hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
466e8b57966faf4a0cc17febbe2a82c29fab5e61
802
py
Python
setup.py
greenaddress/txjsonrpc
272d44db43d36645ba981c6e7fa73e33c1fbb7d5
[ "MIT" ]
null
null
null
setup.py
greenaddress/txjsonrpc
272d44db43d36645ba981c6e7fa73e33c1fbb7d5
[ "MIT" ]
1
2019-10-16T14:00:25.000Z
2019-11-11T16:23:20.000Z
setup.py
greenaddress/txjsonrpc
272d44db43d36645ba981c6e7fa73e33c1fbb7d5
[ "MIT" ]
2
2017-05-15T06:03:27.000Z
2019-07-21T09:04:24.000Z
from __future__ import absolute_import from setuptools import setup from txjsonrpc import meta from txjsonrpc.util import dist setup( name=meta.display_name, version=meta.version, description=meta.description, author=meta.author, author_email=meta.author_email, url=meta.url, license=meta.license, packages=dist.findPackages(meta.library_name), long_description=dist.catReST( "docs/PRELUDE.txt", "README", "docs/DEPENDENCIES.txt", "docs/INSTALL.txt", "docs/USAGE.txt", "TODO", "docs/HISTORY.txt", stop_on_errors=True, out=True), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Programming Language :: Python", ], )
24.30303
50
0.63591
0
0
0
0
0
0
0
0
204
0.254364
466e8e7393dfb5f6f03f625478a37ff5c418e4db
28,135
py
Python
gsflow/gsflow.py
pygsflow/pygsflow
83860cd58078017a65e1633b1192469777f1ce15
[ "CC0-1.0", "BSD-3-Clause" ]
17
2019-11-11T02:49:29.000Z
2022-02-17T03:45:19.000Z
gsflow/gsflow.py
pygsflow/pygsflow
83860cd58078017a65e1633b1192469777f1ce15
[ "CC0-1.0", "BSD-3-Clause" ]
21
2019-07-10T21:45:11.000Z
2022-02-22T17:57:20.000Z
gsflow/gsflow.py
pygsflow/pygsflow
83860cd58078017a65e1633b1192469777f1ce15
[ "CC0-1.0", "BSD-3-Clause" ]
8
2019-11-11T02:49:36.000Z
2021-09-30T18:43:45.000Z
# -*- coding: utf-8 -*- import os from .control import ControlFile from .prms import PrmsModel from .utils import gsflow_io, GsConstant from .prms import Helper from .modflow import Modflow from .modsim import Modsim import flopy import subprocess as sp import platform import warnings warnings.simplefilter("always", PendingDeprecationWarning) warnings.simplefilter("always", UserWarning) class GsflowModel(object): """ GsflowModel is the GSFLOW model object. This class can be used to build a GSFLOW model, to load a GSFLOW model from it's control file, to write input files for GSFLOW and to run GSFLOW. Parameters ---------- control_file : str control file path and name prms : PrmsModel object gsflow.prms.PrmsModel mf : Modflow object gsflow.modflow.Modflow modflow_only : bool flag that indicates only Modflow model prms_only : bool flag that indicates only PRMS model gsflow_exe : str GSFLOW executable path and name modsim : bool boolean flag to indicate that modsim is active this creates a gsflow.modsim.Modsim object model_ws : str, None override method to set the base model directory when the GSFLOW control file is not located in the same directory as the script to run GSFLOW Examples -------- load from control file >>> import gsflow >>> gsf = gsflow.GsflowModel.load_from_file("gsflow.control") create new, empty gsflow object >>> control = gsflow.ControlFile(records_list=[]) >>> gsf = gsflow.GsflowModel(control=control) """ def __init__( self, control=None, prms=None, mf=None, modflow_only=False, prms_only=False, gsflow_exe=None, modsim=False, model_ws=None, ): if not isinstance(control, ControlFile): raise ValueError("control must be a ControlFile object") self.control = control self.control_file = os.path.abspath(control.control_file) self.ws = None self._modflow_only = modflow_only self._prms_only = prms_only self.prms = None self.mf = None self.modsim = None self.gsflow_exe = gsflow_exe if gsflow_exe is None: self.gsflow_exe = os.path.join( os.path.dirname(__file__), r"bin\gsflow.exe" ) # set prms object if not modflow_only: if prms and isinstance(prms, PrmsModel): self.prms = prms else: err = "prms is not a PrmsModel object, skipping..." warnings.warn(err, UserWarning) # set flopy modflow object if not prms_only: if mf and isinstance(mf, flopy.modflow.Modflow): self.mf = mf namefile = os.path.basename( control.get_values("modflow_name")[0] ) if namefile is not None: self.mf.namefile = namefile else: err = "modflow is not a gsflow.modflow.Modflow object, skipping..." warnings.warn(err, UserWarning) if modsim: self.modsim = Modsim(self) self.help = Helper() @property def modflow_only(self): """ Returns ------- bool """ return self._modflow_only @property def prms_only(self): """ Returns ------- bool """ return self._prms_only def export_nc(self, f, **kwargs): """ Method to export the GSFLOW model as a netcdf file. This method only works if nhru is equivalent to nrow * ncol in modflow. Parameters ---------- f : str netcdf file name kwargs : keyword arguments for netcdf """ if not f.endswith(".nc"): raise AssertionError("f must end with .nc extension") if self.mf is None: err = "Modflow object must be loaded to export netcdf file" raise AssertionError(err) f = self.mf.export(f, **kwargs) if self.prms is not None: f = self.prms.export_nc(f, self.mf, **kwargs) return f @staticmethod def load_from_file( control_file, gsflow_exe="gsflow.exe", modflow_only=False, prms_only=False, mf_load_only=None, forgive=False, model_ws=None, ): """ Method to load a gsflow model from it's control file Parameters ---------- control_file : str control file path & name, GSFLOW gsflow_exe : str gsflow executable path & name modflow_only : bool flag to load only modflow from the control file prms_only : bool flag to load only prms from the control file mf_load_only : list list of packages to load from modflow ex. [DIS, BAS, LPF] forgive : bool forgive file loading errors in flopy model_ws : str, None override method to set the base model directory when the GSFLOW control file is not located in the same directory as the script to run GSFLOW Returns ------- GsflowModel object Examples -------- >>> import gsflow >>> gsf = gsflow.GsflowModel.load_from_file("gsflow.control") """ prms = None modflow = None modsim = False if not (os.path.isfile(control_file)): raise ValueError("Cannot find control file") if model_ws is not None: control = ControlFile.load_from_file(control_file, abs_path=False) else: control = ControlFile.load_from_file(control_file) print("Control file is loaded") mode = control.get_values("model_mode")[0].upper() if mode == "MODFLOW": modflow_only = True elif mode == "PRMS": prms_only = True elif "MODSIM" in mode: modsim = True else: pass # load prms if not modflow_only: print("Working on loading PRMS model ...") prms = PrmsModel.load_from_file(control_file, model_ws=model_ws) if not prms_only: # get model mode if "GSFLOW" in mode.upper() or "MODFLOW" in mode.upper(): print("Working on loading MODFLOW files ....") modflow = GsflowModel._load_modflow( control, mf_load_only, model_ws, forgive ) print("MODFLOW files are loaded ... ") else: prms_only = True modflow_only = False print("Mode is set to PRMS only, loading PRMS model only") return GsflowModel( control=control, prms=prms, mf=modflow, modflow_only=modflow_only, prms_only=prms_only, gsflow_exe=gsflow_exe, modsim=modsim, ) @staticmethod def _load_modflow(control, mf_load_only, model_ws=None, forgive=False): """ The package files in the .nam file are relative to the execuatble gsflow. Here we set the model_ws to the location of the gsflow exe, via the control file or a user supplied model_ws parameter Parameters ---------- control : ControlFile object control file object mf_load_only : list list of packages to restrict modflow loading to model_ws : str optional parameter that allows the use to set the model_ws forgive : bool forgive file load errors in modflow Returns ------- Modflow object """ name = control.get_values("modflow_name") control_file = control.control_file if model_ws is None: name = gsflow_io.get_file_abs( control_file=control_file, fn=name[0] ) model_ws, name = os.path.split(name) else: model_ws = gsflow_io.get_file_abs(model_ws=model_ws) name = name[0] control_file = None return Modflow.load( name, model_ws=model_ws, control_file=control_file, load_only=mf_load_only, forgive=forgive, ) def write_input(self, basename=None, workspace=None, write_only=None): """ Write input files for gsflow. Four cases are possible: (1) if basename and workspace are None,then the exisiting files will be overwritten (2) if basename is specified, only file names will be changes (3) if only workspace is specified, only folder will be changed (4) when both basename and workspace are specifed both files are changed Parameters ---------- basename : str project basename workspace : str model output directory write_only: a list ['control', 'parameters', 'prms_data', 'mf', 'modsim'] Examples -------- >>> gsf = gsflow.GsflowModel.load_from_file('gsflow.control') >>> gsf.write_input(basename="new", workspace="../new_model") """ print("Writing the project files .....") if workspace is not None: workspace = os.path.abspath(workspace) if (basename, workspace) == (None, None): print("Warning: input files will be overwritten....") self._write_all(write_only) # only change the directory elif basename is None and workspace is not None: if not (os.path.isdir(workspace)): os.mkdir(workspace) fnn = os.path.basename(self.control.control_file) self.control.model_dir = workspace self.control.control_file = os.path.join(workspace, fnn) self.control_file = os.path.join(workspace, fnn) if self.prms is not None: self.prms.control_file = self.control_file # change parameters new_param_file_list = [] for par_record in self.prms.parameters.parameters_list: curr_file = os.path.basename(par_record.file_name) curr_file = os.path.join(workspace, curr_file) par_record.file_name = curr_file if not (curr_file in new_param_file_list): new_param_file_list.append(curr_file) self.control.set_values("param_file", new_param_file_list) # change datafile curr_file = os.path.relpath( os.path.join(workspace, self.prms.data.name), self.control.model_dir, ) self.prms.data.model_dir = workspace self.control.set_values("data_file", [curr_file]) # change mf if self.mf is not None: self.mf.change_model_ws(workspace, reset_external=True) mfnm = self.mf.name + ".nam" self.control.set_values("modflow_name", [mfnm]) # update file names in control object self._update_control_fnames(workspace, basename) # write if self.prms is not None: self.prms.control = self.control self._write_all(write_only) # only change the basename elif basename is not None and workspace is None: cnt_file = basename + "_cont.control" ws_ = os.path.dirname(self.control.control_file) self.control.control_file = os.path.join(ws_, cnt_file) self.control_file = os.path.join(ws_, cnt_file) self.prms.control_file = self.control_file # change parameters flist = self.prms.parameters.parameter_files new_param_file_list = [] for ifile, par_record in enumerate( self.prms.parameters.parameters_list ): file_index = flist.index(par_record.file_name) par_file = basename + "_par_{}.params".format(file_index) curr_dir = self.control.model_dir curr_file = os.path.join(curr_dir, par_file) par_record.file_name = curr_file if not (curr_file in new_param_file_list): new_param_file_list.append(curr_file) self.control.set_values("param_file", new_param_file_list) # change datafile dfile = basename + "_dat.data" curr_file = os.path.relpath( os.path.join(self.prms.data.model_dir, dfile), self.control.model_dir, ) self.prms.data.name = dfile self.control.set_values("data_file", [curr_file]) # change mf if self.mf is not None: curr_dir = self.mf.model_ws self.mf._set_name(basename) self._update_mf_basename(basename) mfnm = self.mf.name + ".nam" self.control.set_values("modflow_name", [mfnm]) # update file names in control object self._update_control_fnames(workspace, basename) self.prms.control = self.control self._write_all(write_only) # change both directory & basename elif basename is not None and workspace is not None: if not (os.path.isdir(workspace)): os.mkdir(workspace) cnt_file = basename + "_cont.control" self.control.model_dir = workspace self.control.control_file = os.path.join(workspace, cnt_file) self.prms.control_file = self.control.control_file self.control_file = self.control.control_file # change parameters # get param files list flist = self.prms.parameters.parameter_files new_param_file_list = [] for ifile, par_record in enumerate( self.prms.parameters.parameters_list ): file_index = flist.index(par_record.file_name) par_file = basename + "_par_{}.params".format(file_index) curr_file = os.path.join(workspace, par_file) par_record.file_name = curr_file if not (curr_file in new_param_file_list): new_param_file_list.append(curr_file) self.control.set_values("param_file", new_param_file_list) # change datafile dfile = basename + "_dat.data" curr_file = os.path.relpath( os.path.join(workspace, dfile), self.control.model_dir ) self.prms.data.model_dir = workspace self.prms.data.name = dfile self.control.set_values("data_file", [curr_file]) # flatten mf if self.mf is not None: self.mf.change_model_ws(workspace) self.mf._set_name(os.path.join(workspace, basename)) self._update_mf_basename(basename) mfnm = basename + ".nam" self.control.set_values( "modflow_name", [ os.path.relpath( os.path.join(workspace, mfnm), self.control.model_dir ) ], ) # update file names in control object self._update_control_fnames(workspace, basename) self.prms.control = self.control self._write_all(write_only) else: raise NotImplementedError() def _update_control_fnames(self, workspace, basename): """ Method to update control file names and paths Parameters ---------- workspace : str model output directory basename : str project basename """ if workspace is not None and basename is None: self.control.model_dir = workspace for rec_name in GsConstant.GSFLOW_FILES: if rec_name in self.control.record_names: file_values = self.control.get_values(rec_name) file_value = [] for fil in file_values: va = os.path.join(workspace, os.path.basename(fil)) va = os.path.relpath(va, self.control.model_dir) file_value.append(va) self.control.set_values(rec_name, file_value) else: for rec_name in GsConstant.GSFLOW_FILES: if rec_name in self.control.record_names: if rec_name in ("modflow_name",): continue elif rec_name in ( "modflow_name", "param_file", "data_file", ): file_values = self.control.get_values(rec_name) file_value = [] for fil in file_values: ws, filvalue = os.path.split(fil) if not ws: pass else: filvalue = os.path.relpath( fil, self.control.model_dir ) file_value.append(filvalue) self.control.set_values(rec_name, file_value) else: file_values = self.control.get_values(rec_name) file_value = [] for fil in file_values: if workspace is None: workspace = self.control.model_dir vvfile = rec_name.split("_") del vvfile[-1] vvfile = "_".join(vvfile) if "." in fil: ext = fil.split(".")[-1] else: ext = "dat" vvfile = basename + "_" + vvfile + "." + ext filvalue = os.path.join(workspace, vvfile) filvalue = os.path.relpath( filvalue, self.control.model_dir ) file_value.append(filvalue) self.control.set_values(rec_name, file_value) def _update_mf_basename(self, basename): """ Convience method to update modflow Basename Parameters ---------- basename : str basename of the Modflow object """ out_files_list = [] for ix, out_file in enumerate(self.mf.output_fnames): if out_file.count(".") > 1: ext = out_file.split(".") del ext[0] ext = ".".join(ext) else: ext = out_file.split(".")[-1] new_outfn = "{}.{}".format(basename, ext) out_files_list.append(new_outfn) self.mf.output_fnames = out_files_list def _write_all(self, write_only): """ Method to write input files Parameters ---------- write_only : list list of files to write accepts, control, parameters, prms_data, mf, and modsim """ write_only_options = ( "control", "parameters", "prms_data", "mf", "modsim", ) if write_only is not None: if not isinstance(write_only, list): raise ValueError("write_only agrgument must be a list") # make write options case insensitive write_only = [i.lower() for i in write_only] for write_option in write_only: if not (write_option in write_only_options): raise ValueError( "The option '{}' is not recognized...".format( write_option ) ) else: write_only = () # write control if len(write_only) == 0 or "control" in write_only: print("Writing Control file ...") self.control.write() if self.prms is not None: # self write parameters if len(write_only) == 0 or "parameters" in write_only: print("Writing Parameters files ...") self.prms.parameters.write() # write data if len(write_only) == 0 or "prms_data" in write_only: print("Writing Data file ...") self.prms.data.write() # write mf if self.mf is not None: if len(write_only) == 0 or "mf" in write_only: print("Writing Modflow files...") self.mf.write_input() if self.modsim is not None: if len(write_only) == 0 or "modsim" in write_only: print("Writing MODSIM shapefile") self.modsim.write_modsim_shapefile() def run_model(self, model_ws=".", forgive=False, gsflow_exe=None): """ Method to run a gsflow model Parameters ---------- model_ws : str parameter to specify the model directory forgive : bool forgives convergence issues gslfow_exe : str or None path to gsflow_exe, if gsflow_exe is None it will use the previously defined gsflow_exe variable or the default gsflow.exe. Returns ------- None or (success, buffer) Examples -------- >>> gsf = gsflow.GsflowModel.load_from_file("gsflow.control") >>> gsf.run_model() """ fn = self.control_file if gsflow_exe is None: gsflow_exe = self.gsflow_exe if not os.path.isfile(gsflow_exe): print( "Warning : The executable of the model could not be found. " "Use the gsflow_exe= parameter to define its path... " ) return None normal_msg = [ "normal termination", ] # , "simulation successful"] if forgive: normal_msg.append("failed to meet solver convergence criteria") return self.__run( exe_name=gsflow_exe, namefile=fn, normal_msg=normal_msg, model_ws=model_ws, ) def _generate_batch_file(self): fn = os.path.dirname(self.control_file) fn = os.path.join(fn, "__run_gsflow.bat") self.__bat_file = fn fidw = open(fn, "w") exe = os.path.normpath(os.path.join(os.getcwd(), self.gsflow_exe)) cmd = exe + " " + self.control_file fidw.write(cmd) fidw.close() def __run( self, exe_name, namefile, model_ws=".", silent=False, report=False, normal_msg="normal termination", cargs=None, ): """ This function will run the model using subprocess.Popen. Parameters ---------- exe_name : str Executable name (with path, if necessary) to run. namefile : str Namefile of model to run. The namefile must be the filename of the namefile without the path. model_ws : str Path to the location of the namefile. (default is the current working directory - './') silent : boolean Echo run information to screen (default is True). report : boolean, optional Save stdout lines to a list (buff) which is returned by the method . (default is False). normal_msg : str Normal termination message used to determine if the run terminated normally. (default is 'normal termination') cargs : str or list of strings additional command line arguments to pass to the executable. Default is None Returns ------- (success, buff) success : boolean buff : list of lines of stdout """ def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) def which(program): fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: # test for exe in current working directory if is_exe(program): return program # test for exe in path statement for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None success = False buff = [] # convert normal_msg to lower case for comparison if isinstance(normal_msg, str): normal_msg = [normal_msg.lower()] elif isinstance(normal_msg, list): for idx, s in enumerate(normal_msg): normal_msg[idx] = s.lower() # Check to make sure that program and namefile exist exe = which(exe_name) if exe is None: if platform.system() in "Windows": if not exe_name.lower().endswith(".exe"): exe = which(exe_name + ".exe") if exe is None: s = "The program {} does not exist or is not executable.".format( exe_name ) raise Exception(s) else: if not silent: s = "pyGSFLOW is using the following executable to run the model: {}".format( exe ) print(s) exe = os.path.normpath(os.path.join(os.getcwd(), exe)) if not os.path.isfile(os.path.join(model_ws, namefile)): s = "The namefile for this model does not exists: {}".format( namefile ) raise Exception(s) # simple little function for the thread to target # def q_output(output, q): # for line in iter(output.readline, b''): # q.put(line) # time.sleep(1) # output.close() # create a list of arguments to pass to Popen argv = [exe, namefile] # add additional arguments to Popen arguments if cargs is not None: if isinstance(cargs, str): cargs = [cargs] for t in cargs: argv.append(t) # run the model with Popen # if platform.system().lower() == "windows": # self._generate_batch_file() # cargv = self.__bat_file # else: # pass model_ws = os.path.dirname(self.control_file) proc = sp.Popen(argv, stdout=sp.PIPE, stderr=sp.STDOUT, cwd=model_ws) while True: line = proc.stdout.readline() c = line.decode("utf-8") if c != "": for msg in normal_msg: if msg in c.lower(): success = True break c = c.rstrip("\r\n") if not silent: print("{}".format(c)) if report: buff.append(c) else: break return success, buff
33.816106
95
0.530087
27,741
0.985996
0
0
4,519
0.160618
0
0
9,382
0.333464
466e94eb6dad2cfea42284bb23559a0aba280ee0
6,818
py
Python
tests/integration/storage_memory/test_storage_memory_write.py
Sam-Martin/cloud-wanderer
1879f9bb150054be5bf33fd46a47414b4939529e
[ "MIT" ]
1
2020-12-07T10:37:41.000Z
2020-12-07T10:37:41.000Z
tests/integration/storage_memory/test_storage_memory_write.py
Sam-Martin/cloud-wanderer
1879f9bb150054be5bf33fd46a47414b4939529e
[ "MIT" ]
null
null
null
tests/integration/storage_memory/test_storage_memory_write.py
Sam-Martin/cloud-wanderer
1879f9bb150054be5bf33fd46a47414b4939529e
[ "MIT" ]
null
null
null
import logging import pytest from moto import mock_ec2, mock_iam, mock_sts from cloudwanderer.cloud_wanderer_resource import CloudWandererResource from cloudwanderer.storage_connectors import MemoryStorageConnector from cloudwanderer.urn import URN from tests.pytest_helpers import create_ec2_instances logger = logging.getLogger(__name__) @pytest.fixture(scope="function") def memory_connector(request): connector = MemoryStorageConnector() connector.init() return connector def get_inferred_ec2_instances(cloudwanderer_boto3_session): return [ CloudWandererResource( urn=URN( account_id="111111111111", region="eu-west-2", service="ec2", resource_type="instance", resource_id_parts=[instance.instance_id], ), resource_data=instance.meta.data, ) for instance in cloudwanderer_boto3_session.resource("ec2").instances.all() ] def inferred_ec2_vpcs(cloudwanderer_boto3_session): return [ CloudWandererResource( urn=URN( account_id="111111111111", region="eu-west-2", service="ec2", resource_type="vpc", resource_id_parts=[vpc.vpc_id], ), resource_data=vpc.meta.data, ) for vpc in cloudwanderer_boto3_session.resource("ec2").vpcs.all() ] @pytest.fixture def iam_role(): return CloudWandererResource( urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role", resource_id_parts=["test-role"], ), resource_data={"RoleName": "test-role", "InlinePolicyAttachments": [{"PolicyNames": ["test-role"]}]}, dependent_resource_urns=[ URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy"], ) ], ) @pytest.fixture def iam_role_policies(): return [ CloudWandererResource( urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy-1"], ), resource_data={}, parent_urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role", resource_id_parts=["test-role"], ), ), CloudWandererResource( urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy-2"], ), resource_data={}, parent_urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role", resource_id_parts=["test-role"], ), ), ] @mock_sts @mock_iam def test_write_resource_and_attribute(memory_connector, iam_role): memory_connector.write_resource(resource=iam_role) result = memory_connector.read_resource(urn=iam_role.urn) assert result.urn == iam_role.urn assert result.role_name == "test-role" logger.info(result.cloudwanderer_metadata.resource_data) assert result.inline_policy_attachments == [{"PolicyNames": ["test-role"]}] assert result.dependent_resource_urns == [ URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy"], ) ] @mock_sts @mock_ec2 def test_write_and_delete_instances(memory_connector, cloudwanderer_boto3_session): create_ec2_instances() inferred_ec2_instances = get_inferred_ec2_instances(cloudwanderer_boto3_session) memory_connector.write_resource(resource=inferred_ec2_instances[0]) result_before_delete = memory_connector.read_resource(urn=inferred_ec2_instances[0].urn) memory_connector.delete_resource(urn=inferred_ec2_instances[0].urn) result_after_delete = memory_connector.read_resource(urn=inferred_ec2_instances[0].urn) assert result_before_delete.urn == inferred_ec2_instances[0].urn assert result_after_delete is None @mock_sts @mock_ec2 def test_write_and_delete_resource_of_type_in_account_region(memory_connector, cloudwanderer_boto3_session): create_ec2_instances(count=5) inferred_ec2_instances = get_inferred_ec2_instances(cloudwanderer_boto3_session) for i in range(5): memory_connector.write_resource(resource=inferred_ec2_instances[i]) memory_connector.delete_resource_of_type_in_account_region( cloud_name="aws", service="ec2", resource_type="instance", account_id="111111111111", region="eu-west-2", cutoff=None, ) remaining_urns = [ resource.urn for resource in memory_connector.read_resources(service="ec2", resource_type="instance") ] assert remaining_urns == [] def test_delete_subresources_from_resource(memory_connector, iam_role, iam_role_policies): """If we are deleting a parent resource we should delete all its subresources.""" memory_connector.write_resource(resource=iam_role) memory_connector.write_resource(resource=iam_role_policies[0]) memory_connector.write_resource(resource=iam_role_policies[1]) role_before_delete = memory_connector.read_resource(urn=iam_role.urn) role_policy_1_before_delete = memory_connector.read_resource(urn=iam_role_policies[0].urn) role_policy_2_before_delete = memory_connector.read_resource(urn=iam_role_policies[1].urn) # Delete the parent and ensure the subresources are also deleted memory_connector.delete_resource(urn=iam_role.urn) role_after_delete = memory_connector.read_resource(urn=iam_role.urn) role_policy_1_after_delete = memory_connector.read_resource(urn=iam_role_policies[0].urn) role_policy_2_after_delete = memory_connector.read_resource(urn=iam_role_policies[1].urn) assert role_before_delete.urn == iam_role.urn assert role_policy_1_before_delete.urn == iam_role_policies[0].urn assert role_policy_2_before_delete.urn == iam_role_policies[1].urn assert role_after_delete is None assert role_policy_1_after_delete is None assert role_policy_2_after_delete is None
34.434343
109
0.661044
0
0
0
0
4,158
0.609856
0
0
838
0.12291
466f047e17e0d6d7208910c763a4df77317279f9
4,596
py
Python
tt/satisfiability/picosat.py
fkromer/tt
b4dfc90f7d0f9b5794e1f5054b640e22f6f75bf7
[ "MIT" ]
233
2016-02-05T20:13:06.000Z
2022-03-26T13:01:10.000Z
tt/satisfiability/picosat.py
fkromer/tt
b4dfc90f7d0f9b5794e1f5054b640e22f6f75bf7
[ "MIT" ]
8
2017-12-20T17:07:58.000Z
2020-08-06T15:44:55.000Z
tt/satisfiability/picosat.py
fkromer/tt
b4dfc90f7d0f9b5794e1f5054b640e22f6f75bf7
[ "MIT" ]
15
2016-03-22T23:37:56.000Z
2022-02-27T17:51:08.000Z
"""Python wrapper around the _clibs PicoSAT extension.""" import os from tt.errors.arguments import ( InvalidArgumentTypeError, InvalidArgumentValueError) if os.environ.get('READTHEDOCS') != 'True': from tt._clibs import picosat as _c_picosat VERSION = _c_picosat.VERSION def sat_one(clauses, assumptions=None): """Find a solution that satisfies the specified clauses and assumptions. This provides a light Python wrapper around the same method in the PicoSAT C-extension. While completely tested and usable, this method is probably not as useful as the interface provided through the :func:`sat_one <tt.expressions.bexpr.BooleanExpression.sat_one>` method in the :class:`BooleanExpression <tt.expressions.bexpr.BooleanExpression>` class. :param clauses: CNF (AND of ORs) clauses; positive integers represent non-negated terms and negative integers represent negated terms. :type clauses: List[List[:class:`int <python:int>`]] :param assumptions: Assumed terms; same negation logic from ``clauses`` applies here. Note that assumptions *cannot* be an empty list; leave it as ``None`` if there are no assumptions to include. :type assumptions: List[:class:`int <python:int>`] :returns: If solution is found, a list of ints representing the terms of the solution; otherwise, if no solution found, ``None``. :rtype: List[:class:`int <python:int>`] or ``None`` :raises InvalidArgumentTypeError: If ``clauses`` is not a list of lists of ints or ``assumptions`` is not a list of ints. :raises InvalidArgumentValueError: If any literal ints are equal to zero. Let's look at a simple example with no satisfiable solution:: >>> from tt import picosat >>> picosat.sat_one([[1], [-1]]) is None True Here's an example where a solution exists:: >>> picosat.sat_one([[1, 2, 3], [-2, -3], [1, -2], [2, -3], [-2]]) [1, -2, -3] Finally, here's an example using assumptions:: >>> picosat.sat_one([[1, 2, 3], [2, 3]], assumptions=[-1, -3]) [-1, 2, -3] """ try: return _c_picosat.sat_one(clauses, assumptions=assumptions) except TypeError as e: raise InvalidArgumentTypeError(str(e)) except ValueError as e: raise InvalidArgumentValueError(str(e)) def sat_all(clauses, assumptions=None): """Find all solutions that satisfy the specified clauses and assumptions. This provides a light Python wrapper around the same method in the PicoSAT C-extension. While completely tested and usable, this method is probably not as useful as the interface provided through the :func:`sat_all <tt.expressions.bexpr.BooleanExpression.sat_all>` method in the :class:`BooleanExpression <tt.expressions.bexpr.BooleanExpression>` class. :param clauses: CNF (AND of ORs) clauses; positive integers represent non-negated terms and negative integers represent negated terms. :type clauses: List[List[:class:`int <python:int>`]] :param assumptions: Assumed terms; same negation logic from ``clauses`` applies here. Note that assumptions *cannot* be an empty list; leave it as ``None`` if there are no assumptions to include. :type assumptions: List[:class:`int <python:int>`] :returns: An iterator of solutions; if no satisfiable solutions exist, the iterator will be empty. :rtype: Iterator[List[:class:`int <python:int>`]] :raises InvalidArgumentTypeError: If ``clauses`` is not a list of lists of ints or ``assumptions`` is not a list of ints. :raises InvalidArgumentValueError: If any literal ints are equal to zero. Here's an example showing the basic usage:: >>> from tt import picosat >>> for solution in picosat.sat_all([[1], [2, 3, 4], [2, 3]]): ... print(solution) ... [1, 2, 3, 4] [1, 2, 3, -4] [1, 2, -3, 4] [1, 2, -3, -4] [1, -2, 3, 4] [1, -2, 3, -4] We can cut down on some of the above solutions by including an assumption:: >>> for solution in picosat.sat_all([[1], [2, 3, 4], [2, 3]], ... assumptions=[-3]): ... print(solution) ... [1, 2, -3, 4] [1, 2, -3, -4] """ try: return _c_picosat.sat_all(clauses, assumptions=assumptions) except TypeError as e: raise InvalidArgumentTypeError(str(e)) except ValueError as e: raise InvalidArgumentValueError(str(e))
37.672131
79
0.650131
0
0
0
0
0
0
0
0
3,833
0.833986
466f1e4523ee66d1060bcbe9b327e33221329528
3,745
py
Python
tests/test_text_visualization.py
dianna-ai/dianna
88bcaec001e640c35e5e1e08517ef1624fd661cb
[ "Apache-2.0" ]
9
2021-11-16T09:53:47.000Z
2022-03-02T13:28:53.000Z
tests/test_text_visualization.py
dianna-ai/dianna
88bcaec001e640c35e5e1e08517ef1624fd661cb
[ "Apache-2.0" ]
340
2021-03-03T12:55:37.000Z
2022-03-31T13:53:44.000Z
tests/test_text_visualization.py
dianna-ai/dianna
88bcaec001e640c35e5e1e08517ef1624fd661cb
[ "Apache-2.0" ]
5
2021-08-19T08:14:35.000Z
2022-03-17T21:12:46.000Z
import os import re import shutil import unittest from pathlib import Path from dianna.visualization.text import highlight_text class Example1: original_text = 'Doloremque aliquam totam ut. Aspernatur repellendus autem quia deleniti. Natus accusamus ' \ 'doloribus et in quam officiis veniam et. ' explanation = [('ut', 25, -0.06405025896517044), ('in', 102, -0.05127647027074053), ('et', 99, 0.02254588506724936), ('quia', 58, -0.0008216335740370412), ('aliquam', 11, -0.0006268298968242725), ('Natus', 73, -0.0005556223616156406), ('totam', 19, -0.0005126140261410219), ('veniam', 119, -0.0005058379023790869), ('quam', 105, -0.0004573258796550468), ('repellendus', 40, -0.0003253862469633824)] class Example2: expected_html = '<html><body><span style="background:rgba(255, 0, 0, 0.08)">such</span> ' \ '<span style="background:rgba(255, 0, 0, 0.01)">a</span> <span style="background:rgba(0, 0, 255, 0.800000)">' \ 'bad</span> <span style="background:rgba(0, 0, 255, 0.059287)">movie</span>.</body></html>\n' original_text = 'Such a bad movie.' explanation = [('bad', 7, -0.4922624307995777), ('such', 0, 0.04637815000309109), ('movie', 11, -0.03648111256069627), ('a', 5, 0.008377155657765745)] class MyTestCase(unittest.TestCase): temp_folder = 'temp_text_visualization_test' html_file_path = str(Path(temp_folder) / 'output.html') def test_text_visualization_no_output(self): highlight_text(Example1.explanation, original_text=Example1.original_text) assert not Path(self.html_file_path).exists() def test_text_visualization_html_output_exists(self): highlight_text(Example1.explanation, original_text=Example1.original_text, output_html_filename=self.html_file_path) assert Path(self.html_file_path).exists() def test_text_visualization_html_output_contains_text(self): highlight_text(Example1.explanation, original_text=Example1.original_text, output_html_filename=self.html_file_path) assert Path(self.html_file_path).exists() with open(self.html_file_path, encoding='utf-8') as result_file: result = result_file.read() for word in _split_text_into_words(Example1.original_text): assert word in result def test_text_visualization_html_output_is_correct(self): highlight_text(Example2.explanation, original_text=Example2.original_text, output_html_filename=self.html_file_path) assert Path(self.html_file_path).exists() with open(self.html_file_path, encoding='utf-8') as result_file: result = result_file.read() assert result == Example2.expected_html def test_text_visualization_show_plot(self): highlight_text(Example1.explanation, original_text=Example1.original_text, show_plot=True) def setUp(self) -> None: os.mkdir(self.temp_folder) def tearDown(self) -> None: shutil.rmtree(self.temp_folder, ignore_errors=True) def _split_text_into_words(text): # regex taken from # https://stackoverflow.com/questions/12683201/python-re-split-to-split-by-spaces-commas-and-periods-but-not-in-cases-like # explanation: split by \s (whitespace), and only split by commas and # periods if they are not followed (?!\d) or preceded (?<!\d) by a digit. regex = r'\s|(?<!\d)[,.](?!\d)' return re.split(regex, text)
42.556818
131
0.646996
3,201
0.85474
0
0
0
0
0
0
879
0.234713
466fca56f7b6e59caf823a738ec5c36d18b27c25
2,983
py
Python
setup.py
guilhermeleobas/rbc
4b568b91c6ce3ef7727fee001169302c3803c4fd
[ "BSD-3-Clause" ]
null
null
null
setup.py
guilhermeleobas/rbc
4b568b91c6ce3ef7727fee001169302c3803c4fd
[ "BSD-3-Clause" ]
null
null
null
setup.py
guilhermeleobas/rbc
4b568b91c6ce3ef7727fee001169302c3803c4fd
[ "BSD-3-Clause" ]
null
null
null
import os import sys import builtins import versioneer if sys.version_info[:2] < (3, 7): raise RuntimeError("Python version >= 3.7 required.") builtins.__RBC_SETUP__ = True if os.path.exists('MANIFEST'): os.remove('MANIFEST') CONDA_BUILD = int(os.environ.get('CONDA_BUILD', '0')) CONDA_ENV = os.environ.get('CONDA_PREFIX', '') != '' from setuptools import setup, find_packages # noqa: E402 DESCRIPTION = "RBC - Remote Backend Compiler Project" LONG_DESCRIPTION = """ The aim of the Remote Backend Compiler project is to distribute the tasks of a program JIT compilation process to separate computer systems using the client-server model. The frontend of the compiler runs on the client computer and the backend runs on the server computer. The compiler frontend will send the program code to compiler backend in IR form where it will be compiled to machine code. """ def setup_package(): src_path = os.path.dirname(os.path.abspath(sys.argv[0])) old_path = os.getcwd() os.chdir(src_path) sys.path.insert(0, src_path) if CONDA_BUILD or CONDA_ENV: # conda dependencies are specified in meta.yaml or conda # enviroment should provide the correct requirements - using # PyPI is unreliable, see below. install_requires = [] setup_requires = [] tests_require = [] else: # Get requirements via PyPI. Use at your own risk as more than # once the numba and llvmlite have not matched. install_requires = open('requirements.txt', 'r').read().splitlines() setup_requires = ['pytest-runner', 'cffi'] tests_require = ['pytest'] metadata = dict( name='rbc-project', description=DESCRIPTION, long_description=LONG_DESCRIPTION, license='BSD', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), author='Pearu Peterson', maintainer='Pearu Peterson', author_email='[email protected]', url='https://github.com/xnd-project/rbc', platforms='Cross Platform', classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', "Operating System :: OS Independent", "Topic :: Software Development", ], packages=find_packages(), package_data={'': ['*.thrift']}, cffi_modules=['rbc/rbclib//_rbclib_build.py:ffibuilder'], install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, ) try: setup(**metadata) finally: del sys.path[0] os.chdir(old_path) return if __name__ == '__main__': setup_package() del builtins.__RBC_SETUP__
32.78022
76
0.650352
0
0
0
0
0
0
0
0
1,337
0.448207
46701c0193cfd9ee406763922c026176cc2a2fc9
1,126
py
Python
src/prefect/schedules/adjustments.py
concreted/prefect
dd732f5990ee2b0f3d816adb285168fd63b239e4
[ "Apache-2.0" ]
8,633
2019-03-23T17:51:03.000Z
2022-03-31T22:17:42.000Z
src/prefect/schedules/adjustments.py
concreted/prefect
dd732f5990ee2b0f3d816adb285168fd63b239e4
[ "Apache-2.0" ]
3,903
2019-03-23T19:11:21.000Z
2022-03-31T23:21:23.000Z
src/prefect/schedules/adjustments.py
ngriffiths13/prefect
7f5613abcb182494b7dc12159277c3bc5f3c9898
[ "Apache-2.0" ]
937
2019-03-23T18:49:44.000Z
2022-03-31T21:45:13.000Z
""" Schedule adjustments are functions that accept a `datetime` and modify it in some way. Adjustments have the signature `Callable[[datetime], datetime]`. """ from datetime import datetime, timedelta from typing import Callable import pendulum import prefect.schedules.filters def add(interval: timedelta) -> Callable[[datetime], datetime]: """ Adjustment that adds a specified interval to the date. Args: - interval (timedelta): the amount of time to add Returns: - Callable[[datetime], bool]: the adjustment function """ def _adjustment_fn(dt: datetime) -> datetime: return pendulum.instance(dt) + interval return _adjustment_fn def next_weekday(dt: datetime) -> datetime: """ Adjustment that advances a date to the next weekday. If the date is already a weekday, it is returned unadjusted. Args: - dt (datetime): the datetime to adjust Returns: - datetime: the adjusted datetime """ pdt = pendulum.instance(dt) while not prefect.schedules.filters.is_weekday(pdt): pdt = pdt.add(days=1) return pdt
24.478261
90
0.683837
0
0
0
0
0
0
0
0
623
0.553286
4671817d5486f1ffa5048135771d27e1109e5cdd
12,349
py
Python
src/pyfmodex/sound.py
Loodoor/UnamedPy
7d154c3a652992b3c1f28050f0353451f57b2a2d
[ "MIT" ]
1
2017-02-21T16:46:21.000Z
2017-02-21T16:46:21.000Z
src/pyfmodex/sound.py
Loodoor/UnamedPy
7d154c3a652992b3c1f28050f0353451f57b2a2d
[ "MIT" ]
1
2017-02-21T17:57:05.000Z
2017-02-22T11:28:51.000Z
src/pyfmodex/sound.py
Loodoor/UnamedPy
7d154c3a652992b3c1f28050f0353451f57b2a2d
[ "MIT" ]
null
null
null
from .fmodobject import * from .fmodobject import _dll from .structures import TAG, VECTOR from .globalvars import get_class class ConeSettings(object): def __init__(self, sptr): self._sptr = sptr self._in = c_float() self._out = c_float() self._outvol = c_float() ckresult(_dll.FMOD_Sound_Get3DConeSettings(self._sptr, byref(self._in), byref(self._out), byref(self._outvol))) @property def inside_angle(self): return self._in.value @inside_angle.setter def inside_angle(self, angle): self._in = c_float(angle) self._commit() @property def outside_angle(self): return self._out.value @outside_angle.setter def outside_angle(self, angle): self._out = c_float(angle) self._commit() @property def outside_volume(self): return self._outvol.value @outside_volume.setter def outside_volume(self, vol): self._outvol = c_float(vol) self._commit() def _commit(self): ckresult(_dll.FMOD_Sound_Set3DConeSettings(self._sptr, self._in, self._out, self._outvol)) class Sound(FmodObject): def add_sync_point(self, offset, offset_type, name): s_ptr = c_void_p() ckresult(_dll.FMOD_Sound_AddSyncPoint(self._ptr, offset, offset_type, name, byref(s_ptr))) return s_ptr def delete_sync_point(self, point): ckresult(_dll.FMOD_Sound_DeleteSyncPoint(self._ptr, point)) @property def threed_cone_settings(self): return ConeSettings(self._ptr) @property def custom_rolloff(self): """Returns the custom rolloff curve. :rtype: List of [x, y, z] lists. """ num = c_int() self._call_fmod("FMOD_Sound_Get3DCustomRolloff", None, byref(num)) curve = (VECTOR * num.value)() self._call_fmod("FMOD_Sound_Get3DCustomRolloff", byref(curve), 0) return [p.to_list() for p in curve] @custom_rolloff.setter def custom_rolloff(self, curve): """Sets the custom rolloff curve. :param curve: The curve to set. :type curve: A list of something that can be treated as a list of [x, y, z] values e.g. implements indexing in some way. """ native_curve = (VECTOR * len(curve))(*[VECTOR.from_list(lst) for lst in curve]) self._call_fmod("FMOD_Sound_Set3DCustomRolloff", native_curve, len(native_curve)) @property def _min_max_distance(self): min = c_float() max = c_float() ckresult(_dll.FMOD_Sound_Get3DMinMaxDistance(self._ptr, byref(min), byref(max))) return (min.value, max.value) @_min_max_distance.setter def _min_max_distance(self, dists): ckresult(_dll.FMOD_Sound_Set3DMinMaxDistance(self._ptr, c_float(dists[0]), c_float(dists[1]))) @property def min_distance(self): return self._min_max_distance[0] @min_distance.setter def min_distance(self, dist): self._min_max_distance = (dist, self._min_max_distance[1]) @property def max_distance(self): return self._min_max_distance[1] @max_distance.setter def max_distance(self, dist): self._min_max_distance = (self._min_max_distance[0], dist) @property def _defaults(self): freq = c_float() vol = c_float() pan = c_float() pri = c_int() ckresult(_dll.FMOD_Sound_GetDefaults(self._ptr, byref(freq), byref(vol), byref(pan), byref(pri))) return [freq.value, vol.value, pan.value, pri.value] @_defaults.setter def _defaults(self, vals): ckresult(_dll.FMOD_Sound_SetDefaults(self._ptr, c_float(vals[0]), c_float(vals[1]), c_float(vals[2]), vals[3])) @property def default_frequency(self): return self._defaults[0] @default_frequency.setter def default_frequency(self, freq): d = self._defaults d[0] = freq self._defaults = d @property def default_volume(self): return self._defaults[1] @default_volume.setter def default_volume(self, vol): d = self._defaults d[1] = vol self._defaults = d @property def default_pan(self): return self._defaults[2] @default_pan.setter def default_pan(self, pan): d = self._defaults d[2] = pan self._defaults = d @property def default_priority(self): return self._defaults[3] @default_priority.setter def default_priority(self, pri): d = self._defaults d[3] = pri self._defaults = d @property def format(self): type = c_int() format = c_int() bits = c_int() ckresult(_dll.FMOD_Sound_GetFormat(self._ptr, byref(type), byref(format), byref(bits))) return so(type=type.value, format=format.value, bits=bits.value) def get_length(self, ltype): len = c_uint() ckresult(_dll.FMOD_Sound_GetLength(self._ptr, byref(len), ltype)) return len.value @property def loop_count(self): c = c_int() ckresult(_dll.FMOD_Sound_GetLoopCount(self._ptr, byref(c))) return c.value @loop_count.setter def loop_count(self, count): ckresult(_dll.FMOD_Sound_SetLoopCount(self._ptr, count)) @property def loop_points(self): """Returns tuple of two tuples ((start, startunit),(end, endunit))""" start = c_uint() startunit = c_int() end = c_uint() endunit = c_int() ckresult(_dll.FMOD_Sound_GetLoopPoints(self._ptr, byref(start), byref(startunit), byref(end), byref(endunit))) return ((start.value, startunit.value), (end.value, endunit.value)) @loop_points.setter def loop_points(self, p): """Same format as returned from this property is required to successfully call this setter.""" ckresult(_dll.FMOD_Sound_SetLoopPoints(self._ptr, p[0][0], p[0][1], p[1][0], p[1][1])) @property def mode(self): mode = c_int() ckresult(_dll.FMOD_Sound_GetMode(self._ptr, byref(mode))) return mode.value @mode.setter def mode(self, m): ckresult(_dll.FMOD_Sound_SetMode(self._ptr, m)) def get_music_channel_volume(self, channel): v = c_float() ckresult(_dll.FMOD_Sound_GetMusicChannelVolume(self._ptr, channel, byref(v))) return v.value def set_music_channel_volume(self, id, vol): ckresult(_dll.FMOD_Sound_SetMusicChannelVolume(self._ptr, id, c_float(vol))) @property def num_music_channels(self): num = c_int() ckresult(_dll.FMOD_Sound_GetMusicNumChannels(self._ptr, byref(num))) return num.value @property def name(self): name = create_string_buffer(256) ckresult(_dll.FMOD_Sound_GetName(self._ptr, byref(name), 256)) return name.value @property def num_subsounds(self): num = c_int() ckresult(_dll.FMOD_Sound_GetNumSubSounds(self._ptr, byref(num))) return num.value @property def num_sync_points(self): num = c_int() ckresult(_dll.FMOD_Sound_GetNumSyncPoints(self._ptr, byref(num))) return num.value @property def num_tags(self): num = c_int() ckresult(_dll.FMOD_Sound_GetNumTags(self._ptr, byref(num))) return num.value @property def open_state(self): state = c_int() percentbuffered = c_uint() starving = c_bool() diskbusy = c_bool() ckresult(_dll.FMOD_Sound_GetOpenState(self._ptr, byref(state), byref(percentbuffered), byref(starving), byref(diskbusy))) return so(state=state.value, percent_buffered=percentbuffered.value, starving=starving.value, disk_busy=diskbusy.value) @property def sound_group(self): grp_ptr = c_void_p() ckresult(_dll.FMOD_Sound_GetSoundGroup(self._ptr, byref(grp_ptr))) return get_class("SoundGroup")(grp_ptr) @sound_group.setter def sound_group(self, group): check_type(group, get_class("SoundGroup")) ckresult(_dll.FMOD_Sound_SetSoundGroup(self._ptr, group._ptr)) def get_subsound(self, index): sh_ptr = c_void_p() ckresult(_dll.FMOD_Sound_GetSubSound(self._ptr, index, byref(sh_ptr))) return Sound(sh_ptr) def get_sync_point(self, index): sp = c_int() ckresult(_dll.FMOD_Sound_GetSyncPoint(self._ptr, index, byref(sp))) return sp.value def get_sync_point_info(self, point): name = c_char_p() offset = c_uint() offsettype = c_int() ckresult(_dll.FMOD_Sound_GetSyncPointInfo(self._ptr, point, byref(name), 256, byref(offset), byref(offsettype))) return so(name=name.value, offset=offset.value, offset_type=offsettype.value) @property def system_object(self): sptr = c_void_p() ckresult(_dll.FMOD_Sound_GetSystemObject(self._ptr, byref(sptr))) return get_class("System")(sptr, False) def play(self, paused=False): return self.system_object.play_sound(self, paused) def get_tag(self, index, name=None): tag = TAG() ckresult(_dll.FMOD_Sound_GetTag(self._ptr, name, index, byref(tag))) return tag @property def _variations(self): freq = c_float() vol = c_float() pan = c_float() ckresult(_dll.FMOD_Sound_GetVariations(self._ptr, byref(freq), byref(vol), byref(pan))) return [freq.value, vol.value, pan.value] @_variations.setter def _variations(self, vars): ckresult(_dll.FMOD_Sound_SetVariations(self._ptr, c_float(vars[0]), c_float(vars[1]), c_float(vars[2]))) @property def frequency_variation(self): return self._variations[0] @frequency_variation.setter def frequency_variation(self, var): v = self._variations v[0] = var self._variations = var @property def volume_variation(self): return self._variations[1] @volume_variation.setter def volume_variation(self, var): v = self._variations v[1] = var self._variations = var @property def pan_variation(self): return self._variations[2] @pan_variation.setter def pan_variation(self, var): v = self._variations v[2] = var self._variations = var def lock(self, offset, length): ptr1 = c_void_p() len1 = c_uint() ptr2 = c_void_p() len2 = c_uint() ckresult(_dll.FMOD_Sound_Lock(self._ptr, offset, length, byref(ptr1), byref(ptr2), byref(len1), byref(len2))) return ((ptr1, len1), (ptr2, len2)) def release(self): ckresult(_dll.FMOD_Sound_Release(self._ptr)) def set_subsound(self, index, snd): check_type(snd, Sound) ckresult(_dll.FMOD_Sound_SetSubSound(self._ptr, index, snd._ptr)) def set_subsound_sentence(self, sounds): a = c_int * len(sounds) ptrs = [o._ptr for o in sounds] ai = a(*ptrs) ckresult(_dll.FMOD_Sound_SetSubSoundSentence(self._ptr, ai, len(ai))) def unlock(self, i1, i2): """I1 and I2 are tuples of form (ptr, len).""" ckresult(_dll.FMOD_Sound_Unlock(self._ptr, i1[0], i2[0], i1[1], i2[1])) @property def music_speed(self): speed = c_float() self._call_fmod("FMOD_Sound_GetMusicSpeed", byref(speed)) return speed.value @music_speed.setter def music_speed(self, speed): self._call_fmod("FMOD_Sound_SetMusicSpeed", c_float(speed)) def read_data(self, length): """Read a fragment of the sound's decoded data. :param length: The requested length. :returns: The data and the actual length. :rtype: Tuple of the form (data, actual).""" buf = create_string_buffer(length) actual = c_uint() self._call_fmod("FMOD_Sound_ReadData", buf, length, byref(actual)) return buf.value, actual.value def seek_data(self, offset): """Seeks for data reading purposes. :param offset: The offset to seek to in PCM samples. :type offset: Int or long, but must be in range of an unsigned long, not python's arbitrary long.""" self._call_fmod("FMOD_Sound_SeekData", offset)
31.745501
128
0.639809
12,219
0.989473
0
0
8,142
0.659325
0
0
1,131
0.091586
4671cf40aee848a7cf0a11db6406cdad41f3981d
7,667
py
Python
src/pynwb/retinotopy.py
weiglszonja/pynwb
441c64f332b32eb8141a9d03d92e0fda2fd1ad83
[ "BSD-3-Clause-LBNL" ]
132
2017-08-05T00:35:18.000Z
2022-03-22T08:14:18.000Z
src/pynwb/retinotopy.py
weiglszonja/pynwb
441c64f332b32eb8141a9d03d92e0fda2fd1ad83
[ "BSD-3-Clause-LBNL" ]
1,273
2017-08-04T05:14:47.000Z
2022-03-28T13:00:27.000Z
src/pynwb/retinotopy.py
weiglszonja/pynwb
441c64f332b32eb8141a9d03d92e0fda2fd1ad83
[ "BSD-3-Clause-LBNL" ]
68
2017-08-04T16:45:19.000Z
2022-03-22T08:14:15.000Z
from collections.abc import Iterable import warnings from hdmf.utils import docval, popargs, call_docval_func, get_docval from . import register_class, CORE_NAMESPACE from .core import NWBDataInterface, NWBData class RetinotopyImage(NWBData): """Gray-scale anatomical image of cortical surface. Array structure: [rows][columns] """ __nwbfields__ = ('bits_per_pixel', 'dimension', 'format', 'field_of_view') @docval({'name': 'name', 'type': str, 'doc': 'Name of this retinotopy image'}, {'name': 'data', 'type': Iterable, 'doc': 'Data field.'}, {'name': 'bits_per_pixel', 'type': int, 'doc': 'Number of bits used to represent each value. This is necessary to determine maximum ' '(white) pixel value.'}, {'name': 'dimension', 'type': Iterable, 'shape': (2, ), 'doc': 'Number of rows and columns in the image.'}, {'name': 'format', 'type': Iterable, 'doc': 'Format of image. Right now only "raw" supported.'}, {'name': 'field_of_view', 'type': Iterable, 'shape': (2, ), 'doc': 'Size of viewing area, in meters.'}) def __init__(self, **kwargs): bits_per_pixel, dimension, format, field_of_view = popargs( 'bits_per_pixel', 'dimension', 'format', 'field_of_view', kwargs) call_docval_func(super().__init__, kwargs) self.bits_per_pixel = bits_per_pixel self.dimension = dimension self.format = format self.field_of_view = field_of_view class FocalDepthImage(RetinotopyImage): """Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) as data collection. Array format: [rows][columns]. """ __nwbfields__ = ('focal_depth', ) @docval(*get_docval(RetinotopyImage.__init__), {'name': 'focal_depth', 'type': 'float', 'doc': 'Focal depth offset, in meters.'}) def __init__(self, **kwargs): focal_depth = popargs('focal_depth', kwargs) call_docval_func(super().__init__, kwargs) self.focal_depth = focal_depth class RetinotopyMap(NWBData): """Abstract two-dimensional map of responses to stimuli along a single response axis (e.g., altitude) """ __nwbfields__ = ('field_of_view', 'dimension') @docval({'name': 'name', 'type': str, 'doc': 'the name of this axis map'}, {'name': 'data', 'type': Iterable, 'shape': (None, None), 'doc': 'data field.'}, {'name': 'field_of_view', 'type': Iterable, 'shape': (2, ), 'doc': 'Size of viewing area, in meters.'}, {'name': 'dimension', 'type': Iterable, 'shape': (2, ), 'doc': 'Number of rows and columns in the image'}) def __init__(self, **kwargs): field_of_view, dimension = popargs('field_of_view', 'dimension', kwargs) call_docval_func(super().__init__, kwargs) self.field_of_view = field_of_view self.dimension = dimension class AxisMap(RetinotopyMap): """Abstract two-dimensional map of responses to stimuli along a single response axis (e.g., altitude) with unit """ __nwbfields__ = ('unit', ) @docval(*get_docval(RetinotopyMap.__init__, 'name', 'data', 'field_of_view'), {'name': 'unit', 'type': str, 'doc': 'Unit that axis data is stored in (e.g., degrees)'}, *get_docval(RetinotopyMap.__init__, 'dimension')) def __init__(self, **kwargs): unit = popargs('unit', kwargs) call_docval_func(super().__init__, kwargs) self.unit = unit @register_class('ImagingRetinotopy', CORE_NAMESPACE) class ImagingRetinotopy(NWBDataInterface): """ Intrinsic signal optical imaging or widefield imaging for measuring retinotopy. Stores orthogonal maps (e.g., altitude/azimuth; radius/theta) of responses to specific stimuli and a combined polarity map from which to identify visual areas. This group does not store the raw responses imaged during retinotopic mapping or the stimuli presented, but rather the resulting phase and power maps after applying a Fourier transform on the averaged responses. Note: for data consistency, all images and arrays are stored in the format [row][column] and [row, col], which equates to [y][x]. Field of view and dimension arrays may appear backward (i.e., y before x). """ __nwbfields__ = ({'name': 'sign_map', 'child': True}, {'name': 'axis_1_phase_map', 'child': True}, {'name': 'axis_1_power_map', 'child': True}, {'name': 'axis_2_phase_map', 'child': True}, {'name': 'axis_2_power_map', 'child': True}, {'name': 'focal_depth_image', 'child': True}, {'name': 'vasculature_image', 'child': True}, 'axis_descriptions') @docval({'name': 'sign_map', 'type': RetinotopyMap, 'doc': 'Sine of the angle between the direction of the gradient in axis_1 and axis_2.'}, {'name': 'axis_1_phase_map', 'type': AxisMap, 'doc': 'Phase response to stimulus on the first measured axis.'}, {'name': 'axis_1_power_map', 'type': AxisMap, 'doc': 'Power response on the first measured axis. Response is scaled so 0.0 is no power in ' 'the response and 1.0 is maximum relative power.'}, {'name': 'axis_2_phase_map', 'type': AxisMap, 'doc': 'Phase response to stimulus on the second measured axis.'}, {'name': 'axis_2_power_map', 'type': AxisMap, 'doc': 'Power response on the second measured axis. Response is scaled so 0.0 is no ' 'power in the response and 1.0 is maximum relative power.'}, {'name': 'axis_descriptions', 'type': Iterable, 'shape': (2, ), 'doc': 'Two-element array describing the contents of the two response axis fields. ' 'Description should be something like ["altitude", "azimuth"] or ["radius", "theta"].'}, {'name': 'focal_depth_image', 'type': FocalDepthImage, 'doc': 'Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) ' 'as data collection. Array format: [rows][columns].'}, {'name': 'vasculature_image', 'type': RetinotopyImage, 'doc': 'Gray-scale anatomical image of cortical surface. Array structure: [rows][columns].'}, {'name': 'name', 'type': str, 'doc': 'the name of this container', 'default': 'ImagingRetinotopy'}) def __init__(self, **kwargs): axis_1_phase_map, axis_1_power_map, axis_2_phase_map, axis_2_power_map, axis_descriptions, \ focal_depth_image, sign_map, vasculature_image = popargs( 'axis_1_phase_map', 'axis_1_power_map', 'axis_2_phase_map', 'axis_2_power_map', 'axis_descriptions', 'focal_depth_image', 'sign_map', 'vasculature_image', kwargs) call_docval_func(super().__init__, kwargs) warnings.warn("The ImagingRetinotopy class currently cannot be written to or read from a file. " "This is a known bug and will be fixed in a future release of PyNWB.") self.axis_1_phase_map = axis_1_phase_map self.axis_1_power_map = axis_1_power_map self.axis_2_phase_map = axis_2_phase_map self.axis_2_power_map = axis_2_power_map self.axis_descriptions = axis_descriptions self.focal_depth_image = focal_depth_image self.sign_map = sign_map self.vasculature_image = vasculature_image
