimizer. Searches for the most recent checkpoint to load from Args: load_checkpoint_dir (pathlib.Path): The base checkpoint directory to load from model (torch.nn.Module): The model to load the checkpoint weights into optimizer (torch.optim.Optimizer): The optimizer to load the checkpoint weigths into Returns: Tuple[int, torch.nn.Module, torch.optim.Optimizer]: The checkpoint step, model with state_dict loaded and optimizer with state_dict loaded """ log_dist( f"Loading model and optimizer checkpoint from {load_checkpoint_dir}", ranks=[0], level=logging.INFO) checkpoint_files = list( filter( lambda path: re.search(r"iter_(?P<iter_no>\d+)\.pt", path.name) is not None, load_checkpoint_dir.glob("*.pt"), )) assert len(checkpoint_files) > 0, "No checkpoints found in directory" checkpoint_files = sorted( checkpoint_files, key=lambda path: int( re.search(r"iter_(?P<iter_no>\d+)\.pt", path.name).group("iter_no") ), ) latest_checkpoint_path = checkpoint_files[-1] checkpoint_step = int( re.search(r"iter_(?P<iter_no>\d+)\.pt", latest_checkpoint_path.name).group("iter_no")) state_dict = torch.load(latest_checkpoint_path) model.load_state_dict(state_dict["model"], strict=True) optimizer.load_state_dict(state_dict["optimizer"]) log_dist( f"Loading model and optimizer checkpoints done. Loaded from {latest_checkpoint_path}", ranks=[0], level=logging.INFO) return checkpoint_step, model, optimizer ###################################################################### ######################## Driver Functions ############################ ###################################################################### def train( checkpoint_dir: str = None, load_checkpoint_dir: str = None, # Dataset Parameters mask_prob: float = 0.15, random_replace_prob: float = 0.1, unmask_replace_prob: float = 0.1, max_seq_length: int = 512, tokenizer: str = "roberta-base", # Model Parameters num_layers: int = 6, num_heads: int = 8, ff_dim: int = 512, h_dim: int = 256, dropout: float = 0.1, # Training Parameters batch_size: int = 8, num_iterations: int = 10000, checkpoint_every: int = 1000, log_every: int = 10, local_rank: int = -1, ) -> pathlib.Path: """Trains a [Bert style](https://arxiv.org/pdf/1810.04805.pdf) (transformer encoder only) model for MLM Task Args: checkpoint_dir (str): The base experiment directory to save experiments to mask_prob (float, optional): The fraction of tokens to mask. Defaults to 0.15. random_replace_prob (float, optional): The fraction of masked tokens to replace with random token. Defaults to 0.1. unmask_replace_prob (float, optional): The fraction of masked tokens to leave unchanged. Defaults to 0.1. max_seq_length (int, optional): The maximum sequence length of the examples. Defaults to 512. tokenizer (str, optional): The tokenizer to use. Defaults to "roberta-base". num_layers (int, optional): The number of layers in the Bert model. Defaults to 6. num_heads (int, optional): Number of attention heads to use. Defaults to 8. ff_dim (int, optional): Size of the intermediate dimension in the FF layer. Defaults to 512. h_dim (int, optional): Size of intermediate representations. Defaults to 256. dropout (float, optional): Amout of Dropout to use. Defaults to 0.1. batch_size (int, optional): The minibatch size. Defaults to 8. num_iterations (int, optional): Total number of iterations to run the model for. Defaults to 10000. checkpoint_every (int, optional): Save checkpoint after these many steps. ..note :: You want this to be frequent enough that you can resume training in case it crashes, but not so much that you fill up your entire storage ! Defaults to 1000. log_every (int, optional): Print logs after these many steps. Defaults to 10. local_rank (int, optional): Which GPU to run on (-1 for CPU). Defaults to -1. Returns: pathlib.Path: The final experiment directory """ device = (torch.device("cuda", local_rank) if (local_rank > -1) and torch.cuda.is_available() else torch.device("cpu")) ################################ ###### Create Exp. Dir ######### ################################ if checkpoint_dir is None and load_checkpoint_dir is None: log_dist( "Need to specify one of checkpoint_dir" " or load_checkpoint_dir", ranks=[0], level=logging.ERROR) return if checkpoint_dir is not None and load_checkpoint_dir is not None: log_dist( "Cannot specify both checkpoint_dir" " and load_checkpoint_dir", ranks=[0], level=logging.ERROR) return if checkpoint_dir: log_dist("Creating Experiment Directory", ranks=[0], level=logging.INFO) checkpoint_dir = pathlib.Path(checkpoint_dir) checkpoint_dir.mkdir(exist_ok=True) all_arguments = { # Dataset Params "mask_prob": mask_prob, "random_replace_prob": random_replace_prob, "unmask_replace_prob": unmask_replace_prob, "max_seq_length": max_seq_length, "tokenizer": tokenizer, # Model Params "num_layers": num_layers, "num_heads": num_heads, "ff_dim": ff_dim, "h_dim": h_dim, "dropout": dropout, # Training Params "batch_size": batch_size, "num_iterations": num_iterations, "checkpoint_every": checkpoint_every, } exp_dir = create_experiment_dir(checkpoint_dir, all_arguments) log_dist(f"Experiment Directory created at {exp_dir}", ranks=[0], level=logging.INFO) else: log_dist("Loading from Experiment Directory", ranks=[0], level=logging.INFO) load_checkpoint_dir = pathlib.Path(load_checkpoint_dir) assert load_checkpoint_dir.exists() with (load_checkpoint_dir / "hparams.json").open("r") as handle: hparams = json.load(handle) # Set the hparams # Dataset Params mask_prob = hparams.get("mask_prob", mask_prob) tokenizer = hparams.get("tokenizer", tokenizer) random_replace_prob = hparams.get("random_replace_prob", random_replace_prob) unmask_replace_prob = hparams.get("unmask_replace_prob", unmask_replace_prob) max_seq_length = hparams.get("max_seq_length", max_seq_length) # Model Params ff_dim = hparams.get("ff_dim", ff_dim) h_dim = hparams.get("h_dim", h_dim) dropout = hparams.get("dropout", dropout) num_layers = hparams.get("num_layers", num_layers) num_heads = hparams.get("num_heads", num_heads) # Training Params batch_size = hparams.get("batch_size", batch_size) _num_iterations = hparams.get("num_iterations", num_iterations) num_iterations = max(num_iterations, _num_iterations) checkpoint_every = hparams.get("checkpoint_every", checkpoint_every) exp_dir = load_checkpoint_dir # Tensorboard writer if is_rank_0(): tb_dir = exp_dir / "tb_dir" assert tb_dir.exists() summary_writer = SummaryWriter(log_dir=tb_dir) ################################ ###### Create Datasets ######### ################################ log_dist("Creating Datasets", ranks=[0], level=logging.INFO) data_iterator = create_data_iterator( mask_prob=mask_prob, random_replace_prob=random_replace_prob, unmask_replace_prob=unmask_replace_prob, tokenizer=tokenizer, max_seq_length=max_seq_length, batch_size=batch_size, ) log_dist("Dataset Creation Done", ranks=[0], level=logging.INFO) ################################ ###### Create Model ############ ################################ log_dist("Creating Model", ranks=[0], level=logging.INFO) model = create_model( num_layers=num_layers, num_heads=num_heads, ff_dim=ff_dim, h_dim=h_dim, dropout=dropout, ) log_dist("Model Creation Done", ranks=[0], level=logging.INFO) ################################ ###### DeepSpeed engine ######## ################################ log_dist("Creating DeepSpeed engine", ranks=[0], level=logging.INFO) ds_config = { "train_micro_batch_size_per_gpu": batch_size, "optimizer": { "type": "Adam", "params": { "lr": 1e-4 } }, "fp16": { "enabled": True }, "zero_optimization": { "stage": 1, "offload_optimizer": { "device": "cpu" } } } model, _, _, _ = deepspeed.initialize(model=model, model_parameters=model.parameters(), config=ds_config) log_dist("DeepSpeed engine created", ranks=[0], level=logging.INFO) ################################ #### Load Model checkpoint ##### ################################ start_step = 1 if load_checkpoint_dir is not None: _, client_state = model.load_checkpoint(load_dir=load_checkpoint_dir) checkpoint_step = client_state['checkpoint_step'] start_step = checkpoint_step + 1 ################################ ####### The Training Loop ###### ################################ log_dist( f"Total number of model parameters: {sum([p.numel() for p in model.parameters()]):,d}", ranks=[0], level=logging.INFO) model.train() losses = [] for step, batch in enumerate(data_iterator, start=start_step): if step >= num_iterations: break # Move the tensors to device for key, value in batch.items(): batch[key] = value.to(device) # Forward pass loss = model(**batch) # Backward pass model.backward(loss) # Optimizer Step model.step() losses.append(loss.item()) if step % log_every == 0: log_dist("Loss: {0:.4f}".format(np.mean(losses)), ranks=[0], level=logging.INFO) if is_rank_0(): summary_writer.add_scalar(f"Train/loss", np.mean(losses), step) if step % checkpoint_every == 0: model.save_checkpoint(save_dir=exp_dir, client_state={'checkpoint_step': step}) log_dist("Saved model to {0}".format(exp_dir), ranks=[0], level=logging.INFO) # Save the last checkpoint if not saved yet if step % checkpoint_every != 0: model.save_checkpoint(save_dir=exp_dir, client_state={'checkpoint_step': step}) log_dist("Saved model to {0}".format(exp_dir), ranks=[0], level=logging.INFO) return exp_dir if __name__ == "__main__": torch.manual_seed(42) np.random.seed(0) random.seed(0) fire.Fire(train)
36.836237
95
0.576334
5,177
0.16323
0
0
0
0
0
0
13,426
0.423319
98f5a9225473ea31a925278ee4add1b0f458f788
825
py
Python
programming/leetcode/linkedLists/PalindromeLinkedList/PalindromeLinkedList.py
vamsitallapudi/Coderefer-Python-Projects
a7acc682251661e296c64533f4a85d47e6eedda2
[ "Apache-2.0" ]
1
2021-01-03T06:42:58.000Z
2021-01-03T06:42:58.000Z
programming/leetcode/linkedLists/PalindromeLinkedList/PalindromeLinkedList.py
vamsitallapudi/Coderefer-Python-Projects
a7acc682251661e296c64533f4a85d47e6eedda2
[ "Apache-2.0" ]
null
null
null
programming/leetcode/linkedLists/PalindromeLinkedList/PalindromeLinkedList.py
vamsitallapudi/Coderefer-Python-Projects
a7acc682251661e296c64533f4a85d47e6eedda2
[ "Apache-2.0" ]
null
null
null
# Given a singly linked list, determine if it is a palindrome. # Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def isPalindrome(self, head: ListNode) -> bool: fast = slow = head # find the mid node while fast and fast.next: slow = slow.next fast = fast.next.next # reverse the second half node = None while slow: nxt = slow.next slow.next = node node = slow slow = nxt # compare first and second half of nodes while node: if node.val != head.val: return False node = node.next head = head.next return True
22.916667
62
0.530909
715
0.866667
0
0
0
0
0
0
206
0.249697
98f70d5ddc8fc406905d54058613214bd95d62ce
290
py
Python
__init__.py
CloudCIX/rolly
8fafd655cb82881ae2cf75a475904cddc39e2f9a
[ "Apache-2.0" ]
6
2019-12-09T16:13:21.000Z
2020-07-16T11:42:33.000Z
__init__.py
CloudCIX/rolly
8fafd655cb82881ae2cf75a475904cddc39e2f9a
[ "Apache-2.0" ]
null
null
null
__init__.py
CloudCIX/rolly
8fafd655cb82881ae2cf75a475904cddc39e2f9a
[ "Apache-2.0" ]
1
2021-01-02T09:44:39.000Z
2021-01-02T09:44:39.000Z
""" Rocky is a CLI based provisioning and management tool for CloudCIX Cloud software. Rocky is designed to operate in an out of band (OOB) network, serarated from other CloudCIX networks. Rocky's purpose is to facilitate monitoring, testing, debug and recovery """ __version__ = '0.3.5'
32.222222
101
0.772414
0
0
0
0
0
0
0
0
273
0.941379
98f808b42f55c190413c10c0ee75bee408ae97c6
1,671
py
Python
calculator.py
harshitbansal373/Python-Games
4e879b0a97b4b420ed6d440cd2d6a0332a2109b7
[ "MIT" ]
null
null
null
calculator.py
harshitbansal373/Python-Games
4e879b0a97b4b420ed6d440cd2d6a0332a2109b7
[ "MIT" ]
null
null
null
calculator.py
harshitbansal373/Python-Games
4e879b0a97b4b420ed6d440cd2d6a0332a2109b7
[ "MIT" ]
null
null
null
from tkinter import * import time root=Tk() root.title('Calculator') root.config(bg='wheat') def display(x): global s s=s+x text.set(s) def solve(): global s try: s=str(eval(text.get())) except Exception as e: text.set(e) s='' else: text.set(s) def clear(): global s s='' text.set(s) def clear1(): global s s=text.get() s=s[:len(s)-1] text.set(s) def con(): label['text']=time.ctime() label.after(1000,con) s='' text=StringVar() f=Frame(root,bg='#dcdde1') e=Entry(f,textvariable=text,bg='#f5f6fa',fg='#353b48',font='roboto 34 bold',justify='right',relief=RAISED) e.pack(side=LEFT,padx=10,pady=10,expand=YES,fill=BOTH) f.pack(side=TOP,padx=10,pady=10,expand=YES,fill=BOTH) l=['#aabbcc','#bbccdd','#ccddee','#ddeeff'] for i in ['789/','456*','123+','.0-=']: f=Frame(root,bg=l.pop()) for j in i: b=Button(f,text=j,bg='#00a8ff',fg='#353b48',font='roboto 34 italic',command=(lambda x=j:display(x)) if j!='=' else solve) b.pack(side=LEFT,padx=10,pady=10,expand=YES,fill=BOTH) f.pack(side=TOP,padx=10,pady=10,expand=YES,fill=BOTH) f1=Frame(root,bg='#dcdde1') clear=Button(f1,text='C',bg='#00a8ff',fg='#353b48',font='Roboto 34',command=clear) clear.pack(side=LEFT,padx=10,pady=10,expand=YES,fill=BOTH) clear1=Button(f1,text='CE',bg='#00a8ff',fg='#353b48',font='Roboto 34',command=clear1) clear1.pack(side=LEFT,padx=10,pady=10,expand=YES,fill=BOTH) f1.pack(side=TOP,padx=10,pady=10,expand=YES,fill=BOTH) f2=Frame(root,bg='#dcdde1') label=Label(f2,bg='#00a8ff',fg='#353b48',font='roboto 34') label.pack(padx=10,pady=10,expand=YES,fill=BOTH) f2.pack(padx=10,pady=10,expand=YES,fill=BOTH) con() root.mainloop()
25.318182
125
0.668462
0
0
0
0
0
0
0
0
292
0.174746
98f8ea06315deb6bd9599f36bf3f99bf2965db61
8,280
py
Python
src/Main.py
OlavH96/Master
f98476063e579b7b2a80b81a2c0ca4005f5fce80
[ "MIT" ]
null
null
null
src/Main.py
OlavH96/Master
f98476063e579b7b2a80b81a2c0ca4005f5fce80
[ "MIT" ]
null
null
null
src/Main.py
OlavH96/Master
f98476063e579b7b2a80b81a2c0ca4005f5fce80
[ "MIT" ]
null
null
null
import glob import os import keras import tensorflow as tf from keras.models import load_model from keras.callbacks import ModelCheckpoint import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import src.util.Files as Files from src.util.ImageLoader import load_images_generator, resize_image, load_images_generator_with_filename import numpy as np import logging as log import random from src.util.Arguments import anomaly_arguments, get_model_choice import src.util.Arguments as Arguments from scipy.stats import norm from PIL import Image from src.train.Models import autoencoder, conv_autoencoder, vae_autoencoder, vae_loss, get_dummy_loss, from_argument_choice import src.train.Models as Models import src.util.Filenames as Filenames import math os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def image_generator(path, max_x, max_y, color_mode="RGB"): for i in load_images_generator(path, color_mode=color_mode): i = resize_image(i, max_x, max_y) i = np.array(i) i = np.expand_dims(i, axis=0) i = i / 255 yield (i, i) def image_generator_with_filename(path, max_x, max_y, color_mode="RGB"): for i, f in load_images_generator_with_filename(path, color_mode=color_mode): i = resize_image(i, max_x, max_y) i = np.array(i) i = np.expand_dims(i, axis=0) i = i / 255 yield (i, f) def centered_image_generator(path, max_x, max_y, color_mode="RGB"): while True: for i, o in image_generator(path, max_x, max_y, color_mode=color_mode): yield (i, o) def train_on_images(epochs, max_x, max_y, path, model_type, model_name, arg_steps, validation_path, color_mode="RGB"): sess = tf.Session() keras.backend.set_session(sess) # max_x = max([i.shape[0] for i in images]) # max_y = max([i.shape[1] for i in images]) # max_x, max_y = find_max_min_image_size(path = 'detected_images/*.png') # print(max_x, max_y) # 304, 298 epochs = epochs shape = (max_y, max_x, 3) model = Models.from_argument_choice(model_type, shape) steps = len(glob.glob(path)) if arg_steps != 0: steps = arg_steps model.summary() # define the checkpoint checkpoint = ModelCheckpoint(model_name, monitor='loss', verbose=1, save_best_only=True, mode='min') callbacks_list = [checkpoint] log.info('Fitting model...') if validation_path: history = model.fit_generator(generator=centered_image_generator(path, max_x, max_y, color_mode=color_mode), validation_data=centered_image_generator(validation_path, max_x, max_y, color_mode=color_mode), validation_steps=100, epochs=epochs, steps_per_epoch=steps, callbacks=callbacks_list) else: history = model.fit_generator(generator=centered_image_generator(path, max_x, max_y, color_mode=color_mode), epochs=epochs, steps_per_epoch=steps, callbacks=callbacks_list) model.save(model_name) loss = history.history['loss'] try: plt.plot(loss) if validation_path: val_loss = history.history['val_loss'] plt.plot(val_loss, color='g') plt.title(model_name) plt.ylabel("Loss") plt.xlabel("Epoch") plt.savefig(f'training_loss_{model_name}.png') except: log.info("Failed to create loss graph") log.info('Finished fitting model') return model def load_model_and_predict(model_path, num_predictions, path, max_x, max_y, model_type, model=None, color_mode="RGB", template_only=False): # vae_loss(image_shape=(max_x, max_y, 3), log_var=0.5, mu=0.5) im_shape = (max_x, max_y, 3) if model_type == get_model_choice(Arguments.VAE) and not model: model = load_model(model_path, compile=False)#custom_objects={'custom_vae_loss': vae_loss(im_shape, log_var, mu)}) mu = model.get_layer('mu').output log_var = model.get_layer('log').output model.summary() print(mu, log_var) model.compile(optimizer='rmsprop', loss=vae_loss(im_shape, log_var, mu)) if model_type == get_model_choice(Arguments.CONVVAE) and not model: model = load_model(model_path, compile=False)#custom_objects={'custom_vae_loss': vae_loss(im_shape, log_var, mu)}) encoder = model.get_layer('encoder') decoder = model.get_layer('decoder') mu = encoder.get_layer('mu').output log_var = encoder.get_layer('log').output model.compile(optimizer='adam', loss=vae_loss(im_shape, log_var, mu)) if model_type != get_model_choice(Arguments.VAE) and not model: model = load_model(model_path) model.summary() print("Loaded Model", model, model.input_shape) max_x = model.input_shape[1] max_y = model.input_shape[2] images = list(image_generator_with_filename(path, max_x, max_y, color_mode=color_mode)) random.shuffle(images) index = 0 print(f'Loaded {len(images)} images') model_name = model_path.split('.')[0] save_dir = Files.makedir_else_cleardir(f'./predictions/{model_name}_{Filenames.remove_path(Filenames.strip_path_modifier(path))}') for i, filename in images: # centered_image_generator(path, max_x, max_y): hashed = Filenames.md5hash(filename) anomaly = "anomaly" in filename extra = "_anomaly_" if anomaly else "_normal_" pred = model.predict(i) print(pred.shape) for ii in i: if color_mode == 'HSV': ii = Image.fromarray((ii * 255).astype(np.uint8), 'HSV') ii = ii.convert("RGB") ii = np.array(ii) plt.imsave(str(save_dir / f'orig{extra}{hashed}_{index}.png'), ii) #plt.imsave(str(save_dir / f'temp.png'), pred[0], vmin=0, vmax=1) print("input shape",i.shape) evaluate = model.evaluate(i, i) if type(evaluate) is list: evaluate = evaluate[0] print(index, evaluate) for p in pred: #print("prediction",p) p = p / np.max(p) if color_mode == 'HSV': p = Image.fromarray((p * 255).astype(np.uint8), 'HSV') p = p.convert('RGB') p = np.array(p) if template_only: # Hacky solution, oh well template_path = './src/sign_detection/image_generation/images/signs/png/362.50/362_5.png' im = Image.open(template_path) im = im.convert('RGB') im = im.resize(size=(64,64)) im = np.array(im) score = image_mse(i[0], im) plt.imsave(str(save_dir / f'pred{extra}{index}_{hashed}_{score}.png'), im) else: plt.imsave(str(save_dir / f'pred{extra}{index}_{hashed}_{str(evaluate)}.png'), p) index += 1 if index == num_predictions: break def image_mse(imageA, imageB): err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1]) return err if __name__ == '__main__': args = anomaly_arguments() log.info('Arguments', args) print("Arguments", args) model = None if args.do_training: model = train_on_images( epochs=args.epochs, path=args.path, max_x=args.max_x, max_y=args.max_y, model_type=args.model_type, model_name=args.model, arg_steps=args.steps, color_mode=args.color, validation_path=args.validation_path ) if args.do_predict: load_model_and_predict( model_path=args.model, num_predictions=args.num_predictions, max_x=args.max_x, max_y=args.max_y, path=args.pred_path if args.pred_path else args.path, model_type=args.model_type, model=model, color_mode=args.color, template_only=args.template )
35.844156
139
0.620411
0
0
755
0.091184
0
0
0
0
1,286
0.155314
98f921edc0f4676c7070bf0e769ce5e1dab739bb
1,353
py
Python
daproli/manipulation.py
ermshaua/daproli
c1f7aeec431d9c60ae06eeac23455c1a03bc82cf
[ "BSD-3-Clause" ]
null
null
null
daproli/manipulation.py
ermshaua/daproli
c1f7aeec431d9c60ae06eeac23455c1a03bc82cf
[ "BSD-3-Clause" ]
null
null
null
daproli/manipulation.py
ermshaua/daproli
c1f7aeec431d9c60ae06eeac23455c1a03bc82cf
[ "BSD-3-Clause" ]
null
null
null
from .utils import _get_return_type def windowed(data, size, step=1, ret_type=None): ''' dp.windowed applies a window function to a collection of data items. Parameters ----------- :param data: an iterable collection of data :param size: the window size :param step: the window step :param ret_type: if provided the used return type, otherwise ret_type(data) :return: the windowed data list Examples ----------- >>> import daproli as dp >>> numbers = range(10) >>> dp.windowed(numbers, 2, step=2) [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]] ''' if ret_type is None: ret_type = _get_return_type(data) return [ret_type(data[i:i+size]) for i in range(0, len(data)-(size-1), step)] def flatten(data, ret_type=None): ''' dp.flatten applies a flatten function to a collection of data items. Parameters ----------- :param data: an iterable collection of data :param ret_type: if provided the used return type, otherwise ret_type(data) :return: the flattened data collection Examples ----------- >>> import daproli as dp >>> dp.flatten([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ''' if ret_type is None: ret_type = _get_return_type(data) return ret_type([item for sub in data for item in sub])
30.066667
81
0.610495
0
0
0
0
0
0
0
0
960
0.709534
98fc678951f86f4c4317fc775c6ba763f66da302
8,717
py
Python
ambari-server/src/test/python/stacks/2.3/ATLAS/test_metadata_server.py
gcxtx/ambari
133d9c4661b21182482c25f96c3f0bf0a9740a9f
[ "Apache-2.0" ]
1
2021-05-06T06:24:04.000Z
2021-05-06T06:24:04.000Z
ambari-server/src/test/python/stacks/2.3/ATLAS/test_metadata_server.py
gcxtx/ambari
133d9c4661b21182482c25f96c3f0bf0a9740a9f
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/python/stacks/2.3/ATLAS/test_metadata_server.py
gcxtx/ambari
133d9c4661b21182482c25f96c3f0bf0a9740a9f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from mock.mock import MagicMock, call, patch from stacks.utils.RMFTestCase import * import json import sys from only_for_platform import not_for_platform, PLATFORM_WINDOWS @not_for_platform(PLATFORM_WINDOWS) class TestMetadataServer(RMFTestCase): COMMON_SERVICES_PACKAGE_DIR = "ATLAS/0.1.0.2.3/package" STACK_VERSION = "2.3" def configureResourcesCalled(self): self.assertResourceCalled('Directory', '/var/run/atlas', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0755 ) self.assertResourceCalled('Directory', '/etc/atlas/conf', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0755 ) self.assertResourceCalled('Directory', '/var/log/atlas', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0755 ) self.assertResourceCalled('Directory', '/usr/hdp/current/atlas-server/hbase/logs', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0755 ) self.assertResourceCalled('Directory', '/usr/hdp/current/atlas-server/data', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0755 ) self.assertResourceCalled('Directory', '/usr/hdp/current/atlas-server/data', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0644 ) self.assertResourceCalled('Directory', '/usr/hdp/current/atlas-server/server/webapp', owner='atlas', group='hadoop', create_parents = True, cd_access='a', mode=0644 ) self.assertResourceCalled('File', '/usr/hdp/current/atlas-server/server/webapp/atlas.war', content = StaticFile('/usr/hdp/current/atlas-server/server/webapp/atlas.war'), ) appprops = dict(self.getConfig()['configurations'][ 'application-properties']) appprops['atlas.server.bind.address'] = 'c6401.ambari.apache.org' self.assertResourceCalled('PropertiesFile', '/etc/atlas/conf/application.properties', properties=appprops, owner='atlas', group='hadoop', mode=0644, ) self.assertResourceCalled('File', '/etc/atlas/conf/atlas-env.sh', content=InlineTemplate( self.getConfig()['configurations'][ 'atlas-env']['content']), owner='atlas', group='hadoop', mode=0755, ) self.assertResourceCalled('File', '/etc/atlas/conf/atlas-log4j.xml', content=InlineTemplate( self.getConfig()['configurations'][ 'atlas-log4j']['content']), owner='atlas', group='hadoop', mode=0644, ) self.assertResourceCalled('File', '/etc/atlas/conf/users-credentials.properties', content=StaticFile('users-credentials.properties'), owner='atlas', group='hadoop', mode=0644, ) self.assertResourceCalled('File', '/etc/atlas/conf/policy-store.txt', content=StaticFile('policy-store.txt'), owner='atlas', group='hadoop', mode=0644, ) self.assertResourceCalled('XmlConfig', 'hbase-site.xml', owner = 'atlas', group = 'hadoop', conf_dir = '/usr/hdp/current/atlas-server/hbase/conf', configurations = self.getConfig()['configurations']['atlas-hbase-site'], configuration_attributes = self.getConfig()['configuration_attributes']['atlas-hbase-site'] ) def test_configure_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/metadata_server.py", classname = "MetadataServer", command = "configure", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.configureResourcesCalled() self.assertNoMoreResources() def test_configure_secure(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/metadata_server.py", classname = "MetadataServer", command = "configure", config_file="secure.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.configureResourcesCalled() self.assertResourceCalled('TemplateConfig', '/etc/atlas/conf/atlas_jaas.conf', owner = 'atlas', ) self.assertNoMoreResources() def test_start_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/metadata_server.py", classname = "MetadataServer", command = "start", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.configureResourcesCalled() self.assertResourceCalled('Execute', 'source /etc/atlas/conf/atlas-env.sh ; /usr/hdp/current/atlas-server/bin/atlas_start.py', not_if = 'ls /var/run/atlas/atlas.pid >/dev/null 2>&1 && ps -p `cat /var/run/atlas/atlas.pid` >/dev/null 2>&1', user = 'atlas', ) def test_stop_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/metadata_server.py", classname = "MetadataServer", command = "stop", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assertResourceCalled('Execute', 'source /etc/atlas/conf/atlas-env.sh; /usr/hdp/current/atlas-server/bin/atlas_stop.py', user = 'atlas', ) self.assertResourceCalled('File', '/var/run/atlas/atlas.pid', action = ['delete'], )
46.367021
141
0.494207
7,718
0.885396
0
0
7,754
0.889526
0
0
2,688
0.308363
98fd965b02157810b02af85a0eee51f0f9a9f9e1
5,040
py
Python
Udacity P3 Additional Files/model.py
sayeayed/Udacity-Project4
da39d0013d35d90818f9aa24ef097e185e705489
[ "MIT" ]
null
null
null
Udacity P3 Additional Files/model.py
sayeayed/Udacity-Project4
da39d0013d35d90818f9aa24ef097e185e705489
[ "MIT" ]
null
null
null
Udacity P3 Additional Files/model.py
sayeayed/Udacity-Project4
da39d0013d35d90818f9aa24ef097e185e705489
[ "MIT" ]
null
null
null
import os import csv import numpy as np from sklearn.utils import shuffle ## Read in frame data samples = [] with open('/../opt/carnd_p3/data/driving_log.csv') as csvfile: #open the log file reader = csv.reader(csvfile) #as a readable csv for line in reader: samples.append(line) #add each line of the log file to samples samples = samples[1:] # to remove table header samples = shuffle(samples) # shuffle entire sample set before splitting into training and validation so that training isn't biased from sklearn.model_selection import train_test_split train_samples, validation_samples = train_test_split(samples, test_size=0.2) #split samples into 80% training, 20% validation from scipy import ndimage #because cv2.imread() imports the image as BGR, and we want RGB ## Define generator to handle small portions of images at a time so that training is not as memory-heavy def generator(samples, batch_size=32): num_samples = len(samples) while 1: # Loop forever so the generator never terminates # shuffle(samples) #shuffle within the training/validation sets, NOT NECESSARY SINCE SHUFFLING ALREADY SHUFFLED for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] #collect the images for this batch images = [] angles = [] for batch_sample in batch_samples: path = '/../opt/carnd_p3/data/IMG/' #assign the location from which to read images # read in images from all 3 cameras MAKING SURE TO READ IN AS RGB center_image = ndimage.imread(path+batch_sample[0].split('/')[-1]) left_image = ndimage.imread(path+batch_sample[1].split('/')[-1]) right_image = ndimage.imread(path+batch_sample[2].split('/')[-1]) # read in steering angle center_angle = float(batch_sample[3]) #read the steering angle # apply a steering correction for the left and right images, in a way to generate "new" samples correction = 0.2 left_angle = center_angle + correction right_angle = center_angle - correction # add images and angles to batch set images.extend([center_image, left_image, right_image]) angles.extend([center_angle, left_angle, right_angle]) # copy all batches' images to final numpy array X_train = np.array(images) y_train = np.array(angles) yield shuffle(X_train, y_train) #shuffle before yielding result # compile and train the model using the generator function train_generator = generator(train_samples, batch_size=32) validation_generator = generator(validation_samples, batch_size=32) ch, row, col = 3, 160, 320 # Full image format #import Keras model layers from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda from keras.layers.convolutional import Conv2D, Cropping2D from keras.layers.pooling import MaxPooling2D # BUILD MODEL model = Sequential() # Preprocess incoming data, centered around zero with small standard deviation model.add(Lambda(lambda x: x/127.5 - 1.0, input_shape=(row,col,ch))) # Crop incoming data (training, validation, and autonomous so that everything is consistent) model.add(Cropping2D(cropping=((60,20), (0,0)))) # could be first layer to reduce memory used in Lambda calculation, and thus faster training # Begin CNN (similar to NVIDIA architecture) # Convolution layer 1-3, kernel size 5 with stride of 2 model.add(Conv2D(24,(5,5),strides=(2,2),activation='relu')) model.add(Conv2D(36,(5,5),strides=(2,2),activation='relu')) model.add(Conv2D(48,(5,5),strides=(2,2),activation='relu')) # Convolution layers 4-5, kernel size 3 wth stride of 1 model.add(Conv2D(64,(3,3),activation='relu')) model.add(Conv2D(64,(3,3),activation='relu')) # Flatten convolution output to yield single numerical result model.add(Flatten()) # Fully connected layers to complete computations, gradually decreasing in parameters until final value model.add(Dense(100)) model.add(Dense(50)) model.add(Dense(10)) model.add(Dense(1)) ## Training hyper parameters to play with ## Stop training checkpoints... # save_path = 'model{epoch:02d}-{val_loss:.2f}.h5' # checkpoint = ModelCheckpoint(filepath=save_path, monitor='val_loss', save_best_only=True) # stopper = EarlyStopping(monitor='val_acc', min_delta=0.0003, patience=5) ## OR batch_size = 32 epochs = 5 #*** ## Compile and train the model model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) #use Mean Squared Error to measure loss, use Adam optimizer for tuning model.fit_generator(train_generator, steps_per_epoch= len(train_samples)/batch_size,validation_data=validation_generator, validation_steps=len(validation_samples)/batch_size, epochs=5, verbose = 1) # train using generators #save the trained model model.save('model.h5')
48.461538
222
0.709127
0
0
1,761
0.349405
0
0
0
0
2,288
0.453968
98fe28b6ed135c40a04274c069f20df97e941299
2,357
py
Python
utils/wavelengthfit_prim.py
GeminiDRSoftware/GHOSTDR
79cd1ac81a7458e06668d6dac51fc6f9c9c61b31
[ "BSD-3-Clause" ]
1
2019-09-05T15:29:25.000Z
2019-09-05T15:29:25.000Z
utils/wavelengthfit_prim.py
GeminiDRSoftware/GHOSTDR
79cd1ac81a7458e06668d6dac51fc6f9c9c61b31
[ "BSD-3-Clause" ]
null
null
null
utils/wavelengthfit_prim.py
GeminiDRSoftware/GHOSTDR
79cd1ac81a7458e06668d6dac51fc6f9c9c61b31
[ "BSD-3-Clause" ]
2
2017-10-10T23:23:53.000Z
2022-02-15T23:28:22.000Z
#!/usr/bin/env python3 """ A script containing the basic principles of the extraction primitive inner workings""" from __future__ import division, print_function from ghostdr import polyfit import numpy as pn # Firstly, let's find all the needed files fitsdir='/Users/mireland/data/ghost/cal_frames/' #Define the files in use (NB xmod.txt and wavemod.txt should be correct) arc_file = fitsdir+"arc_extracted.fits" # load it in now: extracted_flux,extracted_vars=pyfits.getdata(arc_file) # Where is the default location for the model? By default it is a parameter # in the ghost class. If this needs to be overwritten, go ahead. # This is the xmod file. Wherever it is saved from the flat reduction. xmodel_file=fitsdir+'GHOST_1_1_blue_std_xmodPolyfit.fits' # All the other models... which are currently in the "test" directory. wmodel_file=test_files_dir+'wparams_blue_std.fits' spatmod_file=test_files_dir+'spatmod.fits' specmod_file=test_files_dir+'specmod.fits' rotmod_file=test_files_dir+'rotmod2.fits' # Find the arc line list file arclinefile='/home/jbento/code/ghostdr/ghostdr/ADCONFIG_GHOST/lookups/GHOST/Polyfit/mnras0378-0221-SD1.txt' arcwaves, arcfluxes= np.loadtxt(arclinefile,usecols=[1,2]).T #instantiate the ghost arm arm = polyfit.GhostArm('blue',mode='std') arm.spectral_format_with_matrix(xpars,wpars,spatpars,specpars,rotpars) #Get the initial default model from the lookup location xpars=pyfits.getdata(xmodel_file) wpars=pyfits.getdata(wmodel_file) spatpars=pyfits.getdata(spatmod_file) specpars=pyfits.getdata(specmod_file) rotpars=pyfits.getdata(rotmod_file) slitview = polyfit.SlitView(image_array, flat_image_array, mode='std') # The extractor is given the polyfit "arm" object, and a slitview object which has # been instantiated with the slit viewer data. extractor = polyfit.Extractor(arm, slitview) #Now find the other lines, after first re-loading into the extractor. # the inspect parameter is a verbose option for visualising the line # finding results lines_out=extractor.find_lines(extracted_flux, arcwaves, inspect=False) #Now finally do the wavelength fit! fitted_params, wave_and_resid = arm.read_lines_and_fit(wpars,lines_out,ydeg=3,xdeg=3) # Optionally show residuals? #Now write the output to a file, in whatever format suits the recipe system best. pyfits.writeto('outputs.fits',fitted_params)
35.712121
107
0.801018
0
0
0
0
0
0
0
0
1,347
0.571489
98ff5d19bcbfb3d13ae61a0ad4df7649e741ec52
1,506
py
Python
time_management/test/kronos_test.py
AyushRawal/time-management
a8876f7b681da837c41f17cf896eaa895017f17f
[ "MIT" ]
1
2021-11-15T19:35:51.000Z
2021-11-15T19:35:51.000Z
time_management/test/kronos_test.py
AyushRawal/time-management
a8876f7b681da837c41f17cf896eaa895017f17f
[ "MIT" ]
null
null
null
time_management/test/kronos_test.py
AyushRawal/time-management
a8876f7b681da837c41f17cf896eaa895017f17f
[ "MIT" ]
null
null
null
import unittest import datetime import kronos string_format_time = "%Y-%m-%d %H:%M:%S" date_time_str = "2020-07-19 18:14:21" class KronosTest(unittest.TestCase): def test_get_day_of_week(self): for i in range(len(kronos.week_days)): date = kronos.get_date_time_from_string(f"2020-08-{10 + i} 13:00:00") self.assertEqual(kronos.week_days.get(i), kronos.get_day_of_week(date)) def test_is_yesterday(self): date_time = kronos.get_date_time_from_string("2020-07-20 18:14:21") self.assertTrue(kronos.is_yesterday(date_time_str, today=date_time)) date_time = kronos.get_date_time_from_string("2020-07-19 18:14:21") self.assertFalse(kronos.is_yesterday(date_time_str, today=date_time)) def test_is_previous_friday(self): last_friday = "2020-08-14 13:00:00" last_monday = kronos.get_date_time_from_string("2020-08-17 13:00:00") self.assertTrue(kronos.is_previous_friday(last_friday, last_monday)) last_tuesday = kronos.get_date_time_from_string("2020-08-18 13:00:00") self.assertFalse(kronos.is_previous_friday(last_friday, last_tuesday)) def test_is_overdue_checks_correctly(self): creation_date = "2020-08-10 13:00:00" completion_goal = 5 self.assertTrue(kronos.is_overdue(creation_date, completion_goal)) on_time_date = kronos.get_date_time_as_string() on_time_goal = 100 self.assertFalse(kronos.is_overdue(on_time_date, on_time_goal))
41.833333
83
0.717131
1,377
0.914343
0
0
0
0
0
0
194
0.128818
98ffa0f6e3c8edf444c1fa0391cb1792a90df5ec
1,368
py
Python
mfc/mfc.py
FuelCellUAV/FC_datalogger
1b4b4fecb6a842f3ba685115db01a50cca7596c7
[ "CC0-1.0" ]
null
null
null
mfc/mfc.py
FuelCellUAV/FC_datalogger
1b4b4fecb6a842f3ba685115db01a50cca7596c7
[ "CC0-1.0" ]
null
null
null
mfc/mfc.py
FuelCellUAV/FC_datalogger
1b4b4fecb6a842f3ba685115db01a50cca7596c7
[ "CC0-1.0" ]
null
null
null
