hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
40b2c91082ea21890c36b449104ec87a0b8d9b4b
266
py
Python
tests/test_app/rest_app/rest_app/controllers/config_controller.py
jadbin/guniflask
36253a962c056abf34884263c6919b02b921ad9c
[ "MIT" ]
12
2018-09-06T06:14:59.000Z
2021-04-18T06:30:44.000Z
tests/test_app/rest_app/rest_app/controllers/config_controller.py
jadbin/guniflask
36253a962c056abf34884263c6919b02b921ad9c
[ "MIT" ]
null
null
null
tests/test_app/rest_app/rest_app/controllers/config_controller.py
jadbin/guniflask
36253a962c056abf34884263c6919b02b921ad9c
[ "MIT" ]
2
2019-09-08T22:01:26.000Z
2020-08-03T07:23:29.000Z
from guniflask.config import settings from guniflask.web import blueprint, get_route @blueprint class ConfigController: def __init__(self): pass @get_route('/settings/<name>') def get_setting(self, name): return {name: settings[name]}
20.461538
46
0.703008
167
0.62782
0
0
178
0.669173
0
0
18
0.067669
40b4eef32d47c4960807376665ec44995d7e4116
14,062
py
Python
model/_UNet_trainer.py
yasahi-hpc/AMRNet
5858d464bdfe409a5ab50889104768dda3c70508
[ "MIT" ]
null
null
null
model/_UNet_trainer.py
yasahi-hpc/AMRNet
5858d464bdfe409a5ab50889104768dda3c70508
[ "MIT" ]
null
null
null
model/_UNet_trainer.py
yasahi-hpc/AMRNet
5858d464bdfe409a5ab50889104768dda3c70508
[ "MIT" ]
null
null
null
from ._base_trainer import _BaseTrainer, MeasureMemory import pathlib import torch.multiprocessing as mp import torch from torch import nn import horovod.torch as hvd import numpy as np import xarray as xr import itertools from .flow_dataset import FlowDataset from .unet import UNet import sys from .visualization import save_flows from .converter import save_as_netcdf class UNetTrainer(_BaseTrainer): def __init__(self, **kwargs): super().__init__(**kwargs) self.model_name = 'UNet' def _initialize(self, **kwargs): # Horovod: Initialize library hvd.init() torch.manual_seed(self.seed) if self.device == 'cuda': # Horovod: Pin GPU to be used to process local rank (one GPU per process) torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(self.seed) # Horovod: limit # of CPU threads to be used per worker. torch.set_num_threads(1) self.rank, self.size = hvd.rank(), hvd.size() self.master = self.rank == 0 super()._prepare_dirs() self.train_loader, self.val_loader, self.test_loader = super()._dataloaders() self.model = self._get_model(self.run_number) self.model = self.model.to(self.device) ## Optimizers # By default, Adasum doesn't need scaling up leraning rate lr_scaler = hvd.size() if not self.use_adasum else 1 if self.device == 'cuda' and self.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() lr = self.lr * lr_scaler self.opt = torch.optim.Adam(self.model.parameters(), lr=lr, betas=(self.beta_1, self.beta_2)) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(self.model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(self.opt, root_rank=0) # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if self.fp16_allreduce else hvd.Compression.none # Horovod: wrap optimizer with DistributedOptimizer. self.opt = hvd.DistributedOptimizer(self.opt, named_parameters=self.model.named_parameters(), compression=compression, op=hvd.Adasum if self.use_adasum else hvd.Average, gradient_predivide_factor=self.gradient_predivide_factor) self.criterion = nn.L1Loss() if self.loss_type == 'mae_loss' else nn.MSELoss(reduction='mean') # Set normalization coefficients super()._set_normalization_coefs(shape=[1,-1,1,1]) # Memory measurement device_name = 'cpu' if self.device == 'cuda': local_rank = hvd.local_rank() device_name = f'{self.device}:{local_rank}' self.memory = MeasureMemory(device=device_name) # Synchronize if self.device == 'cuda': torch.cuda.synchronize() # Waits for everything to finish running def _initialize_for_inference(self, **kwargs): # Set output directory super()._prepare_dirs() self.train_loader, self.val_loader, self.test_loader = super()._dataloaders() self.model = self._get_model(self.run_number) self.model = self.model.to(self.device) # Set normalization coefficients super()._set_normalization_coefs(shape=[1,-1,1,1]) # Memory measurement self.memory = MeasureMemory(device=self.device) # Synchronize if self.device == 'cuda': torch.cuda.synchronize() # Waits for everything to finish running def _get_model(self, run_number): model = UNet(n_layers=8, hidden_dim=8, dim=self.dim, padding_mode=self.padding_mode) if self.inference_mode: self.epoch_start = self.load_nth_state_file # To load the state file for inference rank = 0 model.load_state_dict( torch.load(f'{self.state_file_dir}/model_{rank}_{self.epoch_start:03}.pt') ) else: self.epoch_start = 0 if run_number > 0: if self.master: print(f'restart, {run_number}') # Load model states from previous run prev_run_number = run_number - 1 prev_result_filename = self.out_dir / f'flow_cnn_result_rank{self.rank}_rst{prev_run_number:03}.h5' if not prev_result_filename.is_file(): raise IOError(f'prev_result_filename') ds_prev = xr.open_dataset(prev_result_filename, engine='netcdf4') # To load the previous files epoch_end = ds_prev.attrs['epoch_end'] model.load_state_dict( torch.load(f'{self.model_dir}/model_{self.rank}_{epoch_end:03}.pt') ) # Next epoch should start from epoch_end + 1 self.epoch_start = int(epoch_end) + 1 return model def _save_models(self, total_epoch): torch.save(self.model.state_dict(), f'{self.model_dir}/model_{self.rank}_{total_epoch:03}.pt') ########### Main scripts def _train(self, data_loader, epoch): name = 'train' self.model.train() log_loss = 0 nb_samples = len(data_loader.sampler) level = 2 # Timers for i, (sdf, flows) in enumerate(data_loader): # Load data and meta-data *_, sdf_Lv2 = sdf *_, flows_Lv2 = flows batch_len = len(sdf_Lv2) ## To device self.timer.start() sdf_Lv2 = sdf_Lv2.to(self.device) flows_Lv2 = flows_Lv2.to(self.device) self.timer.stop() self.elapsed_times[f'MemcpyH2D_{name}'].append(self.timer.elapsed_seconds()) # Keep sdfs on CPUs sdf_Lv2_cpu = sdf_Lv2.to('cpu') ## Normalization or standardization sdf_Lv2 = super()._preprocess(sdf_Lv2, self.sdf_Lv2_var0, self.sdf_Lv2_var1) flows_Lv2 = super()._preprocess(flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) # Objectives: construct pred_flows_Lv2 pred_flows_Lv2_ = torch.zeros_like(flows_Lv2, device='cpu') #### Train Lv2 self.timer.start() ### Update weights pred_flows_Lv2 = self.model(sdf_Lv2) loss_mae = self.criterion(pred_flows_Lv2, flows_Lv2) self.opt.zero_grad() ### Measure memory usage before backward self.memory.measure() if 'reserved' not in self.memory_consumption: self.memory_consumption['reserved'] = self.memory.reserved() self.memory_consumption['alloc'] = self.memory.alloc() loss_mae.backward() self.opt.step() ### Log losses log_loss += loss_mae.item() / nb_samples ### Destandardization and save pred_flows_Lv2 = super()._postprocess(pred_flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) pred_flows_Lv2_ = pred_flows_Lv2.detach().cpu() self.timer.stop() self.elapsed_times[f'{name}_Lv{level}'].append(self.timer.elapsed_seconds()) # Saving figures if i == 0: self.timer.start() flows_Lv2 = super()._postprocess(flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) ### Zeros inside objects pred_flows_Lv2_ = super()._zeros_inside_objects(pred_flows_Lv2_, sdf_Lv2_cpu) ### Lv2 figures level = 2 save_flows(flows_Lv2, name=name, img_dir = self.sub_img_dir, type_name = 'ref', level = level, epoch=epoch) save_flows(pred_flows_Lv2_, name=name, img_dir = self.sub_img_dir, type_name = 'pred', level = level, epoch=epoch) # Check errors save_flows(pred_flows_Lv2_-flows_Lv2.cpu(), name=name, img_dir = self.sub_img_dir, type_name = 'error', level = level, epoch=epoch) self.timer.stop() self.elapsed_times[f'save_figs_{name}'].append(self.timer.elapsed_seconds()) # Horovod: average metric values across workers. losses = {} losses[f'log_loss_{name}_{self.loss_type}_Lv{level}'] = log_loss for key, value in losses.items(): loss = super()._metric_average(value, key) self.loss_dict[key].append(loss) def _validation(self, data_loader, epoch, name): self.model.eval() log_loss = 0 nb_samples = len(data_loader.sampler) level = 2 for i, (sdf, flows) in enumerate(data_loader): # Load data and meta-data *_, sdf_Lv2 = sdf *_, flows_Lv2 = flows batch_len = len(sdf_Lv2) ## To device self.timer.start() sdf_Lv2 = sdf_Lv2.to(self.device) flows_Lv2 = flows_Lv2.to(self.device) self.timer.stop() self.elapsed_times[f'MemcpyH2D_{name}'].append(self.timer.elapsed_seconds()) # Keep sdfs on CPUs sdf_Lv2_cpu = sdf_Lv2.to('cpu') ## Normalization or standardization sdf_Lv2 = super()._preprocess(sdf_Lv2, self.sdf_Lv2_var0, self.sdf_Lv2_var1) flows_Lv2 = super()._preprocess(flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) # Objectives: construct pred_flows_Lv2 pred_flows_Lv2_ = torch.zeros_like(flows_Lv2, device='cpu') #### Train Lv0 self.timer.start() ### Update weights pred_flows_Lv2 = self.model(sdf_Lv2) loss_mae = self.criterion(pred_flows_Lv2, flows_Lv2) ### Log losses log_loss += loss_mae.item() / nb_samples ### Destandardization and save pred_flows_Lv2 = super()._postprocess(pred_flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) pred_flows_Lv2_ = pred_flows_Lv2.detach().cpu() self.timer.stop() self.elapsed_times[f'{name}_Lv{level}'].append(self.timer.elapsed_seconds()) # Saving figures if i == 0: self.timer.start() flows_Lv2 = super()._postprocess(flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) ### Zeros inside objects pred_flows_Lv2_ = super()._zeros_inside_objects(pred_flows_Lv2_, sdf_Lv2_cpu) ### Lv2 figures level = 2 save_flows(flows_Lv2, name=name, img_dir = self.sub_img_dir, type_name = 'ref', level = level, epoch=epoch) save_flows(pred_flows_Lv2_, name=name, img_dir = self.sub_img_dir, type_name = 'pred', level = level, epoch=epoch) # Check errors save_flows(pred_flows_Lv2_-flows_Lv2.cpu(), name=name, img_dir = self.sub_img_dir, type_name = 'error', level = level, epoch=epoch) self.timer.stop() self.elapsed_times[f'save_figs_{name}'].append(self.timer.elapsed_seconds()) # Horovod: average metric values across workers. losses = {} losses[f'log_loss_{name}_{self.loss_type}_Lv{level}'] = log_loss for key, value in losses.items(): loss = super()._metric_average(value, key) self.loss_dict[key].append(loss) ### For inference def _infer(self): with torch.no_grad(): self._convert(data_loader=self.val_loader, name='validation') self._convert(data_loader=self.test_loader, name='test') def _convert(self, data_loader, name): self.model.eval() level = 2 for indices, sdf, flows in data_loader: # Load data and meta-data *_, sdf_Lv2 = sdf *_, flows_Lv2 = flows batch_len = len(sdf_Lv2) ## To device self.timer.start() sdf_Lv2 = sdf_Lv2.to(self.device) flows_Lv2 = flows_Lv2.to(self.device) self.timer.stop() self.elapsed_times[f'MemcpyH2D_{name}'].append(self.timer.elapsed_seconds()) # Keep sdfs on CPUs sdf_Lv2_cpu = sdf_Lv2.to('cpu') ## Normalization or standardization sdf_Lv2 = super()._preprocess(sdf_Lv2, self.sdf_Lv2_var0, self.sdf_Lv2_var1) flows_Lv2 = super()._preprocess(flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) # Objectives: construct pred_flows_Lv2 pred_flows_Lv2_ = torch.zeros_like(flows_Lv2, device='cpu') #### Infer Lv2 self.timer.start() ### Update weights pred_flows_Lv2 = self.model(sdf_Lv2) ### Destandardization and save pred_flows_Lv2 = super()._postprocess(pred_flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) pred_flows_Lv2_ = pred_flows_Lv2.detach().cpu() self.timer.stop() self.elapsed_times[f'{name}_Lv{level}'].append(self.timer.elapsed_seconds()) # Save the data in netcdf format self.timer.start() flows_Lv2 = super()._postprocess(flows_Lv2, self.flows_Lv2_var0, self.flows_Lv2_var1) ### Zeros inside objects pred_flows_Lv2_ = super()._zeros_inside_objects(pred_flows_Lv2_, sdf_Lv2_cpu) ### Lv2 data save_as_netcdf(sdf=sdf_Lv2_cpu, real_flows=flows_Lv2.cpu(), pred_flows=pred_flows_Lv2_, indices=indices, epoch=self.epoch_start, level=level, name=name, data_dir=self.inference_dir) self.timer.stop() self.elapsed_times[f'save_data_{name}'].append(self.timer.elapsed_seconds())
39.061111
147
0.595435
13,689
0.973475
0
0
0
0
0
0
2,514
0.17878
40b61330deb7990837ff7794fbef7bc995f41538
5,557
py
Python
agents/vpg_policy_translation_with_dislocation.py
pjarosik/rlus
5804a37ed9221362c470ad4eb0e6b03e533bf1d8
[ "Apache-2.0" ]
3
2020-09-20T20:02:43.000Z
2022-01-14T09:37:46.000Z
agents/vpg_policy_translation_with_dislocation.py
pjarosik/rlus
5804a37ed9221362c470ad4eb0e6b03e533bf1d8
[ "Apache-2.0" ]
null
null
null
agents/vpg_policy_translation_with_dislocation.py
pjarosik/rlus
5804a37ed9221362c470ad4eb0e6b03e533bf1d8
[ "Apache-2.0" ]
1
2021-06-29T07:02:19.000Z
2021-06-29T07:02:19.000Z
from spinup import vpg import tensorflow as tf import numpy as np from gym.spaces import Box, Discrete from envs.focal_point_task_us_env import FocalPointTaskUsEnv from envs.phantom import ( ScatterersPhantom, Ball, Teddy ) from envs.imaging import ImagingSystem, Probe from envs.generator import ConstPhantomGenerator, RandomProbeGenerator import envs.logger import matplotlib import argparse N_STEPS_PER_EPISODE = 16 N_STEPS_PER_EPOCH = 64 EPOCHS = 251 # NO_EPISODES = (NSTEPS_PER_EPOCH/NSTEPS_PER_EPISODE)*EPOCHS N_WORKERS = 4 def env_fn(trajectory_logger): probe = Probe( pos=np.array([-20 / 1000, 0]), # only X and Y angle=0, width=40 / 1000, height=10 / 1000, focal_depth=10 / 1000 ) teddy = Teddy( belly_pos=np.array([0 / 1000, 0, 50 / 1000]), scale=12 / 1000, head_offset=.9 ) phantom = ScatterersPhantom( objects=[teddy], x_border=(-40 / 1000, 40 / 1000), y_border=(-40 / 1000, 40 / 1000), z_border=(0, 90 / 1000), n_scatterers=int(1e4), n_bck_scatterers=int(1e3), seed=42, ) imaging = ImagingSystem( c=1540, fs=100e6, image_width=40 / 1000, image_height=90 / 1000, image_resolution=(40, 90), # [pixels] median_filter_size=5, dr_threshold=-200, dec=1, no_lines=64 ) env = FocalPointTaskUsEnv( dx_reward_coeff=1, dz_reward_coeff=1, imaging=imaging, phantom_generator=ConstPhantomGenerator(phantom), probe_generator=RandomProbeGenerator( ref_probe=probe, object_to_align=teddy, seed=42, x_pos=np.arange(-20/1000, 24/1000, step=5/1000), focal_pos=[10/1000] ), max_steps=N_STEPS_PER_EPISODE, no_workers=N_WORKERS, use_cache=True, trajectory_logger=trajectory_logger, step_size=5/1000, # probe_dislocation_prob=0, # max_probe_dislocation=2, # dislocation_seed=42 ) return env AC_KWARGS = dict( hidden_sizes=[16, 32], activation=tf.nn.relu ) # Below functions base on openai.spinup's A-C scheme implementation. def cnn(x, training_ph, hidden_sizes=(32,), kernel_size=(3, 3), pool_size=(2, 2), output_activation=None ): x = tf.layers.batch_normalization(x, training=training_ph) for h in hidden_sizes[:-1]: x = tf.layers.conv2d(x, filters=h, kernel_size=kernel_size) x = tf.layers.batch_normalization(x, training=training_ph) x = tf.nn.relu(x) # x = tf.nn.tanh(x) x = tf.layers.max_pooling2d(x, pool_size=pool_size, strides=pool_size) x = tf.layers.flatten(x) return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation) def cnn_categorical_policy(x, a, training_ph, hidden_sizes, output_activation, action_space): act_dim = action_space.n logits = cnn(x, training_ph, hidden_sizes=list(hidden_sizes) + [act_dim], output_activation=None) logp_all = tf.nn.log_softmax(logits) pi = tf.squeeze(tf.multinomial(logits, 1), axis=1) # action drawn from current policy logp = tf.reduce_sum(tf.one_hot(a, depth=act_dim) * logp_all, axis=1) # log probability of given actions logp_pi = tf.reduce_sum(tf.one_hot(pi, depth=act_dim) * logp_all, axis=1) # log probability of actions of given pi return pi, logp, logp_pi, logp_all def cnn_actor_critic(x, a, training_ph, hidden_sizes=(64, 64), activation=tf.tanh, output_activation=None, policy=None, action_space=None): # default policy builder depends on action space if policy is None and isinstance(action_space, Box): policy = cnn_gaussian_policy elif policy is None and isinstance(action_space, Discrete): policy = cnn_categorical_policy with tf.variable_scope('pi'): pi, logp, logp_pi, logp_all = policy(x, a, training_ph, hidden_sizes, output_activation, action_space) with tf.variable_scope('v'): v = tf.squeeze( cnn(x, training_ph, hidden_sizes=list(hidden_sizes) + [1], output_activation=None), axis=1) return pi, logp, logp_pi, v, logp_all def main(): matplotlib.use('agg') np.random.seed(2442) parser = argparse.ArgumentParser(description="Train agent in env: %s" % FocalPointTaskUsEnv.__name__) parser.add_argument("--exp_dir", dest="exp_dir", help="Where to put all information about the experiment", required=True) args = parser.parse_args() trajactory_logger = envs.logger.TrajectoryLogger( log_dir=".", log_action_csv_freq=1, log_state_csv_freq=1, log_state_render_freq=200 ) spinup_logger_kwargs = dict(output_dir=".", exp_name='log_files') env_builder = lambda: env_fn(trajactory_logger) vpg(env_fn=env_builder, actor_critic=cnn_actor_critic, ac_kwargs=AC_KWARGS, steps_per_epoch=N_STEPS_PER_EPOCH, epochs=EPOCHS, max_ep_len=N_STEPS_PER_EPISODE, logger_kwargs=spinup_logger_kwargs, save_freq=200, lam=0.95 ) if __name__ == "__main__": main()
31.936782
81
0.620659
0
0
0
0
0
0
0
0
535
0.096275
40b7ac2bc7f8f3621a710ed64cc2cd9096f796f1
791
py
Python
lib/losses/dice.py
zongdaoming/CMT
fc3773bb6c6b1ab091688addfffca3fb1e382ae4
[ "MIT" ]
3
2021-05-10T20:12:23.000Z
2021-11-24T18:01:13.000Z
lib/losses/dice.py
zongdaoming/CMT
fc3773bb6c6b1ab091688addfffca3fb1e382ae4
[ "MIT" ]
null
null
null
lib/losses/dice.py
zongdaoming/CMT
fc3773bb6c6b1ab091688addfffca3fb1e382ae4
[ "MIT" ]
null
null
null
import sys,os sys.path.append('/home/zongdaoming/cv/multi-organ/multi-organ-ijcai') from lib.losses.BaseClass import _AbstractDiceLoss from lib.losses.basic import * class DiceLoss(_AbstractDiceLoss): """Computes Dice Loss according to https://arxiv.org/abs/1606.04797. For multi-class segmentation `weight` parameter can be used to assign different weights per class. """ def __init__(self, classes=4, skip_index_after=None, weight=None, sigmoid_normalization=True ): super().__init__(weight, sigmoid_normalization) self.classes = classes if skip_index_after is not None: self.skip_index_after = skip_index_after def dice(self, input, target, weight): return compute_per_channel_dice(input, target, weights=self.weight)
35.954545
102
0.737042
619
0.782554
0
0
0
0
0
0
231
0.292035
40b7ae2027514475dd06028f5df19e3941be6b6d
1,190
py
Python
icons.py
jasantunes/alfred-golinks
f35fa87adedf07329469c0161c8808401a6925d0
[ "MIT" ]
312
2015-01-02T12:44:03.000Z
2020-06-21T03:53:29.000Z
icons.py
jasantunes/alfred-golinks
f35fa87adedf07329469c0161c8808401a6925d0
[ "MIT" ]
7
2015-03-22T11:57:50.000Z
2020-02-09T08:35:05.000Z
icons.py
jasantunes/alfred-golinks
f35fa87adedf07329469c0161c8808401a6925d0
[ "MIT" ]
35
2015-09-06T09:36:32.000Z
2020-06-21T19:17:55.000Z
# encoding: utf-8 # # Copyright (c) 2019 Dean Jackson <[email protected]> # # MIT Licence. See http://opensource.org/licenses/MIT # # Created on 2019-09-06 # """Overlay check mark on icons.""" from __future__ import print_function, absolute_import from Cocoa import ( NSBitmapImageRep, NSPNGFileType, NSImage, NSMakeSize, NSCompositeCopy, NSSizeToCGSize, NSZeroPoint, ) from CoreGraphics import CGRectZero def overlay(src, overlay, dest): """Create image ``dest`` by putting ``overlay`` on top of ``src``. Args: src (str): Path to source image. overlay (str): Path to overlay image. dest (str): Path to save combined image to. """ src = NSImage.alloc().initWithContentsOfFile_(src) overlay = NSImage.alloc().initWithContentsOfFile_(overlay) img = NSImage.alloc().initWithSize_(src.size()) img.lockFocus() rect = (0, 0), src.size() src.drawInRect_(rect) overlay.drawInRect_(rect) img.unlockFocus() rep = NSBitmapImageRep.imageRepWithData_(img.TIFFRepresentation()) data = rep.representationUsingType_properties_(NSPNGFileType,{}) data.writeToFile_atomically_(dest, False)
25.869565
70
0.691597
0
0
0
0
0
0
0
0
412
0.346218
40b9ac7b9f67d52c5c73796669c1ff5e0996665b
2,491
py
Python
project/python/Main/CTRL/tracker.py
warak/IOT-GrannyWarden
54ad51b7bf7377ce7b87e72091c9dbf7f686050d
[ "MIT" ]
null
null
null
project/python/Main/CTRL/tracker.py
warak/IOT-GrannyWarden
54ad51b7bf7377ce7b87e72091c9dbf7f686050d
[ "MIT" ]
null
null
null
project/python/Main/CTRL/tracker.py
warak/IOT-GrannyWarden
54ad51b7bf7377ce7b87e72091c9dbf7f686050d
[ "MIT" ]
null
null
null
import datetime from threading import Thread from time import sleep import DBC.dbcreate as dbc class Tracker(Thread): max_idle_time = 720 # minutes default_sleep = 3600 # secs def track(self): dbcl = dbc.DBClient() # print(dbcl.getlasttime()) print("Tracker activated") while True: date = datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%d-%H:%M') string = date.rsplit("-", 1) yearmonthday = (string[0].rsplit("-", 3)) hoursminutes = (string[1].rsplit(":", 2)) # print(yearmonthday) # print(hoursminutes) year = int(yearmonthday[0]) month = int(yearmonthday[1]) day = int(yearmonthday[2]) hour = int(hoursminutes[0]) minute = int(hoursminutes[1]) date = dbcl.getlasttime() string = date.rsplit("-", 1) yearmonthday = (string[0].rsplit("-", 3)) hoursminutes = (string[1].rsplit(":", 2)) #print(yearmonthday) #print(hoursminutes) yeard = int(yearmonthday[0]) monthd = int(yearmonthday[1]) dayd = int(yearmonthday[2]) hourd = int(hoursminutes[0]) minuted = int(hoursminutes[1]) # tämä loopitus tyhmää, voisi käyttää valmista kirjastoa if year == yeard: if month == monthd: if day == dayd: if hour == hourd: away = minute - minuted else: away = ((hour*60) + minute) - ((hourd*60) + minuted) else: if hour == hourd: away = ((hourd + (day-dayd)*24 - hour) * 60) + minute - minuted else: away = ((day*hour*60) + minute) - ((dayd*hourd*60) + minuted) else: # puutteellinen away = 3 #print(away) self.actions(away, dbcl.getlastaway()) sleep(self.default_sleep) def run(self): self.track() def actions(self, time, away): if time < self.max_idle_time: print("Everything ok") else: away = (int(away) * 60) if time > away: print("Contacting users") else: print("Holiday mode")
30.753086
91
0.470092
2,400
0.960769
0
0
0
0
0
0
314
0.125701
40ba1c6c5aded5c9a1f75bcde2e5830a948185e5
39,197
py
Python
tests/unit/test_snapshot.py
cnnradams/python-spanner
33055e577288cbcc848aa9abf43ccd382c9907a9
[ "Apache-2.0" ]
null
null
null
tests/unit/test_snapshot.py
cnnradams/python-spanner
33055e577288cbcc848aa9abf43ccd382c9907a9
[ "Apache-2.0" ]
null
null
null
tests/unit/test_snapshot.py
cnnradams/python-spanner
33055e577288cbcc848aa9abf43ccd382c9907a9
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import google.api_core.gapic_v1.method import mock TABLE_NAME = "citizens" COLUMNS = ["email", "first_name", "last_name", "age"] SQL_QUERY = """\ SELECT first_name, last_name, age FROM citizens ORDER BY age""" SQL_QUERY_WITH_PARAM = """ SELECT first_name, last_name, email FROM citizens WHERE age <= @max_age""" PARAMS = {"max_age": 30} PARAM_TYPES = {"max_age": "INT64"} SQL_QUERY_WITH_BYTES_PARAM = """\ SELECT image_name FROM images WHERE @bytes IN image_data""" PARAMS_WITH_BYTES = {"bytes": b"FACEDACE"} RESUME_TOKEN = b"DEADBEEF" TXN_ID = b"DEAFBEAD" SECONDS = 3 MICROS = 123456 class Test_restart_on_unavailable(unittest.TestCase): def _call_fut(self, restart): from google.cloud.spanner_v1.snapshot import _restart_on_unavailable return _restart_on_unavailable(restart) def _make_item(self, value, resume_token=b""): return mock.Mock( value=value, resume_token=resume_token, spec=["value", "resume_token"] ) def test_iteration_w_empty_raw(self): raw = _MockIterator() restart = mock.Mock(spec=[], return_value=raw) resumable = self._call_fut(restart) self.assertEqual(list(resumable), []) def test_iteration_w_non_empty_raw(self): ITEMS = (self._make_item(0), self._make_item(1)) raw = _MockIterator(*ITEMS) restart = mock.Mock(spec=[], return_value=raw) resumable = self._call_fut(restart) self.assertEqual(list(resumable), list(ITEMS)) restart.assert_called_once_with() def test_iteration_w_raw_w_resume_tken(self): ITEMS = ( self._make_item(0), self._make_item(1, resume_token=RESUME_TOKEN), self._make_item(2), self._make_item(3), ) raw = _MockIterator(*ITEMS) restart = mock.Mock(spec=[], return_value=raw) resumable = self._call_fut(restart) self.assertEqual(list(resumable), list(ITEMS)) restart.assert_called_once_with() def test_iteration_w_raw_raising_unavailable_no_token(self): ITEMS = ( self._make_item(0), self._make_item(1, resume_token=RESUME_TOKEN), self._make_item(2), ) before = _MockIterator(fail_after=True) after = _MockIterator(*ITEMS) restart = mock.Mock(spec=[], side_effect=[before, after]) resumable = self._call_fut(restart) self.assertEqual(list(resumable), list(ITEMS)) self.assertEqual(restart.mock_calls, [mock.call(), mock.call(resume_token=b"")]) def test_iteration_w_raw_raising_unavailable(self): FIRST = (self._make_item(0), self._make_item(1, resume_token=RESUME_TOKEN)) SECOND = (self._make_item(2),) # discarded after 503 LAST = (self._make_item(3),) before = _MockIterator(*(FIRST + SECOND), fail_after=True) after = _MockIterator(*LAST) restart = mock.Mock(spec=[], side_effect=[before, after]) resumable = self._call_fut(restart) self.assertEqual(list(resumable), list(FIRST + LAST)) self.assertEqual( restart.mock_calls, [mock.call(), mock.call(resume_token=RESUME_TOKEN)] ) def test_iteration_w_raw_raising_unavailable_after_token(self): FIRST = (self._make_item(0), self._make_item(1, resume_token=RESUME_TOKEN)) SECOND = (self._make_item(2), self._make_item(3)) before = _MockIterator(*FIRST, fail_after=True) after = _MockIterator(*SECOND) restart = mock.Mock(spec=[], side_effect=[before, after]) resumable = self._call_fut(restart) self.assertEqual(list(resumable), list(FIRST + SECOND)) self.assertEqual( restart.mock_calls, [mock.call(), mock.call(resume_token=RESUME_TOKEN)] ) class Test_SnapshotBase(unittest.TestCase): PROJECT_ID = "project-id" INSTANCE_ID = "instance-id" INSTANCE_NAME = "projects/" + PROJECT_ID + "/instances/" + INSTANCE_ID DATABASE_ID = "database-id" DATABASE_NAME = INSTANCE_NAME + "/databases/" + DATABASE_ID SESSION_ID = "session-id" SESSION_NAME = DATABASE_NAME + "/sessions/" + SESSION_ID def _getTargetClass(self): from google.cloud.spanner_v1.snapshot import _SnapshotBase return _SnapshotBase def _make_one(self, session): return self._getTargetClass()(session) def _makeDerived(self, session): class _Derived(self._getTargetClass()): _transaction_id = None _multi_use = False def _make_txn_selector(self): from google.cloud.spanner_v1.proto.transaction_pb2 import ( TransactionOptions, TransactionSelector, ) if self._transaction_id: return TransactionSelector(id=self._transaction_id) options = TransactionOptions( read_only=TransactionOptions.ReadOnly(strong=True) ) if self._multi_use: return TransactionSelector(begin=options) return TransactionSelector(single_use=options) return _Derived(session) def _make_spanner_api(self): import google.cloud.spanner_v1.gapic.spanner_client return mock.create_autospec( google.cloud.spanner_v1.gapic.spanner_client.SpannerClient, instance=True ) def test_ctor(self): session = _Session() base = self._make_one(session) self.assertIs(base._session, session) self.assertEqual(base._execute_sql_count, 0) def test__make_txn_selector_virtual(self): session = _Session() base = self._make_one(session) with self.assertRaises(NotImplementedError): base._make_txn_selector() def test_read_other_error(self): from google.cloud.spanner_v1.keyset import KeySet keyset = KeySet(all_=True) database = _Database() database.spanner_api = self._make_spanner_api() database.spanner_api.streaming_read.side_effect = RuntimeError() session = _Session(database) derived = self._makeDerived(session) with self.assertRaises(RuntimeError): list(derived.read(TABLE_NAME, COLUMNS, keyset)) def _read_helper(self, multi_use, first=True, count=0, partition=None): from google.protobuf.struct_pb2 import Struct from google.cloud.spanner_v1.proto.result_set_pb2 import ( PartialResultSet, ResultSetMetadata, ResultSetStats, ) from google.cloud.spanner_v1.proto.transaction_pb2 import ( TransactionSelector, TransactionOptions, ) from google.cloud.spanner_v1.proto.type_pb2 import Type, StructType from google.cloud.spanner_v1.proto.type_pb2 import STRING, INT64 from google.cloud.spanner_v1.keyset import KeySet from google.cloud.spanner_v1._helpers import _make_value_pb VALUES = [[u"bharney", 31], [u"phred", 32]] VALUE_PBS = [[_make_value_pb(item) for item in row] for row in VALUES] struct_type_pb = StructType( fields=[ StructType.Field(name="name", type=Type(code=STRING)), StructType.Field(name="age", type=Type(code=INT64)), ] ) metadata_pb = ResultSetMetadata(row_type=struct_type_pb) stats_pb = ResultSetStats( query_stats=Struct(fields={"rows_returned": _make_value_pb(2)}) ) result_sets = [ PartialResultSet(values=VALUE_PBS[0], metadata=metadata_pb), PartialResultSet(values=VALUE_PBS[1], stats=stats_pb), ] KEYS = [["[email protected]"], ["[email protected]"]] keyset = KeySet(keys=KEYS) INDEX = "email-address-index" LIMIT = 20 database = _Database() api = database.spanner_api = self._make_spanner_api() api.streaming_read.return_value = _MockIterator(*result_sets) session = _Session(database) derived = self._makeDerived(session) derived._multi_use = multi_use derived._read_request_count = count if not first: derived._transaction_id = TXN_ID if partition is not None: # 'limit' and 'partition' incompatible result_set = derived.read( TABLE_NAME, COLUMNS, keyset, index=INDEX, partition=partition ) else: result_set = derived.read( TABLE_NAME, COLUMNS, keyset, index=INDEX, limit=LIMIT ) self.assertEqual(derived._read_request_count, count + 1) if multi_use: self.assertIs(result_set._source, derived) else: self.assertIsNone(result_set._source) self.assertEqual(list(result_set), VALUES) self.assertEqual(result_set.metadata, metadata_pb) self.assertEqual(result_set.stats, stats_pb) txn_options = TransactionOptions( read_only=TransactionOptions.ReadOnly(strong=True) ) if multi_use: if first: expected_transaction = TransactionSelector(begin=txn_options) else: expected_transaction = TransactionSelector(id=TXN_ID) else: expected_transaction = TransactionSelector(single_use=txn_options) if partition is not None: expected_limit = 0 else: expected_limit = LIMIT api.streaming_read.assert_called_once_with( self.SESSION_NAME, TABLE_NAME, COLUMNS, keyset._to_pb(), transaction=expected_transaction, index=INDEX, limit=expected_limit, partition_token=partition, metadata=[("google-cloud-resource-prefix", database.name)], ) def test_read_wo_multi_use(self): self._read_helper(multi_use=False) def test_read_wo_multi_use_w_read_request_count_gt_0(self): with self.assertRaises(ValueError): self._read_helper(multi_use=False, count=1) def test_read_w_multi_use_wo_first(self): self._read_helper(multi_use=True, first=False) def test_read_w_multi_use_wo_first_w_count_gt_0(self): self._read_helper(multi_use=True, first=False, count=1) def test_read_w_multi_use_w_first_w_partition(self): PARTITION = b"FADEABED" self._read_helper(multi_use=True, first=True, partition=PARTITION) def test_read_w_multi_use_w_first_w_count_gt_0(self): with self.assertRaises(ValueError): self._read_helper(multi_use=True, first=True, count=1) def test_execute_sql_other_error(self): database = _Database() database.spanner_api = self._make_spanner_api() database.spanner_api.execute_streaming_sql.side_effect = RuntimeError() session = _Session(database) derived = self._makeDerived(session) with self.assertRaises(RuntimeError): list(derived.execute_sql(SQL_QUERY)) self.assertEqual(derived._execute_sql_count, 1) def test_execute_sql_w_params_wo_param_types(self): database = _Database() session = _Session(database) derived = self._makeDerived(session) with self.assertRaises(ValueError): derived.execute_sql(SQL_QUERY_WITH_PARAM, PARAMS) def _execute_sql_helper( self, multi_use, first=True, count=0, partition=None, sql_count=0, query_options=None, timeout=google.api_core.gapic_v1.method.DEFAULT, retry=google.api_core.gapic_v1.method.DEFAULT, ): from google.protobuf.struct_pb2 import Struct from google.cloud.spanner_v1.proto.result_set_pb2 import ( PartialResultSet, ResultSetMetadata, ResultSetStats, ) from google.cloud.spanner_v1.proto.transaction_pb2 import ( TransactionSelector, TransactionOptions, ) from google.cloud.spanner_v1.proto.type_pb2 import Type, StructType from google.cloud.spanner_v1.proto.type_pb2 import STRING, INT64 from google.cloud.spanner_v1._helpers import ( _make_value_pb, _merge_query_options, ) VALUES = [[u"bharney", u"rhubbyl", 31], [u"phred", u"phlyntstone", 32]] VALUE_PBS = [[_make_value_pb(item) for item in row] for row in VALUES] MODE = 2 # PROFILE struct_type_pb = StructType( fields=[ StructType.Field(name="first_name", type=Type(code=STRING)), StructType.Field(name="last_name", type=Type(code=STRING)), StructType.Field(name="age", type=Type(code=INT64)), ] ) metadata_pb = ResultSetMetadata(row_type=struct_type_pb) stats_pb = ResultSetStats( query_stats=Struct(fields={"rows_returned": _make_value_pb(2)}) ) result_sets = [ PartialResultSet(values=VALUE_PBS[0], metadata=metadata_pb), PartialResultSet(values=VALUE_PBS[1], stats=stats_pb), ] iterator = _MockIterator(*result_sets) database = _Database() api = database.spanner_api = self._make_spanner_api() api.execute_streaming_sql.return_value = iterator session = _Session(database) derived = self._makeDerived(session) derived._multi_use = multi_use derived._read_request_count = count derived._execute_sql_count = sql_count if not first: derived._transaction_id = TXN_ID result_set = derived.execute_sql( SQL_QUERY_WITH_PARAM, PARAMS, PARAM_TYPES, query_mode=MODE, query_options=query_options, partition=partition, retry=retry, timeout=timeout, ) self.assertEqual(derived._read_request_count, count + 1) if multi_use: self.assertIs(result_set._source, derived) else: self.assertIsNone(result_set._source) self.assertEqual(list(result_set), VALUES) self.assertEqual(result_set.metadata, metadata_pb) self.assertEqual(result_set.stats, stats_pb) txn_options = TransactionOptions( read_only=TransactionOptions.ReadOnly(strong=True) ) if multi_use: if first: expected_transaction = TransactionSelector(begin=txn_options) else: expected_transaction = TransactionSelector(id=TXN_ID) else: expected_transaction = TransactionSelector(single_use=txn_options) expected_params = Struct( fields={key: _make_value_pb(value) for (key, value) in PARAMS.items()} ) expected_query_options = database._instance._client._query_options if query_options: expected_query_options = _merge_query_options( expected_query_options, query_options ) api.execute_streaming_sql.assert_called_once_with( self.SESSION_NAME, SQL_QUERY_WITH_PARAM, transaction=expected_transaction, params=expected_params, param_types=PARAM_TYPES, query_mode=MODE, query_options=expected_query_options, partition_token=partition, seqno=sql_count, metadata=[("google-cloud-resource-prefix", database.name)], timeout=timeout, retry=retry, ) self.assertEqual(derived._execute_sql_count, sql_count + 1) def test_execute_sql_wo_multi_use(self): self._execute_sql_helper(multi_use=False) def test_execute_sql_wo_multi_use_w_read_request_count_gt_0(self): with self.assertRaises(ValueError): self._execute_sql_helper(multi_use=False, count=1) def test_execute_sql_w_multi_use_wo_first(self): self._execute_sql_helper(multi_use=True, first=False, sql_count=1) def test_execute_sql_w_multi_use_wo_first_w_count_gt_0(self): self._execute_sql_helper(multi_use=True, first=False, count=1) def test_execute_sql_w_multi_use_w_first(self): self._execute_sql_helper(multi_use=True, first=True) def test_execute_sql_w_multi_use_w_first_w_count_gt_0(self): with self.assertRaises(ValueError): self._execute_sql_helper(multi_use=True, first=True, count=1) def test_execute_sql_w_retry(self): self._execute_sql_helper(multi_use=False, retry=None) def test_execute_sql_w_timeout(self): self._execute_sql_helper(multi_use=False, timeout=None) def test_execute_sql_w_query_options(self): from google.cloud.spanner_v1.proto.spanner_pb2 import ExecuteSqlRequest self._execute_sql_helper( multi_use=False, query_options=ExecuteSqlRequest.QueryOptions(optimizer_version="3"), ) def _partition_read_helper( self, multi_use, w_txn, size=None, max_partitions=None, index=None ): from google.cloud.spanner_v1.keyset import KeySet from google.cloud.spanner_v1.types import Partition from google.cloud.spanner_v1.types import PartitionOptions from google.cloud.spanner_v1.types import PartitionResponse from google.cloud.spanner_v1.types import Transaction from google.cloud.spanner_v1.proto.transaction_pb2 import TransactionSelector keyset = KeySet(all_=True) new_txn_id = b"ABECAB91" token_1 = b"FACE0FFF" token_2 = b"BADE8CAF" response = PartitionResponse( partitions=[ Partition(partition_token=token_1), Partition(partition_token=token_2), ], transaction=Transaction(id=new_txn_id), ) database = _Database() api = database.spanner_api = self._make_spanner_api() api.partition_read.return_value = response session = _Session(database) derived = self._makeDerived(session) derived._multi_use = multi_use if w_txn: derived._transaction_id = TXN_ID tokens = list( derived.partition_read( TABLE_NAME, COLUMNS, keyset, index=index, partition_size_bytes=size, max_partitions=max_partitions, ) ) self.assertEqual(tokens, [token_1, token_2]) expected_txn_selector = TransactionSelector(id=TXN_ID) expected_partition_options = PartitionOptions( partition_size_bytes=size, max_partitions=max_partitions ) api.partition_read.assert_called_once_with( session=self.SESSION_NAME, table=TABLE_NAME, columns=COLUMNS, key_set=keyset._to_pb(), transaction=expected_txn_selector, index=index, partition_options=expected_partition_options, metadata=[("google-cloud-resource-prefix", database.name)], ) def test_partition_read_single_use_raises(self): with self.assertRaises(ValueError): self._partition_read_helper(multi_use=False, w_txn=True) def test_partition_read_wo_existing_transaction_raises(self): with self.assertRaises(ValueError): self._partition_read_helper(multi_use=True, w_txn=False) def test_partition_read_other_error(self): from google.cloud.spanner_v1.keyset import KeySet keyset = KeySet(all_=True) database = _Database() database.spanner_api = self._make_spanner_api() database.spanner_api.partition_read.side_effect = RuntimeError() session = _Session(database) derived = self._makeDerived(session) derived._multi_use = True derived._transaction_id = TXN_ID with self.assertRaises(RuntimeError): list(derived.partition_read(TABLE_NAME, COLUMNS, keyset)) def test_partition_read_ok_w_index_no_options(self): self._partition_read_helper(multi_use=True, w_txn=True, index="index") def test_partition_read_ok_w_size(self): self._partition_read_helper(multi_use=True, w_txn=True, size=2000) def test_partition_read_ok_w_max_partitions(self): self._partition_read_helper(multi_use=True, w_txn=True, max_partitions=4) def _partition_query_helper(self, multi_use, w_txn, size=None, max_partitions=None): from google.protobuf.struct_pb2 import Struct from google.cloud.spanner_v1.types import Partition from google.cloud.spanner_v1.types import PartitionOptions from google.cloud.spanner_v1.types import PartitionResponse from google.cloud.spanner_v1.types import Transaction from google.cloud.spanner_v1.proto.transaction_pb2 import TransactionSelector from google.cloud.spanner_v1._helpers import _make_value_pb new_txn_id = b"ABECAB91" token_1 = b"FACE0FFF" token_2 = b"BADE8CAF" response = PartitionResponse( partitions=[ Partition(partition_token=token_1), Partition(partition_token=token_2), ], transaction=Transaction(id=new_txn_id), ) database = _Database() api = database.spanner_api = self._make_spanner_api() api.partition_query.return_value = response session = _Session(database) derived = self._makeDerived(session) derived._multi_use = multi_use if w_txn: derived._transaction_id = TXN_ID tokens = list( derived.partition_query( SQL_QUERY_WITH_PARAM, PARAMS, PARAM_TYPES, partition_size_bytes=size, max_partitions=max_partitions, ) ) self.assertEqual(tokens, [token_1, token_2]) expected_params = Struct( fields={key: _make_value_pb(value) for (key, value) in PARAMS.items()} ) expected_txn_selector = TransactionSelector(id=TXN_ID) expected_partition_options = PartitionOptions( partition_size_bytes=size, max_partitions=max_partitions ) api.partition_query.assert_called_once_with( session=self.SESSION_NAME, sql=SQL_QUERY_WITH_PARAM, transaction=expected_txn_selector, params=expected_params, param_types=PARAM_TYPES, partition_options=expected_partition_options, metadata=[("google-cloud-resource-prefix", database.name)], ) def test_partition_query_other_error(self): database = _Database() database.spanner_api = self._make_spanner_api() database.spanner_api.partition_query.side_effect = RuntimeError() session = _Session(database) derived = self._makeDerived(session) derived._multi_use = True derived._transaction_id = TXN_ID with self.assertRaises(RuntimeError): list(derived.partition_query(SQL_QUERY)) def test_partition_query_w_params_wo_param_types(self): database = _Database() session = _Session(database) derived = self._makeDerived(session) derived._multi_use = True derived._transaction_id = TXN_ID with self.assertRaises(ValueError): list(derived.partition_query(SQL_QUERY_WITH_PARAM, PARAMS)) def test_partition_query_single_use_raises(self): with self.assertRaises(ValueError): self._partition_query_helper(multi_use=False, w_txn=True) def test_partition_query_wo_transaction_raises(self): with self.assertRaises(ValueError): self._partition_query_helper(multi_use=True, w_txn=False) def test_partition_query_ok_w_index_no_options(self): self._partition_query_helper(multi_use=True, w_txn=True) def test_partition_query_ok_w_size(self): self._partition_query_helper(multi_use=True, w_txn=True, size=2000) def test_partition_query_ok_w_max_partitions(self): self._partition_query_helper(multi_use=True, w_txn=True, max_partitions=4) class TestSnapshot(unittest.TestCase): PROJECT_ID = "project-id" INSTANCE_ID = "instance-id" INSTANCE_NAME = "projects/" + PROJECT_ID + "/instances/" + INSTANCE_ID DATABASE_ID = "database-id" DATABASE_NAME = INSTANCE_NAME + "/databases/" + DATABASE_ID SESSION_ID = "session-id" SESSION_NAME = DATABASE_NAME + "/sessions/" + SESSION_ID def _getTargetClass(self): from google.cloud.spanner_v1.snapshot import Snapshot return Snapshot def _make_one(self, *args, **kwargs): return self._getTargetClass()(*args, **kwargs) def _make_spanner_api(self): import google.cloud.spanner_v1.gapic.spanner_client return mock.create_autospec( google.cloud.spanner_v1.gapic.spanner_client.SpannerClient, instance=True ) def _makeTimestamp(self): import datetime from google.cloud._helpers import UTC return datetime.datetime.utcnow().replace(tzinfo=UTC) def _makeDuration(self, seconds=1, microseconds=0): import datetime return datetime.timedelta(seconds=seconds, microseconds=microseconds) def test_ctor_defaults(self): session = _Session() snapshot = self._make_one(session) self.assertIs(snapshot._session, session) self.assertTrue(snapshot._strong) self.assertIsNone(snapshot._read_timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertIsNone(snapshot._max_staleness) self.assertIsNone(snapshot._exact_staleness) self.assertFalse(snapshot._multi_use) def test_ctor_w_multiple_options(self): timestamp = self._makeTimestamp() duration = self._makeDuration() session = _Session() with self.assertRaises(ValueError): self._make_one(session, read_timestamp=timestamp, max_staleness=duration) def test_ctor_w_read_timestamp(self): timestamp = self._makeTimestamp() session = _Session() snapshot = self._make_one(session, read_timestamp=timestamp) self.assertIs(snapshot._session, session) self.assertFalse(snapshot._strong) self.assertEqual(snapshot._read_timestamp, timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertIsNone(snapshot._max_staleness) self.assertIsNone(snapshot._exact_staleness) self.assertFalse(snapshot._multi_use) def test_ctor_w_min_read_timestamp(self): timestamp = self._makeTimestamp() session = _Session() snapshot = self._make_one(session, min_read_timestamp=timestamp) self.assertIs(snapshot._session, session) self.assertFalse(snapshot._strong) self.assertIsNone(snapshot._read_timestamp) self.assertEqual(snapshot._min_read_timestamp, timestamp) self.assertIsNone(snapshot._max_staleness) self.assertIsNone(snapshot._exact_staleness) self.assertFalse(snapshot._multi_use) def test_ctor_w_max_staleness(self): duration = self._makeDuration() session = _Session() snapshot = self._make_one(session, max_staleness=duration) self.assertIs(snapshot._session, session) self.assertFalse(snapshot._strong) self.assertIsNone(snapshot._read_timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertEqual(snapshot._max_staleness, duration) self.assertIsNone(snapshot._exact_staleness) self.assertFalse(snapshot._multi_use) def test_ctor_w_exact_staleness(self): duration = self._makeDuration() session = _Session() snapshot = self._make_one(session, exact_staleness=duration) self.assertIs(snapshot._session, session) self.assertFalse(snapshot._strong) self.assertIsNone(snapshot._read_timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertIsNone(snapshot._max_staleness) self.assertEqual(snapshot._exact_staleness, duration) self.assertFalse(snapshot._multi_use) def test_ctor_w_multi_use(self): session = _Session() snapshot = self._make_one(session, multi_use=True) self.assertTrue(snapshot._session is session) self.assertTrue(snapshot._strong) self.assertIsNone(snapshot._read_timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertIsNone(snapshot._max_staleness) self.assertIsNone(snapshot._exact_staleness) self.assertTrue(snapshot._multi_use) def test_ctor_w_multi_use_and_read_timestamp(self): timestamp = self._makeTimestamp() session = _Session() snapshot = self._make_one(session, read_timestamp=timestamp, multi_use=True) self.assertTrue(snapshot._session is session) self.assertFalse(snapshot._strong) self.assertEqual(snapshot._read_timestamp, timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertIsNone(snapshot._max_staleness) self.assertIsNone(snapshot._exact_staleness) self.assertTrue(snapshot._multi_use) def test_ctor_w_multi_use_and_min_read_timestamp(self): timestamp = self._makeTimestamp() session = _Session() with self.assertRaises(ValueError): self._make_one(session, min_read_timestamp=timestamp, multi_use=True) def test_ctor_w_multi_use_and_max_staleness(self): duration = self._makeDuration() session = _Session() with self.assertRaises(ValueError): self._make_one(session, max_staleness=duration, multi_use=True) def test_ctor_w_multi_use_and_exact_staleness(self): duration = self._makeDuration() session = _Session() snapshot = self._make_one(session, exact_staleness=duration, multi_use=True) self.assertTrue(snapshot._session is session) self.assertFalse(snapshot._strong) self.assertIsNone(snapshot._read_timestamp) self.assertIsNone(snapshot._min_read_timestamp) self.assertIsNone(snapshot._max_staleness) self.assertEqual(snapshot._exact_staleness, duration) self.assertTrue(snapshot._multi_use) def test__make_txn_selector_w_transaction_id(self): session = _Session() snapshot = self._make_one(session) snapshot._transaction_id = TXN_ID selector = snapshot._make_txn_selector() self.assertEqual(selector.id, TXN_ID) def test__make_txn_selector_strong(self): session = _Session() snapshot = self._make_one(session) selector = snapshot._make_txn_selector() options = selector.single_use self.assertTrue(options.read_only.strong) def test__make_txn_selector_w_read_timestamp(self): from google.cloud._helpers import _pb_timestamp_to_datetime timestamp = self._makeTimestamp() session = _Session() snapshot = self._make_one(session, read_timestamp=timestamp) selector = snapshot._make_txn_selector() options = selector.single_use self.assertEqual( _pb_timestamp_to_datetime(options.read_only.read_timestamp), timestamp ) def test__make_txn_selector_w_min_read_timestamp(self): from google.cloud._helpers import _pb_timestamp_to_datetime timestamp = self._makeTimestamp() session = _Session() snapshot = self._make_one(session, min_read_timestamp=timestamp) selector = snapshot._make_txn_selector() options = selector.single_use self.assertEqual( _pb_timestamp_to_datetime(options.read_only.min_read_timestamp), timestamp ) def test__make_txn_selector_w_max_staleness(self): duration = self._makeDuration(seconds=3, microseconds=123456) session = _Session() snapshot = self._make_one(session, max_staleness=duration) selector = snapshot._make_txn_selector() options = selector.single_use self.assertEqual(options.read_only.max_staleness.seconds, 3) self.assertEqual(options.read_only.max_staleness.nanos, 123456000) def test__make_txn_selector_w_exact_staleness(self): duration = self._makeDuration(seconds=3, microseconds=123456) session = _Session() snapshot = self._make_one(session, exact_staleness=duration) selector = snapshot._make_txn_selector() options = selector.single_use self.assertEqual(options.read_only.exact_staleness.seconds, 3) self.assertEqual(options.read_only.exact_staleness.nanos, 123456000) def test__make_txn_selector_strong_w_multi_use(self): session = _Session() snapshot = self._make_one(session, multi_use=True) selector = snapshot._make_txn_selector() options = selector.begin self.assertTrue(options.read_only.strong) def test__make_txn_selector_w_read_timestamp_w_multi_use(self): from google.cloud._helpers import _pb_timestamp_to_datetime timestamp = self._makeTimestamp() session = _Session() snapshot = self._make_one(session, read_timestamp=timestamp, multi_use=True) selector = snapshot._make_txn_selector() options = selector.begin self.assertEqual( _pb_timestamp_to_datetime(options.read_only.read_timestamp), timestamp ) def test__make_txn_selector_w_exact_staleness_w_multi_use(self): duration = self._makeDuration(seconds=3, microseconds=123456) session = _Session() snapshot = self._make_one(session, exact_staleness=duration, multi_use=True) selector = snapshot._make_txn_selector() options = selector.begin self.assertEqual(options.read_only.exact_staleness.seconds, 3) self.assertEqual(options.read_only.exact_staleness.nanos, 123456000) def test_begin_wo_multi_use(self): session = _Session() snapshot = self._make_one(session) with self.assertRaises(ValueError): snapshot.begin() def test_begin_w_read_request_count_gt_0(self): session = _Session() snapshot = self._make_one(session, multi_use=True) snapshot._read_request_count = 1 with self.assertRaises(ValueError): snapshot.begin() def test_begin_w_existing_txn_id(self): session = _Session() snapshot = self._make_one(session, multi_use=True) snapshot._transaction_id = TXN_ID with self.assertRaises(ValueError): snapshot.begin() def test_begin_w_other_error(self): database = _Database() database.spanner_api = self._make_spanner_api() database.spanner_api.begin_transaction.side_effect = RuntimeError() timestamp = self._makeTimestamp() session = _Session(database) snapshot = self._make_one(session, read_timestamp=timestamp, multi_use=True) with self.assertRaises(RuntimeError): snapshot.begin() def test_begin_ok_exact_staleness(self): from google.protobuf.duration_pb2 import Duration from google.cloud.spanner_v1.proto.transaction_pb2 import ( Transaction as TransactionPB, TransactionOptions, ) transaction_pb = TransactionPB(id=TXN_ID) database = _Database() api = database.spanner_api = self._make_spanner_api() api.begin_transaction.return_value = transaction_pb duration = self._makeDuration(seconds=SECONDS, microseconds=MICROS) session = _Session(database) snapshot = self._make_one(session, exact_staleness=duration, multi_use=True) txn_id = snapshot.begin() self.assertEqual(txn_id, TXN_ID) self.assertEqual(snapshot._transaction_id, TXN_ID) expected_duration = Duration(seconds=SECONDS, nanos=MICROS * 1000) expected_txn_options = TransactionOptions( read_only=TransactionOptions.ReadOnly(exact_staleness=expected_duration) ) api.begin_transaction.assert_called_once_with( session.name, expected_txn_options, metadata=[("google-cloud-resource-prefix", database.name)], ) def test_begin_ok_exact_strong(self): from google.cloud.spanner_v1.proto.transaction_pb2 import ( Transaction as TransactionPB, TransactionOptions, ) transaction_pb = TransactionPB(id=TXN_ID) database = _Database() api = database.spanner_api = self._make_spanner_api() api.begin_transaction.return_value = transaction_pb session = _Session(database) snapshot = self._make_one(session, multi_use=True) txn_id = snapshot.begin() self.assertEqual(txn_id, TXN_ID) self.assertEqual(snapshot._transaction_id, TXN_ID) expected_txn_options = TransactionOptions( read_only=TransactionOptions.ReadOnly(strong=True) ) api.begin_transaction.assert_called_once_with( session.name, expected_txn_options, metadata=[("google-cloud-resource-prefix", database.name)], ) class _Client(object): def __init__(self): from google.cloud.spanner_v1.proto.spanner_pb2 import ExecuteSqlRequest self._query_options = ExecuteSqlRequest.QueryOptions(optimizer_version="1") class _Instance(object): def __init__(self): self._client = _Client() class _Database(object): def __init__(self): self.name = "testing" self._instance = _Instance() class _Session(object): def __init__(self, database=None, name=TestSnapshot.SESSION_NAME): self._database = database self.name = name class _MockIterator(object): def __init__(self, *values, **kw): self._iter_values = iter(values) self._fail_after = kw.pop("fail_after", False) def __iter__(self): return self def __next__(self): from google.api_core.exceptions import ServiceUnavailable try: return next(self._iter_values) except StopIteration: if self._fail_after: raise ServiceUnavailable("testing") raise next = __next__
