hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
c7d75d84ab48e0f55426fa5ef9b76cbde3951e30
7,027
py
Python
src/ipywidgets_toggle_buttons/abc_toggle_buttons_with_hide.py
stas-prokopiev/ipywidgets_toggle_buttons
84d1afde1d02c19fb6a41b20e17b9d2b1c7980e2
[ "MIT" ]
null
null
null
src/ipywidgets_toggle_buttons/abc_toggle_buttons_with_hide.py
stas-prokopiev/ipywidgets_toggle_buttons
84d1afde1d02c19fb6a41b20e17b9d2b1c7980e2
[ "MIT" ]
null
null
null
src/ipywidgets_toggle_buttons/abc_toggle_buttons_with_hide.py
stas-prokopiev/ipywidgets_toggle_buttons
84d1afde1d02c19fb6a41b20e17b9d2b1c7980e2
[ "MIT" ]
null
null
null
"""Abstract class for all toggle buttons""" # Standard library imports import logging from collections import OrderedDict # Third party imports import ipywidgets # Local imports from .abc_toggle_buttons import BaseToggleButtons from .layouts import DICT_LAYOUT_HBOX_ANY LOGGER = logging.getLogger(__name__) class BaseToggleButtonsWithHide(BaseToggleButtons): """Abstract class for all toggle buttons Values are stored in self.widget_parent when displayed is self.widget Which is updated in the moment when display() is launched """ def __init__( self, widget_parent, options_visible=None, options_hidden=None, **kwargs ): """Initialize object""" super().__init__(widget_parent, **kwargs) # hidden attributes to setters self._options_visible = [] self._options_hidden = [] self._bool_is_hidden_options_created = False # Create scaffolds inside self.widgets self._create_scaffold_for_widget() self._dict_visible_button_by_option = OrderedDict() self._dict_hidden_button_by_option = OrderedDict() # Set options self.options_visible = options_visible self.options_hidden = options_hidden self._update_buttons_for_new_options() @property def options_visible(self): """Getter for visible options used in widget""" return self._options_visible @options_visible.setter def options_visible(self, new_value): """Setter for visible options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_visible): return None self._options_visible = new_value self._create_buttons_for_visible_options() # Update hidden options to delete which exists in new visible # This will also update the whole widget self.options_hidden = self._options_hidden self.options = self._options_visible + self._options_hidden self._update_widget_view() @property def options_hidden(self): """Getter for hidden options used in widget""" return self._options_hidden @options_hidden.setter def options_hidden(self, new_value): """Setter for hidden options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_hidden): return None # Filter out from hidden options all options which exists in main options_hidden_cleared = [] for str_option in new_value: if str_option not in self.options_visible: options_hidden_cleared.append(str_option) self._options_hidden = options_hidden_cleared self.options = self._options_visible + self._options_hidden # self._create_buttons_for_hidden_options() self._update_widget_view() def turn_off_all_buttons(self): """Mark all buttons as not clicked""" for str_option in self._dict_visible_button_by_option: but = self._dict_visible_button_by_option[str_option] but.button_style = "" for str_option in self._dict_hidden_button_by_option: but = self._dict_hidden_button_by_option[str_option] but.button_style = "" # Change style of selected hidden button # self._widget_but_hidden_option_selected.description = "..." # self._widget_but_hidden_option_selected.button_style = "" def _update_buttons_for_new_options(self): """Update buttons if options were changed""" self._create_buttons_for_visible_options() self._bool_is_hidden_options_created = False # self._create_buttons_for_hidden_options() def _create_scaffold_for_widget(self): """Create scaffold of ipywidget Boxes for self""" # Main buttons box self._widget_hbox_main = ipywidgets.HBox() self._widget_hbox_main.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_main.layout.flex_flow = "row wrap" # Middle buttons box self._widget_hbox_middle_buttons = ipywidgets.HBox() self._widget_hbox_middle_buttons.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) self._create_middle_buttons() # Hidden buttons box self._widget_hbox_hidden = ipywidgets.HBox() self._widget_hbox_hidden.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_hidden.layout.flex_flow = "row wrap" def _create_buttons_for_visible_options(self): """Create buttons for all visible options""" self._dict_visible_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_visible) list_buttons = [] for str_option in list(self.options_visible): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) but_wid.on_click(self._on_click_button_to_choose_option) self._dict_visible_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_main.children = list_buttons def _create_middle_buttons(self): """Create buttons which are in charge what to do with hidden buttons""" self._wid_but_hide_show = ipywidgets.ToggleButton( value=False, description="Show Hidden options", button_style="info", ) self._wid_but_hide_show.layout.width = "40%" self._wid_but_hide_show.observe( lambda _: self._update_widget_view(), "value") self._widget_but_hidden_option_selected = ipywidgets.Button( description="...", disabled=True) self._widget_but_hidden_option_selected.layout.width = "40%" self._widget_hbox_middle_buttons.children = [ self._widget_but_hidden_option_selected, self._wid_but_hide_show] def _create_buttons_for_hidden_options(self): """Create buttons for all hidden options""" self._dict_hidden_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_hidden) list_buttons = [] for str_option in list(self.options_hidden): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) if str_option in self.value: but_wid.button_style = "success" but_wid.on_click(self._on_click_button_to_choose_option) self._dict_hidden_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_hidden.children = list_buttons
40.154286
91
0.672549
6,714
0.955458
0
0
1,788
0.254447
0
0
1,714
0.243916
c7d7886d9a5f7ae38bdb7d01f1fc136b75bb2a50
3,899
py
Python
Players/DWPMPlayer.py
jokvedaras/game-framework
9ff60e15d1beff54f94e280501929664ce59afe7
[ "Apache-2.0" ]
null
null
null
Players/DWPMPlayer.py
jokvedaras/game-framework
9ff60e15d1beff54f94e280501929664ce59afe7
[ "Apache-2.0" ]
null
null
null
Players/DWPMPlayer.py
jokvedaras/game-framework
9ff60e15d1beff54f94e280501929664ce59afe7
[ "Apache-2.0" ]
null
null
null
__author__ = 'Pat McClernan and Dan Wegmann' import Player import Message # input #0 for rock #1 for paper #2 for scissors # past move is array of numbers # our move followed by their move #Our strategy is to look at all past moves #In a large number of games, you would expect # each move to be seen an even amount of times #So our strategy is to take the least seen move # and expect it to show up soon # so we will play to beat that move class DWPMPlayer(Player.Player): def __init__(self): Player.Player.__init__(self) self.past_moves = [] self.set_name("Dan and Pats Player") def play(self): return RpsPlayingStrategy.play(self.past_moves) def add_past_move(self, move): """ adds opponents move to past moves """ self.past_moves.append(move) def get_name(self): return self.name def notify(self, message): # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. if message.is_match_start_message(): players = message.get_players() if players[0] == self or players[1] == self: self.reset() elif message.is_round_end_message(): players = message.get_players() # Check if this message is for me and only then proceed if (players[0] == self) or (players[1] == self): # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which # means player 1 played paper (1), the player 2 played rock(0) and the result was that # player 1 won (got 1 point) and player 2 lost (got 0 point) moves, result = message.get_info() # RPS is a two person game; figure out which of the players is me # and which one is the opponent if players[0] == self: opponent = 1 else: opponent = 0 # Update opponent's past moves history self.add_past_move(moves[opponent]) def reset(self): self.past_moves = [] def set_name(self, name): self.name = name class RpsPlayingStrategy(object): @staticmethod def play(past_moves): """ our player assumes that given a high number of games, all 3 different moves of opponent will be used an equal number of times. Given a list of past_moves, we can counter an opponent's assumed move """ rock = 0 paper = 0 scissors = 0 for this_move in list(past_moves): if this_move == 0: rock += 1 elif this_move == 1: paper += 1 elif this_move == 2: scissors += 1 #determine which move has been used least if (rock < paper) and (rock < scissors): move = 0 elif paper < scissors: move = 1 else: move = 2 move = (move + 1) % 3 return move # Test driver # Run by typing "python3 RpsPlayerExample.py" if __name__ == "__main__": player = PatAndDansRPSPlayer() opponent = PatAndDansRPSPlayer() players = [opponent, player] fakemoves = (1, 2) fakeresult = (0, 1) player.notify(Message.Message.get_match_start_message(players)) player.notify(Message.Message.get_round_start_message(players)) move = player.play() print ("Move played: ", move) player.notify(Message.Message.get_round_end_message(players, fakemoves, fakeresult))
32.22314
108
0.598359
2,918
0.748397
0
0
815
0.209028
0
0
1,580
0.405232
c7d7ef9a92fb0bfab05a3bc1de9e8efb6f62b67d
1,023
py
Python
example/example.py
mowshon/age-and-gender
e5c912f6ba739f30a45c04208b6d16500e4488cd
[ "MIT" ]
81
2020-06-17T12:53:03.000Z
2022-03-11T20:02:46.000Z
example/example.py
mowshon/age-and-gender
e5c912f6ba739f30a45c04208b6d16500e4488cd
[ "MIT" ]
4
2020-06-18T09:28:12.000Z
2021-07-13T09:16:29.000Z
example/example.py
mowshon/age-and-gender
e5c912f6ba739f30a45c04208b6d16500e4488cd
[ "MIT" ]
17
2020-06-18T07:08:09.000Z
2022-03-31T03:56:58.000Z
from age_and_gender import * from PIL import Image, ImageDraw, ImageFont data = AgeAndGender() data.load_shape_predictor('models/shape_predictor_5_face_landmarks.dat') data.load_dnn_gender_classifier('models/dnn_gender_classifier_v1.dat') data.load_dnn_age_predictor('models/dnn_age_predictor_v1.dat') filename = 'test-image.jpg' img = Image.open(filename).convert("RGB") result = data.predict(img) font = ImageFont.truetype("Acme-Regular.ttf", 20) for info in result: shape = [(info['face'][0], info['face'][1]), (info['face'][2], info['face'][3])] draw = ImageDraw.Draw(img) gender = info['gender']['value'].title() gender_percent = int(info['gender']['confidence']) age = info['age']['value'] age_percent = int(info['age']['confidence']) draw.text( (info['face'][0] - 10, info['face'][3] + 10), f"{gender} (~{gender_percent}%)\n{age} y.o. (~{age_percent}%).", fill='white', font=font, align='center' ) draw.rectangle(shape, outline="red", width=5) img.show()
31
118
0.672532
0
0
0
0
0
0
0
0
337
0.329423
c7d86ca9e9717fc1914525f4cf4555781fc27cb0
1,463
py
Python
code/generate_games.py
jppg/pygame-tictactoe
f7283a71bb289601b4b8ee0b0bdbe731e67fa8a7
[ "MIT" ]
null
null
null
code/generate_games.py
jppg/pygame-tictactoe
f7283a71bb289601b4b8ee0b0bdbe731e67fa8a7
[ "MIT" ]
null
null
null
code/generate_games.py
jppg/pygame-tictactoe
f7283a71bb289601b4b8ee0b0bdbe731e67fa8a7
[ "MIT" ]
null
null
null
from tictactoe import TicTacToe import random import csv import os gameNr = 1 gameLimit = 10000 lst_moves_1 = [] lst_moves_2 = [] while gameNr <= gameLimit: print("+++++++++++") print("Game#", gameNr) game = TicTacToe() tmp_moves_1 = [] tmp_moves_2 = [] while game.get_winner() == 0 and game.possible_moves() > 0: pos = game.get_positions().copy() while game.possible_moves() > 0: move = random.randint(0,9) if game.play(int(move)): if game.get_player() == 1: tmp_moves_2.append([gameNr] + [game.get_turn() - 1] + pos + [move]) else: tmp_moves_1.append([gameNr] + [game.get_turn() - 1] + pos + [move]) break print("Winner of game ", gameNr, "is", game.get_winner()) if game.get_winner() == 1: lst_moves_1.append(tmp_moves_1) #lst_moves_1.append(tmp_moves_1[len(tmp_moves_1) - 1]) else: #lst_moves_2.append(tmp_moves_2[len(tmp_moves_2) - 1]) lst_moves_2.append(tmp_moves_2) #print("List X: ", lst_moves_1) #print("List O: ", lst_moves_2) game.print_board() gameNr = gameNr + 1 with open('moves_1.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_1: writer.writerows(row) with open('moves_2.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_2: writer.writerows(row)
27.603774
87
0.580314
0
0
0
0
0
0
0
0
247
0.168831
c7d9eaf5171771685897ba7e8ba2988b57091181
350
py
Python
applications/CoSimulationApplication/custom_data_structure/pyKratos/IntervalUtility.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
2
2019-10-25T09:28:10.000Z
2019-11-21T12:51:46.000Z
applications/CoSimulationApplication/custom_data_structure/pyKratos/IntervalUtility.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
13
2019-10-07T12:06:51.000Z
2020-02-18T08:48:33.000Z
applications/CoSimulationApplication/custom_data_structure/pyKratos/IntervalUtility.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
null
null
null
from __future__ import print_function, absolute_import, division # makes these scripts backward compatible with python 2.6 and 2.7 # TODO this should be implemented, see "kratos/utilities/interval_utility.h" class IntervalUtility(object): def __init__(self, settings): pass def IsInInterval(self, current_time): return True
38.888889
131
0.757143
140
0.4
0
0
0
0
0
0
141
0.402857
c7dc267a8e2592a1c24d3b8c06a265a370010c46
2,906
py
Python
stixcore/tmtc/tests/test_packets.py
nicHoch/STIXCore
16822bbb37046f8e6c03be51909cfc91e9822cf7
[ "BSD-3-Clause" ]
1
2022-03-31T13:42:43.000Z
2022-03-31T13:42:43.000Z
stixcore/tmtc/tests/test_packets.py
nicHoch/STIXCore
16822bbb37046f8e6c03be51909cfc91e9822cf7
[ "BSD-3-Clause" ]
192
2020-11-03T22:40:19.000Z
2022-03-31T15:17:13.000Z
stixcore/tmtc/tests/test_packets.py
nicHoch/STIXCore
16822bbb37046f8e6c03be51909cfc91e9822cf7
[ "BSD-3-Clause" ]
3
2020-11-09T15:05:18.000Z
2022-01-21T07:52:51.000Z
import bitstring import pytest from stixcore.data.test import test_data from stixcore.idb.manager import IDBManager from stixcore.tmtc.packets import ( SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket, ) from stixcore.tmtc.tm.tm_1 import TM_1_1 @pytest.fixture def idb(): return IDBManager(test_data.idb.DIR).get_idb("2.26.34") @pytest.mark.parametrize('class_header', [(SourcePacketHeader, SOURCE_PACKET_HEADER_STRUCTURE), (TMDataHeader, TM_DATA_HEADER_STRUCTURE)]) def test_tmtc_headers(class_header): cls, header = class_header test_fmt = ', '.join(header.values()) test_values = {n: 2**int(v.split(':')[-1])-1 for n, v in header.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) sph = cls(test_binary) assert all([getattr(sph, key) == test_values[key] for key in header.keys() if not key.startswith('spare')]) def test_tm_packet(idb): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TM_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TMPacket(test_binary, idb=idb) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TM_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tc_packet(): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TC_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_values['process_id'] = 90 test_values['packet_category'] = 12 test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TCPacket(test_binary) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TC_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tm_1_1(idb): packet = TM_1_1('0x0da1c066000d100101782628a9c4e71e1dacc0a0', idb=idb) assert packet.source_packet_header.process_id == 90 assert packet.source_packet_header.packet_category == 1 assert packet.data_header.service_type == 1 assert packet.data_header.service_subtype == 1
41.514286
97
0.699931
0
0
0
0
674
0.231934
0
0
152
0.052306
c7dcc75b55961bd952da5e374d98d1ab7d3f5c96
40,969
py
Python
python/thunder/rdds/fileio/seriesloader.py
broxtronix/thunder
4dad77721e2c9e225f94a6a5366d51ec83ac4690
[ "Apache-2.0" ]
null
null
null
python/thunder/rdds/fileio/seriesloader.py
broxtronix/thunder
4dad77721e2c9e225f94a6a5366d51ec83ac4690
[ "Apache-2.0" ]
null
null
null
python/thunder/rdds/fileio/seriesloader.py
broxtronix/thunder
4dad77721e2c9e225f94a6a5366d51ec83ac4690
[ "Apache-2.0" ]
null
null
null
"""Provides SeriesLoader object and helpers, used to read Series data from disk or other filesystems. """ from collections import namedtuple import json from numpy import array, arange, frombuffer, load, ndarray, unravel_index, vstack from numpy import dtype as dtypeFunc from scipy.io import loadmat from cStringIO import StringIO import itertools import struct import urlparse import math from thunder.rdds.fileio.writers import getParallelWriterForPath from thunder.rdds.keys import Dimensions from thunder.rdds.fileio.readers import getFileReaderForPath, FileNotFoundError, appendExtensionToPathSpec from thunder.rdds.imgblocks.blocks import SimpleBlocks from thunder.rdds.series import Series from thunder.utils.common import parseMemoryString, smallestFloatType class SeriesLoader(object): """Loader object used to instantiate Series data stored in a variety of formats. """ def __init__(self, sparkContext, minPartitions=None): """Initialize a new SeriesLoader object. Parameters ---------- sparkcontext: SparkContext The pyspark SparkContext object used by the current Thunder environment. minPartitions: int minimum number of partitions to use when loading data. (Used by fromText, fromMatLocal, and fromNpyLocal) """ from thunder.utils.aws import AWSCredentials self.sc = sparkContext self.minPartitions = minPartitions self.awsCredentialsOverride = AWSCredentials.fromContext(sparkContext) def _checkOverwrite(self, outputDirPath): from thunder.utils.common import raiseErrorIfPathExists raiseErrorIfPathExists(outputDirPath, awsCredentialsOverride=self.awsCredentialsOverride) def fromArrays(self, arrays, npartitions=None): """ Create a Series object from a sequence of 1d numpy arrays on the driver. """ # recast singleton if isinstance(arrays, ndarray): arrays = [arrays] # check shape and dtype shape = arrays[0].shape dtype = arrays[0].dtype for ary in arrays: if not ary.shape == shape: raise ValueError("Inconsistent array shapes: first array had shape %s, but other array has shape %s" % (str(shape), str(ary.shape))) if not ary.dtype == dtype: raise ValueError("Inconsistent array dtypes: first array had dtype %s, but other array has dtype %s" % (str(dtype), str(ary.dtype))) # generate linear keys keys = map(lambda k: (k,), xrange(0, len(arrays))) return Series(self.sc.parallelize(zip(keys, arrays), npartitions), dtype=str(dtype)) def fromArraysAsImages(self, arrays): """Create a Series object from a sequence of numpy ndarrays resident in memory on the driver. The arrays will be interpreted as though each represents a single time point - effectively the same as if converting Images to a Series, with each array representing a volume image at a particular point in time. Thus in the resulting Series, the value of the record with key (0,0,0) will be array([arrays[0][0,0,0], arrays[1][0,0,0],... arrays[n][0,0,0]). The dimensions of the resulting Series will be *opposite* that of the passed numpy array. Their dtype will not be changed. """ # if passed a single array, cast it to a sequence of length 1 if isinstance(arrays, ndarray): arrays = [arrays] # check that shapes of passed arrays are consistent shape = arrays[0].shape dtype = arrays[0].dtype for ary in arrays: if not ary.shape == shape: raise ValueError("Inconsistent array shapes: first array had shape %s, but other array has shape %s" % (str(shape), str(ary.shape))) if not ary.dtype == dtype: raise ValueError("Inconsistent array dtypes: first array had dtype %s, but other array has dtype %s" % (str(dtype), str(ary.dtype))) # get indices so that fastest index changes first shapeiters = (xrange(n) for n in shape) keys = [idx[::-1] for idx in itertools.product(*shapeiters)] values = vstack([ary.ravel() for ary in arrays]).T dims = Dimensions.fromTuple(shape[::-1]) return Series(self.sc.parallelize(zip(keys, values), self.minPartitions), dims=dims, dtype=str(dtype)) @staticmethod def __normalizeDatafilePattern(dataPath, ext): dataPath = appendExtensionToPathSpec(dataPath, ext) # we do need to prepend a scheme here, b/c otherwise the Hadoop based readers # will adopt their default behavior and start looking on hdfs://. parseResult = urlparse.urlparse(dataPath) if parseResult.scheme: # this appears to already be a fully-qualified URI return dataPath else: # this looks like a local path spec # check whether we look like an absolute or a relative path import os dirComponent, fileComponent = os.path.split(dataPath) if not os.path.isabs(dirComponent): # need to make relative local paths absolute; our file scheme parsing isn't all that it could be. dirComponent = os.path.abspath(dirComponent) dataPath = os.path.join(dirComponent, fileComponent) return "file://" + dataPath def fromText(self, dataPath, nkeys=None, ext="txt", dtype='float64'): """ Loads Series data from text files. Parameters ---------- dataPath : string Specifies the file or files to be loaded. dataPath may be either a URI (with scheme specified) or a path on the local filesystem. If a path is passed (determined by the absence of a scheme component when attempting to parse as a URI), and it is not already a wildcard expression and does not end in <ext>, then it will be converted into a wildcard pattern by appending '/*.ext'. This conversion can be avoided by passing a "file://" URI. dtype: dtype or dtype specifier, default 'float64' """ dataPath = self.__normalizeDatafilePattern(dataPath, ext) def parse(line, nkeys_): vec = [float(x) for x in line.split(' ')] ts = array(vec[nkeys_:], dtype=dtype) keys = tuple(int(x) for x in vec[:nkeys_]) return keys, ts lines = self.sc.textFile(dataPath, self.minPartitions) data = lines.map(lambda x: parse(x, nkeys)) return Series(data, dtype=str(dtype)) # keytype, valuetype here violate camelCasing convention for consistence with JSON conf file format BinaryLoadParameters = namedtuple('BinaryLoadParameters', 'nkeys nvalues keytype valuetype') BinaryLoadParameters.__new__.__defaults__ = (None, None, 'int16', 'int16') def __loadParametersAndDefaults(self, dataPath, confFilename, nkeys, nvalues, keyType, valueType): """Collects parameters to use for binary series loading. Priority order is as follows: 1. parameters specified as keyword arguments; 2. parameters specified in a conf.json file on the local filesystem; 3. default parameters Returns ------- BinaryLoadParameters instance """ params = self.loadConf(dataPath, confFilename=confFilename) # filter dict to include only recognized field names: for k in params.keys(): if k not in SeriesLoader.BinaryLoadParameters._fields: del params[k] keywordParams = {'nkeys': nkeys, 'nvalues': nvalues, 'keytype': keyType, 'valuetype': valueType} for k, v in keywordParams.items(): if not v: del keywordParams[k] params.update(keywordParams) return SeriesLoader.BinaryLoadParameters(**params) @staticmethod def __checkBinaryParametersAreSpecified(paramsObj): """Throws ValueError if any of the field values in the passed namedtuple instance evaluate to False. Note this is okay only so long as zero is not a valid parameter value. Hmm. """ missing = [] for paramName, paramVal in paramsObj._asdict().iteritems(): if not paramVal: missing.append(paramName) if missing: raise ValueError("Missing parameters to load binary series files - " + "these must be given either as arguments or in a configuration file: " + str(tuple(missing))) def fromBinary(self, dataPath, ext='bin', confFilename='conf.json', nkeys=None, nvalues=None, keyType=None, valueType=None, newDtype='smallfloat', casting='safe', maxPartitionSize='32mb'): """ Load a Series object from a directory of binary files. Parameters ---------- dataPath : string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://", or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. newDtype : dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting : 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. maxPartitionSize : str, optional, default = '32mb' Maximum size of partitions as Java-style memory, will indirectly control the number of partitions """ paramsObj = self.__loadParametersAndDefaults(dataPath, confFilename, nkeys, nvalues, keyType, valueType) self.__checkBinaryParametersAreSpecified(paramsObj) dataPath = self.__normalizeDatafilePattern(dataPath, ext) keyDtype = dtypeFunc(paramsObj.keytype) valDtype = dtypeFunc(paramsObj.valuetype) keySize = paramsObj.nkeys * keyDtype.itemsize recordSize = keySize + paramsObj.nvalues * valDtype.itemsize from thunder.utils.common import parseMemoryString if isinstance(maxPartitionSize, basestring): size = parseMemoryString(maxPartitionSize) else: raise Exception("Invalid size specification") hadoopConf = {'recordLength': str(recordSize), 'mapred.max.split.size': str(size)} lines = self.sc.newAPIHadoopFile(dataPath, 'thunder.util.io.hadoop.FixedLengthBinaryInputFormat', 'org.apache.hadoop.io.LongWritable', 'org.apache.hadoop.io.BytesWritable', conf=hadoopConf) data = lines.map(lambda (_, v): (tuple(int(x) for x in frombuffer(buffer(v, 0, keySize), dtype=keyDtype)), frombuffer(buffer(v, keySize), dtype=valDtype))) return Series(data, dtype=str(valDtype), index=arange(paramsObj.nvalues)).astype(newDtype, casting) def _getSeriesBlocksFromStack(self, dataPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Create an RDD of <string blocklabel, (int k-tuple indices, array of datatype values)> Parameters ---------- dataPath: string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://" or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Series data must be floating-point. Input data will be cast to the requested `newdtype` - see numpy `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). Returns --------- pair of (RDD, ntimepoints) RDD: sequence of keys, values pairs (call using flatMap) RDD Key: tuple of int zero-based indicies of position within original image volume RDD Value: numpy array of datatype series of values at position across loaded image volumes ntimepoints: int number of time points in returned series, determined from number of stack files found at dataPath newDtype: string string representation of numpy data type of returned blocks """ dataPath = self.__normalizeDatafilePattern(dataPath, ext) blockSize = parseMemoryString(blockSize) totalDim = reduce(lambda x_, y_: x_*y_, dims) dtype = dtypeFunc(dtype) if newDtype is None or newDtype == '': newDtype = str(dtype) elif newDtype == 'smallfloat': newDtype = str(smallestFloatType(dtype)) else: newDtype = str(newDtype) reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) filenames = reader.list(dataPath, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) if not filenames: raise IOError("No files found for path '%s'" % dataPath) dataSize = totalDim * len(filenames) * dtype.itemsize nblocks = max(dataSize / blockSize, 1) # integer division if len(dims) >= 3: # for 3D stacks, do calculations to ensure that # different planes appear in distinct files blocksPerPlane = max(nblocks / dims[-1], 1) pixPerPlane = reduce(lambda x_, y_: x_*y_, dims[:-1]) # all but last dimension # get the greatest number of blocks in a plane (up to as many as requested) that still divide the plane # evenly. This will always be at least one. kUpdated = [x for x in range(1, blocksPerPlane+1) if not pixPerPlane % x][-1] nblocks = kUpdated * dims[-1] blockSizePerStack = (totalDim / nblocks) * dtype.itemsize else: # otherwise just round to make contents divide into nearly even blocks blockSizePerStack = int(math.ceil(totalDim / float(nblocks))) nblocks = int(math.ceil(totalDim / float(blockSizePerStack))) blockSizePerStack *= dtype.itemsize fileSize = totalDim * dtype.itemsize def readBlock(blockNum): # copy size out from closure; will modify later: blockSizePerStack_ = blockSizePerStack # get start position for this block position = blockNum * blockSizePerStack_ # adjust if at end of file if (position + blockSizePerStack_) > fileSize: blockSizePerStack_ = int(fileSize - position) # loop over files, loading one block from each bufs = [] for fname in filenames: buf = reader.read(fname, startOffset=position, size=blockSizePerStack_) bufs.append(frombuffer(buf, dtype=dtype)) buf = vstack(bufs).T # dimensions are now linindex x time (images) del bufs buf = buf.astype(newDtype, casting=casting, copy=False) # append subscript keys based on dimensions itemPosition = position / dtype.itemsize itemBlocksize = blockSizePerStack_ / dtype.itemsize linearIdx = arange(itemPosition, itemPosition + itemBlocksize) # zero-based keys = zip(*map(tuple, unravel_index(linearIdx, dims, order='F'))) return zip(keys, buf) # map over blocks return (self.sc.parallelize(range(0, nblocks), nblocks).flatMap(lambda bn: readBlock(bn)), len(filenames), newDtype) @staticmethod def __readMetadataFromFirstPageOfMultiTif(reader, filePath): import thunder.rdds.fileio.multitif as multitif # read first page of first file to get expected image size tiffFP = reader.open(filePath) tiffParser = multitif.TiffParser(tiffFP, debug=False) tiffHeaders = multitif.TiffData() tiffParser.parseFileHeader(destinationTiff=tiffHeaders) firstIfd = tiffParser.parseNextImageFileDirectory(destinationTiff=tiffHeaders) if not firstIfd.isLuminanceImage(): raise ValueError(("File %s does not appear to be a luminance " % filePath) + "(greyscale or bilevel) TIF image, " + "which are the only types currently supported") # keep reading pages until we reach the end of the file, in order to get number of planes: while tiffParser.parseNextImageFileDirectory(destinationTiff=tiffHeaders): pass # get dimensions npages = len(tiffHeaders.ifds) height = firstIfd.getImageHeight() width = firstIfd.getImageWidth() # get datatype bitsPerSample = firstIfd.getBitsPerSample() if not (bitsPerSample in (8, 16, 32, 64)): raise ValueError("Only 8, 16, 32, or 64 bit per pixel TIF images are supported, got %d" % bitsPerSample) sampleFormat = firstIfd.getSampleFormat() if sampleFormat == multitif.SAMPLE_FORMAT_UINT: dtStr = 'uint' elif sampleFormat == multitif.SAMPLE_FORMAT_INT: dtStr = 'int' elif sampleFormat == multitif.SAMPLE_FORMAT_FLOAT: dtStr = 'float' else: raise ValueError("Unknown TIF SampleFormat tag value %d, should be 1, 2, or 3 for uint, int, or float" % sampleFormat) dtype = dtStr+str(bitsPerSample) return height, width, npages, dtype def _getSeriesBlocksFromMultiTif(self, dataPath, ext="tif", blockSize="150M", newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): import thunder.rdds.fileio.multitif as multitif import itertools from PIL import Image import io dataPath = self.__normalizeDatafilePattern(dataPath, ext) blockSize = parseMemoryString(blockSize) reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) filenames = reader.list(dataPath, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) if not filenames: raise IOError("No files found for path '%s'" % dataPath) ntimepoints = len(filenames) doMinimizeReads = dataPath.lower().startswith("s3") or dataPath.lower().startswith("gs") # check PIL version to see whether it is actually pillow or indeed old PIL and choose # conversion function appropriately. See ImagesLoader.fromMultipageTif and common.pil_to_array # for more explanation. isPillow = hasattr(Image, "PILLOW_VERSION") if isPillow: conversionFcn = array # use numpy's array() function else: from thunder.utils.common import pil_to_array conversionFcn = pil_to_array # use our modified version of matplotlib's pil_to_array height, width, npages, dtype = SeriesLoader.__readMetadataFromFirstPageOfMultiTif(reader, filenames[0]) if dtype.startswith('int'): raise ValueError('Signed integer tiff images are not supported in SeriesLoader (shuffle=False);' + ' please try loading as Images (shuffle=True)') pixelBytesize = dtypeFunc(dtype).itemsize if newDtype is None or str(newDtype) == '': newDtype = str(dtype) elif newDtype == 'smallfloat': newDtype = str(smallestFloatType(dtype)) else: newDtype = str(newDtype) # intialize at one block per plane bytesPerPlane = height * width * pixelBytesize * ntimepoints bytesPerBlock = bytesPerPlane blocksPerPlane = 1 # keep dividing while cutting our size in half still leaves us bigger than the requested size # should end up no more than 2x blockSize. while bytesPerBlock >= blockSize * 2: bytesPerBlock /= 2 blocksPerPlane *= 2 blocklenPixels = max((height * width) / blocksPerPlane, 1) # integer division while blocksPerPlane * blocklenPixels < height * width: # make sure we're reading the plane fully blocksPerPlane += 1 # prevent bringing in self in closure: awsCredentialsOverride = self.awsCredentialsOverride # keys will be planeidx, blockidx: keys = list(itertools.product(xrange(npages), xrange(blocksPerPlane))) def readBlockFromTiff(planeIdxBlockIdx): planeIdx, blockIdx = planeIdxBlockIdx blocks = [] planeShape = None blockStart = None blockEnd = None for fname in filenames: reader_ = getFileReaderForPath(fname)(awsCredentialsOverride=awsCredentialsOverride) fp = reader_.open(fname) try: if doMinimizeReads: # use multitif module to generate a fake, in-memory # one-page tif file. the advantage of this is that it # cuts way down on the many small reads that PIL/pillow # will make otherwise, which would be a problem for s3 # or Google Storage tiffParser_ = multitif.TiffParser(fp, debug=False) tiffFilebuffer = multitif.packSinglePage(tiffParser_, pageIdx=planeIdx) byteBuf = io.BytesIO(tiffFilebuffer) try: pilImg = Image.open(byteBuf) ary = conversionFcn(pilImg).T finally: byteBuf.close() del tiffFilebuffer, tiffParser_, pilImg, byteBuf else: # read tif using PIL directly pilImg = Image.open(fp) pilImg.seek(planeIdx) ary = conversionFcn(pilImg).T del pilImg if not planeShape: planeShape = ary.shape[:] blockStart = blockIdx * blocklenPixels blockEnd = min(blockStart+blocklenPixels, planeShape[0]*planeShape[1]) blocks.append(ary.ravel(order='C')[blockStart:blockEnd]) del ary finally: fp.close() buf = vstack(blocks).T # dimensions are now linindex x time (images) del blocks buf = buf.astype(newDtype, casting=casting, copy=False) # append subscript keys based on dimensions linearIdx = arange(blockStart, blockEnd) # zero-based seriesKeys = zip(*map(tuple, unravel_index(linearIdx, planeShape, order='C'))) # add plane index to end of keys if npages > 1: seriesKeys = [tuple(list(keys_)[::-1]+[planeIdx]) for keys_ in seriesKeys] else: seriesKeys = [tuple(list(keys_)[::-1]) for keys_ in seriesKeys] return zip(seriesKeys, buf) # map over blocks rdd = self.sc.parallelize(keys, len(keys)).flatMap(readBlockFromTiff) if npages > 1: dims = (npages, width, height) else: dims = (width, height) metadata = (dims, ntimepoints, newDtype) return rdd, metadata def fromStack(self, dataPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Load a Series object directly from binary image stack files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). """ seriesBlocks, npointsInSeries, newDtype = \ self._getSeriesBlocksFromStack(dataPath, dims, ext=ext, blockSize=blockSize, dtype=dtype, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) return Series(seriesBlocks, dims=dims, dtype=newDtype, index=arange(npointsInSeries)) def fromTif(self, dataPath, ext="tif", blockSize="150M", newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Load a Series object from multipage tiff files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. ext: string, optional, default "tif" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). """ seriesBlocks, metadata = self._getSeriesBlocksFromMultiTif(dataPath, ext=ext, blockSize=blockSize, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) dims, npointsInSeries, dtype = metadata return Series(seriesBlocks, dims=Dimensions.fromTuple(dims[::-1]), dtype=dtype, index=arange(npointsInSeries)) def __saveSeriesRdd(self, seriesBlocks, outputDirPath, dims, npointsInSeries, dtype, overwrite=False): if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path writer = getParallelWriterForPath(outputDirPath)(outputDirPath, overwrite=overwrite, awsCredentialsOverride=self.awsCredentialsOverride) def blockToBinarySeries(kvIter): label = None keyPacker = None buf = StringIO() for seriesKey, series in kvIter: if keyPacker is None: keyPacker = struct.Struct('h'*len(seriesKey)) label = SimpleBlocks.getBinarySeriesNameForKey(seriesKey) + ".bin" buf.write(keyPacker.pack(*seriesKey)) buf.write(series.tostring()) val = buf.getvalue() buf.close() return [(label, val)] seriesBlocks.mapPartitions(blockToBinarySeries).foreach(writer.writerFcn) writeSeriesConfig(outputDirPath, len(dims), npointsInSeries, valueType=dtype, overwrite=overwrite, awsCredentialsOverride=self.awsCredentialsOverride) def saveFromStack(self, dataPath, outputDirPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype=None, casting='safe', startIdx=None, stopIdx=None, overwrite=False, recursive=False): """Write out data from binary image stack files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. """ if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path seriesBlocks, npointsInSeries, newDtype = \ self._getSeriesBlocksFromStack(dataPath, dims, ext=ext, blockSize=blockSize, dtype=dtype, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) self.__saveSeriesRdd(seriesBlocks, outputDirPath, dims, npointsInSeries, newDtype, overwrite=overwrite) def saveFromTif(self, dataPath, outputDirPath, ext="tif", blockSize="150M", newDtype=None, casting='safe', startIdx=None, stopIdx=None, overwrite=False, recursive=False): """Write out data from multipage tif files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPpath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. """ if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path seriesBlocks, metadata = self._getSeriesBlocksFromMultiTif(dataPath, ext=ext, blockSize=blockSize, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) dims, npointsInSeries, dtype = metadata self.__saveSeriesRdd(seriesBlocks, outputDirPath, dims, npointsInSeries, dtype, overwrite=overwrite) def fromMatLocal(self, dataPath, varName, keyFile=None): """Loads Series data stored in a Matlab .mat file. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. """ data = loadmat(dataPath)[varName] if data.ndim > 2: raise IOError('Input data must be one or two dimensional') if keyFile: keys = map(lambda x: tuple(x), loadmat(keyFile)['keys']) else: keys = arange(0, data.shape[0]) rdd = Series(self.sc.parallelize(zip(keys, data), self.minPartitions), dtype=str(data.dtype)) return rdd def fromNpyLocal(self, dataPath, keyFile=None): """Loads Series data stored in the numpy save() .npy format. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. """ data = load(dataPath) if data.ndim > 2: raise IOError('Input data must be one or two dimensional') if keyFile: keys = map(lambda x: tuple(x), load(keyFile)) else: keys = arange(0, data.shape[0]) rdd = Series(self.sc.parallelize(zip(keys, data), self.minPartitions), dtype=str(data.dtype)) return rdd def loadConf(self, dataPath, confFilename='conf.json'): """Returns a dict loaded from a json file. Looks for file named `conffile` in same directory as `dataPath` Returns {} if file not found """ if not confFilename: return {} reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) try: jsonBuf = reader.read(dataPath, filename=confFilename) except FileNotFoundError: return {} params = json.loads(jsonBuf) if 'format' in params: raise Exception("Numerical format of value should be specified as 'valuetype', not 'format'") if 'keyformat' in params: raise Exception("Numerical format of key should be specified as 'keytype', not 'keyformat'") return params def writeSeriesConfig(outputDirPath, nkeys, nvalues, keyType='int16', valueType='int16', confFilename="conf.json", overwrite=True, awsCredentialsOverride=None): """ Helper function to write out a conf.json file with required information to load Series binary data. """ import json from thunder.rdds.fileio.writers import getFileWriterForPath filewriterClass = getFileWriterForPath(outputDirPath) # write configuration file # config JSON keys are lowercased "valuetype", "keytype", not valueType, keyType conf = {'input': outputDirPath, 'nkeys': nkeys, 'nvalues': nvalues, 'valuetype': str(valueType), 'keytype': str(keyType)} confWriter = filewriterClass(outputDirPath, confFilename, overwrite=overwrite, awsCredentialsOverride=awsCredentialsOverride) confWriter.writeFile(json.dumps(conf, indent=2)) # touch "SUCCESS" file as final action successWriter = filewriterClass(outputDirPath, "SUCCESS", overwrite=overwrite, awsCredentialsOverride=awsCredentialsOverride) successWriter.writeFile('')
48.772619
124
0.631648
39,027
0.952598
0
0
3,632
0.088652
0
0
19,247
0.469794
c7dcceeeb44aada8315f0c77d81c291531d15b79
3,097
py
Python
mxnet/local_forward.py
rai-project/onnx_examples
45db7b3e03dd674f28aeef3fcb1e60f5bca47948
[ "MIT" ]
null
null
null
mxnet/local_forward.py
rai-project/onnx_examples
45db7b3e03dd674f28aeef3fcb1e60f5bca47948
[ "MIT" ]
null
null
null
mxnet/local_forward.py
rai-project/onnx_examples
45db7b3e03dd674f28aeef3fcb1e60f5bca47948
[ "MIT" ]
null
null
null
# run local models given a path, default to './mxnet_models/' import os import argparse import time import mxnet as mx import numpy as np file_path = os.path.realpath(__file__) dir_name = os.path.dirname(file_path) os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0" class cuda_profiler_start(): import numba.cuda as cuda cuda.profile_start() class cuda_profiler_stop(): import numba.cuda as cuda cuda.profile_stop() def xprint(s): pass parser = argparse.ArgumentParser( description='Predict ImageNet classes from a given image') parser.add_argument('--model_name', type=str, required=False, default='resnet50_v1', help='name of the model to use') parser.add_argument('--batch_size', type=int, required=False, default=1, help='batch size to use') parser.add_argument('--input_dim', type=int, required=False, default=224, help='input dimension') parser.add_argument('--input_channels', type=int, required=False, default=3, help='input channels') parser.add_argument('--num_iterations', type=int, required=False, default=30, help='number of iterations to run') parser.add_argument('--num_warmup', type=int, required=False, default=5, help='number of warmup iterations to run') parser.add_argument('--model_idx', type=int, required=False, default=2, help='model idx') parser.add_argument('--profile', type=bool, required=False, default=False, help='enable profiling') opt = parser.parse_args() model_name = opt.model_name batch_size = opt.batch_size input_dim = opt.input_dim input_channels = opt.input_channels num_iterations = opt.num_iterations num_warmup = opt.num_warmup model_idx = opt.model_idx profile = opt.profile ctx = mx.gpu() if len(mx.test_utils.list_gpus()) else mx.cpu() sym, arg_params, aux_params = mx.model.load_checkpoint( dir_name + '/mxnet_models/'+model_name, 0) data_names = [ graph_input for graph_input in sym.list_inputs() if graph_input not in arg_params and graph_input not in aux_params ] net = mx.mod.Module( symbol=sym, data_names=[data_names[0]], context=ctx, label_names=None, ) input_shape = (batch_size, input_channels, input_dim, input_dim) img = mx.random.uniform( shape=input_shape, ctx=ctx) net.bind(for_training=False, data_shapes=[ (data_names[0], input_shape)], label_shapes=net._label_shapes) net.set_params(arg_params, aux_params, allow_missing=True) def forward_once(): mx.nd.waitall() start = time.time() prob = net.predict(img) mx.nd.waitall() end = time.time() # stop timer return end - start for i in range(num_warmup): forward_once() res = [] if profile: cuda_profiler_start() for i in range(num_iterations): t = forward_once() res.append(t) if profile: cuda_profiler_stop() res = np.multiply(res, 1000) print("{},{},{},{},{},{}".format(model_idx+1, model_name, batch_size, np.min(res), np.average(res), np.max(res)))
27.651786
84
0.683242
164
0.052954
0
0
0
0
0
0
486
0.156926
c7de097e9b9739100654b069d9cac10ffe5b515c
1,198
py
Python
tests/test_get_angles.py
Mopolino8/lammps-data-file
5c9015d05fa1484a33c84e6cfb90cd4a7d99d133
[ "MIT" ]
13
2017-05-30T17:43:10.000Z
2021-08-06T04:21:44.000Z
tests/test_get_angles.py
njustcodingjs/lammps-data-file
3a0729b5ab4d2344326d09ac4ee1aab41442f14a
[ "MIT" ]
2
2018-05-28T15:35:32.000Z
2018-05-28T16:21:09.000Z
tests/test_get_angles.py
njustcodingjs/lammps-data-file
3a0729b5ab4d2344326d09ac4ee1aab41442f14a
[ "MIT" ]
10
2017-05-23T21:19:21.000Z
2022-03-08T02:18:00.000Z
from lammps_data.angles import get_angles def test_separate_diatomic_molecules_should_have_no_angles(): bonds = [(0, 1), (2, 3)] assert get_angles(bonds) == [] def test_molecule_with_two_bonds_should_have_one_angle(): bonds = [(0, 1), (1, 2)] assert get_angles(bonds) == [(0, 1, 2)] def test_different_order_of_bond_tuples_should_return_same_order_within_angle_tuples(): bonds = [(0, 1), (1, 2)] assert get_angles(bonds) == [(0, 1, 2)] bonds = [(1, 2), (0, 1)] assert get_angles(bonds) == [(0, 1, 2)] def test_different_order_of_bond_tuples_should_return_same_order_of_angle_tuples(): bonds = [(0, 1), (1, 2), (1, 3)] assert get_angles(bonds) == [(0, 1, 2), (0, 1, 3), (2, 1, 3)] bonds = [(1, 2), (0, 1), (1, 3)] assert get_angles(bonds) == [(0, 1, 2), (0, 1, 3), (2, 1, 3)] def test_tetrahedral_molecule_should_have_six_angles(): bonds = [(0, 1), (0, 2), (0, 3), (0, 4)] assert get_angles(bonds) == [(1, 0, 2), (1, 0, 3), (1, 0, 4), (2, 0, 3), (2, 0, 4), (3, 0, 4)]
33.277778
87
0.520033
0
0
0
0
0
0
0
0
0
0
c7dedb48cc1d235760b585e1ff0e7c005780aeec
491
py
Python
api/scheduler/migrations/0001_initial.py
jfaach/stock-app
9cd0f98d3ec5d31dcd6680c5bf8b7b0fcdf025a6
[ "CC0-1.0" ]
null
null
null
api/scheduler/migrations/0001_initial.py
jfaach/stock-app
9cd0f98d3ec5d31dcd6680c5bf8b7b0fcdf025a6
[ "CC0-1.0" ]
null
null
null
api/scheduler/migrations/0001_initial.py
jfaach/stock-app
9cd0f98d3ec5d31dcd6680c5bf8b7b0fcdf025a6
[ "CC0-1.0" ]
null
null
null
# Generated by Django 3.1.1 on 2020-12-16 03:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Scheduler', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('minutes', models.IntegerField(default=15)), ], ), ]
22.318182
114
0.578411
398
0.810591
0
0
0
0
0
0
75
0.152749
c7e12276bc98092252c4149244dfdf01adca03b0
477
py
Python
9-Wine-Scaling.py
Pawel762/Class-7_homework
e79d2f8d218980d814443951dae7840f521ba191
[ "MIT" ]
null
null
null
9-Wine-Scaling.py
Pawel762/Class-7_homework
e79d2f8d218980d814443951dae7840f521ba191
[ "MIT" ]
null
null
null
9-Wine-Scaling.py
Pawel762/Class-7_homework
e79d2f8d218980d814443951dae7840f521ba191
[ "MIT" ]
null
null
null
from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() columns_names = wine.feature_names y = wine.target X = wine.data print('Pre scaling X') print(X) scaler = StandardScaler() scaler.fit(X) scaled_features = scaler.transform(X) print('Post scaling X') print(scaled_features) X_train, X_test, y_train, y_test = train_test_split(scaled_features, y, test_size=0.375)
21.681818
88
0.796646
0
0
0
0
0
0
0
0
31
0.06499
c7e14941f3967e5d720a9a0637e48720262f173d
4,057
py
Python
tests/conftest.py
szkkteam/flask-starter
7019036e7ee017ca5df9059d0b4a0d29005beab5
[ "MIT" ]
null
null
null
tests/conftest.py
szkkteam/flask-starter
7019036e7ee017ca5df9059d0b4a0d29005beab5
[ "MIT" ]
2
2021-03-31T19:36:44.000Z
2021-12-13T20:30:11.000Z
tests/conftest.py
szkkteam/flask-starter
7019036e7ee017ca5df9059d0b4a0d29005beab5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports import os import pytest # Pip package imports from collections import namedtuple from flask import template_rendered from flask_security.signals import ( reset_password_instructions_sent, user_confirmed, user_registered, ) # Internal package imports from backend.app import _create_app from backend.config import TestConfig from backend.extensions import db as db_ext from backend.extensions.mail import mail from ._client import ( ApiTestClient, ApiTestResponse, HtmlTestClient, HtmlTestResponse, ) from ._model_factory import ModelFactory @pytest.fixture(autouse=True, scope='session') def app(): app = _create_app(TestConfig) #ctx = app.app_context() ctx = app.test_request_context() ctx.push() yield app ctx.pop() @pytest.yield_fixture def client(app): app.response_class = HtmlTestResponse app.test_client_class = HtmlTestClient with app.test_client() as client: yield client @pytest.yield_fixture def api_client(app): app.response_class = ApiTestResponse app.test_client_class = ApiTestClient with app.test_client() as client: yield client @pytest.fixture(autouse=True, scope='session') def db(): db_ext.create_all() yield db_ext db_ext.drop_all() @pytest.fixture(autouse=True) def db_session(db): connection = db.engine.connect() transaction = connection.begin() session = db.create_scoped_session(options=dict(bind=connection, binds={})) db.session = session try: yield session finally: transaction.rollback() connection.close() session.remove() @pytest.fixture(scope='session') def celery_config(): return {'broker_url': 'redis://localhost:6379/1', 'result_backend': 'redis://localhost:6379/1', 'accept_content': ('json', 'pickle')} @pytest.fixture() def templates(app): records = [] RenderedTemplate = namedtuple('RenderedTemplate', 'template context') def record(sender, template, context, **extra): records.append(RenderedTemplate(template, context)) template_rendered.connect(record, app) try: yield records finally: template_rendered.disconnect(record, app) @pytest.fixture() def outbox(): with mail.record_messages() as messages: yield messages @pytest.fixture() def registrations(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs) user_registered.connect(record, app) try: yield records finally: user_registered.disconnect(record, app) @pytest.fixture() def confirmations(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs['user']) print("Record: ", records[-1]) user_confirmed.connect(record, app) try: yield records finally: print("Disconnect record: ", records) user_confirmed.disconnect(record, app) @pytest.fixture() def password_resets(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs) reset_password_instructions_sent.connect(record, app) try: yield records finally: reset_password_instructions_sent.disconnect(record, app) @pytest.fixture() def user(model_factory): yield model_factory.create('User', 'user') @pytest.fixture() def newslettersubscribe(model_factory): yield model_factory.create('NewsletterSubscribe', 'newslettersubscribe') @pytest.fixture() def admin(model_factory): yield model_factory.create('User', 'admin') @pytest.fixture() def models(request, model_factory): mark = request.param if mark is not None: return model_factory.get_models(mark) @pytest.fixture() def model_factory(app, db_session): fixtures_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'model_fixtures') yield ModelFactory(db_session, app.models, fixtures_dir)
22.792135
79
0.689426
0
0
2,666
0.657136
3,360
0.828198
0
0
439
0.108208
c7e1894d1594534627afedcd4ba2104fda1ac3a6
927
py
Python
setup.py
YiuRULE/nats.py
3a78ba4c385e2069daf5ff560aadc30968af1ccd
[ "Apache-2.0" ]
null
null
null
setup.py
YiuRULE/nats.py
3a78ba4c385e2069daf5ff560aadc30968af1ccd
[ "Apache-2.0" ]
null
null
null
setup.py
YiuRULE/nats.py
3a78ba4c385e2069daf5ff560aadc30968af1ccd
[ "Apache-2.0" ]
null
null
null
from setuptools import setup from nats.aio.client import __version__ EXTRAS = { 'nkeys': ['nkeys'], } setup( name='nats-py', version=__version__, description='NATS client for Python', long_description='Python client for NATS, a lightweight, high-performance cloud native messaging system', classifiers=[ 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10' ], url='https://github.com/nats-io/nats.py', author='Waldemar Quevedo', author_email='[email protected]', license='Apache 2 License', packages=['nats', 'nats.aio', 'nats.protocol', 'nats.js'], zip_safe=True, extras_require=EXTRAS )
29.903226
109
0.636462
0
0
0
0
0
0
0
0
524
0.565264
c7e2f163fdb11300c85e2c17e27cb56d8ee3f07e
12,844
py
Python
example_python_files/MagicDAQ,MABoard,FullDemo.py
MagicDAQ/magicdaq_docs
896a2565a28d80c733d8a137211212816ef3fbe2
[ "MIT" ]
1
2021-05-20T21:11:13.000Z
2021-05-20T21:11:13.000Z
example_python_files/MagicDAQ,MABoard,FullDemo.py
MagicDAQ/magicdaq_docs
896a2565a28d80c733d8a137211212816ef3fbe2
[ "MIT" ]
null
null
null
example_python_files/MagicDAQ,MABoard,FullDemo.py
MagicDAQ/magicdaq_docs
896a2565a28d80c733d8a137211212816ef3fbe2
[ "MIT" ]
null
null
null
