hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
c78a9dbe76748ffc4b552241c18002c06e087035
1,920
py
Python
workflow/src/routing.py
mibexsoftware/alfred-stash-workflow
5cdba4d14c8998b937c1aa6af8e3417251fac540
[ "MIT" ]
13
2016-03-31T16:19:59.000Z
2019-09-26T20:47:57.000Z
workflow/src/routing.py
mibexsoftware/alfred-stash-workflow
5cdba4d14c8998b937c1aa6af8e3417251fac540
[ "MIT" ]
6
2015-09-18T15:24:43.000Z
2019-10-23T16:51:39.000Z
workflow/src/routing.py
mibexsoftware/alfred-stash-workflow
5cdba4d14c8998b937c1aa6af8e3417251fac540
[ "MIT" ]
3
2015-09-16T18:05:32.000Z
2020-01-04T19:41:21.000Z
# -*- coding: utf-8 -*- from src import icons, __version__ from src.actions import HOST_URL from src.actions.configure import ConfigureWorkflowAction from src.actions.help import HelpWorkflowAction from src.actions.index import IndexWorkflowAction from src.actions.projects import ProjectWorkflowAction from src.actions.pull_requests import PullRequestWorkflowAction from src.actions.repositories import RepositoryWorkflowAction from src.util import workflow, call_alfred WORKFLOW_ACTIONS = { ':config': ConfigureWorkflowAction, ':projects': ProjectWorkflowAction, ':repos': RepositoryWorkflowAction, ':pullrequests': PullRequestWorkflowAction, ':help': HelpWorkflowAction } def route(args): # e.g., args = ":config sethost http://localhost,--exec" command_string = args[0] # :config sethost http://localhost command = command_string.split(' ') if not workflow().settings.get(HOST_URL, None) and 'sethost' not in command: call_alfred('stash:config sethost ') return handler = IndexWorkflowAction action = next(iter(command), None) if action: handler = WORKFLOW_ACTIONS.get(action, IndexWorkflowAction) if '--exec' in args: handler().execute(command, cmd_pressed='--cmd' in args, shift_pressed='--shift' in args) else: # show menu handler().menu(command) _notify_if_upgrade_available() workflow().send_feedback() def _notify_if_upgrade_available(): if workflow().update_available: new_version = workflow().cached_data('__workflow_update_status', max_age=0)['version'] workflow().add_item('An update is available!', 'Update the workflow from version {} to {}'.format(__version__, new_version), arg=':config update', valid=True, icon=icons.UPDATE)
39.183673
105
0.678125
0
0
0
0
0
0
0
0
352
0.183333
c78c8acd4546ee0e8cf65b0df48d4a928c3e7481
1,262
py
Python
model/model.py
CaoHoangTung/shark-cop-server
38cb494d45297b723b4ef6bf82b8c9e53c2993a0
[ "MIT" ]
2
2020-10-02T03:01:32.000Z
2020-12-06T09:21:06.000Z
model/model.py
CaoHoangTung/shark-cop-server
38cb494d45297b723b4ef6bf82b8c9e53c2993a0
[ "MIT" ]
null
null
null
model/model.py
CaoHoangTung/shark-cop-server
38cb494d45297b723b4ef6bf82b8c9e53c2993a0
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import classification_report, confusion_matrix from mlxtend.plotting import plot_decision_regions # from sklearn import datasets from pandas.plotting import scatter_matrix from joblib import dump, load import collections kaggle_data = pd.read_csv('data/kaggle.csv') data = pd.read_csv('data/new_data.csv') kaggle_X = kaggle_data.iloc[:, :30].values X = data.drop(['index'],axis=1).iloc[:, :30].values y = data.iloc[:,-1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.99) kaggle_X_train, kaggle_X_test, kaggle_y_train, kaggle_y_test = train_test_split(X, y, test_size = 0.02) svclassifier = SVC(kernel='poly',degree=5) svclassifier.fit(kaggle_X_train, kaggle_y_train) dump(svclassifier, 'pre_model.joblib') y_pred = svclassifier.predict(X_test) print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred)) # print("X=%s, Predicted=%s" % (test_2d, y_pred_test[0])) # print(y_pred.shape) # TESTING ZONE X = [[-1,1,0,-1,-1,-1,1,0,-1,1,1,-1,0,0,-1,-1,-1,-1,0,1,0,0,0,-1,1,1,1,1,-1,-1]] print("PREDICTION:",svclassifier.predict(X))
33.210526
103
0.759113
0
0
0
0
0
0
0
0
202
0.160063
c78d0f81c7f3ce50a968bb140ed1caaa45e4bf4b
547
py
Python
PE032.py
CaptainSora/Python-Project-Euler
056400f434eec837ece5ef06653b310ebfcc3d4e
[ "MIT" ]
null
null
null
PE032.py
CaptainSora/Python-Project-Euler
056400f434eec837ece5ef06653b310ebfcc3d4e
[ "MIT" ]
null
null
null
PE032.py
CaptainSora/Python-Project-Euler
056400f434eec837ece5ef06653b310ebfcc3d4e
[ "MIT" ]
null
null
null
from itertools import count from _pandigital_tools import is_pandigital def pand_products(): """ Returns the sum of all numbers n which have a factorization a * b = n such that a, b, n are (cumulatively) 1 through 9 pandigital. """ total = set() for a in range(2, 100): for b in count(a): if len(str(a) + str(b) + str(a * b)) > 9: break elif is_pandigital(a, b, a * b): total.add(a * b) return sum(total) def solve(vol=0): return pand_products()
23.782609
78
0.570384
0
0
0
0
0
0
0
0
150
0.274223
c78d62ba8abdde61ef2fb89e7ca95a09bbcfc5d2
282
py
Python
v1/models.py
jdubansky/openstates.org
6fd5592aae554c4bb201f0a76ed3605bff5204c2
[ "MIT" ]
1
2022-01-17T11:54:28.000Z
2022-01-17T11:54:28.000Z
v1/models.py
washabstract/openstates.org
dc541ae5cd09dd3b3db623178bf32a03d0246f01
[ "MIT" ]
null
null
null
v1/models.py
washabstract/openstates.org
dc541ae5cd09dd3b3db623178bf32a03d0246f01
[ "MIT" ]
null
null
null
from django.db import models from openstates.data.models import Bill class LegacyBillMapping(models.Model): legacy_id = models.CharField(max_length=20, primary_key=True) bill = models.ForeignKey( Bill, related_name="legacy_mapping", on_delete=models.CASCADE )
28.2
69
0.758865
210
0.744681
0
0
0
0
0
0
16
0.056738
c78e2f38914cd69e3bd290dd0efeba4071626991
14,594
py
Python
corehq/apps/accounting/utils.py
satyaakam/commcare-hq
233f255ff20ab3a16013e9fdfdb9c1dcf632e415
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/accounting/utils.py
satyaakam/commcare-hq
233f255ff20ab3a16013e9fdfdb9c1dcf632e415
[ "BSD-3-Clause" ]
1
2021-06-02T04:45:16.000Z
2021-06-02T04:45:16.000Z
corehq/apps/accounting/utils.py
satyaakam/commcare-hq
233f255ff20ab3a16013e9fdfdb9c1dcf632e415
[ "BSD-3-Clause" ]
null
null
null
import datetime import logging from collections import defaultdict, namedtuple from django.conf import settings from django.template.loader import render_to_string from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from django_prbac.models import Grant, Role, UserRole from corehq.const import USER_DATE_FORMAT from dimagi.utils.couch.database import iter_docs from dimagi.utils.dates import add_months from corehq import privileges from corehq.apps.accounting.exceptions import ( AccountingError, ProductPlanNotFoundError, ) from corehq.apps.domain.models import Domain from corehq.util.quickcache import quickcache from corehq.util.view_utils import absolute_reverse logger = logging.getLogger('accounting') EXCHANGE_RATE_DECIMAL_PLACES = 9 def log_accounting_error(message, show_stack_trace=False): logger.error("[BILLING] %s" % message, exc_info=show_stack_trace) def log_accounting_info(message): logger.info("[BILLING] %s" % message) def months_from_date(reference_date, months_from_date): year, month = add_months(reference_date.year, reference_date.month, months_from_date) return datetime.date(year, month, 1) def ensure_domain_instance(domain): if not isinstance(domain, Domain): domain = Domain.get_by_name(domain) return domain def fmt_feature_rate_dict(feature, feature_rate=None): """ This will be turned into a JSON representation of this Feature and its FeatureRate """ if feature_rate is None: feature_rate = feature.get_rate() return { 'name': feature.name, 'feature_type': feature.feature_type, 'feature_id': feature.id, 'rate_id': feature_rate.id, 'monthly_fee': str(feature_rate.monthly_fee), 'monthly_limit': feature_rate.monthly_limit, 'per_excess_fee': str(feature_rate.per_excess_fee), } def fmt_product_rate_dict(product_name, product_rate=None): """ This will be turned into a JSON representation of this SoftwareProductRate """ from corehq.apps.accounting.models import SoftwareProductRate if product_rate is None: try: product_rate = SoftwareProductRate.objects.filter( is_active=True, name=product_name, ).latest('date_created') except SoftwareProductRate.DoesNotExist: product_rate = SoftwareProductRate.objects.create(name=product_name, is_active=True) return { 'name': product_rate.name, 'rate_id': product_rate.id, 'monthly_fee': str(product_rate.monthly_fee), } def get_privileges(plan_version): role = plan_version.role.get_cached_role() return set([grant.to_role.slug for grant in role.memberships_granted.all()]) ChangeStatusResult = namedtuple('ChangeStatusResult', ['adjustment_reason', 'downgraded_privs', 'upgraded_privs']) def get_change_status(from_plan_version, to_plan_version): from_privs = ( get_privileges(from_plan_version) if from_plan_version is not None else set(privileges.MAX_PRIVILEGES) ) to_privs = get_privileges(to_plan_version) if to_plan_version is not None else set() downgraded_privs = from_privs.difference(to_privs) upgraded_privs = to_privs from corehq.apps.accounting.models import SubscriptionAdjustmentReason as Reason if from_plan_version is None: adjustment_reason = Reason.CREATE else: adjustment_reason = Reason.SWITCH if len(downgraded_privs) == 0 and len(upgraded_privs) > 0: adjustment_reason = Reason.UPGRADE elif len(upgraded_privs) == 0 and len(downgraded_privs) > 0: adjustment_reason = Reason.DOWNGRADE return ChangeStatusResult(adjustment_reason, downgraded_privs, upgraded_privs) def domain_has_privilege_cache_args(domain, privilege_slug, **assignment): return [ domain.name if isinstance(domain, Domain) else domain, privilege_slug ] @quickcache(domain_has_privilege_cache_args, timeout=10) def domain_has_privilege(domain, privilege_slug, **assignment): from corehq.apps.accounting.models import Subscription try: plan_version = Subscription.get_subscribed_plan_by_domain(domain) privilege = Role.get_privilege(privilege_slug, assignment) if privilege is None: return False if plan_version.role.has_privilege(privilege): return True except ProductPlanNotFoundError: return False except AccountingError: pass return False @quickcache(['domain_name'], timeout=15 * 60) def domain_is_on_trial(domain_name): from corehq.apps.accounting.models import Subscription subscription = Subscription.get_active_subscription_by_domain(domain_name) return subscription and subscription.is_trial def is_active_subscription(date_start, date_end, today=None): today = today or datetime.date.today() return ((date_start is None or date_start <= today) and (date_end is None or today < date_end)) def has_subscription_already_ended(subscription): return (subscription.date_end is not None and subscription.date_end <= datetime.date.today()) def get_money_str(amount): if amount is not None: if amount < 0: fmt = "-$%0.2f" amount = abs(amount) else: fmt = "$%0.2f" return fmt % amount return "" def get_address_from_invoice(invoice): from corehq.apps.accounting.invoice_pdf import Address from corehq.apps.accounting.models import BillingContactInfo try: contact_info = BillingContactInfo.objects.get( account=invoice.account, ) return Address( name=( "%s %s" % (contact_info.first_name if contact_info.first_name is not None else "", contact_info.last_name if contact_info.last_name is not None else "") ), company_name=contact_info.company_name, first_line=contact_info.first_line, second_line=contact_info.second_line, city=contact_info.city, region=contact_info.state_province_region, postal_code=contact_info.postal_code, country=contact_info.country, ) except BillingContactInfo.DoesNotExist: return Address() def get_dimagi_from_email(): return ("Dimagi CommCare Accounts <%(email)s>" % { 'email': settings.INVOICING_CONTACT_EMAIL, }) def quantize_accounting_decimal(decimal_value): return "%0.2f" % decimal_value def fmt_dollar_amount(decimal_value): return _("USD %s") % quantize_accounting_decimal(decimal_value) def get_customer_cards(username, domain): from corehq.apps.accounting.models import ( StripePaymentMethod, PaymentMethodType, ) import stripe try: payment_method = StripePaymentMethod.objects.get( web_user=username, method_type=PaymentMethodType.STRIPE ) stripe_customer = payment_method.customer return dict(stripe_customer.cards) except StripePaymentMethod.DoesNotExist: pass except stripe.error.AuthenticationError: if not settings.STRIPE_PRIVATE_KEY: log_accounting_info("Private key is not defined in settings") else: raise return None def is_accounting_admin(user): accounting_privilege = Role.get_privilege(privileges.ACCOUNTING_ADMIN) if accounting_privilege is None: return False try: return user.prbac_role.has_privilege(accounting_privilege) except (AttributeError, UserRole.DoesNotExist): return False def make_anchor_tag(href, name, attrs=None): context = { 'href': href, 'name': name, 'attrs': attrs or {}, } return render_to_string('accounting/partials/anchor_tag.html', context) def get_default_domain_url(domain): from corehq.apps.domain.views.settings import DefaultProjectSettingsView return absolute_reverse( DefaultProjectSettingsView.urlname, args=[domain], ) def ensure_grants(grants_to_privs, dry_run=False, verbose=False, roles_by_slug=None): """ Adds a parameterless grant between grantee and priv, looked up by slug. :param grants_to_privs: An iterable of two-tuples: `(grantee_slug, priv_slugs)`. Will only be iterated once. """ dry_run_tag = "[DRY RUN] " if dry_run else "" if roles_by_slug is None: roles_by_slug = {role.slug: role for role in Role.objects.all()} granted = defaultdict(set) for grant in Grant.objects.select_related('from_role', 'to_role').all(): granted[grant.from_role.slug].add(grant.to_role.slug) grants_to_create = [] for grantee_slug, priv_slugs in grants_to_privs: if grantee_slug not in roles_by_slug: logger.info('grantee %s does not exist.', grantee_slug) continue for priv_slug in priv_slugs: if priv_slug not in roles_by_slug: logger.info('privilege %s does not exist.', priv_slug) continue if priv_slug in granted[grantee_slug]: if verbose or dry_run: logger.info('%sPrivilege already granted: %s => %s', dry_run_tag, grantee_slug, priv_slug) else: granted[grantee_slug].add(priv_slug) if verbose or dry_run: logger.info('%sGranting privilege: %s => %s', dry_run_tag, grantee_slug, priv_slug) if not dry_run: grants_to_create.append(Grant( from_role=roles_by_slug[grantee_slug], to_role=roles_by_slug[priv_slug] )) if grants_to_create: Role.get_cache().clear() Grant.objects.bulk_create(grants_to_create) def log_removed_grants(priv_slugs, dry_run=False): grants = Grant.objects.filter(to_role__slug__in=list(priv_slugs)) if grants: logger.info("%sRemoving privileges: %s", ("[DRY RUN] " if dry_run else ""), ", ".join(g.to_role.slug for g in grants), ) def get_account_name_from_default_name(default_name): from corehq.apps.accounting.models import BillingAccount if not BillingAccount.objects.filter(name=default_name).exists(): return default_name else: matching_regex_count = BillingAccount.objects.filter( name__iregex=r'^%s \(\d+\)$' % default_name, ).count() return '%s (%d)' % ( default_name, matching_regex_count + 1 ) def cancel_future_subscriptions(domain_name, from_date, web_user): from corehq.apps.accounting.models import ( Subscription, SubscriptionAdjustment, SubscriptionAdjustmentReason, ) for later_subscription in Subscription.visible_objects.filter( subscriber__domain=domain_name, date_start__gt=from_date, ).order_by('date_start').all(): later_subscription.date_end = later_subscription.date_start later_subscription.save() SubscriptionAdjustment.record_adjustment( later_subscription, reason=SubscriptionAdjustmentReason.CANCEL, web_user=web_user, note="Cancelled due to changing subscription", ) def pause_current_subscription(domain_name, web_user, current_subscription): from corehq.apps.accounting.models import ( Subscription, DefaultProductPlan, SoftwarePlanEdition, SubscriptionAdjustmentMethod, SubscriptionType, ProBonoStatus, FundingSource, ) cancel_future_subscriptions(domain_name, datetime.date.today(), web_user) paused_plan_version = DefaultProductPlan.get_default_plan_version( SoftwarePlanEdition.PAUSED ) if current_subscription.is_below_minimum_subscription: current_subscription.update_subscription( date_start=current_subscription.date_start, date_end=current_subscription.date_start + datetime.timedelta(days=30) ) return Subscription.new_domain_subscription( account=current_subscription.account, domain=domain_name, plan_version=paused_plan_version, date_start=current_subscription.date_start + datetime.timedelta(days=30), web_user=web_user, adjustment_method=SubscriptionAdjustmentMethod.USER, service_type=SubscriptionType.PRODUCT, pro_bono_status=ProBonoStatus.NO, funding_source=FundingSource.CLIENT, do_not_invoice=True, no_invoice_reason='Paused plan', ) else: return current_subscription.change_plan( paused_plan_version, web_user=web_user, adjustment_method=SubscriptionAdjustmentMethod.USER, service_type=SubscriptionType.PRODUCT, pro_bono_status=ProBonoStatus.NO, do_not_invoice=True, no_invoice_reason='Paused plan', ) def is_downgrade(current_edition, next_edition): from corehq.apps.accounting.models import SoftwarePlanEdition plans = SoftwarePlanEdition.SELF_SERVICE_ORDER + [SoftwarePlanEdition.ENTERPRISE] return plans.index(current_edition) > plans.index(next_edition) def clear_plan_version_cache(): from corehq.apps.accounting.models import SoftwarePlan for software_plan in SoftwarePlan.objects.all(): SoftwarePlan.get_version.clear(software_plan) def get_paused_plan_context(request, domain): from corehq.apps.accounting.models import Subscription from corehq.apps.domain.views import SelectPlanView current_sub = Subscription.get_active_subscription_by_domain(domain) if (not current_sub or not current_sub.plan_version.is_paused or not current_sub.previous_subscription): return {} previous_edition = (current_sub.previous_subscription.plan_version.plan.edition if current_sub.previous_subscription else "") return { 'is_paused': True, 'previous_edition': previous_edition, 'paused_date': current_sub.date_start.strftime(USER_DATE_FORMAT), 'change_plan_url': reverse(SelectPlanView.urlname, args=[domain]), 'can_edit_billing_info': request.couch_user.is_domain_admin(domain), }
34.419811
114
0.688434
0
0
0
0
849
0.058175
0
0
1,226
0.084007
c78ed3281b65fd17334bed8b20f794b80892e233
802
py
Python
RSA/Algorithm/EEA.py
Pumpkin-NN/Cryptography
968e3f55fcc6a02d0badeec157776ca8f07607b8
[ "MIT" ]
null
null
null
RSA/Algorithm/EEA.py
Pumpkin-NN/Cryptography
968e3f55fcc6a02d0badeec157776ca8f07607b8
[ "MIT" ]
null
null
null
RSA/Algorithm/EEA.py
Pumpkin-NN/Cryptography
968e3f55fcc6a02d0badeec157776ca8f07607b8
[ "MIT" ]
null
null
null
def extended_euclidean_algorithm(a, b): # Initial s = 1 s = 1 list_s = [] list_t = [] # Algorithm while b > 0: # Find the remainder of a, b r = a % b if r > 0: # The t expression t = (r - (a * s)) // b list_t.append(t) list_s.append(s) # Use b to be the new a a = b if r > 0: # Use the remainder to be the new b b = r else: break # Find the coefficients s and t for i in range(len(list_t)): if i+1 < len(list_t): # Find the coefficient t t = list_t[0] + (list_t[(len(list_t)-1)] * s) # Find the coefficient s s = list_s[i] + list_t[i] * list_t[i+1] return t
23.588235
57
0.438903
0
0
0
0
0
0
0
0
209
0.260599
c790959983852e5ff5dc7391f5d9c3bf229bac12
435
py
Python
hci/command/commands/le_apcf_commands/apcf_service_data.py
cc4728/python-hci
d988f69c55972af445ec3ba04fd4cd1199593d10
[ "MIT" ]
3
2021-12-16T14:32:45.000Z
2022-01-25T03:10:48.000Z
hci/command/commands/le_apcf_commands/apcf_service_data.py
cc4728/python-hci
d988f69c55972af445ec3ba04fd4cd1199593d10
[ "MIT" ]
null
null
null
hci/command/commands/le_apcf_commands/apcf_service_data.py
cc4728/python-hci
d988f69c55972af445ec3ba04fd4cd1199593d10
[ "MIT" ]
1
2022-01-25T03:10:50.000Z
2022-01-25T03:10:50.000Z
from ..le_apcf_command_pkt import LE_APCF_Command from struct import pack, unpack from enum import IntEnum """ This pare base on spec <<Android BT HCI Requirement for BLE feature>> v0.52 Advertisement Package Content filter """ class APCF_Service_Data(LE_APCF_Command): def __init__(self): # TODO generate cmd super().__init__() def __str__(self): return super().__str__()+''.join(['{}']).format("")
25.588235
75
0.698851
204
0.468966
0
0
0
0
0
0
147
0.337931
c790fdff7571a6a4a1222a967671954a3b60828b
1,468
py
Python
source/documentModel/representations/DocumentNGramSymWinGraph.py
Vyvy-vi/Ngram-Graphs
3b990e5fd92543f7152b4a2c8e689e771578c047
[ "Apache-2.0" ]
178
2016-09-21T19:51:28.000Z
2021-09-07T17:37:06.000Z
source/documentModel/representations/DocumentNGramSymWinGraph.py
Vyvy-vi/Ngram-Graphs
3b990e5fd92543f7152b4a2c8e689e771578c047
[ "Apache-2.0" ]
null
null
null
source/documentModel/representations/DocumentNGramSymWinGraph.py
Vyvy-vi/Ngram-Graphs
3b990e5fd92543f7152b4a2c8e689e771578c047
[ "Apache-2.0" ]
17
2016-10-21T02:11:13.000Z
2020-10-07T19:11:54.000Z
""" DocumentNGramSymWinGraph.py Created on May 23, 2017, 4:56 PM """ import networkx as nx import pygraphviz as pgv import matplotlib.pyplot as plt from networkx.drawing.nx_agraph import graphviz_layout from DocumentNGramGraph import DocumentNGramGraph class DocumentNGramSymWinGraph(DocumentNGramGraph): # an extension of DocumentNGramGraph # for symmetric windowing def buildGraph(self,verbose = False, d=[]): # set Data @class_variable self.setData(d) Data = self._Data # build ngram ng = self.build_ngram() s = len(ng) # calculate window win = self._Dwin//2 # initialize graph self._Graph = nx.Graph() if(s>=2 and win>=1): # max possible window size (bounded by win) o = min(win,s)+1 window = ng[1:o] i = o # first build the full window for gram in ng[0:s-1]: for w in window: self.addEdgeInc(gram,w) window.pop(0) # if window's edge has reached # it's the limit of ng stop # appending if i<s: window.append(ng[i][:]) i+=1 # print Graph (optional) if verbose: self.GraphDraw(self._GPrintVerbose) return self._Graph
26.690909
55
0.52248
1,195
0.814033
0
0
0
0
0
0
380
0.258856
c791642581cbd1a8e05d99ab1f306e65029dc666
2,212
py
Python
examples/EC2Conditions.py
DrLuke/troposphere
05672a2b0cf87215dbd6a2a656669e0d3c92d0e5
[ "BSD-2-Clause" ]
1
2021-04-03T22:24:36.000Z
2021-04-03T22:24:36.000Z
examples/EC2Conditions.py
cartermeyers/troposphere
4b42fa0d65f73cec28184b5349aa198fb8ee5b2e
[ "BSD-2-Clause" ]
1
2021-06-25T15:20:46.000Z
2021-06-25T15:20:46.000Z
examples/EC2Conditions.py
cartermeyers/troposphere
4b42fa0d65f73cec28184b5349aa198fb8ee5b2e
[ "BSD-2-Clause" ]
5
2020-05-10T13:50:32.000Z
2021-09-09T09:06:54.000Z
from __future__ import print_function from troposphere import ( Template, Parameter, Ref, Condition, Equals, And, Or, Not, If ) from troposphere import ec2 parameters = { "One": Parameter( "One", Type="String", ), "Two": Parameter( "Two", Type="String", ), "Three": Parameter( "Three", Type="String", ), "Four": Parameter( "Four", Type="String", ), "SshKeyName": Parameter( "SshKeyName", Type="String", ) } conditions = { "OneEqualsFoo": Equals( Ref("One"), "Foo" ), "NotOneEqualsFoo": Not( Condition("OneEqualsFoo") ), "BarEqualsTwo": Equals( "Bar", Ref("Two") ), "ThreeEqualsFour": Equals( Ref("Three"), Ref("Four") ), "OneEqualsFooOrBarEqualsTwo": Or( Condition("OneEqualsFoo"), Condition("BarEqualsTwo") ), "OneEqualsFooAndNotBarEqualsTwo": And( Condition("OneEqualsFoo"), Not(Condition("BarEqualsTwo")) ), "OneEqualsFooAndBarEqualsTwoAndThreeEqualsPft": And( Condition("OneEqualsFoo"), Condition("BarEqualsTwo"), Equals(Ref("Three"), "Pft") ), "OneIsQuzAndThreeEqualsFour": And( Equals(Ref("One"), "Quz"), Condition("ThreeEqualsFour") ), "LaunchInstance": And( Condition("OneEqualsFoo"), Condition("NotOneEqualsFoo"), Condition("BarEqualsTwo"), Condition("OneEqualsFooAndNotBarEqualsTwo"), Condition("OneIsQuzAndThreeEqualsFour") ), "LaunchWithGusto": And( Condition("LaunchInstance"), Equals(Ref("One"), "Gusto") ) } resources = { "Ec2Instance": ec2.Instance( "Ec2Instance", Condition="LaunchInstance", ImageId=If("ConditionNameEqualsFoo", "ami-12345678", "ami-87654321"), InstanceType="t1.micro", KeyName=Ref("SshKeyName"), SecurityGroups=["default"], ) } t = Template() for p in parameters.values(): t.add_parameter(p) for k in conditions: t.add_condition(k, conditions[k]) for r in resources.values(): t.add_resource(r) print(t.to_json())
22.343434
77
0.573689
0
0
0
0
0
0
0
0
767
0.346745
c79252ab386af5d00249bc02769ec35279e30201
768
py
Python
fist_phase/08_objects.py
kapuni/exercise_py
b60ba8462d2545cae57483bcb0b3428b03c5d522
[ "MIT" ]
null
null
null
fist_phase/08_objects.py
kapuni/exercise_py
b60ba8462d2545cae57483bcb0b3428b03c5d522
[ "MIT" ]
null
null
null
fist_phase/08_objects.py
kapuni/exercise_py
b60ba8462d2545cae57483bcb0b3428b03c5d522
[ "MIT" ]
null
null
null
class Student(object): # __init__是一个特殊方法用于在创建对象时进行初始化操作 # 通过这个方法我们可以为学生对象绑定name和age两个属性 def __init__(self, name, age): self.name = name self.age = age def study(self, course_name): print('%s正在学习%s.' % (self.name, course_name)) # PEP 8要求标识符的名字用全小写多个单词用下划线连接 # 但是部分程序员和公司更倾向于使用驼峰命名法(驼峰标识) def watch_movie(self): if self.age < 18: print('%s只能观看《熊出没》.' % self.name) else: print('%s正在观看岛国爱情大电影.' % self.name) def main(): # 创建学生对象并指定姓名和年龄 stu1 = Student('骆昊', 38) # 给对象发study消息 stu1.study('Python程序设计') # 给对象发watch_av消息 stu1.watch_movie() stu2 = Student('王大锤', 15) stu2.study('思想品德') stu2.watch_movie() if __name__ == '__main__': main()
23.272727
53
0.605469
728
0.67658
0
0
0
0
0
0
552
0.513011
c79307bf6012742aa0a7a562893d0160e400a873
1,108
py
Python
lrtc_lib/data/load_dataset.py
MovestaDev/low-resource-text-classification-framework
4380755a65b35265e84ecbf4b87e872d79e8f079
[ "Apache-2.0" ]
57
2020-11-18T15:13:06.000Z
2022-03-28T22:33:26.000Z
lrtc_lib/data/load_dataset.py
MovestaDev/low-resource-text-classification-framework
4380755a65b35265e84ecbf4b87e872d79e8f079
[ "Apache-2.0" ]
5
2021-02-23T22:11:07.000Z
2021-12-13T00:13:48.000Z
lrtc_lib/data/load_dataset.py
MovestaDev/low-resource-text-classification-framework
4380755a65b35265e84ecbf4b87e872d79e8f079
[ "Apache-2.0" ]
14
2021-02-10T08:55:27.000Z
2022-02-23T22:37:54.000Z
# (c) Copyright IBM Corporation 2020. # LICENSE: Apache License 2.0 (Apache-2.0) # http://www.apache.org/licenses/LICENSE-2.0 import logging from lrtc_lib.data_access import single_dataset_loader from lrtc_lib.data_access.processors.dataset_part import DatasetPart from lrtc_lib.oracle_data_access import gold_labels_loader logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s') def load(dataset: str, force_new: bool = False): for part in DatasetPart: dataset_name = dataset + '_' + part.name.lower() # load dataset (generate Documents and TextElements) if force_new: single_dataset_loader.clear_all_saved_files(dataset_name) single_dataset_loader.load_dataset(dataset_name, force_new) # load gold labels if force_new: gold_labels_loader.clear_gold_labels_file(dataset_name) gold_labels_loader.load_gold_labels(dataset_name, force_new) logging.info('-' * 60) if __name__ == '__main__': dataset_name = 'polarity' load(dataset=dataset_name)
35.741935
115
0.730144
0
0
0
0
0
0
0
0
286
0.258123
c79467938af160abb2d49f1add583ea15a8cc080
8,019
py
Python
graphql_compiler/compiler/emit_match.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
graphql_compiler/compiler/emit_match.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
graphql_compiler/compiler/emit_match.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
"""Convert lowered IR basic blocks to MATCH query strings.""" from collections import deque import six from .blocks import Filter, MarkLocation, QueryRoot, Recurse, Traverse from .expressions import TrueLiteral from .helpers import get_only_element_from_collection, validate_safe_string def _get_vertex_location_name(location): """Get the location name from a location that is expected to point to a vertex.""" mark_name, field_name = location.get_location_name() if field_name is not None: raise AssertionError(u"Location unexpectedly pointed to a field: {}".format(location)) return mark_name def _first_step_to_match(match_step): """Transform the very first MATCH step into a MATCH query string.""" parts = [] if match_step.root_block is not None: if not isinstance(match_step.root_block, QueryRoot): raise AssertionError(u"Expected None or QueryRoot root block, received: " u"{} {}".format(match_step.root_block, match_step)) match_step.root_block.validate() start_class = get_only_element_from_collection(match_step.root_block.start_class) parts.append(u"class: %s" % (start_class,)) if match_step.coerce_type_block is not None: raise AssertionError(u"Invalid MATCH step: {}".format(match_step)) if match_step.where_block: match_step.where_block.validate() parts.append(u"where: (%s)" % (match_step.where_block.predicate.to_match(),)) if match_step.as_block is None: raise AssertionError(u"Found a MATCH step without a corresponding Location. " u"This should never happen: {}".format(match_step)) else: match_step.as_block.validate() parts.append(u"as: %s" % (_get_vertex_location_name(match_step.as_block.location),)) return u"{{ %s }}" % (u", ".join(parts),) def _subsequent_step_to_match(match_step): """Transform any subsequent (non-first) MATCH step into a MATCH query string.""" if not isinstance(match_step.root_block, (Traverse, Recurse)): raise AssertionError(u"Expected Traverse root block, received: " u"{} {}".format(match_step.root_block, match_step)) is_recursing = isinstance(match_step.root_block, Recurse) match_step.root_block.validate() traversal_command = u".%s('%s')" % (match_step.root_block.direction, match_step.root_block.edge_name) parts = [] if match_step.coerce_type_block: coerce_type_set = match_step.coerce_type_block.target_class if len(coerce_type_set) != 1: raise AssertionError(u"Found MATCH type coercion block with more than one target class:" u" {} {}".format(coerce_type_set, match_step)) coerce_type_target = list(coerce_type_set)[0] parts.append(u"class: %s" % (coerce_type_target,)) if is_recursing: parts.append(u"while: ($depth < %d)" % (match_step.root_block.depth,)) if match_step.where_block: match_step.where_block.validate() parts.append(u"where: (%s)" % (match_step.where_block.predicate.to_match(),)) if not is_recursing and match_step.root_block.optional: parts.append(u"optional: true") if match_step.as_block: match_step.as_block.validate() parts.append(u"as: %s" % (_get_vertex_location_name(match_step.as_block.location),)) return u"%s {{ %s }}" % (traversal_command, u", ".join(parts)) def _represent_match_traversal(match_traversal): """Emit MATCH query code for an entire MATCH traversal sequence.""" output = [] output.append(_first_step_to_match(match_traversal[0])) for step in match_traversal[1:]: output.append(_subsequent_step_to_match(step)) return u"".join(output) def _represent_fold(fold_location, fold_ir_blocks): """Emit a LET clause corresponding to the IR blocks for a @fold scope.""" start_let_template = u"$%(mark_name)s = %(base_location)s" traverse_edge_template = u'.%(direction)s("%(edge_name)s")' base_template = start_let_template + traverse_edge_template edge_direction, edge_name = fold_location.get_first_folded_edge() mark_name, _ = fold_location.get_location_name() base_location_name, _ = fold_location.base_location.get_location_name() validate_safe_string(mark_name) validate_safe_string(base_location_name) validate_safe_string(edge_direction) validate_safe_string(edge_name) template_data = {"mark_name": mark_name, "base_location": base_location_name, "direction": edge_direction, "edge_name": edge_name} final_string = base_template % template_data for block in fold_ir_blocks: if isinstance(block, Filter): final_string += u"[" + block.predicate.to_match() + u"]" elif isinstance(block, Traverse): template_data = {"direction": block.direction, "edge_name": block.edge_name} final_string += traverse_edge_template % template_data elif isinstance(block, MarkLocation): pass else: raise AssertionError(u"Found an unexpected IR block in the folded IR blocks: " u"{} {} {}".format(type(block), block, fold_ir_blocks)) final_string += ".asList()" return final_string def _construct_output_to_match(output_block): """Transform a ConstructResult block into a MATCH query string.""" output_block.validate() selections = (u"%s AS `%s`" % (output_block.fields[key].to_match(), key) for key in sorted(output_block.fields.keys())) return u"SELECT %s FROM" % (u", ".join(selections),) def _construct_where_to_match(where_block): """Transform a Filter block into a MATCH query string.""" if where_block.predicate == TrueLiteral: raise AssertionError(u"Received WHERE block with TrueLiteral predicate: {}".format(where_block)) return u"WHERE " + where_block.predicate.to_match() def emit_code_from_single_match_query(match_query): """Return a MATCH query string from a list of IR blocks.""" query_data = deque([u"MATCH "]) if not match_query.match_traversals: raise AssertionError(u"Unexpected falsy value for match_query.match_traversals received: " u"{} {}".format(match_query.match_traversals, match_query)) match_traversal_data = [_represent_match_traversal(x) for x in match_query.match_traversals] query_data.append(match_traversal_data[0]) for traversal_data in match_traversal_data[1:]: query_data.append(u", ") query_data.append(traversal_data) query_data.appendleft(u" (") query_data.append(u"RETURN $matches)") fold_data = sorted([_represent_fold(fold_location, fold_ir_blocks) for fold_location, fold_ir_blocks in six.iteritems(match_query.folds)]) if fold_data: query_data.append(u" LET ") query_data.append(fold_data[0]) for fold_clause in fold_data[1:]: query_data.append(u", ") query_data.append(fold_clause) query_data.appendleft(_construct_output_to_match(match_query.output_block)) if match_query.where_block is not None: query_data.append(_construct_where_to_match(match_query.where_block)) return u" ".join(query_data) def emit_code_from_multiple_match_queries(match_queries): """Return a MATCH query string from a list of MatchQuery namedtuples.""" optional_variable_base_name = "$optional__" union_variable_name = "$result" query_data = deque([u"SELECT EXPAND(", union_variable_name, u")", u" LET "]) optional_variables = [] sub_queries = [emit_code_from_single_match_query(match_query) for match_query in match_queries] for (i, sub_query) in enumerate(sub_queries): variable_name = optional_variable_base_name + str(i) variable_assignment = variable_name + u" = (" sub_query_end = u")," query_data.append(variable_assignment) query_data.append(sub_query) query_data.append(sub_query_end) optional_variables.append(variable_name) query_data.append(union_variable_name) query_data.append(u" = UNIONALL(") query_data.append(u", ".join(optional_variables)) query_data.append(u")") return u" ".join(query_data) def emit_code_from_ir(schema_info, compound_match_query): """Return a MATCH query string from a CompoundMatchQuery.""" match_queries = compound_match_query.match_queries if len(match_queries) == 1: query_string = emit_code_from_single_match_query(match_queries[0]) elif len(match_queries) > 1: query_string = emit_code_from_multiple_match_queries(match_queries) else: raise AssertionError(u"Received CompoundMatchQuery with an empty list of MatchQueries: " u"{}".format(match_queries)) return query_string
52.411765
152
0.775907
0
0
0
0
0
0
0
0
1,872
0.233446
c794ff339d897246d1f9ee7d50c25c7781c1ee06
3,286
py
Python
mo_leduc.py
mohamedun/Deep-CFR
ec3a7fb06e11bd6cc65bb2bf6f16108ee41f7234
[ "MIT" ]
null
null
null
mo_leduc.py
mohamedun/Deep-CFR
ec3a7fb06e11bd6cc65bb2bf6f16108ee41f7234
[ "MIT" ]
null
null
null
mo_leduc.py
mohamedun/Deep-CFR
ec3a7fb06e11bd6cc65bb2bf6f16108ee41f7234
[ "MIT" ]
null
null
null
from PokerRL.game.games import StandardLeduc from PokerRL.game.games import BigLeduc from PokerRL.eval.rl_br.RLBRArgs import RLBRArgs from PokerRL.eval.lbr.LBRArgs import LBRArgs from PokerRL.game.bet_sets import POT_ONLY from DeepCFR.EvalAgentDeepCFR import EvalAgentDeepCFR from DeepCFR.TrainingProfile import TrainingProfile from DeepCFR.workers.driver.Driver import Driver import pdb if __name__ == '__main__': ctrl = Driver(t_prof=TrainingProfile(name="MO_LEDUC_BigLeduc_LBR", nn_type="feedforward", eval_agent_export_freq=3, checkpoint_freq=3, n_learner_actor_workers=5, max_buffer_size_adv=1e6, n_traversals_per_iter=500, n_batches_adv_training=250, mini_batch_size_adv=2048, game_cls=BigLeduc, n_units_final_adv=64, n_merge_and_table_layer_units_adv=64, init_adv_model="random", # warm start neural weights with init from last iter use_pre_layers_adv=False, # shallower nets use_pre_layers_avrg=False, # shallower nets # You can specify one or both modes. Choosing both is useful to compare them. eval_modes_of_algo=( EvalAgentDeepCFR.EVAL_MODE_SINGLE, # SD-CFR ), DISTRIBUTED=True, log_verbose=True, rl_br_args=RLBRArgs(rlbr_bet_set=None, n_hands_each_seat=200, n_workers=1, # Training DISTRIBUTED=False, n_iterations=100, play_n_games_per_iter=50, # The DDQN batch_size=512, ), lbr_args=LBRArgs(n_lbr_hands_per_seat=30000, n_parallel_lbr_workers=10, DISTRIBUTED=True, ), ), eval_methods={'br': 1, #'rlbr': 1, 'lbr': 1, }, n_iterations=12) ctrl.run() pdb.set_trace()
54.766667
119
0.370663
0
0
0
0
0
0
0
0
263
0.080037
c7964aa0abe4f31ae2f01cae5205b2c444d9f154
8,436
py
Python
geocircles/backend/gamestate.py
tmick0/geocircles
12845d006eeb0a4032679209a953c1cb072d06d7
[ "MIT" ]
null
null
null
geocircles/backend/gamestate.py
tmick0/geocircles
12845d006eeb0a4032679209a953c1cb072d06d7
[ "MIT" ]
null
null
null
geocircles/backend/gamestate.py
tmick0/geocircles
12845d006eeb0a4032679209a953c1cb072d06d7
[ "MIT" ]
null
null
null
import sqlite3 from enum import Enum import random __all__ = ['state_mgr', 'game_state', 'next_state'] class game_state (Enum): NEW_GAME = 0 WAITING_FOR_HOST = 1 HOST_CHOOSING = 2 GUEST_GUESSING = 3 GUEST_CHOOSING = 4 HOST_GUESSING = 5 def next_state(s): if s == game_state.WAITING_FOR_HOST.value: return game_state.GUEST_CHOOSING.value elif s == game_state.GUEST_CHOOSING.value: return game_state.HOST_GUESSING.value elif s == game_state.HOST_CHOOSING.value: return game_state.GUEST_GUESSING.value elif s == game_state.GUEST_GUESSING.value: return game_state.GUEST_CHOOSING.value elif s == game_state.HOST_GUESSING.value: return game_state.HOST_CHOOSING.value class state_mgr (object): def __init__(self, path): self.db = sqlite3.connect(path) cur = self.db.cursor() cur.execute(''' create table if not exists game ( game_id integer primary key, state integer default {:d} ) '''.format(game_state.NEW_GAME.value)) cur.execute(''' create table if not exists session ( session_id integer primary key, game_id integer not null references game (game_id), position integer not null, display_name text not null ) ''') cur.execute(''' create table if not exists challenge ( challenge_id integer primary key autoincrement, game_id integer not null references game (game_id), lat real not null, lon real not null, pano text not null, heading real not null, pitch real not null, zoom real not null, guesses int not null, radius int not null ) ''') cur.execute(''' create table if not exists guess ( guess_id integer primary key autoincrement, challenge_id integer not null references challenge (challenge_id), lat real not null, lon real not null, radius real not null, good integer not null ) ''') cur.execute(''' create table if not exists rules ( game_id integer primary key not null references game (game_id), max_circle integer not null, min_circle integer not null, num_circles integer not null, num_guesses integer not null, difficulty text not null ) ''') self.db.commit() def create_game(self, display_name): game = random.getrandbits(16) session = random.getrandbits(32) cur = self.db.cursor() cur.execute('insert into game (game_id) values (?)', [game]) cur.execute('insert into session (session_id, game_id, position, display_name) values (?, ?, ?, ?)', [ session, game, 0, display_name]) self.db.commit() return game, session def join_game(self, game, display_name): session = random.getrandbits(32) cur = self.db.cursor() cur.execute('insert into session (session_id, game_id, position, display_name) values (?, ?, ?, ?)', [ session, game, 1, display_name]) cur.execute('update game set state = ? where game_id = ?', [game_state.WAITING_FOR_HOST.value, game]) self.db.commit() return session def set_rules(self, game, rules): cur = self.db.cursor() cur.execute(''' insert into rules (game_id, max_circle, min_circle, num_circles, num_guesses, difficulty) values (?, ?, ?, ?, ?, ?) ''', [game, rules['start_size'], rules['end_size'], rules['num_circles'], rules['num_guesses'], rules['difficulty']]) self.db.commit() def get_rules(self, game): cur = self.db.cursor() cur.execute(''' select max_circle, min_circle, num_circles, num_guesses, difficulty from rules where game_id = ? ''', [game]) start_size, end_size, num_circles, num_guesses, difficulty = cur.fetchone() return { 'start_size': start_size, 'end_size': end_size, 'num_circles': num_circles, 'num_guesses': num_guesses, 'difficulty': difficulty } def resume_session(self, session): cur = self.db.cursor() cur.execute( 'select game.game_id, state, position, display_name from session left join game on session.game_id = game.game_id where session_id = ?', [session]) return cur.fetchone() def get_host_session(self, session): cur = self.db.cursor() cur.execute(''' select game.game_id, host.session_id from session as guest left join game on guest.game_id = game.game_id left join session as host on host.game_id = game.game_id where guest.session_id = ? and host.position = 0 ''', [session]) return cur.fetchone() def get_guest_session(self, session): cur = self.db.cursor() cur.execute(''' select game.game_id, guest.session_id from session as host left join game on host.game_id = game.game_id left join session as guest on guest.game_id = game.game_id where host.session_id = ? and guest.position = 1 ''', [session]) return cur.fetchone() def get_session_info(self, session): cur = self.db.cursor() cur.execute( 'select game.game_id, game.state, session.position from session left join game on session.game_id = game.game_id where session_id = ?', [session]) return cur.fetchone() def get_game_sessions(self, game): cur = self.db.cursor() cur.execute( 'select session_id from session where game_id = ? order by position asc', [game]) return [sid for (sid,) in cur.fetchall()] def set_state(self, game, state): cur = self.db.cursor() cur.execute('update game set state = ? where game_id = ?', [state, game]) self.db.commit() def set_challenge(self, game, lat, lon, pano, heading, pitch, zoom, guesses, radius): cur = self.db.cursor() cur.execute('insert into challenge (game_id, lat, lon, pano, heading, pitch, zoom, guesses, radius) values (?, ?, ?, ?, ?, ?, ?, ?, ?)', [ game, lat, lon, pano, heading, pitch, zoom, guesses, radius]) self.db.commit() def update_challenge(self, game, guesses, radius): cur = self.db.cursor() cur.execute( 'select challenge_id from challenge where game_id = ? order by challenge_id desc', [game]) challenge, = cur.fetchone() cur.execute('update challenge set guesses = ?, radius = ? where challenge_id = ?', [ guesses, radius, challenge]) self.db.commit() def get_challenge(self, game): cur = self.db.cursor() cur.execute( 'select lat, lon, pano, heading, pitch, zoom, guesses, radius from challenge where game_id = ? order by challenge_id desc', [game]) return cur.fetchone() def set_guess(self, game, lat, lon, radius, good): cur = self.db.cursor() cur.execute( 'select challenge_id from challenge where game_id = ? order by challenge_id desc', [game]) challenge, = cur.fetchone() cur.execute('insert into guess (challenge_id, lat, lon, radius, good) values (?, ?, ?, ?, ?)', [ challenge, lat, lon, radius, good]) self.db.commit() def get_guesses(self, game): cur = self.db.cursor() cur.execute( 'select challenge_id from challenge where game_id = ? order by challenge_id desc', [game]) challenge, = cur.fetchone() cur.execute( 'select lat, lon, radius, good from guess where challenge_id = ? order by guess_id asc', [challenge]) res = [] for lat, lon, radius, good in cur.fetchall(): res.append({ 'lat': lat, 'lon': lon, 'radius': radius, 'good': good }) return res def close(self): self.db.close() self.db = None
36.838428
159
0.580844
7,839
0.929232
0
0
0
0
0
0
3,965
0.470009
c79748fa89a41d17ad6e31fcee8a32474231a1c4
27
py
Python
tests/unit/providers/callables/__init__.py
YelloFam/python-dependency-injector
541131e33858ee1b8b5a7590d2bb9f929740ea1e
[ "BSD-3-Clause" ]
null
null
null
tests/unit/providers/callables/__init__.py
YelloFam/python-dependency-injector
541131e33858ee1b8b5a7590d2bb9f929740ea1e
[ "BSD-3-Clause" ]
null
null
null
tests/unit/providers/callables/__init__.py
YelloFam/python-dependency-injector
541131e33858ee1b8b5a7590d2bb9f929740ea1e
[ "BSD-3-Clause" ]
null
null
null
"""Tests for callables."""
