hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
46b4aae481a7dcad8401c1fdb98aae95f3b590c6
2,207
py
Python
api/patients/urls.py
Wellheor1/l2
d980210921c545c68fe9d5522bb693d567995024
[ "MIT" ]
10
2018-03-14T06:17:06.000Z
2022-03-10T05:33:34.000Z
api/patients/urls.py
Wellheor1/l2
d980210921c545c68fe9d5522bb693d567995024
[ "MIT" ]
512
2018-09-10T07:37:34.000Z
2022-03-30T02:23:43.000Z
api/patients/urls.py
D00dleman/l2
0870144537ee340cd8db053a608d731e186f02fb
[ "MIT" ]
24
2018-07-31T05:52:12.000Z
2022-02-08T00:39:41.000Z
from django.urls import path from . import views urlpatterns = [ path('search-card', views.patients_search_card), path('search-individual', views.patients_search_individual), path('search-l2-card', views.patients_search_l2_card), path('create-l2-individual-from-card', views.create_l2_individual_from_card), path('card/<int:card_id>', views.patients_get_card_data), path('card/save', views.patients_card_save), path('card/archive', views.patients_card_archive), path('card/unarchive', views.patients_card_unarchive), path('individuals/search', views.individual_search), path('individuals/sex', views.get_sex_by_param), path('individuals/edit-doc', views.edit_doc), path('individuals/edit-agent', views.edit_agent), path('individuals/update-cdu', views.update_cdu), path('individuals/update-wia', views.update_wia), path('individuals/sync-rmis', views.sync_rmis), path('individuals/sync-tfoms', views.sync_tfoms), path('individuals/load-anamnesis', views.load_anamnesis), path('individuals/load-dreg', views.load_dreg), path('individuals/load-screening', views.load_screening), path('individuals/load-vaccine', views.load_vaccine), path('individuals/load-ambulatory-data', views.load_ambulatory_data), path('individuals/load-benefit', views.load_benefit), path('individuals/load-dreg-detail', views.load_dreg_detail), path('individuals/load-vaccine-detail', views.load_vaccine_detail), path('individuals/load-ambulatorydata-detail', views.load_ambulatory_data_detail), path('individuals/load-ambulatory-history', views.load_ambulatory_history), path('individuals/load-benefit-detail', views.load_benefit_detail), path('individuals/save-dreg', views.save_dreg), path('individuals/save-plan-dreg', views.update_dispensary_reg_plans), path('individuals/save-vaccine', views.save_vaccine), path('individuals/save-ambulatory-data', views.save_ambulatory_data), path('individuals/save-benefit', views.save_benefit), path('individuals/save-anamnesis', views.save_anamnesis), path('is-card', views.is_l2_card), path('save-screening-plan', views.update_screening_reg_plan), ]
53.829268
86
0.752152
0
0
0
0
0
0
0
0
852
0.386044
46b5e33d3c7311128739c73f9d648a67b6c52c18
1,139
py
Python
resolwe_bio/kb/migrations/0002_alter_field_max_length.py
JureZmrzlikar/resolwe-bio
54cde9b293abebad2db0564c9fefa33d6d2fe835
[ "Apache-2.0" ]
null
null
null
resolwe_bio/kb/migrations/0002_alter_field_max_length.py
JureZmrzlikar/resolwe-bio
54cde9b293abebad2db0564c9fefa33d6d2fe835
[ "Apache-2.0" ]
null
null
null
resolwe_bio/kb/migrations/0002_alter_field_max_length.py
JureZmrzlikar/resolwe-bio
54cde9b293abebad2db0564c9fefa33d6d2fe835
[ "Apache-2.0" ]
1
2021-09-03T08:50:54.000Z
2021-09-03T08:50:54.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2016-11-15 07:06 from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resolwe_bio_kb', '0001_initial'), ] operations = [ migrations.AlterField( model_name='feature', name='aliases', field=django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=256), blank=True, default=[], size=None), ), migrations.AlterField( model_name='feature', name='name', field=models.CharField(max_length=1024), ), migrations.AlterField( model_name='feature', name='sub_type', field=models.CharField(choices=[(b'protein-coding', b'Protein-coding'), (b'pseudo', b'Pseudo'), (b'rRNA', b'rRNA'), (b'ncRNA', b'ncRNA'), (b'snRNA', b'snRNA'), (b'snoRNA', b'snoRNA'), (b'tRNA', b'tRNA'), (b'asRNA', b'asRNA'), (b'other', b'Other'), (b'unknown', b'Unknown')], max_length=20), ), ]
35.59375
302
0.604039
943
0.827919
0
0
0
0
0
0
335
0.294118
46b6263389154f262f0911cbbda3dfc8ad613ae7
3,014
py
Python
setup.py
conan-hdk/xlwings
44395c4d18b46f76249279b7d0965e640291499c
[ "BSD-3-Clause" ]
null
null
null
setup.py
conan-hdk/xlwings
44395c4d18b46f76249279b7d0965e640291499c
[ "BSD-3-Clause" ]
null
null
null
setup.py
conan-hdk/xlwings
44395c4d18b46f76249279b7d0965e640291499c
[ "BSD-3-Clause" ]
null
null
null
import os import sys import re import glob from setuptools import setup, find_packages # long_description: Take from README file with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as f: readme = f.read() # Version Number with open(os.path.join(os.path.dirname(__file__), 'xlwings', '__init__.py')) as f: version = re.compile(r".*__version__ = '(.*?)'", re.S).match(f.read()).group(1) # Dependencies if sys.platform.startswith('win'): if sys.version_info[:2] >= (3, 7): pywin32 = 'pywin32 >= 224' else: pywin32 = 'pywin32' install_requires = [pywin32] # This places dlls next to python.exe for standard setup and in the parent folder for virtualenv data_files = [('', glob.glob('xlwings*.dll'))] elif sys.platform.startswith('darwin'): install_requires = ['psutil >= 2.0.0', 'appscript >= 1.0.1'] data_files = [(os.path.expanduser("~") + '/Library/Application Scripts/com.microsoft.Excel', [f'xlwings/xlwings-{version}.applescript'])] else: if os.environ.get('READTHEDOCS', None) == 'True' or os.environ.get('INSTALL_ON_LINUX') == '1': data_files = [] install_requires = [] else: raise OSError("xlwings requires an installation of Excel and therefore only works on Windows and macOS. To enable the installation on Linux nevertheless, do: export INSTALL_ON_LINUX=1; pip install xlwings") extras_require = { 'pro': ['cryptography', 'Jinja2', 'pdfrw'], 'all': ['cryptography', 'Jinja2', 'pandas', 'matplotlib', 'plotly', 'flask', 'requests', 'pdfrw'] } setup( name='xlwings', version=version, url='https://www.xlwings.org', license='BSD 3-clause', author='Zoomer Analytics LLC', author_email='[email protected]', description='Make Excel fly: Interact with Excel from Python and vice versa.', long_description=readme, data_files=data_files, packages=find_packages(exclude=('tests', 'tests.*',)), package_data={'xlwings': ['xlwings.bas', 'Dictionary.cls', '*.xlsm', '*.xlam', '*.applescript', 'addin/xlwings.xlam', 'addin/xlwings_unprotected.xlam']}, keywords=['xls', 'excel', 'spreadsheet', 'workbook', 'vba', 'macro'], install_requires=install_requires, extras_require=extras_require, entry_points={'console_scripts': ['xlwings=xlwings.cli:main'],}, classifiers=[ 'Development Status :: 4 - Beta', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Topic :: Office/Business :: Financial :: Spreadsheet', 'License :: OSI Approved :: BSD License'], platforms=['Windows', 'Mac OS X'], python_requires='>=3.6', )
42.450704
214
0.651626
0
0
0
0
0
0
0
0
1,650
0.547445
46b6eaa6075021f6bee39458eda6a940c6b7c8b2
2,044
py
Python
secedgar/tests/test_cli.py
abbadata/sec-edgar
f801d2137a988c928449bf64b44a85c01e80fd3a
[ "Apache-2.0" ]
null
null
null
secedgar/tests/test_cli.py
abbadata/sec-edgar
f801d2137a988c928449bf64b44a85c01e80fd3a
[ "Apache-2.0" ]
null
null
null
secedgar/tests/test_cli.py
abbadata/sec-edgar
f801d2137a988c928449bf64b44a85c01e80fd3a
[ "Apache-2.0" ]
null
null
null
import pytest from click.testing import CliRunner from secedgar.cli import daily, filing from secedgar.utils.exceptions import FilingTypeError def run_cli_command(cli, user_input, directory, catch_exceptions=False): runner = CliRunner() user_input = user_input + " --directory {}".format(directory) return runner.invoke(cli, user_input, catch_exceptions=catch_exceptions) def check_bad_inputs(cli, user_input, expected_exception, directory): # SystemExit does not raise exception by runner if expected_exception is SystemExit: result = run_cli_command(cli, user_input, directory) assert result.exit_code != 0 else: with pytest.raises(expected_exception): run_cli_command(cli, user_input, directory) class TestCLIFiling: @pytest.mark.parametrize( "user_input,expected_exception", [ ("-l aapl msft Facebook", SystemExit), # missing filing type ("-l aapl -t null", FilingTypeError), # unrecognized filing type ("-l aapl -t FILING_10Q -n abc", SystemExit), # count is not int ("-l aapl -t FILING_10Q -n 0", ValueError) # no filings available if 0 picked ] ) def test_filing_bad_inputs(self, user_input, expected_exception, tmp_data_directory): check_bad_inputs(filing, user_input, expected_exception, tmp_data_directory) @pytest.mark.parametrize( "user_input", [ "-l aapl msft fb FILING_10Q", "-l aapl msft fb FILING_10Q -n 10", "-l aapl msft fb FILING_10Q -n 1" ] ) def test_multiple_companies_input(self, user_input, tmp_data_directory): pass class TestCLIDaily: @pytest.mark.parametrize( "user_input,expected_exception", [ ("", SystemExit), ("-d 2020", ValueError) ] ) def test_daily_bad_inputs(self, user_input, expected_exception, tmp_data_directory): check_bad_inputs(daily, user_input, expected_exception, tmp_data_directory)
34.066667
90
0.672211
1,275
0.623777
0
0
1,218
0.59589
0
0
441
0.215753
46b74e2cb30b2d76500271ee27ada8ec4c26cdc1
2,013
py
Python
hydro.py
garethcmurphy/hydrosolve
ef150a6adcab1e835b4b907c5fed2dd58cd4ba08
[ "MIT" ]
null
null
null
hydro.py
garethcmurphy/hydrosolve
ef150a6adcab1e835b4b907c5fed2dd58cd4ba08
[ "MIT" ]
null
null
null
hydro.py
garethcmurphy/hydrosolve
ef150a6adcab1e835b4b907c5fed2dd58cd4ba08
[ "MIT" ]
null
null
null
import os import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec nstep=200 nx=400 nv=3 u=np.zeros((nx,nv)) prim=np.zeros((nx,nv)) gam=5./3. dx=1./nx dt=1e-3 time=0 x=np.linspace(0,1,num=nx) def ptou(pri): u=np.zeros((nx,nv)) rho=pri[:,0] v=pri[:,1] prs=pri[:,2] mom=rho*v u[:,0]=rho u[:,1]=mom u[:,2]=0.5*mom*v+prs/(gam-1) return(u) def utop(u): pri=np.zeros((nx,nv)) rho=u[:,0] mom=u[:,1] ene=u[:,2] vel=mom/(rho+1e-6) pri[:,0]=rho pri[:,1]=vel pri[:,2]=(ene-0.5*mom*vel)*(gam-1) return(pri) def getmaxv(pri): rho=pri[:,0] vel=pri[:,1] prs=pri[:,2] cs=np.sqrt(gam*prs/rho) return(max(abs(vel)+cs)) def getflux(u): f=np.zeros((nx,nv)) pri=utop(u) rho=pri[:,0] v=pri[:,1] prs=pri[:,2] mom=u[:,1] ene=u[:,2] f[:,0]=mom f[:,1]=mom*v+prs f[:,2]=(ene+prs)*v return(f) prim[:,0]=1. prim[:,1]=0. prim[:,2]=1. for i in range(int(nx/2),nx): prim[i,0]=0.1 prim[i,1]=0. prim[i,2]=0.125 print (prim[:,2]) u=ptou(prim) uold=u pold=prim fig = plt.figure() gs = gridspec.GridSpec(nv,1) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0]) ax3 = fig.add_subplot(gs[2,0]) ax1.plot(x,prim[:,0],'pres') ax2.plot(x,prim[:,1],'pres') ax3.plot(x,prim[:,2],'pres') fig.show() for nstep in range(0,nstep): print (time) um=np.roll(u, 1,axis=0) up=np.roll(u,-1,axis=0) um[0,:] =um[1,:] up[nx-1,:]=up[nx-2,:] fm=getflux(um) fp=getflux(up) cfl=0.49 dtdx=1./getmaxv(p) dt=dtdx*dx time=time+dt un=0.5*(um+up) - cfl*dtdx* (fp-fm) u=un p=utop(u) plt.close(fig) fig = plt.figure() gs = gridspec.GridSpec(nv,1) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0]) ax3 = fig.add_subplot(gs[2,0]) ax1.plot(p[:,0]) ax2.plot(p[:,1]) ax3.plot(p[:,2]) fig.show()
18.638889
42
0.516642
0
0
0
0
0
0
0
0
18
0.008942
d3b125d2c7eabb30628cc33826a64ef3ed9c92f4
22,179
py
Python
tests/test_pluralize.py
weixu365/pluralizer-py
793b2a8ff1320f701e70810038e0902c610aa5b0
[ "MIT" ]
4
2020-05-10T12:02:57.000Z
2022-02-02T11:20:02.000Z
tests/test_pluralize.py
weixu365/pluralizer-py
793b2a8ff1320f701e70810038e0902c610aa5b0
[ "MIT" ]
30
2020-05-10T10:07:00.000Z
2022-03-26T18:22:43.000Z
tests/test_pluralize.py
weixu365/pluralizer-py
793b2a8ff1320f701e70810038e0902c610aa5b0
[ "MIT" ]
null
null
null
import unittest from pluralizer import Pluralizer import re # Standard singular/plural matches. # # @type {Array} BASIC_TESTS = [ # Uncountables. ['firmware', 'firmware'], ['fish', 'fish'], ['media', 'media'], ['moose', 'moose'], ['police', 'police'], ['sheep', 'sheep'], ['series', 'series'], ['agenda', 'agenda'], ['news', 'news'], ['reindeer', 'reindeer'], ['starfish', 'starfish'], ['smallpox', 'smallpox'], ['tennis', 'tennis'], ['chickenpox', 'chickenpox'], ['shambles', 'shambles'], ['garbage', 'garbage'], ['you', 'you'], ['wildlife', 'wildlife'], ['Staff', 'Staff'], ['STAFF', 'STAFF'], ['turquois', 'turquois'], ['carnivorous', 'carnivorous'], ['only', 'only'], ['aircraft', 'aircraft'], # Latin. ['veniam', 'veniam'], # Pluralization. ['this', 'these'], ['that', 'those'], ['is', 'are'], ['man', 'men'], ['superman', 'supermen'], ['ox', 'oxen'], ['bus', 'buses'], ['airbus', 'airbuses'], ['railbus', 'railbuses'], ['wife', 'wives'], ['guest', 'guests'], ['thing', 'things'], ['mess', 'messes'], ['guess', 'guesses'], ['person', 'people'], ['meteor', 'meteors'], ['chateau', 'chateaus'], ['lap', 'laps'], ['cough', 'coughs'], ['death', 'deaths'], ['coach', 'coaches'], ['boy', 'boys'], ['toy', 'toys'], ['guy', 'guys'], ['girl', 'girls'], ['chair', 'chairs'], ['toe', 'toes'], ['tiptoe', 'tiptoes'], ['tomato', 'tomatoes'], ['potato', 'potatoes'], ['tornado', 'tornadoes'], ['torpedo', 'torpedoes'], ['hero', 'heroes'], ['superhero', 'superheroes'], ['volcano', 'volcanoes'], ['canto', 'cantos'], ['hetero', 'heteros'], ['photo', 'photos'], ['portico', 'porticos'], ['quarto', 'quartos'], ['kimono', 'kimonos'], ['albino', 'albinos'], ['cherry', 'cherries'], ['piano', 'pianos'], ['pro', 'pros'], ['combo', 'combos'], ['turbo', 'turbos'], ['bar', 'bars'], ['crowbar', 'crowbars'], ['van', 'vans'], ['tobacco', 'tobaccos'], ['afficionado', 'afficionados'], ['monkey', 'monkeys'], ['neutrino', 'neutrinos'], ['rhino', 'rhinos'], ['steno', 'stenos'], ['latino', 'latinos'], ['casino', 'casinos'], ['avocado', 'avocados'], ['commando', 'commandos'], ['tuxedo', 'tuxedos'], ['speedo', 'speedos'], ['dingo', 'dingoes'], ['echo', 'echoes'], ['nacho', 'nachos'], ['motto', 'mottos'], ['psycho', 'psychos'], ['poncho', 'ponchos'], ['pass', 'passes'], ['ghetto', 'ghettos'], ['mango', 'mangos'], ['lady', 'ladies'], ['bath', 'baths'], ['professional', 'professionals'], ['dwarf', 'dwarves'], # Proper spelling is "dwarfs". ['encyclopedia', 'encyclopedias'], ['louse', 'lice'], ['roof', 'roofs'], ['woman', 'women'], ['formula', 'formulas'], ['polyhedron', 'polyhedra'], ['index', 'indices'], # Maybe "indexes". ['matrix', 'matrices'], ['vertex', 'vertices'], ['axe', 'axes'], # Could also be plural of "ax". ['pickaxe', 'pickaxes'], ['crisis', 'crises'], ['criterion', 'criteria'], ['phenomenon', 'phenomena'], ['addendum', 'addenda'], ['datum', 'data'], ['forum', 'forums'], ['millennium', 'millennia'], ['alumnus', 'alumni'], ['medium', 'mediums'], ['census', 'censuses'], ['genus', 'genera'], ['dogma', 'dogmata'], ['life', 'lives'], ['hive', 'hives'], ['kiss', 'kisses'], ['dish', 'dishes'], ['human', 'humans'], ['knife', 'knives'], ['phase', 'phases'], ['judge', 'judges'], ['class', 'classes'], ['witch', 'witches'], ['church', 'churches'], ['massage', 'massages'], ['prospectus', 'prospectuses'], ['syllabus', 'syllabi'], ['viscus', 'viscera'], ['cactus', 'cacti'], ['hippopotamus', 'hippopotamuses'], ['octopus', 'octopuses'], ['platypus', 'platypuses'], ['kangaroo', 'kangaroos'], ['atlas', 'atlases'], ['stigma', 'stigmata'], ['schema', 'schemata'], ['phenomenon', 'phenomena'], ['diagnosis', 'diagnoses'], ['mongoose', 'mongooses'], ['mouse', 'mice'], ['liturgist', 'liturgists'], ['box', 'boxes'], ['gas', 'gases'], ['self', 'selves'], ['chief', 'chiefs'], ['quiz', 'quizzes'], ['child', 'children'], ['shelf', 'shelves'], ['fizz', 'fizzes'], ['tooth', 'teeth'], ['thief', 'thieves'], ['day', 'days'], ['loaf', 'loaves'], ['fix', 'fixes'], ['spy', 'spies'], ['vertebra', 'vertebrae'], ['clock', 'clocks'], ['lap', 'laps'], ['cuff', 'cuffs'], ['leaf', 'leaves'], ['calf', 'calves'], ['moth', 'moths'], ['mouth', 'mouths'], ['house', 'houses'], ['proof', 'proofs'], ['hoof', 'hooves'], ['elf', 'elves'], ['turf', 'turfs'], ['craft', 'crafts'], ['die', 'dice'], ['penny', 'pennies'], ['campus', 'campuses'], ['virus', 'viri'], ['iris', 'irises'], ['bureau', 'bureaus'], ['kiwi', 'kiwis'], ['wiki', 'wikis'], ['igloo', 'igloos'], ['ninja', 'ninjas'], ['pizza', 'pizzas'], ['kayak', 'kayaks'], ['canoe', 'canoes'], ['tiding', 'tidings'], ['pea', 'peas'], ['drive', 'drives'], ['nose', 'noses'], ['movie', 'movies'], ['status', 'statuses'], ['alias', 'aliases'], ['memorandum', 'memorandums'], ['language', 'languages'], ['plural', 'plurals'], ['word', 'words'], ['multiple', 'multiples'], ['reward', 'rewards'], ['sandwich', 'sandwiches'], ['subway', 'subways'], ['direction', 'directions'], ['land', 'lands'], ['row', 'rows'], ['grow', 'grows'], ['flow', 'flows'], ['rose', 'roses'], ['raise', 'raises'], ['friend', 'friends'], ['follower', 'followers'], ['male', 'males'], ['nail', 'nails'], ['sex', 'sexes'], ['tape', 'tapes'], ['ruler', 'rulers'], ['king', 'kings'], ['queen', 'queens'], ['zero', 'zeros'], ['quest', 'quests'], ['goose', 'geese'], ['foot', 'feet'], ['ex', 'exes'], ['reflex', 'reflexes'], ['heat', 'heats'], ['train', 'trains'], ['test', 'tests'], ['pie', 'pies'], ['fly', 'flies'], ['eye', 'eyes'], ['lie', 'lies'], ['node', 'nodes'], ['trade', 'trades'], ['chinese', 'chinese'], ['please', 'pleases'], ['japanese', 'japanese'], ['regex', 'regexes'], ['license', 'licenses'], ['zebra', 'zebras'], ['general', 'generals'], ['corps', 'corps'], ['pliers', 'pliers'], ['flyer', 'flyers'], ['scissors', 'scissors'], ['fireman', 'firemen'], ['chirp', 'chirps'], ['harp', 'harps'], ['corpse', 'corpses'], ['dye', 'dyes'], ['move', 'moves'], ['zombie', 'zombies'], ['variety', 'varieties'], ['talkie', 'talkies'], ['walkie-talkie', 'walkie-talkies'], ['groupie', 'groupies'], ['goonie', 'goonies'], ['lassie', 'lassies'], ['genie', 'genies'], ['foodie', 'foodies'], ['faerie', 'faeries'], ['collie', 'collies'], ['obloquy', 'obloquies'], ['looey', 'looies'], ['osprey', 'ospreys'], ['cover', 'covers'], ['tie', 'ties'], ['groove', 'grooves'], ['bee', 'bees'], ['ave', 'aves'], ['wave', 'waves'], ['wolf', 'wolves'], ['airwave', 'airwaves'], ['archive', 'archives'], ['arch', 'arches'], ['dive', 'dives'], ['aftershave', 'aftershaves'], ['cave', 'caves'], ['grave', 'graves'], ['gift', 'gifts'], ['nerve', 'nerves'], ['nerd', 'nerds'], ['carve', 'carves'], ['rave', 'raves'], ['scarf', 'scarves'], ['sale', 'sales'], ['sail', 'sails'], ['swerve', 'swerves'], ['love', 'loves'], ['dove', 'doves'], ['glove', 'gloves'], ['wharf', 'wharves'], ['valve', 'valves'], ['werewolf', 'werewolves'], ['view', 'views'], ['emu', 'emus'], ['menu', 'menus'], ['wax', 'waxes'], ['fax', 'faxes'], ['nut', 'nuts'], ['crust', 'crusts'], ['lemma', 'lemmata'], ['anathema', 'anathemata'], ['analysis', 'analyses'], ['locus', 'loci'], ['uterus', 'uteri'], ['curriculum', 'curricula'], ['quorum', 'quora'], ['genius', 'geniuses'], ['flower', 'flowers'], ['crash', 'crashes'], ['soul', 'souls'], ['career', 'careers'], ['planet', 'planets'], ['son', 'sons'], ['sun', 'suns'], ['drink', 'drinks'], ['diploma', 'diplomas'], ['dilemma', 'dilemmas'], ['grandma', 'grandmas'], ['no', 'nos'], ['yes', 'yeses'], ['employ', 'employs'], ['employee', 'employees'], ['history', 'histories'], ['story', 'stories'], ['purchase', 'purchases'], ['order', 'orders'], ['key', 'keys'], ['bomb', 'bombs'], ['city', 'cities'], ['sanity', 'sanities'], ['ability', 'abilities'], ['activity', 'activities'], ['cutie', 'cuties'], ['validation', 'validations'], ['floaty', 'floaties'], ['nicety', 'niceties'], ['goalie', 'goalies'], ['crawly', 'crawlies'], ['duty', 'duties'], ['scrutiny', 'scrutinies'], ['deputy', 'deputies'], ['beauty', 'beauties'], ['bank', 'banks'], ['family', 'families'], ['tally', 'tallies'], ['ally', 'allies'], ['alley', 'alleys'], ['valley', 'valleys'], ['medley', 'medleys'], ['melody', 'melodies'], ['trolly', 'trollies'], ['thunk', 'thunks'], ['koala', 'koalas'], ['special', 'specials'], ['book', 'books'], ['knob', 'knobs'], ['crab', 'crabs'], ['plough', 'ploughs'], ['high', 'highs'], ['low', 'lows'], ['hiccup', 'hiccups'], ['bonus', 'bonuses'], ['circus', 'circuses'], ['abacus', 'abacuses'], ['phobia', 'phobias'], ['case', 'cases'], ['lace', 'laces'], ['trace', 'traces'], ['mage', 'mages'], ['lotus', 'lotuses'], ['motorbus', 'motorbuses'], ['cutlas', 'cutlases'], ['tequila', 'tequilas'], ['liar', 'liars'], ['delta', 'deltas'], ['visa', 'visas'], ['flea', 'fleas'], ['favela', 'favelas'], ['cobra', 'cobras'], ['finish', 'finishes'], ['gorilla', 'gorillas'], ['mass', 'masses'], ['face', 'faces'], ['rabbit', 'rabbits'], ['adventure', 'adventures'], ['breeze', 'breezes'], ['brew', 'brews'], ['canopy', 'canopies'], ['copy', 'copies'], ['spy', 'spies'], ['cave', 'caves'], ['charge', 'charges'], ['cinema', 'cinemas'], ['coffee', 'coffees'], ['favourite', 'favourites'], ['themself', 'themselves'], ['country', 'countries'], ['issue', 'issues'], ['authority', 'authorities'], ['force', 'forces'], ['objective', 'objectives'], ['present', 'presents'], ['industry', 'industries'], ['believe', 'believes'], ['century', 'centuries'], ['category', 'categories'], ['eve', 'eves'], ['fee', 'fees'], ['gene', 'genes'], ['try', 'tries'], ['currency', 'currencies'], ['pose', 'poses'], ['cheese', 'cheeses'], ['clue', 'clues'], ['cheer', 'cheers'], ['litre', 'litres'], ['money', 'monies'], ['attorney', 'attorneys'], ['balcony', 'balconies'], ['cockney', 'cockneys'], ['donkey', 'donkeys'], ['honey', 'honeys'], ['smiley', 'smilies'], ['survey', 'surveys'], ['whiskey', 'whiskeys'], ['whisky', 'whiskies'], ['volley', 'volleys'], ['tongue', 'tongues'], ['suit', 'suits'], ['suite', 'suites'], ['cruise', 'cruises'], ['eave', 'eaves'], ['consultancy', 'consultancies'], ['pouch', 'pouches'], ['wallaby', 'wallabies'], ['abyss', 'abysses'], ['weekly', 'weeklies'], ['whistle', 'whistles'], ['utilise', 'utilises'], ['utilize', 'utilizes'], ['mercy', 'mercies'], ['mercenary', 'mercenaries'], ['take', 'takes'], ['flush', 'flushes'], ['gate', 'gates'], ['evolve', 'evolves'], ['slave', 'slaves'], ['native', 'natives'], ['revolve', 'revolves'], ['twelve', 'twelves'], ['sleeve', 'sleeves'], ['subjective', 'subjectives'], ['stream', 'streams'], ['beam', 'beams'], ['foam', 'foams'], ['callus', 'calluses'], ['use', 'uses'], ['beau', 'beaus'], ['gateau', 'gateaus'], ['fetus', 'fetuses'], ['luau', 'luaus'], ['pilau', 'pilaus'], ['shoe', 'shoes'], ['sandshoe', 'sandshoes'], ['zeus', 'zeuses'], ['nucleus', 'nuclei'], ['sky', 'skies'], ['beach', 'beaches'], ['brush', 'brushes'], ['hoax', 'hoaxes'], ['scratch', 'scratches'], ['nanny', 'nannies'], ['negro', 'negroes'], ['taco', 'tacos'], ['cafe', 'cafes'], ['cave', 'caves'], ['giraffe', 'giraffes'], ['goodwife', 'goodwives'], ['housewife', 'housewives'], ['safe', 'safes'], ['save', 'saves'], ['pocketknife', 'pocketknives'], ['tartufe', 'tartufes'], ['tartuffe', 'tartuffes'], ['truffle', 'truffles'], ['jefe', 'jefes'], ['agrafe', 'agrafes'], ['agraffe', 'agraffes'], ['bouffe', 'bouffes'], ['carafe', 'carafes'], ['chafe', 'chafes'], ['pouffe', 'pouffes'], ['pouf', 'poufs'], ['piaffe', 'piaffes'], ['gaffe', 'gaffes'], ['executive', 'executives'], ['cove', 'coves'], ['dove', 'doves'], ['fave', 'faves'], ['positive', 'positives'], ['solve', 'solves'], ['trove', 'troves'], ['treasure', 'treasures'], ['suave', 'suaves'], ['bluff', 'bluffs'], ['half', 'halves'], ['knockoff', 'knockoffs'], ['handkerchief', 'handkerchiefs'], ['reed', 'reeds'], ['reef', 'reefs'], ['yourself', 'yourselves'], ['sunroof', 'sunroofs'], ['plateau', 'plateaus'], ['radius', 'radii'], ['stratum', 'strata'], ['stratus', 'strati'], ['focus', 'foci'], ['fungus', 'fungi'], ['appendix', 'appendices'], ['seraph', 'seraphim'], ['cherub', 'cherubim'], ['memo', 'memos'], ['cello', 'cellos'], ['automaton', 'automata'], ['button', 'buttons'], ['crayon', 'crayons'], ['captive', 'captives'], ['abrasive', 'abrasives'], ['archive', 'archives'], ['additive', 'additives'], ['hive', 'hives'], ['beehive', 'beehives'], ['olive', 'olives'], ['black olive', 'black olives'], ['chive', 'chives'], ['adjective', 'adjectives'], ['cattle drive', 'cattle drives'], ['explosive', 'explosives'], ['executive', 'executives'], ['negative', 'negatives'], ['fugitive', 'fugitives'], ['progressive', 'progressives'], ['laxative', 'laxatives'], ['incentive', 'incentives'], ['genesis', 'geneses'], ['surprise', 'surprises'], ['enterprise', 'enterprises'], ['relative', 'relatives'], ['positive', 'positives'], ['perspective', 'perspectives'], ['superlative', 'superlatives'], ['afterlife', 'afterlives'], ['native', 'natives'], ['detective', 'detectives'], ['collective', 'collectives'], ['lowlife', 'lowlives'], ['low-life', 'low-lives'], ['strife', 'strifes'], ['pony', 'ponies'], ['phony', 'phonies'], ['felony', 'felonies'], ['colony', 'colonies'], ['symphony', 'symphonies'], ['semicolony', 'semicolonies'], ['radiotelephony', 'radiotelephonies'], ['company', 'companies'], ['ceremony', 'ceremonies'], ['carnivore', 'carnivores'], ['emphasis', 'emphases'], ['abuse', 'abuses'], ['ass', 'asses'], ['mile', 'miles'], ['consensus', 'consensuses'], ['coatdress', 'coatdresses'], ['courthouse', 'courthouses'], ['playhouse', 'playhouses'], ['crispness', 'crispnesses'], ['racehorse', 'racehorses'], ['greatness', 'greatnesses'], ['demon', 'demons'], ['lemon', 'lemons'], ['pokemon', 'pokemon'], ['pokémon', 'pokémon'], ['christmas', 'christmases'], ['zymase', 'zymases'], ['accomplice', 'accomplices'], ['amice', 'amices'], ['titmouse', 'titmice'], ['slice', 'slices'], ['base', 'bases'], ['database', 'databases'], ['rise', 'rises'], ['uprise', 'uprises'], ['size', 'sizes'], ['prize', 'prizes'], ['booby', 'boobies'], ['hobby', 'hobbies'], ['baby', 'babies'], ['cookie', 'cookies'], ['budgie', 'budgies'], ['calorie', 'calories'], ['brownie', 'brownies'], ['lolly', 'lollies'], ['hippie', 'hippies'], ['smoothie', 'smoothies'], ['techie', 'techies'], ['specie', 'species'], ['quickie', 'quickies'], ['pixie', 'pixies'], ['rotisserie', 'rotisseries'], ['porkpie', 'porkpies'], ['newbie', 'newbies'], ['veggie', 'veggies'], ['bourgeoisie', 'bourgeoisies'], ['party', 'parties'], ['apology', 'apologies'], ['ancestry', 'ancestries'], ['anomaly', 'anomalies'], ['anniversary', 'anniversaries'], ['battery', 'batteries'], ['nappy', 'nappies'], ['hanky', 'hankies'], ['junkie', 'junkies'], ['hogtie', 'hogties'], ['footsie', 'footsies'], ['curry', 'curries'], ['fantasy', 'fantasies'], ['housefly', 'houseflies'], ['falsy', 'falsies'], ['doggy', 'doggies'], ['carny', 'carnies'], ['cabby', 'cabbies'], ['charlie', 'charlies'], ['bookie', 'bookies'], ['auntie', 'aunties'], # Prototype inheritance. ['constructor', 'constructors'], # Non-standard case. ['randomWord', 'randomWords'], ['camelCase', 'camelCases'], ['PascalCase', 'PascalCases'], ['Alumnus', 'Alumni'], ['CHICKEN', 'CHICKENS'], ['日本語', '日本語'], ['한국', '한국'], ['中文', '中文'], ['اللغة العربية', 'اللغة العربية'], ['四 chicken', '四 chickens'], ['Order2', 'Order2s'], ['Work Order2', 'Work Order2s'], ['SoundFX2', 'SoundFX2s'], ['oDonald', 'oDonalds'] ] # # Odd plural to singular tests. # # @type {Array} # SINGULAR_TESTS = [ ['dingo', 'dingos'], ['mango', 'mangoes'], ['echo', 'echos'], ['ghetto', 'ghettoes'], ['nucleus', 'nucleuses'], ['bureau', 'bureaux'], ['seraph', 'seraphs'] ] # # Odd singular to plural tests. # # @type {Array} # PLURAL_TESTS = [ ['plateaux', 'plateaux'], ['axis', 'axes'], ['basis', 'bases'], ['automatum', 'automata'], ['thou', 'you'], ['axiS', 'axes'], ['passerby', 'passersby'] ] class TestPluralize(unittest.TestCase): def test_methods_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertEqual(pluralizer.plural(test[0]), test[1]) def test_methods_is_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertTrue(pluralizer.isPlural(test[1]), f"isPlural('{test[1]}')") def test_methods_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertEqual(pluralizer.singular(test[1]), test[0]) def test_methods_is_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertTrue(pluralizer.isSingular(test[0])) def test_automatically_convert_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertEqual(pluralizer.pluralize(test[1], 5), test[1]) self.assertEqual(pluralizer.pluralize(test[0], 5), test[1]) def test_automatically_convert_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertEqual(pluralizer.pluralize(test[0], 1), test[0]) self.assertEqual(pluralizer.pluralize(test[1], 1), test[0]) def test_prepend_count_plural_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('test', 5, True), '5 tests') def test_prepend_count_singular_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('test', 1, True), '1 test') def test_add_new_uncountable_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('paper'), 'papers') pluralizer.addUncountableRule('paper') self.assertEqual(pluralizer.pluralize('paper'), 'paper') def test_add_new_irregular_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('irregular'), 'irregulars') pluralizer.addIrregularRule('irregular', 'regular') self.assertEqual(pluralizer.pluralize('irregular'), 'regular') def test_return_false_for_irregular_words(self): pluralizer = Pluralizer() self.assertTrue(pluralizer.isPlural('irregulars')) pluralizer.addIrregularRule('irregulars', 'regular') self.assertFalse(pluralizer.isPlural('irregulars')) def test_add_new_plural_matching_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.plural('regex'), 'regexes') pluralizer.addPluralRule(re.compile(r'(?i)gex$'), 'gexii') self.assertEqual(pluralizer.plural('regex'), 'regexii') def test_add_new_singular_matching_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.singular('singles'), 'single') pluralizer.addSingularRule(re.compile('singles$'), 'singular') self.assertEqual(pluralizer.singular('singles'), 'singular') def test_allow_new_plural_matching_rules_to_be_strings(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.plural('person'), 'people') pluralizer.addPluralRule('person', 'peeps') self.assertEqual(pluralizer.plural('person'), 'peeps') def test_allow_new_singular_matching_rules_to_be_strings(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.singular('mornings'), 'morning') pluralizer.addSingularRule('mornings', 'suck') self.assertEqual(pluralizer.singular('mornings'), 'suck') if __name__ == '__main__': unittest.main()
28.039191
83
0.515803
3,649
0.164096
0
0
0
0
0
0
12,082
0.543329
d3b146cefcbdfbb497115b74257a2891722524b5
1,988
py
Python
promgen/util.py
sundy-li/promgen
e532bde46b542dd66f46e3dd654bc1ad31deeec7
[ "MIT" ]
null
null
null
promgen/util.py
sundy-li/promgen
e532bde46b542dd66f46e3dd654bc1ad31deeec7
[ "MIT" ]
8
2021-04-08T21:59:34.000Z
2022-02-10T10:42:43.000Z
promgen/util.py
Andreich2010/promgen
dae2b720f30b0c002aa50a74c4c4fc8dfbcbb2b7
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017 LINE Corporation # These sources are released under the terms of the MIT license: see LICENSE import requests.sessions from django.db.models import F from promgen.version import __version__ from django.conf import settings # Wrappers around request api to ensure we always attach our user agent # https://github.com/requests/requests/blob/master/requests/api.py def post(url, data=None, json=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.post(url, data=data, json=json, **kwargs) def get(url, params=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.get(url, params=params, **kwargs) def delete(url, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.delete(url, **kwargs) def setting(key, default=None, domain=None): """ Settings helper based on saltstack's query Allows a simple way to query settings from YAML using the style `path:to:key` to represent path: to: key: value """ rtn = settings.PROMGEN if domain: rtn = rtn[domain] for index in key.split(":"): try: rtn = rtn[index] except KeyError: return default return rtn class HelpFor: # Wrap a model's lower level api so that we can easily # grab help_text for a specific field # help_text = HelpFor(DjangoModel) # help_test.field_name def __init__(self, model): self.model = model def __getattr__(self, name): return self.model._meta.get_field(name).help_text def inc_for_pk(model, pk, **kwargs): # key=F('key') + value model.objects.filter(pk=pk).update(**{key: F(key) + kwargs[key] for key in kwargs})
28.811594
87
0.667505
331
0.166499
0
0
0
0
0
0
696
0.350101
d3b1ab341873d6a614ea74d34b804a1a2793bea2
5,478
py
Python
integration_tests/test_suites/k8s-integration-test-suite/test_utils.py
ericct/dagster
dd2c9f05751e1bae212a30dbc54381167a14f6c5
[ "Apache-2.0" ]
null
null
null
integration_tests/test_suites/k8s-integration-test-suite/test_utils.py
ericct/dagster
dd2c9f05751e1bae212a30dbc54381167a14f6c5
[ "Apache-2.0" ]
null
null
null
integration_tests/test_suites/k8s-integration-test-suite/test_utils.py
ericct/dagster
dd2c9f05751e1bae212a30dbc54381167a14f6c5
[ "Apache-2.0" ]
null
null
null
import time import kubernetes import pytest from dagster_k8s.client import DagsterK8sError, WaitForPodState from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod from dagster_k8s_test_infra.helm import get_helm_test_namespace def construct_pod_spec(name, cmd): return kubernetes.client.V1PodSpec( restart_policy="Never", containers=[ kubernetes.client.V1Container(name=name, image="busybox", args=["/bin/sh", "-c", cmd]) ], ) def construct_pod_manifest(name, cmd): return kubernetes.client.V1Pod( metadata=kubernetes.client.V1ObjectMeta(name=name), spec=construct_pod_spec(name, cmd), ) def construct_job_manifest(name, cmd): return kubernetes.client.V1Job( api_version="batch/v1", kind="Job", metadata=kubernetes.client.V1ObjectMeta(name=name), spec=kubernetes.client.V1JobSpec( template=kubernetes.client.V1PodTemplateSpec(spec=construct_pod_spec(name, cmd)), ), ) def test_wait_for_pod(cluster_provider): # pylint: disable=unused-argument api = kubernetes.client.CoreV1Api() with get_helm_test_namespace() as namespace: # Without this sleep, we get the following error on kind: # HTTP response body: # {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"No API # token found for service account \"default\", retry after the token is automatically # created and added to the service # account","reason":"ServerTimeout","details":{"name":"create # pod","kind":"serviceaccounts","retryAfterSeconds":1},"code":500} time.sleep(5) try: api.create_namespaced_pod( body=construct_pod_manifest("sayhi1", 'echo "hello world"'), namespace=namespace ) wait_for_pod("sayhi1", namespace=namespace) assert retrieve_pod_logs("sayhi1", namespace=namespace) == "hello world\n" api.create_namespaced_pod( body=construct_pod_manifest("sayhi2", 'echo "hello world"'), namespace=namespace ) wait_for_pod("sayhi2", namespace=namespace, wait_for_state=WaitForPodState.Terminated) with pytest.raises( DagsterK8sError, match="Timed out while waiting for pod to become ready" ): api.create_namespaced_pod( body=construct_pod_manifest("sayhi3", 'sleep 5; echo "hello world"'), namespace=namespace, ) wait_for_pod("sayhi3", namespace=namespace, wait_timeout=1) with pytest.raises(DagsterK8sError) as exc_info: api.create_namespaced_pod( body=construct_pod_manifest("fail", 'echo "whoops!"; exit 1'), namespace=namespace, ) wait_for_pod("fail", namespace=namespace, wait_for_state=WaitForPodState.Terminated) # not doing total match because integration test. unit tests test full log message assert "Pod did not exit successfully." in str(exc_info.value) finally: for pod_name in ["sayhi1", "sayhi2", "sayhi3", "fail"]: try: api.delete_namespaced_pod(pod_name, namespace=namespace) except kubernetes.client.rest.ApiException: pass def test_wait_for_job(cluster_provider): # pylint: disable=unused-argument with get_helm_test_namespace() as namespace: # Without this sleep, we get the following error on kind: # HTTP response body: # {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"No API # token found for service account \"default\", retry after the token is automatically # created and added to the service # account","reason":"ServerTimeout","details":{"name":"create # pod","kind":"serviceaccounts","retryAfterSeconds":1},"code":500} time.sleep(5) try: api = kubernetes.client.BatchV1Api() api.create_namespaced_job( body=construct_job_manifest("sayhi1", 'echo "hello world"'), namespace=namespace ) wait_for_job_success("sayhi1", namespace=namespace) with pytest.raises( DagsterK8sError, match="Timed out while waiting for job sayhi2 to complete" ): api.create_namespaced_job( body=construct_job_manifest("sayhi2", 'sleep 5; echo "hello world"'), namespace=namespace, ) wait_for_job_success("sayhi2", namespace=namespace, wait_timeout=1) with pytest.raises( DagsterK8sError, match="Encountered failed job pods for job fail with status:", ): api.create_namespaced_job( body=construct_job_manifest("fail", 'echo "whoops!"; exit 1'), namespace=namespace, ) wait_for_job_success("fail", namespace=namespace) finally: for job in ["sayhi1", "sayhi2", "fail"]: try: api.delete_namespaced_job( job, namespace=namespace, propagation_policy="Foreground" ) except kubernetes.client.rest.ApiException: pass
41.18797
100
0.61245
0
0
0
0
0
0
0
0
1,559
0.284593
d3b2063cf7dc483f806ac22531b14a9333116ffb
1,092
py
Python
radioepg/migrations/0001_initial.py
mervij/radiodns
01543cf1e4de8de335af0301616e089c35fc67f8
[ "Apache-2.0" ]
null
null
null
radioepg/migrations/0001_initial.py
mervij/radiodns
01543cf1e4de8de335af0301616e089c35fc67f8
[ "Apache-2.0" ]
8
2021-05-17T10:54:28.000Z
2021-06-08T12:02:37.000Z
radioepg/migrations/0001_initial.py
mervij/radiodns
01543cf1e4de8de335af0301616e089c35fc67f8
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.1.6 on 2021-02-15 08:52 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('short_name', models.CharField(max_length=8)), ('medium_name', models.CharField(max_length=16)), ], ), migrations.CreateModel( name='Bearer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('bearer_id', models.TextField()), ('cost', models.IntegerField()), ('mimeValue', models.CharField(max_length=255)), ('service', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='radioepg.service')), ], ), ]
32.117647
115
0.571429
966
0.884615
0
0
0
0
0
0
160
0.14652
d3b26049eb155f0068830e3349db9d53a2b93029
2,088
py
Python
uitester/ui/case_manager/tag_names_line_edit.py
IfengAutomation/uitester
6f9c78c86965b05efea875d38dbd9587386977fa
[ "Apache-2.0" ]
4
2016-07-12T09:01:52.000Z
2016-12-07T03:11:02.000Z
uitester/ui/case_manager/tag_names_line_edit.py
IfengAutomation/uitester
6f9c78c86965b05efea875d38dbd9587386977fa
[ "Apache-2.0" ]
null
null
null
uitester/ui/case_manager/tag_names_line_edit.py
IfengAutomation/uitester
6f9c78c86965b05efea875d38dbd9587386977fa
[ "Apache-2.0" ]
3
2016-11-29T02:13:17.000Z
2019-10-16T06:25:20.000Z
from PyQt5.QtCore import Qt, QStringListModel from PyQt5.QtWidgets import QLineEdit, QCompleter class TagNamesLineEdit(QLineEdit): def __init__(self, parent=None): super(QLineEdit, self).__init__(parent) self.cmp = None self.is_completer = True def setCompleter(self, completer): self.cmp = completer self.cmp.setWidget(self) self.cmp.setCompletionMode(QCompleter.PopupCompletion) self.cmp.setCaseSensitivity(Qt.CaseInsensitive) self.textChanged.connect(self.tag_names_changed) self.cmp.activated.connect(self.insert_completion) def tag_names_changed(self): if self.is_completer: text = self.text() tag_names = text.split(';') last_tag_name = tag_names[len(tag_names) - 1] self.cmp.update(last_tag_name) self.cmp.popup().setCurrentIndex(self.cmp.completionModel().index(0, 0)) cr = self.cursorRect() cr.setWidth(self.cmp.popup().sizeHintForColumn(0) + self.cmp.popup().verticalScrollBar().sizeHint().width()) self.cmp.complete(cr) else: pass def completer(self): return self.cmp def insert_completion(self, string): text = self.text() tag_names = text.split(';') last_tag_name = tag_names[len(tag_names) - 1] new_text = text[0:len(text) - len(last_tag_name)] + string + ';' self.is_completer = False self.clear() self.setText(new_text) self.is_completer = True class TagCompleter(QCompleter): def __init__(self, string_list, parent=None): super(TagCompleter, self).__init__(parent) self.string_list = string_list self.setModel(QStringListModel()) def update(self, completion_text): filtered = [] for string in self.string_list: if completion_text in string: filtered.append(string) self.model().setStringList(filtered) self.popup().setCurrentIndex(self.model().index(0, 0))
34.229508
84
0.631226
1,985
0.95067
0
0
0
0
0
0
9
0.00431
d3b26adf9f1c111614b51c252d8d80c26d192abc
337
py
Python
utils/__init__.py
millermuttu/torch_soft
70a692650b6eb8c70000e0f8dc2b22cbb9f94741
[ "MIT" ]