############################################################## #*** MagicDAQ USB DAQ and M&A Board General Demo Script *** ############################################################## #*** Websites *** # MagicDAQ Website: # https://www.magicdaq.com/ # API Docs Website: # https://magicdaq.github.io/magicdaq_docs/ #*** Install MagicDAQ *** # Download the MagicDAQ python package from pypi # Run this command in a command prompt: # python -m pip install magicdaq # Further docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ # MagicDAQ is only compatible with Python 3 on Windows. It does not work on Linux at the moment. It does not work with Python 2. #*** Using Auto Code Complete With PyCharm *** # Using a code editor like Pycharm and want to get auto complete working for the MagicDAQ package? # Docs: https://magicdaq.github.io/magicdaq_docs/#/PyCharmCodeCompletion ############################################################## #*** Imports *** ############################################################## import sys import time # Import MagicDAQ print('*** MagicDAQ Install Check ***') print('') try: # Import MagicDAQDevice object from magicdaq.api_class import MagicDAQDevice # Create daq_one object daq_one = MagicDAQDevice() print('GOOD: MagicDAQ API is installed properly.') # Get MagicDAQ Driver Version driver_version = daq_one.get_driver_version() if driver_version == 1.0: print('GOOD: MagicDAQ Driver is installed properly.') print('You are ready to use MagicDAQ!') else: print('ERROR: MagicDAQ Driver version not expected value: '+str(driver_version)) print('Try installing MagicDAQ using pip again.') print('https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: [email protected]') except Exception as exception_text: print('Original exception: ') print(exception_text) print('') print('ERROR: Unable to import MagicDAQ API.') print('Mostly likely, MagicDAQ has not been properly downloaded and installed using pip.') print('Please consult MagicDAQ API Docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: [email protected]') sys.exit(0) ############################################################## #*** MagicDAQ USB DAQ MDAQ300 Features Demo *** ############################################################## # This portion of the script shows off some of the USB DAQ's features # Hardware docs: https://www.magicdaq.com/product/magic-daq/ print('') print('*** MagicDAQ USB DAQ Demo ***') print('Ensure the USB DAQ is plugged into the computer using the USB cable.') print('The DAQ does not need to be connected to the M&A board.') print('') user_input = input('Press any key to continue.') #*** Open DAQ Device *** # Remember, the daq_one object has already been created in the above 'Imports' section # We must open the daq device before performing any hardware feature manipulation # https://magicdaq.github.io/magicdaq_docs/#/MagicDAQ_Basics daq_one.open_daq_device() ############################################################### #*** Analog Output Demo: Constant, Sine, and PWM on AO1 Pin *** ############################################################### print('') print('--- Analog Output Demo: Constant, Sine, and PWM Output ---') # Set constant 3 volt output voltage on AO1 pin daq_one.set_analog_output(1,3) print('Using an oscilloscope, place the scope probe on pin AO1 and connect the scope probe GND to one of the USB DAQs AGND pins') print('You should now observe a constant 3V') print('') user_input = input('Press any key to continue.') # Configure and start 300Hz sine wave with 2V amplitude on AO1 pin daq_one.configure_analog_output_sine_wave(1,300,amplitude=2) daq_one.start_analog_output_wave(1) print('You should now observe a 300Hz sine wave with 2V amplitude.') print('') user_input = input('Press any key to continue.') # Stop previous wave daq_one.stop_analog_output_wave(1) # Configure and start PWM wave, 200 Hz, 50% duty cycle, 3.3V amplitude daq_one.configure_analog_output_pwm_wave(1,200,50,amplitude=3.3) daq_one.start_analog_output_wave(1) print('You should now observe a 200Hz PWM wave, 50% duty cycle, with 3.3V amplitude.') print('') user_input = input('Press any key to continue.') # Stop the wave daq_one.stop_analog_output_wave(1) print('The wave should now stop. You could set it to GND using set_analog_ouput() if you wanted.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: PWM waves *** ############################################################### print('') print('--- Pulse Counter Pin Demo: PWM Waves ---') # Configure a 50 KHz frequency, 75% duty cycle, continuous PWM Wave on the counter pin (CTR0) # Note that unlike the analog output pins, the CTR0 pin always outputs at an amplitude of 3.3v when producing PWM waves daq_one.configure_counter_pwm(50000,75) # Start counter wave daq_one.start_counter_pwm() print('Place your scope probe on pin CTR0') print('You should see a 50kHz, 75% duty cycle PWM wave.') print('') user_input = input('Press any key to continue.') # Now stopping the counter PWM wave daq_one.stop_counter_pwm() print('The PWM wave will now stop.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: Pulse Counting *** ############################################################### print('') print('--- Pulse Counter Pin Demo: Pulse Counting ---') print('Use a piece of wire to bridge CTR0 to DGND several times') print('CTR0 has an internal pull up resistor. You are simulating a pulse pulling the voltage to GND.') print('You will have 8 sec to simulate some pulses.') print('') user_input = input('Press any key when you are ready to start.') # Start the Pulse Counter # Pulses will be counted on the falling edge daq_one.enable_pulse_counter() # Sleep for 8 sec time.sleep(8) # Read number of pulses print('Number of pulses counted: '+str(daq_one.read_pulse_counter())) print('You are using a piece of wire, so it is likely bouncing on and off the screw terminal, counting many pulses') print('') user_input = input('Stop simulating pulses. Press any key to continue.') print('') print('Now clearing the pulse counter') daq_one.clear_pulse_counter() print('Pulse count after clearing: '+str(daq_one.read_pulse_counter())) ############################################################### #*** Digital Pin Demo *** ############################################################### print('') print('--- Digital Pin Demo ---') # Set P0.0 pin LOW daq_one.set_digital_output(0,0) print('Place scope probe on pin P0.0, pin should be LOW') print('') user_input = input('Press any key to continue.') # Set P0.0 pin HIGH daq_one.set_digital_output(0,1) print('Place scope probe on pin P0.0, pin should be HIGH') print('') user_input = input('Press any key to continue.') ############################################################### #*** Analog Input Pin Demo *** ############################################################### print('') print('--- Analog Input Pin Demo ---') # Single ended voltage measurement print('Apply voltage to AI0 pin. If you dont have a power supply handy, you can run a wire from the +5V pin to the AI0 pin.') print('') user_input = input('Press any key to continue.') print('Voltage measured at AI0: '+str(daq_one.read_analog_input(0))) print('If you are using the +5V pin, remember that this voltage is derived from the USB Power supply, so it will be what ever your USB bus ir producing, probably something slightly less than 5V.') # If you want to perform a differential input measurement # daq_one.read_diff_analog_input() # https://magicdaq.github.io/magicdaq_docs/#/read_diff_analog_input ############################################################### #*** M&A Board Demo *** ############################################################### # M&A Board hardware spec: # https://www.magicdaq.com/product/ma-board-full-kit/ print('') print('*** M&A Board Demo ***') print('Ensure the USB DAQ is connected to the M&A board using the ribbon cable.') print('Ribbon cable pin out on page 6 of: ') print('https://www.magicdaq.com/mdaq350datasheet/') print('Use the provided power cable to apply power to the M&A board.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Relay Demo *** ############################################################### print('') print('--- Relay Demo ---') print('Setting all relays to closed.') daq_one.set_digital_output(7, 1) daq_one.set_digital_output(6, 1) daq_one.set_digital_output(5, 1) daq_one.set_digital_output(4, 1) time.sleep(1) relay_count = 1 digital_pin_count = 7 while relay_count <= 4: print('Relay #: ' + str(relay_count) + ' Digital Pin #: ' + str(digital_pin_count)) # Set relay to open print('Setting relay to OPEN.') daq_one.set_digital_output(digital_pin_count, 0) time.sleep(1) # Increment counters relay_count += 1 digital_pin_count -= 1 print('') print('') user_input = input('Press any key to continue.') ############################################################### #*** Vout Demo *** ############################################################### print('') print('--- Vout Demo ---') print('Vout provides a variable voltage power output capable of up to 2A') print('By characterizing your M&A board, or building a feedback loop; voltage accuracy of Vout can be made quite good.') print('See notes on page 4 of the M&A data sheet.') print('https://www.magicdaq.com/mdaq350datasheet/') # See the M&A board data sheet for the equation that describes the Vout to Vout_set (0 and 2.77 here) relationship print('') print('Vout_set Set to 0V.') print('Measure Vout with a multimeter. It should be about 10V') daq_one.set_analog_output(0, 0) print('') user_input = input('Press any key to continue.') print('Vout_set Set to 2.77V') print('Measure Vout with a multimeter. It should be about 5V') daq_one.set_analog_output(0, 2.77) print('') user_input = input('Press any key to continue.') ############################################################### #*** Low Current Measurement Demo: A1 *** ############################################################### print('') print('--- A1 Low Current Measurement Demo ---') print('Use the 3.3V board voltage and a 20K resistor to put 165uA through A1.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_4_voltage = daq_one.read_analog_input(4) print('Read voltage: ' + str(pin_4_voltage)) calculated_current_amps = pin_4_voltage / (332 * 97.863) ua_current = round((calculated_current_amps / .000001), 3) print('Calculated uA current: ' + str(ua_current)) ############################################################### #*** Current Measurement Demo: A2 *** ############################################################### print('') print('--- A2 Current Measurement Demo (+/- 5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A2.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_5_voltage = daq_one.read_analog_input(5) print('Read voltage: ' + str(pin_5_voltage)) calculated_current_amps = pin_5_voltage / (.01 * 200) # ma_current = round((calculated_current_amps / .001), 3) print('Calculated A current: ' + str(calculated_current_amps)) ############################################################### #*** Current Measurement Demo: A3 *** ############################################################### print('') print('--- A3 Current Measurement Demo (+/- 1.5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A3.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_6_voltage = daq_one.read_analog_input(6) print('Read voltage: ' + str(pin_6_voltage)) calculated_current_amps = pin_6_voltage / (.033 * 200) ma_current = round((calculated_current_amps / .001), 3) print('Calculated mA current: ' + str(ma_current)) ############################################################### #*** Demo Complete. *** ############################################################### # Close connection to daq daq_one.close_daq_device()
34.342246
196
0.617642
0
0
0
0
0
0
0
0
9,312
0.725008
c7e321ea7df7191ba4707163a3bf9a97bdfd5999
252
py
Python
src/onenutil/schemas/__init__.py
LemurPwned/onenote-utils
07778e6b2433cf28fab2afdbb01a318f284989dc
[ "MIT" ]
null
null
null
src/onenutil/schemas/__init__.py
LemurPwned/onenote-utils
07778e6b2433cf28fab2afdbb01a318f284989dc
[ "MIT" ]
null
null
null
src/onenutil/schemas/__init__.py
LemurPwned/onenote-utils
07778e6b2433cf28fab2afdbb01a318f284989dc
[ "MIT" ]
null
null
null
from .results import (ArticleSearchResult, EmbeddingsResult, SearchResult, TagResult, ZoteroExtractionResult) __all__ = [ "TagResult", "EmbeddingsResult", "ZoteroExtractionResult", "SearchResult", "ArticleSearchResult" ]
31.5
78
0.714286
0
0
0
0
0
0
0
0
88
0.349206
c7e32e60b520a7528f6c33e61490ce039febd1e0
2,257
py
Python
src/account/api/serializers.py
amirpsd/drf_blog_api
58be081a450840114af021e7412e469fad90456d
[ "MIT" ]
33
2022-02-11T12:16:29.000Z
2022-03-26T15:08:47.000Z
src/account/api/serializers.py
amirpsd/django_blog_api
58be081a450840114af021e7412e469fad90456d
[ "MIT" ]
null
null
null
src/account/api/serializers.py
amirpsd/django_blog_api
58be081a450840114af021e7412e469fad90456d
[ "MIT" ]
5
2022-02-11T13:03:52.000Z
2022-03-28T16:04:32.000Z
from django.contrib.auth import get_user_model from rest_framework import serializers class UsersListSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = [ "id", "phone", "first_name", "last_name", "author", ] class UserDetailUpdateDeleteSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() exclude = [ "password", ] class UserProfileSerializer(serializers.ModelSerializer): phone = serializers.ReadOnlyField() class Meta: model = get_user_model() fields = [ "id", "phone", "first_name", "last_name", "two_step_password", ] class AuthenticationSerializer(serializers.Serializer): phone = serializers.CharField( max_length=12, min_length=12, ) def validate_phone(self, value): from re import match if not match("^989\d{2}\s*?\d{3}\s*?\d{4}$", value): raise serializers.ValidationError("Invalid phone number.") return value class OtpSerializer(serializers.Serializer): code = serializers.CharField( max_length=6, min_length=6, ) password = serializers.CharField( max_length=20, required=False, ) def validate_code(self, value): try: int(value) except ValueError as _: raise serializers.ValidationError("Invalid Code.") return value class GetTwoStepPasswordSerializer(serializers.Serializer): """ Base serializer two-step-password. """ password = serializers.CharField( max_length=20, ) confirm_password = serializers.CharField( max_length=20, ) def validate(self, data): password = data.get('password') confirm_password = data.get('confirm_password') if password != confirm_password: raise serializers.ValidationError( {"Error": "Your passwords didn't match."} ) return data class ChangeTwoStepPasswordSerializer(GetTwoStepPasswordSerializer): old_password = serializers.CharField( max_length=20, )
23.030612
70
0.613646
2,149
0.952149
0
0
0
0
0
0
292
0.129375
c7e5a0b18daf16984d985969f34fb443eae76979
3,733
py
Python
generate_figure9.py
IBM/Simultaneous-diagonalization
385545401395a2e07f109441db4751a5dcf8f0a4
[ "Apache-2.0" ]
null
null
null
generate_figure9.py
IBM/Simultaneous-diagonalization
385545401395a2e07f109441db4751a5dcf8f0a4
[ "Apache-2.0" ]
null
null
null
generate_figure9.py
IBM/Simultaneous-diagonalization
385545401395a2e07f109441db4751a5dcf8f0a4
[ "Apache-2.0" ]
1
2022-03-14T18:36:12.000Z
2022-03-14T18:36:12.000Z
# Copyright 2022 IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is part of the code to reproduce the results in the paper: # E. van den Berg and Kristan Temme, "Circuit optimization of Hamiltonian # simulation by simultaneous diagonalization of Pauli clusters," Quantum 4, # p. 322, 2020. https://doi.org/10.22331/q-2020-09-12-322 import os import cl import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.ticker import FuncFormatter from itertools import permutations def plotZ(Z, exportFilename=None) : (m,n) = Z.shape cmap = colors.LinearSegmentedColormap.from_list("white_and_gray", [(1, 1, 1), (0.6, 0.6, 0.6)], N=2) fig, ax = plt.subplots() im = ax.imshow(Z.T,cmap=cmap) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_xticks([]) for i in range(1,m) : plt.plot([-0.5+i,-0.5+i],[-0.5,-0.5+n],color='k',linewidth=0.7) for i in range(1,T.n) : plt.plot([-0.5,-0.5+m],[-0.5+i,-0.5+i],color='k',linewidth=0.7) for i in range(n) : v = Z[:,i] c = np.sum(v[:-1] != v[1:]) + v[0] + v[-1] ax.text(m-0.25,i, str(c), fontsize=12, ha='left', va='center') if (exportFilename) : plt.gcf().tight_layout() plt.savefig(exportFilename + "-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop %s-uncropped.pdf %s.pdf" % (exportFilename, exportFilename)) else : plt.show() # Make sure the figure directory exists cl.ensureDirExists('fig') # Create the test problem M = cl.create_basic_problem(7,0) C = cl.generate_full_rank_weights(20,7,seed=1) M = np.dot(C,M) % 2 # Apply diagonalization and get the final Z matrix T = cl.Tableau(M) R = cl.RecordOperations(T.n) T.addRecorder(R) cl.zeroX_algorithm1_cz(T) T = cl.Tableau(M) R.apply(T) Z = T.getZ() # Plot the results plotZ(Z,'fig/Figure_9a') print("Original: %d" % cl.countCNot(Z)) idx = cl.orderZ(Z) plotZ(Z[idx,:],'fig/Figure_9b') print("Sorted : %d" % cl.countCNot(Z[idx,:])) # Generate histogram of actual permutations if (True) : base = list(range(7)) count = [] for idx2 in permutations(base) : idx1 = cl.orderZ(Z[:,idx2]) count.append(cl.countCNot(Z[idx1,:][:,idx2])) def format_percentage(y, position): return str(100 * y) # Count is always even plt.hist(count,bins=list(range(min(count)-1,max(count)+2,2)),rwidth=0.9,density=True) plt.gca().set_xticklabels([str(x) for x in range(min(count),max(count)+1,2)],fontsize=16) plt.gca().set_xticks(list(range(min(count),max(count)+1,2))) plt.gca().yaxis.set_major_formatter(FuncFormatter(format_percentage)) plt.xlabel('Number of CNOT gates',fontsize=16) plt.ylabel("Percentage",fontsize=16) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(16) plt.gcf().tight_layout() ratio = 0.5 xleft, xright = plt.gca().get_xlim() ybottom, ytop = plt.gca().get_ylim() plt.gca().set_aspect(abs((xright-xleft)/(ybottom-ytop))*ratio) plt.savefig("fig/Figure_9c-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop fig/Figure_9c-uncropped.pdf fig/Figure_9c.pdf")
31.905983
103
0.682561
0
0
0
0
0
0
0
0
1,351
0.361907
c7e5bf2a376cfb8077d1056296fc71ad74e416d7
793
py
Python
undeployed/legacy/Landsat/L7GapFiller_ArcInterface.py
NASA-DEVELOP/dnppy
8f7ef6f0653f5a4ea730ee557c72a2c89c06ce0b
[ "NASA-1.3" ]
65
2015-09-10T12:59:56.000Z
2022-02-27T22:09:03.000Z
undeployed/legacy/Landsat/L7GapFiller_ArcInterface.py
snowzm/dnppy
8f7ef6f0653f5a4ea730ee557c72a2c89c06ce0b
[ "NASA-1.3" ]
40
2015-04-08T19:23:30.000Z
2015-08-04T15:53:11.000Z
undeployed/legacy/Landsat/L7GapFiller_ArcInterface.py
snowzm/dnppy
8f7ef6f0653f5a4ea730ee557c72a2c89c06ce0b
[ "NASA-1.3" ]
45
2015-08-14T19:09:38.000Z
2022-02-15T18:53:16.000Z
#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: qgeddes # # Created: 25/04/2013 # Copyright: (c) qgeddes 2013 # Licence: <your licence> #------------------------------------------------------------------------------- import L7GapFiller Scenes=arcpy.GetParameterAsText(0) Scenes=Scenes.split(";") OutputFolder=arcpy.GetParameterAsText(1) OutputFile= arcpy.GetParameterAsText(2) Output=OutputFolder+"\\"+OutputFile CloudMasks= arcpy.GetParameterAsText(3) CloudMasks= CloudMasks.split(";") Z=arcpy.GetParameter(4) arcpy.AddMessage(Z) arcpy.env.scratchWorkspace=OutputFolder arcpy.CheckOutExtension("Spatial") arcpy.env.overwriteOutput=True L7GapFiller.L7GapFill(Scenes, Output,CloudMasks,Z)
26.433333
80
0.600252
0
0
0
0
0
0
0
0
320
0.403531
c7e62258b56e4e6157b37bc5877b4350133a63c1
1,676
py
Python
tests/sentry/api/serializers/test_saved_search.py
practo/sentry
82f530970ce205696469fa702246396acfd947a1
[ "BSD-3-Clause" ]
4
2019-05-27T13:55:07.000Z
2021-03-30T07:05:09.000Z
tests/sentry/api/serializers/test_saved_search.py
practo/sentry
82f530970ce205696469fa702246396acfd947a1
[ "BSD-3-Clause" ]
99
2019-05-20T14:16:33.000Z
2021-01-19T09:25:15.000Z
tests/sentry/api/serializers/test_saved_search.py
practo/sentry
82f530970ce205696469fa702246396acfd947a1
[ "BSD-3-Clause" ]
1
2020-08-10T07:55:40.000Z
2020-08-10T07:55:40.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import import six from sentry.api.serializers import serialize from sentry.models import SavedSearch from sentry.models.savedsearch import DEFAULT_SAVED_SEARCHES from sentry.testutils import TestCase class SavedSearchSerializerTest(TestCase): def test_simple(self): search = SavedSearch.objects.create( project=self.project, name='Something', query='some query' ) result = serialize(search) assert result['id'] == six.text_type(search.id) assert result['projectId'] == six.text_type(search.project_id) assert result['name'] == search.name assert result['query'] == search.query assert result['isDefault'] == search.is_default assert result['isUserDefault'] == search.is_default assert result['dateCreated'] == search.date_added assert not result['isPrivate'] assert not result['isGlobal'] def test_global(self): default_saved_search = DEFAULT_SAVED_SEARCHES[0] search = SavedSearch( name=default_saved_search['name'], query=default_saved_search['query'], is_global=True, ) result = serialize(search) assert result['id'] == six.text_type(search.id) assert result['projectId'] is None assert result['name'] == search.name assert result['query'] == search.query assert not result['isDefault'] assert not result['isUserDefault'] assert result['dateCreated'] == search.date_added assert not result['isPrivate'] assert result['isGlobal']
33.52
70
0.648568
1,414
0.843675
0
0
0
0
0
0
235
0.140215
c7e63e3b77d732305764d664c862b2625865bf3a
864
py
Python
xastropy/files/general.py
bpholden/xastropy
66aff0995a84c6829da65996d2379ba4c946dabe
[ "BSD-3-Clause" ]
3
2015-08-23T00:32:58.000Z
2020-12-31T02:37:52.000Z
xastropy/files/general.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
104
2015-07-17T18:31:54.000Z
2018-06-29T17:04:09.000Z
xastropy/files/general.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
16
2015-07-17T15:50:37.000Z
2019-04-21T03:42:47.000Z
""" #;+ #; NAME: #; general #; Version 1.0 #; #; PURPOSE: #; Module for monkeying with files and filenames #; 172Sep-2014 by JXP #;- #;------------------------------------------------------------------------------ """ # Import libraries import numpy as np from astropy.io import fits from astropy.io import ascii import os, pdb #### ############################### # Deal with .gz extensions, usually on FITS files # See if filenm exists, if so pass it back # def chk_for_gz(filenm,chk=None): import os, pdb # File exist? if os.path.lexists(filenm): chk=1 return filenm, chk # .gz already if filenm.find('.gz') > 0: chk=0 return filenm, chk # Add .gz if os.path.lexists(filenm+'.gz'): chk=1 return filenm+'.gz', chk else: chk=0 return filenm, chk
19.2
80
0.508102
0
0
0
0
0
0
0
0
425
0.491898
c7e69418daeb84532c16aa76c96e7a0136b72521
655
py
Python
setup.py
muatik/genderizer
9866bf0371d1d984f6c4465ff78025d911f6a648
[ "MIT" ]
54
2015-01-19T22:53:48.000Z
2021-06-23T03:48:05.000Z
setup.py
nejdetckenobi/genderizer
9866bf0371d1d984f6c4465ff78025d911f6a648
[ "MIT" ]
4
2016-05-23T13:52:12.000Z
2021-05-14T10:24:37.000Z
setup.py
nejdetckenobi/genderizer
9866bf0371d1d984f6c4465ff78025d911f6a648
[ "MIT" ]
18
2015-01-30T00:06:40.000Z
2021-03-12T14:56:12.000Z
#!/usr/bin/env python try: from setuptools.core import setup except ImportError: from distutils.core import setup setup(name='genderizer', version='0.1.2.3', license='MIT', description='Genderizer tries to infer gender information looking at first name and/or making text analysis', long_description=open('README.md').read(), url='https://github.com/muatik/genderizer', author='Mustafa Atik', author_email='[email protected]', maintainer='Mustafa Atik', maintainer_email='[email protected]', packages=['genderizer'], package_data={'genderizer': ['data/*']}, platforms='any')
31.190476
115
0.668702
0
0
0
0
0
0
0
0
293
0.447328
c7e75b487c0cdec2958e2495ad3a66ff9804a5e3
1,855
py
Python
ingestion/tests/unit/great_expectations/test_ometa_validation_action.py
ulixius9/OpenMetadata
f121698d968717f0932f685ef2a512c2a4d92438
[ "Apache-2.0" ]
null
null
null
ingestion/tests/unit/great_expectations/test_ometa_validation_action.py
ulixius9/OpenMetadata
f121698d968717f0932f685ef2a512c2a4d92438
[ "Apache-2.0" ]
null
null
null
ingestion/tests/unit/great_expectations/test_ometa_validation_action.py
ulixius9/OpenMetadata
f121698d968717f0932f685ef2a512c2a4d92438
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test suite for the action module implementation """ import os from unittest import mock from jinja2 import Environment from pytest import mark from metadata.great_expectations.action import OpenMetadataValidationAction from metadata.great_expectations.utils.ometa_config_handler import render_template @mark.parametrize( "input,expected", [ (None, "list_entities"), ("service_name", "get_by_name"), ], ) def test_get_table_entity(input, expected, mocked_ometa, mocked_ge_data_context): """Test get table entity""" ometa_validation = OpenMetadataValidationAction( data_context=mocked_ge_data_context, config_file_path="my/config/path", ometa_service_name=input, ) res = ometa_validation._get_table_entity("database", "schema", "table") assert res._type == expected def test_create_jinja_environment(fixture_jinja_environment): """Test create jinja environment""" assert isinstance(fixture_jinja_environment, Environment) @mock.patch.dict(os.environ, {"API_VERSION": "v1"}) def test_render_template(fixture_jinja_environment): """Test create jinja environment""" tmplt = render_template(fixture_jinja_environment) assert tmplt == "hostPort: http://localhost:8585\napiVersion: v1"
34.351852
82
0.755256
0
0
0
0
803
0.432884
0
0
878
0.473315
c7e7bdfc8b236f444e8faf6ff083ca3ec5dec358
1,285
py
Python
tests/integration/Containers.py
adnrs96/runtime
e824224317e6aa108cf06968474fc44fa33488d6
[ "Apache-2.0" ]
null
null
null
tests/integration/Containers.py
adnrs96/runtime
e824224317e6aa108cf06968474fc44fa33488d6
[ "Apache-2.0" ]
null
null
null
tests/integration/Containers.py
adnrs96/runtime
e824224317e6aa108cf06968474fc44fa33488d6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from storyruntime.Containers import Containers from storyruntime.constants.ServiceConstants import ServiceConstants import storyscript def test_containers_format_command(story): """ Ensures a simple resolve can be performed """ story_text = 'alpine echo msg:"foo"\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': { 'arguments': {'msg': {'type': 'string'}} } } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo', '{"msg":"foo"}'] def test_containers_format_command_no_arguments(story): story_text = 'alpine echo\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': {} } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo']
26.770833
68
0.529183
0
0
0
0
0
0
0
0
269
0.209339
c7e91e12c70be5743a54ddceae5d419516ca3301
1,367
py
Python
project_name/core/admin.py
cosmunsoftwares/django-boilerplate
147aa7f59901d0fb95d41acf8ec118c6830267f8
[ "MIT" ]
3
2018-11-30T19:51:35.000Z
2020-10-20T00:28:49.000Z
project_name/core/admin.py
cosmun-softwares/django-boilerplate
147aa7f59901d0fb95d41acf8ec118c6830267f8
[ "MIT" ]
6
2020-04-09T20:00:45.000Z
2022-02-10T08:25:47.000Z
project_name/core/admin.py
cosmunsoftwares/django-boilerplate
147aa7f59901d0fb95d41acf8ec118c6830267f8
[ "MIT" ]
1
2018-08-27T21:44:44.000Z
2018-08-27T21:44:44.000Z
from django.contrib import admin from django.shortcuts import redirect from django.utils.safestring import mark_safe from django.contrib.admin.widgets import AdminFileWidget class AdminImageWidget(AdminFileWidget): def render(self, name, value, attrs=None, renderer=None): output = [] if value and getattr(value, "url", None): output.append(u'<a href="%s" target="_blank">%s</a>' % (value.url, thumbnail(value))) output.append(super(AdminFileWidget, self).render(name, value, attrs, renderer)) return mark_safe(u''.join(output)) class ImageWidgetAdmin(admin.ModelAdmin): image_fields = [] def formfield_for_dbfield(self, db_field, **kwargs): if db_field.name in self.image_fields: kwargs.pop("request", None) kwargs['widget'] = AdminImageWidget return db_field.formfield(**kwargs) return super(ImageWidgetAdmin, self).formfield_for_dbfield(db_field, **kwargs) def redirect_one_object(model, obj): response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/add/') if obj: response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/{obj.pk}/change/') return response def thumbnail(obj, size='col-md-2'): return mark_safe('<img src="{}" class="img-thumbnail {} p-0">'.format(obj.url, size))
37.972222
104
0.688369
793
0.580102
0
0
0
0
0
0
256
0.187271
c7e9c8cc7086c2b1fd149895cfcda90298ab4af1
1,222
py
Python
src/5vents.py
subhash686/aoc-2021
a01fa07f94148b7072c3ba4c854b546862d3486a
[ "Apache-2.0" ]
null
null
null
src/5vents.py
subhash686/aoc-2021
a01fa07f94148b7072c3ba4c854b546862d3486a
[ "Apache-2.0" ]
null
null
null
src/5vents.py
subhash686/aoc-2021
a01fa07f94148b7072c3ba4c854b546862d3486a
[ "Apache-2.0" ]
null
null
null
import os plane = [[0 for i in range(1000)] for j in range(1000)] count = [0] def overlapping_vents(): path = os.getcwd() file_path = os.path.join(path, 'vents.txt') file1 = open(file_path, 'r') Lines = file1.readlines() for line in Lines: input = line.strip() points = input.split(" -> ") plot(points[0], points[1]) print(count[0]) def plot(point1, point2): p1 = point1.split(",") p2 = point2.split(",") x1 = int(p1[0]) x2 = int(p2[0]) y1 = int(p1[1]) y2 = int(p2[1]) if x1 == x2 and y1 == y2: addpoints(x1, y1) elif x1 == x2: if y1 > y2: y1, y2 = y2, y1 for y in range(y1, y2+1): addpoints(x1, y) elif y1 == y2: if x1 > x2: x1, x2 = x2, x1 for x in range(x1, x2+1): addpoints(x, y1) else: slope = (y2-y1)/ (x2-x1) intercept = y1 - (x1 * slope) if x1 > x2: x1, x2 = x2, x1 for x in range(x1, x2+1): addpoints(x, int(x*slope)+int(intercept)) def addpoints(x, y): if plane[x][y] == 1: count[0] +=1 plane[x][y] += 1 if __name__ == "__main__": overlapping_vents()
22.218182
55
0.488543
0
0
0
0
0
0
0
0
36
0.02946
c7eb057d4134335a7eb1bab05618a4866e334bff
1,217
py
Python
problems/test_0073_m_plus_n_space.py
chrisxue815/leetcode_python
dec3c160d411a5c19dc8e9d96e7843f0e4c36820
[ "Unlicense" ]
1
2017-06-17T23:47:17.000Z
2017-06-17T23:47:17.000Z
problems/test_0073_m_plus_n_space.py
chrisxue815/leetcode_python
dec3c160d411a5c19dc8e9d96e7843f0e4c36820
[ "Unlicense" ]
null
null
null
problems/test_0073_m_plus_n_space.py
chrisxue815/leetcode_python
dec3c160d411a5c19dc8e9d96e7843f0e4c36820
[ "Unlicense" ]
null
null
null
import unittest class Solution: def setZeroes(self, matrix): """ :type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead. """ rows = [0] * len(matrix) cols = [0] * len(matrix[0]) for i, row in enumerate(matrix): for j, num in enumerate(row): if not num: rows[i] = 1 cols[j] = 1 for row, num in enumerate(rows): if num: for j in range(len(matrix[0])): matrix[row][j] = 0 for col, num in enumerate(cols): if num: for i in range(len(matrix)): matrix[i][col] = 0 class Test(unittest.TestCase): def test(self): self._test( [ [1, 2, 0], [1, 2, 3], [0, 2, 3], ], [ [0, 0, 0], [0, 2, 0], [0, 0, 0], ] ) def _test(self, matrix, expected): Solution().setZeroes(matrix) self.assertEqual(expected, matrix) if __name__ == '__main__': unittest.main()
23.403846
76
0.419063
1,146
0.94166
0
0
0
0
0
0
140
0.115037
c7eb49aae87e95e2b4d243e5c05c7251bfbcbd52
2,508
py
Python
xlsxwriter/test/worksheet/test_write_print_options.py
Aeon1/XlsxWriter
6871b6c3fe6c294632054ea91f23d9e27068bcc1
[ "BSD-2-Clause-FreeBSD" ]
2
2019-07-25T06:08:09.000Z
2019-11-01T02:33:56.000Z
xlsxwriter/test/worksheet/test_write_print_options.py
Aeon1/XlsxWriter
6871b6c3fe6c294632054ea91f23d9e27068bcc1
[ "BSD-2-Clause-FreeBSD" ]
13
2019-07-14T00:29:05.000Z
2019-11-26T06:16:46.000Z
xlsxwriter/test/worksheet/test_write_print_options.py
Aeon1/XlsxWriter
6871b6c3fe6c294632054ea91f23d9e27068bcc1
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, [email protected] # import unittest from ...compatibility import StringIO from ...worksheet import Worksheet class TestWritePrintOptions(unittest.TestCase): """ Test the Worksheet _write_print_options() method. """ def setUp(self): self.fh = StringIO() self.worksheet = Worksheet() self.worksheet._set_filehandle(self.fh) def test_write_print_options_default(self): """Test the _write_print_options() method without options""" self.worksheet._write_print_options() exp = """""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_hcenter(self): """Test the _write_print_options() method with horizontal center""" self.worksheet.center_horizontally() self.worksheet._write_print_options() exp = """<printOptions horizontalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_vcenter(self): """Test the _write_print_options() method with vertical center""" self.worksheet.center_vertically() self.worksheet._write_print_options() exp = """<printOptions verticalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_center(self): """Test the _write_print_options() method with horiz + vert center""" self.worksheet.center_horizontally() self.worksheet.center_vertically() self.worksheet._write_print_options() exp = """<printOptions horizontalCentered="1" verticalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_gridlines_default(self): """Test the _write_print_options() method with default value""" self.worksheet.hide_gridlines() self.worksheet._write_print_options() exp = """""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_gridlines_0(self): """Test the _write_print_options() method with 0 value""" self.worksheet.hide_gridlines(0) self.worksheet._write_print_options() exp = """<printOptions gridLines="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp)
28.179775
79
0.637161
2,243
0.894338
0
0
0
0
0
0
811
0.323365
c7ebfcaf02d689a33ed8274d051230038106dff7
1,011
py
Python
neo4j_helper.py
smartaec/OpenBridgeGraph
61ca64ed339af4e77d928f83934a308277a79d81
[ "MIT" ]
null
null
null
neo4j_helper.py
smartaec/OpenBridgeGraph
61ca64ed339af4e77d928f83934a308277a79d81
[ "MIT" ]
null
null
null
neo4j_helper.py
smartaec/OpenBridgeGraph
61ca64ed339af4e77d928f83934a308277a79d81
[ "MIT" ]
null
null
null
from neo4j.v1 import GraphDatabase #neo4j==1.7.0 uri="bolt://localhost:7687" driver=GraphDatabase.driver(uri, auth=("neo4j", "testneo4j")) def execute_queries(scripts,message=None): with driver.session() as session: tx=session.begin_transaction() res=tx.run(';'.join(scripts)) tx.commit() return res def execute_query(script,message=None): with driver.session() as session: return session.run(script,message) def execute_read(cypher_func,message): with driver.session() as session: return session.read_transaction(cypher_func,message) def execute_write(cypher_func,message): with driver.session() as session: return session.write_transaction(cypher_func,message) def run_query(tx,script): return tx.run(script) def print_query(tx,name): for record in tx.run("MATCH (a:Person)-[:KNOWS]->(f) WHERE a.name = {name} RETURN f.name",name=name): print(record["f.name"]) return "" #execute_read(print_query,'Alice')
29.735294
105
0.69634
0
0
0
0
0
0
0
0
169
0.167161
c7edb1043a4f03dfdc950843e15b617197779da3
9,077
py
Python
tests/unit/test_juju.py
KellenRenshaw/hotsos
e3fc51ab7f8af606a5846a3486a7fda23d761583
[ "Apache-2.0" ]
null
null
null
tests/unit/test_juju.py
KellenRenshaw/hotsos
e3fc51ab7f8af606a5846a3486a7fda23d761583
[ "Apache-2.0" ]
null
null
null
tests/unit/test_juju.py
KellenRenshaw/hotsos
e3fc51ab7f8af606a5846a3486a7fda23d761583
[ "Apache-2.0" ]
null
null
null
import os import tempfile import mock from . import utils from hotsos.core.config import setup_config from hotsos.core.ycheck.scenarios import YScenarioChecker from hotsos.core.issues.utils import KnownBugsStore, IssuesStore from hotsos.plugin_extensions.juju import summary JOURNALCTL_CAPPEDPOSITIONLOST = """ Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] CollectionCloner ns:juju.txns.log finished cloning with status: QueryPlanKilled: PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366) Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] collection clone for 'juju.txns.log' failed due to QueryPlanKilled: While cloning collection 'juju.txns.log' there was an error 'PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366)' """ # noqa RABBITMQ_CHARM_LOGS = """ 2021-02-17 08:18:44 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members 2021-02-17 08:20:34 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members """ # noqa UNIT_LEADERSHIP_ERROR = """ 2021-09-16 10:28:25 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:28:47 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:06 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:53 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:30:41 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" """ # noqa class JujuTestsBase(utils.BaseTestCase): def setUp(self): super().setUp() setup_config(PLUGIN_NAME='juju') class TestJujuSummary(JujuTestsBase): def test_summary_keys(self): inst = summary.JujuSummary() self.assertEqual(list(inst.output.keys()), ['charm-repo-info', 'charms', 'machine', 'services', 'units', 'version']) def test_service_info(self): expected = {'ps': ['jujud (1)'], 'systemd': { 'enabled': ['jujud-machine-1']} } inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['services'], expected) def test_machine_info(self): inst = summary.JujuSummary() self.assertTrue(inst.plugin_runnable) actual = self.part_output_to_actual(inst.output) self.assertEqual(actual['version'], '2.9.22') self.assertEqual(actual['machine'], '1') @mock.patch('hotsos.core.plugins.juju.JujuMachine') def test_get_lxd_machine_info(self, mock_machine): mock_machine.return_value = mock.MagicMock() mock_machine.return_value.id = '0-lxd-11' mock_machine.return_value.version = '2.9.9' inst = summary.JujuSummary() actual = self.part_output_to_actual(inst.output) self.assertEqual(actual['version'], '2.9.9') self.assertEqual(actual['machine'], '0-lxd-11') def test_charm_versions(self): expected = ['ceph-osd-508', 'neutron-openvswitch-457', 'nova-compute-589'] inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['charms'], expected) def test_get_unit_info(self): expected = {'local': ['ceph-osd-0', 'neutron-openvswitch-1', 'nova-compute-0']} inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['units'], expected) class TestJujuScenarios(JujuTestsBase): @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('juju_core_bugs.yaml')) @mock.patch('hotsos.core.ycheck.engine.properties.CLIHelper') def test_1852502(self, mock_helper): mock_helper.return_value = mock.MagicMock() mock_helper.return_value.journalctl.return_value = \ JOURNALCTL_CAPPEDPOSITIONLOST.splitlines(keepends=True) YScenarioChecker()() mock_helper.return_value.journalctl.assert_called_with( unit='juju-db') msg_1852502 = ('known mongodb bug identified - ' 'https://jira.mongodb.org/browse/TOOLS-1636 ' 'Workaround is to pass --no-logs to juju ' 'create-backup. This is an issue only with Mongo ' '3. Mongo 4 does not have this issue. Upstream is ' 'working on migrating to Mongo 4 in the Juju 3.0 ' 'release.') expected = {'bugs-detected': [{'id': 'https://bugs.launchpad.net/bugs/1852502', 'desc': msg_1852502, 'origin': 'juju.01part'}]} self.assertEqual(KnownBugsStore().load(), expected) @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('juju_core_bugs.yaml')) def test_1910958(self): with tempfile.TemporaryDirectory() as dtmp: setup_config(DATA_ROOT=dtmp) logfile = os.path.join(dtmp, 'var/log/juju/unit-rabbitmq-server-0.log') os.makedirs(os.path.dirname(logfile)) with open(logfile, 'w') as fd: fd.write(RABBITMQ_CHARM_LOGS) YScenarioChecker()() expected = {'bugs-detected': [{'id': 'https://bugs.launchpad.net/bugs/1910958', 'desc': ('Unit unit-rabbitmq-server-0 failed to start due ' 'to members in relation 236 that cannot be ' 'removed.'), 'origin': 'juju.01part'}]} self.assertEqual(KnownBugsStore().load(), expected) @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('jujud_checks.yaml')) @mock.patch('hotsos.core.host_helpers.systemd.ServiceChecksBase.processes', {}) def test_jujud_checks(self): YScenarioChecker()() msg = ('No jujud processes found running on this host but it seems ' 'there should be since Juju is installed.') issues = list(IssuesStore().load().values())[0] self.assertEqual([issue['desc'] for issue in issues], [msg]) @mock.patch('hotsos.core.ycheck.engine.properties.CLIHelper') @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('charm_checks.yaml')) def test_unit_checks(self, mock_cli): mock_cli.return_value = mock.MagicMock() with tempfile.TemporaryDirectory() as dtmp: setup_config(DATA_ROOT=dtmp) logfile = os.path.join(dtmp, 'var/log/juju/unit-keystone-2.log') os.makedirs(os.path.dirname(logfile)) with open(logfile, 'w') as fd: fd.write(UNIT_LEADERSHIP_ERROR) # first try outside age limit mock_cli.return_value.date.return_value = "2021-09-25 00:00:00" YScenarioChecker()() self.assertEqual(IssuesStore().load(), {}) # then within mock_cli.return_value.date.return_value = "2021-09-17 00:00:00" YScenarioChecker()() msg = ("Juju unit(s) 'keystone' are showing leadership errors in " "their logs from the last 7 days. Please investigate.") issues = list(IssuesStore().load().values())[0] self.assertEqual([issue['desc'] for issue in issues], [msg])
51.282486
344
0.637435
6,335
0.697918
0
0
4,551
0.501377
0
0
4,126
0.454555
c7ef7d842b61d4e084cbe5d2d84903334c53e8d0
9,626
py
Python
tools/SPGAN/main.py
by-liu/OpenUnReID
2260d8e16588a992631c9c84e6cee4304ae8593d
[ "Apache-2.0" ]
null
null
null
tools/SPGAN/main.py
by-liu/OpenUnReID
2260d8e16588a992631c9c84e6cee4304ae8593d
[ "Apache-2.0" ]
null
null
null
tools/SPGAN/main.py
by-liu/OpenUnReID
2260d8e16588a992631c9c84e6cee4304ae8593d
[ "Apache-2.0" ]
null
null
null
import argparse import collections import shutil import sys import time from datetime import timedelta from pathlib import Path import torch from torch.nn.parallel import DataParallel, DistributedDataParallel try: # PyTorch >= 1.6 supports mixed precision training from torch.cuda.amp import autocast amp_support = True except: amp_support = False from openunreid.apis import GANBaseRunner, set_random_seed, infer_gan from openunreid.core.solvers import build_lr_scheduler, build_optimizer from openunreid.data import ( build_test_dataloader, build_train_dataloader, build_val_dataloader, ) from openunreid.models import build_gan_model from openunreid.models.losses import build_loss from openunreid.models.utils.extract import extract_features from openunreid.utils.config import ( cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file, ) from openunreid.utils.dist_utils import init_dist, synchronize from openunreid.utils.file_utils import mkdir_if_missing from openunreid.utils.logger import Logger class SPGANRunner(GANBaseRunner): def train_step(self, iter, batch): data_src, data_tgt = batch[0], batch[1] self.real_A = data_src['img'].cuda() self.real_B = data_tgt['img'].cuda() # Forward self.fake_B = self.model['G_A'](self.real_A) # G_A(A) self.fake_A = self.model['G_B'](self.real_B) # G_B(B) self.rec_A = self.model['G_B'](self.fake_B) # G_B(G_A(A)) self.rec_B = self.model['G_A'](self.fake_A) # G_A(G_B(B)) # G_A and G_B if iter % 2 == 0: self.set_requires_grad([self.model['D_A'], self.model['D_B'], self.model['Metric']], False) # save memory if self.scaler is None: self.optimizer['G'].zero_grad() else: with autocast(enabled=False): self.optimizer['G'].zero_grad() if self._epoch > 1: self.backward_G(retain_graph=True) self.backward_GM() else: self.backward_G() if self.scaler is None: self.optimizer['G'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['G']) # SiaNet for SPGAN if self._epoch > 0: self.set_requires_grad([self.model['Metric']], True) if self.scaler is None: self.optimizer['Metric'].zero_grad() else: with autocast(enabled=False): self.optimizer['Metric'].zero_grad() self.backward_M() if self.scaler is None: self.optimizer['Metric'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['Metric']) # D_A and D_B self.set_requires_grad([self.model['D_A'], self.model['D_B']], True) # self.optimizer['D'].zero_grad() # self.backward_D() # self.optimizer['D'].step() if self.scaler is None: self.optimizer['D'].zero_grad() else: with autocast(enabled=False): self.optimizer['D'].zero_grad() self.backward_D() if self.scaler is None: self.optimizer['D'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['D']) # save translated images if self._rank == 0: self.save_imgs(['real_A', 'real_B', 'fake_A', 'fake_B', 'rec_A', 'rec_B']) return 0 def backward_GM(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A) fake_B_metric = self.model['Metric'](self.fake_B) # positive pairs loss_pos = self.criterions['sia_G'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_G'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_G'](fake_B_metric, real_B_metric, 0) + \ self.criterions['sia_G'](fake_A_metric, real_A_metric, 0) loss_M = (loss_pos + 0.5 * loss_neg) / 4.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_G'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_G': loss_M.item()} self.train_progress.update(meters) def backward_M(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A.detach()) fake_B_metric = self.model['Metric'](self.fake_B.detach()) # positive pairs loss_pos = self.criterions['sia_M'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_M'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_M'](real_A_metric, real_B_metric, 0) loss_M = (loss_pos + 2 * loss_neg) / 3.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_M'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_M': loss_M.item()} self.train_progress.update(meters) def parge_config(): parser = argparse.ArgumentParser(description="SPGAN training") parser.add_argument("config", help="train config file path") parser.add_argument( "--work-dir", help="the dir to save logs and models", default="" ) parser.add_argument("--resume-from", help="the checkpoint file to resume from") parser.add_argument( "--launcher", type=str, choices=["none", "pytorch", "slurm"], default="none", help="job launcher", ) parser.add_argument("--tcp-port", type=str, default="5017") parser.add_argument( "--set", dest="set_cfgs", default=None, nargs=argparse.REMAINDER, help="set extra config keys if needed", ) args = parser.parse_args() cfg_from_yaml_file(args.config, cfg) assert len(list(cfg.TRAIN.datasets.keys()))==2, \ "the number of datasets for domain-translation training should be two" cfg.launcher = args.launcher cfg.tcp_port = args.tcp_port if not args.work_dir: args.work_dir = Path(args.config).stem cfg.work_dir = cfg.LOGS_ROOT / args.work_dir mkdir_if_missing(cfg.work_dir) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs, cfg) shutil.copy(args.config, cfg.work_dir / "config.yaml") return args, cfg def main(): start_time = time.monotonic() # init distributed training args, cfg = parge_config() dist = init_dist(cfg) set_random_seed(cfg.TRAIN.seed, cfg.TRAIN.deterministic) synchronize() # init logging file logger = Logger(cfg.work_dir / 'log.txt', debug=False) sys.stdout = logger print("==========\nArgs:{}\n==========".format(args)) log_config_to_file(cfg) # build train loader train_loader, _ = build_train_dataloader(cfg, joint=False) # build model model = build_gan_model(cfg) for key in model.keys(): model[key].cuda() if dist: ddp_cfg = { "device_ids": [cfg.gpu], "output_device": cfg.gpu, "find_unused_parameters": True, } for key in model.keys(): model[key] = torch.nn.parallel.DistributedDataParallel(model[key], **ddp_cfg) elif cfg.total_gpus > 1: for key in model.keys(): model[key] = torch.nn.DataParallel(model[key]) # build optimizer optimizer = {} optimizer['G'] = build_optimizer([model['G_A'], model['G_B']], **cfg.TRAIN.OPTIM) optimizer['D'] = build_optimizer([model['D_A'], model['D_B']], **cfg.TRAIN.OPTIM) optimizer['Metric'] = build_optimizer([model['Metric']], **cfg.TRAIN.OPTIM) # build lr_scheduler if cfg.TRAIN.SCHEDULER.lr_scheduler is not None: lr_scheduler = [build_lr_scheduler(optimizer[key], **cfg.TRAIN.SCHEDULER) \ for key in optimizer.keys()] else: lr_scheduler = None # build loss functions criterions = build_loss(cfg.TRAIN.LOSS, cuda=True) # build runner runner = SPGANRunner( cfg, model, optimizer, criterions, train_loader, lr_scheduler=lr_scheduler, meter_formats={"Time": ":.3f"} ) # resume if args.resume_from: runner.resume(args.resume_from) # start training runner.run() # load the latest model # runner.resume(cfg.work_dir) # final inference test_loader, _ = build_val_dataloader( cfg, for_clustering=True, all_datasets=True ) # source to target infer_gan( cfg, model['G_A'], test_loader[0], dataset_name=list(cfg.TRAIN.datasets.keys())[0] ) # target to source infer_gan( cfg, model['G_B'], test_loader[1], dataset_name=list(cfg.TRAIN.datasets.keys())[1] ) # print time end_time = time.monotonic() print("Total running time: ", timedelta(seconds=end_time - start_time)) if __name__ == '__main__': main()
31.980066
117
0.60108
4,495
0.466964
0
0
0
0
0
0
1,468
0.152504
c7efcc01c957ea47bff3471d2bc47b9aa1291cde
1,907
py
Python
utility/data_download.py
LatvianPython/wind-experience
b634c020dff0a01152bb95b38e5f6f0e368d47f5
[ "MIT" ]
2
2018-12-20T20:31:21.000Z
2018-12-29T14:51:42.000Z
utility/data_download.py
LatvianPython/wind-experience
b634c020dff0a01152bb95b38e5f6f0e368d47f5
[ "MIT" ]
null
null
null
utility/data_download.py
LatvianPython/wind-experience
b634c020dff0a01152bb95b38e5f6f0e368d47f5
[ "MIT" ]
null
null
null
import logging import requests import multiprocessing import pathlib from typing import List from typing import Optional from typing import Tuple from typing import Dict from joblib import delayed from joblib import Parallel from datetime import date from datetime import timedelta logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def next_date(start_date=date(2018, 3, 1)): days_to_download = abs(start_date - date.today()).days - 5 for date_offset in range(days_to_download): yield start_date start_date = start_date + timedelta(days=1) def download_all(inputs: List[Tuple[pathlib.Path, str]], cookies: Optional[Dict]): session = requests.session() inputs[0][0].parent.mkdir(parents=True, exist_ok=True) def download_single_link(file_path: pathlib.Path, url): thread_nr = multiprocessing.current_process().name thread_nr = thread_nr[thread_nr.rfind('-') + 1:] file_name = file_path.stem if file_path.is_file(): logger.info('{} {} already exists'.format(thread_nr, file_name)) return try: response = session.get(url=url, cookies=cookies) except TimeoutError: logger.critical('{} Timeout Error'.format(thread_nr)) return content = response.content.decode('utf-8') if response.status_code != 200: logger.critical('{} {}'.format(thread_nr, url, response.status_code)) logger.critical('{}'.format(thread_nr, content)) return else: logger.info('{} {} {} OK'.format(thread_nr, file_name, response.status_code)) with open(str(file_path), mode='w', encoding='utf-8') as output_file: output_file.write(content) num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(download_single_link)(*j) for j in inputs)
32.322034
89
0.677504
0
0
231
0.121133
0
0
0
0
84
0.044048
c7f2afbcc386f15d0c1677f0f7647f383dcc88bb
7,625
py
Python
model/net_qspline_A.py
jercoco/QSQF
6c435f8d4e1baf1937b06a52e63446f9a29f5ad8
[ "Apache-2.0" ]
null
null
null
model/net_qspline_A.py
jercoco/QSQF
6c435f8d4e1baf1937b06a52e63446f9a29f5ad8
[ "Apache-2.0" ]
null
null
null
model/net_qspline_A.py
jercoco/QSQF
6c435f8d4e1baf1937b06a52e63446f9a29f5ad8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Oct 21 19:52:22 2020 #Plan A @author: 18096 """ '''Defines the neural network, loss function and metrics''' #from functools import reduce import torch import torch.nn as nn from torch.nn.functional import pad from torch.autograd import Variable import logging logger = logging.getLogger('DeepAR.Net') class Net(nn.Module): def __init__(self, params,device): ''' We define a recurrent network that predicts the future values of a time-dependent variable based on past inputs and covariates. ''' super(Net, self).__init__() self.params = params self.device = device self.lstm = nn.LSTM(input_size=params.lstm_input_size, hidden_size=params.lstm_hidden_dim, num_layers=params.lstm_layers, bias=True, batch_first=False, dropout=params.lstm_dropout) # initialize LSTM forget gate bias to be 1 as recommanded by # http://proceedings.mlr.press/v37/jozefowicz15.pdf for names in self.lstm._all_weights: for name in filter(lambda n: "bias" in n, names): bias = getattr(self.lstm, name) n = bias.size(0) start, end = n // 4, n // 2 bias.data[start:end].fill_(1.) #Plan A: #beta_01:[beta0,beta1] self.beta_n1 = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, 1) self.pre_beta_1 = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, 1) self.pre_sigma = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, params.num_spline) self.pre_gamma = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, params.num_spline) # softmax to make sure Σu equals to 1 self.sigma = nn.Softmax(dim=1) # softplus to make sure gamma is positive self.gamma = nn.Softplus() # softplus to make sure beta0 is positive self.beta_1 = nn.Softplus() def forward(self, x, hidden, cell): _, (hidden, cell) = self.lstm(x, (hidden, cell)) # use h from all three layers to calculate mu and sigma hidden_permute = \ hidden.permute(1, 2, 0).contiguous().view(hidden.shape[1], -1) #Plan A: beta_n1 = self.beta_n1(hidden_permute) pre_beta_1 = self.pre_beta_1(hidden_permute) beta_1 = self.beta_1(pre_beta_1) beta_1=-beta_1 pre_sigma = self.pre_sigma(hidden_permute) sigma = self.sigma(pre_sigma) pre_gamma = self.pre_gamma(hidden_permute) gamma = self.gamma(pre_gamma) #Plan A: return ((beta_n1,beta_1,sigma,torch.squeeze(gamma)),hidden,cell) def init_hidden(self, input_size): return torch.zeros(self.params.lstm_layers, input_size, self.params.lstm_hidden_dim, device=self.device) def init_cell(self, input_size): return torch.zeros(self.params.lstm_layers, input_size, self.params.lstm_hidden_dim, device=self.device) def predict(self, x, hidden, cell, sampling=False): """ generate samples by sampling from """ batch_size = x.shape[1] samples = torch.zeros(self.params.sample_times,batch_size, self.params.pred_steps, device=self.device) for j in range(self.params.sample_times): decoder_hidden = hidden decoder_cell = cell for t in range(self.params.pred_steps): func_param,decoder_hidden,decoder_cell=\ self(x[self.params.pred_start+t].unsqueeze(0), decoder_hidden,decoder_cell) beta_n1,beta_1,sigma,gamma=func_param #pred_cdf is a uniform ditribution uniform = torch.distributions.uniform.Uniform( torch.tensor([0.0], device=sigma.device), torch.tensor([1.0], device=sigma.device)) pred_cdf=uniform.sample([batch_size]) beta_0=gamma[:,:1]-2*beta_1*sigma[:,:1] beta_N=torch.cat((beta_n1,beta_0),dim=1) beta=pad(gamma,(1,0))[:,:-1] beta[:,0]=beta_0[:,0] beta=(gamma-beta)/(2*sigma) beta=beta-pad(beta,(1,0))[:,:-1] beta[:,-1]=gamma[:,-1]-beta[:,:-1].sum(dim=1) ksi=pad(torch.cumsum(sigma,dim=1),(1,0))[:,:-1] indices=ksi<pred_cdf pred=(beta_N*pad(pred_cdf,(1,0),value=1)).sum(dim=1) pred=pred+((pred_cdf-ksi).pow(2)*beta*indices).sum(dim=1) samples[j, :, t] = pred #predict value at t-1 is as a covars for t,t+1,...,t+lag for lag in range(self.params.lag): if t<self.params.pred_steps-lag-1: x[self.params.pred_start+t+1,:,0]=pred sample_mu = torch.mean(samples, dim=0) # mean or median ? sample_std = samples.std(dim=0) return samples, sample_mu, sample_std def loss_fn(func_param, labels: Variable): beta_n1,beta_1,sigma,gamma=func_param beta_0=gamma[:,:1]-2*beta_1*sigma[:,:1] beta_N=torch.cat((beta_n1,beta_0),dim=1) beta=pad(gamma,(1,0))[:,:-1] beta[:,0]=beta_0[:,0] beta=(gamma-beta)/(2*sigma) beta=beta-pad(beta,(1,0))[:,:-1] beta[:,-1]=gamma[:,-1]-beta[:,:-1].sum(dim=1) #calculate the maximum for each segment of the spline ksi=torch.cumsum(sigma,dim=1) df1=ksi.expand(sigma.shape[1],sigma.shape[0],sigma.shape[1]).T.clone() df2=pad(ksi.T.unsqueeze(2),(1,0),'constant',value=1) ksi=pad(ksi,(1,0))[:,:-1] knots=df1-ksi knots[knots<0]=0 knots=(df2*beta_N).sum(dim=2)+(knots.pow(2)*beta).sum(dim=2) knots=pad(knots.T,(1,0))[:,:-1]#F(ksi_1~K)=0~max diff=labels.view(-1,1)-knots alpha_l=diff>0 alpha_A=torch.sum(alpha_l*beta,dim=1) alpha_B=beta_N[:,1]-2*torch.sum(alpha_l*beta*ksi,dim=1) alpha_C=beta_N[:,0]-labels+torch.sum(alpha_l*beta*ksi*ksi,dim=1) #since A may be zero, roots can be from different methods. not_zero=(alpha_A!=0) alpha=torch.zeros_like(alpha_A) #since there may be numerical calculation error,#0 idx=(alpha_B**2-4*alpha_A*alpha_C)<0#0 diff=diff.abs() index=diff==(diff.min(dim=1)[0].view(-1,1)) index[~idx,:]=False #index=diff.abs()<1e-4#0,1e-4 is a threshold #idx=index.sum(dim=1)>0#0 alpha[idx]=ksi[index]#0 alpha[~not_zero]=-alpha_C[~not_zero]/alpha_B[~not_zero] not_zero=~(~not_zero | idx)#0 delta=alpha_B[not_zero].pow(2)-4*alpha_A[not_zero]*alpha_C[not_zero] alpha[not_zero]=(-alpha_B[not_zero]+torch.sqrt(delta))/(2*alpha_A[not_zero]) crps_1=labels*(2*alpha-1) #lam2=lambda n:2*beta_N[:,n-1]*(1/n/(n+1)-alpha.pow(n)/n) #crps_2=reduce(lambda a,b:a+b,[lam2(n) for n in range(1,2+1)]) crps_2=beta_N[:,0]*(1-2*alpha)+beta_N[:,1]*(1/3-alpha.pow(2)) crps_3=torch.sum(2*beta/((2+1)*(2+2))*(1-ksi).pow(2+2),dim=1) crps_4=torch.sum(alpha_l*2*beta/(2+1)*(torch.unsqueeze(alpha,1)-ksi).pow(2+1),dim=1) crps=crps_1+crps_2+crps_3-crps_4 crps = torch.mean(crps) return crps