37.725698
88
0.672858
37,973
0.968773
0
0
0
0
0
0
1,685
0.042988
40ba39e3f0879514163c0009fb4d3d4f6df2004d
592
py
Python
hashtable.py
quake0day/oj
c09333d1738f8735de0d5d825db6f4b707585670
[ "MIT" ]
null
null
null
hashtable.py
quake0day/oj
c09333d1738f8735de0d5d825db6f4b707585670
[ "MIT" ]
null
null
null
hashtable.py
quake0day/oj
c09333d1738f8735de0d5d825db6f4b707585670
[ "MIT" ]
null
null
null
A = ['a','b'] B = ['c','b','a'] def generatehash(A): hashA = {} for item in A: if item not in hashA: hashA[item] = 1 else: hashA[item] += 1 return hashA def compareHash(A, B): lenA = len(A) lenB = len(B) hashA = generatehash(A) if lenB < lenA: return False elif lenB == lenA: return hashA == generatehash(B) else: for i in xrange(lenB-lenA+1): newB = B[i:i+lenA] if hashA == generatehash(newB): return True return False print compareHash(A, B)
19.733333
43
0.496622
0
0
0
0
0
0
0
0
15
0.025338
40bab880835594679397baae0088587d6d0269a6
2,904
py
Python
Manipulation of PDF Files/pandf_gui.py
clair513/DIY
843770590a729c6aabf63367a3ab848e21ab78b9
[ "MIT" ]
1
2019-12-18T17:28:11.000Z
2019-12-18T17:28:11.000Z
Manipulation of PDF Files/pandf_gui.py
clair513/DIY
843770590a729c6aabf63367a3ab848e21ab78b9
[ "MIT" ]
null
null
null
Manipulation of PDF Files/pandf_gui.py
clair513/DIY
843770590a729c6aabf63367a3ab848e21ab78b9
[ "MIT" ]
null
null
null
# Importing required packages: import pandas as pd from tkinter import * from tkinter.ttk import * root = Tk() # To visualize input DataFrame: def generate_plot(gui_root, df, x_axis, y_axis=None, plot={'type':None, 'hue':None}, aesthetics={'style':'whitegrid', 'palette':'hsv', 'size':(10,7), 'dpi':100}): """ DESCRIPTION: Reads input Pandas DataFrame and returns a plot based on selected parameters. PARAMETERS: > gui_root : [Required] Accepts Tkinter application base class (Tk) initialized variable/instance. > df : [Required] Accepts Pandas DataFrame. """ # Importing external dependencies: import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import seaborn as sns sns.set(style=aesthetics['style'], palette=aesthetics['palette']) import warnings warnings.filterwarnings('ignore') # Defining Tableau colors: tableau_20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scaling over RGB values to [0,1] range (Matplotlib acceptable format): for i in range(len(tableau_20)): r,g,b = tableau_20[i] tableau_20[i] = (r/255., g/255., b/255.) # Setting up Tkinter Frame: lf = Labelframe(gui_root) lf.grid(row=0, column=0, sticky='nwes', padx=3, pady=3) # Setting up Canvas backed by Matplotlib: fig = Figure(figsize=aesthetics['size'], dpi=aesthetics['dpi']) ax = fig.add_subplot(111) # Drawing various plots with Seaborn: if plot['type']=='lineplot': # Lineplot g = sns.lineplot(x=x_axis, y=y_axis, data=df, ax=ax) elif plot['type']=='regplot': # Regplot g = sns.regplot(x=x_axis, y=y_axis, data=df, color=tableau_20[16], ax=ax) elif plot['type']=='distplot': # Distplot g = sns.distplot(a=df[x_axis].dropna(), color=tableau_20[7], hist_kws=dict(edgecolor='k', linewidth=0.5), ax=ax) elif plot['type']=='barplot': # Grouped Barplot g = sns.catplot(x=x_axis, y=y_axis, hue=plot['hue'], data=df, kind="bar", palette='rocket', ax=ax) g.despine(left=True) else: # More to be added later pass # Displaying plot on Canvas: canvas = FigureCanvasTkAgg(fig, master=lf) canvas.draw() canvas.get_tk_widget().grid(row=0, column=0) generate_plot() root.mainloop()
38.72
107
0.587466
0
0
0
0
0
0
0
0
876
0.301653
40bac90ddb15602100d2d54bde81a9850ed02d27
4,737
py
Python
utils/get_dataset.py
gautierdag/pytorch-attentive-lm
d08ce1813a5ee575c0aac86773cd95aa174ab5e1
[ "MIT" ]
16
2019-01-28T16:39:52.000Z
2021-12-25T11:07:55.000Z
utils/get_dataset.py
MarkWuCL/pytorch-attentive-lm
d08ce1813a5ee575c0aac86773cd95aa174ab5e1
[ "MIT" ]
1
2021-09-14T22:14:28.000Z
2021-09-15T16:12:43.000Z
utils/get_dataset.py
MarkWuCL/pytorch-attentive-lm
d08ce1813a5ee575c0aac86773cd95aa174ab5e1
[ "MIT" ]
6
2019-01-25T00:08:33.000Z
2022-02-15T06:47:54.000Z
import os import torch from torch.utils.data import DataLoader, TensorDataset import requests import io import zipfile from .data_reader import read_vocabulary, read_lm_data, lm_data_producer from .pre_process_wikitext import pre_process def get_dataset(dataset, batch_size, device): """ Returns data iterator for each set and vocabulary """ download_dataset(dataset) # downloads and preprocess dataset if needed if dataset == "wiki-02": data_files = [".data/wikitext-2/wikitext-2/wiki.train.tokens.sents", ".data/wikitext-2/wikitext-2/wiki.valid.tokens.sents", ".data/wikitext-2/wikitext-2/wiki.test.tokens.sents"] vocab_size = 33278 + 1 # add 1 to account for PAD if dataset == 'ptb': data_files = [".data/penn-treebank/ptb.train.txt", ".data/penn-treebank/ptb.valid.txt", ".data/penn-treebank/ptb.test.txt"] vocab_size = 10000 + 1 # add 1 to account for PAD vocabulary = read_vocabulary(data_files, vocab_size) train_data, valid_data, test_data = read_lm_data(data_files, vocabulary) # Convert numpy to datasets and obtain iterators for each train_data = lm_data_producer(train_data) train_x = torch.tensor(train_data[0], dtype=torch.long, device=device) train_y = torch.tensor(train_data[1], dtype=torch.long, device=device) train_lengths = torch.tensor( train_data[2], dtype=torch.float, device=device) train_dataset = TensorDataset(train_x, train_y, train_lengths) valid_data = lm_data_producer(valid_data) valid_x = torch.tensor(valid_data[0], dtype=torch.long, device=device) valid_y = torch.tensor(valid_data[1], dtype=torch.long, device=device) valid_lengths = torch.tensor( valid_data[2], dtype=torch.float, device=device) valid_dataset = TensorDataset(valid_x, valid_y, valid_lengths) test_data = lm_data_producer(test_data) test_x = torch.tensor(test_data[0], dtype=torch.long, device=device) test_y = torch.tensor(test_data[1], dtype=torch.long, device=device) test_lengths = torch.tensor(test_data[2], dtype=torch.float, device=device) test_dataset = TensorDataset(test_x, test_y, test_lengths) train_iter = DataLoader(train_dataset, batch_size=batch_size) valid_iter = DataLoader(valid_dataset, batch_size=batch_size) test_iter = DataLoader(test_dataset, batch_size=batch_size) return train_iter, valid_iter, test_iter, vocabulary # downloading/preprocessing functions def download_dataset(dataset): if not os.path.exists('.data'): os.makedirs('.data') if dataset == 'ptb': folder_name = 'penn-treebank' filename = 'ptb.test.txt' if dataset == 'wiki-02': folder_name = 'wikitext-2' filename = 'wiki.test.tokens' dataset_path = '.data/' + folder_name if not os.path.exists(dataset_path): os.makedirs(dataset_path) if dataset == 'ptb': filepath = dataset_path + '/' + filename if not os.path.exists(filepath): download_ptb(dataset_path) if dataset == 'wiki-02': filepath = dataset_path + '/'+folder_name + '/'+filename if not os.path.exists(filepath): download_and_preproc_wiki(dataset_path) return def download_ptb(dataset_path): urls = ['https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.train.txt', 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.valid.txt', 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.test.txt'] # To save to a relative path. r = requests.get(urls[0]) with open(dataset_path+'/ptb.train.txt', 'wb') as f: f.write(r.content) r = requests.get(urls[1]) with open(dataset_path+'/ptb.valid.txt', 'wb') as f: f.write(r.content) r = requests.get(urls[2]) with open(dataset_path+'/ptb.test.txt', 'wb') as f: f.write(r.content) def download_and_preproc_wiki(dataset_path): print("Downloading wikitext") url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip' r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(dataset_path) train = ".data/wikitext-2/wikitext-2/wiki.train.tokens" valid = ".data/wikitext-2/wikitext-2/wiki.valid.tokens" test = ".data/wikitext-2/wikitext-2/wiki.test.tokens" print("Pre-processing wikitext-02 training set...") pre_process(train) print("Pre-processing wikitext-02 validation set...") pre_process(valid) print("Pre-processing wikitext-02 test set...") pre_process(test)
37.896
90
0.677222
0
0
0
0
0
0
0
0
1,333
0.281402
40bb7183ce1df8b018466acd5e09bcd49d75d2d5
289
py
Python
Conteudo das Aulas/087/calc_est.py
cerberus707/lab-python
ebba3c9cde873d70d4bb61084f79ce30b7f9e047
[ "Apache-2.0" ]
null
null
null
Conteudo das Aulas/087/calc_est.py
cerberus707/lab-python
ebba3c9cde873d70d4bb61084f79ce30b7f9e047
[ "Apache-2.0" ]
null
null
null
Conteudo das Aulas/087/calc_est.py
cerberus707/lab-python
ebba3c9cde873d70d4bb61084f79ce30b7f9e047
[ "Apache-2.0" ]
null
null
null
from tkinter import * #Cria a nossa tela instancia = Tk() #Dá um título a tela instancia.title('Calculadora para Estatística') #Dá um tamanho a tela instancia.geometry("800x600") #Dá um ícone ao aplicativo #instancia.wm_iconbitmap('icone.ico') #Inicia o programa instancia.mainloop()
17
47
0.761246
0
0
0
0
0
0
0
0
185
0.627119
40bb7e3f95f2a2dc9b27a2c8dd06c761ef722a37
6,235
py
Python
property_scraper.py
iplaughlin/property_scraping
739d05a272eddb5f2b48f9fc85f407904067b931
[ "MIT" ]
null
null
null
property_scraper.py
iplaughlin/property_scraping
739d05a272eddb5f2b48f9fc85f407904067b931
[ "MIT" ]
null
null
null
property_scraper.py
iplaughlin/property_scraping
739d05a272eddb5f2b48f9fc85f407904067b931
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Mar 19 09:42:09 2022 @author: iaala """ import requests import sql_configs import datetime import os from bs4 import BeautifulSoup import time from find_tables import ( table_information_one, table_information_two, table_information_three, table_information_four, ) from create_connection import create_sql_connection import columns __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) def main(): for ppin in range(200001, 18600, -1): try: conn = create_sql_connection( user=sql_configs.USER, password=sql_configs.PASSWORD, host=sql_configs.HOST, database=sql_configs.DATABASE, ) temp_dict = dict() print(ppin) with open(os.path.join(__location__, 'status.txt'), 'w') as f: f.write(f"currently starting {ppin}") c = conn.cursor() c.execute('select pin from parcel;') items_collected = [int(''.join(map(str, item))) for item in c.fetchall()] if ppin not in items_collected: url = f"https://madisonproperty.countygovservices.com/Property/Property/Summary?taxyear=2022&ppin={ppin}" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:98.0) Gecko/20100101 Firefox/98.0" } resp = requests.get(url, headers=headers) time.sleep(0.25) soup = BeautifulSoup(resp.text, "html.parser") parcel_info = table_information_one(soup, "collapseParcelInfo") if parcel_info == {}: parcel_info = {column: "" for column in columns.PARCEL_INFO_COLUMNS} parcel_info['PIN']= ppin property_values = table_information_one(soup, "collapseSummaryPropertyValues") if property_values == {}: property_values = {column: "" for column in columns.PROPERTY_COLUMNS} subdivision = table_information_one(soup, "collapseSummarySubdivision") if subdivision == {}: subdivision = {column: "" for column in columns.SUBDIVISION_COLUMNS} tax = table_information_two(soup, "collapseTaxInfo") if tax == {}: tax = {column: "" for column in columns.TAX_COLUMNS} tax_history = table_information_three(soup, "collapseTaxHistory") details = table_information_three(soup, "collapseSummaryDetailInfo") building_components = table_information_four( soup, "collapseSummaryBuildingComponents" ) improvement = building_components.get("improvement") computations = building_components.get("computations") materials = building_components.get("materials") gis_url = f"https://isv.kcsgis.com/al.Madison_revenue/?fips={ppin}" temp_dict[ppin] = { "ppin": ppin, "date": str(datetime.datetime.now()), "parcel": parcel_info, "property_values": property_values, "subdivision": subdivision, "tax": tax, "tax_history": tax_history, "details": details, "improvement": improvement, "computations": computations, "materials": materials, "gis_url": f"https://isv.kcsgis.com/al.Madison_revenue/?fips={ppin}", } ppin = [ppin] conn = create_sql_connection( user=configs.USER, password=configs.PASSWORD, host=configs.HOST, database=configs.DATABASE, ) c = conn.cursor() date = [str(datetime.datetime.now())] parcel_values = list(parcel_info.values()) + date c.execute(configs.PARCEL_STATEMENT, parcel_values) property_values = list(property_values.values()) + date + ppin c.execute(configs.PROPERTY_VALUES_STATEMENT, property_values) subdivision_values = list(subdivision.values()) + date + ppin c.execute(configs.SUBDIVISION_STATEMENT, subdivision_values) tax_values = [str(item) for item in tax.values()] + date + ppin tax_values = tuple(tax_values) c.execute(configs.TAX_STATEMENT, tax_values) for row in zip(*list(tax_history.values())): c.execute(configs.TAX_HISTORY_STATEMENT, row + tuple(date) + tuple(ppin)) for row in zip(*list(details.values())): c.execute(configs.DETAILS_STATEMENT, row + tuple(date)+ tuple(ppin)) improvement_values = list(improvement.values()) + date + ppin improvement_values = tuple(improvement_values) c.execute(configs.IMPROVEMENTS_STATEMENT, improvement_values) computations_values = list(computations.values()) + date + ppin computations_values = tuple(computations_values) c.execute(configs.COMPUTATION_STATEMENT, computations_values) for row in zip(*list(materials.values())): row_length = len(row) if row_length != 0: c.execute(configs.MATERIALS_STATEMENT, row + tuple(date)+ tuple(ppin)) urls_values = (url, gis_url) + tuple(date) + tuple(ppin) c.execute(configs.URLS_STATEMENT, urls_values) conn.commit() except Exception as e: # raise Exception new_line = '\n' if isinstance(ppin, int): ppin = [ppin] with open(os.path.join(__location__, 'errors.txt'), 'a') as f: f.write(f"error in {ppin[0]} occurred. error was {e}{new_line}") if __name__ == "__main__": main()
42.705479
121
0.559262
0
0
0
0
0
0
0
0
935
0.14996
40bc7b5a674a2b504a89d6769ec57fdcc5fda4af
357
py
Python
Chapter03/Activity11/fibonacci.py
vumaasha/python-workshop
0fbc21c514a8df5bfffb8db926e451232c6c08bf
[ "MIT" ]
null
null
null
Chapter03/Activity11/fibonacci.py
vumaasha/python-workshop
0fbc21c514a8df5bfffb8db926e451232c6c08bf
[ "MIT" ]
null
null
null
Chapter03/Activity11/fibonacci.py
vumaasha/python-workshop
0fbc21c514a8df5bfffb8db926e451232c6c08bf
[ "MIT" ]
null
null
null
def fibonacci_iterative(n): previous = 0 current = 1 for i in range(n - 1): current_old = current current = previous + current previous = current_old return current def fibonacci_recursive(n): if n == 0 or n == 1: return n else: return fibonacci_recursive(n - 2) + fibonacci_recursive(n - 1)
23.8
70
0.602241
0
0
0
0
0
0
0
0
0
0
40be64921673daa0d8c5613e61a252c64c6e744e
1,002
py
Python
matches/tests/test_view_index.py
ToxaZ/nostradamus
adda478685d60df24da106c15d734d02f01ed339
[ "WTFPL" ]
null
null
null
matches/tests/test_view_index.py
ToxaZ/nostradamus
adda478685d60df24da106c15d734d02f01ed339
[ "WTFPL" ]
4
2021-06-02T23:01:40.000Z
2021-07-25T15:02:42.000Z
matches/tests/test_view_index.py
ToxaZ/nostradamus
adda478685d60df24da106c15d734d02f01ed339
[ "WTFPL" ]
null
null
null
from django.urls import resolve, reverse from django.test import TestCase from matches.views import matches_index from matches.models import Match class AllMatchesTests(TestCase): def setUp(self): self.match = Match.objects.create( match_id=1, home_team='Netherlands', guest_team='Russia', start_time='2008-06-21 19:45Z' ) url = reverse('matches:matches_index') self.response = self.client.get(url) def test_index_view_status_code(self): self.assertEquals(self.response.status_code, 200) def test_index_url_resolves_index_view(self): view = resolve('/matches/') self.assertEquals(view.func, matches_index) def test_index_view_contains_link_to_single_match_page(self): single_match_url = reverse( 'matches:single_match', kwargs={'match_id': self.match.match_id}) self.assertContains( self.response, 'href="{0}"'.format(single_match_url))
33.4
77
0.675649
852
0.850299
0
0
0
0
0
0
118
0.117764
40be6781a367fb391b4b06b4f46533ac8dd9e99d
5,871
py
Python
hmc/applications/banana/banana.py
JamesBrofos/Thresholds-in-Hamiltonian-Monte-Carlo
7ee1b530db0eb536666dbc872fbf8200e53dd49b
[ "MIT" ]
1
2021-11-23T15:40:07.000Z
2021-11-23T15:40:07.000Z
hmc/applications/banana/banana.py
JamesBrofos/Thresholds-in-Hamiltonian-Monte-Carlo
7ee1b530db0eb536666dbc872fbf8200e53dd49b
[ "MIT" ]
null
null
null
hmc/applications/banana/banana.py
JamesBrofos/Thresholds-in-Hamiltonian-Monte-Carlo
7ee1b530db0eb536666dbc872fbf8200e53dd49b
[ "MIT" ]
null
null
null
from typing import Callable, Tuple import numpy as np def posterior_factory(y: np.ndarray, sigma_y: float, sigma_theta: float) -> Tuple[Callable]: """The banana distribution is a distribution that exhibits a characteristic banana-shaped ridge that resembles the posterior that can emerge from models that are not identifiable. The distribution is the posterior of the following generative model. y ~ Normal(theta[0] + theta[1]**2, sigma_sq_y) theta[i] ~ Normal(0, sigma_sq_theta) Args: y: Observations of the banana model. sigma_y: Standard deviation of the observations. sigma_theta: Standard deviation of prior over linear coefficients. Returns: log_posterior: Function to compute the log-posterior. metric: Function to compute the Fisher information metric. euclidean_auxiliaries: Function to compute the log-posterior and its gradient. riemannian_auxiliaries: Function to compute the log-posterior, the gradient of the log-posterior, the Fisher information metric, and the derivatives of the Fisher information metric. """ sigma_sq_y = np.square(sigma_y) sigma_sq_theta = np.square(sigma_theta) def log_posterior(theta: np.ndarray) -> float: """The banana-shaped distribution posterior. Args: theta: Linear coefficients. Returns: out: The log-posterior of the banana-shaped distribution. """ p = theta[0] + np.square(theta[1]) ll = -0.5 / sigma_sq_y * np.square(y - p).sum() lp = -0.5 / sigma_sq_theta * np.square(theta).sum() return ll + lp def grad_log_posterior(theta: np.ndarray) -> np.ndarray: """Gradient of the banana-shaped distribution with respect to the linear coefficients. Args: theta: Linear coefficients. Returns: out: The gradient of the log-posterior of the banana-shaped distribution with respect to the linear coefficients. """ p = theta[0] + np.square(theta[1]) d = np.sum(y - p) ga = d / sigma_sq_y - theta[0] / sigma_sq_theta gb = 2.0*d / sigma_sq_y * theta[1] - theta[1] / sigma_sq_theta return np.hstack((ga, gb)) def metric(theta: np.ndarray) -> np.ndarray: """The Fisher information is the negative expected outer product of the gradient of the posterior. Args: theta: Linear coefficients. Returns: G: The Fisher information metric of the banana-shaped distribution. """ n = y.size s = 2.0*n*theta[1] / sigma_sq_y G = np.array([[n / sigma_sq_y + 1.0 / sigma_sq_theta, s], [s, 4.0*n*np.square(theta[1]) / sigma_sq_y + 1.0 / sigma_sq_theta]]) return G def grad_metric(theta: np.ndarray) -> np.ndarray: """The gradient of the Fisher information metric with respect to the linear coefficients. Args: theta: Linear coefficients. Returns: dG: The gradient of the Fisher information metric with respect to the linear coefficients. """ n = y.size dG = np.array([ [[0.0, 0.0], [0.0, 2.0*n / sigma_sq_y]], [[0.0, 2.0*n / sigma_sq_y], [0.0, 8.0*n*theta[1] / sigma_sq_y]] ]) return dG def euclidean_auxiliaries(theta: np.ndarray) -> Tuple[np.ndarray]: """Function to compute the log-posterior and the gradient of the log-posterior. Args: theta: Linear coefficients. Returns: lp: The log-posterior of the banana-shaped distribution. glp: The gradient of the log-posterior of the banana-shaped distribution with respect to the linear coefficients. """ lp = log_posterior(theta) glp = grad_log_posterior(theta) return lp, glp def riemannnian_auxiliaries(theta: np.ndarray) -> Tuple[np.ndarray]: """Function to compute the log-posterior, the gradient of the log-posterior, the Fisher information metric and the derivatives of the Fisher information metric. Args: theta: Linear coefficients. Returns: lp: The log-posterior of the banana-shaped distribution. glp: The gradient of the log-posterior of the banana-shaped distribution with respect to the linear coefficients. G: The Fisher information metric of the banana-shaped distribution. dG: The gradient of the Fisher information metric with respect to the linear coefficients. """ lp = log_posterior(theta) glp = grad_log_posterior(theta) G = metric(theta) dG = grad_metric(theta) return lp, glp, G, dG def log_posterior_and_metric(theta: np.ndarray) -> Tuple[np.ndarray]: lp = log_posterior(theta) G = metric(theta) return lp, G return log_posterior, metric, log_posterior_and_metric, euclidean_auxiliaries, riemannnian_auxiliaries def generate_data(t: float, sigma_y: float, sigma_theta: float, num_obs: int) -> np.ndarray: """Generate data from the banana-shaped posterior distribution. Args: t: Free-parameter determining the thetas. sigma_y: Noise standard deviation. sigma_theta: Prior standard deviation over the thetas. num_obs: Number of observations to generate. Returns: theta: Linear coefficients of the banana-shaped distribution. y: Observations from the unidentifiable model. """ theta = np.array([t, np.sqrt(1.0 - t)]) y = theta[0] + np.square(theta[1]) + sigma_y * np.random.normal(size=(num_obs, )) return theta, y
35.36747
106
0.62698
0
0
0
0
0
0
0
0
3,598
0.612843
40c04be7b7e97b73786d758981e90307e422880f
3,141
py
Python
msp430.py
sprout42/binaryninja-msp430
9bc5a79b1c6232260c2abc3bb4334e5ca3478baf
[ "MIT" ]
null
null
null
msp430.py
sprout42/binaryninja-msp430
9bc5a79b1c6232260c2abc3bb4334e5ca3478baf
[ "MIT" ]
null
null
null
msp430.py
sprout42/binaryninja-msp430
9bc5a79b1c6232260c2abc3bb4334e5ca3478baf
[ "MIT" ]
null
null
null
from binaryninja import ( Architecture, BranchType, FlagRole, InstructionInfo, LowLevelILFlagCondition, RegisterInfo, ) from .instructions import TYPE3_INSTRUCTIONS, Instruction, Registers from .lifter import Lifter class MSP430(Architecture): name = "msp430" address_size = 2 default_int_size = 2 global_regs = ["sr"] stack_pointer = "sp" regs = {r: RegisterInfo(r, 2) for r in Registers} flags = ["v", "n", "c", "z"] # The first flag write type is ignored currently. # See: https://github.com/Vector35/binaryninja-api/issues/513 flag_write_types = ["", "*", "cnv", "cnz"] flags_written_by_flag_write_type = { "*": ["v", "n", "c", "z"], "cnv": ["v", "n", "c"], "cnz": ["c", "n", "z"], } flag_roles = { "c": FlagRole.CarryFlagRole, "n": FlagRole.NegativeSignFlagRole, "z": FlagRole.ZeroFlagRole, "v": FlagRole.OverflowFlagRole, } flags_required_for_flag_condition = { LowLevelILFlagCondition.LLFC_UGE: ['c'], LowLevelILFlagCondition.LLFC_UGT: ['c'], LowLevelILFlagCondition.LLFC_ULT: ['c'], LowLevelILFlagCondition.LLFC_ULE: ['c'], LowLevelILFlagCondition.LLFC_SGE: ['n', 'v'], LowLevelILFlagCondition.LLFC_SLT: ['n', 'v'], LowLevelILFlagCondition.LLFC_E: ['z'], LowLevelILFlagCondition.LLFC_NE: ['z'], LowLevelILFlagCondition.LLFC_NEG: ['n'], LowLevelILFlagCondition.LLFC_POS: ['n'] } def get_instruction_info(self, data, addr): instr = Instruction.decode(data, addr) if instr is None: return None result = InstructionInfo() result.length = instr.length # Add branches if instr.mnemonic in ["ret", "reti"]: result.add_branch(BranchType.FunctionReturn) elif instr.mnemonic in ["jmp", "br"] and instr.src.value is not None: result.add_branch(BranchType.UnconditionalBranch, instr.src.value) elif instr.type == 3: result.add_branch(BranchType.TrueBranch, instr.src.value) result.add_branch(BranchType.FalseBranch, addr + 2) elif instr.mnemonic == "call" and instr.src.value is not None: result.add_branch(BranchType.CallDestination, instr.src.value) return result def get_instruction_text(self, data, addr): instr = Instruction.decode(data, addr) if instr is None: return None tokens = instr.generate_tokens() return tokens, instr.length def get_instruction_low_level_il(self, data, addr, il): instr = Instruction.decode(data, addr) if instr is None: return None # Halting the system means turning off interrupts and just looping # indefinitely if instr.mnemonic == "dint": next_instr = Instruction.decode(data[instr.length :], addr + instr.length) if next_instr.mnemonic == "jmp" and next_instr.src.value == addr: instr.mnemonic = "hlt" Lifter.lift(il, instr) return instr.length
30.794118
86
0.617638
2,897
0.922318
0
0
0
0
0
0
380
0.120981
40c0c0515519976b7d3396916ff20c4b1d6edd0a
126
py
Python
app/domain/__init__.py
emge1/tracardi
0a4a8a38f0f769464f50d3c1113b798107810810
[ "MIT" ]
null
null
null
app/domain/__init__.py
emge1/tracardi
0a4a8a38f0f769464f50d3c1113b798107810810
[ "MIT" ]
null
null
null
app/domain/__init__.py
emge1/tracardi
0a4a8a38f0f769464f50d3c1113b798107810810
[ "MIT" ]
null
null
null
__all__ = [ 'session', 'event', 'profile', 'consent', 'segment', 'source', 'rule', 'entity' ]
11.454545
14
0.444444
0
0
0
0
0
0
0
0
65
0.515873
40c32fb91113902b7c534e034974797ba31567b9
3,868
py
Python
metric_calculation/faster_metrics.py
imatge-upc/saliency-2018-videosalgan
5e4bf3892d55d8b9f37490e119113c2094be3bce
[ "MIT" ]
10
2018-09-06T03:56:59.000Z
2020-07-26T11:02:50.000Z
metric_calculation/faster_metrics.py
imatge-upc/saliency-2018-videosalgan
5e4bf3892d55d8b9f37490e119113c2094be3bce
[ "MIT" ]
null
null
null
metric_calculation/faster_metrics.py
imatge-upc/saliency-2018-videosalgan
5e4bf3892d55d8b9f37490e119113c2094be3bce
[ "MIT" ]
3
2019-01-07T19:34:12.000Z
2019-07-03T07:41:48.000Z
from salience_metrics import auc_judd, auc_shuff, cc, nss, similarity, normalize_map """ DHF1K paper: "we employ five classic met-rics, namely Normalized Scanpath Saliency (NSS), Sim-ilarity Metric (SIM), Linear Correlation Coefficient (CC),AUC-Judd (AUC-J), and shuffled AUC (s-AUC)."" """ import cv2 import os import numpy as np import time import pickle gt_directory = "/imatge/lpanagiotis/work/DHF1K_extracted/maps" sm_directory = "/imatge/lpanagiotis/work/DHF1K_extracted/predictions" final_metric_list = [] # The directories are named 1-1000 so it should be easy to iterate over them def inner_worker(i, packed, gt_path, sm_path): #packed should be a list of tuples (annotation, prediction) gt, sm = packed ground_truth = cv2.imread(os.path.join(gt_path, gt),cv2.IMREAD_GRAYSCALE) saliency_map = cv2.imread(os.path.join(sm_path, sm),cv2.IMREAD_GRAYSCALE) saliency_map_norm = normalize_map(saliency_map) # The functions are a bit haphazard. Some have normalization within and some do not. # Calculate metrics AUC_JUDD = auc_judd(saliency_map_norm, ground_truth) AUC_SHUF = auc_shuff(saliency_map_norm, ground_truth, ground_truth) NSS = nss(saliency_map_norm, ground_truth) # the other ones have normalization within: CC = cc(saliency_map, ground_truth) SIM = similarity(saliency_map, ground_truth) return ( AUC_JUDD, AUC_SHUF, NSS, CC, SIM ) for i in range(1,701): start = time.clock() gt_path = os.path.join(gt_directory, str(i)) sm_path = os.path.join(sm_directory, str(i)) gt_files = os.listdir(gt_path) sm_files = os.listdir(sm_path) #Now to sort based on their file number. The "key" parameter in sorted is a function based on which the sorting will happen (I use split to exclude the jpg/png from the). gt_files_sorted = sorted(gt_files, key = lambda x: int(x.split(".")[0]) ) sm_files_sorted = sorted(sm_files, key = lambda x: int(x.split(".")[0]) ) pack = zip(gt_files_sorted, sm_files_sorted) print("Files related to video {} sorted.".format(i)) ## ##https://stackoverflow.com/questions/35663498/how-do-i-return-a-matrix-with-joblib-python from joblib import Parallel, delayed start = time.clock() metric_list = Parallel(n_jobs=8)(delayed(inner_worker)(n, packed, gt_path, sm_path) for n, packed in enumerate(pack)) #run 8 frames simultaneously aucj_mean = np.mean([x[0] for x in metric_list]) aucs_mean = np.mean([x[1] for x in metric_list]) nss_mean = np.mean([x[2] for x in metric_list]) cc_mean = np.mean([x[3] for x in metric_list]) sim_mean = np.mean([x[4] for x in metric_list]) print("For video number {} the metrics are:".format(i)) print("AUC-JUDD is {}".format(aucj_mean)) print("AUC-SHUFFLED is {}".format(aucs_mean)) print("NSS is {}".format(nss_mean)) print("CC is {}".format(cc_mean)) print("SIM is {}".format(sim_mean)) print("Time elapsed: {}".format(time.clock()-start)) print("==============================") final_metric_list.append(( aucj_mean, aucs_mean, nss_mean, cc_mean, sim_mean )) with open('metrics.txt', 'wb') as handle: pickle.dump(final_metric_list, handle, protocol=pickle.HIGHEST_PROTOCOL) Aucj = np.mean([y[0] for y in final_metric_list]) Aucs = np.mean([y[1] for y in final_metric_list]) Nss = np.mean([y[2] for y in final_metric_list]) Cc = np.mean([y[3] for y in final_metric_list]) Sim = np.mean([y[4] for y in final_metric_list]) print("Final average of metrics is:") print("AUC-JUDD is {}".format(Aucj)) print("AUC-SHUFFLED is {}".format(Aucs)) print("NSS is {}".format(Nss)) print("CC is {}".format(Cc)) print("SIM is {}".format(Sim))
39.876289
207
0.668046
0
0
0
0
0
0
0
0
1,199
0.309979
40c346f9a8e289985909d8a308d6ecd6f7e032ea
1,061
py
Python
tests/rules/test_pacman_invalid_option.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
tests/rules/test_pacman_invalid_option.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
tests/rules/test_pacman_invalid_option.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
import pytest from thefuck.rules.pacman_invalid_option import get_new_command from thefuck.rules.pacman_invalid_option import match from thefuck.types import Command good_output = """community/shared_meataxe 1.0-3 A set of programs for working with matrix representations over finite fields """ bad_output = "error: invalid option '-" @pytest.mark.parametrize("option", "SURQFDVT") def test_not_match_good_output(option): assert not match(Command("pacman -{}s meat".format(option), good_output)) @pytest.mark.parametrize("option", "azxcbnm") def test_not_match_bad_output(option): assert not match(Command("pacman -{}v meat".format(option), bad_output)) @pytest.mark.parametrize("option", "surqfdvt") def test_match(option): assert match(Command("pacman -{}v meat".format(option), bad_output)) @pytest.mark.parametrize("option", "surqfdvt") def test_get_new_command(option): new_command = get_new_command( Command("pacman -{}v meat".format(option), "")) assert new_command == "pacman -{}v meat".format(option.upper())
31.205882
80
0.748351
0
0
0
0
707
0.666352
0
0
307
0.28935
40c37866ffff9cefa653877b146a68fc96c42ddf
11,329
py
Python
dimod/reference/composites/scalecomposite.py
joseppinilla/dimod
e33ca5045e31ee2d9d58515f017fb6be5276cd8e
[ "Apache-2.0" ]
1
2022-02-01T14:40:05.000Z
2022-02-01T14:40:05.000Z
dimod/reference/composites/scalecomposite.py
xpin/dimod
5e399317b0bfaae6ed20e22b9f2ef242f5fa5e6c
[ "Apache-2.0" ]
null
null
null
dimod/reference/composites/scalecomposite.py
xpin/dimod
5e399317b0bfaae6ed20e22b9f2ef242f5fa5e6c
[ "Apache-2.0" ]
1
2022-02-01T14:40:31.000Z
2022-02-01T14:40:31.000Z
# Copyright 2019 D-Wave Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================= """ A composite that scales problem variables as directed. if scalar is not given calculates it based on quadratic and bias ranges. """ try: import collections.abc as abc except ImportError: import collections as abc from numbers import Number import numpy as np from dimod.binary_quadratic_model import BinaryQuadraticModel from dimod.core.composite import ComposedSampler __all__ = 'ScaleComposite', class ScaleComposite(ComposedSampler): """Composite to scale variables of a problem Scales the variables of a bqm and modifies linear and quadratic terms accordingly. Args: sampler (:obj:`dimod.Sampler`): A dimod sampler Examples: This example uses :class:`.ScaleComposite` to instantiate a composed sampler that submits a simple Ising problem to a sampler. The composed sampler scales linear, quadratic biases and offset as indicated by options. >>> h = {'a': -4.0, 'b': -4.0} >>> J = {('a', 'b'): 3.2} >>> sampler = dimod.ScaleComposite(dimod.ExactSolver()) >>> response = sampler.sample_ising(h, J, scalar=0.5, ... ignored_interactions=[('a','b')]) """ def __init__(self, child_sampler): self._children = [child_sampler] @property def children(self): return self._children @property def parameters(self): param = self.child.parameters.copy() param.update({'scalar': [], 'bias_range': [], 'quadratic_range': [], 'ignored_variables': [], 'ignored_interactions': [], 'ignore_offset': []}) return param @property def properties(self): return {'child_properties': self.child.properties.copy()} def sample(self, bqm, scalar=None, bias_range=1, quadratic_range=None, ignored_variables=None, ignored_interactions=None, ignore_offset=False, **parameters): """ Scale and sample from the provided binary quadratic model. if scalar is not given, problem is scaled based on bias and quadratic ranges. See :meth:`.BinaryQuadraticModel.scale` and :meth:`.BinaryQuadraticModel.normalize` Args: bqm (:obj:`dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. scalar (number): Value by which to scale the energy range of the binary quadratic model. bias_range (number/pair): Value/range by which to normalize the all the biases, or if `quadratic_range` is provided, just the linear biases. quadratic_range (number/pair): Value/range by which to normalize the quadratic biases. ignored_variables (iterable, optional): Biases associated with these variables are not scaled. ignored_interactions (iterable[tuple], optional): As an iterable of 2-tuples. Biases associated with these interactions are not scaled. ignore_offset (bool, default=False): If True, the offset is not scaled. **parameters: Parameters for the sampling method, specified by the child sampler. Returns: :obj:`dimod.SampleSet` """ ignored_variables, ignored_interactions = _check_params( ignored_variables, ignored_interactions) child = self.child bqm_copy = _scaled_bqm(bqm, scalar, bias_range, quadratic_range, ignored_variables, ignored_interactions, ignore_offset) response = child.sample(bqm_copy, **parameters) return _scale_back_response(bqm, response, bqm_copy.info['scalar'], ignored_variables, ignored_interactions, ignore_offset) def sample_ising(self, h, J, offset=0, scalar=None, bias_range=1, quadratic_range=None, ignored_variables=None, ignored_interactions=None, ignore_offset=False, **parameters): """ Scale and sample from the problem provided by h, J, offset if scalar is not given, problem is scaled based on bias and quadratic ranges. Args: h (dict): linear biases J (dict): quadratic or higher order biases offset (float, optional): constant energy offset scalar (number): Value by which to scale the energy range of the binary quadratic model. bias_range (number/pair): Value/range by which to normalize the all the biases, or if `quadratic_range` is provided, just the linear biases. quadratic_range (number/pair): Value/range by which to normalize the quadratic biases. ignored_variables (iterable, optional): Biases associated with these variables are not scaled. ignored_interactions (iterable[tuple], optional): As an iterable of 2-tuples. Biases associated with these interactions are not scaled. ignore_offset (bool, default=False): If True, the offset is not scaled. **parameters: Parameters for the sampling method, specified by the child sampler. Returns: :obj:`dimod.SampleSet` """ if any(len(inter) > 2 for inter in J): # handle HUBO import warnings msg = ("Support for higher order Ising models in ScaleComposite is " "deprecated and will be removed in dimod 0.9.0. Please use " "PolyScaleComposite.sample_hising instead.") warnings.warn(msg, DeprecationWarning) from dimod.reference.composites.higherordercomposites import PolyScaleComposite from dimod.higherorder.polynomial import BinaryPolynomial poly = BinaryPolynomial.from_hising(h, J, offset=offset) ignored_terms = set() if ignored_variables is not None: ignored_terms.update(frozenset(v) for v in ignored_variables) if ignored_interactions is not None: ignored_terms.update(frozenset(inter) for inter in ignored_interactions) if ignore_offset: ignored_terms.add(frozenset()) return PolyScaleComposite(self.child).sample_poly(poly, scalar=scalar, bias_range=bias_range, poly_range=quadratic_range, ignored_terms=ignored_terms, **parameters) bqm = BinaryQuadraticModel.from_ising(h, J, offset=offset) return self.sample(bqm, scalar=scalar, bias_range=bias_range, quadratic_range=quadratic_range, ignored_variables=ignored_variables, ignored_interactions=ignored_interactions, ignore_offset=ignore_offset, **parameters) def _scale_back_response(bqm, response, scalar, ignored_interactions, ignored_variables, ignore_offset): """Helper function to scale back the response of sample method""" if len(ignored_interactions) + len( ignored_variables) + ignore_offset == 0: response.record.energy = np.divide(response.record.energy, scalar) else: response.record.energy = bqm.energies((response.record.sample, response.variables)) return response def _check_params(ignored_variables, ignored_interactions): """Helper for sample methods""" if ignored_variables is None: ignored_variables = set() elif not isinstance(ignored_variables, abc.Container): ignored_variables = set(ignored_variables) if ignored_interactions is None: ignored_interactions = set() elif not isinstance(ignored_interactions, abc.Container): ignored_interactions = set(ignored_interactions) return ignored_variables, ignored_interactions def _calc_norm_coeff(h, J, bias_range, quadratic_range, ignored_variables, ignored_interactions): """Helper function to calculate normalization coefficient""" if ignored_variables is None or ignored_interactions is None: raise ValueError('ignored interactions or variables cannot be None') def parse_range(r): if isinstance(r, Number): return -abs(r), abs(r) return r def min_and_max(iterable): if not iterable: return 0, 0 return min(iterable), max(iterable) if quadratic_range is None: linear_range, quadratic_range = bias_range, bias_range else: linear_range = bias_range lin_range, quad_range = map(parse_range, (linear_range, quadratic_range)) lin_min, lin_max = min_and_max([v for k, v in h.items() if k not in ignored_variables]) quad_min, quad_max = min_and_max([v for k, v in J.items() if not check_isin(k, ignored_interactions)]) inv_scalar = max(lin_min / lin_range[0], lin_max / lin_range[1], quad_min / quad_range[0], quad_max / quad_range[1]) if inv_scalar != 0: return 1. / inv_scalar else: return 1. def _scaled_bqm(bqm, scalar, bias_range, quadratic_range, ignored_variables, ignored_interactions, ignore_offset): """Helper function of sample for scaling""" bqm_copy = bqm.copy() if scalar is None: scalar = _calc_norm_coeff(bqm_copy.linear, bqm_copy.quadratic, bias_range, quadratic_range, ignored_variables, ignored_interactions) bqm_copy.scale(scalar, ignored_variables=ignored_variables, ignored_interactions=ignored_interactions, ignore_offset=ignore_offset) bqm_copy.info.update({'scalar': scalar}) return bqm_copy def check_isin(key, key_list): return sum(set(key) == set(key_tmp) for key_tmp in key_list)
37.637874
101
0.603231
6,975
0.615677
0
0
527
0.046518
0
0
4,796
0.423338
40c4517b7bccc080e6b7ec11639bdde005bb213a
739
py
Python
tests/test_config.py
savilard/flask-ecom-api
d94ee7873b9ec80645c05422e3355e8dc045ebeb
[ "MIT" ]
1
2021-04-17T15:25:36.000Z
2021-04-17T15:25:36.000Z
tests/test_config.py
savilard/flask-ecom-api
d94ee7873b9ec80645c05422e3355e8dc045ebeb
[ "MIT" ]
null
null
null
tests/test_config.py
savilard/flask-ecom-api
d94ee7873b9ec80645c05422e3355e8dc045ebeb
[ "MIT" ]
1
2021-04-18T15:47:02.000Z
2021-04-18T15:47:02.000Z
import os def test_development_config(test_app): test_app.config.from_object('flask_ecom_api.config.DevelopmentConfig') assert not test_app.config['TESTING'] assert test_app.config['SQLALCHEMY_DATABASE_URI'] == os.environ.get('DATABASE_URL') def test_testing_config(test_app): test_app.config.from_object('flask_ecom_api.config.TestingConfig') assert test_app.config['TESTING'] assert test_app.config['SQLALCHEMY_DATABASE_URI'] == os.environ.get('DATABASE_TEST_URL') def test_production_config(test_app): test_app.config.from_object('flask_ecom_api.config.ProductionConfig') assert not test_app.config['TESTING'] assert test_app.config['SQLALCHEMY_DATABASE_URI'] == os.environ.get('DATABASE_URL')
36.95
92
0.783491
0
0
0
0
0
0
0
0
267
0.361299
40c6d377ec913783afe6edc196ecab48e0003b36
6,122
py
Python
leasing/forms.py
suutari-ai/mvj
c39dbc692afcb3b26366783414c2d5a88a57b25a
[ "MIT" ]
1
2021-01-12T08:14:10.000Z
2021-01-12T08:14:10.000Z
leasing/forms.py
suutari-ai/mvj
c39dbc692afcb3b26366783414c2d5a88a57b25a
[ "MIT" ]
249
2017-04-18T14:00:13.000Z
2022-03-30T12:18:03.000Z
leasing/forms.py
suutari-ai/mvj
c39dbc692afcb3b26366783414c2d5a88a57b25a
[ "MIT" ]
7
2017-04-18T08:43:54.000Z
2021-07-28T07:29:30.000Z