##!/usr/bin/env python3 # Mass Flow Controller Arduino driver # Copyright (C) 2015 Simon Howroyd, Jason James # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ############################################################################# # Import libraries from time import sleep #from quick2wire.i2c import I2CMaster, reading # Define class class mfc: @staticmethod def _getRaw(fun, ch): return fun(ch) # External getter def get(self, fun, ch): raw = self._getRaw(fun, ch) rate = raw/5.0*1.5 return rate # External getter def getMoles(self, fun, ch): rate = self.get(fun,ch)*(7.0/6280.0) # TODO should be *125.718/134.82 (density H2 at 1.5bar) return rate
32.571429
101
0.638889
390
0.285088
0
0
62
0.045322
0
0
1,018
0.744152
c70208d0f7ec90b8fef96ebe7d673c28540df5bc
2,558
py
Python
odm/dialects/postgresql/green.py
quantmind/pulsar-odm
5955c20beca0a89270c2b390335838deb7d5915e
[ "BSD-3-Clause" ]
16
2015-02-17T22:23:48.000Z
2020-08-08T09:35:53.000Z
odm/dialects/postgresql/green.py
quantmind/pulsar-odm
5955c20beca0a89270c2b390335838deb7d5915e
[ "BSD-3-Clause" ]
11
2015-02-25T11:37:09.000Z
2016-03-04T12:08:11.000Z
odm/dialects/postgresql/green.py
quantmind/pulsar-odm
5955c20beca0a89270c2b390335838deb7d5915e
[ "BSD-3-Clause" ]
3
2017-02-27T10:24:31.000Z
2020-10-08T05:43:15.000Z
from asyncio import Future from greenlet import getcurrent import psycopg2 from psycopg2 import * # noqa from psycopg2 import extensions, OperationalError __version__ = psycopg2.__version__ def psycopg2_wait_callback(conn): """A wait callback to allow greenlet to work with Psycopg. The caller must be from a greenlet other than the main one. :param conn: psycopg2 connection or file number This function must be invoked from a coroutine with parent, therefore invoking it from the main greenlet will raise an exception. """ while True: state = conn.poll() if state == extensions.POLL_OK: # Done with waiting break elif state == extensions.POLL_READ: _wait_fd(conn) elif state == extensions.POLL_WRITE: _wait_fd(conn, read=False) else: # pragma nocover raise OperationalError("Bad result from poll: %r" % state) # INTERNALS def _wait_fd(conn, read=True): '''Wait for an event on file descriptor ``fd``. :param conn: file descriptor :param read: wait for a read event if ``True``, otherwise a wait for write event. This function must be invoked from a coroutine with parent, therefore invoking it from the main greenlet will raise an exception. ''' current = getcurrent() parent = current.parent assert parent, '"_wait_fd" must be called by greenlet with a parent' try: fileno = conn.fileno() except AttributeError: fileno = conn future = Future() # When the event on fd occurs switch back to the current greenlet if read: future._loop.add_reader(fileno, _done_wait_fd, fileno, future, read) else: future._loop.add_writer(fileno, _done_wait_fd, fileno, future, read) # switch back to parent greenlet parent.switch(future) # Back on the child greenlet. Raise error if there is one future.result() def _done_wait_fd(fd, future, read): try: if read: future._loop.remove_reader(fd) else: future._loop.remove_writer(fd) except Exception as exc: future.set_exception(exc) else: future.set_result(None) try: extensions.POLL_OK except AttributeError: # pragma nocover from pulsar import ImproperlyConfigured raise ImproperlyConfigured( 'Psycopg2 does not have support for asynchronous connections. ' 'You need at least version 2.2.0 of Psycopg2.') extensions.set_wait_callback(psycopg2_wait_callback)
29.744186
76
0.67631
0
0
0
0
0
0
0
0
1,060
0.414386
c70375d862917fab136e0bc4321aa240c2c6c44e
27,984
py
Python
test/test_replica_set_connection.py
h4ck3rm1k3/mongo-python-driver
dfaadd53e86a62c72ca8a7564fdacb30cd0ac01c
[ "Apache-2.0" ]
1
2019-04-27T20:15:11.000Z
2019-04-27T20:15:11.000Z
test/test_replica_set_connection.py
h4ck3rm1k3/mongo-python-driver
dfaadd53e86a62c72ca8a7564fdacb30cd0ac01c
[ "Apache-2.0" ]
null
null
null
test/test_replica_set_connection.py
h4ck3rm1k3/mongo-python-driver
dfaadd53e86a62c72ca8a7564fdacb30cd0ac01c
[ "Apache-2.0" ]
null
null
null
# Copyright 2011-2012 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test the replica_set_connection module.""" import copy import datetime import os import signal import socket import sys import time import thread import traceback import unittest sys.path[0:0] = [""] from nose.plugins.skip import SkipTest from bson.son import SON from bson.tz_util import utc from pymongo.connection import Connection from pymongo.read_preferences import ReadPreference from pymongo.replica_set_connection import ReplicaSetConnection from pymongo.replica_set_connection import _partition_node from pymongo.database import Database from pymongo.errors import (AutoReconnect, ConfigurationError, ConnectionFailure, InvalidName, OperationFailure) from test import version from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host host = os.environ.get("DB_IP", 'localhost') port = int(os.environ.get("DB_PORT", 27017)) pair = '%s:%d' % (host, port) class TestReplicaSetConnectionAgainstStandalone(unittest.TestCase): """This is a funny beast -- we want to run tests for ReplicaSetConnection but only if the database at DB_IP and DB_PORT is a standalone. """ def setUp(self): conn = Connection(pair) response = conn.admin.command('ismaster') if 'setName' in response: raise SkipTest() def test_connect(self): self.assertRaises(ConfigurationError, ReplicaSetConnection, pair, replicaSet='anything', connectTimeoutMS=600) class TestConnectionReplicaSetBase(unittest.TestCase): def setUp(self): conn = Connection(pair) response = conn.admin.command('ismaster') if 'setName' in response: self.name = str(response['setName']) self.w = len(response['hosts']) self.hosts = set([_partition_node(h) for h in response["hosts"]]) self.arbiters = set([_partition_node(h) for h in response.get("arbiters", [])]) repl_set_status = conn.admin.command('replSetGetStatus') primary_info = [ m for m in repl_set_status['members'] if m['stateStr'] == 'PRIMARY' ][0] self.primary = _partition_node(primary_info['name']) self.secondaries = [ _partition_node(m['name']) for m in repl_set_status['members'] if m['stateStr'] == 'SECONDARY' ] else: raise SkipTest() def _get_connection(self, **kwargs): return ReplicaSetConnection(pair, replicaSet=self.name, **kwargs) class TestConnection(TestConnectionReplicaSetBase): def test_connect(self): self.assertRaises(ConnectionFailure, ReplicaSetConnection, "somedomainthatdoesntexist.org:27017", replicaSet=self.name, connectTimeoutMS=600) self.assertRaises(ConfigurationError, ReplicaSetConnection, pair, replicaSet='fdlksjfdslkjfd') self.assertTrue(ReplicaSetConnection(pair, replicaSet=self.name)) def test_repr(self): connection = self._get_connection() self.assertEqual(repr(connection), "ReplicaSetConnection(%r)" % (["%s:%d" % n for n in self.hosts],)) def test_properties(self): c = ReplicaSetConnection(pair, replicaSet=self.name) c.admin.command('ping') self.assertEqual(c.primary, self.primary) self.assertEqual(c.hosts, self.hosts) self.assertEqual(c.arbiters, self.arbiters) self.assertEqual(c.max_pool_size, 10) self.assertEqual(c.document_class, dict) self.assertEqual(c.tz_aware, False) # Make sure RSC's properties are copied to Database and Collection for obj in c, c.pymongo_test, c.pymongo_test.test: self.assertEqual(obj.read_preference, ReadPreference.PRIMARY) self.assertEqual(obj.tag_sets, [{}]) self.assertEqual(obj.secondary_acceptable_latency_ms, 15) self.assertEqual(obj.slave_okay, False) self.assertEqual(obj.safe, False) cursor = c.pymongo_test.test.find() self.assertEqual( ReadPreference.PRIMARY, cursor._Cursor__read_preference) self.assertEqual([{}], cursor._Cursor__tag_sets) self.assertEqual(15, cursor._Cursor__secondary_acceptable_latency_ms) self.assertEqual(False, cursor._Cursor__slave_okay) c.close() tag_sets = [{'dc': 'la', 'rack': '2'}, {'foo': 'bar'}] c = ReplicaSetConnection(pair, replicaSet=self.name, max_pool_size=25, document_class=SON, tz_aware=True, slaveOk=False, safe=True, read_preference=ReadPreference.SECONDARY, tag_sets=copy.deepcopy(tag_sets), secondary_acceptable_latency_ms=77) c.admin.command('ping') self.assertEqual(c.primary, self.primary) self.assertEqual(c.hosts, self.hosts) self.assertEqual(c.arbiters, self.arbiters) self.assertEqual(c.max_pool_size, 25) self.assertEqual(c.document_class, SON) self.assertEqual(c.tz_aware, True) for obj in c, c.pymongo_test, c.pymongo_test.test: self.assertEqual(obj.read_preference, ReadPreference.SECONDARY) self.assertEqual(obj.tag_sets, tag_sets) self.assertEqual(obj.secondary_acceptable_latency_ms, 77) self.assertEqual(obj.slave_okay, False) self.assertEqual(obj.safe, True) cursor = c.pymongo_test.test.find() self.assertEqual( ReadPreference.SECONDARY, cursor._Cursor__read_preference) self.assertEqual(tag_sets, cursor._Cursor__tag_sets) self.assertEqual(77, cursor._Cursor__secondary_acceptable_latency_ms) self.assertEqual(False, cursor._Cursor__slave_okay) cursor = c.pymongo_test.test.find( read_preference=ReadPreference.NEAREST, tag_sets=[{'dc':'ny'}, {}], secondary_acceptable_latency_ms=123) self.assertEqual( ReadPreference.NEAREST, cursor._Cursor__read_preference) self.assertEqual([{'dc':'ny'}, {}], cursor._Cursor__tag_sets) self.assertEqual(123, cursor._Cursor__secondary_acceptable_latency_ms) self.assertEqual(False, cursor._Cursor__slave_okay) if version.at_least(c, (1, 7, 4)): self.assertEqual(c.max_bson_size, 16777216) else: self.assertEqual(c.max_bson_size, 4194304) c.close() def test_get_db(self): connection = self._get_connection() def make_db(base, name): return base[name] self.assertRaises(InvalidName, make_db, connection, "") self.assertRaises(InvalidName, make_db, connection, "te$t") self.assertRaises(InvalidName, make_db, connection, "te.t") self.assertRaises(InvalidName, make_db, connection, "te\\t") self.assertRaises(InvalidName, make_db, connection, "te/t") self.assertRaises(InvalidName, make_db, connection, "te st") self.assertTrue(isinstance(connection.test, Database)) self.assertEqual(connection.test, connection["test"]) self.assertEqual(connection.test, Database(connection, "test")) connection.close() def test_auto_reconnect_exception_when_read_preference_is_secondary(self): c = self._get_connection() db = c.pymongo_test def raise_socket_error(*args, **kwargs): raise socket.error old_sendall = socket.socket.sendall socket.socket.sendall = raise_socket_error try: cursor = db.test.find(read_preference=ReadPreference.SECONDARY) self.assertRaises(AutoReconnect, cursor.next) finally: socket.socket.sendall = old_sendall def test_operations(self): c = self._get_connection() # Check explicitly for a case we've commonly hit in tests: # a replica set is started with a tiny oplog, a previous # test does a big insert that leaves the secondaries # permanently "RECOVERING", and our insert(w=self.w) hangs # forever. rs_status = c.admin.command('replSetGetStatus') members = rs_status['members'] self.assertFalse( [m for m in members if m['stateStr'] == 'RECOVERING'], "Replica set is recovering, try a larger oplogSize next time" ) db = c.pymongo_test db.test.remove({}, safe=True) self.assertEqual(0, db.test.count()) db.test.insert({'foo': 'x'}, safe=True, w=self.w, wtimeout=10000) self.assertEqual(1, db.test.count()) cursor = db.test.find() doc = cursor.next() self.assertEqual('x', doc['foo']) # Ensure we read from the primary self.assertEqual(c.primary, cursor._Cursor__connection_id) cursor = db.test.find(read_preference=ReadPreference.SECONDARY) doc = cursor.next() self.assertEqual('x', doc['foo']) # Ensure we didn't read from the primary self.assertTrue(cursor._Cursor__connection_id in c.secondaries) self.assertEqual(1, db.test.count()) db.test.remove({}, safe=True) self.assertEqual(0, db.test.count()) db.test.drop() c.close() def test_database_names(self): connection = self._get_connection() connection.pymongo_test.test.save({"dummy": u"object"}) connection.pymongo_test_mike.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) self.assertTrue("pymongo_test_mike" in dbs) connection.close() def test_drop_database(self): connection = self._get_connection() self.assertRaises(TypeError, connection.drop_database, 5) self.assertRaises(TypeError, connection.drop_database, None) connection.pymongo_test.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) connection.drop_database("pymongo_test") dbs = connection.database_names() self.assertTrue("pymongo_test" not in dbs) connection.pymongo_test.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) connection.drop_database(connection.pymongo_test) dbs = connection.database_names() self.assertTrue("pymongo_test" not in dbs) connection.close() def test_copy_db(self): c = self._get_connection() self.assertTrue(c.in_request()) self.assertRaises(TypeError, c.copy_database, 4, "foo") self.assertRaises(TypeError, c.copy_database, "foo", 4) self.assertRaises(InvalidName, c.copy_database, "foo", "$foo") c.pymongo_test.test.drop() c.drop_database("pymongo_test1") c.drop_database("pymongo_test2") c.pymongo_test.test.insert({"foo": "bar"}) self.assertFalse("pymongo_test1" in c.database_names()) self.assertFalse("pymongo_test2" in c.database_names()) c.copy_database("pymongo_test", "pymongo_test1") # copy_database() didn't accidentally end the request self.assertTrue(c.in_request()) self.assertTrue("pymongo_test1" in c.database_names()) self.assertEqual("bar", c.pymongo_test1.test.find_one()["foo"]) c.end_request() self.assertFalse(c.in_request()) c.copy_database("pymongo_test", "pymongo_test2", pair) # copy_database() didn't accidentally restart the request self.assertFalse(c.in_request()) time.sleep(1) self.assertTrue("pymongo_test2" in c.database_names()) self.assertEqual("bar", c.pymongo_test2.test.find_one()["foo"]) if version.at_least(c, (1, 3, 3, 1)): c.drop_database("pymongo_test1") c.pymongo_test.add_user("mike", "password") self.assertRaises(OperationFailure, c.copy_database, "pymongo_test", "pymongo_test1", username="foo", password="bar") self.assertFalse("pymongo_test1" in c.database_names()) self.assertRaises(OperationFailure, c.copy_database, "pymongo_test", "pymongo_test1", username="mike", password="bar") self.assertFalse("pymongo_test1" in c.database_names()) c.copy_database("pymongo_test", "pymongo_test1", username="mike", password="password") self.assertTrue("pymongo_test1" in c.database_names()) time.sleep(2) self.assertEqual("bar", c.pymongo_test1.test.find_one()["foo"]) c.close() def test_iteration(self): connection = self._get_connection() def iterate(): [a for a in connection] self.assertRaises(TypeError, iterate) connection.close() def test_disconnect(self): c = self._get_connection() coll = c.foo.bar c.disconnect() c.disconnect() coll.count() c.disconnect() c.disconnect() coll.count() def test_fork(self): """Test using a connection before and after a fork. """ if sys.platform == "win32": raise SkipTest() try: from multiprocessing import Process, Pipe except ImportError: raise SkipTest() db = self._get_connection().pymongo_test # Failure occurs if the connection is used before the fork db.test.find_one() #db.connection.end_request() def loop(pipe): while True: try: db.test.insert({"a": "b"}, safe=True) for _ in db.test.find(): pass except: traceback.print_exc() pipe.send(True) os._exit(1) cp1, cc1 = Pipe() cp2, cc2 = Pipe() p1 = Process(target=loop, args=(cc1,)) p2 = Process(target=loop, args=(cc2,)) p1.start() p2.start() p1.join(1) p2.join(1) p1.terminate() p2.terminate() p1.join() p2.join() cc1.close() cc2.close() # recv will only have data if the subprocess failed try: cp1.recv() self.fail() except EOFError: pass try: cp2.recv() self.fail() except EOFError: pass db.connection.close() def test_document_class(self): c = self._get_connection() db = c.pymongo_test db.test.insert({"x": 1}) self.assertEqual(dict, c.document_class) self.assertTrue(isinstance(db.test.find_one(), dict)) self.assertFalse(isinstance(db.test.find_one(), SON)) c.document_class = SON self.assertEqual(SON, c.document_class) self.assertTrue(isinstance(db.test.find_one(), SON)) self.assertFalse(isinstance(db.test.find_one(as_class=dict), SON)) c.close() c = self._get_connection(document_class=SON) db = c.pymongo_test self.assertEqual(SON, c.document_class) self.assertTrue(isinstance(db.test.find_one(), SON)) self.assertFalse(isinstance(db.test.find_one(as_class=dict), SON)) c.document_class = dict self.assertEqual(dict, c.document_class) self.assertTrue(isinstance(db.test.find_one(), dict)) self.assertFalse(isinstance(db.test.find_one(), SON)) c.close() def test_network_timeout(self): no_timeout = self._get_connection() timeout_sec = 1 timeout = self._get_connection(socketTimeoutMS=timeout_sec*1000) no_timeout.pymongo_test.drop_collection("test") no_timeout.pymongo_test.test.insert({"x": 1}, safe=True) # A $where clause that takes a second longer than the timeout where_func = delay(1 + timeout_sec) def get_x(db): doc = db.test.find().where(where_func).next() return doc["x"] self.assertEqual(1, get_x(no_timeout.pymongo_test)) self.assertRaises(ConnectionFailure, get_x, timeout.pymongo_test) def get_x_timeout(db, t): doc = db.test.find(network_timeout=t).where(where_func).next() return doc["x"] self.assertEqual(1, get_x_timeout(timeout.pymongo_test, None)) self.assertRaises(ConnectionFailure, get_x_timeout, no_timeout.pymongo_test, 0.1) no_timeout.close() timeout.close() def test_tz_aware(self): self.assertRaises(ConfigurationError, ReplicaSetConnection, tz_aware='foo', replicaSet=self.name) aware = self._get_connection(tz_aware=True) naive = self._get_connection() aware.pymongo_test.drop_collection("test") now = datetime.datetime.utcnow() aware.pymongo_test.test.insert({"x": now}, safe=True) time.sleep(1) self.assertEqual(None, naive.pymongo_test.test.find_one()["x"].tzinfo) self.assertEqual(utc, aware.pymongo_test.test.find_one()["x"].tzinfo) self.assertEqual( aware.pymongo_test.test.find_one()["x"].replace(tzinfo=None), naive.pymongo_test.test.find_one()["x"]) def test_ipv6(self): try: connection = ReplicaSetConnection("[::1]:%d" % (port,), replicaSet=self.name) except: # Either mongod was started without --ipv6 # or the OS doesn't support it (or both). raise SkipTest() # Try a few simple things connection = ReplicaSetConnection("mongodb://[::1]:%d" % (port,), replicaSet=self.name) connection = ReplicaSetConnection("mongodb://[::1]:%d/?safe=true;" "replicaSet=%s" % (port, self.name)) connection = ReplicaSetConnection("[::1]:%d,localhost:" "%d" % (port, port), replicaSet=self.name) connection = ReplicaSetConnection("localhost:%d,[::1]:" "%d" % (port, port), replicaSet=self.name) connection.pymongo_test.test.save({"dummy": u"object"}) connection.pymongo_test_bernie.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) self.assertTrue("pymongo_test_bernie" in dbs) connection.close() def _test_kill_cursor_explicit(self, read_pref): c = self._get_connection(read_preference=read_pref) db = c.pymongo_test db.drop_collection("test") test = db.test test.insert([{"i": i} for i in range(20)], w=1 + len(c.secondaries)) # Partially evaluate cursor so it's left alive, then kill it cursor = test.find().batch_size(10) cursor.next() self.assertNotEqual(0, cursor.cursor_id) connection_id = cursor._Cursor__connection_id writer = c._ReplicaSetConnection__writer if read_pref == ReadPreference.PRIMARY: msg = "Expected cursor's connection_id to be %s, got %s" % ( writer, connection_id) self.assertEqual(connection_id, writer, msg) else: self.assertNotEqual(connection_id, writer, "Expected cursor's connection_id not to be primary") cursor_id = cursor.cursor_id # Cursor dead on server - trigger a getMore on the same cursor_id and # check that the server returns an error. cursor2 = cursor.clone() cursor2._Cursor__id = cursor_id if (sys.platform.startswith('java') or 'PyPy' in sys.version): # Explicitly kill cursor. cursor.close() else: # Implicitly kill it in CPython. del cursor self.assertRaises(OperationFailure, lambda: list(cursor2)) def test_kill_cursor_explicit_primary(self): self._test_kill_cursor_explicit(ReadPreference.PRIMARY) def test_kill_cursor_explicit_secondary(self): self._test_kill_cursor_explicit(ReadPreference.SECONDARY) def test_interrupt_signal(self): if sys.platform.startswith('java'): raise SkipTest("Can't test interrupts in Jython") # Test fix for PYTHON-294 -- make sure Connection closes its # socket if it gets an interrupt while waiting to recv() from it. c = self._get_connection() db = c.pymongo_test # A $where clause which takes 1.5 sec to execute where = delay(1.5) # Need exactly 1 document so find() will execute its $where clause once db.drop_collection('foo') db.foo.insert({'_id': 1}, safe=True) old_signal_handler = None try: # Platform-specific hacks for raising a KeyboardInterrupt on the main # thread while find() is in-progress: On Windows, SIGALRM is unavailable # so we use second thread. In our Bamboo setup on Linux, the thread # technique causes an error in the test at sock.recv(): # TypeError: 'int' object is not callable # We don't know what causes this in Bamboo, so we hack around it. if sys.platform == 'win32': def interrupter(): time.sleep(0.25) # Raises KeyboardInterrupt in the main thread thread.interrupt_main() thread.start_new_thread(interrupter, ()) else: # Convert SIGALRM to SIGINT -- it's hard to schedule a SIGINT for one # second in the future, but easy to schedule SIGALRM. def sigalarm(num, frame): raise KeyboardInterrupt old_signal_handler = signal.signal(signal.SIGALRM, sigalarm) signal.alarm(1) raised = False try: # Will be interrupted by a KeyboardInterrupt. db.foo.find({'$where': where}).next() except KeyboardInterrupt: raised = True # Can't use self.assertRaises() because it doesn't catch system # exceptions self.assertTrue(raised, "Didn't raise expected ConnectionFailure") # Raises AssertionError due to PYTHON-294 -- Mongo's response to the # previous find() is still waiting to be read on the socket, so the # request id's don't match. self.assertEqual( {'_id': 1}, db.foo.find().next() ) finally: if old_signal_handler: signal.signal(signal.SIGALRM, old_signal_handler) def test_auto_start_request(self): for bad_horrible_value in (None, 5, 'hi!'): self.assertRaises( (TypeError, ConfigurationError), lambda: self._get_connection(auto_start_request=bad_horrible_value) ) # auto_start_request should default to True conn = self._get_connection() pools = [mongo.pool for mongo in conn._ReplicaSetConnection__members.values()] self.assertTrue(conn.auto_start_request) self.assertTrue(conn.in_request()) # Trigger the RSC to actually start a request conn.test.test.find_one() for pool in pools: self.assertTrue(pool.in_request()) conn.end_request() self.assertFalse(conn.in_request()) for pool in pools: self.assertFalse(pool.in_request()) conn.start_request() self.assertTrue(conn.in_request()) conn.close() conn = self._get_connection(auto_start_request=False) self.assertFalse(conn.in_request()) conn.start_request() self.assertTrue(conn.in_request()) conn.end_request() self.assertFalse(conn.in_request()) conn.close() def test_schedule_refresh(self): # Monitor thread starts waiting for _refresh_interval, 30 seconds conn = self._get_connection() # Reconnect if necessary conn.pymongo_test.test.find_one() secondaries = conn.secondaries for secondary in secondaries: conn._ReplicaSetConnection__members[secondary].up = False conn._ReplicaSetConnection__members[conn.primary].up = False # Wake up monitor thread conn._ReplicaSetConnection__schedule_refresh() # Refresh interval is 30 seconds; scheduling a refresh tells the # monitor thread / greenlet to start a refresh now. We still need to # sleep a few seconds for it to complete. time.sleep(5) for secondary in secondaries: self.assertTrue(conn._ReplicaSetConnection__members[secondary].up, "ReplicaSetConnection didn't detect secondary is up") self.assertTrue(conn._ReplicaSetConnection__members[conn.primary].up, "ReplicaSetConnection didn't detect primary is up") conn.close() def test_pinned_member(self): latency = 1000 * 1000 conn = self._get_connection( auto_start_request=False, secondary_acceptable_latency_ms=latency) host = read_from_which_host(conn, ReadPreference.SECONDARY) self.assertTrue(host in conn.secondaries) # No pinning since we're not in a request assertReadFromAll( self, conn, conn.secondaries, ReadPreference.SECONDARY, None, latency) assertReadFromAll( self, conn, list(conn.secondaries) + [conn.primary], ReadPreference.NEAREST, None, latency) conn.start_request() host = read_from_which_host(conn, ReadPreference.SECONDARY) self.assertTrue(host in conn.secondaries) assertReadFrom(self, conn, host, ReadPreference.SECONDARY) # Repin primary = read_from_which_host(conn, ReadPreference.PRIMARY) self.assertEqual(conn.primary, primary) assertReadFrom(self, conn, primary, ReadPreference.NEAREST) # Repin again host = read_from_which_host(conn, ReadPreference.SECONDARY) self.assertTrue(host in conn.secondaries) assertReadFrom(self, conn, host, ReadPreference.SECONDARY) # Unpin conn.end_request() assertReadFromAll( self, conn, list(conn.secondaries) + [conn.primary], ReadPreference.NEAREST, None, latency) if __name__ == "__main__": unittest.main()
36.966975
85
0.611885
26,339
0.941216
0
0
0
0
0
0
5,044
0.180246
c703e56a113105edf215384785217acba5d2eb75
2,177
py
Python
jqi/cmd.py
jan-g/jqi
f304f9fda33ac9b9eae98848d2a64acbe0893131
[ "CC-BY-3.0", "Apache-2.0" ]
3
2020-04-15T13:40:59.000Z
2021-06-30T10:09:33.000Z
jqi/cmd.py
jan-g/jqi
f304f9fda33ac9b9eae98848d2a64acbe0893131
[ "CC-BY-3.0", "Apache-2.0" ]
null
null
null
jqi/cmd.py
jan-g/jqi
f304f9fda33ac9b9eae98848d2a64acbe0893131
[ "CC-BY-3.0", "Apache-2.0" ]
null
null
null
import argparse_helper as argparse import config_dir import sys from .editor import Editor def main(*args): if len(args) > 0: args = [args] parser = argparse.ArgumentParser() parser.add_argument("-f", dest="cfg_file", help="query save name") parser.add_argument("-x", default=False, action="store_true", dest="run", help="run immediately") parser.add_argument("-l", default=False, action="count", dest="list", help="list saved queries") parser.add_argument("-p", default=False, action="store_true", dest="previous", help="use previous query") parser.add_argument("pattern", nargs="?", help="override saved pattern") parser.add_argument("file", nargs="?", help="file to operate on") args = parser.parse_args(*args) if args.cfg_file is None and args.previous: args.cfg_file = "previous" if args.cfg_file is not None and args.file is None: args.file = args.pattern args.pattern = None editor = Editor(file=args.cfg_file, pattern=args.pattern) if args.list > 0: if args.cfg_file is not None: cfg = config_dir.load_config(name=".jqi", sub_dir="query", sub_name=args.cfg_file, create=False) print(cfg["pattern"]) else: list_stored(args.list > 1) return if args.file is None: text = sys.stdin.read() else: with open(args.file) as f: text = f.read() if args.run: editor.jq(text, stdio=True) else: result = editor.run(text) if result == 0: editor.save() editor.save("previous") else: sys.exit(result) def list_stored(long=False): d = config_dir.config_dir(name=".jqi", sub_dir="query") for f in d.iterdir(): name = f.name cfg = config_dir.load_config(name=".jqi", sub_dir="query", sub_name=name, create=False) if long: print(name) for line in cfg["pattern"].splitlines(): print("\t{}".format(line)) else: print("{}\t{}".format(name, cfg["pattern"].splitlines()[0])) if __name__ == '__main__': main("-f", "foo", "/tmp/x")
31.550725
109
0.601746
0
0
0
0
0
0
0
0
344
0.158016
c704254fb8b8187007babe4836f7f7b5682b3b65
888
py
Python
setup.py
ASKBOT/python-import-utils
9cc317cc2a42dd46d41d53e8209203ccfe528c11
[ "BSD-2-Clause" ]
1
2015-07-19T10:36:42.000Z
2015-07-19T10:36:42.000Z
setup.py
ASKBOT/python-import-utils
9cc317cc2a42dd46d41d53e8209203ccfe528c11
[ "BSD-2-Clause" ]
null
null
null
setup.py
ASKBOT/python-import-utils
9cc317cc2a42dd46d41d53e8209203ccfe528c11
[ "BSD-2-Clause" ]
null
null
null
import ez_setup ez_setup.use_setuptools() from setuptools import setup, find_packages import import_utils setup( name = "import-utils", version = import_utils.__version__, description = 'A module that supports simple programmatic module imports', packages = find_packages(), author = 'Evgeny.Fadeev', author_email = '[email protected]', license = 'BSD', keywords = 'import, module', url = 'http://askbot.org', include_package_data = True, classifiers = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], long_description = import_utils.__doc__ )
30.62069
78
0.647523
0
0
0
0
0
0
0
0
411
0.462838
c704a4dc1d06546eaf240da05c092e6fa0ab7b9d
1,704
py
Python
visual_dynamics/policies/random_offset_camera_target_policy.py
alexlee-gk/visual_dynamics
90227bb0d0aebb1989117b5c25ca311655ca7cc7
[ "MIT" ]
30
2017-04-05T12:55:09.000Z
2022-03-14T14:31:31.000Z
visual_dynamics/policies/random_offset_camera_target_policy.py
alexlee-gk/visual_dynamics
90227bb0d0aebb1989117b5c25ca311655ca7cc7
[ "MIT" ]
1
2017-06-19T02:39:03.000Z
2017-06-19T02:39:03.000Z
visual_dynamics/policies/random_offset_camera_target_policy.py
alexlee-gk/visual_dynamics
90227bb0d0aebb1989117b5c25ca311655ca7cc7
[ "MIT" ]
13
2017-04-05T12:55:09.000Z
2021-03-16T01:59:12.000Z
import numpy as np from visual_dynamics.policies import CameraTargetPolicy class RandomOffsetCameraTargetPolicy(CameraTargetPolicy): def __init__(self, env, target_env, camera_node_name, agent_node_name, target_node_name, height=12.0, radius=16.0, angle=(-np.pi/4, np.pi/4), tightness=0.1, hra_interpolation=True): self.height = height self.radius = radius self.angle = angle offset = self.sample_offset() super(RandomOffsetCameraTargetPolicy, self).__init__(env, target_env, camera_node_name, agent_node_name, target_node_name, offset, tightness=tightness, hra_interpolation=hra_interpolation) def reset(self): self.offset = self.sample_offset() state = super(RandomOffsetCameraTargetPolicy, self).reset() # self.offset = self.sample_offset() return state def sample_offset(self): height = np.random.uniform(*self.height) if isinstance(self.height, (list, tuple)) else self.height radius = np.random.uniform(*self.radius) if isinstance(self.radius, (list, tuple)) else self.radius angle = np.random.uniform(*self.angle) if isinstance(self.angle, (list, tuple)) else self.angle return np.array([radius * np.sin(angle), -radius * np.cos(angle), height]) def _get_config(self): config = super(RandomOffsetCameraTargetPolicy, self)._get_config() config.pop('offset') config.update({'height': self.height, 'radius': self.radius, 'angle': self.angle}) return config
47.333333
112
0.629695
1,625
0.953638
0
0
0
0
0
0
67
0.039319
c70662701931e0df30976bfadaca0ac6c230e738
1,401
py
Python
Day3/Day3.py
ErAgOn-AmAnSiRoHi/Advent-of-Code-2021
0f0d59483d93f6fce4aa06fb36101aea08b02fc3
[ "MIT" ]
null
null
null
Day3/Day3.py
ErAgOn-AmAnSiRoHi/Advent-of-Code-2021
0f0d59483d93f6fce4aa06fb36101aea08b02fc3
[ "MIT" ]
null
null
null
Day3/Day3.py
ErAgOn-AmAnSiRoHi/Advent-of-Code-2021
0f0d59483d93f6fce4aa06fb36101aea08b02fc3
[ "MIT" ]
null
null
null
with open("inputday3.txt") as f: data = [x for x in f.read().split()] gamma = "" epsilon = "" for b in range(0, len(data[0])): one = 0 zero = 0 for c in range(0, len(data)): if data[c][b] == '0': zero += 1 else: one += 1 if zero > one: gamma += '0' epsilon += '1' else: gamma += '1' epsilon += '0' g = int(gamma, 2) e = int(epsilon, 2) print("PART 1", g * e) gamma = "" epsilon = "" data2 = data.copy() index = 0 while len(data) > 1: one = 0 zero = 0 ones = [] zeroes = [] for c in range(0, len(data)): if data[c][index] == "0": zero += 1 zeroes.append(data[c]) else: one += 1 ones.append(data[c]) if zero > one: data = zeroes else: data = ones index += 1 oxygen = int(data[0], 2) data = data2 index = 0 while len(data) > 1: one = 0 zero = 0 ones = [] zeroes = [] for c in range(0, len(data)): if data[c][index] == '0': zero += 1 zeroes.append(data[c]) else: one += 1 ones.append(data[c]) if one < zero: data = ones else: data = zeroes index += 1 co2 = int(data[0], 2) print("PART 2", oxygen * co2)
18.932432
41
0.417559
0
0
0
0
0
0
0
0
60
0.042827
c706f98a7ed12b68d12a292394d4a9f058dbea40
12,449
py
Python
keras2pytorch_dataset.py
MPCAICDM/MPCA
c996435a0578ea4160f934bc01041c2ef23468f3
[ "MIT" ]
null
null
null
keras2pytorch_dataset.py
MPCAICDM/MPCA
c996435a0578ea4160f934bc01041c2ef23468f3
[ "MIT" ]
null
null
null
keras2pytorch_dataset.py
MPCAICDM/MPCA
c996435a0578ea4160f934bc01041c2ef23468f3
[ "MIT" ]
null
null
null
from __future__ import print_function from PIL import Image import os import os.path import numpy as np import sys from misc import AverageMeter from eval_accuracy import simple_accuracy if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import torch from multiprocessing import Value def softmax(input_tensor): act = torch.nn.Softmax(dim=1) return act(input_tensor).numpy() class dataset_pytorch(data.Dataset): def __init__(self, train_data, train_labels, test_data, test_labels, train=True, transform=None, target_transform=None): self.transform = transform self.target_transform = target_transform self.train = train # training set or test set self.train_data = train_data # ndarray self.train_labels = train_labels self.test_data = test_data self.test_labels = test_labels def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if self.train: img, target = self.train_data[index], self.train_labels[index] else: img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): if self.train: return len(self.train_data) else: return len(self.test_data) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = 'train' if self.train is True else 'test' fmt_str += ' Split: {}\n'.format(tmp) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class transformer_score_dataset(data.Dataset): def __init__(self, train_data, train_labels, data_transformer, aux_labels=None, transform=None, target_transform=None, train_sequential=False): self.transform = transform self.target_transform = target_transform self.train_data = train_data self.train_labels = train_labels self.aux_labels = aux_labels self.transfomer = data_transformer self.n_transforms = self.transfomer.n_transforms self.train_sequential = train_sequential if train_sequential: self.length = self.train_data.shape[0] self.transform_idx = 0 self.iter_count = Value('i', 0) else: self.length = self.train_data.shape[0] * self.transfomer.n_transforms assert self.length == len(self.train_labels) def __len__(self): return self.length def __getitem__(self, idx): if self.train_sequential: with self.iter_count.get_lock(): self.iter_count.value += 1 if self.iter_count.value == self.length: self.transform_idx = (self.transform_idx + 1) % self.n_transforms self.iter_count.value = 0 image_idx, transform_idx = idx, self.transform_idx nidx = image_idx * self.n_transforms + transform_idx else: image_idx, transform_idx = idx // self.n_transforms, idx % self.n_transforms nidx = idx img, target = self.transfomer.transform_one(self.train_data[image_idx], transform_idx).copy(), self.train_labels[nidx] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.aux_labels is not None: return img, (target, self.aux_labels[idx]) return img, target class transformer_dataset(data.Dataset): def __init__(self, train_data, train_labels, data_transformer, aux_labels=None, transform=None, target_transform=None, train_sequential=False, is_padding=False): self.transform = transform self.target_transform = target_transform self.train_data = train_data self.train_labels = train_labels self.aux_labels = aux_labels self.transfomer = data_transformer self.n_transforms = self.transfomer.n_transforms self.train_sequential = train_sequential self.is_padding = is_padding if train_sequential: self.length = self.train_data.shape[0] self.transform_idx = 0 self.iter_count = Value('i', 0) else: self.length = self.train_data.shape[0] * self.transfomer.n_transforms assert self.length == len(self.train_labels) def __len__(self): return self.length def __getitem__(self, idx): if self.train_sequential: with self.iter_count.get_lock(): self.iter_count.value += 1 if self.iter_count.value == self.length: self.transform_idx = (self.transform_idx + 1) % self.n_transforms self.iter_count.value = 0 image_idx, transform_idx = idx, self.transform_idx nidx = image_idx * self.n_transforms + transform_idx else: image_idx, transform_idx = idx // self.n_transforms, idx % self.n_transforms nidx = idx if self.is_padding: img = np.pad(self.train_data[image_idx].copy(), ((2, 2), (2, 2), (0, 0)), 'constant') #print(img.shape) img, target = self.transfomer.transform_one(img, transform_idx).copy(), self.train_labels[nidx] else: img, target = self.transfomer.transform_one(self.train_data[image_idx], transform_idx).copy(), self.train_labels[nidx] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.aux_labels is not None: return img, (target, self.aux_labels[idx]) return img, target class h5idx_dataset(data.Dataset): def __init__(self, train_index, train_labels, total_data, aux_labels=None, transform=None, target_transform=None): self.transform = transform self.target_transform = target_transform self.train_index = train_index # just a index self.train_labels = train_labels self.aux_labels = aux_labels self.total_data = total_data self.length = self.train_index.shape[0] * self.total_data.shape[1] self.n_transform = self.total_data.shape[1] assert self.length == len(self.train_labels) def __len__(self): return self.length def __getitem__(self, idx): image_idx, transform_idx = idx // self.n_transform, idx % self.n_transform img, target = np.array(self.total_data[self.train_index[image_idx], transform_idx, :]), self.train_labels[idx] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.aux_labels is not None: return img, (target, self.aux_labels[idx]) return img, target class trainset_pytorch(data.Dataset): def __init__(self, train_data, train_labels, aux_labels=None,transform=None, target_transform=None): self.transform = transform self.target_transform = target_transform self.train_data = train_data # ndarray self.train_labels = train_labels self.aux_labels = aux_labels def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.train_data[index], self.train_labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image # img = Image.fromarray(img) # used if the img is [H, W, C] and the dtype is uint8 if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if self.aux_labels is not None: return img, (target, self.aux_labels[index]) return img, target def __len__(self): return len(self.train_data) class testset_pytorch(data.Dataset): def __init__(self, test_data, transform=None): self.transform = transform self.test_data = test_data # ndarray def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img = self.test_data[index] # doing this so that it is consistent with all other datasets # to return a PIL Image # img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) return img def __len__(self): return len(self.test_data) class dataset_reorganized(data.Dataset): def __init__(self, data, transform=None): self.transform = transform self.data = data # ndarray def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ imgs = self.data[index] # doing this so that it is consistent with all other datasets # to return a PIL Image # img = Image.fromarray(img) # used if the img is [H, W, C] and the dtype is uint8 if self.transform is not None: new_imgs = [] for i in range(imgs.shape[0]): img = imgs[i] img = self.transform(img) new_imgs.append(img.unsqueeze(0)) new_imgs = torch.cat(new_imgs, dim=0) else: raise NotImplementedError return new_imgs def __len__(self): return len(self.data) def train_reorganized(trainloader, model, criterion, optimizer, epochs): # train the model model.train() top1 = AverageMeter() losses = AverageMeter() for epoch in range(epochs): for batch_idx, (inputs) in enumerate(trainloader): targets = torch.LongTensor(np.tile(np.arange(inputs.size(1)), inputs.size(0))) inputs = inputs.reshape(-1, inputs.size(-3), inputs.size(-2), inputs.size(-1)) inputs, targets = torch.autograd.Variable(inputs.cuda()), torch.autograd.Variable(targets.cuda()) outputs, _ = model(inputs) loss = criterion(outputs, targets) prec1 = simple_accuracy(outputs.data.cpu(), targets.data.cpu()) top1.update(prec1, inputs.size(0)) losses.update(loss.data.cpu(), inputs.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Epoch: [{} | {}], batch: {}, loss: {}, Accuracy: {}'.format(epoch + 1, epochs, batch_idx + 1, losses.avg, top1.avg)) def test_reorganized(testloader, model): model.eval() res = torch.Tensor() for batch_idx, (inputs) in enumerate(testloader): inputs = inputs.reshape(-1, inputs.size(-3), inputs.size(-2), inputs.size(-1)) inputs = torch.autograd.Variable(inputs.cuda()) outputs, _ = model(inputs) res = torch.cat((res, outputs.data.cpu()), dim=0) return res def get_scores(outputs, targets): scores = [] for i in range(outputs.shape[0]): scores.append(outputs[i, targets[i]]) return np.array(scores)