40.131579
89
0.571148
5,072
0.665093
0
0
0
0
0
0
1,268
0.166273
c7f39bdc2218cef3b2fe963ee01b122a395a8bc3
227
py
Python
tests/repositories/helpers/methods/test_reinstall_if_needed.py
traibnn/integration
cf5920a677fdaa8408074e533371141828b0b30f
[ "MIT" ]
1
2021-07-31T00:34:30.000Z
2021-07-31T00:34:30.000Z
tests/repositories/helpers/methods/test_reinstall_if_needed.py
traibnn/integration
cf5920a677fdaa8408074e533371141828b0b30f
[ "MIT" ]
45
2021-07-21T13:32:44.000Z
2022-03-28T06:15:40.000Z
tests/repositories/helpers/methods/test_reinstall_if_needed.py
traibnn/integration
cf5920a677fdaa8408074e533371141828b0b30f
[ "MIT" ]
null
null
null
import pytest @pytest.mark.asyncio async def test_reinstall_if_needed(repository): repository.content.path.local = "/non/existing/dir" repository.data.installed = True await repository.async_reinstall_if_needed()
25.222222
55
0.784141
0
0
0
0
210
0.92511
189
0.832599
19
0.0837
c7f3bbfe8ecf852146009a98359ee99148f7760a
11,124
py
Python
workflow_parser/datasource/log_engine.py
cyx1231st/workflow_parser
d2e78c191c75c7addda89e6e336be90f6ca9717d
[ "Apache-2.0" ]
null
null
null
workflow_parser/datasource/log_engine.py
cyx1231st/workflow_parser
d2e78c191c75c7addda89e6e336be90f6ca9717d
[ "Apache-2.0" ]
null
null
null
workflow_parser/datasource/log_engine.py
cyx1231st/workflow_parser
d2e78c191c75c7addda89e6e336be90f6ca9717d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 Yingxin Cheng # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function from abc import ABCMeta from abc import abstractmethod from collections import defaultdict import os from os import path import sys from .. import reserved_vars as rv from ..service_registry import Component from ..service_registry import ServiceRegistry from . import Line from . import Source from .exc import LogError class DriverPlugin(object): __metaclass__ = ABCMeta def __init__(self, f_filter_logfile, f_filter_logline, extensions): self._extensions = extensions self.f_filter_logfile = f_filter_logfile self.f_filter_logline = f_filter_logline def _purge_dict_empty_values(self, var_dict): for k in var_dict.keys(): if var_dict[k] in {None, ""}: var_dict.pop(k) def do_filter_logfile(self, f_dir, f_name): assert isinstance(f_dir, str) assert isinstance(f_name, str) assert f_name in f_dir # skip non-file if not path.isfile(f_dir): return False, None # check file extension ext_match = False for ext in self._extensions: if f_name.endswith("." + ext): ext_match = True if not ext_match: return False, None try: var_dict = {} ret = self.f_filter_logfile(f_dir, f_name, var_dict) assert isinstance(ret, bool) if ret: # NOTE # print("(LogDriver) loaded: %s" % f_dir) assert all(isinstance(k, str) for k in var_dict.keys()) self._purge_dict_empty_values(var_dict) return True, var_dict else: # skip return False, None except Exception as e: raise LogError( "(LogDriver) `f_filter_logfile` error when f_name=%s" % f_name, e) def do_filter_logline(self, line, lino, where): assert isinstance(line, str) assert isinstance(lino, int) assert isinstance(where, str) try: var_dict = {} ret = self.f_filter_logline(line, var_dict) assert all(isinstance(k, str) for k in var_dict.keys()) self._purge_dict_empty_values(var_dict) assert isinstance(ret, bool) return ret, var_dict except Exception as e: raise LogError("(LogDriver) `f_filter_logline` error at %s@%d %s" % (where, lino, line), e) class FileDatasource(object): def __init__(self, name, f_dir, vs, sr, plugin): assert isinstance(sr, ServiceRegistry) assert isinstance(plugin, DriverPlugin) self.sr = sr self.plugin = plugin self.name = name self.f_dir = f_dir self.total_lines = 0 self.source = Source(name, f_dir, vs) self.requests = set() @property def total_lineobjs(self): return self.source.len_lineobjs # def _buffer_lines(self, lines): # buffer_lines = Heap(key=lambda a: a.seconds) # prv_line = [None] # def _flush_line(flush=None): # while buffer_lines: # if flush and buffer_lines.distance < flush: # break # line = buffer_lines.pop() # if prv_line[0] is not None: # prv_line[0].nxt_logline = line # line.prv_logline = prv_line[0] # assert prv_line[0] <= line # yield line # prv_line[0] = line # for line in lines: # assert isinstance(line, LogLine) # buffer_lines.push(line) # for line in _flush_line(1): # yield line # for line in _flush_line(): # yield line def yield_lineobjs(self, targets_byname): with open(self.f_dir, 'r') as reader: for line in reader: self.total_lines += 1 lino = self.total_lines if_proceed, vs = self.plugin.do_filter_logline( line, lino, self.name) if if_proceed: # convert component component = vs.get(rv.COMPONENT) if component is not None: c_obj = self.sr.f_to_component(component) if not c_obj: raise LogError( "Error in %s@%d %s: unrecognized component %s" % (self.name, lino, line, component)) else: vs[rv.COMPONENT] = c_obj # collect requests request = vs.get(rv.REQUEST) if request is not None: self.requests.add(request) lineobj = self.source.append_line( lino, line, vs, targets_byname) yield lineobj @classmethod def create_byfolder(cls, log_folder, sr, plugin): assert isinstance(log_folder, str) assert isinstance(plugin, DriverPlugin) datasources = [] # current_path = path.dirname(os.path.realpath(__file__)) current_path = os.getcwd() log_folder = path.join(current_path, log_folder) for f_name in os.listdir(log_folder): f_dir = path.join(log_folder, f_name) if_proceed, vs = plugin.do_filter_logfile(f_dir, f_name) if if_proceed: # convert component component = vs.get(rv.COMPONENT) if component is not None: c_obj = self.sr.f_to_component(component) if not c_obj: raise LogError( "Error in %s: unrecognized component %s" % (f_name, component)) else: vs[rv.COMPONENT] = c_obj ds = cls(f_name.rsplit(".", 1)[0], f_dir, vs, sr, plugin) datasources.append(ds) return log_folder, datasources # step1: load related log files def loadsources(log_folder, sr, plugin): print("Load data sources...") log_folder, datasources = FileDatasource.create_byfolder( log_folder, sr, plugin) print("---------------") #### summary #### print("%d datasources from %s" % (len(datasources), log_folder)) print() return datasources # step2: read sources def readsources(datasources, sr, report): targets_byname = {} targets_byhost = defaultdict(list) targets_bycomponent = defaultdict(list) threads = set() print("Read data sources...") for datasource in datasources: for line_obj in datasource.yield_lineobjs(targets_byname): pass for targetobj in targets_byname.values(): if not isinstance(targetobj.target, str) or not targetobj.target: raise LogError("%s has invalid target: %s" % ( targetobj, target.target)) if not isinstance(targetobj.host, str) or not targetobj.host: raise LogError("%s has invalid host: %s" % ( targetobj, target.host)) if not isinstance(targetobj.component, Component): raise LogError("%s has invalid component: %s" % ( targetobj, target.component)) targets_byhost[targetobj.host].append(targetobj) targets_bycomponent[targetobj.component].append(targetobj) threads.update(targetobj.thread_objs) print("---------------") #### summary #### total_targets = len(targets_byname) total_hosts = len(targets_byhost) total_components = len(targets_bycomponent) print("%d targets, %d hosts" % (total_targets, total_hosts)) total_lines = sum(datasource.total_lines for datasource in datasources) total_lineobjs = sum(datasource.total_lineobjs for datasource in datasources) if not total_lines: print("0 valid lines") else: print("%.2f%% valid: %d lines -> %d lineobjs" % (float(total_lineobjs)/total_lines*100, total_lines, total_lineobjs)) for comp in sr.sr_components: targets = targets_bycomponent.get(comp, []) if not targets: raise LogError("ERROR! miss component %s" % comp) else: component_threads = sum(len(target.thread_objs) for target in targets) component_lines = sum(target.len_lineobjs for target in targets) min_target_threads, max_target_threads = sys.maxsize, 0 min_target_lineobjs, max_target_lineobjs = sys.maxsize, 0 hosts_ = set() for target_obj in targets: hosts_.add(target_obj.host) min_target_threads = min(min_target_threads, len(target_obj.thread_objs)) max_target_threads = max(max_target_threads, len(target_obj.thread_objs)) min_target_lineobjs = min(min_target_lineobjs, target_obj.len_lineobjs) max_target_lineobjs = max(max_target_lineobjs, target_obj.len_lineobjs) print(" %s: %d hosts, %d targets, %d threads, %d lines" % (comp, len(hosts_), len(targets), component_threads, component_lines)) print(" per-target: %.3f[%d, %d] threads, %.3f[%d, %d] loglines" % (component_threads/float(len(targets)), min_target_threads, max_target_threads, component_lines/float(len(targets)), min_target_lineobjs, max_target_lineobjs)) print() #### report ##### requests = set() for ds in datasources: requests.update(ds.requests) report.step("read", line=total_lineobjs, component=total_components, host=total_hosts, target=total_targets, thread=len(threads), request=len(requests)) return targets_byname def proceed(logfolder, sr, plugin, report): datasources = loadsources(logfolder, sr, plugin) targetobjs = readsources(datasources, sr, report) return targetobjs
36.352941
89
0.567242
5,869
0.527598
1,200
0.107875
1,231
0.110662
0
0
2,215
0.199119
c7f405a9090e4db54d759cf9f413be8921191675
3,890
py
Python
IPython/lib/tests/test_irunner_pylab_magic.py
dchichkov/ipython
8096bb8640ee7e7c5ebdf3f428fe69cd390e1cd4
[ "BSD-3-Clause-Clear" ]
null
null
null
IPython/lib/tests/test_irunner_pylab_magic.py
dchichkov/ipython
8096bb8640ee7e7c5ebdf3f428fe69cd390e1cd4
[ "BSD-3-Clause-Clear" ]
3
2015-04-01T13:14:57.000Z
2015-05-26T16:01:37.000Z
IPython/lib/tests/test_irunner_pylab_magic.py
dchichkov/ipython
8096bb8640ee7e7c5ebdf3f428fe69cd390e1cd4
[ "BSD-3-Clause-Clear" ]
1
2021-10-06T07:59:25.000Z
2021-10-06T07:59:25.000Z
"""Test suite for pylab_import_all magic Modified from the irunner module but using regex. """ # Global to make tests extra verbose and help debugging VERBOSE = True # stdlib imports import StringIO import sys import unittest import re # IPython imports from IPython.lib import irunner from IPython.testing import decorators def pylab_not_importable(): """Test if importing pylab fails with RuntimeError (true when having no display)""" try: import pylab return False except RuntimeError: return True # Testing code begins class RunnerTestCase(unittest.TestCase): def setUp(self): self.out = StringIO.StringIO() #self.out = sys.stdout def _test_runner(self,runner,source,output): """Test that a given runner's input/output match.""" runner.run_source(source) out = self.out.getvalue() #out = '' # this output contains nasty \r\n lineends, and the initial ipython # banner. clean it up for comparison, removing lines of whitespace output_l = [l for l in output.splitlines() if l and not l.isspace()] out_l = [l for l in out.splitlines() if l and not l.isspace()] mismatch = 0 if len(output_l) != len(out_l): message = ("Mismatch in number of lines\n\n" "Expected:\n" "~~~~~~~~~\n" "%s\n\n" "Got:\n" "~~~~~~~~~\n" "%s" ) % ("\n".join(output_l), "\n".join(out_l)) self.fail(message) for n in range(len(output_l)): # Do a line-by-line comparison ol1 = output_l[n].strip() ol2 = out_l[n].strip() if not re.match(ol1,ol2): mismatch += 1 if VERBOSE: print '<<< line %s does not match:' % n print repr(ol1) print repr(ol2) print '>>>' self.assert_(mismatch==0,'Number of mismatched lines: %s' % mismatch) @decorators.skipif_not_matplotlib @decorators.skipif(pylab_not_importable, "Likely a run without X.") def test_pylab_import_all_enabled(self): "Verify that plot is available when pylab_import_all = True" source = """ from IPython.config.application import Application app = Application.instance() app.pylab_import_all = True pylab ip=get_ipython() 'plot' in ip.user_ns """ output = """ In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = True In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: True """ runner = irunner.IPythonRunner(out=self.out) self._test_runner(runner,source,output) @decorators.skipif_not_matplotlib @decorators.skipif(pylab_not_importable, "Likely a run without X.") def test_pylab_import_all_disabled(self): "Verify that plot is not available when pylab_import_all = False" source = """ from IPython.config.application import Application app = Application.instance() app.pylab_import_all = False pylab ip=get_ipython() 'plot' in ip.user_ns """ output = """ In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = False In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: False """ runner = irunner.IPythonRunner(out=self.out) self._test_runner(runner,source,output)
32.689076
87
0.608226
3,325
0.854756
0
0
1,749
0.449614
0
0
1,905
0.489717
c7f4992bb494868e3842c501796146ce55443adc
2,241
py
Python
checkpoint.py
GooLee0123/MBRNN
c313bc286b34a2f6e0cbc1ec0941c511ff8dc8d3
[ "MIT" ]
1
2021-12-07T03:59:51.000Z
2021-12-07T03:59:51.000Z
checkpoint.py
GooLee0123/MBRNN
c313bc286b34a2f6e0cbc1ec0941c511ff8dc8d3
[ "MIT" ]
null
null
null
checkpoint.py
GooLee0123/MBRNN
c313bc286b34a2f6e0cbc1ec0941c511ff8dc8d3
[ "MIT" ]
1
2022-02-23T02:15:56.000Z
2022-02-23T02:15:56.000Z
import logging import os import shutil import time import torch model_state = 'model_state.pt' trainer_state = 'trainer_state.pt' class Checkpoint(): def __init__(self, step, epoch, model, optim, path=None, opt=None): self.step = step self.epoch = epoch self.model = model self.optim = optim self._path = path self.opt = opt self.logger = logging.getLogger(__name__) @property def path(self): if self._path is None: raise LookupError("The checkpoint has not been saved.") return self._path @classmethod def load(cls, model, optim=None, opt=None): logger = logging.getLogger(__name__) all_times = sorted(os.listdir(opt.ckpt_fd), reverse=True) fchckpt = os.path.join(opt.ckpt_fd, all_times[0]) logger.info("load checkpoint from %s" % fchckpt) resume_model = torch.load(os.path.join(fchckpt, model_state), map_location=opt.device) resume_checkpoint = torch.load(os.path.join(fchckpt, trainer_state), map_location=opt.device) model.load_state_dict(resume_model) if optim is not None: optim.load_state_dict(resume_checkpoint['optimizer']) return Checkpoint(step=resume_checkpoint['step'], epoch=resume_checkpoint['epoch'], model=model, optim=optim, path=opt.ckpt_fd) def save(self): date_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) path = os.path.join(self.opt.ckpt_fd, date_time) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) torch.save( {'epoch': self.epoch, 'step': self.step, 'optimizer': self.optim.state_dict()}, os.path.join(path, trainer_state)) torch.save( self.model.state_dict(), os.path.join(path, model_state)) log_msg = "Validation loss being smaller than previous " log_msg += "minimum, checkpoint is saved at %s" % path self.logger.info(log_msg) return path
30.69863
76
0.583222
2,106
0.939759
0
0
1,094
0.488175
0
0
244
0.10888
c7f4e1c0cff8588ab79a5f138125b800da16d5b8
4,250
py
Python
test/eval_mines_color.py
alalagong/LEDNet
5dee5ee4edc75c24e6cda50dc1661d8f0b1e6469
[ "MIT" ]
3
2019-08-13T07:21:23.000Z
2020-06-27T16:18:22.000Z
test/eval_mines_color.py
alalagong/LEDNet
5dee5ee4edc75c24e6cda50dc1661d8f0b1e6469
[ "MIT" ]
1
2020-12-14T05:56:44.000Z
2020-12-14T05:56:44.000Z
test/eval_mines_color.py
alalagong/LEDNet
5dee5ee4edc75c24e6cda50dc1661d8f0b1e6469
[ "MIT" ]
1
2019-11-13T12:09:58.000Z
2019-11-13T12:09:58.000Z
import numpy as np import torch import os import cv2 import importlib from dataset import * from PIL import Image from argparse import ArgumentParser from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision.transforms import Compose, CenterCrop, Normalize, Resize from torchvision.transforms import ToTensor, ToPILImage from dataset import cityscapes from lednet import Net from transform import Relabel, ToLabel, Colorize import visdom NUM_CHANNELS = 3 NUM_CLASSES = 20 #* *******************测试单张图片**************************** image_transform = ToPILImage() input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) def main(args): modelpath = args.loadDir + args.loadModel weightspath = args.loadDir + args.loadWeights print("Loading model: " + modelpath) print("Loading weights: " + weightspath) model = Net(NUM_CLASSES) model = torch.nn.DataParallel(model) if (not args.cpu): model = model.cuda() # model.load_state_dict(torch.load(args.state)) # model.load_state_dict(torch.load(weightspath)) #not working if missing key def load_my_state_dict(model, state_dict): # custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model = load_my_state_dict(model, torch.load(weightspath)) print("Model and weights LOADED successfully") model.eval() if (not os.path.exists(args.datadir)): print("Error: datadir could not be loaded") # loader = DataLoader( # cityscapes('/home/liqi/PycharmProjects/LEDNet/4.png', input_transform_cityscapes, target_transform_cityscapes, subset=args.subset), # num_workers=args.num_workers, batch_size=1 ,shuffle=False) input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) name ="4.png" with open(image_path_city('/home/gongyiqun/images', name), 'rb') as f: images = load_image(f).convert('RGB') images = input_transform_cityscapes(images) # For visualizer: # must launch in other window "python3.6 -m visdom.server -port 8097" # and access localhost:8097 to see it if (args.visualize): vis = visdom.Visdom() if (not args.cpu): images = images.cuda() # labels = labels.cuda() a=torch.unsqueeze(images,0) inputs = Variable(a) # targets = Variable(labels) with torch.no_grad(): outputs = model(inputs) label = outputs[0].max(0)[1].byte().cpu().data # label_cityscapes = cityscapes_trainIds2labelIds(label.unsqueeze(0)) label_color = Colorize()(label.unsqueeze(0)) filenameSave = "./save_color/"+"Others/"+name os.makedirs(os.path.dirname(filenameSave), exist_ok=True) # image_transform(label.byte()).save(filenameSave) label_save = ToPILImage()(label_color) label_save = label_save.resize((1241, 376), Image.BILINEAR) # label_save = cv2.resize(label_save, (376, 1224),interpolation=cv2.INTER_AREA) label_save.save(filenameSave) if (args.visualize): vis.image(label_color.numpy()) # print(step, filenameSave) # for step, (images, labels, filename, filenameGt) in enumerate(loader): if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--state') parser.add_argument('--loadDir', default="../save/logs(KITTI)/") parser.add_argument('--loadWeights', default="model_best.pth") parser.add_argument('--loadModel', default="lednet.py") parser.add_argument('--subset', default="val") # can be val, test, train, demoSequence parser.add_argument('--datadir', default="") parser.add_argument('--num-workers', type=int, default=4) parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--cpu', action='store_true') parser.add_argument('--visualize', action='store_true') main(parser.parse_args())
31.481481
141
0.675059
0
0
0
0
0
0
0
0
1,470
0.344908
1bdbd0dddd803ccbb1c990600d899d8ab9de0788
2,440
py
Python
tests/test_resource_linkage.py
firesock/pydantic-jsonapi
b7dc891892ab3439a71f78a9a5fd067c4d651ca8
[ "MIT" ]
null
null
null
tests/test_resource_linkage.py
firesock/pydantic-jsonapi
b7dc891892ab3439a71f78a9a5fd067c4d651ca8
[ "MIT" ]
null
null
null
tests/test_resource_linkage.py
firesock/pydantic-jsonapi
b7dc891892ab3439a71f78a9a5fd067c4d651ca8
[ "MIT" ]
null
null
null
import pytest from pytest import raises from pydantic_jsonapi.resource_linkage import ResourceLinkage from pydantic import BaseModel, ValidationError class ThingWithLinkageData(BaseModel): data: ResourceLinkage class TestResourceLinks: @pytest.mark.parametrize( 'linkage, message', [ ( None, 'null is valid for empty to-one relationships', ), ( [], 'empty list valid for empty to-many relationships.', ), ( {'id': 'abc123', 'type': 'item', 'meta': None}, 'single resource identifier valid for non-empty to-one relationships.', ), ( [ {'id': 'abc123', 'type': 'item', 'meta': None}, {'id': 'def456', 'type': 'item', 'meta': None}, ], 'array of resource identifiers valid for non-empty to-many relationships.', ), ], ) def test_valid_possibilities(self, linkage, message): structure_to_validate = { 'data': linkage } validated = ThingWithLinkageData(**structure_to_validate) assert validated.dict() == structure_to_validate, message def test_invalid_resource_identifier(self): structure_to_validate = { 'data': {} } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data', 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data',), 'msg': 'value is not a valid list', 'type': 'type_error.list'}, ] def test_invalid_resource_identifier_array(self): structure_to_validate = { 'data': [ {} ], } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data',), 'msg': 'value is not a valid dict', 'type': 'type_error.dict'}, {'loc': ('data', 0, 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 0, 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, ]
34.857143
97
0.527869
2,283
0.935656
0
0
1,050
0.430328
0
0
755
0.309426
1bdd2e9e5e9fd87db022a69e90bc6723cd058b21
2,046
py
Python
src/tensorflow/keras_cnn.py
del680202/MachineLearning-memo
29284ca24041969eeb59851a43ab6c28c685fae5
[ "Apache-2.0" ]
4
2017-04-24T15:01:55.000Z
2019-11-03T11:11:54.000Z
src/tensorflow/keras_cnn.py
aasd145tw/MachineLearning-memo
29284ca24041969eeb59851a43ab6c28c685fae5
[ "Apache-2.0" ]
null
null
null
src/tensorflow/keras_cnn.py
aasd145tw/MachineLearning-memo
29284ca24041969eeb59851a43ab6c28c685fae5
[ "Apache-2.0" ]
12
2017-05-10T13:39:17.000Z
2019-12-15T14:01:05.000Z
import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils import keras.callbacks import keras.backend.tensorflow_backend as KTF import tensorflow as tf batch_size = 128 nb_classes = 10 nb_epoch = 20 nb_data = 28*28 log_filepath = '/tmp/keras_log' # load data (X_train, y_train), (X_test, y_test) = mnist.load_data() # reshape X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2]) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2]) # rescale X_train = X_train.astype(np.float32) X_train /= 255 X_test = X_test.astype(np.float32) X_test /= 255 # convert class vectors to binary class matrices (one hot vectors) Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) old_session = KTF.get_session() with tf.Graph().as_default(): session = tf.Session('') KTF.set_session(session) KTF.set_learning_phase(1) # build model model = Sequential() model.add(Dense(512, input_shape=(nb_data,), init='normal',name='dense1')) model.add(Activation('relu', name='relu1')) model.add(Dropout(0.2, name='dropout1')) model.add(Dense(512, init='normal', name='dense2')) model.add(Activation('relu', name='relu2')) model.add(Dropout(0.2, name='dropout2')) model.add(Dense(10, init='normal', name='dense3')) model.add(Activation('softmax', name='softmax1')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), metrics=['accuracy']) tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, histogram_freq=1) cbks = [tb_cb] history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch = nb_epoch, verbose=1, callbacks=cbks) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy;', score[1]) KTF.set_session(old_session)
31
112
0.725806
0
0
0
0
0
0
0
0
304
0.148583
1be156b5a97033cae1d2dce7ad771f398dbde2ad
4,942
py
Python
tests/blas/nodes/ger_test.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
1
2021-07-26T07:58:06.000Z
2021-07-26T07:58:06.000Z
tests/blas/nodes/ger_test.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
null
null
null
tests/blas/nodes/ger_test.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
1
2021-03-04T13:01:48.000Z
2021-03-04T13:01:48.000Z
#!/usr/bin/env python3 # Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. from dace.transformation.dataflow.streaming_memory import StreamingMemory from dace.transformation.interstate.sdfg_nesting import InlineSDFG from dace.transformation.interstate.fpga_transform_sdfg import FPGATransformSDFG import numpy as np import argparse import scipy import dace from dace.memlet import Memlet import dace.libraries.blas as blas from dace.libraries.standard.memory import aligned_ndarray def pure_graph(implementation, dtype, veclen): m = dace.symbol("m") n = dace.symbol("n") vtype = dace.vector(dtype, veclen) sdfg = dace.SDFG("ger_test") state = sdfg.add_state("ger") sdfg.add_symbol("alpha", dtype) sdfg.add_array("x", shape=[m], dtype=dtype) sdfg.add_array("y", shape=[n / veclen], dtype=vtype) sdfg.add_array("A", shape=[m, n / veclen], dtype=vtype) sdfg.add_array("res", shape=[m, n / veclen], dtype=vtype) x = state.add_read("x") y = state.add_read("y") A = state.add_read("A") res = state.add_write("res") ger_node = blas.Ger(name="ger") ger_node.implementation = implementation state.add_memlet_path(x, ger_node, dst_conn="_x", memlet=Memlet("x[0:m]")) state.add_memlet_path(y, ger_node, dst_conn="_y", memlet=Memlet(f"y[0:n/{veclen}]")) state.add_memlet_path(A, ger_node, dst_conn="_A", memlet=Memlet(f"A[0:m, 0:n/{veclen}]")) state.add_memlet_path(ger_node, res, src_conn="_res", memlet=Memlet(f"res[0:m, 0:n/{veclen}]")) return ger_node, state, sdfg def fpga_graph(dtype, veclen, tile_size_x, tile_size_y): ger_node, state, sdfg = pure_graph("FPGA", dtype, veclen) ger_node.expand(sdfg, state, tile_size_x=tile_size_x, tile_size_y=tile_size_y) sdfg.apply_transformations_repeated([FPGATransformSDFG, InlineSDFG]) sdfg.expand_library_nodes() sdfg.apply_transformations_repeated( [InlineSDFG, StreamingMemory], [{}, { "storage": dace.StorageType.FPGA_Local }]) return sdfg def run_test(ger, target): x = np.ndarray(m, dtype=np.float32) y = np.ndarray(n, dtype=np.float32) A = np.ndarray((m, n), dtype=np.float32) res = A.copy() ref = res.copy() x[:] = np.random.rand(m).astype(np.float32) y[:] = np.random.rand(n).astype(np.float32) A[:] = np.random.rand(m, n).astype(np.float32) ger(alpha=alpha, x=x, y=y, A=A, res=res, m=m, n=n) ref = scipy.linalg.blas.sger(alpha=alpha, x=x, y=y, a=A) diff = np.linalg.norm(np.subtract(res, ref)) if diff >= args.eps * n * m: raise RuntimeError( "Unexpected result returned from ger rank 1 operation: " "got:\n{}\nexpected:\n{} on {}".format(A, ref, target)) else: print("Ok") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("N", type=int, nargs="?", default=256) parser.add_argument("M", type=int, nargs="?", default=512) parser.add_argument("tile_size_x", type=int, nargs="?", default=16) parser.add_argument("tile_size_y", type=int, nargs="?", default=32) parser.add_argument("alpha", type=np.float32, nargs="?", default=1.0) parser.add_argument("--target", dest="target", default="pure") parser.add_argument("--eps", type=float, default=1e-6) parser.add_argument("--veclen", type=int, default=8) args = parser.parse_args() n = args.N m = args.M tile_size_x = args.tile_size_x tile_size_y = args.tile_size_y alpha = args.alpha veclen = args.veclen if args.target == "pure": ger_node, state, sdfg = pure_graph("pure", dace.float32, veclen) ger_node.expand(sdfg, state) sdfg.apply_transformations_repeated([InlineSDFG]) elif args.target == "fpga": sdfg = fpga_graph(dace.float32, veclen, tile_size_x, tile_size_y) else: print("Unsupported target") exit(-1) x = aligned_ndarray(np.random.rand(m).astype(np.float32), alignment=4*veclen) y = aligned_ndarray(np.random.rand(n).astype(np.float32), alignment=4*veclen) A = aligned_ndarray(np.random.rand(m, n).astype(np.float32), alignment=4*veclen) res = aligned_ndarray(np.empty(A.shape, dtype=A.dtype), alignment=4*veclen) ref = aligned_ndarray(np.empty(A.shape, dtype=A.dtype), alignment=4*veclen) res[:] = A[:] ref[:] = A[:] sdfg(x=x, y=y, A=A, res=res, m=dace.int32(m), n=dace.int32(n), alpha=alpha) ref = scipy.linalg.blas.sger(alpha=alpha, x=x, y=y, a=ref) diff = np.linalg.norm(res - ref) if diff >= args.eps * n * m: raise RuntimeError(f"Validation failed: {diff}") else: print("Validation successful.")
33.849315
84
0.633347
0
0
0
0
0
0
0
0
551
0.111493
1be16c8b647df2316a1c8f8f394a926e8273c86d
1,925
py
Python
spp.py
ninfueng/torch-cifar
f829c3375a9d9823cef4659f8bdfbd3800d51e80
[ "MIT" ]
null
null
null
spp.py
ninfueng/torch-cifar
f829c3375a9d9823cef4659f8bdfbd3800d51e80
[ "MIT" ]
null
null
null
spp.py
ninfueng/torch-cifar
f829c3375a9d9823cef4659f8bdfbd3800d51e80
[ "MIT" ]
null
null
null
import math from typing import List, Union import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor @torch.jit.script def spatial_pyramid_pool( input: Tensor, bins: Union[int, List[int]], mode: str = "max" ) -> Tensor: """Spatial Pyramid Pooling: https://arxiv.org/pdf/1406.4729.pdf Args: input (Tensor): an input tensor expected from the convolutional layer. bins (List[int]): a list of integer of preferred size of outputs. mode (str): how to reduce the spatial space. Returns: outputs (Tensor): a flatten tensor with size (batch, bins[0] * bins[0] + bins[1] * bins[1] + ...) """ assert mode in ["max", "mean", "average", "avg"] b, _, h, w = input.shape bins = [bins] if isinstance(bins, int) else bins outputs = [] for bin_ in bins: h_kernel = math.ceil(h / bin_) w_kernel = math.ceil(w / bin_) h_stride = math.floor(h / bin_) w_stride = math.floor(w / bin_) if mode == "max": output = F.max_pool2d( input, kernel_size=(h_kernel, w_kernel), stride=(h_stride, w_stride) ) else: output = F.avg_pool2d( input, kernel_size=(h_kernel, w_kernel), stride=(h_stride, w_stride) ) output = output.view(b, -1) outputs.append(output) outputs = torch.cat(outputs, dim=-1) return outputs class SpaitalPyramidPool(nn.Module): def __init__(self, bins: Union[int, List[int]], mode: str = "max") -> None: super().__init__() self.bins = bins self.mode = mode def forward(self, input: Tensor) -> Tensor: return spatial_pyramid_pool(input, bins=self.bins, mode=self.mode) if __name__ == "__main__": input = torch.zeros(1, 512, 13, 13) output = spatial_pyramid_pool(input, [1, 2, 3], "max") print(output.shape)
29.166667
88
0.603636
317
0.164675
0
0
1,314
0.682597
0
0
471
0.244675
1be1d0ad6c2cd6a6b3082cd64ad7f9633b3033de
21,417
py
Python
src/SparseSC/utils/AzureBatch/azure_batch_client.py
wofein/SparseSC
fd8125015c65829458bfee2ae94c24981112d2d8
[ "MIT" ]
null
null
null
src/SparseSC/utils/AzureBatch/azure_batch_client.py
wofein/SparseSC
fd8125015c65829458bfee2ae94c24981112d2d8
[ "MIT" ]
null
null
null
src/SparseSC/utils/AzureBatch/azure_batch_client.py
wofein/SparseSC
fd8125015c65829458bfee2ae94c24981112d2d8
[ "MIT" ]
null
null
null
""" usage requires these additional modules pip install azure-batch azure-storage-blob jsonschema pyyaml && pip install git+https://github.com/microsoft/SparseSC.git@ad4bf27edb28f517508f6934f21eb65d17fb6543 && scgrad start usage: from SparseSC import fit, aggregate_batch_results from SparseSC.utils.azure_batch_client import BatchConfig, run _TIMESTAMP = datetime.utcnow().strftime("%Y%m%d%H%M%S") BATCH_DIR= "path/to/my/batch_config/" fit(x=x,..., batchDir=BATCH_DIR) my_config = BatchConfig( BATCH_ACCOUNT_NAME="MySecret", BATCH_ACCOUNT_KEY="MySecret", BATCH_ACCOUNT_URL="MySecret", STORAGE_ACCOUNT_NAME="MySecret", STORAGE_ACCOUNT_KEY="MySecret", POOL_ID="my-compute-pool", POOL_NODE_COUNT=0, POOL_LOW_PRIORITY_NODE_COUNT=20, POOL_VM_SIZE="STANDARD_A1_v2", DELETE_POOL_WHEN_DONE=False, JOB_ID="my-job" + _TIMESTAMP, DELETE_JOB_WHEN_DONE=False, CONTAINER_NAME="my-blob-container", BATCH_DIRECTORY=BATCH_DIR, ) run(my_config) fitted_model = aggregate_batch_results("path/to/my/batch_config") """ # pylint: disable=differing-type-doc, differing-param-doc, missing-param-doc, missing-raises-doc, missing-return-doc from __future__ import print_function import datetime import io import os import sys import time import pathlib import importlib from collections import defaultdict import azure.storage.blob as azureblob from azure.storage.blob.models import ContainerPermissions import azure.batch.batch_service_client as batch import azure.batch.batch_auth as batch_auth import azure.batch.models as models from SparseSC.cli.stt import get_config from ..print_progress import print_progress from .BatchConfig import BatchConfig, validate_config from yaml import load try: from yaml import CLoader as Loader except ImportError: from yaml import Loader from .constants import ( _STANDARD_OUT_FILE_NAME, _CONTAINER_OUTPUT_FILE, _CONTAINER_INPUT_FILE, _BATCH_CV_FILE_NAME, ) FOLD_FILE_PATTERN = "fold_{}.yaml" # pylint: disable=bad-continuation, invalid-name, protected-access, line-too-long, fixme sys.path.append(".") sys.path.append("..") # Update the Batch and Storage account credential strings in config.py with values # unique to your accounts. These are used when constructing connection strings # for the Batch and Storage client objects. def build_output_sas_url(config, _blob_client): """ build a sas token for the output container """ sas_token = _blob_client.generate_container_shared_access_signature( config.CONTAINER_NAME, ContainerPermissions.READ + ContainerPermissions.WRITE + ContainerPermissions.DELETE + ContainerPermissions.LIST, datetime.datetime.utcnow() + datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS), start=datetime.datetime.utcnow(), ) _sas_url = "https://{}.blob.core.windows.net/{}?{}".format( config.STORAGE_ACCOUNT_NAME, config.CONTAINER_NAME, sas_token ) return _sas_url def print_batch_exception(batch_exception): """ Prints the contents of the specified Batch exception. :param batch_exception: """ print("-------------------------------------------") print("Exception encountered:") if ( batch_exception.error and batch_exception.error.message and batch_exception.error.message.value ): print(batch_exception.error.message.value) if batch_exception.error.values: print() for mesg in batch_exception.error.values: print("{}:\t{}".format(mesg.key, mesg.value)) print("-------------------------------------------") def build_output_file(container_sas_url, fold_number): """ Uploads a local file to an Azure Blob storage container. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ # where to store the outputs container_dest = models.OutputFileBlobContainerDestination( container_url=container_sas_url, path=FOLD_FILE_PATTERN.format(fold_number) ) dest = models.OutputFileDestination(container=container_dest) # under what conditions should you attempt to extract the outputs? upload_options = models.OutputFileUploadOptions( upload_condition=models.OutputFileUploadCondition.task_success ) # https://docs.microsoft.com/en-us/azure/batch/batch-task-output-files#specify-output-files-for-task-output return models.OutputFile( file_pattern=_CONTAINER_OUTPUT_FILE, destination=dest, upload_options=upload_options, ) def upload_file_to_container(block_blob_client, container_name, file_path, duration_hours=24): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print("Uploading file {} to container [{}]...".format(file_path, container_name)) block_blob_client.create_blob_from_path(container_name, blob_name, file_path) sas_token = block_blob_client.generate_blob_shared_access_signature( container_name, blob_name, permission=azureblob.BlobPermissions.READ, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=duration_hours), ) sas_url = block_blob_client.make_blob_url( container_name, blob_name, sas_token=sas_token ) return models.ResourceFile(http_url=sas_url, file_path=_CONTAINER_INPUT_FILE) def create_pool(config, batch_service_client): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku """ # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ image_ref_to_use = models.ImageReference( publisher="microsoft-azure-batch", offer="ubuntu-server-container", sku="16-04-lts", version="latest", ) if config.REGISTRY_USERNAME: registry = batch.models.ContainerRegistry( user_name=config.REGISTRY_USERNAME, password=config.REGISTRY_PASSWORD, registry_server=config.REGISTRY_SERVER, ) container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER], container_registries=[registry], ) else: container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER] ) new_pool = batch.models.PoolAddParameter( id=config.POOL_ID, virtual_machine_configuration=batch.models.VirtualMachineConfiguration( image_reference=image_ref_to_use, container_configuration=container_conf, node_agent_sku_id="batch.node.ubuntu 16.04", ), vm_size=config.POOL_VM_SIZE, target_dedicated_nodes=config.POOL_NODE_COUNT, target_low_priority_nodes=config.POOL_LOW_PRIORITY_NODE_COUNT, ) batch_service_client.pool.add(new_pool) def create_job(batch_service_client, job_id, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print("Creating job [{}]...".format(job_id)) job_description = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id) ) batch_service_client.job.add(job_description) def add_tasks( config, _blob_client, batch_service_client, container_sas_url, job_id, _input_file, count, ): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: The input files :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ print("Adding {} tasks to job [{}]...".format(count, job_id)) tasks = list() for fold_number in range(count): output_file = build_output_file(container_sas_url, fold_number) # command_line = '/bin/bash -c \'echo "Hello World" && echo "hello: world" > output.yaml\'' command_line = "/bin/bash -c 'stt {} {} {}'".format( _CONTAINER_INPUT_FILE, _CONTAINER_OUTPUT_FILE, fold_number ) task_container_settings = models.TaskContainerSettings( image_name=config.DOCKER_CONTAINER ) tasks.append( batch.models.TaskAddParameter( id="Task_{}".format(fold_number), command_line=command_line, resource_files=[_input_file], output_files=[output_file], container_settings=task_container_settings, ) ) batch_service_client.task.add_collection(job_id, tasks) def wait_for_tasks_to_complete(batch_service_client, job_id, timeout): """ Returns when all tasks in the specified job reach the Completed state. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The id of the job whose tasks should be to monitored. :param timedelta timeout: The duration to wait for task completion. If all tasks in the specified job do not reach Completed state within this time period, an exception will be raised. """ _start_time = datetime.datetime.now() timeout_expiration = _start_time + timeout # print( "Monitoring all tasks for 'Completed' state, timeout in {}...".format(timeout), end="",) while datetime.datetime.now() < timeout_expiration: sys.stdout.flush() tasks = [t for t in batch_service_client.task.list(job_id)] incomplete_tasks = [ task for task in tasks if task.state != models.TaskState.completed ] hours, remainder = divmod((datetime.datetime.now() - _start_time).seconds, 3600) minutes, seconds = divmod(remainder, 60) print_progress( len(tasks) - len(incomplete_tasks), len(tasks), prefix="Time elapsed {:02}:{:02}:{:02}".format( int(hours), int(minutes), int(seconds) ), decimals=1, bar_length=min(len(tasks), 50), ) error_codes = [t.execution_info.exit_code for t in tasks if t.execution_info and t.execution_info.exit_code ] if error_codes: codes = defaultdict(lambda : 0) for cd in error_codes: codes[cd] +=1 # import pdb; pdb.set_trace() raise RuntimeError( "\nSome tasks have exited with a non-zero exit code including: " + ", ".join([ "{}({})".format(k,v) for k, v in codes.items() ] )) if not incomplete_tasks: print() return True time.sleep(1) print() raise RuntimeError( "ERROR: Tasks did not reach 'Completed' state within " "timeout period of " + str(timeout) ) def print_task_output(batch_service_client, job_id, encoding=None): """Prints the stdout.txt file for each task in the job. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param str job_id: The id of the job with task output files to print. """ print("Printing task output...") tasks = batch_service_client.task.list(job_id) for task in tasks: node_id = batch_service_client.task.get(job_id, task.id).node_info.node_id print("Task: {}".format(task.id)) print("Node: {}".format(node_id)) stream = batch_service_client.file.get_from_task( job_id, task.id, _STANDARD_OUT_FILE_NAME ) file_text = _read_stream_as_string(stream, encoding) print("Standard output:") print(file_text) def _read_stream_as_string(stream, encoding): """Read stream as string :param stream: input stream generator :param str encoding: The encoding of the file. The default is utf-8. :return: The file content. :rtype: str """ output = io.BytesIO() try: for data in stream: output.write(data) if encoding is None: encoding = "utf-8" return output.getvalue().decode(encoding) finally: output.close() raise RuntimeError("could not write data to stream or decode bytes") def _download_files(config, _blob_client, out_path, count): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] for i in range(count): blob_name = FOLD_FILE_PATTERN.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) _blob_client.get_blob_to_path(config.CONTAINER_NAME, blob_name, out_path) def _download_results(config, _blob_client, out_path, count, ptrn=FOLD_FILE_PATTERN): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] results = [] for i in range(count): blob_name = ptrn.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) with _blob_client.get_blob_to_stream( config.CONTAINER_NAME, blob_name, out_path ) as blob: results[i] = load(blob, Loader=Loader) return results def run(config: BatchConfig, wait=True) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :param boolean wait: If true, wait for the batch to complete and then download the results to file :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print( 'Synthetic Controls Run "{}" start time: {}'.format(config.JOB_ID, start_time) ) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Use the blob client to create the containers in Azure Storage if they # don't yet exist. blob_client.create_container(config.CONTAINER_NAME, fail_on_exist=False) CONTAINER_SAS_URL = build_output_sas_url(config, blob_client) # The collection of data files that are to be processed by the tasks. input_file_path = os.path.join(sys.path[0], _LOCAL_INPUT_FILE) # Upload the data files. input_file = upload_file_to_container( blob_client, config.CONTAINER_NAME, input_file_path, config.STORAGE_ACCESS_DURATION_HRS ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Create the pool that will contain the compute nodes that will execute the # tasks. try: create_pool(config, batch_client) print("Created pool: ", config.POOL_ID) except models.BatchErrorException: print("Using pool: ", config.POOL_ID) # Create the job that will run the tasks. create_job(batch_client, config.JOB_ID, config.POOL_ID) # Add the tasks to the job. add_tasks( config, blob_client, batch_client, CONTAINER_SAS_URL, config.JOB_ID, input_file, n_folds, ) if not wait: return # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) def load_results(config: BatchConfig) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print('Load result for job "{}" start time: {}'.format(config.JOB_ID, start_time)) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) if __name__ == "__main__": # TODO: this is not an ideal API config_module = importlib.__import__("config") run(config_module.config)
34.487923
178
0.693561
0
0
0
0
0
0
0
0
8,273
0.386282
1be2bb16aca1a3770cbb4668f10786667f95971a
63
py
Python
src/vilbert/datasets/__init__.py
NoOneUST/COMP5212
171b564f08841e426545f58e3b52870c0e090586
[ "MIT" ]
3
2020-04-05T06:50:46.000Z
2020-04-05T08:20:33.000Z
src/vilbert/datasets/__init__.py
NoOneUST/COMP5212Project
171b564f08841e426545f58e3b52870c0e090586
[ "MIT" ]
2
2021-05-21T16:24:54.000Z
2022-02-10T01:21:54.000Z
src/vilbert/datasets/__init__.py
NoOneUST/COMP5212Project
171b564f08841e426545f58e3b52870c0e090586
[ "MIT" ]
1
2020-06-15T16:22:20.000Z
2020-06-15T16:22:20.000Z
from .visual_entailment_dataset import VisualEntailmentDataset
31.5
62
0.920635
0
0
0
0
0
0
0
0
0
0
1be2fe74c868aa22cedb699484c807fd62b32107
14,174
py
Python
Dungeoneer/Treasure.py
jameslemon81/Dungeoneer
8a2a1bfea06ae09f1898583999bf449c82ba4ce9
[ "BSD-3-Clause" ]
12
2015-01-29T17:15:46.000Z
2022-02-23T05:58:49.000Z
Dungeoneer/Treasure.py
jameslemon81/Dungeoneer
8a2a1bfea06ae09f1898583999bf449c82ba4ce9
[ "BSD-3-Clause" ]
null
null
null
Dungeoneer/Treasure.py
jameslemon81/Dungeoneer
8a2a1bfea06ae09f1898583999bf449c82ba4ce9
[ "BSD-3-Clause" ]
8
2016-07-04T18:09:50.000Z
2022-02-23T05:58:48.000Z
# Basic Fantasy RPG Dungeoneer Suite # Copyright 2007-2012 Chris Gonnerman # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # Redistributions of source code must retain the above copyright # notice, self list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, self list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the author nor the names of any contributors # may be used to endorse or promote products derived from self software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### # Treasure.py -- generate treasures for Basic Fantasy RPG ############################################################################### import Gems, Art, Coins, Magic, Unknown import Dice import string def combine(lst): lst.sort() hits = 1 while hits: hits = 0 for i in range(len(lst) - 1): if lst[i] is not None and lst[i+1] is not None: if lst[i].cat == lst[i+1].cat \ and lst[i].name == lst[i+1].name \ and lst[i].value == lst[i+1].value: lst[i].qty += lst[i+1].qty lst[i+1] = None hits += 1 if hits: lst = filter(lambda x: x is not None, lst) return lst def _gen_coins(argtup): kind, n, s, b, mul = argtup return [ Coins.Coin(kind, (Dice.D(n, s, b) * mul)) ] def _gen_gems(argtup): n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Gems.Gem() ] return lst def _gen_art(argtup): n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Art.Art() ] return lst def __gen_magic(argtup): kind, n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Magic.Magic(kind) ] return lst def _gen_magic(argtup): if type(argtup) is type([]): lst = [] for i in argtup: lst = lst + __gen_magic(i) return lst else: return __gen_magic(argtup) _treasure_table = { # lair treasure 'A': [ (50, _gen_coins, ("cp", 5, 6, 0, 100)), (60, _gen_coins, ("sp", 5, 6, 0, 100)), (40, _gen_coins, ("ep", 5, 4, 0, 100)), (70, _gen_coins, ("gp", 10, 6, 0, 100)), (50, _gen_coins, ("pp", 1, 10, 0, 100)), (50, _gen_gems, (6, 6, 0, 1)), (50, _gen_art, (6, 6, 0, 1)), (30, _gen_magic, ("Any", 0, 0, 3, 1)), ], 'B': [ (75, _gen_coins, ("cp", 5, 10, 0, 100)), (50, _gen_coins, ("sp", 5, 6, 0, 100)), (50, _gen_coins, ("ep", 5, 4, 0, 100)), (50, _gen_coins, ("gp", 3, 6, 0, 100)), (25, _gen_gems, (1, 6, 0, 1)), (25, _gen_art, (1, 6, 0, 1)), (10, _gen_magic, ("AW", 0, 0, 1, 1)), ], 'C': [ (60, _gen_coins, ("cp", 6, 6, 0, 100)), (60, _gen_coins, ("sp", 5, 4, 0, 100)), (30, _gen_coins, ("ep", 2, 6, 0, 100)), (25, _gen_gems, (1, 4, 0, 1)), (25, _gen_art, (1, 4, 0, 1)), (15, _gen_magic, ("Any", 1, 2, 0, 1)), ], 'D': [ (30, _gen_coins, ("cp", 4, 6, 0, 100)), (45, _gen_coins, ("sp", 6, 6, 0, 100)), (90, _gen_coins, ("gp", 5, 8, 0, 100)), (30, _gen_gems, (1, 8, 0, 1)), (30, _gen_art, (1, 8, 0, 1)), (20, _gen_magic, [ ("Any", 1, 2, 0, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'E': [ (30, _gen_coins, ("cp", 2, 8, 0, 100)), (60, _gen_coins, ("sp", 6, 10, 0, 100)), (50, _gen_coins, ("ep", 3, 8, 0, 100)), (50, _gen_coins, ("gp", 4, 10, 0, 100)), (10, _gen_gems, (1, 10, 0, 1)), (10, _gen_art, (1, 10, 0, 1)), (30, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ] ), ], 'F': [ (40, _gen_coins, ("sp", 3, 8, 0, 100)), (50, _gen_coins, ("ep", 4, 8, 0, 100)), (85, _gen_coins, ("gp", 6, 10, 0, 100)), (70, _gen_coins, ("pp", 2, 8, 0, 100)), (20, _gen_gems, (2, 12, 0, 1)), (20, _gen_art, (1, 12, 0, 1)), (35, _gen_magic, [ ("Non-Weapon", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'G': [ (90, _gen_coins, ("gp", 4, 6, 0, 1000)), (75, _gen_coins, ("pp", 5, 8, 0, 100)), (25, _gen_gems, (3, 6, 0, 1)), (25, _gen_art, (1, 10, 0, 1)), (50, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ] ), ], 'H': [ (75, _gen_coins, ("cp", 8, 10, 0, 100)), (75, _gen_coins, ("sp", 6, 10, 0, 1000)), (75, _gen_coins, ("ep", 3, 10, 0, 1000)), (75, _gen_coins, ("gp", 5, 8, 0, 1000)), (75, _gen_coins, ("pp", 9, 8, 0, 100)), (50, _gen_gems, ( 1, 100, 0, 1)), (50, _gen_art, (10, 4, 0, 1)), (20, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'I': [ (80, _gen_coins, ("pp", 3, 10, 0, 100)), (50, _gen_gems, (2, 6, 0, 1)), (50, _gen_art, (2, 6, 0, 1)), (15, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'J': [ (45, _gen_coins, ("cp", 3, 8, 0, 100)), (45, _gen_coins, ("sp", 1, 8, 0, 100)), ], 'K': [ (90, _gen_coins, ("cp", 2, 10, 0, 100)), (35, _gen_coins, ("sp", 1, 8, 0, 100)), ], 'L': [ (50, _gen_gems, (1, 4, 0, 1)), ], 'M': [ (90, _gen_coins, ("gp", 4, 10, 0, 100)), (90, _gen_coins, ("pp", 2, 8, 0, 1000)), ], 'N': [ (40, _gen_magic, ("Potion", 2, 4, 0, 1)), ], 'O': [ (50, _gen_magic, ("Scroll", 1, 4, 0, 1)), ], # personal treasure 'P': [ (100, _gen_coins, ("cp", 3, 8, 0, 1)), ], 'Q': [ (100, _gen_coins, ("sp", 3, 6, 0, 1)), ], 'R': [ (100, _gen_coins, ("ep", 2, 6, 0, 1)), ], 'S': [ (100, _gen_coins, ("gp", 2, 4, 0, 1)), ], 'T': [ (100, _gen_coins, ("pp", 1, 6, 0, 1)), ], 'U': [ ( 50, _gen_coins, ("cp", 1, 20, 0, 1)), ( 50, _gen_coins, ("sp", 1, 20, 0, 1)), ( 25, _gen_coins, ("gp", 1, 20, 0, 1)), ( 5, _gen_gems, (1, 4, 0, 1)), ( 5, _gen_art, (1, 4, 0, 1)), ( 2, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'V': [ ( 25, _gen_coins, ("sp", 1, 20, 0, 1)), ( 25, _gen_coins, ("ep", 1, 20, 0, 1)), ( 50, _gen_coins, ("gp", 1, 20, 0, 1)), ( 25, _gen_coins, ("pp", 1, 20, 0, 1)), ( 10, _gen_gems, (1, 4, 0, 1)), ( 10, _gen_art, (1, 4, 0, 1)), ( 5, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U1': [ ( 75, _gen_coins, ("cp", 1, 8, 0, 100)), ( 50, _gen_coins, ("sp", 1, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 4, 0, 100)), ( 7, _gen_coins, ("gp", 1, 4, 0, 100)), ( 1, _gen_coins, ("pp", 1, 4, 0, 100)), ( 7, _gen_gems, (1, 4, 0, 1)), ( 3, _gen_art, (1, 4, 0, 1)), ( 2, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U2': [ ( 50, _gen_coins, ("cp", 1, 10, 0, 100)), ( 50, _gen_coins, ("sp", 1, 8, 0, 100)), ( 25, _gen_coins, ("ep", 1, 6, 0, 100)), ( 20, _gen_coins, ("gp", 1, 6, 0, 100)), ( 2, _gen_coins, ("pp", 1, 4, 0, 100)), ( 10, _gen_gems, (1, 6, 0, 1)), ( 7, _gen_art, (1, 4, 0, 1)), ( 5, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U3': [ ( 30, _gen_coins, ("cp", 2, 6, 0, 100)), ( 50, _gen_coins, ("sp", 1, 10, 0, 100)), ( 25, _gen_coins, ("ep", 1, 8, 0, 100)), ( 50, _gen_coins, ("gp", 1, 6, 0, 100)), ( 4, _gen_coins, ("pp", 1, 4, 0, 100)), ( 15, _gen_gems, (1, 6, 0, 1)), ( 7, _gen_art, (1, 6, 0, 1)), ( 8, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U45': [ ( 20, _gen_coins, ("cp", 3, 6, 0, 100)), ( 50, _gen_coins, ("sp", 2, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 10, 0, 100)), ( 50, _gen_coins, ("gp", 2, 6, 0, 100)), ( 8, _gen_coins, ("pp", 1, 4, 0, 100)), ( 20, _gen_gems, (1, 8, 0, 1)), ( 10, _gen_art, (1, 6, 0, 1)), ( 12, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U67': [ ( 15, _gen_coins, ("cp", 4, 6, 0, 100)), ( 50, _gen_coins, ("sp", 3, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 12, 0, 100)), ( 70, _gen_coins, ("gp", 2, 8, 0, 100)), ( 15, _gen_coins, ("pp", 1, 4, 0, 100)), ( 30, _gen_gems, (1, 8, 0, 1)), ( 15, _gen_art, (1, 6, 0, 1)), ( 16, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U8': [ ( 10, _gen_coins, ("cp", 5, 6, 0, 100)), ( 50, _gen_coins, ("sp", 5, 6, 0, 100)), ( 25, _gen_coins, ("ep", 2, 8, 0, 100)), ( 75, _gen_coins, ("gp", 4, 6, 0, 100)), ( 30, _gen_coins, ("pp", 1, 4, 0, 100)), ( 40, _gen_gems, (1, 8, 0, 1)), ( 30, _gen_art, (1, 8, 0, 1)), ( 20, _gen_magic, ("Any", 0, 0, 1, 1)), ], # coinage 'cp': [ (100, _gen_coins, ("cp", 0, 0, 1, 1)), ], 'sp': [ (100, _gen_coins, ("sp", 0, 0, 1, 1)), ], 'ep': [ (100, _gen_coins, ("ep", 0, 0, 1, 1)), ], 'gp': [ (100, _gen_coins, ("gp", 0, 0, 1, 1)), ], 'pp': [ (100, _gen_coins, ("pp", 0, 0, 1, 1)), ], # magic classes 'MAGIC': [ (100, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'POTION': [ (100, _gen_magic, ("Potion", 0, 0, 1, 1)), ], 'SCROLL': [ (100, _gen_magic, ("Scroll", 0, 0, 1, 1)), ], 'RING': [ (100, _gen_magic, ("Ring", 0, 0, 1, 1)), ], 'WSR': [ (100, _gen_magic, ("WSR", 0, 0, 1, 1)), ], 'MISC': [ (100, _gen_magic, ("Misc", 0, 0, 1, 1)), ], 'ARMOR': [ (100, _gen_magic, ("Armor", 0, 0, 1, 1)), ], 'WEAPON': [ (100, _gen_magic, ("Weapon", 0, 0, 1, 1)), ], } _treasure_table['U4'] = _treasure_table['U45'] _treasure_table['U5'] = _treasure_table['U45'] _treasure_table['U6'] = _treasure_table['U67'] _treasure_table['U7'] = _treasure_table['U67'] def Types(): types = _treasure_table.keys() ones = filter(lambda x: len(x) == 1, types) mults = filter(lambda x: len(x) > 1, types) ones.sort() mults.sort() return ones + mults def Treasure(typ): tr = [] try: tbl = _treasure_table[string.upper(typ)] for i in tbl: if Dice.D(1, 100, 0) <= i[0]: tr = tr + i[1](i[2]) except: tr = [ Unknown.Unknown(typ) ] return tr def Factory(args): types = [] tr = [] mult = 1 for i in args: if type(i) is tuple: i = Dice.D(*i) try: nmult = int(i) mult = nmult types.append("%d" % mult) continue except: pass types.append(i + ",") for n in range(mult): tr += Treasure(i) types = string.join(types, " ") if types[-1] == ',': types = types[:-1] return (types.upper(), combine(tr)) if __name__ == "__main__": import sys if len(sys.argv) < 2: print "Usage: Treasure.py treasuretype [ treasuretype ... ]" sys.exit(0) types, tr = Factory(sys.argv[1:]) print "Treasure Type " + string.upper(types) vtot = 0.0 ocat = '' qty_len = 1 for t in tr: qty_len = max(len(str(t.qty)), qty_len) qty_fmt = "%" + str(qty_len) + "d" for t in tr: if t.cat != ocat: print t.cat ocat = t.cat if t.value != 0: print " ", qty_fmt % t.qty, t.name, t.value, "GP ea.", \ t.value * t.qty, "GP total" else: print " ", qty_fmt % t.qty, t.name for i in t.desc: print " ", i vtot = vtot + (t.qty * t.value) print "----- Total Value", vtot, "GP\n" # end of script.