13.5
26
0.62963
0
0
0
0
0
0
0
0
26
0.962963
c799f39a2d11cd8cf47042ccb70ce866c8193b11
191
py
Python
dss/dss_capi_gr/__init__.py
dss-extensions/dss_python
f6c4440a14287d06f1bd10180484b349f764ba7e
[ "BSD-3-Clause" ]
24
2019-03-07T20:24:24.000Z
2022-03-23T17:58:00.000Z
dss/dss_capi_gr/__init__.py
dss-extensions/dss_python
f6c4440a14287d06f1bd10180484b349f764ba7e
[ "BSD-3-Clause" ]
32
2019-02-14T03:46:31.000Z
2022-03-23T00:01:28.000Z
dss/dss_capi_ir/__init__.py
PMeira/dss_python
2dbc72ed875108d3f98d21cb0a488bab6b0d7f4c
[ "BSD-3-Clause" ]
5
2019-02-19T04:54:49.000Z
2022-03-23T10:40:51.000Z
''' A compatibility layer for DSS C-API that mimics the official OpenDSS COM interface. Copyright (c) 2016-2019 Paulo Meira ''' from __future__ import absolute_import from .IDSS import IDSS
23.875
83
0.78534
0
0
0
0
0
0
0
0
128
0.670157
c79a2fb3f10def9e365b5ba6af795f7018c3bbe1
693
py
Python
museflow/components/embedding_layer.py
BILLXZY1215/museflow
241a98ef7b3f435f29bd5d2861ac7b17d4c091d8
[ "BSD-3-Clause" ]
null
null
null
museflow/components/embedding_layer.py
BILLXZY1215/museflow
241a98ef7b3f435f29bd5d2861ac7b17d4c091d8
[ "BSD-3-Clause" ]
null
null
null
museflow/components/embedding_layer.py
BILLXZY1215/museflow
241a98ef7b3f435f29bd5d2861ac7b17d4c091d8
[ "BSD-3-Clause" ]
null
null
null
from .component import Component, using_scope import tensorflow.compat.v1 as tf tf.disable_v2_behavior() class EmbeddingLayer(Component): def __init__(self, input_size, output_size, name='embedding'): Component.__init__(self, name=name) self.input_size = input_size self.output_size = output_size with self.use_scope(): self.embedding_matrix = tf.get_variable( 'embedding_matrix', shape=[self.input_size, self.output_size]) self._built = True @using_scope def embed(self, x): return tf.nn.embedding_lookup(self.embedding_matrix, x) def __call__(self, inputs): return self.embed(inputs)
27.72
78
0.681097
585
0.844156
0
0
100
0.1443
0
0
29
0.041847
c79bb693d6ca4d67f78e8585c83eae0b233a16e3
76
py
Python
hydrocarbon_problem/env/__init__.py
lollcat/Aspen-RL
0abefb9e7def7762e829ac4d621519d9d01592c0
[ "MIT" ]
1
2021-12-09T04:27:33.000Z
2021-12-09T04:27:33.000Z
hydrocarbon_problem/env/__init__.py
lollcat/Aspen-RL
0abefb9e7def7762e829ac4d621519d9d01592c0
[ "MIT" ]
2
2021-12-09T08:47:12.000Z
2022-03-25T16:07:56.000Z
hydrocarbon_problem/env/__init__.py
lollcat/Aspen-RL
0abefb9e7def7762e829ac4d621519d9d01592c0
[ "MIT" ]
1
2022-03-23T13:53:54.000Z
2022-03-23T13:53:54.000Z
from hydrocarbon_problem.env.types_ import Observation, Done, Stream, Column
76
76
0.855263
0
0
0
0
0
0
0
0
0
0
c79c07c8078e5f1d72628e2e7fc0c80e75f6489c
12,955
py
Python
addon_common/common/decorators.py
Unnoen/retopoflow
73c7cfc10a0b58937198d60e308ba5248b446490
[ "OML" ]
1
2022-01-10T23:40:21.000Z
2022-01-10T23:40:21.000Z
addon_common/common/decorators.py
Unnoen/retopoflow
73c7cfc10a0b58937198d60e308ba5248b446490
[ "OML" ]
null
null
null
addon_common/common/decorators.py
Unnoen/retopoflow
73c7cfc10a0b58937198d60e308ba5248b446490
[ "OML" ]
null
null
null
''' Copyright (C) 2021 CG Cookie http://cgcookie.com [email protected] Created by Jonathan Denning, Jonathan Williamson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import os import re import json import time import inspect from functools import wraps import bpy debug_run_test_calls = False def debug_test_call(*args, **kwargs): def wrapper(fn): if debug_run_test_calls: ret = str(fn(*args,*kwargs)) print('TEST: %s()' % fn.__name__) if args: print(' arg:', args) if kwargs: print(' kwa:', kwargs) print(' ret:', ret) return fn return wrapper def stats_wrapper(fn): return fn if not hasattr(stats_report, 'stats'): stats_report.stats = dict() frame = inspect.currentframe().f_back f_locals = frame.f_locals filename = os.path.basename(frame.f_code.co_filename) clsname = f_locals['__qualname__'] if '__qualname__' in f_locals else '' linenum = frame.f_lineno fnname = fn.__name__ key = '%s%s (%s:%d)' % ( clsname + ('.' if clsname else ''), fnname, filename, linenum ) stats = stats_report.stats stats[key] = { 'filename': filename, 'clsname': clsname, 'linenum': linenum, 'fileline': '%s:%d' % (filename, linenum), 'fnname': fnname, 'count': 0, 'total time': 0, 'average time': 0, } def wrapped(*args, **kwargs): time_beg = time.time() ret = fn(*args, **kwargs) time_end = time.time() time_delta = time_end - time_beg d = stats[key] d['count'] += 1 d['total time'] += time_delta d['average time'] = d['total time'] / d['count'] return ret return wrapped def stats_report(): return stats = stats_report.stats if hasattr(stats_report, 'stats') else dict() l = max(len(k) for k in stats) def fmt(s): return s + ' ' * (l - len(s)) print() print('Call Statistics Report') cols = [ ('class', 'clsname', '%s'), ('func', 'fnname', '%s'), ('location', 'fileline', '%s'), # ('line','linenum','% 10d'), ('count', 'count', '% 8d'), ('total (sec)', 'total time', '% 10.4f'), ('avg (sec)', 'average time', '% 10.6f'), ] data = [stats[k] for k in sorted(stats)] data = [[h] + [f % row[c] for row in data] for (h, c, f) in cols] colwidths = [max(len(d) for d in col) for col in data] totwidth = sum(colwidths) + len(colwidths) - 1 def rpad(s, l): return '%s%s' % (s, ' ' * (l - len(s))) def printrow(i_row): row = [col[i_row] for col in data] print(' '.join(rpad(d, w) for (d, w) in zip(row, colwidths))) printrow(0) print('-' * totwidth) for i in range(1, len(data[0])): printrow(i) def add_cache(attr, default): def wrapper(fn): setattr(fn, attr, default) return fn return wrapper class LimitRecursion: def __init__(self, count, def_ret): self.count = count self.def_ret = def_ret self.calls = 0 def __call__(self, fn): def wrapped(*args, **kwargs): ret = self.def_ret if self.calls < self.count: try: self.calls += 1 ret = fn(*args, **kwargs) finally: self.calls -= 1 return ret return wrapped @add_cache('data', {'nested':0, 'last':None}) def timed_call(label): def wrapper(fn): def wrapped(*args, **kwargs): data = timed_call.data if data['last']: print(data['last']) data['last'] = f'''{" " * data['nested']}Timing {label}''' data['nested'] += 1 time_beg = time.time() ret = fn(*args, **kwargs) time_end = time.time() time_delta = time_end - time_beg if data['last']: print(f'''{data['last']}: {time_delta:0.4f}s''') data['last'] = None else: print(f'''{" " * data['nested']}{time_delta:0.4f}s''') data['nested'] -= 1 return ret return wrapped return wrapper # corrected bug in previous version of blender_version fn wrapper # https://github.com/CGCookie/retopoflow/commit/135746c7b4ee0052ad0c1842084b9ab983726b33#diff-d4260a97dcac93f76328dfaeb5c87688 def blender_version_wrapper(op, ver): self = blender_version_wrapper if not hasattr(self, 'fns'): major, minor, rev = bpy.app.version self.blenderver = '%d.%02d' % (major, minor) self.fns = fns = {} self.ops = { '<': lambda v: self.blenderver < v, '>': lambda v: self.blenderver > v, '<=': lambda v: self.blenderver <= v, '==': lambda v: self.blenderver == v, '>=': lambda v: self.blenderver >= v, '!=': lambda v: self.blenderver != v, } update_fn = self.ops[op](ver) def wrapit(fn): nonlocal self, update_fn fn_name = fn.__name__ fns = self.fns error_msg = "Could not find appropriate function named %s for version Blender %s" % (fn_name, self.blenderver) if update_fn: fns[fn_name] = fn def callit(*args, **kwargs): nonlocal fns, fn_name, error_msg fn = fns.get(fn_name, None) assert fn, error_msg ret = fn(*args, **kwargs) return ret return callit return wrapit def only_in_blender_version(*args, ignore_others=False, ignore_return=None): self = only_in_blender_version if not hasattr(self, 'fns'): major, minor, rev = bpy.app.version self.blenderver = '%d.%02d' % (major, minor) self.fns = {} self.ignores = {} self.ops = { '<': lambda v: self.blenderver < v, '>': lambda v: self.blenderver > v, '<=': lambda v: self.blenderver <= v, '==': lambda v: self.blenderver == v, '>=': lambda v: self.blenderver >= v, '!=': lambda v: self.blenderver != v, } self.re_blender_version = re.compile(r'^(?P<comparison><|<=|==|!=|>=|>) *(?P<version>\d\.\d\d)$') matches = [self.re_blender_version.match(arg) for arg in args] assert all(match is not None for match in matches), f'At least one arg did not match version comparison: {args}' results = [self.ops[match.group('comparison')](match.group('version')) for match in matches] version_matches = all(results) def wrapit(fn): fn_name = fn.__name__ if version_matches: assert fn_name not in self.fns, f'Multiple functions {fn_name} match the Blender version {self.blenderver}' self.fns[fn_name] = fn if ignore_others and fn_name not in self.ignores: self.ignores[fn_name] = ignore_return @wraps(fn) def callit(*args, **kwargs): fn = self.fns.get(fn_name, None) if fn_name not in self.ignores: assert fn, f'Could not find appropriate function named {fn_name} for version Blender version {self.blenderver}' elif fn is None: return self.ignores[fn_name] return fn(*args, **kwargs) return callit return wrapit def warn_once(warning): def wrapper(fn): nonlocal warning @wraps(fn) def wrapped(*args, **kwargs): nonlocal warning if warning: print(warning) warning = None return fn(*args, **kwargs) return wrapped return wrapper class PersistentOptions: class WrappedDict: def __init__(self, cls, filename, version, defaults, update_external): self._dirty = False self._last_save = time.time() self._write_delay = 2.0 self._defaults = defaults self._update_external = update_external self._defaults['persistent options version'] = version self._dict = {} if filename: src = inspect.getsourcefile(cls) path = os.path.split(os.path.abspath(src))[0] self._fndb = os.path.join(path, filename) else: self._fndb = None self.read() if self._dict.get('persistent options version', None) != version: self.reset() self.update_external() def update_external(self): upd = self._update_external if upd: upd() def dirty(self): self._dirty = True self.update_external() def clean(self, force=False): if not force: if not self._dirty: return if time.time() < self._last_save + self._write_delay: return if self._fndb: json.dump(self._dict, open(self._fndb, 'wt'), indent=2, sort_keys=True) self._dirty = False self._last_save = time.time() def read(self): self._dict = {} if self._fndb and os.path.exists(self._fndb): try: self._dict = json.load(open(self._fndb, 'rt')) except Exception as e: print('Exception caught while trying to read options from "%s"' % self._fndb) print(str(e)) for k in set(self._dict.keys()) - set(self._defaults.keys()): print('Deleting extraneous key "%s" from options' % k) del self._dict[k] self.update_external() self._dirty = False def keys(self): return self._defaults.keys() def reset(self): keys = list(self._dict.keys()) for k in keys: del self._dict[k] self._dict['persistent options version'] = self['persistent options version'] self.dirty() self.clean() def __getitem__(self, key): return self._dict[key] if key in self._dict else self._defaults[key] def __setitem__(self, key, val): assert key in self._defaults, 'Attempting to write "%s":"%s" to options, but key does not exist in defaults' % (str(key), str(val)) if self[key] == val: return self._dict[key] = val self.dirty() self.clean() def gettersetter(self, key, fn_get_wrap=None, fn_set_wrap=None): if not fn_get_wrap: fn_get_wrap = lambda v: v if not fn_set_wrap: fn_set_wrap = lambda v: v oself = self class GetSet: def get(self): return fn_get_wrap(oself[key]) def set(self, v): v = fn_set_wrap(v) if oself[key] != v: oself[key] = v return GetSet() def __init__(self, filename=None, version=None): self._filename = filename self._version = version self._db = None def __call__(self, cls): upd = getattr(cls, 'update', None) if upd: u = upd def wrap(): def upd_wrap(*args, **kwargs): u(None) return upd_wrap upd = wrap() self._db = PersistentOptions.WrappedDict(cls, self._filename, self._version, cls.defaults, upd) db = self._db class WrappedClass: def __init__(self, *args, **kwargs): self._db = db self._def = cls.defaults def __getitem__(self, key): return self._db[key] def __setitem__(self, key, val): self._db[key] = val def keys(self): return self._db.keys() def reset(self): self._db.reset() def clean(self): self._db.clean() def gettersetter(self, key, fn_get_wrap=None, fn_set_wrap=None): return self._db.gettersetter(key, fn_get_wrap=fn_get_wrap, fn_set_wrap=fn_set_wrap) return WrappedClass
33.475452
143
0.542802
5,070
0.391355
0
0
1,364
0.105288
0
0
2,388
0.18433
c79d02fd3237e472a6910ab89fe822c176242e9f
11,414
py
Python
venv/Lib/site-packages/pandas/tests/window/moments/test_moments_consistency_ewm.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
28,899
2016-10-13T03:32:12.000Z
2022-03-31T21:39:05.000Z
venv/Lib/site-packages/pandas/tests/window/moments/test_moments_consistency_ewm.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
31,004
2016-10-12T23:22:27.000Z
2022-03-31T23:17:38.000Z
venv/Lib/site-packages/pandas/tests/window/moments/test_moments_consistency_ewm.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
15,149
2016-10-13T03:21:31.000Z
2022-03-31T18:46:47.000Z
import numpy as np import pytest from pandas import ( DataFrame, Series, concat, ) import pandas._testing as tm @pytest.mark.parametrize("func", ["cov", "corr"]) def test_ewm_pairwise_cov_corr(func, frame): result = getattr(frame.ewm(span=10, min_periods=5), func)() result = result.loc[(slice(None), 1), 5] result.index = result.index.droplevel(1) expected = getattr(frame[1].ewm(span=10, min_periods=5), func)(frame[5]) tm.assert_series_equal(result, expected, check_names=False) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov(name): A = Series(np.random.randn(50), index=np.arange(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=5), name)(B) assert np.isnan(result.values[:14]).all() assert not np.isnan(result.values[14:]).any() @pytest.mark.parametrize("min_periods", [0, 1, 2]) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov_min_periods(name, min_periods): # GH 7898 A = Series(np.random.randn(50), index=np.arange(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=min_periods), name)(B) # binary functions (ewmcov, ewmcorr) with bias=False require at # least two values assert np.isnan(result.values[:11]).all() assert not np.isnan(result.values[11:]).any() # check series of length 0 empty = Series([], dtype=np.float64) result = getattr(empty.ewm(com=50, min_periods=min_periods), name)(empty) tm.assert_series_equal(result, empty) # check series of length 1 result = getattr(Series([1.0]).ewm(com=50, min_periods=min_periods), name)( Series([1.0]) ) tm.assert_series_equal(result, Series([np.NaN])) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_different_input_array_raise_exception(name): A = Series(np.random.randn(50), index=np.arange(50)) A[:10] = np.NaN msg = "other must be a DataFrame or Series" # exception raised is Exception with pytest.raises(ValueError, match=msg): getattr(A.ewm(com=20, min_periods=5), name)(np.random.randn(50)) def create_mock_weights(obj, com, adjust, ignore_na): if isinstance(obj, DataFrame): if not len(obj.columns): return DataFrame(index=obj.index, columns=obj.columns) w = concat( [ create_mock_series_weights( obj.iloc[:, i], com=com, adjust=adjust, ignore_na=ignore_na ) for i, _ in enumerate(obj.columns) ], axis=1, ) w.index = obj.index w.columns = obj.columns return w else: return create_mock_series_weights(obj, com, adjust, ignore_na) def create_mock_series_weights(s, com, adjust, ignore_na): w = Series(np.nan, index=s.index) alpha = 1.0 / (1.0 + com) if adjust: count = 0 for i in range(len(s)): if s.iat[i] == s.iat[i]: w.iat[i] = pow(1.0 / (1.0 - alpha), count) count += 1 elif not ignore_na: count += 1 else: sum_wts = 0.0 prev_i = -1 count = 0 for i in range(len(s)): if s.iat[i] == s.iat[i]: if prev_i == -1: w.iat[i] = 1.0 else: w.iat[i] = alpha * sum_wts / pow(1.0 - alpha, count - prev_i) sum_wts += w.iat[i] prev_i = count count += 1 elif not ignore_na: count += 1 return w @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_mean(consistency_data, adjust, ignore_na, min_periods): x, is_constant, no_nans = consistency_data com = 3.0 result = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() weights = create_mock_weights(x, com=com, adjust=adjust, ignore_na=ignore_na) expected = ( x.multiply(weights).cumsum().divide(weights.cumsum()).fillna(method="ffill") ) expected[ x.expanding().count() < (max(min_periods, 1) if min_periods else 1) ] = np.nan tm.assert_equal(result, expected.astype("float64")) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_consistent(consistency_data, adjust, ignore_na, min_periods): x, is_constant, no_nans = consistency_data com = 3.0 if is_constant: count_x = x.expanding().count() mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() # check that correlation of a series with itself is either 1 or NaN corr_x_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).corr(x) exp = x.max() if isinstance(x, Series) else x.max().max() # check mean of constant series expected = x * np.nan expected[count_x >= max(min_periods, 1)] = exp tm.assert_equal(mean_x, expected) # check correlation of constant series with itself is NaN expected[:] = np.nan tm.assert_equal(corr_x_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_var_debiasing_factors( consistency_data, adjust, ignore_na, min_periods ): x, is_constant, no_nans = consistency_data com = 3.0 # check variance debiasing factors var_unbiased_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=False) var_biased_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=True) weights = create_mock_weights(x, com=com, adjust=adjust, ignore_na=ignore_na) cum_sum = weights.cumsum().fillna(method="ffill") cum_sum_sq = (weights * weights).cumsum().fillna(method="ffill") numerator = cum_sum * cum_sum denominator = numerator - cum_sum_sq denominator[denominator <= 0.0] = np.nan var_debiasing_factors_x = numerator / denominator tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_moments_consistency_var( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) assert not (var_x < 0).any().any() if bias: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x2 = ( (x * x) .ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na) .mean() ) tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_moments_consistency_var_constant( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 if is_constant: count_x = x.expanding(min_periods=min_periods).count() var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = x * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if not bias: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_std(consistency_data, adjust, ignore_na, min_periods, bias): x, is_constant, no_nans = consistency_data com = 3.0 var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) std_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) assert not (var_x < 0).any().any() assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_cov(consistency_data, adjust, ignore_na, min_periods, bias): x, is_constant, no_nans = consistency_data com = 3.0 var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) assert not (var_x < 0).any().any() cov_x_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).cov(x, bias=bias) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_series_cov_corr( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 if isinstance(x, Series): var_x_plus_y = ( (x + x) .ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na) .var(bias=bias) ) var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) var_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) cov_x_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).cov(x, bias=bias) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2 tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y)) # check that corr(x, y) == cov(x, y) / (std(x) * # std(y)) corr_x_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).corr(x, bias=bias) std_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) std_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y)) if bias: # check that biased cov(x, y) == mean(x*y) - # mean(x)*mean(y) mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() mean_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() mean_x_times_y = ( (x * x) .ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ) .mean() ) tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
34.173653
88
0.615297
0
0
0
0
9,779
0.856755
0
0
992
0.086911
c79e030266cfddaf92e93230023130a13241d6c0
6,895
py
Python
brainex/query.py
ebuntel/BrainExTemp
991038155a6e9289af90da3d800210841ef23ff1
[ "MIT" ]
1
2020-09-04T16:15:26.000Z
2020-09-04T16:15:26.000Z
brainex/query.py
ebuntel/Brainextemp
991038155a6e9289af90da3d800210841ef23ff1
[ "MIT" ]
null
null
null
brainex/query.py
ebuntel/Brainextemp
991038155a6e9289af90da3d800210841ef23ff1
[ "MIT" ]
null
null
null
# TODO finish implementing query import math from pyspark import SparkContext # from genex.cluster import sim_between_seq from brainex.op.query_op import sim_between_seq from brainex.parse import strip_function, remove_trailing_zeros from .classes import Sequence from brainex.database import genexengine def query(q: Sequence, gc: genexengine, loi: list, sc: SparkContext, k:int=1, ex_sameID: bool=False, overlap: float= 1.0, mode:str='genex'): """ :param q: query sequence :param gc: Gcluster in which to query :param loi: list of two integer values, specifying the query range, if set to None, is going to query all length :param sc: spark context on which to run the query operation :param k: integer, specifying to return top k matches :param ex_sameID: boolean, whether to include sequences from the time series with the same id as the query sequence :param overlap: float, how much overlapping between queries lookups :param mode: query mode, supported modes are 'genex' and 'bf' (bf = brute force) """ if mode == 'genex': gquery() elif mode == 'bf': bfquery() else: raise Exception('Unsupported query mode: ' + mode) def get_query_from_dict(): pass def get_query_sequence_from_file(file: str): resList = [] with open(file, 'r') as f: for i, line in enumerate(f): if not i: features = list(map(lambda x: strip_function(x), line.strip()[:-1].split(','))) if line != "" and line != "\n": data = remove_trailing_zeros(line.split(",")[:-1]) series_data = data[len(features):] resList.append(series_data) if len(resList[0]) == 0: return resList[1:] else: return resList def gquery(query_list: list, gc_data: dict, loi: list, input_list: list, k:int=1, ex_sameID: bool=False, overlap: float= 1.0, ): """ Because Gcluster object doesn't have map property, we have to use dict as input :param file: :param gc_data: :param loi: :param input_list: :param k: :param ex_sameID: :param overlap: :return: """ # get query from id, start, end point # get query from csv file # # query_list = [] # query_set = get_query_from_csv_with_id(file) # print(query_set) # for cur_query in query_set: # query_list.append(get_query_from_sequence(cur_query[0], int(cur_query[1]), int(cur_query[2]), input_list)) # print(query_list) return custom_query(query_list, loi, gc_data, k, input_list) def bfquery(): print() # # def custom_query_operation(q: Sequence, gc: Gcluster, loi: list, sc: SparkContext, # k:int=1, ex_sameID: bool=False, overlap: float= 1.0): # # query_result = filter_rdd_back.repartition(16).map( # lambda clusters: custom_query(q, loi, gc, k, # global_time_series_dict.value, )) # # changed here # # plot_query_result(query_sequence, query_result, global_time_series_dict.value) # return query_result def get_query_from_sequence(id: tuple, start: int, end: int, input_list: list): """ :param id: :param start: :param end: :param input_list: :return: a list """ try: input_dict = dict(input_list) # validate by converting input_list into a dict except (TypeError, ValueError): raise Exception('sequence: fetch_data: input_list is not key-value pair.') return input_dict[id][start: end] def custom_query(query_sequences: list, loi: list, Gcluster_data:dict, k : int, input_list:list): # """ # # :param query_sequences: list of list: the list of sequences to be queried # :param cluster: dict[key = representative, value = list of timeSeriesObj] -> representative is timeSeriesObj # the sequences in the cluster are all of the SAME length # :param k: int # :return list of time series objects: best k matches. Again note they are all of the SAME length # """ """ :param query_sequences: :param query_range: :param Gcluster_data: :param k: :param input_list: :return: """ # get query from csv file which contains lists of list of query actual clusters # get query from csv file which contains lists of tuple of id, start, endpoint query_result = dict() if not isinstance(query_sequences, list) or len(query_sequences) == 0: raise ValueError("query sequence must be a list and not empty") cur_query_number = 0 if isinstance(query_sequences[0], list): print("length of query is [" + str(len(query_sequences)) + "]" + "[" + str(len(query_sequences[0])) + "]") print("query is a list of list") for cur_query in query_sequences: if isinstance(cur_query, list): query_result[cur_query_number] = get_most_k_sim(cur_query, loi, Gcluster_data, k, input_list) cur_query_number += 1 return query_result else: return get_most_k_sim(query_sequences, loi, Gcluster_data, k, input_list) def get_most_k_sim(query_sequence: list, loi: list, Gcluster_data : dict, k, input_list:list): """ :param query_sequence: :param query_range: :param Gcluster_data: :param k: :param input_list: :return: """ min_rprs = None # the representative that is closest to the query distance min_dist = math.inf target_cluster = [] print("length of gcluster clusters is " + str(len(Gcluster_data[1]))) for cur_rprs_seq in Gcluster_data[1].keys(): # TODO do we want to get raw clusters here, or set the raw in timeSeriesObj before calling query (no parsing) if (cur_rprs_seq.end - cur_rprs_seq.start + 1) in range(loi[0], loi[1] + 1): # modify here, not use get clusters from objects, use values cur_dist = sim_between_seq(query_sequence, cur_rprs_seq.fetch_data(input_list)) if cur_dist < min_dist: min_rprs = cur_rprs_seq min_dist = cur_dist else: break if min_rprs: print('min representative is ' + min_rprs.__str__()) print('min dist' + str(min_dist)) # print("Querying Cluster of length: " + str(len(get_data_for_timeSeriesObj(min_rprs, time_series_dict)))) target_cluster = Gcluster_data[1].get(min_rprs) print('len of cluster is ' + str(len(target_cluster))) # print("sorting") # target_cluster.sort(key=lambda cluster_sequence: sim_between_seq(query_sequence, cluster_sequence.data)) k = int(k) return target_cluster[0:k] # return the k most similar sequences else: return None
33.634146
119
0.639014
0
0
0
0
0
0
0
0
3,347
0.485424
c79e23eb5e67f7342ba09df2a42c01c2772ded3a
4,161
py
Python
main.py
orgr/arbitrage_bot
39365dce0dcae0f6bb4baf1d7c32392e28b6c623
[ "MIT" ]
null
null
null
main.py
orgr/arbitrage_bot
39365dce0dcae0f6bb4baf1d7c32392e28b6c623
[ "MIT" ]
1
2021-12-13T03:48:08.000Z
2021-12-13T04:58:36.000Z
main.py
orgr/arbitrage_bot
39365dce0dcae0f6bb4baf1d7c32392e28b6c623
[ "MIT" ]
null
null
null
import sys import time from typing import List import asyncio import ccxt.async_support as ccxt # import ccxt import itertools from enum import Enum class Color(Enum): GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' RESET = '\033[0m' def colorize(s, color: Color): # return color.value + s + Color.RESET.value return "{}{}{}".format(color.value, s, Color.RESET.value) def green(s): return colorize(s, Color.GREEN) def yellow(s): return colorize(s, Color.YELLOW) def red(s): return colorize(s, Color.RED) class ArbitrageOpportunity(Enum): NONE = 0 BUY = 1 SELL = 2 def __str__(self): return self.name def get_complementary_trade(t: ArbitrageOpportunity): assert (t != ArbitrageOpportunity.NONE) return ArbitrageOpportunity.BUY if t == ArbitrageOpportunity.SELL else ArbitrageOpportunity.SELL class Price: def __init__(self, exchange, symbol, bid, ask): self.exchange = exchange self.symbol = symbol self.bid = bid self.ask = ask def is_opportunity(self, other): if self.bid > other.ask: return ArbitrageOpportunity.BUY # buy from other exchange if self.ask < other.bid: return ArbitrageOpportunity.SELL # buy from this exchange return ArbitrageOpportunity.NONE def compare_prices(p1: Price, p2: Price): return p1.is_opportunity(p2) async def get_price(symbol, exchange) -> Price: orderbook = await exchange.fetch_order_book(symbol, 10) bid = orderbook['bids'][0][0] if len(orderbook['bids']) > 0 else None ask = orderbook['asks'][0][0] if len(orderbook['asks']) > 0 else None # spread = (ask - bid) if (bid and ask) else None # print(ex.id, 'market price', {'bid': bid, 'ask': ask, 'spread': spread}) if bid is None or ask is None: return None return Price(exchange, symbol, float(bid), float(ask)) async def main(): if len(sys.argv) < 3: print("Usage: python {} <exchange id 1> <exchange id 2> ...".format(sys.argv[0])) return exchanges = [] try: # initialize exchanges tasks = [] for ex_id in sys.argv[1:]: try: ex = getattr(ccxt, ex_id)({'enableRateLimit': True}) # type: ccxt.Exchange # ex.set_sandbox_mode(enabled=True) except AttributeError: print("{} is not supported".format(ex_id)) return except ccxt.NotSupported: print("{} paper trading is not supported".format(ex_id)) return tasks.append(asyncio.create_task(ex.load_markets())) exchanges.append(ex) [await t for t in tasks] all_symbols = [symbol for ex in exchanges for symbol in ex.symbols] unique_arbitrable_symbols = set([symbol for symbol in all_symbols if all_symbols.count(symbol) > 1]) for symbol in unique_arbitrable_symbols: tasks = [] for ex in exchanges: tasks.append(asyncio.create_task(get_price(symbol, ex))) [await t for t in tasks] prices = [t.result() for t in tasks] if len(prices) > 1: arbitrage_pairs = itertools.combinations(prices, r=2) for p in arbitrage_pairs: opportunity = compare_prices(p[0], p[1]) if opportunity != ArbitrageOpportunity.NONE: print(green("{}: {} from {}, {} from {}".format(symbol, opportunity, p[1].exchange.id, get_complementary_trade(opportunity), p[0].exchange.id))) else: print(yellow(symbol)) # close all connections on KeyboardInterrupts and errors finally: [await ex.close() for ex in exchanges] if __name__ == '__main__': asyncio.run(main())
30.152174
111
0.564768
713
0.171353
0
0
0
0
2,598
0.624369
609
0.146359
c79ee6a1b6ebeba170b33fbfe523726f9f206dbb
1,497
py
Python
examples/click-ninja/clickninja-final.py
predicatemike/predigame
096e8379beb1d40ccb3f19ed2bb3ad82b405bb7f
[ "Apache-2.0" ]
null
null
null
examples/click-ninja/clickninja-final.py
predicatemike/predigame
096e8379beb1d40ccb3f19ed2bb3ad82b405bb7f
[ "Apache-2.0" ]
null
null
null
examples/click-ninja/clickninja-final.py
predicatemike/predigame
096e8379beb1d40ccb3f19ed2bb3ad82b405bb7f
[ "Apache-2.0" ]
null
null
null
WIDTH = 20 HEIGHT = 14 TITLE = 'Click Ninja' BACKGROUND = 'board' def destroy(s): sound('swoosh') if s.name == 'taco': score(50) else: score(5) # draw a splatting image at the center position of the image image('redsplat', center=s.event_pos, size=2).fade(1.0) s.fade(0.25) def failure(s): score(-20) if s.name == 'bomb': s.destroy() image('explode', center=s.center, size=10).pulse(0.05) if s.name == 'bomb' or score() < 0: sound('scream') text('You Survived %s seconds' % time(), MAROON) callback(gameover, 0.01) def spawn(): speed = randint(2, 10) size = randint(1,4) target = choice(['bananas', 'cherries', 'olives', 'ham', 'hotdog', 'fries','icee', 'pizza']) if randint(1, 4) == 2: target = 'bomb' if randint(1, 10) == 5: target = 'taco' sound('launch') arc = rand_arc() s = image(target, arc[0], size=size) if target == 'bomb': s.speed(speed).spin(1).clicked(failure) s.move_to(arc[1], arc[2], callback = s.destroy) elif target == 'taco': s.speed(5).spin().clicked(destroy) s.move_to((-10, -2), (-5, HEIGHT/2), (WIDTH+1, HEIGHT/2), callback = s.destroy) else: s.speed(speed).clicked(destroy) s.move_to(arc[1], arc[2], callback = lambda: failure(s)) callback(spawn, rand(0.1, 3)) score(color = PURPLE) callback(spawn, 1) keydown('r', reset)
24.145161
86
0.549766
0
0
0
0
0
0
0
0
253
0.169005
c79f981e96642b4e8be1f381e054bf741fdc029f
7,166
py
Python
nni/retiarii/hub/pytorch/nasbench201.py
nbl97/nni
1530339d3e964a5ea95a0afde1775ec9167cdcc0
[ "MIT" ]
2,305
2018-09-07T12:42:26.000Z
2019-05-06T20:14:24.000Z
nni/retiarii/hub/pytorch/nasbench201.py
nbl97/nni
1530339d3e964a5ea95a0afde1775ec9167cdcc0
[ "MIT" ]
379
2018-09-10T10:19:50.000Z
2019-05-06T18:04:46.000Z
nni/retiarii/hub/pytorch/nasbench201.py
nbl97/nni
1530339d3e964a5ea95a0afde1775ec9167cdcc0
[ "MIT" ]
314
2018-09-08T05:36:08.000Z
2019-05-06T08:48:51.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Callable, Dict import torch import torch.nn as nn from nni.retiarii import model_wrapper from nni.retiarii.nn.pytorch import NasBench201Cell __all__ = ['NasBench201'] OPS_WITH_STRIDE = { 'none': lambda C_in, C_out, stride: Zero(C_in, C_out, stride), 'avg_pool_3x3': lambda C_in, C_out, stride: Pooling(C_in, C_out, stride, 'avg'), 'max_pool_3x3': lambda C_in, C_out, stride: Pooling(C_in, C_out, stride, 'max'), 'conv_3x3': lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3, 3), (stride, stride), (1, 1), (1, 1)), 'conv_1x1': lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1, 1), (stride, stride), (0, 0), (1, 1)), 'skip_connect': lambda C_in, C_out, stride: nn.Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride), } PRIMITIVES = ['none', 'skip_connect', 'conv_1x1', 'conv_3x3', 'avg_pool_3x3'] class ReLUConvBN(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(C_out) ) def forward(self, x): return self.op(x) class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out), ) def forward(self, x): return self.op(x) class Pooling(nn.Module): def __init__(self, C_in, C_out, stride, mode): super(Pooling, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1) if mode == 'avg': self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) else: raise ValueError('Invalid mode={:} in Pooling'.format(mode)) def forward(self, x): if self.preprocess: x = self.preprocess(x) return self.op(x) class Zero(nn.Module): def __init__(self, C_in, C_out, stride): super(Zero, self).__init__() self.C_in = C_in self.C_out = C_out self.stride = stride self.is_zero = True def forward(self, x): if self.C_in == self.C_out: if self.stride == 1: return x.mul(0.) else: return x[:, :, ::self.stride, ::self.stride].mul(0.) else: shape = list(x.shape) shape[1] = self.C_out zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) return zeros class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out, stride): super(FactorizedReduce, self).__init__() self.stride = stride self.C_in = C_in self.C_out = C_out self.relu = nn.ReLU(inplace=False) if stride == 2: C_outs = [C_out // 2, C_out - C_out // 2] self.convs = nn.ModuleList() for i in range(2): self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False)) self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) else: raise ValueError('Invalid stride : {:}'.format(stride)) self.bn = nn.BatchNorm2d(C_out) def forward(self, x): x = self.relu(x) y = self.pad(x) out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1) out = self.bn(out) return out class ResNetBasicblock(nn.Module): def __init__(self, inplanes, planes, stride): super(ResNetBasicblock, self).__init__() assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1) self.conv_b = ReLUConvBN(planes, planes, 3, 1, 1, 1) if stride == 2: self.downsample = nn.Sequential( nn.AvgPool2d(kernel_size=2, stride=2, padding=0), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) elif inplanes != planes: self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1) else: self.downsample = None self.in_dim = inplanes self.out_dim = planes self.stride = stride self.num_conv = 2 def forward(self, inputs): basicblock = self.conv_a(inputs) basicblock = self.conv_b(basicblock) if self.downsample is not None: inputs = self.downsample(inputs) # residual return inputs + basicblock @model_wrapper class NasBench201(nn.Module): """The full search space proposed by `NAS-Bench-201 <https://arxiv.org/abs/2001.00326>`__. It's a stack of :class:`NasBench201Cell`. """ def __init__(self, stem_out_channels: int = 16, num_modules_per_stack: int = 5, num_labels: int = 10): super().__init__() self.channels = C = stem_out_channels self.num_modules = N = num_modules_per_stack self.num_labels = num_labels self.stem = nn.Sequential( nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) ) layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N C_prev = C self.cells = nn.ModuleList() for C_curr, reduction in zip(layer_channels, layer_reductions): if reduction: cell = ResNetBasicblock(C_prev, C_curr, 2) else: ops: Dict[str, Callable[[int, int], nn.Module]] = { prim: lambda C_in, C_out: OPS_WITH_STRIDE[prim](C_in, C_out, 1) for prim in PRIMITIVES } cell = NasBench201Cell(ops, C_prev, C_curr, label='cell') self.cells.append(cell) C_prev = C_curr self.lastact = nn.Sequential( nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True) ) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, self.num_labels) def forward(self, inputs): feature = self.stem(inputs) for cell in self.cells: feature = cell(feature) out = self.lastact(feature) out = self.global_pooling(out) out = out.view(out.size(0), -1) logits = self.classifier(out) return logits
34.786408
110
0.579542
6,161
0.859754
0
0
1,935
0.270025
0
0
458
0.063913
c7a0f4dd6f424ce5b114a5129ff1abc4021aa810
1,195
py
Python
setup.py
Pasha13666/dialog_py
c54a0e06dc0a5f86d9791b8cbd6fcfacb5b644ff
[ "MIT" ]
1
2021-02-17T07:38:01.000Z
2021-02-17T07:38:01.000Z
setup.py
Pasha13666/dialog_py
c54a0e06dc0a5f86d9791b8cbd6fcfacb5b644ff
[ "MIT" ]
null
null
null
setup.py
Pasha13666/dialog_py
c54a0e06dc0a5f86d9791b8cbd6fcfacb5b644ff
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os from setuptools import setup with open(os.path.join(os.path.dirname(__file__), 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='dialog_py', version='1.0a1', description='Python API for cdialog/linux dialog', long_description=long_description, url='https://github.com/pasha13666/dialog_py', author='Pasha__kun', author_email='[email protected]', packages=['dialog_py'], install_requires=[], include_package_data=True, license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython' ] )
31.447368
88
0.620921
0
0
0
0
0
0
0
0
676
0.56569
c7a18f6b2dc263a28bbb7cb8d8990ce3618a2615
8,334
py
Python
test/test_who.py
rliebz/whoswho
0c411e418c240fcec6ea0a23d15bd003056c65d0
[ "MIT" ]
28
2018-02-14T23:14:59.000Z
2021-07-08T07:24:54.000Z
test/test_who.py
rliebz/whoswho
0c411e418c240fcec6ea0a23d15bd003056c65d0
[ "MIT" ]
1
2019-01-21T15:25:49.000Z
2019-01-23T19:03:06.000Z
test/test_who.py
rliebz/whoswho
0c411e418c240fcec6ea0a23d15bd003056c65d0
[ "MIT" ]
2
2018-09-27T05:46:46.000Z
2020-07-16T05:19:02.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import unittest import nose from nose.tools import * from whoswho import who, config from nameparser.config.titles import TITLES as NAMEPARSER_TITLES class TestMatch(unittest.TestCase): def setUp(self): self.name = 'Robert Evan Liebowitz' def test_string(self): # Only relevant for python 2.X assert_true(who.match(self.name, str('Robert Liebowitz'))) def test_unicode(self): name = self.name assert_true(who.match(name, 'attaché Robert Evan Liebowitz')) assert_true(who.match(name, 'Rōbért Èvān Lîęböwitz')) assert_false(who.match(name, 'Rōbért Èvān Lęîböwitz')) def test_name_and_initials(self): assert_true(who.match(self.name, 'R. Evan Liebowitz')) assert_true(who.match(self.name, 'Robert E. Liebowitz')) assert_true(who.match(self.name, 'R. E. Liebowitz')) def test_different_number_initials(self): assert_true(who.match(self.name, 'Robert Liebowitz')) assert_true(who.match(self.name, 'R. Liebowitz')) assert_false(who.match(self.name, 'Robert E. E. Liebowitz')) assert_false(who.match(self.name, 'R. E. E. Liebowitz')) assert_true(who.match('R.E.E. Liebowitz', 'R. E. E. Liebowitz')) def test_different_initials(self): assert_false(who.match(self.name, 'E. R. Liebowitz')) assert_false(who.match(self.name, 'E. Liebowitz')) assert_false(who.match(self.name, 'R. V. Liebowitz')) assert_false(who.match(self.name, 'O. E. Liebowitz')) def test_short_names(self): assert_true(who.match(self.name, 'Rob Liebowitz')) # TODO: Should these be true? assert_false(who.match(self.name, 'Bert Liebowitz')) assert_false(who.match(self.name, 'Robbie Liebowitz')) def test_suffixes(self): name = 'Robert Liebowitz Jr' assert_true(who.match(name, 'Robert Liebowitz')) assert_true(who.match(name, 'Robert Liebowitz Jr')) assert_true(who.match(name, 'Robert Liebowitz, PhD')) assert_false(who.match(name, 'Robert Liebowitz, Sr')) assert_false(who.match(name, 'Robert Liebowitz, Sr, PhD')) assert_true(who.match(name, 'Robert Liebowitz, Jr, PhD')) def test_equivalent_suffixes(self): name = 'Robert Liebowitz Jr' assert_true(who.match(name, 'Robert Liebowitz Jnr')) assert_false(who.match(name, 'Robert Liebowitz Snr')) def test_titles(self): name = 'Mr. Robert Liebowitz' assert_true(who.match(name, 'Robert Liebowitz')) assert_true(who.match(name, 'Sir Robert Liebowitz')) assert_true(who.match(name, 'Dr. Robert Liebowitz')) assert_false(who.match(name, 'Mrs. Robert Liebowitz')) def test_nickname(self): name = 'Robert "Evan" Liebowitz' assert_true(who.match(name, 'Evan Liebowitz')) assert_true(who.match('Evan Liebowitz', name)) assert_false(who.match(name, 'Wrongbert Lieobwitz')) assert_false(who.match(name, 'Robert Evan')) assert_false(who.match(name, 'Evan Liebowitz', options={'check_nickname': False})) class TestRatio(unittest.TestCase): def setUp(self): self.name = 'Robert Evan Liebowitz' def test_string(self): # Only relevant for python 2.X assert_equal(who.ratio(self.name, str('Robert Liebowitz')), 100) def test_unicode(self): name = self.name assert_equal(who.ratio(name, 'attaché Robert Evan Liebowitz'), 100) assert_equal(who.ratio(name, 'Rōbért Èvān Lîęböwitz'), 100) assert_true(who.ratio(name, 'Rōbért Èvān Lęîböwitz') < 100) def test_name_and_initials(self): assert_equal(who.ratio(self.name, 'R. Evan Liebowitz'), 100) assert_equal(who.ratio(self.name, 'Robert E. Liebowitz'), 100) assert_equal(who.ratio(self.name, 'R. E. Liebowitz'), 100) def test_different_number_initials(self): assert_equal(who.ratio(self.name, 'Robert Liebowitz'), 100) assert_equal(who.ratio(self.name, 'R. Liebowitz'), 100) assert_true(who.ratio(self.name, 'Robert E. E. Liebowitz') < 100) assert_true(who.ratio(self.name, 'R. E. E. Liebowitz') < 100) assert_equal(who.ratio('R.E.E. Liebowitz', 'R. E. E. Liebowitz'), 100) def test_different_initials(self): assert_true(who.ratio(self.name, 'E. R. Liebowitz') < 100) assert_true(who.ratio(self.name, 'E. Liebowitz') < 100) assert_true(who.ratio(self.name, 'R. V. Liebowitz') < 100) assert_true(who.ratio(self.name, 'O. E. Liebowitz') < 100) assert_true(who.ratio(self.name, 'E. R. Liebowitz') < who.ratio(self.name, 'E. E. Liebowitz')) assert_true(who.ratio(self.name, 'E. R. Liebowitz') < who.ratio(self.name, 'R. R. Liebowitz')) assert_true(who.ratio(self.name, 'E. R. Liebowitz') < who.ratio(self.name, 'E. Liebowitz')) def test_short_names(self): assert_true(who.ratio(self.name, 'Rob Liebowitz')) assert_true(who.ratio(self.name, 'Bert Liebowitz') < 100) assert_true(who.ratio(self.name, 'Robbie Liebowitz') < 100) assert_true(who.ratio(self.name, 'xxxxx Liebowitz') < who.ratio(self.name, 'Bobby Liebowitz')) def test_suffixes(self): name = 'Robert Liebowitz Jr' assert_equal(who.ratio(name, 'Robert Liebowitz'), 100) assert_equal(who.ratio(name, 'Robert Liebowitz Jr'), 100) assert_equal(who.ratio(name, 'Robert Liebowitz, PhD'), 100) assert_false(who.ratio(name, 'Robert Liebowitz, Sr')) assert_false(who.ratio(name, 'Robert Liebowitz, Sr, PhD')) assert_equal(who.ratio(name, 'Robert Liebowitz, Jr, PhD'), 100) # Suffix doesn't change a match assert_equal(who.ratio(name, 'Zachary Liebowitz, Jr'), who.ratio(name, 'Zachary Liebowitz')) def test_equivalent_suffixes(self): name = 'Robert Liebowitz Jr' assert_equal(who.ratio(name, 'Robert Liebowitz Jnr'), 100) assert_false(who.ratio(name, 'Robert Liebowitz Snr')) def test_titles(self): name = 'Mr. Robert Liebowitz' assert_equal(who.ratio(name, 'Robert Liebowitz'), 100) assert_equal(who.ratio(name, 'Sir Robert Liebowitz'), 100) assert_equal(who.ratio(name, 'Dr. Robert Liebowitz'), 100) assert_false(who.ratio(name, 'Mrs. Robert Liebowitz')) # Title doesn't change a match assert_equal(who.ratio(name, 'Dr. Zachary Liebowitz'), who.ratio(name, 'Zachary Liebowitz')) def test_nickname(self): name = 'Robert "Evan" Liebowitz' assert_equal(who.ratio(name, 'Evan Liebowitz'), 100) assert_equal(who.ratio('Evan Liebowitz', name), 100) assert_true(who.ratio(name, 'Wrongbert Lieobwitz') < 100) assert_true(who.ratio(name, 'Robert Evan') < 100) assert_true(who.ratio(name, 'Evan Liebowitz', options={'check_nickname': False}) < 100) assert_true(who.ratio(name, 'xxxx Liebowitz') < who.ratio(name, 'xvax Liebowitz')) assert_equal(who.ratio(name, 'xxxx Liebowitz'), who.ratio(name, 'xvax Liebowitz', 'strict')) # TODO: Should we ensure that the metadata is up to date? @nottest class TestConfig(unittest.TestCase): def test_titles_all_defined(self): """ Check if list of titles is up to date with nameparser """ all_titles = ( config.MALE_TITLES | config.FEMALE_TITLES | config.GENDERLESS_TITLES ) assert_equal(all_titles, NAMEPARSER_TITLES) def test_suffixes_all_defined(self): """ Check if list of suffixes is up to date with nameparser """ from nameparser.config.suffixes import SUFFIX_ACRONYMS, SUFFIX_NOT_ACRONYMS all_suffixes = ( config.UNIQUE_SUFFIXES | config.MISC_SUFFIXES ) nameparser_suffixes = ( SUFFIX_ACRONYMS | SUFFIX_NOT_ACRONYMS ) assert_equal(all_suffixes, nameparser_suffixes) if __name__ == '__main__': nose.main()
40.852941
83
0.636069
8,025
0.959469
0
0
840
0.10043
0
0
2,429
0.290411
c7a1b4eccd5313fe3d7a77b6d5633a8332809125
2,012
py
Python
endpoints/UserEndpoint.py
GardenersGalore/server
f7d7f8ae07b56fc3c4fbe46f0784329cd94ace2d
[ "MIT" ]
null
null
null
endpoints/UserEndpoint.py
GardenersGalore/server
f7d7f8ae07b56fc3c4fbe46f0784329cd94ace2d
[ "MIT" ]
1
2021-06-02T00:35:43.000Z
2021-06-02T00:35:43.000Z
endpoints/UserEndpoint.py
GardenersGalore/server
f7d7f8ae07b56fc3c4fbe46f0784329cd94ace2d
[ "MIT" ]
null
null
null
import json from flask import request from flask_restful import Resource, abort, reqparse from models.User import User """ POST Creates a new resource. GET Retrieves a resource. PUT Updates an existing resource. DELETE Deletes a resource. """ class UserEndpoint(Resource): def post(self): j = request.get_json() # need to ensure the required fields are in the json if "name" not in j: abort(422, message="name is not in json body") else: name = j["name"] if "username" not in j: abort(422, message="username not in json body") else: username = j["username"] if "email" not in j: abort(422, message="email not in json body") else: email = j["email"] if "password" not in j: abort(422, message="password not in json body") else: password = j["password"] user_obj = User( name=name, username=username, email=email, password=password, ) if "phone_number" in j: user_obj.phone_number = j["phone_number"] if "experience" in j: user_obj.experience = j["experience"] if "pictureURL" in j: user_obj.pictureURL = j["pictureURL"] d = user_obj.save() return json.loads(d.to_json()) def put(self): # TODO pass def delete(self): # TODO pass def get(self): parser = reqparse.RequestParser() parser.add_argument('username', required=True, type=str, help='The username of the User') args = parser.parse_args() try: user = json.loads(User.objects.get(username=args['username']).to_json()) except Exception as e: print(e) abort(404, message="User doesnt exist: {} doesn't exist".format(args['username'])) return user
24.240964
97
0.548708
1,719
0.854374
0
0
0
0
0
0
570
0.2833
c7a2778b2130c187c84f5bc78fd439f687e7ad10
450
py
Python
passy_forms/forms/forms.py
vleon1/passy
fe48ed9f932eb6df9dbe463344b034218c81567b
[ "Apache-2.0" ]
null
null
null
passy_forms/forms/forms.py
vleon1/passy
fe48ed9f932eb6df9dbe463344b034218c81567b
[ "Apache-2.0" ]
19
2017-02-18T17:53:56.000Z
2017-03-11T22:09:06.000Z
passy_forms/forms/forms.py
vleon1/passy
fe48ed9f932eb6df9dbe463344b034218c81567b
[ "Apache-2.0" ]
null
null
null
from django.forms import forms class Form(forms.Form): def get_value(self, name): self.is_valid() # making sure we tried to clean the data before accessing it if self.is_bound and name in self.cleaned_data: return self.cleaned_data[name] field = self[name] return field.value() or "" def to_dict(self): return {name: self.get_value(name) for name in self.fields}
23.684211
86
0.622222
412
0.915556
0
0
0
0
0
0
63
0.14
c7a2d818488a83ba3e02cfaea886aa5551f314ae
1,172
py
Python
assignment4/rorxornotencode.py
gkweb76/SLAE
c0aef9610a5f75568a0e65c4a91a3bb5a56e6fc6
[ "MIT" ]
15
2015-08-11T09:50:00.000Z
2021-10-02T19:30:53.000Z
assignment4/rorxornotencode.py
gkweb76/SLAE
c0aef9610a5f75568a0e65c4a91a3bb5a56e6fc6
[ "MIT" ]
null
null
null
assignment4/rorxornotencode.py
gkweb76/SLAE
c0aef9610a5f75568a0e65c4a91a3bb5a56e6fc6
[ "MIT" ]
9
2015-08-11T09:51:55.000Z
2021-10-18T18:04:11.000Z
#!/usr/bin/python # Title: ROR/XOR/NOT encoder # File: rorxornotencode.py # Author: Guillaume Kaddouch # SLAE-681 import sys ror = lambda val, r_bits, max_bits: \ ((val & (2**max_bits-1)) >> r_bits%max_bits) | \ (val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1)) shellcode = ( "\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x50\x89\xe2\x53\x89\xe1\xb0\x0b\xcd\x80" ) encoded = "" encoded2 = "" print "[*] Encoding shellcode..." for x in bytearray(shellcode): # ROR & XOR encoding z = ror(x, 7, 8)^0xAA # NOT encoding y = ~z if str('%02x' % (y & 0xff)).upper() == "00": print ">>>>>>>>>> NULL detected in shellcode, aborting." sys.exit() if str('%02x' % (y & 0xff)).upper() == "0A": print ">>>>>>>>>> \\xOA detected in shellcode." if str('%02x' % (y & 0xff)).upper() == "0D": print ">>>>>>>>>>> \\x0D detected in shellcode." encoded += '\\x' encoded += '%02x' % (y & 0xff) encoded2 += '0x' encoded2 += '%02x,' %(y & 0xff) print "hex version : %s" % encoded print "nasm version : %s" % encoded2 print "encoded shellcode : %s bytes" % str(len(encoded)/4)
23.44
102
0.562287
0
0
0
0
0
0
0
0
529
0.451365
c7a32b4c1d013fec417f68425b02fe13d88c171e
9,292
py
Python
authalligator_client/entities.py
closeio/authalligator-client
fe93c9d2333d2949e44c48a2dd0a9a266734e026
[ "MIT" ]
null
null
null
authalligator_client/entities.py
closeio/authalligator-client
fe93c9d2333d2949e44c48a2dd0a9a266734e026
[ "MIT" ]
null
null
null
authalligator_client/entities.py
closeio/authalligator-client
fe93c9d2333d2949e44c48a2dd0a9a266734e026
[ "MIT" ]
1
2021-01-31T13:08:48.000Z
2021-01-31T13:08:48.000Z