null
null
null
utils/__init__.py
millermuttu/torch_soft
70a692650b6eb8c70000e0f8dc2b22cbb9f94741
[ "MIT" ]
null
null
null
utils/__init__.py
millermuttu/torch_soft
70a692650b6eb8c70000e0f8dc2b22cbb9f94741
[ "MIT" ]
null
null
null
# # importing all the modules at once # from .config import * # from .normalization import * # from .others import * # from .img_reg import * # from .transformation import * # from .visualization import * # importing the modules in a selective way import utils.config import utils.normalization import utils.misc import utils.lr_finder
24.071429
42
0.762611
0
0
0
0
0
0
0
0
240
0.712166
d3b2a1b997cbe83aa232f13b17539c3d7b815053
434
py
Python
tasks.py
epu-ntua/QualiChain-mediator
1d0f848d60861665d95ad0359914add361551763
[ "MIT" ]
2
2020-03-09T11:10:15.000Z
2020-03-11T06:11:58.000Z
tasks.py
epu-ntua/QualiChain-mediator
1d0f848d60861665d95ad0359914add361551763
[ "MIT" ]
2
2021-03-31T19:43:58.000Z
2021-12-13T20:34:57.000Z
tasks.py
epu-ntua/QualiChain-mediator
1d0f848d60861665d95ad0359914add361551763
[ "MIT" ]
2
2020-03-12T11:14:20.000Z
2020-07-07T06:17:45.000Z
from celery import Celery from clients.dobie_client import send_data_to_dobie app = Celery('qualichain_mediator') app.config_from_object('settings', namespace='CELERY_') @app.task() def consume_messages_async(message): """ This task is used to received job posting text and feed DOBIE component """ extracted_skills = send_data_to_dobie(message) print(extracted_skills, flush=True) return extracted_skills
25.529412
75
0.767281
0
0
0
0
259
0.596774
0
0
127
0.292627
d3b3426ac37ef57bd78d3b9aa39a2ef7e95619d6
1,174
py
Python
ingest/ambit_geo.py
brianhouse/okavango
4006940ddead3f31eea701efb9b9dcdc7b19402e
[ "MIT" ]
2
2015-01-25T06:20:03.000Z
2015-02-15T23:54:41.000Z
ingest/ambit_geo.py
brianhouse/okavango_15
4006940ddead3f31eea701efb9b9dcdc7b19402e
[ "MIT" ]
null
null
null
ingest/ambit_geo.py
brianhouse/okavango_15
4006940ddead3f31eea701efb9b9dcdc7b19402e
[ "MIT" ]
3
2017-11-14T21:18:23.000Z
2021-06-20T21:08:31.000Z
import json, math from ingest import ingest_json_body from housepy import config, log, strings, util def parse(request): log.info("ambit_geo.parse") sample = ingest_json_body(request) if sample is None: return sample, "Could not parse" data = {} for key, value in sample.items(): if key == "UTC": dt = util.parse_date(sample['UTC']) # these are marked UTC in the data t = util.timestamp(dt) data['t_utc'] = t continue if key == "Longitude": data['longitude'] = math.degrees(float(sample['Longitude'])) continue if key == "Latitude": data['latitude'] = math.degrees(float(sample['Latitude'])) continue if key == "GPSAltitude": data['altitude'] = float(sample['GPSAltitude']) continue if type(value) != str: continue data[key] = strings.as_numeric(value) try: log.debug("%s %s %s" % (data['longitude'], data['latitude'], data['altitude'])) except: log.error("MISSING GEO") return data
32.611111
87
0.537479
0
0
0
0
0
0
0
0
238
0.202726
d3b45e5164e572fbde2110d62cb448013353f1cd
1,593
py
Python
gandyndns.py
nim65s/scripts
2c61bd77bfca6ae6437654e43ad2bc95d611360a
[ "BSD-2-Clause" ]
1
2020-12-17T09:41:42.000Z
2020-12-17T09:41:42.000Z
gandyndns.py
nim65s/scripts
2c61bd77bfca6ae6437654e43ad2bc95d611360a
[ "BSD-2-Clause" ]
null
null
null
gandyndns.py
nim65s/scripts
2c61bd77bfca6ae6437654e43ad2bc95d611360a
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python '''update gandi DNS domain entry, with LiveDNS v5 Cf. https://doc.livedns.gandi.net/#work-with-domains ''' import argparse import ipaddress import json import os from subprocess import check_output import requests parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('domain') parser.add_argument('name') parser.add_argument('--ip', help="defaults to ifconfig.me's return") parser.add_argument('--api_key', help="defaults to GANDI_API_KEY env var, or the return of 'pass api/gandi'") args = parser.parse_args() if args.ip is None: args.ip = requests.get('http://ifconfig.me', headers={'User-Agent': 'curl/7.61.1'}).content.decode().strip() ip = ipaddress.ip_address(args.ip) if args.api_key is None: args.api_key = os.environ.get('GANDI_API_KEY', check_output(['pass', 'api/gandi'], text=True).strip()) key = {'X-Api-Key': args.api_key} r = requests.get(f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}', headers=key) r.raise_for_status() if r.json()[0]['rrset_values'][0] == args.ip: if args.verbose: print('ok') else: type_ = 'AAAA' if isinstance(ip, ipaddress.IPv6Address) else 'A' url = f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}/{type_}' data = {'rrset_values': [args.ip]} headers = {'Content-Type': 'application/json', **key} r = requests.put(url, data=json.dumps(data), headers=headers) if args.verbose: print(r.json()) else: r.raise_for_status()
32.510204
112
0.696171
0
0
0
0
0
0
0
0
612
0.384181
d3b4e36f678d36e360884bedfd448ece0a34ced3
1,895
py
Python
leetcode.com/python/314_Binary_Tree_Vertical_Order_Traversal.py
mamane19/coding-interview-gym
20ae1a048eddbc9a32c819cf61258e2b57572f05
[ "MIT" ]
713
2019-11-19T16:11:25.000Z
2022-03-31T02:27:52.000Z
leetcode.com/python/314_Binary_Tree_Vertical_Order_Traversal.py
arunsank/coding-interview-gym
8131e3a82795707e144fe55d765b6c15bdb97306
[ "MIT" ]
7
2020-01-16T17:07:18.000Z
2021-11-15T18:24:39.000Z
leetcode.com/python/314_Binary_Tree_Vertical_Order_Traversal.py
arunsank/coding-interview-gym
8131e3a82795707e144fe55d765b6c15bdb97306
[ "MIT" ]
393
2019-11-18T17:55:45.000Z
2022-03-28T20:26:32.000Z
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque from collections import defaultdict class Solution(object): def verticalOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] queue = deque([(root, 0)]) verticalNodeMap = defaultdict(list) while queue: node, horrizotalDistace = queue.popleft() if node: verticalNodeMap[horrizotalDistace].append(node.val) queue.append((node.left, horrizotalDistace - 1)) queue.append((node.right, horrizotalDistace + 1)) minHorrizotalDistace, maxHorrizotalDistace = min(verticalNodeMap.keys()), max(verticalNodeMap.keys()) result = [] for key in range(minHorrizotalDistace, maxHorrizotalDistace + 1): result.append(verticalNodeMap[key]) return result # My solution during mock, getting TLE, don't know why from collections import defaultdict from collections import deque class Solution(object): def verticalOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] orderMap = defaultdict(list) queue = deque([(root, 0)]) while queue: currentNode, vLine = queue.popleft() if currentNode: orderMap[vLine].append(root.val) queue.append((root.left, vLine - 1)) queue.append((root.right, vLine + 1)) result = [] for i in range(min(orderMap.keys()), max(orderMap.keys()) + 1): result.append(orderMap[i]) return result
31.583333
109
0.582058
1,503
0.79314
0
0
0
0
0
0
400
0.211082
d3b4eac02574fc5ff2fd374b340d31cb4dba25c1
3,750
py
Python
src/sentry/models/pluginhealth.py
ayesha-omarali/sentry
96f81a1805227c26234e6317771bc0dcb5c176ad
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/pluginhealth.py
ayesha-omarali/sentry
96f81a1805227c26234e6317771bc0dcb5c176ad
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/pluginhealth.py
ayesha-omarali/sentry
96f81a1805227c26234e6317771bc0dcb5c176ad
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from sentry.db.models import ( ArrayField, BoundedPositiveIntegerField, Model, FlexibleForeignKey, sane_repr ) from django.db import models from jsonfield import JSONField from django.utils import timezone from sentry.constants import ObjectStatus from django.utils.translation import ugettext_lazy as _ class PluginFeatures(object): issue_basic = 'issue_basic' issue_sync = 'issue_sync' repository = 'repository' class PluginHealth(Model): __core__ = True name = models.CharField(max_length=128, db_index=True) features_list = ArrayField(of=models.TextField) date_added = models.DateTimeField(default=timezone.now) link = models.URLField(null=True, blank=True) author = models.CharField(max_length=64) metadata = JSONField() status = BoundedPositiveIntegerField( default=0, choices=( (ObjectStatus.VISIBLE, _('Active')), (ObjectStatus.PENDING_DELETION, _('Pending Deletion')), (ObjectStatus.DELETION_IN_PROGRESS, _('Deletion in Progress')), ), db_index=True ) class Meta: app_label = 'sentry' db_table = 'sentry_pluginhealth' __repr__ = sane_repr('name') def run_tests(self): plugin_test = PluginHealthTest.objects.create( plugin_id=self.id, ) plugin_test.test_data = plugin_test.run_tests(self) plugin_test.save() return plugin_test class PluginHealthTest(Model): __core__ = True date_added = models.DateTimeField(default=timezone.now) plugin = FlexibleForeignKey('sentry.PluginHealth') test_data = JSONField() class Meta: app_label = 'sentry' db_table = 'sentry_pluginhealthtest' unique_together = (('plugin', 'date_added')) __repr__ = sane_repr('plugin', 'date_added') def run_tests(self, plugin_health): return { 'configure_test': self.configure_test(plugin_health), 'create_issue_test': self.create_issue_test(plugin_health), 'link_issue_test': self.link_issue_test(plugin_health), 'sync_assignment_test': self.sync_assignment_test(plugin_health), 'sync_comment_test': self.sync_comment_test(plugin_health), 'sync_status_test': self.sync_status_test(plugin_health), 'repository_test': self.repository_test(plugin_health), } def configure_test(self, plugin_health): test_results = None return test_results def create_issue_test(self, plugin_health): if PluginFeatures.issue_basic not in plugin_health.features_list: return None test_results = None return test_results def link_issue_test(self, plugin_health): if PluginFeatures.issue_basic not in plugin_health.features_list: return None test_results = None return test_results def sync_assignment_test(self, plugin_health): if PluginFeatures.issue_sync not in plugin_health.features_list: return None test_results = None return test_results def sync_comment_test(self, plugin_health): if PluginFeatures.issue_sync not in plugin_health.features_list: return None test_results = None return test_results def sync_status_test(self, plugin_health): if PluginFeatures.issue_sync not in plugin_health.features_list: return None test_results = None return test_results def repository_test(self, plugin_health): if PluginFeatures.repository not in plugin_health.features_list: return None test_results = None return test_results
32.327586
82
0.686133
3,393
0.9048
0
0
0
0
0
0
342
0.0912
d3b76c1c0fc989bb41ad8f58fabce2395587d211
1,615
py
Python
src/masonite/oauth/drivers/FacebookDriver.py
girardinsamuel/masonite-socialite
04110601b299d8505ec453b7743124cb88047d9d
[ "MIT" ]
1
2021-05-07T16:37:03.000Z
2021-05-07T16:37:03.000Z
src/masonite/oauth/drivers/FacebookDriver.py
girardinsamuel/masonite-socialite
04110601b299d8505ec453b7743124cb88047d9d
[ "MIT" ]
11
2021-05-17T06:45:48.000Z
2021-10-03T15:16:23.000Z
src/masonite/oauth/drivers/FacebookDriver.py
girardinsamuel/masonite-socialite
04110601b299d8505ec453b7743124cb88047d9d
[ "MIT" ]
null
null
null
from .BaseDriver import BaseDriver from ..OAuthUser import OAuthUser class FacebookDriver(BaseDriver): def get_default_scopes(self): return ["email"] def get_auth_url(self): return "https://www.facebook.com/dialog/oauth" def get_token_url(self): return "https://graph.facebook.com/oauth/access_token" def get_user_url(self): return "https://graph.facebook.com/me?" def get_request_options(self, token): return { "headers": {"Authorization": f"Bearer {token}", "Accept": "application/json"}, "query": {"prettyPrint": "false"}, } def user(self): user_data, token = super().user() user = ( OAuthUser() .set_token(token) .build( { "id": user_data["sub"], "nickname": user_data["nickname"], "name": user_data["name"], "email": user_data["email"], "avatar": user_data["picture"], } ) ) return user def user_from_token(self, token): user_data = super().user_from_token(token) user = ( OAuthUser() .set_token(token) .build( { "id": user_data["sub"], "nickname": user_data["nickname"], "name": user_data["name"], "email": user_data["email"], "avatar": user_data["picture"], } ) ) return user
28.333333
90
0.479257
1,543
0.955418
0
0
0
0
0
0
363
0.224768
d3b8efd54656a0b32ac0c5b886fd7d4ce09f8a83
1,266
py
Python
python/convert_to_readwise.py
t27/highlights-convert
a6c6696ece4fabbbb56e420cb23c0466710e1345
[ "MIT" ]
null
null
null
python/convert_to_readwise.py
t27/highlights-convert
a6c6696ece4fabbbb56e420cb23c0466710e1345
[ "MIT" ]
null
null
null
python/convert_to_readwise.py
t27/highlights-convert
a6c6696ece4fabbbb56e420cb23c0466710e1345
[ "MIT" ]
1
2021-06-29T20:40:06.000Z
2021-06-29T20:40:06.000Z
import pandas as pd import json import glob columns = ["Highlight","Title","Author","URL","Note","Location"] # for sample of the input json look at any json in the root of the `results` folder def convert_to_readwise_df(json_files): """Convert the internal json format to a readwise compatible dataframe Args: json_files (List[str]): list of json files Returns: pd.DataFrame: dataframe with columns as required by readwise """ df_data = [] for file in json_files: with open(file) as f: data = json.load(f) title = data['volume']['title'] author = ", ".join(data['volume']['authors']) for entry in data['highlights']: highlight = entry['content'] location = entry['location'] notes = "" if "notes" in entry: for note in notes: notes = notes+"\n"+note df_data.append([highlight,title,author,"",notes,location]) df = pd.DataFrame(df_data,columns = columns) return df if __name__ == "__main__": json_files = glob.glob("../results/*.json") df = convert_to_readwise_df(json_files) df.to_csv("tarang_readwise.csv",index=False)
32.461538
83
0.590837
0
0
0
0
0
0
0
0
485
0.383096
d3ba25fae7aacb5e43b639c41eadbd3d14fb7a48
303
py
Python
ms_deisotope/qc/__init__.py
mstim/ms_deisotope
29f4f466e92e66b65a2d21eca714aa627caa21db
[ "Apache-2.0" ]
18
2017-09-01T12:26:12.000Z
2022-02-23T02:31:29.000Z
ms_deisotope/qc/__init__.py
mstim/ms_deisotope
29f4f466e92e66b65a2d21eca714aa627caa21db
[ "Apache-2.0" ]
19
2017-03-12T20:40:36.000Z
2022-03-31T22:50:47.000Z
ms_deisotope/qc/__init__.py
mstim/ms_deisotope
29f4f466e92e66b65a2d21eca714aa627caa21db
[ "Apache-2.0" ]
14
2016-05-06T02:25:30.000Z
2022-03-31T14:40:06.000Z
"""A collection of methods for determining whether a given spectrum is of high quality (likely to produce a high quality interpretation) """ from .heuristic import xrea from .isolation import CoIsolation, PrecursorPurityEstimator __all__ = [ "xrea", "CoIsolation", "PrecursorPurityEstimator" ]
27.545455
70
0.772277
0
0
0
0
0
0
0
0
185
0.610561
d3bbc84b4a938b83b84adeff2d313509849c11f6
3,855
py
Python
rpi_animations/message.py
Anski-D/rpi_animations_old
b019a301ba777d76e3cedc6b86359570e2c2f18b
[ "MIT" ]
null
null
null
rpi_animations/message.py
Anski-D/rpi_animations_old
b019a301ba777d76e3cedc6b86359570e2c2f18b
[ "MIT" ]
null
null
null
rpi_animations/message.py
Anski-D/rpi_animations_old
b019a301ba777d76e3cedc6b86359570e2c2f18b
[ "MIT" ]
null
null
null
from .item import Item class Message(Item): """ Message feature object in the rpi_animations package. """ def __init__(self, group, screen_animator) -> None: """ Initialise Message object with sprite group and screen object. Run initial setup methods. Args: group (Group): Pygame sprite group to which the object will be added. screen_animator (ScreenAnimator): Main package object controlling the animation. """ super().__init__(group, screen_animator) # Store x position as float self._x = float(self._rect.x) # Set the flag that the message hasn't fully emerged self._has_fully_emerged = False def _setup_item(self) -> None: """ Run methods to setup the object. Returns: None """ self._set_text() # Run parent method super()._setup_item() def _set_text(self) -> None: """ Set font, message text, and outline of text. Returns: None """ # Set font self._font = self._settings.font # Set the message text self._text = self._settings.text # Set the outline text self._outline_text = self._font.render( self._text, self._settings.settings['text_aa'], self._settings.outline_colour ) def _set_item_content(self) -> None: """ Render the message text. Returns: None """ self.content = self._font.render( self._text, self._settings.settings['text_aa'], self._settings.text_colour ) def _place_item(self) -> None: """ Set the initial object position on the screen. Returns: None """ self._rect.midleft = self._screen_rect.midright def _draw_outline(self) -> None: """ Draw the message text outline. Returns: None """ outline_width = self._settings.settings['outline_width'] self._screen.blit(self._outline_text, (self._rect.x - outline_width, self._rect.y - outline_width)) self._screen.blit(self._outline_text, (self._rect.x - outline_width, self._rect.y + outline_width)) self._screen.blit(self._outline_text, (self._rect.x + outline_width, self._rect.y - outline_width)) self._screen.blit(self._outline_text, (self._rect.x + outline_width, self._rect.y + outline_width)) def blit(self) -> None: """ Add the object to the pygame screen. Returns: None """ # Draw outline text self._draw_outline() # Draw the message self._set_item_content() # Run parent method super().blit() def update(self) -> None: """ Move the object position to the left during a frame update. Returns: None """ self._x -= self._settings.settings['text_speed'] / self._settings.settings['fps'] self._rect.x = self._x def is_on_screen(self) -> bool: """ Determine whether the object is still on the screen. Returns: bool: True if still on screen, False otherwise. """ if self._rect.right <= self._screen_rect.left: return False return True def has_just_emerged(self) -> bool: """ Determine whether the right side of the message is now visible on the screen. Returns: bool: True if right edge is now on screen, False otherwise. """ if not self._has_fully_emerged and self._rect.right <= self._screen_rect.right: self._has_fully_emerged = True return True return False
27.147887
107
0.575357
3,829
0.993256
0
0
0
0
0
0
1,659
0.43035
d3bc12f8ef0d8afa0eabbca33671def2b9e2dfc8
4,293
py
Python
styrobot/cogs/help.py
ThatRedKite/styrobot
c6c449aec99cb59c4695f739d59efe2def0e0064
[ "MIT" ]
1
2021-08-02T23:19:31.000Z
2021-08-02T23:19:31.000Z
styrobot/cogs/help.py
ThatRedKite/styrobot
c6c449aec99cb59c4695f739d59efe2def0e0064
[ "MIT" ]
null
null
null
styrobot/cogs/help.py
ThatRedKite/styrobot
c6c449aec99cb59c4695f739d59efe2def0e0064
[ "MIT" ]
1
2021-07-28T02:26:54.000Z
2021-07-28T02:26:54.000Z
import discord from discord.ext import commands from styrobot.util.contrib import info import random class BetterHelpCommand(commands.HelpCommand): async def send_embed(self, embed): embed.colour = discord.Colour.random() await self.get_destination().send(embed=embed) def blank_line(self, embed): embed.add_field(name='_ _', value='_ _', inline=False) def signature(self, command: commands.Command): out = [command.qualified_name] params = command.clean_params or {} for name, param in params.items(): # slightly copied from discord.py greedy = isinstance(param.annotation, commands.converter._Greedy) if param.default is not param.empty: should_print = param.default if isinstance(param.default, str) else param.default is not None if should_print: out.append(f'[{name}={param.default}]{"..." if greedy else ""}') else: out.append(f'[{name}]') elif param.kind == param.VAR_POSITIONAL: out.append(f'<{name}...>') elif greedy: out.append(f'[{name}]...') else: out.append(f'<{name}>') return ' '.join(out) async def send_bot_help(self, mapping): e = discord.Embed(title=info['name']) if random.random() < 0.95: e.add_field(name='I am', value=info['name'], inline=True) else: e.add_field(name='I am', value='an impostor', inline=True) e.set_author(name='sus', icon_url='https://i.redd.it/0qtc8un3bz061.png') e.add_field(name='Contribute at', value=info['repo'], inline=False) e.add_field(name='I send you my cogs (pls respond)', value='_ _', inline=True) cogs = [(cog, await self.filter_commands(mapping[cog])) for cog in mapping.keys()] cogs = [x for x in cogs if len(x[1]) > 0] for i, (cog, cmds) in enumerate(cogs): if i % 2 == 0: self.blank_line(e) h = '\n'.join([cmd.name for cmd in cmds]) if cog is None: e.add_field(name='builtin', value=h, inline=True) else: e.add_field(name=cog.qualified_name, value=h, inline=True) if random.random() < 0.9: e.set_footer(text='Made with ❤️') else: e.set_footer(text='Made with 🍆') await self.send_embed(e) async def send_cog_help(self, cog: commands.Cog): e = discord.Embed(title=cog.qualified_name) e.add_field(name='Cog', value=cog.qualified_name, inline=True) e.add_field(name='`in_code`', value=f'`{cog.__class__.__name__}`', inline=True) e.add_field(name='Commands', value='_ _', inline=False) for cmd in await self.filter_commands(cog.get_commands()): e.add_field(name=cmd, value=(cmd.help or '[no help]'), inline=False) await self.send_embed(e) async def send_group_help(self, group: commands.Group): e = discord.Embed(title=group.qualified_name) e.add_field(name='Command Group', value=group.qualified_name, inline=True) e.add_field(name='Help', value=(group.help or '[no help]'), inline=False) e.add_field(name='Subcommands', value='_ _', inline=False) for command in await self.filter_commands(group.commands): command: commands.Command e.add_field(name=self.signature(command), value=(command.help or '[no help]'), inline=False) await self.send_embed(e) async def send_command_help(self, command: commands.Command): e = discord.Embed(title=(command.qualified_name or command.name)) e.add_field(name='Name', value=(command.qualified_name or command.name), inline=False) e.add_field(name='Signature', value=(self.signature(command)), inline=False) e.add_field(name='Help', value=(command.help or '[no help]'), inline=False) await self.send_embed(e) class HelpCog(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot help_command = BetterHelpCommand() help_command.cog = self self.bot.help_command = help_command def setup(bot): bot.add_cog(HelpCog(bot))
44.257732
109
0.610063
4,145
0.963953
0
0
0
0
2,850
0.662791
500
0.116279
d3bcd85e84067fe1c97d2fef2c0994e569b7ca18
1,527
py
Python
misc/Queue_hello.py
benhunter/py-stuff
a04f94851370e08a65792a53a6207f3146eb130b
[ "MIT" ]
3
2017-05-22T03:14:21.000Z
2019-05-24T11:44:15.000Z
misc/Queue_hello.py
benhunter/py-stuff
a04f94851370e08a65792a53a6207f3146eb130b
[ "MIT" ]
null
null
null
misc/Queue_hello.py
benhunter/py-stuff
a04f94851370e08a65792a53a6207f3146eb130b
[ "MIT" ]
null
null
null
# Testing with threading and queue modules for Thread-based parallelism import threading, queue, time # The worker thread gets jobs off the queue. When the queue is empty, it # assumes there will be no more work and exits. # (Realistically workers will run until terminated.) def worker(): print('Running worker') time.sleep(0.1) while True: try: arg = q.get(block=False) # False to terminate Thread when no work is available except queue.Empty: print('Worker', threading.currentThread(), end=' ') print('queue empty') break else: print('Worker', threading.currentThread(), end=' ') print('running with argument', arg) work_func(arg) # do the work time.sleep(0.5) q.task_done() # Create queue # Work function that processes the arguments def work_func(arg): print('Working on', arg) print('Square is', arg**2) print('Cube is', arg**3) q = queue.Queue() # Begin adding work to the queue for i in range(20): q.put(i) threadPool = [] # Start a pool of 5 workers for i in range(5): t = threading.Thread(target=worker, name='worker %i' % (i + 1)) t.start() threadPool.append(t) # time.sleep(5) # testing if workers die before work is queued - yes they do die # q.join() for i in range(20): q.put(i+20) for t in threadPool: t.join() # Give threads time to run # print('Main thread sleeping') # time.sleep(5) print('Main thread finished')
26.327586
90
0.629339
0
0
0
0
0
0
0
0
728
0.476752
d3bea2de7d4525c6881fb3abdb31815d971e7131
506
py
Python
tests/conftest.py
Beanxx/alonememo
aa90bcca6a5dcaa41305b162ac5d6dbe8d0d2562
[ "MIT" ]
null
null
null
tests/conftest.py
Beanxx/alonememo
aa90bcca6a5dcaa41305b162ac5d6dbe8d0d2562
[ "MIT" ]
null
null
null
tests/conftest.py
Beanxx/alonememo
aa90bcca6a5dcaa41305b162ac5d6dbe8d0d2562
[ "MIT" ]
null
null
null
import pytest from pymongo import MongoClient import app as flask_app test_database_name = 'spartatest' client = MongoClient('localhost', 27017) db = client.get_database(test_database_name) @pytest.fixture def app(): test_app = flask_app.create_app(test_database_name) # 제네레이터 문법(yield 구문까지만 실행하고 대기, # 이후 다시 호출할 때 yield 구문 다음이 진행됨) # app이 종료되는 것이 아니라 stop됨. yield test_app # 여기서부터는 모든 테스트가 완료되고 나서 시행됨 client.drop_database(test_database_name) print('테스트 DB 제거 완료')
20.24
55
0.727273
0
0
439
0.673313
455
0.697853
0
0
298
0.457055
d3bfaf1d9fa752290f67cc0958281b146d4daff0
98
py
Python
threader/__init__.py
mwoolweaver/threader
fdb4fe9ab71d3c85146969f716d10b78f970323e
[ "MIT" ]
34
2017-07-24T20:54:06.000Z
2022-03-18T13:10:11.000Z
threader/__init__.py
mwoolweaver/threader
fdb4fe9ab71d3c85146969f716d10b78f970323e
[ "MIT" ]
2
2019-05-28T07:21:15.000Z
2019-07-23T21:45:43.000Z
threader/__init__.py
mwoolweaver/threader
fdb4fe9ab71d3c85146969f716d10b78f970323e
[ "MIT" ]
8
2019-05-28T06:49:02.000Z
2022-02-04T22:59:09.000Z
"""Tools to quickly create twitter threads.""" from .thread import Threader __version__ = "0.1.1"
24.5
46
0.734694
0
0
0
0
0
0
0
0
53
0.540816
d3bfd6a64622fae1b5dc880f345c000e85f77a5b
1,080
py
Python
src/utility/count_pages.py
WikiCommunityHealth/wikimedia-revert
b584044d8b6a61a79d98656db356bf1f74d23ee0
[ "MIT" ]
null
null
null
src/utility/count_pages.py
WikiCommunityHealth/wikimedia-revert
b584044d8b6a61a79d98656db356bf1f74d23ee0
[ "MIT" ]
null
null
null
src/utility/count_pages.py
WikiCommunityHealth/wikimedia-revert
b584044d8b6a61a79d98656db356bf1f74d23ee0
[ "MIT" ]
null
null
null
# count numbers of pages from the Mediawiki history dumps import bz2 import subprocess import os from datetime import datetime inizio = datetime.now() dataset_folder = '/home/gandelli/dev/data/it/' totali = set() revisioni = set() revert = set() ns0 = set() for year in range(2001, 2021): dump_in = bz2.open(dataset_folder+'/it' + str(year) + '.tsv.bz2', 'r') line = dump_in.readline() print(year) while line != '': line = dump_in.readline().rstrip().decode('utf-8')[:-1] values = line.split('\t') if len(values) < 2: continue if values[23] != '': page = int(values[23]) totali.add(page) if values[28] == '0': ns0.add(page) if values[1] == 'revision': revisioni.add(page) if values[64] == 'true' and values[67] == 'true': revert.add(page) print('total page ',len(totali)) print('total pages ns0', len(ns0)) print('total revisions ns0', len(revisioni)) print('total revert ns0', len(revert) )
23.478261
74
0.566667
0
0
0
0
0
0
0
0
213
0.197222
d3c078904bb9cd81a5346502975e431e6b94a34e
6,395
py
Python
livescore/LivescoreCommon.py
TechplexEngineer/frc-livescore
dedf68218a1a8e2f8a463ded835ea2a7d4b51b78
[ "MIT" ]
null
null
null
livescore/LivescoreCommon.py
TechplexEngineer/frc-livescore
dedf68218a1a8e2f8a463ded835ea2a7d4b51b78
[ "MIT" ]
null
null
null
livescore/LivescoreCommon.py
TechplexEngineer/frc-livescore
dedf68218a1a8e2f8a463ded835ea2a7d4b51b78
[ "MIT" ]
null
null
null
import colorsys import cv2 from PIL import Image import pkg_resources from .LivescoreBase import LivescoreBase from .details import Alliance, OngoingMatchDetails class LivescoreCommon(LivescoreBase): def __init__(self, game_year, **kwargs): super(LivescoreCommon, self).__init__(game_year, **kwargs) self._match_key = None self._match_name = None def _getMatchKeyName(self, img, debug_img): if self._match_key is None: tl = self._transformPoint((220, 6)) br = self._transformPoint((570, 43)) raw_match_name = self._parseRawMatchName(self._getImgCropThresh(img, tl, br)) self._match_key = self._getMatchKey(raw_match_name) if self._match_key: self._match_name = raw_match_name else: self._match_name = None if self._debug: box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) return self._match_key, self._match_name def _getTimeAndMode(self, img, debug_img): # Check for match under review review_point1 = self._transformPoint((624, 93)) review_sample1 = img[review_point1[1], review_point1[0], :] hsvL = colorsys.rgb_to_hsv(float(review_sample1[2])/255, float(review_sample1[1])/255, float(review_sample1[0])/255) review_point2 = self._transformPoint((1279 - 624, 93)) review_sample2 = img[review_point2[1], review_point2[0], :] hsvR = colorsys.rgb_to_hsv(float(review_sample2[2])/255, float(review_sample2[1])/255, float(review_sample2[0])/255) if 0.116 < hsvL[0] < 0.216 and 0.116 < hsvR[0] < 0.216: return 0, 'post_match' # Find time remaining horiz_center = self._TEMPLATE_SHAPE[0]/2 tl = self._transformPoint((horiz_center-25, 56)) br = self._transformPoint((horiz_center+25, 82)) time_remaining = self._parseDigits(self._getImgCropThresh(img, tl, br)) if self._debug: # draw a green box for time box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) # Determine mode: 'pre_match', 'auto', 'teleop', or 'post_match' mode_point = self._transformPoint((520, 70)) mode_point2 = self._transformPoint((581, 70)) mode_sample = img[mode_point[1], mode_point[0], :] mode_sample2 = img[mode_point2[1], mode_point2[0], :] hsv1 = colorsys.rgb_to_hsv(float(mode_sample[2])/255, float(mode_sample[1])/255, float(mode_sample[0])/255) hsv2 = colorsys.rgb_to_hsv(float(mode_sample2[2])/255, float(mode_sample2[1])/255, float(mode_sample2[0])/255) if time_remaining is None: return None, None if time_remaining == 0: if hsv1[1] > 0.6 and hsv2[1] > 0.6: # Both saturated mode = 'post_match' elif hsv1[1] > 0.6: # First saturated mode = 'auto' # End of auton else: mode = 'pre_match' elif time_remaining <= 15 and hsv2[1] < 0.6: mode = 'auto' else: mode = 'teleop' if self._debug: box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) cv2.circle(debug_img, review_point1, 2, (0, 255, 0), -1) cv2.circle(debug_img, review_point2, 2, (0, 255, 0), -1) cv2.circle(debug_img, mode_point, 2, (0, 255, 0), -1) cv2.circle(debug_img, mode_point2, 2, (0, 255, 0), -1) return time_remaining, mode def _getFlipped(self, img, debug_img): # Sample point to determine red/blue side color_point = self._transformPoint((520, 95)) color_sample = img[color_point[1], color_point[0], :] is_flipped = color_sample[0] > color_sample[2] # More blue than red if self._debug: cv2.circle(debug_img, color_point, 2, (0, 255, 0), -1) return is_flipped def _getScores(self, img, debug_img, is_flipped): # Left score limits left_tl = self._transformPoint((520, 110)) left_br = self._transformPoint((634, 155)) # Right score limits right_tl = self._transformPoint((644, 110)) right_br = self._transformPoint((760, 155)) left_score = self._parseDigits(self._getImgCropThresh(img, left_tl, left_br, white=True)) right_score = self._parseDigits(self._getImgCropThresh(img, right_tl, right_br, white=True)) if is_flipped: red_score = right_score blue_score = left_score else: red_score = left_score blue_score = right_score if self._debug: left_box = self._cornersToBox(left_tl, left_br) right_box = self._cornersToBox(right_tl, right_br) self._drawBox(debug_img, left_box, (255, 255, 0) if is_flipped else (255, 0, 255)) self._drawBox(debug_img, right_box, (255, 0, 255) if is_flipped else (255, 255, 0)) return red_score, blue_score def _getMatchDetails(self, img, force_find_overlay): debug_img = None if self._debug: debug_img = img.copy() time_remaining, mode = self._getTimeAndMode(img, debug_img) if self._is_new_overlay or force_find_overlay: self._match_key = None match_key, match_name = self._getMatchKeyName(img, debug_img) is_flipped = self._getFlipped(img, debug_img) red_score, blue_score = self._getScores(img, debug_img, is_flipped) box = self._cornersToBox(self._transformPoint((0, 0)), self._transformPoint((1280, 170))) self._drawBox(debug_img, box, (255, 255, 0)) if self._debug: cv2.imshow("Match Details", debug_img) cv2.waitKey() if match_key is not None and red_score is not None \ and blue_score is not None and time_remaining is not None: return OngoingMatchDetails( match_key=match_key, match_name=match_name, mode=mode, time=time_remaining, red=Alliance( score=red_score, ), blue=Alliance( score=blue_score, ) ) else: return None
39.475309
124
0.603597
6,229
0.974042
0
0
0
0
0
0
359
0.056138
d3c0c248eab748f6973cc1f7d32930648b9e6320
1,825
py
Python
challenges/challenge.py
Tech-With-Tim/models
221fce614776df01b151e73071c788c3ce57dc52
[ "MIT" ]
2
2021-07-09T18:53:15.000Z
2021-08-06T06:21:14.000Z
challenges/challenge.py
Tech-With-Tim/models
221fce614776df01b151e73071c788c3ce57dc52
[ "MIT" ]
8
2021-07-09T13:08:07.000Z
2021-09-12T20:25:08.000Z
challenges/challenge.py
Tech-With-Tim/models
221fce614776df01b151e73071c788c3ce57dc52
[ "MIT" ]
4
2021-07-09T12:32:20.000Z
2021-07-29T15:19:25.000Z
from postDB import Model, Column, types from datetime import datetime import utils class Challenge(Model): """ Challenge class to store the challenge details Database Attributes: Attributes stored in the `challenges` table. :param int id: The challenge Snowflake ID. :param str title: The challenge title. :param int author_id: The challenge author's Discord ID. :param str description: A description. :param List[str] example_in: Example input. :param List[str] example_out: Example output. :param List[int] language_ids: The languages you can use to complete this challenge. :param :class:`datetime` released_at: The time this challenge was released at. :param bool deleted: Whether or not this challenge has been deleted. :param str slug: The URL slug this challenge relates to. """ id = Column(types.Integer(big=True), primary_key=True) title = Column(types.String, unique=True) author_id = Column( types.ForeignKey("users", "id", sql_type=types.Integer(big=True)), ) description = Column(types.String) example_in = Column(types.Array(types.String)) example_out = Column(types.Array(types.String)) # Implicit ForeignKey to ChallengeLanguage.id language_ids = Column(types.Array(types.Integer(big=True))) released_at = Column(types.DateTime, nullable=True) deleted = Column(types.Boolean, default=False) slug = Column(types.String, unique=True) @property def created_at(self) -> datetime: """Returns the time the challenge was created""" return utils.snowflake_time(self.id)
40.555556
101
0.633973
1,738
0.952329
0
0
149
0.081644
0
0
1,039
0.569315
d3c2f371f8e9bd53dfa26410d72fcf0c4b952e00
1,004
py
Python
settings.py
embrace-inpe/cycle-slip-correction
c465dd4d45ea7df63a18749e26ba4bf0aa27eb59
[ "MIT" ]
6
2019-05-20T21:23:41.000Z
2021-06-23T15:00:30.000Z
settings.py
embrace-inpe/cycle-slip-correction
c465dd4d45ea7df63a18749e26ba4bf0aa27eb59
[ "MIT" ]
null
null
null
settings.py
embrace-inpe/cycle-slip-correction
c465dd4d45ea7df63a18749e26ba4bf0aa27eb59
[ "MIT" ]
5
2018-12-27T16:46:45.000Z
2020-09-14T13:44:00.000Z
""" Commom settings to all applications """ A = 40.3 TECU = 1.0e16 C = 299792458 F1 = 1.57542e9 F2 = 1.22760e9 factor_1 = (F1 - F2) / (F1 + F2) / C factor_2 = (F1 * F2) / (F2 - F1) / C DIFF_TEC_MAX = 0.05 LIMIT_STD = 7.5 plot_it = True REQUIRED_VERSION = 3.01 CONSTELLATIONS = ['G', 'R'] COLUMNS_IN_RINEX = {'3.03': {'G': {'L1': 'L1C', 'L2': 'L2W', 'C1': 'C1C', 'P1': 'C1W', 'P2': 'C2W'}, 'R': {'L1': 'L1C', 'L2': 'L2C', 'C1': 'C1C', 'P1': 'C1P', 'P2': 'C2P'} }, '3.02': {'G': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1W', 'P2': 'C2W'}, 'R': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1P', 'P2': 'C2P'} }, '3.01': {'G': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1W', 'P2': 'C2W'}, 'R': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1P', 'P2': 'C2P'} } }
33.466667
100
0.351594
0
0
0
0
0
0
0
0
347
0.345618
d3c36036476de94ac751c017398b3c5474c873f2
51
py
Python
io_almacen/channel/__init__.py
xyla-io/io_almacen
76725391b496fe3f778d013fc680ae80637eb74b
[ "MIT" ]
null
null
null
io_almacen/channel/__init__.py
xyla-io/io_almacen
76725391b496fe3f778d013fc680ae80637eb74b
[ "MIT" ]
null
null
null
io_almacen/channel/__init__.py
xyla-io/io_almacen
76725391b496fe3f778d013fc680ae80637eb74b
[ "MIT" ]
null
null
null
from .channel_io import Channel, channel_entity_url
51
51
0.882353
0
0
0
0
0
0
0
0
0
0
d3c3d276986b71cc9d8aae788f2dcd9c3f2eb96a
1,009
py
Python
tests/api/test_libcoap_api.py
ggravlingen/ikeatradfri
9eef5317ab770de874c407449489604b2fdf35f1
[ "MIT" ]
726
2017-04-12T22:55:39.000Z
2020-09-02T20:47:13.000Z
tests/api/test_libcoap_api.py
ggravlingen/ikeatradfri
9eef5317ab770de874c407449489604b2fdf35f1
[ "MIT" ]
248
2017-04-12T21:45:10.000Z
2020-09-03T08:48:37.000Z
tests/api/test_libcoap_api.py
ggravlingen/ikeatradfri
9eef5317ab770de874c407449489604b2fdf35f1
[ "MIT" ]
140
2017-04-12T20:02:57.000Z
2020-09-02T08:54:23.000Z
"""Test API utilities.""" import json from pytradfri.api.libcoap_api import APIFactory from pytradfri.gateway import Gateway def test_constructor_timeout_passed_to_subprocess(monkeypatch): """Test that original timeout is passed to subprocess.""" capture = {} def capture_args(*args, **kwargs): capture.update(kwargs) return json.dumps([]) monkeypatch.setattr("subprocess.check_output", capture_args) api = APIFactory("anything", timeout=20, psk="abc") api.request(Gateway().get_devices()) assert capture["timeout"] == 20 def test_custom_timeout_passed_to_subprocess(monkeypatch): """Test that custom timeout is passed to subprocess.""" capture = {} def capture_args(*args, **kwargs): capture.update(kwargs) return json.dumps([]) monkeypatch.setattr("subprocess.check_output", capture_args) api = APIFactory("anything", psk="abc") api.request(Gateway().get_devices(), timeout=1) assert capture["timeout"] == 1
28.027778
64
0.698712
0
0
0
0
0
0
0
0
235
0.232904
d3c44721938c2e001d9a0ea64b9e887be6780370
1,293
py
Python
scrape_tvz.py
awordforthat/rhymes
b7d47b48a9b641e4736ed04058a183afc0a83b04
[ "MIT" ]
null
null
null
scrape_tvz.py
awordforthat/rhymes
b7d47b48a9b641e4736ed04058a183afc0a83b04
[ "MIT" ]
null
null
null
scrape_tvz.py
awordforthat/rhymes
b7d47b48a9b641e4736ed04058a183afc0a83b04
[ "MIT" ]
1
2021-02-16T03:06:38.000Z
2021-02-16T03:06:38.000Z
# scrapes Townes van Zandt lyrics # sample code so I don't have to remember all of this stuff # the next time I want to source some verses from bs4 import BeautifulSoup as soup import requests import string punctuation_trans_table = str.maketrans("", "", string.punctuation) def strip_punctuation(s): return s.translate(punctuation_trans_table) base_url = "http://ippc2.orst.edu/coopl/lyrics/" index = requests.get(base_url + "albums.html") parsed_index = soup(index.text) all_links = parsed_index.find_all("a") # get all <a> tags links = [l for l in all_links if l.text] # filter out image links def to_filename(s, path="texts/townes_van_zandt/"): '''Quick and dirty snake-casing''' s = s.replace("&amp;", "and") # special case, "Poncho & Lefty" s = strip_punctuation(s) s = s.lower() s = s.replace(" ", "_") s = path + s + ".txt" return s def process_link(link): title = link.text f = open(to_filename(title), "w") remote_file = link.get("href") song_file = requests.get(base_url + remote_file) verses = [l for l in soup(song_file.text).find_all("font") if l.get("size")] for verse in verses: if verse.text: f.writelines("\n".join(verse.stripped_strings)) f.write("\n\n")
28.108696
67
0.657386
0
0
0
0
0
0
0
0
381
0.294664
d3c48e47d2fa33e8114041e17aa2a33b9c9c1809
895
py
Python
chapter04/ifelse.py
persevere-in-coding-persist-in-learning/python2
b207d0040232abae63638784b34a950b932bef77
[ "Apache-2.0" ]
3
2020-08-05T01:15:41.000Z
2020-08-05T09:28:36.000Z
chapter04/ifelse.py
persevere-in-coding-persist-in-learning/python2
b207d0040232abae63638784b34a950b932bef77
[ "Apache-2.0" ]
null
null
null
chapter04/ifelse.py
persevere-in-coding-persist-in-learning/python2
b207d0040232abae63638784b34a950b932bef77
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 """ 控制结构if elif else的研究 Version: 0.1 Author: huijz Date: 2020-08-24 """ # 例1:if的基本用法: flag = False name = 'huijz' if name == 'python': # 判断变量是否为 python flag = True # 条件成立时设置标志为真 print 'welcome boss' # 并输出欢迎信息 else: print name # 条件不成立时输出变量名称 # 例2:elif用法 num = 5 if num == 3: # 判断num的值 print 'boss' elif num == 2: print 'user' elif num == 1: print 'worker' elif num < 0: # 值小于零时输出 print 'error' else: print 'road' # 条件均不成立时输出 # 例3:if语句多个条件 num = 9 if 0 <= num <= 10: # 判断值是否在0~10之间 print 'hello' # 输出结果: hello num = 10 if num < 0 or num > 10: # 判断值是否在小于0或大于10 print 'hello' else: print 'unDefine' # 输出结果: unDefine num = 8 # 判断值是否在0~5或者10~15之间 if (0 <= num <= 5) or (10 <= num <= 15): print 'hello' else: print 'unDefine' # 输出结果: unDefine # 例4:var = 100 var = 100 if var == 100: print "变量 var 的值为100" print "Good bye!"
