hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
6f62e27b225bd0318b85812c8f42343dc3b0fca8
1,436
py
Python
Author/admin.py
CMPUT404-Fa21-Organization/CMPUT404-Project-Social-Distribution
63c0ba2a03f0b462e3673ce7a4bf6bae7999440c
[ "Apache-2.0" ]
3
2021-12-11T13:43:56.000Z
2022-03-31T02:36:05.000Z
Author/admin.py
CMPUT404-Fa21-Organization/CMPUT404-Project-Social-Distribution
63c0ba2a03f0b462e3673ce7a4bf6bae7999440c
[ "Apache-2.0" ]
9
2021-10-01T22:46:57.000Z
2021-12-16T18:01:31.000Z
Author/admin.py
CMPUT404-Fa21-Organization/CMPUT404-Project-Social-Distribution
63c0ba2a03f0b462e3673ce7a4bf6bae7999440c
[ "Apache-2.0" ]
2
2021-12-16T16:37:10.000Z
2021-12-16T20:30:12.000Z
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import * # Register your models here. def set_active(modeladmin, request, queryset): for user in queryset: user.is_active = True user.save() set_active.short_description = 'Set Account Status: Active' def deactivate(modeladmin, request, queryset): for user in queryset: user.is_active = False user.save() deactivate.short_description = 'Set Account Status: Inactive' class AuthorAdmin(UserAdmin): # display fields fieldsets = ( (None, {'fields': ('email', 'displayName','github')}), (('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser', 'groups', 'user_permissions')}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', 'password1', 'password2'), }), ) ordering = ('email',) search_fields = ('email', 'displayName') # list_display = ('email', 'displayName', 'is_staff', 'url') list_display = ('email', 'auth_pk', 'displayName', 'github', 'is_active', 'is_staff', 'url') actions = [set_active, deactivate,] # admin.site.unregister(User) admin.site.register(Author, AuthorAdmin) admin.site.register(Inbox) admin.site.register(Like) admin.site.register(Liked) admin.site.register(FriendRequest) admin.site.register(Followers)
31.217391
96
0.639972
711
0.495125
0
0
0
0
0
0
451
0.314067
6f637c0d8807f40cbf867588212e880e31335fd4
26,912
py
Python
TP2/pyApp/venv/lib/python3.8/site-packages/pyloco/task.py
MariusBallot/09-2021-Robotics-EFREI-Files
cf6bdb7b9d3b9f368970fbed42c6b403f56b0eeb
[ "W3C" ]
null
null
null
TP2/pyApp/venv/lib/python3.8/site-packages/pyloco/task.py
MariusBallot/09-2021-Robotics-EFREI-Files
cf6bdb7b9d3b9f368970fbed42c6b403f56b0eeb
[ "W3C" ]
null
null
null
TP2/pyApp/venv/lib/python3.8/site-packages/pyloco/task.py
MariusBallot/09-2021-Robotics-EFREI-Files
cf6bdb7b9d3b9f368970fbed42c6b403f56b0eeb
[ "W3C" ]
null
null
null
# -*- coding: utf-8 -*- """task module.""" from __future__ import unicode_literals import sys import os import pydoc import time import json import logging import collections import pkg_resources import subprocess import webbrowser import websocket from pyloco.parse import TaskArgParser, PylocoArgParser from pyloco.proxy import ParentProxy from pyloco.util import (load_pymod, type_check, pyloco_print, OS, urlparse, teval, split_assert_expr, get_port, pack_websocket_message, is_ipv6, pyloco_import, PylocoPickle, import_modulepath) from pyloco.error import TestError, InternalError, UsageError from pyloco.base import Object, Global, pyloco_builtins def load_taskclass(taskpath, argv, subargv): if not taskpath: return None, None, None, None # TODO: handle aliased task if isinstance(taskpath, type): if issubclass(taskpath, Task): return taskpath, argv, subargv, None raise UsageError("Not compatible task type: %s" % type(taskpath)) # TODO: move to callsite to load_taskclass objs = {} while "--import" in argv: idx = argv.index("--import") mpath = argv.pop(idx+1) argv.pop(idx) key, obj = import_modulepath(mpath) objs[key] = obj task_class = None _p = taskpath.split("#", 1) if len(_p) == 2: taskpath, fragment = [x.strip() for x in _p] else: fragment = "" if os.path.exists(taskpath): mods = [] if os.path.isfile(taskpath): head, base = os.path.split(taskpath) if base.endswith(".py"): mods.append(load_pymod(head, base[:-3])) elif base.endswith(".plx"): from pyloco.plxtask import PlXTask task_class = PlXTask argv.insert(0, taskpath) elif base.endswith(".plz"): from pyloco.plztask import PlZTask task_class = PlZTask argv.insert(0, taskpath) elif os.path.isdir(taskpath): # TODO: support Python package pass import pdb; pdb.set_trace() candidates = {} for mod in mods: for name in dir(mod): if not name.startswith("_"): obj = getattr(mod, name) if (type(obj) == type(Task) and issubclass(obj, Task) and (obj.__module__ is None or not obj.__module__.startswith("pyloco."))): candidates[name] = obj if candidates: if fragment: if hasattr(candidates, fragment): task_class = getattr(candidates, fragment) else: raise UsageError("No task is found with a fragment of " "'%s'." % fragment) elif len(candidates) == 1: task_class = candidates.popitem()[1] else: raise UsageError( "More than one frame are found." "Please add fragment to select one: %s" % list(candidates.keys()) ) if task_class: setattr(task_class, "_path_", os.path.abspath(taskpath)) #else: # raise UsageError("Task class is not found. Please check path: %s" % taskpath) if task_class is None: from pyloco.manage import _ManagerBase if taskpath in _ManagerBase._default_tasks_: task_class = _ManagerBase._default_tasks_[taskpath] if task_class is None: for ep in pkg_resources.iter_entry_points(group='pyloco.task'): if taskpath == ep.name: task_class = ep.load() from pyloco.plxtask import PlXTask if task_class is PlXTask: task_mod = pyloco_import(taskpath) task_dir = os.path.dirname(task_mod.__file__) argv.insert(0, os.path.join(task_dir, getattr(task_mod, "plx"))) break if not task_class: from pyloco.mgmttask import mgmt_tasks from pyloco.stdtask import standard_tasks if taskpath in mgmt_tasks: task_class = mgmt_tasks[taskpath] elif taskpath in standard_tasks: task_class = standard_tasks[taskpath] # TODO support remote task # if not task_class: # # url = urlparse(taskpath) # # if url.netloc or url.scheme: # argv.insert(0, taskpath) # task_class = RemoteTask if not task_class: raise UsageError("Task '%s' is not found. Please check path." % taskpath) return task_class, argv, subargv, objs def taskclass(taskpath): cls, _, _, _ = load_taskclass(taskpath, [], []) return cls class Task(Object): """Base class for pyloco Tasks """ _version_ = "0.1.0" _argparser_ = TaskArgParser def __new__(cls, parent, *vargs, **kwargs): obj = super(Task, cls).__new__(cls) obj.parent = parent obj.subargv = None obj.taskattr = {} if not hasattr(obj, "_name_"): obj._name_ = kwargs.pop("name", cls.__name__) #obj._parser = TaskArgParser(obj) obj._parser = cls._argparser_(obj) obj._env = {"__builtins__": pyloco_builtins, "__arguments__": {}} obj._fwddefs = {} obj._fwds = {} obj._shrdefs = {} #obj._rdcdefs = {} obj._rdcs = {} obj._logger = None obj._verbose = False obj._websocket_server = None obj._websocket_client = None obj._webserver = None obj.tglobal = Global() obj.parse_known_args = False obj.unknown_args = [] return obj def clone(self): Task(self.parent) def add_logger(self, logpath): root, ext = os.path.splitext(logpath) if ext == ".log": self.parent.log_setup(filename=logpath) else: self.parent.log_setup(filename=logpath+".log") self._logger = logging.getLogger(self.get_name()) def _log_level(self, level, *vargs, **kwargs): logger = self._logger if self._logger else self.parent._logger if logger: getattr(logger, level)(*vargs, **kwargs) def log_debug(self, *vargs, **kwargs): self._log_level("debug", *vargs, **kwargs) def log_info(self, *vargs, **kwargs): self._log_level("info", *vargs, **kwargs) def log_warn(self, *vargs, **kwargs): self._log_level("warn", *vargs, **kwargs) def log_warning(self, *vargs, **kwargs): self._log_level("warning", *vargs, **kwargs) def log_error(self, *vargs, **kwargs): self._log_level("error", *vargs, **kwargs) def log_critical(self, *vargs, **kwargs): self._log_level("critical", *vargs, **kwargs) def log_exception(self, *vargs, **kwargs): self._log_level("exception", *vargs, **kwargs) def get_name(self): return self.parent.shared["parent_name"] + "." + self._name_ def get_mgrname(self): return self.get_name().split(".")[0] def get_proxy(self, proxycls=None, inherit_shared=False): if proxycls is None: proxycls = ParentProxy proxy = proxycls(self) if inherit_shared: proxy.shared.update(self.parent.shared) return proxy def _register_check(self, dest): if not dest: raise UsageError("Incorrect name: %s" % dest) if dest.startswith("_"): raise UsageError("'Forward-name' should not start with an " "underscore ('_'): %s" % dest) if dest in self._fwddefs: raise UsageError("'%s' is already registered for forwarding" % dest) if dest in self._shrdefs: raise UsageError("'%s' is already registered for sharing" % dest) #if dest in self._rdcdefs: # raise UsageError("'%s' is already registered for reducing" % dest) def register_forward(self, dest, type=None, help=None): self._register_check(dest) self._fwddefs[dest] = (type, help) def register_shared(self, dest, type=None, help=None): self._register_check(dest) self._shrdefs[dest] = (type, help) #def register_reduce(self, dest, type=None, help=None): # self._register_check(dest) # self._rdcdefs[dest] = (type, help) def _add_transfer(self, defs, cont, **kwargs): for dest, value in kwargs.items(): if dest not in defs: raise UsageError("'%s' is not registered for data transfer." % dest) if type_check(value, defs[dest][0]): cont[dest] = value else: if isinstance(value, str) and os.path.isfile(value): import pdb; pdb.set_trace() # noqa: E702 else: raise TestError("Data transfer type check failure: %s" % dest) def add_forward(self, **kwargs): self._add_transfer(self._fwddefs, self._fwds, **kwargs) def add_shared(self, **kwargs): self._add_transfer(self._shrdefs, self.parent.shared, **kwargs) #def add_reduce(self, **kwargs): # self._add_transfer(self._rdcdefs, self._rcds, **kwargs) def write_pickle(self, pickler, data): return data def pre_perform(self, targs): if targs.log: self.add_logger(targs.log) if targs.verbose: self._verbose = True if hasattr(targs, "assert_input") and targs.assert_input: env = {"__builtins__": pyloco_builtins} for k, v in self._env.items(): if not k.startswith("_"): env[k] = v for key, value in targs.__dict__.items(): if key == "assert_input": continue env[key] = value for boolexpr in targs.assert_input: for varg in boolexpr.vargs: assert_result = eval(varg, env) if assert_result: if self._verbose: pyloco_print('\nINPUT TEST PASSED with "%s"' % varg) else: pairs = split_assert_expr(varg) if not pairs: raise TestError( "\nINPUT TEST FAILED with '%s' =>" " not True" % varg ) elif len(pairs) == 1: sep, (lexpr, rexpr) = pairs.popitem() msg = ( "\nINPUT TEST(%s) is FAILED.\n " "Left expr(%s) of '%s' is evaluated to '%s'" " and\n right expr(%s) of '%s' " "is evaluated to '%s'.\n" ) % (varg, lexpr, sep, eval(lexpr, env), rexpr, sep, eval(rexpr, env)) raise TestError(msg) else: msg = ( "\nINPUT TEST(%s) FAILED: detected multiple" " possibilities of this test failure\n") % varg idx = 0 for sep, (lexpr, rexpr) in pairs.items(): idx += 1 try: msg += ( "CASE%d:\n Left expr(%s)" " of" " '%s' is evaluated to '%s' and\n" " right expr(%s) of '%s' is " "evaluated to '%s'.\n" ) % (idx, lexpr, sep, eval(lexpr, env), rexpr, sep, eval(rexpr, env)) except Exception: pass raise TestError(msg) # if targs.import_module: # modpath = targs.import_module # head, base = os.path.split(modpath) # mod = None # # if os.path.isfile(modpath) and modpath.endswith(".py"): # modname = base[:-3] # mod = load_pymod(head, modname) # # elif (os.path.isdir(modpath) and # os.path.isfile(os.path.join(modpath, "__init__.py"))): # if base[-1] == os.sep: # modname = base[:-1] # # else: # modname = base # # mod = load_pymod(head, modname) # # else: # try: # modname = modpath # mod = pyloco_import(modname) # # except ModuleNotFoundError as err: # raise UsageError("'%s' module is not found." % modname) # if mod: # self._env[modname] = mod if targs.calculate: for calc in targs.calculate: for expr in calc.vargs: self._env["_"] = teval(expr, self._env) for lhs, rhs in calc.kwargs.items(): self._env[lhs.strip()] = teval(rhs, self._env) if targs.webapp: appath = targs.webapp # TODO: reuse webserver and websocket # TODO: user-provided js can control if reuse or not through # websocket init msg if appath.endswith(".js"): webapp = os.path.abspath(appath)[:-3] elif appath.endswith(".plw"): import pdb; pdb.set_trace() # noqa: E702 else: webapp = os.path.abspath(appath) here = os.path.dirname(__file__) websocket_port = get_port() websocket_path = os.path.join(here, "websocket.py") webserver_port = get_port() webserver_path = os.path.join(here, "webserver.py") self._websocket_server = subprocess.Popen( [sys.executable, websocket_path, str(websocket_port), str(webserver_port)], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) self._webserver = subprocess.Popen( [sys.executable, webserver_path, str(webserver_port), str(websocket_port)] + [webapp], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) webbrowser.open("http://127.0.0.1:%d" % webserver_port) if OS == "windows" and is_ipv6(): self._websocket_client = websocket.create_connection( "ws://[::1]:%d/" % websocket_port) else: self._websocket_client = websocket.create_connection( "ws://127.0.0.1:%d/" % websocket_port) self._websocket_client.send("pyloco") maxiter = 100 count = 0 while count < maxiter: self._websocket_client.send("check_browser") out = self._websocket_client.recv() if out == "True": break time.sleep(0.1) count += 1 def send_websocket_message(self, sender, msgtype, msg): if self._websocket_client: self._websocket_client.send( json.dumps(pack_websocket_message(sender, msgtype, msg)) ) self._websocket_client.recv() def post_perform(self, targs): if targs.webapp: appath = targs.webapp wait2close = self.taskattr.get("webapp.wait2close", True) if wait2close: if self._websocket_server: pyloco_print("Waiting for '%s' to be completed..." % appath, end="") sys.stdout.flush() self._websocket_server.communicate(input=None) if self._websocket_client: self._websocket_client.close() if self._webserver: self._webserver.communicate(input=None) pyloco_print("DONE.") sys.stdout.flush() env = dict(self._env) env.update(self.parent.shared) env.update(self._fwds) lenv = {} if targs.forward: try: for fwd in targs.forward: for varg in fwd.vargs: self._fwds[varg] = env[varg] for dest, value in fwd.kwargs.items(): self._fwds[dest] = eval(value, env, lenv) except Exception as err: raise UsageError("failed on forwarding: %s" % str(err)) if targs.shared: self._handle_sharedarg(targs.shared) if hasattr(targs, "assert_output") and targs.assert_output: aenv = {"__builtins__": pyloco_builtins} for k, v in self._env.items(): if not k.startswith("_"): aenv[k] = v aenv.update(self.parent.shared) aenv.update(self._fwds) for boolexpr in targs.assert_output: for varg in boolexpr.vargs: assert_result = eval(varg, aenv) if assert_result: if self._verbose: pyloco_print( '\nOUTPUT TEST PASSED with "%s"' % varg ) else: pairs = split_assert_expr(varg) if not pairs: raise TestError( "\nOUTPUT TEST FAILED with '%s' =>" " not True" % varg ) elif len(pairs) == 1: sep, (lexpr, rexpr) = pairs.popitem() msg = ( "\nOUTPUT TEST(%s) is FAILED.\n " "Left expr(%s) of '%s' is evaluated to '%s'" " and\n right expr(%s) of '%s' " "is evaluated to '%s'.\n" ) % (varg, lexpr, sep, eval(lexpr, aenv), rexpr, sep, eval(rexpr, aenv)) raise TestError(msg) else: msg = ( "\nOUTPUT TEST(%s) FAILED: detected multiple" " possibilities of this test failure\n" ) % varg idx = 0 for sep, (lexpr, rexpr) in pairs.items(): idx += 1 try: msg += ( "CASE%d:\n Left expr(%s)" " of" " '%s' is evaluated to '%s' and\n" " right expr(%s) of '%s' is " "evaluated to '%s'.\n" ) % (idx, lexpr, sep, eval(lexpr, aenv), rexpr, sep, eval(rexpr, aenv)) except Exception: pass raise TestError(msg) if targs.write_pickle: ppf = PylocoPickle() data = dict(self.parent.shared) data.update(self._fwds) data.pop("parent_name", None) pdata = self.write_pickle(ppf, data) ppf.dump(pdata, targs.write_pickle) def write_pickle(self, pickler, data): return data def read_pickle(self, path): import pdb; pdb.set_trace() def _handle_sharedarg(self, shared, forwards): try: env = dict(self._env) env.update(forwards) for shr in shared: for varg in shr.vargs: self.parent.shared[varg] = env[varg] for dest, value in shr.kwargs.items(): self.parent.shared[dest] = eval(value, env, {}) except Exception as err: raise UsageError("failed on sharing variable: %s" % str(err)) def run(self, argv, subargv=None, forward=None): """task run function """ self.subargv = subargv # attribute setting if forward is None: forward = {} elif not isinstance(forward, dict): raise InternalError("forward is not a dict type: %s" % str(forward)) fpenv = {} fpenv.update(forward) fpenv.update(self.parent.shared) if "--read-pickle" in argv: idx = argv.index("--read-pickle") ppath = argv.pop(idx+1) argv.pop(idx) ppickle = PylocoPickle() penv = ppickle.load(ppath) fpenv.update(penv) # argument parsing targs, self.unknown_args = self._parser.parse_args(argv, fpenv, parse_known_args=self.parse_known_args) # pre perform self.pre_perform(targs) self.send_websocket_message("pyloco", "task", "Task '%s' is started." % self._name_) # perform if hasattr(self, "_group_perform"): retval = self._group_perform(targs) else: if "_pathid_" in fpenv and isinstance(fpenv["_pathid_"], int): self._env["_pathid_"] = fpenv["_pathid_"] retval = self.perform(targs) if retval is None: retval = 0 self.send_websocket_message("pyloco", "task", "Task '%s' is finished." % self._name_) # post perform self.post_perform(targs) _fwds = self._fwds self._fwds = {} return retval, _fwds def perform(self, targs): """task perform functiion Task should implement this function. """ raise NotImplementedError("'perform' method is not implemented in %s." % str(self.__class__)) def add_data_argument(self, *vargs, **kwargs): self._parser.add_data_argument(*vargs, **kwargs) def del_data_argument(self, name): self._parser.del_data_argument(name) def set_data_argument(self, *vargs, **kwargs): self._parser.set_data_argument(*vargs, **kwargs) def add_option_argument(self, *vargs, **kwargs): self._parser.add_option_argument(*vargs, **kwargs) class OptionTask(Task): def _lines(name, title, tasks): lines = [title] lines.append("-"*len(title)) for task in sorted(tasks): docs = tasks[task].__doc__ if docs: lines.append("{0:10} : {1}".format(task, pydoc.splitdoc(docs)[0])) else: lines.append("{0:10} : {0}".format(task)) return lines def show_installed_tasks(self, tasks): #installed_tasks = dict((n, t) for n, t in tasks.items) return self._lines("installed tasks", tasks) def show_standard_tasks(self): from pyloco.stdtask import standard_tasks return self._lines("standard tasks", standard_tasks) def show_mgmt_tasks(self): from pyloco.mgmttask import mgmt_tasks return self._lines("management tasks", mgmt_tasks) def run(self, argv, subargv=None, forward=None): mgrname = self.parent.get_managerattr("name") mgrver = self.parent.get_managerattr("version") if not argv: print(self.parent.get_managerattr("usage").format(manager=mgrname)) return 0, None usage = self.parent.get_managerattr("usage").format(manager=mgrname) if "--verbose" in argv: long_desc = self.parent.get_managerattr("long_description") list_help = self.parent.get_managerattr("list_help").format( manager=mgrname) epilog = self.parent.get_managerattr("epilog") desc = long_desc + " " + list_help parser = PylocoArgParser(mgrname, mgrver, description=desc, usage=usage, epilog=epilog) else: desc = self.parent.get_managerattr("description") parser = PylocoArgParser(mgrname, mgrver, description=desc, usage=usage) targs = parser.parse_args(argv) if targs.list: pyloco_print("") pyloco_print("Please run '%s <task> -h' for task-specific " "information." % mgrname) # installed installed_tasks = collections.OrderedDict() default_tasks = self.parent.get_managerattr("default_tasks") if default_tasks is not None: for name, cls in default_tasks.items(): installed_tasks[name] = cls for ep in pkg_resources.iter_entry_points(group='pyloco.task'): if ep.name not in installed_tasks: task_class = ep.load() installed_tasks[ep.name] = task_class pyloco_print("") for line in self.show_installed_tasks(installed_tasks): pyloco_print(line) pyloco_print("") for line in self.show_standard_tasks(): pyloco_print(line) pyloco_print("") for line in self.show_mgmt_tasks(): pyloco_print(line) elif targs.verbose: parser.print_help() return 0, None class RemoteTask(Task): """Remote task RemoteTask downloads a remote task and runs it locally. """ _version_ = "0.1.0" def run(self, argv, subargv=None, forward=None): raise Exception("REMOTETASK") import pdb; pdb.set_trace() # noqa: E702 class StandardTask(Task): _installation_ = """'{name}' task is one of pyloco standard tasks. Standard tasks are already installed when pyloco was installed.""" class ManagementTask(Task): _installation_ = """'{name}' task is one of pyloco management tasks. Management tasks are always available once pyloco is installed."""
31.329453
111
0.506986
21,994
0.817256
0
0
0
0
0
0
4,870
0.18096
6f644b09bfe662762ed95cb2b170c8fc73f84411
1,376
py
Python
azure-iot-device/azure/iot/device/aio/__init__.py
olivakar/azure-iot-sdk-python
d8f2403030cf94510d381d8d5ac37af6e8d306f8
[ "MIT" ]
null
null
null
azure-iot-device/azure/iot/device/aio/__init__.py
olivakar/azure-iot-sdk-python
d8f2403030cf94510d381d8d5ac37af6e8d306f8
[ "MIT" ]
null
null
null
azure-iot-device/azure/iot/device/aio/__init__.py
olivakar/azure-iot-sdk-python
d8f2403030cf94510d381d8d5ac37af6e8d306f8
[ "MIT" ]
null
null
null
"""Azure IoT Device Library - Asynchronous This library provides asynchronous clients for communicating with Azure IoT services from an IoT device. """ from azure.iot.device.iothub.aio import * from azure.iot.device.provisioning.aio import * from . import patch_documentation # Dynamically patch the clients to add shim implementations for all the inherited methods. # This is necessary to generate accurate online docs. # It SHOULD not impact the functionality of the methods themselves in any way. # NOTE In the event of addition of new methods and generation of accurate documentation # for those methods we have to append content to "patch_documentation.py" file. # In order to do so please uncomment the "patch.add_shims" lines below, # enable logging with level "DEBUG" in a python terminal and do # "import azure.iot.device". The delta between the newly generated output # and the existing content of "patch_documentation.py" should be appended to # the function "execute_patch_for_sync" in "patch_documentation.py". # Once done please again omment out the "patch.add_shims" lines below. # patch.add_shims_for_inherited_methods(IoTHubDeviceClient) # noqa: F405 # patch.add_shims_for_inherited_methods(IoTHubModuleClient) # noqa: F405 # patch.add_shims_for_inherited_methods(ProvisioningDeviceClient) # noqa: F405 patch_documentation.execute_patch_for_async()
45.866667
90
0.805233
0
0
0
0
0
0
0
0
1,185
0.861192
6f647632e2c96c2063ca3a82382e2a10a7664a9e
1,716
py
Python
lino_xl/lib/reception/__init__.py
khchine5/xl
b1634937a9ce87af1e948eb712b934b11f221d9d
[ "BSD-2-Clause" ]
1
2018-01-12T14:09:48.000Z
2018-01-12T14:09:48.000Z
lino_xl/lib/reception/__init__.py
khchine5/xl
b1634937a9ce87af1e948eb712b934b11f221d9d
[ "BSD-2-Clause" ]
1
2019-09-10T05:03:47.000Z
2019-09-10T05:03:47.000Z
lino_xl/lib/reception/__init__.py
khchine5/xl
b1634937a9ce87af1e948eb712b934b11f221d9d
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: UTF-8 -*- # Copyright 2013-2016 Luc Saffre # # License: BSD (see file COPYING for details) """This module is for managing a reception desk and a waiting queue: register clients into a waiting queue as they present themselves at a reception desk (Empfangsschalter), and unregister them when they leave again. It depends on :mod:`lino_xl.lib.cal`. It does not add any model, but adds some workflow states, actions and tables. Extended by :mod:`lino_welfare.modlib.reception`. .. autosummary:: :toctree: models workflows """ from lino.api import ad, _ class Plugin(ad.Plugin): "See :class:`lino.core.Plugin`." verbose_name = _("Reception") needs_plugins = ['lino.modlib.system', 'lino_xl.lib.cal'] required_user_groups = 'reception' """The required user groups for viewing actors of this plugin. This is overridden by Lino Welfare to include "coaching". This way of configuring permissions is an example for why it would be useful to replace user groups by a UserType class (and to populate UserTypes with subclasses of it). """ def setup_main_menu(config, site, user_type, m): app = site.plugins.reception m = m.add_menu(app.app_name, app.verbose_name) m.add_action('cal.EntriesByDay') m.add_action('reception.WaitingVisitors') m.add_action('reception.BusyVisitors') m.add_action('reception.GoneVisitors') # MyWaitingVisitors is maybe not needed as a menu entry since it # is also a get_dashboard_items. if i remove it then i must edit # `pcsw_tests.py`. Waiting for user feedback before doing this. m.add_action('reception.MyWaitingVisitors')
28.6
72
0.701049
1,130
0.658508
0
0
0
0
0
0
1,276
0.74359
6f659c58598cee6e53216640aed93bdbc6f2a194
320
py
Python
old/accent_analyser/rules/RuleRemoveThe.py
stefantaubert/eng2ipa-accent-transformer
d620c70b06c83119402e255085046747ade87444
[ "MIT" ]
null
null
null
old/accent_analyser/rules/RuleRemoveThe.py
stefantaubert/eng2ipa-accent-transformer
d620c70b06c83119402e255085046747ade87444
[ "MIT" ]
null
null
null
old/accent_analyser/rules/RuleRemoveThe.py
stefantaubert/eng2ipa-accent-transformer
d620c70b06c83119402e255085046747ade87444
[ "MIT" ]
null
null
null
from accent_analyser.rules.EngRule import EngRule class RuleRemoveThe(EngRule): def __init__(self, likelihood=1.0): super().__init__(likelihood) def _convert_core(self, words: list, current_index: int): word = words[current_index].content if word == "the": return "" else: return word
22.857143
59
0.69375
267
0.834375
0
0
0
0
0
0
7
0.021875
6f6a38a0483844a3f770817a9b327db335f9b10a
255
py
Python
ssrl/providers/base.py
AspirinGeyer/PySSRL
bdb27d7ada2fc317b8e2ea18f389e280d58e24ac
[ "Apache-2.0" ]
6
2019-06-07T19:25:51.000Z
2019-10-30T01:56:29.000Z
ssrl/providers/base.py
AspirinGeyer/PySSRL
bdb27d7ada2fc317b8e2ea18f389e280d58e24ac
[ "Apache-2.0" ]
1
2019-08-26T00:05:50.000Z
2019-08-26T00:05:50.000Z
ssrl/providers/base.py
AspirinGeyer/PySSRL
bdb27d7ada2fc317b8e2ea18f389e280d58e24ac
[ "Apache-2.0" ]
1
2019-10-30T01:56:33.000Z
2019-10-30T01:56:33.000Z
# -*- coding:utf-8 -*- class BaseProvider(object): @staticmethod def loads(link_url): raise NotImplementedError("Implemetion required.") @staticmethod def dumps(conf): raise NotImplementedError("Implemetion required.")