52.513699
119
0.626842
7,386
0.963349
0
0
6,510
0.849094
0
0
3,991
0.520543
46725864f7a8f29464ea63af729e3e78c2a1218d
370
py
Python
GreenMoon/forms.py
ma010/green-moon
25ed395f1e19c180995b22508143c8819bf40fae
[ "CNRI-Python" ]
null
null
null
GreenMoon/forms.py
ma010/green-moon
25ed395f1e19c180995b22508143c8819bf40fae
[ "CNRI-Python" ]
null
null
null
GreenMoon/forms.py
ma010/green-moon
25ed395f1e19c180995b22508143c8819bf40fae
[ "CNRI-Python" ]
null
null
null
""" Implement a class function for user to put in a zip-code and search relevant information about business entities in that zip-code area. """ from flask.ext.wtf import Form from wtforms import StringField, BooleanField from wtforms.validators import DataRequired class inputZipForm(Form): inputZip = StringField('inputZip', validators=[DataRequired()])
28.461538
78
0.77027
93
0.251351
0
0
0
0
0
0
161
0.435135
46750d2f3ef713a053808ca00fc559cb70158512
283
py
Python
Phase-2/Linked List/Day-70.py
CodedLadiesInnovateTech/python-challenges
22ce26c68fea6c7c243ada831e47c52e27a62127
[ "MIT" ]
11
2020-05-11T08:41:21.000Z
2022-02-27T08:21:37.000Z
Phase-2/Linked List/Day-70.py
CodedLadiesInnovateTech/python-challenges
22ce26c68fea6c7c243ada831e47c52e27a62127
[ "MIT" ]
9
2020-05-12T10:46:06.000Z
2020-05-28T17:37:19.000Z
Phase-2/Linked List/Day-70.py
CodedLadiesInnovateTech/python-challenges
22ce26c68fea6c7c243ada831e47c52e27a62127
[ "MIT" ]
44
2020-05-10T20:53:32.000Z
2021-04-25T18:47:08.000Z
''' 1. Write a Python program to access a specific item in a singly linked list using index value. 2. Write a Python program to set a new value of an item in a singly linked list using index value. 3. Write a Python program to delete the first item from a singly linked list. '''
31.444444
98
0.749117
0
0
0
0
0
0
0
0
282
0.996466
46759a54fd059282243dcf32a6f899667fd72ec3
25
py
Python
ngboost/version.py
dsharpc/ngboost
8c05e0cb3b95bb23d8f30f17042d2fd8926c4014
[ "Apache-2.0" ]
null
null
null
ngboost/version.py
dsharpc/ngboost
8c05e0cb3b95bb23d8f30f17042d2fd8926c4014
[ "Apache-2.0" ]
null
null
null
ngboost/version.py
dsharpc/ngboost
8c05e0cb3b95bb23d8f30f17042d2fd8926c4014
[ "Apache-2.0" ]
null
null
null
__version__ = "0.3.4dev"
12.5
24
0.68
0
0
0
0
0
0
0
0
10
0.4
467608de6f71ab4b616b2d09915c4d849b7654e0
624
py
Python
premailer/tests/test_utils.py
p12tic/premailer
ebfd310dbd0a88b465e811411f67a360e11f3292
[ "BSD-3-Clause" ]
null
null
null
premailer/tests/test_utils.py
p12tic/premailer
ebfd310dbd0a88b465e811411f67a360e11f3292
[ "BSD-3-Clause" ]
1
2018-11-23T11:58:22.000Z
2018-11-23T13:58:13.000Z
premailer/tests/test_utils.py
lavr/premailer
ebfd310dbd0a88b465e811411f67a360e11f3292
[ "BSD-3-Clause" ]
null
null
null
import unittest from premailer.premailer import capitalize_float_margin class UtilsTestCase(unittest.TestCase): def testcapitalize_float_margin(self): self.assertEqual( capitalize_float_margin('margin:1em'), 'Margin:1em') self.assertEqual( capitalize_float_margin('margin-left:1em'), 'Margin-left:1em') self.assertEqual( capitalize_float_margin('float:right;'), 'Float:right;') self.assertEqual( capitalize_float_margin('float:right;color:red;margin:0'), 'Float:right;color:red;Margin:0')
31.2
70
0.639423
548
0.878205
0
0
0
0
0
0
150
0.240385
4676a784f66c68a2faf6e33e2c3d3bf09c476661
1,652
py
Python
home/vscode/extensions/ms-python.python-2021.12.1559732655/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_cython_wrapper.py
qwertzy-antonio-godinho/dots
65cd657f785e7da3a3ccb1a808c0fc1b8496e5b1
[ "Apache-2.0" ]
6
2021-12-26T13:34:32.000Z
2022-02-08T22:09:38.000Z
src/ptvsd/_vendored/pydevd/_pydevd_bundle/pydevd_cython_wrapper.py
ev3dev/ptvsd
cea22767dd78a812a14e2330a540a368f615224e
[ "MIT" ]
8
2020-07-19T23:39:31.000Z
2022-02-27T01:38:46.000Z
vscode/extensions/ms-python.python-2020.3.69010/pythonFiles/lib/python/old_ptvsd/ptvsd/_vendored/pydevd/_pydevd_bundle/pydevd_cython_wrapper.py
Adespinoza/dotfiles
e2509402a7fd2623a3ea401b6f9fcbf6a372fc60
[ "CC0-1.0" ]
3
2020-08-04T02:48:32.000Z
2020-08-17T01:20:09.000Z
import sys try: try: from _pydevd_bundle_ext import pydevd_cython as mod except ImportError: from _pydevd_bundle import pydevd_cython as mod except ImportError: import struct try: is_python_64bit = (struct.calcsize('P') == 8) except: # In Jython this call fails, but this is Ok, we don't support Jython for speedups anyways. raise ImportError plat = '32' if is_python_64bit: plat = '64' # We also accept things as: # # _pydevd_bundle.pydevd_cython_win32_27_32 # _pydevd_bundle.pydevd_cython_win32_34_64 # # to have multiple pre-compiled pyds distributed along the IDE # (generated by build_tools/build_binaries_windows.py). mod_name = 'pydevd_cython_%s_%s%s_%s' % (sys.platform, sys.version_info[0], sys.version_info[1], plat) check_name = '_pydevd_bundle.%s' % (mod_name,) mod = getattr(__import__(check_name), mod_name) # Regardless of how it was found, make sure it's later available as the # initial name so that the expected types from cython in frame eval # are valid. sys.modules['_pydevd_bundle.pydevd_cython'] = mod trace_dispatch = mod.trace_dispatch PyDBAdditionalThreadInfo = mod.PyDBAdditionalThreadInfo set_additional_thread_info = mod.set_additional_thread_info global_cache_skips = mod.global_cache_skips global_cache_frame_skips = mod.global_cache_frame_skips _set_additional_thread_info_lock = mod._set_additional_thread_info_lock fix_top_level_trace_and_get_trace_func = mod.fix_top_level_trace_and_get_trace_func version = getattr(mod, 'version', 0)
31.169811
107
0.725787
0
0
0
0
0
0
0
0
576
0.348668
4677191c1771ec77d8d7c68a2a88766f05fcf790
2,843
py
Python
tests/test_thumbnails.py
pypeclub/openpype4-tests
c0c32b643f63e66609772270fff71e88dcd5b922
[ "Apache-2.0" ]
null
null
null
tests/test_thumbnails.py
pypeclub/openpype4-tests
c0c32b643f63e66609772270fff71e88dcd5b922
[ "Apache-2.0" ]
null
null
null
tests/test_thumbnails.py
pypeclub/openpype4-tests
c0c32b643f63e66609772270fff71e88dcd5b922
[ "Apache-2.0" ]
null
null
null
from tests.fixtures import api, PROJECT_NAME assert api THUMB_DATA1 = b"thisisaveryrandomthumbnailcontent" THUMB_DATA2 = b"thisihbhihjhuuyiooanothbnlcontent" def test_folder_thumbnail(api): response = api.post( f"projects/{PROJECT_NAME}/folders", name="testicek", folderType="Asset", ) assert response folder_id = response.data["id"] # Ensure we cannot create an empty thumbnail assert not api.raw_post( f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail", mime="image/png", data=b"", ) # Create a thumbnail for the folder response = api.raw_post( f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail", mime="image/png", data=THUMB_DATA1, ) assert response # Ensure the thumbnail is there response = api.raw_get(f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail") assert response == THUMB_DATA1 # Get the id of the thumbnail (we can re-use it later) thumb1_id = api.get( f"projects/{PROJECT_NAME}/folders/{folder_id}", ).data["thumbnailId"] # Update thumbnail response = api.raw_post( f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail", mime="image/png", data=THUMB_DATA2, ) assert response # Ensure the thumbnail changed response = api.raw_get(f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail") assert response == THUMB_DATA2 # Let the folder use the old thumbnail response = api.patch( f"projects/{PROJECT_NAME}/folders/{folder_id}", thumbnail_id=thumb1_id, ) assert response # Ensure the thumbnail is switched to the old one response = api.raw_get(f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail") assert response == THUMB_DATA1 def test_version_thumbnail(api): # Create folder/subset/version response = api.post( f"projects/{PROJECT_NAME}/folders", name="test2", folderType="Asset", ) assert response folder_id = response.data["id"] response = api.post( f"projects/{PROJECT_NAME}/subsets", name="test2s", family="theSopranos", folderId=folder_id, ) assert response subset_id = response.data["id"] response = api.post( f"projects/{PROJECT_NAME}/versions", version=1, subsetId=subset_id, ) version_id = response.data["id"] # Create thumbnail for the version response = api.raw_post( f"projects/{PROJECT_NAME}/versions/{version_id}/thumbnail", mime="image/png", data=THUMB_DATA1, ) assert response # Verify that the thumbnail is there response = api.raw_get(f"projects/{PROJECT_NAME}/versions/{version_id}/thumbnail") assert response == THUMB_DATA1
23.890756
86
0.65248
0
0
0
0
0
0
0
0
1,280
0.450229
4677247e7b07ffee44bb30042c587480349f229e
914
py
Python
POO/Heranca/aula107_classes.py
pinheirogus/Curso-Python-Udemy
d6d52320426172e924081b9df619490baa8c6016
[ "MIT" ]
1
2021-09-01T01:58:13.000Z
2021-09-01T01:58:13.000Z
POO/Heranca/aula107_classes.py
pinheirogus/Curso-Python-Udemy
d6d52320426172e924081b9df619490baa8c6016
[ "MIT" ]
null
null
null
POO/Heranca/aula107_classes.py
pinheirogus/Curso-Python-Udemy
d6d52320426172e924081b9df619490baa8c6016
[ "MIT" ]
null
null
null
# Generalizando para não repetir o código! class Pessoa: def __init__(self, nome, idade): self.nome = nome self.idade = idade self.nomeclasse = self.__class__.__name__ def falar(self): print(f'{self.nomeclasse} está falando.') class Cliente(Pessoa): def comprar(self): print(f'{self.nomeclasse} está comprando...') class Aluno(Pessoa): def estudar(self): print(f'{self.nomeclasse} está estudando...') class ClienteVIP(Cliente): def __init__(self, nome, idade, sobrenome): super().__init__(nome, idade) print(f'{self.nome}, {self.idade} anos, criado com sucesso.') self.sobrenome = sobrenome def falar(self): Pessoa.falar(self) # Como a classe Cliente não possui o método falar(), o Python busca na superclasse o método. Cliente.falar(self) print(f'{self.nome} {self.sobrenome}')
28.5625
100
0.63895
868
0.941432
0
0
0
0
0
0
337
0.36551
467742b9ee49da3193dfeffba9fb6976ebe7eb72
2,391
py
Python
nncf/experimental/onnx/algorithms/quantization/default_quantization.py
vuiseng9/nncf_pytorch
c2b1f069c867327203629201aecae3b7815e7895
[ "Apache-2.0" ]
136
2020-06-01T14:03:31.000Z
2020-10-28T06:10:50.000Z
nncf/experimental/onnx/algorithms/quantization/default_quantization.py
vuiseng9/nncf_pytorch
c2b1f069c867327203629201aecae3b7815e7895
[ "Apache-2.0" ]
133
2020-05-26T13:48:04.000Z
2020-10-28T05:25:55.000Z
nncf/experimental/onnx/algorithms/quantization/default_quantization.py
vuiseng9/nncf_pytorch
c2b1f069c867327203629201aecae3b7815e7895
[ "Apache-2.0" ]
36
2020-05-28T08:18:39.000Z
2020-10-27T14:46:58.000Z
""" Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from nncf.common.quantization.quantizer_propagation.structs import QuantizationTrait from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXConvolutionMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXLinearMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXSigmoidMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXHardSigmoidMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXAveragePoolMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXGlobalAveragePoolMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXAddLayerMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXMulLayerMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXConcatLayerMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXBatchNormMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXResizeMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXSoftmaxMetatype from nncf.common.graph.operator_metatypes import UnknownMetatype DEFAULT_ONNX_QUANT_TRAIT_TO_OP_DICT = { QuantizationTrait.INPUTS_QUANTIZABLE: [ ONNXConvolutionMetatype, ONNXLinearMetatype, ONNXAveragePoolMetatype, ONNXGlobalAveragePoolMetatype, ONNXAddLayerMetatype, ONNXMulLayerMetatype, ONNXBatchNormMetatype, ONNXHardSigmoidMetatype, ONNXResizeMetatype, ], QuantizationTrait.NON_QUANTIZABLE: [ONNXSigmoidMetatype, ONNXSoftmaxMetatype, UnknownMetatype], QuantizationTrait.CONCAT: [ONNXConcatLayerMetatype], QuantizationTrait.OUTPUT_QUANTIZATION_AS_WEIGHTS: [] }
49.8125
89
0.79632
0
0
0
0
0
0
0
0
577
0.241322
46779bc59fb8e412188640c04f3538454363b415
13,483
py
Python
Package/CONFIG.py
YuanYuLin/samba
ef8aaca2c539b0d241414e7f335b4ff939461558
[ "MIT" ]
null
null
null
Package/CONFIG.py
YuanYuLin/samba
ef8aaca2c539b0d241414e7f335b4ff939461558
[ "MIT" ]
null
null
null
Package/CONFIG.py
YuanYuLin/samba
ef8aaca2c539b0d241414e7f335b4ff939461558
[ "MIT" ]
null
null
null
import ops import iopc TARBALL_FILE="samba-4.8.4.tar.gz" TARBALL_DIR="samba-4.8.4" INSTALL_DIR="samba-bin" pkg_path = "" output_dir = "" tarball_pkg = "" tarball_dir = "" install_dir = "" install_tmp_dir = "" cc_host = "" tmp_include_dir = "" dst_include_dir = "" dst_lib_dir = "" dst_usr_local_lib_dir = "" def set_global(args): global pkg_path global output_dir global tarball_pkg global install_dir global install_tmp_dir global tarball_dir global cc_host global tmp_include_dir global dst_include_dir global dst_lib_dir global dst_usr_local_lib_dir global dst_usr_local_libexec_dir global dst_usr_local_share_dir global dst_usr_local_dir global src_pkgconfig_dir global dst_pkgconfig_dir global dst_bin_dir global dst_etc_dir global install_test_utils pkg_path = args["pkg_path"] output_dir = args["output_path"] tarball_pkg = ops.path_join(pkg_path, TARBALL_FILE) install_dir = ops.path_join(output_dir, INSTALL_DIR) install_tmp_dir = ops.path_join(output_dir, INSTALL_DIR + "-tmp") tarball_dir = ops.path_join(output_dir, TARBALL_DIR) cc_host_str = ops.getEnv("CROSS_COMPILE") cc_host = cc_host_str[:len(cc_host_str) - 1] tmp_include_dir = ops.path_join(output_dir, ops.path_join("include",args["pkg_name"])) dst_include_dir = ops.path_join("include",args["pkg_name"]) dst_lib_dir = ops.path_join(install_dir, "lib") dst_bin_dir = ops.path_join(install_dir, "bin") dst_etc_dir = ops.path_join(install_dir, "etc") dst_usr_local_lib_dir = ops.path_join(install_dir, "usr/local/lib") dst_usr_local_dir = ops.path_join(install_dir, "usr/local") dst_usr_local_libexec_dir = ops.path_join(install_dir, "usr/local/libexec") dst_usr_local_share_dir = ops.path_join(install_dir, "usr/local/share") src_pkgconfig_dir = ops.path_join(pkg_path, "pkgconfig") dst_pkgconfig_dir = ops.path_join(install_dir, "pkgconfig") if ops.getEnv("INSTALL_TEST_UTILS") == 'y': install_test_utils = True else: install_test_utils = False def MAIN_ENV(args): set_global(args) ops.exportEnv(ops.setEnv("CC", ops.getEnv("CROSS_COMPILE") + "gcc")) ''' ops.exportEnv(ops.setEnv("CXX", ops.getEnv("CROSS_COMPILE") + "g++")) ops.exportEnv(ops.setEnv("CPP", ops.getEnv("CROSS_COMPILE") + "g++")) ops.exportEnv(ops.setEnv("AR", ops.getEnv("CROSS_COMPILE") + "ar")) ops.exportEnv(ops.setEnv("RANLIB", ops.getEnv("CROSS_COMPILE") + "ranlib")) ops.exportEnv(ops.setEnv("CROSS", ops.getEnv("CROSS_COMPILE"))) ''' ops.exportEnv(ops.setEnv("DESTDIR", install_tmp_dir)) return False def MAIN_EXTRACT(args): set_global(args) ops.unTarGz(tarball_pkg, output_dir) return True def MAIN_PATCH(args, patch_group_name): set_global(args) for patch in iopc.get_patch_list(pkg_path, patch_group_name): if iopc.apply_patch(tarball_dir, patch): continue else: sys.exit(1) return True def MAIN_CONFIGURE(args): set_global(args) job_count = ops.getEnv("BUILD_JOBS_COUNT") extra_conf = [] ''' #extra_conf.append("--cross-compile") #extra_conf.append("-C -V") #extra_conf.append("--cross-answers=cc.txt") #extra_conf.append("--hostcc=" + cc_host) extra_conf.append("--abi-check-disable") extra_conf.append("--disable-rpath") extra_conf.append("--bundled-libraries=NONE") #extra_conf.append("--cross-execute='qemu-arm-static -L /usr/arm-linux-gnu'") extra_conf.append("--jobs=" + job_count) extra_conf.append("--disable-gnutls") #extra_conf.append("--private-libraries=NONE") extra_conf.append("--without-gettext") extra_conf.append("--without-systemd") extra_conf.append("--without-ad-dc") extra_conf.append("--without-ads") extra_conf.append("--without-winbind") extra_conf.append("--without-ldap") extra_conf.append("--without-pam") extra_conf.append("--without-pie") extra_conf.append("--without-fam") extra_conf.append("--without-dmapi") extra_conf.append("--without-automount") extra_conf.append("--without-utmp") extra_conf.append("--without-dnsupdate") extra_conf.append("--without-acl-support") extra_conf.append("--without-quotas") extra_conf.append("--without-cluster-support") extra_conf.append("--disable-glusterfs") extra_conf.append("--without-profiling-data") extra_conf.append("--without-libarchive") extra_conf.append("--without-regedit") extra_conf.append("--without-ntvfs-fileserver") extra_conf.append("--disable-python") extra_conf.append("--disable-cups") extra_conf.append("--disable-iprint") extra_conf.append("--disable-avahi") ''' extra_conf.append("--disable-python") extra_conf.append("--without-ad-dc") extra_conf.append("--without-acl-support") extra_conf.append("--without-ldap") extra_conf.append("--without-ads") extra_conf.append("--without-pam") extra_conf.append("--without-gettext") extra_conf.append("--jobs=" + job_count) extra_conf.append("--without-systemd") extra_conf.append("--without-regedit") extra_conf.append("--without-cluster-support") extra_conf.append("--without-ntvfs-fileserver") extra_conf.append("--without-winbind") extra_conf.append("--disable-glusterfs") extra_conf.append("--disable-cups") extra_conf.append("--disable-iprint") extra_conf.append("--disable-avahi") extra_conf.append("--without-automount") extra_conf.append("--without-dnsupdate") extra_conf.append("--without-fam") extra_conf.append("--without-dmapi") extra_conf.append("--without-quotas") extra_conf.append("--without-profiling-data") extra_conf.append("--without-utmp") extra_conf.append("--without-libarchive") #extra_conf.append("--enable-developer") print extra_conf #iopc.waf(tarball_dir, extra_conf) iopc.configure(tarball_dir, extra_conf) return True def MAIN_BUILD(args): set_global(args) ops.mkdir(install_dir) ops.mkdir(install_tmp_dir) iopc.make(tarball_dir) iopc.make_install(tarball_dir) ops.mkdir(install_dir) ops.mkdir(dst_lib_dir) ops.mkdir(dst_bin_dir) ops.mkdir(dst_usr_local_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/sbin/nmbd"), dst_bin_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/sbin/smbd"), dst_bin_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc-binding.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so.0.0") ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so.0") ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc-samr.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so.0.0") ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so.0") ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so.0.0") ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so.0") ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-krb5pac.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so.0.0") ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so.0") ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-nbt.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so.0.0") ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so.0") ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr.so.0.1.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so.0.1") ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so.0") ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-standard.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so.0.0") ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so.0") ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnetapi.so.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libnetapi.so.0", "libnetapi.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnss_winbind.so.2"), dst_lib_dir) ops.ln(dst_lib_dir, "libnss_winbind.so.2", "libnss_winbind.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnss_wins.so.2"), dst_lib_dir) ops.ln(dst_lib_dir, "libnss_wins.so.2", "libnss_wins.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-credentials.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so.0.0") ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so.0") ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-errors.so.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-errors.so.1", "libsamba-errors.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-hostconfig.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so.0.0") ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so.0") ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-passdb.so.0.27.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so.0.27") ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so.0") ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-util.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so.0.0") ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so.0") ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamdb.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so.0.0") ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so.0") ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsmbclient.so.0.3.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so.0.3") ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so.0") ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsmbconf.so.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libsmbconf.so.0", "libsmbconf.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libtevent-util.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so.0.0") ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so.0") ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libwbclient.so.0.14"), dst_lib_dir) ops.ln(dst_lib_dir, "libwbclient.so.0.14", "libwbclient.so.0") ops.ln(dst_lib_dir, "libwbclient.so.0.14", "libwbclient.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/winbind_krb5_locator.so"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/private/."), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/auth"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/idmap"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/ldb"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/nss_info"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/vfs"), dst_lib_dir) ops.ln(dst_usr_local_dir, "/tmp/samba", "samba") return True def MAIN_INSTALL(args): set_global(args) iopc.installBin(args["pkg_name"], ops.path_join(dst_lib_dir, "."), "lib") iopc.installBin(args["pkg_name"], ops.path_join(dst_bin_dir, "."), "usr/sbin") iopc.installBin(args["pkg_name"], ops.path_join(dst_usr_local_dir, "."), "usr/local") #iopc.installBin(args["pkg_name"], ops.path_join(tmp_include_dir, "."), dst_include_dir) #iopc.installBin(args["pkg_name"], ops.path_join(dst_pkgconfig_dir, '.'), "pkgconfig") return False def MAIN_SDKENV(args): set_global(args) return False def MAIN_CLEAN_BUILD(args): set_global(args) return False def MAIN(args): set_global(args)
42.533123
112
0.705555
0
0
0
0
0
0
0
0
6,368
0.472298
4677cd39827e65c98f0ade72fd58eb0f79b2c0cc
671
py
Python
packages/pyre/tracking/Chain.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
3
2019-08-02T21:02:47.000Z
2021-09-08T13:59:43.000Z
packages/pyre/tracking/Chain.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
null
null
null
packages/pyre/tracking/Chain.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2019 all rights reserved # # declaration class Chain: """ A locator that ties together two others in order to express that something in {next} caused {this} to be recorded """ # meta methods def __init__(self, this, next): self.this = this self.next = next return def __str__(self): # if {next} is non-trivial, show the chain if self.next: return "{0.this}, {0.next}".format(self) # otherwise don't return "{0.this}".format(self) # implementation details __slots__ = "this", "next" # end of file
18.638889
88
0.593145
538
0.799406
0
0
0
0
0
0
394
0.585438
467ab5f703a873dbd5ce9a6760742fdfbfa8b614
30
py
Python
tests/resources/accepted/res_0_minpyversion_3_0.py
matteogabburo/python-ast-utils
5069e9e53e8ed1f5305167254139b95967102aeb
[ "MIT" ]
3
2020-12-22T10:43:39.000Z
2021-01-01T16:42:32.000Z
tests/resources/accepted/res_0_minpyversion_3_0.py
matteogabburo/python-ast-utils
5069e9e53e8ed1f5305167254139b95967102aeb
[ "MIT" ]
null
null
null
tests/resources/accepted/res_0_minpyversion_3_0.py
matteogabburo/python-ast-utils
5069e9e53e8ed1f5305167254139b95967102aeb
[ "MIT" ]
null
null
null
import os x = 7 print(x + 1)
6
12
0.566667
0
0
0
0
0
0
0
0
0
0
467b69ecaf5ca591ddc3465f82457df4ea005caa
448
py
Python
Mod 03/03 Prova.py
SauloCav/CN
e8de20dbcf1b3ff043743728b7dde2eff1ae8f87
[ "MIT" ]
null
null
null
Mod 03/03 Prova.py
SauloCav/CN
e8de20dbcf1b3ff043743728b7dde2eff1ae8f87
[ "MIT" ]
null
null
null
Mod 03/03 Prova.py
SauloCav/CN
e8de20dbcf1b3ff043743728b7dde2eff1ae8f87
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import math def f(x): return math.exp(x)/x**3 def int(a,b): h = (b-a)/104 x_par = a+h x_impar = a+2*h soma_par = 0 soma_impar = 0 for i in range(52): soma_par += f(x_par) x_par += 2*h for i in range(51): soma_impar += f(x_impar) x_impar += 2*h return (f(a)+f(b) + 4 * soma_par + 2*soma_impar) *h/3 print(int(1.9,9.7))
18.666667
58
0.504464
0
0
0
0
0
0
0
0
46
0.102679
467ea3052543109008b133a68620b40cb725a84a
2,055
py
Python
almetro/al.py
arnour/almetro
7d00b1bb746b49dc9dd464395abdf4fe93f028fe
[ "Apache-2.0" ]
null
null
null
almetro/al.py
arnour/almetro
7d00b1bb746b49dc9dd464395abdf4fe93f028fe
[ "Apache-2.0" ]
1
2019-08-21T23:02:49.000Z
2019-08-21T23:02:49.000Z
almetro/al.py
arnour/almetro
7d00b1bb746b49dc9dd464395abdf4fe93f028fe
[ "Apache-2.0" ]
null
null
null
from almetro.instance import growing from almetro.metro import Metro import timeit class ExecutionSettings: def __init__(self, trials=1, runs=1): if not trials or trials < 1: raise TypeError('#trials must be provided') if not runs or runs < 1: raise TypeError('#runs must be provided') self.trials = trials self.runs = runs @staticmethod def new(): return ExecutionSettings() class InstanceSettings: def __init__(self, instances=1, provider=growing()): if not instances: raise TypeError('#instances must be provided') if not provider: raise TypeError('provider must be provided') self.instances = instances self.provider = provider @staticmethod def new(): return InstanceSettings() class Al: def __init__(self, instance_settings=InstanceSettings.new(), execution_settings=ExecutionSettings.new()): if not instance_settings: raise TypeError('instance settings must be provided') if not execution_settings: raise TypeError('execution settings must be provided') self.__instance_settings = instance_settings self.__execution_settings = execution_settings def with_instances(self, instances, provider): return Al(instance_settings=InstanceSettings(instances, provider), execution_settings=self.__execution_settings) def with_execution(self, trials, runs=1): return Al(instance_settings=self.__instance_settings, execution_settings=ExecutionSettings(trials, runs)) def metro(self, algorithm, complexity): metro = Metro.new(complexity) for _ in range(self.__instance_settings.instances): instance = self.__instance_settings.provider.new_instance() def runner(): algorithm(**instance.value) metro.register(instance, timeit.repeat(runner, number=self.__execution_settings.runs, repeat=self.__execution_settings.trials)) return metro
34.830508
139
0.685158
1,963
0.955231
0
0
125
0.060827
0
0
179
0.087105
467fe487527b89370f3c2d1bfc1b416969557a05
31,434
py
Python
yt_dlp/extractor/archiveorg.py
mrBliss/yt-dlp
aecd021656b672dbb617e5bae54a8986f9c4ebaf
[ "Unlicense" ]
80
2021-05-25T11:33:49.000Z
2022-03-29T20:36:53.000Z
yt_dlp/extractor/archiveorg.py
mrBliss/yt-dlp
aecd021656b672dbb617e5bae54a8986f9c4ebaf
[ "Unlicense" ]
53
2017-04-12T19:53:18.000Z
2022-02-22T10:33:13.000Z
yt_dlp/extractor/archiveorg.py
mrBliss/yt-dlp
aecd021656b672dbb617e5bae54a8986f9c4ebaf
[ "Unlicense" ]
22
2021-05-07T05:01:27.000Z
2022-03-26T19:10:54.000Z
# coding: utf-8 from __future__ import unicode_literals import re import json from .common import InfoExtractor from .youtube import YoutubeIE, YoutubeBaseInfoExtractor from ..compat import ( compat_urllib_parse_unquote, compat_urllib_parse_unquote_plus, compat_HTTPError ) from ..utils import ( bug_reports_message, clean_html, dict_get, extract_attributes, ExtractorError, get_element_by_id, HEADRequest, int_or_none, KNOWN_EXTENSIONS, merge_dicts, mimetype2ext, orderedSet, parse_duration, parse_qs, str_to_int, str_or_none, traverse_obj, try_get, unified_strdate, unified_timestamp, urlhandle_detect_ext, url_or_none ) class ArchiveOrgIE(InfoExtractor): IE_NAME = 'archive.org' IE_DESC = 'archive.org video and audio' _VALID_URL = r'https?://(?:www\.)?archive\.org/(?:details|embed)/(?P<id>[^?#]+)(?:[?].*)?$' _TESTS = [{ 'url': 'http://archive.org/details/XD300-23_68HighlightsAResearchCntAugHumanIntellect', 'md5': '8af1d4cf447933ed3c7f4871162602db', 'info_dict': { 'id': 'XD300-23_68HighlightsAResearchCntAugHumanIntellect', 'ext': 'ogv', 'title': '1968 Demo - FJCC Conference Presentation Reel #1', 'description': 'md5:da45c349df039f1cc8075268eb1b5c25', 'release_date': '19681210', 'timestamp': 1268695290, 'upload_date': '20100315', 'creator': 'SRI International', 'uploader': '[email protected]', }, }, { 'url': 'https://archive.org/details/Cops1922', 'md5': '0869000b4ce265e8ca62738b336b268a', 'info_dict': { 'id': 'Cops1922', 'ext': 'mp4', 'title': 'Buster Keaton\'s "Cops" (1922)', 'description': 'md5:43a603fd6c5b4b90d12a96b921212b9c', 'uploader': '[email protected]', 'timestamp': 1387699629, 'upload_date': "20131222", }, }, { 'url': 'http://archive.org/embed/XD300-23_68HighlightsAResearchCntAugHumanIntellect', 'only_matching': True, }, { 'url': 'https://archive.org/details/Election_Ads', 'md5': '284180e857160cf866358700bab668a3', 'info_dict': { 'id': 'Election_Ads/Commercial-JFK1960ElectionAdCampaignJingle.mpg', 'title': 'Commercial-JFK1960ElectionAdCampaignJingle.mpg', 'ext': 'mp4', }, }, { 'url': 'https://archive.org/details/Election_Ads/Commercial-Nixon1960ElectionAdToughonDefense.mpg', 'md5': '7915213ef02559b5501fe630e1a53f59', 'info_dict': { 'id': 'Election_Ads/Commercial-Nixon1960ElectionAdToughonDefense.mpg', 'title': 'Commercial-Nixon1960ElectionAdToughonDefense.mpg', 'ext': 'mp4', 'timestamp': 1205588045, 'uploader': '[email protected]', 'description': '1960 Presidential Campaign Election Commercials John F Kennedy, Richard M Nixon', 'upload_date': '20080315', }, }, { 'url': 'https://archive.org/details/gd1977-05-08.shure57.stevenson.29303.flac16', 'md5': '7d07ffb42aba6537c28e053efa4b54c9', 'info_dict': { 'id': 'gd1977-05-08.shure57.stevenson.29303.flac16/gd1977-05-08d01t01.flac', 'title': 'Turning', 'ext': 'flac', }, }, { 'url': 'https://archive.org/details/gd1977-05-08.shure57.stevenson.29303.flac16/gd1977-05-08d01t07.flac', 'md5': 'a07cd8c6ab4ee1560f8a0021717130f3', 'info_dict': { 'id': 'gd1977-05-08.shure57.stevenson.29303.flac16/gd1977-05-08d01t07.flac', 'title': 'Deal', 'ext': 'flac', 'timestamp': 1205895624, 'uploader': '[email protected]', 'description': 'md5:6a31f1996db0aa0fc9da6d6e708a1bb0', 'upload_date': '20080319', 'location': 'Barton Hall - Cornell University', }, }, { 'url': 'https://archive.org/details/lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik', 'md5': '7cb019baa9b332e82ea7c10403acd180', 'info_dict': { 'id': 'lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik/disc1/01.01. Bells Of Rostov.mp3', 'title': 'Bells Of Rostov', 'ext': 'mp3', }, }, { 'url': 'https://archive.org/details/lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik/disc1/02.02.+Song+And+Chorus+In+The+Polovetsian+Camp+From+%22Prince+Igor%22+(Act+2%2C+Scene+1).mp3', 'md5': '1d0aabe03edca83ca58d9ed3b493a3c3', 'info_dict': { 'id': 'lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik/disc1/02.02. Song And Chorus In The Polovetsian Camp From "Prince Igor" (Act 2, Scene 1).mp3', 'title': 'Song And Chorus In The Polovetsian Camp From "Prince Igor" (Act 2, Scene 1)', 'ext': 'mp3', 'timestamp': 1569662587, 'uploader': '[email protected]', 'description': 'md5:012b2d668ae753be36896f343d12a236', 'upload_date': '20190928', }, }] @staticmethod def _playlist_data(webpage): element = re.findall(r'''(?xs) <input (?:\s+[a-zA-Z0-9:._-]+(?:=[a-zA-Z0-9:._-]*|="[^"]*"|='[^']*'|))*? \s+class=['"]?js-play8-playlist['"]? (?:\s+[a-zA-Z0-9:._-]+(?:=[a-zA-Z0-9:._-]*|="[^"]*"|='[^']*'|))*? \s*/> ''', webpage)[0] return json.loads(extract_attributes(element)['value']) def _real_extract(self, url): video_id = compat_urllib_parse_unquote_plus(self._match_id(url)) identifier, entry_id = (video_id.split('/', 1) + [None])[:2] # Archive.org metadata API doesn't clearly demarcate playlist entries # or subtitle tracks, so we get them from the embeddable player. embed_page = self._download_webpage( 'https://archive.org/embed/' + identifier, identifier) playlist = self._playlist_data(embed_page) entries = {} for p in playlist: # If the user specified a playlist entry in the URL, ignore the # rest of the playlist. if entry_id and p['orig'] != entry_id: continue entries[p['orig']] = { 'formats': [], 'thumbnails': [], 'artist': p.get('artist'), 'track': p.get('title'), 'subtitles': {}} for track in p.get('tracks', []): if track['kind'] != 'subtitles': continue entries[p['orig']][track['label']] = { 'url': 'https://archive.org/' + track['file'].lstrip('/')} metadata = self._download_json( 'http://archive.org/metadata/' + identifier, identifier) m = metadata['metadata'] identifier = m['identifier'] info = { 'id': identifier, 'title': m['title'], 'description': clean_html(m.get('description')), 'uploader': dict_get(m, ['uploader', 'adder']), 'creator': m.get('creator'), 'license': m.get('licenseurl'), 'release_date': unified_strdate(m.get('date')), 'timestamp': unified_timestamp(dict_get(m, ['publicdate', 'addeddate'])), 'webpage_url': 'https://archive.org/details/' + identifier, 'location': m.get('venue'), 'release_year': int_or_none(m.get('year'))} for f in metadata['files']: if f['name'] in entries: entries[f['name']] = merge_dicts(entries[f['name']], { 'id': identifier + '/' + f['name'], 'title': f.get('title') or f['name'], 'display_id': f['name'], 'description': clean_html(f.get('description')), 'creator': f.get('creator'), 'duration': parse_duration(f.get('length')), 'track_number': int_or_none(f.get('track')), 'album': f.get('album'), 'discnumber': int_or_none(f.get('disc')), 'release_year': int_or_none(f.get('year'))}) entry = entries[f['name']] elif f.get('original') in entries: entry = entries[f['original']] else: continue if f.get('format') == 'Thumbnail': entry['thumbnails'].append({ 'id': f['name'], 'url': 'https://archive.org/download/' + identifier + '/' + f['name'], 'width': int_or_none(f.get('width')), 'height': int_or_none(f.get('width')), 'filesize': int_or_none(f.get('size'))}) extension = (f['name'].rsplit('.', 1) + [None])[1] if extension in KNOWN_EXTENSIONS: entry['formats'].append({ 'url': 'https://archive.org/download/' + identifier + '/' + f['name'], 'format': f.get('format'), 'width': int_or_none(f.get('width')), 'height': int_or_none(f.get('height')), 'filesize': int_or_none(f.get('size')), 'protocol': 'https'}) # Sort available formats by filesize for entry in entries.values(): entry['formats'] = list(sorted(entry['formats'], key=lambda x: x.get('filesize', -1))) if len(entries) == 1: # If there's only one item, use it as the main info dict only_video = entries[list(entries.keys())[0]] if entry_id: info = merge_dicts(only_video, info) else: info = merge_dicts(info, only_video) else: # Otherwise, we have a playlist. info['_type'] = 'playlist' info['entries'] = list(entries.values()) if metadata.get('reviews'): info['comments'] = [] for review in metadata['reviews']: info['comments'].append({ 'id': review.get('review_id'), 'author': review.get('reviewer'), 'text': str_or_none(review.get('reviewtitle'), '') + '\n\n' + review.get('reviewbody'), 'timestamp': unified_timestamp(review.get('createdate')), 'parent': 'root'}) return info class YoutubeWebArchiveIE(InfoExtractor): IE_NAME = 'web.archive:youtube' IE_DESC = 'web.archive.org saved youtube videos' _VALID_URL = r"""(?x)^ (?:https?://)?web\.archive\.org/ (?:web/)? (?:(?P<date>[0-9]{14})?[0-9A-Za-z_*]*/)? # /web and the version index is optional (?:https?(?::|%3[Aa])//)? (?: (?:\w+\.)?youtube\.com(?::(?:80|443))?/watch(?:\.php)?(?:\?|%3[fF])(?:[^\#]+(?:&|%26))?v(?:=|%3[dD]) # Youtube URL |(?:wayback-fakeurl\.archive\.org/yt/) # Or the internal fake url ) (?P<id>[0-9A-Za-z_-]{11})(?:%26|\#|&|$) """ _TESTS = [ { 'url': 'https://web.archive.org/web/20150415002341/https://www.youtube.com/watch?v=aYAGB11YrSs', 'info_dict': { 'id': 'aYAGB11YrSs', 'ext': 'webm', 'title': 'Team Fortress 2 - Sandviches!', 'description': 'md5:4984c0f9a07f349fc5d8e82ab7af4eaf', 'upload_date': '20110926', 'uploader': 'Zeurel', 'channel_id': 'UCukCyHaD-bK3in_pKpfH9Eg', 'duration': 32, 'uploader_id': 'Zeurel', 'uploader_url': 'http://www.youtube.com/user/Zeurel' } }, { # Internal link 'url': 'https://web.archive.org/web/2oe/http://wayback-fakeurl.archive.org/yt/97t7Xj_iBv0', 'info_dict': { 'id': '97t7Xj_iBv0', 'ext': 'mp4', 'title': 'Why Machines That Bend Are Better', 'description': 'md5:00404df2c632d16a674ff8df1ecfbb6c', 'upload_date': '20190312', 'uploader': 'Veritasium', 'channel_id': 'UCHnyfMqiRRG1u-2MsSQLbXA', 'duration': 771, 'uploader_id': '1veritasium', 'uploader_url': 'http://www.youtube.com/user/1veritasium' } }, { # Video from 2012, webm format itag 45. Newest capture is deleted video, with an invalid description. # Should use the date in the link. Title ends with '- Youtube'. Capture has description in eow-description 'url': 'https://web.archive.org/web/20120712231619/http://www.youtube.com/watch?v=AkhihxRKcrs&gl=US&hl=en', 'info_dict': { 'id': 'AkhihxRKcrs', 'ext': 'webm', 'title': 'Limited Run: Mondo\'s Modern Classic 1 of 3 (SDCC 2012)', 'upload_date': '20120712', 'duration': 398, 'description': 'md5:ff4de6a7980cb65d951c2f6966a4f2f3', 'uploader_id': 'machinima', 'uploader_url': 'http://www.youtube.com/user/machinima' } }, { # FLV video. Video file URL does not provide itag information 'url': 'https://web.archive.org/web/20081211103536/http://www.youtube.com/watch?v=jNQXAC9IVRw', 'info_dict': { 'id': 'jNQXAC9IVRw', 'ext': 'flv', 'title': 'Me at the zoo', 'upload_date': '20050423', 'channel_id': 'UC4QobU6STFB0P71PMvOGN5A', 'duration': 19, 'description': 'md5:10436b12e07ac43ff8df65287a56efb4', 'uploader_id': 'jawed', 'uploader_url': 'http://www.youtube.com/user/jawed' } }, { 'url': 'https://web.archive.org/web/20110712231407/http://www.youtube.com/watch?v=lTx3G6h2xyA', 'info_dict': { 'id': 'lTx3G6h2xyA', 'ext': 'flv', 'title': 'Madeon - Pop Culture (live mashup)', 'upload_date': '20110711', 'uploader': 'Madeon', 'channel_id': 'UCqMDNf3Pn5L7pcNkuSEeO3w', 'duration': 204, 'description': 'md5:f7535343b6eda34a314eff8b85444680', 'uploader_id': 'itsmadeon', 'uploader_url': 'http://www.youtube.com/user/itsmadeon' } }, { # First capture is of dead video, second is the oldest from CDX response. 'url': 'https://web.archive.org/https://www.youtube.com/watch?v=1JYutPM8O6E', 'info_dict': { 'id': '1JYutPM8O6E', 'ext': 'mp4', 'title': 'Fake Teen Doctor Strikes AGAIN! - Weekly Weird News', 'upload_date': '20160218', 'channel_id': 'UCdIaNUarhzLSXGoItz7BHVA', 'duration': 1236, 'description': 'md5:21032bae736421e89c2edf36d1936947', 'uploader_id': 'MachinimaETC', 'uploader_url': 'http://www.youtube.com/user/MachinimaETC' } }, { # First capture of dead video, capture date in link links to dead capture. 'url': 'https://web.archive.org/web/20180803221945/https://www.youtube.com/watch?v=6FPhZJGvf4E', 'info_dict': { 'id': '6FPhZJGvf4E', 'ext': 'mp4', 'title': 'WTF: Video Games Still Launch BROKEN?! - T.U.G.S.', 'upload_date': '20160219', 'channel_id': 'UCdIaNUarhzLSXGoItz7BHVA', 'duration': 798, 'description': 'md5:a1dbf12d9a3bd7cb4c5e33b27d77ffe7', 'uploader_id': 'MachinimaETC', 'uploader_url': 'http://www.youtube.com/user/MachinimaETC' }, 'expected_warnings': [ r'unable to download capture webpage \(it may not be archived\)' ] }, { # Very old YouTube page, has - YouTube in title. 'url': 'http://web.archive.org/web/20070302011044/http://youtube.com/watch?v=-06-KB9XTzg', 'info_dict': { 'id': '-06-KB9XTzg', 'ext': 'flv', 'title': 'New Coin Hack!! 100% Safe!!' } }, { 'url': 'web.archive.org/https://www.youtube.com/watch?v=dWW7qP423y8', 'info_dict': { 'id': 'dWW7qP423y8', 'ext': 'mp4', 'title': 'It\'s Bootleg AirPods Time.', 'upload_date': '20211021', 'channel_id': 'UC7Jwj9fkrf1adN4fMmTkpug', 'channel_url': 'http://www.youtube.com/channel/UC7Jwj9fkrf1adN4fMmTkpug', 'duration': 810, 'description': 'md5:7b567f898d8237b256f36c1a07d6d7bc', 'uploader': 'DankPods', 'uploader_id': 'UC7Jwj9fkrf1adN4fMmTkpug', 'uploader_url': 'http://www.youtube.com/channel/UC7Jwj9fkrf1adN4fMmTkpug' } }, { # player response contains '};' See: https://github.com/ytdl-org/youtube-dl/issues/27093 'url': 'https://web.archive.org/web/20200827003909if_/http://www.youtube.com/watch?v=6Dh-RL__uN4', 'info_dict': { 'id': '6Dh-RL__uN4', 'ext': 'mp4', 'title': 'bitch lasagna', 'upload_date': '20181005', 'channel_id': 'UC-lHJZR3Gqxm24_Vd_AJ5Yw', 'channel_url': 'http://www.youtube.com/channel/UC-lHJZR3Gqxm24_Vd_AJ5Yw', 'duration': 135, 'description': 'md5:2dbe4051feeff2dab5f41f82bb6d11d0', 'uploader': 'PewDiePie', 'uploader_id': 'PewDiePie', 'uploader_url': 'http://www.youtube.com/user/PewDiePie' } }, { 'url': 'https://web.archive.org/web/http://www.youtube.com/watch?v=kH-G_aIBlFw', 'only_matching': True }, { 'url': 'https://web.archive.org/web/20050214000000_if/http://www.youtube.com/watch?v=0altSZ96U4M', 'only_matching': True }, { # Video not archived, only capture is unavailable video page 'url': 'https://web.archive.org/web/20210530071008/https://www.youtube.com/watch?v=lHJTf93HL1s&spfreload=10', 'only_matching': True }, { # Encoded url 'url': 'https://web.archive.org/web/20120712231619/http%3A//www.youtube.com/watch%3Fgl%3DUS%26v%3DAkhihxRKcrs%26hl%3Den', 'only_matching': True }, { 'url': 'https://web.archive.org/web/20120712231619/http%3A//www.youtube.com/watch%3Fv%3DAkhihxRKcrs%26gl%3DUS%26hl%3Den', 'only_matching': True }, { 'url': 'https://web.archive.org/web/20060527081937/http://www.youtube.com:80/watch.php?v=ELTFsLT73fA&amp;search=soccer', 'only_matching': True }, { 'url': 'https://web.archive.org/http://www.youtube.com:80/watch?v=-05VVye-ffg', 'only_matching': True } ] _YT_INITIAL_DATA_RE = r'(?:(?:(?:window\s*\[\s*["\']ytInitialData["\']\s*\]|ytInitialData)\s*=\s*({.+?})\s*;)|%s)' % YoutubeBaseInfoExtractor._YT_INITIAL_DATA_RE _YT_INITIAL_PLAYER_RESPONSE_RE = r'(?:(?:(?:window\s*\[\s*["\']ytInitialPlayerResponse["\']\s*\]|ytInitialPlayerResponse)\s*=[(\s]*({.+?})[)\s]*;)|%s)' % YoutubeBaseInfoExtractor._YT_INITIAL_PLAYER_RESPONSE_RE _YT_INITIAL_BOUNDARY_RE = r'(?:(?:var\s+meta|</script|\n)|%s)' % YoutubeBaseInfoExtractor._YT_INITIAL_BOUNDARY_RE _YT_DEFAULT_THUMB_SERVERS = ['i.ytimg.com'] # thumbnails most likely archived on these servers _YT_ALL_THUMB_SERVERS = orderedSet( _YT_DEFAULT_THUMB_SERVERS + ['img.youtube.com', *[f'{c}{n or ""}.ytimg.com' for c in ('i', 's') for n in (*range(0, 5), 9)]]) _WAYBACK_BASE_URL = 'https://web.archive.org/web/%sif_/' _OLDEST_CAPTURE_DATE = 20050214000000 _NEWEST_CAPTURE_DATE = 20500101000000 def _call_cdx_api(self, item_id, url, filters: list = None, collapse: list = None, query: dict = None, note='Downloading CDX API JSON'): # CDX docs: https://github.com/internetarchive/wayback/blob/master/wayback-cdx-server/README.md query = { 'url': url, 'output': 'json', 'fl': 'original,mimetype,length,timestamp', 'limit': 500, 'filter': ['statuscode:200'] + (filters or []), 'collapse': collapse or [], **(query or {}) } res = self._download_json('https://web.archive.org/cdx/search/cdx', item_id, note, query=query) if isinstance(res, list) and len(res) >= 2: # format response to make it easier to use return list(dict(zip(res[0], v)) for v in res[1:]) elif not isinstance(res, list) or len(res) != 0: self.report_warning('Error while parsing CDX API response' + bug_reports_message()) def _extract_yt_initial_variable(self, webpage, regex, video_id, name): return self._parse_json(self._search_regex( (r'%s\s*%s' % (regex, self._YT_INITIAL_BOUNDARY_RE), regex), webpage, name, default='{}'), video_id, fatal=False) def _extract_webpage_title(self, webpage): page_title = self._html_search_regex( r'<title>([^<]*)</title>', webpage, 'title', default='') # YouTube video pages appear to always have either 'YouTube -' as prefix or '- YouTube' as suffix. return self._html_search_regex( r'(?:YouTube\s*-\s*(.*)$)|(?:(.*)\s*-\s*YouTube$)', page_title, 'title', default='') def _extract_metadata(self, video_id, webpage): search_meta = ((lambda x: self._html_search_meta(x, webpage, default=None)) if webpage else (lambda x: None)) player_response = self._extract_yt_initial_variable( webpage, self._YT_INITIAL_PLAYER_RESPONSE_RE, video_id, 'initial player response') or {} initial_data = self._extract_yt_initial_variable( webpage, self._YT_INITIAL_DATA_RE, video_id, 'initial player response') or {} initial_data_video = traverse_obj( initial_data, ('contents', 'twoColumnWatchNextResults', 'results', 'results', 'contents', ..., 'videoPrimaryInfoRenderer'), expected_type=dict, get_all=False, default={}) video_details = traverse_obj( player_response, 'videoDetails', expected_type=dict, get_all=False, default={}) microformats = traverse_obj( player_response, ('microformat', 'playerMicroformatRenderer'), expected_type=dict, get_all=False, default={}) video_title = ( video_details.get('title') or YoutubeBaseInfoExtractor._get_text(microformats, 'title') or YoutubeBaseInfoExtractor._get_text(initial_data_video, 'title') or self._extract_webpage_title(webpage) or search_meta(['og:title', 'twitter:title', 'title'])) channel_id = str_or_none( video_details.get('channelId') or microformats.get('externalChannelId') or search_meta('channelId') or self._search_regex( r'data-channel-external-id=(["\'])(?P<id>(?:(?!\1).)+)\1', # @b45a9e6 webpage, 'channel id', default=None, group='id')) channel_url = f'http://www.youtube.com/channel/{channel_id}' if channel_id else None duration = int_or_none( video_details.get('lengthSeconds') or microformats.get('lengthSeconds') or parse_duration(search_meta('duration'))) description = ( video_details.get('shortDescription') or YoutubeBaseInfoExtractor._get_text(microformats, 'description') or clean_html(get_element_by_id('eow-description', webpage)) # @9e6dd23 or search_meta(['description', 'og:description', 'twitter:description'])) uploader = video_details.get('author') # Uploader ID and URL uploader_mobj = re.search( r'<link itemprop="url" href="(?P<uploader_url>https?://www\.youtube\.com/(?:user|channel)/(?P<uploader_id>[^"]+))">', # @fd05024 webpage) if uploader_mobj is not None: uploader_id, uploader_url = uploader_mobj.group('uploader_id'), uploader_mobj.group('uploader_url') else: # @a6211d2 uploader_url = url_or_none(microformats.get('ownerProfileUrl')) uploader_id = self._search_regex( r'(?:user|channel)/([^/]+)', uploader_url or '', 'uploader id', default=None) upload_date = unified_strdate( dict_get(microformats, ('uploadDate', 'publishDate')) or search_meta(['uploadDate', 'datePublished']) or self._search_regex( [r'(?s)id="eow-date.*?>(.*?)</span>', r'(?:id="watch-uploader-info".*?>.*?|["\']simpleText["\']\s*:\s*["\'])(?:Published|Uploaded|Streamed live|Started) on (.+?)[<"\']'], # @7998520 webpage, 'upload date', default=None)) return { 'title': video_title, 'description': description, 'upload_date': upload_date, 'uploader': uploader, 'channel_id': channel_id, 'channel_url': channel_url, 'duration': duration, 'uploader_url': uploader_url, 'uploader_id': uploader_id, } def _extract_thumbnails(self, video_id): try_all = 'thumbnails' in self._configuration_arg('check_all') thumbnail_base_urls = ['http://{server}/vi{webp}/{video_id}'.format( webp='_webp' if ext == 'webp' else '', video_id=video_id, server=server) for server in (self._YT_ALL_THUMB_SERVERS if try_all else self._YT_DEFAULT_THUMB_SERVERS) for ext in (('jpg', 'webp') if try_all else ('jpg',))] thumbnails = [] for url in thumbnail_base_urls: response = self._call_cdx_api( video_id, url, filters=['mimetype:image/(?:webp|jpeg)'], collapse=['urlkey'], query={'matchType': 'prefix'}) if not response: continue thumbnails.extend( { 'url': (self._WAYBACK_BASE_URL % (int_or_none(thumbnail_dict.get('timestamp')) or self._OLDEST_CAPTURE_DATE)) + thumbnail_dict.get('original'), 'filesize': int_or_none(thumbnail_dict.get('length')), 'preference': int_or_none(thumbnail_dict.get('length')) } for thumbnail_dict in response) if not try_all: break self._remove_duplicate_formats(thumbnails) return thumbnails def _get_capture_dates(self, video_id, url_date): capture_dates = [] # Note: CDX API will not find watch pages with extra params in the url. response = self._call_cdx_api( video_id, f'https://www.youtube.com/watch?v={video_id}', filters=['mimetype:text/html'], collapse=['timestamp:6', 'digest'], query={'matchType': 'prefix'}) or [] all_captures = sorted([int_or_none(r['timestamp']) for r in response if int_or_none(r['timestamp']) is not None]) # Prefer the new polymer UI captures as we support extracting more metadata from them # WBM captures seem to all switch to this layout ~July 2020 modern_captures = list(filter(lambda x: x >= 20200701000000, all_captures)) if modern_captures: capture_dates.append(modern_captures[0]) capture_dates.append(url_date) if all_captures: capture_dates.append(all_captures[0]) if 'captures' in self._configuration_arg('check_all'): capture_dates.extend(modern_captures + all_captures) # Fallbacks if any of the above fail capture_dates.extend([self._OLDEST_CAPTURE_DATE, self._NEWEST_CAPTURE_DATE]) return orderedSet(capture_dates) def _real_extract(self, url): url_date, video_id = self._match_valid_url(url).groups() urlh = None try: urlh = self._request_webpage( HEADRequest('https://web.archive.org/web/2oe_/http://wayback-fakeurl.archive.org/yt/%s' % video_id), video_id, note='Fetching archived video file url', expected_status=True) except ExtractorError as e: # HTTP Error 404 is expected if the video is not saved. if isinstance(e.cause, compat_HTTPError) and e.cause.code == 404: self.raise_no_formats( 'The requested video is not archived, indexed, or there is an issue with web.archive.org', expected=True) else: raise capture_dates = self._get_capture_dates(video_id, int_or_none(url_date)) self.write_debug('Captures to try: ' + ', '.join(str(i) for i in capture_dates if i is not None)) info = {'id': video_id} for capture in capture_dates: if not capture: continue webpage = self._download_webpage( (self._WAYBACK_BASE_URL + 'http://www.youtube.com/watch?v=%s') % (capture, video_id), video_id=video_id, fatal=False, errnote='unable to download capture webpage (it may not be archived)', note='Downloading capture webpage') current_info = self._extract_metadata(video_id, webpage or '') # Try avoid getting deleted video metadata if current_info.get('title'): info = merge_dicts(info, current_info) if 'captures' not in self._configuration_arg('check_all'): break info['thumbnails'] = self._extract_thumbnails(video_id) if urlh: url = compat_urllib_parse_unquote(urlh.url) video_file_url_qs = parse_qs(url) # Attempt to recover any ext & format info from playback url & response headers format = {'url': url, 'filesize': int_or_none(urlh.headers.get('x-archive-orig-content-length'))} itag = try_get(video_file_url_qs, lambda x: x['itag'][0]) if itag and itag in YoutubeIE._formats: format.update(YoutubeIE._formats[itag]) format.update({'format_id': itag}) else: mime = try_get(video_file_url_qs, lambda x: x['mime'][0]) ext = (mimetype2ext(mime) or urlhandle_detect_ext(urlh) or mimetype2ext(urlh.headers.get('x-archive-guessed-content-type'))) format.update({'ext': ext}) info['formats'] = [format] if not info.get('duration'): info['duration'] = str_to_int(try_get(video_file_url_qs, lambda x: x['dur'][0])) if not info.get('title'): info['title'] = video_id return info
46.776786
213
0.558822
30,704
0.976777
0
0
417
0.013266
0
0
14,283
0.454381
4680d6848613dfb9b8af98b8d4dd6e1f33bd4389
1,008
py
Python
Interfas Grafica XI (GUI)/InterfasGraficaXI.py
BrianMarquez3/Python-Course
2622b4ddfd687505becfd246e82a2ed0cb9b76f3
[ "MIT" ]
20
2020-08-19T23:27:01.000Z
2022-02-03T12:02:17.000Z
Interfas Grafica XI (GUI)/InterfasGraficaXI.py
BrianMarquez3/Python-Course
2622b4ddfd687505becfd246e82a2ed0cb9b76f3
[ "MIT" ]
1
2021-04-10T18:06:05.000Z
2021-04-10T18:06:05.000Z
Interfas Grafica XI (GUI)/InterfasGraficaXI.py
BrianMarquez3/Python-Course
2622b4ddfd687505becfd246e82a2ed0cb9b76f3
[ "MIT" ]
2
2020-12-03T19:35:36.000Z
2021-11-10T14:58:39.000Z
# Interfas Grafica XI # Menu from tkinter import * root=Tk() barraMenu=Menu(root) root.config(menu=barraMenu, width=600, height=400) archivoMenu=Menu(barraMenu, tearoff=0) archivoMenu.add_command(label="Nuevo") archivoMenu.add_command(label="Guardar") archivoMenu.add_command(label="Guardar Como") archivoMenu.add_separator() archivoMenu.add_command(label="Cerrar") archivoMenu.add_command(label="Salir") archivoEdicion=Menu(barraMenu, tearoff=0) archivoHerramientas=Menu(barraMenu) archivoEdicion.add_command(label="Copiar") archivoEdicion.add_command(label="Cortar") archivoEdicion.add_command(label="Pegar") archivoAyuda=Menu(barraMenu, tearoff=0) barraMenu.add_cascade(label="Archivo", menu=archivoMenu) barraMenu.add_cascade(label="Edicion", menu=archivoEdicion) barraMenu.add_cascade(label="Herramienta", menu=archivoHerramientas) barraMenu.add_cascade(label="Ayuda", menu=archivoAyuda) archivoAyuda.add_command(label="Licencia") archivoAyuda.add_command(label="Acerca de...") root.mainloop()
28
68
0.8125
0
0
0
0
0
0
0
0
157
0.155754
46812ee3bdef976af898f29d2c99337fc3788ea0
91
py
Python
virtual/lib/python3.6/site-packages/macaroonbakery/tests/__init__.py
marknesh/pitches
0a480d9bc2beafaefa0121393b1502cc05edab89
[ "MIT" ]
null
null
null
virtual/lib/python3.6/site-packages/macaroonbakery/tests/__init__.py
marknesh/pitches
0a480d9bc2beafaefa0121393b1502cc05edab89
[ "MIT" ]
11
2020-06-05T20:57:31.000Z
2021-09-22T18:35:03.000Z
flask/lib/python3.6/site-packages/macaroonbakery/tests/__init__.py
JOFLIX/grapevines
34576e01184570d79cc140b42ffb71d322132da6
[ "MIT", "Unlicense" ]