32.734411
79
0.417172
0
0
0
0
0
0
0
0
2,726
0.192324
1be31bb2955f81221fbda20bbf33d2351c12d6c3
20,773
py
Python
covid19/COVID19/code/controller/main.py
zhanqingheng/COVID-19
d050ad2effedb9090865d1104ccd5c5d04343f53
[ "MIT" ]
16
2020-06-08T10:14:13.000Z
2022-03-30T02:44:04.000Z
covid19/COVID19/code/controller/main.py
zhanqingheng/COVID-19
d050ad2effedb9090865d1104ccd5c5d04343f53
[ "MIT" ]
1
2021-11-18T10:03:42.000Z
2021-11-18T10:03:42.000Z
covid19/COVID19/code/controller/main.py
zhanqingheng/COVID-19
d050ad2effedb9090865d1104ccd5c5d04343f53
[ "MIT" ]
4
2021-03-06T04:44:03.000Z
2021-12-09T07:22:50.000Z
from flask import Flask, current_app from flask import render_template from flask import jsonify from jieba.analyse import extract_tags import string from DB import chinaSQL from DB import worldSQL app = Flask(__name__, template_folder='../../web', static_folder='../../static') @app.route('/', methods=["get", "post"]) def hello_world(): return render_template("china.html") @app.route('/china', methods=["get", "post"]) def china(): return render_template("china.html") @app.route('/world', methods=["get", "post"]) def world(): return render_template("world.html") @app.route('/favicon.ico') def favicon(): return current_app.send_static_file('image/favicon-32x32-sun.ico') @app.route("/time") def time(): data = chinaSQL.time() return str(data[0]) @app.route("/chinaEightNumber") def chinaEightNumber(): data = chinaSQL.chinaEightNumber() return jsonify({"confirmTotal": data[0], "healTotal": data[1], "deadTotal": data[2], "nowConfirmTotal": data[3], "suspectTotal": data[4], "nowSevereTotal": data[5], "importedCaseTotal": data[6], "noInfectTotal": data[7], "confirmAdd": data[8], "healAdd": data[9], "deadAdd": data[10], "nowConfirmAdd": data[11], "suspectAdd": data[12], "nowSevereAdd": data[13], "importedCaseAdd": data[14], "noInfectAdd": data[15] }) @app.route('/chinaMap', methods=['GET']) def chinaMap(): data = chinaSQL.chinaMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a, "value": b}) nowConfirmTotal.append({"name": a, "value": c}) confirmTotal.append({"name": a, "value": d}) healTotal.append({"name": a, "value": e}) deadTotal.append({"name": a, "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route('/chinaProvinceMap', methods=['GET']) def chinaProvinceMap(): data = chinaSQL.chinaProvinceMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a + "市", "value": b}) nowConfirmTotal.append({"name": a + "市", "value": c}) confirmTotal.append({"name": a + "市", "value": d}) healTotal.append({"name": a + "市", "value": e}) deadTotal.append({"name": a + "市", "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route("/nationalTotal") def nationalTotal(): data = chinaSQL.nationalTotal() day, \ confirmChinaDayList, \ healChinaDayList, \ deadChinaDayList, \ importedCaseChinaDayList = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirmChinaDayList.append(b) healChinaDayList.append(c) deadChinaDayList.append(d) importedCaseChinaDayList.append(e) return jsonify({"day": day, "confirmChinaDayList": confirmChinaDayList, "healChinaDayList": healChinaDayList, "deadChinaDayList": deadChinaDayList, "importedCaseChinaDayList": importedCaseChinaDayList }) @app.route("/dailyAdditionsNationwide") def dailyAdditionsNationwide(): data = chinaSQL.dailyAdditionsNationwide() day, \ confirmChinaDayAddList, \ healChinaDayAddList, \ deadChinaDayAddList, \ importedCaseChinaDayAddList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) confirmChinaDayAddList.append(b) healChinaDayAddList.append(c) deadChinaDayAddList.append(d) importedCaseChinaDayAddList.append(e) return jsonify({"day": day, "confirmChinaDayAddList": confirmChinaDayAddList, "healChinaDayAddList": healChinaDayAddList, "deadChinaDayAddList": deadChinaDayAddList, "importedCaseChinaDayAddList": importedCaseChinaDayAddList }) @app.route("/dailyCasesNationwide") def dailyCasesNationwide(): data = chinaSQL.dailyCasesNationwide() day, \ suspectChinaDayList, \ noInfectChinaDayList, \ nowConfirmChinaDayList, \ nowSevereChinaDayList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) suspectChinaDayList.append(b) noInfectChinaDayList.append(c) nowConfirmChinaDayList.append(d) nowSevereChinaDayList.append(e) return jsonify({"day": day, "suspectChinaDayList": suspectChinaDayList, "noInfectChinaDayList": noInfectChinaDayList, "nowConfirmChinaDayList": nowConfirmChinaDayList, "nowSevereChinaDayList": nowSevereChinaDayList }) @app.route("/nationalCumulativeCureMortalityRate") def nationalCumulativeCureMortalityRate(): data = chinaSQL.nationalCumulativeCureMortalityRate() day, \ healRateChinaDayList, \ deadRateChinaDayList = [], [], [] for a, b, c in data[7:]: day.append(a.strftime("%m-%d")) healRateChinaDayList.append(b) deadRateChinaDayList.append(c) return jsonify({"day": day, "healRateChinaDayList": healRateChinaDayList, "deadRateChinaDayList": deadRateChinaDayList }) @app.route("/detailedDataByProvince") def detailedDataByProvince(): data = chinaSQL.detailedDataByProvince() provinceName, \ confirmTotal, \ healTotal, \ deadTotal, \ healRateTotal, \ deadRateTotal = [], [], [], [], [], [] for a, b, c, d, e, f in data: provinceName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) healRateTotal.append(e) deadRateTotal.append(f) return jsonify({"provinceName": provinceName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal, "healRateTotal": healRateTotal, "deadRateTotal": deadRateTotal }) @app.route("/cumulativeNumberOfConfirmedCasesInAllProvinces") def cumulativeNumberOfConfirmedCasesInAllProvinces(): data = chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces() provincedetails = [] for provinceName, confirmTotal in data: provincedetails.append({"name": provinceName, "value": confirmTotal}) return jsonify({"data": provincedetails}) @app.route("/currentConfirmedDataInAllProvinces") def currentConfirmedDataInAllProvinces(): data = chinaSQL.currentConfirmedDataInAllProvinces() provinceName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: provinceName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"provinceName": provinceName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/existingDiagnosticClassificationInChina") def existingDiagnosticClassificationInChina(): data = chinaSQL.existingDiagnosticClassificationInChina() nowconfirmstatis = [] nowconfirmstatis.append({"name": '港澳台现存确诊', "value": data[0][0]}) nowconfirmstatis.append({"name": '境外输入现存确诊', "value": data[0][1]}) nowconfirmstatis.append({"name": '31省本土现有确诊', "value": data[0][2]}) return jsonify({"data": nowconfirmstatis}) @app.route("/totalNumberOfOverseasImportsFromTop10Provinces") def totalNumberOfOverseasImportsFromTop10Provinces(): data = chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces() importstatis = [] for province, importedCase in data: importstatis.append({"name": province, "value": importedCase}) return jsonify({"data": importstatis}) @app.route("/eachProvinceComparesYesterdayData") def eachProvinceComparesYesterdayData(): data = chinaSQL.eachProvinceComparesYesterdayData() province, \ nowConfirm, \ confirmAdd, \ heal, \ dead, \ zero = [], [], [], [], [], [] for a, b, c, d, e, f in data: province.append(a) nowConfirm.append(b) confirmAdd.append(c) heal.append(d) dead.append(e) zero.append(f) return jsonify({"province": province, "nowConfirm": nowConfirm, "confirmAdd": confirmAdd, "heal": heal, "dead": dead, "zero": zero }) @app.route("/hubeiNonHubeiNationalCumulativeData") def hubeiNonHubeiNationalCumulativeData(): data = chinaSQL.hubeiNonHubeiNationalCumulativeData() day, \ hubeiNowConfirm, \ hubeiHeal, \ hubeiDead, \ notHubeiNowConfirm, \ notHubeiHeal, \ notHubeiDead, \ countryNowConfirm, \ countryHeal, \ countryDead = [], [], [], [], [], [], [], [], [], [] for a, b, c, d, e, f, g, h, i, j in data: day.append(a.strftime("%m-%d")) hubeiNowConfirm.append(b) hubeiHeal.append(c) hubeiDead.append(d) notHubeiNowConfirm.append(e) notHubeiHeal.append(f) notHubeiDead.append(g) countryNowConfirm.append(h) countryHeal.append(i) countryDead.append(j) return jsonify({"day": day, "hubeiNowConfirm": hubeiNowConfirm, "hubeiHeal": hubeiHeal, "hubeiDead": hubeiDead, "notHubeiNowConfirm": notHubeiNowConfirm, "notHubeiHeal": notHubeiHeal, "notHubeiDead": notHubeiDead, "countryNowConfirm": countryNowConfirm, "countryHeal": countryHeal, "countryDead": countryDead }) @app.route("/hubeiNonHubeiNationalCureMortalityRate") def hubeiNonHubeiNationalCureMortalityRate(): data = chinaSQL.hubeiNonHubeiNationalCureMortalityRate() day, \ hubeiHealRate, \ hubeiDeadRate, \ notHubeiHealRate, \ notHubeiDeadRate, \ countryHealRate, \ countryDeadRate = [], [], [], [], [], [], [] for a, b, c, d, e, f, g in data: day.append(a.strftime("%m-%d")) hubeiHealRate.append(b) hubeiDeadRate.append(c) notHubeiHealRate.append(d) notHubeiDeadRate.append(e) countryHealRate.append(f) countryDeadRate.append(g) return jsonify({"day": day, "hubeiHealRate": hubeiHealRate, "hubeiDeadRate": hubeiDeadRate, "notHubeiHealRate": notHubeiHealRate, "notHubeiDeadRate": notHubeiDeadRate, "countryHealRate": countryHealRate, "countryDeadRate": countryDeadRate }) @app.route("/hubeiNonHubeiNationalDailyNew") def hubeiNonHubeiNationalDailyNew(): data = chinaSQL.hubeiNonHubeiNationalDailyNew() day, \ hubei, \ notHubei, \ country = [], [], [], [] for a, b, c, d in data[7:]: day.append(a.strftime("%m-%d")) hubei.append(b) notHubei.append(c) country.append(d) return jsonify({"day": day, "hubei": hubei, "notHubei": notHubei, "country": country }) @app.route("/wuhanNotWuhanNotHubeiNewlyConfirmed") def wuhanNotWuhanNotHubeiNewlyConfirmed(): data = chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed() day, \ wuhan, \ notWuhan, \ notHubei = [], [], [], [] for a, b, c, d in data: day.append(a.strftime("%m-%d")) wuhan.append(b) notWuhan.append(c) notHubei.append(d) return jsonify({"day": day, "wuhan": wuhan, "notWuhan": notWuhan, "notHubei": notHubei }) @app.route("/totalConfirmedTop20UrbanAreas") def totalConfirmedTop20UrbanAreas(): data = chinaSQL.totalConfirmedTop20UrbanAreas() cityName, \ deadRateTotal, \ healRateTotal = [], [], [] for a, b, c in data: cityName.append(a) deadRateTotal.append(b) healRateTotal.append(c) return jsonify({"cityName": cityName, "deadRateTotal": deadRateTotal, "healRateTotal": healRateTotal }) @app.route("/existingConfirmedTop20UrbanAreas") def existingConfirmedTop20UrbanAreas(): data = chinaSQL.existingConfirmedTop20UrbanAreas() cityName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"cityName": cityName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/urbanDataOfHubeiProvince") def urbanDataOfHubeiProvince(): data = chinaSQL.urbanDataOfHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/accumulativeDataExceptHubeiProvince") def accumulativeDataExceptHubeiProvince(): data = chinaSQL.accumulativeDataExceptHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/provincesWithFatalCasesNationwide") def provincesWithFatalCasesNationwide(): data = chinaSQL.provincesWithFatalCasesNationwide() provincedetails = [] provincedetails.append({"name": "无死亡病例省份数量", "value": data[0][0]}) provincedetails.append({"name": "有死亡病例省份数量", "value": data[0][1]}) return jsonify({"data": provincedetails}) @app.route("/numberOfDeathsInCities") def numberOfDeathsInCities(): data = chinaSQL.numberOfDeathsInCities() dataCityCount = [] dataCityCount.append({"name": "无死亡病例城市数量", "value": data[0][0]}) dataCityCount.append({"name": "有死亡病例城市数量", "value": data[0][1]}) return jsonify({"data": dataCityCount}) @app.route("/outbreakOut") def outbreakOut(): data = chinaSQL.outbreakOut() d = [] for i in data: k = i[0].rstrip(string.digits) v = i[0][len(k):] ks = extract_tags(k) for j in ks: if not j.isdigit(): d.append({"name": j, "value": v}) return jsonify({"kws": d}) @app.route("/worldFourNumber") def worldFourNumber(): data = worldSQL.worldFourNumber() return jsonify({"nowConfirm": data[0], "confirm": data[1], "heal": data[2], "dead": data[3], "nowConfirmAdd": data[4], "confirmAdd": data[5], "healAdd": data[6], "deadAdd": data[7] }) @app.route('/worldMapNoChina', methods=['GET']) def worldMapNoChina(): data = worldSQL.worldMapNoChina() nowConfirm, confirm, heal, dead = [], [], [], [] for a, b, c, d, e in data: nowConfirm.append({"name": a, "value": b}) confirm.append({"name": a, "value": c}) heal.append({"name": a, "value": d}) dead.append({"name": a, "value": e}) data1 = worldSQL.worldMapChina() nowConfirm.append({"name": "中国", "value": data1[0][0]}) confirm.append({"name": "中国", "value": data1[0][1]}) heal.append({"name": "中国", "value": data1[0][2]}) dead.append({"name": "中国", "value": data1[0][3]}) return jsonify({"nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/globalCumulativeTrend") def globalCumulativeTrend(): data = worldSQL.globalCumulativeTrend() day, \ confirm, \ heal, \ dead, \ newAddConfirm = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirm.append(b) heal.append(c) dead.append(d) newAddConfirm.append(e) return jsonify({"day": day, "confirm": confirm, "heal": heal, "dead": dead, "newAddConfirm": newAddConfirm }) @app.route("/globalCumulativeCureMortality") def globalCumulativeCureMortality(): data = worldSQL.globalCumulativeCureMortality() day, \ healRate, \ deadRate = [], [], [] for a, b, c in data: day.append(a.strftime("%m-%d")) healRate.append(b) deadRate.append(c) return jsonify({"day": day, "healRate": healRate, "deadRate": deadRate }) @app.route("/foreignCumulativeDiagnosisTop10Countries") def foreignCumulativeDiagnosisTop10Countries(): data = worldSQL.foreignCumulativeDiagnosisTop10Countries() name, \ nowConfirm, \ confirm, \ heal, \ dead = [], [], [], [], [] for a, b, c, d, e in data: name.append(a) nowConfirm.append(b) confirm.append(c) heal.append(d) dead.append(e) return jsonify({"name": name, "nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/theTop10CountriesGrewFastestInSevenDays") def theTop10CountriesGrewFastestInSevenDays(): data = worldSQL.theTop10CountriesGrewFastestInSevenDays() nation, \ day7, \ day, \ rate = [], [], [], [] for a, b, c, d in data: nation.append(a) day7.append(b) day.append(c) rate.append(d) return jsonify({"nation": nation, "day7": day7, "day0": day, "rate": rate }) @app.route("/overseasCountriesWithMoreThan10000ConfirmedCases") def overseasCountriesWithMoreThan10000ConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases() foreignlist = [] for name, confirm in data: foreignlist.append({"name": name, "value": confirm}) return jsonify({"data": foreignlist}) @app.route("/overseasCountriesWithMoreThan10000HaveBeenConfirmedCases") def overseasCountriesWithMoreThan10000HaveBeenConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases() foreignlist = [] for name, nowConfirm in data: foreignlist.append({"name": name, "value": nowConfirm}) return jsonify({"data": foreignlist}) @app.route("/newCasesInTheTop10CountriesWithin24Hours") def newCasesInTheTop10CountriesWithin24Hours(): data = worldSQL.newCasesInTheTop10CountriesWithin24Hours() nationAddConfirm = [] for nation, addConfirm in data: nationAddConfirm.append({"name": nation, "value": addConfirm}) return jsonify({"data": nationAddConfirm}) @app.route("/theNumberOfForeignCountriesWithConfirmedCases") def theNumberOfForeignCountriesWithConfirmedCases(): data = worldSQL.theNumberOfForeignCountriesWithConfirmedCases() foreignlist = [] for continent, count in data: foreignlist.append({"name": continent, "value": count}) return jsonify({"data": foreignlist}) if __name__ == '__main__': app.run()
33.078025
98
0.588264
0
0
0
0
20,475
0.978962
0
0
3,714
0.177576
1be38ec637c07219a45f7c7ba15326a16a343d58
396
py
Python
T2API/migrations/0008_product_weight.py
hackhb18-T2/api
c42be466492d07d6451ff3145985cd8cc0927257
[ "Apache-2.0" ]
null
null
null
T2API/migrations/0008_product_weight.py
hackhb18-T2/api
c42be466492d07d6451ff3145985cd8cc0927257
[ "Apache-2.0" ]
null
null
null
T2API/migrations/0008_product_weight.py
hackhb18-T2/api
c42be466492d07d6451ff3145985cd8cc0927257
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.0.2 on 2018-02-17 10:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('T2API', '0007_apiuser_deviceuser'), ] operations = [ migrations.AddField( model_name='product', name='weight', field=models.IntegerField(default=None, null=True), ), ]
20.842105
63
0.60101
303
0.765152
0
0
0
0
0
0
96
0.242424
1be41a8ed3e94194a6131c0c94be533e83696d98
3,402
py
Python
contrib/cirrus/podbot.py
juhp/libpod
bc7afd6d71da4173e4894ff352667a25987fa2ea
[ "Apache-2.0" ]
2
2021-09-20T00:29:06.000Z
2021-11-28T08:36:20.000Z
contrib/cirrus/podbot.py
juhp/libpod
bc7afd6d71da4173e4894ff352667a25987fa2ea
[ "Apache-2.0" ]
2
2020-01-04T03:31:18.000Z
2021-05-17T09:54:03.000Z
contrib/cirrus/podbot.py
juhp/libpod
bc7afd6d71da4173e4894ff352667a25987fa2ea
[ "Apache-2.0" ]
1
2019-04-08T21:58:07.000Z
2019-04-08T21:58:07.000Z
#!/usr/bin/env python3 # Simple and dumb script to send a message to the #podman IRC channel on frenode # Based on example from: https://pythonspot.com/building-an-irc-bot/ import os import time import random import errno import socket import sys class IRC: response_timeout = 10 # seconds irc = socket.socket() def __init__(self, server, nickname, channel): self.server = server self.nickname = nickname self.channel = channel self.irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def _send(self, cmdstr): self.irc.send(bytes(cmdstr + '\r\n', 'utf-8')) def message(self, msg): data = 'PRIVMSG {0} :{1}\r\n'.format(self.channel, msg) print(data) self._send(data) @staticmethod def fix_newlines(bufr): return bufr.replace('\\r\\n', '\n') def _required_response(self, needle, haystack): start = time.time() end = start + self.response_timeout while time.time() < end: if haystack.find(needle) != -1: return (False, haystack) time.sleep(0.1) try: haystack += str(self.irc.recv(4096, socket.MSG_DONTWAIT)) except socket.error as serr: if serr.errno == errno.EWOULDBLOCK: continue raise # can't handle this return (True, haystack) # Error def connect(self, username, password): # This is ugly as sin, but seems to be a working send/expect sequence print("connecting to: {0}".format(self.server)) self.irc.connect((self.server, 6667)) #connects to the server self._send("USER {0} {0} {0} :I am {0}".format(self.nickname)) self._send("NICK {0}".format(self.nickname)) err, haystack = self._required_response('End of /MOTD command.' ''.format(self.nickname), "") if err: print(self.fix_newlines(haystack)) print("Error connecting to {0}".format(self.server)) return True print("Logging in as {0}".format(username)) self._send("PRIVMSG NickServ :IDENTIFY {0} {1}".format(username, password)) err, _ = self._required_response("You are now identified for", "") if err: print("Error logging in to {0} as {1}".format(self.server, username)) return True print("Joining {0}".format(self.channel)) self._send("JOIN {0}".format(self.channel)) err, haystack = self._required_response("{0} {1} :End of /NAMES list." "".format(self.nickname, self.channel), haystack) print(self.fix_newlines(haystack)) if err: print("Error joining {0}".format(self.channel)) return True return False def quit(self): print("Quitting") self._send("QUIT :my work is done here") self.irc.close() if len(sys.argv) < 3: print("Error: Must pass desired nick and message as parameters") else: irc = IRC("irc.freenode.net", sys.argv[1], "#podman") err = irc.connect(*os.environ.get('IRCID', 'Big Bug').split(" ", 2)) if not err: irc.message(" ".join(sys.argv[2:])) time.sleep(5.0) # avoid join/quit spam irc.quit()
34.363636
87
0.569959
2,794
0.821282
0
0
85
0.024985
0
0
811
0.238389
1be5b77cc2bbea8d65329992b137d52e24f4e227
441
py
Python
changes/api/build_coverage.py
vault-the/changes
37e23c3141b75e4785cf398d015e3dbca41bdd56
[ "Apache-2.0" ]
443
2015-01-03T16:28:39.000Z
2021-04-26T16:39:46.000Z
changes/api/build_coverage.py
vault-the/changes
37e23c3141b75e4785cf398d015e3dbca41bdd56
[ "Apache-2.0" ]
12
2015-07-30T19:07:16.000Z
2016-11-07T23:11:21.000Z
changes/api/build_coverage.py
vault-the/changes
37e23c3141b75e4785cf398d015e3dbca41bdd56
[ "Apache-2.0" ]
47
2015-01-09T10:04:00.000Z
2020-11-18T17:58:19.000Z
from changes.api.base import APIView from changes.lib.coverage import get_coverage_by_build_id, merged_coverage_data from changes.models.build import Build class BuildTestCoverageAPIView(APIView): def get(self, build_id): build = Build.query.get(build_id) if build is None: return '', 404 coverage = merged_coverage_data(get_coverage_by_build_id(build.id)) return self.respond(coverage)
25.941176
79
0.730159
280
0.634921
0
0
0
0
0
0
2
0.004535
1be723fadb484c2875b98748f51d456625b23262
5,251
py
Python
topopt/mechanisms/problems.py
arnavbansal2764/topopt
74d8f17568a9d3349632e23840a9dc5b0d6c4d1f
[ "MIT" ]
53
2020-04-14T10:13:04.000Z
2022-02-24T03:16:57.000Z
topopt/mechanisms/problems.py
arnavbansal2764/topopt
74d8f17568a9d3349632e23840a9dc5b0d6c4d1f
[ "MIT" ]
5
2020-11-12T23:56:30.000Z
2021-09-30T19:24:06.000Z
topopt/mechanisms/problems.py
arnavbansal2764/topopt
74d8f17568a9d3349632e23840a9dc5b0d6c4d1f
[ "MIT" ]
15
2020-02-12T01:32:07.000Z
2022-02-20T02:44:55.000Z
"""Compliant mechanism synthesis problems using topology optimization.""" import numpy import scipy.sparse from ..problems import ElasticityProblem from .boundary_conditions import MechanismSynthesisBoundaryConditions from ..utils import deleterowcol class MechanismSynthesisProblem(ElasticityProblem): r""" Topology optimization problem to generate compliant mechanisms. :math:`\begin{aligned} \max_{\boldsymbol{\rho}} \quad & \{u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}\}\\ \textrm{subject to}: \quad & \mathbf{K}\mathbf{u} = \mathbf{f}_\text{in}\\ & \sum_{e=1}^N v_e\rho_e \leq V_\text{frac}, \quad 0 < \rho_\min \leq \rho_e \leq 1, \quad e=1, \dots, N.\\ \end{aligned}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. Attributes ---------- spring_stiffnesses: numpy.ndarray The spring stiffnesses of the actuator and output displacement. Emin: float The minimum stiffness of elements. Emax: float The maximum stiffness of elements. """ @staticmethod def lk(E: float = 1.0, nu: float = 0.3) -> numpy.ndarray: """ Build the element stiffness matrix. Parameters ---------- E: Young's modulus of the material. nu: Poisson's ratio of the material. Returns ------- The element stiffness matrix for the material. """ return ElasticityProblem.lk(1e0, nu) def __init__( self, bc: MechanismSynthesisBoundaryConditions, penalty: float): """ Create the topology optimization problem. Parameters ---------- nelx: Number of elements in the x direction. nely: Number of elements in the x direction. penalty: Penalty value used to penalize fractional densities in SIMP. bc: Boundary conditions of the problem. """ super().__init__(bc, penalty) self.Emin = 1e-6 # Minimum stiffness of elements self.Emax = 1e2 # Maximum stiffness of elements # Spring stiffnesses for the actuator and output displacement self.spring_stiffnesses = numpy.full( numpy.nonzero(self.f)[0].shape, 10.0) def build_K(self, xPhys: numpy.ndarray, remove_constrained: bool = True ) -> scipy.sparse.coo.coo_matrix: """ Build the stiffness matrix for the problem. Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. remove_constrained: Should the constrained nodes be removed? Returns ------- The stiffness matrix for the mesh. """ # Build the stiffness matrix using inheritance K = super().build_K(xPhys, remove_constrained=False).tocsc() # Add spring stiffnesses spring_ids = numpy.nonzero(self.f)[0] K[spring_ids, spring_ids] += self.spring_stiffnesses # K = (K.T + K) / 2. # Make sure the stiffness matrix is symmetric # Remove constrained dofs from matrix and convert to coo if remove_constrained: K = deleterowcol(K, self.fixed, self.fixed) return K.tocoo() def compute_objective(self, xPhys: numpy.ndarray, dobj: numpy.ndarray ) -> float: r""" Compute the objective and gradient of the mechanism synthesis problem. The objective is :math:`u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. The gradient of the objective is :math:`\begin{align} u_\text{out} &= \mathbf{l}^T\mathbf{u} = \mathbf{l}^T\mathbf{u} + \boldsymbol{\lambda}^T(\mathbf{K}\mathbf{u} - \mathbf{f})\\ \frac{\partial u_\text{out}}{\partial \rho_e} &= (\mathbf{K}\boldsymbol{\lambda} + \mathbf{l})^T \frac{\partial \mathbf u}{\partial \rho_e} + \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} = \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} \end{align}` where :math:`\mathbf{K}\boldsymbol{\lambda} = -\mathbf{l}`. Parameters ---------- xPhys: The density design variables. dobj: The gradient of the objective to compute. Returns ------- The objective of the compliant mechanism synthesis problem. """ # Setup and solve FE problem self.update_displacements(xPhys) u = self.u[:, 0][self.edofMat].reshape(-1, 8) # Displacement λ = self.u[:, 1][self.edofMat].reshape(-1, 8) # Fixed vector (Kλ = -l) obj = self.f[:, 1].T @ self.u[:, 0] self.obje[:] = (λ @ self.KE * u).sum(1) self.compute_young_moduli(xPhys, dobj) # Stores the derivative in dobj dobj *= -self.obje return obj
33.234177
79
0.591316
4,998
0.951275
0
0
433
0.082413
0
0
3,645
0.693757
1be7ab6f787e652d44d15533e2b5246954d6801d
932
py
Python
tests/test_parse_icao24bit.py
Collen-Roller/arp
08eaa2dda3adb1dbd600597a6d03603669c8e06d
[ "MIT" ]
2
2020-10-28T17:03:14.000Z
2021-01-27T10:44:33.000Z
tests/test_parse_icao24bit.py
Collen-Roller/arp
08eaa2dda3adb1dbd600597a6d03603669c8e06d
[ "MIT" ]
8
2020-12-08T16:42:43.000Z
2020-12-29T00:41:33.000Z
tests/test_parse_icao24bit.py
Collen-Roller/arp
08eaa2dda3adb1dbd600597a6d03603669c8e06d
[ "MIT" ]
1
2020-12-09T20:35:52.000Z
2020-12-09T20:35:52.000Z
import unittest from flydenity import Parser class TestParseIcao24Bit(unittest.TestCase): def setUp(self): self.parser = Parser() def test_parse_simple(self): match = self.parser.parse("3D2591", icao24bit=True) self.assertEqual(match, {"nation": "Germany", "description": "general", "iso2": "DE", "iso3": "DEU"}) def test_parse_strict(self): sloppy_reg_sloppy_parser = self.parser.parse("3DX", icao24bit=True, strict=False) sloppy_reg_strict_parser = self.parser.parse("3DX", icao24bit=True, strict=True) strict_reg_sloppy_parser = self.parser.parse("3D2591", icao24bit=True, strict=False) strict_reg_strict_parser = self.parser.parse("3D2591", icao24bit=True, strict=True) self.assertTrue(sloppy_reg_sloppy_parser == strict_reg_sloppy_parser == strict_reg_strict_parser != sloppy_reg_strict_parser) if __name__ == "__main__": unittest.main()
35.846154
133
0.713519
834
0.89485
0
0
0
0
0
0
104
0.111588
1be82da5cbe879b6b36fe90dd23217980058a69e
465
py
Python
ever/util/_main.py
Bobholamovic/ever
f38060674a40ed53072b9d9be99cc656a830398f
[ "Apache-2.0" ]
22
2021-08-21T00:13:18.000Z
2022-03-28T19:38:10.000Z
ever/util/_main.py
Bobholamovic/ever
f38060674a40ed53072b9d9be99cc656a830398f
[ "Apache-2.0" ]
2
2021-09-01T06:28:38.000Z
2021-12-06T07:17:57.000Z
ever/util/_main.py
Bobholamovic/ever
f38060674a40ed53072b9d9be99cc656a830398f
[ "Apache-2.0" ]
6
2021-08-21T06:32:47.000Z
2022-02-10T07:41:29.000Z
import os def create_project(path): dirs = ['configs', 'module', 'data'] dirs = [os.path.join(path, d) for d in dirs] for d in dirs: os.makedirs(d) train_script = r""" import ever as er def train(trainer_name): trainer = er.trainer.get_trainer(trainer_name)() trainer.run() """ with open(os.path.join(path, 'train.py'), 'w') as f: f.write(train_script) print('created project in {}'.format(path))
19.375
56
0.597849
0
0
0
0
0
0
0
0
196
0.421505
1be88ec83f0700967a841e75b99ce2ed109f8dfc
473
py
Python
src/app/services/metrics_service.py
chrisbpoint/the-app
960307718c2cef7cdd86d348d380381aafaab10a
[ "MIT" ]
null
null
null
src/app/services/metrics_service.py
chrisbpoint/the-app
960307718c2cef7cdd86d348d380381aafaab10a
[ "MIT" ]
null
null
null
src/app/services/metrics_service.py
chrisbpoint/the-app
960307718c2cef7cdd86d348d380381aafaab10a
[ "MIT" ]
null
null
null
class MetricsService: def __init__(self, adc_data, metrics_data): self._adc_data = adc_data self._metrics_data = metrics_data @property def metrics_data(self): return self._metrics_data def update(self): self._metrics_data.is_new_data_available = False if self._adc_data.is_new_data_available: self._metrics_data.update(self._adc_data.trace) self._metrics_data.is_new_data_available = True
29.5625
59
0.69556
472
0.997886
0
0
71
0.150106
0
0
0
0
1bea69b9a810613a8cdcc7d4cd5f8e74e2b87b61
687
py
Python
resthelper/tests/test_build_url.py
rklonner/resthelper
c129a7ff3efb5447aeb9794142c4d640261d962d
[ "MIT" ]
null
null
null
resthelper/tests/test_build_url.py
rklonner/resthelper
c129a7ff3efb5447aeb9794142c4d640261d962d
[ "MIT" ]
null
null
null
resthelper/tests/test_build_url.py
rklonner/resthelper
c129a7ff3efb5447aeb9794142c4d640261d962d
[ "MIT" ]
null
null
null
import unittest from resthelper.utils import build_restful_url class TestBuildUrl(unittest.TestCase): def test_is_restful_https_url(self): url = build_restful_url('https://jenkins1.tttech.com', 'testuser', '/rest/1.0/request') self.assertEqual(url, 'https://[email protected]/rest/1.0/request') def test_is_restful_http_url(self): url = build_restful_url('http://jenkins1.tttech.com', 'testuser', '/rest/1.0/request') self.assertEqual(url, 'http://[email protected]/rest/1.0/request') if __name__ == '__main__': unittest.main()
32.714286
68
0.622999
572
0.832606
0
0
0
0
0
0
234
0.340611
1beb0ef06d9c6f7de745f499f7af1a9f705e4a88
929
py
Python
sendsms/backends/rq.py
this-is-the-bard/django-sendsms
8944b7d276f91b019ad6aa2e7e29324fa107fa01
[ "MIT" ]
null
null
null
sendsms/backends/rq.py
this-is-the-bard/django-sendsms
8944b7d276f91b019ad6aa2e7e29324fa107fa01
[ "MIT" ]
null
null
null
sendsms/backends/rq.py
this-is-the-bard/django-sendsms
8944b7d276f91b019ad6aa2e7e29324fa107fa01
[ "MIT" ]
null
null
null
""" python-rq based backend This backend will send your messages asynchronously with python-rq. Before using this backend, make sure that django-rq is installed and configured. Usage ----- In settings.py SENDSMS_BACKEND = 'sendsms.backends.rq.SmsBackend' RQ_SENDSMS_BACKEND = 'actual.backend.to.use.SmsBackend' """ from sendsms.api import get_connection from sendsms.backends.base import BaseSmsBackend from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django_rq import job RQ_SENDSMS_BACKEND = getattr(settings, 'RQ_SENDSMS_BACKEND', None) if not RQ_SENDSMS_BACKEND: raise ImproperlyConfigured('Set RQ_SENDSMS_BACKEND') @job def send_messages(messages): connection = get_connection(RQ_SENDSMS_BACKEND) connection.send_messages(messages) class SmsBackend(BaseSmsBackend): def send_messages(self, messages): send_messages.delay(messages)
22.119048
68
0.787944
111
0.119483
0
0
124
0.133477
0
0
374
0.402583
1bed3f78be12183f03bd98f78582fb16d8457339
2,435
py
Python
venv/Lib/site-packages/openpyxl/worksheet/errors.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
venv/Lib/site-packages/openpyxl/worksheet/errors.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
venv/Lib/site-packages/openpyxl/worksheet/errors.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
#Autogenerated schema from openpyxl.descriptors.serialisable import Serialisable from openpyxl.descriptors import ( Typed, String, Bool, Sequence, ) from openpyxl.descriptors.excel import CellRange class Extension(Serialisable): tagname = "extension" uri = String(allow_none=True) def __init__(self, uri=None, ): self.uri = uri class ExtensionList(Serialisable): tagname = "extensionList" # uses element group EG_ExtensionList ext = Sequence(expected_type=Extension) __elements__ = ('ext',) def __init__(self, ext=(), ): self.ext = ext class IgnoredError(Serialisable): tagname = "ignoredError" sqref = CellRange evalError = Bool(allow_none=True) twoDigitTextYear = Bool(allow_none=True) numberStoredAsText = Bool(allow_none=True) formula = Bool(allow_none=True) formulaRange = Bool(allow_none=True) unlockedFormula = Bool(allow_none=True) emptyCellReference = Bool(allow_none=True) listDataValidation = Bool(allow_none=True) calculatedColumn = Bool(allow_none=True) def __init__(self, sqref=None, evalError=False, twoDigitTextYear=False, numberStoredAsText=False, formula=False, formulaRange=False, unlockedFormula=False, emptyCellReference=False, listDataValidation=False, calculatedColumn=False, ): self.sqref = sqref self.evalError = evalError self.twoDigitTextYear = twoDigitTextYear self.numberStoredAsText = numberStoredAsText self.formula = formula self.formulaRange = formulaRange self.unlockedFormula = unlockedFormula self.emptyCellReference = emptyCellReference self.listDataValidation = listDataValidation self.calculatedColumn = calculatedColumn class IgnoredErrors(Serialisable): tagname = "ignoredErrors" ignoredError = Sequence(expected_type=IgnoredError) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('ignoredError', 'extLst') def __init__(self, ignoredError=(), extLst=None, ): self.ignoredError = ignoredError self.extLst = extLst
25.904255
64
0.631622
2,208
0.906776
0
0
0
0
0
0
140
0.057495
1bee0a3b08699aa37d40800889d795e3cdf9fb23
2,918
py
Python
cwbot/kolextra/request/ItemDescriptionRequest.py
zeryl/RUcwbot
734716506066da599fcbc96d0a815a5e30f6e077
[ "BSD-3-Clause" ]
null
null
null
cwbot/kolextra/request/ItemDescriptionRequest.py
zeryl/RUcwbot
734716506066da599fcbc96d0a815a5e30f6e077
[ "BSD-3-Clause" ]
1
2019-04-15T02:48:19.000Z
2019-04-15T03:02:36.000Z
cwbot/kolextra/request/ItemDescriptionRequest.py
rlbond86/cwbot
2432a9c9d048b7600b53d5cb8f7ef608c6613258
[ "BSD-3-Clause" ]
null
null
null
from kol.request.GenericRequest import GenericRequest from kol.manager import PatternManager import re class ItemDescriptionRequest(GenericRequest): "Gets the description of an item and then parses various information from the response." _itemIdPattern = re.compile(r'(?i)<!--\s*itemid:\s*(\d+)\s*-->') def __init__(self, session, descId): super(ItemDescriptionRequest, self).__init__(session) self.url = session.serverURL + "desc_item.php?whichitem=%s" % descId def parseResponse(self): # Get the item name. itemNamePattern = PatternManager.getOrCompilePattern("itemName") match = itemNamePattern.search(self.responseText) self.responseData["name"] = match.group(1) # Get the item image. imagePattern = PatternManager.getOrCompilePattern("itemImage") match = imagePattern.search(self.responseText) self.responseData["image"] = match.group(1) # Get the item type. typePattern = PatternManager.getOrCompilePattern("itemType") match = typePattern.search(self.responseText) if match: self.responseData["type"] = match.group(1).rstrip() # Get the autosell value. autosellPattern = PatternManager.getOrCompilePattern("itemAutosell") match = autosellPattern.search(self.responseText) if match: self.responseData["autosell"] = int(match.group(1)) else: self.responseData["autosell"] = 0 # See if this is a cooking ingredient. cookingPattern = PatternManager.getOrCompilePattern("isCookingIngredient") match = cookingPattern.search(self.responseText) if match: self.responseData["isCookingIngredient"] = True # See if the item is a cocktailcrafting ingredient. cocktailcraftingPattern = PatternManager.getOrCompilePattern("isCocktailcraftingIngredient") match = cocktailcraftingPattern.search(self.responseText) if match: self.responseData["isCocktailcraftingIngredient"] = True # See if the item is a meatsmithing component. meatsmithingPattern = PatternManager.getOrCompilePattern("isMeatsmithingComponent") match = meatsmithingPattern.search(self.responseText) if match: self.responseData["isMeatsmithingComponent"] = True # See if the item is a jewelrymaking component. jewelrymakingPattern = PatternManager.getOrCompilePattern("isJewelrymakingComponent") match = jewelrymakingPattern.search(self.responseText) if match: self.responseData["isJewelrymakingComponent"] = True # See if the itemId is listed match = self._itemIdPattern.search(self.responseText) if match: self.responseData["id"] = int(match.group(1)) else: self.responseData["id"] = None
42.911765
100
0.675805
2,801
0.959904
0
0
0
0
0
0
744
0.254969
1beeb9bf708d482300442a926d31325bbdca0e33
619
py
Python
SmartMove/SmartConnector/cpapi/utils.py
themichaelasher/SmartMove
074c6e1a854fdfc21fb292e575a869719d56c5d5
[ "Apache-2.0" ]
24
2018-03-15T09:00:51.000Z
2022-03-17T05:19:47.000Z
SmartMove/SmartConnector/cpapi/utils.py
themichaelasher/SmartMove
074c6e1a854fdfc21fb292e575a869719d56c5d5
[ "Apache-2.0" ]
8
2020-01-20T15:44:42.000Z
2021-10-18T05:39:04.000Z
SmartMove/SmartConnector/cpapi/utils.py
themichaelasher/SmartMove
074c6e1a854fdfc21fb292e575a869719d56c5d5
[ "Apache-2.0" ]
22
2018-06-04T20:36:41.000Z
2022-03-16T17:10:44.000Z
import json import sys def compatible_loads(json_data): """ Function json.loads in python 3.0 - 3.5 can't handle bytes, so this function handle it. :param json_data: :return: unicode (str if it's python 3) """ if isinstance(json_data, bytes) and (3, 0) <= sys.version_info < (3, 6): json_data = json_data.decode("utf-8") return json.loads(json_data) def get_massage_from_io_error(error): """ :param: IOError :return: error message """ if sys.version_info >= (3, 0): return error.strerror else: return error.message
24.76
92
0.610662
0
0
0
0
0
0
0
0
241
0.389338
1bef48d1f47271bb3d6c33f78c3cf6b32220029d
3,578
py
Python
VokeScan.py
DaduVoke/VokeScan
a80c8e99ab74dd15a4f9bc3ba7e01abd81840f2c
[ "MIT" ]
2
2021-12-05T04:00:50.000Z
2022-03-24T17:53:26.000Z
VokeScan.py
DaduVoke/VokeScan
a80c8e99ab74dd15a4f9bc3ba7e01abd81840f2c
[ "MIT" ]
null
null
null
VokeScan.py
DaduVoke/VokeScan
a80c8e99ab74dd15a4f9bc3ba7e01abd81840f2c
[ "MIT" ]
null
null
null
import sys,time def sprint(str): for c in str + '\n': sys.stdout.write(c) sys.stdout.flush() time.sleep(3./90) from colorama import Fore, Back, Style sprint (Fore.RED + "გამარჯობა. tool-ი შექმინლია ლევან ყიფიანი-DaduVoke-ის მიერ @2021") import socket import _thread import time class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class Core(object): ipurl=0 mode=1024 menu1=False f=None network_speed="სიჩქარე" menu2=False def GetData(self, url): self.url = url try: self.ipurl = socket.gethostbyname(self.url) except Exception as e: print ("თქვენ არასწორად შეიყვანეთ IP ან URL") exit(0) Core.ipurl=self.ipurl print (22*" ",bcolors.OKGREEN,"=/=\=\=/=\=/=\=/=\=/=\=/=\=/=\=/=\=/VokeScaner=/=\=\=/=\=/=\=/=\=/=\=/=\=/=\=/=\=",bcolors.OKGREEN) sprint('გთხოვთ აირჩიოთ 1 ან 2') while Core.menu1 is not True: choice = input("\n1 - მოკლე\n2 - გრძელი\n") if choice == "1": Core.mode=1024 menu=True break elif choice == "2": Core.mode=64000 menu = True break else: sprint("გთხოვთ აირჩიოთ პირველი ან მეორე. პროგრამის გასაშვებად ტერმინალში გამოიყენეთ ბრძანება 1 ან 2") while Core.menu2 is not True: sprint("მეორე ეტაპი! გთხოვთ აირჩიოთ გამოყენებული ინტერნეტის სიჩქარე (0.05(1) 0.03(2))") choice = input("\n1 - მოკლე \n2 - გრძელი\n") if choice == "1": Core.network_speed=0.05 menu2=True break elif choice == "2": Core.network_speed=0.3 menu2 = True break else: print("გთხოვთ აირჩიოთ პირველი ან მეორე. პროგრამის გასაშვებად ტერმინალში გამოიყენეთ ბრძანება 1 ან 2") def Start_Scan(self, port_start, port_end): Core.f = open(Core.ipurl, "a") try: for x in range(port_start,port_end): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) res = sock.connect_ex((Core.ipurl,x)) if res is 0: tmp="პორტი",x,"გახსნილია", socket.getservbyport(x) tmp1=str(tmp[0])+" "+str(tmp[1])+" "+str(tmp[2])+" "+str(tmp[3]) print(bcolors.OKGREEN,tmp1) Core.f.write(str(tmp)+"\n") Core.f.close() except Exception as e: print (e) try: scan = Core() scan.GetData(input("ჩაწერეთ IP ან მისამართი URL\n")) print(bcolors.WARNING,"სიხშირე:",Core.mode,"\n სამიზნე:",Core.ipurl,"\n სკანერის სიჩქარე:",Core.network_speed,bcolors.ENDC) print(bcolors.BOLD,"გთხოვთ დაიცადოთ რამდენიმე წამი...",bcolors.ENDC) for count in range(0,Core.mode): time.sleep(Core.network_speed) _thread.start_new_thread(scan.Start_Scan, (count,count+1)) if count > Core.mode: exit(0) except Exception as e: print (e)
18.162437
139
0.488262
3,213
0.734568
0
0
0
0
0
0
1,575
0.360082
1bef4c913e56949ae48100d1d528ebecb2bb01d8
53,296
py
Python
agent/src/clacks/agent/objects/object.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
2
2015-01-26T07:15:19.000Z
2015-11-09T13:42:11.000Z
agent/src/clacks/agent/objects/object.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
null
null
null
agent/src/clacks/agent/objects/object.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
null
null
null
# This file is part of the clacks framework. # # http://clacks-project.org # # Copyright: # (C) 2010-2012 GONICUS GmbH, Germany, http://www.gonicus.de # # License: # GPL-2: http://www.gnu.org/licenses/gpl-2.0.html # # See the LICENSE file in the project's top-level directory for details. """ The object base class. """ import copy import zope.event import pkg_resources import os from lxml import etree from lxml.builder import E from logging import getLogger from zope.interface import Interface, implements from clacks.common import Environment from clacks.common.utils import N_, is_uuid from clacks.common.components import PluginRegistry from clacks.common.error import ClacksErrorHandler as C from clacks.agent.objects.backend.registry import ObjectBackendRegistry from clacks.agent.exceptions import ObjectException # Status STATUS_OK = 0 STATUS_CHANGED = 1 # Register the errors handled by us C.register_codes(dict( CREATE_NEEDS_BASE=N_("Creation of '%(location)s' lacks a base DN"), READ_BACKEND_PROPERTIES=N_("Error reading properties for backend '%(backend)s'"), ATTRIBUTE_BLOCKED_BY=N_("Attribute is blocked by %(source)s==%(value)s"), ATTRIBUTE_READ_ONLY=N_("Attribute is read only"), ATTRIBUTE_MANDATORY=N_("Attribute is mandatory"), ATTRIBUTE_INVALID_CONSTANT=N_("Value is invalid - expected one of %(elements)s"), ATTRIBUTE_INVALID_LIST=N_("Value is invalid - expected a list"), ATTRIBUTE_INVALID=N_("Value is invalid - expected value of type '%(type)s'"), ATTRIBUTE_CHECK_FAILED=N_("Value is invalid"), ATTRIBUTE_NOT_UNIQUE=N_("Value is not unique (%(value)s)"), ATTRIBUTE_NOT_FOUND=N_("Attribute not found"), OBJECT_MODE_NOT_AVAILABLE=N_("Mode '%(mode)s' is not available for base objects"), OBJECT_MODE_BASE_AVAILABLE=N_("Mode '%(mode)s' is only available for base objects"), OBJECT_NOT_SUB_FOR=N_("Object of type '%(ext)s' cannot be added as to the '%(base)s' container"), OBJECT_REMOVE_NON_BASE_OBJECT=N_("Cannot remove non base object"), OBJECT_MOVE_NON_BASE_OBJECT=N_("Cannot move non base object"), OBJECT_BASE_NO_RETRACT=N_("Base object cannot be retracted"), FILTER_INVALID_KEY=N_("Invalid key '%(key)s' for filter '%(filter)s'"), FILTER_MISSING_KEY=N_("Missing key '%(key)s' after processing filter '%(filter)s'"), FILTER_NO_LIST=N_("Filter '%(filter)s' did not return a %(type)s value - a list was expected"), ATTRIBUTE_DEPEND_LOOP=N_("Potential loop in attribute dependencies") )) class Object(object): """ This class is the base class for all objects. It contains getter and setter methods for the object attributes and it is able to initialize itself by reading data from backends. It also contains the ability to execute the in- and out-filters for the object properties. All meta-classes for objects, created by the XML defintions, will inherit this class. """ _reg = None _backend = None _mode = False _propsByBackend = {} uuid = None dn = None orig_dn = None log = None createTimestamp = None modifyTimestamp = None myProperties = None env = None parent = None owner = None attributesInSaveOrder = None def __saveOrder(self): """ Returns a list containing all attributes in the correct save-order. Due to the fact that some attributes depend on another, we have to save some attributes first and then the others. """ data = self.__saveOrderHelper() attrs = [] for level in sorted(data.keys(), reverse=True): for attr in data[level]: if attr not in attrs: attrs.append(attr) return attrs def __saveOrderHelper(self, res=None, item=None, level=0): """ Helper method for '__saveOrder' to detect the dependency depth (level) for an attribute """ if not res: res = {} if not level in res: res[level] = [] if level == 10: raise ValueError(C.make_error('ATTRIBUTE_DEPEND_LOOP')) if not item: for key in self.myProperties: self.__saveOrderHelper(res, key, level + 1) else: if len(self.myProperties[item]['depends_on']): for key in self.myProperties[item]['depends_on']: self.__saveOrderHelper(res, key, level + 1) res[level].append(item) return res def __init__(self, where=None, mode="update"): self.env = Environment.getInstance() # Instantiate Backend-Registry self._reg = ObjectBackendRegistry.getInstance() self.log = getLogger(__name__) self.log.debug("new object instantiated '%s'" % type(self).__name__) # Group attributes by Backend propsByBackend = {} props = getattr(self, '__properties') self.myProperties = copy.deepcopy(props) self.attributesInSaveOrder = self.__saveOrder() atypes = self._objectFactory.getAttributeTypes() for key in self.myProperties: # Load dynamic dropdown-values if self.myProperties[key]['values_populate']: cr = PluginRegistry.getInstance('CommandRegistry') values = cr.call(self.myProperties[key]['values_populate']) if type(values).__name__ == "dict": self.myProperties[key]['values'] = values else: self.myProperties[key]['values'] = atypes['String'].convert_to(self.myProperties[key]['type'], values) # Initialize an empty array for each backend for be in self.myProperties[key]['backend']: if be not in propsByBackend: propsByBackend[be] = [] # Append property propsByBackend[be].append(key) self._propsByBackend = propsByBackend self._mode = mode # Initialize object using a DN if where: if mode == "create": if is_uuid(where): raise ValueError(C.make_error('CREATE_NEEDS_BASE', "base", location=where)) self.orig_dn = self.dn = where else: self._read(where) # Set status to modified for attributes that do not have a value but are # mandatory and have a default. # This ensures that default values are passed to the out_filters and get saved # afterwards. # (Defaults will be passed to in-filters too, if they are not overwritten by _read()) for key in self.myProperties: if not(self.myProperties[key]['value']) and self.myProperties[key]['default'] is not None and \ len(self.myProperties[key]['default']): self.myProperties[key]['value'] = copy.deepcopy(self.myProperties[key]['default']) if self.myProperties[key]['mandatory']: self.myProperties[key]['status'] = STATUS_CHANGED def set_foreign_value(self, attr, original): self.myProperties[attr]['value'] = original['value'] self.myProperties[attr]['in_value'] = original['in_value'] self.myProperties[attr]['orig_value'] = original['orig_value'] def listProperties(self): return self.myProperties.keys() def getProperties(self): return copy.deepcopy(self.myProperties) def listMethods(self): methods = getattr(self, '__methods') return methods.keys() def hasattr(self, attr): return attr in self.myProperties def _read(self, where): """ This method tries to initialize a object instance by reading data from the defined backend. Attributes will be grouped by their backend to ensure that only one request per backend will be performed. """ # Generate missing values if is_uuid(where): #pylint: disable=E1101 if self._base_object: self.dn = self._reg.uuid2dn(self._backend, where) else: self.dn = None self.uuid = where else: self.dn = where self.uuid = self._reg.dn2uuid(self._backend, where) # Get last change timestamp self.orig_dn = self.dn if self.dn: self.createTimestamp, self.modifyTimestamp = self._reg.get_timestamps(self._backend, self.dn) # Load attributes for each backend. # And then assign the values to the properties. self.log.debug("object uuid: %s" % self.uuid) for backend in self._propsByBackend: try: # Create a dictionary with all attributes we want to fetch # {attribute_name: type, name: type} info = dict([(k, self.myProperties[k]['backend_type']) for k in self._propsByBackend[backend]]) self.log.debug("loading attributes for backend '%s': %s" % (backend, str(info))) be = ObjectBackendRegistry.getBackend(backend) be_attrs = self._backendAttrs[backend] if backend in self._backendAttrs else None attrs = be.load(self.uuid, info, be_attrs) except ValueError as e: raise ObjectException(C.make_error('READ_BACKEND_PROPERTIES', backend=backend)) # Assign fetched value to the properties. for key in self._propsByBackend[backend]: if key not in attrs: self.log.debug("attribute '%s' was not returned by load" % key) continue # Keep original values, they may be overwritten in the in-filters. self.myProperties[key]['in_value'] = self.myProperties[key]['value'] = attrs[key] self.log.debug("%s: %s" % (key, self.myProperties[key]['value'])) # Once we've loaded all properties from the backend, execute the # in-filters. for key in self.myProperties: # Skip loading in-filters for None values if self.myProperties[key]['value'] is None: self.myProperties[key]['in_value'] = self.myProperties[key]['value'] = [] continue # Execute defined in-filters. if len(self.myProperties[key]['in_filter']): self.log.debug("found %s in-filter(s) for attribute '%s'" % (str(len(self.myProperties[key]['in_filter'])), key)) # Execute each in-filter for in_f in self.myProperties[key]['in_filter']: self.