16.886792
41
0.606704
0
0
0
0
0
0
0
0
701
0.606926
d3c5d75262328f54482b5a9f8b47cfdc49c36760
445
py
Python
setup.py
korymath/JANN
98468a2e90a6b55ccb15e905ee10a1d1130cf5d8
[ "MIT" ]
39
2018-09-25T21:40:38.000Z
2022-01-19T23:26:51.000Z
setup.py
korymath/JANN
98468a2e90a6b55ccb15e905ee10a1d1130cf5d8
[ "MIT" ]
22
2018-09-25T21:36:46.000Z
2021-09-07T16:03:41.000Z
setup.py
korymath/JANN
98468a2e90a6b55ccb15e905ee10a1d1130cf5d8
[ "MIT" ]
9
2018-09-26T00:38:35.000Z
2020-02-27T05:59:03.000Z
from setuptools import setup from setuptools import find_packages setup( name="Jann", version="4.0.0", description="Jann is a Nearest Neighbour retrieval-based chatbot.", author="Kory Mathewson", author_email="[email protected]", license="MIT", url="https://github.com/korymath/jann", packages=find_packages(), setup_requires=[ "pytest-runner" ], tests_require=[ "pytest" ], )
20.227273
71
0.647191
0
0
0
0
0
0
0
0
165
0.370787
d3c6c4df7fb938e9c1ce540f827eb9b023f7dd26
7,895
py
Python
tests/scanner/scanners/ke_version_scanner_test.py
pombredanne/forseti-security
68a9a88243460065e00b6c131b3d9abd0331fb37
[ "Apache-2.0" ]
1
2018-03-26T08:15:21.000Z
2018-03-26T08:15:21.000Z
tests/scanner/scanners/ke_version_scanner_test.py
pombredanne/forseti-security
68a9a88243460065e00b6c131b3d9abd0331fb37
[ "Apache-2.0" ]
null
null
null
tests/scanner/scanners/ke_version_scanner_test.py
pombredanne/forseti-security
68a9a88243460065e00b6c131b3d9abd0331fb37
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KE Version Rule Scanner Tests.""" import unittest import mock from tests import unittest_utils from google.cloud.security.common.gcp_type import ( ke_cluster as ke_cluster_type) from google.cloud.security.common.gcp_type import ( organization as organization_type) from google.cloud.security.common.gcp_type import project as project_type from google.cloud.security.scanner.scanners import ke_version_scanner # pylint: disable=bad-indentation class FakeProjectDao(object): def get_project(self, project_id, snapshot_timestamp=0): return project_type.Project(project_id=project_id) class FakeOrgDao(object): def find_ancestors(self, resource_id, snapshot_timestamp=0): return [organization_type.Organization(organization_id=123456)] class KeVersionScannerTest(unittest_utils.ForsetiTestCase): def tearDown(self): self.org_patcher.stop() self.project_patcher.stop() def setUp(self): # patch the daos self.org_patcher = mock.patch( 'google.cloud.security.common.data_access.' 'org_resource_rel_dao.OrgResourceRelDao') self.mock_org_rel_dao = self.org_patcher.start() self.mock_org_rel_dao.return_value = FakeOrgDao() self.project_patcher = mock.patch( 'google.cloud.security.common.data_access.' 'project_dao.ProjectDao') self.mock_project_dao = self.project_patcher.start() self.mock_project_dao.return_value = FakeProjectDao() self.server_config = { 'defaultClusterVersion': '1.7.11-gke.1', 'validNodeVersions': [ '1.8.6-gke.0', '1.7.11-gke.1', '1.7.10-gke.1', '1.6.13-gke.1', ], 'defaultImageType': 'COS', 'validImageTypes': [ 'UBUNTU', 'COS' ], 'validMasterVersions': [ '1.8.6-gke.0', '1.7.11-gke.1' ] } self.ke_clusters = { # The main backend service. 'master-version-invalid': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'master-version-invalid', 'nodePools': [{ 'name': 'default-pool', 'version': '1.6.13-gke.1' }], 'initialClusterVersion': '1.6.13-gke.1', 'currentMasterVersion': '1.6.13-gke.1', 'currentNodeVersion': '1.6.13-gke.1' }), 'node-version-invalid': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'node-version-invalid', 'nodePools': [{ 'name': 'default-pool', 'version': '1.8.4-gke.1' }], 'initialClusterVersion': '1.8.4-gke.1', 'currentMasterVersion': '1.8.6-gke.0', 'currentNodeVersion': '1.8.4-gke.1' }), 'node-version-not-allowed': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'node-version-not-allowed', 'nodePools': [{ 'name': 'default-pool', 'version': '1.7.10-gke.1' }], 'initialClusterVersion': '1.7.10-gke.1', 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion': '1.7.10-gke.1' }), 'multiple-node-pools': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'multiple-node-pools', 'nodePools': [{ 'name': 'default-pool', 'version': '1.7.11-gke.1' }, { 'name': 'secondary-pool', 'version': '1.7.11-gke.1' }], 'initialClusterVersion': '1.7.11-gke.1', 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion': '1.7.11-gke.1' }) } self.scanner = ke_version_scanner.KeVersionScanner( {}, {}, '', unittest_utils.get_datafile_path( __file__, 'ke_version_scanner_test_data.yaml')) self.scanner._retrieve = mock.Mock( return_value=self.ke_clusters.values()) @mock.patch.object( ke_version_scanner.KeVersionScanner, '_output_results_to_db', autospec=True) def test_run_scanner(self, mock_output_results): self.scanner.run() expected_violations = [ {'resource_id': 'node-version-not-allowed', 'resource_type': 'ke', 'rule_index': 2, 'rule_name': 'Disallowed node pool version', 'violation_data': {'cluster_name': 'node-version-not-allowed', 'node_pool_name': 'default-pool', 'project_id': 'foo', 'violation_reason': ( "Node pool version 1.7.10-gke.1 is not " "allowed (['>= 1.6.13-gke.1', " "'>= 1.7.11-gke.1', '>= 1.8.4-gke.1', " "'>= 1.9.*']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}, {'resource_id': 'master-version-invalid', 'resource_type': 'ke', 'rule_index': 1, 'rule_name': 'Unsupported master version', 'violation_data': {'cluster_name': 'master-version-invalid', 'node_pool_name': '', 'project_id': 'foo', 'violation_reason': ( "Master version 1.6.13-gke.1 is not " "supported (['1.7.11-gke.1', " "'1.8.6-gke.0']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}, {'resource_id': 'node-version-invalid', 'resource_type': 'ke', 'rule_index': 0, 'rule_name': 'Unsupported node pool version', 'violation_data': {'cluster_name': 'node-version-invalid', 'node_pool_name': 'default-pool', 'project_id': 'foo', 'violation_reason': ( "Node pool version 1.8.4-gke.1 is not " "supported (['1.6.13-gke.1', " "'1.7.10-gke.1', '1.7.11-gke.1', " "'1.8.6-gke.0']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}] mock_output_results.assert_called_once_with(mock.ANY, expected_violations) if __name__ == '__main__': unittest.main()
41.119792
76
0.500823
6,767
0.857125
0
0
2,536
0.321216
0
0
3,175
0.402153
d3c71f0ccce66077dfdcd88c05a9aa625f2426c0
1,147
py
Python
metrics/utils.py
edwardyehuang/iSeg
256b0f7fdb6e854fe026fa8df41d9a4a55db34d5
[ "MIT" ]
4
2021-12-13T09:49:26.000Z
2022-02-19T11:16:50.000Z
metrics/utils.py
edwardyehuang/iSeg
256b0f7fdb6e854fe026fa8df41d9a4a55db34d5
[ "MIT" ]
1
2021-07-28T10:40:56.000Z
2021-08-09T07:14:06.000Z
metrics/utils.py
edwardyehuang/iSeg
256b0f7fdb6e854fe026fa8df41d9a4a55db34d5
[ "MIT" ]
null
null
null
# ================================================================ # MIT License # Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang) # ================================================================ import tensorflow as tf from iseg.metrics.seg_metric_wrapper import SegMetricWrapper from iseg.metrics.mean_iou import MeanIOU class SegMetricBuilder: def __init__(self, num_class, ignore_label): self.num_class = num_class self.ignore_label = ignore_label self.__metrics = [] def add(self, prefix="", use_iou=True, pre_compute_fn=None): metrics_list = [] if prefix is None: prefix = "" if prefix != "": prefix = prefix + "_" if use_iou: iou_metric = SegMetricWrapper( MeanIOU(self.num_class), num_class=self.num_class, ignore_label=self.ignore_label, name=prefix + "IOU" ) iou_metric.add_pre_compute_fn(pre_compute_fn) metrics_list.append(iou_metric) self.__metrics.append(metrics_list) @property def metrics(self): return self.__metrics
26.068182
118
0.569311
797
0.694856
0
0
62
0.054054
0
0
228
0.198779
d3c7eb72e9d8627f04182ce89238416d18909674
1,436
py
Python
src/core/stats.py
dynaryu/vaws
f6ed9b75408f7ce6100ed59b7754f745e59be152
[ "BSD-3-Clause" ]
null
null
null
src/core/stats.py
dynaryu/vaws
f6ed9b75408f7ce6100ed59b7754f745e59be152
[ "BSD-3-Clause" ]
null
null
null
src/core/stats.py
dynaryu/vaws
f6ed9b75408f7ce6100ed59b7754f745e59be152
[ "BSD-3-Clause" ]
null
null
null
import math def lognormal_mean(m, stddev): """ compute mean of log x with mean and std. of x Args: m: mean of x stddev: standard deviation of x Returns: mean of log x """ return math.log(m) - (0.5 * math.log(1.0 + (stddev * stddev) / (m * m))) def lognormal_stddev(m, stddev): """ compute std. of log x with mean and std. of x Args: m: mean of x stddev: standard deviation of x Returns: std. of log x """ return math.sqrt(math.log((stddev * stddev) / (m * m) + 1)) def lognormal_underlying_mean(m, stddev): """ compute mean of x with mean and std of log x Args: m: mean of log x stddev: std of log x Returns: """ # if m == 0 or stddev == 0: # print '{}'.format('why ???') # return 0 return math.exp(m + 0.5 * stddev * stddev) def lognormal_underlying_stddev(m, stddev): """ compute std of x with mean and std of log x Args: m: mean of log x stddev: std of log x Returns: std of x """ # if m == 0 or stddev == 0: # print '{}'.format('strange why???') # return 0 return math.sqrt((math.exp(stddev**2.0) - 1.0) * math.exp(2.0*m + stddev**2.0)) #return lognormal_underlying_mean(m, stddev) * \ # math.sqrt((math.exp(stddev * stddev) - 1.0))
23.16129
77
0.521588
0
0
0
0
0
0
0
0
891
0.620474
d3c82c2d822564092119880c7f993bd3fd1d721b
5,720
py
Python
vim.d/vimfiles/bundle/taghighlight/plugin/TagHighlight/module/languages.py
lougxing/gbox
f28402d97cacd22b5e564003af72c4022908cb4d
[ "MIT" ]
null
null
null
vim.d/vimfiles/bundle/taghighlight/plugin/TagHighlight/module/languages.py
lougxing/gbox
f28402d97cacd22b5e564003af72c4022908cb4d
[ "MIT" ]
13
2020-01-28T22:30:33.000Z
2022-03-02T14:57:16.000Z
vim.d/vimfiles/bundle/taghighlight/plugin/TagHighlight/module/languages.py
lougxing/gbox
f28402d97cacd22b5e564003af72c4022908cb4d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Tag Highlighter: # Author: A. S. Budden <abudden _at_ gmail _dot_ com> # Copyright: Copyright (C) 2009-2013 A. S. Budden # Permission is hereby granted to use and distribute this code, # with or without modifications, provided that this copyright # notice is copied with it. Like anything else that's free, # the TagHighlight plugin is provided *as is* and comes with no # warranty of any kind, either expressed or implied. By using # this plugin, you agree that in no event will the copyright # holder be liable for any damages resulting from the use # of this software. # --------------------------------------------------------------------- import os import glob from .config import config from .loaddata import LoadDataFile, LoadFile, GlobData from .debug import Debug class Languages(): registry = {} def __init__(self, options): self.options = options self.kinds = None language_list_entries = ['SkipList','Priority'] # Import language specific modules: this will make them be parsed # and will add to the registry self.defaults = LoadDataFile('language_defaults.txt') for entry in language_list_entries: if entry in self.defaults: if not isinstance(self.defaults[entry], list): self.defaults[entry] = self.defaults[entry].split(',') for language_file in GlobData('languages/*.txt'): language_dict = LoadDataFile(language_file) for entry in language_list_entries: if entry in language_dict: if not isinstance(language_dict[entry], list): language_dict[entry] = language_dict[entry].split(',') language_dict['Filename'] = language_file if 'ReservedKeywords' in language_dict: # This is some weird python magic that takes a list of # strings containing space-separated items and produces # a single list of those items. language_dict['ReservedKeywords'] = \ [item for sublist in language_dict['ReservedKeywords'] for item in sublist.split(' ')] else: language_dict['ReservedKeywords'] = [] language_dict = self.VerifyLanguage(language_dict) self.registry[language_dict['FriendlyName']] = language_dict def ReadConfigFile(self, filename): result = {} fh = open(filename, 'r') list_entries = ['SkipList','Priority'] key = None for line in fh: if line.strip().endswith(':') and line[0] not in [' ','\t',':','#']: key = line.strip()[:-1] result[key] = [] elif key is not None and line.startswith('\t'): result[key] += [line.strip()] elif ':' in line and line[0] not in [' ','\t',':','#']: # End of the previous list, so reset key key = None parts = line.strip().split(':',1) if parts[0] in list_entries: if ',' in parts[1]: result[parts[0]] = parts[1].split(',') else: result[parts[0]] = [parts[1]] else: result[parts[0]] = parts[1] fh.close() return result def VerifyLanguage(self, language_dict): required_keys = [ 'FriendlyName', 'CTagsName', 'PythonExtensionMatcher', 'VimExtensionMatcher', 'Suffix', 'SkipList', 'IsKeyword', 'Priority', ] for key in required_keys: if key not in language_dict: if key in self.defaults: language_dict[key] = self.defaults[key] else: raise Exception("Language data from file {filename} is " \ "missing required key {key} (no default " \ "available).".format(filename=language_dict['Filename'], key=key)) return language_dict def GetAllLanguages(self): return list(self.registry.keys()) def GetAllLanguageHandlers(self): return list(self.registry.values()) def GetLanguageHandler(self, name): return self.registry[name] def GenerateExtensionTable(self): results = {} for handler in list(self.registry.values()): extensions = handler.GetVimMatcher() suffix = handler.GetSuffix() results[extensions] = suffix return results def GenerateFullKindList(self): self.LoadKindList() kinds = set() for language in list(self.kinds.keys()): kinds |= set(self.kinds[language].values()) return sorted(list(kinds)) def GetKindList(self, language=None): """Explicit list of kinds exported from ctags help.""" if self.kinds is None: kind_import = LoadDataFile('kinds.txt') # Generate the kind database with 'ctags_' prefix on the keys self.kinds = {} for key in kind_import: self.kinds[key] = {} for kind in kind_import[key]: self.kinds[key]['ctags_'+kind] = kind_import[key][kind] if language is None: return self.kinds elif language in self.kinds: return self.kinds[language] else: return None
38.648649
110
0.544755
4,827
0.843881
0
0
0
0
0
0
1,601
0.279895
d3c84323f9dc3dcd909b2c9adb14b8efc078f1c5
6,099
py
Python
archive/bayes_sensor.py
robmarkcole/HASS-data-science
7edd07a1519682683b42d140d6268a87d91522ec
[ "MIT" ]
11
2018-01-21T02:37:02.000Z
2022-01-20T03:32:40.000Z
archive/bayes_sensor.py
robmarkcole/HASS-data-science
7edd07a1519682683b42d140d6268a87d91522ec
[ "MIT" ]
null
null
null
archive/bayes_sensor.py
robmarkcole/HASS-data-science
7edd07a1519682683b42d140d6268a87d91522ec
[ "MIT" ]
8
2017-12-19T14:05:33.000Z
2021-12-08T09:54:06.000Z
""" Bayes sensor code split out from https://github.com/home-assistant/home-assistant/blob/dev/homeassistant/components/binary_sensor/bayesian.py This module is used to explore the sensor. """ from collections import OrderedDict from const import * def update_probability(prior, prob_true, prob_false): """Update probability using Bayes' rule.""" numerator = prob_true * prior denominator = numerator + prob_false * (1 - prior) probability = numerator / denominator return probability def setup_platform(config): """Set up the Bayesian Binary sensor. Modified from async_setup_platform.""" name = config[CONF_NAME] observations = config[CONF_OBSERVATIONS] prior = config[CONF_PRIOR] probability_threshold = config[CONF_PROBABILITY_THRESHOLD] device_class = config[CONF_DEVICE_CLASS] return BayesianBinarySensor( name, prior, observations, probability_threshold, device_class) class BinarySensorDevice(): # Entity """Represent a binary sensor.""" @property def is_on(self): """Return true if the binary sensor is on.""" return None @property def state(self): """Return the state of the binary sensor.""" return STATE_ON if self.is_on else STATE_OFF @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" return None class BayesianBinarySensor(BinarySensorDevice): """Representation of a Bayesian sensor. Removed some methods I don't think will be needed for this investigation. """ def __init__(self, name, prior, observations, probability_threshold, device_class): """Initialize the Bayesian sensor.""" self._name = name self._observations = observations self._probability_threshold = probability_threshold self._device_class = device_class self._deviation = False self.prior = prior self.probability = prior self.current_obs = OrderedDict({}) # return the entity_id to observ to_observe = set(obs['entity_id'] for obs in self._observations) self.entity_obs = dict.fromkeys(to_observe, []) # Append observations for ind, obs in enumerate(self._observations): obs['id'] = ind self.entity_obs[obs['entity_id']].append(obs) self.watchers = { 'numeric_state': self._process_numeric_state, 'state': self._process_state } # @asyncio.coroutine def async_added_to_hass(self): """Call when entity about to be added.""" @callback # pylint: disable=invalid-name def async_threshold_sensor_state_listener(entity, old_state, new_state): """Handle sensor state changes.""" if new_state.state == STATE_UNKNOWN: return entity_obs_list = self.entity_obs[entity] for entity_obs in entity_obs_list: platform = entity_obs['platform'] self.watchers[platform](entity_obs) prior = self.prior for obs in self.current_obs.values(): prior = update_probability( prior, obs['prob_true'], obs['prob_false']) self.probability = prior # Updates prior for each observation. # self.hass.async_add_job(self.async_update_ha_state, True) entities = [obs['entity_id'] for obs in self._observations] # async_track_state_change( # self.hass, entities, async_threshold_sensor_state_listener) def _update_current_obs(self, entity_observation, should_trigger): """Update current observation for single entity.""" obs_id = entity_observation['id'] if should_trigger: prob_true = entity_observation['prob_given_true'] prob_false = entity_observation.get( 'prob_given_false', 1 - prob_true) # Update prob_true and prob_false self.current_obs[obs_id] = { 'prob_true': prob_true, 'prob_false': prob_false } else: self.current_obs.pop(obs_id, None) def _process_numeric_state(self, entity_observation): """Add entity to current_obs if numeric state conditions are met (regular sensor).""" entity = entity_observation['entity_id'] should_trigger = condition.async_numeric_state( self.hass, entity, entity_observation.get('below'), entity_observation.get('above'), None, entity_observation) self._update_current_obs(entity_observation, should_trigger) def _process_state(self, entity_observation): """Add entity to current observations if state conditions are met (binary sensor).""" entity = entity_observation['entity_id'] should_trigger = condition.state( self.hass, entity, entity_observation.get('to_state')) self._update_current_obs(entity_observation, should_trigger) @property def name(self): """Return the name of the sensor.""" return self._name @property def is_on(self): """Return true if sensor is on.""" return self._deviation @property def should_poll(self): """No polling needed.""" return False @property def device_class(self): """Return the sensor class of the sensor.""" return self._device_class @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return { ATTR_OBSERVATIONS: [val for val in self.current_obs.values()], ATTR_PROBABILITY: round(self.probability, 2), ATTR_PROBABILITY_THRESHOLD: self._probability_threshold, } #@asyncio.coroutine def async_update(self): """Get the latest data and update the states.""" self._deviation = bool(self.probability > self._probability_threshold)
33.510989
108
0.643384
5,146
0.843745
0
0
1,897
0.311035
0
0
1,773
0.290703
d3c8f408394af973ef52e2eab96bcf7c6c3f5ac5
27,212
py
Python
CoarseNet/MinutiaeNet_utils.py
khaihp98/minutiae
afb7feff33ef86a673f899006aded486964f18dc
[ "MIT" ]
null
null
null
CoarseNet/MinutiaeNet_utils.py
khaihp98/minutiae
afb7feff33ef86a673f899006aded486964f18dc
[ "MIT" ]
null
null
null
CoarseNet/MinutiaeNet_utils.py
khaihp98/minutiae
afb7feff33ef86a673f899006aded486964f18dc
[ "MIT" ]
null
null
null
import os import glob import shutil import logging import matplotlib.pyplot as plt import numpy as np from scipy import ndimage, misc, signal, spatial from skimage.filters import gaussian, gabor_kernel import cv2 import math def mkdir(path): if not os.path.exists(path): os.makedirs(path) def re_mkdir(path): if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) def init_log(output_dir): re_mkdir(output_dir) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%Y%m%d-%H:%M:%S', filename=os.path.join(output_dir, 'log.log'), filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) return logging def copy_file(path_s, path_t): shutil.copy(path_s, path_t) def get_files_in_folder(folder, file_ext=None): files = glob.glob(folder + file_ext) files_name = [] for i in files: _, name = os.path.split(i) name, ext = os.path.splitext(name) files_name.append(name) return np.asarray(files), np.asarray(files_name) def point_rot(points, theta, b_size, a_size): cosA = np.cos(theta) sinA = np.sin(theta) b_center = [b_size[1] / 2.0, b_size[0] / 2.0] a_center = [a_size[1] / 2.0, a_size[0] / 2.0] points = np.dot(points - b_center, np.array([[cosA, -sinA], [sinA, cosA]])) + a_center return points def mnt_reader(file_name): f = open(file_name) minutiae = [] for i, line in enumerate(f): if i < 4 or len(line) == 0: continue w, h, o = [float(x) for x in line.split()] w, h = int(round(w)), int(round(h)) minutiae.append([w, h, o]) f.close() return minutiae def mnt_writer(mnt, image_name, image_size, file_name): f = open(file_name, 'w') f.write('%s\n' % (image_name)) f.write('%d %d %d\n' % (mnt.shape[0], image_size[0], image_size[1])) for i in range(mnt.shape[0]): f.write('%d %d %.6f %.4f\n' % (mnt[i, 0], mnt[i, 1], mnt[i, 2], mnt[i, 3])) f.close() return def gabor_fn(ksize, sigma, theta, Lambda, psi, gamma): sigma_x = sigma sigma_y = float(sigma) / gamma # Bounding box nstds = 3 xmax = ksize[0] / 2 ymax = ksize[1] / 2 xmin = -xmax ymin = -ymax (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # Rotation x_theta = x * np.cos(theta) + y * np.sin(theta) y_theta = -x * np.sin(theta) + y * np.cos(theta) gb_cos = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.cos( 2 * np.pi / Lambda * x_theta + psi) gb_sin = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.sin( 2 * np.pi / Lambda * x_theta + psi) return gb_cos, gb_sin def gabor_bank(stride=2, Lambda=8): filters_cos = np.ones([25, 25, 180 // stride], dtype=float) filters_sin = np.ones([25, 25, 180 // stride], dtype=float) for n, i in enumerate(range(-90, 90, stride)): theta = i * np.pi / 180. kernel_cos, kernel_sin = gabor_fn((24, 24), 4.5, -theta, Lambda, 0, 0.5) filters_cos[..., n] = kernel_cos filters_sin[..., n] = kernel_sin filters_cos = np.reshape(filters_cos, [25, 25, 1, -1]) filters_sin = np.reshape(filters_sin, [25, 25, 1, -1]) return filters_cos, filters_sin def gaussian2d(shape=(5, 5), sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2. * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def gausslabel(length=180, stride=2): gaussian_pdf = signal.gaussian(length + 1, 3) label = np.reshape(np.arange(stride / 2, length, stride), [1, 1, -1, 1]) y = np.reshape(np.arange(stride / 2, length, stride), [1, 1, 1, -1]) delta = np.array(np.abs(label - y), dtype=int) delta = np.minimum(delta, length - delta) + length // 2 return gaussian_pdf[delta] def angle_delta(A, B, max_D=np.pi * 2): delta = np.abs(A - B) delta = np.minimum(delta, max_D - delta) return delta def fmeasure(P, R): return 2 * P * R / (P + R + 1e-10) def distance(y_true, y_pred, max_D=16, max_O=np.pi / 6): D = spatial.distance.cdist(y_true[:, :2], y_pred[:, :2], 'euclidean') O = spatial.distance.cdist(np.reshape(y_true[:, 2], [-1, 1]), np.reshape(y_pred[:, 2], [-1, 1]), angle_delta) return (D <= max_D) * (O <= max_O) def metric_P_R_F(y_true, y_pred, maxd=16, maxo=np.pi / 6): # Calculate Precision, Recall, F-score if y_pred.shape[0] == 0 or y_true.shape[0] == 0: return 0, 0, 0, 0, 0 y_true, y_pred = np.array(y_true), np.array(y_pred) total_gt, total = float(y_true.shape[0]), float(y_pred.shape[0]) # Using L2 loss dis = spatial.distance.cdist(y_pred[:, :2], y_true[:, :2], 'euclidean') mindis, idx = dis.min(axis=1), dis.argmin(axis=1) # Change to adapt to new annotation: old version. When training, comment it # y_pred[:,2] = -y_pred[:,2] angle = abs(np.mod(y_pred[:, 2], 2 * np.pi) - y_true[idx, 2]) angle = np.asarray([angle, 2 * np.pi - angle]).min(axis=0) # Satisfy the threshold tmp = (mindis <= maxd) & (angle <= maxo) # print('mindis,idx,angle,tmp=%s,%s,%s,%s'%(mindis,idx,angle,tmp)) precision = len(np.unique(idx[(mindis <= maxd) & (angle <= maxo)])) / float(y_pred.shape[0]) recall = len(np.unique(idx[(mindis <= maxd) & (angle <= maxo)])) / float(y_true.shape[0]) # print('pre=%f/ %f'%(len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)])),float(y_pred.shape[0]))) # print('recall=%f/ %f'%(len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)])),float(y_true.shape[0]))) if recall != 0: loc = np.mean(mindis[(mindis <= maxd) & (angle <= maxo)]) ori = np.mean(angle[(mindis <= maxd) & (angle <= maxo)]) else: loc = 0 ori = 0 return precision, recall, fmeasure(precision, recall), loc, ori def nms(mnt): if mnt.shape[0] == 0: return mnt # sort score mnt_sort = mnt.tolist() mnt_sort.sort(key=lambda x: x[3], reverse=True) mnt_sort = np.array(mnt_sort) # cal distance inrange = distance(mnt_sort, mnt_sort, max_D=16, max_O=np.pi / 6).astype(np.float32) keep_list = np.ones(mnt_sort.shape[0]) for i in range(mnt_sort.shape[0]): if keep_list[i] == 0: continue keep_list[i + 1:] = keep_list[i + 1:] * (1 - inrange[i, i + 1:]) return mnt_sort[keep_list.astype(np.bool), :] def fuse_nms(mnt, mnt_set_2): if mnt.shape[0] == 0: return mnt # sort score all_mnt = np.concatenate((mnt, mnt_set_2)) mnt_sort = all_mnt.tolist() mnt_sort.sort(key=lambda x: x[3], reverse=True) mnt_sort = np.array(mnt_sort) # cal distance inrange = distance(mnt_sort, mnt_sort, max_D=16, max_O=2 * np.pi).astype(np.float32) keep_list = np.ones(mnt_sort.shape[0]) for i in range(mnt_sort.shape[0]): if keep_list[i] == 0: continue keep_list[i + 1:] = keep_list[i + 1:] * (1 - inrange[i, i + 1:]) return mnt_sort[keep_list.astype(np.bool), :] def py_cpu_nms(det, thresh): if det.shape[0] == 0: return det dets = det.tolist() dets.sort(key=lambda x: x[3], reverse=True) dets = np.array(dets) box_sz = 25 x1 = np.reshape(dets[:, 0], [-1, 1]) - box_sz y1 = np.reshape(dets[:, 1], [-1, 1]) - box_sz x2 = np.reshape(dets[:, 0], [-1, 1]) + box_sz y2 = np.reshape(dets[:, 1], [-1, 1]) + box_sz scores = dets[:, 2] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return dets[keep, :] def draw_minutiae(image, minutiae, fname, saveimage=False, r=15, drawScore=False): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') # plt.hold(True) # Check if no minutiae if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o, s in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') if drawScore == True: plt.text(x - 10, y - 10, '%.2f' % s, color='yellow', fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight', pad_inches=0) plt.close(fig) else: plt.show() return def draw_minutiae_overlay(image, minutiae, mnt_gt, fname, saveimage=False, r=15, drawScore=False): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') plt.hold(True) if mnt_gt.shape[1] > 3: mnt_gt = mnt_gt[:, :3] if mnt_gt.shape[0] > 0: if mnt_gt.shape[1] > 3: mnt_gt = mnt_gt[:, :3] plt.plot(mnt_gt[:, 0], mnt_gt[:, 1], 'bs', fillstyle='none', linewidth=1) for x, y, o in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') if drawScore == True: plt.text(x - 10, y - 10, '%.2f' %s, color='yellow', fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') plt.show() if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight') plt.close(fig) else: plt.show() return def draw_minutiae_overlay_with_score(image, minutiae, mnt_gt, fname, saveimage=False, r=15): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') plt.hold(True) if mnt_gt.shape[0] > 0: plt.plot(mnt_gt[:, 0], mnt_gt[:, 1], 'bs', fillstyle='none', linewidth=1) if mnt_gt.shape[1] > 3: for x, y, o, s in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') plt.text(x - 10, y - 5, '%.2f' % s, color='green', fontsize=4) else: for x, y, o in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o, s in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') plt.text(x - 10, y - 10, '%.2f' % s, color='yellow', fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight') plt.close(fig) else: plt.show() return def draw_ori_on_img(img, ori, mask, fname, saveimage=False, coh=None, stride=16): ori = np.squeeze(ori) # mask = np.squeeze(np.round(mask)) img = np.squeeze(img) ori = ndimage.zoom(ori, np.array(img.shape) / np.array(ori.shape, dtype=float), order=0) if mask.shape != img.shape: mask = ndimage.zoom(mask, np.array(img.shape) / np.array(mask.shape, dtype=float), order=0) if coh is None: coh = np.ones_like(img) fig = plt.figure() plt.imshow(img, cmap='gray') plt.hold(True) for i in range(stride, img.shape[0], stride): for j in range(stride, img.shape[1], stride): if mask[i, j] == 0: continue x, y, o, r = j, i, ori[i, j], coh[i, j] * (stride * 0.9) plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') plt.axis([0, img.shape[1], img.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, bbox_inches='tight') plt.close(fig) else: plt.show() return def local_constrast_enhancement(img): img = img.astype(np.float32) meanV = cv2.blur(img, (15, 15)) normalized = img - meanV var = abs(normalized) var = cv2.blur(var, (15, 15)) normalized = normalized / (var + 10) * 0.75 normalized = np.clip(normalized, -1, 1) normalized = (normalized + 1) * 127.5 return normalized def get_quality_map_ori_dict(img, dict, spacing, dir_map=None, block_size=16): if img.dtype == 'uint8': img = img.astype(np.float) img = FastEnhanceTexture(img) h, w = img.shape blkH, blkW = dir_map.shape quality_map = np.zeros((blkH, blkW), dtype=np.float) fre_map = np.zeros((blkH, blkW), dtype=np.float) ori_num = len(dict) # dir_map = math.pi/2 - dir_map dir_ind = dir_map * ori_num / math.pi dir_ind = dir_ind.astype(np.int) dir_ind = dir_ind % ori_num patch_size = np.sqrt(dict[0].shape[1]) patch_size = patch_size.astype(np.int) pad_size = (patch_size - block_size) // 2 img = np.lib.pad(img, (pad_size, pad_size), 'symmetric') for i in range(0, blkH): for j in range(0, blkW): ind = dir_ind[i, j] patch = img[i * block_size:i * block_size + patch_size, j * block_size:j * block_size + patch_size] patch = patch.reshape(patch_size * patch_size, ) patch = patch - np.mean(patch) patch = patch / (np.linalg.norm(patch) + 0.0001) patch[patch > 0.05] = 0.05 patch[patch < -0.05] = -0.05 simi = np.dot(dict[ind], patch) similar_ind = np.argmax(abs(simi)) quality_map[i, j] = np.max(abs(simi)) fre_map[i, j] = 1. / spacing[ind][similar_ind] quality_map = gaussian(quality_map, sigma=2) return quality_map, fre_map def FastEnhanceTexture(img, sigma=2.5, show=False): img = img.astype(np.float32) h, w = img.shape h2 = 2 ** nextpow2(h) w2 = 2 ** nextpow2(w) FFTsize = np.max([h2, w2]) x, y = np.meshgrid(range(-FFTsize // 2, FFTsize // 2), range(-FFTsize // 2, FFTsize // 2)) r = np.sqrt(x * x + y * y) + 0.0001 r = r // FFTsize L = 1. // (1 + (2 * math.pi * r * sigma) ** 4) img_low = LowpassFiltering(img, L) gradim1 = compute_gradient_norm(img) gradim1 = LowpassFiltering(gradim1, L) gradim2 = compute_gradient_norm(img_low) gradim2 = LowpassFiltering(gradim2, L) diff = gradim1 - gradim2 ar1 = np.abs(gradim1) diff[ar1 > 1] = diff[ar1 > 1] // ar1[ar1 > 1] diff[ar1 <= 1] = 0 cmin = 0.3 cmax = 0.7 weight = (diff - cmin) / (cmax - cmin) weight[diff < cmin] = 0 weight[diff > cmax] = 1 u = weight * img_low + (1 - weight) * img temp = img - u lim = 20 temp1 = (temp + lim) * 255 / (2 * lim) temp1[temp1 < 0] = 0 temp1[temp1 > 255] = 255 v = temp1 if show: plt.imshow(v, cmap='gray') plt.show() return v def compute_gradient_norm(input): input = input.astype(np.float32) Gx, Gy = np.gradient(input) out = np.sqrt(Gx * Gx + Gy * Gy) + 0.000001 return out def LowpassFiltering(img, L): h, w = img.shape h2, w2 = L.shape img = cv2.copyMakeBorder(img, 0, h2 - h, 0, w2 - w, cv2.BORDER_CONSTANT, value=0) img_fft = np.fft.fft2(img) img_fft = np.fft.fftshift(img_fft) img_fft = img_fft * L rec_img = np.fft.ifft2(np.fft.fftshift(img_fft)) rec_img = np.real(rec_img) rec_img = rec_img[:h, :w] return rec_img def nextpow2(x): return int(math.ceil(math.log(x, 2))) def construct_dictionary(ori_num=30): ori_dict = [] s = [] for i in range(ori_num): ori_dict.append([]) s.append([]) patch_size2 = 16 patch_size = 32 dict_all = [] spacing_all = [] ori_all = [] Y, X = np.meshgrid(range(-patch_size2, patch_size2), range(-patch_size2, patch_size2)) for spacing in range(6, 13): for valley_spacing in range(3, spacing // 2): ridge_spacing = spacing - valley_spacing for k in range(ori_num): theta = np.pi / 2 - k * np.pi / ori_num X_r = X * np.cos(theta) - Y * np.sin(theta) for offset in range(0, spacing - 1, 2): X_r_offset = X_r + offset + ridge_spacing / 2 X_r_offset = np.remainder(X_r_offset, spacing) Y1 = np.zeros((patch_size, patch_size)) Y2 = np.zeros((patch_size, patch_size)) Y1[X_r_offset <= ridge_spacing] = X_r_offset[X_r_offset <= ridge_spacing] Y2[X_r_offset > ridge_spacing] = X_r_offset[X_r_offset > ridge_spacing] - ridge_spacing element = -np.sin(2 * math.pi * (Y1 / ridge_spacing / 2)) + np.sin( 2 * math.pi * (Y2 / valley_spacing / 2)) element = element.reshape(patch_size * patch_size, ) element = element - np.mean(element) element = element / np.linalg.norm(element) ori_dict[k].append(element) s[k].append(spacing) dict_all.append(element) spacing_all.append(1.0 / spacing) ori_all.append(theta) for i in range(len(ori_dict)): ori_dict[i] = np.asarray(ori_dict[i]) s[k] = np.asarray(s[k]) dict_all = np.asarray(dict_all) dict_all = np.transpose(dict_all) spacing_all = np.asarray(spacing_all) ori_all = np.asarray(ori_all) return ori_dict, s, dict_all, ori_all, spacing_all def get_maps_STFT(img, patch_size=64, block_size=16, preprocess=False): assert len(img.shape) == 2 nrof_dirs = 16 ovp_size = (patch_size - block_size) // 2 if preprocess: img = FastEnhanceTexture(img, sigma=2.5, show=False) img = np.lib.pad(img, (ovp_size, ovp_size), 'symmetric') h, w = img.shape blkH = (h - patch_size) // block_size + 1 blkW = (w - patch_size) // block_size + 1 local_info = np.empty((blkH, blkW), dtype=object) x, y = np.meshgrid(range(-patch_size // 2, patch_size // 2), range(-patch_size // 2, patch_size // 2)) x = x.astype(np.float32) y = y.astype(np.float32) r = np.sqrt(x * x + y * y) + 0.0001 RMIN = 3 # min allowable ridge spacing RMAX = 18 # maximum allowable ridge spacing FLOW = patch_size // RMAX FHIGH = patch_size // RMIN dRLow = 1. // (1 + (r // FHIGH) ** 4) dRHigh = 1. // (1 + (FLOW // r) ** 4) dBPass = dRLow * dRHigh # bandpass dir = np.arctan2(y, x) dir[dir < 0] = dir[dir < 0] + math.pi dir_ind = np.floor(dir / (math.pi // nrof_dirs)) dir_ind = dir_ind.astype(np.int, copy=False) dir_ind[dir_ind == nrof_dirs] = 0 dir_ind_list = [] for i in range(nrof_dirs): tmp = np.argwhere(dir_ind == i) dir_ind_list.append(tmp) sigma = patch_size // 3 weight = np.exp(-(x * x + y * y) // (sigma * sigma)) for i in range(0, blkH): for j in range(0, blkW): patch = img[i * block_size:i * block_size + patch_size, j * block_size:j * block_size + patch_size].copy() local_info[i, j] = local_STFT(patch, weight, dBPass) local_info[i, j].analysis(r, dir_ind_list) # get the ridge flow from the local information dir_map, fre_map = get_ridge_flow_top(local_info) dir_map = smooth_dir_map(dir_map) return dir_map, fre_map def smooth_dir_map(dir_map, sigma=2.0, mask=None): cos2Theta = np.cos(dir_map * 2) sin2Theta = np.sin(dir_map * 2) if mask is not None: assert (dir_map.shape[0] == mask.shape[0]) assert (dir_map.shape[1] == mask.shape[1]) cos2Theta[mask == 0] = 0 sin2Theta[mask == 0] = 0 cos2Theta = gaussian(cos2Theta, sigma, multichannel=False, mode='reflect') sin2Theta = gaussian(sin2Theta, sigma, multichannel=False, mode='reflect') dir_map = np.arctan2(sin2Theta, cos2Theta) * 0.5 return dir_map def get_ridge_flow_top(local_info): blkH, blkW = local_info.shape dir_map = np.zeros((blkH, blkW)) - 10 fre_map = np.zeros((blkH, blkW)) - 10 for i in range(blkH): for j in range(blkW): if local_info[i, j].ori is None: continue dir_map[i, j] = local_info[i, j].ori[0] # + math.pi*0.5 fre_map[i, j] = local_info[i, j].fre[0] return dir_map, fre_map class local_STFT: def __init__(self, patch, weight=None, dBPass=None): if weight is not None: patch = patch * weight patch = patch - np.mean(patch) norm = np.linalg.norm(patch) patch = patch / (norm + 0.000001) f = np.fft.fft2(patch) fshift = np.fft.fftshift(f) if dBPass is not None: fshift = dBPass * fshift self.patch_FFT = fshift self.patch = patch self.ori = None self.fre = None self.confidence = None self.patch_size = patch.shape[0] def analysis(self, r, dir_ind_list=None, N=2): assert (dir_ind_list is not None) energy = np.abs(self.patch_FFT) energy = energy / (np.sum(energy) + 0.00001) nrof_dirs = len(dir_ind_list) ori_interval = math.pi / nrof_dirs ori_interval2 = ori_interval / 2 pad_size = 1 dir_norm = np.zeros((nrof_dirs + 2,)) for i in range(nrof_dirs): tmp = energy[dir_ind_list[i][:, 0], dir_ind_list[i][:, 1]] dir_norm[i + 1] = np.sum(tmp) dir_norm[0] = dir_norm[nrof_dirs] dir_norm[nrof_dirs + 1] = dir_norm[1] # smooth dir_norm smoothed_dir_norm = dir_norm for i in range(1, nrof_dirs + 1): smoothed_dir_norm[i] = (dir_norm[i - 1] + dir_norm[i] * 4 + dir_norm[i + 1]) / 6 smoothed_dir_norm[0] = smoothed_dir_norm[nrof_dirs] smoothed_dir_norm[nrof_dirs + 1] = smoothed_dir_norm[1] den = np.sum(smoothed_dir_norm[1:nrof_dirs + 1]) + 0.00001 # verify if den == 1 smoothed_dir_norm = smoothed_dir_norm / den # normalization if den == 1, this line can be removed ori = [] fre = [] confidence = [] wenergy = energy * r for i in range(1, nrof_dirs + 1): if smoothed_dir_norm[i] > smoothed_dir_norm[i - 1] and smoothed_dir_norm[i] > smoothed_dir_norm[i + 1]: tmp_ori = (i - pad_size) * ori_interval + ori_interval2 + math.pi / 2 ori.append(tmp_ori) confidence.append(smoothed_dir_norm[i]) tmp_fre = np.sum(wenergy[dir_ind_list[i - pad_size][:, 0], dir_ind_list[i - pad_size][:, 1]]) / \ dir_norm[i] tmp_fre = 1 / (tmp_fre + 0.00001) fre.append(tmp_fre) if len(confidence) > 0: confidence = np.asarray(confidence) fre = np.asarray(fre) ori = np.asarray(ori) ind = confidence.argsort()[::-1] confidence = confidence[ind] fre = fre[ind] ori = ori[ind] if len(confidence) >= 2 and confidence[0] / confidence[1] > 2.0: self.ori = [ori[0]] self.fre = [fre[0]] self.confidence = [confidence[0]] elif len(confidence) > N: fre = fre[:N] ori = ori[:N] confidence = confidence[:N] self.ori = ori self.fre = fre self.confidence = confidence else: self.ori = ori self.fre = fre self.confidence = confidence def get_features_of_topN(self, N=2): if self.confidence is None: self.border_wave = None return candi_num = len(self.ori) candi_num = np.min([candi_num, N]) patch_size = self.patch_FFT.shape for i in range(candi_num): kernel = gabor_kernel(self.fre[i], theta=self.ori[i], sigma_x=10, sigma_y=10) kernel_f = np.fft.fft2(kernel.real, patch_size) kernel_f = np.fft.fftshift(kernel_f) patch_f = self.patch_FFT * kernel_f patch_f = np.fft.ifftshift(patch_f) # *np.sqrt(np.abs(fshift))) rec_patch = np.real(np.fft.ifft2(patch_f)) plt.subplot(121), plt.imshow(self.patch, cmap='gray') plt.title('Input patch'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(rec_patch, cmap='gray') plt.title('filtered patch'), plt.xticks([]), plt.yticks([]) plt.show() def reconstruction(self, weight=None): f_ifft = np.fft.ifftshift(self.patch_FFT) # *np.sqrt(np.abs(fshift))) rec_patch = np.real(np.fft.ifft2(f_ifft)) if weight is not None: rec_patch = rec_patch * weight return rec_patch def gabor_filtering(self, theta, fre, weight=None): patch_size = self.patch_FFT.shape kernel = gabor_kernel(fre, theta=theta, sigma_x=4, sigma_y=4) f = kernel.real f = f - np.mean(f) f = f / (np.linalg.norm(f) + 0.0001) kernel_f = np.fft.fft2(f, patch_size) kernel_f = np.fft.fftshift(kernel_f) patch_f = self.patch_FFT * kernel_f patch_f = np.fft.ifftshift(patch_f) # *np.sqrt(np.abs(fshift))) rec_patch = np.real(np.fft.ifft2(patch_f)) if weight is not None: rec_patch = rec_patch * weight return rec_patch def show_orientation_field(img, dir_map, mask=None, fname=None): h, w = img.shape[:2] if mask is None: mask = np.ones((h, w), dtype=np.uint8) blkH, blkW = dir_map.shape blk_size = h / blkH R = blk_size / 2 * 0.8 fig, ax = plt.subplots(1) ax.imshow(img, cmap='gray') for i in range(blkH): y0 = i * blk_size + blk_size / 2 y0 = int(y0) for j in range(blkW): x0 = j * blk_size + blk_size / 2 x0 = int(x0) ori = dir_map[i, j] if mask[y0, x0] == 0: continue if ori < -9: continue x1 = x0 - R * math.cos(ori) x2 = x0 + R * math.cos(ori) y1 = y0 - R * math.sin(ori) y2 = y0 + R * math.sin(ori) plt.plot([x1, x2], [y1, y2], 'r-', lw=0.5) plt.axis('off') if fname is not None: fig.savefig(fname, dpi=500, bbox_inches='tight', pad_inches=0) plt.close() else: plt.show(block=True)
32.785542
118
0.561921
5,101
0.187454
0
0
0
0
0
0
1,487
0.054645
d3c9a9f08cb2ab991b3fa5be8156332e24b37380
52
py
Python
config/paths.py
fusic-com/flask-todo
909ce22132ed081feca02e2fb255afa08b59611d
[ "MIT" ]
34
2015-01-08T07:11:54.000Z
2021-08-28T23:55:25.000Z
config/paths.py
spacecode-live/flask-todo
909ce22132ed081feca02e2fb255afa08b59611d
[ "MIT" ]
null
null
null
config/paths.py
spacecode-live/flask-todo
909ce22132ed081feca02e2fb255afa08b59611d
[ "MIT" ]
13
2015-02-10T09:48:53.000Z
2021-03-02T15:23:21.000Z
from settings import VAR_DIR CACHE=VAR_DIR/'cache'
13
28
0.807692
0
0
0
0
0
0
0
0
7
0.134615
d3c9f4c940421bb8e75ec41e434f5dfd39d574c9
1,687
py
Python
Android.py
ChakradharG/Sudoku-Core
5963db235cecec4cc6682380c30b7af10a3c4d11
[ "MIT" ]
null
null
null
Android.py
ChakradharG/Sudoku-Core
5963db235cecec4cc6682380c30b7af10a3c4d11
[ "MIT" ]
1
2022-02-10T07:19:40.000Z
2022-02-10T07:19:40.000Z
Android.py
ChakradharG/Sudoku-Solver
5963db235cecec4cc6682380c30b7af10a3c4d11
[ "MIT" ]
null
null
null
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #To suppress warnings thrown by tensorflow from time import sleep import numpy as np from cv2 import cv2 import pyautogui as pg import Sudoku_Core as SC import OCR s = 513//9 #Size of board//9 fs = 25 #Size of the final image def getBoard(): pg.click(266, 740) sleep(1) pg.click(266, 930) #Changing the difficulty to expert sleep(2) image = pg.screenshot(region=(10, 187, 513, 513)) image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2GRAY) _,image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV) return image def readBoard(image): for i in range(9): for j in range(9): subImage = image[i*s + 3: (i+1)*s - 3, j*s + 3: (j+1)*s - 3] #(+3, -3) is a hack to remove border contours contour, _ = cv2.findContours(subImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contour != []: (x, y, w, h) = cv2.boundingRect(contour[0]) img = cv2.resize(subImage[y: y+h, x: x+w], (fs, fs), interpolation=cv2.INTER_AREA) else: img = np.zeros((fs,fs), dtype='uint8') SC.board[i][j] = OCR.model.predict(img.reshape(1, fs, fs, 1)).argmax() def outputBoard(): for ((posY, posX), v) in SC.moves.items(): posX = 42 + posX * 57 posY = 216 + posY * 57 pg.moveTo(posX, posY, 0.1) pg.click() # vX = 42 + 55*(v-1) # vY = 843 # pg.moveTo(vX, vY, 0.1) #To use the numpad in the app # pg.click() pg.typewrite(str(v)) #To send numbers from the keyboard def main(): image = getBoard() readBoard(image) print('Got the board, now solving') if SC.solve(0, 0): outputBoard() else: print('Couldn\'t solve') input('Press any key to exit') if __name__ == '__main__': main()
24.449275
109
0.653231
0
0
0
0
0
0
0
0
402
0.238293
d3cb3a07ae3bcc910cc22e9e664b83887e73f8fe
3,570
py
Python
app/model.py
kurapikaaaa/CITS3403Project
8958219845d5251830f2abd7c58dfd87d97b8c4a
[ "MIT" ]
1
2021-08-04T12:50:57.000Z
2021-08-04T12:50:57.000Z
app/model.py
kurapikaaaa/CITS3403Project
8958219845d5251830f2abd7c58dfd87d97b8c4a
[ "MIT" ]
null
null
null
app/model.py
kurapikaaaa/CITS3403Project
8958219845d5251830f2abd7c58dfd87d97b8c4a
[ "MIT" ]
1
2021-08-12T10:40:28.000Z
2021-08-12T10:40:28.000Z
from app import db, login from flask_login import UserMixin from datetime import datetime from flask import url_for, redirect from werkzeug.security import generate_password_hash, check_password_hash class users(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True, autoincrement=True) username = db.Column(db.String(100), nullable=False, unique=True) password = db.Column(db.String(96), nullable=False) email = db.Column(db.String(128), nullable=False, unique=True) firstname = db.Column(db.String(130), nullable=False) lastname = db.Column(db.String(130), nullable=False) lastLogin = db.Column(db.DateTime) isActive = db.Column(db.Boolean) isAdmin = db.Column(db.Boolean) noteHighScore = db.Column(db.Integer) KeyHighScore = db.Column(db.Integer) submit = db.relationship("submission", backref="submitter") ################################################### def __init__(self): self.isActive = True self.isAdmin = False self.noteHighScore = 0 self.lastLogin = None self.KeyHighScore = 0 def set_password(self, pwd): self.password = generate_password_hash(pwd, method="sha384") def check_password(self, pwd): return check_password_hash(self.password, pwd) def is_active(self): return self.isActive def validate(self): if self.username and self.email and self.firstname and self.lastname: return True else: return False def getSubmissions(self): res = submission.query.filter_by(creater_id=self.id).all() return res def __repr__(self): return '<user %r>' % self.username class submission(db.Model): __tablename__ = 'submission' id = db.Column(db.Integer, primary_key=True, autoincrement=True) createdAt = db.Column(db.DateTime, nullable=False) markedAt = db.Column(db.DateTime) feedback = db.Column(db.Boolean) totalmark = db.Column(db.Integer) difficulty = db.Column(db.String(30), nullable=False) passed = db.Column(db.Boolean) creater_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) answers = db.relationship("answer", backref="submission") def __init__(self): self.createdAt = datetime.utcnow() self.markedAt = None self.feedback = False self.totalmark = None self.marked = False self.passed = False def validate(self): if self.difficulty and self.creater_id and self.createdAt: return True def __repr__(self): return '<submission %r>' % self.id class answer(db.Model): __tablename__ = 'answer' id = db.Column(db.Integer, primary_key=True, autoincrement=True) answerSeq = db.Column(db.Integer) submittedAnswer = db.Column(db.String(400)) feedback = db.Column(db.String(400)) markreceived = db.Column(db.Boolean) submissionId = db.Column(db.Integer, db.ForeignKey("submission.id")) def __init__(self): self.feedback = None self.markreceived = False def validate(self): if self.answerSeq and self.submittedAnswer and self.submissionId: return True else: print("missingfield") return False def __repr__(self): return '<ans>' @login.user_loader def load_user(usr_id): return users.query.get(int(usr_id)) @login.unauthorized_handler def unauthorized(): return redirect(url_for("auth.login"))
30.254237
81
0.654622
3,174
0.889076
0
0
171
0.047899
0
0
215
0.060224
d3cb4fc2b23e4f4fb2c765f3d7673f2b43240708
19,911
py
Python
bert_multitask_learning/top.py
akashnd/bert-multitask-learning
aee5be006ef6a3feadf0c751a6f9b42c24c3fd21
[ "Apache-2.0" ]
1
2021-07-11T14:07:59.000Z
2021-07-11T14:07:59.000Z
bert_multitask_learning/top.py
akashnd/bert-multitask-learning
aee5be006ef6a3feadf0c751a6f9b42c24c3fd21
[ "Apache-2.0" ]
null
null
null
bert_multitask_learning/top.py
akashnd/bert-multitask-learning
aee5be006ef6a3feadf0c751a6f9b42c24c3fd21