import datetime from enum import Enum from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union, cast import attr import ciso8601 import structlog from attr import converters from . import enums from .utils import as_json_dict, to_snake_case logger = structlog.get_logger() class Omitted(Enum): """Singleton written in a way mypy can parse. See https://www.python.org/dev/peps/pep-0484/#support-for-singleton-types-in-unions for more details. """ token = 0 OMITTED = Omitted.token """A singleton to differentiate between omitted vs explicit :obj:`None`.""" # helper type for entity_converter U = TypeVar("U", bound="BaseAAEntity") def entity_converter( entity_cls, # type: Union[List[Type[U]], Type[U]] ): # type: (...) -> Callable[[Union[Omitted, U, Dict]], Union[U, Omitted]] """ Convert a dictionary response into instances of the entity class. Usage: # disambiguates between type_a and type_b based on ``__typename`` converter = entity_converter([TypeA, TypeB]) my_instance = converter({'__typename': 'TypeB'}) XXX: mypy isn't expressive enough to annotate that the return type will be one of the _specific_ arg types and not the most generic bound base. We'll unfortunately have to ``# type: ignore`` on lines that call this. Args: entity_cls: the class (or classes) the value should be converted into. If multiple classes are provided as options, ``__typename`` must be included in the reponse to support disambiguation. Returns: A callable that will convert a dictionary to the right entity type. If more than one entity type is possible, that dictionary must have a ``__typename`` field present, which must match the ``TYPENAME`` on a provided entity. If none of the provided types match of if the fields don't align with the provided entity, a ``TypeError`` is raised. """ entity_classes = [] # type: List[Type[U]] if isinstance(entity_cls, (list, tuple)): entity_classes = entity_cls else: entity_classes = [entity_cls] def _entity_converter(val): # type: (Union[Dict[str, Any], U, Omitted]) -> Union[U, Omitted] # check if it's explitly been omitted (don't try to convert those) if val is OMITTED: return val # check if it's already an entity if any([isinstance(val, e_cls) for e_cls in entity_classes]): return cast(U, val) # definitely a dict now, since we check what it was earlier. (present # for type checking) val = cast(Dict[str, Any], val) # if there's more than one possibility for entity classes, pick the # right one based on ``__typename`` if len(entity_classes) == 1: # only one option, we don't need an explicit type selected_cls = entity_classes[0] # type: Type[U] else: # a few different return types are expected typename = val.pop("__typename", None) if typename is None: type_options = ", ".join([e.TYPENAME for e in entity_classes]) raise TypeError( 'No "__typename" present to disambiguate between possible ' "types: [{}]".format(type_options) ) matching_typename = next( (e for e in entity_classes if e.TYPENAME == typename), None ) # type: Optional[Type[U]] if matching_typename is None: raise TypeError('No entity found for type "{}"'.format(typename)) selected_cls = matching_typename return selected_cls.from_api_response(val) return _entity_converter @attr.attrs(frozen=True) class BaseAAEntity(object): TYPENAME = "" # type: str """The name of the graphql type in the schema. Used for disambiguation when there's more than one possible type being returned. """ as_dict = as_json_dict @classmethod def from_api_response(cls, data): # type: (Type[U], Dict[str, Any]) -> U # If __typename is present, this asserts that it matches this class's # expected typename typename = data.pop("__typename", None) if typename and typename != cls.TYPENAME: raise TypeError( ( "Given type \"{}\" doesn't match this entity's type: " '"{}". Is {} the right entity for ' "this data?" ).format(typename, cls.TYPENAME, cls.__name__) ) # convert top-level kwargs from camelCase to snake_case kwargs = {to_snake_case(k): v for k, v in data.items()} # mypy doesn't like that we're providing kwargs to a type whose init # doesn't accept any kwargs (even though subclasses do have attributes) return cls(**kwargs) # type: ignore @attr.attrs(frozen=True) class AccountError(BaseAAEntity): TYPENAME = "AccountError" code = attr.attrib(converter=enums.AccountErrorCode) # type: enums.AccountErrorCode message = attr.attrib() # type: Optional[str] retry_in = attr.attrib() # type: Optional[int] @attr.attrs(frozen=True) class Account(BaseAAEntity): TYPENAME = "Account" provider = attr.attrib(converter=enums.ProviderType) # type: enums.ProviderType username = attr.attrib() # type: str access_token = attr.attrib() # type: Optional[str] access_token_expires_at = attr.attrib( converter=converters.optional(ciso8601.parse_datetime), ) # type: Optional[datetime.datetime] @attr.attrs(frozen=True) class DeleteOperation(BaseAAEntity): """Base class for delete operation payloads. These payloads don't actually have any field information in them. While there's technically a "_" field in the schema, it's only a placeholder to work around the language not supporting empty responses. It has no meaning and will never have a meaningful value. This class has no specific equivalent type, it's just a convenience type for these entities. """ pass @attr.attrs(frozen=True) class DeleteOtherAccountKeysPayload(DeleteOperation): TYPENAME = "DeleteOtherAccountKeysPayload" @attr.attrs(frozen=True) class DeleteAccountKeyPayload(DeleteOperation): TYPENAME = "DeleteAccountKeyPayload" @attr.attrs(frozen=True) class DeleteAccountPayload(DeleteOperation): TYPENAME = "DeleteAccountPayload" @attr.attrs(frozen=True) class AuthorizeAccountPayload(BaseAAEntity): TYPENAME = "AuthorizeAccountPayload" account = attr.attrib( converter=entity_converter(Account), # type: ignore[misc] ) # type: Account account_key = attr.attrib() # type: str number_of_account_keys = attr.attrib() # type: int @attr.attrs(frozen=True) class VerifyAccountPayload(BaseAAEntity): TYPENAME = "VerifyAccountPayload" account = attr.attrib( converter=entity_converter(Account), # type: ignore[misc] ) # type: Account @attr.attrs(frozen=True) class Query(BaseAAEntity): account = attr.attrib( default=OMITTED, converter=entity_converter([Account, AccountError]), # type: ignore[misc] ) # type: Union[Omitted, Account, AccountError] @attr.attrs(frozen=True) class Mutation(BaseAAEntity): # mypy and the attrs plugin doens't like the `Omitted` default + converter # stuff authorize_account = attr.attrib( # type: ignore default=OMITTED, # ignore unsupport converter warning converter=cast( # type: ignore[misc] Union[Omitted, AuthorizeAccountPayload, AccountError], entity_converter([AuthorizeAccountPayload, AccountError]), ), ) # type: Union[Omitted, AuthorizeAccountPayload, AccountError] verify_account = attr.attrib( # type: ignore default=OMITTED, converter=cast( # type: ignore[misc] Union[Omitted, VerifyAccountPayload, AccountError], entity_converter([VerifyAccountPayload, AccountError]), ), ) # type: Union[Omitted, VerifyAccountPayload, AccountError] delete_account = attr.attrib( # type: ignore default=OMITTED, converter=cast( # type: ignore[misc] Union[Omitted, DeleteAccountPayload, AccountError], entity_converter([DeleteAccountPayload, AccountError]), ), ) # type: Union[Omitted, DeleteAccountPayload, AccountError] delete_account_key = attr.attrib( # type: ignore default=OMITTED, converter=cast( # type: ignore[misc] Union[Omitted, DeleteAccountKeyPayload, AccountError], entity_converter([DeleteAccountKeyPayload, AccountError]), ), ) # type: Union[Omitted, DeleteAccountKeyPayload, AccountError] delete_other_account_keys = attr.attrib( # type: ignore default=OMITTED, # ignore unsupport converter warning converter=cast( # type: ignore[misc] Union[Omitted, DeleteOtherAccountKeysPayload, AccountError], entity_converter([DeleteOtherAccountKeysPayload, AccountError]), ), ) # type: Union[Omitted, DeleteOtherAccountKeysPayload, AccountError]
35.19697
88
0.660461
5,400
0.581145
0
0
5,471
0.588786
0
0
4,293
0.46201
c7a3e79d5fcb0530f653c35813c95268647570c7
9,739
py
Python
library/device.py
lompal/USBIPManager
b03d8d9c0befcd70b7f67cfe61c0664f48d2939d
[ "MIT" ]
24
2019-01-25T20:40:07.000Z
2020-11-20T08:12:14.000Z
library/device.py
lompal/USBIPManager
b03d8d9c0befcd70b7f67cfe61c0664f48d2939d
[ "MIT" ]
3
2018-11-28T14:04:57.000Z
2020-09-14T08:35:09.000Z
library/device.py
lompal/USBIPManager
b03d8d9c0befcd70b7f67cfe61c0664f48d2939d
[ "MIT" ]
6
2019-08-23T05:30:26.000Z
2020-11-20T08:12:03.000Z
from library import config, ini, lang, log, performance, periphery, queue from asyncio import get_event_loop from threading import Thread, Event from PyQt5.QtCore import QObject, pyqtSignal from PyQt5.QtWidgets import QTreeWidgetItem # noinspection PyPep8Naming class Signal(QObject): """ PyQt signals for correct daemon device tree calls from a different thread """ addTopLevelItem_ = pyqtSignal(object) setText_ = pyqtSignal(str, int, str) setToolTip_ = pyqtSignal(str, int, object) setIcon_ = pyqtSignal(str, int, object) def addTopLevelItem(self, daemon): """ Load daemon as a top-level item - emit the signal """ self.addTopLevelItem_.emit(daemon) def setText(self, bid, col, baud): """ Set incoming/outgoing bandwidth - emit the signal """ self.setText_.emit(bid, col, baud) def setToolTip(self, bid, col, html): """ Set tooltip for a daemon during capturing operation - emit the signal """ self.setToolTip_.emit(bid, col, html) def setIcon(self, bid, col, icon): """ Set status icon for a daemon during capturing operation - emit the signal """ self.setIcon_.emit(bid, col, icon) # noinspection PyPep8Naming class Tree(metaclass=config.Singleton): """ Daemon device bandwidth tree """ def __init__(self, base, ip_addr): self._base = base self._ip_addr = ip_addr self._sw_config = ini.SWConfig(self._base) self._lang = lang.Tree self._signal = Signal() self._signal.addTopLevelItem_.connect(lambda __daemon: self._addTopLevelItem(__daemon)) self._signal.setText_.connect(lambda __bid, __col, __baud: self._setText(__bid, __col, __baud)) self._signal.setToolTip_.connect(lambda __bid, __col, __html: self._setToolTip(__bid, __col, __html)) self._signal.setIcon_.connect(lambda __bid, __col, __icon: self._setIcon(__bid, __col, __icon)) def _getDaemon(self): """ """ _root = self._base.dev_tree.invisibleRootItem() for idx in range(_root.childCount()): _daemon = _root.child(idx) if _daemon.text(0) == self._ip_addr: return _daemon, idx return None, None def _takeDaemon(self, idx): """ """ return self._base.dev_tree.takeTopLevelItem(idx) def _loadDaemon(self): """ """ _daemon = QTreeWidgetItem([self._ip_addr]) self.addTopLevelItem(_daemon) return _daemon, 0 def _getDevice(self, bid): """ """ _daemon, _idx = self._getDaemon() if not _daemon: return None, None for idx in range(_daemon.childCount()): _dev = _daemon.child(idx) if _dev.text(0) == bid: return _daemon, _dev return _daemon, None def _addTopLevelItem(self, daemon): """ Load daemon as a top-level item - inner function """ self._base.dev_tree.addTopLevelItem(daemon) self._base.dev_tree.expandAll() def _setText(self, bid, col, baud): """ Set incoming/outgoing bandwidth - inner function """ _daemon, _dev = self._getDevice(bid) if _dev: _baud = _dev.child(0) _baud.setText(col, baud) def _setToolTip(self, bid, col, html): """ Set tooltip for a daemon during capturing operation - inner function """ _daemon, _dev = self._getDevice(bid) if _dev: _dev.setToolTip(col, html) def _setIcon(self, bid, col, icon): """ Set status icon for a daemon during capturing operation - inner function """ _daemon, _dev = self._getDevice(bid) if _dev: _dev.setIcon(col, icon) def addTopLevelItem(self, daemon): """ Load daemon as a top-level item from a different thread """ self._signal.addTopLevelItem(daemon) def setText(self, bid, col, baud): """ Set incoming/outgoing bandwidth from a different thread """ self._signal.setText(bid, col, baud) def setToolTip(self, bid, col, html): """ Set status tooltip for a daemon during capturing operation from a different thread """ self._signal.setToolTip(bid, col, html) def setIcon(self, bid, col, icon): """ Set status icon for a daemon during capturing operation from a different thread """ self._signal.setIcon(bid, col, icon) def loadDevice(self, bid): """ """ _device = QTreeWidgetItem([bid]) _daemon, _idx = self._getDaemon() if not _daemon: _daemon, _idx = self._loadDaemon() _daemon, _dev = self._getDevice(bid) if _dev: return _daemon = self._takeDaemon(_idx) if self._sw_config.dev_perf: _baud = QTreeWidgetItem([self._lang.ParamBaud, self._lang.ParamNA, self._lang.ParamNA]) _device.addChild(_baud) _daemon.addChild(_device) self.addTopLevelItem(_daemon) def unloadDevice(self, bid): """ """ _daemon, _dev = self._getDevice(bid) if _dev: _daemon.removeChild(_dev) def setIncoming(self, bid, baud): """ Set incoming bandwidth """ self.setText(bid, 1, baud) def setOutgoing(self, bid, baud): """ Set outgoing bandwidth """ self.setText(bid, 2, baud) # noinspection PyPep8Naming class USBTop(metaclass=config.Singleton): """ Daemon device bandwidth processing """ def __init__(self, base, ip_addr): self._base = base self._ip_addr = ip_addr self._loop = get_event_loop() self._sw_config = ini.SWConfig(self._base) self._manager = queue.Manager(self._base) self._name_running = f'USBTOP processing running : {self._ip_addr}' self._name_cancelling = f'USBTOP processing cancelling : {self._ip_addr}' self._ssh = periphery.SSH(self._base, self._ip_addr) self._log = log.Manager(self._base) self._lang = lang.USBTop self._tree = Tree(self._base, self._ip_addr) self._dmn_perf = performance.Device(self._base) self._thread = Thread() self._event = Event() self._pid = None # noinspection PyMethodMayBeStatic def _idx(self, row): """ """ return [param for param in row.split() if param.isdigit()].pop() def _processing(self, buf): """ """ _bid = None for row in buf: if 'Bus ID' in row: _bid = self._idx(row) continue if 'Device ID' in row: _did = self._idx(row) _value = row.split() self._dmn_perf.setProcessing(self._ip_addr, _bid, _did, (_value[4], _value[6])) def _exec(self): """ Run the USBTOP processing - daemon thread """ _query = 'sudo usbtop' _echo = self._ssh.exec(_query) if not all(_echo): return self._log.setError(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.RunQuery} : {_query}') self._pid, _stdin, _stdout, _stderr = _echo _buf = list() while not self._event.is_set(): _line = _stdout.readline(2048) if not _line: return self._event.set() if '\x1b[2J\x1b[1;1H' in _line: self._processing(_buf) _buf = list() _buf.append(_line.strip().replace('\x1b[2J\x1b[1;1H', '')) continue _buf.append(_line.strip()) def __run(self): """ Run the USBTOP processing - inner function """ self._event = Event() self._thread = Thread(target=self._exec, name=self._name_running) self._thread.start() self._log.setSuccess(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.RunSuccess}') self._event.wait() return self._event.is_set() async def _run(self): """ Run the USBTOP processing - coroutine """ if not self._sw_config.dev_perf: return self._log.setError(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.EnableRequired}') if self.isRunning(): return self._log.setError(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.AforeRun}') if not await self._ssh.establish(self._lang.LogSeparator): return self._log.setInformation(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.CancelSuccess}') await self._loop.run_in_executor(None, self.__run) if self.isRunning(): self.cancel() async def _cancel(self): """ Cancel the USBTOP processing - coroutine """ if not self._sw_config.dev_perf: return self._log.setError(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.EnableRequired}') if not self.isRunning(): return self._log.setError(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.AforeCancel}') self._event.set() self._thread.join() if not self.isRunning(): self._ssh.kill(self._pid) return self._log.setWarning(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.CancelSuccess}') return self._log.setError(f'{self._lang.LogSeparator} {self._ip_addr} : {self._lang.CancelError}') def run(self): """ Run the USBTOP processing - calling coroutine """ self._manager.exec(self._run, self._name_running) def cancel(self): """ Cancel the USBTOP processing - calling coroutine """ self._manager.exec(self._cancel, self._name_cancelling) def isRunning(self): """ Check if the USBTOP processing is running """ return self._thread.is_alive()
36.339552
118
0.618133
9,411
0.966321
0
0
0
0
1,399
0.143649
2,409
0.247356
c7a3f3c709f3111aed4b0e26101a434835f55c66
3,959
py
Python
agent/minimax/submission.py
youkeyao/SJTU-CS410-Snakes-3V3-Group06
180ab3714686cdd879454cf103affc6bb03b7fcd
[ "MIT" ]
1
2022-01-09T13:59:34.000Z
2022-01-09T13:59:34.000Z
agent/minimax/submission.py
youkeyao/SJTU-CS410-Snakes-3V3-Group06
180ab3714686cdd879454cf103affc6bb03b7fcd
[ "MIT" ]
null
null
null
agent/minimax/submission.py
youkeyao/SJTU-CS410-Snakes-3V3-Group06
180ab3714686cdd879454cf103affc6bb03b7fcd
[ "MIT" ]
null
null
null
DEPTH = 3 # Action class Action: top = [1, 0, 0, 0] bottom = [0, 1, 0, 0] left = [0, 0, 1, 0] right = [0, 0, 0, 1] actlist = [(-1, 0), (1, 0), (0, -1), (0, 1)] mapAct = { actlist[0]: top, actlist[1]: bottom, actlist[2]: left, actlist[3]: right } def go(state, action, board_height, board_width): if action == (-1, 0): return ((state[0]+board_height-1) % board_height, state[1]) elif action == (1, 0): return ((state[0]+1) % board_height, state[1]) elif action == (0, 1): return (state[0], (state[1]+1) % board_width) elif action == (0, -1): return (state[0], (state[1]+board_width-1) % board_width) class GameState: obs = {} is_end = False def __init__(self, observation): self.obs = { 1: observation[1].copy(), 2: observation[2].copy(), 3: observation[3].copy(), 4: observation[4].copy(), 5: observation[5].copy(), 6: observation[6].copy(), 7: observation[7].copy(), 'board_width': observation['board_width'], 'board_height': observation['board_height'], } def generateSuccessor(self, index, action): successor = GameState(self.obs) index += 2 head = tuple(successor.obs[index][0]) tar = list(Action.go(head, action, self.obs['board_height'], self.obs['board_width'])) for i in range(1, 8): for cor in successor.obs[i]: if cor == tar: successor.is_end = True if i == 1: successor.obs[index].append(successor.obs[index][-1]) else: successor.obs[index].clear() successor.obs[index].insert(0, tar) successor.obs[index].pop() return successor def evaluationFunction(self): ans = 0 for i in range(2, 8): if i < 5: ans += len(self.obs[i]) else: ans -= len(self.obs[i]) return ans class MinimaxAgent: def __init__(self, obs): self.obs = obs def value(self, gameState, index, depth, a, b): index %= 6 if index == 0: return self.maxValue(gameState, index, depth + 1, a, b)[0] elif index < 3: return self.maxValue(gameState, index, depth, a, b)[0] else: return self.minValue(gameState, index, depth, a, b)[0] def maxValue(self, gameState, index, depth, a, b): if gameState.is_end or depth >= DEPTH: return [gameState.evaluationFunction(), None] v = -10000 ac = Action.actlist[0] for action in Action.actlist: next = gameState.generateSuccessor(index, action) value = self.value(next, index+1, depth, a, b) if value > v: v = value ac = action if v >= b: return [v, ac] a = max(a, v) return [v, ac] def minValue(self, gameState, index, depth, a, b): if gameState.is_end: return [gameState.evaluationFunction(), None] v = 10000 ac = Action.actlist[0] for action in Action.actlist: next = gameState.generateSuccessor(index, action) value = self.value(next, index+1, depth, a, b) if value < v: v = value ac = action if v <= a: return [v, ac] b = min(b, v) return [v, ac] def get_action(self, index): return self.maxValue(GameState(self.obs), index-2, 0, -10000, 10000)[1] def my_controller(observation, action_space, is_act_continuous=False): ac = Action.mapAct[MinimaxAgent(observation).get_action(observation['controlled_snake_index'])] return [ac]
32.186992
99
0.51023
3,747
0.946451
0
0
0
0
0
0
113
0.028543
c7a4ae3d4e412782ea4851134b89f174c5ee6fd3
224
py
Python
public_html/python/Empty_Python_Page.py
Asher-Simcha/help
23c52c136a885d76aa0e2e024cbf1587091f41a7
[ "BSD-3-Clause" ]
null
null
null
public_html/python/Empty_Python_Page.py
Asher-Simcha/help
23c52c136a885d76aa0e2e024cbf1587091f41a7
[ "BSD-3-Clause" ]
null
null
null
public_html/python/Empty_Python_Page.py
Asher-Simcha/help
23c52c136a885d76aa0e2e024cbf1587091f41a7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/pyton # Title: # Author: # Additional Authors: # Filename: # Description: # Version: # Date: # Last Modified: # Location_of_the_Video: # Meta_data_for_YouTube: # Web_Site_For_Video: # Start Your Code Here #EOF
12.444444
24
0.71875
0
0
0
0
0
0
0
0
207
0.924107
c7a9038c8840f231377e3ea552d065f35efee699
289
py
Python
Python/first_flask_project/utilities/file_reader.py
maxxxxxdlp/code_share
4f9375bf4bdf6048b54b22bd1fa0d3ad010de7ef
[ "MIT" ]
null
null
null
Python/first_flask_project/utilities/file_reader.py
maxxxxxdlp/code_share
4f9375bf4bdf6048b54b22bd1fa0d3ad010de7ef
[ "MIT" ]
33
2021-07-11T22:55:42.000Z
2022-01-07T23:23:43.000Z
Python/first_flask_project/utilities/file_reader.py
maxxxxxdlp/code_share
4f9375bf4bdf6048b54b22bd1fa0d3ad010de7ef
[ "MIT" ]
null
null
null
def read_csv(root, file_name, keys): with open('{root}private_static/csv/{file_name}.csv'.format(root=root, file_name=file_name)) as file: data = file.read() lines = data.split("\n") return [dict(zip(keys, line.split(','))) for i, line in enumerate(lines) if i != 0]
36.125
105
0.650519
0
0
0
0
0
0
0
0
49
0.16955
c7a95d54d497e531abccb6e65c1f8ff7b1fbb2e5
7,202
py
Python
semester3/oop/lab3/parser/client/MasterService/client.py
no1sebomb/University-Labs
1da5e7486f0b8a6119c077945aba8c89cdfc2e50
[ "WTFPL" ]
null
null
null
semester3/oop/lab3/parser/client/MasterService/client.py
no1sebomb/University-Labs
1da5e7486f0b8a6119c077945aba8c89cdfc2e50
[ "WTFPL" ]
null
null
null
semester3/oop/lab3/parser/client/MasterService/client.py
no1sebomb/University-Labs
1da5e7486f0b8a6119c077945aba8c89cdfc2e50
[ "WTFPL" ]
1
2020-11-01T23:54:52.000Z
2020-11-01T23:54:52.000Z
# coding=utf-8 from parser.client import * from parser.client.ResponseItem import * with (Path(__file__).resolve().parent / "config.json").open("rt") as siteConfigFile: SITE_CONFIG = json.load(siteConfigFile) class MasterService(Client): class Link: main = "https://steering.com.ua/" login = "https://steering.com.ua/login" search = "https://steering.com.ua/catalog?oe={}" name = "masterservice" def __init__(self): super().__init__() self.username = SITE_CONFIG["username"] self.password = SITE_CONFIG["password"] start_time = time() self.connected, self.logged = self.sign_in() self.login_time = "%.3f s" % (time() - start_time) def get_info(self, article, brand): if self.connected and self.logged: search_request = self.session.get(self.Link.search.format(article)) if search_request.status_code != 200: return self.response_brand(2, "Помилка з'єднання") html_tree = html.fromstring(search_request.text) items = html_tree.xpath('//table[@class="vi-table vi-responsive"]/tr') if not items: return self.response_brand(1, "Артикул не знайдено") for item in items: brand_expr = './/td[@data-label=""]/a[@rel="nofollow"]/text()' try: item_brand = self.clear(item.xpath(brand_expr)[0]) except IndexError: try: item_brand = self.clear(item.xpath('.//td[@data-label=""]/text()')[1]) except IndexError: item_brand = "" if self.compare(brand, item_brand): break else: return self.response_brand(1, "Бренд не знайдено") item_link = item.xpath('.//td/div/a/@href')[0] item_info_request = self.session.get(item_link) if item_info_request.status_code != 200: return self.response_brand(2, "Помилка з'єднання") item_info_tree = html.fromstring(item_info_request.text) item_info = item_info_tree.xpath('//table[@class="vi-item-table"]//td/text()') item = ResponseItem( article=self.clear(item_info[1]), brand=item_brand, name="".join(item_info_tree.xpath('//h1[@class="vi-item-name"]/span/text()')[:-1]), desc=self.clear(item_info[9]) ) try: item_price = self.clear(item_info_tree.xpath('//span[@class="value"]/span/text()')[0]).replace(" ", "") except IndexError: item_price = "0" item["price"] = "%.2f UAH" % float(item_price) try: item_stocks = item_info_tree.xpath('//td[@class="product-nalichie-table"]/table/tr/td/text()')[1:] except IndexError: pass else: name = None for number, value in enumerate(item_stocks): if number % 2: item["stocks"].append( {"name": name, "quantity": self.clear(value), "term": None} ) else: name = self.clear(value) try: image_link = self.Link.main[:-1] + item_info_tree.xpath('//div[@class="fotorama"]/img/@src')[0] except IndexError: pass else: item["image"] = self.get_image(image_link, image_id=image_link.split("/")[-1].split(".")[0]) car_using = item_info_tree.xpath('//div[@class="row vi-prim-auto"]//ul[@class="prim-car"]/li') for car in car_using: car_name = self.clear(car.xpath('./span/text()')[0]) car_models = car.xpath('./ul/li') for car_model in car_models: model_name = self.clear(car_model.xpath('./span/text()')[0]) model_vars = car_model.xpath('./ul/li/text()') for model_var in model_vars: try: item["using"][car_name].append(model_name + " " + self.clear(model_var)) except KeyError: item["using"][car_name] = [model_name + " " + self.clear(model_var)] oe = item_info_tree.xpath('//div[@class="row vi-prim-auto"]//div[@class="car-oe"]//dd[@class="content"]')[0] oe_codes = oe.xpath("./a/text()") for oe_code in oe_codes: try: item["cross"][""].append(self.clear(oe_code)) except KeyError: item["cross"][""] = [self.clear(oe_code)] analogs_table = item_info_tree.xpath('//table[@class="products-list vi-table vi-responsive"]')[0] analogs = analogs_table.xpath('.//tr[@class="even" or @class="odd"]') for analog in analogs: analogs_name_list = analog.xpath('.//a[@class="name"]/span/text()') try: analog_brand = self.clear(analog.xpath('.//div[@class="vendor"]/span[@class="value"]/text()')[0]) except IndexError: analog_brand = "" analog_item = ResponseItem( article=self.clear(analogs_name_list[-1]), brand=analog_brand, name=self.clear("".join(analogs_name_list[:-1])) ) analog_stocks = analog.xpath('.//td[@class="storage"]//td[not(contains(@class, "title_sklad"))]/text()') stock_name = "" for number, stock in enumerate(analog_stocks[1:]): if number % 2: analog_item["stocks"].append( {"name": stock_name, "quantity": self.clear(stock), "term": None} ) else: stock_name = self.clear(stock).replace(":", "") image_link = self.Link.main[:-1] + analog.xpath('.//td[@data-label="Фото"]//img/@src')[0] analog_item["image"] = self.get_image(image_link, image_id=image_link.split("/")[-1].split(".")[0]) item.set_analog(analog_item) return self.response_brand(0, "OK", item) elif self.connected: return self.response_brand(3, "Помилка авторизації") else: return self.response_brand(2, "Помилка з'єднання") def sign_in(self): main_page_request = self.session.get(self.Link.main) if main_page_request.status_code != 200: return 0, 0 login_request = self.session.post(self.Link.login, data={"login": self.username, "password": self.password}, headers={"Content-Type": "application/x-www-form-urlencoded"}) if login_request.status_code == 200: return 1, 1 else: return 1, 0
43.648485
120
0.509303
7,082
0.970004
0
0
0
0
0
0
1,474
0.20189
c7a995a9727073409d096c9586ccf8c67b8e8dc3
7,320
py
Python
sketchduino/template.py
rodrigopmatias/sketchduino
567023d69cd21bf1f573d2a26fc855183abdef7e
[ "Apache-2.0" ]
null
null
null
sketchduino/template.py
rodrigopmatias/sketchduino
567023d69cd21bf1f573d2a26fc855183abdef7e
[ "Apache-2.0" ]
3
2015-01-09T20:31:22.000Z
2015-01-09T20:31:22.000Z
sketchduino/template.py
rodrigopmatias/sketchduino
567023d69cd21bf1f573d2a26fc855183abdef7e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Copyright 2012 Rodrigo Pinheiro Matias <[email protected]> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' templates = { 'static_link': ''' \t@$(AR) rcs %(lib)s %(obj)s \t@echo " [\033[33m\033[1mAR\033[0m] - \033[37m\033[1m%(obj)s\033[0m to \033[37m\033[1m%(lib)s\033[0m"''', 'c_obj_ruler': '''%(obj)s: %(source)s \t@$(CC) $(CFLAGS) $(INCLUDE) -c %(source)s -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCC\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'asm_obj_ruler': '''%(obj)s: %(source)s \t@$(AS) $(ASFLAGS) -o %(obj)s %(source)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mAS\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'c_asm_ruler': '''%(obj)s: %(source)s \t@$(CC) $(CFLAGS) $(INCLUDE) -c %(source)s -S -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCC\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'cxx_obj_ruler': '''%(obj)s: %(source)s \t@$(CXX) $(CXXFLAGS) $(INCLUDE) -c %(source)s -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCXX\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'cxx_asm_ruler': '''%(obj)s: %(source)s \t@$(CXX) $(CXXFLAGS) $(INCLUDE) -c %(source)s -S -o %(obj)s 1>> compile.log 2>> compile.err \t@echo " [\033[33m\033[1mCXX\033[0m] - \033[37m\033[1m%(source)s\033[0m"''', 'avr-main.cc': '''/** * Generated with sketch %(version)s **/ #include <avr/sleep.h> int main(void) { for(;;) sleep_mode(); return 0; }''', 'main.cc': '''/** * Generated with sketch %(version)s **/ #include <Arduino.h> /** * Setup of the firmware **/ void setup() { } /** * Schedule events for firmware program **/ void loop() { delay(250); }''', 'Makefile': '''########################################## # Makefile generated with sketch %(version)s ########################################## # Defines of Arduino ARDUINO_HOME=%(sdk_home)s ARDUINO_CORE=$(ARDUINO_HOME)/hardware/arduino/cores ARDUINO_VARIANT=$(ARDUINO_HOME)/hardware/arduino/variants/%(variant)s # Define toolchain CC=%(cc)s CXX=%(cxx)s AS=%(asm)s LD=%(ld)s AR=%(ar)s OBJCOPY=%(objcopy)s SIZE=%(size)s AVRDUDE=%(avrdude)s PROGRAMER=%(programer)s LIB= INCLUDE=-I$(ARDUINO_CORE)/arduino -I$(ARDUINO_VARIANT) -I$(ARDUINO_CORE) -I lib/ #Define of MCU MCU=%(mcu)s CLOCK=%(clock_hz)sUL ARDUINO=%(sdk_version)s # Define compiler flags _CFLAGS=-Os -Wall -fno-exceptions -ffunction-sections -fdata-sections -mmcu=$(MCU) \\ -DF_CPU=$(CLOCK) -MMD -DARDUINO=$(ARDUINO) \\ -fpermissive -lm -Wl,-u,vfprintf -lprintf_min CFLAGS=$(_CFLAGS) -std=c99 CXXFLAGS=$(_CFLAGS) -std=c++98 ASFLAGS=-mmcu $(MCU) # Define compiler rulers OBJ=%(obj_dep)s CORE_OBJ=%(core_obj_dep)s AOUT=binary/%(project_name)s-%(mcu)s.elf HEX=binary/%(project_name)s-%(mcu)s.hex EPP=binary/%(project_name)s-%(mcu)s.epp CORE_LIB=binary/core.a LIB_DEPS=%(lib_deps)s LD_FLAGS=-Os -Wl,--gc-sections -mmcu=$(MCU) -lm AVRDUDE_OPTIONS = -p$(MCU) -c$(PROGRAMER) %(pgrextra)s -Uflash:w:$(HEX):i SIZE_OPTS=-C --mcu=$(MCU) CONFIG_EXISTS=$(shell [ -e "Makefile.config" ] && echo 1 || echo 0) ifeq ($(CONFIG_EXISTS), 1) include Makefile.config endif all: $(HEX) $(EPP) rebuild: clean all deploy: $(HEX) \t$(AVRDUDE) $(AVRDUDE_OPTIONS) $(HEX): $(EPP) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mFirmware\033[0m" \t@$(OBJCOPY) -O ihex -R .eeprom $(AOUT) $(HEX) $(EPP): $(AOUT) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mMemory of EEPROM\033[0m" \t@$(OBJCOPY) -O ihex -j .eeprom --set-section-flags=.eeprom=alloc,load --no-change-warnings --change-section-lma .eeprom=0 $(AOUT) $(EPP) size: $(AOUT) \t@$(SIZE) $(SIZE_OPTS) $(AOUT) $(AOUT): clear-compiler $(OBJ) $(CORE_LIB) $(LIB_DEPS) \t@echo " [\033[33m\033[1mLD\033[0m] - \033[37m\033[1m$(AOUT)\033[0m" \t@$(CXX) $(LD_FLAGS) $(LIB) $(OBJ) $(CORE_LIB) $(LIB_DEPS) -o $(AOUT) $(CORE_LIB): $(CORE_OBJ)%(core_ruler)s %(asm_rulers)s %(obj_rulers)s %(libs_rulers)s %(core_asm_rulers)s %(core_obj_rulers)s clear-compiler: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear compiler logs" \trm -f compile.* clean-tmp: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* clean-bin: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* clean: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* ''', 'avr-Makefile': '''########################################## # Makefile generated with sketch %(version)s ########################################## # Define toolchain CC=%(cc)s CXX=%(cxx)s AS=%(asm)s LD=%(ld)s AR=%(ar)s OBJCOPY=%(objcopy)s SIZE=%(size)s AVRDUDE=%(avrdude)s PROGRAMER=%(programer)s LIB= INCLUDE=-I lib/ #Define of MCU MCU=%(mcu)s CLOCK=%(clock_hz)sUL # Define compiler flags _CFLAGS=-Os -Wall -fno-exceptions -ffunction-sections -fdata-sections -mmcu=$(MCU) \\ -DF_CPU=$(CLOCK) -fpermissive -lm -Wl,-u,vfprintf -lprintf_min CFLAGS=$(_CFLAGS) -std=c99 CXXFLAGS=$(_CFLAGS) -std=c++98 ASFLAGS=-mmcu $(MCU) # Define compiler rulers ASM=%(asm_dep)s OBJ=%(obj_dep)s LIB_DEPS=%(lib_deps)s AOUT=binary/%(project_name)s-%(mcu)s.elf HEX=binary/%(project_name)s-%(mcu)s.hex EPP=binary/%(project_name)s-%(mcu)s.epp LD_FLAGS=-Os -Wl,--gc-sections -mmcu=$(MCU) -lm AVRDUDE_OPTIONS = -p$(MCU) -c$(PROGRAMER) %(pgrextra)s -Uflash:w:$(HEX):i SIZE_OPTS=-A CONFIG_EXISTS=$(shell [ -e "Makefile.config" ] && echo 1 || echo 0) ifeq ($(CONFIG_EXISTS), 1) include Makefile.config endif all: $(HEX) $(EPP) rebuild: clean all deploy: $(HEX) \t$(AVRDUDE) $(AVRDUDE_OPTIONS) $(HEX): $(EPP) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mFirmware\033[0m" \t@$(OBJCOPY) -O ihex -R .eeprom $(AOUT) $(HEX) $(EPP): $(AOUT) \t@echo " [\033[33m\033[1mOBJCOPY\033[0m] - \033[37m\033[1mMemory of EEPROM\033[0m" \t@$(OBJCOPY) -O ihex -j .eeprom --set-section-flags=.eeprom=alloc,load --no-change-warnings --change-section-lma .eeprom=0 $(AOUT) $(EPP) size: $(AOUT) \t@$(SIZE) $(SIZE_OPTS) $(AOUT) $(AOUT): clear-compiler $(OBJ) $(LIB_DEPS) \t@echo " [\033[33m\033[1mLD\033[0m] - \033[37m\033[1m$(AOUT)\033[0m" \t@$(CXX) $(LD_FLAGS) $(LIB) $(OBJ) $(LIB_DEPS) -o $(AOUT) %(asm_rulers)s %(obj_rulers)s %(libs_rulers)s clear-compiler: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear compiler logs" \t@rm -f compile.* clean-tmp: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* clean-bin: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* clean: \t@echo " [\033[33m\033[1mRM\033[0m] - Clear temporary files" \t@rm -f tmp/* \t@echo " [\033[33m\033[1mRM\033[0m] - Clear binary files" \t@rm -f binary/* ''' }
27.518797
138
0.630464
0
0
0
0
0
0
0
0
7,222
0.986612
c7a9d270039cb319b1e7bd45460f8d2badbcbfe0
1,562
py
Python
Tic-Tac-Pi/gameObjects/TextObject.py
mstubinis/Tic-Tac-Pi
b96db58332be4975f4a5b18b6dd45a0eac859528
[ "MIT" ]
2
2016-04-13T02:52:46.000Z
2017-11-20T22:41:36.000Z
Tic-Tac-Pi/gameObjects/TextObject.py
mstubinis/Tic-Tac-Pi
b96db58332be4975f4a5b18b6dd45a0eac859528
[ "MIT" ]
null
null
null
Tic-Tac-Pi/gameObjects/TextObject.py
mstubinis/Tic-Tac-Pi
b96db58332be4975f4a5b18b6dd45a0eac859528
[ "MIT" ]
3
2016-04-14T02:29:32.000Z
2020-04-27T06:08:07.000Z
import pygame from pygame.locals import * import resourceManager class TextObject(pygame.sprite.Sprite): def __init__(self,pos,fontSize,fontcolor,textstring): pygame.sprite.Sprite.__init__(self) #call Sprite initializer self.position = pos self.message = textstring self.color = fontcolor self.font = pygame.font.Font(None,fontSize) self.text = self.font.render(self.message, 1,fontcolor) self.rect = pygame.Rect((0,0),self.font.size(self.message)) self.rect.midtop = pos def is_clicked(self,events): if self.is_mouse_over() == True: for event in events: if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: return True return False def is_mouse_over(self): mousePos = pygame.mouse.get_pos() if mousePos[0] < self.rect.x: return False if mousePos[0] > self.rect.x + self.rect.w: return False if mousePos[1] < self.rect.y: return False if mousePos[1] > self.rect.y + self.rect.h: return False return True def update_message(self,message): self.message = message self.text = self.font.render(message, 1,self.color) self.rect.w = self.font.size(message)[0] self.rect.h = self.font.size(message)[1] self.rect.midtop = self.position def update(self): pass def draw(self,screen): screen.blit(self.text, self.rect)
31.24
68
0.596031
1,495
0.957106
0
0
0
0
0
0
24
0.015365
c7aa2635f7e1d5416d843dacc6078257816ee795
2,268
py
Python
src/encoded/server_defaults.py
beta-cell-network/beta-cell-nw
093b078fdb7932ebfcbc0715aeeb2261eda3ee52
[ "MIT" ]
4
2018-01-04T22:31:08.000Z
2021-07-15T17:39:16.000Z
src/encoded/server_defaults.py
beta-cell-network/beta-cell-nw
093b078fdb7932ebfcbc0715aeeb2261eda3ee52
[ "MIT" ]
7
2017-10-31T23:47:47.000Z
2022-01-10T00:12:42.000Z
src/encoded/server_defaults.py
beta-cell-network/beta-cell-nw
093b078fdb7932ebfcbc0715aeeb2261eda3ee52
[ "MIT" ]
10
2017-09-14T00:57:07.000Z
2021-07-27T23:41:14.000Z
from datetime import datetime from jsonschema_serialize_fork import NO_DEFAULT from pyramid.security import effective_principals from pyramid.threadlocal import get_current_request from string import ( digits, ascii_uppercase, ) import random import uuid from snovault.schema_utils import server_default ACCESSION_FACTORY = __name__ + ':accession_factory' def includeme(config): from pyramid.path import DottedNameResolver accession_factory = config.registry.settings.get('accession_factory') if accession_factory: factory = DottedNameResolver().resolve(accession_factory) else: factory = enc_accession config.registry[ACCESSION_FACTORY] = factory @server_default def userid(instance, subschema): request = get_current_request() principals = effective_principals(request) for principal in principals: if principal.startswith('userid.'): return principal[7:] return NO_DEFAULT @server_default def now(instance, subschema): # from jsonschema_serialize_fork date-time format requires a timezone return datetime.utcnow().isoformat() + '+00:00' @server_default def uuid4(instance, subschema): return str(uuid.uuid4()) @server_default def accession(instance, subschema): if 'external_accession' in instance: return NO_DEFAULT request = get_current_request() factory = request.registry[ACCESSION_FACTORY] # With 17 576 000 options ATTEMPTS = 10 for attempt in range(ATTEMPTS): new_accession = factory(subschema['accessionType']) if new_accession in request.root: continue return new_accession raise AssertionError("Free accession not found in %d attempts" % ATTEMPTS) ENC_ACCESSION_FORMAT = (digits, digits, digits, ascii_uppercase, ascii_uppercase, ascii_uppercase) def enc_accession(accession_type): random_part = ''.join(random.choice(s) for s in ENC_ACCESSION_FORMAT) return 'D' + accession_type + random_part TEST_ACCESSION_FORMAT = (digits, ) * 6 def test_accession(accession_type): """ Test accessions are generated on test.encodedcc.org """ random_part = ''.join(random.choice(s) for s in TEST_ACCESSION_FORMAT) return 'D' + accession_type + random_part
28
98
0.740741
0
0
0
0
1,029
0.453704
0
0
299
0.131834
c7aa99e86ce9b9941bb3c2dee52be602130563cd
200
py
Python
app/__init__.py
geirowew/SapAPI
dda0d839722d28c7a30d58c8b3d5076a503fd837
[ "MIT" ]
1
2021-10-11T20:20:50.000Z
2021-10-11T20:20:50.000Z
app/__init__.py
geirowew/SapAPI
dda0d839722d28c7a30d58c8b3d5076a503fd837
[ "MIT" ]
null
null
null
app/__init__.py
geirowew/SapAPI
dda0d839722d28c7a30d58c8b3d5076a503fd837
[ "MIT" ]
2
2021-01-22T10:52:04.000Z
2021-10-06T10:28:07.000Z
from flask import Flask #from config import Config import config app = Flask(__name__) #app.config.from_object(Config) app.config.from_object(config) #from app import routes from app import gettoken
20
31
0.81
0
0
0
0
0
0
0
0
80
0.4
c7ae90de0db880bd9c87e6ef499b2ab425e89a1b
19
py
Python
todo/task/__init__.py
BenMcLean981/flask-todo
9827f4993c7d4af0c42ed2a891f2eb56227f1644
[ "MIT" ]
null
null
null
todo/task/__init__.py
BenMcLean981/flask-todo
9827f4993c7d4af0c42ed2a891f2eb56227f1644
[ "MIT" ]
null
null
null
todo/task/__init__.py
BenMcLean981/flask-todo
9827f4993c7d4af0c42ed2a891f2eb56227f1644
[ "MIT" ]
null
null
null
"""Todo module."""
9.5
18
0.526316
0
0
0
0
0
0
0
0
18
0.947368
c7aedff29cfbc578d32b6b83c7dce7618a9b1e46
680
py
Python
src/pvt_model/pvt_system/pipe.py
BenWinchester/PVTModel
6bf3976b06f406f632e0a9e525cd8b05359da239
[ "MIT" ]
1
2021-05-11T14:15:11.000Z
2021-05-11T14:15:11.000Z
src/pvt_model/pvt_system/pipe.py
BenWinchester/PVTModel
6bf3976b06f406f632e0a9e525cd8b05359da239
[ "MIT" ]
14
2021-02-23T11:53:08.000Z
2021-11-16T10:45:31.000Z
src/pvt_model/pvt_system/pipe.py
BenWinchester/PVTModel
6bf3976b06f406f632e0a9e525cd8b05359da239
[ "MIT" ]
null
null
null
#!/usr/bin/python3.7 ######################################################################################## # pvt_collector/pipe.py - Represents a pipe within the system. # # Author: Ben Winchester # Copyright: Ben Winchester, 2021 ######################################################################################## """ The pipe module for the PV-T model. This module represents a pipe within the PV-T system. """ from dataclasses import dataclass __all__ = ("Pipe",) @dataclass class Pipe: """ Represents a pipe within the PVT system. .. attribute:: temperature The temperature of the pipe, measured in Kelvin. """ temperature: float
21.25
88
0.507353
186
0.273529
0
0
197
0.289706
0
0
567
0.833824
c7b0b81ceafaed0e74acb2a5f98af6b65a8f276d
1,850
py
Python
tests/test_api_account_state.py
luisparravicini/ioapi
f9d60a28032fd54163ea15b8256aba1d48ec4dcc
[ "MIT" ]
null
null
null
tests/test_api_account_state.py
luisparravicini/ioapi
f9d60a28032fd54163ea15b8256aba1d48ec4dcc
[ "MIT" ]
null
null
null
tests/test_api_account_state.py
luisparravicini/ioapi
f9d60a28032fd54163ea15b8256aba1d48ec4dcc
[ "MIT" ]
1
2020-05-03T04:34:32.000Z
2020-05-03T04:34:32.000Z
import unittest import os import json import requests import requests_mock from ioapi import api_url, IOService, AuthorizationError, UnexpectedResponseCodeError class APIAccountStateTestCase(unittest.TestCase): def setUp(self): self.service = IOService() @requests_mock.mock() def test_account_state_without_auth(self, mock): data = self._read_mock_response('account_state_without_auth') self._setup_response(mock, data, 401) with self.assertRaises(AuthorizationError): self.service.get_account_state() @requests_mock.mock() def test_account_state_auth_not_ok(self, mock): data = self._read_mock_response('account_state_not_ok') for code in range(201, 600): # skip 401 status code (unauthorized) if code == 401: continue self._setup_response(mock, data, code) with self.assertRaises(UnexpectedResponseCodeError) as cm: self.service.get_account_state() self.assertEqual(cm.exception.status_code, code) @requests_mock.mock() def test_account_state(self, mock): data = self._read_mock_response('account_state') self.service = IOService() self._setup_response(mock, data) self.assertEqual(self.service.get_account_state(), data) self.fail("auth missing") def _read_mock_response(self, name): path = os.path.join(os.path.dirname(__file__), name + '.json') with open(path, 'r') as file: data = json.loads(file.read()) return data def _setup_response(self, mock, response, code=None): if code is None: code = requests.codes.ok mock.get( self.service.api + api_url.URL_ACCOUNT_STATE, json=response, status_code=code)
31.355932
85
0.656216
1,686
0.911351
0
0
1,094
0.591351
0
0
126
0.068108
c7b0f4e12943a98dbd413a45f48a80cdcaf7bcf6
6,517
py
Python
testData/devSeedData.py
bgporter/wastebook
79885a8d503452e1fbeb8ff445cedd2daafff2a0
[ "MIT" ]
null
null
null
testData/devSeedData.py
bgporter/wastebook
79885a8d503452e1fbeb8ff445cedd2daafff2a0
[ "MIT" ]
null
null
null
testData/devSeedData.py
bgporter/wastebook
79885a8d503452e1fbeb8ff445cedd2daafff2a0
[ "MIT" ]
null
null
null
''' fake posts to bootstrap a development database. Put any interesting cases useful for development in here. ''' from datetime import datetime POST_DATA_1 = [ { "created" : datetime(2015, 10, 1), "published": datetime(2015, 10, 1), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "First Post", "slug": "", "text": "a bunch of words #foo #bar", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": False, "status": "published", "title": "Second Post", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": False, "status": "draft", "title": "Third Post", "slug": "", "text": "This is a #draft #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "draft", "title": "Fourth Post", "slug": "", "text": "This is a #draft #post", "tags": [], "type": "Post" }, ] POST_DATA_2 = [ { "created" : datetime(2015, 3, 2), "published": datetime(2015, 3, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 1", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 4, 2), "published": datetime(2015, 4, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 2", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 5, 2), "published": datetime(2015, 5, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 3", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 5, 2), "published": datetime(2015, 5, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 4", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 5", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 6", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 7", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 7, 2), "published": datetime(2015, 7, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 8", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 8, 2), "published": datetime(2015, 8, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 9", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 9, 2), "published": datetime(2015, 9, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 10", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 11", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, ]
29.224215
77
0.399724
0
0
0
0
0
0
0
0
2,459
0.377321
c7b11734daef5c05aa9cf025632e59324996f20e
2,954
py
Python
customer_support/utils.py
rtnpro/django-customer-support
6de8d9301fe01a42fa6799757a107be69ee82426
[ "MIT" ]
1
2017-05-06T04:49:45.000Z
2017-05-06T04:49:45.000Z
customer_support/utils.py
rtnpro/django-customer-support
6de8d9301fe01a42fa6799757a107be69ee82426
[ "MIT" ]
null
null
null
customer_support/utils.py
rtnpro/django-customer-support
6de8d9301fe01a42fa6799757a107be69ee82426
[ "MIT" ]
null
null
null
from __future__ import absolute_import from django.shortcuts import render import simplejson import datetime from django.http import HttpResponse class GenericItemBase(object): ITEM_ATTRS = [] def __init__(self, identifier): self.identifier = identifier def jsonify(self, value): """ Method to convert non JSON serializable objects into an equivalent JSON serializable form. """ return value def json(self): raise NotImplementedError def render_json(self): raise NotImplementedError def render_html(self): raise NotImplementedError class GenericItem(GenericItemBase): TEMPLATE = 'customer_support/item.html' def __init__(self, *args, **kwargs): super(GenericItem, self).__init__(*args, **kwargs) self._item = {} def get_item(self, identifier): raise NotImplementedError def set_item(self, data): self._item = {} for key, value in data.items(): if key in self.ITEM_ATTRS: self._item[key] = value def json(self): item = {} for attr_name in self.ITEM_ATTRS: attr = self.jsonify(self._item[attr_name]) if isinstance(attr, datetime): attr = attr.strftime('%Y-%m-%d %H:%M') item[attr_name] = attr return simplejson.dumps(item) def render_json(self): return HttpResponse( self.json(), mimetype='application/json') def render_html(self): return render(self.TEMPLATE, {'item': self._item}) class GenericItems(GenericItemBase): TEMPLATE = 'customer_support/items.html' def __init__(self, *args, **kwargs): super(GenericItem, self).__init__(*args, **kwargs) self._items = [] def get_items(self, for_entity): raise NotImplementedError def set_items(self, items): self._items = items def json(self): items = [] for item in self._items: item_dict = {} for attr_name in self.ITEM_ATTRS: attr = self.jsonify(item[attr_name]) if isinstance(attr, datetime): attr = attr.strftime('%Y-%m-%d %H:%M') item_dict[attr_name] = attr items.append(item) return simplejson.dumps(items) def render_json(self): return HttpResponse( self.json(), mimetype='application/json') def render_html(self): return render(self.TEMPLATE, {'items': self._items}) class GenericActions(object): def __init__(self, item_id): self.item_id = item_id self.actions = [] def get_actions_for_item(self): raise NotImplementedError def json(self): return simplejson.dumps(self.actions) def render_json(self): return HttpResponse(self.json(), mimetype='application/json') def render_html(self): pass
25.912281
69
0.613067
2,796
0.946513
0
0
0
0
0
0
278
0.09411
c7b4d983814129255c3038e65a92199d05319e32
6,061
py
Python
tobit.py
AlvaroCorrales/tobit
6993b1cfe58010cd59aac477ced3c2525342244f
[ "MIT" ]
1
2021-04-13T03:14:01.000Z
2021-04-13T03:14:01.000Z
tobit.py
AlvaroCorrales/tobit
6993b1cfe58010cd59aac477ced3c2525342244f
[ "MIT" ]
null
null
null
tobit.py
AlvaroCorrales/tobit
6993b1cfe58010cd59aac477ced3c2525342244f
[ "MIT" ]
null
null
null
import math import warnings import numpy as np import pandas as pd from scipy.optimize import minimize import scipy.stats from scipy.stats import norm # edit from scipy.special import log_ndtr from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, mean_absolute_error def split_left_right_censored(x, y, cens): counts = cens.value_counts() if -1 not in counts and 1 not in counts: warnings.warn("No censored observations; use regression methods for uncensored data") xs = [] ys = [] for value in [-1, 0, 1]: if value in counts: split = cens == value y_split = np.squeeze(y[split].values) x_split = x[split].values else: y_split, x_split = None, None xs.append(x_split) ys.append(y_split) return xs, ys def tobit_neg_log_likelihood(xs, ys, params): x_left, x_mid, x_right = xs y_left, y_mid, y_right = ys b = params[:-1] # s = math.exp(params[-1]) s = params[-1] to_cat = [] cens = False if y_left is not None: cens = True left = (y_left - np.dot(x_left, b)) to_cat.append(left) if y_right is not None: cens = True right = (np.dot(x_right, b) - y_right) to_cat.append(right) if cens: concat_stats = np.concatenate(to_cat, axis=0) / s log_cum_norm = scipy.stats.norm.logcdf(concat_stats) # log_ndtr(concat_stats) cens_sum = log_cum_norm.sum() else: cens_sum = 0 if y_mid is not None: mid_stats = (y_mid - np.dot(x_mid, b)) / s mid = scipy.stats.norm.logpdf(mid_stats) - math.log(max(np.finfo('float').resolution, s)) mid_sum = mid.sum() else: mid_sum = 0 loglik = cens_sum + mid_sum return - loglik def tobit_neg_log_likelihood_der(xs, ys, params): x_left, x_mid, x_right = xs y_left, y_mid, y_right = ys b = params[:-1] # s = math.exp(params[-1]) # in censReg, not using chain rule as below; they optimize in terms of log(s) s = params[-1] beta_jac = np.zeros(len(b)) sigma_jac = 0 if y_left is not None: left_stats = (y_left - np.dot(x_left, b)) / s l_pdf = scipy.stats.norm.logpdf(left_stats) l_cdf = log_ndtr(left_stats) left_frac = np.exp(l_pdf - l_cdf) beta_left = np.dot(left_frac, x_left / s) beta_jac -= beta_left left_sigma = np.dot(left_frac, left_stats) sigma_jac -= left_sigma if y_right is not None: right_stats = (np.dot(x_right, b) - y_right) / s r_pdf = scipy.stats.norm.logpdf(right_stats) r_cdf = log_ndtr(right_stats) right_frac = np.exp(r_pdf - r_cdf) beta_right = np.dot(right_frac, x_right / s) beta_jac += beta_right right_sigma = np.dot(right_frac, right_stats) sigma_jac -= right_sigma if y_mid is not None: mid_stats = (y_mid - np.dot(x_mid, b)) / s beta_mid = np.dot(mid_stats, x_mid / s) beta_jac += beta_mid mid_sigma = (np.square(mid_stats) - 1).sum() sigma_jac += mid_sigma combo_jac = np.append(beta_jac, sigma_jac / s) # by chain rule, since the expression above is dloglik/dlogsigma return -combo_jac class TobitModel: def __init__(self, fit_intercept=True): self.fit_intercept = fit_intercept self.ols_coef_ = None self.ols_intercept = None self.coef_ = None self.intercept_ = None self.sigma_ = None def fit(self, x, y, cens, verbose=False): """ Fit a maximum-likelihood Tobit regression :param x: Pandas DataFrame (n_samples, n_features): Data :param y: Pandas Series (n_samples,): Target :param cens: Pandas Series (n_samples,): -1 indicates left-censored samples, 0 for uncensored, 1 for right-censored :param verbose: boolean, show info from minimization :return: """ x_copy = x.copy() if self.fit_intercept: x_copy.insert(0, 'intercept', 1.0) else: x_copy.scale(with_mean=True, with_std=False, copy=False) init_reg = LinearRegression(fit_intercept=False).fit(x_copy, y) b0 = init_reg.coef_ y_pred = init_reg.predict(x_copy) resid = y - y_pred resid_var = np.var(resid) s0 = np.sqrt(resid_var) params0 = np.append(b0, s0) xs, ys = split_left_right_censored(x_copy, y, cens) result = minimize(lambda params: tobit_neg_log_likelihood(xs, ys, params), params0, method='BFGS', jac=lambda params: tobit_neg_log_likelihood_der(xs, ys, params), options={'disp': verbose}) if verbose: print(result) self.ols_coef_ = b0[1:] self.ols_intercept = b0[0] if self.fit_intercept: self.intercept_ = result.x[1] self.coef_ = result.x[1:-1] else: self.coef_ = result.x[:-1] self.intercept_ = 0 self.sigma_ = result.x[-1] return self def predict(self, x): return self.intercept_ + np.dot(x, self.coef_) def score(self, x, y, scoring_function=mean_absolute_error): y_pred = np.dot(x, self.coef_) return scoring_function(y, y_pred) # EDIT - insert marginal effects function def margins(self, x, k = 0): """ Marginal effects on dependent variable of a regressor, identified by coef :param x: array with all regressors (independent variables) to make a prediction :param k: coefficient corresponding to the regressor with respect to which we want to take the marginal effects :return: an array with the marginal effects estimated at each observation's level The marginal effect of regressor k on individual i's y is defined as the product of coef[k] and the normal cdf evaluated at x_i * coeff[k] / sigma """ return self.coef_[k] * norm.cdf(self.predict(x) / self.sigma_)
33.120219
123
0.620855
2,755
0.454545
0
0
0
0
0
0
1,311
0.216301
c7b509b05f7f3079575b9250d0a2891a9795c878
1,554
py
Python
setup.py
Raymond38324/hagworm
196d4735719f586d52a1cd9f21aedd00e16b59b0
[ "Apache-2.0" ]
null
null
null
setup.py
Raymond38324/hagworm
196d4735719f586d52a1cd9f21aedd00e16b59b0
[ "Apache-2.0" ]
null
null
null
setup.py
Raymond38324/hagworm
