hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
90948ab3b394c7cb6e8df8160515b81630f1c311
4,510
py
Python
lib/site_config.py
bruceravel/xraylarch
a8179208872d43bd23453fa0c64680e11bc2b5ed
[ "BSD-3-Clause" ]
null
null
null
lib/site_config.py
bruceravel/xraylarch
a8179208872d43bd23453fa0c64680e11bc2b5ed
[ "BSD-3-Clause" ]
null
null
null
lib/site_config.py
bruceravel/xraylarch
a8179208872d43bd23453fa0c64680e11bc2b5ed
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ site configuration for larch: init_files: list of larch files run (in order) on startup module_path: list of directories to search for larch code history_file: """ from __future__ import print_function import sys import os from os.path import exists, abspath, join from .utils import get_homedir, nativepath from .version import __version__ as larch_version def pjoin(*args): return nativepath(join(*args)) ## # set system-wide and local larch folders # larchdir = sys.exec_prefix + 'share' + 'larch' # usr_larchdir = get_homedir() + '.larch' (#unix) # = get_homedir() + 'larch' (#win) ## larchdir = pjoin(sys.exec_prefix, 'share', 'larch') home_dir = get_homedir() usr_larchdir = pjoin(home_dir, '.larch') if os.name == 'nt': usr_larchdir = pjoin(home_dir, 'larch') if 'LARCHDIR' in os.environ: usr_larchdir = nativepath(os.environ['LARCHDIR']) ## ## names (and loading order) for core plugin modules core_plugins = ('std', 'math', 'io', 'wx', 'xray', 'xrf', 'xafs') # frozen executables, as from cx_freeze, will have # these paths to be altered... if hasattr(sys, 'frozen'): if os.name == 'nt': try: tdir, exe = os.path.split(sys.executable) toplevel, bindir = os.path.split(tdir) larchdir = os.path.abspath(toplevel) except: pass elif sys.platform.lower().startswith('darwin'): tdir, exe = os.path.split(sys.executable) toplevel, bindir = os.path.split(tdir) larchdir = pjoin(toplevel, 'Resources', 'larch') modules_path = [] plugins_path = [] _path = [usr_larchdir, larchdir] if 'LARCHPATH' in os.environ: _path.extend([nativepath(s) for s in os.environ['LARCHPATH'].split(':')]) for pth in _path: mdir = pjoin(pth, 'modules') if exists(mdir) and mdir not in modules_path: modules_path.append(mdir) pdir = pjoin(pth, 'plugins') if exists(pdir) and pdir not in plugins_path: plugins_path.append(pdir) # initialization larch files to be run on startup init_files = [pjoin(usr_larchdir, 'init.lar')] if 'LARCHSTARTUP' in os.environ: startup = os.environ['LARCHSTARTUP'] if exists(startup): init_files = [nativepath(startup)] # history file: history_file = pjoin(usr_larchdir, 'history.lar') def make_user_larchdirs(): """create user's larch directories""" files = {'init.lar': 'put custom startup larch commands:', 'history.lar': 'history of larch commands:', 'history_larchgui.lar': 'history of larch_gui commands:', } subdirs = {'matplotlib': 'matplotlib may put files here', 'dlls': 'put dlls here', 'modules': 'put custom larch or python modules here', 'plugins': 'put custom larch plugins here'} def make_dir(dname): if not exists(dname): try: os.mkdir(dname) except (OSError, TypeError): print(sys.exc_info()[1]) def write_file(fname, text): if not exists(fname): try: f = open(fname, 'w') f.write('# %s\n' % text) f.close() except: print(sys.exc_info()[1]) make_dir(usr_larchdir) for fname, text in files.items(): write_file(pjoin(usr_larchdir, fname), text) for sdir, text in subdirs.items(): sdir = pjoin(usr_larchdir, sdir) make_dir(sdir) write_file(pjoin(sdir, 'README'), text) def show_site_config(): print( """=== Larch Configuration larch version: %s sys executable: %s sys is frozen: %s system larch dir: %s users larch dir: %s users history_file: %s users startup files: %s modules search path: %s plugins search path: %s ======================== """ % (larch_version, sys.executable, repr(getattr(sys, 'frozen', False)), larchdir, usr_larchdir, history_file, init_files, modules_path, plugins_path)) def system_settings(): """set system-specific Environmental Variables, and make sure that the user larchdirs exist. This is run by the interpreter on startup.""" # ubuntu / unity hack if sys.platform.lower().startswith('linux'): if 'ubuntu' in os.uname()[3].lower(): os.environ['UBUNTU_MENUPROXY'] = '0' make_user_larchdirs() if __name__ == '__main__': show_site_config()
29.86755
77
0.614634
0
0
0
0
0
0
0
0
1,689
0.374501
909490610fb0cdfc5860262dba5b4c657bee2b6b
2,898
py
Python
gpath/path_similarity.py
insilichem/gpathfinder
e6c7df14d473857acb007efbae3cc7b4fee1b330
[ "Apache-2.0" ]
5
2020-03-22T20:21:47.000Z
2022-03-08T07:50:25.000Z
gpath/path_similarity.py
insilichem/gpathfinder
e6c7df14d473857acb007efbae3cc7b4fee1b330
[ "Apache-2.0" ]
2
2020-04-09T10:49:26.000Z
2022-03-08T04:37:27.000Z
gpath/path_similarity.py
insilichem/gpathfinder
e6c7df14d473857acb007efbae3cc7b4fee1b330
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ############## # GPathFinder: Identification of ligand pathways by a multi-objective # genetic algorithm # # https://github.com/insilichem/gpathfinder # # Copyright 2019 José-Emilio Sánchez Aparicio, Giuseppe Sciortino, # Daniel Villadrich Herrmannsdoerfer, Pablo Orenes Chueca, # Jaime Rodríguez-Guerra Pedregal and Jean-Didier Maréchal # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############## """ This module contains the similarity functions that are used to discard individuals that are not different enough. This criterion of similarity will be applied in the case of two ``pathways`` individuals with the same score. Then, if they are similar enough according to this module, one of them will be discarded. """ from __future__ import print_function, division import logging import numpy as np logger = logging.getLogger(__name__) def pathways_rmsd(ind1, ind2, subject, threshold, *args, **kwargs): """ Calculates the RMSD between the positions of the ``pathways`` genes belonging two the two individuals object of study. If the squared RMSD is less or equal than the squared threshold, we consider that the two pathways are identical and one of them will be discarded. Parameters ---------- ind1 : gpath.base.Individual ind2 : gpath.base.Individual subject: str Name of Gpath ``pathway`` gene instance to measure. threshold : float Maximum RMSD value in Angstroms to consider two individuals as similar. If ``rmsd > threshold``, they are considered different. Returns ------- bool True if ``rmsd`` is within threshold, False otherwise. It will always return False if number of points of the pathway is not equal in the two Individuals. """ coords1 = np.array([elem[:] for elem in \ ind1.genes[subject].allele['positions']]) coords2 = np.array([elem[:] for elem in \ ind2.genes[subject].allele['positions']]) if coords1.shape[0] != coords2.shape[0]: return False rmsd_squared = _rmsd_squared(coords1, coords2) if rmsd_squared > threshold*threshold: return False return True def _rmsd_squared(coords1, coords2): diff = coords1 - coords2 return (diff * diff).sum() / coords1.shape[0]
36.683544
77
0.689786
0
0
0
0
0
0
0
0
2,139
0.737078
9096de4357058d79ebeafc310708bd4b4560fdc0
1,666
py
Python
Schedule/groupagenda/urls.py
f0rdream/party-time
3b596043627383859042a6e70167e4304bab9a92
[ "MIT" ]
null
null
null
Schedule/groupagenda/urls.py
f0rdream/party-time
3b596043627383859042a6e70167e4304bab9a92
[ "MIT" ]
null
null
null
Schedule/groupagenda/urls.py
f0rdream/party-time
3b596043627383859042a6e70167e4304bab9a92
[ "MIT" ]
null
null
null
from django.conf.urls import url, include from .views import (GroupListAPIView, GroupCreateAPIView, AgendaListAPIView, AgendaDetailAPIView, AgendaCreateAPIView, AgendaPostAPIView, agenda_create, AgendaRefreshAPIView, NumberInGroupAPIView, GroupProfileDetailAPIView, GroupProfileUpdateAPIView, number_in_group) urlpatterns = [ url(r'^group/$', GroupListAPIView.as_view(), name="group_list"), url(r'^group/create/$', GroupCreateAPIView.as_view(), name="group_create"), url(r'agenda-list/$', AgendaListAPIView.as_view(), name="agenda_list"), url(r'^(?P<group_id>\d+)/(?P<pk>\d+)/detail/$', AgendaDetailAPIView.as_view(), name='agenda_detail'), # url(r'^create/$', AgendaCreateAPIView.as_view(), name='agenda_create'), url(r'^(?P<group_id>\d+)/post2/$', AgendaPostAPIView.as_view(), name='agenda_create2'), # recommended api url(r'^(?P<group_id>\d+)/post/$', agenda_create, name='agenda_create'), url(r'^(?P<group_id>\d+)/(?P<pk>\d+)/refresh/$', AgendaRefreshAPIView.as_view(), name='agenda_refresh'), url(r'^(?P<id>\d+)/number/$', NumberInGroupAPIView.as_view(), name="number"), url(r'^(?P<group_id>\d+)/(?P<date>\d{4}-\d{2}-\d{2})/number/$', number_in_group, name="number2"), url(r'^(?P<group_id>\d+)/group-profile/$', GroupProfileDetailAPIView.as_view(), name="group_profile"), url(r'^(?P<group_id>\d+)/group-profile/update/$', GroupProfileUpdateAPIView.as_view(), name="group_profile_update"), ]
57.448276
120
0.614046
0
0
0
0
0
0
0
0
595
0.357143
90988846045a582c1eb61f51d1fdf6a5c9b664f2
312
py
Python
examples/admin.py
kimbackdoo/Web-Cralwer
6a92ec00ea2273f228b8c304cd596ad9120c4709
[ "MIT" ]
null
null
null
examples/admin.py
kimbackdoo/Web-Cralwer
6a92ec00ea2273f228b8c304cd596ad9120c4709
[ "MIT" ]
null
null
null
examples/admin.py
kimbackdoo/Web-Cralwer
6a92ec00ea2273f228b8c304cd596ad9120c4709
[ "MIT" ]
null
null
null
from django.contrib import admin # Register your models here. #models에서 Shop을 임폴트 from .models import Shop from .models import Parsed_data from .models import Img_data from .models import Other admin.site.register(Shop) admin.site.register(Parsed_data) admin.site.register(Img_data) admin.site.register(Other)
22.285714
32
0.814103
0
0
0
0
0
0
0
0
59
0.182099
909914b3df8b80013e491c569d64a1ce700cd6e4
630
py
Python
main_test_dad.py
AdamLohSg/GTA
bf6a745a6e28e365466e76360a15ca10ce61e009
[ "Apache-2.0" ]
8
2022-01-19T20:47:36.000Z
2022-03-20T05:11:04.000Z
main_test_dad.py
AdamLohSg/GTA
bf6a745a6e28e365466e76360a15ca10ce61e009
[ "Apache-2.0" ]
2
2022-02-17T06:14:25.000Z
2022-02-17T08:43:57.000Z
main_test_dad.py
AdamLohSg/GTA
bf6a745a6e28e365466e76360a15ca10ce61e009
[ "Apache-2.0" ]
5
2022-02-15T04:16:27.000Z
2022-03-29T01:21:41.000Z
import torch from models.gta import GraphTemporalEmbedding if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') x = torch.randn(32, 96, 122) model = GraphTemporalEmbedding(122, 96, 3) y = model(x) print(y.size()) # model = AdaGraphSage(num_nodes=10, seq_len=96, label_len=48, out_len=24) # model = model.double().to(device) # x = torch.randn(32, 96, 10, requires_grad=True).double().to(device) # y = torch.randn(32, 48, 10, requires_grad=True).double().to(device) # # print(out.size()) # out = model(x, y, None, None) # print(out.size())
39.375
78
0.647619
0
0
0
0
0
0
0
0
339
0.538095
909961221deb2afd6f990975d13c32b0c0400f10
638
py
Python
daiquiri_client/auth.py
aipescience/django-daiquiri-client
30521dc7393b65ef51a5fd42b63b1dece46a2d5c
[ "Apache-2.0" ]
null
null
null
daiquiri_client/auth.py
aipescience/django-daiquiri-client
30521dc7393b65ef51a5fd42b63b1dece46a2d5c
[ "Apache-2.0" ]
null
null
null
daiquiri_client/auth.py
aipescience/django-daiquiri-client
30521dc7393b65ef51a5fd42b63b1dece46a2d5c
[ "Apache-2.0" ]
null
null
null
class Auth(): def __init__(self, client): self.client = client def get_profiles(self): return self.client.get('/auth/api/profiles/', {'page_size': 10000})['results'] def get_groups(self): return self.client.get('/auth/api/groups/') def get_group_map(self): return {group['id']: group['name'] for group in self.get_groups()} def activate_profile(self, pk): return self.client.put('/auth/api/profiles/%d/activate/' % pk, {}) def update_profile_attributes(self, pk, attributes): return self.client.patch('/auth/api/profiles/%d/' % pk, {'attributes': attributes})
31.9
91
0.639498
637
0.998433
0
0
0
0
0
0
139
0.217868
909acbc6fed7077e7d615e7ea5b4fd6ba9538288
954
py
Python
CSS/spiraleFile.py
NsiLycee/premiere
2814a21860e227e2db01ea201b1c4d99723a0562
[ "Unlicense" ]
null
null
null
CSS/spiraleFile.py
NsiLycee/premiere
2814a21860e227e2db01ea201b1c4d99723a0562
[ "Unlicense" ]
null
null
null
CSS/spiraleFile.py
NsiLycee/premiere
2814a21860e227e2db01ea201b1c4d99723a0562
[ "Unlicense" ]
null
null
null
''' Auteur : Joël Dendaletche But : tracé une figure géométrique à l'aide de la bibliothèque Turtle Le projet utilise l'objet file pour itérer le calcul de chaque nouveau point Les coordonnées des points d'un polygone sont placés dans une file l'algorithme consiste à calculer les coordonnées d'un point pour tracer une droite qui part du premier points de la file et passe par le deuxième en prolongeant le segment d'une fraction déterminée de la longueur entre les deux points. Le deuxième point est remplacé par le nouveau. A la prochaine itération, le segment va partir du nouveau point pour passer par le suivant dans la file, qui sera remplacé par le nouveau point et ainsi de suite. ''' import turtle board = turtle.Turtle() listePoints = [(0,0),(10,0),(5, int(10*75**.5)] print(listePoints) for x, y in listePoints : board.goto(x, y) turtle.done()
45.428571
121
0.697065
0
0
0
0
0
0
0
0
793
0.815844
909acc24e11a5c6671af7463f6c79ae6bbfe3286
20,420
py
Python
network/modules/spconv_unet.py
alexisgroshenry/NPM3D_DSNet
d1a2ec071728dcb3c733ecdee3a27f4534b67f33
[ "MIT" ]
null
null
null
network/modules/spconv_unet.py
alexisgroshenry/NPM3D_DSNet
d1a2ec071728dcb3c733ecdee3a27f4534b67f33
[ "MIT" ]
null
null
null
network/modules/spconv_unet.py
alexisgroshenry/NPM3D_DSNet
d1a2ec071728dcb3c733ecdee3a27f4534b67f33
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # author: Xinge # @file: spconv_unet.py # @time: 2020/06/22 15:01 import time import numpy as np import spconv import torch import torch.nn.functional as F from torch import nn def conv3x3(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, indice_key=indice_key) def conv1x3(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=(1, 3, 3), stride=stride, padding=(0, 1, 1), bias=False, indice_key=indice_key) def conv1x1x3(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=(1, 1, 3), stride=stride, padding=(0, 0, 1), bias=False, indice_key=indice_key) def conv1x3x1(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=(1, 3, 1), stride=stride, padding=(0, 1, 0), bias=False, indice_key=indice_key) def conv3x1x1(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=(3, 1, 1), stride=stride, padding=(1, 0, 0), bias=False, indice_key=indice_key) def conv3x1(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=(3, 1, 3), stride=stride, padding=(1, 0, 1), bias=False, indice_key=indice_key) def conv1x1(in_planes, out_planes, stride=1, indice_key=None): return spconv.SubMConv3d(in_planes, out_planes, kernel_size=1, stride=stride, padding=1, bias=False, indice_key=indice_key) class ResContextBlock(nn.Module): def __init__(self, in_filters, out_filters, kernel_size=(3, 3, 3), stride=1, indice_key=None): super(ResContextBlock, self).__init__() self.conv1 = conv1x3(in_filters, out_filters, indice_key=indice_key+"bef") self.bn0 = nn.BatchNorm1d(out_filters) self.act1 = nn.LeakyReLU() self.conv1_2 = conv3x1(out_filters, out_filters, indice_key=indice_key+"bef") self.bn0_2 = nn.BatchNorm1d(out_filters) self.act1_2 = nn.LeakyReLU() self.conv2 = conv3x1(in_filters, out_filters, indice_key=indice_key+"bef") self.act2 = nn.LeakyReLU() self.bn1 = nn.BatchNorm1d(out_filters) self.conv3 = conv1x3(out_filters, out_filters, indice_key=indice_key+"bef") self.act3 = nn.LeakyReLU() self.bn2 = nn.BatchNorm1d(out_filters) def forward(self, x): shortcut = self.conv1(x) shortcut.features = self.act1(shortcut.features) shortcut.features = self.bn0(shortcut.features) shortcut = self.conv1_2(shortcut) shortcut.features = self.act1_2(shortcut.features) shortcut.features = self.bn0_2(shortcut.features) resA = self.conv2(x) resA.features = self.act2(resA.features) resA.features = self.bn1(resA.features) resA = self.conv3(resA) resA.features = self.act3(resA.features) resA.features = self.bn2(resA.features) resA.features = resA.features + shortcut.features return resA class ResBlock(nn.Module): def __init__(self, in_filters, out_filters, dropout_rate, kernel_size=(3, 3, 3), stride=1, pooling=True, drop_out=True, height_pooling=False, indice_key=None): super(ResBlock, self).__init__() self.pooling = pooling self.drop_out = drop_out self.conv1 = conv3x1(in_filters, out_filters, indice_key=indice_key+"bef") self.act1 = nn.LeakyReLU() self.bn0 = nn.BatchNorm1d(out_filters) self.conv1_2 = conv1x3(out_filters, out_filters, indice_key=indice_key+"bef") self.act1_2 = nn.LeakyReLU() self.bn0_2 = nn.BatchNorm1d(out_filters) self.conv2 = conv1x3(in_filters, out_filters, indice_key=indice_key+"bef") self.act2 = nn.LeakyReLU() self.bn1 = nn.BatchNorm1d(out_filters) self.conv3 = conv3x1(out_filters, out_filters, indice_key=indice_key+"bef") self.act3 = nn.LeakyReLU() self.bn2 = nn.BatchNorm1d(out_filters) # self.conv4 = conv3x3(out_filters, out_filters, indice_key=indice_key+"bef") # self.act4 = nn.LeakyReLU() # self.bn4 = nn.BatchNorm1d(out_filters) if pooling: # self.dropout = nn.Dropout3d(p=dropout_rate) if height_pooling: # self.pool = spconv.SparseMaxPool3d(kernel_size=2, stride=2) self.pool = spconv.SparseConv3d(out_filters, out_filters, kernel_size=3, stride=2, padding=1, indice_key=indice_key, bias=False) else: # self.pool = spconv.SparseMaxPool3d(kernel_size=(2,2,1), stride=(2, 2, 1)) self.pool = spconv.SparseConv3d(out_filters, out_filters, kernel_size=3, stride=(2,2,1), padding=1, indice_key=indice_key, bias=False) # else: # self.dropout = nn.Dropout3d(p=dropout_rate) def forward(self, x): shortcut = self.conv1(x) shortcut.features = self.act1(shortcut.features) shortcut.features = self.bn0(shortcut.features) shortcut = self.conv1_2(shortcut) shortcut.features = self.act1_2(shortcut.features) shortcut.features = self.bn0_2(shortcut.features) resA = self.conv2(x) resA.features = self.act2(resA.features) resA.features = self.bn1(resA.features) resA = self.conv3(resA) resA.features = self.act3(resA.features) resA.features = self.bn2(resA.features) resA.features = resA.features + shortcut.features # resA = self.conv4(resA) # resA.features = self.act4(resA.features) # resA.features = self.bn4(resA.features) if self.pooling: # if self.drop_out: # resB = self.dropout(resA.features) # else: # resB = resA resB = self.pool(resA) return resB, resA else: # if self.drop_out: # resB = self.dropout(resA) # else: # resB = resA return resA class UpBlock(nn.Module): def __init__(self, in_filters, out_filters, kernel_size=(3, 3, 3), indice_key=None, up_key=None): super(UpBlock, self).__init__() # self.drop_out = drop_out #self.trans = nn.ConvTranspose2d(in_filters, out_filters, kernel_size, stride=(2, 2), padding=1) self.trans_dilao = conv3x3(in_filters, out_filters, indice_key=indice_key+"new_up") self.trans_act = nn.LeakyReLU() self.trans_bn = nn.BatchNorm1d(out_filters) # self.dropout1 = nn.Dropout3d(p=dropout_rate) # self.dropout2 = nn.Dropout3d(p=dropout_rate) self.conv1 = conv1x3(out_filters, out_filters, indice_key=indice_key) self.act1 = nn.LeakyReLU() self.bn1 = nn.BatchNorm1d(out_filters) self.conv2 = conv3x1(out_filters, out_filters, indice_key=indice_key) self.act2 = nn.LeakyReLU() self.bn2 = nn.BatchNorm1d(out_filters) self.conv3 = conv3x3(out_filters, out_filters, indice_key=indice_key) self.act3 = nn.LeakyReLU() self.bn3 = nn.BatchNorm1d(out_filters) # self.dropout3 = nn.Dropout3d(p=dropout_rate) self.up_subm = spconv.SparseInverseConv3d(out_filters, out_filters, kernel_size=3, indice_key=up_key, bias=False) def forward(self, x, skip): upA = self.trans_dilao(x) #if upA.shape != skip.shape: # upA = F.pad(upA, (0, 1, 0, 1), mode='replicate') upA.features = self.trans_act(upA.features) upA.features = self.trans_bn(upA.features) ## upsample upA = self.up_subm(upA) # upA = F.interpolate(upA, size=skip.size()[2:], mode='trilinear', align_corners=True) # if self.drop_out: # upA = self.dropout1(upA) upA.features = upA.features + skip.features # if self.drop_out: # upB = self.dropout2(upB) upE = self.conv1(upA) upE.features = self.act1(upE.features) upE.features = self.bn1(upE.features) upE = self.conv2(upE) upE.features = self.act2(upE.features) upE.features = self.bn2(upE.features) upE = self.conv3(upE) upE.features = self.act3(upE.features) upE.features = self.bn3(upE.features) # if self.drop_out: # upE = self.dropout3(upE) return upE class ReconBlock(nn.Module): def __init__(self, in_filters, out_filters, kernel_size=(3, 3, 3), stride=1, indice_key=None): super(ReconBlock, self).__init__() self.conv1 = conv3x1x1(in_filters, out_filters, indice_key=indice_key+"bef") self.bn0 = nn.BatchNorm1d(out_filters) self.act1 = nn.Sigmoid() self.conv1_2 = conv1x3x1(in_filters, out_filters, indice_key=indice_key+"bef") self.bn0_2 = nn.BatchNorm1d(out_filters) self.act1_2 = nn.Sigmoid() self.conv1_3 = conv1x1x3(in_filters, out_filters, indice_key=indice_key+"bef") self.bn0_3 = nn.BatchNorm1d(out_filters) self.act1_3 = nn.Sigmoid() # self.conv2 = conv3x1(in_filters, out_filters, indice_key=indice_key+"bef") # self.act2 = nn.LeakyReLU() # self.bn1 = nn.BatchNorm1d(out_filters) # # self.conv3 = conv1x3(out_filters, out_filters, indice_key=indice_key+"bef") # self.act3 = nn.LeakyReLU() # self.bn2 = nn.BatchNorm1d(out_filters) def forward(self, x): shortcut = self.conv1(x) shortcut.features = self.bn0(shortcut.features) shortcut.features = self.act1(shortcut.features) shortcut2 = self.conv1_2(x) shortcut2.features = self.bn0_2(shortcut2.features) shortcut2.features = self.act1_2(shortcut2.features) shortcut3 = self.conv1_3(x) shortcut3.features = self.bn0_3(shortcut3.features) shortcut3.features = self.act1_3(shortcut3.features) # resA = self.conv2(x) # resA.features = self.act2(resA.features) # resA.features = self.bn1(resA.features) # # resA = self.conv3(resA) # resA.features = self.act3(resA.features) # resA.features = self.bn2(resA.features) shortcut.features = shortcut.features + shortcut2.features + shortcut3.features shortcut.features = shortcut.features * x.features return shortcut class Spconv_salsaNet_res_cfg(nn.Module): def __init__(self, cfg): super(Spconv_salsaNet_res_cfg, self).__init__() output_shape = cfg.DATA_CONFIG.DATALOADER.GRID_SIZE if 'FEATURE_COMPRESSION' in cfg.MODEL.MODEL_FN: num_input_features = cfg.MODEL.MODEL_FN.FEATURE_COMPRESSION else: num_input_features = cfg.DATA_CONFIG.DATALOADER.GRID_SIZE[2] nclasses = cfg.DATA_CONFIG.NCLASS n_height = cfg.DATA_CONFIG.DATALOADER.GRID_SIZE[2] init_size = cfg.MODEL.BACKBONE.INIT_SIZE self.nclasses = nclasses self.nheight = n_height self.strict = False sparse_shape = np.array(output_shape) # sparse_shape[0] = 11 self.sparse_shape = sparse_shape self.downCntx = ResContextBlock(num_input_features, init_size, indice_key="pre") # self.resBlock1 = ResBlock(init_size, init_size, 0.2, pooling=True, height_pooling=True, indice_key="down1") self.resBlock2 = ResBlock(init_size, 2 * init_size, 0.2, height_pooling=True, indice_key="down2") self.resBlock3 = ResBlock(2 * init_size, 4 * init_size, 0.2, height_pooling=True, indice_key="down3") self.resBlock4 = ResBlock(4 * init_size, 8 * init_size, 0.2, pooling=True, height_pooling=False, indice_key="down4") self.resBlock5 = ResBlock(8 * init_size, 16 * init_size, 0.2, pooling=True, height_pooling=False, indice_key="down5") # self.resBlock6 = ResBlock(16 * init_size, 16 * init_size, 0.2, pooling=False, height_pooling=False, indice_key="down6") # self.ReconNet = ReconBlock(16 * init_size, 16 * init_size, indice_key="recon") self.upBlock0 = UpBlock(16 * init_size, 16 * init_size, indice_key="up0", up_key="down5") self.upBlock1 = UpBlock(16 * init_size, 8 * init_size, indice_key="up1", up_key="down4") self.upBlock2 = UpBlock(8 * init_size, 4 * init_size, indice_key="up2", up_key="down3") self.upBlock3 = UpBlock(4 * init_size, 2 * init_size, indice_key="up3", up_key="down2") # self.upBlock4 = UpBlock(4 * init_size, 2 * init_size, indice_key="up4", up_key="down2") # self.upBlock5 = UpBlock(2 * init_size, init_size, indice_key="up5", up_key="down1") self.ReconNet = ReconBlock(2*init_size, 2*init_size, indice_key="recon") def forward(self, voxel_features, coors, batch_size): # x = x.contiguous() coors = coors.int() ret = spconv.SparseConvTensor(voxel_features, coors, self.sparse_shape, batch_size) ret = self.downCntx(ret) # down0c, down0b = self.resBlock1(ret) down1c, down1b = self.resBlock2(ret) down2c, down2b = self.resBlock3(down1c) down3c, down3b = self.resBlock4(down2c) down4c, down4b = self.resBlock5(down3c) # down5b = self.resBlock6(down4c) # down6b = self.ReconNet(down5b) up4e = self.upBlock0(down4c, down4b) up3e = self.upBlock1(up4e, down3b) up2e = self.upBlock2(up3e, down2b) up1e = self.upBlock3(up2e, down1b) up0e = self.ReconNet(up1e) up0e.features = torch.cat((up0e.features, up1e.features), 1) # size 4 * init_size --> OK with the size of the semantic and instance heads return up0e, up0e class Spconv_sem_logits_head_cfg(nn.Module): def __init__(self, cfg): super(Spconv_sem_logits_head_cfg, self).__init__() output_shape = cfg.DATA_CONFIG.DATALOADER.GRID_SIZE if 'FEATURE_COMPRESSION' in cfg.MODEL.MODEL_FN: num_input_features = cfg.MODEL.MODEL_FN.FEATURE_COMPRESSION else: num_input_features = cfg.DATA_CONFIG.DATALOADER.GRID_SIZE[2] nclasses = cfg.DATA_CONFIG.NCLASS n_height = cfg.DATA_CONFIG.DATALOADER.GRID_SIZE[2] init_size = cfg.MODEL.BACKBONE.INIT_SIZE self.logits = spconv.SubMConv3d(4 * init_size, nclasses, indice_key="logit", kernel_size=3, stride=1, padding=1, bias=True) def forward(self, fea): logits = self.logits(fea) return logits.dense() class Spconv_ins_offset_concatxyz_threelayers_head_cfg(nn.Module): def __init__(self, cfg): super(Spconv_ins_offset_concatxyz_threelayers_head_cfg, self).__init__() init_size = cfg.MODEL.BACKBONE.INIT_SIZE self.pt_fea_dim = 4 * init_size self.embedding_dim = cfg.MODEL.INS_HEAD.EMBEDDING_CHANNEL self.conv1 = conv3x3(self.pt_fea_dim, self.pt_fea_dim, indice_key='offset_head_conv1') self.bn1 = nn.BatchNorm1d(self.pt_fea_dim) self.act1 = nn.LeakyReLU() self.conv2 = conv3x3(self.pt_fea_dim, 2 * init_size, indice_key='offset_head_conv2') self.bn2 = nn.BatchNorm1d(2 * init_size) self.act2 = nn.LeakyReLU() self.conv3 = conv3x3(2 * init_size, init_size, indice_key='offset_head_conv3') self.bn3 = nn.BatchNorm1d(init_size) self.act3 = nn.LeakyReLU() self.offset = nn.Sequential( nn.Linear(init_size+3, init_size, bias=True), nn.BatchNorm1d(init_size), nn.ReLU() ) self.offset_linear = nn.Linear(init_size, self.embedding_dim, bias=True) def forward(self, fea, batch): fea = self.conv1(fea) fea.features = self.act1(self.bn1(fea.features)) fea = self.conv2(fea) fea.features = self.act2(self.bn2(fea.features)) fea = self.conv3(fea) fea.features = self.act3(self.bn3(fea.features)) grid_ind = batch['grid'] xyz = batch['pt_cart_xyz'] fea = fea.dense() fea = fea.permute(0, 2, 3, 4, 1) pt_ins_fea_list = [] for batch_i, grid_ind_i in enumerate(grid_ind): pt_ins_fea_list.append(fea[batch_i, grid_ind[batch_i][:,0], grid_ind[batch_i][:,1], grid_ind[batch_i][:,2]]) pt_pred_offsets_list = [] for batch_i, pt_ins_fea in enumerate(pt_ins_fea_list): pt_pred_offsets_list.append(self.offset_linear(self.offset(torch.cat([pt_ins_fea,torch.from_numpy(xyz[batch_i]).cuda()],dim=1)))) return pt_pred_offsets_list, pt_ins_fea_list class Spconv_alsaNet_res(nn.Module): def __init__(self, output_shape, use_norm=True, num_input_features=128, nclasses = 20, n_height = 32, strict=False, init_size=16): super(Spconv_alsaNet_res, self).__init__() self.nclasses = nclasses self.nheight = n_height self.strict = False sparse_shape = np.array(output_shape) # sparse_shape[0] = 11 print(sparse_shape) self.sparse_shape = sparse_shape self.downCntx = ResContextBlock(num_input_features, init_size, indice_key="pre") # self.resBlock1 = ResBlock(init_size, init_size, 0.2, pooling=True, height_pooling=True, indice_key="down1") self.resBlock2 = ResBlock(init_size, 2 * init_size, 0.2, height_pooling=True, indice_key="down2") self.resBlock3 = ResBlock(2 * init_size, 4 * init_size, 0.2, height_pooling=True, indice_key="down3") self.resBlock4 = ResBlock(4 * init_size, 8 * init_size, 0.2, pooling=True, height_pooling=False, indice_key="down4") self.resBlock5 = ResBlock(8 * init_size, 16 * init_size, 0.2, pooling=True, height_pooling=False, indice_key="down5") # self.resBlock6 = ResBlock(16 * init_size, 16 * init_size, 0.2, pooling=False, height_pooling=False, indice_key="down6") # self.ReconNet = ReconBlock(16 * init_size, 16 * init_size, indice_key="recon") self.upBlock0 = UpBlock(16 * init_size, 16 * init_size, indice_key="up0", up_key="down5") self.upBlock1 = UpBlock(16 * init_size, 8 * init_size, indice_key="up1", up_key="down4") self.upBlock2 = UpBlock(8 * init_size, 4 * init_size, indice_key="up2", up_key="down3") self.upBlock3 = UpBlock(4 * init_size, 2 * init_size, indice_key="up3", up_key="down2") # self.upBlock4 = UpBlock(4 * init_size, 2 * init_size, indice_key="up4", up_key="down2") # self.upBlock5 = UpBlock(2 * init_size, init_size, indice_key="up5", up_key="down1") self.ReconNet = ReconBlock(2*init_size, 2*init_size, indice_key="recon") self.logits = spconv.SubMConv3d(4 * init_size, nclasses, indice_key="logit", kernel_size=3, stride=1, padding=1, bias=True) def forward(self, voxel_features, coors, batch_size): # x = x.contiguous() coors = coors.int() import pdb pdb.set_trace() ret = spconv.SparseConvTensor(voxel_features, coors, self.sparse_shape, batch_size) ret = self.downCntx(ret) # down0c, down0b = self.resBlock1(ret) down1c, down1b = self.resBlock2(ret) down2c, down2b = self.resBlock3(down1c) down3c, down3b = self.resBlock4(down2c) down4c, down4b = self.resBlock5(down3c) # down5b = self.resBlock6(down4c) # down6b = self.ReconNet(down5b) up4e = self.upBlock0(down4c, down4b) up3e = self.upBlock1(up4e, down3b) up2e = self.upBlock2(up3e, down2b) up1e = self.upBlock3(up2e, down1b) up0e = self.ReconNet(up1e) up0e.features = torch.cat((up0e.features, up1e.features), 1) # up2e = self.upBlock3(up3e, down2b) # up1e = self.upBlock4(up2e, down1b) # up0e = self.upBlock5(up1e, down0b) # up0e_gap = nn.AdaptiveAvgPool3d((1))(up0e) # up0e_gap = F.interpolate(up0e_gap, size=(up0e.size()[2:]), mode='trilinear', align_corners=True) # up0e = torch.cat((up0e, up0e_gap), dim=1) logits = self.logits(up0e) y = logits.dense() # y = logits.permute(0, 1, 3, 4, 2) return y
41.588595
145
0.645495
18,620
0.911851
0
0
0
0
0
0
3,854
0.188737
909ad865d21f2537f3949dbc416292efd7136d09
45
py
Python
scivision_test_plugin/__init__.py
acocac/scivision-test-plugin
0ebeabe256287a83d8a268649085f18dc3ddfc9f
[ "BSD-3-Clause" ]
null
null
null
scivision_test_plugin/__init__.py
acocac/scivision-test-plugin
0ebeabe256287a83d8a268649085f18dc3ddfc9f
[ "BSD-3-Clause" ]
null
null
null
scivision_test_plugin/__init__.py
acocac/scivision-test-plugin
0ebeabe256287a83d8a268649085f18dc3ddfc9f
[ "BSD-3-Clause" ]
null
null
null
from .model import DummyModel, ImageNetModel
22.5
44
0.844444
0
0
0
0
0
0
0
0
0
0
909b082c85db7f41252c1dd15a6d1058abd2c236
2,330
py
Python
prml/dimreduction/bayesian_pca.py
andresmasegosa/PRML-CoreSets
fb768debb15e3ff6f5b65b7224915a41c1493f3d
[ "MIT" ]
null
null
null
prml/dimreduction/bayesian_pca.py
andresmasegosa/PRML-CoreSets
fb768debb15e3ff6f5b65b7224915a41c1493f3d
[ "MIT" ]
null
null
null
prml/dimreduction/bayesian_pca.py
andresmasegosa/PRML-CoreSets
fb768debb15e3ff6f5b65b7224915a41c1493f3d
[ "MIT" ]
null
null
null
import numpy as np from prml.dimreduction.pca import PCA class BayesianPCA(PCA): def fit(self, X, iter_max=100, initial="random"): """ empirical bayes estimation of pca parameters Parameters ---------- X : (sample_size, n_features) ndarray input data iter_max : int maximum number of em steps Returns ------- mean : (n_features,) ndarray sample mean fo the input data W : (n_features, n_components) ndarray projection matrix var : float variance of observation noise """ initial_list = ["random", "eigen"] self.mean = np.mean(X, axis=0) self.I = np.eye(self.n_components) if initial not in initial_list: print("availabel initializations are {}".format(initial_list)) if initial == "random": self.W = np.eye(np.size(X, 1), self.n_components) #self.W = np.random.randn(np.size(X, 1), self.n_components) self.var = 1. elif initial == "eigen": self.eigen(X) self.alpha = len(self.mean) / np.sum(self.W ** 2, axis=0).clip(min=1e-10) for i in range(iter_max): W = np.copy(self.W) stats = self._expectation(X - self.mean) self._maximization(X - self.mean, *stats) #self.alpha = len(self.mean) / np.sum(self.W ** 2, axis=0).clip(min=1e-10) #if np.allclose(W, self.W): # break self.n_iter = i + 1 self.C = self.W @ self.W.T + self.var * np.eye(np.size(X, 1)) self.Cinv = np.linalg.inv(self.C) def _maximization(self, X, Ez, Ezz): self.W = X.T @ Ez @ np.linalg.inv(np.sum(Ezz, axis=0) + self.var * np.diag(self.alpha)) self.var = np.mean( np.mean(X ** 2, axis=-1) - 2 * np.mean(Ez @ self.W.T * X, axis=-1) + np.trace((Ezz @ self.W.T @ self.W).T) / len(self.mean)) def maximize(self, D, Ez, Ezz): self.W = D.T.dot(Ez).dot(np.linalg.inv(np.sum(Ezz, axis=0) + self.var * np.diag(self.alpha))) self.var = np.mean( np.mean(D ** 2, axis=-1) - 2 * np.mean(Ez.dot(self.W.T) * D, axis=-1) + np.trace(Ezz.dot(self.W.T).dot(self.W).T) / self.ndim)
36.40625
101
0.529185
2,270
0.974249
0
0
0
0
0
0
731
0.313734
909b242da63999e1207271fb27d3b19ba2f0e8e9
11,492
py
Python
mne/time_frequency/psd.py
jnvandermeer/mne-python
143a1fbfd2a68a0ce8d700da9299564de0b92334
[ "BSD-3-Clause" ]
null
null
null
mne/time_frequency/psd.py
jnvandermeer/mne-python
143a1fbfd2a68a0ce8d700da9299564de0b92334
[ "BSD-3-Clause" ]
2
2016-02-27T13:43:15.000Z
2018-07-18T19:44:45.000Z
mne/time_frequency/psd.py
jnvandermeer/mne-python
143a1fbfd2a68a0ce8d700da9299564de0b92334
[ "BSD-3-Clause" ]
1
2017-03-05T20:44:07.000Z
2017-03-05T20:44:07.000Z
# Authors : Alexandre Gramfort, [email protected] (2011) # Denis A. Engemann <[email protected]> # License : BSD 3-clause import numpy as np from ..parallel import parallel_func from ..io.pick import _pick_data_channels from ..utils import logger, verbose, _time_mask from ..fixes import get_spectrogram from .multitaper import psd_array_multitaper def _psd_func(epoch, noverlap, n_per_seg, nfft, fs, freq_mask, func): """Aux function.""" return func(epoch, fs=fs, nperseg=n_per_seg, noverlap=noverlap, nfft=nfft, window='hamming')[2][..., freq_mask, :] def _check_nfft(n, n_fft, n_per_seg, n_overlap): """Ensure n_fft, n_per_seg and n_overlap make sense.""" if n_per_seg is None and n_fft > n: raise ValueError(('If n_per_seg is None n_fft is not allowed to be > ' 'n_times. If you want zero-padding, you have to set ' 'n_per_seg to relevant length. Got n_fft of %d while' ' signal length is %d.') % (n_fft, n)) n_per_seg = n_fft if n_per_seg is None or n_per_seg > n_fft else n_per_seg n_per_seg = n if n_per_seg > n else n_per_seg if n_overlap >= n_per_seg: raise ValueError(('n_overlap cannot be greater than n_per_seg (or ' 'n_fft). Got n_overlap of %d while n_per_seg is ' '%d.') % (n_overlap, n_per_seg)) return n_fft, n_per_seg, n_overlap def _check_psd_data(inst, tmin, tmax, picks, proj, reject_by_annotation=False): """Check PSD data / pull arrays from inst.""" from ..io.base import BaseRaw from ..epochs import BaseEpochs from ..evoked import Evoked if not isinstance(inst, (BaseEpochs, BaseRaw, Evoked)): raise ValueError('epochs must be an instance of Epochs, Raw, or' 'Evoked. Got type {0}'.format(type(inst))) time_mask = _time_mask(inst.times, tmin, tmax, sfreq=inst.info['sfreq']) if picks is None: picks = _pick_data_channels(inst.info, with_ref_meg=False) if proj: # Copy first so it's not modified inst = inst.copy().apply_proj() sfreq = inst.info['sfreq'] if isinstance(inst, BaseRaw): start, stop = np.where(time_mask)[0][[0, -1]] rba = 'NaN' if reject_by_annotation else None data = inst.get_data(picks, start, stop + 1, reject_by_annotation=rba) elif isinstance(inst, BaseEpochs): data = inst.get_data()[:, picks][:, :, time_mask] else: # Evoked data = inst.data[picks][:, time_mask] return data, sfreq @verbose def psd_array_welch(x, sfreq, fmin=0, fmax=np.inf, n_fft=256, n_overlap=0, n_per_seg=None, n_jobs=1, verbose=None): """Compute power spectral density (PSD) using Welch's method. Parameters ---------- x : array, shape=(..., n_times) The data to compute PSD from. sfreq : float The sampling frequency. fmin : float The lower frequency of interest. fmax : float The upper frequency of interest. n_fft : int The length of FFT used, must be ``>= n_per_seg`` (default: 256). The segments will be zero-padded if ``n_fft > n_per_seg``. n_overlap : int The number of points of overlap between segments. Will be adjusted to be <= n_per_seg. The default value is 0. n_per_seg : int | None Length of each Welch segment (windowed with a Hamming window). Defaults to None, which sets n_per_seg equal to n_fft. n_jobs : int Number of CPUs to use in the computation. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- psds : ndarray, shape (..., n_freqs) or The power spectral densities. All dimensions up to the last will be the same as input. freqs : ndarray, shape (n_freqs,) The frequencies. Notes ----- .. versionadded:: 0.14.0 """ spectrogram = get_spectrogram() dshape = x.shape[:-1] n_times = x.shape[-1] x = x.reshape(-1, n_times) # Prep the PSD n_fft, n_per_seg, n_overlap = _check_nfft(n_times, n_fft, n_per_seg, n_overlap) win_size = n_fft / float(sfreq) logger.info("Effective window size : %0.3f (s)" % win_size) freqs = np.arange(n_fft // 2 + 1, dtype=float) * (sfreq / n_fft) freq_mask = (freqs >= fmin) & (freqs <= fmax) freqs = freqs[freq_mask] # Parallelize across first N-1 dimensions parallel, my_psd_func, n_jobs = parallel_func(_psd_func, n_jobs=n_jobs) x_splits = np.array_split(x, n_jobs) f_spectrogram = parallel(my_psd_func(d, noverlap=n_overlap, nfft=n_fft, fs=sfreq, freq_mask=freq_mask, func=spectrogram, n_per_seg=n_per_seg) for d in x_splits) # Combining, reducing windows and reshaping to original data shape psds = np.concatenate([np.nanmean(f_s, axis=-1) for f_s in f_spectrogram], axis=0) psds.shape = dshape + (-1,) return psds, freqs @verbose def psd_welch(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None, n_fft=256, n_overlap=0, n_per_seg=None, picks=None, proj=False, n_jobs=1, reject_by_annotation=True, verbose=None): """Compute the power spectral density (PSD) using Welch's method. Calculates periodograms for a sliding window over the time dimension, then averages them together for each channel/epoch. Parameters ---------- inst : instance of Epochs or Raw or Evoked The data for PSD calculation fmin : float Min frequency of interest fmax : float Max frequency of interest tmin : float | None Min time of interest tmax : float | None Max time of interest n_fft : int The length of FFT used, must be ``>= n_per_seg`` (default: 256). The segments will be zero-padded if ``n_fft > n_per_seg``. If n_per_seg is None, n_fft must be >= number of time points in the data. n_overlap : int The number of points of overlap between segments. Will be adjusted to be <= n_per_seg. The default value is 0. n_per_seg : int | None Length of each Welch segment (windowed with a Hamming window). Defaults to None, which sets n_per_seg equal to n_fft. picks : array-like of int | None The selection of channels to include in the computation. If None, take all channels. proj : bool Apply SSP projection vectors. If inst is ndarray this is not used. n_jobs : int Number of CPUs to use in the computation. reject_by_annotation : bool Whether to omit bad segments from the data while computing the PSD. If True, annotated segments with a description that starts with 'bad' are omitted. Has no effect if ``inst`` is an Epochs or Evoked object. Defaults to True. .. versionadded:: 0.15.0 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- psds : ndarray, shape (..., n_freqs) The power spectral densities. If input is of type Raw, then psds will be shape (n_channels, n_freqs), if input is type Epochs then psds will be shape (n_epochs, n_channels, n_freqs). freqs : ndarray, shape (n_freqs,) The frequencies. See Also -------- mne.io.Raw.plot_psd mne.Epochs.plot_psd psd_multitaper psd_array_welch Notes ----- .. versionadded:: 0.12.0 """ # Prep data data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj, reject_by_annotation=reject_by_annotation) return psd_array_welch(data, sfreq, fmin=fmin, fmax=fmax, n_fft=n_fft, n_overlap=n_overlap, n_per_seg=n_per_seg, n_jobs=n_jobs, verbose=verbose) @verbose def psd_multitaper(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None, bandwidth=None, adaptive=False, low_bias=True, normalization='length', picks=None, proj=False, n_jobs=1, verbose=None): """Compute the power spectral density (PSD) using multitapers. Calculates spectral density for orthogonal tapers, then averages them together for each channel/epoch. See [1] for a description of the tapers and [2] for the general method. Parameters ---------- inst : instance of Epochs or Raw or Evoked The data for PSD calculation. fmin : float Min frequency of interest fmax : float Max frequency of interest tmin : float | None Min time of interest tmax : float | None Max time of interest bandwidth : float The bandwidth of the multi taper windowing function in Hz. The default value is a window half-bandwidth of 4. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation). low_bias : bool Only use tapers with more than 90% spectral concentration within bandwidth. normalization : str Either "full" or "length" (default). If "full", the PSD will be normalized by the sampling rate as well as the length of the signal (as in nitime). picks : array-like of int | None The selection of channels to include in the computation. If None, take all channels. proj : bool Apply SSP projection vectors. If inst is ndarray this is not used. n_jobs : int Number of CPUs to use in the computation. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- psds : ndarray, shape (..., n_freqs) The power spectral densities. If input is of type Raw, then psds will be shape (n_channels, n_freqs), if input is type Epochs then psds will be shape (n_epochs, n_channels, n_freqs). freqs : ndarray, shape (n_freqs,) The frequencies. References ---------- .. [1] Slepian, D. "Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: The discrete case." Bell System Technical Journal, vol. 57, 1978. .. [2] Percival D.B. and Walden A.T. "Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques." Cambridge University Press, 1993. See Also -------- mne.io.Raw.plot_psd mne.Epochs.plot_psd psd_array_multitaper psd_welch csd_multitaper Notes ----- .. versionadded:: 0.12.0 """ # Prep data data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj) return psd_array_multitaper(data, sfreq, fmin=fmin, fmax=fmax, bandwidth=bandwidth, adaptive=adaptive, low_bias=low_bias, normalization=normalization, n_jobs=n_jobs, verbose=verbose)
38.563758
79
0.62661
0
0
0
0
8,860
0.770971
0
0
7,195
0.626088
909b464aebeffe98a01bbc3d1080af46d979ef36
5,690
py
Python
culturebank/models.py
Anaphory/culturebank
9a408cb25fafcb14bbdd96278bebfbc898d32d00
[ "Apache-2.0" ]
null
null
null
culturebank/models.py
Anaphory/culturebank
9a408cb25fafcb14bbdd96278bebfbc898d32d00
[ "Apache-2.0" ]
null
null
null
culturebank/models.py
Anaphory/culturebank
9a408cb25fafcb14bbdd96278bebfbc898d32d00
[ "Apache-2.0" ]
null
null
null
from zope.interface import implementer from sqlalchemy import ( Column, String, Integer, Float, ForeignKey, CheckConstraint, ) from sqlalchemy.orm import relationship, backref from clld import interfaces from clld.db.meta import Base, CustomModelMixin from clld.db.versioned import Versioned from clld.db.models.common import ( Contribution, Parameter, IdNameDescriptionMixin, Language ) from clld_glottologfamily_plugin.models import HasFamilyMixin, Family from .interfaces import IDependency, ITransition, IStability, IDeepFamily, ISupport, IHasSupport @implementer(interfaces.ILanguage) class CulturebankLanguage(CustomModelMixin, Language, HasFamilyMixin): pk = Column(Integer, ForeignKey('language.pk'), primary_key=True) @implementer(interfaces.IParameter) class Feature(CustomModelMixin, Parameter, Versioned): """Parameters in CultureBank are called features. They are always related to one Designer. """ pk = Column(Integer, ForeignKey('parameter.pk'), primary_key=True) doc = Column(String) patron = Column(String) newdoc = Column(String) vdoc = Column(String) std_comments = Column(String) name_french = Column(String) clarification = Column(String) alternative_id = Column(String) representation = Column(Integer) designer = Column(String) abbreviation = Column(String) sortkey_str = Column(String) sortkey_int = Column(Integer) jl_relevant_unit = Column(String) jl_function = Column(String) jl_formal_means = Column(String) legacy_status = Column(String) culturebank_status = Column(String) wip_comments = Column(String) nts_culturebank = Column(String) hard_to_deny = Column(String) prone_misunderstanding = Column(String) requires_extensive_data = Column(String) last_edited = Column(String) other_survey = Column(String) @implementer(IStability) class Stability(Base, CustomModelMixin): pk = Column(Integer, primary_key=True) id = Column(String) parsimony_stability_value = Column(Float) parsimony_retentions = Column(Float) parsimony_transitions = Column(Float) feature_pk = Column(Integer, ForeignKey('feature.pk')) feature = relationship(Feature, lazy='joined', foreign_keys = feature_pk, backref = "stability") @implementer(IDependency) class Dependency(Base, CustomModelMixin): pk = Column(Integer, primary_key=True) id = Column(String) feature1_pk = Column(Integer, ForeignKey('feature.pk')) feature1 = relationship(Feature, lazy='joined', foreign_keys = feature1_pk) feature2_pk = Column(Integer, ForeignKey('feature.pk')) feature2 = relationship(Feature, lazy='joined', foreign_keys = feature2_pk) strength = Column(Float) representation = Column(Integer) combinatory_status = Column(String) @implementer(ITransition) class Transition(Base, CustomModelMixin): pk = Column(Integer, primary_key=True) id = Column(String) fromnode = Column(String) fromvalue = Column(String) tonode = Column(String) tovalue = Column(String) stability_pk = Column(Integer, ForeignKey('stability.pk')) stability = relationship(Stability, lazy='joined', foreign_keys = stability_pk) family_pk = Column(Integer, ForeignKey('family.pk')) family = relationship(Family, backref='transitions') retention_innovation = Column(String) @implementer(interfaces.IContribution) class CulturebankContribution(CustomModelMixin, Contribution): pk = Column(Integer, ForeignKey('contribution.pk'), primary_key=True) desc = Column(String) @implementer(IDeepFamily) class DeepFamily(Base, CustomModelMixin): pk = Column(Integer, primary_key=True) id = Column(String) family1_pk = Column(Integer, ForeignKey('family.pk')) family1 = relationship(Family, lazy='joined', foreign_keys = family1_pk) family1_longitude = Column( Float(), CheckConstraint('-180 <= family1_longitude and family1_longitude <= 180 '), doc='geographical longitude in WGS84') family1_latitude = Column( Float(), CheckConstraint('-90 <= family1_latitude and family1_latitude <= 90'), doc='geographical latitude in WGS84') family2_pk = Column(Integer, ForeignKey('family.pk')) family2 = relationship(Family, lazy='joined', foreign_keys = family2_pk) family2_longitude = Column( Float(), CheckConstraint('-180 <= family2_longitude and family2_longitude <= 180 '), doc='geographical longitude in WGS84') family2_latitude = Column( Float(), CheckConstraint('-90 <= family2_latitude and family2_latitude <= 90'), doc='geographical latitude in WGS84') support_value = Column(Float) significance = Column(Float) geographic_plausibility = Column(Float) @implementer(ISupport) class Support(Base, CustomModelMixin): pk = Column(Integer, primary_key=True) id = Column(String) value1 = Column(String) value2 = Column(String) historical_score = Column(Float) independent_score = Column(Float) support_score = Column(Float) feature_pk = Column(Integer, ForeignKey('feature.pk')) feature = relationship(Feature, lazy='joined', foreign_keys = feature_pk) @implementer(IHasSupport) class HasSupport(Base, CustomModelMixin): id = Column(String) deepfamily_pk = Column(Integer, ForeignKey('deepfamily.pk'), primary_key=True) deepfamily = relationship(DeepFamily, lazy='joined', foreign_keys = deepfamily_pk) support_pk = Column(Integer, ForeignKey('support.pk'), primary_key=True) support = relationship(Support, lazy='joined', foreign_keys = support_pk)
38.187919
100
0.727065
4,801
0.843761
0
0
5,063
0.889807
0
0
708
0.124429
909b5fdd491dd149598afad1dcf2d6d1cdc7dcc1
600
py
Python
src/models/layers/feature.py
icycookies/dd_benchmark
5551c0654d3dc30d72b817096d0877a02f28f116
[ "MIT" ]
2
2021-08-01T13:02:41.000Z
2021-08-01T14:39:44.000Z
src/models/layers/feature.py
icycookies/dd_benchmark
5551c0654d3dc30d72b817096d0877a02f28f116
[ "MIT" ]
null
null
null
src/models/layers/feature.py
icycookies/dd_benchmark
5551c0654d3dc30d72b817096d0877a02f28f116
[ "MIT" ]
1
2021-08-01T14:39:45.000Z
2021-08-01T14:39:45.000Z
import torch import torch.nn as nn class MLP(nn.Module): def __init__(self, num_features, hidden_sizes, dropout): super().__init__() self.layers = nn.ModuleList( [nn.Linear(num_features, hidden_sizes[0])] + [nn.Linear(hidden_sizes[i], hidden_sizes[i + 1]) for i in range(len(hidden_sizes) - 1)] ) self.activation = nn.ReLU() self.dropout = nn.Dropout(p=dropout) def forward(self, x): for layer in self.layers: x = layer(x) x = self.activation(x) x = self.dropout(x) return x
31.578947
99
0.576667
564
0.94
0
0
0
0
0
0
0
0
909b69d30b3ae1f1f238868bd4ff4b5d2afdace9
27,662
py
Python
src/kanone/adapter/tx.py
doncatnip/kanone
1f149f69f4f9dbb49dd29153fd0366cde68c2b85
[ "Unlicense" ]
5
2015-06-14T22:56:10.000Z
2017-05-29T07:59:35.000Z
src/kanone/adapter/tx.py
doncatnip/kanone
1f149f69f4f9dbb49dd29153fd0366cde68c2b85
[ "Unlicense" ]
5
2019-03-19T13:39:26.000Z
2020-11-03T20:01:46.000Z
src/kanone/adapter/tx.py
doncatnip/kanone
1f149f69f4f9dbb49dd29153fd0366cde68c2b85
[ "Unlicense" ]
null
null
null
