hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
406a21613d9b1dbc55f543cfe42bc9ef9b68a79c
1,749
py
Python
tests/bugs/core_2678_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2022-02-05T11:37:13.000Z
2022-02-05T11:37:13.000Z
tests/bugs/core_2678_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-09-03T11:47:00.000Z
2021-09-03T12:42:10.000Z
tests/bugs/core_2678_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-06-30T14:14:16.000Z
2021-06-30T14:14:16.000Z
#coding:utf-8 # # id: bugs.core_2678 # title: Full outer join cannot use available indices (very slow execution) # decription: # tracker_id: CORE-2678 # min_versions: ['3.0'] # versions: 3.0 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 3.0 # resources: None substitutions_1 = [] init_script_1 = """""" db_1 = db_factory(sql_dialect=3, init=init_script_1) test_script_1 = """ create table td_data1 ( c1 varchar(20) character set win1251 not null collate win1251, c2 integer not null, c3 date not null, d1 float not null ); create index idx_td_data1 on td_data1(c1,c2,c3); commit; create table td_data2 ( c1 varchar(20) character set win1251 not null collate win1251, c2 integer not null, c3 date not null, d2 float not null ); create index idx_td_data2 on td_data2(c1,c2,c3); commit; set planonly; select d1.c1, d2.c1, d1.c2, d2.c2, d1.c3, d2.c3, coalesce(sum(d1.d1), 0) t1, coalesce(sum(d2.d2), 0) t2 from td_data1 d1 full join td_data2 d2 on d2.c1 = d1.c1 and d2.c2 = d1.c2 and d2.c3 = d1.c3 group by d1.c1, d2.c1, d1.c2, d2.c2, d1.c3, d2.c3; """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ PLAN SORT (JOIN (JOIN (D2 NATURAL, D1 INDEX (IDX_TD_DATA1)), JOIN (D1 NATURAL, D2 INDEX (IDX_TD_DATA2)))) """ @pytest.mark.version('>=3.0') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.execute() assert act_1.clean_stdout == act_1.clean_expected_stdout
23.958904
109
0.619211
0
0
0
0
183
0.104631
0
0
1,290
0.737564
406ae0237fa650007fb4d1f31a942b053762212b
962
py
Python
application/model/entity/category.py
UniversidadeDeVassouras/labproghiper-2020.1-MatheusTelles-p1
d0d81fc82d031f7add9e38add765aad0c404ee35
[ "Apache-2.0" ]
1
2020-07-15T14:23:30.000Z
2020-07-15T14:23:30.000Z
application/model/entity/category.py
UniversidadeDeVassouras/labproghiper-2020.1-MatheusTelles-p1
d0d81fc82d031f7add9e38add765aad0c404ee35
[ "Apache-2.0" ]
null
null
null
application/model/entity/category.py
UniversidadeDeVassouras/labproghiper-2020.1-MatheusTelles-p1
d0d81fc82d031f7add9e38add765aad0c404ee35
[ "Apache-2.0" ]
null
null
null
from flask import current_app class Category: def __init__(self, id, name, description, thumb): self._id = id self._name = name self._description = description def setId(self, id): self._id = id def getId(self): return self._id def setName(self, name): self._name = name def getName(self): return self._name def setDescription(self, description): self._description = description def getDescription(self): return self._description def setThumb(self, thumb): self._thumb = thumb def getThumb(self): return self._thumb def get_video_category_id (self): videos = current_app.config ['videos'] videos_category = [] for i, video in enumerate (videos.get_video_list()): if video.getCategory_id () == self.getId(): videos_category.append (video) return videos_category
24.666667
60
0.613306
931
0.967775
0
0
0
0
0
0
8
0.008316
406b1ddec2cc13a47e3515d6e9a2b41aa445fd1b
76
py
Python
cookietemple/create/templates/cli/cli_python/{{ cookiecutter.project_slug_no_hyphen }}/tests/__init__.py
e2jk/cookietemple
86af5622cdabe9ae446048536571898716939f29
[ "Apache-2.0" ]
117
2020-11-23T02:07:23.000Z
2022-03-21T16:14:53.000Z
cookietemple/create/templates/cli/cli_python/{{ cookiecutter.project_slug_no_hyphen }}/tests/__init__.py
e2jk/cookietemple
86af5622cdabe9ae446048536571898716939f29
[ "Apache-2.0" ]
226
2020-10-19T19:58:13.000Z
2022-03-27T18:54:30.000Z
cookietemple/create/templates/cli/cli_python/{{ cookiecutter.project_slug_no_hyphen }}/tests/__init__.py
e2jk/cookietemple
86af5622cdabe9ae446048536571898716939f29
[ "Apache-2.0" ]
9
2020-11-24T12:45:10.000Z
2022-03-13T15:58:23.000Z
"""Test suite for the {{ cookiecutter.project_slug_no_hyphen }} package."""
38
75
0.736842
0
0
0
0
0
0
0
0
75
0.986842
406bcb88801f876f8613c7d8e41183ccf8efc7dd
153
py
Python
bricks/ev3dev/modules/pybricks/robotics.py
ZPhilo/pybricks-micropython
bf3072b6f7dd87b60e50d7c2130ca3c393a5709f
[ "MIT" ]
115
2020-06-15T16:43:14.000Z
2022-03-21T21:11:57.000Z
bricks/ev3dev/modules/pybricks/robotics.py
ZPhilo/pybricks-micropython
bf3072b6f7dd87b60e50d7c2130ca3c393a5709f
[ "MIT" ]
83
2020-06-17T17:19:29.000Z
2022-03-08T18:50:35.000Z
bricks/ev3dev/modules/pybricks/robotics.py
BertLindeman/pybricks-micropython
8f22a99551100e66ddf08d014d9f442f22b33b4d
[ "MIT" ]
40
2020-06-15T18:36:39.000Z
2022-03-28T13:22:43.000Z
# SPDX-License-Identifier: MIT # Copyright (c) 2018-2020 The Pybricks Authors """Pybricks robotics module.""" from _pybricks.robotics import DriveBase
21.857143
46
0.771242
0
0
0
0
0
0
0
0
107
0.699346
406bff6901669314a484753b5d5e8d18397cb7b2
3,693
py
Python
flask-app/web_app/storage_manager/storage_manager.py
PetrMokrov/back_end_project
4dd58d61e637d10872fe58a154dc89f6d0829d94
[ "MIT" ]
null
null
null
flask-app/web_app/storage_manager/storage_manager.py
PetrMokrov/back_end_project
4dd58d61e637d10872fe58a154dc89f6d0829d94
[ "MIT" ]
null
null
null
flask-app/web_app/storage_manager/storage_manager.py
PetrMokrov/back_end_project
4dd58d61e637d10872fe58a154dc89f6d0829d94
[ "MIT" ]
1
2019-04-02T12:30:13.000Z
2019-04-02T12:30:13.000Z
#!/usr/bin/env python import psycopg2 import time from ..models import User class StorageManager: def __init__(self): self.conn = None self._connect() self._create_table() def _connect(self): while True: try: self.conn = psycopg2.connect( host='storage', database='app_storage', user='admin', password='admin' ) except psycopg2.Error: print('Cannot connect to database, sleeping 3 seconds') time.sleep(3) else: break def _create_table(self): while True: try: cursor = self.conn.cursor() cursor.execute('CREATE TABLE IF NOT EXISTS users \ (id SERIAL PRIMARY KEY, login VARCHAR(128), \ email VARCHAR(128), hash_password VARCHAR(132), \ confirmed BOOLEAN)') except psycopg2.Error: print('Database error, reconnecting') self._connect() else: break def insert(self, user): ''' If insert is success, the function returns true, Else, it returns false ''' while True: try: if self.select(user.login, category='login') is not None: return False cursor = self.conn.cursor() cursor.execute('INSERT INTO users(login, email, hash_password, confirmed) \ VALUES (%s, %s, %s, %s)', (user.login, user.email, user.hash_password, user.confirmed)) self.conn.commit() return True except psycopg2.Error: print('Database error, reconnecting') time.sleep(1) self._connect() else: break def select(self, value, category='login'): ''' The function returns None, if there is no user with very value of category, else it returns User instance ''' while True: try: cursor = self.conn.cursor() cursor.execute('SELECT * FROM users WHERE %s = %%s' % category, (value,)) self.conn.commit() fetch = cursor.fetchall() if len(fetch) == 0: return None user = User(fetch[0][1], fetch[0][2]) user.id = fetch[0][0] user.hash_password = fetch[0][3] user.confirmed = fetch[0][4] return user except psycopg2.Error: print('Database error, reconnecting') time.sleep(1) self._connect() else: break def confirm(self, value, category='login'): ''' The function sets \'confirmed\' parameter of the user with very value of category as True\n If such user not found, returns False, else returns True ''' while True: try: if self.select(value, category=category) is not None: cursor = self.conn.cursor() cursor.execute('UPDATE users SET confirmed = TRUE WHERE %s = %%s' % category, (value,)) self.conn.commit() return True else: return False except psycopg2.Error: print('Database error, reconnecting') time.sleep(1) self._connect() else: break
33.572727
107
0.479285
3,614
0.978608
0
0
0
0
0
0
1,072
0.290279
406c19e470ed1397c6d2535e8a38599b7798d3a3
2,906
py
Python
custom/ahex.py
piyush1104/ColorHelper
7321cc2642f82c701e3c9c1ff1ebdad3a8ff19dc
[ "MIT" ]
null
null
null
custom/ahex.py
piyush1104/ColorHelper
7321cc2642f82c701e3c9c1ff1ebdad3a8ff19dc
[ "MIT" ]
null
null
null
custom/ahex.py
piyush1104/ColorHelper
7321cc2642f82c701e3c9c1ff1ebdad3a8ff19dc
[ "MIT" ]
null
null
null
"""Custon color that looks for colors of format `#RRGGBBAA` as `#AARRGGBB`.""" from coloraide.css.colors import Color, SRGB from coloraide.colors import _parse as parse from coloraide import util import copy import re class ASRGB(SRGB): """SRGB that looks for alpha first in hex format.""" MATCH = re.compile(r"(?i)\#(?:{hex}{{8}}|{hex}{{6}})\b".format(**parse.COLOR_PARTS)) @classmethod def match(cls, string, start=0, fullmatch=True): """Match a CSS color string.""" m = cls.MATCH.match(string, start) if m is not None and (not fullmatch or m.end(0) == len(string)): return cls.split_channels(m.group(0)), m.end(0) return None, None @classmethod def translate_channel(cls, channel, value): """Translate channel string.""" if -1 <= channel <= 2: return parse.norm_hex_channel(value) else: raise ValueError("Unexpected channel index of '{}'".format(channel)) @classmethod def split_channels(cls, color): """Split channels.""" if len(color) == 9: return ( cls.translate_channel(0, "#" + color[3:5]), cls.translate_channel(1, "#" + color[5:7]), cls.translate_channel(2, "#" + color[7:]), cls.translate_channel(-1, "#" + color[1:3]), ) else: return ( cls.translate_channel(0, "#" + color[1:3]), cls.translate_channel(1, "#" + color[3:5]), cls.translate_channel(2, "#" + color[5:]), 1.0 ) def to_string( self, *, options=None, alpha=None, precision=util.DEF_PREC, fit=True, **kwargs ): """Convert to Hex format.""" if options is None: options = {} show_alpha = alpha is not False and (alpha is True or self.alpha < 1.0) template = "#{:02x}{:02x}{:02x}{:02x}" if show_alpha else "#{:02x}{:02x}{:02x}" if options.get("hex_upper"): template = template.upper() # Always fit hex coords = self.fit_coords() if show_alpha: value = template.format( int(util.round_half_up(self.alpha * 255.0)), int(util.round_half_up(coords[0] * 255.0)), int(util.round_half_up(coords[1] * 255.0)), int(util.round_half_up(coords[2] * 255.0)) ) else: value = template.format( int(util.round_half_up(coords[0] * 255.0)), int(util.round_half_up(coords[1] * 255.0)), int(util.round_half_up(coords[2] * 255.0)) ) return value class ColorAlphaHex(Color): """Color object whose sRGB color space looks for colors of format `#RRGGBBAA` as `#AARRGGBB`.""" CS_MAP = copy.copy(Color.CS_MAP) CS_MAP["srgb"] = ASRGB
33.022727
100
0.547144
2,682
0.922918
0
0
1,214
0.417756
0
0
509
0.175155
406c1c0028a84aba8bcd01a2421dbf11b583f400
2,115
py
Python
source_code/terrain.py
Wiolarz/Console_PY_dungeon
cbf3b9a68251b9ce620aac1f4ca36361160186ea
[ "Apache-2.0" ]
null
null
null
source_code/terrain.py
Wiolarz/Console_PY_dungeon
cbf3b9a68251b9ce620aac1f4ca36361160186ea
[ "Apache-2.0" ]
2
2021-11-29T16:26:03.000Z
2021-11-29T16:27:14.000Z
source_code/terrain.py
Wiolarz/Console_PY_dungeon
cbf3b9a68251b9ce620aac1f4ca36361160186ea
[ "Apache-2.0" ]
null
null
null
import random import jobs import balance from economy import roman_numbers class Earth: def __init__(self): self.current_day = 1 self.main_quest = None self.amount_location = 7 # max 8 self.locations = [] # self.location_names = [] def new_quest(self): self.main_quest = jobs.Quest() def generate_location(self): x = 0 for place in range(self.amount_location): self.locations.append(Location(place + 1, self.amount_location, x)) # level, overall location number x += 1 def name_generator(): prefix = ["", "Green", "Dark", "Toxic", "Inferno", "Orc", "Goblin", "Dragon"] core = ["Forest", "Cave", "Dungeon", "Town", "Village", "Mountains", "Graveyard"] # suffix = ["", ""] new_unique = False new_name = "" cheking_wrong_balance = 0 while not new_unique: cheking_wrong_balance += 1 if cheking_wrong_balance > balance.world.amount_location * 5: print("Error: cannot create random new location name") exit(343) new_name = prefix[random.randint(0, len(prefix)-1)] + " " + core[random.randint(0, len(core)-1)] if new_name in balance.world.location_names: new_unique = False else: new_unique = True balance.world.location_names.append(new_name) return new_name class Location: def __init__(self, location_level, amount, id_x): self.id = id_x self.name = name_generator() self.level = location_level self.quest_level = location_level + 2 if self.quest_level > balance.max_power: self.quest_level = balance.max_power self.chest_gold = location_level * balance.medium self.density = 5 # number of events in location self.chest_chance = 3 # %(10) chest chance self.quest_enemy = 5 # %(10) chance of quest related enemy self.location_names = [] self.amount_location = amount def short_print(self): return self.name + " " + roman_numbers(self.level)
27.467532
113
0.613239
1,214
0.573995
0
0
0
0
0
0
313
0.147991
406d45c5b1e3edd5a8eec1e610e28a22eb3881b2
2,190
py
Python
entrepreneurial_property/models/scientificpark.py
CzechInvest/ciis
c6102598f564a717472e5e31e7eb894bba2c8104
[ "MIT" ]
1
2019-05-26T22:24:01.000Z
2019-05-26T22:24:01.000Z
entrepreneurial_property/models/scientificpark.py
CzechInvest/ciis
c6102598f564a717472e5e31e7eb894bba2c8104
[ "MIT" ]
6
2019-01-22T14:53:43.000Z
2020-09-22T16:20:28.000Z
entrepreneurial_property/models/scientificpark.py
CzechInvest/ciis
c6102598f564a717472e5e31e7eb894bba2c8104
[ "MIT" ]
null
null
null
from django.db import models from .media import Water from .media import Electricity from .media import Gas from .media import WasteWater from .media import Telecommunication from .generic import Attachment from .generic import Photo from .generic import Location as EstateLocation from cigeo.models import GenericNote as EstateNote class ScientificParkTelecommunication(Telecommunication): green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkWasteWater(WasteWater): diameter = capacity = None green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkAttachment(Attachment): green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkPhoto(Photo): green_field = models.ForeignKey( "ScientificPark", on_delete=models.CASCADE ) pass class ScientificParkTechnologicalWater(Water): distance = None diameter = None capacity = None well = None well_capacity = None green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkElectricity(Electricity): distance = None capacity = None current = None green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkDrinkWater(Water): distance = None diameter = None capacity = None well = None well_capacity = None green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkGas(Gas): diameter = pressure = capacity = None green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkLocation(EstateLocation): green_field = models.OneToOneField( "ScientificPark", on_delete=models.CASCADE ) class ScientificParkGenericNote(EstateNote): green_field = models.ForeignKey( "ScientificPark", on_delete=models.CASCADE )
20.660377
57
0.696347
1,826
0.83379
0
0
0
0
0
0
160
0.073059
406e0a83e413ef1e4bba7c5add21f6292e7188e7
2,328
py
Python
pusion/input_output/file_input_output.py
IPVS-AS/pusion
58ef24b602f611192430f6005ecf5305f878f412
[ "MIT" ]
5
2021-07-24T16:05:12.000Z
2022-01-21T15:06:03.000Z
pusion/input_output/file_input_output.py
IPVS-AS/pusion
58ef24b602f611192430f6005ecf5305f878f412
[ "MIT" ]
null
null
null
pusion/input_output/file_input_output.py
IPVS-AS/pusion
58ef24b602f611192430f6005ecf5305f878f412
[ "MIT" ]
2
2021-07-24T16:05:14.000Z
2022-03-25T21:24:40.000Z
import json import ntpath import shutil from pathlib import Path import pickle5 def load_pickle_files_as_data(file_paths): """ Load pickle files containing decision outputs as an data array. :param file_paths: A List of file paths to the individual pickle files. :return: A data array. """ data = [] for file_path in file_paths: with (open(file_path, "rb")) as handle: data.append(pickle5.load(handle)) return data def dump_pusion_data(data, file_path): """ Dump classification output data to the given file using pickle. :param data: A data dictionary. :param file_path: Location of the output pickle file. """ with open(file_path, "wb") as handle: pickle5.dump(data, handle, protocol=pickle5.HIGHEST_PROTOCOL) def dump_data_as_txt(data, name, identifier): """ Dump a data dictionary to the JSON file for a given evaluation unit. :param data: A data dictionary. :param name: The file name. :param identifier: The identifier of the current evaluation unit (e.g. date/time). """ directory = "res/eval_" + identifier Path(directory).mkdir(parents=True, exist_ok=True) with open(directory + "/" + name + ".txt", 'w') as file: file.write(json.dumps(data, indent=4)) def save(plot_instance, name, identifier): """ Save the plot instance for a given evaluation unit to the SVG and the PDF file, respectively. :param plot_instance: `matplotlib.pyplot`-instance. :param name: The file name. :param identifier: The identifier of the current evaluation unit (e.g. date/time). """ directory = "res/eval_" + identifier Path(directory).mkdir(parents=True, exist_ok=True) plot_instance.savefig(directory + "/" + name + ".svg", bbox_inches="tight") plot_instance.savefig(directory + "/" + name + ".pdf", bbox_inches="tight") def save_evaluator(file, identifier): """ Save the evaluation script for a given evaluation unit. :param file: The Python file. (E.g. referenced by __file__). :param identifier: The identifier of the current evaluation unit (e.g. date/time). """ directory = "res/eval_" + identifier Path(directory).mkdir(parents=True, exist_ok=True) shutil.copy(file, directory + "/" + ntpath.basename(file) + ".txt")
32.333333
97
0.681701
0
0
0
0
0
0
0
0
1,200
0.515464
407208de4a5ad6967ea27d59e0496b7b2dfa6fe5
747
py
Python
meiduo_mall/meiduo_mall/apps/meiduo_admin/views/spus.py
aGrass0825/meiduo_project
78c560c1e9a3205d4958ddbe798cd0ab2be41830
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/meiduo_admin/views/spus.py
aGrass0825/meiduo_project
78c560c1e9a3205d4958ddbe798cd0ab2be41830
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/meiduo_admin/views/spus.py
aGrass0825/meiduo_project
78c560c1e9a3205d4958ddbe798cd0ab2be41830
[ "MIT" ]
null
null
null
from rest_framework.generics import ListAPIView from rest_framework.permissions import IsAdminUser from goods.models import SPU, SPUSpecification from meiduo_admin.serializers.spus import SPUSimpleSerializer, SPUSpecSerializer class SPUSimpleView(ListAPIView): permission_classes = [IsAdminUser] queryset = SPU.objects.all() serializer_class = SPUSimpleSerializer # GET/meiduo_admin/goods/(?P<pk>\d+)/specs/ class SPUSpecView(ListAPIView): """获取SPU商品的规格选项数据""" permission_classes = [IsAdminUser] # 指定视图类所使用的查询集 def get_queryset(self): pk = self.kwargs['pk'] specs = SPUSpecification.objects.filter(spu_id=pk) return specs # 指定视图类所使用的序列化器类 serializer_class = SPUSpecSerializer
24.096774
80
0.749665
540
0.657734
0
0
0
0
0
0
171
0.208283
4072139f6fa73549f4c92cc0b2aa6d9bd1e96911
1,172
py
Python
Scientific Computing with Python/Probability Calculator/prob_calculator.py
Fradxyz/FCCProjects
f337ebdfb86605107e0b85d9e83e88ec7ed60778
[ "MIT" ]
null
null
null
Scientific Computing with Python/Probability Calculator/prob_calculator.py
Fradxyz/FCCProjects
f337ebdfb86605107e0b85d9e83e88ec7ed60778
[ "MIT" ]
null
null
null
Scientific Computing with Python/Probability Calculator/prob_calculator.py
Fradxyz/FCCProjects
f337ebdfb86605107e0b85d9e83e88ec7ed60778
[ "MIT" ]
null
null
null
# Hacked by Ry2uko :D import copy import random # Consider using the modules imported above. class Hat: def __init__(self, **balls): self.contents = [] for color in balls: for n in range(0,balls[color]): self.contents.append(color) def draw(self, num): drawn = [] if num >= len(self.contents): return self.contents for n in range(0, num): if len(self.contents) == 0: break randindex = random.randint(0, len(self.contents)-1) drawn.append(self.contents.pop(randindex)) return drawn def experiment(hat, expected_balls, num_balls_drawn, num_experiments): m = 0 for count in range(0, num_experiments): hat_copy = copy.deepcopy(hat) drawn = hat_copy.draw(num_balls_drawn) valid = True for color in expected_balls: if expected_balls[color] > drawn.count(color): valid = False break if valid: m += 1 return m / num_experiments if __name__ == '__main__': # Test here pass
26.044444
70
0.551195
564
0.481229
0
0
0
0
0
0
86
0.073379
40738ad4ddc2dca3384f1a7a4b98ec684eed9a5c
1,611
py
Python
src/frames/add_quantity_frame.py
GolovPavel/ValueConverter
8492f100667af49fe4bf06eaf0de660513424252
[ "MIT" ]
1
2020-09-22T17:10:21.000Z
2020-09-22T17:10:21.000Z
src/frames/add_quantity_frame.py
GolovPavel/ValueConverter
8492f100667af49fe4bf06eaf0de660513424252
[ "MIT" ]
1
2020-03-06T21:18:10.000Z
2020-03-06T21:18:10.000Z
src/frames/add_quantity_frame.py
GolovPavel/ValueConverter
8492f100667af49fe4bf06eaf0de660513424252
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter.messagebox import showerror from constants.frames import MAIN_FRAME_NAME from util import add_new_quantity class AddQuantityFrame(tk.Frame): def __init__(self, root, controller): tk.Frame.__init__(self, root) self.controller = controller self.main_label = tk.Label(self, text="Добавление новой величины", font="Helvetica 30 bold") self.main_label.pack(pady=50) self.info_label = tk.Label(self, text="Введите название величины", font="Helvetica 20") self.info_label.pack(pady=40) self.quantity_name_entry = tk.Entry(self, width=24) self.quantity_name_entry.pack() self.add_button = tk.Button(self, text="Добавить величину", width=20, height=3, command=self.__add_quantity) self.add_button.pack(pady=40) self.back_button = tk.Button(self, text="Назад", width=20, height=3, command=lambda: self.controller.show_frame(MAIN_FRAME_NAME)) self.back_button.pack() def __add_quantity(self): quantity_name = self.quantity_name_entry.get() if quantity_name == "": showerror("Название величины", "Введите название величины") return if len(quantity_name) > 30: showerror("Длинное название", "Название величины может содержать не более 30 символов") return add_new_quantity(quantity_name) self.controller.show_frame(MAIN_FRAME_NAME) def render(self): self.clear() def clear(self): self.quantity_name_entry.delete(0, tk.END)
33.5625
116
0.666667
1,632
0.918402
0
0
0
0
0
0
401
0.225661
4073fadf1987f151aaa0076f63a670fabd02b58e
226
py
Python
setup.py
vwxyzjn/pysc2gym
7c43e55a8f48be77f53332b73fda7635e6063589
[ "MIT" ]
6
2020-09-23T21:31:48.000Z
2022-03-14T23:59:35.000Z
setup.py
vwxyzjn/pysc2gym
7c43e55a8f48be77f53332b73fda7635e6063589
[ "MIT" ]
2
2022-01-13T03:48:47.000Z
2022-03-12T00:58:26.000Z
setup.py
vwxyzjn/pysc2gym
7c43e55a8f48be77f53332b73fda7635e6063589
[ "MIT" ]
1
2021-06-28T14:17:11.000Z
2021-06-28T14:17:11.000Z
from setuptools import setup import versioneer setup(name='gym_pysc2', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), install_requires=['gym'] # And any other dependencies foo needs )
28.25
70
0.738938
0
0
0
0
0
0
0
0
54
0.238938
40747f1fe0cf14a0bae5770661298c543ddc7ac6
1,395
py
Python
Compressed downloads/server.py
Aldair47x/aa
ac49239ff94ec6735b316606482dc366ae52bfe8
[ "MIT" ]
null
null
null
Compressed downloads/server.py
Aldair47x/aa
ac49239ff94ec6735b316606482dc366ae52bfe8
[ "MIT" ]
null
null
null
Compressed downloads/server.py
Aldair47x/aa
ac49239ff94ec6735b316606482dc366ae52bfe8
[ "MIT" ]
null
null
null
import zmq import sys import os import math def loadFiles(path): files = {} dataDir = os.fsencode(path) for file in os.listdir(dataDir): filename = os.fsdecode(file) print("Loading {}".format(filename)) files[filename] = file return files def main(): if len(sys.argv) != 3: print("Error") exit() directory = sys.argv[2] port = sys.argv[1] context = zmq.Context() s = context.socket(zmq.REP) s.bind("tcp://*:{}".format(port)) files = loadFiles(directory) while True: msg = s.recv_json() if msg["op"] == "list": s.send_json({"files": list(files.keys())}) elif msg["op"] == "download": size = 1024*1024*32 filename = msg["file"] if filename in files: if not "part" in msg: file = os.stat(directory + "/" +filename) s.send_json({"parts": math.ceil(file[6]/size)}) else: with open(directory + "/" +filename, "rb") as input: input.seek(size * int(msg["part"])) data = input.read(size) s.send(data) else: s.send_string("Song does not exits! Marranito") else: print("Unsupported action!") if __name__ == '__main__': main()
26.320755
72
0.496774
0
0
0
0
0
0
0
0
160
0.114695
40757d236a917305a24dbe63896ecb49966f293c
1,618
py
Python
metric_learn/nca.py
ogrisel/metric-learn
fb6733c190911d2c408bd7f0b8c9b54ff005fa8d
[ "MIT" ]
null
null
null
metric_learn/nca.py
ogrisel/metric-learn
fb6733c190911d2c408bd7f0b8c9b54ff005fa8d
[ "MIT" ]
null
null
null
metric_learn/nca.py
ogrisel/metric-learn
fb6733c190911d2c408bd7f0b8c9b54ff005fa8d
[ "MIT" ]
2
2017-08-02T08:57:50.000Z
2020-03-20T13:32:54.000Z
""" Neighborhood Components Analysis (NCA) Ported to Python from https://github.com/vomjom/nca """ from __future__ import absolute_import import numpy as np from six.moves import xrange from sklearn.utils.validation import check_X_y from .base_metric import BaseMetricLearner EPS = np.finfo(float).eps class NCA(BaseMetricLearner): def __init__(self, num_dims=None, max_iter=100, learning_rate=0.01): self.num_dims = num_dims self.max_iter = max_iter self.learning_rate = learning_rate def transformer(self): return self.A_ def fit(self, X, y): """ X: data matrix, (n x d) y: scalar labels, (n) """ X, labels = check_X_y(X, y) n, d = X.shape num_dims = self.num_dims if num_dims is None: num_dims = d # Initialize A to a scaling matrix A = np.zeros((num_dims, d)) np.fill_diagonal(A, 1./(np.maximum(X.max(axis=0)-X.min(axis=0), EPS))) # Run NCA dX = X[:,None] - X[None] # shape (n, n, d) tmp = np.einsum('...i,...j->...ij', dX, dX) # shape (n, n, d, d) masks = labels[:,None] == labels[None] for it in xrange(self.max_iter): for i, label in enumerate(labels): mask = masks[i] Ax = A.dot(X.T).T # shape (n, num_dims) softmax = np.exp(-((Ax[i] - Ax)**2).sum(axis=1)) # shape (n) softmax[i] = 0 softmax /= softmax.sum() t = softmax[:, None, None] * tmp[i] # shape (n, d, d) d = softmax[mask].sum() * t.sum(axis=0) - t[mask].sum(axis=0) A += self.learning_rate * A.dot(d) self.X_ = X self.A_ = A self.n_iter_ = it return self
26.966667
74
0.600742
1,310
0.809642
0
0
0
0
0
0
310
0.191595
4075a5272343f25994c7b713935ff6736a8b4fb7
2,923
py
Python
rl_repr/batch_rl/evaluation.py
xxdreck/google-research
dac724bc2b9362d65c26747a8754504fe4c615f8
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
rl_repr/batch_rl/evaluation.py
xxdreck/google-research
dac724bc2b9362d65c26747a8754504fe4c615f8
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
rl_repr/batch_rl/evaluation.py
admariner/google-research
7cee4b22b925581d912e8d993625c180da2a5a4f
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Policy evaluation.""" import typing import tensorflow.compat.v2 as tf def evaluate( env, policy, num_episodes = 10, ctx_length = None, embed_training_window = None, state_mask_fn = None, # pylint: disable=g-bare-generic ): """Evaluates the policy. Args: env: Environment to evaluate the policy on. policy: Policy to evaluate. num_episodes: A number of episodes to average the policy on. ctx_length: number of previous steps to compute context from. embed_training_window: window size used during embed training. state_mask_fn: state masking function for partially obs envs. Returns: Averaged reward and a total number of steps. """ total_timesteps = 0 total_returns = 0.0 def apply_mask(observation): if state_mask_fn: return tf.convert_to_tensor(state_mask_fn(observation.numpy())) return observation for _ in range(num_episodes): timestep = env.reset() if ctx_length: states = [apply_mask(timestep.observation) for _ in range(ctx_length)] actions = [ tf.zeros(policy.action_spec.shape)[None, :] for _ in range(ctx_length) ] rewards = [[0.] for _ in range(ctx_length)] latent_action = None i = 0 while not timestep.is_last(): if embed_training_window and (i % embed_training_window == 0 or embed_training_window <= 2): latent_action = None if ctx_length: states.append(apply_mask(timestep.observation)) if len(states) > ctx_length: states.pop(0) actions.pop(0) rewards.pop(0) action = policy.act( tf.stack(states, axis=1), actions=tf.stack(actions, axis=1), rewards=tf.stack(rewards, axis=1)) actions.append(action) else: if embed_training_window: action, latent_action = policy.act( apply_mask(timestep.observation), latent_action=latent_action) else: action = policy.act(apply_mask(timestep.observation)) timestep = env.step(action) if ctx_length: rewards.append(timestep.reward) total_returns += timestep.reward[0] total_timesteps += 1 i += 1 return total_returns / num_episodes, total_timesteps / num_episodes
31.771739
80
0.671912
0
0
0
0
0
0
0
0
1,093
0.373931
4075b24c28e51db8658934eede3f2eedb744d8c0
4,721
py
Python
src/nwb_conversion_tools/datainterfaces/ecephys/intan/intandatainterface.py
ben-dichter-consulting/nwbn-conversion-tools
f5641317d2697a3916eeb54f74ce171ed65469ed
[ "BSD-3-Clause" ]
null
null
null
src/nwb_conversion_tools/datainterfaces/ecephys/intan/intandatainterface.py
ben-dichter-consulting/nwbn-conversion-tools
f5641317d2697a3916eeb54f74ce171ed65469ed
[ "BSD-3-Clause" ]
6
2020-01-31T13:29:40.000Z
2020-03-27T13:09:32.000Z
src/nwb_conversion_tools/datainterfaces/ecephys/intan/intandatainterface.py
ben-dichter-consulting/nwb-conversion-tools
f5641317d2697a3916eeb54f74ce171ed65469ed
[ "BSD-3-Clause" ]
1
2019-11-24T05:08:06.000Z
2019-11-24T05:08:06.000Z
"""Authors: Cody Baker and Ben Dichter.""" from pathlib import Path import spikeextractors as se from pynwb.ecephys import ElectricalSeries from ..baserecordingextractorinterface import BaseRecordingExtractorInterface from ....utils import get_schema_from_hdmf_class, FilePathType try: from pyintan.intan import read_rhd, read_rhs HAVE_PYINTAN = True except ImportError: HAVE_PYINTAN = False INSTALL_MESSAGE = "Please install pyintan to use this extractor!" class IntanRecordingInterface(BaseRecordingExtractorInterface): """Primary data interface class for converting a IntanRecordingExtractor.""" RX = se.IntanRecordingExtractor def __init__(self, file_path: FilePathType, verbose: bool = True): assert HAVE_PYINTAN, INSTALL_MESSAGE super().__init__(file_path=file_path, verbose=verbose) if ".rhd" in Path(self.source_data["file_path"]).suffixes: intan_file_metadata = read_rhd(self.source_data["file_path"])[1] else: intan_file_metadata = read_rhs(self.source_data["file_path"])[1] exclude_chan_types = ["AUX", "ADC", "VDD"] valid_channels = [ x for x in intan_file_metadata if not any([y in x["native_channel_name"] for y in exclude_chan_types]) ] group_names = [channel["native_channel_name"].split("-")[0] for channel in valid_channels] unique_group_names = set(group_names) group_electrode_numbers = [channel["native_order"] for channel in valid_channels] channel_ids = self.recording_extractor.get_channel_ids() for channel_id, channel_group in zip(channel_ids, group_names): self.recording_extractor.set_channel_property( channel_id=channel_id, property_name="group_name", value=f"Group{channel_group}" ) if len(unique_group_names) > 1: for channel_id, group_electrode_number in zip(channel_ids, group_electrode_numbers): self.recording_extractor.set_channel_property( channel_id=channel_id, property_name="group_electrode_number", value=group_electrode_number ) custom_names = [channel["custom_channel_name"] for channel in valid_channels] if any(custom_names): for channel_id, custom_name in zip(channel_ids, custom_names): self.recording_extractor.set_channel_property( channel_id=channel_id, property_name="custom_channel_name", value=custom_name ) def get_metadata_schema(self): metadata_schema = super().get_metadata_schema() metadata_schema["properties"]["Ecephys"]["properties"].update( ElectricalSeries_raw=get_schema_from_hdmf_class(ElectricalSeries) ) return metadata_schema def get_metadata(self): channel_ids = self.recording_extractor.get_channel_ids() property_names = self.recording_extractor.get_shared_channel_property_names() ecephys_metadata = dict( Ecephys=dict( Device=[ dict( name="Intan", description="Intan recording", manufacturer="Intan", ), ], ElectrodeGroup=[ dict( name=group_name, description=f"Group {group_name} electrodes.", device="Intan", location="", ) for group_name in set( [ self.recording_extractor.get_channel_property( channel_id=channel_id, property_name="group_name" ) for channel_id in channel_ids ] ) ], Electrodes=[ dict(name="group_name", description="The name of the ElectrodeGroup this electrode is a part of.") ], ElectricalSeries_raw=dict(name="ElectricalSeries_raw", description="Raw acquisition traces."), ) ) if "group_electrode_number" in property_names: ecephys_metadata["Ecephys"]["Electrodes"].append( dict(name="group_electrode_number", description="0-indexed channel within a group.") ) if "custom_channel_name" in property_names: ecephys_metadata["Ecephys"]["Electrodes"].append( dict(name="custom_channel_name", description="Custom channel name assigned in Intan.") ) return ecephys_metadata
44.121495
118
0.615336
4,244
0.898962
0
0
0
0
0
0
824
0.174539
40771f48cc35e55bf1ed0377d840f200b12f6982
739
py
Python
Use.py
XtremeCoder1384/SongDownloader
7bb06d7961ec699af8517cbd7cb4a1ec83d4fd02
[ "MIT" ]
1
2019-03-04T02:26:41.000Z
2019-03-04T02:26:41.000Z
Use.py
XtremeCoder1384/SongDownloader
7bb06d7961ec699af8517cbd7cb4a1ec83d4fd02
[ "MIT" ]
1
2018-12-20T02:32:35.000Z
2019-03-11T12:51:15.000Z
Use.py
IngeniousCoder/SongDownloader
7bb06d7961ec699af8517cbd7cb4a1ec83d4fd02
[ "MIT" ]
null
null
null
import os import youtube_dl os.system("setup.bat") playlist = input("Paste the Youtube Playlist URL Here.") track = 1 print("""THIS TOOL WILL ATTEMPT TO DOWNLOAD THE FIRST 1000 SONGS IN THE QUEUE.\n PLEASE DO NOT INTERRUPT THE TOOL. YOU MAY CLOSE THE TOOL WHEN IT DISPLAYS "DONE!". ALL DOWNLOADED SONGS WILL BE IN THE SAME DIRECTORY THIS FILE IS IN. TO EXTRACT THEM, FILTER BY MP3.""") for x in range(1000): file = open("Downloader.bat","w") file.write("youtube-dl -x --playlist-start {} --audio-format mp3 --playlist-end {} {}".format(str(track),str(track),playlist)) file.close os.system("Downloader.bat") track = track + 1 print("DONE! You may now close this window.")
36.95
129
0.663058
0
0
0
0
0
0
0
0
497
0.67253
40776dbc5b7aba40a9cfd205d779833d8dd62541
1,903
py
Python
site/manage.py
oaoouo/railgun
b09d276723976740841d8b8adf9cbf87a05cd970
[ "MIT" ]
null
null
null
site/manage.py
oaoouo/railgun
b09d276723976740841d8b8adf9cbf87a05cd970
[ "MIT" ]
null
null
null
site/manage.py
oaoouo/railgun
b09d276723976740841d8b8adf9cbf87a05cd970
[ "MIT" ]
null
null
null
# coding: utf-8 """ manage.py ~~~~~~~~~ """ import os import sys import shutil import platform from app import app from gen import Gen from flask_script import Manager """编码设置""" if (platform.python_version().split('.')[0] == '2'): # reload(sys) is evil :) reload(sys) sys.setdefaultencoding('utf-8') """Git配置""" git_url = app.config['GIT_URL'] git_branch = app.config['BRANCH'] manager = Manager(app) def first_upload(): if not git_url: raise else: harbor_folder = os.path.join(os.getcwd(), '.harbor') os.chdir(harbor_folder) os.popen('git checkout -b %s' % git_branch) os.popen('git pull %s %s' % (git_url, git_branch)) os.popen('git add .') os.popen('git commit -m "railgun site update...✅ "') os.popen('git push -u %s %s' % (git_url, git_branch)) def other_upload(): if not git_url: raise else: harbor_folder = os.path.join(os.getcwd(), '.harbor') os.chdir(harbor_folder) os.popen('git checkout %s' % git_branch) os.popen('git add .') os.popen('git commit -m "railgun site update...✅ "') os.popen('git push -u %s %s' % (git_url, git_branch)) def update_static_res(): static_folder = os.path.join(os.getcwd(), 'app/static') static_build_folder = os.path.join(os.getcwd(), 'app/build/static') if os.path.isdir(static_build_folder): shutil.rmtree(static_build_folder) shutil.copytree(static_folder, static_build_folder) if __name__ == '__main__': if len(sys.argv) > 1 and sys.argv[1] == 'build': _gen = Gen(app) _gen.gen() # update static resources update_static_res() elif len(sys.argv) > 1 and sys.argv[1] == 'first_upload': first_upload() elif len(sys.argv) > 1 and sys.argv[1] == 'other_upload': other_upload() else: manager.run()
25.039474
71
0.60536
0
0
0
0
0
0
0
0
456
0.237624
40780e501d35b1715806673a2e143e24f1727e1c
3,152
py
Python
tests/test_segmenters.py
edoarn/cv-models
5fa7e50fd69f76b54611bb323b15610eeb1bb5cf
[ "MIT" ]
null
null
null
tests/test_segmenters.py
edoarn/cv-models
5fa7e50fd69f76b54611bb323b15610eeb1bb5cf
[ "MIT" ]
4
2021-04-23T12:05:45.000Z
2021-04-25T11:38:01.000Z
tests/test_segmenters.py
edoarn/cv-models
5fa7e50fd69f76b54611bb323b15610eeb1bb5cf
[ "MIT" ]
null
null
null
from typing import Any import torch import torch.nn as nn from cvmodels.segmentation import unet, deeplab as dl def output(model: nn.Module, input_batch: torch.Tensor) -> Any: model.eval() with torch.no_grad(): return model(input_batch) def numel(m: torch.nn.Module, only_trainable: bool = True) -> int: parameters = m.parameters() if only_trainable: parameters = list(p for p in parameters if p.requires_grad) unique = dict((p.data_ptr(), p) for p in parameters).values() return sum(p.numel() for p in unique) def test_unet_out_transpose(random_seg_batch: torch.Tensor): batches, _, height, width = random_seg_batch.shape model = unet.UNet(bilinear=False, outputs=1) assert numel(model) > 31_000_000 out = output(model, random_seg_batch) assert out.shape == (batches, 1, height, width) def test_unet_out_bilinear(random_seg_batch: torch.Tensor): batches, _, height, width = random_seg_batch.shape model = unet.UNet(bilinear=True, outputs=1) assert numel(model) < 30_000_000 out = output(model, random_seg_batch) assert out.shape == (batches, 1, height, width) def test_deeplabv3_out(random_seg_batch: torch.Tensor): batches, _, height, width = random_seg_batch.shape for variant in dl.DeepLabVariants: model = dl.DeepLabV3(variant=variant) out = output(model, random_seg_batch) assert out.shape == (batches, 1, height, width) def test_deeplabv3_pretrain_backbone(random_seg_batch: torch.Tensor): batches, _, height, width = random_seg_batch.shape for variant in dl.DeepLabVariants: model = dl.DeepLabV3(variant=variant, pretrained=True) out = output(model, random_seg_batch) assert out.shape == (batches, 1, height, width) def test_deeplabv3_custom(): batch = torch.rand((2, 4, 480, 480)) batches, _, height, width = batch.shape for variant in dl.DeepLabVariants: model = dl.DeepLabV3(in_channels=4, out_channels=2, in_dimension=480, variant=variant, pretrained=True) out = output(model, batch) assert out.shape == (batches, 2, height, width) def test_deeplabv3plus_out(random_seg_batch: torch.Tensor): batches, _, height, width = random_seg_batch.shape for variant in dl.DeepLabVariants: model = dl.DeepLabV3Plus(variant=variant) out = output(model, random_seg_batch) assert out.shape == (batches, 1, height, width) def test_deeplabv3plus_pretrain_backbone(random_seg_batch: torch.Tensor): batches, _, height, width = random_seg_batch.shape for variant in dl.DeepLabVariants: model = dl.DeepLabV3Plus(variant=variant, pretrained=True) out = output(model, random_seg_batch) assert out.shape == (batches, 1, height, width) def test_deeplabv3plus_custom(): batch = torch.rand((2, 4, 480, 480)) batches, _, height, width = batch.shape for variant in dl.DeepLabVariants: model = dl.DeepLabV3Plus(in_channels=4, out_channels=2, in_dimension=480, variant=variant, pretrained=True) out = output(model, batch) assert out.shape == (batches, 2, height, width)
36.651163
115
0.703046
0
0
0
0
0
0
0
0
0
0
40788e305d7f2fee1abfae85125753bcd3fa071f
10,981
py
Python
bagua/torch_api/contrib/sync_batchnorm.py
mmathys/bagua
e17978690452318b65b317b283259f09c24d59bb
[ "MIT" ]
635
2021-06-11T03:03:11.000Z
2022-03-31T14:52:57.000Z
bagua/torch_api/contrib/sync_batchnorm.py
mmathys/bagua
e17978690452318b65b317b283259f09c24d59bb
[ "MIT" ]
181
2021-06-10T12:27:19.000Z
2022-03-31T04:08:19.000Z
bagua/torch_api/contrib/sync_batchnorm.py
shjwudp/bagua
7e1b438e27e3119b23e472f5b9217a9862932bef
[ "MIT" ]
71
2021-06-10T13:16:53.000Z
2022-03-22T09:26:22.000Z
# Copyright (c) Uber Technologies, Inc. and its affiliates. # Copyright (c) 2021 Kuaishou AI Platform & DS3 Lab. # # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from distutils.version import LooseVersion import torch from torch.autograd.function import Function import torch.nn.functional as F from torch.nn.modules.batchnorm import _BatchNorm import bagua.torch_api as bagua from bagua.torch_api.communication import allgather, allreduce # Backward compat for old PyTorch if not hasattr(torch.jit, "unused"): torch.jit.unused = lambda x: x _SYNC_BN_V2 = LooseVersion(torch.__version__) >= LooseVersion("1.5.0") and LooseVersion( torch.__version__ ) <= LooseVersion("1.6.0") _SYNC_BN_V3 = LooseVersion(torch.__version__) >= LooseVersion("1.6.0") _SYNC_BN_V4 = LooseVersion(torch.__version__) >= LooseVersion("1.9.0") class SyncBatchNorm(_BatchNorm): r"""Applies synchronous BatchNorm for distributed module with N-dimensional BatchNorm layer(s). See `BatchNorm <https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html?highlight=batchnorm#torch.nn.BatchNorm2d>`_ for more details. Arguments: num_features: Number of channels :math:`C` from the shape :math:`(N, C, ...)`. eps: A value added to the denominator for numerical stability. Default: 1e-5. momentum: The value used for the running_mean and running_var computation. Can be set to ``None`` for cumulative moving average (i.e. simple average). Default: 0.1. affine: A boolean value that when set to ``True``, this module has learnable affine parameters. Default: ``True``. track_running_stats: A boolean value that when set to ``True``, this module tracks the running mean and variance, and when set to ``False``, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: ``True``. .. note:: Only GPU input tensors are supported in the training mode. """ def __init__( self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ): super().__init__(num_features, eps, momentum, affine, track_running_stats) def _check_input_dim(self, input): if input.dim() < 2: raise ValueError( "expected at least 2D input (got {}D input)".format(input.dim()) ) def _run_bn(self, input): return F.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, self.training or not self.track_running_stats, self.momentum, self.eps, ) @torch.jit.unused def _maybe_run_sync_bn(self, input): if bagua.get_world_size() == 1: return self._run_bn(input) return _SyncBatchNorm.apply( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.momentum, ) def forward(self, input): # currently only GPU input is supported by underlying kernel from PyTorch if not input.is_cuda: raise ValueError("SyncBatchNorm expected input tensor to be on GPU") self._check_input_dim(input) if self.training and self.track_running_stats: assert self.num_batches_tracked is not None self.num_batches_tracked = self.num_batches_tracked + 1 if not self.training and self.track_running_stats: return self._run_bn(input) else: return self._maybe_run_sync_bn(input) @classmethod def convert_sync_batchnorm(cls, module): r"""Helper function to convert all :attr:`BatchNorm*D` layers in the model to `torch.nn.SyncBatchNorm <https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html?highlight=syncbatchnorm#torch.nn.SyncBatchNorm>`_ layers. Arguments: module (nn.Module): Module containing one or more :attr:`BatchNorm*D` layers Returns: The original :attr:`module` with the converted :class:`torch.nn.SyncBatchNorm` layers. If the original :attr:`module` is a :attr:`BatchNorm*D` layer, a new :class:`torch.nn.SyncBatchNorm` layer object will be returned instead. .. note:: This function must be called before :meth:`~bagua.torch_api.distributed.BaguaModule.with_bagua` method. Example:: >>> # Network with nn.BatchNorm layer >>> model = torch.nn.Sequential( ... torch.nn.Linear(D_in, H), ... torch.nn.ReLU(), ... torch.nn.Linear(H, D_out), ... ) >>> optimizer = torch.optim.SGD( ... model.parameters(), ... lr=0.01, ... momentum=0.9 ... ) >>> sync_bn_model = bagua.torch_api.contrib.sync_batchnorm.SyncBatchNorm.convert_sync_batchnorm(model) >>> bagua_model = sync_bn_model.with_bagua([optimizer], GradientAllReduce()) """ module_output = module if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module_output = SyncBatchNorm( module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, ) if module.affine: with torch.no_grad(): module_output.weight = module.weight module_output.bias = module.bias module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked if hasattr(module, "qconfig"): module_output.qconfig = module.qconfig for name, child in module.named_children(): module_output.add_module(name, cls.convert_sync_batchnorm(child)) del module return module_output class _SyncBatchNorm(Function): @staticmethod def forward(self, input, weight, bias, running_mean, running_var, eps, momentum): input = input.contiguous() size = input.numel() // input.size(1) count = torch.tensor([size]) # calculate mean/invstd for input. mean, invstd = torch.batch_norm_stats(input, eps) count, mean, invstd = count.cuda(), mean.cuda(), invstd.cuda() nums_ranks = bagua.get_world_size() count_all = torch.tensor( [torch.empty_like(count).cpu().detach().numpy() for _ in range(nums_ranks)] ).cuda() mean_all = torch.tensor( [torch.empty_like(mean).cpu().detach().numpy() for _ in range(nums_ranks)] ).cuda() invstd_all = torch.tensor( [torch.empty_like(invstd).cpu().detach().numpy() for _ in range(nums_ranks)] ).cuda() allgather(count.unsqueeze(0), count_all) allgather(mean.unsqueeze(0), mean_all) allgather(invstd.unsqueeze(0), invstd_all) if _SYNC_BN_V3: counts_for_bngswc = count_all.view(-1).float().to(input.device) else: # backwards compatibility counts_for_bngswc = count_all.view(-1).tolist() # calculate global mean & invstd mean, invstd = torch.batch_norm_gather_stats_with_counts( input, mean_all, invstd_all, running_mean, running_var, momentum, eps, counts_for_bngswc, ) self.save_for_backward(input, weight, mean, invstd, count_all) # apply element-wise normalization return torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps) @staticmethod def backward(self, grad_output): grad_output = grad_output.contiguous() saved_input, weight, mean, invstd, count_all = self.saved_tensors need_input_grad, need_weight_grad, need_bias_grad = self.needs_input_grad[0:3] # calculate local stats as well as grad_weight / grad_bias sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce( grad_output, saved_input, mean, invstd, weight, need_input_grad, need_weight_grad, need_bias_grad, ) if need_input_grad: # synchronizing stats used to calculate input gradient. allreduce(sum_dy, sum_dy) allreduce(sum_dy_xmu, sum_dy_xmu) if _SYNC_BN_V4: # from 1.9.0 on we need a count tensor on all devices # count_all is calculated as total count across all ranks in forward function count_all = count_all.to(dtype=torch.int, device=grad_output.device) elif _SYNC_BN_V2 or _SYNC_BN_V3: # before 1.9.0 we need the count as an integer to compute means values count = count_all.sum() else: # before 1.5.0, sum_dy was sum of means from every worker, so we just # need to divide it by number of workers count = bagua.get_world_size() # backward pass for gradient calculation # we are calling into a non-public undocumented function which broke moving to 1.9.0 # https://github.com/pytorch/pytorch/issues/57900 if _SYNC_BN_V4: # from 1.9.0 on, sums and count parameters expected grad_input = torch.batch_norm_backward_elemt( grad_output, saved_input, mean, invstd, weight, sum_dy, sum_dy_xmu, count_all, ) else: # before 1.9.0, mean parameters expected, not sums and count grad_input = torch.batch_norm_backward_elemt( grad_output, saved_input, mean, invstd, weight, sum_dy / count, sum_dy_xmu / count, ) else: grad_input = None # synchronizing of grad_weight / grad_bias is not needed as distributed # training would handle all reduce. if weight is None or not need_weight_grad: grad_weight = None if weight is None or not need_bias_grad: grad_bias = None return grad_input, grad_weight, grad_bias, None, None, None, None, None, None
38.128472
160
0.601858
10,035
0.913851
0
0
7,439
0.677443
0
0
4,024
0.366451
407a65f9c4b9f958fde5ab42bad4bdd15788bb31
4,046
py
Python
tests/test_classification_metric.py
DaveFClarke/ml_bias_checking
90f67ebc602b6107042e6cbff3268051bb3b1c95
[ "Apache-2.0" ]
2
2021-07-31T20:52:37.000Z
2022-02-15T21:05:17.000Z
tests/test_classification_metric.py
DaveFClarke/ml_bias_checking
90f67ebc602b6107042e6cbff3268051bb3b1c95
[ "Apache-2.0" ]
2
2021-08-25T16:16:43.000Z
2022-02-10T05:26:14.000Z
tests/test_classification_metric.py
DaveFClarke/ml_bias_checking
90f67ebc602b6107042e6cbff3268051bb3b1c95
[ "Apache-2.0" ]
1
2019-05-21T15:31:24.000Z
2019-05-21T15:31:24.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import pandas as pd from aif360.datasets import BinaryLabelDataset from aif360.metrics import ClassificationMetric def test_generalized_entropy_index(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [2, 1], [2, 0], [2, 1], [2, 1]]) pred = data.copy() pred[[3, 9], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) assert cm.generalized_entropy_index() == 0.2 pred = data.copy() pred[:, -1] = np.array([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) assert cm.generalized_entropy_index() == 0.3 def test_theil_index(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [2, 1], [2, 0], [2, 1], [2, 1]]) pred = data.copy() pred[[3, 9], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) assert cm.theil_index() == 4*np.log(2)/10 def test_between_all_groups(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [2, 1], [2, 0], [2, 1], [2, 1]]) pred = data.copy() pred[[3, 9], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) b = np.array([1, 1, 1.25, 1.25, 1.25, 1.25, 0.75, 0.75, 0.75, 0.75]) assert cm.between_all_groups_generalized_entropy_index() == 1/20*np.sum(b**2 - 1) def test_between_group(): data = np.array([[0, 0, 1], [0, 1, 0], [1, 1, 0], [1, 1, 1], [1, 0, 0], [1, 0, 0]]) pred = data.copy() pred[[0, 3], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'feat2', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'feat2', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat', 'feat2']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat', 'feat2']) cm = ClassificationMetric(bld, bld2, unprivileged_groups=[{'feat': 0}], privileged_groups=[{'feat': 1}]) b = np.array([0.5, 0.5, 1.25, 1.25, 1.25, 1.25]) assert cm.between_group_generalized_entropy_index() == 1/12*np.sum(b**2 - 1)
34.87931
85
0.505685
0
0
0
0
0
0
0
0
274
0.067721
407b22ddf13dab3659fb801ada3a7cb31608cf9a
200
py
Python
PDA/extra_assignments/10.6. Dicts_ Countries and cities/solution/main.py
EMbeDS-education/StatsAndComputing20212022
971e418882b206a1b5606d15d222cef1a5a04834
[ "MIT" ]
2
2022-02-24T09:35:15.000Z
2022-03-14T20:34:33.000Z
PDA/extra_assignments/10.6. Dicts_ Countries and cities/solution/main.py
GeorgiosArg/StatsAndComputing20212022
798d39af6aa5ef5eef49d5d6f43191351e8a49f3
[ "MIT" ]
null
null
null
PDA/extra_assignments/10.6. Dicts_ Countries and cities/solution/main.py
GeorgiosArg/StatsAndComputing20212022
798d39af6aa5ef5eef49d5d6f43191351e8a49f3
[ "MIT" ]
2
2022-03-15T21:40:35.000Z
2022-03-26T14:51:31.000Z
city_country = {} for _ in range(int(input())): country, *cities = input().split() for city in cities: city_country[city] = country for _ in range(int(input())): print(city_country[input()])
28.571429
36
0.665
0
0
0
0
0
0
0
0
0
0
407cd39412220721420002d2204aeef22618cb4c
1,562
py
Python
config.py
oyasr/mudawen
6f0161ab783536d7c5d695225ef28ce4947a46e3
[ "MIT" ]
null
null
null
config.py
oyasr/mudawen
6f0161ab783536d7c5d695225ef28ce4947a46e3
[ "MIT" ]
null
null
null
config.py
oyasr/mudawen
6f0161ab783536d7c5d695225ef28ce4947a46e3
[ "MIT" ]
null
null
null
import os from dotenv import load_dotenv load_dotenv() basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.getenv('SECRET_KEY') or os.urandom(32) SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True MAIL_SERVER = os.getenv('MAIL_SERVER') or 'smtp.googlemail.com' MAIL_PORT = int(os.environ.get('MAIL_PORT', '587')) MAIL_USE_TLS = os.environ.get('MAIL_USE_TLS', 'true').lower() in \ ['true', 'on', '1'] MAIL_USERNAME = os.getenv('MAIL_USERNAME') MAIL_PASSWORD = os.getenv('MAIL_PASSWORD') MUDAWEN_MAIL_SUBJECT_PREFIX = '[Mudawen]' MUDAWEN_MAIL_SENDER = 'Mudawen Admin <[email protected]>' MUDAWEN_ADMIN = os.getenv('MUDAWEN_ADMIN') MUDAWEN_POSTS_PER_PAGE = 20 MUDAWEN_FOLLOWERS_PER_PAGE = 50 MUDAWEN_COMMENTS_PER_PAGE = 30 MUDAWEN_QUERY_TIME_LIMIT = 0.5 @staticmethod def init_app(app): pass class DevConfig(Config): ENV = 'development' SQLALCHEMY_DATABASE_URI = os.getenv('DEV_DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data-dev.sqlite') class TestConfig(Config): TESTING = True WTF_CSRF_ENABLED = False SQLALCHEMY_DATABASE_URI = os.getenv('TEST_DATABASE_URL') or \ 'sqlite://' class ProductionConfig(Config): SQLALCHEMY_DATABASE_URI = os.getenv('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data.sqlite') config = { 'development': DevConfig, 'testing': TestConfig, 'production': ProductionConfig, 'default': DevConfig }
28.4
70
0.691421
1,308
0.837388
0
0
49
0.03137
0
0
361
0.231114
407ce0ad1e21c01e8414bc4b63e17958aa42df9e
998
py
Python
experiments/async_tests/async_3.py
10ks/py_utils
54ce06dbd567b097deda1c7ef2d0a2265e5b243e
[ "MIT" ]
null
null
null
experiments/async_tests/async_3.py
10ks/py_utils
54ce06dbd567b097deda1c7ef2d0a2265e5b243e
[ "MIT" ]
null
null
null
experiments/async_tests/async_3.py
10ks/py_utils
54ce06dbd567b097deda1c7ef2d0a2265e5b243e
[ "MIT" ]
null
null
null
import asyncio async def wait_sec(l): print("Before wait") await asyncio.sleep(1) print("After wait") l[0] = False async def main(): # await asyncio.gather(wait_sec([True]), wait_sec([True]), wait_sec([True])) run = [True] asyncio.create_task(wait_sec(run)) await asyncio.sleep(0) print("continuing main") while run[0]: print(".") await asyncio.sleep(0.1) # for i in range(10): # print(i) # # time.sleep(0.2) # # await asyncio.sleep(0) # await asyncio.sleep(0.2) if __name__ == "__main__": import time s = time.perf_counter() asyncio.run(main()) # Completing unfinished tasks (throws a warning) # loop = asyncio.get_event_loop() # loop.run_until_complete(main()) # pending = asyncio.Task.all_tasks() # loop.run_until_complete(asyncio.gather(*pending)) elapsed = time.perf_counter() - s print(f"{__file__} executed in {elapsed:0.2f} seconds.")