196d4735719f586d52a1cd9f21aedd00e16b59b0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import setuptools with open(r'README.md', r'r', encoding="utf8") as stream: long_description = stream.read() setuptools.setup( name=r'hagworm', version=r'3.0.0', license=r'Apache License Version 2.0', platforms=[r'all'], author=r'Shaobo.Wang', author_email=r'[email protected]', description=r'Network Development Suite', long_description=long_description, long_description_content_type=r'text/markdown', url=r'https://github.com/wsb310/hagworm', packages=setuptools.find_packages(), package_data={r'hagworm': [r'static/*.*']}, python_requires=r'>= 3.7', install_requires=[ r'aioftp==0.13.0', r'aiohttp==3.5.4', r'aiokafka==0.5.2', r'aiomysql==0.0.20', r'aioredis==1.2.0', r'cacheout==0.11.1', r'crontab==0.22.6', r'cryptography==2.7.0', r'hiredis==1.0.0', r'Jinja2==2.10.1', r'tornado-jinja2==0.2.4', r'loguru==0.3.0', r'motor==2.0.0', r'mq_http_sdk==1.0.1', r'objgraph==3.4.1', r'Pillow==6.1.0', r'psutil==5.6.3', r'PyJWT==1.7.1', r'pytest==5.0.1', r'pytest-asyncio==0.10.0', r'Sphinx==2.1.2', r'SQLAlchemy==1.3.5', r'tornado==6.0.3', r'xlwt==1.3.0', r'xmltodict==0.12.0', ], classifiers=[ r'Programming Language :: Python :: 3.7', r'License :: OSI Approved :: Apache Software License', r'Operating System :: POSIX :: Linux', ], )
28.254545
62
0.548263
0
0
0
0
0
0
0
0
824
0.530245
c7b513ddbd33e479f8df70d1c5b9306a2ec0133a
3,072
py
Python
mercury_ml/keras/containers.py
gabrieloexle/mercury-ml
cc663f84a26ee66ae105bbfc0cd1cbd5629031cd
[ "MIT" ]
null
null
null
mercury_ml/keras/containers.py
gabrieloexle/mercury-ml
cc663f84a26ee66ae105bbfc0cd1cbd5629031cd
[ "MIT" ]
null
null
null
mercury_ml/keras/containers.py
gabrieloexle/mercury-ml
cc663f84a26ee66ae105bbfc0cd1cbd5629031cd
[ "MIT" ]
null
null
null
""" Simple IoC containers that provide direct access to various Keras providers """ class ModelSavers: from mercury_ml.keras.providers import model_saving save_hdf5 = model_saving.save_keras_hdf5 save_tensorflow_graph = model_saving.save_tensorflow_graph save_tensorrt_pbtxt_config = model_saving.save_tensorrt_pbtxt_config save_tensorrt_json_config = model_saving.save_tensorrt_json_config save_labels_txt = model_saving.save_labels_txt save_tensorflow_serving_predict_signature_def = model_saving.save_tensorflow_serving_predict_signature_def class ModelLoaders: from mercury_ml.keras.providers import model_loading load_hdf5 = model_loading.load_hdf5_model class LossFunctionFetchers: from mercury_ml.keras.providers import loss_function_fetching get_keras_loss = loss_function_fetching.get_keras_loss get_custom_loss = loss_function_fetching.get_custom_loss class OptimizerFetchers: from mercury_ml.keras.providers import optimizer_fetching get_keras_optimizer = optimizer_fetching.get_keras_optimizer class ModelCompilers: from mercury_ml.keras.providers import model_compilation compile_model = model_compilation.compile_model class ModelFitters: from mercury_ml.keras.providers import model_fitting fit = model_fitting.fit fit_generator = model_fitting.fit_generator class ModelDefinitions: from mercury_ml.keras.providers.model_definition import conv_simple, mlp_simple # these are just two small example model definitions. Users should define their own models # to use as follows: # >>> ModelDefinitions.my_model = my_model_module.define_model define_conv_simple = conv_simple.define_model define_mlp_simple = mlp_simple.define_model class GeneratorPreprocessingFunctionGetters: from mercury_ml.keras.providers.generator_preprocessors import get_random_eraser get_random_eraser = get_random_eraser class CallBacks: from mercury_ml.keras.providers.model_callbacks import TensorBoardProvider, \ BaseLoggerProvider, EarlyStoppingProvider, ModelCheckpointProvider, TerminateOnNaNProvider, \ ProgbarLoggerProvider, RemoteMonitorProvider, LearningRateSchedulerProvider, ReduceLROnPlateauProvider, \ CSVLoggerProvider tensorboard = TensorBoardProvider base_logger = BaseLoggerProvider terminate_on_nan = TerminateOnNaNProvider progbar_logger = ProgbarLoggerProvider model_checkpoint = ModelCheckpointProvider early_stopping = EarlyStoppingProvider remote_monitor = RemoteMonitorProvider learning_rate_scheduler = LearningRateSchedulerProvider reduce_lr_on_plateau = ReduceLROnPlateauProvider csv_logger = CSVLoggerProvider class ModelEvaluators: from mercury_ml.keras.providers import model_evaluation evaluate = model_evaluation.evaluate evaluate_generator = model_evaluation.evaluate_generator class PredictionFunctions: from mercury_ml.keras.providers import prediction predict = prediction.predict predict_generator = prediction.predict_generator
38.4
113
0.823893
2,962
0.964193
0
0
0
0
0
0
255
0.083008
c7b60df7ecb95aad435c61ec7e818259064a9562
1,851
py
Python
Code Injector/code_injector_BeEF.py
crake7/Defensor-Fortis-
086b055a10b9ac55f444e8d13b4031f998415438
[ "MIT" ]
null
null
null
Code Injector/code_injector_BeEF.py
crake7/Defensor-Fortis-
086b055a10b9ac55f444e8d13b4031f998415438
[ "MIT" ]
null
null
null
Code Injector/code_injector_BeEF.py
crake7/Defensor-Fortis-
086b055a10b9ac55f444e8d13b4031f998415438
[ "MIT" ]
1
2021-12-20T11:44:51.000Z
2021-12-20T11:44:51.000Z
#!/usr/bin/env python import netfilterqueue import scapy.all as scapy import re def set_load(packet, load): packet[scapy.Raw].load = load del packet[scapy.IP].len del packet[scapy.IP].chksum del packet[scapy.TCP].chksum return packet def process_packet(packet): """Modify downloads files on the fly while target uses HTTP/HTTPS. Do not forget to choose the port you will use on line 23 and 28 and uncomment them.""" scapy_packet = scapy.IP (packet.get_payload()) if scapy_packet.haslayer(scapy.Raw): #try: #.decode() in load load = scapy_packet[scapy.Raw].load if scapy_packet[scapy.TCP].dport == #CHOOSE PORT HERE: 80 / 10000: print("HTTPS Request") # print(scapy_packet.show()) load = re.sub("Accept-Encoding:.*?\\r\\n", "", load) elif scapy_packet[scapy.TCP].sport == #CHOOSE PORT HERE: 80 / 10000: print("HTTPS Response") #print(scapy_packet.show()) injection_code = '<script src="http://10.0.2.15:3000/hook.js"></script>' load = load.replace("</body>", injection_code + "</body>") content_length_search = re.search("(?:Content-Length:\s)(\d*)", load) if content_length_search and "text/html" in load: content_length = content_length_search.group(1) new_content_length = int(content_length) + len(injection_code) load = load.replace(content_length, str(new_content_length)) if load != scapy_packet[scapy.Raw].load: new_packet = set_load(scapy_packet, load) packet.set_payload(str(new_packet)) #except UnicodeDecodeError: # pass packet.accept() queue = netfilterqueue.NetfilterQueue() queue.bind(0, process_packet) queue.run()
37.02
90
0.622366
0
0
0
0
0
0
0
0
523
0.28255
c7b66acfc0f1fc9f0407ccd4877bc57ccf79afa1
4,691
py
Python
pycardcast/net/aiohttp.py
Elizafox/pycardcast
36fb8009f32f733fd18a7f3263a61362fdb75ec3
[ "WTFPL" ]
null
null
null
pycardcast/net/aiohttp.py
Elizafox/pycardcast
36fb8009f32f733fd18a7f3263a61362fdb75ec3
[ "WTFPL" ]
null
null
null
pycardcast/net/aiohttp.py
Elizafox/pycardcast
36fb8009f32f733fd18a7f3263a61362fdb75ec3
[ "WTFPL" ]
1
2020-04-09T10:12:46.000Z
2020-04-09T10:12:46.000Z
# Copyright © 2015 Elizabeth Myers. # All rights reserved. # This file is part of the pycardcast project. See LICENSE in the root # directory for licensing information. import asyncio import aiohttp from pycardcast.net import CardcastAPIBase from pycardcast.deck import (DeckInfo, DeckInfoNotFoundError, DeckInfoRetrievalError) from pycardcast.card import (BlackCard, WhiteCard, CardNotFoundError, CardRetrievalError) from pycardcast.search import (SearchReturn, SearchNotFoundError, SearchRetrievalError) class CardcastAPI(CardcastAPIBase): """A :py:class:`~pycardcast.net.CardcastAPIBase` implementation using the aiohttp library. All the methods here are coroutines except for one: :py:meth:`~pycardcast.net.aiohttp.CardcastAPI.search_iter`. """ @asyncio.coroutine def deck_info(self, code): req = yield from aiohttp.request("get", self.deck_info_url.format code=code)) if req.status == 200: json=yield from req.json() return DeckInfo.from_json(json) elif req.status == 404: err="Deck not found: {}".format(code) raise DeckInfoNotFoundError(err) else: err="Error retrieving deck: {} (code {})".format(code, req.status) raise DeckInfoRetrievalError(err) @asyncio.coroutine def white_cards(self, code): req=yield from aiohtp.request("get", self.card_list_url.format( code=code)) if req.status == 200: json=yield from req.json() return WhiteCard.from_json(json) elif req.status == 404: err="White cards not found: {}".format(code) raise CardNotFoundError(err) else: err="Error retrieving white cards: {} (code {})".format( code, req.status) raise CardRetrievalError(err) @asyncio.coroutine def black_cards(self, code): req = yield from aiohtp.request("get", self.card_list_url.format( code=code)) if req.status == 200: json = yield from req.json() return BlackCard.from_json(json) elif req.status == 404: err = "Black cards not found: {}".format(code) raise CardNotFoundError(err) else: err = "Error retrieving black cards: {} (code {})".format( code, req.status) raise CardRetrievalError(err) @asyncio.coroutine def cards(self, code): req = yield from aiohtp.request("get", self.card_list_url.format( code=code)) if req.status == 200: json = yield from req.json() return (BlackCard.from_json(json), WhiteCard.from_json(json)) elif req.status == 404: err = "Cards not found: {}".format(code) raise CardNotFoundError(err) else: err = "Error retrieving cards: {} (code {})".format(code, req.status) raise CardRetrievalError(err) @asyncio.coroutine def deck(self, code): deckinfo = yield from self.deck_info(code) cards = yield from self.cards(code) return Deck(deckinfo, cards[0], cards[1]) @asyncio.coroutine def search(self, name=None, author=None, category=None, offset=0, limit=None): qs = { "search": name, "author": author, "category": category, "offset": offset, "limit": (deck_list_max if limit is None else limit) } req = yield from aiohtp.request("get", self.deck_list_url, params=qs) if req.status == 200: json = yield from req.json() return SearchReturn.from_json(json) elif req.status == 404: err = "Search query returned not found" raise SearchNotFoundError(err) else: err = "Error searching decks (code {})".format(req.status) raise SearchRetrievalError(err) def search_iter(self, name=None, author=None, category=None, offset=0, limit=None): s = asyncio.run_until_complete(self.search(name, author, category, offset, limit)) while s.count > 0: yield s offset += s.count s = asyncio.run_until_complete(self.search(name, author, category, offset, limit))
37.830645
78
0.563206
4,091
0.87191
3,648
0.777494
3,312
0.705882
0
0
779
0.166027
c7b71c7227264e168736696fa5f4ef910e4d9c22
2,345
py
Python
libtiepie/triggeroutput.py
TiePie/python-libtiepie
d2a9875855298a58d6a16be5b61aaa89a558e7d8
[ "MIT" ]
6
2020-01-04T02:00:35.000Z
2022-03-22T00:32:26.000Z
libtiepie/triggeroutput.py
TiePie/python-libtiepie
d2a9875855298a58d6a16be5b61aaa89a558e7d8
[ "MIT" ]
3
2020-08-05T15:16:29.000Z
2022-03-21T07:00:27.000Z
libtiepie/triggeroutput.py
TiePie/python-libtiepie
d2a9875855298a58d6a16be5b61aaa89a558e7d8
[ "MIT" ]
null
null
null
from ctypes import * from .api import api from .const import * from .library import library class TriggerOutput(object): """""" def __init__(self, handle, index): self._handle = handle self._index = index def _get_enabled(self): """ Check whether a trigger output is enabled. """ value = api.DevTrOutGetEnabled(self._handle, self._index) library.check_last_status_raise_on_error() return value != BOOL8_FALSE def _set_enabled(self, value): value = BOOL8_TRUE if value else BOOL8_FALSE api.DevTrOutSetEnabled(self._handle, self._index, value) library.check_last_status_raise_on_error() def _get_events(self): """ Supported trigger output events. """ value = api.DevTrOutGetEvents(self._handle, self._index) library.check_last_status_raise_on_error() return value def _get_event(self): """ Currently selected trigger output event. """ value = api.DevTrOutGetEvent(self._handle, self._index) library.check_last_status_raise_on_error() return value def _set_event(self, value): api.DevTrOutSetEvent(self._handle, self._index, value) library.check_last_status_raise_on_error() def _get_id(self): """ Id. """ value = api.DevTrOutGetId(self._handle, self._index) library.check_last_status_raise_on_error() return value def _get_name(self): """ Name. """ length = api.DevTrOutGetName(self._handle, self._index, None, 0) library.check_last_status_raise_on_error() buf = create_string_buffer(length + 1) api.DevTrOutGetName(self._handle, self._index, buf, length) library.check_last_status_raise_on_error() return buf.value.decode('utf-8') def trigger(self): """ Trigger the specified device trigger output. :returns: ``True`` if successful, ``False`` otherwise. .. versionadded:: 0.6 """ result = api.DevTrOutTrigger(self._handle, self._index) library.check_last_status_raise_on_error() return result != BOOL8_FALSE enabled = property(_get_enabled, _set_enabled) events = property(_get_events) event = property(_get_event, _set_event) id = property(_get_id) name = property(_get_name)
33.028169
72
0.665245
2,250
0.959488
0
0
0
0
0
0
329
0.140299
c7b7578b3382d7cf2565fe8fe7621c5d451e663b
1,374
py
Python
conduit_rest/radish/conduit_rest_steps.py
dduleba/tw2019-ui-tests
5f149c6c2bdb9f2d69a02c038248374f6b0b5903
[ "MIT" ]
1
2019-09-27T23:12:07.000Z
2019-09-27T23:12:07.000Z
conduit_rest/radish/conduit_rest_steps.py
dduleba/conduit-tests
5f149c6c2bdb9f2d69a02c038248374f6b0b5903
[ "MIT" ]
null
null
null
conduit_rest/radish/conduit_rest_steps.py
dduleba/conduit-tests
5f149c6c2bdb9f2d69a02c038248374f6b0b5903
[ "MIT" ]
null
null
null
import time from faker import Faker from radish_ext.radish.step_config import StepConfig from conduit.client import ConduitClient, ConduitConfig class ConduitStepsConfig(StepConfig): def __init__(self, context): super().__init__(context) self._faker = None self.client = ConduitClient(ConduitConfig().set_properties(context.cfg.get('conduit_backend').get('url'))) @property def faker(self): if self._faker is None: self._faker = Faker(locale='en-us') seed = time.time() self.log.debug(f'Faker seed {seed}') self._faker.seed() return self._faker def get_conduit_config(context): return ConduitStepsConfig.get_instance(context) class ConduitRestBaseSteps(object): def created_user(self, step, ): """created User""" stc_rest = get_conduit_config(step.context) user_model = {'user': {'username': stc_rest.faker.user_name(), 'password': stc_rest.faker.password(), 'email': stc_rest.faker.email() } } stc_rest.test_data.data.update(user_model) stc_rest.log.debug(user_model) ret_json = stc_rest.client.users.register_user(**user_model['user']) stc_rest.log.info(f'user created {ret_json}')
31.227273
114
0.61936
1,134
0.825328
0
0
248
0.180495
0
0
132
0.09607
c7b88fe5b2537ef40175e1a577b998fdb2d3a5c9
1,233
py
Python
SummaryExternalClient.py
Hackillinois2k18/Main-Repo
e998cc3283e0469b98a842220a30a72c5b105dad
[ "MIT" ]
5
2020-03-10T03:23:18.000Z
2021-11-12T17:06:51.000Z
SummaryExternalClient.py
Hackillinois2k18/FyveBot
e998cc3283e0469b98a842220a30a72c5b105dad
[ "MIT" ]
3
2018-02-24T05:25:28.000Z
2018-02-24T05:43:49.000Z
SummaryExternalClient.py
Hackillinois2k18/Main-Repo
e998cc3283e0469b98a842220a30a72c5b105dad
[ "MIT" ]
3
2019-01-20T14:50:11.000Z
2021-11-12T17:06:55.000Z
import requests import credentials class SummaryExternalClient: def pullSummaryForUrl(self, artUrl, title): url = "https://api.aylien.com/api/v1/summarize" headers = {"X-AYLIEN-TextAPI-Application-Key": credentials.AYLIEN_APP_KEY, "X-AYLIEN-TextAPI-Application-ID" : credentials.AYLIEN_APP_ID} params = {"url" : artUrl, "title" : title, "sentences_number": 7} summary = requests.get(url=url, headers=headers, params=params) try: sentences = summary.json()['sentences'] except: sentences = [] return sentences def pullSummaryForText(self, text, title): url = "https://api.aylien.com/api/v1/summarize" headers = {"X-AYLIEN-TextAPI-Application-Key": credentials.AYLIEN_APP_KEY, "X-AYLIEN-TextAPI-Application-ID" : credentials.AYLIEN_APP_ID} params = {"text": text, "title": title, "sentences_number": 7} summary = requests.get(url=url, headers=headers, params=params) try: sentences = summary.json()['sentences'] except: sentences = [] return sentences
35.228571
82
0.586375
1,194
0.96837
0
0
0
0
0
0
299
0.242498
c7b8b9fdf2de5fb240b87971d0e7f35941af2c81
1,485
py
Python
tests/test_render.py
isuruf/conda-build
9f163925f5d03a46e921162892bf4c6bc86b1072
[ "BSD-3-Clause" ]
null
null
null
tests/test_render.py
isuruf/conda-build
9f163925f5d03a46e921162892bf4c6bc86b1072
[ "BSD-3-Clause" ]
1
2019-10-08T15:03:56.000Z
2019-10-08T15:03:56.000Z
tests/test_render.py
awwad/conda-build
b0be80283ec2e3ef7e49b5da923b1438e74e27b5
[ "BSD-3-Clause" ]
null
null
null
import os import sys from conda_build import api from conda_build import render import pytest def test_output_with_noarch_says_noarch(testing_metadata): testing_metadata.meta['build']['noarch'] = 'python' output = api.get_output_file_path(testing_metadata) assert os.path.sep + "noarch" + os.path.sep in output[0] def test_output_with_noarch_python_says_noarch(testing_metadata): testing_metadata.meta['build']['noarch_python'] = True output = api.get_output_file_path(testing_metadata) assert os.path.sep + "noarch" + os.path.sep in output[0] def test_reduce_duplicate_specs(testing_metadata): reqs = {'build': ['exact', 'exact 1.2.3 1', 'exact >1.0,<2'], 'host': ['exact', 'exact 1.2.3 1'] } testing_metadata.meta['requirements'] = reqs render._simplify_to_exact_constraints(testing_metadata) assert (testing_metadata.meta['requirements']['build'] == testing_metadata.meta['requirements']['host']) simplified_deps = testing_metadata.meta['requirements'] assert len(simplified_deps['build']) == 1 assert 'exact 1.2.3 1' in simplified_deps['build'] def test_pin_run_as_build_preserve_string(testing_metadata): m = testing_metadata m.config.variant['pin_run_as_build']['pkg'] = { 'max_pin': 'x.x' } dep = render.get_pin_from_build( m, 'pkg * somestring*', {'pkg': '1.2.3 somestring_h1234'} ) assert dep == 'pkg >=1.2.3,<1.3.0a0 somestring*'
33
65
0.690909
0
0
0
0
0
0
0
0
350
0.23569
c7b8e20d5ed5e23189a112d56d8a749537d1ecec
173
py
Python
ABC/007/b.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/007/b.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/007/b.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
def main(): # input A = input() # compute # output if A == 'a': print(-1) else: print('a') if __name__ == '__main__': main()
10.8125
26
0.421965
0
0
0
0
0
0
0
0
40
0.231214
c7b94b2b66d38c20024028b233b4eaed057202d2
5,057
py
Python
SPAE/read_write.py
simon-schuler/SPAE
2b970e30838da258b969b316488e7963d66119be
[ "MIT" ]
null
null
null
SPAE/read_write.py
simon-schuler/SPAE
2b970e30838da258b969b316488e7963d66119be
[ "MIT" ]
1
2021-04-12T20:28:55.000Z
2021-04-12T20:28:55.000Z
SPAE/read_write.py
simon-schuler/SPAE
2b970e30838da258b969b316488e7963d66119be
[ "MIT" ]
null
null
null
#Writing MOOG parameter file for the parameter, abundance, and error calculations. #The parameter file only needs to be written once, at beginning of the routine, because the output #files are overwritten with each itereation of the routine, only minimal output data are needed. # #The user can choose to have the parameter file written to screen by choosing verbose=True #The user can choose to have more detailed MOOG output by chooseing the appropriate values for the #MOOG input parameters. import numpy as np def param_file(linelist,atmosphere=0,molecules=1,lines=0,flux=0,damp=0,plot=0,units=0,verbose=False): if verbose: print('abfind') print('terminal \'x11\'') print('standard_out \'moog_out.1\'') print('summary_out \'moog_out.2\'') print('model_in \'star.mod\'') print('lines_in \'' + linelist + '\'') print('atmosphere ' + str(atmosphere)) print('molecules ' + str(molecules)) print('lines ' + str(lines)) print('flux/int ' + str(flux)) print('damping ' + str(damp)) print('plot ' + str(plot)) print('units ' + str(units)) with open('batch.par', 'wt') as file: file.write('abfind' + '\n') file.write('terminal \'x11\'' + '\n') file.write('standard_out \'moog_out.1\'' + '\n') file.write('summary_out \'moog_out.2\'' + '\n') file.write('model_in \'star.mod\'' + '\n') file.write('lines_in \'' + linelist + '\'' + '\n') file.write('atmosphere ' + str(atmosphere) + '\n') file.write('molecules ' + str(molecules) + '\n') file.write('lines ' + str(lines) + '\n') file.write('flux/int ' + str(flux) + '\n') file.write('damping ' + str(damp) + '\n') file.write('plot ' + str(plot) + '\n') file.write('units ' + str(units) + '\n') #Function for creating the solar and stellar linelists def linelist_create(star_in, sun_in, direc_path): with open(direc_path + '/linelist_star.txt', 'w') as out_star: with open(direc_path + '/linelist_sun.txt', 'w') as out_sun: with open(star_in) as file_star: with open(sun_in) as file_sun: line_star = file_star.readline() out_star.write(line_star) #accounts for comment line in linelist files line_sun = file_sun.readline() out_sun.write(line_sun) #accounts for comment line in linelist files line = file_star.readlines() line_s = file_sun.readlines() for line_star in line: line_star_split = line_star.split() #if len(line_star_split) < 2: continue for line_sun in line_s: line_sun_split = line_sun.split() #if len(line_sun_split) < 2: continue if line_star_split[0] == line_sun_split[0] and line_star_split[1] == line_sun_split[1]: out_star.write(line_star) out_sun.write(line_sun) continue #Reads Moog output files, parsing elements and colums def read_file(filename): count = 0 elements = ['Fe I ', 'Fe II ', 'C I ', 'N I ', 'O I ', 'S I', 'K I ', 'Na I ', 'Mg I ', 'Al I ', 'Si I ', 'Ca I ', 'Sc II ', 'Ti I ', 'Ti II ', 'V ', 'Cr I ', 'Mn I ', 'Co I ', 'Ni I ', 'Cu I ', 'Zn I ', 'Ba II '] dtype = [('wavelength', 'f8'), ('ID', 'f8'), ('EP', 'f8'), ('logGF', 'f8'), ('EWin', 'f8'), ('logRWin', 'f8'), ('abund', 'f8'), ('delavg', 'f8')] abundances = [] el_found = [] with open(filename) as file: while True: count += 1 # Get next line from file line = file.readline() # if line is empty end of file is reached if not line: break for j, el in enumerate(elements): species = 'Abundance Results for Species ' + el if species in line: new_arr = [] el_found.append(el) line = file.readline().split() line = file.readline().split() while len(line) == 8: new_arr.append(line) line = file.readline().rstrip().split() new_arr = np.array(new_arr) new_arr = np.core.records.fromarrays(new_arr.T,dtype=dtype) abundances.append(new_arr) return el_found, abundances
41.45082
168
0.489816
0
0
0
0
0
0
0
0
1,760
0.348032
c7ba2b5a0bc557fae2df973eed4ab42b40580f6e
1,862
py
Python
lectures/optimization/optimization_plots.py
carolinalvarez/ose-course-scientific-computing
4b816fa81320c88fc5f35b203f0541e0a1a00939
[ "MIT" ]
null
null
null
lectures/optimization/optimization_plots.py
carolinalvarez/ose-course-scientific-computing
4b816fa81320c88fc5f35b203f0541e0a1a00939
[ "MIT" ]
null
null
null
lectures/optimization/optimization_plots.py
carolinalvarez/ose-course-scientific-computing
4b816fa81320c88fc5f35b203f0541e0a1a00939
[ "MIT" ]
null
null
null
"""Plots for optimization lecture.""" import matplotlib.pyplot as plt import numpy as np from matplotlib import cm def plot_contour(f, allvecs, legend_path): """Plot contour graph for function f.""" # Create array from values with at least two dimensions. allvecs = np.atleast_2d(allvecs) X, Y, Z = _get_grid(f) CS = plt.contour(X, Y, Z) plt.clabel(CS, inline=1, fontsize=10) plt.title("objective function") plt.xlabel("variable $x_1$") plt.ylabel("variable $x_2$") plt.rc("text", usetex=False) plt.rc("font", family="serif") plt.plot(1, 1, "r*", markersize=10, label="minimum") plt.plot(4.5, -1.5, "bx", markersize=10, label="initial guess") plt.plot( np.array(allvecs)[:, 0], np.array(allvecs)[:, 1], "go", markersize=4, label=legend_path, ) plt.legend() return plt def _get_grid(f): """Create a grid for function f.""" # create data to visualize objective function n = 50 # number of discretization points along the x-axis m = 50 # number of discretization points along the x-axis a = -2.0 b = 5.0 # extreme points in the x-axis c = -2 d = 5.0 # extreme points in the y-axis X, Y = np.meshgrid(np.linspace(a, b, n), np.linspace(c, d, m)) Z = np.zeros(X.shape) argument = np.zeros(2) for i in range(X.shape[0]): for j in range(X.shape[1]): argument[0] = X[i, j] argument[1] = Y[i, j] Z[i][j] = f(argument) return X, Y, Z def plot_surf(f): """Plot surface graph of function f.""" X, Y, Z = _get_grid(f) fig = plt.figure() ax = fig.gca(projection="3d") # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm) plt.xlabel("variable $x_1$") plt.ylabel("variable $x_2$") fig.colorbar(surf) plt.title("objective function")
27.791045
96
0.605263
0
0
0
0
0
0
0
0
594
0.319012
c7ba60efd06c8906b83387592b8347e6da526db9
7,141
py
Python
gdsfactory/functions.py
simbilod/gdsfactory
4d76db32674c3edb4d16260e3177ee29ef9ce11d
[ "MIT" ]
null
null
null
gdsfactory/functions.py
simbilod/gdsfactory
4d76db32674c3edb4d16260e3177ee29ef9ce11d
[ "MIT" ]
null
null
null
gdsfactory/functions.py
simbilod/gdsfactory
4d76db32674c3edb4d16260e3177ee29ef9ce11d
[ "MIT" ]
null
null
null
"""All functions return a Component so you can easily pipe or compose them. There are two types of functions: - decorators: return the original component - containers: return a new component """ from functools import lru_cache, partial import numpy as np from omegaconf import OmegaConf from pydantic import validate_arguments from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.components.text_rectangular import text_rectangular_multi_layer from gdsfactory.port import auto_rename_ports from gdsfactory.types import ( Anchor, Axis, ComponentSpec, Float2, Layer, List, Optional, Strs, ) cache = lru_cache(maxsize=None) def add_port(component: Component, **kwargs) -> Component: """Return Component with a new port.""" component.add_port(**kwargs) return component @cell def add_text( component: ComponentSpec, text: str = "", text_offset: Float2 = (0, 0), text_anchor: Anchor = "cc", text_factory: ComponentSpec = text_rectangular_multi_layer, ) -> Component: """Return component inside a new component with text geometry. Args: component: component spec. text: text string. text_offset: relative to component anchor. Defaults to center (cc). text_anchor: relative to component (ce cw nc ne nw sc se sw center cc). text_factory: function to add text labels. """ from gdsfactory.pdk import get_component component = get_component(component) component_new = Component() component_new.component = component ref = component_new.add_ref(component) t = component_new << text_factory(text) t.move((np.array(text_offset) + getattr(ref.size_info, text_anchor))) component_new.add_ports(ref.ports) component_new.copy_child_info(component) return component_new def add_texts( components: List[ComponentSpec], prefix: str = "", index0: int = 0, **kwargs, ) -> List[Component]: """Return a list of Component with text labels. Args: components: list of component specs. prefix: Optional prefix for the labels. index0: defaults to 0 (0, for first component, 1 for second ...). keyword Args: text_offset: relative to component size info anchor. Defaults to center. text_anchor: relative to component (ce cw nc ne nw sc se sw center cc). text_factory: function to add text labels. """ return [ add_text(component, text=f"{prefix}{i+index0}", **kwargs) for i, component in enumerate(components) ] @cell def rotate( component: ComponentSpec, angle: float = 90, recenter: bool = False ) -> Component: """Return rotated component inside a new component. Most times you just need to place a reference and rotate it. This rotate function just encapsulates the rotated reference into a new component. Args: component: spec. angle: to rotate in degrees. recenter: recenter component after rotating. """ from gdsfactory.pdk import get_component component = get_component(component) component_new = Component() component_new.component = component ref = component_new.add_ref(component) origin_offset = ref.origin - np.array((ref.xmin, ref.ymin)) ref.rotate(angle) if recenter: ref.move( origin=ref.center, destination=np.array((ref.xsize / 2, ref.ysize / 2)) - origin_offset, ) component_new.add_ports(ref.ports) component_new.copy_child_info(component) return component_new rotate90 = partial(rotate, angle=90) rotate90n = partial(rotate, angle=-90) rotate180 = partial(rotate, angle=180) @cell def mirror( component: ComponentSpec, p1: Float2 = (0, 1), p2: Float2 = (0, 0) ) -> Component: """Return new Component with a mirrored reference. Args: component: component spec. p1: first point to define mirror axis. p2: second point to define mirror axis. """ from gdsfactory.pdk import get_component component = get_component(component) component_new = Component() component_new.component = component ref = component_new.add_ref(component) ref.mirror(p1=p1, p2=p2) component_new.add_ports(ref.ports) component_new.copy_child_info(component) return component_new @cell def move( component: Component, origin=(0, 0), destination=None, axis: Optional[Axis] = None, ) -> Component: """Return new Component with a moved reference to the original component. Args: component: to move. origin: of component. destination: Optional x, y. axis: x or y axis. """ component_new = Component() component_new.component = component ref = component_new.add_ref(component) ref.move(origin=origin, destination=destination, axis=axis) component_new.add_ports(ref.ports) component_new.copy_child_info(component) return component_new def move_port_to_zero(component: Component, port_name: str = "o1"): """Return a container that contains a reference to the original component. The new component has port_name in (0, 0). """ if port_name not in component.ports: raise ValueError( f"port_name = {port_name!r} not in {list(component.ports.keys())}" ) return move(component, -component.ports[port_name].midpoint) def update_info(component: Component, **kwargs) -> Component: """Return Component with updated info.""" component.info.update(**kwargs) return component @validate_arguments def add_settings_label( component: Component, layer_label: Layer = (66, 0), settings: Optional[Strs] = None ) -> Component: """Add a settings label to a component. Args: component: spec. layer_label: for label. settings: tuple or list of settings. if None, adds all changed settings. """ d = ( {setting: component.get_setting(setting) for setting in settings} if settings else component.metadata.changed ) component.add_label(text=OmegaConf.to_yaml(d), layer=layer_label) return component __all__ = ( "add_port", "add_text", "add_settings_label", "auto_rename_ports", "cache", "mirror", "move", "move_port_to_zero", "rotate", "update_info", ) if __name__ == "__main__": import gdsfactory as gf c = gf.components.mmi1x2( length_mmi=10, decorator=partial(add_settings_label, settings=["name", "length_mmi"]), ) # c.show() cr = rotate(component=c) cr.show() # cr = c.rotate() # cr.pprint() # cr.show() # cm = move(c, destination=(20, 20)) # cm.show() # cm = mirror(c) # cm.show() # cm = c.mirror() # cm.show() # cm2 = move_port_to_zero(cm) # cm2.show() # cm3 = add_text(c, "hi") # cm3.show() # cr = rotate(component=c) # cr.show() # print(component_rotated) # component_rotated.pprint # component_netlist = component.get_netlist() # component.pprint_netlist()
25.967273
87
0.669654
0
0
0
0
3,884
0.543901
0
0
2,808
0.393222
c7ba7f82e01986b93c50e54b040c99061ee59d08
26,640
py
Python
OverlayUFOs/Overlay UFOs.roboFontExt/lib/OverlayUFOs.py
connordavenport/fbOpenTools
794c71d504cea1248c256bea11d5249b0a4144a1
[ "Unlicense" ]
null
null
null
OverlayUFOs/Overlay UFOs.roboFontExt/lib/OverlayUFOs.py
connordavenport/fbOpenTools
794c71d504cea1248c256bea11d5249b0a4144a1
[ "Unlicense" ]
null
null
null
OverlayUFOs/Overlay UFOs.roboFontExt/lib/OverlayUFOs.py
connordavenport/fbOpenTools
794c71d504cea1248c256bea11d5249b0a4144a1
[ "Unlicense" ]
null
null
null
#coding=utf-8 from __future__ import division """ # OVERLAY UFOS For anyone looking in here, sorry the code is so messy. This is a standalone version of a script with a lot of dependencies. """ import os from AppKit import * #@PydevCodeAnalysisIgnore from vanilla import * #@PydevCodeAnalysisIgnore from mojo.drawingTools import * from mojo.events import addObserver, removeObserver from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor from mojo.UI import UpdateCurrentGlyphView from fontTools.pens.transformPen import TransformPen from defconAppKit.windows.baseWindow import BaseWindowController import unicodedata #from lib.tools.defaults import getDefaultColor from lib.tools.drawing import strokePixelPath from lib.UI.spaceCenter.glyphSequenceEditText import splitText from builtins import chr selectedSymbol = u'•' def SmallTextListCell(editable=False): cell = NSTextFieldCell.alloc().init() size = NSSmallControlSize #NSMiniControlSize cell.setControlSize_(size) font = NSFont.systemFontOfSize_(NSFont.systemFontSizeForControlSize_(size)) cell.setFont_(font) cell.setEditable_(editable) return cell class TX: """ An agnostic way to get a naked font. """ @classmethod def naked(cls, f): try: return f.naked() except: return f class Tool(): """ The tool object manages the font list. This is a simplification. """ fonts = AllFonts() def addObserver(self, target, method, action): addObserver(target, method, action) def removeObserver(self, target, method, action): removeObserver(target, method, action) def getCurrentFont(self): return CurrentFont() def getFonts(self): u"""Answers the list of selected fonts, ordered by their path. """ return self.fonts def appendToFonts(self, path): f = OpenFont(path, showUI=False) self.fonts.append(f) def removeFromFonts(self, path): for i, f in enumerate(self.fonts): if f.path == path: del self.fonts[i] def getFontPaths(self): return [f.path or str(f.info.familyName)+" "+str(f.info.styleName) for f in self.getFonts()] def getFontLabel(self, path): if path is None: return None if not path: return 'Untitled' name = path.split('/')[-1] status = selectedSymbol return status, path, name def getFontLabels(self): labels = {} for path in self.getFontPaths(): if path: label = self.getFontLabel(path) name = label[-1] else: name = 'Untitled' if not name in labels: labels[name] = [] labels[name].append(label) sortedLabels = [] for _, labelSet in sorted(labels.items()): if len(labelSet) == 1: # There is only a single font with this name sortedLabels.append(labelSet[0]) else: # Otherwise we'll have to construct new names to show the difference for status, path, name in sorted(labelSet): sortedLabels.append((status, path, '%s "%s"' % (name, '/'.join(path.split('/')[:-1])))) return sortedLabels class C: """ Some constants. """ C2 = 100 BUTTON_WIDTH = 80 STYLE_CHECKBOXSIZE = 'small' STYLE_LABELSIZE = 'small' STYLE_RADIOSIZE = 'small' L = 22 LL = 25 class OverlayUFOs(BaseWindowController): DEFAULTKEY = "com.fontbureau.overlayUFO" DEFAULTKEY_FILLCOLOR = "%s.fillColor" %DEFAULTKEY DEFAULTKEY_STROKECOLOR = "%s.strokeColor" %DEFAULTKEY DEFAULTKEY_STROKE = "%s.stroke" %DEFAULTKEY DEFAULTKEY_FILL = "%s.fill" %DEFAULTKEY FALLBACK_FILLCOLOR = NSColor.colorWithCalibratedRed_green_blue_alpha_(.5, 0, .5, .1) FALLBACK_STROKECOLOR = NSColor.colorWithCalibratedRed_green_blue_alpha_(.5, 0, .5, .5) VERSION = 1.0 NAME = u'Overlay UFOs' MANUAL = u"""In the current glyph window, this will present the view the same glyph from a separate UFO or set of UFOs.<br/> This does NOT import the UFO into a background layer. Instead, it renders a outline directly from the UFO into the glyph window view. <ul> <li>There is no need to import duplicate data into a background layer.</li> <li>The source outline is always live; when changes are made to the source, they will automatically appear in the current without re-importing.</li> <li>The source font does not need to be opened with a UI.</li> </ul> <h3>DIALOG</h3> <ul> <li>A floating dialog is present to let you open and select source fonts, fill, stroke, color.</li> <li>Source Fonts: The default source font list is self.getOpenFonts(). The refresh button will return this list to self.getOpenFonts().</li> <li>Adding Fonts: You can manually add fonts by selecting a UFO file. The UFO file will open without an interface.</li> <li>Removing Fonts: There are buttons for removing selected fonts and for clearing the source font list.</li> </ul> <h3>BUGS/IMPROVEMENTS</h3> <ul> <li>Known Issue: The source font is drawn on top of the current font, instead of behind it. So, it is good to select a color with a low opacity.</li> <li>Known Bug: If the glyph window for both source and current fonts are open, it is possible to select and inadvertently edit the source outline in the current window. I don't know how to solve this.</li> <li>Improvement?: Add options to scale the source font.</li> <li>Improvement?: Set different colors, fill settings for each font?</li> </ul> """ # Fixed width of the window. VIEWMINSIZE = 400 VIEWSIZE = VIEWMINSIZE VIEWMAXSIZE = VIEWMINSIZE WINDOW_POSSIZE = (130, 20, VIEWSIZE, 260) WINDOW_MINSIZE = (VIEWMINSIZE, 260) WINDOW_MAXSIZE = (VIEWMAXSIZE, 260) def getPathListDescriptor(self): return [ dict(title='Status', key='status', cell=SmallTextListCell(editable=False), width=12, editable=False), dict(title='Name', key='name', width=300, cell=SmallTextListCell(editable=False), editable=False), dict(title='Path', key='path', width=0, editable=False), ] ################ # OBSERVERS AND UPDATERS ################ def fontSelectionChanged(self): self.setSourceFonts() def activateModule(self): self.tool.addObserver(self, 'drawInactive', 'drawInactive') self.tool.addObserver(self, 'drawBackground', 'drawBackground') self.tool.addObserver(self, 'fontDidOpen', 'fontDidOpen') self.tool.addObserver(self, 'fontWillClose', 'fontWillClose') def deactivateModule(self): removeObserver(self, 'drawBackground') removeObserver(self, 'drawInactive') removeObserver(self, 'fontDidOpen') removeObserver(self, 'fontWillClose') ################ # CONTEXTS ################ def fontDidOpen(self, info): font = info.get('font') if font: self.tool.fonts.append(font) self.refreshCallback() def fontWillClose(self, info): font = info.get('font') path = font.path if path: self.tool.removeFromFonts(path) self.refreshCallback() def __init__(self): self.tool = Tool() self.w = FloatingWindow((400, 200), "Overlay UFOs", minSize=(400, 200)) self.populateView() self.getView().open() def getView(self): return self.w def refreshCallback(self, sender=None): """ Update the font list. """ self.getView().fontList.set(self.getFontItems()) def resetCallback(self, sender=None): """ Resets the view to the currently opened fonts. """ self.tool.fonts = AllFonts() self.getView().fontList.set(self.getFontItems()) def addCallback(self, sender=None): """ Open a font without UI and add it to the font list. """ f = OpenFont(None, showUI=False) if f is None: return self.tool.appendToFonts(f.path) self.refreshCallback() def populateView(self): """ The UI """ self.fillColor = getExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR) self.strokeColor = getExtensionDefaultColor(self.DEFAULTKEY_STROKECOLOR, self.FALLBACK_STROKECOLOR) self.contextBefore = self.contextAfter = '' # Populating the view can only happen after the view is attached to the window, # or else the relative widths go wrong. view = self.getView() view.add = Button((-40, 3, 30, 22), '+', callback=self.addCallback) view.reset = Button((-40, 30, 30, 22), chr(8634), callback=self.resetCallback) # Flag to see if the selection list click is in progress. We are resetting the selection # ourselves, using the list "buttons", but changing that selection will cause another # list update, that should be ignored. self._selectionChanging = False # Indicate that we are a drawing module self._canDraw = True self.sources = [] x = y = 4 view.fontList = List((C.C2, y, 250, -65), self.getFontItems(), selectionCallback=self.fontListCallback, drawFocusRing=False, enableDelete=False, allowsMultipleSelection=False, allowsEmptySelection=True, drawHorizontalLines=True, showColumnTitles=False, columnDescriptions=self.getPathListDescriptor(), rowHeight=16, ) view.viewEnabled = CheckBox((x, y, C.BUTTON_WIDTH, 22), "Show", callback=self.viewCallback, sizeStyle=C.STYLE_CHECKBOXSIZE, value=True) y += C.L view.fill = CheckBox((x, y, 60, 22), "Fill", sizeStyle=C.STYLE_CHECKBOXSIZE, #value=getExtensionDefault("%s.%s" %(self.DEFAULTKEY, "fill"), True), value = True, callback=self.fillCallback) y += C.L color = getExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR) view.color = ColorWell((x, y, 60, 22), color=color, callback=self.colorCallback) y += C.L + 5 view.stroke = CheckBox((x, y, 60, 22), "Stroke", sizeStyle=C.STYLE_CHECKBOXSIZE, #value=getExtensionDefault("%s.%s" %(self.DEFAULTKEY, "stroke"), False), value = False, callback=self.strokeCallback) y += C.LL view.alignText = TextBox((x, y, 90, 50), 'Alignment', sizeStyle=C.STYLE_LABELSIZE) y += C.L view.align = RadioGroup((x, y, 90, 50), ['Left', 'Center', 'Right'], isVertical=True, sizeStyle=C.STYLE_RADIOSIZE, callback=self.alignCallback) view.align.set(0) #view.contextLabel = TextBox((C.C2, -58, 90, 50), 'Contexts', sizeStyle=C.STYLE_LABELSIZE) view.viewCurrent = CheckBox((C.C2, -60, 150, 22), "Always View Current", sizeStyle=C.STYLE_CHECKBOXSIZE, value = False, callback=self.contextEditCallback) #view.contextUandlc = CheckBox((C.C2+170, -60, 85, 22), "Match Case", sizeStyle=C.STYLE_CHECKBOXSIZE, # value = False, # callback=self.contextEditCallback) view.contextBefore = EditText((C.C2, -30, 85, 20), callback=self.contextEditCallback, continuous=True, sizeStyle="small", placeholder='Left Context') view.contextCurrent = EditText((C.C2+95, -30, 60, 20), callback=self.contextCurrentEditCallback, continuous=True, sizeStyle="small") view.contextAfter = EditText((C.C2+165, -30, 85, 20), callback=self.contextEditCallback, continuous=True, sizeStyle="small", placeholder='Right Context') self.activateModule() self.setUpBaseWindowBehavior() def fontListCallback(self, sender): u"""If there is a selection, toggle the status of these fonts.""" # Avoid recursive loop because of changing font selection if not self._selectionChanging: for selectedIndex in sender.getSelection(): item = sender.get()[selectedIndex] if item['status']: item['status'] = '' else: item['status'] = selectedSymbol # If shift is held when pressing an entry in the font list, # the non-selected fonts will swap with the current's state if NSEvent.modifierFlags() & NSShiftKeyMask: items = [sender.get()[i] for i in range(len(sender.get())) if i != selectedIndex] for subItems in items: if item['status'] == '': subItems['status'] = selectedSymbol else: subItems['status'] = '' self._selectionChanging = True # Avoid recursive loop because of changing font selection sender.setSelection([]) self._selectionChanging = False self.updateView() def canDraw(self): return True """ There is an experimental feature that will change the case of the context characters based on the case of the current glyph. But I'm disabling that for now. """ #def isUpper(self, g): # char = CharacterTX.glyph2Char(g) # if len(char) > 1: # char = char[0] # if unicodedata.category(char) == 'Lu': # return True # return False #def isLower(self, g): # char = CharacterTX.glyph2Char(g) # if len(char) > 1: # char = char[0] # if unicodedata.category(char) == 'Ll': # return True # return False def getHiddenFont(self, path): from builtins import str for f in self.tool.getFonts(): if f.path == path: return f elif path == str(f.info.familyName)+" "+str(f.info.styleName): return f def drawBackground(self, info): u"""Draw the background of defined glyphs and fonbts. Scale is available as mouse.scale.""" view = self.getView() if not view.viewEnabled.get(): return fill = getExtensionDefault(self.DEFAULTKEY_FILL, True) stroke = getExtensionDefault(self.DEFAULTKEY_STROKE, True) fillcolor = getExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR) glyph = info.get('glyph') if glyph is not None: current = glyph.getParent() else: current = self.tool.getCurrentFont() if glyph is None or current is None: return align = self.getAlignment() # Get the fonts from the list and see if they are selected. sourceItems = self.getSourceFonts() showFonts = [] for item in sourceItems: if not item['status']: continue path = item['path'] font = self.getHiddenFont(path) showFonts.append(font) if view.viewCurrent.get() and current not in showFonts: showFonts.append(current) for font in showFonts: self.fillColor.setFill() self.strokeColor.setStroke() contextBefore, contextCurrent, contextAfter = self.getContexts() if font is not None: contextBefore = splitText(contextBefore, TX.naked(font).unicodeData, TX.naked(font).groups) contextBefore = [font[gname] for gname in contextBefore if gname in font.keys()] contextAfter = splitText(contextAfter, TX.naked(font).unicodeData, TX.naked(font).groups) contextAfter = [font[gname] for gname in contextAfter if gname in font.keys()] contextCurrent = splitText(contextCurrent, TX.naked(font).unicodeData, TX.naked(font).groups) if len(contextCurrent) > 0: contextCurrent = [font[gname] for gname in [contextCurrent[0]] if gname in font.keys()] if len(contextCurrent) > 0: sourceGlyph = contextCurrent[0] else: sourceGlyph = None elif glyph.name in font.keys(): sourceGlyph = font[glyph.name] else: sourceGlyph = None """ #There is an experimental feature that will change the case of the context characters based on the case of the current glyph. But I'm disabling that for now. if view.contextUandlc.get(): caseTransform = None if self.isUpper(glyph): caseTransform = FontTX.unicodes.getUpperFromLower elif self.isLower(glyph): caseTransform = FontTX.unicodes.getLowerFromUpper if caseTransform: for i, g in enumerate(contextBefore): newG = caseTransform(g) if newG is not None: contextBefore[i] = newG newG = caseTransform(sourceGlyph) if newG is not None: sourceGlyph = newG if caseTransform: for i, g in enumerate(contextAfter): newG = caseTransform(g) if newG is not None: contextAfter[i] = newG """ scale(current.info.unitsPerEm/float(font.info.unitsPerEm)) widthOffset = 0 if sourceGlyph is not None: if align == 'center': destCenter = float(glyph.width/2) / current.info.unitsPerEm sourceCenter = float(sourceGlyph.width/2) / font.info.unitsPerEm widthOffset = (destCenter-sourceCenter) * font.info.unitsPerEm elif align == 'right': widthOffset = ( ( glyph.width / glyph.getParent().info.unitsPerEm ) - (sourceGlyph.width / sourceGlyph.getParent().info.unitsPerEm ) ) * font.info.unitsPerEm translate(widthOffset, 0) previousGlyph = sourceGlyph contextBefore.reverse() totalWidth = 0 for i, cbGlyph in enumerate(contextBefore): kernValue = 0 if previousGlyph is not None and previousGlyph.getParent() == cbGlyph.getParent(): # Uncomment to activate kerning. Requires FontTX. #kernValue += FontTX.kerning.getValue((previousGlyph.name, cbGlyph.name), font.kerning, font.groups) kernValue += 0 translate(-cbGlyph.width-kernValue, 0) totalWidth += cbGlyph.width + kernValue drawGlyphPath = TX.naked(cbGlyph).getRepresentation("defconAppKit.NSBezierPath") if view.fill.get(): drawGlyphPath.fill() if view.stroke.get(): strokePixelPath(drawGlyphPath) previousGlyph = cbGlyph translate(totalWidth, 0) totalWidth = 0 contextCurrentAndAfter = [sourceGlyph]+contextAfter for i, cbGlyph in enumerate(contextCurrentAndAfter): if cbGlyph is None: cbGlyph = sourceGlyph nextGlyph = None if i + 1 < len(contextCurrentAndAfter): nextGlyph = contextCurrentAndAfter[i+1] if (i == 0 and cbGlyph == glyph) or sourceGlyph is None: pass else: drawGlyphPath = TX.naked(cbGlyph).getRepresentation("defconAppKit.NSBezierPath") if view.fill.get(): drawGlyphPath.fill() if view.stroke.get(): strokePixelPath(drawGlyphPath) kernValue = 0 if cbGlyph is not None and nextGlyph is not None and nextGlyph.getParent() == cbGlyph.getParent(): #kernValue = FontTX.kerning.getValue((cbGlyph.name, nextGlyph.name), font.kerning, font.groups) # Uncomment to activate kerning. Requires FontTX. kernValue = 0 width = 0 if cbGlyph is not None: width = cbGlyph.width translate(width+kernValue, 0) totalWidth += width + kernValue previousGlyph = cbGlyph translate(-totalWidth, 0) translate(-widthOffset, 0) scale(font.info.unitsPerEm/float(current.info.unitsPerEm)) #restore() drawInactive = drawBackground def viewCallback(self, sender): self.updateView() def getSourceFonts(self): """ Get the fonts in the list. """ view = self.getView() return view.fontList.get() def setSourceFonts(self): u""" Set the font list from the current set of open fonts. """ view = self.getView() labels = [] currentSelection = [] for d in self.getSourceFonts(): if d['status']: currentSelection.append(d['path']) for status, path, name in self.tool.getFontLabels(): if path in currentSelection: status = selectedSymbol else: status = '' labels.append(dict(status=status, path=path, name=name)) view.fontList.set(labels) def colorCallback(self, sender): """ Change the color. """ selectedColor = sender.get() r = selectedColor.redComponent() g = selectedColor.greenComponent() b = selectedColor.blueComponent() a = 1 strokeColor = NSColor.colorWithCalibratedRed_green_blue_alpha_(r, g, b, a) setExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, selectedColor) setExtensionDefaultColor(self.DEFAULTKEY_STROKECOLOR, strokeColor) self.fillColor = selectedColor self.strokeColor = strokeColor self.updateView() def fillCallback(self, sender): """ Change the fill status. """ setExtensionDefault(self.DEFAULTKEY_FILL, sender.get()) self.updateView() def strokeCallback(self, sender): """ Change the stroke status. """ setExtensionDefault(self.DEFAULTKEY_STROKE, sender.get()) self.updateView() def alignCallback(self, sender): """ Change the alignment status. """ self.updateView() def getAlignment(self): """ Get the alignment as a string. """ view = self.getView() index = view.align.get() if index == 0: return 'left' elif index == 1: return 'center' elif index == 2: return 'right' def updateView(self, sender=None): UpdateCurrentGlyphView() def windowCloseCallback(self, sender): self.deactivateModule() self.updateView() BaseWindowController.windowCloseCallback(self, sender) def getFontItems(self, update=False): """ Get all fonts in a way that can be set into a vanilla list. """ paths = set() # Set of all unique paths in the merges lists itemsByName = {} if update: # If update flag is set, then keep the existing selected fonts. for item in self.getSourceFonts(): if item['status']: itemsByName[item['name']] = item currentStatuses = {} if hasattr(self.getView(), 'fontList'): for d in self.getSourceFonts(): currentStatuses[d['path']] = d['status'] for status, path, uniqueName in self.tool.getFontLabels(): if path in currentStatuses: status = currentStatuses[path] else: status = selectedSymbol if not uniqueName in itemsByName.keys():# If it is not already there, add this to the list itemsByName[uniqueName] = dict(status=status, path=path, name=uniqueName) fontList = [] for key, item in sorted(itemsByName.items()): fontList.append(item) return fontList ################ # CONTEXTS ################ def getContexts(self): if not hasattr(self, 'contextBefore'): self.contextBefore = '' if not hasattr(self, 'contextAfter'): self.contextAfter = '' if not hasattr(self, 'contextCurrent'): self.contextCurrent = None return self.contextBefore, self.contextCurrent, self.contextAfter def setContexts(self, contextBefore, contextCurrent, contextAfter): self.contextBefore = contextBefore self.contextCurrent = contextCurrent self.contextAfter = contextAfter def contextEditCallback(self, sender): before = self.getView().contextBefore.get() current = self.getView().contextCurrent.get() or None after = self.getView().contextAfter.get() self.setContexts(before, current, after) self.updateView() def contextCurrentEditCallback(self, sender): #if sender.get(): #sender.set(sender.get()[0]) self.contextEditCallback(sender) if __name__ == "__main__": OverlayUFOs()
39.118943
182
0.575526
25,360
0.95188
0
0
114
0.004279
0
0
7,435
0.279071
c7ba815c300287faa117210ec887325390625523
114
py
Python
nautapy/__init__.py
armandofcom/nautapy
6907e350021752b54998f6b0b5674dccc8ca9ddd
[ "MIT" ]
25
2020-03-20T05:02:09.000Z
2022-03-29T13:24:36.000Z
nautapy/__init__.py
armandofcom/nautapy
6907e350021752b54998f6b0b5674dccc8ca9ddd
[ "MIT" ]
7
2020-01-22T23:10:25.000Z
2021-06-02T21:41:27.000Z
nautapy/__init__.py
armandofcom/nautapy
6907e350021752b54998f6b0b5674dccc8ca9ddd
[ "MIT" ]
14
2020-03-20T05:02:18.000Z
2022-03-29T13:24:39.000Z
import os appdata_path = os.path.expanduser("~/.local/share/nautapy") os.makedirs(appdata_path, exist_ok=True)
16.285714
59
0.763158
0
0
0
0
0
0
0
0
24
0.210526
c7bb3480194f9fe2fbc061710221cb965aa24166
9,368
py
Python
pyteamup/Calendar.py
LogicallyUnfit/pyTeamUp
a398fe6808d506ca4e05090b58e0a697aa1f46e5
[ "MIT" ]
5
2019-04-11T14:52:19.000Z
2022-03-13T10:39:22.000Z
pyteamup/Calendar.py
LogicallyUnfit/pyTeamUp