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: source_nbs/12_top.ipynb (unless otherwise specified). __all__ = ['empty_tensor_handling_loss', 'nan_loss_handling', 'create_dummy_if_empty', 'BaseTop', 'SequenceLabel', 'Classification', 'PreTrain', 'Seq2Seq', 'MultiLabelClassification', 'MaskLM'] # Cell import logging from functools import partial from typing import Dict, Tuple, Union import tensorflow as tf import tensorflow_addons as tfa import transformers from transformers.modeling_tf_utils import TFSharedEmbeddings from tensorflow_addons.layers.crf import CRF from tensorflow_addons.text.crf import crf_log_likelihood from .params import BaseParams from .utils import gather_indexes @tf.function def empty_tensor_handling_loss(labels, logits, loss_fn): if tf.equal(tf.size(labels), 0): return 0.0 if tf.equal(tf.size(tf.shape(labels)), 0): return 0.0 if tf.equal(tf.shape(labels)[0], 0): return 0.0 else: return tf.reduce_mean(loss_fn( labels, logits, from_logits=True)) @tf.function def nan_loss_handling(loss): if tf.math.is_nan(loss): return 0.0 else: return loss @tf.function def create_dummy_if_empty(inp_tensor: tf.Tensor) -> tf.Tensor: shape_tensor = tf.shape(inp_tensor) if tf.equal(shape_tensor[0], 0): data_type = inp_tensor.dtype dummy_shape_first_dim = tf.convert_to_tensor([1], dtype=tf.int32) dummy_shape = tf.concat( [dummy_shape_first_dim, shape_tensor[1:]], axis=0) dummy_tensor = tf.zeros(dummy_shape, dtype=data_type) return dummy_tensor else: return inp_tensor class BaseTop(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str) -> None: super(BaseTop, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name def call(self, inputs: Tuple[Dict], mode: str): raise NotImplementedError # Cell class SequenceLabel(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str): super(SequenceLabel, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name num_classes = self.params.num_classes[self.problem_name] self.dense = tf.keras.layers.Dense(num_classes, activation=None) self.dropout = tf.keras.layers.Dropout(1-params.dropout_keep_prob) if self.params.crf: self.crf = CRF(num_classes) self.metric_fn = tf.keras.metrics.Accuracy( name='{}_acc'.format(self.problem_name) ) else: self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( name='{}_acc'.format(self.problem_name)) def return_crf_result(self, labels: tf.Tensor, logits: tf.Tensor, mode: str, input_mask: tf.Tensor): input_mask.set_shape([None, None]) logits = create_dummy_if_empty(logits) input_mask = create_dummy_if_empty(input_mask) viterbi_decoded, potentials, sequence_length, chain_kernel = self.crf( logits, input_mask) if mode != tf.estimator.ModeKeys.PREDICT: loss = -crf_log_likelihood(potentials, labels, sequence_length, chain_kernel)[0] loss = tf.reduce_mean(loss) loss = nan_loss_handling(loss) self.add_loss(loss) acc = self.metric_fn( labels, viterbi_decoded, sample_weight=input_mask) self.add_metric(acc) # make the crf prediction has the same shape as non-crf prediction return tf.one_hot(viterbi_decoded, name='%s_predict' % self.problem_name, depth=self.params.num_classes[self.problem_name]) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['seq'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] # sometimes the length of labels dose not equal to length of inputs # that's caused by tf.data.experimental.bucket_by_sequence_length in multi problem scenario pad_len = tf.shape(input=hidden_feature)[ 1] - tf.shape(input=labels)[1] # top, bottom, left, right pad_tensor = [[0, 0], [0, pad_len]] labels = tf.pad(tensor=labels, paddings=pad_tensor) else: labels = None hidden_feature = self.dropout(hidden_feature, training) if self.params.crf: return self.return_crf_result(labels, hidden_feature, mode, feature['model_input_mask']) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: loss = empty_tensor_handling_loss( labels, logits, tf.keras.losses.sparse_categorical_crossentropy) self.add_loss(loss) acc = self.metric_fn( labels, logits, sample_weight=feature['model_input_mask']) self.add_metric(acc) return tf.nn.softmax( logits, name='%s_predict' % self.problem_name) # Cell class Classification(tf.keras.layers.Layer): def __init__(self, params: BaseParams, problem_name: str) -> None: super(Classification, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name num_classes = self.params.num_classes[self.problem_name] self.dense = tf.keras.layers.Dense(num_classes, activation=None) self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( name='{}_acc'.format(self.problem_name)) self.dropout = tf.keras.layers.Dropout(1-params.dropout_keep_prob) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['pooled'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] else: labels = None hidden_feature = self.dropout(hidden_feature, training) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: # labels = tf.squeeze(labels) # convert labels to one-hot to use label_smoothing one_hot_labels = tf.one_hot( labels, depth=self.params.num_classes[self.problem_name]) loss_fn = partial(tf.keras.losses.categorical_crossentropy, from_logits=True, label_smoothing=self.params.label_smoothing) loss = empty_tensor_handling_loss( one_hot_labels, logits, loss_fn) loss = nan_loss_handling(loss) self.add_loss(loss) acc = self.metric_fn(labels, logits) self.add_metric(acc) return tf.nn.softmax( logits, name='%s_predict' % self.problem_name) # Cell class PreTrain(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.Tensor=None, share_embedding=True): super(PreTrain, self).__init__(name=problem_name) self.params = params self.nsp = transformers.models.bert.modeling_tf_bert.TFBertNSPHead( self.params.bert_config) if share_embedding is False: self.vocab_size = self.params.bert_config.vocab_size self.share_embedding = False else: word_embedding_weight = input_embeddings.word_embeddings self.vocab_size = word_embedding_weight.shape[0] embedding_size = word_embedding_weight.shape[-1] share_valid = (self.params.bert_config.hidden_size == embedding_size) if not share_valid and self.params.share_embedding: logging.warning( 'Share embedding is enabled but hidden_size != embedding_size') self.share_embedding = self.params.share_embedding & share_valid if self.share_embedding: self.share_embedding_layer = TFSharedEmbeddings( vocab_size=word_embedding_weight.shape[0], hidden_size=word_embedding_weight.shape[1]) self.share_embedding_layer.build([1]) self.share_embedding_layer.weight = word_embedding_weight else: self.share_embedding_layer = tf.keras.layers.Dense(self.vocab_size) def call(self, inputs: Tuple[Dict[str, Dict[str, tf.Tensor]], Dict[str, Dict[str, tf.Tensor]]], mode: str) -> Tuple[tf.Tensor, tf.Tensor]: features, hidden_features = inputs # compute logits nsp_logits = self.nsp(hidden_features['pooled']) # masking is done inside the model seq_hidden_feature = hidden_features['seq'] if mode != tf.estimator.ModeKeys.PREDICT: positions = features['masked_lm_positions'] # gather_indexes will flatten the seq hidden_states, we need to reshape # back to 3d tensor input_tensor = gather_indexes(seq_hidden_feature, positions) shape_tensor = tf.shape(positions) shape_list = tf.concat( [shape_tensor, [seq_hidden_feature.shape.as_list()[-1]]], axis=0) input_tensor = tf.reshape(input_tensor, shape=shape_list) # set_shape to determin rank input_tensor.set_shape( [None, None, seq_hidden_feature.shape.as_list()[-1]]) else: input_tensor = seq_hidden_feature if self.share_embedding: mlm_logits = self.share_embedding_layer( input_tensor, mode='linear') else: mlm_logits = self.share_embedding_layer(input_tensor) if mode != tf.estimator.ModeKeys.PREDICT: nsp_labels = features['next_sentence_label_ids'] mlm_labels = features['masked_lm_ids'] mlm_labels.set_shape([None, None]) # compute loss nsp_loss = empty_tensor_handling_loss( nsp_labels, nsp_logits, tf.keras.losses.sparse_categorical_crossentropy) mlm_loss_layer = transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss() # mlm_loss = tf.reduce_mean( # mlm_loss_layer.compute_loss(mlm_labels, mlm_logits)) # add a useless from_logits argument to match the function signature of keras losses. def loss_fn_wrapper(labels, logits, from_logits=True): return mlm_loss_layer.compute_loss(labels, logits) mlm_loss = empty_tensor_handling_loss( mlm_labels, mlm_logits, loss_fn_wrapper ) loss = nsp_loss + mlm_loss self.add_loss(loss) return (tf.sigmoid(nsp_logits), tf.nn.softmax(mlm_logits)) # Cell class Seq2Seq(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.keras.layers.Layer): super(Seq2Seq, self).__init__(name=problem_name) # self.params = params # self.problem_name = problem_name # # if self.params.init_weight_from_huggingface: # # self.decoder = load_transformer_model( # # self.params.transformer_decoder_model_name, # # self.params.transformer_decoder_model_loading) # # else: # # self.decoder = load_transformer_model( # # self.params.bert_decoder_config, self.params.transformer_decoder_model_loading) # # TODO: better implementation # logging.warning( # 'Seq2Seq model is not well supported yet. Bugs are expected.') # config = self.params.bert_decoder_config # # some hacky approach to share embeddings from encoder to decoder # word_embedding_weight = input_embeddings.word_embeddings # self.vocab_size = word_embedding_weight.shape[0] # self.share_embedding_layer = TFSharedEmbeddings( # vocab_size=word_embedding_weight.shape[0], hidden_size=word_embedding_weight.shape[1]) # self.share_embedding_layer.build([1]) # self.share_embedding_layer.weight = word_embedding_weight # # self.decoder = TFBartDecoder( # # config=config, embed_tokens=self.share_embedding_layer) # self.decoder = TFBartDecoderForConditionalGeneration( # config=config, embedding_layer=self.share_embedding_layer) # self.decoder.set_bos_id(self.params.bos_id) # self.decoder.set_eos_id(self.params.eos_id) # self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( # name='{}_acc'.format(self.problem_name)) raise NotImplementedError def _seq2seq_label_shift_right(self, labels: tf.Tensor, eos_id: int) -> tf.Tensor: batch_eos_ids = tf.fill([tf.shape(labels)[0], 1], eos_id) batch_eos_ids = tf.cast(batch_eos_ids, dtype=tf.int64) decoder_lable = labels[:, 1:] decoder_lable = tf.concat([decoder_lable, batch_eos_ids], axis=1) return decoder_lable def call(self, inputs: Tuple[Dict[str, Dict[str, tf.Tensor]], Dict[str, Dict[str, tf.Tensor]]], mode: str): features, hidden_features = inputs encoder_mask = features['model_input_mask'] if mode == tf.estimator.ModeKeys.PREDICT: input_ids = None decoder_padding_mask = None else: input_ids = features['%s_label_ids' % self.problem_name] decoder_padding_mask = features['{}_mask'.format( self.problem_name)] if mode == tf.estimator.ModeKeys.PREDICT: return self.decoder.generate(eos_token_id=self.params.eos_id, encoder_hidden_states=hidden_features['seq']) else: decoder_output = self.decoder(input_ids=input_ids, encoder_hidden_states=hidden_features['seq'], encoder_padding_mask=encoder_mask, decoder_padding_mask=decoder_padding_mask, decode_max_length=self.params.decode_max_seq_len, mode=mode) loss = decoder_output.loss logits = decoder_output.logits self.add_loss(loss) decoder_label = self._seq2seq_label_shift_right( features['%s_label_ids' % self.problem_name], eos_id=self.params.eos_id) acc = self.metric_fn(decoder_label, logits) self.add_metric(acc) return logits # Cell class MultiLabelClassification(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str) -> None: super(MultiLabelClassification, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name self.dense = tf.keras.layers.Dense( self.params.num_classes[problem_name]) self.dropout = tf.keras.layers.Dropout( 1-self.params.dropout_keep_prob ) # self.metric_fn = tfa.metrics.F1Score( # num_classes=self.params.num_classes[problem_name], # threshold=self.params.multi_cls_threshold, # average='macro', # name='{}_f1'.format(problem_name)) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['pooled'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] else: labels = None hidden_feature = self.dropout(hidden_feature, training) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: labels = tf.cast(labels, tf.float32) # use weighted loss label_weights = self.params.multi_cls_positive_weight def _loss_fn_wrapper(x, y, from_logits=True): return tf.nn.weighted_cross_entropy_with_logits(x, y, pos_weight=label_weights, name='{}_loss'.format(self.problem_name)) loss = empty_tensor_handling_loss( labels, logits, _loss_fn_wrapper) loss = nan_loss_handling(loss) self.add_loss(loss) # labels = create_dummy_if_empty(labels) # logits = create_dummy_if_empty(logits) # f1 = self.metric_fn(labels, logits) # self.add_metric(f1) return tf.nn.sigmoid( logits, name='%s_predict' % self.problem_name) # Cell class MaskLM(tf.keras.Model): """Multimodal MLM top layer. """ def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.keras.layers.Layer=None, share_embedding=True) -> None: super(MaskLM, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name if share_embedding is False: self.vocab_size = self.params.bert_config.vocab_size self.share_embedding = False else: word_embedding_weight = input_embeddings.word_embeddings self.vocab_size = word_embedding_weight.shape[0] embedding_size = word_embedding_weight.shape[-1] share_valid = (self.params.bert_config.hidden_size == embedding_size) if not share_valid and self.params.share_embedding: logging.warning( 'Share embedding is enabled but hidden_size != embedding_size') self.share_embedding = self.params.share_embedding & share_valid if self.share_embedding: self.share_embedding_layer = TFSharedEmbeddings( vocab_size=self.vocab_size, hidden_size=word_embedding_weight.shape[1]) self.share_embedding_layer.build([1]) self.share_embedding_layer.weight = word_embedding_weight else: self.share_embedding_layer = tf.keras.layers.Dense(self.vocab_size) def call(self, inputs, mode): features, hidden_features = inputs # masking is done inside the model seq_hidden_feature = hidden_features['seq'] if mode != tf.estimator.ModeKeys.PREDICT: positions = features['masked_lm_positions'] # gather_indexes will flatten the seq hidden_states, we need to reshape # back to 3d tensor input_tensor = gather_indexes(seq_hidden_feature, positions) shape_tensor = tf.shape(positions) shape_list = tf.concat([shape_tensor, [seq_hidden_feature.shape.as_list()[-1]]], axis=0) input_tensor = tf.reshape(input_tensor, shape=shape_list) # set_shape to determin rank input_tensor.set_shape( [None, None, seq_hidden_feature.shape.as_list()[-1]]) else: input_tensor = seq_hidden_feature if self.share_embedding: mlm_logits = self.share_embedding_layer( input_tensor, mode='linear') else: mlm_logits = self.share_embedding_layer(input_tensor) if mode != tf.estimator.ModeKeys.PREDICT: mlm_labels = features['masked_lm_ids'] mlm_labels.set_shape([None, None]) # compute loss mlm_loss = empty_tensor_handling_loss( mlm_labels, mlm_logits, tf.keras.losses.sparse_categorical_crossentropy ) loss = nan_loss_handling(mlm_loss) self.add_loss(loss) return tf.nn.softmax(mlm_logits)
42.095137
138
0.638491
18,177
0.912912
0
0
951
0.047763
0
0
3,444
0.17297
d3cc0271bb0d934fe7034974b1385e41735a694e
447
py
Python
strings/#387/strings.py
sharmarkei/DSA-Practice
c98e9f5ae1824d86f02d1002d908dc24c8be8812
[ "MIT" ]
null
null
null
strings/#387/strings.py
sharmarkei/DSA-Practice
c98e9f5ae1824d86f02d1002d908dc24c8be8812
[ "MIT" ]
null
null
null
strings/#387/strings.py
sharmarkei/DSA-Practice
c98e9f5ae1824d86f02d1002d908dc24c8be8812
[ "MIT" ]
null
null
null
class Solution(object): def firstUniqChar(self, s): """ :type s: str :rtype: int """ dict_1 = {} for i in s: if i not in dict_1: dict_1[i] = 1 else: dict_1[i] += 1 print(dict_1) for idx, val in enumerate(s): if dict_1[val] == 1: return idx return -1
20.318182
37
0.364653
438
0.979866
0
0
0
0
0
0
56
0.12528
d3cc0f069903b9e861ac782e53bdcec6efa743dd
3,332
py
Python
challenge/utils/cancellation_code.py
AlonViz/IML.HUJI
107f7c20b8bd64d41452e4a5b66abe843af7eb18
[ "MIT" ]
null
null
null
challenge/utils/cancellation_code.py
AlonViz/IML.HUJI
107f7c20b8bd64d41452e4a5b66abe843af7eb18
[ "MIT" ]
null
null
null
challenge/utils/cancellation_code.py
AlonViz/IML.HUJI
107f7c20b8bd64d41452e4a5b66abe843af7eb18
[ "MIT" ]
null
null
null
import re def process_cancellation_code(code): regex_days_before = "^(([0-9]+)D)(([0-9]+)N|([0-9]+)P)" regex_no_show = "(([0-9]+)P|([0-9]+)N)" options = re.split("_", code) final = [] for option in options: days_match = re.match(regex_days_before, option) if days_match: days_before = None if days_match.group(2) is None else int(days_match.group(2)) nights_to_pay = None if days_match.group(4) is None else int(days_match.group(4)) percentage = None if days_match.group(5) is None else int(days_match.group(5)) final.append([days_before, nights_to_pay, percentage]) continue no_show_match = re.match(regex_no_show, option) if no_show_match: nights_to_pay = None if no_show_match.group(3) is None else int(no_show_match.group(3)) percentage = None if no_show_match.group(2) is None else int(no_show_match.group(2)) final.append([0, nights_to_pay, percentage]) return final def evaluate_cancellation_code(cancellation_code: str, booking_time_before: int, stay_duration: int) -> float: """ gives a numerical value to given cancellation code, return expected fine in percentage :return: """ cancellations = process_cancellation_code(cancellation_code) p = min(7, booking_time_before) chosen_p = min([lst for lst in cancellations if lst[0] > p], key=lambda tup: tup[0], default=[None, None, None]) expected_fine = 0 if chosen_p[0] is None else chosen_p[2] if chosen_p[1] is None else chosen_p[1] / stay_duration return expected_fine def filter(cancellation_code: str, booking_time_before: int, stay_duration: int) -> float: cancellations = process_cancellation_code(cancellation_code) filtered = [i for i in cancellations if i[0] < booking_time_before] prec_only = [] for i in filtered: if i[2] is not None: prec_only.append([i[0], i[2]]) else: prec_only.append([i[0], i[1] / stay_duration]) def no_show(cancellation_code: str) -> int: """ returns 1 if the cancellation code contains a no-show fee, and 0 otherwise """ cancellations = process_cancellation_code(cancellation_code) return any(lst for lst in cancellations if lst[0] == 0) def fine_after_x_days(cancellation_code: str, booking_time_before: int, stay_duration: int, days: int): """ returns the expected fine in percentages after 'days' days from reservation. """ time_before_reservation = booking_time_before - days if time_before_reservation < 0: return 0 cancellations = process_cancellation_code(cancellation_code) # convert cancellation policy to format (Days, Percentage) percentage_cancellations = [] for cancel in cancellations: if cancel[1] is None: percentage_cancellations.append((cancel[0], cancel[2])) else: percentage_cancellations.append((cancel[0], cancel[1] / stay_duration)) if not percentage_cancellations: return 0 # return the fine associated with the smallest number of days larger than time_before_reservation fines = [x for x in percentage_cancellations if x[0] > time_before_reservation] if not fines: return 0 return min(fines, key=lambda x: x[0])[1]
40.634146
117
0.680972
0
0
0
0
0
0
0
0
513
0.153962
d3cd8f9eafbfda626f2013905a1df1f02a7ae23e
1,163
py
Python
acronym/scoring.py
sigma67/acronym
b197d12aa843fbf0e74efb67361f74b8157cc3e1
[ "MIT" ]
340
2018-03-30T21:00:54.000Z
2022-03-25T20:05:45.000Z
acronym/scoring.py
sigma67/acronym
b197d12aa843fbf0e74efb67361f74b8157cc3e1
[ "MIT" ]
12
2018-03-30T15:48:05.000Z
2020-07-16T08:27:02.000Z
acronym/scoring.py
sigma67/acronym
b197d12aa843fbf0e74efb67361f74b8157cc3e1
[ "MIT" ]
29
2018-03-30T16:55:34.000Z
2022-02-25T03:20:26.000Z
import re regex = re.compile('[^a-zA-Z]') def score_word(word, corpus=None): word = regex.sub('', word) # leave only alpha score = 0 consec_bonus = 2 for i, letter in enumerate(word): if letter.islower(): continue if i > 0 and word[i-1].upper(): score += consec_bonus if i == 0: score += 10 elif (i == 1) or (i == len(word)-1): score += 3 else: score += 1 if (i >= 1) and (corpus is not None) and (word[i:].lower() in corpus): score += len(word[i:])-1 return score def score_acronym(capitalized_acronym, corpus=None): """ For each capitalized letter in the acronym: * 10 points if first letter in a word (with exception of first letter) * 3 point if second or last letter in a word * 1 point otherwise * N bonus points if begins an N-length valid sub-word (ex: multiVariable -> 8 bonus points) * 2 bonus points if immediately following a capitalizd letter """ return sum([score_word(word, corpus=corpus) for word in capitalized_acronym.split(' ')]) - 10
31.432432
97
0.575236
0
0
0
0
0
0
0
0
430
0.369733
d3ce35364812f96b726436b7cd0cab140d019f97
956
py
Python
e2e_test.py
bartossh/hebbian_mirror
2d080ae7a707845e0922894e5cee2ad7b0119e8f
[ "MIT" ]
2
2019-11-15T09:10:19.000Z
2019-12-26T15:05:16.000Z
e2e_test.py
bartOssh/hebbian_mirror
2d080ae7a707845e0922894e5cee2ad7b0119e8f
[ "MIT" ]
1
2019-11-07T11:06:09.000Z
2019-11-07T11:06:09.000Z
e2e_test.py
bartOssh/hebbian_mirror
2d080ae7a707845e0922894e5cee2ad7b0119e8f
[ "MIT" ]
null
null
null
import requests num_of_iter = 2 data = open('./assets/test.jpg', 'rb').read() for i in range(0, num_of_iter): res = requests.get( url='http://0.0.0.0:8000/recognition/object/boxes_names' ) print("\n RESPONSE GET boxes names for test number {}: \n {}" .format(i, res.__dict__)) res = requests.post(url='http://0.0.0.0:8000/recognition/object/boxes', data=data, headers={'Content-Type': 'application/octet-stream'}) print("\n RESPONSE POST to boxes, test num {} \n Sending buffer length: {},\n Received {}" .format(i, len(data), res.__dict__)) res = requests.post(url='http://0.0.0.0:8000/recognition/object/image', data=data, headers={'Content-Type': 'application/octet-stream'}) print("\n RESPONSE POST to image, test num {} \n Sending buffer length: {},\n Received {}" .format(i, len(data), res))
43.454545
94
0.58159
0
0
0
0
0
0
0
0
470
0.491632
d3ce5432cde433f90fde37eb3f5e56f8a23b111c
7,698
py
Python
appendix/auc_accuracy/train_nn_metric.py
rit-git/tagging
b075ce1553492be7088026b67f525a529bf03770
[ "Apache-2.0" ]
7
2020-11-21T03:45:34.000Z
2022-03-25T00:40:20.000Z
appendix/auc_accuracy/train_nn_metric.py
rit-git/tagging
b075ce1553492be7088026b67f525a529bf03770
[ "Apache-2.0" ]
null
null
null
appendix/auc_accuracy/train_nn_metric.py
rit-git/tagging
b075ce1553492be7088026b67f525a529bf03770
[ "Apache-2.0" ]
5
2020-09-21T15:07:21.000Z
2021-06-02T20:25:36.000Z
import argparse import os import torch import torch.nn as nn from torchtext.data import TabularDataset, BucketIterator from torchtext.data import Field from torchtext.vocab import Vectors, GloVe from tqdm import tqdm, trange import sys import os sys.path.insert(0, "../../pyfunctor") sys.path.insert(0, "../../model") from cnn import CNNModel from lstm import LSTMModel from bilstm import BILSTMModel from sklearn import metrics import csv_handler as csv_handler import transform as transform import time #from util.weight import WeightClassCSV device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_data(path, batch_size, max_seq_length, glove="840B", emb_size=300): TEXT = Field(sequential=True, fix_length=max_seq_length, lower=True) LABEL = Field(sequential=False, use_vocab=False) ID = Field(sequential=False, use_vocab=False) data_fields = [("id", ID), ("sent", TEXT), ("label", LABEL)] train_path = os.path.join(path, "train.csv") train = TabularDataset(path=train_path, format="csv", skip_header=False, fields=data_fields) test_path = os.path.join(path, "dev.csv") test = TabularDataset(path=test_path, format="csv", skip_header=False, fields=data_fields) TEXT.build_vocab(train, vectors=GloVe(name=glove, dim=emb_size)) LABEL.build_vocab(train) vocab_size = len(TEXT.vocab) vocab_weights = TEXT.vocab.vectors train_iter = BucketIterator(dataset=train, batch_size=batch_size, sort_key=lambda x: x.id, shuffle=True, repeat=False) test_iter = BucketIterator(dataset=test, batch_size=batch_size, sort_key=lambda x: x.id, shuffle=False, repeat=False) return train_iter, test_iter, vocab_size, vocab_weights def F1(predicts, golds): true_predict = 0 true = 0 predict = 0 for i in range(len(predicts)): if predicts[i] == 1: predict += 1 if golds[i] == 1: true += 1 if predicts[i] == 1 and golds[i] == 1: true_predict += 1 precision = (true_predict+0.0)/(predict+0.0) if predict>0 else 0 recall = (true_predict+0.0)/(true+0.0) if true>0 else 0 f1 = (2*precision*recall)/(precision+recall) if predict>0 and true>0 else 0 return precision, recall, f1 if __name__ == "__main__": start_time = time.time() parser = argparse.ArgumentParser() parser.add_argument("--dataset", default=None, type=str, required=True, help="Dataset folder") parser.add_argument("--model", default=None, type=str, required=True, help="Model type: CNN, LSTM or BILSTM") parser.add_argument("--glove", default="840B", type=str, help="Golve version (6B, 42B, 840B)") parser.add_argument("--emb_size", default=300, type=int, help="Golve embedding size (100, 200, 300)") parser.add_argument("--max_seq_length", default=256, type=int, help="Maximum sequence length") parser.add_argument("--num_epoch", default=9, type=int, help="Number of training epoch") parser.add_argument("--batch_size", default=32, type=int, help="Batch size") parser.add_argument("--lr", default=1e-4, type=float, help="Learning rate") parser.add_argument("--fix_emb", default=False, type=bool, help="Fix embedding layer") parser.add_argument("--log_file", default=False, type=str, required=True, help="log file path") args = parser.parse_args() # Load data print("Loading data ...") train_iter, test_iter, vocab_size, vocab_weights = load_data(args.dataset, args.batch_size, args.max_seq_length, glove=args.glove, emb_size=args.emb_size) # Initialize model assert args.model in ["CNN", "LSTM", "BILSTM"], "Only support CNN, LSTM or BILSTM." if args.model == "CNN": model = CNNModel(vocab_size, args.emb_size, args.max_seq_length, weights=vocab_weights, fix_emb_weight=args.fix_emb) elif args.model == "LSTM": model = LSTMModel(vocab_size, args.emb_size, args.max_seq_length, weights=vocab_weights, fix_emb_weight=args.fix_emb) else: model = BILSTMModel(vocab_size, args.emb_size, args.max_seq_length, weights=vocab_weights, fix_emb_weight=args.fix_emb) model = model.to(device) # Train print("Training %s ..." % args.model) params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) loss_func = nn.CrossEntropyLoss() #label_weight = WeightClassCSV(args.dataset + "/train.csv").get_weights(['0', '1']) #loss_func = nn.CrossEntropyLoss(weight = torch.tensor(label_weight).to(device)) model.train() for epoch in trange(args.num_epoch, desc="Epoch"): total_loss = 0 for idx, batch in enumerate(tqdm(train_iter, desc="Iteration")): inputs, labels = batch.sent, batch.label inputs = inputs.to(device) labels = labels.to(device) logits = model(inputs) loss = loss_func(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.data.item() print("\tEpoch %d, total loss: %f" % (epoch, total_loss)) train_finish_time = time.time() train_overall_time = train_finish_time - start_time # Evaluate print("Evaluating ...") model.eval() predicts = [] golds = [] predicted_proba = [] with torch.no_grad(): for idx, batch in enumerate(tqdm(test_iter, desc="Iteration")): inputs, labels = batch.sent, batch.label inputs = inputs.to(device) logits = model(inputs) predicted_proba += list(logits.data.cpu().numpy()) predict = torch.argmax(logits, dim=1).data.cpu().numpy() predicts += list(predict) golds += list(labels.data.cpu().numpy()) precision, recall, f1 = F1(predicts, golds) print("Precision: %f, Recall: %f, F1: %f" % (precision, recall, f1)) train_time = train_overall_time test_time = time.time() - train_finish_time print(metrics.classification_report(golds, predicts)) (precision, recall, fscore, support) = metrics.precision_recall_fscore_support(golds, predicts) log_row = [] log_row.append(args.dataset) log_row.append(precision[1]) log_row.append(recall[1]) log_row.append(fscore[1]) log_row.append(train_time) log_row.append(test_time) pos_predicted = transform.map_func(predicted_proba, lambda p : p[1]) auc = metrics.roc_auc_score(golds, pos_predicted) log_row.append(auc) accuracy = metrics.accuracy_score(golds, predicts) log_row.append(accuracy) csv_handler.append_row(args.log_file, log_row)
34.990909
99
0.587685
0
0
0
0
0
0
0
0
914
0.118732
d3ce6f7210df816909e214cda327fef650ba334a
1,566
py
Python
setup.py
teamproserve/pinkopy
48842ac26aff90728482f7cac2977f56d5fc579f
[ "MIT" ]
null
null
null
setup.py
teamproserve/pinkopy
48842ac26aff90728482f7cac2977f56d5fc579f
[ "MIT" ]
null
null
null
setup.py
teamproserve/pinkopy
48842ac26aff90728482f7cac2977f56d5fc579f
[ "MIT" ]
null
null
null
#!/usr/bin/env python from setuptools import setup, find_packages import sys try: import pypandoc readme = pypandoc.convert('README.md', 'rst') except(IOError, ImportError): with open('README.md') as f: readme = f.read() install_requires = [ 'cachetools>=1.1.5', 'requests>=2.7.0', 'xmltodict>=0.9.2', ] tests_require = [ 'pytest', 'requests-mock==0.7.0' ] setup( name='pinkopy', version='2.1.3-dev', description='Python wrapper for Commvault api', long_description=readme, author='Herkermer Sherwood', author_email='[email protected]', url='https://github.com/teamproserve/pinkopy', download_url='https://github.com/teamproserve/pinkopy/archive/2.1.3-dev.zip', packages=find_packages(), platforms=['all'], license='MIT', install_requires=install_requires, setup_requires=['pytest-runner'], tests_require=tests_require, classifiers=[ 'Development Status :: 4 - Beta', 'License :: Other/Proprietary License', 'License :: OSI Approved :: MIT License', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Unix', 'Operating System :: POSIX', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Utilities', ], )
27.964286
81
0.621328
0
0
0
0
0
0
0
0
832
0.53129
d3cf16476f10f947ae96e115903c726cd418feaf
24,050
py
Python
scss/extension/core.py
xen0n/pyScss
86712d21fe7c3abdd7e593973fb35010422f1a41
[ "MIT" ]
null
null
null
scss/extension/core.py
xen0n/pyScss
86712d21fe7c3abdd7e593973fb35010422f1a41
[ "MIT" ]
null
null
null
scss/extension/core.py
xen0n/pyScss
86712d21fe7c3abdd7e593973fb35010422f1a41
[ "MIT" ]
null
null
null
"""Extension for built-in Sass functionality.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from itertools import product import math import os.path from pathlib import PurePosixPath from six.moves import xrange from scss.extension import Extension from scss.namespace import Namespace from scss.source import SourceFile from scss.types import ( Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type) class CoreExtension(Extension): name = 'core' namespace = Namespace() def handle_import(self, name, compilation, rule): """Implementation of the core Sass import mechanism, which just looks for files on disk. """ # TODO virtually all of this is the same as the django stuff, except # for the bit that actually looks for and tries to open the file. # would be much easier if you could just stick an object in the search # path that implements the pathlib API. the only problem is what to do # when one path is a child of another, so the same file has two names, # but tbh i'm not actually sure that's something worth protecting # against...? like, the only cost is that we'll parse twice (or, later # on, not respect single-import), and the fix is to just Not Do That # TODO i think with the new origin semantics, i've made it possible to # import relative to the current file even if the current file isn't # anywhere in the search path. is that right? path = PurePosixPath(name) if path.suffix: search_exts = [path.suffix] else: search_exts = ['.scss', '.sass'] relative_to = path.parent basename = path.stem search_path = [] # tuple of (origin, start_from) if relative_to.is_absolute(): relative_to = PurePosixPath(*relative_to.parts[1:]) elif rule.source_file.origin: # Search relative to the current file first, only if not doing an # absolute import search_path.append( rule.source_file.origin / rule.source_file.relpath.parent) search_path.extend(compilation.compiler.search_path) for prefix, suffix in product(('_', ''), search_exts): filename = prefix + basename + suffix for origin in search_path: relpath = relative_to / filename # Lexically (ignoring symlinks!) eliminate .. from the part # of the path that exists within Sass-space. pathlib # deliberately doesn't do this, but os.path does. relpath = PurePosixPath(os.path.normpath(str(relpath))) if rule.source_file.key == (origin, relpath): # Avoid self-import # TODO is this what ruby does? continue path = origin / relpath if not path.exists(): continue # All good! # TODO if this file has already been imported, we'll do the # source preparation twice. make it lazy. return SourceFile.read(origin, relpath) # Alias to make the below declarations less noisy ns = CoreExtension.namespace # ------------------------------------------------------------------------------ # Color creation def _interpret_percentage(n, relto=1., clamp=True): expect_type(n, Number, unit='%') if n.is_unitless: ret = n.value / relto else: ret = n.value / 100 if clamp: if ret < 0: return 0 elif ret > 1: return 1 return ret @ns.declare def rgba(r, g, b, a): r = _interpret_percentage(r, relto=255) g = _interpret_percentage(g, relto=255) b = _interpret_percentage(b, relto=255) a = _interpret_percentage(a, relto=1) return Color.from_rgb(r, g, b, a) @ns.declare def rgb(r, g, b, type='rgb'): return rgba(r, g, b, Number(1.0)) @ns.declare def rgba_(color, a=None): if a is None: alpha = 1 else: alpha = _interpret_percentage(a) return Color.from_rgb(*color.rgba[:3], alpha=alpha) @ns.declare def rgb_(color): return rgba_(color, a=Number(1)) @ns.declare def hsla(h, s, l, a): return Color.from_hsl( h.value / 360 % 1, # Ruby sass treats plain numbers for saturation and lightness as though # they were percentages, just without the % _interpret_percentage(s, relto=100), _interpret_percentage(l, relto=100), alpha=a.value, ) @ns.declare def hsl(h, s, l): return hsla(h, s, l, Number(1)) @ns.declare def hsla_(color, a=None): return rgba_(color, a) @ns.declare def hsl_(color): return rgba_(color, a=Number(1)) @ns.declare def mix(color1, color2, weight=Number(50, "%")): """ Mixes together two colors. Specifically, takes the average of each of the RGB components, optionally weighted by the given percentage. The opacity of the colors is also considered when weighting the components. Specifically, takes the average of each of the RGB components, optionally weighted by the given percentage. The opacity of the colors is also considered when weighting the components. The weight specifies the amount of the first color that should be included in the returned color. 50%, means that half the first color and half the second color should be used. 25% means that a quarter of the first color and three quarters of the second color should be used. For example: mix(#f00, #00f) => #7f007f mix(#f00, #00f, 25%) => #3f00bf mix(rgba(255, 0, 0, 0.5), #00f) => rgba(63, 0, 191, 0.75) """ # This algorithm factors in both the user-provided weight # and the difference between the alpha values of the two colors # to decide how to perform the weighted average of the two RGB values. # # It works by first normalizing both parameters to be within [-1, 1], # where 1 indicates "only use color1", -1 indicates "only use color 0", # and all values in between indicated a proportionately weighted average. # # Once we have the normalized variables w and a, # we apply the formula (w + a)/(1 + w*a) # to get the combined weight (in [-1, 1]) of color1. # This formula has two especially nice properties: # # * When either w or a are -1 or 1, the combined weight is also that # number (cases where w * a == -1 are undefined, and handled as a # special case). # # * When a is 0, the combined weight is w, and vice versa # # Finally, the weight of color1 is renormalized to be within [0, 1] # and the weight of color2 is given by 1 minus the weight of color1. # # Algorithm from the Sass project: http://sass-lang.com/ p = _interpret_percentage(weight) # Scale weight to [-1, 1] w = p * 2 - 1 # Compute difference in alpha channels a = color1.alpha - color2.alpha # Weight of first color if w * a == -1: # Avoid zero-div case scaled_weight1 = w else: scaled_weight1 = (w + a) / (1 + w * a) # Unscale back to [0, 1] and get the weight of the other color w1 = (scaled_weight1 + 1) / 2 w2 = 1 - w1 # Do the scaling. Note that alpha isn't scaled by alpha, as that wouldn't # make much sense; it uses the original untwiddled weight, p. channels = [ ch1 * w1 + ch2 * w2 for (ch1, ch2) in zip(color1.rgba[:3], color2.rgba[:3])] alpha = color1.alpha * p + color2.alpha * (1 - p) return Color.from_rgb(*channels, alpha=alpha) # ------------------------------------------------------------------------------ # Color inspection @ns.declare def red(color): r, g, b, a = color.rgba return Number(r * 255) @ns.declare def green(color): r, g, b, a = color.rgba return Number(g * 255) @ns.declare def blue(color): r, g, b, a = color.rgba return Number(b * 255) @ns.declare_alias('opacity') @ns.declare def alpha(color): return Number(color.alpha) @ns.declare def hue(color): h, s, l = color.hsl return Number(h * 360, "deg") @ns.declare def saturation(color): h, s, l = color.hsl return Number(s * 100, "%") @ns.declare def lightness(color): h, s, l = color.hsl return Number(l * 100, "%") @ns.declare def ie_hex_str(color): c = Color(color).value return String("#{3:02X}{0:02X}{1:02X}{2:02X}".format( int(round(c[0])), int(round(c[1])), int(round(c[2])), int(round(c[3] * 255)), )) # ------------------------------------------------------------------------------ # Color modification @ns.declare_alias('fade-in') @ns.declare_alias('fadein') @ns.declare def opacify(color, amount): r, g, b, a = color.rgba if amount.is_simple_unit('%'): amt = amount.value / 100 else: amt = amount.value return Color.from_rgb( r, g, b, alpha=a + amt) @ns.declare_alias('fade-out') @ns.declare_alias('fadeout') @ns.declare def transparentize(color, amount): r, g, b, a = color.rgba if amount.is_simple_unit('%'): amt = amount.value / 100 else: amt = amount.value return Color.from_rgb( r, g, b, alpha=a - amt) @ns.declare def lighten(color, amount): return adjust_color(color, lightness=amount) @ns.declare def darken(color, amount): return adjust_color(color, lightness=-amount) @ns.declare def saturate(color, amount): return adjust_color(color, saturation=amount) @ns.declare def desaturate(color, amount): return adjust_color(color, saturation=-amount) @ns.declare def greyscale(color): h, s, l = color.hsl return Color.from_hsl(h, 0, l, alpha=color.alpha) @ns.declare def grayscale(color): if isinstance(color, Number): # grayscale(n) and grayscale(n%) are CSS3 filters and should be left # intact, but only when using the "a" spelling return String.unquoted("grayscale(%s)" % (color.render(),)) else: return greyscale(color) @ns.declare_alias('spin') @ns.declare def adjust_hue(color, degrees): h, s, l = color.hsl delta = degrees.value / 360 return Color.from_hsl((h + delta) % 1, s, l, alpha=color.alpha) @ns.declare def complement(color): h, s, l = color.hsl return Color.from_hsl((h + 0.5) % 1, s, l, alpha=color.alpha) @ns.declare def invert(color): """Returns the inverse (negative) of a color. The red, green, and blue values are inverted, while the opacity is left alone. """ r, g, b, a = color.rgba return Color.from_rgb(1 - r, 1 - g, 1 - b, alpha=a) @ns.declare def adjust_lightness(color, amount): return adjust_color(color, lightness=amount) @ns.declare def adjust_saturation(color, amount): return adjust_color(color, saturation=amount) @ns.declare def scale_lightness(color, amount): return scale_color(color, lightness=amount) @ns.declare def scale_saturation(color, amount): return scale_color(color, saturation=amount) @ns.declare def adjust_color( color, red=None, green=None, blue=None, hue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = hue or saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't adjust both RGB and HSL channels at the same time") zero = Number(0) a = color.alpha + (alpha or zero).value if do_rgb: r, g, b = color.rgba[:3] channels = [ current + (adjustment or zero).value / 255 for (current, adjustment) in zip(color.rgba, (red, green, blue))] return Color.from_rgb(*channels, alpha=a) else: h, s, l = color.hsl h = (h + (hue or zero).value / 360) % 1 s += _interpret_percentage(saturation or zero, relto=100, clamp=False) l += _interpret_percentage(lightness or zero, relto=100, clamp=False) return Color.from_hsl(h, s, l, a) def _scale_channel(channel, scaleby): if scaleby is None: return channel expect_type(scaleby, Number) if not scaleby.is_simple_unit('%'): raise ValueError("Expected percentage, got %r" % (scaleby,)) factor = scaleby.value / 100 if factor > 0: # Add x% of the remaining range, up to 1 return channel + (1 - channel) * factor else: # Subtract x% of the existing channel. We add here because the factor # is already negative return channel * (1 + factor) @ns.declare def scale_color( color, red=None, green=None, blue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't scale both RGB and HSL channels at the same time") scaled_alpha = _scale_channel(color.alpha, alpha) if do_rgb: channels = [ _scale_channel(channel, scaleby) for channel, scaleby in zip(color.rgba, (red, green, blue))] return Color.from_rgb(*channels, alpha=scaled_alpha) else: channels = [ _scale_channel(channel, scaleby) for channel, scaleby in zip(color.hsl, (None, saturation, lightness))] return Color.from_hsl(*channels, alpha=scaled_alpha) @ns.declare def change_color( color, red=None, green=None, blue=None, hue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = hue or saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't change both RGB and HSL channels at the same time") if alpha is None: alpha = color.alpha else: alpha = alpha.value if do_rgb: channels = list(color.rgba[:3]) if red: channels[0] = _interpret_percentage(red, relto=255) if green: channels[1] = _interpret_percentage(green, relto=255) if blue: channels[2] = _interpret_percentage(blue, relto=255) return Color.from_rgb(*channels, alpha=alpha) else: channels = list(color.hsl) if hue: expect_type(hue, Number, unit=None) channels[0] = (hue.value / 360) % 1 # Ruby sass treats plain numbers for saturation and lightness as though # they were percentages, just without the % if saturation: channels[1] = _interpret_percentage(saturation, relto=100) if lightness: channels[2] = _interpret_percentage(lightness, relto=100) return Color.from_hsl(*channels, alpha=alpha) # ------------------------------------------------------------------------------ # String functions @ns.declare_alias('e') @ns.declare_alias('escape') @ns.declare def unquote(*args): arg = List.from_maybe_starargs(args).maybe() if isinstance(arg, String): return String(arg.value, quotes=None) else: return String(arg.render(), quotes=None) @ns.declare def quote(*args): arg = List.from_maybe_starargs(args).maybe() if isinstance(arg, String): return String(arg.value, quotes='"') else: return String(arg.render(), quotes='"') @ns.declare def str_length(string): expect_type(string, String) # nb: can't use `len(string)`, because that gives the Sass list length, # which is 1 return Number(len(string.value)) # TODO this and several others should probably also require integers # TODO and assert that the indexes are valid @ns.declare def str_insert(string, insert, index): expect_type(string, String) expect_type(insert, String) expect_type(index, Number, unit=None) py_index = index.to_python_index(len(string.value), check_bounds=False) return String( string.value[:py_index] + insert.value + string.value[py_index:], quotes=string.quotes) @ns.declare def str_index(string, substring): expect_type(string, String) expect_type(substring, String) # 1-based indexing, with 0 for failure return Number(string.value.find(substring.value) + 1) @ns.declare def str_slice(string, start_at, end_at=None): expect_type(string, String) expect_type(start_at, Number, unit=None) py_start_at = start_at.to_python_index(len(string.value)) if end_at is None: py_end_at = None else: expect_type(end_at, Number, unit=None) # Endpoint is inclusive, unlike Python py_end_at = end_at.to_python_index(len(string.value)) + 1 return String( string.value[py_start_at:py_end_at], quotes=string.quotes) @ns.declare def to_upper_case(string): expect_type(string, String) return String(string.value.upper(), quotes=string.quotes) @ns.declare def to_lower_case(string): expect_type(string, String) return String(string.value.lower(), quotes=string.quotes) # ------------------------------------------------------------------------------ # Number functions @ns.declare def percentage(value): expect_type(value, Number, unit=None) return value * Number(100, unit='%') ns.set_function('abs', 1, Number.wrap_python_function(abs)) ns.set_function('round', 1, Number.wrap_python_function(round)) ns.set_function('ceil', 1, Number.wrap_python_function(math.ceil)) ns.set_function('floor', 1, Number.wrap_python_function(math.floor)) # ------------------------------------------------------------------------------ # List functions def __parse_separator(separator, default_from=None): if separator is None: separator = 'auto' separator = String.unquoted(separator).value if separator == 'comma': return True elif separator == 'space': return False elif separator == 'auto': if not default_from: return True elif len(default_from) < 2: return True else: return default_from.use_comma else: raise ValueError('Separator must be auto, comma, or space') # TODO get the compass bit outta here @ns.declare_alias('-compass-list-size') @ns.declare def length(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return Number(len(lst)) @ns.declare def set_nth(list, n, value): expect_type(n, Number, unit=None) py_n = n.to_python_index(len(list)) return List( tuple(list[:py_n]) + (value,) + tuple(list[py_n + 1:]), use_comma=list.use_comma) # TODO get the compass bit outta here @ns.declare_alias('-compass-nth') @ns.declare def nth(lst, n): """Return the nth item in the list.""" expect_type(n, (String, Number), unit=None) if isinstance(n, String): if n.value.lower() == 'first': i = 0 elif n.value.lower() == 'last': i = -1 else: raise ValueError("Invalid index %r" % (n,)) else: # DEVIATION: nth treats lists as circular lists i = n.to_python_index(len(lst), circular=True) return lst[i] @ns.declare def join(lst1, lst2, separator=String.unquoted('auto')): expect_type(separator, String) ret = [] ret.extend(List.from_maybe(lst1)) ret.extend(List.from_maybe(lst2)) if separator.value == 'comma': use_comma = True elif separator.value == 'space': use_comma = False elif separator.value == 'auto': # The Sass docs are slightly misleading here, but the algorithm is: use # the delimiter from the first list that has at least 2 items, or # default to spaces. if len(lst1) > 1: use_comma = lst1.use_comma elif len(lst2) > 1: use_comma = lst2.use_comma else: use_comma = False else: raise ValueError("separator for join() must be comma, space, or auto") return List(ret, use_comma=use_comma) @ns.declare def min_(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return min(lst) @ns.declare def max_(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return max(lst) @ns.declare def append(lst, val, separator=None): ret = [] ret.extend(List.from_maybe(lst)) ret.append(val) use_comma = __parse_separator(separator, default_from=lst) return List(ret, use_comma=use_comma) @ns.declare def index(lst, val): for i in xrange(len(lst)): if lst.value[i] == val: return Number(i + 1) return Boolean(False) @ns.declare def zip_(*lists): return List( [List(zipped) for zipped in zip(*lists)], use_comma=True) # TODO need a way to use "list" as the arg name without shadowing the builtin @ns.declare def list_separator(list): if list.use_comma: return String.unquoted('comma') else: return String.unquoted('space') # ------------------------------------------------------------------------------ # Map functions @ns.declare def map_get(map, key): return map.to_dict().get(key, Null()) @ns.declare def map_merge(*maps): key_order = [] index = {} for map in maps: for key, value in map.to_pairs(): if key not in index: key_order.append(key) index[key] = value pairs = [(key, index[key]) for key in key_order] return Map(pairs, index=index) @ns.declare def map_keys(map): return List( [k for (k, v) in map.to_pairs()], use_comma=True) @ns.declare def map_values(map): return List( [v for (k, v) in map.to_pairs()], use_comma=True) @ns.declare def map_has_key(map, key): return Boolean(key in map.to_dict()) # DEVIATIONS: these do not exist in ruby sass @ns.declare def map_get3(map, key, default): return map.to_dict().get(key, default) @ns.declare def map_get_nested3(map, keys, default=Null()): for key in keys: map = map.to_dict().get(key, None) if map is None: return default return map @ns.declare def map_merge_deep(*maps): pairs = [] keys = set() for map in maps: for key, value in map.to_pairs(): keys.add(key) for key in keys: values = [map.to_dict().get(key, None) for map in maps] values = [v for v in values if v is not None] if all(isinstance(v, Map) for v in values): pairs.append((key, map_merge_deep(*values))) else: pairs.append((key, values[-1])) return Map(pairs) # ------------------------------------------------------------------------------ # Meta functions @ns.declare def type_of(obj): # -> bool, number, string, color, list return String(obj.sass_type_name) @ns.declare def unit(number): # -> px, em, cm, etc. numer = '*'.join(sorted(number.unit_numer)) denom = '*'.join(sorted(number.unit_denom)) if denom: ret = numer + '/' + denom else: ret = numer return String.unquoted(ret) @ns.declare def unitless(value): if not isinstance(value, Number): raise TypeError("Expected number, got %r" % (value,)) return Boolean(value.is_unitless) @ns.declare def comparable(number1, number2): left = number1.to_base_units() right = number2.to_base_units() return Boolean( left.unit_numer == right.unit_numer and left.unit_denom == right.unit_denom) @ns.declare def keywords(value): """Extract named arguments, as a map, from an argument list.""" expect_type(value, Arglist) return value.extract_keywords() # ------------------------------------------------------------------------------ # Miscellaneous @ns.declare def if_(condition, if_true, if_false=Null()): return if_true if condition else if_false
27.052868
80
0.614012
2,774
0.115343
0
0
17,612
0.732308
0
0
6,551
0.272391
d3d01a6d5b6d4e91e1847f49e77097d90f67ce9c
906
py
Python
pypy/module/cpyext/test/test_iterator.py
wdv4758h/mu-client-pypy
d2fcc01f0b4fe3ffa232762124e3e6d38ed3a0cf
[ "Apache-2.0", "OpenSSL" ]
34
2015-07-09T04:53:27.000Z
2021-07-19T05:22:27.000Z
pypy/module/cpyext/test/test_iterator.py
wdv4758h/mu-client-pypy
d2fcc01f0b4fe3ffa232762124e3e6d38ed3a0cf
[ "Apache-2.0", "OpenSSL" ]
6
2015-05-30T17:20:45.000Z
2017-06-12T14:29:23.000Z
pypy/module/cpyext/test/test_iterator.py
wdv4758h/mu-client-pypy
d2fcc01f0b4fe3ffa232762124e3e6d38ed3a0cf
[ "Apache-2.0", "OpenSSL" ]
11
2015-09-07T14:26:08.000Z
2020-04-10T07:20:41.000Z
from pypy.module.cpyext.test.test_api import BaseApiTest class TestIterator(BaseApiTest): def test_check_iter(self, space, api): assert api.PyIter_Check(space.iter(space.wrap("a"))) assert api.PyIter_Check(space.iter(space.newlist([]))) assert not api.PyIter_Check(space.w_type) assert not api.PyIter_Check(space.wrap(2)) def test_getIter(self, space, api): w_iter = api.PyObject_GetIter(space.wrap([1, 2, 3])) assert space.unwrap(api.PyIter_Next(w_iter)) == 1 assert space.unwrap(api.PyIter_Next(w_iter)) == 2 assert space.unwrap(api.PyIter_Next(w_iter)) == 3 assert api.PyIter_Next(w_iter) is None assert not api.PyErr_Occurred() def test_iternext_error(self,space, api): assert api.PyIter_Next(space.w_None) is None assert api.PyErr_Occurred() is space.w_TypeError api.PyErr_Clear()
39.391304
62
0.684327
846
0.933775
0
0
0
0
0
0
3
0.003311
d3d143abd1287d1ebf9fec072e925b1f0bce15d1
21,407
py
Python
capsule_em/experiment.py
jrmendeshurb/google-research
f9fa8cdd2fb77975b524371fd29df008b9dc6cf4
[ "Apache-2.0" ]
6
2019-12-16T04:23:57.000Z
2021-12-09T14:17:14.000Z
capsule_em/experiment.py
jrmendeshurb/google-research
f9fa8cdd2fb77975b524371fd29df008b9dc6cf4
[ "Apache-2.0" ]
13
2020-01-28T22:19:53.000Z
2022-02-10T00:39:26.000Z
capsule_em/experiment.py
ZachT1711/google-research
662e6837a3efa0c40b11cb4122447c4b028d2115
[ "Apache-2.0" ]
1
2020-03-05T09:24:01.000Z
2020-03-05T09:24:01.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The runners.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time import numpy as np import tensorflow as tf from capsule_em import model as f_model from capsule_em.mnist \ import mnist_record from capsule_em.norb \ import norb_record from tensorflow.contrib import tfprof as contrib_tfprof from tensorflow.python import debug as tf_debug FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('num_prime_capsules', 32, 'Number of first layer capsules.') tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate') tf.app.flags.DEFINE_integer('routing_iteration', 3, 'Number of iterations for softmax routing') tf.app.flags.DEFINE_float( 'routing_rate', 1, 'ratio for combining routing logits and routing feedback') tf.app.flags.DEFINE_float('decay_rate', 0.96, 'ratio for learning rate decay') tf.app.flags.DEFINE_integer('decay_steps', 20000, 'number of steps for learning rate decay') tf.app.flags.DEFINE_bool('normalize_kernels', False, 'Normalize the capsule weight kernels') tf.app.flags.DEFINE_integer('num_second_atoms', 16, 'number of capsule atoms for the second layer') tf.app.flags.DEFINE_integer('num_primary_atoms', 16, 'number of capsule atoms for the first layer') tf.app.flags.DEFINE_integer('num_start_conv', 32, 'number of channels for the start layer') tf.app.flags.DEFINE_integer('kernel_size', 5, 'kernel size for the start layer.') tf.app.flags.DEFINE_integer( 'routing_iteration_prime', 1, 'number of routing iterations for primary capsules.') tf.app.flags.DEFINE_integer('max_steps', 2000000, 'Number of steps to run trainer.') tf.app.flags.DEFINE_string('data_dir', '/datasets/mnist/', 'Directory for storing input data') tf.app.flags.DEFINE_string('summary_dir', '/tmp/tensorflow/mnist/logs/mnist_with_summaries', 'Summaries log directory') tf.app.flags.DEFINE_bool('train', True, 'train or test.') tf.app.flags.DEFINE_integer( 'checkpoint_steps', 1500, 'number of steps before saving a training checkpoint.') tf.app.flags.DEFINE_bool('verbose_image', False, 'whether to show images.') tf.app.flags.DEFINE_bool('multi', True, 'whether to use multiple digit dataset.') tf.app.flags.DEFINE_bool('eval_once', False, 'whether to evaluate once on the ckpnt file.') tf.app.flags.DEFINE_integer('eval_size', 24300, 'number of examples to evaluate.') tf.app.flags.DEFINE_string( 'ckpnt', '/tmp/tensorflow/mnist/logs/mnist_with_summaries/train/model.ckpnt', 'The checkpoint to load and evaluate once.') tf.app.flags.DEFINE_integer('keep_ckpt', 5, 'number of examples to evaluate.') tf.app.flags.DEFINE_bool( 'clip_lr', False, 'whether to clip learning rate to not go bellow 1e-5.') tf.app.flags.DEFINE_integer('stride_1', 2, 'stride for the first convolutinal layer.') tf.app.flags.DEFINE_integer('kernel_2', 9, 'kernel size for the secon convolutinal layer.') tf.app.flags.DEFINE_integer('stride_2', 2, 'stride for the second convolutinal layer.') tf.app.flags.DEFINE_string('padding', 'VALID', 'the padding method for conv layers.') tf.app.flags.DEFINE_integer('extra_caps', 2, 'number of extra conv capsules.') tf.app.flags.DEFINE_string('caps_dims', '32,32', 'output dim for extra conv capsules.') tf.app.flags.DEFINE_string('caps_strides', '2,1', 'stride for extra conv capsules.') tf.app.flags.DEFINE_string('caps_kernels', '3,3', 'kernel size for extra conv capsuls.') tf.app.flags.DEFINE_integer('extra_conv', 0, 'number of extra conv layers.') tf.app.flags.DEFINE_string('conv_dims', '', 'output dim for extra conv layers.') tf.app.flags.DEFINE_string('conv_strides', '', 'stride for extra conv layers.') tf.app.flags.DEFINE_string('conv_kernels', '', 'kernel size for extra conv layers.') tf.app.flags.DEFINE_bool('leaky', False, 'Use leaky routing.') tf.app.flags.DEFINE_bool('staircase', False, 'Use staircase decay.') tf.app.flags.DEFINE_integer('num_gpus', 1, 'number of gpus to train.') tf.app.flags.DEFINE_bool('adam', True, 'Use Adam optimizer.') tf.app.flags.DEFINE_bool('pooling', False, 'Pooling after convolution.') tf.app.flags.DEFINE_bool('use_caps', True, 'Use capsule layers.') tf.app.flags.DEFINE_integer( 'extra_fc', 512, 'number of units in the extra fc layer in no caps mode.') tf.app.flags.DEFINE_bool('dropout', False, 'Dropout before last layer.') tf.app.flags.DEFINE_bool('tweak', False, 'During eval recons from tweaked rep.') tf.app.flags.DEFINE_bool('softmax', False, 'softmax loss in no caps.') tf.app.flags.DEFINE_bool('c_dropout', False, 'dropout after conv capsules.') tf.app.flags.DEFINE_bool( 'distort', True, 'distort mnist images by cropping to 24 * 24 and rotating by 15 degrees.') tf.app.flags.DEFINE_bool('restart', False, 'Clean train checkpoints.') tf.app.flags.DEFINE_bool('use_em', True, 'If set use em capsules with em routing.') tf.app.flags.DEFINE_float('final_beta', 0.01, 'Temperature at the sigmoid.') tf.app.flags.DEFINE_bool('eval_ensemble', False, 'eval over aggregated logits.') tf.app.flags.DEFINE_string('part1', 'ok', 'ok') tf.app.flags.DEFINE_string('part2', 'ok', 'ok') tf.app.flags.DEFINE_bool('debug', False, 'If set use tfdbg wrapper.') tf.app.flags.DEFINE_bool('reduce_mean', False, 'If set normalize mean of each image.') tf.app.flags.DEFINE_float('loss_rate', 1.0, 'classification to regularization rate.') tf.app.flags.DEFINE_integer('batch_size', 64, 'Batch size.') tf.app.flags.DEFINE_integer('norb_pixel', 48, 'Batch size.') tf.app.flags.DEFINE_bool('patching', True, 'If set use patching for eval.') tf.app.flags.DEFINE_string('data_set', 'norb', 'the data set to use.') tf.app.flags.DEFINE_string('cifar_data_dir', '/tmp/cifar10_data', """Path to the CIFAR-10 data directory.""") tf.app.flags.DEFINE_string('norb_data_dir', '/tmp/smallNORB/', """Path to the norb data directory.""") tf.app.flags.DEFINE_string('affnist_data_dir', '/tmp/affnist_data', """Path to the affnist data directory.""") num_classes = { 'mnist': 10, 'cifar10': 10, 'mnist_multi': 10, 'svhn': 10, 'affnist': 10, 'expanded_mnist': 10, 'norb': 5, } def get_features(train, total_batch): """Return batched inputs.""" print(FLAGS.data_set) batch_size = total_batch // max(1, FLAGS.num_gpus) split = 'train' if train else 'test' features = [] for i in xrange(FLAGS.num_gpus): with tf.device('/cpu:0'): with tf.name_scope('input_tower_%d' % (i)): if FLAGS.data_set == 'norb': features += [ norb_record.inputs( train_dir=FLAGS.norb_data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, image_pixel=FLAGS.norb_pixel, distort=FLAGS.distort, patching=FLAGS.patching, ) ] elif FLAGS.data_set == 'affnist': features += [ mnist_record.inputs( train_dir=FLAGS.affnist_data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, shift=0, height=40, train_file='test.tfrecords') ] elif FLAGS.data_set == 'expanded_mnist': features += [ mnist_record.inputs( train_dir=FLAGS.data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, height=40, train_file='train_6shifted_6padded_mnist.tfrecords', shift=6) ] else: if train and not FLAGS.distort: shift = 2 else: shift = 0 features += [ mnist_record.inputs( train_dir=FLAGS.data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, shift=shift, distort=FLAGS.distort) ] print(features) return features def run_training(): """Train.""" with tf.Graph().as_default(): # Input images and labels. features = get_features(True, FLAGS.batch_size) model = f_model.multi_gpu_model print('so far so good!') result = model(features) param_stats = contrib_tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), tfprof_options=contrib_tfprof.model_analyzer .TRAINABLE_VARS_PARAMS_STAT_OPTIONS) sys.stdout.write('total_params: %d\n' % param_stats.total_parameters) contrib_tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), tfprof_options=contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS) merged = result['summary'] train_step = result['train'] # test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) if FLAGS.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess, ui_type='curses') sess.add_tensor_filter('has_inf_or_nan', tf_debug.has_inf_or_nan) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) saver = tf.train.Saver(max_to_keep=FLAGS.keep_ckpt) if tf.gfile.Exists(FLAGS.summary_dir + '/train'): ckpt = tf.train.get_checkpoint_state(FLAGS.summary_dir + '/train/') print(ckpt) if (not FLAGS.restart) and ckpt and ckpt.model_checkpoint_path: print('hesllo') saver.restore(sess, ckpt.model_checkpoint_path) prev_step = int( ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]) else: print('what??') tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/train') tf.gfile.MakeDirs(FLAGS.summary_dir + '/train') prev_step = 0 else: tf.gfile.MakeDirs(FLAGS.summary_dir + '/train') prev_step = 0 train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: step = 0 for i in range(prev_step, FLAGS.max_steps): step += 1 summary, _ = sess.run([merged, train_step]) train_writer.add_summary(summary, i) if (i + 1) % FLAGS.checkpoint_steps == 0: saver.save( sess, os.path.join(FLAGS.summary_dir + '/train', 'model.ckpt'), global_step=i + 1) except tf.errors.OutOfRangeError: print('Done training for %d steps.' % step) finally: # When done, ask the threads to stop. coord.request_stop() train_writer.close() # Wait for threads to finish. coord.join(threads) sess.close() def run_eval(): """Evaluate on test or validation.""" with tf.Graph().as_default(): # Input images and labels. features = get_features(False, 5) model = f_model.multi_gpu_model result = model(features) merged = result['summary'] correct_prediction_sum = result['correct'] almost_correct_sum = result['almost'] saver = tf.train.Saver() test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') seen_step = -1 time.sleep(3 * 60) paused = 0 while paused < 360: ckpt = tf.train.get_checkpoint_state(FLAGS.summary_dir + '/train/') if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoin global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] else: time.sleep(2 * 60) paused += 2 continue while seen_step == int(global_step): time.sleep(2 * 60) ckpt = tf.train.get_checkpoint_state(FLAGS.summary_dir + '/train/') global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] paused += 2 if paused > 360: test_writer.close() return paused = 0 seen_step = int(global_step) print(seen_step) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) saver.restore(sess, ckpt.model_checkpoint_path) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: total_tp = 0 total_almost = 0 for i in range(FLAGS.eval_size // 5): summary_j, tp, almost = sess.run( [merged, correct_prediction_sum, almost_correct_sum]) total_tp += tp total_almost += almost total_false = FLAGS.eval_size - total_tp total_almost_false = FLAGS.eval_size - total_almost summary_tp = tf.Summary.FromString(summary_j) summary_tp.value.add(tag='correct_prediction', simple_value=total_tp) summary_tp.value.add(tag='wrong_prediction', simple_value=total_false) summary_tp.value.add( tag='almost_wrong_prediction', simple_value=total_almost_false) test_writer.add_summary(summary_tp, global_step) print('write done') except tf.errors.OutOfRangeError: print('Done eval for %d steps.' % i) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() test_writer.close() def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def eval_ensemble(ckpnts): """Evaluate on an ensemble of checkpoints.""" with tf.Graph().as_default(): first_features = get_features(False, 100)[0] h = first_features['height'] d = first_features['depth'] features = { 'images': tf.placeholder(tf.float32, shape=(100, d, h, h)), 'labels': tf.placeholder(tf.float32, shape=(100, 10)), 'recons_image': tf.placeholder(tf.float32, shape=(100, d, h, h)), 'recons_label': tf.placeholder(tf.int32, shape=(100)), 'height': first_features['height'], 'depth': first_features['depth'] } model = f_model.multi_gpu_model result = model([features]) logits = result['logits'] config = tf.ConfigProto(allow_soft_placement=True) # saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpnt)) batch_logits = np.zeros((FLAGS.eval_size // 100, 100, 10), dtype=np.float32) batch_recons_label = np.zeros((FLAGS.eval_size // 100, 100), dtype=np.float32) batch_labels = np.zeros((FLAGS.eval_size // 100, 100, 10), dtype=np.float32) batch_images = np.zeros((FLAGS.eval_size // 100, 100, d, h, h), dtype=np.float32) batch_recons_image = np.zeros((FLAGS.eval_size // 100, 100, d, h, h), dtype=np.float32) saver = tf.train.Saver() sess = tf.Session(config=config) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: for i in range(FLAGS.eval_size // 100): (batch_recons_label[i, Ellipsis], batch_labels[i, Ellipsis], batch_images[i, Ellipsis], batch_recons_image[i, Ellipsis]) = sess.run([ first_features['recons_label'], first_features['labels'], first_features['images'], first_features['recons_image'] ]) for ckpnt in ckpnts: saver.restore(sess, ckpnt) for i in range(FLAGS.eval_size // 100): logits_i = sess.run( logits, feed_dict={ features['recons_label']: batch_recons_label[i, Ellipsis], features['labels']: batch_labels[i, Ellipsis], features['images']: batch_images[i, Ellipsis], features['recons_image']: batch_recons_image[i, Ellipsis] }) # batch_logits[i, ...] += softmax(logits_i) batch_logits[i, Ellipsis] += logits_i except tf.errors.OutOfRangeError: print('Done eval for %d steps.' % i) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() batch_pred = np.argmax(batch_logits, axis=2) total_wrong = np.sum(np.not_equal(batch_pred, batch_recons_label)) print(total_wrong) def eval_once(ckpnt): """Evaluate on one checkpoint once.""" ptches = np.zeros((14, 14, 32, 32)) for i in range(14): for j in range(14): ind_x = i * 2 ind_y = j * 2 for k in range(5): for h in range(5): ptches[i, j, ind_x + k, ind_y + h] = 1 ptches = np.reshape(ptches, (14 * 14, 32, 32)) with tf.Graph().as_default(): features = get_features(False, 1)[0] if FLAGS.patching: features['images'] = features['cc_images'] features['recons_label'] = features['cc_recons_label'] features['labels'] = features['cc_labels'] model = f_model.multi_gpu_model result = model([features]) # merged = result['summary'] correct_prediction_sum = result['correct'] # almost_correct_sum = result['almost'] # mid_act = result['mid_act'] logits = result['logits'] saver = tf.train.Saver() test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test_once') config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.3 sess = tf.Session(config=config) # saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpnt)) saver.restore(sess, ckpnt) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) i = 0 try: total_tp = 0 for i in range(FLAGS.eval_size): #, g_ac, ac lb, tp, lg = sess.run([ features['recons_label'], correct_prediction_sum, logits, ]) if FLAGS.patching: batched_lg = np.sum(lg / np.sum(lg, axis=1, keepdims=True), axis=0) batch_pred = np.argmax(batched_lg) tp = np.equal(batch_pred, lb[0]) total_tp += tp total_false = FLAGS.eval_size - total_tp print('false:{}, true:{}'.format(total_false, total_tp)) # summary_tp = tf.Summary.FromString(summary_j) # summary_tp.value.add(tag='correct_prediction', simple_value=total_tp) # summary_tp.value.add(tag='wrong_prediction', simple_value=total_false) # summary_tp.value.add( # tag='almost_wrong_prediction', simple_value=total_almost_false) # test_writer.add_summary(summary_tp, i + 1) except tf.errors.OutOfRangeError: print('Done eval for %d steps.' % i) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() test_writer.close() def main(_): if FLAGS.eval_ensemble: if tf.gfile.Exists(FLAGS.summary_dir + '/test_ensemble'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test_ensemble') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test_ensemble') ensem = [] for i in range(1, 12): f_name = '/tmp/cifar10/{}{}{}-600000'.format(FLAGS.part1, i, FLAGS.part2) if tf.train.checkpoint_exists(f_name): ensem += [f_name] print(len(ensem)) eval_ensemble(ensem) elif FLAGS.eval_once: if tf.gfile.Exists(FLAGS.summary_dir + '/test_once'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test_once') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test_once') eval_once(FLAGS.ckpnt) elif FLAGS.train: run_training() else: if tf.gfile.Exists(FLAGS.summary_dir + '/test_once'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test_once') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test_once') if tf.gfile.Exists(FLAGS.summary_dir + '/test'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test') run_eval() if __name__ == '__main__': tf.app.run()