from django import forms from django.core import validators from django.core.exceptions import ValidationError from leasing.enums import ( InfillDevelopmentCompensationState, LeaseState, TenantContactType, ) from leasing.models import Contact, DecisionMaker, District, LeaseType, Municipality from leasing.validators import validate_business_id class CommaSeparatedChoiceField(forms.ChoiceField): def to_python(self, value): if value in validators.EMPTY_VALUES: return [] value = [item.strip() for item in str(value).split(",") if item.strip()] return value def validate(self, value): if self.required and not value: raise ValidationError(self.error_messages["required"], code="required") # Validate that each value in the value list is in self.choices. for val in value: if not self.valid_value(val): raise ValidationError( self.error_messages["invalid_choice"], code="invalid_choice", params={"value": val}, ) class LeaseSearchForm(forms.Form): succinct = forms.BooleanField(label="Succinct", required=False) identifier = forms.CharField( label="Lease identifier", max_length=255, required=False, empty_value=None ) tenant_name = forms.CharField(label="Tenant name", max_length=255, required=False) tenantcontact_type = CommaSeparatedChoiceField( label="Tenant role", required=False, choices=tuple((x.value, str(x)) for x in TenantContactType), ) only_past_tenants = forms.BooleanField(label="Only past tenants", required=False) tenant_activity = forms.ChoiceField( label="Tenants", required=False, choices=( ("all", "All"), ("past", "Only past tenants"), ("active", "Only active tenants"), ), ) lease_start_date_start = forms.DateField(required=False) lease_start_date_end = forms.DateField(required=False) lease_end_date_start = forms.DateField(required=False) lease_end_date_end = forms.DateField(required=False) only_active_leases = forms.BooleanField(label="Active", required=False) only_expired_leases = forms.BooleanField(label="Expired", required=False) has_geometry = forms.NullBooleanField(label="Has geometry", required=False) property_identifier = forms.CharField( label="Real property identifier", max_length=255, required=False, empty_value=None, ) address = forms.CharField( label="Address", max_length=255, required=False, empty_value=None ) lease_type = forms.ModelChoiceField( label="Lease type", queryset=LeaseType.objects.all(), required=False ) municipality = forms.ModelChoiceField( label="Municipality", queryset=Municipality.objects.all(), required=False ) district = forms.ModelChoiceField( label="District", queryset=District.objects.all(), required=False ) sequence = forms.IntegerField(label="Sequence", required=False) lease_state = CommaSeparatedChoiceField( label="Lease state", required=False, choices=tuple((x.value, str(x)) for x in LeaseState), ) business_id = forms.CharField( label="Business id", max_length=255, required=False, empty_value=None, validators=[validate_business_id], ) national_identification_number = forms.CharField( label="National identification number", max_length=255, required=False, empty_value=None, ) lessor = forms.ModelChoiceField( label="Lessor", queryset=Contact.objects.filter(is_lessor=True), required=False ) contract_number = forms.CharField( label="Contract number", max_length=255, required=False, empty_value=None ) decision_maker = forms.ModelChoiceField( label="Decision maker", queryset=DecisionMaker.objects.all(), required=False ) decision_date = forms.DateField(required=False) decision_section = forms.CharField( label="Decision section", max_length=255, required=False, empty_value=None ) reference_number = forms.CharField( label="Reference number", max_length=255, required=False, empty_value=None ) invoice_number = forms.CharField( label="Invoice number", max_length=255, required=False, empty_value=None ) class BasisOfRentSearchForm(forms.Form): search = forms.CharField( label="Search", max_length=255, required=False, empty_value=None ) decision_maker = forms.ModelChoiceField( label="Decision maker", queryset=DecisionMaker.objects.all(), required=False ) decision_date = forms.DateField(required=False) decision_section = forms.CharField( label="Decision section", max_length=255, required=False, empty_value=None ) reference_number = forms.CharField( label="Reference number", max_length=255, required=False, empty_value=None ) class InfillDevelopmentCompensationSearchForm(forms.Form): search = forms.CharField( label="Search", max_length=255, required=False, empty_value=None ) state = CommaSeparatedChoiceField( label="State", required=False, choices=tuple((x.value, str(x)) for x in InfillDevelopmentCompensationState), ) decision_maker = forms.ModelChoiceField( label="Decision maker", queryset=DecisionMaker.objects.all(), required=False ) decision_date = forms.DateField(required=False) decision_section = forms.CharField( label="Decision section", max_length=255, required=False, empty_value=None ) reference_number = forms.CharField( label="Reference number", max_length=255, required=False, empty_value=None ) class AuditLogSearchForm(forms.Form): type = forms.ChoiceField( label="Type", required=True, choices=(("lease", "Lease"), ("contact", "Contact")), ) id = forms.IntegerField(label="Id", required=False)
36.658683
87
0.679353
5,749
0.939072
0
0
0
0
0
0
704
0.114995
40c712bda8811c80835db84231a9e91605ae40b6
675
py
Python
src/main/management/commands/create_admin_user.py
LokotamaTheMastermind/website-portfolio-django-project
932d509428d592ee573ff82821b9490c8da9600a
[ "Apache-2.0" ]
null
null
null
src/main/management/commands/create_admin_user.py
LokotamaTheMastermind/website-portfolio-django-project
932d509428d592ee573ff82821b9490c8da9600a
[ "Apache-2.0" ]
null
null
null
src/main/management/commands/create_admin_user.py
LokotamaTheMastermind/website-portfolio-django-project
932d509428d592ee573ff82821b9490c8da9600a
[ "Apache-2.0" ]
null
null
null
# polls/management/commands/create_admin_user.py import sys import logging from django.core.management.base import BaseCommand, CommandError from django.contrib.auth.models import User from django.conf import settings class Command(BaseCommand): help = 'Creates the initial admin user' def handle(self, *args, **options): if User.objects.filter(username="admin").exists(): print("admin exists") else: u = User(username='admin') u.set_password('website-portfolio-project') u.is_superuser = True u.is_staff = True u.save() print("admin created") sys.exit()
28.125
65
0.642963
453
0.671111
0
0
0
0
0
0
150
0.222222
40c7452a82c23c82f183d4188dfd8d42aa979d41
1,597
py
Python
app.py
jdanper/incredipaper
4c2d2dc1e2280f19e01d2e8faea4c9a1ae9b5449
[ "MIT" ]
null
null
null
app.py
jdanper/incredipaper
4c2d2dc1e2280f19e01d2e8faea4c9a1ae9b5449
[ "MIT" ]
null
null
null
app.py
jdanper/incredipaper
4c2d2dc1e2280f19e01d2e8faea4c9a1ae9b5449
[ "MIT" ]
null
null
null
import unirest import json import requests import os import subprocess import time import argparse rootUrl = "https://api.unsplash.com/" unirest.default_header("Accept", "application/json") unirest.default_header("Accept-Version", "v1") unirest.default_header("Authorization","<CLIENT-ID>") def downloadPic(randomPic_response): content = randomPic_response.body print 'getting an amazing photo from Unsplash by %s ' % content["user"]["username"] picData = requests.get(randomPic_response.body["urls"]["regular"]).content#, callback=applyWallpaper)#.body["urls"]["regular"] applyWallpaper(picData) def applyWallpaper(picStream): path = os.path.expanduser('~')+'/.tempWallpaper.jpg' with open(path, 'wb') as handler: print "saving" handler.write(picStream) print "enjoy your new wallpaper." if os.environ.get('DESKTOP_SESSION') == "xubuntu": os.system('xfconf-query -c xfce4-desktop -p /backdrop/screen0/monitor0/workspace0/last-image && xfconf-query -c xfce4-desktop -p /backdrop/screen0/monitor0/workspace0/last-image -s %s' %path) else: os.system('gsettings set org.gnome.desktop.background picture-uri file:///%s' % path) while True: parser = argparse.ArgumentParser() parser.add_argument('integers', metavar='int', type=int, help='time between wallpaper change (in seconds)') args = parser.parse_args() print "waiting for %s seconds" % args.integers time.sleep(args.integers) downloadPic(unirest.get(rootUrl + "photos/random", params={"orientation":"landscape"}))#.body["id"]
40.948718
204
0.707577
0
0
0
0
0
0
0
0
695
0.435191
40c7af774d2446afa75acb06651e91eb7c9447fd
2,358
py
Python
tests/client_asyncio_test.py
ninchat/ninchat-python
7e5fcadb7389ca8c7722c32d69839289675d7baa
[ "BSD-2-Clause" ]
null
null
null
tests/client_asyncio_test.py
ninchat/ninchat-python
7e5fcadb7389ca8c7722c32d69839289675d7baa
[ "BSD-2-Clause" ]
4
2017-10-12T21:05:12.000Z
2018-05-17T22:19:08.000Z
tests/client_asyncio_test.py
ninchat/ninchat-python
7e5fcadb7389ca8c7722c32d69839289675d7baa
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2017, Somia Reality Oy # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import asyncio import logging from functools import partial from ninchat.client.asyncio import Session log = logging.getLogger(__name__) async def async_test(): def on_session_event(params): pass def on_event(params, payload, last_reply): if params["event"] == "message_received": log.debug("received %s", payload[0].decode()) s = Session() s.on_session_event = on_session_event s.on_event = on_event s.set_params({"user_attrs": {"name": "ninchat-python"}, "message_types": ["*"]}) async with s as params: log.debug("opened params = %s", params) user_id = params["user_id"] params, _ = await s.call({"action": "describe_conn"}) log.debug("called params = %s", params) await s.call({"action": "send_message", "message_type": "ninchat.com/text", "user_id": user_id}, [b'{"text": "Hello, me!"}']) log.info("ok") def test_client_asyncio(): asyncio.get_event_loop().run_until_complete(async_test())
38.655738
133
0.725615
0
0
0
0
0
0
777
0.329517
1,578
0.669211
40c853daa30d56c941424e6324401a40fa450528
878
py
Python
msgraph/base.py
jstacoder/python-msgraph
be9a93f4baa2d89c97a8454ab1d31b8e5fdda38e
[ "Apache-2.0" ]
2
2020-09-23T18:26:22.000Z
2021-03-10T14:12:49.000Z
msgraph/base.py
jstacoder/python-msgraph
be9a93f4baa2d89c97a8454ab1d31b8e5fdda38e
[ "Apache-2.0" ]
4
2020-09-23T18:25:32.000Z
2021-03-22T11:07:32.000Z
msgraph/base.py
jstacoder/python-msgraph
be9a93f4baa2d89c97a8454ab1d31b8e5fdda38e
[ "Apache-2.0" ]
1
2020-09-23T18:28:14.000Z
2020-09-23T18:28:14.000Z
from datetime import datetime class Base(object): date_format = '%Y-%m-%d' time_format = '%H:%M:%S' datetime_format = date_format + 'T%s' % time_format full_datetime_format = date_format + 'T' + time_format + '.%f' iso_format = date_format + 'T%sZ' % time_format standard_datetime_format = date_format + ' ' + time_format extended_datetime_format = date_format + 'T' + time_format +'.%fZ' @classmethod def parse_date_time(cls, text): instance = None formats = [cls.extended_datetime_format, cls.full_datetime_format, cls.datetime_format, cls.standard_datetime_format, cls.iso_format, cls.date_format] for format in formats: try: instance = datetime.strptime(text, format) except Exception: pass else: break return instance
35.12
158
0.633257
845
0.962415
0
0
453
0.515945
0
0
51
0.058087
40c934e19e6344f536502d3f0e951d55cb483721
5,641
py
Python
nc/models.py
caktus/Traffic-Stops
2c6eda9477f1770c5ad1208a1937c3e828fbfb28
[ "MIT" ]
1
2021-12-10T14:58:11.000Z
2021-12-10T14:58:11.000Z
nc/models.py
caktus/Traffic-Stops
2c6eda9477f1770c5ad1208a1937c3e828fbfb28
[ "MIT" ]
5
2020-08-12T15:20:31.000Z
2021-06-10T13:43:02.000Z
nc/models.py
caktus/Traffic-Stops
2c6eda9477f1770c5ad1208a1937c3e828fbfb28
[ "MIT" ]
null
null
null
from caching.base import CachingManager, CachingMixin from django.db import models from tsdata.models import CensusProfile PURPOSE_CHOICES = ( (1, "Speed Limit Violation"), (2, "Stop Light/Sign Violation"), (3, "Driving While Impaired"), (4, "Safe Movement Violation"), (5, "Vehicle Equipment Violation"), (6, "Vehicle Regulatory Violation"), (7, "Seat Belt Violation"), (8, "Investigation"), (9, "Other Motor Vehicle Violation"), (10, "Checkpoint"), ) ACTION_CHOICES = ( (1, "Verbal Warning"), (2, "Written Warning"), (3, "Citation Issued"), (4, "On-View Arrest"), (5, "No Action Taken"), ) PERSON_TYPE_CHOICES = (("D", "Driver"), ("P", "Passenger")) GENDER_CHOICES = (("M", "Male"), ("F", "Female")) ETHNICITY_CHOICES = (("H", "Hispanic"), ("N", "Non-Hispanic")) RACE_CHOICES = ( ("A", "Asian"), ("B", "Black"), ("I", "Native American"), ("U", "Other"), ("W", "White"), ) SEARCH_TYPE_CHOICES = ( (1, "Consent"), (2, "Search Warrant"), (3, "Probable Cause"), (4, "Search Incident to Arrest"), (5, "Protective Frisk"), ) SEARCH_BASIS_CHOICES = ( ("ER", "Erratic/Suspicious Behavior"), ("OB", "Observation of Suspected Contraband"), ("OI", "Other Official Information"), ("SM", "Suspicious Movement"), ("TIP", "Informant Tip"), ("WTNS", "Witness Observation"), ) class Stop(CachingMixin, models.Model): stop_id = models.PositiveIntegerField(primary_key=True) agency_description = models.CharField(max_length=100) agency = models.ForeignKey("Agency", null=True, related_name="stops", on_delete=models.CASCADE) date = models.DateTimeField(db_index=True) purpose = models.PositiveSmallIntegerField(choices=PURPOSE_CHOICES) action = models.PositiveSmallIntegerField(choices=ACTION_CHOICES) driver_arrest = models.BooleanField(default=False) passenger_arrest = models.BooleanField(default=False) encounter_force = models.BooleanField(default=False) engage_force = models.BooleanField(default=False) officer_injury = models.BooleanField(default=False) driver_injury = models.BooleanField(default=False) passenger_injury = models.BooleanField(default=False) officer_id = models.CharField(max_length=15) # todo: keys stop_location = models.CharField(max_length=15) # todo: keys stop_city = models.CharField(max_length=20) objects = CachingManager() class Person(CachingMixin, models.Model): person_id = models.IntegerField(primary_key=True) stop = models.ForeignKey(Stop, on_delete=models.CASCADE) type = models.CharField(max_length=2, choices=PERSON_TYPE_CHOICES) age = models.PositiveSmallIntegerField() gender = models.CharField(max_length=2, choices=GENDER_CHOICES) ethnicity = models.CharField(max_length=2, choices=ETHNICITY_CHOICES) race = models.CharField(max_length=2, choices=RACE_CHOICES) objects = CachingManager() class Search(CachingMixin, models.Model): search_id = models.IntegerField(primary_key=True) stop = models.ForeignKey(Stop, on_delete=models.CASCADE) person = models.ForeignKey(Person, on_delete=models.CASCADE) type = models.PositiveSmallIntegerField(choices=SEARCH_TYPE_CHOICES) vehicle_search = models.BooleanField(default=False) driver_search = models.BooleanField(default=False) passenger_search = models.BooleanField(default=False) property_search = models.BooleanField(default=False) vehicle_siezed = models.BooleanField(default=False) personal_property_siezed = models.BooleanField(default=False) other_property_sized = models.BooleanField(default=False) objects = CachingManager() class Contraband(CachingMixin, models.Model): contraband_id = models.IntegerField(primary_key=True) search = models.ForeignKey(Search, on_delete=models.CASCADE) person = models.ForeignKey(Person, on_delete=models.CASCADE) stop = models.ForeignKey(Stop, on_delete=models.CASCADE) ounces = models.FloatField(default=0, null=True) pounds = models.FloatField(default=0, null=True) pints = models.FloatField(default=0, null=True) gallons = models.FloatField(default=0, null=True) dosages = models.FloatField(default=0, null=True) grams = models.FloatField(default=0, null=True) kilos = models.FloatField(default=0, null=True) money = models.FloatField(default=0, null=True) weapons = models.FloatField(default=0, null=True) dollar_amount = models.FloatField(default=0, null=True) objects = CachingManager() class SearchBasis(CachingMixin, models.Model): search_basis_id = models.IntegerField(primary_key=True) search = models.ForeignKey(Search, on_delete=models.CASCADE) person = models.ForeignKey(Person, on_delete=models.CASCADE) stop = models.ForeignKey(Stop, on_delete=models.CASCADE) basis = models.CharField(max_length=4, choices=SEARCH_BASIS_CHOICES) objects = CachingManager() class Agency(CachingMixin, models.Model): name = models.CharField(max_length=255) # link to CensusProfile (no cross-database foreign key) census_profile_id = models.CharField(max_length=16, blank=True, default="") last_reported_stop = models.DateField(null=True) objects = CachingManager() class Meta(object): verbose_name_plural = "Agencies" def __str__(self): return self.name @property def census_profile(self): if self.census_profile_id: profile = CensusProfile.objects.get(id=self.census_profile_id) return profile.get_census_dict() else: return dict()
34.607362
99
0.710867
4,223
0.748626
0
0
234
0.041482
0
0
825
0.146251
40cc65a33578c41b6882d9360507c431c3bb4a45
74
py
Python
flasky/auth/forms/__init__.py
by46/fasky
c6941972b57284c2167dfacf022f981939249256
[ "MIT" ]
null
null
null
flasky/auth/forms/__init__.py
by46/fasky
c6941972b57284c2167dfacf022f981939249256
[ "MIT" ]
null
null
null
flasky/auth/forms/__init__.py
by46/fasky
c6941972b57284c2167dfacf022f981939249256
[ "MIT" ]
null
null
null
from .login import LoginForm from .registration import RegistrationForm
24.666667
43
0.837838
0
0
0
0
0
0
0
0
0
0
40ce727b047c06c9d0537e694ab36bc40c4d524b
552
py
Python
API_SIMIT_Mail/multapp/urls.py
profefonso/Services-SM
98b9949a237121451a13fce5bc8f2945fa5a3cee
[ "MIT" ]
null
null
null
API_SIMIT_Mail/multapp/urls.py
profefonso/Services-SM
98b9949a237121451a13fce5bc8f2945fa5a3cee
[ "MIT" ]
16
2019-12-04T23:02:52.000Z
2022-02-10T11:57:03.000Z
API_SIMIT_Mail/multapp/urls.py
profefonso/Services-SM
98b9949a237121451a13fce5bc8f2945fa5a3cee
[ "MIT" ]
null
null
null
from django.urls import path from django.contrib import admin from rest_framework_swagger.views import get_swagger_view from .views import notification schema_view = get_swagger_view(title='MAIL API') urlpatterns = [ path('front/betsy/irish/embargo/admin/', admin.site.urls), # Swagger API path( 'api/', schema_view, name='api' ), # notification path( 'notification/', notification.NotificationServicesRest.as_view(), name=notification.NotificationServicesRest.name ), ]
21.230769
62
0.681159
0
0
0
0
0
0
0
0
97
0.175725
40d10458dee4b20d938050badf13c455b5c17307
1,097
py
Python
tests/legacy_mocket.py
jepler/Adafruit_CircuitPython_Requests
9a9527110726036bfad94b14166e62aa61c1276e
[ "MIT" ]
null
null
null
tests/legacy_mocket.py
jepler/Adafruit_CircuitPython_Requests
9a9527110726036bfad94b14166e62aa61c1276e
[ "MIT" ]
null
null
null
tests/legacy_mocket.py
jepler/Adafruit_CircuitPython_Requests
9a9527110726036bfad94b14166e62aa61c1276e
[ "MIT" ]
null
null
null
from unittest import mock SOCK_STREAM = 0 set_interface = mock.Mock() interface = mock.MagicMock() getaddrinfo = mock.Mock() socket = mock.Mock() class Mocket: def __init__(self, response): self.settimeout = mock.Mock() self.close = mock.Mock() self.connect = mock.Mock() self.send = mock.Mock(side_effect=self._send) self.readline = mock.Mock(side_effect=self._readline) self.recv = mock.Mock(side_effect=self._recv) self.fail_next_send = False self._response = response self._position = 0 def _send(self, data): if self.fail_next_send: self.fail_next_send = False raise RuntimeError("Send failed") return None def _readline(self): i = self._response.find(b"\r\n", self._position) r = self._response[self._position : i + 2] self._position = i + 2 return r def _recv(self, count): end = self._position + count r = self._response[self._position : end] self._position = end print(r) return r
26.756098
61
0.610757
946
0.862352
0
0
0
0
0
0
20
0.018232
40d10aff20e4192696c984a95bd52419f7e1299a
2,228
py
Python
run.py
romeroyakovlev/ii
ae9485df2c3565871994c146001a72db511f3700
[ "CC0-1.0" ]
1
2017-09-29T09:35:04.000Z
2017-09-29T09:35:04.000Z
run.py
romeroyakovlev/ii
ae9485df2c3565871994c146001a72db511f3700
[ "CC0-1.0" ]
null
null
null
run.py
romeroyakovlev/ii
ae9485df2c3565871994c146001a72db511f3700
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- import api,points from api.bottle import * II_PATH=os.path.dirname(__file__) or '.' TEMPLATE_PATH.insert(0,II_PATH) @route('/list.txt') def list_txt(): response.set_header ('content-type','text/plain; charset=utf-8') lst = api.load_echo(False)[1:] if request.query.n: return '\n'.join([t[0] for t in lst]) else: return '\n'.join(['%s:%s:%s' % t for t in lst]) @route('/blacklist.txt') def blacklist_txt(): response.set_header ('content-type','text/plain; charset=utf-8') return api.ru('blacklist.txt') @route('/u/m/<h:path>') def jt_outmsg(h): response.set_header ('content-type','text/plain; charset=iso-8859-1') lst = [x for x in h.split('/') if len(x) == 20] return '\n'.join( [api.mk_jt(x,api.raw_msg(x)) for x in lst] ) @route('/u/e/<names:path>') def index_list(names): response.set_header ('content-type','text/plain; charset=utf-8') return api.echoareas(names.split('/')) def _point_msg(pauth,tmsg): msgfrom, addr = points.check_hash(pauth) if not addr: return 'auth error!' cfg = api.load_echo(False) mo = api.toss(msgfrom,'%s,%s' % (cfg[0][1],addr),tmsg.strip()) if mo.msg.startswith('@repto:'): tmpmsg = mo.msg.splitlines() mo.repto = tmpmsg[0][7:] mo.msg = '\n'.join(tmpmsg[1:]) # а ещё лучше - засунуть это в api.toss if len(mo.msg.encode('utf-8')) < 64100: h = api.point_newmsg(mo) if h: return 'msg ok:%s: <a href="/%s">%s</a>' % (h, mo.echoarea, mo.echoarea) else: return 'error:unknown' else: return 'msg big!' @route('/u/point/<pauth>/<tmsg:path>') def point_msg_get(pauth,tmsg): return _point_msg(pauth,tmsg) @post('/u/point') def point_msg_get(): return _point_msg(request.POST['pauth'],request.POST['tmsg']) @route('/m/<msg>') def get_msg(msg): response.set_header ('content-type','text/plain; charset=utf-8') return api.raw_msg(msg) @route('/e/<echoarea>') def get_echolist(echoarea): response.set_header ('content-type','text/plain; charset=utf-8') return api.get_echoarea(echoarea,True) import iitpl iitpl.II_PATH=II_PATH run(host='127.0.0.1',port=62220,debug=False)
29.706667
84
0.62702
0
0
0
0
1,323
0.588261
0
0
628
0.279235
40d1ab4064e3ebc59780f56e6705f5033ef843d8
2,080
py
Python
learning_labs/yang/01-yang/add_loopback_ip.py
hpreston/sbx_nxos
8952d369b80810d22e0c86485b667cde1519272d
[ "MIT" ]
33
2017-05-19T19:47:33.000Z
2021-05-16T07:33:39.000Z
learning_labs/yang/01-yang/add_loopback_ip.py
AJNOURI/sbx_nxos
449ee3c1c88cbd831fd3f90490fc28dd7e02d448
[ "MIT" ]
13
2017-08-25T16:48:16.000Z
2021-09-23T23:21:58.000Z
learning_labs/yang/01-yang/add_loopback_ip.py
vbohinc/sbx_nxos
744c34fffd32b1c973ac791123afd6cc811e0d8b
[ "MIT" ]
20
2017-06-19T09:32:20.000Z
2022-02-20T05:33:14.000Z
#!/usr/bin/env python from ncclient import manager import sys from lxml import etree # Set the device variables DEVICES = ['172.16.30.101', '172.16.30.102'] USER = 'admin' PASS = 'admin' PORT = 830 LOOPBACK_IP = { '172.16.30.101': '10.99.99.1/24', '172.16.30.102': '10.99.99.2/24' } DEVICE_NAMES = {'172.16.30.101': '(nx-osv9000-1)', '172.16.30.102': '(nx-osv9000-2)' } # create a main() method def main(): """ Main method that adds an IP address to interface loopback 99 to both the spine switches. """ loopback_ip_add = """ <config> <System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device"> <ipv4-items> <inst-items> <dom-items> <Dom-list> <name>default</name> <if-items> <If-list> <id>lo99</id> <addr-items> <Addr-list> <addr>{}</addr> </Addr-list> </addr-items> </If-list> </if-items> </Dom-list> </dom-items> </inst-items> </ipv4-items> </System> </config>""" for device in DEVICES: with manager.connect(host=device, port=PORT, username=USER, password=PASS, hostkey_verify=False, device_params={'name': 'nexus'}, look_for_keys=False, allow_agent=False) as m: # Add the loopback interface print("\nNow adding IP address {} to device {} {}...\n".format(LOOPBACK_IP[device], DEVICE_NAMES[device], device)) new_ip = loopback_ip_add.format(LOOPBACK_IP[device]) netconf_response = m.edit_config(target='running', config=new_ip) # Parse the XML response print(netconf_response) if __name__ == '__main__': sys.exit(main())
30.144928
117
0.479327
0
0
0
0
0
0
0
0
1,212
0.582692
40d1e35fdcc4995890f4efabdc25434ef9f00eb5
5,704
py
Python
Plotly_Dash/spacex_dash_app.py
AtypicalLogic/Coursera-IBM_DS-Applied_Data_Science_Capstone
2659fcae1a8d5fec13ab632aee1492a29e9585ee
[ "MIT" ]
null
null
null
Plotly_Dash/spacex_dash_app.py
AtypicalLogic/Coursera-IBM_DS-Applied_Data_Science_Capstone
2659fcae1a8d5fec13ab632aee1492a29e9585ee
[ "MIT" ]
null
null
null
Plotly_Dash/spacex_dash_app.py
AtypicalLogic/Coursera-IBM_DS-Applied_Data_Science_Capstone
2659fcae1a8d5fec13ab632aee1492a29e9585ee
[ "MIT" ]
null
null
null
# To run this file, Win Start > cmd > file dir > run: python spacex_dash_app.py # Import required libraries import pandas as pd import dash from dash import html from dash import dcc from dash.dependencies import Input, Output import plotly.express as px # Read the airline data into pandas dataframe spacex_df = pd.read_csv("spacex_launch_dash.csv") max_payload = spacex_df['Payload Mass (kg)'].max() min_payload = spacex_df['Payload Mass (kg)'].min() # Dropdown list(s) launch_site_list = [] launch_site_list.append('ALL') for index, row in spacex_df['Launch Site'].value_counts().to_frame().iterrows(): launch_site_list.append(row.name) # Create a dash application app = dash.Dash(__name__) # Create an app layout app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard', style={'textAlign': 'center', 'color': '#503D36', 'font-size': 40}), # TASK 1: Add a dropdown list to enable Launch Site selection # The default select value is for ALL sites # dcc.Dropdown(id='site-dropdown',...) dcc.Dropdown(id='site-dropdown', options=[{'label': i, 'value': i} for i in launch_site_list], style={'width':'100%', 'padding':'3px', 'font-size': '20px', 'text-align-last': 'left'}, value='ALL'), html.Br(), # TASK 2: Add a pie chart to show the total successful launches count for all sites # If a specific launch site was selected, show the Success vs. Failed counts for the site html.Div(dcc.Graph(id='success-pie-chart')), html.Br(), html.P("Payload range (Kg):"), # TASK 3: Add a slider to select payload range #dcc.RangeSlider(id='payload-slider',...) dcc.RangeSlider(id='payload-slider', min=min_payload, max=max_payload, step=1000, value=[min_payload, max_payload]), # TASK 4: Add a scatter chart to show the correlation between payload and launch success html.Div(dcc.Graph(id='success-payload-scatter-chart')), ]) # TASK 2: # Add a callback function for `site-dropdown` as input, `success-pie-chart` as output @app.callback(Output(component_id='success-pie-chart', component_property='figure'), Input(component_id='site-dropdown', component_property='value')) def get_pie_chart(entered_site): if entered_site == 'ALL': filtered_df = spacex_df[['Launch Site', 'class']].groupby(by=['Launch Site'], as_index=False).mean() fig = px.pie(filtered_df, values='class', names='Launch Site', title='Total Success Launches by Site') return fig else: # return the outcomes piechart for a selected site filtered_df = spacex_df[['Launch Site', 'class']][spacex_df['Launch Site'] == entered_site] mean = filtered_df.groupby(by='Launch Site', as_index=False).mean() means = {} means[1] = mean['class'][0] means[0] = 1 - means[1] fig = px.pie(values=means.values(), names=means.keys(), title=f'Total Success Launches by Site: {entered_site}') return fig # TASK 4: # Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output @app.callback(Output(component_id='success-payload-scatter-chart', component_property='figure'), [Input(component_id='site-dropdown', component_property='value'), Input(component_id="payload-slider", component_property="value")]) def get_scatter_plot(entered_site, payload_range): # print('min:', payload_range[0], '\tmax:', payload_range[1]) # print(entered_site) if entered_site == 'ALL': payload_filtered_df = spacex_df[['Payload Mass (kg)', 'Booster Version Category', 'Launch Site', 'class']][(spacex_df['Payload Mass (kg)'] <= payload_range[1]) & (spacex_df['Payload Mass (kg)'] >= payload_range[0])] else: payload_filtered_df = spacex_df[['Payload Mass (kg)', 'Booster Version Category', 'Launch Site', 'class']][(spacex_df['Payload Mass (kg)'] <= payload_range[1]) & (spacex_df['Payload Mass (kg)'] >= payload_range[0]) & (spacex_df['Launch Site'] == entered_site)] fig = px.scatter(data_frame=payload_filtered_df, x='Payload Mass (kg)', y='class', color='Booster Version Category') return fig # Run the app if __name__ == '__main__': app.run_server(debug=True) # Finding Insights Visually # Now with the dashboard completed, you should be able to use it to analyze SpaceX launch data, and answer the following questions: # # Which site has the largest successful launches? ### KSC LC-39A # Which site has the highest launch success rate? ### KSC LC-39A # Which payload range(s) has the highest launch success rate? ### 2000 - 4000 # Which payload range(s) has the lowest launch success rate? ### 6000 - 9000 # Which F9 Booster version (v1.0, v1.1, FT, B4, B5, etc.) has the highest launch success rate? ### B5
52.330275
223
0.58082
0
0
0
0
2,301
0.403401
0
0
2,568
0.45021
40d2f193783c709a9e4416360cda1c6098d93420
1,430
py
Python
configs/mnist_paper_residual_cnn_gp.py
rhaps0dy/cnn-gp
5726bd10debbddcffb3dc1f5c671f5dceedf007d
[ "BSD-2-Clause" ]
23
2019-06-21T15:03:45.000Z
2022-01-24T11:34:16.000Z
configs/mnist_paper_residual_cnn_gp.py
rhaps0dy/cnn-gp
5726bd10debbddcffb3dc1f5c671f5dceedf007d
[ "BSD-2-Clause" ]
null
null
null
configs/mnist_paper_residual_cnn_gp.py
rhaps0dy/cnn-gp
5726bd10debbddcffb3dc1f5c671f5dceedf007d
[ "BSD-2-Clause" ]
10
2019-06-21T14:52:55.000Z
2021-12-01T19:05:38.000Z
""" The best randomly-searched ResNet reported in the paper. In the original paper there is a bug. This network sums together layers after the ReLU nonlinearity, which are not Gaussian, and also do not have mean 0. As a result, the overall network does not converge to a Gaussian process. The defined kernel is still valid, even if it doesn't correspond to a NN. In the interest of making the results replicable, we have replicated this bug as well. The correct way to use ResNets is to sum things after a Conv2d layer, see for example the `resnet_block` in `cnn_gp/kernels.py`. """ import torchvision from cnn_gp import Conv2d, ReLU, Sequential, Sum train_range = range(5000, 55000) validation_range = list(range(55000, 60000)) + list(range(0, 5000)) test_range = range(60000, 70000) dataset_name = "MNIST" model_name = "ResNet" dataset = torchvision.datasets.MNIST transforms = [] epochs = 0 in_channels = 1 out_channels = 10 var_bias = 4.69 var_weight = 7.27 initial_model = Sequential( *(Sum([ Sequential(), Sequential( Conv2d(kernel_size=4, padding="same", var_weight=var_weight * 4**2, var_bias=var_bias), ReLU(), )]) for _ in range(8)), Conv2d(kernel_size=4, padding="same", var_weight=var_weight * 4**2, var_bias=var_bias), ReLU(), Conv2d(kernel_size=28, padding=0, var_weight=var_weight, var_bias=var_bias), )
31.086957
79
0.702098
0
0
0
0
0
0
0
0
612
0.427972
40d397efdfc75b4459bce3aac322fa920256a163
2,956
py
Python
python/learn/PythonDataVisualizationCookbookSE_Code/Chapter 07/ch07_rec08_scatterplot.py
flyingwjw/Documentation
567608f388ca369b864c2d75a94647801b5dfa1e
[ "Unlicense" ]
null
null
null
python/learn/PythonDataVisualizationCookbookSE_Code/Chapter 07/ch07_rec08_scatterplot.py
flyingwjw/Documentation
567608f388ca369b864c2d75a94647801b5dfa1e
[ "Unlicense" ]
null
null
null
python/learn/PythonDataVisualizationCookbookSE_Code/Chapter 07/ch07_rec08_scatterplot.py
flyingwjw/Documentation
567608f388ca369b864c2d75a94647801b5dfa1e
[ "Unlicense" ]
2
2020-09-22T18:37:46.000Z
2021-09-02T11:02:59.000Z
import matplotlib.pyplot as plt import numpy as np # daily search trend for keyword 'flowers' for a year d = [ 1.04, 1.04, 1.16, 1.22, 1.46, 2.34, 1.16, 1.12, 1.24, 1.30, 1.44, 1.22, 1.26, 1.34, 1.26, 1.40, 1.52, 2.56, 1.36, 1.30, 1.20, 1.12, 1.12, 1.12, 1.06, 1.06, 1.00, 1.02, 1.04, 1.02, 1.06, 1.02, 1.04, 0.98, 0.98, 0.98, 1.00, 1.02, 1.02, 1.00, 1.02, 0.96, 0.94, 0.94, 0.94, 0.96, 0.86, 0.92, 0.98, 1.08, 1.04, 0.74, 0.98, 1.02, 1.02, 1.12, 1.34, 2.02, 1.68, 1.12, 1.38, 1.14, 1.16, 1.22, 1.10, 1.14, 1.16, 1.28, 1.44, 2.58, 1.30, 1.20, 1.16, 1.06, 1.06, 1.08, 1.00, 1.00, 0.92, 1.00, 1.02, 1.00, 1.06, 1.10, 1.14, 1.08, 1.00, 1.04, 1.10, 1.06, 1.06, 1.06, 1.02, 1.04, 0.96, 0.96, 0.96, 0.92, 0.84, 0.88, 0.90, 1.00, 1.08, 0.80, 0.90, 0.98, 1.00, 1.10, 1.24, 1.66, 1.94, 1.02, 1.06, 1.08, 1.10, 1.30, 1.10, 1.12, 1.20, 1.16, 1.26, 1.42, 2.18, 1.26, 1.06, 1.00, 1.04, 1.00, 0.98, 0.94, 0.88, 0.98, 0.96, 0.92, 0.94, 0.96, 0.96, 0.94, 0.90, 0.92, 0.96, 0.96, 0.96, 0.98, 0.90, 0.90, 0.88, 0.88, 0.88, 0.90, 0.78, 0.84, 0.86, 0.92, 1.00, 0.68, 0.82, 0.90, 0.88, 0.98, 1.08, 1.36, 2.04, 0.98, 0.96, 1.02, 1.20, 0.98, 1.00, 1.08, 0.98, 1.02, 1.14, 1.28, 2.04, 1.16, 1.04, 0.96, 0.98, 0.92, 0.86, 0.88, 0.82, 0.92, 0.90, 0.86, 0.84, 0.86, 0.90, 0.84, 0.82, 0.82, 0.86, 0.86, 0.84, 0.84, 0.82, 0.80, 0.78, 0.78, 0.76, 0.74, 0.68, 0.74, 0.80, 0.80, 0.90, 0.60, 0.72, 0.80, 0.82, 0.86, 0.94, 1.24, 1.92, 0.92, 1.12, 0.90, 0.90, 0.94, 0.90, 0.90, 0.94, 0.98, 1.08, 1.24, 2.04, 1.04, 0.94, 0.86, 0.86, 0.86, 0.82, 0.84, 0.76, 0.80, 0.80, 0.80, 0.78, 0.80, 0.82, 0.76, 0.76, 0.76, 0.76, 0.78, 0.78, 0.76, 0.76, 0.72, 0.74, 0.70, 0.68, 0.72, 0.70, 0.64, 0.70, 0.72, 0.74, 0.64, 0.62, 0.74, 0.80, 0.82, 0.88, 1.02, 1.66, 0.94, 0.94, 0.96, 1.00, 1.16, 1.02, 1.04, 1.06, 1.02, 1.10, 1.22, 1.94, 1.18, 1.12, 1.06, 1.06, 1.04, 1.02, 0.94, 0.94, 0.98, 0.96, 0.96, 0.98, 1.00, 0.96, 0.92, 0.90, 0.86, 0.82, 0.90, 0.84, 0.84, 0.82, 0.80, 0.80, 0.76, 0.80, 0.82, 0.80, 0.72, 0.72, 0.76, 0.80, 0.76, 0.70, 0.74, 0.82, 0.84, 0.88, 0.98, 1.44, 0.96, 0.88, 0.92, 1.08, 0.90, 0.92, 0.96, 0.94, 1.04, 1.08, 1.14, 1.66, 1.08, 0.96, 0.90, 0.86, 0.84, 0.86, 0.82, 0.84, 0.82, 0.84, 0.84, 0.84, 0.84, 0.82, 0.86, 0.82, 0.82, 0.86, 0.90, 0.84, 0.82, 0.78, 0.80, 0.78, 0.74, 0.78, 0.76, 0.76, 0.70, 0.72, 0.76, 0.72, 0.70, 0.64] # Now let's generate random data for the same period d1 = np.random.random(365) assert len(d) == len(d1) fig = plt.figure() ax1 = fig.add_subplot(221) ax1.scatter(d, d1, alpha=0.5) ax1.set_title('No correlation') ax1.grid(True) ax2 = fig.add_subplot(222) ax2.scatter(d1, d1, alpha=0.5) ax2.set_title('Ideal positive correlation') ax2.grid(True) ax3 = fig.add_subplot(223) ax3.scatter(d1, d1*-1, alpha=0.5) ax3.set_title('Ideal negative correlation') ax3.grid(True) ax4 = fig.add_subplot(224) ax4.scatter(d1, d1+d, alpha=0.5) ax4.set_title('Non ideal positive correlation') ax4.grid(True) plt.tight_layout() plt.show()
46.1875
78
0.552436
0
0
0
0
0
0
0
0
209
0.070704
40d5469fd32315fb7f4708a40672a155712e5afb
22,427
py
Python
src/thespian/tweaks.py
mtttech/dndpersonae
c4fa129d1e940c9f9a5e29d703e3988b45d90356
[ "MIT" ]
1
2022-03-28T16:10:15.000Z
2022-03-28T16:10:15.000Z
src/thespian/tweaks.py
mtttech/dndpersonae
c4fa129d1e940c9f9a5e29d703e3988b45d90356
[ "MIT" ]
null
null
null
src/thespian/tweaks.py
mtttech/dndpersonae
c4fa129d1e940c9f9a5e29d703e3988b45d90356
[ "MIT" ]
null
null
null
from dataclasses import dataclass import logging from attributes import get_ability_modifier from sourcetree.utils import ( get_feats_list, get_feat_perks, get_feat_proficiencies, get_feat_requirements, ) from stdio import prompt log = logging.getLogger("thespian.tweaks") class AbilityScoreImprovementError(Exception): """Handles ability score improvement errors.""" class FlagParserError(Exception): """Handles an invalid flag format error.""" class FeatOptionParser: """Generates and parses feat characteristic flags by feat. FLAG OPTION PARSER SYSTEM PIPEBAR: Used to separate flags. i.e: ability=Strength|proficiency=skills Two flag options are designated in the above example: 'ability', and 'proficiency'. ALLOWED FLAG OPTIONS: Designates certain instructions for applying feat related "perks" to a character. - ability - proficiency - savingthrows - speed COMMA: Used to identify the number of occurences of a flag. i.e: languages,2 The example above means that a player can choose two languages. EQUAL SIGN: Used to separate option parameters. i.e ability=Strength,0 The example above means Strength is a designated parameter for the ability option. In this case the character would get an enhancement to Strength. There is more to this and is explained further below. DOUBLE AMPERSAND: Used to separater parameter options. i.e ability=Strength&&Dexerity,1 The example above means the player can choose a one time ehancement to Strength or Dexterity. PLUS SIGN: Used to seperate parameter options. i.e ability=Strength+Dexterity The example above means the player can gain an enhancement in both Strength and Dexterity. """ # Parser Option Separators PARSER_OPTIONS = "|" OPTION_INCREMENT = "," OPTION_PARAMETER = "=" PARAM_SINGLE_SELECTION = "&&" PARAM_MULTIPLE_SELECTION = "+" def __init__(self, feat, prof): self.feat = feat self.profile = prof self.perks = get_feat_perks(self.feat) def _get_proficiency_options(self, prof_type: str) -> list: """Returns a list of bonus proficiencies for a feat by proficiency type.""" return get_feat_proficiencies(self.feat, prof_type) def _get_sub_menu_options(self, available_options) -> dict | bool: """Creates a dictionary of sub menu options, if applicable.""" if self.is_sub_menu(available_options): sub_options = dict() for option in available_options: sub_options[option] = self._get_proficiency_options(option) return sub_options return False @staticmethod def _is_sub_menu(available_options) -> bool: """Returns True if sub menu options are available. False otherwise.""" for option in available_options: if not option.islower(): return False return True def _parse_flags(self) -> dict: """Generates the characteristics for the specified feat.""" parsed_flags = dict() raw_flags = self.perks.get("flags") if raw_flags is None: return parsed_flags flag_pairs = raw_flags.split(self.PARSER_OPTIONS) for flag_pair in flag_pairs: if self.OPTION_INCREMENT not in flag_pair: raise FlagParserError("Pairs must be formatted in 'name,value' pairs.") attribute_name, increment = flag_pair.split(self.OPTION_INCREMENT) if self.OPTION_PARAMETER not in attribute_name: parsed_flags[attribute_name] = {"increment": increment} else: flag_options = attribute_name.split(self.OPTION_PARAMETER) # Allowable flags: ability, proficiency, savingthrows, speed attribute_name = flag_options[0] try: if attribute_name not in ( "ability", "proficiency", "savingthrows", "speed", ): raise FlagParserError( f"Illegal flag name '{attribute_name}' specified." ) except FlagParserError: # pass return parsed_flags if self.PARAM_SINGLE_SELECTION in flag_options[1]: options = flag_options[1].split(self.PARAM_SINGLE_SELECTION) else: options = flag_options[1] parsed_flags[attribute_name] = { "increment": increment, "options": options, } return parsed_flags def parse(self) -> dict: """Parses the generated flags for the chosen feat.""" final_flag = self._parse_flags() if len(final_flag) == 0: return parsed_flag = dict() for flag, options in final_flag.items(): if flag in ("ability", "proficiency"): increment = int(options["increment"]) menu_options = options["options"] if len(menu_options) < 1: raise FlagParserError("Malformed parser instructions error.") if flag == "ability": if increment == 0: raise FlagParserError( "Flag attribute 'ability' requires a positive integer value." ) # For feats that use the 'savingthrows' flag. # Limits choices based on current saving throw proficiencies. if "savingthrows" in final_flag: menu_options = [ x for x in menu_options if x not in self.profile["savingthrows"] ] if isinstance(menu_options, str): my_ability = menu_options elif isinstance(menu_options, list): for _ in range(increment): my_ability = prompt( "Choose the ability you would like to apply a bonus to.", menu_options, ) menu_options.remove(my_ability) log.info(f"You selected the ability '{my_ability}'.") # If 'savingthrows' flag specified, add proficiency for ability saving throw. if "savingthrows" in final_flag: self.profile["savingthrows"].append(my_ability) log.info( f"You gained proficiency in the '{my_ability}' saving throw." ) bonus_value = self.perks[flag][my_ability] parsed_flag[flag] = (my_ability, bonus_value) elif flag == "proficiency": # Increment value of 0 means append ALL listed bonuses. # Increment values other than 0 means add # of bonuses == increment value. chosen_options = dict() submenu_options = None if isinstance(menu_options, str) and increment == 0: chosen_options[menu_options] = self._get_proficiency_options( menu_options ) elif isinstance(menu_options, list): for _ in range(increment): my_bonus = prompt(f"Choose your bonus: '{flag}'.", menu_options) if not self._is_sub_menu(menu_options): menu_options.remove(my_bonus) else: # Generate submenu options, if applicable. if submenu_options is None: submenu_options = self._get_sub_menu_options( menu_options ) submenu_options[my_bonus] = [ x for x in submenu_options[my_bonus] if x not in self.profile[my_bonus] ] # Create storage handler for selections, if applicable. if len(chosen_options) == 0: for opt in submenu_options: chosen_options[opt] = list() submenu_choice = prompt( f"Choose submenu option: '{my_bonus}'.", submenu_options.get(my_bonus), ) chosen_options[my_bonus].append(submenu_choice) submenu_options[my_bonus].remove(submenu_choice) # Reset the submenu options after use submenu_options = None log.info( f"You selected the {flag} ({my_bonus}) bonus '{submenu_choice}'." ) elif isinstance(menu_options, str): for prof_type in menu_options.split(self.PARAM_MULTIPLE_SELECTION): chosen_proficiencies = list() # Pull full collection of bonus proficiencies, proficiency_options = get_feat_proficiencies( self.feat, prof_type ) # If collection is dict, sort through sub categories, # And choose only the unselected options in that category. # Otherwise, simply sort out the unselected options if isinstance(proficiency_options, dict): temp = list() for types in tuple(proficiency_options.keys()): if types not in self.profile[prof_type]: temp += proficiency_options[types] proficiency_options = temp else: proficiency_options = [ x for x in proficiency_options if x not in self.profile[prof_type] ] for _ in range(increment): # Clear out the temporarily chosen options. proficiency_options = [ x for x in proficiency_options if x not in chosen_proficiencies ] my_bonus = prompt( f"Choose your bonus: {flag}.", proficiency_options ) chosen_proficiencies.append(my_bonus) proficiency_options.remove(my_bonus) log.info( f"You selected the {flag} ({prof_type}) bonus '{my_bonus}'." ) chosen_options[prof_type] = chosen_proficiencies for k, v in chosen_options.items(): parsed_flag[k] = v elif flag == "speed": speed_value = self.perks[flag] if speed_value != 0: parsed_flag[flag] = speed_value elif flag == "spells": bonus_spells = self.perks[flag] for index, spell in enumerate(bonus_spells): if isinstance(spell, list): spell_choice = prompt("Choose your bonus spell.", spell) bonus_spells[index] = spell_choice log.info(f"You selected the spell {spell_choice}.") parsed_flag[flag] = bonus_spells return parsed_flag @dataclass class AbilityScoreImprovement: """Used to apply ability and/or feat upgrades.""" character: dict def _add_feat_perks(self, feat: str) -> None: """Applies feat related perks.""" parsed_attributes = FeatOptionParser(feat, self.character).parse() if parsed_attributes is None: return for flag, options in parsed_attributes.items(): if flag == "ability": ability, bonus = options self._set_ability_score(ability, bonus) else: self.character[flag] += options def _count_upgrades(self) -> int: """Returns the number of available upgrades.""" upgrade_count = 0 for x in range(1, self.character["level"] + 1): if (x % 4) == 0 and x != 20: upgrade_count += 1 if self.character["klass"] == "Fighter" and self.character["level"] >= 6: upgrade_count += 1 if self.character["klass"] == "Rogue" and self.character["level"] >= 8: upgrade_count += 1 if self.character["klass"] == "Fighter" and self.character["level"] >= 14: upgrade_count += 1 if self.character["level"] >= 19: upgrade_count += 1 return upgrade_count def _has_requirements(self, feat: str) -> bool: """Checks if feat requirements have been met.""" # Character already has feat if feat in self.character["feats"]: return False # If Heavily, Lightly, or Moderately Armored feat or a Monk. # "Armor Related" or Weapon Master feat but already proficient. if ( feat in ( "Heavily Armored", "Lightly Armored", "Moderately Armored", ) and self.character["klass"] == "Monk" ): return False elif feat in ( "Heavily Armored", "Lightly Armored", "Moderately Armored", "Weapon Master", ): # Heavily Armored: Character already has heavy armor proficiency. # Lightly Armored: Character already has light armor proficiency. # Moderately Armored: Character already has medium armor proficiency. # Weapon Master: Character already has martial weapon proficiency. if feat == "Heavily Armored" and "Heavy" in self.character["armors"]: return False elif feat == "Lightly Armored" and "Light" in self.character["armors"]: return False elif feat == "Moderately Armored" and "Medium" in self.character["armors"]: return False elif feat == "Weapon Master" and "Martial" in self.character["weapons"]: return False # Cycle through ALL prerequisites for the feat. prerequisite = get_feat_requirements(feat) for requirement, _ in prerequisite.items(): # Ignore requirements that are None if prerequisite.get(requirement) is None: continue # Check ability requirements if requirement == "ability": for ability, required_score in prerequisite.get(requirement).items(): my_score = self.character["scores"][ability] if my_score < required_score: return False # Check caster requirements if requirement == "caster": # If no spellcasting ability. if prerequisite[requirement] and self.character["spellslots"] == "0": return False # Magic Initiative requirements check if feat == "Magic Initiative" and self.character["klass"] not in ( "Bard", "Cleric", "Druid", "Sorcerer", "Warlock", "Wizard", ): return False # Ritual Caster requirements check if feat == "Ritual Caster": primary_ability = self.ability[0] my_score = self.scores[primary_ability] required_score = prerequisite["ability"][primary_ability] if my_score < required_score: return False # Check proficiency requirements if requirement == "proficiency": if feat in ( "Heavy Armor Master", "Heavily Armored", "Medium Armor Master", "Moderately Armored", ): armors = prerequisite.get(requirement).get("armors") for armor in armors: if armor not in self.character["armors"]: return False # Check race requirements if requirement == "race": if self.character["race"] not in prerequisite.get(requirement): return False # Check subrace requirements if requirement == "subrace": if self.character["subrace"] not in prerequisite.get(requirement): return False return True def _is_adjustable(self, ability: str, bonus: int = 1) -> bool: """Checks if ability is adjustable < 20.""" if not isinstance(ability, str): raise AbilityScoreImprovementError( "Argument 'ability' must be of type 'str'." ) if not isinstance(bonus, int): raise AbilityScoreImprovementError( "Argument 'bonus' must be of type 'int'." ) if ability not in self.character["scores"]: raise AbilityScoreImprovementError( f"Invalid ability '{ability}' specified." ) if (self.character["scores"][ability] + bonus) > 20: return False return True def run(self) -> None: """Executes the ability score improvement class.""" # Determine actual hp. modifier = get_ability_modifier("Constitution", self.character["scores"]) log.info(f"You have a Constitution modifier of {modifier}.") bonus_hit_points = modifier * self.character["level"] log.info(f"Your modifier*level provide {bonus_hit_points} bonus hit points.") total_hit_points = self.character["hit_points"] + bonus_hit_points self.character["hit_points"] = total_hit_points log.info(f"You have {total_hit_points} total hit points.") if self.character["level"] < 4: return num_of_upgrades = self._count_upgrades() while num_of_upgrades > 0: if num_of_upgrades > 1: log.info(f"You have {num_of_upgrades} upgrades available.") else: log.info("You have 1 upgrade available.") my_path = prompt( "Follow which upgrade path?", ["Upgrade Ability", "Choose Feat"] ) # Path #1: Upgrade an Ability. if my_path == "Upgrade Ability": my_bonus = prompt("Apply how many points?", ["1", "2"]) log.info(f"You chose an ability bonus of: +{my_bonus}.") my_bonus = int(my_bonus) ability_options = [ a for a in ( "Strength", "Dexterity", "Constitution", "Intelligence", "Wisdom", "Charisma", ) if self._is_adjustable(a, my_bonus) ] # Apply +2 bonus to one ability. # Apply +1 bonus to two abilities. if my_bonus == 1: for _ in range(2): my_ability = prompt( "Which ability?", ability_options, ) ability_options.remove(my_ability) self._set_ability_score(my_ability, my_bonus) elif my_bonus == 2: my_ability = prompt( "Which ability?", ability_options, ) self._set_ability_score(my_ability, my_bonus) # Path #2: Add a new Feat. elif my_path == "Choose Feat": feat_options = [ x for x in get_feats_list() if x not in self.character["feats"] ] my_feat = prompt( "Which feat do you want to acquire?", feat_options, ) log.info(f"Checking requirements for the requested feat {my_feat}...") while not self._has_requirements(my_feat): feat_options.remove(my_feat) log.warn( f"You don't meet the requirements for '{my_feat}'.", ) my_feat = prompt( f"Which feat do you want to acquire?", feat_options, ) else: self._add_feat_perks(my_feat) self.character["feats"].append(my_feat) log.info(f"You selected the feat {my_feat}.") num_of_upgrades -= 1 def _set_ability_score(self, ability, bonus=1) -> None: """Applies a bonus to a specified ability.""" if not self._is_adjustable(ability, bonus): log.warn(f"Ability '{ability}' is not adjustable.") else: new_score = self.character.get("scores").get(ability) + bonus self.character["scores"][ability] = new_score log.info(f"You applied a +{bonus} bonus to your {ability}.") log.info(f"Your {ability} score is now a {new_score}.")