1
2020-11-04T06:48:34.000Z
2020-11-04T06:48:34.000Z
# Copyright 2017 Canonical Ltd. # Licensed under the LGPLv3, see LICENCE file for details.
30.333333
58
0.78022
0
0
0
0
0
0
0
0
89
0.978022
4681cb44945ca44b04cb55846c39c0d1d3ca721a
5,589
py
Python
08/postgresql_demo.py
catcherwong-archive/2019
f9672920113b1ec0a5fcd6a6bde681f62d805763
[ "MIT" ]
27
2019-04-07T15:31:53.000Z
2021-08-28T16:18:34.000Z
08/postgresql_demo.py
hca1120/2019
09e5f49407b8239409e857f8117877eedb6b0134
[ "MIT" ]
5
2019-08-10T08:19:28.000Z
2022-02-11T02:38:41.000Z
08/postgresql_demo.py
hca1120/2019
09e5f49407b8239409e857f8117877eedb6b0134
[ "MIT" ]
31
2019-04-07T15:31:57.000Z
2022-02-02T20:36:58.000Z
# -*- coding: UTF-8 -*- import psycopg2 #postgresql import time import datetime class PgDemo: def __init__(self, host, port, db, user, pwd): self.host = host self.port = port self.db = db self.user = user self.pwd = pwd def getConnection(self): conn = None try: conn = psycopg2.connect( host=self.host, port=self.port, database=self.db, user=self.user, password=self.pwd, ) except Exception as err: print("can not connect to the database,%s" % err) return conn def query_all(self): with self.getConnection() as conn: sql = "select id, name, gender, create_time from t1" try: cur = conn.cursor() cur.execute(sql) res = cur.fetchall() # print(res) print("id\tname\tgender\ttime") for d in res: print("%d\t%s\t%s\t%s" % (d[0], d[1], "male" if d[2] == 1 else "female", self.timestamp2datetime(d[3], False))) except Exception as err: print("query all fail, %s" % err) finally: cur.close() def query_lastone(self): with self.getConnection() as conn: sql = "select id, name, gender, create_time from t1 order by create_time desc limit 1" try: cur = conn.cursor() cur.execute(sql) res = cur.fetchone() # print(res) print("id\tname\tgender\ttime") print("%d\t%s\t%s\t%s" % (res[0], res[1], "male" if res[2] == 1 else "female", self.timestamp2datetime(res[3], False))) except Exception as err: print("query lastone fail, %s" % err) finally: cur.close() def query_byname(self, name): with self.getConnection() as conn: sql = "select id, name, gender, create_time from t1 where name = %s" try: cur = conn.cursor() cur.execute(sql, (name, )) res = cur.fetchone() # print(res) print("id\tname\tgender\ttime") print("%d\t%s\t%s\t%s" % (res[0], res[1], "male" if res[2] == 1 else "female", self.timestamp2datetime(res[3], False))) except Exception as err: print("query by name fail, %s" % err) finally: cur.close() def insert_one(self, name, gender): with self.getConnection() as conn: sql = " insert into t1(name, gender, create_time) values(%s, %s, %s) " try: cur = conn.cursor() cur.execute(sql, (name, gender, self.getCurrentTimestamp())) print("insert ok") except Exception as err: print("insert one fail, %s" % err) finally: cur.close() def update_genderbyid(self, id, gender): with self.getConnection() as conn: sql = " update t1 set gender = %s where id = %s " try: cur = conn.cursor() cur.execute(sql, (gender, id)) print("update ok") except Exception as err: print("update gender by id fail, %s" % err) finally: cur.close() def delete_byname(self, name): with self.getConnection() as conn: sql = " delete from t1 where name = %s " try: cur = conn.cursor() cur.execute(sql, (name, )) print("delete ok") except Exception as err: print("delete by name fail, %s" % err) finally: cur.close() def getCurrentTimestamp(self): ts = int ( round ( time.time() * 1000 ) ) print(ts) return ts def timestamp2datetime(self, timestamp, issecond): if(issecond == True): t = datetime.datetime.fromtimestamp(timestamp) return t.strftime("%Y-%m-%d %H:%M:%S") else: t = datetime.datetime.fromtimestamp(timestamp / 1000) return t.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] if __name__ == "__main__": pg = PgDemo("127.0.0.1", 5432, "demo", "postgres", "123456") print("===========insert_one==============") pg.insert_one("wong", 1) print("===========query_all==============") pg.query_all() print("===========query_lastone==============") pg.query_lastone() print("===========query_byname==============") pg.query_byname("catcher") print("===========update_genderbyid==============") pg.update_genderbyid(4, 2) print("===========delete_byname==============") pg.delete_byname("wong") print("===========query_all==============") pg.query_all()
35.598726
138
0.429236
4,822
0.862458
0
0
0
0
0
0
1,160
0.207476
46820f0e1937a8a50c1292d89054f263875a439f
686
py
Python
examples/convert/pipe2sparky_2d.py
thegooglecodearchive/nmrglue
34ffb5247f457c19b93c584e048df4042dea0482
[ "BSD-3-Clause" ]
1
2019-04-22T06:08:13.000Z
2019-04-22T06:08:13.000Z
examples/convert/pipe2sparky_2d.py
thegooglecodearchive/nmrglue
34ffb5247f457c19b93c584e048df4042dea0482
[ "BSD-3-Clause" ]
null
null
null
examples/convert/pipe2sparky_2d.py
thegooglecodearchive/nmrglue
34ffb5247f457c19b93c584e048df4042dea0482
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python import nmrglue as ng # read in the varian data dic,data = ng.pipe.read("../common_data/2d_pipe/test.ft2") # Set the parameters u = ng.pipe.guess_udic(dic,data) # create the converter object and initilize with varian data C = ng.convert.converter() C.from_pipe(dic,data,u) # create pipe data and then write it out ng.sparky.write("2d_sparky.ucsf",*C.to_sparky(),overwrite=True) # check the conversion against NMRPipe print "Conversion complete, listing differences between files:" sdic,sdata = ng.sparky.read("2d_sparky.ucsf") sdic2,sdata2 = ng.sparky.read("../common_data/2d_sparky/data.ucsf") print ng.misc.pair_similar(sdic,sdata,sdic2,sdata2,verb=True)
29.826087
67
0.759475
0
0
0
0
0
0
0
0
364
0.530612
46821c4a15686b2fb3b7ea49bee70f910667b4c7
36,931
py
Python
jaqs/trade/analyze/analyze.py
WayneWan413/JAQS
e7362fc261f49dd7a4353c9a9a3f98d6ef9a78b4
[ "Apache-2.0" ]
null
null
null
jaqs/trade/analyze/analyze.py
WayneWan413/JAQS
e7362fc261f49dd7a4353c9a9a3f98d6ef9a78b4
[ "Apache-2.0" ]
null
null
null
jaqs/trade/analyze/analyze.py
WayneWan413/JAQS
e7362fc261f49dd7a4353c9a9a3f98d6ef9a78b4
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 from __future__ import print_function import os import json from collections import OrderedDict import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import Formatter from jaqs.trade.analyze.report import Report from jaqs.data import RemoteDataService from jaqs.data.basic.instrument import InstManager from jaqs.trade import common import jaqs.util as jutil STATIC_FOLDER = jutil.join_relative_path("trade/analyze/static") TO_PCT = 100.0 MPL_RCPARAMS = {'figure.facecolor': '#F6F6F6', 'axes.facecolor': '#F6F6F6', 'axes.edgecolor': '#D3D3D3', 'text.color': '#555555', 'grid.color': '#B1B1B1', 'grid.alpha': 0.3, # scale 'axes.linewidth': 2.0, 'axes.titlepad': 12, 'grid.linewidth': 1.0, 'grid.linestyle': '-', # font size 'font.size': 13, 'axes.titlesize': 18, 'axes.labelsize': 14, 'legend.fontsize': 'small', 'lines.linewidth': 2.5, } class TradeRecordEmptyError(Exception): def __init__(self, *args): super(TradeRecordEmptyError, self).__init__(*args) class MyFormatter(Formatter): def __init__(self, dates, fmt='%Y%m'): self.dates = dates self.fmt = fmt def __call__(self, x, pos=0): """Return the label for time x at position pos""" ind = int(np.round(x)) if ind >= len(self.dates) or ind < 0: return '' # return self.dates[ind].strftime(self.fmt) return pd.to_datetime(self.dates[ind], format="%Y%m%d").strftime(self.fmt) class BaseAnalyzer(object): """ Attributes ---------- _trades : pd.DataFrame _configs : dict data_api : BaseDataServer _universe : set All securities that have been traded. """ def __init__(self): self.file_folder = "" self._trades = None self._configs = None self.data_api = None self.dataview = None self._universe = [] self._closes = None self._closes_adj = None self.daily_position = None self.adjust_mode = None self.inst_map = dict() self.performance_metrics = dict() self.risk_metrics = dict() self.report_dic = dict() @property def trades(self): """Read-only attribute""" return self._trades @property def universe(self): """Read-only attribute""" return self._universe @property def configs(self): """Read-only attribute""" return self._configs @property def closes(self): """Read-only attribute, close prices of securities in the universe""" return self._closes @property def closes_adj(self): """Read-only attribute, close prices of securities in the universe""" return self._closes_adj def initialize(self, data_api=None, dataview=None, file_folder='.'): """ Read trades from csv file to DataFrame of given data type. Parameters ---------- data_api : RemoteDataService dataview : DataView file_folder : str Directory path where trades and configs are stored. """ self.data_api = data_api self.dataview = dataview type_map = {'task_id': str, 'entrust_no': str, 'entrust_action': str, 'symbol': str, 'fill_price': float, 'fill_size': float, 'fill_date': np.integer, 'fill_time': np.integer, 'fill_no': str, 'commission': float} abs_path = os.path.abspath(file_folder) self.file_folder = abs_path trades = pd.read_csv(os.path.join(self.file_folder, 'trades.csv'), ',', dtype=type_map) if trades.empty: raise TradeRecordEmptyError("No trade records found in your 'trades.csv' file. Analysis stopped.") self._init_universe(trades.loc[:, 'symbol'].values) self._init_configs(self.file_folder) self._init_trades(trades) self._init_symbol_price() self._init_inst_data() def _init_inst_data(self): symbol_str = ','.join(self.universe) if self.dataview is not None: data_inst = self.dataview.data_inst self.inst_map = data_inst.to_dict(orient='index') elif self.data_api is not None: inst_mgr = InstManager(data_api=self.data_api, symbol=symbol_str) self.inst_map = {k: v.__dict__ for k, v in inst_mgr.inst_map.items()} del inst_mgr else: raise ValueError("no dataview or dataapi provided.") def _init_trades(self, df): """Add datetime column. """ df.loc[:, 'fill_dt'] = jutil.combine_date_time(df.loc[:, 'fill_date'], df.loc[:, 'fill_time']) df = df.set_index(['symbol', 'fill_dt']).sort_index(axis=0) # self._trades = jutil.group_df_to_dict(df, by='symbol') self._trades = df def _init_symbol_price(self): """Get close price of securities in the universe from data server.""" if self.dataview is not None: df_close = self.dataview.get_ts('close', start_date=self.start_date, end_date=self.end_date) df_close_adj = self.dataview.get_ts('close_adj', start_date=self.start_date, end_date=self.end_date) else: df, msg = self.data_api.daily(symbol=','.join(self.universe), fields='trade_date,symbol,close', start_date=self.start_date, end_date=self.end_date) if msg != '0,': print(msg) df_close = df.pivot(index='trade_date', columns='symbol', values='close') df_adj, msg = self.data_api.daily(symbol=','.join(self.universe), fields='trade_date,symbol,close', start_date=self.start_date, end_date=self.end_date) if msg != '0,': print(msg) df_close_adj = df_adj.pivot(index='trade_date', columns='symbol', values='close') self._closes = df_close self._closes_adj = df_close_adj def _init_universe(self, securities): """Return a set of securities.""" self._universe = set(securities) def _init_configs(self, folder): import codecs with codecs.open(os.path.join(folder, 'configs.json'), 'r', encoding='utf-8') as f: configs = json.load(f) self._configs = configs self.init_balance = self.configs['init_balance'] self.start_date = self.configs['start_date'] self.end_date = self.configs['end_date'] @staticmethod def _process_trades(df): """Add various statistics to trades DataFrame.""" from jaqs.trade import common # df = df.set_index('fill_date') # pre-process cols_to_drop = ['task_id', 'entrust_no', 'fill_no'] df = df.drop(cols_to_drop, axis=1) def _apply(gp_df): # calculation of non-cumulative fields direction = gp_df['entrust_action'].apply(lambda s: 1 if common.ORDER_ACTION.is_positive(s) else -1) fill_size, fill_price = gp_df['fill_size'], gp_df['fill_price'] turnover = fill_size * fill_price gp_df.loc[:, 'BuyVolume'] = (direction + 1) / 2 * fill_size gp_df.loc[:, 'SellVolume'] = (direction - 1) / -2 * fill_size # Calculation of cumulative fields gp_df.loc[:, 'CumVolume'] = fill_size.cumsum() gp_df.loc[:, 'CumTurnOver'] = turnover.cumsum() gp_df.loc[:, 'CumNetTurnOver'] = (turnover * -direction).cumsum() gp_df.loc[:, 'position'] = (fill_size * direction).cumsum() gp_df.loc[:, 'AvgPosPrice'] = calc_avg_pos_price(gp_df.loc[:, 'position'].values, fill_price.values) gp_df.loc[:, 'CumProfit'] = (gp_df.loc[:, 'CumNetTurnOver'] + gp_df.loc[:, 'position'] * fill_price) return gp_df gp = df.groupby(by='symbol') res = gp.apply(_apply) return res def process_trades(self): # self._trades = {k: self._process_trades(v) for k, v in self.trades.items()} self._trades = self._process_trades(self._trades) def get_pos_change_info(self): trades = pd.concat(self.trades.values(), axis=0) gp = trades.groupby(by=['fill_date'], as_index=False) res = OrderedDict() account = OrderedDict() for date, df in gp: df_mod = df.loc[:, ['symbol', 'entrust_action', 'fill_size', 'fill_price', 'position', 'AvgPosPrice']] df_mod.columns = ['symbol', 'action', 'size', 'price', 'position', 'cost price'] res[str(date)] = df_mod mv = sum(df_mod.loc[:, 'price'] * df.loc[:, 'position']) current_profit = sum(df.loc[:, 'CumProfit']) cash = self.configs['init_balance'] + current_profit - mv account[str(date)] = {'market_value': mv, 'cash': cash} self.position_change = res self.account = account def get_daily(self): close = self.closes trade = self.trades # pro-process trade_cols = ['fill_date', 'BuyVolume', 'SellVolume', 'commission', 'position', 'AvgPosPrice', 'CumNetTurnOver'] trade = trade.loc[:, trade_cols] gp = trade.groupby(by=['symbol', 'fill_date']) func_last = lambda ser: ser.iat[-1] trade = gp.agg({'BuyVolume': np.sum, 'SellVolume': np.sum, 'commission': np.sum, 'position': func_last, 'AvgPosPrice': func_last, 'CumNetTurnOver': func_last}) trade.index.names = ['symbol', 'trade_date'] # get daily position df_position = trade['position'].unstack('symbol').fillna(method='ffill').fillna(0.0) daily_position = df_position.reindex(close.index) daily_position = daily_position.fillna(method='ffill').fillna(0) self.daily_position = daily_position # calculate statistics close = pd.DataFrame(close.T.stack()) close.columns = ['close'] close.index.names = ['symbol', 'trade_date'] merge = pd.concat([close, trade], axis=1, join='outer') def _apply(gp_df): cols_nan_to_zero = ['BuyVolume', 'SellVolume', 'commission'] cols_nan_fill = ['close', 'position', 'AvgPosPrice', 'CumNetTurnOver'] # merge: pd.DataFrame gp_df.loc[:, cols_nan_fill] = gp_df.loc[:, cols_nan_fill].fillna(method='ffill') gp_df.loc[:, cols_nan_fill] = gp_df.loc[:, cols_nan_fill].fillna(0) gp_df.loc[:, cols_nan_to_zero] = gp_df.loc[:, cols_nan_to_zero].fillna(0) mask = gp_df.loc[:, 'AvgPosPrice'] < 1e-5 gp_df.loc[mask, 'AvgPosPrice'] = gp_df.loc[mask, 'close'] gp_df.loc[:, 'CumProfit'] = gp_df.loc[:, 'CumNetTurnOver'] + gp_df.loc[:, 'position'] * gp_df.loc[:, 'close'] gp_df.loc[:, 'CumProfitComm'] = gp_df['CumProfit'] - gp_df['commission'].cumsum() daily_net_turnover = gp_df['CumNetTurnOver'].diff(1).fillna(gp_df['CumNetTurnOver'].iat[0]) daily_position_change = gp_df['position'].diff(1).fillna(gp_df['position'].iat[0]) gp_df['trading_pnl'] = (daily_net_turnover + gp_df['close'] * daily_position_change) gp_df['holding_pnl'] = (gp_df['close'].diff(1) * gp_df['position'].shift(1)).fillna(0.0) gp_df.loc[:, 'total_pnl'] = gp_df['trading_pnl'] + gp_df['holding_pnl'] return gp_df gp = merge.groupby(by='symbol') res = gp.apply(_apply) self.daily = res ''' def get_daily(self): """Add various statistics to daily DataFrame.""" self.daily = self._get_daily(self.closes, self.trades) daily_dic = dict() for sec, df_trade in self.trades.items(): df_close = self.closes[sec].rename('close') res = self._get_daily(df_close, df_trade) daily_dic[sec] = res self.daily = daily_dic ''' def get_returns(self, compound_return=True, consider_commission=True): cols = ['trading_pnl', 'holding_pnl', 'total_pnl', 'commission', 'CumProfitComm', 'CumProfit'] ''' dic_symbol = {sec: self.inst_map[sec]['multiplier'] * df_daily.loc[:, cols] for sec, df_daily in self.daily.items()} df_profit = pd.concat(dic_symbol, axis=1) # this is cumulative profit df_profit = df_profit.fillna(method='ffill').fillna(0.0) df_pnl = df_profit.stack(level=1) df_pnl = df_pnl.sum(axis=1) df_pnl = df_pnl.unstack(level=1) ''' daily = self.daily.loc[:, cols] daily = daily.stack().unstack('symbol') df_pnl = daily.sum(axis=1) df_pnl = df_pnl.unstack(level=1) self.df_pnl = df_pnl # TODO temperary solution if consider_commission: strategy_value = (df_pnl['total_pnl'] - df_pnl['commission']).cumsum() + self.init_balance else: strategy_value = df_pnl['total_pnl'].cumsum() + self.init_balance market_values = pd.concat([strategy_value, self.data_benchmark], axis=1).fillna(method='ffill') market_values.columns = ['strat', 'bench'] df_returns = market_values.pct_change(periods=1).fillna(0.0) df_returns = df_returns.join((df_returns.loc[:, ['strat', 'bench']] + 1.0).cumprod(), rsuffix='_cum') if compound_return: df_returns.loc[:, 'active_cum'] = df_returns['strat_cum'] - df_returns['bench_cum'] + 1 df_returns.loc[:, 'active'] = df_returns['active_cum'].pct_change(1).fillna(0.0) else: df_returns.loc[:, 'active'] = df_returns['strat'] - df_returns['bench'] df_returns.loc[:, 'active_cum'] = df_returns['active'].add(1.0).cumprod(axis=0) start = pd.to_datetime(self.configs['start_date'], format="%Y%m%d") end = pd.to_datetime(self.configs['end_date'], format="%Y%m%d") years = (end - start).days / 365.0 self.performance_metrics['Annual Return (%)'] =\ 100 * (np.power(df_returns.loc[:, 'active_cum'].values[-1], 1. / years) - 1) self.performance_metrics['Annual Volatility (%)'] =\ 100 * (df_returns.loc[:, 'active'].std() * np.sqrt(common.CALENDAR_CONST.TRADE_DAYS_PER_YEAR)) self.performance_metrics['Sharpe Ratio'] = (self.performance_metrics['Annual Return (%)'] / self.performance_metrics['Annual Volatility (%)']) self.risk_metrics['Beta'] = np.corrcoef(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])[0, 1] # bt_strat_mv = pd.read_csv('bt_strat_mv.csv').set_index('trade_date') # df_returns = df_returns.join(bt_strat_mv, how='right') self.returns = df_returns def plot_pnl(self, save_folder=None): old_mpl_rcparams = {k: v for k, v in mpl.rcParams.items()} mpl.rcParams.update(MPL_RCPARAMS) if save_folder is None: save_folder = self.file_folder fig1 = plot_portfolio_bench_pnl(self.returns.loc[:, 'strat_cum'], self.returns.loc[:, 'bench_cum'], self.returns.loc[:, 'active_cum']) fig1.savefig(os.path.join(save_folder,'pnl_img.png'), facecolor=fig1.get_facecolor(), dpi=fig1.get_dpi()) fig2 = plot_daily_trading_holding_pnl(self.df_pnl['trading_pnl'], self.df_pnl['holding_pnl'], self.df_pnl['total_pnl'], self.df_pnl['total_pnl'].cumsum()) fig2.savefig(os.path.join(save_folder,'pnl_img_trading_holding.png'), facecolor=fig2.get_facecolor(), dpi=fig2.get_dpi()) mpl.rcParams.update(old_mpl_rcparams) def plot_pnl_OLD(self, save_folder=None): if save_folder is None: save_folder = self.file_folder fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(21, 8), dpi=300, sharex=True) idx0 = self.returns.index idx = np.arange(len(idx0)) bar_width = 0.3 ax0.bar(idx-bar_width/2, self.df_pnl['trading_pnl'], width=bar_width, color='indianred', label='Trading PnL',) ax0.bar(idx+bar_width/2, self.df_pnl['holding_pnl'], width=bar_width, color='royalblue', label='Holding PnL') ax0.axhline(0.0, color='k', lw=1, ls='--') # ax0.plot(idx, self.pnl['total_pnl'], lw=1.5, color='violet', label='Total PnL') ax0.legend(loc='upper left') ax1.plot(idx, self.returns.loc[:, 'bench_cum'], label='Benchmark') ax1.plot(idx, self.returns.loc[:, 'strat_cum'], label='Strategy') ax1.legend(loc='upper left') ax2.plot(idx, self.returns.loc[:, 'active_cum'], label='Extra Return') ax2.legend(loc='upper left') ax2.set_xlabel("Date") ax2.set_ylabel("Net Value") ax1.set_ylabel("Net Value") ax2.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m-%d')) plt.tight_layout() fig.savefig(os.path.join(save_folder, 'pnl_img.png')) plt.close() def gen_report(self, source_dir, template_fn, out_folder='.', selected=None): """ Generate HTML (and PDF) report of the trade analysis. Parameters ---------- source_dir : str path of directory where HTML template and css files are stored. template_fn : str File name of HTML template. out_folder : str Output folder of report. selected : list of str or None List of symbols whose detailed PnL curve and position will be plotted. # TODO: this parameter should not belong to function """ dic = dict() dic['html_title'] = "Alpha Strategy Backtest Result" dic['selected_securities'] = selected # we do not want to show username / password in report dic['props'] = {k: v for k, v in self.configs.items() if ('username' not in k and 'password' not in k)} dic['performance_metrics'] = self.performance_metrics dic['risk_metrics'] = self.risk_metrics dic['position_change'] = self.position_change dic['account'] = self.account dic['df_daily'] = jutil.group_df_to_dict(self.daily, by='symbol') dic['daily_position'] = self.daily_position self.report_dic.update(dic) self.returns.to_csv(os.path.join(out_folder, 'returns.csv')) r = Report(self.report_dic, source_dir=source_dir, template_fn=template_fn, out_folder=out_folder) r.generate_html() r.output_html('report.html') def do_analyze(self, result_dir, selected_sec=None): if selected_sec is None: selected_sec = [] print("process trades...") self.process_trades() print("get daily stats...") self.get_daily() print("calc strategy return...") self.get_returns(consider_commission=False) if len(selected_sec) > 0: print("Plot single securities PnL") for symbol in selected_sec: df_daily = self.daily.loc[pd.IndexSlice[symbol, :], :] df_daily.index = df_daily.index.droplevel(0) if df_daily is not None: plot_trades(df_daily, symbol=symbol, save_folder=self.file_folder) print("Plot strategy PnL...") self.plot_pnl(result_dir) print("generate report...") self.gen_report(source_dir=STATIC_FOLDER, template_fn='report_template.html', out_folder=result_dir, selected=selected_sec) class EventAnalyzer(BaseAnalyzer): def __init__(self): super(EventAnalyzer, self).__init__() self.metrics = dict() self.daily = None self.data_benchmark = None self.returns = None # OrderedDict self.position_change = None # OrderedDict self.account = None # OrderedDict def initialize(self, data_server_=None, dataview=None, file_folder='.'): super(EventAnalyzer, self).initialize(data_api=data_server_, dataview=dataview, file_folder=file_folder) if self.dataview is not None and self.dataview.data_benchmark is not None: self.data_benchmark = self.dataview.data_benchmark.loc[(self.dataview.data_benchmark.index >= self.start_date) &(self.dataview.data_benchmark.index <= self.end_date)] else: benchmark = self.configs.get('benchmark', "") if benchmark and data_server_: df, msg = data_server_.daily(benchmark, start_date=self.closes.index[0], end_date=self.closes.index[-1]) self.data_benchmark = df.set_index('trade_date').loc[:, ['close']] self.data_benchmark.columns = ['bench'] else: self.data_benchmark = pd.DataFrame(index=self.closes.index, columns=['bench'], data=np.ones(len(self.closes), dtype=float)) class AlphaAnalyzer(BaseAnalyzer): def __init__(self): super(AlphaAnalyzer, self).__init__() self.metrics = dict() self.daily = None self.returns = None # OrderedDict self.position_change = None # OrderedDict self.account = None # OrderedDict self.df_brinson = None self.data_benchmark = None def initialize(self, data_api=None, dataview=None, file_folder='.'): super(AlphaAnalyzer, self).initialize(data_api=data_api, dataview=dataview, file_folder=file_folder) if self.dataview is not None and self.dataview.data_benchmark is not None: self.data_benchmark = self.dataview.data_benchmark.loc[(self.dataview.data_benchmark.index >= self.start_date) &(self.dataview.data_benchmark.index <= self.end_date)] @staticmethod def _to_pct_return(arr, cumulative=False): """Convert portfolio value to portfolio (linear) return.""" r = np.empty_like(arr) r[0] = 0.0 if cumulative: r[1:] = arr[1:] / arr[0] - 1 else: r[1:] = arr[1:] / arr[:-1] - 1 return r ''' def get_returns_OLD(self, compound_return=True, consider_commission=True): profit_col_name = 'CumProfitComm' if consider_commission else 'CumProfit' vp_list = {sec: df_profit.loc[:, profit_col_name] for sec, df_profit in self.daily.items()} df_profit = pd.concat(vp_list, axis=1) # this is cumulative profit # TODO temperary solution df_profit = df_profit.fillna(method='ffill').fillna(0.0) strategy_value = df_profit.sum(axis=1) + self.configs['init_balance'] market_values = pd.concat([strategy_value, self.data_benchmark], axis=1).fillna(method='ffill') market_values.columns = ['strat', 'bench'] df_returns = market_values.pct_change(periods=1).fillna(0.0) df_returns = df_returns.join((df_returns.loc[:, ['strat', 'bench']] + 1.0).cumprod(), rsuffix='_cum') if compound_return: df_returns.loc[:, 'active_cum'] = df_returns['strat_cum'] - df_returns['bench_cum'] + 1 df_returns.loc[:, 'active'] = df_returns['active_cum'].pct_change(1).fillna(0.0) else: df_returns.loc[:, 'active'] = df_returns['strat'] - df_returns['bench'] df_returns.loc[:, 'active_cum'] = df_returns['active'].add(1.0).cumprod(axis=0) start = pd.to_datetime(self.configs['start_date'], format="%Y%m%d") end = pd.to_datetime(self.configs['end_date'], format="%Y%m%d") years = (end - start).days / 365.0 self.metrics['yearly_return'] = np.power(df_returns.loc[:, 'active_cum'].values[-1], 1. / years) - 1 self.metrics['yearly_vol'] = df_returns.loc[:, 'active'].std() * np.sqrt(225.) self.metrics['beta'] = np.corrcoef(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])[0, 1] self.metrics['sharpe'] = self.metrics['yearly_return'] / self.metrics['yearly_vol'] # bt_strat_mv = pd.read_csv('bt_strat_mv.csv').set_index('trade_date') # df_returns = df_returns.join(bt_strat_mv, how='right') self.returns = df_returns ''' def _get_index_weight(self): if self.dataview is not None: res = self.dataview.get_ts('index_weight', start_date=self.start_date, end_date=self.end_date) else: res = self.data_api.get_index_weights_daily(self.universe, self.start_date, self.end_date) return res def _brinson(self, close, pos, index_weight, group): """ Brinson Attribution. Parameters ---------- close : pd.DataFrame Index is date, columns are symbols. pos : pd.DataFrame Index is date, columns are symbols. index_weight : pd.DataFrame Index is date, columns are symbols. group : pd.DataFrame Index is date, columns are symbols. Returns ------- dict """ def group_sum(df, group_daily): groups = np.unique(group_daily.values.flatten()) mask = np.isnan(groups.astype(float)) groups = groups[np.logical_not(mask)] res = pd.DataFrame(index=df.index, columns=groups, data=np.nan) for g in groups: mask = group_daily == g tmp = df[mask] res.loc[:, g] = tmp.sum(axis=1) return res ret = close.pct_change(1) pos_sum = pos.sum(axis=1) pf_weight = pos.div(pos_sum, axis=0) pf_weight.loc[pos_sum == 0, :] = 0.0 assert pf_weight.isnull().sum().sum() == 0 pf_weight = pf_weight.reindex(index=ret.index, columns=ret.columns) pf_weight = pf_weight.fillna(0.0) weighted_ret_pf = ret.mul(pf_weight) weighted_ret_index = ret.mul(index_weight) index_group_weight = group_sum(index_weight, group) pf_group_weight = group_sum(pf_weight, group) pf_group_ret = group_sum(weighted_ret_pf, group).div(pf_group_weight) index_group_ret = group_sum(weighted_ret_index, group).div(index_group_weight) allo_ret_group = (pf_group_weight - index_group_weight).mul(index_group_ret) allo_ret = allo_ret_group.sum(axis=1) selection_ret_group = (pf_group_ret - index_group_ret).mul(index_group_weight) selection_ret = selection_ret_group.sum(axis=1) active_ret = (weighted_ret_pf.sum(axis=1) - weighted_ret_index.sum(axis=1)) inter_ret = active_ret - selection_ret - allo_ret df_brinson = pd.DataFrame(index=allo_ret.index, data={'allocation': allo_ret, 'selection': selection_ret, 'interaction': inter_ret, 'total_active': active_ret}) return {'df_brinson': df_brinson, 'allocation': allo_ret_group, 'selection': selection_ret_group} def brinson(self, group): """ Parameters ---------- group : str or pd.DataFrame If group is string, this function will try to fetch the corresponding DataFrame from DataView. If group is pd.DataFrame, it will be used as-is. Returns ------- """ if isinstance(group, str): group = self.dataview.get_ts(group, start_date=self.start_date, end_date=self.end_date) elif isinstance(group, pd.DataFrame): pass else: raise ValueError("Group must be string or DataFrame. But {} is provided.".format(group)) if group is None or group.empty: raise ValueError("group is None or group is empty") close = self.closes_adj pos = self.daily_position index_weight = self._get_index_weight() res_dic = self._brinson(close, pos, index_weight, group) df_brinson = res_dic['df_brinson'] self.df_brinson = df_brinson self.report_dic['df_brinson'] = df_brinson plot_brinson(df_brinson, save_folder=self.file_folder) def do_analyze(self, result_dir, selected_sec=None, brinson_group=None): if selected_sec is None: selected_sec = [] print("process trades...") self.process_trades() print("get daily stats...") self.get_daily() print("calc strategy return...") self.get_returns(consider_commission=False) not_none_sec = [] if len(selected_sec) > 0: print("Plot single securities PnL") for symbol in selected_sec: df_daily = self.daily.loc[pd.IndexSlice[symbol, :], :] df_daily.index = df_daily.index.droplevel(0) if df_daily is not None: not_none_sec.append(symbol) plot_trades(df_daily, symbol=symbol, save_folder=self.file_folder) print("Plot strategy PnL...") self.plot_pnl(result_dir) if brinson_group is not None: print("Do brinson attribution.") group = self.dataview.get_ts(brinson_group) if group is None: raise ValueError("group data is None.") self.brinson(group) print("generate report...") self.gen_report(source_dir=STATIC_FOLDER, template_fn='report_template.html', out_folder=result_dir, selected=not_none_sec) def plot_daily_trading_holding_pnl(trading, holding, total, total_cum): """ Parameters ---------- Series """ idx0 = total.index n = len(idx0) idx = np.arange(n) fig, (ax0, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 13.5), sharex=True) ax1 = ax0.twinx() bar_width = 0.4 profit_color, lose_color = '#D63434', '#2DB635' curve_color = '#174F67' y_label = 'Profit / Loss ($)' color_arr_raw = np.array([profit_color] * n) color_arr = color_arr_raw.copy() color_arr[total < 0] = lose_color ax0.bar(idx, total, width=bar_width, color=color_arr) ax0.set(title='Daily PnL', ylabel=y_label, xlim=[-2, n+2],) ax0.xaxis.set_major_formatter(MyFormatter(idx0, '%y-%m-%d')) ax1.plot(idx, total_cum, lw=1.5, color=curve_color) ax1.set(ylabel='Cum. ' + y_label) ax1.yaxis.label.set_color(curve_color) color_arr = color_arr_raw.copy() color_arr[trading < 0] = lose_color ax2.bar(idx-bar_width/2, trading, width=bar_width, color=color_arr) ax2.set(title='Daily Trading PnL', ylabel=y_label) color_arr = color_arr_raw.copy() color_arr[holding < 0] = lose_color ax3.bar(idx+bar_width/2, holding, width=bar_width, color=color_arr) ax3.set(title='Daily Holding PnL', ylabel=y_label, xticks=idx[: : n//10]) return fig def plot_portfolio_bench_pnl(portfolio_cum_ret, benchmark_cum_ret, excess_cum_ret): """ Parameters ---------- Series """ fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 9), sharex=True) idx_dt = portfolio_cum_ret.index idx = np.arange(len(idx_dt)) y_label_ret = "Cumulative Return (%)" ax1.plot(idx, (benchmark_cum_ret-1) * TO_PCT, label='Benchmark', color='#174F67') ax1.plot(idx, (portfolio_cum_ret-1) * TO_PCT, label='Strategy', color='#198DD6') ax1.legend(loc='upper left') ax1.set(title="Absolute Return of Portfolio and Benchmark", #xlabel="Date", ylabel=y_label_ret) ax1.grid(axis='y') ax2.plot(idx, (excess_cum_ret-1) * TO_PCT, label='Extra Return', color='#C37051') ax2.set(title="Excess Return Compared to Benchmark", ylabel=y_label_ret #xlabel="Date", ) ax2.grid(axis='y') ax2.xaxis.set_major_formatter(MyFormatter(idx_dt, '%y-%m-%d')) # 17-09-31 fig.tight_layout() return fig def plot_brinson(df, save_folder): """ Parameters ---------- df : pd.DataFrame """ allo, selec, inter, total = df['allocation'], df['selection'], df['interaction'], df['total_active'] fig, ax1 = plt.subplots(1, 1, figsize=(21, 8)) idx0 = df.index idx = range(len(idx0)) ax1.plot(idx, selec, lw=1.5, color='indianred', label='Selection Return') ax1.plot(idx, allo, lw=1.5, color='royalblue', label='Allocation Return') ax1.plot(idx, inter, lw=1.5, color='purple', label='Interaction Return') # ax1.plot(idx, total, lw=1.5, ls='--', color='k', label='Total Active Return') ax1.axhline(0.0, color='k', lw=0.5, ls='--') ax1.legend(loc='upper left') ax1.set_xlabel("Date") ax1.set_ylabel("Return") ax1.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m-%d')) plt.tight_layout() fig.savefig(os.path.join(save_folder, 'brinson_attribution.png')) plt.close() def calc_avg_pos_price(pos_arr, price_arr): """ Calculate average cost price using position and fill price. When position = 0, cost price = symbol price. """ assert len(pos_arr) == len(price_arr) avg_price = np.zeros_like(pos_arr, dtype=float) avg_price[0] = price_arr[0] for i in range(pos_arr.shape[0] - 1): if pos_arr[i+1] == 0: avg_price[i+1] = 0.0 else: pos_diff = pos_arr[i+1] - pos_arr[i] if pos_arr[i] == 0 or pos_diff * pos_arr[i] > 0: count = True else: count = False if count: avg_price[i+1] = (avg_price[i] * pos_arr[i] + pos_diff * price_arr[i+1]) * 1. / pos_arr[i+1] else: avg_price[i+1] = avg_price[i] return avg_price def plot_trades(df, symbol="", save_folder='.', marker_size_adjust_ratio=0.1): old_mpl_rcparams = {k: v for k, v in mpl.rcParams.items()} mpl.rcParams.update(MPL_RCPARAMS) idx0 = df.index idx = range(len(idx0)) price = df.loc[:, 'close'] bv, sv = df.loc[:, 'BuyVolume'].values, df.loc[:, 'SellVolume'].values profit = df.loc[:, 'CumProfit'].values avgpx = df.loc[:, 'AvgPosPrice'] bv_m = np.max(bv) sv_m = np.max(sv) if bv_m > 0: bv = bv / bv_m * 100 if sv_m > 0: sv = sv / sv_m * 100 fig = plt.figure(figsize=(14, 10)) ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3) ax3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1, sharex=ax1) ax2 = ax1.twinx() ax1.plot(idx, price, label='Price', linestyle='-', lw=1, marker='', color='yellow') ax1.scatter(idx, price, label='buy', marker='o', s=bv, color='indianred') ax1.scatter(idx, price, label='sell', marker='o', s=sv, color='forestgreen') ax1.plot(idx, avgpx, lw=1, marker='', color='green') ax1.legend(loc='upper left') ax1.set(title="Price, Trades and PnL for {:s}".format(symbol), ylabel="Price ($)") ax1.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m')) ax2.plot(idx, profit, label='PnL', color='k', lw=1, ls='--', alpha=.4) ax2.legend(loc='upper right') ax2.set(ylabel="Profit / Loss ($)") # ax1.xaxis.set_major_formatter(MyFormatter(df.index))#, '%H:%M')) ax3.plot(idx, df.loc[:, 'position'], marker='D', markersize=3, lw=2) ax3.axhline(0, color='k', lw=1, ls='--', alpha=0.8) ax3.set(title="Position of {:s}".format(symbol)) fig.tight_layout() fig.savefig(save_folder + '/' + "{}.png".format(symbol), facecolor=fig.get_facecolor(), dpi=fig.get_dpi()) mpl.rcParams.update(old_mpl_rcparams)
39.583065
139
0.584198
29,648
0.802794
0
0
2,361
0.06393
0
0
10,724
0.290379
4682bbaf850d64b54a79c88a195b6f6e2f183e48
114
py
Python
lightnet/data/transform/__init__.py
eavise-kul/lightnet
d2d5d3fff8f929c3683c34f176217649375b98e1
[ "MIT" ]
6
2019-10-10T05:42:50.000Z
2022-02-27T04:59:29.000Z
lightnet/data/transform/__init__.py
eavise-kul/lightnet
d2d5d3fff8f929c3683c34f176217649375b98e1
[ "MIT" ]
null
null
null
lightnet/data/transform/__init__.py
eavise-kul/lightnet
d2d5d3fff8f929c3683c34f176217649375b98e1
[ "MIT" ]
4
2020-01-25T20:16:23.000Z
2021-04-29T13:02:34.000Z
# # Lightnet data transforms # Copyright EAVISE # from .pre import * from .post import * from .util import *
12.666667
28
0.684211
0
0
0
0
0
0
0
0
50
0.438596
46830865694c3242ec731476bef2c0bab11ffa36
420
py
Python
ufdl-core-app/src/ufdl/core_app/exceptions/_BadSource.py
waikato-ufdl/ufdl-backend
776fc906c61eba6c2f2e6324758e7b8a323e30d7
[ "Apache-2.0" ]
null
null
null
ufdl-core-app/src/ufdl/core_app/exceptions/_BadSource.py
waikato-ufdl/ufdl-backend
776fc906c61eba6c2f2e6324758e7b8a323e30d7
[ "Apache-2.0" ]
85
2020-07-24T00:04:28.000Z
2022-02-10T10:35:15.000Z
ufdl-core-app/src/ufdl/core_app/exceptions/_BadSource.py
waikato-ufdl/ufdl-backend
776fc906c61eba6c2f2e6324758e7b8a323e30d7
[ "Apache-2.0" ]
null
null
null
from rest_framework import status from rest_framework.exceptions import APIException class BadSource(APIException): """ Exception for when a lazily-loaded data source can't be accessed for some reason """ status_code = status.HTTP_417_EXPECTATION_FAILED default_code = 'bad_source' def __init__(self, source: str, reason: str): super().__init__(f"Bad source '{source}': {reason}")
28
60
0.719048
332
0.790476
0
0
0
0
0
0
146
0.347619
468313da2c3cc1e70694859bf5264667fcd82781
8,935
py
Python
build_tools/docker/manage_images.py
BernhardRiemann/iree
471349762b316f7d6b83eb5f9089255d78052758
[ "Apache-2.0" ]
1
2021-03-15T13:53:30.000Z
2021-03-15T13:53:30.000Z
build_tools/docker/manage_images.py
BernhardRiemann/iree
471349762b316f7d6b83eb5f9089255d78052758
[ "Apache-2.0" ]
null
null
null
build_tools/docker/manage_images.py
BernhardRiemann/iree
471349762b316f7d6b83eb5f9089255d78052758
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Manages IREE Docker image definitions. Includes information on their dependency graph and GCR URL. Example usage: Rebuild the cmake image and all images that transitiviely on depend on it, tagging them with `latest`: python3 build_tools/docker/manage_images.py --build --image cmake Print out output for rebuilding the cmake image and all images that transitiviely on depend on it, but don't take side-effecting actions: python3 build_tools/docker/manage_images.py --build --image cmake --dry-run Push all `prod` images to GCR: python3 build_tools/docker/manage_images.py --push --tag prod --images all Rebuild and push all images and update references to them in the repository: python3 build_tools/docker/manage_images.py --push --images all --update-references """ import argparse import fileinput import os import posixpath import re import subprocess import sys IREE_GCR_URL = 'gcr.io/iree-oss/' DOCKER_DIR = 'build_tools/docker/' # Map from image names to images that they depend on. IMAGES_TO_DEPENDENCIES = { 'base': [], 'bazel': ['base', 'util'], 'bazel-python': ['bazel'], 'bazel-tensorflow': ['bazel-python'], 'bazel-tensorflow-nvidia': ['bazel-tensorflow-vulkan'], 'bazel-tensorflow-swiftshader': ['bazel-tensorflow-vulkan', 'swiftshader'], 'bazel-tensorflow-vulkan': ['bazel-tensorflow'], 'cmake': ['base', 'util'], 'cmake-android': ['cmake', 'util'], 'cmake-python': ['cmake'], 'cmake-python-nvidia': ['cmake-python-vulkan'], 'cmake-python-swiftshader': ['cmake-python-vulkan', 'swiftshader'], 'cmake-python-vulkan': ['cmake-python'], 'rbe-toolchain': [], 'swiftshader': ['cmake'], 'util': [], } IMAGES_TO_DEPENDENT_IMAGES = {k: [] for k in IMAGES_TO_DEPENDENCIES} for image, dependencies in IMAGES_TO_DEPENDENCIES.items(): for dependency in dependencies: IMAGES_TO_DEPENDENT_IMAGES[dependency].append(image) IMAGES_HELP = [f'`{name}`' for name in IMAGES_TO_DEPENDENCIES] IMAGES_HELP = f'{", ".join(IMAGES_HELP)} or `all`' def parse_arguments(): """Parses command-line options.""" parser = argparse.ArgumentParser( description="Build IREE's Docker images and optionally push them to GCR.") parser.add_argument( '--images', '--image', type=str, required=True, action='append', help=f'Name of the image to build: {IMAGES_HELP}.') parser.add_argument( '--tag', type=str, default='latest', help='Tag for the images to build. Defaults to `latest` (which is good ' 'for testing changes in a PR). Use `prod` to update the images that the ' 'CI caches.') parser.add_argument( '--pull', action='store_true', help='Pull the specified image before building.') parser.add_argument( '--build', action='store_true', help='Build new images from the current Dockerfiles.') parser.add_argument( '--push', action='store_true', help='Push the built images to GCR. Requires gcloud authorization.') parser.add_argument( '--update_references', '--update-references', action='store_true', help='Update all references to the specified images to point at the new' ' digest.') parser.add_argument( '--dry_run', '--dry-run', '-n', action='store_true', help='Print output without building or pushing any images.') args = parser.parse_args() for image in args.images: if image == 'all': # Sort for a determinstic order args.images = sorted(IMAGES_TO_DEPENDENCIES.keys()) elif image not in IMAGES_TO_DEPENDENCIES: raise parser.error('Expected --image to be one of:\n' f' {IMAGES_HELP}\n' f'but got `{image}`.') return args def get_ordered_images_to_process(images): unmarked_images = list(images) # Python doesn't have a builtin OrderedSet marked_images = set() order = [] def visit(image): if image in marked_images: return for dependent_images in IMAGES_TO_DEPENDENT_IMAGES[image]: visit(dependent_images) marked_images.add(image) order.append(image) while unmarked_images: visit(unmarked_images.pop()) order.reverse() return order def stream_command(command, dry_run=False): print(f'Running: `{" ".join(command)}`') if dry_run: return 0 process = subprocess.Popen( command, bufsize=1, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, universal_newlines=True) for line in process.stdout: print(line, end='') if process.poll() is None: raise RuntimeError('Unexpected end of output while process is not finished') return process.poll() def check_stream_command(command, dry_run=False): exit_code = stream_command(command, dry_run=dry_run) if exit_code != 0: print(f'Command failed with exit code {exit_code}: `{" ".join(command)}`') sys.exit(exit_code) def get_repo_digest(image): inspect_command = [ 'docker', 'image', 'inspect', f'{image}', '-f', '{{index .RepoDigests 0}}', ] inspect_process = subprocess.run( inspect_command, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=10) if inspect_process.returncode != 0: print(f'Computing the repository digest for {image} failed.' ' Has it been pushed to GCR?') print(f'Output from `{" ".join(inspect_command)}`:') print(inspect_process.stdout, end='') print(inspect_process.stderr, end='') sys.exit(inspect_process.returncode) _, repo_digest = inspect_process.stdout.strip().split('@') return repo_digest def update_rbe_reference(digest, dry_run=False): print('Updating WORKSPACE file for rbe-toolchain') for line in fileinput.input(files=['WORKSPACE'], inplace=(not dry_run)): if line.strip().startswith('digest ='): print(re.sub('sha256:[a-zA-Z0-9]+', digest, line), end='') else: print(line, end='') def update_references(image_name, digest, dry_run=False): print(f'Updating references to {image_name}') grep_command = ['git', 'grep', '-l', f'{image_name}@sha256'] grep_process = subprocess.run( grep_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=5, universal_newlines=True) if grep_process.returncode > 1: print(f'{" ".join(grep_command)} ' f'failed with exit code {grep_process.returncode}') sys.exit(grep_process.returncode) if grep_process.returncode == 1: print(f'Found no references to {image_name}') return files = grep_process.stdout.split() print(f'Updating references in {len(files)} files: {files}') for line in fileinput.input(files=files, inplace=(not dry_run)): print( re.sub(f'{image_name}@sha256:[a-zA-Z0-9]+', f'{image_name}@{digest}', line), end='') if __name__ == '__main__': args = parse_arguments() # Ensure the user has the correct authorization if they try to push to GCR. if args.push: if stream_command(['which', 'gcloud']) != 0: print('gcloud not found.' ' See https://cloud.google.com/sdk/install for installation.') sys.exit(1) check_stream_command(['gcloud', 'auth', 'configure-docker'], dry_run=args.dry_run) images_to_process = get_ordered_images_to_process(args.images) print(f'Also processing dependent images. Will process: {images_to_process}') for image in images_to_process: print(f'Processing image {image}') image_name = posixpath.join(IREE_GCR_URL, image) image_tag = f'{image_name}:{args.tag}' image_path = os.path.join(DOCKER_DIR, image) if args.pull: check_stream_command(['docker', 'pull', image_tag], dry_run=args.dry_run) if args.build: check_stream_command(['docker', 'build', '--tag', image_tag, image_path], dry_run=args.dry_run) if args.push: check_stream_command(['docker', 'push', image_tag], dry_run=args.dry_run) if args.update_references: digest = get_repo_digest(image_tag) # Just hardcode this oddity if image == 'rbe-toolchain': update_rbe_reference(digest, dry_run=args.dry_run) update_references(image_name, digest, dry_run=args.dry_run)
32.140288
80
0.675993
0
0
0
0
0
0
0
0
4,097
0.458534
4684141f6543556bf465b101be71f060f3b08131
27,570
py
Python
suncasa/pygsfit/gsutils.py
wyq24/suncasa
e6ed6d8b9bd2186c4af6d0354d03af5fff9aef7a
[ "BSD-2-Clause" ]
null
null
null
suncasa/pygsfit/gsutils.py
wyq24/suncasa
e6ed6d8b9bd2186c4af6d0354d03af5fff9aef7a
[ "BSD-2-Clause" ]
null
null
null
suncasa/pygsfit/gsutils.py
wyq24/suncasa
e6ed6d8b9bd2186c4af6d0354d03af5fff9aef7a
[ "BSD-2-Clause" ]
null
null
null