""" Twisted adapter for Kanone """ from twisted.python.failure import Failure from twisted.internet import defer from ..lib import Invalid from ..util import varargs2kwargs import logging, sys log = logging.getLogger( __name__ ) # hacky and redundant, but it'll do for now .. # TODO: move to proper twisted specific classes under .tx.* # and get rid of the monkey _python3 = sys.version_info[0]>=3 def monkeyPatch(): """ Patches Kanone so that any validation returns a Deferred, thus one can write asynchronous validators using Twisted's non-blocking API. Schema and ForEach fields are validated concurrently. """ if getattr( monkeyPatch,'_isMonkeyPatched',False): return from ..lib import Context, PASS, MISSING from ..validator.core import Tag, Compose, Tmp, Item, Not, And, Or, Call, If from ..validator.check import Match from ..validator.schema import Schema, ForEach, Field from ..validator.web import MXLookup @defer.inlineCallbacks def context_validate( self ): if self.isValidated: if self.__error__ is not MISSING: raise self.__error__ defer.returnValue( self.__result__ ) self.isValidating = True if self.parent is not None: if not self.parent.isValidated and not self.parent.isValidating: yield defer.maybeDeferred\ ( self.parent.validate ) if not self.validator: raise AttributeError("No validator set for context '%s'" % self.path ) result = defer.maybeDeferred\ ( self.validator.validate , self , self.__value__ ) result.addErrback( context_gotError, self ) result = yield result self.isValidated = True self.isValidating = False if self.__error__ is not MISSING: raise self.__error__ else: if result is not PASS: self.__result__ = result else: self.__result__ = self.__value__ self.__result__ = result defer.returnValue( result ) def context_gotError( error, self ): e = error.value if not isinstance( e, Invalid ): self.__error__ = error return self.__error__ = e e.context = self message = e.validator.__messages__[e.key] if message is not None: extra = e.data['extra'] value = e.value data = e.data data['message'] = message if hasattr(e,'realkey'): data['key'] = e.realkey extra['value.type'] = getattr(value, '__class__', None) is not None \ and getattr(value.__class__,'__name__', False) or 'unknown' if isinstance(value,str) or not _python3 and isinstance(value,basestring): extra['value'] = value else: extra['value'] = str(value) cache = getattr( self, 'cache', None) if cache is not None: extra.update( cache ) self['error'] = self.__error__.data self.root.errorlist.append( self.__error__.context.path ) def tag_gotResult( result, d, validator, tagName ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): d.errback( result ) return e = result.value if e.validator is validator or getattr(e,'composer',None) is validator: e.tagName = tagName d.errback( e ) else: d.callback( result ) def tag_validate( self, context, value ): validator = context.root.taggedValidators.get(self.tagID, None) if validator is None: validator = self.enabled and self.validator if not validator: return value d = defer.Deferred() result = defer.maybeDeferred\ ( validator.validate , context , value ) result.addBoth( tag_gotResult, d, validator, self.tagName ) return d def compose_gotResult( result, d, context, tmpTags, composer ): context.root.taggedValidators = tmpTags if isinstance( result, Failure ): if not isinstance( result.value, Invalid ): d.errback( result ) return e = result.value if hasattr(e,'tagName'): e.realkey = "%s_%s" % (e.tagName, getattr(e,'realkey',e.key)) e.composer = composer del e.tagName d.errback( e ) else: d.callback( result ) def compose_validate( self, context, value ): tmpTags = context.root.taggedValidators context.root.taggedValidators = self.currentTaggedValidators d = defer.Deferred() result = defer.maybeDeferred\ ( self.validator.validate , context , value ) result.addBoth( compose_gotResult, d, context, tmpTags, self ) return d def tmp_gotReslt( result, d, raiseError, value ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): d.errback( result ) return if raiseError: d.errback( result.value ) return d.callback( value ) def tmp_validate( self, context, value ): d = defer.Deferred() result = defer.maybeDeferred\ ( self.validator.validate , context , value ) result.addBoth( tmp_gotReslt, d, self.raiseError, value ) return d def item_gotResult( result, d, value, key, alter ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): d.errback( result ) return d.errback( result.value ) else: if alter: value[key] = result d.callback( value ) def item_validate( self, context, value ): try: val = value[ self.key ] except TypeError: raise Invalid( value, self, 'type' ) except (KeyError, IndexError): raise Invalid( value, self, 'notFound', key=self.key ) else: if self.validator is not None: d = defer.Deferred() result = defer.maybeDeferred\ ( self.validator.validate , context , val ) result.addBoth( item_gotResult, d , value, self.key, self.alter ) return d else: return val def not_gotResult( result, d, value, validator ): if isinstance( result, Failure ): if not isinstance( result.value, Invalid ): d.errback( result ) return d.callback( value ) else: d.errback( Invalid( value, validator ) ) def not_validate(self, context, value ): d = defer.Deferred() result = defer.maybeDeferred\ ( self.validator.validate , context , value ) result.addBoth( not_gotResult, d, value, self ) return d def and_doTryNext( result, validators, context, value, d ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): d.errback( result ) else: e = result.value d.errback( e ) else: if validators: and_tryNext( validators, context, result, d ) else: d.callback( result ) def and_tryNext( validators, context, value, d ): result = defer.maybeDeferred\ ( validators.pop(0).validate , context , value ) result.addBoth( and_doTryNext, validators, context, value, d ) def and_validate( self, context, value ): d = defer.Deferred() and_tryNext( list( self.validators ), context, value, d ) return d def or_doTryNext( result, validators, context, value, d ): if isinstance( result, Failure ): err = result if not isinstance(err.value, Invalid): d.errback( err ) return e = err.value if not validators: d.errback( e ) else: or_tryNext( validators, context, value, d ) else: d.callback( result ) def or_tryNext( validators, context, value, d ): result = defer.maybeDeferred\ ( validators.pop(0).validate , context , value ) result.addBoth( or_doTryNext, validators, context, value, d ) def or_validate( self, context, value ): d = defer.Deferred() or_tryNext( list(self.validators), context, value, d ) return d @defer.inlineCallbacks def call_validate( self, context, value ): try: result = yield defer.maybeDeferred\ ( self.__func__ , context , value ) except Failure as e: if not isinstance(e.value, Invalid): raise e = e.value e.validator = self raise e else: defer.returnValue( result ) def match_gotResult( result, self, value, d ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): raise d.errback( Invalid( value, self, matchType=self.type, criterion=result.value ) ) else: val = value if self.ignoreCase: result = str(result).lower() val = str(value).lower() if val != result: d.errback( Invalid( value, self, matchType=self.type, criterion=result ) ) else: d.callback( value ) def match_on_value(self, context, value ): if self.type is Match.REGEX: if not self.criterion.match(value): raise Invalid( value, self, matchType=self.type, criterion=self.criterion.pattern) return value elif self.type is Match.VALIDATOR: compare = defer.maybeDeferred\ ( self.criterion.validate , context , value ) d = defer.Deferred() compare.addBoth( match_gotResult, self, value, d ) return d else: compare = self.criterion val = value if self.ignoreCase: compare = str(compare).lower() val = str(value).lower() if val != compare: raise Invalid( value, self, matchType=self.type, criterion=compare ) return value def if_gotResult( result, d, context, value ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): d.errback( result ) else: d.errback( result.value ) else: d.callback( result ) def if_gotResultExpression( result, validator, d, context, value ): if isinstance( result, Failure ): if not isinstance( result.value, Invalid): raise value = defer.maybeDeferred\ ( validator._else.validate, context, value ) else: value = defer.maybeDeferred\ ( validator._then.validate, context, result ) value.addBoth( if_gotResult, d, context, value ) def if_validate( self, context, value ): d = defer.Deferred() result = defer.maybeDeferred( self.criterion.validate, context, value ) result.addBoth( if_gotResultExpression, self, d, context, value ) return d def schema_gotResult( result, resultset, key, isList, returnList ): if returnList: resultset.append( result ) else: resultset[ key ] = result return result def schema_gotError( error, errorset, key ): if isinstance( error, Failure ): if not isinstance(error.value, Invalid): raise error error = error.value errorset.append( error ) def schema__on_value_done( waste, d, schema, value, result, errors ): if not errors: d.callback( result ) else: d.errback( errors.pop(0) ) def schema__createContextChildren_on_value_done( waste, d, schema, value, result, errors ): if not errors: d.callback( result ) else: d.errback( Invalid( value, schema ) ) def schema__on_value( self, context, value ): isList = isinstance(value, list) or isinstance(value,tuple) or isinstance(value,set) if not isList and not isinstance( value, dict ): raise Invalid( value, self, 'type') extraFields = None if not self.allowExtraFields: if isList: extraFields = max( len(value), len(self.index) ) else: extraFields = list(value.keys()) if self.returnList: result = [] else: result = {} numValues = len(value) jobs = [] errorset = [] for pos in range(len(self.index)): key = self.index[pos] if isList: if numValues>pos: val = value[ pos ] if not self.allowExtraFields: extraFields-=1 else: val = MISSING else: val = value.get( key, MISSING) if not self.allowExtraFields and val is not MISSING: try: extraFields.remove(key) except: pass job = defer.maybeDeferred\ ( self.validators[ key ].validate , context , val ) jobs.append\ ( job.addCallback( schema_gotResult, result, key, isList, self.returnList )\ .addErrback( schema_gotError, errorset, key ) ) if extraFields: raise Invalid( value, self, 'extraFields',extraFields=extraFields) d = defer.Deferred() jobs =defer.DeferredList( jobs ) jobs.addCallback\ ( schema__on_value_done , d , self , value , result , errorset ) return d def schema__createContextChildren_on_value( self, context, value ): isList = isinstance(value, list) or isinstance(value,tuple) or isinstance(value,set) if not isList and not isinstance( value, dict ): raise Invalid( value, self, 'type') extraFields = None if not self.allowExtraFields: if isList: extraFields = max( len(value), len(self.index) ) else: extraFields = list(value.keys()) errors = [] if self.returnList: result = [] else: result = {} len_value = len(value) len_index = len(self.index) # populate for pos in range(len_index): key = self.index[pos] childContext = context( key ) try: childContext.validator = self.validators[ key ] except KeyError: raise SyntaxError("No validator set for %s" % childContext.path) if isList: if len_value<=pos: childContext.__value__ = MISSING else: childContext.__value__ = value[ pos ] else: childContext.__value__ = value.get( key, MISSING ) if not self.allowExtraFields: if isList: extraFields-=1 else: try: extraFields.remove(key) except: pass if extraFields: raise Invalid( value, self, 'extraFields',extraFields=extraFields) context.setIndexFunc( lambda index: self.index[index] ) jobs = [] # validate for key in self.index: jobs.append\ ( context( key ).result\ .addCallback( schema_gotResult, result, key, isList, self.returnList )\ .addErrback( schema_gotError, errors, key ) ) d = defer.Deferred() jobs = defer.DeferredList( jobs ) jobs.addCallback\ ( schema__createContextChildren_on_value_done , d , self , value , result , errors ) return d def forEach__on_value( self, context, value ): if self.returnList: result = [] else: result = {} isList = isinstance( value, list) or isinstance(value, tuple) or isinstance(value, set) errorset = [] jobs = [] if isList or self.numericKeys: for pos in range( len( value ) ): if not isList: val = value.get(str(pos),MISSING) if val is MISSING: raise Invalid( value, self, 'numericKeys', keys=list(value.keys()) ) else: val = value[pos] key = str(pos) jobs.append\ ( defer.maybeDeferred\ ( self.validator.validate , context, val ).addCallback\ ( schema_gotResult , result , key , isList , self.returnList )\ .addErrback\ ( schema_gotError , errorset , key ) ) else: for (key, val) in value.items(): jobs.append\ ( defer.maybeDeferred\ ( self.validator.validate , context, val ).addCallback\ ( schema_gotResult , result , key , isList , self.returnList )\ .addErrback\ ( schema_gotError , errorset , key ) ) d = defer.Deferred() jobs = defer.DeferredList( jobs ) jobs.addCallback\ ( schema__on_value_done , d , self , value , result , errorset ) return d def forEach__createContextChildren_on_value( self, context, value ): isList = isinstance( value, list) or isinstance(value, tuple) or isinstance(value, set) if not isList: if not isinstance(value, dict ): raise Invalid( value, self,'type' ) if self.returnList: result = [] else: result = {} errors = [] # populate children = [] if isList or self.numericKeys: context.setIndexFunc( lambda index: str(index) ) for pos in range( len( value ) ): if not isList: val = value.get(str(pos),MISSING) if value.get(str(pos),MISSING) is MISSING: context.setIndexFunc( None ) raise Invalid( value, self, 'numericKeys',keys=list(value.keys())) else: val = value[ pos ] contextChild = context( str( pos ) ) contextChild.validator = self.validator contextChild.__value__ = val children.append( contextChild ) else: context.setIndexFunc( None ) if self.returnList: raise Invalid( value, self, 'listType' ) for (key,val) in value.items(): contextChild = context( key ) contextChild.validator = self.validator contextChild.__value__ = val children.append( contextChild ) jobs = [] #validate for childContext in children: jobs.append\ ( childContext.validate()\ .addCallback\ ( schema_gotResult , result , childContext.key , isList , self.returnList )\ .addErrback\ ( schema_gotError , errors , childContext.key ) ) d = defer.Deferred() jobs = defer.DeferredList( jobs ) jobs.addCallback\ ( schema__createContextChildren_on_value_done , d , self , value , result , errors ) return d @defer.inlineCallbacks def field_validate(self, context, value): fieldcontext = self.getField( context, self.path ) if not self.useResult: result = fieldcontext.value else: try: result = yield fieldcontext.result except Invalid: result = PASS if self.validator is not None: if result is not PASS: result = yield defer.maybeDeferred\ ( self.validator.validate , fieldcontext, result ) if self.writeToContext: fieldcontext.__result__ = result if self.copy: if result is PASS: defer.returnValue( value ) defer.returnValue( result ) defer.returnValue( value ) from twisted.names import client from twisted.names.dns import Record_MX from twisted.names.error import DNSNameError from twisted.internet.defer import TimeoutError def mxLookup_gotResult(result, d, value, validator, context ): if isinstance( result, Failure ): if isinstance(result.value, TimeoutError): d.errback( Invalid( value, validator ) ) elif not isinstance(result.value, DNSNameError): d.errback( result ) else: d.errback( Invalid( value, validator ) ) return (answers, auth, add) = result if not len(answers): d.errback( Invalid( value, validator ) ) else: for record in answers: if isinstance(record.payload,Record_MX): d.callback( value ) return d.errback( Invalid( value, validator ) ) mxLookup_resolver = client.Resolver('/etc/resolv.conf') def mxLookup_on_value( self, context, value ): d = defer.Deferred() mxLookup_resolver.lookupMailExchange( value, [2,4,6,8,10] )\ .addBoth( mxLookup_gotResult, d, value, self, context ) return d Context.validate = context_validate Tag.validate = tag_validate Compose.valdate = compose_validate Tmp.validate = tmp_validate Item.validate = item_validate Not.validate = not_validate And.validate = and_validate Or.validate = or_validate Call.validate = call_validate Match.on_value = match_on_value If.validate = if_validate Schema._on_value = schema__on_value Schema._createContextChildren_on_value = schema__createContextChildren_on_value ForEach._on_value = forEach__on_value ForEach._createContextChildren_on_value = forEach__createContextChildren_on_value Field.validate = field_validate MXLookup.on_value = mxLookup_on_value monkeyPatch._isMonkeyPatched = True from ..util import getArgSpec, getParameterNames def validateDecorator_gotValidationResult\ ( result , d , origArgs , origKwargs , method , varargs , keywords , shifted , onInvalid ): if isinstance( result, Failure ): if not isinstance(result.value, Invalid): d.errback( result ) elif onInvalid is not None: try: result = onInvalid( result.value ) except Exception as e: d.errback( e ) else: d.callback( result ) else: d.errback( result ) else: origKwargs.update( result ) resultArgs = origKwargs.pop( varargs, origArgs ) resultArgs = [ origKwargs.pop(key) for key in shifted ] + resultArgs if keywords is not False: origKwargs.update( origKwargs.pop( keywords ) ) defer.maybeDeferred( method, *resultArgs, **origKwargs )\ .chainDeferred( d ) def validateDecorator( validator, method, include, exclude, onInvalid, inlineCallbacks ): if include and exclude: raise SyntaxError("'include' and 'exclude' cannot be used at the same time") spec = getArgSpec( method ) hasVarargs = spec.varargs is not None varargs = spec.varargs or '*varargs' keywords = spec.keywords or False methodParameterNames = getParameterNames( method, skipSelf=False ) skip = () if exclude: skip = exclude if include: skip = set(methodParameterNames) - set(include) varargs = varargs hasVarargs = spec.varargs not in skip and hasVarargs keywords = keywords not in skip and keywords if inlineCallbacks: method = defer.inlineCallbacks( method ) def __wrap( *fargs, **fkwargs): d = defer.Deferred() (fargs, fkwargs, shifted ) = varargs2kwargs( method, fargs, fkwargs, skipSelf=False ) origKwargs = dict(fkwargs) if keywords is not False: restKwargs = dict(\ ( key, fkwargs.pop(key))\ for key in list(fkwargs.keys()) if key not in methodParameterNames ) fkwargs[ keywords ] = restKwargs if fargs or hasVarargs: fkwargs[ varargs ] = list(fargs) result = validator.context\ ( dict( ( key, fkwargs[ key] ) for key in fkwargs if key not in skip ) ).result result.addBoth( validateDecorator_gotValidationResult, d, fargs, origKwargs, method, varargs, keywords, shifted, onInvalid ) return d return __wrap def validate( validator, include=None, exclude=None, onInvalid=None, inlineCallbacks=False ): def __createDecorator( method ): return validateDecorator( validator, method, include, exclude, onInvalid, inlineCallbacks) return __createDecorator
30.431243
132
0.521654
0
0
24,312
0.878895
2,476
0.089509
0
0
817
0.029535
909bb64980267ae4a08d2d7a1f0a4d2581917497
1,579
py
Python
sandbox/graph-size.py
maarten1983/khmer
417aaa57f0659685c01887a6910de1c08d0a73e5
[ "BSD-3-Clause" ]
1
2019-11-02T15:12:44.000Z
2019-11-02T15:12:44.000Z
sandbox/graph-size.py
ibest/khmer
fbc307abd64363b329745709846d77444ce0c025
[ "BSD-3-Clause" ]
null
null
null
sandbox/graph-size.py
ibest/khmer
fbc307abd64363b329745709846d77444ce0c025
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python2 # # This file is part of khmer, http://github.com/ged-lab/khmer/, and is # Copyright (C) Michigan State University, 2009-2013. It is licensed under # the three-clause BSD license; see doc/LICENSE.txt. # Contact: [email protected] # import khmer import sys import screed import os.path from khmer.thread_utils import ThreadedSequenceProcessor, verbose_fasta_iter K = 32 HASHTABLE_SIZE = int(4e9) THRESHOLD = 500 N_HT = 4 WORKER_THREADS = 5 ### GROUPSIZE = 100 ### def main(): infile = sys.argv[1] outfile = os.path.basename(infile) + '.graphsize' if len(sys.argv) == 3: outfile = sys.argv[2] print 'input file to graphsize filter: %s' % infile print 'filtering to output:', outfile print '-- settings:' print 'K', K print 'HASHTABLE SIZE %g' % HASHTABLE_SIZE print 'N HASHTABLES %d' % N_HT print 'THRESHOLD', THRESHOLD print 'N THREADS', WORKER_THREADS print '--' print 'creating ht' ht = khmer.new_hashbits(K, HASHTABLE_SIZE, N_HT) print 'eating fa', infile total_reads, n_consumed = ht.consume_fasta(infile) outfp = open(outfile, 'w') ### def process_fn(record, ht=ht): kmer = record['sequence'][:K] size = ht.calc_connected_graph_size(kmer, THRESHOLD) if size >= THRESHOLD: return record['name'], record['sequence'] return None, None tsp = ThreadedSequenceProcessor(process_fn, WORKER_THREADS, GROUPSIZE) ### tsp.start(verbose_fasta_iter(infile), outfp) if __name__ == '__main__': main()
23.567164
76
0.664345
0
0
0
0
0
0
0
0
479
0.303357
909c067225e930569a068986504ae450bf7106ff
3,187
py
Python
ferry/crawler/fetch_demand.py
coursetable/ferry
f369b9588557c359af8589f2575a03493d6b08b6
[ "MIT" ]
4
2020-11-12T19:37:06.000Z
2021-12-14T01:38:39.000Z
ferry/crawler/fetch_demand.py
coursetable/ferry
f369b9588557c359af8589f2575a03493d6b08b6
[ "MIT" ]
96
2020-09-08T05:17:17.000Z
2022-03-31T23:12:51.000Z
ferry/crawler/fetch_demand.py
coursetable/ferry
f369b9588557c359af8589f2575a03493d6b08b6
[ "MIT" ]
2
2021-03-03T23:02:40.000Z
2021-06-17T23:33:05.000Z
""" Fetches demand statistics. Modified from Dan Zhao Original article: https://yaledailynews.com/blog/2020/01/10/yales-most-popular-courses/ Github: https://github.com/iamdanzhao/yale-popular-classes README: https://github.com/iamdanzhao/yale-popular-classes/blob/master/data-guide/course_data_guide.md """ import argparse from multiprocessing import Pool from typing import List, Tuple import ujson from ferry import config from ferry.crawler.common_args import add_seasons_args, parse_seasons_arg from ferry.includes.demand_processing import fetch_season_subject_demand, get_dates from ferry.includes.tqdm import tqdm def handle_season_subject_demand(demand_args: Tuple[str, str, List[str], List[str]]): """ Handler for fetching subject codes to be passed into Pool() """ demand_season, demand_subject_code, demand_subject_codes, demand_dates = demand_args courses = fetch_season_subject_demand( demand_season, demand_subject_code, demand_subject_codes, demand_dates ) return courses if __name__ == "__main__": class FetchDemandError(Exception): """ Error object for demand fetching exceptions. """ # pylint: disable=unnecessary-pass pass # Set season # Pass using command line arguments # Examples: 202001 = 2020 Spring, 201903 = 2019 Fall # If no season is provided, the program will scrape all available seasons parser = argparse.ArgumentParser(description="Import demand stats") add_seasons_args(parser) args = parser.parse_args() # list of seasons previously from fetch_seasons.py with open(f"{config.DATA_DIR}/demand_seasons.json", "r") as f: all_viable_seasons = ujson.load(f) seasons = parse_seasons_arg(args.seasons, all_viable_seasons) print("Retrieving subjects list... ", end="") with open(f"{config.DATA_DIR}/demand_subjects.json", "r") as f: subjects = ujson.load(f) subject_codes = sorted(list(subjects.keys())) print("ok") # set up parallel processing pool with Pool(processes=64) as pool: for season in seasons: print(f"Retrieving demand by subject for season {season}") dates = get_dates(season) pool_args = [ (season, subject_code, subject_codes, dates) for subject_code in subject_codes ] season_courses = [] # use imap_unordered to report to tqdm with tqdm(total=len(pool_args), desc="Subjects retrieved") as pbar: for i, result in enumerate( pool.imap_unordered(handle_season_subject_demand, pool_args) ): pbar.update() season_courses.append(result) # flatten season courses season_courses = [x for y in season_courses for x in y] # sort courses by title (for consistency with ferry-data) season_courses = sorted(season_courses, key=lambda x: x["title"]) with open(f"{config.DATA_DIR}/demand_stats/{season}_demand.json", "w") as f: ujson.dump(season_courses, f, indent=4)
29.509259
94
0.671478
168
0.052714
0
0
0
0
0
0
1,151
0.361155
909dc9969f5cc018e88da564d8e3efacb5bc1be6
406
py
Python
migrate_db.py
qxf2/interview-scheduler
ef17350cec70c66c7136671789ed188231a5fcba
[ "MIT" ]
2
2021-05-06T17:02:21.000Z
2021-05-19T19:41:21.000Z
migrate_db.py
qxf2/interview-scheduler
ef17350cec70c66c7136671789ed188231a5fcba
[ "MIT" ]
9
2019-08-01T18:49:35.000Z
2021-04-01T12:52:35.000Z
migrate_db.py
qxf2/interview-scheduler
ef17350cec70c66c7136671789ed188231a5fcba
[ "MIT" ]
18
2019-07-23T16:26:17.000Z
2022-01-21T10:33:41.000Z
from flask import Flask from flask_sqlalchemy import SQLAlchemy from qxf2_scheduler import models from qxf2_scheduler import db from qxf2_scheduler.__init__ import app from flask_script import Manager from flask_migrate import Migrate,MigrateCommand migrate=Migrate(app, db,render_as_batch=True) manager=Manager(app) manager.add_command('db',MigrateCommand) if __name__ == "__main__": manager.run()
25.375
48
0.830049
0
0
0
0
0
0
0
0
14
0.034483
909e429cd3c93b342a1a4e97e4084847d6b07a78
3,476
py
Python
main.py
tarunsinghal92/indeedscrapperlatest
2c7fd920d115764192bf5f7bf8fd3d30aa6ec2b4
[ "MIT" ]
15
2019-07-31T11:48:28.000Z
2022-02-25T13:55:23.000Z
main.py
tarunsinghal92/indeedscrapperlatest
2c7fd920d115764192bf5f7bf8fd3d30aa6ec2b4
[ "MIT" ]
null
null
null
main.py
tarunsinghal92/indeedscrapperlatest
2c7fd920d115764192bf5f7bf8fd3d30aa6ec2b4
[ "MIT" ]
14
2019-02-20T21:44:39.000Z
2022-02-16T11:35:27.000Z
# import packages import requests import pandas as pd import time from functions import * # limit per sity max_results_per_city = 100 # db of city city_set = ['New+York','Toronto','Las+Vegas'] # job roles job_set = ['business+analyst','data+scientist'] # file num file = 1 # from where to skip SKIPPER = 0 # loop on all cities for city in city_set: # for each job role for job_qry in job_set: # count cnt = 0 startTime = time.time() # skipper if(file > SKIPPER): # dataframe df = pd.DataFrame(columns = ['unique_id', 'city', 'job_qry','job_title', 'company_name', 'location', 'summary', 'salary', 'link', 'date', 'full_text']) # for results for start in range(0, max_results_per_city, 10): # get dom page = requests.get('http://www.indeed.com/jobs?q=' + job_qry +'&l=' + str(city) + '&start=' + str(start)) #ensuring at least 1 second between page grabs time.sleep(1) #fetch data soup = get_soup(page.text) divs = soup.find_all(name="div", attrs={"class":"row"}) # if results exist if(len(divs) == 0): break # for all jobs on a page for div in divs: #specifying row num for index of job posting in dataframe num = (len(df) + 1) cnt = cnt + 1 #job data after parsing job_post = [] #append unique id job_post.append(div['id']) #append city name job_post.append(city) #append job qry job_post.append(job_qry) #grabbing job title job_post.append(extract_job_title(div)) #grabbing company job_post.append(extract_company(div)) #grabbing location name job_post.append(extract_location(div)) #grabbing summary text job_post.append(extract_summary(div)) #grabbing salary job_post.append(extract_salary(div)) #grabbing link link = extract_link(div) job_post.append(link) #grabbing date job_post.append(extract_date(div)) #grabbing full_text job_post.append(extract_fulltext(link)) #appending list of job post info to dataframe at index num df.loc[num] = job_post #debug add write_logs(('Completed =>') + '\t' + city + '\t' + job_qry + '\t' + str(cnt) + '\t' + str(start) + '\t' + str(time.time() - startTime) + '\t' + ('file_' + str(file))) #saving df as a local csv file df.to_csv('jobs_' + str(file) + '.csv', encoding='utf-8') else: #debug add write_logs(('Skipped =>') + '\t' + city + '\t' + job_qry + '\t' + str(-1) + '\t' + str(-1) + '\t' + str(time.time() - startTime) + '\t' + ('file_' + str(file))) # increment file file = file + 1
29.709402
183
0.467779
0
0
0
0
0
0
0
0
1,032
0.296893
909f78a9a426fedd3532cae3c362b0e27f684e37
4,973
py
Python
L0_serial.py
RL-WWW/ISST
42b656686fa9660794007a0bc00a7177937410e9
[ "BSD-3-Clause" ]
5
2021-01-24T13:19:45.000Z
2021-04-05T15:49:35.000Z
L0_serial.py
RL-WWW/ISST
42b656686fa9660794007a0bc00a7177937410e9
[ "BSD-3-Clause" ]
null
null
null
L0_serial.py
RL-WWW/ISST
42b656686fa9660794007a0bc00a7177937410e9
[ "BSD-3-Clause" ]
null
null
null
# Import Libraries import numpy as np import cv2 import argparse import time # Import User Libraries import L0_helpers # Image File Path image_r = "images/flowers.jpg" image_w = "out_serial.png" # L0 minimization parameters kappa = 2.0 _lambda = 2e-2 # Verbose output verbose = False def L0_smooth(input_path, output_path, kappa=2.0, _lambda=2e-2, verbose=False): # Set parameters image_r = input_path image_w = output_path # Read image I image = cv2.imread(image_r) # Timers step_1 = 0.0 step_2 = 0.0 step_2_fft = 0.0 # Start time start_time = time.time() # Validate image format N, M, D = np.int32(image.shape) assert D == 3, "Error: input must be 3-channel RGB image" print("Processing %d x %d RGB image" % (M, N)) # Initialize S as I S = np.float32(image) / 256 # Compute image OTF size_2D = [N, M] fx = np.int32([[1, -1]]) fy = np.int32([[1], [-1]]) otfFx = L0_helpers.psf2otf(fx, size_2D) otfFy = L0_helpers.psf2otf(fy, size_2D) # Compute F(I) FI = np.complex64(np.zeros((N, M, D))) FI[:, :, 0] = np.fft.fft2(S[:, :, 0]) FI[:, :, 1] = np.fft.fft2(S[:, :, 1]) FI[:, :, 2] = np.fft.fft2(S[:, :, 2]) # Compute MTF MTF = np.power(np.abs(otfFx), 2) + np.power(np.abs(otfFy), 2) MTF = np.tile(MTF[:, :, np.newaxis], (1, 1, D)) # Initialize buffers h = np.float32(np.zeros((N, M, D))) v = np.float32(np.zeros((N, M, D))) dxhp = np.float32(np.zeros((N, M, D))) dyvp = np.float32(np.zeros((N, M, D))) FS = np.complex64(np.zeros((N, M, D))) # Iteration settings beta_max = 1e5; beta = 2 * _lambda iteration = 0 # Done initializing init_time = time.time() # Iterate until desired convergence in similarity while beta < beta_max: if verbose: print("ITERATION %i" % iteration) ### Step 1: estimate (h, v) subproblem # subproblem 1 start time s_time = time.time() # compute dxSp h[:, 0:M - 1, :] = np.diff(S, 1, 1) h[:, M - 1:M, :] = S[:, 0:1, :] - S[:, M - 1:M, :] # compute dySp v[0:N - 1, :, :] = np.diff(S, 1, 0) v[N - 1:N, :, :] = S[0:1, :, :] - S[N - 1:N, :, :] # compute minimum energy E = dxSp^2 + dySp^2 <= _lambda/beta t = np.sum(np.power(h, 2) + np.power(v, 2), axis=2) < _lambda / beta t = np.tile(t[:, :, np.newaxis], (1, 1, 3)) # compute piecewise solution for hp, vp h[t] = 0 v[t] = 0 # subproblem 1 end time e_time = time.time() step_1 = step_1 + e_time - s_time if verbose: print("-subproblem 1: estimate (h,v)") print("--time: %f (s)" % (e_time - s_time)) ### Step 2: estimate S subproblem # subproblem 2 start time s_time = time.time() # compute dxhp + dyvp dxhp[:, 0:1, :] = h[:, M - 1:M, :] - h[:, 0:1, :] dxhp[:, 1:M, :] = -(np.diff(h, 1, 1)) dyvp[0:1, :, :] = v[N - 1:N, :, :] - v[0:1, :, :] dyvp[1:N, :, :] = -(np.diff(v, 1, 0)) normin = dxhp + dyvp fft_s = time.time() FS[:, :, 0] = np.fft.fft2(normin[:, :, 0]) FS[:, :, 1] = np.fft.fft2(normin[:, :, 1]) FS[:, :, 2] = np.fft.fft2(normin[:, :, 2]) fft_e = time.time() step_2_fft += fft_e - fft_s # solve for S + 1 in Fourier domain denorm = 1 + beta * MTF FS[:, :, :] = (FI + beta * FS) / denorm # inverse FFT to compute S + 1 fft_s = time.time() S[:, :, 0] = np.float32((np.fft.ifft2(FS[:, :, 0])).real) S[:, :, 1] = np.float32((np.fft.ifft2(FS[:, :, 1])).real) S[:, :, 2] = np.float32((np.fft.ifft2(FS[:, :, 2])).real) fft_e = time.time() step_2_fft += fft_e - fft_s # subproblem 2 end time e_time = time.time() step_2 = step_2 + e_time - s_time if verbose: print("-subproblem 2: estimate S + 1") print("--time: %f (s)" % (e_time - s_time)) print("") # update beta for next iteration beta *= kappa iteration += 1 # Rescale image S = S * 256 # Total end time final_time = time.time() print("Total Time: %f (s)" % (final_time - start_time)) print("Setup: %f (s)" % (init_time - start_time)) print("Step 1: %f (s)" % (step_1)) print("Step 2: %f (s)" % (step_2)) print("Step 2 (FFT): %f (s)" % (step_2_fft)) print("Iterations: %d" % (iteration)) cv2.imwrite(image_w, S) if __name__ == '__main__': # Parse arguments parser = argparse.ArgumentParser( description="Serial implementation of image smoothing via L0 gradient minimization") parser.add_argument('image_r', help="input image file") parser.add_argument('image_w', help="output image file") parser.add_argument('-k', type=float, default=2.0, metavar='kappa', help='updating weight (default 2.0)') parser.add_argument('-l', type=float, default=2e-2, metavar='lambda', help='smoothing weight (default 2e-2)') parser.add_argument('-v', '--verbose', action='store_true', help='enable verbose logging for each iteration') args = parser.parse_args() L0_smooth(args.image_r, args.image_w, args.k, args.l, args.verbose)
26.593583
90
0.575508
0
0
0
0
0
0
0
0
1,424
0.286346
909f8409bcfac0d98c71ec79e9110765c9b7b295
2,565
py
Python
data_processing/signal_downsampling.py
HassanHayat08/Interpretable-CNN-for-Big-Five-Personality-Traits-using-Audio-Data
7149e78736611f07a1c7c4adbdf24ae03011e549
[ "MIT" ]
9
2020-09-26T23:52:49.000Z
2021-10-04T00:08:23.000Z
data_processing/signal_downsampling.py
HassanHayat08/Interpretable-CNN-for-Big-Five-Personality-Traits-using-Audio-Data
7149e78736611f07a1c7c4adbdf24ae03011e549
[ "MIT" ]
null
null
null
data_processing/signal_downsampling.py
HassanHayat08/Interpretable-CNN-for-Big-Five-Personality-Traits-using-Audio-Data
7149e78736611f07a1c7c4adbdf24ae03011e549
[ "MIT" ]
2
2021-04-06T13:02:24.000Z
2021-12-06T09:03:24.000Z
### Interpretable cnn for big five personality traits using audio data ### ### This script downsamples 41000 kz signal into 4000 kz signal ### from __future__ import absolute_import, division, print_function import pathlib import random import csv import numpy as np from scipy.io import wavfile import tensorflow as tf import itertools from scipy import stats ### functions for mapping ### def normalize_with_moments(data, axes=[0], epsilon=1e-8): mean, variance = tf.nn.moments(data, axes=axes) data_normed = (data - mean) / tf.sqrt(variance + epsilon) # epsilon to avoid dividing by zero return data_normed def get_wav(path, label): wav_file = tf.read_file(path) data = tf.contrib.ffmpeg.decode_audio(tf.read_file(path), file_format="wav",samples_per_second=4000, channel_count=1) data = tf.cast(data,tf.complex64) data = tf.fft(data,name='FFT') return normalize_with_moments(data), label ### down sample the data ### data = [] labels = [] folder_path = '/...path/to/wav/data/folder/' folder_path = pathlib.Path(folder_path) files_path = list(folder_path.glob('*.wav')) files_path = [str(path) for path in files_path] no_of_samples = len(files_path) ### load data labels ### with open('/...path/to/.csv/labels/file', 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') for row in spamreader: data.append(row) for i in range(len(files_path)): file_1 = files_path[i] file_1 = file_1.split("/")[5] file_name_1 = file_1[:-4] new_filename_1 = file_name_1 + '.mp4' label_1 = [] label_2 = [] matching = [s for s in data if new_filename_1 in s] label_1= np.delete(matching,[0],axis=1) label_2 = label_1[0,:] label_2 = [float(i) for i in label_2] labels.append(label_2) ### dataset pipeline ### ds = tf.data.Dataset.from_tensor_slices((files_path, labels)) data_ds = ds.map(get_wav) ds = data_ds.shuffle(buffer_size=wavfiles_count) ds = ds.repeat() ds = ds.batch(1) ### prefetch the data batches in the background ### ds = ds.prefetch(buffer_size=1) iterator = ds.make_one_shot_iterator() next_ele = iterator.get_next() features_4k = [] labels_4k = [] with tf.Session() as sess: for _ in range(len(files_path)): t_features, t_labels = sess.run(next_ele) features_4k.append(t_features) labels_4k.append(t_labels) np.save('.../save/path/',features_4k) np.save('.../save/path/',labels_4k) print('Completed')
29.482759
121
0.670955
0
0
0
0
0
0
0
0
471
0.183626
90a1865751cb26e76fdfe2385bd5686fe05ca8bb
1,858
py
Python
ai_flow/model_center/entity/_model_repo_object.py
flink-extended/ai-flow
d1427a243097d94d77fedbe1966500ae26975a13
[ "Apache-2.0" ]
79
2021-10-15T07:32:27.000Z
2022-03-28T04:10:19.000Z
ai_flow/model_center/entity/_model_repo_object.py
flink-extended/ai-flow
d1427a243097d94d77fedbe1966500ae26975a13
[ "Apache-2.0" ]
153
2021-10-15T05:23:46.000Z
2022-02-23T06:07:10.000Z
ai_flow/model_center/entity/_model_repo_object.py
flink-extended/ai-flow
d1427a243097d94d77fedbe1966500ae26975a13
[ "Apache-2.0" ]
23
2021-10-15T02:36:37.000Z
2022-03-17T02:59:27.000Z
# # Copyright 2022 The AI Flow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import pprint from abc import abstractmethod class _ModelRepoObject(object): def __iter__(self): # Iterate through list of properties and yield as key -> value for prop in self._properties(): yield prop, self.__getattribute__(prop) @classmethod def _get_properties_helper(cls): return sorted([p for p in cls.__dict__ if isinstance(getattr(cls, p), property)]) @classmethod def _properties(cls): return cls._get_properties_helper() @classmethod @abstractmethod def from_proto(cls, proto): pass def __repr__(self): return to_string(self) def to_string(obj): return _ModelRepoObjectPrinter().to_string(obj) def get_classname(obj): return type(obj).__name__ class _ModelRepoObjectPrinter(object): def __init__(self): super(_ModelRepoObjectPrinter, self).__init__() self.printer = pprint.PrettyPrinter() def to_string(self, obj): if isinstance(obj, _ModelRepoObject): return "<%s: %s>" % (get_classname(obj), self._entity_to_string(obj)) return self.printer.pformat(obj) def _entity_to_string(self, entity): return ", ".join(["%s=%s" % (key, self.to_string(value)) for key, value in entity])
28.584615
91
0.697524
1,089
0.586114
182
0.097955
298
0.160388
0
0
655
0.35253
90a2c66069c33df69aa851c8c0f49466dd43d14e
2,127
py
Python
model_search/search/common_test.py
LinqCod/model_search
d90bc39994bc2a5f5028035ac954f796eda03310
[ "Apache-2.0" ]
null
null
null
model_search/search/common_test.py
LinqCod/model_search
d90bc39994bc2a5f5028035ac954f796eda03310
[ "Apache-2.0" ]
null
null
null
model_search/search/common_test.py
LinqCod/model_search
d90bc39994bc2a5f5028035ac954f796eda03310
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for model_search.search.common.""" from absl.testing import parameterized from model_search.search import common import tensorflow.compat.v2 as tf class CommonTest(parameterized.TestCase, tf.test.TestCase): @parameterized.named_parameters( { "testcase_name": "no_completed_trials", "num_completed_trials": 0, "expected": 1, }, { "testcase_name": "some_completed_trials", "num_completed_trials": 11, "expected": 3, }, { "testcase_name": "custom_depth_thresholds", "num_completed_trials": 2, "expected": 2, "depth_thresholds": [0, 1, 10, 20], }, { "testcase_name": "maximum_respected", "num_completed_trials": 1000, "expected": 5, }) def test_get_allowed_depth(self, num_completed_trials, expected, depth_thresholds=None): actual = common.get_allowed_depth( num_completed_trials, depth_thresholds, max_depth=5) self.assertEqual(expected, actual) def test_get_random_architecture(self): architecture = common.get_random_architecture(["a", "b", "c"], 3) self.assertLen(architecture, 3) self.assertAllInSet(architecture, ["a", "b", "c"]) def test_get_random_block(self): block = common.get_random_block(["a", "b", "c"]) self.assertIn(block, ["a", "b", "c"]) if __name__ == "__main__": tf.enable_v2_behavior() tf.test.main()
32.227273
74
0.649741
1,299
0.610719
0
0
901
0.423601
0
0
963
0.45275
90a3029cbc5a3d0ba677696927ab7f1da401c62e
588
py
Python
model-builder/skrutil/deprecate_util.py
DaYeSquad/worktilerwdemo
03fbc18dcba4881628cf790f2f0cd7e6f9aa130f
[ "MIT" ]
5
2016-05-13T15:23:41.000Z
2019-05-29T08:23:25.000Z
model-builder/skrutil/deprecate_util.py
DaYeSquad/worktilerwdemo
03fbc18dcba4881628cf790f2f0cd7e6f9aa130f
[ "MIT" ]
null
null
null
model-builder/skrutil/deprecate_util.py
DaYeSquad/worktilerwdemo
03fbc18dcba4881628cf790f2f0cd7e6f9aa130f
[ "MIT" ]
2
2016-06-08T08:22:42.000Z
2019-02-25T08:46:54.000Z
import warnings def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emmitted when the function is used.""" def newFunc(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) warnings.warn("Call to deprecated function %s." % func.__name__, category=DeprecationWarning) return func(*args, **kwargs) newFunc.__name__ = func.__name__ newFunc.__doc__ = func.__doc__ newFunc.__dict__.update(func.__dict__) return newFunc
34.588235
72
0.681973
0
0
0
0
0
0
0
0
195
0.331633
90a3bca5369f1537b322d1766cb9151ec9a0af0c
3,181
py
Python
models.py
sheldonjinqi/CIS680_BicycleGAN
a1d32ad9ba39c61e07838f5b6391b6d2ab0765c4
[ "MIT" ]
null
null
null
models.py
sheldonjinqi/CIS680_BicycleGAN
a1d32ad9ba39c61e07838f5b6391b6d2ab0765c4
[ "MIT" ]
null
null
null
models.py
sheldonjinqi/CIS680_BicycleGAN
a1d32ad9ba39c61e07838f5b6391b6d2ab0765c4
[ "MIT" ]
null
null
null
from torchvision.models import resnet18 import torch.nn.functional as F import torch.nn as nn import numpy as np import torch import pdb ############################## # Encoder ############################## class Encoder(nn.Module): def __init__(self, latent_dim): super(Encoder, self).__init__() """ The encoder used in both cVAE-GAN and cLR-GAN, which encode image B or B_hat to latent vector This encoder uses resnet-18 to extract features, and further encode them into a distribution similar to VAE encoder. Note: You may either add "reparametrization trick" and "KL divergence" or in the train.py file Args in constructor: latent_dim: latent dimension for z Args in forward function: img: image input (from domain B) Returns: mu: mean of the latent code logvar: sigma of the latent code """ # Extracts features at the last fully-connected resnet18_model = resnet18(pretrained=True) self.feature_extractor = nn.Sequential(*list(resnet18_model.children())[:-3]) self.pooling = nn.AvgPool2d(kernel_size=8, stride=8, padding=0) # Output is mu and log(var) for reparameterization trick used in VAEs self.fc_mu = nn.Linear(256, latent_dim) self.fc_logvar = nn.Linear(256, latent_dim) def forward(self, img): out = self.feature_extractor(img) out = self.pooling(out) out = out.view(out.size(0), -1) mu = self.fc_mu(out) logvar = self.fc_logvar(out) return mu, logvar ############################## # Generator ############################## class Generator(nn.Module): """ The generator used in both cVAE-GAN and cLR-GAN, which transform A to B Args in constructor: latent_dim: latent dimension for z image_shape: (channel, h, w), you may need this to specify the output dimension (optional) Args in forward function: x: image input (from domain A) z: latent vector (encoded B) Returns: fake_B: generated image in domain B """ def __init__(self, latent_dim, img_shape): super(Generator, self).__init__() channels, self.h, self.w = img_shape # (TODO: add layers...) def forward(self, x, z): # (TODO: add layers...) return ############################## # Discriminator ############################## class Discriminator(nn.Module): def __init__(self, in_channels=3): super(Discriminator, self).__init__() """ The discriminator used in both cVAE-GAN and cLR-GAN Args in constructor: in_channels: number of channel in image (default: 3 for RGB) Args in forward function: x: image input (real_B, fake_B) Returns: discriminator output: could be a single value or a matrix depending on the type of GAN """ def forward(self, x): return
30.586538
106
0.563345
2,781
0.874253
0
0
0
0
0
0
1,941
0.610185
90a433b0faab6ec973b072f69d11760a7c0bb8ef
3,381
py
Python
oem_storage_file/main.py
OpenEntityMap/oem-storage-file
cce7e3979c413273aaa224799cfe6b86bad7627e
[ "BSD-3-Clause" ]
null
null
null
oem_storage_file/main.py
OpenEntityMap/oem-storage-file
cce7e3979c413273aaa224799cfe6b86bad7627e
[ "BSD-3-Clause" ]
null
null
null
oem_storage_file/main.py
OpenEntityMap/oem-storage-file
cce7e3979c413273aaa224799cfe6b86bad7627e
[ "BSD-3-Clause" ]
null
null
null
from oem_framework.models.core import ModelRegistry from oem_framework.plugin import Plugin from oem_framework.storage import ProviderStorage from oem_storage_file.core.base import BaseFileStorage from oem_storage_file.database import DatabaseFileStorage import appdirs import os class ProviderFileStorage(ProviderStorage, BaseFileStorage, Plugin): __key__ = 'file' def __init__(self, path=None): super(ProviderFileStorage, self).__init__() self.path = path if self.path is None: self.path = self._create_dir() @classmethod def open(cls, client, path=None): storage = cls(path) storage.initialize(client) return storage # # Provider methods # def create(self, source, target): package_path = self.package_path(source, target) # Ensure cache directory exists if not os.path.exists(package_path): os.makedirs(package_path) return True def open_database(self, source, target, path=None): return ModelRegistry['Database'].load( DatabaseFileStorage.open(self, source, target, path), source, target ) # # Index methods # def has_index(self, source, target): return os.path.exists(os.path.join( self._collection_path(source, target), 'index.%s' % self.main.format.__extension__ )) def update_index(self, source, target, response): # Build collection path collection_path = self._collection_path(source, target) # Ensure directory exists if not os.path.exists(collection_path): os.makedirs(collection_path) # Write index to file path = os.path.join(collection_path, 'index.%s' % self.main.format.__extension__) with open(path, 'w') as fp: for chunk in response.iter_content(chunk_size=1024): if chunk: fp.write(chunk) return True # # Item methods # def has_item(self, source, target, key, metadata=None): return os.path.exists(os.path.join( self._collection_path(source, target), 'items', '%s.%s' % (key, self.main.format.__extension__) )) def update_item(self, source, target, key, response, metadata): # Build collection path items_path = os.path.join(self._collection_path(source, target), 'items') # Ensure directory exists if not os.path.exists(items_path): os.makedirs(items_path) # Write index to file path = os.path.join(items_path, '%s.%s' % (key, self.main.format.__extension__)) with open(path, 'w') as fp: for chunk in response.iter_content(chunk_size=1024): if chunk: fp.write(chunk) return True # # Private methods # def _collection_path(self, source, target): return os.path.join(self.database_path(source, target), source) @staticmethod def _create_dir(): # Build cache path path = os.path.join( appdirs.user_data_dir('OpenEntityMap', appauthor=False), 'databases', 'file' ) # Ensure cache directory exists if not os.path.exists(path): os.makedirs(path) return path
27.266129
89
0.615794
3,097
0.916001
0
0
480
0.14197
0
0
392
0.115942
90a450c6bb8a1da60bd0c096428df1ba30321115
1,565
py
Python
scripts/slave/recipe_modules/v8/gclient_config.py
bopopescu/chromium-build
f8e42c70146c1b668421ee6358dc550a955770a3
[ "BSD-3-Clause" ]
null
null
null
scripts/slave/recipe_modules/v8/gclient_config.py
bopopescu/chromium-build
f8e42c70146c1b668421ee6358dc550a955770a3
[ "BSD-3-Clause" ]
null
null
null
scripts/slave/recipe_modules/v8/gclient_config.py
bopopescu/chromium-build
f8e42c70146c1b668421ee6358dc550a955770a3
[ "BSD-3-Clause" ]
1
2020-07-22T09:16:32.000Z
2020-07-22T09:16:32.000Z
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import DEPS CONFIG_CTX = DEPS['gclient'].CONFIG_CTX ChromiumGitURL = DEPS['gclient'].config.ChromiumGitURL @CONFIG_CTX() def v8(c): soln = c.solutions.add() soln.name = 'v8' soln.url = ChromiumGitURL(c, 'v8', 'v8') c.got_revision_reverse_mapping['got_revision'] = 'v8' # Needed to get the testers to properly sync the right revision. # TODO(infra): Upload full buildspecs for every build to isolate and then use # them instead of this gclient garbage. c.parent_got_revision_mapping['parent_got_revision'] = 'got_revision' p = c.patch_projects p['icu'] = ('v8/third_party/icu', 'HEAD') @CONFIG_CTX(includes=['v8']) def dynamorio(c): soln = c.solutions.add() soln.name = 'dynamorio' soln.url = ChromiumGitURL(c, 'external', 'dynamorio') @CONFIG_CTX(includes=['v8']) def llvm_compiler_rt(c): c.solutions[0].custom_deps['v8/third_party/llvm/projects/compiler-rt'] = ( ChromiumGitURL(c, 'external', 'llvm.org', 'compiler-rt')) @CONFIG_CTX() def node_js(c): soln = c.solutions.add() soln.name = 'node.js' soln.url = ChromiumGitURL(c, 'external', 'github.com', 'v8', 'node') soln.revision = 'vee-eight-lkgr:HEAD' c.got_revision_reverse_mapping['got_node_js_revision'] = soln.name @CONFIG_CTX(includes=['v8']) def v8_valgrind(c): c.solutions[0].custom_deps['v8/third_party/valgrind'] = ( ChromiumGitURL(c, 'chromium', 'deps', 'valgrind', 'binaries'))
30.686275
79
0.709904
0
0
0
0
1,280
0.817891
0
0
717
0.458147
90a4ede6bfdb471d923545a3e19b34b37a9df384
7,038
py
Python
parser/fase2/team28/models/Other/funcion.py
jossiebk/tytus
de6ce433d61609d4eaa5d0dbbd2ce13aaa573544
[ "MIT" ]
null
null
null
parser/fase2/team28/models/Other/funcion.py
jossiebk/tytus
de6ce433d61609d4eaa5d0dbbd2ce13aaa573544
[ "MIT" ]
null
null
null
parser/fase2/team28/models/Other/funcion.py
jossiebk/tytus
de6ce433d61609d4eaa5d0dbbd2ce13aaa573544
[ "MIT" ]
null
null
null
from models.instructions.shared import Instruction from models.Other.ambito import Ambito from controllers.three_address_code import ThreeAddressCode from controllers.procedures import Procedures from models.instructions.Expression.expression import DATA_TYPE, PrimitiveData class Parametro(Instruction): def __init__(self, id, data_type, line, column): self.id = id self.data_type = data_type self.line = line self.column = column self._tac = '' def compile(self): pass def process(self, environment): pass def __repr__(self): return str(vars(self)) class Funcion(Instruction): def __init__(self, id, params, body, val_return, isNew, isCall, line, column): self.id = id self.params = params self.body = body self.val_return = val_return self.isNew = isNew self.isCall = isCall self.environment = None self.line = line self.column = column def __repr__(self): return str(vars(self)) def process(self, environment): pass def compile(self, environment): params = len(self.params) temporal = None if self.isNew: self.environment = environment # TODO verificar if Procedures().saveProcedure(self.id, self, self.line, self.column): var_array = self.print(environment) temporal = self.setVariables(var_array, environment) else: var_array = Procedures().getProcedure(self.id, params, self.line, self.column) if var_array: temporal = self.setVariables(var_array, environment) fun = ThreeAddressCode().searchFunction(self.id) if fun: temporal = self.setVariables(fun['variables'], environment) return temporal #temp = ThreeAddressCode().newTemp() def print(self, environment): if ThreeAddressCode().searchFunction(self.id): return None ThreeAddressCode().newFunction(self.id) newAmbito = Ambito(environment) pos = 0 var_array = [] for var in self.params: pos = ThreeAddressCode().stackCounter var_array.append(newAmbito.addVar(var.id, var.data_type, None, pos, var.line, var.column)) ThreeAddressCode().incStackCounter() pos = ThreeAddressCode().stackCounter #Generando etiqueta de salida para la funcion lbl_exit = ThreeAddressCode().newLabel() newAmbito.lbl_return = lbl_exit #Agregando cuerpo de la funcion self.body.compile(newAmbito) # Agregando etiqueta de salida ThreeAddressCode().addCode(f"label .{lbl_exit}") # Imprime primera variable declarada, NO parametro # ThreeAddressCode().addCode(f"print(Stack[{pos}])") ThreeAddressCode().createFunction(self.id, self.params, var_array) return var_array def setVariables(self, var_array, environment): if self.isCall: value = 0 for index, var in enumerate(var_array): value = self.params[index].compile(environment) if isinstance(value, PrimitiveData): if value.data_type == DATA_TYPE.STRING: value.value = f"\'{value.value}\'" ThreeAddressCode().addCode(f"Stack[{var.position}] = {value.value}") temp = ThreeAddressCode().newTemp() #Llamando a la funcion ThreeAddressCode().addCode(f"{self.id}()") #Obteniendo el valor de retorno de la funcion ThreeAddressCode().addCode("#Obteniendo valor de retorno--------") ThreeAddressCode().addCode(f"{temp} = Stack[P]") return temp return None class DropFuncion(Instruction): def __init__(self, id, params, line, column): self.id = id self.params = params self.line = line self.column = column class ProcedimientoAlmacenado(Instruction): def __init__(self, id, params, body, isNew, isCall, line, column): self.id = id self.params = params self.body = body self.isNew = isNew self.isCall = isCall self.environment = None self.line = line self.column = column def __repr__(self): return str(vars(self)) def process(self, environment): pass def compile(self, environment): params = len(self.params) if self.isNew: self.environment = environment # TODO verificar if Procedures().saveProcedure(self.id, self, self.line, self.column): var_array = self.print(environment) self.setVariables(var_array, environment) else: var_array = Procedures().getProcedure(self.id, params, self.line, self.column) if var_array: self.setVariables(var_array, environment) fun = ThreeAddressCode().searchFunction(self.id) if fun: self.setVariables(fun['variables'], environment) #temp = ThreeAddressCode().newTemp() def print(self, environment): if ThreeAddressCode().searchFunction(self.id): return None ThreeAddressCode().newFunction(self.id) newAmbito = Ambito(environment) pos = 0 var_array = [] for var in self.params: pos = ThreeAddressCode().stackCounter var_array.append(newAmbito.addVar(var.id, var.data_type, None, pos, var.line, var.column)) ThreeAddressCode().incStackCounter() pos = ThreeAddressCode().stackCounter #Generando etiqueta de salida para la funcion lbl_exit = ThreeAddressCode().newLabel() newAmbito.lbl_return = lbl_exit #Agregando cuerpo de la funcion self.body.compile(newAmbito) # Agregando etiqueta de salida ThreeAddressCode().addCode(f"label .{lbl_exit}") # Imprime primera variable declarada, NO parametro ThreeAddressCode().addCode(f"print(Stack[{pos}])") ThreeAddressCode().createFunction(self.id, self.params, var_array) return var_array def setVariables(self, var_array, environment): if self.isCall: value = 0 for index, var in enumerate(var_array): value = self.params[index].compile(environment) if isinstance(value, PrimitiveData): if value.data_type == DATA_TYPE.STRING: value.value = f"\'{value.value}\'" ThreeAddressCode().addCode(f"Stack[{var.position}] = {value.value}") #Llamando a la funcion ThreeAddressCode().addCode(f"{self.id}()") #Una procedimiento almacenado NO devuelve nada
34.331707
90
0.596903
6,753
0.959506
0
0
0
0
0
0
895
0.127167
90a5135d7b2c7cb2a555e6f77c99a227c0fdaa11
2,386
py
Python
podcast/download.py
jessstringham/podcasts
04de6cc5cd7d27ee6ab56c0c7950526b606ec201
[ "MIT" ]
1
2018-05-08T09:26:45.000Z
2018-05-08T09:26:45.000Z
podcast/download.py
jessstringham/podcasts
04de6cc5cd7d27ee6ab56c0c7950526b606ec201
[ "MIT" ]
null
null
null
podcast/download.py
jessstringham/podcasts
04de6cc5cd7d27ee6ab56c0c7950526b606ec201
[ "MIT" ]
1
2020-12-13T18:04:00.000Z
2020-12-13T18:04:00.000Z
import typing import urllib.error import urllib.request from podcast.files import download_location from podcast.info import build_info_content from podcast.info import InfoContent from podcast.models import Channel from podcast.models import get_podcast_audio_link from podcast.models import NewStatus from podcast.models import Podcast from podcast.models import Radio from podcast.models import RadioDirectory def _download_from_url(url: str, location: str) -> bool: try: urllib.request.urlretrieve(url, location) return True except (IOError, urllib.error.ContentTooShortError): # If a connection can't be made, IOError is raised # If the download gets interrupted (ContentTooShortError), we # should try again later # TODO: can we tell if it was a bad filename (and should stop # requesting it), or internet connectivity (and should tell # us), or just a fluke (and should retry)? return False def download_podcast( directory: RadioDirectory, channel: Channel, podcast: Podcast) -> Podcast: location = download_location(directory, channel, podcast) url = get_podcast_audio_link(podcast) # TODO: This takes some time, especially when there are a lot to # download. I could have this spawn threads, or add priorities, # and so on. For now, since it runs every few hours, and is more # of a push than a pull situation for the user, I'm leaving it # simple success = _download_from_url(url, location) if success: return podcast._replace(status=NewStatus()) else: return podcast def download_channel(directory: RadioDirectory, channel: Channel) -> Channel: updated_podcasts = [] for known_podcast in channel.known_podcasts: if type(known_podcast.status).__name__ == 'RequestedStatus': known_podcast = download_podcast(directory, channel, known_podcast) updated_podcasts.append(known_podcast) return channel._replace(known_podcasts=updated_podcasts) def download_radio(radio: Radio) -> typing.Tuple[Radio, InfoContent]: downloaded_channels = [ download_channel(radio.directory, channel) for channel in radio.channels ] radio = radio._replace(channels=downloaded_channels) info_content = build_info_content() return (radio, info_content)
33.605634
79
0.723386
0
0
0
0
0
0
0
0
575
0.240989
90a586abf2c437f6ccd419108bdf5f296a7fed74
5,630
py
Python
tests/model/test_ocrd_page.py
j23d/core
b063737a5cc4701fb507328b5940919848934ef1
[ "Apache-2.0" ]
null
null
null
tests/model/test_ocrd_page.py
j23d/core
b063737a5cc4701fb507328b5940919848934ef1
[ "Apache-2.0" ]
null
null
null
tests/model/test_ocrd_page.py
j23d/core
b063737a5cc4701fb507328b5940919848934ef1
[ "Apache-2.0" ]
null
null
null
from tests.base import TestCase, main, assets from ocrd_models.ocrd_page import ( AlternativeImageType, PcGtsType, PageType, TextRegionType, TextLineType, WordType, GlyphType, parseString, parse, to_xml ) simple_page = """\ <PcGts xmlns="http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15 http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15/pagecontent.xsd"> <Metadata> <Creator>OCR-D</Creator> <Created>2016-09-20T11:09:27.041+02:00</Created> <LastChange>2018-04-25T17:44:49.605+01:00</LastChange> </Metadata> <Page imageFilename="https://github.com/OCR-D/assets/raw/master/data/kant_aufklaerung_1784/data/OCR-D-IMG/INPUT_0017.tif" imageWidth="1457" imageHeight="2083" type="content"> <TextRegion type="heading" id="r_1_1" custom="readingOrder {index:0;} structure {type:heading;}"> <Coords points="113,365 919,365 919,439 113,439"/> <TextLine id="tl_1" primaryLanguage="German" custom="readingOrder {index:0;} textStyle {offset:0; length:26;fontFamily:Arial; fontSize:17.0; bold:true;}"> <Coords points="114,366 918,366 918,438 114,438"/> <Baseline points="114,429 918,429"/> <Word id="w_w1aab1b1b2b1b1ab1" language="German" custom="readingOrder {index:0;} textStyle {offset:0; length:11;fontFamily:Arial; fontSize:17.0; bold:true;}"> <Coords points="114,368 442,368 442,437 114,437"/> <TextEquiv conf="0.987654321"> <Unicode>Berliniſche</Unicode> </TextEquiv> </Word> </TextLine> </TextRegion> </Page> </PcGts> """ # pylint: disable=protected-access class TestOcrdPage(TestCase): def setUp(self): with open(assets.path_to('glyph-consistency/data/OCR-D-GT-PAGE/FAULTY_GLYPHS.xml'), 'rb') as f: self.xml_as_str = f.read() self.pcgts = parseString(self.xml_as_str, silence=True) def test_to_xml(self): # with open('/tmp/test.xml', 'w') as f: # f.write(to_xml(self.pcgts)) self.assertIn(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15 http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15/pagecontent.xsd"', to_xml(self.pcgts)[:1000]) self.assertIn('</TextRegion', to_xml(self.pcgts)) def test_issue_269(self): """ @conf is parsed as str but should be float https://github.com/OCR-D/core/issues/269 """ # GIGO self.pcgts.get_Page().get_TextRegion()[0].get_TextEquiv()[0].set_conf(1.0) self.assertEqual(type(self.pcgts.get_Page().get_TextRegion()[0].get_TextEquiv()[0].get_conf()), float) self.pcgts.get_Page().get_TextRegion()[0].get_TextEquiv()[0].set_conf('1.0') self.assertEqual(type(self.pcgts.get_Page().get_TextRegion()[0].get_TextEquiv()[0].get_conf()), str) # test with parseString that @conf in TextEquiv won't throw an error parseString(simple_page, silence=True) # self.assertTrue(True) def test_pcGtsId(self): self.assertEqual(self.pcgts.pcGtsId, 'glyph-test') def test_delete_region(self): pcgts = parseString(simple_page, silence=True) self.assertEqual(len(pcgts.get_Page().get_TextRegion()), 1) del pcgts.get_Page().get_TextRegion()[0] self.assertEqual(len(pcgts.get_Page().get_TextRegion()), 0) def test_imageFileName(self): # print(self.pcgts.export(sys.stdout, 0)) self.assertEqual(self.pcgts.get_Page().imageFilename, '00000259.sw.tif') self.pcgts.get_Page().imageFilename = 'foo' self.assertEqual(self.pcgts.get_Page().imageFilename, 'foo') def test_alternativeImage(self): pcgts = PcGtsType(pcGtsId="foo") self.assertEqual(pcgts.pcGtsId, 'foo') # Page/AlternativeImage page = PageType() pcgts.set_Page(page) page.add_AlternativeImage(AlternativeImageType()) # TextRegion/AlternativeImage region = TextRegionType() page.add_TextRegion(region) region.add_AlternativeImage(AlternativeImageType()) # TextLine/AlternativeImage line = TextLineType() region.add_TextLine(line) line.add_AlternativeImage(AlternativeImageType()) # Word/AlternativeImage word = WordType() line.add_Word(word) word.add_AlternativeImage(AlternativeImageType()) # Glyph/AlternativeImage glyph = GlyphType() word.add_Glyph(glyph) glyph.add_AlternativeImage(AlternativeImageType()) def test_simpletypes(self): pcgts = parseString(simple_page, silence=True) self.assertTrue(isinstance(pcgts.get_Page().imageWidth, int)) el = pcgts.get_Page().get_TextRegion()[0].get_TextLine()[0].get_Word()[0].get_TextEquiv()[0] self.assertTrue(isinstance(el.conf, float)) # XXX no validation on setting attributes :-( # c.f. https://www.davekuhlman.org/generateDS.html#simpletype # el.set_conf('2.0987') # self.assertTrue(isinstance(el.conf, float)) with self.assertRaisesRegex(TypeError, ''): el.set_conf('I AM NOT A FLOAT DEAL WITH IT') parseString(to_xml(pcgts).encode('utf8')) if __name__ == '__main__': main()
43.307692
298
0.649556
3,655
0.649085
0
0
0
0
0
0
2,694
0.478423
90a811a1c9219aef26a6c2b2f33c1210f92378af
643
py
Python
athena/athena/algorithms/NetworkAnalysis/Components.py
aculich/openmappr
c9e5b4cfc974a6eda9cbc8a0ea6f8a96ce35efba
[ "MIT" ]
19
2018-04-05T23:33:33.000Z
2022-03-24T00:18:20.000Z
athena/athena/algorithms/NetworkAnalysis/Components.py
aculich/openmappr
c9e5b4cfc974a6eda9cbc8a0ea6f8a96ce35efba
[ "MIT" ]
13
2018-01-10T23:31:11.000Z
2018-07-20T12:55:02.000Z
athena/athena/algorithms/NetworkAnalysis/Components.py
aculich/openmappr
c9e5b4cfc974a6eda9cbc8a0ea6f8a96ce35efba
[ "MIT" ]
5
2018-02-12T05:33:19.000Z
2019-09-21T22:43:02.000Z
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Created on Wed Aug 13 15:35:50 2014 @author: rich """ import networkx as nx # assign component IDs to graph components, id=0 is giant component def componentIDs(network): # networkx algo only works on undirected network if isinstance(network, nx.DiGraph): network = nx.Graph(network) cIDs = {} components = sorted(nx.connected_components(network), key = len, reverse=True) # assign ids to node properties for i in range(len(components)): component = components[i] cIDs.update(dict(zip(component, len(component)*[i]))) return cIDs
26.791667
82
0.659409
0
0
0
0
0
0
0
0
250
0.388802
90a821eadcd600fc9ceb85786e62d6539b2c7ae3