40.481949
101
0.514112
22,113
0.985999
0
0
10,438
0.465421
0
0
6,347
0.283007
40d5a5d08da3928cd30de9755f828a4c98f498bf
4,135
py
Python
atomic1D/ImpuritySpecies.py
TBody/atomic1D
fcab88f3b303468f23ac75b847c76244593f4b7f
[ "MIT" ]
1
2019-05-18T22:32:21.000Z
2019-05-18T22:32:21.000Z
atomic1D/ImpuritySpecies.py
TBody/atomic1D
fcab88f3b303468f23ac75b847c76244593f4b7f
[ "MIT" ]
null
null
null
atomic1D/ImpuritySpecies.py
TBody/atomic1D
fcab88f3b303468f23ac75b847c76244593f4b7f
[ "MIT" ]
null
null
null
class ImpuritySpecies(object): # For storing OpenADAS data related to a particular impurity species # Loosely based on cfe316/atomic/atomic_data.py/AtomicData class (although with much less code since # all of the F77 importing is done in the seperate <<make json_update>> code since BOUT++ protocol # requires fortran code be isolated from main operation) def __init__(self,symbol,adas_files_dict={},rate_coefficients={},impurity_fraction=None): # Searches for year, atomic_number, has_charge_exchange from user_input.json # # Default initialiser for class # symbol : (str) | element symbol (e.g. 'C') # name : (str) | full name of element (for printing only) # year : (int) | year for which OpenADAS data was searched (1996) # has_charge_exchange : (bool) | whether cx_power (prc) was found for this element-year combination (True) # atomic_number : (int) | number of protons for impurity species (6) # adas_files_dict : (str -> str) | dictionary of OpenADAS files, indexed by file-type ('ionisation': 'scd96_c', ...) # rate_coefficients : (str -> RateCoefficient) | dictionary of RateCoefficient objects corresponding to adas files ('ionisation': <RateCoefficientObject>, ...) import json self = ImpuritySpecies with open('user_input.json','r') as fp: data_dict = json.load(fp) element_dict = data_dict[symbol] assert symbol == element_dict['symbol'] self.symbol = symbol self.name = element_dict['name'] self.year = element_dict['year'] self.has_charge_exchange = element_dict['has_charge_exchange'] self.atomic_number = element_dict['atomic_number'] self.adas_files_dict = adas_files_dict self.rate_coefficients = rate_coefficients def __str__(self): # Printing method, for easier inspection of object data _print_adas_dict = '' if len(self.adas_files_dict) == 0: _print_adas_check = 'Not initialised' else: _print_adas_check = 'Initialised' for key, value in self.adas_files_dict.items(): _print_adas_dict = _print_adas_dict + '{:>25} -> {}\n'.format(key,value) if len(self.rate_coefficients) == 0: _print_rate_check = 'Not initialised' else: _print_rate_check = 'Initialised' _printing_string = 'ImpuritySpecies object with attributes'+\ '\n{:>25} = {}'.format('symbol', self.symbol)+\ '\n{:>25} = {}'.format('year', self.year)+\ '\n{:>25} = {}'.format('has_charge_exchange', self.has_charge_exchange)+\ '\n{:>25} = {}'.format('atomic_number', self.atomic_number)+\ '\n{:>25} = {}'.format('adas_files_dict', _print_adas_check)+\ '\n{:>25} = {}'.format('rate_coefficients', _print_rate_check) if len(self.adas_files_dict) != 0: _printing_string += '\n--------------------------------------------------\n'+_print_adas_dict return _printing_string def addJSONFiles(self,physics_process,filetype_code,JSON_database_path): # 1. Make the filename string expected for the json adas file # 2. Check that this file exists in the JSON_database_path/json_data directory # 3. Add this file to the atomic data .adas_files_dict attribute import os.path filename = '{}{}_{}.json'.format(filetype_code,str(self.year)[-2:],self.symbol) full_path = '{}/json_data/{}'.format(JSON_database_path,filename) if not(os.path.isfile(full_path)): raise FileNotFoundError('File {} not found in {}/json_data'.format(filename,JSON_database_path)) self.adas_files_dict[physics_process] = filename def makeRateCoefficients(self,JSON_database_path): # Calls the RateCoefficient.__init__ method for each entry in the .adas_files_dict # Generates a dictionary of RateCoefficient objects as .rate_coefficients from atomic1D import RateCoefficient for physics_process, filename in self.adas_files_dict.items(): full_path = '{}/json_data/{}'.format(JSON_database_path,filename) self.rate_coefficients[physics_process] = RateCoefficient(full_path)
47.528736
163
0.680774
4,134
0.999758
0
0
0
0
0
0
2,130
0.515115
40d5ed5ea76d8603996be2780920650b434417e6
9,213
py
Python
Utils/Matrix.py
valavanisleonidas/Machine_Learning_Toolkit
4a66e1419189e279a82fa6a7ff7945153308842a
[ "MIT" ]
null
null
null
Utils/Matrix.py
valavanisleonidas/Machine_Learning_Toolkit
4a66e1419189e279a82fa6a7ff7945153308842a
[ "MIT" ]
null
null
null
Utils/Matrix.py
valavanisleonidas/Machine_Learning_Toolkit
4a66e1419189e279a82fa6a7ff7945153308842a
[ "MIT" ]
null
null
null
import os import platform import numpy class Matrix: def __init__(self): if platform.system() == "Windows": self.delimiterForPath = "\\" else: self.delimiterForPath = "/" self.labelsDType = numpy.int32 self.imagesDType = numpy.float32 def deleteRows(self, array, rows, axis): return numpy.delete(array, rows, axis) def swapAxes(self, array, axe1, axe2): return numpy.swapaxes(array, axe1, axe2) def getImageCategoryFromPath(self, imagePath): # path in format : ..\\Category\\ImageName return numpy.array(imagePath.split(self.delimiterForPath, len(imagePath))[ len(imagePath.split(self.delimiterForPath, len(imagePath))) - 2], dtype=self.labelsDType) def getNumberOfClasses(self, array): return len(numpy.unique(array)) def getImagesInDirectory(self, folderPath, extensions=('.jpg', '.jpeg', '.png', '.bmp', '.gif')): imagesList = [] assert os.path.isdir(folderPath), 'No folder with that name exists : %r ' % folderPath # for all images in folder path for root, dirs, files in os.walk(folderPath): for name in files: if name.endswith(extensions): imagesList.append(root + self.delimiterForPath + name) return imagesList def addDimension(self, array, axis): return numpy.expand_dims(a=array, axis=axis) def ExtractImages(self, folderPath, image_size=(256, 256), convertion=None, imageChannels=3, preprocessImages=False ,normalize=True ,normalizeRange=(0,1) ): from Images.ImageProcessing import ImageProcessing imageList = self.getImagesInDirectory(folderPath=folderPath) assert len(imageList) > 0, 'No images in folder : %r' % folderPath if convertion != "Grayscale" and imageChannels != 3: if convertion == None: convertion = "RGB" raise ValueError(' %r supports only 3 image channels!' % convertion) images_list = [] labels_list = [] # for all images in folder path for imagePath in imageList: # get category of image and add category to array labels_list.append( self.getImageCategoryFromPath(imagePath=imagePath)) # get image array and add image to array images_list.append( ImageProcessing().getImageArray(imagePath=imagePath, imageSize=image_size, convertion=convertion, imageChannels=imageChannels,preprocessImages=preprocessImages, Normalize=normalize,NormalizeRange=normalizeRange)) # convert lists to numpy array allLabelsArray = numpy.array(labels_list).reshape(len(labels_list)) allImagesArray = numpy.array(images_list).reshape(len(imageList), imageChannels, image_size[0], image_size[1]) return [allImagesArray, allLabelsArray] # returns batches from data with size batchSize def chunker(self,data, batchSize): return (data[pos:pos + batchSize] for pos in xrange(0, len(data), batchSize)) def shuffleMatrix(self,array): numpy.random.shuffle(array) def shuffleMatrixAlongWithLabels(self, array1, array2): # shuffle array1 (images) with corresponding labels array2 from random import shuffle array1_shuf = [] array2_shuf = [] index_shuf = range(len(array1)) shuffle(index_shuf) for i in index_shuf: array1_shuf.append(array1[i]) array2_shuf.append(array2[i]) return [numpy.array(array1_shuf, dtype=self.imagesDType).astype('float32'), numpy.array(array2_shuf, dtype=self.labelsDType).astype('float32')] def TakeExamplesFromEachCategory(self,features,labels,maxImagesPerCategory=10): import gc import os validationArray = [] validation_labels=[] # for 0 to number of output classes for index in range(0,self.getNumberOfClasses(labels)): print ('mpika 1') # find indexes of category index indexes = numpy.where(labels == index) # if train has 1 instance don't take it for validation if len(indexes[0]) in [ 0 , 1 ]: continue # if instances are less than max categories given if len(indexes[0]) <= maxImagesPerCategory: # take half for validation maxImagesPerCategory= len(indexes[0])/2 print ('mpika 2') assert len(indexes[0]) >= maxImagesPerCategory ,\ "Error : Validation examples per category more than train instances. Category: {0}" \ " validation pes category : {1} , training examples : {2} ".format(index,maxImagesPerCategory,len(indexes[0]),) count = 0 # for indexes in category for catIndex in indexes[0]: print ('mpika 3') count +=1 if count > maxImagesPerCategory: print ('mpika 3.1') break print ('mpika 3.2') validationArray.append(features[catIndex]) print ('mpika 3.3') validation_labels.append(labels[catIndex ]) print ('mpika 3.4 catIndex' , catIndex) features = numpy.delete(features,catIndex,axis=0) print ('mpika 3.5') labels = numpy.delete(labels,catIndex,axis=0) print ('mpika 3.6') gc.collect() print ('mpika 4') return [features, numpy.array(validationArray,dtype=self.imagesDType).astype('float32'), labels, numpy.array(validation_labels,dtype=self.labelsDType).astype('int32')] def takeLastExamples(self,trainArray, train_labels, validationPercentage=.2): # take validationPercentage of training data for validation validationExamples = int(validationPercentage * len(trainArray)) # We reserve the last validationExamples training examples for validation. trainArray, validationArray = trainArray[:-validationExamples], trainArray[-validationExamples:] train_labels, validation_labels = train_labels[:-validationExamples], train_labels[-validationExamples:] return [trainArray, validationArray, train_labels, validation_labels] def SplitTrainValidation(self, trainArray, train_labels, validationPercentage=.2,takeLastExamples=False,maxImagesPerCategory=10): if takeLastExamples: return self.takeLastExamples(trainArray, train_labels, validationPercentage) else: return self.TakeExamplesFromEachCategory(trainArray, train_labels,maxImagesPerCategory) def moveFile(self, src, dest): import shutil shutil.move(src, dest) if __name__ == '__main__': trainFolder = 'C:\Users\l.valavanis\Desktop\Clef2013\TrainSet' testFolder = 'C:\Users\l.valavanis\Desktop\Clef2013\TestSet' # # trainFolder = 'C:\Users\l.valavanis\Desktop\Clef2013\SampleImages - Copy' # testFolder = 'C:\Users\l.valavanis\Desktop\Clef2013\SampleImages - Copy - Copy' # # # trainFolder = '/home/leonidas/Desktop/images/train' # # testFolder = '/home/leonidas/Desktop/images/test' # # [trainArray, train_labels, testArray, test_labels, validationArray, validation_labels, outputClasses] = \ # load_dataset(trainFolder, testFolder,imageSize=(3,3),convertion='L',imageChannels=1) # # print trainArray.shape # print trainArray # # print validation_labels # # print train_labels # # print trainArray # # print trainArray.shape # print train_labels.shape # print testArray.shape # print test_labels.shape # print validationArray.shape # print validation_labels.shape # # trainPath = 'C:\\Users\\l.valavanis\\Desktop\\Clef2013\\GBoC\Features\\train_2x2_CIELab_512.txt' # testPath = 'C:\\Users\\l.valavanis\\Desktop\\Clef2013\\GBoC\Features\\test_2x2_CIELab_512.txt' # trainLabelPath = 'C:\\Users\\l.valavanis\\Desktop\\Clef2013\\GBoC\Features\\train_2x2_CIELab_512_labels.txt' # testLabelPath = 'C:\\Users\\l.valavanis\\Desktop\\Clef2013\\GBoC\Features\\test_2x2_CIELab_512_labels.txt' # [trainArray, train_labels, testArray, test_labels, validationArray, validation_labels, # outputClasses] = loadFeatures(trainPath=trainPath, trainLabels=trainLabelPath, testPath=testPath, # testLabels=testLabelPath); i=0; for trainArray,train_labels in Matrix().getArrayOfImagesUsingMiniBatches(folderPath=trainFolder,image_size=(100,100),batch_size=15): print (trainArray.shape) print (train_labels.shape) i+=len(trainArray) print "aaasdasdas d : ",i # # print validation_labels # # print train_labels # # print trainArray # # print trainArray.shape # print train_labels.shape # print testArray.shape # print test_labels.shape # print validationArray.shape # print validation_labels.shape
43.457547
151
0.64485
6,917
0.750787
0
0
0
0
0
0
2,875
0.312059
40d66ffe931947e9a30f4f5ac4f0646b982e924f
7,906
py
Python
networking_calico/plugins/ml2/drivers/calico/policy.py
manojcode/networking-calico
db709fb27b492d3be3c094fa43e8c696962369b7
[ "Apache-2.0" ]
null
null
null
networking_calico/plugins/ml2/drivers/calico/policy.py
manojcode/networking-calico
db709fb27b492d3be3c094fa43e8c696962369b7
[ "Apache-2.0" ]
null
null
null
networking_calico/plugins/ml2/drivers/calico/policy.py
manojcode/networking-calico
db709fb27b492d3be3c094fa43e8c696962369b7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2018 Tigera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from networking_calico.common import config as calico_config from networking_calico.compat import log from networking_calico import datamodel_v3 from networking_calico.plugins.ml2.drivers.calico.syncer import ResourceSyncer LOG = log.getLogger(__name__) # Each OpenStack security group is mapped to a Calico NetworkPolicy. A VM's # security group membership is represented by the VM having a label for each # security group that it belongs to; thus the selector # 'has(<security-group-label>)' represents the VMs that belong to that security # group. # # The label for each security group is 'sg.projectcalico.org/openstack-' # followed by the security group ID, and the name of the NetworkPolicy for each # security group is 'ossg.default.' followed by the security group ID. SG_LABEL_PREFIX = 'sg.projectcalico.org/openstack-' SG_NAME_LABEL_PREFIX = 'sg-name.projectcalico.org/openstack-' SG_NAME_MAX_LENGTH = (datamodel_v3.SANITIZE_LABEL_MAX_LENGTH - len(SG_NAME_LABEL_PREFIX)) SG_NAME_PREFIX = 'ossg.default.' class PolicySyncer(ResourceSyncer): def __init__(self, db, txn_from_context): super(PolicySyncer, self).__init__(db, txn_from_context, "NetworkPolicy") self.region_string = calico_config.get_region_string() self.namespace = datamodel_v3.get_namespace(self.region_string) def delete_legacy_etcd_data(self): if self.namespace != datamodel_v3.NO_REGION_NAMESPACE: datamodel_v3.delete_legacy(self.resource_kind, SG_NAME_PREFIX) def get_all_from_etcd(self): results = [] for r in datamodel_v3.get_all(self.resource_kind, self.namespace): name, _, _ = r if name.startswith(SG_NAME_PREFIX): results.append(r) return results def create_in_etcd(self, name, spec): return datamodel_v3.put(self.resource_kind, self.namespace, name, spec, mod_revision=0) def update_in_etcd(self, name, spec, mod_revision=None): return datamodel_v3.put(self.resource_kind, self.namespace, name, spec, mod_revision=mod_revision) def delete_from_etcd(self, name, mod_revision): return datamodel_v3.delete(self.resource_kind, self.namespace, name, mod_revision=mod_revision) def get_all_from_neutron(self, context): return dict((SG_NAME_PREFIX + sg['id'], sg) for sg in self.db.get_security_groups(context)) def neutron_to_etcd_write_data(self, sg, context, reread=False): if reread: # We don't need to reread the SG row itself here, because we don't # use any information from it, apart from its ID as a key for the # following rules. pass rules = self.db.get_security_group_rules( context, filters={'security_group_id': [sg['id']]} ) return policy_spec(sg['id'], rules) def write_sgs_to_etcd(self, sgids, context): rules = self.db.get_security_group_rules( context, filters={'security_group_id': sgids} ) for sgid in sgids: self.update_in_etcd(SG_NAME_PREFIX + sgid, policy_spec(sgid, rules)) def policy_spec(sgid, rules): """Generate JSON NetworkPolicySpec for the given security group.""" # <rules> can include those for several security groups. Pick out the # rules for the security group that we are translating right now. sg_rules = (r for r in rules if r['security_group_id'] == sgid) # Split the rules based on direction, and map to Calico form. inbound_rules = [] outbound_rules = [] for rule in sg_rules: if rule['direction'] == 'ingress': inbound_rules.append(_neutron_rule_to_etcd_rule(rule)) else: outbound_rules.append(_neutron_rule_to_etcd_rule(rule)) return { 'ingress': inbound_rules, 'egress': outbound_rules, 'selector': 'has(%s)' % (SG_LABEL_PREFIX + sgid), } def _neutron_rule_to_etcd_rule(rule): """_neutron_rule_to_etcd_rule Translate a single Neutron rule dict to a single dict in our etcd format. """ ethertype = rule['ethertype'] etcd_rule = {'action': 'Allow'} # Map the ethertype field from Neutron to etcd format. etcd_rule['ipVersion'] = {'IPv4': 4, 'IPv6': 6}[ethertype] # Map the protocol field from Neutron to etcd format. if rule['protocol'] is None or rule['protocol'] == -1: pass elif rule['protocol'] == 'ipv6-icmp': etcd_rule['protocol'] = 'ICMPv6' elif rule['protocol'] == 'icmp': etcd_rule['protocol'] = {'IPv4': 'ICMP', 'IPv6': 'ICMPv6'}[ethertype] elif isinstance(rule['protocol'], int): etcd_rule['protocol'] = rule['protocol'] else: etcd_rule['protocol'] = rule['protocol'].upper() port_spec = None if rule['protocol'] == 'icmp' or rule['protocol'] == 'ipv6-icmp': # OpenStack stashes the ICMP match criteria in # port_range_min/max. icmp_fields = {} icmp_type = rule['port_range_min'] if icmp_type is not None and icmp_type != -1: icmp_fields['type'] = icmp_type icmp_code = rule['port_range_max'] if icmp_code is not None and icmp_code != -1: icmp_fields['code'] = icmp_code if icmp_fields: etcd_rule['icmp'] = icmp_fields else: # src/dst_ports is a list in which each entry can be a # single number, or a string describing a port range. if rule['port_range_min'] == -1: port_spec = None elif rule['port_range_min'] == rule['port_range_max']: if rule['port_range_min'] is not None: port_spec = [rule['port_range_min']] else: port_spec = ['%s:%s' % (rule['port_range_min'], rule['port_range_max'])] entity_rule = {} if rule['remote_group_id'] is not None: entity_rule['selector'] = 'has(%s)' % (SG_LABEL_PREFIX + rule['remote_group_id']) if rule['remote_ip_prefix'] is not None: entity_rule['nets'] = [rule['remote_ip_prefix']] LOG.debug("=> Entity rule %s" % entity_rule) # Store in source or destination field of the overall rule. if entity_rule: if rule['direction'] == 'ingress': etcd_rule['source'] = entity_rule if port_spec is not None: etcd_rule['destination'] = {'ports': port_spec} else: if port_spec is not None: entity_rule['ports'] = port_spec etcd_rule['destination'] = entity_rule LOG.debug("=> %s Calico rule %s" % (rule['direction'], etcd_rule)) return etcd_rule
39.728643
79
0.611055
2,598
0.328611
0
0
0
0
0
0
2,856
0.361245
40d757b3788e8715de2cff8adf8b1027f7b43c6d
4,359
py
Python
25/main.py
gosha20777/mipt-bioinfo-2021
ed14975e9f597e7b2427bc589f12ac08d451c509
[ "MIT" ]
null
null
null
25/main.py
gosha20777/mipt-bioinfo-2021
ed14975e9f597e7b2427bc589f12ac08d451c509
[ "MIT" ]
null
null
null
25/main.py
gosha20777/mipt-bioinfo-2021
ed14975e9f597e7b2427bc589f12ac08d451c509
[ "MIT" ]
null
null
null
def global_alignment(seq1, seq2, score_matrix, penalty): len1, len2 = len(seq1), len(seq2) s = [[0] * (len2 + 1) for i in range(len1 + 1)] backtrack = [[0] * (len2 + 1) for i in range(len1 + 1)] for i in range(1, len1 + 1): s[i][0] = - i * penalty for j in range(1, len2 + 1): s[0][j] = - j * penalty for i in range(1, len1 + 1): for j in range(1, len2 + 1): score_list = [s[i - 1][j] - penalty, s[i][j - 1] - penalty, s[i - 1][j - 1] + score_matrix[seq1[i - 1], seq2[j - 1]]] s[i][j] = max(score_list) backtrack[i][j] = score_list.index(s[i][j]) indel_insert = lambda seq, i: seq[:i] + '-' + seq[i:] align1, align2 = seq1, seq2 a, b = len1, len2 max_score = str(s[a][b]) while a * b != 0: if backtrack[a][b] == 0: a -= 1 align2 = indel_insert(align2, b) elif backtrack[a][b] == 1: b -= 1 align1 = indel_insert(align1, a) else: a -= 1 b -= 1 for i in range(a): align2 = indel_insert(align2, 0) for j in range(b): align1 = indel_insert(align1, 0) return max_score, align1, align2 def mid_column_score(v, w, score_matrix, penalty): s = [[i * j * penalty for i in range(-1, 1)] for j in range(len(v) + 1)] s[0][1] = -penalty backtrack = [0] * (len(v) + 1) for j in range(1, len(w) // 2 + 1): for i in range(0, len(v) + 1): if i == 0: s[i][1] = -j * penalty else: scores = [s[i - 1][0] + score_matrix[v[i - 1], w[j - 1]], s[i][0] - penalty, s[i - 1][1] - penalty] s[i][1] = max(scores) backtrack[i] = scores.index(s[i][1]) if j != len(w) // 2: s = [[row[1]] * 2 for row in s] return [i[1] for i in s], backtrack def mid_edge(v, w, score_matrix, penalty): source = mid_column_score(v, w, score_matrix, penalty)[0] mid_to_sink, backtrack = list(map(lambda l: l[::-1], mid_column_score(v[::-1], w[::-1] + ['', '$'][ len(w) % 2 == 1 and len(w) > 1], score_matrix, penalty))) scores = list(map(sum, zip(source, mid_to_sink))) max_mid = max(range(len(scores)), key = lambda i: scores[i]) if max_mid == len(scores) - 1: next_node = (max_mid, len(w) // 2 + 1) else: next_node = [(max_mid + 1, len(w) // 2 + 1), (max_mid, len(w) // 2 + 1), (max_mid + 1, len(w) // 2), ][ backtrack[max_mid]] return (max_mid, len(w) // 2), next_node def linear_space_alignment(top, bottom, left, right, score_matrix): v = seq1 w = seq2 if left == right: return [v[top:bottom], '-' * (bottom - top)] elif top == bottom: return ['-' * (right - left), w[left:right]] elif bottom - top == 1 or right - left == 1: return global_alignment(v[top:bottom], w[left:right], score_matrix, penalty)[1:] else: mid_node, next_node = mid_edge(v[top:bottom], w[left:right], score_matrix, penalty) mid_node = tuple(map(sum, zip(mid_node, [top, left]))) next_node = tuple(map(sum, zip(next_node, [top, left]))) current = [['-', v[mid_node[0] % len(v)]][next_node[0] - mid_node[0]], ['-', w[mid_node[1] % len(w)]][next_node[1] - mid_node[1]]] a = linear_space_alignment(top, mid_node[0], left, mid_node[1], score_matrix) b = linear_space_alignment(next_node[0], bottom, next_node[1], right, score_matrix) return [a[i] + current[i] + b[i] for i in range(2)] def linear_space_global_alignment(v, w, score_matrix, penalty): align1, align2 = linear_space_alignment(0, len(v), 0, len(w), score_matrix) p = [] for i in zip(align1, align2): if '-' in i: p.append(-penalty) else: p.append(score_matrix[i]) score = sum(p) return str(score), align1, align2 if __name__ == '__main__': with open('input.txt') as f: seq1 = f.readline().strip() seq2 = f.readline().strip() with open('BLOSUM62.txt') as f1: lines = [line.strip().split() for line in f1.readlines()] matrix = {(i[0], i[1]): int(i[2]) for i in lines} penalty = 5 alignment = '\n'.join(linear_space_global_alignment(seq1, seq2, matrix, penalty)) print(alignment)
39.990826
115
0.532003
0
0
0
0
0
0
0
0
62
0.014223
40d75b3cb34c1d537273d852cc304bd850526e28
10,039
py
Python
utils/visualize_tree.py
moyiming1/Retrosynthesis-pathway-ranking
380f31189d09395d0de911759b8bcea436b559b2
[ "MIT" ]
10
2021-02-24T02:31:40.000Z
2022-02-17T07:58:46.000Z
utils/visualize_tree.py
wangxr0526/Retrosynthesis-pathway-ranking
380f31189d09395d0de911759b8bcea436b559b2
[ "MIT" ]
1
2022-02-14T16:13:59.000Z
2022-02-14T16:13:59.000Z
utils/visualize_tree.py
wangxr0526/Retrosynthesis-pathway-ranking
380f31189d09395d0de911759b8bcea436b559b2
[ "MIT" ]
3
2021-01-05T11:43:03.000Z
2022-02-17T08:52:27.000Z
import os, sys project_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(project_path) import pickle def construct_tree_for_visual(tree, node_info_key, depth=0): tree_for_visual = {'smiles': 'http://askcos.mit.edu/draw/smiles/' + str(tree['smiles']).replace('#', '%23'), 'depth': depth, 'children': []} if node_info_key in tree.keys(): if type(tree[node_info_key]) is not str: tree_for_visual['score'] = '{:.3f}'.format(tree[node_info_key]) else: tree_for_visual['score'] = tree[node_info_key] else: tree_for_visual['score'] = '' if tree['child']: # tree_for_visual['children'] = [] for child in tree['child']: tree_for_visual['children'].append(construct_tree_for_visual(child, node_info_key, depth+1)) return tree_for_visual def construct_tree_for_d3_visualization(tree, depth, new_tree={}, max_children=0): # if 'is_chemical' in tree.keys(): new_tree['smiles'] = 'http://askcos.mit.edu/draw/smiles/' + str(tree['smiles']).replace('#', '%23') if 'score' in tree.keys(): new_tree['score'] = str(tree['score']) else: new_tree['score'] = '' # new_tree['smiles'] = str(new_tree['smiles']) new_tree['children'] = [] if tree['child']: # print(len(tree['child'])) if max_children < len(tree['child']): max_children = len(tree['child']) for child in tree['child']: new_tree['children'].append({}) _, max_children = construct_tree_for_d3_visualization(child, depth + 1, new_tree['children'][-1], max_children) return new_tree, max_children def count_tree_depth_children(tree, count): count[tree['depth']] += 1 if tree['children']: for child in tree['children']: count = count_tree_depth_children(child, count) return count def create_tree_html(trees, file_name, tree_info=None, node_info_key='score', width_factor=1, max_depth=10): try: outfile = file_name except Exception as e: print(e) print('Need to specify file name to write results to') trees_for_visualization = {'name': 'dummy_root', 'children': []} max_children = 1 for i, tree in enumerate(trees): output = construct_tree_for_visual(tree, node_info_key) trees_for_visualization['children'].append(output) # print() current_children = max(count_tree_depth_children(output, count=[0]*20)) if current_children > max_children: max_children = current_children if tree_info: # print(tree_info[i]) trees_for_visualization['children'][-1]['_id'] = tree_info[i] else: trees_for_visualization['children'][-1]['_id'] = ('T%d' % i) # print(max_children) max_children = max(max_children, 3) height = 300 * len(trees) * max_children / 3 * width_factor page_width = max_depth * 300 fid_out = open(outfile + '.html', 'w') fid_out.write('<!DOCTYPE html>\n') fid_out.write(' <head>\n') fid_out.write(' <meta charset="utf-8">\n') fid_out.write(' <title>{}</title>\n'.format(outfile)) fid_out.write(' <style>\n') fid_out.write(' .node circle {\n') fid_out.write(' fill: #fff;\n') fid_out.write(' stroke: steelblue;\n') fid_out.write(' stroke-width: 3px;\n') fid_out.write(' }\n') fid_out.write(' .node rect {\n') fid_out.write(' fill: #fff;\n') fid_out.write(' stroke: steelblue;\n') fid_out.write(' stroke_width: 3px;\n') fid_out.write(' }\n') fid_out.write(' .node text { font: 12px sans-serif; }\n') fid_out.write(' .link {\n') fid_out.write(' fill: none;\n') fid_out.write(' stroke: #ccc;\n') fid_out.write(' stroke-width: 2px;\n') fid_out.write(' }\n') fid_out.write(' </style>\n') fid_out.write(' </head>\n') fid_out.write(' <body>\n') fid_out.write('<!-- load the d3.js library --> \n') fid_out.write('<script src="http://d3js.org/d3.v3.min.js"></script>\n') fid_out.write('<script>\n') fid_out.write('var treeData = [\n') fid_out.write('{}\n'.format(trees_for_visualization)) fid_out.write('];\n') fid_out.write('var margin = {top: 20, right: 120, bottom: 20, left: 0},\n') fid_out.write(' width = {} - margin.right - margin.left,\n'.format(page_width)) fid_out.write(' height = {} - margin.top - margin.bottom;\n'.format(height)) fid_out.write('var i = 0;\n') fid_out.write('var tree = d3.layout.tree()\n') fid_out.write(' .size([height, width]);\n') fid_out.write('var diagonal = d3.svg.diagonal()\n') fid_out.write(' .projection(function(d) { return [d.y, d.x]; });\n') fid_out.write('var svg = d3.select("body").append("svg")\n') fid_out.write(' .attr("width", width + margin.right + margin.left)\n') fid_out.write(' .attr("height", height + margin.top + margin.bottom)\n') fid_out.write(' .append("g")\n') fid_out.write(' .attr("transform", \n') fid_out.write(' "translate(" + margin.left + "," + margin.top + ")");\n') fid_out.write('root = treeData[0];\n') fid_out.write('update(root);\n') fid_out.write('function update(source) {\n') fid_out.write(' // Compute the new tree layout.\n') fid_out.write(' var nodes = tree.nodes(root).reverse(),\n') fid_out.write(' links = tree.links(nodes);\n') fid_out.write(' // Normalize for fixed-depth.\n') fid_out.write(' nodes.forEach(function(d) { d.y = d.depth * 250; });\n') fid_out.write(' // Declare the nodes…\n') fid_out.write(' var node = svg.selectAll("g.node")\n') fid_out.write(' .data(nodes, function(d) { return d.id || (d.id = ++i); });\n') fid_out.write(' // Enter the nodes.\n') fid_out.write(' var nodeEnter = node.enter().append("g")\n') fid_out.write(' .attr("class", "node")\n') fid_out.write(' .attr("transform", function(d) { \n') fid_out.write(' return "translate(" + d.y + "," + d.x + ")"; });\n') fid_out.write(' nodeEnter.append("image")\n') fid_out.write(' .attr("xlink:href", function(d) { return d.smiles; })\n') fid_out.write(' .attr("x", "-60px")\n') fid_out.write(' .attr("y", "-60px")\n') fid_out.write(' .attr("width", "120px")\n') fid_out.write(' .attr("height", "120px");\n') fid_out.write(' nodeEnter.append("path")\n') fid_out.write(' .style("stroke", "black")\n') fid_out.write(' .style("fill", function(d) { if (d.freq==1) { return "white"; }\n') fid_out.write(' else if (d.freq==2) { return "yellow";}\n') fid_out.write(' else if (d.freq==3) { return "orange"; }\n') fid_out.write(' else if (d.freq>=4) { return "red"; }\n') fid_out.write(' else {return "white";}\n') fid_out.write(' })\n') fid_out.write(' .attr("d", d3.svg.symbol()\n') fid_out.write(' .size(0)\n') fid_out.write(' .type(function(d) {if\n') fid_out.write(' (d.rc_type == "chemical") {return "circle";} else if\n') fid_out.write(' (d.rc_type == "reaction") {return "cross";}\n') fid_out.write(' }));\n') fid_out.write(' nodeEnter.append("text")\n') fid_out.write(' .attr("x", 0)\n') fid_out.write(' .attr("y", 35)\n') fid_out.write(' .attr("text-anchor", function(d) { \n') fid_out.write(' return d.children || d._children ? "end" : "start"; })\n') fid_out.write(' .text(function(d) { return d.names; })\n') fid_out.write(' .style("fill-opacity", 1);\n') fid_out.write(' nodeEnter.append("text")\n') fid_out.write(' .attr("x", 200)\n') fid_out.write(' .attr("y", 120)\n') fid_out.write(' .attr("text-anchor", function(d) { \n') fid_out.write(' return d.children || d._children ? "end" : "start"; })\n') fid_out.write(' .text(function(d) { return d._id; })\n') fid_out.write(' .style("fill-opacity", 1);\n') fid_out.write(' nodeEnter.append("text")\n') fid_out.write(' .attr("x", 0)\n') fid_out.write(' .attr("y", -30)\n') fid_out.write(' .attr("text-anchor", function(d) { \n') fid_out.write(' return d.children || d._children ? "end" : "start"; })\n') fid_out.write(' .text(function(d) { return d.score; })\n') fid_out.write(' .style("fill-opacity", 1);\n') fid_out.write(' // Declare the links…\n') fid_out.write(' var link = svg.selectAll("path.link")\n') fid_out.write(' .data(links, function(d) { return d.target.id; });\n') fid_out.write(' // Enter the links.\n') fid_out.write(' link.enter().insert("path", "g")\n') fid_out.write(' .attr("class", "link")\n') fid_out.write(' .style("stroke", function(d) { return d.target.level; })\n') fid_out.write(' .attr("d", diagonal);\n') fid_out.write(' // remove the first level, leaving the targets as the first level\n') fid_out.write(' node.each(function(d){\n') fid_out.write(' if (d.name == "dummy_root")\n') fid_out.write(' d3.select(this).remove();});\n') fid_out.write(' link.each(function(d){\n') fid_out.write(' if (d.source.name == "dummy_root") \n') fid_out.write(' d3.select(this).remove();});\n') fid_out.write('}\n') fid_out.write('</script>\n') fid_out.write(' </body>\n') fid_out.write('</html>\n') fid_out.close() if __name__ == "__main__": file_name = project_path + '/data/pathway_train_example.pkl' with open(file_name, 'rb') as f: data = pickle.load(f) trees_to_plot = [d['tree'] for d in data['generated_paths'][0:10]] create_tree_html(trees_to_plot, 'plotted_trees')
47.131455
123
0.574858
0
0
0
0
0
0
0
0
4,899
0.487802
40d7ebe962811bafc69c16d6ae16e6cb4f35d53d
3,955
py
Python
python-is-easy/assignments/snowman/main.py
eDyablo/pirple
08910c7574203f685a0971cba61a54166d805a1c
[ "MIT" ]
null
null
null
python-is-easy/assignments/snowman/main.py
eDyablo/pirple
08910c7574203f685a0971cba61a54166d805a1c
[ "MIT" ]
null
null
null
python-is-easy/assignments/snowman/main.py
eDyablo/pirple
08910c7574203f685a0971cba61a54166d805a1c
[ "MIT" ]
null
null
null
''' Homework assignment for the 'Python is easy' course by Pirple. Written be Ed Yablonsky. Snowman(Hangman) game. ''' from os import ( name as os_name, system as system_call, ) from os.path import ( abspath, dirname, join as join_path, ) ''' Screen displays game output ''' class Screen: def clear(self): if os_name == 'nt': system_call('cls') else: system_call('clear') def draw(self, frame): for line in frame: print(line) ''' Input represents game input device ''' class Input: def ask(self, message): answer = '' while answer == '': answer = input(message) return answer ''' Art is a game art which is set of frames that get loaded from a text file. Draws its current frame on a screen. ''' class Art: def __init__(self): self.frames = [] self.current_frame = 0 def load(self, name): frames = [] art_path = join_path(dirname(abspath(__file__)), join_path('arts', name)) with open(art_path, 'r') as art_file: frame_height = int(art_file.readline()) frame = [] line_count = 0 for line in art_file: frame.append(line.strip('\n\r')) line_count += 1 if line_count % frame_height == 0: frames.append(frame) frame = [] self.frames = frames self.current_frame = 0 def draw(self, screen): screen.draw(self.frames[self.current_frame]) def frames_number(self): return len(self.frames) def next_frame(self): self.current_frame = (self.current_frame + 1) % self.frames_number() return self.current_frame ''' Riddle holds secret word and gets solved by guesses ''' class Riddle: def __init__(self, key): self.key = key self.clue = ['_'] * len(key) def length(self): return len(self.key) def range(self): return range(0, self.length()) def guess(self, g): guess_count = 0 for i in self.range(): if g == self.key[i]: guess_count += 1 self.clue[i] = g return guess_count def solved(self): for i in self.range(): if self.clue[i] != self.key[i]: return False return True def unsolved(self): return self.solved() == False def draw(self, screen): screen.draw([' '.join(self.clue)]) ''' Game is a game itself ''' class Game: def __init__(self): self.screen = Screen() self.input = Input() self.art = Art() self.riddle = Riddle('riddle') def play(self): self.start() self.propose_riddle() while self.in_progress(): self.play_round() self.display_result() def start(self): self.art.load('snowman') self.game_over = False def propose_riddle(self): self.riddle = Riddle(self.input.ask('Player 1 pick a word: ').lower()) def in_progress(self): return self.riddle.unsolved() and self.game_over == False def draw_frame(self): self.screen.clear() self.art.draw(self.screen) self.riddle.draw(self.screen) def play_round(self): self.draw_frame() clue = input('Player 2 guess a letter: ').lower() if len(clue) > 0: if clue[0] == '.': self.stop() elif self.riddle.guess(clue[0]) == 0: self.art.next_frame() if self.art.current_frame == self.art.frames_number() - 1: self.stop() def stop(self): self.game_over = True def display_result(self): self.draw_frame() if self.game_over: self.screen.draw(['Player 2 lost']) else: self.screen.draw(['Player 2 wins']) Game().play()
23.682635
81
0.551707
3,378
0.854109
0
0
0
0
0
0
546
0.138053
40d82abf6ddc30ada008f9205fa131b2828d8ba2
2,569
py
Python
src/GenericTsvReader.py
getzlab/ABSOLUTE
cd443ec9370df98778d98227bb9a11c3e24c00cb
[ "BSD-3-Clause" ]
null
null
null
src/GenericTsvReader.py
getzlab/ABSOLUTE
cd443ec9370df98778d98227bb9a11c3e24c00cb
[ "BSD-3-Clause" ]
null
null
null
src/GenericTsvReader.py
getzlab/ABSOLUTE
cd443ec9370df98778d98227bb9a11c3e24c00cb
[ "BSD-3-Clause" ]
null
null
null
""" Created on Jul 5, 2012 @author: lichtens """ import csv import os class GenericTsvReader(object): """ Read a TSV file. This class wraps a DictReader, but handles comments, which are not handled gracefully in the python csv library. The next() method assumes user is interested in the content, not the comments. Get the comments using getComments or getCommentsAsList. The latter assumes each comment is a line of text. Notes: IMPORTANT: At this time, this class does not support comments below the header line. This class will load all comment lines into RAM at one time. This could theoretically cause a bottleneck in some files. """ def __init__(self, filename, commentPrepend='#', fieldNames=None, delimiter='\t'): """ Constructor """ self.__dict__.update(locals()) self.inputContentFP = open(filename, 'r') self.commentLines = '' self.commentPrepend = commentPrepend # The comment lines must be loaded before the dict reader is initialized. self._loadCommentLines() self.dictReader = csv.DictReader(self.inputContentFP, delimiter=delimiter, fieldnames=fieldNames) def _loadCommentLines(self): resetLocation = self.inputContentFP.tell() nextChar = self.inputContentFP.read(1) # Get rid of blank lines while nextChar in ['\n', '\r']: resetLocation = self.inputContentFP.tell() nextChar = self.inputContentFP.read(1) while nextChar == self.commentPrepend: self.commentLines = self.commentLines + (self.commentPrepend + self.inputContentFP.readline()) resetLocation = self.inputContentFP.tell() nextChar = self.inputContentFP.read(1) # Go back one character to make sure that we have moved the file pointer to the # beginning of the first non-comment line. self.inputContentFP.seek(resetLocation, os.SEEK_SET) # python3 needs __next__ instead of next def __next__(self): return self.dictReader.__next__() def getFieldNames(self): return self.dictReader.fieldnames def getComments(self): return self.commentLines def getCommentsAsList(self): """ Return each comment line as an entry in a list """ return self.commentLines.strip().split('\n') def getInputContentFP(self): return self.inputContentFP def __iter__(self): return self
33.802632
124
0.652005
2,488
0.96847
0
0
0
0
0
0
1,020
0.397042
40db83a1176151c4bc0bdff2477e10a8b1ab20a4
12,376
py
Python
examples/applications/plot_impact_imbalanced_classes.py
cdchushig/imbalanced-learn
f02e7c7c2c021c85823cace405ca2c58ad4ff147
[ "MIT" ]
5,678
2016-07-19T10:22:35.000Z
2022-03-31T22:46:41.000Z
examples/applications/plot_impact_imbalanced_classes.py
cdchushig/imbalanced-learn
f02e7c7c2c021c85823cace405ca2c58ad4ff147
[ "MIT" ]
759
2016-07-19T05:41:59.000Z
2022-03-28T11:00:10.000Z
examples/applications/plot_impact_imbalanced_classes.py
cdchushig/imbalanced-learn
f02e7c7c2c021c85823cace405ca2c58ad4ff147
[ "MIT" ]
1,165
2016-07-19T22:56:42.000Z
2022-03-31T22:46:45.000Z
""" ========================================================== Fitting model on imbalanced datasets and how to fight bias ========================================================== This example illustrates the problem induced by learning on datasets having imbalanced classes. Subsequently, we compare different approaches alleviating these negative effects. """ # Authors: Guillaume Lemaitre <[email protected]> # License: MIT # %% print(__doc__) # %% [markdown] # Problem definition # ------------------ # # We are dropping the following features: # # - "fnlwgt": this feature was created while studying the "adult" dataset. # Thus, we will not use this feature which is not acquired during the survey. # - "education-num": it is encoding the same information than "education". # Thus, we are removing one of these 2 features. # %% from sklearn.datasets import fetch_openml df, y = fetch_openml("adult", version=2, as_frame=True, return_X_y=True) df = df.drop(columns=["fnlwgt", "education-num"]) # %% [markdown] # The "adult" dataset as a class ratio of about 3:1 # %% classes_count = y.value_counts() classes_count # %% [markdown] # This dataset is only slightly imbalanced. To better highlight the effect of # learning from an imbalanced dataset, we will increase its ratio to 30:1 # %% from imblearn.datasets import make_imbalance ratio = 30 df_res, y_res = make_imbalance( df, y, sampling_strategy={classes_count.idxmin(): classes_count.max() // ratio}, ) y_res.value_counts() # %% [markdown] # We will perform a cross-validation evaluation to get an estimate of the test # score. # # As a baseline, we could use a classifier which will always predict the # majority class independently of the features provided. # %% from sklearn.model_selection import cross_validate from sklearn.dummy import DummyClassifier dummy_clf = DummyClassifier(strategy="most_frequent") scoring = ["accuracy", "balanced_accuracy"] cv_result = cross_validate(dummy_clf, df_res, y_res, scoring=scoring) print(f"Accuracy score of a dummy classifier: {cv_result['test_accuracy'].mean():.3f}") # %% [markdown] # Instead of using the accuracy, we can use the balanced accuracy which will # take into account the balancing issue. # %% print( f"Balanced accuracy score of a dummy classifier: " f"{cv_result['test_balanced_accuracy'].mean():.3f}" ) # %% [markdown] # Strategies to learn from an imbalanced dataset # ---------------------------------------------- # We will use a dictionary and a list to continuously store the results of # our experiments and show them as a pandas dataframe. # %% index = [] scores = {"Accuracy": [], "Balanced accuracy": []} # %% [markdown] # Dummy baseline # .............. # # Before to train a real machine learning model, we can store the results # obtained with our :class:`~sklearn.dummy.DummyClassifier`. # %% import pandas as pd index += ["Dummy classifier"] cv_result = cross_validate(dummy_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # Linear classifier baseline # .......................... # # We will create a machine learning pipeline using a # :class:`~sklearn.linear_model.LogisticRegression` classifier. In this regard, # we will need to one-hot encode the categorical columns and standardized the # numerical columns before to inject the data into the # :class:`~sklearn.linear_model.LogisticRegression` classifier. # # First, we define our numerical and categorical pipelines. # %% from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.pipeline import make_pipeline num_pipe = make_pipeline( StandardScaler(), SimpleImputer(strategy="mean", add_indicator=True) ) cat_pipe = make_pipeline( SimpleImputer(strategy="constant", fill_value="missing"), OneHotEncoder(handle_unknown="ignore"), ) # %% [markdown] # Then, we can create a preprocessor which will dispatch the categorical # columns to the categorical pipeline and the numerical columns to the # numerical pipeline # %% from sklearn.compose import make_column_transformer from sklearn.compose import make_column_selector as selector preprocessor_linear = make_column_transformer( (num_pipe, selector(dtype_include="number")), (cat_pipe, selector(dtype_include="category")), n_jobs=2, ) # %% [markdown] # Finally, we connect our preprocessor with our # :class:`~sklearn.linear_model.LogisticRegression`. We can then evaluate our # model. # %% from sklearn.linear_model import LogisticRegression lr_clf = make_pipeline(preprocessor_linear, LogisticRegression(max_iter=1000)) # %% index += ["Logistic regression"] cv_result = cross_validate(lr_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # We can see that our linear model is learning slightly better than our dummy # baseline. However, it is impacted by the class imbalance. # # We can verify that something similar is happening with a tree-based model # such as :class:`~sklearn.ensemble.RandomForestClassifier`. With this type of # classifier, we will not need to scale the numerical data, and we will only # need to ordinal encode the categorical data. # %% from sklearn.preprocessing import OrdinalEncoder from sklearn.ensemble import RandomForestClassifier num_pipe = SimpleImputer(strategy="mean", add_indicator=True) cat_pipe = make_pipeline( SimpleImputer(strategy="constant", fill_value="missing"), OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), ) preprocessor_tree = make_column_transformer( (num_pipe, selector(dtype_include="number")), (cat_pipe, selector(dtype_include="category")), n_jobs=2, ) rf_clf = make_pipeline( preprocessor_tree, RandomForestClassifier(random_state=42, n_jobs=2) ) # %% index += ["Random forest"] cv_result = cross_validate(rf_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # The :class:`~sklearn.ensemble.RandomForestClassifier` is as well affected by # the class imbalanced, slightly less than the linear model. Now, we will # present different approach to improve the performance of these 2 models. # # Use `class_weight` # .................. # # Most of the models in `scikit-learn` have a parameter `class_weight`. This # parameter will affect the computation of the loss in linear model or the # criterion in the tree-based model to penalize differently a false # classification from the minority and majority class. We can set # `class_weight="balanced"` such that the weight applied is inversely # proportional to the class frequency. We test this parametrization in both # linear model and tree-based model. # %% lr_clf.set_params(logisticregression__class_weight="balanced") index += ["Logistic regression with balanced class weights"] cv_result = cross_validate(lr_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% rf_clf.set_params(randomforestclassifier__class_weight="balanced") index += ["Random forest with balanced class weights"] cv_result = cross_validate(rf_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # We can see that using `class_weight` was really effective for the linear # model, alleviating the issue of learning from imbalanced classes. However, # the :class:`~sklearn.ensemble.RandomForestClassifier` is still biased toward # the majority class, mainly due to the criterion which is not suited enough to # fight the class imbalance. # # Resample the training set during learning # ......................................... # # Another way is to resample the training set by under-sampling or # over-sampling some of the samples. `imbalanced-learn` provides some samplers # to do such processing. # %% from imblearn.pipeline import make_pipeline as make_pipeline_with_sampler from imblearn.under_sampling import RandomUnderSampler lr_clf = make_pipeline_with_sampler( preprocessor_linear, RandomUnderSampler(random_state=42), LogisticRegression(max_iter=1000), ) # %% index += ["Under-sampling + Logistic regression"] cv_result = cross_validate(lr_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% rf_clf = make_pipeline_with_sampler( preprocessor_tree, RandomUnderSampler(random_state=42), RandomForestClassifier(random_state=42, n_jobs=2), ) # %% index += ["Under-sampling + Random forest"] cv_result = cross_validate(rf_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # Applying a random under-sampler before the training of the linear model or # random forest, allows to not focus on the majority class at the cost of # making more mistake for samples in the majority class (i.e. decreased # accuracy). # # We could apply any type of samplers and find which sampler is working best # on the current dataset. # # Instead, we will present another way by using classifiers which will apply # sampling internally. # # Use of specific balanced algorithms from imbalanced-learn # ......................................................... # # We already showed that random under-sampling can be effective on decision # tree. However, instead of under-sampling once the dataset, one could # under-sample the original dataset before to take a bootstrap sample. This is # the base of the :class:`imblearn.ensemble.BalancedRandomForestClassifier` and # :class:`~imblearn.ensemble.BalancedBaggingClassifier`. # %% from imblearn.ensemble import BalancedRandomForestClassifier rf_clf = make_pipeline( preprocessor_tree, BalancedRandomForestClassifier(random_state=42, n_jobs=2), ) # %% index += ["Balanced random forest"] cv_result = cross_validate(rf_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # The performance with the # :class:`~imblearn.ensemble.BalancedRandomForestClassifier` is better than # applying a single random under-sampling. We will use a gradient-boosting # classifier within a :class:`~imblearn.ensemble.BalancedBaggingClassifier`. from sklearn.experimental import enable_hist_gradient_boosting # noqa from sklearn.ensemble import HistGradientBoostingClassifier from imblearn.ensemble import BalancedBaggingClassifier bag_clf = make_pipeline( preprocessor_tree, BalancedBaggingClassifier( base_estimator=HistGradientBoostingClassifier(random_state=42), n_estimators=10, random_state=42, n_jobs=2, ), ) index += ["Balanced bag of histogram gradient boosting"] cv_result = cross_validate(bag_clf, df_res, y_res, scoring=scoring) scores["Accuracy"].append(cv_result["test_accuracy"].mean()) scores["Balanced accuracy"].append(cv_result["test_balanced_accuracy"].mean()) df_scores = pd.DataFrame(scores, index=index) df_scores # %% [markdown] # This last approach is the most effective. The different under-sampling allows # to bring some diversity for the different GBDT to learn and not focus on a # portion of the majority class.