__processFilter(in_f, key, self.myProperties) # Convert the received type into the target type if not done already #pylint: disable=E1101 atypes = self._objectFactory.getAttributeTypes() for key in self.myProperties: # Convert values from incoming backend-type to required type if self.myProperties[key]['value']: a_type = self.myProperties[key]['type'] be_type = self.myProperties[key]['backend_type'] # Convert all values to required type if not atypes[a_type].is_valid_value(self.myProperties[key]['value']): try: self.myProperties[key]['value'] = atypes[a_type].convert_from(be_type, self.myProperties[key]['value']) except Exception as e: self.log.error("conversion of '%s' from '%s' to type '%s' failed: %s" % (key, be_type, a_type, str(e))) else: self.log.debug("converted '%s' from type '%s' to type '%s'!" % (key, be_type, a_type)) # Keep the initial value self.myProperties[key]['last_value'] = self.myProperties[key]['orig_value'] = copy.deepcopy(self.myProperties[key]['value']) def _delattr_(self, name): """ Deleter method for properties. """ if name in self.attributesInSaveOrder: # Check if this attribute is blocked by another attribute and its value. for bb in self.myProperties[name]['blocked_by']: if bb['value'] in self.myProperties[bb['name']]['value']: raise AttributeError(C.make_error( 'ATTRIBUTE_BLOCKED_BY', name, source=bb['name'], value=bb['value'])) # Do not allow to write to read-only attributes. if self.myProperties[name]['readonly']: raise AttributeError(C.make_error('ATTRIBUTE_READ_ONLY', name)) # Do not allow remove mandatory attributes if self.myProperties[name]['mandatory']: raise AttributeError(C.make_error('ATTRIBUTE_MANDATORY', name)) # If not already in removed state if len(self.myProperties[name]['value']) != 0: self.myProperties[name]['status'] = STATUS_CHANGED self.myProperties[name]['last_value'] = copy.deepcopy(self.myProperties[name]['value']) self.myProperties[name]['value'] = [] else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def _setattr_(self, name, value): """ This is the setter method for object attributes. Each given attribute value is validated with the given set of validators. """ # Store non property values try: object.__getattribute__(self, name) self.__dict__[name] = value return except AttributeError: pass # A none value was passed to clear the value if value is None: self._delattr_(name) return # Try to save as property value if name in self.myProperties: # Check if this attribute is blocked by another attribute and its value. for bb in self.myProperties[name]['blocked_by']: if bb['value'] in self.myProperties[bb['name']]['value']: raise AttributeError(C.make_error( 'ATTRIBUTE_BLOCKED_BY', name, source=bb['name'], value=bb['value'])) # Do not allow to write to read-only attributes. if self.myProperties[name]['readonly']: raise AttributeError(C.make_error('ATTRIBUTE_READ_ONLY', name)) # Check if the given value has to match one out of a given list. if len(self.myProperties[name]['values']) and value not in self.myProperties[name]['values']: raise TypeError(C.make_error( 'ATTRIBUTE_INVALID_CONSTANT', name, elements=", ".join(self.myProperties[name]['values']))) # Set the new value if self.myProperties[name]['multivalue']: # Check if the new value is s list. if type(value) != list: raise TypeError(C.make_error('ATTRIBUTE_INVALID_LIST', name)) new_value = value else: new_value = [value] # Eventually fixup value from incoming JSON string s_type = self.myProperties[name]['type'] try: new_value = self._objectFactory.getAttributeTypes()[s_type].fixup(new_value) except Exception: raise TypeError(C.make_error('ATTRIBUTE_INVALID', name, type=s_type)) # Check if the new value is valid #pylint: disable=E1101 if not self._objectFactory.getAttributeTypes()[s_type].is_valid_value(new_value): raise TypeError(C.make_error('ATTRIBUTE_INVALID', name, type=s_type)) # Validate value if self.myProperties[name]['validator']: props_copy = copy.deepcopy(self.myProperties) res, error = self.__processValidator(self.myProperties[name]['validator'], name, new_value, props_copy) if not res: if len(error): raise ValueError(C.make_error('ATTRIBUTE_CHECK_FAILED', name, details=error)) else: raise ValueError(C.make_error('ATTRIBUTE_CHECK_FAILED', name)) # Ensure that unique values stay unique. Let the backend test this. #if self.myProperties[name]['unique']: # backendI = ObjectBackendRegistry.getBackend(self.myProperties[name]['backend']) # if not backendI.is_uniq(name, new_value): # raise ObjectException(C.make_error('ATTRIBUTE_NOT_UNIQUE', name, value=value)) # Assign the properties new value. self.myProperties[name]['value'] = new_value self.log.debug("updated property value of [%s|%s] %s:%s" % (type(self).__name__, self.uuid, name, new_value)) # Update status if there's a change t = self.myProperties[name]['type'] current = copy.deepcopy(self.myProperties[name]['value']) #pylint: disable=E1101 if not self._objectFactory.getAttributeTypes()[t].values_match(self.myProperties[name]['value'], self.myProperties[name]['orig_value']): self.myProperties[name]['status'] = STATUS_CHANGED self.myProperties[name]['last_value'] = current else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def _getattr_(self, name): """ The getter method object attributes. (It differentiates between object attributes and class-members) """ methods = getattr(self, '__methods') # If the requested property exists in the object-attributes, then return it. if name in self.myProperties: # We can have single and multivalues, return the correct type here. value = None if self.myProperties[name]['multivalue']: value = self.myProperties[name]['value'] else: if len(self.myProperties[name]['value']): value = self.myProperties[name]['value'][0] return value # The requested property-name seems to be a method, return the method reference. elif name in methods: def m_call(*args, **kwargs): return methods[name]['ref'](self, *args, **kwargs) return m_call else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def getTemplate(self, theme="default"): """ Return the template data - if any. Else None. """ return Object.getNamedTemplate(self.env, self._templates, theme) @staticmethod def getNamedTemplate(env, templates, theme="default"): """ Return the template data - if any. Else None. """ ui = [] # If there's a template file, try to find it if templates: for template in templates: path = None # Absolute path if template.startswith(os.path.sep): path = template # Relative path else: # Find path path = pkg_resources.resource_filename('clacks.agent', os.path.join('data', 'templates', theme, template)) #@UndefinedVariable if not os.path.exists(path): path = os.path.join(env.config.getBaseDir(), 'templates', theme, template) if not os.path.exists(path): path = pkg_resources.resource_filename('clacks.agent', os.path.join('data', 'templates', "default", template)) #@UndefinedVariable if not os.path.exists(path): path = os.path.join(env.config.getBaseDir(), 'templates', "default", template) if not os.path.exists(path): return None with open(path, "r") as f: _ui = f.read() # Build new merged resource element root = etree.fromstring(_ui) new_resources = [] resources = root.find("resources") for include in resources.findall("include"): rc = include.get("location") location = os.path.join(os.path.dirname(path), rc) if not os.path.exists(location): raise IOError(C.make_error("NO_SUCH_RESOURCE", resource=location)) res = "" with open(location, "r") as f: res = f.read() for resource in etree.fromstring(res).findall("qresource"): files = [] prefix = resource.get("prefix") for f in resource.findall("file"): files.append(E.file(os.path.join(prefix, unicode(f.text)))) new_resources.append(E.resource(*files, location=rc)) root.replace(root.find("resources"), E.resources(*new_resources)) ui.append(etree.tostring(root)) return ui def getAttrType(self, name): """ Return the type of a given object attribute. """ if name in self.myProperties: return self.myProperties[name]['type'] raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def check(self, propsFromOtherExtensions=None): """ Checks whether everything is fine with the extension and its given values or not. """ if not propsFromOtherExtensions: propsFromOtherExtensions = {} # Create a copy to avoid touching the original values props = copy.deepcopy(self.myProperties) # Check if _mode matches with the current object type #pylint: disable=E1101 if self._base_object and not self._mode in ['create', 'remove', 'update']: raise ObjectException(C.make_error('OBJECT_MODE_NOT_AVAILABLE', mode=self._mode)) if not self._base_object and self._mode in ['create', 'remove']: raise ObjectException(C.make_error('OBJECT_MODE_BASE_AVAILABLE', mode=self._mode)) # Check if we are allowed to create this base object on the given base if self._base_object and self._mode == "create": base_type = self.get_object_type_by_dn(self.dn) if not base_type: raise ObjectException(C.make_error('OBJECT_MODE_BASE_AVAILABLE', mode=self._mode)) if self.__class__.__name__ not in self._objectFactory.getAllowedSubElementsForObject(base_type): raise ObjectException(C.make_error('OBJECT_NOT_SUB_FOR', ext=self.__class__.__name__, base=base_type)) # Transfer values form other commit processes into ourselfes for key in self.attributesInSaveOrder: if props[key]['foreign'] and key in propsFromOtherExtensions: props[key]['value'] = propsFromOtherExtensions[key]['value'] # Transfer status into commit status props[key]['commit_status'] = props[key]['status'] # Collect values by store and process the property filters for key in self.attributesInSaveOrder: # Skip foreign properties if props[key]['foreign']: continue # Check if this attribute is blocked by another attribute and its value. is_blocked = False for bb in props[key]['blocked_by']: if bb['value'] in props[bb['name']]['value']: is_blocked = True break # Check if all required attributes are set. (Skip blocked once, they cannot be set!) if not is_blocked and props[key]['mandatory'] and not len(props[key]['value']): raise ObjectException(C.make_error('ATTRIBUTE_MANDATORY', key)) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. if len(props[key]['out_filter']): self.log.debug(" found %s out-filter for %s" % (str(len(props[key]['out_filter'])), key,)) for out_f in props[key]['out_filter']: self.__processFilter(out_f, key, props) # Collect properties by backend for prop_key in self.attributesInSaveOrder: # Skip foreign properties if props[prop_key]['foreign']: continue # Ensure that mandatory values are set if props[prop_key]['mandatory'] and not len(props[prop_key]['value']): raise ObjectException(C.make_error('ATTRIBUTE_MANDATORY', prop_key)) # Do not save untouched values if not props[prop_key]['commit_status'] & STATUS_CHANGED: continue return props def commit(self, propsFromOtherExtensions=None): """ Commits changes of an object to the corresponding backends. """ if not propsFromOtherExtensions: propsFromOtherExtensions = {} self.check(propsFromOtherExtensions) self.log.debug("saving object modifications for [%s|%s]" % (type(self).__name__, self.uuid)) # Create a copy to avoid touching the original values props = copy.deepcopy(self.myProperties) # Transfer status into commit status for key in self.attributesInSaveOrder: props[key]['commit_status'] = props[key]['status'] # Transfer values form other commit processes into ourselfes if props[key]['foreign'] and key in propsFromOtherExtensions: props[key]['value'] = propsFromOtherExtensions[key]['value'] # Adapt property states # Run this once - If any state was adapted, then run again to ensure # that all dependencies are processed. first = True _max = 5 required = False while (first or required) and _max: first = False required = False _max -= 1 for key in self.attributesInSaveOrder: # Adapt status from dependent properties. for propname in props[key]['depends_on']: old = props[key]['commit_status'] props[key]['commit_status'] |= props[propname]['status'] & STATUS_CHANGED props[key]['commit_status'] |= props[propname]['commit_status'] & STATUS_CHANGED if props[key]['commit_status'] != old: required = True # Collect values by store and process the property filters collectedAttrs = {} for key in self.attributesInSaveOrder: # Skip foreign properties if props[key]['foreign']: continue # Do not save untouched values if not props[key]['commit_status'] & STATUS_CHANGED: continue # Get the new value for the property and execute the out-filter self.log.debug("changed: %s" % (key,)) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. if len(props[key]['out_filter']): self.log.debug(" found %s out-filter for %s" % (str(len(props[key]['out_filter'])), key,)) for out_f in props[key]['out_filter']: self.__processFilter(out_f, key, props) # Collect properties by backend for prop_key in self.attributesInSaveOrder: # Skip foreign properties if props[prop_key]['foreign']: continue # Do not save untouched values if not props[prop_key]['commit_status'] & STATUS_CHANGED: continue collectedAttrs[prop_key] = props[prop_key] # Create a backend compatible list of all changed attributes. toStore = {} for prop_key in collectedAttrs: # Collect properties by backend for be in props[prop_key]['backend']: if not be in toStore: toStore[be] = {} # Convert the properities type to the required format - if its not of the expected type. be_type = collectedAttrs[prop_key]['backend_type'] s_type = collectedAttrs[prop_key]['type'] if not self._objectFactory.getAttributeTypes()[be_type].is_valid_value(collectedAttrs[prop_key]['value']): collectedAttrs[prop_key]['value'] = self._objectFactory.getAttributeTypes()[s_type].convert_to( be_type, collectedAttrs[prop_key]['value']) # Append entry to the to-be-stored list toStore[be][prop_key] = {'foreign': collectedAttrs[prop_key]['foreign'], 'orig': collectedAttrs[prop_key]['in_value'], 'value': collectedAttrs[prop_key]['value'], 'type': collectedAttrs[prop_key]['backend_type']} # We may have a plugin without any attributes, like the group asterisk extension, in # this case we've to update the object despite of the lack of properties. if not len(toStore) and self._backend: toStore[self._backend] = {} # Leave the show if there's nothing to do tmp = {} for key, value in toStore.items(): # Skip NULL backend. Nothing to save, anyway. if key == "NULL": continue tmp[key] = value toStore = tmp # Skip the whole process if there's no change at all if not toStore: return {} # Update references using the toStore information changes = {} for be in toStore: changes.update(toStore[be]) self.update_refs(changes) # Handle by backend p_backend = getattr(self, '_backend') obj = self zope.event.notify(ObjectChanged("pre %s" % self._mode, obj)) # Call pre-hooks now if self._mode in ["extend", "create"]: self.__execute_hook("PreCreate") if self._mode in ["update"]: self.__execute_hook("PreModify") # First, take care about the primary backend... if p_backend in toStore: beAttrs = self._backendAttrs[p_backend] if p_backend in self._backendAttrs else {} be = ObjectBackendRegistry.getBackend(p_backend) if self._mode == "create": obj.uuid = be.create(self.dn, toStore[p_backend], self._backendAttrs[p_backend]) elif self._mode == "extend": be.extend(self.uuid, toStore[p_backend], self._backendAttrs[p_backend], self.getForeignProperties()) else: be.update(self.uuid, toStore[p_backend], beAttrs) # Eventually the DN has changed if self._base_object: dn = be.uuid2dn(self.uuid) # Take DN for newly created objects if self._mode == "create": if self._base_object: obj.dn = dn elif dn != obj.dn: self.update_dn_refs(dn) obj.dn = dn if self._base_object: zope.event.notify(ObjectChanged("post move", obj)) obj.orig_dn = dn # ... then walk thru the remaining ones for backend, data in toStore.items(): # Skip primary backend - already done if backend == p_backend: continue be = ObjectBackendRegistry.getBackend(backend) beAttrs = self._backendAttrs[backend] if backend in self._backendAttrs else {} if self._mode == "create": be.create(self.dn, data, beAttrs) elif self._mode == "extend": be.extend(self.uuid, data, beAttrs, self.getForeignProperties()) else: be.update(self.uuid, data, beAttrs) zope.event.notify(ObjectChanged("post %s" % self._mode, obj)) # Call post-hooks now if self._mode in ["extend", "create"]: self.__execute_hook("PostCreate") if self._mode in ["update"] and "PostModify": self.__execute_hook("PostModify") return props def revert(self): """ Reverts all changes made to this object since it was loaded. """ for key in self.myProperties: self.myProperties[key]['value'] = self.myProperties[key]['last_value'] self.log.debug("reverted object modifications for [%s|%s]" % (type(self).__name__, self.uuid)) def getExclusiveProperties(self): return [x for x, y in self.myProperties.items() if not y['foreign']] def getForeignProperties(self): return [x for x, y in self.myProperties.items() if y['foreign']] def __processValidator(self, fltr, key, value, props_copy): """ This method processes a given process-list (fltr) for a given property (prop). And return TRUE if the value matches the validator set and FALSE if not. """ # This is our process-line pointer it points to the process-list line # we're executing at the moment lptr = 0 # Our filter result stack stack = list() self.log.debug(" validator started (%s)" % key) self.log.debug(" value: %s" % (value, )) # Process the list till we reach the end.. lasterrmsg = "" errormsgs = [] while (lptr + 1) in fltr: # Get the current line and increase the process list pointer. lptr += 1 curline = fltr[lptr] # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. if 'condition' in curline: # Build up argument list args = [props_copy, key, value] + curline['params'] # Process condition and keep results fname = type(curline['condition']).__name__ v, errors = (curline['condition']).process(*args) # Log what happend! self.log.debug(" %s: [Filter] %s(%s) called and returned: %s" % ( lptr, fname, ", ".join(["\"" + x + "\"" for x in curline['params']]), v)) # Append the result to the stack. stack.append(v) if not v: if len(errors): lasterrmsg = errors.pop() # A comparator compares two values from the stack and then returns a single # boolean value. elif 'operator' in curline: v1 = stack.pop() v2 = stack.pop() fname = type(curline['operator']).__name__ res = (curline['operator']).process(v1, v2) stack.append(res) # Add last error message if not res: errormsgs.append(lasterrmsg) lasterrmsg = "" # Log what happend! self.log.debug(" %s: [OPERATOR] %s(%s, %s) called and returned: %s" % ( lptr, fname, v1, v2, res)) # Attach last error message res = stack.pop() if not res and lasterrmsg != "": errormsgs.append(lasterrmsg) self.log.debug(" <- VALIDATOR ENDED (%s)" % key) return res, errormsgs def __processFilter(self, fltr, key, prop): """ This method processes a given process-list (fltr) for a given property (prop). For example: When a property has to be stored in the backend, it will run through the out-filter-process-list and thus will be transformed into a storable key, value pair. """ # Search for replaceable patterns in the process-list. fltr = self.__fillInPlaceholders(fltr, prop) # This is our process-line pointer it points to the process-list line # we're executing at the moment lptr = 0 # Our filter result stack stack = list() # Log values self.log.debug(" -> FILTER STARTED (%s)" % key) # Process the list till we reach the end.. while (lptr + 1) in fltr: # Get the current line and increase the process list pointer. lptr += 1 curline = fltr[lptr] # A filter is used to manipulate the 'value' or the 'key' or maybe both. if 'filter' in curline: # Build up argument list args = [self, key, prop] fname = type(curline['filter']).__name__ for entry in curline['params']: args.append(entry) # Process filter and keep results key, prop = (curline['filter']).process(*args) # Ensure that the processed data is still valid. # Filter may mess things up and then the next cannot process correctly. if key not in prop: raise ObjectException(C.make_error('FILTER_INVALID_KEY', key=key, filter=fname)) # Check if the filter returned all expected property values. for pk in prop: if not all(k in prop[pk] for k in ('backend', 'value', 'type')): missing = ", ".join({'backend', 'value', 'type'} - set(prop[pk].keys())) raise ObjectException(C.make_error('FILTER_MISSING_KEY', key=missing, filter=fname)) # Check if the returned value-type is list or None. if type(prop[pk]['value']) not in [list, type(None)]: raise ObjectException(C.make_error('FILTER_NO_LIST', key=pk, filter=fname, type=type(prop[pk]['value']))) self.log.debug(" %s: [Filter] %s(%s) called " % (lptr, fname, ", ".join(["\"" + x + "\"" for x in curline['params']]))) # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. elif 'condition' in curline: # Build up argument list args = [key] + curline['params'] # Process condition and keep results stack.append((curline['condition']).process(*args)) fname = type(curline['condition']).__name__ self.log.debug(" %s: [Condition] %s(%s) called " % (lptr, fname, ", ".join(curline['params']))) # Handle jump, for example if a condition has failed, jump over its filter-chain. elif 'jump' in curline: # Jump to <line> -1 because we will increase the line ptr later. olptr = lptr if curline['jump'] == 'conditional': if stack.pop(): lptr = curline['onTrue'] - 1 else: lptr = curline['onFalse'] - 1 else: lptr = curline['to'] - 1 self.log.debug(" %s: [Goto] %s ()" % (olptr, lptr)) # A comparator compares two values from the stack and then returns a single # boolean value. elif 'operator' in curline: a = stack.pop() b = stack.pop() stack.append((curline['operator']).process(a, b)) fname = type(curline['operator']).__name__ self.log.debug(" %s: [Condition] %s(%s, %s) called " % (lptr, fname, a, b)) # Log current values #self.log.debug(" result") #for pkey in prop: # self.log.debug(" %s: %s" % (pkey, prop[pkey]['value'])) self.log.debug(" <- FILTER ENDED") return prop def __fillInPlaceholders(self, fltr, props): """ This method fill in placeholder into in- and out-filters. """ # Collect all property values propList = {} for key in props: if props[key]['multivalue']: propList[key] = props[key]['value'] else: if props[key]['value'] and len(props[key]['value']): propList[key] = props[key]['value'][0] else: propList[key] = None # An inline function which replaces format string tokens def _placeHolder(x): try: x = x % propList except KeyError: pass return x # Walk trough each line of the process list an replace placeholders. for line in fltr: if 'params' in fltr[line]: fltr[line]['params'] = map(_placeHolder, fltr[line]['params']) return fltr def get_object_type_by_dn(self, dn): """ Returns the objectType for a given DN """ index = PluginRegistry.getInstance("ObjectIndex") res = index.search({'dn': dn}, {'_type': 1}) return res[0]['_type'] if res.count() == 1 else None def get_references(self, override=None): res = [] index = PluginRegistry.getInstance("ObjectIndex") for ref, info in self._objectFactory.getReferences(override or self.__class__.__name__).items(): for ref_attribute, dsc in info.items(): for idsc in dsc: if self.myProperties[idsc[1]]['orig_value'] and len(self.myProperties[idsc[1]]['orig_value']): oval = self.myProperties[idsc[1]]['orig_value'][0] else: oval = None dns = index.search({'_type': ref, ref_attribute: oval}, {'dn': 1}) if dns.count(): dns = [x['dn'] for x in dns] res.append(( ref_attribute, idsc[1], getattr(self, idsc[1]), dns or [], self.myProperties[idsc[1]]['multivalue'])) return res def update_refs(self, data): for ref_attr, self_attr, value, refs, multivalue in self.get_references(): #@UnusedVariable for ref in refs: # Next iterration if there's no change for the relevant # attribute if not self_attr in data: continue # Load object and change value to the new one c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) o_value = data[self_attr]['orig'] if type(c_value) == list: if type(o_value) == list: c_value = filter(lambda x: x not in o_value, c_value) else: c_value = filter(lambda x: x != o_value, c_value) if multivalue: c_value.append(data[self_attr]['value']) else: c_value.append(data[self_attr]['value'][0]) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, data[self_attr]['value'][0]) c_obj.commit() def remove_refs(self): for ref_attr, self_attr, value, refs, multivalue in self.get_references(): #@UnusedVariable for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: if type(value) == list: c_value = filter(lambda x: x not in value, c_value) else: c_value = filter(lambda x: x != value, c_value) setattr(c_obj, ref_attr, c_value) else: setattr(c_obj, ref_attr, None) c_obj.commit() def get_dn_references(self): res = [] index = PluginRegistry.getInstance("ObjectIndex") for info in self._objectFactory.getReferences("*", "dn").values(): for ref_attribute in info.keys(): dns = index.search({ref_attribute: self.dn}, {'dn': 1}) if dns.count(): dns = [x['dn'] for x in dns] res.append(( ref_attribute, map(lambda s: s.decode('utf-8'), dns if dns else []) )) return res def update_dn_refs(self, new_dn): for ref_attr, refs in self.get_dn_references(): for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: c_value = filter(lambda x: x != self.dn, c_value) c_value.append(new_dn) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, new_dn) c_obj.commit() def remove_dn_refs(self): for ref_attr, refs in self.get_dn_references(): for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: c_value = filter(lambda x: x != self.dn, c_value) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, None) c_obj.commit() def remove(self): """ Removes this object - and eventually it's containements. """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_REMOVE_NON_BASE_OBJECT')) # Remove all references to ourselves self.remove_refs() # Collect backends backends = [getattr(self, '_backend')] be_attrs = {getattr(self, '_backend'): {}} for prop, info in self.myProperties.items(): for backend in info['backend']: if not backend in backends: backends.append(backend) if not backend in be_attrs: be_attrs[backend] = {} if self.is_attr_set(prop): be_attrs[backend][prop] = {'foreign': info['foreign'], 'orig': info['in_value'], 'value': info['value'], 'type': info['backend_type']} # Remove for all backends, removing the primary one as the last one backends.reverse() obj = self zope.event.notify(ObjectChanged("pre remove", obj)) # Call pre-remove now self.__execute_hook("PreRemove") for backend in backends: be = ObjectBackendRegistry.getBackend(backend) r_attrs = self.getExclusiveProperties() # Remove all non exclusive properties remove_attrs = {} for attr in be_attrs[backend]: if attr in r_attrs: remove_attrs[attr] = be_attrs[backend][attr] self.remove_refs() self.remove_dn_refs() #pylint: disable=E1101 be.remove(self.uuid, remove_attrs, self._backendAttrs[backend] \ if backend in self._backendAttrs else None) zope.event.notify(ObjectChanged("post remove", obj)) # Call post-remove now self.__execute_hook("PostRemove") def simulate_move(self, orig_dn): """ Simulate a moves for this object """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_MOVE_NON_BASE_OBJECT')) obj = self zope.event.notify(ObjectChanged("pre move", obj, dn=self.dn, orig_dn=orig_dn)) # Update the DN refs which have most probably changed self.update_dn_refs(self.dn) zope.event.notify(ObjectChanged("post move", obj, dn=self.dn, orig_dn=orig_dn)) def move(self, new_base): """ Moves this object - and eventually it's containements. """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_MOVE_NON_BASE_OBJECT')) # Collect backends backends = [getattr(self, '_backend')] # Collect all other backends for info in self.myProperties.values(): for be in info['backend']: if not be in backends: backends.append(be) obj = self zope.event.notify(ObjectChanged("pre move", obj)) # Move for primary backend be = ObjectBackendRegistry.getBackend(backends[0]) be.move(self.uuid, new_base) # Update the DN refs which have most probably changed p_backend = getattr(self, '_backend') be = ObjectBackendRegistry.getBackend(p_backend) dn = be.uuid2dn(self.uuid) self.update_dn_refs(dn) zope.event.notify(ObjectChanged("post move", obj, dn=dn)) def retract(self): """ Removes this object extension """ #pylint: disable=E1101 if self._base_object: raise ObjectException(C.make_error('OBJECT_BASE_NO_RETRACT')) # Call pre-remove now self.__execute_hook("PreRemove") # Remove all references to ourselves self.remove_refs() # Collect backends backends = [getattr(self, '_backend')] be_attrs = {getattr(self, '_backend'): {}} for prop, info in self.myProperties.items(): for backend in info['backend']: if not backend in backends: backends.append(backend) if not backend in be_attrs: be_attrs[backend] = {} if self.is_attr_set(prop): be_attrs[backend][prop] = {'foreign': info['foreign'], 'orig': info['in_value'], 'value': info['value'], 'type': info['backend_type']} # Retract for all backends, removing the primary one as the last one backends.reverse() obj = self zope.event.notify(ObjectChanged("pre retract", obj)) for backend in backends: be = ObjectBackendRegistry.getBackend(backend) r_attrs = self.getExclusiveProperties() # Remove all non exclusive properties remove_attrs = {} for attr in be_attrs[backend]: if attr in r_attrs: remove_attrs[attr] = be_attrs[backend][attr] self.remove_refs() self.remove_dn_refs() #pylint: disable=E1101 be.retract(self.uuid, remove_attrs, self._backendAttrs[backend] \ if backend in self._backendAttrs else None) zope.event.notify(ObjectChanged("post retract", obj)) # Call post-remove now self.__execute_hook("PostRemove") def is_attr_set(self, name): return len(self.myProperties[name]['in_value']) def is_attr_using_default(self, name): return not self.is_attr_set(name) and self.myProperties[name]['default'] def __execute_hook(self, hook_type): # Call post-remove now hooks = getattr(self, '__hooks') if hook_type in hooks: for hook in hooks[hook_type]: hook["ref"](self) class IObjectChanged(Interface): def __init__(self, obj): pass class IAttributeChanged(Interface): def __init__(self, attr, value): pass class ObjectChanged(object): implements(IObjectChanged) def __init__(self, reason, obj=None, dn=None, uuid=None, orig_dn=None, o_type=None): self.reason = reason self.uuid = uuid or obj.uuid self.dn = dn or obj.dn self.orig_dn = orig_dn or obj.orig_dn self.o_type = o_type or obj.__class__.__name__ class AttributeChanged(object): implements(IAttributeChanged) def __init__(self, reason, obj, target): self.reason = reason self.target = target self.uuid = obj.uuid from clacks.agent.objects.proxy import ObjectProxy
38.287356
158
0.564001
50,723
0.951722
0
0
2,558
0.047996
0
0
16,055
0.301242
1bef7a1aa389a58d40ce648d1ed75a0579e889d3
8,752
py
Python
tests/test_benchmark.py
fossabot/BIRL
62e91523ac5797a13a7b78b9869ccfdf61cc60d8
[ "BSD-3-Clause" ]
null
null
null
tests/test_benchmark.py
fossabot/BIRL
62e91523ac5797a13a7b78b9869ccfdf61cc60d8
[ "BSD-3-Clause" ]
null
null
null
tests/test_benchmark.py
fossabot/BIRL
62e91523ac5797a13a7b78b9869ccfdf61cc60d8
[ "BSD-3-Clause" ]
null
null
null
""" Testing default benchmarks in single thred and parallel configuration Check whether it generates correct outputs and resulting values Copyright (C) 2017-2019 Jiri Borovec <[email protected]> """ import argparse import logging import os import shutil import sys import unittest try: # python 3 from unittest.mock import patch except ImportError: # python 2 from mock import patch import numpy as np import pandas as pd from numpy.testing import assert_raises, assert_array_almost_equal sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root from birl.utilities.data_io import update_path, save_config_yaml from birl.utilities.dataset import args_expand_parse_images from birl.utilities.experiments import parse_arg_params, try_decorator from birl.benchmark import ImRegBenchmark from birl.bm_template import BmTemplate PATH_ROOT = os.path.dirname(update_path('birl')) PATH_DATA = update_path('data-images') PATH_CSV_COVER_MIX = os.path.join(PATH_DATA, 'pairs-imgs-lnds_mix.csv') PATH_CSV_COVER_ANHIR = os.path.join(PATH_DATA, 'pairs-imgs-lnds_histol.csv') # logging.basicConfig(level=logging.INFO) class TestBmRegistration(unittest.TestCase): @classmethod def setUpClass(cls): logging.basicConfig(level=logging.INFO) cls.path_out = os.path.join(PATH_ROOT, 'output-testing') shutil.rmtree(cls.path_out, ignore_errors=True) os.mkdir(cls.path_out) def _remove_default_experiment(self, bm_name): path_expt = os.path.join(self.path_out, bm_name) shutil.rmtree(path_expt, ignore_errors=True) @classmethod def test_benchmark_invalid_inputs(self): # test missing some parameters params = { 'path_table': 'x', 'path_out': 'x', 'nb_workers': 0, 'unique': False, } # try a missing params for miss in ['path_table', 'path_out', 'unique']: params_miss = params.copy() del params_miss[miss] assert_raises(AssertionError, ImRegBenchmark, params_miss) # not defined output folder assert_raises(Exception, ImRegBenchmark, params) def test_benchmark_failing(self): """ test run in parallel with failing experiment """ params = { 'path_table': PATH_CSV_COVER_MIX, 'path_dataset': PATH_DATA, 'path_out': self.path_out, 'preprocessing': 'nothing', 'nb_workers': 4, 'visual': True, 'unique': True, } benchmark = ImRegBenchmark(params) benchmark.run() # no landmarks was copy and also no experiment results was produced list_csv = [ len([csv for csv in files if os.path.splitext(csv)[-1] == '.csv']) for _, _, files in os.walk(benchmark.params['path_exp']) ] self.assertEqual(sum(list_csv), 0) del benchmark def test_benchmark_parallel(self): """ test run in parallel (2 threads) """ self._remove_default_experiment(ImRegBenchmark.__name__) params = { 'path_table': PATH_CSV_COVER_MIX, 'path_out': self.path_out, 'preprocessing': ['gray', 'matching-rgb'], 'nb_workers': 2, 'visual': True, 'unique': False, } benchmark = ImRegBenchmark(params) # run it for the first time, complete experiment benchmark.run() # rerun experiment simulated repeating unfinished benchmarks benchmark.run() self.check_benchmark_results(benchmark, final_means=[0., 0., 0., 0., 0.], final_stds=[0., 0., 0., 0., 0.]) del benchmark def test_benchmark_simple(self): """ test run in sequence (1 thread) """ self._remove_default_experiment(ImRegBenchmark.__name__) params = { 'path_table': PATH_CSV_COVER_ANHIR, 'path_dataset': PATH_DATA, 'path_out': self.path_out, 'preprocessing': ['matching-hsv', 'gray'], 'nb_workers': 1, 'visual': True, 'unique': False, } benchmark = ImRegBenchmark(params) benchmark.run() self.check_benchmark_results(benchmark, final_means=[0., 0.], final_stds=[0., 0.]) del benchmark def test_benchmark_template(self): """ test run in single thread """ path_config = os.path.join(self.path_out, 'sample_config.yaml') save_config_yaml(path_config, {}) params = { 'path_table': PATH_CSV_COVER_MIX, 'path_out': self.path_out, 'path_config': path_config, 'nb_workers': 2, 'unique': False, 'visual': True, } benchmark = BmTemplate(params) benchmark.run() self.check_benchmark_results( benchmark, final_means=[28., 68., 73., 76., 95.], final_stds=[1., 13., 28., 28., 34.] ) os.remove(path_config) del benchmark def check_benchmark_results(self, benchmark, final_means, final_stds): """ check whether the benchmark folder contains all required files and compute statistic correctly """ bm_name = benchmark.__class__.__name__ path_bm = os.path.join(self.path_out, bm_name) self.assertTrue(os.path.exists(path_bm), msg='Missing benchmark: %s' % bm_name) # required output files for file_name in [ benchmark.NAME_CSV_REGISTRATION_PAIRS, benchmark.NAME_RESULTS_CSV, benchmark.NAME_RESULTS_TXT ]: self.assertTrue( os.path.isfile(os.path.join(path_bm, file_name)), msg='Missing "%s" file in the BM experiment' % file_name ) # load registration file path_csv = os.path.join(path_bm, benchmark.NAME_CSV_REGISTRATION_PAIRS) df_regist = pd.read_csv(path_csv, index_col=0) # only two items in the benchmark self.assertEqual( len(df_regist), len(benchmark._df_overview), msg='Found only %i records instead of %i' % (len(df_regist), len(benchmark._df_overview)) ) # test presence of particular columns for col in list(benchmark.COVER_COLUMNS) + [benchmark.COL_IMAGE_MOVE_WARP]: self.assertIn(col, df_regist.columns, msg='Missing column "%s" in result table' % col) cols_lnds_warp = [ col in df_regist.columns for col in [benchmark.COL_POINTS_REF_WARP, benchmark.COL_POINTS_MOVE_WARP] ] self.assertTrue(any(cols_lnds_warp), msg='Missing any column of warped landmarks') col_lnds_warp = benchmark.COL_POINTS_REF_WARP if cols_lnds_warp[0] \ else benchmark.COL_POINTS_MOVE_WARP # check existence of all mentioned files for _, row in df_regist.iterrows(): self.assertTrue( os.path.isfile(os.path.join(path_bm, row[benchmark.COL_IMAGE_MOVE_WARP])), msg='Missing image "%s"' % row[benchmark.COL_IMAGE_MOVE_WARP] ) self.assertTrue( os.path.isfile(os.path.join(path_bm, row[col_lnds_warp])), msg='Missing landmarks "%s"' % row[col_lnds_warp] ) # check existence of statistical results for stat_name in ['Mean', 'STD', 'Median', 'Min', 'Max']: self.assertTrue( any(stat_name in col for col in df_regist.columns), msg='Missing statistics "%s"' % stat_name ) # test specific results assert_array_almost_equal(sorted(df_regist['TRE Mean'].values), np.array(final_means), decimal=0) assert_array_almost_equal(sorted(df_regist['TRE STD'].values), np.array(final_stds), decimal=0) def test_try_wrap(self): self.assertIsNone(try_wrap()) def test_argparse(self): with patch('argparse._sys.argv', ['script.py']): args = parse_arg_params(argparse.ArgumentParser()) self.assertIsInstance(args, dict) def test_argparse_images(self): with patch('argparse._sys.argv', ['script.py', '-i', 'an_image.png']): args = args_expand_parse_images(argparse.ArgumentParser()) self.assertIsInstance(args, dict) def test_fail_visual(self): fig = ImRegBenchmark._visual_image_move_warp_lnds_move_warp({ImRegBenchmark.COL_POINTS_MOVE_WARP: 'abc'}) self.assertIsNone(fig) fig = ImRegBenchmark._visual_image_move_warp_lnds_ref_warp({ImRegBenchmark.COL_POINTS_REF_WARP: 'abc'}) self.assertIsNone(fig) fig = ImRegBenchmark.visualise_registration((0, {})) self.assertIsNone(fig) @try_decorator def try_wrap(): return '%i' % '42'
38.725664
114
0.63654
7,546
0.862203
0
0
860
0.098263
0
0
1,969
0.224977
1bf02d45108f641ace7558443cc9e030c46ebd2f
65
py
Python
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
b6c5494196842f3c273965063815ad222a18b4da
[ "MIT" ]
9
2021-09-03T06:20:48.000Z
2022-03-19T12:43:30.000Z
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
b6c5494196842f3c273965063815ad222a18b4da
[ "MIT" ]
null
null
null
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
b6c5494196842f3c273965063815ad222a18b4da
[ "MIT" ]
6
2021-08-16T01:13:36.000Z
2022-03-19T12:44:10.000Z
from .errors_exception_handling import errors_exception_handling
32.5
64
0.923077
0
0
0
0
0
0
0
0
0
0
1bf0738223b67b02abba6e6aa0c92e93cd84b652
470
py
Python
mtstub.py
shimniok/rockblock
7a84d7da7df34c2dbe1a288fb6de24558eb4485f
[ "MIT" ]
1
2020-05-30T01:29:06.000Z
2020-05-30T01:29:06.000Z
mtstub.py
shimniok/rockblock
7a84d7da7df34c2dbe1a288fb6de24558eb4485f
[ "MIT" ]
1
2017-10-16T03:30:55.000Z
2018-01-14T19:05:43.000Z
mtstub.py
shimniok/rockblock
7a84d7da7df34c2dbe1a288fb6de24558eb4485f
[ "MIT" ]
1
2019-08-05T10:31:46.000Z
2019-08-05T10:31:46.000Z
#!/usr/bin/env python ################################################################################################## ## mtstub.py ## ## emulates rockblock api so I don't have to burn credits testing... ################################################################################################## import cgi #import cgitb; cgitb.enable() # for troubleshooting import config print "Content-type: plain/text" print form = cgi.FieldStorage() print "OK,12345"
24.736842
98
0.417021
0
0
0
0
0
0
0
0
387
0.823404
1bf2d4c209e500db17a5c6d33e7442b5b858b75b
343
py
Python
sum.py
PraghadeshManivannan/Built-in-Functions-Python
a3120641e03e7be8e1408dd467997ad6fdf04d87
[ "MIT" ]
null
null
null
sum.py
PraghadeshManivannan/Built-in-Functions-Python
a3120641e03e7be8e1408dd467997ad6fdf04d87
[ "MIT" ]
null
null
null
sum.py
PraghadeshManivannan/Built-in-Functions-Python
a3120641e03e7be8e1408dd467997ad6fdf04d87
[ "MIT" ]
null
null
null
#sum(iterable, start=0, /) #Return the sum of a 'start' value (default: 0) plus an iterable of numbers #When the iterable is empty, return the start value. '''This function is intended specifically for use with numeric values and may reject non-numeric types.''' a = [1,3,5,7,9,4,6,2,8] print(sum(a)) print(sum(a,start = 4))
24.5
78
0.676385
0
0
0
0
0
0
0
0
263
0.766764
1bf4cd25d9e85b2b0cb4131798b2cd2ef33b36d7
10,926
py
Python
idaes/apps/matopt/materials/lattices/diamond_lattice.py
carldlaird/idaes-pse
cc7a32ca9fa788f483fa8ef85f3d1186ef4a596f
[ "RSA-MD" ]
112
2019-02-11T23:16:36.000Z
2022-03-23T20:59:57.000Z
idaes/apps/matopt/materials/lattices/diamond_lattice.py
carldlaird/idaes-pse
cc7a32ca9fa788f483fa8ef85f3d1186ef4a596f
[ "RSA-MD" ]
621
2019-03-01T14:44:12.000Z
2022-03-31T19:49:25.000Z
idaes/apps/matopt/materials/lattices/diamond_lattice.py
carldlaird/idaes-pse
cc7a32ca9fa788f483fa8ef85f3d1186ef4a596f
[ "RSA-MD" ]
154
2019-02-01T23:46:33.000Z
2022-03-23T15:07:10.000Z
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# from copy import deepcopy from math import sqrt import numpy as np from .unit_cell_lattice import UnitCell, UnitCellLattice from ..geometry import Cube from ..tiling import CubicTiling from ..transform_func import ScaleFunc, RotateFunc from ...util.util import ListHasPoint class DiamondLattice(UnitCellLattice): RefIAD = sqrt(3) / 4 # === STANDARD CONSTRUCTOR def __init__(self, IAD): RefUnitCellShape = Cube(1, BotBackLeftCorner=np.array([0, 0, 0], dtype=float)) RefUnitCellTiling = CubicTiling(RefUnitCellShape) RefFracPositions = [np.array([0.0, 0.0, 0.0]), np.array([0.5, 0.5, 0.0]), np.array([0.0, 0.5, 0.5]), np.array([0.5, 0.0, 0.5]), np.array([0.25, 0.25, 0.25]), np.array([0.25, 0.75, 0.75]), np.array([0.75, 0.25, 0.75]), np.array([0.75, 0.75, 0.25])] RefUnitCell = UnitCell(RefUnitCellTiling, RefFracPositions) UnitCellLattice.__init__(self, RefUnitCell) self._IAD = DiamondLattice.RefIAD # IAD is set correctly after calling applyTransF self.applyTransF(ScaleFunc(IAD / DiamondLattice.RefIAD)) self._NthNeighbors = [[[np.array([0.25, 0.25, 0.25]), np.array([-0.25, -0.25, 0.25]), np.array([-0.25, 0.25, -0.25]), np.array([0.25, -0.25, -0.25])], [np.array([-0.25, -0.25, -0.25]), np.array([0.25, 0.25, -0.25]), np.array([0.25, -0.25, 0.25]), np.array([-0.25, 0.25, 0.25])]], [[np.array([0.0, 0.5, 0.5]), np.array([0.0, 0.5, -0.5]), np.array([0.0, -0.5, 0.5]), np.array([0.0, -0.5, -0.5]), np.array([0.5, 0.5, 0.0]), np.array([0.5, 0.0, 0.5]), np.array([0.5, -0.5, 0.0]), np.array([0.5, 0.0, -0.5]), np.array([-0.5, 0.5, 0.0]), np.array([-0.5, 0.0, 0.5]), np.array([-0.5, -0.5, 0.0]), np.array([-0.5, 0.0, -0.5])], [np.array([0.0, 0.5, 0.5]), np.array([0.0, 0.5, -0.5]), np.array([0.0, -0.5, 0.5]), np.array([0.0, -0.5, -0.5]), np.array([0.5, 0.5, 0.0]), np.array([0.5, 0.0, 0.5]), np.array([0.5, -0.5, 0.0]), np.array([0.5, 0.0, -0.5]), np.array([-0.5, 0.5, 0.0]), np.array([-0.5, 0.0, 0.5]), np.array([-0.5, -0.5, 0.0]), np.array([-0.5, 0.0, -0.5])]]] self._typeDict = {0: 0, 3: 1} self._relativePositions = {0: np.array([0.0, 0.0, 0.0]), 3: np.array([0.25, 0.25, 0.25])} # === CONSTRUCTOR - Aligned with {100} @classmethod def alignedWith100(cls, IAD): return cls(IAD) # Default implementation # === CONSTRUCTOR - Aligned with {110} @classmethod def aligndWith110(cls, IAD): result = cls(IAD) thetaX = 0 thetaY = np.pi * 0.25 thetaZ = 0 result.applyTransF(RotateFunc.fromXYZAngles(thetaX, thetaY, thetaZ)) return result # === CONSTRUCTOR - Aligned with {111} @classmethod def alignedWith111(cls, IAD, blnTrianglesAlignedWithX=True): result = cls(IAD) thetaX = -np.pi * 0.25 thetaY = -np.arctan2(-sqrt(2), 2) thetaZ = (np.pi * 0.5 if blnTrianglesAlignedWithX else 0) result.applyTransF(RotateFunc.fromXYZAngles(thetaX, thetaY, thetaZ)) return result # === CONSTRUCTOR - Aligned with {xyz} @classmethod def alignedWith(cls, IAD, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return cls(IAD) elif MI in ['110', '101', '011']: return cls.aligndWith110(IAD) elif MI == '111': return cls.alignedWith111(IAD) else: result = cls(IAD) a = np.array([0.0, 0.0, 1.0]) b = np.array([float(MI[0]), float(MI[1]), float(MI[2])]) axis = np.cross(a, b) angle = np.arccos(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))) result.applyTransF(RotateFunc.fromAxisAngle(axis, angle)) return result return ValueError('DiamondLattice.alignedWith: Input direction is not correct.') # === MANIPULATION METHODS def applyTransF(self, TransF): if isinstance(TransF, ScaleFunc): if TransF.isIsometric: self._IAD *= TransF.Scale[0] else: raise ValueError('DiamondLattice.applyTransF: Can only scale isometrically') UnitCellLattice.applyTransF(self, TransF) # === AUXILIARY METHODS def _getPointType(self, P): return (int(round(P[0] * 4)) + int(round(P[1] * 4)) + int(round(P[2] * 4))) % 4 # === PROPERTY EVALUATION METHODS # NOTE: inherited from UnitCellLattice # def isOnLattice(self,P): def areNeighbors(self, P1, P2): return np.linalg.norm(P2 - P1) <= self.IAD def getNeighbors(self, P, layer=1): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) if PType not in self._typeDict.keys(): raise ValueError('DiamondLattice.getNeighbors Should never reach here!') if layer > len(self._NthNeighbors): self._calculateNeighbors(layer) NBs = deepcopy(self._NthNeighbors[layer - 1][self._typeDict[PType]]) for NeighP in NBs: NeighP += RefP self._convertFromReference(NeighP) return NBs def _calculateNeighbors(self, layer): NList = [] for k, v in self._typeDict.items(): tmp = [np.array([0, 0, 0], dtype=float)] for nb in self._NthNeighbors: tmp.extend(nb[v]) NList.append(tmp) for _ in range(layer - len(self._NthNeighbors)): tmp = [[] for _ in self._typeDict.keys()] for k, v in self._typeDict.items(): for P in self._NthNeighbors[len(self._NthNeighbors) - 1][v]: PType = self._getPointType(P + self._relativePositions[k]) for Q in self._NthNeighbors[0][self._typeDict[PType]]: N = P + Q if not ListHasPoint(NList[v], N, 0.001 * DiamondLattice.RefIAD): tmp[v].append(N) NList[v].append(N) self._NthNeighbors.append(tmp) def isASite(self, P): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) return PType == 0 def isBSite(self, P): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) return PType == 3 def setDesign(self, D, AType, BType): for i, P in enumerate(D.Canvas.Points): if self.isASite(P): D.setContent(i, AType) elif self.isBSite(P): D.setContent(i, BType) else: raise ValueError('setDesign can not set site not on lattice') # === BASIC QUERY METHODS @property def IAD(self): return self._IAD @property def Diamond100LayerSpacing(self): return self.IAD / sqrt(3) @property def Diamond110LayerSpacing(self): return self.IAD * sqrt(2) / sqrt(3) @property def Diamond111LayerSpacing(self): return self.IAD * 4 / 3 @property def Diamond112LayerSpacing(self): return self.IAD * sqrt(2) / 3 def getLayerSpacing(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return self.Diamond100LayerSpacing elif MI in ['110', '101', '011']: return self.Diamond110LayerSpacing elif MI == '111': return self.Diamond111LayerSpacing elif MI in ['112', '121', '211']: return self.Diamond112LayerSpacing else: raise NotImplementedError('DiamondLattice.getLayerSpacing: Input direction is not supported.') return ValueError('DiamondLattice.getLayerSpacing: Input direction is not correct.') def getShellSpacing(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001', '110', '101', '011', '111']: return self.IAD * sqrt(8) / sqrt(3) elif MI in ['112', '121', '211']: return self.IAD * sqrt(2) / sqrt(3) else: raise NotImplementedError('DiamondLattice.getShellSpacing: Input direction is not supported.') return ValueError('The input direction is not correct.') def getUniqueLayerCount(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return 4 elif MI in ['110', '101', '011']: return 2 elif MI == '111': return 3 elif MI in ['112', '121', '211']: return 6 else: raise NotImplementedError('DiamondLattice.getUniqueLayerCount: Input direction is not supported.') return ValueError('The input direction is not correct.')