19.615385
58
0.670588
229
0.898039
0
0
190
0.745098
0
0
68
0.266667
6f6b28d63b93b95d61bab409bb560af9d95cf417
1,505
py
Python
tornado_demo/web2py/applications/examples/controllers/global.py
ls-2018/tips
1f5f5195d7181b5dd4616db02166f7f92c97f1cd
[ "MIT" ]
2
2019-05-07T03:08:25.000Z
2020-05-22T10:10:00.000Z
tornado_demo/web2py/applications/examples/controllers/global.py
ls-2018/tips
1f5f5195d7181b5dd4616db02166f7f92c97f1cd
[ "MIT" ]
7
2020-05-22T13:29:42.000Z
2021-09-23T23:30:25.000Z
tornado_demo/web2py/applications/examples/controllers/global.py
ls-2018/py
1f5f5195d7181b5dd4616db02166f7f92c97f1cd
[ "MIT" ]
null
null
null
session.forget() def get(args): if args[0].startswith('__'): return None try: obj = globals(), get(args[0]) for k in range(1, len(args)): obj = getattr(obj, args[k]) return obj except: return None def vars(): """the running controller function!""" title = '.'.join(request.args) attributes = {} if not request.args: (doc, keys, t, c, d, value) = ('Global variables', globals(), None, None, [], None) elif len(request.args) < 3: obj = get(request.args) if obj: doc = getattr(obj, '__doc__', 'no documentation') keys = dir(obj) t = type(obj) c = getattr(obj, '__class__', None) d = getattr(obj, '__bases__', None) for key in keys: a = getattr(obj, key, None) if a and not isinstance(a, DAL): doc1 = getattr(a, '__doc__', '') t1 = type(a) c1 = getattr(a, '__class__', None) d1 = getattr(a, '__bases__', None) key = '.'.join(request.args) + '.' + key attributes[key] = (doc1, t1, c1, d1) else: doc = 'Unkown' keys = [] t = c = d = None else: raise HTTP(400) return dict( title=title, args=request.args, t=t, c=c, d=d, doc=doc, attributes=attributes, )
27.363636
91
0.453821
0
0
0
0
0
0
0
0
159
0.105648
6f6c2c1c13418649733376c632ea6395a15039ac
857
py
Python
medium/python3/c0108_223_rectangle-area/00_leetcode_0108.py
drunkwater/leetcode
8cc4a07763e71efbaedb523015f0c1eff2927f60
[ "Ruby" ]
null
null
null
medium/python3/c0108_223_rectangle-area/00_leetcode_0108.py
drunkwater/leetcode
8cc4a07763e71efbaedb523015f0c1eff2927f60
[ "Ruby" ]
null
null
null
medium/python3/c0108_223_rectangle-area/00_leetcode_0108.py
drunkwater/leetcode
8cc4a07763e71efbaedb523015f0c1eff2927f60
[ "Ruby" ]
3
2018-02-09T02:46:48.000Z
2021-02-20T08:32:03.000Z
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #223. Rectangle Area #Find the total area covered by two rectilinear rectangles in a 2D plane. #Each rectangle is defined by its bottom left corner and top right corner as shown in the figure. #Assume that the total area is never beyond the maximum possible value of int. #Credits: #Special thanks to @mithmatt for adding this problem, creating the above image and all test cases. #class Solution: # def computeArea(self, A, B, C, D, E, F, G, H): # """ # :type A: int # :type B: int # :type C: int # :type D: int # :type E: int # :type F: int # :type G: int # :type H: int # :rtype: int # """ # Time Is Money
32.961538
98
0.655776
0
0
0
0
0
0
0
0
832
0.970828
6f6c63911e71ae7c84e18bedf35df7f0d63d41aa
437
py
Python
serialTest.py
fmuno003/SeniorDesign
113bdcf4cc906042f44736a1ffddb6ffff3a217e
[ "BSD-3-Clause" ]
1
2019-04-29T16:07:51.000Z
2019-04-29T16:07:51.000Z
serialTest.py
fmuno003/SeniorDesign
113bdcf4cc906042f44736a1ffddb6ffff3a217e
[ "BSD-3-Clause" ]
null
null
null
serialTest.py
fmuno003/SeniorDesign
113bdcf4cc906042f44736a1ffddb6ffff3a217e
[ "BSD-3-Clause" ]
null
null
null
import serial import RPi.GPIO as GPIO import time ser=serial.Serial("/dev/ttyACM0",9600) start_time = time.time() imu = open("IMU.txt","w") while time.time() - start_time <= 1: ser.readline() while time.time() - start_time <= 8: read_ser=ser.readline() if float(read_ser) == 0.00: pass else: read = read_ser.strip('\n') imu.write(read) imu.write('\n') imu.close()
19.863636
39
0.578947
0
0
0
0
0
0
0
0
34
0.077803
6f6e858702c8ce5b6a0c7be5155f97db4b0d395c
1,950
py
Python
src/pyg_base/_zip.py
nclarey/pyg-base
a7b90ea2ad4d740d8e7f8c4a7c9d341d36373862
[ "MIT" ]
null
null
null
src/pyg_base/_zip.py
nclarey/pyg-base
a7b90ea2ad4d740d8e7f8c4a7c9d341d36373862
[ "MIT" ]
null
null
null
src/pyg_base/_zip.py
nclarey/pyg-base
a7b90ea2ad4d740d8e7f8c4a7c9d341d36373862
[ "MIT" ]
1
2022-01-03T21:56:14.000Z
2022-01-03T21:56:14.000Z
from pyg_base._types import is_iterable from pyg_base._loop import len0 __all__ = ['zipper', 'lens'] def lens(*values): """ measures (and enforces) a common length across all values :Parameters: ---------------- *values : lists Raises ------ ValueError if you have values with multi lengths. :Returns: ------- int common length. :Example: -------------- >>> assert lens() == 0 >>> assert lens([1,2,3], [2,4,5]) == 3 >>> assert lens([1,2,3], [2,4,5], [6]) == 3 """ if len0(values) == 0: return 0 all_lens = [len0(value) for value in values] lens = set(all_lens) - {1} if len(lens)>1: raise ValueError('found multiple lengths %s '%lens) return list(lens)[0] if lens else 1 def zipper(*values): """ a safer version of zip :Examples: zipper works with single values as well as full list: --------------- >>> assert list(zipper([1,2,3], 4)) == [(1, 4), (2, 4), (3, 4)] >>> assert list(zipper([1,2,3], [4,5,6])) == [(1, 4), (2, 5), (3, 6)] >>> assert list(zipper([1,2,3], [4,5,6], [7])) == [(1, 4, 7), (2, 5, 7), (3, 6, 7)] >>> assert list(zipper([1,2,3], [4,5,6], None)) == [(1, 4, None), (2, 5, None), (3, 6, None)] >>> assert list(zipper((1,2,3), np.array([4,5,6]), None)) == [(1, 4, None), (2, 5, None), (3, 6, None)] :Examples: zipper rejects multi-length lists --------------- >>> import pytest >>> with pytest.raises(ValueError): >>> zipper([1,2,3], [4,5]) :Parameters: ---------------- *values : lists values to be zipped :Returns: ------- zipped values """ values = [list(value) if isinstance(value, zip) else value if is_iterable(value) else [value] for value in values] n = lens(*values) values = [value * n if len(value) == 1 else value for value in values] return zip(*values)
27.083333
118
0.510256
0
0
0
0
0
0
0
0
1,354
0.694359
6f6e961109cfe080e1074fb4fb957b034dcf9958
1,997
py
Python
cli/pawls/preprocessors/grobid.py
vtcaregorodtcev/pawls-1
32cfb7bc56edac2fe972467a1133a31ae901c727
[ "Apache-2.0" ]
null
null
null
cli/pawls/preprocessors/grobid.py
vtcaregorodtcev/pawls-1
32cfb7bc56edac2fe972467a1133a31ae901c727
[ "Apache-2.0" ]
13
2022-02-17T06:05:44.000Z
2022-03-17T02:47:49.000Z
cli/pawls/preprocessors/grobid.py
vtcaregorodtcev/pawls-1
32cfb7bc56edac2fe972467a1133a31ae901c727
[ "Apache-2.0" ]
2
2021-09-28T08:01:42.000Z
2021-09-28T08:18:31.000Z
import json from typing import List import requests from pawls.preprocessors.model import Page def fetch_grobid_structure(pdf_file: str, grobid_host: str = "http://localhost:8070"): files = { "input": (pdf_file, open(pdf_file, "rb"), "application/pdf", {"Expires": "0"}) } url = "{}/api/processPdfStructure".format(grobid_host) resp = requests.post(url, files=files) if resp.status_code == 200: return json.loads(resp.text) else: raise Exception("Grobid returned status code {}".format(resp.status_code)) def parse_annotations(grobid_structure) -> List[Page]: pages = [] for grobid_page in grobid_structure["tokens"]["pages"]: tokens = [] for token in grobid_page["tokens"]: tokens.append( dict( text=token["text"], x=token["x"], y=token["y"], width=token["width"], height=token["height"], ) ) page = dict( page=dict( width=grobid_page["page"]["width"], height=grobid_page["page"]["height"], index=grobid_page["page"]["pageNumber"] - 1, ), tokens=tokens, ) pages.append(page) return pages def process_grobid( pdf_file: str, grobid_host: str = "http://localhost:8070" ): """ Integration for importing annotations from grobid. Depends on a grobid API built from our fork https://github.com/allenai/grobid. Fetches a PDF by sha, sends it to the Grobid API and returns them. pdf_file: str The path to the pdf file to process. grobid_host: str (optional, default="http://localhost:8070") The forked grobid API which we use to produce the annotations. """ grobid_structure = fetch_grobid_structure(pdf_file, grobid_host) annotations = parse_annotations(grobid_structure) return annotations
31.203125
86
0.593891
0
0
0
0
0
0
0
0
661
0.330996
6f6fd6c2d42d2b9282a1e6483b23196da4a8aeeb
2,614
py
Python
scripts/run_custom_eslint_tests.py
lheureuxe13/oppia
7110e3e5d5a53527c31d7b33e14d25e8d5b981f9
[ "Apache-2.0" ]
4
2021-09-16T16:46:53.000Z
2022-02-06T13:00:14.000Z
scripts/run_custom_eslint_tests.py
lheureuxe13/oppia
7110e3e5d5a53527c31d7b33e14d25e8d5b981f9
[ "Apache-2.0" ]
80
2020-10-31T09:14:46.000Z
2021-01-12T23:38:15.000Z
scripts/run_custom_eslint_tests.py
lheureuxe13/oppia
7110e3e5d5a53527c31d7b33e14d25e8d5b981f9
[ "Apache-2.0" ]
1
2020-10-02T13:28:26.000Z
2020-10-02T13:28:26.000Z
# coding: utf-8 # # Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script for running tests for custom eslint checks.""" from __future__ import absolute_import from __future__ import unicode_literals import os import re import subprocess import sys from core import python_utils from scripts import common def main(): """Run the tests.""" node_path = os.path.join(common.NODE_PATH, 'bin', 'node') nyc_path = os.path.join('node_modules', 'nyc', 'bin', 'nyc.js') mocha_path = os.path.join('node_modules', 'mocha', 'bin', 'mocha') filepath = 'scripts/linters/custom_eslint_checks/rules/' proc_args = [node_path, nyc_path, mocha_path, filepath] proc = subprocess.Popen( proc_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) encoded_tests_stdout, encoded_tests_stderr = proc.communicate() # Standard and error output is in bytes, we need to decode the line to # print it. tests_stdout = encoded_tests_stdout.decode('utf-8') tests_stderr = encoded_tests_stderr.decode('utf-8') if tests_stderr: python_utils.PRINT(tests_stderr) sys.exit(1) python_utils.PRINT(tests_stdout) if 'failing' in tests_stdout: python_utils.PRINT('---------------------------') python_utils.PRINT('Tests not passed') python_utils.PRINT('---------------------------') sys.exit(1) else: python_utils.PRINT('---------------------------') python_utils.PRINT('All tests passed') python_utils.PRINT('---------------------------') coverage_result = re.search = re.search( r'All files\s*\|\s*(?P<stmts>\S+)\s*\|\s*(?P<branch>\S+)\s*\|\s*' r'(?P<funcs>\S+)\s*\|\s*(?P<lines>\S+)\s*\|\s*', tests_stdout) if (coverage_result.group('stmts') != '100' or coverage_result.group('branch') != '100' or coverage_result.group('funcs') != '100' or coverage_result.group('lines') != '100'): raise Exception('Eslint test coverage is not 100%') if __name__ == '__main__': main()
35.808219
74
0.649579
0
0
0
0
0
0
0
0
1,265
0.483933
6f6fddc36a83d5396bed90f0e96d5995bd58f9a5
6,274
py
Python
nmpc_mhe/tst_algorithmsv2_nmpc_hi_t0115_setp.py
joycezyu/cappresse
45b40d0e9202180a0a07e1c03960cf30b08a4557
[ "BSD-3-Clause" ]
null
null
null
nmpc_mhe/tst_algorithmsv2_nmpc_hi_t0115_setp.py
joycezyu/cappresse
45b40d0e9202180a0a07e1c03960cf30b08a4557
[ "BSD-3-Clause" ]
null
null
null
nmpc_mhe/tst_algorithmsv2_nmpc_hi_t0115_setp.py
joycezyu/cappresse
45b40d0e9202180a0a07e1c03960cf30b08a4557
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function from pyomo.environ import * from pyomo.core.base import Constraint, Objective, Suffix, minimize from pyomo.opt import ProblemFormat, SolverFactory from nmpc_mhe.dync.NMPCGenv2 import NmpcGen from nmpc_mhe.mods.bfb.nob5_hi_t import bfb_dae from snap_shot import snap import sys, os import itertools, sys from numpy.random import normal as npm # SWITCH TO JUST ONE COLLOCATION POINT AND FINITE ELEMENT states = ["Hgc", "Nsc", "Hsc", "Hge", "Nse", "Hse"] # x_noisy = ["Ngb", "Hgb", "Ngc", "Hgc", "Nsc", "Hsc", "Nge", "Hge", "Nse", "Hse", "mom"] # x_noisy = ["Hse"] x_noisy = ["Hgc", "Nsc", "Hsc", "Hge", "Nse", "Hse"] u = ["u1"] u_bounds = {"u1":(162.183495794 * 0.0005, 162.183495794 * 10000)} ref_state = {("c_capture", ((),)): 0.63} # Known targets 0.38, 0.4, 0.5 nfe_mhe = 10 y = ["Tgb", "vg"] nfet = 10 ncpx = 3 nfex = 5 tfe = [i for i in range(1, nfe_mhe + 1)] lfe = [i for i in range(1, nfex + 1)] lcp = [i for i in range(1, ncpx + 1)] lc = ['c', 'h', 'n'] y_vars = { "Tgb": [i for i in itertools.product(lfe, lcp)], "vg": [i for i in itertools.product(lfe, lcp)] } # x_vars = dict() x_vars = { # "Nge": [i for i in itertools.product(lfe, lcp, lc)], # "Hge": [i for i in itertools.product(lfe, lcp)], "Nsc": [i for i in itertools.product(lfe, lcp, lc)], "Hsc": [i for i in itertools.product(lfe, lcp)], "Nse": [i for i in itertools.product(lfe, lcp, lc)], "Hse": [i for i in itertools.product(lfe, lcp)], "Hgc": [i for i in itertools.product(lfe, lcp)], "Hge": [i for i in itertools.product(lfe, lcp)], # "mom": [i for i in itertools.product(lfe, lcp)] } # States -- (5 * 3 + 6) * fe_x * cp_x. # For fe_x = 5 and cp_x = 3 we will have 315 differential-states. e = NmpcGen(bfb_dae, 400/nfe_mhe, states, u, ref_state=ref_state, u_bounds=u_bounds, nfe_tnmpc=nfe_mhe, ncp_tnmpc=1, nfe_t=5, ncp_t=1) # 10 fe & _t=1000 definitely degenerate # 10 fe & _t=900 definitely degenerate # 10 fe & _t=120 sort-of degenerate # 10 fe & _t=50 sort-of degenerate # 10 fe & _t=50 eventually sort-of degenerate # 10 fe & _t=1 eventually sort-of degenerate e.SteadyRef.dref = snap e.load_iguess_steady() e.SteadyRef.create_bounds() e.solve_steady_ref() e.SteadyRef.report_zL(filename="mult_ss") e.load_d_s(e.PlantSample) e.PlantSample.create_bounds() e.solve_dyn(e.PlantSample) q_cov = {} for i in tfe: for j in itertools.product(lfe, lcp, lc): q_cov[("Nse", j), ("Nse", j), i] = 7525.81478168 * 0.005 q_cov[("Nsc", j), ("Nsc", j), i] = 117.650089456 * 0.005 # q_cov[("Nse", j), ("Nse", j), i] = 735.706082714 * 0.005 for i in tfe: for j in itertools.product(lfe, lcp): # q_cov[("Hge", j), ("Hge", j), i] = 2194.25390583 * 0.005 q_cov[("Hse", j), ("Hse", j), i] = 731143.716603 * 0.005 q_cov[("Hsc", j), ("Hsc", j), i] = 16668.3312216 * 0.005 q_cov[("Hge", j), ("Hge", j), i] = 2166.86838591 * 0.005 q_cov[("Hgc", j), ("Hgc", j), i] = 47.7911012193 * 0.005 # q_cov[("mom", j), ("mom", j), i] = 1.14042251669 * 0.005 # for i in lfe: # for j in [(1,1, 'c'), (5,3, 'c')]: # m_cov[("yb", j), ("yb", j), i] = 1e-04 u_cov = {} for i in [i for i in range(1, nfe_mhe+1)]: u_cov["u1", i] = 162.183495794 * 0.005 m_cov = {} for i in tfe: for j in itertools.product(lfe, lcp): m_cov[("Tgb", j), ("Tgb", j), i] = 40 * 0.005 m_cov[("vg", j), ("vg", j), i] = 0.902649386907 * 0.005 e.find_target_ss() #: Compute target-steady state (beforehand) #: Create NMPC e.create_nmpc() e.update_targets_nmpc() e.compute_QR_nmpc(n=-1) e.new_weights_olnmpc(10000, 1e+08) e.solve_dyn(e.PlantSample, stop_if_nopt=True) ipsr = SolverFactory('ipopt', executable="/home/dav0/Apps/IpoptSR/Ipopt/build/bin/ipoptSR") ref_state = {("c_capture", ((),)): 0.50} e.find_target_ss(ref_state=ref_state) #: Compute target-steady state (beforehand) e.update_targets_nmpc() e.compute_QR_nmpc(n=-1) e.new_weights_olnmpc(10000, 1e+08) for i in range(1, 1000): ps = e.solve_dyn(e.PlantSample, stop_if_nopt=False) e.PlantSample.write_nl(name="baddie.nl") e.PlantSample.pprint(filename="baddie.txt") e.PlantSample.snap_shot(filename="baddie.py") e.PlantSample.report_zL(filename="bad_bounds") if ps != 0: e.PlantSample.write_nl(name="baddie.nl") e.PlantSample.pprint(filename="baddie.txt") e.PlantSample.snap_shot(filename="baddie.py") e.PlantSample.report_zL(filename="bad_bounds") e.solve_dyn(e.PlantSample, stop_if_nopt=True) e.update_state_real() # update the current state e.update_soi_sp_nmpc() # e.initialize_olnmpc(e.PlantSample, "real") e.load_init_state_nmpc(src_kind="state_dict", state_dict="real") stat_nmpc = e.solve_dyn(e.olnmpc, skip_update=False, max_cpu_time=300) # if stat_nmpc != 0: # stat_nmpc = e.solve_dyn(e.olnmpc, # stop_if_nopt=True, # skip_update=False, # iter_max=300, ma57_pivtol=1e-12) if stat_nmpc != 0: strategy = 1 if strategy == 1: if e.nfe_tnmpc == 1: pass else: e.create_nmpc(newnfe=e.ncp_tnmpc-1, newncp=1) e.update_targets_nmpc() e.compute_QR_nmpc(n=-1) e.new_weights_olnmpc(10000, 1e+02) e.initialize_olnmpc(e.PlantSample, "real") e.load_init_state_nmpc(src_kind="state_dict", state_dict="real") stat_nmpc = e.solve_dyn(e.olnmpc, skip_update=False, max_cpu_time=300) else: e.olnmpc.write_nl(name="bad.nl") # e.olnmpc.pprint(filename="bad_" + str(i)) with open("ipopt.opt", "w") as f: f.write("linear_solver ma57\n" "ma57_dep_tol 1e-8\nbig_M 1e30\n") f.close() ipsr.solve(e.olnmpc, tee=True) e.update_u(e.olnmpc) e.print_r_nmpc() e.cycleSamPlant(plant_step=True) e.plant_uinject(e.PlantSample, src_kind="dict", nsteps=10, skip_homotopy=True) # e.plant_input_gen(e.PlantSample, "mod", src=e.ss2)
36.690058
91
0.603602
0
0
0
0
0
0
0
0
1,951
0.310966
6f709ca217e6ed7e435bf5ff768925bbdc7d9c7c
493
py
Python
csvapi/security.py
quaxsze/csvapi
7e5ab5839fb6cbf667c756798a55c9b719394602
[ "MIT" ]
15
2019-08-23T09:57:54.000Z
2021-11-08T10:38:03.000Z
csvapi/security.py
quaxsze/csvapi
7e5ab5839fb6cbf667c756798a55c9b719394602
[ "MIT" ]
36
2019-08-21T10:05:53.000Z
2022-03-23T08:58:02.000Z
csvapi/security.py
opendatateam/csvapi
4e4ea7167f7265782c8f654619b060dc04112392
[ "MIT" ]
1
2018-04-25T09:55:25.000Z
2018-04-25T09:55:25.000Z
from urllib.parse import urlparse from quart import current_app as app, request, jsonify def filter_referrers(): filters = app.config.get('REFERRERS_FILTER') if not filters: return None referrer = request.referrer if referrer: parsed = urlparse(referrer) for filter in filters: if parsed.hostname.endswith(filter): return None return jsonify({ 'ok': False, 'error': 'Unauthorized', }), 403
24.65
54
0.614604
0
0
0
0
0
0
0
0
43
0.087221
6f70b2504b0ddf0927280e069e308de02195aea2
447
py
Python
linkit/models.py
what-digital/linkit
58fb7dc966e7b76b654c9bc5e52253eb81731e98
[ "MIT" ]
8
2019-06-11T14:09:12.000Z
2021-09-09T09:37:47.000Z
linkit/models.py
what-digital/linkit
58fb7dc966e7b76b654c9bc5e52253eb81731e98
[ "MIT" ]
7
2020-02-12T02:55:11.000Z
2020-08-27T09:54:54.000Z
linkit/models.py
what-digital/linkit
58fb7dc966e7b76b654c9bc5e52253eb81731e98
[ "MIT" ]
2
2020-06-18T09:54:20.000Z
2022-02-17T08:33:13.000Z
from django.db import models from filer.fields.file import FilerFileField class FakeLink(models.Model): """ In our widget we need to manually render a AdminFileFormField. Basically for every other Field type this is not a problem at all, but Failer needs a rel attribute which consists of a reverse relationship. We fake it with this model. """ fake_file = FilerFileField(blank=True, null=True, on_delete=models.CASCADE)
37.25
115
0.753915
370
0.82774
0
0
0
0
0
0
256
0.572707
6f722918045c200389c503a068fc9c4194103a3f
9,679
py
Python
tests/helper.py
nirs/python-manhole
26821e083eefdc87492b13ebdd20ba000a616141
[ "BSD-2-Clause" ]
null
null
null
tests/helper.py
nirs/python-manhole
26821e083eefdc87492b13ebdd20ba000a616141
[ "BSD-2-Clause" ]
null
null
null
tests/helper.py
nirs/python-manhole
26821e083eefdc87492b13ebdd20ba000a616141
[ "BSD-2-Clause" ]
null
null
null
from __future__ import print_function import atexit import errno import logging import os import select import signal import sys import time from process_tests import setup_coverage TIMEOUT = int(os.getenv('MANHOLE_TEST_TIMEOUT', 10)) SOCKET_PATH = '/tmp/manhole-socket' OUTPUT = sys.__stdout__ def handle_sigterm(signo, _frame): # Simulate real termination print("Terminated", file=OUTPUT) sys.exit(128 + signo) # Handling sigterm ensure that atexit functions are called, and we do not leave # leftover /tmp/manhole-pid sockets. signal.signal(signal.SIGTERM, handle_sigterm) @atexit.register def log_exit(): print("In atexit handler.", file=OUTPUT) def setup_greenthreads(patch_threads=False): try: from gevent import monkey monkey.patch_all(thread=False) except (ImportError, SyntaxError): pass try: import eventlet eventlet.monkey_patch(thread=False) except (ImportError, SyntaxError): pass def do_fork(): pid = os.fork() if pid: @atexit.register def cleanup(): try: os.kill(pid, signal.SIGINT) time.sleep(0.2) os.kill(pid, signal.SIGTERM) except OSError as e: if e.errno != errno.ESRCH: raise os.waitpid(pid, 0) else: time.sleep(TIMEOUT * 10) if __name__ == '__main__': logging.basicConfig( level=logging.DEBUG, format='[pid=%(process)d - %(asctime)s]: %(name)s - %(levelname)s - %(message)s', ) test_name = sys.argv[1] try: setup_coverage() if os.getenv('PATCH_THREAD', False): import manhole setup_greenthreads(True) else: setup_greenthreads(True) import manhole if test_name == 'test_activate_on_usr2': manhole.install(activate_on='USR2') for i in range(TIMEOUT * 100): time.sleep(0.1) elif test_name == 'test_install_once': manhole.install() try: manhole.install() except manhole.AlreadyInstalled: print('ALREADY_INSTALLED') else: raise AssertionError("Did not raise AlreadyInstalled") elif test_name == 'test_stderr_doesnt_deadlock': import subprocess manhole.install() for i in range(50): print('running iteration', i) p = subprocess.Popen(['true']) print('waiting for process', p.pid) p.wait() print('process ended') path = '/tmp/manhole-%d' % p.pid if os.path.exists(path): os.unlink(path) raise AssertionError(path + ' exists !') print('SUCCESS') elif test_name == 'test_fork_exec': manhole.install(reinstall_delay=5) print("Installed.") time.sleep(0.2) pid = os.fork() print("Forked, pid =", pid) if pid: os.waitpid(pid, 0) path = '/tmp/manhole-%d' % pid if os.path.exists(path): os.unlink(path) raise AssertionError(path + ' exists !') else: try: time.sleep(1) print("Exec-ing `true`") os.execvp('true', ['true']) finally: os._exit(1) print('SUCCESS') elif test_name == 'test_activate_on_with_oneshot_on': manhole.install(activate_on='USR2', oneshot_on='USR2') for i in range(TIMEOUT * 100): time.sleep(0.1) elif test_name == 'test_interrupt_on_accept': def handle_usr2(_sig, _frame): print('Got USR2') signal.signal(signal.SIGUSR2, handle_usr2) import ctypes import ctypes.util libpthread_path = ctypes.util.find_library("pthread") if not libpthread_path: raise ImportError libpthread = ctypes.CDLL(libpthread_path) if not hasattr(libpthread, "pthread_setname_np"): raise ImportError pthread_kill = libpthread.pthread_kill pthread_kill.argtypes = [ctypes.c_void_p, ctypes.c_int] pthread_kill.restype = ctypes.c_int manhole.install(sigmask=None) for i in range(15): time.sleep(0.1) print("Sending signal to manhole thread ...") pthread_kill(manhole._INST.ident, signal.SIGUSR2) for i in range(TIMEOUT * 100): time.sleep(0.1) elif test_name == 'test_oneshot_on_usr2': manhole.install(oneshot_on='USR2') for i in range(TIMEOUT * 100): time.sleep(0.1) elif test_name.startswith('test_signalfd_weirdness'): if 'negative' in test_name: manhole.install(sigmask=None) else: manhole.install(sigmask=[signal.SIGCHLD]) time.sleep(0.3) # give the manhole a bit enough time to start print('Starting ...') import signalfd signalfd.sigprocmask(signalfd.SIG_BLOCK, [signal.SIGCHLD]) fd = signalfd.signalfd(0, [signal.SIGCHLD], signalfd.SFD_NONBLOCK|signalfd.SFD_CLOEXEC) for i in range(200): print('Forking %s:' % i) pid = os.fork() print(' - [%s/%s] forked' % (i, pid)) if pid: while 1: print(' - [%s/%s] selecting on: %s' % (i, pid, [fd])) read_ready, _, errors = select.select([fd], [], [fd], 1) if read_ready: try: print(' - [%s/%s] reading from signalfd ...' % (i, pid)) print(' - [%s] read from signalfd: %r ' % (i, os.read(fd, 128))) break except OSError as exc: print(' - [%s/%s] reading from signalfd failed with errno %s' % (i, pid, exc.errno)) else: print(' - [%s/%s] reading from signalfd failed - not ready !' % (i, pid)) if 'negative' in test_name: time.sleep(1) if errors: raise RuntimeError("fd has error") else: print(' - [%s/%s] exiting' % (i, pid)) os._exit(0) time.sleep(TIMEOUT * 10) elif test_name == 'test_auth_fail': manhole.get_peercred = lambda _: (-1, -1, -1) manhole.install() time.sleep(TIMEOUT * 10) elif test_name == 'test_socket_path': manhole.install(socket_path=SOCKET_PATH) time.sleep(TIMEOUT * 10) elif test_name == 'test_daemon_connection': manhole.install(daemon_connection=True) time.sleep(TIMEOUT) elif test_name == 'test_socket_path_with_fork': manhole.install(socket_path=SOCKET_PATH) time.sleep(TIMEOUT) do_fork() elif test_name == 'test_locals': manhole.install(socket_path=SOCKET_PATH, locals={'k1': 'v1', 'k2': 'v2'}) time.sleep(TIMEOUT) elif test_name == 'test_locals_after_fork': manhole.install(locals={'k1': 'v1', 'k2': 'v2'}) do_fork() elif test_name == 'test_redirect_stderr_default': manhole.install(socket_path=SOCKET_PATH) time.sleep(TIMEOUT) elif test_name == 'test_redirect_stderr_disabled': manhole.install(socket_path=SOCKET_PATH, redirect_stderr=False) time.sleep(TIMEOUT) elif test_name == 'test_sigmask': manhole.install(socket_path=SOCKET_PATH, sigmask=[signal.SIGUSR1]) time.sleep(TIMEOUT) else: manhole.install() time.sleep(0.3) # give the manhole a bit enough time to start if test_name == 'test_simple': time.sleep(TIMEOUT * 10) elif test_name == 'test_with_forkpty': time.sleep(1) pid, masterfd = os.forkpty() if pid: @atexit.register def cleanup(): try: os.kill(pid, signal.SIGINT) time.sleep(0.2) os.kill(pid, signal.SIGTERM) except OSError as e: if e.errno != errno.ESRCH: raise while not os.waitpid(pid, os.WNOHANG)[0]: try: os.write(2, os.read(masterfd, 1024)) except OSError as e: print("Error while reading from masterfd:", e) else: time.sleep(TIMEOUT * 10) elif test_name == 'test_with_fork': time.sleep(1) do_fork() else: raise RuntimeError('Invalid test spec.') except: # pylint: disable=W0702 print('Died with %s.' % sys.exc_info()[0].__name__, file=OUTPUT) import traceback traceback.print_exc(file=OUTPUT) print('DIED.', file=OUTPUT)