a398fe6808d506ca4e05090b58e0a697aa1f46e5
[ "MIT" ]
9
2019-04-11T14:49:59.000Z
2021-11-30T08:34:31.000Z
pyteamup/Calendar.py
LogicallyUnfit/pyTeamUp
a398fe6808d506ca4e05090b58e0a697aa1f46e5
[ "MIT" ]
3
2019-04-11T14:17:00.000Z
2021-07-15T06:59:13.000Z
import requests import json import datetime import sys from dateutil.parser import parse as to_datetime try: import pandas as pd except: pass from pyteamup.utils.utilities import * from pyteamup.utils.constants import * from pyteamup.Event import Event class Calendar: def __init__(self, cal_id, api_key): self.__calendar_id = cal_id self.__api_key = api_key self.__cal_base = f'/{cal_id}' self.__token_str = f'?_teamup_token={self.api_key}' self.__subcalendars = None self.__valid_api = None self.__configuration = None self._base_url = BASE_URL + self.__cal_base self._event_collection_url = self._base_url + EVENTS_BASE + self.__token_str self._subcalendars_url = self._base_url + SUBCALENDARS_BASE + self.__token_str self._check_access_url = BASE_URL + CHECK_ACCESS_BASE + self.__token_str self.events_json = None if not self.valid_api: raise Exception(f'Invalid Api Key: {self.api_key}') def __str__(self): return self.calendar_id @property def api_key(self): return self.__api_key @property def calendar_id(self): return self.__calendar_id @property def valid_api(self): """Makes a request to the calendar to see if the api is valid""" if not self.__valid_api: req = requests.get(self._check_access_url) try: check_status_code(req.status_code) self.__valid_api = True except: self.__valid_api = False return self.__valid_api else: return None @property def configuration(self): if self.__configuration is None: print('Fetching configuration') req = requests.get(self._base_url + CONFIGURATION_BASE + self.__token_str) check_status_code(req.status_code) self.__configuration = json.loads(req.text)['configuration'] return self.__configuration @property def subcalendars(self): if not self.__subcalendars: print('Fetching Subcalendars') req = requests.get(self._subcalendars_url) check_status_code(req.status_code) self.__subcalendars = json.loads(req.text)['subcalendars'] return self.__subcalendars def clear_calendar_cache(self): self.__subcalendars = None self.__configuration = None def get_event_collection(self, start_dt=None, end_dt=None, subcal_id=None, returnas='events', markdown=False): """ Method allows bulk fetching of events that fall between the provided time frame. If None is provided then the current date -30 and +180 days is used. :param start_dt: if set as None then set as today minus 30 days :param end_dt: if left as None then set as today plus 180 days :param subcal_id: optional str or list-like if a different calendar should be queried :return: json of events """ if returnas not in ('events', 'dataframe', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') if start_dt is None: start_dt = datetime.date.today() - datetime.timedelta(30) if end_dt is None: end_dt = datetime.date.today() + datetime.timedelta(180) subcal_par = '' if subcal_id: if isinstance(subcal_id, (list, tuple)): for id in subcal_id: subcal_par += f'&subcalendarId[]={id}' else: subcal_par = f'&subcalendarId[]={subcal_id}' if markdown == True: para_markdown = '&format[]=markdown' else: para_markdown = '' parameters = f'&startDate={start_dt.strftime("%Y-%m-%d")}&endDate={end_dt.strftime("%Y-%m-%d")}' + subcal_par + para_markdown req = requests.get(self._event_collection_url + parameters) check_status_code(req.status_code) self.events_json = json.loads(req.text)['events'] if returnas == 'events': return [Event(self, **event_dict) for event_dict in self.events_json] elif returnas == 'dataframe' and 'pandas' in sys.modules: return pd.DataFrame.from_records(self.events_json) else: return self.events_json def _create_event_from_json(self, payload): """ Lazy Creation of Event by passing a formatted payload""" resp = requests.post(self._event_collection_url, data=payload, headers=POST_HEADERS) try: check_status_code(resp.status_code) except: print(payload) print(resp.text) raise return resp.text def get_event(self, event_id, returnas='event'): if returnas not in ('event', 'series', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') url = self._base_url + EVENTS_BASE + f'/{event_id}' + self.__token_str resp = requests.get(url) check_status_code(resp.status_code) event_dict = json.loads(resp.text)['event'] if returnas == 'event': return Event(self, **event_dict) elif returnas == 'series' and 'pandas' in sys.modules: return pd.Series(event_dict) else: return event_dict def get_subcalendar(self): raise NotImplementedError def search_events(self): raise NotImplementedError def get_changed_events(self, modified_since, returnas='event'): """ Get changed events since given unix time :param modified_since: <int> Unix timestamp, must be less than 30 days old :param returnas: <str> `event` `series` `dict` are valid options :return: Tuple of event list and returned timestamp """ if returnas not in ('event', 'series', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') url = self._base_url + EVENTS_BASE + self.__token_str + '&modifiedSince=' + str(modified_since) resp = requests.get(url) check_status_code(resp.status_code) events_json = json.loads(resp.text)['events'] timestamp = json.loads(resp.text)['timestamp'] if returnas == 'events': return [Event(self, **event_dict) for event_dict in events_json], timestamp elif returnas == 'dataframe' and 'pandas' in sys.modules: return pd.DataFrame.from_records(events_json), timestamp else: return events_json, timestamp def new_event(self, title, start_dt, end_dt, subcalendar_ids, all_day=False, notes=None, location=None, who=None, remote_id=None, returnas='event'): """ Create a new event within a provided subcalendar. Can return as Event object, Series object, or Dictionary. Undo_id not included with return unless returnas='event' in which case it is included with the returned Event Object :param subcalendar_id: <str, int, or list-like> Required - the ID of the subcalendar within the calendar the event should be created in. :param title: <str> Title of the event, must be :param start_dt: <datetime> Start Datetime :param end_dt: <datetime> End Datetime :param all_day: <Bool> Allday or Not :param notes: <str> HTML or Markdown formatted string detailing the Description :param location: <str> Location of the event :param who: <str> :param remote_id: <str> Remote ID of the event, used to link the TeamUp event record to its source information :param returnas: <str> `event` `series` `dict` are valid options :return: """ if returnas not in ('event','dict','series'): raise ValueError(f'Unrecognized returnas paramter: {returnas}') if not isinstance(start_dt, datetime.datetime) or not isinstance(end_dt, datetime.datetime): try: start_dt = to_datetime(start_dt) end_dt = to_datetime(end_dt) except: raise ValueError('Parse failed, please pass all dates as a datetime object') if isinstance(subcalendar_ids, (str, int)): subcalendar_ids = [subcalendar_ids] if not isinstance(subcalendar_ids, (tuple, list)): raise ValueError(f'Unrecognized Type: Subcalendar_ids type: {type(subcalendar_ids)}') dict = {'remote_id': remote_id, 'title': title, 'subcalendar_ids': subcalendar_ids, 'start_dt': format_date(start_dt), 'end_dt': format_date(end_dt), 'all_day': all_day, 'notes': notes, 'location': location, 'who': who } resp_text = self._create_event_from_json(json.dumps(dict)) resp_dict = json.loads(resp_text) event_dict = resp_dict['event'] undo_id = resp_dict['undo_id'] if returnas == 'event': return Event(self, undo_id = undo_id, **event_dict) elif returnas == 'series' and 'pandas' in sys.modules: return pd.Series(event_dict) else: return event_dict
39.694915
144
0.627242
9,102
0.971605
0
0
1,261
0.134607
0
0
2,897
0.309244
c7bd4060064aa4ccc776c07aa7678497ec65e795
8,232
py
Python
configs/regnet.py
roatienza/agmax
2a7299cc506605aeaaf64b6155b5c826c71d5786
[ "Apache-2.0" ]
2
2021-11-05T13:09:12.000Z
2022-03-04T05:07:33.000Z
configs/regnet.py
roatienza/agmax
2a7299cc506605aeaaf64b6155b5c826c71d5786
[ "Apache-2.0" ]
1
2021-11-04T10:06:57.000Z
2021-11-07T08:35:39.000Z
configs/regnet.py
roatienza/agmax
2a7299cc506605aeaaf64b6155b5c826c71d5786
[ "Apache-2.0" ]
null
null
null
from . import constant parameters = { 'RegNet' : { "lr": 0.1, "epochs": 100, "weight_decay": 5e-5, "batch_size": 128, "nesterov": True, "init_backbone":True, "init_extractor":True,}, } backbone_config = { "RegNetX002" : {"channels": 3, "dropout": 0.2,}, "RegNetY004" : {"channels": 3, "dropout": 0.2,}, } train = { # RegNetX002 'RegNetX002-standard': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": False, "no_basic_augment": False, "cutmix": False, "mixup" : False, }, 'RegNetX002-cutmix': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": False, "no_basic_augment": False, "cutmix": True, "mixup" : False, }, 'RegNetX002-standard-agmax': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.agmax_weights_std, "agmax" : True, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": False, "no_basic_augment": False, "cutmix": False, "mixup" : False, }, 'RegNetX002-auto_augment-cutmix-agmax': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.agmax_weights_std, "agmax" : True, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": True, "mixup" : False, }, 'RegNetX002-auto_augment-mixup-agmax': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.agmax_weights_std, "agmax" : True, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": False, "mixup" : True, }, 'RegNetX002-auto_augment-cutmix': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": True, "mixup" : False, }, 'RegNetX002-auto_augment-mixup': { "backbone": 'RegNetX002', "backbone_config": backbone_config['RegNetX002'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": False, "mixup" : True, }, # RegNetY004 'RegNetY004-standard': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": False, "no_basic_augment": False, "cutmix": False, "mixup" : False, }, 'RegNetY004-cutmix': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": False, "no_basic_augment": False, "cutmix": True, "mixup" : False, }, 'RegNetY004-standard-agmax': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.agmax_weights_std, "agmax" : True, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": False, "no_basic_augment": False, "cutmix": False, "mixup" : False, }, 'RegNetY004-auto_augment-cutmix-agmax': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.agmax_weights_std, "agmax" : True, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": True, "mixup" : False, }, 'RegNetY004-auto_augment-mixup-agmax': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.agmax_weights_std, "agmax" : True, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": False, "mixup" : True, }, 'RegNetY004-auto_augment-cutmix': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": True, "mixup" : False, }, 'RegNetY004-auto_augment-mixup': { "backbone": 'RegNetY004', "backbone_config": backbone_config['RegNetY004'], "weights_std": constant.standard_weights_std, "agmax" : False, "parameters" : parameters['RegNet'], "cutout": False, "auto_augment": True, "no_basic_augment": False, "cutmix": False, "mixup" : True, }, }
68.6
153
0.409621
0
0
0
0
0
0
0
0
2,627
0.319121
c7bde259829ba295ad5078b7f30b72f3fddb4e13
1,608
py
Python
examples/ws2812/main.py
ivankravets/pumbaa
2a1869cc204e3128516ed6fa9f89529aedec1702
[ "MIT" ]
69
2016-09-04T18:36:18.000Z
2021-07-04T21:51:54.000Z
examples/ws2812/main.py
ivankravets/pumbaa
2a1869cc204e3128516ed6fa9f89529aedec1702
[ "MIT" ]
42
2016-09-02T20:10:19.000Z
2020-07-01T05:54:01.000Z
examples/ws2812/main.py
ivankravets/pumbaa
2a1869cc204e3128516ed6fa9f89529aedec1702
[ "MIT" ]
11
2016-09-29T14:33:23.000Z
2021-02-28T19:30:49.000Z
# # @section License # # The MIT License (MIT) # # Copyright (c) 2016-2017, Erik Moqvist # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # This file is part of the Pumbaa project. # import board from drivers import Ws2812 import time PIXEL_MAX = 81 RED = PIXEL_MAX * b'\x00\xff\x00' GREEN = PIXEL_MAX * b'\xff\x00\x00' BLUE = PIXEL_MAX * b'\x00\x00\xff' WS2812 = Ws2812(board.PIN_GPIO18) while True: print('Red.') WS2812.write(RED) time.sleep(0.5) print('Green.') WS2812.write(GREEN) time.sleep(0.5) print('Blue.') WS2812.write(BLUE) time.sleep(0.5)
29.236364
69
0.735075
0
0
0
0
0
0
0
0
1,234
0.767413
c7be4754a949474c9764e2ad170025656a516b5f
740
py
Python
reports/urls.py
aysiu/manana
8af8b57c72f6154affdb5f3a9a3469a49e5818fe
[ "Apache-2.0" ]
9
2016-02-16T23:53:40.000Z
2020-07-13T16:04:18.000Z
reports/urls.py
aysiu/manana
8af8b57c72f6154affdb5f3a9a3469a49e5818fe
[ "Apache-2.0" ]
null
null
null
reports/urls.py
aysiu/manana
8af8b57c72f6154affdb5f3a9a3469a49e5818fe
[ "Apache-2.0" ]
4
2016-02-16T23:56:13.000Z
2019-05-20T15:12:14.000Z
from django.conf.urls import patterns, include, url urlpatterns = patterns('reports.views', url(r'^index/*$', 'index'), url(r'^dashboard/*$', 'dashboard'), url(r'^$', 'index'), url(r'^detail/(?P<serial>[^/]+)$', 'detail'), url(r'^detailpkg/(?P<serial>[^/]+)/(?P<manifest_name>[^/]+)$', 'detail_pkg'), url(r'^detailmachine/(?P<serial>[^/]+)$', 'machine_detail'), url(r'^appleupdate/(?P<serial>[^/]+)$', 'appleupdate'), url(r'^raw/(?P<serial>[^/]+)$', 'raw'), url(r'^submit/(?P<submission_type>[^/]+)$', 'submit'), url(r'^warranty/(?P<serial>[^/]+)$', 'warranty'), # for compatibilty with MunkiReport scripts url(r'^ip$', 'lookup_ip'), url(r'^(?P<submission_type>[^/]+)$', 'submit'), )
41.111111
81
0.554054
0
0
0
0
0
0
0
0
496
0.67027
c7be660a1e99ce3791843752d3993ac9fa123bdb
5,812
py
Python
BackEnd/venv/lib/python3.8/site-packages/pytest_flask/fixtures.py
MatheusBrodt/App_LabCarolVS
9552149ceaa9bee15ef9a45fab2983c6651031c4
[ "MIT" ]
null
null
null
BackEnd/venv/lib/python3.8/site-packages/pytest_flask/fixtures.py
MatheusBrodt/App_LabCarolVS
9552149ceaa9bee15ef9a45fab2983c6651031c4
[ "MIT" ]
1
2019-08-20T18:42:14.000Z
2019-08-20T18:42:14.000Z
BackEnd/venv/lib/python3.8/site-packages/pytest_flask/fixtures.py
MatheusBrodt/App_LabCarolVS
9552149ceaa9bee15ef9a45fab2983c6651031c4
[ "MIT" ]
1
2019-08-20T18:11:48.000Z
2019-08-20T18:11:48.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import time import multiprocessing import pytest import socket import signal import os import logging try: from urllib2 import URLError, urlopen except ImportError: from urllib.error import URLError from urllib.request import urlopen from flask import _request_ctx_stack @pytest.yield_fixture def client(app): """A Flask test client. An instance of :class:`flask.testing.TestClient` by default. """ with app.test_client() as client: yield client @pytest.fixture def client_class(request, client): """Uses to set a ``client`` class attribute to current Flask test client:: @pytest.mark.usefixtures('client_class') class TestView: def login(self, email, password): credentials = {'email': email, 'password': password} return self.client.post(url_for('login'), data=credentials) def test_login(self): assert self.login('[email protected]', 'pass').status_code == 200 """ if request.cls is not None: request.cls.client = client class LiveServer(object): """The helper class uses to manage live server. Handles creation and stopping application in a separate process. :param app: The application to run. :param host: The host where to listen (default localhost). :param port: The port to run application. """ def __init__(self, app, host, port, clean_stop=False): self.app = app self.port = port self.host = host self.clean_stop = clean_stop self._process = None def start(self): """Start application in a separate process.""" def worker(app, host, port): app.run(host=host, port=port, use_reloader=False, threaded=True) self._process = multiprocessing.Process( target=worker, args=(self.app, self.host, self.port) ) self._process.start() # We must wait for the server to start listening with a maximum # timeout of 5 seconds. timeout = 5 while timeout > 0: time.sleep(1) try: urlopen(self.url()) timeout = 0 except URLError: timeout -= 1 def url(self, url=''): """Returns the complete url based on server options.""" return 'http://%s:%d%s' % (self.host, self.port, url) def stop(self): """Stop application process.""" if self._process: if self.clean_stop and self._stop_cleanly(): return if self._process.is_alive(): # If it's still alive, kill it self._process.terminate() def _stop_cleanly(self, timeout=5): """Attempts to stop the server cleanly by sending a SIGINT signal and waiting for ``timeout`` seconds. :return: True if the server was cleanly stopped, False otherwise. """ try: os.kill(self._process.pid, signal.SIGINT) self._process.join(timeout) return True except Exception as ex: logging.error('Failed to join the live server process: %r', ex) return False def __repr__(self): return '<LiveServer listening at %s>' % self.url() def _rewrite_server_name(server_name, new_port): """Rewrite server port in ``server_name`` with ``new_port`` value.""" sep = ':' if sep in server_name: server_name, port = server_name.split(sep, 1) return sep.join((server_name, new_port)) @pytest.fixture(scope='function') def live_server(request, app, monkeypatch, pytestconfig): """Run application in a separate process. When the ``live_server`` fixture is applied, the ``url_for`` function works as expected:: def test_server_is_up_and_running(live_server): index_url = url_for('index', _external=True) assert index_url == 'http://localhost:5000/' res = urllib2.urlopen(index_url) assert res.code == 200 """ port = pytestconfig.getvalue('live_server_port') if port == 0: # Bind to an open port s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 0)) port = s.getsockname()[1] s.close() host = pytestconfig.getvalue('live_server_host') # Explicitly set application ``SERVER_NAME`` for test suite # and restore original value on test teardown. server_name = app.config['SERVER_NAME'] or 'localhost' monkeypatch.setitem(app.config, 'SERVER_NAME', _rewrite_server_name(server_name, str(port))) clean_stop = request.config.getvalue('live_server_clean_stop') server = LiveServer(app, host, port, clean_stop) if request.config.getvalue('start_live_server'): server.start() request.addfinalizer(server.stop) return server @pytest.fixture def config(app): """An application config.""" return app.config @pytest.fixture def request_ctx(app): """The request context which contains all request relevant information, e.g. `session`, `g`, `flashes`, etc. """ return _request_ctx_stack.top @pytest.fixture(params=['application/json', 'text/html']) def mimetype(request): return request.param def _make_accept_header(mimetype): return [('Accept', mimetype)] @pytest.fixture def accept_mimetype(mimetype): return _make_accept_header(mimetype) @pytest.fixture def accept_json(request): return _make_accept_header('application/json') @pytest.fixture def accept_jsonp(): return _make_accept_header('application/json-p') @pytest.fixture(params=['*', '*/*']) def accept_any(request): return _make_accept_header(request.param)
28.213592
89
0.635754
2,223
0.382485
176
0.030282
2,889
0.497075
0
0
2,374
0.408465
c7be8fc77e58c39c645eb0be54b3d89d725dc934
7,700
py
Python
tableauserverclient/server/endpoint/endpoint.py
jorwoods/server-client-python
fefd6f18d8a6617829c6323879d2c3ed77a4cda6
[ "CC0-1.0", "MIT" ]
1
2021-12-22T21:34:17.000Z
2021-12-22T21:34:17.000Z
tableauserverclient/server/endpoint/endpoint.py
jorwoods/server-client-python
fefd6f18d8a6617829c6323879d2c3ed77a4cda6
[ "CC0-1.0", "MIT" ]
null
null
null
tableauserverclient/server/endpoint/endpoint.py
jorwoods/server-client-python
fefd6f18d8a6617829c6323879d2c3ed77a4cda6
[ "CC0-1.0", "MIT" ]
null
null
null
from .exceptions import ( ServerResponseError, InternalServerError, NonXMLResponseError, EndpointUnavailableError, ) from functools import wraps from xml.etree.ElementTree import ParseError from ..query import QuerySet import logging try: from distutils2.version import NormalizedVersion as Version except ImportError: from distutils.version import LooseVersion as Version logger = logging.getLogger("tableau.endpoint") Success_codes = [200, 201, 202, 204] class Endpoint(object): def __init__(self, parent_srv): self.parent_srv = parent_srv @staticmethod def _make_common_headers(auth_token, content_type): headers = {} if auth_token is not None: headers["x-tableau-auth"] = auth_token if content_type is not None: headers["content-type"] = content_type return headers @staticmethod def _safe_to_log(server_response): """Checks if the server_response content is not xml (eg binary image or zip) and replaces it with a constant """ ALLOWED_CONTENT_TYPES = ("application/xml", "application/xml;charset=utf-8") if server_response.headers.get("Content-Type", None) not in ALLOWED_CONTENT_TYPES: return "[Truncated File Contents]" else: return server_response.content def _make_request( self, method, url, content=None, auth_token=None, content_type=None, parameters=None, ): parameters = parameters or {} parameters.update(self.parent_srv.http_options) parameters["headers"] = Endpoint._make_common_headers(auth_token, content_type) if content is not None: parameters["data"] = content logger.debug(u"request {}, url: {}".format(method.__name__, url)) if content: logger.debug(u"request content: {}".format(content[:1000])) server_response = method(url, **parameters) self.parent_srv._namespace.detect(server_response.content) self._check_status(server_response) # This check is to determine if the response is a text response (xml or otherwise) # so that we do not attempt to log bytes and other binary data. if len(server_response.content) > 0 and server_response.encoding: logger.debug( u"Server response from {0}:\n\t{1}".format( url, server_response.content.decode(server_response.encoding) ) ) return server_response def _check_status(self, server_response): if server_response.status_code >= 500: raise InternalServerError(server_response) elif server_response.status_code not in Success_codes: try: raise ServerResponseError.from_response(server_response.content, self.parent_srv.namespace) except ParseError: # This will happen if we get a non-success HTTP code that # doesn't return an xml error object (like metadata endpoints) # we convert this to a better exception and pass through the raw # response body raise NonXMLResponseError(server_response.content) except Exception: # anything else re-raise here raise def get_unauthenticated_request(self, url): return self._make_request(self.parent_srv.session.get, url) def get_request(self, url, request_object=None, parameters=None): if request_object is not None: try: # Query param delimiters don't need to be encoded for versions before 3.7 (2020.1) self.parent_srv.assert_at_least_version("3.7") parameters = parameters or {} parameters["params"] = request_object.get_query_params() except EndpointUnavailableError: url = request_object.apply_query_params(url) return self._make_request( self.parent_srv.session.get, url, auth_token=self.parent_srv.auth_token, parameters=parameters, ) def delete_request(self, url): # We don't return anything for a delete self._make_request(self.parent_srv.session.delete, url, auth_token=self.parent_srv.auth_token) def put_request(self, url, xml_request=None, content_type="text/xml"): return self._make_request( self.parent_srv.session.put, url, content=xml_request, auth_token=self.parent_srv.auth_token, content_type=content_type, ) def post_request(self, url, xml_request, content_type="text/xml"): return self._make_request( self.parent_srv.session.post, url, content=xml_request, auth_token=self.parent_srv.auth_token, content_type=content_type, ) def api(version): """Annotate the minimum supported version for an endpoint. Checks the version on the server object and compares normalized versions. It will raise an exception if the server version is > the version specified. Args: `version` minimum version that supports the endpoint. String. Raises: EndpointUnavailableError Returns: None Example: >>> @api(version="2.3") >>> def get(self, req_options=None): >>> ... """ def _decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): self.parent_srv.assert_at_least_version(version) return func(self, *args, **kwargs) return wrapper return _decorator def parameter_added_in(**params): """Annotate minimum versions for new parameters or request options on an endpoint. The api decorator documents when an endpoint was added, this decorator annotates keyword arguments on endpoints that may control functionality added after an endpoint was introduced. The REST API will ignore invalid parameters in most cases, so this raises a warning instead of throwing an exception. Args: Key/value pairs of the form `parameter`=`version`. Kwargs. Raises: UserWarning Returns: None Example: >>> @api(version="2.0") >>> @parameter_added_in(no_extract='2.5') >>> def download(self, workbook_id, filepath=None, extract_only=False): >>> ... """ def _decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): import warnings server_ver = Version(self.parent_srv.version or "0.0") params_to_check = set(params) & set(kwargs) for p in params_to_check: min_ver = Version(str(params[p])) if server_ver < min_ver: error = "{!r} not available in {}, it will be ignored. Added in {}".format(p, server_ver, min_ver) warnings.warn(error) return func(self, *args, **kwargs) return wrapper return _decorator class QuerysetEndpoint(Endpoint): @api(version="2.0") def all(self, *args, **kwargs): queryset = QuerySet(self) return queryset @api(version="2.0") def filter(self, *args, **kwargs): queryset = QuerySet(self).filter(**kwargs) return queryset @api(version="2.0") def order_by(self, *args, **kwargs): queryset = QuerySet(self).order_by(*args) return queryset @api(version="2.0") def paginate(self, **kwargs): queryset = QuerySet(self).paginate(**kwargs) return queryset
33.189655
118
0.632597
5,068
0.658182
0
0
1,975
0.256494
0
0
2,171
0.281948
c7c0ec1f2d22d969372f765fb0d7aef4a98be04f
4,617
py
Python
spec/test_importer.py
lajohnston/anki-freeplane
746e3dd714653df428f0541609b9c51e29cd2726
[ "MIT" ]
15
2016-10-06T00:27:26.000Z
2022-03-04T04:24:50.000Z
spec/test_importer.py
eljay26/anki-freeplane
746e3dd714653df428f0541609b9c51e29cd2726
[ "MIT" ]
null
null
null
spec/test_importer.py
eljay26/anki-freeplane
746e3dd714653df428f0541609b9c51e29cd2726
[ "MIT" ]
6
2016-11-08T06:55:47.000Z
2021-03-24T22:15:14.000Z
import unittest from freeplane_importer.importer import Importer from mock import Mock from mock import MagicMock from mock import call from freeplane_importer.model_not_found_exception import ModelNotFoundException class TestImporter(unittest.TestCase): def setUp(self): self.mock_collection = Mock() self.mock_model = MagicMock() self.mock_collection.models.byName.return_value = self.mock_model self.mock_note = MagicMock() self.mock_note.model.return_value = self.mock_model self.mock_collection.newNote.return_value = self.mock_note self.mock_collection.models.fieldNames.return_value = [] self.importer = Importer(self.mock_collection) self.mock_collection.db.scalar.return_value = None self.note = { 'id': 100, 'deck': 'History', 'model': 'Basic', 'fields': {} } def test_it_should_initialise_the_correct_model(self): self.importer.import_note(self.note) self.mock_collection.models.setCurrent.assert_called_with( self.mock_model) def test_it_should_select_the_correct_deck(self): self.mock_collection.decks.id.return_value = 100 self.importer = Importer(self.mock_collection) self.importer.import_note(self.note) self.mock_model.__setitem__.assert_called_with('did', 100) self.mock_collection.decks.id.assert_called_with('History') def test_it_should_find_the_correct_model(self): self.importer.import_note(self.note) self.mock_collection.models.byName.assert_called_with('Basic') def test_it_should_return_true_if_note_was_added_successfully(self): self.assertTrue(self.importer.import_note(self.note)) def test_it_should_raise_a_no_model_exception_if_the_model_does_not_exist(self): self.mock_collection.models.byName.return_value = None self.assertRaises(ModelNotFoundException, self.importer.import_note, self.note) def test_it_should_create_a_new_note(self): self.importer.import_note(self.note) self.mock_collection.newNote.assert_called_with() def test_it_should_get_the_field_names_from_the_model(self): self.importer.import_note(self.note) self.mock_collection.models.fieldNames.assert_called_with( self.mock_model) def test_it_should_save_the_node_id_if_the_first_field_is_named_id_in_lowercase(self): self.mock_collection.models.fieldNames.return_value = ['id'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_called_with('id', 100) def test_it_should_save_the_node_id_if_the_first_field_is_named_id_in_uppercase(self): self.mock_collection.models.fieldNames.return_value = ['ID'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_called_with('ID', 100) def test_it_should_populate_the_note_with_the_field_values(self): self.note['fields'] = { 'Front': 'Front value', 'Back': 'Back value' } self.mock_collection.models.fieldNames.return_value = ['Front', 'Back'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_has_calls( [call('Front', 'Front value'), call('Back', 'Back value')]) def test_it_should_ignore_fields_that_do_not_exist_in_the_model(self): self.note['fields'] = { 'Front': 'Front value', 'Back': 'Back value' } self.mock_collection.models.fieldNames.return_value = ['Front'] self.importer.import_note(self.note) self.assertFalse('Back' in self.mock_note) def test_it_should_save_the_note_changes(self): self.importer.import_note(self.note) self.mock_note.flush.assert_called_with() def test_it_should_attempt_to_find_an_existing_note_with_the_given_node_id(self): self.mock_collection.getNote.return_value = self.mock_note self.mock_collection.db.scalar.return_value = 123 self.importer.import_note(self.note) self.mock_collection.getNote.assert_called_with(123) def test_it_should_add_the_note_to_the_collection_if_it_is_new(self): del self.mock_note.mod self.importer.import_note(self.note) self.mock_collection.addNote.assert_called_with(self.mock_note) def test_it_should_not_add_the_note_to_the_collection_if_it_is_not_new(self): self.importer.import_note(self.note) self.assertEqual(0, self.mock_collection.addNote.call_count)
38.157025
90
0.719731
4,397
0.95235
0
0
0
0
0
0
234
0.050682
c7c11d6e36451e4175726cdb9543215d1fb0fff9
1,089
py
Python
analysis/fitexp.py
mfkasim91/idcovid19
3e51b16354581a4e0defc635f837f93faff26afc
[ "BSD-3-Clause" ]
null
null
null
analysis/fitexp.py
mfkasim91/idcovid19
3e51b16354581a4e0defc635f837f93faff26afc
[ "BSD-3-Clause" ]
null
null
null
analysis/fitexp.py
mfkasim91/idcovid19
3e51b16354581a4e0defc635f837f93faff26afc
[ "BSD-3-Clause" ]
null
null
null
import argparse import numpy as np from scipy.stats import linregress import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("--plot", action="store_const", default=False, const=True) args = parser.parse_args() data = np.loadtxt("../data/data.csv", skiprows=1, usecols=list(range(1,8)), delimiter=",")[33:,:] xdays = data[:,0] - np.mean(data[:,0]) deaths = data[:,-1] print(xdays, deaths) logdeaths = np.log(deaths) slope, offset, rval, pval, stderr = linregress(xdays, logdeaths) stderr = np.sqrt(np.sum((logdeaths-(slope*logdeaths+offset))**2) / (len(logdeaths)-2.)) / np.sqrt(np.sum((xdays - np.mean(xdays))**2)) if args.plot: plt.plot(xdays, np.exp(offset + slope*xdays), 'C0-') plt.plot(xdays, np.exp(offset + (slope+stderr)*xdays), 'C0--') plt.plot(xdays, np.exp(offset + (slope-stderr)*xdays), 'C0--') plt.plot(xdays, deaths, 'C0o') plt.gca().set_yscale("log") plt.show() print("Slope: %.3e" % slope) print("Doubling every: %.2f" % (np.log(2)/slope)) print("R-squared: %.3f" % (rval*rval)) print("Stderr: %.3e" % stderr)
35.129032
134
0.665748
0
0
0
0
0
0
0
0
135
0.123967
c7c22a9174889ccacec698f1b477ffd20a7822b0
1,716
py
Python
.venv/lib/python3.7/site-packages/jedi/inference/lazy_value.py
ITCRStevenLPZ/Proyecto2-Analisis-de-Algoritmos
4acdbc423428fb2e0068720add69e7870c87929a
[ "Apache-2.0" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
.venv/lib/python3.7/site-packages/jedi/inference/lazy_value.py
ITCRStevenLPZ/Proyecto2-Analisis-de-Algoritmos
4acdbc423428fb2e0068720add69e7870c87929a
[ "Apache-2.0" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
.venv/lib/python3.7/site-packages/jedi/inference/lazy_value.py
ITCRStevenLPZ/Proyecto2-Analisis-de-Algoritmos
4acdbc423428fb2e0068720add69e7870c87929a
[ "Apache-2.0" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
from jedi.inference.base_value import ValueSet, NO_VALUES from jedi.common import monkeypatch class AbstractLazyValue(object): def __init__(self, data, min=1, max=1): self.data = data self.min = min self.max = max def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.data) def infer(self): raise NotImplementedError class LazyKnownValue(AbstractLazyValue): """data is a Value.""" def infer(self): return ValueSet([self.data]) class LazyKnownValues(AbstractLazyValue): """data is a ValueSet.""" def infer(self): return self.data class LazyUnknownValue(AbstractLazyValue): def __init__(self, min=1, max=1): super(LazyUnknownValue, self).__init__(None, min, max) def infer(self): return NO_VALUES class LazyTreeValue(AbstractLazyValue): def __init__(self, context, node, min=1, max=1): super(LazyTreeValue, self).__init__(node, min, max) self.context = context # We need to save the predefined names. It's an unfortunate side effect # that needs to be tracked otherwise results will be wrong. self._predefined_names = dict(context.predefined_names) def infer(self): with monkeypatch(self.context, 'predefined_names', self._predefined_names): return self.context.infer_node(self.data) def get_merged_lazy_value(lazy_values): if len(lazy_values) > 1: return MergedLazyValues(lazy_values) else: return lazy_values[0] class MergedLazyValues(AbstractLazyValue): """data is a list of lazy values.""" def infer(self): return ValueSet.from_sets(l.infer() for l in self.data)
27.677419
83
0.674825
1,448
0.843823
0
0
0
0
0
0
241
0.140443
c7c399f4aa408e4541e327b125cd44ba175da7ef
1,901
py
Python
percept/plot.py
joshleeb/PerceptronVis
2d0e2f1969e11498533f190f5598c174b7584513
[ "MIT" ]
null
null
null
percept/plot.py
joshleeb/PerceptronVis
2d0e2f1969e11498533f190f5598c174b7584513
[ "MIT" ]
null
null
null
percept/plot.py
joshleeb/PerceptronVis
2d0e2f1969e11498533f190f5598c174b7584513
[ "MIT" ]
null
null
null
import matplotlib.lines as lines import matplotlib.pyplot as plt COLOR_CLASSIFICATIONS = [ 'black', # Unclassified 'blue', # Classified True (1) 'red' # Classified False (0) ] def generate_line(ax, p0, p1, color='black', style='-'): ''' Generates a line between points p0 and p1 which extends to be the width of the plot. ''' x0, y0 = p0 x1, y1 = p1 gradient = (y0 - y1) / (x0 - x1) intercept = y1 - gradient * x1 x = ax.get_xlim() data_y = [x[0] * gradient + intercept, x[1] * gradient + intercept] return lines.Line2D(x, data_y, color=color, linestyle=style) def get_boundary_plot_fn(weights): ''' Gets the function used to represent and plot the line representative by the perceptron's weights. The equation is: f(x) = -(w1/w2)x - w0/w2. ''' def fn(x): return -weights[1] / weights[2] * x - weights[0] / weights[2] return fn def get_point_color(point, colors): ''' Get's the color of the point to be displayed. ''' if point.classification is None: return colors[0] return colors[1] if point.classification else colors[2] def generate(title, class_boundary, weights, points, bounds): ''' Generates a scatter plot of points with the actualy classification boundary and the perceptron's classification boundary drawn in. ''' boundary_fn = get_boundary_plot_fn(weights) fig, ax = plt.subplots(figsize=(8, 8)) ax.set_xlim(bounds[0]) ax.set_ylim(bounds[1]) ax.set_title(title) ax.add_line(generate_line( ax, class_boundary[0], class_boundary[1], 'cyan', '--' )) ax.add_line(generate_line(ax, (0, boundary_fn(0)), (1, boundary_fn(1)))) ax.scatter( [pt.x for pt in points], [pt.y for pt in points], c=[get_point_color(pt, COLOR_CLASSIFICATIONS) for pt in points], s=30 ) return fig
29.246154
79
0.637559
0
0
0
0
0
0
0
0
570
0.299842
c7c444c1fb4481f333fa9c3252930b474ff296c2
27,392
py
Python
openpype/hosts/flame/api/lib.py
j-cube/OpenPype
f0849cbd08070a320d19bb55b7e368189a57e3ab
[ "MIT" ]
1
2022-02-08T15:40:41.000Z
2022-02-08T15:40:41.000Z
openpype/hosts/flame/api/lib.py
zafrs/OpenPype
4b8e7e1ed002fc55b31307efdea70b0feaed474f
[ "MIT" ]
2
2022-03-18T01:46:03.000Z
2022-03-18T01:46:16.000Z
openpype/hosts/flame/api/lib.py
zafrs/OpenPype
4b8e7e1ed002fc55b31307efdea70b0feaed474f
[ "MIT" ]
null
null
null
import sys import os import re import json import pickle import tempfile import itertools import contextlib import xml.etree.cElementTree as cET from copy import deepcopy from xml.etree import ElementTree as ET from pprint import pformat from .constants import ( MARKER_COLOR, MARKER_DURATION, MARKER_NAME, COLOR_MAP, MARKER_PUBLISH_DEFAULT ) import openpype.api as openpype log = openpype.Logger.get_logger(__name__) FRAME_PATTERN = re.compile(r"[\._](\d+)[\.]") class CTX: # singleton used for passing data between api modules app_framework = None flame_apps = [] selection = None @contextlib.contextmanager def io_preferences_file(klass, filepath, write=False): try: flag = "w" if write else "r" yield open(filepath, flag) except IOError as _error: klass.log.info("Unable to work with preferences `{}`: {}".format( filepath, _error)) class FlameAppFramework(object): # flameAppFramework class takes care of preferences class prefs_dict(dict): def __init__(self, master, name, **kwargs): self.name = name self.master = master if not self.master.get(self.name): self.master[self.name] = {} self.master[self.name].__init__() def __getitem__(self, k): return self.master[self.name].__getitem__(k) def __setitem__(self, k, v): return self.master[self.name].__setitem__(k, v) def __delitem__(self, k): return self.master[self.name].__delitem__(k) def get(self, k, default=None): return self.master[self.name].get(k, default) def setdefault(self, k, default=None): return self.master[self.name].setdefault(k, default) def pop(self, *args, **kwargs): return self.master[self.name].pop(*args, **kwargs) def update(self, mapping=(), **kwargs): self.master[self.name].update(mapping, **kwargs) def __contains__(self, k): return self.master[self.name].__contains__(k) def copy(self): # don"t delegate w/ super - dict.copy() -> dict :( return type(self)(self) def keys(self): return self.master[self.name].keys() @classmethod def fromkeys(cls, keys, v=None): return cls.master[cls.name].fromkeys(keys, v) def __repr__(self): return "{0}({1})".format( type(self).__name__, self.master[self.name].__repr__()) def master_keys(self): return self.master.keys() def __init__(self): self.name = self.__class__.__name__ self.bundle_name = "OpenPypeFlame" # self.prefs scope is limited to flame project and user self.prefs = {} self.prefs_user = {} self.prefs_global = {} self.log = log try: import flame self.flame = flame self.flame_project_name = self.flame.project.current_project.name self.flame_user_name = flame.users.current_user.name except Exception: self.flame = None self.flame_project_name = None self.flame_user_name = None import socket self.hostname = socket.gethostname() if sys.platform == "darwin": self.prefs_folder = os.path.join( os.path.expanduser("~"), "Library", "Caches", "OpenPype", self.bundle_name ) elif sys.platform.startswith("linux"): self.prefs_folder = os.path.join( os.path.expanduser("~"), ".OpenPype", self.bundle_name) self.prefs_folder = os.path.join( self.prefs_folder, self.hostname, ) self.log.info("[{}] waking up".format(self.__class__.__name__)) try: self.load_prefs() except RuntimeError: self.save_prefs() # menu auto-refresh defaults if not self.prefs_global.get("menu_auto_refresh"): self.prefs_global["menu_auto_refresh"] = { "media_panel": True, "batch": True, "main_menu": True, "timeline_menu": True } self.apps = [] def get_pref_file_paths(self): prefix = self.prefs_folder + os.path.sep + self.bundle_name prefs_file_path = "_".join([ prefix, self.flame_user_name, self.flame_project_name]) + ".prefs" prefs_user_file_path = "_".join([ prefix, self.flame_user_name]) + ".prefs" prefs_global_file_path = prefix + ".prefs" return (prefs_file_path, prefs_user_file_path, prefs_global_file_path) def load_prefs(self): (proj_pref_path, user_pref_path, glob_pref_path) = self.get_pref_file_paths() with io_preferences_file(self, proj_pref_path) as prefs_file: self.prefs = pickle.load(prefs_file) self.log.info( "Project - preferences contents:\n{}".format( pformat(self.prefs) )) with io_preferences_file(self, user_pref_path) as prefs_file: self.prefs_user = pickle.load(prefs_file) self.log.info( "User - preferences contents:\n{}".format( pformat(self.prefs_user) )) with io_preferences_file(self, glob_pref_path) as prefs_file: self.prefs_global = pickle.load(prefs_file) self.log.info( "Global - preferences contents:\n{}".format( pformat(self.prefs_global) )) return True def save_prefs(self): # make sure the preference folder is available if not os.path.isdir(self.prefs_folder): try: os.makedirs(self.prefs_folder) except Exception: self.log.info("Unable to create folder {}".format( self.prefs_folder)) return False # get all pref file paths (proj_pref_path, user_pref_path, glob_pref_path) = self.get_pref_file_paths() with io_preferences_file(self, proj_pref_path, True) as prefs_file: pickle.dump(self.prefs, prefs_file) self.log.info( "Project - preferences contents:\n{}".format( pformat(self.prefs) )) with io_preferences_file(self, user_pref_path, True) as prefs_file: pickle.dump(self.prefs_user, prefs_file) self.log.info( "User - preferences contents:\n{}".format( pformat(self.prefs_user) )) with io_preferences_file(self, glob_pref_path, True) as prefs_file: pickle.dump(self.prefs_global, prefs_file) self.log.info( "Global - preferences contents:\n{}".format( pformat(self.prefs_global) )) return True def get_current_project(): import flame return flame.project.current_project def get_current_sequence(selection): import flame def segment_to_sequence(_segment): track = _segment.parent version = track.parent return version.parent process_timeline = None if len(selection) == 1: if isinstance(selection[0], flame.PySequence): process_timeline = selection[0] if isinstance(selection[0], flame.PySegment): process_timeline = segment_to_sequence(selection[0]) else: for segment in selection: if isinstance(segment, flame.PySegment): process_timeline = segment_to_sequence(segment) break return process_timeline def rescan_hooks(): import flame try: flame.execute_shortcut('Rescan Python Hooks') except Exception: pass def get_metadata(project_name, _log=None): # TODO: can be replaced by MediaInfoFile class method from adsk.libwiretapPythonClientAPI import ( WireTapClient, WireTapServerHandle, WireTapNodeHandle, WireTapStr ) class GetProjectColorPolicy(object): def __init__(self, host_name=None, _log=None): # Create a connection to the Backburner manager using the Wiretap # python API. # self.log = _log or log self.host_name = host_name or "localhost" self._wiretap_client = WireTapClient() if not self._wiretap_client.init(): raise Exception("Could not initialize Wiretap Client") self._server = WireTapServerHandle( "{}:IFFFS".format(self.host_name)) def process(self, project_name): policy_node_handle = WireTapNodeHandle( self._server, "/projects/{}/syncolor/policy".format(project_name) ) self.log.info(policy_node_handle) policy = WireTapStr() if not policy_node_handle.getNodeTypeStr(policy): self.log.warning( "Could not retrieve policy of '%s': %s" % ( policy_node_handle.getNodeId().id(), policy_node_handle.lastError() ) ) return policy.c_str() policy_wiretap = GetProjectColorPolicy(_log=_log) return policy_wiretap.process(project_name) def get_segment_data_marker(segment, with_marker=None): """ Get openpype track item tag created by creator or loader plugin. Attributes: segment (flame.PySegment): flame api object with_marker (bool)[optional]: if true it will return also marker object Returns: dict: openpype tag data Returns(with_marker=True): flame.PyMarker, dict """ for marker in segment.markers: comment = marker.comment.get_value() color = marker.colour.get_value() name = marker.name.get_value() if (name == MARKER_NAME) and ( color == COLOR_MAP[MARKER_COLOR]): if not with_marker: return json.loads(comment) else: return marker, json.loads(comment) def set_segment_data_marker(segment, data=None): """ Set openpype track item tag to input segment. Attributes: segment (flame.PySegment): flame api object Returns: dict: json loaded data """ data = data or dict() marker_data = get_segment_data_marker(segment, True) if marker_data: # get available openpype tag if any marker, tag_data = marker_data # update tag data with new data tag_data.update(data) # update marker with tag data marker.comment = json.dumps(tag_data) else: # update tag data with new data marker = create_segment_data_marker(segment) # add tag data to marker's comment marker.comment = json.dumps(data) def set_publish_attribute(segment, value): """ Set Publish attribute in input Tag object Attribute: segment (flame.PySegment)): flame api object value (bool): True or False """ tag_data = get_segment_data_marker(segment) tag_data["publish"] = value # set data to the publish attribute set_segment_data_marker(segment, tag_data) def get_publish_attribute(segment): """ Get Publish attribute from input Tag object Attribute: segment (flame.PySegment)): flame api object Returns: bool: True or False """ tag_data = get_segment_data_marker(segment) if not tag_data: set_publish_attribute(segment, MARKER_PUBLISH_DEFAULT) return MARKER_PUBLISH_DEFAULT return tag_data["publish"] def create_segment_data_marker(segment): """ Create openpype marker on a segment. Attributes: segment (flame.PySegment): flame api object Returns: flame.PyMarker: flame api object """ # get duration of segment duration = segment.record_duration.relative_frame # calculate start frame of the new marker start_frame = int(segment.record_in.relative_frame) + int(duration / 2) # create marker marker = segment.create_marker(start_frame) # set marker name marker.name = MARKER_NAME # set duration marker.duration = MARKER_DURATION # set colour marker.colour = COLOR_MAP[MARKER_COLOR] # Red return marker def get_sequence_segments(sequence, selected=False): segments = [] # loop versions in sequence for ver in sequence.versions: # loop track in versions for track in ver.tracks: # ignore all empty tracks and hidden too if len(track.segments) == 0 and track.hidden: continue # loop all segment in remaining tracks for segment in track.segments: if segment.name.get_value() == "": continue if segment.hidden.get_value() is True: continue if ( selected is True and segment.selected.get_value() is not True ): continue # add it to original selection segments.append(segment) return segments @contextlib.contextmanager def maintained_segment_selection(sequence): """Maintain selection during context Attributes: sequence (flame.PySequence): python api object Yield: list of flame.PySegment Example: >>> with maintained_segment_selection(sequence) as selected_segments: ... for segment in selected_segments: ... segment.selected = False >>> print(segment.selected) True """ selected_segments = get_sequence_segments(sequence, True) try: # do the operation on selected segments yield selected_segments finally: # reset all selected clips reset_segment_selection(sequence) # select only original selection of segments for segment in selected_segments: segment.selected = True def reset_segment_selection(sequence): """Deselect all selected nodes """ for ver in sequence.versions: for track in ver.tracks: if len(track.segments) == 0 and track.hidden: continue for segment in track.segments: segment.selected = False def _get_shot_tokens_values(clip, tokens): old_value = None output = {} if not clip.shot_name: return output old_value = clip.shot_name.get_value() for token in tokens: clip.shot_name.set_value(token) _key = str(re.sub("[<>]", "", token)).replace(" ", "_") try: output[_key] = int(clip.shot_name.get_value()) except ValueError: output[_key] = clip.shot_name.get_value() clip.shot_name.set_value(old_value) return output def get_segment_attributes(segment): if segment.name.get_value() == "": return None # Add timeline segment to tree clip_data = { "shot_name": segment.shot_name.get_value(), "segment_name": segment.name.get_value(), "segment_comment": segment.comment.get_value(), "tape_name": segment.tape_name, "source_name": segment.source_name, "fpath": segment.file_path, "PySegment": segment } # head and tail with forward compatibility if segment.head: # `infinite` can be also returned if isinstance(segment.head, str): clip_data["segment_head"] = 0 else: clip_data["segment_head"] = int(segment.head) if segment.tail: # `infinite` can be also returned if isinstance(segment.tail, str): clip_data["segment_tail"] = 0 else: clip_data["segment_tail"] = int(segment.tail) # add all available shot tokens shot_tokens = _get_shot_tokens_values(segment, [ "<colour space>", "<width>", "<height>", "<depth>", "<segment>", "<track>", "<track name>" ]) clip_data.update(shot_tokens) # populate shot source metadata segment_attrs = [ "record_duration", "record_in", "record_out", "source_duration", "source_in", "source_out" ] segment_attrs_data = {} for attr_name in segment_attrs: if not hasattr(segment, attr_name): continue attr = getattr(segment, attr_name) segment_attrs_data[attr] = str(attr).replace("+", ":") if attr_name in ["record_in", "record_out"]: clip_data[attr_name] = attr.relative_frame else: clip_data[attr_name] = attr.frame clip_data["segment_timecodes"] = segment_attrs_data return clip_data def get_clips_in_reels(project): output_clips = [] project_desktop = project.current_workspace.desktop for reel_group in project_desktop.reel_groups: for reel in reel_group.reels: for clip in reel.clips: clip_data = { "PyClip": clip, "fps": float(str(clip.frame_rate)[:-4]) } attrs = [ "name", "width", "height", "ratio", "sample_rate", "bit_depth" ] for attr in attrs: val = getattr(clip, attr) clip_data[attr] = val version = clip.versions[-1] track = version.tracks[-1] for segment in track.segments: segment_data = get_segment_attributes(segment) clip_data.update(segment_data) output_clips.append(clip_data) return output_clips def get_reformated_filename(filename, padded=True): """ Return fixed python expression path Args: filename (str): file name Returns: type: string with reformated path Example: get_reformated_filename("plate.1001.exr") > plate.%04d.exr """ found = FRAME_PATTERN.search(filename) if not found: log.info("File name is not sequence: {}".format(filename)) return filename padding = get_padding_from_filename(filename) replacement = "%0{}d".format(padding) if padded else "%d" start_idx, end_idx = found.span(1) return replacement.join( [filename[:start_idx], filename[end_idx:]] ) def get_padding_from_filename(filename): """ Return padding number from Flame path style Args: filename (str): file name Returns: int: padding number Example: get_padding_from_filename("plate.0001.exr") > 4 """ found = get_frame_from_filename(filename) return len(found) if found else None def get_frame_from_filename(filename): """ Return sequence number from Flame path style Args: filename (str): file name Returns: int: sequence frame number Example: def get_frame_from_filename(path): ("plate.0001.exr") > 0001 """ found = re.findall(FRAME_PATTERN, filename) return found.pop() if found else None @contextlib.contextmanager def maintained_object_duplication(item): """Maintain input item duplication Attributes: item (any flame.PyObject): python api object Yield: duplicate input PyObject type """ import flame # Duplicate the clip to avoid modifying the original clip duplicate = flame.duplicate(item) try: # do the operation on selected segments yield duplicate finally: # delete the item at the end flame.delete(duplicate) @contextlib.contextmanager def maintained_temp_file_path(suffix=None): _suffix = suffix or "" try: # Store dumped json to temporary file temporary_file = tempfile.mktemp( suffix=_suffix, prefix="flame_maintained_") yield temporary_file.replace("\\", "/") except IOError as _error: raise IOError( "Not able to create temp json file: {}".format(_error)) finally: # Remove the temporary json os.remove(temporary_file) def get_clip_segment(flame_clip): name = flame_clip.name.get_value() version = flame_clip.versions[0] track = version.tracks[0] segments = track.segments if len(segments) < 1: raise ValueError("Clip `{}` has no segments!".format(name)) if len(segments) > 1: raise ValueError("Clip `{}` has too many segments!".format(name)) return segments[0] def get_batch_group_from_desktop(name): project = get_current_project() project_desktop = project.current_workspace.desktop for bgroup in project_desktop.batch_groups: if bgroup.name.get_value() in name: return bgroup class MediaInfoFile(object): """Class to get media info file clip data Raises: IOError: MEDIA_SCRIPT_PATH path doesn't exists TypeError: Not able to generate clip xml data file ET.ParseError: Missing clip in xml clip data IOError: Not able to save xml clip data to file Attributes: str: `MEDIA_SCRIPT_PATH` path to flame binary logging.Logger: `log` logger TODO: add method for getting metadata to dict """ MEDIA_SCRIPT_PATH = "/opt/Autodesk/mio/current/dl_get_media_info" log = log _clip_data = None _start_frame = None _fps = None _drop_mode = None def __init__(self, path, **kwargs): # replace log if any if kwargs.get("logger"): self.log = kwargs["logger"] # test if `dl_get_media_info` paht exists self._validate_media_script_path() # derivate other feed variables self.feed_basename = os.path.basename(path) self.feed_dir = os.path.dirname(path) self.feed_ext = os.path.splitext(self.feed_basename)[1][1:].lower() with maintained_temp_file_path(".clip") as tmp_path: self.log.info("Temp File: {}".format(tmp_path)) self._generate_media_info_file(tmp_path) # get clip data and make them single if there is multiple # clips data xml_data = self._make_single_clip_media_info(tmp_path) self.log.debug("xml_data: {}".format(xml_data)) self.log.debug("type: {}".format(type(xml_data))) # get all time related data and assign them self._get_time_info_from_origin(xml_data) self.log.debug("start_frame: {}".format(self.start_frame)) self.log.debug("fps: {}".format(self.fps)) self.log.debug("drop frame: {}".format(self.drop_mode)) self.clip_data = xml_data @property def clip_data(self): """Clip's xml clip data Returns: xml.etree.ElementTree: xml data """ return self._clip_data @clip_data.setter def clip_data(self, data): self._clip_data = data @property def start_frame(self): """ Clip's starting frame found in timecode Returns: int: number of frames """ return self._start_frame @start_frame.setter def start_frame(self, number): self._start_frame = int(number) @property def fps(self): """ Clip's frame rate Returns: float: frame rate """ return self._fps @fps.setter def fps(self, fl_number): self._fps = float(fl_number) @property def drop_mode(self): """ Clip's drop frame mode Returns: str: drop frame flag """ return self._drop_mode @drop_mode.setter def drop_mode(self, text): self._drop_mode = str(text) def _validate_media_script_path(self): if not os.path.isfile(self.MEDIA_SCRIPT_PATH): raise IOError("Media Scirpt does not exist: `{}`".format( self.MEDIA_SCRIPT_PATH)) def _generate_media_info_file(self, fpath): # Create cmd arguments for gettig xml file info file cmd_args = [ self.MEDIA_SCRIPT_PATH, "-e", self.feed_ext, "-o", fpath, self.feed_dir ] try: # execute creation of clip xml template data openpype.run_subprocess(cmd_args) except TypeError as error: raise TypeError( "Error creating `{}` due: {}".format(fpath, error)) def _make_single_clip_media_info(self, fpath): with open(fpath) as f: lines = f.readlines() _added_root = itertools.chain( "<root>", deepcopy(lines)[1:], "</root>") new_root = ET.fromstringlist(_added_root) # find the clip which is matching to my input name xml_clips = new_root.findall("clip") matching_clip = None for xml_clip in xml_clips: if xml_clip.find("name").text in self.feed_basename: matching_clip = xml_clip if matching_clip is None: # return warning there is missing clip raise ET.ParseError( "Missing clip in `{}`. Available clips {}".format( self.feed_basename, [ xml_clip.find("name").text for xml_clip in xml_clips ] )) return matching_clip def _get_time_info_from_origin(self, xml_data): try: for out_track in xml_data.iter('track'): for out_feed in out_track.iter('feed'): # start frame out_feed_nb_ticks_obj = out_feed.find( 'startTimecode/nbTicks') self.start_frame = out_feed_nb_ticks_obj.text # fps out_feed_fps_obj = out_feed.find( 'startTimecode/rate') self.fps = out_feed_fps_obj.text # drop frame mode out_feed_drop_mode_obj = out_feed.find( 'startTimecode/dropMode') self.drop_mode = out_feed_drop_mode_obj.text break else: continue except Exception as msg: self.log.warning(msg) @staticmethod def write_clip_data_to_file(fpath, xml_element_data): """ Write xml element of clip data to file Args: fpath (string): file path xml_element_data (xml.etree.ElementTree.Element): xml data Raises: IOError: If data could not be written to file """ try: # save it as new file tree = cET.ElementTree(xml_element_data) tree.write( fpath, xml_declaration=True, method='xml', encoding='UTF-8' ) except IOError as error: raise IOError( "Not able to write data to file: {}".format(error))