43.185771
114
0.507139
9,873
0.903624
0
0
1,930
0.176643
0
0
1,928
0.17646
1bf4f3ec8b611663d899f073f4f41ae66286507f
12,055
py
Python
elateridae_baits.py
AAFC-BICoE/elateridae-ortholog-baitset
8e17212a26539dfd79b414ffe8f243a906d32149
[ "MIT" ]
null
null
null
elateridae_baits.py
AAFC-BICoE/elateridae-ortholog-baitset
8e17212a26539dfd79b414ffe8f243a906d32149
[ "MIT" ]
null
null
null
elateridae_baits.py
AAFC-BICoE/elateridae-ortholog-baitset
8e17212a26539dfd79b414ffe8f243a906d32149
[ "MIT" ]
null
null
null
# coding: utf8 """ Ortholog Based Bait Design Script for creating Elateridae ortholog based baits suitable submission to myBaits Compares t_coffee AA alignment scores with nucleotide tranalignments to find conserved blocks Author Jackson Eyres [email protected] License: MIT Copywright: Government of Canada """ import glob import os from Bio import AlignIO, SeqIO import time import argparse import random def main(): """ Main Function to run Staphylinidae Bait Designer :return: """ parser = argparse.ArgumentParser(description='Processes T_Coffee AA alignments to generate a ortholog bait set') parser.add_argument('-o', type=str, required=True, help='Output Directory') parser.add_argument('-i', type=str, required=True, help='T_Coffee Directory containing aa based .score_ascii files') parser.add_argument('-n', type=str, required=True, help='Directory containing tranalign nucleotide alignments') # parser.add_argument('-p', type=str, required=True, # help='Priorities File for Staphylinidae') args = parser.parse_args() print("Starting Staphylinidae Ortholog Bait Design".format(args.o)) print(args.o, args.i, args.n) dict_of_max_sums = longest_exon_length(args.i) sum_file = write_sums(args.o, dict_of_max_sums) blocks_dir = extract_conserved_blocks(sum_file, args.n, args.o) window_ranges = [600] for window in window_ranges: filtered_blocks_dir = filter_blocks(blocks_dir, args.o, window) processed_blocks_dir = filtered_blocks_dir # Original was going to stagger tile the baits, but bait manufacturer inherently does this # tiled_blocks_dir = tile_blocks(filtered_blocks_dir, args.o, window) # processed_blocks_dir = tiled_blocks_dir merge_baits(processed_blocks_dir, args.o, "Elateridae", window) def extract_conserved_blocks(sum_file, alignment_directory, results_directory): """ Takes an AA T_coffee alignment score_ascii file, the corresponding nt fasta tranalign file, and the sum file to Extract out a conserved block :param sum_file: :param alignment_directory: :param results_directory: :return: Output Directory of conserved blocks """ output_directory = os.path.join(results_directory, "conserved_blocks") if not os.path.exists(output_directory): os.makedirs(output_directory) with open(sum_file) as f: lines = f.readlines() lines.pop(0) for line in lines: list_of_seqs = [] split = line.rstrip().split(",") name = split[0].replace(".aa.summarized.score_ascii", "_tranaligned.fa") window_range = int(split[2])*3 index = int(split[3])*3 file_path = os.path.join(alignment_directory, name) if os.path.isfile(file_path): with open(file_path) as g: alignments = AlignIO.read(g, "fasta") for alignment in alignments: list_of_seqs.append(alignment[index:index + window_range]) orthogroup = split[0].split(".")[0] file_name = "{}_block.fasta".format(orthogroup) file_path = os.path.join(output_directory, file_name) with open(file_path, "w") as h: for seq in list_of_seqs: h.write(seq.format("fasta")) return output_directory def longest_exon_length(directory): """ Scans t_coffee alignments in score_ascii format for a region of between 75-2000 positions in length that is highly conserved, and sorts by the degree of conservation into an output file :param directory: Directory of T_coffee results (containing score_ascii and aln files) :return: Dictionary of Orthogroups with a 300bp region TCS scores above 2400 """ increments = [150, 200] increments_rev = increments[::-1] dict_of_max_sums = {} files = glob.glob(os.path.join(directory, "*.score_ascii")) count = 0 for file in files: count += 1 if count % 100 == 0: print(count) # Scans an alignment and converts the cons string of numbers into a continous list of numbers number_string = "" with open(file) as f: number_of_specimens = f.read().count(":") - 4 f.seek(0) if number_of_specimens < 5: print("Skipping {} Due to Low Specimen Count".format(file)) continue for line in f: if line.startswith("cons") and ":" not in line: number = line.rstrip().split(" ")[-1] number_string += number number_list = [int(i) for i in number_string] # Scans number list for sequence containing the highest window range of conserved bases within 95% of max # TCS score for said window range aka 9*Window Range # Sort the list so the highest score block within the window range is first. If the window range # has 95% quality or higher, add it to dictionary and move on to next file, otherwise decrease # window range and try again for window_range in increments_rev: list_of_sums = [] if len(number_list) > window_range: for i in range(0, len(number_list) - window_range): the_sum = sum(number_list[i:i + window_range]) list_of_sums.append((the_sum, window_range, i)) sorted_list = sorted(list_of_sums, reverse=True, key=lambda element: (element[0])) if float(sorted_list[0][0]) >= float(9 * window_range * .95): if os.path.basename(file) not in dict_of_max_sums: dict_of_max_sums[os.path.basename(file)] = sorted_list[0] break return dict_of_max_sums def write_sums(directory, dict_of_max_sums): """ Writes the dictionary of all ortholog T_coffee scores/sums to csv file :param directory: :param dict_of_max_sums: :return: """ if not os.path.exists(directory): os.makedirs(directory) timestr = time.strftime("%Y%m%d-%H%M%S") file_name = "Conserved_Exons_Sums_{}.csv".format(timestr) file_path = os.path.join(directory, file_name) # Sorts dictionary into a list by score sum and then window length sorted_x = sorted(dict_of_max_sums.items(), reverse=True, key=lambda x: (x[1][0], x[1][1])) print("Writing T_Coffee score analysis to {}".format(file_path)) with open(file_path, "w") as f: f.write("Orthogroup,Sum,Window,Index\n") for entry in sorted_x: f.write("{},{},{},{}\n".format(entry[0], entry[1][0], entry[1][1], entry[1][2])) return file_path def filter_blocks(directory, results_dir, window): """ Filters blocks generated by longest exon length and write sum functions based on various criteria :param directory: Directory of fasta blocks to filter :param results_dir: Parent Result Folder :param window: Minimum length of a conserved block in basepairs :return: Output Directory of filtered blocks """ fastas = glob.glob(os.path.join(directory, "*.fasta")) output_dir = os.path.join(results_dir, "filtered_blocks_{}".format(window)) if not os.path.exists(output_dir): os.mkdir(output_dir) total_seq_length = 0 total_after_gap_removal = 0 total_sequences = 0 gene_count = 0 # For each block/file extract out sequences that meet the following critiera: # Part of Priority List = 1 # Minimum Length of Window size in basepairs # Gaps represent less than 20% of sequence # Block contains atleast 5 sequences from priority list = 1 for fasta in fastas: seqs = [] with open(fasta) as f: file_name = os.path.basename(fasta).replace(".fasta", "_filtered.fasta") for seq in SeqIO.parse(f, 'fasta'): gaps = seq.seq.count("-") gap_percent = float(gaps / len(seq.seq)) if gap_percent > 0.20: pass else: if len(seq.seq) >= window: seqs.append(seq) if len(seqs) < 5: pass else: gene_count += 1 # Randomly take 3 contigs from the bait set to ensure even distribution of species across all orthologs random.shuffle(seqs) seqs = seqs[:3] total_sequences += len(seqs) for seq in seqs: total_seq_length += len(seq.seq) seq.seq = seq.seq.ungap(gap="-") total_after_gap_removal += len(seq.seq) new_file = os.path.join(output_dir, file_name) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") print("Total Genes: {}, " "Total Sequences: {}, " "Total Length in bp: {}, " "After Gap Removal: {}".format(gene_count, total_sequences, total_seq_length, total_after_gap_removal)) return output_dir def tile_blocks(directory, results_dir, window): """ Takes a prefiltered block generated by the filtered_blocks function and tiles each bait The first 0, 40 or 80 basepairs of each sequence are removed so the baits tile amongst each other :param directory: :param results_dir: :param window: :return: """ fastas = glob.glob(os.path.join(directory, "*.fasta")) output_dir = os.path.join(results_dir, "tiled_blocks_{}".format(window)) if not os.path.exists(output_dir): os.mkdir(output_dir) for fasta in fastas: seqs = [] with open(fasta) as f: count = 0 for seq in SeqIO.parse(f, 'fasta'): seq.description = "" # Remove the first 0, 40 or 80 basepairs of the sequence every 3rd time count += 1 if count == 1: pass if count == 2: seq.seq = seq.seq[40:] if count == 3: seq.seq = seq.seq[80:] count = 0 seqs.append(seq) file_name = os.path.basename(fasta).replace("_block_filtered", "_block_tiled") new_file = os.path.join(output_dir, file_name) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") return output_dir def merge_baits(directory, results_dir, prefix, window): """ Merges multifastas in the input directory into a single multi fasta file. Can be accomplished with bash cat, but using biopython ensures each fasta entry is formatted correctly :param directory: Input directory of fastas :param results_dir: Output Parent directory :param prefix: Name of the output file :param window: :return: """ output_dir = os.path.join(results_dir, "final_baits") if not os.path.exists(output_dir): os.mkdir(output_dir) fastas = glob.glob(os.path.join(directory, "*.fasta")) seqs = [] total_dna = 0 total_seqs = 0 total_orthologs = 0 for fasta in fastas: if total_dna > 3900000: break total_orthologs += 1 with open(fasta) as f: for seq in SeqIO.parse(f, 'fasta'): total_seqs += 1 total_dna += len(seq.seq) seq.description = "" seqs.append(seq) file_name = "{}-{}-final-baits.fasta".format(prefix, window) new_file = os.path.join(output_dir, file_name) print("Bait File {} " "with Total Orthologs {}, " "Total Seqs {}, Total_Dna {} bp".format(new_file, total_orthologs, total_seqs, total_dna)) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") return output_dir if __name__ == "__main__": main()
36.41994
117
0.616093
0
0
0
0
0
0
0
0
4,435
0.367897
1bf638f00910b809a7d45e1aeabdb75e4e5aef9c
1,361
py
Python
poilab.py
octeufer/Annotate_Optimize
32d9cecc0159882d3f962990aba07168c4a023f5
[ "Apache-2.0" ]
null
null
null
poilab.py
octeufer/Annotate_Optimize
32d9cecc0159882d3f962990aba07168c4a023f5
[ "Apache-2.0" ]
null
null
null
poilab.py
octeufer/Annotate_Optimize
32d9cecc0159882d3f962990aba07168c4a023f5
[ "Apache-2.0" ]
null
null
null
import sys import numpy as np sys.path.append("d:/data/annooptimize") import triangle import time tinternal = list() def labstart(): points,tri = triangle.gentri("d:/data/annooptimize/Annodata/200600/poise.shp") plabels = triangle.dynamicSize(points) conflictg = triangle.conflictgraphdy(points,tri,plabels) acg = triangle.accesssubg(conflictg) len(acg) allsolve = np.zeros((len(points),4,2),np.float64) points2,tri2 = triangle.gentri("d:/data/annooptimize/Annodata/200600/POIhalf.shp") plabels2 = triangle.dynamicSize(points2) conflictg2 = triangle.conflictgraphdy(points2,tri2,plabels2) acg2 = triangle.accesssubg(conflictg2) points3,tri3 = triangle.gentri("d:/data/annooptimize/Annodata/200600/POIall.shp") plabels3 = triangle.dynamicSize(points3) conflictg3 = triangle.conflictgraphdy(points3,tri3,plabels3) acg3 = triangle.accesssubg(conflictg3) time.clock() costs,tabucs= triangle.globaltabuiter2dy(acg,points,1,plabels) tinternal.append(time.clock()) costs2,tabucs2= triangle.globaltabuiter2dy(acg2,points2,1,plabels2) tinternal.append(time.clock()) costs3,tabucs3= triangle.globaltabuiter2dy(acg3,points3,1,plabels3) tinternal.append(time.clock()) return tinternal,(costs,tabucs),(costs2,tabucs2),(costs3,tabucs3)
38.885714
87
0.722998
0
0
0
0
0
0
0
0
169
0.124173
1bf69ac1479d462fb413d5e64a7b2f979173894e
5,091
py
Python
t_core/tc_python/xrule.py
levilucio/SyVOLT
7526ec794d21565e3efcc925a7b08ae8db27d46a
[ "MIT" ]
3
2017-06-02T19:26:27.000Z
2021-06-14T04:25:45.000Z
t_core/tc_python/xrule.py
levilucio/SyVOLT
7526ec794d21565e3efcc925a7b08ae8db27d46a
[ "MIT" ]
8
2016-08-24T07:04:07.000Z
2017-05-26T16:22:47.000Z
t_core/tc_python/xrule.py
levilucio/SyVOLT
7526ec794d21565e3efcc925a7b08ae8db27d46a
[ "MIT" ]
1
2019-10-31T06:00:23.000Z
2019-10-31T06:00:23.000Z
from util.infinity import INFINITY from tc_python.arule import ARule from t_core.rollbacker import Rollbacker from t_core.resolver import Resolver class XRule(ARule): ''' Applies the transformation on one match with roll-back capability. ''' def __init__(self, LHS, RHS, max_iterations=INFINITY): ''' Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). ''' # external_matches_only=True because further matches of this rule are only processed after a roll-back super(XRule, self).__init__(LHS, RHS) self.M.max = max_iterations self.I.max_iterations = max_iterations self.B = Rollbacker(condition=LHS, max_iterations=max_iterations) def packet_in(self, packet): self.exception = None self.is_success = False # Checkpoint the original packet self.B.packet_in(packet) if not self.B.is_success: self.exception = self.B.exception return packet # Match packet = self.M.packet_in(packet) if not self.M.is_success: packet = self.B.restore(packet) if self.M.exception: self.exception = self.M.exception elif self.B.exception: self.exception = self.B.exception return packet # Choose one match packet = self.I.packet_in(packet) if not self.I.is_success: packet = self.B.restore(packet) if self.I.exception: self.exception = self.I.exception elif self.B.exception: self.exception = self.B.exception return packet # Rewrite packet = self.W.packet_in(packet) if not self.W.is_success: packet = self.B.restore(packet) if self.W.exception: self.exception = self.W.exception elif self.B.exception: self.exception = self.B.exception return packet self.is_success = True return packet def next_in(self, packet): self.exception = None self.is_success = False packet = self.B.next_in(packet) if not self.B.is_success: self.exception = self.B.exception return packet # Choose the next match packet = self.I.packet_in(packet) if not self.I.is_success: packet = self.B.next_in(packet) if self.I.exception: self.exception = self.I.exception elif self.B.exception: self.exception = self.B.exception return packet # Rewrite packet = self.W.packet_in(packet) if not self.W.is_success: packet = self.B.next_in(packet) if self.W.exception: self.exception = self.W.exception elif self.B.exception: self.exception = self.B.exception return packet # Output success packet self.is_success = True return packet class XRule_r(XRule): ''' Applies the transformation on one match with roll-back capability. ''' def __init__(self, LHS, RHS, external_matches_only=False, custom_resolution=lambda packet: False): ''' Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). @param external_matches_only: Resolve conflicts ignoring the matches found in this ARule. @param custom_resolution: Override the default resolution function. ''' super(XRule_r, self).__init__() self.R = Resolver(external_matches_only=external_matches_only, custom_resolution=custom_resolution) def packet_in(self, packet): packet = super(XRule_r, self).packet_in(packet) # is_success is True if self.exception is None: # Resolve any conflicts if necessary packet = self.R.packet_in(packet) if not self.R.is_success: self.exception = self.R.exception return packet # Output success packet else: self.is_success = False return packet def next_in(self, packet): packet = super(XRule_r, self).next_in(packet) # is_success is True if self.exception is None: # Resolve any conflicts if necessary packet = self.R.packet_in(packet) if not self.R.is_success: self.exception = self.R.exception return packet # Output success packet else: self.is_success = False return packet
37.433824
111
0.575329
4,924
0.967197
0
0
0
0
0
0
1,195
0.234728
1bf74b762d2902af1c8ee402ce83c52345c29025
5,266
py
Python
tests/commonsense/semantic_lexicon_knowledge/ai2_lexicon_test.py
keisks/propara
49fa8fe0481291df18b2c7b48e7ba1dafaad48e2
[ "Apache-2.0" ]
84
2018-06-02T02:00:53.000Z
2022-03-13T12:17:42.000Z
tests/commonsense/semantic_lexicon_knowledge/ai2_lexicon_test.py
keisks/propara
49fa8fe0481291df18b2c7b48e7ba1dafaad48e2
[ "Apache-2.0" ]
3
2018-10-31T00:28:31.000Z
2020-05-12T01:06:53.000Z
tests/commonsense/semantic_lexicon_knowledge/ai2_lexicon_test.py
keisks/propara
49fa8fe0481291df18b2c7b48e7ba1dafaad48e2
[ "Apache-2.0" ]
13
2018-09-14T20:37:51.000Z
2021-03-23T09:24:49.000Z
from unittest import TestCase from propara.commonsense.semantic_lexicon_knowledge.ai2_lexicon import AI2Lexicon, AI2LexiconPredicate, AI2LexiconArg, AI2LexiconIndications, \ AI2LexiconPattern class TestAI2Lexicon(TestCase): def setUp(self): self.lexicon_fp = "tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv" def testLoads(self): self.lexicon = AI2Lexicon(self.lexicon_fp) # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate', has_agent=True, has_patient=False)}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate', has_agent=True, has_patient=False)}") # # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate')}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate')}") # v2 doesn't contain size, temperature, phase attributes # infile = "tests/fixtures/ie/ai2-lexicon-v2.tsv" # the following path is useful when debugging from browser. # self.lexicon = AI2Lexicon("tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv") assert self.lexicon._after_subj(("blend in", AI2LexiconPattern.SO)) == { AI2LexiconPredicate.IS_AT: AI2LexiconArg.OBJECT, AI2LexiconPredicate.NOT_IS_AT: AI2LexiconArg.PREP_SRC, } assert self.lexicon._after_obj(("absorb", AI2LexiconPattern.SO))[ AI2LexiconPredicate.IS_AT] == AI2LexiconArg.SUBJECT # assert self.lexicon._after_obj(("absorbs", AI2LexiconPattern.SO)).get(AI2LexiconPredicate.IS_AT, "") == AI2LexiconArg.SUBJECT assert len(self.lexicon._after_obj(("blend in", AI2LexiconPattern.SO))) == 0 assert len(self.lexicon._after_obj(("blend blend2", AI2LexiconPattern.SO))) == 0 assert AI2LexiconIndications.MOVED not in self.lexicon.what_happens_to_subj("absorbs") assert AI2LexiconIndications.MOVED in self.lexicon.what_happens_to_obj("absorbs") assert AI2LexiconIndications.CREATED in self.lexicon.what_happens_to_obj("sprout") assert AI2LexiconIndications.CREATED in self.lexicon.what_happens_to_subj("sprout", has_agent=True, has_patient=False) assert AI2LexiconIndications.DESTROYED not in self.lexicon.what_happens_to_subj("sprout") assert AI2LexiconIndications.DESTROYED not in self.lexicon.what_happens_to_obj("sprout") assert AI2LexiconIndications.TEMPERATURE_INC not in self.lexicon.what_happens_to_obj("turn") assert AI2LexiconIndications.TEMPERATURE_INC in self.lexicon.what_happens_to_subj("gets hot") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("gets bigger") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("become bigger") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("turned bigger") assert AI2LexiconIndications.SIZE_INC not in self.lexicon.what_happens_to_obj("turns into bigger") assert AI2LexiconIndications.MOVED not in self.lexicon.what_happens_to_subj("turned") assert AI2LexiconIndications.PHASE_UNK_GAS in self.lexicon.what_happens_to_subj("turned gaseous") assert AI2LexiconIndications.PHASE_LIQUID_SOLID in self.lexicon.what_happens_to_subj("solidify", has_agent=True, has_patient=False) assert AI2LexiconIndications.PHASE_LIQUID_SOLID in self.lexicon.what_happens_to_obj("solidify", has_agent=True, has_patient=True) assert AI2LexiconIndications.PHASE_UNK_SOLID not in self.lexicon.what_happens_to_subj("solidifies") assert AI2LexiconIndications.PHASE_SOLID_GAS in self.lexicon.what_happens_to_subj("sublime", has_agent=True, has_patient=False) assert AI2LexiconIndications.PHASE_SOLID_GAS in self.lexicon.what_happens_to_obj("sublime", has_agent=True, has_patient=True) # if agent and patient both are present or only 1 # the difference is whether object is given or not # this happens for all verbs that can be both transitive/intransitive # they will have 2 entries. # # A big rock stops the stream of water from uphill => stream of water moved from uphill to rock # car stops at the intersection ==> car moved to intersection # we have removed lots of fine details in the patterns (VerbNet had much more info there) # if agent and patient both are present or only 1 def test_type_of_pattern(self): input = "SUBJECT VERB OBJECT PREP-SRC PREP-DEST" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.SO input = "SUBJECT VERB OBJECT" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.SO input = "SUBJECT VERB PREP-SRC PREP-DEST" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.S
71.162162
143
0.681732
5,066
0.962021
0
0
0
0
0
0
1,629
0.309343
1bf7f1bc739f582663b9e33d97b9d4189cae0d04
473
py
Python
fitbit/__init__.py
erichilarysmithsr/python-fitbit
38cf916d0318aedc91b31d15431fa9c49a13d15f
[ "Apache-2.0" ]
null
null
null
fitbit/__init__.py
erichilarysmithsr/python-fitbit
38cf916d0318aedc91b31d15431fa9c49a13d15f
[ "Apache-2.0" ]
null
null
null
fitbit/__init__.py
erichilarysmithsr/python-fitbit
38cf916d0318aedc91b31d15431fa9c49a13d15f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Fitbit API Library ------------------ :copyright: 2012-2015 ORCAS. :license: BSD, see LICENSE for more details. """ from .api import Fitbit, FitbitOauthClient, FitbitOauth2Client # Meta. __title__ = 'fitbit' __author__ = 'Issac Kelly and ORCAS' __author_email__ = '[email protected]' __copyright__ = 'Copyright 2012-2015 ORCAS' __license__ = 'Apache 2.0' __version__ = '0.1.3' __release__ = '0.1.3' # Module namespace. all_tests = []
18.192308
62
0.684989
0
0
0
0
0
0
0
0
276
0.58351
1bf7f576395a0ca86f448e1c60010a3d363f6af6
468
py
Python
bitcoinExchange/exchange/api/urls.py
pogginicolo98/start2impact_exchange
559c42cdeb2dec890d4b1145ed66a1a2f7c362cb
[ "MIT" ]
1
2021-09-08T16:39:07.000Z
2021-09-08T16:39:07.000Z
bitcoinExchange/exchange/api/urls.py
pogginicolo98/start2impact_exchange
559c42cdeb2dec890d4b1145ed66a1a2f7c362cb
[ "MIT" ]
null
null
null
bitcoinExchange/exchange/api/urls.py
pogginicolo98/start2impact_exchange
559c42cdeb2dec890d4b1145ed66a1a2f7c362cb
[ "MIT" ]
null
null
null
from django.urls import include, path from exchange.api.views import LatestOrdersListAPIView, OrderViewSet, ProfileAPIView from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'orders', OrderViewSet, basename='orders') urlpatterns = [ path('profile/', ProfileAPIView.as_view(), name='profile-detail'), path('orders/latest/', LatestOrdersListAPIView.as_view(), name='orders-latest'), path('', include(router.urls)) ]
36
84
0.767094
0
0
0
0
0
0
0
0
76
0.162393
1bf850828538bccd6c9bdc855d6c93aec2b25061
52
py
Python
python/testData/formatter/indentInGenerator_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/formatter/indentInGenerator_after.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/formatter/indentInGenerator_after.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
def dbl(): return ( (a, a) for a in [])
13
27
0.384615
0
0
0
0
0
0
0
0
0
0
1bf8ddafa4dc0ba6cd6a406c255c3270696943bb
848
py
Python
kevin/aggregate/process_html.py
toddoh/thisisallabout_backend
a0c7bad675bd3fff97f99c3e2b49f19a1fef7640
[ "MIT" ]
null
null
null
kevin/aggregate/process_html.py
toddoh/thisisallabout_backend
a0c7bad675bd3fff97f99c3e2b49f19a1fef7640
[ "MIT" ]
5
2021-03-18T22:18:49.000Z
2022-03-11T23:40:56.000Z
kevin/aggregate/process_html.py
toddoh/thisisallabout_backend
a0c7bad675bd3fff97f99c3e2b49f19a1fef7640
[ "MIT" ]
1
2019-10-16T19:29:12.000Z
2019-10-16T19:29:12.000Z
from bs4 import BeautifulSoup import requests import re def retrieveText(): print("Parsing text from online target") url = "https://www.whitehouse.gov/the-press-office/2017/10/16/remarks-president-trump-and-senate-majority-leader-mitch-mcconnell-joint" response = requests.get(url) soup = BeautifulSoup(response.content, "lxml") textwrapper = soup.find("div", { "class" : "field-item" }) textel = textwrapper.find_all("p", { "class" : None }) textstripped = [] for element in textel: stripped = element.text.replace("\r", "\n").replace("\r", "").replace("\n", "").replace("Q ", "0002reporter: ").replace("THE PRESIDENT: ", "0001president: ").strip() if "P.M." not in stripped and "A.M." not in stripped: textstripped.append(stripped) # print(textstripped) return textstripped
38.545455
173
0.660377
0
0
0
0
0
0
0
0
309
0.364387
1bf9ff44f1b06f0e0c18c710168ee340dcb2a97f
869
py
Python
cfmacro/_resources/examples/lambda.py
gchiesa/cfmacro
9c546b7930a54a9b44efffdf87401726981e1b2a
[ "MIT" ]
null
null
null
cfmacro/_resources/examples/lambda.py
gchiesa/cfmacro
9c546b7930a54a9b44efffdf87401726981e1b2a
[ "MIT" ]
1
2019-07-30T08:49:20.000Z
2019-07-30T08:49:20.000Z
cfmacro/_resources/examples/lambda.py
gchiesa/cfmacro
9c546b7930a54a9b44efffdf87401726981e1b2a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from cfmacro.processors import SgProcessor from cfmacro.core.engine import ProcessorEngine from cfmacro.core.template import TemplateProcessor def lambda_handler(event, context): """ Implement a core handler for security groups ingress / egress :param event: :param context: :return: """ print(f'event received: {event}') processor_engine = ProcessorEngine() processor_engine.register_processor(SgProcessor) template_processor = TemplateProcessor(processor_engine) result = template_processor.process(fragment=event['fragment'], template_params=event['templateParameterValues']).to_dict() print(f'event processed. Result: \n{result}') return { "requestId": event['requestId'], "status": "success", "fragment": result }
28.966667
99
0.674338
0
0
0
0
0
0
0
0
301
0.346375
1bfcaa846cbe80234230889e864b2dd049be6c62
8,038
py
Python
tf2qa/predict_long.py
mikelkl/TF2-QA
3bca786d26565335df45538714532d6d3c070a2b
[ "MIT" ]
17
2020-01-29T10:31:07.000Z
2022-01-10T03:36:00.000Z
tf2qa/predict_long.py
mikelkl/TF2-QA
3bca786d26565335df45538714532d6d3c070a2b
[ "MIT" ]
null
null
null
tf2qa/predict_long.py
mikelkl/TF2-QA
3bca786d26565335df45538714532d6d3c070a2b
[ "MIT" ]
4
2021-01-27T15:42:45.000Z
2021-12-12T20:41:51.000Z
import torch import argparse from roberta_modeling import RobertaJointForLong from transformers.modeling_roberta import RobertaConfig, RobertaModel from torch.utils.data import TensorDataset, SequentialSampler, DataLoader import utils from tqdm import tqdm import os import json import collections import pickle import pandas as pd from utils_nq import read_candidates_from_one_split, compute_long_pred from roberta_long_preprocess import InputLongFeatures RawResult = collections.namedtuple("RawResult", ["unique_id", "long_start_logits", "long_end_logits"]) def load_cached_data(feature_dir, output_features=False, evaluate=False): features = torch.load(feature_dir) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) if evaluate: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) else: all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) if output_features: return dataset, features return dataset def to_list(tensor): return tensor.detach().cpu().tolist() def make_submission(output_prediction_file, output_dir): print("***** Making submmision *****") test_answers_df = pd.read_json(output_prediction_file) def create_short_answer(entry): """ :param entry: dict :return: str """ if entry['answer_type'] == 0: return "" # if entry["short_answers_score"] < 1.5: # return "" if entry["yes_no_answer"] != "NONE": return entry["yes_no_answer"] answer = [] for short_answer in entry["short_answers"]: if short_answer["start_token"] > -1: answer.append(str(short_answer["start_token"]) + ":" + str(short_answer["end_token"])) return " ".join(answer) def create_long_answer(entry): if entry['answer_type'] == 0: return '' # if entry["long_answer_score"] < 1.5: # return "" answer = [] if entry["long_answer"]["start_token"] > -1: answer.append(str(entry["long_answer"]["start_token"]) + ":" + str(entry["long_answer"]["end_token"])) return " ".join(answer) for var_name in ['long_answer_score', 'short_answers_score', 'answer_type']: test_answers_df[var_name] = test_answers_df['predictions'].apply(lambda q: q[var_name]) test_answers_df["long_answer"] = test_answers_df["predictions"].apply(create_long_answer) test_answers_df["short_answer"] = test_answers_df["predictions"].apply(create_short_answer) test_answers_df["example_id"] = test_answers_df["predictions"].apply(lambda q: str(q["example_id"])) long_answers = dict(zip(test_answers_df["example_id"], test_answers_df["long_answer"])) short_answers = dict(zip(test_answers_df["example_id"], test_answers_df["short_answer"])) sample_submission = pd.read_csv("data/sample_submission.csv") long_prediction_strings = sample_submission[sample_submission["example_id"].str.contains("_long")].apply( lambda q: long_answers[q["example_id"].replace("_long", "")], axis=1) short_prediction_strings = sample_submission[sample_submission["example_id"].str.contains("_short")].apply( lambda q: short_answers[q["example_id"].replace("_short", "")], axis=1) sample_submission.loc[ sample_submission["example_id"].str.contains("_long"), "PredictionString"] = long_prediction_strings sample_submission.loc[ sample_submission["example_id"].str.contains("_short"), "PredictionString"] = short_prediction_strings sample_submission.to_csv(os.path.join(output_dir, "submission.csv"), index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--gpu_ids", default="0,1,2,3,4,5,6,7", type=str) parser.add_argument("--eval_batch_size", default=128, type=int) parser.add_argument("--n_best_size", default=20, type=int) parser.add_argument("--max_answer_length", default=30, type=int) parser.add_argument("--float16", default=True, type=bool) parser.add_argument("--bert_config_file", default='roberta_large/config.json', type=str) parser.add_argument("--init_restore_dir", default='check_points/roberta-large-long-V00/best_checkpoint.pth', type=str) parser.add_argument("--predict_file", default='data/simplified-nq-test.jsonl', type=str) parser.add_argument("--output_dir", default='check_points/roberta-large-long-V00', type=str) parser.add_argument("--predict_feat", default='dataset/test_data_maxlen512_roberta_tfidf_features.bin', type=str) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids device = torch.device("cuda") n_gpu = torch.cuda.device_count() print("device %s n_gpu %d" % (device, n_gpu)) print("device: {} n_gpu: {} 16-bits training: {}".format(device, n_gpu, args.float16)) bert_config = RobertaConfig.from_json_file(args.bert_config_file) model = RobertaJointForLong(RobertaModel(bert_config), bert_config) utils.torch_show_all_params(model) utils.torch_init_model(model, args.init_restore_dir) if args.float16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) dataset, features = load_cached_data(feature_dir=args.predict_feat, output_features=True, evaluate=True) eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! print("***** Running evaluation *****") print(" Num examples =", len(dataset)) print(" Batch size =", args.eval_batch_size) all_results = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(device) for t in batch) with torch.no_grad(): input_ids, input_mask, segment_ids, example_indices = batch inputs = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': segment_ids} start_logits, end_logits = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = str(eval_feature.unique_id) result = RawResult(unique_id=unique_id, long_start_logits=start_logits[i].cpu().numpy(), long_end_logits=end_logits[i].cpu().numpy()) all_results.append(result) pickle.dump(all_results, open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'wb')) # all_results = pickle.load(open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'rb')) print("Going to candidates file") candidates_dict = read_candidates_from_one_split(args.predict_file) print("Compute_pred_dict") nq_pred_dict = compute_long_pred(candidates_dict, features, all_results, args.n_best_size) output_prediction_file = os.path.join(args.output_dir, 'test_predictions.json') print("Saving predictions to", output_prediction_file) with open(output_prediction_file, 'w') as f: json.dump({'predictions': list(nq_pred_dict.values())}, f) # make_submission(output_prediction_file, args.output_dir)
43.923497
122
0.686365
0
0
0
0
0
0
0
0
1,812
0.225429
1bfcf985c108d567ad3614fe9d2baeec4a87e0f1
9,385
py
Python
city-infrastructure-platform/settings.py
City-of-Helsinki/city-infrastructure-platform
c14513a9e54405412085f1047f91ec58b263eac0
[ "CC0-1.0" ]
2
2020-11-23T22:08:58.000Z
2022-03-02T13:13:20.000Z
city-infrastructure-platform/settings.py
City-of-Helsinki/city-infrastructure-platform
c14513a9e54405412085f1047f91ec58b263eac0
[ "CC0-1.0" ]
170
2019-12-31T13:37:04.000Z
2022-03-12T14:03:35.000Z
city-infrastructure-platform/settings.py
City-of-Helsinki/city-infrastructure-platform
c14513a9e54405412085f1047f91ec58b263eac0
[ "CC0-1.0" ]
3
2020-05-08T05:58:02.000Z
2022-03-15T16:07:25.000Z
""" Django settings for city-infrastructure-platform project. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import sentry_sdk from django.core.exceptions import ImproperlyConfigured from django.utils.translation import gettext_lazy as _ from helusers.defaults import SOCIAL_AUTH_PIPELINE # noqa: F401 from sentry_sdk.integrations.django import DjangoIntegration from .utils import git_version # Set up .env file checkout_dir = environ.Path(__file__) - 2 assert os.path.exists(checkout_dir("manage.py")) parent_dir = checkout_dir.path("..") if parent_dir() != "/" and os.path.isdir(parent_dir("etc")): env_file = parent_dir("etc/env") default_var_root = parent_dir("var") else: env_file = checkout_dir(".env") default_var_root = checkout_dir("var") BASE_DIR = checkout_dir() env = environ.Env( DEBUG=(bool, False), TIER=(str, "dev"), # one of: prod, qa, stage, test, dev SECRET_KEY=(str, ""), VAR_ROOT=(str, default_var_root), ALLOWED_HOSTS=(list, []), TRUST_X_FORWARDED_HOST=(bool, False), DATABASE_URL=( str, "postgis:///city-infrastructure-platform", ), CACHE_URL=(str, "locmemcache://"), EMAIL_URL=(str, "consolemail://"), SENTRY_DSN=(str, ""), AZURE_DEPLOYMENT=(bool, False), AZURE_ACCOUNT_KEY=(str, False), AZURE_CONTAINER=(str, False), AZURE_ACCOUNT_NAME=(str, False), OIDC_AUTHENTICATION_ENABLED=(bool, True), SOCIAL_AUTH_TUNNISTAMO_KEY=(str, None), SOCIAL_AUTH_TUNNISTAMO_SECRET=(str, None), OIDC_API_TOKEN_AUTH_AUDIENCE=(str, None), OIDC_API_TOKEN_AUTH_ISSUER=(str, None), TOKEN_AUTH_MAX_TOKEN_AGE=(int, 600), OIDC_ENDPOINT=(str, None), HELUSERS_ADGROUPS_CLAIM=(str, "groups"), LOGGING_AUTH_DEBUG=(bool, False), OVERLAY_SOURCE_URL=(str, "https://geoserver.hel.fi/geoserver/city-infra/wms"), BASEMAP_SOURCE_URL=(str, "https://kartta.hel.fi/ws/geoserver/avoindata/wms"), STATIC_URL=(str, "/static/"), MEDIA_URL=(str, "/media/"), ) if os.path.exists(env_file): env.read_env(env_file) SOCIAL_AUTH_TUNNISTAMO_KEY = env("SOCIAL_AUTH_TUNNISTAMO_KEY") SOCIAL_AUTH_TUNNISTAMO_SECRET = env("SOCIAL_AUTH_TUNNISTAMO_SECRET") HELUSERS_ADGROUPS_CLAIM = env("HELUSERS_ADGROUPS_CLAIM") SOCIAL_AUTH_ID_TOKEN_IN_END_SESSION = False if env("OIDC_ENDPOINT"): SOCIAL_AUTH_TUNNISTAMO_OIDC_ENDPOINT = env("OIDC_ENDPOINT") OIDC_API_TOKEN_AUTH = { "AUDIENCE": env("OIDC_API_TOKEN_AUTH_AUDIENCE"), "ISSUER": env("OIDC_API_TOKEN_AUTH_ISSUER"), } # General settings DEBUG = env("DEBUG") OIDC_AUTHENTICATION_ENABLED = env("OIDC_AUTHENTICATION_ENABLED") TIER = env("TIER") SECRET_KEY = env("SECRET_KEY") if DEBUG and not SECRET_KEY: SECRET_KEY = "xxx" ALLOWED_HOSTS = env("ALLOWED_HOSTS") if OIDC_AUTHENTICATION_ENABLED and ( not SOCIAL_AUTH_TUNNISTAMO_KEY or not SOCIAL_AUTH_TUNNISTAMO_SECRET or not OIDC_API_TOKEN_AUTH["AUDIENCE"] or not OIDC_API_TOKEN_AUTH["ISSUER"] ): raise ImproperlyConfigured("Authentication not configured properly") CACHES = {"default": env.cache()} vars().update(env.email_url()) # EMAIL_BACKEND etc. # Logging LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "timestamped_named": { "format": "%(asctime)s %(name)s %(levelname)s: %(message)s", }, }, "handlers": { "console": { "class": "logging.StreamHandler", "formatter": "timestamped_named", }, # Just for reference, not used "blackhole": {"class": "logging.NullHandler"}, }, "loggers": { "django": {"handlers": ["console"], "level": "INFO"}, "helusers": { "handlers": ["console"], "level": "DEBUG" if env("LOGGING_AUTH_DEBUG") else "INFO", "propagate": False, }, }, } # Application definition DJANGO_APPS = [ "helusers", "social_django", "helusers.apps.HelusersAdminConfig", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.gis", ] THIRD_PARTY_APPS = [ "django_extensions", "rest_framework", "rest_framework.authtoken", "corsheaders", "drf_yasg", "django_filters", "auditlog", ] LOCAL_APPS = [ "users.apps.UsersConfig", "traffic_control.apps.TrafficControlConfig", "map.apps.MapConfig", ] INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS AUTHENTICATION_BACKENDS = ( "helusers.tunnistamo_oidc.TunnistamoOIDCAuth", "django.contrib.auth.backends.ModelBackend", ) AUTH_USER_MODEL = "users.User" LOGIN_REDIRECT_URL = "/admin/" LOGOUT_REDIRECT_URL = "/admin/login/" SOCIAL_AUTH_TUNNISTAMO_AUTH_EXTRA_ARGUMENTS = {"ui_locales": "fi"} WAGTAIL_SITE_NAME = _("City Infrastructure Platform") SESSION_SERIALIZER = "django.contrib.sessions.serializers.PickleSerializer" MIDDLEWARE = [ "deployment.middleware.HealthCheckMiddleware", "azure_client_ip.middleware.AzureClientIPMiddleware", "corsheaders.middleware.CorsMiddleware", "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "django.middleware.locale.LocaleMiddleware", "auditlog.middleware.AuditlogMiddleware", ] ROOT_URLCONF = "city-infrastructure-platform.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [checkout_dir("templates"), checkout_dir("map-view/build")], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ] }, } ] WSGI_APPLICATION = "city-infrastructure-platform.wsgi.application" # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = {"default": env.db("DATABASE_URL")} DATABASES["default"]["ATOMIC_REQUESTS"] = True # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = "fi" LANGUAGES = [("fi", _("Finnish")), ("en", _("English"))] TIME_ZONE = "Europe/Helsinki" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ var_root = env.path("VAR_ROOT") STATIC_ROOT = var_root("static") MEDIA_ROOT = var_root("media") STATIC_URL = env("STATIC_URL") MEDIA_URL = env("MEDIA_URL") STATICFILES_STORAGE = "django.contrib.staticfiles.storage.ManifestStaticFilesStorage" STATICFILES_DIRS = [checkout_dir("map-view/build/static")] # Whether to trust X-Forwarded-Host headers for all purposes # where Django would need to make use of its own hostname # fe. generating absolute URLs pointing to itself # Most often used in reverse proxy setups USE_X_FORWARDED_HOST = env("TRUST_X_FORWARDED_HOST") # Django REST Framework REST_FRAMEWORK = { "DEFAULT_AUTHENTICATION_CLASSES": [ "helusers.oidc.ApiTokenAuthentication", "rest_framework.authentication.TokenAuthentication", "rest_framework.authentication.BasicAuthentication", "rest_framework.authentication.SessionAuthentication", ], "DEFAULT_PAGINATION_CLASS": "rest_framework.pagination.LimitOffsetPagination", "DEFAULT_FILTER_BACKENDS": ["django_filters.rest_framework.DjangoFilterBackend"], "PAGE_SIZE": 20, "OIDC_LEEWAY": env("TOKEN_AUTH_MAX_TOKEN_AGE"), "GROUP_CLAIM_NAME": "groups", } # django-cors if DEBUG: CORS_ORIGIN_ALLOW_ALL = True # Azure CLIENT_IP middleware AZURE_DEPLOYMENT = env.bool("AZURE_DEPLOYMENT") if AZURE_DEPLOYMENT: AZURE_ACCOUNT_KEY = env.str("AZURE_ACCOUNT_KEY") AZURE_CONTAINER = env.str("AZURE_CONTAINER") AZURE_ACCOUNT_NAME = env.str("AZURE_ACCOUNT_NAME") DEFAULT_FILE_STORAGE = "storages.backends.azure_storage.AzureStorage" # Sentry-SDK SENTRY_DSN = env.str("SENTRY_DSN") VERSION = git_version() if SENTRY_DSN: sentry_sdk.init(dsn=SENTRY_DSN, integrations=[DjangoIntegration()], release=VERSION) # Custom settings SRID = 3879 # the spatial reference id used for geometries OVERLAY_SOURCE_URL = env.str("OVERLAY_SOURCE_URL") BASEMAP_SOURCE_URL = env.str("BASEMAP_SOURCE_URL") LOCALE_PATHS = [ "./templates/locale", ]
31.599327
90
0.716356
0
0
0
0
0
0
0
0
4,871
0.51902
1bfd7e8367e5e96a626394bb27f0b9266054e693
1,184
py
Python
test/tc/tet_tc_base_predict_multiclass.py
dumpmemory/Pytorch-NLU
864fb9acc7751fc51abd3d05d24b5a9a7eab7110
[ "Apache-2.0" ]
115
2021-08-29T04:28:40.000Z
2022-03-29T22:57:48.000Z
test/tc/tet_tc_base_predict_multiclass.py
dumpmemory/Pytorch-NLU
864fb9acc7751fc51abd3d05d24b5a9a7eab7110
[ "Apache-2.0" ]
2
2022-01-14T01:52:07.000Z
2022-03-04T11:40:10.000Z
test/tc/tet_tc_base_predict_multiclass.py
dumpmemory/Pytorch-NLU
864fb9acc7751fc51abd3d05d24b5a9a7eab7110
[ "Apache-2.0" ]
18
2021-09-23T06:41:10.000Z
2022-03-22T04:37:05.000Z
# !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2021/7/25 19:30 # @author : Mo # @function: predict model, 预测模块-多类分类 # 适配linux import platform import json import sys import os path_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")) path_sys = os.path.join(path_root, "pytorch_nlu", "pytorch_textclassification") print(path_root) # os.environ["CUDA_VISIBLE_DEVICES"] = "-1" from tcPredict import TextClassificationPredict if __name__ == "__main__": path_config = "../output/text_classification/model_ERNIE/tc.config" tcp = TextClassificationPredict(path_config) texts = [{"text": "平乐县,古称昭州,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔,北连恭城,总面积1919.34平方公里。"}, {"text": "平乐县主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点,平乐以北称漓江,以南称桂江,是著名的大桂林旅游区之一。"}, {"text": "印岭玲珑,昭水晶莹,环绕我平中。青年的乐园,多士受陶熔。生活自觉自治,学习自发自动。五育并重,手脑并用。迎接新潮流,建设新平中"}, {"text": "桂林山水甲天下, 阳朔山水甲桂林"}, ] res = tcp.predict(texts, logits_type="sigmoid") print(res) while True: print("请输入:") question = input() res = tcp.predict([{"text": question}], logits_type="sigmoid") print(res)
32
104
0.663007
0
0
0
0
0
0
0
0
1,053
0.635103
1bfe4bc4102702ea9b7f00d3aaa75d9c6a870a4d
5,645
py
Python
tests/test_create_spreadsheet_values.py
Tunous/StringSheet
3b0bd00db6ae780c523524b71774f6d3da44435f
[ "MIT" ]
14
2017-09-17T12:41:39.000Z
2020-12-15T07:42:55.000Z
tests/test_create_spreadsheet_values.py
Tunous/StringSheet
3b0bd00db6ae780c523524b71774f6d3da44435f
[ "MIT" ]
10
2017-09-12T20:06:47.000Z
2021-03-22T17:16:10.000Z
tests/test_create_spreadsheet_values.py
Tunous/StringSheet
3b0bd00db6ae780c523524b71774f6d3da44435f
[ "MIT" ]
1
2017-09-18T04:55:34.000Z
2017-09-18T04:55:34.000Z
import unittest from stringsheet.parser import create_spreadsheet_values from stringsheet.parser import create_language_sheet_values from stringsheet.parser import parse_resources class BaseTestCase(unittest.TestCase): def setUp(self): self.resources = parse_resources('test-resources/res') class CreateSpreadsheetValuesTestCase(BaseTestCase): def setUp(self): super(CreateSpreadsheetValuesTestCase, self).setUp() self.values = create_spreadsheet_values(self.resources) def test_rows_are_valid(self): rows = [ ['id', 'comment', 'default', 'de', 'pl', 'zh-rCN', 'zh-rTW'], ['a_string', '', 'A string', '', '', '', ''], ['partly_added', '', 'Partly added', 'Partly added (de)', '', '', ''], ['string', 'String with comment', 'String', 'String (de)', 'String (pl)', 'String (zh-rCN)', 'String (zh-rTW)'], ['string_2', '', 'String 2', '', '', '', ''], ['array[0]', 'Item comment', 'First', '', '', '', ''], ['array[1]', '', 'Second', '', '', '', ''], ['array_comment[0]', 'Array comment', 'Some item', '', '', '', ''], ['array_comment[1]', 'Array comment', 'More items', '', '', '', ''], ['array_comment[2]', 'Comment', 'More', '', '', '', ''], ['plural{zero}', 'Parent comment', 'Other', '', '', '', ''], ['plural{one}', 'Parent comment', 'One', '', '', '', ''], ['plural{two}', 'Parent comment', 'Other', '', '', '', ''], ['plural{few}', 'Parent comment', 'Other', '', '', '', ''], ['plural{many}', 'Parent comment', 'Other', '', '', '', ''], ['plural{other}', 'Comment', 'Other', '', '', '', ''], ['plurals{zero}', 'Item comment', 'Zero', '', '', '', ''], ['plurals{one}', '', 'One', '', '', '', ''], ['plurals{two}', '', 'Two', '', '', '', ''], ['plurals{few}', '', 'Few', '', '', '', ''], ['plurals{many}', '', 'Many', '', '', '', ''], ['plurals{other}', '', 'Other', '', '', '', ''], ] self.assertEqual(len(rows), len(self.values)) for index, row in enumerate(rows): self.assertEqual(row, self.values[index]) class CreateLanguageSpreadsheetValuesTestCase(BaseTestCase): def setUp(self): super(CreateLanguageSpreadsheetValuesTestCase, self).setUp() self.values = create_language_sheet_values(self.resources, 'de') def test_rows_are_valid(self): rows = [ ['id', 'comment', 'default', 'de'], ['a_string', '', 'A string', ''], ['partly_added', '', 'Partly added', 'Partly added (de)'], ['string', 'String with comment', 'String', 'String (de)'], ['string_2', '', 'String 2', ''], ['array[0]', 'Item comment', 'First', ''], ['array[1]', '', 'Second', ''], ['array_comment[0]', 'Array comment', 'Some item', ''], ['array_comment[1]', 'Array comment', 'More items', ''], ['array_comment[2]', 'Comment', 'More', ''], ['plural{zero}', 'Parent comment', 'Other', ''], ['plural{one}', 'Parent comment', 'One', ''], ['plural{two}', 'Parent comment', 'Other', ''], ['plural{few}', 'Parent comment', 'Other', ''], ['plural{many}', 'Parent comment', 'Other', ''], ['plural{other}', 'Comment', 'Other', ''], ['plurals{zero}', 'Item comment', 'Zero', ''], ['plurals{one}', '', 'One', ''], ['plurals{two}', '', 'Two', ''], ['plurals{few}', '', 'Few', ''], ['plurals{many}', '', 'Many', ''], ['plurals{other}', '', 'Other', ''], ] self.assertEqual(len(rows), len(self.values)) for index, row in enumerate(rows): self.assertEqual(row, self.values[index]) class CreateTemplateSpreadsheetValuesTestCase(BaseTestCase): def setUp(self): super(CreateTemplateSpreadsheetValuesTestCase, self).setUp() self.values = create_language_sheet_values(self.resources, 'Template') def test_rows_are_valid(self): rows = [ ['id', 'comment', 'default', 'language-id'], ['a_string', '', 'A string', ''], ['partly_added', '', 'Partly added', ''], ['string', 'String with comment', 'String', ''], ['string_2', '', 'String 2', ''], ['array[0]', 'Item comment', 'First', ''], ['array[1]', '', 'Second', ''], ['array_comment[0]', 'Array comment', 'Some item', ''], ['array_comment[1]', 'Array comment', 'More items', ''], ['array_comment[2]', 'Comment', 'More', ''], ['plural{zero}', 'Parent comment', 'Other', ''], ['plural{one}', 'Parent comment', 'One', ''], ['plural{two}', 'Parent comment', 'Other', ''], ['plural{few}', 'Parent comment', 'Other', ''], ['plural{many}', 'Parent comment', 'Other', ''], ['plural{other}', 'Comment', 'Other', ''], ['plurals{zero}', 'Item comment', 'Zero', ''], ['plurals{one}', '', 'One', ''], ['plurals{two}', '', 'Two', ''], ['plurals{few}', '', 'Few', ''], ['plurals{many}', '', 'Many', ''], ['plurals{other}', '', 'Other', ''], ] self.assertEqual(len(rows), len(self.values)) for index, row in enumerate(rows): self.assertEqual(row, self.values[index]) if __name__ == '__main__': unittest.main()
46.270492
80
0.478654
5,403
0.95713
0
0
0
0
0
0
2,423
0.429229
1bff3ce09a664d524ed5b17fd85a06acad12da24
195
py
Python
libs/imgutils.py
EpicKiwi/projet-datascience
90b59fc674fc2146634d1c1681f9b65083a7aa91
[ "MIT" ]
null
null
null
libs/imgutils.py
EpicKiwi/projet-datascience
90b59fc674fc2146634d1c1681f9b65083a7aa91
[ "MIT" ]
null
null
null
libs/imgutils.py
EpicKiwi/projet-datascience
90b59fc674fc2146634d1c1681f9b65083a7aa91
[ "MIT" ]
2
2020-01-14T07:53:50.000Z
2020-01-14T12:24:35.000Z
import cv2 def img_path2array(path): return cv2.cvtColor(cv2.imread(path, 10), cv2.COLOR_BGR2RGB) def img_array2file(path, array): cv2.imwrite(path, cv2.cvtColor(array, cv2.COLOR_RGB2BGR))
27.857143
64
0.769231
0
0
0
0
0
0
0
0
0
0
1bff51099f471eb1158044ba33a024f093e0aed7
3,079
py
Python
bin/nsa_fail/nsa_fail.py
changhoonhahn/SEDflow
4561ecfe3a38cc4c25df263d971a87e8a83f88ce
[ "MIT" ]
18
2022-03-16T03:11:04.000Z
2022-03-30T16:01:42.000Z
bin/nsa_fail/nsa_fail.py
changhoonhahn/SEDflow
4561ecfe3a38cc4c25df263d971a87e8a83f88ce
[ "MIT" ]
null
null
null
bin/nsa_fail/nsa_fail.py
changhoonhahn/SEDflow
4561ecfe3a38cc4c25df263d971a87e8a83f88ce
[ "MIT" ]
null
null
null
import os, sys import numpy as np from sedflow import obs as Obs from sedflow import train as Train from provabgs import infer as Infer from provabgs import models as Models #################################################### # input #################################################### sample = sys.argv[1] itrain = int(sys.argv[2]) nhidden = int(sys.argv[3]) nblocks = int(sys.argv[4]) niter = int(sys.argv[5]) i0 = int(sys.argv[6]) i1 = int(sys.argv[7]) #################################################### # compile NSA failures #################################################### # u, g, r, i, z, sigma_u, sigma_g, sigma_r, sigma_i, sigma_z, redshift y_nsa = Obs.load_nsa_data(test_set=False) igals = np.load('/scratch/network/chhahn/sedflow/nsa_fail/fail.igals.npy') # convert to flux y_flux = Train.mag2flux(y_nsa[:,:5]) y_ivar = Train.sigma_mag2flux(y_nsa[:,5:10], y_nsa[:,:5])**-2 y_zred = y_nsa[:,-1] #################################################### # setup inference #################################################### # SPS parameter priors prior_sps = Infer.load_priors([ Infer.UniformPrior(7., 12.5, label='sed'), Infer.FlatDirichletPrior(4, label='sed'), # flat dirichilet priors Infer.UniformPrior(0., 1., label='sed'), # burst fraction Infer.UniformPrior(1e-2, 13.27, label='sed'), # tburst Infer.LogUniformPrior(4.5e-5, 1.5e-2, label='sed'), # log uniform priors on ZH coeff Infer.LogUniformPrior(4.5e-5, 1.5e-2, label='sed'), # log uniform priors on ZH coeff Infer.UniformPrior(0., 3., label='sed'), # uniform priors on dust1 Infer.UniformPrior(0., 3., label='sed'), # uniform priors on dust2 Infer.UniformPrior(-2., 1., label='sed') # uniform priors on dust_index ]) # SPS model m_sps = Models.NMF(burst=True, emulator=True) def run_mcmc(i_obs): # desi MCMC object nsa_mcmc = Infer.nsaMCMC(model=m_sps, prior=prior_sps) fmcmc = os.path.join('/scratch/network/chhahn/sedflow/nsa_fail', 'mcmc.nsa.%i.hdf5' % i_obs) if not os.path.isfile(fmcmc): print('%s running' % os.path.basename(fmcmc)) if not np.all(np.isfinite(y_flux[i_obs])): print('NaN photometry', y_flux[i_obs]) return None if not np.all(np.isfinite(y_ivar[i_obs])): print('NaN ivar', y_ivar[i_obs]) return None # run MCMC zeus_chain = nsa_mcmc.run( bands='sdss', # u, g, r, i, z photo_obs=y_flux[i_obs], photo_ivar_obs=y_ivar[i_obs], zred=y_zred[i_obs], vdisp=0., sampler='zeus', nwalkers=30, burnin=0, opt_maxiter=2000, niter=niter, progress=True, writeout=fmcmc) else: print('%s already exists' % os.path.basename(fmcmc)) return None for i in range(i0, i1+1): run_mcmc(igals[i])
33.107527
92
0.528743
0
0
0
0
0
0
0
0
950
0.308542
400075fe46c49c54066ef8f12574919b2debe75a
2,709
py
Python
studio/gs_provider.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
studio/gs_provider.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
studio/gs_provider.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
import json import time import re from .keyvalue_provider import KeyValueProvider from .gcloud_artifact_store import GCloudArtifactStore from .util import timeit class GSProvider(KeyValueProvider): def __init__(self, config, blocking_auth=True, verbose=10, store=None): self.config = config self.bucket = config.get('bucket', 'studioml-meta') self.meta_store = GCloudArtifactStore(config, verbose) super(GSProvider, self).__init__( config, blocking_auth, verbose, store) @timeit def _get(self, key, shallow=False): bucket = self.meta_store._get_bucket_obj() retval = {} if shallow: blob_iterator = bucket.list_blobs( prefix=key, delimiter='/') bloblist = list(blob_iterator) blobnames = {b.name for b in bloblist} prefixes = blob_iterator.prefixes suffixes = [re.sub('^' + key, '', p) for p in prefixes | blobnames] retval = set({}) for s in suffixes: if s.endswith('/'): retval.add(s[:-1]) else: retval.add(s) return retval else: blob_iterator = bucket.list_blobs(prefix=key) for blob in blob_iterator: suffix = re.sub('^' + key, '', blob.name) if suffix == '': return json.loads(blob.download_as_string()) path = suffix.split('/') path = [p for p in path if p != ''] current_dict = retval for subdir in path[:-1]: if subdir != '': if subdir not in current_dict.keys(): current_dict[subdir] = {} current_dict = current_dict[subdir] try: current_dict[path[-1]] = json.loads( blob.download_as_string()) except BaseException: pass if not any(retval): return None else: return retval def _delete(self, key): self.meta_store._delete_file(key) def _set(self, key, value): no_retries = 10 sleep_time = 1 for i in range(no_retries): try: self.meta_store._get_bucket_obj().blob(key) \ .upload_from_string(json.dumps(value)) break except BaseException as e: self.logger.error('uploading data raised an exception:') self.logger.exception(e) time.sleep(sleep_time)
31.137931
79
0.51495
2,544
0.939092
0
0
1,608
0.593577
0
0
85
0.031377
40007ef606785b22cbc7c72b9274d6584b3f3fb5
46,830
py
Python
gslib/tests/test_ls.py
MikeJeffrey/gsutil
12f4258540ee83aee255ec1baf50e7e6faee10e2
[ "Apache-2.0" ]
null
null
null
gslib/tests/test_ls.py
MikeJeffrey/gsutil
12f4258540ee83aee255ec1baf50e7e6faee10e2
[ "Apache-2.0" ]
null
null
null
gslib/tests/test_ls.py
MikeJeffrey/gsutil
12f4258540ee83aee255ec1baf50e7e6faee10e2