34.969101
139
0.618684
10,292
0.826733
0
0
0
0
0
0
1,569
0.126034
c7075ad8e2a1229e14b617586ca8b05a9f86dd2f
1,920
py
Python
mir/tools/mir_repo_utils.py
fenrir-z/ymir-cmd
6fbffd3c1ff5dd1c9a44b55de411523b50567661
[ "Apache-2.0" ]
1
2022-01-12T03:12:47.000Z
2022-01-12T03:12:47.000Z
mir/tools/mir_repo_utils.py
fenrir-z/ymir-cmd
6fbffd3c1ff5dd1c9a44b55de411523b50567661
[ "Apache-2.0" ]
null
null
null
mir/tools/mir_repo_utils.py
fenrir-z/ymir-cmd
6fbffd3c1ff5dd1c9a44b55de411523b50567661
[ "Apache-2.0" ]
null
null
null
import json import logging import os from typing import Optional from mir import scm from mir.tools import mir_storage def mir_check_repo_dvc_dirty(mir_root: str = ".") -> bool: names = [name for name in mir_storage.get_all_mir_paths() if os.path.isfile(os.path.join(mir_root, name))] if names: dvc_cmd_args = ["--show-json", "--targets"] dvc_cmd_args.extend(names) dvc_scm = scm.Scm(mir_root, scm_executable="dvc") dvc_result = dvc_scm.diff(dvc_cmd_args) json_object = json.loads(dvc_result) keys = ['added', 'deleted', 'modified', 'renamed', 'not in cache'] dvc_dirty = False for key in keys: dirty_value = json_object.get(key, None) if dirty_value: logging.info(f"{key}: {dirty_value}") dvc_dirty = True return dvc_dirty else: # if no mir files in this mir repo, it's clean return False def mir_check_repo_git_dirty(mir_root: str = ".") -> bool: git_scm = scm.Scm(mir_root, scm_executable="git") git_result = git_scm.status("-s") # if clean, returns nothing if (git_result or len(git_result) > 0): logging.info(f"{git_result}") return True return False # clean def mir_check_repo_dirty(mir_root: str = '.') -> bool: return mir_check_repo_dvc_dirty(mir_root) or mir_check_repo_git_dirty(mir_root) def mir_check_branch_exists(mir_root: str, branch: str) -> bool: try: git_scm = scm.Scm(mir_root, scm_executable="git") git_scm.rev_parse(branch) return True except Exception: # git rev-parse will return non-zero code when can not find branch # and cmd.py packs non-zero return code as an error return False def work_dir_to_monitor_file(work_dir: Optional[str]) -> Optional[str]: return os.path.join(work_dir, 'out', 'monitor.txt') if work_dir else None
32.542373
110
0.655729
0
0
0
0
0
0
0
0
354
0.184375
c70864a5d3c270e78a0bc9da8738245a6e27664f
3,624
py
Python
utils/edit_utils.py
ermekaitygulov/STIT
93dca8d589b555fa99a5c5438a8517a52d8898c3
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
6
2022-03-11T23:42:12.000Z
2022-03-28T09:39:25.000Z
utils/edit_utils.py
bycloudai/STIT-Windows
cadb2a01457bfd1c90bcd8d220587b48e1c2327a
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
utils/edit_utils.py
bycloudai/STIT-Windows
cadb2a01457bfd1c90bcd8d220587b48e1c2327a
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
import argparse import math import os import pickle from typing import List import cv2 import numpy as np import torch from PIL import Image, ImageDraw, ImageFont import configs.paths_config from configs import paths_config from training.networks import SynthesisBlock def add_texts_to_image_vertical(texts, pivot_images): images_height = pivot_images.height images_width = pivot_images.width text_height = 256 + 16 - images_height % 16 num_images = len(texts) image_width = images_width // num_images text_image = Image.new('RGB', (images_width, text_height), (255, 255, 255)) draw = ImageDraw.Draw(text_image) font_size = int(math.ceil(24 * image_width / 256)) try: font = ImageFont.truetype("truetype/freefont/FreeSans.ttf", font_size) except OSError: font = ImageFont.load_default() for i, text in enumerate(texts): draw.text((image_width // 2 + i * image_width, text_height // 2), text, fill='black', anchor='ms', font=font) out_image = Image.new('RGB', (pivot_images.width, pivot_images.height + text_image.height)) out_image.paste(text_image, (0, 0)) out_image.paste(pivot_images, (0, text_image.height)) return out_image def get_affine_layers(synthesis): blocks: List[SynthesisBlock] = [getattr(synthesis, f'b{res}') for res in synthesis.block_resolutions] affine_layers = [] for block in blocks: if hasattr(block, 'conv0'): affine_layers.append((block.conv0.affine, True)) affine_layers.append((block.conv1.affine, True)) affine_layers.append((block.torgb.affine, False)) return affine_layers def load_stylespace_std(): with open(paths_config.stylespace_mean_std, 'rb') as f: _, s_std = pickle.load(f) s_std = [torch.from_numpy(s).cuda() for s in s_std] return s_std def to_styles(edit: torch.Tensor, affine_layers): idx = 0 styles = [] for layer, is_conv in affine_layers: layer_dim = layer.weight.shape[0] if is_conv: styles.append(edit[idx:idx + layer_dim].clone()) idx += layer_dim else: styles.append(torch.zeros(layer_dim, device=edit.device, dtype=edit.dtype)) return styles def w_to_styles(w, affine_layers): w_idx = 0 styles = [] for affine, is_conv in affine_layers: styles.append(affine(w[:, w_idx])) if is_conv: w_idx += 1 return styles def paste_image_mask(inverse_transform, image, dst_image, mask, radius=0, sigma=0.0): image_masked = image.copy().convert('RGBA') pasted_image = dst_image.copy().convert('RGBA') if radius != 0: mask_np = np.array(mask) kernel_size = (radius * 2 + 1, radius * 2 + 1) kernel = np.ones(kernel_size) eroded = cv2.erode(mask_np, kernel, borderType=cv2.BORDER_CONSTANT, borderValue=0) blurred_mask = cv2.GaussianBlur(eroded, kernel_size, sigmaX=sigma) blurred_mask = Image.fromarray(blurred_mask) image_masked.putalpha(blurred_mask) else: image_masked.putalpha(mask) projected = image_masked.transform(dst_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR) pasted_image.alpha_composite(projected) return pasted_image def paste_image(inverse_transform, img, orig_image): pasted_image = orig_image.copy().convert('RGBA') projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR) pasted_image.paste(projected, (0, 0), mask=projected) return pasted_image
32.648649
117
0.683499
0
0
0
0
0
0
0
0
97
0.026766
c7087550ae8556b1933bc7961a3ed0e9783aaa07
6,845
py
Python
conll_df/conll_df.py
interrogator/conll-df
35611f295e3f8230f574142151e3a19098edfdca
[ "MIT" ]
27
2017-03-17T15:39:16.000Z
2021-11-23T09:10:10.000Z
conll_df/conll_df.py
interrogator/conll-df
35611f295e3f8230f574142151e3a19098edfdca
[ "MIT" ]
2
2017-11-21T05:33:04.000Z
2018-09-22T13:05:06.000Z
conll_df/conll_df.py
interrogator/conll-df
35611f295e3f8230f574142151e3a19098edfdca
[ "MIT" ]
8
2017-03-17T14:59:34.000Z
2022-02-25T19:09:27.000Z
import pandas as pd # UD 1.0 CONLL_COLUMNS = ['i', 'w', 'l', 'p', 'n', 'm', 'g', 'f', 'd', 'c'] # UD 2.0 CONLL_COLUMNS_V2 = ['i', 'w', 'l', 'x', 'p', 'm', 'g', 'f', 'e', 'o'] # possible morphological attributes MORPH_ATTS = ['type', 'animacy', #'gender', 'number' "Abbr", "Animacy", "Aspect", "Case", "Definite", "Degree", "Evident", "Foreign", "Gender", "Mood", "NumType", "Number", "Person", "Polarity", "Polite", "Poss", "PronType", "Reflex", "Tense", "VerbForm", "Voice", "Type"] def _make_sent_csv(sentstring, fname, meta, splitter, i, skip_meta=False): """ Take one CONLL-U sentence and add all metadata to each row Return: str (CSV data) and dict (sent level metadata) """ fixed_lines = [] raw_lines = sentstring.splitlines() for line in raw_lines: if not line: continue if line.startswith('#'): if not skip_meta: try: k, v = line.lstrip('# ').split(splitter, 1) except ValueError: k, v = line.lstrip('# ').split(splitter.strip(), 1) meta[k.lower().strip()] = v.strip() else: line = '%s\t%s\t%s' % (fname, i, line) fixed_lines.append(line) return '\n'.join(fixed_lines), meta def _add_governors_to_df(df): """ Add governor info to a DF. Increases memory usage quite a bit. """ # save the original index i = df.index.get_level_values('i') # add g dfg = df.set_index('g', append=True) # remove i dfg = dfg.reset_index('i') dfg = df.loc[dfg.index] dfg = dfg[['w', 'l', 'p', 'f']] dfg['i'] = i dfg = dfg.set_index('i', append=True) dfg.index.names = ['file', 's', 'g', 'i'] dfg = dfg.reset_index('g', drop=True) for c in list(dfg.columns): try: dfg[c] = dfg[c].cat.add_categories(['ROOT']) except (AttributeError, ValueError): pass dfg = dfg.fillna('ROOT') dfg.columns = ['gw', 'gl', 'gp', 'gf'] dfg = df.join(dfg, how="inner") return dfg def conll_df(path, corpus_name=False, corp_folder=False, v2="auto", skip_morph=False, skip_meta=False, add_gov=False, drop=['text', 'newdoc id'], file_index=True, categories=True, extra_fields='auto', drop_redundant=True, **kwargs): """ Optimised CONLL-U reader for v2.0 data Args: path (str): the file to prepare Returns: pd.DataFrame: 2d array representation of file data """ import os import re try: from io import StringIO except ImportError: from StringIO import StringIO splitter = ' = ' if v2 else '=' with open(path, 'r') as fo: data = fo.read().strip('\n') if v2 == 'auto': v2 = 'sent_id = ' in data[:9999] fname = os.path.basename(path) # metadata that applies filewide # a little bonus for those with annual data basedict = {} if not skip_meta: year = re.search(r'[12][0-9][0-9][0-9]', fname) if year: basedict['year'] = year.group(0) sents = data.split('\n\n') sents_meta = [_make_sent_csv(sstring, fname, dict(basedict), splitter, i, skip_meta=skip_meta) \ for i, sstring in enumerate(sents, start=1)] sents, metadata = zip(*sents_meta) # make the sent df sents = '\n\n'.join(sents) sents = StringIO(sents) if v2: cols = ['file', 's'] + CONLL_COLUMNS_V2 else: cols = ['file', 's'] + CONLL_COLUMNS df = pd.read_csv(sents, sep="\t", header=None, names=cols, quoting=kwargs.pop('quoting', 3), index_col=[0, 1, 2], engine='c', na_filter=False, **kwargs) if v2 and not skip_morph: df['m'] = df['m'].fillna('') df['o'] = df['o'].fillna('') if extra_fields == 'auto': # evil line to get all possible keys in the final column extra_fields = list(df['o'].str.extractall(r'(?:^|\|)([^=]+?)=')[0].unique()) cats = MORPH_ATTS + extra_fields if 'SpaceAfter' not in cats: cats.append('SpaceAfter') cats = list(set(cats)) om = df['o'].str.cat(df['m'], sep='|').str.strip('|_') # this is a very slow list comp, but i can't think of a better way to do it. # the 'extractall' solution makes columns for not just the value, but the key... extra = [om.str.extract('%s=([^|$]+)' % cat.title(), expand=True) for cat in cats] extra = pd.concat(extra, axis=1) extra.columns = cats df = pd.concat([df, extra], axis=1) # make and join the meta df if not skip_meta: metadata = {i: d for i, d in enumerate(metadata, start=1)} metadata = pd.DataFrame(metadata).T metadata.index.name = 's' df = metadata.join(df, how='inner') # we never want these to show up as a dataframe column badcols = ['sent_id', 's', 'i', 'file'] # if we aren't parsing morph and extra columns, we should at least keep them if not skip_morph: badcols += ['o', 'm'] if drop: badcols = badcols + drop df = df.drop(badcols, axis=1, errors='ignore') # some evil code to handle conll-u files where g col could be a string if 'g' in df.columns: df['g'] = df['g'].fillna(0) if df['g'].dtype in [object, str]: df['g'] = df['g'].str.replace('_', '0').astype(int) df['g'] = df['g'].astype(int) df = df.fillna('_') # attempt to categorise data if categories: for c in list(df.columns): if c in ['g', 'date']: continue try: df[c] = df[c].astype('category') except: pass if add_gov: df = _add_governors_to_df(df) if not file_index: df.index = df.index.droplevel('file') if drop_redundant: empty_cols = [] for c in df.columns: if len(df[c].unique()) == 1: empty_cols.append(c) df = df.drop(empty_cols, axis=1) #reorder columns so that important things are first firsts = CONLL_COLUMNS_V2 if v2 else CONLL_COLUMNS firsts = [i for i in firsts if i in list(df.columns)] lasts = [i for i in list(df.columns) if i not in firsts] df = df[firsts + lasts] return df
30.154185
100
0.512491
0
0
0
0
0
0
0
0
1,804
0.26355
c708da26fb5e59e5b2a82edc62ad3d6177cc9df2
2,491
py
Python
scripts/postgres_to_lmdb_bars_60m.py
alexanu/atpy
3f4b5cfe7de7633ef053d2feaddae421806a9799
[ "MIT" ]
24
2018-03-22T06:22:11.000Z
2022-03-14T09:04:44.000Z
scripts/postgres_to_lmdb_bars_60m.py
alexanu/atpy
3f4b5cfe7de7633ef053d2feaddae421806a9799
[ "MIT" ]
null
null
null
scripts/postgres_to_lmdb_bars_60m.py
alexanu/atpy
3f4b5cfe7de7633ef053d2feaddae421806a9799
[ "MIT" ]
9
2018-03-22T06:22:11.000Z
2020-09-19T16:47:13.000Z
#!/bin/python3 import argparse import datetime import functools import logging import os import psycopg2 from dateutil.relativedelta import relativedelta from atpy.data.cache.lmdb_cache import * from atpy.data.cache.postgres_cache import BarsInPeriodProvider from atpy.data.cache.postgres_cache import request_adjustments from atpy.data.splits_dividends import adjust_df if __name__ == "__main__": logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description="PostgreSQL to LMDB configuration") parser.add_argument('-lmdb_path', type=str, default=None, help="LMDB Path") parser.add_argument('-delta_back', type=int, default=8, help="Default number of years to look back") parser.add_argument('-adjust_splits', action='store_true', default=True, help="Adjust splits before saving") parser.add_argument('-adjust_dividends', action='store_true', default=False, help="Adjust dividends before saving") args = parser.parse_args() lmdb_path = args.lmdb_path if args.lmdb_path is not None else os.environ['ATPY_LMDB_PATH'] con = psycopg2.connect(os.environ['POSTGRESQL_CACHE']) adjustments = None if args.adjust_splits and args.adjust_dividends: adjustments = request_adjustments(conn=con, table_name='splits_dividends') elif args.adjust_splits: adjustments = request_adjustments(conn=con, table_name='splits_dividends', adj_type='split') elif args.adjust_dividends: adjustments = request_adjustments(conn=con, table_name='splits_dividends', adj_type='dividend') now = datetime.datetime.now() bgn_prd = datetime.datetime(now.year - args.delta_back, 1, 1) bgn_prd = bgn_prd + relativedelta(days=7 - bgn_prd.weekday()) cache_read = functools.partial(read_pickle, lmdb_path=lmdb_path) bars_in_period = BarsInPeriodProvider(conn=con, interval_len=3600, interval_type='s', bars_table='bars_60m', bgn_prd=bgn_prd, delta=relativedelta(days=7), overlap=relativedelta(microseconds=-1), cache=cache_read) for i, df in enumerate(bars_in_period): if cache_read(bars_in_period.current_cache_key()) is None: if adjustments is not None: adjust_df(df, adjustments) write(bars_in_period.current_cache_key(), df, lmdb_path) logging.info('Saving ' + bars_in_period.current_cache_key()) else: logging.info('Cache hit on ' + bars_in_period.current_cache_key())
43.701754
158
0.733842
0
0
0
0
0
0
0
0
394
0.158169
c7091f356e0452faea68f2b17a6227d31b0f1d34
746
py
Python
src/download_pdf.py
luccanunes/class-url-automation
6ccb77feaa9aede4c8475d9f79149cc8c2c31cc4
[ "MIT" ]
1
2020-10-17T02:08:10.000Z
2020-10-17T02:08:10.000Z
src/download_pdf.py
luccanunes/class-url-automation
6ccb77feaa9aede4c8475d9f79149cc8c2c31cc4
[ "MIT" ]
null
null
null
src/download_pdf.py
luccanunes/class-url-automation
6ccb77feaa9aede4c8475d9f79149cc8c2c31cc4
[ "MIT" ]
1
2020-12-20T23:53:30.000Z
2020-12-20T23:53:30.000Z
def download_pdf(URL): from selenium import webdriver from time import sleep URL = URL options = webdriver.ChromeOptions() options.add_experimental_option('prefs', { # Change default directory for downloads "download.default_directory": r"E:\coding\other\class-url-automation\src\pdfs", "download.prompt_for_download": False, # To auto download the file "download.directory_upgrade": True, # It will not show PDF directly in chrome "plugins.always_open_pdf_externally": True }) options.add_argument("--headless") driver = webdriver.Chrome( executable_path=r'E:\coding\python\chromedriver.exe', chrome_options=options ) driver.get(URL) sleep(5)
35.52381
87
0.687668
0
0
0
0
0
0
0
0
333
0.446381
c709a775fc2c2a745cb1ed61a6cbd8778daaee06
609
py
Python
datadog_checks_dev/datadog_checks/dev/tooling/commands/env/__init__.py
vbarbaresi/integrations-core
ab26ab1cd6c28a97c1ad1177093a93659658c7aa
[ "BSD-3-Clause" ]
1
2021-01-28T01:45:37.000Z
2021-01-28T01:45:37.000Z
datadog_checks_dev/datadog_checks/dev/tooling/commands/env/__init__.py
vbarbaresi/integrations-core
ab26ab1cd6c28a97c1ad1177093a93659658c7aa
[ "BSD-3-Clause" ]
3
2021-01-27T04:56:40.000Z
2021-02-26T06:29:22.000Z
datadog_checks_dev/datadog_checks/dev/tooling/commands/env/__init__.py
vbarbaresi/integrations-core
ab26ab1cd6c28a97c1ad1177093a93659658c7aa
[ "BSD-3-Clause" ]
1
2021-04-07T16:58:27.000Z
2021-04-07T16:58:27.000Z
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import click from ..console import CONTEXT_SETTINGS from .check import check_run from .ls import ls from .prune import prune from .reload import reload_env from .shell import shell from .start import start from .stop import stop from .test import test ALL_COMMANDS = (check_run, ls, prune, reload_env, shell, start, stop, test) @click.group(context_settings=CONTEXT_SETTINGS, short_help='Manage environments') def env(): pass for command in ALL_COMMANDS: env.add_command(command)
23.423077
81
0.771757
0
0
0
0
101
0.165846
0
0
133
0.218391
c709d0df6d7c96b0dace86ff6283e481bd4f3000
8,584
py
Python
sdk/python/pulumi_azure_nextgen/marketplace/private_store_offer.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/marketplace/private_store_offer.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/marketplace/private_store_offer.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['PrivateStoreOffer'] class PrivateStoreOffer(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, e_tag: Optional[pulumi.Input[str]] = None, icon_file_uris: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, offer_id: Optional[pulumi.Input[str]] = None, plans: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PlanArgs']]]]] = None, private_store_id: Optional[pulumi.Input[str]] = None, specific_plan_ids_limitation: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, update_suppressed_due_idempotence: Optional[pulumi.Input[bool]] = None, __props__=None, __name__=None, __opts__=None): """ The privateStore offer data structure. API Version: 2020-01-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] e_tag: Identifier for purposes of race condition :param pulumi.Input[Mapping[str, pulumi.Input[str]]] icon_file_uris: Icon File Uris :param pulumi.Input[str] offer_id: The offer ID to update or delete :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PlanArgs']]]] plans: Offer plans :param pulumi.Input[str] private_store_id: The store ID - must use the tenant ID :param pulumi.Input[Sequence[pulumi.Input[str]]] specific_plan_ids_limitation: Plan ids limitation for this offer :param pulumi.Input[bool] update_suppressed_due_idempotence: Indicating whether the offer was not updated to db (true = not updated). If the allow list is identical to the existed one in db, the offer would not be updated. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['e_tag'] = e_tag __props__['icon_file_uris'] = icon_file_uris __props__['offer_id'] = offer_id __props__['plans'] = plans if private_store_id is None and not opts.urn: raise TypeError("Missing required property 'private_store_id'") __props__['private_store_id'] = private_store_id __props__['specific_plan_ids_limitation'] = specific_plan_ids_limitation __props__['update_suppressed_due_idempotence'] = update_suppressed_due_idempotence __props__['created_at'] = None __props__['modified_at'] = None __props__['name'] = None __props__['offer_display_name'] = None __props__['publisher_display_name'] = None __props__['type'] = None __props__['unique_offer_id'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:marketplace/latest:PrivateStoreOffer"), pulumi.Alias(type_="azure-nextgen:marketplace/v20200101:PrivateStoreOffer")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateStoreOffer, __self__).__init__( 'azure-nextgen:marketplace:PrivateStoreOffer', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateStoreOffer': """ Get an existing PrivateStoreOffer resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return PrivateStoreOffer(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdAt") def created_at(self) -> pulumi.Output[str]: """ Private store offer creation date """ return pulumi.get(self, "created_at") @property @pulumi.getter(name="eTag") def e_tag(self) -> pulumi.Output[Optional[str]]: """ Identifier for purposes of race condition """ return pulumi.get(self, "e_tag") @property @pulumi.getter(name="iconFileUris") def icon_file_uris(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Icon File Uris """ return pulumi.get(self, "icon_file_uris") @property @pulumi.getter(name="modifiedAt") def modified_at(self) -> pulumi.Output[str]: """ Private store offer modification date """ return pulumi.get(self, "modified_at") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="offerDisplayName") def offer_display_name(self) -> pulumi.Output[str]: """ It will be displayed prominently in the marketplace """ return pulumi.get(self, "offer_display_name") @property @pulumi.getter def plans(self) -> pulumi.Output[Optional[Sequence['outputs.PlanResponse']]]: """ Offer plans """ return pulumi.get(self, "plans") @property @pulumi.getter(name="privateStoreId") def private_store_id(self) -> pulumi.Output[str]: """ Private store unique id """ return pulumi.get(self, "private_store_id") @property @pulumi.getter(name="publisherDisplayName") def publisher_display_name(self) -> pulumi.Output[str]: """ Publisher name that will be displayed prominently in the marketplace """ return pulumi.get(self, "publisher_display_name") @property @pulumi.getter(name="specificPlanIdsLimitation") def specific_plan_ids_limitation(self) -> pulumi.Output[Optional[Sequence[str]]]: """ Plan ids limitation for this offer """ return pulumi.get(self, "specific_plan_ids_limitation") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="uniqueOfferId") def unique_offer_id(self) -> pulumi.Output[str]: """ Offers unique id """ return pulumi.get(self, "unique_offer_id") @property @pulumi.getter(name="updateSuppressedDueIdempotence") def update_suppressed_due_idempotence(self) -> pulumi.Output[Optional[bool]]: """ Indicating whether the offer was not updated to db (true = not updated). If the allow list is identical to the existed one in db, the offer would not be updated. """ return pulumi.get(self, "update_suppressed_due_idempotence") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
40.11215
230
0.646086
8,165
0.951188
0
0
3,773
0.439539
0
0
3,569
0.415774
c70a49b112aadc6ae32c90aac8b9581dc39ca540
1,491
py
Python
examples/custom_shape/stages.py
oksumoron/locust
fddfefe7ef1082bc5284cd2dd8477221484dfb0c
[ "MIT" ]
18,336
2015-01-03T20:38:40.000Z
2022-03-31T16:02:35.000Z
examples/custom_shape/stages.py
oksumoron/locust
fddfefe7ef1082bc5284cd2dd8477221484dfb0c
[ "MIT" ]
1,779
2015-01-01T02:09:30.000Z
2022-03-31T09:58:10.000Z
examples/custom_shape/stages.py
oksumoron/locust
fddfefe7ef1082bc5284cd2dd8477221484dfb0c
[ "MIT" ]
2,689
2015-01-05T02:01:50.000Z
2022-03-31T13:13:09.000Z
from locust import HttpUser, TaskSet, task, constant from locust import LoadTestShape class UserTasks(TaskSet): @task def get_root(self): self.client.get("/") class WebsiteUser(HttpUser): wait_time = constant(0.5) tasks = [UserTasks] class StagesShape(LoadTestShape): """ A simply load test shape class that has different user and spawn_rate at different stages. Keyword arguments: stages -- A list of dicts, each representing a stage with the following keys: duration -- When this many seconds pass the test is advanced to the next stage users -- Total user count spawn_rate -- Number of users to start/stop per second stop -- A boolean that can stop that test at a specific stage stop_at_end -- Can be set to stop once all stages have run. """ stages = [ {"duration": 60, "users": 10, "spawn_rate": 10}, {"duration": 100, "users": 50, "spawn_rate": 10}, {"duration": 180, "users": 100, "spawn_rate": 10}, {"duration": 220, "users": 30, "spawn_rate": 10}, {"duration": 230, "users": 10, "spawn_rate": 10}, {"duration": 240, "users": 1, "spawn_rate": 1}, ] def tick(self): run_time = self.get_run_time() for stage in self.stages: if run_time < stage["duration"]: tick_data = (stage["users"], stage["spawn_rate"]) return tick_data return None
29.82
90
0.602951
1,396
0.936284
0
0
58
0.0389
0
0
766
0.513749
c70b23f1cce14640f16607fb8ec77754089292bc
2,115
py
Python
db/seed_ids.py
xtuyaowu/jtyd_python_spider
ca5c3efd5519f592c0d587c22f03812e7756c8ea
[ "MIT" ]
7
2017-08-19T22:36:29.000Z
2018-06-03T07:02:04.000Z
db/seed_ids.py
xtuyaowu/jtyd_python_spider
ca5c3efd5519f592c0d587c22f03812e7756c8ea
[ "MIT" ]
2
2021-04-30T20:37:14.000Z
2021-12-13T19:46:29.000Z
db/seed_ids.py
xtuyaowu/jtyd_python_spider
ca5c3efd5519f592c0d587c22f03812e7756c8ea
[ "MIT" ]
4
2017-09-06T03:00:11.000Z
2017-12-10T08:04:21.000Z
# coding:utf-8 from sqlalchemy import text from db.basic_db import db_session from db.models import SeedIds from decorators.decorator import db_commit_decorator def get_seed(): """ Get all user id to be crawled :return: user ids """ return db_session.query(SeedIds).filter(text('status=0')).all() def get_seed_ids(): """ Get all user id to be crawled :return: user ids """ return db_session.query(SeedIds.uid).filter(text('is_crawled=0')).all() def get_home_ids(): """ Get all user id who's home pages need to be crawled :return: user ids """ return db_session.query(SeedIds.uid).filter(text('home_crawled=0')).all() @db_commit_decorator def set_seed_crawled(uid, result): """ :param uid: user id that is crawled :param result: crawling result :return: None """ seed = db_session.query(SeedIds).filter(SeedIds.uid == uid).first() if seed: if seed.is_crawled == 0: seed.is_crawled = result else: seed = SeedIds(uid=uid, is_crawled=result) db_session.add(seed) db_session.commit() def get_seed_by_id(uid): return db_session.query(SeedIds).filter(SeedIds.uid == uid).first() @db_commit_decorator def insert_seeds(ids): db_session.execute(SeedIds.__table__.insert().prefix_with('IGNORE'), [{'uid': i} for i in ids]) db_session.commit() @db_commit_decorator def set_seed_other_crawled(uid): """ update it if user id already exists, else insert :param uid: user id :return: None """ seed = get_seed_by_id(uid) if seed is None: seed = SeedIds(uid=uid, is_crawled=1, other_crawled=1, home_crawled=1) db_session.add(seed) else: seed.other_crawled = 1 db_session.commit() @db_commit_decorator def set_seed_home_crawled(uid): """ :param uid: user id :return: None """ seed = get_seed_by_id(uid) if seed is None: seed = SeedIds(uid=uid, is_crawled=0, other_crawled=0, home_crawled=1) db_session.add(seed) else: seed.home_crawled = 1 db_session.commit()
24.593023
99
0.659102
0
0
0
0
1,323
0.625532
0
0
553
0.261466
c70b35ed30f0bbb93f6ab0a59185f9e44b410fce
16,745
py
Python
tobler/area_weighted/area_interpolate.py
sjsrey/tobler
8e3ebd5d01de459e4387fabd57cbb12cb6735596
[ "BSD-3-Clause" ]
1
2019-06-21T19:32:22.000Z
2019-06-21T19:32:22.000Z
tobler/area_weighted/area_interpolate.py
sjsrey/tobler
8e3ebd5d01de459e4387fabd57cbb12cb6735596
[ "BSD-3-Clause" ]
null
null
null
tobler/area_weighted/area_interpolate.py
sjsrey/tobler
8e3ebd5d01de459e4387fabd57cbb12cb6735596
[ "BSD-3-Clause" ]
null
null
null
""" Area Weighted Interpolation """ import numpy as np import geopandas as gpd from ._vectorized_raster_interpolation import _fast_append_profile_in_gdf import warnings from scipy.sparse import dok_matrix, diags, coo_matrix import pandas as pd from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs def _area_tables_binning(source_df, target_df, spatial_index): """Construct area allocation and source-target correspondence tables using a spatial indexing approach ... NOTE: this currently relies on Geopandas' spatial index machinery Parameters ---------- source_df : geopandas.GeoDataFrame GeoDataFrame containing input data and polygons target_df : geopandas.GeoDataFramee GeoDataFrame defining the output geometries spatial_index : str Spatial index to use to build the allocation of area from source to target tables. It currently support the following values: - "source": build the spatial index on `source_df` - "target": build the spatial index on `target_df` - "auto": attempts to guess the most efficient alternative. Currently, this option uses the largest table to build the index, and performs a `bulk_query` on the shorter table. Returns ------- tables : scipy.sparse.dok_matrix """ if _check_crs(source_df, target_df): pass else: return None df1 = source_df.copy() df2 = target_df.copy() # it is generally more performant to use the longer df as spatial index if spatial_index == "auto": if df1.shape[0] > df2.shape[0]: spatial_index = "source" else: spatial_index = "target" if spatial_index == "source": ids_tgt, ids_src = df1.sindex.query_bulk(df2.geometry, predicate="intersects") elif spatial_index == "target": ids_src, ids_tgt = df2.sindex.query_bulk(df1.geometry, predicate="intersects") else: raise ValueError( f"'{spatial_index}' is not a valid option. Use 'auto', 'source' or 'target'." ) areas = df1.geometry.values[ids_src].intersection(df2.geometry.values[ids_tgt]).area table = coo_matrix( (areas, (ids_src, ids_tgt),), shape=(df1.shape[0], df2.shape[0]), dtype=np.float32, ) table = table.todok() return table def _area_tables(source_df, target_df): """ Construct area allocation and source-target correspondence tables. Parameters ---------- source_df : geopandas.GeoDataFrame target_df : geopandas.GeoDataFrame Returns ------- tables : tuple (optional) two 2-D numpy arrays SU: area of intersection of source geometry i with union geometry j UT: binary mapping of union geometry j to target geometry t Notes ----- The assumption is both dataframes have the same coordinate reference system. Union geometry is a geometry formed by the intersection of a source geometry and a target geometry SU Maps source geometry to union geometry, UT maps union geometry to target geometry """ if _check_crs(source_df, target_df): pass else: return None source_df = source_df.copy() source_df = source_df.copy() n_s = source_df.shape[0] n_t = target_df.shape[0] _left = np.arange(n_s) _right = np.arange(n_t) source_df.loc[:, "_left"] = _left # create temporary index for union target_df.loc[:, "_right"] = _right # create temporary index for union res_union = gpd.overlay(source_df, target_df, how="union") n_u, _ = res_union.shape SU = np.zeros( (n_s, n_u) ) # holds area of intersection of source geom with union geom UT = np.zeros((n_u, n_t)) # binary table mapping union geom to target geom for index, row in res_union.iterrows(): # only union polygons that intersect both a source and a target geometry matter if not np.isnan(row["_left"]) and not np.isnan(row["_right"]): s_id = int(row["_left"]) t_id = int(row["_right"]) SU[s_id, index] = row[row.geometry.name].area UT[index, t_id] = 1 source_df.drop(["_left"], axis=1, inplace=True) target_df.drop(["_right"], axis=1, inplace=True) return SU, UT def _area_interpolate_binning( source_df, target_df, extensive_variables=None, intensive_variables=None, table=None, allocate_total=True, spatial_index="auto", ): """ Area interpolation for extensive and intensive variables. Parameters ---------- source_df : geopandas.GeoDataFrame target_df : geopandas.GeoDataFrame extensive_variables : list [Optional. Default=None] Columns in dataframes for extensive variables intensive_variables : list [Optional. Default=None] Columns in dataframes for intensive variables table : scipy.sparse.dok_matrix [Optional. Default=None] Area allocation source-target correspondence table. If not provided, it will be built from `source_df` and `target_df` using `tobler.area_interpolate._area_tables_binning` allocate_total : boolean [Optional. Default=True] True if total value of source area should be allocated. False if denominator is area of i. Note that the two cases would be identical when the area of the source polygon is exhausted by intersections. See Notes for more details. spatial_index : str [Optional. Default="auto"] Spatial index to use to build the allocation of area from source to target tables. It currently support the following values: - "source": build the spatial index on `source_df` - "target": build the spatial index on `target_df` - "auto": attempts to guess the most efficient alternative. Currently, this option uses the largest table to build the index, and performs a `bulk_query` on the shorter table. Returns ------- estimates : geopandas.GeoDataFrame new geodaraframe with interpolated variables as columns and target_df geometry as output geometry Notes ----- The assumption is both dataframes have the same coordinate reference system. For an extensive variable, the estimate at target polygon j (default case) is: .. math:: v_j = \\sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \\sum_k a_{i,k} If the area of the source polygon is not exhausted by intersections with target polygons and there is reason to not allocate the complete value of an extensive attribute, then setting allocate_total=False will use the following weights: .. math:: v_j = \\sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / a_i where a_i is the total area of source polygon i. For an intensive variable, the estimate at target polygon j is: .. math:: v_j = \\sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \\sum_k a_{k,j} """ source_df = source_df.copy() target_df = target_df.copy() if _check_crs(source_df, target_df): pass else: return None if table is None: table = _area_tables_binning(source_df, target_df, spatial_index) den = source_df[source_df.geometry.name].area.values if allocate_total: den = np.asarray(table.sum(axis=1)) den = den + (den == 0) den = 1.0 / den n = den.shape[0] den = den.reshape((n,)) den = diags([den], [0]) weights = den.dot(table) # row standardize table dfs = [] extensive = [] if extensive_variables: for variable in extensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) estimates = diags([vals], [0]).dot(weights) estimates = estimates.sum(axis=0) extensive.append(estimates.tolist()[0]) extensive = np.asarray(extensive) extensive = np.array(extensive) extensive = pd.DataFrame(extensive.T, columns=extensive_variables) area = np.asarray(table.sum(axis=0)) den = 1.0 / (area + (area == 0)) n, k = den.shape den = den.reshape((k,)) den = diags([den], [0]) weights = table.dot(den) intensive = [] if intensive_variables: for variable in intensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) n = vals.shape[0] vals = vals.reshape((n,)) estimates = diags([vals], [0]) estimates = estimates.dot(weights).sum(axis=0) intensive.append(estimates.tolist()[0]) intensive = np.asarray(intensive) intensive = pd.DataFrame(intensive.T, columns=intensive_variables) if extensive_variables: dfs.append(extensive) if intensive_variables: dfs.append(intensive) df = pd.concat(dfs, axis=1) df["geometry"] = target_df[target_df.geometry.name].reset_index(drop=True) df = gpd.GeoDataFrame(df.replace(np.inf, np.nan)) return df def _area_interpolate( source_df, target_df, extensive_variables=None, intensive_variables=None, tables=None, allocate_total=True, ): """ Area interpolation for extensive and intensive variables. Parameters ---------- source_df : geopandas.GeoDataFrame (required) geodataframe with polygon geometries target_df : geopandas.GeoDataFrame (required) geodataframe with polygon geometries extensive_variables : list, (optional) columns in dataframes for extensive variables intensive_variables : list, (optional) columns in dataframes for intensive variables tables : tuple (optional) two 2-D numpy arrays SU: area of intersection of source geometry i with union geometry j UT: binary mapping of union geometry j to target geometry t allocate_total : boolean True if total value of source area should be allocated. False if denominator is area of i. Note that the two cases would be identical when the area of the source polygon is exhausted by intersections. See Notes for more details. Returns ------- estimates : geopandas.GeoDataFrame new geodaraframe with interpolated variables as columns and target_df geometry as output geometry Notes ----- The assumption is both dataframes have the same coordinate reference system. For an extensive variable, the estimate at target polygon j (default case) is: v_j = \sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \sum_k a_{i,k} If the area of the source polygon is not exhausted by intersections with target polygons and there is reason to not allocate the complete value of an extensive attribute, then setting allocate_total=False will use the following weights: v_j = \sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / a_i where a_i is the total area of source polygon i. For an intensive variable, the estimate at target polygon j is: v_j = \sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \sum_k a_{k,j} """ source_df = source_df.copy() target_df = target_df.copy() if _check_crs(source_df, target_df): pass else: return None if tables is None: SU, UT = _area_tables(source_df, target_df) else: SU, UT = tables den = source_df[source_df.geometry.name].area.values if allocate_total: den = SU.sum(axis=1) den = den + (den == 0) weights = np.dot(np.diag(1 / den), SU) dfs = [] extensive = [] if extensive_variables: for variable in extensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) estimates = np.dot(np.diag(vals), weights) estimates = np.dot(estimates, UT) estimates = estimates.sum(axis=0) extensive.append(estimates) extensive = np.array(extensive) extensive = pd.DataFrame(extensive.T, columns=extensive_variables) ST = np.dot(SU, UT) area = ST.sum(axis=0) den = np.diag(1.0 / (area + (area == 0))) weights = np.dot(ST, den) intensive = [] if intensive_variables: for variable in intensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) vals.shape = (len(vals), 1) est = (vals * weights).sum(axis=0) intensive.append(est) intensive = np.array(intensive) intensive = pd.DataFrame(intensive.T, columns=intensive_variables) if extensive_variables: dfs.append(extensive) if intensive_variables: dfs.append(intensive) df = pd.concat(dfs, axis=1) df["geometry"] = target_df[target_df.geometry.name].reset_index(drop=True) df = gpd.GeoDataFrame(df.replace(np.inf, np.nan)) return df def _area_tables_raster( source_df, target_df, raster_path, codes=[21, 22, 23, 24], force_crs_match=True ): """ Construct area allocation and source-target correspondence tables according to a raster 'populated' areas Parameters ---------- source_df : geopandas.GeoDataFrame geeodataframe with geometry column of polygon type target_df : geopandas.GeoDataFrame geodataframe with geometry column of polygon type raster_path : str the path to the associated raster image. codes : list list of integer code values that should be considered as 'populated'. Since this draw inspiration using the National Land Cover Database (NLCD), the default is 21 (Developed, Open Space), 22 (Developed, Low Intensity), 23 (Developed, Medium Intensity) and 24 (Developed, High Intensity). The description of each code can be found here: https://www.mrlc.gov/sites/default/files/metadata/landcover.html Only taken into consideration for harmonization raster based. force_crs_match : bool (default is True) Whether the Coordinate Reference System (CRS) of the polygon will be reprojected to the CRS of the raster file. It is recommended to let this argument as True. Returns ------- tables: tuple (optional) two 2-D numpy arrays SU: area of intersection of source geometry i with union geometry j UT: binary mapping of union geometry j to target geometry t Notes ----- The assumption is both dataframes have the same coordinate reference system. Union geometry is a geometry formed by the intersection of a source geometry and a target geometry SU Maps source geometry to union geometry, UT maps union geometry to target geometry """ if _check_crs(source_df, target_df): pass else: return None source_df = source_df.copy() target_df = target_df.copy() n_s = source_df.shape[0] n_t = target_df.shape[0] _left = np.arange(n_s) _right = np.arange(n_t) source_df.loc[:, "_left"] = _left # create temporary index for union target_df.loc[:, "_right"] = _right # create temporary index for union res_union_pre = gpd.overlay(source_df, target_df, how="union") # Establishing a CRS for the generated union warnings.warn( "The CRS for the generated union will be set to be the same as source_df." ) res_union_pre.crs = source_df.crs # The 'append_profile_in_gdf' function is present in nlcd.py script res_union = _fast_append_profile_in_gdf( res_union_pre, raster_path, force_crs_match=force_crs_match ) str_codes = [str(i) for i in codes] str_list = ["Type_" + i for i in str_codes] # Extract list of code names that actually appear in the appended dataset str_list_ok = [col for col in res_union.columns if col in str_list] res_union["Populated_Pixels"] = res_union[str_list_ok].sum(axis=1) n_u, _ = res_union.shape SU = np.zeros( (n_s, n_u) ) # holds area of intersection of source geom with union geom UT = np.zeros((n_u, n_t)) # binary table mapping union geom to target geom for index, row in res_union.iterrows(): # only union polygons that intersect both a source and a target geometry matter if not np.isnan(row["_left"]) and not np.isnan(row["_right"]): s_id = int(row["_left"]) t_id = int(row["_right"]) SU[s_id, index] = row["Populated_Pixels"] UT[index, t_id] = 1 source_df.drop(["_left"], axis=1, inplace=True) target_df.drop(["_right"], axis=1, inplace=True) return SU, UT
33.828283
225
0.657928
0
0
0
0
0
0
0
0
9,059
0.540997
c70bc413822aaad70486fa31ce67b5a7d9e44d76
49,568
py
Python
cave/com.raytheon.viz.gfe/python/autotest/VTEC_GHG_FFA_TestScript.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
cave/com.raytheon.viz.gfe/python/autotest/VTEC_GHG_FFA_TestScript.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
cave/com.raytheon.viz.gfe/python/autotest/VTEC_GHG_FFA_TestScript.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
1
2021-10-30T00:03:05.000Z
2021-10-30T00:03:05.000Z
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # ---------------------------------------------------------------------------- # This software is in the public domain, furnished "as is", without technical # support, and with no warranty, express or implied, as to its usefulness for # any purpose. # # Headlines Timing # # Author: # ---------------------------------------------------------------------------- #set up to test area names and part of states # without locationName defined areaT1 = """ AreaDictionary['FLZ050']['fullStateName'] = 'Florida' AreaDictionary['FLZ050']['partOfState'] = 'western' AreaDictionary['FLZ057']['fullStateName'] = 'Florida' AreaDictionary['FLZ057']['partOfState'] = 'western' AreaDictionary['FLZ160']['fullStateName'] = 'Florida' AreaDictionary['FLZ160']['partOfState'] = 'central' AreaDictionary['FLZ151']['fullStateName'] = 'Florida' AreaDictionary['FLZ151']['partOfState'] = 'central' AreaDictionary['FLZ043']['fullStateName'] = 'Florida' AreaDictionary['FLZ043']['partOfState'] = 'central' AreaDictionary['FLZ162']['fullStateName'] = 'Florida' AreaDictionary['FLZ162']['partOfState'] = 'central' AreaDictionary['FLZ165']['fullStateName'] = 'Florida' AreaDictionary['FLZ165']['partOfState'] = 'central' AreaDictionary['FLZ056']['fullStateName'] = 'Florida' AreaDictionary['FLZ056']['partOfState'] = 'southern' AreaDictionary['FLZ052']['fullStateName'] = 'Georgia' AreaDictionary['FLZ052']['partOfState'] = 'western' AreaDictionary['FLZ155']['fullStateName'] = 'Georgia' AreaDictionary['FLZ155']['partOfState'] = 'western' AreaDictionary['FLZ061']['fullStateName'] = 'Georgia' AreaDictionary['FLZ061']['partOfState'] = 'southern' AreaDictionary['FLZ148']['fullStateName'] = 'Georgia' AreaDictionary['FLZ148']['partOfState'] = 'southern' AreaDictionary['FLZ142']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ142']['partOfState'] = 'western' AreaDictionary['FLZ043']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ043']['partOfState'] = 'western' """ #with location name defined areaT2= """ AreaDictionary['FLZ050']['fullStateName'] = 'Florida' AreaDictionary['FLZ050']['partOfState'] = 'western' AreaDictionary['FLZ050']['locationName'] = 'Clearfield' AreaDictionary['FLZ057']['fullStateName'] = 'Florida' AreaDictionary['FLZ057']['partOfState'] = 'western' AreaDictionary['FLZ057']['locationName'] = 'Clearfield' AreaDictionary['FLZ160']['fullStateName'] = 'Florida' AreaDictionary['FLZ160']['partOfState'] = 'central' AreaDictionary['FLZ160']['locationName'] = 'Aunt Ruby' AreaDictionary['FLZ151']['fullStateName'] = 'Florida' AreaDictionary['FLZ151']['partOfState'] = 'central' AreaDictionary['FLZ151']['locationName'] = 'Aunt Ruby' AreaDictionary['FLZ043']['fullStateName'] = 'Florida' AreaDictionary['FLZ043']['partOfState'] = 'central' AreaDictionary['FLZ043']['locationName'] = 'Adams' AreaDictionary['FLZ162']['fullStateName'] = 'Florida' AreaDictionary['FLZ162']['partOfState'] = 'central' AreaDictionary['FLZ162']['locationName'] = 'Adams' AreaDictionary['FLZ165']['fullStateName'] = 'Florida' AreaDictionary['FLZ165']['partOfState'] = 'central' #AreaDictionary['FLZ165']['locationName'] = 'western' AreaDictionary['FLZ056']['fullStateName'] = 'Florida' AreaDictionary['FLZ056']['partOfState'] = 'southern' AreaDictionary['FLZ056']['locationName'] = 'Tampa' AreaDictionary['FLZ052']['fullStateName'] = 'Georgia' AreaDictionary['FLZ052']['partOfState'] = 'western' AreaDictionary['FLZ052']['locationName'] = 'Tampa' AreaDictionary['FLZ155']['fullStateName'] = 'Georgia' AreaDictionary['FLZ155']['partOfState'] = 'western' AreaDictionary['FLZ155']['locationName'] = 'Atlanta' AreaDictionary['FLZ061']['fullStateName'] = 'Georgia' AreaDictionary['FLZ061']['partOfState'] = 'southern' AreaDictionary['FLZ061']['locationName'] = 'Beach' AreaDictionary['FLZ148']['fullStateName'] = 'Georgia' AreaDictionary['FLZ148']['partOfState'] = 'southern' AreaDictionary['FLZ148']['locationName'] = 'Beach' AreaDictionary['FLZ142']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ142']['partOfState'] = 'western' AreaDictionary['FLZ142']['locationName'] = 'South Park' AreaDictionary['FLZ043']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ043']['partOfState'] = 'western' AreaDictionary['FLZ043']['locationName'] = 'South Park' """ #for testing of parishes, counties, and areas areaT3 = """ AreaDictionary['FLC017']['fullStateName'] = 'Louisiana' AreaDictionary['FLC017']['partOfState'] = 'western' AreaDictionary['FLC017']['independentCity'] = 1 AreaDictionary['FLC105']['fullStateName'] = 'Louisiana' AreaDictionary['FLC105']['partOfState'] = 'western' AreaDictionary['FLC027']['fullStateName'] = 'Louisiana' AreaDictionary['FLC027']['partOfState'] = 'western' AreaDictionary['FLC053']['fullStateName'] = 'Florida' AreaDictionary['FLC053']['partOfState'] = 'western' """ areaT3FIPS0= '#Definition["areaType"] = "FIPS"' areaT3FIPS1= 'Definition["areaType"] = "FIPS"' scripts = [ { "commentary": "Clear out all Hazards Table and Grids.", "name": "Hazard_FFA_0", "productType": None, "clearHazardsTable": 1, "checkStrings": [], }, { "commentary": "NEW FFA", "name": "Hazard_FFA_1", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Coastal Pasco-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "CON FFA", "name": "Hazard_FFA_2", "drtTime": "20100101_0530", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'SM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.CON.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "EXA FFA", "name": "Hazard_FFA_3", "drtTime": "20100101_0700", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'DM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149","FLZ057"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXA.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.DM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has expanded the", "* Flood Watch to include a portion of south central Florida, including the following area, Highlands.", "* Until 3 AM EST early this morning", "FLZ149-", "/X.CON.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.DM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "CAN FFA, NEW FFA", "name": "Hazard_FFA_4", "drtTime": "20100101_0720", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'IJ '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 8, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CAN.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/X.NEW.KTBW.FF.A.0001.100101T0720Z-100101T1300Z/", "/X.NEW.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/00000.0.IJ.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH IN EFFECT UNTIL 8 AM EST THIS MORNING...", "...FLASH FLOOD WATCH IN EFFECT FROM LATE TONIGHT THROUGH SATURDAY MORNING...", "...FLOOD WATCH IS CANCELLED...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST this morning", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* From late tonight through Saturday morning", "The Flood Watch for a portion of south central Florida has been cancelled.", "FLZ149-", "/X.CAN.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.IJ.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IS CANCELLED...", "The Flood Watch for a portion of west central Florida has been cancelled." ], }, { "commentary": "EXP FFA, 2 NEW FFA", "name": "Hazard_FFA_5", "drtTime": "20100101_1300", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'FS '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXP.KTBW.FF.A.0001.000000T0000Z-100101T1300Z/", "/X.NEW.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/X.CON.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/00000.0.FS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM LATE TONIGHT THROUGH SATURDAY MORNING...", "...FLASH FLOOD WATCH IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY AFTERNOON...", "...FLASH FLOOD WATCH HAS EXPIRED...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From late tonight through Saturday morning", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* From Saturday evening through Sunday afternoon", "The Flash Flood Watch for a portion of south central Florida has expired.", "FLZ149-", "/X.NEW.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.FS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY EVENING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of west central Florida, including the following area, Coastal Pasco.", "* From Saturday evening through Sunday evening", ], }, { "commentary": "CON test of multiple events", "name": "Hazard_FFA_6", "drtTime": "20100102_0300", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'RS '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/X.CON.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/00000.0.RS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 8 AM EST SATURDAY...", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST Saturday", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From Saturday evening through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.RS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From Saturday evening through Sunday evening", ], }, { "commentary": "middle of 1st event", "name": "Hazard_FFA_7", "drtTime": "20100102_0700", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0002.000000T0000Z-100102T1300Z/", "/X.CON.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 8 AM EST THIS MORNING...", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST this morning", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From this evening through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From this evening through Sunday evening", ], }, { "commentary": "joining two events", "name": "Hazard_FFA_8", "drtTime": "20100102_1200", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'IC '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CAN.KTBW.FF.A.0002.000000T0000Z-100102T1300Z/", "/X.EXT.KTBW.FF.A.0003.100102T1200Z-100103T1900Z/", "/00000.0.IC.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH NOW IN EFFECT THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch is now in effect for", "* A portion of south central Florida, including the following area, Highlands.", "* Through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.IC.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From this evening through Sunday evening", ], }, { "commentary": "into the tail end of the events", "name": "Hazard_FFA_9", "drtTime": "20100103_1100", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'SM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0003.000000T0000Z-100103T1900Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 2 PM EST THIS AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 2 PM EST this afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT THROUGH THIS EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Through this evening", ], }, { "commentary": "exp 1st event, continue 2nd event", "name": "Hazard_FFA_10", "drtTime": "20100103_1855", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'DR '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXP.KTBW.FF.A.0003.000000T0000Z-100103T1900Z/", "/00000.0.DR.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH WILL EXPIRE AT 2 PM EST THIS AFTERNOON...", "The Flash Flood Watch for a portion of south central Florida will expire at 2 PM EST this afternoon.", "FLZ149-", "/X.CON.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.DR.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 8 PM EST THIS EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 8 PM EST this evening", ], }, { "commentary": "cancel 2nd event", "name": "Hazard_FFA_11", "drtTime": "20100104_0000", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'GO '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.CAN.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.GO.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IS CANCELLED...", "The Flood Watch for a portion of west central Florida has been cancelled.", ], }, { "commentary": "Deleting hazard grids.", "name": "Hazard_FFA_12", "productType": None, "checkStrings": [], "clearHazardsTable": 1, }, # Begin detailed phrasing of location tests { "commentary": "one state, single area, w/o location", "name": "Hazard_FFA_13a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of western Florida, including the following area, Pinellas.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, single area, w location", "name": "Hazard_FFA_13b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of western Florida, including the following area, Clearfield.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area, w/o location", "name": "Hazard_FFA_14a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ052","FLZ155"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-Coastal Manatee-", # "Including the cities of St. Petersburg, Clearwater, Largo, ", # "Lakeland, Winter Haven, Bradenton, Bayshore Gardens, ", # "Palmetto, Sebring, Avon Park, Placid Lakes", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Georgia, including the following areas, in western Florida, Highlands and Pinellas. In western Georgia, Coastal Manatee and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area, w location", "name": "Hazard_FFA_14b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ052","FLZ155"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Georgia, including the following areas, in western Florida, Clearfield. In western Georgia, Atlanta and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, multiple areas, w/o location", "name": "Hazard_FFA_15a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ160", "FLZ057","FLZ151","FLZ056"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-056-057-151-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Hardee-Highlands-Coastal Hillsborough-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of central Florida, southern Florida, and western Florida, including the following areas, in central Florida, Coastal Hillsborough and Coastal Sarasota. In southern Florida, Hardee. In western Florida, Highlands and Pinellas.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, multiple areas, w location", "name": "Hazard_FFA_15b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ160", "FLZ057","FLZ151","FLZ056"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-056-057-151-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Hardee-Highlands-Coastal Hillsborough-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of central Florida, southern Florida, and western Florida, including the following areas, in central Florida, Aunt Ruby. In southern Florida, Tampa. In western Florida, Clearfield.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area 1st, mulitple area 2nd, w/o location", "name": "Hazard_FFA_16a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ052", "FLZ155","FLZ061"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-061-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-DeSoto-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and Georgia, including the following areas, in western Florida, Pinellas. In Georgia, Coastal Manatee, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area 1st, mulitple area 2nd, w location", "name": "Hazard_FFA_16b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ052", "FLZ155","FLZ061"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-061-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-DeSoto-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and Georgia, including the following areas, in western Florida, Clearfield. In Georgia, Atlanta, Beach, and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, multiple areas, w/o location", "name": "Hazard_FFA_17a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ160","FLZ151","FLZ052","FLZ155","FLZ061","FLZ148"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-061-148-151-155-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-DeSoto-Coastal Hernando-", "Coastal Hillsborough-Coastal Manatee-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of Florida and Georgia, including the following areas, in Florida, Coastal Hillsborough, Coastal Sarasota, Highlands, and Pinellas. In Georgia, Coastal Hernando, Coastal Manatee, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, multiple areas, w location", "name": "Hazard_FFA_17b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ160","FLZ151","FLZ052","FLZ155","FLZ061","FLZ148"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-061-148-151-155-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-DeSoto-Coastal Hernando-", "Coastal Hillsborough-Coastal Manatee-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of Florida and Georgia, including the following areas, in Florida, Aunt Ruby and Clearfield. In Georgia, Atlanta, Beach, and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "parishes 1, independent 1, counties 1", "name": "Hazard_FFA_18a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [ ("AreaDictionary", "TextUtility", "add", areaT3, "delete"), ("Hazard_FFA_Local", "TextProduct", "replace", (areaT3FIPS0, areaT3FIPS1), "delete"), ], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLC017","FLC027", "FLC053"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLC017-027-053-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Citrus-DeSoto-Hernando-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Louisiana, including the following county, independent city, and parish, in western Florida, Hernando. In western Louisiana, Citrus and DeSoto.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "parishes 2, independent 1, counties 1", "name": "Hazard_FFA_18b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [ ("AreaDictionary", "TextUtility", "add", areaT3, "delete"), ("Hazard_FFA_Local", "TextProduct", "replace", (areaT3FIPS0, areaT3FIPS1), "delete"), ], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLC017","FLC027", "FLC053","FLC105"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLC017-027-053-105-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Citrus-DeSoto-Hernando-Polk-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Louisiana, including the following county, independent city, and parishes, in western Florida, Hernando. In western Louisiana, Citrus, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, ] import TestScript def testScript(self, dataMgr): defaults = { "database": "<site>_GRID__Fcst_00000000_0000", "publishGrids": 0, "decodeVTEC": 1, "gridsStartTime": "20100101_0500", "orderStrings": 1, "vtecMode": "X", "deleteGrids": [("Fcst", "Hazards", "SFC", "all", "all")], } return TestScript.generalTestScript(self, dataMgr, scripts, defaults)
47.342884
261
0.588162
0
0
0
0
0
0
0
0
37,653
0.759623
c70bf8219d2bb2dabd3039c6feeeaba05de046c4
1,701
py
Python
main.py
hasanzadeh99/mapna_test_2021
1e2e50a9aff32e2d730bf3d0fd20393e5aea0872
[ "MIT" ]
null
null
null
main.py
hasanzadeh99/mapna_test_2021
1e2e50a9aff32e2d730bf3d0fd20393e5aea0872
[ "MIT" ]
null
null
null
main.py
hasanzadeh99/mapna_test_2021
1e2e50a9aff32e2d730bf3d0fd20393e5aea0872
[ "MIT" ]
null
null
null
import time old_input_value = False flag_falling_edge = None start = None flag_output_mask = False DELAY_CONST = 10 # delay time from falling edge ... . output = None def response_function(): global old_input_value, flag_falling_edge, start, flag_output_mask, output if flag_falling_edge: output = True end = time.perf_counter() if end - start > DELAY_CONST: output = 0 flag_falling_edge = 0 flag_output_mask = False input_value = bool(int(input('Please Enter your Input Value: '))) if old_input_value == False and input_value == True: if not flag_output_mask: output = input_value old_input_value = input_value print('Input Rising Edge detected ... ') print(f'output is: {output}') elif old_input_value == False and input_value == False: if not flag_output_mask: output = input_value old_input_value = input_value print(f'output is: {output}') elif old_input_value == True and input_value == True: old_input_value = input_value if not flag_output_mask: output = input_value print(f'output is: {output}') elif old_input_value == True and input_value == False: start = time.perf_counter() print('Input Falling Edge detected ... ') flag_falling_edge = True flag_output_mask = True old_input_value = input_value print(f'output is: {output}') if __name__ == '__main__': DELAY_CONST=int(input("Hello \nPlease Enter Your delay value here :")) while True: response_function()
25.772727
79
0.621399
0
0
0
0
0
0
0
0
281
0.165197
c70c23e78ecc9c77169196b937ad121dbbab19c4
1,345
py
Python
ansiblemetrics/playbook/num_deprecated_modules.py
radon-h2020/AnsibleMetrics
8a8e27d9b54fc1578d00526c8663184a2e686cb2
[ "Apache-2.0" ]
1
2020-04-24T16:09:14.000Z
2020-04-24T16:09:14.000Z
ansiblemetrics/playbook/num_deprecated_modules.py
radon-h2020/AnsibleMetrics
8a8e27d9b54fc1578d00526c8663184a2e686cb2
[ "Apache-2.0" ]
null
null
null
ansiblemetrics/playbook/num_deprecated_modules.py
radon-h2020/AnsibleMetrics
8a8e27d9b54fc1578d00526c8663184a2e686cb2
[ "Apache-2.0" ]
null
null
null
from ansiblemetrics.ansible_modules import DEPRECATED_MODULES_LIST from ansiblemetrics.ansible_metric import AnsibleMetric class NumDeprecatedModules(AnsibleMetric): """ This class measures the number of times tasks use deprecated modules.""" def count(self): """Return the deprecated modules occurrence. Example ------- .. highlight:: python .. code-block:: python from ansiblemetrics.general.num_deprecated_modules import NumDeprecatedModules playbook = ''' - name: Include unique username from register.yml include_vars: # non deprecated module file: username_info.yml - name: Create a service oc: # deprecated module state: present name: myservice namespace: mynamespace kind: Service ''' NumDeprecatedModules(playbook).count() >> 1 Returns ------- int deprecated modules occurrence """ modules = [] for task in self.tasks: if not task: continue for key in task: if key in DEPRECATED_MODULES_LIST: modules.append(key) return len(modules)
25.377358
90
0.553903
1,219
0.90632
0
0
0
0
0
0
886
0.658736
c70c9127731c0e67539a6749c14a06e75f1c3481
789
py
Python
app/api/v1/validators/validators.py
GraceKiarie/iReporter
1011f878f9fb643798192aeed1b68c3e6de4dedc
[ "MIT" ]
1
2018-12-14T09:52:39.000Z
2018-12-14T09:52:39.000Z
app/api/v1/validators/validators.py
GraceKiarie/iReporter
1011f878f9fb643798192aeed1b68c3e6de4dedc
[ "MIT" ]
6
2018-12-08T11:15:46.000Z
2018-12-15T11:04:36.000Z
app/api/v1/validators/validators.py
GraceKiarie/iReporter
1011f878f9fb643798192aeed1b68c3e6de4dedc
[ "MIT" ]
5
2018-12-04T11:00:54.000Z
2019-06-13T12:53:50.000Z
""" This module does validation for data input in incidents """ import re class Validate(): """ methods for validatin incidents input data """ def valid_email(self, email): self.vemail = re.match( r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", email) if not self.vemail: return None return True def valid_password(self, password): self.password = re.match(r'[A-Za-z0-9@#$%^&+=]{8,}', password) if self.password is None: return None return True def valid_string(self, value): """ checks if value in data is empty """ self.value = value if not isinstance(self.value, str): return None return True
24.65625
70
0.532319
707
0.896071
0
0
0
0
0
0
264
0.334601
c70da4e644f1e748e2087d4c879dc99b2751ebd0
2,710
py
Python
bin/find_latest_versions.py
ebreton/ghost-in-a-shell
8b3382d60a86322c74c6ee1b52f068dfcfc3d79e
[ "MIT" ]
2
2018-05-31T08:56:16.000Z
2020-01-23T15:12:44.000Z
bin/find_latest_versions.py
ebreton/ghost-in-a-shell
8b3382d60a86322c74c6ee1b52f068dfcfc3d79e
[ "MIT" ]
null
null
null
bin/find_latest_versions.py
ebreton/ghost-in-a-shell
8b3382d60a86322c74c6ee1b52f068dfcfc3d79e
[ "MIT" ]
null
null
null
#!/usr/bin/python from distutils.version import LooseVersion import argparse import logging import requests import re session = requests.Session() # authorization token TOKEN_URL = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:%s:pull" # find all tags TAGS_URL = "https://index.docker.io/v2/%s/tags/list" TAG_RE = re.compile("^[\d]+(\.[\d]+)*$") # get image digest for target TARGET_DIGEST = "https://index.docker.io/v2/%(repository)s/manifests/%(tag)s" class Fetcher: DIGEST_HEADER = {} def __init__(self, repository): self.repository = repository self.token = self.get_token() self.headers = {"Authorization": "Bearer %s"% self.token} self.headers_for_tags = { "Authorization": "Bearer %s"% self.token, "Accept": "application/vnd.docker.distribution.manifest.v2+json" } logging.debug("initialized fetcher for %s", self.repository) def get_token(self): response = session.get(TOKEN_URL % self.repository) response.raise_for_status() token = response.json().get("token") logging.debug("got token: %s", token) return token def get_versions(self): response = session.get(TAGS_URL % self.repository, headers=self.headers_for_tags) response.raise_for_status() all_tags = response.json().get("tags") numbered_tags = filter(lambda x: TAG_RE.match(x), all_tags) versions = map(LooseVersion, numbered_tags) logging.debug("got tags: %s", versions) return versions def find_latest(repository): fetcher = Fetcher(repository) all_tags = fetcher.get_versions() return max(all_tags) if __name__ == '__main__': parser = argparse.ArgumentParser( usage="""Version checker script This file retreives the latest version of ghost container image from docker hub It can be run with both python 2.7 and 3.6""") parser.add_argument("repository", nargs='?', help="repository name [default:library/ghost]", default="library/ghost") parser.add_argument('-d', '--debug', action='store_true') parser.add_argument('-q', '--quiet', action='store_true') args = parser.parse_args() # set up level of logging level = logging.INFO if args.quiet: level = logging.WARNING elif args.debug: level = logging.DEBUG # set up logging to console logging.basicConfig(format='%(levelname)s - %(funcName)s - %(message)s') logger = logging.getLogger() logger.setLevel(level) logging.debug(args) # version needs to be print to output in order to be retrieved by Makefile print(find_latest(args.repository))
30.449438
94
0.667897
1,090
0.402214
0
0
0
0
0
0
922
0.340221
c70ef8c2db16a8357afdb58004c2cb5a69fd6d01
326
py
Python
tests/conftest.py
badarsebard/terraform-pytest
58c8096f0405ec1d0061723fc1dd2d099655c3c5
[ "MIT" ]
null
null
null
tests/conftest.py
badarsebard/terraform-pytest
58c8096f0405ec1d0061723fc1dd2d099655c3c5
[ "MIT" ]
null
null
null
tests/conftest.py
badarsebard/terraform-pytest
58c8096f0405ec1d0061723fc1dd2d099655c3c5
[ "MIT" ]
1
2021-11-19T16:36:31.000Z
2021-11-19T16:36:31.000Z
from .terraform import TerraformManager import pytest from _pytest.tmpdir import TempPathFactory @pytest.fixture(scope='session') def tfenv(tmp_path_factory: TempPathFactory): env_vars = { } with TerraformManager(path_factory=tmp_path_factory, env_vars=env_vars) as deployment: yield deployment
25.076923
90
0.760736
0
0
193
0.592025
226
0.693252
0
0
9
0.027607
c70f068d9386d59199952ccdcd03582e192c0909
2,933
py
Python
pelicanconf.py
myrle-krantz/treasurer-site
e0beca3d0d724ae09300974f7020a5611fbd3034
[ "Apache-2.0" ]
1
2021-11-09T21:42:44.000Z
2021-11-09T21:42:44.000Z
pelicanconf.py
myrle-krantz/treasurer-site
e0beca3d0d724ae09300974f7020a5611fbd3034
[ "Apache-2.0" ]
1
2021-11-01T11:14:10.000Z
2021-11-01T11:14:10.000Z
pelicanconf.py
isabella232/treasurer-site
9a2e33c85e040183df049d63814ef6b1b0bb7a46
[ "Apache-2.0" ]
3
2021-06-04T09:07:48.000Z
2021-11-09T21:42:31.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # vim: encoding=utf-8 # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from datetime import date # import os # import sys PATH = 'content' TIMEZONE = 'UTC' DEFAULT_LANG = u'en' AUTHOR = u'Treasurer Team' SITENAME = u'Apache Treasurer' SITEDOMAIN = 'treasurer.apache.org' SITEURL = 'https://treasurer.apache.org' # SITELOGO = 'https://treasurer.apache.org/images/logo.png' # SITEDESC = u'<blank>' SITEREPOSITORY = 'https://github.com/apache/treasurer-site/blob/main/content/pages/' TRADEMARKS = u'Apache and the Apache feather logo are trademarks or registered trademarks' CURRENTYEAR = date.today().year # Save pages using full directory preservation PAGES_PATHS = ['content'] # PATH_METADATA= '(?P<path_no_ext>.*)\..*' # PAGE_SAVE_AS= '{path_no_ext}.html' PAGE_URL = '{slug}.html' SLUGIFY_SOURCE = 'basename' PAGE_SAVE_AS = '{slug}.html' # We want to serve any images STATIC_PATHS = ['.htaccess', 'images'] # We don't use articles, but we don't want pelican to think # that content/ contains articles. ARTICLE_PATHS = ['articles'] # Disable these pages ARCHIVES_SAVE_AS = '' ARTICLE_SAVE_AS = '' AUTHORS_SAVE_AS = '' CATEGORIES_SAVE_AS = '' INDEX_SAVE_AS = '' TAGS_SAVE_AS = '' # Enable ATOM feed and Disable other feeds FEED_DOMAIN = SITEURL FEED_ALL_ATOM = 'feeds/all.atom.xml' CATEGORY_FEED_ATOM = None TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None # Pelican Plugins # The provided location. If the buildbot does not have a new plugin then look into requirements.txt PLUGIN_PATHS = ['./theme/plugins'] PLUGINS = ['toc', 'pelican-gfm', 'sitemap'] # TOC Generator TOC_HEADERS = r"h[1-6]" # Sitemap Generator SITEMAP = { "exclude": ["tag/", "category/"], "format": "xml", "priorities": { "articles": 0.1, "indexes": 0.1, "pages": 0.8 }, "changefreqs": { "articles": "never", "indexes": "never", "pages": "monthly" } } # Unused links LINKS = ( ) SOCIAL = ( ) DEFAULT_PAGINATION = False # Uncomment following line if you want document-relative URLs when developing # RELATIVE_URLS = True
27.411215
99
0.715309
0
0
0
0
0
0
0
0
2,064
0.703716
c70f37923d6264953c0f43a70aaafcb143563524
10,935
py
Python
TurtleArt/taturtle.py
sugar-activities/4585-activity
38e6efd7b4fcb9cf820efaf7406ce7abde92406e
[ "MIT" ]
null
null
null
TurtleArt/taturtle.py
sugar-activities/4585-activity
38e6efd7b4fcb9cf820efaf7406ce7abde92406e
[ "MIT" ]
null
null
null
TurtleArt/taturtle.py
sugar-activities/4585-activity