37.226923
116
0.510073
0
0
0
0
731
0.075524
0
0
1,630
0.168406
6f73d54d3a1a664d942bd0ee6d760eedb4233760
1,054
py
Python
ecommerce/User/admin.py
AwaleRohin/commerce-fm
cb5b43c999ae5be37957b29de9c07d5affc66fb0
[ "MIT" ]
18
2020-12-05T14:12:32.000Z
2022-03-11T20:15:22.000Z
ecommerce/User/admin.py
AwaleRohin/commerce-fm
cb5b43c999ae5be37957b29de9c07d5affc66fb0
[ "MIT" ]
1
2021-07-22T09:23:13.000Z
2021-07-22T09:23:13.000Z
ecommerce/User/admin.py
shakyasaijal/commerce-fm
358b6925f4b569dc374010d7cc7d4d560ede2b48
[ "MIT" ]
13
2020-10-15T10:17:35.000Z
2022-01-29T06:56:24.000Z
from django.contrib import admin from django.conf import settings from django.core.exceptions import ImproperlyConfigured from . import models if settings.HAS_ADDITIONAL_USER_DATA: try: class UserProfileInline(admin.TabularInline): model = models.UserProfile extra = 0 except (Exception, KeyError) as e: raise ImproperlyConfigured("User/admin.py:: Multi Vendor is turned on.") class UserAdmin(admin.ModelAdmin): list_display = ['get_full_name', 'email', 'is_verified'] search_fields = ['get_full_name', 'email', 'date_joined', 'username'] list_filter = ('groups',) if settings.HAS_ADDITIONAL_USER_DATA: inlines = [ UserProfileInline, ] def save_model(self, request, obj, form, change): if 'password' in form.changed_data: obj.set_password(request.POST['password']) obj.save() admin.site.register(models.User, UserAdmin) admin.site.register(models.IpAddress) admin.site.register(models.CityFromIpAddress) admin.site.register(models.Marketing)
31
80
0.712524
563
0.534156
0
0
0
0
0
0
152
0.144213
6f741a22f6b69a36890074cd2db8d9ec2d946c37
38,189
py
Python
client/external/xp_tracker.py
Suirdna/OR-Origin
8eb7d99a87d835a7d590d56e0088ec79746f4630
[ "MIT" ]
null
null
null
client/external/xp_tracker.py
Suirdna/OR-Origin
8eb7d99a87d835a7d590d56e0088ec79746f4630
[ "MIT" ]
null
null
null
client/external/xp_tracker.py
Suirdna/OR-Origin
8eb7d99a87d835a7d590d56e0088ec79746f4630
[ "MIT" ]
null
null
null
from client import exception, embed_creator, console_interface, discord_manager, file_manager, ini_manager, json_manager, origin, permissions, server_timer from client.config import config as c, language as l from discord.ext import commands, tasks from client.external.hiscores import hiscores_xp from PIL import Image, ImageDraw, ImageFont import discord, locale class xp_tracker(commands.Cog): # ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ name = 'xp_tracker' # ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ @staticmethod async def fun_xptracker(ctx): try: path = c.GUILD_PATH['special_member.json'].format(ctx.guild.id) guild_l = await origin.get_language(ctx.guild.id) target_keys = ['user_id', 'user_status'] target_values = [ctx.author.id, c.USER_PERMISSIONS['organizer']] if await permissions.get_user_permission(path, target_keys, target_values) or ctx.author.id == ctx.guild.owner.id or ctx.author.id == c.CLIENT_ADMINISTRATION_ID: if ctx.message.content == '.xptracker': path3 = c.ORIGIN_PATH['embed.tracker.json'] json_string = await json_manager.get_json(path3) new_json_string = {'data': []} for key, value in json_string[guild_l]['xp_tracker']['tracker'].items(): if int(key) == 1: new_json_string['data'].append({ 'name{}'.format(key): value['name'], 'value{}'.format(key): value['value'] }) else: new_json_string['data'].append({ 'name{}'.format(key): value['name'], 'value{}'.format(key): value['value'] }) await embed_creator.create_embed(ctx, discord.Color.dark_green(), False, ctx.guild.icon_url, c.CLIENT_ICON, l.xp_tracker[guild_l]['embed_1'].format(ctx.guild.name), new_json_string['data'], False) else: await ctx.author.send(l.user_permissions[guild_l]['msg_restricted_1']) except Exception as error: await exception.error(error) async def fun_addxpevent(self, ctx): try: path1 = c.GUILD_PATH['special_member.json'].format(ctx.guild.id) guild_l = await origin.get_language(ctx.guild.id) target_keys = ['user_id', 'user_status'] target_values = [ctx.author.id, c.USER_PERMISSIONS['organizer']] if await permissions.get_user_permission(path1, target_keys, target_values) or ctx.author.id == ctx.guild.owner.id or ctx.author.id == c.CLIENT_ADMINISTRATION_ID: STRING = str(ctx.message.content).split(' ') if len(STRING) >= 9: path = c.CLIENT_PATH['guild'] + str(ctx.guild.id) + c.CLIENT_JSON['server'] path2 = c.GUILD_PATH['event.json'].format(ctx.guild.id) server_config = await json_manager.get_json(path) LIST1 = self.PRE LIST2 = self.NAME LIST3 = self.ICON DATA1 = await json_manager.get_data(path2) ID = await origin.randomize() STATUS = True STATUS2 = False while STATUS: for data in DATA1: if data['id'] == ID: STATUS2 = True if not STATUS2: STATUS = False else: ID = await origin.randomize() EXTRA = '' NAME = '' for value in LIST2: if str(value).lower() == STRING[2].lower(): NAME = str(value) for index, event in enumerate(LIST1): if STRING[2] == event: RUSH = None if STRING[1].isdigit() and int(STRING[1]) > 1: RUSH = l.xp_tracker[guild_l]['configuration']['rush_point'].format(locale.format_string('%d', int(STRING[1]), grouping=True)) path4 = c.ORIGIN_PATH['embed.tracker.json'] DESCRIPTION = l.xp_tracker[guild_l]['description_1'].format( ctx.author.mention, STRING[4], STRING[6], NAME, STRING[5] if not RUSH else l.xp_tracker[guild_l]['extra_4'], STRING[7] if not RUSH else l.xp_tracker[guild_l]['extra_4'], RUSH if RUSH else '' ) if len(STRING) >= 8: for value in STRING[8:]: EXTRA += '{} '.format(value) json_string = await json_manager.get_json(path4) new_json_string = {'data': []} for key, value in json_string[guild_l]['xp_tracker']['addevent'].items(): if int(key) == 1: new_json_string['data'].append({ 'name{}'.format(key): value['name'], 'value{}'.format(key): str(value['value']).format(EXTRA) }) if int(key) == 2: new_json_string['data'].append({ 'name{}'.format(key): value['name'], 'value{}'.format(key): value['value'] }) if STRING[1].isdigit(): mode_type = 0 if int(STRING[1]) == c.EVENT_MODE[0]: mode_type = 1 elif int(STRING[1]) >= c.EVENT_MODE[1]: mode_type = 2 EVENT_CHANNEL = await discord_manager.get_channel(self.client, ctx.guild.id, server_config['events']) embed = await embed_creator.create_embed(ctx, discord.Color.dark_green(), False, ctx.guild.icon_url, LIST3[index], l.xp_tracker[guild_l]['embed_2'].format(ctx.guild.name), new_json_string['data'], False, False, EVENT_CHANNEL, DESCRIPTION) json_string = {'id': ID, 'user_id': ctx.author.id, 'message_id': embed.id, 'event_name': STRING[2], 'xp_target': int(STRING[1]), 'prize_count': int(STRING[3]), 'date_start': STRING[4], 'date_end': STRING[5], 'time_start': int(STRING[6]), 'time_end': int(STRING[7]), 'participants': 0, 'status': 0, 'type': mode_type, 'win_message': 0} await json_manager.create(path2, json_string) await ctx.author.send(l.xp_tracker[guild_l]['msg_success_1']) CHANNEL1 = await discord_manager.get_channel(self.client, ctx.guild.id, server_config['chat0']) CHANNEL2 = await discord_manager.get_channel(self.client, ctx.guild.id, server_config['chat1']) if CHANNEL1: await CHANNEL1.send(l.xp_tracker[guild_l]['msg_post_1'].format(NAME, server_config['events'])) if CHANNEL2: await CHANNEL2.send(l.xp_tracker[guild_l]['msg_post_1'].format(NAME, server_config['events'])) else: await ctx.author.send(l.xp_tracker[guild_l]['msg_badformat_1']) else: await ctx.author.send(l.xp_tracker[guild_l]['msg_badformat_1']) else: await ctx.author.send(l.user_permissions[guild_l]['msg_restricted_1']) except Exception as error: await exception.error(error) @staticmethod async def fun_removeallxp(ctx, system=None): try: guild_l = await origin.get_language(ctx.guild.id if hasattr(ctx, 'guild') else ctx) path1 = c.GUILD_PATH['special_member.json'].format(ctx.guild.id if hasattr(ctx, 'guild') else ctx) path2 = c.GUILD_PATH['tracker.json'].format(ctx.guild.id if hasattr(ctx, 'guild') else ctx) path3 = c.GUILD_PATH['event.json'].format(ctx.guild.id if hasattr(ctx, 'guild') else ctx) LIST1 = await json_manager.get_data(path3) NEW_LIST1 = {'data': []} NEW_LIST2 = {'data': []} if hasattr(ctx, 'guild'): target_keys = ['user_id', 'user_status'] target_values = [ctx.author.id, c.USER_PERMISSIONS['organizer']] if await permissions.get_user_permission(path1, target_keys, target_values) or ctx.author.id == ctx.guild.owner.id or ctx.author.id == c.CLIENT_ADMINISTRATION_ID: for data in LIST1: if data['type'] == 0 and data['status'] == 0: NEW_LIST2['data'].append(data) elif data['type'] == 3 and data['status'] >= 0: NEW_LIST2['data'].append(data) elif data['type'] == 4 and data['status'] >= 0: NEW_LIST2['data'].append(data) await json_manager.clear_and_update(path2, NEW_LIST1) await json_manager.clear_and_update(path3, NEW_LIST2) await ctx.author.send(l.xp_tracker[guild_l]['msg_success_2']) else: await ctx.author.send(l.user_permissions[guild_l]['msg_restricted_1']) elif system == 1: if LIST1: for data in LIST1: if data['type'] == 0 and data['status'] == 0: NEW_LIST2['data'].append(data) elif data['type'] == 3 and data['status'] >= 0: NEW_LIST2['data'].append(data) elif data['type'] == 4 and data['status'] >= 0: NEW_LIST2['data'].append(data) await json_manager.clear_and_update(path2, NEW_LIST1) await json_manager.clear_and_update(path3, NEW_LIST2) except Exception as error: await exception.error(error) async def fun_axp(self, ctx): try: guild_l = await origin.get_language(ctx.guild.id) STRING = str(ctx.message.content).split(' ') if len(STRING) >= 2: path = c.CLIENT_PATH['guild'] + str(ctx.guild.id) + c.CLIENT_JSON['server'] path1 = c.GUILD_PATH['tracker.json'].format(ctx.guild.id) path2 = c.GUILD_PATH['event.json'].format(ctx.guild.id) server_config = await json_manager.get_json(path) LIST1 = await json_manager.get_data(path1) LIST2 = await json_manager.get_data(path2) CHECK = True user = self.client.get_user(ctx.author.id) STATUS1 = False STATUS2 = False EVENT_NAME = [] EVENT_LIST_DATA = [] SAFE_CHECK = 0 userName = '' for name in STRING[1:]: userName += '{} '.format(name) userName = userName.replace('_', ' ') userName = userName.rstrip() for value in LIST1: if value['user_id'] == ctx.author.id or value['user_rsn'] == userName: STATUS1 = True if not STATUS1: for value2 in LIST2: if value2['type'] == 1 or value2['type'] == 2: STATUS2 = True EVENT_NAME.append(value2['event_name']) SUM = value2['participants'] + 1 EVENT_LIST_DATA.append({'id': value2['id'], 'type': value2['type'], 'sum': SUM}) if STATUS2: while CHECK: USERNAME = userName.replace(' ', '%20') USER = hiscores_xp.Hiscores(USERNAME, 'N') USERNAME = USERNAME.replace('%20', ' ') if USER.status != 404: if hasattr(USER, 'stats'): CHECK = False json_string = {'user_id': ctx.author.id, 'user_username': ctx.author.mention, 'user_rsn': userName} for value in EVENT_NAME: json_string.update({value: USER.stats[value]['experience']}) json_string.update({'{}_current'.format(value): USER.stats[value]['experience']}) await json_manager.create(path1, json_string) for event_data in EVENT_LIST_DATA: await json_manager.update(path2, 'id', event_data['id'], 'participants', event_data['sum']) path4 = c.GUILD_PATH['{}.ini'.format(self.name)].format(ctx.guild.id) role_id = await ini_manager.get_data('SECTION1', 'EVENT_ROLE', path4) role = await discord_manager.get_role(self.client, ctx.guild.id, int(role_id)) if role: user = await discord_manager.get_member(self.client, ctx.guild.id, ctx.author.id) await user.add_roles(role, reason='{}'.format(c.DISCORD_MESSAGES['event_role_added']), atomic=True) await ctx.send(l.xp_tracker[guild_l]['msg_1'].format(USERNAME, server_config['events'])) else: SAFE_CHECK += 1 if SAFE_CHECK >= 10: CHECK = False await user.send(l.xp_tracker[guild_l]['msg_error_1']) else: CHECK = False await user.send(l.xp_tracker[guild_l]['msg_error_1']) else: await user.send(l.xp_tracker[guild_l]['msg_2']) else: EVENT_STATUS = False MEMBER_DATA = None for MEMBER in LIST1: if ctx.author.id == MEMBER['user_id']: MEMBER_DATA = MEMBER for EVENT in LIST2: for key, value in MEMBER_DATA.items(): if (EVENT['type'] == 1 or EVENT['type'] == 2) and key == EVENT['event_name']: EVENT_STATUS = True if not EVENT_STATUS and (EVENT['type'] == 1 or EVENT['type'] == 2): EVENT_STATUS = False CHECK = True while CHECK: USERNAME = userName.replace(' ', '%20') USER = hiscores_xp.Hiscores(USERNAME, 'N') if USER.status != 404: if hasattr(USER, 'stats'): CHECK = False target_keys = ['{}'.format(EVENT['event_name']), '{}_current'.format(EVENT['event_name'])] target_values = [USER.stats[EVENT['event_name']]['experience'], USER.stats[EVENT['event_name']]['experience']] await json_manager.update(path1, 'user_id', ctx.author.id, target_keys, target_values) await user.send(l.xp_tracker[guild_l]['msg_6'].format(str(EVENT['event_name']).capitalize())) for value2 in LIST2: if value2['type'] == 1 or value2['type'] == 2: EVENT_NAME.append(value2['event_name']) SUM = value2['participants'] + 1 EVENT_LIST_DATA.append({'id': value2['id'], 'type': value2['type'], 'sum': SUM}) for event_data in EVENT_LIST_DATA: await json_manager.update(path2, 'id', event_data['id'], 'participants', event_data['sum']) else: SAFE_CHECK += 1 if SAFE_CHECK >= 10: CHECK = False await user.send(l.xp_tracker[guild_l]['msg_error_1']) else: CHECK = False await user.send(l.xp_tracker[guild_l]['msg_error_1']) else: EVENT_STATUS = False await user.send(l.xp_tracker[guild_l]['msg_7']) else: await ctx.send(l.xp_tracker[guild_l]['msg_badformat_2'].format(ctx.author.mention)) except Exception as error: await exception.error(error) async def fun_xpupdate(self, ctx): try: guild_l = await origin.get_language(ctx.guild.id) guild_t = await origin.get_region(ctx.guild.id) path1 = c.GUILD_PATH['tracker.json'].format(ctx.guild.id) path2 = c.GUILD_PATH['event.json'].format(ctx.guild.id) LIST1 = await json_manager.get_data(path1) LIST2 = await json_manager.get_data(path2) CHECK = True user = self.client.get_user(ctx.author.id) guild_current = await server_timer.get_current_time(guild_t) STATUS1 = False STATUS2 = False EVENT_NAME = [] SAFE_CHECK = 0 MEMBER = None userName = '' for value in LIST1: if value['user_id'] == ctx.author.id: STATUS1 = True userName = value['user_rsn'] MEMBER = value if STATUS1: for value2 in LIST2: if value2['type'] == 1 or value2['type'] == 2: STATUS2 = True EVENT_NAME.append(value2['event_name']) if STATUS2: while CHECK: USERNAME = userName.replace(' ', '%20') USER = hiscores_xp.Hiscores(USERNAME, 'N') if USER.status != 404: if hasattr(USER, 'stats'): CHECK = False for value in EVENT_NAME: await json_manager.update(path1, 'user_id', ctx.author.id, '{}_current'.format(value), USER.stats[value]['experience']) client_message = 'Guild id: {} | Event: {} | RSN: {} | Registration XP: {} | Current XP: {} | Guild time: {} | Status: {}'.format(ctx.guild.id, value, userName, MEMBER[value], USER.stats[value]['experience'], guild_current.strftime('%H:%M'), 'XP self update') await console_interface.console_message('XP self update', client_message) await user.send(l.xp_tracker[guild_l]['msg_success_4']) else: SAFE_CHECK += 1 if SAFE_CHECK >= 10: CHECK = False await user.send(l.xp_tracker[guild_l]['msg_error_3']) else: CHECK = False await user.send(l.xp_tracker[guild_l]['msg_error_4'].format(userName)) else: await user.send(l.xp_tracker[guild_l]['msg_2']) else: await user.send(l.xp_tracker[guild_l]['msg_error_5']) except Exception as error: await exception.error(error) async def fun_xprank(self, ctx): try: guild_l = await origin.get_language(ctx.guild.id) path = c.CLIENT_PATH['guild'] + str(ctx.guild.id) + c.CLIENT_JSON['server'] path1 = c.GUILD_PATH['{}.ini'.format(self.name)].format(ctx.guild.id) path2 = c.GUILD_PATH['event.json'].format(ctx.guild.id) path3 = c.GUILD_PATH['tracker.json'].format(ctx.guild.id) ini = await ini_manager.get_ini(path1) LIST1 = self.PNG LIST2 = self.PRE INFO_PANEL_IMAGE = self.INFO_PANEL_IMAGE INFO_PANEL_FIRST_IMAGE = self.INFO_PANEL_FIRST_IMAGE INFO_PANEL_SECOND_IMAGE = self.INFO_PANEL_SECOND_IMAGE INFO_PANEL_THIRD_IMAGE = self.INFO_PANEL_THIRD_IMAGE COLOR_PLACE_FIRST = (255, 30, 215) COLOR_PLACE_SECOND = (0, 174, 255) COLOR_PLACE_THIRD = (255, 31, 31) COLOR_PLACE_DEFAULT = (0, 239, 0) FONT_PATH = self.FONT_PATH INFO_PANEL_OBJECT = None RANK = 0 sum = None CHANNEL_PERMISSIONS = int(ini['CHANNEL_PERMISSIONS']['STATUS']) server_config = await json_manager.get_json(path) CHANNEL_STATUS = True if CHANNEL_PERMISSIONS == 1: pass else: if ctx.message.channel.id == server_config['chat0']: CHANNEL_STATUS = False if CHANNEL_STATUS: STRING = str(ctx.message.content).split(' ') def get_id(data_value): return int(data_value.get('sum')) if len(STRING) == 1: user = self.client.get_user(ctx.author.id) else: DCID = await origin.find_and_replace(STRING[1]) user = self.client.get_user(DCID) TEMP_DATA = await json_manager.get_data(path2) DATA1 = [] DATA2 = await json_manager.get_data(path3) DATA3 = [] STATUS = None for value in TEMP_DATA: if value['type'] == 1 or value['type'] == 2: DATA1.append(value) if DATA1: for index, data in enumerate(DATA1): if DATA2: for index2, data2 in enumerate(DATA2): for key, value in data2.items(): if str(data['event_name']) == str(key): sum = data2['{}_current'.format(key)] - data2[key] DATA3.append({'user_rsn': data2['user_rsn'], 'user_id': data2['user_id'], 'sum': sum}) for index3, value3 in enumerate(LIST2): if str(value3) == str(key): INFO_PANEL_OBJECT = LIST1[index3] DATA3.sort(key=get_id, reverse=True) for index3, data3 in enumerate(DATA3): RANK += 1 if RANK == 1: PLACE_IMAGE = INFO_PANEL_FIRST_IMAGE PLACE_COLOR = COLOR_PLACE_FIRST elif RANK == 2: PLACE_IMAGE = INFO_PANEL_SECOND_IMAGE PLACE_COLOR = COLOR_PLACE_SECOND elif RANK == 3: PLACE_IMAGE = INFO_PANEL_THIRD_IMAGE PLACE_COLOR = COLOR_PLACE_THIRD else: PLACE_IMAGE = INFO_PANEL_IMAGE PLACE_COLOR = COLOR_PLACE_DEFAULT if hasattr(user, 'id'): if user.id == data3['user_id']: with Image.open(PLACE_IMAGE).convert('RGBA') as im: with Image.open(INFO_PANEL_OBJECT).convert('RGBA') as im2: size1 = im.size size2 = im2.size y = int(size1[1] / 2) - int(size2[1] / 2) im.paste(im2, (18, y), im2) draw = ImageDraw.Draw(im) font = ImageFont.truetype(FONT_PATH, 16) draw.text((50, y - 12), l.xp_tracker[guild_l]['configuration']['rsn'], PLACE_COLOR, font=font) draw.text((50, y + 2), l.xp_tracker[guild_l]['configuration']['rank'], PLACE_COLOR, font=font) draw.text((50, y + 18), l.xp_tracker[guild_l]['configuration']['xp'], PLACE_COLOR, font=font) draw.text((110 if guild_l == 'LT' else 95, y - 12), '{}'.format(data3['user_rsn']), (255, 255, 255), font=font) draw.text((130 if guild_l == 'LT' else 100, y + 2), '{}'.format(RANK), (255, 255, 255), font=font) draw.text((98 if guild_l == 'LT' else 70, y + 18), '{} XP'.format(locale.format_string('%d', data3['sum'], grouping=True)), (255, 255, 255), font=font) TEMP_FILE = '{}_{}_{}.png'.format(data3['user_rsn'], data['event_name'], sum) im.save(TEMP_FILE, 'PNG') rank = open(TEMP_FILE, 'rb') await ctx.send(file=discord.File(rank)) rank.close() await file_manager.delete_file(TEMP_FILE) STATUS = True if not STATUS: await ctx.send(l.xp_tracker[guild_l]['msg_error_6'].format(ctx.author.mention)) RANK = 0 DATA3.clear() else: await ctx.send(l.xp_tracker[guild_l]['msg_4']) else: await ctx.send(l.xp_tracker[guild_l]['msg_5']) else: await ctx.send(l.module_permissions[guild_l]['msg_restricted']) except Exception as error: await exception.error(error) async def fun_xpstats(self, ctx): try: guild_l = await origin.get_language(ctx.guild.id) path = c.CLIENT_PATH['guild'] + str(ctx.guild.id) + c.CLIENT_JSON['server'] server_config = await json_manager.get_json(path) path1 = c.GUILD_PATH['{}.ini'.format(self.name)].format(ctx.guild.id) ini = await ini_manager.get_ini(path1) CHANNEL_PERMISSIONS = int(ini['CHANNEL_PERMISSIONS']['STATUS']) CHANNEL_STATUS = True if CHANNEL_PERMISSIONS == 1: pass else: if ctx.message.channel.id == server_config['chat0']: CHANNEL_STATUS = False if CHANNEL_STATUS: path2 = c.GUILD_PATH['event.json'].format(ctx.guild.id) path3 = c.GUILD_PATH['tracker.json'].format(ctx.guild.id) LIST1 = self.ICON LIST2 = self.PRE IMAGE = None EVENT_NAME = None await origin.get_locale() TEMP_DATA = await json_manager.get_data(path2) DATA1 = [] DATA2 = await json_manager.get_data(path3) DATA3 = [] for value in TEMP_DATA: if value['type'] == 1 or value['type'] == 2: DATA1.append(value) def get_id(INFO): return int(INFO.get('sum')) if DATA1: for data1 in DATA1: if DATA2: for data2 in DATA2: for key, value in data2.items(): if str(key) == str(data1['event_name']): sum = data2['{}_current'.format(key)]-data2[key] DATA3.append({'user_username': data2['user_username'], 'user_rsn': data2['user_rsn'], 'sum': sum}) if data1['type'] == 1: EVENT_NAME = '{} [ S ]'.format(str(data1['event_name']).capitalize()) if data1['type'] == 2: EVENT_NAME = '{} [ R ]'.format(str(data1['event_name']).capitalize()) for index, value3 in enumerate(LIST2): if str(value3) == str(key): IMAGE = LIST1[index] DATA3.sort(key=get_id, reverse=True) path4 = c.ORIGIN_PATH['embed.tracker.json'] json_string = await json_manager.get_json(path4) new_json_string = {'data': []} STRING = '' SUM = 0 for key, value in json_string[guild_l]['xp_tracker']['stats'].items(): if DATA3: if int(key) == 1: for index, data in enumerate(DATA3): index = index + 1 if index <= 10: if index == 1: title = ':first_place: {}'.format(l.DISCORD_TOP[guild_l][index - 1]) elif index == 2: title = ':second_place: {}'.format(l.DISCORD_TOP[guild_l][index - 1]) elif index == 3: title = ':third_place: {}'.format(l.DISCORD_TOP[guild_l][index - 1]) else: title = '{}'.format(l.DISCORD_TOP[guild_l][index - 1]) STRING += l.xp_tracker[guild_l]['configuration']['current_xp'].format(title, data['user_username'], data['user_rsn'], locale.format_string('%d', data['sum'], grouping=True)) SUM += data['sum'] STRING += l.xp_tracker[guild_l]['configuration']['total_xp'].format(locale.format_string('%d', SUM, grouping=True)) new_json_string['data'].append({ 'name{}'.format(key): value['name'].format('\u200D'), 'value{}'.format(key): str(value['value']).format(STRING) }) else: STRING += l.xp_tracker[guild_l]['configuration']['total_xp'].format(locale.format_string('%d', SUM, grouping=True)) new_json_string['data'].append({ 'name{}'.format(key): value['name'], 'value{}'.format(key): str(value['value']).format(ctx.guild.name) }) await embed_creator.create_embed(ctx, discord.Color.dark_green(), False, ctx.guild.icon_url, IMAGE, l.xp_tracker[guild_l]['embed_3'].format(ctx.guild.name, EVENT_NAME), new_json_string['data'], False) DATA3.clear() else: await ctx.send(l.xp_tracker[guild_l]['msg_4']) else: await ctx.send(l.xp_tracker[guild_l]['msg_5']) else: await ctx.send(l.module_permissions[guild_l]['msg_restricted']) except Exception as error: await exception.error(error) # ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ @tasks.loop(count=1) async def variable_init(self): try: path_global = c.GUILD_PATH['{}_g.ini'.format(self.name)] ini = await ini_manager.get_ini(path_global) self.PRE = await json_manager.get_ini_list(path_global, 'CONSTANT2', 'PRE') self.NAME = await json_manager.get_ini_list(path_global, 'CONSTANT1', 'NAME') self.ICON = await json_manager.get_ini_list(path_global, 'CONSTANT3', 'ICON') self.PNG = await json_manager.get_ini_list(path_global, 'CONSTANT5', 'PNG') self.INFO_PANEL_IMAGE = ini['CONSTANT5']['INFO_PANEL'] self.INFO_PANEL_FIRST_IMAGE = ini['CONSTANT5']['INFO_PANEL_FIRST'] self.INFO_PANEL_SECOND_IMAGE = ini['CONSTANT5']['INFO_PANEL_SECOND'] self.INFO_PANEL_THIRD_IMAGE = ini['CONSTANT5']['INFO_PANEL_THIRD'] self.FONT_PATH = ini['CONSTANT5']['FONT'] await console_interface.console_message(c.CLIENT_MESSAGES['variable_init'].format(self.name)) except Exception as error: await exception.error(error) def __init__(self, client): self.PRE = None self.NAME = None self.ICON = None self.PNG = None self.INFO_PANEL_IMAGE = None self.INFO_PANEL_FIRST_IMAGE = None self.INFO_PANEL_SECOND_IMAGE = None self.INFO_PANEL_THIRD_IMAGE = None self.FONT_PATH = None self.variable_init.start() self.client = client @commands.command() async def xptracker(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_xptracker) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) @commands.command() async def addxpevent(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_addxpevent) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) @commands.command() async def removeallxp(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_removeallxp) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) @commands.command() async def axp(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_axp) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) @commands.command() async def xpupdate(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_xpupdate) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) @commands.command() async def xprank(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_xprank) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) @commands.command() async def xpstats(self, ctx): try: if str(ctx.message.channel.type) == 'text': await permissions.module_status_check(ctx, self.name, c.GUILD_PATH['{}.ini'.format(self.name)], self.fun_xpstats) else: await ctx.send(l.module_permissions['EN']['msg_restricted_pm']) except Exception as error: await exception.error(error) def setup(client): client.add_cog(xp_tracker(client))