import numpy as np # import sys import math import os, sys, platform import astropy.units as u from sunpy import map as smap from astropy.coordinates import SkyCoord from suncasa.io import ndfits import lmfit from astropy.time import Time import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.colorbar as colorbar from suncasa.utils import mstools from suncasa.utils import qlookplot as ql from mpl_toolkits.axes_grid1 import make_axes_locatable from tqdm import tqdm from astropy.io import fits import numpy.ma as ma sys.path.append(os.path.dirname(os.path.realpath(__file__))) import gstools # name of the fast gyrosynchrotron codes shared library if platform.system() == 'Linux' or platform.system() == 'Darwin': libname = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'binaries/MWTransferArr.so') if platform.system() == 'Windows': libname = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'binaries/MWTransferArr64.dll') def kev2k(eng): return 11604525.00617 * eng def ff_emission(em, T=1.e7, Z=1., mu=1.e10): from astropy import constants as const import astropy.units as u T = T * u.k mu = mu * u.Hz esu = const.e.esu k_B = const.k_B.cgs m_e = const.m_e.cgs c = const.c.cgs bmax = (3 * k_B * T * u.k / m_e) ** 0.5 / 2.0 / np.pi / (mu * u.Hz) bmin = Z * esu ** 2 / 3. / k_B / T lnbb = np.log((bmax / bmin).value) ka_mu = 1. / mu ** 2 / T ** 1.5 * ( Z ** 2 * esu ** 6 / c / np.sqrt(2. * np.pi * (m_e * k_B) ** 3)) * np.pi ** 2 / 4.0 * lnbb # print(ka_mu, em) opc = ka_mu * em return T.value * (1 - np.exp(-opc.value)) def sfu2tb(freq, flux, area): # frequency in Hz # flux in sfu # area: area of the radio source in arcsec^2 sfu2cgs = 1e-19 vc = 2.998e10 kb = 1.38065e-16 # sr = np.pi * (size[0] / 206265. / 2.) * (size[1] / 206265. / 2.) sr = area / 206265. ** 2 Tb = flux * sfu2cgs * vc ** 2. / (2. * kb * freq ** 2. * sr) return Tb def tb2sfu(freq, tb, area): # frequency in Hz # brightness temperature in K # area: area of the radio source in arcsec^2 sfu2cgs = 1e-19 vc = 2.998e10 kb = 1.38065e-16 # sr = np.pi * (size[0] / 206265. / 2.) * (size[1] / 206265. / 2.) sr = area / 206265. ** 2 flux = tb / (sfu2cgs * vc ** 2. / (2. * kb * freq ** 2. * sr)) return flux def initspecplot(axes, cplts): errobjs = [] for cpltidx, cplt in enumerate(cplts): errobjs.append(axes.errorbar([], [], yerr=[], linestyle='', marker='o', mfc='none', mec=cplt, alpha=1.0)) axes.set_yscale("log") axes.set_xscale("log") axes.set_xlim([1, 20]) axes.set_ylim([0.1, 1000]) axes.set_xticks([1, 5, 10, 20]) axes.set_xticklabels([1, 5, 10, 20]) axes.set_xticks([1, 5, 10, 20]) axes.set_yticks([]) axes.set_yticks([0.01, 0.1, 1, 10, 100, 1000]) axes.set_ylabel('T$_b$ [MK]') axes.set_xlabel('Frequency [GHz]') x = np.linspace(1, 20, 10) for ll in [-1, 0, 1, 2, 3, 4]: y = 10. ** (-2 * np.log10(x) + ll) axes.plot(x, y, 'k--', alpha=0.1) # y2 = 10. ** (-4 * np.log10(x) + ll) # y3 = 10. ** (-8 * np.log10(x) + ll) # ax_eospec.plot(x, y, 'k--', x, y2, 'k:', x, y3, 'k-.', alpha=0.1) return errobjs def set_errorobj(xout, yout, errobj, yerr=None): eospec, dummy, (errbar_eospec,) = errobj eospec.set_data(xout, yout) if yerr is not None: yerr_top = yout + yerr yerr_bot = yout - yerr new_segments_y = [np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(xout, yerr_top, yerr_bot)] errbar_eospec.set_segments(new_segments_y) def mwspec2min_1src(params, freqghz, tb=None, tb_err=None, arcsec2cm=0.725e8, showplt=False): # params are defined by lmfit.Paramters() ''' params: parameters defined by lmfit.Paramters() freqghz: frequencies in GHz ssz: pixel size in arcsec tb: reference brightness temperature in K tb_err: uncertainties of reference brightness temperature in K ''' from scipy import interpolate GET_MW = gstools.initGET_MW(libname) # load the library ssz = float(params['ssz'].value) # # source area in arcsec^2 depth = float(params['depth'].value) # total source depth in arcsec Bmag = float(params['Bmag'].value) # magnetic field strength in G Tth = float(params['Tth'].value) # thermal temperature in MK nth = float(params['nth'].value) # thermal density in 1e10 cm^{-3} nrlh = 10. ** float(params['lognrlh'].value) # total nonthermal density above 0.1 MeV delta = float(params['delta'].value) # powerlaw index theta = float(params['theta'].value) # viewing angle in degrees Emin = float(params['Emin'].value) # low energy cutoff of nonthermal electrons in MeV Emax = float(params['Emax'].value) # high energy cutoff of nonthermal electrons in MeV E_hi = 0.1 nrl = nrlh * (Emin ** (1. - delta) - Emax * (1. - delta)) / (E_hi ** (1. - delta) - Emax ** (1. - delta)) Nf = 100 # number of frequencies NSteps = 1 # number of nodes along the line-of-sight N_E = 15 # number of energy nodes N_mu = 15 # number of pitch-angle nodes Lparms = np.zeros(11, dtype='int32') # array of dimensions etc. Lparms[0] = NSteps Lparms[1] = Nf Lparms[2] = N_E Lparms[3] = N_mu Rparms = np.zeros(5, dtype='double') # array of global floating-point parameters Rparms[0] = ssz * arcsec2cm ** 2 # Area, cm^2 # Rparms[0] = 1e20 # area, cm^2 Rparms[1] = 1e9 # starting frequency to calculate spectrum, Hz Rparms[2] = 0.02 # logarithmic step in frequency Rparms[3] = 12 # f^C Rparms[4] = 12 # f^WH ParmLocal = np.zeros(24, dtype='double') # array of voxel parameters - for a single voxel ParmLocal[0] = depth * arcsec2cm / NSteps # voxel depth, cm ParmLocal[1] = Tth * 1e6 # T_0, K ParmLocal[2] = nth * 1e10 # n_0 - thermal electron density, cm^{-3} ParmLocal[3] = Bmag # B - magnetic field, G Parms = np.zeros((24, NSteps), dtype='double', order='F') # 2D array of input parameters - for multiple voxels for i in range(NSteps): Parms[:, i] = ParmLocal # most of the parameters are the same in all voxels # if NSteps > 1: # Parms[4, i] = 50.0 + 30.0 * i / (NSteps - 1) # the viewing angle varies from 50 to 80 degrees along the LOS # else: # Parms[4, i] = 50.0 # the viewing angle varies from 50 to 80 degrees along the LOS Parms[4, i] = theta # parameters of the electron distribution function n_b = nrl # n_b - nonthermal electron density, cm^{-3} mu_c = np.cos(np.pi * 70 / 180) # loss-cone boundary dmu_c = 0.2 # Delta_mu E_arr = np.logspace(np.log10(Emin), np.log10(Emax), N_E, dtype='double') # energy grid (logarithmically spaced) mu_arr = np.linspace(-1.0, 1.0, N_mu, dtype='double') # pitch-angle grid f0 = np.zeros((N_E, N_mu), dtype='double') # 2D distribution function array - for a single voxel # computing the distribution function (equivalent to PLW & GLC) A = n_b / (2.0 * np.pi) * (delta - 1.0) / (Emin ** (1.0 - delta) - Emax ** (1.0 - delta)) B = 0.5 / (mu_c + dmu_c * np.sqrt(np.pi) / 2 * math.erf((1.0 - mu_c) / dmu_c)) for i in range(N_E): for j in range(N_mu): amu = abs(mu_arr[j]) f0[i, j] = A * B * E_arr[i] ** (-delta) * (1.0 if amu < mu_c else np.exp(-((amu - mu_c) / dmu_c) ** 2)) f_arr = np.zeros((N_E, N_mu, NSteps), dtype='double', order='F') # 3D distribution function array - for multiple voxels for k in range(NSteps): f_arr[:, :, k] = f0 # electron distribution function is the same in all voxels RL = np.zeros((7, Nf), dtype='double', order='F') # input/output array # calculating the emission for array distribution (array -> on) res = GET_MW(Lparms, Rparms, Parms, E_arr, mu_arr, f_arr, RL) if res: # retrieving the results f = RL[0] I_L = RL[5] I_R = RL[6] if showplt: import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) ax.plot(f, I_L + I_R) ax.set_xscale('log') ax.set_yscale('log') ax.set_title('Total intensity (array)') ax.set_xlabel('Frequency, GHz') ax.set_ylabel('Intensity, sfu') flx_model = I_L + I_R flx_model = np.nan_to_num(flx_model) + 1e-11 logf = np.log10(f) logflx_model = np.log10(flx_model) logfreqghz = np.log10(freqghz) interpfunc = interpolate.interp1d(logf, logflx_model, kind='linear') logmflx = interpfunc(logfreqghz) mflx = 10. ** logmflx mtb = sfu2tb(np.array(freqghz) * 1.e9, mflx, ssz) else: print("Calculation error!") if tb is None: return mtb if tb_err is None: # return mTb - Tb return mtb - tb # wt = 1./flx_err # wt = 1./(Tb_err/Tb/np.log(10.)) # residual = np.abs((logmTb - np.log10(Tb))) * wt # residual = np.abs((mflx - flx)) * wt residual = (mtb - tb) / tb_err return residual class RegionSelector: # def set_errorobj(self, xout, yout, errobj, yerr): # eospec, dummy, (errbar_eospec,) = errobj # eospec.set_data(xout, yout) # if yerr is not None: # yerr_top = yout + yerr # yerr_bot = yout - yerr # new_segments_y = [np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(xout, yerr_top, yerr_bot)] # errbar_eospec.set_segments(new_segments_y) # return 1 def subdata(self, xs, ys, rfile): rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(rfile) ny, nx = rmap.data.shape tr_coord = rmap.top_right_coord bl_coord = rmap.bottom_left_coord x0 = bl_coord.Tx.to(u.arcsec).value y0 = bl_coord.Ty.to(u.arcsec).value x1 = tr_coord.Tx.to(u.arcsec).value y1 = tr_coord.Ty.to(u.arcsec).value dx = rmap.scale.axis1.to(u.arcsec / u.pix).value dy = rmap.scale.axis2.to(u.arcsec / u.pix).value mapx, mapy = np.linspace(x0, x1, nx) - dx / 2.0, np.linspace(y0, y1, ny) - dy / 2.0 xsmin = np.nanmin(xs) xsmax = np.nanmax(xs) ysmin = np.nanmin(ys) ysmax = np.nanmax(ys) if np.abs(xsmax - xsmin) < dx: xsmax = xsmin + dx if np.abs(ysmax - ysmin) < dy: ysmax = ysmin + dy xmask = np.logical_and(mapx >= xsmin, mapx <= xsmax) nxnew = np.count_nonzero(xmask) ymask = np.logical_and(mapy >= ysmin, mapy <= ysmax) nynew = np.count_nonzero(ymask) xmask = np.tile(xmask, ny).reshape(ny, nx) ymask = np.tile(ymask, nx).reshape(nx, ny).transpose() mask = xmask & ymask # print(np.count_nonzero(mask)) self.npix = np.count_nonzero(mask) self.area = self.npix * dx * dy data = rdata[:, mask] # print(rdata[:, :, mask]) # print(mask.shape, rdata.shape, data.shape) data = np.squeeze(data) # print(data.shape) return data def __init__(self, clkpnts, boxlines, eofiles, errobjs, cfreqs=None, rms=None, eofile_ref=None, errobj_ref=None, wTmap=None, outspec_ff=None, scatter_gsfit=None, get_peak=False, get_sum=False): self.boxline = [] self.clkpnt = [] self.xs = list(clkpnts[0].get_xdata()) self.ys = list(clkpnts[0].get_ydata()) self.npix = None self.area = None self.xout = [] self.yout = [] self.xouterr = [] self.youterr = [] for errobj in errobjs: eospec, dummy, (errbar_eospec,) = errobj self.xout.append(eospec.get_xdata()) self.yout.append(eospec.get_ydata()) self.errobjs = errobjs self.errobj_ref = errobj_ref self.outspec_ff = outspec_ff self.scatter_gsfit = scatter_gsfit self.cfreqs = cfreqs self.rms = rms self.eofiles = eofiles self.eofile_ref = eofile_ref self.wTmap = wTmap self.wT = None self.em = None self.get_peak = get_peak self.get_sum = get_sum self.tps = [] self.params = None for idx, s in enumerate(clkpnts): self.boxline.append(boxlines[idx]) self.clkpnt.append(s) self.cid = s.figure.canvas.mpl_connect('button_press_event', self) def __call__(self, event): axes = [clkpnt.axes for clkpnt in self.clkpnt] if self.clkpnt[0].figure.canvas.toolbar.mode == '': if event.inaxes not in axes: return nxs = len(self.xs) if event.button == 1: if nxs < 2: self.xs.append(event.xdata) self.ys.append(event.ydata) else: self.xs = [event.xdata] self.ys = [event.ydata] elif event.button == 3: if len(self.xs) > 0: self.xs.pop() self.ys.pop() self.get_flux() def get_flux(self): if len(self.xs) > 0: xs = np.array(self.xs, dtype=np.float64) ys = np.array(self.ys, dtype=np.float64) for clkpnt in self.clkpnt: clkpnt.set_data(xs, ys) else: for clkpnt in self.clkpnt: clkpnt.set_data([], []) nxs = len(self.xs) if nxs <= 1: for line in self.boxline: line.set_data([], []) elif nxs == 2: datas = [] # eofile = self.eofiles[0] # rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(eofile) # data = self.subdata(xs, ys, eofile) # datas.append(data) for tidx, eofile in enumerate(self.eofiles): data = self.subdata(xs, ys, eofile) datas.append(data) if self.eofile_ref is not None: data_ref = self.subdata(xs, ys, self.eofile_ref) if self.wTmap is not None: datawT = self.subdata(xs, ys, self.wTmap) if self.get_peak: youts_outspec = [] for data in datas: if data.ndim > 1: youts_outspec.append(np.nanmax(data, axis=-1) / 1e6) else: youts_outspec.append(data / 1e6) if self.eofile_ref is not None: youts_outspec_ref = np.nanmax(data_ref[0, dd, :, :]) / 1e6 else: youts_outspec = [] for data in datas: if data.ndim > 1: youts_outspec.append(np.nanmean(data, axis=-1) / 1e6) else: youts_outspec.append(data / 1e6) if self.eofile_ref is not None: if data.ndim > 1: youts_outspec_ref = np.nanmean(data_ref, axis=-1) / 1e6 else: youts_outspec_ref = data_ref / 1e6 self.tps = [] for data in datas: if data.ndim > 1: self.tps.append(np.nansum(data, axis=-1) / 1e6) else: self.tps.append(data / 1e6) xout = self.cfreqs for tidx, errobj in enumerate(self.errobjs): set_errorobj(xout, youts_outspec[tidx], errobj, self.rms) if self.eofile_ref is not None: set_errorobj(xout, youts_outspec_ref, self.errobj_ref, self.rms) if self.wTmap is not None: print(datawT.shape) wT = np.nanmean(datawT[..., 1]) * 1e6 em = np.nanmean(datawT[..., 0]) arcsec2cm = (self.wTmap[0].rsun_meters / self.wTmap[0].rsun_obs).to(u.cm / u.arcsec).value # nele = 4.0e10 # depth = em / nele ** 2 / arcsec2cm # print('Temperature: {:.1f} MK, EM: {:.2e} cm-5, depth: {:.1f} arcsec if nele is {:.2e} cm-3'.format(wT / 1e6, em, depth, nele)) depth = 20. ## arcsec nele = np.sqrt(em / (depth * arcsec2cm)) print('Temperature: {:.1f} MK, EM: {:.2e} cm-5, nele: {:.2e} cm-3 if depth is {:.1f} arcsec'.format( wT / 1e6, em, nele, depth)) self.wT = wT self.em = em yout_ff = np.array([ff_emission(em, T=wT, Z=1., mu=ll) for ll in xout * 1e9]) / 1.e6 self.outspec_ff.set_data(xout, yout_ff) self.errobjs[0][0].figure.canvas.draw_idle() for line in self.boxline: line.set_data([xs[0], xs[1], xs[1], xs[0], xs[0]], [ys[0], ys[0], ys[1], ys[1], ys[0]]) clkpnt.figure.canvas.draw_idle() class GStool: # def get_showaia(self): # return self._showaia # # def set_showaia(self, value): # self._showaia = value # # showaia = property(fget=get_showaia, fset=set_showaia, doc="`Boolean`-like: Display AIA image or not") def __init__(self, eofiles, aiafile=None, xycen=None, fov=None, freqghz_bound=[-1, 100], calpha=0.5, clevels=np.array([0.3, 1.0]), opencontour=None): self.aiafile = aiafile self.eofiles = eofiles self.xycen = xycen self.fov = fov self.calpha = calpha self.clevels = clevels self.freqghz_bound = freqghz_bound self.opencontour = opencontour self._showaia = False rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(eofiles[0]) self.bdinfo = bdinfo = ndfits.get_bdinfo(rfreqs, rdelts) self.cfreqs = cfreqs = bdinfo['cfreqs'] self.cfreqs_all = cfreqs_all = bdinfo['cfreqs_all'] self.freq_dist = lambda fq: (fq - cfreqs_all[0]) / (cfreqs_all[-1] - cfreqs_all[0]) self.ntim = ntim = len(eofiles) self.xlim = xlim = xycen[0] + np.array([-1, 1]) * 0.5 * fov[0] self.ylim = ylim = xycen[1] + np.array([-1, 1]) * 0.5 * fov[1] nspw = len(rfreqs) eodate = Time(rmap.date.mjd + rmap.exposure_time.value / 2. / 24 / 3600, format='mjd') ny, nx = rmap.data.shape x0, x1 = (np.array([1, rmap.meta['NAXIS1']]) - rmap.meta['CRPIX1']) * rmap.meta['CDELT1'] + \ rmap.meta['CRVAL1'] y0, y1 = (np.array([1, rmap.meta['NAXIS2']]) - rmap.meta['CRPIX2']) * rmap.meta['CDELT2'] + \ rmap.meta['CRVAL2'] dx = rmap.meta['CDELT1'] dy = rmap.meta['CDELT2'] mapx, mapy = np.linspace(x0, x1, nx), np.linspace(y0, y1, ny) fig = plt.figure(figsize=(15, 6)) self.fig = fig grids = fig.add_gridspec(ncols=3, nrows=1, width_ratios=[1, 1, 0.6]) self.grids = grids axs = [] axs.append(fig.add_subplot(grids[0, 0])) axs.append(fig.add_subplot(grids[0, 1], sharex=axs[-1], sharey=axs[-1])) axs.append(fig.add_subplot(grids[0, 2])) if aiafile: if os.path.exists(aiafile): try: aiacmap = plt.get_cmap('gray_r') aiamap = smap.Map(aiafile) ax = axs[0] aiamap.plot(axes=ax, cmap=aiacmap) ax = axs[1] aiamap.plot(axes=ax, cmap=aiacmap) self._showaia = True except: self._showaia = False if self._showaia: if self.opencontour is None: self.opencontour = False else: if self.opencontour is None: self.opencontour = True ## Plot EOVSA images as filled contour on top of the AIA image icmap = plt.get_cmap('RdYlBu') cts = [] ## color map for spectra from the image series tcmap = plt.get_cmap('turbo') for s, sp in enumerate(rfreqs): data = rdata[s, ...] clvls = clevels * np.nanmax(data) rcmap = [icmap(self.freq_dist(self.cfreqs[s]))] * len(clvls) if self.opencontour: cts.append(ax.contour(mapx, mapy, data, levels=clvls, colors=rcmap, alpha=calpha)) else: cts.append(ax.contourf(mapx, mapy, data, levels=clvls, colors=rcmap, alpha=calpha)) ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) for ax in axs[:2]: ax.set_xlabel('Solar-X [arcsec]') ax.set_ylabel('Solar-y [arcsec]') ax.set_title('') ax.text(0.02, 0.01, ' '.join(['AIA {:.0f} Å'.format(aiamap.wavelength.value), aiamap.date.datetime.strftime('%Y-%m-%dT%H:%M:%S')]), ha='left', va='bottom', color='k', transform=ax.transAxes) ax.text(0.02, 0.05, ' '.join(['EOVSA ', eodate.datetime.strftime('%Y-%m-%dT%H:%M:%S')]), ha='left', va='bottom', color='k', transform=ax.transAxes) divider = make_axes_locatable(axs[0]) cax = divider.append_axes("right", size="8%", pad=0.08) cax.set_visible(False) divider = make_axes_locatable(axs[1]) cax = divider.append_axes("right", size="8%", pad=0.08) ticks, bounds, vmax, vmin, freqmask = ql.get_colorbar_params(bdinfo) cb = colorbar.ColorbarBase(cax, norm=colors.Normalize(vmin=vmin, vmax=vmax), cmap=icmap, orientation='vertical', boundaries=bounds, spacing='proportional', ticks=ticks, format='%4.1f', alpha=calpha) for fbd_lo, fbd_hi in freqmask: if fbd_hi is not None: cax.axhspan(fbd_lo, fbd_hi, hatch='//', edgecolor='k', facecolor='#BBBBBB') plt.text(0.5, 1.05, 'MW', ha='center', va='bottom', transform=cax.transAxes, color='k', fontweight='normal') plt.text(0.5, 1.01, '[GHz]', ha='center', va='bottom', transform=cax.transAxes, color='k', fontweight='normal') cax.xaxis.set_visible(False) cax.tick_params(axis="y", pad=-20., length=0, colors='k', labelsize=7) cax.axhline(vmin, xmin=1.0, xmax=1.2, color='k', clip_on=False) cax.axhline(vmax, xmin=1.0, xmax=1.2, color='k', clip_on=False) cax.text(1.25, 0.0, '{:.1f}'.format(vmin), fontsize=9, transform=cax.transAxes, va='center', ha='left') cax.text(1.25, 1.0, '{:.1f}'.format(vmax), fontsize=9, transform=cax.transAxes, va='center', ha='left') boxlines = [] clkpnts = [] for idx, ax in enumerate(axs[:2]): if idx == 0: c = 'g' elif idx == 1: c = 'b' else: c = 'k' line, = ax.plot([], [], '-', c=c, alpha=1.0) # empty line boxlines.append(line) clkpnt, = ax.plot([], [], '+', c='white', alpha=0.7) # empty line clkpnts.append(clkpnt) if ntim < 2: cplts = ['k'] else: cplts = tcmap(np.linspace(0, 1, ntim)) self.cplts = cplts self.ax_eospec = axs[-1] errobjs = initspecplot(self.ax_eospec, cplts) grids.tight_layout(fig) self.region = RegionSelector(clkpnts, boxlines, eofiles, errobjs, cfreqs=cfreqs, rms=None, wTmap=None) self.scatter_eospecs_fit = [] self.scatter_eospecs = [] def set_params(self, params): ssz = self.region.area # source area in arcsec^2 params.add('ssz', value=ssz, vary=False) # pixel size in arcsec^2 self.params = params def plot_components(self): ti = 0 tb = self.region.errobjs[ti][0].get_ydata() * 1e6 tb_ma = ma.masked_less_equal(tb, 0) freqghz = self.region.errobjs[0][0].get_xdata() # freqghz_ma = ma.masked_outside(freqghz, 1.0, 15.0) freqghz_ma = ma.masked_outside(freqghz, self.freqghz_bound[0], self.freqghz_bound[1]) mask_fit = np.logical_or(freqghz_ma.mask, tb_ma.mask) freqghz_ma = ma.masked_array(freqghz, mask_fit) tb_ma = ma.masked_array(tb, mask_fit) # scatter_eospecs_fit.append( # ax_spec.plot(freqghz_ma, tb_ma / 1.e6, marker='o', linestyle='', c=cplts[ti])) # flx_rms = rms tb_err = tb * 0.0 tb_err[:] = 1.e6 tb_err_ma = ma.masked_array(tb_err, tb_ma.mask) if len(self.scatter_eospecs_fit) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs_fit.append( self.ax_eospec.errorbar(freqghz_ma, tb_ma / 1.e6, yerr=tb_err_ma / 1.e6, marker='.', ms=1, linestyle='', c=cplt)) else: for ti, cplt in enumerate(self.cplts): set_errorobj(freqghz_ma, tb_ma / 1.e6, self.scatter_eospecs_fit[ti], yerr=tb_err_ma / 1.e6) def fit(self): ti = 0 tb = self.region.errobjs[ti][0].get_ydata() * 1e6 tb_ma = ma.masked_less_equal(tb, 0) freqghz = self.region.errobjs[0][0].get_xdata() # freqghz_ma = ma.masked_outside(freqghz, 1.0, 15.0) freqghz_ma = ma.masked_outside(freqghz, self.freqghz_bound[0], self.freqghz_bound[1]) mask_fit = np.logical_or(freqghz_ma.mask, tb_ma.mask) freqghz_ma = ma.masked_array(freqghz, mask_fit) tb_ma = ma.masked_array(tb, mask_fit) # scatter_eospecs_fit.append( # ax_spec.plot(freqghz_ma, tb_ma / 1.e6, marker='o', linestyle='', c=cplts[ti])) # flx_rms = rms tb_err = tb * 0.1 # tb_err[:] = 0.2e6 tb_err_ma = ma.masked_array(tb_err, tb_ma.mask) if len(self.scatter_eospecs_fit) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs_fit.append( self.ax_eospec.errorbar(freqghz_ma, tb_ma / 1.e6, yerr=tb_err_ma / 1.e6, marker='.', ms=1, linestyle='', c=cplt)) else: for ti, cplt in enumerate(self.cplts): set_errorobj(freqghz_ma, tb_ma / 1.e6, self.scatter_eospecs_fit[ti], yerr=tb_err_ma / 1.e6) mini = lmfit.Minimizer(mwspec2min_1src, self.params, fcn_args=(freqghz_ma.compressed(),), fcn_kws={'tb': tb_ma.compressed(), 'tb_err': tb_err_ma.compressed()}, nan_policy='omit') method = 'nelder' # # method = 'differential_evolution' mi = mini.minimize(method=method) print(method + ' minimization results') print(lmfit.fit_report(mi.params)) tb_fit = mwspec2min_1src(mi.params, freqghz) if len(self.scatter_eospecs) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs.append(self.ax_eospec.plot(freqghz, tb_fit / 1.e6, linestyle='-', c=cplt)) else: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs[ti][0].set_data(freqghz, tb_fit / 1.e6)
40.784024
145
0.551904
18,293
0.663487
0
0
0
0
0
0
5,316
0.192811
4685248be49c1c014500014593ebd58e99994652
1,496
py
Python
msgvis/apps/questions/migrations/0001_initial.py
hds-lab/textvis-drg
bfb136b6105df84fb6c1c89cc595bf9e9f22c5fe
[ "MIT" ]
10
2015-12-04T07:43:11.000Z
2021-01-23T00:44:56.000Z
msgvis/apps/questions/migrations/0001_initial.py
hds-lab/textvis-drg
bfb136b6105df84fb6c1c89cc595bf9e9f22c5fe
[ "MIT" ]
200
2015-02-11T05:41:57.000Z
2015-11-13T03:47:25.000Z
msgvis/apps/questions/migrations/0001_initial.py
hds-lab/textvis-drg
bfb136b6105df84fb6c1c89cc595bf9e9f22c5fe
[ "MIT" ]
6
2015-10-02T18:01:09.000Z
2021-01-23T00:44:58.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('dimensions', '0001_initial'), ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('year', models.PositiveIntegerField(default=None, null=True, blank=True)), ('authors', models.CharField(default=None, max_length=250, blank=True)), ('link', models.CharField(default=None, max_length=250, blank=True)), ('title', models.CharField(default=None, max_length=250, blank=True)), ('venue', models.CharField(default=None, max_length=250, blank=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('text', models.TextField()), ('dimensions', models.ManyToManyField(to='dimensions.Dimension')), ('source', models.ForeignKey(default=None, to='questions.Article', null=True)), ], options={ }, bases=(models.Model,), ), ]
36.487805
114
0.556818
1,387
0.927139
0
0
0
0
0
0
186
0.124332
4685622823bb3cb792b6697fa854e6d940a37ece
7,412
py
Python
test/test_check_alert.py
russ-lewis/cs120-queuebot
6b121ef9b0d7db7bbb1810f71129d995ce6a1659
[ "MIT" ]
null
null
null
test/test_check_alert.py
russ-lewis/cs120-queuebot
6b121ef9b0d7db7bbb1810f71129d995ce6a1659
[ "MIT" ]
null
null
null
test/test_check_alert.py
russ-lewis/cs120-queuebot
6b121ef9b0d7db7bbb1810f71129d995ce6a1659
[ "MIT" ]
1
2021-05-18T02:32:54.000Z
2021-05-18T02:32:54.000Z
import io import sys import unittest import asyncio import random from contextlib import redirect_stdout from .utils import * from queuebot import QueueBot, QueueConfig, DiscordUser config = { "SECRET_TOKEN": "NOONEWILLEVERGUESSTHISSUPERSECRETSTRINGMWAHAHAHA", "TA_ROLES": ["UGTA"], "LISTEN_CHANNELS": ["join-queue"], "CHECK_VOICE_WAITING": "False", "VOICE_WAITING": "waiting-room", "ALERT_ON_FIRST_JOIN": "True", "VOICE_OFFICES": ["Office Hours Room 1", "Office Hours Room 2", "Office Hours Room 3"], "ALERTS_CHANNEL": "queue-alerts", } config = QueueConfig(config, test_mode=True) # TODO Comment each test case class QueueTest(unittest.TestCase): def setUp(self): random.seed(SEED) self.config = config.copy() self.bot = QueueBot(self.config, None, testing=True) # self.bot.waiting_room = MockVoice(config.VOICE_WAITING) self.bot.logger = MockLogger() self.bot.office_rooms = [MockVoice(name) for name in config.VOICE_OFFICES] def reset_vc_queue(self): # Reset queue russ = get_rand_element(ALL_TAS) message = MockMessage("!q clear", russ) with io.StringIO() as buf, redirect_stdout(buf): run(self.bot.queue_command(message)) self.assertEqual(len(self.bot._queue), 0) # Empty voice channels for v in self.bot.office_rooms: v.members = [] def test_no_tas(self): # No TAs in rooms student = get_rand_element(ALL_STUDENTS) self.assertEqual(len(self.bot._queue), 0) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) self.assertTrue(buf.getvalue().strip().startswith( f"SEND: ✅ {student.get_mention()} you have been added at position #1")) self.assertEqual(len(self.bot._queue), 1) self.reset_vc_queue() def test_one_ta(self): ta = get_rand_element(ALL_TAS) office_room = get_rand_element(self.bot.office_rooms) office_room.members.append(ta) student = get_rand_element(ALL_STUDENTS) self.assertEqual(len(self.bot._queue), 0) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) self.assertTrue(buf.getvalue().strip().startswith( f"SEND: {ta.get_mention()} The queue is no longer empty")) self.assertEqual(len(self.bot._queue), 1) self.reset_vc_queue() def get_mentions_from_send(self, buf): send_str = buf.getvalue().strip().split("\n", 1)[0] assert send_str.startswith("SEND:") assert "<@" in send_str assert "The queue is no longer empty" in send_str return send_str.lstrip("SEND: ") \ .rstrip(" The queue is no longer empty") \ .split(" ") def test_many_tas_one_room(self): tas = get_n_rand(ALL_TAS, 3) office_room = get_rand_element(self.bot.office_rooms) office_room.members.extend(tas) mention_set = set() student = get_rand_element(ALL_STUDENTS) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) mention_set.update(mentions) for ta in tas: self.assertTrue(ta.get_mention() in mention_set) mention_set.remove(ta.get_mention()) self.assertEqual(len(mention_set), 0) self.reset_vc_queue() def test_many_tas_all_rooms(self): tas = get_n_rand(ALL_TAS, 5) tas_copy = tas.copy() while len(tas) > 0: for office_room in self.bot.office_rooms: # If we run out of TAs while going through all the rooms if len(tas) == 0: break office_room.add_member(tas.pop()) mention_set = set() student = get_rand_element(ALL_STUDENTS) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) mention_set.update(mentions) for ta in tas_copy: self.assertTrue(ta.get_mention() in mention_set) mention_set.remove(ta.get_mention()) self.assertEqual(len(mention_set), 0) self.reset_vc_queue() def test_ta_with_student(self): busy_room, open_room = get_n_rand(self.bot.office_rooms, 2) busy_ta, open_ta = get_n_rand(ALL_TAS, 2) busy_student, open_student = get_n_rand(ALL_STUDENTS, 2) busy_room.add_many_members(busy_ta, busy_student) open_room.add_member(open_ta) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", busy_student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) self.assertEqual(mentions, [open_ta.get_mention()]) def test_ta_with_student2(self): rooms = get_n_rand(self.bot.office_rooms, 3) busy_rooms = rooms[:-1] open_room = rooms[-1] busy_ta, open_ta = get_n_rand(ALL_TAS, 2) students = [ None ] open_student = None while open_student in students: students = get_n_rand(ALL_STUDENTS, 5) open_student = get_rand_element(ALL_STUDENTS) busy_rooms[0].add_many_members(busy_ta, *students[:-2]) busy_rooms[1].add_many_members(busy_ta, *students[-2:]) open_room.add_member(open_ta) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", open_student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) self.assertEqual(mentions, [open_ta.get_mention()]) def test_two_tas(self): tas = get_n_rand(ALL_TAS, 2) rooms = get_n_rand(self.bot.office_rooms, 2) rooms[0].add_member(tas[0]) rooms[1].add_member(tas[1]) students = get_n_rand(ALL_STUDENTS, 2) # Check for both alerted with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", students[0]) run(self.bot.queue_command(message)) ta_list = set(self.get_mentions_from_send(buf)) for ta in tas: ta_list.remove(ta.get_mention()) self.assertEqual(len(ta_list), 0) # Remove first student from queue with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q next", tas[0]) run(self.bot.queue_command(message)) self.assertEqual(len(self.bot._queue), 0) # First ta helps first student rooms[0].add_member(students[0]) # Another student joins with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", students[1]) run(self.bot.queue_command(message)) ta_list = self.get_mentions_from_send(buf) self.assertEqual(ta_list, [tas[1].get_mention()]) if __name__ == '__main__': unittest.main()
34.314815
91
0.625472
6,716
0.905854
0
0
0
0
0
0
920
0.12409
4685d4b1728860e781a678cd76d788dda6fe260b
236
py
Python
iam/__init__.py
dataday/aws-utilities-sdk
7b1236f27a27e2830ccbbf905bbc05f864a1aecf
[ "MIT" ]
null
null
null
iam/__init__.py
dataday/aws-utilities-sdk
7b1236f27a27e2830ccbbf905bbc05f864a1aecf
[ "MIT" ]
null
null
null
iam/__init__.py
dataday/aws-utilities-sdk
7b1236f27a27e2830ccbbf905bbc05f864a1aecf
[ "MIT" ]
null
null
null
""" .. module:: aws_utilities_cli.iam :platform: OS X :synopsis: Small collection of utilities that use the Amazon Web Services (AWS) SDK .. moduleauthor:: dataday """ __all__ = ['generate_identity', 'generate_policy']
23.6
50
0.686441
0
0
0
0
0
0
0
0
220
0.932203
46869ee7c4058bcc60c1e873b09ca6bac3bb10d7
2,556
py
Python
tests/common/test_run/triangle_run.py
KnowingNothing/akg-test
114d8626b824b9a31af50a482afc07ab7121862b
[ "Apache-2.0" ]
null
null
null
tests/common/test_run/triangle_run.py
KnowingNothing/akg-test
114d8626b824b9a31af50a482afc07ab7121862b
[ "Apache-2.0" ]
null
null
null
tests/common/test_run/triangle_run.py
KnowingNothing/akg-test
114d8626b824b9a31af50a482afc07ab7121862b
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tests.common.tensorio import compare_tensor from tests.common.test_op import triangle from akg.utils import kernel_exec as utils from tests.common.gen_random import random_gaussian def triangle_execute(shape, const_value, lower, dtype, attrs): support_type = ['float16', 'float32'] assert dtype in support_type assert len(shape) <= 2 if attrs is None: attrs = {'enable_pre_poly_loop_partition': False} attrs['enable_pre_poly_loop_partition'] = False attrs['enable_post_poly_loop_partition'] = False attrs['enable_convert_if'] = True attrs['enable_double_buffer'] = False output_shape = shape if len(shape) == 1: output_shape = [shape[0], shape[0]] input, bench_mark = gen_data(shape, output_shape, const_value, lower, dtype) op_attrs = [const_value, lower] mod = triangle_compile(shape, dtype, op_attrs, attrs) source_code = mod.imported_modules[0].get_source() output = np.full(output_shape, np.nan, dtype) output = utils.mod_launch(mod, (input, output), expect=bench_mark) # compare result compare_result = compare_tensor(output, bench_mark, rtol=5e-3, equal_nan=True) return input, output, bench_mark, compare_result def triangle_compile(shape, dtype, op_attrs, attrs): return utils.op_build_test(triangle.triangle, [shape], [dtype], op_attrs, kernel_name='triangle', attrs=attrs) def gen_data(shape, output_shape, const_value, lower, dtype): input = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) if len(shape) == 2: bench_mark = input else: bench_mark = np.zeros(output_shape).astype(dtype) for i in range(output_shape[0]): bench_mark[i] = input if lower: for i in range(output_shape[0]): bench_mark[i][i + 1:] = const_value else: for i in range(output_shape[0]): bench_mark[i][:i] = const_value return input, bench_mark
35.5
114
0.711659
0
0
0
0
0
0
0
0
757
0.296166
4686dbf11ea2488f7a45d2ed0c1748432a5a0064
394
py
Python
profiles/migrations/0018_auto_20180514_2106.py
brentfraser/geotabloid
772106b2d39b5405045814b5f013ece5713469b1
[ "MIT" ]
2
2018-12-03T09:19:31.000Z
2020-02-11T15:32:12.000Z
{{cookiecutter.project_slug}}/profiles/migrations/0018_auto_20180514_2106.py
brentfraser/cookiecutter-geopaparazzi-server
f9cd705991879deac67365007e9589142afc09bf
[ "BSD-3-Clause" ]
2
2019-02-20T17:50:55.000Z
2019-02-21T15:19:51.000Z
profiles/migrations/0018_auto_20180514_2106.py
GeoAnalytic-code/geotabloid
af017d470ef4553d5fbd24d865cb22ca643fd999
[ "MIT" ]
2
2018-10-19T17:07:01.000Z
2021-01-13T06:54:55.000Z
# Generated by Django 2.0.3 on 2018-05-14 21:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('profiles', '0017_otherfiles_location'), ] operations = [ migrations.AlterField( model_name='project', name='url', field=models.FileField(upload_to='projects/'), ), ]
20.736842
58
0.598985
301
0.763959
0
0
0
0
0
0
108
0.274112
46873638ac399bb3c28bf800bc92bbfd39940934
15,189
py
Python
orio/main/tuner/tuner.py
parsabee/Orio
64de0f7ee422483b60a9f02793472e20e864aa08
[ "MIT" ]
24
2015-01-26T03:14:19.000Z
2021-09-27T23:10:12.000Z
orio/main/tuner/tuner.py
parsabee/Orio
64de0f7ee422483b60a9f02793472e20e864aa08
[ "MIT" ]
30
2015-04-17T18:14:27.000Z
2021-05-30T15:01:47.000Z
orio/main/tuner/tuner.py
parsabee/Orio
64de0f7ee422483b60a9f02793472e20e864aa08
[ "MIT" ]
20
2015-02-11T08:20:19.000Z
2022-01-15T17:55:00.000Z
# # The tuner class to initiate the empirical performance tuning process # import re, sys, os from orio.main.util.globals import * import orio.main.dyn_loader, orio.main.tspec.tspec, orio.main.tuner.ptest_codegen, orio.main.tuner.ptest_driver #-------------------------------------------------- # the name of the module containing various search algorithms SEARCH_MOD_NAME = 'orio.main.tuner.search' #-------------------------------------------------- class PerfTuner: ''' The empirical performance tuner. This class is responsible for invoking the code generators of the annotation modules, compiling the resulting code, and interfacing with the search interface to run the tests and collect the results. ''' #------------------------------------------------- def __init__(self, odriver): '''To instantiate an empirical performance tuner object''' self.odriver = odriver self.dloader = orio.main.dyn_loader.DynLoader() self.num_params=0 self.num_configs=0 self.num_bin=0 self.num_int=0 self.tinfo = None #------------------------------------------------- def tune(self, module_body_code, line_no, cfrags): ''' Perform empirical performance tuning on the given annotated code. And return the best optimized code variant. ''' # extract the tuning information specified from the given annotation tinfo = self.__extractTuningInfo(module_body_code, line_no) self.tinfo = tinfo # determine if parallel search is required use_parallel_search = tinfo.batch_cmd != None # create a performance-testing code generator for each distinct problem size ptcodegens = [] #timing_code = '' for prob_size in self.__getProblemSizes(tinfo.iparam_params, tinfo.iparam_constraints): if self.odriver.lang == 'c': c = orio.main.tuner.ptest_codegen.PerfTestCodeGen(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search, tinfo.validation_file) elif self.odriver.lang == 'cuda': c = orio.main.tuner.ptest_codegen.PerfTestCodeGenCUDA(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search) elif self.odriver.lang == 'opencl': c = orio.main.tuner.ptest_codegen.PerfTestCodeGenOpenCL(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search) elif self.odriver.lang == 'fortran': c = orio.main.tuner.ptest_codegen.PerfTestCodeGenFortran(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search) else: err('main.tuner.tuner: unknown output language specified: %s' % self.odriver.lang) ptcodegens.append(c) # create the performance-testing driver ptdriver = orio.main.tuner.ptest_driver.PerfTestDriver(self.tinfo, use_parallel_search, self.odriver.lang, c.getTimerCode(use_parallel_search)) # get the axis names and axis value ranges to represent the search space axis_names, axis_val_ranges = self.__buildCoordSystem(tinfo.pparam_params, tinfo.cmdline_params) info('%s' % axis_names) info('%s' % axis_val_ranges) # combine the performance parameter constraints pparam_constraint = 'True' for vname, rhs in tinfo.pparam_constraints: pparam_constraint += ' and (%s)' % rhs # dynamically load the search engine class and configure it if Globals().extern: tinfo.search_algo='Extern' info('Running in %s mode' % tinfo.search_algo) info('Using parameters %s' % Globals().config) class_name = tinfo.search_algo mod_name = '.'.join([SEARCH_MOD_NAME, class_name.lower(), class_name.lower()]) search_class = self.dloader.loadClass(mod_name, class_name) # convert the search time limit (from minutes to seconds) and get the total number of # search runs search_time_limit = 60 * tinfo.search_time_limit search_total_runs = tinfo.search_total_runs search_use_z3 = tinfo.search_use_z3 search_resume = tinfo.search_resume # get the search-algorithm-specific arguments search_opts = dict(tinfo.search_opts) # perform the performance tuning for each distinct problem size optimized_code_seq = [] for ptcodegen in ptcodegens: if Globals().verbose: info('\n----- begin empirical tuning for problem size -----') # Sort y variable name... not sure it's really necessary iparams = sorted(ptcodegen.input_params[:]) for pname, pvalue in iparams: info(' %s = %s' % (pname, pvalue)) iparams = sorted(ptcodegen.input_params[:]) for pname, pvalue in iparams: Globals().metadata['size_' + pname] = pvalue debug(ptcodegen.input_params[:]) # create the search engine search_eng = search_class({'cfrags':cfrags, # code versions 'axis_names':axis_names, # performance parameter names 'axis_val_ranges':axis_val_ranges, # performance parameter values 'pparam_constraint':pparam_constraint, 'search_time_limit':search_time_limit, 'search_total_runs':search_total_runs, 'search_resume':search_resume, 'search_opts':search_opts, 'ptcodegen':ptcodegen, 'ptdriver':ptdriver, 'odriver':self.odriver, 'use_parallel_search':use_parallel_search, 'input_params':ptcodegen.input_params[:]}) # search for the best performance parameters best_perf_params, best_perf_cost = search_eng.search() # output the best performance parameters if Globals().verbose and not Globals().extern: info('----- the obtained best performance parameters -----') pparams = sorted(list(best_perf_params.items())) for pname, pvalue in pparams: info(' %s = %s' % (pname, pvalue)) # generate the optimized code using the obtained best performance parameters if Globals().extern: best_perf_params=Globals().config debug("[orio.main.tuner.tuner] Globals config: %s" % str(Globals().config), obj=self, level=6) cur_optimized_code_seq = self.odriver.optimizeCodeFrags(cfrags, best_perf_params) # check the optimized code sequence if len(cur_optimized_code_seq) != 1: err('orio.main.tuner internal error: the empirically optimized code cannot contain multiple versions') # get the optimized code optimized_code, _, externals = cur_optimized_code_seq[0] # insert comments into the optimized code to include information about # the best performance parameters and the input problem sizes iproblem_code = '' iparams = sorted(ptcodegen.input_params[:]) for pname, pvalue in iparams: if pname == '__builtins__': continue iproblem_code += ' %s = %s \n' % (pname, pvalue) pparam_code = '' pparams = sorted(list(best_perf_params.items())) for pname, pvalue in pparams: if pname == '__builtins__': continue pparam_code += ' %s = %s \n' % (pname, pvalue) info_code = '\n/**-- (Generated by Orio) \n' if not Globals().extern: info_code += 'Best performance cost: \n' info_code += ' %s \n' % best_perf_cost info_code += 'Tuned for specific problem sizes: \n' info_code += iproblem_code info_code += 'Best performance parameters: \n' info_code += pparam_code info_code += '--**/\n' optimized_code = info_code + optimized_code # store the optimized for this problem size optimized_code_seq.append((optimized_code, ptcodegen.input_params[:], externals)) # return the optimized code return optimized_code_seq # Private methods #------------------------------------------------- def __extractTuningInfo(self, code, line_no): '''Extract tuning information from the given annotation code''' # parse the code match_obj = re.match(r'^\s*import\s+spec\s+([/A-Za-z_]+);\s*$', code) # if the code contains a single import statement if match_obj: # get the specification name spec_name = match_obj.group(1) spec_file = spec_name+'.spec' try: src_dir = '/'.join(list(Globals().src_filenames.keys())[0].split('/')[:-1]) spec_file_path = os.getcwd() + '/' + src_dir + '/' + spec_file f = open(spec_file_path, 'r') tspec_code = f.read() f.close() except: err('%s: cannot open file for reading: %s' % (self.__class__, spec_file_path)) tuning_spec_dict = orio.main.tspec.tspec.TSpec().parseProgram(tspec_code) # if the tuning specification is hardcoded into the given code elif code.lstrip().startswith('spec'): tuning_spec_dict = orio.main.tspec.tspec.TSpec().parseProgram(code) else: # parse the specification code to get the tuning information tuning_spec_dict = orio.main.tspec.tspec.TSpec().parseSpec(code, line_no) # return the tuning information return tuning_spec_dict #------------------------------------------------- def __listAllCombinations(self, seqs): ''' Enumerate all combinations of the given sequences. e.g. input: [['a','b'],[1,2]] --> [['a',1],['a',2],['b',1],['b',2]] ''' # the base case if len(seqs) == 0: return [] # the recursive step trailing_combs = self.__listAllCombinations(seqs[1:]) if trailing_combs == []: trailing_combs = [[]] combs = [] for i in seqs[0]: for c in trailing_combs: combs.append([i] + c) # return the combinations return combs #------------------------------------------------- def __getProblemSizes(self, iparam_params, iparam_constraints): '''Return all valid problem sizes''' # combine the input parameter constraints iparam_constraint = 'True' for vname, rhs in iparam_constraints: iparam_constraint += ' and (%s)' % rhs # compute all possible combinations of problem sizes prob_sizes = [] pnames, pvalss = list(zip(*iparam_params)) for pvals in self.__listAllCombinations(pvalss): prob_sizes.append(list(zip(pnames, pvals))) # exclude all invalid problem sizes n_prob_sizes = [] for p in prob_sizes: try: is_valid = eval(iparam_constraint, dict(p)) except Exception as e: err('orio.main.tuner.tuner:%s: failed to evaluate the input parameter constraint expression\n --> %s: %s' % (iparam_constraint,e.__class__.__name__, e)) if is_valid: n_prob_sizes.append(p) prob_sizes = n_prob_sizes # check if the new problem sizes is empty if len(prob_sizes) == 0: err('orio.main.tuner.tuner: no valid problem sizes exist. please check the input parameter ' + 'constraints') # return all possible combinations of problem sizes return prob_sizes #------------------------------------------------- def __buildCoordSystem(self, perf_params, cmdline_params): '''Return information about the coordinate systems that represent the search space''' debug("BUILDING COORD SYSTEM", obj=self,level=3) # get the axis names and axis value ranges axis_names = [] axis_val_ranges = [] for pname, prange in perf_params: axis_names.append(pname) # BN: why on earth would someone do this????? # axis_val_ranges.append(self.__sort(prange)) axis_val_ranges.append(prange) for pname, prange in cmdline_params: axis_names.append('__cmdline_' + pname) axis_val_ranges.append(prange) self.num_params=len(axis_names) self.num_configs=1 self.num_bin=0 self.num_categorical = 0 self.num_int=self.num_params ptype=[] for vals in axis_val_ranges: self.num_configs=self.num_configs*len(vals) ptype.append('I') if type(vals[0]) == bool: self.num_bin=self.num_bin+1 ptype[len(ptype)-1]=('B') if type(vals[0]) == str: self.num_categorical = self.num_categorical+1 self.num_int -= self.num_bin self.num_int -= self.num_categorical info('Search_Space = %1.3e' % self.num_configs) info('Number_of_Parameters = %02d' % self.num_params) info('Numeric_Parameters = %02d' % self.num_int) info('Binary_Parameters = %02d' % self.num_bin) info('Categorical_Parameters = %02d' % self.num_categorical) sys.stderr.write('%s\n'% Globals().configfile) return (axis_names, axis_val_ranges)
43.397143
169
0.55448
14,728
0.969649
0
0
0
0
0
0
4,594
0.302456
46882caba8a1bc1cb57f8753adac56b5f9b622b8
1,862
py
Python
verify_data.py
goowell/DrAdvice
d1f9d70671500599b3a36eb9c83390e39c521d25
[ "MIT" ]
null
null
null
verify_data.py
goowell/DrAdvice
d1f9d70671500599b3a36eb9c83390e39c521d25
[ "MIT" ]
null
null
null
verify_data.py
goowell/DrAdvice
d1f9d70671500599b3a36eb9c83390e39c521d25
[ "MIT" ]
null
null
null
from transformer import * from logger import logger def find_missing(): from db import paients_source, paients_info import re for pi in paients_info.find(): if paients_source.find({'_id': re.compile(pi['住院号'], re.IGNORECASE)}).count()>0: pass else: print(pi['住院号']) def verify_data(collection): 'verify the data format is correct or not.' for d in collection.find(): info = d.get('d').get('info') if len(info) <12 and info[0] != '1': logger.error('invalid patient info:' + d['_id']+str(info)) if len(d.get('d').get('doctor_advice')) == 0: logger.error('invalid doctor advice:' + d['_id']) else: has_long = False has_short = False for a in d.get('d').get('doctor_advice'): if len(a) != 18: logger.error('invalid doctor advice:' + d['_id']) logger.error("invalid doctor advice: " + a) if a[3] == '长': has_long = True else: has_short = True if not (has_long and has_short): logger.error('invalid doctor advice: ' + d['_id'] + ', long/short: {}/{}'.format(has_long, has_short) ) def get_info(collection): 'count PE' for d in collection.find(): if len(d.get('d').get('doctor_advice')) == 0: print('invalid doctor advice:' + d['_id']) else: one_p = split_all_ad(d) print(one_p) break def main(): 'main entry' from datetime import datetime from db import paients_source start = datetime.now() print('hello..') # verify_data(paients_source) # get_info(collection) find_missing() print(datetime.now() - start) if __name__ == '__main__': main()
29.09375
119
0.538131
0
0
0
0
0
0
0
0
424
0.226013
46885ee1267724c58d93c90bd0626ea4f768c7c7
1,904
py
Python
jvm-packages/cudautils.py
NVIDIA/spark-xgboost
983159f52784e3d9dfd8e9957c5f8ca18e64f934
[ "Apache-2.0" ]
15
2020-06-11T02:20:26.000Z
2022-03-09T07:18:23.000Z
jvm-packages/cudautils.py
NVIDIA/spark-xgboost
983159f52784e3d9dfd8e9957c5f8ca18e64f934
[ "Apache-2.0" ]
4
2021-01-20T03:24:23.000Z
2021-11-01T05:33:38.000Z
jvm-packages/cudautils.py
NVIDIA/spark-xgboost
983159f52784e3d9dfd8e9957c5f8ca18e64f934
[ "Apache-2.0" ]
6
2020-06-24T03:28:58.000Z
2021-10-01T16:04:11.000Z
#!/usr/bin/env python import os import re import subprocess import sys # version -> classifier # '' means default classifier cuda_vers = { '11.2': ['cuda11', ''] } def check_classifier(classifier): ''' Check the mapping from cuda version to jar classifier. Used by maven build. ''' cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] if classifier not in classifier_list: raise Exception("Jar classifier '{}' mismatches the 'nvcc' version {} !".format(classifier, cu_ver)) def get_classifier(): cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] return classifier_list[0] def get_supported_vers(): ''' Get the supported cuda versions. ''' return cuda_vers.keys() def get_supported_vers_str(): ''' Get the supported cuda versions and join them as a string. Used by shell script. ''' return ' '.join(cuda_vers.keys()) def detect_cuda_ver(): ''' Detect the cuda version from current nvcc tool. ''' nvcc_ver_bin = subprocess.check_output('nvcc --version', shell=True) nvcc_ver = re.search('release ([.0-9]+), V([.0-9]+)', str(nvcc_ver_bin)).group(1) if nvcc_ver in get_supported_vers(): return nvcc_ver else: raise Exception("Unsupported cuda version: {}, Please check your 'nvcc' version.".format(nvcc_ver)) def cudaver(): return 'cuda{}'.format(detect_cuda_ver()) if __name__ == "__main__": num_args = len(sys.argv) action = sys.argv[1].lower() if num_args > 1 else 'l' if action =='c': classifier = sys.argv[2].lower() if num_args > 2 else '' check_classifier(classifier) elif action == 'd': print(detect_cuda_ver()) elif action == 'g': print(get_classifier()) elif action == 'l': print(get_supported_vers_str()) else: print("Unsupported action: " + action)
25.386667
108
0.644958
0
0
0
0
0
0
0
0
623
0.327206
4688b12d1b22b922d562bb53aed309b70230470c
294
py
Python
hitchhikeproject/hitchhikeapp/migrations/0011_delete_dog.py
AlexW57/HitchHikeProject
54e02a82fb322cb7ea5d4fdc323e2e3c9d1e9b89
[ "MIT" ]
null
null
null
hitchhikeproject/hitchhikeapp/migrations/0011_delete_dog.py
AlexW57/HitchHikeProject
54e02a82fb322cb7ea5d4fdc323e2e3c9d1e9b89
[ "MIT" ]
null
null
null
hitchhikeproject/hitchhikeapp/migrations/0011_delete_dog.py
AlexW57/HitchHikeProject
54e02a82fb322cb7ea5d4fdc323e2e3c9d1e9b89
[ "MIT" ]
null
null
null
# Generated by Django 3.0.2 on 2020-03-29 19:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('hitchhikeapp', '0010_userdata_userid'), ] operations = [ migrations.DeleteModel( name='Dog', ), ]
17.294118
49
0.602041
209
0.710884
0
0
0
0
0
0
88
0.29932
4689c871990ae00114397708dbcc29fc3f6a6ac6
5,087
py
Python
support/models.py
gurupratap-matharu/django-tickets-app
8200af606e382f8806511c318961589f34375cdf
[ "MIT" ]
1
2020-10-16T16:37:04.000Z
2020-10-16T16:37:04.000Z
support/models.py
gurupratap-matharu/django-tickets-app
8200af606e382f8806511c318961589f34375cdf
[ "MIT" ]
null
null
null
support/models.py
gurupratap-matharu/django-tickets-app
8200af606e382f8806511c318961589f34375cdf
[ "MIT" ]
null
null
null
import pytz from datetime import date, time, datetime, timedelta from django.core.exceptions import ValidationError from django.db import models START_HOUR = 9 END_HOUR = 18 workingHours = END_HOUR - START_HOUR class Vendor(models.Model): """ This class defines which vendors are allowed raise tickets with our system. """ vendor = models.CharField(max_length=25) def __str__(self): return self.vendor def no_past(value): today = date.today() if value < today: raise ValidationError('Holiday Date cannot be in the past.') class Holiday(models.Model): """ Define the holiday or non-working days for each based on each region. """ day = models.DateField(help_text="Enter the date of Holiday", validators=[no_past]) description = models.CharField(max_length=200, blank=True) class Meta: ordering = ('day',) def __str__(self): return "{} {}".format(self.day, self.description) class Category(models.Model): """ We define the type of category to which a particular ticket belongs here. """ CATEGORY_CHOICES = ( ('Website Down', 'Website Down'), ('Problem with WiFi', 'Problem with WiFi'), ('Server Down', 'Server Down'), ('Cannot Login', 'Cannot Login'), ('Critical Bug','Critical Bug'), ('Problem with Billing System','Problem with Billing System'), ) category = models.CharField(max_length=50, choices=CATEGORY_CHOICES) class Meta: verbose_name_plural = "categories" def __str__(self): return self.category class Ticket(models.Model): """ Our ticket models objects are created here and stored in the database as a table with the attributes mentioned below. """ SEVERITY_CHOICES = ( (4, 1), # severity 1 to be resolved in 4 hours (24, 2), # severity 2 to be resolved in 24 hours (72, 3), # severity 3 to be resolved in 72 hours / 3 days (168, 4), # severity 4 to be resolved in 168 hours / 7 days (720, 5), # severity 5 to be resolved in 720 hours / 30 days ) STATUS_CHOICES = ( ('Issued', 'Issued'), # ticket raised but not assigned ('In Process', 'In Process'), # ticket assigned ('Resolved', 'Resolved'), # ticket resolved ('Cancelled', 'Cancelled'), ) vendor = models.ForeignKey(Vendor, on_delete=models.CASCADE) category = models.ForeignKey(Category, on_delete=models.CASCADE) severity = models.PositiveIntegerField(choices=SEVERITY_CHOICES) description = models.CharField(max_length=255) status = models.CharField(max_length=20, choices=STATUS_CHOICES, default='Issued') created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) expiry = models.DateTimeField(blank=True, null=True) def save(self, *args, **kwargs): """ Here we over-ride the default `save` method to populate the expiry field based on creation date, holidays and weekends. """ self.expiry = findExpiryDate(self.severity) super().save(*args, **kwargs) # Call the "real" save() method. def __str__(self): return "{} | {} | {} ".format(self.vendor.vendor, self.category.category, self.created_at) def findExpiryDate(sla): """ Finds the expiry date for a ticket based on 1. Severity of the ticket 2. Date of issue """ now = datetime.now() flag = 1 # if ticket is received today between 00:00 hours to Start_Hour # we reset the flag if now.hour < START_HOUR: flag = 0 # if ticket is received today between office hours then # we simply deduct working hours left today from sla if START_HOUR < now.hour < END_HOUR: hoursLeftToday = END_HOUR - sla sla -= hoursLeftToday tomorrow = date.today() + timedelta(days=flag) shiftTime = time(START_HOUR,0,0) dt = datetime.combine(tomorrow, shiftTime, pytz.utc) dt = adjust_Weekends_And_Holidays(dt) # adjust incase we hit a weekend # now we find the office days and office hours # we would need to complete the sla days, hours = divmod(sla, workingHours) dt += timedelta(hours=hours) dt = adjust_Weekends_And_Holidays(dt, days=days) # adjust incase we hit a weekend return dt def isWeekend(dt): """Finds if a date lies on a weekend or not. Returns a boolean""" if 0 < dt.weekday() < 6: return False else: return True def isHoliday(dt): """Finds if a date lies on a holiday or not. Returns a boolean""" return Holiday.objects.filter(day=dt.date()).exists() def adjust_Weekends_And_Holidays(dt, days=0): """ Adjust the datetime to a future datetime accomodating for 1. days needed 2. skipping Weekends """ while isWeekend(dt) or isHoliday(dt): dt += timedelta(days=1) while days: dt += timedelta(days=1) if isWeekend(dt) or isHoliday(dt): continue else: days -= 1 return dt
30.279762
98
0.649892
2,960
0.581875
0
0
0
0
0
0
1,966
0.386475
4689fd0a503a48da1fc4fb1000e346ebf2f7be93
605
py
Python
tests/port_tests/point_tests/test_bounding_box.py
skrat/martinez
86db48324cb50ecb52be8ab2e4278a6d5cdd562b
[ "MIT" ]
7
2020-05-07T08:13:44.000Z
2021-12-17T07:33:51.000Z
tests/port_tests/point_tests/test_bounding_box.py
skrat/martinez
86db48324cb50ecb52be8ab2e4278a6d5cdd562b
[ "MIT" ]
17
2019-11-29T23:17:26.000Z
2020-12-20T15:47:17.000Z
tests/port_tests/point_tests/test_bounding_box.py
skrat/martinez
86db48324cb50ecb52be8ab2e4278a6d5cdd562b
[ "MIT" ]
1
2020-12-17T22:44:21.000Z
2020-12-17T22:44:21.000Z
from hypothesis import given from tests.port_tests.hints import (PortedBoundingBox, PortedPoint) from tests.utils import equivalence from . import strategies @given(strategies.points) def test_basic(point: PortedPoint) -> None: assert isinstance(point.bounding_box, PortedBoundingBox) @given(strategies.points, strategies.points) def test_bijection(first_point: PortedPoint, second_point: PortedPoint) -> None: assert equivalence(first_point == second_point, first_point.bounding_box == second_point.bounding_box)
31.842105
77
0.707438
0
0
0
0
404
0.667769
0
0
0
0
468a1af4f4a7334446b0e0152db92174a4f3295b
424
py
Python
test/conftest.py