33.906849
87
0.747253
0
0
0
0
0
0
0
0
7,178
0.579994
40dc4792e5546b69652c162537bffd53c76ae2d8
3,949
py
Python
python/fix-page-breaks.py
utcompling/GeoAnnotate
a864106d9595e8426339f1d34432a54e04cee66a
[ "Apache-2.0" ]
9
2015-11-19T06:03:08.000Z
2021-02-16T19:14:42.000Z
python/fix-page-breaks.py
utcompling/GeoAnnotate
a864106d9595e8426339f1d34432a54e04cee66a
[ "Apache-2.0" ]
null
null
null
python/fix-page-breaks.py
utcompling/GeoAnnotate
a864106d9595e8426339f1d34432a54e04cee66a
[ "Apache-2.0" ]
1
2018-10-09T23:12:34.000Z
2018-10-09T23:12:34.000Z
#!/usr/bin/python import argparse import re parser = argparse.ArgumentParser(description='Fix page breaks in War of The Rebellion text') parser.add_argument('files', nargs='*', help='Files to process') args = parser.parse_args() for file in args.files: outfile = open(file + ".joined-pagebreak", "w") text = ''.join(open(file).readlines()) pages = re.split("PAGEBREAK\n", text) # Remove empty pages pages = [x for x in pages if x] for i in xrange(0, len(pages) - 1): # Remove extraneous blank lines pages[i] = re.sub("\n\n\n+", "\n\n", pages[i]) # Undo HTML entities pages[i] = re.sub("&amp;", "&", pages[i]) pages[i] = re.sub("&lt;", "<", pages[i]) pages[i] = re.sub("&gt;", ">", pages[i]) # Do the following a second time to handle cases of # &amp;amp;, which are common pages[i] = re.sub("&amp;", "&", pages[i]) m = re.match(r"^( *\[*CHAP\. [A-Z]+\.\]* *\n\n?)(.*)", pages[i], re.S) if m: pages[i] = m.group(2) print "Removed CHAP heading on page %s:\n[%s]\n" % (i, m.group(1)) m = re.match("(.*?)(\n?(?: *[0-9]+|S) *(?:R R(?: *[-_VY]+ *[^\n]*)?|R *-+ *[^\n]*)\n)(.*)$", pages[i], re.S) if m: pages[i] = m.group(1) + m.group(3) print "Removed R R notation on page %s:\n[%s]\n" % (i, m.group(2)) m = re.match(r"(.*?\n)(\n* *------+\n( *(?:[*+#@$|^\\/&~=>!?]|[abc] |[abc][A-Z])[^\n]*\n|\n)* *-------+\n+(?:[*+#@$|^\\/&~=>!?] *[A-Z][^\n]*\n|\n)*)$", pages[i], re.S) if m: pages[i] = m.group(1) print "Removed footnote on page %s:\n[%s]\n" % (i, m.group(2)) m = re.match("(.*?\n)(\n*[*]?MAP[^\n]*\n+)$", pages[i], re.S) if m: pages[i] = m.group(1) print "Removed MAP notation on page %s:\n[%s]\n" % (i, m.group(2)) while pages[i] and pages[i][-1] == "\n": pages[i] = pages[i][0:-1] if "\n" not in pages[i]: lastlinelen = len(pages[i]) else: m = re.match(".*\n([^\n]*)$", pages[i], re.S) assert m lastlinelen = len(m.group(1)) shortline = lastlinelen < 60 join = False hyphenjoin = False if not pages[i]: continue if len(pages[i]) >= 2 and pages[i][-1] == '-' and pages[i][-2].islower(): if shortline: msg = "PAGEBREAK SHORT-LINE HYPHEN, NOT JOINED" else: msg = "PAGEBREAK HYPHEN-JOINED" hyphenjoin = True join = True elif pages[i + 1] and pages[i + 1][0].islower(): if shortline: msg = "PAGEBREAK SHORT-LINE NEXT PAGE STARTS LOWERCASE, NOT JOINED" else: msg = "PAGEBREAK NEXT PAGE STARTS LOWERCASE, JOINED" join = True elif len(pages[i]) >= 3 and pages[i][-1] == '.' and pages[i][-2].isupper() and pages[i][-3] in ['.', ' ']: if shortline: msg = "PAGEBREAK SHORT-LINE ENDS WITH ABBREVIATION PERIOD, NOT JOINED" else: msg = "PAGEBREAK ENDS ABBREV-PERIOD, JOINED" join = True elif pages[i][-1] == '.': msg = "PAGEBREAK ENDS PERIOD, NOT JOINED" elif len(pages[i]) >= 2 and pages[i][-1] == '*' and pages[i][-2] == '.': msg = "PAGEBREAK ENDS PERIOD STAR, NOT JOINED" elif len(pages[i]) >= 2 and pages[i][-1] == '"' and pages[i][-2] == '.': msg = "PAGEBREAK ENDS PERIOD QUOTE, NOT JOINED" elif pages[i][-1] == ':': msg = "PAGEBREAK ENDS COLON, NOT JOINED" elif pages[i][-1] == ',': if shortline: msg = "PAGEBREAK ENDS SHORT-LINE COMMA, NOT JOINED" else: msg = "PAGEBREAK ENDS COMMA, JOINED" join = True else: if shortline: msg = "PAGEBREAK ENDS SHORT-LINE OTHER, NOT JOINED" else: msg = "PAGEBREAK ENDS OTHER, JOINED" join = True print "Page %s: %s" % (i, msg) if hyphenjoin: outfile.write(pages[i][0:-1]) elif join: outfile.write(pages[i] + " ") else: outfile.write(pages[i]) outfile.write("\n\n") outfile.write("\n%s\n" % msg) outfile.close()
36.564815
171
0.52469
0
0
0
0
0
0
0
0
1,443
0.365409
40dd78243c51556a2be73588a2b4ac205cbb6f28
570
py
Python
2021/02/part2.py
FranciscoAT/advent-of-code
69f20696e4c59ff6dfa010b22dd3593ea3d12208
[ "MIT" ]
null
null
null
2021/02/part2.py
FranciscoAT/advent-of-code
69f20696e4c59ff6dfa010b22dd3593ea3d12208
[ "MIT" ]
null
null
null
2021/02/part2.py
FranciscoAT/advent-of-code
69f20696e4c59ff6dfa010b22dd3593ea3d12208
[ "MIT" ]
null
null
null
def main(file: str) -> None: depth = 0 distance = 0 aim = 0 with open(f"{file}.in") as f: for line in f.readlines(): line = line.rstrip().split(" ") command = line[0] unit = int(line[1]) if command == "forward": distance += unit depth += aim * unit elif command == "down": aim += unit else: aim -= unit print(f"{file}: {depth * distance}") if __name__ == "__main__": main("test") main("puzzle")
23.75
43
0.436842
0
0
0
0
0
0
0
0
83
0.145614
40dd84dd99f72ec266d9a45433b99fd282b94576
6,068
py
Python
tf_seal/python/tensor.py
karlhigley/tf-seal
74a38e3ff71d29e862881d56bca84aaa23efd710
[ "Apache-2.0" ]
94
2019-08-06T16:03:27.000Z
2022-03-24T18:19:07.000Z
tf_seal/python/tensor.py
karlhigley/tf-seal
74a38e3ff71d29e862881d56bca84aaa23efd710
[ "Apache-2.0" ]
23
2019-08-19T16:22:12.000Z
2022-03-31T15:09:58.000Z
tf_seal/python/tensor.py
karlhigley/tf-seal
74a38e3ff71d29e862881d56bca84aaa23efd710
[ "Apache-2.0" ]
17
2019-08-08T22:45:46.000Z
2022-03-22T08:05:16.000Z
import numpy as np import tensorflow as tf import tf_seal.python.ops.seal_ops as ops from tensorflow.python.keras.utils import tf_utils from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops as tf_ops class Tensor(object): def __init__(self, value, secret_key, public_keys): assert isinstance(value, tf.Tensor), type(value) assert value.dtype is tf.variant, value.dtype self._raw = value self._public_keys = public_keys self._secret_key = secret_key @property def shape(self): return self._raw.shape @property def name(self): return self._raw.name @property def dtype(self): return tf.int32 # return tf.string def eval(self, session=None, dtype=None): tf_tensor = convert_from_tensor(self, dtype=dtype) evaluated = tf_tensor.eval(session=session) return evaluated def __add__(self, other): if isinstance(other, Tensor): res = ops.seal_add(self._raw, other._raw) else: res = ops.seal_add_plain(self._raw, other) return Tensor(res, self._secret_key, self._public_keys) # def __sub__(self, other): # other = convert_to_tensor(other) # res = ops.big_sub(self._raw, other._raw) # return Tensor(res) def __mul__(self, other): if isinstance(other, Tensor): res = ops.seal_mul(self._raw, other._raw, self._public_keys) else: res = ops.seal_mul_plain(self._raw, other) return Tensor(res, self._secret_key, self._public_keys) def matmul(self, other): if isinstance(other, Tensor): res = ops.seal_mat_mul(self._raw, other._raw, self._public_keys) else: res = ops.seal_mat_mul_plain(self._raw, other, self._public_keys) return Tensor(res, self._secret_key, self._public_keys) def _fetch_function(seal_tensor): unwrapped = [convert_from_tensor(seal_tensor, dtype=tf.float64)] rewrapper = lambda components_fetched: components_fetched[0].astype(np.float64) return unwrapped, rewrapper def _feed_function(seal_tensor, feed_value): return [(seal_tensor._raw, feed_value)] def _feed_function_for_partial_run(seal_tensor): return [seal_tensor._raw] # this allows tf_seal.Tensor to be passed directly to tf.Session.run, # unwrapping and converting the result as needed tf_session.register_session_run_conversion_functions( tensor_type=Tensor, fetch_function=_fetch_function, feed_function=_feed_function, feed_function_for_partial_run=_feed_function_for_partial_run, ) def _tensor_conversion_function(tensor, dtype=None, name=None, as_ref=False): assert name is None, "Not implemented, name='{}'".format(name) assert not as_ref, "Not implemented, as_ref={}".format(as_ref) assert dtype in [tf.float32, tf.float64, None], dtype return convert_from_tensor(tensor, dtype=dtype) # TODO(Morten) # this allows implicit convertion of tf_seal.Tensor to tf.Tensor, # but since the output dtype is determined by the outer context # we essentially have to export with the implied risk of data loss tf_ops.register_tensor_conversion_function(Tensor, _tensor_conversion_function) # this allows Tensor to pass the tf.is_tensor test tf_ops.register_dense_tensor_like_type(Tensor) # this allows tf_big.Tensor to be plumbed through Keras layers # but seems only truly useful when used in conjunction with # `register_tensor_conversion_function` tf_utils.register_symbolic_tensor_type(Tensor) def constant(tensor, secret_key, public_keys): assert isinstance(tensor, (np.ndarray, list, tuple)), type(tensor) return convert_to_tensor(tensor, secret_key, public_keys) def _convert_numpy_tensor(tensor, secret_key, public_keys): if len(tensor.shape) > 2: raise ValueError("Only matrices are supported for now.") # make sure we have a full matrix while len(tensor.shape) < 2: tensor = np.expand_dims(tensor, 0) if np.issubdtype(tensor.dtype, np.float32) \ or np.issubdtype(tensor.dtype, np.float64): # supported as-is return Tensor(ops.seal_encrypt(tensor, public_keys), secret_key, public_keys) raise ValueError("Don't know how to convert NumPy tensor with dtype '{}'".format(tensor.dtype)) def _convert_tensorflow_tensor(tensor, secret_key, public_keys): if len(tensor.shape) > 2: raise ValueError("Only matrices are supported for now.") # make sure we have a full matrix while len(tensor.shape) < 2: tensor = tf.expand_dims(tensor, 0) if tensor.dtype in (tf.float32, tf.float64): # supported as-is return Tensor(ops.seal_encrypt(tensor, public_keys), secret_key, public_keys) raise ValueError("Don't know how to convert TensorFlow tensor with dtype '{}'".format(tensor.dtype)) def convert_to_tensor(tensor, secret_key, public_keys): if isinstance(tensor, Tensor): return tensor if tensor is None: return None if isinstance(tensor, (float)): return _convert_numpy_tensor(np.array([tensor]), secret_key, public_keys) if isinstance(tensor, (list, tuple)): return _convert_numpy_tensor(np.array(tensor), secret_key, public_keys) if isinstance(tensor, np.ndarray): return _convert_numpy_tensor(tensor, secret_key, public_keys) if isinstance(tensor, tf.Tensor): return _convert_tensorflow_tensor(tensor, secret_key, public_keys) raise ValueError("Don't know how to convert value of type {}".format(type(tensor))) def convert_from_tensor(value, dtype=None): assert isinstance(value, Tensor), type(value) if dtype is None: dtype = tf.float64 if dtype in [tf.float32, tf.float64]: return ops.seal_decrypt(value._raw, value._secret_key, dtype=dtype) raise ValueError("Don't know how to evaluate to dtype '{}'".format(dtype)) def add(x, y): # TODO(Morten) lifting etc return x + y def sub(x, y): # TODO(Morten) lifting etc return x - y def mul(x, y): # TODO(Morten) lifting etc return x * y def matmul(x, y): # TODO(Morten) lifting etc return x.matmul(y) def poly_eval(x, coeffs): res = ops.seal_poly_eval(x._raw, coeffs, x._public_keys) return Tensor(res, x._secret_key, x._public_keys)
30.492462
102
0.742914
1,529
0.251978
0
0
179
0.029499
0
0
1,229
0.202538
40de3e3ad949140a43a1a19f490e5fc039aedb2f
25,087
py
Python
program/admin.py
Dumbaz/autoradio-pv
8aae293e58b2e79a05956c535bb109f74edc89c3
[ "BSD-3-Clause" ]
null
null
null
program/admin.py
Dumbaz/autoradio-pv
8aae293e58b2e79a05956c535bb109f74edc89c3
[ "BSD-3-Clause" ]
null
null
null
program/admin.py
Dumbaz/autoradio-pv
8aae293e58b2e79a05956c535bb109f74edc89c3
[ "BSD-3-Clause" ]
null
null
null
from django.core.exceptions import ObjectDoesNotExist from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from django.shortcuts import render from django.conf import settings from .models import Language, Type, MusicFocus, Category, Topic, RTRCategory, Host, Note, RRule, Schedule, Show, TimeSlot from .forms import MusicFocusForm from datetime import date, datetime, time, timedelta class ActivityFilter(admin.SimpleListFilter): title = _("Activity") def lookups(self, request, model_admin): return ( ('yes', _("active")), ('no', _("inactive")) ) def queryset(self, request, queryset): if self.parameter_name == 'has_timeslots': # active/inactive Schedules if self.value() == 'yes': return queryset.filter(until__gt=datetime.now()).distinct() if self.value() == 'no': return queryset.filter(until__lt=datetime.now()).distinct() if self.parameter_name == 'has_schedules_timeslots': # active/inactive Shows if self.value() == 'yes': return queryset.filter(schedules__until__gt=datetime.now()).distinct() if self.value() == 'no': return queryset.filter(schedules__until__lt=datetime.now()).distinct() if self.parameter_name == 'has_shows_schedules_timeslots': # active/inactive Hosts if self.value() == 'yes': return queryset.filter(shows__schedules__until__gt=datetime.now()).distinct() if self.value() == 'no': return queryset.filter(shows__schedules__until__lt=datetime.now()).distinct() class ActiveSchedulesFilter(ActivityFilter): parameter_name = 'has_timeslots' class ActiveShowsFilter(ActivityFilter): parameter_name = 'has_schedules_timeslots' class ActiveHostsFilter(ActivityFilter): parameter_name = 'has_shows_schedules_timeslots' class TypeAdmin(admin.ModelAdmin): list_display = ('type', 'admin_color', 'is_active') list_filter = ('is_active',) prepopulated_fields = {'slug': ('type',)} class MusicFocusAdmin(admin.ModelAdmin): form = MusicFocusForm list_display = ('focus', 'abbrev', 'admin_buttons', 'is_active') list_filter = ('is_active',) prepopulated_fields = {'slug': ('focus',)} class CategoryAdmin(admin.ModelAdmin): list_display = ('category', 'abbrev', 'admin_buttons', 'is_active') list_filter = ('is_active',) prepopulated_fields = {'slug': ('category',)} class LanguageAdmin(admin.ModelAdmin): list_display = ('name', 'is_active') list_filter = ('is_active',) class TopicAdmin(admin.ModelAdmin): list_display = ('topic', 'abbrev', 'admin_buttons', 'is_active') list_filter = ('is_active',) prepopulated_fields = {'slug': ('topic',)} class RTRCategoryAdmin(admin.ModelAdmin): list_display = ('rtrcategory', 'abbrev', 'is_active' ) list_filter = ('is_active',) prepopulated_fields = {'slug': ('rtrcategory',)} class HostAdmin(admin.ModelAdmin): list_display = ('name', 'email', 'is_active') list_filter = (ActiveHostsFilter, 'is_active',) def get_queryset(self, request): if request.user.is_superuser: return Host.objects.all() # Common users only see hosts of shows they own return Host.objects.filter(shows__in=request.user.shows.all()).distinct() class NoteAdmin(admin.ModelAdmin): date_hierarchy = 'start' list_display = ('title', 'show', 'start', 'status', 'user') fields = (( 'show', 'timeslot'), 'title', 'slug', 'summary', 'content', 'image', 'host', 'status', 'cba_id') prepopulated_fields = {'slug': ('title',)} list_filter = ('status',) ordering = ('timeslot',) save_as = True class Media: js = [ settings.MEDIA_URL + 'js/calendar/lib/moment.min.js', settings.MEDIA_URL + 'js/note_change.js', ] def get_queryset(self, request): if request.user.is_superuser: shows = Show.objects.all() else: # Commons users only see notes of shows they own shows = request.user.shows.all() return super(NoteAdmin, self).get_queryset(request).filter(show__in=shows) def formfield_for_foreignkey(self, db_field, request=None, **kwargs): four_weeks_ago = datetime.now() - timedelta(weeks=4) in_twelve_weeks = datetime.now() + timedelta(weeks=12) if db_field.name == 'timeslot': # Adding/Editing a note: load timeslots of the user's shows into the dropdown # TODO: Don't show any timeslot in the select by default. # User should first choose show, then timeslots are loaded into the select via ajax. # # How to do this while not constraining the queryset? # Saving won't be possible otherwise, if queryset doesn't contain the selectable elements beforehand #kwargs['queryset'] = TimeSlot.objects.filter(show=-1) # Superusers see every timeslot for every show if request.user.is_superuser: kwargs['queryset'] = TimeSlot.objects.filter(start__gt=four_weeks_ago, start__lt=in_twelve_weeks) # note__isnull=True # Users see timeslots of shows they own else: kwargs['queryset'] = TimeSlot.objects.filter(show__in=request.user.shows.all(), start__gt=four_weeks_ago, start__lt=in_twelve_weeks) # note__isnull=True if db_field.name == 'show': # Adding/Editing a note: load user's shows into the dropdown # Common users only see shows they own if not request.user.is_superuser: kwargs['queryset'] = Show.objects.filter(pk__in=request.user.shows.all(), is_active=True) if db_field.name == 'host': # Common users only see hosts of shows they own if not request.user.is_superuser: kwargs['queryset'] = Host.objects.filter(shows__in=request.user.shows.all(), is_active=True).distinct() return super(NoteAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def save_model(self, request, obj, form, change): # Save the creator when adding a note if not change: obj.user = request.user # Try to get direct audio URL from CBA obj.audio_url = Note.get_audio_url(obj.cba_id) obj.save() class TimeSlotInline(admin.TabularInline): model = TimeSlot ordering = ('-end',) class TimeSlotAdmin(admin.ModelAdmin): model = TimeSlot class ScheduleAdmin(admin.ModelAdmin): actions = ('renew',) inlines = (TimeSlotInline,) fields = (('rrule', 'byweekday'), ('dstart', 'tstart', 'tend'), 'until', 'is_repetition', 'automation_id', 'fallback_id') list_display = ('get_show_name', 'byweekday', 'rrule', 'tstart', 'tend', 'until') list_filter = (ActiveSchedulesFilter, 'byweekday', 'rrule', 'is_repetition') ordering = ('byweekday', 'dstart') save_on_top = True search_fields = ('show__name',) def renew(self, request, queryset): next_year = date.today().year + 1 until = date(next_year, 12, 31) renewed = queryset.update(until=until) if renewed == 1: message = _("1 schedule was renewed until %s") % until else: message = _("%s schedule were renewed until %s") % (renewed, until) self.message_user(request, message) renew.short_description = _("Renew selected schedules") def get_show_name(self, obj): return obj.show.name get_show_name.admin_order_field = 'show' get_show_name.short_description = "Show" class ScheduleInline(admin.TabularInline): model = Schedule ordering = ('pk', '-until', 'byweekday') class ShowAdmin(admin.ModelAdmin): filter_horizontal = ('hosts', 'owners', 'musicfocus', 'category', 'topic', 'language') inlines = (ScheduleInline,) list_display = ('name', 'short_description') list_filter = (ActiveShowsFilter, 'type', 'category', 'topic', 'musicfocus', 'rtrcategory', 'language') ordering = ('slug',) prepopulated_fields = {'slug': ('name',)} search_fields = ('name', 'short_description', 'description') fields = ( 'predecessor', 'type', 'name', 'slug', 'image', 'logo', 'short_description', 'description', 'email', 'website', 'hosts', 'owners', 'language', 'category', 'rtrcategory', 'topic', 'musicfocus', 'fallback_id', 'cba_series_id', ) class Media: js = [ settings.MEDIA_URL + 'js/calendar/lib/moment.min.js', settings.MEDIA_URL + 'js/show_change.js', ] css = { 'all': ('/program/styles.css',) } def get_queryset(self, request): if request.user.is_superuser: # Superusers see all shows shows = Show.objects.all() else: # Users only see shows they own shows = request.user.shows.all() return super(ShowAdmin, self).get_queryset(request).filter(pk__in=shows) def get_readonly_fields(self, request, obj=None): '''Limit field access for common users''' if not request.user.is_superuser: # TODO: how to set field 'name' readonly although it's required? return ('predecessor', 'type', 'hosts', 'owners', 'language', 'category', 'topic', 'musicfocus', 'rtrcategory') return list() def formfield_for_foreignkey(self, db_field, request=None, **kwargs): try: show_id = int(request.get_full_path().split('/')[-2]) except ValueError: show_id = None print(db_field.name) if db_field.name == 'predecessor' and show_id: kwargs['queryset'] = Show.objects.exclude(pk=show_id) if db_field.name == 'type': kwargs['queryset'] = Type.objects.filter(is_active=True) if db_field.name == 'rtrcategory': kwargs['queryset'] = RTRCategory.objects.filter(is_active=True) return super(ShowAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) def formfield_for_manytomany(self, db_field, request, **kwargs): if db_field.name == 'hosts': kwargs["queryset"] = Host.objects.filter(is_active=True) if db_field.name == 'language': kwargs["queryset"] = Language.objects.filter(is_active=True) if db_field.name == 'category': kwargs["queryset"] = Category.objects.filter(is_active=True) if db_field.name == 'topic': kwargs["queryset"] = Topic.objects.filter(is_active=True) if db_field.name == 'musicfocus': kwargs["queryset"] = MusicFocus.objects.filter(is_active=True) return super(ShowAdmin, self).formfield_for_manytomany(db_field, request, **kwargs) def save_formset(self, request, form, formset, change): """ Is called after the "save show"-form or collision-form were submitted Saves the show after first submit If any changes in schedules happened * added/changed schedules are used to generate new timeslots and matched against existing ones, which will be displayed in the collision form If a collision form was submitted * save the current schedule * delete/create timeslots and relink notes after confirmation Each step passes on to response_add or response_change which will * either display the collision form for the next step * or redirect to the original show-form if the resolving process has been finished (= if either max_steps was surpassed or end_reached was True) """ self.end_reached = False schedule_instances = formset.save(commit=False) # If there are no schedules to save, do nothing if schedule_instances: show_id = schedule_instances[0].show.id else: self.end_reached = True schedule = [] timeslots = [] max_steps = int(len(schedule_instances)) if len(schedule_instances) > 0 else 1 step = 1 if request.POST.get('step') == None: # First save-show submit # Generate thumbnails if form.instance.image.name and settings.THUMBNAIL_SIZES: for size in settings.THUMBNAIL_SIZES: thumbnail = form.instance.image.crop[size].name # Save show data only form.save(); # Delete schedules (as well as related timeslots and notes) if flagged as such for obj in formset.deleted_objects: obj.delete() # If nothing else changed, do nothing and redirect to show-form if not formset.changed_objects and not formset.new_objects: self.end_reached = True else: # If a collision form was submitted step = int(request.POST.get('step')) if request.POST.get('num_inputs') != None and int(request.POST.get('num_inputs')) > 0: print("Resolving conflicts...") '''Declare and retrieve variables''' # Either datetimes as string (e.g. '2017-01-01 00:00:00 - 2017-01-01 01:00:00') to create # or ints of colliding timeslots to keep otherwise resolved_timeslots = [] # IDs of colliding timeslots found in the db. If there's no corresponding collision to the # same index in create_timeslot, value will be None collisions = [] # Datetimes as string (e.g. '2017-01-01 00:00:00 - 2017-01-01 01:00:00') for timeslots to create create_timeslots = [] # IDs of timeslots to delete delete_timeslots = set() # Number of timeslots to be generated num_inputs = int(request.POST.get('num_inputs')) # Numbers of notes to relink for existing timeslots and newly created ones # each of them relating to one of these POST vars: # POST.ntids[idx][id] and POST.ntids[idx][note_id] contain ids of existing timeslots and note_ids to link, while # POST.ntind[idx][id] and POST.ntind[idx][note_id] contain indices of corresponding elements in create_timeslots # and note_ids which will be linked after they're created and thus split into two lists beforehand num_ntids = int(request.POST.get('num_ntids')) num_ntind = int(request.POST.get('num_ntind')) # Retrieve POST vars of current schedule schedule_id = int(request.POST.get('ps_save_id')) if request.POST.get('ps_save_id') != 'None' else None rrule = RRule.objects.get(pk=int(request.POST.get('ps_save_rrule_id'))) show = Show.objects.get(pk=show_id) byweekday = int(request.POST.get('ps_save_byweekday')) tstart = datetime.strptime(request.POST.get('ps_save_tstart'), '%H:%M').time() tend = datetime.strptime(request.POST.get('ps_save_tend'), '%H:%M').time() dstart = datetime.strptime(request.POST.get('ps_save_dstart'), '%Y-%m-%d').date() if dstart < datetime.today().date(): # Create or delete upcoming timeslots only dstart = datetime.today().date() until = datetime.strptime(request.POST.get('ps_save_until'), '%Y-%m-%d').date() is_repetition = request.POST.get('ps_save_is_repetition') automation_id = int(request.POST.get('ps_save_automation_id')) if request.POST.get('ps_save_automation_id') != 'None' else 0 fallback_id = int(request.POST.get('ps_save_fallback_id')) if request.POST.get('ps_save_fallback_id') != 'None' else 0 # Put timeslot POST vars into lists with same indices for i in range(num_inputs): resolved_ts = request.POST.get('resolved_timeslots[' + str(i) + ']') if resolved_ts != None: resolved_timeslots.append( resolved_ts ) create_timeslots.append( request.POST.get('create_timeslots[' + str(i) + ']') ) # May contain None collisions.append( request.POST.get('collisions[' + str(i) + ']') ) # May contain None else: num_inputs -= 1 '''Prepare resolved timeslots''' # Separate timeslots to delete from those to create keep_collisions = [] for x in range(num_inputs): if resolved_timeslots[x] == None or resolved_timeslots[x].isdigit(): # If it's a digit, keep the existing timeslot by preventing the new one from being created create_timeslots[x] = None keep_collisions.append(int(collisions[x])) else: # Otherwise collect the timeslot ids to be deleted later if len(collisions[x]) > 0: delete_timeslots.add(int(collisions[x])) # Collect IDs of upcoming timeslots of the same schedule to delete except those in keep_collision if schedule_id != None: for ts in TimeSlot.objects.filter(start__gte=dstart,end__lte=until,schedule_id=schedule_id).exclude(pk__in=keep_collisions).values_list('id', flat=True): delete_timeslots.add(ts) '''Save schedule''' new_schedule = Schedule(pk=schedule_id, rrule=rrule, byweekday=byweekday, show=show, dstart=dstart, tstart=tstart, tend=tend, until=until, is_repetition=is_repetition, automation_id=automation_id, fallback_id=fallback_id) # Only save schedule if any timeslots changed if len(resolved_timeslots) > 0: new_schedule.save() '''Relink notes to existing timeslots and prepare those to be linked''' # Relink notes with existing timeslot ids for i in range(num_ntids): try: note = Note.objects.get(pk=int(request.POST.get('ntids[' + str(i) + '][note_id]'))) note.timeslot_id = int(request.POST.get('ntids[' + str(i) + '][id]')) note.save(update_fields=["timeslot_id"]) print("Rewrote note " + str(note.id) + "...to timeslot_id " + str(note.timeslot_id)) except ObjectDoesNotExist: pass # Put list indices of yet to be created timeslots and note_ids in corresponding lists to relink them during creation note_indices = [] note_ids = [] for i in range(num_ntind): note_indices.append( int(request.POST.get('ntind[' + str(i) + '][id]')) ) note_ids.append( int(request.POST.get('ntind[' + str(i) + '][note_id]')) ) '''Database changes for resolved timeslots and relinked notes for newly created''' for idx, ts in enumerate(create_timeslots): if ts != None: start_end = ts.split(' - ') # Only create upcoming timeslots if datetime.strptime(start_end[0], "%Y-%m-%d %H:%M:%S") > datetime.today(): timeslot_created = TimeSlot.objects.create(schedule=new_schedule, is_repetition=new_schedule.is_repetition, start=start_end[0], end=start_end[1]) # Link a note to the new timeslot if idx in note_indices: note_idx = note_indices.index( idx ) # Get the note_id's index... note_id = note_ids[note_idx] # ...which contains the note_id to relate to try: note = Note.objects.get(pk=note_id) note.timeslot_id = timeslot_created.id note.save(update_fields=["timeslot_id"]) print("Timeslot " + str(timeslot_created.id) + " linked to note " + str(note_id)) except ObjectDoesNotExist: pass # Finally delete discarded timeslots for timeslot_id in delete_timeslots: TimeSlot.objects.filter(pk=timeslot_id).delete() if step > max_steps: self.end_reached = True ''' Everything below here is called when a new collision is loaded before being handed over to the client ''' # Generate timeslots from current schedule k = 1 for instance in schedule_instances: if isinstance(instance, Schedule): if k == step: timeslots = Schedule.generate_timeslots(instance) schedule = instance break k += 1 # Get collisions for timeslots collisions = Schedule.get_collisions(timeslots) # Get notes of colliding timeslots notes = [] for id in collisions: try: notes.append( Note.objects.get(timeslot_id=id) ) except ObjectDoesNotExist: pass self.schedule = schedule self.timeslots = timeslots self.collisions = collisions self.num_collisions = len([ s for s in self.collisions if s != 'None']) # Number of real collisions displayed to the user self.notes = notes self.showform = form self.schedulesform = formset self.step = step + 1 # Becomes upcoming step self.max_steps = max_steps # Pass it on to response_add() or response_change() return self def response_add(self, request, obj): return ShowAdmin.respond(self, request, obj) def response_change(self, request, obj): return ShowAdmin.respond(self, request, obj) def respond(self, request, obj): """ Redirects to the show-change-form if no schedules changed or resolving has been finished (or any other form validation error occured) Displays the collision form for the current schedule otherwise """ # Never check for collisions if not superuser # Common users can't edit the formset, so save_formset() will never be called thus end_reached wasn't set yet if not request.user.is_superuser: self.end_reached = True if self.end_reached: return super(ShowAdmin, self).response_change(request, obj) timeslots_to_collisions = list(zip(self.timeslots, self.collisions)) return render(request, 'collisions.html', {'self' : self, 'obj': obj, 'request': request, 'timeslots': self.timeslots, 'collisions': self.collisions, 'schedule': self.schedule, 'timeslots_to_collisions': timeslots_to_collisions, 'schedulesform': self.schedulesform, 'showform': self.showform, 'num_inputs': len(self.timeslots), 'step': self.step, 'max_steps': self.max_steps, 'now': datetime.now(), 'num_collisions': self.num_collisions}) admin.site.register(Language, LanguageAdmin) admin.site.register(Type, TypeAdmin) admin.site.register(MusicFocus, MusicFocusAdmin) admin.site.register(Category, CategoryAdmin) admin.site.register(Topic, TopicAdmin) admin.site.register(RTRCategory, RTRCategoryAdmin) admin.site.register(Host, HostAdmin) admin.site.register(Note, NoteAdmin) #admin.site.register(Schedule, ScheduleAdmin) admin.site.register(TimeSlot, TimeSlotAdmin) admin.site.register(Show, ShowAdmin)
42.305228
173
0.585363
24,146
0.962491
0
0
0
0
0
0
7,658
0.305258
40de4834e40d2116182061d040e90ff70baa0986
2,177
py
Python
test/logic/test_block_features.py
Sam-prog-sudo/Sam.github.io
75f41ec26b4b3aafcb117e467e38fca1e69f5c87
[ "MIT" ]
3
2020-07-06T21:03:03.000Z
2020-07-18T07:02:59.000Z
test/logic/test_block_features.py
Sam-prog-sudo/Sam.github.io
75f41ec26b4b3aafcb117e467e38fca1e69f5c87
[ "MIT" ]
null
null
null
test/logic/test_block_features.py
Sam-prog-sudo/Sam.github.io
75f41ec26b4b3aafcb117e467e38fca1e69f5c87
[ "MIT" ]
4
2020-07-17T11:16:05.000Z
2020-10-01T08:57:21.000Z
import hashlib import json from time import time import pytest from app.chaine.blockchain import Blockchain @pytest.fixture def first_block(): return { 'index': 1, 'timestamp': time(), 'transactions': [], 'proof': 1989, 'previous_hash': 1, } def test_initialization_blockchain(first_block): bc = Blockchain() assert bc.chain[0]['index'] == first_block['index'] assert isinstance( bc.chain[0]['timestamp'], type(first_block['timestamp']) ) assert bc.chain[0]['transactions'] == first_block['transactions'] assert bc.chain[0]['proof'] == first_block['proof'] assert bc.chain[0]['previous_hash'] == first_block['previous_hash'] def test_last_block(): bc = Blockchain() assert bc.last_block == bc.chain[-1] @pytest.fixture def a_valid_block(): block_1 = { 'index': 2, 'timestamp': time(), 'transactions': [], 'proof': 123, 'previous_hash': 'abc', } return block_1 @pytest.fixture def an_invalid_block(): block_2 = { 'index': 'salut', 'timestamp': list('cava',), 'transactions': 22, 'proof': None, 'previous_hash': 46, } return block_2 @pytest.mark.parametrize('some_blocks', [ 'a_valid_block', 'an_invalid_block' ] ) def test_hachage(some_blocks): bc = Blockchain() block_json = json.dumps( some_blocks, sort_keys=True ).encode() hash_test = hashlib.sha256(block_json).hexdigest() assert len(hash_test) == 64 assert isinstance( hash_test, type(bc.hachage(some_blocks)) ) assert hash_test == bc.hachage(some_blocks) def test_block_creation(a_valid_block, proof=123, previous_hash='abc'): bc = Blockchain() block_a_tester = bc.new_block(proof, previous_hash) assert block_a_tester['index'] == a_valid_block['index'] assert isinstance( block_a_tester['timestamp'], type(a_valid_block['timestamp']) ) assert block_a_tester['proof'] == a_valid_block['proof'] assert block_a_tester['previous_hash'] == a_valid_block['previous_hash']
23.408602
76
0.622876
0
0
0
0
1,076
0.494258
0
0
419
0.192467
40e031fd64128f14855fedd41208af0c66f89410
886
py
Python
urls.py
cartologic/cartoview_graduated_styler
f3dc6b0d48dc95bdd7e68d148a5182a4e259dbf3
[ "BSD-2-Clause" ]
null
null
null
urls.py
cartologic/cartoview_graduated_styler
f3dc6b0d48dc95bdd7e68d148a5182a4e259dbf3
[ "BSD-2-Clause" ]
16
2017-08-06T09:49:01.000Z
2021-09-01T08:40:58.000Z
urls.py
cartologic/cartoview_graduated_styler
f3dc6b0d48dc95bdd7e68d148a5182a4e259dbf3
[ "BSD-2-Clause" ]
null
null
null
# from django.conf.urls import patterns, url, include # from django.views.generic import TemplateView # from . import views, APP_NAME # # urlpatterns = patterns('', # url(r'^$', views.index, name='%s.index' % APP_NAME), # ) from django.urls import path, re_path, include from . import views, APP_NAME from .api import LayerResource from tastypie.api import Api Resources_api = Api(api_name="api") Resources_api.register(LayerResource()) urlpatterns = [ re_path(r'^$', views.index, name='%s.index' % APP_NAME), path('styles/<str:layername>/', views.layer_styles, name='%s.layer_styles' % APP_NAME), path('styles/save/<str:layer_name>/<str:style_name>', views.save_style, name='%s.save_style' % APP_NAME), re_path(r'^proxy/geoserver/rest/(?P<suburl>.*)$', views.geoserver_rest_proxy, name='%s.proxy' % APP_NAME), re_path(r'^', include(Resources_api.urls)), ]
34.076923
110
0.705418
0
0
0
0
0
0
0
0
399
0.450339
40e07b3163c543bc0b7215aac128eae673625978
1,721
py
Python
core/rest/wscdn.py
cybert79/Osmedeus
684d853144e2f85343c3367440120142455f296b
[ "MIT" ]
1
2019-06-13T09:14:11.000Z
2019-06-13T09:14:11.000Z
core/rest/wscdn.py
KbaHaxor/Osmedeus
0894d52ad5949e9151b0fd05d9746ecafc8057b5
[ "MIT" ]
null
null
null
core/rest/wscdn.py
KbaHaxor/Osmedeus
0894d52ad5949e9151b0fd05d9746ecafc8057b5
[ "MIT" ]
2
2020-01-09T17:48:23.000Z
2020-01-09T17:48:24.000Z
import os import glob import json from pathlib import Path from flask_restful import Api, Resource, reqparse from flask_jwt_extended import jwt_required from flask import Flask, request, escape, make_response, send_from_directory import utils # incase you can't install ansi2html it's won't break the api try: from ansi2html import Ansi2HTMLConverter except: pass current_path = os.path.dirname(os.path.realpath(__file__)) ''' render stdout content ''' class Wscdn(Resource): def verify_file(self, filename): option_files = glob.glob( current_path + '/storages/**/options.json', recursive=True) # loop though all options avalible for option in option_files: json_option = utils.reading_json(option) stdout_path = json_option.get('WORKSPACES') + "/" + filename if utils.not_empty_file(stdout_path): return json_option.get('WORKSPACES'), os.path.normpath(filename) # get real path p = Path(filename) ws = p.parts[0] if ws != utils.url_encode(ws): # just replace the first one filename_encode = filename.replace(ws, utils.url_encode(ws), 1) stdout_path_encode = json_option.get('WORKSPACES') + filename_encode if utils.not_empty_file(stdout_path_encode): return json_option.get('WORKSPACES'), os.path.normpath(filename_encode) return False, False def get(self, filename): ws_path, stdout_path = self.verify_file(filename) if not stdout_path: return 'Custom 404 here', 404 return send_from_directory(ws_path, stdout_path)
30.732143
91
0.654852
1,253
0.728065
0
0
0
0
0
0
264
0.153399
40e08ff17bc877d0938f412ad22362a39a6d45db
13,534
py
Python
custom_components/hahm/services.py
noxhirsch/custom_homematic
afc03c813f44d342f75477e6fcce85fc78515258
[ "MIT" ]
null
null
null
custom_components/hahm/services.py
noxhirsch/custom_homematic
afc03c813f44d342f75477e6fcce85fc78515258
[ "MIT" ]
null
null
null
custom_components/hahm/services.py
noxhirsch/custom_homematic
afc03c813f44d342f75477e6fcce85fc78515258
[ "MIT" ]
null
null
null
"""Module with hahomematic services.""" from __future__ import annotations from datetime import datetime import logging from hahomematic.const import ( ATTR_ADDRESS, ATTR_INTERFACE_ID, ATTR_NAME, ATTR_PARAMETER, ATTR_VALUE, HmPlatform, ) from hahomematic.device import HmDevice from hahomematic.entity import BaseEntity, GenericEntity import voluptuous as vol from homeassistant.const import ATTR_ENTITY_ID, ATTR_MODE, ATTR_TIME from homeassistant.core import HomeAssistant, ServiceCall from homeassistant.helpers import device_registry as dr import homeassistant.helpers.config_validation as cv from homeassistant.helpers.config_validation import comp_entity_ids from homeassistant.helpers.device_registry import DeviceEntry from homeassistant.helpers.service import ( async_register_admin_service, verify_domain_control, ) from .const import ( ATTR_PARAMSET, ATTR_PARAMSET_KEY, ATTR_RX_MODE, ATTR_VALUE_TYPE, DOMAIN, ) from .control_unit import ControlUnit, HaHub from .helpers import get_device_address_at_interface_from_identifiers _LOGGER = logging.getLogger(__name__) ATTR_CHANNEL = "channel" ATTR_DEVICE_ID = "device_id" DEFAULT_CHANNEL = 1 SERVICE_EXPORT_DEVICE_DEFINITION = "export_device_definition" SERVICE_PUT_PARAMSET = "put_paramset" SERVICE_SET_DEVICE_VALUE = "set_device_value" SERVICE_SET_INSTALL_MODE = "set_install_mode" SERVICE_SET_VARIABLE_VALUE = "set_variable_value" HAHM_SERVICES = [ SERVICE_EXPORT_DEVICE_DEFINITION, SERVICE_PUT_PARAMSET, SERVICE_SET_DEVICE_VALUE, SERVICE_SET_INSTALL_MODE, SERVICE_SET_VARIABLE_VALUE, ] SCHEMA_SERVICE_EXPORT_DEVICE_DEFINITION = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, } ) SCHEMA_SERVICE_SET_VARIABLE_VALUE = vol.Schema( { vol.Required(ATTR_ENTITY_ID): comp_entity_ids, vol.Required(ATTR_NAME): cv.string, vol.Required(ATTR_VALUE): cv.match_all, } ) SCHEMA_SERVICE_SET_INSTALL_MODE = vol.Schema( { vol.Required(ATTR_INTERFACE_ID): cv.string, vol.Optional(ATTR_TIME, default=60): cv.positive_int, vol.Optional(ATTR_MODE, default=1): vol.All(vol.Coerce(int), vol.In([1, 2])), vol.Optional(ATTR_ADDRESS): vol.All(cv.string, vol.Upper), } ) SCHEMA_SERVICE_SET_DEVICE_VALUE = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, vol.Required(ATTR_CHANNEL, default=DEFAULT_CHANNEL): vol.Coerce(int), vol.Required(ATTR_PARAMETER): vol.All(cv.string, vol.Upper), vol.Required(ATTR_VALUE): cv.match_all, vol.Optional(ATTR_VALUE_TYPE): vol.In( ["boolean", "dateTime.iso8601", "double", "int", "string"] ), vol.Optional(ATTR_RX_MODE): vol.All(cv.string, vol.Upper), } ) SCHEMA_SERVICE_PUT_PARAMSET = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, vol.Required(ATTR_CHANNEL, default=DEFAULT_CHANNEL): vol.Coerce(int), vol.Required(ATTR_PARAMSET_KEY): vol.All(cv.string, vol.Upper), vol.Required(ATTR_PARAMSET): dict, vol.Optional(ATTR_RX_MODE): vol.All(cv.string, vol.Upper), } ) async def async_setup_services(hass: HomeAssistant) -> None: """Create the hahomematic services.""" @verify_domain_control(hass, DOMAIN) async def async_call_hahm_service(service: ServiceCall) -> None: """Call correct HomematicIP Cloud service.""" service_name = service.service if service_name == SERVICE_EXPORT_DEVICE_DEFINITION: await _async_service_export_device_definition(hass=hass, service=service) elif service_name == SERVICE_PUT_PARAMSET: await _async_service_put_paramset(hass=hass, service=service) elif service_name == SERVICE_SET_INSTALL_MODE: await _async_service_set_install_mode(hass=hass, service=service) elif service_name == SERVICE_SET_DEVICE_VALUE: await _async_service_set_device_value(hass=hass, service=service) elif service_name == SERVICE_SET_VARIABLE_VALUE: await _async_service_set_variable_value(hass=hass, service=service) hass.services.async_register( domain=DOMAIN, service=SERVICE_EXPORT_DEVICE_DEFINITION, service_func=async_call_hahm_service, schema=SCHEMA_SERVICE_EXPORT_DEVICE_DEFINITION, ) hass.services.async_register( domain=DOMAIN, service=SERVICE_SET_VARIABLE_VALUE, service_func=async_call_hahm_service, schema=SCHEMA_SERVICE_SET_VARIABLE_VALUE, ) hass.services.async_register( domain=DOMAIN, service=SERVICE_SET_DEVICE_VALUE, service_func=async_call_hahm_service, schema=SCHEMA_SERVICE_SET_DEVICE_VALUE, ) async_register_admin_service( hass=hass, domain=DOMAIN, service=SERVICE_SET_INSTALL_MODE, service_func=async_call_hahm_service, schema=SCHEMA_SERVICE_SET_INSTALL_MODE, ) hass.services.async_register( domain=DOMAIN, service=SERVICE_PUT_PARAMSET, service_func=async_call_hahm_service, schema=SCHEMA_SERVICE_PUT_PARAMSET, ) async def async_unload_services(hass: HomeAssistant) -> None: """Unload HAHM services.""" if hass.data[DOMAIN]: return for hahm_service in HAHM_SERVICES: hass.services.async_remove(domain=DOMAIN, service=hahm_service) async def _async_service_export_device_definition( hass: HomeAssistant, service: ServiceCall ) -> None: """Service to call setValue method for HomeMatic devices.""" device_id = service.data[ATTR_DEVICE_ID] if hm_device := _get_device(hass=hass, device_id=device_id): await hm_device.export_device_definition() _LOGGER.debug( "Calling export_device_definition: %s, %s", hm_device.name, hm_device.device_address, ) async def _async_service_set_variable_value( hass: HomeAssistant, service: ServiceCall ) -> None: """Service to call setValue method for HomeMatic system variable.""" entity_id = service.data[ATTR_ENTITY_ID] name = service.data[ATTR_NAME] value = service.data[ATTR_VALUE] if hub := _get_hub_by_entity_id(hass=hass, entity_id=entity_id): await hub.async_set_variable(name=name, value=value) async def _async_service_set_device_value( hass: HomeAssistant, service: ServiceCall ) -> None: """Service to call setValue method for HomeMatic devices.""" device_id = service.data[ATTR_DEVICE_ID] channel = service.data[ATTR_CHANNEL] parameter = service.data[ATTR_PARAMETER] value = service.data[ATTR_VALUE] rx_mode = service.data.get(ATTR_RX_MODE) # Convert value into correct XML-RPC Type. # https://docs.python.org/3/library/xmlrpc.client.html#xmlrpc.client.ServerProxy if value_type := service.data.get(ATTR_VALUE_TYPE): if value_type == "int": value = int(value) elif value_type == "double": value = float(value) elif value_type == "boolean": value = bool(value) elif value_type == "dateTime.iso8601": value = datetime.strptime(value, "%Y%m%dT%H:%M:%S") else: # Default is 'string' value = str(value) if ( address_data := _get_interface_channel_address( hass=hass, device_id=device_id, channel=channel ) ) is None: return None interface_id: str = address_data[0] channel_address: str = address_data[1] _LOGGER.debug( "Calling setValue: %s, %s, %s, %s, %s, %s", interface_id, channel_address, parameter, value, value_type, rx_mode, ) if interface_id and channel_address: if control_unit := _get_cu_by_interface_id( hass=hass, interface_id=interface_id ): await control_unit.central.set_value( interface_id=interface_id, channel_address=channel_address, parameter=parameter, value=value, rx_mode=rx_mode, ) async def _async_service_set_install_mode( hass: HomeAssistant, service: ServiceCall ) -> None: """Service to set interface_id into install mode.""" interface_id = service.data[ATTR_INTERFACE_ID] mode: int = service.data.get(ATTR_MODE, 1) time: int = service.data.get(ATTR_TIME, 60) device_address = service.data.get(ATTR_ADDRESS) if control_unit := _get_cu_by_interface_id(hass=hass, interface_id=interface_id): await control_unit.central.set_install_mode( interface_id, t=time, mode=mode, device_address=device_address ) async def _async_service_put_paramset( hass: HomeAssistant, service: ServiceCall ) -> None: """Service to call the putParamset method on a HomeMatic connection.""" device_id = service.data[ATTR_DEVICE_ID] channel = service.data[ATTR_CHANNEL] paramset_key = service.data[ATTR_PARAMSET_KEY] # When passing in the paramset from a YAML file we get an OrderedDict # here instead of a dict, so add this explicit cast. # The service schema makes sure that this cast works. paramset = dict(service.data[ATTR_PARAMSET]) rx_mode = service.data.get(ATTR_RX_MODE) if ( address_data := _get_interface_channel_address( hass=hass, device_id=device_id, channel=channel ) ) is None: return None interface_id: str = address_data[0] channel_address: str = address_data[1] _LOGGER.debug( "Calling putParamset: %s, %s, %s, %s, %s", interface_id, channel_address, paramset_key, paramset, rx_mode, ) if interface_id and channel_address: if control_unit := _get_cu_by_interface_id( hass=hass, interface_id=interface_id ): await control_unit.central.put_paramset( interface_id=interface_id, channel_address=channel_address, paramset=paramset_key, value=paramset, rx_mode=rx_mode, ) def _get_device(hass: HomeAssistant, device_id: str) -> HmDevice | None: """Return the homematic device.""" device_registry = dr.async_get(hass) device_entry: DeviceEntry | None = device_registry.async_get(device_id) if not device_entry: return None if ( data := get_device_address_at_interface_from_identifiers( identifiers=device_entry.identifiers ) ) is None: return None device_address = data[0] interface_id = data[1] if control_unit := _get_cu_by_interface_id(hass=hass, interface_id=interface_id): return control_unit.central.hm_devices.get(device_address) return None def _get_interface_channel_address( hass: HomeAssistant, device_id: str, channel: int ) -> tuple[str, str] | None: """Return interface and channel_address with given device_id and channel.""" device_registry = dr.async_get(hass) device_entry: DeviceEntry | None = device_registry.async_get(device_id) if not device_entry: return None if ( data := get_device_address_at_interface_from_identifiers( identifiers=device_entry.identifiers ) ) is None: return None device_address = data[0] interface_id = data[1] channel_address = f"{device_address}:{channel}" return interface_id, channel_address def _get_entity(hass: HomeAssistant, entity_id: str) -> BaseEntity | None: """Return entity by given entity_id.""" control_unit: ControlUnit for control_unit in hass.data[DOMAIN].values(): if hm_entity := control_unit.async_get_hm_entity(entity_id=entity_id): if isinstance(hm_entity, BaseEntity): return hm_entity return None def _get_entities_by_platform( hass: HomeAssistant, platform: HmPlatform ) -> list[BaseEntity]: """Return entities by given platform.""" control_unit: ControlUnit hm_entities: list[BaseEntity] = [] for control_unit in hass.data[DOMAIN].values(): hm_entities.extend( control_unit.async_get_hm_entities_by_platform(platform=platform) ) return hm_entities def _get_hm_entity( hass: HomeAssistant, interface_id: str, channel_address: str, parameter: str ) -> GenericEntity | None: """Get homematic entity.""" if control_unit := _get_cu_by_interface_id(hass=hass, interface_id=interface_id): return control_unit.central.get_hm_entity_by_parameter( channel_address=channel_address, parameter=parameter ) return None def _get_cu_by_interface_id( hass: HomeAssistant, interface_id: str ) -> ControlUnit | None: """Get ControlUnit by interface_id.""" for entry_id in hass.data[DOMAIN].keys(): control_unit: ControlUnit = hass.data[DOMAIN][entry_id] if control_unit and control_unit.central.clients.get(interface_id): return control_unit return None def _get_hub_by_entity_id(hass: HomeAssistant, entity_id: str) -> HaHub | None: """Get ControlUnit by device address.""" for entry_id in hass.data[DOMAIN].keys(): control_unit: ControlUnit = hass.data[DOMAIN][entry_id] if ( control_unit and control_unit.hub and control_unit.hub.entity_id == entity_id ): return control_unit.hub return None
32.455635
85
0.691813
0
0
0
0
874
0.064578
7,014
0.51825
1,446
0.106842
40e0c14f05e9b921525413c2427c2d6661b5419f
865
py
Python
app/migrations/0001_initial.py
MariaAlice00/ifpi-tds-projeto-integrador
e2ce73279c9bf31de0b33b105723ae7a24deac54
[ "MIT" ]
null
null
null
app/migrations/0001_initial.py
MariaAlice00/ifpi-tds-projeto-integrador
e2ce73279c9bf31de0b33b105723ae7a24deac54
[ "MIT" ]
null
null
null
app/migrations/0001_initial.py
MariaAlice00/ifpi-tds-projeto-integrador
e2ce73279c9bf31de0b33b105723ae7a24deac54
[ "MIT" ]
null
null
null
# Generated by Django 3.2.3 on 2021-06-03 00:35 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Livro', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('imagem', models.ImageField(upload_to='imagens')), ('titulo', models.CharField(max_length=150)), ('autor', models.CharField(max_length=50)), ('genero', models.CharField(max_length=50)), ('serieunico', models.CharField(max_length=50)), ('nota', models.CharField(max_length=2)), ('opiniao', models.CharField(max_length=300)), ], ), ]
30.892857
117
0.564162
772
0.892486
0
0
0
0
0
0
129
0.149133
40e13f8b874a94920da4e07d42899e93081c3e2f
4,284
py
Python
graalpython/com.oracle.graal.python.parser.antlr/postprocess.py
transposit/graalpython
adadf5f211cc67a14bb3aca7c61219513d036b13
[ "UPL-1.0", "Apache-2.0", "OpenSSL" ]
1
2019-05-28T13:04:32.000Z
2019-05-28T13:04:32.000Z
graalpython/com.oracle.graal.python.parser.antlr/postprocess.py
transposit/graalpython
adadf5f211cc67a14bb3aca7c61219513d036b13
[ "UPL-1.0", "Apache-2.0", "OpenSSL" ]
null
null
null
graalpython/com.oracle.graal.python.parser.antlr/postprocess.py
transposit/graalpython
adadf5f211cc67a14bb3aca7c61219513d036b13
[ "UPL-1.0", "Apache-2.0", "OpenSSL" ]
null
null
null
# Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. # # The Universal Permissive License (UPL), Version 1.0 # # Subject to the condition set forth below, permission is hereby granted to any # person obtaining a copy of this software, associated documentation and/or # data (collectively the "Software"), free of charge and under any and all # copyright rights in the Software, and any and all patent rights owned or # freely licensable by each licensor hereunder covering either (i) the # unmodified Software as contributed to or provided by such licensor, or (ii) # the Larger Works (as defined below), to deal in both # # (a) the Software, and # # (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if # one is included with the Software each a "Larger Work" to which the Software # is contributed by such licensors), # # without restriction, including without limitation the rights to copy, create # derivative works of, display, perform, and distribute the Software and make, # use, sell, offer for sale, import, export, have made, and have sold the # Software and the Larger Work(s), and to sublicense the foregoing rights on # either these or other terms. # # This license is subject to the following condition: # # The above copyright notice and either this complete permission notice or at a # minimum a reference to the UPL must be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import re COPYRIGHT_HEADER = """\ /* * Copyright (c) 2017-2019, Oracle and/or its affiliates. * Copyright (c) 2014 by Bart Kiers * * The MIT License (MIT) * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ // Checkstyle: stop // JaCoCo Exclude //@formatter:off {0} """ PTRN_SUPPRESS_WARNINGS = re.compile(r"@SuppressWarnings.*") def replace_suppress_warnings(line): return PTRN_SUPPRESS_WARNINGS.sub('@SuppressWarnings("all")', line) def replace_rulectx(line): return line.replace("(RuleContext)_localctx", "_localctx") def replace_localctx(line): return re.sub(r'\(\((([a-zA-Z]*?_?)*[a-zA-Z]*)\)_localctx\)', '_localctx', line) TRANSFORMS = [ replace_suppress_warnings, replace_rulectx, replace_localctx, ] def postprocess(file): lines = [] for line in file: for transform in TRANSFORMS: line = transform(line) lines.append(line) return ''.join(lines) if __name__ == '__main__': fpath = sys.argv[1] with open(fpath, 'r') as FILE: content = COPYRIGHT_HEADER.format(postprocess(FILE)) with open(fpath, 'w+') as FILE: FILE.write(content)