9,603
py
Python
tools/netconf.py
jpfluger/radiucal
42666478baaa93da05fdc5ab8f3b53df68b993e6
[ "BSD-3-Clause" ]
5
2019-12-15T09:47:02.000Z
2022-03-16T03:18:55.000Z
tools/netconf.py
jpfluger/radiucal
42666478baaa93da05fdc5ab8f3b53df68b993e6
[ "BSD-3-Clause" ]
null
null
null
tools/netconf.py
jpfluger/radiucal
42666478baaa93da05fdc5ab8f3b53df68b993e6
[ "BSD-3-Clause" ]
1
2021-03-27T08:11:53.000Z
2021-03-27T08:11:53.000Z
#!/usr/bin/python """composes the config from user definitions.""" import argparse import os import users import users.__config__ import importlib import csv # file indicators IND_DELIM = "_" USER_INDICATOR = "user" + IND_DELIM VLAN_INDICATOR = "vlan" + IND_DELIM AUTH_PHASE_ONE = "PEAP" AUTH_PHASE_TWO = "MSCHAPV2" class ConfigMeta(object): """configuration meta information.""" def __init__(self): """init the instance.""" self.passwords = [] self.macs = [] self.vlans = [] self.all_vlans = [] self.user_name = [] self.vlan_users = [] self.vlan_initiate = [] self.extras = [] def password(self, password): """password group validation(s).""" if password in self.passwords: print("password duplicated") exit(-1) self.passwords.append(password) def extra(self, macs): """Limited macs.""" for mac in macs: if mac in self.extras: print("mac already known as extra: " + mac) exit(-1) self.extras.append(mac) def user_macs(self, macs): """user+mac combos.""" self.macs = self.macs + macs self.macs = list(set(self.macs)) def verify(self): """verify meta data.""" for mac in self.macs: if mac in self.extras: print("mac is flagged extra: " + mac) exit(-1) for mac in self.extras: if mac in self.macs: print("mac is user assigned: " + mac) exit(-1) used_vlans = set(self.vlans + self.vlan_initiate) if len(used_vlans) != len(set(self.all_vlans)): print("unused vlans detected") exit(-1) for ref in used_vlans: if ref not in self.all_vlans: print("reference to unknown vlan: " + ref) exit(-1) def vlan_user(self, vlan, user): """indicate a vlan was used.""" self.vlans.append(vlan) self.vlan_users.append(vlan + "." + user) self.user_name.append(user) def vlan_to_vlan(self, vlan_to): """VLAN to VLAN mappings.""" self.vlan_initiate.append(vlan_to) def _get_mod(name): """import the module dynamically.""" return importlib.import_module("users." + name) def _load_objs(name, typed): mod = _get_mod(name) for key in dir(mod): obj = getattr(mod, key) if not isinstance(obj, typed): continue yield obj def _get_by_indicator(indicator): """get by a file type indicator.""" return [x for x in sorted(users.__all__) if x.startswith(indicator)] def _common_call(common, method, entity): """make a common mod call.""" obj = entity if common is not None and method in dir(common): call = getattr(common, method) if call is not None: obj = call(obj) return obj def check_object(obj): """Check an object.""" return obj.check() def _process(output): """process the composition of users.""" common_mod = None try: common_mod = _get_mod("common") print("loaded common definitions...") except Exception as e: print("defaults only...") vlans = None meta = ConfigMeta() for v_name in _get_by_indicator(VLAN_INDICATOR): print("loading vlan..." + v_name) for obj in _load_objs(v_name, users.__config__.VLAN): if vlans is None: vlans = {} if not check_object(obj): exit(-1) num_str = str(obj.num) for vk in vlans.keys(): if num_str == vlans[vk]: print("vlan number defined multiple times...") exit(-1) vlans[obj.name] = num_str if obj.initiate is not None and len(obj.initiate) > 0: for init_to in obj.initiate: meta.vlan_to_vlan(init_to) if vlans is None: raise Exception("missing required config settings...") meta.all_vlans = vlans.keys() store = Store() for f_name in _get_by_indicator(USER_INDICATOR): print("composing..." + f_name) for obj in _load_objs(f_name, users.__config__.Assignment): obj = _common_call(common_mod, 'ready', obj) key = f_name.replace(USER_INDICATOR, "") if not key.isalnum(): print("does not meet naming requirements...") exit(-1) vlan = obj.vlan if vlan not in vlans: raise Exception("no vlan defined for " + key) store.add_vlan(vlan, vlans[vlan]) meta.vlan_user(vlan, key) fqdn = vlan + "." + key if not check_object(obj): print("did not pass check...") exit(-1) if obj.disabled: print("account is disabled") continue macs = sorted(obj.macs) password = obj.password bypassed = sorted(obj.bypassed()) owned = sorted(obj.owns) # meta checks meta.user_macs(macs) if not obj.inherits: meta.password(password) meta.extra(bypassed) meta.extra(owned) store.add_user(fqdn, macs, password) if obj.mab_only: store.set_mab(fqdn) if len(bypassed) > 0: for m in bypassed: store.add_mab(m, obj.bypass_vlan(m)) user_all = [] for l in [obj.macs, obj.owns, bypassed]: user_all += list(l) store.add_audit(fqdn, sorted(set(user_all))) meta.verify() # audit outputs with open(output + "audit.csv", 'w') as f: csv_writer = csv.writer(f, lineterminator=os.linesep) for a in sorted(store.get_tag(store.audit)): p = a[0].split(".") for m in a[1]: csv_writer.writerow([p[1], p[0], m]) # eap_users and preauth manifest = [] with open(output + "eap_users", 'w') as f: for u in store.get_eap_user(): f.write('"{}" {}\n\n'.format(u[0], AUTH_PHASE_ONE)) f.write('"{}" {} hash:{} [2]\n'.format(u[0], AUTH_PHASE_TWO, u[1])) write_vlan(f, u[2]) for u in store.get_eap_mab(): up = u[0].upper() f.write('"{}" MD5 "{}"\n'.format(up, up)) write_vlan(f, u[1]) manifest.append((u[0], u[0])) for u in store.get_tag(store.umac): manifest.append((u[0], u[1])) with open(output + "manifest", 'w') as f: for m in sorted(manifest): f.write("{}.{}\n".format(m[0], m[1]).lower()) def write_vlan(f, vlan_id): """Write vlan assignment for login.""" f.write('radius_accept_attr=64:d:13\n') f.write('radius_accept_attr=65:d:6\n') f.write('radius_accept_attr=81:s:{}\n\n'.format(vlan_id)) class Store(object): """Storage object.""" def __init__(self): """Init the instance.""" self._data = [] self.umac = "UMAC" self.pwd = "PWD" self.mac = "MAC" self.audit = "AUDIT" self._users = [] self._mab = [] self._macs = [] self._vlans = {} def set_mab(self, username): """Set a user as MAB-only, no login set.""" self._mab.append(username) def get_tag(self, tag): """Get tagged items.""" for item in self._data: if item[0] == tag: yield item[1:] def add_vlan(self, vlan_name, vlan_id): """Add a vlan item.""" self._vlans[vlan_name] = vlan_id def _add(self, tag, key, value): """Backing tagged add.""" self._data.append([tag, key, value]) def add_user(self, username, macs, password): """Add a user definition.""" if username in self._users: raise Exception("{} already defined".format(username)) self._users.append(username) for m in macs: self._add(self.umac, username, m) self._add(self.pwd, username, password) def add_mab(self, mac, vlan): """Add a MAB.""" if mac in self._macs: raise Exception("{} already defined".format(mac)) self._macs.append(mac) self._add(self.mac, mac, vlan) def add_audit(self, user, objs): """Add an audit entry.""" self._add(self.audit, user, objs) def get_eap_mab(self): """Get eap entries for MAB.""" for m in self.get_tag(self.mac): v = m[1] if not isinstance(v, int): v = self._get_vlan(v) yield [m[0], v] def get_eap_user(self): """Get eap users.""" for u in self.get_tag(self.pwd): if u[0] in self._mab: continue vlan = u[0].split(".")[0] yield [u[0], u[1], self._get_vlan(vlan)] def _get_vlan(self, name): """Get vlans.""" return self._vlans[name] def main(): """main entry.""" success = False try: parser = argparse.ArgumentParser() parser.add_argument("--output", type=str, required=True) args = parser.parse_args() _process(args.output) success = True except Exception as e: print('unable to compose') print(str(e)) if success: print("success") exit(0) else: print("failure") exit(1) if __name__ == "__main__": main()
30.389241
79
0.53754
4,029
0.419556
808
0.08414
0
0
0
0
1,653
0.172134
90a9c694ad7055aeb7e214346c75ba596c28d602
3,673
py
Python
twitter_scrapper.py
juanlucruz/SportEventLocator
1ac8236f9fdd60917b9a7ee6bb6ca1fa5f6fa71e
[ "Apache-2.0" ]
null
null
null
twitter_scrapper.py
juanlucruz/SportEventLocator
1ac8236f9fdd60917b9a7ee6bb6ca1fa5f6fa71e
[ "Apache-2.0" ]
null
null
null
twitter_scrapper.py
juanlucruz/SportEventLocator
1ac8236f9fdd60917b9a7ee6bb6ca1fa5f6fa71e
[ "Apache-2.0" ]
null
null
null
# Import the Twython class from twython import Twython, TwythonStreamer import json # import pandas as pd import csv import datetime def process_tweet(tweet): # Filter out unwanted data d = {} d['hashtags'] = [hashtag['text'] for hashtag in tweet['entities']['hashtags']] try: for key in { 'created_at', 'id', 'text', 'source', 'truncated', 'in_reply_to_status_id', 'in_reply_to_user_id', 'in_reply_to_screen_name', 'user', 'coordinates', 'place', 'quoted_status_id', 'is_quote_status', 'quoted_status', 'retweeted_status', 'quote_count', 'reply_count', 'retweet_count', 'favorite_count', 'favorited', 'retweeted', 'entities', 'extended_entities', 'possibly_sensitive', 'filter_level', 'lang', 'matching_rules'}: if key == 'user': pass elif key == 'place': pass elif key == 'quoted_status' or key == 'retweeted_status': pass elif key == 'entities': pass elif key == 'extended_entities': pass else: d[key] = tweet[key] except KeyError as e: pass # d['text'] = tweet['text'] # d['user'] = tweet['user']['screen_name'] # d['user_loc'] = tweet['user']['location'] # d['date'] = tweet['created_at'] return d # Create a class that inherits TwythonStreamer class MyStreamer(TwythonStreamer): # Received data def on_success(self, data): # # Only collect tweets in English # if data['lang'] == 'en': # tweet_data = process_tweet(data) print(datetime.datetime.now()) # self.save_to_csv(tweet_data) self.save_to_json(data) # Problem with the API def on_error(self, status_code, data): print(status_code, data) self.disconnect() # Save each tweet to csv file def save_to_csv(self, tweet): # with open(r'saved_tweets.csv', 'a') as out_file: with open(r'saved_tweets_big.csv', 'a') as out_file: writer = csv.writer(out_file) writer.writerow(list(tweet.values())) def save_to_json(self, tweet): with open('saved_tweets_big.json', 'a') as out_file: json.dump(tweet, out_file) def main(): # Load credentials from json file with open("twitter_credentials.json", "r") as tw_creds: creds = json.load(tw_creds) # Instantiate an object # python_tweets = Twython(creds['CONSUMER_KEY'], creds['CONSUMER_SECRET']) # Instantiate from our streaming class stream = MyStreamer(creds['CONSUMER_KEY'], creds['CONSUMER_SECRET'], creds['ACCESS_TOKEN'], creds['ACCESS_SECRET']) # Start the stream # stream.statuses.filter(track='madrid') stream.statuses.filter(locations='-7.876154,37.460012,3.699873,43.374723') # # Create our query # query = { # 'q': 'futbol', # 'result_type': 'mixed', # 'lang': 'es', # 'count': '100', # } # # dict_ = {'user': [], 'date': [], 'text': [], 'favorite_count': []} # for status in python_tweets.search(**query)['statuses']: # print(format(status)) # dict_['user'].append(status['user']['screen_name']) # dict_['date'].append(status['created_at']) # dict_['text'].append(status['text']) # dict_['favorite_count'].append(status['favorite_count']) # # df = pd.DataFrame(dict_) # df.sort_values(by='favorite_count', inplace=True, ascending=False) # print(df.values) if __name__ == "__main__": main()
33.390909
88
0.58263
865
0.235502
0
0
0
0
0
0
1,999
0.544242
90aa48820bf97867a9816268e697f65885c29466
389
py
Python
tools/bin/filter_cassandra_attributes.py
fruch/scylla-tools-java
3fdce3d357b64402799742f61d3cc33b6f8fcfbb
[ "Apache-2.0" ]
null
null
null
tools/bin/filter_cassandra_attributes.py
fruch/scylla-tools-java
3fdce3d357b64402799742f61d3cc33b6f8fcfbb
[ "Apache-2.0" ]
null
null
null
tools/bin/filter_cassandra_attributes.py
fruch/scylla-tools-java
3fdce3d357b64402799742f61d3cc33b6f8fcfbb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 import sys; from yaml import load, dump, load_all from cassandra_attributes import * def main(): attributes = dict() for i in range(1, len(sys.argv)): attributes.update(load(open(sys.argv[i], 'r'))) print dump(dict(filter(lambda (a, b): a in cassandra_attributes, attributes.items()))) if __name__ == "__main__": main()
25.933333
109
0.637532
0
0
0
0
0
0
0
0
35
0.089974
90aa5dbc6e140871e083e339d177b3478bf2b89d
526
py
Python
ci/test_filename.py
climateamante/linode.docs
9a2d26db11ab439f354bb9027eb62eda7453ff0b
[ "CC-BY-4.0" ]
null
null
null
ci/test_filename.py
climateamante/linode.docs
9a2d26db11ab439f354bb9027eb62eda7453ff0b
[ "CC-BY-4.0" ]
null
null
null
ci/test_filename.py
climateamante/linode.docs
9a2d26db11ab439f354bb9027eb62eda7453ff0b
[ "CC-BY-4.0" ]
null
null
null
import pytest import itertools # Cartesian product of file names and extensions # e.g. README.txt, README.md, CHANGELOG.txt, CHANGELOG.md ... file_extensions = ['txt', 'md'] names = ['README', 'CHANGELOG', 'CONTRIBUTING', 'LICENSE', 'CODE_OF_CONDUCT'] exempt_files = [('.'.join(x)) for x in itertools.product(names, file_extensions)] def test_filename(md_filepath): if any(e in md_filepath for e in exempt_files): assert True else: assert md_filepath.islower() == True,'Filename should be lowercase'
35.066667
81
0.709125
0
0
0
0
0
0
0
0
210
0.39924
90aa7fec2a73694bfef5aa1b7617bf2c7fb170fa
1,570
py
Python
test/test_sshtransport.py
stribika/sshlabs
421e62433aab0e21456254a0b2c5feb830d0c77c
[ "Unlicense" ]
76
2015-01-24T19:18:31.000Z
2021-03-11T11:17:14.000Z
test/test_sshtransport.py
stribika/sshlabs
421e62433aab0e21456254a0b2c5feb830d0c77c
[ "Unlicense" ]
8
2015-01-24T18:59:57.000Z
2017-06-07T13:07:34.000Z
test/test_sshtransport.py
stribika/sshlabs
421e62433aab0e21456254a0b2c5feb830d0c77c
[ "Unlicense" ]
21
2015-01-24T18:56:52.000Z
2021-03-10T14:33:14.000Z
import sys import unittest sys.path.append("../main") from sshtransport import * class FakeSocket(object): def __init__(self): self.recv_buffer = b"" self.send_buffer = b"" def recv(self, n): resp = self.recv_buffer[:n] self.recv_buffer = self.recv_buffer[n:] return resp def send(self, x): self.send_buffer += x class TestIdentificationString(unittest.TestCase): def test_recv(self): conn = FakeSocket() conn.recv_buffer = b"SSH-2.00-SecureMcShellface_1.0\r\n" idstr = IdentificationString(recvfrom=conn) self.assertEqual(idstr.protoversion, "2.00") self.assertEqual(idstr.softwareversion, "SecureMcShellface_1.0") def test_send(self): conn = FakeSocket() idstr = IdentificationString(protoversion="2.00", softwareversion="SecureMcShellface_1.0") idstr.send(conn) self.assertEqual(conn.send_buffer, b"SSH-2.00-SecureMcShellface_1.0\r\n") class TestBinaryPacket(unittest.TestCase): def test_recv(self): conn = FakeSocket() conn.recv_buffer = b"\x00\x00\x00\x14\x07Hello World!\x00\x00\x00\x00\x00\x00\x00" binpkt = BinaryPacket(recvfrom=conn) self.assertEqual(binpkt.payload, b"Hello World!") self.assertEqual(binpkt.mac, b"") def test_send(self): conn = FakeSocket() binpkt = BinaryPacket(payload=b"Hello World!") binpkt.send(conn) self.assertEqual(conn.send_buffer, b"\x00\x00\x00\x14\x07Hello World!\x00\x00\x00\x00\x00\x00\x00")
32.708333
107
0.658599
1,481
0.943312
0
0
0
0
0
0
306
0.194904
90ab146abe91415bc0bc793fedf75c04fb9406e9
7,357
py
Python
activity-classification/main_scenario_baseline.py
bstollnitz/grad-school-portfolio
484e00cc4857de2eda6848f61a1e6fbf26309d42
[ "MIT" ]
2
2019-10-24T16:40:44.000Z
2020-06-21T03:56:18.000Z
activity-classification/main_scenario_baseline.py
bstollnitz/portfolio
484e00cc4857de2eda6848f61a1e6fbf26309d42
[ "MIT" ]
null
null
null
activity-classification/main_scenario_baseline.py
bstollnitz/portfolio
484e00cc4857de2eda6848f61a1e6fbf26309d42
[ "MIT" ]
null
null
null
import random import time from pathlib import Path from typing import Dict, List, Tuple import numpy as np import torch from torch.utils import data from torch.utils.tensorboard import SummaryWriter import utils_graph import utils_io import utils_nn from feed_forward import FeedForward from hyperparameters import Hyperparameters from signal_data import SignalData from signal_dataset import SignalDataset PLOTS_FOLDER = 'plots' USE_CUDA = torch.cuda.is_available() def _train_ff_network(hyperparameter_dict: dict, data: SignalData) -> Tuple[FeedForward, List, List, List, List]: """Trains a feed-forward network using the specified hyperparameters. """ # Ensure reproducibility by giving PyTorch the same seed every time we train. torch.manual_seed(1) # Print hyperparameters. print(f'Hyperparameters: {hyperparameter_dict}') # Get hyperparameters. learning_rate = hyperparameter_dict['learning_rate'] batch_size = hyperparameter_dict['batch_size'] optimizer_str = hyperparameter_dict['optimizer'] # There are 6 labels, and Pytorch expects them to go from 0 to 5. full_train_labels = data.train_labels - 1 # Get generators. signal_dataset = SignalDataset(data.train_signals, full_train_labels) (training_generator, validation_generator) = utils_nn.get_trainval_generators( signal_dataset, batch_size, num_workers=0, training_fraction=0.8) # Crete feed forward network. input_size = data.num_timesteps * data.num_components feed_forward = FeedForward(input_size, input_size, data.num_activity_labels) print(feed_forward) # Parameters should be moved to GPU before constructing the optimizer. device = torch.device('cuda:0' if USE_CUDA else 'cpu') feed_forward = feed_forward.to(device) # Get optimizer. optimizer = None if optimizer_str == 'adam': optimizer = torch.optim.Adam(feed_forward.parameters(), lr=learning_rate) elif optimizer_str == 'sgd': optimizer = torch.optim.SGD(feed_forward.parameters(), lr=learning_rate) else: raise Exception(f'Specified optimizer not valid: {optimizer_str}') training_accuracy_list = [] training_loss_list = [] validation_accuracy_list = [] validation_loss_list = [] max_epochs = 10 for epoch in range(max_epochs): print(f'Epoch {epoch}') # Training data. (training_accuracy, training_loss) = utils_nn.fit(feed_forward, training_generator, optimizer, USE_CUDA) training_accuracy_list.append(training_accuracy) training_loss_list.append(training_loss) # Validation data. (validation_accuracy, validation_loss) = utils_nn.evaluate(feed_forward, validation_generator, 'Validation', USE_CUDA) validation_accuracy_list.append(validation_accuracy) validation_loss_list.append(validation_loss) return (feed_forward, training_accuracy_list, training_loss_list, validation_accuracy_list, validation_loss_list) def _get_ff_hyperparameters() -> Hyperparameters: """Returns hyperparameters used to tune the feed-forward network. """ # First pass: hyperparameter_values = Hyperparameters({ 'learning_rate': [0.1, 0.01, 0.001], 'batch_size': [32, 64, 128], 'optimizer': ['adam', 'sgd'] }) # Best: # optimizer: sgd, batch size: 64, learning rate: 0.1 # Second pass: hyperparameter_values = Hyperparameters({ 'learning_rate': [0.05, 0.1, 0.2], 'batch_size': [16, 32, 64], 'optimizer': ['sgd'] }) # Best: # optimizer: sgd, batch size: 16, learning rate: 0.1 return hyperparameter_values def _tune_ff_hyperparameters(data: SignalData) -> None: """Classifies temporal signals using a feed-forward network. """ print(' Tuning hyperparameters.') start_time = time.time() # Hyperparameters to tune. hyperparameter_values = _get_ff_hyperparameters() hyperparameter_combinations = hyperparameter_values.sample_combinations() # Create Tensorboard writer. with SummaryWriter(f'runs/signals', filename_suffix='') as writer: # Hyperparameter loop. for hyperparameter_dict in hyperparameter_combinations: (_, _, _, validation_accuracy_list, _) = _train_ff_network( hyperparameter_dict, data) writer.add_hparams(hyperparameter_dict, {'hparam/signals/validation_accuracy': validation_accuracy_list[-1]}) utils_io.print_elapsed_time(start_time, time.time()) def _test_ff_network(feed_forward: FeedForward, signal_data: SignalData, hyperparameter_dict: dict) -> Tuple[float, float]: """Returns accuracy and loss of specified network for specified test data and specified hyperparameters. """ # There are 6 labels, and Pytorch expects them to go from 0 to 5. test_labels = signal_data.test_labels - 1 # Get test generator. batch_size = hyperparameter_dict['batch_size'] test_data = SignalDataset(signal_data.test_signals, test_labels) params = {'batch_size': batch_size, 'shuffle': True, 'num_workers': 0} test_generator = data.DataLoader(test_data, **params) (test_avg_accuracy, test_avg_loss) = utils_nn.evaluate(feed_forward, test_generator, 'Test', USE_CUDA) return (test_avg_accuracy, test_avg_loss) def _test_best_ff_hyperparameters(data: SignalDataset) -> None: """Use network with best hyperparameters to predict labels for test data. Produces accuracy and loss graphs for training and validation data, as well as accuracy and loss values for test data. """ hyperparameter_dict = { 'learning_rate': 0.1, 'batch_size': 16, 'optimizer': 'sgd', } (feed_forward, training_accuracy_list, training_loss_list, validation_accuracy_list, validation_loss_list) = _train_ff_network(hyperparameter_dict, data) utils_graph.graph_nn_results(training_accuracy_list, validation_accuracy_list, f'Training and validation accuracy of classification of temporal signals', 'Accuracy', PLOTS_FOLDER, f'signals_accuracy.html') utils_graph.graph_nn_results(training_loss_list, validation_loss_list, f'Training and validation loss of classification of temporal signals', 'Loss', PLOTS_FOLDER, f'signals_loss.html') _test_ff_network(feed_forward, data, hyperparameter_dict) with SummaryWriter(f'runs/signals', filename_suffix='') as writer: num_epochs_train_val = len(training_accuracy_list) for i in range(num_epochs_train_val): writer.add_scalars(f'signals/accuracy', { 'training': training_accuracy_list[i], 'validation': validation_accuracy_list[i] }, i) writer.add_scalars(f'signals/loss', { 'training': training_loss_list[i], 'validation': validation_loss_list[i] }, i) # Test accuracy: 87.25% # Test loss: 0.45 def scenario1(data: SignalData) -> None: """Uses a simple feed forward network to classify the raw signal. """ print('Scenario 1: feed forward network on raw signal') # _tune_ff_hyperparameters(data) _test_best_ff_hyperparameters(data)
35.887805
85
0.703819
0
0
0
0
0
0
0
0
2,150
0.292239
90ab4c6f6273b660fe6334ebc9b6fb8fce97ce8e
868
py
Python
2020/day04/day4_part1.py
dstjacques/AdventOfCode
75bfb46a01487430d552ea827f0cf8ae3368f686
[ "MIT" ]
null
null
null
2020/day04/day4_part1.py
dstjacques/AdventOfCode
75bfb46a01487430d552ea827f0cf8ae3368f686
[ "MIT" ]
null
null
null
2020/day04/day4_part1.py
dstjacques/AdventOfCode
75bfb46a01487430d552ea827f0cf8ae3368f686
[ "MIT" ]
null
null
null
input = """ ecl:gry pid:860033327 eyr:2020 hcl:#fffffd byr:1937 iyr:2017 cid:147 hgt:183cm iyr:2013 ecl:amb cid:350 eyr:2023 pid:028048884 hcl:#cfa07d byr:1929 hcl:#ae17e1 iyr:2013 eyr:2024 ecl:brn pid:760753108 byr:1931 hgt:179cm hcl:#cfa07d eyr:2025 pid:166559648 iyr:2011 ecl:brn hgt:59in """ def validate(passport): passport_fields = { "byr": False, "iyr": False, "eyr": False, "hgt": False, "hcl": False, "ecl": False, "pid": False } for line in passport.split("\n"): values = line.split(" ") for value in values: field = value.split(":")[0] if field == "cid": continue passport_fields[field] = True if False in passport_fields.values(): return False return True count = 0 for i in input.strip().split("\n\n"): if validate(i): count += 1 print(count)
25.529412
122
0.615207
0
0
0
0
0
0
0
0
346
0.398618
90ad0d873a774414aef935d258105887a6980e80
3,322
py
Python
flit_core/flit_core/tests/test_common.py
rahul-deepsource/flit
5d5be0a9c6f77a2dbbffd3369ad8ac7813a926bf
[ "BSD-3-Clause" ]
null
null
null
flit_core/flit_core/tests/test_common.py
rahul-deepsource/flit
5d5be0a9c6f77a2dbbffd3369ad8ac7813a926bf
[ "BSD-3-Clause" ]
null
null
null
flit_core/flit_core/tests/test_common.py
rahul-deepsource/flit
5d5be0a9c6f77a2dbbffd3369ad8ac7813a926bf
[ "BSD-3-Clause" ]
1
2021-06-24T10:21:43.000Z
2021-06-24T10:21:43.000Z
import os.path as osp from unittest import TestCase import pytest from flit_core.common import ( Module, get_info_from_module, InvalidVersion, NoVersionError, check_version, normalize_file_permissions, Metadata ) samples_dir = osp.join(osp.dirname(__file__), 'samples') class ModuleTests(TestCase): def test_package_importable(self): i = Module('package1', samples_dir) assert i.path == osp.join(samples_dir, 'package1') assert i.file == osp.join(samples_dir, 'package1', '__init__.py') assert i.is_package def test_module_importable(self): i = Module('module1', samples_dir) assert i.path == osp.join(samples_dir, 'module1.py') assert not i.is_package def test_missing_name(self): with self.assertRaises(ValueError): i = Module('doesnt_exist', samples_dir) def test_get_info_from_module(self): info = get_info_from_module(Module('module1', samples_dir)) self.assertEqual(info, {'summary': 'Example module', 'version': '0.1'} ) info = get_info_from_module(Module('module2', samples_dir)) self.assertEqual(info, {'summary': 'Docstring formatted like this.', 'version': '7.0'} ) info = get_info_from_module(Module('package1', samples_dir)) self.assertEqual(info, {'summary': 'A sample package', 'version': '0.1'} ) info = get_info_from_module(Module('moduleunimportable', samples_dir)) self.assertEqual(info, {'summary': 'A sample unimportable module', 'version': '0.1'} ) info = get_info_from_module(Module('modulewithconstructedversion', samples_dir)) self.assertEqual(info, {'summary': 'This module has a __version__ that requires runtime interpretation', 'version': '1.2.3'} ) with self.assertRaises(InvalidVersion): get_info_from_module(Module('invalid_version1', samples_dir)) def test_version_raise(self): with pytest.raises(InvalidVersion): check_version('a.1.0.beta0') with pytest.raises(InvalidVersion): check_version('3!') with pytest.raises(InvalidVersion): check_version((1, 2)) with pytest.raises(NoVersionError): check_version(None) assert check_version('4.1.0beta1') == '4.1.0b1' assert check_version('v1.2') == '1.2' def test_normalize_file_permissions(): assert normalize_file_permissions(0o100664) == 0o100644 # regular file assert normalize_file_permissions(0o40775) == 0o40755 # directory @pytest.mark.parametrize( ("requires_python", "expected_result"), [ ("", True), (">2.7", True), ("3", False), (">= 3.7", False), ("<4, > 3.2", False), (">3.4", False), (">=2.7, !=3.0.*, !=3.1.*, !=3.2.*", True), ], ) def test_supports_py2(requires_python, expected_result): metadata = object.__new__(Metadata) metadata.requires_python = requires_python result = metadata.supports_py2 assert result == expected_result
35.340426
112
0.599639
2,351
0.707706
0
0
500
0.150512
0
0
642
0.193257
90af463579adb14e899b746a24caf95a35d80b1b
3,017
py
Python
flumine/markets/market.py
jsphon/flumine
bd5cacf9793d53a99595fe4694aeb9b8d2962abb
[ "MIT" ]
null
null
null
flumine/markets/market.py
jsphon/flumine
bd5cacf9793d53a99595fe4694aeb9b8d2962abb
[ "MIT" ]
null
null
null
flumine/markets/market.py
jsphon/flumine
bd5cacf9793d53a99595fe4694aeb9b8d2962abb
[ "MIT" ]
null
null
null
import datetime import logging from typing import Optional from betfairlightweight.resources.bettingresources import MarketBook, MarketCatalogue from .blotter import Blotter from ..events import events logger = logging.getLogger(__name__) class Market: def __init__( self, flumine, market_id: str, market_book: MarketBook, market_catalogue: MarketCatalogue = None, ): self.flumine = flumine self.market_id = market_id self.closed = False self.date_time_closed = None self.market_book = market_book self.market_catalogue = market_catalogue self.context = {"simulated": {}} # data store (raceCard / scores etc) self.blotter = Blotter(self) def __call__(self, market_book: MarketBook): self.market_book = market_book def open_market(self) -> None: self.closed = False def close_market(self) -> None: self.closed = True self.date_time_closed = datetime.datetime.utcnow() # order def place_order(self, order, execute: bool = True) -> None: order.place(self.market_book.publish_time) if order.id not in self.blotter: self.blotter[order.id] = order if order.trade.market_notes is None: order.trade.update_market_notes(self.market_book) self.flumine.log_control(events.TradeEvent(order.trade)) # todo dupes? else: return # retry attempt so ignore? if execute: # handles replaceOrder self.blotter.pending_place.append(order) def cancel_order(self, order, size_reduction: float = None) -> None: order.cancel(size_reduction) self.blotter.pending_cancel.append(order) def update_order(self, order, new_persistence_type: str) -> None: order.update(new_persistence_type) self.blotter.pending_update.append(order) def replace_order(self, order, new_price: float) -> None: order.replace(new_price) self.blotter.pending_replace.append(order) @property def event_type_id(self) -> str: if self.market_book: return self.market_book.market_definition.event_type_id @property def event_id(self) -> str: if self.market_book: return self.market_book.market_definition.event_id @property def seconds_to_start(self): return (self.market_start_datetime - datetime.datetime.utcnow()).total_seconds() @property def elapsed_seconds_closed(self) -> Optional[float]: if self.closed and self.date_time_closed: return (datetime.datetime.utcnow() - self.date_time_closed).total_seconds() @property def market_start_datetime(self): if self.market_catalogue: return self.market_catalogue.market_start_time elif self.market_book: return self.market_book.market_definition.market_time else: return datetime.datetime.utcfromtimestamp(0)
33.153846
88
0.670534
2,773
0.919125
0
0
915
0.303281
0
0
115
0.038117
90b067d91d1317f4e26b80f4ccf8b819d42bc981
206
py
Python
{{cookiecutter.project_name}}/tests/conftest.py
nelsonHolic/common-fastapi-microservice
06a995264ced42a59565f1f703bab7bfed8e7cc1
[ "MIT" ]
1
2021-12-14T17:08:24.000Z
2021-12-14T17:08:24.000Z
{{cookiecutter.project_name}}/tests/conftest.py
nelsonHolic/common-fastapi-microservice
06a995264ced42a59565f1f703bab7bfed8e7cc1
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/tests/conftest.py
nelsonHolic/common-fastapi-microservice
06a995264ced42a59565f1f703bab7bfed8e7cc1
[ "MIT" ]
null
null
null
import pytest from fastapi.testclient import TestClient from {{cookiecutter.project_name}}.app import app @pytest.fixture() def app_client() -> TestClient: client = TestClient(app) return client
18.727273
49
0.757282
0
0
0
0
96
0.466019
0
0
0
0
90b264bddefd9c5d8b81c5073da1b99d48704da6
2,228
py
Python
scripts/naive_search.py
simonbowly/lp-generators
937c44074c234333b6a5408c3e18f498c2205948
[ "MIT" ]
9
2020-01-02T23:07:36.000Z
2022-01-26T10:04:04.000Z
scripts/naive_search.py
simonbowly/lp-generators
937c44074c234333b6a5408c3e18f498c2205948
[ "MIT" ]
null
null
null
scripts/naive_search.py
simonbowly/lp-generators
937c44074c234333b6a5408c3e18f498c2205948
[ "MIT" ]
1
2020-01-02T23:08:26.000Z
2020-01-02T23:08:26.000Z
import itertools import multiprocessing import json import numpy as np from tqdm import tqdm from lp_generators.features import coeff_features, solution_features from lp_generators.performance import clp_simplex_performance from search_operators import lp_column_neighbour, lp_row_neighbour from seeds import cli_seeds from search_common import condition, objective, start_instance def calculate_features(instance): return dict( **coeff_features(instance), **solution_features(instance)) def generate_by_search(seed): results = [] pass_condition = 0 step_change = 0 random_state = np.random.RandomState(seed) current_instance = start_instance(random_state) current_features = calculate_features(current_instance) for step in range(10001): if (step % 100) == 0: results.append(dict( **coeff_features(current_instance), **solution_features(current_instance), **clp_simplex_performance(current_instance), pass_condition=pass_condition, step_change=step_change, step=step, seed=seed)) if (step % 2) == 0: new_instance = lp_row_neighbour(random_state, current_instance, 1) else: new_instance = lp_column_neighbour(random_state, current_instance, 1) new_features = calculate_features(new_instance) if condition(new_features): pass_condition += 1 if objective(new_features) < objective(current_features): step_change += 1 current_instance = new_instance current_features = new_features return results @cli_seeds def run(seed_values): ''' Generate the required number of instances and store feature results. ''' pool = multiprocessing.Pool() mapper = pool.imap_unordered print('Generating instances by naive search.') features = list(tqdm( mapper(generate_by_search, seed_values), total=len(seed_values), smoothing=0)) features = list(itertools.chain(*features)) with open('data/naive_search.json', 'w') as outfile: json.dump(features, outfile, indent=4, sort_keys=True) run()
33.253731
81
0.685817
0
0
0
0
520
0.233393
0
0
142
0.063734
90b42e2cf853da75296b6d0c2d2e8e3942e4a7bb
1,066
py
Python
tests/test_list_.py
aefalcon/iterable_collections
8e3b4ea84083a100413f23af30ea27dfd4b838ff
[ "MIT" ]
4
2018-06-05T14:07:56.000Z
2021-04-17T12:09:23.000Z
tests/test_list_.py
aefalcon/iterable_collections
8e3b4ea84083a100413f23af30ea27dfd4b838ff
[ "MIT" ]
1
2018-07-10T19:53:54.000Z
2018-07-10T19:58:38.000Z
tests/test_list_.py
aefalcon/iterable_collections
8e3b4ea84083a100413f23af30ea27dfd4b838ff
[ "MIT" ]
2
2020-01-29T10:51:11.000Z
2021-11-11T21:37:24.000Z
import unittest from iterable_collections import collect class TestList_(unittest.TestCase): def test_list(self): c = collect(list(range(10))).list_() self.assertEqual(c.iterable, list(list(range(10)))) def test_set(self): c = collect(set(range(10))).list_() self.assertEqual(c.iterable, list(set(range(10)))) def test_tuple(self): c = collect(tuple(range(10))).list_() self.assertEqual(c.iterable, list(tuple(range(10)))) def test_iterator(self): c = collect(iter(range(10))).list_() self.assertEqual(c.iterable, list(iter(range(10)))) def test_dict(self): c = collect({'a': 1, 'b': 2}).list_() self.assertEqual(c.iterable, list({'a': 1, 'b': 2})) def test_dict_items(self): c = collect({'a': 1, 'b': 2}.items()).list_() self.assertEqual(c.iterable, list({'a': 1, 'b': 2}.items())) def test_enumerate(self): c = collect(list(range(10))).enumerate().list_() self.assertEqual(c.iterable, list(enumerate(range(10))))
29.611111
68
0.605066
1,004
0.941839
0
0
0
0
0
0
24
0.022514
90b5ceb756a46b298c1cfb2d69501dea6821b502
8,354
py
Python
parcels/parcels/examples/example_peninsula.py
pdnooteboom/NA_forams
789b45d8cc14225f31242c9c648f4f36c76d2fc4
[ "MIT" ]
1
2021-04-12T16:07:42.000Z
2021-04-12T16:07:42.000Z
parcels/parcels/examples/example_peninsula.py
pdnooteboom/NA_forams
789b45d8cc14225f31242c9c648f4f36c76d2fc4
[ "MIT" ]
null
null
null
parcels/parcels/examples/example_peninsula.py
pdnooteboom/NA_forams
789b45d8cc14225f31242c9c648f4f36c76d2fc4
[ "MIT" ]
1
2021-04-12T16:07:45.000Z
2021-04-12T16:07:45.000Z
from parcels import FieldSet, ParticleSet, ScipyParticle, JITParticle, Variable from parcels import AdvectionRK4, AdvectionEE, AdvectionRK45 from argparse import ArgumentParser import numpy as np import math # NOQA import pytest from datetime import timedelta as delta ptype = {'scipy': ScipyParticle, 'jit': JITParticle} method = {'RK4': AdvectionRK4, 'EE': AdvectionEE, 'RK45': AdvectionRK45} def peninsula_fieldset(xdim, ydim, mesh='flat'): """Construct a fieldset encapsulating the flow field around an idealised peninsula. :param xdim: Horizontal dimension of the generated fieldset :param xdim: Vertical dimension of the generated fieldset :param mesh: String indicating the type of mesh coordinates and units used during velocity interpolation: 1. spherical: Lat and lon in degree, with a correction for zonal velocity U near the poles. 2. flat (default): No conversion, lat/lon are assumed to be in m. The original test description can be found in Fig. 2.2.3 in: North, E. W., Gallego, A., Petitgas, P. (Eds). 2009. Manual of recommended practices for modelling physical - biological interactions during fish early life. ICES Cooperative Research Report No. 295. 111 pp. http://archimer.ifremer.fr/doc/00157/26792/24888.pdf To avoid accuracy problems with interpolation from A-grid to C-grid, we return NetCDF files that are on an A-grid. """ # Set Parcels FieldSet variables # Generate the original test setup on A-grid in m domainsizeX, domainsizeY = (1.e5, 5.e4) dx, dy = domainsizeX / xdim, domainsizeY / ydim La = np.linspace(dx, 1.e5-dx, xdim, dtype=np.float32) Wa = np.linspace(dy, 5.e4-dy, ydim, dtype=np.float32) u0 = 1 x0 = domainsizeX / 2 R = 0.32 * domainsizeX / 2 # Create the fields x, y = np.meshgrid(La, Wa, sparse=True, indexing='xy') P = (u0*R**2*y/((x-x0)**2+y**2)-u0*y) / 1e3 U = u0-u0*R**2*((x-x0)**2-y**2)/(((x-x0)**2+y**2)**2) V = -2*u0*R**2*((x-x0)*y)/(((x-x0)**2+y**2)**2) # Set land points to NaN landpoints = P >= 0. P[landpoints] = np.nan U[landpoints] = np.nan V[landpoints] = np.nan # Convert from m to lat/lon for spherical meshes lon = La / 1852. / 60. if mesh == 'spherical' else La lat = Wa / 1852. / 60. if mesh == 'spherical' else Wa data = {'U': U, 'V': V, 'P': P} dimensions = {'lon': lon, 'lat': lat} return FieldSet.from_data(data, dimensions, mesh=mesh) def UpdateP(particle, fieldset, time): particle.p = fieldset.P[time, particle.depth, particle.lat, particle.lon] def pensinsula_example(fieldset, npart, mode='jit', degree=1, verbose=False, output=True, method=AdvectionRK4): """Example configuration of particle flow around an idealised Peninsula :arg filename: Basename of the input fieldset :arg npart: Number of particles to intialise""" # First, we define a custom Particle class to which we add a # custom variable, the initial stream function value p. # We determine the particle base class according to mode. class MyParticle(ptype[mode]): # JIT compilation requires a-priori knowledge of the particle # data structure, so we define additional variables here. p = Variable('p', dtype=np.float32, initial=0.) p_start = Variable('p_start', dtype=np.float32, initial=fieldset.P) # Initialise particles if fieldset.U.grid.mesh == 'flat': x = 3000 # 3 km offset from boundary else: x = 3. * (1. / 1.852 / 60) # 3 km offset from boundary y = (fieldset.U.lat[0] + x, fieldset.U.lat[-1] - x) # latitude range, including offsets pset = ParticleSet.from_line(fieldset, size=npart, pclass=MyParticle, start=(x, y[0]), finish=(x, y[1]), time=0) if verbose: print("Initial particle positions:\n%s" % pset) # Advect the particles for 24h time = delta(hours=24) dt = delta(minutes=5) k_adv = pset.Kernel(method) k_p = pset.Kernel(UpdateP) out = pset.ParticleFile(name="MyParticle", outputdt=delta(hours=1)) if output else None print("Peninsula: Advecting %d particles for %s" % (npart, str(time))) pset.execute(k_adv + k_p, runtime=time, dt=dt, output_file=out) if verbose: print("Final particle positions:\n%s" % pset) return pset @pytest.mark.parametrize('mode', ['scipy', 'jit']) @pytest.mark.parametrize('mesh', ['flat', 'spherical']) def test_peninsula_fieldset(mode, mesh): """Execute peninsula test from fieldset generated in memory""" fieldset = peninsula_fieldset(100, 50, mesh) pset = pensinsula_example(fieldset, 5, mode=mode, degree=1) # Test advection accuracy by comparing streamline values err_adv = np.array([abs(p.p_start - p.p) for p in pset]) assert(err_adv <= 1.e-3).all() # Test Field sampling accuracy by comparing kernel against Field sampling err_smpl = np.array([abs(p.p - pset.fieldset.P[0., p.depth, p.lat, p.lon]) for p in pset]) assert(err_smpl <= 1.e-3).all() def fieldsetfile(mesh): """Generate fieldset files for peninsula test""" filename = 'peninsula' fieldset = peninsula_fieldset(100, 50, mesh=mesh) fieldset.write(filename) return filename @pytest.mark.parametrize('mode', ['scipy', 'jit']) @pytest.mark.parametrize('mesh', ['flat', 'spherical']) def test_peninsula_file(mode, mesh): """Open fieldset files and execute""" fieldset = FieldSet.from_parcels(fieldsetfile(mesh), extra_fields={'P': 'P'}, allow_time_extrapolation=True) pset = pensinsula_example(fieldset, 5, mode=mode, degree=1) # Test advection accuracy by comparing streamline values err_adv = np.array([abs(p.p_start - p.p) for p in pset]) assert(err_adv <= 1.e-3).all() # Test Field sampling accuracy by comparing kernel against Field sampling err_smpl = np.array([abs(p.p - pset.fieldset.P[0., p.depth, p.lat, p.lon]) for p in pset]) assert(err_smpl <= 1.e-3).all() if __name__ == "__main__": p = ArgumentParser(description=""" Example of particle advection around an idealised peninsula""") p.add_argument('mode', choices=('scipy', 'jit'), nargs='?', default='jit', help='Execution mode for performing RK4 computation') p.add_argument('-p', '--particles', type=int, default=20, help='Number of particles to advect') p.add_argument('-d', '--degree', type=int, default=1, help='Degree of spatial interpolation') p.add_argument('-v', '--verbose', action='store_true', default=False, help='Print particle information before and after execution') p.add_argument('-o', '--nooutput', action='store_true', default=False, help='Suppress trajectory output') p.add_argument('--profiling', action='store_true', default=False, help='Print profiling information after run') p.add_argument('-f', '--fieldset', type=int, nargs=2, default=None, help='Generate fieldset file with given dimensions') p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4', help='Numerical method used for advection') args = p.parse_args() if args.fieldset is not None: filename = 'peninsula' fieldset = peninsula_fieldset(args.fieldset[0], args.fieldset[1], mesh='flat') fieldset.write(filename) # Open fieldset file set fieldset = FieldSet.from_parcels('peninsula', extra_fields={'P': 'P'}, allow_time_extrapolation=True) if args.profiling: from cProfile import runctx from pstats import Stats runctx("pensinsula_example(fieldset, args.particles, mode=args.mode,\ degree=args.degree, verbose=args.verbose,\ output=not args.nooutput, method=method[args.method])", globals(), locals(), "Profile.prof") Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10) else: pensinsula_example(fieldset, args.particles, mode=args.mode, degree=args.degree, verbose=args.verbose, output=not args.nooutput, method=method[args.method])
43.061856
112
0.649988
298
0.035672
0
0
1,421
0.170098
0
0
3,433
0.410941
90b614eb6ed41d954f776b1b26da34eda803102b
456
py
Python
TestBegin.py
FrankWangJQ/HttpRunner-master
f0456a5b7b9d23ddb54415b1ea5951416e9601ef
[ "MIT" ]
null
null
null
TestBegin.py
FrankWangJQ/HttpRunner-master
f0456a5b7b9d23ddb54415b1ea5951416e9601ef
[ "MIT" ]
null
null
null
TestBegin.py
FrankWangJQ/HttpRunner-master
f0456a5b7b9d23ddb54415b1ea5951416e9601ef
[ "MIT" ]
null
null
null
from httprunner import HttpRunner import time kwargs = { "failfast":False, #"dot_env_path": "/path/to/.env" } runner = HttpRunner(**kwargs) #入口 runner.run("/Users/wangjianqing/PycharmProjects/HttpRunner-master/tests/testcases/Release/账号管理-设置项.yml") runner.gen_html_report(html_report_name="reportTestForBetaYunZS",html_report_template="/Users/wangjianqing/PycharmProjects/HttpRunner-master/httprunner/templates/default_report_template.html")
26.823529
192
0.800439
0
0
0
0
0
0
0
0
284
0.599156
90b636cded4c580440a67538e3ed1bce323607f4
2,186
py
Python
pyaz/synapse/sql/pool/classification/recommendation/__init__.py
py-az-cli/py-az-cli
9a7dc44e360c096a5a2f15595353e9dad88a9792
[ "MIT" ]
null
null
null
pyaz/synapse/sql/pool/classification/recommendation/__init__.py
py-az-cli/py-az-cli
9a7dc44e360c096a5a2f15595353e9dad88a9792
[ "MIT" ]
null
null
null
pyaz/synapse/sql/pool/classification/recommendation/__init__.py
py-az-cli/py-az-cli
9a7dc44e360c096a5a2f15595353e9dad88a9792
[ "MIT" ]
1
2022-02-03T09:12:01.000Z
2022-02-03T09:12:01.000Z
''' Manage sensitivity classification recommendations. ''' from ...... pyaz_utils import _call_az def list(name, resource_group, workspace_name, filter=None, included_disabled=None, skip_token=None): ''' List the recommended sensitivity classifications of a given SQL pool. Required Parameters: - name -- The SQL pool name. - resource_group -- Name of resource group. You can configure the default group using `az configure --defaults group=<name>` - workspace_name -- The workspace name. Optional Parameters: - filter -- An OData filter expression that filters elements in the collection. - included_disabled -- Indicates whether the result should include disabled recommendations - skip_token -- An OData query option to indicate how many elements to skip in the collection. ''' return _call_az("az synapse sql pool classification recommendation list", locals()) def enable(column, name, resource_group, schema, table, workspace_name): ''' Enable sensitivity recommendations for a given column(recommendations are enabled by default on all columns). Required Parameters: - column -- The name of column. - name -- The SQL pool name. - resource_group -- Name of resource group. You can configure the default group using `az configure --defaults group=<name>` - schema -- The name of schema. - table -- The name of table. - workspace_name -- The workspace name. ''' return _call_az("az synapse sql pool classification recommendation enable", locals()) def disable(column, name, resource_group, schema, table, workspace_name): ''' Disable sensitivity recommendations for a given column(recommendations are enabled by default on all columns). Required Parameters: - column -- The name of column. - name -- The SQL pool name. - resource_group -- Name of resource group. You can configure the default group using `az configure --defaults group=<name>` - schema -- The name of schema. - table -- The name of table. - workspace_name -- The workspace name. ''' return _call_az("az synapse sql pool classification recommendation disable", locals())
42.038462
128
0.718664
0
0
0
0
0
0
0
0
1,780
0.814273
90b6494c1b5e12c59216a90f809c6005fdb48a7e
333
py
Python
December Month Challenge/4KthfactorN.py
adesh-gadge/LeetCodePractice
4b142c102e64ec93465af7f4193762e8fd2866ec
[ "MIT" ]
null
null
null
December Month Challenge/4KthfactorN.py
adesh-gadge/LeetCodePractice
4b142c102e64ec93465af7f4193762e8fd2866ec
[ "MIT" ]
null
null
null
December Month Challenge/4KthfactorN.py
adesh-gadge/LeetCodePractice
4b142c102e64ec93465af7f4193762e8fd2866ec
[ "MIT" ]
null
null
null
class Solution: def kthFactor(self, n: int, k: int) -> int: s1 = set() s2 = set() for i in range(1,int(n**0.5)+1): if n%i ==0: s1.add(i) s2.add(int(n/i)) l = list(s1|s2) l.sort() if k > len(l): return -1 return l[k-1]
25.615385
47
0.381381
333
1
0
0
0
0
0
0
0
0
90b74a470408ddeb782e48bf20e39ffd4457275e
1,755
py
Python
dipy/utils/tests/test_arrfuncs.py
martcous/dipy
6bff5655f03db19bde5aa951ffb91987983a889b
[ "MIT" ]
null
null
null
dipy/utils/tests/test_arrfuncs.py
martcous/dipy
6bff5655f03db19bde5aa951ffb91987983a889b
[ "MIT" ]
null
null
null
dipy/utils/tests/test_arrfuncs.py
martcous/dipy
6bff5655f03db19bde5aa951ffb91987983a889b
[ "MIT" ]
null
null
null
""" Testing array utilities """ import sys import numpy as np from ..arrfuncs import as_native_array, pinv, eigh from numpy.testing import (assert_array_almost_equal, assert_array_equal) from nose.tools import assert_true, assert_false, assert_equal, assert_raises NATIVE_ORDER = '<' if sys.byteorder == 'little' else '>' SWAPPED_ORDER = '>' if sys.byteorder == 'little' else '<' def test_as_native(): arr = np.arange(5) # native assert_equal(arr.dtype.byteorder, '=') narr = as_native_array(arr) assert_true(arr is narr) sdt = arr.dtype.newbyteorder('s') barr = arr.astype(sdt) assert_equal(barr.dtype.byteorder, SWAPPED_ORDER) narr = as_native_array(barr) assert_false(barr is narr) assert_array_equal(barr, narr) assert_equal(narr.dtype.byteorder, NATIVE_ORDER) def test_pinv(): arr = np.random.randn(4, 4, 4, 3, 7) _pinv = pinv(arr) for i in range(4): for j in range(4): for k in range(4): assert_array_almost_equal(_pinv[i, j, k], np.linalg.pinv(arr[i, j, k])) def test_eigh(): for i in range(10): arr = np.random.randn(7, 7) evals1, evecs1 = eigh(arr) evals2, evecs2 = np.linalg.eigh(arr) assert_array_almost_equal(evals1, evals2) assert_array_almost_equal(evecs1, evecs2) arr = np.random.randn(4, 4, 4, 7, 7) evals, evecs = eigh(arr) for i in range(4): for j in range(4): for k in range(4): evals_vox, evecs_vox = np.linalg.eigh(arr[i, j, k]) assert_array_almost_equal(evals[i, j, k], evals_vox) assert_array_almost_equal(evecs[i, j, k], evecs_vox)
29.745763
77
0.616524
0
0
0
0
0
0
0
0
73
0.041595
90b769e3d5d7b99ed6ee9f9dfa67655328ca1e58
1,571
py
Python
ProgressBar.py
ArisKots1992/Similar-World-News-Articles
426aef1d6d9566e66ad634bc8468d554d887551c
[ "MIT" ]
1
2017-09-09T13:53:09.000Z
2017-09-09T13:53:09.000Z
ProgressBar.py
ArisKots1992/Similar-World-News-Articles
426aef1d6d9566e66ad634bc8468d554d887551c
[ "MIT" ]
null
null
null
ProgressBar.py
ArisKots1992/Similar-World-News-Articles
426aef1d6d9566e66ad634bc8468d554d887551c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import time import sys import math #HOMEMADE WITHOUT ONLINE CODE by Aris #LIENCE BY ARIS class ProgressBar: def __init__(self,max_size=36): ProgressBar.max_size = max_size ProgressBar.tick = 20.0/max_size ProgressBar.progress_counter = 0.0 ProgressBar.counter = 0 spaces = ' ' * 20 hashes = '█' * 0 sys.stdout.write("\rPercent: ┃{0}┃{1}%".format(hashes + spaces, 0)) sys.stdout.flush() def update(self): ProgressBar.counter += 1 if ProgressBar.counter == ProgressBar.max_size: hashes = '█' * 20 spaces = ' ' * 0 sys.stdout.write("\rPercent: ┃{0}┃{1}%".format(hashes + spaces, 100)) print print "Finished Successfully!" sys.stdout.flush() return elif ProgressBar.counter >= ProgressBar.max_size: return ProgressBar.progress_counter += ProgressBar.tick hashes = '█' * int(ProgressBar.progress_counter) spaces = ' ' * (20 - int(ProgressBar.progress_counter)) percentage = int(round(ProgressBar.progress_counter * 5)) sys.stdout.write("\rPercent: ┃{0}┃{1}%".format(hashes + spaces, percentage)) sys.stdout.flush() return class SupportBar: def __init__(self): SupportBar.counter = 0 def increase(self): SupportBar.counter += 1 def init(self): SupportBar.counter = 0 def get(self): return SupportBar.counter
29.092593
84
0.57352
1,472
0.926369
0
0
0
0
0
0
201
0.126495
90b7ba0980ae3d667866aa6f68a2acda5b4f0621
1,895
py
Python
src/vtra/plot/rail_network_map.py
GFDRR/vietnam-transport
71f6fc8cb7f1ca7bccb9a29d544869b442e68bfc
[ "MIT" ]
3
2018-07-09T12:15:46.000Z
2020-12-03T07:02:23.000Z
src/vtra/plot/rail_network_map.py
GFDRR/vietnam-transport
71f6fc8cb7f1ca7bccb9a29d544869b442e68bfc
[ "MIT" ]
1
2019-05-09T21:57:20.000Z
2019-05-09T21:57:20.000Z
src/vtra/plot/rail_network_map.py
GFDRR/vietnam-transport
71f6fc8cb7f1ca7bccb9a29d544869b442e68bfc
[ "MIT" ]
2
2018-07-23T12:49:21.000Z
2021-06-03T11:00:44.000Z
"""Rail network map """ import os import sys from collections import OrderedDict import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib.pyplot as plt from vtra.utils import * def main(): config = load_config() output_file = os.path.join(config['paths']['figures'], 'rail-map.png') rail_edge_file = os.path.join( config['paths']['data'], 'post_processed_networks', 'rail_edges.shp') rail_node_file = os.path.join( config['paths']['data'], 'post_processed_networks', 'rail_nodes.shp') color_by_type = {'Rail line': '#006d2c', 'Rail stop': '#000000'} ax = get_axes() plot_basemap(ax, config['paths']['data'],highlight_region=[]) scale_bar(ax, location=(0.8, 0.05)) plot_basemap_labels(ax, config['paths']['data']) proj_lat_lon = ccrs.PlateCarree() for record in shpreader.Reader(rail_edge_file).records(): geom = record.geometry ax.add_geometries( geom, crs=proj_lat_lon, linewidth=1.5, edgecolor='#006d2c', facecolor='none', zorder=3, label='Rail line' ) # Stations xs = [] ys = [] for record in shpreader.Reader(rail_node_file).records(): node_type = record.attributes['name'] if node_type != '0': geom = record.geometry x = geom.x y = geom.y xs.append(x) ys.append(y) name = record.attributes['name'] ax.scatter(xs, ys, transform=proj_lat_lon, facecolor='#000000', s=4, zorder=5, label='Rail station') # Legend legend_handles = [ mpatches.Patch(color=color, label=line) for line, color in color_by_type.items() ] plt.legend(handles=legend_handles, loc='lower left') save_fig(output_file) if __name__ == '__main__': main()
28.712121
77
0.604749
0
0
0
0
0
0
0
0
331
0.17467
90b801d343545a11009f0b5ecc8dd2af2c9f92ca
3,189
py
Python
ecommerce_project/apps/ecommerce/migrations/0001_initial.py
mlopezf2019/guadalupe_sowos_examen_3
813f960f2428ac5d753a02888134ac3992e9018e
[ "MIT" ]
null
null
null
ecommerce_project/apps/ecommerce/migrations/0001_initial.py
mlopezf2019/guadalupe_sowos_examen_3
813f960f2428ac5d753a02888134ac3992e9018e
[ "MIT" ]
null
null
null
ecommerce_project/apps/ecommerce/migrations/0001_initial.py
mlopezf2019/guadalupe_sowos_examen_3
813f960f2428ac5d753a02888134ac3992e9018e
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2020-09-27 20:02 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=200)), ('description', models.TextField()), ], ), migrations.CreateModel( name='Customer', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('is_active', models.BooleanField(default=False)), ('is_deleted', models.BooleanField(default=False)), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=200)), ('description', models.TextField()), ('quantity', models.IntegerField()), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ('category_id', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='ecommerce.category')), ], ), migrations.CreateModel( name='Purchase', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('iva', models.DecimalField(decimal_places=2, max_digits=5)), ('subtotal', models.DecimalField(decimal_places=2, max_digits=5)), ('total', models.DecimalField(decimal_places=2, max_digits=5)), ('customer_id', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='ecommerce.customer')), ], ), migrations.CreateModel( name='PurchaseProducts', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('quantity', models.IntegerField()), ('product_id', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='ecommerce.product')), ('purchase_id', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='ecommerce.purchase')), ], ), migrations.CreateModel( name='Person', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=200)), ('last_name', models.CharField(max_length=200)), ('user_id', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='users.user')), ], ), migrations.AddField( model_name='customer', name='person_id', field=models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='ecommerce.person'), ), ]
41.415584
123
0.54688
3,056
0.958294
0
0
0
0
0
0
475
0.14895
90b9151bc28db99fb5989633cea86f3faad362ff
4,471
py
Python
pydl/pydlspec2d/tests/test_spec1d.py
jhennawi/pydl
3926aab6fd57c27e13d571156077de41343881c1
[ "BSD-3-Clause" ]
null
null
null
pydl/pydlspec2d/tests/test_spec1d.py
jhennawi/pydl
3926aab6fd57c27e13d571156077de41343881c1
[ "BSD-3-Clause" ]
null
null
null
pydl/pydlspec2d/tests/test_spec1d.py
jhennawi/pydl
3926aab6fd57c27e13d571156077de41343881c1
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np import os from astropy.tests.helper import raises from astropy.utils.data import get_pkg_data_filename from .. import Pydlspec2dException from ..spec1d import (HMF, findspec, spec_append, spec_path, template_metadata, wavevector) class TestSpec1d(object): """Test the functions in pydl.pydlspec2d.spec1d. """ def setup(self): self.env = {'BOSS_SPECTRO_REDUX': '/boss/spectro/redux', 'SPECTRO_REDUX': '/sdss/spectro/redux', 'RUN2D': 'v1_2_3', 'RUN1D': 'v1_2_3'} self.original_env = dict() for key in self.env: if key in os.environ: self.original_env[key] = os.environ[key] else: self.original_env[key] = None os.environ[key] = self.env[key] def teardown(self): for key in self.original_env: if self.original_env[key] is None: del os.environ[key] else: os.environ[key] = self.original_env[key] def test_findspec(self): """This is just a placeholder for now. """ # slist = findspec(infile='file.in', sdss=True) assert True def test_hmf_init(self): """Test initialization of HMF object """ spec = np.random.random((20, 100)) invvar = np.random.random((20, 100)) hmf = HMF(spec, invvar) assert hmf.K == 4 assert hmf.log.level == 20 # INFO hmf = HMF(spec, invvar, K=6, verbose=True) assert hmf.K == 6 assert hmf.log.level == 10 # DEBUG def test_spec_append(self): spec1 = np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]) spec2 = np.array([[2, 2, 2, 2, 2], [2, 2, 2, 2, 2]]) s = spec_append(spec1, spec2) assert (s == np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]])).all() spec2 = np.array([[2, 2, 2, 2], [2, 2, 2, 2]]) s = spec_append(spec1, spec2) assert (s == np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [2, 2, 2, 2, 0], [2, 2, 2, 2, 0]])).all() s = spec_append(spec1, spec2, 1) assert (s == np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 2, 2, 2, 2], [0, 2, 2, 2, 2]])).all() spec1 = np.array([[1, 1, 1], [1, 1, 1]]) spec2 = np.array([[2, 2, 2, 2, 2], [2, 2, 2, 2, 2]]) s = spec_append(spec1, spec2, -2) assert (s == np.array([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]])).all() def test_spec_path(self): bsr = self.env['BOSS_SPECTRO_REDUX'] run2d = self.env['RUN2D'] p = spec_path(123) assert p[0] == os.path.join(bsr, run2d, '0123') p = spec_path(1234) assert p[0] == os.path.join(bsr, run2d, '1234') p = spec_path(1234, topdir=bsr, run2d=run2d) assert p[0] == os.path.join(bsr, run2d, '1234') p = spec_path(np.array([1234, 5678]), topdir=bsr, run2d=run2d) assert p[0] == os.path.join(bsr, run2d, '1234') assert p[1] == os.path.join(bsr, run2d, '5678') p = spec_path(1234, path=bsr) assert p[0] == bsr def test_template_metadata(self): with raises(Pydlspec2dException): slist, metadata = template_metadata('/no/such/file.par') inputfile = get_pkg_data_filename('t/test_template_metadata.par') slist, metadata = template_metadata(inputfile) assert metadata['object'] == 'gal' assert not metadata['nonnegative'] def test_wavevector(self): l = wavevector(3, 4, binsz=0.1) ll = np.array([3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0]) assert np.allclose(l, ll) l = wavevector(3, 4, wavemin=3, binsz=0.1) ll = np.array([3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0]) assert np.allclose(l, ll)