alexandonian/lightning
90350fd454cd7a51c35adadf5b9753868ac6dccd
[ "Apache-2.0" ]
null
null
null
test/conftest.py
alexandonian/lightning
90350fd454cd7a51c35adadf5b9753868ac6dccd
[ "Apache-2.0" ]
null
null
null
test/conftest.py
alexandonian/lightning
90350fd454cd7a51c35adadf5b9753868ac6dccd
[ "Apache-2.0" ]
null
null
null
import pytest # import station def pytest_addoption(parser): parser.addoption("--engine", action="store", default="local", help="engine to run tests with") @pytest.fixture(scope='module') def eng(request): engine = request.config.getoption("--engine") if engine == 'local': return None if engine == 'spark': station.start(spark=True) return station.engine()
23.555556
66
0.625
0
0
0
0
237
0.558962
0
0
98
0.231132
468ce700bfaf82c4969d9da9bf954d79c010ee00
7,960
py
Python
pytorch_translate/dual_learning/dual_learning_models.py
dzhulgakov/translate
018d3eed8d93ff32e86c912e68045c7a3f4ed0b7
[ "BSD-3-Clause" ]
1
2020-07-24T10:59:17.000Z
2020-07-24T10:59:17.000Z
pytorch_translate/dual_learning/dual_learning_models.py
dzhulgakov/translate
018d3eed8d93ff32e86c912e68045c7a3f4ed0b7
[ "BSD-3-Clause" ]
null
null
null
pytorch_translate/dual_learning/dual_learning_models.py
dzhulgakov/translate
018d3eed8d93ff32e86c912e68045c7a3f4ed0b7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import logging import torch.nn as nn from fairseq import checkpoint_utils from fairseq.models import BaseFairseqModel, register_model from pytorch_translate import rnn from pytorch_translate.rnn import ( LSTMSequenceEncoder, RNNDecoder, RNNEncoder, RNNModel, base_architecture, ) from pytorch_translate.tasks.pytorch_translate_task import PytorchTranslateTask logger = logging.getLogger(__name__) @register_model("dual_learning") class DualLearningModel(BaseFairseqModel): """ An architecture to jointly train primal model and dual model by leveraging distribution duality, which exist for both parallel data and monolingual data. """ def __init__(self, args, task, primal_model, dual_model, lm_model=None): super().__init__() self.args = args self.task_keys = ["primal", "dual"] self.models = nn.ModuleDict( {"primal": primal_model, "dual": dual_model, "lm": lm_model} ) def forward(self, src_tokens, src_lengths, prev_output_tokens=None): """ If batch is monolingual, need to run beam decoding to generate fake prev_output_tokens. """ # TODO: pass to dual model too primal_encoder_out = self.models["primal"].encoder(src_tokens, src_lengths) primal_decoder_out = self.models["primal"].decoder( prev_output_tokens, primal_encoder_out ) return primal_decoder_out def max_positions(self): return { "primal_source": ( self.models["primal"].encoder.max_positions(), self.models["primal"].decoder.max_positions(), ), "dual_source": ( self.models["dual"].encoder.max_positions(), self.models["dual"].decoder.max_positions(), ), "primal_parallel": ( self.models["primal"].encoder.max_positions(), self.models["primal"].decoder.max_positions(), ), "dual_parallel": ( self.models["dual"].encoder.max_positions(), self.models["dual"].decoder.max_positions(), ), } @register_model("dual_learning_rnn") class RNNDualLearningModel(DualLearningModel): """Train two models for a task and its duality jointly. This class uses RNN arch, but can be extended to take arch as an arument. This class takes translation as a task, but the framework is intended to be general enough to be applied to other tasks as well. """ def __init__(self, args, task, primal_model, dual_model, lm_model=None): super().__init__(args, task, primal_model, dual_model, lm_model) @staticmethod def add_args(parser): rnn.RNNModel.add_args(parser) parser.add_argument( "--unsupervised-dual", default=False, action="store_true", help="Train with dual loss from monolingual data.", ) parser.add_argument( "--supervised-dual", default=False, action="store_true", help="Train with dual loss from parallel data.", ) @classmethod def build_model(cls, args, task): """ Build both the primal and dual models. For simplicity, both models share the same arch, i.e. the same model params would be used to initialize both models. Support for different models/archs would be added in further iterations. """ base_architecture(args) if args.sequence_lstm: encoder_class = LSTMSequenceEncoder else: encoder_class = RNNEncoder decoder_class = RNNDecoder encoder_embed_tokens, decoder_embed_tokens = RNNModel.build_embed_tokens( args, task.primal_src_dict, task.primal_tgt_dict ) primal_encoder = encoder_class( task.primal_src_dict, embed_dim=args.encoder_embed_dim, embed_tokens=encoder_embed_tokens, cell_type=args.cell_type, num_layers=args.encoder_layers, hidden_dim=args.encoder_hidden_dim, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, residual_level=args.residual_level, bidirectional=bool(args.encoder_bidirectional), ) primal_decoder = decoder_class( src_dict=task.primal_src_dict, dst_dict=task.primal_tgt_dict, embed_tokens=decoder_embed_tokens, vocab_reduction_params=args.vocab_reduction_params, encoder_hidden_dim=args.encoder_hidden_dim, embed_dim=args.decoder_embed_dim, out_embed_dim=args.decoder_out_embed_dim, cell_type=args.cell_type, num_layers=args.decoder_layers, hidden_dim=args.decoder_hidden_dim, attention_type=args.attention_type, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, residual_level=args.residual_level, averaging_encoder=args.averaging_encoder, ) primal_task = PytorchTranslateTask( args, task.primal_src_dict, task.primal_tgt_dict ) primal_model = rnn.RNNModel(primal_task, primal_encoder, primal_decoder) if args.pretrained_forward_checkpoint: pretrained_forward_state = checkpoint_utils.load_checkpoint_to_cpu( args.pretrained_forward_checkpoint ) primal_model.load_state_dict(pretrained_forward_state["model"], strict=True) print( f"Loaded pretrained primal model from {args.pretrained_forward_checkpoint}" ) encoder_embed_tokens, decoder_embed_tokens = RNNModel.build_embed_tokens( args, task.dual_src_dict, task.dual_tgt_dict ) dual_encoder = encoder_class( task.dual_src_dict, embed_dim=args.encoder_embed_dim, embed_tokens=encoder_embed_tokens, cell_type=args.cell_type, num_layers=args.encoder_layers, hidden_dim=args.encoder_hidden_dim, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, residual_level=args.residual_level, bidirectional=bool(args.encoder_bidirectional), ) dual_decoder = decoder_class( src_dict=task.dual_src_dict, dst_dict=task.dual_tgt_dict, embed_tokens=decoder_embed_tokens, vocab_reduction_params=args.vocab_reduction_params, encoder_hidden_dim=args.encoder_hidden_dim, embed_dim=args.decoder_embed_dim, out_embed_dim=args.decoder_out_embed_dim, cell_type=args.cell_type, num_layers=args.decoder_layers, hidden_dim=args.decoder_hidden_dim, attention_type=args.attention_type, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, residual_level=args.residual_level, averaging_encoder=args.averaging_encoder, ) dual_task = PytorchTranslateTask(args, task.dual_src_dict, task.dual_tgt_dict) dual_model = rnn.RNNModel(dual_task, dual_encoder, dual_decoder) if args.pretrained_backward_checkpoint: pretrained_backward_state = checkpoint_utils.load_checkpoint_to_cpu( args.pretrained_backward_checkpoint ) dual_model.load_state_dict(pretrained_backward_state["model"], strict=True) print( f"Loaded pretrained dual model from {args.pretrained_backward_checkpoint}" ) # TODO (T36875783): instantiate a langauge model lm_model = None return RNNDualLearningModel(args, task, primal_model, dual_model, lm_model)
38.829268
91
0.650377
7,440
0.934673
0
0
7,510
0.943467
0
0
1,454
0.182663
468d721e5802a550fe36c1b0efccab7310faf51c
697
py
Python
thgsp/sampling/__init__.py
qiuyy20/thgsp
2cd09ba09716cc716a3d4e125d2d0b20f5cc942d
[ "BSD-3-Clause" ]
null
null
null
thgsp/sampling/__init__.py
qiuyy20/thgsp
2cd09ba09716cc716a3d4e125d2d0b20f5cc942d
[ "BSD-3-Clause" ]
null
null
null
thgsp/sampling/__init__.py
qiuyy20/thgsp
2cd09ba09716cc716a3d4e125d2d0b20f5cc942d
[ "BSD-3-Clause" ]
null
null
null
from ._utils import construct_dia, construct_hth, construct_sampling_matrix from .bsgda import bsgda, computing_sets, recon_bsgda, solving_set_covering from .ess import ess, ess_sampling, recon_ess from .fastgsss import fastgsss, recon_fastssss from .rsbs import cheby_coeff4ideal_band_pass, estimate_lk, recon_rsbs, rsbs __all__ = [ "ess", "ess_sampling", "bsgda", "computing_sets", "solving_set_covering", "cheby_coeff4ideal_band_pass", "estimate_lk", "rsbs", "fastgsss", # reconstruction "recon_fastssss", "recon_bsgda", "recon_ess", "recon_rsbs", # utils "construct_sampling_matrix", "construct_hth", "construct_dia", ]
25.814815
76
0.71736
0
0
0
0
0
0
0
0
254
0.364419
468df8250e372c77ba85fdae3eaf93df4bca1fda
3,382
py
Python
h2o-py/tests/testdir_generic_model/pyunit_generic_model_mojo_glm.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
1
2022-03-15T06:08:14.000Z
2022-03-15T06:08:14.000Z
h2o-py/tests/testdir_generic_model/pyunit_generic_model_mojo_glm.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
58
2021-10-01T12:43:37.000Z
2021-12-08T22:58:43.000Z
h2o-py/tests/testdir_generic_model/pyunit_generic_model_mojo_glm.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
null
null
null
import tempfile import os import sys sys.path.insert(1,"../../") import h2o from h2o.estimators import H2OGeneralizedLinearEstimator, H2OGenericEstimator from tests import pyunit_utils from tests.testdir_generic_model import compare_output, Capturing, compare_params def test(x, y, output_test, strip_part, algo_name, generic_algo_name, family): # GLM airlines = h2o.import_file(path=pyunit_utils.locate("smalldata/testng/airlines_train.csv")) glm = H2OGeneralizedLinearEstimator(nfolds = 2, family = family, max_iterations=2) # alpha = 1, lambda_ = 1, bad values, use default glm.train(x = x, y = y, training_frame=airlines, validation_frame=airlines, ) print(glm) with Capturing() as original_output: glm.show() original_model_filename = tempfile.mkdtemp() original_model_filename = glm.download_mojo(original_model_filename) generic_mojo_model_from_file = H2OGenericEstimator.from_file(original_model_filename) assert generic_mojo_model_from_file is not None print(generic_mojo_model_from_file) compare_params(glm, generic_mojo_model_from_file) with Capturing() as generic_output: generic_mojo_model_from_file.show() output_test(str(original_output), str(generic_output), strip_part, algo_name, generic_algo_name) predictions = generic_mojo_model_from_file.predict(airlines) assert predictions is not None assert predictions.nrows == 24421 assert generic_mojo_model_from_file._model_json["output"]["model_summary"] is not None assert len(generic_mojo_model_from_file._model_json["output"]["model_summary"]._cell_values) > 0 assert generic_mojo_model_from_file._model_json["output"]["variable_importances"] is not None assert len(generic_mojo_model_from_file._model_json["output"]["variable_importances"]._cell_values) > 0 generic_mojo_filename = tempfile.mkdtemp("zip", "genericMojo"); generic_mojo_filename = generic_mojo_model_from_file.download_mojo(path=generic_mojo_filename) assert os.path.getsize(generic_mojo_filename) == os.path.getsize(original_model_filename) def mojo_model_test_binomial(): test(["Origin", "Dest"], "IsDepDelayed", compare_output, 'GLM Model: summary', 'ModelMetricsBinomialGLM: glm', 'ModelMetricsBinomialGLMGeneric: generic', 'binomial') def mojo_model_test_regression(): test(["Origin", "Dest"], "Distance", compare_output, 'GLM Model: summary', 'ModelMetricsRegressionGLM: glm', 'ModelMetricsRegressionGLMGeneric: generic', 'gaussian') def mojo_model_test_multinomial(): test(["Origin", "Distance"], "Dest", compare_output, 'GLM Model: summary', 'ModelMetricsMultinomialGLM: glm', 'ModelMetricsMultinomialGLMGeneric: generic', 'multinomial') def mojo_model_test_ordinal(): test(["Origin", "Distance", "IsDepDelayed"], "fDayOfWeek", compare_output, 'GLM Model: summary', 'ModelMetricsOrdinalGLM: glm', 'ModelMetricsOrdinalGLMGeneric: generic', 'ordinal') if __name__ == "__main__": pyunit_utils.standalone_test(mojo_model_test_binomial) pyunit_utils.standalone_test(mojo_model_test_multinomial) pyunit_utils.standalone_test(mojo_model_test_regression) pyunit_utils.standalone_test(mojo_model_test_ordinal) else: mojo_model_test_binomial() mojo_model_test_multinomial() mojo_model_test_regression() mojo_model_test_ordinal()
46.328767
136
0.77262
0
0
0
0
0
0
0
0
767
0.226789
468f2faee1688669d20b891ff6fb1ee641d68824
9,160
py
Python
test/HPE3ParClient_base.py
jyotsnalothe/python-3parclient
aa6ece402c2e3e83cae102f04ffc83f9e2421bf3
[ "Apache-2.0" ]
35
2015-12-03T16:46:11.000Z
2022-01-19T10:50:35.000Z
test/HPE3ParClient_base.py
jyotsnalothe/python-3parclient
aa6ece402c2e3e83cae102f04ffc83f9e2421bf3
[ "Apache-2.0" ]
57
2015-12-01T00:34:39.000Z
2022-03-25T12:00:50.000Z
test/HPE3ParClient_base.py
jyotsnalothe/python-3parclient
aa6ece402c2e3e83cae102f04ffc83f9e2421bf3
[ "Apache-2.0" ]
64
2016-04-24T00:22:43.000Z
2021-08-06T09:29:38.000Z
# (c) Copyright 2015 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test base class of 3PAR Client.""" import os import sys import unittest import subprocess import time import inspect from pytest_testconfig import config import datetime from functools import wraps from hpe3parclient import client, file_client TIME = datetime.datetime.now().strftime('%H%M%S') try: # For Python 3.0 and later from urllib.parse import urlparse except ImportError: # Fall back to Python 2's urllib2 from urlparse import urlparse class HPE3ParClientBaseTestCase(unittest.TestCase): user = config['TEST']['user'] password = config['TEST']['pass'] flask_url = config['TEST']['flask_url'] url_3par = config['TEST']['3par_url'] debug = config['TEST']['debug'].lower() == 'true' unitTest = config['TEST']['unit'].lower() == 'true' port = None remote_copy = config['TEST']['run_remote_copy'].lower() == 'true' run_remote_copy = remote_copy and not unitTest if run_remote_copy: secondary_user = config['TEST_REMOTE_COPY']['user'] secondary_password = config['TEST_REMOTE_COPY']['pass'] secondary_url_3par = config['TEST_REMOTE_COPY']['3par_url'] secondary_target_name = config['TEST_REMOTE_COPY']['target_name'] ssh_port = None if 'ssh_port' in config['TEST']: ssh_port = int(config['TEST']['ssh_port']) elif unitTest: ssh_port = 2200 else: ssh_port = 22 # Don't setup SSH unless needed. It slows things down. withSSH = False if 'domain' in config['TEST']: DOMAIN = config['TEST']['domain'] else: DOMAIN = 'UNIT_TEST_DOMAIN' if 'cpg_ldlayout_ha' in config['TEST']: CPG_LDLAYOUT_HA = int(config['TEST']['cpg_ldlayout_ha']) if 'disk_type' in config['TEST']: DISK_TYPE = int(config['TEST']['disk_type']) CPG_OPTIONS = {'domain': DOMAIN, 'LDLayout': {'HA': CPG_LDLAYOUT_HA, 'diskPatterns': [{'diskType': DISK_TYPE}]}} else: CPG_OPTIONS = {'domain': DOMAIN, 'LDLayout': {'HA': CPG_LDLAYOUT_HA}} else: CPG_LDLAYOUT_HA = None CPG_OPTIONS = {'domain': DOMAIN} if 'known_hosts_file' in config['TEST']: known_hosts_file = config['TEST']['known_hosts_file'] else: known_hosts_file = None if 'missing_key_policy' in config['TEST']: missing_key_policy = config['TEST']['missing_key_policy'] else: missing_key_policy = None def setUp(self, withSSH=False, withFilePersona=False): self.withSSH = withSSH self.withFilePersona = withFilePersona cwd = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) if self.unitTest: self.printHeader('Using flask ' + self.flask_url) parsed_url = urlparse(self.flask_url) userArg = '-user=%s' % self.user passwordArg = '-password=%s' % self.password portArg = '-port=%s' % parsed_url.port script = 'HPE3ParMockServer_flask.py' path = "%s/%s" % (cwd, script) try: self.mockServer = subprocess.Popen([sys.executable, path, userArg, passwordArg, portArg], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE ) except Exception: pass time.sleep(1) if self.withFilePersona: self.cl = file_client.HPE3ParFilePersonaClient(self.flask_url) else: self.cl = client.HPE3ParClient(self.flask_url) if self.withSSH: self.printHeader('Using paramiko SSH server on port %s' % self.ssh_port) ssh_script = 'HPE3ParMockServer_ssh.py' ssh_path = "%s/%s" % (cwd, ssh_script) self.mockSshServer = subprocess.Popen([sys.executable, ssh_path, str(self.ssh_port)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) time.sleep(1) else: if withFilePersona: self.printHeader('Using 3PAR %s with File Persona' % self.url_3par) self.cl = file_client.HPE3ParFilePersonaClient(self.url_3par) else: self.printHeader('Using 3PAR ' + self.url_3par) self.cl = client.HPE3ParClient(self.url_3par) if self.withSSH: # This seems to slow down the test cases, so only use this when # requested if self.unitTest: # The mock SSH server can be accessed at 0.0.0.0. ip = '0.0.0.0' else: parsed_3par_url = urlparse(self.url_3par) ip = parsed_3par_url.hostname.split(':').pop() try: # Now that we don't do keep-alive, the conn_timeout needs to # be set high enough to avoid sometimes slow response in # the File Persona tests. self.cl.setSSHOptions( ip, self.user, self.password, port=self.ssh_port, conn_timeout=500, known_hosts_file=self.known_hosts_file, missing_key_policy=self.missing_key_policy) except Exception as ex: print(ex) self.fail("failed to start ssh client") # Setup remote copy target if self.run_remote_copy: parsed_3par_url = urlparse(self.secondary_url_3par) ip = parsed_3par_url.hostname.split(':').pop() self.secondary_cl = client.HPE3ParClient(self.secondary_url_3par) try: self.secondary_cl.setSSHOptions( ip, self.secondary_user, self.secondary_password, port=self.ssh_port, conn_timeout=500, known_hosts_file=self.known_hosts_file, missing_key_policy=self.missing_key_policy) except Exception as ex: print(ex) self.fail("failed to start ssh client") self.secondary_cl.login(self.secondary_user, self.secondary_password) if self.debug: self.cl.debug_rest(True) self.cl.login(self.user, self.password) if not self.port: ports = self.cl.getPorts() ports = [p for p in ports['members'] if p['linkState'] == 4 and # Ready ('device' not in p or not p['device']) and p['mode'] == self.cl.PORT_MODE_TARGET] self.port = ports[0]['portPos'] def tearDown(self): self.cl.logout() if self.run_remote_copy: self.secondary_cl.logout() if self.unitTest: self.mockServer.kill() if self.withSSH: self.mockSshServer.kill() def print_header_and_footer(func): """Decorator to print header and footer for unit tests.""" @wraps(func) def wrapper(*args, **kwargs): test = args[0] test.printHeader(unittest.TestCase.id(test)) result = func(*args, **kwargs) test.printFooter(unittest.TestCase.id(test)) return result return wrapper def printHeader(self, name): print("\n##Start testing '%s'" % name) def printFooter(self, name): print("##Completed testing '%s\n" % name) def findInDict(self, dic, key, value): for i in dic: if key in i and i[key] == value: return True
37.235772
78
0.533188
8,085
0.882642
0
0
260
0.028384
0
0
2,043
0.223035
468fc07953c8147b25a2f944027c5638901e823c
4,452
py
Python
test/drivers/second_quantization/hdf5d/test_driver_hdf5.py
jschuhmac/qiskit-nature
b8b1181d951cf8fa76fe0db9e5ea192dad5fb186
[ "Apache-2.0" ]
null
null
null
test/drivers/second_quantization/hdf5d/test_driver_hdf5.py
jschuhmac/qiskit-nature
b8b1181d951cf8fa76fe0db9e5ea192dad5fb186
[ "Apache-2.0" ]
null
null
null
test/drivers/second_quantization/hdf5d/test_driver_hdf5.py
jschuhmac/qiskit-nature
b8b1181d951cf8fa76fe0db9e5ea192dad5fb186
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Driver HDF5 """ import os import pathlib import shutil import tempfile import unittest import warnings from test import QiskitNatureTestCase from test.drivers.second_quantization.test_driver import TestDriver from qiskit_nature.drivers.second_quantization import HDF5Driver from qiskit_nature.drivers import QMolecule from qiskit_nature.properties.second_quantization.electronic import ElectronicStructureDriverResult class TestDriverHDF5(QiskitNatureTestCase, TestDriver): """HDF5 Driver tests.""" def setUp(self): super().setUp() driver = HDF5Driver( hdf5_input=self.get_resource_path( "test_driver_hdf5.hdf5", "drivers/second_quantization/hdf5d" ) ) self.driver_result = driver.run() def test_convert(self): """Test the legacy-conversion method.""" legacy_file_path = self.get_resource_path( "test_driver_hdf5_legacy.hdf5", "drivers/second_quantization/hdf5d" ) with self.subTest("replace=True"): # pylint: disable=consider-using-with tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".hdf5") tmp_file.close() os.unlink(tmp_file.name) shutil.copy(legacy_file_path, tmp_file.name) try: driver = HDF5Driver(tmp_file.name) # replacing file won't trigger deprecation on run driver.convert(replace=True) driver.run() finally: os.unlink(tmp_file.name) msg_mol_ref = ( "The HDF5Driver.run with legacy HDF5 file method is deprecated as of version 0.4.0 " "and will be removed no sooner than 3 months after the release " ". Your HDF5 file contains the legacy QMolecule object! You should " "consider converting it to the new property framework. See also HDF5Driver.convert." ) with self.subTest("replace=False"): # pylint: disable=consider-using-with tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".hdf5") tmp_file.close() new_file_name = pathlib.Path(tmp_file.name).with_name( str(pathlib.Path(tmp_file.name).stem) + "_new.hdf5" ) os.unlink(tmp_file.name) shutil.copy(legacy_file_path, tmp_file.name) try: driver = HDF5Driver(tmp_file.name) # not replacing file will trigger deprecation on run driver.convert(replace=False) with warnings.catch_warnings(record=True) as c_m: warnings.simplefilter("always") driver.run() self.assertEqual(str(c_m[0].message), msg_mol_ref) # using new file won't trigger deprecation HDF5Driver(new_file_name).run() finally: os.unlink(tmp_file.name) os.unlink(new_file_name) class TestDriverHDF5Legacy(QiskitNatureTestCase, TestDriver): """HDF5 Driver legacy file-support tests.""" def setUp(self): super().setUp() hdf5_file = self.get_resource_path( "test_driver_hdf5_legacy.hdf5", "drivers/second_quantization/hdf5d" ) # Using QMolecule directly here to avoid the deprecation on HDF5Driver.run method # to be triggered and let it be handled on the method test_convert # Those deprecation messages are shown only once and this one could prevent # the test_convert one to show if called first. molecule = QMolecule(hdf5_file) molecule.load() warnings.filterwarnings("ignore", category=DeprecationWarning) self.driver_result = ElectronicStructureDriverResult.from_legacy_driver_result(molecule) warnings.filterwarnings("default", category=DeprecationWarning) if __name__ == "__main__": unittest.main()
39.75
99
0.655885
3,484
0.78257
0
0
0
0
0
0
1,667
0.374438
469076a38899f95c1e7c8c2bdfb61492327f8f5d
11,269
py
Python
01_test_pytorch.py
yokaji/dcase2021_task2_baseline_ae
47b621e6abd0502fed2123c31c61b081bce5c223
[ "MIT" ]
null
null
null
01_test_pytorch.py
yokaji/dcase2021_task2_baseline_ae
47b621e6abd0502fed2123c31c61b081bce5c223
[ "MIT" ]
null
null
null
01_test_pytorch.py
yokaji/dcase2021_task2_baseline_ae
47b621e6abd0502fed2123c31c61b081bce5c223
[ "MIT" ]
null
null
null
######################################################################## # import default libraries ######################################################################## import os import csv import sys import gc ######################################################################## ######################################################################## # import additional libraries ######################################################################## import numpy as np import scipy.stats import torch import torch.nn as nn # from import from tqdm import tqdm from sklearn import metrics try: from sklearn.externals import joblib except: import joblib # original lib import common as com from pytorch_model import AutoEncoder ######################################################################## ######################################################################## # load parameter.yaml ######################################################################## param = com.yaml_load() ####################################################################### ######################################################################## # output csv file ######################################################################## def save_csv(save_file_path, save_data): with open(save_file_path, "w", newline="") as f: writer = csv.writer(f, lineterminator='\n') writer.writerows(save_data) ######################################################################## ######################################################################## # main 01_test.py ######################################################################## if __name__ == "__main__": #################################################################### # set device #################################################################### device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device : {}".format(device)) #################################################################### # check mode # "development": mode == True # "evaluation": mode == False mode = com.command_line_chk() if mode is None: sys.exit(-1) # make output result directory os.makedirs(param["result_directory"], exist_ok=True) # load base directory dirs = com.select_dirs(param=param, mode=mode) # initialize lines in csv for AUC and pAUC csv_lines = [] if mode: performance_over_all = [] # loop of the base directory for idx, target_dir in enumerate(dirs): print("\n===========================") print("[{idx}/{total}] {target_dir}".format(target_dir=target_dir, idx=idx+1, total=len(dirs))) machine_type = os.path.split(target_dir)[1] print("============== MODEL LOAD ==============") # load model file model_file = "{model}/model_{machine_type}.hdf5".format(model=param["model_directory"], machine_type=machine_type) if not os.path.exists(model_file): com.logger.error("{} model not found ".format(machine_type)) sys.exit(-1) input_channel = param["feature"]["n_mels"] * param["feature"]["n_frames"] model = AutoEncoder(input_channel).to(device) model.eval() if device.type == "cuda": model.load_state_dict(torch.load(model_file)) elif device.type == "cpu": model.load_state_dict(torch.load(model_file, map_location=torch.device("cpu"))) # load anomaly score distribution for determining threshold score_distr_file_path = "{model}/score_distr_{machine_type}.pkl".format(model=param["model_directory"], machine_type=machine_type) shape_hat, loc_hat, scale_hat = joblib.load(score_distr_file_path) # determine threshold for decision decision_threshold = scipy.stats.gamma.ppf(q=param["decision_threshold"], a=shape_hat, loc=loc_hat, scale=scale_hat) if mode: # results for each machine type csv_lines.append([machine_type]) csv_lines.append(["section", "domain", "AUC", "pAUC", "precision", "recall", "F1 score"]) performance = [] dir_names = ["source_test", "target_test"] for dir_name in dir_names: #list machine id section_names = com.get_section_names(target_dir, dir_name=dir_name) for section_name in section_names: # load test file files, y_true = com.file_list_generator(target_dir=target_dir, section_name=section_name, dir_name=dir_name, mode=mode) # setup anomaly score file path anomaly_score_csv = "{result}/anomaly_score_{machine_type}_{section_name}_{dir_name}.csv".format(result=param["result_directory"], machine_type=machine_type, section_name=section_name, dir_name=dir_name) anomaly_score_list = [] # setup decision result file path decision_result_csv = "{result}/decision_result_{machine_type}_{section_name}_{dir_name}.csv".format(result=param["result_directory"], machine_type=machine_type, section_name=section_name, dir_name=dir_name) decision_result_list = [] print("\n============== BEGIN TEST FOR A SECTION ==============") y_pred = [0. for k in files] for file_idx, file_path in tqdm(enumerate(files), total=len(files)): try: data = com.file_to_vectors(file_path, n_mels=param["feature"]["n_mels"], n_frames=param["feature"]["n_frames"], n_fft=param["feature"]["n_fft"], hop_length=param["feature"]["hop_length"], power=param["feature"]["power"]) except: com.logger.error("File broken!!: {}".format(file_path)) data = torch.tensor(data, dtype=torch.float32).to(device) reconst = model(data) mseloss = nn.functional.mse_loss(data.detach(), reconst.detach()) y_pred[file_idx] = mseloss.item() # store anomaly scores anomaly_score_list.append([os.path.basename(file_path), y_pred[file_idx]]) # store decision results if y_pred[file_idx] > decision_threshold: decision_result_list.append([os.path.basename(file_path), 1]) else: decision_result_list.append([os.path.basename(file_path), 0]) # output anomaly scores save_csv(save_file_path=anomaly_score_csv, save_data=anomaly_score_list) com.logger.info("anomaly score result -> {}".format(anomaly_score_csv)) # output decision results save_csv(save_file_path=decision_result_csv, save_data=decision_result_list) com.logger.info("decision result -> {}".format(decision_result_csv)) if mode: # append AUC and pAUC to lists auc = metrics.roc_auc_score(y_true, y_pred) p_auc = metrics.roc_auc_score(y_true, y_pred, max_fpr=param["max_fpr"]) tn, fp, fn, tp = metrics.confusion_matrix(y_true, [1 if x > decision_threshold else 0 for x in y_pred]).ravel() prec = tp / np.maximum(tp + fp, sys.float_info.epsilon) recall = tp / np.maximum(tp + fn, sys.float_info.epsilon) f1 = 2.0 * prec * recall / np.maximum(prec + recall, sys.float_info.epsilon) csv_lines.append([section_name.split("_", 1)[1], dir_name.split("_", 1)[0], auc, p_auc, prec, recall, f1]) performance.append([auc, p_auc, prec, recall, f1]) performance_over_all.append([auc, p_auc, prec, recall, f1]) com.logger.info("AUC : {}".format(auc)) com.logger.info("pAUC : {}".format(p_auc)) com.logger.info("precision : {}".format(prec)) com.logger.info("recall : {}".format(recall)) com.logger.info("F1 score : {}".format(f1)) print("\n============ END OF TEST FOR A SECTION ============") if mode: # calculate averages for AUCs and pAUCs amean_performance = np.mean(np.array(performance, dtype=float), axis=0) csv_lines.append(["arithmetic mean", ""] + list(amean_performance)) hmean_performance = scipy.stats.hmean(np.maximum(np.array(performance, dtype=float), sys.float_info.epsilon), axis=0) csv_lines.append(["harmonic mean", ""] + list(hmean_performance)) csv_lines.append([]) del data del model if mode: csv_lines.append(["", "", "AUC", "pAUC", "precision", "recall", "F1 score"]) # calculate averages for AUCs and pAUCs amean_performance = np.mean(np.array(performance_over_all, dtype=float), axis=0) csv_lines.append(["arithmetic mean over all machine types, sections, and domains", ""] + list(amean_performance)) hmean_performance = scipy.stats.hmean(np.maximum(np.array(performance_over_all, dtype=float), sys.float_info.epsilon), axis=0) csv_lines.append(["harmonic mean over all machine types, sections, and domains", ""] + list(hmean_performance)) csv_lines.append([]) # output results result_path = "{result}/{file_name}".format(result=param["result_directory"], file_name=param["result_file"]) com.logger.info("results -> {}".format(result_path)) save_csv(save_file_path=result_path, save_data=csv_lines)
50.308036
151
0.460112
0
0
0
0
0
0
0
0
3,309
0.293637
4690da1c3b97e01a8795122d75752b424704a346
1,706
py
Python
Replace Downloads/replace_downloads.py
crake7/Defensor-Fortis-
086b055a10b9ac55f444e8d13b4031f998415438
[ "MIT" ]
null
null
null
Replace Downloads/replace_downloads.py
crake7/Defensor-Fortis-
086b055a10b9ac55f444e8d13b4031f998415438
[ "MIT" ]
null
null
null
Replace Downloads/replace_downloads.py
crake7/Defensor-Fortis-
086b055a10b9ac55f444e8d13b4031f998415438
[ "MIT" ]
1
2021-12-20T11:44:51.000Z
2021-12-20T11:44:51.000Z
#!/usr/bin/env python import netfilterqueue import scapy.all as scapy ack_list = [] def set_load(packet, load): packet[scapy.Raw].load = load del packet[scapy.IP].len del packet[scapy.IP].chksum del packet[scapy.TCP].chksum return packet def process_packet(packet): """Modify downloads files on the fly while target uses HTTP/HTTPS. Do not forget to choose the port you will be using in line 22/29. Do not forget to modify line 24 and 35 and uncomment them afterwards.""" scapy_packet = scapy.IP (packet.get_payload()) if scapy_packet.haslayer(scapy.Raw): if scapy_packet[scapy.TCP].dport == #CHOOSE PORT HERE: 80 / 10000: # print("HTTP Request") if ".exe" in scapy_packet[scapy.Raw].load and #Input IP of your web server here: "10.0.2.15" not in scapy_packet[scapy.Raw].load: print("Captured .exe file in the Request packet.") ack_list.append(scapy_packet[scapy.TCP].ack) # print(scapy_packet.show()) elif scapy_packet[scapy.TCP].sport ==#CHOOSE PORT HERE: 80 / 10000: # print("HTTP Response") if scapy_packet[scapy.TCP].seq in ack_list: ack_list.remove(scapy_packet[scapy.TCP].seq) print("Replacing the file.") # print(scapy_packet.show()) modified_packet = set_load(scapy_packet, #Input the full path of your executable here: "HTTP/1.1 301 Moved Permanently\nLocation: http://10.0.2.15/Evil%20Files/lazagne.exe\n\n") packet.set_payload(str(modified_packet)) packet.accept() queue = netfilterqueue.NetfilterQueue() queue.bind(0, process_packet) queue.run()
37.086957
193
0.654162
0
0
0
0
0
0
0
0
686
0.40211
46917396382ee9f0addf54bb780182338681e694
1,757
py
Python
tmpmodels.py
firaan1/iamgrateful
445260313ab94dfdaf310a6766e848c8df94b624
[ "MIT" ]
null
null
null
tmpmodels.py
firaan1/iamgrateful
445260313ab94dfdaf310a6766e848c8df94b624
[ "MIT" ]
null
null
null
tmpmodels.py
firaan1/iamgrateful
445260313ab94dfdaf310a6766e848c8df94b624
[ "MIT" ]
null
null
null
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, func, Boolean from sqlalchemy.orm import relation, sessionmaker, relationship, backref from datetime import datetime import os # Database DATABASE = 'sqlite:///db.sqlite3' DEBUG = True # ORM Base = declarative_base() # model class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True, autoincrement=True) passcode = Column(Integer, nullable=False) question = Column(String) answer = Column(String) def __init__(self, passcode): self.passcode = passcode def __repr__(self): return '<User %s>' % {self.id} class Memory(Base): __tablename__ = 'memory' id = Column(Integer, primary_key=True, autoincrement=True) happiness = Column(Integer) date = Column(DateTime, default = datetime.now()) things = relationship('Thing', secondary = 'memory_thing_link') def __repr__(self): return '<Memory %s>' % {self.date} class Thing(Base): __tablename__ = 'thing' id = Column(Integer, primary_key=True, autoincrement=True) text = Column(Text) def __repr__(self): return '<Item %s>' % {self.text} class MemoryThingLink(Base): __tablename__ = 'memory_thing_link' memory_id = Column(Integer, ForeignKey('memory.id'), primary_key=True) thing_id = Column(Integer, ForeignKey('thing.id'), primary_key=True) # if __name__ == '__main__': # connection engine = create_engine(DATABASE, echo = DEBUG) session_factory = sessionmaker(bind = engine) session = session_factory() # initialize database if not os.path.exists('db.sqlite3'): Base.metadata.create_all(engine)
30.824561
89
0.712009
1,088
0.619237
0
0
0
0
0
0
239
0.136027
4691f105e7b4e6d56ef7ec3a85a8060f44a867c1
579
py
Python
doc/filters.py
CargobaseDev/openpyxl
782ba90d26be452379fc06f45227e12bca9bade4
[ "MIT" ]
6
2018-05-15T05:08:52.000Z
2021-12-23T12:31:28.000Z
doc/filters.py
CargobaseDev/openpyxl
782ba90d26be452379fc06f45227e12bca9bade4
[ "MIT" ]
1
2022-01-01T15:08:26.000Z
2022-01-01T15:08:36.000Z
doc/filters.py
CargobaseDev/openpyxl
782ba90d26be452379fc06f45227e12bca9bade4
[ "MIT" ]
6
2020-03-23T15:59:14.000Z
2021-09-18T09:54:57.000Z
from openpyxl import Workbook wb = Workbook() ws = wb.active data = [ ["Fruit", "Quantity"], ["Kiwi", 3], ["Grape", 15], ["Apple", 3], ["Peach", 3], ["Pomegranate", 3], ["Pear", 3], ["Tangerine", 3], ["Blueberry", 3], ["Mango", 3], ["Watermelon", 3], ["Blackberry", 3], ["Orange", 3], ["Raspberry", 3], ["Banana", 3] ] for r in data: ws.append(r) ws.auto_filter.ref = "A1:B15" ws.auto_filter.add_filter_column(0, ["Kiwi", "Apple", "Mango"]) ws.auto_filter.add_sort_condition("B2:B15") wb.save("filtered.xlsx")
18.09375
63
0.544041
0
0
0
0
0
0
0
0
194
0.33506
4692314ed6b0b1046dcbfa825a3d464141899b16
1,150
py
Python
Bleak/two_devices.py
mbdev2/MIS_FindMyProfessor
fa6a8e9b787013b2eadbc021b0d74210de689872
[ "MIT" ]
null
null
null
Bleak/two_devices.py
mbdev2/MIS_FindMyProfessor
fa6a8e9b787013b2eadbc021b0d74210de689872
[ "MIT" ]
null
null
null
Bleak/two_devices.py
mbdev2/MIS_FindMyProfessor
fa6a8e9b787013b2eadbc021b0d74210de689872
[ "MIT" ]
null
null
null
from bleak import BleakClient import asyncio import functools notify_uuid = "00002a19-0000-1000-8000-00805f9b34fb".format(0x2A19) def callback(sender, data, mac_address): #data = bytearray(data) dataint = int.from_bytes(data, byteorder='little', signed=True) print(mac_address, dataint) def run(addresses): loop = asyncio.get_event_loop() tasks = asyncio.gather(*(connect_to_device(address) for address in addresses)) loop.run_until_complete(tasks) async def connect_to_device(address): print("starting", address, "loop") async with BleakClient(address, timeout=10.0) as client: print("connect to", address) try: #model_number = await client.read_gatt_char(address) await client.start_notify(notify_uuid, functools.partial(callback, mac_address=address)) await asyncio.sleep(1000.0) await client.stop_notify(notify_uuid) except Exception as e: print(e) print("disconnect from", address) if __name__ == "__main__": run( ["96E8409A-F2EB-4029-B3DC-615FADE0C838","D31CB0CA-890E-476B-80D9-80ED8A3AA69A"] )
27.380952
100
0.691304
0
0
0
0
0
0
536
0.466087
252
0.21913
4692c2ff5367cf7fc52d9c66cbd5187236f80e7d
655
py
Python
binary search tree insertion.py
buhuhaha/python
4ff72ac711f0948ae5bcb0886d68e8df77fe515b
[ "MIT" ]
null
null
null
binary search tree insertion.py
buhuhaha/python
4ff72ac711f0948ae5bcb0886d68e8df77fe515b
[ "MIT" ]
null
null
null
binary search tree insertion.py
buhuhaha/python
4ff72ac711f0948ae5bcb0886d68e8df77fe515b
[ "MIT" ]
null
null
null
class Node: left = right = None def __init__(self, data): self.data = data def inorder(root): if root is None: return inorder(root.left) print(root.data, end=' ') inorder(root.right) def insert(root, key): if root is None: return Node(key) if key < root.data: root.left = insert(root.left, key) else: root.right = insert(root.right, key) return root def constructBST(keys): root = None for key in keys: root = insert(root, key) return root if __name__ == '__main__': keys = [15, 10, 20, 8, 12, 16, 25] root = constructBST(keys) inorder(root)
22.586207
44
0.58626
90
0.137405
0
0
0
0
0
0
13
0.019847
469393ea6c4b1c5c7b78ca579da1a18fef848cb3
625
py
Python
tests/test_env_helpers.py
Azraeht/py-ndebug
b7d13b39adc6c0ece6b0d527752869fd94eb9f8a
[ "MIT" ]
null
null
null
tests/test_env_helpers.py
Azraeht/py-ndebug
b7d13b39adc6c0ece6b0d527752869fd94eb9f8a
[ "MIT" ]
1
2020-03-24T17:29:40.000Z
2020-03-24T17:29:40.000Z
tests/test_env_helpers.py
Azraeht/py-ndebug
b7d13b39adc6c0ece6b0d527752869fd94eb9f8a
[ "MIT" ]
1
2020-03-24T16:41:31.000Z
2020-03-24T16:41:31.000Z
from ndebug import env_helpers def test_inspect_ops(mocker): mocker.patch.dict('os.environ', {'DEBUG_COLORS': 'no', 'DEBUG_DEPTH': '10', 'DEBUG_SHOW_HIDDEN': 'enabled', 'DEBUG_SOMETHING': 'null'}) actual = env_helpers.options() assert actual == {'colors': False, 'depth': 10, 'show_hidden': True, 'something': None} def test_load_and_save(): actual = env_helpers.load() assert actual == '' env_helpers.save('test:data') actual = env_helpers.load() assert actual == 'test:data'
31.25
91
0.5536
0
0
0
0
0
0
0
0
161
0.2576
4693fb42192c5502c57c49f8441c5cf7ba66b002
1,709
py
Python
relay_lib_seeed_test_2.py
johnwargo/seeed-studio-relay-v2
ce1b84b0f0001baa7ec4729dc2967531da3bdc22
[ "MIT" ]
1
2021-05-07T07:40:27.000Z
2021-05-07T07:40:27.000Z
relay_lib_seeed_test_2.py
johnwargo/seeed-studio-relay-v2
ce1b84b0f0001baa7ec4729dc2967531da3bdc22
[ "MIT" ]
null
null
null
relay_lib_seeed_test_2.py
johnwargo/seeed-studio-relay-v2
ce1b84b0f0001baa7ec4729dc2967531da3bdc22
[ "MIT" ]
null
null
null
#!/usr/bin/python '''***************************************************************************************************************** Seeed Studio Relay Board Library V2 Test Application #2 By John M. Wargo (https://www.johnwargo.com) ********************************************************************************************************************''' import sys import time from seeed_relay_v1 import Relay def process_loop(): # turn all of the relays on relay.all_on() relay.print_status_all() # wait a second time.sleep(1) # turn all of the relays off relay.all_off() relay.print_status_all() # wait a second time.sleep(1) # now cycle each relay every second in an infinite loop while True: # test the on/off methods print('Testing on/off methods') for i in range(1, 5): relay.on(i) relay.print_status_all() time.sleep(1) relay.off(i) relay.print_status_all() time.sleep(1) # test the toggle method print('Testing the toggle methods') for i in range(1, 5): relay.toggle_port(i) relay.print_status_all() time.sleep(1) relay.toggle_port(i) relay.print_status_all() time.sleep(1) print('Repeating loop') # Now see what we're supposed to do next if __name__ == "__main__": # Create the relay object relay = Relay() try: process_loop() except KeyboardInterrupt: print("\nExiting application") # turn off all of the relays relay.all_off() # exit the application sys.exit(0)
26.703125
119
0.504389
0
0
0
0
0
0
0
0
771
0.451141
469452474a032213255cf5547c78a4dee27d7d79
2,087
py
Python
quasar/sa_database.py
stevencyrway/quasar
db8ff733ec1becf95defc7097890232cd5944d48
[ "MIT" ]
12
2017-05-17T17:22:47.000Z
2021-05-24T17:24:42.000Z
quasar/sa_database.py
stevencyrway/quasar
db8ff733ec1becf95defc7097890232cd5944d48
[ "MIT" ]
484
2015-12-02T19:24:34.000Z
2022-02-22T16:36:47.000Z
quasar/sa_database.py
stevencyrway/quasar
db8ff733ec1becf95defc7097890232cd5944d48
[ "MIT" ]
8
2017-04-27T20:42:05.000Z
2022-01-11T19:43:57.000Z
import os from sqlalchemy import bindparam, create_engine, exc from sqlalchemy.dialects.postgresql.json import JSONB from sqlalchemy.engine.url import URL from sqlalchemy.sql import text from .utils import log, logerr # Setup SQL Alchemy vars. pg_opts = { 'drivername': os.getenv('PG_DRIVER'), 'username': os.getenv('PG_USER'), 'password': os.getenv('PG_PASSWORD'), 'host': os.getenv('PG_HOST'), 'port': os.getenv('PG_PORT'), 'database': os.getenv('PG_DATABASE') } pg_ssl = os.getenv('PG_SSL') class Database: def __init__(self, options={}): pg_opts.update(options) self.connect() def connect(self): # Setup SQL Alchemy postgres connection. try: engine = create_engine(URL(**pg_opts), connect_args={'sslmode': pg_ssl}) self.engine = engine self.conn = engine.connect() except exc.InterfaceError as e: log("Couldnt't establsh DB connection!") log("Error is:") logerr(e) def disconnect(self): self.conn.close() return self.conn def query(self, query): return self.conn.execute(query) def query_str(self, query, record): # Run query with string substitution using ':thisvar' SQL Alchemy # standard based formatting. e.g. # query = 'INSERT :bar into foo;', record = {bar: 'baz'} run_query = text(query) return self.conn.execute(run_query, record) def query_json(self, query, record, col_name): # Based on the post https://stackoverflow.com/a/46031085, this # function forces a JSONB binding to insert JSON record types # into a table using SQL Alchemy. # This function is tightly coupled with the log_event function # in the cio_queue.py code. Hacky solution to get # https://www.pivotaltracker.com/story/show/172585118 resolved. run_query = text(query) return self.conn.execute( run_query.bindparams(bindparam(col_name, type_=JSONB)), record)
32.107692
75
0.632966
1,562
0.748443
0
0
0
0
0
0
730
0.349784
4694573c6edf0ff0ed4f4786ad3fb6ae431575db
29,122
py
Python
commands/__init__.py
CorneliaXaos/Command-Block-Assembly
6ed002c7df856d95d8cb2b8e5346c2bb807bf4bc
[ "MIT" ]
1
2020-06-13T13:57:11.000Z
2020-06-13T13:57:11.000Z
commands/__init__.py
CorneliaXaos/Command-Block-Assembly
6ed002c7df856d95d8cb2b8e5346c2bb807bf4bc
[ "MIT" ]
null
null
null
commands/__init__.py
CorneliaXaos/Command-Block-Assembly
6ed002c7df856d95d8cb2b8e5346c2bb807bf4bc
[ "MIT" ]
null
null
null