37.911504
88
0.722222
0
0
0
0
0
0
0
0
3,399
0.793417
40e2d06c8105c95bcdc7c6b4d3475a48fa240fbc
6,284
py
Python
scripts/ape_protocol_deploy.py
coordinape/coordinape-protocol
8c90de1b1fbc19bab05e1c5848813d022492753a
[ "MIT" ]
22
2021-10-17T23:19:38.000Z
2022-03-24T05:13:56.000Z
scripts/ape_protocol_deploy.py
coordinape/coordinape-protocol
8c90de1b1fbc19bab05e1c5848813d022492753a
[ "MIT" ]
12
2021-09-29T16:27:03.000Z
2022-03-30T17:54:08.000Z
scripts/ape_protocol_deploy.py
coordinape/coordinape-protocol
8c90de1b1fbc19bab05e1c5848813d022492753a
[ "MIT" ]
4
2021-10-14T19:08:36.000Z
2022-03-29T16:42:21.000Z
from brownie import accounts, Wei, chain, ApeToken, ApeVaultFactory, ApeDistributor, ApeRegistry, ApeRouter, FeeRegistry, MockRegistry, MockVaultFactory, MockToken, MockVault def deploy_token(): funds = accounts.load('moist', '\0') user = accounts.load('ape_deployer', '\0') multi_sig = '0x15B513F658f7390D8720dCE321f50974B28672EF' # funds.transfer(to=user, amount='1 ether') # ape = ApeToken.deploy({'from':user}, publish_source=True) # ape.transferOwnership(multi_sig, {'from':user}) gas_used = Wei('150 gwei') * 21000 remaining = user.balance() - gas_used ask_back = Wei('1 ether') - remaining print(f'to ask back: {Wei(ask_back).to("ether")}') user.transfer(to=funds, amount=remaining, gas_price='150 gwei') def deploy_protocol(): user = accounts.load('ape_deployer', '\0') multi_sig = '' lock_length = 60 * 60 * 24 * 14 # 14 days yearn_reg = '0x50c1a2ea0a861a967d9d0ffe2ae4012c2e053804' ape_reg = ApeRegistry.deploy(0, {'from':user}, publish_source=True) ape_factory = ApeVaultFactory.deploy(yearn_reg, ape_reg, {'from':user}, publish_source=True) ape_router = ApeRouter.deploy(yearn_reg, ape_factory, 0, {'from':user}, publish_source=True) ape_distro = ApeDistributor.deploy({'from':user}, publish_source=True) ape_fee = FeeRegistry.deploy({'from':user}, publish_source=True) setup_protocol(ape_reg, ape_fee, ape_distro, ape_router, ape_factory, user) min_delay_call = ape_reg.changeMinDelay.encode_input(lock_length) ape_reg.schedule(ape_reg, min_delay_call, '', '', 0, {'from':user}) ape_fee.schedule(ape_fee, min_delay_call, '', '', 0, {'from':user}) ape_router.schedule(ape_router, min_delay_call, '', '', 0, {'from':user}) ape_reg.execute(ape_reg, min_delay_call, '', '', 0, {'from':user}) ape_fee.execute(ape_fee, min_delay_call, '', '', 0, {'from':user}) ape_router.execute(ape_router, min_delay_call, '', '', 0, {'from':user}) ape_reg.transferOwnership(multi_sig, {'from':user}) ape_fee.transferOwnership(multi_sig, {'from':user}) ape_router.transferOwnership(multi_sig, {'from':user}) def deploy_protocol_testnet(): user = accounts.load('moist', '\0') multi_sig = user lock_length = 60 * 60 * 24 * 14 # 14 days mock_yearn_reg = MockRegistry.deploy({'from':user}, publish_source=True) mock_yearn_vault_factories = MockVaultFactory.deploy(mock_yearn_reg, {'from':user}, publish_source=True) mock_ape_reg = ApeRegistry.deploy(0, {'from':user}, publish_source=True) mock_ape_factory = ApeVaultFactory.deploy(mock_yearn_reg, mock_ape_reg, {'from':user}, publish_source=True) mock_ape_router = ApeRouter.deploy(mock_yearn_reg, mock_ape_factory, 0, {'from':user}, publish_source=True) mock_ape_distro = ApeDistributor.deploy({'from':user}, publish_source=True) mock_ape_fee = FeeRegistry.deploy({'from':user}, publish_source=True) setup_protocol(mock_ape_reg, mock_ape_fee, mock_ape_distro, mock_ape_router, mock_ape_factory, user) # setup_mockvaults(mock_yearn_vault_factories, user) # min_delay_call = mock_ape_reg.changeMinDelay.encode_input(lock_length) # mock_ape_reg.schedule(mock_ape_reg, min_delay_call, '', '', 0, {'from':user}) # mock_ape_fee.schedule(mock_ape_fee, min_delay_call, '', '', 0, {'from':user}) # mock_ape_router.schedule(mock_ape_router, min_delay_call, '', '', 0, {'from':user}) # mock_ape_reg.execute(mock_ape_reg, min_delay_call, '', '', 0, {'from':user}) # mock_ape_fee.execute(mock_ape_fee, min_delay_call, '', '', 0, {'from':user}) # mock_ape_router.execute(mock_ape_router, min_delay_call, '', '', 0, {'from':user}) # mock_ape_reg.transferOwnership(multi_sig, {'from':user}) # mock_ape_fee.transferOwnership(multi_sig, {'from':user}) # mock_ape_router.transferOwnership(multi_sig, {'from':user}) base_uri = 'https://rinkeby.etherscan.io/address/' print(f'Mock yearn reg: {base_uri + mock_yearn_reg.address}') print(f'Mock yearn Vault factory: {base_uri + mock_yearn_vault_factories.address}') print(f'Mock ape reg: {base_uri + mock_ape_reg.address}') print(f'Mock ape factory: {base_uri + mock_ape_factory.address}') print(f'Mock ape router: {base_uri + mock_ape_router.address}') print(f'Mock ape distro: {base_uri + mock_ape_distro.address}') print(f'Mock ape fee: {base_uri + mock_ape_fee.address}') def setup_protocol(ape_reg, ape_fee, ape_distro, ape_router, ape_factory, minter): set_fee_call = ape_reg.setFeeRegistry.encode_input(ape_fee) set_router_call = ape_reg.setRouter.encode_input(ape_router) set_distro_call = ape_reg.setDistributor.encode_input(ape_distro) set_factory_call = ape_reg.setFactory.encode_input(ape_factory) set_treasury_call = ape_reg.setTreasury.encode_input(minter) ape_reg.schedule(ape_reg, set_fee_call, '', '', 0, {'from':minter}) ape_reg.schedule(ape_reg, set_router_call, '', '', 0, {'from':minter}) ape_reg.schedule(ape_reg, set_distro_call, '', '', 0, {'from':minter}) ape_reg.schedule(ape_reg, set_factory_call, '', '', 0, {'from':minter}) ape_reg.schedule(ape_reg, set_treasury_call, '', '', 0, {'from':minter}) ape_reg.execute(ape_reg, set_fee_call, '', '', 0, {'from':minter}) ape_reg.execute(ape_reg, set_router_call, '', '', 0, {'from':minter}) ape_reg.execute(ape_reg, set_distro_call, '', '', 0, {'from':minter}) ape_reg.execute(ape_reg, set_factory_call, '', '', 0, {'from':minter}) ape_reg.execute(ape_reg, set_treasury_call, '', '', 0, {'from':minter}) def setup_mockvaults(mock_yearn_vault_factories, user): usdc = MockToken.deploy('USD Coin', 'USDC', {'from':user}, publish_source=True) dai = MockToken.deploy('Dai', 'DAI', {'from':user}) ape = MockToken.deploy('Ape', 'OOH', {'from':user}) tx1 = mock_yearn_vault_factories.createVault(usdc, 'yearnVault USDC', 'yvUSDC', {'from':user}) MockVault.publish_source(tx1.new_contracts[0]) tx2 = mock_yearn_vault_factories.createVault(dai, 'yearnVault DAI', 'yvDAI', {'from':user}) tx3 = mock_yearn_vault_factories.createVault(ape, 'yearnVault Ape', 'yvOOH', {'from':user}) base_uri = 'https://rinkeby.etherscan.io/address/' print(f'Mock usdc: {base_uri + usdc.address}') print(f'Mock dai: {base_uri + dai.address}') print(f'Mock ape token: {base_uri + ape.address}') print(f'Mock usdc vault: {base_uri + tx1}') print(f'Mock dai vault: {base_uri + tx2}') print(f'Mock ape vault: {base_uri + tx3}')
56.107143
174
0.732336
0
0
0
0
0
0
0
0
2,269
0.361076
40e6bbe29a59bd4a98298179d233b2bfddb4c1e0
971
py
Python
groups/views.py
MAKENTNU/web
7a5b512bf4c087d1561cdb623d7df4b3d04811a2
[ "MIT" ]
10
2017-11-25T01:47:20.000Z
2020-03-24T18:28:24.000Z
groups/views.py
MAKENTNU/web
7a5b512bf4c087d1561cdb623d7df4b3d04811a2
[ "MIT" ]
319
2017-11-16T09:56:03.000Z
2022-03-28T00:24:37.000Z
groups/views.py
MAKENTNU/web
7a5b512bf4c087d1561cdb623d7df4b3d04811a2
[ "MIT" ]
6
2017-11-12T14:04:08.000Z
2021-03-10T09:41:18.000Z
from django.contrib.auth.mixins import PermissionRequiredMixin from django.urls import reverse_lazy from django.views.generic import DetailView, ListView, UpdateView from .models import Committee class CommitteeList(ListView): model = Committee template_name = 'groups/committee_list.html' context_object_name = 'committees' class CommitteeDetailView(DetailView): model = Committee template_name = 'groups/committee_detail.html' context_object_name = 'committee' class EditCommitteeView(PermissionRequiredMixin, UpdateView): permission_required = ('groups.change_committee',) model = Committee fields = ('clickbait', 'description', 'email', 'image') success_url = reverse_lazy('committee_list') class CommitteeAdminView(PermissionRequiredMixin, ListView): permission_required = ('groups.change_committee',) model = Committee template_name = 'groups/committee_admin.html' context_object_name = 'committees'
30.34375
65
0.77137
762
0.784758
0
0
0
0
0
0
226
0.23275
40e730ac41b56af4d3f51d091a10e9b22fdce408
2,200
py
Python
src/programy/braintree.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
null
null
null
src/programy/braintree.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
null
null
null
src/programy/braintree.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
4
2019-04-01T15:42:23.000Z
2020-11-05T08:14:27.000Z
""" Copyright (c) 2016-2019 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.storage.factory import StorageFactory from programy.config.brain.braintree import BrainBraintreeConfiguration class BraintreeManager(object): def __init__(self, braintree_configuration, admin_user="system"): assert (braintree_configuration is not None) assert (isinstance(braintree_configuration, BrainBraintreeConfiguration)) self._configuration = braintree_configuration self._save_as_user = self._configuration.save_as_user def dump_brain_tree(self, client_context): if self._configuration.create is True: YLogger.debug(self, "Dumping AIML Graph as tree to [%s]", self._configuration.file) if client_context.client.storage_factory.entity_storage_engine_available(StorageFactory.BRAINTREE) is True: storage_engine = client_context.client.storage_factory.entity_storage_engine(StorageFactory.BRAINTREE) braintree_storage = storage_engine.braintree_storage() braintree_storage.save_braintree(client_context)
55
120
0.782727
923
0.419545
0
0
0
0
0
0
1,143
0.519545
40ea3c645ea543c1874475b7543e5383d030798e
6,095
py
Python
reana_commons/publisher.py
marcdiazsan/reana-commons
6e3a64db6798ab86aa521da02fa889459a382083
[ "MIT" ]
null
null
null
reana_commons/publisher.py
marcdiazsan/reana-commons
6e3a64db6798ab86aa521da02fa889459a382083
[ "MIT" ]
null
null
null
reana_commons/publisher.py
marcdiazsan/reana-commons
6e3a64db6798ab86aa521da02fa889459a382083
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of REANA. # Copyright (C) 2018 CERN. # # REANA is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """REANA-Commons module to manage AMQP connections on REANA.""" import json import logging from kombu import Connection, Exchange, Queue from .config import ( MQ_CONNECTION_STRING, MQ_DEFAULT_EXCHANGE, MQ_DEFAULT_FORMAT, MQ_DEFAULT_QUEUES, MQ_PRODUCER_MAX_RETRIES, ) class BasePublisher(object): """Base publisher to MQ.""" def __init__( self, queue, routing_key, connection=None, exchange=None, durable=False, max_priority=None, ): """Initialise the BasePublisher class. :param connection: A :class:`kombu.Connection`, if not provided a :class:`kombu.Connection` with the default configuration will be instantiated. :param queue: String which represents the queue the messages will be sent to. :param routing_key: String which represents the routing key which will be used to send the messages, if not provided default routing key will be used. :param exchange: A :class:`kombu.Exchange` where the messages will be delivered to, if not provided, it will be instantiated with the default configuration. """ self._routing_key = routing_key self._exchange = ( exchange if isinstance(exchange, Exchange) else Exchange(name=exchange or MQ_DEFAULT_EXCHANGE, type="direct") ) self._queue = ( queue if isinstance(queue, Queue) else Queue( queue, durable=durable, exchange=self._exchange, routing_key=self._routing_key, max_priority=max_priority, ) ) self._connection = connection or Connection(MQ_CONNECTION_STRING) self.producer = self._build_producer() def _build_producer(self): """Instantiate a :class:`kombu.Producer`.""" return self._connection.Producer(serializer=MQ_DEFAULT_FORMAT) def __error_callback(self, exception, interval): """Execute when there is an error while sending a message. :param exception: Exception which has been thrown while trying to send the message. :param interval: Interval in which the message delivery will be retried. """ logging.error("Error while publishing {}".format(exception)) logging.info("Retry in %s seconds.", interval) def _publish(self, msg, priority=None): """Publish, handling retries, a message in the queue. :param msg: Object which represents the message to be sent in the queue. Note that this object should be serializable in the configured format (by default JSON). :param priority: Message priority. """ connection = self._connection.clone() publish = connection.ensure( self.producer, self.producer.publish, errback=self.__error_callback, max_retries=MQ_PRODUCER_MAX_RETRIES, ) publish( json.dumps(msg), exchange=self._exchange, routing_key=self._routing_key, declare=[self._queue], priority=priority, ) logging.debug("Publisher: message sent: %s", msg) def close(self): """Close connection.""" logging.debug("Publisher: closing queue connection") self._connection.release() class WorkflowStatusPublisher(BasePublisher): """Progress publisher to MQ.""" def __init__(self, **kwargs): """Initialise the WorkflowStatusPublisher class.""" queue = "jobs-status" if "queue" not in kwargs: kwargs["queue"] = "jobs-status" if "routing_key" not in kwargs: kwargs["routing_key"] = MQ_DEFAULT_QUEUES[queue]["routing_key"] if "durable" not in kwargs: kwargs["durable"] = MQ_DEFAULT_QUEUES[queue]["durable"] super(WorkflowStatusPublisher, self).__init__(**kwargs) def publish_workflow_status(self, workflow_uuid, status, logs="", message=None): """Publish workflow status using the configured. :param workflow_uudid: String which represents the workflow UUID. :param status: Integer which represents the status of the workflow, this is defined in the `reana-db` `Workflow` models. :param logs: String which represents the logs which the workflow has produced as output. :param message: Dictionary which includes additional information can be attached such as the overall progress of the workflow. """ msg = { "workflow_uuid": workflow_uuid, "logs": logs, "status": status, "message": message, } self._publish(msg) class WorkflowSubmissionPublisher(BasePublisher): """Workflow submission publisher.""" def __init__(self, **kwargs): """Initialise the WorkflowSubmissionPublisher class.""" queue = "workflow-submission" super(WorkflowSubmissionPublisher, self).__init__( queue, MQ_DEFAULT_QUEUES[queue]["routing_key"], durable=MQ_DEFAULT_QUEUES[queue]["durable"], max_priority=MQ_DEFAULT_QUEUES[queue]["max_priority"], **kwargs ) def publish_workflow_submission( self, user_id, workflow_id_or_name, parameters, priority=0, min_job_memory=0, ): """Publish workflow submission parameters.""" msg = { "user": user_id, "workflow_id_or_name": workflow_id_or_name, "parameters": parameters, "priority": priority, "min_job_memory": min_job_memory, } self._publish(msg, priority)
34.828571
85
0.620673
5,571
0.914028
0
0
0
0
0
0
2,785
0.456932
40ea5c5e0176d43f5d51fa89b969ce72cc0fce56
1,219
py
Python
model/commit.py
uniaim-event-team/pullre-kun
60ee86c399d34254c82974a5debcdcb7d332f2a1
[ "MIT" ]
3
2020-03-24T08:06:37.000Z
2020-03-29T08:53:55.000Z
model/commit.py
uniaim-event-team/pullre-kun
60ee86c399d34254c82974a5debcdcb7d332f2a1
[ "MIT" ]
7
2020-03-23T12:36:01.000Z
2020-04-11T08:14:06.000Z
model/commit.py
uniaim-event-team/pullre-kun
60ee86c399d34254c82974a5debcdcb7d332f2a1
[ "MIT" ]
null
null
null
from sqlalchemy import ( BigInteger, Column, DateTime, Text, String, Integer, ) from sqlalchemy.sql.functions import current_timestamp from model.base import BaseObject class Commit(BaseObject): __tablename__ = 'commits' id = Column(BigInteger, primary_key=True, autoincrement=True) created_at = Column(DateTime, default=current_timestamp(), nullable=False) updated_at = Column(DateTime, default=current_timestamp(), onupdate=current_timestamp(), nullable=False) sha = Column(String(40), unique=True, nullable=False) message = Column(Text) parent_a = Column(String(40)) parent_b = Column(String(40)) production_reported = Column(Integer) class Issue(BaseObject): __tablename__ = 'issues' id = Column(BigInteger, primary_key=True, autoincrement=True) created_at = Column(DateTime, default=current_timestamp(), nullable=False) updated_at = Column(DateTime, default=current_timestamp(), onupdate=current_timestamp(), nullable=False) number = Column(Integer, unique=True, nullable=False) state = Column(String(10)) title = Column(Text) body = Column(Text) labels = Column(String(128)) assignee = Column(String(128))
31.25641
108
0.721903
1,019
0.835931
0
0
0
0
0
0
17
0.013946
40eaa3da9e931ca4a3dcce107069762aa322fa53
24
py
Python
drae/__init__.py
hso/drae.py
b78772fa055fe5f8acb2bb44d7e7573af277226b
[ "MIT" ]
null
null
null
drae/__init__.py
hso/drae.py
b78772fa055fe5f8acb2bb44d7e7573af277226b
[ "MIT" ]
null
null
null
drae/__init__.py
hso/drae.py
b78772fa055fe5f8acb2bb44d7e7573af277226b
[ "MIT" ]
null
null
null
from drae import search
12
23
0.833333
0
0
0
0
0
0
0
0
0
0
40ead0d637c17ba1e4a9c64f3e4137d28ac75a83
13,825
py
Python
tests/components/template/test_select.py
JeffersonBledsoe/core
3825f80a2dd087ae70654079cd9f3071289b8423
[ "Apache-2.0" ]
5
2017-01-26T16:33:09.000Z
2018-07-20T13:50:47.000Z
tests/components/template/test_select.py
JeffersonBledsoe/core
3825f80a2dd087ae70654079cd9f3071289b8423
[ "Apache-2.0" ]
87
2020-07-06T22:22:54.000Z
2022-03-31T06:01:46.000Z
tests/components/template/test_select.py
yuvalkob/home-assistant
6a5895222ec908acad3cf478897ca2455f88f730
[ "Apache-2.0" ]
3
2021-05-31T15:32:08.000Z
2021-08-10T22:08:42.000Z
"""The tests for the Template select platform.""" import pytest from homeassistant import setup from homeassistant.components.input_select import ( ATTR_OPTION as INPUT_SELECT_ATTR_OPTION, ATTR_OPTIONS as INPUT_SELECT_ATTR_OPTIONS, DOMAIN as INPUT_SELECT_DOMAIN, SERVICE_SELECT_OPTION as INPUT_SELECT_SERVICE_SELECT_OPTION, SERVICE_SET_OPTIONS, ) from homeassistant.components.select.const import ( ATTR_OPTION as SELECT_ATTR_OPTION, ATTR_OPTIONS as SELECT_ATTR_OPTIONS, DOMAIN as SELECT_DOMAIN, SERVICE_SELECT_OPTION as SELECT_SERVICE_SELECT_OPTION, ) from homeassistant.const import ATTR_ICON, CONF_ENTITY_ID, STATE_UNKNOWN from homeassistant.core import Context from homeassistant.helpers.entity_registry import async_get from tests.common import ( assert_setup_component, async_capture_events, async_mock_service, ) _TEST_SELECT = "select.template_select" # Represent for select's current_option _OPTION_INPUT_SELECT = "input_select.option" @pytest.fixture def calls(hass): """Track calls to a mock service.""" return async_mock_service(hass, "test", "automation") async def test_missing_optional_config(hass, calls): """Test: missing optional template is ok.""" with assert_setup_component(1, "template"): assert await setup.async_setup_component( hass, "template", { "template": { "select": { "state": "{{ 'a' }}", "select_option": {"service": "script.select_option"}, "options": "{{ ['a', 'b'] }}", } } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() _verify(hass, "a", ["a", "b"]) async def test_multiple_configs(hass, calls): """Test: multiple select entities get created.""" with assert_setup_component(1, "template"): assert await setup.async_setup_component( hass, "template", { "template": { "select": [ { "state": "{{ 'a' }}", "select_option": {"service": "script.select_option"}, "options": "{{ ['a', 'b'] }}", }, { "state": "{{ 'a' }}", "select_option": {"service": "script.select_option"}, "options": "{{ ['a', 'b'] }}", }, ] } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() _verify(hass, "a", ["a", "b"]) _verify(hass, "a", ["a", "b"], f"{_TEST_SELECT}_2") async def test_missing_required_keys(hass, calls): """Test: missing required fields will fail.""" with assert_setup_component(0, "template"): assert await setup.async_setup_component( hass, "template", { "template": { "select": { "select_option": {"service": "script.select_option"}, "options": "{{ ['a', 'b'] }}", } } }, ) with assert_setup_component(0, "select"): assert await setup.async_setup_component( hass, "select", { "template": { "select": { "state": "{{ 'a' }}", "select_option": {"service": "script.select_option"}, } } }, ) with assert_setup_component(0, "select"): assert await setup.async_setup_component( hass, "select", { "template": { "select": { "state": "{{ 'a' }}", "options": "{{ ['a', 'b'] }}", } } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() assert hass.states.async_all("select") == [] async def test_templates_with_entities(hass, calls): """Test templates with values from other entities.""" with assert_setup_component(1, "input_select"): assert await setup.async_setup_component( hass, "input_select", { "input_select": { "option": { "options": ["a", "b"], "initial": "a", "name": "Option", }, } }, ) with assert_setup_component(1, "template"): assert await setup.async_setup_component( hass, "template", { "template": { "unique_id": "b", "select": { "state": f"{{{{ states('{_OPTION_INPUT_SELECT}') }}}}", "options": f"{{{{ state_attr('{_OPTION_INPUT_SELECT}', '{INPUT_SELECT_ATTR_OPTIONS}') }}}}", "select_option": { "service": "input_select.select_option", "data_template": { "entity_id": _OPTION_INPUT_SELECT, "option": "{{ option }}", }, }, "optimistic": True, "unique_id": "a", }, } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() ent_reg = async_get(hass) entry = ent_reg.async_get(_TEST_SELECT) assert entry assert entry.unique_id == "b-a" _verify(hass, "a", ["a", "b"]) await hass.services.async_call( INPUT_SELECT_DOMAIN, INPUT_SELECT_SERVICE_SELECT_OPTION, {CONF_ENTITY_ID: _OPTION_INPUT_SELECT, INPUT_SELECT_ATTR_OPTION: "b"}, blocking=True, ) await hass.async_block_till_done() _verify(hass, "b", ["a", "b"]) await hass.services.async_call( INPUT_SELECT_DOMAIN, SERVICE_SET_OPTIONS, { CONF_ENTITY_ID: _OPTION_INPUT_SELECT, INPUT_SELECT_ATTR_OPTIONS: ["a", "b", "c"], }, blocking=True, ) await hass.async_block_till_done() _verify(hass, "a", ["a", "b", "c"]) await hass.services.async_call( SELECT_DOMAIN, SELECT_SERVICE_SELECT_OPTION, {CONF_ENTITY_ID: _TEST_SELECT, SELECT_ATTR_OPTION: "c"}, blocking=True, ) _verify(hass, "c", ["a", "b", "c"]) async def test_trigger_select(hass): """Test trigger based template select.""" events = async_capture_events(hass, "test_number_event") assert await setup.async_setup_component( hass, "template", { "template": [ {"invalid": "config"}, # Config after invalid should still be set up { "unique_id": "listening-test-event", "trigger": {"platform": "event", "event_type": "test_event"}, "select": [ { "name": "Hello Name", "unique_id": "hello_name-id", "state": "{{ trigger.event.data.beer }}", "options": "{{ trigger.event.data.beers }}", "select_option": {"event": "test_number_event"}, "optimistic": True, }, ], }, ], }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() state = hass.states.get("select.hello_name") assert state is not None assert state.state == STATE_UNKNOWN context = Context() hass.bus.async_fire( "test_event", {"beer": "duff", "beers": ["duff", "alamo"]}, context=context ) await hass.async_block_till_done() state = hass.states.get("select.hello_name") assert state is not None assert state.state == "duff" assert state.attributes["options"] == ["duff", "alamo"] await hass.services.async_call( SELECT_DOMAIN, SELECT_SERVICE_SELECT_OPTION, {CONF_ENTITY_ID: "select.hello_name", SELECT_ATTR_OPTION: "alamo"}, blocking=True, ) assert len(events) == 1 assert events[0].event_type == "test_number_event" def _verify(hass, expected_current_option, expected_options, entity_name=_TEST_SELECT): """Verify select's state.""" state = hass.states.get(entity_name) attributes = state.attributes assert state.state == str(expected_current_option) assert attributes.get(SELECT_ATTR_OPTIONS) == expected_options async def test_template_icon_with_entities(hass, calls): """Test templates with values from other entities.""" with assert_setup_component(1, "input_select"): assert await setup.async_setup_component( hass, "input_select", { "input_select": { "option": { "options": ["a", "b"], "initial": "a", "name": "Option", }, } }, ) with assert_setup_component(1, "template"): assert await setup.async_setup_component( hass, "template", { "template": { "unique_id": "b", "select": { "state": f"{{{{ states('{_OPTION_INPUT_SELECT}') }}}}", "options": f"{{{{ state_attr('{_OPTION_INPUT_SELECT}', '{INPUT_SELECT_ATTR_OPTIONS}') }}}}", "select_option": { "service": "input_select.select_option", "data": { "entity_id": _OPTION_INPUT_SELECT, "option": "{{ option }}", }, }, "optimistic": True, "unique_id": "a", "icon": f"{{% if (states('{_OPTION_INPUT_SELECT}') == 'a') %}}mdi:greater{{% else %}}mdi:less{{% endif %}}", }, } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() state = hass.states.get(_TEST_SELECT) assert state.state == "a" assert state.attributes[ATTR_ICON] == "mdi:greater" await hass.services.async_call( INPUT_SELECT_DOMAIN, INPUT_SELECT_SERVICE_SELECT_OPTION, {CONF_ENTITY_ID: _OPTION_INPUT_SELECT, INPUT_SELECT_ATTR_OPTION: "b"}, blocking=True, ) await hass.async_block_till_done() state = hass.states.get(_TEST_SELECT) assert state.state == "b" assert state.attributes[ATTR_ICON] == "mdi:less" async def test_template_icon_with_trigger(hass): """Test trigger based template select.""" with assert_setup_component(1, "input_select"): assert await setup.async_setup_component( hass, "input_select", { "input_select": { "option": { "options": ["a", "b"], "initial": "a", "name": "Option", }, } }, ) assert await setup.async_setup_component( hass, "template", { "template": { "trigger": {"platform": "state", "entity_id": _OPTION_INPUT_SELECT}, "select": { "unique_id": "b", "state": "{{ trigger.to_state.state }}", "options": f"{{{{ state_attr('{_OPTION_INPUT_SELECT}', '{INPUT_SELECT_ATTR_OPTIONS}') }}}}", "select_option": { "service": "input_select.select_option", "data": { "entity_id": _OPTION_INPUT_SELECT, "option": "{{ option }}", }, }, "optimistic": True, "icon": "{% if (trigger.to_state.state or '') == 'a' %}mdi:greater{% else %}mdi:less{% endif %}", }, }, }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() await hass.services.async_call( INPUT_SELECT_DOMAIN, INPUT_SELECT_SERVICE_SELECT_OPTION, {CONF_ENTITY_ID: _OPTION_INPUT_SELECT, INPUT_SELECT_ATTR_OPTION: "b"}, blocking=True, ) await hass.async_block_till_done() state = hass.states.get(_TEST_SELECT) assert state is not None assert state.state == "b" assert state.attributes[ATTR_ICON] == "mdi:less" await hass.services.async_call( INPUT_SELECT_DOMAIN, INPUT_SELECT_SERVICE_SELECT_OPTION, {CONF_ENTITY_ID: _OPTION_INPUT_SELECT, INPUT_SELECT_ATTR_OPTION: "a"}, blocking=True, ) await hass.async_block_till_done() state = hass.states.get(_TEST_SELECT) assert state.state == "a" assert state.attributes[ATTR_ICON] == "mdi:greater"
32.529412
132
0.502351
0
0
0
0
131
0.009476
12,354
0.893599
3,294
0.238264
40eb080a05a597358c0a6ee395b1cbd8baf803e7
7,211
py
Python
corefacility/core/test/models/test_application_access.py
serik1987/corefacility
78d84e19403361e83ef562e738473849f9133bef
[ "RSA-MD" ]
null
null
null
corefacility/core/test/models/test_application_access.py
serik1987/corefacility
78d84e19403361e83ef562e738473849f9133bef
[ "RSA-MD" ]
null
null
null
corefacility/core/test/models/test_application_access.py
serik1987/corefacility
78d84e19403361e83ef562e738473849f9133bef
[ "RSA-MD" ]
null
null
null
import os import random import string import base64 from django.utils import timezone from django.contrib.auth.hashers import make_password, check_password from django.test import TestCase from parameterized import parameterized from core.models import Module, EntryPoint, ExternalAuthorizationSession, User AUTHORIZATION_MODULE_LIST = ["ihna", "google", "mailru"] class TestApplicationProcess(TestCase): PASSWORD_LENGTH = 25 auth_sessions = None uuid_list = None @classmethod def setUpTestData(cls): cls.auth_sessions = {} cls.session_keys = {} user = User(login="sergei.kozhukhov") user.save() for module in AUTHORIZATION_MODULE_LIST: password = cls.generate_random_password() password_hash = make_password(password) module_app = Module.objects.get(parent_entry_point__alias="authorizations", alias=module) session = ExternalAuthorizationSession( authorization_module=module_app, session_key=password_hash, session_key_expiry_date=timezone.now() ) session.save() session_key = base64.encodebytes((str(session.id) + ":" + password).encode("utf-8")).decode("utf-8") cls.auth_sessions[module] = session_key Account = cls.get_account_class(module) Account(user=user, email="[email protected]").save() cls.uuid_list = {} for apps_used in ['imaging', 'roi']: cls.uuid_list[apps_used] = Module.objects.get(alias=apps_used).uuid @parameterized.expand([ (["core", "authorizations"], [ ("standard", None), ("ihna", "<div class='auth ihna'></div>"), ("google", "<div class='auth google'></div>"), ("mailru", "<div class='auth mailru'></div>"), ("unix", None), ("cookie", None), ("password_recovery", None), ("auto", None), ]), (["core", "synchronizations"], [ ("ihna_employees", None), ]), (["core", "projects"], [ ("imaging", None), ]), (["core", "projects", "imaging", "processors"], [ ("roi", None), ]), ]) def test_widgets_show(self, route, expected_widget_list): app = None entry_point = None current_route = list(route) current_look = "app" while len(current_route) > 0: route_element = current_route.pop(0) if current_look == "app": app = Module.objects.get(alias=route_element, parent_entry_point=entry_point) current_look = "ep" elif current_look == "ep": entry_point = EntryPoint.objects.get(alias=route_element, belonging_module=app) current_look = "app" self.assertEquals(current_look, "app") values = Module.objects.filter(parent_entry_point=entry_point).values("alias", "html_code") self.assertEquals(len(values), len(expected_widget_list), "Number of modules attached to this entry point is not the same as expected") for value in values: alias = value['alias'] html_code = value['html_code'] expected_widget_found = False for expected_alias, expected_widget in expected_widget_list: if expected_alias == alias: expected_widget_found = True if html_code is not None and expected_widget is None: self.fail("HTML code for module '%s' does not exist but expected" % alias) if html_code is None and expected_widget is not None: self.fail("HTML code for module '%s' exists but not expected" % alias) if html_code is not None and expected_widget is not None: self.assertHTMLEqual(html_code, expected_widget, "HTML code for module '%s' is not the same as expected" % html_code) break self.assertTrue(expected_widget_found, "the module '%s' is not within the list of expected modules" % alias) @parameterized.expand([ ("standard", "core.authorizations.StandardAuthorization"), ("ihna", "authorizations.ihna.App"), ("google", "authorizations.google.App"), ("mailru", "authorizations.mailru.App"), ("unix", "core.authorizations.UnixAuthorization"), ("cookie", "authorizations.cookie.App"), ("password_recovery", "core.authorizations.PasswordRecoveryAuthorization"), ("auto", "core.authorizations.AutomaticAuthorization"), ]) def test_authorization_modules(self, alias, expected_authorization_module): authorization_app = Module.objects.get(parent_entry_point__alias="authorizations", alias=alias) authorization_module = authorization_app.app_class self.assertEquals(authorization_module, expected_authorization_module) def test_authorization_sessions(self): for module, session_key in self.auth_sessions.items(): session_info = base64.decodebytes(session_key.encode("utf-8")).decode("utf-8") session_id, session_password = session_info.split(":", 1) session = ExternalAuthorizationSession.objects.get(authorization_module__alias=module, id=session_id) stored_password_hash = session.session_key self.assertTrue(check_password(session_password, stored_password_hash)) module_class = session.authorization_module.app_class session.delete() self.assertTrue(module_class.split('.')[1], module) def test_find_user(self): for module in AUTHORIZATION_MODULE_LIST: account_class = self.get_account_class(module) account = account_class.objects.get(email="[email protected]") self.assertEquals(account.user.login, "sergei.kozhukhov") def test_account_contigency(self): for module in AUTHORIZATION_MODULE_LIST: self.assertEquals(self.get_account_class(module).objects.count(), 1) User.objects.get(login="sergei.kozhukhov").delete() for module in AUTHORIZATION_MODULE_LIST: self.assertEquals(self.get_account_class(module).objects.count(), 0) def test_access_by_uuid(self): for module_name, uuid in self.uuid_list.items(): module_class = Module.objects.get(uuid=uuid).app_class actual_module_name, module_class = module_class.split('.') self.assertEquals(actual_module_name, module_name) self.assertEquals(module_class, "App") @classmethod def generate_random_password(cls): chars = string.ascii_letters + string.digits + '!@#$%^&*()' random.seed = (os.urandom(1024)) return ''.join(random.choice(chars) for i in range(cls.PASSWORD_LENGTH)) @classmethod def get_account_class(cls, module): import authorizations auth_module = getattr(authorizations, module) return auth_module.models.Account
43.969512
113
0.627791
6,840
0.948551
0
0
5,029
0.697407
0
0
1,229
0.170434
40eb7e71257ab84eead04db6c8b696939ea7b84e
6,729
py
Python
cmsfix/lib/macro.py
trmznt/cmsfix
18d0be238f9247421db9603f1946478452336afb
[ "BSD-2-Clause" ]
null
null
null
cmsfix/lib/macro.py
trmznt/cmsfix
18d0be238f9247421db9603f1946478452336afb
[ "BSD-2-Clause" ]
null
null
null
cmsfix/lib/macro.py
trmznt/cmsfix
18d0be238f9247421db9603f1946478452336afb
[ "BSD-2-Clause" ]
null
null
null
from rhombus.lib.utils import get_dbhandler from rhombus.lib.tags import * from cmsfix.models.node import Node import re # the pattern below is either # ///123 # <<MacroName>> # [[MacroName]] pattern = re.compile('///(\d+)|///\{([\w-]+)\}|\&lt\;\&lt\;(.+)\&gt\;\&gt\;|\[\[(.+)\]\]') # syntax for Macro is: # [[MacroName|option1|option2|option3]] class MacroError(RuntimeError): pass def postrender(buffer, node, request): """ return a new buffer """ dbh = get_dbhandler() nb = '' start_pos = 0 for m in pattern.finditer(buffer): nb += buffer[start_pos:m.start()] group = m.group() print(group) if group.startswith('///'): nb += node_link(group, dbh) elif group.startswith('[['): nb += run_macro(group, node, dbh, request) else: nb += '{{ ERR: macro pattern unprocessed }}' start_pos = m.end() nb += buffer[start_pos:] return nb def postedit(content, node): """ post edit the content, return a new modified content """ dbh = get_dbhandler() nc = '' start_pos = 0 for m in pattern.finditer(content): nc += content[start_pos:m.start()] group = m.group() if group.startswith('///'): if group[3] != '{': # convert to UUID node = dbh.get_node_by_id(int(group[3:])) nc += ('///{' + str(node.uuid) + '}' if node else group) else: nc += group else: nc += group start_pos = m.end() nc += content[start_pos:] return nc def node_link(text, dbh): try: if text[3] == '{': node = dbh.get_nodes_by_uuids(text[4:-1]) else: node = dbh.get_node_by_id(int(text[3:])) except: node = None if node is None: return literal('<b>%s</b>' % text) return literal('<a href="/%s">%s</a>' % (node.url, node.title)) def run_macro(text, node, dbh, request): global _MACROS_ text = text[2:-2] components = text.split('|') macro_name = components[0] if macro_name not in _MACROS_: return '[[ERR - macro %s not found]]' % macro_name try: return _MACROS_[macro_name](node, components[1:], request) except MacroError as m_err: return '[[%s ERR: %s]]' % (macro_name, m_err) _MACROS_ = {} def macro(func): global _MACROS_ macro_name = func.__name__ if not macro_name.startswith('M_'): raise RuntimeError('function name does not start with M_') _MACROS_[macro_name[2:]] = func return func def macro_dict(): return _MACROS_ ## -- MACRO -- ## ## all macro functions should return either html or literal objects ## @macro def M_ListChildNodes(node, components, request): """ Create list of child nodes. [[ListChildNodes|option|option|..]] Options: type=Nodetype(PageNode,JournalNode, etc) order=[+-]slug/id/mtime/title Example: [[ListChildNodes|type=PageNode|order=+title]] """ nodetype=[] children = node.children for c in components: if c.startswith('type='): nodetype.append( c[5:] ) elif c.startswith('order='): order = c[6:].strip().lower() desc = False if order[0] == '-': desc = True order = order[1:] elif order[0] == '+': order = order[1:] # we cancel the default ordering first children = node.children.order_by(None) if order == 'slug': if desc: children = children.order_by(Node.slug.desc()) else: children = children.order_by(Node.slug) elif order == 'id': if desc: children = children.order_by(Node.id.desc()) else: children = children.order_by(Node.id) elif order == 'mtime': if desc: children = children.order_by(Node.stamp.desc()) else: children = children.order_by(Node.stamp) elif order == 'title': children_list = sorted( [(n.title or n.slug, n) for n in children.all()], reverse = desc) children = [n for (k, n) in children_list] else: raise MacroError("unknown order option: %s" % order ) html = div() toc = ul() if not nodetype: nodetype.append( 'PageNode' ) for c in children: if c.__class__.__name__ in nodetype: toc.add( li(a(c.title, href=c.path)) ) html.add(toc) return html @macro def M_Img(node, components, request): """ Show embedded images in the text. [[Img|source|option|option|...]] source: link to source (//ID, /images/a.jpg, http://domain/image.jpg, path/to/image.jpg) Options: currently none """ path = components[0] if path.startswith('http') or path.startswith('ftp'): url = path elif path.startswith('//'): image_node_id = int(path[2:]) image_node = get_dbhandler().get_node_by_id(image_node_id) if not image_node: return '[[ Invalid image macro: non existent node %d]]' % image_node_id url = image_node.path elif path.startswith('/'): # check node with this path path_node = get_dbhandler().get_node_by_path(path) if not path_node: return '[[ Invalid image macro: not existent path %s ]]' % path url = path else: url = '/%s/%s' % (node.url, path) #return '[[ Invalid image macro (%s) ]]' % path return literal('<img src="%s" />' % url) @macro def M_ListNode(node, components, request): """ Create list of nodes that are accessible by the current user. [[ListNode|option|...]] Options: level = node level tags = only nodes which have these tags Example: [[ListNode|level=2|tags=keyword1;keyword2]] """ kwargs = {} for c in components: if c.startswith('level='): kwargs['level'] = int(c[6:]) elif c.startswith('tags='): kwargs['tags'] = c[5:].split(';') elif c.startswith('limit='): pass nodes = get_dbhandler().get_nodes(**kwargs) # check accessibility nodes = [ n for n in nodes if get_workflow(n).is_accessible(n, request) ] html = div() toc = ul() for n in nodes: # check user accessibility toc.add( li(a(n.title or n.slug, href=n.path)) ) html.add(toc) return html
24.558394
96
0.541537
40
0.005944
0
0
3,956
0.587903
0
0
1,788
0.265716
40ed1faf7a529d9d2608043132523587818592bc
2,629
py
Python
xastropy/sdss/qso.py
bpholden/xastropy
66aff0995a84c6829da65996d2379ba4c946dabe
[ "BSD-3-Clause" ]
3
2015-08-23T00:32:58.000Z
2020-12-31T02:37:52.000Z
xastropy/sdss/qso.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
104
2015-07-17T18:31:54.000Z
2018-06-29T17:04:09.000Z
xastropy/sdss/qso.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
16
2015-07-17T15:50:37.000Z
2019-04-21T03:42:47.000Z
''' #;+ #; NAME: #; sdss.qso #; Version 1.1 #; #; PURPOSE: #; Class for SDSS QSO #; 2015 Written by JXP #;- #;------------------------------------------------------------------------------ ''' # Import libraries import numpy as np import os from astropy.table import QTable, Column from astropy.coordinates import SkyCoord from astropy import units as u from astropy.units import Quantity from xastropy.obs import radec as xor from xastropy.xutils import xdebug as xdb class SdssQso(object): '''Class to handle a single SDSS Quasar Parameters: ---------- coord: SkyCoord, optional RA/Dec of the sightline z: float, optional Emission redshift database: SdssQuasars class, optional Required for grabbing data, etc. ''' # Init def __init__(self, coord=None, z=0., database=None, verbose=True): # Init if coord is None: radec = (0.*u.deg, 0.*u.deg) self.coord = SkyCoord(ra=radec[0], dec=radec[0]) else: self.coord = coord self.z = z self.verbose = verbose self.database = database # None init self._specfil = None def get_specfil(self): '''Parse the SDSS spectrum file Requires a link to the database Class ''' if self.database is None: raise IOError('SdssQso: Need to be linked to an SDSS Database') # Generate file name (DR4 is different) pnm = '{0:04d}'.format( self.database._data[self.database.index]['PLATE']) #fnm = '{0:04d}'.format( # self.database._data[self.database.index]['FIBERID']) fnm = '{0:03d}'.format( self.database._data[self.database.index]['FIBERID']) mjd = str(self.database._data[self.database.index]['MJD']) sfil = self.database._datdir+pnm+'/1d/'+'spSpec-' # Finish self._specfil = sfil+mjd+'-'+pnm+'-'+fnm+'.fit' # Is usually gzipped def load_spec(self): '''Input the Spectrum ''' from linetools.spectra.xspectrum1d import XSpectrum1D if self._specfil is None: self.get_specfil() # if self.verbose: print('SdssQso: Loading spectrum from {:s}'.format(self._specfil)) self.spec = XSpectrum1D.from_file(self._specfil) def __repr__(self): ''' For printing ''' return '[{:s}: {:s} {:s}, z={:g}]'.format(self.__class__.__name__, self.coord.ra.to_string(unit=u.hour,sep=':',pad=True), self.coord.dec.to_string(sep=':',pad=True,alwayssign=True), self.z)
30.218391
80
0.573602
2,145
0.8159
0
0
0
0
0
0
993
0.37771
40ee9a52429bac1502e511dda17968ae00643dd6
41
py
Python
ez_sten/__init__.py
deadlift1226/ez-sten
7f754e5648ce6b7d5207a901618b77a8e4382c86
[ "MIT" ]
null
null
null
ez_sten/__init__.py
deadlift1226/ez-sten
7f754e5648ce6b7d5207a901618b77a8e4382c86
[ "MIT" ]
null
null
null
ez_sten/__init__.py
deadlift1226/ez-sten
7f754e5648ce6b7d5207a901618b77a8e4382c86
[ "MIT" ]
null
null
null
name = "module" from .module import func
13.666667
24
0.731707
0
0
0
0
0
0
0
0
8
0.195122
40ef2f9956caa7a12ca34a8e2817ab06584f9a11
3,110
py
Python
wisdem/test/test_optimization_drivers/test_dakota_driver.py
johnjasa/WISDEM
a4571e71cb5b9869c81790f8abb1bb7fba8fdb02
[ "Apache-2.0" ]
81
2015-01-19T18:17:31.000Z
2022-03-17T07:14:43.000Z
wisdem/test/test_optimization_drivers/test_dakota_driver.py
johnjasa/WISDEM
a4571e71cb5b9869c81790f8abb1bb7fba8fdb02
[ "Apache-2.0" ]
159
2015-02-05T01:54:52.000Z
2022-03-30T22:44:39.000Z
wisdem/test/test_optimization_drivers/test_dakota_driver.py
johnjasa/WISDEM
a4571e71cb5b9869c81790f8abb1bb7fba8fdb02
[ "Apache-2.0" ]
70
2015-01-02T15:22:39.000Z
2022-02-11T00:33:07.000Z
import unittest import numpy as np from openmdao.utils.assert_utils import assert_near_equal from wisdem.optimization_drivers.dakota_driver import DakotaOptimizer try: import dakota except ImportError: dakota = None @unittest.skipIf(dakota is None, "only run if Dakota is installed.") class TestDakotaOptimization(unittest.TestCase): def test_2D_opt_max_iterations(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_high_model as model" output_scalers = [1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), -9.5) def test_2D_opt_EGO(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_high_model as model" output_scalers = [1.0] options = {"initial_samples": 5, "method": "efficient_global", "seed": 123456} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), -9.999996864) def test_two_variables(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]]), "z": [1.0, 2.0]} desvars = {"x": np.array([0.0, 0.25]), "z": 1.5} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_two_variable as model" output_scalers = [1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), 1.0) def test_constraint(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y", "con"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_low_model as model" output_scalers = [1.0, 1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), 0.5) assert_near_equal(np.min(np.array(results["con"])), 0.0) if __name__ == "__main__": unittest.main()
40.921053
112
0.630868
2,743
0.881994
0
0
2,813
0.904502
0
0
714
0.229582
40f05be8c6d026f9f65c428c8494f859b10c0a2f
6,848
py
Python
lab4_runTFCurveFitting.py
pskdev/EveryBodyTensorFlow
5166a366fca850a72de66e5ac48c421d4bb766f4
[ "Unlicense" ]
1
2018-04-15T07:36:22.000Z
2018-04-15T07:36:22.000Z
lab4_runTFCurveFitting.py
pskdev/EveryBodyTensorFlow
5166a366fca850a72de66e5ac48c421d4bb766f4
[ "Unlicense" ]
null
null
null
lab4_runTFCurveFitting.py
pskdev/EveryBodyTensorFlow
5166a366fca850a72de66e5ac48c421d4bb766f4
[ "Unlicense" ]
null
null
null
#-*- coding: utf-8 -*- #! /usr/bin/env python ''' #------------------------------------------------------------ filename: lab4_runTFCurveFitting.py This is an example for linear regression in tensorflow Which is a curve fitting example written by Jaewook Kang @ Aug 2017 #------------------------------------------------------------ ''' from os import getcwd import math from IPython import display from matplotlib import cm from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_io # from __future__ import print_function # Preparing data set ================================================ from tensorflow.examples.tutorials.mnist import input_data # generation of sinusoid data set total_size = 5000 training_size = 4000 validation_size = total_size - training_size xsize = 50 # the size of single x_data x_data = np.zeros([xsize, total_size]) cos_x = np.zeros([xsize, total_size]) mag = 1.0 phase_rad = np.pi/4 rad_freq = np.pi / 2.0 for i in range(total_size): x_data[:,i] = np.linspace(-4,4,xsize) cos_x = np.cos(rad_freq*x_data + phase_rad) noise_var = 0.01 noise = np.sqrt(noise_var) * np.random.randn(xsize,total_size) y_clean = cos_x y_data = y_clean + noise x_training_data = x_data[:,0:training_size] y_training_data = y_data[:,0:training_size] x_validation_data = x_data[:,training_size:-1] y_validation_data = y_data[:,training_size:-1] # signal plot # hfig1= plt.figure(1,figsize=[10,10]) # plt.plot(cos_x[:,1],color='b',label='clean') # plt.plot(y_data[:,1],color='r',label='noisy') # plt.legend() # configure training parameters ===================================== learning_rate = 0.01 training_epochs = 20 batch_size = 100 display_step = 1 # computational TF graph construction ================================ ##---------------- Define graph nodes ------------------- # tf Graph data input holder # (x,y) : input / output of prediction model # which will be feeded by training data in the TF graph computation # (a,b,c,d) : model parameters # which will be learned from training data in the TF graph computation x = tf.placeholder(tf.float32, [xsize,None]) y = tf.placeholder(tf.float32, [xsize,None]) # Set model weights which is calculated in the TF graph a = tf.Variable(1.) # initialization by 1 b = tf.Variable(1.) c = tf.Variable(1.) d = tf.Variable(1.) print ('TF graph nodes are defined') ##--------------------- Define function ----------------- # define relationshitp btw instance data x and label data y # define optimizer used in the learning phase # define cost function for optimization # Construct model pred_y = c*tf.cos(a*x+b)+d # Minimize error using MSE function cost = tf.reduce_mean(tf.reduce_sum( tf.square(y - pred_y) , reduction_indices=1), name="mse") # Gradient Descent # optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) print ('Functions in TF graph are ready') ## Performance evaluation model ========================_y=========== # y : data output # pred_y: prediction output by model, a x^3 + b x^2 + c x + d correct_prediction = cost # Calculate error rate using data -------------- # where # tf_reduce_mean(input_tensor, axis) : reduce dimension of tensor by computing the mean of elements # # 'x' is [[1., 1.] # [2., 2.]] # tf.reduce_mean(x) ==> 1.5 # tf.reduce_mean(x, 0) ==> [1.5, 1.5] # tf.reduce_mean(x, 1) ==> [1., 2.] accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) error_rate_training = np.zeros(training_epochs) error_rate_validation = np.zeros(training_epochs) # Launch the graph (execution) ======================================== # Initializing the variables init = tf.global_variables_initializer() ## -------------------- Learning iteration start -------------------- with tf.Session() as sess: sess.run(init) # this for variable use # Training cycle for epoch in range(training_epochs): # iteration loop avg_cost = 0. total_batch = int(training_size/batch_size) # # Loop over all batches for i in range(total_batch): # batch loop data_start_index = i * batch_size data_end_index = (i + 1) * batch_size # feed traing data -------------------------- batch_xs = x_training_data[:,data_start_index:data_end_index] batch_ys = y_training_data[:,data_start_index:data_end_index] #---------------------------------------------- # Run optimization op (backprop) and cost op (to get loss value) # feedign training data _, local_batch_cost = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += local_batch_cost / total_batch # print ("At %d-th batch in %d-epoch, avg_cost = %f" % (i,epoch,avg_cost) ) # Display logs per epoch step if (epoch+1) % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost/batch_size)) batch_xs = x_training_data batch_ys = y_training_data error_rate_training[epoch] = accuracy.eval({x: batch_xs, y: batch_ys},session=sess)/training_size error_rate_validation[epoch] = accuracy.eval({x: x_validation_data, y: y_validation_data},session=sess)/validation_size print("Training set MSE:", error_rate_training[epoch]) print("Validation set MSE:", error_rate_validation[epoch]) print("--------------------------------------------") print("Optimization Finished!") pred_a = sess.run(a) pred_b = sess.run(b) pred_c = sess.run(c) pred_d = sess.run(d) hfig1 = plt.figure(1,figsize=(10,10)) epoch_index = np.array([elem for elem in range(training_epochs)]) plt.plot(epoch_index,error_rate_training,label='Training data',color='r',marker='o') plt.plot(epoch_index,error_rate_validation,label='Validation data',color='b',marker='x') plt.legend() plt.title('MSE of prediction:') plt.xlabel('Iteration epoch') plt.ylabel('MSE') hfig2 = plt.figure(2,figsize=(10,10)) pred_y = pred_c * np.cos(pred_a * x_data[:,0] + pred_b) +pred_d plt.plot(x_validation_data[:,0],y_validation_data[:,0],label='noisy data',color='b',marker='*') plt.plot(x_validation_data[:,0], pred_y,label='prediction',color='r') plt.legend() plt.title('A line fitting example:') plt.xlabel('X data') plt.ylabel('Y data') # FIG_SAVE_DIR = getcwd() + '/figs/' # hfig1.savefig(FIG_SAVE_DIR + 'runExample_TFLogisticReg_aymeric_ErrRate.png') # hfig1.clear()
32.923077
131
0.631425
0
0
0
0
0
0
0
0
3,057
0.446408
40f1379ab73e0f4b4e9297a1caebe96d0365e7e2
577
py
Python
app/route/stats/route.py
LifeLaboratory/finopolis_backend
56aac8e0b92193c627b68f3d029f6f804d001db3
[ "MIT" ]
null
null
null
app/route/stats/route.py
LifeLaboratory/finopolis_backend
56aac8e0b92193c627b68f3d029f6f804d001db3
[ "MIT" ]
null
null
null
app/route/stats/route.py
LifeLaboratory/finopolis_backend
56aac8e0b92193c627b68f3d029f6f804d001db3
[ "MIT" ]
null
null
null