38e6efd7b4fcb9cf820efaf7406ce7abde92406e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #Copyright (c) 2010,12 Walter Bender #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. from random import uniform from math import sin, cos, pi, sqrt from gettext import gettext as _ import gtk import cairo from taconstants import TURTLE_LAYER, DEFAULT_TURTLE_COLORS from tasprite_factory import SVG, svg_str_to_pixbuf from tacanvas import wrap100, COLOR_TABLE from sprites import Sprite from tautils import debug_output SHAPES = 36 def generate_turtle_pixbufs(colors): """ Generate pixbufs for generic turtles """ shapes = [] svg = SVG() svg.set_scale(1.0) for i in range(SHAPES): svg.set_orientation(i * 10) shapes.append(svg_str_to_pixbuf(svg.turtle(colors))) return shapes class Turtles: def __init__(self, sprite_list): """ Class to hold turtles """ self.dict = dict() self.sprite_list = sprite_list self.default_pixbufs = [] def get_turtle(self, k, append=False, colors=None): """ Find a turtle """ if k in self.dict: return self.dict[k] elif not append: return None else: if colors == None: Turtle(self, k) elif type(colors) in [list, tuple]: Turtle(self, k, colors) else: Turtle(self, k, colors.split(',')) return self.dict[k] def get_turtle_key(self, turtle): """ Find a turtle's name """ for k in iter(self.dict): if self.dict[k] == turtle: return k return None def turtle_count(self): """ How many turtles are there? """ return(len(self.dict)) def add_to_dict(self, k, turtle): """ Add a new turtle """ self.dict[k] = turtle def remove_from_dict(self, k): """ Delete a turtle """ if k in self.dict: del(self.dict[k]) def show_all(self): """ Make all turtles visible """ for k in iter(self.dict): self.dict[k].show() def spr_to_turtle(self, spr): """ Find the turtle that corresponds to sprite spr. """ for k in iter(self.dict): if spr == self.dict[k].spr: return self.dict[k] return None def get_pixbufs(self): """ Get the pixbufs for the default turtle shapes. """ if self.default_pixbufs == []: self.default_pixbufs = generate_turtle_pixbufs( ["#008000", "#00A000"]) return(self.default_pixbufs) class Turtle: def __init__(self, turtles, key, turtle_colors=None): """ The turtle is not a block, just a sprite with an orientation """ self.x = 0 self.y = 0 self.hidden = False self.shapes = [] self.custom_shapes = False self.type = 'turtle' self.name = key self.heading = 0 self.pen_shade = 50 self.pen_color = 0 self.pen_gray = 100 self.pen_size = 5 self.pen_state = True self.label_block = None self._prep_shapes(key, turtles, turtle_colors) # Choose a random angle from which to attach the turtle label. if turtles.sprite_list is not None: self.spr = Sprite(turtles.sprite_list, 0, 0, self.shapes[0]) angle = uniform(0, pi * 4 / 3.0) # 240 degrees w = self.shapes[0].get_width() r = w * 0.67 # Restrict angle the the sides 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [int(r * sin(angle)), int(r * cos(angle) + w / 2.0)] else: angle += pi / 6.0 # + 30 self.label_xy = [int(r * sin(angle) + w / 2.0), int(r * cos(angle) + w / 2.0)] else: self.spr = None turtles.add_to_dict(key, self) def _prep_shapes(self, name, turtles=None, turtle_colors=None): # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke])] self.shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self.shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self.heading) def set_shapes(self, shapes, i=0): """ Reskin the turtle """ n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self.shapes): self.shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self.shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self.tw.running_sugar) if self.heading == 0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2., nh / 2.) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2., -nh / 2.) context.set_source_pixbuf(shapes[0], (nw - w) / 2., (nh - h) / 2.) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self.shapes = images[:] else: # associate shape with image at current heading j = int(self.heading + 5) % 360 / (360 / SHAPES) self.shapes[j] = shapes[0] self.custom_shapes = True self.show() def reset_shapes(self): """ Reset the shapes to the standard turtle """ if self.custom_shapes: self.shapes = generate_turtle_pixbufs(self.colors) self.custom_shapes = False def set_heading(self, heading): """ Set the turtle heading (one shape per 360/SHAPES degrees) """ self.heading = heading i = (int(self.heading + 5) % 360) / (360 / SHAPES) if not self.hidden and self.spr is not None: try: self.spr.set_shape(self.shapes[i]) except IndexError: self.spr.set_shape(self.shapes[0]) def set_color(self, color): """ Set the pen color for this turtle. """ self.pen_color = color def set_gray(self, gray): """ Set the pen gray level for this turtle. """ self.pen_gray = gray def set_shade(self, shade): """ Set the pen shade for this turtle. """ self.pen_shade = shade def set_pen_size(self, pen_size): """ Set the pen size for this turtle. """ self.pen_size = pen_size def set_pen_state(self, pen_state): """ Set the pen state (down==True) for this turtle. """ self.pen_state = pen_state def hide(self): """ Hide the turtle. """ if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self.hidden = True def show(self): """ Show the turtle. """ if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self.hidden = False self.move((self.x, self.y)) self.set_heading(self.heading) if self.label_block is not None: self.label_block.spr.move((self.x + self.label_xy[0], self.y + self.label_xy[1])) self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move(self, pos): """ Move the turtle. """ self.x, self.y = int(pos[0]), int(pos[1]) if not self.hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move((pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) return(self.x, self.y) def get_name(self): ''' return turtle name (key) ''' return self.name def get_xy(self): """ Return the turtle's x, y coordinates. """ return(self.x, self.y) def get_heading(self): """ Return the turtle's heading. """ return(self.heading) def get_color(self): """ Return the turtle's color. """ return(self.pen_color) def get_gray(self): """ Return the turtle's gray level. """ return(self.pen_gray) def get_shade(self): """ Return the turtle's shade. """ return(self.pen_shade) def get_pen_size(self): """ Return the turtle's pen size. """ return(self.pen_size) def get_pen_state(self): """ Return the turtle's pen state. """ return(self.pen_state)
34.936102
78
0.561225
9,194
0.840786
0
0
0
0
0
0
2,695
0.246456
c71003847371f17bbe96951b791e894ed7483c4a
1,384
py
Python
django_backend/group.py
holg/django_backend
6cef76a378664e6621619862e6db476788a58992
[ "BSD-3-Clause" ]
null
null
null
django_backend/group.py
holg/django_backend
6cef76a378664e6621619862e6db476788a58992
[ "BSD-3-Clause" ]
null
null
null
django_backend/group.py
holg/django_backend
6cef76a378664e6621619862e6db476788a58992
[ "BSD-3-Clause" ]
null
null
null
try: from django.forms.utils import pretty_name except ImportError: from django.forms.forms import pretty_name from django.template import Context from django.template.loader import render_to_string from .compat import context_flatten class Group(list): """ A simplistic representation of backends that are related and should be displayed as one "group" in the backend (e.g. as one box in the sidebar). """ template_name = 'django_backend/_group.html' def __init__(self, id, name=None, position=0, template_name=None): self.id = id if name is None: name = pretty_name(id) self.template_name = template_name or self.template_name self.name = name self.position = position super(Group, self).__init__() @property def backends(self): return list(self) def get_context_data(self, context, **kwargs): data = { 'group': self, } data.update(kwargs) return data def get_template_name(self): return self.template_name def render(self, context): context_data = {} if isinstance(context, Context): context_data.update(context_flatten(context)) context_data = self.get_context_data(context, **context_data) return render_to_string(self.get_template_name(), context_data)
28.833333
77
0.66474
1,137
0.821532
0
0
59
0.04263
0
0
199
0.143786
c7102803d3080f23edcd56ddbfc0360cc305ab8a
971
py
Python
src/eodc_openeo_bindings/map_comparison_processes.py
eodcgmbh/eodc-openeo-bindings
4e80eba036771a0c81359e1ac66862f1eead407b
[ "MIT" ]
null
null
null
src/eodc_openeo_bindings/map_comparison_processes.py
eodcgmbh/eodc-openeo-bindings
4e80eba036771a0c81359e1ac66862f1eead407b
[ "MIT" ]
7
2020-02-18T17:12:31.000Z
2020-09-24T07:19:04.000Z
src/eodc_openeo_bindings/map_comparison_processes.py
eodcgmbh/eodc-openeo-bindings
4e80eba036771a0c81359e1ac66862f1eead407b
[ "MIT" ]
null
null
null
""" """ from eodc_openeo_bindings.map_utils import map_default def map_lt(process): """ """ param_dict = {'y': 'float'} return map_default(process, 'lt', 'apply', param_dict) def map_lte(process): """ """ param_dict = {'y': 'float'} return map_default(process, 'lte', 'apply', param_dict) def map_gt(process): """ """ param_dict = {'y': 'float'} return map_default(process, 'gt', 'apply', param_dict) def map_gte(process): """ """ param_dict = {'y': 'float'} return map_default(process, 'gte', 'apply', param_dict) def map_eq(process): """ """ param_dict = {'y': 'numpy.array'} # NOTE: how to map type dynamically to support strings? if 'delta' in process['arguments']: param_dict['delta'] = 'int' if 'case_sensitive' in process['arguments']: param_dict['case_sensitive'] = 'bool' return map_default(process, 'eq', 'apply', param_dict)
15.918033
59
0.589083
0
0
0
0
0
0
0
0
315
0.324408
c711129f24117223c3e97558213be4cfb18083e6
38
py
Python
scripts/flow_tests/__init__.py
rombie/contrail-test
a68c71d6f282142501a7e2e889bbb232fdd82dc3
[ "Apache-2.0" ]
5
2020-09-29T00:36:57.000Z
2022-02-16T06:51:32.000Z
serial_scripts/system_test/flow_tests/__init__.py
vkolli/contrail-test-perf
db04b8924a2c330baabe3059788b149d957a7d67
[ "Apache-2.0" ]
27
2019-11-02T02:18:34.000Z
2022-02-24T18:49:08.000Z
serial_scripts/system_test/flow_tests/__init__.py
vkolli/contrail-test-perf
db04b8924a2c330baabe3059788b149d957a7d67
[ "Apache-2.0" ]
20
2019-11-28T16:02:25.000Z
2022-01-06T05:56:58.000Z
"""FLOW RELATED SYSTEM TEST CASES."""
19
37
0.684211
0
0
0
0
0
0
0
0
37
0.973684
c711b732931b1daa135dbab87c710f6b0e8237b0
1,444
py
Python
server/main.py
KejiaQiang/Spicy_pot_search
72aaa9618e54178da513371802c2bcb751037bb0
[ "MIT" ]
1
2021-03-04T09:02:05.000Z
2021-03-04T09:02:05.000Z
server/main.py
yanansong0930/Spicy_pot_search
72aaa9618e54178da513371802c2bcb751037bb0
[ "MIT" ]
null
null
null
server/main.py
yanansong0930/Spicy_pot_search
72aaa9618e54178da513371802c2bcb751037bb0
[ "MIT" ]
1
2021-03-04T08:59:02.000Z
2021-03-04T08:59:02.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Flask, request, abort, render_template from datetime import timedelta import pymysql from search import start_search, decorate page_dir = "E:/WEBPAGES_RAW" app = Flask(__name__) app.config['DEBUG'] = True app.config['SEND_FILE_MAX_AGE_DEFAULT'] = timedelta(seconds=1) connection = pymysql.connect(host="localhost",port=3306,user="root",db="spicy_pot") cursor = connection.cursor() @app.route('/') def homepage(): return render_template("root.html") @app.route('/search') def search(): word = request.args.get('s') page = int(request.args.get('p')) all_res = start_search(word,cursor) if len(all_res) == 0: return render_template("result.html",result={"word":word,"pages":-1,"currentPage":1,"res":[]}) pages = ((len(all_res)-1)//10) + 1 res = decorate(all_res[(page-1)*10:page*10]) content = {"word":word,"pages":pages,"currentPage":page,"res":res} return render_template("result.html",result=content) @app.route('/cache') def cache(): p = request.args.get('p') c = request.args.get('c') read = open(page_dir+"/"+p+"/"+c,'r',encoding="utf-8") save = open("templates/temp.html",'w',encoding="utf-8") for line in read: save.write(line) read.close() save.close() return render_template("temp.html") app.run(host='0.0.0.0',port=80,debug=True)
29.469388
103
0.637812
0
0
0
0
923
0.639197
0
0
319
0.220914
c711e0dd9090b2b45a4e1e0eca15dbcffe106551
5,355
py
Python
examples/3d/subduction/viz/plot_dispwarp.py
cehanagan/pylith
cf5c1c34040460a82f79b6eb54df894ed1b1ee93
[ "MIT" ]
93
2015-01-08T16:41:22.000Z
2022-02-25T13:40:02.000Z
examples/3d/subduction/viz/plot_dispwarp.py
sloppyjuicy/pylith
ac2c1587f87e45c948638b19560813d4d5b6a9e3
[ "MIT" ]
277
2015-02-20T16:27:35.000Z
2022-03-30T21:13:09.000Z
examples/3d/subduction/viz/plot_dispwarp.py
sloppyjuicy/pylith
ac2c1587f87e45c948638b19560813d4d5b6a9e3
[ "MIT" ]
71
2015-03-24T12:11:08.000Z
2022-03-03T04:26:02.000Z
#!/usr/bin/env pvpython # -*- Python -*- (syntax highlighting) # ---------------------------------------------------------------------- # # Brad T. Aagaard, U.S. Geological Survey # Charles A. Williams, GNS Science # Matthew G. Knepley, University at Buffalo # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2021 University of California, Davis # # See LICENSE.md.md for license information. # # ---------------------------------------------------------------------- # Plot the undeformed domain as a gray wireframe and then the deformed # domain, colored by the value of the x-displacemenet. # User-specified parameters. # # Default values for parameters. To use different values, overwrite # them in the ParaView Python shell or on the command line. For # example, set OUTPUT_DIR to the absolute path if not starting # ParaView from the terminal shell where you ran PyLith: # # import os # OUTPUT_DIR = os.path.join(os.environ["HOME"], "src", "pylith", "examples", "2d", "subduction", "output") DEFAULTS = { "OUTPUT_DIR": "output", "SIM": "step02", "WARP_SCALE": 10.0e+3, "FIELD": "displacement", "FIELD_COMPONENT": "Magnitude", "TIMESTEP": 0, # Use 0 for first, -1 for last. } # ---------------------------------------------------------------------- from paraview.simple import * import os def visualize(parameters): # Disable automatic camera reset on "Show" paraview.simple._DisableFirstRenderCameraReset() # Read data filename = os.path.join(parameters.output_dir, "%s-domain.xmf" % parameters.sim) if not os.path.isfile(filename): raise IOError("File '%s' does not exist." % filename) dataDomain = XDMFReader(FileNames=[filename]) RenameSource("%s-domain" % parameters.sim, dataDomain) scene = GetAnimationScene() scene.UpdateAnimationUsingDataTimeSteps() if parameters.timestep == -1: scene.GoToLast() view = GetActiveViewOrCreate('RenderView') # Gray wireframe for undeformed domain. domainDisplay = Show(dataDomain, view) domainDisplay.Representation = 'Wireframe' domainDisplay.AmbientColor = [0.5, 0.5, 0.5] # Warp domain to show deformation warp = WarpByVector(Input=dataDomain) warp.Vectors = ['POINTS', 'displacement'] warp.ScaleFactor = parameters.warp_scale warpDisplay = Show(warp, view) ColorBy(warpDisplay, ('POINTS', parameters.field, parameters.field_component)) warpDisplay.RescaleTransferFunctionToDataRange(True) warpDisplay.SetScalarBarVisibility(view, True) warpDisplay.SetRepresentationType('Surface With Edges') # Rescale color bar to exactly fit the current data range warpDisplay.RescaleTransferFunctionToDataRange(False, False) # Customize colorbar displacementLUT = GetColorTransferFunction(parameters.field) colorbar = GetScalarBar(displacementLUT, view) if parameters.field_component.lower() == "magnitude": colorbar.Title = "Displacement Mag. (m)" else: colorbar.Title = "%s-displacement (m)" % parameters.field_component.lower() colorbar.ComponentTitle = "" # Annotate time tstamp = AnnotateTimeFilter(warp) tstamp.Format = 'Time: %2.0f yr' tstamp.Scale = 3.168808781402895e-08 # seconds to years tstampDisplay = Show(tstamp, view) tstampDisplay.FontFamily = "Courier" tstampDisplay.FontSize = 14 view.ResetCamera() view.Update() Render() class Parameters(object): keys = ("OUTPUT_DIR", "SIM", "WARP_SCALE", "FIELD", "FIELD_COMPONENT", "TIMESTEP") def __init__(self): globalVars = globals() for key in Parameters.keys: if key in globalVars.keys(): setattr(self, key.lower(), globalVars[key]) else: setattr(self, key.lower(), DEFAULTS[key]) return # ---------------------------------------------------------------------- if __name__ == "__main__": # Running from outside the ParaView GUI via pvpython import argparse parser = argparse.ArgumentParser() parser.add_argument("--output-dir", action="store", dest="output_dir", default=DEFAULTS["OUTPUT_DIR"]) parser.add_argument("--sim", action="store", dest="sim", default=DEFAULTS["SIM"]) parser.add_argument("--warp-scale", action="store", type=float, dest="warp_scale", default=DEFAULTS["WARP_SCALE"]) parser.add_argument("--field", action="store", dest="field", default=DEFAULTS["FIELD"]) parser.add_argument("--component", action="store", dest="field_component", default=DEFAULTS["FIELD_COMPONENT"]) parser.add_argument("--timestep", action="store", dest="timestep", default=-1) parser.add_argument("--screenshot", action="store", dest="screenshot") args = parser.parse_args() visualize(args) view = GetRenderView() view.CameraPosition = [78002.89373974672, -1531813.1739094853, 595774.2094961794] view.CameraFocalPoint = [-45014.6313325238, 149523.68421156122, -335271.271063906] view.CameraViewUp = [0.0, 0.0, 1.0] view.ViewSize = [960, 540] view.Update() if args.screenshot: WriteImage(args.screenshot) Interact() else: # Running inside the ParaView GUI visualize(Parameters()) # End of file
35
118
0.651727
400
0.074697
0
0
0
0
0
0
2,213
0.413259
c713402fab437e2023ffb914ab06de89a1b21a69
220
py
Python
src/spaceone/inventory/manager/rds_manager.py
jean1042/plugin-aws-cloud-services
1cf192557b03478af33ae81f40b2a49f735716bb
[ "Apache-2.0" ]
4
2020-06-22T01:48:07.000Z
2020-08-24T00:51:09.000Z
src/spaceone/inventory/manager/rds_manager.py
jean1042/plugin-aws-cloud-services
1cf192557b03478af33ae81f40b2a49f735716bb
[ "Apache-2.0" ]
2
2020-07-20T01:58:32.000Z
2020-08-04T07:41:37.000Z
src/spaceone/inventory/manager/rds_manager.py
jean1042/plugin-aws-cloud-services
1cf192557b03478af33ae81f40b2a49f735716bb
[ "Apache-2.0" ]
6
2020-06-22T09:19:40.000Z
2020-09-17T06:35:37.000Z
from spaceone.inventory.libs.manager import AWSManager # todo: __init__에서 한번에 명세 할수 있게 바꾸기 # 지금은 로케이터에서 글로벌에서 값을 가져오는 로직 때문에 별도 파일이 없으면 에러 발생 class RDSConnectorManager(AWSManager): connector_name = 'RDSConnector'
24.444444
54
0.777273
74
0.229814
0
0
0
0
0
0
201
0.624224
c714251263633c1447c106182ffec957c2c483cc
1,775
py
Python
script/upload-checksums.py
fireball-x/atom-shell
d229338e40058a9b4323b2544f62818a3c55748c
[ "MIT" ]
4
2016-04-02T14:53:54.000Z
2017-07-26T05:47:43.000Z
script/upload-checksums.py
cocos-creator/atom-shell
d229338e40058a9b4323b2544f62818a3c55748c
[ "MIT" ]
null
null
null
script/upload-checksums.py
cocos-creator/atom-shell
d229338e40058a9b4323b2544f62818a3c55748c
[ "MIT" ]
2
2015-07-18T09:31:03.000Z
2019-12-24T09:55:03.000Z
#!/usr/bin/env python import argparse import hashlib import os import tempfile from lib.config import s3_config from lib.util import download, rm_rf, s3put DIST_URL = 'https://atom.io/download/atom-shell/' def main(): args = parse_args() url = DIST_URL + args.version + '/' directory, files = download_files(url, get_files_list(args.version)) checksums = [ create_checksum('sha1', directory, 'SHASUMS.txt', files), create_checksum('sha256', directory, 'SHASUMS256.txt', files) ] bucket, access_key, secret_key = s3_config() s3put(bucket, access_key, secret_key, directory, 'atom-shell/dist/{0}'.format(args.version), checksums) rm_rf(directory) def parse_args(): parser = argparse.ArgumentParser(description='upload sumsha file') parser.add_argument('-v', '--version', help='Specify the version', required=True) return parser.parse_args() def get_files_list(version): return [ 'node-{0}.tar.gz'.format(version), 'iojs-{0}.tar.gz'.format(version), 'node.lib', 'x64/node.lib', 'win-x86/iojs.lib', 'win-x64/iojs.lib', ] def download_files(url, files): directory = tempfile.mkdtemp(prefix='electron-tmp') return directory, [ download(f, url + f, os.path.join(directory, f)) for f in files ] def create_checksum(algorithm, directory, filename, files): lines = [] for path in files: h = hashlib.new(algorithm) with open(path, 'r') as f: h.update(f.read()) lines.append(h.hexdigest() + ' ' + os.path.relpath(path, directory)) checksum_file = os.path.join(directory, filename) with open(checksum_file, 'w') as f: f.write('\n'.join(lines) + '\n') return checksum_file if __name__ == '__main__': import sys sys.exit(main())
23.666667
75
0.668169
0
0
0
0
0
0
0
0
318
0.179155
c71481b1ca69523b36b0345fe995b27fb6d37535
2,533
py
Python
pythoncode/kmeansimage.py
loganpadon/PokemonOneShot
22f9904250c8c90b4fe4573d6ca060fd9f95c1d3
[ "MIT" ]
null
null
null
pythoncode/kmeansimage.py
loganpadon/PokemonOneShot
22f9904250c8c90b4fe4573d6ca060fd9f95c1d3
[ "MIT" ]
1
2019-04-04T20:40:20.000Z
2019-04-04T20:40:20.000Z
pythoncode/kmeansimage.py
loganpadon/PokemonOneShot
22f9904250c8c90b4fe4573d6ca060fd9f95c1d3
[ "MIT" ]
null
null
null
# import the necessary packages from sklearn.cluster import KMeans import skimage import matplotlib.pyplot as plt import argparse import cv2 def mean_image(image,clt): image2=image for x in range(len(image2)): classes=clt.predict(image2[x]) for y in range(len(classes)): image2[x,y]=clt.cluster_centers_[classes[y]] image2=skimage.color.lab2rgb(image2) return image2 def plot_colors(hist, centroids): # initialize the bar chart representing the relative frequency # of each of the colors bar = np.zeros((50, 300, 3), dtype = "uint8") startX = 0 # loop over the percentage of each cluster and the color of # each cluster for (percent, color) in zip(hist, centroids): print color c = skimage.color.lab2rgb([[color]]) print c*255 # plot the relative percentage of each cluster endX = startX + (percent * 300) cv2.rectangle(bar, (int(startX), 0), (int(endX), 50), c[0][0]*255, -1) startX = endX # return the bar chart return bar # import the necessary packages import numpy as np import cv2 def centroid_histogram(clt): # grab the number of different clusters and create a histogram # based on the number of pixels assigned to each cluster numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1) (hist, _) = np.histogram(clt.labels_, bins = numLabels) # normalize the histogram, such that it sums to one hist = hist.astype("float") hist /= hist.sum() # return the histogram return hist # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "Path to the image") ap.add_argument("-c", "--clusters", required = True, type = int, help = "# of clusters") args = vars(ap.parse_args()) # load the image and convert it from BGR to RGB so that # we can dispaly it with matplotlib image = cv2.imread(args["image"]) image2 = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = skimage.color.rgb2lab(image2) # show our image plt.figure() plt.axis("off") plt.imshow(image2) # reshape the image to be a list of pixels imagedata = image.reshape((image.shape[0] * image.shape[1], 3)) # cluster the pixel intensities clt = KMeans(n_clusters = args["clusters"]) clt.fit(imagedata) hist = centroid_histogram(clt) bar = plot_colors(hist, clt.cluster_centers_) # show our color bar plt.figure() plt.axis("off") plt.imshow(bar) imagek=mean_image(image,clt) plt.figure() plt.axis("off") plt.imshow(imagek) plt.show()
28.460674
78
0.696802
0
0
0
0
0
0
0
0
861
0.339913
c716271a9b4b9b525bfcb14f8c07170e7179b37f
134
py
Python
tests/encode.py
EddieBreeg/C_b64
d49b155d1ae889c2ab779f54e6215f9d5e1031e6
[ "MIT" ]
null
null
null
tests/encode.py
EddieBreeg/C_b64
d49b155d1ae889c2ab779f54e6215f9d5e1031e6
[ "MIT" ]
null
null
null
tests/encode.py
EddieBreeg/C_b64
d49b155d1ae889c2ab779f54e6215f9d5e1031e6
[ "MIT" ]
null
null
null
from sys import argv from base64 import b64encode with open("data", 'rb') as fIn: b = fIn.read() print(b64encode(b).decode())
22.333333
32
0.671642
0
0
0
0
0
0
0
0
10
0.074627
c7162d1c243872610bbf29a5583204c35093859d
1,691
py
Python
src/json_sort/lib.py
cdumay/json-sort
a76fe2deaad649264e8ca0d1cc096d9741c60a04
[ "Apache-2.0" ]
3
2017-01-03T14:36:25.000Z
2021-03-06T05:42:08.000Z
src/json_sort/lib.py
cdumay/json-sort
a76fe2deaad649264e8ca0d1cc096d9741c60a04
[ "Apache-2.0" ]
null
null
null
src/json_sort/lib.py
cdumay/json-sort
a76fe2deaad649264e8ca0d1cc096d9741c60a04
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. codeauthor:: Cédric Dumay <[email protected]> """ import logging import sys, os, json from cdumay_rest_client.client import RESTClient from cdumay_rest_client.exceptions import NotFound, HTTPException class NoSuchFile(NotFound): """NoSuchFile""" def oncritical(exc): """description of oncritical""" if isinstance(exc, HTTPException): logging.critical(exc.message) else: logging.critical(str(exc)) sys.exit(1) def file_exists(filename): """description of file_exists""" filename = os.path.realpath(filename) logging.debug("Checking file: {}".format(filename)) if not os.path.exists(filename): raise NoSuchFile( message="No such file '{}'".format(filename), extra=dict(filename=filename) ) return filename def file_write(dst, data): """description of file_write""" if dst: dst = os.path.realpath(dst) logging.debug("Saving to: {}".format(dst)) out = open(dst, "w") else: logging.debug("Current std will be used") out = sys.stdout json.dump( data, out, ensure_ascii=False, sort_keys=True, indent=2, separators=(',', ': ') ) def from_local(src, dst=None): """description of from_local""" try: file_write(dst, json.load(open(file_exists(src), "r"))) except Exception as exc: oncritical(exc) def from_remote(src, dst=None): """description of fromurl""" try: file_write( dst, RESTClient(server=src).do_request(method="GET", path="") ) except Exception as exc: oncritical(exc)
23.486111
73
0.622708
48
0.028369
0
0
0
0
0
0
376
0.222222
c7165074ee0affcd71c302a41edf2c2139ea9a06
4,484
py
Python
test/test_create_dataset.py
gregstarr/ttools
fc8dcbf094370e9885311126724697830167d931
[ "MIT" ]
null
null
null
test/test_create_dataset.py
gregstarr/ttools
fc8dcbf094370e9885311126724697830167d931
[ "MIT" ]
null
null
null
test/test_create_dataset.py
gregstarr/ttools
fc8dcbf094370e9885311126724697830167d931
[ "MIT" ]
null
null
null
import numpy as np import pytest import apexpy import tempfile import os import h5py from ttools import create_dataset, config, io, utils map_periods = [np.timedelta64(10, 'm'), np.timedelta64(30, 'm'), np.timedelta64(1, 'h'), np.timedelta64(2, 'h')] @pytest.fixture def times(): yield np.datetime64('2010-01-01T00:00:00') + np.arange(100) * np.timedelta64(5, 'm') @pytest.mark.parametrize('map_period', map_periods) def test_assemble_args(times, map_period): mlat = np.arange(10) mlt = np.arange(10) ssmlon = np.random.rand(times.shape[0]) mlt, mlat = np.meshgrid(mlt, mlat) mlat = mlat[None, :, :] * np.ones((times.shape[0], 1, 1)) mlt = mlt[None, :, :] * np.ones((times.shape[0], 1, 1)) tec = np.random.rand(*mlat.shape) bin_edges = np.arange(-.5, 10) bins = [bin_edges, bin_edges] args = create_dataset.assemble_binning_args(mlat, mlt, tec, times, ssmlon, bins, map_period) assert len(args) == np.ceil((times[-1] - times[0]) / map_period) assert args[0][3][0] == times[0] assert args[-1][3][0] + map_period >= times[-1] assert args[-1][3][0] < times[-1] assert args[-1][3][-1] == times[-1] for i in range(len(args) - 1): assert args[i][3][-1] == args[i + 1][3][0] - np.timedelta64(5, 'm') @pytest.mark.parametrize('map_period', map_periods) def test_process_file(madrigal_data_dir, map_period): """not that good of a test: wait for bugs and add asserts """ start_date = np.datetime64('2012-06-08') end_date = np.datetime64('2012-06-13') converter = apexpy.Apex() mlat, mlon = create_dataset.get_mag_grid(config.madrigal_lat, config.madrigal_lon, converter) bin_edges = np.arange(-.5, 10) bins = [bin_edges + 30, bin_edges] times, tec, ssmlon, n, std = create_dataset.process_file(start_date, end_date, mlat, mlon, converter, bins, map_period, madrigal_data_dir) assert times.shape[0] == tec.shape[0] == n.shape[0] == std.shape[0] == ssmlon.shape[0] assert np.isnan(tec[times < np.datetime64('2012-06-10')]).all() assert np.isnan(tec[times >= np.datetime64('2012-06-11')]).all() assert np.isfinite(tec[(times >= np.datetime64('2012-06-10')) * (times < np.datetime64('2012-06-11'))]).any() assert not np.isnan(tec).all(axis=(0, 1)).any() assert not np.isnan(tec).all(axis=(0, 2)).any() def test_calculate_bins(): mlat = np.arange(10)[None, :, None] * np.ones((1, 1, 10)) mlt = np.arange(10)[None, None, :] * np.ones((1, 10, 1)) tec = np.zeros((1, 10, 10)) tec[0, 0, 0] = 10 tec[0, 0, -1] = 20 tec[0, -1, 0] = 30 times = ssmlon = np.ones(1) * np.nan be = np.array([-.5, 4.5, 9.5]) bins = [be, be] out_t, out_tec, out_ssm, out_n, out_std = create_dataset.calculate_bins(mlat.ravel(), mlt.ravel(), tec.ravel(), times, ssmlon, bins) assert np.isnan(out_t) assert np.isnan(out_ssm) assert out_tec.shape == (2, 2) assert out_tec[0, 0] == 10 / 25 assert out_tec[0, 1] == 20 / 25 assert out_tec[1, 0] == 30 / 25 assert out_tec[1, 1] == 0 assert np.all(out_n == 25) def test_process_dataset(): start_date = np.datetime64("2012-03-07") end_date = np.datetime64("2012-03-08") file_dt = np.timedelta64(12, 'h') mlat_bins = np.array([35, 45, 55, 65]) mlt_bins = np.array([-1.5, -.5, .5, 1.5]) def fn_pattern(date): return f"{date.astype('datetime64[h]')}.h5" dates = np.arange(start_date, end_date, file_dt) with tempfile.TemporaryDirectory() as tempdir: files = [os.path.join(tempdir, fn_pattern(d)) for d in dates] create_dataset.process_dataset(start_date, end_date, mlat_bins, mlt_bins, apex_dt=np.timedelta64(365, 'D'), file_dt=file_dt, output_dir=tempdir, file_name_pattern=fn_pattern) grid_fn = os.path.join(tempdir, 'grid.h5') assert os.path.exists(grid_fn) with h5py.File(grid_fn, 'r') as f: mlt_vals = f['mlt'][()] mlat_vals = f['mlat'][()] assert np.all(mlt_vals == [-1, 0, 1]) assert np.all(mlat_vals == [40, 50, 60]) for f, d in zip(files, dates): assert os.path.exists(f) tec, times, ssmlon, n, std = io.open_tec_file(f) assert tec.shape == (12, 3, 3) assert utils.datetime64_to_timestamp(d) == times[0]
40.396396
115
0.599242
0
0
101
0.022525
2,131
0.475245
0
0
289
0.064451
c717ca8a8d1e158509ebb8f364af201eeca89e64
296
py
Python
docs_src/options/callback/tutorial001.py
madkinsz/typer
a1520dcda685220a9a796288f5eaaebd00d68845
[ "MIT" ]
7,615
2019-12-24T13:08:20.000Z
2022-03-31T22:07:53.000Z
docs_src/options/callback/tutorial001.py
madkinsz/typer
a1520dcda685220a9a796288f5eaaebd00d68845
[ "MIT" ]
351
2019-12-24T22:17:54.000Z
2022-03-31T15:35:08.000Z
docs_src/options/callback/tutorial001.py
jina-ai/typer
8b5e14b25ddf0dd777403015883301b17bedcee0
[ "MIT" ]
360
2019-12-24T15:29:59.000Z
2022-03-30T20:33:10.000Z
import typer def name_callback(value: str): if value != "Camila": raise typer.BadParameter("Only Camila is allowed") return value def main(name: str = typer.Option(..., callback=name_callback)): typer.echo(f"Hello {name}") if __name__ == "__main__": typer.run(main)
18.5
64
0.658784
0
0
0
0
0
0
0
0
57
0.192568
c719c2fbf99902f8dda33cce99ae748883db934d
3,276
py
Python
qft-client-py2.py
bocajspear1/qft
7a8f3bb5d24bf173489dc4ad6159021e9365e9c4
[ "MIT" ]
null
null
null
qft-client-py2.py
bocajspear1/qft
7a8f3bb5d24bf173489dc4ad6159021e9365e9c4
[ "MIT" ]
null
null
null
qft-client-py2.py
bocajspear1/qft
7a8f3bb5d24bf173489dc4ad6159021e9365e9c4
[ "MIT" ]
null
null
null
import socket import threading from time import sleep from threading import Thread import json import sys def display_test(address, port,text_result, test): if (text_result == "QFT_SUCCESS" and test == True) or (text_result != "QFT_SUCCESS" and test == False): # Test is correct print "PASSED: Test for " + str(address) + ":" + str(port) + " resulted in " + str(test) else: print "FAILED: Test for " + str(address) + ":" + str(port) + " did not result in " + str(test) def TCPTest(address, port, test): try: my_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) my_socket.settimeout(2) my_socket.connect((address, port)) fileobj = my_socket.makefile("rw") fileobj.write('QFT_REQUEST\n') fileobj.flush() result = fileobj.readline().strip() display_test(address, port, result, test) except socket.error as e: #print(e) display_test(address, port, "FAILED", test) except socket.timeout as e: display_test(address, port, "FAILED", test) my_socket.close() def UDPTest(address, port, test): try: my_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) my_socket.settimeout(2) my_socket.sendto("QFT_REQUEST".encode('utf-8'), (address, port)) # receive data from client (data, addr) d = my_socket.recvfrom(1024) reply = d[0] addr = d[1] result = d[0].decode('utf-8').strip() display_test(address, port, result, test) except socket.timeout as e: display_test(address, port, "FAILED", test) try: timeout = 5 if len(sys.argv) > 1: if (len(sys.argv) -1 ) % 2 != 0: print "\nInvalid number of arguments\n\n-t Time between tests in seconds\n" sys.exit() else: if sys.argv[1] == "-t" and sys.argv[2].isdigit() and int(sys.argv[2]) > 2: timeout = int(sys.argv[2]) else: print "\nInvalid arguments\n\n-t Time between tests in seconds\n" sys.exit() print "\nqft-client.py v1.s\n\n" json_cfg = json.loads(open("client.cfg").read()) print "Config loaded. Starting tests in 1 second...\n\n" sleep(1) while True: for item in json_cfg: if item["type"] == "tcp": t = Thread(target=TCPTest, args=( item["remote_address"], item["port"], item["test_for"])) elif item["type"] == "udp": t = Thread(target=UDPTest, args=( item["remote_address"], item["port"], item["test_for"])) else: print "Invalid Type!" t.start() sleep(timeout) print "\n=======================================================\n" except IOError as e: print("Config file, client.cfg, not found") sys.exit() except ValueError as e: print("Error in config JSON") sys.exit()
30.616822
108
0.514042
0
0
0
0
0
0
0
0
686
0.209402
c719cc42bfa09eeceed2d7963f0cd71faeceedf7
14,277
py
Python
mdemanipulation/src/mdeoperation.py
modelia/ai-for-model-manipulation
0b15b9d59b0f6009a5709b20db4e55b7d511ac38
[ "BSD-3-Clause" ]
null
null
null
mdemanipulation/src/mdeoperation.py
modelia/ai-for-model-manipulation
0b15b9d59b0f6009a5709b20db4e55b7d511ac38
[ "BSD-3-Clause" ]
1
2022-01-10T14:16:48.000Z
2022-01-10T14:16:48.000Z
mdemanipulation/src/mdeoperation.py
modelia/ai-for-model-manipulation
0b15b9d59b0f6009a5709b20db4e55b7d511ac38