38.543103
79
0.47193
4,109
0.919034
0
0
0
0
0
0
539
0.120555
90b979db4f0ee9199884997c5ba3cb24bb11e60e
7,800
py
Python
final/good_evaluate.py
wuyuMk7/CSCI8980
9cceffcac7975ee158655f3953e27b502fc383ea
[ "MIT" ]
null
null
null
final/good_evaluate.py
wuyuMk7/CSCI8980
9cceffcac7975ee158655f3953e27b502fc383ea
[ "MIT" ]
null
null
null
final/good_evaluate.py
wuyuMk7/CSCI8980
9cceffcac7975ee158655f3953e27b502fc383ea
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os from absl import flags import numpy as np import skimage.io as io import cv2 import matplotlib.pyplot as plt # import tensorflow as tf # from psbody.mesh import Mesh from smpl_webuser.serialization import load_model import pyrender import trimesh from util import renderer as vis_util from util import image as img_util from flame import FLAME from flame_config import get_config import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import torch.optim as optim import MyRingnet def renderMesh(vertices, faces, vertex_colors, total_lmks): scene = pyrender.Scene() mesh = trimesh.Trimesh(vertices, faces, vertex_colors=vertex_colors) render_mesh = pyrender.Mesh.from_trimesh(mesh) scene.add(render_mesh) sm = trimesh.creation.uv_sphere(radius=0.005) sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0] tfs = np.tile(np.eye(4), (len(total_lmks), 1, 1)) tfs[:, :3, 3] = total_lmks joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs) scene.add(joints_pcl) pyrender.Viewer(scene, use_raymond_lighting=True) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x # Input size: 2048 + 159, fc1_size: 512, fc2_size: 512, out_size: 159 class Regression(nn.Module): def __init__( self, input_size = 2048+159, fc1_size = 512, fc2_size = 512, out_size = 159, iter = 8): super().__init__() self.fc1 = nn.Linear(input_size, fc1_size, bias=True) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(p=0.2) self.fc2 = nn.Linear(fc1_size, fc2_size, bias = True) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc3 = nn.Linear(fc2_size, out_size, bias=True) # init.normal_(self.fc1, 0, 1) # init.normal_(self.fc2, 0, 1) # init.normal_(self.fc3, 0, 1) def forward(self, x): #x = self.dropout1(self.relu1(self.fc1(x))) #x = self.dropout2(self.relu2(self.fc2(x))) x = self.relu1(self.fc1(x)) x = self.relu2(self.fc2(x)) x = self.fc3(x) return x # if __name__ == '__main__': config = get_config() template_mesh = Mesh(filename='./flame_model/FLAME_sample.ply') renderer = vis_util.SMPLRenderer(faces=template_mesh.f) if not os.path.exists(config.out_folder): os.makedirs(config.out_folder) if not os.path.exists(config.out_folder + '/images'): os.mkdir(config.out_folder + '/images') main(config, template_mesh) config_img_size = 244 if __name__ == '__main__': # read images and scale #input_img_path = "./training_set/NoW_Dataset/final_release_version/iphone_pictures/FaMoS_180424_03335_TA/multiview_neutral/IMG_0101.jpg" #input_img_path = "./training_set/NoW_Dataset/final_release_version/iphone_pictures/FaMoS_180704_03355_TA/multiview_expressions/IMG_1948.jpg" input_img_path = "./training_set/NoW_Dataset/final_release_version/iphone_pictures/FaMoS_180427_03338_TA/multiview_expressions/IMG_0230.jpg" #input_img_path = "./training_set/NoW_Dataset/final_release_version/iphone_pictures/FaMoS_180502_00145_TA/multiview_expressions/IMG_0407.jpg" openpose = np.load(input_img_path.replace("iphone_pictures", "openpose").replace("jpg", "npy"), allow_pickle=True, encoding='latin1') img = io.imread(input_img_path) if np.max(img.shape[:2]) != config_img_size: # print('Resizing so the max image size is %d..' % self.config_img_size) scale = (float(config_img_size) / np.max(img.shape[:2])) else: scale = 1.0#scaling_factor center = np.round(np.array(img.shape[:2]) / 2).astype(int) # image center in (x,y) center = center[::-1] crop, proc_param = img_util.scale_and_crop( img, scale, center, config_img_size) print(proc_param) #exit(0) crop = torch.tensor(crop) crop = crop.permute(2, 0, 1) crop = crop[None, :, :, :].float().cuda() # print(crop) # build model resnet50 = torch.load("./good_resnet50.pkl") resnet50.cuda() resnet50.fc = Identity() # print(resnet50) regression = torch.load("./good_model.pkl") regression.cuda() config = get_config() config.batch_size = 1 flamelayer = FLAME(config) flamelayer.requires_grad_ = False flamelayer.cuda() # run the model res_output = resnet50(crop) # Empty estimates as the initial value for concatenation regress_estimates = torch.zeros([ res_output.shape[0], MyRingnet.regress_out_size ]).cuda() # Regression model for _ in range(MyRingnet.regress_iteration_cnt): # Preprocess regression input - concatenation regress_input = torch.cat([res_output, regress_estimates], 1) regress_estimates = regression(regress_input) regress_output = regress_estimates # FLAME model cam_params, pose_params = regress_output[0:, 0:3], regress_output[0:, 3:9] shape_params, exp_params = regress_output[0:, 9:109], regress_output[0:, 109:159] # pose_params[0,2] = 3.14/5 flame_vert, flame_lmk = flamelayer(shape_params, exp_params, pose_params) # Render and display the mesh print(flame_lmk, cam_params) # flame_lmk[0]=cam_params[0]*-1 # a_params = cam_params[:,:]*-1 mesh_vertices, mesh_faces = flame_vert.detach().cpu().numpy().squeeze(), flamelayer.faces mesh_vertices_colors = np.ones([mesh_vertices.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8] renderMesh(mesh_vertices, mesh_faces, mesh_vertices_colors, flame_lmk.detach().cpu().numpy().squeeze()) #renderMesh(mesh_vertices, mesh_faces, mesh_vertices_colors, cam_params[0]) # flame_lmk[:, :, 1] *= -1 # cam_params[:,1]*=-1 # cam_params[:, 0] = 2 # cam_params[:, 1] = 0.2 # print(flame_lmk) center = torch.tensor(center.copy()).cuda() print(cam_params) new_cam = MyRingnet.transform_cam(cam_params, 1. / scale, config_img_size, center[None, :]) projected_lmks = MyRingnet.project_points(flame_lmk, new_cam) #op_pts = openpose[0,:68,:] #ground_truth_weights = ((op_pts[:,2] > 0.41).astype(float)) #print(ground_truth_weights) #print(op_pts) # print(projected_lmks) # print(openpose) plt.figure plt.imshow(img) count = 0 cpu_lmks = projected_lmks.cpu() #print(img.shape) for i in cpu_lmks[0]: x = i[0].int() y = i[1].int() plt.annotate(str(count), xy=(x, y)) plt.scatter(x, y, s=50, c='red', marker='o') count = count + 1 count = 0 #openpose[0] *= scale for i in openpose[0]: x = i[0] y = i[1] plt.annotate(str(count), xy=(x, y)) plt.scatter(x, y, s=50, c='blue', marker='o') count = count + 1 plt.show() renderer = vis_util.SMPLRenderer(faces=mesh_faces) print(img.shape[:2]) cam_for_render, vert_shifted = vis_util.get_original( #proc_param, mesh_vertices, new_cam.detach().cpu().numpy().squeeze(), img_size=img.shape[:2] proc_param, mesh_vertices, cam_params.detach().cpu().numpy().squeeze(), img_size=img.shape[:2] ) print(cam_params, new_cam, cam_for_render) #exit(0) # rend_img_overlay = renderer( # #vert_shifted * 1.0, cam=new_cam.squeeze().detach().cpu().numpy(), img=img, do_alpha=True # #vert_shifted * 1.0, cam=cam_for_render, img=img, do_alpha=True # vert_shifted * 1.0, cam=cam_for_render, img=img, do_alpha=True # ) rend_img_vp1 = renderer.rotated( mesh_vertices, 30, cam=new_cam.squeeze().detach().cpu().numpy(), img_size=img.shape[:2] #vert_shifted * 1.0, 30, cam=cam_for_render, img_size=img.shape[:2] ) plt.imshow(rend_img_vp1) plt.show()
34.513274
145
0.680385
1,328
0.170256
0
0
0
0
0
0
2,305
0.295513
90b9c9ce2f3208b12b35d5e78f9d7d9be8454378
92
py
Python
quick-scan.py
B3ND1X/py-air-script
d6756cc2b5ec2a7e7950b13b09c78c776488fd6e
[ "Apache-2.0" ]
2
2021-11-19T10:40:07.000Z
2022-02-28T16:39:49.000Z
quick-scan.py
B3ND1X/py-air-script
d6756cc2b5ec2a7e7950b13b09c78c776488fd6e
[ "Apache-2.0" ]
null
null
null
quick-scan.py
B3ND1X/py-air-script
d6756cc2b5ec2a7e7950b13b09c78c776488fd6e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import os os.system("sudo ./scan.py") os.system("sudo ./enable-wifi.py")
15.333333
34
0.673913
0
0
0
0
0
0
0
0
56
0.608696
90b9ca60618e207e4f11df9555b71806b45d69af
1,538
py
Python
src/classifier/classifier_tuning/tune_sklearn.py
krangelie/bias-in-german-nlg
9fbaf50fde7d41d64692ae90c41beae61bc78d44
[ "MIT" ]
14
2021-08-24T12:36:37.000Z
2022-03-18T12:14:36.000Z
src/classifier/classifier_tuning/tune_sklearn.py
krangelie/bias-in-german-nlg
9fbaf50fde7d41d64692ae90c41beae61bc78d44
[ "MIT" ]
null
null
null
src/classifier/classifier_tuning/tune_sklearn.py
krangelie/bias-in-german-nlg
9fbaf50fde7d41d64692ae90c41beae61bc78d44
[ "MIT" ]
1
2021-10-21T20:22:55.000Z
2021-10-21T20:22:55.000Z
from sklearn.ensemble import RandomForestClassifier import xgboost def suggest_xgb(model_params, trial, xgb=None): n_estimators = trial.suggest_int( model_params.n_estimators.name, model_params.n_estimators.lower, model_params.n_estimators.upper, model_params.n_estimators.step, ) lr = trial.suggest_float( model_params.learning_rate.name, model_params.learning_rate.lower, model_params.learning_rate.upper, log=True, ) max_depth = trial.suggest_int( model_params.max_depth.name, model_params.max_depth.lower, model_params.max_depth.upper, model_params.max_depth.step, ) classifier = xgboost.XGBClassifier( n_estimators=n_estimators, learning_rate=lr, max_depth=max_depth, random_state=42, use_label_encoder=False, tree_method="gpu_hist", gpu_id=0, ) return classifier def suggest_rf(model_params, trial): n_estimators = trial.suggest_int( model_params.n_estimators.name, model_params.n_estimators.lower, model_params.n_estimators.upper, model_params.n_estimators.step, ) max_depth = trial.suggest_int( model_params.max_depth.name, model_params.max_depth.lower, model_params.max_depth.upper, model_params.max_depth.step, ) classifier = RandomForestClassifier( n_estimators=n_estimators, max_depth=max_depth, random_state=42 ) return classifier
27.963636
71
0.683355
0
0
0
0
0
0
0
0
10
0.006502
90ba1f62b3ac0c6dc5b223b48142b7f90d52dc27
4,958
py
Python
textgenrnn/model.py
cosandr/textgenrnn
b2140c1a5704e866ff934fbfad4e14f3c827d439
[ "MIT" ]
null
null
null
textgenrnn/model.py
cosandr/textgenrnn
b2140c1a5704e866ff934fbfad4e14f3c827d439
[ "MIT" ]
null
null
null
textgenrnn/model.py
cosandr/textgenrnn
b2140c1a5704e866ff934fbfad4e14f3c827d439
[ "MIT" ]
null
null
null
from keras.optimizers import RMSprop from keras.layers import Input, Embedding, Dense, LSTM, Bidirectional, GRU from keras.layers import concatenate, Reshape, SpatialDropout1D from keras.models import Model from keras import backend as K from .AttentionWeightedAverage import AttentionWeightedAverage def textgenrnn_model(num_classes, cfg, context_size=None, weights_path=None, dropout=0.0, optimizer=RMSprop(lr=4e-3, rho=0.99)): ''' Builds the model architecture for textgenrnn and loads the specified weights for the model. ''' input = Input(shape=(cfg['max_length'],), name='input') embedded = Embedding(num_classes, cfg['dim_embeddings'], input_length=cfg['max_length'], name='embedding')(input) if dropout > 0.0: embedded = SpatialDropout1D(dropout, name='dropout')(embedded) rnn_layer_list = [] for i in range(cfg['rnn_layers']): prev_layer = embedded if i == 0 else rnn_layer_list[-1] if cfg.get('rnn_type') == 'gru': rnn_layer_list.append(new_rnn_gru(cfg, i + 1)(prev_layer)) else: rnn_layer_list.append(new_rnn(cfg, i + 1)(prev_layer)) seq_concat = concatenate([embedded] + rnn_layer_list, name='rnn_concat') attention = AttentionWeightedAverage(name='attention')(seq_concat) output = Dense(num_classes, name='output', activation='softmax')(attention) if context_size is None: model = Model(inputs=[input], outputs=[output]) if weights_path is not None: model.load_weights(weights_path, by_name=True) model.compile(loss='categorical_crossentropy', optimizer=optimizer) else: context_input = Input( shape=(context_size,), name='context_input') context_reshape = Reshape((context_size,), name='context_reshape')(context_input) merged = concatenate([attention, context_reshape], name='concat') main_output = Dense(num_classes, name='context_output', activation='softmax')(merged) model = Model(inputs=[input, context_input], outputs=[main_output, output]) if weights_path is not None: model.load_weights(weights_path, by_name=True) model.compile(loss='categorical_crossentropy', optimizer=optimizer, loss_weights=[0.8, 0.2]) return model ''' Create a new LSTM layer per parameters. Unfortunately, each combination of parameters must be hardcoded. The normal LSTMs use sigmoid recurrent activations for parity with CuDNNLSTM: https://github.com/keras-team/keras/issues/8860 ''' def new_rnn(cfg, layer_num): use_cudnnlstm = K.backend() == 'tensorflow' and len(K.tensorflow_backend._get_available_gpus()) > 0 if use_cudnnlstm: from keras.layers import CuDNNLSTM if cfg['rnn_bidirectional']: return Bidirectional(CuDNNLSTM(cfg['rnn_size'], return_sequences=True), name='rnn_{}'.format(layer_num)) return CuDNNLSTM(cfg['rnn_size'], return_sequences=True, name='rnn_{}'.format(layer_num)) else: if cfg['rnn_bidirectional']: return Bidirectional(LSTM(cfg['rnn_size'], return_sequences=True, recurrent_activation='sigmoid'), name='rnn_{}'.format(layer_num)) return LSTM(cfg['rnn_size'], return_sequences=True, recurrent_activation='sigmoid', name='rnn_{}'.format(layer_num)) def new_rnn_gru(cfg, layer_num): use_cudnngru = K.backend() == 'tensorflow' and len(K.tensorflow_backend._get_available_gpus()) > 0 if use_cudnngru: from keras.layers import CuDNNGRU if cfg['rnn_bidirectional']: return Bidirectional(CuDNNGRU(cfg['rnn_size'], return_sequences=True), name='rnn_{}'.format(layer_num)) return CuDNNGRU(cfg['rnn_size'], return_sequences=True, name='rnn_{}'.format(layer_num)) else: if cfg['rnn_bidirectional']: return Bidirectional(GRU(cfg['rnn_size'], return_sequences=True, recurrent_activation='sigmoid', reset_after=True), name='rnn_{}'.format(layer_num)) return GRU(cfg['rnn_size'], return_sequences=True, recurrent_activation='sigmoid', reset_after=True, name='rnn_{}'.format(layer_num))
40.308943
103
0.583905
0
0
0
0
0
0
0
0
881
0.177693
90bbeed86ea6726d8cf4682e4d77c05a1d88ab5a
121,331
py
Python
tests/adapters/switches/brocade_test.py
FrancoisLopez/netman
a40d3235f7ea0cdaf52daab97b0d5ad20857b00e
[ "Apache-2.0" ]
38
2015-11-30T10:11:42.000Z
2022-02-10T18:31:44.000Z
tests/adapters/switches/brocade_test.py
FrancoisLopez/netman
a40d3235f7ea0cdaf52daab97b0d5ad20857b00e
[ "Apache-2.0" ]
143
2015-12-10T19:00:42.000Z
2020-08-20T13:51:42.000Z
tests/adapters/switches/brocade_test.py
FrancoisLopez/netman
a40d3235f7ea0cdaf52daab97b0d5ad20857b00e
[ "Apache-2.0" ]
15
2015-12-14T23:03:30.000Z
2019-01-15T19:35:45.000Z
# Copyright 2015 Internap. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import mock from flexmock import flexmock, flexmock_teardown from hamcrest import assert_that, has_length, equal_to, is_, none, empty from netaddr import IPNetwork from netaddr.ip import IPAddress from netman.adapters.switches import brocade_factory_ssh, brocade_factory_telnet from netman.adapters.switches.brocade import Brocade, parse_if_ranges from netman.adapters.switches.util import SubShell from netman.core.objects.access_groups import IN, OUT from netman.core.objects.exceptions import IPNotAvailable, UnknownVlan, UnknownIP, UnknownAccessGroup, BadVlanNumber, \ BadVlanName, UnknownInterface, TrunkVlanNotSet, UnknownVrf, VlanVrfNotSet, VrrpAlreadyExistsForVlan, BadVrrpPriorityNumber, BadVrrpGroupNumber, \ BadVrrpTimers, BadVrrpTracking, NoIpOnVlanForVrrp, VrrpDoesNotExistForVlan, UnknownDhcpRelayServer, DhcpRelayServerAlreadyExists, \ VlanAlreadyExist, InvalidAccessGroupName, IPAlreadySet from netman.core.objects.interface_states import OFF, ON from netman.core.objects.port_modes import ACCESS, TRUNK from netman.core.objects.switch_descriptor import SwitchDescriptor class BrocadeTest(unittest.TestCase): def setUp(self): self.switch = Brocade(SwitchDescriptor(model='brocade', hostname="my.hostname"), None) SubShell.debug = True self.shell_mock = flexmock() self.switch.shell = self.shell_mock def tearDown(self): flexmock_teardown() def test_switch_has_a_logger_configured_with_the_switch_name(self): assert_that(self.switch.logger.name, is_(Brocade.__module__ + ".my.hostname")) def test_ip_redirect_enable(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 999, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 999").once().ordered().and_return([ "interface ve 999", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip redirect").once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice() self.switch.set_vlan_icmp_redirects_state(1234, True) def test_ip_redirect_disable(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 999, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 999").once().ordered().and_return([ "interface ve 999", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip redirect").once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice() self.switch.set_vlan_icmp_redirects_state(1234, False) def test_set_vlan_icmp_redirects_state_without_interface_creates_it(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 999, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 999").once().ordered().and_return([ "Error - ve 999 was not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("interface ve 999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip redirect").once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice() self.switch.set_vlan_icmp_redirects_state(1234, False) def test_set_vlan_icmp_redirects_state_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return([ "Error: vlan 1234 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.set_vlan_icmp_redirects_state(1234, False) assert_that(str(expect.exception), equal_to("Vlan 1234 not found")) def test_get_vlans(self): self.shell_mock.should_receive("do").with_args("show running-config vlan | begin vlan").once().ordered().and_return([ "vlan 1 name DEFAULT-VLAN", "" " no untagged ethe 1/1 ethe 1/3 to 1/22", "!", "vlan 201", " tagged ethe 1/1", " router-interface ve 201", "!", "vlan 2222 name your-name-is-way-too-long-for-t", " tagged ethe 1/1", " untagged ethe 1/2", "!", "vlan 3333 name some-name", "!", "!" ]) self.shell_mock.should_receive("do").with_args("show running-config interface").once()\ .ordered().and_return([ 'interface ve 428', ' port-name "My Awesome Port Name"', ' ip address 10.241.0.33/27', ' ip access-group ACL-IN in', ' ip access-group ACL-OUT out', '!', 'interface ve 201', ' vrf forwarding SHIZZLE', ' ip address 1.1.1.1/24', ' ip address 2.1.1.1/27', ' ip address 1.1.1.9/24 secondary', ' ip helper-address 10.10.10.1', ' ip helper-address 10.10.10.2', ' ip vrrp-extended auth-type simple-text-auth VLAN201', ' ip vrrp-extended vrid 1', ' backup priority 110 track-priority 50', ' ip-address 1.1.1.2', ' hello-interval 5', ' dead-interval 15', ' advertise backup', ' track-port ethernet 1/1', ' activate', ' ip vrrp-extended vrid 2', ' backup priority 110 track-priority 50', ' ip-address 1.1.1.3', ' ip-address 1.1.1.4', ' hello-interval 5', ' dead-interval 15', ' advertise backup', ' track-port ethernet 1/1', ' activate', ' no ip redirect' '!', 'interface ve 1203', '!', 'interface ve 3993', ' port-name Another-port-name', ' ip address 4.4.4.0/27', '!']) vlan1, vlan201, vlan2222, vlan3333 = self.switch.get_vlans() assert_that(vlan1.number, equal_to(1)) assert_that(vlan1.name, equal_to("default")) assert_that(vlan1.ips, has_length(0)) assert_that(vlan1.vrf_forwarding, is_(none())) assert_that(vlan201.number, equal_to(201)) assert_that(vlan201.name, equal_to(None)) assert_that(vlan201.ips, has_length(3)) assert_that(vlan201.vrf_forwarding, is_("SHIZZLE")) assert_that(vlan201.icmp_redirects, equal_to(False)) assert_that(vlan2222.number, equal_to(2222)) assert_that(vlan2222.name, equal_to("your-name-is-way-too-long-for-t")) assert_that(vlan2222.ips, has_length(0)) assert_that(vlan2222.icmp_redirects, equal_to(True)) assert_that(vlan3333.number, equal_to(3333)) assert_that(vlan3333.name, equal_to("some-name")) assert_that(vlan3333.ips, has_length(0)) vrrp_group1, vrrp_group2 = vlan201.vrrp_groups assert_that(len(vrrp_group1.ips), equal_to(1)) assert_that(vrrp_group1.ips[0], equal_to(IPAddress('1.1.1.2'))) assert_that(vrrp_group1.hello_interval, equal_to(5)) assert_that(vrrp_group1.dead_interval, equal_to(15)) assert_that(vrrp_group1.priority, equal_to(110)) assert_that(vrrp_group1.track_id, equal_to('ethernet 1/1')) assert_that(vrrp_group1.track_decrement, equal_to(50)) assert_that(len(vrrp_group2.ips), equal_to(2)) assert_that(vrrp_group2.ips[0], equal_to(IPAddress('1.1.1.3'))) assert_that(vrrp_group2.ips[1], equal_to(IPAddress('1.1.1.4'))) assert_that(vrrp_group2.hello_interval, equal_to(5)) assert_that(vrrp_group2.dead_interval, equal_to(15)) assert_that(vrrp_group2.priority, equal_to(110)) assert_that(vrrp_group2.track_id, equal_to('ethernet 1/1')) assert_that(vrrp_group2.track_decrement, equal_to(50)) assert_that(len(vlan201.dhcp_relay_servers), equal_to(2)) assert_that(str(vlan201.dhcp_relay_servers[0]), equal_to('10.10.10.1')) assert_that(str(vlan201.dhcp_relay_servers[1]), equal_to('10.10.10.2')) def test_get_vlan_with_no_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1750").once().ordered().and_return( vlan_display(1750) ) vlan = self.switch.get_vlan(1750) assert_that(vlan.number, is_(1750)) assert_that(vlan.name, is_(None)) assert_that(vlan.access_groups[IN], is_(none())) assert_that(vlan.access_groups[OUT], is_(none())) assert_that(vlan.vrf_forwarding, is_(none())) assert_that(vlan.ips, is_(empty())) assert_that(vlan.vrrp_groups, is_(empty())) assert_that(vlan.dhcp_relay_servers, is_(empty())) def test_get_vlan_with_an_empty_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1750").once().ordered().and_return( vlan_with_vif_display(1750, 999, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 999").once().ordered().and_return([ "interface ve 999", "!", ]) vlan = self.switch.get_vlan(1750) assert_that(vlan.number, is_(1750)) assert_that(vlan.name, is_("Shizzle")) assert_that(vlan.access_groups[IN], is_(none())) assert_that(vlan.access_groups[OUT], is_(none())) assert_that(vlan.vrf_forwarding, is_(none())) assert_that(vlan.ips, is_(empty())) assert_that(vlan.vrrp_groups, is_(empty())) assert_that(vlan.dhcp_relay_servers, is_(empty())) def test_get_vlan_with_a_full_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1750").once().ordered().and_return( vlan_with_vif_display(1750, 1750, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1750").once().ordered().and_return([ "interface ve 1750", " vrf forwarding SHIZZLE", " ip address 1.1.1.1/24", " ip address 2.1.1.1/27", " ip address 1.1.1.9/24 secondary", " ip access-group ACL-IN in", " ip access-group ACL-OUT out", " ip helper-address 10.10.10.1", " ip helper-address 10.10.10.2", " ip vrrp-extended auth-type simple-text-auth VLAN201", " ip vrrp-extended vrid 1", " backup priority 110 track-priority 50", " ip-address 1.1.1.2", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", " ip vrrp-extended vrid 2", " backup priority 110 track-priority 50", " ip-address 1.1.1.3", " ip-address 1.1.1.4", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", "!", ]) vlan = self.switch.get_vlan(1750) assert_that(vlan.number, is_(1750)) assert_that(vlan.name, is_("Shizzle")) assert_that(vlan.access_groups[IN], is_("ACL-IN")) assert_that(vlan.access_groups[OUT], is_("ACL-OUT")) assert_that(vlan.vrf_forwarding, is_("SHIZZLE")) assert_that(vlan.ips, has_length(3)) assert_that(vlan.icmp_redirects, equal_to(True)) vrrp_group1, vrrp_group2 = vlan.vrrp_groups assert_that(len(vrrp_group1.ips), equal_to(1)) assert_that(vrrp_group1.ips[0], equal_to(IPAddress('1.1.1.2'))) assert_that(vrrp_group1.hello_interval, equal_to(5)) assert_that(vrrp_group1.dead_interval, equal_to(15)) assert_that(vrrp_group1.priority, equal_to(110)) assert_that(vrrp_group1.track_id, equal_to('ethernet 1/1')) assert_that(vrrp_group1.track_decrement, equal_to(50)) assert_that(len(vrrp_group2.ips), equal_to(2)) assert_that(vrrp_group2.ips[0], equal_to(IPAddress('1.1.1.3'))) assert_that(vrrp_group2.ips[1], equal_to(IPAddress('1.1.1.4'))) assert_that(vrrp_group2.hello_interval, equal_to(5)) assert_that(vrrp_group2.dead_interval, equal_to(15)) assert_that(vrrp_group2.priority, equal_to(110)) assert_that(vrrp_group2.track_id, equal_to('ethernet 1/1')) assert_that(vrrp_group2.track_decrement, equal_to(50)) assert_that(len(vlan.dhcp_relay_servers), equal_to(2)) assert_that(str(vlan.dhcp_relay_servers[0]), equal_to('10.10.10.1')) assert_that(str(vlan.dhcp_relay_servers[1]), equal_to('10.10.10.2')) def test_get_vlan_interface_with_untagged_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1").once().ordered().and_return( vlan_display(1, 'DEFAULT-VLAN', tagged_port_str="ethe 1/2 ethe 1/23 to 1/24") ) vlan_interfaces = self.switch.get_vlan_interfaces(1) assert_that(vlan_interfaces, equal_to(["ethernet 1/2", "ethernet 1/23", "ethernet 1/24"])) def test_get_vlan_interface_with_tagged_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1").once().ordered().and_return( vlan_display(1, 'DEFAULT-VLAN', untagged_port_str="ethe 1/2") ) vlan_interfaces = self.switch.get_vlan_interfaces(1) assert_that(vlan_interfaces, equal_to(["ethernet 1/2"])) def test_get_vlan_interface_with_untagged_and_tagged_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1").once().ordered().and_return( vlan_display(1, 'DEFAULT-VLAN', untagged_port_str="ethe 1/1", tagged_port_str="ethe 1/2 ethe 1/23 to 1/24") ) vlan_interfaces = self.switch.get_vlan_interfaces(1) assert_that(vlan_interfaces, equal_to(["ethernet 1/1", "ethernet 1/2", "ethernet 1/23", "ethernet 1/24"])) def test_get_vlan_interface_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan inexistent").once().ordered().and_return([ "Error: vlan inexistent is not configured" ]) with self.assertRaises(UnknownVlan): self.switch.get_vlan_interfaces("inexistent") def test_get_vlan_unknown_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 1750").once().ordered().and_return([ "Error: vlan 1750 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.get_vlan(1750) assert_that(str(expect.exception), equal_to("Vlan 1750 not found")) def test_get_vlan_with_both_ip_and_ipv6_vrrp_groups_ipv6_is_ignored(self): self.shell_mock.should_receive("do").with_args("show vlan 1750").once().ordered().and_return( vlan_with_vif_display(1750, 1750, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1750").once()\ .ordered().and_return([ 'interface ve 1750', 'port-name vrrp-extended vrid 42', ' ip address 10.241.0.33/27', ' no ip redirect', ' ip helper-address 10.10.10.1', ' ip helper-address 10.10.10.2', ' ipv6 address 2001:47c2:19:5::2/64', ' ipv6 address 2001:47c2:19:5::3/64', ' ipv6 nd suppress-ra', ' ip vrrp-extended vrid 42', ' backup priority 130 track-priority 20', ' ip-address 1.1.1.2', ' advertise backup', ' hello-interval 4', ' track-port ethernet 1/3', ' activate', ' ipv6 vrrp-extended vrid 43', ' backup priority 110 track-priority 50', ' ipv6-address 2001:47c2:19:5::1', ' advertise backup', ' hello-interval 5', ' track-port ethernet 1/2', ' activate', '!']) vlan = self.switch.get_vlan(1750) assert_that(vlan.number, is_(1750)) assert_that(vlan.ips, has_length(1)) assert_that(vlan.icmp_redirects, equal_to(False)) assert_that(vlan.vrrp_groups, has_length(1)) vrrp_group1 = vlan.vrrp_groups[0] assert_that(len(vrrp_group1.ips), equal_to(1)) assert_that(vrrp_group1.ips[0], equal_to(IPAddress('1.1.1.2'))) assert_that(vrrp_group1.hello_interval, equal_to(4)) assert_that(vrrp_group1.priority, equal_to(130)) assert_that(vrrp_group1.track_id, equal_to('ethernet 1/3')) assert_that(vrrp_group1.track_decrement, equal_to(20)) assert_that(len(vlan.dhcp_relay_servers), equal_to(2)) assert_that(str(vlan.dhcp_relay_servers[0]), equal_to('10.10.10.1')) assert_that(str(vlan.dhcp_relay_servers[1]), equal_to('10.10.10.2')) def test_get_vlan_with_both_ip_and_ipv6_in_the_same_vrrp_group(self): self.shell_mock.should_receive("do").with_args("show vlan 1750").once().ordered().and_return( vlan_with_vif_display(1750, 1750, name="Shizzle") ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1750").once() \ .ordered()\ .and_return(['interface ve 1750', 'port-name vrrp-extended vrid 42', ' ip address 10.241.0.33/27', ' no ip redirect', ' ip helper-address 10.10.10.1', ' ip helper-address 10.10.10.2', ' ipv6 address 2001:47c2:19:5::2/64', ' ipv6 address 2001:47c2:19:5::3/64', ' ipv6 nd suppress-ra', ' ip vrrp-extended vrid 42', ' backup priority 130 track-priority 20', ' ip-address 1.1.1.2', ' advertise backup', ' hello-interval 4', ' track-port ethernet 1/3', ' activate', ' ipv6 vrrp-extended vrid 42', ' backup priority 170 track-priority 40', ' ipv6-address 2001:47c2:19:5::1', ' advertise backup', ' hello-interval 400', ' track-port ethernet 4/6', ' activate', '!']) vlan = self.switch.get_vlan(1750) assert_that(vlan.number, is_(1750)) assert_that(vlan.ips, has_length(1)) assert_that(vlan.icmp_redirects, equal_to(False)) vrrp_group = vlan.vrrp_groups[0] assert_that(len(vrrp_group.ips), equal_to(1)) assert_that(vrrp_group.ips[0], equal_to(IPAddress('1.1.1.2'))) assert_that(vrrp_group.hello_interval, equal_to(4)) assert_that(vrrp_group.priority, equal_to(130)) assert_that(vrrp_group.track_id, equal_to('ethernet 1/3')) assert_that(vrrp_group.track_decrement, equal_to(20)) def test_add_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").and_return([ "Error: vlan 2999 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999 name Gertrude").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_vlan(2999, name="Gertrude") def test_add_vlan_bad_number(self): self.shell_mock.should_receive("do").with_args("show vlan 5000").and_return([ "Error: vlan 5000 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 5000 name Gertrude").once().ordered().and_return([ "Error: vlan id 4091 is outside of allowed max of 4090" ]) self.shell_mock.should_receive("do").with_args("exit").once().ordered() with self.assertRaises(BadVlanNumber) as expect: self.switch.add_vlan(5000, name="Gertrude") assert_that(str(expect.exception), equal_to("Vlan number is invalid")) def test_add_vlan_bad_name(self): self.shell_mock.should_receive("do").with_args("show vlan 5000").and_return([ "Error: vlan 5000 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 5000 name Gertr ude").once().ordered().and_return([ "Invalid input -> ude" ]) self.shell_mock.should_receive("do").with_args("exit").once().ordered() with self.assertRaises(BadVlanName) as expect: self.switch.add_vlan(5000, name="Gertr ude") assert_that(str(expect.exception), equal_to("Vlan name is invalid")) def test_add_vlan_no_name(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").and_return([ "Error: vlan 2999 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_vlan(2999) def test_add_vlan_already_exist_fails(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").and_return( vlan_display(2999) ) with self.assertRaises(VlanAlreadyExist) as expect: self.switch.add_vlan(2999) assert_that(str(expect.exception), equal_to("Vlan 2999 already exists")) def test_remove_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).once().ordered() self.switch.remove_vlan(2999) def test_remove_vlan_invalid_vlan_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return([ "Error: vlan 2999 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").never() with self.assertRaises(UnknownVlan) as expect: self.switch.remove_vlan(2999) assert_that(str(expect.exception), equal_to("Vlan 2999 not found")) def test_set_access_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("untagged ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_access_vlan("ethernet 1/4", vlan=2999) def test_set_access_vlan_invalid_vlan_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return([ "Error: vlan 2999 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.set_access_vlan("ethernet 1/4", vlan=2999) assert_that(str(expect.exception), equal_to("Vlan 2999 not found")) def test_set_access_vlan_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("untagged ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(UnknownInterface) as expect: self.switch.set_access_vlan("ethernet 9/999", vlan=2999) assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_reset_interfaces_works(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/4").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("no interface ethernet 1/4").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("exit").once().ordered() self.switch.reset_interface("ethernet 1/4") def test_reset_interfaces_on_invalid_input_raises_unknown_interface(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999', 'Type ? for a list']) with self.assertRaises(UnknownInterface): self.switch.reset_interface("ethernet 9/999") def test_reset_interfaces_on_invalid_interface_raises_unknown_interface(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/64").once().ordered().and_return([ 'Error - invalid interface 1/64']) with self.assertRaises(UnknownInterface): self.switch.reset_interface("ethernet 1/64") def test_reset_interfaces_on_invalid_slot_raises_unknown_interface(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 2/1").once().ordered().and_return([ 'Error - interface 2/1 is not an ETHERNET interface']) with self.assertRaises(UnknownInterface): self.switch.reset_interface("ethernet 2/1") def test_reset_interfaces_cleans_tagged_vlans(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/4").and_return(['VLAN: 1200 Untagged', 'VLAN: 1201 Tagged']) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 1200").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("no untagged ethernet 1/4").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 1201").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("no tagged ethernet 1/4").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no interface ethernet 1/4").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).once().ordered() self.switch.reset_interface("ethernet 1/4") def test_unset_interface_access_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan brief | include ethe 1/4").once().ordered().and_return([ "1202 your-name- 1202 - Untagged Ports : ethe 1/10" ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 1202").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no untagged ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.unset_interface_access_vlan("ethernet 1/4") def test_unset_interface_access_vlan_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan brief | include ethe 9/999").once().ordered().and_return([]) with self.assertRaises(UnknownInterface) as expect: self.switch.unset_interface_access_vlan("ethernet 9/999") assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_set_access_mode_does_nothing_if_nothing_is_set(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/4").once().ordered().and_return([ "VLAN: 1 Untagged" ]) self.shell_mock.should_receive("do").with_args("configure terminal").never() self.switch.set_access_mode("ethernet 1/4") def test_set_access_mode_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) with self.assertRaises(UnknownInterface) as expect: self.switch.set_access_mode("ethernet 9/999") assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_set_access_mode_does_nothing_if_only_an_untagged_vlan_not_knowing_if_it_is_an_access_or_native(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/4").once().ordered().and_return([ "VLAN: 123 Untagged" ]) self.shell_mock.should_receive("do").with_args("configure terminal").never() self.switch.set_access_mode("ethernet 1/4") def test_set_access_mode_removes_all_tagged_vlans_and_the_untagged_because_it_is_a_native_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/4").once().ordered().and_return([ "VLAN: 100 Tagged", "VLAN: 300 Untagged", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 100").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no tagged ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 300").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no untagged ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_access_mode("ethernet 1/4") def test_set_trunk_mode(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 1/4").once().ordered().and_return([ "VLAN: 1 Untagged" ]) self.shell_mock.should_receive("do").with_args("configure terminal").never() self.switch.set_trunk_mode("ethernet 1/4") def test_set_trunk_mode_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) with self.assertRaises(UnknownInterface) as expect: self.switch.set_trunk_mode("ethernet 9/999") assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_add_trunk_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("tagged ethernet 1/1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_trunk_vlan("ethernet 1/1", vlan=2999) def test_add_trunk_vlan_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("tagged ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(UnknownInterface) as expect: self.switch.add_trunk_vlan("ethernet 9/999", vlan=2999) assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_add_trunk_vlan_invalid_vlan_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return([ "Error: vlan 2999 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").never() with self.assertRaises(UnknownVlan) as expect: self.switch.add_trunk_vlan("ethernet 1/1", vlan=2999) assert_that(str(expect.exception), equal_to("Vlan 2999 not found")) def test_remove_trunk_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no tagged ethernet 1/11").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_trunk_vlan("ethernet 1/11", vlan=2999) def test_remove_trunk_vlan_invalid_vlan_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return([ "Error: vlan 2999 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.remove_trunk_vlan("ethernet 1/2", vlan=2999) assert_that(str(expect.exception), equal_to("Vlan 2999 not found")) def test_remove_trunk_vlan_not_set_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no tagged ethernet 1/14").and_return([ "Error: ports ethe 1/14 are not tagged members of vlan 2999" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(TrunkVlanNotSet) as expect: self.switch.remove_trunk_vlan("ethernet 1/14", vlan=2999) assert_that(str(expect.exception), equal_to("Trunk Vlan is not set on interface ethernet 1/14")) def test_remove_trunk_vlan_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no tagged ethernet 9/999").and_return([ "Invalid input -> 1/99", "Type ? for a list", ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(UnknownInterface) as expect: self.switch.remove_trunk_vlan("ethernet 9/999", vlan=2999) assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_set_interface_state_off(self): self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("disable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_interface_state("ethernet 1/4", OFF) def test_set_interface_state_off_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).once().ordered() with self.assertRaises(UnknownInterface) as expect: self.switch.set_interface_state("ethernet 9/999", OFF) assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_set_interface_state_on(self): self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_interface_state("ethernet 1/4", ON) def test_set_interface_state_on_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).once().ordered() with self.assertRaises(UnknownInterface) as expect: self.switch.set_interface_state("ethernet 9/999", ON) assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_set_interface_native_vlan_on_trunk(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("untagged ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_interface_native_vlan("ethernet 1/4", vlan=2999) def test_set_interface_native_vlan_on_trunk_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return( vlan_display(2999) ) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 2999").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("untagged ethernet 9/999").once().ordered().and_return([ 'Invalid input -> 9/999' 'Type ? for a list' ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(UnknownInterface) as expect: self.switch.set_interface_native_vlan("ethernet 9/999", vlan=2999) assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_set_interface_native_vlan_on_trunk_invalid_vlan_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").once().ordered().and_return([ "Error: vlan 2999 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").never() with self.assertRaises(UnknownVlan) as expect: self.switch.set_interface_native_vlan("ethernet 1/4", vlan=2999) assert_that(str(expect.exception), equal_to("Vlan 2999 not found")) def test_unset_interface_native_vlan_on_trunk(self): self.shell_mock.should_receive("do").with_args("show vlan brief | include ethe 1/4").once().ordered().and_return([ "1202 your-name- 1202 - Untagged Ports : ethe 1/10" ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 1202").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no untagged ethernet 1/4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.unset_interface_native_vlan("ethernet 1/4") def test_unset_interface_native_vlan_on_trunk_invalid_interface_raises(self): self.shell_mock.should_receive("do").with_args("show vlan brief | include ethe 9/999").once().ordered().and_return([]) with self.assertRaises(UnknownInterface) as expect: self.switch.unset_interface_native_vlan("ethernet 9/999") assert_that(str(expect.exception), equal_to("Unknown interface ethernet 9/999")) def test_add_ip_creates_router_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_display(1234) ) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("router-interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.4/25").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.4/25")) def test_add_ip_doesnt_creates_router_interface_if_already_created(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 3333) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 3333").once().ordered().and_return([ "interface ve 3333", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 3333").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.4/25").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.4/25")) def test_add_ip_contained_in_a_subnet_already_present_requires_the_keyword_secondary(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/24", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.4/25 secondary").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.4/25")) def test_add_ip_already_defined_elsewhere_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.4/25").and_return([ "IP/Port: Errno(6) Duplicate ip address" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(IPNotAvailable) as expect: self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.4/25")) assert_that(str(expect.exception), equal_to("IP 1.2.3.4/25 is not available in this vlan")) def test_add_ip_already_a_subnet_of_another_ve(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.4/25").and_return([ "IP/Port: Errno(11) ip subnet overlap with another interface" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(IPNotAvailable) as expect: self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.4/25")) assert_that(str(expect.exception), equal_to("IP 1.2.3.4/25 is not available in this vlan")) def test_add_ip_already_in_this_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", "!", ]) with self.assertRaises(IPAlreadySet) as expect: self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.4/25")) assert_that(str(expect.exception), equal_to("IP 1.2.3.4/25 is already present in this vlan as None")) def test_add_ip_already_in_this_interface_as_a_secondary(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", " ip address 1.2.3.5/24 secondary", "!", ]) with self.assertRaises(IPAlreadySet) as expect: self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.5/25")) assert_that(str(expect.exception), equal_to("IP 1.2.3.5/25 is already present in this vlan as None")) def test_add_ip_to_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return([ "Error: vlan 1234 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.add_ip_to_vlan(1234, IPNetwork("1.2.3.5/25")) assert_that(str(expect.exception), equal_to("Vlan 1234 not found")) def test_remove_ip(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip address 1.2.3.4/24").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_ip_from_vlan(1234, IPNetwork("1.2.3.4/24")) def test_remove_secondary_ip(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", " ip address 1.2.3.5/24 secondary", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip address 1.2.3.5/24").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_ip_from_vlan(1234, IPNetwork("1.2.3.5/24")) def test_remove_ip_that_has_secondary_ip(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", " ip address 1.2.3.5/24 secondary", " ip address 1.2.3.6/24 secondary", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip address 1.2.3.5/24").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip address 1.2.3.6/24").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip address 1.2.3.4/24").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.5/24").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip address 1.2.3.6/24 secondary").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_ip_from_vlan(1234, IPNetwork("1.2.3.4/24")) def test_remove_unknown_ip_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", " ip address 1.2.3.5/24 secondary", " ip address 1.2.3.6/24 secondary", "!", ]) with self.assertRaises(UnknownIP) as expect: self.switch.remove_ip_from_vlan(1234, IPNetwork("5.5.5.5/25")) assert_that(str(expect.exception), equal_to("IP 5.5.5.5/25 not found")) def test_remove_known_ip_with_wrong_mask_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.4/24", " ip address 1.2.3.5/24 secondary", " ip address 1.2.3.6/24 secondary", "!", ]) with self.assertRaises(UnknownIP) as expect: self.switch.remove_ip_from_vlan(1234, IPNetwork("1.2.3.5/25")) assert_that(str(expect.exception), equal_to("IP 1.2.3.5/25 not found")) def test_remove_ip_fails_if_there_aint_even_a_router_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_display(1234) ) with self.assertRaises(UnknownIP) as expect: self.switch.remove_ip_from_vlan(1234, IPNetwork("1.2.3.4/24")) assert_that(str(expect.exception), equal_to("IP 1.2.3.4/24 not found")) def test_remove_ip_on_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return([ "Error: vlan 1234 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.remove_ip_from_vlan(1234, IPNetwork("1.2.3.5/25")) assert_that(str(expect.exception), equal_to("Vlan 1234 not found")) def test_set_vlan_vrf_success(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").and_return([ "interface ve 2500", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vrf forwarding MYVRF").once().ordered().and_return([ "Warning: All IPv4 and IPv6 addresses (including link-local) on this interface have been removed" ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_vlan_vrf(2500, "MYVRF") def test_set_vlan_vrf_incorrect_name(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").and_return([ "interface ve 2500", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vrf forwarding MYVRF").once().ordered().and_return([ "Error - VRF(MYVRF) does not exist or Route-Distinguisher not specified or Address Family not configured" ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(UnknownVrf) as expect: self.switch.set_vlan_vrf(2500, "MYVRF") assert_that(str(expect.exception), equal_to("VRF name \"MYVRF\" was not configured.")) def test_set_vlan_vrf_without_interface_creates_it(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_display(2500) ) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("router-interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vrf forwarding MYVRF").once().ordered().and_return([ "Warning: All IPv4 and IPv6 addresses (including link-local) on this interface have been removed" ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_vlan_vrf(2500, "MYVRF") def test_set_vlan_vrf_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return([ "Error: vlan 2500 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.set_vlan_vrf(2500, "MYVRF") assert_that(str(expect.exception), equal_to("Vlan 2500 not found")) def test_unset_vlan_vrf_success(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").and_return([ "interface ve 2500", " vrf forwarding MYVRF", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no vrf forwarding MYVRF").once().ordered().and_return([ "Warning: All IPv4 and IPv6 addresses (including link-local) on this interface have been removed" ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.unset_vlan_vrf(2500) def test_unset_vlan_vrf_not_set(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").and_return([ "interface ve 2500", "!", ]) with self.assertRaises(VlanVrfNotSet) as expect: self.switch.unset_vlan_vrf(2500) assert_that(str(expect.exception), equal_to("VRF is not set on vlan 2500")) def test_unset_vlan_vrf_from_known_vlan_with_no_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_display(2500) ) with self.assertRaises(VlanVrfNotSet) as expect: self.switch.unset_vlan_vrf(2500) assert_that(str(expect.exception), equal_to("VRF is not set on vlan 2500")) def test_unset_vlan_vrf_from_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return([ "Error: vlan 2500 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.unset_vlan_vrf(2500) assert_that(str(expect.exception), equal_to("Vlan 2500 not found")) def test_set_access_group_creates_router_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_display(2500) ) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("vlan 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("router-interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip access-group TheAccessGroup in").and_return([ "Warning: An undefined or zero length ACL has been applied. " "Filtering will not occur for the specified interface VE 2500 (outbound)." ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_vlan_access_group(2500, IN, "TheAccessGroup") def test_set_access_group_doesnt_creates_router_interface_if_already_created(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 3333) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 3333").once().ordered().and_return([ "interface ve 3333", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 3333").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip access-group TheAccessGroup out").and_return([ "Warning: An undefined or zero length ACL has been applied. " "Filtering will not occur for the specified interface VE 2500 (outbound)." ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_vlan_access_group(2500, OUT, "TheAccessGroup") def test_set_access_group_fails_if_switch_says_so(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 3333) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 3333").once().ordered().and_return([ "interface ve 3333", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 3333").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip access-group TheAcc essGroup out").once().ordered().and_return([ "Invalid input -> sss out", "Type ? for a list" ]) self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(InvalidAccessGroupName) as expect: self.switch.set_vlan_access_group(2500, OUT, "TheAcc essGroup") assert_that(str(expect.exception), equal_to("Access Group Name is invalid: TheAcc essGroup")) def test_set_access_group_needs_to_remove_actual_access_group_to_override_it(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").once().ordered().and_return([ "interface ve 2500", " ip access-group helloThere! in", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip access-group helloThere! in").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip access-group TheAccessGroup in").and_return([ "Warning: An undefined or zero length ACL has been applied. " "Filtering will not occur for the specified interface VE 2500 (outbound)." ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.set_vlan_access_group(2500, IN, "TheAccessGroup") def test_set_access_group_to_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return([ "Error: vlan 2500 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.set_vlan_access_group(2500, IN, "TheAccessGroup") assert_that(str(expect.exception), equal_to("Vlan 2500 not found")) def test_remove_access_group(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").once().ordered().and_return([ "interface ve 2500", " ip access-group helloThere! in", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip access-group helloThere! in").and_return([ "Warning: An undefined or zero length ACL has been applied. " "Filtering will not occur for the specified interface VE 2500 (outbound)." ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.unset_vlan_access_group(2500, IN) def test_remove_access_group_out(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").once().ordered().and_return([ "interface ve 2500", " ip access-group Waaaat out", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 2500").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip access-group Waaaat out").and_return([ "Warning: An undefined or zero length ACL has been applied. " "Filtering will not occur for the specified interface VE 2500 (outbound)." ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.unset_vlan_access_group(2500, OUT) def test_remove_access_group_unknown_access_group_raises(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_with_vif_display(2500, 2500) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 2500").once().ordered().and_return([ "interface ve 2500", " ip access-group Waaaat out", "!", ]) with self.assertRaises(UnknownAccessGroup) as expect: self.switch.unset_vlan_access_group(2500, IN) assert_that(str(expect.exception), equal_to("Inbound IP access group not found")) def test_remove_access_group_fails_if_there_aint_even_a_router_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return( vlan_display(2500) ) with self.assertRaises(UnknownAccessGroup) as expect: self.switch.unset_vlan_access_group(2500, OUT) assert_that(str(expect.exception), equal_to("Outgoing IP access group not found")) def test_remove_access_group_on_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 2500").once().ordered().and_return([ "Error: vlan 2500 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.unset_vlan_access_group(2500, OUT) assert_that(str(expect.exception), equal_to("Vlan 2500 not found")) def test_get_interfaces(self): self.shell_mock.should_receive("do").with_args("show interfaces").once().ordered().and_return([ "GigabitEthernet1/1 is down, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of VLAN 1999 (untagged), port is in untagged mode, port state is Disabled", " No port name", "GigabitEthernet1/2 is disabled, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of VLAN 2999 (untagged), 3 L2 VLANS (tagged), port is in dual mode, port state is Disabled", " Port name is hello", "GigabitEthernet1/3 is down, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of VLAN 1 (untagged), port is in untagged mode, port state is Disabled", " No port name", "GigabitEthernet1/4 is disabled, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of VLAN 1 (untagged), 1 L2 VLANS (tagged), port is in dual mode (default vlan), port state is Disabled", " No port name", "GigabitEthernet1/5 is disabled, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of 1 L2 VLAN(S) (tagged), port is in tagged mode, port state is Disabled", " No port name", "GigabitEthernet1/6 is disabled, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of 1 L2 VLAN(S) (tagged), port is in tagged mode, port state is Disabled", " No port name", "Ve1000 is down, line protocol is down", " Hardware is Virtual Ethernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Port name is Salut", " Vlan id: 1000", " Internet address is 0.0.0.0/0, IP MTU 1500 bytes, encapsulation ethernet", "Ve2000 is down, line protocol is down", " Hardware is Virtual Ethernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " No port name", " Vlan id: 2000", " Internet address is 1.1.1.1/24, IP MTU 1500 bytes, encapsulation ethernet", "Loopback1 is up, line protocol is up", " Hardware is Loopback", " Port name is LOOPBACK", " Internet address is 108.163.134.4/32, IP MTU 1500 bytes, encapsulation LOOPBACK" ]) self.shell_mock.should_receive("do").with_args("show running-config vlan").once().ordered().and_return([ "spanning-tree", "!", "vlan 1 name DEFAULT-VLAN", " no untagged ethe 1/3", "!", "vlan 100", " tagged ethe 1/2 ethe 1/4 to 1/6", "!", "vlan 200", " tagged ethe 1/2", "!", "vlan 300", " tagged ethe 1/2", "!", "vlan 1999", " untagged ethe 1/1", "!", "vlan 2999", " untagged ethe 1/2", "!", "!" ]) result = self.switch.get_interfaces() if1, if2, if3, if4, if5, if6 = result assert_that(if1.name, equal_to("ethernet 1/1")) assert_that(if1.shutdown, equal_to(False)) assert_that(if1.port_mode, equal_to(ACCESS)) assert_that(if1.access_vlan, equal_to(1999)) assert_that(if1.trunk_native_vlan, equal_to(None)) assert_that(if1.trunk_vlans, equal_to([])) assert_that(if2.name, equal_to("ethernet 1/2")) assert_that(if2.shutdown, equal_to(True)) assert_that(if2.port_mode, equal_to(TRUNK)) assert_that(if2.access_vlan, equal_to(None)) assert_that(if2.trunk_native_vlan, equal_to(2999)) assert_that(if2.trunk_vlans, equal_to([100, 200, 300])) assert_that(if3.name, equal_to("ethernet 1/3")) assert_that(if3.port_mode, equal_to(ACCESS)) assert_that(if3.access_vlan, equal_to(None)) assert_that(if3.trunk_native_vlan, equal_to(None)) assert_that(if3.trunk_vlans, equal_to([])) assert_that(if4.name, equal_to("ethernet 1/4")) assert_that(if4.port_mode, equal_to(TRUNK)) assert_that(if4.access_vlan, equal_to(None)) assert_that(if4.trunk_native_vlan, equal_to(None)) assert_that(if4.trunk_vlans, equal_to([100])) assert_that(if5.trunk_vlans, equal_to([100])) assert_that(if6.trunk_vlans, equal_to([100])) def test_get_interface(self): self.shell_mock.should_receive("do").with_args("show interfaces ethernet 1/2").once().ordered().and_return([ "GigabitEthernet1/2 is disabled, line protocol is down", " Hardware is GigabitEthernet, address is 0000.0000.0000 (bia 0000.0000.0000,", " Member of VLAN 2999 (untagged), 3 L2 VLANS (tagged), port is in dual mode, port state is Disabled", " Port name is hello" ]) self.shell_mock.should_receive("do").with_args("show running-config vlan").once().ordered().and_return([ "spanning-tree", "!", "vlan 1 name DEFAULT-VLAN", " no untagged ethe 1/3", "!", "vlan 100", " tagged ethe 1/2 ethe 1/4 to 1/6", "!", "vlan 200", " tagged ethe 1/2", "!", "vlan 300", " tagged ethe 1/2", "!", "vlan 1999", " untagged ethe 1/1", "!", "vlan 2999", " untagged ethe 1/2", "!", "!" ]) interface = self.switch.get_interface("ethernet 1/2") assert_that(interface.name, equal_to("ethernet 1/2")) assert_that(interface.shutdown, equal_to(True)) assert_that(interface.port_mode, equal_to(TRUNK)) assert_that(interface.access_vlan, equal_to(None)) assert_that(interface.trunk_native_vlan, equal_to(2999)) assert_that(interface.trunk_vlans, equal_to([100, 200, 300])) def test_get_nonexistent_interface_raises(self): self.shell_mock.should_receive("do").with_args("show interfaces ethernet 1/1999").once().ordered().and_return([ "Invalid input -> 1/1999", "Type ? for a list" ]) self.shell_mock.should_receive("do").with_args("show running-config vlan").never() with self.assertRaises(UnknownInterface) as expect: self.switch.get_interface("ethernet 1/1999") assert_that(str(expect.exception), equal_to("Unknown interface ethernet 1/1999")) def test_add_vrrp_success_single_ip(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 50").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("hello-interval 5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("dead-interval 15").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("advertise backup").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("track-port ethernet 1/1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("activate").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) def test_add_vrrp_success_multiple_ip(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 50").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("hello-interval 5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("dead-interval 15").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("advertise backup").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("track-port ethernet 1/1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("activate").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4"), IPAddress("1.2.3.5")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) def test_add_vrrp_from_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return([ "Error: vlan 1234 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("Vlan 1234 not found")) def test_add_existing_vrrp_to_same_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip vrrp-extended auth-type simple-text-auth ********", " ip vrrp-extended vrid 1", " backup priority 110 track-priority 50", " ip-address 1.2.3.4", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", "!", ]) with self.assertRaises(VrrpAlreadyExistsForVlan) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("Vrrp group 1 is already in use on vlan 1234")) def test_add_vrrp_to_vlan_with_another_vrrp(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip vrrp-extended auth-type simple-text-auth ********", " ip vrrp-extended vrid 1", " backup priority 110 track-priority 50", " ip-address 1.2.3.4", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 2").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 50").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("hello-interval 5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("dead-interval 15").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("advertise backup").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("track-port ethernet 1/1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("activate").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_vrrp_group(1234, 2, ips=[IPAddress("1.2.3.5")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) def test_add_vrrp_with_out_of_range_group_id(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 256").and_return([ "Error - 256 not between 1 and 255" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() with self.assertRaises(BadVrrpGroupNumber) as expect: self.switch.add_vrrp_group(1234, 256, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("VRRP group number is invalid, must be contained between 1 and 255")) def test_add_vrrp_with_bad_hello_interval(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 50").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("hello-interval 100").and_return([ "Error - 100 not between 1 and 84" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpTimers) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=100, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("VRRP timers values are invalid")) def test_add_vrrp_with_bad_dead_interval(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 50").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("hello-interval 5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("dead-interval 100").and_return([ "Error - 100 not between 1 and 84" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpTimers) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=100, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("VRRP timers values are invalid")) def test_add_vrrp_with_bad_priority(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 256 track-priority 50").and_return([ "Error - 256 not between 1 and 255" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpPriorityNumber) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=256, hello_interval=5, dead_interval=100, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("VRRP priority value is invalid, must be contained between 1 and 255")) def test_add_vrrp_with_bad_priority_type(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority testvalue track-priority 50").and_return([ "Invalid input -> testvalue track-priority 50" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpPriorityNumber) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority='testvalue', hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("VRRP priority value is invalid, must be contained between 1 and 255")) def test_add_vrrp_with_bad_track_decrement(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 255").and_return([ "Error - 255 not between 1 and 254" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpTracking) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement=255) assert_that(str(expect.exception), equal_to("VRRP tracking values are invalid")) def test_add_vrrp_with_bad_track_decrement_type(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority testvalue").and_return([ "Invalid input -> testvalue" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpTracking) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet 1/1", track_decrement='testvalue') assert_that(str(expect.exception), equal_to("VRRP tracking values are invalid")) def test_add_vrrp_with_no_ip_on_interface(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([ "error - please configure ip address before configuring vrrp-extended" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(2).ordered().ordered() with self.assertRaises(NoIpOnVlanForVrrp) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=100, track_id="ethernet 1/1", track_decrement=50) assert_that(str(expect.exception), equal_to("Vlan 1234 needs an IP before configuring VRRP")) def test_add_vrrp_with_bad_tracking_id(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type simple-text-auth VLAN1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("backup priority 110 track-priority 50").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip-address 1.2.3.4").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("hello-interval 5").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("dead-interval 15").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("advertise backup").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("track-port ethernet not_an_interface").and_return([ "Invalid input -> not_an_interface" ]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).times(3).ordered().ordered().ordered() with self.assertRaises(BadVrrpTracking) as expect: self.switch.add_vrrp_group(1234, 1, ips=[IPAddress("1.2.3.4")], priority=110, hello_interval=5, dead_interval=15, track_id="ethernet not_an_interface", track_decrement=50) assert_that(str(expect.exception), equal_to("VRRP tracking values are invalid")) def test_remove_vrrp_success(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip vrrp-extended auth-type simple-text-auth ********", " ip vrrp-extended vrid 1", " backup priority 110 track-priority 50", " ip-address 1.1.1.1", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip vrrp-extended auth-type no-auth").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_vrrp_group(1234, 1) def test_remove_one_of_two_vrrp_success(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip vrrp-extended auth-type simple-text-auth ********", " ip vrrp-extended vrid 1", " backup priority 110 track-priority 50", " ip-address 1.1.1.1", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", " ip vrrp-extended vrid 2", " backup priority 110 track-priority 50", " ip-address 1.1.1.2", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip vrrp-extended vrid 1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_vrrp_group(1234, 1) def test_remove_vrrp_with_invalid_group_id(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip vrrp-extended auth-type simple-text-auth ********", " ip vrrp-extended vrid 1", " backup priority 110 track-priority 50", " ip-address 1.1.1.1", " hello-interval 5", " dead-interval 15", " advertise backup", " track-port ethernet 1/1", " activate", "!", ]) with self.assertRaises(VrrpDoesNotExistForVlan) as expect: self.switch.remove_vrrp_group(1234, 2) assert_that(str(expect.exception), equal_to("Vrrp group 2 does not exist for vlan 1234")) def test_remove_vrrp_from_unknown_vlan(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return([ "Error: vlan 1234 is not configured" ]) with self.assertRaises(UnknownVlan) as expect: self.switch.remove_vrrp_group(1234, 2) assert_that(str(expect.exception), equal_to("Vlan 1234 not found")) def parse_range_test(self): result = parse_if_ranges("") assert_that(list(result), equal_to([])) result = parse_if_ranges("ethe 1/2") assert_that(list(result), equal_to(["ethe 1/2"])) result = parse_if_ranges("ethe 1/1/2 to 1/1/5") assert_that(list(result), equal_to(["ethe 1/1/2", "ethe 1/1/3", "ethe 1/1/4", "ethe 1/1/5"])) result = parse_if_ranges("shizzle 1/1 shizzle 1/3 to 1/5 shizzle 1/7") assert_that(list(result), equal_to(["shizzle 1/1", "shizzle 1/3", "shizzle 1/4", "shizzle 1/5", "shizzle 1/7"])) @mock.patch("netman.adapters.switches.brocade.SshClient") def test_connect(self, ssh_client_class_mock): self.switch = brocade_factory_ssh(SwitchDescriptor( hostname="my.hostname", username="the_user", password="the_password", model="brocade", port=22), mock.Mock()) self.shell_mock = flexmock() ssh_client_class_mock.return_value = self.shell_mock self.shell_mock.should_receive("get_current_prompt").and_return("hostname>").once().ordered() self.shell_mock.should_receive("do").with_args("enable", wait_for=":").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("the_password").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("skip-page-display").and_return([]).once().ordered() self.switch.connect() ssh_client_class_mock.assert_called_with( host="my.hostname", username="the_user", password="the_password", port=22 ) @mock.patch("netman.adapters.switches.brocade.TelnetClient") def test_connect_without_port_uses_default(self, telnet_client_class_mock): self.switch = brocade_factory_telnet(SwitchDescriptor( hostname="my.hostname", username="the_user", password="the_password", model="brocade"), mock.Mock()) self.shell_mock = flexmock() telnet_client_class_mock.return_value = self.shell_mock self.shell_mock.should_receive("get_current_prompt").and_return("hostname>").once().ordered() self.shell_mock.should_receive("do").with_args("enable", wait_for=":").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("the_password").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("skip-page-display").and_return([]).once().ordered() self.switch.connect() telnet_client_class_mock.assert_called_with( host="my.hostname", username="the_user", password="the_password" ) @mock.patch("netman.adapters.switches.brocade.SshClient") def test_auto_enabled_switch_doesnt_require_enable(self, ssh_client_class_mock): self.switch = brocade_factory_ssh(SwitchDescriptor(hostname="my.hostname", username="the_user", password="the_password", model="brocade", port=8000), mock.Mock()) self.shell_mock = flexmock() ssh_client_class_mock.return_value = self.shell_mock self.shell_mock.should_receive("get_current_prompt").and_return("hostname#").once().ordered() self.shell_mock.should_receive("do").with_args("enable", wait_for=": ").never() self.shell_mock.should_receive("do").with_args("skip-page-display").and_return([]).once().ordered() self.switch.connect() ssh_client_class_mock.assert_called_with( host="my.hostname", username="the_user", password="the_password", port=8000 ) def test_disconnect(self): logger = flexmock() self.switch.logger = logger logger.should_receive("debug") self.shell_mock.should_receive("quit").with_args("exit").once().ordered() logger.should_receive("info").with_args("FULL TRANSACTION LOG").once() self.switch.shell.full_log = "FULL TRANSACTION LOG" self.switch.disconnect() def test_transactions_commit_write_memory(self): self.shell_mock.should_receive("do").with_args("show vlan 2999").and_return([ "Error: vlan 2999 is not configured" ]) self.shell_mock.should_receive("do").with_args("configure terminal").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("vlan 2999 name Gertrude").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("exit").once().ordered().and_return([]) self.switch.start_transaction() self.switch.add_vlan(2999, name="Gertrude") self.shell_mock.should_receive("do").with_args("write memory").once().ordered() self.switch.commit_transaction() self.switch.end_transaction() def test_add_dhcp_relay_server(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip helper-address 10.10.10.1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_dhcp_relay_server(1234, IPAddress('10.10.10.1')) def test_add_second_dhcp_relay_server(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip helper-address 10.10.10.1", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("ip helper-address 10.10.10.2").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.add_dhcp_relay_server(1234, IPAddress('10.10.10.2')) def test_add_same_dhcp_relay_server_fails(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip helper-address 10.10.10.1", "!", ]) with self.assertRaises(DhcpRelayServerAlreadyExists) as expect: self.switch.add_dhcp_relay_server(1234, IPAddress('10.10.10.1')) assert_that(str(expect.exception), equal_to("DHCP relay server 10.10.10.1 already exists on VLAN 1234")) def test_remove_dhcp_relay_server(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", " ip helper-address 10.10.10.1", "!", ]) self.shell_mock.should_receive("do").with_args("configure terminal").once().ordered().and_return([]) self.shell_mock.should_receive("do").with_args("interface ve 1234").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("enable").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("no ip helper-address 10.10.10.1").and_return([]).once().ordered() self.shell_mock.should_receive("do").with_args("exit").and_return([]).twice().ordered().ordered() self.switch.remove_dhcp_relay_server(1234, IPAddress('10.10.10.1')) def test_remove_non_existent_dhcp_relay_server_fails(self): self.shell_mock.should_receive("do").with_args("show vlan 1234").once().ordered().and_return( vlan_with_vif_display(1234, 1234) ) self.shell_mock.should_receive("do").with_args("show running-config interface ve 1234").once().ordered().and_return([ "interface ve 1234", " ip address 1.2.3.1/27", "!", ]) with self.assertRaises(UnknownDhcpRelayServer) as expect: self.switch.remove_dhcp_relay_server(1234, IPAddress('10.10.10.1')) assert_that(str(expect.exception), equal_to("DHCP relay server 10.10.10.1 not found on VLAN 1234")) def vlan_with_vif_display(vlan_id, vif_id, name="[None]"): return vlan_display(vlan_id, name, vif_id=vif_id) def vlan_display(vlan_id=9, vlan_name="[None]", tagged_port_str=None, untagged_port_str=None, vif_id=None): ret = [ "PORT-VLAN {}, Name {}, Priority Level -, Priority Force 0, Creation Type STATIC".format(vlan_id, vlan_name), "Topo HW idx : 81 Topo SW idx: 257 Topo next vlan: 0", "L2 protocols : STP", ] if untagged_port_str: ret.append("Untagged Ports : {}".format(untagged_port_str)) if tagged_port_str: ret.append("Statically tagged Ports : {}".format(tagged_port_str)) ret.extend([ "Associated Virtual Interface Id: {}".format(vif_id or "NONE"), "----------------------------------------------------------", "No ports associated with VLAN", "Arp Inspection: 0", "DHCP Snooping: 0", "IPv4 Multicast Snooping: Disabled", "IPv6 Multicast Snooping: Disabled", ]) if vif_id: ret.extend([ "Ve{} is down, line protocol is down".format(vif_id), " Type is Vlan (Vlan Id: {})".format(vlan_id), " Hardware is Virtual Ethernet, address is 748e.f8a7.1b01 (bia 748e.f8a7.1b01)", " No port name", " Vlan id: {}".format(vlan_id), " Internet address is 0.0.0.0/0, IP MTU 1500 bytes, encapsulation ethernet", " Configured BW 0 kbps", ]) else: ret.append("No Virtual Interfaces configured for this vlan") return ret
52.365559
170
0.645779
118,061
0.973049
0
0
2,991
0.024652
0
0
31,501
0.259629
90bd59aae81c9889080df91dbd28e4a9b304ffd9
1,384
py
Python
eahub/base/models.py
walambert/eahub.org
21b6111b2626e4739c249d0881d16fbc818094cb
[ "MIT" ]
36
2019-02-22T23:07:14.000Z
2022-02-10T13:24:27.000Z
eahub/base/models.py
walambert/eahub.org
21b6111b2626e4739c249d0881d16fbc818094cb
[ "MIT" ]
717
2019-02-21T22:07:55.000Z
2022-02-26T15:17:49.000Z
eahub/base/models.py
walambert/eahub.org
21b6111b2626e4739c249d0881d16fbc818094cb
[ "MIT" ]
19
2019-04-14T14:37:56.000Z
2022-02-14T22:05:16.000Z
import uuid from authtools import models as authtools_models from django.core.validators import URLValidator from django.db import models from django.utils import timezone from solo.models import SingletonModel class User(authtools_models.AbstractEmailUser): # django-allauth puts Google or EA.org SSO data in those fields only, not Profile # because they have a slightly inflexible architecture first_name = models.CharField(max_length=256, blank=True) last_name = models.CharField(max_length=256, blank=True) def has_profile(self) -> bool: return hasattr(self, "profile") class FeedbackURLConfig(SingletonModel): site_url = models.TextField( default="https://feedback.eahub.org", validators=[URLValidator()] ) def __str__(self): return "Feedback URL" class Meta: verbose_name = "Feedback URL" class MessagingLog(models.Model): USER = "USER" GROUP = "GROUP" RECIPIENT_TYPE_CHOICES = [ (USER, "User"), (GROUP, "Group"), ] sender_email = models.EmailField(max_length=254) recipient_email = models.EmailField(max_length=254) recipient_type = models.CharField( max_length=5, choices=RECIPIENT_TYPE_CHOICES, default=USER, ) send_action_uuid = models.UUIDField(default=uuid.uuid4) time = models.DateTimeField(default=timezone.now)
28.833333
85
0.710983
1,163
0.840318
0
0
0
0
0
0
226
0.163295
90bee561f7ee7014b2253c39a50c061487d0ec34
2,106
py
Python
scripts/math/generate_matrix_test.py
chr15murray/ledger
85be05221f19598de8c6c58652139a1f2d9e362f
[ "Apache-2.0" ]
96
2018-08-23T16:49:05.000Z
2021-11-25T00:47:16.000Z
scripts/math/generate_matrix_test.py
chr15murray/ledger
85be05221f19598de8c6c58652139a1f2d9e362f
[ "Apache-2.0" ]
1,011
2018-08-17T12:25:21.000Z
2021-11-18T09:30:19.000Z
scripts/math/generate_matrix_test.py
chr15murray/ledger
85be05221f19598de8c6c58652139a1f2d9e362f
[ "Apache-2.0" ]
65
2018-08-20T20:05:40.000Z
2022-02-26T23:54:35.000Z
import numpy as np types = ["int", "float", "double"] def randi(*args): return np.random.randint(-10, 10, size=args) rngs = {"int": randi, "float": np.random.randn, "double": np.random.randn} embodiments = { "function": "R.%s(A,B).AllClose(C)", "op": "(A %s B).AllClose(C)", "inline_op": "(R = A, R %s B).AllClose(C)", "inline_function": "( R = A, R.%s(B) ).AllClose(C)" } tests = { '+': ("Addition", "Add", [], []), '*': ("Multiplication", "Multiply", [], []), '-': ("Subtraction", "Subtract", [], []), '/': ("Division", "Divide", ["int"], []), 'dp': ("Dot product", "Dot", [], ["op", "inline_op"]) } for type in types: rng = rngs[type] for op, details in tests.iteritems(): test_title, function, exclude, ignore = details if type in exclude: break iop = op + "=" ifunction = "Inline" + function names = { "function": function, "op": op, "inline_op": iop, "inline_function": ifunction } n = 7 m = 7 A = rng(n, m) B = rng(n, m) if op == "+": C = A + B elif op == "/": C = A / B elif op == "-": C = A - B elif op == "*": C = A * B elif op == "dp": C = np.dot(A, B) m1 = " ;\n".join([" ".join([str(y) for y in x]) for x in A]) m2 = " ;\n".join([" ".join([str(y) for y in x]) for x in B]) m3 = " ;\n".join([" ".join([str(y) for y in x]) for x in C]) print """ SCENARIO("%s") { _M<%s> A,B,C,R; R.Resize( %d, %d ); A = _M<%s>(R\"(\n%s\n)\"); B = _M<%s>(R\"(\n%s\n)\"); C = _M<%s>(R\"(\n%s\n)\"); """ % (test_title + " for " + type, type, n, m, type, m1, type, m2, type, m3) for method, emb in embodiments.iteritems(): if method in ignore: continue name = names[method] tt = emb % name print "EXPECT( %s );" % tt print "};" print
25.071429
85
0.417854
0
0
0
0
0
0
0
0
645
0.306268
90c01fddb271dd8ab9c578d5f65f7244cd0b0416
2,824
py
Python
Lab 2/utils/inference_utils.py
davedecoder/aws-deepcomposer-samples
34f94a04436dc3fa0ded8c353e0f3260f1b3305e
[ "MIT-0" ]
6
2021-10-11T12:39:01.000Z
2022-03-27T16:01:41.000Z
notebooks/AWS DeepComposer/reinvent-labs/lab-2/utils/inference_utils.py
jesussantana/AWS-Machine-Learning-Foundations
526eddb486fe8398cafcc30184c4ecce49df5816
[ "MIT" ]
null
null
null
notebooks/AWS DeepComposer/reinvent-labs/lab-2/utils/inference_utils.py
jesussantana/AWS-Machine-Learning-Foundations
526eddb486fe8398cafcc30184c4ecce49df5816
[ "MIT" ]
5
2020-05-16T13:06:52.000Z
2020-11-14T11:56:26.000Z
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import tensorflow as tf import numpy as np from utils import path_utils, midi_utils, display_utils # --- local samples------------------------------------------------------------------ def load_melody_samples(n_sample=10): """Load the samples used for evaluation.""" sample_source_path = './dataset/eval.npy' data = np.load(sample_source_path) data = np.asarray(data, dtype=np.float32) # {-1, 1} random_idx = np.random.choice(len(data), n_sample, replace=False) sample_x = data[random_idx] sample_z = tf.random.truncated_normal((n_sample, 2, 8, 512)) print("Loaded {} melody samples".format(len(sample_x))) return sample_x, sample_z # --- Training ------------------------------------------------------------------ def generate_pianoroll(generator, conditioned_track, noise_vector=None): if noise_vector == None: noise_vector = tf.random.truncated_normal((1, 2, 8, 512)) return generator((conditioned_track, noise_vector), training=False) def generate_midi(generator, saveto_dir, input_midi_file='./Experiments/data/happy_birthday_easy.mid'): conditioned_track = midi_utils.get_conditioned_track(midi=input_midi_file) generated_pianoroll = generate_pianoroll(generator, conditioned_track) destination_path = path_utils.new_temp_midi_path(saveto_dir=saveto_dir) midi_utils.save_pianoroll_as_midi(generated_pianoroll.numpy(), destination_path=destination_path) return destination_path def show_generated_pianorolls(generator, eval_dir, input_midi_file='./Experiments/data/happy_birthday_easy.mid', n_pr = 4): conditioned_track = midi_utils.get_conditioned_track(midi=input_midi_file) for i in range(n_pr): generated_pianoroll = generate_pianoroll(generator, conditioned_track) display_utils.show_pianoroll(generated_pianoroll)
46.295082
127
0.725921
0
0
0
0
0
0
0
0
1,293
0.457861
90c06ceec71cc460139a2abcafcd42b40b0a56a8
315
py
Python
python/aisdk/player_movement.py
THUAI-Team/thuai2022-aisdk
84d3239f3edd13cd9ffd9ad61c12890f393d8b88
[ "MIT" ]
null
null
null
python/aisdk/player_movement.py
THUAI-Team/thuai2022-aisdk
84d3239f3edd13cd9ffd9ad61c12890f393d8b88
[ "MIT" ]
null
null
null
python/aisdk/player_movement.py
THUAI-Team/thuai2022-aisdk
84d3239f3edd13cd9ffd9ad61c12890f393d8b88
[ "MIT" ]
null
null
null
from enum import Enum from sys import stderr class PlayerMovement(Enum): STOPPED = 0 WALKING = 1 RUNNING = 2 SLIPPED = 3 def to_json_representation(self): return (str(self).split('.')[1]).lower() class MovementNotAllowedError(ValueError): def __init__(self, message): super().__init__(message)
22.5
44
0.714286
267
0.847619
0
0
0
0
0
0
3
0.009524
90c0801975d3d3c99714cb7e0cfc32ffb8ce7205
251
py
Python
diagnosticApp/admin.py
LASI-UFPI/diagnostic-imaging
7afd732dd76fe92bf6a2eba48e69fa4102a978cc
[ "MIT" ]
null
null
null
diagnosticApp/admin.py
LASI-UFPI/diagnostic-imaging
7afd732dd76fe92bf6a2eba48e69fa4102a978cc
[ "MIT" ]
10
2021-04-04T19:07:41.000Z
2022-03-12T00:54:50.000Z
diagnosticApp/admin.py
LASI-UFPI/diagnostic-imaging
7afd732dd76fe92bf6a2eba48e69fa4102a978cc
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Image @admin.register(Image) class ImageAdmin(admin.ModelAdmin): list_display = ('image', 'predict_covid', 'predict_no_findings', 'predict_pneumonia', 'created_at', 'updated_at', 'activated_at')
35.857143
131
0.776892
167
0.665339
0
0
190
0.756972
0
0
100
0.398406
90c1b22f3826d40d5a8ce3040c417f17a6d33b58
1,247
py
Python
digraph/source/generator.py
addy1997/python-RRT
93983e17f2e6e93ff79c8f04a86ce28718ba2779
[ "MIT" ]
11
2020-05-28T00:55:55.000Z
2022-01-03T10:59:26.000Z
digraph/source/generator.py
addy1997/Internship-HTIC
93983e17f2e6e93ff79c8f04a86ce28718ba2779
[ "MIT" ]
1
2020-10-19T16:20:30.000Z
2021-03-22T19:01:14.000Z
digraph/source/generator.py
addy1997/Internship-HTIC
93983e17f2e6e93ff79c8f04a86ce28718ba2779
[ "MIT" ]
2
2021-07-07T01:09:50.000Z
2022-03-12T23:40:56.000Z
#!/usr/bin/env python # coding: utf-8 # In[2]: from time import time import networkx as nx from source.DiGraph import DiGraph from source.model.Edge import Edge def text_to_dict(filename): in_file = open("filename", "r") lines = in_file.read() in_file.close() open_bracket = lines.index("{") close_bracket = lines.index("}") graph = eval(lines[open_bracket:close_bracket]) return graph def specify_vertices(graph): vertices = [] for node in graph.keys(): vertices.append(node) return vertices def specify_edges(graph): edges = [] for node in graph.key(): edges.append(Edge(node, i)) return edges def design_graph_object(graph, G= None): if not G: G = DiGraph() for node in graph.keys(): if (node not in G.get_vertices()): G.add_node(node) for z in graph[node]: if (z not in G.get_vertices()): G.add_node(z) G.add_edge(node, z) return G def set_digraph_library(graph, G): for nodes in graph.keys(): G.add_node(nodes) for i in graph[nodes]: G.add_edge(nodes, i) return G # In[ ]:
18.893939
51
0.572574
0
0
0
0
0
0
0
0
71
0.056937
90c3c10d1bd2a3bf341092a750b3ced35a3d1342
451
py
Python
[1] BEGINNER/1000 - Hello World!.py
tiago040/URI-SOLUTIONS
519d3950252a6002e8926416b2f8217ba08fe721
[ "MIT" ]
1
2022-03-15T03:03:26.000Z
2022-03-15T03:03:26.000Z
[1] BEGINNER/1000 - Hello World!.py
tiago040/URI-SOLUTIONS
519d3950252a6002e8926416b2f8217ba08fe721
[ "MIT" ]
null
null
null
[1] BEGINNER/1000 - Hello World!.py
tiago040/URI-SOLUTIONS
519d3950252a6002e8926416b2f8217ba08fe721
[ "MIT" ]
null
null
null
''' https://resources.urionlinejudge.com.br/gallery/images/problems/UOJ_1000.png Bem-vindo ao URI Online Judge! O seu primeiro programa em qualquer linguagem de programação normalmente é o "Hello World!". Neste primeiro problema tudo o que você precisa fazer é imprimir esta mensagem na tela. Entrada Este problema não possui nenhuma entrada. Saída Você deve imprimir a mensagem "Hello World!" conforme o exemplo abaixo. ''' print('Hello World!')
30.066667
180
0.78714
0
0
0
0
0
0
0
0
450
0.980392
90c4143d466cb79c3fc483f709341546a5611433
615
py
Python
py/py_0668_square_root_smooth_numbers.py
lcsm29/project-euler
fab794ece5aa7a11fc7c2177f26250f40a5b1447
[ "MIT" ]
null
null
null
py/py_0668_square_root_smooth_numbers.py
lcsm29/project-euler
fab794ece5aa7a11fc7c2177f26250f40a5b1447
[ "MIT" ]
null
null
null
py/py_0668_square_root_smooth_numbers.py
lcsm29/project-euler
fab794ece5aa7a11fc7c2177f26250f40a5b1447
[ "MIT" ]
null
null
null
# Solution of; # Project Euler Problem 668: Square root smooth Numbers # https://projecteuler.net/problem=668 # # A positive integer is called square root smooth if all of its prime factors # are strictly less than its square root. Including the number $1$, there are # $29$ square root smooth numbers not exceeding $100$. How many square root # smooth numbers are there not exceeding $10\,000\,000\,000$? # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 668 timed.caller(dummy, n, i, prob_id)
26.73913
78
0.705691
0
0
0
0
0
0
0
0
464
0.754472
90c531d029592c14df121556138eab86864faa16
2,927
py
Python
user/forms.py
Zidan-Kharisma-Sakana/uts-f02
d29652cb73829ffa63e0ca4d0e5f8d6d62500367
[ "Unlicense" ]
null
null
null
user/forms.py
Zidan-Kharisma-Sakana/uts-f02
d29652cb73829ffa63e0ca4d0e5f8d6d62500367
[ "Unlicense" ]
null
null
null
user/forms.py
Zidan-Kharisma-Sakana/uts-f02
d29652cb73829ffa63e0ca4d0e5f8d6d62500367
[ "Unlicense" ]
null
null
null
from django import forms from django.contrib.auth import authenticate from django.contrib.auth.models import User from django.contrib.auth.forms import AuthenticationForm, UserCreationForm from django.forms import ValidationError, EmailField from user import models class MyAuthenticationForm(AuthenticationForm): """" Overide method clean from AuthenticationForm to show that a user hasn't activate their account """ error_messages = { 'invalid_login': ( "Please enter a correct %(username)s and password. Note that both " "fields may be case-sensitive." ), 'inactive': ("This Account hasn't been activated yet, Please check your email :)"), } def confirm_login_allowed(self, user): if not user.is_active: raise ValidationError( self.error_messages['inactive'], code='inactive', ) def clean(self): username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') if username is not None and password: self.user_cache = authenticate(self.request, username=username, password=password) if self.user_cache is None: print(username) try: user_temp = User.objects.get(username=username) except: user_temp = None print(user_temp) if user_temp is not None: self.confirm_login_allowed(user_temp) else: raise ValidationError( self.error_messages['invalid_login'], code='invalid_login', params={'username': self.username_field.verbose_name}, ) return self.cleaned_data class CreateUserForm(UserCreationForm): """" Override UserCreationForm to include email field """ email = EmailField(required=True, label='Email') class Meta: model = User fields = ("username", "email", "password1", "password2") error_messages = { 'password_mismatch': ('The two password fields didn’t match.'), 'email_taken': 'Your email has been taken' } def clean_email(self): """ Check if the email had already been taken """ email = self.cleaned_data.get('email') num = User.objects.filter(email=email) if num.count() > 0: raise ValidationError( self.error_messages['email_taken'], code='email_taken', ) return email def save(self, commit= True): user = super(CreateUserForm, self).save(commit=False) email = self.cleaned_data.get('email') user.email = email user.is_active=False if commit: user.save() return user
32.522222
98
0.585924
2,656
0.906794
0
0
0
0
0
0
699
0.238648
90c5a20a145e1728ffe9af8247c9eff4f8b98279
3,476
py
Python
data-structures-and-algorithms/examples/binary_tree_recursive.py
vinnyhoward/til
8bb0055578220c4d83ddd12ac34bbb2fd3ae000e
[ "MIT" ]
null
null
null
data-structures-and-algorithms/examples/binary_tree_recursive.py
vinnyhoward/til
8bb0055578220c4d83ddd12ac34bbb2fd3ae000e
[ "MIT" ]
32
2020-07-16T07:11:35.000Z
2022-02-27T19:01:03.000Z
data-structures-and-algorithms/examples/binary_tree_recursive.py
vinnyhoward/til
8bb0055578220c4d83ddd12ac34bbb2fd3ae000e
[ "MIT" ]
null
null
null
class Node(object): # Similar to Linked List initial set-up def __init__(self, value): # Constructor self.value = value self.left = None self.right = None class BinaryTree(object): def __init__(self, root): self.root = Node(root) def print_tree(self, traversal_type): if traversal_type == "preorder": return self.preorder_print(tree.root, "") # init elif traversal_type == "inorder": return self.in_order_print(tree.root, "") # init elif traversal_type == "postorder": return self.post_order_print(tree.root, "") # init else: print("Traversal type " + str(traversal_type) + "not valid") return False def preorder_print(self, start, traversal): # Root --> Left --> Right if start: traversal += (str(start.value) + "--") traversal = self.preorder_print(start.left, traversal) traversal = self.preorder_print(start.right, traversal) return traversal def in_order_print(self, start, traversal): # Very Left --> Root --> Very Right if start: traversal = self.in_order_print(start.left, traversal) traversal += (str(start.value) + '--') traversal = self.in_order_print(start.right, traversal) return traversal def post_order_print(self, start, traversal): # Very Left --> Very Right --> Root if start: traversal = self.post_order_print(start.left, traversal) traversal = self.post_order_print(start.right, traversal) traversal += (str(start.value) + '--') return traversal """Try doing Post-Order tomorrow""" # Visualization of Current Tree # Pre-Order Output: 1--2--4--9--10--11--5--3--6--7--8-- # In-Order Output: 11--10--9--4--2--5--1--6--3--7--8-- # Pre-Order Output: 11--10--9--4--5--2--6--8--7--3--1-- # 1 # / \ # 2 3 # / | / | # 4 5 6 7 # / \ # 9 8 # / # 10 # / # 11 # Tree Set-Up # Another implementation # class BinaryTree(object): # def __init__(self, root): # self.root = Node(root) # def search(self, find_val): # return self.preorder_search(tree.root, find_val) # def print_tree(self): # return self.preorder_print(tree.root, "")[:-1] # def preorder_search(self, start, find_val): # if start: # if start.value == find_val: # return True # else: # return self.preorder_search(start.left, find_val) or self.preorder_search(start.right, find_val) # return False # def preorder_print(self, start, traversal): # if start: # traversal += (str(start.value) + "-") # traversal = self.preorder_print(start.left, traversal) # traversal = self.preorder_print(start.right, traversal) # return traversal tree = BinaryTree(1) tree.root.left = Node(2) tree.root.right = Node(3) tree.root.left.left = Node(4) tree.root.left.right = Node(5) tree.root.right.left = Node(6) tree.root.right.right = Node(7) tree.root.right.right.right = Node(8) tree.root.left.left.left = Node(9) tree.root.left.left.left.left = Node(10) tree.root.left.left.left.left.left = Node(11) # print(tree.print_tree("preorder")) # print(tree.print_tree("inorder")) print(tree.print_tree("postorder"))
31.315315
114
0.585155
1,702
0.489643
0
0
0
0
0
0
1,577
0.453682
90c608f7d84094a6c38930b235bc4cc2b22ca8af
2,044
py
Python
powerranger/files.py
clayboone/powerranger
09315c8b37132add56ce31f1b0c1dd0b1692bd23
[ "MIT" ]
null
null
null
powerranger/files.py
clayboone/powerranger
09315c8b37132add56ce31f1b0c1dd0b1692bd23
[ "MIT" ]
8
2020-04-18T20:20:08.000Z
2020-05-06T13:39:03.000Z
powerranger/files.py
clayboone/powerranger
09315c8b37132add56ce31f1b0c1dd0b1692bd23
[ "MIT" ]
null
null
null
import curses import itertools import os from pathlib import Path import stat from typing import Optional, Union import config from colors import Colors class Item: """An item inside of a Directory.""" def __init__(self, path: Union[Path, str]): self._path = Path(path) self._selected = False @property def name(self) -> str: """The name of the item, not including parents.""" return self._path.name @property def color(self) -> curses.color_pair: """An initialized ncurses color pair associated with the type of file for this Item. """ if self.selected: return Colors.black_on_white() if self._path.is_dir(): return Colors.blue_on_black() return Colors.default() @property def selected(self) -> Optional[bool]: """Return whether this item should appear as selected""" return self._selected @selected.setter def selected(self, value: bool): self._selected = value def is_hidden(self) -> bool: """Return whether or not the file should be hidden.""" return self._has_hidden_attribute() or self._path.name.startswith(".") def _has_hidden_attribute(self) -> bool: return bool(os.stat(self._path.resolve()).st_file_attributes & stat.FILE_ATTRIBUTE_HIDDEN) class Directory: """A list of items inside of a directory.""" def __init__(self, path: Union[Path, str]): self.path = Path(path) def __iter__(self): elements = self.path.iterdir() if config.SORT_FOLDERS_ON_TOP: element1, element2 = itertools.tee(elements) elements = itertools.chain( (item for item in element1 if item.is_dir()), (item for item in element2 if not item.is_dir()), ) for element in elements: item = Item(element) if item.is_hidden() and not config.SHOW_HIDDEN_FILES: continue yield Item(element)
27.253333
98
0.620841
1,884
0.921722
529
0.258806
697
0.340998
0
0
347
0.169765
90c62d1dcdf46b749f960d31f0195049399228f2
12,647
py
Python
parlai/mturk/webapp/run_mocks/mock_turk_manager.py
lizekang/ParlAI
9e113105d1690deda0b372f6aeaf933ab58e3a72
[ "BSD-3-Clause" ]
1
2019-04-19T06:39:41.000Z
2019-04-19T06:39:41.000Z
parlai/mturk/webapp/run_mocks/mock_turk_manager.py
lizekang/ParlAI
9e113105d1690deda0b372f6aeaf933ab58e3a72
[ "BSD-3-Clause" ]
null
null
null
parlai/mturk/webapp/run_mocks/mock_turk_manager.py
lizekang/ParlAI
9e113105d1690deda0b372f6aeaf933ab58e3a72
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. import logging import os import threading import time import uuid from parlai.mturk.core.agents import AssignState from parlai.mturk.core.socket_manager import Packet from parlai.mturk.webapp.run_mocks.mock_turk_agent import MockTurkAgent import parlai.mturk.core.data_model as data_model import parlai.mturk.core.shared_utils as shared_utils parent_dir = os.path.dirname(os.path.abspath(__file__)) class MockTurkManager(): """Manages interactions between MTurk agents as well as direct interactions between a world and the MTurk server. """ current_manager = None def __init__(self, opt, mturk_agent_ids, is_test=False, use_db=False): """Fake an MTurk manager that has the functionality to run a task, but not on mturk """ self.opt = opt self.mturk_agent_ids = mturk_agent_ids self.has_run = False self.sandbox = True self.db_logger = None # Required lifecycle functions below def setup_server(self, task_directory_path=None): """Noop, we aren't connecting to a server""" print('[mock] setup_server called') def start_new_run(self): """Initialize expected state to not cause crashes""" self.run_id = str(int(time.time())) self.task_group_id = '{}_{}'.format(self.opt['task'], self.run_id) print('[mock] start_new_run called') def ready_to_accept_workers(self, timeout_seconds=None): """No threads, as there is no sustained worker pool. Instead we instantiate x MockTurkAgents in onboarding""" self.id_to_agent = { agent_id: MockTurkAgent( self.opt, self, 'hit_id_{}'.format(agent_id), 'assignment_id_{}'.format(agent_id), agent_id, ) for agent_id in self.mturk_agent_ids } self.agents = list(self.id_to_agent.values()) MockTurkManager.current_manager = self print('[mock] ready_to_accept_workers called') def set_onboard_function(self, onboard_function): self.onboard_function = onboard_function print('[mock] set_onboard_function called') def start_task(self, eligibility_function, assign_role_function, task_function): """Handle running a task by checking to see when enough agents are in the pool to start an instance of the task. Continue doing this until the desired number of conversations is had. """ print('[mock] start_task called') if callable(eligibility_function): # Convert legacy eligibility_functions to the new format eligibility_function = { 'multiple': False, 'func': eligibility_function, } else: # Ensure the eligibility function is valid if 'func' not in eligibility_function: shared_utils.print_and_log( logging.CRITICAL, "eligibility_function has no 'func'. Cancelling." ) raise Exception( 'eligibility_function dict must contain a `func` field ' 'containing the actual function.' ) elif not callable(eligibility_function['func']): shared_utils.print_and_log( logging.CRITICAL, "eligibility_function['func'] not a function. Cancelling." ) raise Exception( "eligibility_function['func'] must contain a function. " "If eligibility_function['multiple'] is set, it should " "filter through the list of workers and only return those " "that are currently eligible to participate. If it is not " "set, it should take in a single worker and return whether" " or not they are eligible." ) if 'multiple' not in eligibility_function: eligibility_function['multiple'] = False valid_agents = [a for a in self.agents if a.mock_status == 'waiting'] needed_agents = len(self.mturk_agent_ids) while len(valid_agents) < needed_agents: valid_agents = [a for a in self.agents if a.mock_status == 'waiting'] # Add the required number of valid agents to the conv agents = [a for a in valid_agents[:needed_agents]] assign_role_function(agents) # Allow task creator to filter out agents and run # versions of the task that require fewer agents agents = [a for a in agents if a.id is not None] for agent in agents: agent.mock_status = AssignState.STATUS_IN_TASK agent.set_status(AssignState.STATUS_IN_TASK) agent.conversation_id = 'in_task' task_function(mturk_manager=self, opt=self.opt, workers=agents) for agent in agents: agent.mock_status = AssignState.STATUS_DONE agent.set_status(AssignState.STATUS_DONE) agent.task_done = True def shutdown(self, force=False): """No servers, nothing to clean up""" print('[mock] shutdown called') def move_agents_to_waiting(self, agents): """Mock moving to a waiting world""" for agent in agents: agent.mock_status = AssignState.STATUS_WAITING agent.set_status(AssignState.STATUS_WAITING) agent.conversation_id = 'waiting' def disconnect_agent(self, worker_id, assignment_id): """Set an agent to status disconnect, and all other agents to partner disconnect. send them the correct message. Mocks MTurkManager._handle_agent_disconnect """ worker = self.id_to_agent[worker_id] worker.disconnected = True for agent in self.agents: if not agent.disconnected: agent.some_agent_disconnected = True def worker_alive(self, worker_id, hit_id, assign_id): """Mocks baseline worker_alive status changes for mock agents""" agent = self.id_to_agent[worker_id] if agent.mock_status == AssignState.STATUS_NONE: agent.status = AssignState.STATUS_ONBOARDING agent.set_status(AssignState.STATUS_ONBOARDING) self.onboard_new_agent(agent) else: if agent.status in [AssignState.STATUS_ONBOARDING, AssignState.STATUS_IN_TASK]: pass elif (agent.status == AssignState.STATUS_DISCONNECT or agent.status == AssignState.STATUS_DONE or agent.status == AssignState.STATUS_EXPIRED or agent.status == AssignState.STATUS_RETURNED or agent.status == AssignState.STATUS_PARTNER_DISCONNECT): # reconnect is an inactive command data = agent.get_inactive_command_data() self.send_command(worker_id, assign_id, data) def on_new_message(self, worker_id, msg): agent = self.id_to_agent[worker_id] agent.put_data(msg.id, msg.data) agent.append_message(msg.data) def onboard_new_agent(self, agent): """Creates an onboarding thread for the given agent""" # get state variable in question worker_id = agent.worker_id assignment_id = agent.assignment_id def _onboard_function(agent): """Onboarding wrapper to set state to onboarding properly""" if self.onboard_function: agent.id = 'Onboarding' self.onboard_function(agent) # once onboarding is done, move into a waiting world self.move_agents_to_waiting([agent]) # Start the onboarding thread and run it onboard_thread = threading.Thread( target=_onboard_function, args=(agent,), name='onboard-{}-{}'.format(worker_id, assignment_id) ) onboard_thread.daemon = True onboard_thread.start() return True # MTurk Agent Interaction Functions # def send_message(self, receiver_id, assignment_id, data, blocking=True, ack_func=None): """'Send' a message directly by updating the queue of messages not yet recieved that the agent can pull from """ data = data.copy() # Ensure data packet is sent in current state data['type'] = data_model.MESSAGE_TYPE_MESSAGE # Force messages to have a unique ID if 'message_id' not in data: data['message_id'] = str(uuid.uuid4()) conversation_id = None agent = self.id_to_agent[receiver_id] conversation_id = agent.conversation_id event_id = shared_utils.generate_event_id(receiver_id) packet = Packet( event_id, Packet.TYPE_MESSAGE, 'world', receiver_id, assignment_id, data, conversation_id=conversation_id, blocking=blocking, ack_func=ack_func ) shared_utils.print_and_log( logging.INFO, 'Manager sending: {}'.format(packet), should_print=self.opt['verbose'] ) # Push message to restore queue and incoming queue agent.append_message(packet.data) agent.unread_messages.append(packet) return data['message_id'] def send_command(self, receiver_id, assignment_id, data, blocking=True, ack_func=None): """Commands aren't actually sent this way, as state updates are read""" return None def timeout_all_agents(self): """Set all agent statuses to disconnect to kill the world""" for agent in self.agents: agent.disconnected = True # BELOW ARE STUBS THAT EXIST TO HOPEFULLY MAKE RUN FILES NOT CRASH # NONE OF THEM DO ANYTHING (though some return success values) def mark_workers_done(self, workers): pass def free_workers(self, workers): pass def get_agent_work_status(self, assignment_id): pass def get_qualification_list(self, qualifications=None): return [] def create_additional_hits(self, num_hits, qualifications=None): return 'fake_page_url' def create_hits(self, qualifications=None): return 'fake_page_url' def get_hit(self, hit_id): pass def get_assignment(self, assignment_id): pass def get_assignments_for_hit(self, hit_id): pass def expire_all_unassigned_hits(self): pass def approve_work(self, assignment_id, override_rejection=False): print('[mock] Assignment {} approved'.format(assignment_id)) def reject_work(self, assignment_id, reason): print('[mock] Assignment {} rejected for {}'.format( assignment_id, reason)) def approve_assignments_for_hit(self, hit_id, override_rejection=False): print('[mock] HIT {} approved'.format(hit_id)) def block_worker(self, worker_id, reason): print('[mock] Worker {} blocked for reason {}'.format( worker_id, reason)) def soft_block_worker(self, worker_id, qual='block_qualification'): print('[mock] Worker {} given qual {}'.format(worker_id, qual)) def un_soft_block_worker(self, worker_id, qual='block_qualification'): print('[mock] Worker {} revoked qual {}'.format(worker_id, qual)) def give_worker_qualification(self, worker_id, qual_name, qual_value=None): print('[mock] Worker {} given qual {}'.format(worker_id, qual_name)) def remove_worker_qualification(self, worker_id, qual_name, reason=''): print('[mock] Worker {} revoked qual {}'.format(worker_id, qual_name)) def create_qualification(self, qualification_name, description, can_exist=True): pass def pay_bonus(self, worker_id, bonus_amount, assignment_id, reason, unique_request_token): print('[mock] Worker {} paid bonus {}'.format(worker_id, bonus_amount)) def email_worker(self, worker_id, subject, message_text): print('[mock] Worker {} emailed {}'.format(worker_id, message_text)) return {'success': True}
39.276398
79
0.633826
11,925
0.942911
0
0
0
0
0
0
3,729
0.294853
90c6e79ecc4dd80005f6bae2d4343c17f1c96324
6,517
py
Python
scripts/train_model.py
allenai/sledgehammer
03982da9cd0c543a76832a903033c2d97dbfb113
[ "Apache-2.0" ]
47
2020-04-14T18:10:05.000Z
2022-02-16T05:17:03.000Z
scripts/train_model.py
yardenTal1/sledgehammer
842a48023451a81c83cdf29cdd7c601b1114a207
[ "Apache-2.0" ]
1
2020-05-04T19:35:06.000Z
2020-06-08T02:53:53.000Z
scripts/train_model.py
yardenTal1/sledgehammer
842a48023451a81c83cdf29cdd7c601b1114a207
[ "Apache-2.0" ]
9
2020-04-12T17:31:12.000Z
2022-03-19T21:23:59.000Z
#!/usr/bin/env python import sys import os import random import copy import subprocess from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter # PYTHON_DIR="/".join(os.environ['CONDA_EXE'].split("/")[:-2])+'/envs/allennlp_0.8.4/bin/' exit_threshold=0.9 def main(): parser = arg_parser() args = parser.parse_args() lrs = [2e-5, 3e-5, 5e-5] dropout = [0.1, 0.1] layer_indices = args.layer_indices dont_delete = len(layer_indices.split("_")) > 1 n_test = args.n_tests dataset = args.dataset start = args.start is_lowercase = args.bert_type[-7:] == 'uncased' cwd = os.getcwd()+"/" training_config_file = cwd+"training_config/sledgehammer_bert_classification.jsonnet" base_path = args.data_dir+"/text_cat/" if args.nli: training_config_file = cwd+"training_config/sledgehammer_bert_nli.jsonnet" base_path = args.data_dir+"/nli/" slurm = args.slurm extra_args = "" if slurm is None: os.environ["BERT_TYPE"] = args.bert_type os.environ["IS_LOWERCASE"] = str(is_lowercase).lower() os.environ["TRAIN_PATH"] = base_path+dataset+"/train" os.environ["DEV_PATH"] = base_path+dataset+"/dev" os.environ["TEST_PATH"] = base_path+dataset+"/test" os.environ["LAYER_INDICES"] = layer_indices # @todo change me back to 0 os.environ["CUDA_DEVICE"] = str(args.cuda_device) os.environ["SCALING_TEMPERATURE"] = "_".join(["1" for i in range(len(layer_indices.split("_")))]) os.environ["BATCH_SIZE"] = str(args.batch_size) os.environ["MAX_PIECES"] = str(args.max_pieces) os.environ["TEMPERATURE_THRESHOLD"] = str(exit_threshold) os.environ["ADD_PREVIOUS_LAYER_LOGITS"] = 'false' os.environ["MULTITASK"] = 'false' os.environ["NUM_EPOCHS"] = str(args.num_epochs) else: extra_args = "--export BERT_TYPE={},IS_LOWERCASE={},TRAIN_PATH={},DEV_PATH={},TEST_PATH={},LAYER_INDICES={},CUDA_DEVICE={},SCALING_TEMPERATURE={},BATCH_SIZE={},MAX_PIECES={},TEMPERATURE_THRESHOLD={},ADD_PREVIOUS_LAYER_LOGITS={},MULTITASK={},NUM_EPOCHS={}".format(args.bert_type,str(is_lowercase).lower(),base_path+dataset+"/train",base_path+dataset+"/dev",base_path+dataset+"/test","'"+layer_indices+"'",0,"'"+"_".join(["1" for i in range(len(layer_indices.split("_")))])+"'",args.batch_size,args.max_pieces,exit_threshold,'false','false',args.num_epochs) for i in range(start, n_test): #lr = str(10**random.uniform(lrs[0], lrs[1])) lr = str(lrs[random.randint(0, len(lrs))-1]) dr = str(random.uniform(dropout[0], dropout[1])) seed = str(random.randint(0,100000)) local_dir = args.work_dir+args.bert_type+"/"+dataset+"/experiment_{}_{}/".format(layer_indices, i) local_extra_args = copy.copy(extra_args) allennlp_cmd = "allennlp train {} --serialization-dir {} --include-package allennlp_overrides -f".format(training_config_file, local_dir) if slurm is None: os.environ["SEED"] = seed os.environ["PYTORCH_SEED"] = seed os.environ["NUMPY_SEED"] = seed os.environ["DROPOUT"] = dr os.environ["LEARNING_RATE"] = lr cmd = allennlp_cmd else: local_extra_args += ",SEED={},PYTORCH_SEED={},NUMPY_SEED={},DROPOUT={},LEARNING_RATE={}".format(seed,seed,seed,dr,lr) cmd = "srun -p allennlp_hipri -w {} --gpus=1 {} {}".format(slurm, local_extra_args, allennlp_cmd) print(cmd) return_value = subprocess.call(cmd, shell=True) if return_value != 0: for j in range(200): if not dont_delete: f = "{}/model_state_epoch_{}.th".format(local_dir, j) rm_if_exists(f) f = "{}/training_state_epoch_{}.th".format(local_dir, j) rm_if_exists(f) f = local_dir+"/best.th" rm_if_exists(f) # If we are not deleting intermediate models, we don't need the final model.tar.gz file if dont_delete: f = local_dir+"/model.tar.gz" rm_if_exists(f) return 0 def rm_if_exists(f): if os.path.exists(f): os.remove(f) return 1 else: return 0 def arg_parser(): """Extracting CLI arguments""" p = ArgumentParser(add_help=False) p.add_argument("-b", "--batch_size", help="Batch size", type=int, default=72) p.add_argument("-s", "--start", help="First experiment index to run", type=int, default=0) p.add_argument("-t", "--bert_type", help="Bert type (bert-{base,large}-{cased,uncased})", type=str, default='bert-large-uncased') p.add_argument("-n", "--n_tests", help="Number of grid search experiments to run", type=int, default=1) p.add_argument("-x", "--max_pieces", help="Maximum number of word pieces for BERT", type=int, default=512) p.add_argument("-c", "--num_epochs", help="Number of epochs to run", type=int, default=2) p.add_argument("-l", "--layer_indices", help="Indices of layers to train classifiers for", type=str, default="23") p.add_argument("-d", "--dataset", help="Dataset to work with", required=True) p.add_argument("-i", "--nli", help="Is this an NLI experiment? (if not, it's text_cat)", action='store_true') p.add_argument("-r", "--slurm", help="Run jobs on SLURM using this server", type=str) p.add_argument('-w', '--work_dir', help="Working directory. Should contain a directory for the bert_type, which contains another directory for the dataset", type=str, default="") p.add_argument('--data_dir', help="Dataset directory. Should contain 'text_cat' and/or 'nli' folders, containing a directory for the dataset, which contains three files: train, dev and test", type=str, required=True) p.add_argument("-u", "--cuda_device", help="CUDA device (or -1 for CPU)", type=int, default=0) return ArgumentParser(description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter, parents=[p]) if __name__ == '__main__': sys.exit(main())
45.894366
570
0.603038
0
0
0
0
0
0
0
0
2,251
0.345404
90c797e8f34b8974fc670dfa1133ddb2a05d7a20
918
py
Python
utils/gather_files.py
letsgo247/KFG