23.209302
80
0.607214
0
0
0
0
0
0
549
0.5501
499
0.5
407d150b5548e5dc5c3decda923610fd51eb2141
1,438
py
Python
vk_bot/mods/util/calculator.py
triangle1984/GLaDOS
39dea7bf8043e791ef079ea1ac6616f95d5b5312
[ "BSD-3-Clause" ]
3
2019-12-12T05:48:34.000Z
2020-12-07T19:23:41.000Z
vk_bot/mods/util/calculator.py
anar66/vk-bot
39dea7bf8043e791ef079ea1ac6616f95d5b5312
[ "BSD-3-Clause" ]
1
2019-11-15T14:28:49.000Z
2019-11-15T14:28:49.000Z
vk_bot/mods/util/calculator.py
triangle1984/vk-bot
39dea7bf8043e791ef079ea1ac6616f95d5b5312
[ "BSD-3-Clause" ]
5
2019-11-20T14:20:30.000Z
2022-02-05T10:37:01.000Z
# from vk_bot.core.modules.basicplug import BasicPlug # import math # class Calculator(BasicPlug): # doc = "Калькулятор" # command = ("калькулятор",) # def main(self): # try: # x = self.text[1]; x = int(x) # encalc = self.text[2]; encalc = encalc.lower() # y = self.text[3]; y = int(y) # except: # self.sendmsg("""Пример команды: /калькулятор 2 + 2 # Использовать можно только 2 числа, и только через пробел""") # return # if encalc == "+" or encalc == "сложение": # result = x + y # elif encalc == "-" or encalc == "вычитание": # result = x - y # elif encalc == "*" or encalc == "умножение": # result = x * y # elif encalc == "**" or encalc == "степень" or encalc == "^": # if x > 999 or y > 999: # return # result = x ** y # elif encalc == "": # try: # x / y # except ZeroDivisionError: # result = "взорвать планету хочешь?" # elif encalc == "корень": # result = math.sqrt(x), math.sqrt(y) # elif encalc == "синус": # result = math.sin(x), math.sin(y) # elif encalc == "косинус": # result = math.cos(x), math.cos(y) # else: # return # self.sendmsg(f"Ваш результат: {result}")
36.871795
74
0.462448
0
0
0
0
0
0
0
0
1,576
0.976456
407dc792a754cf8c4cf33cd4fb3c31fe49507ba3
9,201
py
Python
sample-input/homogeneous/geometry.py
AI-Pranto/OpenMOC
7f6ce4797aec20ddd916981a56a4ba54ffda9a06
[ "MIT" ]
97
2015-01-02T02:13:45.000Z
2022-03-09T14:12:45.000Z
sample-input/homogeneous/geometry.py
AI-Pranto/OpenMOC
7f6ce4797aec20ddd916981a56a4ba54ffda9a06
[ "MIT" ]
325
2015-01-07T17:43:14.000Z
2022-02-21T17:22:00.000Z
sample-input/homogeneous/geometry.py
AI-Pranto/OpenMOC
7f6ce4797aec20ddd916981a56a4ba54ffda9a06
[ "MIT" ]
73
2015-01-17T19:11:58.000Z
2022-03-24T16:31:37.000Z
import openmoc import openmoc.log as log import openmoc.plotter as plotter import openmoc.materialize as materialize log.set_log_level('NORMAL') ############################################################################### ########################### Creating Materials ############################ ############################################################################### log.py_printf('NORMAL', 'Importing materials data from HDF5...') materials = openmoc.materialize.load_from_hdf5('c5g7-mgxs.h5', '../') ############################################################################### ########################### Creating Surfaces ############################# ############################################################################### log.py_printf('NORMAL', 'Creating surfaces...') xmin = openmoc.XPlane(x=-5.0, name='xmin') xmax = openmoc.XPlane(x= 5.0, name='xmax') ymin = openmoc.YPlane(y=-5.0, name='ymin') ymax = openmoc.YPlane(y= 5.0, name='ymax') zmin = openmoc.ZPlane(z=-5.0, name='zmin') zmax = openmoc.ZPlane(z= 5.0, name='zmax') xmin.setBoundaryType(openmoc.REFLECTIVE) xmax.setBoundaryType(openmoc.REFLECTIVE) ymin.setBoundaryType(openmoc.REFLECTIVE) ymax.setBoundaryType(openmoc.REFLECTIVE) zmin.setBoundaryType(openmoc.REFLECTIVE) zmax.setBoundaryType(openmoc.REFLECTIVE) ############################################################################### ############################# Creating Cells ############################## ############################################################################### log.py_printf('NORMAL', 'Creating cells...') fuel = openmoc.Cell(name='fuel') fuel.setFill(materials['UO2']) moderator = openmoc.Cell(name='moderator') moderator.setFill(materials['UO2']) root_cell = openmoc.Cell(name='root cell') root_cell.addSurface(halfspace=+1, surface=xmin) root_cell.addSurface(halfspace=-1, surface=xmax) root_cell.addSurface(halfspace=+1, surface=ymin) root_cell.addSurface(halfspace=-1, surface=ymax) root_cell.addSurface(halfspace=+1, surface=zmin) root_cell.addSurface(halfspace=-1, surface=zmax) ############################################################################### ########################### Creating Universes ############################ ############################################################################### log.py_printf('NORMAL', 'Creating universes...') fue_univ = openmoc.Universe(name='homogeneous fue cell') fue_univ.addCell(fuel) mod_univ = openmoc.Universe(name='homogeneous mod cell') mod_univ.addCell(moderator) root_universe = openmoc.Universe(name='root universe') root_universe.addCell(root_cell) ############################################################################### ########################### Creating Lattices ############################# ############################################################################### log.py_printf('NORMAL', 'Creating simple 10 x 10 lattice...') f = fue_univ lattice = openmoc.Lattice(name='10x10 lattice') lattice.setWidth(width_x=1.0, width_y=1.0, width_z=1.0) lattice.setUniverses([[[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]]]) root_cell.setFill(lattice) ############################################################################### ########################## Creating the Geometry ########################## ############################################################################### log.py_printf('NORMAL', 'Creating geometry...') geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.initializeFlatSourceRegions()
46.705584
79
0.29236
0
0
0
0
0
0
0
0
1,806
0.196283
407e66ad31400c201f52210276cc27484a563068
22,314
py
Python
google/ads/google_ads/v5/__init__.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
1
2021-04-09T04:28:47.000Z
2021-04-09T04:28:47.000Z
google/ads/google_ads/v5/__init__.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v5/__init__.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import sys from google.ads.google_ads import util if sys.version_info < (3, 6): raise ImportError("This module requires Python 3.6 or later.") _lazy_name_to_package_map = { "account_budget_proposal_service_client": "google.ads.google_ads.v5.services", "account_budget_service_client": "google.ads.google_ads.v5.services", "account_link_service_client": "google.ads.google_ads.v5.services", "ad_group_ad_asset_view_service_client": "google.ads.google_ads.v5.services", "ad_group_ad_label_service_client": "google.ads.google_ads.v5.services", "ad_group_ad_service_client": "google.ads.google_ads.v5.services", "ad_group_audience_view_service_client": "google.ads.google_ads.v5.services", "ad_group_bid_modifier_service_client": "google.ads.google_ads.v5.services", "ad_group_criterion_label_service_client": "google.ads.google_ads.v5.services", "ad_group_criterion_service_client": "google.ads.google_ads.v5.services", "ad_group_criterion_simulation_service_client": "google.ads.google_ads.v5.services", "ad_group_extension_setting_service_client": "google.ads.google_ads.v5.services", "ad_group_feed_service_client": "google.ads.google_ads.v5.services", "ad_group_label_service_client": "google.ads.google_ads.v5.services", "ad_group_service_client": "google.ads.google_ads.v5.services", "ad_group_simulation_service_client": "google.ads.google_ads.v5.services", "ad_parameter_service_client": "google.ads.google_ads.v5.services", "ad_schedule_view_service_client": "google.ads.google_ads.v5.services", "ad_service_client": "google.ads.google_ads.v5.services", "age_range_view_service_client": "google.ads.google_ads.v5.services", "asset_service_client": "google.ads.google_ads.v5.services", "batch_job_service_client": "google.ads.google_ads.v5.services", "bidding_strategy_service_client": "google.ads.google_ads.v5.services", "billing_setup_service_client": "google.ads.google_ads.v5.services", "campaign_asset_service_client": "google.ads.google_ads.v5.services", "campaign_audience_view_service_client": "google.ads.google_ads.v5.services", "campaign_bid_modifier_service_client": "google.ads.google_ads.v5.services", "campaign_budget_service_client": "google.ads.google_ads.v5.services", "campaign_criterion_service_client": "google.ads.google_ads.v5.services", "campaign_criterion_simulation_service_client": "google.ads.google_ads.v5.services", "campaign_draft_service_client": "google.ads.google_ads.v5.services", "campaign_experiment_service_client": "google.ads.google_ads.v5.services", "campaign_extension_setting_service_client": "google.ads.google_ads.v5.services", "campaign_feed_service_client": "google.ads.google_ads.v5.services", "campaign_label_service_client": "google.ads.google_ads.v5.services", "campaign_service_client": "google.ads.google_ads.v5.services", "campaign_shared_set_service_client": "google.ads.google_ads.v5.services", "carrier_constant_service_client": "google.ads.google_ads.v5.services", "change_status_service_client": "google.ads.google_ads.v5.services", "click_view_service_client": "google.ads.google_ads.v5.services", "conversion_action_service_client": "google.ads.google_ads.v5.services", "conversion_adjustment_upload_service_client": "google.ads.google_ads.v5.services", "conversion_upload_service_client": "google.ads.google_ads.v5.services", "currency_constant_service_client": "google.ads.google_ads.v5.services", "custom_interest_service_client": "google.ads.google_ads.v5.services", "customer_client_link_service_client": "google.ads.google_ads.v5.services", "customer_client_service_client": "google.ads.google_ads.v5.services", "customer_extension_setting_service_client": "google.ads.google_ads.v5.services", "customer_feed_service_client": "google.ads.google_ads.v5.services", "customer_label_service_client": "google.ads.google_ads.v5.services", "customer_manager_link_service_client": "google.ads.google_ads.v5.services", "customer_negative_criterion_service_client": "google.ads.google_ads.v5.services", "customer_service_client": "google.ads.google_ads.v5.services", "detail_placement_view_service_client": "google.ads.google_ads.v5.services", "display_keyword_view_service_client": "google.ads.google_ads.v5.services", "distance_view_service_client": "google.ads.google_ads.v5.services", "domain_category_service_client": "google.ads.google_ads.v5.services", "dynamic_search_ads_search_term_view_service_client": "google.ads.google_ads.v5.services", "expanded_landing_page_view_service_client": "google.ads.google_ads.v5.services", "extension_feed_item_service_client": "google.ads.google_ads.v5.services", "feed_item_service_client": "google.ads.google_ads.v5.services", "feed_item_target_service_client": "google.ads.google_ads.v5.services", "feed_mapping_service_client": "google.ads.google_ads.v5.services", "feed_placeholder_view_service_client": "google.ads.google_ads.v5.services", "feed_service_client": "google.ads.google_ads.v5.services", "gender_view_service_client": "google.ads.google_ads.v5.services", "geo_target_constant_service_client": "google.ads.google_ads.v5.services", "geographic_view_service_client": "google.ads.google_ads.v5.services", "google_ads_field_service_client": "google.ads.google_ads.v5.services", "google_ads_service_client": "google.ads.google_ads.v5.services", "group_placement_view_service_client": "google.ads.google_ads.v5.services", "hotel_group_view_service_client": "google.ads.google_ads.v5.services", "hotel_performance_view_service_client": "google.ads.google_ads.v5.services", "income_range_view_service_client": "google.ads.google_ads.v5.services", "invoice_service_client": "google.ads.google_ads.v5.services", "keyword_plan_ad_group_keyword_service_client": "google.ads.google_ads.v5.services", "keyword_plan_ad_group_service_client": "google.ads.google_ads.v5.services", "keyword_plan_campaign_keyword_service_client": "google.ads.google_ads.v5.services", "keyword_plan_campaign_service_client": "google.ads.google_ads.v5.services", "keyword_plan_idea_service_client": "google.ads.google_ads.v5.services", "keyword_plan_service_client": "google.ads.google_ads.v5.services", "keyword_view_service_client": "google.ads.google_ads.v5.services", "label_service_client": "google.ads.google_ads.v5.services", "landing_page_view_service_client": "google.ads.google_ads.v5.services", "language_constant_service_client": "google.ads.google_ads.v5.services", "location_view_service_client": "google.ads.google_ads.v5.services", "managed_placement_view_service_client": "google.ads.google_ads.v5.services", "media_file_service_client": "google.ads.google_ads.v5.services", "merchant_center_link_service_client": "google.ads.google_ads.v5.services", "mobile_app_category_constant_service_client": "google.ads.google_ads.v5.services", "mobile_device_constant_service_client": "google.ads.google_ads.v5.services", "offline_user_data_job_service_client": "google.ads.google_ads.v5.services", "operating_system_version_constant_service_client": "google.ads.google_ads.v5.services", "paid_organic_search_term_view_service_client": "google.ads.google_ads.v5.services", "parental_status_view_service_client": "google.ads.google_ads.v5.services", "payments_account_service_client": "google.ads.google_ads.v5.services", "product_bidding_category_constant_service_client": "google.ads.google_ads.v5.services", "product_group_view_service_client": "google.ads.google_ads.v5.services", "reach_plan_service_client": "google.ads.google_ads.v5.services", "recommendation_service_client": "google.ads.google_ads.v5.services", "remarketing_action_service_client": "google.ads.google_ads.v5.services", "search_term_view_service_client": "google.ads.google_ads.v5.services", "shared_criterion_service_client": "google.ads.google_ads.v5.services", "shared_set_service_client": "google.ads.google_ads.v5.services", "shopping_performance_view_service_client": "google.ads.google_ads.v5.services", "third_party_app_analytics_link_service_client": "google.ads.google_ads.v5.services", "topic_constant_service_client": "google.ads.google_ads.v5.services", "topic_view_service_client": "google.ads.google_ads.v5.services", "user_data_service_client": "google.ads.google_ads.v5.services", "user_interest_service_client": "google.ads.google_ads.v5.services", "user_list_service_client": "google.ads.google_ads.v5.services", "user_location_view_service_client": "google.ads.google_ads.v5.services", "video_service_client": "google.ads.google_ads.v5.services", "account_budget_proposal_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "account_budget_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "account_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_ad_asset_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_ad_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_ad_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_audience_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_bid_modifier_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_criterion_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_criterion_simulation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_extension_setting_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_group_simulation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_parameter_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_schedule_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "ad_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "age_range_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "asset_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "batch_job_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "bidding_strategy_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "billing_setup_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_asset_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_audience_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_bid_modifier_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_budget_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_criterion_simulation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_draft_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_experiment_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_extension_setting_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "campaign_shared_set_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "carrier_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "change_status_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "click_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "conversion_action_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "conversion_adjustment_upload_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "conversion_upload_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "currency_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "custom_interest_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_client_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_client_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_extension_setting_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_manager_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_negative_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "customer_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "detail_placement_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "display_keyword_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "distance_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "domain_category_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "dynamic_search_ads_search_term_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "expanded_landing_page_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "extension_feed_item_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_item_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_item_target_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_mapping_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_placeholder_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "feed_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "gender_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "geo_target_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "geographic_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "google_ads_field_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "google_ads_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "group_placement_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "hotel_group_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "hotel_performance_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "income_range_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "invoice_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_ad_group_keyword_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_ad_group_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_campaign_keyword_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_campaign_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_idea_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_plan_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "keyword_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "label_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "landing_page_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "language_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "location_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "managed_placement_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "media_file_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "merchant_center_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "mobile_app_category_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "mobile_device_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "offline_user_data_job_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "operating_system_version_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "paid_organic_search_term_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "parental_status_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "payments_account_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "product_bidding_category_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "product_group_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "reach_plan_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "recommendation_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "remarketing_action_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "search_term_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "shared_criterion_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "shared_set_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "shopping_performance_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "third_party_app_analytics_link_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "topic_constant_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "topic_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_data_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_interest_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_list_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "user_location_view_service_grpc_transport": "google.ads.google_ads.v5.services.transports", "video_service_grpc_transport": "google.ads.google_ads.v5.services.transports", } # Background on how this behaves: https://www.python.org/dev/peps/pep-0562/ def __getattr__(name): # Requires Python >= 3.7 """Lazily perform imports and class definitions on first demand.""" if name == "__all__": converted = ( util.convert_snake_case_to_upper_case(key) for key in _lazy_name_to_package_map ) all_names = sorted(converted) globals()["__all__"] = all_names return all_names elif name.endswith("Transport"): module = __getattr__(util.convert_upper_case_to_snake_case(name)) sub_mod_class = getattr(module, name) klass = type(name, (sub_mod_class,), {"__doc__": sub_mod_class.__doc__}) globals()[name] = klass return klass elif name.endswith("ServiceClient"): module = __getattr__(util.convert_upper_case_to_snake_case(name)) enums = __getattr__("enums") sub_mod_class = getattr(module, name) klass = type( name, (sub_mod_class,), {"__doc__": sub_mod_class.__doc__, "enums": enums}, ) globals()[name] = klass return klass elif name == "enums": path = "google.ads.google_ads.v5.services.enums" module = importlib.import_module(path) globals()[name] = module return module elif name == "types": path = "google.ads.google_ads.v5.types" module = importlib.import_module(path) globals()[name] = module return module elif name in _lazy_name_to_package_map: module = importlib.import_module( f"{_lazy_name_to_package_map[name]}.{name}" ) globals()[name] = module return module else: raise AttributeError(f"unknown sub-module {name!r}.") def __dir__(): return globals().get("__all__") or __getattr__("__all__") if not sys.version_info >= (3, 7): from pep562 import Pep562 Pep562(__name__)
71.519231
113
0.791118
0
0
0
0
0
0
0
0
18,795
0.842296
407f96b82e23f251ebe7b0d09ba3c8416a7e9d98
5,279
py
Python
PNN/model.py
jingxiufenghua/rec-model
23204f70fc1bf384d3cdd0cc85e43117d3394074
[ "MIT" ]
1,323
2020-08-24T02:34:25.000Z
2022-03-31T06:03:28.000Z
PNN/model.py
yiLinMaster/Recommender-System-with-TF2.0
cfc7b3fbd4ba2d9157a78938e6bdaeba7df82822
[ "MIT" ]
65
2020-08-25T06:07:41.000Z
2022-03-18T20:10:53.000Z
PNN/model.py
yiLinMaster/Recommender-System-with-TF2.0
cfc7b3fbd4ba2d9157a78938e6bdaeba7df82822
[ "MIT" ]
395
2020-08-24T00:57:08.000Z
2022-03-31T12:41:13.000Z
""" Created on July 20, 2020 Updated on May 19, 2021 model: Product-based Neural Networks for User Response Prediction @author: Ziyao Geng([email protected]) """ import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Embedding, Dense, Layer, Dropout, Input from modules import DNN class PNN(Model): def __init__(self, feature_columns, hidden_units, mode='in', dnn_dropout=0., activation='relu', embed_reg=1e-6, w_z_reg=1e-6, w_p_reg=1e-6, l_b_reg=1e-6): """ Product-based Neural Networks :param feature_columns: A list. sparse column feature information. :param hidden_units: A list. Neural network hidden units. :param mode: A string. 'in' IPNN or 'out'OPNN. :param activation: A string. Activation function of dnn. :param dnn_dropout: A scalar. Dropout of dnn. :param embed_reg: A scalar. The regularizer of embedding. :param w_z_reg: A scalar. The regularizer of w_z_ in product layer :param w_p_reg: A scalar. The regularizer of w_p in product layer :param l_b_reg: A scalar. The regularizer of l_b in product layer """ super(PNN, self).__init__() # inner product or outer product self.mode = mode self.sparse_feature_columns = feature_columns # the number of feature fields self.field_num = len(self.sparse_feature_columns) self.embed_dim = self.sparse_feature_columns[0]['embed_dim'] # The embedding dimension of each feature field must be the same self.embed_layers = { 'embed_' + str(i): Embedding(input_dim=feat['feat_num'], input_length=1, output_dim=feat['embed_dim'], embeddings_initializer='random_uniform', embeddings_regularizer=l2(embed_reg)) for i, feat in enumerate(self.sparse_feature_columns) } # parameters self.w_z = self.add_weight(name='w_z', shape=(self.field_num, self.embed_dim, hidden_units[0]), initializer='random_uniform', regularizer=l2(w_z_reg), trainable=True ) if mode == 'in': self.w_p = self.add_weight(name='w_p', shape=(self.field_num * (self.field_num - 1) // 2, self.embed_dim, hidden_units[0]), initializer='random_uniform', reguarizer=l2(w_p_reg), trainable=True) # out else: self.w_p = self.add_weight(name='w_p', shape=(self.field_num * (self.field_num - 1) // 2, self.embed_dim, self.embed_dim, hidden_units[0]), initializer='random_uniform', regularizer=l2(w_p_reg), trainable=True) self.l_b = self.add_weight(name='l_b', shape=(hidden_units[0], ), initializer='random_uniform', regularizer=l2(l_b_reg), trainable=True) # dnn self.dnn_network = DNN(hidden_units[1:], activation, dnn_dropout) self.dense_final = Dense(1) def call(self, inputs): sparse_inputs = inputs sparse_embed = [self.embed_layers['embed_{}'.format(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])] sparse_embed = tf.transpose(tf.convert_to_tensor(sparse_embed), [1, 0, 2]) # (None, field_num, embed_dim) # product layer row = [] col = [] for i in range(len(self.sparse_feature_columns) - 1): for j in range(i + 1, len(self.sparse_feature_columns)): row.append(i) col.append(j) p = tf.gather(sparse_embed, row, axis=1) q = tf.gather(sparse_embed, col, axis=1) if self.mode == 'in': l_p = tf.tensordot(p*q, self.w_p, axes=2) # (None, hidden[0]) else: # out u = tf.expand_dims(q, 2) # (None, field_num(field_num-1)/2, 1, emb_dim) v = tf.expand_dims(p, 2) # (None, field_num(field_num-1)/2, 1, emb_dim) l_p = tf.tensordot(tf.matmul(tf.transpose(u, [0, 1, 3, 2]), v), self.w_p, axes=3) # (None, hidden[0]) l_z = tf.tensordot(sparse_embed, self.w_z, axes=2) # (None, hidden[0]) l_1 = tf.nn.relu(tf.concat([l_z + l_p + self.l_b], axis=-1)) # dnn layer dnn_x = self.dnn_network(l_1) outputs = tf.nn.sigmoid(self.dense_final(dnn_x)) return outputs def summary(self): sparse_inputs = Input(shape=(len(self.sparse_feature_columns),), dtype=tf.int32) Model(inputs=sparse_inputs, outputs=self.call(sparse_inputs)).summary()
47.990909
114
0.544232
4,906
0.929343
0
0
0
0
0
0
1,346
0.254973
407fa3643267388dca73bf3b3496b61a0c5f9491
314
py
Python
exercicio3.py
DrokaGit/-infosatc-lp-avaliativo-02
6bb78ce84ac325c866201ff538f426d6e7a72ab5
[ "MIT" ]
null
null
null
exercicio3.py
DrokaGit/-infosatc-lp-avaliativo-02
6bb78ce84ac325c866201ff538f426d6e7a72ab5
[ "MIT" ]
null
null
null
exercicio3.py
DrokaGit/-infosatc-lp-avaliativo-02
6bb78ce84ac325c866201ff538f426d6e7a72ab5
[ "MIT" ]
null
null
null
nume1 = int(input("Digite um numero")) nume2 = int(input("Digite um numero")) nume3 = int(input("Digite um numero")) nume4 = int(input("Digite um numero")) nume5 = int(input("Digite um numero")) table = [nume1,nume2,nume3,nume4,nume5] tableM = (float((nume1 + nume2 + nume3 + nume4 + nume5))) print(float(tableM))
34.888889
57
0.691083
0
0
0
0
0
0
0
0
90
0.286624
40804fd1f1dd57a07519de8f44b10f0b6f6d1a54
274
py
Python
platonic/platonic/box/implementation.py
anatoly-scherbakov/platonic
b2d239e19f3ebf5a562b6aabcd4b82492bb03564
[ "MIT" ]
1
2019-11-01T09:08:50.000Z
2019-11-01T09:08:50.000Z
platonic/platonic/box/implementation.py
anatoly-scherbakov/platonic
b2d239e19f3ebf5a562b6aabcd4b82492bb03564
[ "MIT" ]
null
null
null
platonic/platonic/box/implementation.py
anatoly-scherbakov/platonic
b2d239e19f3ebf5a562b6aabcd4b82492bb03564
[ "MIT" ]
null
null
null
from typing import TypeVar from .abstract import AbstractBox T = TypeVar('T') class ValueBox(AbstractBox[T]): _value: T @property def value(self) -> T: return self._value @value.setter def value(self, value: T): self._value = value
15.222222
33
0.635036
191
0.69708
0
0
134
0.489051
0
0
3
0.010949
408169e338ef415cc1c1cefeaa3179019885ca4e
79
py
Python
Schemas/Subject.py
esot0/jmsa-tutoring-backend
f35000c73fbbb31f9b4dcca36e40854dc2e06d23
[ "MIT" ]
null
null
null
Schemas/Subject.py
esot0/jmsa-tutoring-backend
f35000c73fbbb31f9b4dcca36e40854dc2e06d23
[ "MIT" ]
null
null
null
Schemas/Subject.py
esot0/jmsa-tutoring-backend
f35000c73fbbb31f9b4dcca36e40854dc2e06d23
[ "MIT" ]
null
null
null
from mongoengine import * class Subject(Document): subject = StringField()
19.75
27
0.746835
52
0.658228
0
0
0
0
0
0
0
0
40826ce560682ad3ad560f8fecc12e0ab6658bc0
767
py
Python
39. Combination Sum.py
MapleLove2014/leetcode
135c79ebe98815d0e38280edfadaba90e677aff5
[ "Apache-2.0" ]
1
2020-12-04T07:38:16.000Z
2020-12-04T07:38:16.000Z
39. Combination Sum.py
MapleLove2014/leetcode
135c79ebe98815d0e38280edfadaba90e677aff5
[ "Apache-2.0" ]
null
null
null
39. Combination Sum.py
MapleLove2014/leetcode
135c79ebe98815d0e38280edfadaba90e677aff5
[ "Apache-2.0" ]
null
null
null
class Solution: def combinationSum(self, candidates, target): def lookup(candidates, index, target, combine, result): if target == 0: result.append(combine) return if index >= len(candidates) and target > 0: return if target >= candidates[index]: lookup(candidates, index, target - candidates[index], list(combine) + [candidates[index]], result) lookup(candidates, index + 1, target, list(combine), result) sorted(candidates) result = [] lookup(candidates, 0, target, [], result) return result s = Solution() print(s.combinationSum([2,3,6,7], 7)) print(s.combinationSum([2,3,5], 8))
34.863636
114
0.555411
676
0.881356
0
0
0
0
0
0
0
0
4082bcb5f99112c93d2d504f08622c615955a33b
1,204
py
Python
crawl_comments.py
tosh1ki/NicoCrawler
236029f103e01de9e61a042759dc9bf2cb7d3d55
[ "MIT" ]
1
2015-03-04T14:06:33.000Z
2015-03-04T14:06:33.000Z
crawl_comments.py
tosh1ki/NicoCrawler
236029f103e01de9e61a042759dc9bf2cb7d3d55
[ "MIT" ]
2
2015-03-04T02:48:18.000Z
2015-03-04T14:18:32.000Z
crawl_comments.py
tosh1ki/NicoCrawler
236029f103e01de9e61a042759dc9bf2cb7d3d55
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- __doc__ = ''' Crawl comment from nicovideo.jp Usage: crawl_comments.py --url <url> --mail <mail> --pass <pass> [--sqlite <sqlite>] [--csv <csv>] Options: --url <url> --mail <mail> --pass <pass> --sqlite <sqlite> (optional) path of comment DB [default: comments.sqlite3] --csv <csv> (optional) path of csv file contains urls of videos [default: crawled.csv] ''' from docopt import docopt from nicocrawler.nicocrawler import NicoCrawler if __name__ == '__main__': # コマンドライン引数の取得 args = docopt(__doc__) url_channel_toppage = args['--url'] login_mail = args['--mail'] login_pass = args['--pass'] path_sqlite = args['--sqlite'] path_csv = args['--csv'] ncrawler = NicoCrawler(login_mail, login_pass) ncrawler.connect_sqlite(path_sqlite) df = ncrawler.get_all_video_url_of_season(url_channel_toppage) ncrawler.initialize_csv_from_db(path_csv) # # デイリーランキング1~300位の動画を取得する # url = 'http://www.nicovideo.jp/ranking/fav/daily/all' # ncrawler.initialize_csv_from_url(url, path_csv, max_page=3) # ncrawler.get_all_comments_of_csv(path_csv, max_n_iter=1)
26.173913
102
0.671096
0
0
0
0
0
0
0
0
763
0.603639
40830eea2a3d7f03b3b7dae05b19fdc253a0e60b
2,095
py
Python
sif/greedy_sim_max.py
longland-m/wikigen
459ba7bf9d3ca9584de65388cc9b9a15fa16a69f
[ "MIT" ]
null
null
null
sif/greedy_sim_max.py
longland-m/wikigen
459ba7bf9d3ca9584de65388cc9b9a15fa16a69f
[ "MIT" ]
2
2021-08-25T16:04:29.000Z
2022-02-10T01:50:44.000Z
sif/greedy_sim_max.py
longland-m/wikigen
459ba7bf9d3ca9584de65388cc9b9a15fa16a69f
[ "MIT" ]
null
null
null
# Functions to do the greedy similarity maximisation for article:node assignments # All code is original import random def computeSimSum(G, similarityMatrix, asgn): """ Compute the total similarity sum for the current node:article assignment """ S = sum([similarityMatrix[asgn[j], asgn[i]] for j in range(len(G)) for i in list(G[j])]) return S def greedySimilarityMax(G, similarityMatrix, nrounds=5): pairList = [(a,b) for a in range(len(G)) for b in range(a)] maxSimSums = [] asgns = [] for i in range(nrounds): # get random indices for initial node:article assignment init_ids = list(range(len(G))) random.shuffle(init_ids) # assign articles to nodes and compute initial similarity sum curAsgn = dict((key, init_ids[key]) for key in range(len(G))) curSimSum = computeSimSum(G, similarityMatrix, curAsgn) # maximisation loop - repeats until S can't increase while True: # for each node pair, swap the nodes recompute similarity sum simSums = [] for edge in pairList: tempAsgn = dict(curAsgn) tempAsgn[edge[0]] = curAsgn[edge[1]] tempAsgn[edge[1]] = curAsgn[edge[0]] # Recompute similarity sum tempSimSum = computeSimSum(G, similarityMatrix, tempAsgn) simSums.append(tempSimSum) # find the max possible new similarity score # then update curAsgn if the new max score > old score maxNewSimSum = max(simSums) if maxNewSimSum > curSimSum: nodesToSwap = pairList[simSums.index(maxNewSimSum)] oldAsgn = dict(curAsgn) curAsgn[nodesToSwap[0]] = oldAsgn[nodesToSwap[1]] curAsgn[nodesToSwap[1]] = oldAsgn[nodesToSwap[0]] curSimSum = maxNewSimSum # no need to recompute, know the value already else: break maxSimSums.append(curSimSum) asgns.append(curAsgn) bestRound = maxSimSums.index(max(maxSimSums)) bestAsgn = asgns[bestRound] print('Best S = ' + str(maxSimSums[bestRound])) return bestAsgn
32.230769
82
0.651074
0
0
0
0
0
0
0
0
598
0.285442
40836d6113e4a1359c6e3078275ec9078aa642e4
23,463
py
Python
plab/photon_counters/Idq801.py
joamatab/photonic-coupling-drivers
c12581d8e2158a292e1c585e45c0207c8129c0f1
[ "MIT" ]
null
null
null
plab/photon_counters/Idq801.py
joamatab/photonic-coupling-drivers
c12581d8e2158a292e1c585e45c0207c8129c0f1
[ "MIT" ]
null
null
null
plab/photon_counters/Idq801.py
joamatab/photonic-coupling-drivers
c12581d8e2158a292e1c585e45c0207c8129c0f1
[ "MIT" ]
null
null
null
import sys import numpy as np import shutil import time import itertools as it import collections import ctypes as ct import os import copy sys.path.append(os.path.dirname(__file__)) from ThreadStoppable import ThreadStoppable class Idq801(object): def __init__( self, deviceId=-1, timestamp_buffer_size=int(1e6), integration_time_ms=0.5 * 1e3, coincidence_window_bins=1000, max_retry=3, delay_retry_sec=0.01, clean_data_directory=False, data_directory="Idq801Data", processing="external", ): self._max_retry = max_retry self._set_check_delay = delay_retry_sec # Delay in seconds between setting and # checking that a parameter was set. self._data_directory = data_directory self._wait_for_settings = 1 self._processing_dict = {"i": "internal", "e": "external"} processing = processing.lower() assert processing in self._processing.values() self._processing = processing if not os.path.isdir(data_directory): os.mkdir(data_directory) if clean_data_directory: self.clean_data_directory() module_path = os.path.dirname(__file__) + "/" if sys.platform == "linux": self.idq801Lib = ct.CDLL(module_path + "libtdcbase.so") elif sys.platform == "win32": self.idq801Lib = ct.CDLL(module_path + "./tdcbase.dll") else: raise OSError("Invalid operating system") if self.idq801Lib.TDC_init(deviceId): raise RuntimeError("Could not connect to the ID801 counter.") # Initial parameters. self.unset_channel(-1) self.set_timestamp_buffer_size(timestamp_buffer_size) self.integration_time_ms = integration_time_ms if self._processing == self._processing_dict["i"]: self.set_integration_time(integration_time_ms) else: self.set_integration_time(1.0e-3) # 1us integration time. self.set_coincidence_window_bins(1000) self._time_last_get_timestamps = time.time() self.channel_delays = { "1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, } self.set_channel_delays_ns(self.channel_delays) self.accidental_delay = 0 def __del__(self): self.idq801Lib.TDC_deInit() def _set_value(self, set_value, setter, getter): """Sets a value and makes sure it was set.""" attempt = 0 is_set = False while not is_set and attempt < self._max_retry: attempt += 1 setter(set_value) time.sleep(self._set_check_delay) try: if list(set_value) == list(getter()): is_set = True except TypeError: if set_value == getter(): is_set = True if not is_set: raise RuntimeError( "Unable to set the value using %s to %s after %i attempts." % (setter.__name__, str(set_value), self._max_retry) ) def _get_device_params(self): cm = ct.c_int32() cw = ct.c_int32() ew = ct.c_int32() self.idq801Lib.TDC_getDeviceParams(ct.byref(cm), ct.byref(cw), ct.byref(ew)) return (cm, cw, ew) def _set_processing(self, processing): processing = processing.lower() assert processing in self._processing_dict.values() self._processing = processing if processing == self._processing_dict["i"]: self.set_integration_time(self.integration_time_ms) return self._processing def set_processing_internal(self): return self._set_processing("internal") def set_processing_external(self): return self._set_processing("external") def clean_data_directory(self): """ Deletes all data in the `Idq801Data` directory. """ shutil.rmtree(self._data_directory, ignore_errors=True) os.mkdir(self._data_directory) def get_timebase(self): self.idq801Lib.TDC_getTimebase.restype = ct.c_double tb = self.idq801Lib.TDC_getTimebase() return tb def get_mask_channels(self): cm, _, _ = self._get_device_params() return cm.value def get_status_channels(self): cm, cw, ew = self._get_device_params() channels_enabled = [bool(int(c)) for c in bin(cm.value)[2:]][::-1] padLength = 8 - len(channels_enabled) channels_enabled.extend([False] * padLength) return tuple(channels_enabled) def get_enabled_channels(self): channels_status = self.get_status_channels() channels_enabled = tuple( i + 1 for i, v in enumerate(channels_status) if v == True ) return channels_enabled def get_disabled_channels(self): channels_status = self.get_status_channels() channels_disabled = tuple( i + 1 for i, v in enumerate(channels_status) if v == False ) return channels_disabled def is_channel_enabled(self, channel): assert 1 <= channel <= 8, "Invalid choice channel range." channel -= 1 channel_status = self.get_status_channels()[channel] return channel_status def _get_channel_mask(self, channel, set_unset): def channel_mask_from_channel_list(channels_enabled): channel_mask = 0 for b in channels_enabled[::-1]: channel_mask = (channel_mask << b - 1) | True return channel_mask set_unset = set_unset.lower() assert set_unset in ("set", "unset"), ( "Invalid `set_unset` choice %s." % set_unset ) if isinstance(channel, str): channel = channel.lower() if channel == "all" or channel == -1: channel_mask = 0xFF elif channel in range(1, 9): channel_mask = 1 << channel elif isinstance(channel, collections.Iterable): channel_mask = channel_mask_from_channel_list(channel) else: raise TypeError("Invalid `channel` choice.") if set_unset == "unset": channel_mask ^= 0xFF return channel_mask def _set_unset_channel(self, channel, set_unset): self._channel_mask = self._get_channel_mask(channel, set_unset) self._set_value( self._channel_mask, self.idq801Lib.TDC_enableChannels, self.get_mask_channels, ) return self._channel_mask def set_channel(self, channel): """Choose which channels to enable. Options include: * -1 or 'all' for (all channels). * A single number for channel to be enabled. * An iterable containing the channels to be enables. e.g. (1,4,5) * Default is no channels are enabled. """ return self._set_unset_channel(channel, "set") def unset_channel(self, channel): """Choose which channels to disable. Options include: * -1 or 'all' for (all channels). * A single number for channel to be disabled. * An iterable containing the channels to be disables. e.g. (1,4,5) * Default is no channels are disabled. """ return self._set_unset_channel(channel, "unset") def get_coincidence_window_bins(self): cm, cw, ew = self._get_device_params() return cw.value def get_coincidence_window_ns(self): bin = self.get_timebase() return bin * self.get_coincidence_window_bins() * 1e9 def set_coincidence_window_bins(self, coincidence_window_bins): coincidence_window_bins = int(coincidence_window_bins) if not 0 < coincidence_window_bins <= 65535: raise ValueError( "The chosen number of coincidence \ window bins is not in the range (0,65535]." ) self._set_value( coincidence_window_bins, self.idq801Lib.TDC_setCoincidenceWindow, self.get_coincidence_window_bins, ) def set_coincidence_window_ns(self, coincidence_window_ns): bin = self.get_timebase() coincidence_window_bins = int(coincidence_window_ns * 1e-9 / bin) return self.set_coincidence_window_bins(coincidence_window_bins) def get_integration_time(self): cm, cw, ew = self._get_device_params() return ew.value def freeze_buffers(self): self.idq801Lib.TDC_freezeBuffers(True) def unfreeze_buffers(self): self.idq801Lib.TDC_freezeBuffers(False) def set_integration_time(self, window_time_ms): window_time_ms = round(window_time_ms) if self._processing == self._processing_dict["i"]: if not 0 < window_time_ms <= 65535: raise ValueError( "The chosen exposure window is not \ in the range (0,65535]. Can't do more than 65.5s \ integration time internally." ) self._set_value( self.window_time_ms, self.idq801Lib.TDC_setExposureTime, self.get_integration_time, ) def get_data_lost_status(self): """Returns true if data is being lost, and false if data is not being lost. """ # Get the status of the lost latch. lost = ct.c_int32() self.idq801Lib.TDC_getDataLost(ct.byref(lost)) latch = lost.value # Calls the function again to clear the lost latch. self.idq801Lib.TDC_getDataLost(ct.byref(lost)) return latch def get_timestamp_buffer_size(self): size = ct.c_int32() self.idq801Lib.TDC_getTimestampBufferSize(ct.byref(size)) return size.value def set_timestamp_buffer_size(self, size): """`size` is the amount of timestamps that the the counter will store. Range is 1->1000000 """ self._set_value( size, self.idq801Lib.TDC_setTimestampBufferSize, self.get_timestamp_buffer_size, ) def get_timestamps(self, clear_retrieved_timestamps=True, trim_time_s=None): """ Gets all the time stamps in the buffer and returns a dictionary corresponding to the timestamps in each channel. args: clear_retrieved_timestamps(bool): Clears the timestamp buffer of the IDQ801 after reading. trim_time_s(float, None): The amount of timestamps, in seconds, from the import first timestamps to keep. If `None`, all timestamps are returned. Multiple channels are all trimmed starting from the lowest timestamps of all the channels combined. returns: dict: A dictionary containing numpy arrays with the timestamps of each channel. The time from the last calling of this function is also returned in the dictionary. """ if self.get_timestamp_buffer_size() == 0: raise RuntimeError( "The timestamp buffer size is 0. \ Can't get timestamps. Need to set the timestamp \ buffer." ) r = ct.c_int32(clear_retrieved_timestamps) ts = (ct.c_int64 * self.get_timestamp_buffer_size())() c = (ct.c_int8 * self.get_timestamp_buffer_size())() v = ct.c_int32() self.idq801Lib.TDC_getLastTimestamps(r, ts, c, ct.byref(v)) time_read = time.time() time_diff = time_read - self._time_last_get_timestamps self._time_last_get_timestamps = time_read channel = np.frombuffer(c, dtype=np.int8) channel_masks = [ channel == i for i in range(4) if self._channel_mask & (1 << i) ] timestamps = np.frombuffer(ts, dtype=np.int64) timestamps_masked = { str(c + 1): timestamps[c_m] for c, c_m in enumerate(channel_masks) } timestamps_masked.update((k, v[v > 0]) for k, v in timestamps_masked.items()) last_counts = [] if trim_time_s: for timestamps in timestamps_masked.values(): if timestamps.size: first_count = timestamps[0] last_counts.append( first_count + int(trim_time_s / self.get_timebase() + 0.5) ) if len(last_counts): last_count = np.min(last_counts) for channel, timestamps in timestamps_masked.items(): if timestamps.size: last_idx = np.searchsorted(timestamps, last_count, "right") timestamps_masked[channel] = timestamps[: last_idx - 1] timestamps_masked["time_diff"] = time_diff return timestamps_masked def _get_coins(self, timestamps_1, timestamps_2, method="2"): t2 = np.array(timestamps_2, dtype=np.int64) assert method in ("1", "2"), "Invalid method chosen." if method == "1": t1 = np.empty(len(timestamps_1) + 2, dtype=np.int64) t1[0] = 0 t1[-1] = np.iinfo(np.int64).max t1[1:-1] = timestamps_1 t2_pos = np.searchsorted(t1, t2) t1_pos_forw = t2_pos t1_pos_back = t2_pos - 1 t1_pos_back[t1_pos_back == -1] = 0 dt_forw = np.abs(t1[t1_pos_forw] - t2) <= self.get_coincidence_window_bins() dt_back = np.abs(t1[t1_pos_back] - t2) <= self.get_coincidence_window_bins() coin_forw_args = dt_forw.nonzero()[0] coin_back_args = dt_back.nonzero()[0] coins_forw = np.c_[t1_pos_forw[coin_forw_args] - 1, coin_forw_args] coins_back = np.c_[t1_pos_back[coin_back_args] - 1, coin_back_args] coins = np.vstack((coins_back, coins_forw)) elif method == "2": t1 = np.array(timestamps_1, dtype=np.int64) l = np.searchsorted(t1, t2 - self.get_coincidence_window_bins() / 2) r = np.searchsorted(t1, t2 + self.get_coincidence_window_bins() / 2) args = np.where(l != r)[0] coins = np.c_[r[args], args] return coins def get_coin_counts( self, coin_channels, accidentals_delay_ns=None, trim_time_s=None ): bin = self.get_timebase() timestamps = self.get_timestamps( clear_retrieved_timestamps=True, trim_time_s=trim_time_s ) time_diff = timestamps["time_diff"] timestamps.pop("time_diff", None) coin_counts = {} acc_counts = {} # Get singles counts for c in coin_channels: if str(c) in timestamps: coin_counts[str(c)] = len(timestamps[str(c)]) else: coin_counts[str(c)] = 0 coin_combinations = list(it.combinations(coin_channels, 2)) for c in coin_combinations: # Get coincidence counts if str(c[0]) in timestamps and str(c[1]) in timestamps: coin_counts[str(c[0]) + "/" + str(c[1])] = len( self._get_coins(timestamps[str(c[0])], timestamps[str(c[1])]) ) else: coin_counts[str(c[0]) + "/" + str(c[1])] = 0 if accidentals_delay_ns != None: accidentals_delay_bin = int(accidentals_delay_ns * 1e-9 / bin) for c in coin_combinations: # Get accidental counts if str(c[0]) in timestamps and str(c[1]) in timestamps: acc_counts[str(c[0]) + "/" + str(c[1])] = len( self._get_coins( timestamps[str(c[0])], timestamps[str(c[1])] + accidentals_delay_bin, ) ) else: acc_counts[str(c[0]) + "/" + str(c[1])] = 0 return coin_counts, acc_counts, timestamps def scan_channel_delay( self, coin_channels, scan_channel, scan_range_ns, integration_time=1.0 ): """ Scans channel delay electronically - integrates once then applies delays to the timestamps to find coins Args: coin_channels: channels to look at coins scan_channel: channel to scan scan_range_ns: +/- range of delay in ns integration_time: initial integration time Returns: max coin reading, delay in ns of the max, all coin counts, delay range """ current_delays_bins = self.get_channel_delays_bins() self.set_channel_delays_ns({str(coin_channels[0]): 0, str(coin_channels[1]): 0}) bin = self.get_timebase() self.get_timestamps() time.sleep(integration_time) original_timestamps = self.get_timestamps() delay_range = range(-scan_range_ns, scan_range_ns + 1) coin_counts = np.zeros(len(delay_range)) timestamps = copy.deepcopy(original_timestamps) for idd, d in enumerate(delay_range): timestamps[str(scan_channel)] = copy.deepcopy( original_timestamps[str(scan_channel)] ) + int(d * 1e-9 / bin) coin_counts[idd] = len( self._get_coins( timestamps[str(coin_channels[0])], timestamps[str(coin_channels[1])] ) ) print( "delay channel = %s, delay = %s ns, coin counts = %s" % (scan_channel, d, int(coin_counts[idd])) ) max_coin = np.max(coin_counts) max_coin_delay = delay_range[np.argmax(coin_counts)] self.set_channel_delays_bins(current_delays_bins) return max_coin, max_coin_delay, coin_counts, delay_range def get_timestamps_continuous(self, seconds=-1): """Runs `gets_timestamps` continuously in a separate thread for `seconds` amount of seconds in a loop. If seconds == -1, it doesn't timeout. Returns a thread object that can be stopped and started. """ time.sleep(self._wait_for_settings) clear_retrieved_timestamps = True t = ThreadStoppable( self.get_timestamps, seconds, True, args=(clear_retrieved_timestamps,) ) return t def write_timestamps_to_file(self): """Writes the timestamps in the buffer to a file. """ timestamp_dir = "Timestamps" if not os.path.isdir(self._data_directory + "/" + timestamp_dir): os.mkdir(self._data_directory + "/" + timestamp_dir) filename_prefix = ( self._data_directory + "/" + timestamp_dir + "/" + "timestamp_channel_" ) filenames = [filename_prefix + str(i) + ".dat" for i in range(1, 9)] for fn in filenames: if not os.path.exists(fn): open(fn, "w").close() ts = self.get_timestamps(clear_retrieved_timestamps=True) for i, fn in enumerate(filenames): with open(fn, "a") as fs: try: for t in ts[str(i + 1)]: fs.write(str(t) + "\n") except KeyError: pass def write_timestamps_to_file_continuous(self, seconds=-1): """Runs `write_timestamps_to_file` continuously in a separate thread for `seconds` amount of seconds in a loop. If seconds == -1, it doesn't timeout. Returns a thread object that can be stopped and started. """ time.sleep(self._wait_for_settings) t = ThreadStoppable(self.write_timestamps_to_file, seconds) return t def get_counters(self): """Returns a list of the most recent value of of the counters. """ counters = (ct.c_int32 * 19)() self.idq801Lib.TDC_getCoincCounters(counters, None) return list(counters) def get_counters_continuous(self, seconds=-1): """Runs `get_counters` continuously in a separate thread for `seconds` amount of seconds in a loop. If seconds == -1, it doesn't timeout. Returns a thread object that can be stopped and started. """ time.sleep(self._wait_for_settings) t = ThreadStoppable(self.get_counters, seconds, True) return t def write_counters_to_file(self, filename="counters.dat"): """Writes the most recent values of the internal counters and coincidence counters to a file named `filename`. """ fn = self._data_directory + "/" + filename if not os.path.exists(fn): with open(fn, "w") as fs: header = ( "1,2,3,4,5,6,7,8,1/2,1/3,1/4,2/3,2/4,3/4," "1/2/3,1/2/4,1/3/4,2/3/4,1/2/3/4" ) fs.write("#" + header + "\n") counters = self.get_counters() counters_str = ",".join([str(c) for c in counters]) with open(fn, "a") as fs: fs.write(counters_str + "\n") def write_counters_to_file_continuous(self, seconds=-1, filename="counters.dat"): """Runs `write_counters_to_file` continuously in a separate thread for `seconds` amount of seconds in a loop. If seconds == -1, it doesn't timeout. Returns a thread object that can be stopped and started. """ time.sleep(self._wait_for_settings) t = ThreadStoppable( self.write_counters_to_file, seconds, False, args=(filename,) ) return t def _get_channel_delays(self): channels = range(8) channels = (ct.c_int32 * len(channels))(*channels) self.idq801Lib.TDC_getChannelDelays(channels) return channels def get_channel_delays_bins(self): return list(self._get_channel_delays()) def get_channel_delays_ns(self): bin = self.get_timebase() delays_bins = list(self._get_channel_delays()) return [d * 1e9 * bin for d in delays_bins] def set_channel_delays_bins(self, delays_bins): delays = (ct.c_int * len(delays_bins))(*delays_bins) return self._set_value( delays, self.idq801Lib.TDC_setChannelDelays, self._get_channel_delays ) def set_channel_delays_ns(self, delays_ns_dict): """ Set channel delays in ns. The delays are in a dictionary. Args: delays_ns_dict: Returns: """ delays_ns = self.get_channel_delays_ns() for channel in delays_ns_dict.keys(): self.channel_delays[str(channel)] = delays_ns[int(channel) - 1] delays_ns[int(channel) - 1] = delays_ns_dict[str(channel)] bin = self.get_timebase() delays_bins = [int(d * 1e-9 / bin) for d in delays_ns] return self.set_channel_delays_bins(delays_bins) def main(): idq801 = Idq801() idq801.clean_data_directory() idq801.set_channel((1, 2)) # t1 = idq801.write_counters_to_file_continuous(2) # t2 = idq801.write_timestamps_to_file_continuous(2) # if __name__ == "__main__": main()
35.931087
112
0.592507
22,977
0.979287
0
0
0
0
0
0
5,143
0.219196
408378ae2d1cd6ca599deacc2843f436a637b9b1
7,472
py
Python
IRIS/IRIS_formatting.py
Xinglab/IRIS
dc3c172eae9083daf57ce0e71c4fe322ab5cc928
[ "BSD-2-Clause-FreeBSD" ]
7
2019-11-21T08:42:37.000Z
2021-08-13T15:49:18.000Z
IRIS/IRIS_formatting.py
Xinglab/IRIS
dc3c172eae9083daf57ce0e71c4fe322ab5cc928
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
IRIS/IRIS_formatting.py
Xinglab/IRIS
dc3c172eae9083daf57ce0e71c4fe322ab5cc928
[ "BSD-2-Clause-FreeBSD" ]
2
2021-05-08T08:22:38.000Z
2022-01-20T23:43:03.000Z