import abc class CommandBlock: def __init__(self, command, conditional=True, mode='CHAIN', auto=True, opposite=False, single_use=True): self.command = command self.cond = conditional self.mode = mode self.auto = auto self.opposite = opposite self.single_use = single_use def resolve(self, scope): return self.command.resolve(scope) class Resolvable(metaclass=abc.ABCMeta): @abc.abstractmethod def resolve(self, scope): pass class SimpleResolve(Resolvable): def __init__(self, *args): self.args = args def resolve(self, scope): return ' '.join(map(lambda el: el.resolve(scope) \ if isinstance(el, Resolvable) \ else el, self.args)) class Command(Resolvable): pass class EntityRef(Resolvable): def is_single_entity(self, scope): raise NotImplementedError() @property def ref(self): return EntityReference(self) class ObjectiveRef(Resolvable): def __init__(self, name): assert type(name) == str self.objective = name def resolve(self, scope): return scope.objective(self.objective) class NameRef(EntityRef): def __init__(self, name): assert type(name) == str self.name = name @property def is_single_entity(self, scope): return True def resolve(self, scope): return self.name class ScoreRef: def __init__(self, target, objective): assert isinstance(target, EntityRef) assert isinstance(objective, ObjectiveRef) self.target = target self.objective = objective def resolve_pair(self, scope): return '%s %s' % (self.target.resolve(scope), self.objective.resolve(scope)) class Var(ScoreRef): def __init__(self, nameref): super().__init__(GlobalEntity, ObjectiveRef(nameref)) def make_selector(selector, **kwargs): output = '@' + selector if not kwargs: return output def str_pairs(items): output = [] for key, value in items: if type(value) == dict: value = '{%s}' % str_pairs(value.items()) output.append('%s=%s' % (key, value)) return ','.join(output) return '%s[%s]' % (output, str_pairs(kwargs.items())) class Selector(EntityRef): def __init__(self, type, args=None): assert type in 'aespr' self.type = type assert args is None or isinstance(args, SelectorArgs) self.args = args def resolve_params(self, scope): if not self.args: return {} return self.args.resolve(scope) def is_single_entity(self, scope): if self.type in 'spr': return True params = self.resolve_params(scope) return 'limit' in params and params['limit'] == '1' def resolve(self, scope): return make_selector(self.type, **self.resolve_params(scope)) class _GlobalEntity(EntityRef): def is_single_entity(self, scope): return True def resolve(self, scope): return scope.global_entity() GlobalEntity = _GlobalEntity() class _PosUtil(EntityRef): def is_single_entity(self, scope): return True def resolve(self, scope): return scope.pos_util_entity() PosUtil = _PosUtil() class NbtPath(Resolvable): def __init__(self, path): self.path = path def subpath(self, childpath): # TODO path validation return self.__class__(self.path + childpath) def resolve(self, scope): return self.path def __eq__(self, other): if type(other) != type(self): return False return self.path == other.path def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self.path) class Path(NbtPath): def resolve(self, scope): return scope.custom_nbt_path(self.path) class ArrayPath(Path): def __init__(self, index=None, key=None): sub = '[%d]' % index if index is not None else '' assert key is None or index is not None sub += '.%s' % key if key else '' super().__init__('%s%s' % (self.name, sub)) def subpath(self, childpath): # Don't use our constructor return Path(self.path).subpath(childpath) class StackPath(ArrayPath): name = 'stack' def StackFrame(index): class StackFramePath(ArrayPath): name = 'stack[%d].stack' % (-index - 1) return StackFramePath StackFrameHead = StackFrame(0) class GlobalPath(ArrayPath): name = 'globals' class Cmd(Command): def __init__(self, cmd): self.command = cmd def resolve(self, scope): return self.command class Execute(Command): def __init__(self, chain): self.chain = SimpleResolve(*chain._components) def resolve(self, scope): return 'execute %s' % self.chain.resolve(scope) def ensure_selector(sel_arg): assert isinstance(sel_arg, EntityRef), sel_arg return sel_arg class ExecuteChain: def __init__(self): self._components = [] self.can_terminate = False def add(self, *args): for arg in args: if type(arg) in [str, int, float]: self._components.append(str(arg)) elif isinstance(arg, Resolvable): self._components.append(arg) else: assert False, type(arg) return self def run(self, cmd): self.add('run', cmd) return Execute(self) def finish(self): assert self.can_terminate return Execute(self) def as_entity(self, select_arg): self.can_terminate = False return self.add('as', ensure_selector(select_arg)) def at(self, select_arg): self.can_terminate = False return self.add('at', ensure_selector(select_arg)) def at_pos(self, pos): self.can_terminate = False return self.add('positioned', pos) def at_entity_pos(self, select_arg): self.can_terminate = False return self.add('positioned', 'as', ensure_selector(select_arg)) def align(self, axes): self.can_terminate = False assert ''.join(axis for axis in axes if axis in 'xyz') == axes return self.add('align', axes) def facing(self, pos): self.can_terminate = False return self.add('facing', pos) def facing_entity(self, select_arg, feature): self.can_terminate = False assert feature == 'eyes' or feature == 'feet' return self.add('facing', 'entity', ensure_selector(select_arg), \ feature) def rotated(self, y, x): self.can_terminate = False return self.add('rotated', y, x) def rotated_as_entity(self, select_arg): self.can_terminate = False return self.add('rotated', 'as', ensure_selector(select_arg)) def anchored(self, anchor): self.can_terminate = False assert anchor == 'feet' or anchor == 'eyes' return self.add('anchored', anchor) def cond(self, cond_type): self.can_terminate = False assert cond_type == 'if' or cond_type == 'unless' return ExecuteChain.Cond(self, cond_type) class Cond: def add(self, *args): self.parent.can_terminate = True return self.parent.add(*((self.cond_type,) + args)) def __init__(self, parent, cond_type): self.parent = parent self.cond_type = cond_type def entity(self, entityref): return self.add('entity', ensure_selector(entityref)) def score(self, targetref, operator, sourceref): assert isinstance(targetref, ScoreRef) assert isinstance(sourceref, ScoreRef) assert operator in ['<', '<=', '=', '>=', '>'] return self.add('score', targetref.target, targetref.objective, operator, sourceref.target, sourceref.objective) def score_range(self, scoreref, range): assert isinstance(scoreref, ScoreRef) assert isinstance(range, ScoreRange) return self.add('score', scoreref.target, scoreref.objective, 'matches', range) def block(self, pos, block): assert isinstance(pos, WorldPos) and pos.block_pos return self.add('block', pos, block) def blocks_match(self, begin, end, dest, type): assert type in ['all', 'masked'] return self.add('blocks', begin, end, dest, type) def store(self, store_type): assert store_type in ['result', 'success'] self.can_terminate = False return ExecuteChain.Store(self, store_type) class Store: def add(self, *args): return self.parent.add(*(('store', self.store_type) + args)) def __init__(self, parent, store_type): self.parent = parent self.store_type = store_type def score(self, scoreref): assert isinstance(scoreref, ScoreRef) return self.add('score', scoreref.target, scoreref.objective) def entity(self, target, path, data_type, scale=1): return self.add('entity', ensure_selector(target), \ path, data_type, scale) def bossbar(self, bar, attr): assert attr in ['value', 'max'] return self.add('bossbar', bar, attr) class BlockOrEntityRef(Resolvable): pass class EntityReference(BlockOrEntityRef): def __init__(self, target): assert isinstance(target, EntityRef) self.target = target def resolve(self, scope): assert self.target.is_single_entity(scope) return 'entity %s' % self.target.resolve(scope) class WorldPos(Resolvable): def __init__(self, x, y, z, block_pos=False): is_anchor = self._check_coord(x, True, not block_pos) was_anchor = self._check_coord(y, is_anchor, not block_pos) is_anchor = self._check_coord(z, was_anchor, not block_pos) if was_anchor: assert is_anchor self.x, self.y, self.z = x, y, z self.block_pos = block_pos def _check_coord(self, val, allow_anchor, allow_float): if isinstance(val, AnchorRelCoord): assert allow_anchor return True if type(val) == float: assert allow_float return False if type(val) == int: return False if isinstance(val, WorldRelCoord): return False assert False, val @property def ref(self): return BlockReference(self) def resolve(self, scope): return '%s %s %s' % (self.x, self.y, self.z) class RelativeCoord: def __init__(self, val): self.str = self.marker if type(val) == int: if val != 0: self.str += '%d' % val elif type(val) == float: if val != 0.0: # https://stackoverflow.com/a/2440786 self.str += ('%f' % val).rstrip('0').rstrip('.') else: assert False, val self.val = val def __str__(self): return self.str class WorldRelCoord(RelativeCoord): marker = '~' class AnchorRelCoord(RelativeCoord): marker = '^' class BlockReference(BlockOrEntityRef): def __init__(self, pos): assert isinstance(pos, WorldPos) and pos.block_pos self.pos = pos def resolve(self, scope): return 'block %s' % self.pos.resolve(scope) class _UtilBlockPos(WorldPos): def __init__(self, is_zero_tick): self.block_pos = True self.is_zero_tick = is_zero_tick def resolve(self, scope): if self.is_zero_tick: return scope.get_zero_tick_block() return scope.get_util_block() UtilBlockPos = _UtilBlockPos(False) ZeroTickBlockPos = _UtilBlockPos(True) class DataGet(Command): def __init__(self, target, path, scale=1): assert isinstance(target, BlockOrEntityRef) assert isinstance(scale, (int, float)) self.target = target self.path = path self.scale = int(scale) if scale == int(scale) else scale def resolve(self, scope): return 'data get %s %s %s' % (self.target.resolve(scope), self.path.resolve(scope), self.scale) class DataMerge(Command): def __init__(self, ref, nbt): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.nbt = nbt def resolve(self, scope): return 'data merge %s %s' % (self.ref.resolve(scope), self.nbt.resolve(scope)) class DataModify(Command): def __init__(self, ref, path, action, *rest): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.path = path self.action = action self.init(*rest) def resolve(self, scope): return 'data modify %s %s %s' % ( self.ref.resolve(scope), self.path.resolve(scope), self.action) class DataModifyValue(DataModify): def init(self, val): self.val = val def resolve(self, scope): return '%s value %s' % (super().resolve(scope), self.val.resolve(scope)) class DataModifyFrom(DataModify): def init(self, ref, path): assert isinstance(ref, BlockOrEntityRef) self.fromref = ref self.frompath = path def resolve(self, scope): return '%s from %s %s' % (super().resolve(scope), self.fromref.resolve(scope), self.frompath.resolve(scope)) class DataModifyStack(DataModifyValue): def __init__(self, index, key, action, value, path=StackPath): super().__init__(GlobalEntity.ref, path(index, key), action, value) class DataRemove(Command): def __init__(self, ref, path): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.path = path def resolve(self, scope): return 'data remove %s %s' % (self.ref.resolve(scope), self.path.resolve(scope)) class Function(Command): def __init__(self, func_name): self.name = func_name def resolve(self, scope): return 'function %s' % scope.function_name(self.name) class Tellraw(Command): def __init__(self, text, target): assert isinstance(text, TextComponentHolder) assert isinstance(target, EntityRef) self.text = text self.target = target def resolve(self, scope): return 'tellraw %s %s' % (self.target.resolve(scope), self.text.resolve_str(scope)) class TextComponent(Resolvable): pass class TextComponentHolder(TextComponent): def __init__(self, style, children): self.style = style self.children = children def resolve_str(self, scope): import json return json.dumps(self.resolve(scope), separators=(',', ':')) def resolve(self, scope): text = {} for key, value in self.style.items(): text[key] = self._resolve_style(key, value, scope) extra = [] for child in self.children: if isinstance(child, TextComponentHolder) and not child.style: for child_child in child.children: extra.append(child_child.resolve(scope)) else: extra.append(child.resolve(scope)) if not self.style: return extra if extra: if len(extra) == 1 and type(extra[0]) == dict: text.update(extra[0]) else: text['extra'] = extra return text def _resolve_style(self, key, value, scope): if key == 'clickEvent': assert isinstance(value, TextClickAction) return value.resolve(scope) return value class TextStringComponent(TextComponent): def __init__(self, stringval): self.val = stringval def resolve(self, scope): return {'text': self.val} class TextNBTComponent(TextComponent): def __init__(self, entity, path): assert isinstance(entity, EntityRef) assert isinstance(path, Path) self.entity = entity self.path = path def resolve(self, scope): assert self.entity.is_single_entity(scope) return {'nbt': self.path.resolve(scope), 'entity': self.entity.resolve(scope)} class TextScoreComponent(TextComponent): def __init__(self, ref): assert isinstance(ref, ScoreRef) self.ref = ref def resolve(self, scope): return {'score': {'name': self.ref.target.resolve(scope), 'objective': self.ref.objective.resolve(scope)}} class TextClickAction(Resolvable): def __init__(self, action, value): self.action = action self.value = value def resolve(self, scope): if type(self.value) == str: value = self.value else: assert self.action in ['run_command', 'suggest_command'] \ and isinstance(self.value, Command) value = self.value.resolve(scope) return {'action': self.action, 'value': value} class Teleport(Command): def __init__(self, target, *more): assert isinstance(target, EntityRef) self.args = [target] self.args.extend(more) def resolve(self, scope): return 'tp %s' % ' '.join(a.resolve(scope) for a in self.args) class Clone(Command): def __init__(self, src0, src1, dest): self.src0 = src0 self.src1 = src1 self.dest = dest def resolve(self, scope): return 'clone %s %s %s' % (self.src0.resolve(scope), self.src1.resolve(scope), self.dest.resolve(scope)) class Setblock(Command): def __init__(self, pos, block): assert isinstance(pos, WorldPos) and pos.block_pos self.pos = pos self.block = block def resolve(self, scope): return 'setblock %s %s' % (self.pos.resolve(scope), self.block.resolve(scope)) class Scoreboard(Command): allows_negative = False def __init__(self, varref, value): assert isinstance(varref, ScoreRef) assert isinstance(value, int) assert self.allows_negative or value >= 0 self.var = varref self.value = value def resolve(self, scope): return 'scoreboard players %s %s %d' % ( self.op, self.var.resolve_pair(scope), self.value) class SetConst(Scoreboard): op = 'set' allows_negative = True class AddConst(Scoreboard): op = 'add' class RemConst(Scoreboard): op = 'remove' class GetValue(Command): def __init__(self, scoreref): assert isinstance(scoreref, ScoreRef) self.ref = scoreref def resolve(self, scope): return 'scoreboard players get %s' % self.ref.resolve_pair(scope) class Operation(Command): def __init__(self, left, right): assert isinstance(left, ScoreRef) assert isinstance(right, ScoreRef) self.left = left self.right = right def resolve(self, scope): return 'scoreboard players operation %s %s %s' % ( self.left.resolve_pair(scope), self.op, self.right.resolve_pair(scope)) class OpAssign(Operation): op = '=' class OpAdd(Operation): op = '+=' class OpSub(Operation): op = '-=' class OpMul(Operation): op = '*=' class OpDiv(Operation): op = '/=' class OpMod(Operation): op = '%=' class OpIfLt(Operation): op = '<' class OpIfGt(Operation): op = '>' class OpSwap(Operation): op = '><' class SelectorArgs(Resolvable): pass class SimpleSelectorArgs(SelectorArgs): def __init__(self, args): self.args = args def resolve(self, scope): return dict(self.args) class ScoreRange(Resolvable): def __init__(self, min=None, max=None): assert min is not None or max is not None self.min = min self.max = max def resolve(self, scope): range = '' if self.min is not None: range = '%d' % self.min if self.max is not None and self.max != self.min: range += '..%d' % self.max elif self.max is None: range += '..' return range class SelRange(SelectorArgs): def __init__(self, objective, min=None, max=None): assert isinstance(objective, ObjectiveRef) self.objective = objective self.range = ScoreRange(min, max) def resolve(self, scope): return {'scores': { self.objective.resolve(scope): self.range.resolve(scope) }} class SelEquals(SelRange): def __init__(self, objective, value): super().__init__(objective, value, value) class ComboSelectorArgs(SelectorArgs): @staticmethod def new(first, second): if first is None: return second if second is None: return first return ComboSelectorArgs(first, second) def __init__(self, first, second): self.first = first self.second = second def resolve(self, scope): sel = {} sel.update(self.first.resolve(scope)) sel.update(self.second.resolve(scope)) return sel class SelNbt(SelectorArgs): def __init__(self, path, value): self.nbt_spec = {} if not path: self.nbt_spec = value else: self.build_selector(path, self.nbt_spec, value) def build_selector(self, path, parent, value): for i in range(len(path) - 1): node = path[i] if node.isdigit(): pos = int(node) while len(parent) < pos + 1: parent.append({}) parent = parent[pos] continue if node not in parent: parent[node] = {} if len(path) > i + 1: if path[i+1].isdigit(): if not parent[node]: parent[node] = [] else: assert type(parent[node]) == list parent = parent[node] if path[-1].isdigit(): pos = int(path[-1]) while len(parent) < pos + 1: parent.append({}) path[-1] = pos parent[path[-1]] = value def stringify_nbt(self, node, scope): # TODO quoted keys if type(node) == dict: return '{%s}' % ','.join('%s:%s' % (k, self.stringify_nbt(v, scope)) for k,v in node.items()) if type(node) == list: return '[%s]' % ','.join(map(lambda n:self.stringify_nbt(n, scope), node)) if isinstance(node, Resolvable): return node.resolve(scope) assert False, type(node) def resolve(self, scope): return {'nbt': self.stringify_nbt(self.nbt_spec, scope)} class TeamName(Resolvable): def __init__(self, name): self.name = name def resolve(self, scope): return scope.team_name(self.name) class TeamModify(Command): def __init__(self, team, attr, value): assert isinstance(team, TeamName) self.team = team assert attr in ['color', 'friendlyFire', 'seeFriendlyInvisibles', 'nametagVisibility', 'deathMessageVisibility', 'collisionRule', 'displayName', 'prefix', 'suffix'] self.attr = attr self.value = value def resolve(self, scope): return 'team modify %s %s %s' % (self.team.resolve(scope), self.attr, self.value) class JoinTeam(Command): def __init__(self, team, members): assert isinstance(team, TeamName) assert members is None or isinstance(members, EntityRef) self.team = team self.members = members def resolve(self, scope): members = (' ' + self.members.resolve(scope)) if self.members else '' return 'team join %s%s' % (self.team.resolve(scope), members) class Bossbar(Resolvable): def __init__(self, name): self.name = name def resolve(self, scope): return scope.bossbar(self.name) class BossbarSet(Command): def __init__(self, bar, prop, value): assert isinstance(bar, Bossbar) self.bar = bar self.prop = prop self.value = value def resolve(self, scope): value = (' ' + self.value.resolve(scope)) if self.value else '' return 'bossbar set %s %s%s' % (self.bar.resolve(scope), self.prop, value) class Kill(Command): def __init__(self, target): assert isinstance(target, EntityRef) self.target = target def resolve(self, scope): return 'kill %s' % self.target.resolve(scope) class ReplaceItem(Command): def __init__(self, ref, slot, item, amount=None): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.slot = slot self.item = item self.amount = amount def resolve(self, scope): amount = (' %d' % self.amount) if self.amount is not None else '' return 'replaceitem %s %s %s%s' % (self.ref.resolve(scope), self.slot, self.item.resolve(scope), amount) class GiveItem(Command): def __init__(self, targets, item, count=1): assert isinstance(targets, EntityRef) self.targets = targets self.item = item self.count = count def resolve(self, scope): return 'give %s %s %d' % (self.targets.resolve(scope), self.item.resolve(scope), self.count) class ClearItem(Command): def __init__(self, targets, item, max_count=-1): assert isinstance(targets, EntityRef) self.targets = targets self.item = item self.max_count = max_count def resolve(self, scope): return 'clear %s %s %d' % (self.targets.resolve(scope), self.item.resolve(scope), self.max_count) class EffectGive(Command): def __init__(self, target, effect, seconds=None, amp=None, hide=None): assert isinstance(target, EntityRef) self.target = target self.effect = effect self.seconds = seconds if seconds is not None else 30 self.amp = amp if amp is not None else 0 self.hide = hide if hide is not None else False def resolve(self, scope): return 'effect give %s %s %d %d %s' % (self.target.resolve(scope), self.effect, self.seconds, self.amp, 'true' if self.hide else 'false') class Particle(Command): def __init__(self, name, pos, delta, speed, count, mode, players): self.name = name self.pos = pos self.delta = delta self.speed = speed self.count = count self.mode = mode self.players = players def resolve(self, scope): players = (' ' + self.players.resolve(scope)) if self.players else '' return 'particle %s %s %s %f %d %s%s' % (self.name, self.pos.resolve(scope), self.delta.resolve(scope), self.speed, self.count, self.mode, players) class Title(Command): def __init__(self, target, action, *args): assert isinstance(target, EntityRef) self.target = target self.action = action self.args = args def resolve(self, scope): args = (' ' + SimpleResolve(*self.args).resolve(scope)) \ if self.args else '' return 'title %s %s%s' % (self.target.resolve(scope), self.action, args) class Summon(Command): def __init__(self, entity_name, pos, data=None): assert pos is None or isinstance(pos, WorldPos) self.name = entity_name self.pos = pos self.data = data def resolve(self, scope): pos = (' ' + self.pos.resolve(scope)) if self.pos else \ (' ~ ~ ~' if self.data else '') data = (' ' + self.data.resolve(scope)) if self.data else '' return 'summon %s%s%s' % (self.name, pos, data) class Advancement(Command): def __init__(self, action, target, range, *args): assert action in ['grant', 'revoke'] assert isinstance(target, EntityRef) self.action = action self.target = target self.range = range self.args = args def resolve(self, scope): args = (' ' + SimpleResolve(*self.args).resolve(scope)) \ if self.args else '' return 'advancement %s %s %s%s' % (self.action, self.target.resolve(scope), self.range, args) class AdvancementRef(Resolvable): def __init__(self, name): self.name = name def resolve(self, scope): return scope.advancement_name(self.name)
29.327291
86
0.588215
28,211
0.968718
0
0
428
0.014697
0
0
1,518
0.052126
46950a30a497c84732798b48f44483d04a01233a
217
py
Python
top/clearlight/reptile/bilibili/bj_tech_mooc/example_04_360.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
1
2020-01-16T09:23:43.000Z
2020-01-16T09:23:43.000Z
top/clearlight/reptile/bilibili/bj_tech_mooc/example_04_360.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
null
null
null
top/clearlight/reptile/bilibili/bj_tech_mooc/example_04_360.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
null
null
null
import requests keyword = "python" try: kv = {'q':keyword} r = requests.get('http://www.so.com/s', params=kv) print(r.request.url) r.raise_for_status() print(len(r.text)) except: print('爬取失败')
19.727273
54
0.617512
0
0
0
0
0
0
0
0
46
0.204444
4695279b1ca8306d24c6c58add7de32e6798011f
4,489
py
Python
rodnet/models/backbones/cdc_deep.py
zhengzangw/RODNet
eca5f2bd1f3051c2b823d279532ddafa71b009c1
[ "MIT" ]
null
null
null
rodnet/models/backbones/cdc_deep.py
zhengzangw/RODNet
eca5f2bd1f3051c2b823d279532ddafa71b009c1
[ "MIT" ]
null
null
null
rodnet/models/backbones/cdc_deep.py
zhengzangw/RODNet
eca5f2bd1f3051c2b823d279532ddafa71b009c1
[ "MIT" ]
null
null
null
import torch.nn as nn class RODEncode(nn.Module): def __init__(self, in_channels=2): super(RODEncode, self).__init__() self.conv1a = nn.Conv3d( in_channels=in_channels, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1a_1 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1a_2 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1b = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(2, 2, 2), padding=(4, 2, 2), ) self.conv2a = nn.Conv3d( in_channels=64, out_channels=128, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv2b = nn.Conv3d( in_channels=128, out_channels=128, kernel_size=(9, 5, 5), stride=(2, 2, 2), padding=(4, 2, 2), ) self.conv3a = nn.Conv3d( in_channels=128, out_channels=256, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv3b = nn.Conv3d( in_channels=256, out_channels=256, kernel_size=(9, 5, 5), stride=(1, 2, 2), padding=(4, 2, 2), ) self.bn1a = nn.BatchNorm3d(num_features=64) self.bn1a_1 = nn.BatchNorm3d(num_features=64) self.bn1a_2 = nn.BatchNorm3d(num_features=64) self.bn1b = nn.BatchNorm3d(num_features=64) self.bn2a = nn.BatchNorm3d(num_features=128) self.bn2b = nn.BatchNorm3d(num_features=128) self.bn3a = nn.BatchNorm3d(num_features=256) self.bn3b = nn.BatchNorm3d(num_features=256) self.relu = nn.ReLU() def forward(self, x): x = self.relu( self.bn1a(self.conv1a(x)) ) # (B, 2, W, 128, 128) -> (B, 64, W, 128, 128) # additional x = self.relu( self.bn1a_1(self.conv1a_1(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W, 128, 128) x = self.relu( self.bn1a_2(self.conv1a_2(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W, 128, 128) x = self.relu( self.bn1b(self.conv1b(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W/2, 64, 64) x = self.relu( self.bn2a(self.conv2a(x)) ) # (B, 64, W/2, 64, 64) -> (B, 128, W/2, 64, 64) x = self.relu( self.bn2b(self.conv2b(x)) ) # (B, 128, W/2, 64, 64) -> (B, 128, W/4, 32, 32) x = self.relu( self.bn3a(self.conv3a(x)) ) # (B, 128, W/4, 32, 32) -> (B, 256, W/4, 32, 32) x = self.relu( self.bn3b(self.conv3b(x)) ) # (B, 256, W/4, 32, 32) -> (B, 256, W/4, 16, 16) return x class RODDecode(nn.Module): def __init__(self, n_class): super(RODDecode, self).__init__() self.convt1 = nn.ConvTranspose3d( in_channels=256, out_channels=128, kernel_size=(4, 6, 6), stride=(2, 2, 2), padding=(1, 2, 2), ) self.convt2 = nn.ConvTranspose3d( in_channels=128, out_channels=64, kernel_size=(4, 6, 6), stride=(2, 2, 2), padding=(1, 2, 2), ) self.convt3 = nn.ConvTranspose3d( in_channels=64, out_channels=n_class, kernel_size=(3, 6, 6), stride=(1, 2, 2), padding=(1, 2, 2), ) self.prelu = nn.PReLU() self.sigmoid = nn.Sigmoid() # self.upsample = nn.Upsample(size=(rodnet_configs['win_size'], radar_configs['ramap_rsize'], # radar_configs['ramap_asize']), mode='nearest') def forward(self, x): x = self.prelu(self.convt1(x)) # (B, 256, W/4, 16, 16) -> (B, 128, W/2, 32, 32) x = self.prelu(self.convt2(x)) # (B, 128, W/2, 32, 32) -> (B, 64, W, 64, 64) x = self.convt3(x) # (B, 64, W, 64, 64) -> (B, 3, W, 128, 128) return x
32.294964
101
0.461573
4,461
0.993763
0
0
0
0
0
0
697
0.155268
46955a61d6eda18fd04e0a7384414c8a588922bf
85
py
Python
File/admin.py
alstn2468/Likelion_DRF_Project
35a359a05185f551ed2e999ab17e0108a69d6b57
[ "MIT" ]
28
2019-10-15T13:15:26.000Z
2021-11-08T08:23:45.000Z
15_LikeLionDRFProject/File/admin.py
jhleed/LikeLion_Django_Study_Summary
c788182af5bcfd16bdd4b57235a48659758e494b
[ "MIT" ]
1
2021-05-22T18:27:01.000Z
2021-05-22T18:27:01.000Z
15_LikeLionDRFProject/File/admin.py
jhleed/LikeLion_Django_Study_Summary
c788182af5bcfd16bdd4b57235a48659758e494b
[ "MIT" ]
17
2019-09-09T00:15:36.000Z
2021-01-28T13:08:51.000Z
from django.contrib import admin from .models import File admin.site.register(File)
17
32
0.811765
0
0
0
0
0
0
0
0
0
0
469862e42b088f23b41b49c8734db4c50395bddc
28,022
py
Python
agent/windows/agent.py
fortinet/ips-bph-framework
145e14cced2181f388ade07d78b4f0e9452143dd
[ "Apache-2.0" ]
21
2019-10-24T04:59:52.000Z
2021-05-11T12:47:17.000Z
agent/windows/agent.py
fortinet/ips-bph-framework
145e14cced2181f388ade07d78b4f0e9452143dd
[ "Apache-2.0" ]
null
null
null
agent/windows/agent.py
fortinet/ips-bph-framework
145e14cced2181f388ade07d78b4f0e9452143dd
[ "Apache-2.0" ]
9
2019-10-26T16:56:08.000Z
2021-03-15T14:10:21.000Z
import shutil import socket import subprocess import threading import json import pickle import tempfile import time import box import threading import os import base64 import getpass import urllib import requests import zipfile import sys import pprint import platform DEBUG = True BPH_TEMPLATE_SERVER_IP = sys.argv[1] BPH_TEMPLATE_SERVER_PORT = int(sys.argv[2]) BPH_CONTROLLER_WEB_PORT = int(sys.argv[3]) running_os = platform.release() if running_os == "7": APP_DATA = "C:\\Users\\{current_user}\\AppData\\Roaming\\".format( current_user=getpass.getuser()) TMP_FOLDER = "C:\\Users\\{current_user}\\AppData\\Local\\Temp\\".format( current_user=getpass.getuser()) elif running_os == "XP": # To avoid tool issues when dealing with white-spaced paths. APP_DATA = "C:\\DOCUME~1\\{current_user}\\APPLIC~1\\".format( current_user=getpass.getuser()) TMP_FOLDER = "C:\\DOCUME~1\\{current_user}\\LOCALS~1\\Temp\\".format( current_user=getpass.getuser()) else: print "Unsupported platform! Exiting..." sys.exit() class FilterSpecialVars(): def __init__(self, unfiltered_data, template=None, custom_user_vars=None): # unfiltered_data should be a list self.unfiltered_data = unfiltered_data self.filtered_data = [] self.special_vars = { '@appdata@': APP_DATA, # os.path.expandvars('%appdata%'), '@temp@': TMP_FOLDER, '@toolname@': template['tool_name'], # "peid" '@filename@': template.tool.filename, # "peid.exe" '@rid@': template['rid'], '@md5@': template['md5'], '@sample@': "\"" + ExecutionManager.sample_abs_path + "\"", '@sample_filename@': "\"" + os.path.basename(ExecutionManager.sample_abs_path) + "\"", '@tool_drive@': template['tool_drive'], '@tool_path@': os.path.join(template['tool_drive'], template['remote_tool_path'].replace('/','\\')), '@tool_abs_path@': os.path.join(template['tool_drive'], template['remote_tool_path'], template.tool.filename), '@report_folder@': os.path.join(APP_DATA, template['rid'], template['tool_name']) } if custom_user_vars != None: self.custom_user_vars_filter(custom_user_vars) def custom_user_vars_filter(self, custom_user_vars): if DEBUG: print "Custom User Vars Filtering: {}".format(custom_user_vars) for k, v in custom_user_vars.items(): key = "@{}@".format(k) self.special_vars.update({key: v}) if DEBUG: print self.special_vars def filter_now(self): def do_filter(unfiltered_string): for k, v in self.special_vars.items(): if k in str(unfiltered_string): unfiltered_string = unfiltered_string.replace(k, v) if DEBUG: print ">> Found: {}".format(unfiltered_string) return unfiltered_string for unfiltered_string in self.unfiltered_data: if len(unfiltered_string) != 0: if DEBUG: print "### Searching Variable ###: {}".format(unfiltered_string) self.filtered_data.append(do_filter(unfiltered_string)) if DEBUG: print self.special_vars if DEBUG: print"FILTERED: {}".format(self.filtered_data) # return " ".join(self.filtered_data) class File(object): def __init__(self): pass def generate_random_file_name(self): import string import random return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(0, 10)) def zip_file(self, file_abs_path, seconds=5): if not file_abs_path.endswith('.log') and not file_abs_path.endswith('.zip'): if DEBUG: print "Creating compressed (zip) archive: {}".format(file_abs_path) #time.sleep(5) try: zip_filename = "{}.zip".format(os.path.basename(file_abs_path)) if DEBUG: print zip_filename original_filename = os.path.basename(file_abs_path) if DEBUG: print original_filename path_location = os.path.dirname(file_abs_path) if DEBUG: print path_location zip_file_abs_path = "{}\\{}".format(path_location, zip_filename) if DEBUG: print zip_file_abs_path zf = zipfile.ZipFile(zip_file_abs_path, 'w', zipfile.ZIP_DEFLATED) # When a file is bein created as compressed file (zip), in some cases # the set delay time is not enough and file-access errors appears. # To avoid such situation, several attempts are made until the access # to the source file is ready. try: zf.write(file_abs_path, os.path.basename(file_abs_path)) except IOError: if DEBUG: print "Target file is still in use... attempting in ({}) seconds".format(seconds) time.sleep(seconds) self.zip_file(file_abs_path) else: if DEBUG: print "Zip file creation - Done." except OSError as e: if DEBUG: print "Error when setting up info for target zip file: {}".format(e) raise else: zipfile.ZIP_DEFLATED if os.path.isfile(zip_file_abs_path): if DEBUG: print "Zip file ok: {}".format(zip_file_abs_path) # os.remove(file_abs_path) return zip_filename else: if DEBUG: print "Zip file can't be created" return None class AutoItScript(File): def __init__(self, automation_data): self.autoit_script = None self.__base64totmp(automation_data) def __base64totmp(self, automation_data): if DEBUG: print "Converting from base64 file data to Auto-it Script" tmp_au_script_abs_path = os.path.join( APP_DATA, self.generate_random_file_name()) with open(tmp_au_script_abs_path, 'w+') as tmp_au_script: for _ in automation_data: if DEBUG: print "Writing: {}\n".format(_) tmp_au_script.write(_) self.autoit_script = tmp_au_script_abs_path class DownloadedFile(File): def __init__(self, download_url): self.download_dir = APP_DATA self.fake_file_name = self.generate_random_file_name() self.original_file_name = os.path.basename(download_url) self.extension = os.path.splitext(download_url)[1].replace('.', '') #self.abs_path = os.path.join(self.download_dir, "{}.{}".format( # self.fake_file_name, self.extension)) self.abs_path = os.path.join(self.download_dir, self.original_file_name) if DEBUG: print self.abs_path class ExecutionManager(object): report_path = "" sample_abs_path = "" #### Agent Command Control ###### def execute_tool(self, **cmd_data): if DEBUG: print cmd_data tool_drive = cmd_data['tool_drive'] tool_path = cmd_data['tool_path'].replace('/', '\\') tool_name = cmd_data['tool_name'] tool_abs_path = "\"{tool_drive}{tool_path}\\{tool_name}\"".format( tool_drive=tool_drive, tool_path=tool_path, tool_name=tool_name, ) if DEBUG: print tool_abs_path tool_args = cmd_data['tool_args'] if DEBUG: print tool_args cmd = "{} {}".format(tool_abs_path, tool_args) if DEBUG: print cmd print "\nExecuting Cmd: {}\n".format(cmd) subprocess.call(cmd, shell=True) def exec_manager(self, **cmd_data): if DEBUG: if DEBUG: print "\nExecuting Thread with data: {}\n".format(cmd_data) thread_name = cmd_data['tool_name'] thread = threading.Thread(target=self.execute_tool, name=thread_name, kwargs=cmd_data) thread.start() def write_tmp_file(self, datatowrite, sample_abs_path): try: if DEBUG: print "Writing Tmp file: {}".format(sample_abs_path) with open(sample_abs_path, 'wb+') as f: f.write(datatowrite) except: if DEBUG: print "Error while creating the tmp file." else: if DEBUG: print "Done." if os.path.isfile(sample_abs_path): if DEBUG: print "Temp file created correctly." # Destination folder is created this way because because # some tools shows weird behaviors when passing arguments # For instance, CFF Explorer does not work correctly when # the file agument resides on a directory with whitespaces. # The workaround is to use DOS version of the path. #fixed_sample_abs_path = sample_abs_path.split('\\') #fixed_sample_abs_path[1] = "docume~1" #fixed_sample_abs_path[3] = "applic~1" # print fixed_sample_abs_path # Setting up Class attribute for sample path return sample_abs_path return False def download_file(self, download_url): if DEBUG: print "Downloading: {}".format(download_url) try: import urllib2 filedata = urllib2.urlopen(download_url) except urllib2.URLError: if DEBUG: print "Can't download the target sample file. Make sure BPH Webserver is running on the host." return False else: datatowrite = filedata.read() sample_abs_path = DownloadedFile(download_url).abs_path # Used when filtering custom variables ExecutionManager.sample_abs_path = sample_abs_path if DEBUG: print "Downloaded file: {}".format(sample_abs_path) return self.write_tmp_file(datatowrite, sample_abs_path) def execute_autoit_script(self, template, auto_it_script_abs_path): # The previously generated AutoIT script will be executed. if DEBUG: print "Executing Auto-It script" self.exec_manager( tool_drive=template.tool_drive, tool_path='misc\\autoitv3\\', tool_name='AutoIt3.exe', tool_args=auto_it_script_abs_path) def tool_execution(self, template): def selected_execution(filtered_parameters, filtered_automation): cascade_execution = False if filtered_parameters is not None and filtered_automation is not None: if DEBUG: print "Cascaded Execution Detected: parameters -> autoit" cascade_execution = True if filtered_parameters is not None: if DEBUG: print "Parameter Execution Detected" self.exec_manager( tool_drive=template.tool_drive, tool_path=template.remote_tool_path, tool_name=template.tool.filename, tool_args=filtered_parameters ) if filtered_automation is not None: # If cascase execution is set, then a delay between tool execution # and automation is also set. This to allow the tool to properly # load and the automation be able to run properly. A default value # of 5 seconds was given. if cascade_execution: if DEBUG: print "Cascade Execution Delay - Running now..." time.sleep(5) if DEBUG: print "Automation-Only Execution Detected" custom_user_vars = template.configuration.execution.custom_user_vars auto_it_script_abs_path = AutoItScript(filtered_automation).autoit_script self.execute_autoit_script(template, auto_it_script_abs_path) def filter_custom_vars(template, filter_type=None): # Handling template parameters custom vars if filter_type is not None: custom_user_vars = template.configuration.execution.custom_user_vars if filter_type == "parameters": parameters = template.actions[template.actions.action]['parameters'] if parameters is not None: if DEBUG: print "Parameters: {}".format(parameters) if len(custom_user_vars) != 0: if DEBUG: print "Custom Parameters Vars {} - Parameters({})".format(custom_user_vars, parameters) filtered_parameters = self.filter_variables( parameters, template, filter_type='parameters', custom_user_vars=custom_user_vars) else: filtered_parameters = self.filter_variables( parameters, template, filter_type='parameters', custom_user_vars=None) return filtered_parameters if filter_type == "automation": automation = template.actions[template.actions.action]['automation'] if automation is not None: if DEBUG: print "Automation: {}".format(automation) if len(custom_user_vars) != 0: if DEBUG: print "Custom Automation Vars {}".format(custom_user_vars) filtered_automation = self.filter_variables( automation, template, filter_type='automation', custom_user_vars=custom_user_vars) else: filtered_automation = self.filter_variables( automation, template, filter_type='automation', custom_user_vars=None) return filtered_automation action_name = template.actions.action if DEBUG: print "Executing: {}".format(action_name) filtered_parameters = filter_custom_vars(template, filter_type='parameters') filtered_automation = filter_custom_vars(template, filter_type='automation') selected_execution(filtered_parameters, filtered_automation) class TemplateManager(ExecutionManager): def __init__(self, template): # self.report_directory_check(template.vm_report_name) if DEBUG: print "#"*50 if DEBUG: print dict(template) if DEBUG: print "#"*50 # Each tool request must save files. Those can be either a log file # or output files from its execution. This "report path" folder will # be created per request. # # The /files/ folder will be used to store any additional files generated # by the tool. self.report_path_files = os.path.join( APP_DATA, template.rid, template.tool_name, 'files') self.report_path = os.path.join( APP_DATA, template.rid, template.tool_name) if not os.path.isdir(self.report_path_files): if DEBUG: print "Creating: {}".format(self.report_path_files) os.makedirs(self.report_path_files) if template.configuration.execution['download_sample']: self.download_file(template.download_url) # Tool execution will eventually select which execution type will be run, # either automated or manual (only based in parameters) self.tool_execution(template) # Delay (seconds) between tool executions. exec_delay = template.configuration.execution.delay if DEBUG: print "Execution Delay (in seconds): {}".format(exec_delay) time.sleep(exec_delay) while True: if DEBUG: print threading.active_count() if DEBUG: print threading.enumerate() threads = str(threading.enumerate()).lower() if template.configuration.execution.background_run: if DEBUG: print "TOOL DOES RUN IN BACKGROUND..." if template.tool.filename.lower() in threads: # FIXED: This allows more than one tool running in background if threading.active_count() != 1: if "autoit" not in threads: if DEBUG: print "TOOL RUN CHECK DONE" break else: if DEBUG: print "TOOL DOES NOT RUN IN BACKGROUND..." if template.tool.filename.lower() not in threads: if "autoit" not in threads: if DEBUG: print "TOOL RUN CHECK - DONE" break time.sleep(1) if DEBUG: print "\n###### Tool execution has ended #######\n" if DEBUG: print threading.active_count() if DEBUG: print threading.enumerate() if template.configuration.reporting.report_files: if DEBUG: print "########## Starting COLLECTING HTTP FILES ##############" self.report(template) def filter_variables(self, data, template, filter_type=None, custom_user_vars=None): if filter_type == "parameters": # Convert into list here. data = data.split(' ') if filter_type == "automation": # Decode first, then convert into a list. data = base64.decodestring(data).split('\n') if DEBUG: print "Filtering Variables: {}".format(data) unfiltered_data = FilterSpecialVars(data, template=template, custom_user_vars=custom_user_vars) unfiltered_data.filter_now() if DEBUG: print "Filtered Args: ({})".format(unfiltered_data.filtered_data) if filter_type == "parameters": return " ".join(unfiltered_data.filtered_data) if filter_type == "automation": return unfiltered_data.filtered_data def report_back(self, report_data): url = "http://{}:{}/bph/report.php".format(BPH_TEMPLATE_SERVER_IP, BPH_CONTROLLER_WEB_PORT) files = {'file': open(report_data['file_abs_path'], 'rb')} response = requests.post(url, data={'project_name': report_data['project_name'], 'md5': report_data['md5'], 'sid': report_data['sid'], 'tool': report_data['tool_name'], 'rid': report_data['rid'], 'file': report_data['file'], 'dir': report_data['dir']}, files=files) if DEBUG: print "Response: {}".format(response.text) def report_files(self, base_folder, tool_name): if DEBUG: print "Searching files in: {} - tool: {}".format(base_folder, tool_name) while True: if len(os.listdir(base_folder)) != 0: if DEBUG: print "Files found.. Collecting them now..." files_found = [] for root, dirs, files in os.walk(base_folder): for file in files: full_path = os.path.join(root, file) if DEBUG: print "FullPath: {}".format(full_path) file_name = os.path.basename(full_path) if DEBUG: print "FileName: {}".format(file_name) index = full_path.split('\\').index(tool_name) if DEBUG: print "Index: {}".format(index) path_found = "/".join([x for x in full_path.split('\\')[index+1:]]) if DEBUG: print "PathFound: {}".format(path_found) if path_found.count('/') == 0: # Tool log file was found (e.g. bintext.log) if DEBUG: print "Found log file: {}".format(path_found) if path_found.endswith('.log'): if DEBUG: print "FullPath: {}".format(full_path) file_and_path_found = [full_path, path_found, '/'] files_found.append(file_and_path_found) else: # Any file inside of the /files/ folder. if DEBUG: print "Found non-log file: {}".format(path_found) # For non-log files, a file version of the file will be generated # due problems of uploading big files through HTTP. This is a temporary fix. zip_filename = File().zip_file(full_path) file_and_path_found = zip_filename.split() + \ path_found.split('/')[:-1] if DEBUG: print file_and_path_found file_and_path_found.insert( 0, full_path.replace(file_name, zip_filename)) if file_and_path_found not in files_found: if DEBUG: print "Appending file found: {}".format(file_and_path_found) files_found.append(file_and_path_found) if DEBUG: print "FullPathFound: {}".format(file_and_path_found) if DEBUG: print "Files Found: {}".format(files_found) return list(files_found) else: if DEBUG: print "Waiting for files to appear..." time.sleep(1) def report(self, template): def filter_dir(unfiltered_dir): if DEBUG: print "Unfiltered dir: {}".format(unfiltered_dir) dir_path = "/".join(unfiltered_dir) if dir_path.startswith('/'): return unfiltered_dir[0] return "/{}".format(dir_path) report_data = {} if os.path.isdir(self.report_path): if DEBUG: print "Sending back results to C&C server..." # Request variables. Generate data on the server. report_data['project_name'] = template.project_name report_data['md5'] = template.md5 report_data['sid'] = template.sid report_data['rid'] = template.rid report_data['tool_name'] = template.tool_name for file_found in self.report_files(self.report_path, template.tool_name): # if DEBUG: print "FileFound: {}".format(file_found) report_data['file_abs_path'] = file_found[0] report_data['file'] = urllib.quote(file_found[1], safe='') report_data['dir'] = filter_dir(file_found[2:]) if DEBUG: print report_data self.report_back(report_data) if DEBUG: print "Done." else: if DEBUG: print "Report Directory ({}) does not exist".format(self.report_path) def report_directory_check(self, vm_report_name): report_path = os.path.join(APP_DATA, vm_report_name) if DEBUG: print report_path if not os.path.isdir(report_path): os.mkdir(report_path) self.report_directory_check() else: REPORT_PATH = report_path class Agent: RETRY_SECS = 1 BUFFER_SIZE = 16384 def __init__(self): self.connection_status = False #### Agent Control Functions #### def start(self): print "Starting Agent..." # Connect to Server self.connect() def stop(self): print "Stopping Agent..." self.disconnect() self.connection_status = False def restart(self): self.stop() self.start() #### Agent Connection Functions #### def check_connection(self): pass # print dir(self._clientsocket) def is_connected(self): if self.connection_status == True: return True return False def send(self, data): print "Sending Data: {}".format(data) try: self._clientsocket.send(data) except: self.reconnect() def listen(self): print "Connected to C&C Template Server. Waiting for instructions..." try: while True: # Keeps running receiving data. Once received # it its automatically un-serialized and converted # into an Python dictionary object. serialized_data = pickle.loads(self._clientsocket.recv(self.BUFFER_SIZE)) template_data = box.Box(serialized_data) # TemplateManager decomposes serialized data # and take actions to execute the selected program TemplateManager(template_data) print "Sending back to C&C => OK status" self.send('ok') except socket.error as e: print "Server disconnection: {}".format(e) self.reconnect() except EOFError as e: print "Server disconnection...".format(e) self.reconnect() else: # If template data was received correctly, then acknowledge. self.send('skip') def connect(self): # Make the connection to the server print "Connecting to C&C Template Server: {}:{}".format(BPH_TEMPLATE_SERVER_IP, BPH_TEMPLATE_SERVER_PORT) try: # Initialize Socket & connect back to server. self._clientsocket = socket.socket() self._clientsocket.connect((BPH_TEMPLATE_SERVER_IP, BPH_TEMPLATE_SERVER_PORT)) self._clientsocket.setblocking(1) except socket.error: self.reconnect() except KeyboardInterrupt: print "Interrupting execution." sys.exit() else: print "Connection established. " self.connection_status = True self.listen() def disconnect(self): self._clientsocket.close() def reconnect(self): print "Reconnecting...." if DEBUG: print "Connection Error. Server down? Attempting connection in: ({}) seconds".format(self.RETRY_SECS) time.sleep(self.RETRY_SECS) if DEBUG: print "Attempting now..." self.connect() if __name__ == "__main__": agent = Agent() try: agent.start() while True: # agent.check_connection() if not agent.is_connected(): # If agent stops. Start it again. agent.start() except KeyboardInterrupt: print "Manual interruption. Bye!" sys.exit()
40.552822
126
0.554386
26,482
0.945043
0
0
0
0
0
0
6,282
0.224181
469870ae47593eb387aa34d03ce486676acb3094
2,599
py
Python
python/src/learn/lstmSequence.py
kakaba2009/MachineLearning
26b389f8ffb5f3af939dfc9ebfdf2c6b2fc2ae33
[ "Apache-2.0" ]
null
null
null
python/src/learn/lstmSequence.py
kakaba2009/MachineLearning
26b389f8ffb5f3af939dfc9ebfdf2c6b2fc2ae33
[ "Apache-2.0" ]
null
null
null
python/src/learn/lstmSequence.py
kakaba2009/MachineLearning
26b389f8ffb5f3af939dfc9ebfdf2c6b2fc2ae33
[ "Apache-2.0" ]
null
null
null
# LSTM with Variable Length Input Sequences to One Character Output import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils from keras.preprocessing.sequence import pad_sequences from theano.tensor.shared_randomstreams import RandomStreams # fix random seed for reproducibility numpy.random.seed(7) # define the raw dataset alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # create mapping of characters to integers (0-25) and the reverse char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) # prepare the dataset of input to output pairs encoded as integers num_inputs = 16 max_len = 5 dataX = [] dataY = [] for i in range(num_inputs): start = numpy.random.randint(len(alphabet)-2) end = numpy.random.randint(start, min(start+max_len,len(alphabet)-1)) sequence_in = alphabet[start:end+1] sequence_out = alphabet[end + 1] dataX.append([char_to_int[char] for char in sequence_in]) dataY.append(char_to_int[sequence_out]) print( sequence_in, '->', sequence_out ) # convert list of lists to array and pad sequences if needed X = pad_sequences(dataX, maxlen=max_len, dtype='float32') # reshape X to be [samples, time steps, features] X = numpy.reshape(X, (X.shape[0], max_len, 1)) # normalize X = X / float(len(alphabet)) # one hot encode the output variable y = np_utils.to_categorical(dataY) # create and fit the model batch_size = 1 model = Sequential() model.add(LSTM(16, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) for i in range(1): model.fit(X, y, nb_epoch=1, batch_size=batch_size, verbose=2, shuffle=False) model.reset_states() # summarize performance of the model scores = model.evaluate(X, y, batch_size=batch_size, verbose=0) model.reset_states() print("Model Accuracy: %.2f%%" % (scores[1]*100)) # demonstrate some model predictions for i in range(1): pattern_index = numpy.random.randint(len(dataX)) pattern = dataX[pattern_index] x = pad_sequences([pattern], maxlen=max_len, dtype='float32') x = numpy.reshape(x, (1, max_len, 1)) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print( seq_in, "->", result )
41.919355
91
0.719123
0
0
0
0
0
0
0
0
654
0.251635
4699a0bfa6dd1ddc3a1e8897780df54022543382
8,541
py
Python
DATA/prediction/direction/pred_script.py
korcsmarosgroup/ARN2DataBase
8931cec0387e5c8b599df40d652ac5fdb5c49a8f
[ "MIT" ]
null
null
null
DATA/prediction/direction/pred_script.py
korcsmarosgroup/ARN2DataBase
8931cec0387e5c8b599df40d652ac5fdb5c49a8f
[ "MIT" ]
null
null
null
DATA/prediction/direction/pred_script.py
korcsmarosgroup/ARN2DataBase
8931cec0387e5c8b599df40d652ac5fdb5c49a8f
[ "MIT" ]
null
null
null
""" Direction prediction based on learning dataset from reactome PPI direction calculated from domain interaction directions """ # Imports import sqlite3, csv, os import pandas as pd import logging import pickle # # Initiating logger # logger = logging.getLogger() # handler = logging.FileHandler('../../workflow/SLK3.log') # logger.setLevel(logging.DEBUG) # handler.setLevel(logging.DEBUG) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # handler.setFormatter(formatter) # logger.addHandler(handler) class DirScore: def __init__(self): # Defining constants self.REACTOME_DB = '../../SLKlib/mapper/protein/output/reactome_mapped.db' self.PFAM_FILE = ['../prediction/direction/files/uniprot-pfam_human.tab', '../prediction/direction/files/uniprot-pfam_drosi.tab', '../prediction/direction/files/uniprot-pfam_danio.tab', '../prediction/direction/files/uniprot-pfam_celegans.tab'] logging.basicConfig(level=logging.DEBUG) self.pfam_dict = {} self.dir_score_dict = {} # Adding the two output dictionaries of test_score function to a pickle files # so that the next function can access them inbetween script executions # TODO: remove pickle files after each run self.PICKLE_FILE = 'dir_score.pickle' if os.path.isfile(self.PICKLE_FILE): self.pfam_dict, self.dir_score_dict = pickle.load(open(self.PICKLE_FILE, 'rb')) else: self.test_scores() pickle.dump((self.pfam_dict, self.dir_score_dict), open(self.PICKLE_FILE, 'wb')) def test_scores(self): # Setting as global so next script can access it df_all = pd.DataFrame(columns=['a_dom', 'b_dom']) conn = sqlite3.connect(self.REACTOME_DB) # Setting up learning data set logging.debug("Started connection to reactome dataset") for inpfam in self.PFAM_FILE: with open(inpfam) as infile: infile.readline() for line in infile: line = line.strip().split('\t') if len(line) == 4: self.pfam_dict[line[0]] = line[3].split(';')[0:-1] with conn: c = conn.cursor() counter = 0 # Getting PPI data logging.debug('Getting PPI data') c.execute("SELECT interactor_a_node_name, interactor_b_node_name FROM edge") while True: row = c.fetchone() counter += 1 if row is None: break else: a_node = row[0].split(':')[1] b_node = row[1].split(':')[1] if a_node not in self.pfam_dict or b_node not in self.pfam_dict: continue int_list = [self.pfam_dict[a_node], self.pfam_dict[b_node]] for id1, id2 in zip(int_list[0], int_list[1]): # Setting up dataframe for all domain-domain interactions # len(df_all) sets the name of the line df_all = df_all.set_value(len(df_all), col=['a_dom', 'b_dom'], value=[id1, id2]) # All domains in a dataframe, without direction all_domain_df = df_all['a_dom'].append(df_all['b_dom']).reset_index(name='domain') all_count = all_domain_df.groupby('domain').size().reset_index(name='counter') # Getting probability of each domain # Number of domain occurrence / Number of all domains logging.debug('Getting probability of each domain') prob_dom = {} # Number of all domain occurrences total_occurrence = all_count['counter'].sum() # Iterating over domains for index, domain in all_count['domain'].iteritems(): dom_count = all_count.loc[all_count['domain'] == domain, 'counter'].iloc[0] P_domain = dom_count / total_occurrence # Adding data into a dictionary prob_dom[domain] = P_domain #print(domain, P_domain) # Getting directed domain-domain interaction probabilities # Number of directed DDI / number of all DDIs logging.debug('Getting DDI probabilities') prob_inter = {} # Getting the occurrences for each directed interaction all_inter_counted = df_all.groupby(['a_dom', 'b_dom']).size().reset_index(name='counter') all_inter_counter = all_inter_counted['counter'].sum() # Iterating over interactions for index2, count in all_inter_counted['counter'].iteritems(): P_inter = count / all_inter_counter # Getting domain ids a_dom = all_inter_counted.loc[all_inter_counted['counter'] == count, 'a_dom'].iloc[0] b_dom = all_inter_counted.loc[all_inter_counted['counter'] == count, 'b_dom'].iloc[0] # Adding the into a dictionary prob_inter['->'.join((a_dom, b_dom))] = P_inter # Calculating direction score # (P_AtoB - P_BtoA) / P_A * P_B logging.debug('Calculating direction scores') for key in prob_inter.keys(): a = key.split('->')[0] b = key.split('->')[1] other_dir = '->'.join((b, a)) if other_dir in prob_inter.keys(): dir_score = (prob_inter[key] - prob_inter[other_dir]) / prob_dom[a] * prob_dom[b] self.dir_score_dict[key] = dir_score else: dir_score = (prob_inter[key] - 0) / prob_dom[a] * prob_dom[b] self.dir_score_dict[key] = dir_score #print(key, dir_score) #return self.dir_score_dict, self.pfam_dict # LAYER 3 def apply_to_db(self): #logger.debug(self.pfam_dict) #logger.debug(self.dir_score_dict) conn2 = sqlite3.connect('SLK3_layers.db') # logger.debug("Connected to '%s" % conn2) with conn2: c2 = conn2.cursor() c22 = conn2.cursor() c2.execute("SELECT interactor_a_node_name, interactor_b_node_name FROM ATG_Reg") while True: row = c2.fetchone() if row is None: break else: prot_a = row[0].split(':')[1] prot_b = row[1].split(':')[1] dir_score_sum = 0 # Summing DDI scores #logging.debug('Summing DDI scores') if prot_a in self.pfam_dict.keys() and prot_b in self.pfam_dict.keys(): for dom_a, dom_b in zip(self.pfam_dict[prot_a], self.pfam_dict[prot_b]): #print(dir_score_dict['->'.join((dom_a, dom_b))]) if '->'.join((dom_a, dom_b)) in self.dir_score_dict.keys(): dir_score_sum += self.dir_score_dict['->'.join((dom_a, dom_b))] # To get final direction score of the unknown PPIs we calculate # the average of each proteins' all domain interaction scores if len(self.pfam_dict[prot_a]) * len(self.pfam_dict[prot_b]) == 0: logging.debug(prot_a, len(self.pfam_dict[prot_a]), prot_b, len(self.pfam_dict[prot_b])) continue else: dir_score_final_PPI = dir_score_sum / (len(self.pfam_dict[prot_a]) * len(self.pfam_dict[prot_b])) #logging.debug("Updating scores") c22.execute("UPDATE ATG_Reg SET confidence_scores = '%s' " "WHERE ATG_Reg.interactor_a_node_name = '%s' AND ATG_Reg.interactor_b_node_name = '%s'" % ('|dir_pred:' + str(dir_score_final_PPI), row[0], row[1])) if __name__ == '__main__': test = DirScore() logger.debug('Creating test set') test.test_scores() logger.debug('Adding scores to dataset') test.apply_to_db() logger.debug('Direction prediction done')