40.390566
95
0.633998
0
0
0
0
0
0
0
0
6,113
0.285561
d3d3a5b087e35b140a4cca72077a3d96a9f4d93b
42,865
py
Python
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
MikeAT/visualizer
946b98d82eaf7ec508861115585afd683fc49e5c
[ "MIT" ]
6
2021-03-03T17:52:24.000Z
2022-02-10T11:45:22.000Z
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
Acidburn0zzz/visualizer
20fba91f0d26b98531f97f643c8329640d1c0d11
[ "MIT" ]
1
2021-04-29T12:34:04.000Z
2021-04-29T14:50:17.000Z
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
Acidburn0zzz/visualizer
20fba91f0d26b98531f97f643c8329640d1c0d11
[ "MIT" ]
2
2021-04-27T14:02:03.000Z
2021-11-12T10:34:32.000Z
# Copyright 2021 Internet Corporation for Assigned Names and Numbers. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, you can obtain one at https://mozilla.org/MPL/2.0/. # # Developed by Sinodun IT (sinodun.com) # # Aggregation client subnet statistics import textwrap import grafanalib.core as GCore import grafanacommon as GCommon def query_classification_chart(chart_title, yaxis_label, prefix_field, agginfo, nodesel): return GCommon.BarChart( title = chart_title, orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = yaxis_label, ), ), traces = [ GCommon.BarChartTrace( name = 'AForA', x = 'AForA', y = 'AForAPrefix', text = 'AForA', ), GCommon.BarChartTrace( name = 'AForRoot', x = 'AForRoot', y = 'AForRootPrefix', text = 'AForRoot', ), GCommon.BarChartTrace( name = 'FunnyQueryClass', x = 'FunnyQueryClass', y = 'FunnyQueryClassPrefix', text = 'FunnyQueryClass', ), GCommon.BarChartTrace( name = 'FunnyQueryType', x = 'FunnyQueryType', y = 'FunnyQueryTypePrefix', text = 'FunnyQueryType', ), GCommon.BarChartTrace( name = 'Localhost', x = 'Localhost', y = 'LocalhostPrefix', text = 'Localhost', ), GCommon.BarChartTrace( name = 'NonAuthTld', x = 'NonAuthTld', y = 'NonAuthTldPrefix', text = 'NonAuthTld', ), GCommon.BarChartTrace( name = 'Ok', x = 'Ok', y = 'OkPrefix', text = 'Ok', ), GCommon.BarChartTrace( name = 'RFC1918Ptr', x = 'RFC1918Ptr', y = 'RFC1918PtrPrefix', text = 'RFC1918Ptr', ), GCommon.BarChartTrace( name = 'RootServersNet', x = 'RootServersNet', y = 'RootServersNetPrefix', text = 'RootServersNet', ), GCommon.BarChartTrace( name = 'SrcPortZero', x = 'SrcPortZero', y = 'SrcPortZeroPrefix', text = 'SrcPortZero', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForAPrefix, AForA, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForACount)/($to - $from) AS AForA FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForRootPrefix, AForRoot, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForRootCount)/($to - $from) AS AForRoot FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'B' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryClassPrefix, FunnyQueryClass, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryClassCount)/($to - $from) AS FunnyQueryClass FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'C' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryTypePrefix, FunnyQueryType, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryTypeCount)/($to - $from) AS FunnyQueryType FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count DESC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'D' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS LocalhostPrefix, Localhost, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(LocalhostCount)/($to - $from) AS Localhost FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'E' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS NonAuthTldPrefix, NonAuthTld, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(NonAuthTldCount)/($to - $from) AS NonAuthTld FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'F' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS OkPrefix, Ok, TotalCount FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS TotalCount, sum(Count - (AForACount + AForRootCount + FunnyQueryClassCount + FunnyQueryTypeCount + LocalhostCount + NonAuthTldCount + RFC1918PtrCount + RootServersNetCount + SrcPortZeroCount))/($to - $from) AS Ok FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY TotalCount DESC LIMIT 40 ) ORDER BY TotalCount ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'G' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RFC1918PtrPrefix, RFC1918Ptr, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RFC1918PtrCount)/($to - $from) AS RFC1918Ptr FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'H' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RootServersNetPrefix, RootServersNet, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RootServersNetCount)/($to - $from) AS RootServersNet FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'I' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS SrcPortZeroPrefix, SrcPortZero, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(SrcPortZeroCount)/($to - $from) AS SrcPortZero FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'J' ), ], ) def dash(myuid, agginfo, nodesel, **kwargs): return GCommon.Dashboard( title = "Client subnet statistics detail", tags = [ agginfo['graph_tag'] ], uid = myuid, rows = [ GCore.Row( height = GCore.Pixels(50), panels = [ GCommon.HTMLPanel('grafana/common/dashboards/aggregated/client_subnet_statistics_header.html', transparent=True), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT Prefix AS Subnet, sum(Count)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY QPS DESC LIMIT 30 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by ASN', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'ASN', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, ClientASN FROM ( SELECT ClientASN, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT ClientASN, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ORDER BY sCount DESC, ClientASN ASC LIMIT 30 ) AS ClientASNCounts ALL LEFT JOIN ( SELECT ClientASN, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN, rcode UNION ALL ( SELECT ClientASN, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, ClientASN FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ) AS ZeroClientASN ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS ClientASNRcodeCounts USING ClientASN GROUP BY ClientASN, rcode ) AS ClientASNRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS ClientASNNameCountsTotal USING rcode GROUP BY ClientASN, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, ClientASN DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by AS subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'AS Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BGPPrefix' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefox ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefix ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Root abusers by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT FixedPrefix AS Subnet, sum(RootAbuseCount)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY FixedPrefix ORDER BY QPS DESC LIMIT 40 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest fixed subnet', 'Fixed Subnet', 'FixedPrefix', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest ASN', 'ASN', 'ClientASN', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest AS subnet', 'AS subnet', 'ASPrefix', agginfo, nodesel) ], ), ] )
46.04189
133
0.30778
0
0
0
0
0
0
0
0
27,147
0.633314
d3d41214e53cc3ba9f42c3c82841438366d8ce1d
2,812
py
Python
pylearn2/neuroimaging_utils/tutorials/nice/jobman/simple_train.py
rdevon/pylearn2
f7b9a6ea0e2498176b47202f5bb83aec4976e1dd
[ "BSD-3-Clause" ]
1
2017-10-29T06:18:35.000Z
2017-10-29T06:18:35.000Z
pylearn2/neuroimaging_utils/tutorials/nice/jobman/simple_train.py
rdevon/pylearn2
f7b9a6ea0e2498176b47202f5bb83aec4976e1dd
[ "BSD-3-Clause" ]
null
null
null
pylearn2/neuroimaging_utils/tutorials/nice/jobman/simple_train.py
rdevon/pylearn2
f7b9a6ea0e2498176b47202f5bb83aec4976e1dd
[ "BSD-3-Clause" ]
null
null
null
""" Module to train a simple MLP for demo. """ from jobman.tools import expand from jobman.tools import flatten import logging import nice_experiment import numpy as np from os import path from pylearn2.config import yaml_parse from pylearn2.neuroimaging_utils.datasets import MRI from pylearn2.neuroimaging_utils.dataset_utils import mri_nifti from pylearn2.scripts.jobman.experiment import ydict from pylearn2.utils import serial logging.basicConfig(format="[%(module)s:%(levelname)s]:%(message)s") logger = logging.getLogger(__name__) yaml_file = nice_experiment.yaml_file def main(dataset_name="smri"): logger.info("Getting dataset info for %s" % args.dataset_name) data_path = serial.preprocess("${PYLEARN2_NI_PATH}/" + args.dataset_name) mask_file = path.join(data_path, "mask.npy") mask = np.load(mask_file) input_dim = (mask == 1).sum() if input_dim % 2 == 1: input_dim -= 1 mri = MRI.MRI_Standard(which_set="full", dataset_name=args.dataset_name, unit_normalize=True, even_input=True, apply_mask=True) variance_map_file = path.join(data_path, "variance_map.npy") mri_nifti.save_variance_map(mri, variance_map_file) user = path.expandvars("$USER") save_path = serial.preprocess("/export/mialab/users/%s/pylearn2_outs/%s" % (user, "nice_jobman_test")) file_params = {"save_path": save_path, "variance_map_file": variance_map_file } yaml_template = open(yaml_file).read() hyperparams = expand(flatten(nice_experiment.default_hyperparams(input_dim=input_dim)), dict_type=ydict) for param in hyperparams: if hasattr(args, param) and getattr(args, param): val = getattr(args, param) logger.info("Filling %s with %r" % (param, val)) hyperparams[param] = type(hyperparams[param])(val) elif param == "weight_decay": val = getattr(args, "l1_decay") if val == 0.0: hyperparams["weight_decay"] = "" else: hyperparams["weight_decay"] = { "__builder__": "pylearn2.costs.mlp.L1WeightDecay", "coeffs": {"z": val} } for param in file_params: yaml_template = yaml_template.replace("%%(%s)s" % param, file_params[param]) yaml = yaml_template % hyperparams print yaml logger.info("Training") train = yaml_parse.load(yaml) train.main_loop() if __name__ == "__main__": parser = nice_experiment.make_argument_parser() args = parser.parse_args() if args.verbose: logger.setLevel(logging.DEBUG) main(args)
34.292683
91
0.629445
0
0
0
0
0
0
0
0
435
0.154694
d3d4d6dda5b57fc2a5aa6672a9cd0393e4d62ee6
6,199
py
Python
_Framework/Layer.py
isfopo/MacroPushScript
46c440aa3f6325d8767e88252c5520d76a9fa634
[ "MIT" ]
null
null
null
_Framework/Layer.py
isfopo/MacroPushScript
46c440aa3f6325d8767e88252c5520d76a9fa634
[ "MIT" ]
null
null
null
_Framework/Layer.py
isfopo/MacroPushScript
46c440aa3f6325d8767e88252c5520d76a9fa634
[ "MIT" ]
null
null
null
#Embedded file name: /Users/versonator/Jenkins/live/output/Live/mac_64_static/Release/python-bundle/MIDI Remote Scripts/_Framework/Layer.py u""" Module implementing a way to resource-based access to controls in an unified interface dynamic. """ from __future__ import absolute_import, print_function, unicode_literals from builtins import str from builtins import object from future.utils import raise_ from itertools import repeat from .ControlElement import ControlElementClient from .Util import nop from .Resource import ExclusiveResource, CompoundResource from .Disconnectable import Disconnectable class LayerError(Exception): pass class UnhandledControlError(LayerError): pass class SimpleLayerOwner(Disconnectable): u""" Simple owner that grabs a given layer until it's disconnected """ def __init__(self, layer = None): self._layer = layer self._layer.grab(self) def disconnect(self): self._layer.release(self) class LayerClient(ControlElementClient): u""" Client of the indivial controls that delivers the controls to the layer owner. """ def __init__(self, layer = None, layer_client = None, *a, **k): super(LayerClient, self).__init__(*a, **k) assert layer_client assert layer self.layer_client = layer_client self.layer = layer def set_control_element(self, control_element, grabbed): layer = self.layer owner = self.layer_client assert owner assert control_element in layer._control_to_names, u'Control not in layer: %s' % (control_element,) names = layer._control_to_names[control_element] if not grabbed: control_element = None for name in names: try: handler = getattr(owner, u'set_' + name) except AttributeError: try: control = getattr(owner, name) handler = control.set_control_element except AttributeError: if name[0] != u'_': raise_(UnhandledControlError, u'Component %s has no handler for control_element %s' % (str(owner), name)) else: handler = nop handler(control_element or None) layer._name_to_controls[name] = control_element class LayerBase(object): pass class CompoundLayer(LayerBase, CompoundResource): u""" A compound resource takes two layers and makes them look like one, grabbing both of them. Both can have different priorities thought. """ def _get_priority(self): assert self.first.priority == self.second.priority return self.first.priority def _set_priority(self, priority): self.first.priority = priority self.second.priority = priority priority = property(_get_priority, _set_priority) def __getattr__(self, key): try: return getattr(self.first, key) except AttributeError: return getattr(self.second, key) class Layer(LayerBase, ExclusiveResource): u""" A layer provides a convenient interface to control resources. In a layer, you can group several controls by name. The layer itself is an exclusive resource. When grabbing the layer, it will try to grab all controls and will forward them to its own owner when he receives them, and will take them from him when they are release. The layer with give and take away the controls from its client using methods of the form:: client.set[control-name](control) Where [control-name] is the name the control was given in this layer. This way, layers are a convenient way to provide controls to components indirectly, with automatic handling of competition for them. Note that [control-name] can not be any of the following reserved names: priority, grab, release, on_received, on_lost, owner, get_owner If [control-name] starts with an underscore (_) it is considered private. It is grabbed but it is not delivered to the client. """ def __init__(self, priority = None, **controls): super(Layer, self).__init__() self._priority = priority self._name_to_controls = dict(zip(iter(controls.keys()), repeat(None))) self._control_to_names = dict() self._control_clients = dict() for name, control in controls.items(): assert control is not None, name self._control_to_names.setdefault(control, []).append(name) def __add__(self, other): return CompoundLayer(self, other) def _get_priority(self): return self._priority def _set_priority(self, priority): if priority != self._priority: if self.owner: raise RuntimeError(u"Cannot change priority of a layer while it's owned") self._priority = priority priority = property(_get_priority, _set_priority) def __getattr__(self, name): u""" Provides access to controls """ try: return self._name_to_controls[name] except KeyError: raise AttributeError def grab(self, client, *a, **k): if client == self.owner: self.on_received(client, *a, **k) return True return super(Layer, self).grab(client, *a, **k) def on_received(self, client, *a, **k): u""" Override from ExclusiveResource """ for control in self._control_to_names.keys(): k.setdefault(u'priority', self._priority) control.resource.grab(self._get_control_client(client), *a, **k) def on_lost(self, client): u""" Override from ExclusiveResource """ for control in self._control_to_names.keys(): control.resource.release(self._get_control_client(client)) def _get_control_client(self, client): try: control_client = self._control_clients[client] except KeyError: control_client = self._control_clients[client] = LayerClient(layer_client=client, layer=self) return control_client
33.874317
139
0.658816
5,575
0.899339
0
0
0
0
0
0
1,878
0.302952
d3d6cda09c480bcbc5eba0a289993557df421803
1,529
py
Python
src/retrieve_exons_sequence_genomes.py
naturalis/brassicaceae-hybseq-pipeline
b71462d308b8a4adbc370691bf085d44666914d7
[ "MIT" ]
5
2020-04-22T12:08:07.000Z
2021-09-03T01:56:44.000Z
src/retrieve_exons_sequence_genomes.py
naturalis/brassicaceae-hybseq-pipeline
b71462d308b8a4adbc370691bf085d44666914d7
[ "MIT" ]
1
2020-09-16T11:29:15.000Z
2020-09-16T11:29:15.000Z
src/retrieve_exons_sequence_genomes.py
naturalis/brassicaceae-hybseq-pipeline
b71462d308b8a4adbc370691bf085d44666914d7
[ "MIT" ]
1
2020-09-16T14:05:08.000Z
2020-09-16T14:05:08.000Z
# retrieve_exons_sequence_genomes.py # This script is to retrieve exons from sequenced genomes which are also present in the reference genome (A. thaliana). # To identify the contigs from the sequenced genomes, each contig has to be retrieved from A. thaliana first. # Then, for each sequence query of A. thaliana, the query can be BLAT against the database reference. # In this case, the database reference will be S. irio and A. lyrata. # Made by: Elfy Ly # Date: 19 May 2020 import os from Bio import SeqIO path_to_at_exons_dir = "/mnt/c/Users/elfyl/PycharmProjects/brassicaceae-hybseq-pipeline-offline/results/exons" path_to_at_dir = "/mnt/c/Users/elfyl/PycharmProjects/brassicaceae-hybseq-pipeline-offline/data/reference_genomes" path_to_at_reference = path_to_at_dir + "/ref-at.fasta" # Create exons_AT Directory if don't exist if not os.path.exists(path_to_at_exons_dir): os.mkdir(path_to_at_exons_dir) print("Directory ", path_to_at_exons_dir, " Created ") else: print("Directory ", path_to_at_exons_dir, " already exists") # Create new files for every sequence query of the reference genome A. thaliana count_id = 0 for seq_record in SeqIO.parse(path_to_at_reference, "fasta"): f = open(path_to_at_exons_dir + "/" + seq_record.id + ".txt", "w+") print("New text file created: " + seq_record.id + ".fa") seq_id = seq_record.id seq_seq = str(seq_record.seq) f.write(">" + seq_id + "\n" + seq_seq) f.close() count_id += 1 print("Number of sequence records: " + str(count_id))
41.324324
119
0.743623
0
0
0
0
0
0
0
0
929
0.607587
d3d7b8b121c459940512749ce36dcfbad947c964
1,136
py
Python
lexical/lexical.py
xmeng17/Malicious-URL-Detection
f286aeb50570455486b470cbc2db9aa0fae99b8f
[ "MIT" ]
null
null
null
lexical/lexical.py
xmeng17/Malicious-URL-Detection
f286aeb50570455486b470cbc2db9aa0fae99b8f
[ "MIT" ]
null
null
null
lexical/lexical.py
xmeng17/Malicious-URL-Detection
f286aeb50570455486b470cbc2db9aa0fae99b8f
[ "MIT" ]
null
null
null
import re class lexical(object): '''Lexical Features: Top Level domain (str) Number of dots in hostname (int) Average token length of hostname (float) Max token length of hostname (int) Average token length of path (float) Max token length of path (int) ''' def __init__(self): pass def lexical(self,hostname,path): dot_num=self.dots(hostname) arr_host=self.split(hostname) arr_path=self.split(path) avg_host=self.avg(arr_host) max_host=self.max(arr_host) avg_path=self.avg(arr_path) max_path=self.max(arr_path) return dot_num,avg_host,max_host,avg_path,max_path def dots(self,hostname): # returns number of dots return hostname.count('.') def split(self,string): # returns a list split by ‘/’, ‘?’, ‘.’, ‘=’, ‘-’ and ‘_’ return re.split('/|\?|\.|=|-|_', string) def avg(self,arr): # returns average token length return sum(len(token) for token in arr)/len(arr) def max(self,arr): # returns max token length return max(len(token) for token in arr)
26.418605
70
0.617958
1,148
0.989655
0
0
0
0
0
0
418
0.360345
d3d87b798d29e52210031306b4e2f4fee10a8cd2
992
py
Python
stacker/tests/providers/aws/test_interactive.py
GoodRx/stacker
0cf1df67b4ae5aeda5845442c84905909101c238
[ "BSD-2-Clause" ]
1
2021-11-06T17:01:01.000Z
2021-11-06T17:01:01.000Z
stacker/tests/providers/aws/test_interactive.py
GoodRx/stacker
0cf1df67b4ae5aeda5845442c84905909101c238
[ "BSD-2-Clause" ]
null
null
null
stacker/tests/providers/aws/test_interactive.py
GoodRx/stacker
0cf1df67b4ae5aeda5845442c84905909101c238
[ "BSD-2-Clause" ]
1
2021-11-06T17:00:53.000Z
2021-11-06T17:00:53.000Z
import unittest from ....providers.aws.interactive import requires_replacement def generate_resource_change(replacement=True): resource_change = { "Action": "Modify", "Details": [], "LogicalResourceId": "Fake", "PhysicalResourceId": "arn:aws:fake", "Replacement": "True" if replacement else "False", "ResourceType": "AWS::Fake", "Scope": ["Properties"], } return { "ResourceChange": resource_change, "Type": "Resource", } class TestInteractiveProvider(unittest.TestCase): def test_requires_replacement(self): changeset = [ generate_resource_change(), generate_resource_change(replacement=False), generate_resource_change(), ] replacement = requires_replacement(changeset) self.assertEqual(len(replacement), 2) for resource in replacement: self.assertEqual(resource["ResourceChange"]["Replacement"], "True")
30.060606
79
0.634073
477
0.480847
0
0
0
0
0
0
221
0.222782
d3d9152a0002e3e05bd42184c7b5ca8570672123
1,046
py
Python
setup.py
digicert/digicert_express
292fb4e7f8a39e53c384a79c50a9488c51258f97
[ "MIT" ]
2
2017-03-03T20:37:29.000Z
2018-06-01T22:22:15.000Z
setup.py
digicert/digicert_express
292fb4e7f8a39e53c384a79c50a9488c51258f97
[ "MIT" ]
null
null
null
setup.py
digicert/digicert_express
292fb4e7f8a39e53c384a79c50a9488c51258f97
[ "MIT" ]
2
2018-01-26T07:11:42.000Z
2019-03-06T23:30:39.000Z
from setuptools import setup, find_packages def readme(): with open('README.rst') as f: return f.read() setup( name='digicert-express', version='1.1dev2', description='Express Install for DigiCert, Inc.', long_description=readme(), classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Information Technology', 'License :: OSI Approved :: MIT License', 'Topic :: Security', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], url='https://github.com/digicert/digicert_express', author='DigiCert, Inc.', author_email='[email protected]', license='MIT', zip_safe=False, packages=find_packages(exclude=['tests.*', '*.tests.*', '*.tests', 'tests', 'scripts']), include_package_data=True, install_requires=[ 'python-augeas', 'requests>=2.8.1', 'ndg-httpsclient', 'pyasn1', 'pyOpenSSL' # prefer OS install but we can try here, too ], )
29.885714
92
0.605163
0
0
0
0
0
0
0
0
536
0.512428
d3d9c66d64ebac5543f8099d6066695442fe0072
11,392
py
Python
pytorch/plane.py
NunoEdgarGFlowHub/autoregressive-energy-machines
eb5517a513cf4e99db674fa41170f018e212f1e2
[ "MIT" ]
83
2019-04-12T10:23:23.000Z
2022-03-30T12:40:43.000Z
pytorch/plane.py
sten2lu/autoregressive-energy-machines
eb5517a513cf4e99db674fa41170f018e212f1e2
[ "MIT" ]
null
null
null
pytorch/plane.py
sten2lu/autoregressive-energy-machines
eb5517a513cf4e99db674fa41170f018e212f1e2
[ "MIT" ]
11
2019-04-12T11:26:00.000Z
2020-05-12T01:14:21.000Z
import argparse import json import numpy as np import os import torch import data_ import models import utils from matplotlib import cm, pyplot as plt from tensorboardX import SummaryWriter from torch import optim from torch.utils import data from tqdm import tqdm from utils import io parser = argparse.ArgumentParser() # CUDA parser.add_argument('--use_gpu', type=bool, default=True, help='Whether to use GPU.') # data parser.add_argument('--dataset_name', type=str, default='spirals', help='Name of dataset to use.') parser.add_argument('--n_data_points', default=int(1e6), help='Number of unique data points in training set.') parser.add_argument('--batch_size', type=int, default=256, help='Size of batch used for training.') parser.add_argument('--num_workers', type=int, default=0, help='Number of workers used in data loaders.') # MADE parser.add_argument('--n_residual_blocks_made', default=4, help='Number of residual blocks in MADE.') parser.add_argument('--hidden_dim_made', default=256, help='Dimensionality of hidden layers in MADE.') parser.add_argument('--activation_made', default='relu', help='Activation function for MADE.') parser.add_argument('--use_batch_norm_made', default=False, help='Whether to use batch norm in MADE.') parser.add_argument('--dropout_probability_made', default=None, help='Dropout probability for MADE.') # energy net parser.add_argument('--context_dim', default=64, help='Dimensionality of context vector.') parser.add_argument('--n_residual_blocks_energy_net', default=4, help='Number of residual blocks in energy net.') parser.add_argument('--hidden_dim_energy_net', default=128, help='Dimensionality of hidden layers in energy net.') parser.add_argument('--energy_upper_bound', default=0, help='Max value for output of energy net.') parser.add_argument('--activation_energy_net', default='relu', help='Activation function for energy net.') parser.add_argument('--use_batch_norm_energy_net', default=False, help='Whether to use batch norm in energy net.') parser.add_argument('--dropout_probability_energy_net', default=None, help='Dropout probability for energy net.') parser.add_argument('--scale_activation', default='softplus', help='Activation to use for scales in proposal mixture components.') parser.add_argument('--apply_context_activation', default=False, help='Whether to apply activation to context vector.') # proposal parser.add_argument('--n_mixture_components', default=10, help='Number of proposal mixture components (per dimension).') parser.add_argument('--proposal_component', default='gaussian', help='Type of location-scale family distribution ' 'to use in proposal mixture.') parser.add_argument('--n_proposal_samples_per_input', default=20, help='Number of proposal samples used to estimate ' 'normalizing constant during training.') parser.add_argument('--n_proposal_samples_per_input_validation', default=100, help='Number of proposal samples used to estimate ' 'normalizing constant during validation.') parser.add_argument('--mixture_component_min_scale', default=1e-3, help='Minimum scale for proposal mixture components.') # optimization parser.add_argument('--learning_rate', default=5e-4, help='Learning rate for Adam.') parser.add_argument('--n_total_steps', default=int(4e5), help='Number of total training steps.') parser.add_argument('--alpha_warm_up_steps', default=5000, help='Number of warm-up steps for AEM density.') parser.add_argument('--hard_alpha_warm_up', default=True, help='Whether to use a hard warm up for alpha') # logging and checkpoints parser.add_argument('--monitor_interval', default=100, help='Interval in steps at which to report training stats.') parser.add_argument('--visualize_interval', default=10000, help='Interval in steps at which to report training stats.') parser.add_argument('--save_interval', default=10000, help='Interval in steps at which to save model.') # reproducibility parser.add_argument('--seed', default=1638128, help='Random seed for PyTorch and NumPy.') args = parser.parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) if args.use_gpu and torch.cuda.is_available(): device = torch.device('cuda') torch.set_default_tensor_type('torch.cuda.FloatTensor') else: device = torch.device('cpu') # Generate data train_dataset = data_.load_plane_dataset(args.dataset_name, args.n_data_points) train_loader = data_.InfiniteLoader( dataset=train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_epochs=None ) # Generate test grid data n_points_per_axis = 512 bounds = np.array([ [-4, 4], [-4, 4] ]) grid_dataset = data_.TestGridDataset(n_points_per_axis=n_points_per_axis, bounds=bounds) grid_loader = data.DataLoader( dataset=grid_dataset, batch_size=1000, drop_last=False ) # various dimensions for autoregressive and energy nets dim = 2 # D output_dim_multiplier = args.context_dim + 3 * args.n_mixture_components # K + 3M # Create MADE made = models.ResidualMADE( input_dim=dim, n_residual_blocks=args.n_residual_blocks_made, hidden_dim=args.hidden_dim_made, output_dim_multiplier=output_dim_multiplier, conditional=False, activation=utils.parse_activation(args.activation_made), use_batch_norm=args.use_batch_norm_made, dropout_probability=args.dropout_probability_made ).to(device) # create energy net energy_net = models.ResidualEnergyNet( input_dim=(args.context_dim + 1), n_residual_blocks=args.n_residual_blocks_energy_net, hidden_dim=args.hidden_dim_energy_net, energy_upper_bound=args.energy_upper_bound, activation=utils.parse_activation(args.activation_energy_net), use_batch_norm=args.use_batch_norm_energy_net, dropout_probability=args.dropout_probability_energy_net ).to(device) # create AEM aem = models.AEM( autoregressive_net=made, energy_net=energy_net, context_dim=args.context_dim, n_proposal_mixture_components=args.n_mixture_components, proposal_component_family=args.proposal_component, n_proposal_samples_per_input=args.n_proposal_samples_per_input, mixture_component_min_scale=args.mixture_component_min_scale, apply_context_activation=args.apply_context_activation ).to(device) # make optimizer parameters = list(made.parameters()) + list(energy_net.parameters()) optimizer = optim.Adam(parameters, lr=args.learning_rate) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.n_total_steps) # create summary writer and write to log directory timestamp = io.get_timestamp() log_dir = os.path.join(io.get_log_root(), args.dataset_name, timestamp) writer = SummaryWriter(log_dir=log_dir) filename = os.path.join(log_dir, 'config.json') with open(filename, 'w') as file: json.dump(vars(args), file) # Training loop tbar = tqdm(range(args.n_total_steps)) alpha = 0 for step in tbar: aem.train() scheduler.step(step) optimizer.zero_grad() # training step batch = next(train_loader).to(device) log_density, log_proposal_density, _, log_normalizer = aem(batch) mean_log_density = torch.mean(log_density) mean_log_proposal_density = torch.mean(log_proposal_density) mean_log_normalizer = torch.mean(log_normalizer) if args.alpha_warm_up_steps is not None: if args.hard_alpha_warm_up: alpha = float(step > args.alpha_warm_up_steps) else: alpha = torch.Tensor([min(step / args.alpha_warm_up_steps, 1)]) loss = - (alpha * mean_log_density + mean_log_proposal_density) else: loss = - (mean_log_density + mean_log_proposal_density) loss.backward() optimizer.step() if (step + 1) % args.monitor_interval == 0: s = 'Loss: {:.4f}, log p: {:.4f}, log q: {:.4f}'.format( loss.item(), mean_log_density.item(), mean_log_proposal_density.item() ) tbar.set_description(s) # write summaries summaries = { 'loss': loss.detach(), 'log-prob-aem': mean_log_density.detach(), 'log-prob-proposal': mean_log_proposal_density.detach(), 'log-normalizer': mean_log_normalizer.detach(), 'learning-rate': torch.Tensor(scheduler.get_lr()), } for summary, value in summaries.items(): writer.add_scalar(tag=summary, scalar_value=value, global_step=step) if (step + 1) % args.visualize_interval == 0: # Plotting aem.eval() aem.set_n_proposal_samples_per_input_validation( args.n_proposal_samples_per_input_validation) log_density_np = [] log_proposal_density_np = [] for batch in grid_loader: batch = batch.to(device) log_density, log_proposal_density, unnormalized_log_density, log_normalizer = aem( batch) log_density_np = np.concatenate(( log_density_np, utils.tensor2numpy(log_density) )) log_proposal_density_np = np.concatenate(( log_proposal_density_np, utils.tensor2numpy(log_proposal_density) )) fig, axs = plt.subplots(1, 3, figsize=(7.5, 2.5)) axs[0].hist2d(train_dataset.data[:, 0], train_dataset.data[:, 1], range=bounds, bins=512, cmap=cm.viridis, rasterized=False) axs[0].set_xticks([]) axs[0].set_yticks([]) axs[1].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_proposal_density_np).reshape(grid_dataset.X.shape)) axs[1].set_xlim(bounds[0]) axs[1].set_ylim(bounds[1]) axs[1].set_xticks([]) axs[1].set_yticks([]) axs[2].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_density_np).reshape(grid_dataset.X.shape)) axs[2].set_xlim(bounds[0]) axs[2].set_ylim(bounds[1]) axs[2].set_xticks([]) axs[2].set_yticks([]) plt.tight_layout() path = os.path.join(io.get_output_root(), 'pytorch', '{}.png'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_output_root()) plt.savefig(path, dpi=300) writer.add_figure(tag='test-grid', figure=fig, global_step=step) plt.close() if (step + 1) % args.save_interval == 0: path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}.t'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_checkpoint_root()) torch.save(aem.state_dict(), path) path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}-{}.t'.format(args.dataset_name, timestamp)) torch.save(aem.state_dict(), path)
39.147766
98
0.675298
0
0
0
0
0
0
0
0
2,762
0.242451
d3d9fd962e6f2a91b7a5a73a99c81d54531258d8
2,266
py
Python
music/music.py
spacerunaway/world_recoder
fcafe0d910511cfd043735cf451564febb558e40
[ "MIT" ]
null
null
null
music/music.py
spacerunaway/world_recoder
fcafe0d910511cfd043735cf451564febb558e40
[ "MIT" ]
null
null
null
music/music.py
spacerunaway/world_recoder
fcafe0d910511cfd043735cf451564febb558e40
[ "MIT" ]
null
null
null
import sys sys.path.append('../utils') from utils import * from doubly_linkedlist import * def link_chords(chordprogression): """ Chord progression is a sequences of chords. A valid linked_chords can be one of the following: 1: the chord name(str) in CHORD dict 2: the key(type Key) and a music have to a signal of start and end. >>> c_p1 = [START,C_Major,'C','Am','F','G','C','Am','F','G7',END] >>> c_p2 = [START,C_Major,'C','Am','F','G','C','Am','F','G',G_Major,'Em','C','D','D7','G',END] >>> l1 = link_chords(c_p1) >>> l1 start - C - Am - F - G - C - Am - F - G7 - end >>> l2 = link_chords(c_p2) >>> l2 start - C - Am - F - G - C - Am - F - G - Em - C - D - D7 - G - end >>> l2[8].key is C_Major True >>> l2[8].chord == CHORD['G'] True >>> l2[9].key is G_Major True >>> l2[9].chord == CHORD['Em'] True >>> c_p3 = [C_Major,C_Major,START,'C',END,START,START,END,'F',G_Major] >>> l3 = link_chords(c_p3) >>> l3 start - C - end - start - start - end - F """ key = None res = LinkedList() for item in chordprogression: if type(item) is Major_Scale or type(item) is minor_Scale: key = item else: if item not in CHORD: chord = item else: chord = CHORD[item] node = LinkedChord(chord,key,item) res.append(node) return res def parse_chordprogression(chordprogression): link_chords(chordprogression) cpd(chordprogression) class Music(object): melody = [] chordprogression = [] rhythm = [] def __init__(self,title,composer,key_signature,metre,arranger=''): self.title = title self.composer = composer self.arranger = arranger self.key = key self.metre = metre def add_subtitle(self,subtitle): self.subtitle = subtitle def add_chordprogression(self,chordprogression): self.chordprogression = chordprogression def add_tags(self,tags): self.tags = tags class Info(object): def __init__(self,key,beat,tempo=90,rhythmtype=''): self.key = key self.beat = beat self.tempo = tempo self.rhythmtype = rhythmtype
29.815789
98
0.573698
706
0.311562
0
0
0
0
0
0
948
0.418358
d3da2efce64cb5f88a134e97d2a4092ee8ea80bb
5,777
py
Python
azure-mgmt/tests/test_mgmt_documentdb.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
azure-mgmt/tests/test_mgmt_documentdb.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure-mgmt/tests/test_mgmt_documentdb.py
v-Ajnava/azure-sdk-for-python
a1f6f80eb5869c5b710e8bfb66146546697e2a6f
[ "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import unittest import azure.mgmt.documentdb from msrestazure.azure_exceptions import CloudError from testutils.common_recordingtestcase import record from tests.mgmt_testcase import HttpStatusCode, AzureMgmtTestCase import logging #logging.basicConfig(level=logging.DEBUG) class MgmtDocDBTest(AzureMgmtTestCase): def setUp(self): super(MgmtDocDBTest, self).setUp() self.client = self.create_mgmt_client( azure.mgmt.documentdb.DocumentDB ) # I don't record resource group creation, since it's another package if not self.is_playback(): self.create_resource_group() @record def test_accounts_create(self): account_name = self.get_resource_name('pydocdbtst') self.assertFalse(self.client.database_accounts.check_name_exists(account_name)) async_docdb_create = self.client.database_accounts.create_or_update( self.group_name, account_name, { 'location': self.region, 'locations': [{ 'location_name': self.region }] } ) account = async_docdb_create.result() self.assertIsNotNone(account) # Rest API issue # self.assertEqual(account.name, account_name) def test_accounts_features(self): account_name = self.get_resource_name('pydocdbtest') if not self.is_playback(): async_docdb_create = self.client.database_accounts.create_or_update( self.group_name, account_name, { 'location': self.region, 'locations': [{ 'location_name': self.region }] } ) async_docdb_create.wait() with self.recording(): account = self.client.database_accounts.get( self.group_name, account_name ) self.assertEqual(account.name, account_name) my_accounts = list(self.client.database_accounts.list_by_resource_group(self.group_name)) self.assertEqual(len(my_accounts), 1) self.assertEqual(my_accounts[0].name, account_name) my_accounts = list(self.client.database_accounts.list()) self.assertTrue(len(my_accounts) >= 1) self.assertTrue(any(db.name == account_name for db in my_accounts)) # I guess we can make this test with no error, need to check with DocDB team # This is an interesting test anyway, this implies that the serialization works # and error message is available. Since this method does not return an object # (i.e. no deserialization to test), this is a complete test. # We are NOT here to test the RestAPI, but the Swagger file and Python code. with self.assertRaises(CloudError) as cm: async_change = self.client.database_accounts.failover_priority_change( self.group_name, account_name, [{ 'location_name': self.region, 'failover_priority': 0 }] ) async_change.wait() self.assertIn('Failover priorities must be unique', cm.exception.message) my_keys = self.client.database_accounts.list_keys( self.group_name, account_name ) self.assertIsNotNone(my_keys.primary_master_key) self.assertIsNotNone(my_keys.secondary_master_key) self.assertIsNotNone(my_keys.primary_readonly_master_key) self.assertIsNotNone(my_keys.secondary_readonly_master_key) my_keys = self.client.database_accounts.list_read_only_keys( self.group_name, account_name ) self.assertIsNotNone(my_keys.primary_readonly_master_key) self.assertIsNotNone(my_keys.secondary_readonly_master_key) async_regenerate = self.client.database_accounts.regenerate_key( self.group_name, account_name, "primary" ) async_regenerate.wait() def test_accounts_delete(self): account_name = self.get_resource_name('pydocumentdbtst') if not self.is_playback(): async_docdb_create = self.client.database_accounts.create_or_update( self.group_name, account_name, { 'location': self.region, 'locations': [{ 'location_name': self.region }] } ) async_docdb_create.wait() with self.recording(): # Current implementation of msrestazure does not support 404 as a end of LRO delete # https://github.com/Azure/msrestazure-for-python/issues/7 async_delete = self.client.database_accounts.delete(self.group_name, account_name) try: async_delete.wait() except CloudError as err: if err.response.status_code != 404: raise #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
37.512987
101
0.570885
5,043
0.872642
0
0
668
0.115591
0
0
1,317
0.227894
d3da88558c778364e49a959d5f0d8f942db1cc43
3,758
py
Python
config.py
somritabanerjee/speedplusbaseline
5913c611d8c182ad8070abcf5f1baffc554dfd90
[ "MIT" ]
null
null
null
config.py
somritabanerjee/speedplusbaseline
5913c611d8c182ad8070abcf5f1baffc554dfd90
[ "MIT" ]
null
null
null
config.py
somritabanerjee/speedplusbaseline
5913c611d8c182ad8070abcf5f1baffc554dfd90
[ "MIT" ]
null
null
null
import argparse PROJROOTDIR = {'mac': '/Users/taehapark/SLAB/speedplusbaseline', 'linux': '/home/somrita/Documents/Satellite_Pose_Estimation/speedplusbaseline'} DATAROOTDIR = {'mac': '/Users/taehapark/SLAB/speedplus/data/datasets', 'linux': '/home/somrita/Documents/Satellite_Pose_Estimation/dataset'} parser = argparse.ArgumentParser('Configurations for SPEED+ Baseline Study') # ------------------------------------------------------------------------------------------ # Basic directories and names parser.add_argument('--seed', type=int, default=2021) parser.add_argument('--projroot', type=str, default=PROJROOTDIR['linux']) parser.add_argument('--dataroot', type=str, default=DATAROOTDIR['linux']) parser.add_argument('--dataname', type=str, default='speedplus') parser.add_argument('--savedir', type=str, default='checkpoints/synthetic/krn') parser.add_argument('--resultfn', type=str, default='') parser.add_argument('--logdir', type=str, default='log/synthetic/krn') parser.add_argument('--pretrained', type=str, default='') # ------------------------------------------------------------------------------------------ # Model config. parser.add_argument('--model_name', type=str, default='krn') parser.add_argument('--input_shape', nargs='+', type=int, default=(224, 224)) parser.add_argument('--num_keypoints', type=int, default=11) # KRN-specific parser.add_argument('--num_classes', type=int, default=5000) # SPN-specific parser.add_argument('--num_neighbors', type=int, default=5) # SPN-specific parser.add_argument('--keypts_3d_model', type=str, default='src/utils/tangoPoints.mat') parser.add_argument('--attitude_class', type=str, default='src/utils/attitudeClasses.mat') # ------------------------------------------------------------------------------------------ # Training config. parser.add_argument('--start_over', dest='auto_resume', action='store_false', default=True) parser.add_argument('--randomize_texture', dest='randomize_texture', action='store_true', default=False) parser.add_argument('--perform_dann', dest='dann', action='store_true', default=False) parser.add_argument('--texture_alpha', type=float, default=0.5) parser.add_argument('--texture_ratio', type=float, default=0.5) parser.add_argument('--use_fp16', dest='fp16', action='store_true', default=False) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--max_epochs', type=int, default=75) parser.add_argument('--num_workers', type=int, default=8) parser.add_argument('--test_epoch', type=int, default=-1) parser.add_argument('--optimizer', type=str, default='rmsprop') parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=5e-5) parser.add_argument('--lr_decay_alpha', type=float, default=0.96) parser.add_argument('--lr_decay_step', type=int, default=1) # ------------------------------------------------------------------------------------------ # Dataset-related inputs parser.add_argument('--train_domain', type=str, default='synthetic') parser.add_argument('--test_domain', type=str, default='lightbox') parser.add_argument('--train_csv', type=str, default='train.csv') parser.add_argument('--test_csv', type=str, default='lightbox.csv') # ------------------------------------------------------------------------------------------ # Other miscellaneous settings parser.add_argument('--gpu_id', type=int, default=0) parser.add_argument('--no_cuda', dest='use_cuda', action='store_false', default=True) # End cfg = parser.parse_args()
58.71875
104
0.631453
0
0
0
0
0
0
0
0
1,736
0.461948
d3dacb32ea41d2fb0546ec04640a3b17315faa08
118,963
py
Python
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
""" HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.api_client import ApiClient, Endpoint as _Endpoint from h1.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from h1.model.event import Event from h1.model.inline_response400 import InlineResponse400 from h1.model.insight_project_journal_create import InsightProjectJournalCreate from h1.model.insight_project_journal_credential_patch import InsightProjectJournalCredentialPatch from h1.model.insight_project_journal_transfer import InsightProjectJournalTransfer from h1.model.insight_project_journal_update import InsightProjectJournalUpdate from h1.model.journal import Journal from h1.model.journal_credential import JournalCredential from h1.model.resource_service import ResourceService from h1.model.tag import Tag from h1.model.tag_array import TagArray class InsightProjectJournalApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __insight_project_journal_create( self, project_id, location_id, insight_project_journal_create, **kwargs ): """Create insight/journal # noqa: E501 Create journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_create(project_id, location_id, insight_project_journal_create, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id insight_project_journal_create (InsightProjectJournalCreate): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['insight_project_journal_create'] = \ insight_project_journal_create return self.call_with_http_info(**kwargs) self.insight_project_journal_create = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'insight_project_journal_create', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'insight_project_journal_create', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'insight_project_journal_create': (InsightProjectJournalCreate,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'insight_project_journal_create': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_create ) def __insight_project_journal_credential_create( self, project_id, location_id, journal_id, journal_credential, **kwargs ): """Create insight/journal.credential # noqa: E501 Create insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_create(project_id, location_id, journal_id, journal_credential, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id journal_credential (JournalCredential): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['journal_credential'] = \ journal_credential return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_create = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'journal_credential': (JournalCredential,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'journal_credential': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_create ) def __insight_project_journal_credential_delete( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Delete insight/journal.credential # noqa: E501 Delete insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_delete(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_delete = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_delete ) def __insight_project_journal_credential_get( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Get insight/journal.credential # noqa: E501 Get insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_get(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_get = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_get ) def __insight_project_journal_credential_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.credential # noqa: E501 List insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [JournalCredential] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_list = _Endpoint( settings={ 'response_type': ([JournalCredential],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_list ) def __insight_project_journal_credential_patch( self, project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, **kwargs ): """Update insight/journal.credential # noqa: E501 Update insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_patch(project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId insight_project_journal_credential_patch (InsightProjectJournalCredentialPatch): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id kwargs['insight_project_journal_credential_patch'] = \ insight_project_journal_credential_patch return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_patch = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_patch', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), 'insight_project_journal_credential_patch': (InsightProjectJournalCredentialPatch,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', 'insight_project_journal_credential_patch': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_patch ) def __insight_project_journal_delete( self, project_id, location_id, journal_id, **kwargs ): """Delete insight/journal # noqa: E501 Delete journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_delete(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_delete ) def __insight_project_journal_event_get( self, project_id, location_id, journal_id, event_id, **kwargs ): """Get insight/journal.event # noqa: E501 Get insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_get(project_id, location_id, journal_id, event_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id event_id (str): eventId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Event If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['event_id'] = \ event_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_get = _Endpoint( settings={ 'response_type': (Event,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event/{eventId}', 'operation_id': 'insight_project_journal_event_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'event_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'event_id': 'eventId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'event_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_get ) def __insight_project_journal_event_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.event # noqa: E501 List insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: limit (float): $limit. [optional] if omitted the server will use the default value of 100 skip (float): $skip. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Event] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_list = _Endpoint( settings={ 'response_type': ([Event],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event', 'operation_id': 'insight_project_journal_event_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'limit', 'skip', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ 'limit', ] }, root_map={ 'validations': { ('limit',): { 'inclusive_maximum': 1000, 'inclusive_minimum': 1, }, }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'limit': (float,), 'skip': (float,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'limit': '$limit', 'skip': '$skip', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'limit': 'query', 'skip': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_list ) def __insight_project_journal_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal # noqa: E501 Returns a single journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_get = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_get ) def __insight_project_journal_list( self, project_id, location_id, **kwargs ): """List insight/journal # noqa: E501 List journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Journal] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.insight_project_journal_list = _Endpoint( settings={ 'response_type': ([Journal],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_list ) def __insight_project_journal_log_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal.log # noqa: E501 websocket is also supported # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_log_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: since (datetime): since. [optional] until (datetime): until. [optional] follow (bool): follow. [optional] if omitted the server will use the default value of False tail (float): tail. [optional] tag (TagArray): tag. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_log_get = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/log', 'operation_id': 'insight_project_journal_log_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'since', 'until', 'follow', 'tail', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'since': (datetime,), 'until': (datetime,), 'follow': (bool,), 'tail': (float,), 'tag': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'since': 'since', 'until': 'until', 'follow': 'follow', 'tail': 'tail', 'tag': 'tag', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'since': 'query', 'until': 'query', 'follow': 'query', 'tail': 'query', 'tag': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_log_get ) def __insight_project_journal_service_get( self, project_id, location_id, journal_id, service_id, **kwargs ): """Get insight/journal.service # noqa: E501 Get insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_get(project_id, location_id, journal_id, service_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id service_id (str): serviceId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ResourceService If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['service_id'] = \ service_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_get = _Endpoint( settings={ 'response_type': (ResourceService,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service/{serviceId}', 'operation_id': 'insight_project_journal_service_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'service_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'service_id': 'serviceId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'service_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_get ) def __insight_project_journal_service_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.service # noqa: E501 List insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [ResourceService] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_list = _Endpoint( settings={ 'response_type': ([ResourceService],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service', 'operation_id': 'insight_project_journal_service_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_list ) def __insight_project_journal_tag_create( self, project_id, location_id, journal_id, tag, **kwargs ): """Create insight/journal.tag # noqa: E501 Create insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_create(project_id, location_id, journal_id, tag, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag (Tag): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag'] = \ tag return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_create = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag': (Tag,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_create ) def __insight_project_journal_tag_delete( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Delete insight/journal.tag # noqa: E501 Delete insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_delete(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_delete ) def __insight_project_journal_tag_get( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Get insight/journal.tag # noqa: E501 Get insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_get(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_get = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_get ) def __insight_project_journal_tag_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.tag # noqa: E501 List insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_list = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_list ) def __insight_project_journal_tag_put( self, project_id, location_id, journal_id, tag_array, **kwargs ): """Replace insight/journal.tag # noqa: E501 Replace insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_put(project_id, location_id, journal_id, tag_array, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_array (TagArray): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_array'] = \ tag_array return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_put = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_put', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_array': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_array': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_put ) def __insight_project_journal_transfer( self, project_id, location_id, journal_id, insight_project_journal_transfer, **kwargs ): """Transfer insight/journal # noqa: E501 action transfer # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_transfer(project_id, location_id, journal_id, insight_project_journal_transfer, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_transfer (InsightProjectJournalTransfer): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_transfer'] = \ insight_project_journal_transfer return self.call_with_http_info(**kwargs) self.insight_project_journal_transfer = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/actions/transfer', 'operation_id': 'insight_project_journal_transfer', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_transfer': (InsightProjectJournalTransfer,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_transfer': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_transfer ) def __insight_project_journal_update( self, project_id, location_id, journal_id, insight_project_journal_update, **kwargs ): """Update insight/journal # noqa: E501 Returns modified journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_update(project_id, location_id, journal_id, insight_project_journal_update, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_update (InsightProjectJournalUpdate): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_update'] = \ insight_project_journal_update return self.call_with_http_info(**kwargs) self.insight_project_journal_update = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_update', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_update': (InsightProjectJournalUpdate,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_update': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_update )
37.362751
179
0.451342
117,868
0.990795
0
0
0
0
0
0
64,388
0.541244
d3db48db20a20bc47e28f0062af79ebd64f3fa41
811
py
Python
forms/views.py
urchinpro/L2-forms
37f33386984efbb2d1e92c73d915256247801109
[ "MIT" ]
null
null
null
forms/views.py
urchinpro/L2-forms
37f33386984efbb2d1e92c73d915256247801109
[ "MIT" ]
null
null
null
forms/views.py
urchinpro/L2-forms
37f33386984efbb2d1e92c73d915256247801109
[ "MIT" ]
null
null
null
from django.http import HttpResponse from django.utils.module_loading import import_string def pdf(request): """ Get form's number (decimal type: 101.15 - where "101" is form's group and "15"-number itsels). Can't use 1,2,3,4,5,6,7,8,9 for number itsels - which stands after the point. Bacause in database field store in decimal format xxx.yy - two number after dot, and active status. Must use: 01,02,03-09,10,11,12-19,20,21,22-29,30,31..... :param request: :return: """ response = HttpResponse(content_type='application/pdf') t = request.GET.get("type") response['Content-Disposition'] = 'inline; filename="form-' + t + '.pdf"' f = import_string('forms.forms' + t[0:3] + '.form_' + t[4:6]) response.write(f(request_data=request.GET)) return response
38.619048
103
0.670777
0
0
0
0
0
0
0
0
487
0.600493
d3dcc92c42ee28b5565e1b1bdf3f0bd8727161d9
5,087
py
Python
main.py
code-aifarmer/Python-EXE-maker
4b7436353c9a0d46b52543304209b057dcac51c1
[ "MIT" ]
2
2021-01-26T10:19:15.000Z
2021-06-27T03:38:00.000Z
main.py
code-aifarmer/Python-EXE-maker
4b7436353c9a0d46b52543304209b057dcac51c1
[ "MIT" ]
null
null
null
main.py
code-aifarmer/Python-EXE-maker
4b7436353c9a0d46b52543304209b057dcac51c1
[ "MIT" ]
null
null
null
#!/usr/bin/env python import PySimpleGUI as sg import cv2 import subprocess import shutil import os import sys # Demonstrates a number of PySimpleGUI features including: # Default element size # auto_size_buttons # Button # Dictionary return values # update of elements in form (Text, Input) def runCommand(cmd, timeout=None, window=None): """ run shell command @param cmd: command to execute @param timeout: timeout for command execution @return: (return code from command, command output) """ p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output = '' for line in p.stdout: line = line.decode(errors='replace' if (sys.version_info) < (3, 5) else 'backslashreplace').rstrip() output += line print(line) if window: window.Refresh() retval = p.wait(timeout) return (retval, output) def w(): sg.theme('LightGreen') layout = [[sg.Text(' Python EXE Creator', font='Any 15')], [sg.Text('Source Python File'), sg.Input(key='-sourcefile-', size=(45, 1)), sg.FileBrowse(file_types=(("Python Files", "*.py"),))], [sg.Text('Icon File'), sg.Input(key='-iconfile-', size=(45, 1)), sg.FileBrowse(file_types=(("Icon Files", "*.ico"),))], [sg.Frame('Output', font='Any 15', layout=[ [sg.Output(size=(65, 15), font='Courier 10')]])], [sg.Button('Make EXE', bind_return_key=True), sg.Button('Quit', button_color=('white', 'firebrick3'))], ] window = sg.Window('PySimpleGUI EXE Maker', layout, auto_size_text=False, auto_size_buttons=False, default_element_size=(20, 1), text_justification='right') # ---===--- Loop taking in user input --- # while True: event, values = window.read() if event in ('Exit', 'Quit', None): break source_file = values['-sourcefile-'] icon_file = values['-iconfile-'] icon_option = '-i "{}"'.format(icon_file) if icon_file else '' source_path, source_filename = os.path.split(source_file) workpath_option = '--workpath "{}"'.format(source_path) dispath_option = '--distpath "{}"'.format(source_path) specpath_option = '--specpath "{}"'.format(source_path) folder_to_remove = os.path.join(source_path, source_filename[:-3]) file_to_remove = os.path.join(source_path, source_filename[:-3] + '.spec') command_line = 'pyinstaller -wF --clean "{}" {} {} {} {}'.format(source_file, icon_option, workpath_option, dispath_option, specpath_option) if event == 'Make EXE': try: print(command_line) print('Making EXE...the program has NOT locked up...') window.refresh() # print('Running command {}'.format(command_line)) out, err = runCommand(command_line, window=window) shutil.rmtree(folder_to_remove) os.remove(file_to_remove) print('**** DONE ****') except: sg.PopupError('Something went wrong', 'close this window and copy command line from text printed out in main window', 'Here is the output from the run', out) print('Copy and paste this line into the command prompt to manually run PyInstaller:\n\n', command_line) layout = [[sg.Text('Enter Your Passcode')], [sg.Input('', size=(10, 1), key='input')], [sg.Button('1'), sg.Button('2'), sg.Button('3')], [sg.Button('4'), sg.Button('5'), sg.Button('6')], [sg.Button('7'), sg.Button('8'), sg.Button('9')], [sg.Button('Submit'), sg.Button('0'), sg.Button('Clear')], [sg.Text('', size=(15, 1), font=('Helvetica', 18), text_color='red', key='out')], ] window = sg.Window('Keypad', layout, default_button_element_size=(5, 2), auto_size_buttons=False, grab_anywhere=False) # Loop forever reading the form's values, updating the Input field keys_entered = '' while True: event, values = window.read() # read the form if event == sg.WIN_CLOSED: # if the X button clicked, just exit break if event == 'Clear': # clear keys if clear button keys_entered = '' elif event in '1234567890': keys_entered = values['input'] # get what's been entered so far keys_entered += event # add the new digit elif event == 'Submit': keys_entered = values['input'] if values['input']=='123456': sg.popup('输入正确') w() else: sg.popup('输入错误') window['out'].update(keys_entered) # output the final string # change the form to reflect current key string window['input'].update(keys_entered) window.close()
38.832061
120
0.569294
0
0
0
0
0
0
0
0
1,628
0.319028
d3dd8c075e4b425fd099e7113200bcfa2c88d3c5
152
py
Python
seisflows/system/lsf_sm.py
jpvantassel/seisflows
5155ec177b5df0218e1fb5204f1fcd6969c66f20
[ "BSD-2-Clause" ]
97
2016-11-18T21:19:28.000Z
2022-03-31T15:02:42.000Z
seisflows/system/lsf_sm.py
SuwenJunliu/seisflows
14d246691acf8e8549487a5db7c7cd877d23a2ae
[ "BSD-2-Clause" ]
30
2017-02-21T14:54:14.000Z
2021-08-30T01:44:39.000Z
seisflows/system/lsf_sm.py
SuwenJunliu/seisflows
14d246691acf8e8549487a5db7c7cd877d23a2ae
[ "BSD-2-Clause" ]
78
2017-03-01T15:32:29.000Z
2022-01-31T09:09:17.000Z
# # This is Seisflows # # See LICENCE file # ############################################################################### raise NotImplementedError
16.888889
79
0.348684
0
0
0
0
0
0
0
0
119
0.782895
d3ddd574dde8899b673c876fe79246ef6fe9f23e
938
py
Python
data/objects/sample.py
predictive-analytics-lab/tiny-comparison-framework
8ae482a2e69aa5affe94bcd7982e53ad69228d43
[ "Apache-2.0" ]
null
null
null
data/objects/sample.py
predictive-analytics-lab/tiny-comparison-framework
8ae482a2e69aa5affe94bcd7982e53ad69228d43
[ "Apache-2.0" ]
null
null
null
data/objects/sample.py
predictive-analytics-lab/tiny-comparison-framework
8ae482a2e69aa5affe94bcd7982e53ad69228d43
[ "Apache-2.0" ]
null
null
null
from data.objects.data import Data class Sample(Data): """ A way to sample from a dataset for testing purposes. """ def __init__(self, data, num = 100): self.data = data self.dataset_name = data.get_dataset_name() self.class_attr = data.get_class_attribute() self.positive_class_val = data.get_positive_class_val("") # sigh self.sensitive_attrs = data.get_sensitive_attributes() self.privileged_class_names = data.get_privileged_class_names("") # sigh self.categorical_features = data.get_categorical_features() self.features_to_keep = data.get_features_to_keep() self.missing_val_indicators = data.get_missing_val_indicators() self.num_to_sample = num def data_specific_processing(self, dataframe): dataframe = self.data.data_specific_processing(dataframe) return dataframe.sample(n = self.num_to_sample, replace=True)
42.636364
80
0.711087
901
0.960554
0
0
0
0
0
0
84
0.089552
d3de757442c04a58c632f23911d3bb3230eadbab
572
py
Python
parkrundata/views.py
remarkablerocket/parkrundata
c717b59771629d6308ec093e29fd373981726fde
[ "BSD-3-Clause" ]
null
null
null
parkrundata/views.py
remarkablerocket/parkrundata
c717b59771629d6308ec093e29fd373981726fde
[ "BSD-3-Clause" ]
null
null
null
parkrundata/views.py
remarkablerocket/parkrundata
c717b59771629d6308ec093e29fd373981726fde
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from rest_framework import viewsets from rest_framework.permissions import IsAuthenticatedOrReadOnly from .models import Country, Event from .serializers import CountrySerializer, EventSerializer class CountryViewSet(viewsets.ModelViewSet): queryset = Country.objects.all() serializer_class = CountrySerializer permission_classes = [IsAuthenticatedOrReadOnly] class EventViewSet(viewsets.ModelViewSet): queryset = Event.objects.all() serializer_class = EventSerializer permission_classes = [IsAuthenticatedOrReadOnly]
28.6
64
0.798951
344
0.601399
0
0
0
0
0
0
23
0.04021
d3df3020e02d0033dd7ab9554f7528acd2742527
21,764
py
Python
spearmint/models/gp_classifier.py
jatinarora2409/Spearmint
a209eb8aa7d5d93f2fdca6cff50dc17a94d926ab
[ "RSA-MD" ]
null
null
null
spearmint/models/gp_classifier.py
jatinarora2409/Spearmint
a209eb8aa7d5d93f2fdca6cff50dc17a94d926ab
[ "RSA-MD" ]
null
null
null
spearmint/models/gp_classifier.py
jatinarora2409/Spearmint
a209eb8aa7d5d93f2fdca6cff50dc17a94d926ab
[ "RSA-MD" ]
null
null
null
# -*- coding: utf-8 -*- # Spearmint # # Academic and Non-Commercial Research Use Software License and Terms # of Use # # Spearmint is a software package to perform Bayesian optimization # according to specific algorithms (the “Software”). The Software is # designed to automatically run experiments (thus the code name # 'spearmint') in a manner that iteratively adjusts a number of # parameters so as to minimize some objective in as few runs as # possible. # # The Software was developed by Ryan P. Adams, Michael Gelbart, and # Jasper Snoek at Harvard University, Kevin Swersky at the # University of Toronto (“Toronto”), and Hugo Larochelle at the # Université de Sherbrooke (“Sherbrooke”), which assigned its rights # in the Software to Socpra Sciences et Génie # S.E.C. (“Socpra”). Pursuant to an inter-institutional agreement # between the parties, it is distributed for free academic and # non-commercial research use by the President and Fellows of Harvard # College (“Harvard”). # # Using the Software indicates your agreement to be bound by the terms # of this Software Use Agreement (“Agreement”). Absent your agreement # to the terms below, you (the “End User”) have no rights to hold or # use the Software whatsoever. # # Harvard agrees to grant hereunder the limited non-exclusive license # to End User for the use of the Software in the performance of End # User’s internal, non-commercial research and academic use at End # User’s academic or not-for-profit research institution # (“Institution”) on the following terms and conditions: # # 1. NO REDISTRIBUTION. The Software remains the property Harvard, # Toronto and Socpra, and except as set forth in Section 4, End User # shall not publish, distribute, or otherwise transfer or make # available the Software to any other party. # # 2. NO COMMERCIAL USE. End User shall not use the Software for # commercial purposes and any such use of the Software is expressly # prohibited. This includes, but is not limited to, use of the # Software in fee-for-service arrangements, core facilities or # laboratories or to provide research services to (or in collaboration # with) third parties for a fee, and in industry-sponsored # collaborative research projects where any commercial rights are # granted to the sponsor. If End User wishes to use the Software for # commercial purposes or for any other restricted purpose, End User # must execute a separate license agreement with Harvard. # # Requests for use of the Software for commercial purposes, please # contact: # # Office of Technology Development # Harvard University # Smith Campus Center, Suite 727E # 1350 Massachusetts Avenue # Cambridge, MA 02138 USA # Telephone: (617) 495-3067 # Facsimile: (617) 495-9568 # E-mail: [email protected] # # 3. OWNERSHIP AND COPYRIGHT NOTICE. Harvard, Toronto and Socpra own # all intellectual property in the Software. End User shall gain no # ownership to the Software. End User shall not remove or delete and # shall retain in the Software, in any modifications to Software and # in any Derivative Works, the copyright, trademark, or other notices # pertaining to Software as provided with the Software. # # 4. DERIVATIVE WORKS. End User may create and use Derivative Works, # as such term is defined under U.S. copyright laws, provided that any # such Derivative Works shall be restricted to non-commercial, # internal research and academic use at End User’s Institution. End # User may distribute Derivative Works to other Institutions solely # for the performance of non-commercial, internal research and # academic use on terms substantially similar to this License and # Terms of Use. # # 5. FEEDBACK. In order to improve the Software, comments from End # Users may be useful. End User agrees to provide Harvard with # feedback on the End User’s use of the Software (e.g., any bugs in # the Software, the user experience, etc.). Harvard is permitted to # use such information provided by End User in making changes and # improvements to the Software without compensation or an accounting # to End User. # # 6. NON ASSERT. End User acknowledges that Harvard, Toronto and/or # Sherbrooke or Socpra may develop modifications to the Software that # may be based on the feedback provided by End User under Section 5 # above. Harvard, Toronto and Sherbrooke/Socpra shall not be # restricted in any way by End User regarding their use of such # information. End User acknowledges the right of Harvard, Toronto # and Sherbrooke/Socpra to prepare, publish, display, reproduce, # transmit and or use modifications to the Software that may be # substantially similar or functionally equivalent to End User’s # modifications and/or improvements if any. In the event that End # User obtains patent protection for any modification or improvement # to Software, End User agrees not to allege or enjoin infringement of # End User’s patent against Harvard, Toronto or Sherbrooke or Socpra, # or any of the researchers, medical or research staff, officers, # directors and employees of those institutions. # # 7. PUBLICATION & ATTRIBUTION. End User has the right to publish, # present, or share results from the use of the Software. In # accordance with customary academic practice, End User will # acknowledge Harvard, Toronto and Sherbrooke/Socpra as the providers # of the Software and may cite the relevant reference(s) from the # following list of publications: # # Practical Bayesian Optimization of Machine Learning Algorithms # Jasper Snoek, Hugo Larochelle and Ryan Prescott Adams # Neural Information Processing Systems, 2012 # # Multi-Task Bayesian Optimization # Kevin Swersky, Jasper Snoek and Ryan Prescott Adams # Advances in Neural Information Processing Systems, 2013 # # Input Warping for Bayesian Optimization of Non-stationary Functions # Jasper Snoek, Kevin Swersky, Richard Zemel and Ryan Prescott Adams # Preprint, arXiv:1402.0929, http://arxiv.org/abs/1402.0929, 2013 # # Bayesian Optimization and Semiparametric Models with Applications to # Assistive Technology Jasper Snoek, PhD Thesis, University of # Toronto, 2013 # # 8. NO WARRANTIES. THE SOFTWARE IS PROVIDED "AS IS." TO THE FULLEST # EXTENT PERMITTED BY LAW, HARVARD, TORONTO AND SHERBROOKE AND SOCPRA # HEREBY DISCLAIM ALL WARRANTIES OF ANY KIND (EXPRESS, IMPLIED OR # OTHERWISE) REGARDING THE SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY # IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE, OWNERSHIP, AND NON-INFRINGEMENT. HARVARD, TORONTO AND # SHERBROOKE AND SOCPRA MAKE NO WARRANTY ABOUT THE ACCURACY, # RELIABILITY, COMPLETENESS, TIMELINESS, SUFFICIENCY OR QUALITY OF THE # SOFTWARE. HARVARD, TORONTO AND SHERBROOKE AND SOCPRA DO NOT WARRANT # THAT THE SOFTWARE WILL OPERATE WITHOUT ERROR OR INTERRUPTION. # # 9. LIMITATIONS OF LIABILITY AND REMEDIES. USE OF THE SOFTWARE IS AT # END USER’S OWN RISK. IF END USER IS DISSATISFIED WITH THE SOFTWARE, # ITS EXCLUSIVE REMEDY IS TO STOP USING IT. IN NO EVENT SHALL # HARVARD, TORONTO OR SHERBROOKE OR SOCPRA BE LIABLE TO END USER OR # ITS INSTITUTION, IN CONTRACT, TORT OR OTHERWISE, FOR ANY DIRECT, # INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR OTHER # DAMAGES OF ANY KIND WHATSOEVER ARISING OUT OF OR IN CONNECTION WITH # THE SOFTWARE, EVEN IF HARVARD, TORONTO OR SHERBROOKE OR SOCPRA IS # NEGLIGENT OR OTHERWISE AT FAULT, AND REGARDLESS OF WHETHER HARVARD, # TORONTO OR SHERBROOKE OR SOCPRA IS ADVISED OF THE POSSIBILITY OF # SUCH DAMAGES. # # 10. INDEMNIFICATION. To the extent permitted by law, End User shall # indemnify, defend and hold harmless Harvard, Toronto and Sherbrooke # and Socpra, their corporate affiliates, current or future directors, # trustees, officers, faculty, medical and professional staff, # employees, students and agents and their respective successors, # heirs and assigns (the "Indemnitees"), against any liability, # damage, loss or expense (including reasonable attorney's fees and # expenses of litigation) incurred by or imposed upon the Indemnitees # or any one of them in connection with any claims, suits, actions, # demands or judgments arising from End User’s breach of this # Agreement or its Institution’s use of the Software except to the # extent caused by the gross negligence or willful misconduct of # Harvard, Toronto or Sherbrooke or Socpra. This indemnification # provision shall survive expiration or termination of this Agreement. # # 11. GOVERNING LAW. This Agreement shall be construed and governed by # the laws of the Commonwealth of Massachusetts regardless of # otherwise applicable choice of law standards. # # 12. NON-USE OF NAME. Nothing in this License and Terms of Use shall # be construed as granting End Users or their Institutions any rights # or licenses to use any trademarks, service marks or logos associated # with the Software. You may not use the terms “Harvard” or # “University of Toronto” or “Université de Sherbrooke” or “Socpra # Sciences et Génie S.E.C.” (or a substantially similar term) in any # way that is inconsistent with the permitted uses described # herein. You agree not to use any name or emblem of Harvard, Toronto # or Sherbrooke, or any of their subdivisions for any purpose, or to # falsely suggest any relationship between End User (or its # Institution) and Harvard, Toronto and/or Sherbrooke, or in any # manner that would infringe or violate any of their rights. # # 13. End User represents and warrants that it has the legal authority # to enter into this License and Terms of Use on behalf of itself and # its Institution. import copy import sys, logging import numpy as np import numpy.random as npr import scipy.linalg as spla import scipy.optimize as spo import scipy.io as sio import scipy.stats as sps try: import scipy.weave as weave except ImportError: import weave from .gp import GP from ..utils.param import Param as Hyperparameter from ..kernels import Matern52, Noise, Scale, SumKernel, TransformKernel from ..sampling.slice_sampler import SliceSampler from ..sampling.whitened_prior_slice_sampler import WhitenedPriorSliceSampler from ..sampling.elliptical_slice_sampler import EllipticalSliceSampler from ..utils import priors from ..transformations import BetaWarp, Transformer try: module = sys.modules['__main__'].__file__ log = logging.getLogger(module) except: log = logging.getLogger() print 'Not running from main.' class GPClassifier(GP): def __init__(self, num_dims, **options): self.counts = None log.debug('GP Classifier initialized with options: %s' % (options)) self.ess_thinning = int(options.get("ess-thinning", 10)) self._set_likelihood(options) self.prior_whitening = options.get('prior-whitening', True) sigmoid = options.get("sigmoid", "probit") if not self.noiseless: if sigmoid == "probit": self.sigmoid = sps.norm.cdf self.sigmoid_derivative = sps.norm.pdf # not used self.sigmoid_inverse = sps.norm.ppf elif sigmoid == "logistic": self.sigmoid = sps.logistic.cdf self.sigmoid_derivative = sps.logistic.pdf self.sigmoid_inverse = sps.logistic.ppf else: raise Exception("Only probit and logistic sigmoids are supported") else: # If no noise we use the step function and ignore the "sigmoid" argument. # (This is the step function likelihood) # assert options['likelihood'] == 'STEP' self.sigmoid = lambda x: np.greater_equal(x, 0) self.sigmoid_derivative = lambda x: 0. self.sigmoid_inverse = lambda x: 0. # The constraint is that p=s(f) > 1-epsilon # where s if the sigmoid and f is the latent function value, and p is the binomial probability # This is only in more complicated situations. The main situation where this is used # we want f>0. This is equivalent to epsilon=0.5 for the sigmoids we use # The point is: do not set epsilon unless you know what you are doing! # (and do not confuse it with delta, the min constraint confidence) self._one_minus_epsilon = 1.0 - float(options.get("epsilon", 0.5)) self.latent_values_list = [] super(GPClassifier, self).__init__(num_dims, **options) def _set_likelihood(self, options): self.likelihood = options.get('likelihood', 'binomial').lower() if self.likelihood.lower() == "binomial": self.noiseless = False elif self.likelihood.lower() == "step": self.noiseless = True else: raise Exception("GP classifier only supports step or binomial likelihood, not %s" % (options['likelihood'])) def _reset(self): super(GPClassifier, self)._reset() # Reset the latent values if self.counts is not None: initial_latent_vals = self.counts - 0.5 else: initial_latent_vals = np.zeros(0) self.latent_values.initial_value = initial_latent_vals self.latent_values.reset_value() self._latent_values_list = [] def _set_latent_values_from_dict(self, latent_values_dict): # Read in the latent values. For pre-existing data, just load them in # For new data, set them to a default. default_latent_values = self.counts - 0.5 latent_values = np.zeros(self._inputs.shape[0]) for i in xrange(self._inputs.shape[0]): key = str(hash(self._inputs[i].tostring())) if key in latent_values_dict: latent_values[i] = latent_values_dict[key] else: latent_values[i] = default_latent_values[i] self.latent_values.value = latent_values def _burn_samples(self, num_samples): # sys.stderr.write('GPClassifer: burning %s: ' % ', '.join(self.params.keys())) # sys.stderr.write('%04d/%04d' % (0, num_samples)) for i in xrange(num_samples): # sys.stderr.write('\b'*9+'%04d/%04d' % (i, num_samples)) for sampler in self._samplers: sampler.sample(self) self.latent_values_sampler.sample(self) self.chain_length += 1 # sys.stderr.write('\n') def _collect_samples(self, num_samples): # sys.stderr.write('GPClassifer: sampling %s: ' % ', '.join(self.params.keys())) # sys.stderr.write('%04d/%04d' % (0, num_samples)) hypers_list = [] latent_values_list = [] for i in xrange(num_samples): # sys.stderr.write('\b'*9+'%04d/%04d' % (i, num_samples)) for sampler in self._samplers: sampler.sample(self) self.latent_values_sampler.sample(self) current_dict = self.to_dict() hypers_list.append(current_dict['hypers']) latent_values_list.append(current_dict['latent values']) self.chain_length += 1 # sys.stderr.write('\n') return hypers_list, latent_values_list def _build(self): self.params = {} self.latent_values = None # Build the transformer beta_warp = BetaWarp(self.num_dims) beta_alpha, beta_beta = beta_warp.hypers self.params['beta_alpha'] = beta_alpha self.params['beta_beta'] = beta_beta transformer = Transformer(self.num_dims) transformer.add_layer(beta_warp) # Build the component kernels input_kernel = Matern52(self.num_dims) ls = input_kernel.hypers self.params['ls'] = ls # Now apply the transformation. transform_kernel = TransformKernel(input_kernel, transformer) # Add some perturbation for stability stability_noise = Noise(self.num_dims) # Finally make a noisy version if necessary # In a classifier GP the notion of "noise" is really just the scale. if self.noiseless: self._kernel = SumKernel(transform_kernel, stability_noise) else: scaled_kernel = Scale(transform_kernel) self._kernel = SumKernel(scaled_kernel, stability_noise) amp2 = scaled_kernel.hypers self.params['amp2'] = amp2 # Build the mean function (just a constant mean for now) self.mean = Hyperparameter( initial_value = 0.0, prior = priors.Gaussian(0.0,1.0), name = 'mean' ) self.params['mean'] = self.mean # Buld the latent values. Empty for now until the GP gets data. self.latent_values = Hyperparameter( initial_value = np.array([]), name = 'latent values' ) # Build the samplers to_sample = [self.mean] if self.noiseless else [self.mean, amp2] self._samplers.append(SliceSampler(*to_sample, compwise=False, thinning=self.thinning)) self._samplers.append(WhitenedPriorSliceSampler(ls, beta_alpha, beta_beta, compwise=True, thinning=self.thinning)) self.latent_values_sampler = EllipticalSliceSampler(self.latent_values, thinning=self.ess_thinning) @property def values(self): if self.pending is None or len(self._fantasy_values_list) < self.num_states: return self.observed_values if self.num_fantasies == 1: return np.append(self.latent_values.value, self._fantasy_values_list[self.state].flatten(), axis=0) else: return np.append(np.tile(self.latent_values.value[:,None], (1,self.num_fantasies)), self._fantasy_values_list[self.state], axis=0) @property def observed_values(self): if self.latent_values is not None: return self.latent_values.value else: return np.array([]) def set_state(self, state): self.state = state self._set_params_from_dict(self._hypers_list[state]) self._set_latent_values_from_dict(self._latent_values_list[state]) def pi(self, pred, compute_grad=False): return super(GPClassifier, self).pi( pred, compute_grad=compute_grad, C=self.sigmoid_inverse(self._one_minus_epsilon) ) def fit(self, inputs, counts, pending=None, hypers=None, reburn=False, fit_hypers=True): # Set the data for the GP self._inputs = inputs self.counts = counts # Reset the GP self._reset() # Initialize the GP with hypers if provided if hypers: self.from_dict(hypers) if fit_hypers: # Burn samples (if needed) num_samples = self.burnin if reburn or self.chain_length < self.burnin else 0 self._burn_samples(num_samples) # Now collect some samples self._hypers_list, self._latent_values_list = self._collect_samples(self.mcmc_iters) # Now we have more states self.num_states = self.mcmc_iters elif not self._hypers_list: # Just use the current hypers as the only state current_dict = self.to_dict() self._hypers_list = [current_dict['hypers']] self._latent_values_list = [current_dict['latent values']] self.num_states = 1 # Set pending data and generate corresponding fantasies if pending is not None: self.pending = pending self._fantasy_values_list = self._collect_fantasies(pending) # Get caching ready if self.caching: self._prepare_cache() # Set the hypers to the final state of the chain self.set_state(len(self._hypers_list)-1) return self.to_dict() def log_binomial_likelihood(self, y=None): # If no data, don't do anything if not self.has_data: return 0.0 if y is None: y = self.latent_values.value p = self.sigmoid(y) # Note on the below: the obvious implementation would be # return np.sum( pos*np.log(p) + neg*np.log(1-p) ) # The problem is, if pos = 0, and p=0, we will get a 0*-Inf = nan # This messes things up. So we use the safer implementation below that ignores # the term entirely if the counts are 0. pos = self.counts # positive counts neg = 1 - pos with np.errstate(divide='ignore'): # suppress warnings about log(0) return np.sum( pos[pos>0]*np.log(p[pos>0]) ) + np.sum( neg[neg>0]*np.log(1-p[neg>0]) ) def to_dict(self): gp_dict = {} gp_dict['hypers'] = {} for name, hyper in self.params.iteritems(): gp_dict['hypers'][name] = hyper.value # Save the latent values as a dict with keys as hashes of the data # so that each latent value is associated with its input # then when we load them in we know which ones are which gp_dict['latent values'] = {str(hash(self._inputs[i].tostring())) : self.latent_values.value[i] for i in xrange(self._inputs.shape[0])} gp_dict['chain length'] = self.chain_length return gp_dict def from_dict(self, gp_dict): self._set_params_from_dict(gp_dict['hypers']) self._set_latent_values_from_dict(gp_dict['latent values']) self.chain_length = gp_dict['chain length']
43.354582
142
0.684111
11,149
0.510626
0
0
635
0.029083
0
0
12,354
0.565815
d3e0c86fec4a82ec7ab6e46d19afaf6635bc9e88
1,125
py
Python
pycom_lopy4_LoRaBattMonitor/transmitter/main.py
AidanTek/Fab-Cre8_IoT
3d358a484aea2e2a50d6dbef443e9a2757ef9ab8
[ "MIT" ]
null
null
null
pycom_lopy4_LoRaBattMonitor/transmitter/main.py
AidanTek/Fab-Cre8_IoT
3d358a484aea2e2a50d6dbef443e9a2757ef9ab8
[ "MIT" ]
null
null
null
pycom_lopy4_LoRaBattMonitor/transmitter/main.py
AidanTek/Fab-Cre8_IoT
3d358a484aea2e2a50d6dbef443e9a2757ef9ab8
[ "MIT" ]
null
null
null
from machine import Pin, ADC from network import LoRa import socket from utime import sleep # Use a pin for a 'config' mode configPin = Pin('P21', Pin.IN, Pin.PULL_UP) # Create an ADC object adc = ADC() # vbatt pin: vbatt = adc.channel(attn=1, pin='P16') def battConversion(): adcVoltage = vbatt() voltage = adcVoltage*3*1.334/4095 return voltage # Initialise LoRa in LoRa mode # For Europe, use LoRa.EU868 lora = LoRa(mode=LoRa.LORA, region=LoRa.EU868) # Create a raw LoRa socket s = socket.socket(socket.AF_LORA, socket.SOCK_RAW) # Check the Config pin: configMode = not configPin() if not configMode: print('Reading Battery') pycom.rgbled(0x0000FF) message = 'Battery Status: {}'.format(battConversion()) print(message) sleep(2) print('Sending battery status estimate...') pycom.rgbled(0xFF0000) sleep(2) s.setblocking(True) # Send some data s.send(message) print('Message Sent!') pycom.rgbled(0x00FF00) sleep(2) print('Going to sleep') machine.deepsleep(300000) # Otherwise, we are in 'config' so exit to REPL print('Config Mode')
20.454545
59
0.686222
0
0
0
0
0
0
0
0
362
0.321778
d3e103df05be9ac935fd9148b0ac418dab33e33f
7,209
py
Python
scrapi/harvesters/lwbin.py
wearpants/scrapi
b1619a1212d9fc7e1f2247336fc2e4a3d453a4bb
[ "Apache-2.0" ]
34
2015-10-06T20:08:43.000Z
2022-03-16T12:46:24.000Z
scrapi/harvesters/lwbin.py
jgw4sq/twilio
796e97dc6a8fdb8983fd736b328ad907bb1ff73e
[ "Apache-2.0" ]
100
2015-09-10T19:57:32.000Z
2016-06-22T03:09:51.000Z
scrapi/harvesters/lwbin.py
jgw4sq/twilio
796e97dc6a8fdb8983fd736b328ad907bb1ff73e
[ "Apache-2.0" ]
32
2015-09-09T21:28:54.000Z
2019-05-09T03:18:02.000Z
""" A Lake Winnipeg Basin Information Network (BIN) harvester for the SHARE project Example API request: http://130.179.67.140/api/3/action/package_search?q= (problematic) http://130.179.67.140/api/3/action/current_package_list_with_resources (currently using) It oddly returns 5 more datasets than all searchable ones on LWBIN data hub. Known issues: 1 -- Five datasets can be searched but cannot be accessed via LWBIN. Clicking on the searching result would result in linking to a redirected page like this: http://130.179.67.140/user/login?came_from=http://130.179.67.140/dataset/mpca-surface-water-data-access-interactive-map Within each dataset there are resouces that contain urls to source pages. For future work considering using resources urls as canonical urls. 2 -- Resouces properties contained in raw metadata of the datasets are not added to the normalized metadata at this point. 3 -- Single name contributors can be used as filters or an invalid query will be returned. Has nothing to do with scrapi but the frontend. """ from __future__ import unicode_literals import json import logging from dateutil.parser import parse from scrapi import requests from scrapi.base import JSONHarvester from scrapi.linter.document import RawDocument from scrapi.base.helpers import build_properties, datetime_formatter, parse_name logger = logging.getLogger(__name__) ORGANIZATIONS = ( "organization", "fund", "canada", "agriculture", "commitee", "international", "council", "office", "of", "observation", "institute", "lwbin", "cocorahs", "usgs", "nsidc" ) def is_organization(name): """Return a boolean to indicate if the name passed to the function is an organization """ words = name.split(' ') return any(word.strip(";").lower() in ORGANIZATIONS for word in words) def clean_authors(authors): """Cleam authors list. """ authors = authors.strip().replace('<span class="author-names">', '').replace('</span>', '') authors = authors.split(',') new_authors = [] for author in authors: if is_organization(author): new_authors.append(author) else: if ' and ' in author or ' <em>et al.</em>' in author: split_name = author.replace(' <em>et al.</em>', '').split(' and ') new_authors.extend(split_name) else: new_authors.append(author) return new_authors def process_contributors(authors, emails): """Process authors and add author emails If multiple authors and one email, put email in a new author """ emails = emails.split(',') authors = clean_authors(authors) contributor_list = [] append_emails = len(authors) == 1 and len(emails) == 1 and not emails[0] == u'' # append the email to the author only when 1 record is observed for i, author in enumerate(authors): if is_organization(author): contributor = { 'name': author } else: contributor = parse_name(author) if append_emails: contributor['email'] = emails[i] contributor_list.append(contributor) if not append_emails and emails[0] != u'': for email in emails: contributor = { 'name': '', 'email': email } contributor_list.append(contributor) return contributor_list def process_licenses(license_title, license_url, license_id): """Process licenses to comply with the normalized schema """ if not license_url: return [] else: license = { 'uri': license_url, 'description': "{} ({})".format(license_title, license_id) or "" } return [license] def construct_url(url, dataset_path, end_point): """ :return: a url that directs back to the page on LBWIN Data Hub instead of the source page. :param url: host url :param dataset_path: parent path of all datasets :param end_point: name of datasets """ return "/".join([url, dataset_path, end_point]) def process_object_uris(url, extras): """Extract doi from /extras, and return a list of object uris including /url and doi if it exists. """ doi = [] for d in extras: if d['key'] == "DOI" or d['key'] == "DOI:": doi.append(d['value']) if doi == []: return [url] else: return [url].extend(doi) class LWBINHarvester(JSONHarvester): short_name = 'lwbin' long_name = 'Lake Winnipeg Basin Information Network' url = 'http://130.179.67.140' dataset_path = "dataset" # dataset base url for constructing urls that go back to LWBIN instead of source pages. DEFAULT_ENCODING = 'UTF-8' record_encoding = None @property def schema(self): return { 'title': ('/title', lambda x: x or ''), 'description': ('/notes'), 'providerUpdatedDateTime': ('/metadata_modified', datetime_formatter), 'uris': { 'canonicalUri': ('/name', lambda x: construct_url(self.url, self.dataset_path, x)), # Construct new urls directing to LWBIN 'objectUris': ('/url', '/extras', process_object_uris) # Default urls from the metadata directing to source pages }, 'contributors': ('/author', '/author_email', process_contributors), 'licenses': ('/license_title', '/license_url', '/license_id', process_licenses), 'tags': ('/tags', lambda x: [tag['name'].lower() for tag in (x or [])]), 'freeToRead': { 'startDate': ('/isopen', '/metadata_created', lambda x, y: parse(y).date().isoformat() if x else None) }, 'otherProperties': build_properties( ('maintainer', '/maintainer'), ('maintainerEmail', '/maintainer_email'), ('revisionTimestamp', ('/revision_timestamp', datetime_formatter)), ('id', '/id'), ('metadataCreated', ('/metadata_created', datetime_formatter)), ('state', '/state'), ('version', '/version'), ('creatorUserId', '/creator_user_id'), ('type', '/type'), ('numberOfResources', '/num_resources'), ('numberOfTags', '/num_tags'), ('name', '/name'), ('groups', '/groups'), ) } def harvest(self, start_date=None, end_date=None): """Returns a list of Rawdocuments (metadata) Searching by time is not supported by LWBIN CKAN API. all datasets have to be scanned each time. """ base_url = 'http://130.179.67.140/api/3/action/current_package_list_with_resources' records = requests.get(base_url).json()['result'] total = len(records) # Total number of documents logger.info('{} documents to be harvested'.format(total)) return [ RawDocument({ 'doc': json.dumps(record), 'source': self.short_name, 'docID': record['id'], 'filetype': 'json' }) for record in records ]
36.226131
148
0.615758
2,761
0.382993
0
0
1,670
0.231655
0
0
3,312
0.459426
d3e19347ed0ddda8633be363dd6cfd4b345245b2
402
py
Python
catalog/bindings/gmd/point.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/gmd/point.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/gmd/point.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass from bindings.gmd.point_type import PointType __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass class Point(PointType): """A Point is defined by a single coordinate tuple. The direct position of a point is specified by the pos element which is of type DirectPositionType. """ class Meta: namespace = "http://www.opengis.net/gml"
23.647059
72
0.721393
262
0.651741
0
0
273
0.679104
0
0
224
0.557214
d3e28f994d4f8d390af434d713b2e934cf2435a9
1,050
py
Python
hknweb/exams/migrations/0019_auto_20200413_0212.py
AndrewKe/hknweb
8b0591625ffe0b2fa1f50fec453d674a03f52a2e
[ "MIT" ]
null
null
null
hknweb/exams/migrations/0019_auto_20200413_0212.py
AndrewKe/hknweb
8b0591625ffe0b2fa1f50fec453d674a03f52a2e
[ "MIT" ]
null
null
null
hknweb/exams/migrations/0019_auto_20200413_0212.py
AndrewKe/hknweb
8b0591625ffe0b2fa1f50fec453d674a03f52a2e
[ "MIT" ]
null
null
null
# Generated by Django 2.2.8 on 2020-04-13 09:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('exams', '0018_auto_20200412_1715'), ] operations = [ migrations.CreateModel( name='ExamChoice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('exam_Choice', models.CharField(max_length=50)), ], ), migrations.AlterField( model_name='exam', name='exam_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exams.ExamChoice'), ), migrations.AlterField( model_name='exam', name='instructor', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exams.Instructor'), ), migrations.DeleteModel( name='CourseSemester', ), ]
30
114
0.590476
924
0.88
0
0
0
0
0
0
199
0.189524
d3e3af31f72741b010fae28e3067fb84c2fb37ac
1,028
py
Python
tools/linear_algebra/preconditioners/Jacobi.py
mathischeap/mifem
3242e253fb01ca205a76568eaac7bbdb99e3f059
[ "MIT" ]
1
2020-10-14T12:48:35.000Z
2020-10-14T12:48:35.000Z
tools/linear_algebra/preconditioners/Jacobi.py
mathischeap/mifem
3242e253fb01ca205a76568eaac7bbdb99e3f059
[ "MIT" ]
null
null
null
tools/linear_algebra/preconditioners/Jacobi.py
mathischeap/mifem
3242e253fb01ca205a76568eaac7bbdb99e3f059
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Jacobian preconditioner. """ from root.config.main import * from scipy import sparse as spspa from tools.linear_algebra.preconditioners.base import Preconditioner class JacobiPreconditioner(Preconditioner): """""" def __init__(self, A): """""" super(JacobiPreconditioner, self).__init__(A) self._freeze_self_() @property def invM(self): A = self._A_.M diag = A.diagonal() if rAnk != mAster_rank: DIAG = None else: DIAG = np.empty((sIze, self._A_.shape[0])) cOmm.Gather(diag, DIAG, root=mAster_rank) if rAnk == mAster_rank: DIAG = np.sum(DIAG, axis=0) DIAG = np.reciprocal(DIAG) else: DIAG = np.empty((self._A_.shape[0],)) cOmm.Bcast(DIAG, root=mAster_rank) invM = spspa.dia_matrix((DIAG, 0), shape=self._A_.shape) return invM @property def ___applying_method___(self): return 'left_multiply_invM'
25.073171
68
0.592412
836
0.81323
0
0
645
0.627432
0
0
86
0.083658
d3e577b90c506a8bda99f5b1083dfe14aebd03c5
904
py
Python
social_redirects/models.py
JoshZero87/site
c8024b805ff5ff0e16f54dce7bf05097fd2f08e0
[ "MIT" ]
4
2017-01-29T00:38:41.000Z
2019-09-04T14:30:24.000Z
social_redirects/models.py
JoshZero87/site
c8024b805ff5ff0e16f54dce7bf05097fd2f08e0
[ "MIT" ]
74
2017-10-02T04:42:54.000Z
2022-01-13T00:44:16.000Z
social_redirects/models.py
JoshZero87/site
c8024b805ff5ff0e16f54dce7bf05097fd2f08e0
[ "MIT" ]
3
2017-03-24T23:26:46.000Z
2019-10-21T01:16:03.000Z
from django.contrib.sites.models import Site from django.db import models class Redirect(models.Model): title = models.CharField(max_length=200) description = models.CharField(max_length=1024, blank=True, null=True) social_image = models.ImageField(null=True, blank=True) old_path = models.CharField(max_length=200, db_index=True, verbose_name="Redirect From", help_text="This should be an absolute path, excluding the domain name. Example: '/events/search/'.") new_path = models.CharField(max_length=200, blank=True, verbose_name="Redirect To", help_text="This can be either an absolute path (as above) or a full URL starting with 'http://'.") site = models.ForeignKey(Site, models.CASCADE) class Meta: unique_together = (('site', 'old_path'),) ordering = ('old_path',) def __str__(self): return "%s ---> %s" % (self.old_path, self.new_path)
45.2
193
0.710177
826
0.913717
0
0
0
0
0
0
242
0.267699
d3e869c2c7fff869303aff8cf0f763aad3c88462
7,767
py
Python
response_model/python/population_subunits/coarse/analysis/few_cells_tf_analyse_all.py
googlearchive/rgc-models
0dea94bbd54f591d82d95169e33d40bb55b6be94
[ "Apache-2.0" ]
1
2018-09-18T16:47:09.000Z
2018-09-18T16:47:09.000Z
response_model/python/population_subunits/coarse/analysis/few_cells_tf_analyse_all.py
google/rgc-models
0dea94bbd54f591d82d95169e33d40bb55b6be94
[ "Apache-2.0" ]
null
null
null
response_model/python/population_subunits/coarse/analysis/few_cells_tf_analyse_all.py
google/rgc-models
0dea94bbd54f591d82d95169e33d40bb55b6be94
[ "Apache-2.0" ]
1
2022-01-12T12:44:17.000Z