52.601928
366
0.468224
37,902
0.988911
0
0
8,310
0.216818
36,904
0.962872
3,777
0.098547
6f75a1523bdd37ab1cd4cc70ef59345c182747bf
1,437
py
Python
days/01/part1.py
gr3yknigh1/aoc2021
55dca0685cc4213f0a14970ae9bfc882a59e82aa
[ "MIT" ]
null
null
null
days/01/part1.py
gr3yknigh1/aoc2021
55dca0685cc4213f0a14970ae9bfc882a59e82aa
[ "MIT" ]
null
null
null
days/01/part1.py
gr3yknigh1/aoc2021
55dca0685cc4213f0a14970ae9bfc882a59e82aa
[ "MIT" ]
null
null
null
from __future__ import annotations import os import collections BASE_PATH = os.path.dirname(__file__) INPUT_PATH = os.path.join(BASE_PATH, "input.txt") OUTPUT_PATH = os.path.join(BASE_PATH, "output.txt") def proceed_buffer(buffer: str) -> list[int]: return [int(line) for line in buffer.splitlines()] def main() -> int: buffer: str = "" with open(INPUT_PATH, mode='r', encoding="utf-8") as f: buffer = f.read() measurements: list[int] = proceed_buffer(buffer) measurements_counter = collections.Counter() output_buffer: str = "" prev: int = None for i in measurements: if prev is None: output_buffer += f"{i} (N/A - no previous measurement)\n" measurements_counter["None"] += 1 elif prev > i: output_buffer += f"{i} (decrease)\n" measurements_counter["Decreased"] += 1 elif prev < i: output_buffer += f"{i} (increase)\n" measurements_counter["Increased"] += 1 elif prev == i: output_buffer += f"{i} (not changed)\n" measurements_counter["Equal"] += 1 prev = i output_buffer += "\n====\n" output_buffer += "Total:\n" output_buffer += f": {measurements_counter}" with open(OUTPUT_PATH, mode='w', encoding="utf-8") as f: f.write(output_buffer) return 0 if __name__ == "__main__": raise SystemExit(main())
26.127273
69
0.599165
0
0
0
0
0
0
0
0
239
0.166319
6f75fde6361af1d1bfaca77b15e701086bf2e3b2
13,684
py
Python
src/ensemble_nn/agent_nn.py
AbhinavGopal/ts_tutorial
147ff28dc507172774693f225071f8e244e5994e
[ "MIT" ]
290
2017-12-29T01:55:21.000Z
2022-03-28T10:00:32.000Z
src/ensemble_nn/agent_nn.py
AbhinavGopal/ts_tutorial
147ff28dc507172774693f225071f8e244e5994e
[ "MIT" ]
3
2018-08-02T11:45:51.000Z
2020-09-24T14:34:58.000Z
src/ensemble_nn/agent_nn.py
AbhinavGopal/ts_tutorial
147ff28dc507172774693f225071f8e244e5994e
[ "MIT" ]
76
2018-01-17T06:19:51.000Z
2021-11-10T06:18:20.000Z
"""Agents for neural net bandit problems. We implement three main types of agent: - epsilon-greedy (fixed epsilon, annealing epsilon) - dropout (arXiv:1506.02142) - ensemble sampling All code is specialized to the setting of 2-layer fully connected MLPs. """ import numpy as np import numpy.random as rd from base.agent import Agent from ensemble_nn.env_nn import TwoLayerNNBandit class TwoLayerNNEpsilonGreedy(Agent): def __init__(self, input_dim, hidden_dim, actions, time_horizon, prior_var, noise_var, epsilon_param=0.0, learning_rate=1e-1, num_gradient_steps=1, batch_size=64, lr_decay=1, leaky_coeff=0.01): """Epsilon-greedy agent with two-layer neural network model. Args: input_dim: int dimension of input. hidden_dim: int size of hidden layer. actions: numpy array of valid actions (generated by environment). time_horizon: int size to pre-allocate data storage. prior_var: prior variance for random initialization. noise_var: noise variance for update. epsilon_param: fixed epsilon choice. learning_rate: sgd learning rate. num_gradient_steps: how many sgd to do. batch_size: size of batch. lr_decay: decay learning rate. leaky_coeff: slope of "negative" part of the Leaky ReLU. """ self.W1 = 1e-2 * rd.randn(hidden_dim, input_dim) # initialize weights self.W2 = 1e-2 * rd.randn(hidden_dim) self.actions = actions self.num_actions = len(actions) self.T = time_horizon self.prior_var = prior_var self.noise_var = noise_var self.epsilon_param = epsilon_param self.lr = learning_rate self.num_gradient_steps = num_gradient_steps # number of gradient steps we # take during each time period self.batch_size = batch_size self.lr_decay = lr_decay self.leaky_coeff = leaky_coeff self.action_hist = np.zeros((self.T, input_dim)) self.reward_hist = np.zeros(self.T) def _model_forward(self, input_actions): """Neural network forward pass. Args: input_actions: actions to evaluate (numpy array). Returns: out: network prediction. cache: tuple holding intermediate activations for backprop. """ affine_out = np.sum(input_actions[:, np.newaxis, :] * self.W1, axis=2) relu_out = np.maximum(self.leaky_coeff * affine_out, affine_out) out = np.sum(relu_out * self.W2, axis=1) cache = (input_actions, affine_out, relu_out) return out, cache def _model_backward(self, out, cache, y): """Neural network backward pass (for backpropagation). Args: out: output of batch of predictions. cache: intermediate activations from _model_forward. y: target labels. Returns: dW1: gradients for layer 1. dW2: gradients for layer 2. """ input_actions, affine_out, relu_out = cache dout = -(2 / self.noise_var) * (y - out) dW2 = np.sum(dout[:, np.newaxis] * relu_out, axis=0) drelu_out = dout[:, np.newaxis] * self.W2 mask = (affine_out >= 0) + self.leaky_coeff * (affine_out < 0) daffine_out = mask * drelu_out dW1 = np.dot(daffine_out.T, input_actions) return dW1, dW2 def _update_model(self, t): """Update the model by taking a few gradient steps.""" for i in range(self.num_gradient_steps): # sample minibatch batch_ind = rd.randint(t + 1, size=self.batch_size) action_batch = self.action_hist[batch_ind] reward_batch = self.reward_hist[batch_ind] out, cache = self._model_forward(action_batch) dW1, dW2 = self._model_backward(out, cache, reward_batch) dW1 /= self.batch_size dW2 /= self.batch_size dW1 += 2 / (self.prior_var * (t + 1)) * self.W1 dW2 += 2 / (self.prior_var * (t + 1)) * self.W2 self.W1 -= self.lr * dW1 self.W2 -= self.lr * dW2 def update_observation(self, observation, action, reward): """Learn from observations.""" t = observation self.action_hist[t] = self.actions[action] self.reward_hist[t] = reward self._update_model(t) self.lr *= self.lr_decay def pick_action(self, observation): """Fixed epsilon-greedy action selection.""" u = rd.rand() if u < self.epsilon_param: action = rd.randint(self.num_actions) else: model_out, _ = self._model_forward(self.actions) action = np.argmax(model_out) return action class TwoLayerNNEpsilonGreedyAnnealing(TwoLayerNNEpsilonGreedy): """Epsilon-greedy with an annealing epsilon: epsilon = self.epsilon_param / (self.epsilon_param + t) """ def pick_action(self, observation): """Overload pick_action to dynamically recalculate epsilon-greedy.""" t = observation epsilon = self.epsilon_param / (self.epsilon_param + t) u = rd.rand() if u < epsilon: action = rd.randint(self.num_actions) else: model_out, _ = self._model_forward(self.actions) action = np.argmax(model_out) return action class TwoLayerNNDropout(TwoLayerNNEpsilonGreedy): """Dropout is used to represent model uncertainty. ICML paper suggests this is Bayesian uncertainty: arXiv:1506.02142. Follow up work suggests that this is flawed: TODO(iosband) add link. """ def __init__(self, input_dim, hidden_dim, actions, time_horizon, prior_var, noise_var, drop_prob=0.5, learning_rate=1e-1, num_gradient_steps=1, batch_size=64, lr_decay=1, leaky_coeff=0.01): """Dropout agent with two-layer neural network model. Args: input_dim: int dimension of input. hidden_dim: int size of hidden layer. actions: numpy array of valid actions (generated by environment). time_horizon: int size to pre-allocate data storage. prior_var: prior variance for random initialization. noise_var: noise variance for update. drop_prob: probability of randomly zero-ing out weight component. learning_rate: sgd learning rate. num_gradient_steps: how many sgd to do. batch_size: size of batch. lr_decay: decay learning rate. leaky_coeff: slope of "negative" part of the Leaky ReLU. """ self.W1 = 1e-2 * rd.randn(hidden_dim, input_dim) self.W2 = 1e-2 * rd.randn(hidden_dim) self.actions = actions self.num_actions = len(actions) self.T = time_horizon self.prior_var = prior_var self.noise_var = noise_var self.p = drop_prob self.lr = learning_rate self.num_gradient_steps = num_gradient_steps self.batch_size = batch_size self.lr_decay = lr_decay self.leaky_coeff = leaky_coeff self.action_hist = np.zeros((self.T, input_dim)) self.reward_hist = np.zeros(self.T) def _model_forward(self, input_actions): """Neural network forward pass. Note that dropout remains "on" so that forward pass is stochastic. Args: input_actions: actions to evaluate (numpy array). Returns: out: network prediction. cache: tuple holding intermediate activations for backprop. """ affine_out = np.sum(input_actions[:, np.newaxis, :] * self.W1, axis=2) relu_out = np.maximum(self.leaky_coeff * affine_out, affine_out) dropout_mask = rd.rand(*relu_out.shape) > self.p dropout_out = relu_out * dropout_mask out = np.sum(dropout_out * self.W2, axis=1) cache = (input_actions, affine_out, relu_out, dropout_mask, dropout_out) return out, cache def _model_backward(self, out, cache, y): """Neural network backward pass (for backpropagation). Args: out: output of batch of predictions. cache: intermediate activations from _model_forward. y: target labels. Returns: dW1: gradients for layer 1. dW2: gradients for layer 2. """ input_actions, affine_out, relu_out, dropout_mask, dropout_out = cache dout = -(2 / self.noise_var) * (y - out) dW2 = np.sum(dout[:, np.newaxis] * relu_out, axis=0) ddropout_out = dout[:, np.newaxis] * self.W2 drelu_out = ddropout_out * dropout_mask relu_mask = (affine_out >= 0) + self.leaky_coeff * (affine_out < 0) daffine_out = relu_mask * drelu_out dW1 = np.dot(daffine_out.T, input_actions) return dW1, dW2 def pick_action(self, observation): """Select the greedy action according to the output of a stochastic forward pass.""" model_out, _ = self._model_forward(self.actions) action = np.argmax(model_out) return action class TwoLayerNNEnsembleSampling(Agent): """An ensemble sampling agent maintains an ensemble of neural nets, each fitted to a perturbed prior and perturbed observations.""" def __init__(self, input_dim, hidden_dim, actions, time_horizon, prior_var, noise_var, num_models=10, learning_rate=1e-1, num_gradient_steps=1, batch_size=64, lr_decay=1, leaky_coeff=0.01): """Ensemble sampling agent with two-layer neural network model. Args: input_dim: int dimension of input. hidden_dim: int size of hidden layer. actions: numpy array of valid actions (generated by environment). time_horizon: int size to pre-allocate data storage. prior_var: prior variance for random initialization. noise_var: noise variance for update. num_models: Number of ensemble models to train. learning_rate: sgd learning rate. num_gradient_steps: how many sgd to do. batch_size: size of batch. lr_decay: decay learning rate. leaky_coeff: slope of "negative" part of the Leaky ReLU. """ self.M = num_models # initialize models by sampling perturbed prior means self.W1_model_prior = np.sqrt(prior_var) * rd.randn(self.M, hidden_dim, input_dim) self.W2_model_prior = np.sqrt(prior_var) * rd.randn(self.M, hidden_dim) self.W1 = np.copy(self.W1_model_prior) self.W2 = np.copy(self.W2_model_prior) self.actions = actions self.num_actions = len(actions) self.T = time_horizon self.prior_var = prior_var self.noise_var = noise_var self.lr = learning_rate self.num_gradient_steps = num_gradient_steps self.batch_size = batch_size self.lr_decay = lr_decay self.leaky_coeff = leaky_coeff self.action_hist = np.zeros((self.T, input_dim)) self.model_reward_hist = np.zeros((self.M, self.T)) def _model_forward(self, m, input_actions): """Neural network forward pass for single model of ensemble. Args: m: index of which network to evaluate. input_actions: actions to evaluate (numpy array). Returns: out: network prediction. cache: tuple holding intermediate activations for backprop. """ affine_out = np.sum(input_actions[:, np.newaxis, :] * self.W1[m], axis=2) relu_out = np.maximum(self.leaky_coeff * affine_out, affine_out) out = np.sum(relu_out * self.W2[m], axis=1) cache = (input_actions, affine_out, relu_out) return out, cache def _model_backward(self, m, out, cache, y): """Neural network backward pass (for backpropagation) for single network. Args: m: index of which network to evaluate. out: output of batch of predictions. cache: intermediate activations from _model_forward. y: target labels. Returns: dW1: gradients for layer 1. dW2: gradients for layer 2. """ input_actions, affine_out, relu_out = cache dout = -(2 / self.noise_var) * (y - out) dW2 = np.sum(dout[:, np.newaxis] * relu_out, axis=0) drelu_out = dout[:, np.newaxis] * self.W2[m] mask = (affine_out >= 0) + self.leaky_coeff * (affine_out < 0) daffine_out = mask * drelu_out dW1 = np.dot(daffine_out.T, input_actions) return dW1, dW2 def _update_model(self, m, t): """Apply SGD to model m.""" for i in range(self.num_gradient_steps): # sample minibatch batch_ind = rd.randint(t + 1, size=self.batch_size) action_batch = self.action_hist[batch_ind] reward_batch = self.model_reward_hist[m][batch_ind] out, cache = self._model_forward(m, action_batch) dW1, dW2 = self._model_backward(m, out, cache, reward_batch) dW1 /= self.batch_size dW2 /= self.batch_size dW1 += 2 / (self.prior_var * (t + 1)) * ( self.W1[m] - self.W1_model_prior[m]) dW2 += 2 / (self.prior_var * (t + 1)) * ( self.W2[m] - self.W2_model_prior[m]) self.W1[m] -= self.lr * dW1 self.W2[m] -= self.lr * dW2 return def update_observation(self, observation, action, reward): """Learn from observations, shared across all models. However, perturb the reward independently for each model and then update. """ t = observation self.action_hist[t] = self.actions[action] for m in range(self.M): m_noise = np.sqrt(self.noise_var) * rd.randn() self.model_reward_hist[m, t] = reward + m_noise self._update_model(m, t) self.lr *= self.lr_decay def pick_action(self, observation): """Select action via ensemble sampling. Choose active network uniformly at random, then act greedily wrt that model. """ m = rd.randint(self.M) model_out, _ = self._model_forward(m, self.actions) action = np.argmax(model_out) return action
33.621622
80
0.656168
13,282
0.970623
0
0
0
0
0
0
5,175
0.378179
6f762afe905140cf74ce1d262513f6770e5cf96a
1,314
py
Python
leaflet_storage/management/commands/storagei18n.py
Biondilbiondo/django-leaflet-storage-concurrent-editing
98cc3be7c74ea545ed8a75b9ae198acfcbba03a3
[ "WTFPL" ]
null
null
null
leaflet_storage/management/commands/storagei18n.py
Biondilbiondo/django-leaflet-storage-concurrent-editing
98cc3be7c74ea545ed8a75b9ae198acfcbba03a3
[ "WTFPL" ]
null
null
null
leaflet_storage/management/commands/storagei18n.py
Biondilbiondo/django-leaflet-storage-concurrent-editing
98cc3be7c74ea545ed8a75b9ae198acfcbba03a3
[ "WTFPL" ]
null
null
null
import io import os from django.core.management.base import BaseCommand from django.conf import settings from django.contrib.staticfiles import finders from django.template.loader import render_to_string from django.utils.translation import to_locale class Command(BaseCommand): def handle(self, *args, **options): for code, name in settings.LANGUAGES: code = to_locale(code) print("Processing", name) path = finders.find('storage/src/locale/{code}.json'.format( code=code)) if not path: print("No file for", code, "Skipping") else: with io.open(path, "r", encoding="utf-8") as f: print("Found file", path) self.render(code, f.read()) def render(self, code, json): path = os.path.join( settings.STATIC_ROOT, "storage/src/locale/", "{code}.js".format(code=code) ) with io.open(path, "w", encoding="utf-8") as f: content = render_to_string('leaflet_storage/locale.js', { "locale": json, "locale_code": code }) print("Exporting to", path) f.write(content)
33.692308
79
0.542618
1,059
0.805936
0
0
0
0
0
0
193
0.14688
6f76bbd91ccc6729e6385bce7b0f809d9736e91f
37,910
py
Python
spikemetrics/metrics.py
MarineChap/spikemetrics
c83a2e1e12efab5d2987d38d129ee6862cb4a454
[ "MIT" ]
null
null
null
spikemetrics/metrics.py
MarineChap/spikemetrics
c83a2e1e12efab5d2987d38d129ee6862cb4a454
[ "MIT" ]
null
null
null
spikemetrics/metrics.py
MarineChap/spikemetrics
c83a2e1e12efab5d2987d38d129ee6862cb4a454
[ "MIT" ]
null
null
null
# Copyright © 2019. Allen Institute. All rights reserved. import numpy as np import pandas as pd from collections import OrderedDict import math import warnings from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.neighbors import NearestNeighbors from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist from scipy.stats import chi2 from scipy.ndimage.filters import gaussian_filter1d from .utils import Epoch from .utils import printProgressBar, get_spike_positions def calculate_metrics(spike_times, spike_clusters, amplitudes, pc_features, pc_feature_ind, params, duration, channel_locations=None, cluster_ids=None, epochs=None, seed=None, verbose=True): """ Calculate metrics for all units on one probe Inputs: ------ spike_times : numpy.ndarray (num_spikes x 0) Spike times in seconds (same timebase as epochs) spike_clusters : numpy.ndarray (num_spikes x 0) Cluster IDs for each spike time pc_features : numpy.ndarray (num_spikes x num_pcs x num_channels) Pre-computed PCs for blocks of channels around each spike pc_feature_ind : numpy.ndarray (num_units x num_channels) Channel indices of PCs for each unit epochs : list of Epoch objects contains information on Epoch start and stop times duration : length of recording (seconds) channel_locations : numpy.ndarray (num_channels x 2) Channel locations (if None, a linear geometry is assumed) params : dict of parameters 'isi_threshold' : minimum time for isi violations 'min_isi' 'num_channels_to_compare' 'max_spikes_for_unit' 'max_spikes_for_nn' 'n_neighbors' 'drift_metrics_interval_s' 'drift_metrics_min_spikes_per_interval' Outputs: -------- metrics : pandas.DataFrame one column for each metric one row per unit per epoch """ metrics = pd.DataFrame() if epochs is None: epochs = [Epoch('complete_session', 0, np.inf)] total_units = np.max(spike_clusters) + 1 total_epochs = len(epochs) for epoch in epochs: in_epoch = np.logical_and(spike_times >= epoch.start_time, spike_times < epoch.end_time) spikes_in_epoch = np.sum(in_epoch) spikes_for_nn = min(spikes_in_epoch, params['max_spikes_for_nn']) spikes_for_silhouette = min(spikes_in_epoch, params['n_silhouette']) print("Calculating isi violations") isi_viol = calculate_isi_violations(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, isi_threshold=params['isi_threshold'], min_isi=params['min_isi'], duration=duration, verbose=verbose) print("Calculating presence ratio") presence_ratio = calculate_presence_ratio(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, duration=duration, verbose=verbose) print("Calculating firing rate") firing_rate = calculate_firing_rates(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, duration=duration, verbose=verbose) print("Calculating amplitude cutoff") amplitude_cutoff = calculate_amplitude_cutoff(spike_clusters=spike_clusters[in_epoch], amplitudes=amplitudes[in_epoch], total_units=total_units, verbose=verbose) print("Calculating PC-based metrics") isolation_distance, l_ratio, d_prime, nn_hit_rate, nn_miss_rate = \ calculate_pc_metrics(spike_clusters=spike_clusters[in_epoch], total_units=total_units, pc_features=pc_features[in_epoch, :, :], pc_feature_ind=pc_feature_ind, num_channels_to_compare=params['num_channels_to_compare'], max_spikes_for_cluster=params['max_spikes_for_unit'], spikes_for_nn=spikes_for_nn, n_neighbors=params['n_neighbors'], channel_locations= channel_locations, seed=seed, verbose=verbose) print("Calculating silhouette score") silhouette_score = calculate_silhouette_score(spike_clusters=spike_clusters[in_epoch], total_units=total_units, pc_features=pc_features[in_epoch, :, :], pc_feature_ind=pc_feature_ind, spikes_for_silhouette=spikes_for_silhouette, seed=seed, verbose=verbose) print("Calculating drift metrics") max_drift, cumulative_drift = calculate_drift_metrics(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, pc_features=pc_features[in_epoch, :, :], pc_feature_ind=pc_feature_ind, interval_length=params['drift_metrics_interval_s'], min_spikes_per_interval= params['drift_metrics_min_spikes_per_interval'], channel_locations= channel_locations, verbose=verbose) if cluster_ids is None: cluster_ids_out = np.arange(total_units) else: cluster_ids_out = cluster_ids epoch_name = [epoch.name] * len(cluster_ids_out) metrics = pd.concat((metrics, pd.DataFrame(data=OrderedDict((('cluster_id', cluster_ids_out), ('firing_rate', firing_rate), ('presence_ratio', presence_ratio), ('isi_violation', isi_viol), ('amplitude_cutoff', amplitude_cutoff), ('isolation_distance', isolation_distance), ('l_ratio', l_ratio), ('d_prime', d_prime), ('nn_hit_rate', nn_hit_rate), ('nn_miss_rate', nn_miss_rate), ('silhouette_score', silhouette_score), ('max_drift', max_drift), ('cumulative_drift', cumulative_drift), ('epoch_name', epoch_name), ))))) return metrics # =============================================================== # HELPER FUNCTIONS TO LOOP THROUGH CLUSTERS: # =============================================================== def calculate_isi_violations(spike_times, spike_clusters, total_units, isi_threshold, min_isi, duration, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) viol_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) viol_rates[cluster_id], num_violations = isi_violations(spike_times[for_this_cluster], duration=duration, isi_threshold=isi_threshold, min_isi=min_isi) return viol_rates def calculate_presence_ratio(spike_times, spike_clusters, total_units, duration, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) ratios = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) ratios[cluster_id] = presence_ratio(spike_times[for_this_cluster], duration=duration) return ratios def calculate_num_spikes(spike_times, spike_clusters, total_units, spike_cluster_subset=None, verbose=True): num_spikes = np.zeros((total_units,)) if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) num_spikes[cluster_id] = len(spike_times[for_this_cluster]) return num_spikes def calculate_firing_rates(spike_times, spike_clusters, total_units, duration, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) firing_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) firing_rates[cluster_id] = firing_rate(spike_times[for_this_cluster], duration=duration) return firing_rates def calculate_amplitude_cutoff(spike_clusters, amplitudes, total_units, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) amplitude_cutoffs = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) amplitude_cutoffs[cluster_id] = amplitude_cutoff(amplitudes[for_this_cluster]) return amplitude_cutoffs def calculate_pc_metrics(spike_clusters, total_units, pc_features, pc_feature_ind, num_channels_to_compare, max_spikes_for_cluster, spikes_for_nn, n_neighbors, channel_locations, min_num_pcs=10, metric_names=None, seed=None, spike_cluster_subset=None, verbose=True): """ Computes metrics from projection of waveforms to principal components including: isolation distance, l ratio, d prime, nn hit rate, nn miss rate Parameters ---------- spike_clusters: numpy.ndarray (num_spikes,) Unit ID for each spike time total_units: int Total number of units pc_features: numpy.ndarray (num_spikes, num_pcs, num_channels) Pre-computed PCs for blocks of channels around each spike pc_feature_ind: numpy.ndarray (num_units, num_channels) Channel indices of PCs for each unit num_channels_to_compare: int Number of channels around the max channel over which to compute the metrics (e.g. only units from