import sys, numpy, argparse, os def loadSamplelist(fin_samples, sample_fin_list, sample_header, sample_name_field, sample_size): for l in open(fin_samples): ls=l.strip() sample_fin_list.append(ls) for r in open(ls): rs=map(lambda x:x.split('/')[-sample_name_field].split('.bam')[0],r.strip().strip(',').split(',')) #rs=map(lambda x:x.split('/')[-2],r.strip().strip(',').split(',')) if sample_name_field==2: sn_list=r.strip().strip(',').split(',') for e,sn in enumerate(rs): if len(sn)==0: rs[e]=sn_list[e].split('/')[-1].split('.')[0] sample_header+=rs sample_size[ls]=len(r.split(',')) return sample_fin_list, sample_header, sample_size def mergeEvents(events_fin_list): total_event_dict={} for events_fin in events_fin_list: for index,event_l in enumerate(open(events_fin)): if index==0: continue event_ls=event_l.strip().split('\t') events_cord=event_ls[1].strip('"')+'\t'+event_ls[2].strip('"')+'\t'+'\t'.join(event_ls[3:7]+event_ls[8:10]) if events_cord in total_event_dict: continue total_event_dict[events_cord]='' return total_event_dict def writeMergedEvents(events_fin_list, splicing_event_type, cov_cutoff, data_name, fout_path): total_event_dict=mergeEvents(events_fin_list) print len(total_event_dict) total_event_list=sorted(total_event_dict.keys()) fout=open(fout_path+'/prefilter_events.splicing_matrix.'+splicing_event_type+'.cov'+str(cov_cutoff)+'.'+data_name+'.txt','w') for e in total_event_list: fout.write(e.strip()+'\n') fout.close() return total_event_list def mergeMatrixInBatch(fin_list, events_fin_list, sample_fin_list, cov_cutoff, data_name, splicing_event_type, sample_header, sample_size, total_event_list, file_batch_list, batch, fout_path): for b in range(0,len(total_event_list),batch): Intercep_Matrix={} print '[INFO] Merging in progress. Working on batch ',b batch_event_list= total_event_list[b:min(b+batch,len(total_event_list))] batch_event_dict= dict.fromkeys(batch_event_list, 0) for n,fin in enumerate(fin_list): eventID={} for index,event_l in enumerate(open(events_fin_list[n])): if index==0: continue event_ls=event_l.strip().split('\t') event_cord=event_ls[1].strip('"')+'\t'+event_ls[2].strip('"')+'\t'+'\t'.join(event_ls[3:7]+event_ls[8:10]) if event_cord in batch_event_dict: eventID[event_ls[0]]=event_cord print '[INFO] Merging file: ', fin, len(eventID) for index,r in enumerate(open(fin)): if index==0: continue rs=r.strip().split('\t') if rs[0] not in eventID: continue Incl=map(float,rs[1].split(',')) Skip=map(float,rs[2].split(',')) Cov=[num+Skip[o] for o,num in enumerate(Incl)] psi_values=[] for i,I in enumerate(Incl): if int(I)+int(Skip[i])==0: psi_values.append('NaN') else: psi_values.append(str(round(I/int(rs[5])/(I/int(rs[5])+Skip[i]/int(rs[6])),4))) if eventID[rs[0]] not in Intercep_Matrix: Intercep_Matrix[eventID[rs[0]]]={} if sample_fin_list[n] not in Intercep_Matrix[eventID[rs[0]]]: Intercep_Matrix[eventID[rs[0]]][sample_fin_list[n]]=(psi_values,Cov) if len(psi_values)!=sample_size[sample_fin_list[n]]: exit('[Abort] Sample number does not match observations in JC file.') file_batch_list.append(fout_path+'/splicing_matrix/splicing_matrix.'+splicing_event_type+'.cov'+str(cov_cutoff)+'.'+data_name+'.txt.batch_'+str(b)+'.txt') fout=open(fout_path+'/splicing_matrix/splicing_matrix.'+splicing_event_type+'.cov'+str(cov_cutoff)+'.'+data_name+'.txt.batch_'+str(b)+'.txt','w') fout.write('AC\tGeneName\tchr\tstrand\texonStart\texonEnd\tupstreamEE\tdownstreamES\t'+'\t'.join(sample_header)+'\n') for k in sorted(Intercep_Matrix.keys()): psi_value_all=[] cov_all=[] for sample in sample_fin_list: if sample in Intercep_Matrix[k]: psi_value_all+=Intercep_Matrix[k][sample][0] cov_all+=Intercep_Matrix[k][sample][1] else: psi_value_all+=['NaN']*sample_size[sample] mean=numpy.mean(cov_all) if mean>=cov_cutoff: fout.write(k+'\t'+'\t'.join(psi_value_all)+'\n') fout.close() return file_batch_list def mergeMatrixInOne(file_batch_list, cov_cutoff, data_name, splicing_event_type, fout_path): fout_merge=open(fout_path+'/splicing_matrix/splicing_matrix.'+splicing_event_type+'.cov'+str(cov_cutoff)+'.'+data_name+'.txt','w') header=0 for file_batch in file_batch_list: for j,l in enumerate(open(file_batch)): if j==0: if header==0: header+=1 fout_merge.write(l) continue fout_merge.write(l) fout_merge.close() os.system('rm '+fout_path+'/splicing_matrix/splicing_matrix.'+splicing_event_type+'.cov'+str(cov_cutoff)+'.'+data_name+'.txt.batch_*.txt') return 'splicing_matrix.'+splicing_event_type+'.cov'+str(cov_cutoff)+'.'+data_name+'.txt' def index_PsiMatrix(fn,outdir,delim): out_fp = outdir+'/'+fn.split('/')[-1]+'.idx' line_formatter = "{id}\t{offset}\n" offset = 0 with open(fn, 'r') as fin: with open(out_fp, 'w') as fout: offset += len(fin.readline()) for line in fin: ele = line.strip().split(delim) eid = ':'.join([ele[0].split('_')[0].split('.')[0]]+ele[1:8]) fout.write( line_formatter.format(id=eid, offset=offset) ) offset += len(line) return def main(args): cov_cutoff=args.cov_cutoff data_name=args.data_name sample_name_field=args.sample_name_field splicing_event_type=args.splicing_event_type if sample_name_field==1: print '[INFO] Sample name parsed from bam file. (alternatively can be parsed from up level folder)' if sample_name_field==2: print '[INFO] Sample name parsed from folder name above the bam file. (alternatively can be parsed from bam file)' db_dir=args.iris_db_path.rstrip('/') #prepare files/folders in IRIS db directory os.system('mkdir -p '+db_dir+'/'+data_name+' '+db_dir+'/'+data_name+'/splicing_matrix') fout_path=db_dir+'/'+data_name print '[INFO] output path: '+fout_path fin_list=[] sample_fin_list=[] events_fin_list=[] sample_size={} sample_header=[] file_batch_list=[] #PARSING INPUT FILE LISTS fin_list=[l.strip().rstrip('/')+'/JC.raw.input.'+splicing_event_type+'.txt' for l in open(args.rmats_mat_path_manifest)] events_fin_list=[l.strip().rstrip('/')+'/fromGTF.'+splicing_event_type+'.txt' for l in open(args.rmats_mat_path_manifest)] sample_fin_list, sample_header, sample_size= loadSamplelist(args.rmats_sample_order,sample_fin_list, sample_header,sample_name_field, sample_size) #MAKING MERGED EVENTS LIST total_event_list= writeMergedEvents(events_fin_list, splicing_event_type, cov_cutoff, data_name, fout_path) if args.merge_events_only: exit('[INFO] Done merging events only.') print '[INFO] Done loading file dir', len(total_event_list) #START MERGING MATRICES IN BATCH MODE FOLLOWING EVENTS LIST GENERATED. batch=20000 file_batch_list=mergeMatrixInBatch(fin_list, events_fin_list, sample_fin_list, cov_cutoff, data_name, splicing_event_type, sample_header, sample_size, total_event_list, file_batch_list, batch, fout_path) print '[INFO] Done merging matrices by batch.' merged_file_name=mergeMatrixInOne(file_batch_list, cov_cutoff, data_name, splicing_event_type, fout_path) print '[INFO] Done merging matrices: '+merged_file_name #create index in IRIS db directory index_PsiMatrix(fout_path+'/splicing_matrix/'+merged_file_name,fout_path+'/splicing_matrix','\t') print '[INFO] Finished. Created matrix: '+fout_path if __name__ == '__main__': main()
42.454545
204
0.722564
0
0
0
0
0
0
0
0
1,509
0.201954
408407cd45d1d31df97defaffbefa6540d0ab484
7,444
py
Python
quests/dataflow_python/streaming_event_generator.py
Glairly/introduction_to_tensorflow
aa0a44d9c428a6eb86d1f79d73f54c0861b6358d
[ "Apache-2.0" ]
2
2022-01-06T11:52:57.000Z
2022-01-09T01:53:56.000Z
quests/dataflow_python/streaming_event_generator.py
Glairly/introduction_to_tensorflow
aa0a44d9c428a6eb86d1f79d73f54c0861b6358d
[ "Apache-2.0" ]
null
null
null
quests/dataflow_python/streaming_event_generator.py
Glairly/introduction_to_tensorflow
aa0a44d9c428a6eb86d1f79d73f54c0861b6358d
[ "Apache-2.0" ]
null
null
null
# This program reads a file representing web server logs in common log format and streams them into a PubSub topic # with lag characteristics as determined by command-line arguments import argparse from google.cloud import pubsub_v1 import time from datetime import datetime, timezone import random from anytree.importer import DictImporter import json from multiprocessing import Process parser = argparse.ArgumentParser(__file__, description="event_generator") parser.add_argument("--taxonomy", "-x", dest="taxonomy_fp", help="A .json file representing a taxonomy of web resources", default="taxonomy.json") parser.add_argument("--users_fp", "-u", dest="users_fp", help="A .csv file of users", default="users.csv") parser.add_argument("--off_to_on", "-off", dest="off_to_on_prob", type=float, help="A float representing the probability that a user who is offline will come online", default=.25) parser.add_argument("--on_to_off", "-on", dest="on_to_off_prob", type=float, help="A float representing the probability that a user who is online will go offline", default=.1) parser.add_argument("--max_lag_millis", '-l', dest="max_lag_millis", type=int, help="An integer representing the maximum amount of lag in millisecond", default=250) parser.add_argument("--project_id", "-p", type=str, dest="project_id", help="A GCP Project ID", required=True) parser.add_argument("--topic_name", "-t", dest="topic_name", type=str, help="The name of the topic where the messages to be published", required=True) avg_secs_between_events = 5 args = parser.parse_args() taxonomy_fp = args.taxonomy_fp users_fp = args.users_fp online_to_offline_probability = args.on_to_off_prob offline_to_online_probability = args.off_to_on_prob max_lag_millis = args.max_lag_millis project_id = args.project_id topic_name = args.topic_name min_file_size_bytes = 100 max_file_size_bytes = 500 verbs = ["GET"] responses = [200] log_fields = ["ip", "user_id", "lat", "lng", "timestamp", "http_request", "http_response", "num_bytes", "user_agent"] def extract_resources(taxonomy_filepath): """ Reads a .json representing a taxonomy and returns a data structure representing their hierarchical relationship :param taxonomy_file: a string representing a path to a .json file :return: Node representing root of taxonomic tree """ try: with open(taxonomy_filepath, 'r') as fp: json_str = fp.read() json_data = json.loads(json_str) root = DictImporter().import_(json_data) finally: fp.close() return root def read_users(users_fp): """ Reads a .csv from @user_fp representing users into a list of dictionaries, each elt of which represents a user :param user_fp: a .csv file where each line represents a user :return: a list of dictionaries """ users = [] with open(users_fp, 'r') as fp: fields = fp.readline().rstrip().split(",") for line in fp: user = dict(zip(fields, line.rstrip().split(","))) users.append(user) return users def sleep_then_publish_burst(burst, publisher, topic_path): """ :param burst: a list of dictionaries, each representing an event :param num_events_counter: an instance of Value shared by all processes to track the number of published events :param publisher: a PubSub publisher :param topic_path: a topic path for PubSub :return: """ sleep_secs = random.uniform(0, max_lag_millis/1000) time.sleep(sleep_secs) publish_burst(burst, publisher, topic_path) def publish_burst(burst, publisher, topic_path): """ Publishes and prints each event :param burst: a list of dictionaries, each representing an event :param num_events_counter: an instance of Value shared by all processes to track the number of published events :param publisher: a PubSub publisher :param topic_path: a topic path for PubSub :return: """ for event_dict in burst: json_str = json.dumps(event_dict) data = json_str.encode('utf-8') publisher.publish(topic_path, data=data, timestamp=event_dict['timestamp']) def create_user_process(user, root): """ Code for continuously-running process representing a user publishing events to pubsub :param user: a dictionary representing characteristics of the user :param root: an instance of AnyNode representing the home page of a website :param num_events_counter: a variable shared among all processes used to track the number of events published :return: """ publisher = pubsub_v1.PublisherClient() topic_path = publisher.topic_path(project_id, topic_name) user['page'] = root user['is_online'] = True user['offline_events'] = [] while True: time_between_events = random.uniform(0, avg_secs_between_events * 2) time.sleep(time_between_events) prob = random.random() event = generate_event(user) if user['is_online']: if prob < online_to_offline_probability: user['is_online'] = False user['offline_events'] = [event] else: sleep_then_publish_burst([event], publisher, topic_path) else: user['offline_events'].append(event) if prob < offline_to_online_probability: user['is_online'] = True sleep_then_publish_burst(user['offline_events'], publisher, topic_path) user['offline_events'] = [] def generate_event(user): """ Returns a dictionary representing an event :param user: :return: """ user['page'] = get_next_page(user) uri = str(user['page'].name) event_time = datetime.now(tz=timezone.utc) current_time_str = event_time.strftime('%Y-%m-%dT%H:%M:%S.%fZ') file_size_bytes = random.choice(range(min_file_size_bytes, max_file_size_bytes)) http_request = "\"{} {} HTTP/1.0\"".format(random.choice(verbs), uri) http_response = random.choice(responses) event_values = [user['ip'], user['id'], float(user['lat']), float(user['lng']), current_time_str, http_request, http_response, file_size_bytes, user['user_agent']] return dict(zip(log_fields, event_values)) def get_next_page(user): """ Consults the user's representation of the web site taxonomy to determine the next page that they visit :param user: :return: """ possible_next_pages = [user['page']] if not user['page'].is_leaf: possible_next_pages += list(user['page'].children) if (user['page'].parent != None): possible_next_pages += [user['page'].parent] next_page = random.choice(possible_next_pages) return next_page if __name__ == '__main__': users = read_users(users_fp) root = extract_resources(taxonomy_fp) processes = [Process(target=create_user_process, args=(user, root)) for user in users] [process.start() for process in processes] while True: time.sleep(1)
39.595745
116
0.657174
0
0
0
0
0
0
0
0
2,991
0.4018
4084a9455c8745ebe8cdb17a3177996a15d02016
210
py
Python
src/models/configs/database.py
Nardri/rbac-service
c5cf6baf60e95a7790156c85e37c76c697efd585
[ "MIT" ]
null
null
null
src/models/configs/database.py
Nardri/rbac-service
c5cf6baf60e95a7790156c85e37c76c697efd585
[ "MIT" ]
null
null
null
src/models/configs/database.py
Nardri/rbac-service
c5cf6baf60e95a7790156c85e37c76c697efd585
[ "MIT" ]
null
null
null
"""Database setup""" # Third party library from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate # initialization of the database and migration database = SQLAlchemy() migrate = Migrate()
21
46
0.795238
0
0
0
0
0
0
0
0
87
0.414286
4085bccb38fa4dfee0e895626450b9f141da766f
4,111
py
Python
postreise/plot/plot_heatmap.py
lanesmith/PostREISE
69d47968cf353bca57aa8b587cc035d127fa424f
[ "MIT" ]
1
2022-01-31T16:53:40.000Z
2022-01-31T16:53:40.000Z
postreise/plot/plot_heatmap.py
lanesmith/PostREISE
69d47968cf353bca57aa8b587cc035d127fa424f
[ "MIT" ]
71
2021-01-22T20:09:47.000Z
2022-03-30T16:53:18.000Z
postreise/plot/plot_heatmap.py
lanesmith/PostREISE
69d47968cf353bca57aa8b587cc035d127fa424f
[ "MIT" ]
7
2021-04-02T14:45:21.000Z
2022-01-17T22:23:38.000Z
import datetime as dt import matplotlib.dates as mdates import matplotlib.pyplot as plt import pandas as pd from powersimdata.input.check import _check_time_series from postreise.analyze.time import change_time_zone def plot_heatmap( series, time_zone=None, time_zone_label=None, title=None, cmap="PiYG", scale=None, save_filename=None, origin="upper", vmin=None, vmax=None, cbar_format=None, cbar_tick_values=None, cbar_label=None, cbar_tick_labels=None, contour_levels=None, figsize=(16, 8), ): """Show time-series values via an imshow where each column is one color-coded day. :param pandas.Series series: a time-series of values to be color-coded. :param str time_zone: a time zone to be passed as `tz` kwarg to :func:`postreise.analyze.time.change_time_zone`. :param str time_zone_label: a time zone label to be added to the y axis label. :param str title: a title to be added to the figure. :param str/matplotlib.colors.Colormap cmap: colormap specification to be passed as `cmap` kwarg to :func:`matplotlib.pyplot.imshow`. :param int/float scale: a scaling factor to be applied to the series values. :param str save_filename: a path to save the figure to. :param str origin: the vertical location of the origin, either "upper" or "lower". :param int/float vmin: Minimum value for coloring, to be passed as `vmin` kwarg to :func:`matplotlib.pyplot.imshow`. :param int/float vmax: Maximum value for coloring, to be passed as `vmax` kwarg to :func:`matplotlib.pyplot.imshow`. :param str/matplotlib.ticker.Formatter cbar_format: a formatter for colorbar labels, to be passed as `format` kwarg to :func:`matplotlib.pyplot.colorbar`. :param iterable cbar_tick_values: colorbar tick locations, to be passed as `ticks` kwarg to :func:`matplotlib.pyplot.colorbar`. :param str cbar_label: axis label for colorbar. :param iterable cbar_tick_labels: colorbar tick labels. :param iterable contour_levels: values at which to draw contours, passed as `levels` kwarg to :func:`matplotlib.pyplot.contour`. :param tuple(int/float, int/float) figsize: size of figure. """ _check_time_series(series, "series") df = series.to_frame(name="values").asfreq("H") year = df.index[0].year if time_zone is not None: df = change_time_zone(df, time_zone) df["date"] = df.index.date df["hour"] = df.index.hour df_reshaped = pd.pivot( df, index="date", columns="hour", values="values", ) xlims = mdates.date2num([df_reshaped.index[0], df_reshaped.index[-1]]) ylims = mdates.date2num([dt.datetime(year, 1, 1, 0), dt.datetime(year, 1, 1, 23)]) if scale is not None: df_reshaped *= scale fig = plt.figure(figsize=figsize) ax = fig.add_subplot() # if necessary, flip ylims so labels follow data from top to bottom extent = [*xlims, *ylims] if origin == "lower" else [*xlims, ylims[1], ylims[0]] im = plt.imshow( df_reshaped.T, cmap=cmap, aspect="auto", extent=extent, origin=origin, vmin=vmin, vmax=vmax, ) if contour_levels is not None: ax.contour(df_reshaped.T, extent=extent, levels=contour_levels, origin=origin) date_format = mdates.DateFormatter("%m/%d") ax.xaxis_date() ax.xaxis.set_major_formatter(date_format) ax.set_xlabel("Date") time_format = mdates.DateFormatter("%H:%M") ax.yaxis_date() ax.yaxis.set_major_formatter(time_format) y_axis_label = "Time" if time_zone_label is None else f"Time {time_zone_label}" ax.set_ylabel(y_axis_label) cbar = fig.colorbar(im, format=cbar_format, ticks=cbar_tick_values) if cbar_label is not None: cbar.set_label(cbar_label) if title is not None: plt.title(title) if cbar_tick_labels is not None: cbar.ax.set_yticklabels(cbar_tick_labels) if save_filename is not None: plt.savefig(save_filename, bbox_inches="tight")
37.036036
88
0.683289
0
0
0
0
0
0
0
0
1,889
0.459499
4086e4dd21e9a774c97734bcd63cd0233cf32c3d
4,000
py
Python
tensorflow_federated/python/simulation/file_per_user_client_data.py
houcharlie/federated-legacy
cb10a9cdcea33288f8113e7445782d21c8c65f81
[ "Apache-2.0" ]
null
null
null
tensorflow_federated/python/simulation/file_per_user_client_data.py
houcharlie/federated-legacy
cb10a9cdcea33288f8113e7445782d21c8c65f81
[ "Apache-2.0" ]
null
null
null
tensorflow_federated/python/simulation/file_per_user_client_data.py
houcharlie/federated-legacy
cb10a9cdcea33288f8113e7445782d21c8c65f81
[ "Apache-2.0" ]
null
null
null
# Copyright 2018, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of the ClientData abstract base class.""" import collections import os.path from typing import Callable, Mapping import tensorflow as tf from tensorflow_federated.python import core as tff from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.simulation import client_data from tensorflow_federated.python.tensorflow_libs import tensor_utils class FilePerUserClientData(client_data.ClientData): """A `tf.simulation.ClientData` that maps a set of files to a dataset. This mapping is restricted to one file per user. """ def __init__(self, client_ids_to_files: Mapping[str, str], dataset_fn: Callable[[str], tf.data.Dataset]): """Constructs a `tf.simulation.ClientData` object. Args: client_ids_to_files: A mapping from string client IDs to filepaths containing the user's data. dataset_fn: A factory function that takes a filepath (must accept both strings and tensors) and returns a `tf.data.Dataset` corresponding to this path. """ py_typecheck.check_type(client_ids_to_files, collections.abc.Mapping) if not client_ids_to_files: raise ValueError('`client_ids` must have at least one client ID') py_typecheck.check_callable(dataset_fn) self._client_ids = sorted(client_ids_to_files.keys()) def create_dataset_for_filename_fn(client_id): return dataset_fn(client_ids_to_files[client_id]) @tff.tf_computation(tf.string) def dataset_computation(client_id): client_ids_to_path = tf.lookup.StaticHashTable( tf.lookup.KeyValueTensorInitializer( list(client_ids_to_files.keys()), list(client_ids_to_files.values())), '') client_path = client_ids_to_path.lookup(client_id) return dataset_fn(client_path) self._create_tf_dataset_fn = create_dataset_for_filename_fn self._dataset_computation = dataset_computation g = tf.Graph() with g.as_default(): tf_dataset = self._create_tf_dataset_fn(self._client_ids[0]) self._element_type_structure = tf_dataset.element_spec @property def client_ids(self): return self._client_ids def create_tf_dataset_for_client(self, client_id): tf_dataset = self._create_tf_dataset_fn(client_id) tensor_utils.check_nested_equal(tf_dataset.element_spec, self._element_type_structure) return tf_dataset @property def element_type_structure(self): return self._element_type_structure @classmethod def create_from_dir(cls, path, create_tf_dataset_fn=tf.data.TFRecordDataset): """Builds a `tff.simulation.FilePerUserClientData`. Iterates over all files in `path`, using the filename as the client ID. Does not recursively search `path`. Args: path: A directory path to search for per-client files. create_tf_dataset_fn: A callable that creates a `tf.data.Datasaet` object for a given file in the directory specified in `path`. Returns: A `tff.simulation.FilePerUserClientData` object. """ client_ids_to_paths_dict = { filename: os.path.join(path, filename) for filename in tf.io.gfile.listdir(path) } return FilePerUserClientData(client_ids_to_paths_dict, create_tf_dataset_fn) @property def dataset_computation(self): return self._dataset_computation
36.363636
80
0.74325
2,990
0.7475
0
0
1,368
0.342
0
0
1,635
0.40875
4086e6c92cd0f6bf0670ff63d76bbec71943f194
162
py
Python
20-Blog_Clone_Project/blog_project_Practice/blog/admin.py
andy2167565/Django-Bootcamp-Practice
f08d2866382db96060450d4dbd1ffaca7243f623
[ "MIT" ]
null
null
null
20-Blog_Clone_Project/blog_project_Practice/blog/admin.py
andy2167565/Django-Bootcamp-Practice
f08d2866382db96060450d4dbd1ffaca7243f623
[ "MIT" ]
null
null
null
20-Blog_Clone_Project/blog_project_Practice/blog/admin.py
andy2167565/Django-Bootcamp-Practice
f08d2866382db96060450d4dbd1ffaca7243f623
[ "MIT" ]
null
null
null
from django.contrib import admin from blog.models import Post, Comment # Register your models here. admin.site.register(Post) admin.site.register(Comment)
23.142857
38
0.777778
0
0
0
0
0
0
0
0
29
0.179012
408710371dd0d37abadd9978ea2c4a4f85a8ec3b
6,459
py
Python
tests/compilation/request/test_request_compiler.py
ymoch/preacher
ae68170d14c72791884e91b20054bd13a79b52d0
[ "MIT" ]
3
2019-08-01T03:14:49.000Z
2020-01-31T08:55:22.000Z
tests/compilation/request/test_request_compiler.py
ymoch/preacher
ae68170d14c72791884e91b20054bd13a79b52d0
[ "MIT" ]
353
2019-04-14T14:53:28.000Z
2022-03-11T03:26:08.000Z
tests/compilation/request/test_request_compiler.py
ymoch/preacher
ae68170d14c72791884e91b20054bd13a79b52d0
[ "MIT" ]
1
2020-08-01T06:23:08.000Z
2020-08-01T06:23:08.000Z
from unittest.mock import NonCallableMock, sentinel from pytest import mark, raises, fixture from preacher.compilation.argument import Argument from preacher.compilation.error import CompilationError, NamedNode, IndexedNode from preacher.compilation.request.request import RequestCompiler, RequestCompiled from preacher.compilation.request.request_body import RequestBodyCompiler from preacher.core.request import Method PKG = "preacher.compilation.request.request" @fixture def body(): body = NonCallableMock(RequestBodyCompiler) body.of_default.return_value = sentinel.new_body_compiler return body @fixture def default() -> RequestCompiled: return RequestCompiled( method=sentinel.default_method, path=sentinel.default_path, headers=sentinel.default_headers, params=sentinel.default_params, body=sentinel.default_body, ) @fixture def compiler(body, default: RequestCompiled) -> RequestCompiler: return RequestCompiler(body=body, default=default) @mark.parametrize( ("obj", "expected_path"), ( ([], []), ({"method": 1}, [NamedNode("method")]), ({"method": "invalid"}, [NamedNode("method")]), ({"path": {"key": "value"}}, [NamedNode("path")]), ({"headers": ""}, [NamedNode("headers")]), ({"headers": {"int": 1}}, [NamedNode("headers")]), ({"headers": {1: "not-a-string-key"}}, [NamedNode("headers")]), ), ) def test_given_an_invalid_obj(compiler: RequestCompiler, obj, expected_path): with raises(CompilationError) as error_info: compiler.compile(obj) assert error_info.value.path == expected_path def test_given_an_empty_mapping(compiler: RequestCompiler): compiled = compiler.compile({}) assert compiled.method is sentinel.default_method assert compiled.path is sentinel.default_path assert compiled.headers is sentinel.default_headers assert compiled.params is sentinel.default_params assert compiled.body is sentinel.default_body @mark.parametrize( ("method_obj", "expected"), ( ("get", Method.GET), ("POST", Method.POST), ("Put", Method.PUT), ("Delete", Method.DELETE), ), ) def test_given_a_valid_method(compiler: RequestCompiler, method_obj, expected): obj = {"method": Argument("method")} arguments = {"method": method_obj} compiled = compiler.compile(obj, arguments) assert compiled.method is expected @mark.parametrize( ("headers_obj", "expected"), ( ({}, {}), ({"null": None, "empty": ""}, {"empty": ""}), ({"n1": "v1", "n2": "v2"}, {"n1": "v1", "n2": "v2"}), ), ) def test_given_valid_headers(compiler: RequestCompiler, headers_obj, expected): obj = {"headers": Argument("headers")} arguments = {"headers": headers_obj} compiled = compiler.compile(obj, arguments) assert compiled.headers == expected def test_given_an_invalid_params(compiler: RequestCompiler, mocker): compile_params = mocker.patch(f"{PKG}.compile_url_params") compile_params.side_effect = CompilationError("msg", node=NamedNode("x")) with raises(CompilationError) as error_info: compiler.compile({"params": sentinel.params}) assert error_info.value.path == [NamedNode("params"), NamedNode("x")] compile_params.assert_called_once_with(sentinel.params, None) def test_given_valid_params(compiler: RequestCompiler, mocker): compile_params = mocker.patch(f"{PKG}.compile_url_params") compile_params.return_value = sentinel.compiled_params compiled = compiler.compile({"params": sentinel.params}, sentinel.args) assert compiled.params == sentinel.compiled_params compile_params.assert_called_once_with(sentinel.params, sentinel.args) def test_given_invalid_body(compiler: RequestCompiler, body): body.compile.side_effect = CompilationError("x", node=IndexedNode(1)) with raises(CompilationError) as error_info: compiler.compile({"body": sentinel.body_obj}) assert error_info.value.path == [NamedNode("body"), IndexedNode(1)] body.compile.assert_called_once_with(sentinel.body_obj, None) def test_given_valid_body(compiler: RequestCompiler, body): body.compile.return_value = sentinel.body compiled = compiler.compile({"body": sentinel.body_obj}, sentinel.args) assert compiled.body is sentinel.body body.compile.assert_called_once_with(sentinel.body_obj, sentinel.args) def test_given_a_string(compiler: RequestCompiler): compiled = compiler.compile(Argument("path"), {"path": "/path"}) assert compiled.method is sentinel.default_method assert compiled.path == "/path" assert compiled.headers is sentinel.default_headers assert compiled.params is sentinel.default_params assert compiled.body is sentinel.default_body def test_of_default_no_body(compiler: RequestCompiler, body, mocker): ctor = mocker.patch(f"{PKG}.RequestCompiler") ctor.return_value = sentinel.compiler_of_default new_default = RequestCompiled( method=sentinel.new_default_method, path=sentinel.new_default_path, headers=sentinel.new_default_headers, params=sentinel.new_default_params, ) new_compiler = compiler.of_default(new_default) assert new_compiler is sentinel.compiler_of_default ctor.assert_called_once_with( body=body, default=RequestCompiled( method=sentinel.new_default_method, path=sentinel.new_default_path, headers=sentinel.new_default_headers, params=sentinel.new_default_params, body=sentinel.default_body, ), ) body.of_default.assert_not_called() def test_of_default_body(compiler: RequestCompiler, body, mocker): ctor = mocker.patch(f"{PKG}.RequestCompiler") ctor.return_value = sentinel.compiler_of_default new_default = RequestCompiled(body=sentinel.new_default_body) new_compiler = compiler.of_default(new_default) assert new_compiler is sentinel.compiler_of_default ctor.assert_called_once_with( body=sentinel.new_body_compiler, default=RequestCompiled( method=sentinel.default_method, path=sentinel.default_path, headers=sentinel.default_headers, params=sentinel.default_params, body=sentinel.new_default_body, ), ) body.of_default.assert_called_once_with(sentinel.new_default_body)
34.174603
81
0.71203
0
0
0
0
2,065
0.319709
0
0
562
0.08701
408784a24cae84367d1864aa02a8ff6e4a8e197a
1,109
py
Python
bot/conversation_handlers/stage01.py
gerbigtim/coaching_bot
5b4ef6e207a5017f7b4274d8238550b4988d0a6e
[ "MIT" ]
null
null
null
bot/conversation_handlers/stage01.py
gerbigtim/coaching_bot
5b4ef6e207a5017f7b4274d8238550b4988d0a6e
[ "MIT" ]
null
null
null
bot/conversation_handlers/stage01.py
gerbigtim/coaching_bot
5b4ef6e207a5017f7b4274d8238550b4988d0a6e
[ "MIT" ]
null
null
null
# imports from telegram.ext import ( CommandHandler, MessageHandler, Filters, ConversationHandler, ) from handler_functions.start import start from handler_functions.bio import bio from handler_functions.gender import gender from handler_functions.photo import photo, skip_photo from handler_functions.location import location, skip_location from handler_functions.cancel import cancel from conversation_handlers.stage_constants import * # Adds conversation handler with the states GENDER, PHOTO, LOCATION and BIO for stage 1 of the sign up conv_handler = ConversationHandler( entry_points=[CommandHandler('start', start)], states={ GENDER: [MessageHandler(Filters.regex('^(Gentleman|Lady|I am a unicorn.)$'), gender)], PHOTO: [MessageHandler(Filters.photo, photo), CommandHandler('skip', skip_photo)], LOCATION: [ MessageHandler(Filters.location, location), CommandHandler('skip', skip_location), ], BIO: [MessageHandler(Filters.text & ~Filters.command, bio)], }, fallbacks=[CommandHandler('cancel', cancel)], )
38.241379
102
0.734896
0
0
0
0
0
0
0
0
174
0.156898
4087ac882a0e642cb2645d67bfb2e7473130d2e9
265
py
Python
python100days/day03/conversion.py
lanSeFangZhou/pythonbase
f4daa373573b2fc0a59a5eb919d02eddf5914e18
[ "Apache-2.0" ]
null
null
null
python100days/day03/conversion.py
lanSeFangZhou/pythonbase
f4daa373573b2fc0a59a5eb919d02eddf5914e18
[ "Apache-2.0" ]
1
2021-06-02T00:58:26.000Z
2021-06-02T00:58:26.000Z
python100days/day03/conversion.py
lanSeFangZhou/pythonbase
f4daa373573b2fc0a59a5eb919d02eddf5914e18
[ "Apache-2.0" ]
null
null
null
# 英制单位英寸和公制单位厘米互换 value =float(input('请输入长度:')) unit =input('请输入单位:') if unit == 'in' or unit == '英寸': print('%f英寸 = %f厘米' % (value, value * 2.54)) elif unit == '厘米' or unit == 'cm': print('%f 厘米 = %f英寸' % (value, value / 2.54)) else: print('请输入有效的单位')
26.5
49
0.558491
0
0
0
0
0
0
0
0
180
0.501393
4088dc579c34d53321481174879bd2850ab8f43e
485
py
Python
tests/models/test_dtfactory.py
surajsjain/ocean.py
2e853db94d9aee2a0cf6b3d58f714215b83d917b
[ "Apache-2.0" ]
4
2021-07-05T20:21:41.000Z
2021-09-02T14:13:26.000Z
tests/models/test_dtfactory.py
surajsjain/ocean.py
2e853db94d9aee2a0cf6b3d58f714215b83d917b
[ "Apache-2.0" ]
null
null
null
tests/models/test_dtfactory.py
surajsjain/ocean.py
2e853db94d9aee2a0cf6b3d58f714215b83d917b
[ "Apache-2.0" ]
1
2021-03-25T15:04:12.000Z
2021-03-25T15:04:12.000Z
from ocean_lib.models.data_token import DataToken from ocean_lib.models.dtfactory import DTFactory from ocean_lib.ocean.util import to_base_18 def test1(network, alice_wallet, dtfactory_address): dtfactory = DTFactory(dtfactory_address) dt_address = dtfactory.createToken('foo_blob', 'DT1', 'DT1', to_base_18(1000), from_wallet=alice_wallet) dt = DataToken(dtfactory.get_token_address(dt_address)) assert isinstance(dt, DataToken) assert dt.blob() == 'foo_blob'
37.307692
108
0.781443
0
0
0
0
0
0
0
0
30
0.061856
408a713d6a5b30cf98528302f34eefe2000e2530
4,223
py
Python
methods/unilm_based/unilm/src/pytorch_pretrained_bert/optimization_fp16.py
Guaguago/CommonGen
0a81b4edb8cd111571eba817eb994420f1070c48
[ "MIT" ]
100
2020-01-30T08:14:25.000Z
2022-03-30T08:59:33.000Z
methods/unilm_based/unilm/src/pytorch_pretrained_bert/optimization_fp16.py
Guaguago/CommonGen
0a81b4edb8cd111571eba817eb994420f1070c48
[ "MIT" ]
4
2021-06-08T22:34:33.000Z
2022-03-12T00:50:13.000Z
methods/unilm_based/unilm/src/pytorch_pretrained_bert/optimization_fp16.py
Guaguago/CommonGen
0a81b4edb8cd111571eba817eb994420f1070c48
[ "MIT" ]
15
2020-04-13T22:56:27.000Z
2022-03-10T02:44:26.000Z
# coding=utf-8 """PyTorch optimization for BERT model.""" from apex.contrib.optimizers import FP16_Optimizer class FP16_Optimizer_State(FP16_Optimizer): def __init__(self, init_optimizer, static_loss_scale=1.0, dynamic_loss_scale=False, dynamic_loss_args=None, verbose=True): super(FP16_Optimizer_State, self).__init__(init_optimizer, static_loss_scale, dynamic_loss_scale, dynamic_loss_args, verbose) def state_dict(self): """ Returns a dict containing the current state of this :class:`FP16_Optimizer` instance. This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict of the contained Pytorch optimizer. Example:: checkpoint = {} checkpoint['model'] = model.state_dict() checkpoint['optimizer'] = optimizer.state_dict() torch.save(checkpoint, "saved.pth") """ state_dict = {} state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale state_dict['cur_scale'] = self.cur_scale state_dict['cur_iter'] = self.cur_iter if state_dict['dynamic_loss_scale']: state_dict['last_overflow_iter'] = self.last_overflow_iter state_dict['scale_factor'] = self.scale_factor state_dict['scale_window'] = self.scale_window state_dict['optimizer_state_dict'] = self.optimizer.state_dict() state_dict['fp32_groups_flat'] = self.fp32_groups_flat return state_dict def load_state_dict(self, state_dict): """ Loads a state_dict created by an earlier call to state_dict(). If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``, whose parameters in turn came from ``model``, it is expected that the user will call ``model.load_state_dict()`` before ``fp16_optimizer_instance.load_state_dict()`` is called. Example:: model = torch.nn.Linear(D_in, D_out).cuda().half() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0) ... checkpoint = torch.load("saved.pth") model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) """ # I think it should actually be ok to reload the optimizer before the model. self.dynamic_loss_scale = state_dict['dynamic_loss_scale'] self.cur_scale = state_dict['cur_scale'] self.cur_iter = state_dict['cur_iter'] if state_dict['dynamic_loss_scale']: self.last_overflow_iter = state_dict['last_overflow_iter'] self.scale_factor = state_dict['scale_factor'] self.scale_window = state_dict['scale_window'] self.optimizer.load_state_dict(state_dict['optimizer_state_dict']) # At this point, the optimizer's references to the model's fp32 parameters are up to date. # The optimizer's hyperparameters and internal buffers are also up to date. # However, the fp32 master copies of the model's fp16 params stored by the optimizer are still # out of date. There are two options. # 1: Refresh the master params from the model's fp16 params. # This requires less storage but incurs precision loss. # 2: Save and restore the fp32 master copies separately. # We choose option 2. # # Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device # of their associated parameters, because it's possible those buffers might not exist yet in # the current optimizer instance. In our case, as long as the current FP16_Optimizer has been # constructed in the same way as the one whose state_dict we are loading, the same master params # are guaranteed to exist, so we can just copy_() from the saved master params. for current, saved in zip(self.fp32_groups_flat, state_dict['fp32_groups_flat']): current.data.copy_(saved.data)
52.135802
117
0.656642
4,110
0.973242
0
0
0
0
0
0
2,612
0.618518
408ac0aced4fa7689e5bb64bd87a616424377650
46
py
Python
ermaket/api/generation/__init__.py
SqrtMinusOne/ERMaket_Experiment
c4a7b61651edd15a619d9b690e2aaeaab4de282d
[ "Apache-2.0" ]
null
null
null
ermaket/api/generation/__init__.py
SqrtMinusOne/ERMaket_Experiment
c4a7b61651edd15a619d9b690e2aaeaab4de282d
[ "Apache-2.0" ]
null
null
null
ermaket/api/generation/__init__.py
SqrtMinusOne/ERMaket_Experiment
c4a7b61651edd15a619d9b690e2aaeaab4de282d
[ "Apache-2.0" ]
null
null
null
from .generator import * from .types import *
15.333333
24
0.73913
0
0
0
0
0
0
0
0
0
0
408c88fb92a834b62165870e3156152b98dd330c
956
py
Python
Source/stack0verf10w.py
IRIDIUM-SUB/Software-Security-Course-Design
596664a728d73133e44a4566027561170c5d2ae8
[ "MIT" ]
null
null
null
Source/stack0verf10w.py
IRIDIUM-SUB/Software-Security-Course-Design
596664a728d73133e44a4566027561170c5d2ae8
[ "MIT" ]
null
null
null
Source/stack0verf10w.py
IRIDIUM-SUB/Software-Security-Course-Design
596664a728d73133e44a4566027561170c5d2ae8
[ "MIT" ]
null
null
null
import Bugdetectionuniversalframe import os import re class overflowdetection(Bugdetectionuniversalframe.uniframe): def __init__(self): Bugdetectionuniversalframe.uniframe.__init__(self) def deploy(self):#Re-write deploy method flag=0 self.filesort() if self.path != "": command=" splint +weak +bounds -hints -varuse +posixlib "+self.path os.system(command) r= os.popen(command) textlist=r.readlines() final="" for text in textlist: #print(text) # 打印cmd输出结果 final=final+text if re.search(r"out-of-bounds|buffer overflow",text): flag=1 if flag: final=final+"\n Looks like there is a stack overflow vulnerability." else: final="Seems no overflow vulnerability." self.toolbox.textupdate(self.tokentext,final)
30.83871
84
0.582636
912
0.942149
0
0
0
0
0
0
235
0.242769
408e5eee21b5e0ed193fbd1da82ee85348eb987d
7,517
py
Python
ndbc/station.py
ppokhrel1/ndbc
e8ed73ae35a49c967384e2c80c1a2bf838eeb0c2
[ "MIT" ]
null
null
null
ndbc/station.py
ppokhrel1/ndbc
e8ed73ae35a49c967384e2c80c1a2bf838eeb0c2
[ "MIT" ]
null
null
null
ndbc/station.py
ppokhrel1/ndbc
e8ed73ae35a49c967384e2c80c1a2bf838eeb0c2
[ "MIT" ]
null
null
null
""" station.py """ from datetime import datetime, timedelta import gzip import numpy as np import requests import urllib _BASEURL = 'http://www.ndbc.noaa.gov/data' _SENSOR_URL = _BASEURL+'/stations/buoyht.txt' _REALTIME_URL = _BASEURL+'/realtime2/' _RECENT_URL = _BASEURL+'/stdmet/' _HISTORICAL_URL = _BASEURL+'/historical/stdmet/' _STATION_URL = _BASEURL+'/stations/station_table.txt' class Station(object): """NDBC Station class.""" def __init__(self, station_id, starttime=None, endtime=None): self.id = str(station_id) self.time = []; self.wspd = []; self.wdir = []; self.gst = [] self.wvht = []; self.dpd = []; self.apd = []; self.mwd = [] self.pres = []; self.atmp = []; self.wtmp = []; self.dewp = [] self.vis = []; self.ptdy = []; self.tide = [] self._get_info() if starttime and endtime: self.get_stdmet(starttime, endtime) def _get_info(self): """Collects station metadata.""" r = requests.get(_STATION_URL) if not r.status_code == 200: raise RuntimeError('Received response status ' +str(r.status_code)+' from '+_STATION_URL) lines = r.text.split('\n') try: data = [line for line in lines if self.id == line[:5]].pop() except IndexError: raise ValueError('Station '+self.id+' not found in '+_STATION_URL) station_id, self.owner, self.ttype, self.hull, self.name, self.payload,\ self.location, self.timezone, self.forecast, self.note = data.split('|') loc = self.location.split() self.lat, self.lon = float(loc[0]), float(loc[2]) if loc[1] == 'S': self.lat = -self.lat if loc[3] == 'W': self.lon = -self.lon def get_stdmet(self, starttime, endtime): """Gets the standard meteorological data given start and end times.""" # re-initialize if we are to overwrite data #if self.time != [] and self.time != None : self.__init__(self.id) if starttime.year < datetime.utcnow().year: datatype = 'historical' elif starttime > datetime.utcnow() - timedelta(days=45): self._get_stdmet_realtime() return elif starttime.year == datetime.utcnow().year: datatype = 'recent' else: raise ValueError('starttime cannot be in the future') time = starttime while True: if datatype == 'historical': filename = self.id+'h'+str(time.year)+'.txt.gz' fileurl = _HISTORICAL_URL+filename elif datatype == 'recent': filename = self.id+str(time.month)+str(time.year)+'.txt.gz' fileurl = _RECENT_URL+time.strftime('%b')+'/'+filename f = gzip.open(urllib.request.urlopen(fileurl)) if time.year >= 2007: datastart = 2 else: datastart = 1 lines = [line.decode().strip() for line in f.readlines()] for line in lines[datastart:]: line = line.split() try: self.time.append(datetime.strptime(''.join(line[:5]), '%Y%m%d%H%M')) nn = 5 except ValueError: self.time.append(datetime.strptime(''.join(line[:4]), '%Y%m%d%H')) nn = 4 self.wdir.append(np.nan if line[nn] == '999' else float(line[nn])) self.wspd.append(np.nan if line[nn+1] == '99.0' else float(line[nn+1])) self.gst.append(np.nan if line[nn+2] == '99.0' else float(line[nn+2])) self.wvht.append(np.nan if line[nn+3] == '99.0' else float(line[nn+3])) self.dpd.append(np.nan if line[nn+4] == '99.0' else float(line[nn+4])) self.apd.append(np.nan if line[nn+5] == '99.0' else float(line[nn+5])) self.mwd.append(np.nan if line[nn+6] == '999' else float(line[nn+6])) self.pres.append(np.nan if line[nn+7] == '9999.0' else float(line[nn+7])) self.atmp.append(np.nan if line[nn+8] == '99.0' else float(line[nn+8])) self.wtmp.append(np.nan if line[nn+9] == '99.0' else float(line[nn+9])) self.dewp.append(np.nan if line[nn+10] == '99.0' else float(line[nn+10])) if self.time[-1] > endtime: break year = time.year month = time.month if datatype == 'historical': year += 1 time = datetime(year, month, 1) continue elif datatype == 'recent': month += 1 if month > 12: break else: continue self.time = np.array(self.time) self.wdir = np.array(self.wdir) self.wspd = np.array(self.wspd) self.gst = np.array(self.gst) self.wvht = np.array(self.wvht) self.dpd = np.array(self.dpd) self.apd = np.array(self.apd) self.mwd = np.array(self.mwd) self.pres = np.array(self.pres) self.atmp = np.array(self.atmp) self.wtmp = np.array(self.wtmp) self.dewp = np.array(self.dewp) def _get_stdmet_realtime(self): """ Reads the full realtime data feed (last 45 days) from the NDBC server. """ fileurl = _REALTIME_URL+self.id+'.txt' r = requests.get(fileurl) if not r.status_code == 200: raise RuntimeError('Received response status ' +str(r.status_code)+' from '+fileurl) lines = r.text.split('\n') for line in lines[-2:1:-1]: line = line.split() self.time.append(datetime.strptime(''.join(line[:5]), '%Y%m%d%H%M')) self.wdir.append(np.nan if line[5] == 'MM' else float(line[5])) self.wspd.append(np.nan if line[6] == 'MM' else float(line[6])) self.gst.append(np.nan if line[7] == 'MM' else float(line[7])) self.wvht.append(np.nan if line[8] == 'MM' else float(line[8])) self.dpd.append(np.nan if line[9] == 'MM' else float(line[9])) self.apd.append(np.nan if line[10] == 'MM' else float(line[10])) self.mwd.append(np.nan if line[11] == 'MM' else float(line[11])) self.pres.append(np.nan if line[12] == 'MM' else float(line[12])) self.atmp.append(np.nan if line[13] == 'MM' else float(line[13])) self.wtmp.append(np.nan if line[14] == 'MM' else float(line[14])) self.dewp.append(np.nan if line[15] == 'MM' else float(line[15])) self.vis.append(np.nan if line[16] == 'MM' else float(line[16])) self.ptdy.append(np.nan if line[17] == 'MM' else float(line[17])) self.tide.append(np.nan if line[18] == 'MM' else float(line[18])) self.time = np.array(self.time) self.wdir = np.array(self.wdir) self.wspd = np.array(self.wspd) self.gst = np.array(self.gst) self.wvht = np.array(self.wvht) self.dpd = np.array(self.dpd) self.apd = np.array(self.apd) self.mwd = np.array(self.mwd) self.pres = np.array(self.pres) self.atmp = np.array(self.atmp) self.wtmp = np.array(self.wtmp) self.dewp = np.array(self.dewp) self.vis = np.array(self.vis) self.ptdy = np.array(self.ptdy) self.tide = np.array(self.tide)
41.994413
89
0.543036
7,128
0.948251
0
0
0
0
0
0
855
0.113742
408f68f533f8c5055f6e751095cb737571178a12
765
py
Python
main.py
kajuna0amendez/Cython_Machine_Learning_Models
8b7d502bae07487ae0fdbced796e0fa50082e681
[ "Apache-2.0" ]
null
null
null
main.py
kajuna0amendez/Cython_Machine_Learning_Models
8b7d502bae07487ae0fdbced796e0fa50082e681
[ "Apache-2.0" ]
2
2021-02-02T23:02:12.000Z
2021-08-23T20:51:22.000Z
main.py
kajuna0amendez/Machine_Learning_Models
8b7d502bae07487ae0fdbced796e0fa50082e681
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- #!/usr/bin/env python __author__ = "Andres Mendez-Vazquez" __copyright__ = "Copyright 2018" __credits__ = ["Andres Mendez-Vazquez"] __license__ = "Apache" __version__ = "v1.0.0" __maintainer__ = "Andres Mendez-Vazquez" __email = "[email protected]" __status__ = "Development" from data_model.load_data import create_connection, select_all_tasks from tools.data_frames import dframe_t_db def main(): database = "/Cython_Code/database/heart.db" # create a database connection conn = create_connection(database) with conn: print("2. Query all tasks") rows, name = select_all_tasks(conn, 'heart_table') return dframe_t_db(rows, name) if __name__ == '__main__': df = main() print(df)
23.181818
68
0.705882
0
0
0
0
0
0
0
0
288
0.376471
408f7d16d7791c4eaced84288001a4eccaab5dae
54
py
Python
graw/__init__.py
iamsajjad/graw
84289b9bd2e298bad72ade402ab8a87e7c37688d
[ "MIT" ]
null
null
null
graw/__init__.py
iamsajjad/graw
84289b9bd2e298bad72ade402ab8a87e7c37688d
[ "MIT" ]
null
null
null
graw/__init__.py
iamsajjad/graw
84289b9bd2e298bad72ade402ab8a87e7c37688d
[ "MIT" ]
null
null
null
# version of the graw package __version__ = "0.1.0"
10.8
29
0.685185
0
0
0
0
0
0
0
0
36
0.666667
408fa80f7b62ab2142b5ebe87fafa4317281b530
6,779
py
Python
sdk/python/pulumi_aws/acm/get_certificate.py
mehd-io/pulumi-aws
034629c3fb30dc90db65b196d115df43723df19c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/acm/get_certificate.py
mehd-io/pulumi-aws
034629c3fb30dc90db65b196d115df43723df19c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/acm/get_certificate.py
mehd-io/pulumi-aws
034629c3fb30dc90db65b196d115df43723df19c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = [ 'GetCertificateResult', 'AwaitableGetCertificateResult', 'get_certificate', ] @pulumi.output_type class GetCertificateResult: """ A collection of values returned by getCertificate. """ def __init__(__self__, arn=None, domain=None, id=None, key_types=None, most_recent=None, statuses=None, tags=None, types=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if domain and not isinstance(domain, str): raise TypeError("Expected argument 'domain' to be a str") pulumi.set(__self__, "domain", domain) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if key_types and not isinstance(key_types, list): raise TypeError("Expected argument 'key_types' to be a list") pulumi.set(__self__, "key_types", key_types) if most_recent and not isinstance(most_recent, bool): raise TypeError("Expected argument 'most_recent' to be a bool") pulumi.set(__self__, "most_recent", most_recent) if statuses and not isinstance(statuses, list): raise TypeError("Expected argument 'statuses' to be a list") pulumi.set(__self__, "statuses", statuses) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if types and not isinstance(types, list): raise TypeError("Expected argument 'types' to be a list") pulumi.set(__self__, "types", types) @property @pulumi.getter def arn(self) -> str: """ Set to the ARN of the found certificate, suitable for referencing in other resources that support ACM certificates. """ return pulumi.get(self, "arn") @property @pulumi.getter def domain(self) -> str: return pulumi.get(self, "domain") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="keyTypes") def key_types(self) -> Optional[Sequence[str]]: return pulumi.get(self, "key_types") @property @pulumi.getter(name="mostRecent") def most_recent(self) -> Optional[bool]: return pulumi.get(self, "most_recent") @property @pulumi.getter def statuses(self) -> Optional[Sequence[str]]: return pulumi.get(self, "statuses") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ A mapping of tags for the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def types(self) -> Optional[Sequence[str]]: return pulumi.get(self, "types") class AwaitableGetCertificateResult(GetCertificateResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetCertificateResult( arn=self.arn, domain=self.domain, id=self.id, key_types=self.key_types, most_recent=self.most_recent, statuses=self.statuses, tags=self.tags, types=self.types) def get_certificate(domain: Optional[str] = None, key_types: Optional[Sequence[str]] = None, most_recent: Optional[bool] = None, statuses: Optional[Sequence[str]] = None, tags: Optional[Mapping[str, str]] = None, types: Optional[Sequence[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetCertificateResult: """ Use this data source to get the ARN of a certificate in AWS Certificate Manager (ACM), you can reference it by domain without having to hard code the ARNs as input. ## Example Usage ```python import pulumi import pulumi_aws as aws issued = aws.acm.get_certificate(domain="tf.example.com", statuses=["ISSUED"]) amazon_issued = aws.acm.get_certificate(domain="tf.example.com", most_recent=True, types=["AMAZON_ISSUED"]) rsa4096 = aws.acm.get_certificate(domain="tf.example.com", key_types=["RSA_4096"]) ``` :param str domain: The domain of the certificate to look up. If no certificate is found with this name, an error will be returned. :param Sequence[str] key_types: A list of key algorithms to filter certificates. By default, ACM does not return all certificate types when searching. Valid values are `RSA_1024`, `RSA_2048`, `RSA_4096`, `EC_prime256v1`, `EC_secp384r1`, and `EC_secp521r1`. :param bool most_recent: If set to true, it sorts the certificates matched by previous criteria by the NotBefore field, returning only the most recent one. If set to false, it returns an error if more than one certificate is found. Defaults to false. :param Sequence[str] statuses: A list of statuses on which to filter the returned list. Valid values are `PENDING_VALIDATION`, `ISSUED`, `INACTIVE`, `EXPIRED`, `VALIDATION_TIMED_OUT`, `REVOKED` and `FAILED`. If no value is specified, only certificates in the `ISSUED` state are returned. :param Mapping[str, str] tags: A mapping of tags for the resource. :param Sequence[str] types: A list of types on which to filter the returned list. Valid values are `AMAZON_ISSUED` and `IMPORTED`. """ __args__ = dict() __args__['domain'] = domain __args__['keyTypes'] = key_types __args__['mostRecent'] = most_recent __args__['statuses'] = statuses __args__['tags'] = tags __args__['types'] = types if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:acm/getCertificate:getCertificate', __args__, opts=opts, typ=GetCertificateResult).value return AwaitableGetCertificateResult( arn=__ret__.arn, domain=__ret__.domain, id=__ret__.id, key_types=__ret__.key_types, most_recent=__ret__.most_recent, statuses=__ret__.statuses, tags=__ret__.tags, types=__ret__.types)
39.184971
260
0.651424
3,311
0.48842
354
0.05222
2,872
0.423661
0
0
2,969
0.43797
40902a024648160483f25a5dd670916ae7cc2c01
2,688
py
Python
Part 3/batch_VS_stochastic.py
m9psy/neural_network_habr_guide
543b4bc82cfed5d5675b9ecc1cc97c2286a5562a
[ "MIT" ]
20
2016-08-08T12:16:51.000Z
2022-03-26T19:56:09.000Z
Part 3/batch_VS_stochastic.py
m9psy/neural_network_habr_guide
543b4bc82cfed5d5675b9ecc1cc97c2286a5562a
[ "MIT" ]
null
null
null
Part 3/batch_VS_stochastic.py
m9psy/neural_network_habr_guide
543b4bc82cfed5d5675b9ecc1cc97c2286a5562a
[ "MIT" ]
8
2016-08-08T14:22:13.000Z
2020-05-30T07:05:36.000Z
import numpy as np import matplotlib.pyplot as plt TOTAL = 200 STEP = 0.25 EPS = 0.1 INITIAL_THETA = [9, 14] def func(x): return 0.2 * x + 3 def generate_sample(total=TOTAL): x = 0 while x < total * STEP: yield func(x) + np.random.uniform(-1, 1) * np.random.uniform(2, 8) x += STEP def cost_function(A, Y, theta): return (Y - A@theta).T@(Y - A@theta) def batch_descent(A, Y, speed=0.001): theta = np.array(INITIAL_THETA.copy(), dtype=np.float32) theta.reshape((len(theta), 1)) previous_cost = 10 ** 6 current_cost = cost_function(A, Y, theta) while np.abs(previous_cost - current_cost) > EPS: previous_cost = current_cost derivatives = [0] * len(theta) # --------------------------------------------- for j in range(len(theta)): summ = 0 for i in range(len(Y)): summ += (Y[i] - A[i]@theta) * A[i][j] derivatives[j] = summ # Выполнение требования одновремменности theta[0] += speed * derivatives[0] theta[1] += speed * derivatives[1] # --------------------------------------------- current_cost = cost_function(A, Y, theta) print("Batch cost:", current_cost) plt.plot(theta[0], theta[1], 'ro') return theta def stochastic_descent(A, Y, speed=0.1): theta = np.array(INITIAL_THETA.copy(), dtype=np.float32) previous_cost = 10 ** 6 current_cost = cost_function(A, Y, theta) while np.abs(previous_cost - current_cost) > EPS: previous_cost = current_cost # -------------------------------------- # for i in range(len(Y)): i = np.random.randint(0, len(Y)) derivatives = [0] * len(theta) for j in range(len(theta)): derivatives[j] = (Y[i] - A[i]@theta) * A[i][j] theta[0] += speed * derivatives[0] theta[1] += speed * derivatives[1] # -------------------------------------- current_cost = cost_function(A, Y, theta) print("Stochastic cost:", current_cost) plt.plot(theta[0], theta[1], 'ro') return theta X = np.arange(0, TOTAL * STEP, STEP) Y = np.array([y for y in generate_sample(TOTAL)]) # Нормализацию вкрячил, чтобы парабалоид красивый был X = (X - X.min()) / (X.max() - X.min()) A = np.empty((TOTAL, 2)) A[:, 0] = 1 A[:, 1] = X theta = np.linalg.pinv(A).dot(Y) print(theta, cost_function(A, Y, theta)) import time start = time.clock() theta_stochastic = stochastic_descent(A, Y, 0.1) print("St:", time.clock() - start, theta_stochastic) start = time.clock() theta_batch = batch_descent(A, Y, 0.001) print("Btch:", time.clock() - start, theta_batch)