45.673797
125
0.550872
7,764
0.909027
0
0
0
0
0
0
2,892
0.338602
4699a1827567dd51a8a50f85f10e57138d48a545
1,398
py
Python
src/main.py
vcodrins/json_to_folder
3e07259b1c5757587a5235b2412441d87607597f
[ "MIT" ]
null
null
null
src/main.py
vcodrins/json_to_folder
3e07259b1c5757587a5235b2412441d87607597f
[ "MIT" ]
null
null
null
src/main.py
vcodrins/json_to_folder
3e07259b1c5757587a5235b2412441d87607597f
[ "MIT" ]
null
null
null
import json import os.path import sys from exceptions import * from create_folder_structure import create_folder_structure def main(): try: if len(sys.argv) != 3: raise InvalidArgumentCount if not os.path.exists(sys.argv[2]): raise InvalidFilePath if not os.path.exists(sys.argv[1]): raise InvalidFolderPath try: json_object = json.load(open(sys.argv[2])) except ValueError: raise InvalidJsonFile output_folder = sys.argv[1] create_folder_structure(output_folder, json_object) except InvalidArgumentCount: print(""" Invalid number of arguments Please make sure to use quotes for outputFolder and jsonFile if path includes spaces Valid paths may be: "file.json" "./file.json" "folder/file.json" "./folder/file.json" "absolute/path/to/file.json" Usage: main.py "<outputFolder>" "<jsonFile>" """) except InvalidFolderPath: print(""" Output folder does not exist """) except InvalidFilePath: print(""" Input json file does not exist """) except InvalidJsonFile: print(""" Input json file is invalid """) main()
26.884615
96
0.556509
0
0
0
0
0
0
0
0
607
0.434192
469a1ea0ba86db2759c0a614f1ca8112b547ba08
277
py
Python
app/conftest.py
hbyyy/newsmailing
53f7bbff438a5dcd19708dc8738d4407d156dd7f
[ "MIT" ]
null
null
null
app/conftest.py
hbyyy/newsmailing
53f7bbff438a5dcd19708dc8738d4407d156dd7f
[ "MIT" ]
7
2020-06-19T15:32:07.000Z
2021-08-23T20:49:39.000Z
app/conftest.py
hbyyy/newsmailing
53f7bbff438a5dcd19708dc8738d4407d156dd7f
[ "MIT" ]
null
null
null
from datetime import timedelta import pytest from model_bakery import baker @pytest.fixture() def create_expire_user(): def make_user(**kwargs): user = baker.make('members.User') user.created -= timedelta(days=4) return user return make_user
19.785714
41
0.693141
0
0
0
0
197
0.711191
0
0
14
0.050542
469ba49461fc882de80bb1d478b0aec8c3c11361
3,952
py
Python
src/SecurityDecorator.py
JanCwik/SoftwarePraktikum
d4a2b196f21a5379188cb78b31c59d69f739964f
[ "RSA-MD" ]
7
2020-05-18T14:20:17.000Z
2020-07-27T17:37:38.000Z
src/SecurityDecorator.py
JanCwik/SoftwarePraktikum
d4a2b196f21a5379188cb78b31c59d69f739964f
[ "RSA-MD" ]
null
null
null
src/SecurityDecorator.py
JanCwik/SoftwarePraktikum
d4a2b196f21a5379188cb78b31c59d69f739964f
[ "RSA-MD" ]
2
2020-05-18T14:20:22.000Z
2020-07-27T17:37:05.000Z
from flask import request from google.auth.transport import requests import google.oauth2.id_token from server.ApplikationsAdministration import ApplikationsAdministration #Benutzer.py, BenutzerMapper + BenutzerMethoden in ApplikationsAdministration def secured(function): """Decorator zur Google Firebase-basierten Authentifizierung von Benutzern Da es sich bei diesem System um eine basale Fallstudie zu Lehrzwecken handelt, wurde hier bewusst auf ein ausgefeiltes Berechtigungskonzept verzichtet. Vielmehr soll dieses Decorator einen Weg aufzeigen, wie man technisch mit vertretbarem Aufwand in eine Authentifizierung einsteigen kann. POLICY: Die hier demonstrierte Policy ist, dass jeder, der einen durch Firebase akzeptierten Account besitzt, sich an diesem System anmelden kann. Bei jeder Anmeldung werden Klarname, Mail-Adresse sowie die Google User ID in unserem System gespeichert bzw. geupdated. Auf diese Weise könnte dann für eine Erweiterung des Systems auf jene Daten zurückgegriffen werden. """ firebase_request_adapter = requests.Request() def wrapper(*args, **kwargs): # Verify Firebase auth. id_token = request.cookies.get("token") error_message = None claims = None objects = None if id_token: try: # Verify the token against the Firebase Auth API. This example # verifies the token on each page load. For improved performance, # some applications may wish to cache results in an encrypted # session store (see for instance # http://flask.pocoo.org/docs/1.0/quickstart/#sessions). claims = google.oauth2.id_token.verify_firebase_token( id_token, firebase_request_adapter) if claims is not None: adm = ApplikationsAdministration() google_user_id = claims.get("user_id") email = claims.get("email") name = claims.get("name") user = adm.get_user_by_google_user_id(google_user_id) # Benennen wie in ApplikationsAdministration if user is not None: """Fall: Der Benutzer ist unserem System bereits bekannt. Wir gehen davon aus, dass die google_user_id sich nicht ändert. Wohl aber können sich der zugehörige Klarname (name) und die E-Mail-Adresse ändern. Daher werden diese beiden Daten sicherheitshalber in unserem System geupdated.""" user.set_name(name) user.set_email(email) adm.update_benutzer(user) #set_name und set_email benennen wie in Benutzer.py #adm.save-user benennen wie in ApplikationsAdministration.py else: """Fall: Der Benutzer war bislang noch nicht eingelogged. Wir legen daher ein neues User-Objekt an, um dieses ggf. später nutzen zu können. """ user = adm.benutzer_anlegen(name, email, google_user_id) #Benennen wie in ApplikationsAdministration print(request.method, request.path, "angefragt durch:", name, email) objects = function(*args, **kwargs) return objects else: return '', 401 # UNAUTHORIZED !!! except ValueError as exc: # This will be raised if the token is expired or any other # verification checks fail. error_message = str(exc) return exc, 401 # UNAUTHORIZED !!! return '', 401 # UNAUTHORIZED !!! return wrapper
45.953488
97
0.603492
0
0
0
0
0
0
0
0
2,147
0.542035
469bf8d9da5f7e85ca99597046844afc1b477cd9
213
py
Python
code/django18/django18/newsletter/forms.py
dvl/celerytalk
312de04ea24bb073357684a3a35cfd782b2b7aae
[ "MIT" ]
null
null
null
code/django18/django18/newsletter/forms.py
dvl/celerytalk
312de04ea24bb073357684a3a35cfd782b2b7aae
[ "MIT" ]
null
null
null
code/django18/django18/newsletter/forms.py
dvl/celerytalk
312de04ea24bb073357684a3a35cfd782b2b7aae
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django import forms class NewsletterForm(forms.Form): assunto = forms.CharField() mensagem = forms.CharField(widget=forms.Textarea)
19.363636
53
0.737089
119
0.558685
0
0
0
0
0
0
23
0.107981
469d18528989ab40a67eb477eeda37c2533ddfd8
5,448
py
Python
RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Fall17_noIso_V1_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Fall17_noIso_V1_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Fall17_noIso_V1_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms from RecoEgamma.ElectronIdentification.Identification.mvaElectronID_tools import * # Documentation of the MVA # https://twiki.cern.ch/twiki/bin/viewauth/CMS/MultivariateElectronIdentificationRun2 # https://rembserj.web.cern.ch/rembserj/notes/Electron_MVA_ID_2017_documentation # # In this file we define the locations of the MVA weights, cuts on the MVA values # for specific working points, and configure those cuts in VID # # The tag is an extra string attached to the names of the products # such as ValueMaps that needs to distinguish cases when the same MVA estimator # class is used with different tuning/weights mvaTag = "Fall17NoIsoV1" # There are 6 categories in this MVA. They have to be configured in this strict order # (cuts and weight files order): # 0 EB1 (eta<0.8) pt 5-10 GeV | pt < ptSplit && |eta| < ebSplit # 1 EB2 (eta>=0.8) pt 5-10 GeV | pt < ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 2 EE pt 5-10 GeV | pt < ptSplit && |eta| >= ebeeSplit # 3 EB1 (eta<0.8) pt 10-inf GeV | pt >= ptSplit && |eta| < ebSplit # 4 EB2 (eta>=0.8) pt 10-inf GeV | pt >= ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 5 EE pt 10-inf GeV | pt >= ptSplit && |eta| >= ebeeSplit mvaFall17WeightFiles_V1 = cms.vstring( "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_10_2017_puinfo_BDT.weights.xml.gz" ) ## The working point for this MVA that is expected to have about 90% signal # WP tuned to give about 90 and 80% signal efficiecny for electrons from Drell-Yan with pT > 25 GeV # The working point for the low pt categories is just taken over from the high pt idName90 = "mvaEleID-Fall17-noIso-V1-wp90" MVA_WP90 = EleMVA_WP( idName = idName90, mvaTag = mvaTag, cutCategory0 = "0.9165112826974601 - exp(-pt / 2.7381703555094217) * 1.03549199648109", # EB1 low pt cutCategory1 = "0.8655738322220173 - exp(-pt / 2.4027944652597073) * 0.7975615613282494", # EB2 low pt cutCategory2 = "-3016.035055227131 - exp(-pt / -52140.61856333602) * -3016.3029387236506", # EE low pt cutCategory3 = "0.9616542816132922 - exp(-pt / 8.757943837889817) * 3.1390200321591206", # EB1 cutCategory4 = "0.9319258011430132 - exp(-pt / 8.846057432565809) * 3.5985063793347787", # EB2 cutCategory5 = "0.8899260780999244 - exp(-pt / 10.124234115859881) * 4.352791250718547", # EE ) idName80 = "mvaEleID-Fall17-noIso-V1-wp80" MVA_WP80 = EleMVA_WP( idName = idName80, mvaTag = mvaTag, cutCategory0 = "0.9530240956555949 - exp(-pt / 2.7591425841003647) * 0.4669644718545271", # EB1 low pt cutCategory1 = "0.9336564763961019 - exp(-pt / 2.709276284272272) * 0.33512286599215946", # EB2 low pt cutCategory2 = "0.9313133688365339 - exp(-pt / 1.5821934800715558) * 3.8889462619659265", # EE low pt cutCategory3 = "0.9825268564943458 - exp(-pt / 8.702601455860762) * 1.1974861596609097", # EB1 cutCategory4 = "0.9727509457929913 - exp(-pt / 8.179525631018565) * 1.7111755094657688", # EB2 cutCategory5 = "0.9562619539540145 - exp(-pt / 8.109845366281608) * 3.013927699126942", # EE ) ### WP tuned for HZZ analysis with very high efficiency (about 98%) # The working points were found by requiring the same signal efficiencies in # each category as for the Spring 16 HZZ ID # (see RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Spring16_HZZ_V1_cff.py) idNamewpLoose = "mvaEleID-Fall17-noIso-V1-wpLoose" MVA_WPLoose = EleMVA_WP( idName = idNamewpLoose, mvaTag = mvaTag, cutCategory0 = "-0.13285867293779202", # EB1 low pt cutCategory1 = "-0.31765300958836074", # EB2 low pt cutCategory2 = "-0.0799205914718861" , # EE low pt cutCategory3 = "-0.856871961305474" , # EB1 cutCategory4 = "-0.8107642141584835" , # EB2 cutCategory5 = "-0.7179265933023059" # EE ) # # Finally, set up VID configuration for all cuts # # Create the PSet that will be fed to the MVA value map producer mvaEleID_Fall17_noIso_V1_producer_config = cms.PSet( mvaName = cms.string(mvaClassName), mvaTag = cms.string(mvaTag), # Category parameters nCategories = cms.int32(6), categoryCuts = cms.vstring(*EleMVA_6CategoriesCuts), # Weight files and variable definitions weightFileNames = mvaFall17WeightFiles_V1, variableDefinition = cms.string("RecoEgamma/ElectronIdentification/data/ElectronMVAEstimatorRun2Fall17V1Variables.txt") ) # Create the VPset's for VID cuts mvaEleID_Fall17_V1_wpLoose = configureVIDMVAEleID( MVA_WPLoose ) mvaEleID_Fall17_V1_wp90 = configureVIDMVAEleID( MVA_WP90 ) mvaEleID_Fall17_V1_wp80 = configureVIDMVAEleID( MVA_WP80 ) mvaEleID_Fall17_V1_wpLoose.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp90.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp80.isPOGApproved = cms.untracked.bool(True)
54.48
124
0.727423
0
0
0
0
0
0
0
0
3,794
0.696402
469d299beef21a4f12403e1476091e6f816d16ea
1,676
py
Python
dqn_plus/notebooks/code/train_ram.py
hadleyhzy34/reinforcement_learning
14371756c2ff8225dc800d146452b7956875410c
[ "MIT" ]
null
null
null
dqn_plus/notebooks/code/train_ram.py
hadleyhzy34/reinforcement_learning
14371756c2ff8225dc800d146452b7956875410c
[ "MIT" ]
null
null
null
dqn_plus/notebooks/code/train_ram.py
hadleyhzy34/reinforcement_learning
14371756c2ff8225dc800d146452b7956875410c
[ "MIT" ]
null
null
null
import numpy as np import gym from utils import * from agent import * from config import * def train(env, agent, num_episode, eps_init, eps_decay, eps_min, max_t): rewards_log = [] average_log = [] eps = eps_init for i in range(1, 1 + num_episode): episodic_reward = 0 done = False state = env.reset() t = 0 while not done and t < max_t: t += 1 state = state.reshape(1, -1) action = agent.act(state, eps) next_state, reward, done, _ = env.step(action) agent.memory.remember(state, action, reward, next_state, done) if t % 4 == 0 and len(agent.memory) >= agent.bs: agent.learn() agent.soft_update(agent.tau) state = next_state.copy() episodic_reward += reward rewards_log.append(episodic_reward) average_log.append(np.mean(rewards_log[-100:])) print('\rEpisode {}, Reward {:.3f}, Average Reward {:.3f}'.format(i, episodic_reward, average_log[-1]), end='') if i % 100 == 0: print() eps = max(eps * eps_decay, eps_min) return rewards_log, average_log if __name__ == '__main__': env = gym.make(RAM_ENV_NAME) agent = Agent(env.observation_space.shape[0], env.action_space.n, BATCH_SIZE, LEARNING_RATE, TAU, GAMMA, DEVICE, False, DUEL, DOUBLE, PRIORITIZED) rewards_log, _ = train(env, agent, RAM_NUM_EPISODE, EPS_INIT, EPS_DECAY, EPS_MIN, MAX_T) np.save('{}_rewards.npy'.format(RAM_ENV_NAME), rewards_log) agent.Q_local.to('cpu') torch.save(agent.Q_local.state_dict(), '{}_weights.pth'.format(RAM_ENV_NAME))
33.52
150
0.613365
0
0
0
0
0
0
0
0
101
0.060263
469d44404e5e5089163e7fb2cbe8fd08587f00ec
4,274
py
Python
tools/parallel_launcher/parallel_launcher.py
Gitman1989/chromium
2b1cceae1075ef012fb225deec8b4c8bbe4bc897
[ "BSD-3-Clause" ]
2
2017-09-02T19:08:28.000Z
2021-11-15T15:15:14.000Z
tools/parallel_launcher/parallel_launcher.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
null
null
null
tools/parallel_launcher/parallel_launcher.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2020-11-04T07:22:28.000Z
2020-11-04T07:22:28.000Z
#!/usr/bin/python # Copyright (c) 2010 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ This tool launches several shards of a gtest-based binary in parallel on a local machine. Example usage: parallel_launcher.py path/to/base_unittests """ import optparse import os import subprocess import sys import threading import time def StreamCopyWindows(stream_from, stream_to): """Copies stream_from to stream_to.""" while True: buf = stream_from.read(1024) if not buf: break stream_to.write(buf) stream_to.flush() def StreamCopyPosix(stream_from, stream_to, child_exited): """ Copies stream_from to stream_to, and exits if child_exited is signaled. """ import fcntl # Put the source stream in a non-blocking mode, so we can check # child_exited when there is no data. fd = stream_from.fileno() fl = fcntl.fcntl(fd, fcntl.F_GETFL) fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK) while True: try: buf = os.read(fd, 1024) except OSError, e: if e.errno == 11: if child_exited.isSet(): break time.sleep(0.1) continue raise if not buf: break stream_to.write(buf) stream_to.flush() class TestLauncher(object): def __init__(self, args, executable, num_shards, shard): self._args = args self._executable = executable self._num_shards = num_shards self._shard = shard self._test = None def launch(self): env = os.environ.copy() env['CHROME_LOG_FILE'] = 'chrome_log_%d' % self._shard if 'GTEST_TOTAL_SHARDS' in env: # Handle the requested sharding transparently. outer_shards = int(env['GTEST_TOTAL_SHARDS']) outer_index = int(env['GTEST_SHARD_INDEX']) env['GTEST_TOTAL_SHARDS'] = str(self._num_shards * outer_shards) # Calculate the right shard index to pass to the child. This is going # to be a shard of a shard. env['GTEST_SHARD_INDEX'] = str((self._num_shards * outer_index) + self._shard) else: env['GTEST_TOTAL_SHARDS'] = str(self._num_shards) env['GTEST_SHARD_INDEX'] = str(self._shard) args = self._args + ['--test-server-shard=' + str(self._shard)] self._test = subprocess.Popen(args=args, executable=self._executable, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) def wait(self): if subprocess.mswindows: stdout_thread = threading.Thread( target=StreamCopyWindows, args=[self._test.stdout, sys.stdout]) stdout_thread.start() code = self._test.wait() stdout_thread.join() return code else: child_exited = threading.Event() stdout_thread = threading.Thread( target=StreamCopyPosix, args=[self._test.stdout, sys.stdout, child_exited]) stdout_thread.start() code = self._test.wait() child_exited.set() stdout_thread.join() return code def main(argv): parser = optparse.OptionParser() parser.add_option("--shards", type="int", dest="shards", default=10) # Make it possible to pass options to the launched process. # Options for parallel_launcher should be first, then the binary path, # and finally - optional arguments for the launched binary. parser.disable_interspersed_args() options, args = parser.parse_args(argv) if not args: print 'You must provide path to the test binary' return 1 env = os.environ if bool('GTEST_TOTAL_SHARDS' in env) != bool('GTEST_SHARD_INDEX' in env): print 'Inconsistent environment. GTEST_TOTAL_SHARDS and GTEST_SHARD_INDEX' print 'should either be both defined, or both undefined.' return 1 launchers = [] for shard in range(options.shards): launcher = TestLauncher(args, args[0], options.shards, shard) launcher.launch() launchers.append(launcher) return_code = 0 for launcher in launchers: if launcher.wait() != 0: return_code = 1 return return_code if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
27.574194
78
0.656996
1,873
0.438231
0
0
0
0
0
0
1,315
0.307674
469e17c0eac34c546af54d506129856bf3802b70
83
py
Python
05_Practice1/Step06/yj.py
StudyForCoding/BEAKJOON
84e1c5e463255e919ccf6b6a782978c205420dbf
[ "MIT" ]
null
null
null
05_Practice1/Step06/yj.py
StudyForCoding/BEAKJOON
84e1c5e463255e919ccf6b6a782978c205420dbf
[ "MIT" ]
3
2020-11-04T05:38:53.000Z
2021-03-02T02:15:19.000Z
05_Practice1/Step06/yj.py
StudyForCoding/BEAKJOON
84e1c5e463255e919ccf6b6a782978c205420dbf
[ "MIT" ]
null
null
null
a = int(input()) for i in range(a): print('* '*(a-a//2)) print(' *'*(a//2))
20.75
24
0.433735
0
0
0
0
0
0
0
0
8
0.096386
469f11caff52684e1427825fdf274cfe729dc55b
231
py
Python
greydot/errors.py
TralahM/greydot-api
34982c34bf878b2728e934147ca4ea38a78523e4
[ "MIT" ]
null
null
null
greydot/errors.py
TralahM/greydot-api
34982c34bf878b2728e934147ca4ea38a78523e4
[ "MIT" ]
null
null
null
greydot/errors.py
TralahM/greydot-api
34982c34bf878b2728e934147ca4ea38a78523e4
[ "MIT" ]
null
null
null
class NoMessageRecipients(Exception): """ Raised when Message Recipients are not specified. """ pass class InvalidAmount(Exception): """ Raised when an invalid currency amount is specified """ pass
19.25
55
0.666667
228
0.987013
0
0
0
0
0
0
132
0.571429
469f233747542475f293cc21f8824a73074353c6
7,176
py
Python
ginga/util/dp.py
kyraikeda/ginga
e0ce979de4a87e12ba7a90eec0517a0be05d14bc
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
76
2015-01-05T14:46:14.000Z
2022-03-23T04:10:54.000Z
ginga/util/dp.py
kyraikeda/ginga
e0ce979de4a87e12ba7a90eec0517a0be05d14bc
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
858
2015-01-17T01:55:12.000Z
2022-03-08T20:20:31.000Z
ginga/util/dp.py
kyraikeda/ginga
e0ce979de4a87e12ba7a90eec0517a0be05d14bc
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
60
2015-01-14T21:59:07.000Z
2022-02-13T03:38:49.000Z
# # dp.py -- Data pipeline and reduction routines # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import numpy as np from collections import OrderedDict from ginga import AstroImage, colors from ginga.RGBImage import RGBImage from ginga.util import wcs # counter used to name anonymous images prefixes = dict(dp=0) def get_image_name(image, pfx='dp'): global prefixes name = image.get('name', None) if name is None: if pfx not in prefixes: prefixes[pfx] = 0 name = '{0}{1:d}'.format(pfx, prefixes[pfx]) prefixes[pfx] += 1 image.set(name=name) return name def make_image(data_np, oldimage, header, pfx='dp'): # Prepare a new image with the numpy array as data image = AstroImage.AstroImage() image.set_data(data_np) # Set the header to be the old image header updated # with items from the new header oldhdr = oldimage.get_header() oldhdr.update(header) image.update_keywords(oldhdr) # give the image a name get_image_name(image, pfx=pfx) return image def create_blank_image(ra_deg, dec_deg, fov_deg, px_scale, rot_deg, cdbase=[1, 1], dtype=None, logger=None, pfx='dp', mmap_path=None, mmap_mode='w+'): # ra and dec in traditional format ra_txt = wcs.raDegToString(ra_deg, format='%02d:%02d:%06.3f') dec_txt = wcs.decDegToString(dec_deg, format='%s%02d:%02d:%05.2f') if np.isscalar(px_scale): px_wd_scale, px_ht_scale = (px_scale, px_scale) else: px_wd_scale, px_ht_scale = px_scale # Create an empty image if np.isscalar(fov_deg): fov_wd_deg, fov_ht_deg = (fov_deg, fov_deg) else: fov_wd_deg, fov_ht_deg = fov_deg width = int(round(fov_wd_deg / px_wd_scale)) height = int(round(fov_ht_deg / px_ht_scale)) # round to an even size if width % 2 != 0: width += 1 if height % 2 != 0: height += 1 if dtype is None: dtype = np.float32 if mmap_path is None: data = np.zeros((height, width), dtype=dtype) else: data = np.memmap(mmap_path, dtype=dtype, mode=mmap_mode, shape=(height, width)) crpix1 = float(width // 2) crpix2 = float(height // 2) header = OrderedDict((('SIMPLE', True), ('BITPIX', -32), ('EXTEND', True), ('NAXIS', 2), ('NAXIS1', width), ('NAXIS2', height), ('RA', ra_txt), ('DEC', dec_txt), ('EQUINOX', 2000.0), ('OBJECT', 'MOSAIC'), ('LONPOLE', 180.0), )) # Add basic WCS keywords wcshdr = wcs.simple_wcs(crpix1, crpix2, ra_deg, dec_deg, (px_wd_scale, px_ht_scale), rot_deg, cdbase=cdbase) header.update(wcshdr) # Create image container image = AstroImage.AstroImage(data, logger=logger) image.update_keywords(header) # give the image a name get_image_name(image, pfx=pfx) return image def recycle_image(image, ra_deg, dec_deg, fov_deg, px_scale, rot_deg, cdbase=[1, 1], logger=None, pfx='dp'): # ra and dec in traditional format ra_txt = wcs.raDegToString(ra_deg, format='%02d:%02d:%06.3f') dec_txt = wcs.decDegToString(dec_deg, format='%s%02d:%02d:%05.2f') header = image.get_header() pointing = OrderedDict((('RA', ra_txt), ('DEC', dec_txt), )) header.update(pointing) # Update WCS keywords and internal wcs objects wd, ht = image.get_size() crpix1 = wd // 2 crpix2 = ht // 2 wcshdr = wcs.simple_wcs(crpix1, crpix2, ra_deg, dec_deg, px_scale, rot_deg, cdbase=cdbase) header.update(wcshdr) # this should update the wcs image.update_keywords(header) # zero out data array data = image.get_data() data.fill(0) ## # Create new image container sharing same data ## new_image = AstroImage.AstroImage(data, logger=logger) ## new_image.update_keywords(header) ## # give the image a name ## get_image_name(new_image, pfx=pfx) new_image = image return new_image def make_flat(imglist, bias=None): flats = [image.get_data() for image in imglist] flatarr = np.array(flats) # Take the median of the individual frames flat = np.median(flatarr, axis=0) # Normalize flat # mean or median? #norm = np.mean(flat.flat) norm = np.median(flat.flat) flat = flat / norm # no zero divisors flat[flat == 0.0] = 1.0 img_flat = make_image(flat, imglist[0], {}, pfx='flat') return img_flat def make_bias(imglist): biases = [image.get_data() for image in imglist] biasarr = np.array(biases) # Take the median of the individual frames bias = np.median(biasarr, axis=0) img_bias = make_image(bias, imglist[0], {}, pfx='bias') return img_bias def add(image1, image2): data1_np = image1.get_data() data2_np = image2.get_data() result = data1_np + data2_np image = make_image(result, image1, {}, pfx='add') return image def subtract(image1, image2): data1_np = image1.get_data() data2_np = image2.get_data() result = data1_np - data2_np image = make_image(result, image1, {}, pfx='sub') return image def divide(image1, image2): data1_np = image1.get_data() data2_np = image2.get_data() result = data1_np / data2_np image = make_image(result, image1, {}, pfx='div') return image # https://gist.github.com/stscieisenhamer/25bf6287c2c724cb9cc7 def masktorgb(mask, color='lightgreen', alpha=1.0): """Convert boolean mask to RGB image object for canvas overlay. Parameters ---------- mask : ndarray Boolean mask to overlay. 2D image only. color : str Color name accepted by Ginga. alpha : float Opacity. Unmasked data are always transparent. Returns ------- rgbobj : RGBImage RGB image for canvas Image object. Raises ------ ValueError Invalid mask dimension. """ mask = np.asarray(mask) if mask.ndim != 2: raise ValueError('ndim={0} is not supported'.format(mask.ndim)) ht, wd = mask.shape r, g, b = colors.lookup_color(color) rgbobj = RGBImage(data_np=np.zeros((ht, wd, 4), dtype=np.uint8)) rc = rgbobj.get_slice('R') gc = rgbobj.get_slice('G') bc = rgbobj.get_slice('B') ac = rgbobj.get_slice('A') ac[:] = 0 # Transparent background rc[mask] = int(r * 255) gc[mask] = int(g * 255) bc[mask] = int(b * 255) ac[mask] = int(alpha * 255) # For debugging #rgbobj.save_as_file('ztmp_rgbobj.png') return rgbobj def split_n(lst, sz): n = len(lst) k, m = n // sz, n % sz return [lst[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(sz)] # END
27.181818
72
0.593924
0
0
0
0
0
0
0
0
1,890
0.263378
469f5e5ed924f088a814fc16a98e14d55994cdf9
3,294
py
Python
jigsaw/datasets/datasets.py
alexvishnevskiy/jigsaw
7fc2c4cd3700a54e9c5cbc02870bf4057b0a9fe3
[ "MIT" ]
null
null
null
jigsaw/datasets/datasets.py
alexvishnevskiy/jigsaw
7fc2c4cd3700a54e9c5cbc02870bf4057b0a9fe3
[ "MIT" ]
null
null
null
jigsaw/datasets/datasets.py
alexvishnevskiy/jigsaw
7fc2c4cd3700a54e9c5cbc02870bf4057b0a9fe3
[ "MIT" ]
null
null
null
from torch.utils.data import Dataset from ..utils.optimal_lenght import find_optimal_lenght class PairedDataset(Dataset): def __init__( self, df, cfg, tokenizer, more_toxic_col='more_toxic', less_toxic_col='less_toxic' ): self.df = df self.cfg = cfg self.tokenizer = tokenizer self.more_toxic = df[more_toxic_col].values self.less_toxic = df[less_toxic_col].values self.more_toxic_max_lenght = find_optimal_lenght( df, tokenizer, more_toxic_col, cfg.max_length ) self.less_toxic_max_lenght = find_optimal_lenght( df, tokenizer, less_toxic_col, cfg.max_length ) def __len__(self): return len(self.df) def __getitem__(self, index): more_toxic = self.more_toxic[index] less_toxic = self.less_toxic[index] inputs_more_toxic = self.tokenizer.encode_plus( more_toxic, truncation=True, max_length=self.more_toxic_max_lenght, add_special_tokens=True, ) inputs_less_toxic = self.tokenizer.encode_plus( less_toxic, truncation=True, max_length=self.less_toxic_max_lenght, add_special_tokens=True, ) target = 1 more_toxic_ids = inputs_more_toxic['input_ids'] more_toxic_mask = inputs_more_toxic['attention_mask'] less_toxic_ids = inputs_less_toxic['input_ids'] less_toxic_mask = inputs_less_toxic['attention_mask'] return { 'more_toxic_ids': more_toxic_ids, 'more_toxic_mask': more_toxic_mask, 'less_toxic_ids': less_toxic_ids, 'less_toxic_mask': less_toxic_mask, 'target': target } class RegressionDataset(Dataset): def __init__(self, df, cfg, tokenizer, text_col, target_col = None): self.df = df self.cfg = cfg self.tokenizer = tokenizer self.X = df[text_col].values self.target_col = target_col self.max_lenght = find_optimal_lenght( df, tokenizer, text_col, cfg.max_length ) if target_col is not None: self.y = df[target_col].values def __len__(self): return len(self.df) def __getitem__(self, index): text = self.X[index] if self.target_col is not None: target = self.y[index] inputs = self.tokenizer.encode_plus( text, truncation=True, max_length=self.max_lenght, add_special_tokens=True, ) ids = inputs['input_ids'] mask = inputs['attention_mask'] if self.target_col is not None: return { 'input_ids': ids, 'attention_mask': mask, 'target': target } else: return { 'input_ids': ids, 'attention_mask': mask }
31.673077
70
0.532483
3,197
0.970553
0
0
0
0
0
0
241
0.073163
46a0c78276633a2a5a223df91b47b5f7924ae094
66
py
Python
packaging/pack1/andrew_mod1.py
AndreiHondrari/python_exploration
cb4ac0b92ddc48c322201ba31cd6e7c5ee6af06d
[ "MIT" ]
3
2019-05-04T12:19:09.000Z
2019-08-30T07:12:31.000Z
packaging/pack1/build/lib/mymod1.py
AndreiHondrari/python_exploration
cb4ac0b92ddc48c322201ba31cd6e7c5ee6af06d
[ "MIT" ]
null
null
null
packaging/pack1/build/lib/mymod1.py
AndreiHondrari/python_exploration
cb4ac0b92ddc48c322201ba31cd6e7c5ee6af06d
[ "MIT" ]
null
null
null
def something() -> None: print("Andrew says: `something`.")
13.2
38
0.606061
0
0
0
0
0
0
0
0
27
0.409091
46a1c447600050372f1c46ddc6ed6f7e8c87b183
117
py
Python
app/api/v2/views/blacklist.py
MaggieChege/STORE-MANAGER-API-V2
d8b2c7312304df627369721e8e1821cf724431d7
[ "MIT" ]
null
null
null
app/api/v2/views/blacklist.py
MaggieChege/STORE-MANAGER-API-V2
d8b2c7312304df627369721e8e1821cf724431d7
[ "MIT" ]
null
null
null
app/api/v2/views/blacklist.py
MaggieChege/STORE-MANAGER-API-V2
d8b2c7312304df627369721e8e1821cf724431d7
[ "MIT" ]
null
null
null
blacklist=set() def get_blacklist(): return blacklist def add_to_blacklist(jti): return blacklist.add(jti)
14.625
29
0.735043
0
0
0
0
0
0
0
0
0
0
46a2b9041cbdb5a67a2d23664c83d5328cdf8c09
260
py
Python
apps/tasks/api/views.py
dayvidemerson/django-rest-example
85eabb1e154cfd8ebc0019080b37cd3f1302c206
[ "MIT" ]
null
null
null
apps/tasks/api/views.py
dayvidemerson/django-rest-example
85eabb1e154cfd8ebc0019080b37cd3f1302c206
[ "MIT" ]
null
null
null
apps/tasks/api/views.py
dayvidemerson/django-rest-example
85eabb1e154cfd8ebc0019080b37cd3f1302c206
[ "MIT" ]
null
null
null
from rest_framework import viewsets from rest_framework import generics from ..models import Task from .serializers import TaskSerializer class TaskViewSet(viewsets.ModelViewSet): serializer_class = TaskSerializer queryset = Task.objects.all()
21.666667
41
0.796154
113
0.434615
0
0
0
0
0
0
0
0
46a39565f7364f7f1fb4b269da3328cdcc2b0021
97
py
Python
jarvis/__init__.py
jduncan8142/JARVIS
387003bc00cea2ca74d7094a92e55eab593a968a
[ "MIT" ]
null
null
null
jarvis/__init__.py
jduncan8142/JARVIS
387003bc00cea2ca74d7094a92e55eab593a968a
[ "MIT" ]
null
null
null
jarvis/__init__.py
jduncan8142/JARVIS
387003bc00cea2ca74d7094a92e55eab593a968a
[ "MIT" ]
null
null
null
__version__ = "0.0.3" __author__ = "Jason Duncan" __support__ = "[email protected]"
24.25
46
0.742268
0
0
0
0
0
0
0
0
53
0.546392
46a4d57f3c07a504c88eba6e3644cc933118a8c3
1,798
py
Python
src/figcli/test/cli/action.py
figtools/figgy-cli
88f4ccb8221ef9734f95b2637acfacc6e00983e7
[ "Apache-2.0" ]
36
2020-07-21T21:22:02.000Z
2021-10-20T06:55:47.000Z
src/figcli/test/cli/action.py
figtools/figgy-cli
88f4ccb8221ef9734f95b2637acfacc6e00983e7
[ "Apache-2.0" ]
2
2020-10-29T12:49:15.000Z
2021-04-29T01:12:05.000Z
src/figcli/test/cli/action.py
figtools/figgy-cli
88f4ccb8221ef9734f95b2637acfacc6e00983e7
[ "Apache-2.0" ]
null
null
null
from typing import Union, List import pexpect from figcli.utils.utils import Utils import sys class FiggyAction: """ Actions prevent cyclic dependencies, and are designed for leveraging FiggyCli for cleanup steps when running inside of tests. """ def __init__(self, command, extra_args=""): self.c = Utils.default_colors() self.command = command self.extra_args = extra_args self._child = self.spawn(command) print(f"{self.c.fg_yl}Executing action: {self._child.args}{self.c.rs}") self._child.logfile = sys.stdout self._child.delaybeforesend = .5 def spawn(self, command: str): return pexpect.spawn(command, timeout=10, encoding='utf-8') def expect_multiple(self, regexes: List[str]): print(f'Expecting: {regexes}') return self._child.expect(regexes) def expect(self, regex: Union[List[str], str], retry=True): print(f'Expecting: {regex}') expect_list = [regex] + [pexpect.TIMEOUT] if isinstance(regex, str) else regex + [pexpect.TIMEOUT] result = self._child.expect(expect_list) if result == len(expect_list) - 1 and retry: self.alert(f"EXPECT FAILED: {regex} initiating retry!") self._child = self.spawn(self.command) return self.expect(regex, retry=False) else: return result def sendline(self, line: str): print(f'Sending: {line}') self._child.sendline(line) def wait(self): self._child.wait() def alert(self, msg: str): print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}") print(f"{self.c.fg_rd} ALERT: {msg}{self.c.rs}") print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}")
34.576923
119
0.60178
1,700
0.945495
0
0
0
0
0
0
502
0.279199
46a4f53ed5b4a611b18a262f155eca68d71783fb
7,831
py
Python
test/python/test_elementwise_ops.py
avijit-chakroborty/ngraph-bridge
b691d57412a40582ea93c6e564d80c750b7f2e8e
[ "Apache-2.0" ]
142
2019-02-21T00:53:06.000Z
2022-03-11T07:46:28.000Z
test/python/test_elementwise_ops.py
tensorflow/ngraph
ea6422491ec75504e78a63db029e7f74ec3479a5
[ "Apache-2.0" ]
252
2019-03-11T19:27:59.000Z
2021-03-19T10:58:17.000Z
test/python/test_elementwise_ops.py
tensorflow/ngraph
ea6422491ec75504e78a63db029e7f74ec3479a5
[ "Apache-2.0" ]
65
2019-03-13T15:27:29.000Z
2021-07-16T07:09:16.000Z
# ============================================================================== # Copyright 2018-2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """nGraph TensorFlow bridge elementwise operations test """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pytest import numpy as np import tensorflow as tf tf.compat.v1.disable_eager_execution() from common import NgraphTest class TestElementwiseOperations(NgraphTest): @pytest.mark.parametrize(("v1", "v2", "expected"), ((1.0, -1.0, [1.0]), (100, 200, ([200],)), ([0.0, 5.0, 10.0], [6.0], (np.array([[6.0, 6.0, 10.0]]),)))) def test_maximum(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.maximum(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [False]), (-1.0, -1.0, ([True],)), (-1.0, 1000, [True]), (200, 200, ([True],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[True, False, True]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[True, False, True]]),)))) def test_less_equal(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.less_equal(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [False]), (-1.0, -1.0, ([False],)), (-1.0, 1000, [True]), (200, 200, ([False],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[True, False, False]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[False, False, True]]),)))) def test_less(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.less(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [True]), (-1.0, -1.0, ([True],)), (-1.0, 1000, [False]), (200, 200, ([True],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[False, True, True]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[True, True, False]]),)))) def test_greater_equal(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.greater_equal(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [True]), (-1.0, -1.0, ([False],)), (-1.0, 1000, [False]), (200, 200, ([False],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[False, True, False]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[False, True, False]]),)))) def test_greater(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.greater(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize(("v1", "v2", "expected"), ((True, True, [True]), (True, False, ([False],)), (1.0, -2.0, ([True],)), (False, 100, ([False],)), ([False, True, False], [True], (np.array([[False, True, False]]),)))) def test_logical_and(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.bool, shape=(None)) val2 = tf.compat.v1.placeholder(tf.bool, shape=(None)) out = tf.logical_and(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize(("test_input", "expected"), ((False, True), (True, False))) def test_logicalnot_1d(self, test_input, expected): val = tf.compat.v1.placeholder(tf.bool, shape=(1,)) out = tf.logical_not(val) sess_fn = lambda sess: sess.run((out,), feed_dict={val: (test_input,)})[ 0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() def test_logicalnot_2d(self): test_input = ((True, False, True), (False, True, False)) expected = np.logical_not(test_input) val = tf.compat.v1.placeholder(tf.bool, shape=(2, 3)) out = tf.logical_not(val) sess_fn = lambda sess: sess.run((out,), feed_dict={val: test_input})[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all()
47.75
80
0.477461
6,772
0.864768
0
0
6,221
0.794407
0
0
933
0.119142
46a58d19b627254c0cc57fea12f1310b8d2e7c37
7,453
py
Python
qc/slips.py
mfkiwl/UREGA-qc
989e6b59d4fa5259ce48daa6165bdab4e020ba49
[ "MIT" ]
null
null
null
qc/slips.py
mfkiwl/UREGA-qc
989e6b59d4fa5259ce48daa6165bdab4e020ba49
[ "MIT" ]
null
null
null
qc/slips.py
mfkiwl/UREGA-qc
989e6b59d4fa5259ce48daa6165bdab4e020ba49
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Lars Stenseng. @mail: [email protected] """ # from qc.__version__ import __version__ import georinex as gr import numpy as np from matplotlib.pyplot import figure, show import matplotlib.pyplot as plt obs = gr.load( 'tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx', # tlim=['2021-11-03T12:00', '2021-11-03T12:30']) tlim=['2021-11-03T05:30', '2021-11-03T07:30']) # tlim=['2021-11-03T15:00', '2021-11-03T18:00']) # hdr = gr.rinexheader( # 'tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx') # rnx_version = 3 # %% Starting test # Copying helper functions from Multipath class - later on, it could be turned # into a separate class with helper functions # Pick GPS satellites svG = [] for i in range(0, len(obs.sv)): if str(obs.sv[i].values)[0] == 'G': svG.append(str(obs.sv[i].values)) else: continue # %% # 5:30 to 7:30, G08 and G21 give 2 cycle slips # [290:300] # 'G01','G06','G08','G10','G12','G14','G17','G19','G21','G22','G24','G30','G32' sat = 'G21' sattest = obs.sel(sv=sat).dropna(dim='time', how='all') # G02 data vars with no-nan: C1C, D1C, L1C, S1C, C1W, C2W, D2W, L2W, S1W, S2W I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor L1 = sattest['L1C'] # GPS L2 = sattest['L2W'] # GPS # L1 = sattest['L1C'] # Galileo # L2 = sattest['L8Q'] # Galileo L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for i in range(1, len(L4)): L4_diff.append(np.abs(L4[i] - L4[i-1])) if (np.abs(L4[i] - L4[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L4_diff, label=sat) plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L4') plt.title('Single-frequency Melbourne-Wuebbena') show() print('Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% # Plot all loaded sats, L1 and L2 ax = figure(figsize=(10, 6)).gca() for i in range(0, len(svG)): test = obs.sel(sv=svG[i]).dropna(dim='time', how='all') L1test = test['L1C'] L2test = test['L2W'] ax.plot(L1test.time, L1test, label=svG[i], linewidth=2.0) #ax.plot(L2test.time, L2test, label='L2', linewidth=0.5) ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('Carrier phases') show() # %% # Plot separate sats, L1 and L2 ax = figure(figsize=(10, 6)).gca() test = obs.sel(sv='E21').dropna(dim='time', how='all') L1test = test['L1C'] L2test = test['L2W'] ax.plot(L1test.time, L1test, label='L1', linewidth=2.0) ax.plot(L2test.time, L2test, label='L2', linewidth=1.0) ax.grid() # ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('Carrier phases') show() # %% Dual-frequency Melbourne-Wuebbena testing # 'G01','G06','G08','G10','G12','G14','G17','G19','G21','G22','G24','G30','G32' sat = 'G21' sattest = obs.sel(sv=sat).dropna(dim='time', how='all') # G02 data vars with no-nan: C1C, D1C, L1C, S1C, C1W, C2W, D2W, L2W, S1W, S2W freq = [1575.42, 1227.60, 1176.45] # L1, L2, L5 for GPS f1 = freq[0]*1e6 f2 = freq[1]*1e6 P1 = sattest['C1C'] P2 = sattest['C2W'] L1 = sattest['L1C'] # GPS L2 = sattest['L2W'] # GPS # L1 = sattest['L1C'] # Galileo # L2 = sattest['L8Q'] # Galileo L6 = (1/(f1-f2))*(f1*L1 - f2*L2) - (1/(f1+f2))*(f1*P1 + f2*P2) sigma_L6 = np.std(L6) k = 4 # criterion factor criterion = k*sigma_L6 slips_nr = 0 L6_diff = [] for i in range(1, len(L6)): L6_diff.append(np.abs(L6[i] - L6[i-1])) if (np.abs(L6[i] - L6[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L6_diff, label=sat) plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L6') plt.title('Dual-frequency Melbourne-Wuebbena') show() print('Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% Work in Progress class Slips: """ Class for cycle slip detection of RINEX files. Provides options for different detection algorithms. Parameters ---------- L1 : TYPE DESCRIPTION. Returns ------- L4 : TYPE DESCRIPTION. """ def __init__(self): pass def slips_MW_single_freq(self, obs): """ Cycle slip detection algorithm 1. Based on Melbourne-Wuebbena, but only on carrier phase data (single-frequency) (from Vaclavovic-Dousa 2016 article) Parameters ---------- obs : TYPE DESCRIPTION. Returns ------- None. """ # Select a list of GPS satellites svG = [] for i in range(0, len(obs.sv)): if str(obs.sv[i].values)[0] == 'G': svG.append(str(obs.sv[i].values)) else: continue # Melbourne-Wuebbena parameters (predetermined) I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor # For each tracked satellite for i in range(0, len(svG)): current_sat = obs.sel(sv=svG[i]).dropna(dim='time', how='all') L1 = current_sat['L1C'] L2 = current_sat['L2W'] L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for j in range(1, len(L4)): L4_diff.append(np.abs(L4[j] - L4[j-1])) if (np.abs(L4[j] - L4[j-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 print('Sat:', svG[i], ', Slips:', slips_nr, ', Slip criterion:', criterion.values) def plot_slips(self, obs, sat_nr: str): """ Plot cycle slips for one satellite vehicle. Parameters ---------- obs : TYPE DESCRIPTION. sat_nr : str DESCRIPTION. Returns ------- None. """ sat = obs.sel(sv=sat_nr).dropna(dim='time', how='all') I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor L1 = sat['L1C'] L2 = sat['L2W'] L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for i in range(1, len(L4)): L4_diff.append(np.abs(L4[i] - L4[i-1])) if (np.abs(L4[i] - L4[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L4_diff, label=sat_nr, linewidth=1.0) # labelfull = 'Slip limit: ', criterion.values plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L4') show() print('Sat:', sat_nr, ', Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% Testing first algorithm sliptest = Slips().slips_MW_single_freq(obs) # %% Testing plot function sliptest = Slips().plot_slips(obs, 'G08')
25.611684
79
0.570643
3,202
0.429626
0
0
0
0
0
0
3,246
0.435529
46a68217514e2d9ae5f9e06cbba236282798ed2c
8,610
py
Python
tests/test_utils.py
jga/goldfinchsong
638e166948944a7f027d03bcf8f7c14dc2f4b6f2
[ "MIT" ]
null
null
null
tests/test_utils.py
jga/goldfinchsong
638e166948944a7f027d03bcf8f7c14dc2f4b6f2
[ "MIT" ]
null
null
null
tests/test_utils.py
jga/goldfinchsong
638e166948944a7f027d03bcf8f7c14dc2f4b6f2
[ "MIT" ]
null
null
null
from collections import OrderedDict from datetime import datetime, timezone import unittest from os.path import join from tinydb import TinyDB, storages from goldfinchsong import utils IMAGE_NAMES = ['goldfinch1.jpg', 'goldfinch2.jpg', 'goldfinch3.jpg', 'goldfinch4.jpg', 'goldfinch5.jpg'] TEST_TEXT1 = 'This is a test of the goldfinchsong project. This test checks ' \ 'abbreviations, vowel elision, length checking, and other logic. ' \ 'Tests are important!' TEST_TEXT2 = 'This is a test of the goldfinchsong project. Tests ' \ 'abbreviations, vowel elision, length checking, and other logic. ' \ 'Tests are important!' class LoadContentTests(unittest.TestCase): def test_basic_load(self): image_directory = 'tests/images/' db = TinyDB(storage=storages.MemoryStorage) content = utils.load_content(db, image_directory) full_image_path = content[0] image_file = full_image_path.replace(image_directory, '') status_text = content[1] self.assertTrue(image_file in IMAGE_NAMES) self.assertEqual(image_file.replace('.jpg', ''), status_text) def test_storage_in_db(self): image_directory = 'tests/images/' # let's load a list of tweets into the db db = TinyDB(storage=storages.MemoryStorage) image_names = [ 'goldfinch1.jpg', 'goldfinch2.jpg', 'goldfinch3.jpg', 'goldfinch4.jpg' ] for image_name in image_names: delivery_timestamp = datetime.now(tz=timezone.utc).isoformat() tweet = {'image': image_name, 'delivered_on': delivery_timestamp} db.insert(tweet) content = utils.load_content(db, image_directory) self.assertEqual(content[2], 'goldfinch5.jpg') tweets = db.all() self.assertEqual(len(tweets), 4, msg=tweets) class UtilitiesTests(unittest.TestCase): def test_apply_abbreviations(self): text_conversions = { 'abbreviations': 'abbr', 'goldfinchsong': 'gf', 'important': 'impt' } # exhausts all conversions before reaching limit new_text1 = utils.apply_abbreviations(TEST_TEXT1, text_conversions) expected_text1 = 'This is a test of the gf project. This test checks ' \ 'abbr, vowel elision, length checking, and other logic. ' \ 'Tests are impt!' self.assertEqual(expected_text1, new_text1) new_text2 = utils.apply_abbreviations(TEST_TEXT2, text_conversions) self.assertTrue(len(new_text2) <= 117) def test_apply_vowel_elision(self): result_text = utils.apply_vowel_elision(TEST_TEXT1) expected_text = 'This is a tst of the gldfnchsng prjct. Ths tst chcks ' \ 'abbrvtns, vwl elsn, lngth chckng, and othr lgc. Tsts ' \ 'are imprtnt!' self.assertEqual(expected_text, result_text) def test_assemble_elided_status(self): complete_words = ['test', 'a', 'is', 'This'] elided_words = ['systm', 'gldfnch', 'the', 'of'] result = utils.assemble_elided_status(complete_words, elided_words) self.assertEqual('This is a test of the gldfnch systm', result) def test_chop_words(self): result_text = utils.chop_words(TEST_TEXT1) expected_text = 'This is a test of the goldfinchsong project. This test checks ' \ 'abbreviations, vowel elision, length checking, and' self.assertEqual(expected_text, result_text) def test_is_image(self): image_files = [ 'image.gif', 'image.jpg', 'image.jpeg', 'image.png', 'image.GIF', 'image.JPG', 'image.JPEG', 'image.PNG', 'image.GiF', 'image.JpG', 'image.JpEg', 'image.PnG' ] for image_file in image_files: self.assertTrue(utils.is_image_file(image_file)) def test_is_not_image(self): image_files = [ 'image.docx', 'image.pdf', 'image.md', 'image.html', 'image.css', 'image.odt', 'image.sh', 'image.xlsx', 'image.txt', 'image.c', 'image.py', 'image' ] for image_file in image_files: self.assertFalse(utils.is_image_file(image_file)) def test_trim_file_extensions(self): image_files = [ 'image.gif', 'image.jpg', 'image.jpeg', 'image.png', 'image.GIF', 'image.JPG', 'image.JPEG', 'image.PNG', 'image.GiF', 'image.JpG', 'image.JpEg', 'image.PnG' ] for image_file in image_files: self.assertEqual(utils.trim_file_extension(image_file), 'image') def test_to_compact_text(self): text_conversions = { 'abbreviations': 'abbrs', 'goldfinchsong': 'gfnch', 'important': 'importnt' } candidate_text1 = utils.to_compact_text(TEST_TEXT1, 100, text_conversions) expected_text1 = 'Ths is a tst of the gfnch prjct. Ths tst chcks abbrs, ' \ 'vwl elsn, lngth chckng, and othr lgc. Tsts are' self.assertEqual(expected_text1, candidate_text1) candidate_text2 = utils.to_compact_text(TEST_TEXT1, 50, text_conversions) expected_text2 = 'Ths is a tst of the gfnch prjct. Ths tst chcks' self.assertEqual(expected_text2, candidate_text2) candidate_text3 = utils.to_compact_text(TEST_TEXT1, 20, text_conversions) expected_text3 = 'Ths is a tst of the' self.assertEqual(expected_text3, candidate_text3) def test_extract_status_text(self): conversion_data = ( ('abbreviations', 'abbrs'), ('goldfinchsong', 'gfnch'), ('important', 'importnt'), ) text_conversions = OrderedDict(conversion_data) file = 'Some_goldfinchsong_image-file_with_a_very_long_set_of_' \ 'characters_and_abbreviations_that_conveys_important_info.png' candidate_text1 = utils.extract_status_text(file, text_conversions, maximum_length=100,) expected_text1 = 'Some gfnch image-file with a very long set of characters and abbrs that conveys important info' self.assertEqual(expected_text1, candidate_text1) candidate_text2 = utils.extract_status_text(file, text_conversions, maximum_length=70,) expected_text2 = 'Sme gfnch imge-fle wth a vry lng st of chrctrs and abbrs tht cnvys' self.assertEqual(expected_text2, candidate_text2) def test_get_unused_files(self): available_files = list() for index in range(1,101): image_name = 'image{0}.png'.format(index) available_files.append(image_name) db = TinyDB(storage=storages.MemoryStorage) for id in range(1,52): image_name = 'image{0}.png'.format(id) db.insert({'image': image_name}) unused_files = utils.get_unused_files(db, available_files) self.assertEqual(len(unused_files), 49) self.assertEqual(unused_files[0], 'image52.png') self.assertEqual(unused_files[5], 'image57.png') self.assertEqual(unused_files[10], 'image62.png') self.assertEqual(unused_files[15], 'image67.png') self.assertEqual(unused_files[20], 'image72.png') self.assertEqual(unused_files[33], 'image85.png') self.assertEqual(unused_files[48], 'image100.png') def test_db_purge_when_all_posted(self): available_files = list() for index in range(1,101): image_name = 'image{0}.png'.format(index) available_files.append(image_name) db = TinyDB(storage=storages.MemoryStorage) for id in range(1,106): image_name = 'image{0}.png'.format(id) db.insert({'image': image_name}) self.assertEqual(len(db.all()), 105) unused_files = utils.get_unused_files(db, available_files) self.assertEqual(len(unused_files), 100) self.assertEqual(unused_files[0], 'image1.png') self.assertEqual(unused_files[5], 'image6.png') self.assertEqual(unused_files[10], 'image11.png') self.assertEqual(unused_files[33], 'image34.png') self.assertEqual(unused_files[50], 'image51.png')