dd055fc8349a9ea95497d04ecc4b52c04e09debc
[ "MIT" ]
null
null
null
utils/gather_files.py
letsgo247/KFG
dd055fc8349a9ea95497d04ecc4b52c04e09debc
[ "MIT" ]
null
null
null
utils/gather_files.py
letsgo247/KFG
dd055fc8349a9ea95497d04ecc4b52c04e09debc
[ "MIT" ]
null
null
null
import os import shutil import time def read_all_file(path): output = os.listdir(path) file_list = [] for i in output: if os.path.isdir(path+"/"+i): file_list.extend(read_all_file(path+"/"+i)) elif os.path.isfile(path+"/"+i): file_list.append(path+"/"+i) return file_list def copy_all_file(file_list, new_path): for src_path in file_list: file = src_path.split("/")[-1] shutil.copyfile(src_path, new_path+"/"+file) # print("파일 {} 작업 완료".format(file)) # 작업한 파일명 출력 src_path = "C:\dev\KFG\Data/Korean/AFAD/AFAD-Lite" # 기존 폴더 경로 new_path = "C:\dev\KFG\Data/Korean/AFAD/AFAD_gathered" # 옮길 폴더 경로 start_time = time.time() # 작업 시작 시간 file_list = read_all_file(src_path) copy_all_file(file_list, new_path) print("=" * 40) print("러닝 타임 : {}".format(time.time() - start_time)) # 총 소요시간 계산
27
65
0.604575
0
0
0
0
0
0
0
0
293
0.291833
90c806da308d72b961e15453707e27dd9643ad2b
1,897
py
Python
code/diva_evaluation_cli/bin/commands/actev_get_system_subcommands/git_command.py
wenhel/Argus
39768a8d1671eb80f86bbd67e58478a4cbdcdeca
[ "MIT" ]
4
2019-06-28T23:27:43.000Z
2021-09-27T03:17:58.000Z
code/diva_evaluation_cli/bin/commands/actev_get_system_subcommands/git_command.py
wenhel/Argus
39768a8d1671eb80f86bbd67e58478a4cbdcdeca
[ "MIT" ]
2
2020-01-16T19:39:44.000Z
2021-02-24T22:45:37.000Z
code/diva_evaluation_cli/bin/commands/actev_get_system_subcommands/git_command.py
wenhel/Argus
39768a8d1671eb80f86bbd67e58478a4cbdcdeca
[ "MIT" ]
1
2019-09-09T07:40:45.000Z
2019-09-09T07:40:45.000Z
"""Actev module: get-system git Actev modules are used to parse actev commands in order to get arguments before calling associated entry point methods to execute systems. Warning: this file should not be modified: see src/entry_points to add your source code. """ from diva_evaluation_cli.bin.commands.actev_command import ActevCommand class ActevGetSystemGit(ActevCommand): """Clones a git repository Command Args: * location or l: path to store the system * user or U: url to get the system * password or p: password to access the url * token or t: token to access the url * install-cli or i: install the cli to use it """ def __init__(self): super(ActevGetSystemGit, self).__init__('git', "get_git.sh") def cli_parser(self, arg_parser): """Configure the description and the arguments (positional and optional) to parse. Args: arg_parser(:obj:`ArgParser`): Python arg parser to describe how to parse the command """ arg_parser.description= "Downloads a git repository" required_named = arg_parser.add_argument_group('required named arguments') arg_parser.add_argument("-U", "--user", help="username to access the url") arg_parser.add_argument("-p", "--password", help="password to access the url" "Warning: if password starts with \'-\', use this: --password=<your password>") arg_parser.add_argument("-l", "--location", help="path to store the system") arg_parser.add_argument("-t", "--token", help="token to access the url" "Warning: if token starts with \'-\', use this: --token=<your token>", type=str) arg_parser.add_argument("-i", "--install-cli", help="install the cli to use it", action='store_true')
43.113636
111
0.641012
1,554
0.819188
0
0
0
0
0
0
1,231
0.648919
90c8c7759fc79bbde613e0b6f813d1b176c1ecaf
902
py
Python
1.8.first-promise.py
senpl/course-promises
df4b64a02d0a7ab4bb372c0fae5e92c98830cd44
[ "MIT" ]
3
2017-02-05T03:17:13.000Z
2019-03-11T19:44:34.000Z
1.8.first-promise.py
senpl/course-promises
df4b64a02d0a7ab4bb372c0fae5e92c98830cd44
[ "MIT" ]
null
null
null
1.8.first-promise.py
senpl/course-promises
df4b64a02d0a7ab4bb372c0fae5e92c98830cd44
[ "MIT" ]
7
2016-06-19T02:24:09.000Z
2018-09-11T01:32:02.000Z
import re textinput = widget_inputs["text1"] comments = [] def commentizer(new): if new not in comments: comments.append(new) is_correct = False result = re.match(".*window.*", textinput, flags=re.IGNORECASE) if result: is_correct = True commentizer("You're right, but there's a little more to it than that. Make sure you watch the solution video.") result = re.match(".*global.*", textinput, flags=re.IGNORECASE) if result: is_correct = True commentizer("Right! It's the global object.") result = re.match(".*promise.*", textinput, flags=re.IGNORECASE) if result: is_correct = False commentizer("It's not the Promise. Take another look!") if not is_correct and len(comments) == 0: commentizer("Not quite. Just log `this` somewhere in the Promise to see what happens.") grade_result["comment"] = "\n\n".join(comments) grade_result["correct"] = is_correct
29.096774
115
0.701774
0
0
0
0
0
0
0
0
314
0.348115
90c8e1c41e29404a0d0d0511d6b46db43890fb89
4,106
py
Python
test/test_markdown_parser.py
Asana/SGTM
0e9e236980ed68e80e021470da6374945bbac501
[ "MIT" ]
8
2020-12-05T00:13:03.000Z
2022-01-11T11:35:51.000Z
test/test_markdown_parser.py
Asana/SGTM
0e9e236980ed68e80e021470da6374945bbac501
[ "MIT" ]
12
2020-12-14T18:21:21.000Z
2022-03-29T17:06:20.000Z
test/test_markdown_parser.py
Asana/SGTM
0e9e236980ed68e80e021470da6374945bbac501
[ "MIT" ]
2
2021-06-27T09:32:55.000Z
2022-02-27T23:17:36.000Z
import unittest from html import escape from src.markdown_parser import convert_github_markdown_to_asana_xml class TestConvertGithubMarkdownToAsanaXml(unittest.TestCase): def test_basic_markdown(self): md = """~~strike~~ **bold** _italic_ `code` [link](asana.com)""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, '<s>strike</s> <strong>bold</strong> <em>italic</em> <code>code</code> <a href="asana.com">link</a>\n', ) def test_ul_tag(self): md = """* bullet one\n* bullet two""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, """<ul>\n<li>bullet one</li>\n<li>bullet two</li>\n</ul>\n""", ) def test_ol_tag(self): md = """1. bullet one\n2. bullet two""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, """<ol>\n<li>bullet one</li>\n<li>bullet two</li>\n</ol>\n""", ) def test_paragraph(self): md = "we don't wrap random text in p tags" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(md + "\n", xml) def test_block_quote(self): md = "> block quote" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, "<em>&gt; block quote\n</em>") def test_horizontal_rule(self): # Asana doesn't support <hr /> tags, so we just ignore them md = "hello\n\n---\nworld\n" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, md) # unchanged def test_auto_linking(self): md = "https://asana.com/ [still works](www.test.com)" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, '<a href="https://asana.com/">https://asana.com/</a> <a href="www.test.com">still works</a>\n', ) def test_converts_headings_to_bold(self): md = "## heading" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, "\n<b>heading</b>\n") def test_nested_code_within_block_quote(self): md = "> abc `123`" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, "<em>&gt; abc <code>123</code>\n</em>") def test_removes_pre_tags_inline(self): md = """```test```""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, "<code>test</code>\n") def test_removes_pre_tags_block(self): md = """see: ``` function foo = () => null; ``` """ xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, "see:\n<code>function foo = () =&gt; null;\n</code>\n") def test_escapes_raw_html_mixed_with_markdown(self): md = """## <img href="link" />still here <h3>header</h3>""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, "\n<b>" + escape('<img href="link" />') + "still here " + escape("<h3>header</h3>") + "</b>\n", ) def test_escapes_raw_html_on_own_lines(self): md = """## blah blah blah <img href="link"> still here <h3>header</h3>""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, "\n<b>blah blah blah</b>\n" + escape('<img href="link">\n') + "still here " + escape("<h3>header</h3>"), ) def test_escapes_raw_html(self): md = """<img href="link" />still here <h3>header</h3>""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual( xml, escape('<img href="link" />') + "still here " + escape("<h3>header</h3>\n"), ) def test_removes_images(self): md = """![image](https://image.com)""" xml = convert_github_markdown_to_asana_xml(md) self.assertEqual(xml, '<a href="https://image.com">image</a>\n') if __name__ == "__main__": from unittest import main as run_tests run_tests()
33.933884
115
0.585485
3,904
0.950804
0
0
0
0
0
0
1,343
0.327082
90cb7a749d3451fbf2614d7b4cc6d0e278b4fb6b
3,724
py
Python
ansible/my_env/lib/python2.7/site-packages/ansible/modules/network/ftd/ftd_file_upload.py
otus-devops-2019-02/yyashkin_infra
0cd0c003884155ac922e3e301305ac202de7028c
[ "MIT" ]
1
2019-04-16T21:23:15.000Z
2019-04-16T21:23:15.000Z
ansible/my_env/lib/python2.7/site-packages/ansible/modules/network/ftd/ftd_file_upload.py
otus-devops-2019-02/yyashkin_infra
0cd0c003884155ac922e3e301305ac202de7028c
[ "MIT" ]
5
2020-02-26T20:10:50.000Z
2021-09-23T23:23:18.000Z
ansible/my_env/lib/python2.7/site-packages/ansible/modules/network/ftd/ftd_file_upload.py
otus-devops-2019-02/yyashkin_infra
0cd0c003884155ac922e3e301305ac202de7028c
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2018 Cisco and/or its affiliates. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'network'} DOCUMENTATION = """ --- module: ftd_file_upload short_description: Uploads files to Cisco FTD devices over HTTP(S) description: - Uploads files to Cisco FTD devices including disk files, backups, and upgrades. version_added: "2.7" author: "Cisco Systems, Inc." options: operation: description: - The name of the operation to execute. - Only operations that upload file can be used in this module. required: true type: str file_to_upload: description: - Absolute path to the file that should be uploaded. required: true type: path version_added: "2.8" register_as: description: - Specifies Ansible fact name that is used to register received response from the FTD device. type: str """ EXAMPLES = """ - name: Upload disk file ftd_file_upload: operation: 'postuploaddiskfile' file_to_upload: /tmp/test1.txt """ RETURN = """ msg: description: The error message describing why the module failed. returned: error type: string """ from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible.module_utils.network.ftd.common import construct_ansible_facts, FtdServerError, HTTPMethod from ansible.module_utils.network.ftd.fdm_swagger_client import OperationField def is_upload_operation(op_spec): return op_spec[OperationField.METHOD] == HTTPMethod.POST or 'UploadStatus' in op_spec[OperationField.MODEL_NAME] def main(): fields = dict( operation=dict(type='str', required=True), file_to_upload=dict(type='path', required=True), register_as=dict(type='str'), ) module = AnsibleModule(argument_spec=fields, supports_check_mode=True) params = module.params connection = Connection(module._socket_path) op_spec = connection.get_operation_spec(params['operation']) if op_spec is None: module.fail_json(msg='Operation with specified name is not found: %s' % params['operation']) if not is_upload_operation(op_spec): module.fail_json( msg='Invalid upload operation: %s. The operation must make POST request and return UploadStatus model.' % params['operation']) try: if module.check_mode: module.exit_json() resp = connection.upload_file(params['file_to_upload'], op_spec[OperationField.URL]) module.exit_json(changed=True, response=resp, ansible_facts=construct_ansible_facts(resp, module.params)) except FtdServerError as e: module.fail_json(msg='Upload request for %s operation failed. Status code: %s. ' 'Server response: %s' % (params['operation'], e.code, e.response)) if __name__ == '__main__': main()
33.854545
117
0.705961
0
0
0
0
0
0
0
0
2,072
0.556391
90cbba8be9d213494b028b083d0b0f3629b1868d
1,244
py
Python
agent/indy_catalyst_agent/messaging/trustping/routes.py
nairobi222/indy-catalyst
dcbd80524ace7747ecfecd716ff932e9b571d69a
[ "Apache-2.0" ]
2
2019-08-16T11:21:10.000Z
2022-01-03T21:10:59.000Z
agent/indy_catalyst_agent/messaging/trustping/routes.py
nairobi222/indy-catalyst
dcbd80524ace7747ecfecd716ff932e9b571d69a
[ "Apache-2.0" ]
null
null
null
agent/indy_catalyst_agent/messaging/trustping/routes.py
nairobi222/indy-catalyst
dcbd80524ace7747ecfecd716ff932e9b571d69a
[ "Apache-2.0" ]
null
null
null
"""Trust ping admin routes.""" from aiohttp import web from aiohttp_apispec import docs from ..connections.models.connection_record import ConnectionRecord from .messages.ping import Ping from ...storage.error import StorageNotFoundError @docs(tags=["trustping"], summary="Send a trust ping to a connection") async def connections_send_ping(request: web.BaseRequest): """ Request handler for sending a trust ping to a connection. Args: request: aiohttp request object """ context = request.app["request_context"] connection_id = request.match_info["id"] outbound_handler = request.app["outbound_message_router"] try: connection = await ConnectionRecord.retrieve_by_id(context, connection_id) except StorageNotFoundError: return web.HTTPNotFound() if connection.is_active or connection.state == connection.STATE_RESPONSE: msg = Ping() await outbound_handler(msg, connection_id=connection_id) await connection.log_activity(context, "ping", connection.DIRECTION_SENT) return web.HTTPOk() async def register(app: web.Application): """Register routes.""" app.add_routes([web.post("/connections/{id}/send-ping", connections_send_ping)])
29.619048
84
0.730707
0
0
0
0
844
0.678457
927
0.745177
304
0.244373
90cceb9760edd56688a99f6ee73a68bdf983a84e
619
py
Python
python/wotdbg.py
wanyancan/wot-debugserver
4c6dd5c511659885abb355bef7c9318ed3e42937
[ "MIT" ]
32
2015-01-23T16:13:20.000Z
2021-05-29T21:11:42.000Z
python/wotdbg.py
wanyancan/wot-debugserver
4c6dd5c511659885abb355bef7c9318ed3e42937
[ "MIT" ]
null
null
null
python/wotdbg.py
wanyancan/wot-debugserver
4c6dd5c511659885abb355bef7c9318ed3e42937
[ "MIT" ]
16
2015-08-25T08:02:52.000Z
2022-01-19T19:16:16.000Z
import os.path import tcprepl import BigWorld def echo(s): '''Send string to client''' if tcprepl.write_client is not None: tcprepl.write_client(s) def exec_file(filename, exec_globals=None): ''' Execute file Try to find file named `filename` and execute it. If `exec_globals` is specified it is used as globals-dict in exec context. ''' if exec_globals is None: exec_globals = {} if not os.path.isfile(filename): filename = BigWorld.wg_resolveFileName(filename) with open(filename, 'r') as f: code = f.read() exec code in exec_globals
22.107143
74
0.660743
0
0
0
0
0
0
0
0
192
0.310178
90cd458888a31c41557f6a303abf3a9a1b516bae
40
py
Python
quicken/_internal/__init__.py
chrahunt/quicken
2dd00a5f024d7b114b211aad8a2618ec8f101956
[ "MIT" ]
3
2019-11-12T17:56:08.000Z
2022-03-12T03:43:10.000Z
quicken/_internal/__init__.py
chrahunt/quicken
2dd00a5f024d7b114b211aad8a2618ec8f101956
[ "MIT" ]
47
2018-12-10T04:08:58.000Z
2022-03-20T14:54:36.000Z
quicken/_internal/__init__.py
chrahunt/quicken
2dd00a5f024d7b114b211aad8a2618ec8f101956
[ "MIT" ]
1
2019-11-12T17:55:17.000Z
2019-11-12T17:55:17.000Z
class QuickenError(Exception): pass
13.333333
30
0.75
39
0.975
0
0
0
0
0
0
0
0
90d0a5da5e0a56dfea4ae7b895d09b65486f6dc4
1,861
py
Python
folderikon/exceptions.py
demberto/FolderIkon
62088b3e46266a6a53632a1e85bdb3d0a46e8cab
[ "MIT" ]
1
2021-10-30T17:49:28.000Z
2021-10-30T17:49:28.000Z
folderikon/exceptions.py
demberto/FolderIkon
62088b3e46266a6a53632a1e85bdb3d0a46e8cab
[ "MIT" ]
null
null
null
folderikon/exceptions.py
demberto/FolderIkon
62088b3e46266a6a53632a1e85bdb3d0a46e8cab
[ "MIT" ]
null
null
null
"""Exception which are not actually thrown, only their docstrings are used.""" import colorama import sys __all__ = [ "Error", "ParentIsNotAFolderError", "InvalidURLError", "ImageFormatNotSupportedError", "ImageNotSpecifiedError", "FolderIconAlreadyExistsError", "DesktopIniError", "exception_exit", ] class Error(Exception): """Base class for all FolderIkon errors.""" color = False def __repr__(self): return self.red(self.__doc__) @staticmethod def red(string): if Error.color: return colorama.Fore.RED + string return string class ParentIsNotAFolderError(Error): """Argument passed to --parent is not a folder.""" class InvalidURLError(Error): """Invalid image URL""" def __init__(self, url): self.__url = url super().__init__() def __repr__(self): return super().__repr__() + " " + self.__url class ImageFormatNotSupportedError(Error): def __init__(self, fmt): self.__fmt = fmt super().__init__() def __repr__(self): return f"Image format {self.red(self.__fmt)} is not supported. Only ICO, JPG and PNG are supported." class ImageNotSpecifiedError(Error): """An image with a supported format could not be found in this directory.""" class FolderIconAlreadyExistsError(Error): """Folder icon already exists.""" class DesktopIniError(Error): """The 'desktop.ini' file could not be parsed. Delete it and try again.""" def __init__(self, exc): self.__exc = exc super().__init__() def __repr__(self): exc_name = self.__exc.__class__.__name__ exc_info = f"An exception of {exc_name} occured when parsing it." return super().__repr__() + " " + exc_info def exception_exit(exc): print(repr(exc())) sys.exit(-1)
22.975309
108
0.652875
1,437
0.772166
0
0
126
0.067706
0
0
696
0.373992
90d0ff663bec28d2147cf9908b2baeccc98682a7
1,224
py
Python
quickbooks/objects/companycurrency.py
varunbheemaiah/python-quickbooks
f5459a07619ae220e24099c6e0c8e8db890bb66b
[ "MIT" ]
234
2015-08-25T02:41:33.000Z
2020-03-30T15:30:23.000Z
quickbooks/objects/companycurrency.py
varunbheemaiah/python-quickbooks
f5459a07619ae220e24099c6e0c8e8db890bb66b
[ "MIT" ]
170
2015-09-12T07:02:32.000Z
2020-03-20T13:34:34.000Z
quickbooks/objects/companycurrency.py
varunbheemaiah/python-quickbooks
f5459a07619ae220e24099c6e0c8e8db890bb66b
[ "MIT" ]
142
2015-08-26T07:08:56.000Z
2020-03-20T11:59:52.000Z
from six import python_2_unicode_compatible from .base import QuickbooksManagedObject, QuickbooksTransactionEntity, Ref, CustomField, MetaData @python_2_unicode_compatible class CompanyCurrency(QuickbooksManagedObject, QuickbooksTransactionEntity): """ QBO definition: Applicable only for those companies that enable multicurrency, a companycurrency object defines a currency that is active in the QuickBooks Online company. One or more companycurrency objects are active based on the company's multicurrency business requirements and correspond to the list displayed by the Currency Center in the QuickBooks Online UI """ class_dict = { "CustomField": CustomField, "MetaData": MetaData, } qbo_object_name = "CompanyCurrency" def __init__(self): super(CompanyCurrency, self).__init__() self.Id = None self.Code = "" self.Name = "" self.Active = True self.CustomField = None self.MetaData = None def __str__(self): return self.Name def to_ref(self): ref = Ref() ref.name = self.Name ref.type = self.qbo_object_name ref.value = self.Id return ref
28.465116
107
0.688725
1,049
0.857026
0
0
1,078
0.880719
0
0
437
0.357026
90d1622a98abf59a298f4b58a00b76f812b4c744
604
py
Python
books/migrations/0004_alter_book_category.py
MwinyiMoha/books-service
31a980a8505c5d5c2acad698bb493fad8c0ce8fe
[ "MIT" ]
null
null
null
books/migrations/0004_alter_book_category.py
MwinyiMoha/books-service
31a980a8505c5d5c2acad698bb493fad8c0ce8fe
[ "MIT" ]
3
2021-04-08T17:44:07.000Z
2021-04-12T09:38:26.000Z
books/migrations/0004_alter_book_category.py
MwinyiMoha/books-service
31a980a8505c5d5c2acad698bb493fad8c0ce8fe
[ "MIT" ]
null
null
null
# Generated by Django 3.2 on 2021-04-10 12:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("books", "0003_auto_20210410_1231")] operations = [ migrations.AlterField( model_name="book", name="category", field=models.CharField( choices=[ ("fiction", "Fiction"), ("regular", "Regular"), ("novel", "Novel"), ], default="regular", max_length=7, ), ) ]
24.16
57
0.47351
513
0.849338
0
0
0
0
0
0
152
0.251656
90d18046bd7a28075eedb453f3f4d1aabe4f7e65
16,575
py
Python
syft/execution/placeholder.py
juharris/PySyft
dbb70f24cc55a7dca032fb06f1a8662cb15092a9
[ "Apache-2.0" ]
null
null
null
syft/execution/placeholder.py
juharris/PySyft
dbb70f24cc55a7dca032fb06f1a8662cb15092a9
[ "Apache-2.0" ]
null
null
null
syft/execution/placeholder.py
juharris/PySyft
dbb70f24cc55a7dca032fb06f1a8662cb15092a9
[ "Apache-2.0" ]
null
null
null
from itertools import zip_longest import syft from syft.generic.frameworks.hook import hook_args from syft.generic.abstract.tensor import AbstractTensor from syft.workers.abstract import AbstractWorker from syft_proto.execution.v1.placeholder_pb2 import Placeholder as PlaceholderPB class PlaceHolder(AbstractTensor): def __init__( self, role=None, tracing=False, id=None, tags: set = None, description: str = None, shape=None, expected_dtype=None, ): """A PlaceHolder acts as a tensor but does nothing special. It can get "instantiated" when a real tensor is appended as a child attribute. It will send forward all the commands it receives to its child tensor. When you send a PlaceHolder, you don't sent the instantiated tensors. Args: id: An optional string or integer id of the PlaceHolder. """ super().__init__(id=id, tags=tags, description=description) if not isinstance(self.id, syft.execution.placeholder_id.PlaceholderId): self.id = syft.execution.placeholder_id.PlaceholderId(self.id) self.expected_shape = tuple(shape) if shape is not None else None self.expected_dtype = expected_dtype self.child = None self.role = role self.tracing = tracing def get_class_attributes(self): """ Specify all the attributes need to build a wrapper correctly when returning a response. """ return {"role": self.role, "tracing": self.tracing} @classmethod def handle_func_command(cls, command): """ Receive an instruction for a function to be applied on a Placeholder, Replace in the args with their child attribute, forward the command instruction to the handle_function_command of the type of the child attributes, get the response and wrap it in a Placeholder. We use this method to perform the tracing. Args: command: instruction of a function command: (command name, <no self>, arguments[, kwargs]) Returns: the response of the function command """ cmd, _, args, kwargs = command # Replace all PlaceHolders with their child attribute new_args, new_kwargs, new_type = hook_args.unwrap_args_from_function(cmd, args, kwargs) # build the new command new_command = (cmd, None, new_args, new_kwargs) # Send it to the appropriate class and get the response response = new_type.handle_func_command(new_command) # Find first placeholder in args template_placeholder = None for arg in args: if isinstance(arg, PlaceHolder): template_placeholder = arg placeholders = PlaceHolder.convert_to_placeholders(response, template_placeholder) if template_placeholder.tracing: template_placeholder.role.register_action( (command, placeholders), syft.execution.computation.ComputationAction ) return placeholders @staticmethod def convert_to_placeholders(response, template_placeholder): """ Turn back response to PlaceHolders """ if isinstance(response, (tuple, list)): placeholders = tuple( PlaceHolder.create_from( r, role=template_placeholder.role, tracing=template_placeholder.tracing ) for r in response ) else: placeholders = PlaceHolder.create_from( response, role=template_placeholder.role, tracing=template_placeholder.tracing ) return placeholders def __getattribute__(self, name): """Try to find the attribute in the current object and in case we can not then we forward it to the child """ try: response = object.__getattribute__(self, name) except AttributeError: child = object.__getattribute__(self, "child") response = getattr(child, name) return response def instantiate(self, tensor): """ Add a tensor as a child attribute. All operations on the placeholder will be also executed on this child tensor. We remove Placeholders if is there are any. """ if isinstance(tensor, PlaceHolder): self.child = tensor.child else: self.child = tensor if hasattr(self.child, "shape"): self.expected_shape = tuple(self.child.shape) if hasattr(self.child, "dtype"): self.expected_dtype = self.child.dtype return self def __str__(self) -> str: """ Compact representation of a Placeholder, including tags and optional child """ tags = " ".join(list(self.tags or [])) out = f"{type(self).__name__ }[Id:{self.id.value}]" if hasattr(self, "child") and self.child is not None: out += f">{self.child}" return out __repr__ = __str__ def send(self, *args, **kwargs): """ calls move on child & register_action to role """ response = self.child.send(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("send", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def move(self, *args, **kwargs): """ calls move on a pointer tensor & register_action to role """ response = self.child.move(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("move", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def share(self, *args, **kwargs): """ Send a command to remote worker to additively share a tensor via pointer tensor """ response = self.child.share(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("share", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def fix_prec(self, *args, **kwargs): """ sends command to remote worker to transform a tensor to fix_precision via pointer tensor """ response = self.child.fix_prec(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("fix_prec", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.computation.ComputationAction ) return placeholder def mid_get(self, *args, **kwargs): response = self.child.mid_get(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(self.child, self) command = ("mid_get", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def remote_get(self, *args, **kwargs): """ calls remote_get on child & register_action to role """ response = self.child.remote_get(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("remote_get", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def remote_send(self, *args, **kwargs): """ calls remote_send on child & register_action to role """ response = self.child.remote_send(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("remote_send", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def share_(self, *args, **kwargs): """ calls share_ on child & register_action to role """ response = self.child.share_(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("share_", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def get(self, *args, **kwargs): """Requests the tensor/chain being pointed to, be serialized and return via child""" response = self.child.get(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("get", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def copy(self): """ Copying a placeholder doesn't duplicate the child attribute, because all copy operations happen locally where we want to keep reference to the same instantiated object. As the child doesn't get sent, this is not an issue. """ placeholder = PlaceHolder( role=self.role, tracing=self.tracing, tags=self.tags, shape=self.expected_shape, expected_dtype=self.expected_dtype, ) placeholder.child = self.child if self.tracing: command = ("copy", self, (), {}), placeholder self.role.register_action(command, syft.execution.computation.ComputationAction) return placeholder @staticmethod def create_from(tensor, role=None, tracing=False): """ Helper method to create a placeholder already instantiated with tensor. """ return PlaceHolder(role=role, tracing=tracing).instantiate(tensor) @staticmethod def insert(tensor, after, role=None, tracing=False): """ Helper method to add a placeholder in the specific place of tensor chain. """ current_level = tensor while not isinstance(current_level, after) and current_level is not None: current_level = getattr(current_level, "child", None) if current_level is None: raise RuntimeError( f"Cannot insert Placeholder, chain does not contain {after.__name__} tensor type." ) child = getattr(current_level, "child", None) if child is None: raise RuntimeError( f"Cannot insert Placeholder, {after.__name__} does not wrap anything." ) placeholder = PlaceHolder.create_from(child, role, tracing) current_level.child = placeholder return placeholder @staticmethod def extract(tensor): """ Helper method to find and return placeholder in the tensor chain. """ current_level = tensor while not isinstance(current_level, PlaceHolder) and current_level is not None: current_level = getattr(current_level, "child", None) return current_level @staticmethod def create_placeholders(args_shape, args_dtypes=()): """ Helper method to create a list of placeholders with shapes in args_shape. """ # In order to support -1 value in shape to indicate any dimension # we map -1 to 1 for shape dimensions. # TODO: A more complex strategy could be used mapped_shapes = [] for shape in args_shape: if list(filter(lambda x: x < -1, shape)): raise ValueError(f"Invalid shape {shape}") mapped_shapes.append(tuple(map(lambda y: 1 if y == -1 else y, shape))) return [ syft.framework.hook.create_zeros(shape, dtype=dtype, requires_grad=False) for shape, dtype in zip_longest(mapped_shapes, args_dtypes) ] @staticmethod def instantiate_placeholders(obj, response): """ Utility function to instantiate recursively an object containing placeholders with a similar object but containing tensors """ if obj is not None: if isinstance(obj, PlaceHolder): obj.instantiate(response) elif isinstance(obj, (list, tuple)): for ph, rep in zip(obj, response): PlaceHolder.instantiate_placeholders(ph, rep) else: raise ValueError( f"Response of type {type(response)} is not supported in " "Placeholder.instantiate." ) @staticmethod def simplify(worker: AbstractWorker, placeholder: "PlaceHolder") -> tuple: """Takes the attributes of a PlaceHolder and saves them in a tuple. Args: worker: the worker doing the serialization placeholder: a PlaceHolder. Returns: tuple: a tuple holding the unique attributes of the PlaceHolder. """ return ( syft.serde.msgpack.serde._simplify(worker, placeholder.id), syft.serde.msgpack.serde._simplify(worker, placeholder.tags), syft.serde.msgpack.serde._simplify(worker, placeholder.description), syft.serde.msgpack.serde._simplify(worker, placeholder.expected_shape), ) @staticmethod def detail(worker: AbstractWorker, tensor_tuple: tuple) -> "PlaceHolder": """ This function reconstructs a PlaceHolder given it's attributes in form of a tuple. Args: worker: the worker doing the deserialization tensor_tuple: a tuple holding the attributes of the PlaceHolder Returns: PlaceHolder: a PlaceHolder """ tensor_id, tags, description, shape = tensor_tuple tensor_id = syft.serde.msgpack.serde._detail(worker, tensor_id) tags = syft.serde.msgpack.serde._detail(worker, tags) description = syft.serde.msgpack.serde._detail(worker, description) shape = syft.serde.msgpack.serde._detail(worker, shape) return PlaceHolder(id=tensor_id, tags=tags, description=description, shape=shape) @staticmethod def bufferize(worker: AbstractWorker, placeholder: "PlaceHolder") -> PlaceholderPB: """Takes the attributes of a PlaceHolder and saves them in a Protobuf message. Args: worker: the worker doing the serialization placeholder: a PlaceHolder. Returns: PlaceholderPB: a Protobuf message holding the unique attributes of the PlaceHolder. """ protobuf_placeholder = PlaceholderPB() syft.serde.protobuf.proto.set_protobuf_id(protobuf_placeholder.id, placeholder.id.value) protobuf_placeholder.tags.extend(placeholder.tags) if placeholder.description: protobuf_placeholder.description = placeholder.description if placeholder.expected_shape: protobuf_placeholder.expected_shape.dims.extend(placeholder.expected_shape) return protobuf_placeholder @staticmethod def unbufferize(worker: AbstractWorker, protobuf_placeholder: PlaceholderPB) -> "PlaceHolder": """ This function reconstructs a PlaceHolder given it's attributes in form of a Protobuf message. Args: worker: the worker doing the deserialization protobuf_placeholder: a Protobuf message holding the attributes of the PlaceHolder Returns: PlaceHolder: a PlaceHolder """ tensor_id = syft.serde.protobuf.proto.get_protobuf_id(protobuf_placeholder.id) tags = set(protobuf_placeholder.tags) description = None if bool(protobuf_placeholder.description): description = protobuf_placeholder.description expected_shape = tuple(protobuf_placeholder.expected_shape.dims) or None return PlaceHolder(id=tensor_id, tags=tags, description=description, shape=expected_shape) @staticmethod def get_protobuf_schema() -> PlaceholderPB: return PlaceholderPB ### Register the tensor with hook_args.py ### hook_args.default_register_tensor(PlaceHolder)
37.247191
98
0.640422
16,193
0.976953
0
0
8,575
0.517345
0
0
5,092
0.30721
90d1a9736c8c20db26fd37eb2b021b1ef2da5b41
21,547
py
Python
creativeflow/blender/render_main.py
idaho777/creativeflow
adf7a9e1cf70005560cfbf8064137fb1236bc574
[ "MIT" ]
53
2019-10-02T17:10:49.000Z
2022-03-04T17:35:26.000Z
creativeflow/blender/render_main.py
idaho777/creativeflow
adf7a9e1cf70005560cfbf8064137fb1236bc574
[ "MIT" ]
1
2021-09-24T01:00:54.000Z
2021-09-24T03:06:43.000Z
creativeflow/blender/render_main.py
idaho777/creativeflow
adf7a9e1cf70005560cfbf8064137fb1236bc574
[ "MIT" ]
6
2019-11-26T11:44:45.000Z
2021-11-11T22:23:50.000Z
""" MAIN STYLING AND RENDERING FILE Requirements: ------------------------------------------------------------------------------ IMPORTANT! This has only been tested with Blender 2.79 API. We have run this on Linux and MacOS. Execution: ------------------------------------------------------------------------------ This script is intended to run inside blender launched in background mode. Sample invocation is: blender --background --factory-startup --python-exit-code 1 PATH_TO_MY_BLEND.blend \ --python blender/render_main.py -- \ --width=500 <ANY OTHER PYTHON FLAGS FROM render_main.py> '--factory-startup' is used to prevent custom settings from interfering. '--python-exit-code 1' makes blender exit with code 1 if this script throws an error '--' causes blender to ignore all following arguments so python can use them. See blender --help for details. See pipeline.sh for sample usage. Capabilities: ------------------------------------------------------------------------------ It is assumed that blender is invoked with a single blend. This script is a jack-of-all-trades for setting up camera, lighting, styling, and rendering for a custom stylized animation benchmark. We found it easier to run the script separately for each phase of data processing (see pipeline.sh), as this way the output can be easily examined for problems after every stage. However, one-shot execution should also be possible. See flags below for full capabilities. The trickiest bit is: different metadata only works with particular render engine option. The script will raise errors if incorrect engine is specified: - Vertex paint for correspondences - blender render (no gamma correction!) - Normals in camera space - blender render (no gamma correction!) - Flow vector pass - cycles (blender render is buggy) - Red stylit reference material - cycles - Env lighting for mixamo models - blender render only """ import bpy import argparse import logging import os import random import sys import time import traceback # Add to path to make sure we can import modules while running inside Blender. __sdir = os.path.dirname(os.path.realpath(__file__)) if __sdir not in sys.path: sys.path.append(__sdir) import color_util import geo_util import io_util import render_util import stylit_util LOG = logging.getLogger(__name__) if __name__ == "__main__": try: # FLAGS # -------------------------------------------------------------------------- parser = argparse.ArgumentParser( description='Configurable utility to modify blend and/or render images/flow/metadata.') parser.add_argument( '--random_seed', action='store', type=int, default=-1, help='Integer seed for random number generator; used if > 0.') # Rendering ---------------------------------------------------------------- parser.add_argument( '--width', action='store', type=int, default=1500, help='Width to render at.') parser.add_argument( '--height', action='store', type=int, default=1500, help='Height to render at.') parser.add_argument( '--quality_samples', action='store', type=int, default=-1, help='If positive and using cycles, will use this many samples per pixel; ' + 'e.g. 128 is slow, 10 is comparatively fast.') parser.add_argument( '--start_frame', action='store', type=int, default=0, help='Frame to start rendering at (relative to first frame).') parser.add_argument( '--rendered_frames', action='store', type=int, default=0, help='Maximum frames to render; 0 for none; -1 for all.') parser.add_argument( '--skip_existing_frames', action='store_true', default=False, help='If true, skips existing frames matching --frame_output_prefix.') parser.add_argument( '--use_cycles', action='store_true', default=False, help='If true, sets Cycles as the rendering engine, else leaves unchanged.') parser.add_argument( '--use_blender_render', action='store_true', default=False, help='If true, sets Blender Render as the rendering engine, else leaves unchanged.') # Outputs ------------------------------------------------------------------ parser.add_argument( '--frame_output_prefix', action='store', type=str, default='', help='If set, will set image output to <frame_output_prefix><frame#>.PNG; ' + 'should include full path.') parser.add_argument( '--render_metadata_exr', action='store_true', default=False, help='If true, renders all metadata passes as a multilayer EXR file.') parser.add_argument( '--objectids_key_file', action='store', type=str, default='', help='Directory to write objectids to, as images.') parser.add_argument( '--world_normals_output_dir', action='store', type=str, default='', help='Directory to write world space normals to, as images ' + '(only compatible with --use_cycles.') parser.add_argument( '--camera_normals_output_dir', action='store', type=str, default='', help='Directory to write camera space normals to, as images ' + '(only compatible with --use_blender_render.') parser.add_argument( '--enable_gamma_correction', action='store_true', default=False, help='We disable gamma correction by default, as it corrupts the ' + 'metadata rendering; set this on to enable.') parser.add_argument( '--bg_name', action='store', type=str, default="STYMO_BG", help='If any object name matches this substring, it will be treated as ' + 'background for the purpose of id labeling and stylit rendering.') parser.add_argument( '--output_blend', action='store', type=str, default='', help='If set, will output modified blend here (must be absolute path); ' + 'if setting linestyle and/or material, will replace special substrings ' + '<M> and <L> with material and linestyle.') parser.add_argument( '--info_file', action='store', type=str, default='', help='If set, may output auxiliary information into this file.') # Camera ------------------------------------------------------------------- parser.add_argument( '--set_camera', action='store', type=int, default=0, help='If >= 0, selects ith camera and deletes all other cameras; ' + 'if i > num cameras, generates a random one instead.') parser.add_argument( '--keep_extra_cameras', action='store_true', help='If --set_camera, will not delete extra cameras.') parser.add_argument( '--add_random_camera_motion', action='store_true', help='If generating a random camera and this is true, creates zoom/flyaround/pan; ' 'WARNING: parameters are tuned for mixamo character blends.') # Animation range ---------------------------------------------------------- parser.add_argument( '--offset_scene_start_frame_by', action='store', type=int, default=0, help='Unlike --start_frame, which just controls the rendering range, this ' + 'flag offsets the current scene start frame in the timeline by the ' + 'specified amount. Relevant to blends that do not begin at frame 0.') parser.add_argument( '--offset_scene_end_frame_by', action='store', type=int, default=0, help='Unlike --rendered_frames, which just controls the rendering range, this ' + 'flag offsets the current scene end frame in the timeline by the ' + 'specified amount. Relevant to blends that do not begin at frame 0.') # Lighting ----------------------------------------------------------------- parser.add_argument( '--set_env_lighting_image', action='store', type=str, default='', help='Set to image path or directory of environment map images to set ' + 'environment lighting; only works with --use_blender_render.') parser.add_argument( '--set_stylit_lighting', action='store_true', help='If true, sets consistent lighting to render input for stylit.') # Styles ------------------------------------------------------------------- parser.add_argument( '--set_stylit_style', action='store_true', help='If true, sets red material style used for stylit style transfer.') parser.add_argument( '--set_corresp_style', action='store_true', help='If true, will set per-vertex materials to render correspondences.') parser.add_argument( '--set_objectids_style', action='store_true', help='If true, will set objectids to render using flat materials.') parser.add_argument( '--deterministic_objectid_colors', action='store_true', help='If true, objectid colors will not be shuffled; use for testing.') parser.add_argument( '--linestyles_blend', action='store', type=str, default='', help='Path to blend containing all the line styles.') parser.add_argument( '--set_linestyle_matching', action='store', type=str, default='', help='Regex matching linestyle(s) in --line_styles_blend; ' 'if more than one match, picks random one; ' '"" for none; ".*" for all; "hi|bye" to match either.') parser.add_argument( '--randomize_line_color', action='store_true', help='If true, randomizes line color if line is set.') parser.add_argument( '--materials_blend', action='store', type=str, default='', help='Path to blend containing all the material styles (e.g. textured blender styles).') parser.add_argument( '--set_materials_matching', action='store', type=str, default='', help='Regex matching materials(s) in --materials_blend; ' 'if more than one match, picks random one; ' '"" for none; ".*" for all; "hi|bye" to match either.') parser.add_argument( '--randomize_material_color', action='store_true', help='If true, randomizes material color if material is set.') # Custom color control parser.add_argument( '--material_color_choices', action='store', type=str, default='', help='String of format R,G,B R2,G2,B2 ... of colors to choose from if ' + 'randomizing material colors.') parser.add_argument( '--line_hue_range', action='store', type=str, default='0,1.0', help='If --randomize_line_color, will keep HSV Hue in this range (two numbers,csv).') parser.add_argument( '--line_sat_range', action='store', type=str, default='0,1.0', help='If --randomize_line_color, will keep HSV Saturation in this range (two numbers,csv).') parser.add_argument( '--line_value_range', action='store', type=str, default='0,1.0', help='If --randomize_line_color, will keep HSV Value in this range (two numbers,csv).') # Parse only arguments after -- # -------------------------------------------------------------------------- argv = sys.argv if "--" not in argv: argv = [] # as if no args are passed else: argv = argv[argv.index("--") + 1:] args = parser.parse_args(argv) if args.random_seed > 0: print('Using --random_seed=%d as random seed.' % args.random_seed) random.seed(args.random_seed) else: print('Using time as random seed.') random.seed(time.time()) render_util.print_blend_diagnostics() # Handle camera ------------------------------------------------------------ if args.set_camera >= 0: cam = None if args.keep_extra_cameras: cam = geo_util.get_camera_by_number(args.set_camera) else: cam = geo_util.delete_all_but_one_camera(args.set_camera) if cam is None: print('Generating a random camera.') bbox = geo_util.get_scene_bbox() cam = geo_util.create_random_camera(bbox, 2.5, 2.5, 2.5) if args.add_random_camera_motion: print('Adding motion to camera.') geo_util.mixamo_add_random_camera_motion(cam) geo_util.disable_camera_depth_of_field(cam) else: cam = geo_util.get_single_camera_or_die() # Set active camera bpy.context.scene.camera = cam # Handle frame bounds ------------------------------------------------------ orig_start = bpy.context.scene.frame_start bpy.context.scene.frame_start = orig_start + args.offset_scene_start_frame_by if args.offset_scene_end_frame_by > 0: bpy.context.scene.frame_end = orig_start + args.offset_scene_end_frame_by # Handle lighting ---------------------------------------------------------- info_file = None if args.info_file: info_file = open(args.info_file, 'w') if len(args.set_env_lighting_image) > 0: if not args.use_blender_render: raise RuntimeError( 'Error: --set_env_lighting_image="img" only works with --use_blender_render') render_util.setup_realistic_lighting(args.set_env_lighting_image, 10.0, False) if args.set_stylit_lighting: if not args.use_cycles: raise RuntimeError( 'Error: --set_stylit_lighting only works with --use_cycles') stylit_util.setup_stylit_lighting() # Handle styles ------------------------------------------------------------ nstyles = len([x for x in [args.set_stylit_lighting, args.set_corresp_style, args.set_objectids_style, (args.set_linestyle_matching or args.set_materials_matching)] if x]) if nstyles > 1: raise RuntimeError( 'Error: incompatible rendering styles specified; only one of these can be true: ' + '--set_stylit_lighting OR ' + '--set_corresp_style OR --set_objectids_style OR ' + '(--set_linestyle_matching and/or --set_materials_matching)') linestyle_name = 'default' material_name = 'default' if args.set_stylit_style: # Red material used for stylit rendering if not args.use_cycles: raise RuntimeError( 'Error: --set_stylit_style only works with --use_cycles') render_util.clear_unnecessary_settings() stylit_util.setup_stylit_materials(bg_name=args.bg_name) elif args.set_corresp_style: # Per-vertex correspondence rendering if not args.use_blender_render: raise RuntimeError( 'Correspondence rendering (--set_corresp_style) only implemented for ' + '--use_blender_render') render_util.clear_unnecessary_settings() render_util.set_correspondence_style() elif args.set_objectids_style: # Object Ids rendered in flat color if not args.use_blender_render: raise RuntimeError( 'Correspondence rendering (--set_objectids_style) only implemented for ' + '--use_blender_render') render_util.clear_unnecessary_settings() idsinfo = render_util.set_objectids_style( bg_name=args.bg_name, deterministic=args.deterministic_objectid_colors) if idsinfo and args.objectids_key_file: with open(os.path.join(args.objectids_key_file), 'w') as f: for i in range(len(idsinfo)): f.write('%s %d %d %d\n' % (idsinfo[i][0], idsinfo[i][1][0], idsinfo[i][1][1], idsinfo[i][1][2])) elif args.set_linestyle_matching or args.set_materials_matching: # Freestyle / toon shading if not args.use_blender_render: raise RuntimeError( 'Linestyles and materials only implemented for --use_blender_render') render_util.clear_unnecessary_settings() if len(args.set_linestyle_matching) > 0: if len(args.linestyles_blend) == 0: raise RuntimeError( 'Error: Must set --linestyles_blend with line exemplars ' + 'if requesting --set_linestyle_matching.') line_color = None if args.randomize_line_color: line_color = color_util.get_random_color( prob_dark=0.8, bounds=color_util.parse_hsv_bounds(args.line_hue_range, args.line_sat_range, args.line_value_range)) linestyle_name = render_util.set_linestyle( args.linestyles_blend, args.set_linestyle_matching, color=line_color) if info_file: info_file.write('LINESTYLE %s\n' % io_util.strip_blender_name(linestyle_name)) if len(args.set_materials_matching) > 0: if len(args.materials_blend) == 0: raise RuntimeError( 'Error: Must set --materials_blend with material ' + 'exemplars if requesting --set_materials_matching.') mat_color_randomizer = None if args.randomize_material_color: if args.material_color_choices: mat_color_randomizer = color_util.make_color_getter( args.material_color_choices) else: mat_color_randomizer = color_util.make_random_color_getter() material_name = render_util.set_materials( args.materials_blend, args.set_materials_matching, color_randomizer=mat_color_randomizer) if info_file: info_file.write('MATSTYLE %s\n' % io_util.strip_blender_name(material_name)) # Handle rendering settings ------------------------------------------------ if args.use_cycles and args.use_blender_render: raise RuntimeError('Can specify only one of --use_cycles and --use_blender_render') if args.use_cycles or args.use_blender_render: nsamples = (args.quality_samples if args.quality_samples > 0 else None) render_util.set_render_settings(args.use_cycles, nsamples=nsamples, enable_gamma=args.enable_gamma_correction) if args.width > 0 and args.height > 0: render_util.set_width_height(args.width, args.height) if args.world_normals_output_dir or args.camera_normals_output_dir: if args.world_normals_output_dir and args.camera_normals_output_dir: raise RuntimeError('Only one type of normals can be output at once.') if args.world_normals_output_dir and not args.use_cycles: raise RuntimeError('World normals can only be output with --use_cycles.') elif args.camera_normals_output_dir and not args.use_blender_render: raise RuntimeError('Camera space normals can only be output with --use_blender_render.') render_util.init_normals_render_nodes( (args.world_normals_output_dir or args.camera_normals_output_dir), use_cycles=args.use_cycles) # Handle saving ------------------------------------------------------- if len(args.output_blend) > 0: bpy.ops.file.pack_all() args.output_blend = args.output_blend.replace('<M>', io_util.strip_blender_name(material_name)) args.output_blend = args.output_blend.replace('<L>', io_util.strip_blender_name(linestyle_name)) print('Saving blend to %s' % args.output_blend) geo_util.save_blend(args.output_blend) if args.rendered_frames != 0: if args.render_metadata_exr and not args.use_cycles: raise RuntimeError('Must set --use_cycles=True to render out flow with ' + '--render_metadata_exr') print('Rendering frames') render_util.render_animation( args.frame_output_prefix, args.rendered_frames, start_frame_offset=args.start_frame, render_exr=args.render_metadata_exr, skip_existing=args.skip_existing_frames) except Exception as e: tb = traceback.format_exc() LOG.critical(tb) LOG.critical('Script failed') raise e LOG.critical('Script completed')
49.194064
108
0.58616
0
0
0
0
0
0
0
0
9,526
0.442103
90d3d04333f570bee6151ef38e0d8057f563ad15
5,004
py
Python
atlas/foundations_contrib/src/test/archiving/test_artifact_downloader.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
296
2020-03-16T19:55:00.000Z
2022-01-10T19:46:05.000Z
atlas/foundations_contrib/src/test/archiving/test_artifact_downloader.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
57
2020-03-17T11:15:57.000Z
2021-07-10T14:42:27.000Z
atlas/foundations_contrib/src/test/archiving/test_artifact_downloader.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
38
2020-03-17T21:06:05.000Z
2022-02-08T03:19:34.000Z
from foundations_spec import * from unittest.mock import call class TestArtifactDownloader(Spec): mock_archiver = let_mock() make_directory_mock = let_patch_mock('os.makedirs') @let def source_directory(self): return self.faker.uri_path() @let def download_directory(self): return self.faker.uri_path() @let def artifact_downloader(self): from foundations_contrib.archiving.artifact_downloader import ArtifactDownloader return ArtifactDownloader(self.mock_archiver) @let def mock_foundations_files(self): return [ 'foundations/a', 'foundations/b', 'foundations_contrib/c', 'foundations_contrib/d', 'foundations_events/e', 'foundations_events/f', 'foundations_internal/g', 'foundations_internal/h', 'jobs/i', 'jobs/j', 'model_serving/k', 'model_serving/l', 'venv/m', 'venv/n', 'docker_image_version.sh', 'download_gui_images.sh', 'foundations_gui.sh', 'foundations_package_manifest.yaml', 'foundations_requirements.txt', 'job.tgz', 'run.env', 'run.sh', 'p.bin', 'q.bin', 'template/t', 'template/u', ] def test_downloads_single_file_to_specified_directory(self): self._mock_file_list(['path/to/my/file']) self.artifact_downloader.download_files('', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_with('path/to/my/file', self.download_directory + '/path/to/my/file') def test_downloads_multiple_files_to_specified_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('', self.download_directory) first_file_download = call('different/file', self.download_directory + '/different/file') second_file_download = call('other/different/file', self.download_directory + '/other/different/file') self.mock_archiver.fetch_persisted_file.assert_has_calls([first_file_download, second_file_download]) def test_ensures_target_directory_exists(self): self._mock_file_list(['path/to/my/file']) self.artifact_downloader.download_files('', self.download_directory) self.make_directory_mock.assert_called_with(self.download_directory + '/path/to/my', exist_ok=True) def test_downloads_multiple_files_to_specified_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('', self.download_directory) first_dirctory_creation = call(self.download_directory + '/different', exist_ok=True) second_dirctory_creation = call(self.download_directory + '/other/different', exist_ok=True) self.make_directory_mock.assert_has_calls([first_dirctory_creation, second_dirctory_creation]) def test_downloads_only_files_with_specified_source_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('other/', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_once_with('other/different/file', self.download_directory + '/other/different/file') def test_downloads_only_files_with_specified_source_directory_with_different_source_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('different/', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_once_with('different/file', self.download_directory + '/different/file') def test_download_does_not_include_foundations_files(self): for foundations_file in self.mock_foundations_files: self._mock_file_list(['path/to/some/file', foundations_file]) self.artifact_downloader.download_files('', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_with('path/to/some/file', self.download_directory + '/path/to/some/file') def test_download_includes_config_yamls(self): for foundations_file in self.mock_foundations_files: self._mock_file_list(['a.config.yaml', foundations_file]) self.artifact_downloader.download_files('', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_with('a.config.yaml', self.download_directory + '/a.config.yaml') def _mock_file_list(self, file_list): self.mock_archiver.fetch_miscellaneous = ConditionalReturn() self.mock_archiver.fetch_miscellaneous.return_when(file_list, 'job_artifact_listing.pkl')
42.769231
146
0.689249
4,932
0.985612
0
0
1,198
0.239408
0
0
1,027
0.205236
90d3d4041471f93cb0f82d38f927e393e1e21818
34,846
py
Python
lib/python3.5/functional/test/test_functional.py
mklan/NX-Rom-Market
33613d2177b63df9e0568038ffdf1dd91ad334d8
[ "MIT" ]
21
2021-01-10T16:44:55.000Z
2022-03-03T13:15:07.000Z
lib/python3.5/functional/test/test_functional.py
mklan/NX-Rom-Market
33613d2177b63df9e0568038ffdf1dd91ad334d8
[ "MIT" ]
3
2021-01-10T15:38:50.000Z
2021-04-29T09:45:47.000Z
lib/python3.5/functional/test/test_functional.py
mklan/NX-Rom-Market
33613d2177b63df9e0568038ffdf1dd91ad334d8
[ "MIT" ]
1
2021-01-10T15:07:38.000Z
2021-01-10T15:07:38.000Z