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ls command.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals from datetime import datetime import os import posixpath import re import stat import subprocess import sys import time import gslib from gslib.commands import ls from gslib.cs_api_map import ApiSelector from gslib.project_id import PopulateProjectId import gslib.tests.testcase as testcase from gslib.tests.testcase.integration_testcase import SkipForGS from gslib.tests.testcase.integration_testcase import SkipForS3 from gslib.tests.testcase.integration_testcase import SkipForXML from gslib.tests.util import CaptureStdout from gslib.tests.util import ObjectToURI as suri from gslib.tests.util import RUN_S3_TESTS from gslib.tests.util import SetBotoConfigForTest from gslib.tests.util import TEST_ENCRYPTION_CONTENT1 from gslib.tests.util import TEST_ENCRYPTION_CONTENT1_CRC32C from gslib.tests.util import TEST_ENCRYPTION_CONTENT1_MD5 from gslib.tests.util import TEST_ENCRYPTION_CONTENT2 from gslib.tests.util import TEST_ENCRYPTION_CONTENT2_CRC32C from gslib.tests.util import TEST_ENCRYPTION_CONTENT2_MD5 from gslib.tests.util import TEST_ENCRYPTION_CONTENT3 from gslib.tests.util import TEST_ENCRYPTION_CONTENT3_CRC32C from gslib.tests.util import TEST_ENCRYPTION_CONTENT3_MD5 from gslib.tests.util import TEST_ENCRYPTION_CONTENT4 from gslib.tests.util import TEST_ENCRYPTION_CONTENT4_CRC32C from gslib.tests.util import TEST_ENCRYPTION_CONTENT4_MD5 from gslib.tests.util import TEST_ENCRYPTION_CONTENT5 from gslib.tests.util import TEST_ENCRYPTION_CONTENT5_CRC32C from gslib.tests.util import TEST_ENCRYPTION_CONTENT5_MD5 from gslib.tests.util import TEST_ENCRYPTION_KEY1 from gslib.tests.util import TEST_ENCRYPTION_KEY1_SHA256_B64 from gslib.tests.util import TEST_ENCRYPTION_KEY2 from gslib.tests.util import TEST_ENCRYPTION_KEY2_SHA256_B64 from gslib.tests.util import TEST_ENCRYPTION_KEY3 from gslib.tests.util import TEST_ENCRYPTION_KEY3_SHA256_B64 from gslib.tests.util import TEST_ENCRYPTION_KEY4 from gslib.tests.util import TEST_ENCRYPTION_KEY4_SHA256_B64 from gslib.tests.util import unittest from gslib.third_party.storage_apitools import storage_v1_messages as apitools_messages from gslib.utils.constants import UTF8 from gslib.utils.ls_helper import PrintFullInfoAboutObject from gslib.utils.retry_util import Retry from gslib.utils.system_util import IS_WINDOWS from six import add_move, MovedModule add_move(MovedModule('mock', 'mock', 'unittest.mock')) from six.moves import mock KMS_XML_SKIP_MSG = ('gsutil does not support KMS operations for S3 buckets, ' 'or listing KMS keys with the XML API.') BUCKET_LOCK_SKIP_MSG = ('gsutil does not support bucket lock operations for ' 'S3 buckets or listing retention policy with XML API.') class TestLsUnit(testcase.GsUtilUnitTestCase): """Unit tests for ls command.""" def test_one_object_with_L_storage_class_update(self): """Tests the JSON storage class update time field.""" if self.test_api == ApiSelector.XML: return unittest.skip( 'XML API has no concept of storage class update time') # Case 1: Create an object message where Storage class update time is the # same as Creation time. current_time = datetime(2017, 1, 2, 3, 4, 5, 6, tzinfo=None) obj_metadata = apitools_messages.Object( name='foo', bucket='bar', timeCreated=current_time, updated=current_time, timeStorageClassUpdated=current_time, etag='12345') # Create mock object to point to obj_metadata. obj_ref = mock.Mock() obj_ref.root_object = obj_metadata obj_ref.url_string = 'foo' # Print out attributes of object message. with CaptureStdout() as output: PrintFullInfoAboutObject(obj_ref) output = '\n'.join(output) # Verify that no Storage class update time field displays since it's the # same as Creation time. find_stor_update_re = re.compile( r'^\s*Storage class update time:+(?P<stor_update_time_val>.+)$', re.MULTILINE) stor_update_time_match = re.search(find_stor_update_re, output) self.assertIsNone(stor_update_time_match) # Case 2: Create an object message where Storage class update time differs # from Creation time. new_update_time = datetime(2017, 2, 3, 4, 5, 6, 7, tzinfo=None) obj_metadata2 = apitools_messages.Object( name='foo2', bucket='bar2', timeCreated=current_time, updated=current_time, timeStorageClassUpdated=new_update_time, etag='12345') # Create mock object to point to obj_metadata2. obj_ref2 = mock.Mock() obj_ref2.root_object = obj_metadata2 obj_ref2.url_string = 'foo2' # Print out attributes of object message. with CaptureStdout() as output2: PrintFullInfoAboutObject(obj_ref2) output2 = '\n'.join(output2) # Verify that Creation time and Storage class update time fields display and # are the same as the times set in the object message. find_time_created_re = re.compile( r'^\s*Creation time:\s+(?P<time_created_val>.+)$', re.MULTILINE) time_created_match = re.search(find_time_created_re, output2) self.assertIsNotNone(time_created_match) time_created = time_created_match.group('time_created_val') self.assertEqual( time_created, datetime.strftime(current_time, '%a, %d %b %Y %H:%M:%S GMT')) find_stor_update_re_2 = re.compile( r'^\s*Storage class update time:+(?P<stor_update_time_val_2>.+)$', re.MULTILINE) stor_update_time_match_2 = re.search(find_stor_update_re_2, output2) self.assertIsNotNone(stor_update_time_match_2) stor_update_time = stor_update_time_match_2.group('stor_update_time_val_2') self.assertEqual( stor_update_time, datetime.strftime(new_update_time, '%a, %d %b %Y %H:%M:%S GMT')) @mock.patch.object(ls.LsCommand, 'WildcardIterator') def test_satisfies_pzs_is_displayed_if_present(self, mock_wildcard): bucket_uri = self.CreateBucket(bucket_name='foo') bucket_metadata = apitools_messages.Bucket(name='foo', satisfiesPZS=True) bucket_uri.root_object = bucket_metadata bucket_uri.url_string = 'foo' bucket_uri.storage_url = mock.Mock() mock_wildcard.return_value.IterBuckets.return_value = [bucket_uri] # MockKey doesn't support hash_algs, so the MD5 will not match. with SetBotoConfigForTest([('GSUtil', 'check_hashes', 'never')]): stdout = self.RunCommand('ls', ['-Lb', suri(bucket_uri)], return_stdout=True) self.assertRegex(stdout, 'Satisfies PZS:\t\t\tTrue') class TestLs(testcase.GsUtilIntegrationTestCase): """Integration tests for ls command.""" def test_blank_ls(self): if not RUN_S3_TESTS: # Blank `ls` command lists GS buckets. self.RunGsUtil(['ls']) def test_empty_bucket(self): bucket_uri = self.CreateBucket() self.AssertNObjectsInBucket(bucket_uri, 0) def test_empty_bucket_with_b(self): bucket_uri = self.CreateBucket() # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '-b', suri(bucket_uri)], return_stdout=True) self.assertEqual('%s/\n' % suri(bucket_uri), stdout) _Check1() def test_bucket_with_Lb(self): """Tests ls -Lb.""" bucket_uri = self.CreateBucket() stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) # Check that the bucket URI is displayed. self.assertIn(suri(bucket_uri), stdout) # Check that we don't see output corresponding to listing objects rather # than buckets. self.assertNotIn('TOTAL:', stdout) # Toggle versioning on the bucket so that the modification time will be # greater than the creation time. self.RunGsUtil(['versioning', 'set', 'on', suri(bucket_uri)]) self.RunGsUtil(['versioning', 'set', 'off', suri(bucket_uri)]) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) find_metageneration_re = re.compile( r'^\s*Metageneration:\s+(?P<metageneration_val>.+)$', re.MULTILINE) find_time_created_re = re.compile( r'^\s*Time created:\s+(?P<time_created_val>.+)$', re.MULTILINE) find_time_updated_re = re.compile( r'^\s*Time updated:\s+(?P<time_updated_val>.+)$', re.MULTILINE) metageneration_match = re.search(find_metageneration_re, stdout) time_created_match = re.search(find_time_created_re, stdout) time_updated_match = re.search(find_time_updated_re, stdout) if self.test_api == ApiSelector.XML: # Check that lines for JSON-specific fields are not displayed. self.assertIsNone(metageneration_match) self.assertIsNone(time_created_match) self.assertIsNone(time_updated_match) elif self.test_api == ApiSelector.JSON: # Check that time created/updated lines are displayed. self.assertIsNotNone(metageneration_match) self.assertIsNotNone(time_created_match) self.assertIsNotNone(time_updated_match) # Check that updated time > created time. time_created = time_created_match.group('time_created_val') time_created = time.strptime(time_created, '%a, %d %b %Y %H:%M:%S %Z') time_updated = time_updated_match.group('time_updated_val') time_updated = time.strptime(time_updated, '%a, %d %b %Y %H:%M:%S %Z') self.assertGreater(time_updated, time_created) # Check that for bucket policy only fields. self._AssertBucketPolicyOnly(False, stdout) def test_bucket_with_Lb_bucket_policy_only(self): if self.test_api == ApiSelector.JSON: bucket_uri = self.CreateBucket(bucket_policy_only=True, prefer_json_api=True) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self._AssertBucketPolicyOnly(True, stdout) def _AssertBucketPolicyOnly(self, value, stdout): bucket_policy_only_re = re.compile( r'^\s*Bucket Policy Only enabled:\s+(?P<bpo_val>.+)$', re.MULTILINE) bucket_policy_only_match = re.search(bucket_policy_only_re, stdout) bucket_policy_only_val = bucket_policy_only_match.group('bpo_val') self.assertEqual(str(value), bucket_policy_only_val) def test_bucket_with_lb(self): """Tests ls -lb.""" bucket_uri = self.CreateBucket() # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '-lb', suri(bucket_uri)], return_stdout=True) self.assertIn(suri(bucket_uri), stdout) self.assertNotIn('TOTAL:', stdout) _Check1() def test_bucket_list_wildcard(self): """Tests listing multiple buckets with a wildcard.""" random_prefix = self.MakeRandomTestString() bucket1_name = self.MakeTempName('bucket', prefix=random_prefix) bucket2_name = self.MakeTempName('bucket', prefix=random_prefix) bucket1_uri = self.CreateBucket(bucket_name=bucket1_name) bucket2_uri = self.CreateBucket(bucket_name=bucket2_name) # This just double checks that the common prefix of the two buckets is what # we think it should be (based on implementation detail of CreateBucket). # We want to be careful when setting a wildcard on buckets to make sure we # don't step outside the test buckets to affect other buckets. common_prefix = posixpath.commonprefix( [suri(bucket1_uri), suri(bucket2_uri)]) self.assertTrue( common_prefix.startswith( '%s://%sgsutil-test-test-bucket-list-wildcard' % (self.default_provider, random_prefix))) wildcard = '%s*' % common_prefix # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '-b', wildcard], return_stdout=True) expected = set([suri(bucket1_uri) + '/', suri(bucket2_uri) + '/']) actual = set(stdout.split()) self.assertEqual(expected, actual) _Check1() def test_nonexistent_bucket_with_ls(self): """Tests a bucket that is known not to exist.""" stderr = self.RunGsUtil( ['ls', '-lb', 'gs://%s' % self.nonexistent_bucket_name], return_stderr=True, expected_status=1) self.assertIn('404', stderr) stderr = self.RunGsUtil( ['ls', '-Lb', 'gs://%s' % self.nonexistent_bucket_name], return_stderr=True, expected_status=1) self.assertIn('404', stderr) stderr = self.RunGsUtil( ['ls', '-b', 'gs://%s' % self.nonexistent_bucket_name], return_stderr=True, expected_status=1) self.assertIn('404', stderr) def test_list_missing_object(self): """Tests listing a non-existent object.""" bucket_uri = self.CreateBucket() stderr = self.RunGsUtil(['ls', suri(bucket_uri, 'missing')], return_stderr=True, expected_status=1) self.assertIn('matched no objects', stderr) def test_with_one_object(self): bucket_uri = self.CreateBucket() obj_uri = self.CreateObject(bucket_uri=bucket_uri, contents=b'foo') # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', suri(bucket_uri)], return_stdout=True) self.assertEqual('%s\n' % obj_uri, stdout) _Check1() def location_redirect_test_helper(self, bucket_region, client_region): bucket_host = 's3.%s.amazonaws.com' % bucket_region client_host = 's3.%s.amazonaws.com' % client_region with SetBotoConfigForTest([('s3', 'host', bucket_host)]): bucket_uri = self.CreateBucket(location=bucket_region) obj_uri = self.CreateObject(bucket_uri=bucket_uri, contents=b'foo') @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(uri): stdout = self.RunGsUtil(['ls', uri], return_stdout=True) self.assertEqual('%s\n' % obj_uri, stdout) with SetBotoConfigForTest([('s3', 'host', client_host)]): # sends a GET request _Check1(suri(bucket_uri)) # sends a HEAD request, meaning error body is not included. _Check1(suri(obj_uri)) @SkipForGS('Only s3 V4 signatures error on location mismatches.') def test_400_location_redirect(self): # ap-east-1 used here since regions launched before March 20, 2019 do # some temporary redirecting for new buckets which suppresses 400 errors. self.location_redirect_test_helper('ap-east-1', 'us-east-2') @SkipForGS('Only s3 V4 signatures error on location mismatches.') def test_301_location_redirect(self): self.location_redirect_test_helper('eu-west-1', 'us-east-2') @SkipForXML('Credstore file gets created only for json API') def test_credfile_lock_permissions(self): tmpdir = self.CreateTempDir() filepath = os.path.join(tmpdir, 'credstore2') option = 'GSUtil:state_dir={}'.format(tmpdir) bucket_uri = self.CreateBucket() obj_uri = self.CreateObject(bucket_uri=bucket_uri, contents=b'foo') # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil( ['-o', option, 'ls', suri(bucket_uri)], return_stdout=True) self.assertEqual('%s\n' % obj_uri, stdout) if os.name == 'posix': self.assertTrue(os.path.exists(filepath)) mode = oct(stat.S_IMODE(os.stat(filepath).st_mode)) # Assert that only user has read/write permission self.assertEqual(oct(0o600), mode) _Check1() def test_one_object_with_l(self): """Tests listing one object with -l.""" obj_uri = self.CreateObject(contents=b'foo') stdout = self.RunGsUtil(['ls', '-l', suri(obj_uri)], return_stdout=True) output_items = stdout.split() self.assertTrue(output_items[0].isdigit()) # Throws exception if time string is not formatted correctly. time.strptime(stdout.split()[1], '%Y-%m-%dT%H:%M:%SZ') self.assertEqual(output_items[2], suri(obj_uri)) def test_one_object_with_L(self): """Tests listing one object with -L.""" obj_uri = self.CreateObject(contents=b'foo') # Ensure that creation and update don't take place in the same second. time.sleep(2) # Check that the creation time, rather than the updated time, is displayed. self.RunGsUtil(['setmeta', '-h', 'x-goog-meta-foo:bar', suri(obj_uri)]) find_time_created_re = re.compile( r'^\s*Creation time:\s+(?P<time_created_val>.+)$', re.MULTILINE) find_time_updated_re = re.compile( r'^\s*Update time:\s+(?P<time_updated_val>.+)$', re.MULTILINE) stdout = self.RunGsUtil(['ls', '-L', suri(obj_uri)], return_stdout=True) time_created_match = re.search(find_time_created_re, stdout) time_updated_match = re.search(find_time_updated_re, stdout) time_created = time_created_match.group('time_created_val') self.assertIsNotNone(time_created) time_created = time.strptime(time_created, '%a, %d %b %Y %H:%M:%S %Z') if self.test_api == ApiSelector.XML: # XML API has no concept of updated time. self.assertIsNone(time_updated_match) elif self.test_api == ApiSelector.JSON: time_updated = time_updated_match.group('time_updated_val') self.assertIsNotNone(time_updated) time_updated = time.strptime(time_updated, '%a, %d %b %Y %H:%M:%S %Z') self.assertGreater(time_updated, time_created) def test_subdir(self): """Tests listing a bucket subdirectory.""" bucket_uri = self.CreateBucket(test_objects=1) k1_uri = bucket_uri.clone_replace_name('foo') k1_uri.set_contents_from_string('baz') k2_uri = bucket_uri.clone_replace_name('dir/foo') k2_uri.set_contents_from_string('bar') # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '%s/dir' % suri(bucket_uri)], return_stdout=True) self.assertEqual('%s\n' % suri(k2_uri), stdout) stdout = self.RunGsUtil(['ls', suri(k1_uri)], return_stdout=True) self.assertEqual('%s\n' % suri(k1_uri), stdout) _Check1() def test_subdir_nocontents(self): """Tests listing a bucket subdirectory using -d. Result will display subdirectory names instead of contents. Uses a wildcard to show multiple matching subdirectories. """ bucket_uri = self.CreateBucket(test_objects=1) k1_uri = bucket_uri.clone_replace_name('foo') k1_uri.set_contents_from_string('baz') k2_uri = bucket_uri.clone_replace_name('dir/foo') k2_uri.set_contents_from_string('bar') k3_uri = bucket_uri.clone_replace_name('dir/foo2') k3_uri.set_contents_from_string('foo') k4_uri = bucket_uri.clone_replace_name('dir2/foo3') k4_uri.set_contents_from_string('foo2') # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil( ['ls', '-d', '%s/dir*' % suri(bucket_uri)], return_stdout=True) self.assertEqual( '%s/dir/\n%s/dir2/\n' % (suri(bucket_uri), suri(bucket_uri)), stdout) stdout = self.RunGsUtil(['ls', suri(k1_uri)], return_stdout=True) self.assertEqual('%s\n' % suri(k1_uri), stdout) _Check1() def test_versioning(self): """Tests listing a versioned bucket.""" bucket1_uri = self.CreateBucket(test_objects=1) bucket2_uri = self.CreateVersionedBucket(test_objects=1) self.AssertNObjectsInBucket(bucket1_uri, 1, versioned=True) bucket_list = list(bucket1_uri.list_bucket()) objuri = [ bucket1_uri.clone_replace_key(key).versionless_uri for key in bucket_list ][0] self.RunGsUtil(['cp', objuri, suri(bucket2_uri)]) self.RunGsUtil(['cp', objuri, suri(bucket2_uri)]) # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check2(): stdout = self.RunGsUtil(['ls', '-a', suri(bucket2_uri)], return_stdout=True) self.assertNumLines(stdout, 3) stdout = self.RunGsUtil(['ls', '-la', suri(bucket2_uri)], return_stdout=True) self.assertIn('%s#' % bucket2_uri.clone_replace_name(bucket_list[0].name), stdout) self.assertIn('metageneration=', stdout) _Check2() def test_etag(self): """Tests that listing an object with an etag.""" bucket_uri = self.CreateBucket() obj_uri = self.CreateObject(bucket_uri=bucket_uri, contents=b'foo') # TODO: When testcase setup can use JSON, match against the exact JSON # etag. etag = obj_uri.get_key().etag.strip('"\'') # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '-l', suri(bucket_uri)], return_stdout=True) if self.test_api == ApiSelector.XML: self.assertNotIn(etag, stdout) else: self.assertNotIn('etag=', stdout) _Check1() def _Check2(): stdout = self.RunGsUtil(['ls', '-le', suri(bucket_uri)], return_stdout=True) if self.test_api == ApiSelector.XML: self.assertIn(etag, stdout) else: self.assertIn('etag=', stdout) _Check2() def _Check3(): stdout = self.RunGsUtil(['ls', '-ale', suri(bucket_uri)], return_stdout=True) if self.test_api == ApiSelector.XML: self.assertIn(etag, stdout) else: self.assertIn('etag=', stdout) _Check3() def test_labels(self): """Tests listing on a bucket with a label/tagging configuration.""" bucket_uri = self.CreateBucket() bucket_suri = suri(bucket_uri) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) # No labels are present by default. self.assertRegex(stdout, r'Labels:\s+None') # Add a label and check that it shows up. self.RunGsUtil(['label', 'ch', '-l', 'labelkey:labelvalue', bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) label_regex = re.compile(r'Labels:\s+\{\s+"labelkey":\s+"labelvalue"\s+\}', re.MULTILINE) self.assertRegex(stdout, label_regex) @SkipForS3('S3 bucket configuration values are not supported via ls.') def test_location_constraint(self): """Tests listing a bucket with location constraint.""" bucket_uri = self.CreateBucket() bucket_suri = suri(bucket_uri) # No location constraint should be shown for `-lb` stdout = self.RunGsUtil(['ls', '-lb', bucket_suri], return_stdout=True) self.assertNotIn('Location constraint:', stdout) # Default location constraint is US stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) # Default location may vary between test environments; test that some # non-whitespace character is present after the whitespace: self.assertRegex(stdout, r'Location constraint:\s+\S') # TODO(b/135700569): Stop skipping this once this field is available to all # projects. @unittest.skip('b/135700569') @SkipForXML('Location type not available when using the GCS XML API.') @SkipForS3('Location type not printed for S3 buckets.') def test_location_type(self): """Tests listing a bucket with location constraint.""" bucket_uri = self.CreateBucket() bucket_suri = suri(bucket_uri) # No location type should be shown for `-lb` stdout = self.RunGsUtil(['ls', '-lb', bucket_suri], return_stdout=True) self.assertNotIn('Location type:', stdout) # Default location type may vary between test environments; test that some # non-whitespace character is present after the whitespace: stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertRegex(stdout, r'Location type:\s+\S') @SkipForS3('S3 bucket configuration values are not supported via ls.') def test_logging(self): """Tests listing a bucket with logging config.""" bucket_uri = self.CreateBucket() bucket_suri = suri(bucket_uri) # No logging info stdout = self.RunGsUtil(['ls', '-lb', bucket_suri], return_stdout=True) self.assertNotIn('Logging configuration', stdout) # Logging configuration is absent by default stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Logging configuration:\t\tNone', stdout) # Enable and check self.RunGsUtil(['logging', 'set', 'on', '-b', bucket_suri, bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Logging configuration:\t\tPresent', stdout) # Disable and check self.RunGsUtil(['logging', 'set', 'off', bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Logging configuration:\t\tNone', stdout) @SkipForS3('S3 bucket configuration values are not supported via ls.') def test_web(self): """Tests listing a bucket with website config.""" bucket_uri = self.CreateBucket() bucket_suri = suri(bucket_uri) # No website configuration stdout = self.RunGsUtil(['ls', '-lb', bucket_suri], return_stdout=True) self.assertNotIn('Website configuration', stdout) # Website configuration is absent by default stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Website configuration:\t\tNone', stdout) # Initialize and check self.RunGsUtil(['web', 'set', '-m', 'google.com', bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Website configuration:\t\tPresent', stdout) # Clear and check self.RunGsUtil(['web', 'set', bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Website configuration:\t\tNone', stdout) @SkipForS3('S3 bucket configuration values are not supported via ls.') @SkipForXML('Requester Pays is not supported for the XML API.') def test_requesterpays(self): """Tests listing a bucket with requester pays (billing) config.""" bucket_uri = self.CreateBucket() bucket_suri = suri(bucket_uri) # No requester pays configuration stdout = self.RunGsUtil(['ls', '-lb', bucket_suri], return_stdout=True) self.assertNotIn('Requester Pays enabled', stdout) # Requester Pays configuration is absent by default stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Requester Pays enabled:\t\tNone', stdout) # Initialize and check self.RunGsUtil(['requesterpays', 'set', 'on', bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Requester Pays enabled:\t\tTrue', stdout) # Clear and check self.RunGsUtil(['requesterpays', 'set', 'off', bucket_suri]) stdout = self.RunGsUtil(['ls', '-Lb', bucket_suri], return_stdout=True) self.assertIn('Requester Pays enabled:\t\tFalse', stdout) def test_list_sizes(self): """Tests various size listing options.""" bucket_uri = self.CreateBucket() self.CreateObject(bucket_uri=bucket_uri, contents=b'x' * 2048) # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '-l', suri(bucket_uri)], return_stdout=True) self.assertIn('2048', stdout) _Check1() # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check2(): stdout = self.RunGsUtil(['ls', '-L', suri(bucket_uri)], return_stdout=True) self.assertIn('2048', stdout) _Check2() # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check3(): stdout = self.RunGsUtil(['ls', '-al', suri(bucket_uri)], return_stdout=True) self.assertIn('2048', stdout) _Check3() # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check4(): stdout = self.RunGsUtil(['ls', '-lh', suri(bucket_uri)], return_stdout=True) self.assertIn('2 KiB', stdout) _Check4() # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check5(): stdout = self.RunGsUtil(['ls', '-alh', suri(bucket_uri)], return_stdout=True) self.assertIn('2 KiB', stdout) _Check5() @unittest.skipIf(IS_WINDOWS, 'Unicode handling on Windows requires mods to site-packages') def test_list_unicode_filename(self): """Tests listing an object with a unicode filename.""" # Note: This test fails on Windows (command.exe). I was able to get ls to # output Unicode filenames correctly by hacking the UniStream class code # shown at # http://stackoverflow.com/questions/878972/windows-cmd-encoding-change-causes-python-crash/3259271 # into the start of gslib/commands/ls.py, along with no-op flush and # isastream functions (as an experiment). However, even with that change, # the current test still fails, since it also needs to run that # stdout/stderr-replacement code. That UniStream class replacement really # needs to be added to the site-packages on Windows python. object_name = u'Аудиоархив' bucket_uri = self.CreateVersionedBucket() key_uri = self.CreateObject(bucket_uri=bucket_uri, contents=b'foo', object_name=object_name) self.AssertNObjectsInBucket(bucket_uri, 1, versioned=True) stdout = self.RunGsUtil(['ls', '-ael', suri(key_uri)], return_stdout=True) self.assertIn(object_name, stdout) if self.default_provider == 'gs': self.assertIn(str(key_uri.generation), stdout) self.assertIn('metageneration=%s' % key_uri.get_key().metageneration, stdout) if self.test_api == ApiSelector.XML: self.assertIn(key_uri.get_key().etag.strip('"\''), stdout) else: # TODO: When testcase setup can use JSON, match against the exact JSON # etag. self.assertIn('etag=', stdout) elif self.default_provider == 's3': self.assertIn(key_uri.version_id, stdout) self.assertIn(key_uri.get_key().etag.strip('"\''), stdout) def test_list_acl(self): """Tests that long listing includes an ACL.""" key_uri = self.CreateObject(contents=b'foo') stdout = self.RunGsUtil(['ls', '-L', suri(key_uri)], return_stdout=True) self.assertIn('ACL:', stdout) self.assertNotIn('ACCESS DENIED', stdout) def test_list_gzip_content_length(self): """Tests listing a gzipped object.""" file_size = 10000 file_contents = b'x' * file_size fpath = self.CreateTempFile(contents=file_contents, file_name='foo.txt') key_uri = self.CreateObject() self.RunGsUtil(['cp', '-z', 'txt', suri(fpath), suri(key_uri)]) # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check1(): stdout = self.RunGsUtil(['ls', '-L', suri(key_uri)], return_stdout=True) self.assertRegex(stdout, r'Content-Encoding:\s+gzip') find_content_length_re = r'Content-Length:\s+(?P<num>\d)' self.assertRegex(stdout, find_content_length_re) m = re.search(find_content_length_re, stdout) content_length = int(m.group('num')) self.assertGreater(content_length, 0) self.assertLess(content_length, file_size) _Check1() def test_output_chopped(self): """Tests that gsutil still succeeds with a truncated stdout.""" bucket_uri = self.CreateBucket(test_objects=2) # Run Python with the -u flag so output is not buffered. gsutil_cmd = [ sys.executable, '-u', gslib.GSUTIL_PATH, 'ls', suri(bucket_uri) ] # Set bufsize to 0 to make sure output is not buffered. p = subprocess.Popen(gsutil_cmd, stdout=subprocess.PIPE, bufsize=0) # Immediately close the stdout pipe so that gsutil gets a broken pipe error. p.stdout.close() p.wait() # Make sure it still exited cleanly. self.assertEqual(p.returncode, 0) @SkipForS3('Boto lib required for S3 does not handle paths ' 'starting with slash.') def test_recursive_list_slash_only(self): """Tests listing an object with a trailing slash.""" bucket_uri = self.CreateBucket() self.CreateObject(bucket_uri=bucket_uri, object_name='/', contents=b'foo') self.AssertNObjectsInBucket(bucket_uri, 1) stdout = self.RunGsUtil(['ls', '-R', suri(bucket_uri)], return_stdout=True) # Note: The suri function normalizes the URI, so the double slash gets # removed. self.assertIn(suri(bucket_uri) + '/', stdout) def test_recursive_list_trailing_slash(self): """Tests listing an object with a trailing slash.""" bucket_uri = self.CreateBucket() self.CreateObject(bucket_uri=bucket_uri, object_name='foo/', contents=b'foo') self.AssertNObjectsInBucket(bucket_uri, 1) stdout = self.RunGsUtil(['ls', '-R', suri(bucket_uri)], return_stdout=True) # Note: The suri function normalizes the URI, so the double slash gets # removed. self.assertIn(suri(bucket_uri) + '/foo/', stdout) @SkipForS3('Boto lib required for S3 does not handle paths ' 'starting with slash.') def test_recursive_list_trailing_two_slash(self): """Tests listing an object with two trailing slashes.""" bucket_uri = self.CreateBucket() self.CreateObject(bucket_uri=bucket_uri, object_name='//', contents=b'foo') self.AssertNObjectsInBucket(bucket_uri, 1) stdout = self.RunGsUtil(['ls', '-R', suri(bucket_uri)], return_stdout=True) # Note: The suri function normalizes the URI, so the double slash gets # removed. self.assertIn(suri(bucket_uri) + '//', stdout) def test_wildcard_prefix(self): """Tests that an object name with a wildcard does not infinite loop.""" bucket_uri = self.CreateBucket() wildcard_folder_object = 'wildcard*/' object_matching_folder = 'wildcard10/foo' self.CreateObject(bucket_uri=bucket_uri, object_name=wildcard_folder_object, contents=b'foo') self.CreateObject(bucket_uri=bucket_uri, object_name=object_matching_folder, contents=b'foo') self.AssertNObjectsInBucket(bucket_uri, 2) stderr = self.RunGsUtil(['ls', suri(bucket_uri, 'wildcard*')], return_stderr=True, expected_status=1) self.assertIn( 'Cloud folder %s%s contains a wildcard' % (suri(bucket_uri), '/wildcard*/'), stderr) # Listing with a flat wildcard should still succeed. # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _Check(): stdout = self.RunGsUtil(['ls', '-l', suri(bucket_uri, '**')], return_stdout=True) self.assertNumLines(stdout, 3) # 2 object lines, one summary line. _Check() @SkipForS3('S3 anonymous access is not supported.') def test_get_object_without_list_bucket_permission(self): # Bucket is not publicly readable by default. bucket_uri = self.CreateBucket() object_uri = self.CreateObject(bucket_uri=bucket_uri, object_name='permitted', contents=b'foo') # Set this object to be publicly readable. self.RunGsUtil(['acl', 'set', 'public-read', suri(object_uri)]) # Drop credentials. with self.SetAnonymousBotoCreds(): stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertIn(suri(object_uri), stdout) @SkipForS3('S3 customer-supplied encryption keys are not supported.') def test_list_encrypted_object(self): if self.test_api == ApiSelector.XML: return unittest.skip( 'gsutil does not support encryption with the XML API') object_uri = self.CreateObject(object_name='foo', contents=TEST_ENCRYPTION_CONTENT1, encryption_key=TEST_ENCRYPTION_KEY1) # Listing object with key should return unencrypted hashes. with SetBotoConfigForTest([('GSUtil', 'encryption_key', TEST_ENCRYPTION_KEY1)]): # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _ListExpectDecrypted(): stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertIn(TEST_ENCRYPTION_CONTENT1_MD5, stdout) self.assertIn(TEST_ENCRYPTION_CONTENT1_CRC32C, stdout) self.assertIn(TEST_ENCRYPTION_KEY1_SHA256_B64.decode('ascii'), stdout) _ListExpectDecrypted() # Listing object without a key should return encrypted hashes. # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _ListExpectEncrypted(): stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertNotIn(TEST_ENCRYPTION_CONTENT1_MD5, stdout) self.assertNotIn(TEST_ENCRYPTION_CONTENT1_CRC32C, stdout) self.assertIn('encrypted', stdout) self.assertIn(TEST_ENCRYPTION_KEY1_SHA256_B64.decode('ascii'), stdout) _ListExpectEncrypted() # Listing object with a non-matching key should return encrypted hashes. with SetBotoConfigForTest([('GSUtil', 'encryption_key', TEST_ENCRYPTION_KEY2)]): _ListExpectEncrypted() @SkipForS3('S3 customer-supplied encryption keys are not supported.') def test_list_mixed_encryption(self): """Tests listing objects with various encryption interactions.""" bucket_uri = self.CreateBucket() self.CreateObject(bucket_uri=bucket_uri, object_name='foo', contents=TEST_ENCRYPTION_CONTENT1, encryption_key=TEST_ENCRYPTION_KEY1) self.CreateObject(bucket_uri=bucket_uri, object_name='foo2', contents=TEST_ENCRYPTION_CONTENT2, encryption_key=TEST_ENCRYPTION_KEY2) self.CreateObject(bucket_uri=bucket_uri, object_name='foo3', contents=TEST_ENCRYPTION_CONTENT3, encryption_key=TEST_ENCRYPTION_KEY3) self.CreateObject(bucket_uri=bucket_uri, object_name='foo4', contents=TEST_ENCRYPTION_CONTENT4, encryption_key=TEST_ENCRYPTION_KEY4) self.CreateObject(bucket_uri=bucket_uri, object_name='foo5', contents=TEST_ENCRYPTION_CONTENT5) # List 5 objects, one encrypted with each of four keys, and one # unencrypted. Supplying keys [1,3,4] should result in four unencrypted # listings and one encrypted listing (for key 2). with SetBotoConfigForTest([ ('GSUtil', 'encryption_key', TEST_ENCRYPTION_KEY1), ('GSUtil', 'decryption_key1', TEST_ENCRYPTION_KEY3), ('GSUtil', 'decryption_key2', TEST_ENCRYPTION_KEY4) ]): # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=3, timeout_secs=1) def _ListExpectMixed(): """Validates object listing.""" stdout = self.RunGsUtil(['ls', '-L', suri(bucket_uri)], return_stdout=True) self.assertIn(TEST_ENCRYPTION_CONTENT1_MD5, stdout) self.assertIn(TEST_ENCRYPTION_CONTENT1_CRC32C, stdout) self.assertIn(TEST_ENCRYPTION_KEY1_SHA256_B64.decode('ascii'), stdout) self.assertNotIn(TEST_ENCRYPTION_CONTENT2_MD5, stdout) self.assertNotIn(TEST_ENCRYPTION_CONTENT2_CRC32C, stdout) self.assertIn('encrypted', stdout) self.assertIn(TEST_ENCRYPTION_KEY2_SHA256_B64.decode('ascii'), stdout) self.assertIn(TEST_ENCRYPTION_CONTENT3_MD5, stdout) self.assertIn(TEST_ENCRYPTION_CONTENT3_CRC32C, stdout) self.assertIn(TEST_ENCRYPTION_KEY3_SHA256_B64.decode('ascii'), stdout) self.assertIn(TEST_ENCRYPTION_CONTENT4_MD5, stdout) self.assertIn(TEST_ENCRYPTION_CONTENT4_CRC32C, stdout) self.assertIn(TEST_ENCRYPTION_KEY4_SHA256_B64.decode('ascii'), stdout) self.assertIn(TEST_ENCRYPTION_CONTENT5_MD5, stdout) self.assertIn(TEST_ENCRYPTION_CONTENT5_CRC32C, stdout) _ListExpectMixed() def test_non_ascii_project_fails(self): stderr = self.RunGsUtil(['ls', '-p', 'ã', 'gs://fobarbaz'], expected_status=1, return_stderr=True) self.assertIn('Invalid non-ASCII', stderr) def set_default_kms_key_on_bucket(self, bucket_uri): # Make sure our keyRing and cryptoKey exist. keyring_fqn = self.kms_api.CreateKeyRing( PopulateProjectId(None), testcase.KmsTestingResources.KEYRING_NAME, location=testcase.KmsTestingResources.KEYRING_LOCATION) key_fqn = self.kms_api.CreateCryptoKey( keyring_fqn, testcase.KmsTestingResources.CONSTANT_KEY_NAME) # Make sure that the service account for the desired bucket's parent project # is authorized to encrypt with the key above. self.RunGsUtil(['kms', 'encryption', '-k', key_fqn, suri(bucket_uri)]) return key_fqn @SkipForXML(KMS_XML_SKIP_MSG) @SkipForS3(KMS_XML_SKIP_MSG) def test_default_kms_key_listed_for_bucket(self): bucket_uri = self.CreateBucket() # Default KMS key is not set by default. stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self.assertRegex(stdout, r'Default KMS key:\s+None') # Default KMS key's name should be listed after being set on the bucket. key_fqn = self.set_default_kms_key_on_bucket(bucket_uri) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self.assertRegex(stdout, r'Default KMS key:\s+%s' % key_fqn) @SkipForXML(KMS_XML_SKIP_MSG) @SkipForS3(KMS_XML_SKIP_MSG) def test_kms_key_listed_for_kms_encrypted_object(self): bucket_uri = self.CreateBucket() key_fqn = self.set_default_kms_key_on_bucket(bucket_uri) # Copy an object into our bucket and encrypt using the key from above. obj_uri = self.CreateObject(bucket_uri=bucket_uri, object_name='foo', contents=b'foo', kms_key_name=key_fqn) stdout = self.RunGsUtil(['ls', '-L', suri(obj_uri)], return_stdout=True) self.assertRegex(stdout, r'KMS key:\s+%s' % key_fqn) @SkipForXML(BUCKET_LOCK_SKIP_MSG) @SkipForS3(BUCKET_LOCK_SKIP_MSG) def test_list_retention_policy(self): bucket_uri = self.CreateBucketWithRetentionPolicy( retention_period_in_seconds=1) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self.assertRegex(stdout, r'Retention Policy\:\t*Present') # Clearing Retention Policy on the bucket. self.RunGsUtil(['retention', 'clear', suri(bucket_uri)]) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self.assertNotRegex(stdout, r'Retention Policy:') @SkipForXML(BUCKET_LOCK_SKIP_MSG) @SkipForS3(BUCKET_LOCK_SKIP_MSG) def test_list_default_event_based_hold(self): bucket_uri = self.CreateBucket() self.RunGsUtil(['retention', 'event-default', 'set', suri(bucket_uri)]) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self.assertRegex(stdout, r'Default Event-Based Hold:\t* *True') # Clearing the default Event-Based Hold on the bucket. self.RunGsUtil(['retention', 'event-default', 'release', suri(bucket_uri)]) stdout = self.RunGsUtil(['ls', '-Lb', suri(bucket_uri)], return_stdout=True) self.assertNotRegex(stdout, r'Default Event-Based Hold') @SkipForXML(BUCKET_LOCK_SKIP_MSG) @SkipForS3(BUCKET_LOCK_SKIP_MSG) def test_list_temporary_hold(self): object_uri = self.CreateObject(contents=b'content') self.RunGsUtil(['retention', 'temp', 'set', suri(object_uri)]) stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertRegex(stdout, r'Temporary Hold') # Clearing the Temporary Hold on the object. self.RunGsUtil(['retention', 'temp', 'release', suri(object_uri)]) stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertNotRegex(stdout, r'Temporary Hold') @SkipForXML(BUCKET_LOCK_SKIP_MSG) @SkipForS3(BUCKET_LOCK_SKIP_MSG) def test_list_event_based_hold(self): object_uri = self.CreateObject(contents=b'content') self.RunGsUtil(['retention', 'event', 'set', suri(object_uri)]) stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertRegex(stdout, r'Event-Based Hold') # Clearing the Event-Based Hold on the object. self.RunGsUtil(['retention', 'event', 'release', suri(object_uri)]) stdout = self.RunGsUtil(['ls', '-L', suri(object_uri)], return_stdout=True) self.assertNotRegex(stdout, r'Event-Based Hold')
44.137606
103
0.688661
43,327
0.92498
0
0
23,738
0.506778
0
0
13,851
0.295702
4001312cef0d9f28268935ec40cf1f39b54d853e
131
py
Python
onadata/libs/utils/audit.py
ubpd/kobocat
45906e07e8f05c30e3e26bab5570a8ab1ee264db
[ "BSD-2-Clause" ]
null
null
null
onadata/libs/utils/audit.py
ubpd/kobocat
45906e07e8f05c30e3e26bab5570a8ab1ee264db
[ "BSD-2-Clause" ]
null
null
null
onadata/libs/utils/audit.py
ubpd/kobocat
45906e07e8f05c30e3e26bab5570a8ab1ee264db
[ "BSD-2-Clause" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals, print_function, division, absolute_import HOME_ACCESSED = "home-accessed"
32.75
82
0.824427
0
0
0
0
0
0
0
0
30
0.229008
4001b461738a1a675ced54e42a87a9e7681bbab2
2,217
py
Python
places/management/commands/load_places.py
aevtikheev/dvmn-yandex-afisha
7112977d6615124412b7e7ffc4abdcaa969b4078
[ "MIT" ]
null
null
null
places/management/commands/load_places.py
aevtikheev/dvmn-yandex-afisha
7112977d6615124412b7e7ffc4abdcaa969b4078
[ "MIT" ]
null
null
null
places/management/commands/load_places.py
aevtikheev/dvmn-yandex-afisha
7112977d6615124412b7e7ffc4abdcaa969b4078
[ "MIT" ]
null
null
null
import logging from urllib.parse import unquote, urlparse from pathlib import PurePosixPath import requests from requests.exceptions import ReadTimeout, ConnectionError, HTTPError from django.core.management.base import BaseCommand from django.core.files.base import ContentFile from places.models import Place, Image logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) class Command(BaseCommand): help = 'Uploads data for a place' def add_arguments(self, parser): parser.add_argument('data_urls', nargs='+', type=str) def handle(self, *args, **options): for url in options['data_urls']: response = requests.get(url) response.raise_for_status() place_data = response.json() new_place, created = Place.objects.get_or_create( title=place_data['title'], defaults={ 'short_description': place_data['description_short'], 'long_description': place_data['description_long'], 'longitude': place_data['coordinates']['lng'], 'latitude': place_data['coordinates']['lat'] } ) if created: logging.info(f'Place "{new_place.title}" created') else: logging.info(f'Place "{new_place.title}" already exists') for image_position, image_url in enumerate(place_data['imgs']): try: response = requests.get(image_url) response.raise_for_status() except (ReadTimeout, ConnectionError, HTTPError) as exception: logging.exception(exception) continue new_image, _ = Image.objects.get_or_create( place=new_place, position=image_position ) image_content = ContentFile(response.content) image_name = PurePosixPath(unquote(urlparse(image_url).path)).parts[-1] new_image.image.save(image_name, image_content) logging.info(f'Image {image_name} for place "{new_place.title}" uploaded')
39.589286
90
0.59991
1,817
0.819576
0
0
0
0
0
0
361
0.162833
4002a9f7b6d3888657a9b000e3fb8c2cb6fac5dd
18,227
py
Python
gslib/utils/ls_helper.py
dickmao/gsutil
3b61bf0e6188f65f78c72c79ea3cb69e9c61da4b
[ "Apache-2.0" ]
1
2021-09-11T23:58:39.000Z
2021-09-11T23:58:39.000Z
gslib/utils/ls_helper.py
shinfan/gsutil
45b5fc020bed44c6342fe70ce8b081aa222d9213
[ "Apache-2.0" ]
null
null
null
gslib/utils/ls_helper.py
shinfan/gsutil
45b5fc020bed44c6342fe70ce8b081aa222d9213
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions and class for listing commands such as ls and du.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals import fnmatch import sys import six from gslib.cloud_api import EncryptionException from gslib.exception import CommandException from gslib.plurality_checkable_iterator import PluralityCheckableIterator from gslib.storage_url import GenerationFromUrlAndString from gslib.utils.constants import S3_ACL_MARKER_GUID from gslib.utils.constants import S3_DELETE_MARKER_GUID from gslib.utils.constants import S3_MARKER_GUIDS from gslib.utils.constants import UTF8 from gslib.utils.system_util import IS_WINDOWS from gslib.utils.translation_helper import AclTranslation from gslib.utils import text_util from gslib.wildcard_iterator import StorageUrlFromString ENCRYPTED_FIELDS = [ 'md5Hash', 'crc32c', ] UNENCRYPTED_FULL_LISTING_FIELDS = [ 'acl', 'cacheControl', 'componentCount', 'contentDisposition', 'contentEncoding', 'contentLanguage', 'contentType', 'customTime', 'kmsKeyName', 'customerEncryption', 'etag', 'eventBasedHold', 'generation', 'metadata', 'metageneration', 'retentionExpirationTime', 'size', 'storageClass', 'temporaryHold', 'timeCreated', 'timeDeleted', 'timeStorageClassUpdated', 'updated', ] def MakeMetadataLine(label, value, indent=1): """Returns a string with a vertically aligned label and value. Labels of the same indentation level will start at the same column. Values will all start at the same column (unless the combined left-indent and label length is excessively long). If a value spans multiple lines, indentation will only be applied to the first line. Example output from several calls: Label1: Value (default indent of 1 was used) Sublabel1: Value (used indent of 2 here) Label2: Value Args: label: The label to print in the first column. value: The value to print in the second column. indent: (4 * indent) spaces will be placed before the label. Returns: A string with a vertically aligned label and value. """ return '{}{}'.format(((' ' * indent * 4) + label + ':').ljust(28), value) def PrintBucketHeader(bucket_listing_ref): # pylint: disable=unused-argument """Default function for printing headers for buckets. Header is printed prior to listing the contents of the bucket. Args: bucket_listing_ref: BucketListingRef of type BUCKET. """ pass def PrintDir(bucket_listing_ref): """Default function for printing buckets or prefixes. Args: bucket_listing_ref: BucketListingRef of type BUCKET or PREFIX. """ text_util.print_to_fd(bucket_listing_ref.url_string) # pylint: disable=unused-argument def PrintDirSummary(num_bytes, bucket_listing_ref): """Off-by-default function for printing buckets or prefix size summaries. Args: num_bytes: Number of bytes contained in the directory. bucket_listing_ref: BucketListingRef of type BUCKET or PREFIX. """ pass def PrintDirHeader(bucket_listing_ref): """Default function for printing headers for prefixes. Header is printed prior to listing the contents of the prefix. Args: bucket_listing_ref: BucketListingRef of type PREFIX. """ text_util.print_to_fd('{}:'.format(bucket_listing_ref.url_string)) def PrintNewLine(): """Default function for printing new lines between directories.""" text_util.print_to_fd() # pylint: disable=too-many-statements def PrintFullInfoAboutObject(bucket_listing_ref, incl_acl=True): """Print full info for given object (like what displays for gsutil ls -L). Args: bucket_listing_ref: BucketListingRef being listed. Must have ref_type OBJECT and a populated root_object with the desired fields. incl_acl: True if ACL info should be output. Returns: Tuple (number of objects, object_length) Raises: Exception: if calling bug encountered. """ url_str = bucket_listing_ref.url_string storage_url = StorageUrlFromString(url_str) obj = bucket_listing_ref.root_object if (obj.metadata and S3_DELETE_MARKER_GUID in obj.metadata.additionalProperties): num_bytes = 0 num_objs = 0 url_str += '<DeleteMarker>' else: num_bytes = obj.size num_objs = 1 text_util.print_to_fd('{}:'.format(url_str)) if obj.timeCreated: text_util.print_to_fd( MakeMetadataLine('Creation time', obj.timeCreated.strftime('%a, %d %b %Y %H:%M:%S GMT'))) if obj.updated: text_util.print_to_fd( MakeMetadataLine('Update time', obj.updated.strftime('%a, %d %b %Y %H:%M:%S GMT'))) if (obj.timeStorageClassUpdated and obj.timeStorageClassUpdated != obj.timeCreated): text_util.print_to_fd( MakeMetadataLine( 'Storage class update time', obj.timeStorageClassUpdated.strftime('%a, %d %b %Y %H:%M:%S GMT'))) if obj.storageClass: text_util.print_to_fd(MakeMetadataLine('Storage class', obj.storageClass)) if obj.temporaryHold: text_util.print_to_fd(MakeMetadataLine('Temporary Hold', 'Enabled')) if obj.eventBasedHold: text_util.print_to_fd(MakeMetadataLine('Event-Based Hold', 'Enabled')) if obj.retentionExpirationTime: text_util.print_to_fd( MakeMetadataLine( 'Retention Expiration', obj.retentionExpirationTime.strftime('%a, %d %b %Y %H:%M:%S GMT'))) if obj.kmsKeyName: text_util.print_to_fd(MakeMetadataLine('KMS key', obj.kmsKeyName)) if obj.cacheControl: text_util.print_to_fd(MakeMetadataLine('Cache-Control', obj.cacheControl)) if obj.contentDisposition: text_util.print_to_fd( MakeMetadataLine('Content-Disposition', obj.contentDisposition)) if obj.contentEncoding: text_util.print_to_fd( MakeMetadataLine('Content-Encoding', obj.contentEncoding)) if obj.contentLanguage: text_util.print_to_fd( MakeMetadataLine('Content-Language', obj.contentLanguage)) text_util.print_to_fd(MakeMetadataLine('Content-Length', obj.size)) text_util.print_to_fd(MakeMetadataLine('Content-Type', obj.contentType)) if obj.componentCount: text_util.print_to_fd( MakeMetadataLine('Component-Count', obj.componentCount)) if obj.customTime: text_util.print_to_fd(MakeMetadataLine('Custom-Time', obj.customTime)) if obj.timeDeleted: text_util.print_to_fd( MakeMetadataLine('Noncurrent time', obj.timeDeleted.strftime('%a, %d %b %Y %H:%M:%S GMT'))) marker_props = {} if obj.metadata and obj.metadata.additionalProperties: non_marker_props = [] for add_prop in obj.metadata.additionalProperties: if add_prop.key not in S3_MARKER_GUIDS: non_marker_props.append(add_prop) else: marker_props[add_prop.key] = add_prop.value if non_marker_props: text_util.print_to_fd(MakeMetadataLine('Metadata', '')) for ap in non_marker_props: ap_key = '{}'.format(ap.key) ap_value = '{}'.format(ap.value) meta_data_line = MakeMetadataLine(ap_key, ap_value, indent=2) text_util.print_to_fd(meta_data_line) if obj.customerEncryption: if not obj.crc32c: text_util.print_to_fd(MakeMetadataLine('Hash (crc32c)', 'encrypted')) if not obj.md5Hash: text_util.print_to_fd(MakeMetadataLine('Hash (md5)', 'encrypted')) text_util.print_to_fd( MakeMetadataLine('Encryption algorithm', obj.customerEncryption.encryptionAlgorithm)) text_util.print_to_fd( MakeMetadataLine('Encryption key SHA256', obj.customerEncryption.keySha256)) if obj.crc32c: text_util.print_to_fd(MakeMetadataLine('Hash (crc32c)', obj.crc32c)) if obj.md5Hash: text_util.print_to_fd(MakeMetadataLine('Hash (md5)', obj.md5Hash)) text_util.print_to_fd(MakeMetadataLine('ETag', obj.etag.strip('"\''))) if obj.generation: generation_str = GenerationFromUrlAndString(storage_url, obj.generation) text_util.print_to_fd(MakeMetadataLine('Generation', generation_str)) if obj.metageneration: text_util.print_to_fd(MakeMetadataLine('Metageneration', obj.metageneration)) if incl_acl: # JSON API won't return acls as part of the response unless we have # full control scope if obj.acl: text_util.print_to_fd( MakeMetadataLine('ACL', AclTranslation.JsonFromMessage(obj.acl))) elif S3_ACL_MARKER_GUID in marker_props: text_util.print_to_fd( MakeMetadataLine('ACL', marker_props[S3_ACL_MARKER_GUID])) else: # Empty ACLs are possible with Bucket Policy Only and no longer imply # ACCESS DENIED anymore. text_util.print_to_fd(MakeMetadataLine('ACL', '[]')) return (num_objs, num_bytes) def PrintObject(bucket_listing_ref): """Default printing function for objects. Args: bucket_listing_ref: BucketListingRef of type OBJECT. Returns: (num_objects, num_bytes). """ try: text_util.print_to_fd(bucket_listing_ref.url_string) except IOError as e: # Windows throws an IOError 0 here for object names containing Unicode # chars. Ignore it. if not (IS_WINDOWS and e.errno == 0): raise return (1, 0) class LsHelper(object): """Helper class for ls and du.""" def __init__(self, iterator_func, logger, print_object_func=PrintObject, print_dir_func=PrintDir, print_dir_header_func=PrintDirHeader, print_bucket_header_func=PrintBucketHeader, print_dir_summary_func=PrintDirSummary, print_newline_func=PrintNewLine, all_versions=False, should_recurse=False, exclude_patterns=None, fields=('name',), list_subdir_contents=True): """Initializes the helper class to prepare for listing. Args: iterator_func: Function for instantiating iterator. Inputs- url_string- Url string to iterate on. May include wildcards. all_versions=False- If true, iterate over all object versions. logger: Logger for outputting warnings / errors. print_object_func: Function for printing objects. print_dir_func: Function for printing buckets/prefixes. print_dir_header_func: Function for printing header line for buckets or prefixes. print_bucket_header_func: Function for printing header line for buckets or prefixes. print_dir_summary_func: Function for printing size summaries about buckets/prefixes. print_newline_func: Function for printing new lines between dirs. all_versions: If true, list all object versions. should_recurse: If true, recursively listing buckets/prefixes. exclude_patterns: Patterns to exclude when listing. fields: Fields to request from bucket listings; this should include all fields that need to be populated in objects so they can be listed. Can be set to None to retrieve all object fields. Defaults to short listing fields. list_subdir_contents: If true, return the directory and any contents, otherwise return only the directory itself. """ self._iterator_func = iterator_func self.logger = logger self._print_object_func = print_object_func self._print_dir_func = print_dir_func self._print_dir_header_func = print_dir_header_func self._print_bucket_header_func = print_bucket_header_func self._print_dir_summary_func = print_dir_summary_func self._print_newline_func = print_newline_func self.all_versions = all_versions self.should_recurse = should_recurse self.exclude_patterns = exclude_patterns self.bucket_listing_fields = fields self.list_subdir_contents = list_subdir_contents def ExpandUrlAndPrint(self, url): """Iterates over the given URL and calls print functions. Args: url: StorageUrl to iterate over. Returns: (num_objects, num_bytes) total number of objects and bytes iterated. """ num_objects = 0 num_dirs = 0 num_bytes = 0 print_newline = False if url.IsBucket() or self.should_recurse: # IsBucket() implies a top-level listing. if url.IsBucket(): self._print_bucket_header_func(url) return self._RecurseExpandUrlAndPrint(url.url_string, print_initial_newline=False) else: # User provided a prefix or object URL, but it's impossible to tell # which until we do a listing and see what matches. top_level_iterator = PluralityCheckableIterator( self._iterator_func( url.CreatePrefixUrl(wildcard_suffix=None), all_versions=self.all_versions).IterAll( expand_top_level_buckets=True, bucket_listing_fields=self.bucket_listing_fields)) plurality = top_level_iterator.HasPlurality() try: top_level_iterator.PeekException() except EncryptionException: # Detailed listing on a single object can perform a GetObjectMetadata # call, which raises if a matching encryption key isn't found. # Re-iterate without requesting encrypted fields. top_level_iterator = PluralityCheckableIterator( self._iterator_func( url.CreatePrefixUrl(wildcard_suffix=None), all_versions=self.all_versions).IterAll( expand_top_level_buckets=True, bucket_listing_fields=UNENCRYPTED_FULL_LISTING_FIELDS)) plurality = top_level_iterator.HasPlurality() for blr in top_level_iterator: if self._MatchesExcludedPattern(blr): continue if blr.IsObject(): nd = 0 no, nb = self._print_object_func(blr) print_newline = True elif blr.IsPrefix(): if print_newline: self._print_newline_func() else: print_newline = True if plurality and self.list_subdir_contents: self._print_dir_header_func(blr) elif plurality and not self.list_subdir_contents: print_newline = False expansion_url_str = StorageUrlFromString( blr.url_string).CreatePrefixUrl( wildcard_suffix='*' if self.list_subdir_contents else None) nd, no, nb = self._RecurseExpandUrlAndPrint(expansion_url_str) self._print_dir_summary_func(nb, blr) else: # We handle all buckets at the top level, so this should never happen. raise CommandException( 'Sub-level iterator returned a CsBucketListingRef of type Bucket') num_objects += no num_dirs += nd num_bytes += nb return num_dirs, num_objects, num_bytes def _RecurseExpandUrlAndPrint(self, url_str, print_initial_newline=True): """Iterates over the given URL string and calls print functions. Args: url_str: String describing StorageUrl to iterate over. Must be of depth one or higher. print_initial_newline: If true, print a newline before recursively expanded prefixes. Returns: (num_objects, num_bytes) total number of objects and bytes iterated. """ num_objects = 0 num_dirs = 0 num_bytes = 0 for blr in self._iterator_func( '%s' % url_str, all_versions=self.all_versions).IterAll( expand_top_level_buckets=True, bucket_listing_fields=self.bucket_listing_fields): if self._MatchesExcludedPattern(blr): continue if blr.IsObject(): nd = 0 no, nb = self._print_object_func(blr) elif blr.IsPrefix(): if self.should_recurse: if print_initial_newline: self._print_newline_func() else: print_initial_newline = True self._print_dir_header_func(blr) expansion_url_str = StorageUrlFromString( blr.url_string).CreatePrefixUrl(wildcard_suffix='*') nd, no, nb = self._RecurseExpandUrlAndPrint(expansion_url_str) self._print_dir_summary_func(nb, blr) else: nd, no, nb = 1, 0, 0 self._print_dir_func(blr) else: # We handle all buckets at the top level, so this should never happen. raise CommandException( 'Sub-level iterator returned a bucketListingRef of type Bucket') num_dirs += nd num_objects += no num_bytes += nb return num_dirs, num_objects, num_bytes def _MatchesExcludedPattern(self, blr): """Checks bucket listing reference against patterns to exclude. Args: blr: BucketListingRef to check. Returns: True if reference matches a pattern and should be excluded. """ if self.exclude_patterns: tomatch = six.ensure_str(blr.url_string) for pattern in self.exclude_patterns: if fnmatch.fnmatch(tomatch, six.ensure_str(pattern)): return True return False
36.971602
80
0.681242
8,159
0.447633
0
0
0
0
0
0
7,383
0.405058
4003c8b3ef448fd698e5fde8ffd4368a0004acc2
2,250
py
Python
app/config/cnMysql.py
itay-moav/rahl_commander
79b9bb7d16f4f9511820d0e0ffcbba6ee8e0e42b
[ "MIT" ]
1
2016-12-19T16:09:02.000Z
2016-12-19T16:09:02.000Z
app/config/cnMysql.py
itay-moav/rahl_commander
79b9bb7d16f4f9511820d0e0ffcbba6ee8e0e42b
[ "MIT" ]
19
2015-01-08T18:34:13.000Z
2018-02-26T14:51:22.000Z
app/config/cnMysql.py
itay-moav/rahl_commander
79b9bb7d16f4f9511820d0e0ffcbba6ee8e0e42b
[ "MIT" ]
null
null
null
''' Created on Dec 28, 2021 @author: Itay Abstracting the DB connection piece ''' import mysql.connector as My from app import logging as L from app import exceptions as exceptions class Connection(): ''' Abstracting the actions on a DB ''' def __init__(self, connection_config): self._debug_connection_info = "{}@{}".format(connection_config['username'],connection_config['host']) L.info("Trying to connect to {}".format(self._debug_connection_info)) self._connection = My.connect(user=connection_config['username'], password=connection_config['password'],host=connection_config['host'],buffered=True) def get_connection(self): return self._connection def change_db(self,new_db): connection = self.get_connection() if connection.database != new_db and new_db: try: connection.database = new_db except My.Error as err: if err.errno == My.errorcode.ER_BAD_DB_ERROR: return False else: msg = "Error occured while changing DB in mysql connection [{}]".format(err) L.fatal(msg) raise exceptions.SQLError(msg) return True def cursor(self): return self.get_connection().cursor() def commit(self): return self.get_connection().commit() def debug_connection(self): return "server: [{}] database: [{}]".format(self.debug_connection_info,self.get_connection().database) def execute(self,sql,query_params=()): L.debug("Running sql [{}]".format(sql)) cursor = self.cursor() cursor.execute(sql,query_params) return cursor def execute_fetchall(self,sql): cursor = self.execute(sql) return cursor.fetchall() def insert_rcom_sql_upgrades(self,db,file_values): sql = "INSERT IGNORE INTO {}.rcom_sql_upgrades VALUES {}".format(db,file_values) self.execute(sql) def mark_complete_rcom_sql_upgrades(self,db,file_name): sql = sql = "UPDATE {}.rcom_sql_upgrades SET execution_status='completed' WHERE file_name = %s LIMIT 1".format(db) self.execute(sql,(file_name,))
34.615385
158
0.636444
2,066
0.918222
0
0
0
0
0
0
451
0.200444
4004bec8c10906a7cd716dc8ff33d14546f3a2fe
1,527
py
Python
src/detector/pre_process_test_data.py
DomGonthier/PecheFantome
d031a8fe5faa2ef35f2c1dbb8241281ffda22429
[ "MIT" ]
null
null
null
src/detector/pre_process_test_data.py
DomGonthier/PecheFantome
d031a8fe5faa2ef35f2c1dbb8241281ffda22429
[ "MIT" ]
8
2020-02-19T20:03:44.000Z
2022-02-03T19:27:24.000Z
src/detector/pre_process_test_data.py
DomGonthier/PecheFantome
d031a8fe5faa2ef35f2c1dbb8241281ffda22429
[ "MIT" ]
3
2020-02-19T19:02:19.000Z
2021-12-14T14:06:25.000Z