# coding=utf-8 from app.route.stats.processor import * from app.api.base.base_router import BaseRouter from app.api.base import base_name as names class Stats(BaseRouter): def __init__(self): super().__init__() self.args = [names.face, names.post, names.socnet, names.likes, names.views, names.comments] def get(self): self._read_args() print(self.data) answer = get_stat(self.data) return answer or {} def put(self): self._read_args() answer = update_stat(self.data) return answer or {}
25.086957
100
0.646447
427
0.740035
0
0
0
0
0
0
14
0.024263
40f148fc7af6cb3cf9e625820f51746d54b4fd9d
1,168
py
Python
script/calculate_correct_percentage_kingdom.py
xie186/dragmap-meth
6e9ccfd281bd317a56b8c4e87b5386978eb8de45
[ "MIT" ]
4
2021-12-18T20:33:16.000Z
2022-01-03T02:54:13.000Z
script/calculate_correct_percentage_kingdom.py
xie186/dragmap-meth
6e9ccfd281bd317a56b8c4e87b5386978eb8de45
[ "MIT" ]
null
null
null
script/calculate_correct_percentage_kingdom.py
xie186/dragmap-meth
6e9ccfd281bd317a56b8c4e87b5386978eb8de45
[ "MIT" ]
null
null
null
from Bio import TogoWS import argparse import sys import os def summary(options): num_reads = 0 num_correct = 0 with open(options.input) as file_input: for line in file_input: line = line.rstrip() ele = line.split("\t") if "FAILED" in line: continue if "BAD" in ele[0]: num_reads += 1 if "Bacteria" in line: num_correct += 1 #raise("Makeblastdb failed!") else: num_reads += 1 if options.species in line: num_correct += 1 #raise("Makeblastdb failed!") percentage = 100* num_correct/num_reads print("Percente: {perc}\n".format(perc = percentage)) if __name__ == '__main__': ## description - Text to display before the argument help (default: none) parser=argparse.ArgumentParser(description='mbmeth') parser.add_argument("-i", '--input', help="Input list") parser.add_argument("-s", '--species', help="species") options = parser.parse_args(args=None if sys.argv[1:] else ['--help']) summary(options)
29.948718
77
0.5625
0
0
0
0
0
0
0
0
253
0.21661
40f24ffc2a5ce750fd7226190ea187a0e43d6f6d
296
py
Python
borax/patterns/singleton.py
kinegratii/borax
3595f554b788c31d0f07be4099db68c854db65f7
[ "MIT" ]
51
2018-04-18T13:52:15.000Z
2022-03-23T13:46:02.000Z
borax/patterns/singleton.py
kinegratii/borax
3595f554b788c31d0f07be4099db68c854db65f7
[ "MIT" ]
26
2019-05-26T02:22:34.000Z
2022-03-14T07:50:32.000Z
borax/patterns/singleton.py
kinegratii/borax
3595f554b788c31d0f07be4099db68c854db65f7
[ "MIT" ]
7
2018-09-30T08:17:29.000Z
2020-12-16T01:49:24.000Z
# coding=utf8 class MetaSingleton(type): def __init__(cls, *args): type.__init__(cls, *args) cls.instance = None def __call__(cls, *args, **kwargs): if not cls.instance: cls.instance = type.__call__(cls, *args, **kwargs) return cls.instance
22.769231
62
0.597973
279
0.942568
0
0
0
0
0
0
13
0.043919
40f2de4fdec91fb98024a2bfc2b3ed4d725f2c72
5,108
py
Python
aiida/backends/general/migrations/utils.py
pranavmodx/aiida-core
0edbbf82dfb97ab130914d1674a6f2217eba5971
[ "BSD-2-Clause", "MIT" ]
null
null
null
aiida/backends/general/migrations/utils.py
pranavmodx/aiida-core
0edbbf82dfb97ab130914d1674a6f2217eba5971
[ "BSD-2-Clause", "MIT" ]
2
2019-03-06T11:23:42.000Z
2020-03-09T09:34:07.000Z
aiida/backends/general/migrations/utils.py
lorisercole/aiida-core
84c2098318bf234641219e55795726f99dc25a16
[ "MIT", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=invalid-name """Various utils that should be used during migrations and migrations tests because the AiiDA ORM cannot be used.""" import datetime import errno import os import re import numpy from aiida.common import json ISOFORMAT_DATETIME_REGEX = re.compile(r'^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d+(\+\d{2}:\d{2})?$') def ensure_repository_folder_created(uuid): """Make sure that the repository sub folder for the node with the given UUID exists or create it. :param uuid: UUID of the node """ dirpath = get_node_repository_sub_folder(uuid) try: os.makedirs(dirpath) except OSError as exception: if exception.errno != errno.EEXIST: raise def put_object_from_string(uuid, name, content): """Write a file with the given content in the repository sub folder of the given node. :param uuid: UUID of the node :param name: name to use for the file :param content: the content to write to the file """ ensure_repository_folder_created(uuid) filepath = os.path.join(get_node_repository_sub_folder(uuid), name) with open(filepath, 'w', encoding='utf-8') as handle: handle.write(content) def get_object_from_repository(uuid, name): """Return the content of a file with the given name in the repository sub folder of the given node. :param uuid: UUID of the node :param name: name to use for the file """ filepath = os.path.join(get_node_repository_sub_folder(uuid), name) with open(filepath) as handle: return handle.read() def get_node_repository_sub_folder(uuid): """Return the absolute path to the sub folder `path` within the repository of the node with the given UUID. :param uuid: UUID of the node :return: absolute path to node repository folder, i.e `/some/path/repository/node/12/ab/c123134-a123/path` """ from aiida.manage.configuration import get_profile uuid = str(uuid) repo_dirpath = os.path.join(get_profile().repository_path, 'repository') node_dirpath = os.path.join(repo_dirpath, 'node', uuid[:2], uuid[2:4], uuid[4:], 'path') return node_dirpath def get_numpy_array_absolute_path(uuid, name): """Return the absolute path of a numpy array with the given name in the repository of the node with the given uuid. :param uuid: the UUID of the node :param name: the name of the numpy array :return: the absolute path of the numpy array file """ return os.path.join(get_node_repository_sub_folder(uuid), name + '.npy') def store_numpy_array_in_repository(uuid, name, array): """Store a numpy array in the repository folder of a node. :param uuid: the node UUID :param name: the name under which to store the array :param array: the numpy array to store """ ensure_repository_folder_created(uuid) filepath = get_numpy_array_absolute_path(uuid, name) with open(filepath, 'wb') as handle: numpy.save(handle, array) def delete_numpy_array_from_repository(uuid, name): """Delete the numpy array with a given name from the repository corresponding to a node with a given uuid. :param uuid: the UUID of the node :param name: the name of the numpy array """ filepath = get_numpy_array_absolute_path(uuid, name) try: os.remove(filepath) except (IOError, OSError): pass def load_numpy_array_from_repository(uuid, name): """Load and return a numpy array from the repository folder of a node. :param uuid: the node UUID :param name: the name under which to store the array :return: the numpy array """ filepath = get_numpy_array_absolute_path(uuid, name) return numpy.load(filepath) def recursive_datetime_to_isoformat(value): """Convert all datetime objects in the given value to string representations in ISO format. :param value: a mapping, sequence or single value optionally containing datetime objects """ if isinstance(value, list): return [recursive_datetime_to_isoformat(_) for _ in value] if isinstance(value, dict): return dict((key, recursive_datetime_to_isoformat(val)) for key, val in value.items()) if isinstance(value, datetime.datetime): return value.isoformat() return value def dumps_json(dictionary): """Transforms all datetime object into isoformat and then returns the JSON.""" return json.dumps(recursive_datetime_to_isoformat(dictionary))
34.053333
119
0.66758
0
0
0
0
0
0
0
0
2,808
0.549726
40f3ddcdfc03bc9856328d9f89786ad5e9dd0772
88
py
Python
src/models/__init__.py
DwaraknathT/sparsity
705f2cba074e6ab4f7655c6af98882773cd826bf
[ "MIT" ]
null
null
null
src/models/__init__.py
DwaraknathT/sparsity
705f2cba074e6ab4f7655c6af98882773cd826bf
[ "MIT" ]
null
null
null
src/models/__init__.py
DwaraknathT/sparsity
705f2cba074e6ab4f7655c6af98882773cd826bf
[ "MIT" ]
null
null
null
__all__ = ["transformers", "vision"] from .transformers import * from .vision import *
17.6
36
0.715909
0
0
0
0
0
0
0
0
22
0.25
40f4220eb6198005a87664aaa2c6ba2fd068a95c
350
py
Python
packages/pyright-internal/src/tests/samples/genericTypes12.py
sasano8/pyright
e804f324ee5dbd25fd37a258791b3fd944addecd
[ "MIT" ]
4,391
2019-05-07T01:18:57.000Z
2022-03-31T20:45:44.000Z
packages/pyright-internal/src/tests/samples/genericTypes12.py
sasano8/pyright
e804f324ee5dbd25fd37a258791b3fd944addecd
[ "MIT" ]
2,740
2019-05-07T03:29:30.000Z
2022-03-31T12:57:46.000Z
packages/pyright-internal/src/tests/samples/genericTypes12.py
sasano8/pyright
e804f324ee5dbd25fd37a258791b3fd944addecd
[ "MIT" ]
455
2019-05-07T12:55:14.000Z
2022-03-31T17:09:15.000Z
# This sample tests the checker's ability to enforce # type invariance for type arguments. # pyright: strict from typing import Dict, Union foo: Dict[Union[int, str], str] = {} bar: Dict[str, str] = {} # This should generate an error because # both type parameters for Dict are invariant, # and str isn't assignable to Union[int, str]. foo = bar
23.333333
52
0.72
0
0
0
0
0
0
0
0
237
0.677143
40f50e67874d55319f2743b79ff2d604900796f7
224
py
Python
test.py
Naveenkhasyap/udacity-ml
6df851f7b21dee120a8e8f246df7961ea065eeac
[ "MIT" ]
null
null
null
test.py
Naveenkhasyap/udacity-ml
6df851f7b21dee120a8e8f246df7961ea065eeac
[ "MIT" ]
null
null
null
test.py
Naveenkhasyap/udacity-ml
6df851f7b21dee120a8e8f246df7961ea065eeac
[ "MIT" ]
null
null
null
how_many_snakes = 1 snake_string = """ Welcome to Python3! ____ / . .\\ \\ ---< \\ / __________/ / -=:___________/ <3, Juno """ print(snake_string * how_many_snakes)
14
37
0.473214
0
0
0
0
0
0
0
0
149
0.665179
40f5c3fea77f91c61ea3a74c27daae2c26011e43
658
py
Python
Nelson_Alvarez/Assignments/flask_fund/ninja_turtle/turtle.py
webguru001/Python-Django-Web
6264bc4c90ef1432ba0902c76b567cf3caaae221
[ "MIT" ]
5
2019-05-17T01:30:02.000Z
2021-06-17T21:02:58.000Z
Nelson_Alvarez/Assignments/flask_fund/ninja_turtle/turtle.py
curest0x1021/Python-Django-Web
6264bc4c90ef1432ba0902c76b567cf3caaae221
[ "MIT" ]
null
null
null
Nelson_Alvarez/Assignments/flask_fund/ninja_turtle/turtle.py
curest0x1021/Python-Django-Web
6264bc4c90ef1432ba0902c76b567cf3caaae221
[ "MIT" ]
null
null
null
from flask import Flask from flask import render_template, redirect, session, request app = Flask(__name__) app.secret_key = 'ThisIsSecret' @app.route('/') def nothing(): return render_template('index.html') @app.route('/ninja') def ninja(): x = 'tmnt' return render_template('ninjas.html', x=x) @app.route('/ninja/<any>') def ninjas_colors_any(any): ninja_dict = {'blue': 'leonardo', 'red': 'raphael', 'purple': 'donatello', 'orange': 'michelangelo'} if any in ninja_dict: x = ninja_dict[any] return render_template('ninjas.html', x=x) else: x= 'notapril' return render_template('ninjas.html', x=x) app.run(debug=True)
22.689655
102
0.682371
0
0
0
0
490
0.744681
0
0
177
0.268997
40f5d8bb4fa97a86898d698a3335896827401fd2
941
py
Python
neo/Network/Inventory.py
BSathvik/neo-python
90eddde0128f8ba41207d88fd68041682e307315
[ "MIT" ]
15
2018-02-27T13:07:00.000Z
2021-01-29T10:27:41.000Z
neo/Network/Inventory.py
BSathvik/neo-python
90eddde0128f8ba41207d88fd68041682e307315
[ "MIT" ]
3
2021-03-20T05:43:51.000Z
2022-02-11T03:47:50.000Z
neo/Network/Inventory.py
BSathvik/neo-python
90eddde0128f8ba41207d88fd68041682e307315
[ "MIT" ]
6
2018-07-13T05:00:44.000Z
2020-10-28T19:41:54.000Z
# -*- coding:utf-8 -*- """ Description: Inventory Class Usage: from neo.Network.Inventory import Inventory """ from neo.IO.MemoryStream import MemoryStream from neocore.IO.BinaryWriter import BinaryWriter class Inventory(object): """docstring for Inventory""" def __init__(self): """ Create an instance """ super(Inventory, self).__init__() self.hash = None def GetHashData(self): """ Get the hashable data. Returns: bytes: """ ms = MemoryStream() w = BinaryWriter(ms) self.SerializeUnsigned(w) ms.flush() return ms.ToArray() def GetScriptHashesForVerifying(self): pass def Serialize(self, writer): pass def SerializeUnsigned(self, writer): pass def Deserialize(self, reader): pass def DeserializeUnsigned(self, reader): pass
18.82
48
0.587673
724
0.769394
0
0
0
0
0
0
271
0.287991
40f5e193e0cc75def4b2ba8e4e082e5183a4bea7
4,748
py
Python
tests/test_api_gateway/test_common/test_exceptions.py
Clariteia/api_gateway_common
e68095f31091699fc6cc4537bd6acf97a8dc6c3e
[ "MIT" ]
3
2021-05-14T08:13:09.000Z
2021-05-26T11:25:35.000Z
tests/test_api_gateway/test_common/test_exceptions.py
Clariteia/api_gateway_common
e68095f31091699fc6cc4537bd6acf97a8dc6c3e
[ "MIT" ]
27
2021-05-13T08:43:19.000Z
2021-08-24T17:19:36.000Z
tests/test_api_gateway/test_common/test_exceptions.py
Clariteia/api_gateway_common
e68095f31091699fc6cc4537bd6acf97a8dc6c3e
[ "MIT" ]
null
null
null
""" Copyright (C) 2021 Clariteia SL This file is part of minos framework. Minos framework can not be copied and/or distributed without the express permission of Clariteia SL. """ import unittest from minos.api_gateway.common import ( EmptyMinosModelSequenceException, MinosAttributeValidationException, MinosConfigDefaultAlreadySetException, MinosConfigException, MinosException, MinosMalformedAttributeException, MinosModelAttributeException, MinosModelException, MinosParseAttributeException, MinosRepositoryAggregateNotFoundException, MinosRepositoryDeletedAggregateException, MinosRepositoryException, MinosRepositoryManuallySetAggregateIdException, MinosRepositoryManuallySetAggregateVersionException, MinosRepositoryNonProvidedException, MinosRepositoryUnknownActionException, MinosReqAttributeException, MinosTypeAttributeException, MultiTypeMinosModelSequenceException, ) class TestExceptions(unittest.TestCase): def test_type(self): self.assertTrue(issubclass(MinosException, Exception)) def test_base_repr(self): exception = MinosException("test") self.assertEqual("MinosException(message='test')", repr(exception)) def test_base_str(self): exception = MinosException("test") self.assertEqual("test", str(exception)) def test_config(self): self.assertTrue(issubclass(MinosConfigException, MinosException)) def test_config_default_already_set(self): self.assertTrue(issubclass(MinosConfigDefaultAlreadySetException, MinosConfigException)) def test_repository_aggregate_not_found(self): self.assertTrue(issubclass(MinosRepositoryAggregateNotFoundException, MinosRepositoryException)) def test_repository_deleted_aggregate(self): self.assertTrue(issubclass(MinosRepositoryDeletedAggregateException, MinosRepositoryException)) def test_repository_manually_set_aggregate_id(self): self.assertTrue(issubclass(MinosRepositoryManuallySetAggregateIdException, MinosRepositoryException)) def test_repository_manually_set_aggregate_version(self): self.assertTrue(issubclass(MinosRepositoryManuallySetAggregateVersionException, MinosRepositoryException,)) def test_repository_bad_action(self): self.assertTrue(issubclass(MinosRepositoryUnknownActionException, MinosRepositoryException)) def test_repository_non_set(self): self.assertTrue(issubclass(MinosRepositoryNonProvidedException, MinosRepositoryException)) def test_model(self): self.assertTrue(issubclass(MinosModelException, MinosException)) def test_model_emtpy_sequence(self): self.assertTrue(issubclass(EmptyMinosModelSequenceException, MinosModelException)) def test_model_multi_type_sequence(self): self.assertTrue(issubclass(MultiTypeMinosModelSequenceException, MinosModelException)) def test_model_attribute(self): self.assertTrue(issubclass(MinosModelAttributeException, MinosException)) def test_required_attribute(self): self.assertTrue(issubclass(MinosReqAttributeException, MinosModelAttributeException)) def test_type_attribute(self): self.assertTrue(issubclass(MinosTypeAttributeException, MinosModelAttributeException)) def test_type_attribute_repr(self): exception = MinosTypeAttributeException("foo", float, True) message = ( "MinosTypeAttributeException(message=\"The <class 'float'> expected type for 'foo' " "does not match with the given data type: <class 'bool'>\")" ) self.assertEqual(message, repr(exception)) def test_malformed_attribute(self): self.assertTrue(issubclass(MinosMalformedAttributeException, MinosModelAttributeException)) def test_parse_attribute(self): self.assertTrue(issubclass(MinosParseAttributeException, MinosModelAttributeException)) def test_attribute_parse_repr(self): exception = MinosParseAttributeException("foo", 34, ValueError()) message = ( 'MinosParseAttributeException(message="ValueError() ' "was raised while parsing 'foo' field with 34 value.\")" ) self.assertEqual(message, repr(exception)) def test_attribute_validation(self): self.assertTrue(issubclass(MinosAttributeValidationException, MinosModelAttributeException)) def test_attribute_validation_repr(self): exception = MinosAttributeValidationException("foo", 34) message = "MinosAttributeValidationException(message=\"34 value does not pass the 'foo' field validation.\")" self.assertEqual(message, repr(exception)) if __name__ == "__main__": unittest.main()
39.566667
117
0.771272
3,737
0.787068
0
0
0
0
0
0
607
0.127843
40f7a744294465f0d9fa2d8e7fd481a7d36370d7
977
py
Python
native_prophet.py
1143048123/cddh
52d91f02359af659343b8c4ad4f2ba349de20852
[ "MIT" ]
177
2018-01-05T01:46:07.000Z
2018-03-09T05:32:45.000Z
native_prophet.py
1143048123/cddh
52d91f02359af659343b8c4ad4f2ba349de20852
[ "MIT" ]
15
2018-01-05T03:28:38.000Z
2018-01-17T03:04:06.000Z
native_prophet.py
1143048123/cddh
52d91f02359af659343b8c4ad4f2ba349de20852
[ "MIT" ]
55
2018-01-05T05:24:55.000Z
2018-01-25T11:53:38.000Z
# coding: utf-8 # quote from kmaiya/HQAutomator # 谷歌搜索部分原版搬运,未做修改 import time import json import requests import webbrowser questions = [] def get_answer(): resp = requests.get('http://htpmsg.jiecaojingxuan.com/msg/current',timeout=4).text resp_dict = json.loads(resp) if resp_dict['msg'] == 'no data': return 'Waiting for question...' else: resp_dict = eval(str(resp)) question = resp_dict['data']['event']['desc'] question = question[question.find('.') + 1:question.find('?')] if question not in questions: questions.append(question) webbrowser.open("https://www.baidu.com/s?ie=UTF-8&wd=" + question) else: return 'Waiting for new question...' def main(): while True: print(time.strftime('%H:%M:%S',time.localtime(time.time()))) print(get_answer()) time.sleep(1) if __name__ == '__main__': main()
25.710526
87
0.58956
0
0
0
0
0
0
0
0
293
0.290387
40f82a11d157a4c060d3cd0a073c10873cb2a999
21,936
py
Python
src/utils/TensorflowModel_pb2.py
nicolas-ivanov/MimicAndRephrase
446674e1e6af133618e0e9888c3650c0ce9012e4
[ "MIT" ]
12
2019-06-17T19:41:35.000Z
2022-02-17T19:51:45.000Z
src/utils/TensorflowModel_pb2.py
nicolas-ivanov/MimicAndRephrase
446674e1e6af133618e0e9888c3650c0ce9012e4
[ "MIT" ]
1
2021-02-23T15:28:32.000Z
2021-02-23T15:28:32.000Z
src/utils/TensorflowModel_pb2.py
isabella232/MimicAndRephrase
bd29a995b211cb4f7933fa990b0bba1564c22450
[ "MIT" ]
3
2020-09-07T16:44:11.000Z
2020-11-14T19:00:05.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: TensorflowModel.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='TensorflowModel.proto', package='ai.eloquent', syntax='proto3', serialized_pb=_b('\n\x15TensorflowModel.proto\x12\x0b\x61i.eloquent\"\x8f\x01\n\x0fTensorflowModel\x12\x18\n\x10serialized_graph\x18\x01 \x01(\x0c\x12.\n\x0ctoken_mapper\x18\x02 \x01(\x0b\x32\x18.ai.eloquent.TokenMapper\x12\x16\n\x0etrain_set_size\x18\x04 \x01(\x03\x12\x1a\n\x12train_set_positive\x18\x05 \x01(\x03\"\x80\x01\n\x0cTokenMapping\x12+\n\x04type\x18\x01 \x01(\x0e\x32\x1d.ai.eloquent.TokenMappingType\x12\r\n\x05regex\x18\x02 \x01(\t\x12\x10\n\x08num_hash\x18\x03 \x01(\x05\x12\x12\n\ndebug_base\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\t\"\x9d\x01\n\x0bTokenMapper\x12\x30\n\rtoken_mapping\x18\x01 \x03(\x0b\x32\x19.ai.eloquent.TokenMapping\x12.\n\x0bunk_mapping\x18\x02 \x03(\x0b\x32\x19.ai.eloquent.TokenMapping\x12,\n\x07vectors\x18\x03 \x03(\x0b\x32\x1b.ai.eloquent.TunedEmbedding\"\x1f\n\x0eTunedEmbedding\x12\r\n\x05value\x18\x01 \x03(\x02\"\xf0\x03\n\x1aTensorflowModelPerformance\x12\x0f\n\x07\x64\x65v_set\x18\x01 \x03(\t\x12\x0f\n\x07version\x18\x02 \x01(\x03\x12\x17\n\x0f\x64\x65v_set_version\x18\x03 \x01(\x03\x12\x16\n\x0etrain_set_size\x18\x04 \x01(\x03\x12\x1d\n\x15train_set_total_votes\x18\x05 \x01(\x03\x12\x14\n\x0c\x64\x65v_set_size\x18\x06 \x01(\x03\x12\x1b\n\x13\x64\x65v_set_total_votes\x18\x07 \x01(\x03\x12\x12\n\nbest_epoch\x18\x08 \x01(\x05\x12\x0f\n\x07\x64ropout\x18\t \x01(\x02\x12\x13\n\x0brandom_seed\x18\n \x01(\x05\x12\x12\n\nhidden_dim\x18\x0b \x01(\x05\x12\x15\n\rtrue_positive\x18\x0c \x01(\x03\x12\x16\n\x0e\x66\x61lse_positive\x18\r \x01(\x03\x12\x16\n\x0e\x66\x61lse_negative\x18\x0e \x01(\x03\x12\x15\n\rtrue_negative\x18\x0f \x01(\x03\x12\x11\n\tprecision\x18\x10 \x01(\x02\x12\x0e\n\x06recall\x18\x11 \x01(\x02\x12\n\n\x02\x66\x31\x18\x12 \x01(\x02\x12\x10\n\x08\x61\x63\x63uracy\x18\x13 \x01(\x02\x12@\n\x08\x65xamples\x18\x14 \x03(\x0b\x32..ai.eloquent.TensorflowModelPerformanceExample\"S\n!TensorflowModelPerformanceExample\x12\r\n\x05input\x18\x01 \x03(\t\x12\x0f\n\x07guesses\x18\x02 \x03(\x02\x12\x0e\n\x06labels\x18\x03 \x03(\x05*2\n\x10TokenMappingType\x12\t\n\x05REGEX\x10\x00\x12\x08\n\x04HASH\x10\x01\x12\t\n\x05TOKEN\x10\x02\x42)\n\x10\x61i.eloquent.dataB\x15TensorflowModelProtosb\x06proto3') ) _TOKENMAPPINGTYPE = _descriptor.EnumDescriptor( name='TokenMappingType', full_name='ai.eloquent.TokenMappingType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='REGEX', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='HASH', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='TOKEN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=1092, serialized_end=1142, ) _sym_db.RegisterEnumDescriptor(_TOKENMAPPINGTYPE) TokenMappingType = enum_type_wrapper.EnumTypeWrapper(_TOKENMAPPINGTYPE) REGEX = 0 HASH = 1 TOKEN = 2 _TENSORFLOWMODEL = _descriptor.Descriptor( name='TensorflowModel', full_name='ai.eloquent.TensorflowModel', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='serialized_graph', full_name='ai.eloquent.TensorflowModel.serialized_graph', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='token_mapper', full_name='ai.eloquent.TensorflowModel.token_mapper', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_set_size', full_name='ai.eloquent.TensorflowModel.train_set_size', index=2, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_set_positive', full_name='ai.eloquent.TensorflowModel.train_set_positive', index=3, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=39, serialized_end=182, ) _TOKENMAPPING = _descriptor.Descriptor( name='TokenMapping', full_name='ai.eloquent.TokenMapping', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='ai.eloquent.TokenMapping.type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='regex', full_name='ai.eloquent.TokenMapping.regex', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_hash', full_name='ai.eloquent.TokenMapping.num_hash', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='debug_base', full_name='ai.eloquent.TokenMapping.debug_base', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tokens', full_name='ai.eloquent.TokenMapping.tokens', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=185, serialized_end=313, ) _TOKENMAPPER = _descriptor.Descriptor( name='TokenMapper', full_name='ai.eloquent.TokenMapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='token_mapping', full_name='ai.eloquent.TokenMapper.token_mapping', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='unk_mapping', full_name='ai.eloquent.TokenMapper.unk_mapping', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='vectors', full_name='ai.eloquent.TokenMapper.vectors', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=316, serialized_end=473, ) _TUNEDEMBEDDING = _descriptor.Descriptor( name='TunedEmbedding', full_name='ai.eloquent.TunedEmbedding', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='ai.eloquent.TunedEmbedding.value', index=0, number=1, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=475, serialized_end=506, ) _TENSORFLOWMODELPERFORMANCE = _descriptor.Descriptor( name='TensorflowModelPerformance', full_name='ai.eloquent.TensorflowModelPerformance', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dev_set', full_name='ai.eloquent.TensorflowModelPerformance.dev_set', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='version', full_name='ai.eloquent.TensorflowModelPerformance.version', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dev_set_version', full_name='ai.eloquent.TensorflowModelPerformance.dev_set_version', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_set_size', full_name='ai.eloquent.TensorflowModelPerformance.train_set_size', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_set_total_votes', full_name='ai.eloquent.TensorflowModelPerformance.train_set_total_votes', index=4, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dev_set_size', full_name='ai.eloquent.TensorflowModelPerformance.dev_set_size', index=5, number=6, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dev_set_total_votes', full_name='ai.eloquent.TensorflowModelPerformance.dev_set_total_votes', index=6, number=7, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='best_epoch', full_name='ai.eloquent.TensorflowModelPerformance.best_epoch', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dropout', full_name='ai.eloquent.TensorflowModelPerformance.dropout', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='random_seed', full_name='ai.eloquent.TensorflowModelPerformance.random_seed', index=9, number=10, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hidden_dim', full_name='ai.eloquent.TensorflowModelPerformance.hidden_dim', index=10, number=11, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='true_positive', full_name='ai.eloquent.TensorflowModelPerformance.true_positive', index=11, number=12, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='false_positive', full_name='ai.eloquent.TensorflowModelPerformance.false_positive', index=12, number=13, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='false_negative', full_name='ai.eloquent.TensorflowModelPerformance.false_negative', index=13, number=14, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='true_negative', full_name='ai.eloquent.TensorflowModelPerformance.true_negative', index=14, number=15, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='precision', full_name='ai.eloquent.TensorflowModelPerformance.precision', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='recall', full_name='ai.eloquent.TensorflowModelPerformance.recall', index=16, number=17, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f1', full_name='ai.eloquent.TensorflowModelPerformance.f1', index=17, number=18, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='accuracy', full_name='ai.eloquent.TensorflowModelPerformance.accuracy', index=18, number=19, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='examples', full_name='ai.eloquent.TensorflowModelPerformance.examples', index=19, number=20, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=509, serialized_end=1005, ) _TENSORFLOWMODELPERFORMANCEEXAMPLE = _descriptor.Descriptor( name='TensorflowModelPerformanceExample', full_name='ai.eloquent.TensorflowModelPerformanceExample', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='input', full_name='ai.eloquent.TensorflowModelPerformanceExample.input', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='guesses', full_name='ai.eloquent.TensorflowModelPerformanceExample.guesses', index=1, number=2, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='labels', full_name='ai.eloquent.TensorflowModelPerformanceExample.labels', index=2, number=3, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1007, serialized_end=1090, ) _TENSORFLOWMODEL.fields_by_name['token_mapper'].message_type = _TOKENMAPPER _TOKENMAPPING.fields_by_name['type'].enum_type = _TOKENMAPPINGTYPE _TOKENMAPPER.fields_by_name['token_mapping'].message_type = _TOKENMAPPING _TOKENMAPPER.fields_by_name['unk_mapping'].message_type = _TOKENMAPPING _TOKENMAPPER.fields_by_name['vectors'].message_type = _TUNEDEMBEDDING _TENSORFLOWMODELPERFORMANCE.fields_by_name['examples'].message_type = _TENSORFLOWMODELPERFORMANCEEXAMPLE DESCRIPTOR.message_types_by_name['TensorflowModel'] = _TENSORFLOWMODEL DESCRIPTOR.message_types_by_name['TokenMapping'] = _TOKENMAPPING DESCRIPTOR.message_types_by_name['TokenMapper'] = _TOKENMAPPER DESCRIPTOR.message_types_by_name['TunedEmbedding'] = _TUNEDEMBEDDING DESCRIPTOR.message_types_by_name['TensorflowModelPerformance'] = _TENSORFLOWMODELPERFORMANCE DESCRIPTOR.message_types_by_name['TensorflowModelPerformanceExample'] = _TENSORFLOWMODELPERFORMANCEEXAMPLE DESCRIPTOR.enum_types_by_name['TokenMappingType'] = _TOKENMAPPINGTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) TensorflowModel = _reflection.GeneratedProtocolMessageType('TensorflowModel', (_message.Message,), dict( DESCRIPTOR = _TENSORFLOWMODEL, __module__ = 'TensorflowModel_pb2' # @@protoc_insertion_point(class_scope:ai.eloquent.TensorflowModel) )) _sym_db.RegisterMessage(TensorflowModel) TokenMapping = _reflection.GeneratedProtocolMessageType('TokenMapping', (_message.Message,), dict( DESCRIPTOR = _TOKENMAPPING, __module__ = 'TensorflowModel_pb2' # @@protoc_insertion_point(class_scope:ai.eloquent.TokenMapping) )) _sym_db.RegisterMessage(TokenMapping) TokenMapper = _reflection.GeneratedProtocolMessageType('TokenMapper', (_message.Message,), dict( DESCRIPTOR = _TOKENMAPPER, __module__ = 'TensorflowModel_pb2' # @@protoc_insertion_point(class_scope:ai.eloquent.TokenMapper) )) _sym_db.RegisterMessage(TokenMapper) TunedEmbedding = _reflection.GeneratedProtocolMessageType('TunedEmbedding', (_message.Message,), dict( DESCRIPTOR = _TUNEDEMBEDDING, __module__ = 'TensorflowModel_pb2' # @@protoc_insertion_point(class_scope:ai.eloquent.TunedEmbedding) )) _sym_db.RegisterMessage(TunedEmbedding) TensorflowModelPerformance = _reflection.GeneratedProtocolMessageType('TensorflowModelPerformance', (_message.Message,), dict( DESCRIPTOR = _TENSORFLOWMODELPERFORMANCE, __module__ = 'TensorflowModel_pb2' # @@protoc_insertion_point(class_scope:ai.eloquent.TensorflowModelPerformance) )) _sym_db.RegisterMessage(TensorflowModelPerformance) TensorflowModelPerformanceExample = _reflection.GeneratedProtocolMessageType('TensorflowModelPerformanceExample', (_message.Message,), dict( DESCRIPTOR = _TENSORFLOWMODELPERFORMANCEEXAMPLE, __module__ = 'TensorflowModel_pb2' # @@protoc_insertion_point(class_scope:ai.eloquent.TensorflowModelPerformanceExample) )) _sym_db.RegisterMessage(TensorflowModelPerformanceExample) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\020ai.eloquent.dataB\025TensorflowModelProtos')) # @@protoc_insertion_point(module_scope)
42.594175
2,175
0.746034
0
0
0
0
0
0
0
0
5,887
0.268372
40f93ae054bebaa285f8c2f48242d86d8297b31f
8,460
py
Python
python/ht/nodes/styles/styles.py
Hengle/Houdini-Toolbox
a1fd7d3dd73d3fc4cea78e29aeff1d190c41bae3
[ "MIT" ]
136
2015-01-03T04:03:23.000Z
2022-02-07T11:08:57.000Z
python/ht/nodes/styles/styles.py
Hengle/Houdini-Toolbox
a1fd7d3dd73d3fc4cea78e29aeff1d190c41bae3
[ "MIT" ]
11
2017-02-09T20:05:04.000Z
2021-01-24T22:25:59.000Z
python/ht/nodes/styles/styles.py
Hengle/Houdini-Toolbox
a1fd7d3dd73d3fc4cea78e29aeff1d190c41bae3
[ "MIT" ]
26
2015-08-18T12:11:02.000Z
2020-12-19T01:53:31.000Z
"""Classes representing color entries and mappings.""" # ============================================================================= # IMPORTS # ============================================================================= from __future__ import annotations # Standard Library import re from typing import TYPE_CHECKING, Optional, Tuple if TYPE_CHECKING: import hou # ============================================================================= # CLASSES # ============================================================================= class StyleConstant: """This class represents a named constant style. :param name: The constant's name. :param color: The constant's color. :param color_type: The color type. :param shape: The constant's shape. :param file_path: The path to the definition file. :return: """ def __init__( self, name: str, color: hou.Color, color_type: str, shape: Optional[str] = None, file_path: Optional[str] = None, ): self._color = color self._color_type = color_type self._shape = shape self._file_path = file_path self._name = name # ------------------------------------------------------------------------- # SPECIAL METHODS # ------------------------------------------------------------------------- def __eq__(self, other): if not isinstance(other, StyleConstant): return NotImplemented # For our purposes we only care if the names match. return self.name == other.name def __hash__(self): return hash(self.name) def __ne__(self, other): if not isinstance(other, StyleConstant): return NotImplemented return not self.__eq__(other) def __repr__(self): return "<StyleConstant {} ({})>".format(self.name, self.color) # ------------------------------------------------------------------------- # PROPERTIES # ------------------------------------------------------------------------- @property def color(self) -> hou.Color: """The mapped color.""" return self._color # ------------------------------------------------------------------------- @property def color_type(self) -> str: """The mapped color type.""" return self._color_type # ------------------------------------------------------------------------- @property def file_path(self) -> Optional[str]: """Path the definition was from.""" return self._file_path # ------------------------------------------------------------------------- @property def name(self) -> str: """The name the color is mapped to.""" return self._name # ------------------------------------------------------------------------- @property def shape(self) -> Optional[str]: """The mapped shape.""" return self._shape # ------------------------------------------------------------------------- # METHODS # ------------------------------------------------------------------------- def apply_to_node(self, node: hou.Node): """Apply styling to a node. :param node: Node to apply to :return: """ if self.color is not None: node.setColor(self.color) if self.shape is not None: node.setUserData("nodeshape", self.shape) class StyleRule: """This class represents a color application bound to a name. :param name: The rule's name. :param color: The rule's color. :param color_type: The rule's color type. :param shape: The rule's shape. :param file_path: The path to the definition file. :return: """ def __init__( self, name: str, color: hou.Color, color_type: str, shape: Optional[str] = None, file_path: Optional[str] = None, ): self._color = color self._color_type = color_type self._shape = shape self._file_path = file_path self._name = name # ------------------------------------------------------------------------- # SPECIAL METHODS # ------------------------------------------------------------------------- def __eq__(self, other): if not isinstance(other, StyleRule): return NotImplemented # For our purposes we only care if the names match. return self.name == other.name def __hash__(self): return hash(self.name) def __ne__(self, other): if not isinstance(other, StyleRule): return NotImplemented return not self.__eq__(other) def __repr__(self): return "<StyleRule {} ({})>".format(self.name, self.color) def __str__(self): value = self._get_typed_color_value() components = [re.sub("\\.*0+$", "", "{:0.3f}".format(val)) for val in value] return "(" + ", ".join(components) + ")" # ------------------------------------------------------------------------- # NON-PUBLIC METHODS # ------------------------------------------------------------------------- def _get_typed_color_value(self) -> Tuple[float]: """Get the appropriately typed color values. :return: The color value in the correct type. """ to_func = getattr(self.color, self.color_type.lower()) return to_func() # ------------------------------------------------------------------------- # PROPERTIES # ------------------------------------------------------------------------- @property def color(self) -> hou.Color: """The mapped color.""" return self._color @property def color_type(self) -> str: """The mapped color type.""" return self._color_type @property def shape(self) -> Optional[str]: """The mapped shape name.""" return self._shape @property def file_path(self) -> Optional[str]: """Path the definition was from.""" return self._file_path @property def name(self) -> str: """The name the style is mapped to.""" return self._name # ------------------------------------------------------------------------- # METHODS # ------------------------------------------------------------------------- def apply_to_node(self, node: hou.Node): """Apply styling to a node. :param node: Node to apply to :return: """ if self.color is not None: node.setColor(self.color) if self.shape is not None: node.setUserData("nodeshape", self.shape) class ConstantRule: """This class represents a style application bound to a named constant. :param name: The rule's name. :param constant_name: The constant name. :param file_path: The path to the definition file. :return: """ def __init__(self, name: str, constant_name: str, file_path: Optional[str] = None): self._constant_name = constant_name self._file_path = file_path self._name = name # ------------------------------------------------------------------------- # SPECIAL METHODS # ------------------------------------------------------------------------- def __eq__(self, other): if not isinstance(other, ConstantRule): return NotImplemented # For our purposes we only care if the names match. return self.name == other.name def __hash__(self): return hash((self.constant_name, self.name)) def __ne__(self, other): if not isinstance(other, ConstantRule): return NotImplemented return not self.__eq__(other) def __repr__(self): return "<ConstantRule {} ({})>".format(self.name, self.constant_name) # ------------------------------------------------------------------------- # PROPERTIES # ------------------------------------------------------------------------- @property def constant_name(self) -> str: """The mapped constant.""" return self._constant_name @property def file_path(self) -> Optional[str]: """Path the definition was from.""" return self._file_path @property def name(self) -> str: """The name the style is mapped to.""" return self._name
28.389262
87
0.450473
7,904
0.934279
0
0
1,463
0.172931
0
0
3,959
0.467967
40f9e62c7e463cdddcd04524566bd56b8cb59940
1,407
py
Python
src/sntk/kernels/ntk.py
gear/s-ntk
3cd72cef4c941941750e03820c9c2850b81d529e
[ "MIT" ]
null
null
null
src/sntk/kernels/ntk.py
gear/s-ntk
3cd72cef4c941941750e03820c9c2850b81d529e
[ "MIT" ]
null
null
null
src/sntk/kernels/ntk.py
gear/s-ntk
3cd72cef4c941941750e03820c9c2850b81d529e
[ "MIT" ]
null
null
null
import math import numpy as np # return an array K of size (d_max, d_max, N, N), K[i][j] is kernel value of depth i + 1 with first j layers fixed def kernel_value_batch(X, d_max): K = np.zeros((d_max, d_max, X.shape[0], X.shape[0])) for fix_dep in range(d_max): S = np.matmul(X, X.T) H = np.zeros_like(S) for dep in range(d_max): if fix_dep <= dep: H += S K[dep][fix_dep] = H L = np.diag(S) P = np.clip(np.sqrt(np.outer(L, L)), a_min = 1e-9, a_max = None) Sn = np.clip(S / P, a_min = -1, a_max = 1) S = (Sn * (math.pi - np.arccos(Sn)) + np.sqrt(1.0 - Sn * Sn)) * P / 2.0 / math.pi H = H * (math.pi - np.arccos(Sn)) / 2.0 / math.pi return K # return an array K of size (N, N), depth d_max, first fix_dep layers fixed def kernel_value(X, d_max, fix_dep): K = np.zeros((d_max, X.shape[0], X.shape[0])) S = np.matmul(X, X.T) H = np.zeros_like(S) for dep in range(d_max): if fix_dep <= dep: H += S K[dep] = H L = np.diag(S) P = np.clip(np.sqrt(np.outer(L, L)), a_min = 1e-9, a_max = None) Sn = np.clip(S / P, a_min = -1, a_max = 1) S = (Sn * (math.pi - np.arccos(Sn)) + np.sqrt(1.0 - Sn * Sn)) * P / 2.0 / math.pi H = H * (math.pi - np.arccos(Sn)) / 2.0 / math.pi return K[d_max - 1]
40.2
115
0.509595
0
0
0
0
0
0
0
0
190
0.135039
40fbdeebc9d14240c78ed2bb4a08d9c0a87ce714
1,509
py
Python
nlpproject/main/words.py
Hrishi2312/IR-reimagined
2bcaf207a402bdae9fc39be516ccb607ce78d174
[ "MIT" ]
null
null
null
nlpproject/main/words.py
Hrishi2312/IR-reimagined
2bcaf207a402bdae9fc39be516ccb607ce78d174
[ "MIT" ]
null
null
null
nlpproject/main/words.py
Hrishi2312/IR-reimagined
2bcaf207a402bdae9fc39be516ccb607ce78d174
[ "MIT" ]
null
null
null
import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer, PorterStemmer from nltk.tokenize import sent_tokenize , word_tokenize import glob import re import os import numpy as np import sys nltk.download('stopwords') nltk.download('punkt') Stopwords = set(stopwords.words('english')) all_words = [] dict_global = {} file_folder = 'main/documents/*' idx = 1 files_with_index = {} def finding_all_unique_words_and_freq(words): words_unique = [] word_freq = {} for word in words: if word not in words_unique: words_unique.append(word) for word in words_unique: word_freq[word] = words.count(word) return word_freq def finding_freq_of_word_in_doc(word,words): freq = words.count(word) def remove_special_characters(text): regex = re.compile('[^a-zA-Z0-9\s]') text_returned = re.sub(regex,'',text) return text_returned for file in glob.glob(file_folder): fname = file file = open(file , "r") text = file.read() text = remove_special_characters(text) text = re.sub(re.compile('\d'),'',text) sentences = sent_tokenize(text) words = word_tokenize(text) words = [word for word in words if len(words)>1] words = [word.lower() for word in words] words = [word for word in words if word not in Stopwords] dict_global.update(finding_all_unique_words_and_freq(words)) files_with_index[idx] = os.path.basename(fname) idx = idx + 1 unique_words_all = set(dict_global.keys())
28.471698
64
0.705765
0
0
0
0
0
0
0
0
72
0.047714
40fd39b618c9cae6572cdfad086049a95c4b491f
4,911
py
Python
oseoserver/operations/describeresultaccess.py
pyoseo/oseoserver
8c97ee5a7d698cc989e1c8cab8cfe0db78491307
[ "Apache-2.0" ]
null
null
null
oseoserver/operations/describeresultaccess.py
pyoseo/oseoserver
8c97ee5a7d698cc989e1c8cab8cfe0db78491307
[ "Apache-2.0" ]
10
2015-02-10T17:10:33.000Z
2018-04-05T10:05:01.000Z
oseoserver/operations/describeresultaccess.py
pyoseo/oseoserver
8c97ee5a7d698cc989e1c8cab8cfe0db78491307
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Ricardo Garcia Silva # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the OSEO DescribeResultAccess operation""" from __future__ import absolute_import import logging import datetime as dt from django.core.exceptions import ObjectDoesNotExist import pytz import pyxb import pyxb.bundles.opengis.oseo_1_0 as oseo from .. import errors from .. import models from ..models import Order from .. import utilities logger = logging.getLogger(__name__) def describe_result_access(request, user): """Implements the OSEO DescribeResultAccess operation. This operation returns the location of the order items that are ready to be downloaded by the user. The DescribeResultAccess operation only reports on the availability of order items that specify onlineDataAccess as their delivery option. Parameters ---------- request: oseo.DescribeResultAccess The incoming request user: django.contrib.auth.User The django user that placed the request Returns ------- response: oseo.SubmitAck The response SubmitAck instance """ try: order = Order.objects.get(id=request.orderId) except ObjectDoesNotExist: raise errors.InvalidOrderIdentifierError() if order.user != user: raise errors.AuthorizationFailedError completed_items = get_order_completed_items(order, request.subFunction) logger.debug("completed_items: {}".format(completed_items)) order.last_describe_result_access_request = dt.datetime.now(pytz.utc) order.save() response = oseo.DescribeResultAccessResponse(status='success') item_id = None for item in completed_items: iut = oseo.ItemURLType() iut.itemId = item_id or item.item_specification.item_id iut.productId = oseo.ProductIdType( identifier=item.identifier, ) iut.productId.collectionId = utilities.get_collection_identifier( item.item_specification.collection) iut.itemAddress = oseo.OnLineAccessAddressType() iut.itemAddress.ResourceAddress = pyxb.BIND() iut.itemAddress.ResourceAddress.URL = item.url iut.expirationDate = item.expires_on response.URLs.append(iut) return response def get_order_completed_items(order, behaviour): """Get the completed order items for product orders. Parameters ---------- order: oseoserver.models.Order The order for which completed items are to be returned behaviour: str Either 'allReady' or 'nextReady', as defined in the OSEO specification Returns -------- list The completed order items for this order """ batches = order.batches.all() all_complete = [] for batch in batches: complete_items = get_batch_completed_items(batch, behaviour) all_complete.extend(complete_items) return all_complete def get_batch_completed_items(batch, behaviour): last_time = batch.order.last_describe_result_access_request list_all_items = last_time is None or behaviour == batch.ALL_READY order_delivery = batch.order.selected_delivery_option.delivery_type batch_complete_items = [] queryset = batch.order_items.filter( status=batch.order.COMPLETED ).order_by("item_specification__id") for item in queryset: item_spec = item.item_specification try: delivery = ( item_spec.selected_delivery_option.delivery_type) except models.ItemSpecificationDeliveryOption.DoesNotExist: delivery = order_delivery if delivery != models.BaseDeliveryOption.ONLINE_DATA_ACCESS: # describeResultAccess only applies to items that specify # 'onlinedataaccess' as delivery type logger.debug( "item {} does not specify onlinedataaccess as its " "delivery type, skipping item...".format(item) ) continue completed_since_last = (item.completed_on is None or last_time is None or item.completed_on >= last_time) list_this_item = ( behaviour == batch.NEXT_READY and completed_since_last) if list_all_items or list_this_item: batch_complete_items.append(item) return batch_complete_items
34.584507
76
0.696192
0
0
0
0
0
0
0
0
1,851
0.376909
40feb012148cebe6483dabf37d02607456645a00
2,210
py
Python
utils/decorator/dasyncio.py
masonsxu/red-flask
e8b978ee08072efcb2b3b7964065f272d8c875ab
[ "MIT" ]
null
null
null
utils/decorator/dasyncio.py
masonsxu/red-flask
e8b978ee08072efcb2b3b7964065f272d8c875ab
[ "MIT" ]
null
null
null
utils/decorator/dasyncio.py
masonsxu/red-flask
e8b978ee08072efcb2b3b7964065f272d8c875ab
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # 基于python Threading模块封装的异步函数装饰器 import time from functools import wraps from threading import Thread def async_call(fn): """一次简单的异步处理操作,装饰在要异步执行的函数前,再调用该函数即可执行单次异步操作(开辟一条新的线程) Args: :fn(function):需要异步处理的方法 Return: :wrapper(function): """ @wraps(fn) # 解决被装饰的函数的名字会变成装饰器函数,并还原函数名称 def wrapper(*args, **kwargs): Thread(target=fn, args=args, kwargs=kwargs).start() return wrapper def async_pool(pool_links): """可定义链接数的线程池装饰器,可用于并发执行多次任务 Args: :pool_links(int):进程的数量 Returns: :sub_wrapper(function):对象装饰器 """ def sub_wrapper(func): @wraps(func) def wrapper(*args, **kwargs): for _ in range(0, pool_links): Thread(target=func, args=args, kwargs=kwargs).start() # func(*args, **kwargs) return wrapper return sub_wrapper def async_retry(retry_times, space_time): """自动重试类装饰器,不支持单独异步,但可嵌套于 call 和 pool中使用 Args: :retry_times(int):重试次数 """ def sub_wrapper(func): @wraps(func) def wrapper(*args, **kwargs): try_times = retry_times while try_times > 0: try: func(*args, **kwargs) break except Exception as e: print(e) time.sleep(space_time) try_times = try_times - 1 return wrapper return sub_wrapper # 以下为测试案例代码 # @async_call # def sleep2andprint(): # time.sleep(2) # print('22222222') # @async_pool(pool_links=5) # def pools(): # time.sleep(1) # print('hehe') # @async_retry(retry_times=3, space_time=1) # def check(): # a = 1 # b = '2' # print(a + b) # def check_all(): # print('正在测试async_call组件') # print('111111') # sleep2andprint() # print('333333') # print('若3333出现在22222此前,异步成功') # print('正在测试async_pool组件') # pools() # print('在一秒内打印出5个hehe为成功') # print('正在测试async_retry组件') # check() # print('打印三次异常则成功') # print(check.__name__) # print(sleep2andprint.__name__) # print(pools.__name__) # check_all()
19.557522
69
0.570588
0
0
0
0
757
0.28523
0
0
1,582
0.596081
40ff8361da6ba11cdb915421c267126671120831
872
py
Python
oo/pessoa.py
wfs18/pythonbirds
aa3332763f9109c1fb7f1140a82a4b51c6402fdb
[ "MIT" ]
null
null
null
oo/pessoa.py
wfs18/pythonbirds
aa3332763f9109c1fb7f1140a82a4b51c6402fdb
[ "MIT" ]
null
null
null
oo/pessoa.py
wfs18/pythonbirds
aa3332763f9109c1fb7f1140a82a4b51c6402fdb
[ "MIT" ]
null
null
null
class Person: olhos = 2 def __init__(self, *children, name=None, year=0): self.year = year self.name = name self.children = list(children) def cumprimentar(self): return 'Hello' @staticmethod def metodo_estatico(): return 123 @classmethod def metodo_classe(cls): return f'{cls} - {cls.olhos}' if __name__ == '__main__': p = Person() eu = Person(name='marcio') wes = Person(eu, name='Wesley') print(p.cumprimentar()) print(p.year) # Atributo de instancia print(p.name) # Atributo de dados for filhos in wes.children: print(filhos.year) p.sobre = 'eu' print(p.sobre) del p.sobre print(p.__dict__) print(p.olhos) print(eu.olhos) print(p.metodo_estatico(), eu.metodo_estatico()) print(p.metodo_classe(), eu.metodo_classe())
22.947368
53
0.605505
372
0.426606
0
0
137
0.15711
0
0
101
0.115826
40ff943d89da7510322d2d4989457bad5b652c0f
179
py
Python
tests/integration/test_combined.py
jonathan-winn-geo/new-repo-example
2fbc54b1d42c57ca1105b1066e47627832cc8185
[ "BSD-3-Clause" ]
null
null
null
tests/integration/test_combined.py
jonathan-winn-geo/new-repo-example
2fbc54b1d42c57ca1105b1066e47627832cc8185
[ "BSD-3-Clause" ]
85
2020-08-12T15:59:48.000Z
2022-01-17T10:28:56.000Z
tests/integration/test_combined.py
cma-open/cmatools
ce5743dca7c5bf1f6ab7fe3af24893a65d0c2db7
[ "BSD-3-Clause" ]
null
null
null
"""Test combined function.""" from cmatools.combine.combine import combined def test_combined(): """Test of combined function""" assert combined() == "this hello cma"
17.9
45
0.692737
0
0
0
0
0
0
0
0
76
0.424581
dc002c294c966dc124207adcde546a050c2603e1
1,323
py
Python
elastalert_modules/top_count_keys_enhancement.py
OpenCoreCH/elastalert
28502d8e81e67649976a6a3d2ccc198a5dd60631
[ "Apache-2.0" ]
null
null
null
elastalert_modules/top_count_keys_enhancement.py
OpenCoreCH/elastalert
28502d8e81e67649976a6a3d2ccc198a5dd60631
[ "Apache-2.0" ]
1
2018-10-05T14:38:22.000Z
2018-10-05T14:38:22.000Z
elastalert_modules/top_count_keys_enhancement.py
OpenCoreCH/elastalert
28502d8e81e67649976a6a3d2ccc198a5dd60631
[ "Apache-2.0" ]
4
2018-10-05T12:11:42.000Z
2022-01-31T10:31:26.000Z
"""Enhancement to reformat `top_events_X` from match in order to reformat and put it back to be able to use in alert message. New format: top_events_keys_XXX -- contains array of corresponding key values defined in `top_count_keys`, where `XXX` key from `top_count_keys` array. top_events_values_XXX -- contains array of corresponding counts. Example: Original: {"top_events_KEY.NAME":{"key_value1": 10, "key_value2": 20}} Reformatted: { "top_events_keys_KEY.NAME":["key_value1", "key_value2"] "top_events_values_KEY.NAME":[10, 20] } Can be used in the rule like: top_count_keys: - 'KEY.NAME' match_enhancements: - 'elastalert_modules.top_count_keys_enhancement.Enhancement' alert_text_args: - top_events_keys_KEY.NAME[0] """ from elastalert.enhancements import BaseEnhancement class Enhancement(BaseEnhancement): def process(self, match): top_count_keys = self.rule['top_count_keys'] if top_count_keys: for k in top_count_keys: key = "top_events_%s" % k if match[key]: filtered = {key: value for (key, value) in match[key].items() if key} match["top_events_keys_%s" % k] = list(filtered.keys()) match["top_events_values_%s" % k] = list(filtered.values())