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python2 import math import os import random import sys import time import logging import argparse import numpy as np from six.moves import xrange import json import torch import torch.nn as nn import torch.optim as optim from torch import cuda from torch.autograd import Variable from torch.nn.utils import clip_grad_norm import data_utils import network import cPickle as pickle import datetime def create_model(source_vocab_size, target_vocab_size, source_vocab_list, target_vocab_list, dropout_rate, max_source_len, max_target_len): model = network.Tree2TreeModel( source_vocab_size, target_vocab_size, source_vocab_list, target_vocab_list, args.max_depth, args.embedding_size, args.hidden_size, args.num_layers, args.max_gradient_norm, args.batch_size, args.learning_rate, dropout_rate, args.no_pf, args.no_attention) if cuda.is_available(): model.cuda() if args.load_model: print("Reading model parameters from %s" % args.load_model) pretrained_model = torch.load(args.load_model) model.load_state_dict(pretrained_model) else: print("Created model with fresh parameters.") model.init_weights(args.param_init) return model def step_tree2tree(model, encoder_inputs, init_decoder_inputs, feed_previous=False): if feed_previous == False: model.dropout_rate = args.dropout_rate else: model.dropout_rate = 0.0 predictions_per_batch, prediction_managers = model(encoder_inputs, init_decoder_inputs, feed_previous=feed_previous) total_loss = None for (predictions, target) in predictions_per_batch: loss = model.loss_function(predictions, target) if total_loss is None: total_loss = loss else: total_loss += loss total_loss /= len(encoder_inputs) if feed_previous: output_predictions = [] for prediction_manager in prediction_managers: output_predictions.append(model.tree2seq(prediction_manager, 1)) if feed_previous == False: model.optimizer.zero_grad() total_loss.backward() if args.max_gradient_norm > 0: clip_grad_norm(model.parameters(), args.max_gradient_norm) model.optimizer.step() for idx in range(len(encoder_inputs)): encoder_inputs[idx].clear_states() if feed_previous: return total_loss.data[0], output_predictions else: return total_loss.data[0] def evaluate(model, test_set, source_vocab, target_vocab, source_vocab_list, target_vocab_list): test_loss = 0 acc_tokens = 0 tot_tokens = 0 acc_programs = 0 tot_programs = len(test_set) res = [] for idx in xrange(0, len(test_set), args.batch_size): encoder_inputs, decoder_inputs = model.get_batch(test_set, start_idx=idx) eval_loss, raw_outputs = step_tree2tree(model, encoder_inputs, decoder_inputs, feed_previous=True) test_loss += len(encoder_inputs) * eval_loss for i in xrange(len(encoder_inputs)): if idx + i >= len(test_set): break current_output = [] for j in xrange(len(raw_outputs[i])): current_output.append(raw_outputs[i][j]) current_source, current_target, current_source_manager, current_target_manager = test_set[idx + i] current_target_print = data_utils.serialize_tree_with_vocabulary(current_target, target_vocab) current_target = data_utils.serialize_tree(current_target) current_source_print = data_utils.serialize_tree_with_vocabulary(current_source, source_vocab) current_source = data_utils.serialize_tree(current_source) # print("Evaluation time: %s seconds" % (datetime.datetime.now() - start_evaluation_datetime)) # print((datetime.datetime.now() - start_evaluation_datetime)) res.append((current_source, current_target, current_output)) current_output_print = data_utils.serialize_seq_with_vocabulary(current_output, target_vocab) # print("--Current source / Current target / Current output--") print(current_source_print) print(current_target_print) print(current_output_print) # print(source_vocab) print("---") tot_tokens += len(current_target) all_correct = 1 wrong_tokens = 0 for j in xrange(len(current_output)): if j >= len(current_target): break if current_output[j] == current_target[j]: acc_tokens += 1 else: all_correct = 0 wrong_tokens += 1 acc_programs += all_correct print(acc_tokens, tot_tokens, acc_programs, tot_programs) test_loss /= tot_programs print(" eval: loss %.2f" % test_loss) print(" eval: accuracy of tokens %.2f" % (acc_tokens * 1.0 / tot_tokens)) print(" eval: accuracy of programs %.2f" % (acc_programs * 1.0 / tot_programs)) print(acc_tokens, tot_tokens, acc_programs, tot_programs) def train(training_dataset, validation_dataset, source_vocab, target_vocab, source_vocab_list, target_vocab_list, no_train): train_model = not no_train; time_training = 0; # build_from_scratch = True; # pretrained_model_path = "/home/lola/nn/neuralnetwork.pth"; if (train_model): print ("Reading training and val data :") train_set = data_utils.prepare_data(training_dataset, source_vocab, target_vocab) val_set = data_utils.prepare_data(validation_dataset, source_vocab, target_vocab) if not os.path.isdir(args.train_dir_checkpoints): os.makedirs(args.train_dir_checkpoints) start_time = time.time() start_datetime = datetime.datetime.now() # if (build_from_scratch): print("Creating %d layers of %d units." % (args.num_layers, args.hidden_size)) model = create_model(len(source_vocab), len(target_vocab), source_vocab_list, target_vocab_list, args.dropout_rate, args.max_source_len, args.max_target_len) # else: # print("Loading pretrained model") # pretrained_model = torch.load(pretrained_model_path) # model.load_state_dict(pretrained_model) print("Training model") step_time, loss = 0.0, 0.0 current_step = 0 previous_losses = [] training_dataset_size = len(train_set) for epoch in range(args.num_epochs): print("epoch: %s/%s" % (epoch+1, args.num_epochs)) batch = 0 random.shuffle(train_set) for batch_idx in range(0, training_dataset_size, args.batch_size): batch += 1 start_time = time.time() encoder_inputs, decoder_inputs = model.get_batch(train_set, start_idx=batch_idx) step_loss = step_tree2tree(model, encoder_inputs, decoder_inputs, feed_previous=False) step_time += (time.time() - start_time) / args.steps_per_checkpoint loss += step_loss / args.steps_per_checkpoint current_step += 1 print(" batch: %s/%s" % (batch, training_dataset_size/args.batch_size)) if current_step % args.learning_rate_decay_steps == 0 and model.learning_rate > 0.0001: model.decay_learning_rate(args.learning_rate_decay_factor) if current_step % args.steps_per_checkpoint == 0: print ("learning rate %.4f step-time %.2f loss " "%.2f" % (model.learning_rate, step_time, loss)) previous_losses.append(loss) ckpt_path = os.path.join(args.train_dir_checkpoints, "translate_" + str(current_step) + ".ckpt") ckpt = model.state_dict() torch.save(ckpt, ckpt_path) step_time, loss = 0.0, 0.0 encoder_inputs, decoder_inputs = model.get_batch(val_set, start_idx=0) eval_loss, decoder_outputs = step_tree2tree(model, encoder_inputs, decoder_inputs, feed_previous=True) print(" eval: loss %.2f" % eval_loss) sys.stdout.flush() time_training = (datetime.datetime.now() - start_datetime) print("Saving model") torch.save(model.state_dict(), "/home/lola/nn/neuralnetwork.pth") else : # not train_model print("Loading the pretrained model") model = create_model(len(source_vocab), len(target_vocab), source_vocab_list, target_vocab_list, args.dropout_rate, args.max_source_len, args.max_target_len) print("Evaluating model") start_evaluation_datetime = datetime.datetime.now() test_dataset = json.load(open(args.test_dataset, 'r')) test_set = data_utils.prepare_data(test_dataset, source_vocab, target_vocab) evaluate(model, test_set, source_vocab, target_vocab, source_vocab_list, target_vocab_list) if (train_model): print("Training time: %s seconds" % time_training) print("Total Evaluation time: %s seconds" % (datetime.datetime.now() - start_evaluation_datetime)) def test(test_dataset, source_vocab, target_vocab, source_vocab_list, target_vocab_list): model = create_model(len(source_vocab), len(target_vocab), source_vocab_list, target_vocab_list, 0.0, args.max_source_len, args.max_target_len) test_set = data_utils.prepare_data(test_dataset, source_vocab, target_vocab) evaluate(model, test_set, source_vocab, target_vocab, source_vocab_list, target_vocab_list) parser = argparse.ArgumentParser() parser.add_argument('--param_init', type=float, default=0.1, help='Parameters are initialized over uniform distribution in (-param_init, param_init)') parser.add_argument('--num_epochs', type=int, default=30, help='number of training epochs') #default 30 parser.add_argument('--learning_rate', type=float, default=0.005, # default 0.005 help='learning rate') parser.add_argument('--learning_rate_decay_factor', type=float, default=0.8, help='learning rate decays by this much') parser.add_argument('--learning_rate_decay_steps', type=int, default=2000, # default=2000 help='decay the learning rate after certain steps') parser.add_argument('--max_gradient_norm', type=float, default=5.0, help='clip gradients to this norm') parser.add_argument('--batch_size', type=int, default=64, #default 100 help='batch size') parser.add_argument('--max_depth', type=int, default=100, help='max depth for tree models') parser.add_argument('--hidden_size', type=int, default=256, help='size of each model layer') parser.add_argument('--embedding_size', type=int, default=256, help='size of the embedding') parser.add_argument('--dropout_rate', type=float, default=0.75, # default=0.5 help='dropout rate') parser.add_argument('--num_layers', type=int, default=1, # default=1, help='number of layers in the model') parser.add_argument('--source_vocab_size', type=int, default=0, help='source vocabulary size (0: no limit)') parser.add_argument('--target_vocab_size', type=int, default=0, help='target vocabulary size (0: no limit)') parser.add_argument('--train_dir_checkpoints', type=str, default='/home/lola/nn/checkpoints', # default='../model_ckpts/tree2tree/', help='training directory - checkpoints') parser.add_argument('--training_dataset', type=str, default='/home/lola/nn/models_train.json', # default='../data/CS-JS/BL/preprocessed_progs_train.json', help='training dataset path') parser.add_argument('--validation_dataset', type=str, default='/home/lola/nn/models_valid.json', #default='../data/CS-JS/BL/preprocessed_progs_valid.json', help='validation dataset path') parser.add_argument('--test_dataset', type=str, default='/home/lola/nn/models_test.json', #default='../data/CS-JS/BL/preprocessed_progs_test.json', help='test dataset path') parser.add_argument('--load_model', type=str, default='/home/lola/nn/neuralnetwork.pth', # default=None help='path to the pretrained model') parser.add_argument('--vocab_filename', type=str, default=None, help='filename for the vocabularies') parser.add_argument('--steps_per_checkpoint', type=int, default=500, help='number of training steps per checkpoint') parser.add_argument('--max_source_len', type=int, default=115, help='max length for input') parser.add_argument('--max_target_len', type=int, default=315, help='max length for output') parser.add_argument('--test', action='store_true', help='set to true for testing') parser.add_argument('--no_attention', action='store_true', help='set to true to disable attention') parser.add_argument('--no_pf', action='store_true', help='set to true to disable parent attention feeding') parser.add_argument('--no_train', help='set to true to prevent the network from training', action='store_true') args = parser.parse_args() def main(): if args.no_attention: args.no_pf = True training_dataset = json.load(open(args.training_dataset, 'r')) source_vocab, target_vocab, source_vocab_list, target_vocab_list = data_utils.build_vocab(training_dataset, args.vocab_filename) if args.test: test_dataset = json.load(open(args.test_dataset, 'r')) test(test_dataset, source_vocab, target_vocab, source_vocab_list, target_vocab_list) else: validation_dataset = json.load(open(args.validation_dataset, 'r')) # print("Val data %s" % validation_dataset) train(training_dataset, validation_dataset, source_vocab, target_vocab, source_vocab_list, target_vocab_list, args.no_train) main()
43.794479
155
0.665826
0
0
0
0
0
0
0
0
2,982
0.208867
c71a546240f7c071174fd45a93cc36d20aa838b4
5,388
py
Python
barbican/common/resources.py
stanzikratel/barbican-2
10fae57c1cae3e140c19069a48f562d62ca53663
[ "Apache-2.0" ]
null
null
null
barbican/common/resources.py
stanzikratel/barbican-2
10fae57c1cae3e140c19069a48f562d62ca53663
[ "Apache-2.0" ]
null
null
null
barbican/common/resources.py
stanzikratel/barbican-2
10fae57c1cae3e140c19069a48f562d62ca53663
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2013-2014 Rackspace, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Shared business logic. """ from barbican.common import exception from barbican.common import utils from barbican.common import validators from barbican.model import models LOG = utils.getLogger(__name__) def get_or_create_tenant(keystone_id, tenant_repo): """Returns tenant with matching keystone_id. Creates it if it does not exist. :param keystone_id: The external-to-Barbican ID for this tenant. :param tenant_repo: Tenant repository. :return: Tenant model instance """ tenant = tenant_repo.find_by_keystone_id(keystone_id, suppress_exception=True) if not tenant: LOG.debug('Creating tenant for {0}'.format(keystone_id)) tenant = models.Tenant() tenant.keystone_id = keystone_id tenant.status = models.States.ACTIVE tenant_repo.create_from(tenant) return tenant def create_secret(data, tenant, crypto_manager, secret_repo, tenant_secret_repo, datum_repo, kek_repo, ok_to_generate=False): """Common business logic to create a secret.""" time_keeper = utils.TimeKeeper('Create Secret Resource') new_secret = models.Secret(data) time_keeper.mark('after Secret model create') new_datum = None content_type = data.get('payload_content_type', 'application/octet-stream') if 'payload' in data: payload = data.get('payload') content_encoding = data.get('payload_content_encoding') LOG.debug('Encrypting payload...') new_datum = crypto_manager.encrypt(payload, content_type, content_encoding, new_secret, tenant, kek_repo, enforce_text_only=True) time_keeper.mark('after encrypt') elif ok_to_generate: LOG.debug('Generating new secret...') # TODO(atiwari): With new typed Order API proposal # we need to translate new_secret to meta # currently it is working as meta will have same attributes new_datum = crypto_manager. \ generate_symmetric_encryption_key(new_secret, content_type, tenant, kek_repo) time_keeper.mark('after secret generate') else: LOG.debug('Creating metadata only for the new secret. ' 'A subsequent PUT is required') # Create Secret entities in datastore. secret_repo.create_from(new_secret) time_keeper.mark('after Secret datastore create') new_assoc = models.TenantSecret() time_keeper.mark('after TenantSecret model create') new_assoc.tenant_id = tenant.id new_assoc.secret_id = new_secret.id new_assoc.role = "admin" new_assoc.status = models.States.ACTIVE tenant_secret_repo.create_from(new_assoc) time_keeper.mark('after TenantSecret datastore create') if new_datum: new_datum.secret_id = new_secret.id datum_repo.create_from(new_datum) time_keeper.mark('after Datum datastore create') time_keeper.dump() return new_secret def create_encrypted_datum(secret, payload, content_type, content_encoding, tenant, crypto_manager, datum_repo, kek_repo): """Modifies the secret to add the plain_text secret information. :param secret: the secret entity to associate the secret data to :param payload: secret data to store :param content_type: payload content mime type :param content_encoding: payload content encoding :param tenant: the tenant (entity) who owns the secret :param crypto_manager: the crypto plugin manager :param datum_repo: the encrypted datum repository :param kek_repo: the KEK metadata repository :retval The response body, None if N/A """ if not payload: raise exception.NoDataToProcess() if validators.secret_too_big(payload): raise exception.LimitExceeded() if secret.encrypted_data: raise ValueError('Secret already has encrypted data stored for it.') # Encrypt payload LOG.debug('Encrypting secret payload...') new_datum = crypto_manager.encrypt(payload, content_type, content_encoding, secret, tenant, kek_repo) datum_repo.create_from(new_datum) return new_datum
37.416667
76
0.625464
0
0
0
0
0
0
0
0
2,188
0.406088
c71ac734d6782f901c4c5400d878122dd11ea416
567
py
Python
7/prime.py
redfast00/euler
98fc49a1fcb8b49415cc4384952a6447378bd4f4
[ "MIT" ]
null
null
null
7/prime.py
redfast00/euler
98fc49a1fcb8b49415cc4384952a6447378bd4f4
[ "MIT" ]
null
null
null
7/prime.py
redfast00/euler
98fc49a1fcb8b49415cc4384952a6447378bd4f4
[ "MIT" ]
null
null
null
from math import sqrt def stream_primes(num): primes = [] candidate = 2 for i in range(num): prime = next_prime(primes, candidate) primes.append(prime) candidate = prime + 1 yield prime def next_prime(primes, candidate): while True: for prime in primes: if candidate % prime == 0: break elif prime > sqrt(candidate): return candidate else: return candidate candidate += 1 for prime in stream_primes(10001): print(prime)
22.68
45
0.560847
0
0
207
0.365079
0
0
0
0
0
0
c71be407b214b6130f22496ab986a3ca003cfe56
777
py
Python
app/utils.py
HealYouDown/flo-league
c729cad1daddfb89e997c101bd2da505b7137d98
[ "MIT" ]
null
null
null
app/utils.py
HealYouDown/flo-league
c729cad1daddfb89e997c101bd2da505b7137d98
[ "MIT" ]
3
2021-05-03T19:05:11.000Z
2021-06-12T09:43:02.000Z
app/utils.py
HealYouDown/flo-league
c729cad1daddfb89e997c101bd2da505b7137d98
[ "MIT" ]
null
null
null
import datetime from app.models import Log from flask_login import current_user from app.extensions import db # https://stackoverflow.com/questions/6558535/find-the-date-for-the-first-monday-after-a-given-date def next_weekday( d: datetime.datetime = datetime.datetime.utcnow(), weekday: int = 0, ) -> datetime.datetime: days_ahead = weekday - d.weekday() if days_ahead <= 0: # Target day already happened this week days_ahead += 7 # Flatten the current time to just the date date = datetime.datetime(d.year, d.month, d.day) return date + datetime.timedelta(days_ahead) def add_moderator_log(log_text: str) -> None: db.session.add(Log( moderator_id=current_user.id, message=log_text, )) db.session.commit()
28.777778
99
0.705277
0
0
0
0
0
0
0
0
181
0.232947
c71c00b730b4e3cf508cdefb7968765436ad7ce3
68,625
py
Python
benchmarks/SimResults/combinations_spec_mylocality/oldstuff/cmp_soplexmcfcalculixgcc/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
benchmarks/SimResults/combinations_spec_mylocality/oldstuff/cmp_soplexmcfcalculixgcc/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
benchmarks/SimResults/combinations_spec_mylocality/oldstuff/cmp_soplexmcfcalculixgcc/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
power = {'BUSES': {'Area': 1.33155, 'Bus/Area': 1.33155, 'Bus/Gate Leakage': 0.00662954, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0691322, 'Bus/Subthreshold Leakage with power gating': 0.0259246, 'Gate Leakage': 0.00662954, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0691322, 'Subthreshold Leakage with power gating': 0.0259246}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.181181, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.344996, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.977935, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.486054, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.841669, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.482721, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.81044, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.330514, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 7.28395, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.184753, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0176198, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.195265, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.130309, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.380018, 'Execution Unit/Register Files/Runtime Dynamic': 0.147929, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.521478, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 1.08927, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.79801, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00272158, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00272158, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.0023766, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000923356, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00187191, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00969166, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0258763, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.12527, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 6.43323, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.372767, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.425473, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.96874, 'Instruction Fetch Unit/Runtime Dynamic': 0.959077, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.090727, 'L2/Runtime Dynamic': 0.0127692, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 4.08122, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.38167, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0920133, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0920133, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.51749, 'Load Store Unit/Runtime Dynamic': 1.92746, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.226889, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.453778, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0805237, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0817258, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.399995, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.061585, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.697703, 'Memory Management Unit/Runtime Dynamic': 0.143311, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 26.1203, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.644561, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0326103, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.237087, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.914258, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 7.75489, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.11996, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.29691, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.64733, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.234954, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.378972, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.191292, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.805218, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.169475, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 5.2954, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.122295, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00985502, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.116195, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0728839, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.23849, 'Execution Unit/Register Files/Runtime Dynamic': 0.0827389, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.274787, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.565173, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 2.15542, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00133282, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00133282, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00118494, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000471861, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00104698, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00489756, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0119197, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0700652, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 4.45674, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.197355, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.237973, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 6.89155, 'Instruction Fetch Unit/Runtime Dynamic': 0.522211, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0504299, 'L2/Runtime Dynamic': 0.0069462, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.70196, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.713329, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0473909, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0473909, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.92575, 'Load Store Unit/Runtime Dynamic': 0.994436, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.116858, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.233716, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0414733, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0421754, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.277104, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0325171, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.504457, 'Memory Management Unit/Runtime Dynamic': 0.0746925, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 19.2571, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.321701, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0145155, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.111753, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.44797, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 4.20167, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0065108, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.207803, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0335685, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.102536, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.165386, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.0834813, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.351403, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.112125, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.10223, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.00634181, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0043008, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0336025, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0318071, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0399443, 'Execution Unit/Register Files/Runtime Dynamic': 0.0361079, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0724192, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.179703, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.18039, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00112696, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00112696, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000995662, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000393137, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000456911, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.0037065, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0103022, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0305769, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 1.94496, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0958958, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.103853, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 4.25787, 'Instruction Fetch Unit/Runtime Dynamic': 0.244335, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0538499, 'L2/Runtime Dynamic': 0.0148173, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.02873, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.40237, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0256105, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0256104, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.14967, 'Load Store Unit/Runtime Dynamic': 0.554282, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.063151, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.126302, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0224125, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0232096, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.12093, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0157552, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.31554, 'Memory Management Unit/Runtime Dynamic': 0.0389648, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.4686, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0166828, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00482915, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0520126, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0735245, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.10632, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.00682822, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.208052, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0364806, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.106185, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.171272, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.0864526, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.36391, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.115853, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.11398, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.00689197, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00445387, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0347798, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0329391, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0416718, 'Execution Unit/Register Files/Runtime Dynamic': 0.037393, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0749788, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.202833, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.21756, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000625326, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000625326, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000550159, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000215984, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000473173, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00227399, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00579905, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0316652, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 2.01418, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0689457, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.107549, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 4.33045, 'Instruction Fetch Unit/Runtime Dynamic': 0.216233, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0418086, 'L2/Runtime Dynamic': 0.00989266, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.36015, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.554162, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0363327, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0363327, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.53172, 'Load Store Unit/Runtime Dynamic': 0.769675, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0895903, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.17918, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0317959, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0324228, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.125234, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0113054, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.335963, 'Memory Management Unit/Runtime Dynamic': 0.0437282, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.9434, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0181291, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0050114, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0551057, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0782462, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.33534, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 3.868411224021876, 'Runtime Dynamic': 3.868411224021876, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.371973, 'Runtime Dynamic': 0.183113, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 191.908, 'Gate Leakage': 1.53485, 'Peak Dynamic': 75.1614, 'Peak Power': 108.274, 'Runtime Dynamic': 16.5813, 'Subthreshold Leakage': 31.5774, 'Subthreshold Leakage with power gating': 13.9484, 'Total Cores/Area': 128.669, 'Total Cores/Gate Leakage': 1.4798, 'Total Cores/Peak Dynamic': 74.7894, 'Total Cores/Runtime Dynamic': 16.3982, 'Total Cores/Subthreshold Leakage': 24.7074, 'Total Cores/Subthreshold Leakage with power gating': 10.2429, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.371973, 'Total L3s/Runtime Dynamic': 0.183113, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 33.1122, 'Total NoCs/Area': 1.33155, 'Total NoCs/Gate Leakage': 0.00662954, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0691322, 'Total NoCs/Subthreshold Leakage with power gating': 0.0259246}}
75.082057
124
0.682157
0
0
0
0
0
0
0
0
46,943
0.684051
c71c6e80583baf2cb3846a4c3d378463d41f4b27
9,582
py
Python
packages/gtmcore/gtmcore/environment/conda.py
gigabackup/gigantum-client
70fe6b39b87b1c56351f2b4c551b6f1693813e4f
[ "MIT" ]
60
2018-09-26T15:46:00.000Z
2021-10-10T02:37:14.000Z
packages/gtmcore/gtmcore/environment/conda.py
gigabackup/gigantum-client
70fe6b39b87b1c56351f2b4c551b6f1693813e4f
[ "MIT" ]
1,706
2018-09-26T16:11:22.000Z
2021-08-20T13:37:59.000Z
packages/gtmcore/gtmcore/environment/conda.py
griffinmilsap/gigantum-client
70fe6b39b87b1c56351f2b4c551b6f1693813e4f
[ "MIT" ]
11
2019-03-14T13:23:51.000Z
2022-01-25T01:29:16.000Z
from typing import List, Dict import json from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest from gtmcore.environment.packagemanager import PackageManager, PackageResult, PackageMetadata from gtmcore.container import container_for_context from gtmcore.labbook import LabBook from gtmcore.logging import LMLogger logger = LMLogger.get_logger() class CondaPackageManagerBase(PackageManager): """Class to implement the conda package manager """ def __init__(self): # String to be set in child classes indicating which python version you are checking. Typically should be either # python 3.6* or python 2.7* self.python_depends_str = None # String of the name of the conda environment (e.g. py36 or py27, as created via container build) self.python_env = None # Note, currently we hard code channel config. Future changes to support the user specifying channels # will modify this behavior self.channel_priority = ['conda-forge', 'anaconda'] self.request_mgr = ConcurrentRequestManager() def list_versions(self, package_name: str, labbook: LabBook, username: str) -> List[str]: """Method to list all available versions of a package based on the package name Args: package_name: Name of the package to query labbook: Subject LabBook username: username of current user Returns: list(str): Version strings """ # Check for package in channels, picking out version by priority request_list = list() for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{package_name}", headers={'Accept': 'application/json'})) responses = self.request_mgr.resolve_many(request_list) versions = None for response in responses: if response.status_code != 200: continue versions = response.json.get('versions') break if not versions: raise ValueError(f"Package {package_name} not found in channels {' ,'.join(self.channel_priority)}.") versions.reverse() return versions def list_installed_packages(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all packages that are currently installed Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format (name: <package name>, version: <version string>) Returns: list """ project_container = container_for_context(username, labbook=labbook) result = project_container.run_container("conda list --no-pip --json", wait_for_output=True) if result: data = json.loads(result) if data: return [{"name": x['name'], 'version': x['version']} for x in data] else: return [] def validate_packages(self, package_list: List[Dict[str, str]], labbook: LabBook, username: str) \ -> List[PackageResult]: """Method to validate a list of packages, and if needed fill in any missing versions Should check both the provided package name and version. If the version is omitted, it should be generated from the latest version. Args: package_list(list): A list of dictionaries of packages to validate labbook(str): The labbook instance username(str): The username for the logged in user Returns: namedtuple: namedtuple indicating if the package and version are valid """ result = list() # Check for package in channels, picking out version by priority request_list = list() for pkg in package_list: for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{pkg['package']}", headers={'Accept': 'application/json'})) responses = self.request_mgr.resolve_many(request_list) # Repack into groups by package responses_per_package = list(zip(*(iter(responses),) * len(self.channel_priority))) for package, responses in zip(package_list, responses_per_package): versions = None latest_version = None for response in responses: if response.status_code != 200: continue versions = response.json.get('versions') latest_version = response.json.get('latest_version') break if not versions: # Package is not found result.append(PackageResult(package=package['package'], version=package.get('version'), error=True)) continue if package.get('version'): # Package has been set, so validate it if package.get('version') in versions: # Both package name and version are valid result.append(PackageResult(package=package['package'], version=package.get('version'), error=False)) else: # The package version is not in the list, so invalid result.append(PackageResult(package=package['package'], version=package.get('version'), error=True)) else: # You need to look up the latest version since not included result.append(PackageResult(package=package['package'], version=str(latest_version), error=False)) return result def get_packages_metadata(self, package_list: List[str], labbook: LabBook, username: str) -> List[PackageMetadata]: """Method to get package metadata Args: package_list: List of package names labbook(str): The labbook instance username(str): The username for the logged in user Returns: list """ def _extract_metadata(data): """Extraction method to pull out the docs URL and description""" latest_val = data.get('latest_version') description_val = data.get('summary').strip() docs_val = data.get('doc_url') if not docs_val: docs_val = data.get('html_url') return latest_val, description_val, docs_val # Check for package in channels, picking out version by priority request_list = list() for pkg in package_list: for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{pkg}", headers={'Accept': 'application/json'}, extraction_function=_extract_metadata)) responses = self.request_mgr.resolve_many(request_list) # Repack into groups by package responses_per_package = list(zip(*(iter(responses),) * len(self.channel_priority))) result = list() for package, responses in zip(package_list, responses_per_package): data = None for response in responses: if response.status_code == 200: data = response.extracted_json break if data: latest_version, description, docs_url = data result.append(PackageMetadata(package_manager="conda", package=package, latest_version=latest_version, description=description, docs_url=docs_url)) else: result.append(PackageMetadata(package_manager="conda", package=package, latest_version=None, description=None, docs_url=None)) return result def generate_docker_install_snippet(self, packages: List[Dict[str, str]], single_line: bool = False) -> List[str]: """Method to generate a docker snippet to install 1 or more packages Note: Because conda be so slow to solve environments with conda-forge included, always single line it. Args: packages(list(dict)): A list of package names and versions to install single_line(bool): If true, collapse Returns: list """ package_strings = [f"{x['name']}={x['version']}" for x in packages] if single_line: return [f"RUN conda install -yq {' '.join(package_strings)}"] else: return [f"RUN conda install -yq {' '.join(package_strings)}"] class Conda3PackageManager(CondaPackageManagerBase): """Class to implement the conda3 package manager """ def __init__(self): super().__init__() self.python_depends_str = 'python 3.6*' self.python_env = 'py36' class Conda2PackageManager(CondaPackageManagerBase): """Class to implement the conda2 package manager """ def __init__(self): super().__init__() self.python_depends_str = 'python 2.7*' self.python_env = 'py27'
40.774468
120
0.611668
9,210
0.961177
0
0
0
0
0
0
3,749
0.391254
c71da90915f08f68f935060eea6dba44dc3beaac
1,147
py
Python
netchos/io/io_mpl_to_px.py
brainets/netchos
ccfcd2ec85894adffbd20fbc67410dbdacfe6812
[ "BSD-3-Clause" ]
11
2021-04-20T19:45:23.000Z
2021-11-17T15:18:33.000Z
netchos/io/io_mpl_to_px.py
brainets/netchos
ccfcd2ec85894adffbd20fbc67410dbdacfe6812
[ "BSD-3-Clause" ]
3
2021-04-26T09:01:42.000Z
2021-06-30T12:09:15.000Z
netchos/io/io_mpl_to_px.py