29.866667
74
0.553943
0
0
164
0.059227
0
0
0
0
424
0.153124
4090bb4b6d1ad59682a210fa58e3049a7296547f
4,103
py
Python
castle.py
codyd51/castle
93e7f8c18a0dacd5437b7503b7f3420d6ebc6256
[ "MIT" ]
2
2018-08-07T16:18:58.000Z
2018-08-09T16:59:48.000Z
castle.py
codyd51/castle
93e7f8c18a0dacd5437b7503b7f3420d6ebc6256
[ "MIT" ]
null
null
null
castle.py
codyd51/castle
93e7f8c18a0dacd5437b7503b7f3420d6ebc6256
[ "MIT" ]
null
null
null
import castle from typing import Tuple def select_player_types() -> Tuple[castle.PlayerType, castle.PlayerType]: player1, player2 = None, None while True: print(f'1) Play a person') print(f'2) Play the computer') print(f'3) Play the computer against itself') choice_str = input(f'Select an option: ') try: choice = int(choice_str) if choice not in [1, 2, 3]: raise ValueError except ValueError: print('Invalid option.\n') continue if choice == 1: player1 = castle.PlayerType.HUMAN player2 = castle.PlayerType.HUMAN elif choice == 2: player1 = castle.PlayerType.HUMAN player2 = castle.PlayerType.COMPUTER elif choice == 3: player1 = castle.PlayerType.COMPUTER player2 = castle.PlayerType.COMPUTER break return player1, player2 def play_constructed_game(g: castle.Game): g.board.pretty_print() while not g.finished: print(f'white short {g.can_castle(castle.Color.WHITE, True)}') print(f'white long {g.can_castle(castle.Color.WHITE, False)}') print(f'black short {g.can_castle(castle.Color.BLACK, True)}') print(f'black long {g.can_castle(castle.Color.BLACK, False)}') g.play_turn() winning_prefix = f'Game over by ' if g.winner == castle.Winner.DRAW: winning_prefix += 'stalemate' else: winning_prefix += 'checkmate' winning_text = f'{winning_prefix}. Winner: {g.winner.name.title()}' print(winning_text) def play_game(): player1, player2 = select_player_types() g = castle.Game(player1, player2) play_constructed_game(g) def test_perft(): g = castle.Game(castle.PlayerType.HUMAN, castle.PlayerType.HUMAN) g.board.pretty_print() for i in range(10): print(f'perft({i}) = {g.perft(i)}') def test_perft2(): g = castle.Game(castle.PlayerType.HUMAN, castle.PlayerType.HUMAN) g.board.clear() # https://sites.google.com/site/numptychess/perft/position-3 g.board.place_piece(castle.Piece(castle.PieceType.ROOK, castle.Color.BLACK), 'a8') g.board.place_piece(castle.Piece(castle.PieceType.KING, castle.Color.BLACK), 'e8') g.board.place_piece(castle.Piece(castle.PieceType.ROOK, castle.Color.BLACK), 'h8') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.BLACK), 'a7') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.BLACK), 'h7') g.board.place_piece(castle.Piece(castle.PieceType.BISHOP, castle.Color.WHITE), 'a5') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.BLACK), 'b4') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.BLACK), 'c4') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.BLACK), 'e4') g.board.place_piece(castle.Piece(castle.PieceType.BISHOP, castle.Color.BLACK), 'd3') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.WHITE), 'a2') g.board.place_piece(castle.Piece(castle.PieceType.PAWN, castle.Color.WHITE), 'h2') g.board.place_piece(castle.Piece(castle.PieceType.ROOK, castle.Color.WHITE), 'a1') g.board.place_piece(castle.Piece(castle.PieceType.KING, castle.Color.WHITE), 'e1') g.board.place_piece(castle.Piece(castle.PieceType.ROOK, castle.Color.WHITE), 'h1') g.board.pretty_print() for i in range(2): print(f'perft({i}) = {g.perft(i)}') def fen(): # f = castle.FenGameConstructor('rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1') game = 'rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1' game = 'r3k2r/p6p/8/B7/1pp1p3/3b4/P6P/R3K2R w KQkq - 0 1' game = '8/5p2/8/2k3P1/p3K3/8/1P6/8 b - - 0 1' f = castle.FenGameConstructor(game) return f.game def main(): print(f'Welcome to castle, a litte chess engine.\n') # test_perft() g = fen() print('returned') g.print_perft(5) play_constructed_game(g) # play_game() if __name__ == '__main__': main()
37.3
95
0.663417
0
0
0
0
0
0
0
0
938
0.228613
40914f27511088ce3ade62cbe86245a30a969a5b
2,603
py
Python
pyfos/utils/configure/switch_configuration_show.py
madhavinaiduprathap/pyfosbrocade
ec100e77c441761c3e688f1d8e5d18ad38cc83f4
[ "Apache-2.0" ]
44
2017-11-17T12:03:11.000Z
2022-02-03T20:57:56.000Z
pyfos/utils/configure/switch_configuration_show.py
madhavinaiduprathap/pyfosbrocade
ec100e77c441761c3e688f1d8e5d18ad38cc83f4
[ "Apache-2.0" ]
13
2018-10-09T15:34:15.000Z
2022-02-24T20:03:17.000Z
pyfos/utils/configure/switch_configuration_show.py
madhavinaiduprathap/pyfosbrocade
ec100e77c441761c3e688f1d8e5d18ad38cc83f4
[ "Apache-2.0" ]
23
2017-12-14T18:08:33.000Z
2022-02-03T15:33:40.000Z
#!/usr/bin/env python3 # Copyright 2018 Brocade Communications Systems LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may also obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`switch_configuration_show` - PyFOS util for configuring switch operation ******************************************************************************** The :mod:`switch_configuration_show` util provides for configuring switch \ operation. This module is a stand-alone script that can be used to display switch attributes. * Input: * -L=<login>: The login ID. If not provided, an interactive prompt will request one. * -P=<password>: The password. If not provided, an interactive prompt will request one. * -i=<IP address>: The IP address. * -f=<VFID>: The VFID or -1 if VF is disabled. If unspecified, a VFID of 128 is assumed. * Output: * The switch attributes in JSON format. .. function:: show_switch_conf(session) Example Usage of the Method:: ret = switch_configuration_show.show_switch_conf(session) print (ret) Details:: switch_conf_obj = switch_configuration() result = switch_conf_obj.get(session) return result * Input: :param session: The session returned by login. * Output: :rtype: A dictionary of return status matching the REST response. *Use Cases* 1. Retrieve the configuration parameters of the switch. """ import sys from pyfos import pyfos_auth import pyfos.pyfos_brocade_fibrechannel_configuration as py_fc from pyfos import pyfos_util from pyfos.utils import brcd_util switch = py_fc.switch_configuration def show_switch_conf(session): switch_conf_obj = switch() result = switch_conf_obj.get(session) return result def main(argv): filters = [] inputs = brcd_util.parse(argv, switch, filters) session = brcd_util.getsession(inputs) result = show_switch_conf(inputs['session']) pyfos_util.response_print(result) pyfos_auth.logout(session) if __name__ == "__main__": main(sys.argv[1:])
28.293478
80
0.683826
0
0
0
0
0
0
0
0
1,975
0.75874
409191dc8e0d6b6abf220bc3d47860d3cfbeff3a
31,078
py
Python
vehicle/views.py
BernardAli/vehicle-service-mgt
242d9797f9138a23d1c649d63660c2ee0b6cc462
[ "MIT" ]
105
2020-09-27T16:10:44.000Z
2022-03-31T18:08:36.000Z
vehicle/views.py
BernardAli/vehicle-service-mgt
242d9797f9138a23d1c649d63660c2ee0b6cc462
[ "MIT" ]
1
2021-07-15T21:36:09.000Z
2021-07-15T21:36:09.000Z
vehicle/views.py
BernardAli/vehicle-service-mgt
242d9797f9138a23d1c649d63660c2ee0b6cc462
[ "MIT" ]
87
2020-10-02T11:45:42.000Z
2022-03-25T16:43:22.000Z
from django.shortcuts import render,redirect,reverse from . import forms,models from django.db.models import Sum from django.contrib.auth.models import Group from django.http import HttpResponseRedirect from django.contrib.auth.decorators import login_required,user_passes_test from django.conf import settings from django.db.models import Q def home_view(request): if request.user.is_authenticated: return HttpResponseRedirect('afterlogin') return render(request,'vehicle/index.html') #for showing signup/login button for customer def customerclick_view(request): if request.user.is_authenticated: return HttpResponseRedirect('afterlogin') return render(request,'vehicle/customerclick.html') #for showing signup/login button for mechanics def mechanicsclick_view(request): if request.user.is_authenticated: return HttpResponseRedirect('afterlogin') return render(request,'vehicle/mechanicsclick.html') #for showing signup/login button for ADMIN(by sumit) def adminclick_view(request): if request.user.is_authenticated: return HttpResponseRedirect('afterlogin') return HttpResponseRedirect('adminlogin') def customer_signup_view(request): userForm=forms.CustomerUserForm() customerForm=forms.CustomerForm() mydict={'userForm':userForm,'customerForm':customerForm} if request.method=='POST': userForm=forms.CustomerUserForm(request.POST) customerForm=forms.CustomerForm(request.POST,request.FILES) if userForm.is_valid() and customerForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() customer=customerForm.save(commit=False) customer.user=user customer.save() my_customer_group = Group.objects.get_or_create(name='CUSTOMER') my_customer_group[0].user_set.add(user) return HttpResponseRedirect('customerlogin') return render(request,'vehicle/customersignup.html',context=mydict) def mechanic_signup_view(request): userForm=forms.MechanicUserForm() mechanicForm=forms.MechanicForm() mydict={'userForm':userForm,'mechanicForm':mechanicForm} if request.method=='POST': userForm=forms.MechanicUserForm(request.POST) mechanicForm=forms.MechanicForm(request.POST,request.FILES) if userForm.is_valid() and mechanicForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() mechanic=mechanicForm.save(commit=False) mechanic.user=user mechanic.save() my_mechanic_group = Group.objects.get_or_create(name='MECHANIC') my_mechanic_group[0].user_set.add(user) return HttpResponseRedirect('mechaniclogin') return render(request,'vehicle/mechanicsignup.html',context=mydict) #for checking user customer, mechanic or admin(by sumit) def is_customer(user): return user.groups.filter(name='CUSTOMER').exists() def is_mechanic(user): return user.groups.filter(name='MECHANIC').exists() def afterlogin_view(request): if is_customer(request.user): return redirect('customer-dashboard') elif is_mechanic(request.user): accountapproval=models.Mechanic.objects.all().filter(user_id=request.user.id,status=True) if accountapproval: return redirect('mechanic-dashboard') else: return render(request,'vehicle/mechanic_wait_for_approval.html') else: return redirect('admin-dashboard') #============================================================================================ # ADMIN RELATED views start #============================================================================================ @login_required(login_url='adminlogin') def admin_dashboard_view(request): enquiry=models.Request.objects.all().order_by('-id') customers=[] for enq in enquiry: customer=models.Customer.objects.get(id=enq.customer_id) customers.append(customer) dict={ 'total_customer':models.Customer.objects.all().count(), 'total_mechanic':models.Mechanic.objects.all().count(), 'total_request':models.Request.objects.all().count(), 'total_feedback':models.Feedback.objects.all().count(), 'data':zip(customers,enquiry), } return render(request,'vehicle/admin_dashboard.html',context=dict) @login_required(login_url='adminlogin') def admin_customer_view(request): return render(request,'vehicle/admin_customer.html') @login_required(login_url='adminlogin') def admin_view_customer_view(request): customers=models.Customer.objects.all() return render(request,'vehicle/admin_view_customer.html',{'customers':customers}) @login_required(login_url='adminlogin') def delete_customer_view(request,pk): customer=models.Customer.objects.get(id=pk) user=models.User.objects.get(id=customer.user_id) user.delete() customer.delete() return redirect('admin-view-customer') @login_required(login_url='adminlogin') def update_customer_view(request,pk): customer=models.Customer.objects.get(id=pk) user=models.User.objects.get(id=customer.user_id) userForm=forms.CustomerUserForm(instance=user) customerForm=forms.CustomerForm(request.FILES,instance=customer) mydict={'userForm':userForm,'customerForm':customerForm} if request.method=='POST': userForm=forms.CustomerUserForm(request.POST,instance=user) customerForm=forms.CustomerForm(request.POST,request.FILES,instance=customer) if userForm.is_valid() and customerForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() customerForm.save() return redirect('admin-view-customer') return render(request,'vehicle/update_customer.html',context=mydict) @login_required(login_url='adminlogin') def admin_add_customer_view(request): userForm=forms.CustomerUserForm() customerForm=forms.CustomerForm() mydict={'userForm':userForm,'customerForm':customerForm} if request.method=='POST': userForm=forms.CustomerUserForm(request.POST) customerForm=forms.CustomerForm(request.POST,request.FILES) if userForm.is_valid() and customerForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() customer=customerForm.save(commit=False) customer.user=user customer.save() my_customer_group = Group.objects.get_or_create(name='CUSTOMER') my_customer_group[0].user_set.add(user) return HttpResponseRedirect('/admin-view-customer') return render(request,'vehicle/admin_add_customer.html',context=mydict) @login_required(login_url='adminlogin') def admin_view_customer_enquiry_view(request): enquiry=models.Request.objects.all().order_by('-id') customers=[] for enq in enquiry: customer=models.Customer.objects.get(id=enq.customer_id) customers.append(customer) return render(request,'vehicle/admin_view_customer_enquiry.html',{'data':zip(customers,enquiry)}) @login_required(login_url='adminlogin') def admin_view_customer_invoice_view(request): enquiry=models.Request.objects.values('customer_id').annotate(Sum('cost')) print(enquiry) customers=[] for enq in enquiry: print(enq) customer=models.Customer.objects.get(id=enq['customer_id']) customers.append(customer) return render(request,'vehicle/admin_view_customer_invoice.html',{'data':zip(customers,enquiry)}) @login_required(login_url='adminlogin') def admin_mechanic_view(request): return render(request,'vehicle/admin_mechanic.html') @login_required(login_url='adminlogin') def admin_approve_mechanic_view(request): mechanics=models.Mechanic.objects.all().filter(status=False) return render(request,'vehicle/admin_approve_mechanic.html',{'mechanics':mechanics}) @login_required(login_url='adminlogin') def approve_mechanic_view(request,pk): mechanicSalary=forms.MechanicSalaryForm() if request.method=='POST': mechanicSalary=forms.MechanicSalaryForm(request.POST) if mechanicSalary.is_valid(): mechanic=models.Mechanic.objects.get(id=pk) mechanic.salary=mechanicSalary.cleaned_data['salary'] mechanic.status=True mechanic.save() else: print("form is invalid") return HttpResponseRedirect('/admin-approve-mechanic') return render(request,'vehicle/admin_approve_mechanic_details.html',{'mechanicSalary':mechanicSalary}) @login_required(login_url='adminlogin') def delete_mechanic_view(request,pk): mechanic=models.Mechanic.objects.get(id=pk) user=models.User.objects.get(id=mechanic.user_id) user.delete() mechanic.delete() return redirect('admin-approve-mechanic') @login_required(login_url='adminlogin') def admin_add_mechanic_view(request): userForm=forms.MechanicUserForm() mechanicForm=forms.MechanicForm() mechanicSalary=forms.MechanicSalaryForm() mydict={'userForm':userForm,'mechanicForm':mechanicForm,'mechanicSalary':mechanicSalary} if request.method=='POST': userForm=forms.MechanicUserForm(request.POST) mechanicForm=forms.MechanicForm(request.POST,request.FILES) mechanicSalary=forms.MechanicSalaryForm(request.POST) if userForm.is_valid() and mechanicForm.is_valid() and mechanicSalary.is_valid(): user=userForm.save() user.set_password(user.password) user.save() mechanic=mechanicForm.save(commit=False) mechanic.user=user mechanic.status=True mechanic.salary=mechanicSalary.cleaned_data['salary'] mechanic.save() my_mechanic_group = Group.objects.get_or_create(name='MECHANIC') my_mechanic_group[0].user_set.add(user) return HttpResponseRedirect('admin-view-mechanic') else: print('problem in form') return render(request,'vehicle/admin_add_mechanic.html',context=mydict) @login_required(login_url='adminlogin') def admin_view_mechanic_view(request): mechanics=models.Mechanic.objects.all() return render(request,'vehicle/admin_view_mechanic.html',{'mechanics':mechanics}) @login_required(login_url='adminlogin') def delete_mechanic_view(request,pk): mechanic=models.Mechanic.objects.get(id=pk) user=models.User.objects.get(id=mechanic.user_id) user.delete() mechanic.delete() return redirect('admin-view-mechanic') @login_required(login_url='adminlogin') def update_mechanic_view(request,pk): mechanic=models.Mechanic.objects.get(id=pk) user=models.User.objects.get(id=mechanic.user_id) userForm=forms.MechanicUserForm(instance=user) mechanicForm=forms.MechanicForm(request.FILES,instance=mechanic) mydict={'userForm':userForm,'mechanicForm':mechanicForm} if request.method=='POST': userForm=forms.MechanicUserForm(request.POST,instance=user) mechanicForm=forms.MechanicForm(request.POST,request.FILES,instance=mechanic) if userForm.is_valid() and mechanicForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() mechanicForm.save() return redirect('admin-view-mechanic') return render(request,'vehicle/update_mechanic.html',context=mydict) @login_required(login_url='adminlogin') def admin_view_mechanic_salary_view(request): mechanics=models.Mechanic.objects.all() return render(request,'vehicle/admin_view_mechanic_salary.html',{'mechanics':mechanics}) @login_required(login_url='adminlogin') def update_salary_view(request,pk): mechanicSalary=forms.MechanicSalaryForm() if request.method=='POST': mechanicSalary=forms.MechanicSalaryForm(request.POST) if mechanicSalary.is_valid(): mechanic=models.Mechanic.objects.get(id=pk) mechanic.salary=mechanicSalary.cleaned_data['salary'] mechanic.save() else: print("form is invalid") return HttpResponseRedirect('/admin-view-mechanic-salary') return render(request,'vehicle/admin_approve_mechanic_details.html',{'mechanicSalary':mechanicSalary}) @login_required(login_url='adminlogin') def admin_request_view(request): return render(request,'vehicle/admin_request.html') @login_required(login_url='adminlogin') def admin_view_request_view(request): enquiry=models.Request.objects.all().order_by('-id') customers=[] for enq in enquiry: customer=models.Customer.objects.get(id=enq.customer_id) customers.append(customer) return render(request,'vehicle/admin_view_request.html',{'data':zip(customers,enquiry)}) @login_required(login_url='adminlogin') def change_status_view(request,pk): adminenquiry=forms.AdminApproveRequestForm() if request.method=='POST': adminenquiry=forms.AdminApproveRequestForm(request.POST) if adminenquiry.is_valid(): enquiry_x=models.Request.objects.get(id=pk) enquiry_x.mechanic=adminenquiry.cleaned_data['mechanic'] enquiry_x.cost=adminenquiry.cleaned_data['cost'] enquiry_x.status=adminenquiry.cleaned_data['status'] enquiry_x.save() else: print("form is invalid") return HttpResponseRedirect('/admin-view-request') return render(request,'vehicle/admin_approve_request_details.html',{'adminenquiry':adminenquiry}) @login_required(login_url='adminlogin') def admin_delete_request_view(request,pk): requests=models.Request.objects.get(id=pk) requests.delete() return redirect('admin-view-request') @login_required(login_url='adminlogin') def admin_add_request_view(request): enquiry=forms.RequestForm() adminenquiry=forms.AdminRequestForm() mydict={'enquiry':enquiry,'adminenquiry':adminenquiry} if request.method=='POST': enquiry=forms.RequestForm(request.POST) adminenquiry=forms.AdminRequestForm(request.POST) if enquiry.is_valid() and adminenquiry.is_valid(): enquiry_x=enquiry.save(commit=False) enquiry_x.customer=adminenquiry.cleaned_data['customer'] enquiry_x.mechanic=adminenquiry.cleaned_data['mechanic'] enquiry_x.cost=adminenquiry.cleaned_data['cost'] enquiry_x.status='Approved' enquiry_x.save() else: print("form is invalid") return HttpResponseRedirect('admin-view-request') return render(request,'vehicle/admin_add_request.html',context=mydict) @login_required(login_url='adminlogin') def admin_approve_request_view(request): enquiry=models.Request.objects.all().filter(status='Pending') return render(request,'vehicle/admin_approve_request.html',{'enquiry':enquiry}) @login_required(login_url='adminlogin') def approve_request_view(request,pk): adminenquiry=forms.AdminApproveRequestForm() if request.method=='POST': adminenquiry=forms.AdminApproveRequestForm(request.POST) if adminenquiry.is_valid(): enquiry_x=models.Request.objects.get(id=pk) enquiry_x.mechanic=adminenquiry.cleaned_data['mechanic'] enquiry_x.cost=adminenquiry.cleaned_data['cost'] enquiry_x.status=adminenquiry.cleaned_data['status'] enquiry_x.save() else: print("form is invalid") return HttpResponseRedirect('/admin-approve-request') return render(request,'vehicle/admin_approve_request_details.html',{'adminenquiry':adminenquiry}) @login_required(login_url='adminlogin') def admin_view_service_cost_view(request): enquiry=models.Request.objects.all().order_by('-id') customers=[] for enq in enquiry: customer=models.Customer.objects.get(id=enq.customer_id) customers.append(customer) print(customers) return render(request,'vehicle/admin_view_service_cost.html',{'data':zip(customers,enquiry)}) @login_required(login_url='adminlogin') def update_cost_view(request,pk): updateCostForm=forms.UpdateCostForm() if request.method=='POST': updateCostForm=forms.UpdateCostForm(request.POST) if updateCostForm.is_valid(): enquiry_x=models.Request.objects.get(id=pk) enquiry_x.cost=updateCostForm.cleaned_data['cost'] enquiry_x.save() else: print("form is invalid") return HttpResponseRedirect('/admin-view-service-cost') return render(request,'vehicle/update_cost.html',{'updateCostForm':updateCostForm}) @login_required(login_url='adminlogin') def admin_mechanic_attendance_view(request): return render(request,'vehicle/admin_mechanic_attendance.html') @login_required(login_url='adminlogin') def admin_take_attendance_view(request): mechanics=models.Mechanic.objects.all().filter(status=True) aform=forms.AttendanceForm() if request.method=='POST': form=forms.AttendanceForm(request.POST) if form.is_valid(): Attendances=request.POST.getlist('present_status') date=form.cleaned_data['date'] for i in range(len(Attendances)): AttendanceModel=models.Attendance() AttendanceModel.date=date AttendanceModel.present_status=Attendances[i] print(mechanics[i].id) print(int(mechanics[i].id)) mechanic=models.Mechanic.objects.get(id=int(mechanics[i].id)) AttendanceModel.mechanic=mechanic AttendanceModel.save() return redirect('admin-view-attendance') else: print('form invalid') return render(request,'vehicle/admin_take_attendance.html',{'mechanics':mechanics,'aform':aform}) @login_required(login_url='adminlogin') def admin_view_attendance_view(request): form=forms.AskDateForm() if request.method=='POST': form=forms.AskDateForm(request.POST) if form.is_valid(): date=form.cleaned_data['date'] attendancedata=models.Attendance.objects.all().filter(date=date) mechanicdata=models.Mechanic.objects.all().filter(status=True) mylist=zip(attendancedata,mechanicdata) return render(request,'vehicle/admin_view_attendance_page.html',{'mylist':mylist,'date':date}) else: print('form invalid') return render(request,'vehicle/admin_view_attendance_ask_date.html',{'form':form}) @login_required(login_url='adminlogin') def admin_report_view(request): reports=models.Request.objects.all().filter(Q(status="Repairing Done") | Q(status="Released")) dict={ 'reports':reports, } return render(request,'vehicle/admin_report.html',context=dict) @login_required(login_url='adminlogin') def admin_feedback_view(request): feedback=models.Feedback.objects.all().order_by('-id') return render(request,'vehicle/admin_feedback.html',{'feedback':feedback}) #============================================================================================ # ADMIN RELATED views END #============================================================================================ #============================================================================================ # CUSTOMER RELATED views start #============================================================================================ @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_dashboard_view(request): customer=models.Customer.objects.get(user_id=request.user.id) work_in_progress=models.Request.objects.all().filter(customer_id=customer.id,status='Repairing').count() work_completed=models.Request.objects.all().filter(customer_id=customer.id).filter(Q(status="Repairing Done") | Q(status="Released")).count() new_request_made=models.Request.objects.all().filter(customer_id=customer.id).filter(Q(status="Pending") | Q(status="Approved")).count() bill=models.Request.objects.all().filter(customer_id=customer.id).filter(Q(status="Repairing Done") | Q(status="Released")).aggregate(Sum('cost')) print(bill) dict={ 'work_in_progress':work_in_progress, 'work_completed':work_completed, 'new_request_made':new_request_made, 'bill':bill['cost__sum'], 'customer':customer, } return render(request,'vehicle/customer_dashboard.html',context=dict) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_request_view(request): customer=models.Customer.objects.get(user_id=request.user.id) return render(request,'vehicle/customer_request.html',{'customer':customer}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_view_request_view(request): customer=models.Customer.objects.get(user_id=request.user.id) enquiries=models.Request.objects.all().filter(customer_id=customer.id , status="Pending") return render(request,'vehicle/customer_view_request.html',{'customer':customer,'enquiries':enquiries}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_delete_request_view(request,pk): customer=models.Customer.objects.get(user_id=request.user.id) enquiry=models.Request.objects.get(id=pk) enquiry.delete() return redirect('customer-view-request') @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_view_approved_request_view(request): customer=models.Customer.objects.get(user_id=request.user.id) enquiries=models.Request.objects.all().filter(customer_id=customer.id).exclude(status='Pending') return render(request,'vehicle/customer_view_approved_request.html',{'customer':customer,'enquiries':enquiries}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_view_approved_request_invoice_view(request): customer=models.Customer.objects.get(user_id=request.user.id) enquiries=models.Request.objects.all().filter(customer_id=customer.id).exclude(status='Pending') return render(request,'vehicle/customer_view_approved_request_invoice.html',{'customer':customer,'enquiries':enquiries}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_add_request_view(request): customer=models.Customer.objects.get(user_id=request.user.id) enquiry=forms.RequestForm() if request.method=='POST': enquiry=forms.RequestForm(request.POST) if enquiry.is_valid(): customer=models.Customer.objects.get(user_id=request.user.id) enquiry_x=enquiry.save(commit=False) enquiry_x.customer=customer enquiry_x.save() else: print("form is invalid") return HttpResponseRedirect('customer-dashboard') return render(request,'vehicle/customer_add_request.html',{'enquiry':enquiry,'customer':customer}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_profile_view(request): customer=models.Customer.objects.get(user_id=request.user.id) return render(request,'vehicle/customer_profile.html',{'customer':customer}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def edit_customer_profile_view(request): customer=models.Customer.objects.get(user_id=request.user.id) user=models.User.objects.get(id=customer.user_id) userForm=forms.CustomerUserForm(instance=user) customerForm=forms.CustomerForm(request.FILES,instance=customer) mydict={'userForm':userForm,'customerForm':customerForm,'customer':customer} if request.method=='POST': userForm=forms.CustomerUserForm(request.POST,instance=user) customerForm=forms.CustomerForm(request.POST,instance=customer) if userForm.is_valid() and customerForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() customerForm.save() return HttpResponseRedirect('customer-profile') return render(request,'vehicle/edit_customer_profile.html',context=mydict) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_invoice_view(request): customer=models.Customer.objects.get(user_id=request.user.id) enquiries=models.Request.objects.all().filter(customer_id=customer.id).exclude(status='Pending') return render(request,'vehicle/customer_invoice.html',{'customer':customer,'enquiries':enquiries}) @login_required(login_url='customerlogin') @user_passes_test(is_customer) def customer_feedback_view(request): customer=models.Customer.objects.get(user_id=request.user.id) feedback=forms.FeedbackForm() if request.method=='POST': feedback=forms.FeedbackForm(request.POST) if feedback.is_valid(): feedback.save() else: print("form is invalid") return render(request,'vehicle/feedback_sent_by_customer.html',{'customer':customer}) return render(request,'vehicle/customer_feedback.html',{'feedback':feedback,'customer':customer}) #============================================================================================ # CUSTOMER RELATED views END #============================================================================================ #============================================================================================ # MECHANIC RELATED views start #============================================================================================ @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_dashboard_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) work_in_progress=models.Request.objects.all().filter(mechanic_id=mechanic.id,status='Repairing').count() work_completed=models.Request.objects.all().filter(mechanic_id=mechanic.id,status='Repairing Done').count() new_work_assigned=models.Request.objects.all().filter(mechanic_id=mechanic.id,status='Approved').count() dict={ 'work_in_progress':work_in_progress, 'work_completed':work_completed, 'new_work_assigned':new_work_assigned, 'salary':mechanic.salary, 'mechanic':mechanic, } return render(request,'vehicle/mechanic_dashboard.html',context=dict) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_work_assigned_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) works=models.Request.objects.all().filter(mechanic_id=mechanic.id) return render(request,'vehicle/mechanic_work_assigned.html',{'works':works,'mechanic':mechanic}) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_update_status_view(request,pk): mechanic=models.Mechanic.objects.get(user_id=request.user.id) updateStatus=forms.MechanicUpdateStatusForm() if request.method=='POST': updateStatus=forms.MechanicUpdateStatusForm(request.POST) if updateStatus.is_valid(): enquiry_x=models.Request.objects.get(id=pk) enquiry_x.status=updateStatus.cleaned_data['status'] enquiry_x.save() else: print("form is invalid") return HttpResponseRedirect('/mechanic-work-assigned') return render(request,'vehicle/mechanic_update_status.html',{'updateStatus':updateStatus,'mechanic':mechanic}) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_attendance_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) attendaces=models.Attendance.objects.all().filter(mechanic=mechanic) return render(request,'vehicle/mechanic_view_attendance.html',{'attendaces':attendaces,'mechanic':mechanic}) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_feedback_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) feedback=forms.FeedbackForm() if request.method=='POST': feedback=forms.FeedbackForm(request.POST) if feedback.is_valid(): feedback.save() else: print("form is invalid") return render(request,'vehicle/feedback_sent.html',{'mechanic':mechanic}) return render(request,'vehicle/mechanic_feedback.html',{'feedback':feedback,'mechanic':mechanic}) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_salary_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) workdone=models.Request.objects.all().filter(mechanic_id=mechanic.id).filter(Q(status="Repairing Done") | Q(status="Released")) return render(request,'vehicle/mechanic_salary.html',{'workdone':workdone,'mechanic':mechanic}) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def mechanic_profile_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) return render(request,'vehicle/mechanic_profile.html',{'mechanic':mechanic}) @login_required(login_url='mechaniclogin') @user_passes_test(is_mechanic) def edit_mechanic_profile_view(request): mechanic=models.Mechanic.objects.get(user_id=request.user.id) user=models.User.objects.get(id=mechanic.user_id) userForm=forms.MechanicUserForm(instance=user) mechanicForm=forms.MechanicForm(request.FILES,instance=mechanic) mydict={'userForm':userForm,'mechanicForm':mechanicForm,'mechanic':mechanic} if request.method=='POST': userForm=forms.MechanicUserForm(request.POST,instance=user) mechanicForm=forms.MechanicForm(request.POST,request.FILES,instance=mechanic) if userForm.is_valid() and mechanicForm.is_valid(): user=userForm.save() user.set_password(user.password) user.save() mechanicForm.save() return redirect('mechanic-profile') return render(request,'vehicle/edit_mechanic_profile.html',context=mydict) #============================================================================================ # MECHANIC RELATED views start #============================================================================================ # for aboutus and contact def aboutus_view(request): return render(request,'vehicle/aboutus.html') def contactus_view(request): sub = forms.ContactusForm() if request.method == 'POST': sub = forms.ContactusForm(request.POST) if sub.is_valid(): email = sub.cleaned_data['Email'] name=sub.cleaned_data['Name'] message = sub.cleaned_data['Message'] send_mail(str(name)+' || '+str(email),message,settings.EMAIL_HOST_USER, settings.EMAIL_RECEIVING_USER, fail_silently = False) return render(request, 'vehicle/contactussuccess.html') return render(request, 'vehicle/contactus.html', {'form':sub})
41.327128
150
0.702491
0
0
0
0
25,357
0.815915
0
0
6,581
0.211758
409204c88e09d10160109d7dfc196e9a1647012b
28,322
py
Python
deep_disfluency/utils/tools.py
treena908/deep_disfluency
4e18bc17e74c356cd3a9c26fc80bf1c4a5487d59
[ "MIT" ]
null
null
null
deep_disfluency/utils/tools.py
treena908/deep_disfluency
4e18bc17e74c356cd3a9c26fc80bf1c4a5487d59
[ "MIT" ]
null
null
null
deep_disfluency/utils/tools.py
treena908/deep_disfluency
4e18bc17e74c356cd3a9c26fc80bf1c4a5487d59
[ "MIT" ]
null
null
null
import random import numpy as np import itertools import re from collections import defaultdict import os def get_tags(s, open_delim='<', close_delim='/>'): """Iterator to spit out the xml style disfluency tags in a given string. Keyword arguments: s -- input string """ while True: # Search for the next two delimiters in the source text start = s.find(open_delim) end = s.find(close_delim) # We found a non-empty match if -1 < start < end: # Skip the length of the open delimiter start += len(open_delim) # Spit out the tag yield open_delim + s[start:end].strip() + close_delim # Truncate string to start from last match s = s[end+len(close_delim):] else: return def remove_uttseg_tag(tag): tags = get_tags(tag) final_tag = "" for t in tags: m = re.search(r'<[ct]*/>', t) if m: continue final_tag += t return final_tag def convert_to_simple_label(tag, rep="disf1_uttseg"): """Takes the complex tag set and gives back the simple, smaller version with ten tags: """ disftag = "<f/>" if "<rm-" in tag: disftag = "<rm-0/>" elif "<e" in tag: disftag = "<e/>" if "uttseg" in rep: # if combined task with TTO m = re.search(r'<[ct]*/>', tag) if m: return disftag + m.group(0) else: print("WARNING NO TAG", +tag) return "" return disftag # if not TT0 def convert_to_simple_idx(tag, rep='1_trp'): tag = convert_to_simple_label(tag, rep) simple_tags = """<e/><cc/> <e/><ct/> <e/><tc/> <e/><tt/> <f/><cc/> <f/><ct/> <f/><tc/> <f/><tt/> <rm-0/><cc/> <rm-0/><ct/>""".split("\n") simple_tag_dict = {} for s in range(0, len(simple_tags)): simple_tag_dict[simple_tags[s].strip()] = s return simple_tag_dict[tag] def convert_from_full_tag_set_to_idx(tag, rep, idx_to_label): """Maps from the full tag set of trp repairs to the new dictionary""" if "simple" in rep: tag = convert_to_simple_label(tag) for k, v in idx_to_label.items(): if v in tag: # a substring relation return k def add_word_continuation_tags(tags): """In place, add a continutation tag to each word: <cc/> -word continues current dialogue act and the next word will also continue it <ct/> -word continues current dialogue act and is the last word of it <tc/> -word starts this dialogue act tag and the next word continues it <tt/> -word starts and ends dialogue act (single word dialogue act) """ tags = list(tags) for i in range(0, len(tags)): if i == 0: tags[i] = tags[i] + "<t" else: tags[i] = tags[i] + "<c" if i == len(tags)-1: tags[i] = tags[i] + "t/>" else: tags[i] = tags[i] + "c/>" return tags def verify_disfluency_tags(tags, normalize_ID=False): """Check that the repair tags sequence is valid. Keyword arguments: normalize_ID -- boolean, whether to convert the repair ID numbers to be derivable from their unique RPS position in the utterance. """ id_map = dict() # map between old ID and new ID # in first pass get old and new IDs for i in range(0, len(tags)): rps = re.findall("<rps id\=\"[0-9]+\"\/>", tags[i]) if rps: id_map[rps[0][rps[0].find("=")+2:-3]] = str(i) # key: old repair ID, value, list [reparandum,interregnum,repair] # all True when repair is all there repairs = defaultdict(list) for r in id_map.keys(): repairs[r] = [None, None, None] # three valued None<False<True # print(repairs) # second pass verify the validity of the tags # and (optionally) modify the IDs for i in range(0, len(tags)): # iterate over all tag strings new_tags = [] if tags[i] == "": assert(all([repairs[ID][2] or repairs[ID] == [None, None, None] for ID in repairs.keys()])),\ "Unresolved repairs at fluent tag\n\t" + str(repairs) for tag in get_tags(tags[i]): # iterate over all tags # print(i) # print(tag) if tag == "<e/>": new_tags.append(tag) continue ID = tag[tag.find("=")+2:-3] if "<rms" in tag: assert repairs[ID][0] == None,\ "reparandum started parsed more than once " + ID assert repairs[ID][1] == None,\ "reparandum start again during interregnum phase " + ID assert repairs[ID][2] == None,\ "reparandum start again during repair phase " + ID repairs[ID][0] = False # set in progress elif "<rm " in tag: assert repairs[ID][0] != None,\ "mid reparandum tag before reparandum start " + ID assert repairs[ID][2] == None,\ "mid reparandum tag in a interregnum phase or beyond " + ID assert repairs[ID][2] == None,\ "mid reparandum tag in a repair phase or beyond " + ID elif "<i" in tag: assert repairs[ID][0] != None,\ "interregnum start before reparandum start " + ID assert repairs[ID][2] == None,\ "interregnum in a repair phase " + ID if repairs[ID][1] == None: # interregnum not reached yet repairs[ID][0] = True # reparandum completed repairs[ID][1] = False # interregnum in progress elif "<rps" in tag: assert repairs[ID][0] != None,\ "repair start before reparandum start " + ID assert repairs[ID][1] != True,\ "interregnum over before repair start " + ID assert repairs[ID][2] == None,\ "repair start parsed twice " + ID repairs[ID][0] = True # reparanudm complete repairs[ID][1] = True # interregnum complete repairs[ID][2] = False # repair in progress elif "<rp " in tag: assert repairs[ID][0] == True,\ "mid repair word start before reparandum end " + ID assert repairs[ID][1] == True,\ "mid repair word start before interregnum end " + ID assert repairs[ID][2] == False,\ "mid repair tag before repair start tag " + ID elif "<rpn" in tag: # make sure the rps is order in tag string is before assert repairs[ID][0] == True,\ "repair end before reparandum end " + ID assert repairs[ID][1] == True,\ "repair end before interregnum end " + ID assert repairs[ID][2] == False,\ "repair end before repair start " + ID repairs[ID][2] = True # do the replacement of the tag's ID after checking new_tags.append(tag.replace(ID, id_map[ID])) if normalize_ID: tags[i] = "".join(new_tags) assert all([repairs[ID][2] for ID in repairs.keys()]),\ "Unresolved repairs:\n\t" + str(repairs) def shuffle(lol, seed): """Shuffle inplace each list in the same order. lol :: list of list as input seed :: seed the shuffling """ for l in lol: random.seed(seed) random.shuffle(l) def minibatch(l, bs): """Returns a list of minibatches of indexes which size is equal to bs border cases are treated as follow: eg: [0,1,2,3] and bs = 3 will output: [[0],[0,1],[0,1,2],[1,2,3]] l :: list of word idxs """ out = [l[:i] for i in xrange(1, min(bs, len(l)+1))] out += [l[i-bs:i] for i in xrange(bs, len(l)+1)] assert len(l) == len(out) return out def indices_from_length(sentence_length, bs, start_index=0): """Return a list of indexes pairs (start/stop) for each word max difference between start and stop equal to bs border cases are treated as follow: eg: sentenceLength=4 and bs = 3 will output: [[0,0],[0,1],[0,2],[1,3]] """ l = map(lambda x: start_index+x, xrange(sentence_length)) out = [] for i in xrange(0, min(bs, len(l))): out.append([l[0], l[i]]) for i in xrange(bs+1, len(l)+1): out.append([l[i-bs], l[i-1]]) assert len(l) == sentence_length return out def context_win(l, win): """Return a list of list of indexes corresponding to context windows surrounding each word in the sentence given a list of indexes composing a sentence. win :: int corresponding to the size of the window """ assert (win % 2) == 1 assert win >= 1 l = list(l) lpadded = win/2 * [-1] + l + win/2 * [-1] out = [lpadded[i:i+win] for i in range(len(l))] assert len(out) == len(l) return out def context_win_backwards(l, win): '''Same as contextwin except only backwards context (i.e. like an n-gram model) ''' assert win >= 1 l = list(l) lpadded = (win-1) * [-1] + l out = [lpadded[i: i+win] for i in range(len(l))] assert len(out) == len(l) return out def corpus_to_indexed_matrix(my_array_list, win, bs, sentence=False): """Returns a matrix of contextwins for a list of utterances of dimensions win * n_words_in_corpus (i.e. total length of all arrays in my_array_list) and corresponding matrix of indexes (of just start/stop for each one) so 2 * n_words_in_corpus of where to access these, using bs (backprop distance) as the limiting history size """ sentences = [] # a list (of arrays, or lists?), returned as matrix indices = [] # a list of index pairs (arrays?), returned as matrix totalSize = 0 if sentence: for sent in my_array_list: mysent = np.asarray([-1] * (bs-1) + list(sent)) # padding with eos # get list of context windows mywords = context_win_backwards(mysent, win) # just one per utterance for now.. cindices = [[totalSize, totalSize+len(mywords)-1]] cwords = [] for i in range(bs, len(mywords)+1): words = list(itertools.chain(*mywords[(i-bs):i])) cwords.append(words) # always (bs * n) words long # print cwords sentences.extend(cwords) indices.extend(cindices) totalSize += len(cwords) else: for sentence in my_array_list: # get list of context windows cwords = context_win_backwards(sentence, win) cindices = indices_from_length(len(cwords), bs, totalSize) indices.extend(cindices) sentences.extend(cwords) totalSize += len(cwords) for s in sentences: if any([x is None for x in s]): print(s) return np.matrix(sentences, dtype='int32'), indices def convert_from_eval_tags_to_inc_disfluency_tags(tags, words, representation="disf1", limit=8): """Conversion from disfluency tagged corpus with xml-style tags as from STIR (https://bitbucket.org/julianhough/stir) to the strictly left-to-right schemas as described by Hough and Schlangen 2015 Interspeech paper, which are used by RNN architectures at runtime. Keyword arguments: tags -- the STIR eval style disfluency tags words -- the words in the utterance representation -- the number corresponding to the type of tagging system 1=standard, 2=rm-N values where N does not count intervening edit terms 3=same as 2 but with a 'c' tag after edit terms have ended. limit -- the limit on the distance back from the repair start """ repair_dict = defaultdict(list) new_tags = [] # print("tags") # print(tags) # print('words') # print(words) for t in range(0, len(tags)): if "uttseg" in representation: m = re.search(r'<[ct]*/>', tags[t]) if m: TTO_tag = m.group(0) tags[t] = tags[t].replace(TTO_tag, "") if "dact" in representation: m = re.search(r'<diact type="[^\s]*"/>', tags[t]) if m: dact_tag = m.group(0) tags[t] = tags[t].replace(dact_tag, "") if "laugh" in representation: m = re.search(r'<speechLaugh/>|<laughter/>', tags[t]) if m: laughter_tag = m.group(0) else: laughter_tag = "<nolaughter/>" tags[t] = tags[t].replace(laughter_tag, "") current_tag = "" if "<e/>" in tags[t] or "<i" in tags[t]: current_tag = "<e/>" # TODO may make this an interregnum if "<rms" in tags[t]: rms = re.findall("<rms id\=\"[0-9]+\"\/>", tags[t], re.S) for r in rms: repairID = r[r.find("=")+2:-3] repair_dict[repairID] = [t, 0] if "<rps" in tags[t]: rps = re.findall("<rps id\=\"[0-9]+\"\/>", tags[t], re.S) for r in rps: repairID = r[r.find("=")+2:-3] # print('repairID') # print(repairID) # print(repair_dict.get(repairID)) # print(str(repairID)+str(tags)+str(words)) assert repair_dict.get(repairID), str(repairID)+str(tags)+str(words) repair_dict[repairID][1] = t dist = min(t-repair_dict[repairID][0], limit) # adjust in case the reparandum is shortened due to the limit repair_dict[repairID][0] = t-dist current_tag += "<rm-{}/>".format(dist) + "<rpMid/>" if "<rpn" in tags[t]: rpns = re.findall("<rpnrep id\=\"[0-9]+\"\/>", tags[t], re.S) +\ re.findall("<rpnsub id\=\"[0-9]+\"\/>", tags[t], re.S) rpns_del = re.findall("<rpndel id\=\"[0-9]+\"\/>", tags[t], re.S) # slight simplifying assumption is to take the repair with # the longest reparandum as the end category repair_type = "" longestlength = 0 for r in rpns: repairID = r[r.find("=")+2:-3] l = repair_dict[repairID] if l[1]-l[0] > longestlength: longestlength = l[1]-l[0] repair_type = "Sub" for r in rpns_del: repairID = r[r.find("=")+2:-3] l = repair_dict[repairID] if l[1]-l[0] > longestlength: longestlength = l[1]-l[0] repair_type = "Del" if repair_type == "": raise Exception("Repair not passed \ correctly."+str(words)+str(tags)) current_tag += "<rpEnd"+repair_type+"/>" current_tag = current_tag.replace("<rpMid/>", "") if current_tag == "": current_tag = "<f/>" if "uttseg" in representation: current_tag += TTO_tag if "dact" in representation: current_tag += dact_tag if "laugh" in representation: current_tag += laughter_tag new_tags.append(current_tag) return new_tags def convert_from_inc_disfluency_tags_to_eval_tags( tags, words, start=0, representation="disf1_uttseg"): """Converts the incremental style output tags of the RNN to the standard STIR eval output tags. The exact inverse of convertFromEvalTagsToIncrementalDisfluencyTags. Keyword arguments: tags -- the RNN style disfluency tags words -- the words in the utterance start -- position from where to begin changing the tags from representation -- the number corresponding to the type of tagging system, 1=standard, 2=rm-N values where N does not count intervening edit terms 3=same as 2 but with a 'c' tag after edit terms have ended. """ # maps from the repair ID to a list of # [reparandumStart,repairStart,repairOver] repair_dict = defaultdict(list) new_tags = [] if start > 0: # assuming the tags up to this point are already converted new_tags = tags[:start] if "mid" not in representation: rps_s = re.findall("<rps id\=\"[0-9]+\"\/>", tags[start-1]) rpmid = re.findall("<rp id\=\"[0-9]+\"\/>", tags[start-1]) if rps_s: for r in rps_s: repairID = r[r.find("=")+2:-3] resolved_repair = re.findall( "<rpn[repsubdl]+ id\=\"{}\"\/>" .format(repairID), tags[start-1]) if not resolved_repair: if not rpmid: rpmid = [] rpmid.append(r.replace("rps ", "rp ")) if rpmid: newstart = start-1 for rp in rpmid: rps = rp.replace("rp ", "rps ") repairID = rp[rp.find("=")+2:-3] # go back and find the repair for b in range(newstart, -1, -1): if rps in tags[b]: repair_dict[repairID] = [b, b, False] break for t in range(start, len(tags)): current_tag = "" if "uttseg" in representation: m = re.search(r'<[ct]*/>', tags[t]) if m: TTO_tag = m.group(0) if "<e/>" in tags[t] or "<i/>" in tags[t]: current_tag = "<e/>" if "<rm-" in tags[t]: rps = re.findall("<rm-[0-9]+\/>", tags[t], re.S) for r in rps: # should only be one current_tag += '<rps id="{}"/>'.format(t) # print t-dist if "simple" in representation: # simply tagging the rps pass else: dist = int(r[r.find("-")+1:-2]) repair_dict[str(t)] = [max([0, t-dist]), t, False] # backwards looking search if full set # print new_tags, t, dist, t-dist, max([0, t-dist]) # print tags[:t+1] rms_start_idx = max([0, t-dist]) new_tags[rms_start_idx] = '<rms id="{}"/>'\ .format(t) + new_tags[rms_start_idx]\ .replace("<f/>", "") reparandum = False # interregnum if edit term for b in range(t-1, max([0, t-dist]), -1): if "<e" not in new_tags[b]: reparandum = True new_tags[b] = '<rm id="{}"/>'.format(t) +\ new_tags[b].replace("<f/>", "") if reparandum is False and "<e" in new_tags[b]: new_tags[b] = '<i id="{}"/>'.\ format(t) + new_tags[b] # repair ends if "<rpEnd" in tags[t]: rpns = re.findall("<rpEndSub/>", tags[t], re.S) rpns_del = re.findall("<rpEndDel/>", tags[t], re.S) rpnAll = rpns + rpns_del if rpnAll: for k, v in repair_dict.items(): if t >= int(k) and v[2] is False: repair_dict[k][2] = True # classify the repair if rpns_del: # a delete current_tag += '<rpndel id="{}"/>'.format(k) rpns_del.pop(0) continue reparandum = [words[i] for i in range(0, len(new_tags)) if '<rms id="{}"/>'. format(k) in new_tags[i] or '<rm id="{}"/>'. format(k) in new_tags[i]] repair = [words[i] for i in range(0, len(new_tags)) if '<rps id="{}"/>'.format(k) in new_tags[i] or '<rp id="{}"/>'.format(k) in new_tags[i]] + [words[t]] if reparandum == repair: current_tag += '<rpnrep id="{}"/>'.format(k) else: current_tag += '<rpnsub id="{}"/>'.format(k) # mid repair phases still in progress for k, v in repair_dict.items(): if t > int(k) and v[2] is False: current_tag += '<rp id="{}"/>'.format(k) if current_tag == "": current_tag = "<f/>" if "uttseg" in representation: current_tag += TTO_tag new_tags.append(current_tag) return new_tags def verify_dialogue_data_matrix(dialogue_data_matrix, word_dict=None, pos_dict=None, tag_dict=None, n_lm=0, n_acoustic=0): """Boolean check of whether dialogue data consistent with args. Checks all idxs are valid and number of features is correct. Standard form of each row of the matrix should be: utt_index, word_idx, pos_idx, word_duration, acoustic_feats.., lm_feats....,label """ l = 3 + n_acoustic + n_lm + 1 # row length try: for i, row in enumerate(dialogue_data_matrix): assert len(row) == l,\ "row {} wrong length {}, should be {}".format(i, len(row), l) assert word_dict[row[1]] is not None,\ "row[1][{}] {} not in word dict".format(i, row[1]) assert pos_dict[row[2]] is not None,\ "row[2][{}] {} not in POS dict".format(i, row[2]) assert tag_dict[row[-1]] is not None,\ "row[-1][{}] {} not in tag dict".format(i, row[-1]) except AssertionError as a: print(a) return False return True def verify_dialogue_data_matrices_from_folder(matrices_folder_filepath, word_dict=None, pos_dict=None, tag_dict=None, n_lm=0, n_acoustic=0): """A boolean check that the dialogue matrices make sense for the particular configuration in args and tag2idx dicts. """ for dialogue_file in os.listdir(matrices_folder_filepath): v = np.load(matrices_folder_filepath + "/" + dialogue_file,allow_pickle=True) if not verify_dialogue_data_matrix(v, word_dict=word_dict, pos_dict=pos_dict, tag_dict=tag_dict, n_lm=n_lm, n_acoustic=n_acoustic): # print"{} failed test".format(dialogue_file) return False return True def dialogue_data_and_indices_from_matrix(d_matrix, n_extra, pre_seg=False, window_size=2, bs=9, tag_rep="disf1_uttseg", tag_to_idx_map=None, in_utterances=False): """Transforming from input format of row: utt_index, word_idx, pos_idx, word_duration, acoustic_feats.., lm_feats....,label to 5-tuple of: word_idx, pos_idx, extra, labels, indices where :word_idx: and :pos_idx: have the correct window context according to @window_size and :indices: is the start and stop points for consumption by the net in training for each label in :labels:. :extra: is the matrix of extra features. """ if len(d_matrix)==0: return utt_indices = d_matrix[:, 0] words = d_matrix[:, 1] pos = d_matrix[:, 2] extra = None if n_extra == 0 else d_matrix[:, 3: -1] labels = d_matrix[:, -1] word_idx = [] pos_idx = [] current = [] indices = [] previous_idx = -1 for i, a_tuple in enumerate(zip(utt_indices, words, pos, labels)): utt_idx, w, p, l = a_tuple # print(w) current.append((w, p, l)) if pre_seg: if previous_idx != utt_idx or i == len(labels)-1: if in_utterances: start = 0 if indices == [] else indices[-1][1]+1 indices.append([start, start + (len(current)-1)]) else: indices.extend(indices_from_length(len(current), bs, start_index=len(indices))) word_idx.extend(context_win_backwards([x[0] for x in current], window_size)) pos_idx.extend(context_win_backwards([x[1] for x in current], window_size)) current = [] # print('final') # print(w) # print(word_idx) elif i == len(labels)-1: # indices = indices_from_length(len(current), bs) # currently a simple window of same size indices = [[j, j + bs] for j in range(0, len(current))] padding = [[-1, -1]] * (bs - window_size) word_idx = padding + context_win_backwards([x[0] for x in current], window_size) pos_idx = padding + context_win_backwards([x[1] for x in current], window_size) previous_idx = utt_idx # print(pos_idx) # print(word_idx) # print(extra) # print(labels) # print(indices) # return np.asarray(word_idx, dtype=np.int32), np.asarray(pos_idx, # dtype=np.int32),\ # labels,\ # np.asarray(indices, dtype=np.int32) return np.asarray(word_idx, dtype=np.int32), np.asarray(pos_idx, dtype=np.int32),\ extra,\ labels,\ np.asarray(indices, dtype=np.int32) if __name__ == '__main__': tags = '<f/>,<rms id="3"/>,<i id="3"/><e/>,<rps id="3"/>' +\ '<rpnsub id="3"/>,<f/>,<e/>,<f/>,' + \ '<f/>' tags = tags.split(",") words = "i,like,uh,love,to,uh,love,alot".split(",") # print(tags) # print(len(tags)) # print(len(words)) new_tags = convert_from_eval_tags_to_inc_disfluency_tags( tags, words, representation="disf1") # print(new_tags) old_tags = convert_from_inc_disfluency_tags_to_eval_tags( new_tags, words, representation="disf1") assert old_tags == tags, "\n " + str(old_tags) + "\n" + str(tags) x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] # print(context_win_backwards(x, 2)) # print "indices", indices_from_length(11, 9)