40.046512
121
0.616609
7,911
0.918815
0
0
0
0
0
0
2,321
0.26957
46a6977e7b919a1d64a9944a2e191bffb62c293c
2,868
py
Python
lingvo/tasks/image/input_generator.py
allenwang28/lingvo
26d3d6672d3f46d8f281c2aa9f57166ef6296738
[ "Apache-2.0" ]
2,611
2018-10-16T20:14:10.000Z
2022-03-31T14:48:41.000Z
lingvo/tasks/image/input_generator.py
allenwang28/lingvo
26d3d6672d3f46d8f281c2aa9f57166ef6296738
[ "Apache-2.0" ]
249
2018-10-27T06:02:29.000Z
2022-03-30T18:00:39.000Z
lingvo/tasks/image/input_generator.py
allenwang28/lingvo
26d3d6672d3f46d8f281c2aa9f57166ef6296738
[ "Apache-2.0" ]
436
2018-10-25T05:31:45.000Z
2022-03-31T07:26:03.000Z
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input generator for image data.""" import os import lingvo.compat as tf from lingvo.core import base_input_generator from tensorflow.python.ops import io_ops class _MnistInputBase(base_input_generator.BaseTinyDatasetInput): """Base input params for MNIST.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data_dtype = tf.uint8 p.data_shape = (28, 28, 1) p.label_dtype = tf.uint8 return p def _Preprocess(self, raw): data = tf.stack([ tf.image.per_image_standardization(img) for img in tf.unstack(raw) ]) data.set_shape(raw.shape) return data class MnistTrainInput(_MnistInputBase): """MNist training set.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data = 'x_train' p.label = 'y_train' p.num_samples = 60000 p.batch_size = 256 p.repeat = True return p class MnistTestInput(_MnistInputBase): """MNist test set.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data = 'x_test' p.label = 'y_test' p.num_samples = 10000 p.batch_size = 256 p.repeat = False return p def _GetRandomImages(batch_size): images = tf.random.uniform((batch_size, 28, 28, 1), 0, 255, tf.int32) return tf.cast(images, tf.uint8) def _GetRandomLabels(batch_size): labels = tf.random.categorical(0.1 * tf.ones((1, 10)), batch_size) return tf.cast(labels, tf.uint8) def FakeMnistData(tmpdir, train_size=60000, test_size=10000): """Fake Mnist data for unit tests.""" data_path = os.path.join(tmpdir, 'ckpt') with tf.Graph().as_default(): tf.random.set_seed(91) with tf.Session() as sess: sess.run( io_ops.save_v2( data_path, tensor_names=['x_train', 'y_train', 'x_test', 'y_test'], shape_and_slices=['', '', '', ''], tensors=[ _GetRandomImages(train_size), _GetRandomLabels(train_size), _GetRandomImages(test_size), _GetRandomLabels(test_size) ])) return data_path
27.84466
80
0.639121
1,031
0.359484
0
0
607
0.211646
0
0
995
0.346932
46a69a58e97c1c80acfb7499d4de7c5a7c1ed4bb
875
py
Python
src/solutions/part1/q389_find_diff.py
hychrisli/PyAlgorithms
71e537180f3b371d0d2cc47b11cb68ec13a8ac68
[ "Apache-2.0" ]
null
null
null
src/solutions/part1/q389_find_diff.py
hychrisli/PyAlgorithms
71e537180f3b371d0d2cc47b11cb68ec13a8ac68
[ "Apache-2.0" ]
null
null
null
src/solutions/part1/q389_find_diff.py
hychrisli/PyAlgorithms
71e537180f3b371d0d2cc47b11cb68ec13a8ac68
[ "Apache-2.0" ]
null
null
null
from src.base.solution import Solution from src.tests.part1.q389_test_find_diff import FindDiffTestCases class FindDiff(Solution): def verify_output(self, test_output, output): return test_output[0] == output[0] def run_test(self, input): return self.findTheDifference(input[0], input[1]) def gen_test_cases(self): return FindDiffTestCases() def print_output(self, output): super(FindDiff, self).print_output(output) def findTheDifference(self, s, t): """ :type s: str :type t: str :rtype: str """ lkp = dict() for ch in s: lkp[ch] = lkp.get(ch, 0) + 1 for ch in t: lkp[ch] = lkp.get(ch, 0) - 1 if lkp[ch] < 0: return ch if __name__ == '__main__': solution = FindDiff() solution.run_tests()
24.305556
65
0.580571
689
0.787429
0
0
0
0
0
0
87
0.099429
46aa55bc676b909ffd23d501d1007af51f171f16
293
py
Python
mydict.py
zengboming/python
13018f476554adc3bff831af27c08f7c216d4b09
[ "Apache-2.0" ]
null
null
null
mydict.py
zengboming/python
13018f476554adc3bff831af27c08f7c216d4b09
[ "Apache-2.0" ]
null
null
null
mydict.py
zengboming/python
13018f476554adc3bff831af27c08f7c216d4b09
[ "Apache-2.0" ]
null
null
null
#unit #mydict.py class Dict(dict): def __init__(self,**kw): super(Dict,self).__init__(**kw) def __getattr__(self,key): try: return self[key] except KeyError: raise AttributeError(r"'Dict' object han no attribute'%s'" %key) def __setattr__(self,key,value): self[key]=value
19.533333
67
0.68942
271
0.924915
0
0
0
0
0
0
52
0.177474
46ab99e6eb8d1fdb04330410131bcc8d1d609369
19,623
py
Python
copy_annotations/conflict.py
abhinav-kumar-thakur/TabularCellTypeClassification
844029ee59867c41acfa75c8ce12db6713c9960c
[ "MIT" ]
19
2019-06-06T18:23:29.000Z
2022-01-06T15:30:20.000Z
copy_annotations/conflict.py
abhinav-kumar-thakur/TabularCellTypeClassification
844029ee59867c41acfa75c8ce12db6713c9960c
[ "MIT" ]
524
2019-07-01T19:18:39.000Z
2022-02-13T19:33:02.000Z
copy_annotations/conflict.py
abhinav-kumar-thakur/TabularCellTypeClassification
844029ee59867c41acfa75c8ce12db6713c9960c
[ "MIT" ]
18
2019-06-06T18:23:07.000Z
2021-07-15T06:01:17.000Z
import contextlib import os import tempfile import warnings from enum import Enum import mip class IISFinderAlgorithm(Enum): DELETION_FILTER = 1 ADDITIVE_ALGORITHM = 2 class SubRelaxationInfeasible(Exception): pass class NonRelaxableModel(Exception): pass class ConflictFinder: """This class groups some IIS (Irreducible Infeasible Set) search algorithms""" def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model def find_iis( self, method: IISFinderAlgorithm = IISFinderAlgorithm.DELETION_FILTER, cbc_verbose: bool = False ) -> mip.ConstrList: """main method to find an IIS, this method is just a grouping of the other implementations Args: model (mip.Model): Infeasible model where to find the IIS method (str, optional): name of the method to use ["deletion-filter", "additive_algorithm"]. Defaults to 'deletion-filter". Returns: mip.ConstrList: IIS constraint list """ # assert ,is not because time limit with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: if method == IISFinderAlgorithm.DELETION_FILTER: return self.deletion_filter() if method == IISFinderAlgorithm.ADDITIVE_ALGORITHM: return self.additive_algorithm() def deletion_filter(self) -> mip.ConstrList: """deletion filter algorithm for search an IIS Args: model (mip.Model): Infeasible model Returns: mip.ConstrList: IIS """ # 1. create a model with all constraints but one aux_model = self.model.copy() aux_model.objective = 1 aux_model.emphasis = 1 # feasibility aux_model.preprocess = 1 # -1 automatic, 0 off, 1 on. print("starting deletion_filter algorithm") for inc_crt in self.model.constrs: aux_model_inc_crt = aux_model.constr_by_name( inc_crt.name ) # find constraint by name aux_model.remove(aux_model_inc_crt) # temporally remove inc_crt aux_model.optimize() status = aux_model.status # 2. test feasibility, if feasible, return dropped constraint to the set # 2.1 else removed it permanently # print('status {}'.format(status)) if status == mip.OptimizationStatus.INFEASIBLE: # print("removing permanently {}".format(inc_crt.name)) continue elif status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: aux_model.add_constr( inc_crt.expr, name=inc_crt.name, priority=inc_crt.priority ) iis = aux_model.constrs return iis def additive_algorithm(self) -> mip.ConstrList: """Additive algorithm to find an IIS Returns: mip.ConstrList: IIS """ # Create some aux models to test feasibility of the set of constraints aux_model_testing = mip.Model() for var in self.model.vars: aux_model_testing.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, # obj= var.obj, # column=var.column #!! libc++abi.dylib: terminating with uncaught exception of type CoinError ) aux_model_testing.objective = 1 aux_model_testing.emphasis = 1 # feasibility aux_model_testing.preprocess = 1 # -1 automatic, 0 off, 1 on. aux_model_iis = ( aux_model_testing.copy() ) # a second aux model to test feasibility of the incumbent iis # algorithm start all_constraints = self.model.constrs testing_crt_set = mip.ConstrList(model=aux_model_testing) # T iis = mip.ConstrList(model=aux_model_iis) # I while True: for crt in all_constraints: testing_crt_set.add(crt.expr, name=crt.name) aux_model_testing.constrs = testing_crt_set aux_model_testing.optimize() if aux_model_testing.status == mip.OptimizationStatus.INFEASIBLE: iis.add(crt.expr, name=crt.name) aux_model_iis.constrs = iis aux_model_iis.optimize() if aux_model_iis.status == mip.OptimizationStatus.INFEASIBLE: return iis elif aux_model_iis.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: testing_crt_set = mip.ConstrList(model=aux_model_testing) for ( crt ) in ( iis ): # basically this loop is for set T=I // aux_model_iis = iis.copy() testing_crt_set.add(crt.expr, name=crt.name) break def deletion_filter_milp_ir_lc_bd(self) -> mip.ConstrList: """Integer deletion filter algorithm (milp_ir_lc_bd) Raises: NotImplementedError: [description] Returns: mip.ConstrList: [description] """ raise NotImplementedError("WIP") # major constraint sets definition t_aux_model = mip.Model(name="t_auxiliary_model") iis_aux_model = mip.Model(name="t_auxiliary_model") linear_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constraints variable_bound_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constrants related specifically for the variable bounds integer_varlist_crt = mip.VarList( model=t_aux_model ) # the nature vars constraints for vartype in Integer/Binary # fill the above sets with the constraints for crt in self.model.constrs: linear_constraints.add(crt.expr, name=crt.name) for var in self.model.vars: if var.lb != -mip.INF: variable_bound_constraints.add( var >= var.lb, name="{}_lb_crt".format(var.name) ) if var.ub != mip.INF: variable_bound_constraints.add( var <= var.ub, name="{}_ub_crt".format(var.name) ) for var in self.model.vars: if var.var_type in (mip.INTEGER, mip.BINARY): integer_varlist_crt.add(var) status = "IIS" # add all LC,BD to the incumbent, T= LC + BD for ( var ) in ( self.model.vars ): # add all variables as if they where CONTINUOUS and without bonds (because this will be separated) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS ) for crt in linear_constraints + variable_bound_constraints: iis_aux_model.add_constr(crt.expr, name=crt.name, priority=crt.priority) iis_aux_model.optimize() if iis_aux_model.status == mip.OptimizationStatus.INFEASIBLE: # if infeasible means that this is a particular version of an LP return self.deletion_filter() # (STEP 2) # add all the integer constraints to the model iis_aux_model.vars.remove( [var for var in integer_varlist_crt] ) # remove all integer variables for var in integer_varlist_crt: iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=var.var_type, # this will add the var with his original type ) # filter IR constraints that create infeasibility (STEP 1) for var in integer_varlist_crt: iis_aux_model.vars.remove(iis_aux_model.var_by_name(var.name)) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, # relax the integer constraint over var ) iis_aux_model.optimize() # if infeasible then update incumbent T = T-{ir_var_crt} # else continue # STEP 2 filter lc constraints # STEP 3 filter BD constraints # return IS o IIS def deletion_filter_milp_lc_ir_bd(self) -> mip.ConstrList: raise NotImplementedError # TODO class ConflictRelaxer: def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model self.iis_num_iterations = 0 self.iis_iterations = [] self.relax_slack_iterations = [] @property def slack_by_crt(self) -> dict: answ = {} for slack_dict_iter in self.relax_slack_iterations: for crt_name in slack_dict_iter.keys(): if crt_name in answ.keys(): answ[crt_name] += slack_dict_iter[crt_name] else: answ[crt_name] = slack_dict_iter[crt_name] return answ def hierarchy_relaxer( self, relaxer_objective: str = "min_abs_slack_val", default_priority: mip.constants.ConstraintPriority = mip.constants.ConstraintPriority.MANDATORY, cbc_verbose: bool = False ) -> mip.Model: """hierarchy relaxer algorithm, it's gonna find a IIS and then relax it using the objective function defined (`relaxer_objective`) and then update the model with the relaxed constraints. This process runs until there's not more IIS on the model. Args: relaxer_objective (str, optional): objective function of the relaxer model (IIS relaxer model). Defaults to 'min_abs_slack_val'. default_priority (ConstraintPriority, optional): If a constraint does not have a supported substring priority in the name, it will assign a default priority. Defaults to ConstraintPriority.MANDATORY. Raises: NonRelaxableModel: [description] Returns: mip.Model: relaxed model """ relaxed_model = self.model.copy() relaxed_model._status = self.model._status # TODO solve this in a different way # map unmaped constraitns to default for crt in relaxed_model.constrs: if not crt.priority: crt.priority = default_priority iis_it = 0 iis_dict = {} taboo_list_iis = [] cf = ConflictFinder(relaxed_model) while True: # 1. find iis iis = cf.find_iis(IISFinderAlgorithm.DELETION_FILTER) self.iis_iterations.append([crt.name for crt in iis]) # track iteration self.iis_num_iterations += 1 # track iteration iis_priority_set = set([crt.priority for crt in iis]) # check if "relaxable" model mapping if iis_priority_set == set([mip.constants.ConstraintPriority.MANDATORY]): raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") # 2. relax iis with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: for level, relaxing_level in enumerate(sorted(iis_priority_set, key=lambda x: x.value)): # highest case (raise exception) if relaxing_level == mip.constants.ConstraintPriority.MANDATORY: raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") try: slack_dict = self.relax_iis(iis, relaxer_objective=relaxer_objective, lowest_priority=relaxing_level) except SubRelaxationInfeasible as e: warnings.warn(f'Warning relaxing more than one level, currently on l{level} : {relaxing_level}') continue else: # relaxable iis, this is will continue with the next iteration then break self.relax_slack_iterations.append(slack_dict) # 3. add the slack variables to the original problem with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model = self.relax_constraints(relaxed_model, slack_dict) # 4. check if feasible relaxed_model.emphasis = 1 # feasibility with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model.optimize() if relaxed_model.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: print("finished relaxation process !") break else: print( "relaxed the current IIS, still infeasible, searching for a new IIS to relax" ) print("relaxed constraints {0}".format(list(slack_dict.keys()))) iis_it += 1 # print(f'found iis_{iis_it} = {[crt.name for crt in iis]}') iis_dict[iis_it] = {} iis_crt = [crt.name for crt in iis] iis_dict[iis_it]['iis'] = [{'name': crt.name, 'priority': str(crt.priority).split('.')[1]} for crt in iis] print(f'found iis_{iis_it} : len = {len(iis_crt)} in_taboo = {(iis_crt in taboo_list_iis)}') taboo_list_iis.append(iis_crt) iis_dict[iis_it]['slack'] = slack_dict return relaxed_model @classmethod def relax_iis( cls, iis: mip.ConstrList, relaxer_objective: str = "min_abs_slack_val", lowest_priority: 'mip.constants.ConstraintPriority' = None ) -> dict: """This function is the sub module that finds the optimum relaxation for an IIS, given a crt priority mapping and a objective function Args: iis (mip.ConstrList): IIS constraint list relaxer_objective (str, optional): objective function to use when relaxing. Defaults to 'min_abs_slack_val'. Returns: dict: a slack variable dictionary with the value of the {constraint_name:slack.value} pair to be added to each constraint in order to make the IIS feasible """ relax_iis_model = mip.Model() if lowest_priority is None: lowest_priority = min([crt.priority for crt in iis]) to_relax_crts = [crt for crt in iis if crt.priority == lowest_priority or crt.priority < lowest_priority] # create a model that only contains the iis slack_vars = {} abs_slack_vars = {} abs_slack_cod_vars = {} for crt in iis: # print(crt.name, crt.priority) for var in crt._Constr__model.vars: relax_iis_model.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, obj=var.obj, ) if crt in to_relax_crts: # if this is a -to be relax- constraint slack_vars[crt.name] = relax_iis_model.add_var( name="{0}__{1}".format(crt.name, "slack"), lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, ) abs_slack_vars[crt.name] = relax_iis_model.add_var( name="{0}_abs".format(slack_vars[crt.name].name), lb=0, ub=mip.INF, var_type=mip.CONTINUOUS, ) # add relaxed constraint to model relax_expr = crt.expr + slack_vars[crt.name] relax_iis_model.add_constr( relax_expr, name="{}_relaxed".format(crt.name), ) # add abs(slack) variable encoding constraints relax_iis_model.add_constr( abs_slack_vars[crt.name] >= slack_vars[crt.name], name="{}_positive_min_bound".format(slack_vars[crt.name].name), ) relax_iis_model.add_constr( abs_slack_vars[crt.name] >= -slack_vars[crt.name], name="{}_negative_min_bound".format(slack_vars[crt.name].name), ) else: # if not to be relaxed we added directly to the model relax_iis_model.add_constr( crt.expr, name="{}_original".format(crt.name), priority=crt.priority ) # find the min abs value of the slack variables relax_iis_model.objective = mip.xsum(list(abs_slack_vars.values())) relax_iis_model.sense = mip.MINIMIZE relax_iis_model.optimize() if relax_iis_model.status == mip.OptimizationStatus.INFEASIBLE: raise SubRelaxationInfeasible("sub relaxation model infeasible, this could mean that in the IIS the mandatory constraints are infeasible sometimes") slack_dict = {} for crt in to_relax_crts: slack_dict[crt.name] = slack_vars[crt.name].x return slack_dict @classmethod def relax_constraints(cls, relaxed_model: mip.Model, slack_dict: dict) -> mip.Model: """this method creates a modification of the model `relaxed_model` where all the constraints in the slack_dict are modified in order to add the slack values to make the IIS disappear Args: relaxed_model (mip.Model): model to relax slack_dict (dict): pairs {constraint_name: slack_var.value} Returns: mip.Model: a modification of the original model where all the constraints are modified with the slack values """ for crt_name in slack_dict.keys(): crt_original = relaxed_model.constr_by_name(crt_name) relax_expr = crt_original.expr + slack_dict[crt_name] relaxed_model.add_constr( relax_expr, name=crt_original.name, priority=crt_original.priority ) relaxed_model.remove(crt_original) # remove constraint return relaxed_model @contextlib.contextmanager def ignore_output(): with tempfile.TemporaryFile() as f: orig_std_out = os.dup(1) os.dup2(f.fileno(), 1) yield # pause the coroutine to execute the with code os.dup2(orig_std_out, 1) os.close(orig_std_out)
42.109442
169
0.587983
19,235
0.980227
250
0.01274
5,318
0.271009
0
0
6,193
0.315599
46abd7d33dffc8675b1cbcb1f61d7140668df589
249
py
Python
output/models/nist_data/atomic/integer/schema_instance/nistschema_sv_iv_atomic_integer_pattern_1_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/integer/schema_instance/nistschema_sv_iv_atomic_integer_pattern_1_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/integer/schema_instance/nistschema_sv_iv_atomic_integer_pattern_1_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.nist_data.atomic.integer.schema_instance.nistschema_sv_iv_atomic_integer_pattern_1_xsd.nistschema_sv_iv_atomic_integer_pattern_1 import NistschemaSvIvAtomicIntegerPattern1 __all__ = [ "NistschemaSvIvAtomicIntegerPattern1", ]
41.5
190
0.891566
0
0
0
0
0
0
0
0
37
0.148594
46ad0929668e5c287bd02c9734950a08fc91328e
3,919
py
Python
Dietscheduler/lib/menu_converter.py
floromaer/DietScheduler
48403f13dbcaa7981f252361819f06435a75333b
[ "MIT" ]
null
null
null
Dietscheduler/lib/menu_converter.py
floromaer/DietScheduler
48403f13dbcaa7981f252361819f06435a75333b
[ "MIT" ]
null
null
null
Dietscheduler/lib/menu_converter.py
floromaer/DietScheduler
48403f13dbcaa7981f252361819f06435a75333b
[ "MIT" ]
null
null
null
import re import xlsxwriter def parse_menu_to_excel(filename,menu_dict,days_dict,results,goal_dict,food_database,reversed_ingredient_dict,grocery_dict): # making a temporary dict to map dates and columns in excel: temp_dates_dict = {} i=0 for key in days_dict.keys(): temp_dates_dict[days_dict[key]['date_var'].get()] = i i += 1 temp_meals_dict = {} i = 0 for meal in ['Breakfast', 'Lunch','Dinner']: temp_meals_dict[meal] = i i += 1 # converting the menu-dict to dates and lunches for item in list(menu_dict.keys()): new_key = tuple(tuple(elem.replace('M1', 'Breakfast').replace('M2', 'Lunch').replace('M3', 'Dinner').replace('D1', days_dict['D1']['date_var'].get()).replace('D2',days_dict['D2']['date_var'].get()).replace('D3',days_dict['D3']['date_var'].get()).replace('D4',days_dict['D4']['date_var'].get()).replace('D5',days_dict['D5']['date_var'].get()).replace('D6',days_dict['D6']['date_var'].get()).replace('D7',days_dict['D7']['date_var'].get()) for elem in tup) for tup in item) menu_dict[new_key] = menu_dict[item] menu_dict.pop(item) # putting it into an excel file: workbook = xlsxwriter.Workbook(filename) separator_format = workbook.add_format({'bg_color': '#000000'}) # make worksheets menu_worksheet = workbook.add_worksheet(f"Menu - {days_dict['D1']['date_var'].get()} to {days_dict['D7']['date_var'].get()}") # for menu temp_worksheet_dict = {} global_groceries_worksheet = workbook.add_worksheet("your grocery list") for group in list(menu_dict.keys()): temp_worksheet_dict[group] = workbook.add_worksheet(f"{list(menu_dict[group].keys())[0][:31]}") # print the menu to menu-sheet col = 0 for key in temp_dates_dict: menu_worksheet.write(0, col, key) col += 1 row = 1 for key in temp_meals_dict: menu_worksheet.write(row, 0, key) row += 1 for group in menu_dict.keys(): for slot in group: menu_worksheet.write(temp_meals_dict[slot[1]] + 1,temp_dates_dict[slot[0]] + 1, str(list(menu_dict[group].keys())[0])) for i in range(0,8): menu_worksheet.write(4,i,"",separator_format) menu_worksheet.write(5,0, "Results:") row = 5 for metric in results.keys(): menu_worksheet.write(row,1,str(f"{metric}: {round(results[metric],2)}")) row += 1 menu_worksheet.write(5,2, "Goals:") row = 6 for metric in goal_dict.keys(): menu_worksheet.write(row,3,str(f"{metric}: {round(goal_dict[metric],2)}")) row += 1 # writing the global grocery-list: row = 1 col = 0 global_groceries_worksheet.write(0,0,"Your grocery list:") for ingredient in grocery_dict.keys(): ingredient_id = reversed_ingredient_dict[ingredient] global_groceries_worksheet.write(row, col, ingredient) global_groceries_worksheet.write(row, col + 1, str(grocery_dict[ingredient])) global_groceries_worksheet.write(row, col + 2, str(food_database['ingredients'][ingredient_id]['unit'])) row += 1 # writing the recipe-lists: for group in menu_dict.keys(): temp_worksheet_dict[group].write(0,0, f"Ingredient list for {list(menu_dict[group].keys())[0]}:") row = 1 col = 0 for recipe in menu_dict[group].keys(): for ingredient in menu_dict[group][recipe].keys(): ingredient_id = reversed_ingredient_dict[ingredient] temp_worksheet_dict[group].write(row, col, ingredient) temp_worksheet_dict[group].write(row, col + 1, str(menu_dict[group][recipe][ingredient])) temp_worksheet_dict[group].write(row, col + 2, str(food_database['ingredients'][ingredient_id]['unit'])) row += 1 workbook.close()
48.382716
446
0.63307
0
0
0
0
0
0
0
0
845
0.215616
46ad5a9032022b2051fa16df11181281b5f9eae8
1,256
py
Python
example_problems/tutorial/graph_connectivity/services/esempi/check_one_sol_server.py
romeorizzi/TAlight
2217f8790820d8ec7ab076c836b2d182877d8ee8
[ "MIT" ]
3
2021-01-08T09:56:46.000Z
2021-03-02T20:47:29.000Z
example_problems/tutorial/graph_connectivity/services/esempi/check_one_sol_server.py
romeorizzi/TAlight
2217f8790820d8ec7ab076c836b2d182877d8ee8
[ "MIT" ]
1
2021-01-23T06:50:31.000Z
2021-03-17T15:35:18.000Z
example_problems/tutorial/graph_connectivity/services/esempi/check_one_sol_server.py
romeorizzi/TAlight
2217f8790820d8ec7ab076c836b2d182877d8ee8
[ "MIT" ]
4
2021-01-06T12:10:23.000Z
2021-03-16T22:16:07.000Z
#!/usr/bin/env python3 from sys import stderr, exit from TALinputs import TALinput from multilanguage import Env, Lang, TALcolors from parentheses_lib import recognize # METADATA OF THIS TAL_SERVICE: problem="parentheses" service="check_one_sol_server" args_list = [ ('input_formula',str), ('n',str), ('silent',bool), ('lang',str), ('ISATTY',bool), ] ENV =Env(problem, service, args_list) TAc =TALcolors(ENV) LANG=Lang(ENV, TAc, lambda fstring: eval(f"f'{fstring}'")) # START CODING YOUR SERVICE: n=ENV['n'] len_input = len(ENV["input_formula"])//2 if not ENV["silent"]: TAc.print(LANG.opening_msg, "green") def answer(): if recognize(ENV["input_formula"], TAc, LANG) and not ENV["silent"]: TAc.OK() TAc.print(LANG.render_feedback("ok", f' Your string is a well-formed formula with {len_input} pairs of parentheses.'), "yellow", ["bold"]) if n=='free': answer() else: if len_input==int(n): answer() elif recognize(ENV["input_formula"], TAc, LANG) and not ENV['silent']: TAc.print(LANG.render_feedback("different_lengths", f"No! Your string represents a valid formula of parentheses but not of {n} pairs."), "red", ["bold"]) exit(0)
29.904762
162
0.65207
0
0
0
0
0
0
0
0
469
0.373408
46ad743d904b177a6882bac14c8a5ed867753ee6
2,436
py
Python
app/validation/translator.py
codingedward/book-a-meal-api
36756abc225bf7e8306330f2c3e223dc32af7869
[ "MIT" ]
null
null
null
app/validation/translator.py
codingedward/book-a-meal-api
36756abc225bf7e8306330f2c3e223dc32af7869
[ "MIT" ]
null
null
null
app/validation/translator.py
codingedward/book-a-meal-api
36756abc225bf7e8306330f2c3e223dc32af7869
[ "MIT" ]
2
2018-10-01T17:45:19.000Z
2020-12-07T13:48:25.000Z
"""Translates validation error messages for the response""" messages = { 'accepted': 'The :field: must be accepted.', 'after': 'The :field: must be a date after :other:.', 'alpha': 'The :field: may contain only letters.', 'alpha_dash': 'The :field: may only contain letters, numbers, and dashes.', 'alpha_num': 'The :field: may contain only letters and numbers.', 'array': 'The :field: must be an array.', 'before': 'The :field: must be a date before :other:.', 'between': 'The :field: must be between :least: and :most:.', 'between_string': 'The :field: must be between :least: and :most: characters.', 'between_numeric': 'The :field: must be between :least: and :most:.', 'boolean': 'The :field: must be either true or false.', 'confirmed': 'The :field: confirmation does not match.', 'date': 'The :field: is not a valid date.', 'different': 'The :field: and :other: must be different.', 'digits': 'The :field: must be :length: digits.', 'email': 'The :field: must be a valid email address.', 'exists': 'The selected :field: is invalid.', 'found_in': 'The selected :field: is invalid.', 'integer': 'The :field: must be an integer.', 'json': 'The :field: must be valid json format.', 'most_string': 'The :field: must not be greater than :most: characters.', 'most_numeric': 'The :field: must not be greater than :most:.', 'least_string': 'The :field: must be at least :least: characters.', 'least_numeric': 'The :field: must be at least :least:.', 'not_in': 'The selected :field: is invalid.', 'numeric': 'The :field: must be a number.', 'positive': 'The :field: must be a positive number.', 'regex': 'The :field: format is invalid.', 'required': 'The :field: field is required.', 'required_with': 'The :field: field is required when :other: is present.', 'required_without': 'The :field: field is required when :other: si not present.', 'same': 'The :field: and :other: must match.', 'size_string': 'The :field: must be :size: characters.', 'size_numeric': 'The :field: must be :size:.', 'string': 'The :field: must be a string.', 'unique': 'The :field: is already taken.', 'url': 'The :field: format is invalid.', } def trans(rule, fields): message = messages[rule] for k, v in fields.items(): message = message.replace(k, v).replace('_', ' ') return message
47.764706
85
0.630542
0
0
0
0
0
0
0
0
1,961
0.805008
46af16319f2d029f582d103a8745545d6de7422c
333
py
Python
chat/main/consumers.py
mlambir/channels_talk_pyconar2016
82e54eb914fb005fcdebad1ed07cede898957733
[ "MIT" ]
12
2016-11-30T15:22:22.000Z
2018-02-27T23:03:12.000Z
chat/main/consumers.py
mlambir/channels_talk_pyconar2016
82e54eb914fb005fcdebad1ed07cede898957733
[ "MIT" ]
null
null
null
chat/main/consumers.py
mlambir/channels_talk_pyconar2016
82e54eb914fb005fcdebad1ed07cede898957733
[ "MIT" ]
null
null
null
from channels import Group # websocket.connect def ws_add(message): Group("chat").add(message.reply_channel) # websocket.receive def ws_message(message): Group("chat").send({ "text": message.content['text'], }) # websocket.disconnect def ws_disconnect(message): Group("chat").discard(message.reply_channel)
22.2
48
0.708709
0
0
0
0
0
0
0
0
90
0.27027
46af2004cde5fbac1f953e967f4311dafcb8c8e2
8,154
py
Python
env/enviroment.py
Dorebom/robot_pybullet
21e95864da28eb5553266513b1a1a735901395b6
[ "MIT" ]
null
null
null
env/enviroment.py
Dorebom/robot_pybullet
21e95864da28eb5553266513b1a1a735901395b6
[ "MIT" ]
null
null
null
env/enviroment.py
Dorebom/robot_pybullet
21e95864da28eb5553266513b1a1a735901395b6
[ "MIT" ]
null
null
null
from copy import deepcopy import numpy as np import pybullet as p import gym from gym import spaces from env.robot import Manipulator from env.work import Work class Env(): def __init__(self, reward, step_max_pos = 0.002, step_max_orn = 0.02, initial_pos_noise = 0.001, initial_orn_noise = 0.001, step_pos_noise = 0.0002, step_orn_noise = 0.0002): p.connect(p.GUI) p.setPhysicsEngineParameter(enableFileCaching=0) p.setRealTimeSimulation(False) p.setGravity(0, 0, -9.8) p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.setPhysicsEngineParameter(contactBreakingThreshold=0.001) # Init self._is_init_env = False # Plane self.plane_pos = [0, 0, -0.1] p.loadURDF("urdf/plane/plane.urdf", self.plane_pos) self.reward = reward self.max_initial_pos_noise = initial_pos_noise self.max_initial_orn_noise = initial_orn_noise self.max_step_pos_noise = step_pos_noise self.max_step_orn_noise = step_orn_noise # robot self.step_max_pos = step_max_pos self.step_max_orn = step_max_orn self.inv_scaled_force_coef = 5000 # for learning self.action_space = spaces.Box( low=-1, high=1, shape=(6,), dtype=np.float32 ) self.observation_space = spaces.Box( low=-1, high=1, shape=(12,), dtype=np.float32 ) self._act_rel_tcp_pose = [0, 0, 0, 0, 0, 0] def init_env(self, mode = 'rel', robot_tcp_pose = [0, 0, 0, 0, 0, 0], robot_base_pose = [0, 0, 0, 0, 0, 0], robot_tool_pose = [0, 0, 0, 0, 0, 0], work_base_pose = [0, 0, 0, 0, 0, 0]): if self._is_init_env == False: # Load work self.work = Work(base_pose = work_base_pose) self.act_abs_work_pose = work_base_pose # Load robot self.robot = Manipulator(tool_pose=robot_tool_pose, base_pose=robot_base_pose) self._reset_robot_pose(mode=mode, tcp_pose=robot_tcp_pose) self.initial_pos_noise = np.random.uniform(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3) self.initial_orn_noise = np.random.uniform(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3) self._is_init_env = True return self.observe_state(mode = mode) def _reset_robot_pose(self, mode='rel', tcp_pose=[0, 0, 0, 0, 0, 0]): abs_tcp_pose = np.zeros(6) if mode == 'rel': abs_tcp_pose = np.array(self.act_abs_work_pose) + np.array(tcp_pose) elif mode == 'abs': abs_tcp_pose = tcp_pose else: print("ERROR(enviroment.py): mode is not correct.") abs_tcp_pose = [0, 0, 0, 0, 0, 0] self.robot.reset_pose(abs_tcp_pose=abs_tcp_pose) def reset(self, mode = 'rel', tcp_pose = [0, 0, 0, 0, 0, 0], base_pose = [0, 0, 0, 0, 0, 0], tool_pose = [0, 0, 0, 0, 0, 0], work_pose = [0, 0, 0, 0, 0, 0]): if self._is_init_env == False: return self.init_env(mode = mode, robot_tcp_pose = tcp_pose, robot_base_pose = base_pose, robot_tool_pose = tool_pose, work_base_pose = work_pose) # For 処理の高速化 ''' if np.linalg.norm( np.array(tool_pose) - self.prev_tool_pose ) < 1e-6: else: ''' # Reset env p.resetSimulation() # Load Plane p.loadURDF("urdf/plane/plane.urdf", self.plane_pos) # Reset work self.work.reset(base_pose = work_pose) # Reset Robot self.robot.reset_base(base_pose=base_pose, tool_pose=tool_pose) self._reset_robot_pose(mode='rel', tcp_pose=tcp_pose) self.initial_pos_noise = np.random.uniform(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3) self.initial_orn_noise = np.random.uniform(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3) self.prev_tool_pose = tool_pose return self.observe_state(mode = mode) def destory(self): p.disconnect() def step(self, action, step): # ここは指令値生成なので,真値が良い cmd_abs_tcp_pose = np.zeros(6) cmd_abs_tcp_pose[:3] = np.array(self._act_abs_tcp_pose[:3]) + np.array(action[:3]) cmd_abs_tcp_pose[3:6] = np.array(self._act_abs_tcp_pose[3:6]) + np.array(action[3:6]) print('next_pose:', cmd_abs_tcp_pose) self.robot.move_to_pose(cmd_abs_tcp_pose, mode='direct') pose, force, success, out_range = self.decision() r = self.calc_reward(relative_pose = pose, success = success, out_range = out_range, act_step = step) done = success or out_range return np.concatenate([pose, force]), r, done, success def decision(self): ''' observe act_abs_tcp_pose act_rel_tcp_pose act_abs_work_pose act_force ''' act_pose_noisy, act_force = self.observe_state(mode='rel') scaled_act_force = act_force / self.inv_scaled_force_coef # [Note] ここは真値で評価 success_range_of_pos = 0.003 success_range_of_orn = 0.04 success = (np.linalg.norm(self._act_rel_tcp_pose[:3]) <= success_range_of_pos and \ np.linalg.norm(self._act_rel_tcp_pose[3:]) <= success_range_of_orn) # [Note] ここは真値で評価は正しくない気がする. out_range_of_pos = 0.1 out_range_of_orn = 0.8 out_range = any([abs(pos) > out_range_of_pos for pos in act_pose_noisy[:3]]) \ or any([abs(orn) > out_range_of_orn for orn in act_pose_noisy[3:6]]) return act_pose_noisy, scaled_act_force, success, out_range def observe_state(self, mode='rel'): self._act_abs_tcp_pose, self.act_force, _ = self.robot.get_state() self._act_abs_work_pose = self.work.get_state() self._act_rel_tcp_pose = np.array(self._act_abs_tcp_pose) - np.array(self._act_abs_work_pose) ''' ノイズ処理 ''' act_rel_tcp_pose_noisy = np.zeros(6) act_rel_tcp_pose_noisy[:3] = self._act_rel_tcp_pose[:3] + self.initial_pos_noise act_rel_tcp_pose_noisy[3:6] = self._act_rel_tcp_pose[3:6] + self.initial_orn_noise act_rel_tcp_pose_noisy[:3] += np.random.uniform(-self.max_step_pos_noise, self.max_step_pos_noise, 3) act_rel_tcp_pose_noisy[3:6] += np.random.uniform(-self.max_step_orn_noise, self.max_step_orn_noise, 3) if mode == 'rel': return act_rel_tcp_pose_noisy, self.act_force elif mode == 'abs': act_abs_tcp_pose_noisy = np.zeros(6) act_abs_tcp_pose_noisy[:3] = self._act_abs_tcp_pose[:3] + self.initial_pos_noise act_abs_tcp_pose_noisy[3:6] = self._act_abs_tcp_pose[3:6] + self.initial_orn_noise act_abs_work_pose_noisy = np.zeros(6) act_abs_work_pose_noisy[:3] = self._act_abs_work_pose[:3] + self.initial_pos_noise act_abs_work_pose_noisy[3:6] = self._act_abs_work_pose[3:6] + self.initial_orn_noise return act_abs_tcp_pose_noisy, act_abs_work_pose_noisy, self.act_force def calc_reward(self, relative_pose, success, out_range, act_step): return self.reward.reward_function(relative_pose, success, out_range, act_step) def scale_action(self, action): scaled_action = deepcopy(action) scaled_action[:3]*=self.step_max_pos scaled_action[3:]*=self.step_max_orn return scaled_action
38.828571
101
0.589159
8,102
0.980397
0
0
0
0
0
0
714
0.086399
46b07861f72e984eb2546daa1dab51801dd00b0a
1,820
py
Python
Thread/Threading.py
zxg110/PythonGrammer
7d07648c62e3d49123688c33d09fe4bb369cf852
[ "Apache-2.0" ]
null
null
null
Thread/Threading.py
zxg110/PythonGrammer
7d07648c62e3d49123688c33d09fe4bb369cf852
[ "Apache-2.0" ]
null
null
null
Thread/Threading.py
zxg110/PythonGrammer
7d07648c62e3d49123688c33d09fe4bb369cf852
[ "Apache-2.0" ]
null
null
null
import _thread import time import threading # # def print_time(threadName,delay): # count = 0; # while count < 5: # time.sleep(delay) # count += 1; # print("%s: %s" % (threadName, time.ctime(time.time()))) # # try: # _thread.start_new(print_time,("Thread-1",2,)) # _thread.start_new(print_time("Thread-2",4)) # except: # print("error") # # while 1: # pass # Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。 # _thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。 # threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法: # threading.currentThread(): 返回当前的线程变量。 # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。 # 除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法: # run(): 用以表示线程活动的方法。 # start():启动线程活动。 # join([time]): 主线程中,创建了子线程B,并且在主线程A中调用了B.join(),那么,主线程A会在调用的地方等待, # 直到子线程B完成操作后,才接着往下执行。参数time代表线程运行最大时间,即如果超过这个时间,不管这个此线程有 # 没有执行完毕都会被回收,然后主线程或函数都会接着执行的。 # isAlive(): 返回线程是否活动的。 # getName(): 返回线程名。 # setName(): 设置线程名。 exitFlag = 0 class MyThread(threading.Thread): def __init__(self,threadID,name,counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开始线程:" + self.name) print_time(self.name, 2,self.counter) print ("退出线程:" + self.name) def print_time(threadName, delay, counter): while counter: # if exitFlag: # threadName.exit() time.sleep(delay) print("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 # 创建新线程 thread1 = MyThread(1, "Thread-1", 5) thread2 = MyThread(2, "Thread-2", 5) # 开启新线程 thread1.start() thread2.start() thread1.join() thread2.join() print ("退出主线程")
26
73
0.666484
365
0.142578
0
0
0
0
0
0
1,821
0.711328
46b1624f4a6a70026386fb13d4c9f4cd8b816721
492
py
Python
server/petsAPI/views.py
StoyanDimStoyanov/ReactDJango
8c30730fbd3af0064f97444a91e65a9029a1dc0f
[ "MIT" ]
null
null
null
server/petsAPI/views.py
StoyanDimStoyanov/ReactDJango
8c30730fbd3af0064f97444a91e65a9029a1dc0f
[ "MIT" ]
null
null
null
server/petsAPI/views.py
StoyanDimStoyanov/ReactDJango
8c30730fbd3af0064f97444a91e65a9029a1dc0f
[ "MIT" ]
null
null
null
from django.shortcuts import render from rest_framework import generics # Create your views here. from petsAPI.models import Pets from petsAPI.serializers import PetSerializer def index(req): return render(req, 'index.html') class PetsListApiView(generics.ListCreateAPIView): queryset = Pets.objects.all() serializer_class = PetSerializer class PetDetailsApiView(generics.RetrieveUpdateDestroyAPIView): queryset = Pets.objects.all() serializer_class = PetSerializer
24.6
63
0.792683
255
0.518293
0
0
0
0
0
0
37
0.075203
46b234a2d05a51f6fb5809df7fa1df618dfd4547
2,153
py
Python
cluster_faces.py
sandhyalaxmiK/faces_clustering
e2da7e057ce5ec749e0c631f450e262f046b8e1d
[ "MIT" ]
null
null
null
cluster_faces.py
sandhyalaxmiK/faces_clustering
e2da7e057ce5ec749e0c631f450e262f046b8e1d
[ "MIT" ]
null
null
null
cluster_faces.py
sandhyalaxmiK/faces_clustering
e2da7e057ce5ec749e0c631f450e262f046b8e1d
[ "MIT" ]
null
null
null
import face_recognition import sys,os import re,cv2 def sorted_alphanumeric(data): convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] return sorted(data, key=alphanum_key) input_dir_path=sys.argv[1] output_dir_path=sys.argv[2] if not os.path.exists(output_dir_path): os.mkdir(output_dir_path) if not os.path.exists(output_dir_path+'/'+str(1)): os.mkdir(output_dir_path+'/'+str(1)) input_images=sorted_alphanumeric(os.listdir(input_dir_path)) cv2.imwrite(output_dir_path+'/'+str(1)+'/'+input_images[0],cv2.imread(input_dir_path+'/'+input_images[0])) if not os.path.exists(output_dir_path+'/back_imgs'): os.mkdir(output_dir_path+'/back_imgs') if not os.path.exists(output_dir_path+'/error'): os.mkdir(output_dir_path+'/error') for img_path in input_images[1:]: try: prev_similarity=0 img=face_recognition.load_image_file(input_dir_path+'/'+img_path) img_encoding=face_recognition.face_encodings(img) if img_encoding==[]: img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) cv2.imwrite(output_dir_path+'/back_imgs/'+img_path,img) continue img_encoding=face_recognition.face_encodings(img)[0] imgs_dirs=sorted_alphanumeric(os.listdir(output_dir_path)) imgs_dirs=list(set(imgs_dirs)-set(['error','back_imgs'])) for img_dir in imgs_dirs: check_img=face_recognition.load_image_file(output_dir_path+'/'+img_dir+'/'+sorted_alphanumeric(os.listdir(output_dir_path+'/'+img_dir))[0]) check_img_encoding=face_recognition.face_encodings(check_img)[0] similarity=1-face_recognition.compare_faces([img_encoding], check_img_encoding) if similarity>prev_similarity: prev_similarity=similarity result_dir=img_dir img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) if prev_similarity<0.6: new_dir=str(len(os.listdir(output_dir_path))+1) os.mkdir(output_dir_path+'/'+new_dir) cv2.imwrite(output_dir_path+'/'+new_dir+'/'+img_path,img) else: cv2.imwrite(output_dir_path+'/'+result_dir+'/'+img_path,img) except: img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) cv2.imwrite(output_dir_path+'/error/'+img_path,img)
39.87037
142
0.75987
0
0
0
0
0
0
0
0
132
0.06131
46b37f4db1428d7e3e970e352faebde87a24d82f
7,329
py
Python
src/bbdata/endpoint/output/objects.py
big-building-data/bbdata-python
46335c9f8db9ceccbd795c4931db0e3041ba9a50
[ "MIT" ]
null
null
null
src/bbdata/endpoint/output/objects.py
big-building-data/bbdata-python
46335c9f8db9ceccbd795c4931db0e3041ba9a50
[ "MIT" ]
null
null
null
src/bbdata/endpoint/output/objects.py
big-building-data/bbdata-python
46335c9f8db9ceccbd795c4931db0e3041ba9a50
[ "MIT" ]
null
null
null
import requests from bbdata.config import output_api_url from bbdata.util import handle_response class Objects: base_path = "/objects" auth = None def __init__(self, auth): self.auth = auth def get_all(self, tags=None, search=None, page=None, per_page=None, writable=False): """ Get the list of accessible objects. GET /objects https://bbdata.daplab.ch/api/#objects_get """ params = { "tags": tags, "search": search, "page": page, "perPage": per_page, "writable": writable, } url = output_api_url + self.base_path r = requests.get(url, params, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def put(self, name, unit_symbol, owner, description=None): """ Create a new object. PUT /objects https://bbdata.daplab.ch/api/#objects_put """ json = { "name": name, "description": description, "unitSymbol": unit_symbol, 'owner': owner } url = output_api_url + self.base_path r = requests.put(url, json=json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def get(self, object_id): """ Get an object. GET /objects/{objectIs} https://bbdata.daplab.ch/api/#objects__objectid__get """ url = output_api_url + self.base_path + "/" + str(object_id) r = requests.get(url, headers=self.auth.headers) # return ObjectResponse(r.json()) return handle_response(r.status_code, r.json()) def post(self, object_id, data): """ Edit the name and/or the description of the object. Only the properties appearing in the body will be modified. POST /objects/{objectId} https://bbdata.daplab.ch/api/#objects__objectid__post """ # TODO The data to send isn't define in the API Docs url = output_api_url + self.base_path + "/" + str(object_id) r = requests.post(url, data, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def delete(self, object_id): """ Delete the object with the given id POST /objects/{objectId} https://bbdata.daplab.ch/api/#objects__objectid__delete """ # TODO This method is in the Postman profile but isn't in the docs url = output_api_url + self.base_path + "/" + str(object_id) r = requests.delete(url, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def post_disable(self, object_id): """ Disable this object. All associated tokens will be removed. POST /objects/{objectId}/disable https://bbdata.daplab.ch/api/#objects__objectid__disable_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/disable" r = requests.post(url, headers=self.auth.headers) return handle_response(r.status_code, True) def post_enable(self, object_id): """ Enable this object. POST /objects/{objectId}/enable https://bbdata.daplab.ch/api/#objects__objectid__enable_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/enable" r = requests.post(url, headers=self.auth.headers) return handle_response(r.status_code, True) def get_tokens(self, object_id, description=None): """ Get the list of tokens for the object. A token is used to submit new measures (see input-api). An optional description can be passed in the body (max 65 characters). GET /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_get """ # TODO The API docs says it's possible to pass an optional description # but it looks like it's a mistake for a GET request... url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" json = { "description": description } r = requests.get(url, json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def put_tokens(self, object_id): """ Generate a new secured token. PUT /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_put """ # TODO The optional description should probably be added in this # method url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" r = requests.put(url, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def post_tokens(self, object_id, description): """ Edit the token's description. POST /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" json = { "description": description } r = requests.post(url, json=json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def delete_tokens(self, object_id, token_id): """ Revoke a token. DELETE /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_delete """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" params = { "tokenId": token_id } r = requests.delete(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def put_tags(self, object_id, tags): """ Add tags to the object. PUT /objects/{objectId}/tags https://bbdata.daplab.ch/api/#objects__objectid__tags_put """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tags" params = { "tags": tags } r = requests.put(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def delete_tags(self, object_id, tags): """ Remove tags. DELETE /objects/{objectId}/tags https://bbdata.daplab.ch/api/#objects__objectid__tags_delete """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tags" params = { "tags": tags } r = requests.put(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def get_comments(self, object_id): """ Get all comments attached to this object. Use the /comments endpoint for more actions. GET /objects/{objectId}/comments https://bbdata.daplab.ch/api/#objects__objectid__comments_get """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/comments" r = requests.get(url, headers=self.auth.headers) return handle_response(r.status_code, r.json())
33.619266
78
0.592714
7,229
0.986356
0
0
0
0
0
0
3,050
0.416155
46b3fea476ee5e207c6461dc2f22693adf1376cd
94
py
Python
python/tako/client/__init__.py
vyomkeshj/tako
d0906df5cdc0023ee955ad34d9eb4696b5ecec5e
[ "MIT" ]
null
null
null
python/tako/client/__init__.py
vyomkeshj/tako
d0906df5cdc0023ee955ad34d9eb4696b5ecec5e
[ "MIT" ]
null
null
null
python/tako/client/__init__.py
vyomkeshj/tako
d0906df5cdc0023ee955ad34d9eb4696b5ecec5e
[ "MIT" ]
null
null
null
from .exception import TakoException, TaskFailed # noqa from .session import connect # noqa
31.333333
56
0.787234
0
0
0
0
0
0
0
0
12
0.12766
46b430ceffc244986e1b0a3ab9f0c59e0b7629b0
5,533
py
Python
helpers/parser.py
yasahi-hpc/AMRNet
5858d464bdfe409a5ab50889104768dda3c70508
[ "MIT" ]
null
null
null
helpers/parser.py
yasahi-hpc/AMRNet
5858d464bdfe409a5ab50889104768dda3c70508
[ "MIT" ]
null
null
null
helpers/parser.py
yasahi-hpc/AMRNet
5858d464bdfe409a5ab50889104768dda3c70508
[ "MIT" ]
null
null
null
import argparse def parse(): parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-data_dir', \ action='store', \ nargs='?', \ const=None, \ default='./dataset', \ type=str, \ choices=None, \ help='directory of datasets', \ metavar=None) parser.add_argument('--device', \ action='store', \ nargs='?', \ const=None, \ default='cuda', \ type=str, \ choices=None, \ help='Device to run the model', \ metavar=None) parser.add_argument('--dim', \ action='store', \ nargs='?', \ const=None, \ default=2, \ type=int, \ choices=None, \ help='Dimension of the model', \ metavar=None) parser.add_argument('--batch_size', \ action='store', \ nargs='?', \ const=None, \ default=25, \ type=int, \ choices=None, \ help='Batch size', \ metavar=None) parser.add_argument('--n_epochs', \ action='store', \ nargs='?', \ const=None, \ default=3, \ type=int, \ choices=None, \ help='Number of epochs', \ metavar=None) parser.add_argument('--run_number', \ action='store', \ nargs='?', \ const=None, \ default=0, \ type=int, \ choices=None, \ help='Run number', \ metavar=None) parser.add_argument('--padding_mode', \ action='store', \ nargs='?', \ const=None, \ default='reflect', \ type=str, \ choices=None, \ help='Padding type (default: reflect)', \ metavar=None) parser.add_argument('--preprocess_type', \ action='store', \ nargs='?', \ const=None, \ default='normalization', \ type=str, \ choices=None, \ help='Preprocess type (default: normalization)', \ metavar=None) parser.add_argument('--model_name', \ action='store', \ nargs='?', \ const=None, \ default='AMR_Net', \ type=str, \ choices=None, \ help='Name of the model (default: AMR_Net)', \ metavar=None) parser.add_argument('--lr', \ action='store', \ nargs='?', \ const=None, \ default=0.0002, \ type=float, \ choices=None, \ help='Learning rate', \ metavar=None) parser.add_argument('--beta_1', \ action='store', \ nargs='?', \ const=None, \ default=0.9, \ type=float, \ choices=None, \ help='beta_1 for Adam', \ metavar=None) parser.add_argument('--beta_2', \ action='store', \ nargs='?', \ const=None, \ default=0.999, \ type=float, \ choices=None, \ help='beta_2 for Adam', \ metavar=None) # Used for inference parser.add_argument('--inference_mode', \ action='store_true', \ default=False, \ help='train or inference') parser.add_argument('-state_file_dir', \ action='store', \ nargs='?', \ const=None, \ default='./', \ type=str, \ choices=None, \ help='directory storing torch state files', \ metavar=None) parser.add_argument('--load_nth_state_file', \ action='store', \ nargs='?', \ const=None, \ default=0, \ type=int, \ choices=None, \ help='nth state file to load', \ metavar=None) args = parser.parse_args() return args
39.521429
74
0.325863
0
0
0
0
0
0
0
0
784
0.141695