these channels will be considered for the nearest neighbor metrics) max_spikes_for_cluster: int Total number of spikes to use for computing the metrics spikes_for_nn: int Number of spikes in a unit to use for computing nearest neighbor metrics (nn_hit_rate, nn_miss_rate) n_neighbors: int Number of nearest neighbor spikes to compare membership channel_locations: array, (channels, 2) (x,y) location of channels; used to identify neighboring channels min_num_pcs: int, default=10 Minimum number of spikes a unit must have to compute these metrics metric_names: list of str, default=None List of metrics to compute seed: int, default=None Random seed for subsampling spikes from the unit spike_cluster_subset: numpy.array (units,), default=None If specified compute metrics for only these units verbose: bool, default=True Prints out progress bar if True Returns (all 1d numpy.arrays) ------- isolation_distances l_ratios d_primes nn_hit_rates nn_miss_rates """ if metric_names is None: metric_names = ['isolation_distance', 'l_ratio', 'd_prime', 'nearest_neighbor'] if num_channels_to_compare > channel_locations.shape[0]: num_channels_to_compare = channel_locations.shape[0] all_cluster_ids = np.unique(spike_clusters) if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = all_cluster_ids peak_channels = np.zeros((total_units,), dtype='uint16') neighboring_channels = np.zeros((total_units, num_channels_to_compare)) isolation_distances = np.zeros((total_units,)) l_ratios = np.zeros((total_units,)) d_primes = np.zeros((total_units,)) nn_hit_rates = np.zeros((total_units,)) nn_miss_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(all_cluster_ids): for_unit = np.squeeze(spike_clusters == cluster_id) pc_max = np.argmax(np.mean(pc_features[for_unit, 0, :], 0)) peak_channels[idx] = pc_feature_ind[idx, pc_max] # find neighboring channels neighboring_channels[idx] = find_neighboring_channels(pc_feature_ind[idx, pc_max], pc_feature_ind[idx, :], num_channels_to_compare, channel_locations) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(idx + 1, total_units) peak_channel = peak_channels[idx] # units_for_channel: index (not ID) of units defined at the target unit's peak channel units_for_channel, channel_index = np.unravel_index(np.where(pc_feature_ind.flatten() == peak_channel)[0], pc_feature_ind.shape) # units_in_range: list of bool, True for units whose peak channels are in the neighborhood of target unit units_in_range = [channel in neighboring_channels[idx] for channel in peak_channels[units_for_channel]] channels_to_use = neighboring_channels[idx] # only get index of units who are in the neighborhood of target unit units_for_channel = units_for_channel[units_in_range] spike_counts = np.zeros(units_for_channel.shape) for idx2, cluster_id2 in enumerate(units_for_channel): spike_counts[idx2] = np.sum(spike_clusters == all_cluster_ids[cluster_id2]) # index of target unit within the subset of units in its neighborhood (including itself) this_unit_idx = np.where(units_for_channel == idx)[0] if spike_counts[this_unit_idx] > max_spikes_for_cluster: relative_counts = spike_counts / spike_counts[this_unit_idx] * max_spikes_for_cluster else: relative_counts = spike_counts all_pcs = np.zeros((0, pc_features.shape[1], channels_to_use.size)) all_labels = np.zeros((0,)) for idx2, cluster_id2 in enumerate(units_for_channel): try: channel_mask = make_channel_mask(cluster_id2, pc_feature_ind, channels_to_use) except IndexError: # Occurs when pc_feature_ind does not contain all channels of interest # In that case, we will exclude this unit for the calculation print('Unit outside the range set by channel_to_use, skipping...') pass else: subsample = int(relative_counts[idx2]) index_mask = make_index_mask(spike_clusters, all_cluster_ids[cluster_id2], min_num=0, max_num=subsample, seed=seed) pcs = get_unit_pcs(pc_features, index_mask, channel_mask) labels = np.ones((pcs.shape[0],)) * all_cluster_ids[cluster_id2] all_pcs = np.concatenate((all_pcs, pcs), 0) all_labels = np.concatenate((all_labels, labels), 0) all_pcs = np.reshape(all_pcs, (all_pcs.shape[0], pc_features.shape[1] * channels_to_use.size)) if all_pcs.shape[0] > min_num_pcs: if 'isolation_distance' in metric_names or 'l_ratio' in metric_names: isolation_distances[idx], l_ratios[idx] = mahalanobis_metrics(all_pcs, all_labels, cluster_id) else: isolation_distances[idx] = np.nan l_ratios[idx] = np.nan if 'd_prime' in metric_names: d_primes[idx] = lda_metrics(all_pcs, all_labels, cluster_id) else: d_primes[idx] = np.nan if 'nearest_neighbor' in metric_names: nn_hit_rates[idx], nn_miss_rates[idx] = nearest_neighbors_metrics(all_pcs, all_labels, cluster_id, spikes_for_nn, n_neighbors) else: nn_hit_rates[idx] = np.nan nn_miss_rates[idx] = np.nan else: print(f'Unit {str(cluster_id)} only has ' + str( all_pcs.shape[0]) + ' spikes, which is not enough to compute metric; assigning nan...') isolation_distances[idx] = np.nan l_ratios[idx] = np.nan d_primes[idx] = np.nan nn_hit_rates[idx] = np.nan nn_miss_rates[idx] = np.nan return isolation_distances, l_ratios, d_primes, nn_hit_rates, nn_miss_rates def calculate_silhouette_score(spike_clusters, total_units, pc_features, pc_feature_ind, spikes_for_silhouette, seed=None, spike_cluster_subset=None, verbose=True): random_spike_inds = np.random.RandomState(seed=seed).permutation(spike_clusters.size) random_spike_inds = random_spike_inds[:spikes_for_silhouette] num_pc_features = pc_features.shape[1] num_channels = np.max(pc_feature_ind) + 1 all_pcs = np.zeros((spikes_for_silhouette, num_channels * num_pc_features)) for idx, i in enumerate(random_spike_inds): unit_id = spike_clusters[i] channels = pc_feature_ind[unit_id, :] for j in range(0, num_pc_features): all_pcs[idx, channels + num_channels * j] = pc_features[i, j, :] cluster_labels = spike_clusters[random_spike_inds] all_cluster_ids = np.unique(spike_clusters) if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = all_cluster_ids SS = np.empty((total_units, total_units)) SS[:] = np.nan seen_unit_pairs = set() for idx1, i in enumerate(cluster_ids): if verbose: printProgressBar(idx1 + 1, len(cluster_ids)) for idx2, j in enumerate(all_cluster_ids): if (i, j) not in seen_unit_pairs and (j, i) not in seen_unit_pairs and i != j: inds = np.in1d(cluster_labels, np.array([i, j])) X = all_pcs[inds, :] labels = cluster_labels[inds] if len(labels) > 2: SS[i, j] = silhouette_score(X, labels, random_state=seed) seen_unit_pairs.add((i, j)) with warnings.catch_warnings(): warnings.simplefilter("ignore") a = np.nanmin(SS, 0) b = np.nanmin(SS, 1) return np.array([np.nanmin([a, b]) for a, b in zip(a, b)]) def calculate_drift_metrics(spike_times, spike_clusters, total_units, pc_features, pc_feature_ind, interval_length, min_spikes_per_interval, vertical_channel_spacing=10, channel_locations=None, spike_cluster_subset=None, verbose=True): max_drift = np.zeros((total_units,)) cumulative_drift = np.zeros((total_units,)) positions = get_spike_positions(spike_clusters, pc_features, pc_feature_ind, channel_locations, vertical_channel_spacing) interval_starts = np.arange(np.min(spike_times), np.max(spike_times), interval_length) interval_ends = interval_starts + interval_length if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, len(cluster_ids)) in_cluster = spike_clusters == cluster_id times_for_cluster = spike_times[in_cluster] positions_for_cluster = positions[in_cluster] median_positions = [] for t1, t2 in zip(interval_starts, interval_ends): in_range = (times_for_cluster > t1) * (times_for_cluster < t2) if np.sum(in_range) >= min_spikes_per_interval: median_positions.append(np.median(positions_for_cluster[in_range], 0)) else: median_positions.append([np.nan, np.nan]) median_positions = np.array(median_positions) # Extract emi-matrix of shifts in positions (used to extract max_drift and cum_drift) position_diffs = np.zeros((len(median_positions), len(median_positions))) for i, pos_i in enumerate(median_positions): for j, pos_j in enumerate(median_positions): if j > i: if not np.isnan(pos_i[0]) and not np.isnan(pos_j[0]): position_diffs[i, j] = np.linalg.norm(pos_i - pos_j) else: position_diffs[i, j] = 0 # Maximum drift among all periods if np.any(position_diffs > 0): max_drift[cluster_id] = np.around(np.max(position_diffs[position_diffs > 0]), 2) # The +1 diagonal contains the step-by-step drifts between intervals. # Summing them up we obtain cumulative drift cumulative_drift[cluster_id] = np.around(np.sum(np.diag(position_diffs, 1)), 2) else: # not enough spikes max_drift[cluster_id] = 0 cumulative_drift[cluster_id] = 0 return max_drift, cumulative_drift # ========================================================== # IMPLEMENTATION OF ACTUAL METRICS: # ========================================================== def isi_violations(spike_train, duration, isi_threshold, min_isi=0): """Calculate Inter-Spike Interval (ISI) violations for a spike train. Based on metric described in Hill et al. (2011) J Neurosci 31: 8699-8705 Originally written in Matlab by Nick Steinmetz (https://github.com/cortex-lab/sortingQuality) Converted to Python by Daniel Denman Inputs: ------- spike_train : array of monotonically increasing spike times (in seconds) [t1, t2, t3, ...] duration : length of recording (seconds) isi_threshold : threshold for classifying adjacent spikes as an ISI violation - this is the biophysical refractory period min_isi : minimum possible inter-spike interval (default = 0) - this is the artificial refractory period enforced by the data acquisition system or post-processing algorithms Outputs: -------- fpRate : rate of contaminating spikes as a fraction of overall rate - higher values indicate more contamination num_violations : total number of violations detected """ isis_initial = np.diff(spike_train) if min_isi > 0: duplicate_spikes = np.where(isis_initial <= min_isi)[0] spike_train = np.delete(spike_train, duplicate_spikes + 1) isis = np.diff(spike_train) num_spikes = len(spike_train) num_violations = sum(isis < isi_threshold) violation_time = 2 * num_spikes * (isi_threshold - min_isi) total_rate = firing_rate(spike_train, duration) violation_rate = num_violations / violation_time fpRate = violation_rate / total_rate return fpRate, num_violations def presence_ratio(spike_train, duration, num_bin_edges=101): """Calculate fraction of time the unit is present within an epoch. Inputs: ------- spike_train : array of spike times duration : length of recording (seconds) num_bin_edges : number of bin edges for histogram - total bins = num_bin_edges - 1 Outputs: -------- presence_ratio : fraction of time bins in which this unit is spiking """ h, b = np.histogram(spike_train, np.linspace(0, duration, num_bin_edges)) return np.sum(h > 0) / (num_bin_edges - 1) def firing_rate(spike_train, duration): """Calculate firing rate for a spike train. If either temporal bound is not specified, the first and last spike time are used by default. Inputs: ------- spike_train : array of spike times (in seconds) duration : length of recording (in seconds) Outputs: -------- fr : float Firing rate in Hz """ fr = spike_train.size / duration return fr def amplitude_cutoff(amplitudes, num_histogram_bins=500, histogram_smoothing_value=3): """ Calculate approximate fraction of spikes missing from a distribution of amplitudes Assumes the amplitude histogram is symmetric (not valid in the presence of drift) Inspired by metric described in Hill et al. (2011) J Neurosci 31: 8699-8705 Input: ------ amplitudes : numpy.ndarray Array of amplitudes (don't need to be in physical units) num_histogram_bins : int Number of bins for calculating amplitude histogram histogram_smoothing_value : float Gaussian filter window for smoothing amplitude histogram Output: ------- fraction_missing : float Fraction of missing spikes (ranges between 0 and 0.5) If more than 50% of spikes are missing, an accurate estimate isn't possible """ h, b = np.histogram(amplitudes, num_histogram_bins, density=True) pdf = gaussian_filter1d(h, histogram_smoothing_value) support = b[:-1] peak_index = np.argmax(pdf) G = np.argmin(np.abs(pdf[peak_index:] - pdf[0])) + peak_index bin_size = np.mean(np.diff(support)) fraction_missing = np.sum(pdf[G:]) * bin_size fraction_missing = np.min([fraction_missing, 0.5]) return fraction_missing def mahalanobis_metrics(all_pcs, all_labels, this_unit_id): """ Calculates isolation distance and L-ratio (metrics computed from Mahalanobis distance) Based on metrics described in Schmitzer-Torbert et al. (2005) Neurosci 131: 1-11 Inputs: ------- all_pcs : numpy.ndarray (num_spikes x PCs) 2D array of PCs for all spikes all_labels : numpy.ndarray (num_spikes x 0) 1D array of cluster labels for all spikes this_unit_id : Int number corresponding to unit for which these metrics will be calculated Outputs: -------- isolation_distance : float Isolation distance of this unit l_ratio : float L-ratio for this unit """ pcs_for_this_unit = all_pcs[all_labels == this_unit_id, :] pcs_for_other_units = all_pcs[all_labels != this_unit_id, :] mean_value = np.expand_dims(np.mean(pcs_for_this_unit, 0), 0) try: VI = np.linalg.inv(np.cov(pcs_for_this_unit.T)) except np.linalg.linalg.LinAlgError: # case of singular matrix return np.nan, np.nan mahalanobis_other = np.sort(cdist(mean_value, pcs_for_other_units, 'mahalanobis', VI=VI)[0]) mahalanobis_self = np.sort(cdist(mean_value, pcs_for_this_unit, 'mahalanobis', VI=VI)[0]) n = np.min([pcs_for_this_unit.shape[0], pcs_for_other_units.shape[0]]) # number of spikes if n >= 2: dof = pcs_for_this_unit.shape[1] # number of features l_ratio = np.sum(1 - chi2.cdf(pow(mahalanobis_other, 2), dof)) / mahalanobis_self.shape[0] isolation_distance = pow(mahalanobis_other[n - 1], 2) # if math.isnan(l_ratio): # print("NaN detected", mahalanobis_other, VI) else: l_ratio = np.nan isolation_distance = np.nan return isolation_distance, l_ratio def lda_metrics(all_pcs, all_labels, this_unit_id): """ Calculates d-prime based on Linear Discriminant Analysis Based on metric described in Hill et al. (2011) J Neurosci 31: 8699-8705 Inputs: ------- all_pcs : numpy.ndarray (num_spikes x PCs) 2D array of PCs for all spikes all_labels : numpy.ndarray (num_spikes x 0) 1D array of cluster labels for all spikes this_unit_id : Int number corresponding to unit for which these metrics will be calculated Outputs: -------- d_prime : float Isolation distance of this unit l_ratio : float L-ratio for this unit """ X = all_pcs y = np.zeros((X.shape[0],), dtype='bool') y[all_labels == this_unit_id] = True lda = LDA(n_components=1) X_flda = lda.fit_transform(X, y) flda_this_cluster = X_flda[np.where(y)[0]] flda_other_cluster = X_flda[np.where(np.invert(y))[0]] d_prime = (np.mean(flda_this_cluster) - np.mean(flda_other_cluster)) / np.sqrt( 0.5 * (np.std(flda_this_cluster) ** 2 + np.std(flda_other_cluster) ** 2)) return d_prime def nearest_neighbors_metrics(all_pcs, all_labels, this_unit_id, spikes_for_nn, n_neighbors): """ Calculates unit contamination based on NearestNeighbors search in PCA space Based on metrics described in Chung, Magland et al. (2017) Neuron 95: 1381-1394 A is a (hopefully) representative subset of cluster X NN_hit(X) = 1/k \sum_i=1^k |{x in A such that ith closest neighbor is in X}| / |A| Inputs: ------- all_pcs : numpy.ndarray (num_spikes x PCs) 2D array of PCs for all spikes all_labels : numpy.ndarray (num_spikes x 0) 1D array of cluster labels for all spikes this_unit_id : Int number corresponding to unit for which these metrics will be calculated spikes_for_nn : Int number of spikes to use (calculation can be very slow when this number is >20000) n_neighbors : Int number of neighbors to use Outputs: -------- hit_rate : float Fraction of neighbors for target cluster that are also in target cluster miss_rate : float Fraction of neighbors outside target cluster that are in target cluster """ total_spikes = all_pcs.shape[0] ratio = spikes_for_nn / total_spikes this_unit = all_labels == this_unit_id X = np.concatenate((all_pcs[this_unit, :], all_pcs[np.invert(this_unit), :]), 0) n = np.sum(this_unit) if ratio < 1: inds = np.arange(0, X.shape[0] - 1, 1 / ratio).astype('int') X = X[inds, :] n = int(n * ratio) nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree').fit(X) distances, indices = nbrs.kneighbors(X) this_cluster_inds = np.arange(n) this_cluster_nearest = indices[:n, 1:].flatten() other_cluster_nearest = indices[n:, 1:].flatten() hit_rate = np.mean(this_cluster_nearest < n) miss_rate = np.mean(other_cluster_nearest < n) return hit_rate, miss_rate # ========================================================== # HELPER FUNCTIONS: # ========================================================== def make_index_mask(spike_clusters, unit_id, min_num, max_num, seed=None): """ Create a mask for the spike index dimensions of the pc_features array Inputs: ------- spike_clusters : numpy.ndarray (num_spikes x 0) Contains cluster IDs for all spikes in pc_features array unit_id : Int ID for this unit min_num : Int Minimum number of spikes to return; if there are not enough spikes for this unit, return all False max_num : Int Maximum number of spikes to return; if too many spikes for this unit, return a random subsample seed: int Random seed for reproducibility Output: ------- index_mask : numpy.ndarray (boolean) Mask of spike indices for pc_features array """ index_mask = spike_clusters == unit_id inds = np.where(index_mask)[0] if len(inds) < min_num: index_mask = np.zeros((spike_clusters.size,), dtype='bool') else: index_mask = np.zeros((spike_clusters.size,), dtype='bool') order = np.random.RandomState(seed=seed).permutation(inds.size) index_mask[inds[order[:max_num]]] = True return index_mask def make_channel_mask(unit_id, pc_feature_ind, channels_to_use): """ Create a mask for the channel dimension of the pc_features array Inputs: ------- unit_id : Int ID for this unit pc_feature_ind : np.ndarray Channels used for PC calculation for each unit channels_to_use : np.ndarray Channels to use for calculating metrics Output: ------- channel_mask : numpy.ndarray Channel indices to extract from pc_features array """ these_inds = pc_feature_ind[unit_id, :] channel_mask = [np.argwhere(these_inds == i)[0][0] for i in channels_to_use] return np.array(channel_mask) def get_unit_pcs(these_pc_features, index_mask, channel_mask): """ Use the index_mask and channel_mask to return PC features for one unit Inputs: ------- these_pc_features : numpy.ndarray (float) Array of pre-computed PC features (num_spikes x num_PCs x num_channels) index_mask : numpy.ndarray (boolean) Mask for spike index dimension of pc_features array channel_mask : numpy.ndarray (boolean) Mask for channel index dimension of pc_features array Output: ------- unit_PCs : numpy.ndarray (float) PCs for one unit (num_spikes x num_PCs x num_channels) """ unit_PCs = these_pc_features[index_mask, :, :] unit_PCs = unit_PCs[:, :, channel_mask] return unit_PCs def find_neighboring_channels(peak_channel, channel_list, num_channels_to_compare, channel_locations): """ Finds k nearest channels to the peak channel of a unit Parameters ---------- peak_channel: int ID of channel with largest waveform amplitude channel_list: numpy.ndarray IDs of channels being considered num_channels_to_compare: int Number of nearest channels to return channel_locations: numpy.ndarray, (n_channels, 2) x,y coordinates of the channels in channel_list Returns ------- neighboring_channels: array_like id of k channels that neighbor peak channel (including the peak channel itself) """ # get peak channel location channel_idx = list(channel_list).index(peak_channel) peak_channel_location = channel_locations[channel_idx] # compute pairwise distance distances = [np.linalg.norm(peak_channel_location - loc) for loc in channel_locations] # get k closest channels (+1 because distance 0 is peak_channel) neighboring_channels_inds = np.argsort(distances)[:num_channels_to_compare] neighboring_channels = channel_list[neighboring_channels_inds] return neighboring_channels
39.163223
120
0.603324
0
0
0
0
0
0
0
0
12,550
0.331038
6f76bcfc2a09b5cceb410578869827df3cb772bb
23,746
py
Python
pdpbox/pdp_plot_utils.py
flinder/PDPbox
b832e37f840ae885d39a0ba8ff458f4be27dcc65
[ "MIT" ]
null
null
null
pdpbox/pdp_plot_utils.py
flinder/PDPbox
b832e37f840ae885d39a0ba8ff458f4be27dcc65
[ "MIT" ]
null
null
null
pdpbox/pdp_plot_utils.py
flinder/PDPbox
b832e37f840ae885d39a0ba8ff458f4be27dcc65
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import copy from .pdp_calc_utils import _sample_data, _find_onehot_actual, _find_closest from sklearn.cluster import MiniBatchKMeans, KMeans def _pdp_plot_title(n_grids, feature_name, ax, multi_flag, which_class, plot_params): """ Draw pdp plot title :param n_grids: number of grids :param feature_name: name of the feature :param ax: axes to plot on :param multi_flag: whether it is a subplot of a multi-classes plot :param which_class: which class to plot :param plot_params: values of plot parameters """ font_family = 'Arial' title = 'PDP for %s' % feature_name subtitle = "Number of unique grid points: %d" % n_grids title_fontsize = 15 subtitle_fontsize = 12 if plot_params is not None: if 'font_family' in plot_params.keys(): font_family = plot_params['font_family'] if 'title' in plot_params.keys(): title = plot_params['title'] if 'title_fontsize' in plot_params.keys(): title_fontsize = plot_params['title_fontsize'] if 'subtitle_fontsize' in plot_params.keys(): subtitle_fontsize = plot_params['subtitle_fontsize'] ax.set_facecolor('white') if multi_flag: ax.text(0, 0.7, title, va="top", ha="left", fontsize=title_fontsize, fontname=font_family) ax.text(0, 0.45, "For Class %d" % which_class, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family) ax.text(0, 0.25, subtitle, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') else: ax.text(0, 0.7, title, va="top", ha="left", fontsize=title_fontsize, fontname=font_family) ax.text(0, 0.4, subtitle, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') ax.axis('off') def _axes_modify(font_family, ax, top=False, right=False, legend=False): # modify the axes for tick in ax.get_xticklabels(): tick.set_fontname(font_family) for tick in ax.get_yticklabels(): tick.set_fontname(font_family) ax.set_facecolor('white') ax.tick_params(axis='both', which='major', labelsize=10, labelcolor='#424242', colors='#9E9E9E') for d in ['top', 'bottom', 'right', 'left']: ax.spines[d].set_visible(False) if not legend: if top: ax.get_xaxis().tick_top() elif right: ax.get_yaxis().tick_right() else: ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.grid(True, 'major', 'x', ls='--', lw=.5, c='k', alpha=.3) ax.grid(True, 'major', 'y', ls='--', lw=.5, c='k', alpha=.3) else: ax.set_xticks([]) ax.set_yticks([]) def _pdp_plot(pdp_isolate_out, feature_name, center, plot_org_pts, plot_lines, frac_to_plot, cluster, n_cluster_centers, cluster_method, x_quantile, ax, plot_params): """ Plot partial dependent plot :param pdp_isolate_out: instance of pdp_isolate_obj a calculated pdp_isolate_obj instance :param feature_name: string name of the feature, not necessary the same as the column name :param center: boolean, default=True whether to center the plot :param plot_org_pts: boolean, default=False whether to plot out the original points :param plot_lines: boolean, default=False whether to plot out the individual lines :param frac_to_plot: float or integer, default=1 how many points or lines to plot, can be a integer or a float :param cluster: boolean, default=False whether to cluster the individual lines and only plot out the cluster centers :param n_cluster_centers: integer, default=None number of cluster centers :param cluster_method: string, default=None cluster method to use, default is KMeans, if 'approx' is passed, MiniBatchKMeans is used :param x_quantile: boolean, default=False whether to construct x axis ticks using quantiles :param ax: axes to plot on :param plot_params: dict, default=None values of plot parameters """ font_family = 'Arial' xticks_rotation = 0 if plot_params is not None: if 'font_family' in plot_params.keys(): font_family = plot_params['font_family'] if 'xticks_rotation' in plot_params.keys(): xticks_rotation = plot_params['xticks_rotation'] # modify axes _axes_modify(font_family, ax) ax.set_xlabel(feature_name, fontsize=10) feature_type = pdp_isolate_out.feature_type feature_grids = pdp_isolate_out.feature_grids display_columns = pdp_isolate_out.display_columns actual_columns = pdp_isolate_out.actual_columns if feature_type == 'binary' or feature_type == 'onehot' or x_quantile: x = range(len(feature_grids)) ax.set_xticks(x) ax.set_xticklabels(display_columns, rotation=xticks_rotation) else: # for numeric feature x = feature_grids