brainets/netchos
ccfcd2ec85894adffbd20fbc67410dbdacfe6812
[ "BSD-3-Clause" ]
2
2021-05-06T20:28:46.000Z
2021-05-24T10:36:44.000Z
"""Conversion of Matplotlib / Seaborn inputs to plotly.""" import os.path as op from pkg_resources import resource_filename import json def mpl_to_px_inputs(inputs, plt_types=None): """Convert typical matplotlib inputs to plotly to simplify API. Parameters ---------- inputs : dict Dictionary of inputs plt_types : string or list or None Sub select some plotting types (e.g heatmap, line etc.). If None, all types are used Returns ------- outputs : dict Dictionary of converted inputs """ # load reference table file = op.join(op.dirname(__file__), "io_mpl_to_px.json") with open(file, 'r') as f: table = json.load(f) # go through the desired plotting types for conversion if plt_types is None: plt_types = list(table.keys()) if isinstance(plt_types, str): plt_types = [plt_types] ref = {} for plt_type in plt_types: ref.update(table[plt_type]) # convert inputs outputs = {} for k, v in inputs.items(): if k in ref.keys(): k = ref[k] outputs[k] = v return outputs
25.488889
77
0.62075
0
0
0
0
0
0
0
0
544
0.474281
c71dc157e40f86937d395921d62896697e8b4c70
186
py
Python
fizzbuzz_for_02.py
toastyxen/FizzBuzz
094270e3882e743a80c5d32b3903c2483d37755f
[ "MIT" ]
null
null
null
fizzbuzz_for_02.py
toastyxen/FizzBuzz
094270e3882e743a80c5d32b3903c2483d37755f
[ "MIT" ]
null
null
null
fizzbuzz_for_02.py
toastyxen/FizzBuzz
094270e3882e743a80c5d32b3903c2483d37755f
[ "MIT" ]
null
null
null
"""Fizzbuzz for loop variant 3""" for x in range(1, 101): OUTPUT = "" if x % 3 == 0: OUTPUT += "Fizz" if x % 5 == 0: OUTPUT += "Buzz" print(OUTPUT or x)
18.6
33
0.473118
0
0
0
0
0
0
0
0
47
0.252688
c71ef3a9007aa0aebc08a606ded35bff47c69406
242
py
Python
cnn/struct/layer/parse_tensor_module.py
hslee1539/GIS_GANs
6901c830b924e59fd06247247db3f925bab26583
[ "MIT" ]
null
null
null
cnn/struct/layer/parse_tensor_module.py
hslee1539/GIS_GANs
6901c830b924e59fd06247247db3f925bab26583
[ "MIT" ]
null
null
null
cnn/struct/layer/parse_tensor_module.py
hslee1539/GIS_GANs
6901c830b924e59fd06247247db3f925bab26583
[ "MIT" ]
null
null
null
from tensor.main_module import Tensor import numpy as np def getTensor(value): if type(value) is np.ndarray: return Tensor.numpy2Tensor(value) elif type(value) is Tensor: return value else: raise Exception
24.2
41
0.68595
0
0
0
0
0
0
0
0
0
0
c71f19c3cf33a6be263067d8b8a273844fc916bd
3,337
py
Python
openstack_dashboard/dashboards/admin/volume_types/qos_specs/forms.py
hemantsonawane95/horizon-apelby
01a5e72219aeca8c1451701ee85e232ed0618751
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/dashboards/admin/volume_types/qos_specs/forms.py
hemantsonawane95/horizon-apelby
01a5e72219aeca8c1451701ee85e232ed0618751
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/dashboards/admin/volume_types/qos_specs/forms.py
hemantsonawane95/horizon-apelby
01a5e72219aeca8c1451701ee85e232ed0618751
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re from django.urls import reverse from django.utils.translation import gettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import messages from openstack_dashboard import api KEY_NAME_REGEX = re.compile(r"^[a-zA-Z0-9-_:. /]+$", re.UNICODE) KEY_ERROR_MESSAGES = { 'invalid': _("The key must match the following the regex: " "'^[a-zA-Z0-9-_:. /]'")} class CreateKeyValuePair(forms.SelfHandlingForm): # this if for creating a spec key-value pair for an existing QOS Spec key = forms.RegexField(max_length=255, label=_("Key"), regex=KEY_NAME_REGEX, error_messages=KEY_ERROR_MESSAGES) value = forms.CharField(max_length=255, label=_("Value")) def handle(self, request, data): qos_spec_id = self.initial['qos_spec_id'] try: # first retrieve current value of specs specs = api.cinder.qos_spec_get(request, qos_spec_id) # now add new key-value pair to list of specs specs.specs[data['key']] = data['value'] api.cinder.qos_spec_set_keys(request, qos_spec_id, specs.specs) msg = _('Created spec "%s".') % data['key'] messages.success(request, msg) return True except Exception: redirect = reverse("horizon:admin:volume_types:index") exceptions.handle(request, _("Unable to create spec."), redirect=redirect) class EditKeyValuePair(forms.SelfHandlingForm): value = forms.CharField(max_length=255, label=_("Value")) # update the backend with the new qos spec value def handle(self, request, data): key = self.initial['key'] qos_spec_id = self.initial['qos_spec_id'] # build up new 'specs' object with all previous values plus new value try: # first retrieve current value of specs specs = api.cinder.qos_spec_get_keys(request, qos_spec_id, raw=True) specs.specs[key] = data['value'] api.cinder.qos_spec_set_keys(request, qos_spec_id, specs.specs) msg = _('Saved spec "%s".') % key messages.success(request, msg) return True except Exception: redirect = reverse("horizon:admin:volume_types:index") exceptions.handle(request, _("Unable to edit spec."), redirect=redirect)
39.72619
77
0.585556
2,367
0.70932
0
0
0
0
0
0
1,169
0.350315
c71fc189fa6f73122afbe242bbfd89bd9a8a50ea
9,050
py
Python
data_structure/const_tree.py
alipay/StructuredLM_RTDT
6edf2acf8747e17015523d78b6c580431a4f7b5c
[ "Apache-2.0" ]
42
2021-06-01T07:07:12.000Z
2022-03-18T02:38:53.000Z
data_structure/const_tree.py
alipay/StructuredLM_RTDT
6edf2acf8747e17015523d78b6c580431a4f7b5c
[ "Apache-2.0" ]
1
2021-12-15T03:50:24.000Z
2021-12-15T08:46:56.000Z
data_structure/const_tree.py
alipay/StructuredLM_RTDT
6edf2acf8747e17015523d78b6c580431a4f7b5c
[ "Apache-2.0" ]
7
2021-06-02T02:28:01.000Z
2022-01-14T06:59:29.000Z
# coding=utf-8 # Copyright (c) 2021 Ant Group import sys LABEL_SEP = '@' INDENT_STRING1 = '│   ' INDENT_STRING2 = '├──' EMPTY_TOKEN = '___EMPTY___' def print_tree(const_tree, indent=0, out=sys.stdout): for i in range(indent - 1): out.write(INDENT_STRING1) if indent > 0: out.write(INDENT_STRING2) out.write(const_tree.tag) if not isinstance(const_tree.children[0], ConstTree): out.write(f' {const_tree.children[0].string}\n') else: out.write('\n') for child in const_tree.children: print_tree(child, indent + 1, out) def _make_tree(string, make_leaf_fn, make_internal_fn): tokens = string.replace('(', ' ( ').replace(')', ' ) ').split() index, stack = 0, [] lexicons = [] root = None while index < len(tokens): token = tokens[index] index += 1 if token == ')': if not stack: raise ConstTreeParserError('redundant ")" at token ' + str(index)) node = stack.pop() if not stack: root = node else: stack[-1].children.append(node) elif token == '(': tag = tokens[index] index += 1 stack.append(make_internal_fn(tag)) else: if not stack: raise ConnectionError('??? at pos ' + str(index)) new_token = [] while token != ')': if not token != '(': raise Exception('bracket error') new_token.append(token) token = tokens[index] index += 1 # is lexicon leaf_node = make_leaf_fn('_'.join(new_token)) lexicons.append(leaf_node) postag_node = stack.pop() postag_node.children.append(leaf_node) if not stack: root = postag_node else: stack[-1].children.append(postag_node) if not root or stack: raise ConstTreeParserError('missing ")".') return root, lexicons class ConstTreeParserError(Exception): pass class Lexicon: __slots__ = ('string', 'span', 'parent') def __init__(self, string, span=None): self.string = string self.span = span def __str__(self): return f'<Lexicon {self.string}>' def __repr__(self): return str(self) def __eq__(self, other): return self.string == other.string def __hash__(self): return hash(self.string) + 2 @property def tag(self): return self.string def to_string(self, quote_lexicon): if quote_lexicon: return f'"{self.string}"' return self.string class ConstTree: __slots__ = ('children', 'tag', 'span', 'index', 'parent', 'attrs') ROOT_LABEL = 'ROOT' def __init__(self, tag, children=None, span=None): self.tag = tag self.children = children if children is not None else [] self.span = span self.index = None def __str__(self): child_string = ' + '.join(child.tag for child in self.children) return f'{self.span} {self.tag} => {child_string}' def __repr__(self): return str(self) def __getitem__(self, index): if isinstance(index, int): return self.children[index] if isinstance(index, str): for child in self.children: if isinstance(child, ConstTree) and child.tag == index.upper(): return child raise KeyError def to_string(self, quote_lexicon=False): child_string = ' '.join(child.to_string(quote_lexicon) for child in self.children) return f'({self.tag} {child_string})' @staticmethod def from_string(string): """ Construct ConstTree from parenthesis representation. :param string: string of parenthesis representation :return: ConstTree root and all leaf Lexicons """ tree, lexicons = _make_tree(string, Lexicon, ConstTree) for index, lexicon in enumerate(lexicons): lexicon.span = index, index + 1 tree.populate_spans_internal() return tree, lexicons def traverse_postorder(self): for child in self.children: if isinstance(child, ConstTree): yield from child.traverse_postorder() yield self def traverse_postorder_with_lexicons(self): for child in self.children: if isinstance(child, ConstTree): yield from child.traverse_postorder_with_lexicons() else: yield child yield self def generate_preterminals(self): for child in self.children: if isinstance(child, ConstTree): yield from child.generate_preterminals() for child in self.children: if isinstance(child, Lexicon): yield self def generate_lexicons(self): for child in self.children: if isinstance(child, ConstTree): yield from child.generate_lexicons() for child in self.children: if isinstance(child, Lexicon): yield child def is_binary_tree(self): if isinstance(self.children[0], Lexicon): return True return len(self.children <= 2) and all(child.is_binary_tree() for child in self.children) def condensed_unary_chain(self, include_preterminal=True, remove_root=None): if self.tag == remove_root: assert len(self.children) == 1 return self.children[0].condensed_unary_chain(include_preterminal=include_preterminal) if len(self.children) > 1: return ConstTree(self.tag, children=list(child.condensed_unary_chain() for child in self.children), span=self.span) if isinstance(self.children[0], Lexicon): return ConstTree((self.tag if include_preterminal else EMPTY_TOKEN), children=list(self.children), span=self.span) assert isinstance(self.children[0], ConstTree) node = self new_tag = self.tag while len(node.children) == 1 and isinstance(node.children[0], ConstTree): node = node.children[0] if include_preterminal or isinstance(node.children[0], ConstTree): new_tag += LABEL_SEP + node.tag if len(node.children) == 1: children = list(node.children) else: children = list(child.condensed_unary_chain() for child in node.children) return ConstTree(new_tag, children=children, span=self.span) def expanded_unary_chain(self, add_root=None): if isinstance(self.children[0], Lexicon): children = list(self.children) else: children = list(child.expanded_unary_chain() for child in self.children) tags = self.tag.split(LABEL_SEP) for tag in reversed(tags): children = [ConstTree(tag, children=children, span=self.span)] root = children[0] if add_root: root = ConstTree(add_root, children=[root]) return root def calculate_span(self): self.span = self.children[0].span[0], self.children[-1].span[1] def populate_spans_internal(self): for child in self.children: if isinstance(child, ConstTree): child.populate_spans_internal() self.calculate_span() def add_postorder_index(self): for index, node in enumerate(self.traverse_postorder()): node.index = index def add_parents(self, parent=None): self.parent = parent for child in self.children: if isinstance(child, ConstTree): child.add_parents(self) def is_ancestor_of(self, other): other = other.parent while other is not None and other is not self: other = other.parent return other is not None def generate_path_to_root(self, include_self=False): node = self if not include_self: node = self.parent while node is not None: yield node node = node.parent def lowest_common_ancestor(self, other): path = list(other.generate_path_to_root()) for node in self.generate_path_to_root(): try: return path[path.index(node)] except ValueError: pass def remove_nodes(self, filter): _children = [] for c in self.children: if isinstance(c, ConstTree): if filter(c): pass else: filtered_node = c.remove_nodes(filter) _children.append(filtered_node) else: _children.append(c) return ConstTree(self.tag, _children)
30.782313
98
0.575912
6,953
0.767439
1,207
0.133223
517
0.057064
0
0
611
0.067439
c71fcfdd300a9f0f56bf5188a7e7a694d05f3faa
4,098
py
Python
tests/test_minimize.py
The-Ludwig/iminuit
8eef7b711846d6c8db9fe1fc883f6fa0977eb514
[ "MIT" ]
null
null
null
tests/test_minimize.py
The-Ludwig/iminuit
8eef7b711846d6c8db9fe1fc883f6fa0977eb514
[ "MIT" ]
null
null
null
tests/test_minimize.py
The-Ludwig/iminuit
8eef7b711846d6c8db9fe1fc883f6fa0977eb514
[ "MIT" ]
null
null
null
import pytest from iminuit import minimize import numpy as np from numpy.testing import assert_allclose, assert_equal opt = pytest.importorskip("scipy.optimize") def func(x, *args): c = args[0] if args else 1 return c + x[0] ** 2 + (x[1] - 1) ** 2 + (x[2] - 2) ** 2 def grad(x, *args): return 2 * (x - (0, 1, 2)) def test_simple(): result = minimize(func, (1, 1, 1)) assert_allclose(result.x, (0, 1, 2), atol=1e-8) assert_allclose(result.fun, 1) assert result.nfev > 0 assert result.njev == 0 def test_gradient(): result = minimize(func, (1, 1, 1), jac=grad) assert_allclose(result.x, (0, 1, 2), atol=1e-8) assert_allclose(result.fun, 1) assert result.nfev > 0 assert result.njev > 0 def test_args(): result = minimize(func, np.ones(3), args=(5,)) assert_allclose(result.x, (0, 1, 2), atol=1e-8) assert_allclose(result.fun, 5) assert result.nfev > 0 assert result.njev == 0 def test_callback(): trace = [] result = minimize(func, np.ones(3), callback=lambda x: trace.append(x.copy())) assert_allclose(result.x, (0, 1, 2), atol=1e-8) assert_allclose(result.fun, 1) assert result.nfev == len(trace) assert_allclose(trace[0], np.ones(3), atol=1e-2) assert_allclose(trace[-1], result.x, atol=1e-2) def test_tol(): ref = np.ones(2) def rosen(par): x, y = par return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 r1 = minimize(rosen, (0, 0), tol=1) r2 = minimize(rosen, (0, 0), tol=1e-6) assert max(np.abs(r2.x - ref)) < max(np.abs(r1.x - ref)) def test_disp(capsys): minimize(lambda x: x ** 2, 0) assert capsys.readouterr()[0] == "" minimize(lambda x: x ** 2, 0, options={"disp": True}) assert capsys.readouterr()[0] != "" def test_hessinv(): r = minimize(func, (1, 1, 1)) href = np.zeros((3, 3)) for i in range(3): href[i, i] = 0.5 assert_allclose(r.hess_inv, href, atol=1e-8) def test_unsupported(): with pytest.raises(ValueError): minimize(func, (1, 1, 1), constraints=[]) with pytest.raises(ValueError): minimize(func, (1, 1, 1), jac=True) def test_call_limit(): ref = minimize(func, (1, 1, 1)) with pytest.warns(UserWarning): r1 = minimize(func, (1, 1, 1), options={"maxiter": 1}) assert r1.nfev < ref.nfev assert not r1.success assert "Call limit" in r1.message with pytest.warns(DeprecationWarning): r2 = minimize(func, (1, 1, 1), options={"maxfev": 1}) assert not r2.success assert r2.nfev == r1.nfev r3 = minimize(func, (1, 1, 1), options={"maxfun": 1}) assert not r3.success assert r3.nfev == r1.nfev def test_eps(): ref = minimize(func, (1, 1, 1)) r = minimize(func, (1, 1, 1), options={"eps": 1e-10}) assert np.any(ref.x != r.x) assert_allclose(r.x, ref.x, atol=1e-9) def test_bad_function(): class Fcn: n = 0 def __call__(self, x): self.n += 1 return x ** 2 + 1e-4 * (self.n % 3) r = minimize(Fcn(), [1], options={"maxfun": 100000000}) assert not r.success assert "Estimated distance to minimum too large" in r.message def test_bounds(): r1 = minimize(func, (1.5, 1.7, 1.5), bounds=opt.Bounds((1, 1.5, 1), (2, 2, 2))) assert r1.success assert_allclose(r1.x, (1, 1.5, 2), atol=1e-2) r2 = minimize(func, (1.5, 1.7, 1.5), bounds=((1, 2), (1.5, 2), (1, 2))) assert r2.success assert_equal(r1.x, r2.x) def test_method_warn(): with pytest.raises(ValueError): minimize(func, (1.5, 1.7, 1.5), method="foo") def test_hess_warn(): with pytest.warns(UserWarning): minimize(func, (1.5, 1.7, 1.5), hess=True) def test_unreliable_uncertainties(): r = minimize(func, (1.5, 1.7, 1.5), options={"stra": 0}) assert ( r.message == "Optimization terminated successfully, but uncertainties are unrealiable." ) def test_simplex(): r = minimize(func, (1.5, 1.7, 1.5), method="simplex", tol=1e-4) assert r.success assert_allclose(r.x, (0, 1, 2), atol=2e-3)
26.269231
85
0.59346
128
0.031235
0
0
0
0
0
0
211
0.051489
c72190831a83ec1b623a951d123f7148309fad86
2,468
py
Python
murtanto/parsing.py
amandatv20/botfb
2be3ce0265fd86f48f24d2b496d36fd346e49d29
[ "MIT" ]
1
2021-03-24T13:54:33.000Z
2021-03-24T13:54:33.000Z
murtanto/parsing.py
amandatv20/botfb
2be3ce0265fd86f48f24d2b496d36fd346e49d29
[ "MIT" ]
2
2020-06-15T08:10:55.000Z
2020-06-16T15:03:19.000Z
murtanto/parsing.py
amandatv20/botfb
2be3ce0265fd86f48f24d2b496d36fd346e49d29
[ "MIT" ]
null
null
null
# coded by: salism3 # 23 - 05 - 2020 23:18 (Malam Takbir) from bs4 import BeautifulSoup as parser from . import sorting import re def to_bs4(html): return parser(html, "html.parser") def refsrc(html): return True if re.search(r'http.+\Wrefsrc', html) else False def parsing_href(html, href, one = False, bs4_class = False): data = to_bs4(html) if one: data = data.find("a", href = lambda x: x and href in x) if not bs4_class and data != None: data = sorting.to_mbasic(data["href"]) else: data = data.find_all("a", href = lambda x: x and href in x) if not bs4_class: data = [sorting.to_mbasic(x["href"]) for x in data] return data def parsing_href_regex(html, pattern, one = False, bs4_class = False): data = to_bs4(html) if one: data = data.find("a", href = lambda x: x and re.search(pattern, x)) if not bs4_class and data != None: data = sorting.to_mbasic(data["href"]) else: data = data.find_all("a", href = lambda x: x and re.search(pattern, x)) if not bs4_class: data = [sorting.to_mbasic(x["href"]) for x in data] return data def getMyName(html): data = to_bs4(html).find("title").text return data def getName(html): data = to_bs4(html).find("title").text return data def getMyId(html): data = to_bs4(html).find("a", href = lambda x:"/allactivity" in x)["href"] data = re.search(r"/\d+/?", data).group().replace("/", "") return data def getHiddenInput(html, post_action): rv = {} data = to_bs4(html).find("form", action = lambda x: post_action in x) data = data.find_all("input", {"type":"hidden", "name":True, "value":True}) for x in data: rv[x["name"]] = x["value"] return rv def friendRequestParser(html): confirm = parsing_href(html, "?confirm=") reject = parsing_href(html, "?delete=") rv = list(zip(confirm, reject)) next = parsing_href(html, "?ppk=", one = True) return {"items":rv, "next":next} def listFriendParser(html): data = parsing_href(html, "fref=fr_tab", bs4_class = True) nama = [x.text for x in data] id_ = [re.search(r"\w[\w.]+", x["href"].replace("/", "").replace("profile.php?id=", "")).group() for x in data] img = [x["src"] for x in to_bs4(html).find_all("img", alt = lambda x: x and "profile picture" in x)] if "/allactivity?" in html: del img[0] next = parsing_href(html, "unit_cursor=", one = True) return {"items":list(zip(nama, id_, img)), "next":next, "html":html}
31.641026
113
0.636548
0
0
0
0
0
0
0
0
398
0.161264
c721ab40af9f4d2f1e869b104c622361e1311025
878
py
Python
test/test_watchdog_status.py
ike709/tgs4-api-pyclient
97918cfe614cc4ef06ef2485efff163417a8cd44
[ "MIT" ]
null
null
null
test/test_watchdog_status.py
ike709/tgs4-api-pyclient
97918cfe614cc4ef06ef2485efff163417a8cd44
[ "MIT" ]
null
null
null
test/test_watchdog_status.py
ike709/tgs4-api-pyclient
97918cfe614cc4ef06ef2485efff163417a8cd44
[ "MIT" ]
null
null
null
# coding: utf-8 """ TGS API A production scale tool for BYOND server management # noqa: E501 OpenAPI spec version: 9.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.watchdog_status import WatchdogStatus # noqa: E501 from swagger_client.rest import ApiException class TestWatchdogStatus(unittest.TestCase): """WatchdogStatus unit test stubs""" def setUp(self): pass def tearDown(self): pass def testWatchdogStatus(self): """Test WatchdogStatus""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.watchdog_status.WatchdogStatus() # noqa: E501 pass if __name__ == '__main__': unittest.main()
21.95
86
0.702733
407
0.463554
0
0
0
0
0
0
444
0.505695
c721d7a43c6300b41e4a0357169d5ebc646135d1
235
py
Python
setup.py
joesan/housing-classification-example
93f921cf01c79ab63732ef302ab52d2c9ffedee1
[ "FTL" ]
null
null
null
setup.py
joesan/housing-classification-example
93f921cf01c79ab63732ef302ab52d2c9ffedee1
[ "FTL" ]
null
null
null
setup.py
joesan/housing-classification-example
93f921cf01c79ab63732ef302ab52d2c9ffedee1
[ "FTL" ]
null
null
null
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Python codebase for the housing classification ML problem', author='Joesan', license='', )
21.363636
76
0.685106
0
0
0
0
0
0
0
0
81
0.344681
c7226ff1219f925df17003fe42d233729469035d
4,187
py
Python
tests/test_models/test_backbones/test_sr_backbones/test_edvr_net.py
wangruohui/mmediting
6577d307caf9edfb34c6e46547994e6314fffc37
[ "Apache-2.0" ]
45
2022-03-05T06:54:34.000Z
2022-03-30T02:15:42.000Z
tests/test_models/test_backbones/test_sr_backbones/test_edvr_net.py
wangruohui/mmediting
6577d307caf9edfb34c6e46547994e6314fffc37
[ "Apache-2.0" ]
1
2022-03-25T14:04:39.000Z
2022-03-31T04:48:38.000Z
tests/test_models/test_backbones/test_sr_backbones/test_edvr_net.py
wangruohui/mmediting
6577d307caf9edfb34c6e46547994e6314fffc37
[ "Apache-2.0" ]
1
2022-03-10T01:00:24.000Z
2022-03-10T01:00:24.000Z
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmedit.models.backbones.sr_backbones.edvr_net import (EDVRNet, PCDAlignment, TSAFusion) def test_pcd_alignment(): """Test PCDAlignment.""" # cpu pcd_alignment = PCDAlignment(mid_channels=4, deform_groups=2) input_list = [] for i in range(3, 0, -1): input_list.append(torch.rand(1, 4, 2**i, 2**i)) pcd_alignment = pcd_alignment input_list = [v for v in input_list] output = pcd_alignment(input_list, input_list) assert output.shape == (1, 4, 8, 8) with pytest.raises(AssertionError): pcd_alignment(input_list[0:2], input_list) # gpu if torch.cuda.is_available(): pcd_alignment = PCDAlignment(mid_channels=4, deform_groups=2) input_list = [] for i in range(3, 0, -1): input_list.append(torch.rand(1, 4, 2**i, 2**i)) pcd_alignment = pcd_alignment.cuda() input_list = [v.cuda() for v in input_list] output = pcd_alignment(input_list, input_list) assert output.shape == (1, 4, 8, 8) with pytest.raises(AssertionError): pcd_alignment(input_list[0:2], input_list) def test_tsa_fusion(): """Test TSAFusion.""" # cpu tsa_fusion = TSAFusion(mid_channels=4, num_frames=5, center_frame_idx=2) input_tensor = torch.rand(1, 5, 4, 8, 8) output = tsa_fusion(input_tensor) assert output.shape == (1, 4, 8, 8) # gpu if torch.cuda.is_available(): tsa_fusion = tsa_fusion.cuda() input_tensor = input_tensor.cuda() output = tsa_fusion(input_tensor) assert output.shape == (1, 4, 8, 8) def test_edvrnet(): """Test EDVRNet.""" # cpu # with tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=True) input_tensor = torch.rand(1, 5, 3, 8, 8) edvrnet.init_weights(pretrained=None) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) # without tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=False) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) with pytest.raises(AssertionError): # The height and width of inputs should be a multiple of 4 input_tensor = torch.rand(1, 5, 3, 3, 3) edvrnet(input_tensor) with pytest.raises(TypeError): # pretrained should be str or None edvrnet.init_weights(pretrained=[1]) # gpu if torch.cuda.is_available(): # with tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=True).cuda() input_tensor = torch.rand(1, 5, 3, 8, 8).cuda() edvrnet.init_weights(pretrained=None) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) # without tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=False).cuda() output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) with pytest.raises(AssertionError): # The height and width of inputs should be a multiple of 4 input_tensor = torch.rand(1, 5, 3, 3, 3).cuda() edvrnet(input_tensor) with pytest.raises(TypeError): # pretrained should be str or None edvrnet.init_weights(pretrained=[1])
28.482993
76
0.578696
0
0
0
0
0
0
0
0
371
0.088608
c72294488588ee770a6039927fb6209367d51df5
225
py
Python
mat2py/core/datastoreio.py
mat2py/mat2py
2776fbe9ca4ad2aaa3eac6aa79d17747a9ec24a8
[ "MIT" ]
null
null
null
mat2py/core/datastoreio.py
mat2py/mat2py
2776fbe9ca4ad2aaa3eac6aa79d17747a9ec24a8
[ "MIT" ]
37
2021-12-23T03:22:20.000Z
2022-02-16T15:40:47.000Z
mat2py/core/datastoreio.py
mat2py/mat2py
2776fbe9ca4ad2aaa3eac6aa79d17747a9ec24a8
[ "MIT" ]
2
2022-01-23T07:59:10.000Z
2022-02-03T09:15:54.000Z
# type: ignore __all__ = [ "readDatastoreImage", "datastore", ] def readDatastoreImage(*args): raise NotImplementedError("readDatastoreImage") def datastore(*args): raise NotImplementedError("datastore")
15
51
0.711111
0
0
0
0
0
0
0
0
76
0.337778
c7235d9e02846d039085054a4375d4bc687a9231
12,229
py
Python
enjoliver-api/tests/test_generate_groups.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
11
2017-11-06T08:42:55.000Z
2021-01-08T11:01:02.000Z
enjoliver-api/tests/test_generate_groups.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
7
2017-12-28T12:05:50.000Z
2021-04-02T15:04:46.000Z
enjoliver-api/tests/test_generate_groups.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
4
2017-11-08T10:03:31.000Z
2018-06-03T17:59:43.000Z
import os from shutil import rmtree from tempfile import mkdtemp from unittest import TestCase from enjoliver import generator class GenerateGroupTestCase(TestCase): api_uri = None test_matchbox_path = None test_resources_path = None tests_path = None @classmethod def setUpClass(cls): cls.tests_path = mkdtemp(dir='/tmp') cls.test_matchbox_path = os.path.join(cls.tests_path, 'test_matchbox') cls.test_resources_path = os.path.join(cls.tests_path, 'test_resources') os.mkdir(cls.test_matchbox_path) os.mkdir(cls.test_resources_path) os.mkdir(os.path.join(cls.test_matchbox_path, 'groups')) cls.api_uri = "http://127.0.0.1:5000" @classmethod def tearDownClass(cls): rmtree(cls.tests_path) class TestGenerateGroups(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", matchbox_path=cls.test_matchbox_path ) cls.gen.profiles_path = cls.test_resources_path def test_instantiate_generate_group_with_incorrect_parameters(self): with self.assertRaises(TypeError): generator.GenerateGroup() def test_instantiate_generate_group_with_non_existing_matchbox_path(self): with self.assertRaises(OSError): generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path='/foo/bar' ) def test_instantiate_generate_group(self): sandbox = mkdtemp(dir='/tmp') os.mkdir(os.path.join(sandbox, 'groups')) generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path=sandbox ) rmtree(sandbox) def test_00_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': '', 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': []} self.gen._metadata() self.assertEqual(expect['api_uri'], self.gen._target_data["metadata"]["api_uri"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy' } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", matchbox_path=self.test_matchbox_path ) result = new.generate() self.assertEqual(expect["profile"], result["profile"]) self.assertEqual(expect["id"], result["id"]) self.assertEqual(expect["name"], result["name"]) self.assertEqual(expect["metadata"]["api_uri"], result["metadata"]["api_uri"]) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) self.assertFalse(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"one": "selector"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorLower(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorUpper(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, matchbox_path=cls.test_matchbox_path ) def test_00_ip_address(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) new.dump() self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsExtraMetadata(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, metadata={"etcd_initial_cluster": "static0=http://192.168.1.1:2379", "api_seed": "http://192.168.1.2:5000"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': 'static0=http://192.168.1.1:2379', 'api_uri': "%s" % self.gen.api_uri, 'api_seed': 'http://192.168.1.2:5000', 'ssh_authorized_keys': []} self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]["ssh_authorized_keys"] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) self.assertTrue(new.dump()) for i in range(10): self.assertFalse(new.dump()) new.api_uri = "http://google.com" self.assertTrue(new.dump()) self.assertFalse(new.dump())
35.446377
93
0.568485
12,086
0.988306
0
0
2,436
0.199199
0
0
2,738
0.223894
c72423d0c9647d3f45e1ae401dca8a26496518f2
265
py
Python
HackerRank/Calendar Module/solution.py
nikku1234/Code-Practise
94eb6680ea36efd10856c377000219285f77e5a4
[ "Apache-2.0" ]
9
2020-07-02T06:06:17.000Z
2022-02-26T11:08:09.000Z
HackerRank/Calendar Module/solution.py
nikku1234/Code-Practise
94eb6680ea36efd10856c377000219285f77e5a4
[ "Apache-2.0" ]
1
2021-11-04T17:26:36.000Z
2021-11-04T17:26:36.000Z
HackerRank/Calendar Module/solution.py
nikku1234/Code-Practise
94eb6680ea36efd10856c377000219285f77e5a4
[ "Apache-2.0" ]
8
2021-01-31T10:31:12.000Z
2022-03-13T09:15:55.000Z
# Enter your code here. Read input from STDIN. Print output to STDOUT import calendar mm,dd,yyyy = map(int,input().split()) day = ["MONDAY","TUESDAY","WEDNESDAY","THURSDAY","FRIDAY","SATURDAY","SUNDAY"] val = int (calendar.weekday(yyyy,mm,dd)) print(day[val])
22.083333
78
0.698113
0
0
0
0
0
0
0
0
133
0.501887
c7245a8913ae3a1c31f00b1392df9f4dd3d991e9
7,560
py
Python
scale/trigger/models.py
stevevarner/scale
9623b261db4ddcf770f00df16afc91176142bb7c
[ "Apache-2.0" ]
null
null
null
scale/trigger/models.py
stevevarner/scale
9623b261db4ddcf770f00df16afc91176142bb7c
[ "Apache-2.0" ]
null
null
null
scale/trigger/models.py
stevevarner/scale
9623b261db4ddcf770f00df16afc91176142bb7c
[ "Apache-2.0" ]
null
null
null
"""Defines the models for trigger rules and events""" from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import models, transaction from django.utils.timezone import now class TriggerEventManager(models.Manager): """Provides additional methods for handling trigger events """ def create_trigger_event(self, trigger_type, rule, description, occurred): """Creates a new trigger event and returns the event model. The given rule model, if not None, must have already been saved in the database (it must have an ID). The returned trigger event model will be saved in the database. :param trigger_type: The type of the trigger that occurred :type trigger_type: str :param rule: The rule that triggered the event, possibly None :type rule: :class:`trigger.models.TriggerRule` :param description: The JSON description of the event as a dict :type description: dict :param occurred: When the event occurred :type occurred: :class:`datetime.datetime` :returns: The new trigger event :rtype: :class:`trigger.models.TriggerEvent` """ if trigger_type is None: raise Exception('Trigger event must have a type') if description is None: raise Exception('Trigger event must have a JSON description') if occurred is None: raise Exception('Trigger event must have a timestamp') event = TriggerEvent() event.type = trigger_type event.rule = rule event.description = description event.occurred = occurred event.save() return event class TriggerEvent(models.Model): """Represents an event where a trigger occurred :keyword type: The type of the trigger that occurred :type type: :class:`django.db.models.CharField` :keyword rule: The rule that triggered this event, possibly None (some events are not triggered by rules) :type rule: :class:`django.db.models.ForeignKey` :keyword description: JSON description of the event. This will contain fields specific to the type of the trigger that occurred. :type description: :class:`django.contrib.postgres.fields.JSONField` :keyword occurred: When the event occurred :type occurred: :class:`django.db.models.DateTimeField` """ type = models.CharField(db_index=True, max_length=50) rule = models.ForeignKey('trigger.TriggerRule', blank=True, null=True, on_delete=models.PROTECT) description = django.contrib.postgres.fields.JSONField(default=dict) occurred = models.DateTimeField(db_index=True) objects = TriggerEventManager() class Meta(object): """meta information for the db""" db_table = 'trigger_event' class TriggerRuleManager(models.Manager): """Provides additional methods for handling trigger rules """ @transaction.atomic def archive_trigger_rule(self, trigger_rule_id): """Archives the trigger rule (will no longer be active) with the given ID :param trigger_rule_id: The ID of the trigger rule to archive :type trigger_rule_id: int """ rule = TriggerRule.objects.select_for_update().get(pk=trigger_rule_id) rule.is_active = False rule.archived = now() rule.save() def create_trigger_rule(self, trigger_type, configuration, name='', is_active=True): """Creates a new trigger rule and returns the rule model. The returned trigger rule model will be saved in the database. :param trigger_type: The type of this trigger rule :type trigger_type: str :param configuration: The rule configuration :type configuration: :class:`trigger.configuration.TriggerRuleConfiguration` :param name: An optional name for the trigger :type name: str :param is_active: Whether or not the trigger should be active :type is_active: bool :returns: The new trigger rule :rtype: :class:`trigger.models.TriggerRule` :raises trigger.configuration.exceptions.InvalidTriggerRule: If the configuration is invalid """ if not trigger_type: raise Exception('Trigger rule must have a type') if not configuration: raise Exception('Trigger rule must have a configuration') configuration.validate() rule = TriggerRule() rule.type = trigger_type rule.name = name rule.is_active = is_active rule.configuration = configuration.get_dict() rule.save() return rule def get_by_natural_key(self, name): """Django method to retrieve a trigger rule for the given natural key. NOTE: All trigger rule names are NOT unique. This is implemented to allow the loading of defined system trigger rules which do have unique names. :param name: The name of the trigger rule :type name: str :returns: The trigger rule defined by the natural key :rtype: :class:`error.models.Error` """ return self.get(name=name) class TriggerRule(models.Model): """Represents a rule that, when triggered, creates a trigger event :keyword type: The type of the trigger for the rule :type type: :class:`django.db.models.CharField` :keyword name: The identifying name of the trigger rule used by clients for queries :type name: :class:`django.db.models.CharField` :keyword configuration: JSON configuration for the rule. This will contain fields specific to the type of the trigger. :type configuration: :class:`django.contrib.postgres.fields.JSONField` :keyword is_active: Whether the rule is still active (false once rule is archived) :type is_active: :class:`django.db.models.BooleanField` :keyword created: When the rule was created :type created: :class:`django.db.models.DateTimeField` :keyword archived: When the rule was archived (no longer active) :type archived: :class:`django.db.models.DateTimeField` :keyword last_modified: When the rule was last modified :type last_modified: :class:`django.db.models.DateTimeField` """ type = models.CharField(max_length=50, db_index=True) name = models.CharField(blank=True, max_length=50) configuration = django.contrib.postgres.fields.JSONField(default=dict) is_active = models.BooleanField(default=True, db_index=True) created = models.DateTimeField(auto_now_add=True) archived = models.DateTimeField(blank=True, null=True) last_modified = models.DateTimeField(auto_now=True) objects = TriggerRuleManager() def get_configuration(self): """Returns the configuration for this trigger rule :returns: The configuration for this trigger rule :rtype: :class:`trigger.configuration.trigger_rule.TriggerRuleConfiguration` :raises :class:`trigger.configuration.exceptions.InvalidTriggerType`: If the trigger type is invalid """ from trigger.handler import get_trigger_rule_handler handler = get_trigger_rule_handler(self.type) return handler.create_configuration(self.configuration) def natural_key(self): """Django method to define the natural key for a trigger rule as the name :returns: A tuple representing the natural key :rtype: tuple(str,) """ return (self.name,) class Meta(object): """meta information for the db""" db_table = 'trigger_rule'
38.769231
120
0.693783
7,335
0.970238
0
0
433
0.057275
0
0
4,776
0.631746
c724bce6559444b809161c07169a0eaf827f8a70
1,125
py
Python
leetcode/0506_relative_ranks.py
chaosWsF/Python-Practice
ff617675b6bcd125933024bb4c246b63a272314d
[ "BSD-2-Clause" ]
null
null
null
leetcode/0506_relative_ranks.py
chaosWsF/Python-Practice
ff617675b6bcd125933024bb4c246b63a272314d
[ "BSD-2-Clause" ]
null
null
null
leetcode/0506_relative_ranks.py
chaosWsF/Python-Practice
ff617675b6bcd125933024bb4c246b63a272314d
[ "BSD-2-Clause" ]
null
null
null