# pylint: skip-file import unittest import array from collections import namedtuple from itertools import product from functional.pipeline import Sequence, is_iterable, _wrap, extend from functional.transformations import name from functional import seq, pseq Data = namedtuple("Data", "x y") def pandas_is_installed(): try: global pandas import pandas return True except ImportError: return False class TestPipeline(unittest.TestCase): def setUp(self): self.seq = seq def assert_type(self, s): self.assertTrue(isinstance(s, Sequence)) def assert_not_type(self, s): self.assertFalse(isinstance(s, Sequence)) def assertIteratorEqual(self, iter_0, iter_1): seq_0 = list(iter_0) seq_1 = list(iter_1) self.assertListEqual(seq_0, seq_1) def test_is_iterable(self): self.assertFalse(is_iterable([])) self.assertTrue(is_iterable(iter([1, 2]))) def test_constructor(self): self.assertRaises(TypeError, lambda: Sequence(1)) def test_base_sequence(self): l = [] self.assert_type(self.seq(l)) self.assert_not_type(self.seq(l).sequence) self.assert_type(self.seq(self.seq(l))) self.assert_not_type(self.seq(self.seq(l)).sequence) self.assert_not_type(self.seq(l)._base_sequence) def test_eq(self): l = [1, 2, 3] self.assertIteratorEqual(self.seq(l).map(lambda x: x), self.seq(l)) def test_ne(self): a = [1, 2, 3] b = [1] self.assertNotEqual(self.seq(a), self.seq(b)) def test_repr(self): l = [1, 2, 3] self.assertEqual(repr(l), repr(self.seq(l))) def test_lineage_name(self): f = lambda x: x self.assertEqual(f.__name__, name(f)) f = "test" self.assertEqual("test", name(f)) def test_str(self): l = [1, 2, 3] self.assertEqual(str(l), str(self.seq(l))) def test_hash(self): self.assertRaises(TypeError, lambda: hash(self.seq([1]))) def test_len(self): l = [1, 2, 3] s = self.seq(l) self.assertEqual(len(l), s.size()) self.assertEqual(len(l), s.len()) def test_count(self): l = self.seq([-1, -1, 1, 1, 1]) self.assertEqual(l.count(lambda x: x > 0), 3) self.assertEqual(l.count(lambda x: x < 0), 2) def test_getitem(self): l = [1, 2, [3, 4, 5]] s = self.seq(l).map(lambda x: x) self.assertEqual(s[1], 2) self.assertEqual(s[2], [3, 4, 5]) self.assert_type(s[2]) self.assertEqual(s[1:], [2, [3, 4, 5]]) self.assert_type(s[1:]) l = [{1, 2}, {2, 3}, {4, 5}] s = self.seq(l) self.assertIsInstance(s[0], set) self.assertEqual(s[0], l[0]) def test_iter(self): l = list(enumerate(self.seq([1, 2, 3]))) e = list(enumerate([1, 2, 3])) self.assertEqual(l, e) l = self.seq([1, 2, 3]) e = [1, 2, 3] result = [] for n in l: result.append(n) self.assertEqual(result, e) self.assert_type(l) def test_contains(self): string = "abcdef" s = self.seq(iter(string)).map(lambda x: x) self.assertTrue("c" in s) def test_add(self): l0 = self.seq([1, 2, 3]).map(lambda x: x) l1 = self.seq([4, 5, 6]) l2 = [4, 5, 6] expect = [1, 2, 3, 4, 5, 6] self.assertEqual(l0 + l1, expect) self.assertEqual(l0 + l2, expect) def test_head(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.head(), 1) l = self.seq([[1, 2], 3, 4]) self.assertEqual(l.head(), [1, 2]) self.assert_type(l.head()) l = self.seq([]) with self.assertRaises(IndexError): l.head() def test_first(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.first(), 1) l = self.seq([[1, 2], 3, 4]).map(lambda x: x) self.assertEqual(l.first(), [1, 2]) self.assert_type(l.first()) l = self.seq([]) with self.assertRaises(IndexError): l.head() def test_head_option(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.head_option(), 1) l = self.seq([[1, 2], 3, 4]).map(lambda x: x) self.assertEqual(l.head_option(), [1, 2]) self.assert_type(l.head_option()) l = self.seq([]) self.assertIsNone(l.head_option()) def test_last(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.last(), 3) l = self.seq([1, 2, [3, 4]]).map(lambda x: x) self.assertEqual(l.last(), [3, 4]) self.assert_type(l.last()) def test_last_option(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.last_option(), 3) l = self.seq([1, 2, [3, 4]]).map(lambda x: x) self.assertEqual(l.last_option(), [3, 4]) self.assert_type(l.last_option()) l = self.seq([]) self.assertIsNone(l.last_option()) def test_init(self): result = self.seq([1, 2, 3, 4]).map(lambda x: x).init() expect = [1, 2, 3] self.assertIteratorEqual(result, expect) def test_tail(self): l = self.seq([1, 2, 3, 4]).map(lambda x: x) expect = [2, 3, 4] self.assertIteratorEqual(l.tail(), expect) def test_inits(self): l = self.seq([1, 2, 3]).map(lambda x: x) expect = [[1, 2, 3], [1, 2], [1], []] self.assertIteratorEqual(l.inits(), expect) self.assertIteratorEqual(l.inits().map(lambda s: s.sum()), [6, 3, 1, 0]) def test_tails(self): l = self.seq([1, 2, 3]).map(lambda x: x) expect = [[1, 2, 3], [2, 3], [3], []] self.assertIteratorEqual(l.tails(), expect) self.assertIteratorEqual(l.tails().map(lambda s: s.sum()), [6, 5, 3, 0]) def test_drop(self): s = self.seq([1, 2, 3, 4, 5, 6]) expect = [5, 6] result = s.drop(4) self.assertIteratorEqual(result, expect) self.assert_type(result) self.assertIteratorEqual(s.drop(0), s) self.assertIteratorEqual(s.drop(-1), s) def test_drop_right(self): s = self.seq([1, 2, 3, 4, 5]).map(lambda x: x) expect = [1, 2, 3] result = s.drop_right(2) self.assert_type(result) self.assertIteratorEqual(result, expect) self.assertIteratorEqual(s.drop_right(0), s) self.assertIteratorEqual(s.drop_right(-1), s) def test_drop_while(self): l = [1, 2, 3, 4, 5, 6, 7, 8] f = lambda x: x < 4 expect = [4, 5, 6, 7, 8] result = self.seq(l).drop_while(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_take(self): s = self.seq([1, 2, 3, 4, 5, 6]) expect = [1, 2, 3, 4] result = s.take(4) self.assertIteratorEqual(result, expect) self.assert_type(result) self.assertIteratorEqual(s.take(0), self.seq([])) self.assertIteratorEqual(s.take(-1), self.seq([])) def test_take_while(self): l = [1, 2, 3, 4, 5, 6, 7, 8] f = lambda x: x < 4 expect = [1, 2, 3] result = self.seq(l).take_while(f) self.assertIteratorEqual(result, expect) self.assert_type(result) def test_union(self): result = self.seq([1, 1, 2, 3, 3]).union([1, 4, 5]) expect = [1, 2, 3, 4, 5] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_intersection(self): result = self.seq([1, 2, 2, 3]).intersection([2, 3, 4, 5]) expect = [2, 3] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_difference(self): result = self.seq([1, 2, 3]).difference([2, 3, 4]) expect = [1] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_symmetric_difference(self): result = self.seq([1, 2, 3, 3]).symmetric_difference([2, 4, 5]) expect = [1, 3, 4, 5] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_map(self): f = lambda x: x * 2 l = [1, 2, 0, 5] expect = [2, 4, 0, 10] result = self.seq(l).map(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_select(self): f = lambda x: x * 2 l = [1, 2, 0, 5] expect = [2, 4, 0, 10] result = self.seq(l).select(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_starmap(self): f = lambda x, y: x * y l = [(1, 1), (0, 3), (-3, 3), (4, 2)] expect = [1, 0, -9, 8] result = self.seq(l).starmap(f) self.assertIteratorEqual(expect, result) self.assert_type(result) result = self.seq(l).smap(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_filter(self): f = lambda x: x > 0 l = [0, -1, 5, 10] expect = [5, 10] s = self.seq(l) result = s.filter(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_where(self): f = lambda x: x > 0 l = [0, -1, 5, 10] expect = [5, 10] s = self.seq(l) result = s.where(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_filter_not(self): f = lambda x: x > 0 l = [0, -1, 5, 10] expect = [0, -1] result = self.seq(l).filter_not(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_map_filter(self): f = lambda x: x > 0 g = lambda x: x * 2 l = [0, -1, 5] s = self.seq(l) expect = [10] result = s.filter(f).map(g) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_reduce(self): f = lambda x, y: x + y l = ["a", "b", "c"] expect = "abc" s = self.seq(l) self.assertEqual(expect, s.reduce(f)) with self.assertRaises(TypeError): seq([]).reduce(f) with self.assertRaises(ValueError): seq([]).reduce(f, 0, 0) self.assertEqual(seq([]).reduce(f, 1), 1) self.assertEqual(seq([0, 2]).reduce(f, 1), 3) def test_accumulate(self): f = lambda x, y: x + y l_char = ["a", "b", "c"] expect_char = ["a", "ab", "abc"] l_num = [1, 2, 3] expect_num = [1, 3, 6] self.assertEqual(seq(l_char).accumulate(), expect_char) self.assertEqual(seq(l_num).accumulate(), expect_num) def test_aggregate(self): f = lambda current, next_element: current + next_element l = self.seq([1, 2, 3, 4]) self.assertEqual(l.aggregate(f), 10) self.assertEqual(l.aggregate(0, f), 10) self.assertEqual(l.aggregate(0, f, lambda x: 2 * x), 20) l = self.seq(["a", "b", "c"]) self.assertEqual(l.aggregate(f), "abc") self.assertEqual(l.aggregate("", f), "abc") self.assertEqual(l.aggregate("", f, lambda x: x.upper()), "ABC") self.assertEqual(l.aggregate(f), "abc") self.assertEqual(l.aggregate("z", f), "zabc") self.assertEqual(l.aggregate("z", f, lambda x: x.upper()), "ZABC") with self.assertRaises(ValueError): l.aggregate() with self.assertRaises(ValueError): l.aggregate(None, None, None, None) def test_fold_left(self): f = lambda current, next_element: current + next_element l = self.seq([1, 2, 3, 4]) self.assertEqual(l.fold_left(0, f), 10) self.assertEqual(l.fold_left(-10, f), 0) l = self.seq(["a", "b", "c"]) self.assertEqual(l.fold_left("", f), "abc") self.assertEqual(l.fold_left("z", f), "zabc") f = lambda x, y: x + [y] self.assertEqual(l.fold_left([], f), ["a", "b", "c"]) self.assertEqual(l.fold_left(["start"], f), ["start", "a", "b", "c"]) def test_fold_right(self): f = lambda next_element, current: current + next_element l = self.seq([1, 2, 3, 4]) self.assertEqual(l.fold_right(0, f), 10) self.assertEqual(l.fold_right(-10, f), 0) l = self.seq(["a", "b", "c"]) self.assertEqual(l.fold_right("", f), "cba") self.assertEqual(l.fold_right("z", f), "zcba") f = lambda next_element, current: current + [next_element] self.assertEqual(l.fold_right([], f), ["c", "b", "a"]) self.assertEqual(l.fold_right(["start"], f), ["start", "c", "b", "a"]) def test_sorted(self): s = self.seq([1, 3, 2, 5, 4]) r = s.sorted() self.assertIteratorEqual([1, 2, 3, 4, 5], r) self.assert_type(r) def test_order_by(self): s = self.seq([(2, "a"), (1, "b"), (4, "c"), (3, "d")]) r = s.order_by(lambda x: x[0]) self.assertIteratorEqual([(1, "b"), (2, "a"), (3, "d"), (4, "c")], r) self.assert_type(r) def test_reverse(self): l = [1, 2, 3] expect = [4, 3, 2] s = self.seq(l).map(lambda x: x + 1) result = s.reverse() self.assertIteratorEqual(expect, result) self.assert_type(result) result = s.__reversed__() self.assertIteratorEqual(expect, result) self.assert_type(result) def test_distinct(self): l = [1, 1, 2, 3, 2, 3] expect = [1, 2, 3] s = self.seq(l) result = s.distinct() for e in result: self.assertTrue(e in expect) result = s.distinct() self.assertEqual(result.size(), len(expect)) self.assert_type(result) def test_distinct_by(self): s = self.seq(Data(1, 2), Data(1, 3), Data(2, 0), Data(3, -1), Data(1, 5)) expect = {Data(1, 2), Data(2, 0), Data(3, -1)} result = s.distinct_by(lambda data: data.x) self.assertSetEqual(set(result), expect) self.assert_type(result) def test_slice(self): s = self.seq([1, 2, 3, 4]) result = s.slice(1, 2) self.assertIteratorEqual(result, [2]) self.assert_type(result) result = s.slice(1, 3) self.assertIteratorEqual(result, [2, 3]) self.assert_type(result) def test_any(self): l = [True, False] self.assertTrue(self.seq(l).any()) def test_all(self): l = [True, False] self.assertFalse(self.seq(l).all()) l = [True, True] self.assertTrue(self.seq(l).all()) def test_enumerate(self): l = [2, 3, 4] e = [(0, 2), (1, 3), (2, 4)] result = self.seq(l).enumerate() self.assertIteratorEqual(result, e) self.assert_type(result) def test_inner_join(self): l0 = [("a", 1), ("b", 2), ("c", 3)] l1 = [("a", 2), ("c", 4), ("d", 5)] result0 = self.seq(l0).inner_join(l1) result1 = self.seq(l0).join(l1, "inner") e = [("a", (1, 2)), ("c", (3, 4))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(e)) self.assertDictEqual(dict(result1), dict(e)) result0 = self.seq(l0).inner_join(self.seq(l1)) result1 = self.seq(l0).join(self.seq(l1), "inner") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(e)) self.assertDictEqual(dict(result1), dict(e)) def test_left_join(self): left = [("a", 1), ("b", 2)] right = [("a", 2), ("c", 3)] result0 = self.seq(left).left_join(right) result1 = self.seq(left).join(right, "left") expect = [("a", (1, 2)), ("b", (2, None))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) result0 = self.seq(left).left_join(self.seq(right)) result1 = self.seq(left).join(self.seq(right), "left") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) def test_right_join(self): left = [("a", 1), ("b", 2)] right = [("a", 2), ("c", 3)] result0 = self.seq(left).right_join(right) result1 = self.seq(left).join(right, "right") expect = [("a", (1, 2)), ("c", (None, 3))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) result0 = self.seq(left).right_join(self.seq(right)) result1 = self.seq(left).join(self.seq(right), "right") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) def test_outer_join(self): left = [("a", 1), ("b", 2)] right = [("a", 2), ("c", 3)] result0 = self.seq(left).outer_join(right) result1 = self.seq(left).join(right, "outer") expect = [("a", (1, 2)), ("b", (2, None)), ("c", (None, 3))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) result0 = self.seq(left).outer_join(self.seq(right)) result1 = self.seq(left).join(self.seq(right), "outer") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) def test_join(self): with self.assertRaises(TypeError): self.seq([(1, 2)]).join([(2, 3)], "").to_list() def test_max(self): l = [1, 2, 3] self.assertEqual(3, self.seq(l).max()) def test_min(self): l = [1, 2, 3] self.assertEqual(1, self.seq(l).min()) def test_max_by(self): l = ["aa", "bbbb", "c", "dd"] self.assertEqual("bbbb", self.seq(l).max_by(len)) def test_min_by(self): l = ["aa", "bbbb", "c", "dd"] self.assertEqual("c", self.seq(l).min_by(len)) def test_find(self): l = [1, 2, 3] f = lambda x: x == 3 g = lambda x: False self.assertEqual(3, self.seq(l).find(f)) self.assertIsNone(self.seq(l).find(g)) def test_flatten(self): l = [[1, 1, 1], [2, 2, 2], [[3, 3], [4, 4]]] expect = [1, 1, 1, 2, 2, 2, [3, 3], [4, 4]] result = self.seq(l).flatten() self.assertIteratorEqual(expect, result) self.assert_type(result) def test_flat_map(self): l = [[1, 1, 1], [2, 2, 2], [3, 3, 3]] f = lambda x: x expect = [1, 1, 1, 2, 2, 2, 3, 3, 3] result = self.seq(l).flat_map(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_group_by(self): l = [(1, 1), (1, 2), (1, 3), (2, 2)] f = lambda x: x[0] expect = {1: [(1, 1), (1, 2), (1, 3)], 2: [(2, 2)]} result = self.seq(l).group_by(f) result_comparison = {} for kv in result: result_comparison[kv[0]] = kv[1] self.assertIteratorEqual(expect, result_comparison) self.assert_type(result) def test_group_by_key(self): l = [("a", 1), ("a", 2), ("a", 3), ("b", -1), ("b", 1), ("c", 10), ("c", 5)] e = {"a": [1, 2, 3], "b": [-1, 1], "c": [10, 5]}.items() result = self.seq(l).group_by_key() self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertIteratorEqual(e0, e1) self.assert_type(result) def test_grouped(self): l = self.seq([1, 2, 3, 4, 5, 6, 7, 8]) expect = [[1, 2], [3, 4], [5, 6], [7, 8]] self.assertIteratorEqual(map(list, l.grouped(2)), expect) expect = [[1, 2, 3], [4, 5, 6], [7, 8]] self.assertIteratorEqual(map(list, l.grouped(3)), expect) def test_grouped_returns_list(self): l = self.seq([1, 2, 3, 4, 5, 6, 7, 8]) self.assertTrue(is_iterable(l.grouped(2))) self.assertTrue(is_iterable(l.grouped(3))) def test_sliding(self): l = self.seq([1, 2, 3, 4, 5, 6, 7]) expect = [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]] self.assertIteratorEqual(l.sliding(2), expect) l = self.seq([1, 2, 3]) expect = [[1, 2], [3]] self.assertIteratorEqual(l.sliding(2, 2), expect) expect = [[1, 2]] self.assertIteratorEqual(l.sliding(2, 3), expect) def test_empty(self): self.assertTrue(self.seq([]).empty()) def test_non_empty(self): self.assertTrue(self.seq([1]).non_empty()) def test_non_zero_bool(self): self.assertTrue(bool(self.seq([1]))) self.assertFalse(bool(self.seq([]))) def test_make_string(self): l = [1, 2, 3] expect1 = "123" expect2 = "1:2:3" s = self.seq(l) self.assertEqual(expect1, s.make_string("")) self.assertEqual(expect2, s.make_string(":")) s = self.seq([]) self.assertEqual("", s.make_string("")) self.assertEqual("", s.make_string(":")) def test_partition(self): l = [-1, -2, -3, 1, 2, 3] e2 = [-1, -2, -3] e1 = [1, 2, 3] f = lambda x: x > 0 s = self.seq(l) p1, p2 = s.partition(f) self.assertIteratorEqual(e1, list(p1)) self.assertIteratorEqual(e2, list(p2)) self.assert_type(p1) self.assert_type(p2) result = self.seq([[1, 2, 3], [4, 5, 6]]).flatten().partition(lambda x: x > 2) expect = [[3, 4, 5, 6], [1, 2]] self.assertIteratorEqual(expect, list(result)) self.assert_type(result) def test_cartesian(self): result = seq.range(3).cartesian(range(3)).list() self.assertListEqual(result, list(product(range(3), range(3)))) result = seq.range(3).cartesian(range(3), range(2)).list() self.assertListEqual(result, list(product(range(3), range(3), range(2)))) result = seq.range(3).cartesian(range(3), range(2), repeat=2).list() self.assertListEqual( result, list(product(range(3), range(3), range(2), repeat=2)) ) def test_product(self): l = [2, 2, 3] self.assertEqual(12, self.seq(l).product()) self.assertEqual(96, self.seq(l).product(lambda x: x * 2)) s = self.seq([]) self.assertEqual(1, s.product()) self.assertEqual(2, s.product(lambda x: x * 2)) s = self.seq([5]) self.assertEqual(5, s.product()) self.assertEqual(10, s.product(lambda x: x * 2)) def test_sum(self): l = [1, 2, 3] self.assertEqual(6, self.seq(l).sum()) self.assertEqual(12, self.seq(l).sum(lambda x: x * 2)) def test_average(self): l = [1, 2] self.assertEqual(1.5, self.seq(l).average()) self.assertEqual(4.5, self.seq(l).average(lambda x: x * 3)) def test_set(self): l = [1, 1, 2, 2, 3] ls = set(l) self.assertIteratorEqual(ls, self.seq(l).set()) def test_zip(self): l1 = [1, 2, 3] l2 = [-1, -2, -3] e = [(1, -1), (2, -2), (3, -3)] result = self.seq(l1).zip(l2) self.assertIteratorEqual(e, result) self.assert_type(result) def test_zip_with_index(self): l = [2, 3, 4] e = [(2, 0), (3, 1), (4, 2)] result = self.seq(l).zip_with_index() self.assertIteratorEqual(result, e) self.assert_type(result) e = [(2, 5), (3, 6), (4, 7)] result = self.seq(l).zip_with_index(5) self.assertIteratorEqual(result, e) self.assert_type(result) def test_to_list(self): l = [1, 2, 3, "abc", {1: 2}, {1, 2, 3}] result = self.seq(l).to_list() self.assertIteratorEqual(result, l) self.assertTrue(isinstance(result, list)) result = self.seq(iter([0, 1, 2])).to_list() self.assertIsInstance(result, list) result = self.seq(l).list(n=2) self.assertEqual(result, [1, 2]) def test_list(self): l = [1, 2, 3, "abc", {1: 2}, {1, 2, 3}] result = self.seq(l).list() self.assertEqual(result, l) self.assertTrue(isinstance(result, list)) result = self.seq(iter([0, 1, 2])).to_list() self.assertIsInstance(result, list) result = self.seq(l).list(n=2) self.assertEqual(result, [1, 2]) def test_for_each(self): l = [1, 2, 3, "abc", {1: 2}, {1, 2, 3}] result = [] def f(e): result.append(e) self.seq(l).for_each(f) self.assertEqual(result, l) def test_exists(self): l = ["aaa", "BBB", "ccc"] self.assertTrue(self.seq(l).exists(str.islower)) self.assertTrue(self.seq(l).exists(str.isupper)) self.assertFalse(self.seq(l).exists(lambda s: "d" in s)) def test_for_all(self): l = ["aaa", "bbb", "ccc"] self.assertTrue(self.seq(l).for_all(str.islower)) self.assertFalse(self.seq(l).for_all(str.isupper)) def test_to_dict(self): l = [(1, 2), (2, 10), (7, 2)] d = {1: 2, 2: 10, 7: 2} result = self.seq(l).to_dict() self.assertDictEqual(result, d) self.assertTrue(isinstance(result, dict)) result = self.seq(l).to_dict(default=lambda: 100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) result = self.seq(l).dict(default=100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) def test_dict(self): l = [(1, 2), (2, 10), (7, 2)] d = {1: 2, 2: 10, 7: 2} result = self.seq(l).dict() self.assertDictEqual(result, d) self.assertTrue(isinstance(result, dict)) result = self.seq(l).dict(default=lambda: 100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) result = self.seq(l).dict(default=100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) def test_reduce_by_key(self): l = [("a", 1), ("a", 2), ("a", 3), ("b", -1), ("b", 1), ("c", 10), ("c", 5)] e = {"a": 6, "b": 0, "c": 15}.items() result = self.seq(l).reduce_by_key(lambda x, y: x + y) self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertEqual(e0, e1) self.assert_type(result) def test_count_by_key(self): l = [ ("a", 1), ("a", 2), ("a", 3), ("b", -1), ("b", 1), ("c", 10), ("c", 5), ("d", 1), ] e = {"a": 3, "b": 2, "c": 2, "d": 1}.items() result = self.seq(l).count_by_key() self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertEqual(e0, e1) self.assert_type(result) def test_count_by_value(self): l = ["a", "a", "a", "b", "b", "c", "d"] e = {"a": 3, "b": 2, "c": 1, "d": 1}.items() result = self.seq(l).count_by_value() self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertEqual(e0, e1) self.assert_type(result) def test_wrap(self): self.assert_type(_wrap([1, 2])) self.assert_type(_wrap((1, 2))) self.assert_not_type(_wrap(1)) self.assert_not_type(_wrap(1.0)) self.assert_not_type(_wrap("test")) self.assert_not_type(_wrap(True)) self.assert_not_type(_wrap(Data(1, 2))) def test_wrap_objects(self): class A(object): a = 1 l = [A(), A(), A()] self.assertIsInstance(_wrap(A()), A) self.assert_type(self.seq(l)) @unittest.skipUnless( pandas_is_installed(), "Skip pandas tests if pandas is not installed" ) def test_wrap_pandas(self): df1 = pandas.DataFrame({"name": ["name1", "name2"], "value": [1, 2]}) df2 = pandas.DataFrame({"name": ["name1", "name2"], "value": [3, 4]}) result = seq([df1, df2]).reduce(lambda x, y: x.append(y)) self.assertEqual(result.len(), 4) self.assertEqual(result[0].to_list(), ["name1", 1]) self.assertEqual(result[1].to_list(), ["name2", 2]) self.assertEqual(result[2].to_list(), ["name1", 3]) self.assertEqual(result[3].to_list(), ["name2", 4]) def test_iterator_consumption(self): sequence = self.seq([1, 2, 3]) first_transform = sequence.map(lambda x: x) second_transform = first_transform.map(lambda x: x) first_list = list(first_transform) second_list = list(second_transform) expect = [1, 2, 3] self.assertIteratorEqual(first_list, expect) self.assertIteratorEqual(second_list, expect) def test_single_call(self): if self.seq is pseq: raise self.skipTest("pseq doesn't support functions with side-effects") counter = [] def counter_func(x): counter.append(1) return x list(self.seq([1, 2, 3, 4]).map(counter_func)) self.assertEqual(len(counter), 4) def test_seq(self): self.assertIteratorEqual(self.seq([1, 2, 3]), [1, 2, 3]) self.assertIteratorEqual(self.seq(1, 2, 3), [1, 2, 3]) self.assertIteratorEqual(self.seq(1), [1]) self.assertIteratorEqual(self.seq(iter([1, 2, 3])), [1, 2, 3]) with self.assertRaises(TypeError): self.seq() def test_lineage_repr(self): s = self.seq(1).map(lambda x: x).filter(lambda x: True) self.assertEqual( repr(s._lineage), "Lineage: sequence -> map(<lambda>) -> filter(<lambda>)" ) def test_cache(self): if self.seq is pseq: raise self.skipTest("pseq doesn't support functions with side-effects") calls = [] func = lambda x: calls.append(x) result = self.seq(1, 2, 3).map(func).cache().map(lambda x: x).to_list() self.assertEqual(len(calls), 3) self.assertEqual(result, [None, None, None]) result = self.seq(1, 2, 3).map(lambda x: x).cache() self.assertEqual( repr(result._lineage), "Lineage: sequence -> map(<lambda>) -> cache" ) result = self.seq(1, 2, 3).map(lambda x: x).cache(delete_lineage=True) self.assertEqual(repr(result._lineage), "Lineage: sequence") def test_tabulate(self): sequence = seq([[1, 2, 3], [4, 5, 6]]) self.assertEqual(sequence.show(), None) self.assertNotEqual(sequence._repr_html_(), None) result = sequence.tabulate() self.assertEqual(result, "- - -\n1 2 3\n4 5 6\n- - -") sequence = seq(1, 2, 3) self.assertEqual(sequence.tabulate(), None) class NotTabulatable(object): pass sequence = seq(NotTabulatable(), NotTabulatable(), NotTabulatable()) self.assertEqual(sequence.tabulate(), None) long_data = seq([(i, i + 1) for i in range(30)]) self.assertTrue("Showing 10 of 30 rows" in long_data.tabulate(n=10)) self.assertTrue("Showing 10 of 30 rows" in long_data._repr_html_()) self.assertTrue( "Showing 10 of 30 rows" not in long_data.tabulate(n=10, tablefmt="plain") ) def test_tabulate_namedtuple(self): sequence_tabulated = seq([Data(1, 2), Data(6, 7)]).tabulate() self.assertEqual(sequence_tabulated, " x y\n--- ---\n 1 2\n 6 7") def test_repr_max_lines(self): sequence = seq.range(200) self.assertEqual(len(repr(sequence)), 395) sequence._max_repr_items = None self.assertEqual(len(repr(sequence)), 890) class TestExtend(unittest.TestCase): def test_custom_functions(self): @extend(aslist=True) def my_zip(it): return zip(it, it) result = seq.range(3).my_zip().list() expected = list(zip(range(3), range(3))) self.assertEqual(result, expected) result = seq.range(3).my_zip().my_zip().list() expected = list(zip(expected, expected)) self.assertEqual(result, expected) @extend def square(it): return [i ** 2 for i in it] result = seq.range(100).square().list() expected = [i ** 2 for i in range(100)] self.assertEqual(result, expected) name = "PARALLEL_SQUARE" @extend(parallel=True, name=name) def square_parallel(it): return [i ** 2 for i in it] result = seq.range(100).square_parallel() self.assertEqual(result.sum(), sum(expected)) self.assertEqual( repr(result._lineage), "Lineage: sequence -> extended[%s]" % name ) @extend def my_filter(it, n=10): return (i for i in it if i > n) # test keyword args result = seq.range(20).my_filter(n=10).list() expected = list(filter(lambda x: x > 10, range(20))) self.assertEqual(result, expected) # test args result = seq.range(20).my_filter(10).list() self.assertEqual(result, expected) # test final @extend(final=True) def toarray(it): return array.array("f", it) result = seq.range(10).toarray() expected = array.array("f", range(10)) self.assertEqual(result, expected) result = seq.range(10).map(lambda x: x ** 2).toarray() expected = array.array("f", [i ** 2 for i in range(10)]) self.assertEqual(result, expected) # a more complex example combining all above @extend() def sum_pair(it): return (i[0] + i[1] for i in it) result = ( seq.range(100).my_filter(85).my_zip().sum_pair().square_parallel().toarray() ) expected = array.array( "f", list( map( lambda x: (x[0] + x[1]) ** 2, map(lambda x: (x, x), filter(lambda x: x > 85, range(100))), ) ), ) self.assertEqual(result, expected) class TestParallelPipeline(TestPipeline): def setUp(self): self.seq = pseq
34.229862
88
0.544711
34,394
0.987029
0
0
1,141
0.032744
0
0
1,316
0.037766
90d42edecd2171b0bdded78b6fa56be73310676a
9,412
py
Python
tests/test_git_commit_one_file.py
mubashshirjamal/code
d9c7adf7efed8e9c1ab3ff8cdeb94e7eb1a45382
[ "BSD-3-Clause" ]
1,582
2015-01-05T02:41:44.000Z
2022-03-30T20:03:22.000Z
tests/test_git_commit_one_file.py
mubashshirjamal/code
d9c7adf7efed8e9c1ab3ff8cdeb94e7eb1a45382
[ "BSD-3-Clause" ]
66
2015-01-23T07:58:04.000Z
2021-11-12T02:23:27.000Z
tests/test_git_commit_one_file.py
mubashshirjamal/code
d9c7adf7efed8e9c1ab3ff8cdeb94e7eb1a45382
[ "BSD-3-Clause" ]
347
2015-01-05T07:47:07.000Z
2021-09-20T21:22:32.000Z
# -*- coding: utf-8 -*- import os from vilya.models.project import CodeDoubanProject from vilya.models import git from tests.base import TestCase from tests.utils import mkdtemp from vilya.libs import gyt from vilya.libs.permdir import get_repo_root class TestGit(TestCase): @property def u(self): return self.addUser() def _path(self, name): return os.path.join(get_repo_root(), '%s.git' % name) def _path_work_tree(self, name): return os.path.join(get_repo_root(), '%s.work_tree' % name) def _repo(self, name, bare=True): git_path = self._path(name) if bare: work_tree_path = None else: work_tree_path = self._path_work_tree(name) if not os.path.exists(work_tree_path): os.mkdir(work_tree_path) try: CodeDoubanProject.create_git_repo(git_path) except: pass repo = git.GitRepo(git_path, work_tree=work_tree_path) return repo def _commit(self, repo, filename, content='testcontent', message='testmessage'): # TODO allow commiting more than one file assert os.path.exists(repo.work_tree), \ "repo.work_tree must exist, check if repo has been created with bare=False" # noqa path = os.path.join(repo.work_tree, filename) dir_ = os.path.dirname(path) if not os.path.exists(dir_): os.makedirs(os.path.dirname(path)) f = open(path, 'w') f.write(content) f.close() rep2 = gyt.repo(repo.path, repo.work_tree, bare=False) rep2.call(['add', filename]) rep2.call(['commit', filename, '-m', message], _env=self.env_for_git) return gyt.repo(repo.path).sha() def test_simple_commit(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') src = repo.get_src('testfile1') assert src == ('blob', u'content1') repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1')) src = repo.get_src('testfile1') assert src == ('blob', u'content1 modified') def test_simple_commit_do_not_delete_other_files(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') self._commit(repo, 'testfile2', 'content2', 'msg2') repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1')) src = repo.get_src('testfile1') assert src == ('blob', u'content1 modified') type_, files = repo.get_src('') assert any(d['path'] == 'testfile2' for d in files), \ "testfile2 should exists in root tree" src = repo.get_src('testfile2') assert src == ('blob', u'content2') def test_commit_in_inner_directory(self): repo = self._repo('test', bare=False) self._commit(repo, 'test/file1', 'content1', 'msg1') src = repo.get_src('test/file1') assert src == ('blob', u'content1') repo.commit_one_file('test/file1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1')) src = repo.get_src('test/file1') assert src == ('blob', u'content1 modified') def test_create_file(self): repo = self._repo('test', bare=False) self._commit(repo, 'file1', 'content1', 'msg1') repo.commit_one_file( 'file2', 'content2 created', 'create1', self.u) assert repo.cat('HEAD:file1') == 'content1' assert repo.cat('HEAD:file2') == 'content2 created' def test_create_first_file(self): repo = self._repo('test', bare=False) repo.commit_one_file( 'file1', 'content1 created', 'create1', self.u) assert repo.cat('HEAD:file1') == 'content1 created' def test_create_first_file_and_more(self): repo = self._repo('test', bare=False) repo.commit_one_file( 'file1', 'content1 created', 'create1', self.u) repo.commit_one_file( 'file2', 'content2 created', 'create2', self.u) repo.commit_one_file( 'file3', 'content3 created', 'create3', self.u) repo.commit_one_file( 'file4', 'content4 created', 'create4', self.u) assert repo.cat('HEAD:file1') == 'content1 created' assert repo.cat('HEAD:file2') == 'content2 created' assert repo.cat('HEAD:file3') == 'content3 created' assert repo.cat('HEAD:file4') == 'content4 created' def test_commit_file_on_dirty_index(self): repo = self._repo('test', bare=False) repo.commit_one_file( 'file1', 'content1 created', 'create1', self.u) repo.commit_one_file( 'file2', 'content2 created', 'create2', self.u) repo.commit_one_file( 'file1', 'content1 modified', 'modify1', self.u) # Now artificially rewind the index tree state repo.call('read-tree HEAD^') repo.commit_one_file( 'file2', 'content2 modified', 'modify2', self.u) # the latest commit should not have anything related to file1 assert 'file1' not in repo.call('log -p -n1') def test_create_file_in_dir(self): repo = self._repo('test', bare=False) self._commit(repo, 'test/file1', 'content1', 'msg1') repo.commit_one_file( 'test/file2', 'content2 created', 'create1', self.u) assert repo.cat('HEAD:test/file1') == 'content1' assert repo.cat('HEAD:test/file2') == 'content2 created' def test_simple_commit_in_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') tmp_branch = repo.temp_branch_name() repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) with mkdtemp() as tmpdir: gyt.call(['git', 'clone', repo.path, tmpdir]) repo_check = gyt.repo(tmpdir, bare=False) src = repo_check.call('show HEAD:testfile1') assert src == u'content1' repo_check.call('checkout master') src = repo_check.call('show HEAD:testfile1') assert src == u'content1' repo_check.call('checkout %s' % tmp_branch) src = repo_check.call('show HEAD:testfile1') assert src == u'content1 modified' repo_check.call('checkout master') src = repo_check.call('show HEAD:testfile1') assert src == u'content1' def test_simple_commit_in_branch_in_subdir(self): repo = self._repo('test', bare=False) self._commit(repo, 'test/file1', 'content1', 'msg1') tmp_branch = repo.temp_branch_name() repo.commit_one_file('test/file1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) with mkdtemp() as tmpdir: gyt.call(['git', 'clone', repo.path, tmpdir]) repo_check = gyt.repo(tmpdir, bare=False) src = repo_check.call('show HEAD:test/file1') assert src == u'content1' repo_check.call('checkout master') src = repo_check.call('show HEAD:test/file1') assert src == u'content1' repo_check.call('checkout %s' % tmp_branch) src = repo_check.call('show HEAD:test/file1') assert src == u'content1 modified' repo_check.call('checkout master') src = repo_check.call('show HEAD:test/file1') assert src == u'content1' def test_simple_commit_in_branch_creates_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') assert repo.get_branches() == ['master'] tmp_branch = repo.temp_branch_name() repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) assert repo.get_branches() == ['master', tmp_branch] def test_simple_commit_in_branch_and_delete_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') tmp_branch = repo.temp_branch_name() repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) assert tmp_branch in repo.get_branches() repo.remove_temp_branch(tmp_branch) assert tmp_branch not in repo.get_branches() assert repo.get_branches() == ['master'] def test_simple_commit_in_another_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') branch = 'mybranch' repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=branch) assert branch in repo.get_branches() assert set(repo.get_branches()) == set(['master', branch])
42.977169
95
0.595516
9,155
0.972694
0
0
56
0.00595
0
0
2,461
0.261475
90d5aacb48382d69453f984a43223f2aa79a4272
11,704
py
Python
py/desitarget/train/data_preparation/PredCountsFromQLF_ClassModule.py
echaussidon/desitarget
1206380dac5155b9e7bf238c7cb187bc797d78a3
[ "BSD-3-Clause" ]
13
2016-02-02T00:26:21.000Z
2022-01-14T07:31:59.000Z
py/desitarget/train/data_preparation/PredCountsFromQLF_ClassModule.py
echaussidon/desitarget
1206380dac5155b9e7bf238c7cb187bc797d78a3
[ "BSD-3-Clause" ]
674
2015-09-15T15:02:06.000Z
2022-02-23T18:39:02.000Z
py/desitarget/train/data_preparation/PredCountsFromQLF_ClassModule.py
echaussidon/desitarget
1206380dac5155b9e7bf238c7cb187bc797d78a3
[ "BSD-3-Clause" ]
29
2015-06-09T13:51:48.000Z
2021-06-05T06:03:18.000Z
#!/usr/bin/env python3 # -*- coding:utf-8 -*- import re import numpy as np from scipy.interpolate import interp2d from scipy.interpolate import interp1d class PredCountsFromQLF_Class(): def __init__(self): self.QLF_OK = False self.EFF_OK = False self.QLF_EFF_OK = False # QLF self.QLF_nz = 0 self.QLF_stepz = 0 # self.QLF_tabz = None self.QLF_zlimit = None self.QLF_nmag = 0 self.QLF_stepmag = 0 self.QLF_tabmag = None self.QLF_maglimit = None self.QLF_dNdzdmag = None self.QLF_Ndzdmag = None # EFF self.EFF_zlimit = None self.EFF_maglimit = None self.EFF_dzdmag = None # QLF_EFF self.QLF_EFF_zlimit = None self.QLF_EFF_maglimit = None self.interpEFF_dzdmag = None self.interpQLF_dNdzdmag = None self.interpQLF_EFF_dNdzdmag = None self.QLF_EFF_dNdz = None self.QLF4Compl_dNdz = None self.Compl_dz = None self.QLF_EFF_dNdmag = None self.QLF4Compl_dNdmag = None self.Compl_dmag = None self.QLF_EFF_dNdzdmag = None self.QLF4Compl_dNdzdmag = None self.Compl_dzdmag = None def LoadQLF_Data(self, fpn_QLF_Data, mMzred=np.array([0., 6.]), skyArea=10000.): # Data loading in "dataStr" dataStr = np.loadtxt(fpn_QLF_Data, dtype=str, delimiter='\n') self.QLF_nz = len(re.findall(r'\d+(?:\.\d+)?', dataStr[0])) - 1 self.QLF_nmag = len(dataStr) # ZRED self.QLF_zlimit = np.linspace(mMzred[0], mMzred[1], self.QLF_nz + 1, endpoint=True) self.QLF_stepz = self.QLF_zlimit[1] - self.QLF_zlimit[0] # self.QLF_tabz = self.QLF_zlimit[0:-1] + self.QLF_stepz / 2. self.QLF_tabmag = np.zeros(self.QLF_nmag) self.QLF_dNdzdmag = np.zeros((self.QLF_nmag + 1, self.QLF_nz + 1)) for nL, line in enumerate(dataStr): dNdzdmag = re.findall(r'\d+(?:\.\d+)?', line) dNdzdmag = np.asarray(dNdzdmag).astype(np.float) self.QLF_tabmag[nL] = dNdzdmag[0] self.QLF_dNdzdmag[nL + 1, 1:] = dNdzdmag[1:] self.QLF_stepmag = self.QLF_tabmag[1] - self.QLF_tabmag[0] # MAG self.QLF_maglimit = np.zeros(self.QLF_nmag + 1) self.QLF_maglimit[0:-1] = self.QLF_tabmag - self.QLF_stepmag / 2. self.QLF_maglimit[-1] = self.QLF_maglimit[-2] + self.QLF_stepmag self.QLF_dNdzdmag /= skyArea self.QLF_Ndzdmag = np.cumsum(np.cumsum( self.QLF_dNdzdmag, axis=0), axis=1) self.QLF_OK = True self.QLF_EFF_OK = False def LoadEffData(self, EFFdata, EFFzlimit, EFFmaglimit): self.EFF_dzdmag = np.copy(EFFdata) self.EFF_zlimit = np.copy(EFFzlimit) self.EFF_maglimit = np.copy(EFFmaglimit) self.EFF_OK = True self.QLF_EFF_OK = False def PrelOpFunc(self): if self.QLF_OK & self.EFF_OK & (not self.QLF_EFF_OK): # QLF_EFF_zlimit self.QLF_EFF_zlimit = np.unique(np.hstack((self.QLF_zlimit, self.EFF_zlimit))) maxQLF_EFF_zlimit = min(float(np.max(self.QLF_zlimit)), float(np.max(self.EFF_zlimit))) minQLF_EFF_zlimit = max(float(np.min(self.QLF_zlimit)), float(np.min(self.EFF_zlimit))) test = (self.QLF_EFF_zlimit >= minQLF_EFF_zlimit) & \ (self.QLF_EFF_zlimit <= maxQLF_EFF_zlimit) self.QLF_EFF_zlimit = self.QLF_EFF_zlimit[test] # QLF_EFFmaglimit self.QLF_EFF_maglimit = np.unique( np.hstack((self.QLF_maglimit, self.EFF_maglimit))) maxQLF_EFF_maglimit = min(float(np.max(self.QLF_maglimit)), float(np.max(self.EFF_maglimit))) minQLF_EFF_maglimit = max(float(np.min(self.QLF_maglimit)), float(np.min(self.EFF_maglimit))) test = (self.QLF_EFF_maglimit >= minQLF_EFF_maglimit) & \ (self.QLF_EFF_maglimit <= maxQLF_EFF_maglimit) self.QLF_EFF_maglimit = self.QLF_EFF_maglimit[test] xnew = self.QLF_EFF_zlimit ynew = self.QLF_EFF_maglimit # EFF x = self.EFF_zlimit.flatten() y = self.EFF_maglimit.flatten() z = self.EFF_dzdmag # ============================================================================== # f2d_EFF = interp2d(x, y, z, kind = 'linear', # copy = True, bounds_error = True) # interpEFF_dzdmag = f2d_EFF(xnew, ynew) # ============================================================================== interpXinds = np.digitize(xnew, x, right=True) - 1 interpXinds = np.maximum(interpXinds, 0) interpYinds = np.digitize(ynew, y, right=True) - 1 interpYinds = np.maximum(interpYinds, 0) interpXYgridInds = np.meshgrid(interpXinds, interpYinds) self.interpEFF_dzdmag = z[interpXYgridInds[1], interpXYgridInds[0]] # QLF x = self.QLF_zlimit.flatten() y = self.QLF_maglimit.flatten() z = self.QLF_Ndzdmag f2d_QLF = interp2d(x, y, z, kind='linear', copy=True, bounds_error=True) interpQLF_Ndzdmag = f2d_QLF(xnew, ynew) interpQLF_dNdzdmag = np.copy(interpQLF_Ndzdmag) interpQLF_dNdzdmag[:, 1:] -= np.copy(interpQLF_dNdzdmag[:, :-1]) interpQLF_dNdzdmag[1:, :] -= np.copy(interpQLF_dNdzdmag[:-1, :]) self.interpQLF_dNdzdmag = interpQLF_dNdzdmag interpQLF_EFF_dNdzdmag = np.zeros(self.interpQLF_dNdzdmag.shape) interpQLF_EFF_dNdzdmag = self.interpEFF_dzdmag * self.interpQLF_dNdzdmag self.interpQLF_EFF_dNdzdmag = interpQLF_EFF_dNdzdmag self.QLF_EFF_OK = True def ZREDComplEvalFunc(self, zlimit): if self.QLF_EFF_OK: xnew = self.QLF_EFF_zlimit assert(np.min(zlimit) >= np.min(xnew)) assert(np.max(zlimit) <= np.max(xnew)) interpQLF_dNdz = np.sum(self.interpQLF_dNdzdmag, axis=0) interpQLF_Ndz = np.cumsum(interpQLF_dNdz) # QLF_EFF dNdz interpQLF_EFF_dNdz = np.sum(self.interpQLF_EFF_dNdzdmag, axis=0) interpQLF_EFF_Ndz = np.cumsum(interpQLF_EFF_dNdz) f1d_QLF_EFF = interp1d(xnew, interpQLF_EFF_Ndz, kind='linear', copy=True, bounds_error=True) f1d_QLF = interp1d(xnew, interpQLF_Ndz, kind='linear', copy=True, bounds_error=True) self.QLF_EFF_dNdz = f1d_QLF_EFF(zlimit) self.QLF_EFF_dNdz[1:] -= np.copy(self.QLF_EFF_dNdz[:-1]) self.QLF4Compl_dNdz = f1d_QLF(zlimit) self.QLF4Compl_dNdz[1:] -= np.copy(self.QLF4Compl_dNdz[:-1]) self.Compl_dz = self.QLF_EFF_dNdz[1:] / self.QLF4Compl_dNdz[1:] self.Compl_dz[np.isnan(self.Compl_dz)] = 0. return self.Compl_dz def RComplEvalFunc(self, maglimit): if self.QLF_EFF_OK: ynew = self.QLF_EFF_maglimit assert(np.min(maglimit) >= np.min(ynew)) assert(np.max(maglimit) <= np.max(ynew)) interpQLF_dNdmag = np.sum(self.interpQLF_dNdzdmag, axis=1) interpQLF_Ndmag = np.cumsum(interpQLF_dNdmag) # QLF_EFF dNdmag interpQLF_EFF_dNdmag = np.sum(self.interpQLF_EFF_dNdzdmag, axis=1) interpQLF_EFF_Ndmag = np.cumsum(interpQLF_EFF_dNdmag) f1d_QLF_EFF = interp1d(ynew, interpQLF_EFF_Ndmag, kind='linear', copy=True, bounds_error=True) f1d_QLF = interp1d(ynew, interpQLF_Ndmag, kind='linear', copy=True, bounds_error=True) self.QLF_EFF_dNdmag = f1d_QLF_EFF(maglimit) self.QLF_EFF_dNdmag[1:] -= np.copy(self.QLF_EFF_dNdmag[:-1]) self.QLF4Compl_dNdmag = f1d_QLF(maglimit) self.QLF4Compl_dNdmag[1:] -= np.copy(self.QLF4Compl_dNdmag[:-1]) self.Compl_dmag = self.QLF_EFF_dNdmag[1:] / self.QLF4Compl_dNdmag[1:] self.Compl_dmag[np.isnan(self.Compl_dmag)] = 0. return self.Compl_dmag def R_ZREDComplEvalFunc(self, zlimit, maglimit): if self.QLF_EFF_OK: xnew = self.QLF_EFF_zlimit assert(np.min(zlimit) >= np.min(xnew)) assert(np.max(zlimit) <= np.max(xnew)) ynew = self.QLF_EFF_maglimit assert(np.min(maglimit) >= np.min(ynew)) assert(np.max(maglimit) <= np.max(ynew)) interpQLF_EFF_Ndzdmag = np.cumsum(np.cumsum(self.interpQLF_EFF_dNdzdmag, axis=0), axis=1) f2d_QLF_EFF = interp2d(xnew, ynew, interpQLF_EFF_Ndzdmag, kind='linear', copy=True, bounds_error=True) QLF_EFF4Compl_Ndzdmag = f2d_QLF_EFF(zlimit, maglimit) QLF_EFF4Compl_dNdzdmag = np.copy(QLF_EFF4Compl_Ndzdmag) QLF_EFF4Compl_dNdzdmag[:, 1:] -= np.copy(QLF_EFF4Compl_dNdzdmag[:, :-1]) QLF_EFF4Compl_dNdzdmag[1:, :] -= np.copy(QLF_EFF4Compl_dNdzdmag[:-1, :]) self.QLF_EFF4Compl_dNdzdmag = QLF_EFF4Compl_dNdzdmag # QLF interpQLF_Ndzdmag = np.cumsum(np.cumsum(self.interpQLF_dNdzdmag, axis=0), axis=1) f2d_QLF = interp2d(xnew, ynew, interpQLF_Ndzdmag, kind='linear', copy=True, bounds_error=True) QLF4Compl_Ndzdmag = f2d_QLF(zlimit, maglimit) QLF4Compl_dNdzdmag = np.copy(QLF4Compl_Ndzdmag) QLF4Compl_dNdzdmag[:, 1:] -= np.copy(QLF4Compl_dNdzdmag[:, :-1]) QLF4Compl_dNdzdmag[1:, :] -= np.copy(QLF4Compl_dNdzdmag[:-1, :]) self.QLF4Compl_dNdzdmag = QLF4Compl_dNdzdmag self.Compl_dzdmag = self.QLF_EFF4Compl_dNdzdmag[1:, 1:] / self.QLF4Compl_dNdzdmag[1:, 1:] self.Compl_dzdmag[np.isnan(self.Compl_dzdmag)] = 0. return self.Compl_dzdmag def R_ZRED_EffVarEvalFunc(self, OBJ_QSO_dNdzdmag): self.EffVar4Compl_dzdmag = None self.Eff4Compl_dzdmag = np.copy(self.Compl_dzdmag) if True: self.EffVar4Compl_dzdmag = self.Eff4Compl_dzdmag * (1. - self.Eff4Compl_dzdmag) self.EffVar4Compl_dzdmag /= OBJ_QSO_dNdzdmag self.EffVar4Compl_dzdmag[OBJ_QSO_dNdzdmag == 0.] = 0. else: self.Count4Complt_Ndzdmag = self.Eff4Compl_dzdmag * OBJ_QSO_dNdzdmag self.EffVar4Compl_dzdmag = OBJ_QSO_dNdzdmag - self.Count4Complt_Ndzdmag + 1. self.EffVar4Compl_dzdmag *= self.Count4Complt_Ndzdmag + 1. self.EffVar4Compl_dzdmag /= (OBJ_QSO_dNdzdmag + 2)**2 * (OBJ_QSO_dNdzdmag + 3) self.EffVar4Compl_dzdmag[OBJ_QSO_dNdzdmag == 0.] = 0. return self.EffVar4Compl_dzdmag def ZRED_EffVarEvalFunc(self): self.EffVar4Compl_dz = self.EffVar4Compl_dzdmag * (self.QLF4Compl_dNdzdmag[1:, 1:])**2 self.EffVar4Compl_dz = np.sum(self.EffVar4Compl_dz, axis=0) tmp_var = np.sum(self.QLF4Compl_dNdzdmag[1:, 1:], axis=0)**2 self.EffVar4Compl_dz /= tmp_var self.EffVar4Compl_dz[tmp_var == 0.] = 0. return self.EffVar4Compl_dz def R_EffVarEvalFunc(self): self.EffVar4Compl_dmag = self.EffVar4Compl_dzdmag * (self.QLF4Compl_dNdzdmag[1:, 1:])**2 self.EffVar4Compl_dmag = np.sum(self.EffVar4Compl_dmag, axis=1) tmp_var = np.sum(self.QLF4Compl_dNdzdmag[1:, 1:], axis=1)**2 self.EffVar4Compl_dmag /= tmp_var self.EffVar4Compl_dmag[tmp_var == 0.] = 0. return self.EffVar4Compl_dmag
38.5
114
0.605092
11,547
0.986586
0
0
0
0
0
0
691
0.05904
90d6fa60d16e379bff07b720da304a90340377ce
1,135
py
Python
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
e9086e102663a60a66f2cc9c8cd7610888744056
[ "MIT" ]
null
null
null
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
e9086e102663a60a66f2cc9c8cd7610888744056
[ "MIT" ]
null
null
null
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
e9086e102663a60a66f2cc9c8cd7610888744056
[ "MIT" ]
null
null
null
"""Register controllers. """ from safe_control_gym.utils.registration import register register(id="mpc", entry_point="safe_control_gym.controllers.mpc.mpc:MPC", config_entry_point="safe_control_gym.controllers.mpc:mpc.yaml") register(id="linear_mpc", entry_point="safe_control_gym.controllers.mpc.linear_mpc:LinearMPC", config_entry_point="safe_control_gym.controllers.mpc:linear_mpc.yaml") register(id="gp_mpc", entry_point="safe_control_gym.controllers.mpc.gp_mpc:GPMPC", config_entry_point="safe_control_gym.controllers.mpc:gp_mpc.yaml") register(id="mpsc", entry_point="safe_control_gym.controllers.mpsc.mpsc:MPSC", config_entry_point="safe_control_gym.controllers.mpsc:mpsc.yaml") register(id="ppo", entry_point="safe_control_gym.controllers.ppo.ppo:PPO", config_entry_point="safe_control_gym.controllers.ppo:ppo.yaml") register(id="safe_explorer_ppo", entry_point="safe_control_gym.controllers.safe_explorer.safe_ppo:SafeExplorerPPO", config_entry_point="safe_control_gym.controllers.safe_explorer:safe_ppo.yaml")
39.137931
91
0.757709
0
0
0
0
0
0
0
0
669
0.589427
90d7c582c62cd57d3012bffede812a95aec2d89a
378
py
Python
tests/plot_profile/test_utils.py
mizeller/plot_profile
832f1d47a182d65747f18cf1ac90afc9a3b821c1
[ "MIT" ]
null
null
null
tests/plot_profile/test_utils.py
mizeller/plot_profile
832f1d47a182d65747f18cf1ac90afc9a3b821c1
[ "MIT" ]
3
2021-11-10T15:37:27.000Z
2022-03-28T13:29:42.000Z
tests/plot_profile/test_utils.py
MeteoSwiss-APN/plot_profile
832f1d47a182d65747f18cf1ac90afc9a3b821c1
[ "MIT" ]
null
null
null
"""Test module ``plot_profile/utils.py``.""" # Standard library import logging # First-party from plot_profile.utils import count_to_log_level def test_count_to_log_level(): assert count_to_log_level(0) == logging.ERROR assert count_to_log_level(1) == logging.WARNING assert count_to_log_level(2) == logging.INFO assert count_to_log_level(3) == logging.DEBUG
27
51
0.759259
0
0
0
0
0
0
0
0
75
0.198413
90d92df312eb9bb3199567f0c02a6aff1611d818
1,116
py
Python
spider/utilities/util_config.py
YunofHD/PSpider
c1c9e1e7c61365e140a55541cc558d7c1b9e50f2
[ "BSD-2-Clause" ]
null
null
null
spider/utilities/util_config.py
YunofHD/PSpider
c1c9e1e7c61365e140a55541cc558d7c1b9e50f2
[ "BSD-2-Clause" ]
null
null
null
spider/utilities/util_config.py
YunofHD/PSpider
c1c9e1e7c61365e140a55541cc558d7c1b9e50f2
[ "BSD-2-Clause" ]
null
null
null
# _*_ coding: utf-8 _*_ """ util_config.py by xianhu """ __all__ = [ "CONFIG_FETCH_MESSAGE", "CONFIG_PARSE_MESSAGE", "CONFIG_MESSAGE_PATTERN", "CONFIG_URL_LEGAL_PATTERN", "CONFIG_URL_ILLEGAL_PATTERN", ] # define the structure of message, used in Fetcher and Parser CONFIG_FETCH_MESSAGE = "priority=%s, keys=%s, deep=%s, repeat=%s, url=%s" CONFIG_PARSE_MESSAGE = "priority=%s, keys=%s, deep=%s, url=%s" CONFIG_MESSAGE_PATTERN = r"priority=(?P<priority>\d+),\s*keys=(?P<keys>.+?),\s*deep=(?P<deep>\d+),\s*(repeat=(?P<repeat>\d+),\s*)?url=(?P<url>.+)$" # define url_legal_pattern and url_illegal_pattern CONFIG_URL_LEGAL_PATTERN = r"^https?:[^\s]+?\.[^\s]+?" CONFIG_URL_ILLEGAL_PATTERN = r"\.(cab|iso|zip|rar|tar|gz|bz2|7z|tgz|apk|exe|app|pkg|bmg|rpm|deb|dmg|jar|jad|bin|msi|" \ "pdf|doc|docx|xls|xlsx|ppt|pptx|txt|md|odf|odt|rtf|py|java|c|cc|js|css|log|csv|tsv|" \ "jpg|jpeg|png|gif|bmp|xpm|xbm|ico|drm|dxf|eps|psd|pcd|pcx|tif|tiff|" \ "mp3|mp4|swf|mkv|avi|flv|mov|wmv|wma|3gp|mpg|mpeg|mp4a|wav|ogg|rmvb)$"
42.923077
147
0.634409
0
0
0
0
0
0
0
0
836
0.749104
90d9a5726836680355d0f136ca02e9d3ff263f57
1,087
py
Python
modcma/__main__.py
IOHprofiler/ModularCMAES
5ae3310d68b7e2bc37ef10de07945e89c16d6654
[ "MIT" ]
2
2021-04-08T06:16:21.000Z
2022-01-25T18:18:51.000Z
modcma/__main__.py
IOHprofiler/ModularCMAES
5ae3310d68b7e2bc37ef10de07945e89c16d6654
[ "MIT" ]
3
2020-11-16T15:24:53.000Z
2021-11-10T10:27:50.000Z
modcma/__main__.py
IOHprofiler/ModularCMAES
5ae3310d68b7e2bc37ef10de07945e89c16d6654
[ "MIT" ]
2
2021-01-13T15:36:46.000Z
2021-04-08T06:24:25.000Z
"""Allows the user to call the library as a cli-module.""" from argparse import ArgumentParser from .modularcmaes import evaluate_bbob parser = ArgumentParser(description="Run single function CMAES") parser.add_argument( "-f", "--fid", type=int, help="bbob function id", required=False, default=5 ) parser.add_argument( "-d", "--dim", type=int, help="dimension", required=False, default=5 ) parser.add_argument( "-i", "--iterations", type=int, help="number of iterations per agent", required=False, default=50, ) parser.add_argument( "-l", "--logging", required=False, action="store_true", default=False ) parser.add_argument("-L", "--label", type=str, required=False, default="") parser.add_argument("-s", "--seed", type=int, required=False, default=42) parser.add_argument("-p", "--data_folder", type=str, required=False) parser.add_argument("-a", "--arguments", nargs="+", required=False) args = vars(parser.parse_args()) for arg in args.pop("arguments") or []: # pylint: disable=exec-used exec(arg, None, args) evaluate_bbob(**args)
29.378378
79
0.689052
0
0
0
0
0
0
0
0
317
0.291628
90da83a21ced32c3bda1f81dfc548d05d09d8656
7,303
py
Python
src/rto/optimization/solvers/de.py
vicrsp/rto
e9e0b87533ae6bc5e6ad228bb26172384802f9b7
[ "MIT" ]
null
null
null
src/rto/optimization/solvers/de.py
vicrsp/rto
e9e0b87533ae6bc5e6ad228bb26172384802f9b7
[ "MIT" ]
17
2020-10-24T18:03:54.000Z
2020-11-11T22:25:16.000Z
src/rto/optimization/solvers/de.py
vicrsp/rto
e9e0b87533ae6bc5e6ad228bb26172384802f9b7
[ "MIT" ]
null
null
null
import numpy as np class DifferentialEvolution: def __init__(self, lb, ub, mutation_prob=0.5, pop_size=10, max_generations=100, de_type='rand/1/bin', callback=None): self.lb = np.asarray(lb).reshape(1, -1) self.ub = np.asarray(ub).reshape(1, -1) self.population_size = pop_size self.max_generations = max_generations self.num_variables = len(lb) self.mutation_prob = mutation_prob self.callback = callback self.base, self.d, self.rec = de_type.split('/') self.norm_lb = self.normalize(self.lb).flatten() self.norm_ub = self.normalize(self.ub).flatten() self.reset() def reset(self): self.fobj_evals = 0 self.population_fobj = [] self.best_objective = np.Infinity self.best_solution = [] def normalize(self, x): norm_x = np.zeros_like(x) for i in range(x.shape[0]): norm_x[i, :] = 100 * (x[i] - self.lb) / (self.ub - self.lb) return norm_x def denormalize(self, x): xr = x.reshape(-1, self.num_variables) denorm_x = np.zeros_like(xr) for i in range(xr.shape[0]): denorm_x[i, :] = xr[i] * (self.ub - self.lb) / 100 + self.lb return denorm_x def initialize_population(self): pop_size = (self.population_size, self.num_variables) self.population = np.random.uniform( low=self.norm_lb, high=self.norm_ub, size=pop_size) self.initial_population = self.population def evaluate_population_cost(self, population): pop_fobj = [] pop_g = [] # Calculating the fitness value of each solution in the current population. for sol in population: cost, g = self.eval_objective(sol) if((cost < self.best_objective) & (not np.any(g > 0))): self.best_objective = cost self.best_solution = sol pop_fobj.append(cost) pop_g.append(g) pop_fobj = np.array(pop_fobj) pop_g = np.asarray(pop_g) self.fobj_evals = self.fobj_evals + pop_fobj.shape[0] self.population_fobj = pop_fobj self.population_g = pop_g if(self.callback != None): self.callback(self.denormalize(population), pop_fobj, pop_g) return pop_fobj, pop_g def select_base_vector(self, population, cost): if(self.base == 'rand'): r1 = np.random.randint(0, self.population_size) return r1, population[r1] elif(self.base == 'mean'): return None, np.mean(population, axis=0) elif(self.base == 'best'): best_idx = np.argmin(cost) return None, population[best_idx] else: raise ValueError('Base={} is not implemented!'.format(self.base)) def select_difference_vector(self, r1, population): if(self.d == "1"): r2 = np.random.randint(0, self.population_size) if(r1 != None): while(r2 == r1): r2 = np.random.randint(0, self.population_size) r3 = np.random.randint(0, self.population_size) if(r1 != None): while(r3 == r1 | r3 == r2): r3 = np.random.randint(0, self.population_size) return population[r2] - population[r3] else: raise ValueError( 'd={} is not implemented!'.format(self.d)) def select_scale_factor(self): return np.random.rand() * 0.5 + 0.5 # U(0.5, 1.0) def mutate(self, target, scale_factor, difference): return target + scale_factor * difference def recombine(self, v, x): if (self.rec == "bin"): u_i = [] for i, v_i in enumerate(v): u_j = [] delta = np.random.randint(0, self.num_variables) for j in range(self.num_variables): randnum = np.random.rand() if((randnum <= self.mutation_prob) | (j == delta)): u_j.append(v_i[j]) else: u_j.append(x[i, j]) u_i.append(u_j) return np.asarray(u_i) else: raise ValueError( 'Recombination={} is not implemented!'.format(self.rec)) def validate_bounds(self, x): xc = [] for i, value in enumerate(x): if((value < self.norm_lb[i]) | (value > self.norm_ub[i])): # replace the variable by a random value inside the bounds xc.append(np.random.rand() * (self.norm_ub[i] - self.norm_lb[i]) + self.norm_lb[i]) else: xc.append(value) return np.asarray(xc) def eval_objective(self, x): cost, g = self.fobj(self.denormalize(x).flatten()) return cost, np.asarray(g) def select_survivors(self, u, x, fx, gx): survivors = [] for i in range(self.population_size): u_i = self.validate_bounds(u[i]) gx_i = gx[i] fx_i = fx[i] fu, gu = self.eval_objective(u_i) is_valid = (fu <= fx_i) # only use the rule for restricted problems if(len(gu) > 0): rule1 = np.all(gu <= 0) & np.all(gx_i <= 0) & (fu <= fx_i) rule2 = np.all(gu <= 0) & np.any(gx_i > 0) rule3 = np.any(gu > 0) & np.all(np.maximum(gu, np.zeros_like( gu)) <= np.maximum(gx_i, np.zeros_like(gx_i))) is_valid = rule1 | rule2 | rule3 if(is_valid): survivors.append(u_i) else: survivors.append(x[i]) return np.asarray(survivors) def run(self, func, debug=False): self.reset() self.fobj = func self.initialize_population() for i in range(self.max_generations): fobj, g = self.evaluate_population_cost(self.population) v = [] # use penalization for base vector selection only # fobj_penalized = fobj + 1000 * np.maximum(np.zeros(self.population_size), np.max(np.asarray(g), axis=1)) for _ in range(self.population_size): r1, base = self.select_base_vector(self.population, None) difference = self.select_difference_vector(r1, self.population) scale_factor = self.select_scale_factor() v.append(self.mutate(base, scale_factor, difference)) v = np.asarray(v) u = self.recombine(v, self.population) self.population = self.select_survivors( u, self.population, fobj, g) # if(debug == True): # print('Progress: {:.2f}%'.format( # 100 * i / self.max_generations)) if((debug == True) & (self.best_objective != np.Infinity)): print('Best fobj: {}'.format(self.best_objective)) # print('Best sol: {}'.format( # self.denormalize(self.best_solution))) if(self.best_objective != np.Infinity): return self.best_objective, self.denormalize(self.best_solution).flatten() else: return np.Infinity, None
37.451282
121
0.546899
7,281
0.996988
0
0
0
0
0
0
668
0.091469
90db629f11aa0043b43ed88cb2e40c8fc351233e
2,122
py
Python
openmdao/matrices/csr_matrix.py
onodip/OpenMDAO
96a99806fb3a547b881d2ad3da2733bca9978567
[ "Apache-2.0" ]
null
null
null
openmdao/matrices/csr_matrix.py
onodip/OpenMDAO
96a99806fb3a547b881d2ad3da2733bca9978567
[ "Apache-2.0" ]
null
null
null
openmdao/matrices/csr_matrix.py
onodip/OpenMDAO
96a99806fb3a547b881d2ad3da2733bca9978567
[ "Apache-2.0" ]
null
null
null
"""Define the CSRmatrix class.""" import numpy as np from scipy.sparse import coo_matrix from six import iteritems from openmdao.matrices.coo_matrix import COOMatrix class CSRMatrix(COOMatrix): """ Sparse matrix in Compressed Row Storage format. """ def _build(self, num_rows, num_cols): """ Allocate the matrix. Parameters ---------- num_rows : int number of rows in the matrix. num_cols : int number of cols in the matrix. """ data, rows, cols = self._build_sparse(num_rows, num_cols) # get a set of indices that sorts into row major order srtidxs = np.lexsort((cols, rows)) data = data[srtidxs] rows = rows[srtidxs] cols = cols[srtidxs] # now sort these back into ascending order (our original stacked order) # so in _update_submat() we can just extract the individual index # arrays that will map each block into the combined data array. revidxs = np.argsort(srtidxs) metadata = self._metadata for key, (ind1, ind2, idxs, jac_type, factor) in iteritems(metadata): if idxs is None: metadata[key] = (revidxs[ind1:ind2], jac_type, factor) else: # apply the reverse index to each part of revidxs so that # we can avoid copying the index array during updates. metadata[key] = (revidxs[ind1:ind2][np.argsort(idxs)], jac_type, factor) # data array for the CSR will be the same as for the COO since # it was already in sorted order. coo = coo_matrix((data, (rows, cols)), shape=(num_rows, num_cols)) coo_data_size = coo.data.size self._matrix = coo.tocsr() # make sure data size is the same between coo and csr, else indexing is # messed up if coo_data_size != self._matrix.data.size: raise ValueError("CSR matrix data contains duplicate row/col entries. " "This would break internal indexing.")