2022-01-12T12:44:17.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== '''Analysis file.''' import sys import os.path import tensorflow as tf from absl import app from absl import flags from absl import gfile import cPickle as pickle import matplotlib matplotlib.use('TkAgg') from matplotlib import pylab import matplotlib.pyplot as plt import numpy as np, h5py import scipy.io as sio from scipy import ndimage import random import re # regular expression matching FLAGS = flags.FLAGS flags.DEFINE_string('folder_name', 'experiment4', 'folder where to store all the data') flags.DEFINE_string('save_location', '/home/bhaishahster/', 'where to store logs and outputs?'); flags.DEFINE_string('data_location', '/home/bhaishahster/data_breakdown/', 'where to take data from?') flags.DEFINE_integer('n_b_in_c', 10, 'number of batches in one chunk of data') flags.DEFINE_integer('np_randseed', 23, 'numpy RNG seed') flags.DEFINE_integer('randseed', 65, 'python RNG seed') flags.DEFINE_integer('ratio_SU', 2, 'ratio of subunits/cells') flags.DEFINE_string('model_id', 'poisson', 'which model to fit') FLAGS = flags.FLAGS def main(argv): print('\nCode started') np.random.seed(FLAGS.np_randseed) random.seed(FLAGS.randseed) ## Load data summary filename = FLAGS.data_location + 'data_details.mat' summary_file = gfile.Open(filename, 'r') data_summary = sio.loadmat(summary_file) cells = np.squeeze(data_summary['cells']) if FLAGS.model_id == 'poisson' or FLAGS.model_id == 'logistic' or FLAGS.model_id == 'hinge': cells_choose = (cells ==3287) | (cells ==3318 ) | (cells ==3155) | (cells ==3066) if FLAGS.model_id == 'poisson_full': cells_choose = np.array(np.ones(np.shape(cells)), dtype='bool') n_cells = np.sum(cells_choose) tot_spks = np.squeeze(data_summary['tot_spks']) total_mask = np.squeeze(data_summary['totalMaskAccept_log']).T tot_spks_chosen_cells = tot_spks[cells_choose] chosen_mask = np.array(np.sum(total_mask[cells_choose,:],0)>0, dtype='bool') print(np.shape(chosen_mask)) print(np.sum(chosen_mask)) stim_dim = np.sum(chosen_mask) print('\ndataset summary loaded') # use stim_dim, chosen_mask, cells_choose, tot_spks_chosen_cells, n_cells # decide the number of subunits to fit n_su = FLAGS.ratio_SU*n_cells #batchsz = [100, 500, 1000, 100, 500, 1000, 100, 500, 1000, 1000, 1000, 5000, 10000, 5000, 10000] #n_b_in_c = [10, 2, 1, 10, 2, 1, 10, 2, 1, 1, 1, 1, 1, 1, 1 ] #step_sz = [0.0001, 0.0001, 0.0001, 0.01, 0.01, 0.01 , 1, 1, 1, 10, 100, 10, 10, 1, 1 ] batchsz = [100, 500, 1000, 5000, 1000, 100, 500, 1000, 5000, 10000, 100, 500, 1000, 5000, 10000, 100, 500, 1000, 5000, 10000] n_b_in_c = [10, 2, 1, 1, 1, 10, 2, 1, 1, 1, 10, 2, 1, 1, 1, 10, 2, 1, 1, 1 ] step_sz = [0.1, 0.1, 0.1, 0.1, 0.1, 1 , 1, 1, 1, 1, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10 ] with tf.Session() as sess: # Learn population model! stim = tf.placeholder(tf.float32, shape=[None, stim_dim], name='stim') resp = tf.placeholder(tf.float32, name='resp') data_len = tf.placeholder(tf.float32, name='data_len') # get filename if FLAGS.model_id == 'poisson' or FLAGS.model_id == 'poisson_full': w = tf.Variable(np.array(0.01 * np.random.randn(stim_dim, n_su), dtype='float32')) a = tf.Variable(np.array(0.1 * np.random.rand(n_cells, 1, n_su), dtype='float32')) if FLAGS.model_id == 'logistic' or FLAGS.model_id == 'hinge': w = tf.Variable(np.array(0.01 * np.random.randn(stim_dim, n_su), dtype='float32')) a = tf.Variable(np.array(0.01 * np.random.rand(n_su, n_cells), dtype='float32')) b_init = np.random.randn(n_cells) #np.log((np.sum(response,0))/(response.shape[0]-np.sum(response,0))) b = tf.Variable(b_init,dtype='float32') plt.figure() for icnt, ibatchsz in enumerate(batchsz): in_b_in_c = n_b_in_c[icnt] istep_sz = np.array(step_sz[icnt],dtype='double') print(icnt) if FLAGS.model_id == 'poisson': short_filename = ('data_model=ASM_pop_batch_sz='+ str(ibatchsz) + '_n_b_in_c' + str(in_b_in_c) + '_step_sz'+ str(istep_sz)+'_bg') else: short_filename = ('data_model='+ str(FLAGS.model_id) +'_batch_sz='+ str(ibatchsz) + '_n_b_in_c' + str(in_b_in_c) + '_step_sz'+ str(istep_sz)+'_bg') parent_folder = FLAGS.save_location + FLAGS.folder_name + '/' save_location = parent_folder +short_filename + '/' print(gfile.IsDirectory(save_location)) print(save_location) save_filename = save_location + short_filename #determine filelist file_list = gfile.ListDirectory(save_location) save_filename = save_location + short_filename print('\nLoading: ', save_filename) bin_files = [] meta_files = [] for file_n in file_list: if re.search(short_filename + '.', file_n): if re.search('.meta', file_n): meta_files += [file_n] else: bin_files += [file_n] #print(bin_files) print(len(meta_files), len(bin_files), len(file_list)) # get latest iteration iterations = np.array([]) for file_name in bin_files: try: iterations = np.append(iterations, int(file_name.split('/')[-1].split('-')[-1])) except: print('Could not load filename: ' + file_name) iterations.sort() print(iterations) iter_plot = iterations[-1] print(int(iter_plot)) # load tensorflow variables saver_var = tf.train.Saver(tf.all_variables()) restore_file = save_filename + '-' + str(int(iter_plot)) saver_var.restore(sess, restore_file) a_eval = a.eval() print(np.exp(np.squeeze(a_eval))) #print(np.shape(a_eval)) # get 2D region to plot mask2D = np.reshape(chosen_mask, [40, 80]) nz_idx = np.nonzero(mask2D) np.shape(nz_idx) print(nz_idx) ylim = np.array([np.min(nz_idx[0])-1, np.max(nz_idx[0])+1]) xlim = np.array([np.min(nz_idx[1])-1, np.max(nz_idx[1])+1]) w_eval = w.eval() #plt.figure() n_su = w_eval.shape[1] for isu in np.arange(n_su): xx = np.zeros((3200)) xx[chosen_mask] = w_eval[:, isu] fig = plt.subplot(20, n_su, n_su * icnt + isu+1) plt.imshow(np.reshape(xx, [40, 80]), interpolation='nearest', cmap='gray') plt.ylim(ylim) plt.xlim(xlim) fig.axes.get_xaxis().set_visible(False) fig.axes.get_yaxis().set_visible(False) #if FLAGS.model_id == 'logistic' or FLAGS.model_id == 'hinge': # plt.title(str(a_eval[isu, :])) #else: # plt.title(str(np.squeeze(np.exp(a_eval[:, 0, isu]))), fontsize=12) if isu == 4: plt.title('Iteration:' + str(int(iter_plot)) + ' batchSz:' + str(ibatchsz) + ' step size:' + str(istep_sz), fontsize=18) plt.show() plt.draw() if __name__ == '__main__': app.run()
38.450495
143
0.624179
0
0
0
0
0
0
0
0
2,459
0.316596
d3e9aaa50f57573a484dd6d782bbd14b01bbbceb
2,074
py
Python
wagtail/admin/views/pages/unpublish.py
brownaa/wagtail
c97bc56c6822eb1b6589d5c33e07f71acfc48845
[ "BSD-3-Clause" ]
8,851
2016-12-09T19:01:45.000Z
2022-03-31T04:45:06.000Z
wagtail/admin/views/pages/unpublish.py
brownaa/wagtail
c97bc56c6822eb1b6589d5c33e07f71acfc48845
[ "BSD-3-Clause" ]
5,197
2016-12-09T19:24:37.000Z
2022-03-31T22:17:55.000Z
wagtail/admin/views/pages/unpublish.py
brownaa/wagtail
c97bc56c6822eb1b6589d5c33e07f71acfc48845
[ "BSD-3-Clause" ]
2,548
2016-12-09T18:16:55.000Z
2022-03-31T21:34:38.000Z
from django.core.exceptions import PermissionDenied from django.shortcuts import get_object_or_404, redirect from django.template.response import TemplateResponse from django.urls import reverse from django.utils.translation import gettext as _ from wagtail.admin import messages from wagtail.admin.views.pages.utils import get_valid_next_url_from_request from wagtail.core import hooks from wagtail.core.models import Page, UserPagePermissionsProxy def unpublish(request, page_id): page = get_object_or_404(Page, id=page_id).specific user_perms = UserPagePermissionsProxy(request.user) if not user_perms.for_page(page).can_unpublish(): raise PermissionDenied next_url = get_valid_next_url_from_request(request) if request.method == 'POST': include_descendants = request.POST.get("include_descendants", False) for fn in hooks.get_hooks('before_unpublish_page'): result = fn(request, page) if hasattr(result, 'status_code'): return result page.unpublish(user=request.user) if include_descendants: for live_descendant_page in page.get_descendants().live().defer_streamfields().specific(): if user_perms.for_page(live_descendant_page).can_unpublish(): live_descendant_page.unpublish() for fn in hooks.get_hooks('after_unpublish_page'): result = fn(request, page) if hasattr(result, 'status_code'): return result messages.success(request, _("Page '{0}' unpublished.").format(page.get_admin_display_title()), buttons=[ messages.button(reverse('wagtailadmin_pages:edit', args=(page.id,)), _('Edit')) ]) if next_url: return redirect(next_url) return redirect('wagtailadmin_explore', page.get_parent().id) return TemplateResponse(request, 'wagtailadmin/pages/confirm_unpublish.html', { 'page': page, 'next': next_url, 'live_descendant_count': page.get_descendants().live().count(), })
37.709091
112
0.696721
0
0
0
0
0
0
0
0
254
0.122469
d3e9c1e71145908db6a37bf71e7072535569119d
14,783
py
Python
bcipy/display/rsvp/display.py
mberkanbicer/BciPy
c18878ad6fc4d1f69e2091b8f029f3b9ab9a923a
[ "MIT" ]
32
2020-11-13T17:53:25.000Z
2022-03-24T21:12:31.000Z
bcipy/display/rsvp/display.py
mberkanbicer/BciPy
c18878ad6fc4d1f69e2091b8f029f3b9ab9a923a
[ "MIT" ]
20
2020-12-02T17:40:42.000Z
2022-03-16T16:38:05.000Z
bcipy/display/rsvp/display.py
mberkanbicer/BciPy
c18878ad6fc4d1f69e2091b8f029f3b9ab9a923a
[ "MIT" ]
10
2020-12-16T02:32:37.000Z
2022-03-23T16:31:59.000Z
import logging import os.path as path from typing import List, Optional, Tuple from psychopy import core, visual from bcipy.acquisition.marker_writer import NullMarkerWriter, MarkerWriter from bcipy.helpers.task import SPACE_CHAR from bcipy.helpers.stimuli import resize_image from bcipy.helpers.system_utils import get_screen_resolution from bcipy.helpers.triggers import TriggerCallback, _calibration_trigger class RSVPDisplay(object): """RSVP Display Object for inquiry Presentation. Animates a inquiry in RSVP. Mode should be determined outside. """ def __init__( self, window: visual.Window, static_clock, experiment_clock: core.Clock, marker_writer: Optional[MarkerWriter] = None, task_color: List[str] = ['white'], task_font: str = 'Times', task_pos: Tuple[float, float] = (-.8, .9), task_height: float = 0.2, task_text: str = '1/100', info_color: List[str] = ['white'], info_text: List[str] = ['Information Text'], info_font: List[str] = ['Times'], info_pos=[(.8, .9)], info_height=[0.2], stim_font='Times', stim_pos=(-.8, .9), stim_height=0.2, stim_inquiry: List[str] = ['a'] * 10, stim_colors: List[str] = ['white'] * 10, stim_timing: List[float] = [1] * 10, is_txt_stim: bool = True, static_time: float = .05, trigger_type: str = 'image', space_char: SPACE_CHAR = SPACE_CHAR): """Initialize RSVP window parameters and objects. PARAMETERS: ---------- # Experiment window(visual.Window): PsychoPy Window static_clock(TODO): no idea experiment_clock(core.Clock): Clock used to timestamp experiment marker_writer(MarkerWriter): object used to write triggers to the daq stream. # Task task_color(list[string]): Color of the task string. Shares the length of the task_text. If of length 1 the entire task bar shares the same color. task_font(string): Font of task string task_pos(tuple): position of task string task_height(float): height for task string task_text(string): text of the task bar # Info info_text(list[string]): Text list for information texts info_color(list[string]): Color of the information text string info_font(list[string]): Font of the information text string info_pos(list[tuple]): Position of the information text string info_height(list[float]): Height of the information text string # Stimuli stim_height(float): height of the stimuli object stim_pos(tuple): position of stimuli stim_font(string): font of the stimuli stim_inquiry(list[string]): list of elements to flash stim_colors(list[string]): list of colors for stimuli stim_timing(list[float]): timing for each letter flash """ self.window = window self.refresh_rate = window.getActualFrameRate() self.logger = logging.getLogger(__name__) self.stimuli_inquiry = stim_inquiry self.stimuli_colors = stim_colors self.stimuli_timing = stim_timing self.is_txt_stim = is_txt_stim self.staticPeriod = static_clock self.static_time = static_time self.experiment_clock = experiment_clock self.timing_clock = core.Clock() # Used to handle writing the marker stimulus self.marker_writer = marker_writer or NullMarkerWriter() # Length of the stimuli (number of flashes) self.stim_length = len(stim_inquiry) # Informational Parameters self.info_text = info_text # Stim parameters self.stimuli_font = stim_font self.stimuli_height = stim_height self.stimuli_pos = stim_pos # Trigger Items self.first_run = True self.trigger_type = trigger_type self.trigger_callback = TriggerCallback() # Callback used on presentation of first stimulus. self.first_stim_callback = lambda _sti: None self.size_list_sti = [] self.space_char = space_char self.task = visual.TextStim(win=self.window, color=task_color[0], height=task_height, text=task_text, font=task_font, pos=task_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) # Create multiple text objects based on input self.text = [] for idx in range(len(self.info_text)): self.text.append(visual.TextStim( win=self.window, color=info_color[idx], height=info_height[idx], text=self.info_text[idx], font=info_font[idx], pos=info_pos[idx], wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0)) # Create Stimuli Object if self.is_txt_stim: self.sti = visual.TextStim( win=self.window, color='white', height=self.stimuli_height, text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) else: self.sti = visual.ImageStim( win=self.window, image=None, mask=None, pos=self.stimuli_pos, ori=0.0) def draw_static(self): """Draw static elements in a stimulus.""" self.task.draw() for idx in range(len(self.text)): self.text[idx].draw() def schedule_to(self, ele_list=[], time_list=[], color_list=[]): """Schedule stimuli elements (works as a buffer). Args: ele_list(list[string]): list of elements of stimuli time_list(list[float]): list of timings of stimuli color_list(list[string]): colors of elements of stimuli """ self.stimuli_inquiry = ele_list self.stimuli_timing = time_list self.stimuli_colors = color_list def update_task(self, text: str, color_list: List[str], pos: Tuple[float]): """Update Task Object. PARAMETERS: ----------- text: text for task color_list: list of the colors for each char pos: position of task """ self.task.text = text self.task.color = color_list[0] self.task.pos = pos def do_inquiry(self): """Do inquiry. Animates a inquiry of flashing letters to achieve RSVP. """ # init an array for timing information timing = [] if self.first_run: # play a inquiry start sound to help orient triggers first_stim_timing = _calibration_trigger( self.experiment_clock, trigger_type=self.trigger_type, display=self.window, on_trigger=self.marker_writer.push_marker) timing.append(first_stim_timing) self.first_stim_time = first_stim_timing[-1] self.first_run = False # generate a inquiry (list of stimuli with meta information) inquiry = self._generate_inquiry() # do the inquiry for idx in range(len(inquiry)): self.is_first_stim = (idx == 0) # set a static period to do all our stim setting. # will warn if ISI value is violated. self.staticPeriod.name = 'Stimulus Draw Period' self.staticPeriod.start(self.stimuli_timing[idx]) # Reset the timing clock to start presenting self.window.callOnFlip( self.trigger_callback.callback, self.experiment_clock, inquiry[idx]['sti_label']) self.window.callOnFlip(self.marker_writer.push_marker, inquiry[idx]['sti_label']) if idx == 0 and callable(self.first_stim_callback): self.first_stim_callback(inquiry[idx]['sti']) # Draw stimulus for n frames inquiry[idx]['sti'].draw() self.draw_static() self.window.flip() core.wait((inquiry[idx]['time_to_present'] - 1) / self.refresh_rate) # End static period self.staticPeriod.complete() # append timing information if self.is_txt_stim: timing.append(self.trigger_callback.timing) else: timing.append(self.trigger_callback.timing) self.trigger_callback.reset() # draw in static and flip once more self.draw_static() self.window.flip() return timing def _generate_inquiry(self): """Generate inquiry. Generate stimuli for next RSVP inquiry. """ stim_info = [] for idx in range(len(self.stimuli_inquiry)): current_stim = {} # turn ms timing into frames! Much more accurate! current_stim['time_to_present'] = int(self.stimuli_timing[idx] * self.refresh_rate) # check if stimulus needs to use a non-default size if self.size_list_sti: this_stimuli_size = self.size_list_sti[idx] else: this_stimuli_size = self.stimuli_height # Set the Stimuli attrs if self.stimuli_inquiry[idx].endswith('.png'): current_stim['sti'] = self.create_stimulus(mode='image', height_int=this_stimuli_size) current_stim['sti'].image = self.stimuli_inquiry[idx] current_stim['sti'].size = resize_image( current_stim['sti'].image, current_stim['sti'].win.size, this_stimuli_size) current_stim['sti_label'] = path.splitext( path.basename(self.stimuli_inquiry[idx]))[0] else: # text stimulus current_stim['sti'] = self.create_stimulus(mode='text', height_int=this_stimuli_size) txt = self.stimuli_inquiry[idx] # customize presentation of space char. current_stim['sti'].text = txt if txt != SPACE_CHAR else self.space_char current_stim['sti'].color = self.stimuli_colors[idx] current_stim['sti_label'] = txt # test whether the word will be too big for the screen text_width = current_stim['sti'].boundingBox[0] if text_width > self.window.size[0]: monitor_width, monitor_height = get_screen_resolution() text_height = current_stim['sti'].boundingBox[1] # If we are in full-screen, text size in Psychopy norm units # is monitor width/monitor height if self.window.size[0] == monitor_width: new_text_width = monitor_width / monitor_height else: # If not, text width is calculated relative to both # monitor size and window size new_text_width = ( self.window.size[1] / monitor_height) * ( monitor_width / monitor_height) new_text_height = (text_height * new_text_width) / text_width current_stim['sti'].height = new_text_height stim_info.append(current_stim) return stim_info def update_task_state(self, text: str, color_list: List[str]) -> None: """Update task state. Removes letters or appends to the right. Args: text(string): new text for task state color_list(list[string]): list of colors for each """ task_state_text = visual.TextStim( win=self.window, font=self.task.font, text=text) x_task_position = task_state_text.boundingBox[0] / \ self.window.size[0] - 1 task_pos = (x_task_position, 1 - self.task.height) self.update_task(text=text, color_list=color_list, pos=task_pos) def wait_screen(self, message, color): """Wait Screen. Args: message(string): message to be displayed while waiting """ # Construct the wait message wait_message = visual.TextStim(win=self.window, font=self.stimuli_font, text=message, height=.1, color=color, pos=(0, -.5), wrapWidth=2, colorSpace='rgb', opacity=1, depth=-6.0) # Try adding our BCI logo. Pass if not found. try: wait_logo = visual.ImageStim( self.window, image='bcipy/static/images/gui_images/bci_cas_logo.png', pos=(0, .5), mask=None, ori=0.0) wait_logo.size = resize_image( 'bcipy/static/images/gui_images/bci_cas_logo.png', self.window.size, 1) wait_logo.draw() except Exception: self.logger.debug('Cannot load logo image') pass # Draw and flip the screen. wait_message.draw() self.window.flip() def create_stimulus(self, height_int: int, mode: str = 'text'): """Create Stimulus. Returns a TextStim or ImageStim object. Args: height_int: The height of the stimulus mode: "text" or "image", determines which to return """ if mode == 'text': return visual.TextStim( win=self.window, color='white', height=height_int, text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) if mode == 'image': return visual.ImageStim( win=self.window, image=None, mask=None, units='', pos=self.stimuli_pos, size=(height_int, height_int), ori=0.0)
37.330808
102
0.558412
14,367
0.97186
0
0
0
0
0
0
4,453
0.301224
d3e9f7de3f63d7f3de57a5c2272c7c0ae564d742
932
py
Python
cloud/db/db.py
bother3000/Smart-IoT-Planting-System
7c33f150850fb8c9bc250fa02bf306f02f7cafb8
[ "MIT" ]
171
2017-09-22T08:25:18.000Z
2022-02-28T07:56:41.000Z
cloud/db/db.py
bother3000/Smart-IoT-Planting-System
7c33f150850fb8c9bc250fa02bf306f02f7cafb8
[ "MIT" ]
2
2018-06-28T02:33:04.000Z
2021-06-09T06:56:58.000Z
cloud/db/db.py
bother3000/Smart-IoT-Planting-System
7c33f150850fb8c9bc250fa02bf306f02f7cafb8
[ "MIT" ]
108
2017-10-03T20:11:52.000Z
2022-03-19T15:21:48.000Z
#!/usr/bin/env python import pymysql #Python3 db = pymysql.connect("localhost","sips","root","zaijian" ) cursor = db.cursor() cursor.execute("SELECT VERSION()") data = cursor.fetchone() print ("Database version : %s " % data) db.close() def create_table(): db = pymysql.connect("localhost","sips","root","zaijian" ) cursor = db.cursor() cursor.execute("DROP TABLE IF EXISTS EMPLOYEE") sql = """CREATE TABLE EMPLOYEE ( FIRST_NAME CHAR(20) NOT NULL, LAST_NAME CHAR(20), AGE INT, SEX CHAR(1), INCOME FLOAT )""" cursor.execute(sql) db.close() def db_insert(): db = pymysql.connect("localhost","sips","root","zaijian" ) cursor = db.cursor() sql = """INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME) VALUES ('Mac', 'Mohan', 20, 'M', 2000)""" try: cursor.execute(sql) db.commit() except: db.rollback() db.close()
23.897436
60
0.610515
0
0
0
0
0
0
0
0
487
0.522532
d3ea46bda3dee2d1a7eb7b7fac100d0a90820e25
14,363
py
Python
sdk/python/pulumi_aws_native/amplify/_inputs.py
AaronFriel/pulumi-aws-native
5621690373ac44accdbd20b11bae3be1baf022d1
[ "Apache-2.0" ]
29
2021-09-30T19:32:07.000Z
2022-03-22T21:06:08.000Z
sdk/python/pulumi_aws_native/amplify/_inputs.py
AaronFriel/pulumi-aws-native
5621690373ac44accdbd20b11bae3be1baf022d1
[ "Apache-2.0" ]
232
2021-09-30T19:26:26.000Z
2022-03-31T23:22:06.000Z
sdk/python/pulumi_aws_native/amplify/_inputs.py
AaronFriel/pulumi-aws-native
5621690373ac44accdbd20b11bae3be1baf022d1
[ "Apache-2.0" ]
4
2021-11-10T19:42:01.000Z
2022-02-05T10:15:49.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from ._enums import * __all__ = [ 'AppAutoBranchCreationConfigArgs', 'AppBasicAuthConfigArgs', 'AppCustomRuleArgs', 'AppEnvironmentVariableArgs', 'AppTagArgs', 'BranchBasicAuthConfigArgs', 'BranchEnvironmentVariableArgs', 'BranchTagArgs', 'DomainSubDomainSettingArgs', ] @pulumi.input_type class AppAutoBranchCreationConfigArgs: def __init__(__self__, *, auto_branch_creation_patterns: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, basic_auth_config: Optional[pulumi.Input['AppBasicAuthConfigArgs']] = None, build_spec: Optional[pulumi.Input[str]] = None, enable_auto_branch_creation: Optional[pulumi.Input[bool]] = None, enable_auto_build: Optional[pulumi.Input[bool]] = None, enable_performance_mode: Optional[pulumi.Input[bool]] = None, enable_pull_request_preview: Optional[pulumi.Input[bool]] = None, environment_variables: Optional[pulumi.Input[Sequence[pulumi.Input['AppEnvironmentVariableArgs']]]] = None, pull_request_environment_name: Optional[pulumi.Input[str]] = None, stage: Optional[pulumi.Input['AppAutoBranchCreationConfigStage']] = None): if auto_branch_creation_patterns is not None: pulumi.set(__self__, "auto_branch_creation_patterns", auto_branch_creation_patterns) if basic_auth_config is not None: pulumi.set(__self__, "basic_auth_config", basic_auth_config) if build_spec is not None: pulumi.set(__self__, "build_spec", build_spec) if enable_auto_branch_creation is not None: pulumi.set(__self__, "enable_auto_branch_creation", enable_auto_branch_creation) if enable_auto_build is not None: pulumi.set(__self__, "enable_auto_build", enable_auto_build) if enable_performance_mode is not None: pulumi.set(__self__, "enable_performance_mode", enable_performance_mode) if enable_pull_request_preview is not None: pulumi.set(__self__, "enable_pull_request_preview", enable_pull_request_preview) if environment_variables is not None: pulumi.set(__self__, "environment_variables", environment_variables) if pull_request_environment_name is not None: pulumi.set(__self__, "pull_request_environment_name", pull_request_environment_name) if stage is not None: pulumi.set(__self__, "stage", stage) @property @pulumi.getter(name="autoBranchCreationPatterns") def auto_branch_creation_patterns(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "auto_branch_creation_patterns") @auto_branch_creation_patterns.setter def auto_branch_creation_patterns(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "auto_branch_creation_patterns", value) @property @pulumi.getter(name="basicAuthConfig") def basic_auth_config(self) -> Optional[pulumi.Input['AppBasicAuthConfigArgs']]: return pulumi.get(self, "basic_auth_config") @basic_auth_config.setter def basic_auth_config(self, value: Optional[pulumi.Input['AppBasicAuthConfigArgs']]): pulumi.set(self, "basic_auth_config", value) @property @pulumi.getter(name="buildSpec") def build_spec(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "build_spec") @build_spec.setter def build_spec(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "build_spec", value) @property @pulumi.getter(name="enableAutoBranchCreation") def enable_auto_branch_creation(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "enable_auto_branch_creation") @enable_auto_branch_creation.setter def enable_auto_branch_creation(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_auto_branch_creation", value) @property @pulumi.getter(name="enableAutoBuild") def enable_auto_build(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "enable_auto_build") @enable_auto_build.setter def enable_auto_build(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_auto_build", value) @property @pulumi.getter(name="enablePerformanceMode") def enable_performance_mode(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "enable_performance_mode") @enable_performance_mode.setter def enable_performance_mode(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_performance_mode", value) @property @pulumi.getter(name="enablePullRequestPreview") def enable_pull_request_preview(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "enable_pull_request_preview") @enable_pull_request_preview.setter def enable_pull_request_preview(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_pull_request_preview", value) @property @pulumi.getter(name="environmentVariables") def environment_variables(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AppEnvironmentVariableArgs']]]]: return pulumi.get(self, "environment_variables") @environment_variables.setter def environment_variables(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AppEnvironmentVariableArgs']]]]): pulumi.set(self, "environment_variables", value) @property @pulumi.getter(name="pullRequestEnvironmentName") def pull_request_environment_name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "pull_request_environment_name") @pull_request_environment_name.setter def pull_request_environment_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "pull_request_environment_name", value) @property @pulumi.getter def stage(self) -> Optional[pulumi.Input['AppAutoBranchCreationConfigStage']]: return pulumi.get(self, "stage") @stage.setter def stage(self, value: Optional[pulumi.Input['AppAutoBranchCreationConfigStage']]): pulumi.set(self, "stage", value) @pulumi.input_type class AppBasicAuthConfigArgs: def __init__(__self__, *, enable_basic_auth: Optional[pulumi.Input[bool]] = None, password: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None): if enable_basic_auth is not None: pulumi.set(__self__, "enable_basic_auth", enable_basic_auth) if password is not None: pulumi.set(__self__, "password", password) if username is not None: pulumi.set(__self__, "username", username) @property @pulumi.getter(name="enableBasicAuth") def enable_basic_auth(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "enable_basic_auth") @enable_basic_auth.setter def enable_basic_auth(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_basic_auth", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "password", value) @property @pulumi.getter def username(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "username") @username.setter def username(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "username", value) @pulumi.input_type class AppCustomRuleArgs: def __init__(__self__, *, source: pulumi.Input[str], target: pulumi.Input[str], condition: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[str]] = None): pulumi.set(__self__, "source", source) pulumi.set(__self__, "target", target) if condition is not None: pulumi.set(__self__, "condition", condition) if status is not None: pulumi.set(__self__, "status", status) @property @pulumi.getter def source(self) -> pulumi.Input[str]: return pulumi.get(self, "source") @source.setter def source(self, value: pulumi.Input[str]): pulumi.set(self, "source", value) @property @pulumi.getter def target(self) -> pulumi.Input[str]: return pulumi.get(self, "target") @target.setter def target(self, value: pulumi.Input[str]): pulumi.set(self, "target", value) @property @pulumi.getter def condition(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "condition") @condition.setter def condition(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "condition", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "status", value) @pulumi.input_type class AppEnvironmentVariableArgs: def __init__(__self__, *, name: pulumi.Input[str], value: pulumi.Input[str]): pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) @property @pulumi.getter def name(self) -> pulumi.Input[str]: return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @pulumi.input_type class AppTagArgs: def __init__(__self__, *, key: pulumi.Input[str], value: pulumi.Input[str]): pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> pulumi.Input[str]: return pulumi.get(self, "key") @key.setter def key(self, value: pulumi.Input[str]): pulumi.set(self, "key", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @pulumi.input_type class BranchBasicAuthConfigArgs: def __init__(__self__, *, password: pulumi.Input[str], username: pulumi.Input[str], enable_basic_auth: Optional[pulumi.Input[bool]] = None): pulumi.set(__self__, "password", password) pulumi.set(__self__, "username", username) if enable_basic_auth is not None: pulumi.set(__self__, "enable_basic_auth", enable_basic_auth) @property @pulumi.getter def password(self) -> pulumi.Input[str]: return pulumi.get(self, "password") @password.setter def password(self, value: pulumi.Input[str]): pulumi.set(self, "password", value) @property @pulumi.getter def username(self) -> pulumi.Input[str]: return pulumi.get(self, "username") @username.setter def username(self, value: pulumi.Input[str]): pulumi.set(self, "username", value) @property @pulumi.getter(name="enableBasicAuth") def enable_basic_auth(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "enable_basic_auth") @enable_basic_auth.setter def enable_basic_auth(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_basic_auth", value) @pulumi.input_type class BranchEnvironmentVariableArgs: def __init__(__self__, *, name: pulumi.Input[str], value: pulumi.Input[str]): pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) @property @pulumi.getter def name(self) -> pulumi.Input[str]: return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @pulumi.input_type class BranchTagArgs: def __init__(__self__, *, key: pulumi.Input[str], value: pulumi.Input[str]): pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> pulumi.Input[str]: return pulumi.get(self, "key") @key.setter def key(self, value: pulumi.Input[str]): pulumi.set(self, "key", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @pulumi.input_type class DomainSubDomainSettingArgs: def __init__(__self__, *, branch_name: pulumi.Input[str], prefix: pulumi.Input[str]): pulumi.set(__self__, "branch_name", branch_name) pulumi.set(__self__, "prefix", prefix) @property @pulumi.getter(name="branchName") def branch_name(self) -> pulumi.Input[str]: return pulumi.get(self, "branch_name") @branch_name.setter def branch_name(self, value: pulumi.Input[str]): pulumi.set(self, "branch_name", value) @property @pulumi.getter def prefix(self) -> pulumi.Input[str]: return pulumi.get(self, "prefix") @prefix.setter def prefix(self, value: pulumi.Input[str]): pulumi.set(self, "prefix", value)
34.609639
124
0.664555
13,540
0.9427
0
0
13,711
0.954606
0
0
2,111
0.146975
d3eaa974be46c94752b5084755d30c91ec1e2ca1
4,203
py
Python
awsecommerceservice/models/item_lookup_request.py
nidaizamir/Test-PY
26ea1019115a1de3b1b37a4b830525e164ac55ce
[ "MIT" ]
null
null
null
awsecommerceservice/models/item_lookup_request.py
nidaizamir/Test-PY
26ea1019115a1de3b1b37a4b830525e164ac55ce
[ "MIT" ]
null
null
null
awsecommerceservice/models/item_lookup_request.py
nidaizamir/Test-PY
26ea1019115a1de3b1b37a4b830525e164ac55ce
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ awsecommerceservice This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ class ItemLookupRequest(object): """Implementation of the 'ItemLookupRequest' model. TODO: type model description here. Attributes: condition (ConditionEnum): TODO: type description here. id_type (IdTypeEnum): TODO: type description here. merchant_id (string): TODO: type description here. item_id (list of string): TODO: type description here. response_group (list of string): TODO: type description here. search_index (string): TODO: type description here. variation_page (object): TODO: type description here. related_item_page (object): TODO: type description here. relationship_type (list of string): TODO: type description here. include_reviews_summary (string): TODO: type description here. truncate_reviews_at (int): TODO: type description here. """ # Create a mapping from Model property names to API property names _names = { "condition":'Condition', "id_type":'IdType', "merchant_id":'MerchantId', "item_id":'ItemId', "response_group":'ResponseGroup', "search_index":'SearchIndex', "variation_page":'VariationPage', "related_item_page":'RelatedItemPage', "relationship_type":'RelationshipType', "include_reviews_summary":'IncludeReviewsSummary', "truncate_reviews_at":'TruncateReviewsAt' } def __init__(self, condition=None, id_type=None, merchant_id=None, item_id=None, response_group=None, search_index=None, variation_page=None, related_item_page=None, relationship_type=None, include_reviews_summary=None, truncate_reviews_at=None): """Constructor for the ItemLookupRequest class""" # Initialize members of the class self.condition = condition self.id_type = id_type self.merchant_id = merchant_id self.item_id = item_id self.response_group = response_group self.search_index = search_index self.variation_page = variation_page self.related_item_page = related_item_page self.relationship_type = relationship_type self.include_reviews_summary = include_reviews_summary self.truncate_reviews_at = truncate_reviews_at @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary condition = dictionary.get('Condition') id_type = dictionary.get('IdType') merchant_id = dictionary.get('MerchantId') item_id = dictionary.get('ItemId') response_group = dictionary.get('ResponseGroup') search_index = dictionary.get('SearchIndex') variation_page = dictionary.get('VariationPage') related_item_page = dictionary.get('RelatedItemPage') relationship_type = dictionary.get('RelationshipType') include_reviews_summary = dictionary.get('IncludeReviewsSummary') truncate_reviews_at = dictionary.get('TruncateReviewsAt') # Return an object of this model return cls(condition, id_type, merchant_id, item_id, response_group, search_index, variation_page, related_item_page, relationship_type, include_reviews_summary, truncate_reviews_at)
35.618644
83
0.623602
4,056
0.965025
0
0
1,613
0.383773
0
0
2,057
0.489412
d3eb09e186d2266dd713792bddd6301d09f60a0f
6,372
py
Python
data.py
zhaoyun630/R-NET-in-Keras
425ed06ff5322cd5187b8e321865ab0459ec3825
[ "MIT" ]
207
2017-07-12T18:14:38.000Z
2021-08-01T20:25:44.000Z
data.py
zhaoyun630/R-NET-in-Keras
425ed06ff5322cd5187b8e321865ab0459ec3825
[ "MIT" ]
31
2017-08-20T08:30:48.000Z
2021-03-03T17:47:46.000Z
data.py
zhaoyun630/R-NET-in-Keras
425ed06ff5322cd5187b8e321865ab0459ec3825
[ "MIT" ]
102
2017-07-28T11:19:49.000Z
2021-08-01T20:26:31.000Z
from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import cPickle as pickle from keras import backend as K from keras.utils import np_utils from keras.preprocessing import sequence from random import shuffle import itertools def load_dataset(filename): with open(filename, 'rb') as f: return pickle.load(f) def padded_batch_input(input, indices=None, dtype=K.floatx(), maxlen=None): if indices is None: indices = np.arange(len(input)) batch_input = [input[i] for i in indices] return sequence.pad_sequences(batch_input, maxlen, dtype, padding='post') def categorical_batch_target(target, classes, indices=None, dtype=K.floatx()): if indices is None: indices = np.arange(len(target)) batch_target = [min(target[i], classes-1) for i in indices] return np_utils.to_categorical(batch_target, classes).astype(dtype) def lengthGroup(length): if length < 150: return 0 if length < 240: return 1 if length < 380: return 2 if length < 520: return 3 if length < 660: return 4 return 5 class BatchGen(object): def __init__(self, inputs, targets=None, batch_size=None, stop=False, shuffle=True, balance=False, dtype=K.floatx(), flatten_targets=False, sort_by_length=False, group=False, maxlen=None): assert len(set([len(i) for i in inputs])) == 1 assert(not shuffle or not sort_by_length) self.inputs = inputs self.nb_samples = len(inputs[0]) self.batch_size = batch_size if batch_size else self.nb_samples self.dtype = dtype self.stop = stop self.shuffle = shuffle self.balance = balance self.targets = targets self.flatten_targets = flatten_targets if isinstance(maxlen, (list, tuple)): self.maxlen = maxlen else: self.maxlen = [maxlen] * len(inputs) self.sort_by_length = None if sort_by_length: self.sort_by_length = np.argsort([-len(p) for p in inputs[0]]) # if self.targets and self.balance: # self.class_weight = class_weight(self.targets) self.generator = self._generator() self._steps = -(-self.nb_samples // self.batch_size) # round up self.groups = None if group is not False: indices = np.arange(self.nb_samples) ff = lambda i: lengthGroup(len(inputs[0][i])) indices = np.argsort([ff(i) for i in indices]) self.groups = itertools.groupby(indices, ff) self.groups = {k: np.array(list(v)) for k, v in self.groups} def _generator(self): while True: if self.shuffle: permutation = np.random.permutation(self.nb_samples) elif self.sort_by_length is not None: permutation = self.sort_by_length elif self.groups is not None: # permutation = np.arange(self.nb_samples) # tmp = permutation.copy() # for id in self.group_ids: # mask = (self.groups==id) # tmp[mask] = np.random.permutation(permutation[mask]) # permutation = tmp # import ipdb # ipdb.set_trace() for k, v in self.groups.items(): np.random.shuffle(v) tmp = np.concatenate(self.groups.values()) batches = np.array_split(tmp, self._steps) remainder = [] if len(batches[-1]) < self._steps: remainder = batches[-1:] batches = batches[:-1] shuffle(batches) batches += remainder permutation = np.concatenate(batches) else: permutation = np.arange(self.nb_samples) i = 0 longest = 767 while i < self.nb_samples: if self.sort_by_length is not None: bs = self.batch_size * 767 // self.inputs[0][permutation[i]].shape[0] else: bs = self.batch_size indices = permutation[i : i + bs] i = i + bs # for i in range(0, self.nb_samples, self.batch_size): # indices = permutation[i : i + self.batch_size] batch_X = [padded_batch_input(x, indices, self.dtype, maxlen) for x, maxlen in zip(self.inputs, self.maxlen)] P = batch_X[0].shape[1] if not self.targets: yield batch_X continue batch_Y = [categorical_batch_target(target, P, indices, self.dtype) for target in self.targets] if self.flatten_targets: batch_Y = np.concatenate(batch_Y, axis=-1) if not self.balance: yield (batch_X, batch_Y) continue # batch_W = np.array([self.class_weight[y] for y in batch_targets]) batch_W = np.array([bs / self.batch_size for x in batch_X[0]]).astype(self.dtype) yield (batch_X, batch_Y, batch_W) if self.stop: raise StopIteration def __iter__(self): return self.generator def next(self): return self.generator.next() def __next__(self): return self.generator.__next__() def steps(self): if self.sort_by_length is None: return self._steps print("Steps was called") if self.shuffle: permutation = np.random.permutation(self.nb_samples) elif self.sort_by_length is not None: permutation = self.sort_by_length else: permutation = np.arange(self.nb_samples) i = 0 longest = 767 self._steps = 0 while i < self.nb_samples: bs = self.batch_size * 767 // self.inputs[0][permutation[i]].shape[0] i = i + bs self._steps += 1 return self._steps batch_gen = BatchGen # for backward compatibility
31.701493
97
0.557439
5,142
0.806968
2,750
0.431576
0
0
0
0
555
0.0871
d3ebad071ed8577b67556835d306ad97a7a130ad
217
py
Python
algoritmos/ajuste-curvas/caso-linear/Teste.py
mauriciomoccelin/metodos-numericos
67bdb305d4db8a59943a17128ba2c06fefcc4a36
[ "MIT" ]
3
2019-07-03T18:05:44.000Z
2020-02-04T16:37:21.000Z
algoritmos/ajuste-curvas/caso-linear/Teste.py
mauriciomoccelin/metodos-numericos
67bdb305d4db8a59943a17128ba2c06fefcc4a36
[ "MIT" ]
null
null
null
algoritmos/ajuste-curvas/caso-linear/Teste.py
mauriciomoccelin/metodos-numericos
67bdb305d4db8a59943a17128ba2c06fefcc4a36
[ "MIT" ]
null
null
null
from RegressaoLinear import RegressaoLinear planoCartesiano = { 0.5: 4.4, 2.8: 1.8, 4.2: 1.0, 6.7: 0.4, 8.3: 0.2 } regressaoLinear = RegressaoLinear(planoCartesiano) print(regressaoLinear.gerar_equacao())
16.692308
50
0.705069
0
0
0
0
0
0
0
0
0
0
d3ec165a9fa9c3cf83a87cdf6db9f7df86904452
1,528
py
Python
src/app.py
UBC-MDS/dsci_532_group19
9814f8f3bc2cf95c5855becf2d92265b8a97893d
[ "MIT" ]
null
null
null
src/app.py
UBC-MDS/dsci_532_group19
9814f8f3bc2cf95c5855becf2d92265b8a97893d
[ "MIT" ]
27
2022-02-15T01:08:06.000Z
2022-03-18T23:49:45.000Z
src/app.py
UBC-MDS/dsci_532_group19
9814f8f3bc2cf95c5855becf2d92265b8a97893d
[ "MIT" ]
2
2022-02-17T06:11:41.000Z
2022-03-02T03:24:54.000Z
import dash from dash import html from dash import dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output from .layout import * from .plot import * # from layout import * # from plot import * app = dash.Dash( __name__, external_stylesheets=[dbc.themes.BOOTSTRAP, "/css/button.css"] ) app.title = "Data Science Salaries" server = app.server app.layout = html.Div( [ dcc.Location(id="url", refresh=False), topbar, content, # sidebar, ] ) @app.callback(Output("scatter", "srcDoc"), Input("data_scientist", "value")) def update(DS_identity): rst = plot_sidebar(DS_identity) return rst @app.callback( Output("world_map", "srcDoc"), [Input("select-country", "value")], ) def update(xcon): return plot_map(xcon) @app.callback( Output("salary_heatmap", "srcDoc"), [Input("xslider_1", "value"), Input("select-country", "value")], ) def update(xmax, xcon): return plot_salary_heatmap(xmax, xcon) @app.callback( Output("gender-boxplot", "srcDoc"), [Input("xslider_1", "value"), Input("select-country", "value")], ) def update(xmax, xcon): return plot_gender_boxplot(xmax, xcon) @app.callback( Output("edu_histogram", "srcDoc"), [ Input("xslider_1", "value"), Input("select-country", "value"), Input("select-stacking", "value") ] ) def update(xmax, xcon, stack): return plot_edu_histo(xmax, xcon, stack) if __name__ == "__main__": app.run_server(debug=True)
20.931507
76
0.655759
0
0
0
0
936
0.612565
0
0
407
0.266361
d3ed6b32008718ad48f1726c2f8858cca85dfe86
3,035
py
Python
jaeger-cli/rpc.py
shwsun/jaeger-cli
cf8bb7a00184220c206ccd7468b89ce4ab5a706e
[ "Apache-2.0" ]
null
null
null
jaeger-cli/rpc.py
shwsun/jaeger-cli
cf8bb7a00184220c206ccd7468b89ce4ab5a706e
[ "Apache-2.0" ]
null
null
null
jaeger-cli/rpc.py
shwsun/jaeger-cli
cf8bb7a00184220c206ccd7468b89ce4ab5a706e
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 MassOpenCloud. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. __all__ = [ 'init', 'cleanup', 'set_defaults', 'add_extra_exmods', 'clear_extra_exmods', 'get_allowed_exmods', 'RequestContextSerializer', 'get_client', 'get_server', 'get_notifier', 'TRANSPORT_ALIASES', ] import functools from oslo_log import log as logging import oslo_messaging as messaging from oslo_serialization import jsonutils from oslo_service import periodic_task from oslo_utils import importutils from oslo_utils import timeutils import nova.conf import nova.context import nova.exception from nova.i18n import _ from nova import objects profiler = importutils.try_import("osprofiler.profiler") CONF = nova.conf.CONF LOG = logging.getLogger(__name__) TRANSPORT = None LEGACY_NOTIFIER = None NOTIFICATION_TRANSPORT = None NOTIFIER = None ALLOWED_EXMODS = [ nova.exception.__name__, ] EXTRA_EXMODS = [] # NOTE(markmc): The nova.openstack.common.rpc entries are for backwards compat # with Havana rpc_backend configuration values. The nova.rpc entries are for # compat with Essex values. TRANSPORT_ALIASES = { 'nova.openstack.common.rpc.impl_kombu': 'rabbit', 'nova.openstack.common.rpc.impl_qpid': 'qpid', 'nova.openstack.common.rpc.impl_zmq': 'zmq', 'nova.rpc.impl_kombu': 'rabbit', 'nova.rpc.impl_qpid': 'qpid', 'nova.rpc.impl_zmq': 'zmq', } class RequestContextSerializer(messaging.Serializer): """Request context serializer and deserializer from Nova.rpc. This is the original serializer from nova. Nothing is changed besides the docstring. """ def __init__(self, base): self._base = base def serialize_entity(self, context, entity): if not self._base: return entity return self._base.serialize_entity(context, entity) def deserialize_entity(self, context, entity): if not self._base: return entity return self._base.deserialize_entity(context, entity) def serialize_context(self, context): return context.to_dict() def deserialize_context(self, context): return nova.context.RequestContext.from_dict(context) class ProfilerRequestContextSerializer(RequestContextSerializer): """Serializer and deserializer impl. Serializer and deserializer impl based on Jaeger tracing metadata propagation. For usage check out docs/how-to.md . This is the only impl that is important. """ pass
27.590909
80
0.725206
1,086
0.357825
0
0
0
0
0
0
1,552
0.511367
d3ededa11ab3bf342dc8f952cbe323bf1951fb20
3,296
py
Python
data_structure/tree/test_binarytree.py
lp1225/my_algorithm
c5995fd6ec8692a4f25280097b5c7f1459481b40
[ "MIT" ]
1
2019-07-03T16:23:09.000Z
2019-07-03T16:23:09.000Z
data_structure/tree/test_binarytree.py
lp1225/my_algorithm
c5995fd6ec8692a4f25280097b5c7f1459481b40
[ "MIT" ]
null
null
null
data_structure/tree/test_binarytree.py
lp1225/my_algorithm
c5995fd6ec8692a4f25280097b5c7f1459481b40
[ "MIT" ]
null
null
null
# 搜索二叉树 from queue import Queue class Node(object): """节点""" def __init__(self, data): self.data = data self.node_left = None self.node_right = None class BinaryTree(object): def __init__(self): self.root = None def insert(tree, node): """插入节点""" if tree.root == None: tree.root = node else: temp = tree.root # 必须要有一个临时节点 while temp != None: if temp.data > node.data: if temp.node_left == None: temp.node_left = node return else: temp = temp.node_left else: if temp.node_right == None: temp.node_right = node return else: temp = temp.node_right def preorder(node): """先序遍历""" if node != None: print(node.data, end='') preorder(node.node_left) preorder(node.node_right) def inorder(node): """中序遍历""" if node != None: inorder(node.node_left) print(node.data, end='') inorder(node.node_right) def postorder(node): """后序遍历""" if node != None: postorder(node.node_left) postorder(node.node_right) print(node.data, end='') def get_height(node): """得到最大高度k""" if node == None: return 0 max_left = get_height(node.node_left) max_right = get_height(node.node_right) max_value = max(max_left, max_right) return max_value+1 def get_node(node, k): """得到k层的节点""" if node == None: return if k == 1: if node.data !=None: print(node.data, end='') get_node(node.node_left, k-1) get_node(node.node_right, k-1) def get_max(node): """查找最大值 在右子树中找 """ if node != None: while node.node_right != None: node = node.node_right return node.data def get_min(node): """查找最小值""" if node != None: while node.node_left != None: node = node.node_left return node.data def comorder(node): q = Queue() q.put(node) if node == None: return else: while q.empty() != True: node = q.get(0) print(node.data, end='') if node.node_left != None: q.put(node.node_left) if node.node_right != None: q.put(node.node_right) def Mirror(node): """反转二叉树, 顺序执行,nice """ if node == None: return if node.node_left == None and node.node_right == None: return temp = node.node_left node.node_left = node.node_right node.node_right = temp Mirror(node.node_left) Mirror(node.node_right) if __name__ == '__main__': tree = BinaryTree() arr_test = [6, 3, 8, 2, 5, 1, 7] for i in arr_test: insert(tree, Node(i)) # preorder(tree.root) # print() # inorder(tree.root) # print() # get_node(tree.root, 3) # print() # result = get_height(tree.root) # print(result) # max_value = get_max(tree.root) # print(max_value) # min_value = get_min(tree.root) # print(min_value) comorder(tree.root) Mirror(tree.root) print() comorder(tree.root)
22.575342
58
0.531553
231
0.06719
0
0
0
0
0
0
569
0.165503
d3eed0d68517bbf2b89eb59f3fef60d4cac6c141
703
py
Python
Python-desenvolvimento/ex036.py
MarcosMaciel-MMRS/Desenvolvimento-python
2b2fc54788da3ca110d495b9e80a494f2b31fb09
[ "MIT" ]
null
null
null
Python-desenvolvimento/ex036.py
MarcosMaciel-MMRS/Desenvolvimento-python
2b2fc54788da3ca110d495b9e80a494f2b31fb09
[ "MIT" ]
null
null
null
Python-desenvolvimento/ex036.py
MarcosMaciel-MMRS/Desenvolvimento-python
2b2fc54788da3ca110d495b9e80a494f2b31fb09
[ "MIT" ]
null
null
null
#empréstimos bancários. pegue o valor da casa, o salario da pessoa e em quanto tempo ela quer pagar. #se as parcelas ficarem acima de 30% do salario, negue o imprestimo. casa = float(input('Informe o valor da casa: R$')) salario = float(input('informe seu salario: R$')) tempo = int(input('Em quanto tempo planeja pagar: ')) parcela = casa/(tempo*12)#para fazer a conta com base em anos, levando em conta as parcelas mensais. print('Para pagar um casa de R${:.2f} e em {}anos, suas parcelas ficariam de R${:.2f}'.format(casa, tempo, parcela)) if parcela >= (salario*30/100): print('Com seu salário atual, não é possível efetuar esse empréstimo.') else: print('Empréstimo aprovado')
58.583333
117
0.709815
0
0
0
0
0
0
0
0
508
0.714487
d3f026b7191d98da19a4514bcacdc0c4c65fbbab
433
py
Python
UDEMY-Learn Python Programming Masterclass/Section 3-Stepping into the World of Python/exercise4.py
Sanjay9921/Python
05ac161dd46f9b4731a5c14ff5ef52adb705e8e6
[ "MIT" ]
null
null
null
UDEMY-Learn Python Programming Masterclass/Section 3-Stepping into the World of Python/exercise4.py
Sanjay9921/Python
05ac161dd46f9b4731a5c14ff5ef52adb705e8e6
[ "MIT" ]
null
null
null
UDEMY-Learn Python Programming Masterclass/Section 3-Stepping into the World of Python/exercise4.py
Sanjay9921/Python
05ac161dd46f9b4731a5c14ff5ef52adb705e8e6
[ "MIT" ]
null
null
null
#Integer division #You have a shop selling buns for $2.40 each. A customer comes in with $15, and would like to buy as many buns as possible. #Complete the code to calculate how many buns the customer can afford. #Note: Your customer won't be happy if you try to sell them part of a bun. #Print only the result, any other text in the output will cause the checker to fail. bun_price = 2.40 money = 15 print( money // bun_price )
36.083333
124
0.745958
0
0
0
0
0
0
0
0
369
0.852194
d3f12db2d9a12b691dfde83d5ec0f772b55deb37
1,708
py
Python
scripts/test_maths.py
paulscottrobson/Basic65816
167c25b1bbc2680f55acdf4bff771750acfe907c
[ "MIT" ]
null
null
null
scripts/test_maths.py
paulscottrobson/Basic65816
167c25b1bbc2680f55acdf4bff771750acfe907c
[ "MIT" ]
4
2019-06-18T14:45:35.000Z
2019-06-22T17:18:22.000Z
scripts/test_maths.py
paulscottrobson/Basic65816
167c25b1bbc2680f55acdf4bff771750acfe907c
[ "MIT" ]
1
2021-03-18T04:31:44.000Z
2021-03-18T04:31:44.000Z
# ******************************************************************************************* # ******************************************************************************************* # # Name : test_maths.py # Purpose : Create lots of variables/arrays and arithmetic/bitwise. # Date : 10th June 2019 # Author : Paul Robson ([email protected]) # # ******************************************************************************************* # ******************************************************************************************* import random from variables import * def calculate(op,a,b): if op == "+": return a + b if op == "-": return a - b if op == "*": return a * b if op == "%": return a % b if op == "/": return int(a / b) if op == "&": return a & b if op == "|": return a | b if op == "^": return a ^ b assert False if __name__ == "__main__": print("Arithmetic/Bitwise test code.") operators = "+,-,*,/,&,|,^".split(",") eb = EntityBucket(-1,60,0,10,0) # bs = BasicSource() bs.append(eb.setupCode()) bs.append(eb.assignCode()) for i in range(0,900): ok = False while not ok: v1 = eb.pickOne() v2 = eb.pickOne() operator = operators[random.randint(0,len(operators)-1)] ok = True if abs(v1.getValue()*v2.getValue()) >= 32768*4096: ok = False if (operator == "/" or operator == "%") and v2.getValue() == 0: ok = False r = calculate(operator,v1.getValue(),v2.getValue()) bs.append("assert ({0}{1}{2}) = {3}".format(v1.getEither(),operator,v2.getEither(),r)) bs.append(eb.checkCode()) bs.save() # blk = BasicBlock(0x4000,0x8000) blk.setBoot("run",False) blk.loadProgram() blk.exportFile("temp/basic.bin")
26.6875
93
0.466042
0
0
0
0
0
0
0
0
676
0.395785
d3f286f3f58a2b5e1d9a8943be97eb809e75f53c
19,191
py
Python
qa/char_analyze.py
JinkelaCrops/t2t-learning
5d9b5a5164af763c24f1cbce9d97561e9f2b772c
[ "Apache-2.0" ]
5
2019-03-28T03:52:32.000Z
2021-02-24T07:09:26.000Z
qa/char_analyze.py
JinkelaCrops/t2t-learning
5d9b5a5164af763c24f1cbce9d97561e9f2b772c
[ "Apache-2.0" ]
null
null
null
qa/char_analyze.py
JinkelaCrops/t2t-learning
5d9b5a5164af763c24f1cbce9d97561e9f2b772c
[ "Apache-2.0" ]
2
2018-08-07T03:43:09.000Z
2019-12-09T06:41:40.000Z