29.109458
79
0.593531
13,810
0.504162
2,053
0.074949
3,960
0.144568
0
0
6,952
0.253797
c7c5220186916c25d94c94c265afef27d8cdfced
1,287
py
Python
newanalysis/plot_performances.py
nriesterer/cogsci-individualization
da97bf0a6b53f440670e22ff591348f3d3fab230
[ "MIT" ]
null
null
null
newanalysis/plot_performances.py
nriesterer/cogsci-individualization
da97bf0a6b53f440670e22ff591348f3d3fab230
[ "MIT" ]
null
null
null
newanalysis/plot_performances.py
nriesterer/cogsci-individualization
da97bf0a6b53f440670e22ff591348f3d3fab230
[ "MIT" ]
null
null
null
import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns if len(sys.argv) != 3: print('usage: python plot_performances.py <group_csv> <indiv_csv>') exit() group_file = sys.argv[1] indiv_file = sys.argv[2] # Load the data df_group = pd.read_csv(group_file) df_indiv = pd.read_csv(indiv_file) df = pd.concat([df_group, df_indiv], sort=True) # Prepare the data for plotting plot_df = df.groupby(['model', 'id'], as_index=False)['hit'].agg('mean') mfa_df = plot_df.loc[plot_df['model'] == 'MFA'] mfa_median = mfa_df['hit'].median() plot_df = plot_df.loc[plot_df['model'] != 'MFA'] # Plot the data sns.set(style='whitegrid', palette='colorblind') plt.figure(figsize=(7, 3)) order = plot_df.groupby('model', as_index=False)['hit'].agg('median').sort_values('hit')['model'] colors = [('C0' if 'mReasoner' in x else 'C2') for x in order] sns.boxplot(x='model', y='hit', data=plot_df, order=order, palette=colors) plt.axhline(y=mfa_median, ls='--', color='C7', zorder=10) plt.text(0.002, mfa_median + 0.015, 'MFA', color='C7', fontsize=10, transform=plt.gca().transAxes) plt.xlabel('') plt.yticks(np.arange(0, 1.1, 0.1)) plt.ylabel('Coverage Accuracy') plt.tight_layout() plt.savefig('visualizations/performances.pdf') plt.show()
28.6
98
0.700855
0
0
0
0
0
0
0
0
329
0.255633
c7c52b0c2a58b302536c4281e3d875f7998a6140
611
py
Python
src/helpers.py
demirdagemir/thesis
4a48bddf815c91729e27484548bb7bbf7ddeda64
[ "MIT" ]
null
null
null
src/helpers.py
demirdagemir/thesis
4a48bddf815c91729e27484548bb7bbf7ddeda64
[ "MIT" ]
null
null
null
src/helpers.py
demirdagemir/thesis
4a48bddf815c91729e27484548bb7bbf7ddeda64
[ "MIT" ]
null
null
null
from Aion.utils.data import getADBPath import subprocess def dumpLogCat(apkTarget): # Aion/shared/DroidutanTest.py # Define frequently-used commands # TODO: Refactor adbID adbID = "192.168.58.101:5555" adbPath = getADBPath() dumpLogcatCmd = [adbPath, "-s", adbID, "logcat", "-d"] clearLogcatCmd = [adbPath, "-s", adbID, "-c"] # 5. Dump the system log to file logcatFile = open(apkTarget.replace(".apk", ".log"), "w") prettyPrint("Dumping logcat") subprocess.Popen(dumpLogcatCmd, stderr=subprocess.STDOUT, stdout=logcatFile).communicate()[0] logcatFile.close()
33.944444
97
0.680851
0
0
0
0
0
0
0
0
194
0.317512
c7c5b3d53e6ad031199ab57c86f15523078de6cc
1,969
py
Python
tests/test_show.py
domi007/pigskin
c379284ebbbdb3a9df42de70227041e3c137b6dc
[ "MIT" ]
6
2018-08-15T13:29:22.000Z
2020-09-12T14:39:20.000Z
tests/test_show.py
domi007/pigskin
c379284ebbbdb3a9df42de70227041e3c137b6dc
[ "MIT" ]
26
2018-08-15T13:08:49.000Z
2020-01-12T22:27:38.000Z
tests/test_show.py
domi007/pigskin
c379284ebbbdb3a9df42de70227041e3c137b6dc
[ "MIT" ]
4
2018-08-15T13:52:26.000Z
2019-04-28T17:09:04.000Z
from collections import OrderedDict import pytest import vcr try: # Python 2.7 # requests's ``json()`` function returns strings as unicode (as per the # JSON spec). In 2.7, those are of type unicode rather than str. basestring # was created to help with that. # https://docs.python.org/2/library/functions.html#basestring basestring = basestring except NameError: basestring = str @pytest.mark.incremental class TestShow(object): """These don't require authentication to Game Pass.""" @vcr.use_cassette('public_API/europe_show.yaml') @staticmethod def test_desc(gp): shows = gp.shows for s in shows: show = shows[s] isinstance(show.desc, basestring) # content is not required @vcr.use_cassette('public_API/europe_show.yaml') @staticmethod def test_logo(gp): shows = gp.shows for s in shows: show = shows[s] isinstance(show.logo, basestring) assert show.logo @vcr.use_cassette('public_API/europe_show.yaml') @staticmethod def test_name(gp): shows = gp.shows for s in shows: show = shows[s] isinstance(show.name, basestring) assert show.name @vcr.use_cassette('public_API/europe_show_seasons.yaml') @staticmethod def test_seasons(gp): shows = gp.shows for s in shows: show = shows[s] assert type(show.seasons) is OrderedDict assert show.seasons prev = 9999 for s in show.seasons: season = show.seasons[s] # TODO: assert it has content # TODO: assert is type season # make sure the years look sane-ish assert int(s) > 2000 and int(s) < 2050 # make sure it's sorted high to low assert int(prev) > int(s) prev = s
24.6125
79
0.584053
1,532
0.77806
0
0
1,557
0.790757
0
0
582
0.295582
c7c66a8f8b52a73b0ced73b9208760d1628d3b03
3,165
py
Python
integration_test/basic_op_capi.py
cl9200/nbase-arc
47c124b11b0bb2e8a8428c6d628ce82dc24c1ade
[ "Apache-2.0" ]
null
null
null
integration_test/basic_op_capi.py
cl9200/nbase-arc
47c124b11b0bb2e8a8428c6d628ce82dc24c1ade
[ "Apache-2.0" ]
null
null
null
integration_test/basic_op_capi.py
cl9200/nbase-arc
47c124b11b0bb2e8a8428c6d628ce82dc24c1ade
[ "Apache-2.0" ]
null
null
null
# # Copyright 2015 Naver Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import subprocess import unittest import testbase import default_cluster import util import os import constant import config import time import telnetlib import signal class TestBasicOpCAPI(unittest.TestCase): cluster = config.clusters[2] @classmethod def setUpClass(cls): return 0 @classmethod def tearDownClass(cls): return 0 def setUp(self): util.set_process_logfile_prefix( 'TestBasicOp_%s' % self._testMethodName ) self.conf_checker = default_cluster.initialize_starting_up_smr_before_redis(self.cluster, arch=self.arch) self.assertIsNotNone(self.conf_checker, 'failed to initialize cluster') def tearDown(self): testbase.defaultTearDown(self) def run_capi_server(self): # run capi test server _capi_server_conf = """ zookeeper 127.0.0.1:2181 cluster_name %s port 6200 daemonize no num_conn_per_gw 2 init_timeout_millis 10000 log_level INFO log_file_prefix "capi_server" max_fd 4096 conn_reconnect_millis 1000 zk_reconnect_millis 1000 zk_session_timeout_millis 10000 local_proxy_query_timeout_millis 10000 """ % self.cluster['cluster_name'] old_cwd = os.path.abspath( os.getcwd() ) os.chdir(util.capi_dir(0)) f = open('capi_server.conf', 'w') f.write(_capi_server_conf) f.close() os.chdir(old_cwd) if self.arch is 32: cmd = "./%s capi_server.conf" % constant.CAPI32_TEST_SERVER else: cmd = "./%s capi_server.conf" % constant.CAPI_TEST_SERVER capi_server = util.exec_proc_async(util.capi_dir(0), cmd, True, None, subprocess.PIPE, None) # ping check while True: try: t = telnetlib.Telnet('127.0.0.1', 6200) break except: time.sleep(1) continue t.write("ping\r\n") t.read_until('+PONG\r\n') t.close() return capi_server def stop_process(self, capi_server): capi_server.send_signal(signal.SIGTERM) capi_server.wait() def test_basic_op_capi(self): capi_server = self.run_capi_server() f = open("%s/test_basicop_output_capi%d" % (constant.logdir, self.arch), 'w') p = util.exec_proc_async("../redis-%s" % constant.REDISVER, "./runtest_gw --accurate --gw-port 6200", True, None, f, None) ret = p.wait() f.close() self.assertEquals(0, ret) self.stop_process(capi_server)
28.00885
113
0.653081
2,415
0.763033
0
0
111
0.035071
0
0
1,147
0.362401
c7c6a85099fcd6a3265a36a9b36bdf7fa4e9b9a7
5,509
py
Python
examples/scripts/flopy_lake_example.py
andrewcalderwood/flopy
0432ce96a0a5eec4d20adb4d384505632a2db3dc
[ "CC0-1.0", "BSD-3-Clause" ]
351
2015-01-03T15:18:48.000Z
2022-03-31T09:46:43.000Z
examples/scripts/flopy_lake_example.py
andrewcalderwood/flopy
0432ce96a0a5eec4d20adb4d384505632a2db3dc
[ "CC0-1.0", "BSD-3-Clause" ]
1,256
2015-01-15T21:10:42.000Z
2022-03-31T22:43:06.000Z
examples/scripts/flopy_lake_example.py
andrewcalderwood/flopy
0432ce96a0a5eec4d20adb4d384505632a2db3dc
[ "CC0-1.0", "BSD-3-Clause" ]
553
2015-01-31T22:46:48.000Z
2022-03-31T17:43:35.000Z
import os import sys import numpy as np import matplotlib.pyplot as plt import flopy def run(): workspace = os.path.join("lake") # make sure workspace directory exists if not os.path.exists(workspace): os.makedirs(workspace) fext = "png" narg = len(sys.argv) iarg = 0 if narg > 1: while iarg < narg - 1: iarg += 1 basearg = sys.argv[iarg].lower() if basearg == "--pdf": fext = "pdf" # save the starting path cwdpth = os.getcwd() # change to the working directory os.chdir(workspace) # We are creating a square model with a specified head equal to `h1` along all boundaries. # The head at the cell in the center in the top layer is fixed to `h2`. First, set the name # of the model and the parameters of the model: the number of layers `Nlay`, the number of rows # and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic # conductivity `Kh` name = "lake_example" h1 = 100 h2 = 90 Nlay = 10 N = 101 L = 400.0 H = 50.0 Kh = 1.0 # Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it # whatever you want). The modelname will be the name given to all MODFLOW files (input and output). # The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k' # for MODFLOW2000 or 'mf2005'for MODFLOW2005. ml = flopy.modflow.Modflow( modelname=name, exe_name="mf2005", version="mf2005" ) # Define the discretization of the model. All layers are given equal thickness. The `bot` array # is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and # `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed, # the Discretization file is built. bot = np.linspace(-H / Nlay, -H, Nlay) delrow = delcol = L / (N - 1) dis = flopy.modflow.ModflowDis( ml, nlay=Nlay, nrow=N, ncol=N, delr=delrow, delc=delcol, top=0.0, botm=bot, laycbd=0, ) # Next we specify the boundary conditions and starting heads with the Basic package. The `ibound` # array will be `1` in all cells in all layers, except for along the boundary and in the cell at # the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads # are used to define the heads in the fixed head cells (this is a steady simulation, so none of # the other starting values matter). So we set the starting heads to `h1` everywhere, except for # the head at the center of the model in the top layer. Nhalf = int((N - 1) / 2) ibound = np.ones((Nlay, N, N), dtype=int) ibound[:, 0, :] = -1 ibound[:, -1, :] = -1 ibound[:, :, 0] = -1 ibound[:, :, -1] = -1 ibound[0, Nhalf, Nhalf] = -1 start = h1 * np.ones((N, N)) start[Nhalf, Nhalf] = h2 # create external ibound array and starting head files files = [] hfile = f"{name}_strt.ref" np.savetxt(hfile, start) hfiles = [] for kdx in range(Nlay): file = f"{name}_ib{kdx + 1:02d}.ref" files.append(file) hfiles.append(hfile) np.savetxt(file, ibound[kdx, :, :], fmt="%5d") bas = flopy.modflow.ModflowBas(ml, ibound=files, strt=hfiles) # The aquifer properties (really only the hydraulic conductivity) are defined with the # LPF package. lpf = flopy.modflow.ModflowLpf(ml, hk=Kh) # Finally, we need to specify the solver we want to use (PCG with default values), and the # output control (using the default values). Then we are ready to write all MODFLOW input # files and run MODFLOW. pcg = flopy.modflow.ModflowPcg(ml) oc = flopy.modflow.ModflowOc(ml) ml.write_input() ml.run_model() # change back to the starting directory os.chdir(cwdpth) # Once the model has terminated normally, we can read the heads file. First, a link to the heads # file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by # specifying, in this case, the step number and period number for which we want to retrieve data. # A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions # are used to make contours of the layers or a cross-section. hds = flopy.utils.HeadFile(os.path.join(workspace, f"{name}.hds")) h = hds.get_data(kstpkper=(0, 0)) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[0], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%2.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake1.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[-1], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%1.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake2.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) z = np.linspace(-H / Nlay / 2, -H + H / Nlay / 2, Nlay) c = plt.contour(x, z, h[:, 50, :], np.arange(90, 100.1, 0.2)) plt.axis("scaled") outfig = os.path.join(workspace, f"lake3.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) return 0 if __name__ == "__main__": success = run()
35.089172
103
0.626429
0
0
0
0
0
0
0
0
2,760
0.500998
c7c6afa7ba07a568b76988ebc296a4b468c42738
11,428
py
Python
P2/Caso2/clustering.py
Ocete/Inteligenica-de-Negocio
0c3bb3914893c608790002743530aba535be7249
[ "MIT" ]
null
null
null
P2/Caso2/clustering.py
Ocete/Inteligenica-de-Negocio
0c3bb3914893c608790002743530aba535be7249
[ "MIT" ]
null
null
null
P2/Caso2/clustering.py
Ocete/Inteligenica-de-Negocio
0c3bb3914893c608790002743530aba535be7249
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' Documentación sobre clustering en Python: http://scikit-learn.org/stable/modules/clustering.html http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ ''' import time import csv import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn import preprocessing from sklearn import metrics from sklearn import cluster from math import floor import seaborn as sns # Cosas bonitas por defecto sns.set() def norm_to_zero_one(df): return (df - df.min()) * 1.0 / (df.max() - df.min()) censo = pd.read_csv('../mujeres_fecundidad_INE_2018.csv') ''' for col in censo: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count) #''' #Se pueden reemplazar los valores desconocidos por un número #censo = censo.replace(np.NaN,0) # Sustituimos valores perdidos con la media for col in censo: censo[col].fillna(censo[col].mean(), inplace=True) #seleccionar casos subset = censo.loc[(censo['TRAREPRO']==1) & (censo['NEMBTRAREPRO']<=6)] # Seleccionar variables usadas = ['NHIJOS', 'TIPOTRAREPRO', 'NMESESTRAREPRO', 'NEMBTRAREPRO'] X = subset[usadas] X_normal = X.apply(norm_to_zero_one) print('Tamaño de la población tras filtrado: ',len(X_normal.index)) for col in X: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count, ' AFTER') algoritmos = (('KMeans', cluster.KMeans(init='k-means++', n_clusters=5, n_init=5)), ('MeanShift', cluster.MeanShift(cluster_all=False, min_bin_freq=3)), ('Ward', cluster.AgglomerativeClustering(n_clusters=4, linkage='ward')), ('DBScan', cluster.DBSCAN(eps=0.35, min_samples=5)), ('Birch', cluster.Birch(threshold=0.1,n_clusters=5))) cluster_predict = {} calinski = {} silh = {} times = {} n_clusters = {} clusters_fig, clusters_axis = plt.subplots(3, 2, figsize=(10,10)) clusters_colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', '#ffb347'] ijs = [(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)] for i_alg, par in enumerate(algoritmos): name, alg = par print('----- Ejecutando ' + name,) t = time.time() cluster_predict[name] = alg.fit_predict(X_normal) tiempo = time.time() - t times[name] = tiempo metric_CH = metrics.calinski_harabasz_score(X_normal, cluster_predict[name]) calinski[name] = metric_CH metric_SC = metrics.silhouette_score(X_normal, cluster_predict[name], metric='euclidean', sample_size=floor(len(X)), random_state=123456) silh[name] = metric_SC # Asignamos de clusters a DataFrame clusters = pd.DataFrame(cluster_predict[name],index=X.index,columns=['cluster']) if (name == 'KMeans'): clusters_kmeans = clusters alg_kmeans = alg elif (name == 'Ward'): clusters_ward = clusters print("Tamaño de cada cluster:") size = clusters['cluster'].value_counts() cluster_fractions = [] for num,i in size.iteritems(): print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters))) cluster_fractions.append( 100*i/len(clusters) ) n_clusters[name] = len(size) # Bar charts if ( len(cluster_fractions) > 7 ): cluster_fractions = cluster_fractions[0:6] i, j = ijs[i_alg] y_pos = np.arange(len(cluster_fractions)) labels = [ "Cluster " + str(i) for i in range(len(cluster_fractions)) ] clusters_axis[i, j].bar(y_pos, cluster_fractions, tick_label=labels, color=clusters_colors) clusters_axis[i, j].set_ylim(0, 100) clusters_axis[i, j].set_title(name) if (j == 0): clusters_axis[i, j].set_ylabel("Cluster size (%)") clusters_axis[2,1].remove() #clusters_fig.savefig("clusters.png") plt.show() from prettytable import PrettyTable header = ['Algoritmo', 'CH', 'Silh', 'Tiempo', 'Número de clusters'] tabla = PrettyTable(header) for name, alg in algoritmos: tabla.add_row([name, "{0:.2f}".format(calinski[name]), "{0:.2f}".format(silh[name]), "{0:.2f}".format(times[name]), n_clusters[name]]) print(tabla) # Escribir los datos en un general.csv ''' with open('general.csv', mode='w+', newline='') as file: writer = csv.DictWriter(file, fieldnames=header) writer.writeheader() for name, _ in algoritmos: writer.writerow({'Algoritmo': name, 'CH': "{0:.2f}".format(calinski[name]), 'Silh': "{0:.2f}".format(silh[name]), 'Tiempo': "{0:.2f}".format(times[name]), 'Número de clusters': n_clusters[name]}) #''' # ----------------------- FUNCIONES DE DISTRIBUCIÓN --------- print("---------- Preparando funciones de distribución...") n_clusters_ward = n_clusters['Ward'] n_var = len(usadas) X_ward = pd.concat([X, clusters_ward], axis=1) fig, axes = plt.subplots(n_clusters_ward, n_var, sharey=True, figsize=(15,15)) fig.subplots_adjust(wspace=0, hspace=0) colors = sns.color_palette(palette=None, n_colors=n_clusters_ward, desat=None) rango = [] for j in range(n_var): rango.append([X_ward[usadas[j]].min(), X_ward[usadas[j]].max()]) for i in range(n_clusters_ward): dat_filt = X_ward.loc[X_ward['cluster']==i] for j in range(n_var): #ax = sns.kdeplot(dat_filt[usadas[j]], label="", shade=True, color=colors[i], ax=axes[i,j]) ax = sns.boxplot(dat_filt[usadas[j]], color=colors[i], flierprops={'marker':'o','markersize':4}, ax=axes[i,j]) if (i==n_clusters_ward-1): axes[i,j].set_xlabel(usadas[j]) else: axes[i,j].set_xlabel("") if (j==0): axes[i,j].set_ylabel("Cluster "+str(i)) else: axes[i,j].set_ylabel("") axes[i,j].set_yticks([]) axes[i,j].grid(axis='x', linestyle='-', linewidth='0.2', color='gray') axes[i,j].grid(axis='y', b=False) ax.set_xlim(rango[j][0]-0.05*(rango[j][1]-rango[j][0]),rango[j][1]+0.05*(rango[j][1]-rango[j][0])) plt.show() #fig.savefig("boxes.png") # ---------------- SCATTER MATRIX ----------------------- ''' plt.clf() print("---------- Preparando el scatter matrix...") # Se añade la asignación de clusters como columna a X variables = list(X_ward) variables.remove('cluster') sns_plot = sns.pairplot(X_ward, vars=variables, hue="cluster", palette='Paired', plot_kws={"s": 25}, diag_kind="hist") sns_plot.fig.subplots_adjust(wspace=.03, hspace=.03); # sns_plot.savefig("scatter_matrix.png") plt.show() #''' # ----------------------- DENDOGRAMAS ----------------------- #En clustering hay que normalizar para las métricas de distancia # X_normal = preprocessing.normalize(X, norm='l2') X_normal = (X - X.min() ) / (X.max() - X.min()) #Vamos a usar este jerárquico y nos quedamos con 100 clusters, es decir, cien ramificaciones del dendrograma ward = cluster.AgglomerativeClustering(n_clusters=20, linkage='ward') name, algorithm = ('Ward', ward) cluster_predict = {} k = {} t = time.time() cluster_predict[name] = algorithm.fit_predict(X_normal) tiempo = time.time() - t k[name] = len(set(cluster_predict[name])) # Se convierte la asignación de clusters a DataFrame clusters = pd.DataFrame(cluster_predict['Ward'],index=X.index,columns=['cluster']) # Y se añade como columna a X X_cluster = pd.concat([X, clusters], axis=1) # Filtro quitando los elementos (outliers) que caen en clusters muy pequeños en el jerárquico min_size = 3 X_filtrado = X ''' X_cluster[X_cluster.groupby('cluster').cluster.transform(len) > min_size] k_filtrado = len(set(X_filtrado['cluster'])) print("De los {:.0f} clusters hay {:.0f} con más de {:.0f} elementos. Del total de {:.0f} elementos, se seleccionan {:.0f}".format(k['Ward'],k_filtrado,min_size,len(X),len(X_filtrado))) X_filtrado = X_filtrado.drop('cluster', 1) X_filtrado = X #''' #Normalizo el conjunto filtrado X_filtrado_normal = preprocessing.normalize(X_filtrado, norm='l2') # Obtengo el dendrograma usando scipy, que realmente vuelve a ejecutar el clustering jerárquico from scipy.cluster import hierarchy linkage_array = hierarchy.ward(X_filtrado_normal) plt.clf() dendro = hierarchy.dendrogram(linkage_array,orientation='left', p=10, truncate_mode='lastp') #lo pongo en horizontal para compararlo con el generado por seaborn # puedo usar "p=10,truncate_mode='lastp'" para cortar el dendrograma en 10 hojas # Dendograma usando seaborn (que a su vez usa scipy) para incluir un heatmap X_filtrado_normal_DF = pd.DataFrame(X_filtrado_normal, index=X_filtrado.index, columns=usadas) # Añadimos una columna de label para indicar el cluster al que pertenece cada objeto labels = X_ward['cluster'] lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) # Para añadir los labels reordenados. Ahora mismo no salen los colores en la # columna donde deberian. Intuyo que esto se debe a que los ids no encajan. #''' ordering = clustergrid.dendrogram_row.reordered_ind labels_list = [x for _, x in sorted(zip(ordering,labels), key=lambda pair: pair[0])] labels = pd.Series(labels_list, index=X_filtrado_normal_DF.index, name='cluster') lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) #''' #plt.savefig("dendograma.png") # ----------------------- HEATMAPS ----------------------- #''' plt.figure(1) centers = pd.DataFrame(alg_kmeans.cluster_centers_, columns=list(X)) centers_desnormal = centers.copy() centers_desnormal = centers.drop([4]) # Calculamos los centroides X = pd.concat([X, clusters_ward], axis=1) for variable in list(centers): for k_cluster in range(n_clusters_ward): centroide = X.loc[(clusters_ward['cluster']==k_cluster)][variable].mean() centers_desnormal.loc[k_cluster, variable] = centroide # Normalizamos centers_normal2 = centers_desnormal.copy() centers_normal2 = (centers_normal2 - centers_normal2.min() ) / (centers_normal2.max() - centers_normal2.min()) import matplotlib.pyplot as plt heatmap_fig, ax = plt.subplots(figsize=(10,10)) heatmap = sns.heatmap(centers_normal2, cmap="YlGnBu", annot=centers_desnormal, fmt='.3f') # Para evitar que los bloques de arriba y abajo se corten por la mitad bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) #heatmap_fig.savefig("heatmap.png") #'''
37.468852
187
0.651995
0
0
0
0
0
0
0
0
4,561
0.398236
c7c71735421912226dadf924d3330fb19e4f6af5
9,029
py
Python
signal_processing/ecg_preproc.py
DeepPSP/cpsc2020
47acb884ea1f2f819e564d8a17ad37001ed0df27
[ "BSD-3-Clause" ]
1
2021-12-07T11:44:48.000Z
2021-12-07T11:44:48.000Z
signal_processing/ecg_preproc.py
wenh06/cpsc2020
47acb884ea1f2f819e564d8a17ad37001ed0df27
[ "BSD-3-Clause" ]
null
null
null
signal_processing/ecg_preproc.py
wenh06/cpsc2020
47acb884ea1f2f819e564d8a17ad37001ed0df27
[ "BSD-3-Clause" ]
1
2021-05-25T14:56:02.000Z
2021-05-25T14:56:02.000Z
""" preprocess of (single lead) ecg signal: band pass --> remove baseline --> find rpeaks --> denoise (mainly deal with motion artefact) TODO: 1. motion artefact detection, and slice the signal into continuous (no motion artefact within) segments 2. to add References: ----------- [1] https://github.com/PIA-Group/BioSPPy [2] to add """ import os, time import multiprocessing as mp from copy import deepcopy from numbers import Real from typing import Union, Optional, Any, List, Dict import numpy as np from easydict import EasyDict as ED from scipy.ndimage.filters import median_filter from scipy.signal.signaltools import resample from scipy.io import savemat # from scipy.signal import medfilt # https://github.com/scipy/scipy/issues/9680 try: from biosppy.signals.tools import filter_signal except: from references.biosppy.biosppy.signals.tools import filter_signal from cfg import PreprocCfg from .ecg_rpeaks import ( xqrs_detect, gqrs_detect, pantompkins, hamilton_detect, ssf_detect, christov_detect, engzee_detect, gamboa_detect, ) from .ecg_rpeaks_dl import seq_lab_net_detect __all__ = [ "preprocess_signal", "parallel_preprocess_signal", "denoise_signal", ] QRS_DETECTORS = { "xqrs": xqrs_detect, "gqrs": gqrs_detect, "pantompkins": pantompkins, "hamilton": hamilton_detect, "ssf": ssf_detect, "christov": christov_detect, "engzee": engzee_detect, "gamboa": gamboa_detect, "seq_lab": seq_lab_net_detect, } DL_QRS_DETECTORS = [ "seq_lab", ] def preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will be updated by this `config` Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ filtered_ecg = raw_sig.copy() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) if fs != cfg.fs: filtered_ecg = resample(filtered_ecg, int(round(len(filtered_ecg)*cfg.fs/fs))) # remove baseline if 'baseline' in cfg.preproc: window1 = 2 * (cfg.baseline_window1 // 2) + 1 # window size must be odd window2 = 2 * (cfg.baseline_window2 // 2) + 1 baseline = median_filter(filtered_ecg, size=window1, mode='nearest') baseline = median_filter(baseline, size=window2, mode='nearest') filtered_ecg = filtered_ecg - baseline # filter signal if 'bandpass' in cfg.preproc: filtered_ecg = filter_signal( signal=filtered_ecg, ftype='FIR', band='bandpass', order=int(0.3 * fs), sampling_rate=fs, frequency=cfg.filter_band, )['signal'] if cfg.rpeaks and cfg.rpeaks.lower() not in DL_QRS_DETECTORS: # dl detectors not for parallel computing using `mp` detector = QRS_DETECTORS[cfg.rpeaks.lower()] rpeaks = detector(sig=filtered_ecg, fs=fs).astype(int) else: rpeaks = np.array([], dtype=int) retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval def parallel_preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None, save_dir:Optional[str]=None, save_fmt:str='npy', verbose:int=0) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will `update` this `config` save_dir: str, optional, directory for saving the outcome ('filtered_ecg' and 'rpeaks') save_fmt: str, default 'npy', format of the save files, 'npy' or 'mat' Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ start_time = time.time() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) epoch_len = int(cfg.parallel_epoch_len * fs) epoch_overlap_half = int(cfg.parallel_epoch_overlap * fs) // 2 epoch_overlap = 2 * epoch_overlap_half epoch_forward = epoch_len - epoch_overlap if len(raw_sig) <= 3 * epoch_len: # too short, no need for parallel computing retval = preprocess_signal(raw_sig, fs, cfg) if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) retval.rpeaks = rpeaks return retval l_epoch = [ raw_sig[idx*epoch_forward: idx*epoch_forward + epoch_len] \ for idx in range((len(raw_sig)-epoch_overlap)//epoch_forward) ] if cfg.parallel_keep_tail: tail_start_idx = epoch_forward * len(l_epoch) + epoch_overlap if len(raw_sig) - tail_start_idx < 30 * fs: # less than 30s, make configurable? # append to the last epoch l_epoch[-1] = np.append(l_epoch[-1], raw_sig[tail_start_idx:]) else: # long enough tail_epoch = raw_sig[tail_start_idx-epoch_overlap:] l_epoch.append(tail_epoch) cpu_num = max(1, mp.cpu_count()-3) with mp.Pool(processes=cpu_num) as pool: result = pool.starmap( func=preprocess_signal, iterable=[(e, fs, cfg) for e in l_epoch], ) if cfg.parallel_keep_tail: tail_result = result[-1] result = result[:-1] filtered_ecg = result[0]['filtered_ecg'][:epoch_len-epoch_overlap_half] rpeaks = result[0]['rpeaks'][np.where(result[0]['rpeaks']<epoch_len-epoch_overlap_half)[0]] for idx, e in enumerate(result[1:]): filtered_ecg = np.append( filtered_ecg, e['filtered_ecg'][epoch_overlap_half: -epoch_overlap_half] ) epoch_rpeaks = e['rpeaks'][np.where( (e['rpeaks'] >= epoch_overlap_half) & (e['rpeaks'] < epoch_len-epoch_overlap_half) )[0]] rpeaks = np.append(rpeaks, (idx+1)*epoch_forward + epoch_rpeaks) if cfg.parallel_keep_tail: filtered_ecg = np.append(filtered_ecg, tail_result['filtered_ecg'][epoch_overlap_half:]) tail_rpeaks = tail_result['rpeaks'][np.where(tail_result['rpeaks'] >= epoch_overlap_half)[0]] rpeaks = np.append(rpeaks, len(result)*epoch_forward + tail_rpeaks) if verbose >= 1: if cfg.rpeaks.lower() in DL_QRS_DETECTORS: print(f"signal processing took {round(time.time()-start_time, 3)} seconds") else: print(f"signal processing and R peaks detection took {round(time.time()-start_time, 3)} seconds") start_time = time.time() if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) if verbose >= 1: print(f"R peaks detection using {cfg.rpeaks} took {round(time.time()-start_time, 3)} seconds") if save_dir: # NOTE: this part is not tested os.makedirs(save_dir, exist_ok=True) if save_fmt.lower() == 'npy': np.save(os.path.join(save_dir, "filtered_ecg.npy"), filtered_ecg) np.save(os.path.join(save_dir, "rpeaks.npy"), rpeaks) elif save_fmt.lower() == 'mat': # save into 2 files, keep in accordance savemat(os.path.join(save_dir, "filtered_ecg.mat"), {"filtered_ecg": filtered_ecg}, format='5') savemat(os.path.join(save_dir, "rpeaks.mat"), {"rpeaks": rpeaks}, format='5') retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval """ to check correctness of the function `parallel_preprocess_signal`, say for record A01, one can call >>> raw_sig = loadmat("./data/A01.mat")['ecg'].flatten() >>> processed = parallel_preprocess_signal(raw_sig, 400) >>> print(len(processed['filtered_ecg']) - len(raw_sig)) >>> start_t = int(3600*24.7811) >>> len_t = 10 >>> fig, ax = plt.subplots(figsize=(20,6)) >>> ax.plot(hehe['filtered_ecg'][start_t*400:(start_t+len_t)*400]) >>> for r in [p for p in hehe['rpeaks'] if start_t*400 <= p < (start_t+len_t)*400]: >>> ax.axvline(r-start_t*400,c='red',linestyle='dashed') >>> plt.show() or one can use the 'dataset.py' """
34.59387
175
0.646694
0
0
0
0
0
0
0
0
3,572
0.395614
c7c75c3cc68eb1ff8bc4c52efd3bee52faa60a5f
761
bzl
Python
ocaml/bootstrap.bzl
mobileink/obazl
eb9d10d1aac040dbc05a038265276e3ab3a52233
[ "Apache-2.0" ]
null
null
null
ocaml/bootstrap.bzl
mobileink/obazl
eb9d10d1aac040dbc05a038265276e3ab3a52233
[ "Apache-2.0" ]
null
null
null
ocaml/bootstrap.bzl
mobileink/obazl
eb9d10d1aac040dbc05a038265276e3ab3a52233
[ "Apache-2.0" ]
null
null
null
## mv to //:WORKSPACE.bzl ocaml_configure load("//ocaml/_bootstrap:ocaml.bzl", _ocaml_configure = "ocaml_configure") # load("//ocaml/_bootstrap:obazl.bzl", _obazl_configure = "obazl_configure") load("//ocaml/_rules:ocaml_repository.bzl" , _ocaml_repository = "ocaml_repository") # load("//ocaml/_rules:opam_configuration.bzl" , _opam_configuration = "opam_configuration") # load("//ocaml/_toolchains:ocaml_toolchains.bzl", # _ocaml_toolchain = "ocaml_toolchain", # _ocaml_register_toolchains = "ocaml_register_toolchains") # obazl_configure = _obazl_configure ocaml_configure = _ocaml_configure ocaml_repository = _ocaml_repository # ocaml_toolchain = _ocaml_toolchain # ocaml_register_toolchains = _ocaml_register_toolchains
38.05
96
0.768725
0
0
0
0
0
0
0
0
607
0.797635
c7c963a523b032b23261574567ab5a4c018c9176
44
py
Python
tsts.py
tedtroxell/metrician
d4164dbff8db5645ee8beca11dc55ba6c26c4cb6
[ "MIT" ]
null
null
null
tsts.py
tedtroxell/metrician
d4164dbff8db5645ee8beca11dc55ba6c26c4cb6
[ "MIT" ]
null
null
null
tsts.py
tedtroxell/metrician
d4164dbff8db5645ee8beca11dc55ba6c26c4cb6
[ "MIT" ]
null
null
null
from metrician.explainations.tests import *
22
43
0.840909
0
0
0
0
0
0
0
0
0
0
c7c9b4be102dc7ada3fac5b424f329fc54878619
3,021
py
Python
simple/facenet.py
taflahi/facenet
64e74744437e18978782b497b42300b8d4a2342b
[ "MIT" ]
5
2018-09-25T21:04:39.000Z
2020-09-03T20:07:37.000Z
simple/facenet.py
SoloSynth1/facenet
64e74744437e18978782b497b42300b8d4a2342b
[ "MIT" ]
null
null
null
simple/facenet.py
SoloSynth1/facenet
64e74744437e18978782b497b42300b8d4a2342b
[ "MIT" ]
14
2018-10-15T00:03:24.000Z
2020-08-11T05:04:24.000Z
import tensorflow as tf from .. src.align import detect_face from .. src import facenet from .. simple import download_model import sys import os from os.path import expanduser import copy import cv2 import numpy as np from scipy import spatial minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor def align_face(images, image_size=160, margin=11): with tf.Graph().as_default(): sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) tmp_image_paths = copy.copy(images) img_list = [] for image in tmp_image_paths: img = cv2.imread(os.path.expanduser(image))[:, :, ::-1] img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) if len(bounding_boxes) < 1: image_paths.remove(image) print("can't detect face, remove ", image) continue det = np.squeeze(bounding_boxes[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] aligned = cv2.resize(cropped[:, :, ::-1], (image_size, image_size))[:, :, ::-1] prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) images = np.stack(img_list) return images def embedding(images): # check is model exists home = expanduser('~') model_path = home + '/.facenet_model/20180408-102900/20180408-102900.pb' if not os.path.exists(model_path): print("model not exists, downloading model") download_model.download() print("model downloaded to " + model_path) with tf.Graph().as_default(): with tf.Session() as sess: facenet.load_model(model_path) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings feed_dict = {images_placeholder: images, phase_train_placeholder: False} emb = sess.run(embeddings, feed_dict=feed_dict) return emb def compare(images, threshold=0.7): emb = embedding(images) sims = np.zeros((len(images), len(images))) for i in range(len(images)): for j in range(len(images)): sims[i][j] = ( 1 - spatial.distance.cosine(emb[i], emb[j]) > threshold) return sims
35.127907
96
0.620655
0
0
0
0
0
0
0
0
336
0.111221
c7cb28d53e6c7e1382fc471314a689bf2b0e9252
172
py
Python
athena/athena/errors.py
aculich/openmappr
c9e5b4cfc974a6eda9cbc8a0ea6f8a96ce35efba
[ "MIT" ]
19
2018-04-05T23:33:33.000Z
2022-03-24T00:18:20.000Z
athena/athena/errors.py
aculich/openmappr
c9e5b4cfc974a6eda9cbc8a0ea6f8a96ce35efba
[ "MIT" ]
13
2018-01-10T23:31:11.000Z
2018-07-20T12:55:02.000Z
athena/athena/errors.py
aculich/openmappr
c9e5b4cfc974a6eda9cbc8a0ea6f8a96ce35efba
[ "MIT" ]
5
2018-02-12T05:33:19.000Z
2019-09-21T22:43:02.000Z
class AthenaError(Exception): """base class for all athena exceptions""" pass class AthenaMongoError(AthenaError): """Class for all mongo related errors""" pass
21.5
46
0.726744
169
0.982558
0
0
0
0
0
0
82
0.476744
c7cb2a8553964cb9e86d2c3de96decefdde5eb6c
89
py
Python
tf2stats/__init__.py
TheAntecedent/Quintessence
f32dc1b11ded212121ebc0f925d15c845cb6ea4b
[ "MIT" ]
1
2019-10-08T04:38:08.000Z
2019-10-08T04:38:08.000Z
tf2stats/__init__.py
TheAntecedent/Quintessence
f32dc1b11ded212121ebc0f925d15c845cb6ea4b
[ "MIT" ]
1
2021-04-30T20:51:05.000Z
2021-04-30T20:51:05.000Z
tf2stats/__init__.py
TheAntecedent/Quintessence
f32dc1b11ded212121ebc0f925d15c845cb6ea4b
[ "MIT" ]
null
null
null
from .aggregated_stats import * from .game_stats import * from .stat_definitions import *
29.666667
31
0.808989
0
0
0
0
0
0
0
0
0
0
c7cb514f4b628937e89d11a214a0267002c52972
1,515
py
Python
tests/test_messages/test_inbound/test_manage_all_link_record.py
michaeldavie/pyinsteon
e5b2e2910f4eff1474f158051fa71f75c2077dd6
[ "MIT" ]
15
2020-07-08T05:29:14.000Z
2022-03-24T18:56:26.000Z
tests/test_messages/test_inbound/test_manage_all_link_record.py
michaeldavie/pyinsteon
e5b2e2910f4eff1474f158051fa71f75c2077dd6
[ "MIT" ]
107
2019-06-03T09:23:02.000Z
2022-03-31T23:12:38.000Z
tests/test_messages/test_inbound/test_manage_all_link_record.py
michaeldavie/pyinsteon
e5b2e2910f4eff1474f158051fa71f75c2077dd6
[ "MIT" ]
16
2019-01-24T01:09:49.000Z
2022-02-24T03:48:42.000Z
"""Test Manage All-Link Record.""" import unittest from binascii import unhexlify from pyinsteon.address import Address from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId from pyinsteon.protocol.messages.all_link_record_flags import \ AllLinkRecordFlags from tests import set_log_levels from tests.utils import hex_to_inbound_message # pylint: disable=no-member class TestManageAllLinkRecord(unittest.TestCase): """Test Manage All-Link Record.""" def setUp(self): """Set up test.""" self.hex = "026F400405060708090a0b" self.hex_ack = "026F400405060708090a0b06" self.message_id = MessageId(0x6F) self.action = ManageAllLinkRecordAction(0x40) self.flags = AllLinkRecordFlags(0x04) self.group = int(0x05) self.address = Address("060708") self.data1 = int(0x09) self.data2 = int(0x0A) self.data3 = int(0x0B) self.ack = AckNak(0x06) self.msg, self.msg_bytes = hex_to_inbound_message(self.hex_ack) set_log_levels( logger="info", logger_pyinsteon="info", logger_messages="info", logger_topics=False, ) def test_id(self): """Test ID.""" assert self.msg.message_id == self.message_id def test_ack_nak(self): """Test ACK/NAK.""" assert self.msg.ack == self.ack def test_bytes(self): """Test bytes.""" assert bytes(self.msg) == unhexlify(self.hex_ack)
30.3
76
0.654785
1,119
0.738614
0
0
0
0
0
0
239
0.157756
c7cbc44076f7cb93b253c24fadcf22b9899a01e8
5,054
py
Python
Clock/Clock_Fig3F.py
chAwater/OpenFig
d37d59c6a77d76c7d8a9e8623ce94a95406f1843
[ "MIT" ]
null
null
null
Clock/Clock_Fig3F.py
chAwater/OpenFig
d37d59c6a77d76c7d8a9e8623ce94a95406f1843
[ "MIT" ]
null
null
null
Clock/Clock_Fig3F.py
chAwater/OpenFig
d37d59c6a77d76c7d8a9e8623ce94a95406f1843
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # # Figure Info. # # | Title | Journal | Authors | Article Date | Code Date | Figure | Links | # |:------|:-------:|:-------:|:------------:|:---------:|:------:|:-----:| # |A microfluidic approach for experimentally modelling <br> the intercellular coupling system of a mammalian <br> circadian clock at single-cell level|Lab on a Chip|Kui Han|2020.03.02|2020.03.11| Fig3F | [DOI](https://doi.org/10.1039/D0LC00140F) | # # In[1]: # data_file = 'SinPeaksDOWN.xls' # new_inputs = pd.read_excel(data_file,header=None) # new_inputs.to_csv('data.csv',index=False) # In[2]: import os, sys, warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['svg.fonttype'] = 'none' sns.set_context(context='poster') bigsize = 20 midsize = 18 smallsize = 14 hugesize = 24 # In[ ]: # Load data new_inputs = pd.read_csv('data.csv') new_inputs = new_inputs.values.flatten() new_inputs = new_inputs[~np.isnan(new_inputs)] new_inputs = pd.Series(new_inputs) dict_time = new_inputs.astype(int).value_counts() # Set start and end days d_min = np.floor( ((new_inputs-12)/24).astype(np.float).min() ) d_min = max(0, d_min) d_max = np.ceil( ((new_inputs-12)/24).astype(np.float).max() ) drug_time = 22 + np.arange(0,d_max+1)*24 # Set plot n_plot = int( d_max - d_min + 1 ) n_rows = int( np.ceil(n_plot/4) ) ratio_dfs_dict = dict(zip(np.arange(n_plot), [pd.DataFrame()]*n_plot)) fig, axs = plt.subplots( ncols=4,nrows=n_rows, figsize=(18,n_rows*4), subplot_kw={'polar':True}, gridspec_kw={'hspace':0.5}, ) axs = axs.flatten() # Plot data for each 24h for i_time in dict_time.keys(): if i_time<12: continue d_time = int( np.floor((i_time-12)/24)-d_min ) # In one day ratio_df = ratio_dfs_dict[d_time] ratio_df = ratio_df.append( { 'ref_time' : ((i_time-12) % 24), 'n' : dict_time[i_time] }, ignore_index=True) ratio_dfs_dict[d_time] = ratio_df # Date to r t_time = (((i_time-12) % 24)/24)*2*np.pi t_drug = ((1+drug_time[d_time]-12)%24)/24*2*np.pi axs[d_time].bar(t_drug, 1, width=2/24*2*np.pi, bottom=0.0, color='bisque', edgecolor='k', alpha=0.7, zorder=10) axs[d_time].scatter(t_time, 0.5, color='dodgerblue', s=dict_time[i_time]*30, alpha=0.7, zorder=20) # Plot info for each 24h for i,ax in enumerate(axs): labels = (12+np.arange(24*(d_min+i),24*(d_min+i+1),6)).astype(int).astype(str) labels[0] = str( int(labels[0])+24 ) + ' / ' + labels[0] labels[2] = labels[2] + ' h' ax.set_xticklabels( labels, fontsize=midsize ) ax.set_yticklabels([]) ax.tick_params(axis='x', pad=0) ratio_df = ratio_dfs_dict[i] if ratio_df.shape[0]!=0: r_df = pd.concat( [ ratio_df['n'], pd.cut( ratio_df['ref_time'], bins =[0, 3, 10, 14, 24 ], labels=[ 'Q1','Q2','Q3','Q4'], include_lowest=True, ) ], axis=1 ).groupby('ref_time').sum() r = np.round( 100*(r_df.loc['Q3']/r_df.sum())['n'], 1 ) ax.text( 12/24*2*np.pi, -0.5, str(r)+'%', fontsize=smallsize, ha='center', va='center', color='tomato' ) ax.plot( np.linspace(10, 14, 20)/24*2*np.pi, [0.05]*20, lw=5, color='tomato',alpha=0.7, zorder=20, ) ax.set_thetagrids([0,90,180,270]) ax.set_theta_zero_location('N') ax.set_theta_direction(-1) ax.set_rgrids([]) ax.set_rlim(0,1) ax.set_rorigin(-1.0) ax.annotate( s='', xytext=(np.pi/8,1), xy=(np.pi*3/8,1), size=40, arrowprops={ 'facecolor':'black', 'arrowstyle':'->', 'connectionstyle':"arc3,rad=-0.17", }, ) ax.text(np.pi/4,1,'Time',fontsize=smallsize, rotation=-40, ha='center',va='bottom') else: lgs = [] for s in np.arange(5,30,5): lg = ax.scatter(s, 0.5, color='dodgerblue', s=s*30, alpha=0.7, zorder=1, label=s) lgs.append(lg) lg = ax.scatter(1,1,marker='s',s=300, color='bisque', edgecolor='k', alpha=0.7, label='Drug') lgs.append(lg) ax.set_rlim(0,0.1) ax.axis('off') ax.legend( handles=lgs, ncol=2, title='# of cells', title_fontsize=midsize, fontsize=smallsize, frameon=False, labelspacing=1.5, handletextpad=0.2, columnspacing=0.4, ) fig.subplots_adjust(hspace=0.3) fig.suptitle('Cells distribution under drug treatment', y=1, fontsize=hugesize) fig.savefig('Clock_Fig3F.svg', transparent=True, bbox_inches='tight') fig.savefig('Clock_Fig3F.png', transparent=True, bbox_inches='tight') plt.show() # In[ ]:
28.234637
248
0.564108
0
0
0
0
0
0
0
0
1,142
0.22596
c7cbd8f6da109df8e878fcc548912f6a3815a1c2
10,733
py
Python
rameniaapp/views/report.py
awlane/ramenia
6bf8e75a1f279ac584daa4ee19927ffccaa67551
[ "MIT" ]
null
null
null
rameniaapp/views/report.py
awlane/ramenia
6bf8e75a1f279ac584daa4ee19927ffccaa67551
[ "MIT" ]
null
null
null
rameniaapp/views/report.py
awlane/ramenia
6bf8e75a1f279ac584daa4ee19927ffccaa67551
[ "MIT" ]
null
null
null
from django.shortcuts import render, HttpResponse, HttpResponseRedirect from django.template import loader from django.conf import settings from django.contrib.auth.models import User from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle from django.views.generic import ListView, FormView, CreateView from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.decorators import login_required from rameniaapp.decorators import user_is_moderator from rameniaapp.actionhookutils import dispatch_hook from rameniaapp.utils import UserIsModeratorMixin from django.forms.widgets import Select from django.contrib import messages class ReportForm(LoginRequiredMixin, CreateView): '''Class based view for creating reports''' template_name = "report_form.html" model = Report success_url = "/app" fields = ["reason"] url_path = "/app" login_url="/app/login" def get_form(self, form_class=None): form = super(ReportForm, self).get_form(form_class) form.fields['reason'].widget.attrs.update({'class':'form-control'}) return form def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.reporter = self.request.user form.instance.status = 'OP' return super().form_valid(form) def get_context_data(self, **kwargs): '''Adds url_path value and relevant object id to template''' context = super().get_context_data(**kwargs) context["id"] = self.kwargs["id"] context["url_path"] = self.url_path return context class NoodleReportForm(ReportForm): '''Class based view for reporting noodles''' model = NoodleReport #This is used to allow the form to create the correct object url_path = "noodle_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.noodle = Noodle.objects.get(pk=self.kwargs["id"]) form.instance.type = 'ND' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Noodle.objects.get(pk=self.kwargs["id"]).name return context class ReviewReportForm(ReportForm): '''Class based view for reporting reviews''' model = ReviewReport url_path = "review_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.review = Review.objects.get(pk=self.kwargs["id"]) form.instance.type = 'RV' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Review.objects.get(pk=self.kwargs["id"]).title return context class ProfileReportForm(ReportForm): '''Class based view for reporting profile''' model = ProfileReport url_path = "profile_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.profile = Profile.objects.get(pk=self.kwargs["id"]) form.instance.type = 'PF' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Profile.objects.get(pk=self.kwargs["id"]).name return context class ReportList(LoginRequiredMixin, UserIsModeratorMixin, ListView): '''Class based view for viewing reports''' # These values are overriden for the subclasses so we can create # multiple types of noodles without rewriting code model = Report item_type = "" context_object_name = "reports" template_name = "report_view.html" login_url="/app/login" def get_queryset(self): '''Get all reports for specific objects''' if "item_id" in self.kwargs: item_tuple = self.get_item(self.kwargs["item_id"]) self.kwargs[item_tuple[0]] = item_tuple[1] # This prevents the next line from breaking del self.kwargs["item_id"] # Using get_item, this lets us filter for any kind of object without # writing extra code return self.model.objects.filter(**self.kwargs) def get_item(self, id): '''Returns a tuple containing the key name and item''' return (None, None) def get_context_data(self, **kwargs): '''Knowing the item type lets us not break things''' context = super().get_context_data(**kwargs) context['item_type'] = self.item_type return context class NoodleReportList(ReportList): '''List of noodle reports''' model = NoodleReport item_type = "Noodles" def get_item(self, id): '''Returns a tuple containing the key name and item''' noodle = Noodle.objects.get(id=id) return ("noodle", noodle) class ReviewReportList(ReportList): '''List of review reports''' model = ReviewReport item_type = "Reviews" def get_item(self, id): '''Returns a tuple containing the key name and item''' review = Review.objects.get(id=id) return ("review", review) class ProfileReportList(ReportList): '''List of profile reports''' model = ProfileReport item_type = "Profiles" def get_item(self, id): '''Returns a tuple containing the key name and item''' profile = Profile.objects.get(id=id) return ("profile", profile) @login_required(login_url="/app/login") @user_is_moderator def ban_user(request, report_type, user_id): '''Ban a user by their id; expects report_type arg for redirect reasons''' if request.method == "POST": user = User.objects.get(pk=user_id).delete() path = None if report_type == "ND": path = "reports/noodle" elif report_type == "RV": path = "reports/review" elif report_type == "PF": path = "reports/profile" messages.add_message(request, messages.WARNING, "User banned") return HttpResponseRedirect("/app/mod/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def delete_content(request, report_id): '''This method deletes offending items that have been reported, or just their content''' if request.method == "POST": report = Report.objects.get(pk=report_id) reporter = report.reporter creator = None path = get_return_path(report) # Deleting object is dependent on type if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer report.review.delete() elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor report.noodle.delete() elif report.type == "PF": # Deleting a profile will break fundamental assumptions, so we instead # remove all content from it. report = ProfileReport.objects.get(pk=report_id) report.profile.name = "AnonymousUser" report.profile.profile_pic = Profile._meta.get_field('profile_pic').default report.profile.metadata["Description"] = "" report.profile.save() creator = report.profile.user report.delete() # If we delete the content, it was reasonable to report it dispatch_hook(reporter, "good-report") if creator: # If the noodle's creator hasn't been banned, penalize them dispatch_hook(creator, "bad-content") messages.add_message(request, messages.WARNING, "Content deleted") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def update_report_status(request, report_id, status): '''Change report status to "open", "resolved", or "spam"''' if request.method == "POST": # Validate status is the correct value if status in dict(Report.STATUS_CHOICES): report = Report.objects.get(pk=report_id) report.status = status report.save() creator = None path = get_return_path(report) # Get the creator of the relevant object/report if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor elif report.type == "PF": report = ProfileReport.objects.get(pk=report_id) creator = report.profile.user # Reward people for good reports if status == "ED": if report.reporter: dispatch_hook(report.reporter, "good-report") if creator: dispatch_hook(creator, "bad-content") messages.add_message(request, messages.SUCCESS, "Report marked as resolved") # Penalize people for bad reports if status == "SP": if report.reporter: dispatch_hook(report.reporter, "bad-report") messages.add_message(request, messages.WARNING, "Report marked as spam") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def ignore_report(request, report_id): '''Ignore (delete) a report''' if request.method == "POST": report = Report.objects.get(pk=report_id) path = get_return_path(report) if report.reporter: # We assume a bad report is worth deleting if its creator # wasn't banned dispatch_hook(report.reporter, "bad-report") report.delete() messages.add_message(request, messages.WARNING, "Report ignored") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") def get_return_path(report): '''Util method to return a correct redirect path''' if report.type == "RV": return "review" elif report.type == "ND": return "noodle" elif report.type == "PF": return "profile"