40.634146
85
0.49541
0
0
711
0.025104
0
0
0
0
9,263
0.32706
4093599c05b72acbbffdbf768053f07822e78e65
124
py
Python
library/favourite/api/pagination.py
furkan-34/library-DRF-django-api
3634133b7c543d6d05845dd8fa1f206386c1badb
[ "MIT" ]
null
null
null
library/favourite/api/pagination.py
furkan-34/library-DRF-django-api
3634133b7c543d6d05845dd8fa1f206386c1badb
[ "MIT" ]
null
null
null
library/favourite/api/pagination.py
furkan-34/library-DRF-django-api
3634133b7c543d6d05845dd8fa1f206386c1badb
[ "MIT" ]
null
null
null
from rest_framework.pagination import PageNumberPagination class FavouritePagination(PageNumberPagination): page_size=4
31
58
0.870968
64
0.516129
0
0
0
0
0
0
0
0
40946ed59b952cc97c649459f7de1a75d4265832
564
py
Python
Python-Math/Python-Math/check_prime.py
rgabeflores/Scripts
c8138cb4543e576924de2107abb5a65f0b84264c
[ "MIT" ]
2
2018-05-12T10:58:51.000Z
2021-11-16T11:52:27.000Z
src/Python-Math/check_prime.py
learn-py/Posts
da394236db0a52c93ca1c0374ad121b263555272
[ "MIT" ]
null
null
null
src/Python-Math/check_prime.py
learn-py/Posts
da394236db0a52c93ca1c0374ad121b263555272
[ "MIT" ]
null
null
null
''' @author Gabriel Flores Checks the primality of an integer. ''' def is_prime(x): ''' Checks the primality of an integer. ''' sqrt = int(x ** (1/2)) for i in range(2, sqrt, 1): if x % i == 0: return False return True def main(): try: print("\n\n") a = int(input(" Enter an integer to check if it is prime: ")) if is_prime(a): print("\n ",a,"is a prime number.\n") else: print("\n ",a,"is not a prime number.\n") except ValueError as e: print("\n\n Please enter a valid choice.\n") if __name__ == "__main__": main()
18.8
66
0.592199
0
0
0
0
0
0
0
0
280
0.496454
4095239ac8155507cd8501376f1d1a88028e9392
1,580
py
Python
src/contrib/cortex-strings/scripts/plot-top.py
lastweek/source-freebsd
0821950b0c40cbc891a27964b342e0202a3859ec
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
src/contrib/cortex-strings/scripts/plot-top.py
lastweek/source-freebsd
0821950b0c40cbc891a27964b342e0202a3859ec
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
src/contrib/cortex-strings/scripts/plot-top.py
lastweek/source-freebsd
0821950b0c40cbc891a27964b342e0202a3859ec
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
#!/usr/bin/env python """Plot the performance of different variants of the string routines for one size. """ import libplot import pylab def plot(records, bytes): records = [x for x in records if x.bytes==bytes] variants = libplot.unique(records, 'variant', prefer='this') functions = libplot.unique(records, 'function') X = pylab.arange(len(functions)) width = 1.0/(len(variants)+1) colours = libplot.make_colours() pylab.figure(1).set_size_inches((16, 12)) pylab.clf() for i, variant in enumerate(variants): heights = [] for function in functions: matches = [x for x in records if x.variant==variant and x.function==function and x.src_alignment==8] if matches: vals = [match.bytes*match.loops/match.elapsed/(1024*1024) for match in matches] mean = sum(vals)/len(vals) heights.append(mean) else: heights.append(0) pylab.bar(X+i*width, heights, width, color=colours.next(), label=variant) axes = pylab.axes() axes.set_xticklabels(functions) axes.set_xticks(X + 0.5) pylab.title('Performance of different variants for %d byte blocks' % bytes) pylab.ylabel('Rate (MB/s)') pylab.legend(loc='upper left', ncol=3) pylab.grid() pylab.savefig('top-%06d.png' % bytes, dpi=72) def main(): records = libplot.parse() for bytes in libplot.unique(records, 'bytes'): plot(records, bytes) pylab.show() if __name__ == '__main__': main()
25.483871
112
0.61519
0
0
0
0
0
0
0
0
242
0.153165
40958b5deb96439390eb8a34bb5ed7d5f2983d33
3,292
py
Python
part1.py
aspiringguru/python_sqlite_demo
01422c69493b7301f66dee5a0c99e358aec9746b
[ "MIT" ]
null
null
null
part1.py
aspiringguru/python_sqlite_demo
01422c69493b7301f66dee5a0c99e358aec9746b
[ "MIT" ]
null
null
null
part1.py
aspiringguru/python_sqlite_demo
01422c69493b7301f66dee5a0c99e358aec9746b
[ "MIT" ]
null
null
null
import sqlite3 import time, datetime, random import matplotlib matplotlib.use("Agg") #added due to error, possibly due to install configuration import matplotlib.pyplot as plt print(matplotlib.get_backend()) import matplotlib.dates as mdates from matplotlib import style style.use('fivethirtyeight') conn = sqlite3.connect("part1.db") c = conn.cursor() def create_table(): c.execute('CREATE TABLE IF NOT EXISTS stufftoplot(unix REAL, datestamp TEXT, keyword TEXT, value REAL)') def data_entry(): c.execute("INSERT into stufftoplot VALUES(123456, '2016-01-01', 'some keywords', 5)") conn.commit() def data_insert(unix, date, keyword, value): c.execute("INSERT into stufftoplot (unix, datestamp, keyword, value) VALUES(?, ?, ?, ?) ", (unix, date, keyword, value)) conn.commit() def select_all_tasks(c): """ Query all rows in the tasks table :param conn: the Connection object :return: """ c.execute("SELECT * FROM stufftoplot") rows = c.fetchall() for row in rows: print(row) def dynamic_data_entry(): unix = time.time() value = random.randrange(0,10) print ("unix:", type(unix), unix, "value:", value) date = str(datetime.datetime.fromtimestamp(unix).strftime('%Y-%m-%d %H:%M:%S')) keyword = 'Python' c.execute("INSERT into stufftoplot (unix, datestamp, keyword, value) VALUES (?, ?, ?, ?)", (unix, date, keyword, value)) conn.commit() def read_from_db(): #c.execute('SELECT * FROM stufftoplot') #c.execute("SELECT * FROM stufftoplot WHERE value = '5' AND keyword='python' COLLATE NOCASE") #c.execute("SELECT * FROM stufftoplot WHERE value = 3 AND keyword='Python'") c.execute("SELECT * FROM stufftoplot WHERE unix > 1529020514") data = c.fetchall() print (type(data)) print(data) for row in data: print (row) def graph_data(): c.execute('SELECT unix, value FROM stufftoplot') data = c.fetchall() print (type(data)) dates = [] values = [] for row in data: print (row[0]) print (datetime.datetime.fromtimestamp(row[0])) dates.append(datetime.datetime.fromtimestamp(row[0])) values.append(row[1]) plt.plot_date(dates, values, '-') #plt.show() plt.savefig("charts/output_chart.png") print("chart plotted to file") def del_and_update(): c.execute("SELECT * FROM stufftoplot") temp = c.fetchall() [print (row) for row in temp] before = len(temp) c.execute("SELECT * FROM stufftoplot WHERE value>5") temp = c.fetchall() num_matches = len(temp) c.execute("UPDATE stufftoplot SET value=99 WHERE value=8") conn.commit() c.execute("SELECT * FROM stufftoplot") temp = c.fetchall() [print (row) for row in temp] after = len(temp) print ("before:", before) print ("after:", after) print ("num_matches:", num_matches) def create_n_rows(n): for i in range(n): dynamic_data_entry() time.sleep(1) create_table() #data_entry() #data_insert(1111, "2016-01-02", "more keywords", 1) #data_insert(2222, "2016-01-03", "less keywords", 2) #dynamic_data_entry() # time.sleep(1) #select_all_tasks(c) #read_from_db() #graph_data() create_n_rows(10) del_and_update() c.close() conn.close()
25.92126
124
0.65401
0
0
0
0
0
0
0
0
1,321
0.401276
40964229b92108c25937fb12522f648ac39e3e91
42,098
py
Python
tests/test_oic_consumer.py
infohash/pyoidc
62c7318e68c22b7933100d1c06ecc0c78f77f0d9
[ "Apache-2.0" ]
null
null
null
tests/test_oic_consumer.py
infohash/pyoidc
62c7318e68c22b7933100d1c06ecc0c78f77f0d9
[ "Apache-2.0" ]
null
null
null
tests/test_oic_consumer.py
infohash/pyoidc
62c7318e68c22b7933100d1c06ecc0c78f77f0d9
[ "Apache-2.0" ]
null
null
null
import json import os from urllib.parse import parse_qs from urllib.parse import urlparse import pytest import responses from freezegun import freeze_time from jwkest import BadSignature from jwkest.jwk import SYMKey from oic.oauth2.message import MissingSigningKey from oic.oauth2.message import WrongSigningAlgorithm from oic.oic import DEF_SIGN_ALG from oic.oic import Server from oic.oic import response_types_to_grant_types from oic.oic.consumer import IGNORE from oic.oic.consumer import Consumer from oic.oic.consumer import clean_response from oic.oic.message import AccessTokenRequest from oic.oic.message import AccessTokenResponse from oic.oic.message import AuthorizationResponse from oic.oic.message import IdToken from oic.oic.message import OpenIDSchema from oic.oic.message import ProviderConfigurationResponse from oic.oic.message import RegistrationResponse from oic.utils.authn.client import CLIENT_AUTHN_METHOD from oic.utils.keyio import KeyBundle from oic.utils.keyio import KeyJar from oic.utils.keyio import keybundle_from_local_file from oic.utils.sdb import DictSessionBackend from oic.utils.sdb import session_get from oic.utils.time_util import utc_time_sans_frac __author__ = "rohe0002" KC_SYM_VS = KeyBundle({"kty": "oct", "key": "abcdefghijklmnop", "use": "ver"}) KC_SYM_S = KeyBundle({"kty": "oct", "key": "abcdefghijklmnop", "use": "sig"}) BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "data/keys")) KC_RSA = keybundle_from_local_file( os.path.join(BASE_PATH, "rsa.key"), "rsa", ["ver", "sig"] ) SRVKEYS = KeyJar() SRVKEYS[""] = [KC_RSA] SRVKEYS["client_1"] = [KC_SYM_VS, KC_RSA] CLIKEYS = KeyJar() CLIKEYS["http://localhost:8088"] = [KC_RSA] CLIKEYS[""] = [KC_RSA, KC_SYM_VS] CLIKEYS["https://example.com"] = [KC_RSA] SERVER_INFO = { "version": "3.0", "issuer": "https://localhost:8088", "authorization_endpoint": "http://localhost:8088/authorization", "token_endpoint": "http://localhost:8088/token", "userinfo_endpoint": "http://localhost:8088/userinfo", "flows_supported": ["code", "token"], } CONFIG = { "authz_page": "authz", "scope": ["openid"], "response_type": "code", "request_method": "parameter", "password": "hemligt", "max_age": 3600, "user_info": {"name": None}, } def _eq(l1, l2): return set(l1) == set(l2) def test_response_types_to_grant_types(): req_args = ["code"] assert set(response_types_to_grant_types(req_args)) == {"authorization_code"} req_args = ["code", "code id_token"] assert set(response_types_to_grant_types(req_args)) == { "authorization_code", "implicit", } req_args = ["code", "id_token code", "code token id_token"] assert set(response_types_to_grant_types(req_args)) == { "authorization_code", "implicit", } req_args = ["code", "id_token code", "code token id_token"] kwargs = {"grant_types": ["refresh_token", "authorization_code"]} assert set(response_types_to_grant_types(req_args, **kwargs)) == { "authorization_code", "implicit", "refresh_token", } with pytest.raises(ValueError): response_types_to_grant_types(["foobar openid"]) def test_clean_response(): atr = AccessTokenResponse( access_token="access_token", token_type="bearer", expires_in=600, refresh_token="refresh", steps=39, stalls="yes", ) catr = clean_response(atr) atr_keys = atr.keys() catr_keys = catr.keys() assert _eq( atr_keys, [ "token_type", "access_token", "expires_in", "refresh_token", "steps", "stalls", ], ) assert _eq(catr_keys, ["token_type", "access_token", "expires_in", "refresh_token"]) class TestOICConsumer: @pytest.fixture(autouse=True) def setup_consumer(self, session_db_factory): client_id = "client_1" client_config = { "client_id": client_id, "client_authn_method": CLIENT_AUTHN_METHOD, } self.consumer = Consumer( DictSessionBackend(), CONFIG, client_config, SERVER_INFO ) self.consumer.behaviour = { "request_object_signing_alg": DEF_SIGN_ALG["openid_request_object"] } self.consumer.keyjar = CLIKEYS self.consumer.redirect_uris = ["https://example.com/cb"] self.consumer.authorization_endpoint = "https://example.com/authorization" self.consumer.token_endpoint = "https://example.com/token" self.consumer.userinfo_endpoint = "https://example.com/userinfo" # type: ignore self.consumer.client_secret = "hemlig" self.consumer.secret_type = "basic" self.consumer.provider_info = ProviderConfigurationResponse( issuer="https://example.com" ) # abs min def test_backup_keys(self): keys = self.consumer.__dict__.keys() _dict = self.consumer.dictionary() dkeys = [key for key in keys if key not in _dict.keys()] assert _eq(dkeys, IGNORE) def test_backup_restore(self): authz_org_url = "http://example.org/authorization" _dict = sorted(list(self.consumer.__dict__.items())) self.consumer._backup("sid") self.consumer.restore("sid") assert sorted(_dict) == sorted(list(self.consumer.__dict__.items())) self.consumer.authorization_endpoint = authz_org_url assert _dict != sorted(list(self.consumer.__dict__.items())) self.consumer.restore("sid") assert _dict == sorted(list(self.consumer.__dict__.items())) def test_backup_restore_update(self): authz_org_url = "http://example.org/authorization" self.consumer._backup("sid") self.consumer.authorization_endpoint = authz_org_url self.consumer.token_endpoint = "https://example.org/token" self.consumer.userinfo_endpoint = "" # type: ignore assert self.consumer.authorization_endpoint == authz_org_url assert self.consumer.token_endpoint == "https://example.org/token" assert self.consumer.userinfo_endpoint == "" # type: ignore self.consumer.update("sid") assert self.consumer.authorization_endpoint == authz_org_url assert self.consumer.token_endpoint == "https://example.org/token" assert ( self.consumer.userinfo_endpoint # type: ignore == "https://example.com/userinfo" ) def test_begin(self): srv = Server() srv.keyjar = SRVKEYS sid, location = self.consumer.begin("openid", "code") authreq = srv.parse_authorization_request(url=location) assert _eq( list(authreq.keys()), [ "state", "max_age", "claims", "response_type", "client_id", "scope", "redirect_uri", ], ) assert authreq["state"] == sid assert authreq["scope"] == self.consumer.consumer_config["scope"] assert authreq["client_id"] == self.consumer.client_id def test_begin_file(self, tmpdir): path = tmpdir.strpath external_path = "/exported" self.consumer.consumer_config["request_method"] = "file" self.consumer.consumer_config["temp_dir"] = path self.consumer.consumer_config["temp_path"] = external_path self.consumer.consumer_config["authz_page"] = "/authz" srv = Server() srv.keyjar = SRVKEYS sid, location = self.consumer.begin( "openid", "code", path="http://localhost:8087" ) with responses.RequestsMock() as rsps: p = urlparse(self.consumer.request_uri) assert p.netloc == "localhost:8087" # Map the URL path to the local path relative_path = os.path.relpath(p.path, external_path) file_path = os.path.join(path, relative_path) with open(file_path) as f: rsps.add( rsps.GET, self.consumer.request_uri, body=f.read(), status=200, content_type="application/urlencoded", ) authreq = srv.parse_authorization_request(url=location) assert _eq( list(authreq.keys()), [ "max_age", "state", "redirect_uri", "response_type", "client_id", "scope", "claims", ], ) assert authreq["state"] == sid assert authreq["scope"] == self.consumer.consumer_config["scope"] assert authreq["client_id"] == self.consumer.client_id assert authreq["redirect_uri"].startswith("http://localhost:8087/authz") def test_complete(self): _state = "state0" args = { "client_id": self.consumer.client_id, "response_type": "code", "scope": ["openid"], } location = "https://example.com/cb?code=code&state=state0" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) rsps.add( responses.POST, "https://example.com/token", content_type="application/json", json={ "access_token": "some_token", "token_type": "bearer", "state": "state0", "scope": "openid", }, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) parsed = urlparse(result.headers["location"]) self.consumer.parse_response( AuthorizationResponse, info=parsed.query, sformat="urlencoded" ) resp = self.consumer.complete(_state) assert isinstance(resp, AccessTokenResponse) assert _eq(resp.keys(), ["token_type", "state", "access_token", "scope"]) assert resp["state"] == _state def test_parse_authz(self): _state = "state0" args = { "client_id": self.consumer.client_id, "response_type": "code", "scope": ["openid"], } location = "https://example.com/cb?code=code&state=state0" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) self.consumer._backup(_state) part = self.consumer.parse_authz(query=result.headers["location"]) assert isinstance(part, tuple) atr = part[0] assert part[1] is None assert part[2] is None assert isinstance(atr, AuthorizationResponse) assert atr["state"] == _state assert "code" in atr def test_parse_authz_implicit(self): self.consumer.consumer_config["response_type"] = ["token"] _state = "statxxx" args = { "client_id": self.consumer.client_id, "response_type": "implicit", "scope": ["openid"], "redirect_uri": "https://example.com/cb", } location = ( "https://example.com/cb?access_token=token&token_type=bearer&state=statxxx" ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) part = self.consumer.parse_authz(query=result.headers["location"]) assert isinstance(part, tuple) assert part[0] is None atr = part[1] assert part[2] is None assert isinstance(atr, AccessTokenResponse) assert atr["state"] == _state assert "access_token" in atr def test_complete_secret_auth(self): _state = "state0" del self.consumer.consumer_config["password"] args = { "client_id": self.consumer.client_id, "response_type": "code", "scope": ["openid"], } location = "https://example.com/cb?code=code&state=state0" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) rsps.add( responses.POST, "https://example.com/token", content_type="application/json", json={ "access_token": "some_token", "token_type": "bearer", "state": "state0", "scope": "openid", }, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) parsed = urlparse(result.headers["location"]) self.consumer.parse_response( AuthorizationResponse, info=parsed.query, sformat="urlencoded" ) resp = self.consumer.complete(_state) assert isinstance(resp, AccessTokenResponse) assert _eq(resp.keys(), ["token_type", "state", "access_token", "scope"]) assert resp["state"] == _state def test_complete_auth_token(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["code", "token"] args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], "nonce": "nonce", } location = ( "https://example.com/cb?code=some_code&state=state0&access_token=token&token_type=bearer" "&client_id=client_1&scope=openid" ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) self.consumer._backup("state0") parsed = urlparse(result.headers["location"]) part = self.consumer.parse_authz(query=parsed.query) assert isinstance(part, tuple) auth = part[0] acc = part[1] assert part[2] is None assert isinstance(auth, AuthorizationResponse) assert isinstance(acc, AccessTokenResponse) assert _eq( auth.keys(), ["code", "access_token", "token_type", "state", "client_id", "scope"], ) assert _eq(acc.keys(), ["token_type", "state", "access_token", "scope"]) def test_complete_auth_token_idtoken(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["id_token", "token"] self.consumer.registration_response = RegistrationResponse( id_token_signed_response_alg="HS256" ) self.consumer.authz_req = {} # Store AuthzReq with state as key args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], "nonce": "nonce", } token = IdToken( iss="https://example.com", aud="client_1", sub="some_sub", exp=1565348600, iat=1565348300, nonce="nonce", ) location = ( "https://example.com/cb?state=state0&access_token=token&token_type=bearer&" "scope=openid&id_token={}".format( token.to_jwt(key=[SYMKey(key="hemlig")], algorithm="HS256") ) ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) query = parse_qs(urlparse(result.request.url).query) assert query["client_id"] == ["client_1"] assert query["scope"] == ["openid"] assert query["response_type"] == ["id_token token"] assert query["state"] == ["state0"] assert query["nonce"] == ["nonce"] assert query["redirect_uri"] == ["https://example.com/cb"] parsed = urlparse(result.headers["location"]) with freeze_time("2019-08-09 11:00:00"): part = self.consumer.parse_authz(query=parsed.query) assert isinstance(part, tuple) auth = part[0] atr = part[1] idt = part[2] assert auth is None assert isinstance(atr, AccessTokenResponse) assert _eq( atr.keys(), [ "access_token", "id_token", "id_token_jwt", "token_type", "state", "scope", ], ) assert isinstance(idt, IdToken) def test_complete_auth_token_idtoken_no_alg_config(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["id_token", "token"] self.consumer.provider_info = ProviderConfigurationResponse( issuer="https://example.com" ) # abs min self.consumer.authz_req = {} # Store AuthzReq with state as key args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], "nonce": "nonce", } token = IdToken( iss="https://example.com", aud="client_1", sub="some_sub", exp=1565348600, iat=1565348300, nonce="nonce", ) location = ( "https://example.com/cb?state=state0&access_token=token&token_type=bearer&" "scope=openid&id_token={}".format( token.to_jwt(key=[SYMKey(key="hemlig")], algorithm="HS256") ) ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) query = parse_qs(urlparse(result.request.url).query) assert query["client_id"] == ["client_1"] assert query["scope"] == ["openid"] assert query["response_type"] == ["id_token token"] assert query["state"] == ["state0"] assert query["nonce"] == ["nonce"] assert query["redirect_uri"] == ["https://example.com/cb"] parsed = urlparse(result.headers["location"]) with freeze_time("2019-08-09 11:00:00"): part = self.consumer.parse_authz(query=parsed.query, algs={"sign": "HS256"}) assert isinstance(part, tuple) auth = part[0] atr = part[1] idt = part[2] assert auth is None assert isinstance(atr, AccessTokenResponse) assert _eq( atr.keys(), [ "access_token", "id_token", "id_token_jwt", "token_type", "state", "scope", ], ) assert isinstance(idt, IdToken) def test_complete_auth_token_idtoken_none_cipher_code(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["code"] self.consumer.registration_response = RegistrationResponse( id_token_signed_response_alg="none" ) self.consumer.provider_info = ProviderConfigurationResponse( issuer="https://example.com" ) # abs min self.consumer.authz_req = {} # Store AuthzReq with state as key self.consumer.sdb[_state] = {"redirect_uris": []} args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], "nonce": "nonce", } token = IdToken( iss="https://example.com", aud="client_1", sub="some_sub", exp=1565348600, iat=1565348300, nonce="nonce", at_hash="aaa", ) # Downgrade the algorithm to `none` location = ( "https://example.com/cb?state=state0&access_token=token&token_type=bearer&" "scope=openid&id_token={}".format( token.to_jwt(key=KC_RSA.keys(), algorithm="none") ) ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) query = parse_qs(urlparse(result.request.url).query) assert query["client_id"] == ["client_1"] assert query["scope"] == ["openid"] assert query["response_type"] == ["code"] assert query["state"] == ["state0"] assert query["nonce"] == ["nonce"] assert query["redirect_uri"] == ["https://example.com/cb"] parsed = urlparse(result.headers["location"]) with freeze_time("2019-08-09 11:00:00"): part = self.consumer.parse_authz(query=parsed.query) assert isinstance(part, tuple) auth = part[0] atr = part[1] idt = part[2] assert isinstance(auth, AuthorizationResponse) assert isinstance(atr, AccessTokenResponse) assert _eq( atr.keys(), ["access_token", "id_token", "token_type", "state", "scope"] ) assert isinstance(idt, IdToken) def test_complete_auth_token_idtoken_none_cipher_token(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["token"] self.consumer.registration_response = RegistrationResponse( id_token_signed_response_alg="none" ) self.consumer.provider_info = ProviderConfigurationResponse( issuer="https://example.com" ) # abs min self.consumer.authz_req = {} # Store AuthzReq with state as key self.consumer.sdb[_state] = {"redirect_uris": []} args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], "nonce": "nonce", } token = IdToken( iss="https://example.com", aud="client_1", sub="some_sub", exp=1565348600, iat=1565348300, nonce="nonce", ) # Downgrade the algorithm to `none` location = ( "https://example.com/cb?state=state0&access_token=token&token_type=bearer&" "scope=openid&id_token={}".format( token.to_jwt(key=KC_RSA.keys(), algorithm="none") ) ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) query = parse_qs(urlparse(result.request.url).query) assert query["client_id"] == ["client_1"] assert query["scope"] == ["openid"] assert query["response_type"] == ["token"] assert query["state"] == ["state0"] assert query["nonce"] == ["nonce"] assert query["redirect_uri"] == ["https://example.com/cb"] parsed = urlparse(result.headers["location"]) with freeze_time("2019-08-09 11:00:00"): with pytest.raises(WrongSigningAlgorithm): self.consumer.parse_authz(query=parsed.query) def test_complete_auth_token_idtoken_cipher_downgrade(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["id_token", "token"] self.consumer.provider_info = ProviderConfigurationResponse( issuer="https://example.com" ) # abs min self.consumer.authz_req = {} # Store AuthzReq with state as key args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], "nonce": "nonce", } token = IdToken( iss="https://example.com", aud="client_1", sub="some_sub", exp=1565348600, iat=1565348300, nonce="nonce", ) # Downgrade the algorithm to `none` location = ( "https://example.com/cb?state=state0&access_token=token&token_type=bearer&" "scope=openid&id_token={}".format( token.to_jwt(key=KC_RSA.keys(), algorithm="none") ) ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) query = parse_qs(urlparse(result.request.url).query) assert query["client_id"] == ["client_1"] assert query["scope"] == ["openid"] assert query["response_type"] == ["id_token token"] assert query["state"] == ["state0"] assert query["nonce"] == ["nonce"] assert query["redirect_uri"] == ["https://example.com/cb"] parsed = urlparse(result.headers["location"]) with freeze_time("2019-08-09 11:00:00"): with pytest.raises(WrongSigningAlgorithm): self.consumer.parse_authz(query=parsed.query) def test_userinfo(self): _state = "state0" args = { "client_id": self.consumer.client_id, "response_type": "code", "scope": ["openid"], } location = "https://example.com/cb?code=code&state=state0" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) rsps.add( responses.POST, "https://example.com/token", content_type="application/json", json={ "access_token": "some_token", "token_type": "bearer", "state": "state0", "scope": "openid", }, ) rsps.add( responses.POST, "https://example.com/userinfo", content_type="application/json", json={ "name": "Ilja", "sub": "some_sub", "email": "[email protected]", "nickname": "Ilja", "verified": True, }, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) parsed = urlparse(result.headers["location"]) self.consumer.parse_response( AuthorizationResponse, info=parsed.query, sformat="urlencoded" ) self.consumer.complete(_state) result = self.consumer.get_user_info(_state) assert isinstance(result, OpenIDSchema) assert _eq(result.keys(), ["name", "email", "verified", "nickname", "sub"]) def test_sign_userinfo(self): _state = "state0" self.consumer.client_prefs = {"userinfo_signed_response_alg": "RS256"} del self.consumer.consumer_config["request_method"] args = { "client_id": self.consumer.client_id, "response_type": "code", "scope": ["openid"], } location = "https://example.com/cb?code=code&state=state0" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) rsps.add( responses.POST, "https://example.com/token", content_type="application/json", json={ "access_token": "some_token", "token_type": "bearer", "state": "state0", "scope": "openid", }, ) rsps.add( responses.POST, "https://example.com/userinfo", content_type="application/json", json={ "name": "Ilja", "sub": "some_sub", "email": "[email protected]", "nickname": "Ilja", "verified": True, }, ) self.consumer.begin("openid", "code") result = self.consumer.do_authorization_request( state=_state, request_args=args ) parsed = urlparse(result.headers["location"]) self.consumer.parse_response( AuthorizationResponse, info=parsed.query, sformat="urlencoded" ) self.consumer.complete(_state) result = self.consumer.get_user_info(_state) assert isinstance(result, OpenIDSchema) assert _eq(result.keys(), ["name", "email", "verified", "nickname", "sub"]) def test_get_userinfo_claims(self): _state = "state0" args = { "client_id": self.consumer.client_id, "response_type": "code", "scope": ["openid"], } location = "https://example.com/cb?code=code&state=state0" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) rsps.add( responses.POST, "https://example.com/token", content_type="application/json", json={ "access_token": "some_token", "token_type": "bearer", "state": "state0", "scope": "openid", }, ) rsps.add( responses.POST, "https://example.com/userinfo", content_type="application/json", json={ "name": "Ilja", "sub": "some_sub", "email": "[email protected]", "nickname": "Ilja", "verified": True, }, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) parsed = urlparse(result.headers["location"]) self.consumer.parse_response( AuthorizationResponse, info=parsed.query, sformat="urlencoded" ) response = self.consumer.complete(_state) result = self.consumer.get_userinfo_claims( response["access_token"], self.consumer.userinfo_endpoint, # type: ignore ) assert isinstance(result, OpenIDSchema) assert _eq(result.keys(), ["name", "email", "verified", "nickname", "sub"]) def real_test_discover(self): c = Consumer(None, None) principal = "[email protected]" res = c.discover(principal) assert isinstance(res, ProviderConfigurationResponse) assert _eq( res.keys(), [ "registration_endpoint", "scopes_supported", "identifiers_supported", "token_endpoint", "flows_supported", "version", "userinfo_endpoint", "authorization_endpoint", "x509_url", "issuer", ], ) assert res.version == "3.0" # type: ignore assert _eq( res.flows_supported, # type: ignore [ "code", "token", "id_token", "code token", "code id_token", "id_token token", ], ) def test_discover(self): c = Consumer(None, None) webfinger = { "subject": "acct:[email protected]", "links": [ { "rel": "http://openid.net/specs/connect/1.0/issuer", "href": "https://localhost:8088/", } ], } principal = "[email protected]" with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/.well-known/webfinger" "?resource=acct%3Afoo%40example.com&rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer", json=webfinger, ) res = c.discover(principal) assert res == "https://localhost:8088/" def test_client_register(self): c = Consumer(None, None) c.redirect_uris = ["https://example.com/authz"] reg_resp = { "client_id": "some_client", "client_secret": "super_secret", "client_secret_expires_at": 123456789, "redirect_uris": ["https://example.com/authz"], } with responses.RequestsMock() as rsps: rsps.add(responses.POST, "https://example.com/register/", json=reg_resp) c.register("https://example.com/register/") assert json.loads(str(rsps.calls[0].request.body)) == { "application_type": "web", "response_types": ["code"], "redirect_uris": ["https://example.com/authz"], "grant_types": ["authorization_code"], } assert c.client_id == "some_client" assert c.client_secret == "super_secret" assert c.registration_expires == 123456789 def test_client_register_token(self): c = Consumer(None, None) c.redirect_uris = ["https://example.com/authz"] client_info = { "client_id": "clientid", "redirect_uris": ["https://example.com/authz"], } with responses.RequestsMock() as rsps: rsps.add( rsps.POST, "https://provider.example.com/registration/", json=client_info, ) c.register( "https://provider.example.com/registration/", registration_token="initial_registration_token", ) header = rsps.calls[0].request.headers["Authorization"] assert header == "Bearer aW5pdGlhbF9yZWdpc3RyYXRpb25fdG9rZW4=" def test_client_register_token_b64(self): c = Consumer(None, None) c.redirect_uris = ["https://example.com/authz"] client_info = { "client_id": "clientid", "redirect_uris": ["https://example.com/authz"], } registration_token = ( "eyJhbGciOiJIUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6IC" "JlYjc1N2M3Yy00MWRlLTRmZDYtOTkwNy1hNGFiMDY1ZjEzMmEifQ.eyJqdGkiOiI2ZWY0MDZi" "MC02YzA3LTQ0NzctOWU1YS1hY2FiZjNiMWNiMjgiLCJleHAiOjAsIm5iZiI6MCwiaWF0Ijox" "NTczNzMxNjg5LCJpc3MiOiJodHRwczovL29wZW5pZC1wcm92aWRlci5leGFtcGxlLmNvbS9h" "dXRoL3JlYWxtcy9tYXN0ZXIiLCJhdWQiOiJodHRwczovL29wZW5pZC1wcm92aWRlci5leGFt" "cGxlLmNvbS9hdXRoL3JlYWxtcy9tYXN0ZXIiLCJ0eXAiOiJJbml0aWFsQWNjZXNzVG9rZW4i" "fQ.0XTlit_JcxPZeIy8A4BzrHn1NvegVP7ws8KI0ySFex8" ) with responses.RequestsMock() as rsps: rsps.add( rsps.POST, "https://provider.example.com/registration/", json=client_info, ) c.register( "https://provider.example.com/registration/", registration_token=registration_token, ) header = rsps.calls[0].request.headers["Authorization"] assert header == "Bearer " + registration_token def _faulty_id_token(self): idval = { "nonce": "KUEYfRM2VzKDaaKD", "sub": "EndUserSubject", "iss": "https://alpha.cloud.nds.rub.de", "exp": 1420823073, "iat": 1420822473, "aud": "TestClient", } idts = IdToken(**idval) _signed_jwt = idts.to_jwt(key=[SYMKey(key="TestPassword")], algorithm="HS256") # Mess with the signed id_token p = _signed_jwt.split(".") p[2] = "aaa" return ".".join(p) def test_faulty_id_token(self): _faulty_signed_jwt = self._faulty_id_token() with pytest.raises(BadSignature): IdToken().from_jwt(_faulty_signed_jwt, key=[SYMKey(key="TestPassword")]) # What if no verification key is given ? # Should also result in an exception with pytest.raises(MissingSigningKey): IdToken().from_jwt(_faulty_signed_jwt) def test_faulty_id_token_in_access_token_response(self): c = Consumer(None, None) c.keyjar.add_symmetric("", "TestPassword", ["sig"]) _info = { "access_token": "accessTok", "id_token": self._faulty_id_token(), "token_type": "Bearer", } _json = json.dumps(_info) with pytest.raises(ValueError): c.parse_response(AccessTokenResponse, _json, sformat="json") def test_faulty_idtoken_from_accesstoken_endpoint(self): _state = "state0" self.consumer.consumer_config["response_type"] = ["id_token"] args = { "client_id": self.consumer.client_id, "response_type": self.consumer.consumer_config["response_type"], "scope": ["openid"], } location = ( "https://example.com/cb?state=state0&id_token=eyJhbGciOiJSUzI1NiJ9" ".eyJpc3MiOiAiaHR0cDovL2xvY2FsaG9zdDo4MDg4IiwgInN1YiI6ICJhNWRkMjRiMmYwOGE2ODZmZDM4NmMyMmM" "zZmY4ZWUyODFlZjJmYmZmMWZkZTcwMDg2NjhjZGEzZGVjZmE0NjY5IiwgImF1ZCI6IFsiY2xpZW50XzEiXSwgImV" "4cCI6IDE1NzIwOTk5NjAsICJhY3IiOiAiMiIsICJpYXQiOiAxNTcyMDEzNTYwLCAibm9uY2UiOiAibmdFTGZVdmN" "PMWoyaXNWcXkwQWNwM0NOYlZnMGdFRDEifQ.aaa" ) with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://example.com/authorization", status=302, headers={"location": location}, ) result = self.consumer.do_authorization_request( state=_state, request_args=args ) self.consumer._backup("state0") assert result.status_code == 302 query = urlparse(result.headers["location"]).query with pytest.raises(BadSignature): self.consumer.parse_authz(query=query) def test_get_session_management_id(self): now = utc_time_sans_frac() smid = "session_management_id" idval = { "nonce": "KUEYfRM2VzKDaaKD", "sub": "EndUserSubject", "iss": "https://example.com", "exp": now + 3600, "iat": now, "aud": self.consumer.client_id, "sid": smid, } idts = IdToken(**idval) _signed_jwt = idts.to_jwt(key=KC_RSA.keys(), algorithm="RS256") _state = "state" self.consumer.sdb[_state] = {"redirect_uris": ["https://example.org/cb"]} resp = AuthorizationResponse(id_token=_signed_jwt, state=_state) self.consumer.consumer_config["response_type"] = ["id_token"] self.consumer.authz_req[_state] = AccessTokenRequest(nonce="KUEYfRM2VzKDaaKD") self.consumer.parse_authz(resp.to_urlencoded()) assert self.consumer.sso_db["state"]["smid"] == smid assert session_get(self.consumer.sso_db, "smid", smid) == [_state]
35.585799
114
0.551071
38,260
0.908832
0
0
1,043
0.024776
0
0
10,931
0.259656
409660d0cd505763586410c6b2b0e9f378f6b60a
2,338
py
Python
setup.py
CristianPachacama/cartoframes
3dc4e10d175069a7d7b734db3d9526127aad9dec
[ "BSD-3-Clause" ]
1
2020-11-23T23:44:32.000Z
2020-11-23T23:44:32.000Z
setup.py
CristianPachacama/cartoframes
3dc4e10d175069a7d7b734db3d9526127aad9dec
[ "BSD-3-Clause" ]
null
null
null
setup.py
CristianPachacama/cartoframes
3dc4e10d175069a7d7b734db3d9526127aad9dec
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import io from codecs import open from setuptools import setup, find_packages def walk_subpkg(name): data_files = [] package_dir = 'cartoframes' for parent, dirs, files in os.walk(os.path.join(package_dir, name)): # Remove package_dir from the path. sub_dir = os.sep.join(parent.split(os.sep)[1:]) for f in files: data_files.append(os.path.join(sub_dir, f)) return data_files REQUIRES = [ 'appdirs>=1.4.3,<2.0', 'carto>=1.6.0,<2.0', 'jinja2>=2.10.1,<3.0', 'pandas>=0.24.2<1.0', 'shapely>=1.6.4,<2.0', 'tqdm>=4.32.1,<5.0', 'unidecode>=1.1.0,<2.0', 'webcolors>=1.9.1,<2.0' ] PACKAGE_DATA = { '': [ 'LICENSE', 'CONTRIBUTORS', ], 'cartoframes': [ 'assets/*', 'assets/*.j2' ] + walk_subpkg('assets'), } here = os.path.abspath(os.path.dirname(__file__)) with io.open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = '\n' + f.read() about = {} with open(os.path.join(here, 'cartoframes', '__version__.py'), 'r', 'utf-8') as f: exec(f.read(), about) setup( name=about['__title__'], version=about['__version__'], description=about['__description__'], long_description=long_description, url=about['__url__'], author=about['__author__'], author_email=about['__email__'], license=about['__license__'], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7' ], keywords='carto data science maps spatial pandas', packages=find_packages(), install_requires=REQUIRES, python_requires=">=2.6, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*", include_package_data=True, package_dir={'cartoframes': 'cartoframes'}, package_data=PACKAGE_DATA, )
28.168675
82
0.597092
0
0
0
0
0
0
0
0
1,030
0.440547
40967bb7a1cadc5b1fb7c5cf4f834747f6a13132
1,026
py
Python
Tests/test_BioSQL_mysql_connector_online.py
bioinf-mcb/biopython
1a1f4a7ee4e0efba517d3d607c56c27e72e399cc
[ "BSD-3-Clause" ]
2
2019-10-25T18:20:34.000Z
2019-10-28T15:26:40.000Z
Tests/test_BioSQL_mysql_connector_online.py
cosign070128/biopython
2f02e34ba76306e9c27eec9e051809bec2cece9b
[ "BSD-3-Clause" ]
9
2020-05-05T00:54:23.000Z
2020-06-09T17:10:45.000Z
Tests/test_BioSQL_mysql_connector_online.py
cosign070128/biopython
2f02e34ba76306e9c27eec9e051809bec2cece9b
[ "BSD-3-Clause" ]
3
2020-06-29T13:07:46.000Z
2021-06-14T20:11:55.000Z
#!/usr/bin/env python # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Run BioSQL tests using MySQL.""" import unittest # Really do want "import *" to get all the test clases: from common_BioSQL import * # noqa: F403 from common_BioSQL_online import * # noqa: F403 # Import these explicitly to avoid flake8 F405 below: from common_BioSQL import load_biosql_ini, check_config from common_BioSQL_online import share_config import requires_internet requires_internet.check() DBDRIVER = "mysql.connector" DBTYPE = "mysql" DBHOST, DBUSER, DBPASSWD, TESTDB = load_biosql_ini(DBTYPE) # This will abort if driver not installed etc: check_config(DBDRIVER, DBTYPE, DBHOST, DBUSER, DBPASSWD, TESTDB) share_config(DBDRIVER, DBTYPE, DBHOST, DBUSER, DBPASSWD, TESTDB) if __name__ == "__main__": # Run the test cases runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
30.176471
70
0.770955
0
0
0
0
0
0
0
0
453
0.44152
4096eff81f78a7602d75dd243df5e2e64ac51f0d
429
py
Python
kalachakra/saraswati/migrations/0004_ritual_people_name.py
tony-mikhailov/Kalachakra
7a46be7e75bad0500914e5a7c44662c6740ebaa2
[ "MIT" ]
null
null
null
kalachakra/saraswati/migrations/0004_ritual_people_name.py
tony-mikhailov/Kalachakra
7a46be7e75bad0500914e5a7c44662c6740ebaa2
[ "MIT" ]
3
2021-03-19T01:19:04.000Z
2021-06-04T22:44:35.000Z
kalachakra/saraswati/migrations/0004_ritual_people_name.py
tony-mikhailov/Kalachakra
7a46be7e75bad0500914e5a7c44662c6740ebaa2
[ "MIT" ]
null
null
null
# Generated by Django 2.2.6 on 2020-04-05 07:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('saraswati', '0003_auto_20200402_1918'), ] operations = [ migrations.AddField( model_name='ritual', name='people_name', field=models.TextField(blank=True, default=None, max_length=108, null=True), ), ]
22.578947
88
0.617716
336
0.783217
0
0
0
0
0
0
104
0.242424
40997199af5c3427ea68e5bd37b9d827653408fe
14,709
py
Python
src/toil/jobStores/abstractJobStore.py
adamnovak/toil
3a81f1114ec7f347e6e7bfd861073d897a9188ec
[ "Apache-2.0" ]
null
null
null
src/toil/jobStores/abstractJobStore.py
adamnovak/toil
3a81f1114ec7f347e6e7bfd861073d897a9188ec
[ "Apache-2.0" ]
null
null
null
src/toil/jobStores/abstractJobStore.py
adamnovak/toil
3a81f1114ec7f347e6e7bfd861073d897a9188ec
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2015 UCSC Computational Genomics Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from abc import ABCMeta, abstractmethod from contextlib import contextmanager import re try: import cPickle except ImportError: import pickle as cPickle class NoSuchJobException( Exception ): def __init__( self, jobStoreID ): super( NoSuchJobException, self ).__init__( "The job '%s' does not exist" % jobStoreID ) class ConcurrentFileModificationException( Exception ): def __init__( self, jobStoreFileID ): super( ConcurrentFileModificationException, self ).__init__( 'Concurrent update to file %s detected.' % jobStoreFileID ) class NoSuchFileException( Exception ): def __init__( self, fileJobStoreID ): super( NoSuchFileException, self ).__init__( "The file '%s' does not exist" % fileJobStoreID ) class JobStoreCreationException( Exception ): def __init__( self, message ): super( JobStoreCreationException, self ).__init__( message ) class AbstractJobStore( object ): """ Represents the physical storage for the jobs and associated files in a toil. """ __metaclass__ = ABCMeta def __init__( self, config=None ): """ :param config: If config is not None then the given configuration object will be written to the shared file "config.pickle" which can later be retrieved using the readSharedFileStream. See writeConfigToStore. If this file already exists it will be overwritten. If config is None, the shared file "config.pickle" is assumed to exist and is retrieved. See loadConfigFromStore. """ #Now get on with reading or writing the config if config is None: with self.readSharedFileStream( "config.pickle", isProtected=False ) as fileHandle: self.__config = cPickle.load(fileHandle) else: self.__config = config self.writeConfigToStore() def writeConfigToStore(self): """ Re-writes the config attribute to the jobStore, so that its values can be retrieved if the jobStore is reloaded. """ with self.writeSharedFileStream( "config.pickle", isProtected=False ) as fileHandle: cPickle.dump(self.__config, fileHandle, cPickle.HIGHEST_PROTOCOL) @property def config( self ): return self.__config @staticmethod def _checkJobStoreCreation(create, exists, jobStoreString): """ Consistency checks which will result in exceptions if we attempt to overwrite an existing jobStore. :type create: boolean :type exists: boolean :raise JobStoreCreationException: Thrown if create=True and exists=True or create=False and exists=False """ if create and exists: raise JobStoreCreationException("The job store '%s' already exists. " "Use --restart or 'toil restart' to resume this jobStore, " "else remove it to start from scratch" % jobStoreString) if not create and not exists: raise JobStoreCreationException("The job store '%s' does not exist, so there " "is nothing to restart." % jobStoreString) @abstractmethod def deleteJobStore( self ): """ Removes the jobStore from the disk/store. Careful! """ raise NotImplementedError( ) ##Cleanup functions def clean(self): """ Function to cleanup the state of a jobStore after a restart. Fixes jobs that might have been partially updated. Resets the try counts. """ #Collate any jobs that were in the process of being created/deleted jobsToDelete = set() for job in self.jobs(): for updateID in job.jobsToDelete: jobsToDelete.add(updateID) #Delete the jobs that should be deleted if len(jobsToDelete) > 0: for job in self.jobs(): if job.updateID in jobsToDelete: self.delete(job.jobStoreID) #Cleanup the state of each job for job in self.jobs(): changed = False #Flag to indicate if we need to update the job #on disk if len(job.jobsToDelete) != 0: job.jobsToDelete = set() changed = True #While jobs at the end of the stack are already deleted remove #those jobs from the stack (this cleans up the case that the job #had successors to run, but had not been updated to reflect this) while len(job.stack) > 0: jobs = [ command for command in job.stack[-1] if self.exists(command[0]) ] if len(jobs) < len(job.stack[-1]): changed = True if len(jobs) > 0: job.stack[-1] = jobs break else: job.stack.pop() else: break #Reset the retry count of the job if job.remainingRetryCount < self._defaultTryCount(): job.remainingRetryCount = self._defaultTryCount() changed = True #This cleans the old log file which may #have been left if the job is being retried after a job failure. if job.logJobStoreFileID != None: job.clearLogFile(self) changed = True if changed: #Update, but only if a change has occurred self.update(job) #Remove any crufty stats/logging files from the previous run self.readStatsAndLogging(lambda x : None) ########################################## #The following methods deal with creating/loading/updating/writing/checking for the #existence of jobs ########################################## @abstractmethod def create( self, command, memory, cores, disk, updateID=None, predecessorNumber=0 ): """ Creates a job, adding it to the store. Command, memory, cores, updateID, predecessorNumber are all arguments to the job's constructor. :rtype : toil.jobWrapper.JobWrapper """ raise NotImplementedError( ) @abstractmethod def exists( self, jobStoreID ): """ Returns true if the job is in the store, else false. :rtype : bool """ raise NotImplementedError( ) @abstractmethod def getPublicUrl( self, FileName): """ Returns a publicly accessible URL to the given file in the job store. The returned URL starts with 'http:', 'https:' or 'file:'. The returned URL may expire as early as 1h after its been returned. Throw an exception if the file does not exist. :param jobStoreFileID: :return: """ raise NotImplementedError() @abstractmethod def getSharedPublicUrl( self, jobStoreFileID): """ Returns a publicly accessible URL to the given file in the job store. The returned URL starts with 'http:', 'https:' or 'file:'. The returned URL may expire as early as 1h after its been returned. Throw an exception if the file does not exist. :param jobStoreFileID: :return: """ raise NotImplementedError() @abstractmethod def load( self, jobStoreID ): """ Loads a job for the given jobStoreID and returns it. :rtype: toil.jobWrapper.JobWrapper :raises: NoSuchJobException if there is no job with the given jobStoreID """ raise NotImplementedError( ) @abstractmethod def update( self, job ): """ Persists the job in this store atomically. """ raise NotImplementedError( ) @abstractmethod def delete( self, jobStoreID ): """ Removes from store atomically, can not then subsequently call load(), write(), update(), etc. with the job. This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently. """ raise NotImplementedError( ) def jobs(self): """ Returns iterator on the jobs in the store. :rtype : iterator """ raise NotImplementedError( ) ########################################## #The following provide an way of creating/reading/writing/updating files #associated with a given job. ########################################## @abstractmethod def writeFile( self, localFilePath, jobStoreID=None ): """ Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at a later time. jobStoreID is the id of a job, or None. If specified, when delete(job) is called all files written with the given job.jobStoreID will be removed from the jobStore. """ raise NotImplementedError( ) @abstractmethod @contextmanager def writeFileStream( self, jobStoreID=None ): """ Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should not be closed explicitly. """ raise NotImplementedError( ) @abstractmethod def getEmptyFileStoreID( self, jobStoreID=None ): """ :rtype : string, the ID of a new, empty file. jobStoreID is the id of a job, or None. If specified, when delete(job) is called all files written with the given job.jobStoreID will be removed from the jobStore. Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True. """ raise NotImplementedError( ) @abstractmethod def readFile( self, jobStoreFileID, localFilePath ): """ Copies the file referenced by jobStoreFileID to the given local file path. The version will be consistent with the last copy of the file written/updated. """ raise NotImplementedError( ) @abstractmethod @contextmanager def readFileStream( self, jobStoreFileID ): """ Similar to readFile, but returns a context manager yielding a file handle which can be read from. The yielded file handle does not need to and should not be closed explicitly. """ raise NotImplementedError( ) @abstractmethod def deleteFile( self, jobStoreFileID ): """ Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice or deleting a non-existent file will succeed silently. """ raise NotImplementedError( ) @abstractmethod def fileExists(self, jobStoreFileID ): """ :rtype : True if the jobStoreFileID exists in the jobStore, else False """ raise NotImplementedError() @abstractmethod def updateFile( self, jobStoreFileID, localFilePath ): """ Replaces the existing version of a file in the jobStore. Throws an exception if the file does not exist. :raises ConcurrentFileModificationException: if the file was modified concurrently during an invocation of this method """ raise NotImplementedError( ) ########################################## #The following methods deal with shared files, i.e. files not associated #with specific jobs. ########################################## sharedFileNameRegex = re.compile( r'^[a-zA-Z0-9._-]+$' ) # FIXME: Rename to updateSharedFileStream @abstractmethod @contextmanager def writeSharedFileStream( self, sharedFileName, isProtected=True ): """ Returns a context manager yielding a writable file handle to the global file referenced by the given name. :param sharedFileName: A file name matching AbstractJobStore.fileNameRegex, unique within the physical storage represented by this job store :raises ConcurrentFileModificationException: if the file was modified concurrently during an invocation of this method """ raise NotImplementedError( ) @abstractmethod @contextmanager def readSharedFileStream( self, sharedFileName, isProtected=True ): """ Returns a context manager yielding a readable file handle to the global file referenced by the given name. """ raise NotImplementedError( ) @abstractmethod def writeStatsAndLogging( self, statsAndLoggingString ): """ Adds the given statistics/logging string to the store of statistics info. """ raise NotImplementedError( ) @abstractmethod def readStatsAndLogging( self, statsAndLoggingCallBackFn): """ Reads stats/logging strings accumulated by "writeStatsAndLogging" function. For each stats/logging file calls the statsAndLoggingCallBackFn with an open, readable file-handle that can be used to parse the stats. Returns the number of stat/logging strings processed. Stats/logging files are only read once and are removed from the file store after being written to the given file handle. """ raise NotImplementedError( ) ## Helper methods for subclasses def _defaultTryCount( self ): return int( self.config.retryCount+1 ) @classmethod def _validateSharedFileName( cls, sharedFileName ): return bool( cls.sharedFileNameRegex.match( sharedFileName ) )
37.143939
102
0.615066
13,899
0.944932
0
0
8,189
0.556734
0
0
8,258
0.561425
409a342355b661973139a052737ed840078d30d8
9,819
py
Python
dashboard.py
TheCrypticMusic/COVID-19
b813d6abeb8031f1165ad2981f14bfd75853e083
[ "MIT" ]
null
null
null
dashboard.py
TheCrypticMusic/COVID-19
b813d6abeb8031f1165ad2981f14bfd75853e083
[ "MIT" ]
null
null
null
dashboard.py
TheCrypticMusic/COVID-19
b813d6abeb8031f1165ad2981f14bfd75853e083
[ "MIT" ]
null
null
null