# 所有的unicode字符 from collections import Counter import qa.regex_utils as regutil import re resource_path = "/media/tmxmall/a36811aa-0e87-4ba1-b14f-370134452449/data/medicine.txt" with open(resource_path, "r", encoding="utf8") as f: char_stream = f.read() char_dictionary = Counter(list(char_stream)) med_unicodes = regutil.expr_converter("[[%s]]" % "".join(char_dictionary.keys()).replace("\n", "") + "#[[\\u4e00-\\u9fff]]") format_med_unicodes = re.sub("(?<!-)(?=\\\\u)", "\n", med_unicodes) print(format_med_unicodes) lines = char_stream.split("\n") unknown_char = "[^\\u0020-\\u007e\\u4e00-\\u9fff]" def regex_filter_line(regex, lines): filter_sentence = list(filter(lambda x: re.search(regex, x) is not None, lines)) print("%20s" % regex, len(filter_sentence)) return len(filter_sentence) regutil.uu_enum("\\u0020-\\u007e") regex_filter_line("[\\u0020-\\u007e]", lines) regex_filter_line("[\\u00a0-\\u00ff]", lines) regex_filter_line("[\\u0100-\\u01ff]", lines) regex_filter_line("[\\u0251]", lines) regex_filter_line("[\\u025b]", lines) regex_filter_line("[\\u0261]", lines) regex_filter_line("[\\u028a]", lines) regex_filter_line("[\\u02c6-\\u02cb]", lines) regex_filter_line("[\\u02d0]", lines) regex_filter_line("[\\u02d8-\\u02da]", lines) regex_filter_line("[\\u02dc]", lines) regex_filter_line("[\\u037a]", lines) regex_filter_line("[\\u037e]", lines) regex_filter_line("[\\u038a]", lines) regex_filter_line("[\\u038c]", lines) regex_filter_line("[\\u03cb]", lines) regex_filter_line("[\\u03d6]", lines) regex_filter_line("[\\u0384-\\u0385]", lines) regex_filter_line("[\\u0387-\\u0388]", lines) regex_filter_line("[\\u038e-\\u038f]", lines) regex_filter_line("[\\u0391-\\u03c9]", lines) regex_filter_line("[\\u0400-\\u04ff]", lines) regex_filter_line("[\\u0590-\\u05ff]", lines) regex_filter_line("[\\u0652]", lines) regex_filter_line("[\\u11bc]", lines) regex_filter_line("[\\u1868]", lines) regex_filter_line("[\\u1d31]", lines) regex_filter_line("[\\u1d52]", lines) regex_filter_line("[\\u1d5b]", lines) regex_filter_line("[\\u1ef7]", lines) regex_filter_line("[\\u2016-\\u206a]", lines) regex_filter_line("[\\u2070]", lines) regex_filter_line("[\\u2074-\\u2075]", lines) regex_filter_line("[\\u2077-\\u2078]", lines) regex_filter_line("[\\u2082-\\u2084]", lines) regex_filter_line("[\\u20ac]", lines) regex_filter_line("[\\u2103]", lines) regex_filter_line("[\\u2105]", lines) regex_filter_line("[\\u2109]", lines) regex_filter_line("[\\u2116]", lines) regex_filter_line("[\\u2122]", lines) regex_filter_line("[\\u212b]", lines) regex_filter_line("[\\u2160-\\u216b]", lines) regex_filter_line("[\\u2170-\\u2179]", lines) regex_filter_line("[\\u21d2]", lines) regex_filter_line("[\\u2190-\\u2193]", lines) regex_filter_line("[\\u2206]", lines) regex_filter_line("[\\u2208]", lines) regex_filter_line("[\\u2211-\\u2212]", lines) regex_filter_line("[\\u2217-\\u221a]", lines) regex_filter_line("[\\u221d-\\u2220]", lines) regex_filter_line("[\\u2223]", lines) regex_filter_line("[\\u2225]", lines) regex_filter_line("[\\u2227-\\u222b]", lines) regex_filter_line("[\\u222e]", lines) regex_filter_line("[\\u2234]", lines) regex_filter_line("[\\u2237]", lines) regex_filter_line("[\\u223c-\\u223d]", lines) regex_filter_line("[\\u2245]", lines) regex_filter_line("[\\u224c]", lines) regex_filter_line("[\\u2252]", lines) regex_filter_line("[\\u2260-\\u2261]", lines) regex_filter_line("[\\u2264-\\u2267]", lines) regex_filter_line("[\\u226f]", lines) regex_filter_line("[\\u2295]", lines) regex_filter_line("[\\u2299]", lines) regex_filter_line("[\\u22a5]", lines) regex_filter_line("[\\u22bf]", lines) regex_filter_line("[\\u2312]", lines) regex_filter_line("[\\u2395]", lines) regex_filter_line("[\\u2460-\\u2473]", lines) regex_filter_line("[\\u2474-\\u2487]", lines) regex_filter_line("[\\u2488-\\u249b]", lines) regex_filter_line("[\\u2500-\\u257f]", lines) regex_filter_line("[\\u25a0-\\u25a1]", lines) regex_filter_line("[\\u25b2-\\u25b4]", lines) regex_filter_line("[\\u25c6-\\u25c7]", lines) regex_filter_line("[\\u25ca-\\u25cb]", lines) regex_filter_line("[\\u25ce-\\u25cf]", lines) regex_filter_line("[\\u2605-\\u2606]", lines) regex_filter_line("[\\u2609]", lines) regex_filter_line("[\\u2610]", lines) regex_filter_line("[\\u2640]", lines) regex_filter_line("[\\u2642]", lines) regex_filter_line("[\\u2666]", lines) regex_filter_line("[\\u266a-\\u266b]", lines) regex_filter_line("[\\u2714]", lines) regex_filter_line("[\\u2717]", lines) regex_filter_line("[\\u274f]", lines) regex_filter_line("[\\u2751]", lines) regex_filter_line("[\\u279f]", lines) regex_filter_line("[\\u27a2]", lines) regex_filter_line("[\\u27a5]", lines) regex_filter_line("[\\u2a7d]", lines) regex_filter_line("[\\u2fd4]", lines) regex_filter_line("[\\u3001-\\u301e]", lines) regex_filter_line("[\\u3022-\\u3025]", lines) regex_filter_line("[\\u3105-\\u3107]", lines) regex_filter_line("[\\u310a]", lines) regex_filter_line("[\\u3111]", lines) regex_filter_line("[\\u3113]", lines) regex_filter_line("[\\u3116-\\u3117]", lines) regex_filter_line("[\\u311a-\\u311b]", lines) regex_filter_line("[\\u3122]", lines) regex_filter_line("[\\u3125]", lines) regex_filter_line("[\\u3127-\\u3128]", lines) regex_filter_line("[\\u3220-\\u3229]", lines) regex_filter_line("[\\u32a3]", lines) regex_filter_line("[\\u338e-\\u338f]", lines) regex_filter_line("[\\u339c-\\u339d]", lines) regex_filter_line("[\\u33a1]", lines) regex_filter_line("[\\u33a5]", lines) regex_filter_line("[\\u33d5]", lines) regex_filter_line("[\\u33d1-\\u33d2]", lines) regex_filter_line("[\\u359e]", lines) regex_filter_line("[\\u39d1]", lines) regex_filter_line("[\\u41f2]", lines) regex_filter_line("[\\u4341]", lines) regex_filter_line("[\\u4d13]", lines) regex_filter_line("[\\u4d15]", lines) regex_filter_line("[\\u4e00-\\u9fff]", lines) regex_filter_line("[\\uacf3]", lines) regex_filter_line("[\\ucd38]", lines) regex_filter_line("[\\ue20c-\\ue2ff]", lines) regex_filter_line("[\\uf900-\\ufaff]", lines) regex_filter_line("[\\ufb03]", lines) regex_filter_line("[\\ufe30-\\ufe31]", lines) regex_filter_line("[\\ufe33]", lines) regex_filter_line("[\\ufe38]", lines) regex_filter_line("[\\ufe3c-\\ufe3d]", lines) regex_filter_line("[\\ufe3f-\\ufe41]", lines) regex_filter_line("[\\ufe4d-\\ufe4e]", lines) regex_filter_line("[\\ufe55-\\ufe57]", lines) regex_filter_line("[\\ufe59-\\ufe5c]", lines) regex_filter_line("[\\ufe5f]", lines) regex_filter_line("[\\ufe63]", lines) regex_filter_line("[\\ufe65-\\ufe66]", lines) regex_filter_line("[\\ufe6a-\\ufe6b]", lines) regex_filter_line("[\\ufeff]", lines) regex_filter_line("[\\uff01]", lines) regex_filter_line("[\\uff08-\\uff09]", lines) regex_filter_line("[\\uff0c]", lines) regex_filter_line("[\\uff1a]", lines) regex_filter_line("[\\uff1f]", lines) regex_filter_line("[\\uff61]", lines) regex_filter_line("[\\uff63]", lines) regex_filter_line("[\\uff65]", lines) regex_filter_line("[\\uff6c]", lines) regex_filter_line("[\\uff72]", lines) regex_filter_line("[\\uff86]", lines) regex_filter_line("[\\uff89]", lines) regex_filter_line("[\\uffe0-\\uffe1]", lines) regex_filter_line("[\\uffe3]", lines) regex_filter_line("[\\uffe5]", lines) regex_filter_line("[\\uffed]", lines) regex_filter_line("[\\ufffc]", lines) """ [\u0020-\u007e] 13056272 \\u0020-\\u007e Latin [\u00a0-\u00ff] 258619 \\u00a0-\\u00ff Latin ++ [\u0100-\u01ff] 353 \\u0100-\\u01ff Latin ++ [\u0251] 302 \\u0251 ɑ [\u025b] 2 \\u025b ɛ [\u0261] 25 \\u0261 ɡ [\u028a] 1 \\u028a ʊ [\u02c6-\u02cb] 870 \\u02c6-\\u02cb ˆˇˈˉˊˋ [\u02d0] 1 \\u02d0 ː [\u02d8-\u02da] 25 \\u02d8-\\u02da ˘˙˚ [\u02dc] 10 \\u02dc ˜ [\u037a] 1 \\u037a ͺ [\u037e] 4 \\u037e ; [\u038a] 3 \\u038a Ί [\u038c] 1 \\u038c Ό [\u03cb] 3 \\u03cb ϋ [\u03d6] 2 \\u03d6 ϖ [\u0384-\u0385] 8 \\u0384-\\u0385 ΄΅ [\u0387-\u0388] 2 \\u0387-\\u0388 ·Έ [\u038e-\u038f] 2 \\u038e-\\u038f ΎΏ [\u0391-\u03c9] 567276 \\u0391-\\u03c9 希腊 [\u0400-\u04ff] 2058 \\u0400-\\u04ff 西里尔 [\u0590-\u05ff] 34 \\u0590-\\u05ff 希伯来 [\u0652] 1 \\u0652 阿拉伯 [\u11bc] 3 \\u11bc 朝鲜 [\u1868] 1 \\u1868 ᡨ 蒙古 [\u1d31] 1 \\u1d31 ᴱ [\u1d52] 1 \\u1d52 ᵒ [\u1d5b] 1 \\u1d5b ᵛ [\u1ef7] 1 \\u1ef7 ỷ Latin ++ [\u2016-\u206a] 323353 \\u2016-\\u206a punc++ [\u2070] 4 \\u2070 ⁰ [\u2074-\u2075] 9 \\u2074-\\u2075 ⁴⁵ [\u2077-\u2078] 11 \\u2077-\\u2078 ⁷⁸ [\u2082-\u2084] 13 \\u2082-\\u2084 ₂₃₄ [\u20ac] 58 \\u20ac € [\u2103] 132218 \\u2103 ℃ [\u2105] 64 \\u2105 ℅ [\u2109] 45 \\u2109 ℉ [\u2116] 559 \\u2116 № [\u2122] 348 \\u2122 ™ [\u212b] 5 \\u212b Å [\u2160-\u216b] 235239 \\u2160-\\u216b ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ [\u2170-\u2179] 1557 \\u2170-\\u2179 ⅰⅱⅲⅳⅴⅵⅶⅷⅸ [\u21d2] 3 \\u21d2 ⇒ [\u2190-\u2193] 15107 \\u2190-\\u2193 ←↑→↓ [\u2206] 5 \\u2206 ∆ [\u2208] 281 \\u2208 ∈ [\u2211-\u2212] 839 \\u2211-\\u2212 ∑− [\u2217-\u221a] 75 \\u2217-\\u221a ∗∘∙√ [\u221d-\u2220] 861 \\u221d-\\u2220 ∝∞∟∠ [\u2223] 1 \\u2223 ∣ [\u2225] 80 \\u2225 ∥ [\u2227-\u222b] 226 \\u2227-\\u222b ∧∨∩∪∫ [\u222e] 8 \\u222e ∮ [\u2234] 46 \\u2234 ∴ [\u2237] 333 \\u2237 ∷ [\u223c-\u223d] 29 \\u223c-\\u223d ∼∽ [\u2245] 1 \\u2245 ≅ [\u224c] 33 \\u224c ≌ [\u2252] 4 \\u2252 ≒ [\u2260-\u2261] 555 \\u2260-\\u2261 ≠≡ [\u2264-\u2267] 31397 \\u2264-\\u2267 ≤≥≦≧ [\u226f] 3 \\u226f ≯ [\u2295] 4 \\u2295 ⊕ [\u2299] 17 \\u2299 ⊙ [\u22a5] 41 \\u22a5 ⊥ [\u22bf] 116 \\u22bf ⊿ [\u2312] 5 \\u2312 ⌒ [\u2395] 4 \\u2395 ⎕ [\u2460-\u2473] 48470 \\u2460-\\u2473 ①②③④⑤⑥⑦⑧⑨⑩ ⑳ [\u2474-\u2487] 1267 \\u2474-\\u2487 ⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽ ⒇ [\u2488-\u249b] 107 \\u2488-\\u249b ⒈⒉⒊⒋⒌⒍⒎⒏⒐⒑ ⒛ [\u2500-\u257f] 566 \\u2500-\\u257f ─━│┃┄┅┆┇┈┉┊ [\u25a0-\u25a1] 1052 \\u25a0-\\u25a1 ■□ [\u25b2-\u25b4] 3695 \\u25b2-\\u25b4 ▲△▴ [\u25c6-\u25c7] 205 \\u25c6-\\u25c7 ◆◇ [\u25ca-\u25cb] 339 \\u25ca-\\u25cb ◊○ [\u25ce-\u25cf] 767 \\u25ce-\\u25cf ◎● [\u2605-\u2606] 196 \\u2605-\\u2606 ★☆ [\u2609] 3 \\u2609 ☉ [\u2610] 35 \\u2610 ☐ [\u2640] 1017 \\u2640 ♀ [\u2642] 1108 \\u2642 ♂ [\u2666] 2 \\u2666 ♦ [\u266a-\u266b] 9 \\u266a-\\u266b ♪♫ [\u2714] 4 \\u2714 ✔ [\u2717] 1 \\u2717 ✗ [\u274f] 1 \\u274f ❏ [\u2751] 2 \\u2751 ❑ [\u279f] 1 \\u279f ➟ [\u27a2] 6 \\u27a2 ➢ [\u27a5] 1 \\u27a5 ➥ [\u2a7d] 3 \\u2a7d ⩽ [\u2fd4] 2 \\u2fd4 ⿔ CJK++ [\u3001-\u301e] 7028921 \\u3001-\\u301e CJK punc [\u3022-\u3025] 8 \\u3022-\\u3025 〢〣〤〥 [\u3105-\u3107] 8 \\u3105-\\u3107 ㄅㄆ [\u310a] 1 \\u310a ㄊ [\u3111] 1 \\u3111 ㄑ [\u3113] 2 \\u3113 ㄓ [\u3116-\u3117] 6 \\u3116-\\u3117 ㄖㄗ [\u311a-\u311b] 2 \\u311a-\\u311b ㄚㄛ [\u3122] 1 \\u3122 ㄢ [\u3125] 1 \\u3125 ㄥ [\u3127-\u3128] 11 \\u3127-\\u3128 ㄧㄨ [\u3220-\u3229] 312 \\u3220-\\u3229 ㈠㈡㈢㈣㈤㈥㈦㈧㈨ [\u32a3] 6 \\u32a3 ㊣ [\u338e-\u338f] 125 \\u338e-\\u338f ㎎㎏ [\u339c-\u339d] 75 \\u339c-\\u339d ㎜㎝ [\u33a1] 59 \\u33a1 ㎡ [\u33a5] 1 \\u33a5 ㎥ [\u33d5] 24 \\u33d5 ㏕ [\u33d1-\u33d2] 9 \\u33d1-\\u33d2 ㏑㏒ [\u359e] 6 \\u359e 㖞 [\u39d1] 3 \\u39d1 㧑 [\u41f2] 13 \\u41f2 䇲 [\u4341] 2 \\u4341 䍁 [\u4d13] 2 \\u4d13 䴓 [\u4d15] 1 \\u4d15 䴕 [\u4e00-\u9fff] 13056199 \\u4e00-\\u9fff CJK [\uacf3] 2 \\uacf3 곳 朝鲜++ [\ucd38] 1 \\ucd38 촸 朝鲜++ [\ue20c-\ue2ff] 1305 \\ue20c-\\ue2ff ??? [\uf900-\ufaff] 136 \\uf900-\\ufaff CJK ++ [\ufb03] 1 \\ufb03 ffi [\ufe30-\ufe31] 941 \\ufe30-\\ufe31 ︰︱ [\ufe33] 2 \\ufe33 ︳ [\ufe38] 4 \\ufe38 ︸ [\ufe3c-\ufe3d] 33 \\ufe3c-\\ufe3d ︼︽ [\ufe3f-\ufe41] 19 \\ufe3f-\\ufe41 ︿﹀﹁ [\ufe4d-\ufe4e] 7 \\ufe4d-\\ufe4e ﹍﹎ [\ufe55-\ufe57] 102 \\ufe55-\\ufe57 ﹕﹖﹗ [\ufe59-\ufe5c] 185 \\ufe59-\\ufe5c ﹙﹚﹛ [\ufe5f] 10 \\ufe5f ﹟ [\ufe63] 70 \\ufe63 ﹣ [\ufe65-\ufe66] 551 \\ufe65-\\ufe66 ﹥﹦ [\ufe6a-\ufe6b] 233 \\ufe6a-\\ufe6b ﹪﹫ [\ufeff] 4 \\ufeff arabic ++ # FE70-FEFF [\uff01] 886 \\uff01 ! [\uff08-\uff09] 622070 \\uff08-\\uff09 () [\uff0c] 3445520 \\uff0c , [\uff1a] 471609 \\uff1a : [\uff1f] 9822 \\uff1f ? [\uff61] 2 \\uff61 。 [\uff63] 1 \\uff63 」 [\uff65] 8 \\uff65 ・ [\uff6c] 2 \\uff6c ャ [\uff72] 1 \\uff72 イ [\uff86] 1 \\uff86 ニ [\uff89] 1 \\uff89 ノ [\uffe0-\uffe1] 160 \\uffe0-\\uffe1 ¢£ [\uffe3] 7143 \\uffe3  ̄ [\uffe5] 57 \\uffe5 ¥ [\uffed] 9 \\uffed ■ [\ufffc] 1 \\ufffc  """ """ \\u0020-\\u007e Latin \\u00a0-\\u00ff Latin ++ \\u0100-\\u01ff Latin ++ \\u0251 ɑ \\u025b ɛ \\u0261 ɡ \\u028a ʊ \\u02c6-\\u02cb ˆˇˈˉˊˋ \\u02d0 ː \\u02d8-\\u02da ˘˙˚ \\u02dc ˜ \\u037a ͺ \\u037e ; \\u038a Ί \\u038c Ό \\u03cb ϋ \\u03d6 ϖ \\u0384-\\u0385 ΄΅ \\u0387-\\u0388 ·Έ \\u038e-\\u038f ΎΏ \\u0391-\\u03c9 希腊 \\u0400-\\u04ff 西里尔 \\u0590-\\u05ff 希伯来 \\u0652 阿拉伯 \\u11bc 朝鲜 \\u1868 ᡨ 蒙古 \\u1d31 ᴱ \\u1d52 ᵒ \\u1d5b ᵛ \\u1ef7 ỷ Latin ++ \\u2016-\\u206a punc++ \\u2070 ⁰ \\u2074-\\u2075 ⁴⁵ \\u2077-\\u2078 ⁷⁸ \\u2082-\\u2084 ₂₃₄ \\u20ac € \\u2103 ℃ \\u2105 ℅ \\u2109 ℉ \\u2116 № \\u2122 ™ \\u212b Å \\u2160-\\u216b ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ \\u2170-\\u2179 ⅰⅱⅲⅳⅴⅵⅶⅷⅸ \\u21d2 ⇒ \\u2190-\\u2193 ←↑→↓ \\u2206 ∆ \\u2208 ∈ \\u2211-\\u2212 ∑− \\u2217-\\u221a ∗∘∙√ \\u221d-\\u2220 ∝∞∟∠ \\u2223 ∣ \\u2225 ∥ \\u2227-\\u222b ∧∨∩∪∫ \\u222e ∮ \\u2234 ∴ \\u2237 ∷ \\u223c-\\u223d ∼∽ \\u2245 ≅ \\u224c ≌ \\u2252 ≒ \\u2260-\\u2261 ≠≡ \\u2264-\\u2267 ≤≥≦≧ \\u226f ≯ \\u2295 ⊕ \\u2299 ⊙ \\u22a5 ⊥ \\u22bf ⊿ \\u2312 ⌒ \\u2395 ⎕ \\u2460-\\u2473 ①②③④⑤⑥⑦⑧⑨⑩ ⑳ \\u2474-\\u2487 ⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽ ⒇ \\u2488-\\u249b ⒈⒉⒊⒋⒌⒍⒎⒏⒐⒑ ⒛ \\u2500-\\u257f ─━│┃┄┅┆┇┈┉┊ \\u25a0-\\u25a1 ■□ \\u25b2-\\u25b4 ▲△▴ \\u25c6-\\u25c7 ◆◇ \\u25ca-\\u25cb ◊○ \\u25ce-\\u25cf ◎● \\u2605-\\u2606 ★☆ \\u2609 ☉ \\u2610 ☐ \\u2640 ♀ \\u2642 ♂ \\u2666 ♦ \\u266a-\\u266b ♪♫ \\u2714 ✔ \\u2717 ✗ \\u274f ❏ \\u2751 ❑ \\u279f ➟ \\u27a2 ➢ \\u27a5 ➥ \\u2a7d ⩽ \\u2fd4 ⿔ CJK++ \\u3001-\\u301e CJK punc \\u3022-\\u3025 〢〣〤〥 \\u3105-\\u3107 ㄅㄆ \\u310a ㄊ \\u3111 ㄑ \\u3113 ㄓ \\u3116-\\u3117 ㄖㄗ \\u311a-\\u311b ㄚㄛ \\u3122 ㄢ \\u3125 ㄥ \\u3127-\\u3128 ㄧㄨ \\u3220-\\u3229 ㈠㈡㈢㈣㈤㈥㈦㈧㈨ \\u32a3 ㊣ \\u338e-\\u338f ㎎㎏ \\u339c-\\u339d ㎜㎝ \\u33a1 ㎡ \\u33a5 ㎥ \\u33d5 ㏕ \\u33d1-\\u33d2 ㏑㏒ \\u359e 㖞 \\u39d1 㧑 \\u41f2 䇲 \\u4341 䍁 \\u4d13 䴓 \\u4d15 䴕 \\u4e00-\\u9fff CJK \\uacf3 곳 朝鲜++ \\ucd38 촸 朝鲜++ \\ue20c-\\ue2ff ??? \\uf900-\\ufaff CJK ++ \\ufb03 ffi \\ufe30-\\ufe31 ︰︱ \\ufe33 ︳ \\ufe38 ︸ \\ufe3c-\\ufe3d ︼︽ \\ufe3f-\\ufe41 ︿﹀﹁ \\ufe4d-\\ufe4e ﹍﹎ \\ufe55-\\ufe57 ﹕﹖﹗ \\ufe59-\\ufe5c ﹙﹚﹛ \\ufe5f ﹟ \\ufe63 ﹣ \\ufe65-\\ufe66 ﹥﹦ \\ufe6a-\\ufe6b ﹪﹫ \\ufeff arabic ++ # FE70-FEFF \\uff01 ! \\uff08-\\uff09 () \\uff0c , \\uff1a : \\uff1f ? \\uff61 。 \\uff63 」 \\uff65 ・ \\uff6c ャ \\uff72 イ \\uff86 ニ \\uff89 ノ \\uffe0-\\uffe1 ¢£ \\uffe3  ̄ \\uffe5 ¥ \\uffed ■ \\ufffc  """
35.604824
124
0.472617
0
0
0
0
0
0
0
0
15,462
0.761112
d3f53c7bfc8c69e3589a13dbe7ec8f22516451e9
622
py
Python
challenges/largest_product_array/test_largest_product.py
jayadams011/data-structures-and-algorithms
b9a49c65ca769c82b2a34d840bd1e4dd626be025
[ "MIT" ]
null
null
null
challenges/largest_product_array/test_largest_product.py
jayadams011/data-structures-and-algorithms
b9a49c65ca769c82b2a34d840bd1e4dd626be025
[ "MIT" ]
4
2018-03-22T16:56:06.000Z
2018-03-28T23:30:29.000Z
challenges/largest_product_array/test_largest_product.py
jayadams011/data-structures-and-algorithms
b9a49c65ca769c82b2a34d840bd1e4dd626be025
[ "MIT" ]
null
null
null
from largest_product.py import largest_product import pytest def test_product_returns(): """test if return is a single product """ assert largest_product.largest([[2, 2]]) is 4 def test_returns_largest(): """ test if return is the largest of longer array """ assert largest_product.largest([[1, 3], [6, 10], [4, 5]]) is 60 def test_empty_list(): """ test if returns msg if empty list """ assert largest_product.largest([]) == 'empty arr used' def test_check_if_syb_has_only_1_el(): """test for one value""" arr = [3] val = 0 assert largest_product.node_inside(arr, val) == 3
24.88
67
0.672026
0
0
0
0
0
0
0
0
175
0.28135
d3f5e1c2b805610da261a12d23a2c36165256863
4,086
py
Python
examples/transformer/model.py
namin/dm-haiku
7ddb4776761a7220031c6b323fa6f797bb02f75c
[ "Apache-2.0" ]
null
null
null
examples/transformer/model.py
namin/dm-haiku
7ddb4776761a7220031c6b323fa6f797bb02f75c
[ "Apache-2.0" ]
null
null
null
examples/transformer/model.py
namin/dm-haiku
7ddb4776761a7220031c6b323fa6f797bb02f75c
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Transformer model components.""" from typing import Optional import haiku as hk import jax import jax.numpy as jnp import numpy as np class CausalSelfAttention(hk.MultiHeadAttention): """Self attention with a causal mask applied.""" def __call__( self, query: jnp.ndarray, key: Optional[jnp.ndarray] = None, value: Optional[jnp.ndarray] = None, mask: Optional[jnp.ndarray] = None, ) -> jnp.ndarray: key = key if key is not None else query value = value if value is not None else query if query.ndim != 3: raise ValueError('Expect queries of shape [B, T, D].') seq_len = query.shape[1] causal_mask = np.tril(np.ones((seq_len, seq_len))) mask = mask * causal_mask if mask is not None else causal_mask return super().__call__(query, key, value, mask) class DenseBlock(hk.Module): """A 2-layer MLP which widens then narrows the input.""" def __init__(self, init_scale: float, widening_factor: int = 4, name: Optional[str] = None): super().__init__(name=name) self._init_scale = init_scale self._widening_factor = widening_factor def __call__(self, x: jnp.ndarray) -> jnp.ndarray: hiddens = x.shape[-1] initializer = hk.initializers.VarianceScaling(self._init_scale) x = hk.Linear(self._widening_factor * hiddens, w_init=initializer)(x) x = jax.nn.gelu(x) return hk.Linear(hiddens, w_init=initializer)(x) class Transformer(hk.Module): """A transformer stack.""" def __init__(self, num_heads: int, num_layers: int, dropout_rate: float, name: Optional[str] = None): super().__init__(name=name) self._num_layers = num_layers self._num_heads = num_heads self._dropout_rate = dropout_rate def __call__(self, h: jnp.ndarray, mask: Optional[jnp.ndarray], is_training: bool) -> jnp.ndarray: """Connects the transformer. Args: h: Inputs, [B, T, D]. mask: Padding mask, [B, T]. is_training: Whether we're training or not. Returns: Array of shape [B, T, D]. """ init_scale = 2. / self._num_layers dropout_rate = self._dropout_rate if is_training else 0. if mask is not None: mask = mask[:, None, None, :] # Note: names chosen to approximately match those used in the GPT-2 code; # see https://github.com/openai/gpt-2/blob/master/src/model.py. for i in range(self._num_layers): h_norm = layer_norm(h, name=f'h{i}_ln_1') h_attn = CausalSelfAttention( num_heads=self._num_heads, key_size=32, w_init_scale=init_scale, name=f'h{i}_attn')(h_norm, mask=mask) h_attn = hk.dropout(hk.next_rng_key(), dropout_rate, h_attn) h = h + h_attn h_norm = layer_norm(h, name=f'h{i}_ln_2') h_dense = DenseBlock(init_scale, name=f'h{i}_mlp')(h_norm) h_dense = hk.dropout(hk.next_rng_key(), dropout_rate, h_dense) h = h + h_dense h = layer_norm(h, name='ln_f') return h def layer_norm(x: jnp.ndarray, name: Optional[str] = None) -> jnp.ndarray: """Apply a unique LayerNorm to x with default settings.""" return hk.LayerNorm(axis=-1, create_scale=True, create_offset=True, name=name)(x)
32.428571
80
0.634606
2,954
0.722956
0
0
0
0
0
0
1,335
0.326725
d3f792b947cbc2077ccc06bcee6654417c6fd2ce
7,827
py
Python
face.py
shwang95/Intelligence-Surveillance-System
f7107096b447e929c36808c341ff91b0b5f49010
[ "MIT" ]
1
2018-04-01T18:25:44.000Z
2018-04-01T18:25:44.000Z
face.py
shwang95/Intelligence-Surveillance-System
f7107096b447e929c36808c341ff91b0b5f49010
[ "MIT" ]
null
null
null
face.py
shwang95/Intelligence-Surveillance-System
f7107096b447e929c36808c341ff91b0b5f49010
[ "MIT" ]
null
null
null
#!/usr/bin/env python import boto3 import cv2 import numpy import os import base64 import gspread from email.mime.base import MIMEBase from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from httplib2 import Http from time import localtime, strftime, time, sleep from oauth2client.service_account import ServiceAccountCredentials from apiclient import discovery, errors from apiclient.discovery import build from oauth2client import client from oauth2client import tools from oauth2client import file def compare_faces( bucket, key, bucket_target, key_target, threshold=80, region='us-east-1'): ''' Require for face comparision ''' rekognition = boto3.client('rekognition', region) response = rekognition.compare_faces( SourceImage={ 'S3Object': { 'Bucket': bucket, 'Name': key, } }, TargetImage={ 'S3Object': { 'Bucket': bucket_target, 'Name': key_target, } }, SimilarityThreshold=threshold, ) return response['SourceImageFace'], response['FaceMatches'] def upload_log(text): ''' Upload the Alert time to the google drive sheet ''' scope = ['https://spreadsheets.google.com/feeds'] credentials = ServiceAccountCredentials.from_json_keyfile_name( 'ProjectLog-41cafcffcf13.json', scope) gc = gspread.authorize(credentials) wks = gc.open('ISeeU_Log').sheet1 wks.append_row([text]) def send(service, user_id, message): ''' Send the mime email package ''' try: message = ( service.users().messages().send( userId=user_id, body=message).execute()) print('Message Id: %s' % message['id']) return message except errors.HttpError as error: print('An error occurred: %s' % error) def create_email(sender, to, subject, message_text, pic): ''' Create the email Included information: Sender, Receiver, Subject, Text, Attached Image ''' message = MIMEMultipart() message['to'] = to message['from'] = sender message['Subject'] = subject msg = MIMEText(message_text) message.attach(msg) fp = open(pic, 'rb') msg = MIMEImage(fp.read(), _subtype='jpeg') fp.close() imagename = os.path.basename(pic) msg.add_header('Content-Disposition', 'attachment', filename=imagename) message.attach(msg) return {'raw': base64.urlsafe_b64encode(message.as_string())} def authenticate(): ''' Using oauth2 to get the credentials. It will give all permission related to gmail. client_secret.json is the secret key you get from google. Reference: Gmail API python quickstart ''' SCOPES = 'https://mail.google.com' store = file.Storage('credentials.json') creds = store.get() if not creds or creds.invalid: flow = client.flow_from_clientsecrets('client_secret.json', SCOPES) creds = tools.run_flow(flow, store) service = discovery.build('gmail', 'v1', http=creds.authorize(Http())) return service def stranger_detected(pic): ''' Recore the date time and make them as the code for the user the trigger alarm ''' nowtime = strftime("%Y-%m-%d %H:%M:%S", localtime()) trigcode = strftime("%d%H%M%S", localtime()) # Upload log to Google drive text = 'Stranger show up at ' + nowtime upload_log(text) # Information of email # pic = 'guldan.jpg' # Attached Image sender = "[email protected]" to = "[email protected]" # User email address subject = "Alert from ISeeU!" text = text + '\nReply ' + trigcode + ' to trigger the alarm.' # Sending email to user service = authenticate() message = create_email(sender, to, subject, text, pic) send(service, 'me', message) return service, subject, trigcode def main(): while True: print('No face detected...') if os.path.isfile('face.jpg'): print('Face found!') bucket_name = 'ec500j1-project-iseeu' source_name = ['sh.jpg'] # User input faces target_name = 'face.jpg' # Temporary image s3 = boto3.client('s3') # Upload images to s3 server for img in source_name: s3.upload_file(img, bucket_name, img) s3.upload_file(target_name, bucket_name, target_name) while True: try: # Check if the images are successfully uploaded for img in source_name: boto3.resource('s3').Object(bucket_name, img).load() boto3.resource('s3').Object( bucket_name, target_name).load() except BaseException: continue break sources, matches = {}, {} for img in source_name: try: sources[img], matches[img] = compare_faces( bucket_name, img, bucket_name, target_name) except Exception as e: # If Rekognition failure print('Rekognition error: ' + e) os.remove('face.jpg') if len(matches[img]) == 0: # Send notification email service, target, trigcode = stranger_detected( 'face.jpg') user_id = 'me' flag = False # Flag for trigger alert st = time() while time() - st < 120: # Listen for 2 minutes ''' Check all the email for user's reply every 30 seconds. If the subject match, check if the trigcode match. If the trigcode match too, return True to set off alarm. ''' threads = service.users().threads().list( userId=user_id).execute().get('threads', []) for thread in threads: tdata = service.users().threads().get( userId=user_id, id=thread['id']).execute() nmsgs = len(tdata['messages']) msg = tdata['messages'][0]['payload'] subject = '' for header in msg['headers']: if header['name'] == 'Subject': subject = header['value'] break if subject == target: if thread[u'snippet'][0:8] == trigcode: # If user replies with trigcode flag = True break if flag: # If user replies with trigcode break nt = strftime('%Y-%m-%d %H:%M:%S', localtime()) print('Still listening: ' + nt) sleep(30) print('Alert!') # Emulated alert else: print('Not a stranger') # Do nothing # Delete all images from s3 server for img in source_name: s3.delete_object(Bucket=bucket_name, Key=img) s3.delete_object(Bucket=bucket_name, Key=target_name) os.remove('face.jpg') # Delete temperary image sleep(10) if __name__ == '__main__': main()
33.592275
80
0.536093
0
0
0
0
0
0
0
0
2,149
0.274562
d3f7c63f805726000751c5b956986db551d0d877
8,480
py
Python
unpythonic/syntax/autoref.py
aisha-w/unpythonic
0f63abf6ac7efb7304b676d0e1ebce0ef4040438
[ "BSD-2-Clause" ]
null
null
null
unpythonic/syntax/autoref.py
aisha-w/unpythonic
0f63abf6ac7efb7304b676d0e1ebce0ef4040438
[ "BSD-2-Clause" ]
null
null
null
unpythonic/syntax/autoref.py
aisha-w/unpythonic
0f63abf6ac7efb7304b676d0e1ebce0ef4040438
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Implicitly reference attributes of an object.""" from ast import Name, Assign, Load, Call, Lambda, With, Str, arg, \ Attribute, Subscript, Store, Del from macropy.core.quotes import macros, q, u, name, ast_literal from macropy.core.hquotes import macros, hq from macropy.core.walkers import Walker from .util import wrapwith, AutorefMarker from .letdoutil import isdo, islet, ExpandedDoView, ExpandedLetView from ..dynassign import dyn from ..lazyutil import force1, mark_lazy # with autoref(o): # with autoref(scipy.loadmat("mydata.mat")): # evaluate once, assign to a gensym # with autoref(scipy.loadmat("mydata.mat")) as o: # evaluate once, assign to given name # # We need something like:: # # with autoref(o): # x # --> (o.x if hasattr(o, "x") else x) # x.a # --> (o.x.a if hasattr(o, "x") else x.a) # x[s] # --> (o.x[s] if hasattr(o, "x") else x[s]) # o # --> o # with autoref(p): # x # --> (p.x if hasattr(p, "x") else (o.x if hasattr(o, "x") else x)) # x.a # --> (p.x.a if hasattr(p, "x") else (o.x.a if hasattr(o, "x") else x.a)) # x[s] # --> (p.x[s] if hasattr(p, "x") else (o.x[s] if hasattr(o, "x") else x[s])) # o # --> (p.o if hasattr(p, "o") else o) # o.x # --> (p.o.x if hasattr(p, "o") else o.x) # o[s] # --> (p.o[s] if hasattr(p, "o") else o[s]) # # One possible clean-ish implementation is:: # # with AutorefMarker("o"): # no-op at runtime # x # --> (lambda _ar271: _ar271[1] if _ar271[0] else x)(_autoref_resolve((o, "x"))) # x.a # --> ((lambda _ar271: _ar271[1] if _ar271[0] else x)(_autoref_resolve((o, "x")))).a # x[s] # --> ((lambda _ar271: _ar271[1] if _ar271[0] else x)(_autoref_resolve((o, "x"))))[s] # o # --> o (can only occur if an asname is supplied) # with AutorefMarker("p"): # x # --> (lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x"))) # x.a # --> ((lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x"))).a # x[s] # --> ((lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x")))[s] # # when the inner autoref expands, it doesn't know about the outer one, so we will get this: # o # --> (lambda _ar314: _ar314[1] if _ar314[0] else o)(_autoref_resolve((p, "o"))) # o.x # --> ((lambda _ar314: _ar314[1] if _ar314[0] else o)(_autoref_resolve((p, "o")))).x # o[s] # --> ((lambda _ar314: _ar314[1] if _ar314[0] else o)(_autoref_resolve((p, "o"))))[s] # # the outer autoref needs the marker to know to skip this (instead of looking up o.p): # p # --> p # # The lambda is needed, because the lexical-variable lookup for ``x`` must occur at the use site, # and it can only be performed by Python itself. We could modify ``_autoref_resolve`` to take # ``locals()`` and ``globals()`` as arguments and look also in the ``builtins`` module, # but that way we get no access to the enclosing scopes (the "E" in LEGB). # # Recall the blocks expand from inside out. # # We must leave an AST marker in place of the each autoref block, so that any outer autoref block (when it expands) # understands that within that block, any read access to the name "p" is to be left alone. # # In ``_autoref_resolve``, we use a single args parameter to avoid dealing with ``*args`` # when analyzing the Call node, thus avoiding much special-case code for the AST differences # between Python 3.4 and 3.5+. # # In reality, we also capture-and-assign the autoref'd expr into a gensym'd variable (instead of referring # to ``o`` and ``p`` directly), so that arbitrary expressions can be autoref'd without giving them # a name in user code. @mark_lazy def _autoref_resolve(args): *objs, s = [force1(x) for x in args] for o in objs: if hasattr(o, s): return True, force1(getattr(o, s)) return False, None def autoref(block_body, args, asname): assert len(args) == 1, "expected exactly one argument, the expr to implicitly reference" assert block_body, "expected at least one statement inside the 'with autoref' block" gen_sym = dyn.gen_sym o = asname.id if asname else gen_sym("_o") # Python itself guarantees asname to be a bare Name. # with AutorefMarker("_o42"): def isexpandedautorefblock(tree): if not (type(tree) is With and len(tree.items) == 1): return False ctxmanager = tree.items[0].context_expr return type(ctxmanager) is Call and \ type(ctxmanager.func) is Name and ctxmanager.func.id == "AutorefMarker" and \ len(ctxmanager.args) == 1 and type(ctxmanager.args[0]) is Str def getreferent(tree): return tree.items[0].context_expr.args[0].s # (lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x"))) def isautoreference(tree): return type(tree) is Call and \ len(tree.args) == 1 and type(tree.args[0]) is Call and \ type(tree.args[0].func) is Name and tree.args[0].func.id == "_autoref_resolve" and \ type(tree.func) is Lambda and len(tree.func.args.args) == 1 and \ tree.func.args.args[0].arg.startswith("_ar") def get_resolver_list(tree): # (p, o, "x") return tree.args[0].args[0].elts def add_to_resolver_list(tree, objnode): lst = get_resolver_list(tree) lst.insert(-1, objnode) # x --> the autoref code above. def makeautoreference(tree): assert type(tree) is Name and (type(tree.ctx) is Load or not tree.ctx) newtree = hq[(lambda __ar_: __ar_[1] if __ar_[0] else ast_literal[tree])(_autoref_resolve((name[o], u[tree.id])))] our_lambda_argname = gen_sym("_ar") @Walker def renametmp(tree, **kw): if type(tree) is Name and tree.id == "__ar_": tree.id = our_lambda_argname elif type(tree) is arg and tree.arg == "__ar_": tree.arg = our_lambda_argname return tree return renametmp.recurse(newtree) @Walker def transform(tree, *, referents, set_ctx, stop, **kw): if type(tree) in (Attribute, Subscript, Name) and type(tree.ctx) in (Store, Del): stop() # skip autoref lookup for let/do envs elif islet(tree): view = ExpandedLetView(tree) set_ctx(referents=referents + [view.body.args.args[0].arg]) # lambda e14: ... elif isdo(tree): view = ExpandedDoView(tree) set_ctx(referents=referents + [view.body[0].args.args[0].arg]) # lambda e14: ... elif isexpandedautorefblock(tree): set_ctx(referents=referents + [getreferent(tree)]) elif isautoreference(tree): # generated by an inner already expanded autoref block stop() thename = get_resolver_list(tree)[-1].s if thename in referents: # remove autoref lookup for an outer referent, inserted early by an inner autoref block # (that doesn't know that any outer block exists) tree = q[name[thename]] # (lambda ...)(_autoref_resolve((p, "o"))) --> o else: add_to_resolver_list(tree, q[name[o]]) # _autoref_resolve((p, "x")) --> _autoref_resolve((p, o, "x")) elif type(tree) is Call and type(tree.func) is Name and tree.func.id == "AutorefMarker": # nested autorefs stop() elif type(tree) is Name and (type(tree.ctx) is Load or not tree.ctx) and tree.id not in referents: stop() tree = makeautoreference(tree) # Attribute works as-is, because a.b.c --> Attribute(Attribute(a, "b"), "c"), so Name "a" gets transformed. # Subscript similarly, a[1][2] --> Subscript(Subscript(a, 1), 2), so Name "a" gets transformed. return tree # skip (by name) some common references inserted by other macros always_skip = ['letter', 'dof', 'namelambda', 'curry', 'currycall', 'lazy', 'lazyrec', 'lazycall'] newbody = [Assign(targets=[q[name[o]]], value=args[0])] for stmt in block_body: newbody.append(transform.recurse(stmt, referents=always_skip + [o])) return wrapwith(item=hq[AutorefMarker(u[o])], body=newbody, locref=block_body[0])
51.393939
122
0.604481
0
0
0
0
2,255
0.26592
0
0
4,470
0.527123
d3fa9c7a54272bce3d4b342c353619a4cf77a19a
2,935
py
Python
doit/exceptions.py
m4ta1l/doit
d1a1b7b3abc7641d977d3b78b580d97aea4e27ea
[ "MIT" ]
1,390
2015-01-01T21:11:47.000Z
2022-03-31T11:35:44.000Z
doit/exceptions.py
m4ta1l/doit
d1a1b7b3abc7641d977d3b78b580d97aea4e27ea
[ "MIT" ]
393
2015-01-05T11:18:29.000Z
2022-03-20T11:46:46.000Z
doit/exceptions.py
m4ta1l/doit
d1a1b7b3abc7641d977d3b78b580d97aea4e27ea
[ "MIT" ]
176
2015-01-07T16:58:56.000Z
2022-03-28T12:12:11.000Z
"""Handle exceptions generated from 'user' code""" import sys import traceback class InvalidCommand(Exception): """Invalid command line argument.""" def __init__(self, *args, **kwargs): self.not_found = kwargs.pop('not_found', None) super(InvalidCommand, self).__init__(*args, **kwargs) self.cmd_used = None self.bin_name = 'doit' # default but might be overwriten def __str__(self): if self.not_found is None: return super(InvalidCommand, self).__str__() if self.cmd_used: msg_task_not_found = ( 'command `{cmd_used}` invalid parameter: "{not_found}".' + ' Must be a task, or a target.\n' + 'Type "{bin_name} list" to see available tasks') return msg_task_not_found.format(**self.__dict__) else: msg_cmd_task_not_found = ( 'Invalid parameter: "{not_found}".' + ' Must be a command, task, or a target.\n' + 'Type "{bin_name} help" to see available commands.\n' + 'Type "{bin_name} list" to see available tasks.\n') return msg_cmd_task_not_found.format(**self.__dict__) class InvalidDodoFile(Exception): """Invalid dodo file""" pass class InvalidTask(Exception): """Invalid task instance. User error on specifying the task.""" pass class CatchedException(object): """This used to save info from caught exceptions The traceback from the original exception is saved """ def __init__(self, msg, exception=None): self.message = msg self.traceback = '' if isinstance(exception, CatchedException): self.traceback = exception.traceback elif exception is not None: # TODO remove doit-code part from traceback self.traceback = traceback.format_exception( exception.__class__, exception, sys.exc_info()[2]) def get_msg(self): """return full exception description (includes traceback)""" return "%s\n%s" % (self.message, "".join(self.traceback)) def get_name(self): """get Exception name""" return self.__class__.__name__ def __repr__(self): return "(<%s> %s)" % (self.get_name(), self.message) def __str__(self): return "%s\n%s" % (self.get_name(), self.get_msg()) class TaskFailed(CatchedException): """Task execution was not successful.""" pass class UnmetDependency(TaskFailed): """Task was not executed because a dependent task failed or is ignored""" pass class TaskError(CatchedException): """Error while trying to execute task.""" pass class SetupError(CatchedException): """Error while trying to execute setup object""" pass class DependencyError(CatchedException): """Error while trying to check if task is up-to-date or saving task status""" pass
29.35
81
0.627257
2,826
0.962862
0
0
0
0
0
0
1,086
0.370017
d3fd7d52c6c44f8af7fa618793093cc47061e14f
17,358
py
Python
python/redmonster/tools/plot_fits.py
timahutchinson/redmonster
73adfb20213b89e43b950eb6a7f6525f3d11cec4
[ "CNRI-Python" ]
5
2017-03-22T21:29:40.000Z
2022-03-24T16:02:21.000Z
python/redmonster/tools/plot_fits.py
timahutchinson/redmonster
73adfb20213b89e43b950eb6a7f6525f3d11cec4
[ "CNRI-Python" ]
4
2016-06-24T10:50:23.000Z
2016-11-09T19:48:00.000Z
python/redmonster/tools/plot_fits.py
timahutchinson/redmonster
73adfb20213b89e43b950eb6a7f6525f3d11cec4
[ "CNRI-Python" ]
6
2016-06-21T16:52:34.000Z
2020-03-12T05:24:14.000Z
# GUI used for quickly plotting BOSS spectra. Also allows overplotting of best-fit template as # determined by redmonster pipeline. Sort of a redmonster version of plotspec.pro, though currently # with less bells and whistles. # # Tim Hutchinson, University of Utah, April 2014 # Signifcantly updated by TH, October 2014 # # [email protected] from os import environ from os.path import join, exists try: from tkinter import * except ImportError: from Tkinter import * import numpy as n import matplotlib matplotlib.use('Agg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, \ NavigationToolbar2TkAgg from matplotlib.figure import Figure from astropy.io import fits from astropy.convolution import convolve, Box1DKernel import seaborn as sns sns.set_style('whitegrid') from redmonster.physics.misc import poly_array class PlotFit(Frame): def __init__ (self): self.root = Tk() self.ablinelist = [ 3890.2, 3933.7, 3968.5, 4102.9, 4307, 4341.7, 4862.7, 5175, 5889, 5895 ] self.ablinenames = [ r'H$\epsilon$','Ca K', 'Ca H', r'H$\delta$', 'Ca G', r'H$\gamma$', r'H$\beta$', 'Mg I', 'Na I', 'Na I' ] self.emlinelist = [2500] self.emlinenames = ['test emline'] self.plate = None self.mjd = None # plate = StringVar() plate.set('7848') mjd = StringVar() mjd.set('56959') # L1 = Label(self.root, text='Plate') L1.grid(sticky=E) L2 = Label(self.root, text='MJD') L2.grid(sticky=E) L3 = Label(self.root, text='Fiber') L3.grid(stick=E) L5 = Label(self.root, text='z num') L5.grid(stick=E) self.e1 = Entry(self.root, textvariable=plate) self.e1.bind() self.e1.grid(row=0, column=1) self.e2 = Entry(self.root, textvariable=mjd) self.e2.grid(row=1, column=1) fiber = StringVar() fiber.set('0') self.e3 = Entry(self.root, textvariable=fiber) self.e3.grid(row=2, column=1) znum = StringVar() znum.set('1') self.e5 = Entry(self.root, textvariable=znum) self.e5.grid(row=3, column=1) nextz = Button(self.root, text='+', command=self.next_z) nextz.grid(row=3, column=4) prevz = Button(self.root, text='-', command=self.prev_z) prevz.grid(row=3, column=3) self.var = BooleanVar() self.var.set(1) self.restframe = BooleanVar() self.restframe.set(0) self.ablines = BooleanVar() self.ablines.set(0) self.emlines = BooleanVar() self.emlines.set(0) c = Checkbutton(self.root, text='Overplot best-fit model', variable=self.var) c.grid(row=4, column=1) restframe = Checkbutton(self.root, text='Rest-frame wavelength', variable=self.restframe) restframe.grid(row=5,column=1) ablines = Checkbutton(self.root, text='Show absorption lines ', variable=self.ablines) ablines.grid(row=6, column=1) emlines = Checkbutton(self.root, text='Show emission lines ', variable=self.emlines) emlines.grid(row=7, column=1) # smooth = StringVar() smooth.set('5') L4 = Label(self.root, text='Smooth') L4.grid(sticky=E) self.e4 = Entry(self.root, textvariable=smooth) self.e4.grid(row=8, column=1) plot = Button(self.root, text='Plot', command=self.do_plot) plot.grid(row=9, column=1) qbutton = Button(self.root, text='QUIT', fg='red', command=self.root.destroy) qbutton.grid(row=10, column=1) nextfiber = Button(self.root, text='>', command=self.next_fiber) nextfiber.grid(row=2, column=4) prevfiber = Button(self.root, text='<', command=self.prev_fiber) prevfiber.grid(row=2, column=3) Frame.__init__(self,self.root) self.root.mainloop() def do_plot(self): if self.plate != int(self.e1.get()) or self.mjd != int(self.e2.get()): self.plate = int(self.e1.get()) self.mjd = int(self.e2.get()) self.fiber = int(self.e3.get()) self.znum = int(self.e5.get()) self.platepath = join(environ['BOSS_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, 'spPlate-%s-%s.fits' % (self.plate, self.mjd)) hdu = fits.open(self.platepath) self.specs = hdu[0].data self.wave = 10**(hdu[0].header['COEFF0'] + n.arange(hdu[0].header['NAXIS1']) * hdu[0].header['COEFF1']) self.models = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[2].data self.fiberid = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.FIBERID self.type1 = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.CLASS1 self.type2 = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.CLASS2 self.type3 = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.CLASS3 self.type4 = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.CLASS4 self.type5 = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.CLASS5 self.z = n.zeros((self.fiberid.shape[0],5)) self.z[:,0] = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.Z1 self.z[:,1] = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.Z2 self.z[:,2] = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.Z3 self.z[:,3] = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.Z4 self.z[:,4] = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.Z5 self.zwarning = fits.open(join(environ['REDMONSTER_SPECTRO_REDUX'], environ['RUN2D'], '%s' % self.plate, environ['RUN1D'], 'redmonster-%s-%s.fits' % (self.plate, self.mjd)))[1].data.ZWARNING else: self.fiber = int(self.e3.get()) f = Figure(figsize=(10,6), dpi=100) a = f.add_subplot(111) loc = n.where(self.fiberid == self.fiber)[0] if self.znum == 1: z = self.z[loc[0],0] thistype = self.type1[loc[0]] elif self.znum == 2: z = self.z[loc[0],1] thistype = self.type2[loc[0]] elif self.znum == 3: z = self.z[loc[0],2] thistype = self.type3[loc[0]] elif self.znum == 4: z = self.z[loc[0],3] thistype = self.type4[loc[0]] elif self.znum == 5: z = self.z[loc[0],4] thistype = self.type5[loc[0]] if self.var.get() == 0: if self.restframe.get() == 0: a.plot(self.wave, self.specs[self.fiber], color='black') elif self.restframe.get() == 1: a.plot(self.wave/(1+self.z[loc][0]), self.specs[self.fiber], color='black') elif self.var.get() == 1: smooth = self.e4.get() if smooth is '': if self.restframe.get() == 0: a.plot(self.wave, self.specs[self.fiber], color='black') elif self.restframe.get() == 1: a.plot(self.wave/(1+z), self.specs[self.fiber], color='black') else: if self.restframe.get() == 0: a.plot(self.wave, convolve(self.specs[self.fiber], Box1DKernel(int(smooth))), color='black') elif self.restframe.get() == 1: a.plot(self.wave/(1+z), convolve(self.specs[self.fiber], Box1DKernel(int(smooth))), color='black') # Overplot model if len(loc) is not 0: if self.restframe.get() == 0: #a.plot(self.wave, self.models[loc[0]], color='black') # This for when multiple models are in redmonster file a.plot(self.wave, self.models[loc[0],self.znum-1], color='cyan') if self.ablines.get() == 1: for i, line in enumerate(self.ablinelist): if ((line*(1+z) > self.wave[0]) & (line*(1+z) < self.wave[-1])): a.axvline(line*(1+z), color='blue', linestyle='--', label=self.ablinenames[i]) if self.emlines.get() == 1: for i, line in enumerate(self.emlinelist): if (line*(1+z) > self.wave[0]) & (line*(1+z) < \ self.wave[-1]): a.axvline(line*(1+z), color='red', linestyle='--', label=self.emlinenames[i]) if self.ablines.get() == 1 or self.emlines.get() == 1: a.legend(prop={'size':10}) elif self.restframe.get() == 1: a.plot(self.wave/(1+z), self.models[loc[0],self.znum-1], color='cyan') if self.ablines.get() == 1: for i, line in enumerate(self.ablinelist): if (line > self.wave[0]) & (line < self.wave[-1]): a.axvline(line, color='blue', linestyle='--', label=self.ablinenames[i]) if self.emlines.get() == 1: for i, line in enumerate(self.emlinelist): if (line > self.wave[0]) & (line < self.wave[-1]): a.axvline(line, color='red', linestyle='--', label=self.emlinenames[i]) if self.ablines.get() == 1 or self.emlines.get() == 1: a.legend(prop={'size':10}) a.set_title('Plate %s Fiber %s: z=%s class=%s zwarning=%s' % (self.plate, self.fiber, z, thistype, self.zwarning[loc[0]])) else: print('Fiber %s is not in redmonster-%s-%s.fits' % \ (self.fiber, self.plate, self.mjd)) a.set_title('Plate %s Fiber %s' % (self.plate, self.fiber)) if self.restframe.get() == 1: lower_data, upper_data = self.set_limits() a.axis([self.wave[0]/(1+z)-100,self.wave[-1]/(1+z)+100, lower_data,upper_data]) elif self.restframe.get() == 0: lower_data, upper_data = self.set_limits() a.axis([self.wave[0]-100,self.wave[-1]+100,lower_data,upper_data]) a.set_xlabel('Wavelength ($\AA$)') a.set_ylabel('Flux ($10^{-17} erg\ cm^2 s^{-1} \AA^{-1}$)') canvas = FigureCanvasTkAgg(f, master=self.root) canvas.get_tk_widget().grid(row=0, column=5, rowspan=20) toolbar_frame = Frame(self.root) toolbar_frame.grid(row=20,column=5) toolbar = NavigationToolbar2TkAgg( canvas, toolbar_frame ) canvas.show() def next_fiber(self): self.fiber += 1 self.e3.delete(0, END) self.e3.insert(0, str(self.fiber)) self.do_plot() def prev_fiber(self): self.fiber -= 1 self.e3.delete(0, END) self.e3.insert(0, str(self.fiber)) self.do_plot() def next_z(self): if (self.znum >= 1) & (self.znum < 5): self.znum += 1 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() else: if self.znum < 1: self.znum = 1 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() elif self.znum >= 5: self.znum = 5 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() else: self.znum = 1 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() def prev_z(self): if (self.znum > 1) & (self.znum <= 5): self.znum -= 1 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() else: if self.znum <= 1: self.znum = 1 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() elif self.znum > 5: self.znum = 5 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() else: self.znum = 1 self.e5.delete(0, END) self.e5.insert(0, str(self.znum)) self.do_plot() def set_limits(self, percentile=.95): sorted_flux = n.sort( self.specs[self.fiber] ) bottom_ind = int(n.floor((1-percentile)/2. * sorted_flux.shape[0])) top_ind = n.ceil(sorted_flux.shape[0] - bottom_ind) return sorted_flux[bottom_ind], sorted_flux[top_ind] app = PlotFit()
47.04065
100
0.44625
16,489
0.949937
0
0
0
0
0
0
1,987
0.114472
d3fe4ecd726c46ffcb95a62b678fd7cd36fc2ddd
565
py
Python
QueueReconstruction.py
yashpatel0369/PythonDataStructures
4839150c9eb4882e975859084d6b3787c72ce5f3
[ "MIT" ]
null
null
null
QueueReconstruction.py
yashpatel0369/PythonDataStructures
4839150c9eb4882e975859084d6b3787c72ce5f3
[ "MIT" ]
null
null
null
QueueReconstruction.py
yashpatel0369/PythonDataStructures
4839150c9eb4882e975859084d6b3787c72ce5f3
[ "MIT" ]
1
2020-10-01T03:53:22.000Z
2020-10-01T03:53:22.000Z
# An algorithm to reconstruct the queue. # Suppose you have a random list of people standing in a queue. # Each person is described by a pair of integers (h,k), where h is the height of the person and k is the number of people in front of this person who have a height greater than or equal to h. class Solution: def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]: people = sorted(people, key = lambda x: (-x[0], x[1])) ans = [] for pep in people: ans.insert(pep[1], pep) return ans
43.461538
191
0.644248
266
0.470796
0
0
0
0
0
0
294
0.520354
d3ffb66f226d9d5f6c6c34d8eb1cb0a764f6d67e
255
py
Python
passagens/models/classe_viagem.py
carlosrjhoe/Aplicacao_Formulario_com_Django
e16b8bc99aeb120e89c615a34261372bc81f6528
[ "MIT" ]
null
null
null
passagens/models/classe_viagem.py
carlosrjhoe/Aplicacao_Formulario_com_Django
e16b8bc99aeb120e89c615a34261372bc81f6528
[ "MIT" ]
null
null
null
passagens/models/classe_viagem.py
carlosrjhoe/Aplicacao_Formulario_com_Django
e16b8bc99aeb120e89c615a34261372bc81f6528
[ "MIT" ]
null
null
null
from django.db import models from django.utils.translation import gettext_lazy as _ class ClasseViagem(models.TextChoices): ECONOMICA = 'ECO', _('Econômica') EXECUTIVA = 'EXE', _('Executiva') PRIMEIRA_CLASSE = 'PRI', _('Primeira')
36.428571
54
0.690196
171
0.667969
0
0
0
0
0
0
48
0.1875
d3ffbfb469a902f14133370371345f427175f9fd
9,046
py
Python
tests/unit/test_HashlistsByAlgLoaderThread.py
AntonKuzminRussia/hbs-cli
a4109adeb7f4fe3b1d85b29f90c3f2329a8c4153
[ "MIT" ]
5
2016-07-13T18:21:57.000Z
2018-03-15T21:35:30.000Z
tests/unit/test_HashlistsByAlgLoaderThread.py
AntonKuzminRussia/hbs-cli
a4109adeb7f4fe3b1d85b29f90c3f2329a8c4153
[ "MIT" ]
null
null
null
tests/unit/test_HashlistsByAlgLoaderThread.py
AntonKuzminRussia/hbs-cli
a4109adeb7f4fe3b1d85b29f90c3f2329a8c4153
[ "MIT" ]
2
2016-12-04T01:06:03.000Z
2018-09-01T17:44:14.000Z
# -*- coding: utf-8 -*- """ This is part of HashBruteStation software Docs EN: http://hack4sec.pro/wiki/index.php/Hash_Brute_Station_en Docs RU: http://hack4sec.pro/wiki/index.php/Hash_Brute_Station License: MIT Copyright (c) Anton Kuzmin <http://anton-kuzmin.ru> (ru) <http://anton-kuzmin.pro> (en) Integration tests for HashlistsByAlgLoaderThread """ import sys import os import time import pytest sys.path.append('../../') from libs.common import file_get_contents, md5 from classes.HashlistsByAlgLoaderThread import HashlistsByAlgLoaderThread from CommonUnit import CommonUnit class Test_HashlistsByAlgLoaderThread(CommonUnit): """ Unit tests for HashlistsByAlgLoaderThread """ db = None thrd = None def setup(self): """ Tests setup """ self._clean_db() self.thrd = HashlistsByAlgLoaderThread() self.thrd.catch_exceptions = False def teardown(self): """ Tests teardown """ if isinstance(self.thrd, HashlistsByAlgLoaderThread): self.thrd.available = False time.sleep(1) del self.thrd self._clean_db() def test_get_common_hashlist_id_by_alg_get(self): """ Test get_common_hashlist_id_by_alg_get() """ self._add_hashlist(have_salts=1, common_by_alg=3) assert self.thrd.get_common_hashlist_id_by_alg(3) == 1 test_data = [ ( 1, {'hash': 'a', 'salt': '1', 'summ': md5('a:1')}, ), ( 0, {'hash': 'a', 'salt': '', 'summ': md5('a')}, ), ] @pytest.mark.parametrize("have_salt,_hash", test_data) def test_get_common_hashlist_id_by_alg_create(self, have_salt, _hash): """ Test get_common_hashlist_id_by_alg_create() :param have_salt: does hashlist has salt? :param _hash: hash data row :return: """ self._add_hashlist(have_salts=have_salt, common_by_alg=0) self._add_hash(hash=_hash['hash'], salt=_hash['salt'], summ=_hash['summ']) assert self.thrd.get_common_hashlist_id_by_alg(3) == 2 test_hashlist_data = {'id': 2, 'name': 'All-MD4', 'have_salts': have_salt, 'delimiter': self.thrd.DELIMITER, 'cracked': 0, 'uncracked': 0, 'errors': '', 'parsed': 0, 'status': 'ready', 'common_by_alg': 3} hashlist_data = self.db.fetch_row("SELECT * FROM hashlists WHERE id = 2") for field in test_hashlist_data: assert hashlist_data[field] == test_hashlist_data[field] def test_get_common_hashlist_id_by_alg_with_salt_create_one_salt_forget(self): """ Test get_common_hashlist_id_by_alg_create() """ self._add_hashlist(have_salts=1, common_by_alg=0) self._add_hash(hash='a', salt='b', summ='333') self._add_hashlist(id=2, have_salts=0, common_by_alg=0) self._add_hash(hashlist_id=2, hash='c', salt='d', summ='111') assert self.thrd.get_common_hashlist_id_by_alg(3) == 3 test_hashlist_data = {'id': 3, 'name': 'All-MD4', 'have_salts': 1, 'delimiter': self.thrd.DELIMITER, 'cracked': 0, 'uncracked': 0, 'errors': '', 'parsed': 0, 'status': 'ready', 'common_by_alg': 3} hashlist_data = self.db.fetch_row("SELECT * FROM hashlists WHERE id = 3") for field in test_hashlist_data: assert hashlist_data[field] == test_hashlist_data[field] def test_get_current_work_hashlist(self): """ Test get_current_work_hashlist() """ assert not self.thrd.get_current_work_hashlist() self.db.insert("task_works", {'hashlist_id': 3, 'status': 'work', 'task_id': 1}) assert self.thrd.get_current_work_hashlist() == 3 def test_get_hashlist_status(self): """ Test get_hashlist_status() """ self._add_hashlist(common_by_alg=1) assert self.thrd.get_hashlist_status(1) == 'ready' def test_is_alg_in_parse(self): """ Test is_alg_in_parse() """ assert self.thrd.is_alg_in_parse(3) is False self._add_hashlist(common_by_alg=1) self.db.insert("task_works", {'hashlist_id': 1, 'status': 'waitoutparse', 'task_id': 1}) assert self.thrd.is_alg_in_parse(3) is True assert self.thrd.is_alg_in_parse(4) is False self._add_hashlist(id=2, alg_id=4, common_by_alg=1) self.db.insert("task_works", {'hashlist_id': 2, 'status': 'outparsing', 'task_id': 1}) assert self.thrd.is_alg_in_parse(4) is True def test_hashes_count_in_hashlist(self): """ Test hashes_count_in_hashlist() """ assert self.thrd.hashes_count_in_hashlist(1) == 0 self._add_hash() assert self.thrd.hashes_count_in_hashlist(1) == 1 def test_hashes_count_by_algs(self): """ Test hashes_count_by_algs() """ assert self.thrd.hashes_count_by_algs() == {} self._add_hashlist() self._add_hash(summ='111') self._add_hash(summ='222', hash='a', salt='b') self._add_hashlist(id=2, alg_id=4) self._add_hash(hashlist_id=2, summ='333') assert self.thrd.hashes_count_by_algs() == {3: 2, 4: 1} def test_is_alg_have_salts(self): """ Test is_alg_have_salts() """ self._add_hashlist() assert self.thrd.is_alg_have_salts(3) is False self._add_hashlist(id=2, have_salts=1) # Forget salt bug assert self.thrd.is_alg_have_salts(3) is True def test_get_possible_hashlist_and_alg_simple(self): """ Test get_possible_hashlist_and_alg_simple() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') assert self.thrd.get_possible_hashlist_and_alg() == {'hashlist_id': 2, 'alg_id': 3} def test_get_possible_hashlist_and_alg_none_already(self): """ Test get_possible_hashlist_and_alg_none_already() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') self._add_hashlist(id=2, common_by_alg=3) self._add_hash(hashlist_id=2, hash='a', summ='111') self._add_hash(hashlist_id=2, hash='b', summ='222') assert self.thrd.get_possible_hashlist_and_alg() is None def test_get_possible_hashlist_and_alg_none_in_parse(self): """ Test get_possible_hashlist_and_alg_none_in_parse() """ self.db.insert("task_works", {'hashlist_id': 1, 'status': 'waitoutparse', 'task_id': 1}) self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') assert self.thrd.get_possible_hashlist_and_alg() is None self.db.update("task_works", {'status': 'outparsing'}, "id=1") assert self.thrd.get_possible_hashlist_and_alg() is None def test_get_possible_hashlist_and_alg_none_not_ready(self): """ Test get_possible_hashlist_and_alg_none_not_ready() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') self._add_hashlist(id=2, status='wait', common_by_alg=3) assert self.thrd.get_possible_hashlist_and_alg() is None def test_get_possible_hashlist_and_alg_none_in_work(self): """ Test get_possible_hashlist_and_alg_none_in_work() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') self._add_hashlist(id=2, common_by_alg=3) self.db.insert("task_works", {'hashlist_id': 2, 'status': 'work', 'task_id': 1}) assert self.thrd.get_possible_hashlist_and_alg() is None def test_clean_old_hashes(self): """ Test clean_old_hashes() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') assert self.db.fetch_one("SELECT COUNT(*) FROM hashes WHERE hashlist_id = 1") == 2 self.thrd.clean_old_hashes(1) assert self.db.fetch_one("SELECT COUNT(*) FROM hashes WHERE hashlist_id = 1") == 0 assert self.db.fetch_one("SELECT cracked+uncracked FROM hashlists WHERE id = 1") == 0 def test_put_all_hashes_of_alg_in_file(self): """ Test put_all_hashes_of_alg_in_file() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(summ='222') self._add_hash(hash='b', summ='333') path = self.thrd.put_all_hashes_of_alg_in_file(3) assert os.path.exists(path) assert file_get_contents(path) == 'a\nb\n' self._add_hashlist(id=2, have_salts=1, alg_id=4) self._add_hash(hashlist_id=2, hash='a', salt='b', summ='111') self._add_hash(hashlist_id=2, summ='222') self._add_hash(hashlist_id=2, hash='c', salt='d', summ='333') path = self.thrd.put_all_hashes_of_alg_in_file(4) assert os.path.exists(path) assert file_get_contents(path) == 'a{0}b\nc{0}d\n'.format(self.thrd.DELIMITER)
38.330508
116
0.64371
8,458
0.934999
0
0
988
0.10922
0
0
2,406
0.265974