""" Given scores of N athletes, find their relative ranks and the people with the top three highest scores, who will be awarded medals: "Gold Medal", "Silver Medal" and "Bronze Medal". Example 1: Input: [5, 4, 3, 2, 1] Output: ["Gold Medal", "Silver Medal", "Bronze Medal", "4", "5"] Explanation: The first three athletes got the top three highest scores, so they got "Gold Medal", "Silver Medal" and "Bronze Medal". For the left two athletes, you just need to output their relative ranks according to their scores. Note: N is a positive integer and won't exceed 10,000. All the scores of athletes are guaranteed to be unique. """ class Solution: def findRelativeRanks(self, nums): scores_rank = sorted(nums, reverse=True) d = {} for i, score in enumerate(scores_rank): if i == 0: d[score] = 'Gold Medal' elif i == 1: d[score] = 'Silver Medal' elif i == 2: d[score] = 'Bronze Medal' else: d[score] = str(i + 1) return [d[x] for x in nums]
32.142857
84
0.593778
456
0.405333
0
0
0
0
0
0
705
0.626667
c724c503b44eb473d695fa13f0446956650e0c2b
987
py
Python
barriers/models/history/assessments/economic_impact.py
felix781/market-access-python-frontend
3b0e49feb4fdf0224816326938a46002aa4a2b1c
[ "MIT" ]
1
2021-12-15T04:14:03.000Z
2021-12-15T04:14:03.000Z
barriers/models/history/assessments/economic_impact.py
felix781/market-access-python-frontend
3b0e49feb4fdf0224816326938a46002aa4a2b1c
[ "MIT" ]
19
2019-12-11T11:32:47.000Z
2022-03-29T15:40:57.000Z
barriers/models/history/assessments/economic_impact.py
felix781/market-access-python-frontend
3b0e49feb4fdf0224816326938a46002aa4a2b1c
[ "MIT" ]
2
2021-02-09T09:38:45.000Z
2021-03-29T19:07:09.000Z
from ..base import BaseHistoryItem, GenericHistoryItem from ..utils import PolymorphicBase class ArchivedHistoryItem(BaseHistoryItem): field = "archived" field_name = "Valuation assessment: Archived" def get_value(self, value): if value is True: return "Archived" elif value is False: return "Unarchived" class ExplanationHistoryItem(BaseHistoryItem): field = "explanation" field_name = "Valuation assessment: Explanation" class ImpactHistoryItem(BaseHistoryItem): field = "impact" field_name = "Valuation assessment: Impact" def get_value(self, value): if value: return value.get("name") class EconomicImpactAssessmentHistoryItem(PolymorphicBase): model = "economic_impact_assessment" key = "field" subclasses = ( ArchivedHistoryItem, ExplanationHistoryItem, ImpactHistoryItem, ) default_subclass = GenericHistoryItem class_lookup = {}
24.675
59
0.68997
884
0.895643
0
0
0
0
0
0
191
0.193516
c72537aa56e0fec5c2e19ae544ffe17dd652b46b
727
py
Python
link_prob_show.py
Rheinwalt/spatial-effects-networks
7b77a22b45341b024a57e1759b7b61cd91d90849
[ "MIT" ]
3
2018-12-21T20:19:18.000Z
2021-01-02T12:58:56.000Z
link_prob_show.py
rick-foo/spatial-effects-networks
7b77a22b45341b024a57e1759b7b61cd91d90849
[ "MIT" ]
null
null
null
link_prob_show.py
rick-foo/spatial-effects-networks
7b77a22b45341b024a57e1759b7b61cd91d90849
[ "MIT" ]
2
2020-09-03T14:18:37.000Z
2021-10-01T18:06:42.000Z
import sys import numpy as np from sern import * ids, lon, lat = np.loadtxt('nodes', unpack = True) links = np.loadtxt('links', dtype = 'int') A, b = AdjacencyMatrix(ids, links) lon, lat = lon[b], lat[b] n = A.shape[0] # LinkProbability expects A as triu A = A[np.triu_indices(n, 1)] # play around with the scale, maybe you don't need log binning? D, x = IntegerDistances(lat, lon, scale = 50) p = LinkProbability(A, D) from matplotlib import pyplot as pl pl.plot(p, 'bo') pl.ylabel('Link probability given distance') pl.xlabel('Bin number') pl.savefig('link_prob_bin.png') pl.close('all') pl.semilogx(x, p, 'bo') pl.ylabel('Link probability given distance') pl.xlabel('Distance [km]') pl.savefig('link_prob_distance.png')
25.964286
63
0.707015
0
0
0
0
0
0
0
0
266
0.365887
c7268aa939534725180b033986da1a690622e70b
3,899
py
Python
controller/components/app.py
isabella232/flight-lab
bd666b1d2bcec6f928a2e8da9f13fd5dae21319f
[ "Apache-2.0" ]
15
2018-10-18T07:50:46.000Z
2021-10-21T03:40:55.000Z
controller/components/app.py
google/flight-lab
bd666b1d2bcec6f928a2e8da9f13fd5dae21319f
[ "Apache-2.0" ]
9
2018-09-17T23:00:02.000Z
2019-01-22T21:08:04.000Z
controller/components/app.py
isabella232/flight-lab
bd666b1d2bcec6f928a2e8da9f13fd5dae21319f
[ "Apache-2.0" ]
12
2019-01-07T12:43:37.000Z
2021-10-21T03:40:44.000Z
# Copyright 2018 Flight Lab authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library for components related to running apps.""" import subprocess import threading from components import base from protos import controller_pb2 from utils import app class AppComponent(base.Component): """Component to run command-line based app on any platform. This component can start app, restart app upon crash, and stop app. Events: "status_changed": when status of the app is changed. Args: app_component: instance of this class. """ def __init__(self, proto, *args, **kwargs): """Initializes the component. Args: proto: flightlab.App proto defining app details and options. """ super(AppComponent, self).__init__(proto, *args, **kwargs) self._app = app.Application( name=self.name, bin_path=self.settings.executable_path, arguments=(list(self.settings.arguments) if self.settings.arguments else []), working_dir=self.settings.working_dir, restart_on_crash=(self.settings.restart_on_crash if self.settings.restart_on_crash else False), env=(self.settings.env if self.settings.env else None)) self._app.on('started', self._on_app_started) self._app.on('stopped', self._on_app_stopped) self._monitor = threading.Timer(1, self._check_status) self._monitor.start() def close(self): if self._monitor: self._monitor.cancel() self._monitor = None self._app.stop() def _check_status(self): if self._app.has_running_instance(): component_status = controller_pb2.Component.ON app_status = controller_pb2.App.RUNNING else: component_status = controller_pb2.Component.OFF app_status = controller_pb2.App.NOT_RUNNING if (self.proto.status != component_status or self.settings.status != app_status): self.proto.status = component_status self.settings.status = app_status self.emit('status_changed', self) def _start(self): self.logger.info('[App - {0}] Starting...'.format(self.name)) self._app.start() def _stop(self): self.logger.info('[App - {0}] Stopping...'.format(self.name)) self._app.stop() def _restart(self): self._stop() self._start() def _on_app_started(self, app): self.logger.info('[App - {0}] Started.'.format(self.name)) self.settings.status = controller_pb2.App.RUNNING self.proto.status = controller_pb2.Component.ON self.emit('status_changed', self) def _on_app_stopped(self, app): self.logger.info('[App - {0}] Stopped.'.format(self.name)) self.settings.status = controller_pb2.App.NOT_RUNNING self.proto.status = controller_pb2.Component.OFF self.emit('status_changed', self) class CommandLineComponent(base.Component): """Component to run command-line based apps on any platform.""" def _start(self): for cmd in self.settings.when_on: self.logger.info('[{0}] Running: {1}'.format(self.name, cmd)) ret = subprocess.call(cmd) self.logger.info('[{0}] Done (return code={1})'.format(self.name, ret)) def _stop(self): for cmd in self.settings.when_off: self.logger.info('[{0}] Running: {1}'.format(self.name, cmd)) ret = subprocess.call(cmd) self.logger.info('[{0}] Done (return code={1})'.format(self.name, ret))
33.612069
77
0.691459
3,136
0.804309
0
0
0
0
0
0
1,324
0.339574
c727467c9c5f9cbcf49804ff4103bf27f2140c3f
1,504
py
Python
botorch/acquisition/__init__.py
jmren168/botorch
6c067185f56d3a244c4093393b8a97388fb1c0b3
[ "MIT" ]
1
2020-03-29T20:06:45.000Z
2020-03-29T20:06:45.000Z
botorch/acquisition/__init__.py
jmren168/botorch
6c067185f56d3a244c4093393b8a97388fb1c0b3
[ "MIT" ]
null
null
null
botorch/acquisition/__init__.py
jmren168/botorch
6c067185f56d3a244c4093393b8a97388fb1c0b3
[ "MIT" ]
1
2020-03-29T20:06:48.000Z
2020-03-29T20:06:48.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .acquisition import AcquisitionFunction from .analytic import ( AnalyticAcquisitionFunction, ConstrainedExpectedImprovement, ExpectedImprovement, NoisyExpectedImprovement, PosteriorMean, ProbabilityOfImprovement, UpperConfidenceBound, ) from .fixed_feature import FixedFeatureAcquisitionFunction from .monte_carlo import ( MCAcquisitionFunction, qExpectedImprovement, qNoisyExpectedImprovement, qProbabilityOfImprovement, qSimpleRegret, qUpperConfidenceBound, ) from .objective import ( ConstrainedMCObjective, GenericMCObjective, IdentityMCObjective, LinearMCObjective, MCAcquisitionObjective, ScalarizedObjective, ) from .utils import get_acquisition_function __all__ = [ "AcquisitionFunction", "AnalyticAcquisitionFunction", "ConstrainedExpectedImprovement", "ExpectedImprovement", "FixedFeatureAcquisitionFunction", "NoisyExpectedImprovement", "PosteriorMean", "ProbabilityOfImprovement", "UpperConfidenceBound", "qExpectedImprovement", "qNoisyExpectedImprovement", "qProbabilityOfImprovement", "qSimpleRegret", "qUpperConfidenceBound", "ConstrainedMCObjective", "GenericMCObjective", "IdentityMCObjective", "LinearMCObjective", "MCAcquisitionFunction", "MCAcquisitionObjective", "ScalarizedObjective", "get_acquisition_function", ]
25.491525
70
0.757979
0
0
0
0
0
0
0
0
609
0.40492
c72c87715b18d844a4d1e6b4c82ec44a40f2bde2
2,810
py
Python
examples/pybullet/gym/pybullet_envs/minitaur/envs/env_randomizers/minitaur_alternating_legs_env_randomizer.py
felipeek/bullet3
6a59241074720e9df119f2f86bc01765917feb1e
[ "Zlib" ]
9,136
2015-01-02T00:41:45.000Z
2022-03-31T15:30:02.000Z
examples/pybullet/gym/pybullet_envs/minitaur/envs/env_randomizers/minitaur_alternating_legs_env_randomizer.py
felipeek/bullet3
6a59241074720e9df119f2f86bc01765917feb1e
[ "Zlib" ]
2,424
2015-01-05T08:55:58.000Z
2022-03-30T19:34:55.000Z
examples/pybullet/gym/pybullet_envs/minitaur/envs/env_randomizers/minitaur_alternating_legs_env_randomizer.py
felipeek/bullet3
6a59241074720e9df119f2f86bc01765917feb1e
[ "Zlib" ]
2,921
2015-01-02T10:19:30.000Z
2022-03-31T02:48:42.000Z
"""Randomize the minitaur_gym_alternating_leg_env when reset() is called. The randomization include swing_offset, extension_offset of all legs that mimics bent legs, desired_pitch from user input, battery voltage and motor damping. """ import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) parentdir = os.path.dirname(os.path.dirname(parentdir)) os.sys.path.insert(0, parentdir) import numpy as np import tf.compat.v1 as tf from pybullet_envs.minitaur.envs import env_randomizer_base # Absolute range. NUM_LEGS = 4 BATTERY_VOLTAGE_RANGE = (14.8, 16.8) MOTOR_VISCOUS_DAMPING_RANGE = (0, 0.01) class MinitaurAlternatingLegsEnvRandomizer(env_randomizer_base.EnvRandomizerBase): """A randomizer that changes the minitaur_gym_alternating_leg_env.""" def __init__(self, perturb_swing_bound=0.1, perturb_extension_bound=0.1, perturb_desired_pitch_bound=0.01): super(MinitaurAlternatingLegsEnvRandomizer, self).__init__() self.perturb_swing_bound = perturb_swing_bound self.perturb_extension_bound = perturb_extension_bound self.perturb_desired_pitch_bound = perturb_desired_pitch_bound def randomize_env(self, env): perturb_magnitude = np.random.uniform(low=-self.perturb_swing_bound, high=self.perturb_swing_bound, size=NUM_LEGS) env.set_swing_offset(perturb_magnitude) tf.logging.info("swing_offset: {}".format(perturb_magnitude)) perturb_magnitude = np.random.uniform(low=-self.perturb_extension_bound, high=self.perturb_extension_bound, size=NUM_LEGS) env.set_extension_offset(perturb_magnitude) tf.logging.info("extension_offset: {}".format(perturb_magnitude)) perturb_magnitude = np.random.uniform(low=-self.perturb_desired_pitch_bound, high=self.perturb_desired_pitch_bound) env.set_desired_pitch(perturb_magnitude) tf.logging.info("desired_pitch: {}".format(perturb_magnitude)) randomized_battery_voltage = np.random.uniform(BATTERY_VOLTAGE_RANGE[0], BATTERY_VOLTAGE_RANGE[1]) env.minitaur.SetBatteryVoltage(randomized_battery_voltage) tf.logging.info("battery_voltage: {}".format(randomized_battery_voltage)) randomized_motor_damping = np.random.uniform(MOTOR_VISCOUS_DAMPING_RANGE[0], MOTOR_VISCOUS_DAMPING_RANGE[1]) env.minitaur.SetMotorViscousDamping(randomized_motor_damping) tf.logging.info("motor_damping: {}".format(randomized_motor_damping))
45.322581
86
0.70605
2,102
0.748043
0
0
0
0
0
0
421
0.149822
c72ca1c8b4319d09d601fa708b5ddc14cb8e0859
14,704
py
Python
pygsti/modelmembers/states/tensorprodstate.py
pyGSTi-Developers/pyGSTi
bfedc1de4d604f14b0f958615776fb80ddb59e33
[ "Apache-2.0" ]
73
2016-01-28T05:02:05.000Z
2022-03-30T07:46:33.000Z
pygsti/modelmembers/states/tensorprodstate.py
pyGSTi-Developers/pyGSTi
bfedc1de4d604f14b0f958615776fb80ddb59e33
[ "Apache-2.0" ]
113
2016-02-25T15:32:18.000Z
2022-03-31T13:18:13.000Z
pygsti/modelmembers/states/tensorprodstate.py
pyGSTi-Developers/pyGSTi
bfedc1de4d604f14b0f958615776fb80ddb59e33
[ "Apache-2.0" ]
41
2016-03-15T19:32:07.000Z
2022-02-16T10:22:05.000Z
""" The TensorProductState class and supporting functionality. """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import functools as _functools import itertools as _itertools import numpy as _np from pygsti.modelmembers.states.state import State as _State from pygsti.modelmembers import modelmember as _modelmember, term as _term from pygsti.baseobjs import statespace as _statespace from pygsti.tools import listtools as _lt from pygsti.tools import matrixtools as _mt class TensorProductState(_State): """ A state vector that is a tensor-product of other state vectors. Parameters ---------- factors : list of States a list of the component states to take the tensor product of. state_space : StateSpace, optional The state space for this operation. """ def __init__(self, factors, state_space): assert(len(factors) > 0), "Must have at least one factor!" self.factors = factors # do *not* copy - needs to reference common objects evotype = self.factors[0]._evotype rep = evotype.create_tensorproduct_state_rep([f._rep for f in factors], state_space) _State.__init__(self, rep, evotype) self.init_gpindices() # initialize our gpindices based on sub-members self._update_rep() # initializes rep data #Note: no to_memoized_dict needed, as ModelMember version does all we need. @classmethod def _from_memoized_dict(cls, mm_dict, serial_memo): state_space = _statespace.StateSpace.from_nice_serialization(mm_dict['state_space']) factors = [serial_memo[i] for i in mm_dict['submembers']] return cls(factors, state_space) def submembers(self): """ Get the ModelMember-derived objects contained in this one. Returns ------- list """ return self.factors # factor POVM object def _update_rep(self): self._rep.reps_have_changed() @property def parameter_labels(self): """ An array of labels (usually strings) describing this model member's parameters. """ vl = _np.empty(self.num_params, dtype=object) for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): vl[factor_local_inds] = factor_state.parameter_labels return vl def to_dense(self, on_space='minimal', scratch=None): """ Return this state vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. Parameters ---------- on_space : {'minimal', 'Hilbert', 'HilbertSchmidt'} The space that the returned dense operation acts upon. For unitary matrices and bra/ket vectors, use `'Hilbert'`. For superoperator matrices and super-bra/super-ket vectors use `'HilbertSchmidt'`. `'minimal'` means that `'Hilbert'` is used if possible given this operator's evolution type, and otherwise `'HilbertSchmidt'` is used. scratch : numpy.ndarray, optional scratch space available for use. Returns ------- numpy.ndarray """ return self._rep.to_dense(on_space) def taylor_order_terms(self, order, max_polynomial_vars=100, return_coeff_polys=False): """ Get the `order`-th order Taylor-expansion terms of this state vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the State's parameters, where the polynomial's variable indices index the *global* parameters of the State's parent (usually a :class:`Model`) , not the State's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. max_polynomial_vars : int, optional maximum number of variables the created polynomials can have. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ terms = [] fnq = [int(round(_np.log2(f.dim))) // 2 for f in self.factors] # num of qubits per factor # assumes density matrix evolution total_nQ = sum(fnq) # total number of qubits for p in _lt.partition_into(order, len(self.factors)): factor_lists = [self.factors[i].taylor_order_terms(pi, max_polynomial_vars) for i, pi in enumerate(p)] # When possible, create COLLAPSED factor_lists so each factor has just a single # (State) pre & post op, which can be formed into the new terms' # TensorProdState ops. # - DON'T collapse stabilizer states & clifford ops - can't for POVMs collapsible = False # bool(self._evotype =="svterm") # need to use reps for collapsing now... TODO? if collapsible: factor_lists = [[t.collapse_vec() for t in fterms] for fterms in factor_lists] for factors in _itertools.product(*factor_lists): # create a term with a TensorProdState - Note we always create # "prep"-mode vectors, since even when self._prep_or_effect == "effect" these # vectors are created with factor (prep- or effect-type) States not factor POVMs # we workaround this by still allowing such "prep"-mode # TensorProdStates to be represented as effects (i.e. in torep('effect'...) works) coeff = _functools.reduce(lambda x, y: x.mult(y), [f.coeff for f in factors]) pre_rep = self._evotype.create_tensorproduct_state_rep( [f.pre_state for f in factors if (f.pre_state is not None)], self.state_space) post_rep = self._evotype.create_tensorproduct_state_rep( [f.post_state for f in factors if (f.post_state is not None)], self.state_space) term = _term.RankOnePolynomialPrepTerm.create_from(coeff, pre_rep, post_rep, self._evotype, self.state_space) if not collapsible: # then may need to add more ops. Assume factor ops are clifford gates # Embed each factors ops according to their target qubit(s) and just daisy chain them ss = _statespace.QubitSpace(total_nQ); curQ = 0 for f, nq in zip(factors, fnq): targetLabels = tuple(range(curQ, curQ + nq)); curQ += nq term._rep.pre_ops.extend([self._evotype.create_embedded_rep(ss, targetLabels, op) for op in f.pre_ops]) # embed and add ops term._rep.post_ops.extend([self._evotype.create_embedded_rep(ss, targetLabels, op) for op in f.post_ops]) # embed and add ops terms.append(term) if return_coeff_polys: def _decompose_indices(x): return tuple(_modelmember._decompose_gpindices( self.gpindices, _np.array(x, _np.int64))) poly_coeffs = [t.coeff.map_indices(_decompose_indices) for t in terms] # with *local* indices tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs] if len(tapes) > 0: vtape = _np.concatenate([t[0] for t in tapes]) ctape = _np.concatenate([t[1] for t in tapes]) else: vtape = _np.empty(0, _np.int64) ctape = _np.empty(0, complex) coeffs_as_compact_polys = (vtape, ctape) #self.local_term_poly_coeffs[order] = coeffs_as_compact_polys #FUTURE? return terms, coeffs_as_compact_polys else: return terms # Cache terms in FUTURE? @property def num_params(self): """ Get the number of independent parameters which specify this state vector. Returns ------- int the number of independent parameters. """ return len(self.gpindices_as_array()) def to_vector(self): """ Get the state vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ v = _np.empty(self.num_params, 'd') for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): v[factor_local_inds] = factor_state.to_vector() return v def from_vector(self, v, close=False, dirty_value=True): """ Initialize the state vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of state vector parameters. Length must == num_params() close : bool, optional Whether `v` is close to this state vector's current set of parameters. Under some circumstances, when this is true this call can be completed more quickly. dirty_value : bool, optional The value to set this object's "dirty flag" to before exiting this call. This is passed as an argument so it can be updated *recursively*. Leave this set to `True` unless you know what you're doing. Returns ------- None """ for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): factor_state.from_vector(v[factor_local_inds], close, dirty_value) #Update representation, which may be a dense matrix or # just fast-kron arrays or a stabilizer state. self._update_rep() # TODO - how does this apply to state reps?? def deriv_wrt_params(self, wrt_filter=None): """ The element-wise derivative this state vector. Construct a matrix whose columns are the derivatives of the state vector with respect to a single param. Thus, each column is of length dimension and there is one column per state vector parameter. An empty 2D array in the StaticState case (num_params == 0). Parameters ---------- wrt_filter : list or numpy.ndarray List of parameter indices to take derivative with respect to. (None means to use all the this operation's parameters.) Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ typ = self.factors[0].to_dense(on_space='minimal').dtype if len(self.factors) > 0 else 'd' #HACK to deal with fact that output of to_dense is really what is differentiated # but this may not match self.dim == self.state_space.dim, e.g. for pure state vecs. dims = [len(fct.to_dense(on_space='minimal')) for fct in self.factors] dim = int(_np.product(dims)) derivMx = _np.zeros((dim, self.num_params), typ) #Product rule to compute jacobian # loop over the spamvec/povm we differentiate wrt: for i, (fct, fct_local_inds, fct_dim) in enumerate(zip(self.factors, self._submember_rpindices, dims)): vec = fct if vec.num_params == 0: continue # no contribution deriv = vec.deriv_wrt_params(None) # TODO: use filter?? / make relative to this gate... deriv.shape = (fct_dim, vec.num_params) if i > 0: # factors before ith pre = self.factors[0].to_dense(on_space='minimal') for vecA in self.factors[1:i]: pre = _np.kron(pre, vecA.to_dense(on_space='minimal')) deriv = _np.kron(pre[:, None], deriv) # add a dummy 1-dim to 'pre' and do kron properly... if i + 1 < len(self.factors): # factors after ith post = self.factors[i + 1].to_dense(on_space='minimal') for vecA in self.factors[i + 2:]: post = _np.kron(post, vecA.to_dense(on_space='minimal')) deriv = _np.kron(deriv, post[:, None]) # add a dummy 1-dim to 'post' and do kron properly... assert(fct_local_inds is not None), \ "Error: gpindices has not been initialized for factor %d - cannot compute derivative!" % i derivMx[:, fct_local_inds] += deriv derivMx.shape = (dim, self.num_params) # necessary? if wrt_filter is None: return derivMx else: return _np.take(derivMx, wrt_filter, axis=1) def has_nonzero_hessian(self): """ Whether this state vector has a non-zero Hessian with respect to its parameters. Returns ------- bool """ return False def __str__(self): s = "Tensor product %s vector with length %d\n" % (self._prep_or_effect, self.dim) #ar = self.to_dense() #s += _mt.mx_to_string(ar, width=4, prec=2) # factors are just other States s += " x ".join([_mt.mx_to_string(fct.to_dense(on_space='minimal'), width=4, prec=2) for fct in self.factors]) return s
42.994152
118
0.609698
13,589
0.92417
0
0
934
0.06352
0
0
7,913
0.538153
c72d167470fc1e484c9ed6ee92db56b541a26d0c
3,216
py
Python
edivorce/apps/core/views/graphql.py
gerritvdm/eDivorce
e3c0a4037a7141769250b96df6cc4eb4ea5ef3af
[ "Apache-2.0" ]
6
2017-03-24T18:20:33.000Z
2021-01-29T03:25:07.000Z
edivorce/apps/core/views/graphql.py
gerritvdm/eDivorce
e3c0a4037a7141769250b96df6cc4eb4ea5ef3af
[ "Apache-2.0" ]
13
2018-10-12T17:20:37.000Z
2021-11-05T23:13:21.000Z
edivorce/apps/core/views/graphql.py
gerritvdm/eDivorce
e3c0a4037a7141769250b96df6cc4eb4ea5ef3af
[ "Apache-2.0" ]
11
2017-03-15T12:36:39.000Z
2021-03-05T14:35:59.000Z
import graphene import graphene_django from django.http import HttpResponseForbidden from graphene_django.views import GraphQLView from graphql import GraphQLError from edivorce.apps.core.models import Document class PrivateGraphQLView(GraphQLView): def dispatch(self, request, *args, **kwargs): if not request.user.is_authenticated: return HttpResponseForbidden() return super().dispatch(request, *args, **kwargs) class DocumentType(graphene_django.DjangoObjectType): file_url = graphene.String(source='get_file_url') content_type = graphene.String(source='get_content_type') class Meta: model = Document exclude = ('id', 'file') class Query(graphene.ObjectType): documents = graphene.List(DocumentType, doc_type=graphene.String(required=True), party_code=graphene.Int(required=True)) def resolve_documents(self, info, **kwargs): if info.context.user.is_anonymous: raise GraphQLError('Unauthorized') q = Document.objects.filter(bceid_user=info.context.user, **kwargs) for doc in q: if not doc.file_exists(): q.delete() return Document.objects.none() return q class DocumentInput(graphene.InputObjectType): filename = graphene.String(required=True) size = graphene.Int(required=True) width = graphene.Int() height = graphene.Int() rotation = graphene.Int() class DocumentMetaDataInput(graphene.InputObjectType): files = graphene.List(DocumentInput, required=True) doc_type = graphene.String(required=True) party_code = graphene.Int(required=True) class UpdateMetadata(graphene.Mutation): class Arguments: input = DocumentMetaDataInput(required=True) documents = graphene.List(DocumentType) def mutate(self, info, **kwargs): input_ = kwargs['input'] documents = Document.objects.filter(bceid_user=info.context.user, doc_type=input_['doc_type'], party_code=input_['party_code']) unique_files = [dict(s) for s in set(frozenset(d.items()) for d in input_['files'])] if documents.count() != len(input_['files']) or documents.count() != len(unique_files): raise GraphQLError("Invalid input: there must be the same number of files") for i, file in enumerate(input_['files']): try: doc = documents.get(filename=file['filename'], size=file['size']) doc.sort_order = i + 1 doc.width = file.get('width', doc.width) doc.height = file.get('height', doc.height) doc.rotation = file.get('rotation', doc.rotation) if doc.rotation not in [0, 90, 180, 270]: raise GraphQLError(f"Invalid rotation {doc.rotation}, must be 0, 90, 180, 270") doc.save() except Document.DoesNotExist: raise GraphQLError(f"Couldn't find document '{file['filename']}' with size '{file['size']}'") return UpdateMetadata(documents=documents.all()) class Mutations(graphene.ObjectType): update_metadata = UpdateMetadata.Field() graphql_schema = graphene.Schema(query=Query, mutation=Mutations)
36.545455
135
0.668221
2,915
0.906405
0
0
0
0
0
0
334
0.103856
c72e729bd791fda04d1f1bf87cc60496068da071
5,862
py
Python
amazing/maze.py
danieloconell/maze-solver
f60e476d827d59bfa17cd2148787332707846882
[ "MIT" ]
null
null
null
amazing/maze.py
danieloconell/maze-solver
f60e476d827d59bfa17cd2148787332707846882
[ "MIT" ]
2
2021-06-08T19:35:19.000Z
2021-09-08T00:44:59.000Z
amazing/maze.py
danieloconell/amazing
f60e476d827d59bfa17cd2148787332707846882
[ "MIT" ]
null
null
null
from .exceptions import MazeNotSolved, AlgorithmNotFound from .dijkstra import Dijkstra from .astar import Astar from functools import wraps import warnings from daedalus import Maze as _maze from PIL import Image warnings.simplefilter("once", UserWarning) class Maze: """ Create a maze and solve it. Available algorithms: dijkstra astar (WIP) Steps: 1. Create maze using the daedalus library. 2. Convert maze to graph. 3. Solve maze with algorithm. """ WHITE = (0, 0, 0) BLACK = (255, 255, 255) RED = (255, 0, 0) def __init__(self, width, height, algorithm="dijkstra"): """Set algorithm to be used when solving. Args: algorithm (str) to be used when solving maze width (int) of maze in pixels height (int) of maze in pixels """ self.algorithm = algorithm if not width % 2 or not height % 2: warnings.warn( "Using even width or height, use even numbers for optimal images" ) self._create_maze(width, height) self._create_graph() self.width = width self.height = height def _create_maze(self, width, height): """Make maze to be solved and add border to maze. Args: width (int) of maze height (int) of maze """ # create maze self.maze = _maze(width, height) self.maze.create_perfect() # define maze variables self.entrance = self.maze.entrance self.exit = self.maze.exit # add index to maze self.maze = { row_i: {item_i: item for item_i, item in enumerate(row)} for row_i, row in enumerate(self.maze) } def _create_graph(self): """Remove unnecessary states from maze and convert maze to graph to be solved.""" self.graph = {} # convert to graph for column in self.maze.keys(): for row in self.maze[column].keys(): item = self.maze[column][row] if item != 1: neighbours = [] try: if self.maze[column][row - 1] != 1: neighbours.append(["left", (column, row - 1)]) except KeyError: None try: if self.maze[column][row + 1] != 1: neighbours.append(["right", (column, row + 1)]) except KeyError: None try: if self.maze[column - 1][row] != 1: neighbours.append(["above", (column - 1, row)]) except KeyError: None try: if self.maze[column + 1][row] != 1: neighbours.append(["below", (column + 1, row)]) except KeyError: None self.graph[(column, row)] = {x[:][1]: 1 for x in neighbours} # TODO: remove unnecessary states def _maze_maker(file_name): def real_decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): data = [] for row_i, row in enumerate(list(self.maze)): for item_i, item in enumerate(self.maze[row].values()): func(self, data, item, row_i=row_i, item_i=item_i) # save maze image = Image.new("RGB", (self.width, self.height)) image.putdata(data) image.save(file_name) return wrapper return real_decorator @_maze_maker("maze.png") def save(self, data, item, row_i=None, item_i=None): """Save maze locally as an image.""" # invert maze because maze is incorrect if item: data.append(self.WHITE) else: data.append(self.BLACK) def solve(self): """ Solve maze using specified algorithm. Returns: shortest path as a queue from start to finish of maze """ if self.algorithm == "astar": algorithm = Astar() elif self.algorithm == "dijkstra": algorithm = Dijkstra() else: raise AlgorithmNotFound( f"Invalid algorithm: {self.algorithm}. See help({type(self).__name__}) for available algorithms." ) # add nodes to graph for node in self.graph: algorithm.add_node(node, self.graph[node]) # pydaedalus stores y then x value which need to be reversed self.entrance = tuple(reversed(self.entrance)) self.exit = tuple(reversed(self.exit)) self.path = algorithm.shortest_path(self.entrance, self.exit) @_maze_maker("solution.png") def save_solution(self, data, item, row_i=None, item_i=None): """Save maze image and the shortest path.""" if not hasattr(self, "path"): raise MazeNotSolved( f"Maze must be solved to save solution. Run {type(self).__name__}.solve() first." ) if (row_i, item_i) in self.path: data.append(self.RED) elif item: data.append(self.WHITE) else: data.append(self.BLACK) def __str__(self): """Just cause it looks nice.""" string = [] for row in self.maze: string.append(["█" if item else " " for item in self.maze[row].values()]) return "\n".join(["".join(line) for line in string]) def __repr__(self): """Easier on the eyes.""" return f"Maze(algorithm='{self.algorithm}', width={self.width}, height={self.height})"
32.932584
114
0.525589
5,601
0.95515
0
0
1,257
0.214359
0
0
1,608
0.274216
c72eaa2b73efe739c3a50690c7c96660b59023bd
4,215
py
Python
config.py
FarbodFarhangfar/midi_player_python
924cd164b7867d294c761a70d06ab330fa1b8373
[ "MIT" ]
null
null
null
config.py
FarbodFarhangfar/midi_player_python
924cd164b7867d294c761a70d06ab330fa1b8373
[ "MIT" ]
null
null
null
config.py
FarbodFarhangfar/midi_player_python
924cd164b7867d294c761a70d06ab330fa1b8373
[ "MIT" ]
null
null
null
import os def get_note_dic(): _note_dic = {'C': 0, 'C#': 1, 'Db': 1, 'D': 2, 'D#': 3, 'Eb': 3, 'E': 4, 'F': 5, 'F#': 6, 'Gb': 6, 'G': 7, 'G#': 8, 'Ab': 8, 'A': 9, 'A#': 10, 'Bb': 10, 'B': 11} return _note_dic def get_value_list(): values = {"16": 16, "8": 8, "4": 4, "2": 2, "1": 1, "0.5": 0.5, "1/2": 0.5, "0.25": 0.25, "1/4": 0.25, "0.125": 0.125, "1/8": 0.125, "0.0625": 0.0625, "1/16": 0.0625, "0.03125": 0.03125, "1/32": 0.03125} return values def instruments(inst): instruments_dict = { # Piano 'Acoustic Grand Piano': '1', 'Bright Acoustic Piano': '2', 'Electric Grand Piano': '3', 'Honky-tonk Piano': '4', 'Electric Piano 1': '5', 'Electric Piano 2': '6', 'Harpsichord': '7', 'Clavi': '8', # Chromatic Percussion 'Celesta': '9', 'Glockenspiel': '10', 'Music Box': '11', 'Vibraphone': '12', 'Marimba': '13', 'Xylophone': '14', 'Tubular Bells': '15', 'Dulcimer': '16', # Organ 'Drawbar Organ': '17', 'Percussive Organ': '18', 'Rock Organ': '19', 'Church Organ': '20', 'Reed Organ': '21', 'Accordion': '22', 'Harmonica': '23', 'Tango Accordion': '24', # Guitar 'Acoustic Guitar (nylon)': '25', 'Acoustic Guitar (steel)': '26', 'Electric Guitar (jazz)': '27', 'Electric Guitar (clean)': '28', 'Electric Guitar (muted)': '29', 'Overdriven Guitar': '30', 'Distortion Guitar': '31', 'Guitar Harmonics': '32', # Bass 'Acoustic Bass': '33', 'Electric Bass (finger)': '34', 'Electric Bass (pick)': '35', 'Fretless Bass': '36', 'Slap Bass 1': '37', 'Slap Bass 2': '38', 'Synth Bass 1': '39', 'Synth Bass 2': '40', # Strings 'Violin': '41', 'Viola': '42', 'Cello': '43', 'Contrabass': '44', 'Tremolo Strings': '45', 'Pizzicato Strings': '46', 'Orchestral Harp': '47', 'Timpani': '48', # Ensemble 'String Ensemble 1': '49', 'String Ensemble 2': '50', 'Synth Strings 1': '51', 'Synth Strings 2': '52', 'Choir Aahs': '53', 'Voice Oohs': '54', 'Synth Choir': '55', 'Orchestra Hit': '56', # Brass 'Trumpet': '57', 'Trombone': '58', 'Tuba': '59', 'Muted Trumpet': '60', 'French Horn': '61', 'Brass Section': '62', 'Synth Brass 1': '63', 'Synth Brass 2': '64', # Reed 'Soprano Sax': '65', 'Alto Sax': '66', 'Tenor Sax': '67', 'Baritone Sax': '68', 'Oboe': '69', 'English Horn': '70', 'Bassoon': '71', 'Clarinet': '72', # Pipe 'Piccolo': '73', 'Flute': '74', 'Recorder': '75', 'Pan Flute': '76', 'Blown bottle': '77', 'Shakuhachi': '78', 'Whistle': '79', 'Ocarina': '80', # Synth Lead 'Lead 1 (square)': '81', 'Lead 2 (sawtooth)': '82', 'Lead 3 (calliope)': '83', 'Lead 4 (chiff)': '84', 'Lead 5 (charang)': '85', 'Lead 6 (voice)': '86', 'Lead 7 (fifths)': '87', 'Lead 8 (bass + lead)': '88', # Synth Pad 'Pad 1 (new age)': '89', 'Pad 2 (warm)': '90', 'Pad 3 (polysynth)': '91', 'Pad 4 (choir)': '92', 'Pad 5 (bowed)': '93', 'Pad 6 (metallic)': '94', 'Pad 7 (halo)': '95', 'Pad 8 (sweep)': '96', # Synth Effects 'FX 1 (rain)': '97', 'FX 2 (soundtrack)': '98', 'FX 3 (crystal)': '99', 'FX 4 (atmosphere)': '100', 'FX 5 (brightness)': '101', 'FX 6 (goblins)': '102', 'FX 7 (echoes)': '103', 'FX 8 (sci-fi)': '104', # Ethnic 'Sitar': '105', 'Banjo': '106', 'Shamisen': '107', 'Koto': '108', 'Kalimba': '109', 'Bagpipe': '110', 'Fiddle': '111', 'Shanai': '112', # Percussive 'Tinkle Bell': '113', 'Agogo': '114', 'Steel Drums': '115', 'Woodblock': '116', 'Taiko Drum': '117', 'Melodic Tom': '118', 'Synth Drum': '119', 'Reverse Cymbal': '120', # Sound effects 'Guitar Fret Noise': '121', 'Breath Noise': '122', 'Seashore': '123', 'Bird Tweet': '124', 'Telephone Ring': '125', 'Helicopter': '126', 'Applause': '127'} return instruments_dict
38.669725
106
0.474496
0
0
0
0
0
0
0
0
2,622
0.622064
c72f4c5b309a87813b09f64b422ca7519b3e740b
2,182
py
Python
roles/openshift_health_checker/library/ocutil.py
shgriffi/openshift-ansible
6313f519307cf50055589c3876d8bec398bbc4d4
[ "Apache-2.0" ]
164
2015-07-29T17:35:04.000Z
2021-12-16T16:38:04.000Z
roles/openshift_health_checker/library/ocutil.py
shgriffi/openshift-ansible
6313f519307cf50055589c3876d8bec398bbc4d4
[ "Apache-2.0" ]
3,634
2015-06-09T13:49:15.000Z
2022-03-23T20:55:44.000Z
roles/openshift_health_checker/library/ocutil.py
shgriffi/openshift-ansible
6313f519307cf50055589c3876d8bec398bbc4d4
[ "Apache-2.0" ]
250
2015-06-08T19:53:11.000Z
2022-03-01T04:51:23.000Z
#!/usr/bin/python """Interface to OpenShift oc command""" import os import shlex import shutil import subprocess from ansible.module_utils.basic import AnsibleModule ADDITIONAL_PATH_LOOKUPS = ['/usr/local/bin', os.path.expanduser('~/bin')] def locate_oc_binary(): """Find and return oc binary file""" # https://github.com/openshift/openshift-ansible/issues/3410 # oc can be in /usr/local/bin in some cases, but that may not # be in $PATH due to ansible/sudo paths = os.environ.get("PATH", os.defpath).split(os.pathsep) + ADDITIONAL_PATH_LOOKUPS oc_binary = 'oc' # Use shutil.which if it is available, otherwise fallback to a naive path search try: which_result = shutil.which(oc_binary, path=os.pathsep.join(paths)) if which_result is not None: oc_binary = which_result except AttributeError: for path in paths: if os.path.exists(os.path.join(path, oc_binary)): oc_binary = os.path.join(path, oc_binary) break return oc_binary def main(): """Module that executes commands on a remote OpenShift cluster""" module = AnsibleModule( argument_spec=dict( namespace=dict(type="str", required=False), config_file=dict(type="str", required=True), cmd=dict(type="str", required=True), extra_args=dict(type="list", default=[]), ), ) cmd = [locate_oc_binary(), '--config', module.params["config_file"]] if module.params["namespace"]: cmd += ['-n', module.params["namespace"]] cmd += shlex.split(module.params["cmd"]) + module.params["extra_args"] failed = True try: cmd_result = subprocess.check_output(list(cmd), stderr=subprocess.STDOUT) failed = False except subprocess.CalledProcessError as exc: cmd_result = '[rc {}] {}\n{}'.format(exc.returncode, ' '.join(exc.cmd), exc.output) except OSError as exc: # we get this when 'oc' is not there cmd_result = str(exc) module.exit_json( changed=False, failed=failed, result=cmd_result, ) if __name__ == '__main__': main()
29.486486
91
0.636114
0
0
0
0
0
0
0
0
576
0.263978