from datetime import date import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html import pandas as pd import plotly.express as px from dash.dependencies import Input, Output test_data = pd.read_csv("data/world_data.csv") today = date.today() external_stylesheets = [dbc.themes.BOOTSTRAP] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = "COVID Dashboard - UK Edition" app.layout = html.Div([ html.Nav(className="navbar navbar-dark fixed-top bg-dark flex-md-nowrap p-0 shadow", children=[ html.A(className="navbar-brand col-sm-3 col-md-2 mr-0", children="COVID-19"), # dcc.DatePickerRange(className="date-and-location", # id="month-picker", # min_date_allowed=date(2020, 1, 30), # max_date_allowed=date(today.year, today.month, today.day), # start_date=date(2020, 3, 1), # end_date=date(today.year, today.month, today.day), # style={"height": "50%"} # ), ]), html.Div(className="container-fluid", children=[ html.Div(className="row", children=[ html.Nav(className="col-md-2 d-none d-md-block bg-light sidebar", children=[ html.Div(className="sidebar-sticky", children=[ html.H6(className="sidebar-heading d-flex px-3 mt-4 mb-1 text-muted", children=[ html.Span("Custom Search"), ]), html.Ul(className="nav flex-column", children=[ html.Li(className="nav-item", children=[ dcc.Link("User Search", href="/home"), ])]), html.H6(className="sidebar-heading d-flex px-3 mt-4 mb-1 text-muted", children=[ html.Span("Preset Search"), ]), dcc.Location(id="url", refresh=False), html.Ul(className="nav flex-column", children=[ html.Li(className="nav-item", children=[ dcc.Link("Africa", href="/africa"), html.Span(className="sr-only"), ]), html.Li(className="nav-item", children=[ dcc.Link("Asia", href="/asia"), html.Span(className="sr-only"), ]), html.Li(className="nav-item", children=[ dcc.Link("Europe", href="/europe"), html.Span(className="sr-only"), ]), html.Li(className="nav-item", children=[ dcc.Link("North America", href="/northamerica"), html.Span(className="sr-only"), ]), html.Li(className="nav-item", children=[ dcc.Link("South America", href="/southamerica"), html.Span(className="sr-only"), ]), html.Li(className="nav-item", children=[ dcc.Link("Oceania", href="/oceania"), html.Span(className="sr-only"), ]), ]), html.Div(id='page-content'), html.Ul(className="nav flex-column mb-2") ]), ]), html.Main(role="main", className="col-md-9 ml-sm-auto col-lg-10 px-4", children=[ html.Div(className="chartjs-size-monitor", style={"position": "absolute", "left": "0px", "top": "0px", "right": "0px", "bottom": "0px", "overflow": "hidden", "pointer-events": "none", "visibility": "hidden", "z-index": "-1"}), html.Div(className="box-shadow", children=[ ]), dbc.Row( [ dbc.Col(children=[ html.H1(children="Deaths"), html.Hr(className="lead"), html.Div(id="death-stats", children="######"), ]), dbc.Col(children=[ html.H1(children="Cases"), html.Hr(className="lead"), html.Div(id="cases-stats", children="######"), ]), dbc.Col(children=[ html.H1(children="Vaccines"), html.Hr(className="lead"), html.Div(id="vaccines-stats", children="######"), ]), ] ), html.Div(className="graphs", children=[ dcc.Graph( id="cases-graph" ), dcc.Graph( id="deaths-graph", ), ]), ])])])]) def dropdown(location, user_enabled, display): return dcc.Dropdown( id="location", options=[ {"label": location, "value": location} for location in test_data["location"].unique() ], value=location, searchable=False, disabled=user_enabled, style={"display": display} ), @app.callback(dash.dependencies.Output('page-content', 'children'), [dash.dependencies.Input('url', 'pathname')]) def display_page(pathname): if pathname == '/africa': return dropdown("Africa", True, "none") elif pathname == '/asia': return dropdown("Asia", True, "none") elif pathname == '/europe': return dropdown("Europe", True, "none") elif pathname == '/northamerica': return dropdown("North America", True, "none") elif pathname == '/southamerica': return dropdown("South America", True, "none") elif pathname == '/oceania': return dropdown("Oceania", True, "none") else: return dropdown("United Kingdom", False, "block") @app.callback( [ Output("cases-graph", "figure"), Output("deaths-graph", "figure"), Output("death-stats", "children"), Output("cases-stats", "children"), Output("vaccines-stats", "children") ], [ # Input('month-picker', "start_date"), # Input("month-picker", "end_date"), Input("location", "value"), ], ) def update_personal_ouput(value): # start_date, end_date, ): filtered_data_cases = test_data.loc[(test_data["location"] == value)] # //& (test_data["date"] >= start_date) & (test_data["date"] <= end_date)] fig_deaths = px.bar(filtered_data_cases, x="date", y=["new_deaths_smoothed"], color_discrete_sequence=["mediumaquamarine"], title=f"COVID Deaths - {value}", labels={"value": "Number of Deaths", "date": "Date", "variable": "Legend"}) fig_deaths.update_layout(title_x=0.5, legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)) fig_deaths.add_scatter(x=filtered_data_cases["date"], y=filtered_data_cases["new_deaths_smoothed"].rolling(window=7, min_periods=7, center=True).mean().round(), name="Rolling Average") fig_cases = px.bar(filtered_data_cases, x="date", y=["new_cases_smoothed"], color_discrete_sequence=["mediumaquamarine"], title=f"COVID Cases - {value}", labels={"value": "Number of Cases", "date": "Date", "variable": "Legend"}) fig_cases.update_layout(title_x=0.5, legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)) fig_cases.add_scatter(x=filtered_data_cases["date"], y=filtered_data_cases["new_cases_smoothed"].rolling(window=7, min_periods=7, center=True).mean().round(), name="Rolling Average") latest_deaths = f'{filtered_data_cases["new_deaths"].iloc[-1]:.0f} today' latest_cases = f'{filtered_data_cases["new_cases"].iloc[-1]:.0f} today' latest_vaccines = f'{filtered_data_cases["new_vaccinations"].iloc[-2]:.0f} today' return fig_deaths, fig_cases, latest_deaths, latest_cases, latest_vaccines if __name__ == "__main__": app.run_server(debug=True, dev_tools_ui=False)
51.952381
250
0.440778
0
0
0
0
2,695
0.274468
0
0
2,624
0.267237
409ac3a28f63c2603ac7a86d7009827a8fa89371
979
py
Python
dataset/load_data_queue.py
hezhujun/autofocus-rnn
dd21ec5cfce07990172048b74e5fc8e3d5b55229
[ "MIT" ]
7
2020-08-19T01:32:34.000Z
2021-12-06T07:31:32.000Z
dataset/load_data_queue.py
hezhujun/autofocus-rnn
dd21ec5cfce07990172048b74e5fc8e3d5b55229
[ "MIT" ]
2
2021-01-28T07:35:45.000Z
2021-06-20T14:19:01.000Z
dataset/load_data_queue.py
hezhujun/autofocus-rnn
dd21ec5cfce07990172048b74e5fc8e3d5b55229
[ "MIT" ]
null
null
null
from collections import OrderedDict import skimage.io as io from config import get_config config = get_config() class LRUCache: def __init__(self, capacity: int): self._ordered_dict = OrderedDict() self._capacity = capacity def get(self, key): self._move_to_end_if_exist(key) return self._ordered_dict.get(key) def put(self, key, value): self._move_to_end_if_exist(key) self._ordered_dict[key] = value if len(self._ordered_dict) > self._capacity: key, value = self._ordered_dict.popitem(last=False) del key del value def _move_to_end_if_exist(self, key): if key in self._ordered_dict: self._ordered_dict.move_to_end(key) _cache = LRUCache(config["data_queue_len"]) def get_image(path): # image = _cache.get(path) image = None if image is None: image = io.imread(path) # _cache.put(path, image) return image
23.309524
63
0.6476
639
0.652707
0
0
0
0
0
0
67
0.068437
409ad3c2aaa2132563a0928975965afc50081365
1,852
py
Python
algs/astar.py
jakedolan443/search-algorithm-visualizer
331c22886ef8017add16bc63a8e75df9643f4fe9
[ "MIT" ]
null
null
null
algs/astar.py
jakedolan443/search-algorithm-visualizer
331c22886ef8017add16bc63a8e75df9643f4fe9
[ "MIT" ]
null
null
null
algs/astar.py
jakedolan443/search-algorithm-visualizer
331c22886ef8017add16bc63a8e75df9643f4fe9
[ "MIT" ]
null
null
null
import numpy from heapq import * import time def heuristic(a, b): return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2 def astar(canvas, array, start, goal): neighbours = [(0, 1), (0, -1), (1, 0), (-1, 0)] close_set = set() came_from = {} gscore = {start: 0} fscore = {start: heuristic(start, goal)} heap_lst = [] heappush(heap_lst, (fscore[start], start)) canvas.in_search = True while heap_lst: current = heappop(heap_lst)[1] if current == goal: path = [] while current in came_from: path.append(current) current = came_from[current] canvas.finish_search(path) canvas.in_search = False return path close_set.add(current) for w,h in neighbours: neighbour = current[0] + w, current[1] + h temp_g_score = gscore[current] + heuristic(current, neighbour) if 0 <= neighbour[0] < array.shape[0]: if 0 <= neighbour[1] < array.shape[1]: if array[neighbour[0]][neighbour[1]] == 1: continue else: continue else: continue if neighbour in close_set and temp_g_score >= gscore.get(neighbour, 0): continue if temp_g_score < gscore.get(neighbour, 0) or neighbour not in [i[1] for i in heap_lst]: canvas.highlight(neighbour) time.sleep(canvas.get_root().options['speed']/1000) came_from[neighbour] = current gscore[neighbour] = temp_g_score fscore[neighbour] = temp_g_score + heuristic(neighbour, goal) heappush(heap_lst, (fscore[neighbour], neighbour)) canvas.in_search = False return False
30.360656
100
0.532937
0
0
0
0
0
0
0
0
7
0.00378
409bc944bcc8474410d41d3c5ed935bde146869f
1,119
py
Python
examples/serial_client.py
marcinbor85/qupy
219563523c975d1d5ae2aa47bbd02862c906ab43
[ "MIT" ]
null
null
null
examples/serial_client.py
marcinbor85/qupy
219563523c975d1d5ae2aa47bbd02862c906ab43
[ "MIT" ]
null
null
null
examples/serial_client.py
marcinbor85/qupy
219563523c975d1d5ae2aa47bbd02862c906ab43
[ "MIT" ]
null
null
null
import logging import time from qupy.framing.slip import Slip from qupy.interface.serial import SerialPort from qupy.interface.errors import InterfaceTimeoutError, InterfaceIOError, InterfaceError from qupy.comm.client import CommClient logging.basicConfig(level=logging.DEBUG) if __name__ == '__main__': s = SerialPort() f = Slip() c = CommClient(s, f) connect = True while True: if connect: try: s.open() except InterfaceIOError as e: time.sleep(1.0) continue c.start() connect = False try: print('ask...') data = input() d = c.ask(data.encode('utf-8')) print('data:',d) if len(d) > 0 and d[0] == ord('p'): break except InterfaceIOError as e: print('ask io error', str(e)) c.stop() s.close() connect = True except InterfaceTimeoutError as e: print('timeout') c.stop() s.close()
22.836735
89
0.513852
0
0
0
0
0
0
0
0
58
0.051832
409c909153fb2318680014346b00ba060e9d1ace
699
py
Python
summary/abs_summarization.py
solarpark7346/sukjulyo
52caaa7f49294898b055062d7c0b2cb5c5393c24
[ "MIT" ]
null
null
null
summary/abs_summarization.py
solarpark7346/sukjulyo
52caaa7f49294898b055062d7c0b2cb5c5393c24
[ "MIT" ]
null
null
null
summary/abs_summarization.py
solarpark7346/sukjulyo
52caaa7f49294898b055062d7c0b2cb5c5393c24
[ "MIT" ]
3
2021-10-31T08:23:44.000Z
2022-01-13T03:59:22.000Z
import torch from transformers import PreTrainedTokenizerFast from transformers import BartForConditionalGeneration class AbsSummarization(): def __init__(self): self.tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-summarization') self.model = BartForConditionalGeneration.from_pretrained('gogamza/kobart-summarization') def predict(self, text): raw_input_ids = self.tokenizer.encode(text) input_ids = [self.tokenizer.bos_token_id] + raw_input_ids + [self.tokenizer.eos_token_id] summary_ids = self.model.generate(torch.tensor([input_ids])) return self.tokenizer.decode(summary_ids.squeeze().tolist(), skip_special_tokens=True) abs_summary = AbsSummarization()
38.833333
91
0.815451
548
0.783977
0
0
0
0
0
0
60
0.085837
409d329c8dc7ebfbbdbfdb66ef4f8976ba9ec528
12,413
py
Python
dp_tornado/helper/io/image/__init__.py
donghak-shin/dp-tornado
095bb293661af35cce5f917d8a2228d273489496
[ "MIT" ]
18
2015-04-07T14:28:39.000Z
2020-02-08T14:03:38.000Z
dp_tornado/helper/io/image/__init__.py
donghak-shin/dp-tornado
095bb293661af35cce5f917d8a2228d273489496
[ "MIT" ]
7
2016-10-05T05:14:06.000Z
2021-05-20T02:07:22.000Z
dp_tornado/helper/io/image/__init__.py
donghak-shin/dp-tornado
095bb293661af35cce5f917d8a2228d273489496
[ "MIT" ]
11
2015-12-15T09:49:39.000Z
2021-09-06T18:38:21.000Z
# -*- coding: utf-8 -*- import tempfile from dp_tornado.engine.helper import Helper as dpHelper class ImageHelper(dpHelper): def compare(self, i1, i2, error=0): i1 = self.load(i1) i2 = self.load(i2) if not i1 or not i2: return None s1 = i1.size s2 = i2.size if s1[0] != s2[0] or s2[1] != s2[1]: print('size ne,', s1, s2) return False i1 = i1.load() i2 = i2.load() for i in range(s1[0]): for j in range(s1[1]): if i1[i, j] != i2[i, j]: if error: for k in range(len(i1[i, j])): if abs(i1[i, j][k] - i2[i, j][k]) > error: print('pixel ne,', i1[i, j], i2[i, j], abs(i1[i, j][k] - i2[i, j][k]), error) return False else: return False return True def _driver(self, options=None, **kwargs): if not options and kwargs: options = kwargs if options and 'driver' in options and options['driver'] == 'wand': return self.helper.io.image.driver.wand return self.helper.io.image.driver.pillow def load(self, src, options=None, **kwargs): if not options and kwargs: options = kwargs tmp = None drivers = [] pillow_image = self.helper.io.image.driver.pillow.Image wand_image = self.helper.io.image.driver.wand.Image if pillow_image: drivers.append(pillow_image) if wand_image: drivers.append(wand_image) try: if isinstance(src, tuple(drivers)): return src elif self.helper.web.url.validate(src): code, res = self.helper.web.http.get.raw(src) if code != 200: raise Exception('The specified image url is invalid.') tmp = tempfile.NamedTemporaryFile(delete=False) tmp.write(res) tmp.close() tmp = tmp.name else: tmp = None if not tmp and not src: raise Exception('The specified image is invalid.') img = self._driver(options=options).load(tmp if tmp else src) if not img: raise Exception('The specified image is invalid.') return img except Exception as e: self.logging.exception(e) return False finally: if tmp: self.helper.io.file.remove(tmp) def execute(self, src, fn, options=None, **kwargs): if not options and kwargs: options = kwargs img = self.load(src, options=options) if not img: return False try: return fn(img, options) except Exception as e: self.logging.exception(e) return False def size(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): if not img: return -1, -1 return img.width, img.height return self.execute(src, fn, options=options) def crop(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): crop = kwargs['crop'] if 'crop' in kwargs else None if not crop: return img e_top = 0 e_left = 0 e_right = 0 e_bottom = 0 if self.helper.misc.type.check.string(crop): crop = crop.split(',') crop = [int(e.strip()) for e in crop] if self.helper.misc.type.check.numeric(crop): e_top = e_left = e_right = e_bottom = crop elif isinstance(crop, (tuple, list)): if len(crop) == 1: e_top = e_left = e_right = e_bottom = crop[0] elif len(crop) == 2: e_top = e_bottom = crop[0] e_left = e_right = crop[1] elif len(crop) == 4: e_top = crop[0] e_right = crop[1] e_bottom = crop[2] e_left = crop[3] img = self._driver(options=kwargs).crop(img, e_left, e_top, img.size[0] - e_right, img.size[1] - e_bottom) return img return self.execute(src, fn, options=options) def border(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): border = int(kwargs['border']) if 'border' in kwargs else 0 border_color = kwargs['border_color'] if 'border_color' in kwargs else '#000000' if not border: return img if '_org' in kwargs and 'radius' in kwargs and kwargs['radius']: return img img = self._driver(options=kwargs).border(img, border, border_color) return img return self.execute(src, fn, options=options) def radius(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): radius = int(kwargs['radius'] or 0) if 'radius' in kwargs else None border = int(kwargs['border']) if 'border' in kwargs else 0 border_color = kwargs['border_color'] if 'border_color' in kwargs else '#000000' if not radius: return img elif '__radius_processed__' in img.__dict__: return img img = self._driver(options=kwargs).radius(img, radius, border, border_color) img.__dict__['__radius_processed__'] = True return img return self.execute(src, fn, options=options) def colorize(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): colorize = kwargs['colorize'] if 'colorize' in kwargs else None if not colorize: return img img = self._driver(options=kwargs).colorize(img, colorize) return img return self.execute(src, fn, options=options) def resize(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): size = kwargs['size'] if 'size' in kwargs else None mode = kwargs['mode'] if 'mode' in kwargs else None scale = int(kwargs['scale']) if 'scale' in kwargs else 1 limit = True if 'limit' in kwargs and kwargs['limit'] else False border = int(kwargs['border']) if 'border' in kwargs else 0 if not size: return img width_new, height_new = size width_origin, height_origin = img.size if scale > 1: if limit: scale_max_width = float(width_origin) / float(width_new) scale_max_height = float(height_origin) / float(height_new) scale_max = min(scale, scale_max_width, scale_max_height) else: scale_max = scale if scale_max > 1: width_new = int(width_new * scale_max) height_new = int(height_new * scale_max) if not width_new: width_new = width_origin * height_new / height_origin mode = self.helper.io.image.mode.resize if not height_new: height_new = height_origin * width_new / width_origin mode = self.helper.io.image.mode.resize if border: width_new -= border * 2 height_new -= border * 2 if not mode: mode = self.helper.io.image.mode.resize if mode not in self.helper.io.image.mode.modes: raise Exception('The specified mode is not supported.') seqs = [] for i, im in self._driver(options=kwargs).iter_seqs(img, kwargs): # Image Resizing if mode == self.helper.io.image.mode.center: im = self._driver(options=kwargs).resize(im, width_new, height_new, kwargs) elif mode == self.helper.io.image.mode.fill: ratio_origin = float(width_origin) / float(height_origin) ratio_new = float(width_new) / float(height_new) if ratio_origin > ratio_new: tw = int(round(height_new * ratio_origin)) im = self._driver(options=kwargs).resize(im, tw, height_new) left = int(round((tw - width_new) / 2.0)) im = self._driver(options=kwargs).crop(im, left, 0, left + width_new, height_new) elif ratio_origin < ratio_new: th = int(round(width_new / ratio_origin)) im = self._driver(options=kwargs).resize(im, width_new, th) top = int(round((th - height_new) / 2.0)) im = self._driver(options=kwargs).crop(im, 0, top, width_new, top + height_new) else: im = self._driver(options=kwargs).resize(im, width_new, height_new) elif mode == self.helper.io.image.mode.resize: if width_new > width_origin or height_new > height_origin: width_new = width_origin height_new = height_origin im = self._driver(options=kwargs).resize(im, width_new, height_new) seqs.append(im) img = seqs[0] seqs.remove(img) img.__dict__['__frames__'] = seqs return img return self.execute(src, fn, options=options) def save(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): ext = kwargs['format'] if 'format' in kwargs else None dest = kwargs['dest'] if 'dest' in kwargs else None if not dest: return None if not ext and self.helper.misc.type.check.string(dest): ext = self.helper.io.path.ext(dest, dot='').lower() if not ext and self.helper.misc.type.check.string(src): ext = self.helper.io.path.ext(src, dot='').lower() if not ext and '_org' in kwargs and kwargs['_org'] and self.helper.misc.type.check.string(kwargs['_org']): ext = self.helper.io.path.ext(kwargs['_org'], dot='').lower() if dest == 's3': # TODO return False if not self._driver(options=kwargs).save(img, ext, dest, kwargs): return False return True return self.execute(src, fn, options=options) def manipulate(self, src, options=None, **kwargs): if not options and kwargs: options = kwargs options['_org'] = src try: img = self.load(src, options=options) # Crop img = self.crop(img, options=options) if not img: return False # Resize img = self.resize(img, options=options) if not img: return False # Radius img = self.radius(img, options=options) if not img: return False # Border img = self.border(img, options=options) if not img: return False # Colorize img = self.colorize(img, options=options) if not img: return False # Save saved = self.save(img, options=options) if saved is None: return img elif saved is False: return False return True except Exception as e: self.logging.exception(e) return False
30.573892
118
0.512688
12,311
0.991783
0
0
0
0
0
0
646
0.052042
409e06685c9ecbd99f82a4b27833a85d0c5a9b1e
4,385
py
Python
script.py
triethyl/wbut-results-parsed
9ca8f5dd6afab1eb2b0436093b3a20e6e07f923d
[ "MIT" ]
1
2019-02-28T05:32:51.000Z
2019-02-28T05:32:51.000Z
script.py
triethyl/wbut-results-parsed
9ca8f5dd6afab1eb2b0436093b3a20e6e07f923d
[ "MIT" ]
null
null
null
script.py
triethyl/wbut-results-parsed
9ca8f5dd6afab1eb2b0436093b3a20e6e07f923d
[ "MIT" ]
2
2019-03-15T19:40:17.000Z
2019-05-24T17:15:59.000Z
import requests from bs4 import BeautifulSoup import json import re # Range of Roll Number - User Input start_roll = int(input("Starting Roll Number: ")) end_roll = int(input("Ending Roll Number: ")) # Semester - User Input sem = int(input("Which Semester[1-8]: ")) # Verbosity verbose = int(input("Verbosity Level (1 for just data, 2 for detailed data): ")) # Roll Number Tuple roll_tuple = tuple(range(start_roll, end_roll+1)) # Getting the Websites result_url = 'https://makaut.ucanapply.com/smartexam/public/result-details' get_result_details = 'https://makaut.ucanapply.com/smartexam/public//get-result-details' # Semester Codes semcode = ('SM01', 'SM02', 'SM03', 'SM04', 'SM05', 'SM06', 'SM07', 'SM08') def get_marks_of(rollNo, semester): # Handle session cookies appropriately s = requests.Session() with s.get(result_url) as r: while r.status_code != 200: r = s.get(result_url) # Parse CSRF-Token soup = BeautifulSoup(r.text, 'html.parser') csrf_token = soup.find("meta", {"name":"csrf-token"})['content'] # Create dict for post request form_data = {'_token': csrf_token, 'p1':'', 'ROLLNO':str(rollNo), 'SEMCODE':semcode[semester-1], 'examtype':'result-details', 'all':''} # Get Result Data with s.post(get_result_details, data=form_data) as r: while r.status_code != 200: r = s.post(get_result_details, data=form_data) result_data = json.loads(r.text)['html'] soup = BeautifulSoup(result_data, 'html.parser') result_data = soup.find("div", {"id":"page-wrap"}) try: result_data = result_data.get_text() except AttributeError: # This result has not yet been published return # Basic Data name = re.findall("Name[^a-zA-Z]*([a-zA-Z ]+)", result_data)[0] stream = re.findall("B.Tech[^A-Z]*([A-Z]+)", result_data)[0] roll_num = re.findall("Roll[^0-9]*([0-9]+)", result_data)[0] reg_num, batch = re.findall("Registration[^0-9]*([0-9]+) OF ([0-9-]+)", result_data)[0] # Subject Data def get_subject_data(result_data): re_mp_fl = [ i for i in filter(lambda x: x!='', [i for i in map(lambda x: x.strip(), re.findall("([^\n]+)", result_data))])] for i in range(re_mp_fl.index("Subject Code")+6, re_mp_fl.index("Total"),6): yield(tuple([re_mp_fl[j] for j in range(i, i+6)])) subject_data = get_subject_data(result_data) # SGPA YGPA MAR - Prone to errors for odd and even sem sgpa_odd, odd_year, sgpa_even, even_year, ygpa, cgpa = -1, -1, -1, -1, -1, -1 try: sgpa_odd = re.findall("ODD\.*\s*\(.*\)[^0-9.]*([0-9.]+)", result_data)[0] odd_year = re.findall("ODD[^0-9]*([0-9])", result_data)[0] sgpa_even = re.findall("EVEN\s*\(.*\)[^0-9.]*([0-9.]+)", result_data)[0] even_year = re.findall("EVEN[^0-9]*([0-9])", result_data)[0] ygpa = re.findall("YGPA[^0-9]*([0-9.]+)", result_data)[0] cgpa = re.findall("DGPA[^EVEN]*EVEN\s*\(.*\)[^0-9.]*[0-9.]+\s*([0-9.]+)[^YGPA]*YGPA", result_data)[0] except IndexError: pass return { 'name': name, 'stream': stream, 'roll': roll_num, 'reg_num': reg_num, 'batch': batch, 'marks_per_subject': subject_data, 'sgpa_odd': sgpa_odd, 'odd_year': odd_year, 'sgpa_even': None if sgpa_even == -1 else sgpa_even, 'even_year': None if even_year == -1 else even_year, 'ygpa': None if ygpa == -1 else ygpa, 'cgpa': None if cgpa == -1 else cgpa } def print_marks_properly(roll, sem): data = get_marks_of(roll, sem) if data != "<TBD>": for key, value in data.items(): if key == 'marks_per_subject': print(key,"->") for x in value: print(x) else: print(key, "->", value) if verbose == 1: # Disply most recent for roll in roll_tuple: data = get_marks_of(roll, sem) try: print(f"({data['name']}, {data['sgpa_odd' if sem%2!=0 else 'sgpa_even']})") except: pass elif verbose == 2: for roll in roll_tuple: print_marks_properly(roll, sem) else: print("[!] Verbosity Level Wrong!")
35.650407
140
0.575143
0
0
2,909
0.663398
0
0
0
0
1,416
0.322919
409f7a2dc9434e9656e7bedb75a00b02b076a630
1,411
py
Python
cartoonify.py
adl1995/image-processing-filters
850e4a6e23ef0f3843cc306cf1e42569f705f07e
[ "MIT" ]
null
null
null
cartoonify.py
adl1995/image-processing-filters
850e4a6e23ef0f3843cc306cf1e42569f705f07e
[ "MIT" ]
null
null
null
cartoonify.py
adl1995/image-processing-filters
850e4a6e23ef0f3843cc306cf1e42569f705f07e
[ "MIT" ]
null
null
null
#!/usr/bin/env python __author__ = "Adeel Ahmad" __email__ = "[email protected]" __status__ = "Production" import matplotlib.pyplot as plt import numpy as np import skimage as ski import Image def cartoonify(im, display=False): """ function receives an image and add its gradient magnitude in it and add it to the original image to return a semi-cartoon image. Note: You will have to scale the gradient-magnitue image before adding it back to the input image. Input: im: input image to cartoonify display: whether to display image or not... NOTE: This function expects a gaussian filtered image """ kernel, kern_size = np.array([[-1,-1,-1] ,[0,0,0] ,[1,1,1]]), 3 gx, gy = np.zeros_like(im, dtype=float), np.zeros_like(im, dtype=float) for i in range(im.shape[0] - (kern_size-1)): for j in range(im.shape[1] - (kern_size-1)): window = im[i:i + kern_size, j:j + kern_size] gx[i,j], gy[i,j] = np.sum(window * kernel.T), np.sum(window * kernel) magnitude = np.sqrt(gx**2 + gy**2) magnitude = magnitude.astype(np.int64, copy=False) cartoon = im + (im + magnitude) if display == 1: plt.imshow(cartoon, cmap='gray') plt.suptitle('Cartoon') plt.show() return cartoon
31.355556
255
0.59674
0
0
0
0
0
0
0
0
487
0.345145
40a00c80a3cc741480575d8150f065c48c9b4231
4,341
py
Python
keymapper/__init__.py
rburns629/KeyMapper
ba1f463bdfa7710f3b9487974874db9424632d85
[ "MIT" ]
null
null
null
keymapper/__init__.py
rburns629/KeyMapper
ba1f463bdfa7710f3b9487974874db9424632d85
[ "MIT" ]
null
null
null
keymapper/__init__.py
rburns629/KeyMapper
ba1f463bdfa7710f3b9487974874db9424632d85
[ "MIT" ]
null
null
null
from dataclasses import dataclass import json import re @dataclass class KeyMapper(dict): """ Example: km = KeyMapper({'messages': {'message1': 'Hello World!'}}}) print(km['messages.message1']) Variables: __delimiter__ is set to dot-notation by default, unless specified otherwise. """ __delimiter__ = "." # Default __schema__ = {} def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if kwargs: if 'delimiter' in kwargs: self.__delimiter__ = kwargs['delimiter'] elif 'schema' in kwargs: self.__schema__ = kwargs['schema'] for arg in args: if isinstance(arg, dict): for k, v in arg.items(): if self.__schema__: if self.__schema__[k] == type(v): self.__dict__.update({k: v}) else: raise ValueError( f'TypeMismatchError: value {type(v)} does not match type {type(self.__schema__[k])} defined in schema') else: self.__dict__.update({k: v}) def __repr__(self): return '{}(dict={})'.format(self.__class__, self.__dict__) def __str__(self): return '{}'.format(self.__dict__) def __getattr__(self, attr): try: return self.get(attr) except Exception as e: raise e def __setattr__(self, key, value): try: self.__setitem__(key, value) except Exception as e: raise e def __delattr__(self, item): try: self.__delitem__(item) except Exception as e: raise e def __getitem__(self, key): try: if self.__delimiter__ in key: return self.__mapper__(self.__dict__, key.split(self.__delimiter__), self.__getitem__.__name__) else: return self.get(key) except Exception as e: raise e def __setitem__(self, key, value): try: if self.__delimiter__ in key: self.__mapper__(self.__dict__, key.split( self.__delimiter__), self.__setitem__.__name__, value) else: super().__setitem__(key, value) self.__dict__.update({key: value}) except Exception as e: raise e def __delitem__(self, key): try: if self.__delimiter__ in key: self.__mapper__(self.__dict__, key.split( self.__delimiter__), self.__delitem__.__name__) else: super().__delitem__(key) del self.__dict__[key] except Exception as e: raise e def pprint(self, *args): try: if len(args) > 0: return json.dumps(args[0], indent=4, ensure_ascii=False) return json.dumps(self, indent=4, ensure_ascii=False) except Exception as e: raise e @classmethod def __mapper__(cls, d, m, callback, *args, **kwargs): for i, k in enumerate(m): key = k if not re.search(r'^[0-9]+$', k) else int(k) try: if str(key) in d or type(key) == int and d[key]: if str(key) != m[-1] or i != len(m) - 1: return cls.__mapper__(d[key], m[1:], callback, *args, **kwargs) elif str(key) == m[-1] and i == len(m) - 1: if callback == '__setitem__': d[key] = args[0] return None elif callback == '__delitem__': del d[key] return None else: return d[key] except Exception as e: raise e else: if i == len(m) - 1: if callback == '__setitem__': d[m[-1]] = args[0] return None else: raise KeyError('{}'.format(m[i])) else: if callback == '__getitem__': return d
33.651163
135
0.476618
4,272
0.984105
0
0
4,283
0.986639
0
0
467
0.107579
40a02814845a829728726e29b79dfead7feb2132
3,401
py
Python
PythonFiles_DataScience/demo37_pythonfordatascience.py
mahnooranjum/Programming_DataScience
f7a4215d4615b3f8460c3a1944a585628cf6930d
[ "MIT" ]
null
null
null
PythonFiles_DataScience/demo37_pythonfordatascience.py
mahnooranjum/Programming_DataScience
f7a4215d4615b3f8460c3a1944a585628cf6930d
[ "MIT" ]
null
null
null
PythonFiles_DataScience/demo37_pythonfordatascience.py
mahnooranjum/Programming_DataScience
f7a4215d4615b3f8460c3a1944a585628cf6930d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Demo37_PythonforDataScience.ipynb # PYTHON FOR DATA SCIENCE We will take our python programming skills a step further and process large data in it. Python is an excellent language for deployment. Hence we will be using open source data during the learning process!! This will make sure we understand the challenges a Data Scientist can face and how to deal with them. In my experience, Data Preprocessing takes 70% of the time in any project. Hence it is crucial for any Data Scientist to know what it is and how it is done. This may be the boring portion of the course but I assure you, you will feel accomplished by the end of this tutorial. - Python Basics - Object Oriented Python - **Python for Data Science** - NumPy - Pandas - Plotting - Matplotlib - Seaborn Let's get coding !! """ #Variables can not start with a number 12var = 1 _13var = 1 name = "Mahnoor" surname = "Anjum" age = 21 print("I'm {} {} and I am {} years old.".format(name, surname, age)) name = "Mahnoor" surname = "Anjum" age = 21 print("I'm {_1} {_2} and I am {_3} years old.".format(_1 = name, _2= surname, _3 = age)) """### INDEXING AND SLICING One of the most important Python concept for data scientists is the slicing operator ':' """ str = "ONE TWO THREE FOUR FIVE" print(str[0]) print(str[5]) print(str[len(str)-1]) str[:5] str[5:] str[1]="a" nested = [1,2,3,['_1','_2','_3',['__1']]] nested[0] nested[3][0] len(nested) len(nested[3]) nested[3][3] nested[3][3][0] dict = {'key1':'value1', \ 'key2': 'value2', \ 'key3':'value3'} dict['key1'] T = True F = False var = 10 for i in range(var): print(i) for i in range(var): bool = (i==2) if bool: break print(i) [1,2,3,1,1,2,3,4] (1,2,3,1,1,2,3,4) {1,2,3,1,1,2,3,4} new_set = set([1,2,3,1,1,2,3,4]) new_set.add(5) new_set for item in new_set: print(item) list(range(4)) my_list = list(range(5,10)) output = [] for number in my_list: output.append(number**3) output output = [num**3 for num in my_list] output """### FUNCTIONS""" def my_function(parameter): print(parameter) my_function("Jalebi (Hungry okay?)") def my_function(parameter="Default"): print(parameter) my_function() num = 4 def change(par): par =5 return par change(num) num num = 4 def change(par): par =5 return par change(num) num num = [4] def change(par): par.append(5) del par[0] return par change(num) num my_list """### LAMBDA EXPRESSIONS""" def square(x): return x*x list(map(square, my_list)) list(map(lambda x:x*x, my_list)) """### BUILT-IN FUNCTIONS""" s = "We have a hulk !!!" s.lower() s.upper() s.split() dict = {'key1':1,'key2':2} dict.keys() dict.values() dict.items() my_list.pop() my_list """### TUPLE UNPACKING""" list_of_tuples =[(1,2),(3,4),(5,6)] for (a,b) in list_of_tuples: print (a) print (b) """### WELCOME TO THE END OF THE TUTORIAL You made it!! Hope you enjoyed taking this tutorial as much as I enjoyed coding it. From the next tutorial, we will be starting our first Data Science Library called NumPy. Until then, happy coding. --------------------------------------------------------------------------------- Copyrights © 2018, All Rights Reserved. - Author: Mahnoor Anjum. - Course: The Complete Hands-On Machine Learning Course - Date Created: 2018-06-27 - Date Modified: - """
18.284946
259
0.643046
0
0
0
0
0
0
0
0
1,852
0.544386
40a0b272172c34d79349dc117521f3988050cbff
4,401
py
Python
quantrocket/db.py
Jay-Jay-D/quantrocket-client
b70ac199382d22d56fad923ca2233ce027f3264a
[ "Apache-2.0" ]
null
null
null
quantrocket/db.py
Jay-Jay-D/quantrocket-client
b70ac199382d22d56fad923ca2233ce027f3264a
[ "Apache-2.0" ]
null
null
null
quantrocket/db.py
Jay-Jay-D/quantrocket-client
b70ac199382d22d56fad923ca2233ce027f3264a
[ "Apache-2.0" ]
1
2019-06-12T11:34:27.000Z
2019-06-12T11:34:27.000Z
# Copyright 2017 QuantRocket - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from quantrocket.houston import houston from quantrocket.cli.utils.output import json_to_cli def list_databases(service=None): """ List databases. Parameters ---------- service : str, optional only list databases for this service Returns ------- list list of databases """ params = {} if service: params["service"] = service response = houston.get("/db/databases", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_list_databases(*args, **kwargs): return json_to_cli(list_databases, *args, **kwargs) def download_database(database, outfile): """ Download a database from the db service and write to a local file. Parameters ---------- database : str, required the filename of the database (as returned by the list_databases) outfile: str, required filename to write the database to Returns ------- None """ response = houston.get("/db/databases/{0}".format(database), stream=True) houston.raise_for_status_with_json(response) with open(outfile, "wb") as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) def _cli_download_database(*args, **kwargs): return json_to_cli(download_database, *args, **kwargs) def s3_push_databases(service, codes=None): """ Push database(s) to Amazon S3. Parameters ---------- serivce : str, required only push databases for this service (specify 'all' to push all services) codes: list of str, optional only push databases identified by these codes (omit to push all databases for service) Returns ------- json status message """ data = {} if codes: data["codes"] = codes response = houston.put("/db/s3/{0}".format(service), data=data) houston.raise_for_status_with_json(response) return response.json() def _cli_s3_push_databases(*args, **kwargs): return json_to_cli(s3_push_databases, *args, **kwargs) def s3_pull_databases(service, codes=None, force=False): """ Pull database(s) from Amazon S3 to the db service. Parameters ---------- serivce : str, required only pull databases for this service (specify 'all' to pull all services) codes: list of str, optional only pull databases identified by these codes (omit to pull all databases for service) force: bool overwrite existing database if one exists (default is to fail if one exists) Returns ------- json status message """ params = {} if codes: params["codes"] = codes if force: params["force"] = force response = houston.get("/db/s3/{0}".format(service), params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_s3_pull_databases(*args, **kwargs): return json_to_cli(s3_pull_databases, *args, **kwargs) def optimize_databases(service, codes=None): """ Optimize database file(s) to improve performance. Parameters ---------- serivce : str, required only optimize databases for this service (specify 'all' to optimize all services) codes: list of str, optional only optimize databases identified by these codes (omit to optimize all databases for service) Returns ------- json status message """ data = {} if codes: data["codes"] = codes response = houston.post("/db/optimizations/{0}".format(service), data=data) houston.raise_for_status_with_json(response) return response.json() def _cli_optimize_databases(*args, **kwargs): return json_to_cli(optimize_databases, *args, **kwargs)
29.536913
102
0.667803
0
0
0
0
0
0
0
0
2,492
0.566235
40a0c02ad22b941af8159f65f284f536c99461a2
3,889
py
Python
ink2canvas/GradientHelper.py
greipfrut/pdftohtml5canvas
bd4b829a5fd02b503e6b32c268b265daa92e92e5
[ "MIT" ]
4
2016-05-06T21:29:39.000Z
2020-02-25T08:47:48.000Z
ink2canvas/GradientHelper.py
letw/pdftohtml5canvas
bd4b829a5fd02b503e6b32c268b265daa92e92e5
[ "MIT" ]
null
null
null
ink2canvas/GradientHelper.py
letw/pdftohtml5canvas
bd4b829a5fd02b503e6b32c268b265daa92e92e5
[ "MIT" ]
null
null
null
from ink2canvas.lib.simpletransform import parseTransform class GradientHelper(object): def __init__(self, abstractShape): self.abstractShape = abstractShape def hasGradient(self, key): style = self.abstractShape.getStyle() if key in style: styleParamater = style[key] if styleParamater.startswith("url(#linear"): return "linear" if styleParamater.startswith("url(#radial"): return "radial" return None def getGradientHref(self, key): style = self.abstractShape.getStyle() if key in style: return style[key][5:-1] return def setGradientFill(self): gradType = self.hasGradient("fill") if (gradType): gradient = self.setComponentGradient("fill", gradType) self.abstractShape.canvasContext.setFill("gradient=grad") if(self.hasGradientTransform(gradient)): self.abstractShape.canvasContext.fill(); self.abstractShape.canvasContext.restore() return True def setGradientStroke(self): gradType = self.hasGradient("stroke") if (gradType): gradient = self.setComponentGradient("stroke", gradType) self.abstractShape.canvasContext.setStroke("gradient=grad") if(self.hasGradientTransform(gradient)): self.abstractShape.canvasContext.stroke(); self.abstractShape.canvasContext.restore() return True def hasGradientTransform(self, gradient): return bool(gradient.attr("gradientTransform")) def setGradientTransform(self, gradient): dataString = gradient.attr("gradientTransform") dataMatrix = parseTransform(dataString) m11, m21, dx = dataMatrix[0] m12, m22, dy = dataMatrix[1] self.abstractShape.canvasContext.transform(m11, m12, m21, m22, dx, dy) def setComponentGradient(self, key, gradType): gradientId = self.getGradientHref(key) if(gradType == "linear"): gradient = self.abstractShape.rootTree.getLinearGradient(gradientId) if(gradType == "radial"): gradient = self.abstractShape.rootTree.getRadialGradient(gradientId) if(gradient.link != None): gradient.colorStops = self.abstractShape.rootTree.getLinearGradient(gradient.link).colorStops if(self.hasGradientTransform(gradient)): self.abstractShape.canvasContext.save() self.setGradientTransform(gradient) if(gradType == "linear"): x1, y1, x2, y2 = gradient.getData() self.abstractShape.canvasContext.createLinearGradient("grad", x1, y1, x2, y2) if(gradType == "radial"): cx, cy, fx, fy, r = gradient.getData() self.abstractShape.canvasContext.createRadialGradient("grad", cx, cy, 0, fx, fy, r) for stopKey, stopValue in gradient.colorStops.iteritems(): offset = float(stopKey) color = self.abstractShape.canvasContext.getColor(stopValue.split(";")[0].split(":")[1] , stopValue.split(";")[1].split(":")[1] ) self.abstractShape.canvasContext.addColorStop("grad", offset, color) return gradient def createLinearGradient(self): x1, y1, x2, y2 = self.gradient.getData() self.abstractShape.canvasContext.createLinearGradient("grad", x1, y1, x2, y2) for stop in self.gradient.stops: color = self.canvasContext.getColor(stop.split(";")[0].split(":")[1] , stop.split(";")[1].split(":")[1]) offset = float(stop.split(";")[2].split(":")[1]) self.abstractShape.canvasContext.addColorStop("grad", offset, color)
43.696629
141
0.609154
3,826
0.9838
0
0
0
0
0
0
230
0.059141
40a15dfaa12f9d16539bfd378e8a390a22b70eb7
529
py
Python
project/manage.py
yosukesuzuki/let-me-notify
39f50214403822712329c1cd953167d6e9b315d6
[ "MIT" ]
null
null
null
project/manage.py
yosukesuzuki/let-me-notify
39f50214403822712329c1cd953167d6e9b315d6
[ "MIT" ]
null
null
null
project/manage.py
yosukesuzuki/let-me-notify
39f50214403822712329c1cd953167d6e9b315d6
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Kay management script. :Copyright: (c) 2009 Accense Technology, Inc. All rights reserved. :license: BSD, see LICENSE for more details. """ import sys import os import logging sys.path = [os.path.abspath(os.path.dirname(__file__))] + sys.path import kay kay.setup_env(manage_py_env=True) from werkzeug import script from kay.management import * import appengine_config if __name__ == '__main__': if len(sys.argv) == 1: sys.argv.append("--help") script.run()
19.592593
66
0.701323
0
0
0
0
0
0
0
0
205
0.387524
40a223cfd00d5ab5d2f6c9db56030a295e86ca65
1,624
py
Python
examples/plotting/field_pole_figure.py
heprom/pymicro
176bf3a829dbf67796a3d4471f18868a3da229a7
[ "MIT" ]
30
2017-03-02T14:43:48.000Z
2022-02-25T13:22:22.000Z
examples/plotting/field_pole_figure.py
heprom/pymicro
176bf3a829dbf67796a3d4471f18868a3da229a7
[ "MIT" ]
14
2019-12-29T12:41:29.000Z
2021-12-01T21:13:20.000Z
examples/plotting/field_pole_figure.py
heprom/pymicro
176bf3a829dbf67796a3d4471f18868a3da229a7
[ "MIT" ]
18
2017-03-21T12:43:19.000Z
2022-03-22T14:30:06.000Z
from pymicro.crystal.microstructure import * from pymicro.crystal.texture import * from pymicro.examples import PYMICRO_EXAMPLES_DATA_DIR from matplotlib import pyplot as plt, colors, colorbar, cm import pathlib as pl '''This example demonstrate how a field can be used to color each symbol on the pole figure with the :py:meth:~`pymicro.crystal.texture.set_map_field` method. ''' #orientations = Orientation.read_euler_txt('../data/orientation_set.inp') #for i in range(600): # micro.grains.append(Grain(i, orientations[i + 1])) euler_list = np.genfromtxt(PYMICRO_EXAMPLES_DATA_DIR / 'orientation_set.inp').tolist() micro = Microstructure(name='field', autodelete=True) micro.add_grains(euler_list) # load strain from dat files strain_field = np.genfromtxt(PYMICRO_EXAMPLES_DATA_DIR / 'strain_avg_per_grain.dat')[19, ::2] # build custom pole figures pf = PoleFigure(microstructure=micro) pf.mksize = 40 pf.set_map_field('strain', strain_field, field_min_level=0.015, field_max_level=0.025) fig = plt.figure() # direct PF ax1 = fig.add_axes([0.05, 0.05, 0.8, 0.9], aspect='equal') pf.plot_pf(ax=ax1) plt.title('111 pole figure, cubic elasticity') # to add the color bar ax2 = fig.add_axes([0.8, 0.05, 0.05, 0.9]) norm = colors.Normalize(vmin=0.015, vmax=0.025) cb = colorbar.ColorbarBase(ax2, cmap=cm.hot, norm=norm, orientation='vertical') cb.set_label('Average strain (mm/mm)') image_name = os.path.splitext(__file__)[0] + '.png' print('writing %s' % image_name) plt.savefig('%s' % image_name, format='png') del pf del micro from matplotlib import image image.thumbnail(image_name, 'thumb_' + image_name, 0.2)
34.553191
93
0.75431
0
0
0
0
0
0
0
0
572
0.352217
40a57bcb86583811e90d8029258fdefae6a38a7d
11,634
py
Python
model/img2seq_torch.py
marcoleewow/LaTeX_OCR
0980ea719f8d3175a6bbf6af18873dd72d04b8c7
[ "Apache-2.0" ]
290
2019-04-04T01:52:32.000Z
2022-03-30T08:07:53.000Z
model/img2seq_torch.py
w32zhong/LaTeX_OCR
1e1f196468e678c93dfa2d8ab2ba02fbda38a3c0
[ "Apache-2.0" ]
23
2019-06-11T05:07:58.000Z
2022-03-11T23:44:17.000Z
model/img2seq_torch.py
w32zhong/LaTeX_OCR
1e1f196468e678c93dfa2d8ab2ba02fbda38a3c0
[ "Apache-2.0" ]
81
2019-04-06T11:40:34.000Z
2022-02-28T15:08:05.000Z
import time import sys import os import numpy as np import torch import torch.nn as nn import torchvision.models as models from torch.nn.utils.rnn import pack_padded_sequence from model.base_torch import BaseModel from model.utils.general import init_dir, get_logger from model.utils.general import Progbar from model.utils.general import Config from model.utils.general import minibatches from model.components.SimpleCNN import SimpleCNN from model.components.ResNet import ResNet9 from model.components.DenseNet import DenseNet169 from model.components.seq2seq_torch import EncoderCNN, DecoderWithAttention, Img2Seq from model.evaluation.text import score_files, truncate_end, write_answers from model.utils.image import pad_batch_images_2 from model.utils.text import pad_batch_formulas from torch.utils.data import Dataset import h5py import json from model.utils.data_generator import DataGenerator class ImgFormulaDataset(Dataset): """ A PyTorch Dataset class to be used in a PyTorch DataLoader to create batches. """ def __init__(self, data_generator: DataGenerator, transform=None): """ :param data_folder: folder where data files are stored :param data_name: base name of processed datasets :param split: split, one of 'TRAIN', 'VAL', or 'TEST' :param transform: image transform pipeline """ self.data_generator = data_generator # PyTorch transformation pipeline for the image (normalizing, etc.) self.transform = transform def __getitem__(self, i): # Remember, the Nth caption corresponds to the (N // captions_per_image)th image (img, formula) = self.data_generator.__getitem__(i) img = pad_batch_images_2([img], [800, 800, 1]) # img = torch.tensor(img, dtype=torch.int8) # (N, W, H, C) # img = img.squeeze(0) # img = img.permute(2, 0, 1) # (C, W, H) # if self.transform is not None: # img = self.transform(img) # formula = torch.tensor(formula, dtype=torch.int) # (C, W, H), (TOKEN) return img, formula def __len__(self): return len(self.data_generator) class Img2SeqModel(BaseModel): def __init__(self, config, dir_output, vocab): super(Img2SeqModel, self).__init__(config, dir_output) self._vocab = vocab def getModel(self, model_name="CNN"): if model_name == "CNN": return SimpleCNN() elif model_name == "ResNet9": return ResNet9() elif model_name == "DenseNet169": return DenseNet169(pretrained=True) elif model_name == "Img2Seq": self.encoder = EncoderCNN(self._config) self.decoder = DecoderWithAttention(attention_dim=512, embed_dim=512, decoder_dim=512, vocab_size=self._vocab.n_tok, dropout=0.5) return Img2Seq(self._config, self._vocab) def getOptimizer(self, lr_method='adam', lr=0.001): self.encoder_optimizer = torch.optim.Adam(params=self.encoder.parameters(), lr=lr) self.decoder_optimizer = torch.optim.Adam(params=self.decoder.parameters(), lr=lr) return super().getOptimizer(lr_method=lr_method, lr=lr) def _run_train_epoch(self, config, train_set, val_set, epoch, lr_schedule): """Performs an epoch of training Args: config: Config instance train_set: Dataset instance val_set: Dataset instance epoch: (int) id of the epoch, starting at 0 lr_schedule: LRSchedule instance that takes care of learning proc Returns: score: (float) model will select weights that achieve the highest score """ # logging batch_size = config.batch_size nbatches = (len(train_set) + batch_size - 1) // batch_size prog = Progbar(nbatches) self.model.train() self.encoder.train() self.decoder.train() train_loader = torch.utils.data.DataLoader(ImgFormulaDataset(train_set), batch_size=batch_size, shuffle=True, num_workers=3, pin_memory=True) # for i, (img, formula) in enumerate(train_loader): for i, (img, formula) in enumerate(minibatches(train_set, batch_size)): img = pad_batch_images_2(img) img = torch.FloatTensor(img) # (N, W, H, C) formula, formula_length = pad_batch_formulas(formula, self._vocab.id_pad, self._vocab.id_end) img = img.permute(0, 3, 1, 2) # (N, C, W, H) formula = torch.LongTensor(formula) # (N,) loss_eval = self.getLoss(img, formula=formula, lr=lr_schedule.lr, dropout=config.dropout, training=True) prog.update(i + 1, [("loss", loss_eval), ("lr", lr_schedule.lr)]) # update learning rate lr_schedule.update(batch_no=epoch*nbatches + i) self.logger.info("- Training: {}".format(prog.info)) # evaluation config_eval = Config({"dir_answers": self._dir_output + "formulas_val/", "batch_size": config.batch_size}) scores = self.evaluate(config_eval, val_set) score = scores["perplexity"] lr_schedule.update(score=score) return score def getLoss(self, img, formula, lr, dropout, training=True): # Move to GPU, if available img = img.to(self.device) formula = formula.to(self.device) # Forward prop. imgs = self.encoder(img) scores, caps_sorted, decode_lengths, alphas, sort_ind = self.decoder( imgs, formula, torch.LongTensor([[len(i)] for i in formula])) # Since we decoded starting with <start>, the targets are all words after <start>, up to <end> targets = caps_sorted[:, 1:] # Remove timesteps that we didn't decode at, or are pads # pack_padded_sequence is an easy trick to do this scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True) targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True) # Calculate loss loss = self.criterion(scores, targets) alpha_c = 1. # Add doubly stochastic attention regularization loss += alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean() # Back prop. self.decoder_optimizer.zero_grad() if self.encoder_optimizer is not None: self.encoder_optimizer.zero_grad() loss.backward() # Update weights self.decoder_optimizer.step() if self.encoder_optimizer is not None: self.encoder_optimizer.step() return -loss.item() def _run_evaluate_epoch(self, config, test_set): """Performs an epoch of evaluation Args: test_set: Dataset instance params: (dict) with extra params in it - "dir_name": (string) Returns: scores: (dict) scores["acc"] = 0.85 for instance """ self.model.eval() self.encoder.eval() self.decoder.eval() # initialize containers of references and predictions if self._config.decoding == "greedy": refs, hyps = [], [[]] elif self._config.decoding == "beam_search": refs, hyps = [], [[] for i in range(self._config.beam_size)] references = list() # references (true captions) for calculating BLEU-4 score hypotheses = list() # hypotheses (predictions) with torch.no_grad(): nbatches = len(test_set) prog = Progbar(nbatches) test_loader = torch.utils.data.DataLoader(ImgFormulaDataset(test_set), batch_size=nbatches, shuffle=True, num_workers=3, pin_memory=True) for i, (img, formula) in enumerate(minibatches(test_set, nbatches)): # print(type(img), len(img), img[0].shape) # print(type(formula), formula) # Move to GPU, if available img = pad_batch_images_2(img) img = torch.FloatTensor(img) # (N, W, H, C) formula, formula_length = pad_batch_formulas(formula, self._vocab.id_pad, self._vocab.id_end) img = img.permute(0, 3, 1, 2) # (N, C, W, H) formula = torch.LongTensor(formula) # (N,) img = img.to(self.device) formula = formula.to(self.device) # Forward prop. imgs = self.encoder(img) scores, caps_sorted, decode_lengths, alphas, sort_ind = self.decoder(imgs, formula, torch.LongTensor([[len(i)] for i in formula])) # Since we decoded starting with <start>, the targets are all words after <start>, up to <end> targets = caps_sorted[:, 1:] # Remove timesteps that we didn't decode at, or are pads # pack_padded_sequence is an easy trick to do this scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True) targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True) # Calculate loss loss = self.criterion(scores, targets) print(scores.shape, targets.shape) print(loss) alpha_c = 1. # Add doubly stochastic attention regularization loss += alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean() loss_eval = loss.item() prog.update(i + 1, [("loss", loss_eval), ("perplexity", np.exp(loss_eval))]) # Store references (true captions), and hypothesis (prediction) for each image # If for n images, we have n hypotheses, and references a, b, c... for each image, we need - # references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...] # print("---------------------------------------------------------------formula and prediction :") for form, preds in zip(formula, scores): refs.append(form) # print(form, " ---------- ", preds[0]) for i, pred in enumerate(preds): hyps[i].append(pred) files = write_answers(refs, hyps, self._vocab.id_to_tok, config.dir_answers, self._vocab.id_end) scores = score_files(files[0], files[1]) # perp = - np.exp(ce_words / float(n_words)) # scores["perplexity"] = perp self.logger.info("- Evaluating: {}".format(prog.info)) return { "perplexity": loss.item() } def predict_batch(self, images): preds = [] images = images.to(self.device) outputs = self.model(images) _, predicted = torch.max(outputs.data, 1) pr = outputs[:, 1].detach().cpu().numpy() for i in pr: preds.append(i) return preds def predict(self, img): return self.predict_batch([img])
42.772059
147
0.577016
10,686
0.918515
0
0
0
0
0
0
3,171
0.272563
40a5a49f8963d40bc4247496570aa980197c909d
719
py
Python
src/third_party/dart/tools/dom/scripts/all_tests.py
rhencke/engine
1016db292c4e73374a0a11536b18303c9522a224
[ "BSD-3-Clause" ]
21
2021-06-04T21:08:21.000Z
2022-03-04T14:21:34.000Z
src/third_party/dart/tools/dom/scripts/all_tests.py
rhencke/engine
1016db292c4e73374a0a11536b18303c9522a224
[ "BSD-3-Clause" ]
1
2021-01-21T14:45:59.000Z
2021-01-21T14:45:59.000Z
src/third_party/dart/tools/dom/scripts/all_tests.py
rhencke/engine
1016db292c4e73374a0a11536b18303c9522a224
[ "BSD-3-Clause" ]
9
2021-03-16T09:29:26.000Z
2022-01-06T08:38:10.000Z
#!/usr/bin/python # Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. """This entry point runs all script tests.""" import logging.config import unittest if __name__ == '__main__': logging.config.fileConfig('logging.conf') suite = unittest.TestLoader().loadTestsFromNames([ 'templateloader_test', 'pegparser_test', 'idlparser_test', 'idlnode_test', 'idlrenderer_test', 'database_test', 'databasebuilder_test', 'emitter_test', 'dartgenerator_test', 'multiemitter_test' ]) unittest.TextTestRunner().run(suite)
37.842105
76
0.719054
0
0
0
0
0
0
0
0
471
0.655076
40a5c13d7bfe8ebdc535f6e928718db2cd73a81f
623
py
Python
src/11/11367.py
youngdaLee/Baekjoon
7d858d557dbbde6603fe4e8af2891c2b0e1940c0
[ "MIT" ]
11
2020-09-20T15:17:11.000Z
2022-03-17T12:43:33.000Z
src/11/11367.py
youngdaLee/Baekjoon
7d858d557dbbde6603fe4e8af2891c2b0e1940c0
[ "MIT" ]
3
2021-10-30T07:51:36.000Z
2022-03-09T05:19:23.000Z
src/11/11367.py
youngdaLee/Baekjoon
7d858d557dbbde6603fe4e8af2891c2b0e1940c0
[ "MIT" ]
13
2021-01-21T03:19:08.000Z
2022-03-28T10:44:58.000Z