39.171533
104
0.644461
4,914
0.45784
0
0
4,848
0.451691
0
0
2,895
0.269729
c7cce7b123c5282102e29d889ac9141ac4ccb76e
10,135
py
Python
pyparser.py
ddurvaux/PyUnpacker
13c90379c26c4a9ae8c2c4d94e26f2de9709ae1d
[ "MIT" ]
null
null
null
pyparser.py
ddurvaux/PyUnpacker
13c90379c26c4a9ae8c2c4d94e26f2de9709ae1d
[ "MIT" ]
1
2017-02-06T11:06:11.000Z
2017-02-06T11:07:29.000Z
pyparser.py
ddurvaux/PyUnpacker
13c90379c26c4a9ae8c2c4d94e26f2de9709ae1d
[ "MIT" ]
null
null
null
#!/usr/bin/python # # This tool is an attempt to automate some taks related # to malware unpacking. # # Most (if not all) of the tricks used in this tool # directly comes from an excellent course given # by Nicolas Brulez (@nicolasbrulez) # # Tool developped by David DURVAUX for Autopsit # (commercial brand of N-Labs sprl) # # TODO # - everything # - VirusTotal Support # - dynamic analysis (GDB? Valgring?) # - static code analysis with Radare2 # - add argument for PEID # - save status / restore (config/analysis) # - extract fucnction without offset for comparison of samples # - .. # # __author__ = 'David DURVAUX' __contact__ = '[email protected]' __version__ = '0.01' # Imports required by this tool import os import sys import json import pefile import peutils import argparse from distorm3 import Decode, Decode16Bits, Decode32Bits, Decode64Bits, Decompose, DecomposeGenerator, DF_STOP_ON_FLOW_CONTROL # Imports part of this tool import static.vivframework # --------------------------------------------------------------------------- # # REPRESENTATION OF THE CONFIGURATION # --------------------------------------------------------------------------- # class Configuration: force = False # force to redo all the analysis modstatic = None # static analysis module moddynamic = None # dynamic analysis module # DB downloaded on # https://raw.githubusercontent.com/viper-framework/viper/master/data/peid/UserDB.TXT (UPX not detected) # https://raw.githubusercontent.com/ynadji/peid/master/userdb.txt (problems) # http://blog.didierstevens.com/programs/yara-rules/ signatures = peutils.SignatureDatabase('./peid/peid-userdb-rules-with-pe-module.yara') def __init__(self): return def save(self, filename="./config.json"): config = { "force": self.force, "modstatic": self.modstatic, "moddynamic": self.moddynamic } try: # write configuration to file fd = open(filename, "w") json.dump(config, fd) fd.close() print("Configuration saved to %s" % filename) except Exception as e: print("Impossible to save configuration to %s" % filename) print(e) return def load(self, filename="./config.json"): config = {} try: # read configuration from file fd = open(filename, "r") config = json.load(fd) fd.close() # update internal state self.__dict__[key] = config[key] except Exception as e: print("Impossible to load configuration from %s" % filename) print(e) return # --------------------------------------------------------------------------- # # REPRESENTATION OF THE INFO RETRIEVED # --------------------------------------------------------------------------- # class BinaryInformations: """ This class will represent and hold all the information retrieved from the binary """ vtinfo = {} peheader = {} bininfo = {} settings = {} packed_score = 0 # current packed score packed_test = 0 # number of test done breakpoints = [] # breakoint to set for unpacking anti_debug = False def __init__(self): return def log(self): #TODO IMPLEMENT return def save(self, filename=sys.stdout): print ("NOT YET IMPLEMENTED!") return # --------------------------------------------------------------------------- # # STATIC ANALYSIS OF BINARY # --------------------------------------------------------------------------- # class StaticAnalysis: """ Tools to analyze statically binaries @TODO: define access to page_size, margin, entropy_threshold and packed_score """ # class variable configuration = None binary = None bininfo = None page_size = 0 margin= 0 entropy_threshold = 0 packed_score = 0 SFLAGS = { "CODE" : 0x00000020, "DATA" : 0x00000040, "EXEC" : 0x20000000, "READ" : 0x40000000, "WRIT" : 0x80000000 # other: check https://msdn.microsoft.com/en-us/library/ms809762.aspx } def __init__(self, binary, configuration, page_size=0x1000, margin=0.1, entropy_threshold = 7.0, packed_score=0): """ binary the path to the binary to analyze """ # set parameters self.binary = binary self.page_size = page_size self.margin = margin self.entropy_threshold = entropy_threshold self.packed_score = packed_score # instanciate internal objects self.pe = pefile.PE(binary) self.bininfo = BinaryInformations() # keep track of the current configuration self.configuration = configuration # initialize static analysis module (TODO - add support for others) self.configuration.modstatic = static.vivframework.Vivisect(self.binary, self.bininfo, self.configuration.force) # update BinaryInformation with current settings: self.bininfo.settings["peanalysis"] = { "binary" : self.binary, "page_size" : self.page_size, "margin" : self.margin, "entropy_threshold" : self.entropy_threshold, "packed_score" : self.packed_score } # CHECK BINARY SECTIONS def analyzeSections(self): """ TODO: mutliple output support, number of test Need to Add: - check section names - check where entry point is located (in the last section) - first section should be writeable - last section should be executable - ... """ # check number of sections if(len(self.pe.sections)) != 3: print "ABNOMALIE in NUMBER OF SECTIONS (%d)!!" % len(self.pe.sections) self.bininfo.packed_score += 1 self.bininfo.packed_test += 1 # check section + boundary and see if it matches for section in self.pe.sections: [name, vaddr, vsize, rsize, flags] = [section.Name, section.VirtualAddress, section.Misc_VirtualSize, section.SizeOfRawData, section.Characteristics] # check flags if( int(flags ^ (self.SFLAGS["EXEC"] | self.SFLAGS["WRIT"])) == 0 ): # check if section is executable + writeable print "ABNOMALIE SECTION SHOULD NOT BE WRITEABLE AND EXECUTABLE (W^X violation)!!" self.bininfo.packed_score += 1 # check sections sizes (incl. page alignment) # the rsize need to be written in a multiple of memory page size (min 1.) # a margin is added (could be customized) if (rsize / self.page_size + 1) * self.page_size * (1 + self.margin) < vsize: print "ABNOMALIES with VIRTUAL SIZE ALLOCATION for SECTION: %s" % name self.bininfo.packed_score += 1 # check entropy if(section.get_entropy() >= self.entropy_threshold): print "ABNORMAL ENTROPY (%s)) for SECTION: %s" % (section.get_entropy(), name) self.bininfo.packed_score += 1 # update bininfo status self.bininfo.packed_test += 3 # 3 tests are done for each section print ("TOTAL PACKED SCORE: %s / %s" % (self.bininfo.packed_score, self.bininfo.packed_test)) return self.bininfo def callPEiD(self): """ Use set of YARA rules to search for known packers TODO - add a check on signature presence or download or end - postpone initialization of signatures DB here!! """ matches = self.configuration.signatures.match(self.pe, ep_only = True) if(matches is not None): if(len(matches) > 0): print "PACKER FOUND: %s" % matches[0] return self.bininfo def graphSearch(self): """ Do a graph search in the code for leaf nodes """ self.configuration.modstatic.graphSearch() def isAntiDebug(self): if self.configuration.modstatic.isAntiDebug(): print "WARNING: ANTI-DEBUGGING TRICKS FOUND!" def searchVirtualAlloc(self): self.configuration.modstatic.searchVirtualAlloc() def getPerFunctionHash(self): self.configuration.modstatic.getPerFunctionHash() def decompile(self): """ ! need to take in account offset in memory ! -- CODE TO REMOVE -- DEPRECATED -- """ fd = open(self.binary, "rb") l = DecomposeGenerator(0x100, fd.read(), Decode32Bits, DF_STOP_ON_FLOW_CONTROL) while(l is not None): # -- BEGIN TEST CODE -- for i in l: #print "0x%08x (%02x) %-20s %s" % (i[0], i[1], i[3], i[2]) print "0x%08x %s" % (i.address, i) # -- END TEST CODE -- l = DecomposeGenerator(0x100, fd.read(), Decode32Bits, DF_STOP_ON_FLOW_CONTROL) fd.close() return # --------------------------------------------------------------------------- # # MAIN SECTION OF CODE # --------------------------------------------------------------------------- # def start_analysis(binary, configuration): sa = StaticAnalysis(binary, configuration) sa.analyzeSections() sa.callPEiD() sa.graphSearch() sa.isAntiDebug() sa.searchVirtualAlloc() sa.getPerFunctionHash() #TEST #sa.decompile() # TEST return def main(): # Argument definition parser = argparse.ArgumentParser(description='Analyse binaries and try to help with deobfuscation') parser.add_argument('-b', '--binary', help='Binary to analyze') parser.add_argument('-f', '--force', help='Force a fresh analysis, no restoration of previous work', action="store_true") parser.add_argument('-y', '--yara', help='Path to YARA DB to use to scan binary') parser.add_argument('-viv', '--vivisect', help='Path to vivisect installation') # create a configuration holder configuration = Configuration() # Start the fun part :) args = parser.parse_args() # if force flag is defined, change behaviour if args.force: configuration.force = True # set YARA DB signature if args.yara: if os.path.isfile(args.yara): configuration.signatures = args.yara else: print "ERROR: %s not found!" % args.yara exit() # TEST - save configuration for re-use #configuration.save() configuration.load() # set Vivisect path and Initialize # currently only vivisect is supported # this code need to be changed if other libraries get supported later if args.vivisect: if os.path.isdir(args.vivisect): sys.path.append(args.vivisect) else: print "ERROR: %s not found!" % args.vivisect exit() # Check if an output directory is set binary = None if args.binary: if os.path.isfile(args.binary): binary = args.binary start_analysis(binary, configuration) else: print "You need to specify a file to analyze" exit() if __name__ == "__main__": main() # --------------------------------------------------------------------------- # # That's all folk ;) # --------------------------------------------------------------------------- #
29.207493
152
0.651998
6,410
0.632462
0
0
0
0
0
0
5,191
0.512185
c7cf1b7d56bb02ccf14d9d4fb7fbc22544c1690f
512
py
Python
mjml/elements/head/mj_style.py
ESA-CCI-ODP/mjml-stub
ffd824923de85f3c02fca7f83ef6b540be048414
[ "MIT" ]
23
2020-10-02T14:52:21.000Z
2022-03-24T16:05:21.000Z
mjml/elements/head/mj_style.py
ESA-CCI-ODP/mjml-stub
ffd824923de85f3c02fca7f83ef6b540be048414
[ "MIT" ]
17
2020-10-07T14:48:06.000Z
2022-03-18T13:56:11.000Z
mjml/elements/head/mj_style.py
ESA-CCI-ODP/mjml-stub
ffd824923de85f3c02fca7f83ef6b540be048414
[ "MIT" ]
8
2021-01-13T11:54:41.000Z
2022-03-10T15:50:55.000Z
from ._head_base import HeadComponent __all__ = ['MjStyle'] class MjStyle(HeadComponent): @classmethod def default_attrs(cls): return { 'inline' : '', } def handler(self): add = self.context['add'] inline_attr = 'inlineStyle' if (self.get_attr('inline') == 'inline') else 'style' if inline_attr == 'inlineStyle': raise NotImplementedError('style inlining not supported yet') add(inline_attr, self.getContent())
24.380952
89
0.597656
446
0.871094
0
0
105
0.205078
0
0
107
0.208984
c7cf29c510e55652c76da9423af99e7754022e49
3,399
py
Python
model_zoo/official/nlp/bert/src/sample_process.py
i4oolish/mindspore
dac3be31d0f2c0a3516200f47af30980e566601b
[ "Apache-2.0" ]
2
2020-08-12T16:14:40.000Z
2020-12-04T03:05:57.000Z
model_zoo/official/nlp/bert/src/sample_process.py
dilingsong/mindspore
4276050f2494cfbf8682560a1647576f859991e8
[ "Apache-2.0" ]
null
null
null
model_zoo/official/nlp/bert/src/sample_process.py
dilingsong/mindspore
4276050f2494cfbf8682560a1647576f859991e8
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """process txt""" import re import json def process_one_example_p(tokenizer, text, max_seq_len=128): """process one testline""" textlist = list(text) tokens = [] for _, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) if len(tokens) >= max_seq_len - 1: tokens = tokens[0:(max_seq_len - 2)] ntokens = [] segment_ids = [] label_ids = [] ntokens.append("[CLS]") segment_ids.append(0) for _, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) ntokens.append("[SEP]") segment_ids.append(0) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_len: input_ids.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) ntokens.append("**NULL**") assert len(input_ids) == max_seq_len assert len(input_mask) == max_seq_len assert len(segment_ids) == max_seq_len feature = (input_ids, input_mask, segment_ids) return feature def label_generation(text="", probs=None, label2id_file=""): """generate label""" data = [text] probs = [probs] result = [] label2id = json.loads(open(label2id_file).read()) id2label = [k for k, v in label2id.items()] for index, prob in enumerate(probs): for v in prob[1:len(data[index]) + 1]: result.append(id2label[int(v)]) labels = {} start = None index = 0 for _, t in zip("".join(data), result): if re.search("^[BS]", t): if start is not None: label = result[index - 1][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} start = index if re.search("^O", t): if start is not None: label = result[index - 1][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} start = None index += 1 if start is not None: label = result[start][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} return labels
33.653465
78
0.562518
0
0
0
0
0
0
0
0
757
0.222713
c7d08a1b7fd50820c50ef7603b8e08a3f497a3ac
2,273
py
Python
lang_model/data_loader.py
alex44jzy/FancyALMLDLNLP
c55a67a51de72339f4ab13bd46008eb418d293a3
[ "MIT" ]
null
null
null
lang_model/data_loader.py
alex44jzy/FancyALMLDLNLP
c55a67a51de72339f4ab13bd46008eb418d293a3
[ "MIT" ]
null
null
null
lang_model/data_loader.py
alex44jzy/FancyALMLDLNLP
c55a67a51de72339f4ab13bd46008eb418d293a3
[ "MIT" ]
null
null
null
import torch from torch.nn import functional as F from torch.utils.data import Dataset from gensim.corpora.dictionary import Dictionary class LangDataset(Dataset): def __init__(self, src_sents, trg_sents, max_len=-1): self.src_sents = src_sents self.trg_sents = trg_sents # Create the vocabulary for both the source and target. self.vocab = Dictionary(src_sents + trg_sents) # Patch the vocabularies and add the <pad> and <unk> symbols. special_tokens = {'<pad>': 0, '<unk>': 1, '</s>': 2} self.vocab.patch_with_special_tokens(special_tokens) # Keep track of how many data points. self._len = len(src_sents) if max_len < 0: # If it's not set, find the longest text in the data. max_src_len = max(len(sent) for sent in src_sents) self.max_len = max_src_len else: self.max_len = max_len def pad_sequence(self, vectorized_sent, max_len): # To pad the sentence: # Pad left = 0; Pad right = max_len - len of sent. pad_dim = (0, max_len - len(vectorized_sent)) return F.pad(vectorized_sent, pad_dim, 'constant') def __getitem__(self, index): vectorized_src = self.vectorize(self.vocab, self.src_sents[index]) vectorized_trg = self.vectorize(self.vocab, self.trg_sents[index]) return {'x': self.pad_sequence(vectorized_src, self.max_len), 'y': self.pad_sequence(vectorized_trg, self.max_len), 'x_len': len(vectorized_src), 'y_len': len(vectorized_trg)} def __len__(self): return self._len def vectorize(self, vocab, tokens): """ :param tokens: Tokens that should be vectorized. :type tokens: list(str) """ # See https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.doc2idx # Lets just cast list of indices into torch tensors directly =) return torch.tensor(vocab.doc2idx(tokens, unknown_word_index=1)) def unvectorize(self, vocab, indices): """ :param indices: Converts the indices back to tokens. :type tokens: list(int) """ return [vocab[i] for i in indices]
37.262295
114
0.635724
2,134
0.938847
0
0
0
0
0
0
709
0.311923
c7d12defacc5fa8896212434511fb502a03f0a3b
74,691
py
Python
models_nonconvex_simple2/ndcc13persp.py
grossmann-group/pyomo-MINLP-benchmarking
714f0a0dffd61675649a805683c0627af6b4929e
[ "MIT" ]
null
null
null
models_nonconvex_simple2/ndcc13persp.py
grossmann-group/pyomo-MINLP-benchmarking
714f0a0dffd61675649a805683c0627af6b4929e
[ "MIT" ]
null
null
null
models_nonconvex_simple2/ndcc13persp.py
grossmann-group/pyomo-MINLP-benchmarking
714f0a0dffd61675649a805683c0627af6b4929e
[ "MIT" ]
null
null
null
# MINLP written by GAMS Convert at 08/20/20 01:30:45 # # Equation counts # Total E G L N X C B # 297 170 42 85 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 673 631 42 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 2479 2353 126 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x1 = Var(within=Reals,bounds=(0,None),initialize=0) m.x2 = Var(within=Reals,bounds=(0,None),initialize=0) m.x3 = Var(within=Reals,bounds=(0,None),initialize=0) m.x4 = Var(within=Reals,bounds=(0,None),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,None),initialize=0) m.x36 = Var(within=Reals,bounds=(0,None),initialize=0) m.x37 = Var(within=Reals,bounds=(0,None),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,None),initialize=0) m.x87 = Var(within=Reals,bounds=(0,None),initialize=0) m.x88 = Var(within=Reals,bounds=(0,None),initialize=0) m.x89 = Var(within=Reals,bounds=(0,None),initialize=0) m.x90 = Var(within=Reals,bounds=(0,None),initialize=0) m.x91 = Var(within=Reals,bounds=(0,None),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,None),initialize=0) m.x171 = Var(within=Reals,bounds=(0,None),initialize=0) m.x172 = Var(within=Reals,bounds=(0,None),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,None),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,None),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,None),initialize=0) m.x242 = Var(within=Reals,bounds=(0,None),initialize=0) m.x243 = Var(within=Reals,bounds=(0,None),initialize=0) m.x244 = Var(within=Reals,bounds=(0,None),initialize=0) m.x245 = Var(within=Reals,bounds=(0,None),initialize=0) m.x246 = Var(within=Reals,bounds=(0,None),initialize=0) m.x247 = Var(within=Reals,bounds=(0,None),initialize=0) m.x248 = Var(within=Reals,bounds=(0,None),initialize=0) m.x249 = Var(within=Reals,bounds=(0,None),initialize=0) m.x250 = Var(within=Reals,bounds=(0,None),initialize=0) m.x251 = Var(within=Reals,bounds=(0,None),initialize=0) m.x252 = Var(within=Reals,bounds=(0,None),initialize=0) m.x253 = Var(within=Reals,bounds=(0,None),initialize=0) m.x254 = Var(within=Reals,bounds=(0,None),initialize=0) m.x255 = Var(within=Reals,bounds=(0,None),initialize=0) m.x256 = Var(within=Reals,bounds=(0,None),initialize=0) m.x257 = Var(within=Reals,bounds=(0,None),initialize=0) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x356 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.x405 = Var(within=Reals,bounds=(0,None),initialize=0) m.x406 = Var(within=Reals,bounds=(0,None),initialize=0) m.x407 = Var(within=Reals,bounds=(0,None),initialize=0) m.x408 = Var(within=Reals,bounds=(0,None),initialize=0) m.x409 = Var(within=Reals,bounds=(0,None),initialize=0) m.x410 = Var(within=Reals,bounds=(0,None),initialize=0) m.x411 = Var(within=Reals,bounds=(0,None),initialize=0) m.x412 = Var(within=Reals,bounds=(0,None),initialize=0) m.x413 = Var(within=Reals,bounds=(0,None),initialize=0) m.x414 = Var(within=Reals,bounds=(0,None),initialize=0) m.x415 = Var(within=Reals,bounds=(0,None),initialize=0) m.x416 = Var(within=Reals,bounds=(0,None),initialize=0) m.x417 = Var(within=Reals,bounds=(0,None),initialize=0) m.x418 = Var(within=Reals,bounds=(0,None),initialize=0) m.x419 = Var(within=Reals,bounds=(0,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,None),initialize=0) m.x421 = Var(within=Reals,bounds=(0,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,None),initialize=0) m.x423 = Var(within=Reals,bounds=(0,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,None),initialize=0) m.x425 = Var(within=Reals,bounds=(0,None),initialize=0) m.x426 = Var(within=Reals,bounds=(0,None),initialize=0) m.x427 = Var(within=Reals,bounds=(0,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,None),initialize=0) m.x429 = Var(within=Reals,bounds=(0,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,None),initialize=0) m.x431 = Var(within=Reals,bounds=(0,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,None),initialize=0) m.x433 = Var(within=Reals,bounds=(0,None),initialize=0) m.x434 = Var(within=Reals,bounds=(0,None),initialize=0) m.x435 = Var(within=Reals,bounds=(0,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,None),initialize=0) m.x437 = Var(within=Reals,bounds=(0,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,None),initialize=0) m.x439 = Var(within=Reals,bounds=(0,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,None),initialize=0) m.x441 = Var(within=Reals,bounds=(0,None),initialize=0) m.x442 = Var(within=Reals,bounds=(0,None),initialize=0) m.x443 = Var(within=Reals,bounds=(0,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,None),initialize=0) m.x445 = Var(within=Reals,bounds=(0,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,None),initialize=0) m.x447 = Var(within=Reals,bounds=(0,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,None),initialize=0) m.x449 = Var(within=Reals,bounds=(0,None),initialize=0) m.x450 = Var(within=Reals,bounds=(0,None),initialize=0) m.x451 = Var(within=Reals,bounds=(0,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,None),initialize=0) m.x453 = Var(within=Reals,bounds=(0,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,None),initialize=0) m.x455 = Var(within=Reals,bounds=(0,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,None),initialize=0) m.x457 = Var(within=Reals,bounds=(0,None),initialize=0) m.x458 = Var(within=Reals,bounds=(0,None),initialize=0) m.x459 = Var(within=Reals,bounds=(0,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,None),initialize=0) m.x461 = Var(within=Reals,bounds=(0,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,None),initialize=0) m.x463 = Var(within=Reals,bounds=(0,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,None),initialize=0) m.x465 = Var(within=Reals,bounds=(0,None),initialize=0) m.x466 = Var(within=Reals,bounds=(0,None),initialize=0) m.x467 = Var(within=Reals,bounds=(0,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,None),initialize=0) m.x469 = Var(within=Reals,bounds=(0,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,None),initialize=0) m.x471 = Var(within=Reals,bounds=(0,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,None),initialize=0) m.x473 = Var(within=Reals,bounds=(0,None),initialize=0) m.x474 = Var(within=Reals,bounds=(0,None),initialize=0) m.x475 = Var(within=Reals,bounds=(0,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,None),initialize=0) m.x477 = Var(within=Reals,bounds=(0,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,None),initialize=0) m.x479 = Var(within=Reals,bounds=(0,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,None),initialize=0) m.x481 = Var(within=Reals,bounds=(0,None),initialize=0) m.x482 = Var(within=Reals,bounds=(0,None),initialize=0) m.x483 = Var(within=Reals,bounds=(0,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,None),initialize=0) m.x485 = Var(within=Reals,bounds=(0,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,None),initialize=0) m.x487 = Var(within=Reals,bounds=(0,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,None),initialize=0) m.x489 = Var(within=Reals,bounds=(0,None),initialize=0) m.x490 = Var(within=Reals,bounds=(0,None),initialize=0) m.x491 = Var(within=Reals,bounds=(0,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,None),initialize=0) m.x493 = Var(within=Reals,bounds=(0,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,None),initialize=0) m.x495 = Var(within=Reals,bounds=(0,None),initialize=0) m.x496 = Var(within=Reals,bounds=(0,None),initialize=0) m.x497 = Var(within=Reals,bounds=(0,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,None),initialize=0) m.x499 = Var(within=Reals,bounds=(0,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,None),initialize=0) m.x501 = Var(within=Reals,bounds=(0,None),initialize=0) m.x502 = Var(within=Reals,bounds=(0,None),initialize=0) m.x503 = Var(within=Reals,bounds=(0,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,None),initialize=0) m.x505 = Var(within=Reals,bounds=(0,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,None),initialize=0) m.x507 = Var(within=Reals,bounds=(0,None),initialize=0) m.x508 = Var(within=Reals,bounds=(0,None),initialize=0) m.x509 = Var(within=Reals,bounds=(0,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,None),initialize=0) m.x511 = Var(within=Reals,bounds=(0,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,None),initialize=0) m.x513 = Var(within=Reals,bounds=(0,None),initialize=0) m.x514 = Var(within=Reals,bounds=(0,None),initialize=0) m.x515 = Var(within=Reals,bounds=(0,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,None),initialize=0) m.x517 = Var(within=Reals,bounds=(0,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,None),initialize=0) m.x519 = Var(within=Reals,bounds=(0,None),initialize=0) m.x520 = Var(within=Reals,bounds=(0,None),initialize=0) m.x521 = Var(within=Reals,bounds=(0,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,None),initialize=0) m.x523 = Var(within=Reals,bounds=(0,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,None),initialize=0) m.x525 = Var(within=Reals,bounds=(0,None),initialize=0) m.x526 = Var(within=Reals,bounds=(0,None),initialize=0) m.x527 = Var(within=Reals,bounds=(0,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,None),initialize=0) m.x529 = Var(within=Reals,bounds=(0,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,None),initialize=0) m.x531 = Var(within=Reals,bounds=(0,None),initialize=0) m.x532 = Var(within=Reals,bounds=(0,None),initialize=0) m.x533 = Var(within=Reals,bounds=(0,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,None),initialize=0) m.x535 = Var(within=Reals,bounds=(0,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,None),initialize=0) m.x537 = Var(within=Reals,bounds=(0,None),initialize=0) m.x538 = Var(within=Reals,bounds=(0,None),initialize=0) m.x539 = Var(within=Reals,bounds=(0,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,None),initialize=0) m.x541 = Var(within=Reals,bounds=(0,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,None),initialize=0) m.x543 = Var(within=Reals,bounds=(0,None),initialize=0) m.x544 = Var(within=Reals,bounds=(0,None),initialize=0) m.x545 = Var(within=Reals,bounds=(0,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,None),initialize=0) m.b547 = Var(within=Binary,bounds=(0,1),initialize=0) m.b548 = Var(within=Binary,bounds=(0,1),initialize=0) m.b549 = Var(within=Binary,bounds=(0,1),initialize=0) m.b550 = Var(within=Binary,bounds=(0,1),initialize=0) m.b551 = Var(within=Binary,bounds=(0,1),initialize=0) m.b552 = Var(within=Binary,bounds=(0,1),initialize=0) m.b553 = Var(within=Binary,bounds=(0,1),initialize=0) m.b554 = Var(within=Binary,bounds=(0,1),initialize=0) m.b555 = Var(within=Binary,bounds=(0,1),initialize=0) m.b556 = Var(within=Binary,bounds=(0,1),initialize=0) m.b557 = Var(within=Binary,bounds=(0,1),initialize=0) m.b558 = Var(within=Binary,bounds=(0,1),initialize=0) m.b559 = Var(within=Binary,bounds=(0,1),initialize=0) m.b560 = Var(within=Binary,bounds=(0,1),initialize=0) m.b561 = Var(within=Binary,bounds=(0,1),initialize=0) m.b562 = Var(within=Binary,bounds=(0,1),initialize=0) m.b563 = Var(within=Binary,bounds=(0,1),initialize=0) m.b564 = Var(within=Binary,bounds=(0,1),initialize=0) m.b565 = Var(within=Binary,bounds=(0,1),initialize=0) m.b566 = Var(within=Binary,bounds=(0,1),initialize=0) m.b567 = Var(within=Binary,bounds=(0,1),initialize=0) m.b568 = Var(within=Binary,bounds=(0,1),initialize=0) m.b569 = Var(within=Binary,bounds=(0,1),initialize=0) m.b570 = Var(within=Binary,bounds=(0,1),initialize=0) m.b571 = Var(within=Binary,bounds=(0,1),initialize=0) m.b572 = Var(within=Binary,bounds=(0,1),initialize=0) m.b573 = Var(within=Binary,bounds=(0,1),initialize=0) m.b574 = Var(within=Binary,bounds=(0,1),initialize=0) m.b575 = Var(within=Binary,bounds=(0,1),initialize=0) m.b576 = Var(within=Binary,bounds=(0,1),initialize=0) m.b577 = Var(within=Binary,bounds=(0,1),initialize=0) m.b578 = Var(within=Binary,bounds=(0,1),initialize=0) m.b579 = Var(within=Binary,bounds=(0,1),initialize=0) m.b580 = Var(within=Binary,bounds=(0,1),initialize=0) m.b581 = Var(within=Binary,bounds=(0,1),initialize=0) m.b582 = Var(within=Binary,bounds=(0,1),initialize=0) m.b583 = Var(within=Binary,bounds=(0,1),initialize=0) m.b584 = Var(within=Binary,bounds=(0,1),initialize=0) m.b585 = Var(within=Binary,bounds=(0,1),initialize=0) m.b586 = Var(within=Binary,bounds=(0,1),initialize=0) m.b587 = Var(within=Binary,bounds=(0,1),initialize=0) m.b588 = Var(within=Binary,bounds=(0,1),initialize=0) m.x589 = Var(within=Reals,bounds=(0,None),initialize=0) m.x590 = Var(within=Reals,bounds=(0,None),initialize=0) m.x591 = Var(within=Reals,bounds=(0,None),initialize=0) m.x592 = Var(within=Reals,bounds=(0,None),initialize=0) m.x593 = Var(within=Reals,bounds=(0,None),initialize=0) m.x594 = Var(within=Reals,bounds=(0,None),initialize=0) m.x595 = Var(within=Reals,bounds=(0,None),initialize=0) m.x596 = Var(within=Reals,bounds=(0,None),initialize=0) m.x597 = Var(within=Reals,bounds=(0,None),initialize=0) m.x598 = Var(within=Reals,bounds=(0,None),initialize=0) m.x599 = Var(within=Reals,bounds=(0,None),initialize=0) m.x600 = Var(within=Reals,bounds=(0,None),initialize=0) m.x601 = Var(within=Reals,bounds=(0,None),initialize=0) m.x602 = Var(within=Reals,bounds=(0,None),initialize=0) m.x603 = Var(within=Reals,bounds=(0,None),initialize=0) m.x604 = Var(within=Reals,bounds=(0,None),initialize=0) m.x605 = Var(within=Reals,bounds=(0,None),initialize=0) m.x606 = Var(within=Reals,bounds=(0,None),initialize=0) m.x607 = Var(within=Reals,bounds=(0,None),initialize=0) m.x608 = Var(within=Reals,bounds=(0,None),initialize=0) m.x609 = Var(within=Reals,bounds=(0,None),initialize=0) m.x610 = Var(within=Reals,bounds=(0,None),initialize=0) m.x611 = Var(within=Reals,bounds=(0,None),initialize=0) m.x612 = Var(within=Reals,bounds=(0,None),initialize=0) m.x613 = Var(within=Reals,bounds=(0,None),initialize=0) m.x614 = Var(within=Reals,bounds=(0,None),initialize=0) m.x615 = Var(within=Reals,bounds=(0,None),initialize=0) m.x616 = Var(within=Reals,bounds=(0,None),initialize=0) m.x617 = Var(within=Reals,bounds=(0,None),initialize=0) m.x618 = Var(within=Reals,bounds=(0,None),initialize=0) m.x619 = Var(within=Reals,bounds=(0,None),initialize=0) m.x620 = Var(within=Reals,bounds=(0,None),initialize=0) m.x621 = Var(within=Reals,bounds=(0,None),initialize=0) m.x622 = Var(within=Reals,bounds=(0,None),initialize=0) m.x623 = Var(within=Reals,bounds=(0,None),initialize=0) m.x624 = Var(within=Reals,bounds=(0,None),initialize=0) m.x625 = Var(within=Reals,bounds=(0,None),initialize=0) m.x626 = Var(within=Reals,bounds=(0,None),initialize=0) m.x627 = Var(within=Reals,bounds=(0,None),initialize=0) m.x628 = Var(within=Reals,bounds=(0,None),initialize=0) m.x629 = Var(within=Reals,bounds=(0,None),initialize=0) m.x630 = Var(within=Reals,bounds=(0,None),initialize=0) m.x632 = Var(within=Reals,bounds=(0,None),initialize=0) m.x633 = Var(within=Reals,bounds=(0,None),initialize=0) m.x634 = Var(within=Reals,bounds=(0,None),initialize=0) m.x635 = Var(within=Reals,bounds=(0,None),initialize=0) m.x636 = Var(within=Reals,bounds=(0,None),initialize=0) m.x637 = Var(within=Reals,bounds=(0,None),initialize=0) m.x638 = Var(within=Reals,bounds=(0,None),initialize=0) m.x639 = Var(within=Reals,bounds=(0,None),initialize=0) m.x640 = Var(within=Reals,bounds=(0,None),initialize=0) m.x641 = Var(within=Reals,bounds=(0,None),initialize=0) m.x642 = Var(within=Reals,bounds=(0,None),initialize=0) m.x643 = Var(within=Reals,bounds=(0,None),initialize=0) m.x644 = Var(within=Reals,bounds=(0,None),initialize=0) m.x645 = Var(within=Reals,bounds=(0,None),initialize=0) m.x646 = Var(within=Reals,bounds=(0,None),initialize=0) m.x647 = Var(within=Reals,bounds=(0,None),initialize=0) m.x648 = Var(within=Reals,bounds=(0,None),initialize=0) m.x649 = Var(within=Reals,bounds=(0,None),initialize=0) m.x650 = Var(within=Reals,bounds=(0,None),initialize=0) m.x651 = Var(within=Reals,bounds=(0,None),initialize=0) m.x652 = Var(within=Reals,bounds=(0,None),initialize=0) m.x653 = Var(within=Reals,bounds=(0,None),initialize=0) m.x654 = Var(within=Reals,bounds=(0,None),initialize=0) m.x655 = Var(within=Reals,bounds=(0,None),initialize=0) m.x656 = Var(within=Reals,bounds=(0,None),initialize=0) m.x657 = Var(within=Reals,bounds=(0,None),initialize=0) m.x658 = Var(within=Reals,bounds=(0,None),initialize=0) m.x659 = Var(within=Reals,bounds=(0,None),initialize=0) m.x660 = Var(within=Reals,bounds=(0,None),initialize=0) m.x661 = Var(within=Reals,bounds=(0,None),initialize=0) m.x662 = Var(within=Reals,bounds=(0,None),initialize=0) m.x663 = Var(within=Reals,bounds=(0,None),initialize=0) m.x664 = Var(within=Reals,bounds=(0,None),initialize=0) m.x665 = Var(within=Reals,bounds=(0,None),initialize=0) m.x666 = Var(within=Reals,bounds=(0,None),initialize=0) m.x667 = Var(within=Reals,bounds=(0,None),initialize=0) m.x668 = Var(within=Reals,bounds=(0,None),initialize=0) m.x669 = Var(within=Reals,bounds=(0,None),initialize=0) m.x670 = Var(within=Reals,bounds=(0,None),initialize=0) m.x671 = Var(within=Reals,bounds=(0,None),initialize=0) m.x672 = Var(within=Reals,bounds=(0,None),initialize=0) m.x673 = Var(within=Reals,bounds=(0,None),initialize=0) m.obj = Objective(expr= 1.090016011*m.b547 + 3.10674202*m.b548 + 2.475702586*m.b549 + 1.966733944*m.b550 + 1.090016011*m.b551 + 2.019536713*m.b552 + 3.10674202*m.b553 + 1.383540955*m.b554 + 2.087059045*m.b555 + 3.720443668*m.b556 + 1.383540955*m.b557 + 1.794144217*m.b558 + 3.50653318*m.b559 + 1.71812596*m.b560 + 3.834780538*m.b561 + 2.087059045*m.b562 + 1.794144217*m.b563 + 2.239621249*m.b564 + 2.475702586*m.b565 + 2.019536713*m.b566 + 3.720443668*m.b567 + 3.50653318*m.b568 + 2.239621249*m.b569 + 1.098732406*m.b570 + 1.742557876*m.b571 + 1.098732406*m.b572 + 3.606882982*m.b573 + 1.71812596*m.b574 + 2.074958698*m.b575 + 1.966733944*m.b576 + 2.074958698*m.b577 + 3.859970515*m.b578 + 1.742557876*m.b579 + 3.859970515*m.b580 + 3.951460459*m.b581 + 3.834780538*m.b582 + 3.606882982*m.b583 + 2.524064089*m.b584 + 2.524064089*m.b585 + 3.982701487*m.b586 + 3.951460459*m.b587 + 3.982701487*m.b588, sense=minimize) m.c2 = Constraint(expr= - m.x1 - m.x14 - m.x27 - m.x40 + m.x53 + m.x79 + m.x235 + m.x378 == -148) m.c3 = Constraint(expr= - m.x2 - m.x15 - m.x28 - m.x41 + m.x54 + m.x80 + m.x236 + m.x379 == 12) m.c4 = Constraint(expr= - m.x3 - m.x16 - m.x29 - m.x42 + m.x55 + m.x81 + m.x237 + m.x380 == 16) m.c5 = Constraint(expr= - m.x4 - m.x17 - m.x30 - m.x43 + m.x56 + m.x82 + m.x238 + m.x381 == 21) m.c6 = Constraint(expr= - m.x5 - m.x18 - m.x31 - m.x44 + m.x57 + m.x83 + m.x239 + m.x382 == 11) m.c7 = Constraint(expr= - m.x6 - m.x19 - m.x32 - m.x45 + m.x58 + m.x84 + m.x240 + m.x383 == 24) m.c8 = Constraint(expr= - m.x7 - m.x20 - m.x33 - m.x46 + m.x59 + m.x85 + m.x241 + m.x384 == 24) m.c9 = Constraint(expr= - m.x8 - m.x21 - m.x34 - m.x47 + m.x60 + m.x86 + m.x242 + m.x385 == 8) m.c10 = Constraint(expr= - m.x9 - m.x22 - m.x35 - m.x48 + m.x61 + m.x87 + m.x243 + m.x386 == 10) m.c11 = Constraint(expr= - m.x10 - m.x23 - m.x36 - m.x49 + m.x62 + m.x88 + m.x244 + m.x387 == 18) m.c12 = Constraint(expr= - m.x11 - m.x24 - m.x37 - m.x50 + m.x63 + m.x89 + m.x245 + m.x388 == 11) m.c13 = Constraint(expr= - m.x12 - m.x25 - m.x38 - m.x51 + m.x64 + m.x90 + m.x246 + m.x389 == 20) m.c14 = Constraint(expr= - m.x13 - m.x26 - m.x39 - m.x52 + m.x65 + m.x91 + m.x247 + m.x390 == 7) m.c15 = Constraint(expr= m.x1 - m.x53 - m.x66 + m.x248 == 7) m.c16 = Constraint(expr= m.x2 - m.x54 - m.x67 + m.x249 == -175) m.c17 = Constraint(expr= m.x3 - m.x55 - m.x68 + m.x250 == 15) m.c18 = Constraint(expr= m.x4 - m.x56 - m.x69 + m.x251 == 17) m.c19 = Constraint(expr= m.x5 - m.x57 - m.x70 + m.x252 == 20) m.c20 = Constraint(expr= m.x6 - m.x58 - m.x71 + m.x253 == 24) m.c21 = Constraint(expr= m.x7 - m.x59 - m.x72 + m.x254 == 6) m.c22 = Constraint(expr= m.x8 - m.x60 - m.x73 + m.x255 == 19) m.c23 = Constraint(expr= m.x9 - m.x61 - m.x74 + m.x256 == 24) m.c24 = Constraint(expr= m.x10 - m.x62 - m.x75 + m.x257 == 11) m.c25 = Constraint(expr= m.x11 - m.x63 - m.x76 + m.x258 == 15) m.c26 = Constraint(expr= m.x12 - m.x64 - m.x77 + m.x259 == 9) m.c27 = Constraint(expr= m.x13 - m.x65 - m.x78 + m.x260 == 19) m.c28 = Constraint(expr= m.x14 - m.x79 - m.x92 - m.x105 - m.x118 + m.x131 + m.x196 + m.x261 == 15) m.c29 = Constraint(expr= m.x15 - m.x80 - m.x93 - m.x106 - m.x119 + m.x132 + m.x197 + m.x262 == 13) m.c30 = Constraint(expr= m.x16 - m.x81 - m.x94 - m.x107 - m.x120 + m.x133 + m.x198 + m.x263 == -231) m.c31 = Constraint(expr= m.x17 - m.x82 - m.x95 - m.x108 - m.x121 + m.x134 + m.x199 + m.x264 == 23) m.c32 = Constraint(expr= m.x18 - m.x83 - m.x96 - m.x109 - m.x122 + m.x135 + m.x200 + m.x265 == 18) m.c33 = Constraint(expr= m.x19 - m.x84 - m.x97 - m.x110 - m.x123 + m.x136 + m.x201 + m.x266 == 19) m.c34 = Constraint(expr= m.x20 - m.x85 - m.x98 - m.x111 - m.x124 + m.x137 + m.x202 + m.x267 == 9) m.c35 = Constraint(expr= m.x21 - m.x86 - m.x99 - m.x112 - m.x125 + m.x138 + m.x203 + m.x268 == 8) m.c36 = Constraint(expr= m.x22 - m.x87 - m.x100 - m.x113 - m.x126 + m.x139 + m.x204 + m.x269 == 16) m.c37 = Constraint(expr= m.x23 - m.x88 - m.x101 - m.x114 - m.x127 + m.x140 + m.x205 + m.x270 == 19) m.c38 = Constraint(expr= m.x24 - m.x89 - m.x102 - m.x115 - m.x128 + m.x141 + m.x206 + m.x271 == 19) m.c39 = Constraint(expr= m.x25 - m.x90 - m.x103 - m.x116 - m.x129 + m.x142 + m.x207 + m.x272 == 21) m.c40 = Constraint(expr= m.x26 - m.x91 - m.x104 - m.x117 - m.x130 + m.x143 + m.x208 + m.x273 == 8) m.c41 = Constraint(expr= m.x92 - m.x131 - m.x144 - m.x157 - m.x170 - m.x183 + m.x209 + m.x274 + m.x352 + m.x456 == 12) m.c42 = Constraint(expr= m.x93 - m.x132 - m.x145 - m.x158 - m.x171 - m.x184 + m.x210 + m.x275 + m.x353 + m.x457 == 20) m.c43 = Constraint(expr= m.x94 - m.x133 - m.x146 - m.x159 - m.x172 - m.x185 + m.x211 + m.x276 + m.x354 + m.x458 == 23) m.c44 = Constraint(expr= m.x95 - m.x134 - m.x147 - m.x160 - m.x173 - m.x186 + m.x212 + m.x277 + m.x355 + m.x459 == -187) m.c45 = Constraint(expr= m.x96 - m.x135 - m.x148 - m.x161 - m.x174 - m.x187 + m.x213 + m.x278 + m.x356 + m.x460 == 21) m.c46 = Constraint(expr= m.x97 - m.x136 - m.x149 - m.x162 - m.x175 - m.x188 + m.x214 + m.x279 + m.x357 + m.x461 == 12) m.c47 = Constraint(expr= m.x98 - m.x137 - m.x150 - m.x163 - m.x176 - m.x189 + m.x215 + m.x280 + m.x358 + m.x462 == 6) m.c48 = Constraint(expr= m.x99 - m.x138 - m.x151 - m.x164 - m.x177 - m.x190 + m.x216 + m.x281 + m.x359 + m.x463 == 11) m.c49 = Constraint(expr= m.x100 - m.x139 - m.x152 - m.x165 - m.x178 - m.x191 + m.x217 + m.x282 + m.x360 + m.x464 == 19) m.c50 = Constraint(expr= m.x101 - m.x140 - m.x153 - m.x166 - m.x179 - m.x192 + m.x218 + m.x283 + m.x361 + m.x465 == 9) m.c51 = Constraint(expr= m.x102 - m.x141 - m.x154 - m.x167 - m.x180 - m.x193 + m.x219 + m.x284 + m.x362 + m.x466 == 17) m.c52 = Constraint(expr= m.x103 - m.x142 - m.x155 - m.x168 - m.x181 - m.x194 + m.x220 + m.x285 + m.x363 + m.x467 == 23) m.c53 = Constraint(expr= m.x104 - m.x143 - m.x156 - m.x169 - m.x182 - m.x195 + m.x221 + m.x286 + m.x364 + m.x468 == 21) m.c54 = Constraint(expr= m.x105 + m.x144 - m.x196 - m.x209 - m.x222 + m.x287 == 14) m.c55 = Constraint(expr= m.x106 + m.x145 - m.x197 - m.x210 - m.x223 + m.x288 == 7) m.c56 = Constraint(expr= m.x107 + m.x146 - m.x198 - m.x211 - m.x224 + m.x289 == 22) m.c57 = Constraint(expr= m.x108 + m.x147 - m.x199 - m.x212 - m.x225 + m.x290 == 14) m.c58 = Constraint(expr= m.x109 + m.x148 - m.x200 - m.x213 - m.x226 + m.x291 == -170) m.c59 = Constraint(expr= m.x110 + m.x149 - m.x201 - m.x214 - m.x227 + m.x292 == 12) m.c60 = Constraint(expr= m.x111 + m.x150 - m.x202 - m.x215 - m.x228 + m.x293 == 13) m.c61 = Constraint(expr= m.x112 + m.x151 - m.x203 - m.x216 - m.x229 + m.x294 == 10) m.c62 = Constraint(expr= m.x113 + m.x152 - m.x204 - m.x217 - m.x230 + m.x295 == 15) m.c63 = Constraint(expr= m.x114 + m.x153 - m.x205 - m.x218 - m.x231 + m.x296 == 9) m.c64 = Constraint(expr= m.x115 + m.x154 - m.x206 - m.x219 - m.x232 + m.x297 == 14) m.c65 = Constraint(expr= m.x116 + m.x155 - m.x207 - m.x220 - m.x233 + m.x298 == 16) m.c66 = Constraint(expr= m.x117 + m.x156 - m.x208 - m.x221 - m.x234 + m.x299 == 8) m.c67 = Constraint(expr= m.x27 + m.x66 + m.x118 + m.x157 + m.x222 - m.x235 - m.x248 - m.x261 - m.x274 - m.x287 - m.x300 - m.x313 + m.x326 + m.x417 == 13) m.c68 = Constraint(expr= m.x28 + m.x67 + m.x119 + m.x158 + m.x223 - m.x236 - m.x249 - m.x262 - m.x275 - m.x288 - m.x301 - m.x314 + m.x327 + m.x418 == 22) m.c69 = Constraint(expr= m.x29 + m.x68 + m.x120 + m.x159 + m.x224 - m.x237 - m.x250 - m.x263 - m.x276 - m.x289 - m.x302 - m.x315 + m.x328 + m.x419 == 23) m.c70 = Constraint(expr= m.x30 + m.x69 + m.x121 + m.x160 + m.x225 - m.x238 - m.x251 - m.x264 - m.x277 - m.x290 - m.x303 - m.x316 + m.x329 + m.x420 == 7) m.c71 = Constraint(expr= m.x31 + m.x70 + m.x122 + m.x161 + m.x226 - m.x239 - m.x252 - m.x265 - m.x278 - m.x291 - m.x304 - m.x317 + m.x330 + m.x421 == 16) m.c72 = Constraint(expr= m.x32 + m.x71 + m.x123 + m.x162 + m.x227 - m.x240 - m.x253 - m.x266 - m.x279 - m.x292 - m.x305 - m.x318 + m.x331 + m.x422 == -169) m.c73 = Constraint(expr= m.x33 + m.x72 + m.x124 + m.x163 + m.x228 - m.x241 - m.x254 - m.x267 - m.x280 - m.x293 - m.x306 - m.x319 + m.x332 + m.x423 == 20) m.c74 = Constraint(expr= m.x34 + m.x73 + m.x125 + m.x164 + m.x229 - m.x242 - m.x255 - m.x268 - m.x281 - m.x294 - m.x307 - m.x320 + m.x333 + m.x424 == 14) m.c75 = Constraint(expr= m.x35 + m.x74 + m.x126 + m.x165 + m.x230 - m.x243 - m.x256 - m.x269 - m.x282 - m.x295 - m.x308 - m.x321 + m.x334 + m.x425 == 11) m.c76 = Constraint(expr= m.x36 + m.x75 + m.x127 + m.x166 + m.x231 - m.x244 - m.x257 - m.x270 - m.x283 - m.x296 - m.x309 - m.x322 + m.x335 + m.x426 == 13) m.c77 = Constraint(expr= m.x37 + m.x76 + m.x128 + m.x167 + m.x232 - m.x245 - m.x258 - m.x271 - m.x284 - m.x297 - m.x310 - m.x323 + m.x336 + m.x427 == 10) m.c78 = Constraint(expr= m.x38 + m.x77 + m.x129 + m.x168 + m.x233 - m.x246 - m.x259 - m.x272 - m.x285 - m.x298 - m.x311 - m.x324 + m.x337 + m.x428 == 13) m.c79 = Constraint(expr= m.x39 + m.x78 + m.x130 + m.x169 + m.x234 - m.x247 - m.x260 - m.x273 - m.x286 - m.x299 - m.x312 - m.x325 + m.x338 + m.x429 == 12) m.c80 = Constraint(expr= m.x300 - m.x326 - m.x339 + m.x469 == 6) m.c81 = Constraint(expr= m.x301 - m.x327 - m.x340 + m.x470 == 16) m.c82 = Constraint(expr= m.x302 - m.x328 - m.x341 + m.x471 == 22) m.c83 = Constraint(expr= m.x303 - m.x329 - m.x342 + m.x472 == 9) m.c84 = Constraint(expr= m.x304 - m.x330 - m.x343 + m.x473 == 13) m.c85 = Constraint(expr= m.x305 - m.x331 - m.x344 + m.x474 == 7) m.c86 = Constraint(expr= m.x306 - m.x332 - m.x345 + m.x475 == -156) m.c87 = Constraint(expr= m.x307 - m.x333 - m.x346 + m.x476 == 20) m.c88 = Constraint(expr= m.x308 - m.x334 - m.x347 + m.x477 == 19) m.c89 = Constraint(expr= m.x309 - m.x335 - m.x348 + m.x478 == 24) m.c90 = Constraint(expr= m.x310 - m.x336 - m.x349 + m.x479 == 8) m.c91 = Constraint(expr= m.x311 - m.x337 - m.x350 + m.x480 == 21) m.c92 = Constraint(expr= m.x312 - m.x338 - m.x351 + m.x481 == 6) m.c93 = Constraint(expr= m.x170 - m.x352 - m.x365 + m.x391 == 15) m.c94 = Constraint(expr= m.x171 - m.x353 - m.x366 + m.x392 == 15) m.c95 = Constraint(expr= m.x172 - m.x354 - m.x367 + m.x393 == 23) m.c96 = Constraint(expr= m.x173 - m.x355 - m.x368 + m.x394 == 25) m.c97 = Constraint(expr= m.x174 - m.x356 - m.x369 + m.x395 == 20) m.c98 = Constraint(expr= m.x175 - m.x357 - m.x370 + m.x396 == 7) m.c99 = Constraint(expr= m.x176 - m.x358 - m.x371 + m.x397 == 19) m.c100 = Constraint(expr= m.x177 - m.x359 - m.x372 + m.x398 == -177) m.c101 = Constraint(expr= m.x178 - m.x360 - m.x373 + m.x399 == 7) m.c102 = Constraint(expr= m.x179 - m.x361 - m.x374 + m.x400 == 18) m.c103 = Constraint(expr= m.x180 - m.x362 - m.x375 + m.x401 == 25) m.c104 = Constraint(expr= m.x181 - m.x363 - m.x376 + m.x402 == 20) m.c105 = Constraint(expr= m.x182 - m.x364 - m.x377 + m.x403 == 18) m.c106 = Constraint(expr= m.x40 + m.x365 - m.x378 - m.x391 - m.x404 + m.x430 == 8) m.c107 = Constraint(expr= m.x41 + m.x366 - m.x379 - m.x392 - m.x405 + m.x431 == 11) m.c108 = Constraint(expr= m.x42 + m.x367 - m.x380 - m.x393 - m.x406 + m.x432 == 23) m.c109 = Constraint(expr= m.x43 + m.x368 - m.x381 - m.x394 - m.x407 + m.x433 == 7) m.c110 = Constraint(expr= m.x44 + m.x369 - m.x382 - m.x395 - m.x408 + m.x434 == 5) m.c111 = Constraint(expr= m.x45 + m.x370 - m.x383 - m.x396 - m.x409 + m.x435 == 15) m.c112 = Constraint(expr= m.x46 + m.x371 - m.x384 - m.x397 - m.x410 + m.x436 == 7) m.c113 = Constraint(expr= m.x47 + m.x372 - m.x385 - m.x398 - m.x411 + m.x437 == 10) m.c114 = Constraint(expr= m.x48 + m.x373 - m.x386 - m.x399 - m.x412 + m.x438 == -179) m.c115 = Constraint(expr= m.x49 + m.x374 - m.x387 - m.x400 - m.x413 + m.x439 == 20) m.c116 = Constraint(expr= m.x50 + m.x375 - m.x388 - m.x401 - m.x414 + m.x440 == 18) m.c117 = Constraint(expr= m.x51 + m.x376 - m.x389 - m.x402 - m.x415 + m.x441 == 8) m.c118 = Constraint(expr= m.x52 + m.x377 - m.x390 - m.x403 - m.x416 + m.x442 == 12) m.c119 = Constraint(expr= m.x313 + m.x404 - m.x417 - m.x430 - m.x443 + m.x521 == 9) m.c120 = Constraint(expr= m.x314 + m.x405 - m.x418 - m.x431 - m.x444 + m.x522 == 12) m.c121 = Constraint(expr= m.x315 + m.x406 - m.x419 - m.x432 - m.x445 + m.x523 == 24) m.c122 = Constraint(expr= m.x316 + m.x407 - m.x420 - m.x433 - m.x446 + m.x524 == 21) m.c123 = Constraint(expr= m.x317 + m.x408 - m.x421 - m.x434 - m.x447 + m.x525 == 8) m.c124 = Constraint(expr= m.x318 + m.x409 - m.x422 - m.x435 - m.x448 + m.x526 == 9) m.c125 = Constraint(expr= m.x319 + m.x410 - m.x423 - m.x436 - m.x449 + m.x527 == 11) m.c126 = Constraint(expr= m.x320 + m.x411 - m.x424 - m.x437 - m.x450 + m.x528 == 13) m.c127 = Constraint(expr= m.x321 + m.x412 - m.x425 - m.x438 - m.x451 + m.x529 == 11) m.c128 = Constraint(expr= m.x322 + m.x413 - m.x426 - m.x439 - m.x452 + m.x530 == -183) m.c129 = Constraint(expr= m.x323 + m.x414 - m.x427 - m.x440 - m.x453 + m.x531 == 16) m.c130 = Constraint(expr= m.x324 + m.x415 - m.x428 - m.x441 - m.x454 + m.x532 == 14) m.c131 = Constraint(expr= m.x325 + m.x416 - m.x429 - m.x442 - m.x455 + m.x533 == 17) m.c132 = Constraint(expr= m.x183 + m.x339 - m.x456 - m.x469 - m.x482 + m.x495 == 22) m.c133 = Constraint(expr= m.x184 + m.x340 - m.x457 - m.x470 - m.x483 + m.x496 == 12) m.c134 = Constraint(expr= m.x185 + m.x341 - m.x458 - m.x471 - m.x484 + m.x497 == 7) m.c135 = Constraint(expr= m.x186 + m.x342 - m.x459 - m.x472 - m.x485 + m.x498 == 12) m.c136 = Constraint(expr= m.x187 + m.x343 - m.x460 - m.x473 - m.x486 + m.x499 == 12) m.c137 = Constraint(expr= m.x188 + m.x344 - m.x461 - m.x474 - m.x487 + m.x500 == 10) m.c138 = Constraint(expr= m.x189 + m.x345 - m.x462 - m.x475 - m.x488 + m.x501 == 11) m.c139 = Constraint(expr= m.x190 + m.x346 - m.x463 - m.x476 - m.x489 + m.x502 == 17) m.c140 = Constraint(expr= m.x191 + m.x347 - m.x464 - m.x477 - m.x490 + m.x503 == 17) m.c141 = Constraint(expr= m.x192 + m.x348 - m.x465 - m.x478 - m.x491 + m.x504 == 12) m.c142 = Constraint(expr= m.x193 + m.x349 - m.x466 - m.x479 - m.x492 + m.x505 == -185) m.c143 = Constraint(expr= m.x194 + m.x350 - m.x467 - m.x480 - m.x493 + m.x506 == 10) m.c144 = Constraint(expr= m.x195 + m.x351 - m.x468 - m.x481 - m.x494 + m.x507 == 21) m.c145 = Constraint(expr= m.x482 - m.x495 - m.x508 + m.x534 == 8) m.c146 = Constraint(expr= m.x483 - m.x496 - m.x509 + m.x535 == 20) m.c147 = Constraint(expr= m.x484 - m.x497 - m.x510 + m.x536 == 23) m.c148 = Constraint(expr= m.x485 - m.x498 - m.x511 + m.x537 == 18) m.c149 = Constraint(expr= m.x486 - m.x499 - m.x512 + m.x538 == 15) m.c150 = Constraint(expr= m.x487 - m.x500 - m.x513 + m.x539 == 22) m.c151 = Constraint(expr= m.x488 - m.x501 - m.x514 + m.x540 == 17) m.c152 = Constraint(expr= m.x489 - m.x502 - m.x515 + m.x541 == 24) m.c153 = Constraint(expr= m.x490 - m.x503 - m.x516 + m.x542 == 7) m.c154 = Constraint(expr= m.x491 - m.x504 - m.x517 + m.x543 == 16) m.c155 = Constraint(expr= m.x492 - m.x505 - m.x518 + m.x544 == 24) m.c156 = Constraint(expr= m.x493 - m.x506 - m.x519 + m.x545 == -200) m.c157 = Constraint(expr= m.x494 - m.x507 - m.x520 + m.x546 == 8) m.c158 = Constraint(expr= m.x443 + m.x508 - m.x521 - m.x534 == 19) m.c159 = Constraint(expr= m.x444 + m.x509 - m.x522 - m.x535 == 15) m.c160 = Constraint(expr= m.x445 + m.x510 - m.x523 - m.x536 == 10) m.c161 = Constraint(expr= m.x446 + m.x511 - m.x524 - m.x537 == 13) m.c162 = Constraint(expr= m.x447 + m.x512 - m.x525 - m.x538 == 11) m.c163 = Constraint(expr= m.x448 + m.x513 - m.x526 - m.x539 == 8) m.c164 = Constraint(expr= m.x449 + m.x514 - m.x527 - m.x540 == 13) m.c165 = Constraint(expr= m.x450 + m.x515 - m.x528 - m.x541 == 23) m.c166 = Constraint(expr= m.x451 + m.x516 - m.x529 - m.x542 == 23) m.c167 = Constraint(expr= m.x452 + m.x517 - m.x530 - m.x543 == 14) m.c168 = Constraint(expr= m.x453 + m.x518 - m.x531 - m.x544 == 8) m.c169 = Constraint(expr= m.x454 + m.x519 - m.x532 - m.x545 == 25) m.c170 = Constraint(expr= m.x455 + m.x520 - m.x533 - m.x546 == -157) m.c171 = Constraint(expr= - m.x1 - m.x2 - m.x3 - m.x4 - m.x5 - m.x6 - m.x7 - m.x8 - m.x9 - m.x10 - m.x11 - m.x12 - m.x13 + m.x632 >= 0) m.c172 = Constraint(expr= - m.x14 - m.x15 - m.x16 - m.x17 - m.x18 - m.x19 - m.x20 - m.x21 - m.x22 - m.x23 - m.x24 - m.x25 - m.x26 + m.x633 >= 0) m.c173 = Constraint(expr= - m.x27 - m.x28 - m.x29 - m.x30 - m.x31 - m.x32 - m.x33 - m.x34 - m.x35 - m.x36 - m.x37 - m.x38 - m.x39 + m.x634 >= 0) m.c174 = Constraint(expr= - m.x40 - m.x41 - m.x42 - m.x43 - m.x44 - m.x45 - m.x46 - m.x47 - m.x48 - m.x49 - m.x50 - m.x51 - m.x52 + m.x635 >= 0) m.c175 = Constraint(expr= - m.x53 - m.x54 - m.x55 - m.x56 - m.x57 - m.x58 - m.x59 - m.x60 - m.x61 - m.x62 - m.x63 - m.x64 - m.x65 + m.x636 >= 0) m.c176 = Constraint(expr= - m.x66 - m.x67 - m.x68 - m.x69 - m.x70 - m.x71 - m.x72 - m.x73 - m.x74 - m.x75 - m.x76 - m.x77 - m.x78 + m.x637 >= 0) m.c177 = Constraint(expr= - m.x79 - m.x80 - m.x81 - m.x82 - m.x83 - m.x84 - m.x85 - m.x86 - m.x87 - m.x88 - m.x89 - m.x90 - m.x91 + m.x638 >= 0) m.c178 = Constraint(expr= - m.x92 - m.x93 - m.x94 - m.x95 - m.x96 - m.x97 - m.x98 - m.x99 - m.x100 - m.x101 - m.x102 - m.x103 - m.x104 + m.x639 >= 0) m.c179 = Constraint(expr= - m.x105 - m.x106 - m.x107 - m.x108 - m.x109 - m.x110 - m.x111 - m.x112 - m.x113 - m.x114 - m.x115 - m.x116 - m.x117 + m.x640 >= 0) m.c180 = Constraint(expr= - m.x118 - m.x119 - m.x120 - m.x121 - m.x122 - m.x123 - m.x124 - m.x125 - m.x126 - m.x127 - m.x128 - m.x129 - m.x130 + m.x641 >= 0) m.c181 = Constraint(expr= - m.x131 - m.x132 - m.x133 - m.x134 - m.x135 - m.x136 - m.x137 - m.x138 - m.x139 - m.x140 - m.x141 - m.x142 - m.x143 + m.x642 >= 0) m.c182 = Constraint(expr= - m.x144 - m.x145 - m.x146 - m.x147 - m.x148 - m.x149 - m.x150 - m.x151 - m.x152 - m.x153 - m.x154 - m.x155 - m.x156 + m.x643 >= 0) m.c183 = Constraint(expr= - m.x157 - m.x158 - m.x159 - m.x160 - m.x161 - m.x162 - m.x163 - m.x164 - m.x165 - m.x166 - m.x167 - m.x168 - m.x169 + m.x644 >= 0) m.c184 = Constraint(expr= - m.x170 - m.x171 - m.x172 - m.x173 - m.x174 - m.x175 - m.x176 - m.x177 - m.x178 - m.x179 - m.x180 - m.x181 - m.x182 + m.x645 >= 0) m.c185 = Constraint(expr= - m.x183 - m.x184 - m.x185 - m.x186 - m.x187 - m.x188 - m.x189 - m.x190 - m.x191 - m.x192 - m.x193 - m.x194 - m.x195 + m.x646 >= 0) m.c186 = Constraint(expr= - m.x196 - m.x197 - m.x198 - m.x199 - m.x200 - m.x201 - m.x202 - m.x203 - m.x204 - m.x205 - m.x206 - m.x207 - m.x208 + m.x647 >= 0) m.c187 = Constraint(expr= - m.x209 - m.x210 - m.x211 - m.x212 - m.x213 - m.x214 - m.x215 - m.x216 - m.x217 - m.x218 - m.x219 - m.x220 - m.x221 + m.x648 >= 0) m.c188 = Constraint(expr= - m.x222 - m.x223 - m.x224 - m.x225 - m.x226 - m.x227 - m.x228 - m.x229 - m.x230 - m.x231 - m.x232 - m.x233 - m.x234 + m.x649 >= 0) m.c189 = Constraint(expr= - m.x235 - m.x236 - m.x237 - m.x238 - m.x239 - m.x240 - m.x241 - m.x242 - m.x243 - m.x244 - m.x245 - m.x246 - m.x247 + m.x650 >= 0) m.c190 = Constraint(expr= - m.x248 - m.x249 - m.x250 - m.x251 - m.x252 - m.x253 - m.x254 - m.x255 - m.x256 - m.x257 - m.x258 - m.x259 - m.x260 + m.x651 >= 0) m.c191 = Constraint(expr= - m.x261 - m.x262 - m.x263 - m.x264 - m.x265 - m.x266 - m.x267 - m.x268 - m.x269 - m.x270 - m.x271 - m.x272 - m.x273 + m.x652 >= 0) m.c192 = Constraint(expr= - m.x274 - m.x275 - m.x276 - m.x277 - m.x278 - m.x279 - m.x280 - m.x281 - m.x282 - m.x283 - m.x284 - m.x285 - m.x286 + m.x653 >= 0) m.c193 = Constraint(expr= - m.x287 - m.x288 - m.x289 - m.x290 - m.x291 - m.x292 - m.x293 - m.x294 - m.x295 - m.x296 - m.x297 - m.x298 - m.x299 + m.x654 >= 0) m.c194 = Constraint(expr= - m.x300 - m.x301 - m.x302 - m.x303 - m.x304 - m.x305 - m.x306 - m.x307 - m.x308 - m.x309 - m.x310 - m.x311 - m.x312 + m.x655 >= 0) m.c195 = Constraint(expr= - m.x313 - m.x314 - m.x315 - m.x316 - m.x317 - m.x318 - m.x319 - m.x320 - m.x321 - m.x322 - m.x323 - m.x324 - m.x325 + m.x656 >= 0) m.c196 = Constraint(expr= - m.x326 - m.x327 - m.x328 - m.x329 - m.x330 - m.x331 - m.x332 - m.x333 - m.x334 - m.x335 - m.x336 - m.x337 - m.x338 + m.x657 >= 0) m.c197 = Constraint(expr= - m.x339 - m.x340 - m.x341 - m.x342 - m.x343 - m.x344 - m.x345 - m.x346 - m.x347 - m.x348 - m.x349 - m.x350 - m.x351 + m.x658 >= 0) m.c198 = Constraint(expr= - m.x352 - m.x353 - m.x354 - m.x355 - m.x356 - m.x357 - m.x358 - m.x359 - m.x360 - m.x361 - m.x362 - m.x363 - m.x364 + m.x659 >= 0) m.c199 = Constraint(expr= - m.x365 - m.x366 - m.x367 - m.x368 - m.x369 - m.x370 - m.x371 - m.x372 - m.x373 - m.x374 - m.x375 - m.x376 - m.x377 + m.x660 >= 0) m.c200 = Constraint(expr= - m.x378 - m.x379 - m.x380 - m.x381 - m.x382 - m.x383 - m.x384 - m.x385 - m.x386 - m.x387 - m.x388 - m.x389 - m.x390 + m.x661 >= 0) m.c201 = Constraint(expr= - m.x391 - m.x392 - m.x393 - m.x394 - m.x395 - m.x396 - m.x397 - m.x398 - m.x399 - m.x400 - m.x401 - m.x402 - m.x403 + m.x662 >= 0) m.c202 = Constraint(expr= - m.x404 - m.x405 - m.x406 - m.x407 - m.x408 - m.x409 - m.x410 - m.x411 - m.x412 - m.x413 - m.x414 - m.x415 - m.x416 + m.x663 >= 0) m.c203 = Constraint(expr= - m.x417 - m.x418 - m.x419 - m.x420 - m.x421 - m.x422 - m.x423 - m.x424 - m.x425 - m.x426 - m.x427 - m.x428 - m.x429 + m.x664 >= 0) m.c204 = Constraint(expr= - m.x430 - m.x431 - m.x432 - m.x433 - m.x434 - m.x435 - m.x436 - m.x437 - m.x438 - m.x439 - m.x440 - m.x441 - m.x442 + m.x665 >= 0) m.c205 = Constraint(expr= - m.x443 - m.x444 - m.x445 - m.x446 - m.x447 - m.x448 - m.x449 - m.x450 - m.x451 - m.x452 - m.x453 - m.x454 - m.x455 + m.x666 >= 0) m.c206 = Constraint(expr= - m.x456 - m.x457 - m.x458 - m.x459 - m.x460 - m.x461 - m.x462 - m.x463 - m.x464 - m.x465 - m.x466 - m.x467 - m.x468 + m.x667 >= 0) m.c207 = Constraint(expr= - m.x469 - m.x470 - m.x471 - m.x472 - m.x473 - m.x474 - m.x475 - m.x476 - m.x477 - m.x478 - m.x479 - m.x480 - m.x481 + m.x668 >= 0) m.c208 = Constraint(expr= - m.x482 - m.x483 - m.x484 - m.x485 - m.x486 - m.x487 - m.x488 - m.x489 - m.x490 - m.x491 - m.x492 - m.x493 - m.x494 + m.x669 >= 0) m.c209 = Constraint(expr= - m.x495 - m.x496 - m.x497 - m.x498 - m.x499 - m.x500 - m.x501 - m.x502 - m.x503 - m.x504 - m.x505 - m.x506 - m.x507 + m.x670 >= 0) m.c210 = Constraint(expr= - m.x508 - m.x509 - m.x510 - m.x511 - m.x512 - m.x513 - m.x514 - m.x515 - m.x516 - m.x517 - m.x518 - m.x519 - m.x520 + m.x671 >= 0) m.c211 = Constraint(expr= - m.x521 - m.x522 - m.x523 - m.x524 - m.x525 - m.x526 - m.x527 - m.x528 - m.x529 - m.x530 - m.x531 - m.x532 - m.x533 + m.x672 >= 0) m.c212 = Constraint(expr= - m.x534 - m.x535 - m.x536 - m.x537 - m.x538 - m.x539 - m.x540 - m.x541 - m.x542 - m.x543 - m.x544 - m.x545 - m.x546 + m.x673 >= 0) m.c213 = Constraint(expr=166*m.x632*m.b547 - 166*m.b547*m.x589 + m.x632*m.x589 <= 0) m.c214 = Constraint(expr=463*m.x633*m.b548 - 463*m.b548*m.x590 + m.x633*m.x590 <= 0) m.c215 = Constraint(expr=522*m.x634*m.b549 - 522*m.b549*m.x591 + m.x634*m.x591 <= 0) m.c216 = Constraint(expr=141*m.x635*m.b550 - 141*m.b550*m.x592 + m.x635*m.x592 <= 0) m.c217 = Constraint(expr=166*m.x636*m.b551 - 166*m.b551*m.x593 + m.x636*m.x593 <= 0) m.c218 = Constraint(expr=265*m.x637*m.b552 - 265*m.b552*m.x594 + m.x637*m.x594 <= 0) m.c219 = Constraint(expr=463*m.x638*m.b553 - 463*m.b553*m.x595 + m.x638*m.x595 <= 0) m.c220 = Constraint(expr=456*m.x639*m.b554 - 456*m.b554*m.x596 + m.x639*m.x596 <= 0) m.c221 = Constraint(expr=526*m.x640*m.b555 - 526*m.b555*m.x597 + m.x640*m.x597 <= 0) m.c222 = Constraint(expr=152*m.x641*m.b556 - 152*m.b556*m.x598 + m.x641*m.x598 <= 0) m.c223 = Constraint(expr=456*m.x642*m.b557 - 456*m.b557*m.x599 + m.x642*m.x599 <= 0) m.c224 = Constraint(expr=384*m.x643*m.b558 - 384*m.b558*m.x600 + m.x643*m.x600 <= 0) m.c225 = Constraint(expr=441*m.x644*m.b559 - 441*m.b559*m.x601 + m.x644*m.x601 <= 0) m.c226 = Constraint(expr=309*m.x645*m.b560 - 309*m.b560*m.x602 + m.x645*m.x602 <= 0) m.c227 = Constraint(expr=233*m.x646*m.b561 - 233*m.b561*m.x603 + m.x646*m.x603 <= 0) m.c228 = Constraint(expr=526*m.x647*m.b562 - 526*m.b562*m.x604 + m.x647*m.x604 <= 0) m.c229 = Constraint(expr=384*m.x648*m.b563 - 384*m.b563*m.x605 + m.x648*m.x605 <= 0) m.c230 = Constraint(expr=203*m.x649*m.b564 - 203*m.b564*m.x606 + m.x649*m.x606 <= 0) m.c231 = Constraint(expr=522*m.x650*m.b565 - 522*m.b565*m.x607 + m.x650*m.x607 <= 0) m.c232 = Constraint(expr=265*m.x651*m.b566 - 265*m.b566*m.x608 + m.x651*m.x608 <= 0) m.c233 = Constraint(expr=152*m.x652*m.b567 - 152*m.b567*m.x609 + m.x652*m.x609 <= 0) m.c234 = Constraint(expr=441*m.x653*m.b568 - 441*m.b568*m.x610 + m.x653*m.x610 <= 0) m.c235 = Constraint(expr=203*m.x654*m.b569 - 203*m.b569*m.x611 + m.x654*m.x611 <= 0) m.c236 = Constraint(expr=284*m.x655*m.b570 - 284*m.b570*m.x612 + m.x655*m.x612 <= 0) m.c237 = Constraint(expr=426*m.x656*m.b571 - 426*m.b571*m.x613 + m.x656*m.x613 <= 0) m.c238 = Constraint(expr=284*m.x657*m.b572 - 284*m.b572*m.x614 + m.x657*m.x614 <= 0) m.c239 = Constraint(expr=109*m.x658*m.b573 - 109*m.b573*m.x615 + m.x658*m.x615 <= 0) m.c240 = Constraint(expr=309*m.x659*m.b574 - 309*m.b574*m.x616 + m.x659*m.x616 <= 0) m.c241 = Constraint(expr=434*m.x660*m.b575 - 434*m.b575*m.x617 + m.x660*m.x617 <= 0) m.c242 = Constraint(expr=141*m.x661*m.b576 - 141*m.b576*m.x618 + m.x661*m.x618 <= 0) m.c243 = Constraint(expr=434*m.x662*m.b577 - 434*m.b577*m.x619 + m.x662*m.x619 <= 0) m.c244 = Constraint(expr=403*m.x663*m.b578 - 403*m.b578*m.x620 + m.x663*m.x620 <= 0) m.c245 = Constraint(expr=426*m.x664*m.b579 - 426*m.b579*m.x621 + m.x664*m.x621 <= 0) m.c246 = Constraint(expr=403*m.x665*m.b580 - 403*m.b580*m.x622 + m.x665*m.x622 <= 0) m.c247 = Constraint(expr=151*m.x666*m.b581 - 151*m.b581*m.x623 + m.x666*m.x623 <= 0) m.c248 = Constraint(expr=233*m.x667*m.b582 - 233*m.b582*m.x624 + m.x667*m.x624 <= 0) m.c249 = Constraint(expr=109*m.x668*m.b583 - 109*m.b583*m.x625 + m.x668*m.x625 <= 0) m.c250 = Constraint(expr=367*m.x669*m.b584 - 367*m.b584*m.x626 + m.x669*m.x626 <= 0) m.c251 = Constraint(expr=367*m.x670*m.b585 - 367*m.b585*m.x627 + m.x670*m.x627 <= 0) m.c252 = Constraint(expr=382*m.x671*m.b586 - 382*m.b586*m.x628 + m.x671*m.x628 <= 0) m.c253 = Constraint(expr=151*m.x672*m.b587 - 151*m.b587*m.x629 + m.x672*m.x629 <= 0) m.c254 = Constraint(expr=382*m.x673*m.b588 - 382*m.b588*m.x630 + m.x673*m.x630 <= 0) m.c255 = Constraint(expr= m.x589 + m.x590 + m.x591 + m.x592 + m.x593 + m.x594 + m.x595 + m.x596 + m.x597 + m.x598 + m.x599 + m.x600 + m.x601 + m.x602 + m.x603 + m.x604 + m.x605 + m.x606 + m.x607 + m.x608 + m.x609 + m.x610 + m.x611 + m.x612 + m.x613 + m.x614 + m.x615 + m.x616 + m.x617 + m.x618 + m.x619 + m.x620 + m.x621 + m.x622 + m.x623 + m.x624 + m.x625 + m.x626 + m.x627 + m.x628 + m.x629 + m.x630 <= 18536) m.c256 = Constraint(expr= m.x1 + m.x2 + m.x3 + m.x4 + m.x5 + m.x6 + m.x7 + m.x8 + m.x9 + m.x10 + m.x11 + m.x12 + m.x13 - 166*m.b547 <= 0) m.c257 = Constraint(expr= m.x14 + m.x15 + m.x16 + m.x17 + m.x18 + m.x19 + m.x20 + m.x21 + m.x22 + m.x23 + m.x24 + m.x25 + m.x26 - 463*m.b548 <= 0) m.c258 = Constraint(expr= m.x27 + m.x28 + m.x29 + m.x30 + m.x31 + m.x32 + m.x33 + m.x34 + m.x35 + m.x36 + m.x37 + m.x38 + m.x39 - 522*m.b549 <= 0) m.c259 = Constraint(expr= m.x40 + m.x41 + m.x42 + m.x43 + m.x44 + m.x45 + m.x46 + m.x47 + m.x48 + m.x49 + m.x50 + m.x51 + m.x52 - 141*m.b550 <= 0) m.c260 = Constraint(expr= m.x53 + m.x54 + m.x55 + m.x56 + m.x57 + m.x58 + m.x59 + m.x60 + m.x61 + m.x62 + m.x63 + m.x64 + m.x65 - 166*m.b551 <= 0) m.c261 = Constraint(expr= m.x66 + m.x67 + m.x68 + m.x69 + m.x70 + m.x71 + m.x72 + m.x73 + m.x74 + m.x75 + m.x76 + m.x77 + m.x78 - 265*m.b552 <= 0) m.c262 = Constraint(expr= m.x79 + m.x80 + m.x81 + m.x82 + m.x83 + m.x84 + m.x85 + m.x86 + m.x87 + m.x88 + m.x89 + m.x90 + m.x91 - 463*m.b553 <= 0) m.c263 = Constraint(expr= m.x92 + m.x93 + m.x94 + m.x95 + m.x96 + m.x97 + m.x98 + m.x99 + m.x100 + m.x101 + m.x102 + m.x103 + m.x104 - 456*m.b554 <= 0) m.c264 = Constraint(expr= m.x105 + m.x106 + m.x107 + m.x108 + m.x109 + m.x110 + m.x111 + m.x112 + m.x113 + m.x114 + m.x115 + m.x116 + m.x117 - 526*m.b555 <= 0) m.c265 = Constraint(expr= m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x123 + m.x124 + m.x125 + m.x126 + m.x127 + m.x128 + m.x129 + m.x130 - 152*m.b556 <= 0) m.c266 = Constraint(expr= m.x131 + m.x132 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 - 456*m.b557 <= 0) m.c267 = Constraint(expr= m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 - 384*m.b558 <= 0) m.c268 = Constraint(expr= m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x169 - 441*m.b559 <= 0) m.c269 = Constraint(expr= m.x170 + m.x171 + m.x172 + m.x173 + m.x174 + m.x175 + m.x176 + m.x177 + m.x178 + m.x179 + m.x180 + m.x181 + m.x182 - 309*m.b560 <= 0) m.c270 = Constraint(expr= m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 - 233*m.b561 <= 0) m.c271 = Constraint(expr= m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 - 526*m.b562 <= 0) m.c272 = Constraint(expr= m.x209 + m.x210 + m.x211 + m.x212 + m.x213 + m.x214 + m.x215 + m.x216 + m.x217 + m.x218 + m.x219 + m.x220 + m.x221 - 384*m.b563 <= 0) m.c273 = Constraint(expr= m.x222 + m.x223 + m.x224 + m.x225 + m.x226 + m.x227 + m.x228 + m.x229 + m.x230 + m.x231 + m.x232 + m.x233 + m.x234 - 203*m.b564 <= 0) m.c274 = Constraint(expr= m.x235 + m.x236 + m.x237 + m.x238 + m.x239 + m.x240 + m.x241 + m.x242 + m.x243 + m.x244 + m.x245 + m.x246 + m.x247 - 522*m.b565 <= 0) m.c275 = Constraint(expr= m.x248 + m.x249 + m.x250 + m.x251 + m.x252 + m.x253 + m.x254 + m.x255 + m.x256 + m.x257 + m.x258 + m.x259 + m.x260 - 265*m.b566 <= 0) m.c276 = Constraint(expr= m.x261 + m.x262 + m.x263 + m.x264 + m.x265 + m.x266 + m.x267 + m.x268 + m.x269 + m.x270 + m.x271 + m.x272 + m.x273 - 152*m.b567 <= 0) m.c277 = Constraint(expr= m.x274 + m.x275 + m.x276 + m.x277 + m.x278 + m.x279 + m.x280 + m.x281 + m.x282 + m.x283 + m.x284 + m.x285 + m.x286 - 441*m.b568 <= 0) m.c278 = Constraint(expr= m.x287 + m.x288 + m.x289 + m.x290 + m.x291 + m.x292 + m.x293 + m.x294 + m.x295 + m.x296 + m.x297 + m.x298 + m.x299 - 203*m.b569 <= 0) m.c279 = Constraint(expr= m.x300 + m.x301 + m.x302 + m.x303 + m.x304 + m.x305 + m.x306 + m.x307 + m.x308 + m.x309 + m.x310 + m.x311 + m.x312 - 284*m.b570 <= 0) m.c280 = Constraint(expr= m.x313 + m.x314 + m.x315 + m.x316 + m.x317 + m.x318 + m.x319 + m.x320 + m.x321 + m.x322 + m.x323 + m.x324 + m.x325 - 426*m.b571 <= 0) m.c281 = Constraint(expr= m.x326 + m.x327 + m.x328 + m.x329 + m.x330 + m.x331 + m.x332 + m.x333 + m.x334 + m.x335 + m.x336 + m.x337 + m.x338 - 284*m.b572 <= 0) m.c282 = Constraint(expr= m.x339 + m.x340 + m.x341 + m.x342 + m.x343 + m.x344 + m.x345 + m.x346 + m.x347 + m.x348 + m.x349 + m.x350 + m.x351 - 109*m.b573 <= 0) m.c283 = Constraint(expr= m.x352 + m.x353 + m.x354 + m.x355 + m.x356 + m.x357 + m.x358 + m.x359 + m.x360 + m.x361 + m.x362 + m.x363 + m.x364 - 309*m.b574 <= 0) m.c284 = Constraint(expr= m.x365 + m.x366 + m.x367 + m.x368 + m.x369 + m.x370 + m.x371 + m.x372 + m.x373 + m.x374 + m.x375 + m.x376 + m.x377 - 434*m.b575 <= 0) m.c285 = Constraint(expr= m.x378 + m.x379 + m.x380 + m.x381 + m.x382 + m.x383 + m.x384 + m.x385 + m.x386 + m.x387 + m.x388 + m.x389 + m.x390 - 141*m.b576 <= 0) m.c286 = Constraint(expr= m.x391 + m.x392 + m.x393 + m.x394 + m.x395 + m.x396 + m.x397 + m.x398 + m.x399 + m.x400 + m.x401 + m.x402 + m.x403 - 434*m.b577 <= 0) m.c287 = Constraint(expr= m.x404 + m.x405 + m.x406 + m.x407 + m.x408 + m.x409 + m.x410 + m.x411 + m.x412 + m.x413 + m.x414 + m.x415 + m.x416 - 403*m.b578 <= 0) m.c288 = Constraint(expr= m.x417 + m.x418 + m.x419 + m.x420 + m.x421 + m.x422 + m.x423 + m.x424 + m.x425 + m.x426 + m.x427 + m.x428 + m.x429 - 426*m.b579 <= 0) m.c289 = Constraint(expr= m.x430 + m.x431 + m.x432 + m.x433 + m.x434 + m.x435 + m.x436 + m.x437 + m.x438 + m.x439 + m.x440 + m.x441 + m.x442 - 403*m.b580 <= 0) m.c290 = Constraint(expr= m.x443 + m.x444 + m.x445 + m.x446 + m.x447 + m.x448 + m.x449 + m.x450 + m.x451 + m.x452 + m.x453 + m.x454 + m.x455 - 151*m.b581 <= 0) m.c291 = Constraint(expr= m.x456 + m.x457 + m.x458 + m.x459 + m.x460 + m.x461 + m.x462 + m.x463 + m.x464 + m.x465 + m.x466 + m.x467 + m.x468 - 233*m.b582 <= 0) m.c292 = Constraint(expr= m.x469 + m.x470 + m.x471 + m.x472 + m.x473 + m.x474 + m.x475 + m.x476 + m.x477 + m.x478 + m.x479 + m.x480 + m.x481 - 109*m.b583 <= 0) m.c293 = Constraint(expr= m.x482 + m.x483 + m.x484 + m.x485 + m.x486 + m.x487 + m.x488 + m.x489 + m.x490 + m.x491 + m.x492 + m.x493 + m.x494 - 367*m.b584 <= 0) m.c294 = Constraint(expr= m.x495 + m.x496 + m.x497 + m.x498 + m.x499 + m.x500 + m.x501 + m.x502 + m.x503 + m.x504 + m.x505 + m.x506 + m.x507 - 367*m.b585 <= 0) m.c295 = Constraint(expr= m.x508 + m.x509 + m.x510 + m.x511 + m.x512 + m.x513 + m.x514 + m.x515 + m.x516 + m.x517 + m.x518 + m.x519 + m.x520 - 382*m.b586 <= 0) m.c296 = Constraint(expr= m.x521 + m.x522 + m.x523 + m.x524 + m.x525 + m.x526 + m.x527 + m.x528 + m.x529 + m.x530 + m.x531 + m.x532 + m.x533 - 151*m.b587 <= 0) m.c297 = Constraint(expr= m.x534 + m.x535 + m.x536 + m.x537 + m.x538 + m.x539 + m.x540 + m.x541 + m.x542 + m.x543 + m.x544 + m.x545 + m.x546 - 382*m.b588 <= 0)
53.085288
120
0.629634
0
0
0
0
0
0
0
0
699
0.009359
c7d378679d5e763e0a3427a5a59048ba70934d41
4,322
py
Python
tests/pytests/scenarios/multimaster/conftest.py
lllamnyp/salt
de112e5b362191e3708e170b7eb8e990787ad412
[ "Apache-2.0" ]
null
null
null
tests/pytests/scenarios/multimaster/conftest.py
lllamnyp/salt
de112e5b362191e3708e170b7eb8e990787ad412
[ "Apache-2.0" ]
null
null
null
tests/pytests/scenarios/multimaster/conftest.py
lllamnyp/salt
de112e5b362191e3708e170b7eb8e990787ad412
[ "Apache-2.0" ]
null
null
null
import logging import os import shutil import subprocess import pytest import salt.utils.platform log = logging.getLogger(__name__) @pytest.fixture(scope="package", autouse=True) def skip_on_tcp_transport(request): if request.config.getoption("--transport") == "tcp": pytest.skip("Multimaster under the TPC transport is not working. See #59053") @pytest.fixture(scope="package") def salt_mm_master_1(request, salt_factories): config_defaults = { "open_mode": True, "transport": request.config.getoption("--transport"), } config_overrides = { "interface": "127.0.0.1", } factory = salt_factories.salt_master_daemon( "mm-master-1", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def mm_master_1_salt_cli(salt_mm_master_1): return salt_mm_master_1.get_salt_cli(timeout=120) @pytest.fixture(scope="package") def salt_mm_master_2(salt_factories, salt_mm_master_1): if salt.utils.platform.is_darwin() or salt.utils.platform.is_freebsd(): subprocess.check_output(["ifconfig", "lo0", "alias", "127.0.0.2", "up"]) config_defaults = { "open_mode": True, "transport": salt_mm_master_1.config["transport"], } config_overrides = { "interface": "127.0.0.2", } # Use the same ports for both masters, they are binding to different interfaces for key in ( "ret_port", "publish_port", ): config_overrides[key] = salt_mm_master_1.config[key] factory = salt_factories.salt_master_daemon( "mm-master-2", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) # The secondary salt master depends on the primarily salt master fixture # because we need to clone the keys for keyfile in ("master.pem", "master.pub"): shutil.copyfile( os.path.join(salt_mm_master_1.config["pki_dir"], keyfile), os.path.join(factory.config["pki_dir"], keyfile), ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def mm_master_2_salt_cli(salt_mm_master_2): return salt_mm_master_2.get_salt_cli(timeout=120) @pytest.fixture(scope="package") def salt_mm_minion_1(salt_mm_master_1, salt_mm_master_2): config_defaults = { "transport": salt_mm_master_1.config["transport"], } mm_master_1_port = salt_mm_master_1.config["ret_port"] mm_master_1_addr = salt_mm_master_1.config["interface"] mm_master_2_port = salt_mm_master_2.config["ret_port"] mm_master_2_addr = salt_mm_master_2.config["interface"] config_overrides = { "master": [ "{}:{}".format(mm_master_1_addr, mm_master_1_port), "{}:{}".format(mm_master_2_addr, mm_master_2_port), ], "test.foo": "baz", } factory = salt_mm_master_1.salt_minion_daemon( "mm-minion-1", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def salt_mm_minion_2(salt_mm_master_1, salt_mm_master_2): config_defaults = { "transport": salt_mm_master_1.config["transport"], } mm_master_1_port = salt_mm_master_1.config["ret_port"] mm_master_1_addr = salt_mm_master_1.config["interface"] mm_master_2_port = salt_mm_master_2.config["ret_port"] mm_master_2_addr = salt_mm_master_2.config["interface"] config_overrides = { "master": [ "{}:{}".format(mm_master_1_addr, mm_master_1_port), "{}:{}".format(mm_master_2_addr, mm_master_2_port), ], "test.foo": "baz", } factory = salt_mm_master_2.salt_minion_daemon( "mm-minion-2", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory
31.547445
85
0.679084
0
0
3,550
0.821379
4,167
0.964137
0
0
876
0.202684
c7d37af76275d31df153580818ea0db96b86762e
1,210
py
Python
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
ad3fb197aab27227fc92fd404b2c310f8d0827ca
[ "MIT" ]
null
null
null
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
ad3fb197aab27227fc92fd404b2c310f8d0827ca
[ "MIT" ]
null
null
null
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
ad3fb197aab27227fc92fd404b2c310f8d0827ca
[ "MIT" ]
null
null
null
import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05 def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass
11.747573
48
0.634711
0
0
0
0
0
0
0
0
56
0.046281
c7d524f7dbf8736dbbb40f3bb15a61c60aba8191
22,620
py
Python
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
6f282731286a6855658c6882c3c938437448e05e
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
6f282731286a6855658c6882c3c938437448e05e
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
6f282731286a6855658c6882c3c938437448e05e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transducer.rnn import ( LayerNormGRU, LayerNormGRUCell, LayerNormGRULayer, LayerNormLSTM, LayerNormLSTMCell, LayerNormLSTMLayer, ) def get_devices(): devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda", 0)) return devices def assert_allclose(a: torch.Tensor, b: torch.Tensor, atol=1e-6, **kwargs): assert torch.allclose( a, b, atol=atol, **kwargs ), f"{(a - b).abs().max()}, {a.numel()}" def test_layernorm_lstm_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 cell = LayerNormLSTMCell( input_size=input_size, hidden_size=hidden_size, bias=bias, device=device, ) torch.jit.script(cell) def test_layernorm_lstm_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_lstm_cell_with_projection_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 self_cell = LayerNormLSTMCell( input_size, hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(self_cell) def test_layernorm_lstm_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) torch_h, torch_c = torch_cell(x_clone, (h, c)) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum().backward() ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_lstm_cell_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, proj_size=proj_size, device=device, ) torch_cell = nn.LSTM( input_size, hidden_size, bias=bias, proj_size=proj_size, batch_first=True, ).to(device) with torch.no_grad(): for name, self_param in self_cell.named_parameters(): getattr(torch_cell, f"{name}_l0").copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) _, (torch_h, torch_c) = torch_cell( x_clone.unsqueeze(1), (h.unsqueeze(0), c.unsqueeze(0)) ) torch_h = torch_h.squeeze(0) torch_c = torch_c.squeeze(0) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) (self_h.sum() * self_c.sum()).backward() (torch_h.sum() * torch_c.sum()).backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_project_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, proj_size=proj_size, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_y.sum().backward() torch_y.sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c self_hc_sum = ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum() torch_hc_sum = ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum() self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() (self_hc_sum + self_y_sum).backward() (torch_hc_sum + torch_y_sum).backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_lstm_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_with_projection_jit(device="cpu"): input_size = 2 hidden_size = 5 proj_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, proj_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_gru_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 cell = LayerNormGRUCell( input_size=input_size, hidden_size=hidden_size, bias=True, device=device, ) torch.jit.script(cell) def test_layernorm_gru_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormGRUCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_gru_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormGRUCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h = self_cell(x.clone(), h) torch_h = torch_cell(x_clone, h) assert_allclose(self_h, torch_h, atol=1e-5) ( self_h.reshape(-1) * torch.arange(self_h.numel(), device=device) ).sum().backward() ( torch_h.reshape(-1) * torch.arange(torch_h.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_gru_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormGRULayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_gru_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormGRULayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, self_h = self_layer(x, h.clone()) torch_layer = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0)) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() self_y_sum.backward() torch_y_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_gru_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(gru) def test_layernorm_gru_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_gru = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_gru.state_dict()) == len(torch_gru.state_dict()) with torch.no_grad(): for name, param in self_gru.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_gru, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() states = [ torch.rand(N, hidden_size, device=device) for _ in range(num_layers) ] x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_gru(x, states) torch_y, torch_states = torch_gru(x_clone, torch.stack(states)) assert_allclose(self_y, torch_y) self_states = torch.stack(self_states) assert_allclose(self_states, torch_states) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() s_state_sum = s_sum + self_states.sum() t_state_sum = t_sum + torch_states.sum() s_state_sum.backward() t_state_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=1e-2) def _test_lstm(device): test_layernorm_lstm_cell_jit(device) test_layernorm_lstm_cell_constructor(device) test_layernorm_lstm_cell_with_projection_jit(device) test_layernorm_lstm_cell_forward(device) test_layernorm_lstm_cell_with_projection_forward(device) # test_layernorm_lstm_layer_jit(device) test_layernorm_lstm_layer_with_project_jit(device) test_layernorm_lstm_layer_forward(device) test_layernorm_lstm_layer_with_projection_forward(device) test_layernorm_lstm_jit(device) test_layernorm_lstm_with_projection_jit(device) test_layernorm_lstm_forward(device) test_layernorm_lstm_with_projection_forward(device) def _test_gru(device): test_layernorm_gru_cell_jit(device) test_layernorm_gru_cell_constructor(device) test_layernorm_gru_cell_forward(device) # test_layernorm_gru_layer_jit(device) test_layernorm_gru_layer_forward(device) # test_layernorm_gru_jit(device) test_layernorm_gru_forward(device) torch.set_num_threads(1) torch.set_num_interop_threads(1) def main(): for device in get_devices(): print("device", device) _test_lstm(device) _test_gru(device) if __name__ == "__main__": torch.manual_seed(20211202) main()
29.530026
79
0.642706
0
0
0
0
0
0
0
0
1,128
0.049867
c7d594ecefc0ecfe585fc9557bf2ed8617f874e6
1,944
py
Python
settings.py
SalinderSidhu/CHIP8
46a01aa7675805b84809d1e9762905de8fdccc66
[ "MIT" ]
4
2015-12-22T15:03:43.000Z
2016-07-28T08:11:48.000Z
settings.py
SalinderSidhu/CHIP8
46a01aa7675805b84809d1e9762905de8fdccc66
[ "MIT" ]
null
null
null
settings.py
SalinderSidhu/CHIP8
46a01aa7675805b84809d1e9762905de8fdccc66
[ "MIT" ]
null
null
null
import configparser class Settings: '''The Settings class is a wrapper for configparser and it's functions. This class simplifies the tasks of loading, storing and manipulating settings data.''' def __init__(self, filename): '''Create a new Settings object with a specific file name.''' # Exceptions self.__settingException = Exception( 'Cannot find specified setting data!') # Settings variables self.__filename = filename self.__config = configparser.ConfigParser() # Load settings from existing file (if one exists) self.__isEmpty = len(self.__config.read(self.__filename)) == 0 def isEmpty(self): '''Return True if there is not settings data loaded, otherwise return False.''' return self.__isEmpty def addNewSetting(self, category, settingDict): '''Add a new setting with the specified category and data. Save the new settings data to a file.''' self.__config[category] = settingDict.copy() self.__saveAllSettings() self.__isEmpty = False def getSetting(self, category, key): '''Return a setting value from the specified category and setting key.''' try: return self.__config.get(category, key) except KeyError: raise self.__settingException def editSetting(self, category, key, value): '''Change an existing setting with a specified category and setting key to the value specified. Save the new settings data to a file.''' try: self.__config.set(category, key, str(value)) self.__saveAllSettings() except KeyError: raise self.__settingException def __saveAllSettings(self): '''Write the current settings data to a file.''' with open(self.__filename, 'w') as configFile: self.__config.write(configFile)
36.679245
79
0.646091
1,921
0.988169
0
0
0
0
0
0
816
0.419753
c7d59e3cde73fd0dad74b149197ee60ec8e8c83b
3,900
py
Python
demisto_sdk/commands/common/hook_validations/release_notes.py
yalonso7/demisto-sdk
4b832078cdadb0b604a064532975e8be68ac726a
[ "MIT" ]
null
null
null
demisto_sdk/commands/common/hook_validations/release_notes.py
yalonso7/demisto-sdk
4b832078cdadb0b604a064532975e8be68ac726a
[ "MIT" ]
null
null
null
demisto_sdk/commands/common/hook_validations/release_notes.py
yalonso7/demisto-sdk
4b832078cdadb0b604a064532975e8be68ac726a
[ "MIT" ]
null
null
null
from __future__ import print_function import itertools from demisto_sdk.commands.common.constants import VALIDATED_PACK_ITEM_TYPES from demisto_sdk.commands.common.errors import Errors from demisto_sdk.commands.common.hook_validations.base_validator import \ BaseValidator from demisto_sdk.commands.common.tools import (get_latest_release_notes_text, get_release_notes_file_path) from demisto_sdk.commands.update_release_notes.update_rn import UpdateRN class ReleaseNotesValidator(BaseValidator): """Release notes validator is designed to ensure the existence and correctness of the release notes in content repo. Attributes: file_path (str): the path to the file we are examining at the moment. release_notes_path (str): the path to the changelog file of the examined file. latest_release_notes (str): the text of the UNRELEASED section in the changelog file. master_diff (str): the changes in the changelog file compared to origin/master. """ def __init__(self, file_path, modified_files=None, pack_name=None, added_files=None, ignored_errors=None, print_as_warnings=False): super().__init__(ignored_errors=ignored_errors, print_as_warnings=print_as_warnings) self.file_path = file_path self.modified_files = modified_files self.added_files = added_files self.pack_name = pack_name self.release_notes_path = get_release_notes_file_path(self.file_path) self.latest_release_notes = get_latest_release_notes_text(self.release_notes_path) def are_release_notes_complete(self): is_valid = True modified_added_files = itertools.chain.from_iterable((self.added_files or [], self.modified_files or [])) if modified_added_files: for file in modified_added_files: if not any(permitted_type in file for permitted_type in VALIDATED_PACK_ITEM_TYPES): continue elif self.pack_name in file: update_rn_util = UpdateRN(pack=self.pack_name, pack_files=set(), update_type=None, added_files=set()) file_name, file_type = update_rn_util.identify_changed_file_type(file) if file_name and file_type: if (file_type not in self.latest_release_notes) or (file_name not in self.latest_release_notes): entity_name = update_rn_util.get_display_name(file) error_message, error_code = Errors.missing_release_notes_entry(file_type, self.pack_name, entity_name) if self.handle_error(error_message, error_code, self.file_path): is_valid = False return is_valid def has_release_notes_been_filled_out(self): release_notes_comments = self.latest_release_notes if len(release_notes_comments) == 0: error_message, error_code = Errors.release_notes_file_empty() if self.handle_error(error_message, error_code, file_path=self.file_path): return False elif '%%UPDATE_RN%%' in release_notes_comments: error_message, error_code = Errors.release_notes_not_finished() if self.handle_error(error_message, error_code, file_path=self.file_path): return False return True def is_file_valid(self): """Checks if given file is valid. Return: bool. True if file's release notes are valid, False otherwise. """ validations = [ self.has_release_notes_been_filled_out(), self.are_release_notes_complete() ] return all(validations)
50
120
0.661795
3,391
0.869487
0
0
0
0
0
0
640
0.164103
c7d5fc15217b2b0e024e35082215227dc7639d0e
14,326
py
Python
PyOpenGL/PyGame/ex06/src/mathematics.py
hoppfull/Legacy-Python
43f465bfdb76c91f2ac16aabb0783fdf5f459adb
[ "MIT" ]
null
null
null
PyOpenGL/PyGame/ex06/src/mathematics.py
hoppfull/Legacy-Python
43f465bfdb76c91f2ac16aabb0783fdf5f459adb
[ "MIT" ]
null
null
null
PyOpenGL/PyGame/ex06/src/mathematics.py
hoppfull/Legacy-Python
43f465bfdb76c91f2ac16aabb0783fdf5f459adb
[ "MIT" ]
null
null
null
import numpy as np class ProjectionMatrix(): """This matrix provides projection distortion. Projection distortion is when things that are far away appear smaller and things that are close appear bigger. This works flawlessly so far. Takes in screen-size and provides near- and far clipping. fov is field-of-view and smaller values will make view zoom in. A value of 1 will provide a panorama image.""" def __init__(self, screen_size, zNear, zFar, fov): if fov >= 1: # Limit to 0.99 or we get infinity error at 1.0. >1.0 will give strange result. fov = 0.99999; tanHalfFOV = np.tan(fov * np.pi / 2.0) zRange = zNear - zFar; self.projectionMatrix = np.array([ [ # Row 0: screen_size[1] / (tanHalfFOV * screen_size[0]), 0, 0, 0 ], [ # Row 1: 0, 1.0 / tanHalfFOV, 0, 0 ], [ # Row 2: 0, 0, (-zNear - zFar)/zRange, 2.0 * zFar * zNear / zRange ], [ # Row 3: 0, 0, 1, 0 ], ], dtype=np.float32) def get(self): return self.projectionMatrix class ViewMatrix(): """This matrix transform a model as if it's percieved by a camera with a target 'self.t' in global world coordinates and a position 'self.p' in global world coordinates. Global coordinates are x=right, y=forth and z=up.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) # target coordinates: self.t = vec3(0, 0, 0) # tolerance value: self.tolerance = 0.5 """The tolerance value is for testing when view lies within bounds. In case of 'self.orbitTarget()', it's for testing when view gets too close to target z-axis. In case of 'self.approachTarget()', it's for testing when view gets too close to target coordinates.""" # Sensitivity value: self.alpha = 0.01 """The sensitivity value is for tuning how sensitive 'self.orbitTarget()' and 'self.approachTarget()' are to user input.""" # Initialize the rotationMatrix as the identity matrix: self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def setPos(self, p): self.p = vec3(p.x, p.y, p.z) def lookAt(self, target=None, up=None): """This function focuses the view on a target. Tested and seem to work as it should... ........finally........""" if target != None: self.t = vec3(target.x, target.y, target.z) f = self.t.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, s.y, s.z, 0], [ u.x, u.y, u.z, 0], [ f.x, f.y, f.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def approachTarget(self, amount): """This function approaches the view towards the target when amount is positive and moves away from the target when amount is negative. It will stay outside the self.tolerance distance. When completely close to the target, view cannot look up or down too much.""" if amount == 0: # If amount is zero, do nothing. return if self.t.sub(self.p).mag()*(1 - amount) > 2.0*self.tolerance: # If 'self.approachTarget()' will not take the view within twice the # tolerance distance, approach the target by given amount: self.p = self.p.add(self.t.sub(self.p).scale(amount)) def orbitTarget(self, axis): if axis == (0, 0): return # Do nothing # Get target2camera-vector: p = self.p.sub(self.t) # Assign passed values to variables we can change if we have to: axis_x = -axis[0] if axis[1] > 0.30/self.alpha: """If axis[1] is bigger than 0.40 / self.alpha, we get strange results becouse view can 'tunnel' over the boundary set when getting view is getting close to target z-axis. Changing tolerance doen't change it a whole lot so I'm setting a boundary value for axis[1] to +-0.30 / self.alpha which is really really large as it is.""" axis_y = 0.3 / self.alpha elif axis[1] < -0.30/self.alpha: axis_y = -0.3 / self.alpha else: axis_y = axis[1] if axis_y > 0 and p.z > 0: """Tests if user is trying to orbit the view up and if the view is above the 'equator'. The second test is to make sure the view doesn't get stuck if it gets inside the tolerance bounds and can get back out as long as it's trying to move away.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 elif axis_y < 0 and p.z < 0: """Tests if user is trying to orbit the view down and if the view is below the 'equator'. Same test but for different case as the one above.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 if axis_y == 0: #If the other axis is zero: # Amount of rotation for target-cam x-axis: (longitude, west2east) v = vec3(0, 0, 1) # v is up vector rate = axis_x elif axis_x == 0: #If the other axis is zero: # Amount of rotation for target-cam y-axis: (latitude, south2north) v = p.cross(vec3(0, 0, 1)).norm() # v is side vector rate = axis_y else: #If neither is zero # u is up vector: u = vec3(0, 0, axis_x) # s is side vector: s = p.cross(vec3(0, 0, 1)).norm().scale(axis_y) # v is combined vector: v = u.add(s).norm() rate = abs(axis_x) + abs(axis_y) sin = np.sin(self.alpha * rate) cos = np.cos(self.alpha * rate) rotateMatrix = np.matrix([ [ # Row 0: ( v.x*v.x*(1 - cos) + cos ), ( v.y*v.x*(1 - cos) - v.z*sin ), ( v.z*v.x*(1 - cos) + v.y*sin ), 0 ], [ # Row 1: ( v.x*v.y*(1 - cos) + v.z*sin ), ( v.y*v.y*(1 - cos) + cos ), ( v.z*v.y*(1 - cos) - v.x*sin ), 0 ], [ # Row 2: ( v.x*v.z*(1 - cos) - v.y*sin ), ( v.y*v.z*(1 - cos) + v.x*sin ), ( v.z*v.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32) p = rotateMatrix.dot( np.array([p.x, p.y, p.z, 1.0]) ).getA()[0][0:3] self.p = vec3(p[0], p[1], p[2]).add(self.t) self.lookAt(self.t) def get(self): translationMatrix = np.matrix([ [1,0,0,-self.p.x], [0,1,0,-self.p.y], [0,0,1,-self.p.z], [0,0,0,1] ], dtype=np.float32) return (self.rotationMatrix*translationMatrix).getA() class ModelMatrix(): """This matrix transform a model into world coordinates. Heavily tested and should work properly. Could probably be optimized further or even translated into cython for performance.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) self.s = vec3(1, 1, 1) self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def rotate(self, turns, unit): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" u = unit.norm() sin = np.sin(turns * np.pi * 2) cos = np.cos(turns * np.pi * 2) self.rotationMatrix = self.rotationMatrix.dot( np.matrix([ [ # Row 0: ( u.x*u.x*(1 - cos) + cos ), ( u.y*u.x*(1 - cos) - u.z*sin ), ( u.z*u.x*(1 - cos) + u.y*sin ), 0 ], [ # Row 1: ( u.x*u.y*(1 - cos) + u.z*sin ), ( u.y*u.y*(1 - cos) + cos ), ( u.z*u.y*(1 - cos) - u.x*sin ), 0 ], [ # Row 2: ( u.x*u.z*(1 - cos) - u.y*sin ), ( u.y*u.z*(1 - cos) + u.x*sin ), ( u.z*u.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32)) def scale(self, s): self.s = vec3(s.x, s.y, s.z) def lookAt(self, target, up=None): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" # Get normalized vector pointing from model to target f = target.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u # s must be normalized! Consider when f and u are not perpendicular! u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, f.x, u.x, 0], [ s.y, f.y, u.y, 0], [ s.z, f.z, u.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def get(self): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" translationMatrix = np.matrix([ [1,0,0,self.p.x], [0,1,0,self.p.y], [0,0,1,self.p.z], [0,0,0,1] ], dtype=np.float32) scaleMatrix = np.matrix([ [self.s.x,0,0,0], [0,self.s.y,0,0], [0,0,self.s.z,0], [0,0,0,1] ], dtype=np.float32) return (translationMatrix*self.rotationMatrix*scaleMatrix).getA() class quaternion(): def __init__(self, x, y, z, w): self.x = float(x) self.y = float(y) self.z = float(z) self.w = float(w) def mag(self): # Get length of quaternion return np.sqrt(self.x*self.x + self.y*self.y + self.y*self.y + self.y*self.y) def norm(self): # Normalize quaternion return quaternion( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag(), w= self.w / self.mag()) def conjugate(self): return quaternion( x=-self.x, y=-self.y, z=-self.z, w= self.w) def xQ(self, q): # Multiply with quaternion return quaternion( x= self.x * q.w + self.w * q.x + self.y * q.z - self.z * q.y, y= self.y * q.w + self.w * q.y + self.z * q.x - self.x * q.z, z= self.z * q.w + self.w * q.z + self.x * q.y - self.y * q.x, w= self.w * q.w - self.x * q.x - self.y * q.y - self.z * q.z) def xV(self, v): # Multiply with vector return quaternion( x= self.w*v.x + self.y*v.z - self.z*v.y, y= self.w*v.y + self.z*v.x - self.x*v.z, z= self.w*v.z + self.x*v.y - self.y*v.x, w=-self.x*v.x - self.y*v.y - self.z*v.z) class vec2(): def __init__(self, x, y): self.x = float(x) self.y = float(y) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y) def norm(self): return vec2( x= self.x / self.mag(), y= self.y / self.mag()) class vec3(): def __init__(self, x, y, z): self.x = float(x) self.y = float(y) self.z = float(z) def cross(self, vector): return vec3( x= self.y*vector.z - self.z*vector.y, y= self.z*vector.x - self.x*vector.z, z= self.x*vector.y - self.y*vector.x) def dot(self, vector): return float( self.x*vector.x + self.y*vector.y + self.z*vector.z ) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y + self.z*self.z) def norm(self): return vec3( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag()) def add(self, vector): return vec3( x= self.x + vector.x, y= self.y + vector.y, z= self.z + vector.z) def sub(self, vector): return vec3( x= self.x - vector.x, y= self.y - vector.y, z= self.z - vector.z) def scale(self, scalar): return vec3( self.x*scalar, self.y*scalar, self.z*scalar) def rotate(self, angle, axis): pass
34.603865
100
0.454279
14,274
0.99637
0
0
0
0
0
0
3,986
0.278235
c7d672fb0397af44cf591c05913dd9f20b250483
1,652
py
Python
test_utils/mocks.py
radomd92/botjagwar
1dc96600c40041057a9f9afde38c31ca34b8db38
[ "MIT" ]
7
2015-01-23T17:24:04.000Z
2022-01-12T16:54:24.000Z
test_utils/mocks.py
radomd92/botjagwar
1dc96600c40041057a9f9afde38c31ca34b8db38
[ "MIT" ]
18
2017-12-09T01:11:23.000Z
2021-09-22T13:26:24.000Z
test_utils/mocks.py
radomd92/botjagwar
1dc96600c40041057a9f9afde38c31ca34b8db38
[ "MIT" ]
1
2015-06-22T02:17:55.000Z
2015-06-22T02:17:55.000Z
from xml.dom import minidom import pywikibot from api.decorator import time_this SiteMock = pywikibot.Site class PageMock(pywikibot.Page): def __init__(self, *args, **kwargs): super(PageMock, self).__init__(*args, **kwargs) self.filename = "test_data/test_pages_%s.xml" % self.site.lang self.parsed = minidom.parse(open(self.filename, 'r')) self.pages = self.parsed.getElementsByTagName('page') def put(self, newtext, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, **kwargs): print(('Saving page [[%s]] through put' % self.title())) def save(self, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, apply_cosmetic_changes=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) def _save(self, summary=None, watch=None, minor=True, botflag=None, cc=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) @time_this('Page.get() method mock') def get(self, force=False, get_redirect=False, sysop=False): for page in self.pages: xml_title = page.getElementsByTagName( 'title')[0].childNodes[0].nodeValue if xml_title == self.title(): return page.getElementsByTagName( 'text')[0].childNodes[0].nodeValue print(('No page %s found in "%s"' % (self.title(), self.filename))) return '' p = PageMock(SiteMock('en', 'wiktionary'), 'gaon') e = p.get()
36.711111
78
0.624092
1,474
0.892252
0
0
478
0.289346
0
0
223
0.134988
c7d6da38ffc0a1fb86619973f197115c4b076c8a
5,796
py
Python
dl_tensorflow/deepdream.py
jarvisqi/deep_learning
988a5b0551ccf2c480a519c66aca149053826d30
[ "MIT" ]
32
2017-10-26T13:37:36.000Z
2021-03-24T09:06:45.000Z
dl_tensorflow/deepdream.py
2892778775/deep_learning
988a5b0551ccf2c480a519c66aca149053826d30
[ "MIT" ]
3
2018-11-19T05:55:46.000Z
2019-03-01T05:20:43.000Z
dl_tensorflow/deepdream.py
2892778775/deep_learning
988a5b0551ccf2c480a519c66aca149053826d30
[ "MIT" ]
38
2017-11-08T15:42:48.000Z
2021-05-10T00:42:33.000Z
import os from functools import partial from io import BytesIO import numpy as np import PIL.Image import scipy.misc import tensorflow as tf graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) t_input = tf.placeholder(tf.float32, name="input") imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {"input": t_preprocessed}) def load_inception(): graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # 定义t_input为我们输入的图像 t_input = tf.placeholder(np.float32, name='input') imagenet_mean = 117.0 # 输入图像需要经过处理才能送入网络中 # expand_dims是加一维,从[height, width, channel]变成[1, height, width, channel] # t_input - imagenet_mean是减去一个均值 t_preprocessed = tf.expand_dims(t_input - imagenet_mean, 0) tf.import_graph_def(graph_def, {'input': t_preprocessed}) # 找到所有卷积层 layers = [op.name for op in graph.get_operations() if op.type == "Conv2D" and "import/" in op.name] # 输出卷积层层数 print('Number of layers', len(layers)) # 特别地,输出mixed4d_3x3_bottleneck_pre_relu的形状 name = 'mixed4d_3x3_bottleneck_pre_relu' print('shape of %s: %s' %(name, str(graph.get_tensor_by_name('import/' + name + ':0').get_shape()))) def savearray(img_array, img_name): scipy.misc.toimage(img_array).save(img_name) print('img saved: %s' % img_name) def visstd(a, s=0.1): return (a-a.mean())/max(a.std(), 1e-4)*s+0.5 def resize_ratio(img, ratio): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, ratio)) img = img / 255 * (max - min) + min return img def resize(img, hw): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, hw)) img = img / 255 * (max - min) + min return img def calc_grad_tiled(img, t_grad, tile_size=512): sz = tile_size h, w = img.shape[:2] sx, sy = np.random.randint(sz, size=2) img_shift = np.roll(np.roll(img, sx, 1), sy, 0) # 先在行上做整体移动,再在列上做整体移动 grad = np.zeros_like(img) for y in range(0, max(h - sz // 2, sz), sz): for x in range(0, max(w - sz // 2, sz), sz): sub = img_shift[y:y + sz, x:x + sz] g = sess.run(t_grad, {t_input: sub}) grad[y:y + sz, x:x + sz] = g return np.roll(np.roll(grad, -sx, 1), -sy, 0) k = np.float32([1, 4, 6, 4, 1]) k = np.outer(k, k) k5x5 = k[:, :, None, None] / k.sum() * np.eye(3, dtype=np.float32) # 将拉普拉斯金字塔还原到原始图像 def lap_merge(levels): img = levels[0] for hi in levels[1:]: with tf.name_scope('merge'): img = tf.nn.conv2d_transpose(img, k5x5 * 4, tf.shape(hi), [1, 2, 2, 1]) + hi return img # 对img做标准化。 def normalize_std(img, eps=1e-10): with tf.name_scope('normalize'): std = tf.sqrt(tf.reduce_mean(tf.square(img))) return img / tf.maximum(std, eps) # 拉普拉斯金字塔标准化 def lap_normalize(img, scale_n=4): img = tf.expand_dims(img, 0) tlevels = lap_split_n(img, scale_n) # 每一层都做一次normalize_std tlevels = list(map(normalize_std, tlevels)) out = lap_merge(tlevels) return out[0, :, :, :] # 这个函数将图像分为低频和高频成分 def lap_split(img): with tf.name_scope('split'): # 做过一次卷积相当于一次“平滑”,因此lo为低频成分 lo = tf.nn.conv2d(img, k5x5, [1, 2, 2, 1], 'SAME') # 低频成分放缩到原始图像一样大小得到lo2,再用原始图像img减去lo2,就得到高频成分hi lo2 = tf.nn.conv2d_transpose(lo, k5x5 * 4, tf.shape(img), [1, 2, 2, 1]) hi = img - lo2 return lo, hi # 这个函数将图像img分成n层拉普拉斯金字塔 def lap_split_n(img, n): levels = [] for i in range(n): # 调用lap_split将图像分为低频和高频部分 # 高频部分保存到levels中 # 低频部分再继续分解 img, hi = lap_split(img) levels.append(hi) levels.append(img) return levels[::-1] def tffunc(*argtypes): placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap def render_deepdream(img0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): name = 'mixed4d_3x3_bottleneck_pre_relu' channel = 139 t_obj = graph.get_tensor_by_name("import/%s:0" % name) t_score = tf.reduce_mean(t_obj) t_grad = tf.gradients(t_score, t_input)[0] lap_n=4 # 将lap_normalize转换为正常函数 lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n)) img = img0 # 同样将图像进行金字塔分解 # 此时提取高频、低频的方法比较简单。直接缩放就可以 octaves = [] for i in range(octave_n-1): hw = img.shape[:2] lo = resize(img, np.int32(np.float32(hw) / octave_scale)) hi = img - resize(lo, hw) img = lo octaves.append(hi) # 先生成低频的图像,再依次放大并加上高频 for octave in range(octave_n): if octave > 0: hi = octaves[-octave] img = resize(img, hi.shape[:2]) + hi for i in range(iter_n): g = calc_grad_tiled(img, t_grad) img += g * (step / (np.abs(g).mean() + 1e-7)) # 唯一的区别在于我们使用lap_norm_func来标准化g! # g = lap_norm_func(g) # img += g * step print('.', end=' ') img = img.clip(0, 255) savearray(img, './predict_img/deepdream.jpg') if __name__ == '__main__': img0 = PIL.Image.open('./images/test.jpg') img0 = np.float32(img0) render_deepdream(img0)
30.031088
104
0.619393
0
0
0
0
0
0
0
0
1,630
0.253106
c7d6e3bbbed972de89ca1f857b7b3b2178ada3d2
1,829
py
Python
admin.py
BlueBlock/usage-reporter
e30bbef6d281944d62f716c37aff17861a653967
[ "MIT" ]
4
2018-08-30T06:16:35.000Z
2022-02-18T08:06:21.000Z
admin.py
BlueBlock/usage-reporter
e30bbef6d281944d62f716c37aff17861a653967
[ "MIT" ]
1
2018-03-29T17:04:44.000Z
2018-03-29T17:04:44.000Z
admin.py
BlueBlock/usage-reporter
e30bbef6d281944d62f716c37aff17861a653967
[ "MIT" ]
4
2018-01-31T06:55:32.000Z
2022-01-16T10:39:18.000Z
import calendar import datetime import logging import os import webapp2 import dbmodel TESTING = os.environ.get('SERVER_SOFTWARE', '').startswith('Development') class ResetHandler(webapp2.RequestHandler): def get(self): timestamp = calendar.timegm(datetime.datetime.utcnow().timetuple()) self.response.write('<html><body><form method="POST"><input type="text" value="' + str( timestamp) + '" name="day"><input type="submit"></form></body></html>') def post(self): timestamp = int(self.request.get('day', None)) entry_day = datetime.datetime.utcfromtimestamp(timestamp).date() logging.info('Processing day %s', entry_day) starttimestamp = calendar.timegm((entry_day.year, entry_day.month, entry_day.day, 0, 0, 0)) endtimestamp = starttimestamp + 24 * 60 * 60 logging.info('starttimestamp, endtimestamp: (%s, %s)', starttimestamp, endtimestamp) count = 0 for item in dbmodel.ReportItem.all().filter('counted', 0).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 for item in dbmodel.ReportItem.all().filter('counted', 1).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 logging.info('Reset for %s items', count) for item in dbmodel.AggregateItem.all().filter('timestamp =', starttimestamp).filter('rangetype =', 'day'): item.delete() app = webapp2.WSGIApplication([ ('/tasks/admin/reset', ResetHandler) ], debug=TESTING)
35.173077
115
0.632586
1,569
0.857846
0
0
0
0
0
0
430
0.235101
c7d717769a7df13adf5117eb840b41a6b41f5506
2,708
py
Python
napari/utils/colormaps/categorical_colormap_utils.py
Zac-HD/napari
102a7e8f845893c874d2b86f9371d41130100b89
[ "BSD-3-Clause" ]
1
2021-04-24T10:10:54.000Z
2021-04-24T10:10:54.000Z
napari/utils/colormaps/categorical_colormap_utils.py
Zac-HD/napari
102a7e8f845893c874d2b86f9371d41130100b89
[ "BSD-3-Clause" ]
2
2021-05-17T02:15:08.000Z
2022-03-12T21:19:52.000Z
napari/utils/colormaps/categorical_colormap_utils.py
Zac-HD/napari
102a7e8f845893c874d2b86f9371d41130100b89
[ "BSD-3-Clause" ]
null
null
null
from dataclasses import dataclass from itertools import cycle from typing import Dict, Union import numpy as np from ...layers.utils.color_transformations import ( transform_color, transform_color_cycle, ) @dataclass(eq=False) class ColorCycle: """A dataclass to hold a color cycle for the fallback_colors in the CategoricalColormap Attributes ---------- values : np.ndarray The (Nx4) color array of all colors contained in the color cycle. cycle : cycle The cycle object that gives fallback colors. """ values: np.ndarray cycle: cycle @classmethod def __get_validators__(cls): yield cls.validate_type @classmethod def validate_type(cls, val): # turn a generic dict into object if isinstance(val, dict): return _coerce_colorcycle_from_dict(val) elif isinstance(val, ColorCycle): return val else: return _coerce_colorcycle_from_colors(val) def _json_encode(self): return {'values': self.values.tolist()} def __eq__(self, other): if isinstance(other, ColorCycle): eq = np.array_equal(self.values, other.values) else: eq = False return eq def _coerce_colorcycle_from_dict( val: Dict[str, Union[str, list, np.ndarray, cycle]] ) -> ColorCycle: # validate values color_values = val.get('values') if color_values is None: raise ValueError('ColorCycle requires a values argument') transformed_color_values = transform_color(color_values) # validate cycle color_cycle = val.get('cycle') if color_cycle is None: transformed_color_cycle = transform_color_cycle( color_cycle=color_values, elem_name='color_cycle', default="white", )[0] else: transformed_color_cycle = color_cycle return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def _coerce_colorcycle_from_colors( val: Union[str, list, np.ndarray] ) -> ColorCycle: if isinstance(val, str): val = [val] ( transformed_color_cycle, transformed_color_values, ) = transform_color_cycle( color_cycle=val, elem_name='color_cycle', default="white", ) return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def compare_colormap_dicts(cmap_1, cmap_2): if len(cmap_1) != len(cmap_2): return False for k, v in cmap_1.items(): if k not in cmap_2: return False if not np.allclose(v, cmap_2[k]): return False return True
25.308411
73
0.64771
1,022
0.3774
60
0.022157
1,043
0.385155
0
0
467
0.172452