34.786885
83
0.60132
1,951
0.919416
0
0
0
0
0
0
941
0.44345
90decc71935f62f946a40921c43b3f8580f075de
2,398
py
Python
setup.py
medchemfi/sdfconf
81b1ed383c1d4b3e633fdc555e4027091226b025
[ "MIT" ]
6
2021-12-27T07:55:16.000Z
2022-01-26T04:36:53.000Z
setup.py
medchemfi/sdfconf
81b1ed383c1d4b3e633fdc555e4027091226b025
[ "MIT" ]
null
null
null
setup.py
medchemfi/sdfconf
81b1ed383c1d4b3e633fdc555e4027091226b025
[ "MIT" ]
3
2022-01-06T13:54:48.000Z
2022-01-26T04:36:54.000Z
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import re import os def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() with open("src/sdfconf/_version.py", "rt") as vf: VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]" for line in vf: mo = re.search(VSRE, line, re.M) if mo: verstr = mo.group(1) break if not mo: raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,)) setup(name = 'sdfconf', version = verstr, description = ("Diverse manipulation and analysis tool for .sdf files."), long_description = read('README.rst'), install_requires = ['numpy>=1.7.1','matplotlib>=1.4.2'], author = 'Sakari Lätti', author_email = '[email protected]', maintainer = 'Sakari Lätti', maintainer_email = '[email protected]', packages = ['sdfconf'], package_dir = {'sdfconf':'src/sdfconf'}, keywords = 'sdf mol2 conformation analyze histogram', url = 'http://users.jyu.fi/~pentikai/', license = 'MIT/expat', entry_points = {'console_scripts': ['sdfconf = sdfconf.runner:main'], 'setuptools.installation': ['eggsecutable = sdfconf.runner:main',], }, classifiers= ['Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', #'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Chemistry' , 'Topic :: Software Development :: Libraries', ], ##FIXME #''' #package_data = { # 'sample':['sample_data.sdf'] # }, #''' )
42.821429
97
0.470809
0
0
0
0
0
0
0
0
1,025
0.427083
90df7ee581fbe2b55cfc18df37ae0baf763d0554
2,453
py
Python
stacks/cognito_stack.py
adamdubey/devops-serverless-app-aws-cdk
3e1ba3f9905c4f8469275e51448fb908b64a736a
[ "MIT" ]
null
null
null
stacks/cognito_stack.py
adamdubey/devops-serverless-app-aws-cdk
3e1ba3f9905c4f8469275e51448fb908b64a736a
[ "MIT" ]
null
null
null
stacks/cognito_stack.py
adamdubey/devops-serverless-app-aws-cdk
3e1ba3f9905c4f8469275e51448fb908b64a736a
[ "MIT" ]
null
null
null
from aws_cdk import ( aws_cognito as cognito, aws_iam as iam, aws_ssm as ssm, core ) class CognitoStack(core.Stack): def __init__(self, scope: core.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) prj_name = self.node.try_get_context("project_name") env_name = self.node.try_get_context("env") user_pool = cognito.CfnUserPool(self, 'cognitouserpool', auto_verified_attributes = [ 'email' ], username_attributes = [ 'email', 'phone_number' ], user_pool_name = prj_name + '-user-pool', schema = [ { 'attributeDataType': 'String', 'name': 'param1', 'mutable': True } ], policies = cognito.CfnUserPool.PoliciesProperty( password_policy = cognito.CfnUserPool.PasswordPolicyProperty( minimum_length = 10, require_lowercase = True, require_numbers = True, require_symbols = False, require_uppercase = True ) ) ) user_pool_client = cognito.CfnUserPoolClient(self, 'pool-client', user_pool_id = user_pool.ref, client_name = env_name + '-app-client' ) identity_pool = cognito.CfnIdentityPool(self, 'identity-pool', allow_unauthenticated_identities = False, cognito_identity_providers = [ cognito.CfnIdentityPool.CognitoIdentityProviderProperty( client_id = user_pool_client.ref, provider_name = user_pool.attr_provider_name ) ], identity_pool_name = prj_name + '-identity-pool' ) ssm.StringParameter(self, 'app-id', parameter_name = '/' + env_name + '/cognito-app-client-id', string_value = user_pool_client.ref ) ssm.StringParameter(self, 'user-pool-id', parameter_name = '/' + env_name + '/cognito-user-pool-id', string_value = user_pool_client.user_pool_id ) ssm.StringParameter(self, 'identity-pool-id', parameter_name = '/' + env_name + '/cognito-identity-pool-id', string_value = identity_pool.ref )
34.069444
77
0.538932
2,350
0.958011
0
0
0
0
0
0
306
0.124745
90dfa79ebe79555eaeba7589bba91bb7586ad592
3,570
py
Python
cloudrail/knowledge/rules/aws/context_aware/s3_bucket_policy_vpc_endpoint_rule.py
my-devops-info/cloudrail-knowledge
b7c1bbd6fe1faeb79c105a01c0debbe24d031a0e
[ "MIT" ]
null
null
null
cloudrail/knowledge/rules/aws/context_aware/s3_bucket_policy_vpc_endpoint_rule.py
my-devops-info/cloudrail-knowledge
b7c1bbd6fe1faeb79c105a01c0debbe24d031a0e
[ "MIT" ]
null
null
null
cloudrail/knowledge/rules/aws/context_aware/s3_bucket_policy_vpc_endpoint_rule.py
my-devops-info/cloudrail-knowledge
b7c1bbd6fe1faeb79c105a01c0debbe24d031a0e
[ "MIT" ]
null
null
null
from typing import Dict, List from cloudrail.knowledge.context.aws.iam.policy import S3Policy from cloudrail.knowledge.context.aws.iam.policy_statement import StatementEffect from cloudrail.knowledge.context.aws.s3.s3_bucket import S3Bucket from cloudrail.knowledge.context.aws.ec2.vpc import Vpc from cloudrail.knowledge.context.aws.ec2.vpc_endpoint import VpcEndpoint from cloudrail.knowledge.context.aws.aws_environment_context import AwsEnvironmentContext from cloudrail.knowledge.rules.aws.aws_base_rule import AwsBaseRule from cloudrail.knowledge.rules.base_rule import Issue from cloudrail.knowledge.rules.rule_parameters.base_paramerter import ParameterType class S3BucketPolicyVpcEndpointRule(AwsBaseRule): def execute(self, env_context: AwsEnvironmentContext, parameters: Dict[ParameterType, any]) -> List[Issue]: issues_list: List[Issue] = [] vpc_to_buckets_map: Dict[Vpc, List[S3Bucket]] = self._create_vpc_to_buckets_map(env_context) for vpc, bucket_list in vpc_to_buckets_map.items(): for s3_vpce in self._filter_by_service_name(vpc): for bucket in bucket_list: if bucket.resource_based_policy is None or \ not self._is_restrict_to_s3_vpce(bucket.resource_based_policy, s3_vpce): issues_list.append(Issue(f"~{bucket.get_type()}~. `{bucket.get_friendly_name()}` is accessible via" f" VPC endpoint `{s3_vpce.get_friendly_name()}`. " f"~in VPC~. `{vpc.get_friendly_name()}` " f"with a policy that is not restricting requests sourced from" f" a VPC Endpoint.", bucket, bucket)) return issues_list def get_id(self) -> str: return "s3_bucket_policy_vpce" @staticmethod def _create_vpc_to_buckets_map(env_context: AwsEnvironmentContext) -> Dict[Vpc, List[S3Bucket]]: region_to_buckets_map: Dict[str, List[S3Bucket]] = {} vpc_to_buckets_map: Dict[Vpc, List[S3Bucket]] = {} for bucket in env_context.s3_buckets: if not bucket.is_public: if bucket.region not in region_to_buckets_map: region_to_buckets_map[bucket.region] = [] region_to_buckets_map[bucket.region].append(bucket) for vpc in env_context.vpcs.values(): if vpc.region in region_to_buckets_map: vpc_to_buckets_map[vpc] = region_to_buckets_map[vpc.region] return vpc_to_buckets_map @staticmethod def _is_restrict_to_s3_vpce(policy: S3Policy, s3_vpce: VpcEndpoint) -> bool: for statement in policy.statements: expected_operator_prefix: str = "String" if statement.effect == StatementEffect.ALLOW else "StringNot" for condition_block in statement.condition_block: if condition_block.operator.startswith(expected_operator_prefix) and \ condition_block.key == "aws:SourceVpce" and \ s3_vpce.vpce_id in condition_block.values: return True return False @staticmethod def _filter_by_service_name(vpc: Vpc, service_name: str = "s3"): return [s3_vpce for s3_vpce in vpc.endpoints if s3_vpce.service_name.endswith(f".{service_name}")] def should_run_rule(self, environment_context: AwsEnvironmentContext) -> bool: return bool(environment_context.s3_buckets)
51.73913
123
0.671989
2,900
0.812325
0
0
1,503
0.421008
0
0
326
0.091317
90e09e247242d171d4b02ca536f204cbdf79e682
2,034
py
Python
src/gluonts/core/serde/_json.py
PascalIversen/gluon-ts
cb6b5145b94f942f7803383a70813363f6953509
[ "Apache-2.0" ]
1
2020-11-30T18:05:24.000Z
2020-11-30T18:05:24.000Z
src/gluonts/core/serde/_json.py
PascalIversen/gluon-ts
cb6b5145b94f942f7803383a70813363f6953509
[ "Apache-2.0" ]
null
null
null
src/gluonts/core/serde/_json.py
PascalIversen/gluon-ts
cb6b5145b94f942f7803383a70813363f6953509
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ JSON Serialization/Deserialization ---------------------------------- The canonical way to do this is to define and `default` and `object_hook` parameters to the json.dumps and json.loads methods. Unfortunately, due to https://bugs.python.org/issue12657 this is not possible at the moment, as support for custom NamedTuple serialization is broken. To circumvent the issue, we pass the input value through custom encode and decode functions that map nested object terms to JSON-serializable data structures with explicit recursion. """ import json from typing import Any, Optional from ._base import encode, decode def dump_json(o: Any, indent: Optional[int] = None) -> str: """ Serializes an object to a JSON string. Parameters ---------- o The object to serialize. indent An optional number of spaced to use as an indent. Returns ------- str A string representing the object in JSON format. See Also -------- load_json Inverse function. """ return json.dumps(encode(o), indent=indent, sort_keys=True) def load_json(s: str) -> Any: """ Deserializes an object from a JSON string. Parameters ---------- s A string representing the object in JSON format. Returns ------- Any The deserialized object. See Also -------- dump_json Inverse function. """ return decode(json.loads(s))
26.076923
75
0.67355
0
0
0
0
0
0
0
0
1,738
0.854474
90e1d06ca5448614066727df6e46a00f224d0fe4
36,937
py
Python
run.py
Aisbergg/docker-image-arch-aur-makepkg
26b7fed14838f52560c8fd4ba222c1c3d41ce00d
[ "MIT" ]
7
2017-07-24T15:19:29.000Z
2018-11-18T21:59:13.000Z
run.py
Aisbergg/docker-image-arch-aur-makepkg
26b7fed14838f52560c8fd4ba222c1c3d41ce00d
[ "MIT" ]
1
2018-06-12T10:30:23.000Z
2018-06-12T15:54:01.000Z
run.py
Aisbergg/docker-image-arch-aur-makepkg
26b7fed14838f52560c8fd4ba222c1c3d41ce00d
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import argparse import os import sys import re import shutil import tempfile import pwd import grp import tarfile import time import glob import urllib.request from subprocess import Popen, PIPE import aur import pacman local_source_dir = '/makepkg/local_src' build_dir = os.path.abspath('/makepkg/build') pacman_cache_dir = '/var/cache/pacman/pkg' accepted_architectures = ['any', 'x86_64', 'i686'] packages_in_cache = None packages_in_offical_repositories = None class ConsoleColors: blue = '\033[94m' green = '\033[92m' red = '\033[91m' yellow = '\033[93m' reset = '\033[0m' class InvalidPackageSourceError(Exception): """Invalid package source exception. Args: message (str): Message passed with the exception """ def __init__(self, message): super().__init__(message) class NoSuchPackageError(Exception): """No such package exception. Args: message (str): Message passed with the exception """ def __init__(self, message): super().__init__(message) def printInfo(message): """Print a colorful info message. Args: message (str): Message to be printed """ print(ConsoleColors.blue + message + ConsoleColors.reset) def printSuccessfull(message): """Print a colorful successfull message. Args: message (str): Message to be printed """ print(ConsoleColors.green + message + ConsoleColors.reset) def printWarning(message): """Print a colorful warning message. Args: message (str): Message to be printed """ print(ConsoleColors.yellow + message + ConsoleColors.reset) def printError(message): """Print a colorful error message. Args: message (str): Message to be printed """ print(ConsoleColors.red + message + ConsoleColors.reset) class PackageRepository: """Represents an enum of all package repositories.""" CORE = "core" EXTRA = "extra" COMMUNITY = "community" MULTILIB = "multilib" AUR = "aur" LOCAL = "local" class PackageBase: """Base class for pacman packages and their sources. Args: name (str): Name of the Arch Linux package """ name = None version = None architecture = None repository = None dependencies = [] license = None # is a cached version of this package available # 0: not available # 1: different version(s) available # 2: same version available cache_available = 0 # True if this package needs to be installed before a dependent package can # be build is_make_dependency = False # status of the installtion # -2: dependency failed to install # -1: failed to install # 0: is not installed # 1: is installed # 2: different version is installed # 3: successfully installed installation_status = 0 # store for errors error_info = None def __init__(self, name): self.name = name def _check_if_cache_is_available(self): # check if same version is available name = '{0}-{1}-{2}.pkg.tar.xz'.format( self.name, self.version, self.architecture) if name in packages_in_cache: self.cache_available = 2 return # check if different version is available else: regex_different = re.compile(r'{0}-(\S+)-{1}.pkg.tar.xz'.format( self.name, self.architecture)) for cache_file in packages_in_cache: match = regex_different.search(os.path.basename(cache_file)) if match: self.cache_available = 1 return self.cache_available = 0 def get_installation_status(self): """Get the installation status of the package.""" if pacman.is_installed(self.name): pcm_info = pacman.get_info(self.name) if pcm_info['Version'] == self.version: self.installation_status = 1 else: self.installation_status = 2 else: self.installation_status = 0 class PacmanPackage(PackageBase): """Represents a pacman package from a official repository. Args: name (str): Name of the pacman package """ def __init__(self, name): super().__init__(name) try: self._get_package_info() self._check_if_cache_is_available() self.get_installation_status() except Exception as e: self.error_info = e def _get_package_info(self): """Get the needed package information.""" is_available = False for pcm_info in packages_in_offical_repositories: if pcm_info['id'] == self.name: is_available = True break if is_available: pkg_info = pacman.get_info(self.name) self.version = pkg_info['Version'] self.architecture = pkg_info['Architecture'] if 'Repository' in pkg_info: if pkg_info['Repository'] == PackageRepository.EXTRA: self.repository = PackageRepository.EXTRA elif pkg_info['Repository'] == PackageRepository.CORE: self.repository = PackageRepository.CORE elif pkg_info['Repository'] == PackageRepository.COMMUNITY: self.repository = PackageRepository.COMMUNITY elif pkg_info['Repository'] == PackageRepository.MULTILIB: self.repository = PackageRepository.MULTILIB else: self.repository = PackageRepository.EXTRA self.dependencies = pkg_info['Depends On'].split(' ') self.license = pkg_info['Licenses'] else: raise NoSuchPackageError( "No package with the name '{0}' exists in the official repositories".format(self.name)) def install(self): """Install the Pacman package.""" if not (self.installation_status == 1 or self.installation_status == 3): printInfo("Installing package {0} {1}...".format( self.name, self.version)) rc, out, err = run_command(['pacman', '-S', '--force', '--needed', '--noconfirm', '--noprogressbar', '--ignore', 'package-query', '--ignore', 'pacman-mirrorlist', '--cachedir', pacman_cache_dir, self.name]) if rc != 0: self.installation_status = -1 self.error_info = Exception( "Failed to install package {0}: {1}".format(self.name, '\n'.join(err))) else: self.installation_status = 3 class PackageSource(PackageBase): """Represents a source of a package. Args: name (str): Name of the package remove_dowloaded_source (bool): If True remove the source downloaded by 'makepkg' before build. If False the sources will be kept, under the condition that the source is of the same version of the package to be build local_source_path (str): Local path of the source. If 'None' the pckage will be fetched from the AUR """ # path that contains the package source path = None # the dependencies that need to be installed prior build make_dependencies = [] # is marked as an explicit build, so it is not a dependency of another # package explicit_build = False # the status of the build # 0: not yet build # 1: successfully build # 2: skipped build # 3: failed to build # 4: make dependency failed build_status = 0 # If True remove the source downloaded by 'makepkg' before build. If False # the sources will be kept, under the condition that the source is of the same # version of the package to be build remove_dowloaded_source = False # package source is build from git repository build_from_git = False # package source is build from git repository split_package_names = None def __init__(self, name, remove_dowloaded_source, local_source_path=None): super().__init__(name) self.remove_dowloaded_source = remove_dowloaded_source try: # is local source package if local_source_path: self.repository = PackageRepository.LOCAL self.path = os.path.abspath(local_source_path) # is AUR package else: self.repository = PackageRepository.AUR self._download_aur_package_source() self._parse_pkgbuild_file() self._check_if_cache_is_available() self.get_installation_status() except Exception as e: self.error_info = e def _parse_from_string(self, name, string): """Parse a bash variable value from a string. Args: name (str): Name of the variable to be parsed string (str): String containing the bash variables Returns: str. Value for given params list. Value for given params None. If given param wasn't found """ # search for array like value match = re.compile(r'{0}=\(([^\)]*)\)'.format(name), re.DOTALL).search(string) if match: m = match.group(1).replace('\n', '').replace('"', '').replace('\'', '') return [x.strip('\"\'') for x in re.compile(r'\s').split(m) if x != ''] else: # search for simple string value match = re.compile(r'{0}=(.+)'.format(name)).search(string) if match: return match.group(1).strip('\"\' ') return None def _get_dependencies_from_alias(self, dep_alias_names): """Get the real package names if only an alias was supplied. Args: dep_alias_names (list): (Alias-)Names of the packages Returns: list. Real names of the packages """ dependencies = [] if dep_alias_names: for dep_alias_name in dep_alias_names: dep_alias_name = re.sub(r'(.+?)(<|<=|>|>=){1}.*?$', r'\1', dep_alias_name) rc, out, err = run_command(['package-query', '-QSiif', '%n', dep_alias_name], print_output=False) if rc == 0: dependencies.append(out[-1]) else: dependencies.append(dep_alias_name) return dependencies def _parse_pkgbuild_file(self): """Parse package information from PKGBUILD file.""" pkgbuild_file = os.path.join(self.path, "PKGBUILD") with open(pkgbuild_file, 'r') as f: file_content = f.read() # package name pkgbase = self._parse_from_string('pkgbase', file_content) if pkgbase: self.name = pkgbase split_package_names = self._parse_from_string('pkgname', file_content) self.split_package_names = [] for spn in split_package_names: self.split_package_names.append( re.sub(r'\$\{{0,1}[A-Za-z_][A-Za-z0-9_]*\}{0,1}', pkgbase, spn, flags=re.IGNORECASE)) else: self.name = self._parse_from_string('pkgname', file_content) self.build_from_git = self.name.endswith('-git') # package version (combined with release) version = self._parse_from_string('pkgver', file_content) release = self._parse_from_string('pkgrel', file_content) self.version = version + '-' + release # package architecture architectures = self._parse_from_string('arch', file_content) for ac_arch in accepted_architectures: if ac_arch in architectures: self.architecture = ac_arch break if not self.architecture: raise InvalidPackageSourceError( "Architecture of the package '{0}' is not supported".format(os.path.basename(self.path))) # package license self.license = self._parse_from_string('license', file_content) if type(self.license) == list: self.license = self.license[0] # raise an error if PKGBUILD file does not contain mandatory variables if not self.name or \ not version or \ not release or \ not self.architecture or \ not self.license: raise InvalidPackageSourceError( "One or more mandatory variables (name, version, release, architecture, license) in the package '{0}' is missing".format(os.path.basename(self.path))) # package dependencies self.dependencies = self._get_dependencies_from_alias( self._parse_from_string('depends', file_content)) # package make dependencies self.make_dependencies = self._get_dependencies_from_alias( self._parse_from_string('makedepends', file_content)) # package repository self.repository = PackageRepository.LOCAL def _copy_source_to_build_dir(self): """Copy the package source to the build dir.""" pkg_build_dir = os.path.join(build_dir, self.name) if os.path.exists(pkg_build_dir) and \ os.path.isdir(pkg_build_dir) and \ (not self.remove_dowloaded_source or not self.build_from_git): old_pkgbuild_file = os.path.join(pkg_build_dir, 'PKGBUILD') if os.path.exists(old_pkgbuild_file) and \ os.path.isfile(old_pkgbuild_file): try: old_pkg_source = PackageSource( self.name, False, pkg_build_dir) if old_pkg_source.version == self.version: if self.repository == PackageRepository.AUR: shutil.rmtree(self.path, ignore_errors=True) self.path = pkg_build_dir return except: pass shutil.rmtree(pkg_build_dir, ignore_errors=True) shutil.copytree(self.path, pkg_build_dir) if self.repository == PackageRepository.AUR: shutil.rmtree(self.path, ignore_errors=True) self.path = pkg_build_dir def _download_aur_package_source(self): """Fetch package source from the AUR.""" aur_pkg_download_path = tempfile.mkdtemp() try: i = aur.info(self.name) except: raise NoSuchPackageError( "No package with the name '{0}' exists in the AUR".format(self.name)) pkg_tar_file_path = os.path.join(aur_pkg_download_path, i.name + ".tar.gz") # download package sources from AUR urllib.request.urlretrieve("https://aur.archlinux.org" + i.url_path, pkg_tar_file_path) # extract source tarball tar = tarfile.open(pkg_tar_file_path) tar.extractall(path=aur_pkg_download_path) tar.close() os.remove(pkg_tar_file_path) self.path = os.path.join(aur_pkg_download_path, os.listdir(aur_pkg_download_path)[0]) def makepkg(self, uid, gid): """Run makepkg. Args: uid (int): UID of the build user gid (int): GID of the build user Returns: bool. True if build was successfull, False if not """ self._copy_source_to_build_dir() # set uid and gid of the build dir os.chown(self.path, uid, gid) for root, dirs, files in os.walk(self.path): for f in dirs + files: if os.path.isfile(f) or os.path.isdir(f): os.chown(os.path.join(root, f), uid, gid) printInfo("Building package {0} {1}...".format( self.name, self.version)) os.chdir(self.path) rc, out, err = run_command(['makepkg', '--force', '--nodeps', '--noconfirm'], uid) if rc != 0: self.error_info = Exception("Failed to build package '{0}': {1}".format( self.name, '\n'.join(err))) return False # get new version info when build from git if self.build_from_git: git_pkg = PackageSource( self.name, False, self.path) self.version = git_pkg.version for pkg_file in glob.glob(os.path.join(self.path, '*.pkg.tar.xz')): pkg_dest = os.path.join(pacman_cache_dir, os.path.basename(pkg_file)) # move created package to Pacman package cache shutil.move(pkg_file, pkg_dest) # set uid and gid of the build package os.chown(pkg_dest, 0, 0) if self.is_make_dependency: self.install() return True def get_package_file_name(self): """Get the pacman package file name. Returns: str. The name of the package """ return '{0}-{1}-{2}.pkg.tar.xz'.format( self.name, self.version, self.architecture) def get_all_dependencies(self): """Get dependencies and make dependencies together. Returns: list. Names of all dependencies """ return self.dependencies + self.make_dependencies def install(self): """Install the build package.""" if not (self.installation_status == 1 or self.installation_status == 3)\ and (self.build_status == 1 or self.build_status == 2): pkg_names = [self.name] # different names if package is a splitted package if self.split_package_names: pkg_names = self.split_package_names for pkg_name in pkg_names: printInfo("Installing package {0} {1}...".format( pkg_name, self.version)) rc, out, err = run_command( ['pacman', '-U', '--noconfirm', '--force', '--ignore', 'package-query', '--ignore', 'pacman-mirrorlist', '--cachedir', pacman_cache_dir, os.path.join( pacman_cache_dir, '{0}-{1}-{2}.pkg.tar.xz'.format( pkg_name, self.version, self.architecture))]) if rc != 0: self.installation_status = -1 self.error_info = Exception( "Failed to install package '{0}': {1}".format(pkg_name, '\n'.join(err))) return False self.installation_status = 3 def change_user(uid): """Temporarily change the UID and GID for code execution.""" def set_uid_and_guid(): os.setuid(uid) return set_uid_and_guid def run_command(command, uid=None, print_output=True): """Run a command in a subprocess. Args: command (string): Command to run uid (int): UID of the user to run with print_output (bool): True if the output should be printed to stdout and stderr Returns: (int, list, list). Return code of the subprocess, sdtout and stderr """ if uid: process = Popen(command, stdout=PIPE, stderr=PIPE, universal_newlines=True, preexec_fn=change_user(uid)) else: process = Popen(command, stdout=PIPE, stderr=PIPE, universal_newlines=True) if print_output: err = [] out = [] while True: tmp = process.stdout.readline() if tmp: tmp = tmp.rstrip('\n ') if tmp != '': out.append(tmp) print(tmp) if process.poll() is not None: break time.sleep(.05) for line in process.stdout.readlines(): tmp = line.rstrip('\n ') out.append(tmp) print(tmp) rc = process.poll() if rc != 0: for line in process.stderr.readlines(): tmp = line.rstrip('\n ') printError(tmp) err.append(tmp) return (rc, out, err) else: out, err = process.communicate() rc = process.returncode return (rc, out.splitlines(), err.splitlines()) def get_package_recursive(pkg_name, explicit_build, pkg_dict, locally_available_package_sources, remove_dowloaded_source, is_make_dependency): """Get a package and all their dependencies. Args: pkg_name (str): Name of the package explicit_build (bool): True if package source is given by the user pkg_dict (dict): Store for package information locally_available_package_sources (list): List of all locally available package sources remove_dowloaded_source (bool): If True remove the source downloaded by 'makepkg' before build. If False the sources will be kept, under the condition that the source is of the same version of the package to be build is_make_dependency (bool): True if package shall be installed as a make dependency """ # check if package is already in pkg_dict if pkg_name in pkg_dict: return # check if package is in official repo for pcm_info in packages_in_offical_repositories: if pcm_info['id'] == pkg_name: pcm_pkg = PacmanPackage(pkg_name) pcm_pkg.is_make_dependency = is_make_dependency pkg_dict[pkg_name] = pcm_pkg return # check if package source is locally available if pkg_name in locally_available_package_sources: pkg_path = os.path.join(local_source_dir, pkg_name) lcl_pkg = PackageSource(pkg_name, remove_dowloaded_source, pkg_path) if lcl_pkg.name in pkg_dict: return lcl_pkg.explicit_build = explicit_build lcl_pkg.explicit_build = is_make_dependency pkg_dict[pkg_name] = lcl_pkg # if split package the name can defer pkg_dict[lcl_pkg.name] = lcl_pkg if not lcl_pkg.error_info: for dependency in lcl_pkg.dependencies: get_package_recursive(dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True if is_make_dependency else False) for make_dependency in lcl_pkg.make_dependencies: get_package_recursive(make_dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True) # check for the package in the AUR else: aur_pkg = PackageSource(pkg_name, remove_dowloaded_source, None) if aur_pkg.name in pkg_dict: return aur_pkg.explicit_build = explicit_build pkg_dict[pkg_name] = aur_pkg # if split package the name can defer pkg_dict[aur_pkg.name] = aur_pkg if not aur_pkg.error_info: for dependency in aur_pkg.dependencies: get_package_recursive(dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True if is_make_dependency else False) for make_dependency in aur_pkg.make_dependencies: get_package_recursive(make_dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True) def build_package_recursive(pkg_name, pkg_dict, rebuild, install_all_dependencies, uid, gid): """Build a package and all their dependencies. Args: pkg_name (str): Name of the package pkg_dict (dict): Store for package information rebuild (int): Rebuild behaviour: 0: Build only new versions of packages (default) 1: Rebuild all explicit listed packages 2: Rebuild all explicit listed packages and their dependencies uid (int): UID of the build user gid (int): GID of the build user """ pkg = pkg_dict[pkg_name] # break if a error occurred if pkg.error_info: return # break if the package has already been processed if type(pkg) is PackageSource and pkg.build_status != 0: return if type(pkg) is PacmanPackage: # break if the package has already been processed if pkg.installation_status < 0 or pkg.installation_status == 3: return # install pacman package if it is a make dependency if (pkg.is_make_dependency or install_all_dependencies): pkg.install() return dependency_changed = False for dependency in pkg.get_all_dependencies(): pkg_dependency = pkg_dict[dependency] build_package_recursive(dependency, pkg_dict, rebuild, install_all_dependencies, uid, gid) if pkg_dependency.error_info: pkg.build_status = 4 return else: if type(pkg_dependency) is PackageSource and \ pkg_dependency.build_status == 1: dependency_changed = True pkg.get_installation_status() if dependency_changed: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 else: # rebuild only if new version is available if rebuild == 0: if pkg.cache_available < 2: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 else: pkg.build_status = 2 # rebuild if explicit or a new version is available elif rebuild == 1: if pkg.cache_available < 2 or pkg.explicit_build: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 else: pkg.build_status = 2 # rebuild all elif rebuild == 2: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 if install_all_dependencies: pkg.install() return def format_log(pkg, msg, prefix=''): """Format a build log for a given packge. Args: pkg (PackageBase): The package msg (str): Message for the package prefix (str): Prefix added for message in multiple lines Returns: str. The formatted build log """ msg_lines = msg.splitlines() if len(msg_lines) > 1: for i in range(1, len(msg_lines)): msg_lines[i] = prefix + ' ' + msg_lines[i] msg = '\n'.join(msg_lines) if pkg.version: return "{0} {1}: {2}".format(pkg.name, pkg.version, msg) return "{0}: {1}".format(pkg.name, msg) def print_build_log_recursive(pkg_names, pkg_dict, prefix='', is_root=False): """Recursivly prints a build log for a given package. Args: pkg_names (PackageBase): The package pkg_dict (dict): Store for package information prefix (str): Prefix for the message is_root (bool): True if first recursion Returns: (bool, list). Tuple consting of the build status and the log messages as a list """ success = True log = [] log_prefix = prefix + '├── ' intermediate_prefix = prefix + '| ' for pos, anchor, pkg_name in enumerate_package_names(pkg_names): pkg = pkg_dict[pkg_name] log_dep = [] if is_root: log_prefix = "" intermediate_prefix = "" elif anchor == 1: log_prefix = prefix + '└── ' intermediate_prefix = prefix + ' ' if type(pkg) == PacmanPackage: if pkg.installation_status < 0: success = False log.append(log_prefix + format_log( pkg, "Failed to install: " + str(pkg.error_info), intermediate_prefix)) elif pkg.installation_status == 0: log.append(log_prefix + format_log(pkg, "Not installed")) elif pkg.installation_status == 1: log.append(log_prefix + format_log(pkg, "Skipped install")) elif pkg.installation_status == 3: log.append(log_prefix + format_log(pkg, "Successfully installed")) else: deps = pkg.get_all_dependencies() if len(deps) > 0: success, log_dep = print_build_log_recursive( deps, pkg_dict, intermediate_prefix) if not success: log.append(log_prefix + format_log( pkg, "Dependency Failed: " + str(pkg.error_info), intermediate_prefix)) elif pkg.error_info: success = False log.append(log_prefix + format_log( pkg, "Failed: " + str(pkg.error_info), intermediate_prefix)) else: if pkg.build_status == 1: log.append(log_prefix + format_log( pkg, "Successfully build")) elif pkg.build_status == 2: log.append(log_prefix + format_log( pkg, "Skipped")) elif pkg.build_status == 3: log.append(log_prefix + format_log(pkg, "Failed")) success = False elif pkg.build_status == 4: log.append(log_prefix + format_log(pkg, "Dependency Failed")) success = False log = log + log_dep return success, log def print_build_log(pkg_name, pkg_dict): """Print a build log for a given package. Args: pkg_names (PackageBase): The package pkg_dict (dict): Store for package information """ success, log = print_build_log_recursive( [pkg_name], pkg_dict, '', True) for line in log: if success: printSuccessfull(line) else: printError(line) def enumerate_package_names(sequence): length = len(sequence) for count, value in enumerate(sequence): yield count, length - count, value def main(argv): """Run the main logic. Args: argv (list): Command line arguments """ parser = argparse.ArgumentParser( prog='aur-makepkg', description='Build Pacman packages with makepkg from local source or the AUR', epilog='' ) parser.add_argument('-g', '--gid', dest='gid', type=int, default=1000, help="GID of the build user") parser.add_argument('-i', '--install-all-dependencies', action='store_true', dest='install_all_dependencies', default=False, help="Install all dependencies, not only 'make dependencies'") parser.add_argument('-k', '--keyrings', dest='keyrings', default=None, help="Pacman keyrings initialized prior building (comma seperated list)") parser.add_argument('-p', '--pacman-update', action='store_true', dest='pacman_update', default=False, help="Update all installed pacman packages before build") parser.add_argument('-r', '--rebuild', dest='rebuild', type=int, default=0, help="""Rebuild behaviour: 0: Build only new versions of packages (default) 1: Rebuild all explicit listed packages 2: Rebuild all explicit listed packages and their dependencies""") parser.add_argument('--remove-downloaded-source', dest='remove_dowloaded_source', action='store_true', default=False, help="""Remove the source downloaded by 'makepkg' before build. If not the sources will be kept, under the condition that the source is of the same version of the package to be build. (Note: Sources of packages build from a Git repository will always be removed.)""") parser.add_argument('-u', '--uid', dest='uid', type=int, default=1000, help="UID of the build user") parser.add_argument('build_package_names', nargs='+', help="Name fo packages to be build from local source or the AUR") args = parser.parse_args(argv) # create build user and group try: grp.getgrgid(args.gid) except Exception: os.system("groupadd -g {0} build-user".format(args.gid)) try: pwd.getpwuid(args.uid) except Exception: os.system( "useradd -p /makepkg/build -m -g {1} -s /bin/bash -u {0} build-user".format(args.uid, args.gid)) # refresh pacman package database if args.keyrings: printInfo("Initializing pacman keyring...") run_command(['pacman-key', '--init'], print_output=False) rc, out, err = run_command(['pacman-key', '--populate'] + args.keyrings.split(','), print_output=True) if rc != 0: raise Exception("Failed to initialize Pacman keyrings: " + '\n'.join(err)) # refresh pacman package database printInfo("Update pacman package database...") pacman.refresh() global packages_in_cache, packages_in_offical_repositories packages_in_cache = [x for x in os.listdir(pacman_cache_dir) if os.path.isfile(os.path.join(pacman_cache_dir, x))] packages_in_offical_repositories = pacman.get_available() if args.pacman_update: # upgrade installed pacman packages printInfo("Upgrading installed pacman packages...") rc, out, err = run_command(['pacman', '-Su', '--noconfirm', '--force', '--ignore', 'package-query', '--ignore', 'pacman-mirrorlist', '--cachedir', pacman_cache_dir], print_output=True) if rc != 0: raise Exception("Failed to upgrade Pacman packages: " + '\n'.join(err)) pkg_dict = dict() build_package_names = [x.lower() for x in args.build_package_names] # look for local package sources locally_available_package_sources = [] if os.path.exists(local_source_dir) and \ os.path.isdir(local_source_dir): for d in os.listdir(local_source_dir): pkgbuild_file_path = os.path.join(d, "PKGBUILD") if os.path.exists(pkgbuild_file_path) and \ os.path.isfile(pkgbuild_file_path): locally_available_package_sources.append(os.path.basename(d)) # get packages and their dependencies for pkg_name in build_package_names: printInfo("Collecting information about {0}...".format(pkg_name)) get_package_recursive(pkg_name, True, pkg_dict, locally_available_package_sources, args.remove_dowloaded_source, False) # build packages if pkg_name in pkg_dict: build_package_recursive(pkg_name, pkg_dict, args.rebuild, args.install_all_dependencies, args.uid, args.gid) # print build statistics printInfo("\nBuild Statistics:") for pkg_name in build_package_names: if pkg_name in pkg_dict: print_build_log(pkg_name, pkg_dict) try: main(sys.argv[1:]) exit(0) except Exception as e: printError(str(e)) exit(1)
35.861165
166
0.570133
17,632
0.477198
153
0.004141
0
0
0
0
11,071
0.299629
90e34a12e8b9e4a3553e847fbec09a27e4f92d6a
12,680
py
Python
test/test_schemagen.py
hd23408/nist-schemagen
258e453d6f3bdc763e48e2c32668c932f7ffcd40
[ "MIT" ]
1
2021-09-01T02:11:03.000Z
2021-09-01T02:11:03.000Z
test/test_schemagen.py
hd23408/nist-schemagen
258e453d6f3bdc763e48e2c32668c932f7ffcd40
[ "MIT" ]
null
null
null
test/test_schemagen.py
hd23408/nist-schemagen
258e453d6f3bdc763e48e2c32668c932f7ffcd40
[ "MIT" ]
null
null
null
"""Test methods for testing the schemagen package (specifically, the SchemaGenerator class). Typical usage example: python -m unittest or, to run a single test: python -m unittest -k test__build_schema """ import unittest import pathlib import logging import copy import os import pandas as pd import numpy as np import schemagen import filecmp import string # Suppress log messages so they don't confuse readers of the test output logging.basicConfig(level=os.environ.get("LOGLEVEL", "CRITICAL")) # Sample files for testing INVALID_INPUT_DATA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/invalid_input_data.csv")) EMPTY_INPUT_DATA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/empty_input_data.csv")) VALID_INPUT_DATA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/valid_input_data.csv")) VALID_SCHEMA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/parameters.json")) TEST_OUTPUT_DIRECTORY = str(pathlib.Path(__file__).parent. joinpath("test_output_files")) VALID_OUTPUT_PARAMETERS_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/writing_tests/parameters.json")) VALID_OUTPUT_DATATYPES_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/writing_tests/column_datatypes.json")) # Test dataframes to convert to a schema. This should contain # an assortment of the different types that we expect to parse: # A - float numeric categorical (with missing values) # B - int32 numeric range # C - string categorical # VALID_TEST_DATAFRAME = pd.DataFrame.from_dict( { "A": [1, 2, 3, 4, 5, None, None, None, None, None] * 5, "B": list(range(1000000, 1000050, 1)), "C": ["A", "B", "C", "D", "E"] * 10, "D": list(string.ascii_letters)[0 : 50] } ) # This isn't really a dataframe, it's a dict INVALID_TEST_DATAFRAME = { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": list(range(1, 8, 1)) } # The appropriate schema and column datatypes to create from the test data above VALID_TEST_SCHEMA = { "schema": { "A": { "dtype": "float", # This gets turned into a float because of the 'None's "kind": "categorical", "values": [ 1.0, 2.0, 3.0, 4.0, 5.0 ], "codes": [ 1, 2, 3, 4, 5 ] }, "B": { "dtype": "uint32", "kind": "numeric", "min": 1000000, "max": 1000049, "bins": 10 }, "C": { "dtype": "str", "kind": "categorical", "values": ["A", "B", "C", "D", "E"], "codes": [1, 2, 3, 4, 5] }, "D": { "dtype": "str", "kind": "text" } } } VALID_TEST_COLUMN_DATATYPES = { "dtype": { "A": "float", "B": "uint32", "C": "str", "D": "str" } } class TestSchemaGenerator(unittest.TestCase): """Test class for the schemagen.SchemaGenerator class. """ def test_ctor(self): """ Test that a SchemaGenerator can be appropriately instantiated, and that it initializes its internal variables appropriately. """ schema_generator = schemagen.SchemaGenerator() self.assertIs(type(schema_generator), schemagen.SchemaGenerator) self.assertIs(schema_generator.input_csv_file, None) self.assertIs(schema_generator.input_data_as_dataframe, None) self.assertIs(schema_generator.output_schema, None) def test_read_and_parse_csv(self): """ Test the full process of reading in and parsing a CSV file. Make sure the `SchemaGenerator.read_and_parse_csv` method returns True or False depending on whether it succeeded. """ schema_generator = schemagen.SchemaGenerator() # Confirm that attempting to parse an invalid file results in "False" result = schema_generator.read_and_parse_csv(INVALID_INPUT_DATA_FILE) self.assertIs(result, False) # Confirm that a valid CSV loads successfully result = schema_generator.read_and_parse_csv(VALID_INPUT_DATA_FILE) self.assertIs(result, True) def test_output_parameters(self): """ Test outputting of the parameters file. """ schema_generator = schemagen.SchemaGenerator() # Make an output directory just for this test test_output_dir = pathlib.Path(TEST_OUTPUT_DIRECTORY). \ joinpath("test_output_parameters") test_output_dir.mkdir(parents=True, exist_ok=True) test_output_dir = str(test_output_dir) test_output_file = str(pathlib.Path(test_output_dir). \ joinpath("parameters.json")) # Set the output schema to a known good values; # here we're JUST testing the writing out of the file schema_generator.output_schema = copy.deepcopy(VALID_TEST_SCHEMA) # Test writing out to a non-existent directory retval = schema_generator.output_parameters_json(output_directory="foo") self.assertEqual(retval, None) # Test success path retval = None retval = schema_generator.output_parameters_json(output_directory= test_output_dir) self.assertEqual(retval, test_output_file) self.assertTrue(filecmp.cmp(test_output_file, VALID_OUTPUT_PARAMETERS_FILE), msg = test_output_file + " does not match " + VALID_OUTPUT_PARAMETERS_FILE) def test_output_datatypes(self): """ Test outputting of the column_datatypes file. """ schema_generator = schemagen.SchemaGenerator() # Make an output directory just for this test test_output_dir = pathlib.Path(TEST_OUTPUT_DIRECTORY). \ joinpath("test_output_datatypes") test_output_dir.mkdir(parents=True, exist_ok=True) test_output_dir = str(test_output_dir) test_output_file = str(pathlib.Path(test_output_dir). \ joinpath("column_datatypes.json")) # Set the output datatypes to a known good values; # here we're JUST testing the writing out of the file schema_generator.output_datatypes = \ copy.deepcopy(VALID_TEST_COLUMN_DATATYPES) # Test writing out to a non-existent directory retval = schema_generator.output_column_datatypes_json( output_directory="foo") self.assertEqual(retval, None) # Test success path retval = None retval = schema_generator.output_column_datatypes_json(output_directory= test_output_dir) self.assertEqual(retval, test_output_file) self.assertTrue(filecmp.cmp(test_output_file, VALID_OUTPUT_DATATYPES_FILE), msg = test_output_file + " does not match " + VALID_OUTPUT_DATATYPES_FILE) def test__load_csv_succeeds(self): """ Test that the `SchemaGenerator._load_csv` method can be used to read in an appropriately formatted CSV file. """ schema_generator = schemagen.SchemaGenerator() # Confirm that a valid CSV loads into a DataFrame without throwing errors result = schema_generator._load_csv(VALID_INPUT_DATA_FILE) # We want to test private methods... pylint: disable=protected-access self.assertIsInstance(result, pd.core.frame.DataFrame) def test__load_csv_fails(self): """ Test that the `SchemaGenerator._load_csv` method fails when it tries to read a badly formatted CSV or is given an empty filename. """ schema_generator = schemagen.SchemaGenerator() # Confirm that the FileNotFoundError is raised for a non-existing file with self.assertRaises(FileNotFoundError): schema_generator._load_csv("") # We want to test private methods... pylint: disable=protected-access # Confirm that the ParserError is raised when it can't parse the file with self.assertRaises(pd.errors.ParserError): schema_generator._load_csv(INVALID_INPUT_DATA_FILE) # We want to test private methods... pylint: disable=protected-access # Confirm that the EmptyDataError is raised if called against an empty file with self.assertRaises(pd.errors.EmptyDataError): schema_generator._load_csv(EMPTY_INPUT_DATA_FILE) # We want to test private methods... pylint: disable=protected-access def test__build_schema_succeeds(self): """ Test that the `SchemaGenerator._build_schema` method can build an expected schema from a properly formatted DataFrame. """ schema_generator = schemagen.SchemaGenerator() # Confirm that when we build schema off of our test dataframe, # we get a result that looks like our expected schema (params, columns) = schema_generator._build_schema(VALID_TEST_DATAFRAME, include_text_columns=True) # We want to test private methods... pylint: disable=protected-access self.assertEqual(params, VALID_TEST_SCHEMA) self.assertEqual(columns, VALID_TEST_COLUMN_DATATYPES) # Confirm that when we build schema off of our test dataframe, # and include "na", we get a result that looks like we expect (params, columns) = schema_generator._build_schema(VALID_TEST_DATAFRAME, # We want to test private methods... pylint: disable=protected-access include_text_columns=True, include_na=True) valid_schema_with_nan = copy.deepcopy(VALID_TEST_SCHEMA) valid_schema_with_nan["schema"]["A"]["values"].append(np.NaN) # Including NaN is going to make everything in the column a float valid_schema_with_nan["schema"]["A"]["dtype"] = "float" valid_schema_with_nan["schema"]["A"]["values"] = \ list(map(float, valid_schema_with_nan["schema"]["A"]["values"])) valid_schema_with_nan["schema"]["A"]["codes"] = \ [1, 2, 3, 4, 5, 6] valid_dtypes_with_nan = copy.deepcopy(VALID_TEST_COLUMN_DATATYPES) valid_dtypes_with_nan["dtype"]["A"] = "float" # Need to use np's assertion in order to make NaN == NaN np.testing.assert_equal(params, valid_schema_with_nan) self.assertEqual(columns, valid_dtypes_with_nan) def test__build_schema_fails(self): """ Test that the `SchemaGenerator._build_schema` method fails appropriately when trying to build a schema from something that is not a DataFrame. """ schema_generator = schemagen.SchemaGenerator() # Confirm that when we build schema off of our test invalid dataframe, # we fail in the right way with self.assertRaises(AttributeError): schema_generator._build_schema(INVALID_TEST_DATAFRAME, # We want to test private methods... pylint: disable=protected-access max_values_for_categorical = 4) def test__getters(self): """ Test that the getters for the output schema and the column datatypes return the correct objects. """ schema_generator = schemagen.SchemaGenerator() schema_generator.output_schema = copy.deepcopy(VALID_TEST_SCHEMA) self.assertEqual(schema_generator.get_parameters_json(), VALID_TEST_SCHEMA) schema_generator.output_datatypes = \ copy.deepcopy(VALID_TEST_COLUMN_DATATYPES) self.assertEqual(schema_generator.get_column_datatypes_json(), VALID_TEST_COLUMN_DATATYPES) def test__get_series_dtype(self): """ Test that the method that determines the appropriate datatype, min, and max values does the right thing. """ schema_generator = schemagen.SchemaGenerator() series = pd.Series(["a", "b", "c", "d"]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("str", None, None)) series = pd.Series([1, 2, 2, 3, 4, 5, 6, 7, 8, 9]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("uint8", 1, 9)) series = pd.Series(list(range(1000000, 1000050, 1))) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("uint32", 1000000, 1000049)) series = pd.Series([0.1, 0.15, 0.2, 0.214, 0.25]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("float", 0.1, 0.25)) series = pd.Series([-1, 0, 1, -2, 0, -3]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("int8", -3, 1)) # If min is 0, don't "fuzz" it, to avoid going negative series = pd.Series([0, 1, 2, 3, 4, 5]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("uint8", 0, 5)) series = pd.Series(["2021-02-25", "2021-01-05", "2021-06-22"]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("date", "2021-01-05 00:00:00", "2021-06-22 00:00:00")) if __name__ == "__main__": unittest.main()
38.895706
146
0.711435
9,870
0.778391
0
0
0
0
0
0
5,358
0.422555
90e49b3af233dbd74b52999ca2aa64df02b0beff
368
py
Python
core/migrations/0008_auto_20190528_1802.py
peterson-dev/code-snippet-app
b5ecb7b8b679c307d361a7ce100d4115f92d99a5
[ "MIT" ]
2
2019-05-22T21:54:43.000Z
2019-05-26T22:22:14.000Z
core/migrations/0008_auto_20190528_1802.py
peterson-dev/code-snippet-app
b5ecb7b8b679c307d361a7ce100d4115f92d99a5
[ "MIT" ]
14
2020-02-12T00:04:05.000Z
2022-03-11T23:51:10.000Z
core/migrations/0008_auto_20190528_1802.py
peterson-dev/kode-kangaroo
b5ecb7b8b679c307d361a7ce100d4115f92d99a5
[ "MIT" ]
null
null
null
# Generated by Django 2.2.1 on 2019-05-28 22:02 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0007_auto_20190523_1740'), ] operations = [ migrations.RenameField( model_name='snippet', old_name='post_content', new_name='content', ), ]
19.368421
47
0.589674
283
0.769022
0
0
0
0
0
0
110
0.298913
90e4c87211faae293a93093b6b860b2f8d021a50
2,740
py
Python
scripts/Biupdownsample/grad_check.py
dongdong93/a2u_matting
1d0ad8e630cce50c5b36c40ad384c888d292f9a8
[ "MIT" ]
22
2021-04-28T03:48:53.000Z
2022-01-24T09:42:53.000Z
scripts/Biupdownsample/grad_check.py
dongdong93/a2u_matting
1d0ad8e630cce50c5b36c40ad384c888d292f9a8
[ "MIT" ]
1
2021-08-08T20:10:18.000Z
2021-08-23T07:33:38.000Z
scripts/Biupdownsample/grad_check.py
dongdong93/a2u_matting
1d0ad8e630cce50c5b36c40ad384c888d292f9a8
[ "MIT" ]
5
2021-09-17T08:02:06.000Z
2022-01-24T09:43:03.000Z
import os.path as osp import sys import subprocess subprocess.call(['pip', 'install', 'cvbase']) import cvbase as cvb import torch from torch.autograd import gradcheck sys.path.append(osp.abspath(osp.join(__file__, '../../'))) from biupdownsample import biupsample_naive, BiupsampleNaive from biupdownsample import bidownsample_naive, BidownsampleNaive feat = torch.randn(2, 64, 2, 2, requires_grad=True, device='cuda:0').double() mask = torch.randn( 2, 100, 4, 4, requires_grad=True, device='cuda:0').sigmoid().double() print('Gradcheck for biupsample naive...') test = gradcheck(BiupsampleNaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4) print(test) feat = torch.randn( 2, 1024, 100, 100, requires_grad=True, device='cuda:0').float() mask = torch.randn( 2, 25, 200, 200, requires_grad=True, device='cuda:0').sigmoid().float() loop_num = 500 time_naive_forward = 0 time_naive_backward = 0 bar = cvb.ProgressBar(loop_num) timer = cvb.Timer() for i in range(loop_num): x = biupsample_naive(feat.clone(), mask.clone(), 5, 1, 2) torch.cuda.synchronize() time_naive_forward += timer.since_last_check() x.sum().backward(retain_graph=True) torch.cuda.synchronize() time_naive_backward += timer.since_last_check() bar.update() forward_speed = (time_naive_forward + 1e-3) * 1e3 / loop_num backward_speed = (time_naive_backward + 1e-3) * 1e3 / loop_num print('\nBiupsample naive time forward: ' f'{forward_speed} ms/iter | time backward: {backward_speed} ms/iter') # --------------------------------------------------------------- feat = torch.randn(2, 64, 4, 4, requires_grad=True, device='cuda:0').double() mask = torch.randn( 2, 16, 4, 4, requires_grad=True, device='cuda:0').double() print('Gradcheck for bidownsample naive...') test = gradcheck(BidownsampleNaive(4, 1, 1), (feat, mask), atol=1e-4, eps=1e-4) print(test) feat = torch.randn( 2, 512, 200, 200, requires_grad=True, device='cuda:0').float() mask = torch.randn( 2, 100, 100, 100, requires_grad=True, device='cuda:0').sigmoid().float() loop_num = 500 time_naive_forward = 0 time_naive_backward = 0 bar = cvb.ProgressBar(loop_num) timer = cvb.Timer() for i in range(loop_num): x = bidownsample_naive(feat.clone(), mask.clone(), 10, 1, 2) torch.cuda.synchronize() time_naive_forward += timer.since_last_check() x.sum().backward(retain_graph=True) torch.cuda.synchronize() time_naive_backward += timer.since_last_check() bar.update() forward_speed = (time_naive_forward + 1e-3) * 1e3 / loop_num backward_speed = (time_naive_backward + 1e-3) * 1e3 / loop_num print('\nBidownsample naive time forward: ' f'{forward_speed} ms/iter | time backward: {backward_speed} ms/iter')
31.494253
79
0.691606
0
0
0
0
0
0
0
0
439
0.160219