""" 11367. Report Card Time 작성자: xCrypt0r 언어: Python 3 사용 메모리: 29,380 KB 소요 시간: 64 ms 해결 날짜: 2020년 9월 18일 """ def main(): for _ in range(int(input())): name, score = input().split() score = int(score) if score < 60: grade = 'F' elif score < 67: grade = 'D' elif score < 70: grade = 'D+' elif score < 77: grade = 'C' elif score < 80: grade = 'C+' elif score < 87: grade = 'B' elif score < 90: grade = 'B+' elif score < 97: grade = 'A' else: grade = 'A+' print(name + ' ' + grade) if __name__ == '__main__': main()
20.096774
37
0.499197
0
0
0
0
0
0
0
0
196
0.294737
40a5dc8510f8fdf8f4c9c7d29bd318a4e6deedc1
49,691
py
Python
imgaug/augmentables/bbs.py
bill0714/imgaug
5abdc4d9d7f512ba34c78955557b174a64ad22a6
[ "MIT" ]
1
2019-10-25T17:43:20.000Z
2019-10-25T17:43:20.000Z
imgaug/augmentables/bbs.py
RTANC/imgaug
2a3161550a4a1895a227bb8856d525e69a7d503d
[ "MIT" ]
null
null
null
imgaug/augmentables/bbs.py
RTANC/imgaug
2a3161550a4a1895a227bb8856d525e69a7d503d
[ "MIT" ]
null
null
null
from __future__ import print_function, division, absolute_import import copy import numpy as np import skimage.draw import skimage.measure from .. import imgaug as ia from .utils import normalize_shape, project_coords # TODO functions: square(), to_aspect_ratio(), contains_point() class BoundingBox(object): """Class representing bounding boxes. Each bounding box is parameterized by its top left and bottom right corners. Both are given as x and y-coordinates. The corners are intended to lie inside the bounding box area. As a result, a bounding box that lies completely inside the image but has maximum extensions would have coordinates ``(0.0, 0.0)`` and ``(W - epsilon, H - epsilon)``. Note that coordinates are saved internally as floats. Parameters ---------- x1 : number X-coordinate of the top left of the bounding box. y1 : number Y-coordinate of the top left of the bounding box. x2 : number X-coordinate of the bottom right of the bounding box. y2 : number Y-coordinate of the bottom right of the bounding box. label : None or str, optional Label of the bounding box, e.g. a string representing the class. """ def __init__(self, x1, y1, x2, y2, label=None): """Create a new BoundingBox instance.""" if x1 > x2: x2, x1 = x1, x2 if y1 > y2: y2, y1 = y1, y2 self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 self.label = label @property def coords(self): """Get the top-left and bottom-right coordinates as one array. Returns ------- ndarray A ``(N, 2)`` numpy array with ``N=2`` containing the top-left and bottom-right coordinates. """ arr = np.empty((2, 2), dtype=np.float32) arr[0, :] = (self.x1, self.y1) arr[1, :] = (self.x2, self.y2) return arr @property def x1_int(self): """Get the x-coordinate of the top left corner as an integer. Returns ------- int X-coordinate of the top left corner, rounded to the closest integer. """ # use numpy's round to have consistent behaviour between python # versions return int(np.round(self.x1)) @property def y1_int(self): """Get the y-coordinate of the top left corner as an integer. Returns ------- int Y-coordinate of the top left corner, rounded to the closest integer. """ # use numpy's round to have consistent behaviour between python # versions return int(np.round(self.y1)) @property def x2_int(self): """Get the x-coordinate of the bottom left corner as an integer. Returns ------- int X-coordinate of the bottom left corner, rounded to the closest integer. """ # use numpy's round to have consistent behaviour between python # versions return int(np.round(self.x2)) @property def y2_int(self): """Get the y-coordinate of the bottom left corner as an integer. Returns ------- int Y-coordinate of the bottom left corner, rounded to the closest integer. """ # use numpy's round to have consistent behaviour between python # versions return int(np.round(self.y2)) @property def height(self): """Estimate the height of the bounding box. Returns ------- number Height of the bounding box. """ return self.y2 - self.y1 @property def width(self): """Estimate the width of the bounding box. Returns ------- number Width of the bounding box. """ return self.x2 - self.x1 @property def center_x(self): """Estimate the x-coordinate of the center point of the bounding box. Returns ------- number X-coordinate of the center point of the bounding box. """ return self.x1 + self.width/2 @property def center_y(self): """Estimate the y-coordinate of the center point of the bounding box. Returns ------- number Y-coordinate of the center point of the bounding box. """ return self.y1 + self.height/2 @property def area(self): """Estimate the area of the bounding box. Returns ------- number Area of the bounding box, i.e. ``height * width``. """ return self.height * self.width # TODO add test for tuple of number def contains(self, other): """Estimate whether the bounding box contains a given point. Parameters ---------- other : tuple of number or imgaug.augmentables.kps.Keypoint Point to check for. Returns ------- bool ``True`` if the point is contained in the bounding box, ``False`` otherwise. """ if isinstance(other, tuple): x, y = other else: x, y = other.x, other.y return self.x1 <= x <= self.x2 and self.y1 <= y <= self.y2 # TODO add tests for ndarray inputs def project(self, from_shape, to_shape): """Project the bounding box onto a differently shaped image. E.g. if the bounding box is on its original image at ``x1=(10 of 100 pixels)`` and ``y1=(20 of 100 pixels)`` and is projected onto a new image with size ``(width=200, height=200)``, its new position will be ``(x1=20, y1=40)``. (Analogous for ``x2``/``y2``.) This is intended for cases where the original image is resized. It cannot be used for more complex changes (e.g. padding, cropping). Parameters ---------- from_shape : tuple of int or ndarray Shape of the original image. (Before resize.) to_shape : tuple of int or ndarray Shape of the new image. (After resize.) Returns ------- imgaug.augmentables.bbs.BoundingBox ``BoundingBox`` instance with new coordinates. """ coords_proj = project_coords([(self.x1, self.y1), (self.x2, self.y2)], from_shape, to_shape) return self.copy( x1=coords_proj[0][0], y1=coords_proj[0][1], x2=coords_proj[1][0], y2=coords_proj[1][1], label=self.label) def extend(self, all_sides=0, top=0, right=0, bottom=0, left=0): """Extend the size of the bounding box along its sides. Parameters ---------- all_sides : number, optional Value by which to extend the bounding box size along all sides. top : number, optional Value by which to extend the bounding box size along its top side. right : number, optional Value by which to extend the bounding box size along its right side. bottom : number, optional Value by which to extend the bounding box size along its bottom side. left : number, optional Value by which to extend the bounding box size along its left side. Returns ------- imgaug.BoundingBox Extended bounding box. """ return BoundingBox( x1=self.x1 - all_sides - left, x2=self.x2 + all_sides + right, y1=self.y1 - all_sides - top, y2=self.y2 + all_sides + bottom ) def intersection(self, other, default=None): """Compute the intersection BB between this BB and another BB. Note that in extreme cases, the intersection can be a single point. In that case the intersection bounding box exists and it will be returned, but it will have a height and width of zero. Parameters ---------- other : imgaug.augmentables.bbs.BoundingBox Other bounding box with which to generate the intersection. default : any, optional Default value to return if there is no intersection. Returns ------- imgaug.augmentables.bbs.BoundingBox or any Intersection bounding box of the two bounding boxes if there is an intersection. If there is no intersection, the default value will be returned, which can by anything. """ x1_i = max(self.x1, other.x1) y1_i = max(self.y1, other.y1) x2_i = min(self.x2, other.x2) y2_i = min(self.y2, other.y2) if x1_i > x2_i or y1_i > y2_i: return default else: return BoundingBox(x1=x1_i, y1=y1_i, x2=x2_i, y2=y2_i) def union(self, other): """Compute the union BB between this BB and another BB. This is equivalent to drawing a bounding box around all corner points of both bounding boxes. Parameters ---------- other : imgaug.augmentables.bbs.BoundingBox Other bounding box with which to generate the union. Returns ------- imgaug.augmentables.bbs.BoundingBox Union bounding box of the two bounding boxes. """ return BoundingBox( x1=min(self.x1, other.x1), y1=min(self.y1, other.y1), x2=max(self.x2, other.x2), y2=max(self.y2, other.y2), ) def iou(self, other): """Compute the IoU between this bounding box and another one. IoU is the intersection over union, defined as:: ``area(intersection(A, B)) / area(union(A, B))`` ``= area(intersection(A, B)) / (area(A) + area(B) - area(intersection(A, B)))`` Parameters ---------- other : imgaug.augmentables.bbs.BoundingBox Other bounding box with which to compare. Returns ------- float IoU between the two bounding boxes. """ inters = self.intersection(other) if inters is None: return 0.0 area_union = self.area + other.area - inters.area return inters.area / area_union if area_union > 0 else 0.0 def is_fully_within_image(self, image): """Estimate whether the bounding box is fully inside the image area. Parameters ---------- image : (H,W,...) ndarray or tuple of int Image dimensions to use. If an ``ndarray``, its shape will be used. If a ``tuple``, it is assumed to represent the image shape and must contain at least two integers. Returns ------- bool ``True`` if the bounding box is fully inside the image area. ``False`` otherwise. """ shape = normalize_shape(image) height, width = shape[0:2] return ( self.x1 >= 0 and self.x2 < width and self.y1 >= 0 and self.y2 < height) def is_partly_within_image(self, image): """Estimate whether the BB is at least partially inside the image area. Parameters ---------- image : (H,W,...) ndarray or tuple of int Image dimensions to use. If an ``ndarray``, its shape will be used. If a ``tuple``, it is assumed to represent the image shape and must contain at least two integers. Returns ------- bool ``True`` if the bounding box is at least partially inside the image area. ``False`` otherwise. """ shape = normalize_shape(image) height, width = shape[0:2] eps = np.finfo(np.float32).eps img_bb = BoundingBox(x1=0, x2=width-eps, y1=0, y2=height-eps) return self.intersection(img_bb) is not None def is_out_of_image(self, image, fully=True, partly=False): """Estimate whether the BB is partially/fully outside of the image area. Parameters ---------- image : (H,W,...) ndarray or tuple of int Image dimensions to use. If an ``ndarray``, its shape will be used. If a ``tuple``, it is assumed to represent the image shape and must contain at least two integers. fully : bool, optional Whether to return ``True`` if the bounding box is fully outside of the image area. partly : bool, optional Whether to return ``True`` if the bounding box is at least partially outside fo the image area. Returns ------- bool ``True`` if the bounding box is partially/fully outside of the image area, depending on defined parameters. ``False`` otherwise. """ if self.is_fully_within_image(image): return False elif self.is_partly_within_image(image): return partly return fully @ia.deprecated(alt_func="BoundingBox.clip_out_of_image()", comment="clip_out_of_image() has the exactly same " "interface.") def cut_out_of_image(self, *args, **kwargs): return self.clip_out_of_image(*args, **kwargs) def clip_out_of_image(self, image): """Clip off all parts of the BB box that are outside of the image. Parameters ---------- image : (H,W,...) ndarray or tuple of int Image dimensions to use for the clipping of the bounding box. If an ``ndarray``, its shape will be used. If a ``tuple``, it is assumed to represent the image shape and must contain at least two integers. Returns ------- imgaug.augmentables.bbs.BoundingBox Bounding box, clipped to fall within the image dimensions. """ shape = normalize_shape(image) height, width = shape[0:2] assert height > 0, ( "Expected image with height>0, got shape %s." % (image.shape,)) assert width > 0, ( "Expected image with width>0, got shape %s." % (image.shape,)) eps = np.finfo(np.float32).eps x1 = np.clip(self.x1, 0, width - eps) x2 = np.clip(self.x2, 0, width - eps) y1 = np.clip(self.y1, 0, height - eps) y2 = np.clip(self.y2, 0, height - eps) return self.copy( x1=x1, y1=y1, x2=x2, y2=y2, label=self.label ) # TODO convert this to x/y params? def shift(self, top=None, right=None, bottom=None, left=None): """Move this bounding box along the x/y-axis. Parameters ---------- top : None or int, optional Amount of pixels by which to shift this object *from* the top (towards the bottom). right : None or int, optional Amount of pixels by which to shift this object *from* the right (towards the left). bottom : None or int, optional Amount of pixels by which to shift this object *from* the bottom (towards the top). left : None or int, optional Amount of pixels by which to shift this object *from* the left (towards the right). Returns ------- imgaug.augmentables.bbs.BoundingBox Shifted bounding box. """ top = top if top is not None else 0 right = right if right is not None else 0 bottom = bottom if bottom is not None else 0 left = left if left is not None else 0 return self.copy( x1=self.x1+left-right, x2=self.x2+left-right, y1=self.y1+top-bottom, y2=self.y2+top-bottom ) # TODO add explicit test for zero-sized BBs (worked when tested by hand) def draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True, raise_if_out_of_image=False, thickness=None): """Draw the bounding box on an image. Parameters ---------- image : (H,W,C) ndarray The image onto which to draw the bounding box. Currently expected to be ``uint8``. color : iterable of int, optional The color to use, corresponding to the channel layout of the image. Usually RGB. alpha : float, optional The transparency of the drawn bounding box, where ``1.0`` denotes no transparency and ``0.0`` is invisible. size : int, optional The thickness of the bounding box in pixels. If the value is larger than ``1``, then additional pixels will be added around the bounding box (i.e. extension towards the outside). copy : bool, optional Whether to copy the input image or change it in-place. raise_if_out_of_image : bool, optional Whether to raise an error if the bounding box is fully outside of the image. If set to ``False``, no error will be raised and only the parts inside the image will be drawn. thickness : None or int, optional Deprecated. Returns ------- (H,W,C) ndarray(uint8) Image with bounding box drawn on it. """ if thickness is not None: ia.warn_deprecated( "Usage of argument 'thickness' in BoundingBox.draw_on_image() " "is deprecated. The argument was renamed to 'size'.") size = thickness if raise_if_out_of_image and self.is_out_of_image(image): raise Exception( "Cannot draw bounding box x1=%.8f, y1=%.8f, x2=%.8f, y2=%.8f " "on image with shape %s." % ( self.x1, self.y1, self.x2, self.y2, image.shape)) result = np.copy(image) if copy else image if isinstance(color, (tuple, list)): color = np.uint8(color) for i in range(size): y1, y2, x1, x2 = self.y1_int, self.y2_int, self.x1_int, self.x2_int # When y values get into the range (H-0.5, H), the *_int functions # round them to H. That is technically sensible, but in the case # of drawing means that the border lies just barely outside of # the image, making the border disappear, even though the BB is # fully inside the image. Here we correct for that because of # beauty reasons. Same is the case for x coordinates. if self.is_fully_within_image(image): y1 = np.clip(y1, 0, image.shape[0]-1) y2 = np.clip(y2, 0, image.shape[0]-1) x1 = np.clip(x1, 0, image.shape[1]-1) x2 = np.clip(x2, 0, image.shape[1]-1) y = [y1-i, y1-i, y2+i, y2+i] x = [x1-i, x2+i, x2+i, x1-i] rr, cc = skimage.draw.polygon_perimeter(y, x, shape=result.shape) if alpha >= 0.99: result[rr, cc, :] = color else: if ia.is_float_array(result): # TODO use blend_alpha here result[rr, cc, :] = ( (1 - alpha) * result[rr, cc, :] + alpha * color) result = np.clip(result, 0, 255) else: input_dtype = result.dtype result = result.astype(np.float32) result[rr, cc, :] = ( (1 - alpha) * result[rr, cc, :] + alpha * color) result = np.clip(result, 0, 255).astype(input_dtype) return result # TODO add tests for pad and pad_max def extract_from_image(self, image, pad=True, pad_max=None, prevent_zero_size=True): """Extract the image pixels within the bounding box. This function will zero-pad the image if the bounding box is partially/fully outside of the image. Parameters ---------- image : (H,W) ndarray or (H,W,C) ndarray The image from which to extract the pixels within the bounding box. pad : bool, optional Whether to zero-pad the image if the object is partially/fully outside of it. pad_max : None or int, optional The maximum number of pixels that may be zero-paded on any side, i.e. if this has value ``N`` the total maximum of added pixels is ``4*N``. This option exists to prevent extremely large images as a result of single points being moved very far away during augmentation. prevent_zero_size : bool, optional Whether to prevent the height or width of the extracted image from becoming zero. If this is set to ``True`` and the height or width of the bounding box is below ``1``, the height/width will be increased to ``1``. This can be useful to prevent problems, e.g. with image saving or plotting. If it is set to ``False``, images will be returned as ``(H', W')`` or ``(H', W', 3)`` with ``H`` or ``W`` potentially being 0. Returns ------- (H',W') ndarray or (H',W',C) ndarray Pixels within the bounding box. Zero-padded if the bounding box is partially/fully outside of the image. If `prevent_zero_size` is activated, it is guarantueed that ``H'>0`` and ``W'>0``, otherwise only ``H'>=0`` and ``W'>=0``. """ pad_top = 0 pad_right = 0 pad_bottom = 0 pad_left = 0 height, width = image.shape[0], image.shape[1] x1, x2, y1, y2 = self.x1_int, self.x2_int, self.y1_int, self.y2_int # When y values get into the range (H-0.5, H), the *_int functions # round them to H. That is technically sensible, but in the case of # extraction leads to a black border, which is both ugly and # unexpected after calling cut_out_of_image(). Here we correct for # that because of beauty reasons. Same is the case for x coordinates. fully_within = self.is_fully_within_image(image) if fully_within: y1, y2 = np.clip([y1, y2], 0, height-1) x1, x2 = np.clip([x1, x2], 0, width-1) # TODO add test if prevent_zero_size: if abs(x2 - x1) < 1: x2 = x1 + 1 if abs(y2 - y1) < 1: y2 = y1 + 1 if pad: # if the bb is outside of the image area, the following pads the # image first with black pixels until the bb is inside the image # and only then extracts the image area # TODO probably more efficient to initialize an array of zeros # and copy only the portions of the bb into that array that # are natively inside the image area if x1 < 0: pad_left = abs(x1) x2 = x2 + pad_left width = width + pad_left x1 = 0 if y1 < 0: pad_top = abs(y1) y2 = y2 + pad_top height = height + pad_top y1 = 0 if x2 >= width: pad_right = x2 - width if y2 >= height: pad_bottom = y2 - height paddings = [pad_top, pad_right, pad_bottom, pad_left] any_padded = any([val > 0 for val in paddings]) if any_padded: if pad_max is None: pad_max = max(paddings) image = ia.pad( image, top=min(pad_top, pad_max), right=min(pad_right, pad_max), bottom=min(pad_bottom, pad_max), left=min(pad_left, pad_max) ) return image[y1:y2, x1:x2] else: within_image = ( (0, 0, 0, 0) <= (x1, y1, x2, y2) < (width, height, width, height) ) out_height, out_width = (y2 - y1), (x2 - x1) nonzero_height = (out_height > 0) nonzero_width = (out_width > 0) if within_image and nonzero_height and nonzero_width: return image[y1:y2, x1:x2] if prevent_zero_size: out_height = 1 out_width = 1 else: out_height = 0 out_width = 0 if image.ndim == 2: return np.zeros((out_height, out_width), dtype=image.dtype) return np.zeros((out_height, out_width, image.shape[-1]), dtype=image.dtype) # TODO also add to_heatmap # TODO add this to BoundingBoxesOnImage def to_keypoints(self): """Convert the BB's corners to keypoints (clockwise, from top left). Returns ------- list of imgaug.augmentables.kps.Keypoint Corners of the bounding box as keypoints. """ # TODO get rid of this deferred import from imgaug.augmentables.kps import Keypoint return [ Keypoint(x=self.x1, y=self.y1), Keypoint(x=self.x2, y=self.y1), Keypoint(x=self.x2, y=self.y2), Keypoint(x=self.x1, y=self.y2) ] def coords_almost_equals(self, other, max_distance=1e-4): """Estimate if this and another BB have almost identical coordinates. Parameters ---------- other : imgaug.augmentables.bbs.BoundingBox or iterable The other bounding box with which to compare this one. If this is an ``iterable``, it is assumed to represent the top-left and bottom-right coordinates of that bounding box, given as e.g. an ``(2,2)`` ndarray or an ``(4,)`` ndarray or as a similar list. max_distance : number, optional The maximum euclidean distance between a corner on one bounding box and the closest corner on the other bounding box. If the distance is exceeded for any such pair, the two BBs are not viewed as equal. Returns ------- bool Whether the two bounding boxes have almost identical corner coordinates. """ if ia.is_np_array(other): # we use flat here in case other is (N,2) instead of (4,) coords_b = other.flat elif ia.is_iterable(other): coords_b = list(ia.flatten(other)) else: assert isinstance(other, BoundingBox), ( "Expected 'other' to be an iterable containing two " "(x,y)-coordinate pairs or a BoundingBox. " "Got type %s." % (type(other),)) coords_b = other.coords.flat coords_a = self.coords return np.allclose(coords_a.flat, coords_b, atol=max_distance, rtol=0) def almost_equals(self, other, max_distance=1e-4): """Compare this and another BB's label and coordinates. This is the same as :func:`imgaug.augmentables.bbs.BoundingBox.coords_almost_equals` but additionally compares the labels. Parameters ---------- other : imgaug.augmentables.bbs.BoundingBox or iterable The other object to compare against. Expected to be a ``BoundingBox``. max_distance : number, optional See :func:`imgaug.augmentables.bbs.BoundingBox.coords_almost_equals`. Returns ------- bool ``True`` if the coordinates are almost equal and additionally the labels are equal. Otherwise ``False``. """ if self.label != other.label: return False return self.coords_almost_equals(other, max_distance=max_distance) @classmethod def from_point_soup(cls, xy): """Convert a ``(2P,) or (P,2) ndarray`` to a BB instance. This is the inverse of :func:`imgaug.BoundingBoxesOnImage.to_xyxy_array`. Parameters ---------- xy : (2P,) ndarray or (P, 2) array or iterable of number or iterable of iterable of number Array containing ``P`` points in xy-form denoting a soup of points around which to place a bounding box. The array should usually be of dtype ``float32``. Returns ------- imgaug.augmentables.bbs.BoundingBox Bounding box around the points. """ xy = np.array(xy, dtype=np.float32) assert len(xy) > 0, ( "Expected to get at least one point to place a bounding box " "around, got shape %s." % (xy.shape,)) assert xy.ndim == 1 or (xy.ndim == 2 and xy.shape[-1] == 2), ( "Expected input array of shape (P,) or (P, 2), " "got shape %s." % (xy.shape,)) if xy.ndim == 1: xy = xy.reshape((-1, 2)) x1, y1 = np.min(xy, axis=0) x2, y2 = np.max(xy, axis=0) return cls(x1=x1, y1=y1, x2=x2, y2=y2) def copy(self, x1=None, y1=None, x2=None, y2=None, label=None): """Create a shallow copy of this BoundingBox instance. Parameters ---------- x1 : None or number If not ``None``, then the ``x1`` coordinate of the copied object will be set to this value. y1 : None or number If not ``None``, then the ``y1`` coordinate of the copied object will be set to this value. x2 : None or number If not ``None``, then the ``x2`` coordinate of the copied object will be set to this value. y2 : None or number If not ``None``, then the ``y2`` coordinate of the copied object will be set to this value. label : None or string If not ``None``, then the ``label`` of the copied object will be set to this value. Returns ------- imgaug.augmentables.bbs.BoundingBox Shallow copy. """ return BoundingBox( x1=self.x1 if x1 is None else x1, x2=self.x2 if x2 is None else x2, y1=self.y1 if y1 is None else y1, y2=self.y2 if y2 is None else y2, label=copy.deepcopy(self.label) if label is None else label ) def deepcopy(self, x1=None, y1=None, x2=None, y2=None, label=None): """ Create a deep copy of the BoundingBox object. Parameters ---------- x1 : None or number If not ``None``, then the ``x1`` coordinate of the copied object will be set to this value. y1 : None or number If not ``None``, then the ``y1`` coordinate of the copied object will be set to this value. x2 : None or number If not ``None``, then the ``x2`` coordinate of the copied object will be set to this value. y2 : None or number If not ``None``, then the ``y2`` coordinate of the copied object will be set to this value. label : None or string If not ``None``, then the ``label`` of the copied object will be set to this value. Returns ------- imgaug.augmentables.bbs.BoundingBox Deep copy. """ # TODO write specific copy routine with deepcopy for label and remove # the deepcopy from copy() return self.copy(x1=x1, y1=y1, x2=x2, y2=y2, label=label) def __repr__(self): return self.__str__() def __str__(self): return "BoundingBox(x1=%.4f, y1=%.4f, x2=%.4f, y2=%.4f, label=%s)" % ( self.x1, self.y1, self.x2, self.y2, self.label) class BoundingBoxesOnImage(object): """Container for the list of all bounding boxes on a single image. Parameters ---------- bounding_boxes : list of imgaug.augmentables.bbs.BoundingBox List of bounding boxes on the image. shape : tuple of int or ndarray The shape of the image on which the objects are placed. Either an image with shape ``(H,W,[C])`` or a ``tuple`` denoting such an image shape. Examples -------- >>> import numpy as np >>> from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage >>> >>> image = np.zeros((100, 100)) >>> bbs = [ >>> BoundingBox(x1=10, y1=20, x2=20, y2=30), >>> BoundingBox(x1=25, y1=50, x2=30, y2=70) >>> ] >>> bbs_oi = BoundingBoxesOnImage(bbs, shape=image.shape) """ def __init__(self, bounding_boxes, shape): self.bounding_boxes = bounding_boxes self.shape = normalize_shape(shape) @property def items(self): """Get the bounding boxes in this container. Returns ------- list of BoundingBox Bounding boxes within this container. """ return self.bounding_boxes # TODO remove this? here it is image height, but in BoundingBox it is # bounding box height @property def height(self): """Get the height of the image on which the bounding boxes fall. Returns ------- int Image height. """ return self.shape[0] # TODO remove this? here it is image width, but in BoundingBox it is # bounding box width @property def width(self): """Get the width of the image on which the bounding boxes fall. Returns ------- int Image width. """ return self.shape[1] @property def empty(self): """Determine whether this instance contains zero bounding boxes. Returns ------- bool True if this object contains zero bounding boxes. """ return len(self.bounding_boxes) == 0 def on(self, image): """Project bounding boxes from one image (shape) to a another one. Parameters ---------- image : ndarray or tuple of int New image onto which the bounding boxes are to be projected. May also simply be that new image's shape tuple. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Object containing the same bounding boxes after projection to the new image shape. """ shape = normalize_shape(image) if shape[0:2] == self.shape[0:2]: return self.deepcopy() bounding_boxes = [bb.project(self.shape, shape) for bb in self.bounding_boxes] return BoundingBoxesOnImage(bounding_boxes, shape) @classmethod def from_xyxy_array(cls, xyxy, shape): """Convert an ``(N, 4) or (N, 2, 2) ndarray`` to a BBsOI instance. This is the inverse of :func:`imgaug.BoundingBoxesOnImage.to_xyxy_array`. Parameters ---------- xyxy : (N, 4) ndarray or (N, 2, 2) array Array containing the corner coordinates of ``N`` bounding boxes. Each bounding box is represented by its top-left and bottom-right coordinates. The array should usually be of dtype ``float32``. shape : tuple of int Shape of the image on which the bounding boxes are placed. Should usually be ``(H, W, C)`` or ``(H, W)``. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Object containing a list of :class:`BoundingBox` instances derived from the provided corner coordinates. """ xyxy = np.array(xyxy, dtype=np.float32) # note that np.array([]) is (0,), not (0, 2) if xyxy.shape[0] == 0: return BoundingBoxesOnImage([], shape) assert ( (xyxy.ndim == 2 and xyxy.shape[-1] == 4) or (xyxy.ndim == 3 and xyxy.shape[1:3] == (2, 2))), ( "Expected input array of shape (N, 4) or (N, 2, 2), " "got shape %s." % (xyxy.shape,)) xyxy = xyxy.reshape((-1, 2, 2)) boxes = [BoundingBox.from_point_soup(row) for row in xyxy] return cls(boxes, shape) @classmethod def from_point_soups(cls, xy, shape): """Convert an ``(N, 2P) or (N, P, 2) ndarray`` to a BBsOI instance. Parameters ---------- xy : (N, 2P) ndarray or (N, P, 2) array or iterable of iterable of number or iterable of iterable of iterable of number Array containing the corner coordinates of ``N`` bounding boxes. Each bounding box is represented by a soup of ``P`` points. If ``(N, P)`` then the second axis is expected to be in xy-form (e.g. ``x1``, ``y1``, ``x2``, ``y2``, ...). The final bounding box coordinates will be derived using ``min`` and ``max`` operations on the xy-values. The array should usually be of dtype ``float32``. shape : tuple of int Shape of the image on which the bounding boxes are placed. Should usually be ``(H, W, C)`` or ``(H, W)``. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Object containing a list of :class:`BoundingBox` instances derived from the provided point soups. """ xy = np.array(xy, dtype=np.float32) # from_xy_array() already checks the ndim/shape, so we don't have to # do it here boxes = [BoundingBox.from_point_soup(row) for row in xy] return cls(boxes, shape) def to_xyxy_array(self, dtype=np.float32): """Convert the ``BoundingBoxesOnImage`` object to an ``(N,4) ndarray``. This is the inverse of :func:`imgaug.BoundingBoxesOnImage.from_xyxy_array`. Parameters ---------- dtype : numpy.dtype, optional Desired output datatype of the ndarray. Returns ------- ndarray ``(N,4) ndarray``, where ``N`` denotes the number of bounding boxes and ``4`` denotes the top-left and bottom-right bounding box corner coordinates in form ``(x1, y1, x2, y2)``. """ xyxy_array = np.zeros((len(self.bounding_boxes), 4), dtype=np.float32) for i, box in enumerate(self.bounding_boxes): xyxy_array[i] = [box.x1, box.y1, box.x2, box.y2] return xyxy_array.astype(dtype) def to_xy_array(self): """Convert the ``BoundingBoxesOnImage`` object to an ``(N,2) ndarray``. Returns ------- ndarray ``(2*B,2) ndarray`` of xy-coordinates, where ``B`` denotes the number of bounding boxes. """ return self.to_xyxy_array().reshape((-1, 2)) def fill_from_xyxy_array_(self, xyxy): """Modify the BB coordinates of this instance in-place. .. note :: This currently expects exactly one entry in `xyxy` per bounding in this instance. (I.e. two corner coordinates per instance.) Otherwise, an ``AssertionError`` will be raised. .. note :: This method will automatically flip x-coordinates if ``x1>x2`` for a bounding box. (Analogous for y-coordinates.) Parameters ---------- xyxy : (N, 4) ndarray or iterable of iterable of number Coordinates of ``N`` bounding boxes on an image, given as a ``(N,4)`` array of two corner xy-coordinates per bounding box. ``N`` must match the number of bounding boxes in this instance. Returns ------- BoundingBoxesOnImage This instance itself, with updated bounding box coordinates. Note that the instance was modified in-place. """ xyxy = np.array(xyxy, dtype=np.float32) # note that np.array([]) is (0,), not (0, 4) assert xyxy.shape[0] == 0 or (xyxy.ndim == 2 and xyxy.shape[-1] == 4), ( "Expected input array to have shape (N,4), " "got shape %s." % (xyxy.shape,)) assert len(xyxy) == len(self.bounding_boxes), ( "Expected to receive an array with as many rows there are " "bounding boxes in this instance. Got %d rows, expected %d." % ( len(xyxy), len(self.bounding_boxes))) for bb, (x1, y1, x2, y2) in zip(self.bounding_boxes, xyxy): bb.x1 = min([x1, x2]) bb.y1 = min([y1, y2]) bb.x2 = max([x1, x2]) bb.y2 = max([y1, y2]) return self def fill_from_xy_array_(self, xy): """Modify the BB coordinates of this instance in-place. See :func:`imgaug.augmentables.bbs.BoundingBoxesOnImage.fill_from_xyxy_array_`. Parameters ---------- xy : (2*B, 2) ndarray or iterable of iterable of number Coordinates of ``B`` bounding boxes on an image, given as a ``(2*B,2)`` array of two corner xy-coordinates per bounding box. ``B`` must match the number of bounding boxes in this instance. Returns ------- BoundingBoxesOnImage This instance itself, with updated bounding box coordinates. Note that the instance was modified in-place. """ xy = np.array(xy, dtype=np.float32) return self.fill_from_xyxy_array_(xy.reshape((-1, 4))) def draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True, raise_if_out_of_image=False, thickness=None): """Draw all bounding boxes onto a given image. Parameters ---------- image : (H,W,3) ndarray The image onto which to draw the bounding boxes. This image should usually have the same shape as set in ``BoundingBoxesOnImage.shape``. color : int or list of int or tuple of int or (3,) ndarray, optional The RGB color of all bounding boxes. If a single ``int`` ``C``, then that is equivalent to ``(C,C,C)``. alpha : float, optional Alpha/transparency of the bounding box. size : int, optional Thickness in pixels. copy : bool, optional Whether to copy the image before drawing the bounding boxes. raise_if_out_of_image : bool, optional Whether to raise an exception if any bounding box is outside of the image. thickness : None or int, optional Deprecated. Returns ------- (H,W,3) ndarray Image with drawn bounding boxes. """ image = np.copy(image) if copy else image for bb in self.bounding_boxes: image = bb.draw_on_image( image, color=color, alpha=alpha, size=size, copy=False, raise_if_out_of_image=raise_if_out_of_image, thickness=thickness ) return image def remove_out_of_image(self, fully=True, partly=False): """Remove all BBs that are fully/partially outside of the image. Parameters ---------- fully : bool, optional Whether to remove bounding boxes that are fully outside of the image. partly : bool, optional Whether to remove bounding boxes that are partially outside of the image. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Reduced set of bounding boxes, with those that were fully/partially outside of the image being removed. """ bbs_clean = [ bb for bb in self.bounding_boxes if not bb.is_out_of_image(self.shape, fully=fully, partly=partly)] return BoundingBoxesOnImage(bbs_clean, shape=self.shape) @ia.deprecated(alt_func="BoundingBoxesOnImage.clip_out_of_image()", comment="clip_out_of_image() has the exactly same " "interface.") def cut_out_of_image(self): return self.clip_out_of_image() def clip_out_of_image(self): """Clip off all parts from all BBs that are outside of the image. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Bounding boxes, clipped to fall within the image dimensions. """ bbs_cut = [ bb.clip_out_of_image(self.shape) for bb in self.bounding_boxes if bb.is_partly_within_image(self.shape)] return BoundingBoxesOnImage(bbs_cut, shape=self.shape) def shift(self, top=None, right=None, bottom=None, left=None): """Move all all BBs along the x/y-axis. Parameters ---------- top : None or int, optional Amount of pixels by which to shift all objects *from* the top (towards the bottom). right : None or int, optional Amount of pixels by which to shift all objects *from* the right (towads the left). bottom : None or int, optional Amount of pixels by which to shift all objects *from* the bottom (towards the top). left : None or int, optional Amount of pixels by which to shift all objects *from* the left (towards the right). Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Shifted bounding boxes. """ bbs_new = [ bb.shift(top=top, right=right, bottom=bottom, left=left) for bb in self.bounding_boxes] return BoundingBoxesOnImage(bbs_new, shape=self.shape) def to_keypoints_on_image(self): """Convert the bounding boxes to one ``KeypointsOnImage`` instance. Returns ------- imgaug.augmentables.kps.KeypointsOnImage A keypoints instance containing ``N*4`` coordinates for ``N`` bounding boxes. Order matches the order in ``bounding_boxes``. """ from .kps import KeypointsOnImage # This currently uses 4 points instead of 2 points as the method # is primarily used during augmentation and 4 points are overall # the better choice there. arr = np.zeros((len(self.bounding_boxes), 2*4), dtype=np.float32) for i, box in enumerate(self.bounding_boxes): arr[i] = [ box.x1, box.y1, box.x2, box.y1, box.x2, box.y2, box.x1, box.y2 ] return KeypointsOnImage.from_xy_array( arr.reshape((-1, 2)), shape=self.shape ) def invert_to_keypoints_on_image_(self, kpsoi): """Invert the output of ``to_keypoints_on_image()`` in-place. This function writes in-place into this ``BoundingBoxesOnImage`` instance. Parameters ---------- kpsoi : imgaug.augmentables.kps.KeypointsOnImages Keypoints to convert back to bounding boxes, i.e. the outputs of ``to_keypoints_on_image()``. Returns ------- BoundingBoxesOnImage Bounding boxes container with updated coordinates. Note that the instance is also updated in-place. """ assert len(kpsoi.keypoints) == len(self.bounding_boxes) * 4, ( "Expected %d coordinates, got %d." % ( len(self.bounding_boxes) * 2, len(kpsoi.keypoints))) for i, bb in enumerate(self.bounding_boxes): xx = [kpsoi.keypoints[4*i+0].x, kpsoi.keypoints[4*i+1].x, kpsoi.keypoints[4*i+2].x, kpsoi.keypoints[4*i+3].x] yy = [kpsoi.keypoints[4*i+0].y, kpsoi.keypoints[4*i+1].y, kpsoi.keypoints[4*i+2].y, kpsoi.keypoints[4*i+3].y] bb.x1 = min(xx) bb.y1 = min(yy) bb.x2 = max(xx) bb.y2 = max(yy) self.shape = kpsoi.shape return self def copy(self): """Create a shallow copy of the ``BoundingBoxesOnImage`` instance. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Shallow copy. """ return copy.copy(self) def deepcopy(self): """Create a deep copy of the ``BoundingBoxesOnImage`` object. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Deep copy. """ # Manual copy is far faster than deepcopy for BoundingBoxesOnImage, # so use manual copy here too bbs = [bb.deepcopy() for bb in self.bounding_boxes] return BoundingBoxesOnImage(bbs, tuple(self.shape)) def __repr__(self): return self.__str__() def __str__(self): return ( "BoundingBoxesOnImage(%s, shape=%s)" % (str(self.bounding_boxes), self.shape))
33.327297
127
0.55666
49,400
0.994144
0
0
8,788
0.176853
0
0
31,539
0.634702
40a5de5724e10b92314c5b47739791ffcddafb72
2,891
py
Python
scanner_relay/run.py
breakds/brokering
fa63d5ed8057a8018bcb11aaebce689c8d18e7ba
[ "MIT" ]
null
null
null
scanner_relay/run.py
breakds/brokering
fa63d5ed8057a8018bcb11aaebce689c8d18e7ba
[ "MIT" ]
null
null
null
scanner_relay/run.py
breakds/brokering
fa63d5ed8057a8018bcb11aaebce689c8d18e7ba
[ "MIT" ]
null
null
null
#!/usr/bin/env python from twisted.internet import endpoints from twisted.internet import protocol from twisted.internet import defer from twisted.mail import imap4 from scanner_relay.pipeline import Pipeline from scanner_relay.authentication import PassStoreFetcher, PlainPasswordFetcher import logging # Global configuration for the logging. Note that we set the level to # INFO so that only DEBUG logging does not get to stdout. FORMAT = '[%(levelname)s] (%(name)s) %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger('run') class ScannerRelayProtocol(imap4.IMAP4Client): def __init__(self, username, password_fetcher, onFinish): super().__init__() self.pipeline = Pipeline(self, username, password_fetcher, onFinish) def serverGreeting(self, unused_capabilities): """The entry point for the whole program. It merely starts the long-running pipeline. """ # NOTE: Although twisted official example suggest using the capabilities # returned here to decide what kind of authentication methods to # register, I found it to be not true as real capabilities are only # returned after the authentication is successful. username = self.pipeline.username self.registerAuthenticator(imap4.PLAINAuthenticator(username)) self.registerAuthenticator(imap4.LOGINAuthenticator(username)) self.registerAuthenticator( imap4.CramMD5ClientAuthenticator(username)) self.pipeline.start() class ScannerRelayProtocolFactory(protocol.ClientFactory): def __init__(self, username, password_fetcher, onFinish): super().__init__() self.username = username self.password_fetcher = password_fetcher self.onFinish = onFinish def buildProtocol(self, addr): logger.info('Constructing client protocol to connect to %s:%d', addr.host, addr.port) protocol = ScannerRelayProtocol( self.username, self.password_fetcher, self.onFinish) protocol.factory = self return protocol def clientConnectionFailed(self, connector, reason): print('Connection failed.') # TODO(breakds): And a more graceful (singal handling) way to terminate the program. def clean_up(unused): from twisted.internet import reactor reactor.stop() print('All workd done!') if __name__ == '__main__': # FIXME: Make these configurable hostname = 'mail.breakds.org' username = '[email protected]'.encode('ascii') pass_store_entry = 'mail.breakds.org/bds' port = 143 from twisted.internet import reactor endpoint = endpoints.HostnameEndpoint(reactor, hostname, port) factory = ScannerRelayProtocolFactory( username, PassStoreFetcher(pass_store_entry), clean_up) endpoint.connect(factory) reactor.run()
34.416667
93
0.71982
1,636
0.565894
0
0
0
0
0
0
828
0.286406
40a624029504fa50d779ccdfdaa5ed5b7ed61a95
1,202
py
Python
cubes_pilingup.py
akiselev1/hackerrank-solutions
53c2a76c71c9b3553c077ccfde5178b27594ae72
[ "MIT" ]
null
null
null
cubes_pilingup.py
akiselev1/hackerrank-solutions
53c2a76c71c9b3553c077ccfde5178b27594ae72
[ "MIT" ]
null
null
null
cubes_pilingup.py
akiselev1/hackerrank-solutions
53c2a76c71c9b3553c077ccfde5178b27594ae72
[ "MIT" ]
null
null
null
""" Created by akiselev on 2019-06-14 There is a horizontal row of cubes. The length of each cube is given. You need to create a new vertical pile of cubes. The new pile should follow these directions: if is on top of then . When stacking the cubes, you can only pick up either the leftmost or the rightmost cube each time. Print "Yes" if it is possible to stack the cubes. Otherwise, print "No". Do not print the quotation marks. Input Format The first line contains a single integer , the number of test cases. For each test case, there are lines. The first line of each test case contains , the number of cubes. The second line contains space separated integers, denoting the sideLengths of each cube in that order. Constraints Output Format For each test case, output a single line containing either "Yes" or "No" without the quotes. Sample Input 2 6 4 3 2 1 3 4 3 1 3 2 Sample Output Yes No """ for T in range(int(input())): n = int(input()) cubes_h = list(map(int, input().split())) i = 0 while i < n - 1 and cubes_h[i] >= cubes_h[i+1]: i += 1 while i < n - 1 and cubes_h[i] <= cubes_h[i+1]: i += 1 print("Yes" if i == n - 1 else "No")
23.115385
205
0.689684
0
0
0
0
0
0
0
0
928
0.772047
40a999434640883a137547c775c396581c90f8a2
14,674
py
Python
flask_web/bootstrap_web_core_py3.py
bopopescu/docker_images_a
348d0982c5962f2ae34d10183ed9522b7a6fe286
[ "MIT" ]
null
null
null
flask_web/bootstrap_web_core_py3.py
bopopescu/docker_images_a
348d0982c5962f2ae34d10183ed9522b7a6fe286
[ "MIT" ]
null
null
null
flask_web/bootstrap_web_core_py3.py
bopopescu/docker_images_a
348d0982c5962f2ae34d10183ed9522b7a6fe286
[ "MIT" ]
null
null
null
# # # File: flask_web_py3.py # # # import os import json import redis import urllib import flask from flask import Flask from flask import render_template,jsonify from flask_httpauth import HTTPDigestAuth from flask import request, session, url_for from redis_support_py3.graph_query_support_py3 import Query_Support from redis_support_py3.construct_data_handlers_py3 import Generate_Handlers from web_core.load_static_pages_py3 import Load_Static_Files from web_core.load_redis_access_py3 import Load_Redis_Access from redis_support_py3.construct_data_handlers_py3 import Redis_RPC_Client from bootstrap_web_system_control_py3 import PI_Web_System_Control from bootstrap_web_monitoring_py3 import PI_Web_Monitor_Server from bootstrap_mqtt_client_py3 import PI_MQTT_Client_Monitor from bootstrap_eto_py3 import ETO_Management from file_server_library.file_server_lib_py3 import Construct_RPC_Library from bootstrap_irrigation_scheduling_py3 import Irrigation_Scheduling from irrigation_control.load_irrigation_control_py3 import Load_Irrigation_Control class URL_Rule_Class(object): def __init__(self,app,auth): self.subsystems = {} self.subsystem_order = [] self.app = app self.auth = auth def add_get_rules(self,subsystem_name,function_list,url_list): slash_name = "/"+subsystem_name+"/" assert(len(function_list)==len(url_list)) menu_list = [] menu_data = {} for i in range(0,len(function_list)): a1 = self.auth.login_required( function_list[i] ) self.app.add_url_rule(slash_name+url_list[i][0]+url_list[i][1],slash_name+url_list[i][0],a1) menu_data[url_list[i][0]] =[a1,url_list[i][0]+url_list[i][2],url_list[i][3]] menu_list.append(url_list[i][0]) self.subsystems[subsystem_name] = {"menu_list":menu_list,"menu_data":menu_data} self.subsystem_order.append(subsystem_name) def move_directories(self,path): #print("move directory path",path) path_test = path.split("/") if len(path_test) != 1: path_dest = path_test[1] else: path_dest = path #print(path) #print(path_dest) os.system('mkdir flask_templates/'+path_dest) os.system('mkdir flask_templates/js/'+path_dest) #os.system("ls flask_templates") #print("path",path,path_dest) os.system('cp -r ' +path+'/templates/* flask_templates/'+path_dest) os.system('cp -r ' +path+'/js/* flask_templates/js/'+path_dest) return path_dest class Load_App_Sys_Files(object): def __init__( self, app, auth, request, file_server_library ): self.app = app self.auth = auth self.request = request self.file_server_library = file_server_library a1 = auth.login_required( self.get_system_file ) app.add_url_rule("/ajax/get_system_file/<path:file_name>","get_system_file",a1) a1 = auth.login_required( self.get_app_file ) app.add_url_rule("/ajax/get_app_file/<path:file_name>","get_app_file",a1) a1 = auth.login_required( self.save_app_file ) app.add_url_rule("/ajax/save_app_file/<path:file_name>","save_app_file",a1,methods=["POST"]) a1 = auth.login_required( self.save_sys_file ) app.add_url_rule("/ajax/save_sys_file/<path:file_name>","save_sys_file",a1,methods=["POST"]) def get_system_file(self, file_name): data = self.file_server_library.load_file( "application_files",file_name) return json.dumps(data) def get_app_file(self,file_name): data = self.file_server_library.load_file( "system_files",file_name) return json.dumps(data ) def save_app_file(self,file_name): json_object = self.request.json if type(json_object) != str: json_object = json.dumps(json_object) self.file_server_library.save_file("application_files",file_name, json_object ); return json.dumps('SUCCESS') def save_sys_file(self,file_name): json_object = self.request.json if type(json_object) != str: json_object = json.dumps(json_object) self.file_server_library.save_file( "system_files",file_name, json_object ); return json.dumps('SUCCESS') class PI_Web_Server_Core(object): def __init__(self , name, site_data ): redis_handle_pw = redis.StrictRedis(site_data["host"], site_data["port"], db=site_data["redis_password_db"], decode_responses=True) self.site_data = site_data startup_dict = redis_handle_pw.hgetall("web") self.qs = Query_Support( site_data) self.file_server_library = Construct_RPC_Library(self.qs,self.site_data) self.app = Flask(name) self.auth = HTTPDigestAuth() self.url_rule_class = URL_Rule_Class(self.app,self.auth) self.auth.get_password( self.get_pw ) self.startup_dict = startup_dict self.app.template_folder = 'flask_templates' self.app.static_folder = 'static' self.app.config['SECRET_KEY'] = startup_dict["SECRET_KEY"] self.users = json.loads(startup_dict["users"]) Load_Static_Files(self.app,self.auth) #enable static files to be fetched self.redis_access = Load_Redis_Access(self.app, self.auth, request ) #enable web access for redis operations Load_App_Sys_Files( self.app, self.auth, request, self.file_server_library ) self.subsystems = [] self.modules = {} self.load_specified_modules() def load_specified_modules(self): results=self.common_qs_search(["WEB_SERVER","WEB_SERVER"]) result = results[0] modules = result["modules"] for i in modules: if i == "monitoring": print(i) PI_Web_Monitor_Server(self) elif i == "system_control": print(i) PI_Web_System_Control(self) elif i == "mqtt_client": print(i) PI_MQTT_Client_Monitor(self ) elif i == "eto": print(i) ETO_Management(self) elif i == "irrigation_scheduling": print(i) Irrigation_Scheduling(self) elif i == "irrigation_control": print(i) Load_Irrigation_Control(self) elif i == "modbus_control": print("do nothing right now") else: raise ValueError("bad web module") self.result = result if "status_function" in self.result: print(self.result["status_function"]) else: self.result["status_function"] = "" print("status function not defined") file_handle = open("flask_templates/js/status_definition.js","w") file_handle.write('__status_option__ = "'+self.result["status_function"]+'"; \n') file_handle.close() def common_qs_search(self,search_list): # generalized graph search query_list = [] query_list = self.qs.add_match_relationship( query_list,relationship="SITE",label=self.site_data["site"] ) for i in range(0,len(search_list)-1): if type(search_list[i]) == list: query_list = self.qs.add_match_relationship( query_list,relationship = search_list[i][0],label = search_list[i][1] ) else: query_list = self.qs.add_match_relationship( query_list,relationship = search_list[i] ) if type(search_list[-1]) == list: query_list = self.qs.add_match_terminal( query_list,relationship = search_list[-1][0],label = search_list[-1][1] ) else: query_list = self.qs.add_match_terminal( query_list,relationship = search_list[-1] ) node_sets, node_sources = self.qs.match_list(query_list) return node_sources def get_pw( self,username): if username in self.users: return self.users[username] return None def generate_menu_page(self): self.subsystems.sort() self.generate_menu_template() self.generate_modal_template() def generate_default_index_page(self): self.app.add_url_rule("/","home_page",self.links_a1) def generate_index_page(self,module,element): menu_data = self.url_rule_class.subsystems[module]["menu_data"] menu_element = menu_data[element] self.app.add_url_rule("/","home page",menu_element[0]) def generate_site_map(self): self.links_a1 = self.auth.login_required( self.site_map_function ) self.app.add_url_rule("/link_page","/links_page",self.links_a1) def site_map_function(self): links = [] for rule in self.app.url_map.iter_rules(): # Filter out rules we can't navigate to in a browser # and rules that require parameters #url = url_for(rule.endpoint, **(rule.defaults or {})) links.append((rule.endpoint)) links.sort() return render_template("list_of_endpoints",endpoints = links) def run_http( self): self.app.run(threaded=True , use_reloader=True, host='0.0.0.0',port=self.port,debug =self.debug ) def run_https( self ): startup_dict = self.startup_dict self.app.run(threaded=True , use_reloader=True, host='0.0.0.0',debug =self.debug, port=self.port ,ssl_context=("/data/cert.pem", "/data/key.pem")) def generate_menu_template(self): f = open( self.app.template_folder+'/menu', 'w') output_string = ''' <nav class="navbar navbar-expand-sm bg-dark navbar-dark"> <!-- Links --> <ul class="navbar-nav"> <!-- Dropdown --> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbardrop" data-toggle="dropdown">Menu</a> <div class="dropdown-menu"> ''' f.write(output_string) self.url_rule_class.subsystems for i in self.url_rule_class.subsystems: temp = ' <a class="dropdown-item" href="#" data-toggle="modal" data-target="#'+i+'">'+i+"</a>\n" f.write(temp) output_string = ''' </div> </li> </ul> <ul class="navbar-nav"> <button id="status_panel", class="btn " type="submit">Status</button> </ul> <nav class="navbar navbar-light bg-dark navbar-dark"> <span class="navbar-text" > <h4 id ="status_display"> Status: </h4> </span> </nav> </nav> ''' f.write(output_string) f.close() def generate_modal_template(self): f = open(self.app.template_folder+'/modals', 'w') for i in self.url_rule_class.subsystem_order: #print("generate_modal_template - i",i) output_string = '<!–'+i+' –>\n' f.write(output_string) output_string ='<div class="modal fade" id='+i+' tabindex="-1" role="dialog" aria-labelledby="accountModalLabel" aria-hidden="true">\n' f.write(output_string) output_string = ''' <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> ''' f.write(output_string) f.write(' <h5 class="modal-title" id="accountModalLabel">'+i+'</h5>\n') output_string = ''' <button type="button" class="close" data-dismiss="modal" aria-label="close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <ul > ''' f.write(output_string) # <li><a href ='/control/display_past_system_alerts' target="_self">Current System State</a></li> sub_system_data = self.url_rule_class.subsystems[i] temp = sub_system_data["menu_data"] # for j in sub_system_data['menu_list']: data = temp[j] #print("data",data) format_output = '<li><a href='+'"/'+i+'/'+data[1]+'" target="_self">'+data[2]+'</a></li>\n' f.write(format_output) output_string = ''' </ul> </div> <div class="modal-footer"> <button type="button" class="btn btn-secondary" data-dismiss="modal">Close</button> </div> </div> </div> </div> ''' f.write(output_string) f.close() if __name__ == "__main__": file_handle = open("/data/redis_server.json",'r') data = file_handle.read() file_handle.close() redis_site_data = json.loads(data) pi_web_server = PI_Web_Server_Core(__name__, redis_site_data ) pi_web_server.generate_menu_page() pi_web_server.generate_site_map() pi_web_server.generate_default_index_page() port = pi_web_server.result["port"] pi_web_server.port = port debug = pi_web_server.result["debug"] pi_web_server.debug = debug https_flag = pi_web_server.result["https"] if https_flag == False: pi_web_server.run_https() else: pi_web_server.run_https()
34.855107