ice_lines = copy.deepcopy(pdp_isolate_out.ice_lines) pdp_y = copy.deepcopy(pdp_isolate_out.pdp) # whether to fill between std upper and lower # whether to highlight pdp line std_fill = True pdp_hl = False # whether to center the plot if center: pdp_y -= pdp_y[0] for col in feature_grids[1:]: ice_lines[col] -= ice_lines[feature_grids[0]] ice_lines['actual_preds'] -= ice_lines[feature_grids[0]] ice_lines[feature_grids[0]] = 0 if cluster or plot_lines: std_fill = False pdp_hl = True if cluster: _ice_cluster_plot(x=x, ice_lines=ice_lines, feature_grids=feature_grids, n_cluster_centers=n_cluster_centers, cluster_method=cluster_method, ax=ax, plot_params=plot_params) else: ice_plot_data = _sample_data(ice_lines=ice_lines, frac_to_plot=frac_to_plot) _ice_line_plot(x=x, ice_plot_data=ice_plot_data, feature_grids=feature_grids, ax=ax, plot_params=plot_params) if plot_org_pts: ice_lines_temp = ice_lines.copy() if feature_type == 'onehot': ice_lines_temp['x'] = ice_lines_temp[actual_columns].apply(lambda x: _find_onehot_actual(x), axis=1) ice_lines_temp = ice_lines_temp[~ice_lines_temp['x'].isnull()].reset_index(drop=True) elif feature_type == 'numeric': feature_grids = pdp_isolate_out.feature_grids ice_lines_temp = ice_lines_temp[(ice_lines_temp[actual_columns[0]] >= feature_grids[0]) & (ice_lines_temp[actual_columns[0]] <= feature_grids[-1])] if x_quantile: ice_lines_temp['x'] = ice_lines_temp[actual_columns[0]].apply(lambda x: _find_closest(x, feature_grids)) else: ice_lines_temp['x'] = ice_lines_temp[actual_columns[0]] else: ice_lines_temp['x'] = ice_lines_temp[actual_columns[0]] ice_plot_data_pts = _sample_data(ice_lines=ice_lines_temp, frac_to_plot=frac_to_plot) _ice_plot_pts(ice_plot_data_pts=ice_plot_data_pts, ax=ax, plot_params=plot_params) std = ice_lines[feature_grids].std().values _pdp_std_plot(x=x, y=pdp_y, std=std, std_fill=std_fill, pdp_hl=pdp_hl, ax=ax, plot_params=plot_params) def _pdp_std_plot(x, y, std, std_fill, pdp_hl, ax, plot_params): """ PDP basic plot :param x: x axis values :param y: pdp values :param std: std values :param std_fill: whether to fill between std upper and lower :param pdp_hl: whether to highlight pdp line :param ax: axes to plot on :param plot_params: dictionary of plot config """ upper = y + std lower = y - std pdp_color = '#1A4E5D' pdp_hl_color = '#FEDC00' pdp_linewidth = 2 zero_color = '#E75438' zero_linewidth = 1.5 fill_color = '#66C2D7' fill_alpha = 0.2 markersize = 5 if plot_params is not None: if 'pdp_color' in plot_params.keys(): pdp_color = plot_params['pdp_color'] if 'pdp_hl_color' in plot_params.keys(): pdp_hl_color = plot_params['pdp_hl_color'] if 'pdp_linewidth' in plot_params.keys(): pdp_linewidth = plot_params['pdp_linewidth'] if 'zero_color' in plot_params.keys(): zero_color = plot_params['zero_color'] if 'zero_linewidth' in plot_params.keys(): zero_linewidth = plot_params['zero_linewidth'] if 'fill_color' in plot_params.keys(): fill_color = plot_params['fill_color'] if 'fill_alpha' in plot_params.keys(): fill_alpha = plot_params['fill_alpha'] if 'markersize' in plot_params.keys(): markersize = plot_params['markersize'] if pdp_hl: ax.plot(x, y, color=pdp_hl_color, linewidth=pdp_linewidth * 3, alpha=0.8) ax.plot(x, y, color=pdp_color, linewidth=pdp_linewidth, marker='o', markersize=markersize) ax.plot(x, [0] * y, linestyle='--', linewidth=zero_linewidth, color=zero_color) if std_fill: ax.fill_between(x, upper, lower, alpha=fill_alpha, color=fill_color) ax.set_ylim(np.min([np.min(lower) * 2, 0]), np.max([np.max(upper) * 2, 0])) def _ice_plot_pts(ice_plot_data_pts, ax, plot_params): """ Plot the real data points :param ice_plot_data_pts: data points to plot :param ax: axes to plot on :param plot_params: dictionary of plot config """ point_size = 50 point_pos_color = '#5BB573' point_neg_color = '#E75438' if plot_params is not None: if 'point_size' in plot_params.keys(): point_size = plot_params['point_size'] if 'point_pos_color' in plot_params.keys(): point_pos_color = plot_params['point_pos_color'] if 'point_neg_color' in plot_params.keys(): point_neg_color = plot_params['point_neg_color'] ice_plot_data_pts['color'] = ice_plot_data_pts['actual_preds'].apply(lambda x: point_pos_color if x >= 0 else point_neg_color) ax.scatter(ice_plot_data_pts['x'], ice_plot_data_pts['actual_preds'], s=point_size, marker="+", linewidth=1, color=ice_plot_data_pts['color']) def _ice_line_plot(x, ice_plot_data, feature_grids, ax, plot_params): """ Plot the ice lines :param x: x axis values :param ice_plot_data: ice lines to plot :param ax: axes to plot on :param plot_params: dictionary of plot config """ linewidth = np.max([1.0 / np.log10(ice_plot_data.shape[0]), 0.3]) linealpha = np.max([1.0 / np.log10(ice_plot_data.shape[0]), 0.3]) line_cmap = 'Blues' if plot_params is not None: if 'line_cmap' in plot_params.keys(): line_cmap = plot_params['line_cmap'] colors = plt.get_cmap(line_cmap)(np.linspace(0, 1, 20))[5:15] for i in range(len(ice_plot_data)): y = list(ice_plot_data[feature_grids].iloc[i].values) ax.plot(x, y, linewidth=linewidth, c=colors[i % 10], alpha=linealpha) def _ice_cluster_plot(x, ice_lines, feature_grids, n_cluster_centers, cluster_method, ax, plot_params): """ Cluster the ice lines and plot out the cluster centers :param x: x axis values :param ice_lines: ice lines :param n_cluster_centers: number of cluster centers :param cluster_method: cluster method :param ax: axes to plot on :param plot_params: dictionary of plot config """ if cluster_method == 'approx': kmeans = MiniBatchKMeans(n_clusters=n_cluster_centers, random_state=0, verbose=0) else: kmeans = KMeans(n_clusters=n_cluster_centers, random_state=0, n_jobs=1) kmeans.fit(ice_lines[feature_grids]) cluster_plot_data = pd.DataFrame(kmeans.cluster_centers_, columns=feature_grids) cluster_cmap = 'Blues' if plot_params is not None: if 'cluster_cmap' in plot_params.keys(): cluster_cmap = plot_params['cluster_cmap'] colors = plt.get_cmap(cluster_cmap)(np.linspace(0, 1, 20))[5:15] for i in range(len(cluster_plot_data)): y = list(cluster_plot_data[feature_grids].iloc[i].values) ax.plot(x, y, linewidth=1, c=colors[i % 10]) def _pdp_interact_plot_title(pdp_interact_out, feature_names, ax, multi_flag, which_class, only_inter, plot_params): """ Draw pdp interaction plot title :param pdp_interact_out: instance of pdp_interact_obj :param feature_name: name of the features :param ax: axes to plot on :param figsize: figure size :param multi_flag: whether it is a subplot of a multi-classes plot :param which_class: which class to plot :param only_inter: whether only draw interaction plot :param plot_params: values of plot parameters """ font_family = 'Arial' title = 'Interaction PDP between %s and %s' % (feature_names[0], feature_names[1]) title_fontsize = 14 subtitle_fontsize = 12 if type(pdp_interact_out) == dict: subtitle1 = 'Number of unique grid points of %s: %d' % ( feature_names[0], len(pdp_interact_out['class_0'].feature_grids[0])) subtitle2 = 'Number of unique grid points of %s: %d' % ( feature_names[1], len(pdp_interact_out['class_0'].feature_grids[1])) else: subtitle1 = 'Number of unique grid points of %s: %d' % ( feature_names[0], len(pdp_interact_out.feature_grids[0])) subtitle2 = 'Number of unique grid points of %s: %d' % ( feature_names[1], len(pdp_interact_out.feature_grids[1])) if plot_params is not None: if 'pdp_inter' in plot_params.keys(): if 'font_family' in plot_params.keys(): font_family = plot_params['font_family'] if 'title' in plot_params.keys(): title = plot_params['title'] if 'title_fontsize' in plot_params.keys(): title_fontsize = plot_params['title_fontsize'] if 'subtitle_fontsize' in plot_params.keys(): subtitle_fontsize = plot_params['subtitle_fontsize'] ax.set_facecolor('white') if only_inter: ax.text(0, 0.8, title, va="top", ha="left", fontsize=title_fontsize, fontname=font_family) if multi_flag: ax.text(0, 0.62, "For Class %d" % which_class, va="top", ha="left", fontsize=title_fontsize, fontname=font_family) ax.text(0, 0.45, subtitle1, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') ax.text(0, 0.3, subtitle2, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') else: ax.text(0, 0.55, subtitle1, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') ax.text(0, 0.4, subtitle2, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') else: ax.text(0, 0.6, title, va="top", ha="left", fontsize=title_fontsize, fontname=font_family) if multi_flag: ax.text(0, 0.53, "For Class %d" % which_class, va="top", ha="left", fontsize=title_fontsize, fontname=font_family) ax.text(0, 0.4, subtitle1, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') ax.text(0, 0.35, subtitle2, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') else: ax.text(0, 0.4, subtitle1, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') ax.text(0, 0.35, subtitle2, va="top", ha="left", fontsize=subtitle_fontsize, fontname=font_family, color='grey') ax.axis('off') def _pdp_interact_plot(pdp_interact_out, feature_names, center, plot_org_pts, plot_lines, frac_to_plot, cluster, n_cluster_centers, cluster_method, x_quantile, figsize, plot_params, multi_flag, which_class): """ Plot interaction plot :param pdp_interact_out: instance of pdp_interact_obj a calculated pdp_interact_obj instance :param feature_names: list of feature names :param center: boolean, default=True whether to center the plot :param plot_org_pts: boolean, default=False whether to plot out the original points :param plot_lines: boolean, default=False whether to plot out the individual lines :param frac_to_plot: float or integer, default=1 how many points or lines to plot, can be a integer or a float :param cluster: boolean, default=False whether to cluster the individual lines and only plot out the cluster centers :param n_cluster_centers: integer, default=None number of cluster centers :param cluster_method: string, default=None cluster method to use, default is KMeans, if 'approx' is passed, MiniBatchKMeans is used :param x_quantile: boolean, default=False whether to construct x axis ticks using quantiles :param figsize: figure size :param plot_params: dict, default=None values of plot parameters :param multi_flag: boolean, default=False whether it is a subplot of a multi-class plot :param which_class: integer, default=None must not be None under multi-class mode """ if figsize is None: fig = plt.figure(figsize=(15, 15)) else: fig = plt.figure(figsize=figsize) pdp_plot_params = None if plot_params is not None: if 'pdp' in plot_params.keys(): pdp_plot_params = plot_params['pdp'] gs = GridSpec(2, 2) ax0 = plt.subplot(gs[0, 0]) _pdp_interact_plot_title(pdp_interact_out=pdp_interact_out, feature_names=feature_names, ax=ax0, multi_flag=multi_flag, which_class=which_class, only_inter=False, plot_params=plot_params) ax1 = plt.subplot(gs[0, 1]) _pdp_plot(pdp_isolate_out=pdp_interact_out.pdp_isolate_out1, feature_name=feature_names[0], center=center, plot_org_pts=plot_org_pts, plot_lines=plot_lines, frac_to_plot=frac_to_plot, cluster=cluster, n_cluster_centers=n_cluster_centers, cluster_method=cluster_method, x_quantile=x_quantile, ax=ax1, plot_params=pdp_plot_params) ax2 = plt.subplot(gs[1, 0]) _pdp_plot(pdp_isolate_out=pdp_interact_out.pdp_isolate_out2, feature_name=feature_names[1], center=center, plot_org_pts=plot_org_pts, plot_lines=plot_lines, frac_to_plot=frac_to_plot, cluster=cluster, n_cluster_centers=n_cluster_centers, cluster_method=cluster_method, x_quantile=x_quantile, ax=ax2, plot_params=pdp_plot_params) ax3 = plt.subplot(gs[1, 1]) _pdp_contour_plot(pdp_interact_out=pdp_interact_out, feature_names=feature_names, x_quantile=x_quantile, ax=ax3, fig=fig, plot_params=plot_params) class ColorBarLocator(object): def __init__(self, pax, pad=60, width=20): self.pax = pax self.pad = pad self.width = width def __call__(self, ax, renderer): x, y, w, h = self.pax.get_position().bounds fig = self.pax.get_figure() inv_trans = fig.transFigure.inverted() pad, _ = inv_trans.transform([self.pad, 0]) width, _ = inv_trans.transform([self.width, 0]) return [x, y - pad, w, width] def _pdp_contour_plot(pdp_interact_out, feature_names, x_quantile, ax, fig, plot_params): """ Plot PDP contour :param pdp_interact_out: instance of pdp_interact_obj a calculated pdp_interact_obj instance :param feature_names: list of feature names :param x_quantile: boolean, default=False whether to construct x axis ticks using quantiles :param ax: axes to plot on :param fig: plt figure :param plot_params: dict, default=None values of plot parameters """ font_family = 'Arial' contour_color = 'white' contour_cmap = 'viridis' xticks_rotation = 0 if plot_params is not None: if 'pdp_inter' in plot_params.keys(): if 'contour_color' in plot_params['pdp_inter'].keys(): contour_color = plot_params['pdp_inter']['contour_color'] if 'contour_cmap' in plot_params['pdp_inter'].keys(): contour_cmap = plot_params['pdp_inter']['contour_cmap'] if 'font_family' in plot_params['pdp_inter'].keys(): font_family = plot_params['pdp_inter']['font_family'] if 'xticks_rotation' in plot_params.keys(): xticks_rotation = plot_params['xticks_rotation'] _axes_modify(font_family, ax) feature_types = pdp_interact_out.feature_types pdp = copy.deepcopy(pdp_interact_out.pdp) new_feature_names = [] for i, feature_type in enumerate(feature_types): if feature_type == 'onehot': new_col = 'onehot_%d' % (i) pdp[new_col] = pdp.apply(lambda x: list(x[pdp_interact_out.features[i]]).index(1), axis=1) new_feature_names.append(new_col) else: new_feature_names.append(pdp_interact_out.features[i]) if (feature_types[0] == 'numeric') and x_quantile: pdp[new_feature_names[0]] = pdp[new_feature_names[0]].apply( lambda x: list(pdp_interact_out.feature_grids[0]).index(x)) if (feature_types[1] == 'numeric') and x_quantile: pdp[new_feature_names[1]] = pdp[new_feature_names[1]].apply( lambda x: list(pdp_interact_out.feature_grids[1]).index(x)) X, Y = np.meshgrid(pdp[new_feature_names[0]].unique(), pdp[new_feature_names[1]].unique()) Z = [] for i in range(X.shape[0]): zs = [] for j in range(X.shape[1]): x = X[i, j] y = Y[i, j] z = pdp[(pdp[new_feature_names[0]] == x) & (pdp[new_feature_names[1]] == y)]['preds'].values[0] zs.append(z) Z.append(zs) Z = np.array(Z) if feature_types[0] == 'onehot': ax.set_xticks(range(X.shape[1])) ax.set_xticklabels(pdp_interact_out.pdp_isolate_out1.display_columns, rotation=xticks_rotation) elif feature_types[0] == 'binary': ax.set_xticks([0, 1]) ax.set_xticklabels(pdp_interact_out.pdp_isolate_out1.display_columns, rotation=xticks_rotation) else: if x_quantile: ax.set_xticks(range(len(pdp_interact_out.feature_grids[0]))) ax.set_xticklabels(pdp_interact_out.feature_grids[0], rotation=xticks_rotation) if feature_types[1] == 'onehot': ax.set_yticks(range(Y.shape[0])) ax.set_yticklabels(pdp_interact_out.pdp_isolate_out2.display_columns) elif feature_types[1] == 'binary': ax.set_yticks([0, 1]) ax.set_yticklabels(pdp_interact_out.pdp_isolate_out2.display_columns) else: if x_quantile: ax.set_yticks(range(len(pdp_interact_out.feature_grids[1]))) ax.set_yticklabels(pdp_interact_out.feature_grids[1]) level = np.min([X.shape[0], X.shape[1]]) c1 = ax.contourf(X, Y, Z, N=level, origin='lower', cmap=contour_cmap) c2 = ax.contour(c1, levels=c1.levels, colors=contour_color, origin='lower') ax.clabel(c2, contour_label_fontsize=9, inline=1) ax.set_xlabel(feature_names[0], fontsize=10) ax.set_ylabel(feature_names[1], fontsize=10) ax.get_yaxis().tick_right() if fig is not None: cax = fig.add_axes([0, 0, 0, 0], axes_locator=ColorBarLocator(ax)) fig.colorbar(c1, cax=cax, orientation='horizontal')
40.730703
130
0.660111
470
0.019793
0
0
0
0
0
0
6,722
0.283079
6f76ec963af630c9f2623b7e32036a92ed42bb1c
8,778
py
Python
tests/basic_step_tests.py
kodexa-ai/kodexa
568466b3dc4758babf2d318dc91b1c09ec60845d
[ "Apache-2.0" ]
1
2020-08-31T09:32:39.000Z
2020-08-31T09:32:39.000Z
tests/basic_step_tests.py
kodexa-ai/kodexa
568466b3dc4758babf2d318dc91b1c09ec60845d
[ "Apache-2.0" ]
13
2020-04-08T10:53:26.000Z
2022-03-30T09:51:29.000Z
tests/basic_step_tests.py
kodexa-ai/kodexa
568466b3dc4758babf2d318dc91b1c09ec60845d
[ "Apache-2.0" ]
1
2020-04-12T13:10:51.000Z
2020-04-12T13:10:51.000Z
import os import pytest from kodexa import Document, Pipeline, PipelineContext, TagsToKeyValuePairExtractor, RollupTransformer def get_test_directory(): return os.path.dirname(os.path.abspath(__file__)) + "/../test_documents/" @pytest.mark.skip def test_html_rollup(): document = Document.from_msgpack(open(os.path.join(get_test_directory(), 'news.kdxa'), 'rb').read()) # before rollup assert document.select('//a')[0].content == 'HSBC' assert document.select('//a')[1].content == 'Hang Seng Index' assert len(document.select('//*[contentRegex(".*Hang Seng Index.*")]')[0].get_content_parts()) == 1 # Collapse out all the <a> tags step = RollupTransformer(collapse_type_res=["a"]) step.process(document) # after rollup assert len(document.select('//a')) == 0 # see where the href rolled up assert document.select('//*[contentRegex(".*Hang Seng Index.*")]')[0].get_all_content() == 'The London-headquartered bank is a heavyweight component of the Hang Seng Index . HSBC shares in Hong Kong closed 2.78% lower.' assert len(document.select('//*[contentRegex(".*Hang Seng Index.*")]')[0].get_content_parts()) == 3 def test_tag_key_value(): document = Document.from_msgpack(open(os.path.join(get_test_directory(), 'news-tagged.kdxa'), 'rb').read()) step = TagsToKeyValuePairExtractor(store_name='test_store') context = PipelineContext() step.process(document, context) assert context.get_store('test_store').count() == 45 assert context.get_store('test_store').rows[14][0] == 'LOC' assert context.get_store('test_store').rows[14][1] == 'Europe' def test_tag_key_value_include_exclude(): # Testing include parameter include_tags = ['DATE', 'LOC'] document = Document.from_msgpack(open(os.path.join(get_test_directory(), 'news-tagged.kdxa'), 'rb').read()) step = TagsToKeyValuePairExtractor(store_name='test_store', include=include_tags) context = PipelineContext() step.process(document, context) assert context.get_store('test_store').count() == 11 # Testing exclude parameter exclude_tags = ['DATE', 'LOC'] document = Document.from_msgpack(open(os.path.join(get_test_directory(), 'news-tagged.kdxa'), 'rb').read()) step = TagsToKeyValuePairExtractor(store_name='test_store', exclude=exclude_tags) context = PipelineContext() step.process(document, context) assert context.get_store('test_store').count() == 34 # Testing both include and exclude parameters include_tags = ['LOC'] exclude_tags = ['DATE'] document = Document.from_msgpack(open(os.path.join(get_test_directory(), 'news-tagged.kdxa'), 'rb').read()) step = TagsToKeyValuePairExtractor(store_name='test_store', include=include_tags, exclude=exclude_tags) context = PipelineContext() step.process(document, context) assert context.get_store('test_store').count() == 5 # Testing both include - this should be the same as before as 'exclude' shouldn't have really done anything include_tags = ['LOC'] document = Document.from_msgpack(open(os.path.join(get_test_directory(), 'news-tagged.kdxa'), 'rb').read()) step = TagsToKeyValuePairExtractor(store_name='test_store', include=include_tags) context = PipelineContext() step.process(document, context) assert context.get_store('test_store').count() == 5 @pytest.mark.skip def test_rollup_of_pdf(): # first test - collapsing words and lines up to their common parent test_doc = Document.from_kdxa(get_test_directory() + '20200709.kdxa') # how many pre-rollup lines? assert len(test_doc.select('//line')) == 3824 # how many pre-rollup words? assert len(test_doc.select('//word')) == 52903 # how many pre-rollup content-areas? assert len(test_doc.select('//content-area')) == 817 # what is the pre-rollup length of ALL the content in the document? assert len(test_doc.get_root().get_all_content()) == 329792 rollup_pipeline = Pipeline(test_doc) rollup_pipeline.add_step(RollupTransformer(collapse_type_res=["word", "line"], separator_character=' ')) rollup_pipeline.run() collapsed_doc = rollup_pipeline.context.output_document # how many post-rollup lines? assert len(test_doc.select('//line')) == 0 # how many post-rollup words? assert len(test_doc.select('//word')) == 0 # how many post-rollup content-areas? assert len(test_doc.select('//content-area')) == 817 # what is the post-rollup length of ALL the content in the document? assert len(test_doc.get_root().get_all_content()) == 329792 assert len(collapsed_doc.select("//content-area")[12].get_all_content()) == 235 # second test - just collapse the line up to its parent (content-area) - roll up the line's children test_doc = Document.from_kdxa(get_test_directory() + '20200709.kdxa') rollup_pipeline = Pipeline(test_doc) rollup_pipeline.add_step( RollupTransformer(collapse_type_res=["line"], separator_character=' ', get_all_content=True)) rollup_pipeline.run() collapsed_doc = rollup_pipeline.context.output_document # how many post-rollup lines? assert len(test_doc.select('//line')) == 0 # how many post-rollup words? assert len(test_doc.select('//word')) == 0 # how many post-rollup content-areas? assert len(test_doc.select('//content-area')) == 817 # what is the post-rollup length of ALL the content in the document? assert len(test_doc.get_root().get_all_content()) == 329792 # verify that we can collapse line nodes AND include their children assert len(collapsed_doc.select("//content-area")[12].get_all_content()) == 235 # third test - select specific nodes in which we'll do the roll ups test_doc = Document.from_kdxa(get_test_directory() + '20200709.kdxa') node_selector = "//content-area[contentRegex('.*LOAN AGREEMENT.*', true)]" # verify we have 3 nodes match this selector node_matches = test_doc.select(node_selector) assert len(node_matches) == 3 # before we rollup, let's make sure the matching nodes conform to known expectations assert len(node_matches[0].select('//word')) == 2 assert len(node_matches[0].select('//line')) == 1 assert len(node_matches[0].select('//content-area')) == 1 assert len(node_matches[0].get_all_content()) == 14 assert len(node_matches[1].select('//word')) == 2 assert len(node_matches[1].select('//line')) == 1 assert len(node_matches[1].select('//content-area')) == 1 assert len(node_matches[1].get_all_content()) == 14 assert len(node_matches[2].select('//word')) == 71 assert len(node_matches[2].select('//line')) == 6 assert len(node_matches[2].select('//content-area')) == 1 assert len(node_matches[2].get_all_content()) == 500 rollup_pipeline = Pipeline(test_doc) rollup_pipeline.add_step(RollupTransformer(selector="//content-area[contentRegex('.*LOAN AGREEMENT.*', true)]", collapse_type_res=["line"], separator_character=' ', get_all_content=True)) rollup_pipeline.run() collapsed_doc = rollup_pipeline.context.output_document # check those matching nodes - we shouldn't have any words or lines, but # all other node_types should exist and the content should stay the same. assert len(node_matches[0].select('//word')) == 0 assert len(node_matches[0].select('//line')) == 0 assert len(node_matches[0].select('//content-area')) == 1 assert len(node_matches[0].get_all_content()) == 14 assert len(node_matches[1].select('//word')) == 0 assert len(node_matches[1].select('//line')) == 0 assert len(node_matches[1].select('//content-area')) == 1 assert len(node_matches[1].get_all_content()) == 14 assert len(node_matches[2].select('//word')) == 0 assert len(node_matches[2].select('//line')) == 0 assert len(node_matches[2].select('//content-area')) == 1 assert len(node_matches[2].get_all_content()) == 500 # how many post-rollup lines? (still have some lines, but fewer than we started with) assert len(test_doc.select('//line')) == 3816 # how many post-rollup words? (still have some words, but fewer than we started with) assert len(test_doc.select('//word')) == 52828 # how many post-rollup content-areas? (same number of content-areas) assert len(test_doc.select('//content-area')) == 817 # what is the post-rollup length of ALL the content in the document? assert len(test_doc.get_root().get_all_content()) == 329792 # verify that we can collapse line nodes AND include their children assert len(collapsed_doc.select("//content-area")[12].get_all_content()) == 235
45.71875
224
0.691729
0
0
0
0
6,339
0.722146
0
0
2,927
0.333447
6f79392055980ee88fc9adbd173f470e11c846bf
158
py
Python
dftimewolf/lib/containers/__init__.py
fooris/dftimewolf
5df863dad1518e4c4109f0563efa7458df26f7d2
[ "Apache-2.0" ]
1
2021-01-21T19:53:37.000Z
2021-01-21T19:53:37.000Z
dftimewolf/lib/containers/__init__.py
joachimmetz/dftimewolf
9181bd9e860a467495ca4ab66e2c3873cbcbf529
[ "Apache-2.0" ]
null
null
null
dftimewolf/lib/containers/__init__.py
joachimmetz/dftimewolf