31.5
94
0.675737
501
0.378685
0
0
0
0
0
0
839
0.634165
dc0041528fa6c63f72d3e18e309efd1fc5282e9f
4,054
py
Python
nets.py
koreyou/SWEM-chainer
728443fb5fc53409648d8bff3ae3e545fb9ac36c
[ "MIT" ]
null
null
null
nets.py
koreyou/SWEM-chainer
728443fb5fc53409648d8bff3ae3e545fb9ac36c
[ "MIT" ]
null
null
null
nets.py
koreyou/SWEM-chainer
728443fb5fc53409648d8bff3ae3e545fb9ac36c
[ "MIT" ]
null
null
null
import numpy import chainer import chainer.functions as F import chainer.links as L from chainer import reporter embed_init = chainer.initializers.Uniform(.25) def block_embed(embed, x, dropout=0.): """Embedding function followed by convolution Args: embed (callable): A :func:`~chainer.functions.embed_id` function or :class:`~chainer.links.EmbedID` link. x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Input variable, which is a :math:`(B, L)`-shaped int array. Its first dimension :math:`(B)` is assumed to be the *minibatch dimension*. The second dimension :math:`(L)` is the length of padded sentences. dropout (float): Dropout ratio. Returns: ~chainer.Variable: Output variable. A float array with shape of :math:`(B, N, L, 1)`. :math:`(N)` is the number of dimensions of word embedding. """ e = embed(x) e = F.dropout(e, ratio=dropout) e = F.transpose(e, (0, 2, 1)) e = e[:, :, :, None] return e class SWEMBase(chainer.Chain): """The base class for SWEM (Simple Word-Embedding-based Models) This model embed tokens to word embedding, encode embedding to with pooling (which needs to be implemented in derived classes) and applies two layer MLP. Args: n_class (int): The number of classes to be predicted. n_vocab (int): The size of vocabulary. emb_size (int): The number of units word embedding. n_units (int): The number of units of MLP. dropout (float): The dropout ratio. """ def __init__(self, n_class, n_vocab, emb_size, n_units, dropout=0.2, initial_emb=None): super(SWEMBase, self).__init__() if initial_emb is None: initial_emb = embed_init with self.init_scope(): self.embed = L.EmbedID( n_vocab, emb_size, ignore_label=-1, initialW=initial_emb) self.l1 = L.Linear(None, n_units) self.l2 = L.Linear(n_units, n_class) self.dropout = dropout def forward(self, xs): return self.predict(xs) def predict(self, xs, softmax=False, argmax=False): x_block = chainer.dataset.convert.concat_examples(xs, padding=-1) ex_block = block_embed(self.embed, x_block, self.dropout) x_len = [len(x) for x in xs] z = self.encode(ex_block, x_len) h = F.relu(self.l1(F.dropout(z, self.dropout))) logits = self.l2(F.dropout(h, self.dropout)) if softmax: return F.softmax(logits).array elif argmax: return self.xp.argmax(logits.array, axis=1) else: return logits def encode(self, ex_block, x_len): raise NotImplementedError() class SWEMhier(SWEMBase): """Hierarchical variation of SWEM (SWEM-hier) Args: n_class (int): The number of classes to be predicted. n_vocab (int): The size of vocabulary. emb_size (int): The number of units word embedding. n_units (int): The number of units of MLP. dropout (float): The dropout ratio. """ def __init__(self, n_class, n_vocab, emb_size, n_units, dropout=0.2, initial_emb=None, window=5): super(SWEMhier, self).__init__( n_class, n_vocab, emb_size, n_units, dropout=dropout, initial_emb=initial_emb) self.window = window def encode(self, ex_block, x_len): if ex_block.shape[2] > self.window: # no need for pooling when length is smaller than the window ex_block = F.average_pooling_2d(ex_block, [self.window, 1], stride=1) return F.max(F.squeeze(ex_block, -1), axis=2) class SWEMconcat(SWEMBase): def encode(self, ex_block, x_len): emb_ave = F.sum(F.squeeze(ex_block, -1), axis=2) / self.xp.array(x_len)[:, None] emb_max = F.max(F.squeeze(ex_block, -1), axis=2) return F.concat((emb_max, emb_ave), axis=1)
34.355932
88
0.620868
2,945
0.726443
0
0
0
0
0
0
1,668
0.411445
dc00b897bcfec50069749b3f13a2b807436fbaab
904
py
Python
src/entities/users.py
MillaKelhu/ohtu-lukuvinkkikirjasto
d195e53824bc5d13ded97112a8c388e05775666c
[ "MIT" ]
null
null
null
src/entities/users.py
MillaKelhu/ohtu-lukuvinkkikirjasto
d195e53824bc5d13ded97112a8c388e05775666c
[ "MIT" ]
null
null
null
src/entities/users.py
MillaKelhu/ohtu-lukuvinkkikirjasto
d195e53824bc5d13ded97112a8c388e05775666c
[ "MIT" ]
null
null
null
from flask_login import UserMixin class Users(UserMixin): # Luodaan näennäinen tietokanta käyttäjistä user_database = {"kayttaja": ("kayttaja", "salasana"), "tunnus": ("tunnus", "passu")} def __init__(self, id, username, password): self.id = id self.username = username self.password = password def get_username(self): return self.username @classmethod def get_password(cls, username): username, password = cls.user_database.get(username) return password @classmethod def get_username(cls, username): username, password = cls.user_database.get(username) return username def is_active(self): return True def get_id(self): return self.id def roles(self): return ["ADMIN", "USER"] @classmethod def get(cls, id): return cls.user_database.get(id)
23.179487
60
0.634956
872
0.959296
0
0
343
0.377338
0
0
114
0.125413
dc00c9713e8a8c4632743cc1feb90632ddde0bf5
13,726
py
Python
artifacts/kernel_db/autotvm_scripts/tune_tilling_dense_select_codegen.py
LittleQili/nnfusion
6c1a25db5be459a1053798f1c75bfbd26863ed08
[ "MIT" ]
null
null
null
artifacts/kernel_db/autotvm_scripts/tune_tilling_dense_select_codegen.py
LittleQili/nnfusion
6c1a25db5be459a1053798f1c75bfbd26863ed08
[ "MIT" ]
null
null
null
artifacts/kernel_db/autotvm_scripts/tune_tilling_dense_select_codegen.py
LittleQili/nnfusion
6c1a25db5be459a1053798f1c75bfbd26863ed08
[ "MIT" ]
1
2021-08-11T09:09:53.000Z
2021-08-11T09:09:53.000Z
""" matmul autotvm [batch,in_dim] x [in_dim,out_dim] search_matmul_config(batch,in_dim,out_dim,num_trials): input: batch,in_dim,out_dim,num_trials [batch,in_dim] x [in_dim,out_dim] num_trials: num of trials, default: 1000 output: log (json format) use autotvm to search configs for the matmul lookup_matmul_config(): find a proper matmul config note: trade off kernel's performance and grid & block size launch_matmul_from_config(config): input: config (json string) usage: 1. use search_matmul_config(batch,in_dim,out_dim,num_trials) to search configs 2. use lookup_matmul_config() to get a proper config 3. write the config (in json format) to "matmul_config.json" 4. use launch_matmul_from_config("matmul_config.json") to print the matmul kernel code """ import numpy as np import tvm import logging import sys from tvm import autotvm import topi import json import os from topi.util import get_const_tuple import tensorflow as tf flags = tf.flags flags.DEFINE_string("input_path", "", "path of input file") flags.DEFINE_string("autotvm_log", "../autotvm_logs/all_tuned_tilling_dense_nn.1000.log", "path of autotvm tuning log") flags.DEFINE_string("tvm_profile_log", "/tmp/tvm_profile.log", "path of tvm profile") flags.DEFINE_string("output_path", "", "path of output file") FLAGS = flags.FLAGS @autotvm.template def tvm_matmul_tune_op(batch, in_dim, out_dim): """ autotvm tuning template D=A*B [batch, in_dim] x [in_dim, out_dim] """ A = tvm.placeholder((batch, in_dim), name='A', dtype="float32") B = tvm.placeholder((in_dim, out_dim), name='B', dtype="float32") k = tvm.reduce_axis((0, in_dim), name='k') C = tvm.compute((batch, out_dim), lambda i, j: tvm.sum( A[i, k] * B[k, j], axis=k), name='C') cfg = autotvm.get_config() s = tvm.create_schedule(C.op) AA = s.cache_read(A, "shared", [C]) AL = s.cache_read(AA, "local", [C]) BB = s.cache_read(B, "shared", [C]) BL = s.cache_read(BB, "local", [C]) CC = s.cache_write(C, "local") y, x = C.op.axis k = CC.op.reduce_axis[0] cfg.define_split('tile_k', cfg.axis(k), num_outputs=3) ko, kt, ki = cfg['tile_k'].apply(s, CC, k) block_x = tvm.thread_axis('blockIdx.x') block_y = tvm.thread_axis('blockIdx.y') thread_x = tvm.thread_axis('threadIdx.x') thread_y = tvm.thread_axis('threadIdx.y') cfg.define_split('tile_y', cfg.axis(y), num_outputs=4) cfg.define_split('tile_x', cfg.axis(x), num_outputs=4) by, tyz, ty, yi = cfg['tile_y'].apply(s, C, y) bx, txz, tx, xi = cfg['tile_x'].apply(s, C, x) s[C].bind(by, block_y) s[C].bind(bx, block_x) s[C].bind(tyz, tvm.thread_axis('vthread')) s[C].bind(txz, tvm.thread_axis('vthread')) s[C].bind(ty, thread_y) s[C].bind(tx, thread_x) s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi) s[CC].compute_at(s[C], tx) yo, xo = CC.op.axis s[CC].reorder(ko, kt, yo, xo, ki) s[CC].unroll(kt) for stage in [AL, BL]: s[stage].compute_at(s[CC], kt) s[stage].double_buffer() for stage in [AA, BB]: s[stage].compute_at(s[CC], ko) fused = s[stage].fuse(*s[stage].op.axis) ty, tx = s[stage].split(fused, nparts=cfg['tile_y'].size[2]) tx, xi = s[stage].split(tx, nparts=cfg['tile_x'].size[2]) _, xi = s[stage].split(xi, factor=4) s[stage].bind(ty, thread_y) s[stage].bind(tx, thread_x) s[stage].vectorize(xi) s[stage].double_buffer() cfg.define_knob('auto_unroll_max_step', [512, 1500]) s[C].pragma(by, 'auto_unroll_max_step', cfg['auto_unroll_max_step'].val) s[C].pragma(by, 'unroll_explicit', False) cfg.add_flop(batch * in_dim * out_dim * 2) return s, [A, B, C] def search_matmul_config(batch, in_dim, out_dim, num_trials): logging.getLogger('autotvm').setLevel(logging.DEBUG) logging.getLogger('autotvm').addHandler(logging.StreamHandler(sys.stdout)) task = autotvm.task.create(tvm_matmul_tune_op, args=( batch, in_dim, out_dim), target='cuda') print(task.config_space) measure_option = autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=autotvm.LocalRunner(repeat=3, min_repeat_ms=100, timeout=4) ) op_name = "tuned_dot_op_float_%d_%d_%d" % (batch, in_dim, out_dim) log_name = "tuned_kernels/" + op_name + ".log" tuner = autotvm.tuner.XGBTuner(task) tuner.tune(n_trial=num_trials, measure_option=measure_option, callbacks=[autotvm.callback.log_to_file(log_name)]) dispatch_context = autotvm.apply_history_best(log_name) best_config = dispatch_context.query(task.target, task.workload) print('\nBest config:') print(best_config) with dispatch_context: with tvm.target.create('cuda'): s, arg_bufs = tvm_matmul_tune_op(batch, in_dim, out_dim) func = tvm.build(s, arg_bufs, 'cuda', name='matmul') ctx = tvm.context('cuda', 0) a_np = np.random.uniform(size=(batch, in_dim)).astype("float32") b_np = np.random.uniform(size=(in_dim, out_dim)).astype("float32") a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(b_np, ctx) c = tvm.nd.array(np.zeros((batch, out_dim), dtype='float32'), ctx) print(func.imported_modules[0].get_source()) # print kernel code func(a, b, c) num_flops = 2 * batch * in_dim * out_dim num_runs = 10 timer_f = func.time_evaluator(func.entry_name, ctx, number=num_runs) t = timer_f(a, b, c).mean GFLOPS = num_flops / (t * 1e3) / 1e6 print("average time cost of %d runs = %g ms, %g GFLOPS." % (num_runs, t * 1e3, GFLOPS)) def lookup_matmul_config(batch, in_dim, out_dim, output_log): op_name = "tuned_dot_op_float_%d_%d_%d" % (batch, in_dim, out_dim) log_name = FLAGS.autotvm_log with open(log_name, "r") as fin: log_lines = fin.readlines() # log_records=tvm.autotvm.record.load_from_file(log_name) log_records_all = [] log_records = [] for line in log_lines: line = line.rstrip('\n') # print(line) record_json = json.loads(line) tm = record_json['r'][0][0] if tm > 10000000: # filter bad configs continue if record_json['i'][2][0] != batch or record_json['i'][2][1] != in_dim or record_json['i'][2][2] != out_dim: # filter other configs continue griddim_x = record_json['i'][5]["e"][2][2][0] if griddim_x == -1: griddim_x = int(out_dim / record_json['i'][5]["e"][2][2][1] / record_json['i'][5]["e"][2][2][2] / record_json['i'][5]["e"][2][2][3]) griddim_y = record_json['i'][5]["e"][1][2][0] if griddim_y == -1: griddim_y = int(batch / record_json['i'][5]["e"][1][2][1] / record_json['i'][5]["e"][1][2][2] / record_json['i'][5]["e"][1][2][3]) record = {"time": tm, "grid": [griddim_x, griddim_y, 1], "block": [record_json['i'][5]["e"][2][2][2], record_json['i'][5]["e"][1][2][2], 1], "config": line} log_records_all.append((tm, record)) # if record["block"][0] * record["block"][1] * record["block"][2] % 32 != 0: # continue # if record["grid"][0] * record["grid"][1] * record["grid"][2] < 16: # continue opt = tm * record["grid"][0] * record["grid"][1] * record["grid"][2] * record["block"][0] * record["block"][1] * record["block"][2] if record["block"][0] * record["block"][1] * record["block"][2] % 32 != 0: opt = tm * record["grid"][0] * record["grid"][1] * record["grid"][2] * (record["block"][0] * record["block"][1] * record["block"][2] / 32 + 1) * 32 record.update({"opt": opt}) log_records.append((tm, record)) # print(log_records[-1]) log_records_all.sort(key=lambda item: item[0]) log_records.sort(key=lambda item: item[0]) print(op_name) log_records_fast = log_records[0:100] # log_records_fast = log_records log_records = [] for i in range(len(log_records_fast)): log_records.append((log_records_fast[i][1]["opt"], log_records_fast[i][1])) log_records.sort(key=lambda item: item[0]) print("fastest kernel:", log_records_all[0][1]["time"], "grid:", log_records_all[0][1]["grid"], "block:", log_records_all[0][1]["block"]) # print(log_records_fast[0][1]["config"]) print("efficient kernel:",log_records[0][1]["time"], "grid:", log_records[0][1]["grid"], "block:", log_records[0][1]["block"]) with open(output_log, 'a') as fout: fout.write(log_records[0][1]["config"] + "\n") def launch_matmul_from_config(config_json_path): with open(config_json_path, "r") as fin: config = json.load(fin) batch = config["i"][2][0] in_dim = config["i"][2][1] out_dim = config["i"][2][2] # print(batch, in_dim, out_dim) task = autotvm.task.create( tvm_matmul_tune_op, args=(batch, in_dim, out_dim), target='cuda') # dispatch_context = autotvm.task.ApplyConfig(config) dispatch_context = autotvm.apply_history_best(config_json_path) best_config = dispatch_context.query(task.target, task.workload) print("Using pretuned config:") print(best_config) with dispatch_context: with tvm.target.create('cuda'): s, arg_bufs = tvm_matmul_tune_op(batch, in_dim, out_dim) func = tvm.build(s, arg_bufs, 'cuda', name='matmul') ctx = tvm.context('cuda', 0) a_np = np.random.uniform(size=(batch, in_dim)).astype("float32") b_np = np.random.uniform(size=(in_dim, out_dim)).astype("float32") a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(b_np, ctx) c = tvm.nd.array(np.zeros((batch, out_dim), dtype='float32'), ctx) print(func.imported_modules[0].get_source()) # print kernel code func(a, b, c) num_flops = 2 * batch * in_dim * out_dim num_runs = 10 timer_f = func.time_evaluator(func.entry_name, ctx, number=num_runs) t = timer_f(a, b, c).mean GFLOPS = num_flops / (t * 1e3) / 1e6 print("average time cost of %d runs = %g ms, %g GFLOPS." % (num_runs, t * 1e3, GFLOPS)) output_log_file = "matmul_nn_autotvm_select_result.log" if os.path.exists(output_log_file): os.remove(output_log_file) lookup_matmul_config(4, 256, 256, output_log_file) lookup_matmul_config(16, 256, 256, output_log_file) def tune_dot_codegen(m, k, n, log_path): logging.getLogger('autotvm').setLevel(logging.DEBUG) logging.getLogger('autotvm').addHandler(logging.StreamHandler(sys.stdout)) task = autotvm.task.create(tvm_matmul_tune_op, args=(m, k, n), target='cuda') op_name = "tuned_dot_nn_op_float_m%d_k%d_n%d" % (m, k, n) # log_name = "tuned_dot_op_float_%d_%d_%d" % (m, k, n) # log_name = "tuned_kernels/" + log_name + ".log" log_name = log_path dispatch_context = autotvm.apply_history_best(log_name) best_config = dispatch_context.query(task.target, task.workload) with dispatch_context: with tvm.target.create('cuda'): s, arg_bufs = tvm_matmul_tune_op(m,k,n) func = tvm.build(s, arg_bufs, 'cuda', name=op_name) ctx = tvm.context('cuda', 0) a_np = np.random.uniform(size=[m,k]).astype("float32") w_np = np.random.uniform(size=[k,n]).astype("float32") c_np = np.zeros([m,n]).astype("float32") a = tvm.nd.array(a_np, ctx) w = tvm.nd.array(w_np, ctx) c = tvm.nd.array(c_np, ctx) kernel_code = func.imported_modules[0].get_source() func(a, w, c) return kernel_code def extract_ops_from_log(): dot_ops = [] dot_ops.append({'arg0_shape': [4, 256], 'arg1_shape': [256, 256], 'out_shape': [4, 256], 'transpose_A': False, 'transpose_B': False}) dot_ops.append({'arg0_shape': [16, 256], 'arg1_shape': [256, 256], 'out_shape': [16, 256], 'transpose_A': False, 'transpose_B': False}) return dot_ops def get_tvm_topi_func_name(m, k, n): func_name = "tuned_dot_nn_op_float_m%d_k%d_n%d_kernel0" % (m, k, n) return func_name def extract_tvm_profiling_from_log(log_path): lines = open(log_path).readlines() deduped_lines = list(set(lines)) # print(deduped_lines) # print("#convs:", len(lines), "#deduped_convs:", len(deduped_lines)) profiling_result = {} for line in deduped_lines: items = line.rstrip('\n').split('|') profiling_data = { 'gridDim': [int(items[1]), int(items[2]), int(items[3])], 'blockDim': [int(items[4]), int(items[5]), int(items[6])] } profiling_result.update({items[0]: profiling_data}) return profiling_result def generate_db_topi_ops(dot_ops, log_path): topi_ops = [] tvm_profiling_log_path = FLAGS.tvm_profile_log if os.path.exists(tvm_profiling_log_path): os.remove(tvm_profiling_log_path) for dot_op in dot_ops: m = dot_op['arg0_shape'][0] k = dot_op['arg0_shape'][1] n = dot_op['arg1_shape'][1] topi_code = tune_dot_codegen(m, k, n, log_path) topi_op = { 'tvm_func_name': get_tvm_topi_func_name(m, k, n), 'op_type': 'Dot', 'parameters': dot_op, 'code': topi_code } topi_ops.append(topi_op) profiling_result = extract_tvm_profiling_from_log(tvm_profiling_log_path) for topi_op in topi_ops: tvm_func_name = topi_op['tvm_func_name'] topi_op.update(profiling_result[tvm_func_name]) return topi_ops dot_ops = extract_ops_from_log() topi_ops = generate_db_topi_ops(dot_ops, output_log_file) with open(FLAGS.output_path, 'w') as fout: json.dump(topi_ops, fout) os.remove(output_log_file)
35.4677
159
0.633396
0
0
0
0
2,431
0.177109
0
0
3,245
0.236413
dc00d047f5d2f7ce7b721b7c45d3556d9ebe4b5d
2,240
py
Python
src/olympia/activity/admin.py
dante381/addons-server
9702860a19ecca1cb4e4998f37bc43c1b2dd3aa7
[ "BSD-3-Clause" ]
null
null
null
src/olympia/activity/admin.py
dante381/addons-server
9702860a19ecca1cb4e4998f37bc43c1b2dd3aa7
[ "BSD-3-Clause" ]
null
null
null
src/olympia/activity/admin.py
dante381/addons-server
9702860a19ecca1cb4e4998f37bc43c1b2dd3aa7
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import admin from .models import ActivityLog, ReviewActionReasonLog from olympia.reviewers.models import ReviewActionReason class ActivityLogAdmin(admin.ModelAdmin): list_display = ( 'created', 'user', '__str__', ) raw_id_fields = ('user',) readonly_fields = ( 'created', 'user', '__str__', ) date_hierarchy = 'created' fields = ( 'user', 'created', '__str__', ) raw_id_fields = ('user',) view_on_site = False def lookup_allowed(self, lookup, value): if lookup == 'addonlog__addon': return True return super().lookup_allowed(lookup, value) def has_add_permission(self, request): return False def has_delete_permission(self, request, obj=None): return False class ReviewActionReasonLogAdmin(admin.ModelAdmin): date_hierarchy = 'created' fields = ( 'created', 'activity_log', 'activity_log__user__email', 'reason', ) list_display = ( 'created', 'activity_log', 'reason', 'activity_log__user__email', ) list_filter = ('reason',) list_select_related = ('activity_log__user',) readonly_fields = ( 'created', 'activity_log', 'activity_log__user__email', ) search_fields = ('activity_log__user__email',) view_on_site = False def activity_log__user__email(self, obj): return obj.activity_log.user.email def has_add_permission(self, request): return False def get_form(self, request, obj=None, **kwargs): form = super(ReviewActionReasonLogAdmin, self).get_form(request, obj, **kwargs) form.base_fields['reason'].widget.can_add_related = False form.base_fields['reason'].widget.can_change_related = False form.base_fields['reason'].empty_label = None form.base_fields['reason'].choices = [ (reason.id, reason.labelled_name()) for reason in ReviewActionReason.objects.all() ] return form admin.site.register(ActivityLog, ActivityLogAdmin) admin.site.register(ReviewActionReasonLog, ReviewActionReasonLogAdmin)
26.666667
87
0.634821
1,965
0.877232
0
0
0
0
0
0
372
0.166071
dc01dc4bc345b863361dbfcbff2946a74c676b49
1,261
py
Python
modules/nmap_script/address_info.py
naimkowshik/reyna-eye
f729ec964e586ae3f63ff29fd524f7aed3748a74
[ "MIT" ]
4
2021-04-22T19:19:13.000Z
2022-02-10T09:26:58.000Z
modules/nmap_script/address_info.py
naimkowshik/reyna-eye
f729ec964e586ae3f63ff29fd524f7aed3748a74
[ "MIT" ]
null
null
null
modules/nmap_script/address_info.py
naimkowshik/reyna-eye
f729ec964e586ae3f63ff29fd524f7aed3748a74
[ "MIT" ]
1
2022-02-03T19:29:46.000Z
2022-02-03T19:29:46.000Z
import subprocess import sys import time import os ############################# # COLORING YOUR SHELL # ############################# R = "\033[1;31m" # B = "\033[1;34m" # Y = "\033[1;33m" # G = "\033[1;32m" # RS = "\033[0m" # W = "\033[1;37m" # ############################# os.system("clear") print(" ") print(R + "[" + G + "User Summary " + R + "]" + RS) print(""" Shows extra information about IPv6 addresses, such as embedded MAC or IPv4 addresses when available. Some IP address formats encode extra information; for example some IPv6 addresses encode an IPv4 address or MAC address script can decode these address formats: • IPv4-compatible IPv6 addresses, • IPv4-mapped IPv6 addresses, • Teredo IPv6 addresses, • 6to4 IPv6 addresses, • IPv6 addresses using an EUI-64 interface ID, • IPv4-embedded IPv6 addresses, • ISATAP Modified EUI-64 IPv6 addresses. • IPv4-translated IPv6 addresses and See RFC 4291 for general IPv6 addressing architecture and the definitions of some terms. """) print(" ") webb = input("" + RS + "[" + B + "ENTER TARGET " + R + "WEBSITE " + Y + "IP" + RS + "]" + G + ": " + RS) subprocess.check_call(['nmap', '-sV', '-sC', webb])
32.333333
120
0.57732
0
0
0
0
0
0
0
0
949
0.743148
dc022c593385d4751afcdb05a041b275d5e72149
2,041
py
Python
tests/utilities/test_upgrade_checkpoint.py
cuent/pytorch-lightning
b50ad528e69618d831aa01ee69f29b4f2a6a3e84
[ "Apache-2.0" ]
null
null
null
tests/utilities/test_upgrade_checkpoint.py
cuent/pytorch-lightning
b50ad528e69618d831aa01ee69f29b4f2a6a3e84
[ "Apache-2.0" ]
null
null
null
tests/utilities/test_upgrade_checkpoint.py
cuent/pytorch-lightning
b50ad528e69618d831aa01ee69f29b4f2a6a3e84
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import os import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities.upgrade_checkpoint import upgrade_checkpoint @pytest.mark.skip @pytest.mark.parametrize( "old_checkpoint, new_checkpoint", [ ( {"epoch": 1, "global_step": 23, "checkpoint_callback_best": 0.34}, {"epoch": 1, "global_step": 23, "callbacks": {ModelCheckpoint: {"best_model_score": 0.34}}}, ), ( {"epoch": 1, "global_step": 23, "checkpoint_callback_best_model_score": 0.99}, {"epoch": 1, "global_step": 23, "callbacks": {ModelCheckpoint: {"best_model_score": 0.99}}}, ), ( {"epoch": 1, "global_step": 23, "checkpoint_callback_best_model_path": 'path'}, {"epoch": 1, "global_step": 23, "callbacks": {ModelCheckpoint: {"best_model_path": 'path'}}}, ), ( {"epoch": 1, "global_step": 23, "early_stop_callback_wait": 2, "early_stop_callback_patience": 4}, {"epoch": 1, "global_step": 23, "callbacks": {EarlyStopping: {"wait_count": 2, "patience": 4}}}, ), ], ) def test_upgrade_checkpoint(tmpdir, old_checkpoint, new_checkpoint): filepath = os.path.join(tmpdir, "model.ckpt") torch.save(old_checkpoint, filepath) upgrade_checkpoint(filepath) updated_checkpoint = torch.load(filepath) assert updated_checkpoint == new_checkpoint
40.82
110
0.677609
0
0
0
0
1,265
0.619794
0
0
1,065
0.521803
dc02390fc5cc8acb642fb9142268442719d14ed1
4,258
py
Python
rnn/train_rnn_oneflow.py
XinYangDong/models
ea1ab12add5812c8a3e14ecfad6b39fa56a779a9
[ "Apache-2.0" ]
null
null
null
rnn/train_rnn_oneflow.py
XinYangDong/models
ea1ab12add5812c8a3e14ecfad6b39fa56a779a9
[ "Apache-2.0" ]
null
null
null
rnn/train_rnn_oneflow.py
XinYangDong/models
ea1ab12add5812c8a3e14ecfad6b39fa56a779a9
[ "Apache-2.0" ]
null
null
null
import oneflow.experimental as flow from oneflow.experimental import optim import oneflow.experimental.nn as nn from utils.dataset import * from utils.tensor_utils import * from models.rnn_model import RNN import argparse import time import math import numpy as np flow.env.init() flow.enable_eager_execution() def _parse_args(): parser = argparse.ArgumentParser("flags for compare oneflow and pytorch speed") parser.add_argument( "--seed", nargs="?", type=int, const=0, help="specify random seed" ) return parser.parse_args() def train(category_tensor, line_tensor, rnn, criterion, of_sgd): hidden = rnn.initHidden() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) loss = criterion(output, category_tensor) loss.backward() of_sgd.step() of_sgd.zero_grad() return output, loss.numpy()[0] # refer to: https://blog.csdn.net/Nin7a/article/details/107631078 def topk_(matrix, K, axis=1): if axis == 0: row_index = np.arange(matrix.shape[1 - axis]) topk_index = np.argpartition(-matrix, K, axis=axis)[0:K, :] topk_data = matrix[topk_index, row_index] topk_index_sort = np.argsort(-topk_data, axis=axis) topk_data_sort = topk_data[topk_index_sort, row_index] topk_index_sort = topk_index[0:K, :][topk_index_sort, row_index] else: column_index = np.arange(matrix.shape[1 - axis])[:, None] topk_index = np.argpartition(-matrix, K, axis=axis)[:, 0:K] topk_data = matrix[column_index, topk_index] topk_index_sort = np.argsort(-topk_data, axis=axis) topk_data_sort = topk_data[column_index, topk_index_sort] topk_index_sort = topk_index[:, 0:K][column_index, topk_index_sort] return topk_data_sort, topk_index_sort def categoryFromOutput(output): top_n, top_i = topk_(output.numpy(), 1) category_i = top_i[0][0] return all_categories[category_i], category_i def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return now, "%ds" % s n_iters = 100000 print_every = 500 plot_every = 1000 learning_rate = ( 0.005 # If you set this too high, it might explode. If too low, it might not learn ) # decrease learning rate if loss goes to NaN, increase learnig rate if it learns too slow def main(args): random.seed(args.seed) dataset_path = "./data/names" n_categories = processDataset(dataset_path) n_hidden = 128 rnn = RNN(n_letters, n_hidden, n_categories) criterion = nn.NLLLoss() rnn.to("cuda") criterion.to("cuda") of_sgd = optim.SGD(rnn.parameters(), lr=learning_rate) # Keep track of losses for plotting current_loss = 0 all_losses = [] start = time.time() samples = 0.0 correct_guess = 0.0 for iter in range(1, n_iters + 1): category, line, category_tensor, line_tensor = randomTrainingExample() output, loss = train(category_tensor, line_tensor, rnn, criterion, of_sgd) current_loss += loss # Print iter number, loss, name and guess if iter % print_every == 0: start, time_str = timeSince(start) guess, guess_i = categoryFromOutput(output) correct = "✓" if guess == category else "✗ (%s)" % category if correct == "✓": correct_guess += 1 samples += 1 print( "iter: %d / %f%%, time_for_every_%d_iter: %s, loss: %.4f, predict: %s / %s, correct? %s, acc: %f" % ( iter, float(iter) / n_iters * 100, print_every, time_str, loss, line, guess, correct, correct_guess / samples, ) ) # Add current loss avg to list of losses if iter % plot_every == 0: all_losses.append(current_loss / plot_every) current_loss = 0 writer = open("all_losses.txt", "w") for o in all_losses: writer.write("%f\n" % o) writer.close() if __name__ == "__main__": args = _parse_args() main(args)
30.198582
113
0.615782
0
0
0
0
0
0
0
0
606
0.14212
dc0343ffb97fa10db053e01b9eed2a7adc7c042b
4,763
py
Python
metaflow/datastore/local_storage.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
2
2020-03-05T08:33:05.000Z
2021-05-31T12:54:40.000Z
metaflow/datastore/local_storage.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
5
2021-12-12T21:04:10.000Z
2022-01-22T21:05:58.000Z
metaflow/datastore/local_storage.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
2
2020-04-18T22:45:03.000Z
2020-06-25T14:36:20.000Z
import json import os from ..metaflow_config import DATASTORE_LOCAL_DIR, DATASTORE_SYSROOT_LOCAL from .datastore_storage import CloseAfterUse, DataStoreStorage from .exceptions import DataException class LocalStorage(DataStoreStorage): TYPE = "local" METADATA_DIR = "_meta" @classmethod def get_datastore_root_from_config(cls, echo, create_on_absent=True): result = DATASTORE_SYSROOT_LOCAL if result is None: try: # Python2 current_path = os.getcwdu() except: # noqa E722 current_path = os.getcwd() check_dir = os.path.join(current_path, DATASTORE_LOCAL_DIR) check_dir = os.path.realpath(check_dir) orig_path = check_dir top_level_reached = False while not os.path.isdir(check_dir): new_path = os.path.dirname(current_path) if new_path == current_path: top_level_reached = True break # We are no longer making upward progress current_path = new_path check_dir = os.path.join(current_path, DATASTORE_LOCAL_DIR) if top_level_reached: if create_on_absent: # Could not find any directory to use so create a new one echo( "Creating local datastore in current directory (%s)" % orig_path ) os.mkdir(orig_path) result = orig_path else: return None else: result = check_dir else: result = os.path.join(result, DATASTORE_LOCAL_DIR) return result @staticmethod def _makedirs(path): try: os.makedirs(path) except OSError as x: if x.errno == 17: return else: raise def is_file(self, paths): results = [] for path in paths: full_path = self.full_uri(path) results.append(os.path.isfile(full_path)) return results def info_file(self, path): file_exists = self.is_file([path])[0] if file_exists: full_meta_path = "%s_meta" % self.full_uri(path) try: with open(full_meta_path, "r") as f: return True, json.load(f) except OSError: return True, None return False, None def size_file(self, path): file_exists = self.is_file([path])[0] if file_exists: path = self.full_uri(path) try: return os.path.getsize(path) except OSError: return None return None def list_content(self, paths): results = [] for path in paths: if path == self.METADATA_DIR: continue full_path = self.full_uri(path) try: for f in os.listdir(full_path): if f == self.METADATA_DIR: continue results.append( self.list_content_result( path=self.path_join(path, f), is_file=self.is_file([self.path_join(path, f)])[0], ) ) except FileNotFoundError as e: pass return results def save_bytes(self, path_and_bytes_iter, overwrite=False, len_hint=0): for path, obj in path_and_bytes_iter: if isinstance(obj, tuple): byte_obj, metadata = obj else: byte_obj, metadata = obj, None full_path = self.full_uri(path) if not overwrite and os.path.exists(full_path): continue LocalStorage._makedirs(os.path.dirname(full_path)) with open(full_path, mode="wb") as f: f.write(byte_obj.read()) if metadata: with open("%s_meta" % full_path, mode="w") as f: json.dump(metadata, f) def load_bytes(self, paths): def iter_results(): for path in paths: full_path = self.full_uri(path) metadata = None if os.path.exists(full_path): if os.path.exists("%s_meta" % full_path): with open("%s_meta" % full_path, mode="r") as f: metadata = json.load(f) yield path, full_path, metadata else: yield path, None, None return CloseAfterUse(iter_results())
34.766423
88
0.515431
4,561
0.95759
563
0.118203
1,667
0.34999
0
0
233
0.048919
dc03c7056424871c088a27b25411021c5ef255a8
669
py
Python
src/Models/tools/quality.py
rahlk/MOOSE
e45b64cf625bb90aa8c1c24ab1c8f52ab485a316
[ "MIT" ]
null
null
null
src/Models/tools/quality.py
rahlk/MOOSE
e45b64cf625bb90aa8c1c24ab1c8f52ab485a316
[ "MIT" ]
9
2015-09-14T21:07:06.000Z
2015-12-08T01:38:08.000Z
src/Models/tools/quality.py
rahlk/MAPGen
25bc1a84f07e30ab0dbb638cd2aa1ce416c510ff
[ "MIT" ]
null
null
null
from __future__ import division, print_function from scipy.spatial.distance import euclidean from numpy import mean from pdb import set_trace class measure: def __init__(self,model): self.mdl = model def convergence(self, obtained): """ Calculate the convergence metric with respect to ideal solutions """ gammas=[] ideals = self.mdl.get_pareto() def nearest(a,lst): # dist = euclidean(a, sorted(lst, key=lambda x:euclidean(x,a))[0]) # set_trace() return euclidean(a, sorted(lst, key=lambda x:euclidean(x,a))[0]) gammas = [nearest(self.mdl.solve(member),ideals) for member in obtained] return mean(gammas)
30.409091
76
0.693572
526
0.786248
0
0
0
0
0
0
163
0.243647
dc0442493abb70d64838a4469e6b402804bec72d
2,499
py
Python
script/spider/www_chinapoesy_com.py
gitter-badger/poetry-1
faf50558852d5d37d4fee68a8c5a114aba149689
[ "MIT" ]
1
2021-08-03T03:07:41.000Z
2021-08-03T03:07:41.000Z
script/spider/www_chinapoesy_com.py
gitter-badger/poetry-1
faf50558852d5d37d4fee68a8c5a114aba149689
[ "MIT" ]
null
null
null
script/spider/www_chinapoesy_com.py
gitter-badger/poetry-1
faf50558852d5d37d4fee68a8c5a114aba149689
[ "MIT" ]
null
null
null
''' pip3 install BeautifulSoup4 pip3 install pypinyin ''' import requests import re import os import shutil from bs4 import BeautifulSoup from util import Profile, write_poem def parse_poem_profile_td(td): container = td.find('div') if container is None: container = td title_a = container.find('a') if title_a is None: # maybe appears on the last page return None href = title_a.get('href') title = title_a.get('title') title = title.replace('\r\n', '').replace( '————', '——').replace(',', ',').replace('(长诗节选)', '_长诗节选').strip() title_a.extract() # Wrong name 席慕蓉 author_text = container.text.replace('席慕蓉', '席慕容').strip() author = re.findall(r'(.*)\((\d*?)\)', author_text, re.S)[0][0] return Profile(href=href, title=title, author=author) def read_poem_list(page): ''' Read poem list @param page:int @return (poem_list:Profile[], has_next_page:Boolean) ''' page_url = 'http://www.chinapoesy.com/XianDaiList_' + str(page) + '.html' response = requests.get(page_url) if response.status_code is not 200: return ([], False) text = response.text soup = BeautifulSoup(text, features='lxml') # profiles main_table = soup.find('table', id='DDlTangPoesy') td_ = main_table.find_all('td') poet_list = [] for td in td_: poem = parse_poem_profile_td(td) if poem is not None: poet_list.append(poem) img_neg = soup.find('img', src='/Images/Pager/nextn.gif') return (poet_list, img_neg is not None) def read_poem(poem): url = 'http://www.chinapoesy.com/' + poem.href response = requests.get(url) if response.status_code is not 200: return None soup = BeautifulSoup(response.text, features='lxml') container = soup.find_all('div', class_='HeightBorderCenter')[-1] return container.text.strip() def main(): # delete the temp directory has_next_page = True page_num = 1 while has_next_page: (current_list, has_next_page) = read_poem_list(page_num) page_num = page_num + 1 for poem in current_list: if(os.path.exists(poem.file_path())): continue content = read_poem(poem) if not content: print('Invalid content: ' + str(poem)) else: write_poem(poem, content) print('Page ' + str(page_num) + ' parsed') main()
25.5
77
0.609444
0
0
0
0
0
0
0
0
612
0.239906
dc05bab78000f85994987b7714d00eddf5ea82d2
439
py
Python
design-patterns-101/Animal.py
stealthanthrax/python-design-patterns
100884e1c5fe0fedaa0f1afa978ae79e53878f6b
[ "MIT" ]
null
null
null
design-patterns-101/Animal.py
stealthanthrax/python-design-patterns
100884e1c5fe0fedaa0f1afa978ae79e53878f6b
[ "MIT" ]
4
2020-10-01T15:56:00.000Z
2020-10-08T12:34:17.000Z
design-patterns-101/Animal.py
stealthanthrax/python-design-patterns
100884e1c5fe0fedaa0f1afa978ae79e53878f6b
[ "MIT" ]
2
2020-10-02T06:50:34.000Z
2020-10-02T10:17:25.000Z
class Animal: def __init__(self): self.name = "" self.weight = 0 self.sound = "" def setName(self, name): self.name = name def getName(self): return self.name def setWeight(self, weight): self.weight = weight def getWeight(self): return self.weight def setSound(self, sound): self.sound = sound def getSound(self): return self.sound
18.291667
32
0.560364
438
0.997722
0
0
0
0
0
0
4
0.009112
dc06b7c456a20378a588b26699aae0b601ae716d
5,086
py
Python
tests/test_events.py
hhtong/dwave-cloud-client
45e4d1d4f187b10495e38d47478f2c8d87514434
[ "Apache-2.0" ]
null
null
null
tests/test_events.py
hhtong/dwave-cloud-client
45e4d1d4f187b10495e38d47478f2c8d87514434
[ "Apache-2.0" ]
null
null
null
tests/test_events.py
hhtong/dwave-cloud-client
45e4d1d4f187b10495e38d47478f2c8d87514434
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 D-Wave Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from dwave.cloud.client import Client from dwave.cloud.solver import Solver from dwave.cloud.events import add_handler class TestEventDispatch(unittest.TestCase): def setUp(self): # mock client self.client = Client(token='token', solver={'qpu': True}) self.client._fetch_solvers = lambda **kw: self.solvers self.client._submit = lambda *pa, **kw: None # mock solvers self.solver = Solver(client=self.client, data={ "properties": { "supported_problem_types": ["qubo", "ising"], "qubits": [0, 1, 2], "couplers": [[0, 1], [0, 2], [1, 2]], "num_qubits": 3, "num_reads_range": [0, 100], "parameters": { "num_reads": "Number of samples to return.", "postprocess": "either 'sampling' or 'optimization'" }, "topology": { "type": "chimera", "shape": [16, 16, 4] }, "category": "qpu", "tags": ["lower_noise"] }, "id": "solver1", "description": "A test solver 1", "status": "online" }) self.solvers = [self.solver] def test_validation(self): """Event name and handler are validated.""" with self.assertRaises(ValueError): add_handler('invalid_event_name', lambda: None) with self.assertRaises(TypeError): add_handler('before_client_init', None) def test_client_init(self): """Before/After client init events are dispatched with correct signatures.""" # setup event handlers memo = {} def handler(event, **data): memo[event] = data add_handler('before_client_init', handler) add_handler('after_client_init', handler) # client init client = Client(token='token', unknown='unknown') # test entry values before = memo['before_client_init'] self.assertEqual(before['obj'], client) self.assertEqual(before['args']['endpoint'], None) self.assertEqual(before['args']['token'], 'token') self.assertEqual(before['args']['kwargs']['unknown'], 'unknown') # test exit values after = memo['after_client_init'] self.assertEqual(after['obj'], client) self.assertEqual(after['args']['token'], 'token') self.assertEqual(after['args']['kwargs']['unknown'], 'unknown') self.assertEqual(after['return_value'], None) def test_get_solvers(self): """Before/After get_solvers events are dispatched with correct signatures.""" # setup event handlers memo = {} def handler(event, **data): memo[event] = data add_handler('before_get_solvers', handler) add_handler('after_get_solvers', handler) # get solver(s) self.client.get_solver() # test entry values before = memo['before_get_solvers'] self.assertEqual(before['obj'], self.client) self.assertIn('refresh', before['args']) self.assertIn('filters', before['args']) self.assertIn('qpu', before['args']['filters']) # test exit values after = memo['after_get_solvers'] self.assertEqual(after['obj'], self.client) self.assertIn('qpu', after['args']['filters']) self.assertEqual(after['return_value'], self.solvers) def test_sample(self): """Before/After solver sample events are dispatched with correct signatures.""" # setup event handlers memo = {} def handler(event, **data): memo[event] = data add_handler('before_sample', handler) add_handler('after_sample', handler) # sample lin = {0: 1} quad = {(0, 1): 1} params = dict(num_reads=100) future = self.solver.sample_ising(lin, quad, **params) # test entry values before = memo['before_sample'] args = dict(type_='ising', linear=lin, quadratic=quad, params=params) self.assertEqual(before['obj'], self.solver) self.assertDictEqual(before['args'], args) # test exit values after = memo['after_sample'] self.assertEqual(after['obj'], self.solver) self.assertDictEqual(after['args'], args) self.assertEqual(after['return_value'], future)
34.835616
87
0.592411
4,365
0.858238
0
0
0
0
0
0
1,972
0.387731
dc06e2ba70d0080f14386cfea2dd13fc3ab64b71
12,084
py
Python
ex3_nn_TF2.py
Melykuti/Ng_Machine_learning_exercises
c561190ee2705b6af9432323d7639f6655c973e5
[ "BSD-3-Clause" ]
3
2020-03-06T19:15:28.000Z
2020-03-09T10:29:38.000Z
ex3_nn_TF2.py
Melykuti/Ng_Machine_learning_exercises
c561190ee2705b6af9432323d7639f6655c973e5
[ "BSD-3-Clause" ]
null
null
null
ex3_nn_TF2.py
Melykuti/Ng_Machine_learning_exercises
c561190ee2705b6af9432323d7639f6655c973e5
[ "BSD-3-Clause" ]
null
null
null
''' Neural networks. Forward propagation in an already trained network in TensorFlow 2.0-2.1 (to use the network for classification). TF 2.0: Option 0 takes 0.08 sec. Option 1 takes 0.08 sec. Option 6 takes 0.08 sec. Option 2 takes 4.7 sec. Option 3 takes 1.6 sec. Option 4 takes 5.2 sec. Option 5 takes 0.08 sec. Option 7 takes 0.06 sec. If pred_digit = tf.map_fn(lambda x: ...) is used, then it's much slower: Option 0 takes 1.75 sec. Option 1 takes 1.75 sec. Option 6 takes 1.8 sec. Option 2 takes 6.1 sec. Option 3 takes 3.1 sec. Option 4 takes 6.3 sec. Option 5 takes 1.8 sec. Option 7 takes 1.8 sec. TF 2.1: option==2, 3, 4, 5, 7 work; options 0, 1 and 6 fail with "AttributeError: 'RepeatedCompositeFieldContainer' object has no attribute 'append'" (But mine hasn't installed properly.) Option 2 takes 4.5 sec. Option 3 takes 1.5 sec. Option 4 takes 4.4 sec. Option 5 takes 0.08 sec. Option 7 takes 0.06 sec. If pred_digit = tf.map_fn(lambda x: ...) is used, then it's much slower: Option 2 takes 5.7-6.1 sec. Option 3 takes 3.1 sec. Option 4 takes 5.7-6 sec. Option 5 takes 1.8 sec. Option 7 takes 1.8 sec. Be careful: According to tf.keras.layers.Dense (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense): output = activation(dot(input, kernel) + bias) The kernel matrix multiplies from right! (And the inputs are seen as a row vector.) This is why I have to transpose the loaded network parameters Theta1 and Theta2. Earlier, according to r1.15 tf.layers.dense documentation (https://www.tensorflow.org/api_docs/python/tf/layers/dense): outputs = activation(inputs*kernel + bias) [In version for Tensorflow 1.x, there used to be two independent choices in program flow: Option 1 is with tf.layers.Input() Option 2 is without tf.layers.Input() Option a processes single inputs (single images), takes 1.5 sec Option b does batch processing of all images at once, takes 0.3 sec ] Bence Mélykúti 09-19/03/2018, 27/01-07/02, 28/02/2020 ''' import numpy as np import scipy.io # to open Matlab's .mat files import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import time ### User input ### option = 7 # {0, 1, ..., 7} ### End of input ### # The network parameters are here for info, they are not actually used. input_layer_size = 400 # 20x20 Input Images of Digits hidden_layer_size = 25 # 25 hidden units num_labels = 10 # 10 labels, from 1 to 10 # (note that we have mapped "0" to label 10) # =========== Part 1: Loading [and Visualizing] Data ============= data = scipy.io.loadmat('../machine-learning-ex3/ex3/ex3data1.mat') X = data['X'] y = data['y'] y = y % 10 # Transforming 10 to 0, which is its original meaning. # ================ Part 2: Loading Pameters ================ # In this part of the exercise, we load the pre-initialized # neural network parameters. params = scipy.io.loadmat('../machine-learning-ex3/ex3/ex3weights.mat') Theta1 = params['Theta1'] # Theta1 has size 25 x 401 Theta2 = params['Theta2'] # Theta2 has size 10 x 26 tf.keras.backend.clear_session() start_time = time.time() # ================= Part 3: Implement Predict ================= # After training a neural network, we would like to use it to predict # the labels. You will now implement the "predict" function to use the # neural network to predict the labels of the training set. This lets # you compute the training set accuracy. # Difference between tf.data.Dataset.from_tensors and tf.data.Dataset.from_tensor_slices: https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices # from_tensors reads all data at once; from_tensor_slices reads line by line, which is preferable for huge datasets # With from_tensors, you'd also need to pull out each row from the tensor somehow. # https://towardsdatascience.com/how-to-use-dataset-in-tensorflow-c758ef9e4428 # https://www.tensorflow.org/programmers_guide/datasets#consuming_numpy_arrays # To narrow computation to a subset of data for quick testing: #X, y = X[1990:2010,:], y[1990:2010,:] if option==2 or option==3: dataset = tf.data.Dataset.from_tensor_slices(X) else: dataset = tf.data.Dataset.from_tensor_slices(X).batch(X.shape[0]) #dataset = tf.data.Dataset.from_tensor_slices(X).batch(64) # this is about the same speed as .batch(X.shape[0]) #dataset = tf.data.Dataset.from_tensor_slices(X).batch(1) # this also works but it is 1.5x-4x slower # It also works with tf.keras.initializers.Constant() in place of tf.constant_initializer because these are only aliases: https://www.tensorflow.org/api_docs/python/tf/constant_initializer . if option==0: model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(Theta1.shape[0], activation='sigmoid', use_bias=True, kernel_initializer=tf.constant_initializer(Theta1[:,1:].T), bias_initializer=tf.constant_initializer(Theta1[:,0]), input_shape=[X.shape[1]])) model.add(tf.keras.layers.Dense(Theta2.shape[0], activation='sigmoid', use_bias=True, kernel_initializer=tf.constant_initializer(Theta2[:,1:].T), bias_initializer=tf.constant_initializer(Theta2[:,0]))) # One doesn't even need the second sigmoid activation function because it is monotone increasing and doesn't change the ordering for argmax. pred = model.predict(dataset) elif option==1: # input_shape=[X.shape[1]] could be left out below layers = [tf.keras.layers.Dense(Theta1.shape[0], kernel_initializer=tf.constant_initializer(Theta1[:,1:].T), bias_initializer=tf.constant_initializer(Theta1[:,0]), activation='sigmoid', input_shape=[X.shape[1]]), tf.keras.layers.Dense(Theta2.shape[0], kernel_initializer=tf.constant_initializer(Theta2[:,1:].T), bias_initializer=tf.constant_initializer(Theta2[:,0]), activation='sigmoid')] # One doesn't even need the second sigmoid activation function because it is monotone increasing and doesn't change the ordering for argmax. # This doesn't work as tf.constant_initializer() doesn't take Tensors as input. #layers = [tf.keras.layers.Dense(Theta1.shape[0], kernel_initializer= tf.constant_initializer(tf.transpose(Theta1[:,1:])), bias_initializer=tf.constant_initializer(Theta1[:,0]), activation='sigmoid'), # tf.keras.layers.Dense(Theta2.shape[0], kernel_initializer= tf.constant_initializer(tf.transpose(Theta2[:,1:])), bias_initializer=tf.constant_initializer(Theta2[:,0]), activation='sigmoid')] # This doesn't work: ValueError: Could not interpret initializer identifier: tf.Tensor(...) #layers = [tf.keras.layers.Dense(Theta1.shape[0], kernel_initializer=tf.transpose(Theta1[:,1:]), bias_initializer=Theta1[:,0], activation='sigmoid'), # tf.keras.layers.Dense(Theta2.shape[0], kernel_initializer=tf.transpose(Theta2[:,1:]), bias_initializer=Theta2[:,0], activation='sigmoid')] model = tf.keras.Sequential(layers) #model = tf.keras.models.Sequential(layers) # This is just an alias of previous. #model.build() # not necessary pred = model.predict(dataset) elif option==6: class NNModel(tf.keras.Model): def __init__(self, Theta1, Theta2): super(NNModel, self).__init__(name='neural_network_model') self.dense_1 = tf.keras.layers.Dense(Theta1.shape[0], kernel_initializer=tf.constant_initializer(Theta1[:,1:].T), bias_initializer=tf.constant_initializer(Theta1[:,0]), activation='sigmoid', input_shape=[X.shape[1]]) self.dense_2 = tf.keras.layers.Dense(Theta2.shape[0], kernel_initializer=tf.constant_initializer(Theta2[:,1:].T), bias_initializer=tf.constant_initializer(Theta2[:,0]), activation='sigmoid') def call(self, inputs): # Define your forward pass here, # using layers you previously defined (in `__init__`). x = self.dense_1(inputs) return self.dense_2(x) model = NNModel(Theta1, Theta2) pred = model.predict(dataset) elif option in [2, 3, 4, 5]: @tf.function def evaluation(Theta1, Theta2, data): # inside a @tf.function, I think all variables should be tf types, https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md # https://www.tensorflow.org/guide/effective_tf2#use_keras_layers_and_models_to_manage_variables l1 = tf.sigmoid(tf.matmul(data, Theta1[1:,:]) + Theta1[0,:]) l2 = tf.sigmoid(tf.matmul(l1, Theta2[1:,:]) + Theta2[0,:]) #l2 = tf.matmul(l1, Theta2[1:,:]) + Theta2[0,:] # One doesn't even need the last sigmoid function because it is monotone increasing and doesn't change the ordering for argmax. return l2 if option==2: pred = [] for entry in dataset: #pred.append(evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), entry.numpy().reshape((1,-1)))) # numpy reshape might be faster than tf.reshape pred.append(evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), tf.reshape(entry, (1,-1)))) # doing it in TF #pred = np.concatenate(pred, axis=0) # this also works pred = tf.concat(pred, axis=0) elif option==3: pred = dataset.map(lambda x: evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), tf.reshape(x, [1,-1]))) #pred = dataset.map(lambda x: evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), x)) # This doesn't work. pred = tf.concat([entry for entry in pred], axis=0) elif option==4: pred = [] for batch in dataset: for entry in batch: pred.append(evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), tf.reshape(entry, (1,-1)))) pred = tf.concat(pred, axis=0) else: # option==5 pred = dataset.map(lambda x: evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), x)) #pred = dataset.map(lambda x: evaluation(tf.constant(Theta1.T), tf.constant(Theta2.T), tf.reshape(x, [-1,400]))) # This works, in same time. pred = tf.concat([entry for entry in pred], axis=0) else: # option==7 @tf.function def evaluation2(Theta1k, Theta1b, Theta2k, Theta2b, data): # inside a @tf.function, I think all variables should be tf types, https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md l1 = tf.sigmoid(tf.matmul(data, Theta1k) + Theta1b) l2 = tf.sigmoid(tf.matmul(l1, Theta2k) + Theta2b) #l2 = tf.matmul(l1, Theta2k) + Theta2b # One doesn't even need the last sigmoid function because it is monotone increasing and doesn't change the ordering for argmax. return l2 pred = dataset.map(lambda x: evaluation2(tf.constant(Theta1[:,1:].T), tf.constant(Theta1[:,0]), tf.constant(Theta2[:,1:].T), tf.constant(Theta2[:,0].T), x)) #pred = dataset.map(lambda x: evaluation2(tf.constant(Theta1[:,1:].T), tf.constant(Theta1[:,0]), tf.constant(Theta2[:,1:].T), tf.constant(Theta2[:,0].T), tf.reshape(x, [-1,400]))) # This works, in same time. pred = tf.concat([entry for entry in pred], axis=0) # It does not work in this simplest form: #pred = evaluation2(tf.constant(Theta1[:,1:].T), tf.constant(Theta1[:,0]), tf.constant(Theta2[:,1:].T), tf.constant(Theta2[:,0].T), dataset) #tf.print(pred) # The output layer (pred) has 10 units, for digits 1,2,...,9,0. After taking argmax, you have to map the result of argmax, 0,1,2,...,9 to the required 1,2,...,9,0. pred_digit = (tf.argmax(pred, axis=1) + 1) % 10 #pred_digit = tf.map_fn(lambda x: (tf.argmax(x, axis=0, output_type=tf.int32)+1) % 10, pred, dtype=tf.int32) # This is rather slow! pred_np = pred_digit.numpy().reshape(-1,1) print('\nTraining Set Accuracy: {0:.2f}%.'.format(np.mean(pred_np == y) * 100)) print('Expected training error value on complete Training Set (approx.): 97.5%.') print('\nTime elapsed: {:.2f} sec'.format(time.time() - start_time)) print() if option in [0, 1, 6]: tf.print(model.summary()) # This provides interesting output. plt.scatter(np.arange(len(y)), y, label='Ground truth') plt.scatter(np.arange(len(y)), pred_np, marker=".", c='r', label='Prediction') plt.xlabel('Sample ID') plt.ylabel('Digit') plt.legend() plt.show()
48.923077
347
0.70043
763
0.063131
0
0
1,223
0.101191
0
0
7,636
0.631805