147
0.568284
12,806
0.872462
0
0
0
0
0
0
3,663
0.249557
40a99a0c9d4869b889926f6fe54b50b768c6cb98
4,160
py
Python
git_talk/lib/changelog/main.py
cove9988/git-talk
9f549d8565948a150834bcaa704b55ae15c094c1
[ "MIT" ]
5
2020-04-06T11:00:27.000Z
2020-09-30T15:16:56.000Z
git_talk/lib/changelog/main.py
ggdrg/git-talk
89ed00caa6a426ea9d5fa84cbef588d07aebc1f0
[ "MIT" ]
3
2020-09-26T02:53:30.000Z
2020-10-09T01:46:37.000Z
git_talk/lib/changelog/main.py
ggdrg/git-talk
89ed00caa6a426ea9d5fa84cbef588d07aebc1f0
[ "MIT" ]
1
2020-09-25T23:41:54.000Z
2020-09-25T23:41:54.000Z
import os import logging from typing import Optional import click from git_talk.lib.changelog import generate_changelog from git_talk.lib.changelog.presenter import MarkdownPresenter from git_talk.lib.changelog.repository import GitRepository # @click.command() # @click.option( # "-r", # "--repo", # type=click.Path(exists=True), # default=".", # help="Path to the repository's root directory [Default: .]", # ) # @click.option("-t", "--title", default="Changelog", help="The changelog's title [Default: Changelog]") # @click.option("-d", "--description", help="Your project's description") # @click.option( # "-o", # "--output", # type=click.File("w"), # default="CHANGELOG.md", # help="The place to save the generated changelog [Default: CHANGELOG.md]", # ) # @click.option("-r", "--remote", default="origin", help="Specify git remote to use for links") # @click.option("-v", "--latest-version", type=str, help="use specified version as latest release") # @click.option("-u", "--unreleased", is_flag=True, default=False, help="Include section for unreleased changes") # @click.option("--diff-url", default=None, help="override url for compares, use {current} and {previous} for tags") # @click.option("--issue-url", default=None, help="Override url for issues, use {id} for issue id") # @click.option( # "--issue-pattern", # default=r"(#([\w-]+))", # help="Override regex pattern for issues in commit messages. Should contain two groups, original match and ID used " # "by issue-url.", # ) # @click.option( # "--tag-pattern", # default=None, # help="override regex pattern for release tags. " # "By default use semver tag names semantic. " # "tag should be contain in one group named 'version'.", # ) # @click.option("--tag-prefix", default="", help='prefix used in version tags, default: "" ') # @click.option("--stdout", is_flag=True) # @click.option("--tag-pattern", default=None, help="Override regex pattern for release tags") # @click.option("--starting-commit", help="Starting commit to use for changelog generation", default="") # @click.option("--stopping-commit", help="Stopping commit to use for changelog generation", default="HEAD") # @click.option( # "--debug", is_flag=True, help="set logging level to DEBUG", # ) def main( repo, description, latest_version, title="Changelog", output="CHANGELOG.md", remote ="origin", unreleased=False, diff_url=None, issue_url=r"(#([\w-]+))", issue_pattern=None, tag_prefix="", stdout=True, tag_pattern=None, starting_commit="", stopping_commit ="HEAD", debug = False ): if debug: logging.basicConfig(level=logging.DEBUG) logging.debug("Logging level has been set to DEBUG") # Convert the repository name to an absolute path repo = os.path.abspath(repo) repository = GitRepository( repo, latest_version=latest_version, skip_unreleased=not unreleased, tag_prefix=tag_prefix, tag_pattern=tag_pattern, ) presenter = MarkdownPresenter() changelog = generate_changelog( repository, presenter, title, description, remote=remote, issue_pattern=issue_pattern, issue_url=issue_url, diff_url=diff_url, starting_commit=starting_commit, stopping_commit=stopping_commit, ) # if stdout: # print(changelog) # else: # output.write(changelog) changelog_file = os.path.join(repo, "CHANGELOG.md") write_changelog(changelog_file, changelog) def write_changelog(changelog_file, changelog): if os.path.exists(changelog_file): with open(changelog_file, 'r') as f: data = f.read() with open(changelog_file, 'w') as f: # f.write(changelog + '\n\n' + data) f.write(changelog) else: with open(changelog_file, 'w') as f: f.write(changelog) if __name__ == "__main__": main()
33.821138
122
0.629567
0
0
0
0
0
0
0
0
2,357
0.566587
40ab6e634c98f0a3601e54792ef5853e9f4bf06f
6,429
py
Python
SQED-Generator/Generators/constraint_generator.py
upscale-project/generic-sqed-demo
aa44a7563e6249c6f0641c13e8ca0b013c497df1
[ "BSD-3-Clause" ]
6
2019-09-10T02:56:47.000Z
2021-12-18T11:17:16.000Z
SQED-Generator/Generators/constraint_generator.py
upscale-project/generic-sqed-demo
aa44a7563e6249c6f0641c13e8ca0b013c497df1
[ "BSD-3-Clause" ]
1
2019-07-19T17:05:20.000Z
2019-07-19T17:05:20.000Z
SQED-Generator/Generators/constraint_generator.py
upscale-project/generic-sqed-demo
aa44a7563e6249c6f0641c13e8ca0b013c497df1
[ "BSD-3-Clause" ]
2
2019-10-02T00:35:14.000Z
2019-10-23T21:13:14.000Z
# Copyright (c) Stanford University # # This source code is patent protected and being made available under the # terms explained in the ../LICENSE-Academic and ../LICENSE-GOV files. # Author: Mario J Srouji # Email: [email protected] import copy import sys sys.path.append("../FormatParsers/") sys.path.append("../Interface/") import format_parser as P import module_interface as I def generate_constraints_file(MODULENAME, INPUTS, OUTPUTS, format_dicts): # Get ISA information isa_info = format_dicts["ISA"] # Get register names registers = format_dicts["REGISTERS"] # Get memory fields needed for modification memory = format_dicts["MEMORY"] # Get constraints for qed module setup qed_constraints = format_dicts["QEDCONSTRAINTS"] # Get the instruction types ins_types = format_dicts["INSTYPES"] # Get the instruction fields for each type ins_fields = format_dicts["INSFIELDS"] # Get instruction types requirements ins_reqs = format_dicts["INSREQS"] # Get the bit fields bit_fields = format_dicts["BITFIELDS"] # Get all instruction types instructions = {} for ins in format_dicts["INSTYPES"].keys(): if ins != "CONSTRAINT": instructions[ins] = format_dicts[ins] # Verilog file verilog = "" # Adds module header definition verilog += I.module_header(MODULENAME, INPUTS, OUTPUTS) verilog += I.newline(2) # Instantiate inputs for inp in INPUTS: verilog += I.signal_def(INPUTS[inp], "input", inp, num_spaces=2) verilog += I.newline(1) # Instantiate outputs for out in OUTPUTS: verilog += I.signal_def(OUTPUTS[out], "output", out, num_spaces=2) verilog += I.newline(1) # Instantiate bit fields verilog += I.newline(1) for bit_field in bit_fields: if bit_field != "CONSTRAINT": msb, lsb = bit_fields[bit_field].split() bits = int(msb) - int(lsb) + 1 verilog += I.signal_def(bits, "wire", bit_field, num_spaces=2) verilog += I.newline(1) # Instantiate instructions verilog += I.newline(1) for ins_type in instructions: if ins_type != "NOP": verilog += I.signal_def(1, "wire", "FORMAT_"+ins_type, num_spaces=2) verilog += I.newline(1) verilog += I.signal_def(1, "wire", "ALLOWED_"+ins_type, num_spaces=2) verilog += I.newline(1) for ins in instructions[ins_type]: if ins != "CONSTRAINT": verilog += I.signal_def(1, "wire", ins, num_spaces=2) verilog += I.newline(1) verilog += I.newline(1) # Assign bit fields for bit_field in bit_fields: if bit_field != "CONSTRAINT": msb, lsb = bit_fields[bit_field].split() verilog += I.assign_def(bit_field, I.signal_index("instruction", msb, lsb), num_spaces=2) verilog += I.newline(1) # Assign instruction types verilog += I.newline(1) for ins_type in instructions: type_constraints = instructions[ins_type]["CONSTRAINT"] constraints = type_constraints if qed_constraints["half_registers"] == "1": fields = ins_fields[ins_type].split() for field in fields: if field in registers: constraints.append(I._lt(field, str(int(isa_info["num_registers"])/2), parens=True)) if ins_type != "NOP" and len(constraints) > 0: expression = constraints[0] for i in range(1, len(constraints)): expression = I._and(expression, constraints[i], parens=False) verilog += I.assign_def("FORMAT_"+ins_type, expression, num_spaces=2) verilog += I.newline(1) allowed_expression = "" for ins in instructions[ins_type]: if ins != "CONSTRAINT": fields = instructions[ins_type][ins] reqs = fields["CONSTRAINT"] for field in fields: if field != "CONSTRAINT": if type(fields[field]) == type([]): first = fields[field][0] req_expression = I._equals(field, I._constant(len(first), first), parens=True) for req in fields[field][1:]: equality = I._equals(field, I._constant(len(req), req), parens=True) req_expression = I._or(req_expression, equality, parens=False) req_expression = "(" + req_expression + ")" reqs.append(req_expression) else: equality = I._equals(field, I._constant(len(fields[field]), fields[field]), parens=True) reqs.append(equality) if ins != "NOP": reqs_expression = "FORMAT_" + ins_type for i in range(len(reqs)): reqs_expression = I._and(reqs_expression, reqs[i], parens=False) else: reqs_expression = reqs[0] for i in range(1, len(reqs)): reqs_expression = I._and(reqs_expression, reqs[i], parens=False) verilog += I.assign_def(ins, reqs_expression, num_spaces=2) verilog += I.newline(1) if allowed_expression == "": allowed_expression = ins else: allowed_expression = I._or(allowed_expression, ins, parens=False) verilog += I.assign_def("ALLOWED_"+ins_type, allowed_expression, num_spaces=2) verilog += I.newline(2) # Property assertion assertions = instructions.keys() property_expression = "" for ins_type in assertions: if property_expression == "": property_expression = "ALLOWED_" + ins_type else: property_expression = I._or(property_expression, "ALLOWED_"+ins_type, parens=False) verilog += I.always_def("clk", num_spaces=2) + I.begin(num_spaces=1) verilog += I.newline(1) verilog += I.property_def(property_expression, num_spaces=4) verilog += I.newline(1) verilog += I.end(num_spaces=2) verilog += I.newline(1) # End module with footer verilog += I.newline(1) verilog += I.module_footer() return verilog
36.737143
116
0.586872
0
0
0
0
0
0
0
0
1,141
0.177477
40abfa616e38a32a5059cf71c64a0d859cac8dd9
3,624
py
Python
modules/losses.py
Sapperdomonik/retinaface-tf2
af06baffb7f5bd099e5ca6fec51c94ed298a3926
[ "MIT" ]
null
null
null
modules/losses.py
Sapperdomonik/retinaface-tf2
af06baffb7f5bd099e5ca6fec51c94ed298a3926
[ "MIT" ]
null
null
null
modules/losses.py
Sapperdomonik/retinaface-tf2
af06baffb7f5bd099e5ca6fec51c94ed298a3926
[ "MIT" ]
null
null
null
import tensorflow as tf def _smooth_l1_loss(y_true, y_pred): t = tf.abs(y_pred - y_true) return tf.where(t < 1, 0.5 * t ** 2, t - 0.5) def MultiBoxLoss(num_class=2, neg_pos_ratio=3): """multi-box loss""" def multi_box_loss(y_true, y_pred): num_batch = tf.shape(y_true)[0] num_prior = tf.shape(y_true)[1] loc_pred = tf.reshape(y_pred[0], [num_batch * num_prior, 4]) landm_pred = tf.reshape(y_pred[1], [num_batch * num_prior, 8]) class_pred = tf.reshape(y_pred[2], [num_batch * num_prior, num_class]) loc_true = tf.reshape(y_true[..., :4], [num_batch * num_prior, 4]) landm_true = tf.reshape(y_true[..., 4:12], [num_batch * num_prior, 8]) landm_valid = tf.reshape(y_true[..., 12], [num_batch * num_prior, 1]) class_true = tf.reshape(y_true[..., 13], [num_batch * num_prior, 1]) # define filter mask: class_true = 1 (pos), 0 (neg), -1 (ignore) # landm_valid = 1 (w landm), 0 (w/o landm) mask_pos = tf.equal(class_true, 1) mask_neg = tf.equal(class_true, 0) mask_landm = tf.logical_and(tf.equal(landm_valid, 1), mask_pos) # landm loss (smooth L1) mask_landm_b = tf.broadcast_to(mask_landm, tf.shape(landm_true)) loss_landm = _smooth_l1_loss(tf.boolean_mask(landm_true, mask_landm_b), tf.boolean_mask(landm_pred, mask_landm_b)) loss_landm = tf.reduce_mean(loss_landm) # localization loss (smooth L1) mask_pos_b = tf.broadcast_to(mask_pos, tf.shape(loc_true)) loss_loc = _smooth_l1_loss(tf.boolean_mask(loc_true, mask_pos_b), tf.boolean_mask(loc_pred, mask_pos_b)) loss_loc = tf.reduce_mean(loss_loc) # classification loss (crossentropy) # 1. compute max conf across batch for hard negative mining loss_class = tf.where(mask_neg, 1 - class_pred[:, 0][..., tf.newaxis], 0) # 2. hard negative mining loss_class = tf.reshape(loss_class, [num_batch, num_prior]) loss_class_idx = tf.argsort(loss_class, axis=1, direction='DESCENDING') loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1) mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior]) num_pos_per_batch = tf.reduce_sum( tf.cast(mask_pos_per_batch, tf.float32), 1, keepdims=True) num_pos_per_batch = tf.maximum(num_pos_per_batch, 1) num_neg_per_batch = tf.minimum(neg_pos_ratio * num_pos_per_batch, tf.cast(num_prior, tf.float32) - 1) mask_hard_neg = tf.reshape( tf.cast(loss_class_idx_rank, tf.float32) < num_neg_per_batch, [num_batch * num_prior, 1]) # 3. classification loss including positive and negative examples loss_class_mask = tf.logical_or(mask_pos, mask_hard_neg) loss_class_mask_b = tf.broadcast_to(loss_class_mask, tf.shape(class_pred)) filter_class_true = tf.boolean_mask(tf.cast(mask_pos, tf.float32), loss_class_mask) filter_class_pred = tf.boolean_mask(class_pred, loss_class_mask_b) filter_class_pred = tf.reshape(filter_class_pred, [-1, num_class]) loss_class = tf.keras.losses.sparse_categorical_crossentropy( y_true=filter_class_true, y_pred=filter_class_pred) loss_class = tf.reduce_mean(loss_class) return loss_loc, loss_landm, loss_class return multi_box_loss
48.32
79
0.625828
0
0
0
0
0
0
0
0
398
0.109823
40ac4ec777b7bc387be14a996d46bdf5f0da5291
2,416
py
Python
tests.py
ckelly/pybingmaps
9214e3a4c2c9e756848fac7c0d76c46dcc64b65d
[ "MIT" ]
null
null
null
tests.py
ckelly/pybingmaps
9214e3a4c2c9e756848fac7c0d76c46dcc64b65d
[ "MIT" ]
null
null
null
tests.py
ckelly/pybingmaps
9214e3a4c2c9e756848fac7c0d76c46dcc64b65d
[ "MIT" ]
null
null
null
import unittest import random from time import sleep import os from bingmaps import * class BingMapsTestError(Exception): """Bing Maps test exception""" def __init__(self, reason): self.reason = unicode(reason) def __str__(self): return self.reason # TODO: enter your key for testing api_key = '' class DirectionsTests(unittest.TestCase): def setUp(self): self.api = BingMapsAPI(api_key=api_key) def testBasicNav(self): # start - 717 Market St # end - Ferry Plaza, San Francisco, CA # we shrunk the precision to match return values for easier comparison start_lat = "37.786861" start_lon = "-122.403689" end_lat = "37.795556" end_lon = "-122.392124" start = start_lat+","+start_lon end = end_lat+","+end_lon ret = self.api.routes(waypoints=[start, end]) # verify start and end points are reflected in response self.assertNotEqual(ret, {}) estimated_total = ret['resourceSets'][0]['estimatedTotal'] self.assertEqual(estimated_total, 1) routeLegs = ret['resourceSets'][0]['resources'][0]['routeLegs'] self.assertEqual(len(routeLegs), 1) itinerary_items = routeLegs[0]['itineraryItems'] self.assertNotEqual(itinerary_items, []) # skip the last step, as it doesn't have a transport Mode for i in itinerary_items: self.assertEqual(i['details'][0]['mode'], 'Driving') def testPedestrianNav(self): start_lat = "37.7868609332517" start_lon = "-122.403689949149" end_lat = "37.795556930015" end_lon = "-122.392124051039" start = start_lat+","+start_lon end = end_lat+","+end_lon ret = self.api.routes(waypoints=[start,end], travelMode='Walking') self.assertNotEqual(ret, {}) legs = ret['resourceSets'][0]['resources'][0]['routeLegs'] self.assertNotEqual(legs, []) legs = legs[0] itinerary_items = legs['itineraryItems'] self.assertNotEqual(itinerary_items, []) # skip the last step, as it doesn't have a transport Mode for i in itinerary_items: self.assertEqual(i['details'][0]['mode'], 'Walking') if __name__ == '__main__': unittest.main()
29.82716
78
0.598096
2,221
0.919288
0
0
0
0
0
0
701
0.290149
40acba1acfb883bbd0db070af8041dc100486a53
1,153
py
Python
fds/config.py
dvershinin/fds
4c4c96deb3d2bbe4d0853f601c3dc2b87801ced4
[ "BSD-2-Clause" ]
9
2020-04-29T14:25:06.000Z
2021-12-30T03:28:05.000Z
fds/config.py
dvershinin/fds
4c4c96deb3d2bbe4d0853f601c3dc2b87801ced4
[ "BSD-2-Clause" ]
18
2020-01-28T22:07:07.000Z
2022-03-20T16:06:12.000Z
fds/config.py
dvershinin/fds
4c4c96deb3d2bbe4d0853f601c3dc2b87801ced4
[ "BSD-2-Clause" ]
null
null
null
from cds.CloudflareWrapper import suggest_set_up, cf_config_filename from .FirewallWrapper import FirewallWrapper import logging as log def open_web_if_webserver_running(): fw = FirewallWrapper() from .utils import is_process_running, query_yes_no webserver_running = is_process_running('nginx') if webserver_running: zone = fw.fw.getDefaultZone() zone_services = fw.fw.getServices(zone) if 'http' not in zone_services or 'https' not in zone_services: open_web = query_yes_no('Webserver is running. Open up HTTP/HTTPs ports?') if open_web: fw.add_service('http') fw.add_service('https') else: log.info('Webserver is running and ports are already open.') def action_config(): # if nginx runs, check/ask to ensure open web ports: open_web_if_webserver_running() # if cloudflare.cfg is missing, check/ask to ensure Cloudflare support: from cds.CloudflareWrapper import CloudflareWrapper cw = CloudflareWrapper() if cw.use: log.info('Cloudflare integration validated.') else: suggest_set_up()
36.03125
86
0.692975
0
0
0
0
0
0
0
0
290
0.251518
40adb16a80ad4faf260352c08db6efc0124c7ac3
450
py
Python
awardapp/migrations/0004_auto_20191024_1607.py
Elisephan/Awards-project
269bfbe45a35338fab9c71fc7d8de48b61b1580b
[ "MIT" ]
null
null
null
awardapp/migrations/0004_auto_20191024_1607.py
Elisephan/Awards-project
269bfbe45a35338fab9c71fc7d8de48b61b1580b
[ "MIT" ]
null
null
null
awardapp/migrations/0004_auto_20191024_1607.py
Elisephan/Awards-project
269bfbe45a35338fab9c71fc7d8de48b61b1580b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-10-24 16:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('awardapp', '0003_auto_20191024_1606'), ] operations = [ migrations.AlterField( model_name='project', name='link', field=models.TextField(max_length=130), ), ]
21.428571
51
0.617778
294
0.653333
0
0
0
0
0
0
119
0.264444
40adc41d2f17560f722bc8589f813ea290672937
21,395
py
Python
hikari/events/channel_events.py
Reliku/hikari
c6e62b750ce35885a5e4124ffe8df6445ab34acd
[ "MIT" ]
null
null
null
hikari/events/channel_events.py
Reliku/hikari
c6e62b750ce35885a5e4124ffe8df6445ab34acd
[ "MIT" ]
null
null
null
hikari/events/channel_events.py
Reliku/hikari
c6e62b750ce35885a5e4124ffe8df6445ab34acd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # cython: language_level=3 # Copyright (c) 2020 Nekokatt # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Events that fire when channels are modified. This does not include message events, nor reaction events. """ from __future__ import annotations __all__: typing.List[str] = [ "ChannelEvent", "GuildChannelEvent", "DMChannelEvent", "ChannelCreateEvent", "GuildChannelCreateEvent", "ChannelUpdateEvent", "GuildChannelUpdateEvent", "ChannelDeleteEvent", "GuildChannelDeleteEvent", "PinsUpdateEvent", "GuildPinsUpdateEvent", "DMPinsUpdateEvent", "InviteCreateEvent", "InviteDeleteEvent", "WebhookUpdateEvent", ] import abc import typing import attr from hikari import channels from hikari import intents from hikari import traits from hikari.events import base_events from hikari.events import shard_events from hikari.internal import attr_extensions if typing.TYPE_CHECKING: import datetime from hikari import guilds from hikari import invites from hikari import messages from hikari import snowflakes from hikari import webhooks from hikari.api import shard as gateway_shard @base_events.requires_intents(intents.Intents.GUILDS, intents.Intents.DM_MESSAGES) @attr.s(kw_only=True, slots=True, weakref_slot=False) class ChannelEvent(shard_events.ShardEvent, abc.ABC): """Event base for any channel-bound event in guilds or private messages.""" @property @abc.abstractmethod def channel_id(self) -> snowflakes.Snowflake: """ID of the channel the event relates to. Returns ------- hikari.snowflakes.Snowflake The ID of the channel this event relates to. """ @abc.abstractmethod async def fetch_channel(self) -> channels.PartialChannel: """Perform an API call to fetch the details about this channel. !!! note For `ChannelDeleteEvent`-derived events, this will always raise an exception, since the channel will have already been removed. Returns ------- hikari.channels.PartialChannel A derivative of `hikari.channels.PartialChannel`. The actual type will vary depending on the type of channel this event concerns. """ @base_events.requires_intents(intents.Intents.GUILDS) @attr.s(kw_only=True, slots=True, weakref_slot=False) class GuildChannelEvent(ChannelEvent, abc.ABC): """Event base for any channel-bound event in guilds.""" @property @abc.abstractmethod def guild_id(self) -> snowflakes.Snowflake: """ID of the guild that this event relates to. Returns ------- hikari.snowflakes.Snowflake The ID of the guild that relates to this event. """ @property def guild(self) -> typing.Optional[guilds.GatewayGuild]: """Get the cached guild that this event relates to, if known. If not, return `builtins.None`. Returns ------- typing.Optional[hikari.guilds.GatewayGuild] The gateway guild this event relates to, if known. Otherwise this will return `builtins.None`. """ return self.app.cache.get_available_guild(self.guild_id) or self.app.cache.get_unavailable_guild(self.guild_id) async def fetch_guild(self) -> guilds.RESTGuild: """Perform an API call to fetch the guild that this event relates to. Returns ------- hikari.guilds.RESTGuild The guild that this event occurred in. """ return await self.app.rest.fetch_guild(self.guild_id) @property def channel(self) -> typing.Optional[channels.GuildChannel]: """Get the cached channel that this event relates to, if known. If not, return `builtins.None`. Returns ------- typing.Optional[hikari.channels.GuildChannel] The cached channel this event relates to. If not known, this will return `builtins.None` instead. """ return self.app.cache.get_guild_channel(self.channel_id) async def fetch_channel(self) -> channels.GuildChannel: """Perform an API call to fetch the details about this channel. !!! note For `ChannelDeleteEvent`-derived events, this will always raise an exception, since the channel will have already been removed. Returns ------- hikari.channels.GuildChannel A derivative of `hikari.channels.GuildChannel`. The actual type will vary depending on the type of channel this event concerns. """ channel = await self.app.rest.fetch_channel(self.channel_id) assert isinstance(channel, channels.GuildChannel) return channel @attr.s(kw_only=True, slots=True, weakref_slot=False) class DMChannelEvent(ChannelEvent, abc.ABC): """Event base for any channel-bound event in private messages.""" async def fetch_channel(self) -> channels.PrivateChannel: """Perform an API call to fetch the details about this channel. !!! note For `ChannelDeleteEvent`-derived events, this will always raise an exception, since the channel will have already been removed. Returns ------- hikari.channels.PrivateChannel A derivative of `hikari.channels.PrivateChannel`. The actual type will vary depending on the type of channel this event concerns. """ channel = await self.app.rest.fetch_channel(self.channel_id) assert isinstance(channel, channels.PrivateChannel) return channel @base_events.requires_intents(intents.Intents.GUILDS, intents.Intents.DM_MESSAGES) @attr.s(kw_only=True, slots=True, weakref_slot=False) class ChannelCreateEvent(ChannelEvent, abc.ABC): """Base event for any channel being created.""" @property @abc.abstractmethod def channel(self) -> channels.PartialChannel: """Channel this event represents. Returns ------- hikari.channels.PartialChannel The channel that was created. """ @property def channel_id(self) -> snowflakes.Snowflake: # <<inherited docstring from ChannelEvent>>. return self.channel.id @base_events.requires_intents(intents.Intents.GUILDS) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class GuildChannelCreateEvent(GuildChannelEvent, ChannelCreateEvent): """Event fired when a guild channel is created.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. channel: channels.GuildChannel = attr.ib(repr=True) """Guild channel that this event represents. Returns ------- hikari.channels.GuildChannel The guild channel that was created. """ @property def guild_id(self) -> snowflakes.Snowflake: # <<inherited docstring from GuildChannelEvent>>. return self.channel.guild_id @base_events.requires_intents(intents.Intents.GUILDS, intents.Intents.DM_MESSAGES) @attr.s(kw_only=True, slots=True, weakref_slot=False) class ChannelUpdateEvent(ChannelEvent, abc.ABC): """Base event for any channel being updated.""" @property @abc.abstractmethod def channel(self) -> channels.PartialChannel: """Channel this event represents. Returns ------- hikari.channels.PartialChannel The channel that was updated. """ @property def channel_id(self) -> snowflakes.Snowflake: # <<inherited docstring from ChannelEvent>>. return self.channel.id @base_events.requires_intents(intents.Intents.GUILDS) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class GuildChannelUpdateEvent(GuildChannelEvent, ChannelUpdateEvent): """Event fired when a guild channel is edited.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. old_channel: channels.GuildChannel = attr.ib(repr=True) """Old guild channel object from cache. Returns ------- hikari.channels.GuildChannel """ channel: channels.GuildChannel = attr.ib(repr=True) """Guild channel that this event represents. Returns ------- hikari.channels.GuildChannel The guild channel that was updated. """ @property def guild_id(self) -> snowflakes.Snowflake: # <<inherited docstring from GuildChannelEvent>>. return self.channel.guild_id @base_events.requires_intents(intents.Intents.GUILDS, intents.Intents.DM_MESSAGES) @attr.s(kw_only=True, slots=True, weakref_slot=False) class ChannelDeleteEvent(ChannelEvent, abc.ABC): """Base event for any channel being deleted.""" @property @abc.abstractmethod def channel(self) -> channels.PartialChannel: """Channel this event represents. Returns ------- hikari.channels.PartialChannel The channel that was deleted. """ @property def channel_id(self) -> snowflakes.Snowflake: # <<inherited docstring from ChannelEvent>>. return self.channel.id if typing.TYPE_CHECKING: # Channel will never be found. async def fetch_channel(self) -> typing.NoReturn: ... @base_events.requires_intents(intents.Intents.GUILDS) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class GuildChannelDeleteEvent(GuildChannelEvent, ChannelDeleteEvent): """Event fired when a guild channel is deleted.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. channel: channels.GuildChannel = attr.ib(repr=True) """Guild channel that this event represents. Returns ------- hikari.channels.GuildChannel The guild channel that was deleted. """ @property def guild_id(self) -> snowflakes.Snowflake: # <<inherited docstring from GuildChannelEvent>>. return self.channel.guild_id if typing.TYPE_CHECKING: # Channel will never be found. async def fetch_channel(self) -> typing.NoReturn: ... # TODO: find out what private message intents are needed. @attr.s(kw_only=True, slots=True, weakref_slot=False) class PinsUpdateEvent(ChannelEvent, abc.ABC): """Base event fired when a message is pinned/unpinned in a channel.""" @property @abc.abstractmethod def last_pin_timestamp(self) -> typing.Optional[datetime.datetime]: """Datetime of when the most recent message was pinned in the channel. Will be `builtins.None` if nothing is pinned or the information is unavailable. Returns ------- typing.Optional[datetime.datetime] The datetime of the most recent pinned message in the channel, or `builtins.None` if no pins are available. """ @abc.abstractmethod async def fetch_channel(self) -> channels.TextChannel: """Perform an API call to fetch the details about this channel. Returns ------- hikari.channels.TextChannel A derivative of `hikari.channels.TextChannel`. The actual type will vary depending on the type of channel this event concerns. """ async def fetch_pins(self) -> typing.Sequence[messages.Message]: """Perform an API call to fetch the pinned messages in this channel. Returns ------- typing.Sequence[hikari.messages.Message] The pinned messages in this channel. """ return await self.app.rest.fetch_pins(self.channel_id) @base_events.requires_intents(intents.Intents.GUILDS) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class GuildPinsUpdateEvent(PinsUpdateEvent, GuildChannelEvent): """Event fired when a message is pinned/unpinned in a guild channel.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. channel_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from ChannelEvent>>. guild_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from GuildChannelEvent>>. last_pin_timestamp: typing.Optional[datetime.datetime] = attr.ib(repr=True) # <<inherited docstring from ChannelPinsUpdateEvent>>. @property def channel(self) -> typing.Optional[channels.GuildTextChannel]: """Get the cached channel that this event relates to, if known. If not, return `builtins.None`. Returns ------- typing.Optional[hikari.channels.GuildTextChannel] The cached channel this event relates to. If not known, this will return `builtins.None` instead. """ channel = self.app.cache.get_guild_channel(self.channel_id) assert isinstance(channel, channels.GuildTextChannel) return channel async def fetch_channel(self) -> channels.GuildTextChannel: """Perform an API call to fetch the details about this channel. Returns ------- hikari.channels.GuildTextChannel A derivative of `hikari.channels.GuildTextChannel`. The actual type will vary depending on the type of channel this event concerns. """ channel = await self.app.rest.fetch_channel(self.channel_id) assert isinstance(channel, channels.GuildTextChannel) return channel # TODO: This is not documented as having an intent, is this right? The guild version requires GUILDS intent. @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class DMPinsUpdateEvent(PinsUpdateEvent, DMChannelEvent): """Event fired when a message is pinned/unpinned in a private channel.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. channel_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from ChannelEvent>>. last_pin_timestamp: typing.Optional[datetime.datetime] = attr.ib(repr=True) # <<inherited docstring from ChannelPinsUpdateEvent>>. async def fetch_channel(self) -> channels.DMChannel: """Perform an API call to fetch the details about this channel. Returns ------- hikari.channels.DMChannel A derivative of `hikari.channels.DMChannel`. The actual type will vary depending on the type of channel this event concerns. """ channel = await self.app.rest.fetch_channel(self.channel_id) assert isinstance(channel, channels.DMChannel) return channel @base_events.requires_intents(intents.Intents.GUILD_INVITES) @attr.s(kw_only=True, slots=True, weakref_slot=False) class InviteEvent(GuildChannelEvent, abc.ABC): """Base event type for guild invite updates.""" @property @abc.abstractmethod def code(self) -> str: """Code that is used in the URL for the invite. Returns ------- builtins.str The invite code. """ async def fetch_invite(self) -> invites.Invite: """Perform an API call to retrieve an up-to-date image of this invite. Returns ------- hikari.invites.Invite The invite object. """ return await self.app.rest.fetch_invite(self.code) @base_events.requires_intents(intents.Intents.GUILD_INVITES) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class InviteCreateEvent(InviteEvent): """Event fired when an invite is created in a channel.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. invite: invites.InviteWithMetadata = attr.ib() """Invite that was created. Returns ------- hikari.invites.InviteWithMetadata The created invite object. """ @property def channel_id(self) -> snowflakes.Snowflake: # <<inherited docstring from ChannelEvent>>. return self.invite.channel_id @property def guild_id(self) -> snowflakes.Snowflake: # <<inherited docstring from GuildChannelEvent>>. # This will always be non-None for guild channel invites. assert self.invite.guild_id is not None return self.invite.guild_id @property def code(self) -> str: # <<inherited docstring from InviteEvent>>. return self.invite.code @base_events.requires_intents(intents.Intents.GUILD_INVITES) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class InviteDeleteEvent(InviteEvent): """Event fired when an invite is deleted from a channel.""" app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. channel_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from ChannelEvent>>. guild_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from GuildChannelEvent>>. code: str = attr.ib() # <<inherited docstring from InviteEvent>>. if typing.TYPE_CHECKING: # Invite will never be found. async def fetch_invite(self) -> typing.NoReturn: ... @base_events.requires_intents(intents.Intents.GUILD_WEBHOOKS) @attr_extensions.with_copy @attr.s(kw_only=True, slots=True, weakref_slot=False) class WebhookUpdateEvent(GuildChannelEvent): """Event fired when a webhook is created/updated/deleted in a channel. Unfortunately, Discord does not provide any information on what webhook actually changed, nor specifically whether it was created/updated/deleted, so this event is pretty useless unless you keep track of the webhooks in the channel manually beforehand. """ app: traits.RESTAware = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from Event>>. shard: gateway_shard.GatewayShard = attr.ib(metadata={attr_extensions.SKIP_DEEP_COPY: True}) # <<inherited docstring from ShardEvent>>. channel_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from ChannelEvent>>. guild_id: snowflakes.Snowflake = attr.ib() # <<inherited docstring from GuildChannelEvent>>. async def fetch_channel_webhooks(self) -> typing.Sequence[webhooks.Webhook]: """Perform an API call to fetch the webhooks for this channel. Returns ------- typing.Sequence[hikari.webhooks.Webhook] The webhooks in this channel. """ return await self.app.rest.fetch_channel_webhooks(self.channel_id) async def fetch_guild_webhooks(self) -> typing.Sequence[webhooks.Webhook]: """Perform an API call to fetch the webhooks for this guild. Returns ------- typing.Sequence[hikari.webhooks.Webhook] The webhooks in this guild. """ return await self.app.rest.fetch_guild_webhooks(self.guild_id)
33.906498
119
0.686282
17,046
0.796728
0
0
18,973
0.886796
5,217
0.243842
10,967
0.512596
40af0b1139a38fce3114910895fc7959fcc89bca
8,649
py
Python
tests/unit/test_coordinator.py
sopel39/presto-admin
6e7aee3427bdbea6da2deb41b7f090ef6fdcadd9
[ "Apache-2.0" ]
34
2016-01-08T21:02:13.000Z
2017-03-10T02:01:03.000Z
tests/unit/test_coordinator.py
sopel39/presto-admin
6e7aee3427bdbea6da2deb41b7f090ef6fdcadd9
[ "Apache-2.0" ]
3
2016-01-27T19:11:14.000Z
2016-12-02T21:29:53.000Z
tests/unit/test_coordinator.py
sopel39/presto-admin
6e7aee3427bdbea6da2deb41b7f090ef6fdcadd9
[ "Apache-2.0" ]
5
2016-04-29T05:27:43.000Z
2018-01-12T07:50:25.000Z
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests the coordinator module """ from fabric.api import env from mock import patch from prestoadmin import coordinator from prestoadmin.util.exception import ConfigurationError from tests.base_test_case import BaseTestCase class TestCoordinator(BaseTestCase): def test_build_all_defaults(self): env.roledefs['coordinator'] = 'a' env.roledefs['workers'] = ['b', 'c'] actual_default = coordinator.Coordinator().build_all_defaults() expected = {'node.properties': {'node.environment': 'presto', 'node.data-dir': '/var/lib/presto/data', 'node.launcher-log-file': '/var/log/presto/launcher.log', 'node.server-log-file': '/var/log/presto/server.log', 'catalog.config-dir': '/etc/presto/catalog', 'plugin.dir': '/usr/lib/presto/lib/plugin'}, 'jvm.config': ['-server', '-Xmx16G', '-XX:-UseBiasedLocking', '-XX:+UseG1GC', '-XX:G1HeapRegionSize=32M', '-XX:+ExplicitGCInvokesConcurrent', '-XX:+HeapDumpOnOutOfMemoryError', '-XX:+UseGCOverheadLimit', '-XX:+ExitOnOutOfMemoryError', '-XX:ReservedCodeCacheSize=512M', '-DHADOOP_USER_NAME=hive'], 'config.properties': { 'coordinator': 'true', 'discovery-server.enabled': 'true', 'discovery.uri': 'http://a:8080', 'http-server.http.port': '8080', 'node-scheduler.include-coordinator': 'false', 'query.max-memory': '50GB', 'query.max-memory-per-node': '8GB'} } self.assertEqual(actual_default, expected) def test_defaults_coord_is_worker(self): env.roledefs['coordinator'] = ['a'] env.roledefs['worker'] = ['a', 'b', 'c'] actual_default = coordinator.Coordinator().build_all_defaults() expected = {'node.properties': { 'node.environment': 'presto', 'node.data-dir': '/var/lib/presto/data', 'node.launcher-log-file': '/var/log/presto/launcher.log', 'node.server-log-file': '/var/log/presto/server.log', 'catalog.config-dir': '/etc/presto/catalog', 'plugin.dir': '/usr/lib/presto/lib/plugin'}, 'jvm.config': ['-server', '-Xmx16G', '-XX:-UseBiasedLocking', '-XX:+UseG1GC', '-XX:G1HeapRegionSize=32M', '-XX:+ExplicitGCInvokesConcurrent', '-XX:+HeapDumpOnOutOfMemoryError', '-XX:+UseGCOverheadLimit', '-XX:+ExitOnOutOfMemoryError', '-XX:ReservedCodeCacheSize=512M', '-DHADOOP_USER_NAME=hive'], 'config.properties': { 'coordinator': 'true', 'discovery-server.enabled': 'true', 'discovery.uri': 'http://a:8080', 'http-server.http.port': '8080', 'node-scheduler.include-coordinator': 'true', 'query.max-memory': '50GB', 'query.max-memory-per-node': '8GB'} } self.assertEqual(actual_default, expected) def test_validate_valid(self): conf = {'node.properties': {}, 'jvm.config': [], 'config.properties': {'coordinator': 'true', 'discovery.uri': 'http://uri'}} self.assertEqual(conf, coordinator.Coordinator.validate(conf)) def test_validate_default(self): env.roledefs['coordinator'] = 'localhost' env.roledefs['workers'] = ['localhost'] conf = coordinator.Coordinator().build_all_defaults() self.assertEqual(conf, coordinator.Coordinator.validate(conf)) def test_invalid_conf(self): conf = {'node.propoerties': {}} self.assertRaisesRegexp(ConfigurationError, 'Missing configuration for required file: ', coordinator.Coordinator.validate, conf) def test_invalid_conf_missing_coordinator(self): conf = {'node.properties': {}, 'jvm.config': [], 'config.properties': {'discovery.uri': 'http://uri'} } self.assertRaisesRegexp(ConfigurationError, 'Must specify coordinator=true in ' 'coordinator\'s config.properties', coordinator.Coordinator.validate, conf) def test_invalid_conf_coordinator(self): conf = {'node.properties': {}, 'jvm.config': [], 'config.properties': {'coordinator': 'false', 'discovery.uri': 'http://uri'} } self.assertRaisesRegexp(ConfigurationError, 'Coordinator cannot be false in the ' 'coordinator\'s config.properties', coordinator.Coordinator.validate, conf) @patch('prestoadmin.node.config.write_conf_to_file') @patch('prestoadmin.node.get_presto_conf') def test_get_conf_empty_is_default(self, get_conf_from_file_mock, write_mock): env.roledefs['coordinator'] = 'j' env.roledefs['workers'] = ['K', 'L'] get_conf_from_file_mock.return_value = {} self.assertEqual(coordinator.Coordinator().get_conf(), coordinator.Coordinator().build_all_defaults()) @patch('prestoadmin.node.config.write_conf_to_file') @patch('prestoadmin.node.get_presto_conf') def test_get_conf(self, get_conf_from_file_mock, write_mock): env.roledefs['coordinator'] = 'j' env.roledefs['workers'] = ['K', 'L'] file_conf = {'node.properties': {'my-property': 'value', 'node.environment': 'test'}} get_conf_from_file_mock.return_value = file_conf expected = {'node.properties': {'my-property': 'value', 'node.environment': 'test'}, 'jvm.config': ['-server', '-Xmx16G', '-XX:-UseBiasedLocking', '-XX:+UseG1GC', '-XX:G1HeapRegionSize=32M', '-XX:+ExplicitGCInvokesConcurrent', '-XX:+HeapDumpOnOutOfMemoryError', '-XX:+UseGCOverheadLimit', '-XX:+ExitOnOutOfMemoryError', '-XX:ReservedCodeCacheSize=512M', '-DHADOOP_USER_NAME=hive'], 'config.properties': { 'coordinator': 'true', 'discovery-server.enabled': 'true', 'discovery.uri': 'http://j:8080', 'http-server.http.port': '8080', 'node-scheduler.include-coordinator': 'false', 'query.max-memory': '50GB', 'query.max-memory-per-node': '8GB'} } self.assertEqual(coordinator.Coordinator().get_conf(), expected)
47.78453
78
0.492889
7,851
0.907735
0
0
2,283
0.263961
0
0
3,528
0.407908
40af4a6cd5eabd173caad42e65be14761273bd46
3,911
py
Python
other/string chains/strings4.py
saulc/myth-math
5e278eb8fbaf16a01f5f021aca2142e5ce3131ec
[ "MIT" ]
null
null
null
other/string chains/strings4.py
saulc/myth-math
5e278eb8fbaf16a01f5f021aca2142e5ce3131ec
[ "MIT" ]
null
null
null
other/string chains/strings4.py
saulc/myth-math
5e278eb8fbaf16a01f5f021aca2142e5ce3131ec
[ "MIT" ]
null
null
null
# Saul Castro # Hiralben Hirpara # config file format import random def openFile(): file = open("test.txt", 'r') return file def printFile(f): print(f.read()) def readInput(): testout = "CarpenteRatcheThread" file = open("test.txt", 'r') s = str(file.read()) words = s.split(" "); # print("Expected Output: " + testout) for w in words: if w == '\n': words.remove(w) print(words) testWords(words, False) # makeChains(words) def reduceRepeats(inputstr, showChecks=False): print(" testing repeat filter start.___ ") ret = [] # words, i = showlist(inputstr, False) w = inputstr.split(" "); print(w) i = 0 for s in w: i +=1 if showChecks: print(i, ": ", s) if s not in ret: ret. append(s) print(i, " elements checked, ", len(ret) , " unique words found. ? ") # showlist(ret, False) for w in ret: print(" . . ", w) print(" testing repeat filter end.___ ") return ret def testWords(words, showChecks=False): if showChecks: print(" testing chatbot ") for w in words: print( w ) sen = [] for i in range(0, len(words) ): sen. append( words[i]) for j in range(0, len(words) ): sen. append( words[j]+" "+ words[i]) if j % 3 == 0: sen. append(" ") # showlist(w, True) # print(i, " : ", words[i]) # print(" ", words[j], words[i]) if showChecks: print(sen ) #raw data st = listtoString(sen, " ") #data only print(st) #show it ft = reduceRepeats(sen[0], False) print(ft) if showChecks: print(len(words), " words found") print(len(sen), " phrases found") # list to string with sep 'char' def listtoString( lst, sep): s = "" for c in lst: s += str(c) + sep return s # string to list, count def showlist( li, showChecks=False): w = li.split(" "); print(w) i = 0 for s in li: i +=1 if showChecks: print(i, ": ", s) return w, i def makeChains(words, showChecks=False): chain = [] wordcheck = [] for i in range(0, len(words) ): # print(i ) se = [False, False] #used as start word, end word wordcheck.append(se) for i in range(0, len(words) ): if showChecks: print(str(i) + " - " + words[i] ) aword = words[i] for j in range(i+1, len(words) ): #check the rest of the words for matching links bword = words[j] if showChecks: print(" " + str(j) + " ~ " + bword ) if wordcheck[j][0] == False and wordcheck[j][1] == False: temp = checkLinks(aword, bword) if showChecks: print("Check state: " + str(temp) ) if temp == 1: #word have not been swapped wordcheck[i][0] = True wordcheck[j][1] = True chain.append(aword) chain.append(bword) elif temp == 2: #words have been swapped, swap flag indexes to match. wordcheck[j][0] = True wordcheck[i][1] = True chain.append(bword) chain.append(aword) print(chain) # k = 0 # for i in wordcheck: # print("word check: " + str(i) + " = "+ words[k] ) # # k+= 1 # compare words, return 0 for no match, # 1 if end of a == start of b # 2 if end of b == start of a def checkLinks(a, b): print(" " + a + " " + b) s , e = getEnds(a) ss , ee = getEnds(b) if e == ss : return 1 elif s == ee: return 2 return 0 # st = "start: " + s + " end:" + e # print("end" + st) def getEnds(word): st = word[0] ed = word[len(word)-1] return st, ed if __name__ == '__main__': readInput()
25.730263
85
0.504475
0
0
0
0
0
0
0
0
1,054
0.269496
40b182cffd8ba6689e9b3d11caa57c733d863c65
2,646
py
Python
supervised_learning/analysis.py
gonzalezJohnas/SpeechCommand-recognition
d5351abe45c571a075c24bd04d328e76293f9230
[ "MIT" ]
null
null
null
supervised_learning/analysis.py
gonzalezJohnas/SpeechCommand-recognition
d5351abe45c571a075c24bd04d328e76293f9230
[ "MIT" ]
2
2021-04-10T18:12:44.000Z
2022-02-09T23:36:43.000Z
supervised_learning/analysis.py
gonzalezJohnas/SpeechCommand-recognition
d5351abe45c571a075c24bd04d328e76293f9230
[ "MIT" ]
null
null
null
from global_utils import * # target word TARGET_WORD = 'right' def display_lowpass_normal(wav, lowpass_signal, fs, label=''): fig, (axs_raw, axs_low) = plt.subplots(2) fig.tight_layout(pad=3.0) fig.set_figheight(FIG_HEIGHT) fig.set_figwidth(FIG_WIDTH) # display the plot axs_raw.plot(wav) # label the axes axs_raw.set_ylabel("Amplitude", fontsize=FONT_SIZE) axs_raw.set_xlabel("Time", fontsize=FONT_SIZE) # set the title axs_raw.set_title("Audio sample : {}".format(label), fontsize=FONT_SIZE) axs_low.plot(lowpass_signal) # label the axes axs_low.set_ylabel("Amplitude", fontsize=FONT_SIZE) axs_low.set_xlabel("Time", fontsize=FONT_SIZE) # set the title axs_low.set_title("Audio sample with low pass filter", fontsize=FONT_SIZE) f_raw, periodogram_raw = signal.periodogram(wav, fs) f_raw, periodogram_low = signal.periodogram(lowpass_signal, fs) fig, (axs_periodogram_raw, axs_periodogram_low) = plt.subplots(2) fig.tight_layout(pad=3.0) fig.set_figheight(FIG_HEIGHT) fig.set_figwidth(FIG_WIDTH) axs_periodogram_raw.semilogy(f_raw, periodogram_raw) axs_periodogram_raw.set_xlabel('frequency [Hz]', fontsize=FONT_SIZE) axs_periodogram_raw.set_ylabel('PSD [V**2/Hz]', fontsize=FONT_SIZE) axs_periodogram_raw.set_title("Periodogram raw signal", fontsize=FONT_SIZE) axs_periodogram_low.semilogy(f_raw, periodogram_low) axs_periodogram_low.set_xlabel('frequency [Hz]', fontsize=FONT_SIZE) axs_periodogram_low.set_ylabel('PSD [V**2/Hz]', fontsize=FONT_SIZE) axs_periodogram_low.set_title("Periodogram low pass filtered signal", fontsize=FONT_SIZE) def main(args): if args.wavfile: fs, wav = wavfile.read(args.wavfile, "wb") lowpass_signal = low_pass_filter(wav, sample_rate=fs, cutoff_frequency=1000) display_lowpass_normal(wav, lowpass_signal, fs) plt.show() elif args.indir: data_dict = get_data(args.indir) word_samples = data_dict[TARGET_WORD] mean_lowpass_array, normal_array = mean_low_pass_filter(word_samples, SAMPLE_RATE, CUTOFF_FREQ) display_lowpass_normal(normal_array, mean_lowpass_array, SAMPLE_RATE, TARGET_WORD) plt.show() return 0 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--wavfile', help='Path to the .wav files', required=False ) parser.add_argument( '--indir', help='Absolute path to data directory containing .wav files', required=False ) args = parser.parse_args() main(args)
29.730337
103
0.708239
0
0
0
0
0
0
0
0
427
0.161376
40b1a05b02e671eeb4b12cc51ccc3740e6e21280
2,010
py
Python
qnarre/base/proof.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
qnarre/base/proof.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
qnarre/base/proof.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
# Copyright 2019 Quantapix Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from .claim import Claim from .narrative import Node from .author import Authority class Proof(Node): sign = '!p' authority = None def __init__(self, text=None, author=None, agent=None, authority=None, factor=2, **kw): super().__init__(factor=factor, **kw) if text: for k in ('factor', 'bias', 'weight'): kw.pop(k, None) self.claim = Claim(text=text, **kw) if not authority: if agent: authority = 'agent' elif author: authority = 'self' if authority: self.authority = Authority.create(name=authority) @property def weight(self): p = self.partial(self.authority.weight, self.claim.weight) return p + self.bias @property def credibility(self): return self.weight @property def value(self): a = self.authority.agency return '{} {}: {}'.format(super().value, a, self.claim.value) @property def fields(self): fs = self.authority.fields fs.update(self.claim.fields) fs.update(super().fields) fs['Credibility'] = self.credibility return fs
30.454545
79
0.570149
1,240
0.616915
0
0
524
0.260697
0
0
732
0.364179
40b2a0543dc5434ad9bc96313563cef627bd5d42
6,636
py
Python
learningPygame/Dave/06-SpaceInvaders/space_invaders.py
Rosebotics/catapult2019
4f125632f4d144b97ee3ecaf00a517780d510a70
[ "MIT" ]
null
null
null
learningPygame/Dave/06-SpaceInvaders/space_invaders.py
Rosebotics/catapult2019
4f125632f4d144b97ee3ecaf00a517780d510a70
[ "MIT" ]
null
null
null
learningPygame/Dave/06-SpaceInvaders/space_invaders.py
Rosebotics/catapult2019
4f125632f4d144b97ee3ecaf00a517780d510a70
[ "MIT" ]
null
null
null
import pygame, sys, random, time from pygame.locals import * class Missile: def __init__(self, screen, x): # Store the data. Initialize: y to 591 and exploded to False. self.screen = screen self.x = x self.y = 591 self.exploded = False def move(self): # Make self.y 5 smaller than it was (which will cause the Missile to move UP). self.y = self.y - 5 def draw(self): # Draw a vertical, 4 pixels thick, 8 pixels long, red (or green) line on the screen, # where the line starts at the current position of this Missile. pygame.draw.line(self.screen, (0, 255, 0), (self.x, self.y), (self.x, self.y - 8), 4) class Fighter: def __init__(self, screen, x, y): # Store the data. # Set self.missiles to the empty list. # Load the file "fighter.png" as the image # Set the colorkey to white (it has a white background that needs removed) self.screen = screen self.x = x self.y = y self.missiles = [] self.image = pygame.image.load("fighter.png") self.image.set_colorkey(pygame.Color("White")) def draw(self): # Draw this Fighter, using its image at its current (x, y) position. self.screen.blit(self.image, (self.x, self.y)) def fire(self): # Construct a new Missile 50 pixels to the right of this Fighter. # Append that Missile to this Fighter's list of Missile objects. new_missile = Missile(self.screen, self.x + 50) self.missiles.append(new_missile) def remove_exploded_missiles(self): # Already complete for k in range(len(self.missiles) - 1, -1, -1): if self.missiles[k].exploded or self.missiles[k].y < 0: del self.missiles[k] class Badguy: def __init__(self, screen, x, y): # Store the data. # Set dead to False and original_x to x and move_right to True. # Load the file "badguy.png" as the image. and set its colorkey to black. self.screen = screen self.x = x self.y = y self.dead = False self.original_x = x self.move_right = True self.image = pygame.image.load("badguy.png") self.image.set_colorkey(pygame.Color("Black")) def move(self): # Move 2 units in the current direction. # Switch direction if this Badguy's position is more than 100 pixels from its original position. if self.move_right: self.x = self.x + 8 if self.x > self.original_x + 100: self.move_right = False self.y = self.y + 15 else: self.x = self.x - 8 if self.x < self.original_x - 100: self.move_right = True self.y = self.y + 15 def draw(self): # Draw this Badguy, using its image at its current (x, y) position. self.screen.blit(self.image, (self.x, self.y)) def hit_by(self, missile): # Return True if a 70x45 rectangle at this Badguy's current position # collides with the xy point of the given missile. # Return False otherwise. return pygame.Rect(self.x, self.y, 70, 45).collidepoint(missile.x, missile.y) class EnemyFleet: def __init__(self, screen, enemy_rows): # Already done. Prepares the list of Badguys. self.badguys = [] for j in range(enemy_rows): for k in range(8): self.badguys.append(Badguy(screen, 80 * k, 50 * j + 20)) @property def is_defeated(self): # Return True if the number of badguys in this Enemy Fleet is 0, # otherwise return False. return len(self.badguys) == 0 def move(self): # Make each badguy in this EnemyFleet move. for badguy in self.badguys: badguy.move() def draw(self): # Make each badguy in this EnemyFleet draw itself. for badguy in self.badguys: badguy.draw() def remove_dead_badguys(self): for k in range(len(self.badguys) - 1, -1, -1): if self.badguys[k].dead: del self.badguys[k] # Create a Scoreboard class (from scratch) # Instance variables: screen, x, y, score, and font (size 30) # Methods: draw (and __init__) # Create a scoreboard at location 5, 5 # Draw the scoreboard in the game loop class Scoreboard: def __init__(self, screen): self.screen = screen self.score = 0 self.font = pygame.font.Font(None, 30) def draw(self): text_as_image = self.font.render("Score: " + str(self.score), True, (255, 255, 255)) self.screen.blit(text_as_image, (5, 5)) def main(): pygame.init() clock = pygame.time.Clock() pygame.display.set_caption("SPACE INVADERS!") screen = pygame.display.set_mode((640, 650)) enemy_rows = 3 enemy = EnemyFleet(screen, enemy_rows) fighter = Fighter(screen, 320, 590) scoreboard = Scoreboard(screen) gameover_image = pygame.image.load("gameover.png") is_game_over = False while True: clock.tick(60) for event in pygame.event.get(): pressed_keys = pygame.key.get_pressed() if event.type == KEYDOWN and pressed_keys[K_SPACE]: fighter.fire() if event.type == QUIT: sys.exit() screen.fill((0, 0, 0)) pressed_keys = pygame.key.get_pressed() if pressed_keys[K_LEFT] and fighter.x > -50: fighter.x = fighter.x - 5 if pressed_keys[K_RIGHT] and fighter.x < 590: fighter.x = fighter.x + 5 fighter.draw() enemy.move() enemy.draw() for missile in fighter.missiles: missile.move() missile.draw() for badguy in enemy.badguys: for missile in fighter.missiles: if badguy.hit_by(missile): scoreboard.score = scoreboard.score + 100 badguy.dead = True missile.exploded = True fighter.remove_exploded_missiles() enemy.remove_dead_badguys() if enemy.is_defeated: enemy_rows = enemy_rows + 1 enemy = EnemyFleet(screen, enemy_rows) scoreboard.draw() if not is_game_over: pygame.display.update() for badguy in enemy.badguys: if badguy.y > 545: screen.blit(gameover_image, (170, 200)) pygame.display.update() is_game_over = True main()
32.851485
104
0.583484
4,449
0.670434
0
0
181
0.027275
0
0
1,717
0.25874