9181bd9e860a467495ca4ab66e2c3873cbcbf529
[ "Apache-2.0" ]
null
null
null
"""Make containers available here.""" from .report import Report from .threat_intelligence import ThreatIntelligence from .stackdriver import StackdriverLogs
31.6
51
0.835443
0
0
0
0
0
0
0
0
37
0.234177
6f79949d19627c5156b74487a315345109a1b4e7
2,327
py
Python
egs/skl_historical_poly_regression_variable_window_overmqtt/client_mqtt_random.py
COMEA-TUAS/mcx-public
8ff486739f5332d075aeaaf7ea5dd33a04857b5c
[ "MIT" ]
null
null
null
egs/skl_historical_poly_regression_variable_window_overmqtt/client_mqtt_random.py
COMEA-TUAS/mcx-public
8ff486739f5332d075aeaaf7ea5dd33a04857b5c
[ "MIT" ]
null
null
null
egs/skl_historical_poly_regression_variable_window_overmqtt/client_mqtt_random.py
COMEA-TUAS/mcx-public
8ff486739f5332d075aeaaf7ea5dd33a04857b5c
[ "MIT" ]
1
2022-03-01T06:42:04.000Z
2022-03-01T06:42:04.000Z
#!/usr/bin/env python3 """Script for simulating IOT measurement stream to ModelConductor experiment.""" import pandas as pd import numpy as np import sqlalchemy as sqla from datetime import datetime as dt from time import sleep, time import logging import sys, os, asyncio from hbmqtt.client import MQTTClient, ConnectException from hbmqtt.version import get_version from docopt import docopt from hbmqtt.utils import read_yaml_config from hbmqtt.mqtt.constants import QOS_0, QOS_1, QOS_2 logger = logging.getLogger(__name__) formatter = "[%(asctime)s] :: %(levelname)s - %(message)s" logging.basicConfig(level=logging.DEBUG, format=formatter) csv_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'experiment_2019-10-03_20-37-36.csv') data = np.random.rand(100, 4) data = np.insert(data, 0, np.arange(100), axis=1) data = pd.DataFrame(data, columns =['time', 'A', 'B', 'C', 'D']) BROKER_URL = "mqtt://localhost:1883" def main(): if sys.version_info[:2] < (3, 4): logger.fatal("Error: Python 3.4+ is required") sys.exit(-1) config = None config = read_yaml_config(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'default_client.yaml')) logger.debug("Using default configuration") loop = asyncio.get_event_loop() client_id = "mqtt_publisher_exp" client = MQTTClient(client_id=client_id, config=config, loop=loop) try: logger.info("%s Connecting to broker" % client.client_id) loop.run_until_complete(client.connect(uri=BROKER_URL)) qos = QOS_1 topic = "topic_1" for _, row in data.iterrows(): row['TIMING_client_request_timestamp'] = time() message = row.to_json().encode(encoding='utf-8') logger.info("%s Publishing to '%s'" % (client.client_id, topic)) loop.run_until_complete(client.publish(topic, message, qos)) sleep(0.1) except KeyboardInterrupt: loop.run_until_complete(client.disconnect()) logger.info("%s Disconnected from broker" % client.client_id) except ConnectException as ce: logger.fatal("connection to '%s' failed: %r" % (BROKER_URL, ce)) except asyncio.CancelledError as cae: logger.fatal("Publish canceled due to prvious error") if __name__ == "__main__": main()
33.724638
111
0.689729
0
0
0
0
0
0
0
0
533
0.22905
6f7aa07e116a65a70f05b7ef70691b8f299b021f
694
py
Python
5/challenge2.py
roryeiffe/Adent-of-Code
80f123663fcf04bf5f0d6733807b4a2dd53bc68c
[ "MIT" ]
null
null
null
5/challenge2.py
roryeiffe/Adent-of-Code
80f123663fcf04bf5f0d6733807b4a2dd53bc68c
[ "MIT" ]
null
null
null
5/challenge2.py
roryeiffe/Adent-of-Code
80f123663fcf04bf5f0d6733807b4a2dd53bc68c
[ "MIT" ]
null
null
null
import sys import math L = [] f = open(sys.argv[1],"r") for item in f: L.append(item.strip()) def find_id(sequence): rows = sequence[:7] seats = sequence[7:] upper = 127 lower = 0 for letter in rows: half = math.ceil((upper-lower)/2) if letter == "F": upper -= half if letter == "B": lower += half row = upper lower = 0 upper = 7 for letter in seats: half = math.ceil((upper-lower)/2) if letter == "L": upper -= half if letter == "R": lower += half seat = lower return 8*row+seat ids = [] max_id = 0 for sequence in L: id = find_id(sequence) ids.append(id) if id > max_id: max_id = id ids.sort() old = 35 for id in ids: print(id) old = id
13.09434
35
0.597983
0
0
0
0
0
0
0
0
15
0.021614
488a4b657eabc94e1d145860d1dd73207641241d
2,890
py
Python
Injector/injector.py
MateusGabi/Binary-Hacking-on-Super-Mario
e75292aee6b419aad2d8fe173c2fab85d9ce23ee
[ "MIT" ]
1
2018-03-26T23:46:01.000Z
2018-03-26T23:46:01.000Z
Injector/injector.py
MateusGabi/Binary-Hacking-on-Super-Mario
e75292aee6b419aad2d8fe173c2fab85d9ce23ee
[ "MIT" ]
4
2018-03-24T15:41:12.000Z
2018-04-08T23:49:35.000Z
Injector/injector.py
MateusGabi/Binary-Hacking-on-Super-Mario
e75292aee6b419aad2d8fe173c2fab85d9ce23ee
[ "MIT" ]
1
2018-04-03T23:49:37.000Z
2018-04-03T23:49:37.000Z
# -*- coding: utf-8 -*- """ Injector. A partir de um arquivo binario, de uma tabela binaria gerada com o Finder, e um arquivo de substituição, o Injector é capaz de injetar um texto no binario trocando o texto in-game O Injector faz automaticamente a adequação do tamanho do texto ao tamanho da caixa, truncando se maior e colocando corretamente as quebras de linha @author Yan Uehara """ from __future__ import print_function import os import sys import binascii import pickle class Injector: def __init__(self, sfc, tbl, substituto): self.sfc = sfc self.tbl = tbl self.substituto = substituto self.bytefile = None self.dictionary = None self.inv_dictionary = None self.offset = 0 """ pega o arquivo e retorna seus bytes em um array de bytes """ def fileToByteArray(self): with open(self.sfc, 'rb') as f: hexdata = binascii.hexlify(f.read()) self.bytefile = map(''.join, zip(hexdata[::2], hexdata[1::2])) """ Lê a tabela binaria de conversao """ def readBinaryTbl(self): with open(self.tbl, 'rb') as btblobj: self.dictionary = pickle.Unpickler(btblobj).load() self.offset = self.dictionary["offset"] del self.dictionary["offset"] self.inv_dictionary = {v: k for k, v in self.dictionary.items()} def inject(self): _txt = [] char_count = 0 with open(self.substituto, "r") as _txtfile: _txt = _txtfile.read().replace('\n', '') for numero_linha in xrange(1, 9): for numero_coluna in xrange(1, 18): try: self.bytefile[self.offset] = self.inv_dictionary[_txt[char_count]] if numero_coluna is 18: self.bytefile[self.offset] = self.inv_dictionary[_txt[char_count]+"\n"] except IndexError: pass char_count = char_count + 1 self.offset = self.offset + 1 # with open(self.sfc.replace(".sfc", ".modified.sfc"), "wb") as sfc_file: sfc_file = open(self.sfc.replace(".sfc", ".modified.sfc"), "wb") for byte in self.bytefile: sfc_file.write( binascii.unhexlify(byte) ) """ Entry-point da classe """ def run(self): self.fileToByteArray() self.readBinaryTbl() self.inject() if __name__ == '__main__': if len(sys.argv) != 4: print("Use: python extractor.py [sfc] [tbl] [substituto]") sys.exit(1) sfc = sys.argv[1] tbl = sys.argv[2] substituto = sys.argv[3] if os.path.exists(sfc) and os.path.isfile(tbl): inj = Injector(sfc, tbl, substituto) inj.run()
29.489796
96
0.565052
2,033
0.702003
0
0
0
0
0
0
772
0.266575
488aa98c813700f0bcd537993c300646573e9ada
10,556
py
Python
var/spack/repos/scs_io/packages/cudnn/package.py
scs-lab/spack
77956aad6aa523c2a6c7256eb3c75094bf955c35
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/scs_io/packages/cudnn/package.py
scs-lab/spack
77956aad6aa523c2a6c7256eb3c75094bf955c35
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/scs_io/packages/cudnn/package.py
scs-lab/spack
77956aad6aa523c2a6c7256eb3c75094bf955c35
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2020-09-15T02:37:59.000Z
2020-09-21T04:34:38.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os from spack import * class Cudnn(Package): """NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks""" homepage = "https://developer.nvidia.com/cudnn" # Latest versions available at: # https://developer.nvidia.com/rdp/cudnn-download # Archived versions available at: # https://developer.nvidia.com/rdp/cudnn-archive # Note that download links don't work from command line, # need to use modified URLs like in url_for_version. maintainers = ['adamjstewart'] # cuDNN 8.0.2 version('8.0.2.39-11.0-linux-x64', sha256='672f46288b8edd98f8d156a4f1ff518201ca6de0cff67915ceaa37f6d6d86345') version('8.0.2.39-11.0-linux-ppc64le', sha256='b7c1ce5b1191eb007ba3455ea5f497fdce293a646545d8a6ed93e9bb06d7f057') version('8.0.2.39-10.2-linux-x64', sha256='c9cbe5c211360f3cfbc0fb104f0e9096b37e53f89392525679f049276b2f701f') version('8.0.2.39-10.2-linux-ppc64le', sha256='c32325ff84a8123491f2e58b3694885a9a672005bc21764b38874688c0e43262') version('8.0.2.39-10.1-linux-x64', sha256='82148a68bd6bdaab93af5e05bb1842b8ccb3ab7de7bed41f609a7616c102213d') version('8.0.2.39-10.1-linux-ppc64le', sha256='8196ec4f031356317baeccefbc4f61c8fccb2cf0bdef0a6431438918ddf68fb9') # cuDNN 8.0 version('8.0.0.180-11.0-linux-x64', sha256='9e75ea70280a77de815e0bdc85d08b67e081bc99a708b574092142344d2ba07e') version('8.0.0.180-11.0-linux-ppc64le', sha256='1229e94731bbca63ee7f5a239f4e1838a51a301d896f3097fbf7377d74704060') version('8.0.0.180-10.2-linux-x64', sha256='0c87c12358ee2b99d57c2a8c7560e3bb93e54bb929f5f8bec4964a72a2bb261d') version('8.0.0.180-10.2-linux-ppc64le', sha256='59e4ad6db15fcc374976e8052fe39e3f30f34079710fb3c7751a64c853d9243f') # cuDNN 7.6.5 version('7.6.5.32-10.2-linux-x64', sha256='600267f2caaed2fd58eb214ba669d8ea35f396a7d19b94822e6b36f9f7088c20', preferred=True) version('7.6.5.32-10.2-linux-ppc64le', sha256='7dc08b6ab9331bfd12207d4802c61db1ad7cace7395b67a6e7b16efa0335668b') version('7.6.5.32-10.1-linux-x64', sha256='7eaec8039a2c30ab0bc758d303588767693def6bf49b22485a2c00bf2e136cb3') version('7.6.5.32-10.1-osx-x64', sha256='8ecce28a5ed388a2b9b2d239e08d7c550f53b79288e6d9e5eb4c152bfc711aff') version('7.6.5.32-10.1-linux-ppc64le', sha256='97b2faf73eedfc128f2f5762784d21467a95b2d5ba719825419c058f427cbf56') version('7.6.5.32-10.0-linux-x64', sha256='28355e395f0b2b93ac2c83b61360b35ba6cd0377e44e78be197b6b61b4b492ba') version('7.6.5.32-10.0-osx-x64', sha256='6fa0b819374da49102e285ecf7fcb8879df4d0b3cc430cc8b781cdeb41009b47') version('7.6.5.32-10.0-linux-ppc64le', sha256='b1717f4570083bbfc6b8b59f280bae4e4197cc1cb50e9d873c05adf670084c5b') version('7.6.5.32-9.2-linux-x64', sha256='a2a2c7a8ba7b16d323b651766ee37dcfdbc2b50d920f73f8fde85005424960e4') version('7.6.5.32-9.2-linux-ppc64le', sha256='a11f44f9a827b7e69f527a9d260f1637694ff7c1674a3e46bd9ec054a08f9a76') version('7.6.5.32-9.0-linux-x64', sha256='bd0a4c0090d5b02feec3f195738968690cc2470b9bc6026e6fe8ff245cd261c8') # cuDNN 7.6.4 version('7.6.4.38-10.1-linux-x64', sha256='32091d115c0373027418620a09ebec3658a6bc467d011de7cdd0eb07d644b099') version('7.6.4.38-10.1-osx-x64', sha256='bfced062c3689ced2c1fb49c7d5052e6bc3da6974c1eb707e4dcf8cd209d4236') version('7.6.4.38-10.1-linux-ppc64le', sha256='f3615fea50986a4dfd05d7a0cf83396dfdceefa9c209e8bf9691e20a48e420ce') version('7.6.4.38-10.0-linux-x64', sha256='417bb5daf51377037eb2f5c87649000ca1b9cec0acb16cfe07cb1d3e9a961dbf') version('7.6.4.38-10.0-osx-x64', sha256='af01ab841caec25087776a6b8fc7782883da12e590e24825ad1031f9ae0ed4b1') version('7.6.4.38-10.0-linux-ppc64le', sha256='c1725ad6bd7d7741e080a1e6da4b62eac027a94ac55c606cce261e3f829400bb') version('7.6.4.38-9.2-linux-x64', sha256='c79156531e641289b6a6952888b9637059ef30defd43c3cf82acf38d67f60a27') version('7.6.4.38-9.2-linux-ppc64le', sha256='98d8aae2dcd851558397a9a30b73242f257e1556be17c83650e63a0685969884') version('7.6.4.38-9.0-linux-x64', sha256='8db78c3623c192d4f03f3087b41c32cb0baac95e13408b5d9dabe626cb4aab5d') # cuDNN 7.6.3 version('7.6.3.30-10.1-linux-x64', sha256='352557346d8111e2f954c494be1a90207103d316b8777c33e62b3a7f7b708961') version('7.6.3.30-10.1-linux-ppc64le', sha256='f274735a8fc31923d3623b1c3d2b1d0d35bb176687077c6a4d4353c6b900d8ee') # cuDNN 7.5.1 version('7.5.1.10-10.1-linux-x64', sha256='2c833f43c9147d9a25a20947a4c5a5f5c33b2443240fd767f63b330c482e68e0') version('7.5.1.10-10.1-linux-ppc64le', sha256='a9e23bc83c970daec20874ccd1d8d80b648adf15440ecd0164818b330b1e2663') version('7.5.1.10-10.0-linux-x64', sha256='c0a4ec438920aa581dd567117b9c316745b4a451ac739b1e04939a3d8b229985') version('7.5.1.10-10.0-linux-ppc64le', sha256='d9205718da5fbab85433476f9ff61fcf4b889d216d6eea26753bbc24d115dd70') # cuDNN 7.5.0 version('7.5.0.56-10.1-linux-x64', sha256='c31697d6b71afe62838ad2e57da3c3c9419c4e9f5635d14b683ebe63f904fbc8') version('7.5.0.56-10.1-linux-ppc64le', sha256='15415eb714ab86ab6c7531f2cac6474b5dafd989479b062776c670b190e43638') version('7.5.0.56-10.0-linux-x64', sha256='701097882cb745d4683bb7ff6c33b8a35c7c81be31bac78f05bad130e7e0b781') version('7.5.0.56-10.0-linux-ppc64le', sha256='f0c1cbd9de553c8e2a3893915bd5fff57b30e368ef4c964d783b6a877869e93a') # cuDNN 7.3.0 version('7.3.0.29-9.0-linux-x64', sha256='403f9043ff2c7b2c5967454872275d07bca11fd41dfc7b21995eadcad6dbe49b') # cuDNN 7.2.1 version('7.2.1.38-9.0-linux-x64', sha256='cf007437b9ac6250ec63b89c25f248d2597fdd01369c80146567f78e75ce4e37') # cuDNN 7.1.3 version('7.1.3-9.1-linux-x64', sha256='dd616d3794167ceb923d706bf73e8d6acdda770751492b921ee6827cdf190228') version('7.1.3-9.1-linux-ppc64le', sha256='e3b4837f711b98a52faacc872a68b332c833917ef3cf87c0108f1d01af9b2931') # cuDNN 6.0 version('6.0-8.0-linux-x64', sha256='9b09110af48c9a4d7b6344eb4b3e344daa84987ed6177d5c44319732f3bb7f9c') # cuDNN 5.1 version('5.1-8.0-linux-x64', sha256='c10719b36f2dd6e9ddc63e3189affaa1a94d7d027e63b71c3f64d449ab0645ce') # CUDA 10.2 depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.2-linux-x64') # CUDA 10.1 depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.1-osx-x64') depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.1-linux-x64') depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.1-linux-ppc64le') depends_on('[email protected]:11.0.2', when='@7.6.4.38-10.1-osx-x64') depends_on('[email protected]:11.0.2', when='@7.6.4.38-10.1-linux-x64') depends_on('[email protected]:11.0.2', when='@7.6.4.38-10.1-linux-ppc64le') depends_on('[email protected]:11.0.2', when='@7.6.3.30-10.1-linux-x64') depends_on('[email protected]:11.0.2', when='@7.6.3.30-10.1-linux-ppc64le') depends_on('[email protected]:10.1.999', when='@7.5.0.56-10.1-linux-x64') depends_on('[email protected]:10.1.999', when='@7.5.0.56-10.1-linux-ppc64le') # CUDA 10.0 depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.0-osx-x64') depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.0-linux-x64') depends_on('[email protected]:11.0.2', when='@7.6.5.32-10.0-linux-ppc64le') depends_on('[email protected]:11.0.2', when='@7.6.4.38-10.0-osx-x64') depends_on('[email protected]:11.0.2', when='@7.6.4.38-10.0-linux-x64') depends_on('[email protected]:11.0.2', when='@7.6.4.38-10.0-linux-ppc64le') depends_on('[email protected]:11.0.2', when='@7.5.1.10-10.0-linux-x64') depends_on('[email protected]:11.0.2', when='@7.5.1.10-10.0-linux-ppc64le') depends_on('[email protected]:11.0.2', when='@7.5.0.56-10.0-linux-x64') depends_on('[email protected]:11.0.2', when='@7.5.0.56-10.0-linux-ppc64le') # CUDA 9.2 depends_on('[email protected]:9.2.999', when='@7.6.5.32-9.2-linux-x64') depends_on('[email protected]:9.2.999', when='@7.6.5.32-9.2-linux-ppc64le') depends_on('[email protected]:9.2.999', when='@7.6.4.38-9.2-linux-x64') depends_on('[email protected]:9.2.999', when='@7.6.4.38-9.2-linux-ppc64le') # CUDA 9.1 depends_on('[email protected]:9.1.999', when='@7.1.3-9.1-linux-x64') depends_on('[email protected]:9.1.999', when='@7.1.3-9.1-linux-ppc64le') # CUDA 9.0 depends_on('[email protected]:9.0.999', when='@7.6.5.32-9.0-linux-x64') depends_on('[email protected]:9.0.999', when='@7.6.4.38-9.0-linux-x64') depends_on('[email protected]:9.0.999', when='@7.3.0.29-9.0-linux-x64') depends_on('[email protected]:9.0.999', when='@7.2.1.38-9.0-linux-x64') # CUDA 8.0 depends_on('[email protected]:8.0.999', when='@6.0-8.0-linux-x64') depends_on('[email protected]:8.0.999', when='@5.1-8.0-linux-x64') def url_for_version(self, version): url = 'https://developer.download.nvidia.com/compute/redist/cudnn/v{0}/cudnn-{1}-v{2}.tgz' if version >= Version('7.2'): directory = version[:3] ver = version[:4] cuda = version[4:] elif version >= Version('7.1'): directory = version[:3] ver = version[:2] cuda = version[3:] elif version >= Version('7.0'): directory = version[:3] ver = version[0] cuda = version[3:] else: directory = version[:2] ver = version[:2] cuda = version[2:] return url.format(directory, cuda, ver) def setup_run_environment(self, env): if 'target=ppc64le: platform=linux' in self.spec: env.set('cuDNN_ROOT', os.path.join( self.prefix, 'targets', 'ppc64le-linux')) def install(self, spec, prefix): install_tree('.', prefix) if 'target=ppc64le: platform=linux' in spec: symlink(os.path.join(prefix, 'targets', 'ppc64le-linux', 'lib'), prefix.lib) symlink( os.path.join(prefix, 'targets', 'ppc64le-linux', 'include'), prefix.include)
45.304721
98
0.670519
10,325
0.978117
0
0
0
0
0
0
6,853
0.649204
488b91ca767e9611a3e2258e676d32094fa0687f
4,023
py
Python
python/svm.py
mwalton/em-machineLearning
efd76961fa3b78e042ca481733152a683074d15c
[ "MIT" ]
null
null
null
python/svm.py
mwalton/em-machineLearning
efd76961fa3b78e042ca481733152a683074d15c
[ "MIT" ]
null
null
null
python/svm.py
mwalton/em-machineLearning
efd76961fa3b78e042ca481733152a683074d15c
[ "MIT" ]
null
null
null
import numpy as np import argparse import os.path import plots as plot from sklearn.preprocessing import StandardScaler from sklearn.grid_search import GridSearchCV import time from sklearn import svm from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn.externals import joblib from sklearn.cross_validation import StratifiedKFold def loadData(XPath, yPath): X = np.genfromtxt(XPath, delimiter=",", dtype="float32") y = np.genfromtxt(yPath, delimiter=",", dtype="float32") return (X, y) def convertToClasses(targetVector): return np.argmax(targetVector[:,1:5], axis=1) def standardize(featureVector): scaler = StandardScaler() return scaler.fit_transform(featureVector) # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-x", "--xTrain", required = True, help = "path to training feature set") ap.add_argument("-y", "--yTrain", required = True, help = "path to training target set") ap.add_argument("-X", "--xTest", required = True, help = "path to testing feature set") ap.add_argument("-Y", "--yTest", required = True, help = "path to testing target set") ap.add_argument("-o", "--optimize", type = int, default = 0, help = "optomization mode: 0 use default, 1 optomize, 2 use pkl model if possible") ap.add_argument("-m", "--multiClass", type = int, default=1, help = "exclusive multi class or regression") ap.add_argument("-p", "--pickle", default="models/svmModel.pkl", help = "pickle dump of model (output if optomize = 1, input if optomize = 0)") ap.add_argument("-v", "--visualize", type=int, default=0, help = "whether or not to show visualizations after a run") args = vars(ap.parse_args()) (trainX, trainY) = loadData(args["xTrain"], args["yTrain"]) (testX, testY) = loadData(args["xTest"], args["yTest"]) # required scaling for SVM trainX = standardize(trainX) testX = standardize(testX) if (args["multiClass"] == 1): trainY = convertToClasses(trainY) testY = convertToClasses(testY) # check to see if a grid search should be done if args["optimize"] == 1: #configure stratified k-fold cross validation cv = StratifiedKFold(y=trainY, n_folds=4, shuffle=True) # perform a grid search on the 'C' and 'gamma' parameter # of SVM print "SEARCHING SVM" C_range = 2. ** np.arange(-15, 15, step=1) gamma_range = 2. ** np.arange(-15, 15, step=1) param_grid = dict(gamma=gamma_range, C=C_range) start = time.time() gs = GridSearchCV(svm.SVC(), param_grid=param_grid, cv=cv, n_jobs = -1, verbose = 2) gs.fit(trainX, trainY) # print diagnostic information to the user and grab the # best model print "done in %0.3fs" % (time.time() - start) print "best score: %0.3f" % (gs.best_score_) print "SVM PARAMETERS" bestParams = gs.best_estimator_.get_params() # loop over the parameters and print each of them out # so they can be manually set print("Best Estimator: %s" % gs.best_estimator_) #for p in sorted(params.keys()): # print "\t %s: %f" % (p, bestParams[p]) print("Accuracy Score On Validation Set: %s\n" % accuracy_score(testY, gs.predict(testX))) # show a reminder message print "\nIMPORTANT" print "Now that your parameters have been searched, manually set" print "them and re-run this script with --optomize 0" joblib.dump(gs.best_estimator_, args["pickle"]) # otherwise, use the manually specified parameters else: # evaluate using SVM if (os.path.isfile(args["pickle"]) and args["optimize"] == 2): clf = joblib.load(args["pickle"]) else: clf = svm.SVC() clf.fit(trainX, trainY) print "SVM PERFORMANCE" pred = clf.predict(testX) print classification_report(testY, pred) print("Accuracy Score: %s\n" % accuracy_score(testY, pred)) if (args["visualize"] == 1): plot.accuracy(testY, pred, "SVM")
35.60177
94
0.675864
0
0
0
0
0
0
0
0
1,469
0.36515
488d15bc02d47b9fb1ebe771ea194aa64ab3caea
3,545
py
Python
aio_logstash/formatter.py
SinaKhorami/aio-logstash
ac820bd683c79389bcc2750c753ea860eb35c686
[ "MIT" ]
4
2019-10-23T06:58:31.000Z
2021-11-01T17:08:34.000Z
aio_logstash/formatter.py
SinaKhorami/aio-logstash
ac820bd683c79389bcc2750c753ea860eb35c686
[ "MIT" ]
1
2021-06-02T00:35:23.000Z
2021-06-02T00:35:23.000Z
aio_logstash/formatter.py
SinaKhorami/aio-logstash
ac820bd683c79389bcc2750c753ea860eb35c686
[ "MIT" ]
1
2019-10-23T06:58:45.000Z
2019-10-23T06:58:45.000Z
import abc import json import logging import socket import sys import time import aio_logstash import traceback from aio_logstash import constants from datetime import datetime, date class BaseFormatter(logging.Formatter): def __init__(self, message_type='aio_logstash', fqdn=False): super().__init__() self._message_type = message_type self._host = socket.getfqdn() if fqdn else socket.gethostname() self._interpreter = sys.executable self._interpreter_vesion = '{major}.{minor}.{micro}'.format( major=sys.version_info.major, minor=sys.version_info.minor, micro=sys.version_info.micro ) self._program_name = sys.argv[0] @staticmethod def _format_timestamp(_time): tstamp = datetime.utcfromtimestamp(_time) return tstamp.strftime("%Y-%m-%dT%H:%M:%S") + ".%03d" % (tstamp.microsecond / 1000) + "Z" @staticmethod def _format_stack_trace(exc_info): if exc_info: return ''.join(traceback.format_exception(*exc_info)) return None @staticmethod def _serialize(message): return bytes(json.dumps(message), encoding='utf-8') @abc.abstractmethod def format(self, record): pass def _get_base_fields(self): base_fields = { 'host': self._host, 'type': self._message_type, 'interpreter': self._interpreter, 'interpreter_version': self._interpreter_vesion, 'program': self._program_name, 'aio_logstash_version': aio_logstash.__version__, } return base_fields def _get_record_fields(self, record): record_fields = { 'message': record.getMessage(), 'pid': record.process, 'func_name': record.funcName, 'line': record.lineno, 'logger_name': record.name, 'path': record.pathname, 'thread_name': record.threadName, 'level': record.levelname, 'process_name': record.processName, 'stack_trace': self._format_stack_trace(record.exc_info) } return record_fields def _get_extra_fields(self, record): extra_fields = dict() for k, v in record.__dict__.items(): if k not in constants.LOG_RECORD_DEFAULT_ATTRIBUTES: extra_fields[k] = self._get_value_repr(v) return extra_fields def _get_value_repr(self, value): easy_types = (bool, float, type(None), str, int) if isinstance(value, dict): return {k: self._get_value_repr(v) for k, v in value.items()} elif isinstance(value, (tuple, list)): return [self._get_value_repr(v) for v in value] elif isinstance(value, (datetime, date)): return self._format_timestamp(time.mktime(value.timetuple())) elif isinstance(value, easy_types): return value else: return repr(value) class V1Formatter(BaseFormatter): def format(self, record): message = { '@timestamp': self._format_timestamp(record.created), '@version': '1' } base_fields = self._get_base_fields() message.update(base_fields) record_fields = self._get_record_fields(record) message.update(record_fields) extra_fields = self._get_extra_fields(record) message.update({ 'extra': extra_fields }) return self._serialize(message)
29.297521
97
0.618336
3,356
0.946685
0
0
520
0.146685
0
0
283
0.079831
488df2d8a33bbefd7d27eb53f611e19d0eba095d
18,352
py
Python
.venv/lib/python2.7/site-packages/celery/events/cursesmon.py
MansoorHanif/FYP-web-app
918008d3b5eedaa904f3e720296afde9d73ac3f4
[ "BSD-3-Clause" ]
4
2018-10-19T04:36:20.000Z
2020-02-13T16:14:09.000Z
.venv/lib/python2.7/site-packages/celery/events/cursesmon.py
MansoorHanif/FYP-web-app
918008d3b5eedaa904f3e720296afde9d73ac3f4
[ "BSD-3-Clause" ]
3
2020-02-11T23:03:45.000Z
2021-06-10T18:05:11.000Z
oo/lib/python3.5/site-packages/celery/events/cursesmon.py
chunky2808/SPOJ-history-Django-App