import os from tqdm import tqdm import cv2 import numpy as np #pre process test data: path = "raw_test_data/" list_width = [] list_height = [] list_image = [] def pre_process(): print("analyze images") for Files in tqdm(os.listdir(path)): if "jpg" in Files: #print(Files) img = cv2.imread(path + Files, 1) height, width, chan = img.shape #print(width) #print(height) list_width.append(width) list_height.append(height) max_width = np.max(list_width) max_height = np.max(list_height) if max_height == max_width : print("max height == max width") print("format images: ") for image in tqdm(os.listdir(path)): if "jpg" in image: #print(image) img = cv2.imread(path + image, 1) height, width, chan = img.shape new_height = (round(max_height/16)+1)*16 # image dimension needs to be a multiple of 16 new_width = new_height # image needs to be squared delta_width = new_width - width delta_height = new_height - height #print("delta height",delta_height) #print("delta width",delta_width) pad_img = cv2.copyMakeBorder(img, 0, delta_height, 0, delta_width, cv2.BORDER_CONSTANT,None, value = 0) #list_image.append(pad_img) cv2.imwrite("test_data/"+image, pad_img) pre_process() for image in list_image: print(image.shape)
31.163265
115
0.59201
0
0
0
0
0
0
0
0
340
0.222659
4004f14ddc4bfb878b0872bfe2604774deea7bcf
4,934
py
Python
tensorflow/python/training/localhost_cluster_performance_test.py
connectthefuture/tensorflow
93812423fcd5878aa2c1d0b68dc0496980c8519d
[ "Apache-2.0" ]
101
2016-12-03T11:40:52.000Z
2017-12-23T02:02:03.000Z
tensorflow/python/training/localhost_cluster_performance_test.py
connectthefuture/tensorflow
93812423fcd5878aa2c1d0b68dc0496980c8519d
[ "Apache-2.0" ]
9
2016-12-14T03:27:46.000Z
2017-09-13T02:29:07.000Z
tensorflow/python/training/localhost_cluster_performance_test.py
connectthefuture/tensorflow
93812423fcd5878aa2c1d0b68dc0496980c8519d
[ "Apache-2.0" ]
47
2016-12-04T12:37:24.000Z
2018-01-14T18:13:07.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests and benchmarks for creating RPC clusters on localhost.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np import portpicker import tensorflow as tf def create_local_cluster(num_workers, num_ps, protocol="grpc"): """Create local GRPC servers and return their servers.""" worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = { "worker": ["localhost:%s" % port for port in worker_ports], "ps": ["localhost:%s" % port for port in ps_ports]} cs = tf.train.ClusterSpec(cluster_dict) workers = [ tf.train.Server( cs, job_name="worker", protocol=protocol, task_index=ix, start=True) for ix in range(num_workers)] ps_servers = [ tf.train.Server( cs, job_name="ps", protocol=protocol, task_index=ix, start=True) for ix in range(num_ps)] return workers, ps_servers class CreateLocalClusterTest(tf.test.TestCase): def testCreateLocalCluster(self): workers, _ = create_local_cluster(num_workers=2, num_ps=2) worker_sessions = [tf.Session(w.target) for w in workers] with tf.device("/job:ps/task:0"): var0 = tf.Variable(0.0) with tf.device("/job:ps/task:1"): var1 = tf.Variable(1.0) worker_sessions[0].run([var0.initializer, var1.initializer]) with tf.device("/job:ps/task:0"): var2 = tf.Variable(2.0) with tf.device("/job:ps/task:1"): var3 = tf.Variable(3.0) worker_sessions[1].run([var2.initializer, var3.initializer]) # Read values back in the opposite session self.assertAllEqual(0.0, var0.eval(session=worker_sessions[1])) self.assertAllEqual(1.0, var1.eval(session=worker_sessions[1])) self.assertAllEqual(2.0, var2.eval(session=worker_sessions[0])) self.assertAllEqual(3.0, var3.eval(session=worker_sessions[0])) class CreateLocalClusterBenchmark(tf.test.Benchmark): def benchmarkCreateLocalCluster(self): deltas = [] iters = 5 for _ in range(iters): start_time = time.time() create_local_cluster(num_workers=1, num_ps=10) end_time = time.time() deltas.append(end_time - start_time) median_deltas = np.median(deltas) print( "\n\nbenchmark_create_local_cluster_1_worker_10_ps. " "iterations: %d, median wall time: %g\n\n" % (iters, median_deltas)) self.report_benchmark( iters=iters, wall_time=median_deltas, name="benchmark_create_local_cluster_1_worker_10_ps") class PartitionedVariablesBenchmark(tf.test.Benchmark): def benchmark_create_1000_partitions_with_100_parameter_servers(self): workers, _ = create_local_cluster(num_workers=1, num_ps=100) worker_sessions = [tf.Session(w.target) for w in workers] worker = worker_sessions[0] partition_sizes = (1, 512, 1024*32, 1024*128) partitioned = [] for partition_size in partition_sizes: # max_shard_bytes is 4, shape is 1000*partition_size float32s which should # partition into 1000 shards, each containing partition_size float32s. print("Building partitioned variable with %d floats per partition" % partition_size) with tf.device(tf.train.replica_device_setter(ps_tasks=100)): partitioned_ix = tf.get_variable( "partitioned_%d" % partition_size, shape=[1000 * partition_size], dtype=tf.float32, # Each partition to have exactly N float32s partitioner=tf.variable_axis_size_partitioner( max_shard_bytes=4 * partition_size)) # Concatenates along axis 0 partitioned.append(tf.convert_to_tensor(partitioned_ix)) tf.global_variables_initializer().run(session=worker) for ix, partition_size in enumerate(partition_sizes): print("Running benchmark having partitions with %d floats" % partition_size) self.run_op_benchmark( worker, partitioned[ix], name=("read_concat_1000_partitions_from_" "100_parameter_servers_partsize_%d_floats" % partition_size)) if __name__ == "__main__": tf.test.main()
37.097744
80
0.694366
3,153
0.639035
0
0
0
0
0
0
1,534
0.310904
4007ccb371063c993bd22bb2370d18838e357a3f
3,218
py
Python
extractor/util.py
bcskda/vk-archive-deepercopy
3619b94eb3e0f5f67860022cdfb2074e457c0cd2
[ "Unlicense" ]
1
2020-04-24T09:24:31.000Z
2020-04-24T09:24:31.000Z
extractor/util.py
bcskda/vk-archive-deepercopy
3619b94eb3e0f5f67860022cdfb2074e457c0cd2
[ "Unlicense" ]
null
null
null
extractor/util.py
bcskda/vk-archive-deepercopy
3619b94eb3e0f5f67860022cdfb2074e457c0cd2
[ "Unlicense" ]
null
null
null
import functools import glob import itertools import logging import os from progressbar import progressbar import re import requests from typing import List class ValueSingleDispatch: def __init__(self): self._handlers = dict() def register(self, key): def decorator(fn: callable): if key in self._handlers: raise KeyError(key) self._handlers[key] = fn return fn return decorator def call(self, key, *args, **kwargs): if key not in self._handlers: raise KeyError(key) return self._handlers[key](*args, **kwargs) def valid_keys(self): return self._handlers.keys() def alphanumeric_glob(pattern: str): """Glob and sort alpahnumerically. Limitations: exactly one `*', no `?', file names with single extention.""" matches = glob.glob(pattern) asterisk_pos = pattern.find('*') matches.sort(key=lambda name: int(name[asterisk_pos:name.rfind('.')])) return matches def findall_in_files(pattern: re.Pattern, filenames: List[str], encoding: str) -> re.Match: """Generator""" for filename in filenames: logging.debug('util.findall_in_files: input file %s', filename) with open(filename, 'rb') as ifile: for match in pattern.findall(ifile.read().decode(encoding)): logging.debug('util.findall_in_files(): match: file = %s, text = %s', filename, match) yield match def make_pattern(url_regex: str, extentions: List[str]) -> re.Pattern: if extentions: ext_regex = '({})'.format('|'.join(extentions)) else: ext_regex = '()' return re.compile(url_regex.format(extentions=ext_regex)) def download_by_pattern(url_regex: str, filenames: List[str], output_dir: str, *, extentions=[], encoding='windows-1251', limit=None): logging.debug('util.download_by_pattern(): pattern = %s, extentions = %s', url_regex, extentions) pattern = make_pattern(url_regex, extentions) matches = findall_in_files(pattern, filenames, encoding) if limit is not None: matches = itertools.islice(matches, limit) matches = list(matches) logging.info('util.download_by_pattern(): %d matches', len(matches)) os.makedirs(output_dir, exist_ok=True) downloads = 0 # TODO statistics by extention for idx, (url, ext) in progressbar(enumerate(matches), max_value=len(matches)): local_name = '{:07d}'.format(idx) + '_' + os.path.basename(url) try: download(url, os.path.join(output_dir, local_name)) downloads += 1 except Exception as e: logging.warning('util.download_by_pattern(): unhandled exception: url = %s, e = %s', match_url, e) logging.info('util.download_by_pattern(): %d successful downloads', downloads) if downloads < len(matches): logging.warning('util.download_by_pattern(): %d downloads failed, see log for warnings', len(matches) - downloads) def download(url: str, local_path: str) -> bool: logging.debug('util.download(): url = %s, local = %s', url, local_path) req = requests.get(url) with open(local_path, 'wb') as ofile: ofile.write(req.content)
38.771084
134
0.657551
537
0.166874
462
0.143567
0
0
0
0
627
0.194842
400afc4da001a8c030925a65e03f44b9ed050772
1,637
py
Python
setup.py
gillins/pyshepseg
bfa8d157d610bf4f581a2500d0afb42d4f92d59b
[ "MIT" ]
5
2021-02-03T05:02:56.000Z
2022-01-31T07:55:20.000Z
setup.py
gillins/pyshepseg
bfa8d157d610bf4f581a2500d0afb42d4f92d59b
[ "MIT" ]
14
2021-02-03T04:18:48.000Z
2022-01-24T03:50:22.000Z
setup.py
gillins/pyshepseg
bfa8d157d610bf4f581a2500d0afb42d4f92d59b
[ "MIT" ]
13
2021-02-03T03:41:17.000Z
2022-01-24T04:21:23.000Z
#Copyright 2021 Neil Flood and Sam Gillingham. All rights reserved. # #Permission is hereby granted, free of charge, to any person #obtaining a copy of this software and associated documentation #files (the "Software"), to deal in the Software without restriction, #including without limitation the rights to use, copy, modify, #merge, publish, distribute, sublicense, and/or sell copies of the #Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be #included in all copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, #EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES #OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. #IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR #ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF #CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION #WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from numpy.distutils.core import setup import pyshepseg setup(name='pyshepseg', version=pyshepseg.SHEPSEG_VERSION, description='Python implementation of the image segmentation algorithm described by Shepherd et al', author='Neil Flood and Sam Gillingham', scripts=['bin/test_pyshepseg.py', 'bin/test_pyshepseg_tiling.py', 'bin/test_pyshepseg_subset.py'], packages=['pyshepseg'], license='LICENSE.txt', url='https://github.com/ubarsc/pyshepseg' )
46.771429
106
0.756261
0
0
0
0
0
0
0
0
1,377
0.841173
400c696eb52726be2cb58df8b7625711faea5a60
3,846
py
Python
src/utils.py
daochenzha/SimTSC
6e3200510e8e464049eab95db9540afdaf397f9c
[ "MIT" ]
23
2022-01-06T05:15:35.000Z
2022-03-28T08:08:14.000Z
src/utils.py
daochenzha/SimTSC
6e3200510e8e464049eab95db9540afdaf397f9c
[ "MIT" ]
2
2022-02-10T02:22:35.000Z
2022-03-28T16:45:17.000Z
src/utils.py
daochenzha/SimTSC
6e3200510e8e464049eab95db9540afdaf397f9c
[ "MIT" ]
5
2022-01-09T08:58:24.000Z
2022-01-19T09:52:43.000Z
import os import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder def read_dataset_from_npy(path): """ Read dataset from .npy file """ data = np.load(path, allow_pickle=True) return data[()]['X'], data[()]['y'], data[()]['train_idx'], data[()]['test_idx'] def read_dataset(ucr_root_dir, dataset_name, shot): """ Read univariate dataset from UCR """ dataset_dir = os.path.join(ucr_root_dir, dataset_name) df_train = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TRAIN.tsv'), sep='\t', header=None) df_test = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TEST.tsv'), sep='\t', header=None) y_train = df_train.values[:, 0].astype(np.int64) y_test = df_test.values[:, 0].astype(np.int64) y = np.concatenate((y_train, y_test)) le = LabelEncoder() le.fit(y) y = le.transform(y) X_train = df_train.drop(columns=[0]).astype(np.float32) X_test = df_test.drop(columns=[0]).astype(np.float32) X_train.columns = range(X_train.shape[1]) X_test.columns = range(X_test.shape[1]) X_train = X_train.values X_test = X_test.values X = np.concatenate((X_train, X_test)) idx = np.array([i for i in range(len(X))]) np.random.shuffle(idx) train_idx, test_idx = idx[:int(len(idx)*0.8)], idx[int(len(idx)*0.8):] tmp = [[] for _ in range(len(np.unique(y)))] for i in train_idx: tmp[y[i]].append(i) train_idx = [] for _tmp in tmp: train_idx.extend(_tmp[:shot]) # znorm X[np.isnan(X)] = 0 std_ = X.std(axis=1, keepdims=True) std_[std_ == 0] = 1.0 X = (X - X.mean(axis=1, keepdims=True)) / std_ # add a dimension to make it multivariate with one dimension X = X.reshape((X.shape[0], 1, X.shape[1])) return X, y, train_idx, test_idx def read_multivariate_dataset(root_dir, dataset_name, shot): """ Read multivariate dataset """ X = np.load(os.path.join(root_dir, dataset_name+".npy"), allow_pickle=True) y = np.loadtxt(os.path.join(root_dir, dataset_name+'_label.txt')) y = y.astype(np.int64) dim = X[0].shape[0] max_length = 0 for _X in X: if _X.shape[1] > max_length: max_length = _X.shape[1] X_list = [] for i in range(len(X)): _X = np.zeros((dim, max_length)) _X[:, :X[i].shape[1]] = X[i] X_list.append(_X) X = np.array(X_list, dtype=np.float32) le = LabelEncoder() le.fit(y) y = le.transform(y) idx = np.array([i for i in range(len(X))]) np.random.shuffle(idx) train_idx, test_idx = idx[:int(len(idx)*0.8)], idx[int(len(idx)*0.8):] tmp = [[] for _ in range(len(np.unique(y)))] for i in train_idx: tmp[y[i]].append(i) train_idx = [] for _tmp in tmp: train_idx.extend(_tmp[:shot]) # znorm std_ = X.std(axis=2, keepdims=True) std_[std_ == 0] = 1.0 X = (X - X.mean(axis=2, keepdims=True)) / std_ return X, y, train_idx, test_idx def read_X(ucr_root_dir, dataset_name): """ Read the raw time-series """ dataset_dir = os.path.join(ucr_root_dir, dataset_name) df_train = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TRAIN.tsv'), sep='\t', header=None) df_test = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TEST.tsv'), sep='\t', header=None) X_train = df_train.drop(columns=[0]).astype(np.float32) X_test = df_test.drop(columns=[0]).astype(np.float32) X_train.columns = range(X_train.shape[1]) X_test.columns = range(X_test.shape[1]) X_train = X_train.values X_test = X_test.values X = np.concatenate((X_train, X_test), axis=0) return X class Logger: def __init__(self, f): self.f = f def log(self, content): print(content) self.f.write(content + '\n') self.f.flush()
29.584615
103
0.621945
171
0.044462
0
0
0
0
0
0
342
0.088924
400d71727dfe67b72a8bc6849bc10bc05b88d55b
17,458
py
Python
mpinterfaces/mat2d/friction/analysis.py
yw-fang/MPInterfaces
ca2e43b590fdfbcf87a116c5c758e54cb7cb2d2e
[ "MIT" ]
56
2015-06-23T03:03:18.000Z
2022-02-06T16:41:34.000Z
mpinterfaces/mat2d/friction/analysis.py
yw-fang/MPInterfaces
ca2e43b590fdfbcf87a116c5c758e54cb7cb2d2e
[ "MIT" ]
21
2015-09-03T17:50:18.000Z
2022-03-01T02:26:34.000Z
mpinterfaces/mat2d/friction/analysis.py
joshgabriel/MPInterfaces
2799ae161fa94c78842092fb24ef468607afa465
[ "MIT" ]
50
2015-09-17T19:09:36.000Z
2021-11-15T19:13:20.000Z
from __future__ import print_function, division, unicode_literals import os import warnings import numpy as np from scipy import interpolate import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from pymatgen.io.vasp.outputs import Vasprun from pymatgen.core.structure import Structure from pymatgen import Element from pymatgen.analysis.local_env import ValenceIonicRadiusEvaluator as VE __author__ = "Michael Ashton" __copyright__ = "Copyright 2017, Henniggroup" __maintainer__ = "Michael Ashton" __email__ = "[email protected]" __status__ = "Production" __date__ = "March 3, 2017" def get_corrugation_factor(structure): """ Calculate the "corrugation factor" for a 2D material. The corrugation factor is defined as the sum of the outer hemispheres of ionic radii of the atoms on the material's top and bottom surfaces, divided by the planar area of the whole unit cell's 001 plane. Top and bottom corrugation factors are returned separately in the final dictionary. In general, a larger corrugation factor means a smoother surface. Args: structure (Structure): Pymatgen Structure object. Returns: corrugation_factors (dict): Dictionary of "top" and "bottom" corrugation factors, e.g. {"top": top_corrugation_factor, "bottom": bottom_corrugation_factor} """ sites = structure.sites valences = VE(structure).valences formatted_valences = {} for e in valences: temp=e[-1] if "+" in e or "-" in e: try: # Some element names have a number followed # by a plus or minus, e.g. "O2-" int(e[-2]) element = e[:-2] except: # Others are simply a plus or minus, e.g. "Cl-" element = e[:-1] else: element = e formatted_valences[Element(element)] = valences[e] all_z_coords = [s.coords[2] for s in sites] max_z = max(all_z_coords) min_z = min(all_z_coords) top_layer = [s for s in sites if abs(s.coords[2] - max_z) < 0.1] bottom_layer = [s for s in sites if abs(s.coords[2] - min_z) < 0.1] pi = np.pi top_sphere_area = 0 bottom_sphere_area = 0 for site in top_layer: if formatted_valences[site.specie] in site.specie.ionic_radii: r = site.specie.ionic_radii[formatted_valences[site.specie]] else: r = site.specie.atomic_radius top_sphere_area += 2*pi*r*r for site in bottom_layer: if formatted_valences[site.specie] in site.specie.ionic_radii: r = site.specie.ionic_radii[formatted_valences[site.specie]] else: r = site.specie.atomic_radius bottom_sphere_area += 2*pi*r*r lattice = structure.lattice area = abs(np.cross(lattice._matrix[0], lattice._matrix[1])[2]) corrugation = {"top": top_sphere_area / area, "bottom": bottom_sphere_area / area} return corrugation def plot_gamma_surface(fmt='pdf'): """ Collect the energies from a grid of static energy calculations to plot the Gamma surface between two layers of the 2D material. Args: fmt (str): matplotlib format style. Check the matplotlib docs for options. """ os.chdir('friction/lateral') static_dirs = [d.split('x') for d in os.listdir(os.getcwd()) if 'x' in d and os.path.isdir(d)] n_divs_x = max([int(d[0]) for d in static_dirs]) n_divs_y = max([int(d[1]) for d in static_dirs]) lattice = Structure.from_file('POSCAR').lattice area = np.cross(lattice._matrix[0], lattice._matrix[1])[2] ax = plt.figure(figsize=(n_divs_x * 1.2, n_divs_y * 1.2)).gca() ax.set_xlim(0, n_divs_x + 1) ax.set_ylim(0, n_divs_y + 1) energies = [] x_values = range(n_divs_x + 1) y_values = range(n_divs_y + 1) not_converged = [] for x in x_values: energies.append([]) for y in y_values: dir = '{}x{}'.format(x, y) os.chdir(dir) try: energy = Vasprun('vasprun.xml').final_energy / area energies[x].append(energy) except: not_converged.append('{}x{}'.format(x, y)) energies[x].append(0) os.chdir('../') energies[x].append(energies[x][0]) energies.append([]) # ENERGY_ARRAY[n_divs_x] = ENERGY_ARRAY[0] if not_converged: warnings.warn('{} did not converge.'.format(not_converged)) for coords in not_converged: energies[int(coords.split('x')[0])][int(coords.split('x')[1])] = energy minima = [] maxima = [] for x in x_values: minima.append(min(energies[x])) maxima.append(max(energies[x])) abs_minimum = min(minima) abs_maximum = max(maxima) for x in range(n_divs_x + 1): for y in range(n_divs_y + 1): # Plot all energies relative to the global minimum. scaled_energy = energies[x][y] - abs_minimum if '{}x{}'.format(x, y) in not_converged: color_code = 'w' else: color_code = plt.cm.jet( scaled_energy/(abs_maximum - abs_minimum)) ax.add_patch(plt.Rectangle((x, y), width=1, height=1, facecolor=color_code, linewidth=0)) # Get rid of annoying ticks. ax.axes.get_yaxis().set_ticks([]) ax.axes.get_xaxis().set_ticks([]) os.chdir('../../') plt.savefig('gamma_surface.{}'.format(fmt), transparent=True) plt.close() def get_number_of_surface_atoms(): """ Count the number of atoms at a 2D material's surface. This enables energy and force calculations to be normalized to the number of surface atoms. Returns: int. Number of surface atoms (top + bottom) for both layers in the bilayer model. """ structure = Structure.from_file('friction/lateral/POSCAR') heights = np.array([site.z for site in structure.sites]) max_height = max(heights) min_height = min(heights) n_atoms_top = len([height for height in heights if max_height - height < 0.1]) n_atoms_bottom = len([height for height in heights if height - min_height < 0.1]) return (n_atoms_top + n_atoms_bottom) * 2 def get_basin_and_peak_locations(): """ Find which directories inside 'friction/lateral' represent the minimum (basin) and maximum (peak) energy stacking configurations. Returns: tuple. Of the form (basin, peak). """ os.chdir('friction/lateral') static_dirs = [d.split('x') for d in os.listdir(os.getcwd()) if 'x' in d and os.path.isdir(d)] n_divs_x = max([int(d[0]) for d in static_dirs]) n_divs_y = max([int(d[1]) for d in static_dirs]) x_values = range(n_divs_x + 1) y_values = range(n_divs_y + 1) abs_maximum = -np.Infinity abs_minimum = np.Infinity for x in x_values: for y in y_values: dir = '{}x{}'.format(x, y) os.chdir(dir) try: energy = Vasprun('vasprun.xml').final_energy if energy < abs_minimum: basin = dir abs_minimum = energy if energy > abs_maximum: peak = dir abs_maximum = energy except: pass os.chdir('../') os.chdir('../../') return(basin, peak) def plot_friction_force(fmt='pdf'): """ Plot the sinusoidal curve of delta E between basin and saddle points for each normal spacing dz. Args: fmt (str): matplotlib format style. Check the matplotlib docs for options. """ n_surface_atoms = get_number_of_surface_atoms() os.chdir('friction/normal') f, (ax1, ax2) = plt.subplots(2, figsize=(16, 16)) spacings = sorted([float(spc) for spc in os.listdir(os.getcwd()) if os.path.isdir(spc)]) spc_range = spacings[-1] - spacings[0] + 0.1 for spacing in spacings: os.chdir(str(spacing)) subdirectories = os.listdir(os.getcwd()) amplitude = abs( Vasprun('{}/vasprun.xml'.format(subdirectories[0])).final_energy - Vasprun('{}/vasprun.xml'.format(subdirectories[1])).final_energy ) / (2 * n_surface_atoms) start_coords = Structure.from_file( '{}/POSCAR'.format(subdirectories[0])).sites[-1].coords end_coords = Structure.from_file( '{}/POSCAR'.format(subdirectories[1])).sites[-1].coords dist = np.sqrt( (start_coords[0] - end_coords[0])**2 + (start_coords[1] - end_coords[1])**2) b = (2 * np.pi) / (dist * 2) x = np.arange(0, 4, 0.01) sinx = [amplitude * np.sin(b * val) + amplitude for val in x] cosx = [b * amplitude * np.cos(b * val) if np.cos(b * val) > 0 else 0 for val in x] ax1.plot(x, sinx, linewidth=8, color=plt.cm.jet(-(spacing - 4) / spc_range), label=spacing) ax1.set_xticklabels(ax1.get_xticks(), family='serif', fontsize=18) ax1.set_yticklabels(ax1.get_yticks(), family='serif', fontsize=18) ax1.set_xlabel(r'$\mathrm{\Delta d\/(\AA)}$', family='serif', fontsize=24) ax1.set_ylabel(r'$\mathrm{E(z)\/(eV)}$', family='serif', fontsize=24) ax2.plot(x, cosx, linewidth=8, color=plt.cm.jet(-(spacing - 4) / spc_range), label=spacing) ax2.set_xticklabels(ax2.get_xticks(), family='serif', fontsize=18) ax2.set_yticklabels(ax2.get_yticks(), family='serif', fontsize=18) ax2.set_xlabel(r'$\mathrm{\Delta d\/(\AA)}$', family='serif', fontsize=24) ax2.set_ylabel(r'$\mathrm{F_f\/(eV/\AA)}$', family='serif', fontsize=24) os.chdir('../') ax1.legend(loc='upper right') ax2.legend(loc='upper right') os.chdir('../../') plt.savefig('F_f.{}'.format(fmt)) def plot_normal_force(basin_dir, fmt='pdf'): """ Plot the LJ-like curve of the energy at the basin point as a function of normal spacing dz. Args: basin_dir (str): directory corresponding to the minimum energy on the gamma surface. Generally obtained by the get_basin_and_peak_locations() function. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ n_surface_atoms = get_number_of_surface_atoms() os.chdir('friction/normal') spacings = [float(dir) for dir in os.listdir(os.getcwd()) if os.path.isdir(dir)] spacings.sort() fig = plt.figure(figsize=(16, 10)) ax = fig.gca() ax2 = ax.twinx() abs_E = [ Vasprun('{}/{}/vasprun.xml'.format(spacing, basin_dir)).final_energy / n_surface_atoms for spacing in spacings ] E = [energy - abs_E[-1] for energy in abs_E] spline = interpolate.splrep(spacings, E, s=0) xnew = np.arange(spacings[0], spacings[-1], 0.001) ynew = interpolate.splev(xnew, spline, der=0) ynew_slope = interpolate.splev(spacings, spline, der=1) ax.set_xlim(spacings[0], spacings[-1]) ax.plot([spacings[0], spacings[-1]], [0, 0], '--', color=plt.cm.jet(0)) ax2.plot([spacings[0], spacings[-1]], [0, 0], '--', color=plt.cm.jet(0.9)) E_z = ax.plot(xnew, ynew, color=plt.cm.jet(0), linewidth=4, label=r'$\mathrm{E(z)}$') F_N = ax2.plot(spacings, [-y for y in ynew_slope], color=plt.cm.jet(0.9), linewidth=4, label=r'$\mathrm{F_N}$') ax.set_ylim(ax.get_ylim()) ax.set_xticklabels(ax.get_xticks(), family='serif', fontsize=18) ax.set_yticklabels(ax.get_yticks(), family='serif', fontsize=18) ax2.set_yticklabels(ax2.get_yticks(), family='serif', fontsize=18) ax.set_xlabel(r'$\mathrm{z\/(\AA)}$', fontsize=24) ax.set_ylabel(r'$\mathrm{E(z)\/(eV)}$', fontsize=24) ax2.set_ylabel(r'$\mathrm{F_N\/(eV/\AA)}$', fontsize=24) data = E_z + F_N labs = [l.get_label() for l in data] ax.legend(data, labs, loc='upper right', fontsize=24) ax.plot(spacings, E, linewidth=0, marker='o', color=plt.cm.jet(0), markersize=10, markeredgecolor='none') os.chdir('../../') plt.savefig('F_N.{}'.format(fmt)) def plot_mu_vs_F_N(basin_dir, fmt='pdf'): """ Plot friction coefficient 'mu' vs. F_Normal. mu = F_friction / F_Normal. Args: basin_dir (str): directory corresponding to the minimum energy on the gamma surface. Generally obtained by the get_basin_and_peak_locations() function. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ n_surface_atoms = get_number_of_surface_atoms() fig = plt.figure(figsize=(16, 10)) # ax = fig.gca() # ax2 = ax.twinx() os.chdir('friction/normal') spacings = [float(dir) for dir in os.listdir(os.getcwd()) if os.path.isdir(dir)] spacings.sort() abs_E = [ Vasprun('{}/{}/vasprun.xml'.format(spacing, basin_dir)).final_energy / n_surface_atoms for spacing in spacings ] E = [energy - abs_E[-1] for energy in abs_E] spline = interpolate.splrep(spacings, E, s=0) # xnew = np.arange(spacings[0], spacings[-1], 0.001) # ynew = interpolate.splev(xnew, spline, der=0) ynew_slope = interpolate.splev(spacings, spline, der=1) F_N = [-y * 1.602 for y in ynew_slope] F_f = [] sorted_dirs = sorted([float(spc) for spc in os.listdir(os.getcwd()) if os.path.isdir(spc)]) for spacing in sorted_dirs: os.chdir(str(spacing)) subdirectories = os.listdir(os.getcwd()) amplitude = abs( Vasprun('{}/vasprun.xml'.format(subdirectories[0])).final_energy - Vasprun('{}/vasprun.xml'.format(subdirectories[1])).final_energy ) / (2 * n_surface_atoms) start_coords = Structure.from_file( '{}/POSCAR'.format(subdirectories[0])).sites[-1].coords end_coords = Structure.from_file( '{}/POSCAR'.format(subdirectories[1])).sites[-1].coords dist = np.sqrt( (start_coords[0] - end_coords[0])**2 + (start_coords[1] - end_coords[1])**2) b = (2 * np.pi) / (dist * 2) x = np.arange(0, 4, 0.01) # sinx = [amplitude * np.sin(b * val) + amplitude for val in x] cosx = [b * amplitude * np.cos(b * val) if np.cos(b * val) > 0 else 0 for val in x] F_f.append(max(cosx) * 1.602) os.chdir('../') os.chdir('../../') mu = [f / N for f, N in zip(F_f, F_N)] ax = plt.figure().gca() ax.plot(F_N, mu, linewidth=2, marker='o', markeredgecolor='none', markersize=3, color=plt.cm.jet(0)) plt.savefig('mu_vs_F_N.{}'.format(fmt)) def get_mu_vs_F_N(basin_dir): """ Essentially the same function as plotting, but without the plot. Args: basin_dir (str): directory corresponding to the minimum energy on the gamma surface. Generally obtained by the get_basin_and_peak_locations() function. Returns: dic: Of the form {'F_N': F_N, 'mu': mu, 'F_f': F_f}, where forces are in nN. """ n_surface_atoms = get_number_of_surface_atoms() os.chdir('friction/normal') spacings = [float(dir) for dir in os.listdir(os.getcwd()) if os.path.isdir(dir)] spacings.sort() abs_E = [ Vasprun('{}/{}/vasprun.xml'.format(spacing, basin_dir)).final_energy / n_surface_atoms for spacing in spacings ] E = [energy - abs_E[-1] for energy in abs_E] spline = interpolate.splrep(spacings, E, s=0) xnew = np.arange(spacings[0], spacings[-1], 0.001) ynew = interpolate.splev(xnew, spline, der=0) ynew_slope = interpolate.splev(spacings, spline, der=1) # Convert eV.A to nN F_N = [-y * 1.602 for y in ynew_slope] F_f = [] for spacing in sorted([float(spc) for spc in os.listdir(os.getcwd()) if os.path.isdir(spc)]): os.chdir(str(spacing)) subdirectories = os.listdir(os.getcwd()) try: amplitude = abs( Vasprun('{}/vasprun.xml'.format(subdirectories[0])).final_energy - Vasprun('{}/vasprun.xml'.format(subdirectories[1])).final_energy ) / (2 * n_surface_atoms) except: print('One or more jobs in {}/ have not converged.'.format(spacing)) start_coords = Structure.from_file( '{}/POSCAR'.format(subdirectories[0])).sites[-1].coords end_coords = Structure.from_file( '{}/POSCAR'.format(subdirectories[1])).sites[-1].coords dist = np.sqrt( (start_coords[0] - end_coords[0])**2 + (start_coords[1] - end_coords[1])**2) b = (2 * np.pi) / (dist * 2) x = np.arange(0, 4, 0.01) # sinx = [amplitude * np.sin(b * val) + amplitude for val in x] cosx = [b * amplitude * np.cos(b * val) if np.cos(b * val) > 0 else 0 for val in x] F_f.append(max(cosx) * 1.602) os.chdir('../') os.chdir('../../') mu = [f / N for f, N in zip(F_f, F_N)] return {'F_N': F_N, 'mu': mu, 'F_f': F_f}
32.815789
94
0.592966
0
0
0
0
0
0
0
0
4,543
0.260225
400f0a8fc2e264478738eb502734b3f76efaa361
1,380
py
Python
aiopylimit/tests/test_aiopylimit.py
zealotous/aiopylimit
0f93a06e751b97959835187a05311deaffaed9d8
[ "Apache-2.0" ]
4
2019-05-09T12:39:14.000Z
2022-01-05T20:36:06.000Z
aiopylimit/tests/test_aiopylimit.py
zealotous/aiopylimit
0f93a06e751b97959835187a05311deaffaed9d8
[ "Apache-2.0" ]
null
null
null
aiopylimit/tests/test_aiopylimit.py
zealotous/aiopylimit
0f93a06e751b97959835187a05311deaffaed9d8
[ "Apache-2.0" ]
1
2022-01-05T19:56:49.000Z
2022-01-05T19:56:49.000Z
from aiopylimit import AIOPyRateLimit from aiopylimit import AIOPyRateLimitException import asynctest import asyncio class TestPyLimit(asynctest.TestCase): async def test_exception(self): limit = AIOPyRateLimit(10, 10) await self.assertAsyncRaises(AIOPyRateLimitException, limit.attempt('test_namespace')) async def test_throttle(self): AIOPyRateLimit.init(redis_host="localhost", redis_port=6379, force_new_connection=True) limit = AIOPyRateLimit(10, 10) for x in range(0, 20): await asyncio.sleep(.5) if x < 10: self.assertTrue(await limit.attempt('test_namespace')) else: self.assertFalse(await limit.attempt('test_namespace')) await asyncio.sleep(6) self.assertTrue(await limit.attempt('test_namespace')) async def test_peek(self): AIOPyRateLimit.init(redis_host="localhost", redis_port=6379, force_new_connection=True) limit = AIOPyRateLimit(10, 10) for x in range(0, 10): self.assertTrue(await limit.attempt('test_namespace2')) self.assertTrue(await limit.is_rate_limited('test_namespace2')) await asyncio.sleep(10) self.assertFalse(await limit.is_rate_limited('test_namespace2'))
39.428571
72
0.642754
1,260
0.913043
0
0
0
0
1,205
0.873188
137
0.099275
4010464a9caf650b2a6706b3ea8adb7b2458ae14
5,772
py
Python
bookworm/platform_services/_win32/tesseract_download.py
mush42/bookworm
a4bdd89363137a89a1bed1e9e072de4fb55576fd
[ "MIT" ]
18
2019-07-19T22:12:15.000Z
2020-08-26T17:45:19.000Z
bookworm/platform_services/_win32/tesseract_download.py
mush42/bookworm
a4bdd89363137a89a1bed1e9e072de4fb55576fd
[ "MIT" ]
44
2019-07-15T10:17:00.000Z
2020-07-26T11:22:53.000Z
bookworm/platform_services/_win32/tesseract_download.py
mush42/bookworm
a4bdd89363137a89a1bed1e9e072de4fb55576fd
[ "MIT" ]
9
2019-09-03T13:13:31.000Z
2020-08-25T13:55:27.000Z
# coding: utf-8 import sys import shutil import requests import wx from pathlib import Path from urllib.parse import urljoin, urlsplit from tempfile import TemporaryFile from zipfile import ZipFile from bookworm import typehints as t from bookworm import app from bookworm.http_tools import RemoteJsonResource, HttpResource from bookworm.ocr_engines.tesseract_ocr_engine import ( TesseractOcrEngine, get_tesseract_path, ) from bookworm.logger import logger log = logger.getChild(__name__) BRANCH = "develop" TESSERACT_VERSION_URL = f"https://raw.githubusercontent.com/blindpandas/bookworm/{BRANCH}/packages/tesseract/version" if app.arch == "x86": TESSERACT_ENGINE_DOWNLOAD_URL = f"https://raw.githubusercontent.com/blindpandas/bookworm/{BRANCH}/packages/tesseract/tesseract_x86.zip" else: TESSERACT_ENGINE_DOWNLOAD_URL = f"https://raw.githubusercontent.com/blindpandas/bookworm/{BRANCH}/packages/tesseract/tesseract_x64.zip" FAST_TRAINEDDATA_DOWNLOAD_URL = "https://raw.githubusercontent.com/tesseract-ocr/tessdata_fast/main/{lang_code}.traineddata" BEST_TRAINEDDATA_DOWNLOAD_URL = "https://raw.githubusercontent.com/tesseract-ocr/tessdata_best/main/{lang_code}.traineddata" def get_downloadable_languages(): return ( "afr", "sqi", "amh", "ara", "hye", "asm", "aze_cyrl", "aze", "ben", "eus", "bel", "bos", "bre", "bul", "mya", "cat", "ceb", "chr", "chi_sim", "hrv", "ces", "dan", "nld", "dzo", "eng", "epo", "est", "fao", "fil", "fin", "fra", "glg", "kat_old", "kat", "deu", "ell", "guj", "heb", "hin", "hun", "isl", "ind", "gle", "ita_old", "ita", "jpn_vert", "jpn", "jav", "kan", "kaz", "khm", "kor_vert", "kor", "kmr", "kir", "lao", "lav", "lit", "ltz", "mkd", "msa", "mal", "mlt", "mri", "mar", "mon", "nep", "nor", "ori", "pus", "fas", "pol", "por", "pan", "que", "ron", "rus", "gla", "srp_latn", "srp", "snd", "sin", "slk", "slv", "spa_old", "spa", "sun", "swa", "swe", "tgk", "tam", "tat", "tel", "tha", "bod", "tir", "ton", "tur", "ukr", "urd", "uig", "uzb_cyrl", "uzb", "vie", "cym", "fry", "yid", "yor", ) def is_tesseract_available(): return sys.platform == "win32" and TesseractOcrEngine.check() def get_tessdata(): return get_tesseract_path() / "tessdata" def get_language_path(language): return Path(get_tessdata(), f"{language}.traineddata") def is_new_tesseract_version_available(): remote_version = requests.get(TESSERACT_VERSION_URL).text return TesseractOcrEngine.get_tesseract_version() != remote_version def download_tesseract_engine(progress_dlg): tesseract_directory = get_tesseract_path() callback = lambda prog: progress_dlg.Update(prog.percentage, prog.user_message) try: dl_request = HttpResource(TESSERACT_ENGINE_DOWNLOAD_URL).download() progress_dlg.set_abort_callback(dl_request.cancel) with TemporaryFile() as dlfile: dl_request.download_to_file(dlfile, callback) if dl_request.is_cancelled(): return with progress_dlg.PulseContinuously(_("Extracting file...")): with ZipFile(dlfile, "r") as zfile: tesseract_directory.mkdir(parents=True, exist_ok=True) zfile.extractall(path=tesseract_directory) wx.GetApp().mainFrame.notify_user( # Translators: title of a messagebox _("Success"), # Translators: content of a messagebox _("Tesseract engine downloaded successfully"), ) return True except ConnectionError: log.debug("Failed to download tesseract OCR engine.", exc_info=True) wx.GetApp().mainFrame.notify_user( # Translators: title of a messagebox _("Connection Error"), _( "Could not download Tesseract OCR Engine.\nPlease check your internet and try again." ), icon=wx.ICON_ERROR, ) except: log.exception( "An error occurred while installing the Tesseract OCr Engine", exc_info=True ) wx.GetApp().mainFrame.notify_user( _("Error"), _("Could not install the Tesseract OCR engine.\nPlease try again."), icon=wx.ICON_WARNING, ) def download_language(lang_code, variant, target_file, progress_dlg): url_prefix = ( BEST_TRAINEDDATA_DOWNLOAD_URL if variant == "best" else FAST_TRAINEDDATA_DOWNLOAD_URL ) download_url = url_prefix.format(lang_code=lang_code) callback = lambda prog: progress_dlg.Update(prog.percentage, prog.user_message) dl_request = HttpResource(download_url).download() progress_dlg.set_abort_callback(dl_request.cancel) dl_request.download_to_filesystem(target_file, callback) return not dl_request.is_cancelled() def remove_tesseract(): tesseract_path = get_tesseract_path() shutil.rmtree(tesseract_path, ignore_errors=False)
26
139
0.573458
0
0
0
0
0
0
0
0
1,602
0.277547
4010dc640b95065e204f3d03308d81598d5d3d22
2,448
py
Python
python/plugins/processing/algs/grass7/ext/v_proj.py
dyna-mis/Hilabeling
cb7d5d4be29624a20c8a367162dbc6fd779b2b52
[ "MIT" ]
null
null
null
python/plugins/processing/algs/grass7/ext/v_proj.py
dyna-mis/Hilabeling
cb7d5d4be29624a20c8a367162dbc6fd779b2b52
[ "MIT" ]
null
null
null
python/plugins/processing/algs/grass7/ext/v_proj.py
dyna-mis/Hilabeling
cb7d5d4be29624a20c8a367162dbc6fd779b2b52
[ "MIT" ]
1
2021-12-25T08:40:30.000Z
2021-12-25T08:40:30.000Z
# -*- coding: utf-8 -*- """ *************************************************************************** v_proj.py --------- Date : November 2017 Copyright : (C) 2017 by Médéric Ribreux Email : medspx at medspx dot fr *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Médéric Ribreux' __date__ = 'November 2017' __copyright__ = '(C) 2017, Médéric Ribreux' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '176c06ceefb5f555205e72b20c962740cc0ec183' from qgis.core import QgsProcessingParameterString def processInputs(alg, parameters, context, feedback): # Grab the projection from the input vector layer layer = alg.parameterAsLayer(parameters, 'input', context) alg.setSessionProjectionFromLayer(layer) layerCrs = layer.crs().toProj4() # Creates a new location with this Crs newLocation = 'newProj{}'.format(alg.uniqueSuffix) alg.commands.append('g.proj proj4="{}" location={}'.format( layerCrs, newLocation)) # Go to the newly created location alg.commands.append('g.mapset mapset=PERMANENT location={}'.format( newLocation)) # Import the layer alg.loadVectorLayerFromParameter( 'input', parameters, context, feedback, False) # Go back to default location alg.commands.append('g.mapset mapset=PERMANENT location=temp_location') # Grab the projected Crs crs = alg.parameterAsCrs(parameters, 'crs', context) alg.commands.append('g.proj -c proj4="{}"'.format( crs.toProj4(), newLocation)) # Remove crs parameter alg.removeParameter('crs') # Add the location parameter with proper value location = QgsProcessingParameterString( 'location', 'new location', 'newProj{}'.format(alg.uniqueSuffix) ) alg.addParameter(location)
36
75
0.561683
0
0
0
0
0
0
0
0
1,534
0.625102
401141d52ec8be8928fc937b5ae582051fa62e45
1,919
py
Python
examples/diode/gmsh_diode2d.py
QuantumOfMoose/devsim
22f888119059a86bfc87ba9e7d9ac2cc90dadfb6
[ "Apache-2.0" ]
null
null
null
examples/diode/gmsh_diode2d.py
QuantumOfMoose/devsim
22f888119059a86bfc87ba9e7d9ac2cc90dadfb6
[ "Apache-2.0" ]
null
null
null
examples/diode/gmsh_diode2d.py
QuantumOfMoose/devsim
22f888119059a86bfc87ba9e7d9ac2cc90dadfb6
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Devsim LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from devsim import * from devsim.python_packages.simple_physics import * import diode_common device="diode2d" region="Bulk" diode_common.Create2DGmshMesh(device, region) # this is is the devsim format write_devices (file="gmsh_diode2d_out.msh") diode_common.SetParameters(device=device, region=region) #### #### NetDoping #### node_model(device=device, region=region, name="Acceptors", equation="1.0e18*step(0.5e-5-y);") node_model(device=device, region=region, name="Donors" , equation="1.0e18*step(y-0.5e-5);") node_model(device=device, region=region, name="NetDoping", equation="Donors-Acceptors;") diode_common.InitialSolution(device, region) #### #### Initial DC solution #### solve(type="dc", absolute_error=1.0, relative_error=1e-12, maximum_iterations=30) ### ### Drift diffusion simulation at equilibrium ### diode_common.DriftDiffusionInitialSolution(device, region) solve(type="dc", absolute_error=1e10, relative_error=1e-10, maximum_iterations=50) v = 0.0 while v < 0.51: set_parameter(device=device, name=GetContactBiasName("top"), value=v) solve(type="dc", absolute_error=1e10, relative_error=1e-10, maximum_iterations=30) PrintCurrents(device, "top") PrintCurrents(device, "bot") v += 0.1 write_devices(file="gmsh_diode2d.dat", type="tecplot") write_devices(file="gmsh_diode2d_dd.msh", type="devsim")
30.951613
93
0.755602
0
0
0
0
0
0
0
0
913
0.475769
40114e46f1a2c773c276da8bbeeb5529999aac68
470
py
Python
python/astro_imaging/config.py
taranu/astro_imaging
a5a712576bd12762dc69f826703e077a859d8ec0
[ "Apache-2.0" ]
null
null
null
python/astro_imaging/config.py
taranu/astro_imaging
a5a712576bd12762dc69f826703e077a859d8ec0
[ "Apache-2.0" ]
null
null
null
python/astro_imaging/config.py
taranu/astro_imaging
a5a712576bd12762dc69f826703e077a859d8ec0
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass import os path_base_default = os.getenv('ASTRO_IMAGING_DATA_PATH', default='./') @dataclass class Paths: base: str = path_base_default catalogs: str = None images: str = None def __post_init__(self): if self.catalogs is None: self.catalogs = os.path.join(self.base, 'catalogs') if self.images is None: self.images = os.path.join(self.base, 'images') paths_default = Paths()
22.380952
70
0.66383
314
0.668085
0
0
325
0.691489
0
0
47
0.1
4011b94aee384459cb359f2d52855f8d32eb9b50
8,018
py
Python
AT.py
MTandHJ/roboc
43e5b2f9ea520b76221a7334d34ef4aaf9b3334b
[ "MIT" ]
8
2021-06-07T11:02:38.000Z
2022-03-17T11:30:28.000Z
AT.py
MTandHJ/roboc
43e5b2f9ea520b76221a7334d34ef4aaf9b3334b
[ "MIT" ]
null
null
null
AT.py
MTandHJ/roboc
43e5b2f9ea520b76221a7334d34ef4aaf9b3334b
[ "MIT" ]
null
null
null
#!/usr/bin/env python from typing import Tuple import argparse from src.loadopts import * METHOD = "RobOC-AT" SAVE_FREQ = 5 PRINT_FREQ = 20 FMT = "{description}={scale}-{leverage}" \ "={learning_policy}-{optimizer}-{lr}" \ "={attack}-{epsilon:.4f}-{stepsize}-{steps}" \ "={batch_size}={transform}" parser = argparse.ArgumentParser() parser.add_argument("model", type=str) parser.add_argument("dataset", type=str) # for orthogonal classifier parser.add_argument("--scale", type=float, default=10., help="the length of weights") parser.add_argument("--leverage", type=float, default=0.15, help="the hyper-parameter governs the relative weight between clean and adversarial samples") # adversarial training settings parser.add_argument("--attack", type=str, default="pgd-squared") parser.add_argument("--epsilon", type=float, default=8/255) parser.add_argument("--stepsize", type=float, default=0.25, help="pgd:rel_stepsize, cwl2:step_size, deepfool:overshoot, bb:lr") parser.add_argument("--steps", type=int, default=10) # basic settings parser.add_argument("--loss", type=str, default="square") parser.add_argument("--optimizer", type=str, choices=("sgd", "adam"), default="sgd") parser.add_argument("-mom", "--momentum", type=float, default=0.9, help="the momentum used for SGD") parser.add_argument("-beta1", "--beta1", type=float, default=0.9, help="the first beta argument for Adam") parser.add_argument("-beta2", "--beta2", type=float, default=0.999, help="the second beta argument for Adam") parser.add_argument("-wd", "--weight_decay", type=float, default=5e-4, help="weight decay") parser.add_argument("-lr", "--lr", "--LR", "--learning_rate", type=float, default=0.1) parser.add_argument("-lp", "--learning_policy", type=str, default="default", help="learning rate schedule defined in config.py") parser.add_argument("--epochs", type=int, default=180) parser.add_argument("-b", "--batch_size", type=int, default=128) parser.add_argument("--transform", type=str, default='default', help="the data augmentation which will be applied during training.") parser.add_argument("--resume", action="store_true", default=False) parser.add_argument("--progress", action="store_true", default=False, help="show the progress if true") parser.add_argument("--seed", type=int, default=1) parser.add_argument("-m", "--description", type=str, default="RobOC-AT") opts = parser.parse_args() opts.description = FMT.format(**opts.__dict__) def load_cfg() -> Tuple[Config, str]: from src.dict2obj import Config from src.base import Coach, AdversaryForTrain from src.utils import gpu, set_seed, load_checkpoint cfg = Config() set_seed(opts.seed) # the model and other settings for training model = load_model(opts.model)( num_classes=get_num_classes(opts.dataset), scale=opts.scale ) device = gpu(model) # load the dataset trainset = load_dataset( dataset_type=opts.dataset, transform=opts.transform, train=True ) cfg['trainloader'] = load_dataloader( dataset=trainset, batch_size=opts.batch_size, train=True, show_progress=opts.progress ) testset = load_dataset( dataset_type=opts.dataset, transform=opts.transform, train=False ) cfg['testloader'] = load_dataloader( dataset=testset, batch_size=opts.batch_size, train=False, show_progress=opts.progress ) normalizer = load_normalizer(dataset_type=opts.dataset) # load the optimizer and learning_policy optimizer = load_optimizer( model=model, optim_type=opts.optimizer, lr=opts.lr, momentum=opts.momentum, betas=(opts.beta1, opts.beta2), weight_decay=opts.weight_decay ) learning_policy = load_learning_policy( optimizer=optimizer, learning_policy_type=opts.learning_policy, T_max=opts.epochs ) # generate the path for logging information and saving parameters cfg['info_path'], cfg['log_path'] = generate_path( method=METHOD, dataset_type=opts.dataset, model=opts.model, description=opts.description ) if opts.resume: cfg['start_epoch'] = load_checkpoint( path=cfg.info_path, model=model, optimizer=optimizer, lr_scheduler=learning_policy ) else: cfg['start_epoch'] = 0 cfg['coach'] = Coach( model=model, device=device, loss_func=load_loss_func(opts.loss)(model=model), normalizer=normalizer, optimizer=optimizer, learning_policy=learning_policy ) # set the attack attack, bounds, preprocessing = load_attacks( attack_type=opts.attack, dataset_type=opts.dataset, stepsize=opts.stepsize, steps=opts.steps ) cfg['attacker'] = AdversaryForTrain( model=model, attacker=attack, device=device, bounds=bounds, preprocessing=preprocessing, epsilon=opts.epsilon ) cfg['valider'] = load_valider( model=model, device=device, dataset_type=opts.dataset ) return cfg def evaluate( valider, trainloader, testloader, acc_logger, rob_logger, writter, epoch = 8888 ): train_accuracy, train_success = valider.evaluate(trainloader) valid_accuracy, valid_success = valider.evaluate(testloader) print(f"Train >>> [TA: {train_accuracy:.5f}] [RA: {1 - train_success:.5f}]") print(f"Test. >>> [TA: {valid_accuracy:.5f}] [RA: {1 - valid_success:.5f}]") writter.add_scalars("Accuracy", {"train":train_accuracy, "valid":valid_accuracy}, epoch) writter.add_scalars("Success", {"train":train_success, "valid":valid_success}, epoch) acc_logger.train(data=train_accuracy, T=epoch) acc_logger.valid(data=valid_accuracy, T=epoch) rob_logger.train(data=1 - train_success, T=epoch) rob_logger.valid(data=1 - valid_success, T=epoch) def main( coach, attacker, valider, trainloader, testloader, start_epoch, info_path, log_path ): from src.utils import save_checkpoint, TrackMeter, ImageMeter from src.dict2obj import Config acc_logger = Config( train=TrackMeter("Train"), valid=TrackMeter("Valid") ) acc_logger.plotter = ImageMeter(*acc_logger.values(), title="Accuracy") rob_logger = Config( train=TrackMeter("Train"), valid=TrackMeter("Valid") ) rob_logger.plotter = ImageMeter(*rob_logger.values(), title="Robustness") for epoch in range(start_epoch, opts.epochs): if epoch % SAVE_FREQ == 0: save_checkpoint(info_path, coach.model, coach.optimizer, coach.learning_policy, epoch) if epoch % PRINT_FREQ == 0: evaluate( valider=valider, trainloader=trainloader, testloader=testloader, acc_logger=acc_logger, rob_logger=rob_logger, writter=writter, epoch=epoch ) running_loss = coach.adv_train(trainloader, attacker, leverage=opts.leverage, epoch=epoch) writter.add_scalar("Loss", running_loss, epoch) evaluate( valider=valider, trainloader=trainloader, testloader=testloader, acc_logger=acc_logger, rob_logger=rob_logger, writter=writter, epoch=opts.epochs ) acc_logger.plotter.plot() rob_logger.plotter.plot() acc_logger.plotter.save(writter) rob_logger.plotter.save(writter) if __name__ == "__main__": from torch.utils.tensorboard import SummaryWriter from src.utils import mkdirs, readme cfg = load_cfg() mkdirs(cfg.info_path, cfg.log_path) readme(cfg.info_path, opts) readme(cfg.log_path, opts, mode="a") writter = SummaryWriter(log_dir=cfg.log_path, filename_suffix=METHOD) main(**cfg) cfg['coach'].save(cfg.info_path) writter.close()
33.974576
109
0.669494
0
0
0
0
0
0
0
0
1,619
0.201921
4012033dc557a9acee5693b0291d1d05afe295c0
680
py
Python
notesapp/api_v1/models.py
kampkelly/drf_template
44cda3fd4ebf0dc073a46205b392d5e783d9ceea
[ "MIT" ]
null
null
null
notesapp/api_v1/models.py
kampkelly/drf_template
44cda3fd4ebf0dc073a46205b392d5e783d9ceea
[ "MIT" ]
null
null
null
notesapp/api_v1/models.py
kampkelly/drf_template
44cda3fd4ebf0dc073a46205b392d5e783d9ceea
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class CommonFieldsMixin(models.Model): """Add created_at and updated_at fields.""" created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, null=True) class Meta: """Define metadata options.""" abstract = True class Category(CommonFieldsMixin): name = models.CharField(max_length=250,null=False,unique=True) class Notes(CommonFieldsMixin): title = models.CharField(max_length=250,null=False,unique=False) body = models.TextField(null=False) category = models.ForeignKey(Category,on_delete=models.CASCADE,default=None)
23.448276
80
0.733824
611
0.898529
0
0
0
0
0
0
99
0.145588
401276c3187f1d2baed3d5f8ab8ae0afba6d8f18
8,534
py
Python
src/main_TS_tsconv_jma.py
inoue0406/radarJMA
f8996c3fe201f97d414fc96c4abfc6f930738d47
[ "MIT" ]
6
2018-12-20T00:32:17.000Z
2021-05-24T08:29:08.000Z
src/main_TS_tsconv_jma.py
inoue0406/radarJMA
f8996c3fe201f97d414fc96c4abfc6f930738d47
[ "MIT" ]
null
null
null
src/main_TS_tsconv_jma.py
inoue0406/radarJMA
f8996c3fe201f97d414fc96c4abfc6f930738d47
[ "MIT" ]
4
2018-09-20T07:08:03.000Z
2020-06-07T21:43:31.000Z
# seq2seq LSTM (no-convolutional model) for time series prediction import numpy as np import torch import torchvision import torch.utils.data as data import torchvision.transforms as transforms import pandas as pd import h5py import os import sys import json import time import pdb from jma_timeseries_dataset import * from scaler import * from train_valid_epoch_tsconv import * from utils import Logger from opts_ts import parse_opts def count_parameters(model,f): for name,p in model.named_parameters(): f.write("name,"+name+", Trainable, "+str(p.requires_grad)+",#params, "+str(p.numel())+"\n") Nparam = sum(p.numel() for p in model.parameters()) Ntrain = sum(p.numel() for p in model.parameters() if p.requires_grad) f.write("Number of params:"+str(Nparam)+", Trainable parameters:"+str(Ntrain)+"\n") print("Number of params:"+str(Nparam)+", Trainable parameters:"+str(Ntrain)+"\n") if __name__ == '__main__': # parse command-line options opt = parse_opts() print(opt) # create result dir if not os.path.exists(opt.result_path): os.mkdir(opt.result_path) with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file: json.dump(vars(opt), opt_file) # generic log file logfile = open(os.path.join(opt.result_path, 'log_run.txt'),'w') logfile.write('Start time:'+time.ctime()+'\n') tstart = time.time() # model information modelinfo = open(os.path.join(opt.result_path, 'model_info.txt'),'w') # prepare scaler for data if opt.data_scaling == 'linear': scl = LinearScaler() if opt.data_scaling == 'root': scl = RootScaler() if not opt.no_train: # loading datasets train_dataset = JMATSConvDataset(csv_data=opt.train_data_path, csv_anno=opt.train_anno_path, use_var=opt.use_var, root_dir=None, tdim_use=opt.tdim_use, resize=opt.data_resize, transform=None) valid_dataset = JMATSConvDataset(csv_data=opt.valid_data_path, csv_anno=opt.valid_anno_path, use_var=opt.use_var, root_dir=None, tdim_use=opt.tdim_use, resize=opt.data_resize, transform=None) #tstdata = next(iter(train_dataset)) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=opt.batch_size, num_workers=7, drop_last=True, shuffle=True) valid_loader = torch.utils.data.DataLoader(dataset=valid_dataset, batch_size=opt.batch_size, num_workers=7, drop_last=True, shuffle=False) if opt.model_name == 'seq2seq': # lstm seq2seq model CONV_HID_DIM = 32 INPUT_DIM = 1 + CONV_HID_DIM OUTPUT_DIM = 1 HID_DIM = 512 N_LAYERS = 3 ENC_DROPOUT = 0.5 DEC_DROPOUT = 0.5 from models.seq2seq_convlstm_ts import * enc = Encoder(INPUT_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT) dec = Decoder(OUTPUT_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT) model = Seq2SeqConv(enc, dec, CONV_HID_DIM, device='cuda').cuda() if opt.transfer_path != 'None': # Use pretrained weights for transfer learning print('loading pretrained model:',opt.transfer_path) model = torch.load(opt.transfer_path) modelinfo.write('Model Structure \n') modelinfo.write(str(model)) count_parameters(model,modelinfo) # modelinfo.close() if opt.loss_function == 'MSE': loss_fn = torch.nn.MSELoss() # Type of optimizers adam/rmsprop if opt.optimizer == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=opt.learning_rate) elif opt.optimizer == 'rmsprop': optimizer = torch.optim.RMSprop(model.parameters(), lr=opt.learning_rate) # learning rate scheduler scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=opt.lr_decay) # Prep logger train_logger = Logger( os.path.join(opt.result_path, 'train.log'), ['epoch', 'loss', 'lr']) train_batch_logger = Logger( os.path.join(opt.result_path, 'train_batch.log'), ['epoch', 'batch', 'loss', 'lr']) valid_logger = Logger( os.path.join(opt.result_path, 'valid.log'), ['epoch', 'loss']) # training for epoch in range(1,opt.n_epochs+1): if epoch < 10: # freeze conv_encoder for first 10 epochs submodel = next(iter(model.children())) for param in submodel.parameters(): param.requires_grad = False else: # unfreeze conv_encoder for the rest submodel = next(iter(model.children())) for param in submodel.parameters(): param.requires_grad = True count_parameters(model,modelinfo) #import pdb;pdb.set_trace() # step scheduler scheduler.step() # training & validation train_epoch(epoch,opt.n_epochs,train_loader,model,loss_fn,optimizer, train_logger,train_batch_logger,opt,scl) valid_epoch(epoch,opt.n_epochs,valid_loader,model,loss_fn, valid_logger,opt,scl) if epoch % opt.checkpoint == 0: # save the trained model for every checkpoint # (1) as binary torch.save(model,os.path.join(opt.result_path, 'trained_seq2seq_epoch%03d.model' % epoch)) # (2) as state dictionary torch.save(model.state_dict(), os.path.join(opt.result_path, 'trained_seq2seq_epoch%03d.dict' % epoch)) # save the trained model # (1) as binary torch.save(model,os.path.join(opt.result_path, 'trained_seq2seq.model')) # (2) as state dictionary torch.save(model.state_dict(), os.path.join(opt.result_path, 'trained_seq2seq.dict')) # test datasets if specified if opt.test: if opt.no_train: #load pretrained model from results directory model_fname = os.path.join(opt.result_path, opt.test_model_fname) print('loading pretrained model:',model_fname) model = torch.load(model_fname) loss_fn = torch.nn.MSELoss() # prepare loader test_dataset = JMATSConvDataset(csv_data=opt.test_data_path, csv_anno=opt.test_anno_path, use_var=opt.use_var, root_dir=None, tdim_use=opt.tdim_use, transform=None) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, # batch_size=opt.batch_size, batch_size=3, # small batch size used num_workers=7, drop_last=True, shuffle=False) # testing for the trained model test_epoch(test_loader,model,loss_fn,opt,scl) # output elapsed time logfile.write('End time: '+time.ctime()+'\n') tend = time.time() tdiff = float(tend-tstart)/3600.0 logfile.write('Elapsed time[hours]: %f \n' % tdiff)
40.832536
99
0.522498
0
0
0
0
0
0
0
0
1,525
0.178697
40131096d61db66fe053946df5d75b8d65c51a7a
556
py
Python
bell2014/energy/prob_abs_s.py
dmaugis/intrinsic
e223fc8abceb2bf26f9a7752d72afe598ac4e1fd
[ "MIT" ]
134
2015-01-04T04:54:19.000Z
2021-10-16T07:39:02.000Z
bell2014/energy/prob_abs_s.py
dmaugis/intrinsic
e223fc8abceb2bf26f9a7752d72afe598ac4e1fd
[ "MIT" ]
10
2016-07-30T21:45:11.000Z
2021-03-03T14:12:50.000Z
bell2014/energy/prob_abs_s.py
dmaugis/intrinsic
e223fc8abceb2bf26f9a7752d72afe598ac4e1fd
[ "MIT" ]
34
2015-01-14T16:39:27.000Z
2021-10-31T11:29:50.000Z
import numpy as np class ProbAbsoluteShading(object): def __init__(self, params): self.params = params def cost(self, s_nz): if self.params.abs_shading_weight: if self.params.abs_shading_log: return self.params.abs_shading_weight * \ np.abs(np.log(s_nz) - np.log(self.params.abs_shading_gray_point)) else: return self.params.abs_shading_weight * \ np.abs(s_nz - self.params.abs_shading_gray_point) else: return 0
30.888889
85
0.591727
534
0.960432
0
0
0
0
0
0
0
0