490c58b1593cd3626f0ddc27fdd09c6e8d1c56e1
[ "MIT" ]
1
2019-10-26T04:20:52.000Z
2019-10-26T04:20:52.000Z
# -*- coding: utf-8 -*- """Graphical monitor of Celery events using curses.""" from __future__ import absolute_import, print_function, unicode_literals import curses import sys import threading from datetime import datetime from itertools import count from textwrap import wrap from time import time from math import ceil from celery import VERSION_BANNER from celery import states from celery.app import app_or_default from celery.five import items, values from celery.utils.text import abbr, abbrtask __all__ = ['CursesMonitor', 'evtop'] BORDER_SPACING = 4 LEFT_BORDER_OFFSET = 3 UUID_WIDTH = 36 STATE_WIDTH = 8 TIMESTAMP_WIDTH = 8 MIN_WORKER_WIDTH = 15 MIN_TASK_WIDTH = 16 # this module is considered experimental # we don't care about coverage. STATUS_SCREEN = """\ events: {s.event_count} tasks:{s.task_count} workers:{w_alive}/{w_all} """ class CursesMonitor(object): # pragma: no cover """A curses based Celery task monitor.""" keymap = {} win = None screen_delay = 10 selected_task = None selected_position = 0 selected_str = 'Selected: ' foreground = curses.COLOR_BLACK background = curses.COLOR_WHITE online_str = 'Workers online: ' help_title = 'Keys: ' help = ('j:down k:up i:info t:traceback r:result c:revoke ^c: quit') greet = 'celery events {0}'.format(VERSION_BANNER) info_str = 'Info: ' def __init__(self, state, app, keymap=None): self.app = app self.keymap = keymap or self.keymap self.state = state default_keymap = { 'J': self.move_selection_down, 'K': self.move_selection_up, 'C': self.revoke_selection, 'T': self.selection_traceback, 'R': self.selection_result, 'I': self.selection_info, 'L': self.selection_rate_limit, } self.keymap = dict(default_keymap, **self.keymap) self.lock = threading.RLock() def format_row(self, uuid, task, worker, timestamp, state): mx = self.display_width # include spacing detail_width = mx - 1 - STATE_WIDTH - 1 - TIMESTAMP_WIDTH uuid_space = detail_width - 1 - MIN_TASK_WIDTH - 1 - MIN_WORKER_WIDTH if uuid_space < UUID_WIDTH: uuid_width = uuid_space else: uuid_width = UUID_WIDTH detail_width = detail_width - uuid_width - 1 task_width = int(ceil(detail_width / 2.0)) worker_width = detail_width - task_width - 1 uuid = abbr(uuid, uuid_width).ljust(uuid_width) worker = abbr(worker, worker_width).ljust(worker_width) task = abbrtask(task, task_width).ljust(task_width) state = abbr(state, STATE_WIDTH).ljust(STATE_WIDTH) timestamp = timestamp.ljust(TIMESTAMP_WIDTH) row = '{0} {1} {2} {3} {4} '.format(uuid, worker, task, timestamp, state) if self.screen_width is None: self.screen_width = len(row[:mx]) return row[:mx] @property def screen_width(self): _, mx = self.win.getmaxyx() return mx @property def screen_height(self): my, _ = self.win.getmaxyx() return my @property def display_width(self): _, mx = self.win.getmaxyx() return mx - BORDER_SPACING @property def display_height(self): my, _ = self.win.getmaxyx() return my - 10 @property def limit(self): return self.display_height def find_position(self): if not self.tasks: return 0 for i, e in enumerate(self.tasks): if self.selected_task == e[0]: return i return 0 def move_selection_up(self): self.move_selection(-1) def move_selection_down(self): self.move_selection(1) def move_selection(self, direction=1): if not self.tasks: return pos = self.find_position() try: self.selected_task = self.tasks[pos + direction][0] except IndexError: self.selected_task = self.tasks[0][0] keyalias = {curses.KEY_DOWN: 'J', curses.KEY_UP: 'K', curses.KEY_ENTER: 'I'} def handle_keypress(self): try: key = self.win.getkey().upper() except Exception: # pylint: disable=broad-except return key = self.keyalias.get(key) or key handler = self.keymap.get(key) if handler is not None: handler() def alert(self, callback, title=None): self.win.erase() my, mx = self.win.getmaxyx() y = blank_line = count(2) if title: self.win.addstr(next(y), 3, title, curses.A_BOLD | curses.A_UNDERLINE) next(blank_line) callback(my, mx, next(y)) self.win.addstr(my - 1, 0, 'Press any key to continue...', curses.A_BOLD) self.win.refresh() while 1: try: return self.win.getkey().upper() except Exception: # pylint: disable=broad-except pass def selection_rate_limit(self): if not self.selected_task: return curses.beep() task = self.state.tasks[self.selected_task] if not task.name: return curses.beep() my, mx = self.win.getmaxyx() r = 'New rate limit: ' self.win.addstr(my - 2, 3, r, curses.A_BOLD | curses.A_UNDERLINE) self.win.addstr(my - 2, len(r) + 3, ' ' * (mx - len(r))) rlimit = self.readline(my - 2, 3 + len(r)) if rlimit: reply = self.app.control.rate_limit(task.name, rlimit.strip(), reply=True) self.alert_remote_control_reply(reply) def alert_remote_control_reply(self, reply): def callback(my, mx, xs): y = count(xs) if not reply: self.win.addstr( next(y), 3, 'No replies received in 1s deadline.', curses.A_BOLD + curses.color_pair(2), ) return for subreply in reply: curline = next(y) host, response = next(items(subreply)) host = '{0}: '.format(host) self.win.addstr(curline, 3, host, curses.A_BOLD) attr = curses.A_NORMAL text = '' if 'error' in response: text = response['error'] attr |= curses.color_pair(2) elif 'ok' in response: text = response['ok'] attr |= curses.color_pair(3) self.win.addstr(curline, 3 + len(host), text, attr) return self.alert(callback, 'Remote Control Command Replies') def readline(self, x, y): buffer = str() curses.echo() try: i = 0 while 1: ch = self.win.getch(x, y + i) if ch != -1: if ch in (10, curses.KEY_ENTER): # enter break if ch in (27,): buffer = str() break buffer += chr(ch) i += 1 finally: curses.noecho() return buffer def revoke_selection(self): if not self.selected_task: return curses.beep() reply = self.app.control.revoke(self.selected_task, reply=True) self.alert_remote_control_reply(reply) def selection_info(self): if not self.selected_task: return def alert_callback(mx, my, xs): my, mx = self.win.getmaxyx() y = count(xs) task = self.state.tasks[self.selected_task] info = task.info(extra=['state']) infoitems = [ ('args', info.pop('args', None)), ('kwargs', info.pop('kwargs', None)) ] + list(info.items()) for key, value in infoitems: if key is None: continue value = str(value) curline = next(y) keys = key + ': ' self.win.addstr(curline, 3, keys, curses.A_BOLD) wrapped = wrap(value, mx - 2) if len(wrapped) == 1: self.win.addstr( curline, len(keys) + 3, abbr(wrapped[0], self.screen_width - (len(keys) + 3))) else: for subline in wrapped: nexty = next(y) if nexty >= my - 1: subline = ' ' * 4 + '[...]' elif nexty >= my: break self.win.addstr( nexty, 3, abbr(' ' * 4 + subline, self.screen_width - 4), curses.A_NORMAL, ) return self.alert( alert_callback, 'Task details for {0.selected_task}'.format(self), ) def selection_traceback(self): if not self.selected_task: return curses.beep() task = self.state.tasks[self.selected_task] if task.state not in states.EXCEPTION_STATES: return curses.beep() def alert_callback(my, mx, xs): y = count(xs) for line in task.traceback.split('\n'): self.win.addstr(next(y), 3, line) return self.alert( alert_callback, 'Task Exception Traceback for {0.selected_task}'.format(self), ) def selection_result(self): if not self.selected_task: return def alert_callback(my, mx, xs): y = count(xs) task = self.state.tasks[self.selected_task] result = (getattr(task, 'result', None) or getattr(task, 'exception', None)) for line in wrap(result or '', mx - 2): self.win.addstr(next(y), 3, line) return self.alert( alert_callback, 'Task Result for {0.selected_task}'.format(self), ) def display_task_row(self, lineno, task): state_color = self.state_colors.get(task.state) attr = curses.A_NORMAL if task.uuid == self.selected_task: attr = curses.A_STANDOUT timestamp = datetime.utcfromtimestamp( task.timestamp or time(), ) timef = timestamp.strftime('%H:%M:%S') hostname = task.worker.hostname if task.worker else '*NONE*' line = self.format_row(task.uuid, task.name, hostname, timef, task.state) self.win.addstr(lineno, LEFT_BORDER_OFFSET, line, attr) if state_color: self.win.addstr(lineno, len(line) - STATE_WIDTH + BORDER_SPACING - 1, task.state, state_color | attr) def draw(self): with self.lock: win = self.win self.handle_keypress() x = LEFT_BORDER_OFFSET y = blank_line = count(2) my, mx = win.getmaxyx() win.erase() win.bkgd(' ', curses.color_pair(1)) win.border() win.addstr(1, x, self.greet, curses.A_DIM | curses.color_pair(5)) next(blank_line) win.addstr(next(y), x, self.format_row('UUID', 'TASK', 'WORKER', 'TIME', 'STATE'), curses.A_BOLD | curses.A_UNDERLINE) tasks = self.tasks if tasks: for row, (uuid, task) in enumerate(tasks): if row > self.display_height: break if task.uuid: lineno = next(y) self.display_task_row(lineno, task) # -- Footer next(blank_line) win.hline(my - 6, x, curses.ACS_HLINE, self.screen_width - 4) # Selected Task Info if self.selected_task: win.addstr(my - 5, x, self.selected_str, curses.A_BOLD) info = 'Missing extended info' detail = '' try: selection = self.state.tasks[self.selected_task] except KeyError: pass else: info = selection.info() if 'runtime' in info: info['runtime'] = '{0:.2f}'.format(info['runtime']) if 'result' in info: info['result'] = abbr(info['result'], 16) info = ' '.join( '{0}={1}'.format(key, value) for key, value in items(info) ) detail = '... -> key i' infowin = abbr(info, self.screen_width - len(self.selected_str) - 2, detail) win.addstr(my - 5, x + len(self.selected_str), infowin) # Make ellipsis bold if detail in infowin: detailpos = len(infowin) - len(detail) win.addstr(my - 5, x + len(self.selected_str) + detailpos, detail, curses.A_BOLD) else: win.addstr(my - 5, x, 'No task selected', curses.A_NORMAL) # Workers if self.workers: win.addstr(my - 4, x, self.online_str, curses.A_BOLD) win.addstr(my - 4, x + len(self.online_str), ', '.join(sorted(self.workers)), curses.A_NORMAL) else: win.addstr(my - 4, x, 'No workers discovered.') # Info win.addstr(my - 3, x, self.info_str, curses.A_BOLD) win.addstr( my - 3, x + len(self.info_str), STATUS_SCREEN.format( s=self.state, w_alive=len([w for w in values(self.state.workers) if w.alive]), w_all=len(self.state.workers), ), curses.A_DIM, ) # Help self.safe_add_str(my - 2, x, self.help_title, curses.A_BOLD) self.safe_add_str(my - 2, x + len(self.help_title), self.help, curses.A_DIM) win.refresh() def safe_add_str(self, y, x, string, *args, **kwargs): if x + len(string) > self.screen_width: string = string[:self.screen_width - x] self.win.addstr(y, x, string, *args, **kwargs) def init_screen(self): with self.lock: self.win = curses.initscr() self.win.nodelay(True) self.win.keypad(True) curses.start_color() curses.init_pair(1, self.foreground, self.background) # exception states curses.init_pair(2, curses.COLOR_RED, self.background) # successful state curses.init_pair(3, curses.COLOR_GREEN, self.background) # revoked state curses.init_pair(4, curses.COLOR_MAGENTA, self.background) # greeting curses.init_pair(5, curses.COLOR_BLUE, self.background) # started state curses.init_pair(6, curses.COLOR_YELLOW, self.foreground) self.state_colors = {states.SUCCESS: curses.color_pair(3), states.REVOKED: curses.color_pair(4), states.STARTED: curses.color_pair(6)} for state in states.EXCEPTION_STATES: self.state_colors[state] = curses.color_pair(2) curses.cbreak() def resetscreen(self): with self.lock: curses.nocbreak() self.win.keypad(False) curses.echo() curses.endwin() def nap(self): curses.napms(self.screen_delay) @property def tasks(self): return list(self.state.tasks_by_time(limit=self.limit)) @property def workers(self): return [hostname for hostname, w in items(self.state.workers) if w.alive] class DisplayThread(threading.Thread): # pragma: no cover def __init__(self, display): self.display = display self.shutdown = False threading.Thread.__init__(self) def run(self): while not self.shutdown: self.display.draw() self.display.nap() def capture_events(app, state, display): # pragma: no cover def on_connection_error(exc, interval): print('Connection Error: {0!r}. Retry in {1}s.'.format( exc, interval), file=sys.stderr) while 1: print('-> evtop: starting capture...', file=sys.stderr) with app.connection_for_read() as conn: try: conn.ensure_connection(on_connection_error, app.conf.broker_connection_max_retries) recv = app.events.Receiver(conn, handlers={'*': state.event}) display.resetscreen() display.init_screen() recv.capture() except conn.connection_errors + conn.channel_errors as exc: print('Connection lost: {0!r}'.format(exc), file=sys.stderr) def evtop(app=None): # pragma: no cover """Start curses monitor.""" app = app_or_default(app) state = app.events.State() display = CursesMonitor(state, app) display.init_screen() refresher = DisplayThread(display) refresher.start() try: capture_events(app, state, display) except Exception: refresher.shutdown = True refresher.join() display.resetscreen() raise except (KeyboardInterrupt, SystemExit): refresher.shutdown = True refresher.join() display.resetscreen() if __name__ == '__main__': # pragma: no cover evtop()
33.797422
78
0.520325
16,025
0.873202
0
0
679
0.036999
0
0
1,483
0.080809
488ea1167c4ff5c98e7760397218e331d094d166
1,705
py
Python
features/extraction/3_extraction/feature_extractors/utilization.py
bayesimpact/readmission-risk
5b0f6c93826601e2dbb9c8c276e92801772e17c4
[ "Apache-2.0" ]
19
2016-10-06T18:10:36.000Z
2018-04-04T02:30:09.000Z
features/extraction/3_extraction/feature_extractors/utilization.py
BeaconLabs/readmission-risk
5b0f6c93826601e2dbb9c8c276e92801772e17c4
[ "Apache-2.0" ]
2
2017-10-26T19:22:58.000Z
2017-11-16T07:44:58.000Z
features/extraction/3_extraction/feature_extractors/utilization.py
bayesimpact/readmission-risk
5b0f6c93826601e2dbb9c8c276e92801772e17c4
[ "Apache-2.0" ]
9
2016-11-15T14:13:20.000Z
2021-12-19T20:27:58.000Z
"""A feature extractor for patients' utilization.""" from __future__ import absolute_import import logging import pandas as pd from sutter.lib import postgres from sutter.lib.feature_extractor import FeatureExtractor log = logging.getLogger('feature_extraction') class UtilizationExtractor(FeatureExtractor): """ Generates features related to the number of previous ER visits. Features: `pre_[n]_month_[adm_type]` - Number of [adm_type] (emergency, inpatient, outpatient) visits during the [n] (3, 6, 12) month before admission `er_visits_lace` - LACE score associated with number of ER visits: the greater of number of emergency visits during the 6 month before admission or 4. """ def extract(self): query = """ SELECT * FROM {}.bayes_vw_feature_utilization """.format(self._schema) engine = postgres.get_connection() res = pd.read_sql(query, engine) log.info('The pre-pivot table has %d rows.' % len(res)) pivoted = pd.pivot_table(data=res, index='hsp_acct_study_id', columns='pre_adm_type', aggfunc=sum, dropna=True, fill_value=0, values=['pre_3_month', 'pre_6_month', 'pre_12_month']) df_columns = [top + "_" + bottom.lower() for top, bottom in pivoted.columns.values] df = pd.DataFrame(index=res.hsp_acct_study_id.unique()) df[df_columns] = pivoted df.fillna(0, inplace=True) df['er_visits_lace'] = df['pre_6_month_emergency'].apply(lambda cnt: min(cnt, 4)) return self.emit_df(df)
34.1
95
0.626979
1,434
0.841056
0
0
0
0
0
0
789
0.462757
4893210d0b7c805a88b25dd46688e23dd6ed78a0
6,517
py
Python
safe_control_gym/math_and_models/normalization.py
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
[ "MIT" ]
120
2021-08-16T13:55:47.000Z
2022-03-31T10:31:42.000Z
safe_control_gym/math_and_models/normalization.py
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
[ "MIT" ]
10
2021-10-19T07:19:23.000Z
2022-03-24T18:43:02.000Z
safe_control_gym/math_and_models/normalization.py
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
[ "MIT" ]
24
2021-08-28T17:21:09.000Z
2022-03-31T10:31:44.000Z
"""Perform normalization on inputs or rewards. """ import numpy as np import torch from gym.spaces import Box def normalize_angle(x): """Wraps input angle to [-pi, pi]. """ return ((x + np.pi) % (2 * np.pi)) - np.pi class RunningMeanStd(): """Calulates the running mean and std of a data stream. Attributes: mean (np.array): mean of data stream. var (np.array): variance of data stream. count (float): total count of data steam. """ def __init__(self, epsilon=1e-4, shape=()): """Initializes containers for data mean and variance. Args: epsilon (float): helps with arithmetic issues. shape (tuple): the shape of the data stream's output. """ self.mean = np.zeros(shape, np.float64) self.var = np.ones(shape, np.float64) self.count = epsilon def update(self, arr): """Update current stats with a new stream of data. Args: arr (np.array): 1D array of data, (batch_size, *shape). """ batch_mean = np.mean(arr, axis=0) batch_var = np.var(arr, axis=0) batch_count = arr.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean, batch_var, batch_count): """Util function for `update` method. """ delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * self.count m_b = batch_var * batch_count m_2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = m_2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count class BaseNormalizer(object): """Template/default normalizer. Attributes: read_only (bool): if to freeze the current stats being tracked. """ def __init__(self, read_only=False): self.read_only = read_only def set_read_only(self): self.read_only = True def unset_read_only(self): self.read_only = False def __call__(self, x, *args, **kwargs): """Invokes normalization on the given input. """ return x def state_dict(self): """Returns snapshot of current stats. """ return {} def load_state_dict(self, _): """Restores the stats from a snapshot. """ pass class MeanStdNormalizer(BaseNormalizer): """Normalize by the running average. """ def __init__(self, shape=(), read_only=False, clip=10.0, epsilon=1e-8): """Initializes the data stream tracker. Args: shape (tuple): shape of data being tracked. read_only (bool): if to freeze the tracker. clip (float): bounds on the data. epsilon (float): offset to provide divide-by-zero. """ super().__init__(read_only) self.read_only = read_only self.rms = RunningMeanStd(shape=shape) self.clip = clip self.epsilon = epsilon def __call__(self, x): """Update tracker given data, optionally normalize the data. """ x = np.asarray(x) if not self.read_only: self.rms.update(x) return np.clip( (x - self.rms.mean) / np.sqrt(self.rms.var + self.epsilon), -self.clip, self.clip) def state_dict(self): return {'mean': self.rms.mean, 'var': self.rms.var} def load_state_dict(self, saved): self.rms.mean = saved['mean'] self.rms.var = saved['var'] class RewardStdNormalizer(MeanStdNormalizer): """Reward normalization by running average of returns. Papers: * arxiv.org/pdf/1808.04355.pdf * arxiv.org/pdf/1810.12894.pdf Also see: * github.com/openai/baselines/issues/538 """ def __init__(self, gamma=0.99, read_only=False, clip=10.0, epsilon=1e-8): """Initializes the data stream tracker. Args: gamma (float): discount factor for rewards. read_only (bool): if to freeze the tracker. clip (float): bounds on the data. epsilon (float): offset to provide divide-by-zero. """ # Reward has default shape (1,) or just (). super().__init__((), read_only, clip, epsilon) self.gamma = gamma self.ret = None def __call__(self, x, dones): """Update tracker given reward, optionally normalize the reward (only scaling). """ x = np.asarray(x) if not self.read_only: # Track running average of forward discounted returns. if self.ret is None: self.ret = np.zeros(x.shape[0]) self.ret = self.ret * self.gamma + x self.rms.update(self.ret) # Prevent information leak from previous episodes. self.ret[dones.astype(np.long)] = 0 return np.clip(x / np.sqrt(self.rms.var + self.epsilon), -self.clip, self.clip) class RescaleNormalizer(BaseNormalizer): """Apply constant scaling. """ def __init__(self, coef=1.0): """Initializes with fixed scaling constant. Args: coef (float): scaling coefficient. """ super().__init__(self) self.coef = coef def __call__(self, x): """Scale the input. """ if not isinstance(x, torch.Tensor): x = np.asarray(x) return self.coef * x class ImageNormalizer(RescaleNormalizer): """Scale image pixles from [0,255] to [0,1]. """ def __init__(self): super().__init__(self, 1.0 / 255) class ActionUnnormalizer(BaseNormalizer): """Assumes policy output action is in [-1,1], unnormalize it for gym env. """ def __init__(self, action_space): """Defines the mean and std for the bounded action space. """ super().__init__() assert isinstance(action_space, Box), "action space must be gym.spaces.Box" low, high = action_space.low, action_space.high self.mean = (low + high) / 2.0 self.std = (high - low) / 2.0 def __call__(self, action): """Unnormalizes given input action. """ x = np.asarray(action) return self.mean + x * self.std
27.041494
98
0.584778
6,263
0.961025
0
0
0
0
0
0
2,690
0.412767
48935c63c2620e531593d07e9af2473ca805cfae
5,125
py
Python
networking/pycat.py
itsbriany/PythonSec
eda5dc3f7ac069cd77d9525e93be5cfecc00db16
[ "MIT" ]
1
2016-01-12T19:38:59.000Z
2016-01-12T19:38:59.000Z
networking/pycat.py
itsbriany/Security-Tools
eda5dc3f7ac069cd77d9525e93be5cfecc00db16
[ "MIT" ]
null
null
null
networking/pycat.py
itsbriany/Security-Tools
eda5dc3f7ac069cd77d9525e93be5cfecc00db16
[ "MIT" ]
null
null
null
#!/usr/bin/python import socket import threading import sys # Support command line args import getopt # Support command line option parsing import os # Kill the application import signal # Catch an interrupt import time # Thread sleeping # Global variables definitions target = "" port = False listen = False command = "" upload = False # This tool should be able to replace netcat # The tool should be able to act as a server and as a client depending on the arguments ############################################################################### # Start menu def menu(): print "pycat, a python implementation of netcat" print "" print "Usage:" print "" print "-h, --help: Display this menu" print "-t, --target: The IP to bind to" print "-l, --listen: Listen mode (act as a server)" print "-p, --port: The port number to bind to" print "-c, --command: The command you wish to execute via pycat" print "-u --upload: Set this flag to upload a file" print "" print "" print "By default, pycat will act as a client unless the -p flag is specified" print "" print "Examples will happen later..." print "" sys.exit(0) ############################################################################### # Connect as a client def connectMode(client_socket, address): global kill_thread # Get raw input which is terminated with \n try: while True: buffer = raw_input() buffer += "\n" if buffer == "quit\n" or buffer == "q\n": client_socket.close() sys.exit(0) if not client_socket: print "[!!] No connection on the other end!" client_socket.close() break client_socket.send(buffer) except Exception as err: print "[!!] Caught exception in client thread: %s!" % err client_socket.close() ############################################################################### # Handle the connection from the client. def handle_client(client_socket, address): print "[*] Got a connection from %s:%d" % (address[0], address[1]) try: while True: # Wait for a response request = client_socket.recv(4096) # If the client disconnects, request is 0 if not request: break # Output what the client has given us print request client_socket.close() except Exception as err: print "[!!] Caught exception in server thread: %s" % err client_socket.close() sys.exit(0) ############################################################################### # This is the listening functionality of the program def serverMode(): global target global port server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if not len(target): target = "0.0.0.0" try: server.bind((target, port)) except socket.error as err: print err sys.exit(0) server.listen(5) print "[*] Listening on %s:%d" % (target, port) while True: try: # This will wait until we get a connection client, address = server.accept() # Create a thread to handle incoming responses # Daemonic threads will die as soon as the main thread dies listen_thread = threading.Thread(target = handle_client, args = (client, address)) listen_thread.daemon = True listen_thread.start() # Create a thread to handle outgoing requests client_thread = threading.Thread(target = connectMode, args = (client, address)) client_thread.daemon = True client_thread.start() time.sleep(1) ''' # The problem is that python does NOT pass by refernece! This means that the sockets are simply copies and the actual socket that gets closed does not do anything! ''' except (KeyboardInterrupt, SystemExit): print "Cleaning up sockets..." client.close() sys.stdout.write("Exiting form main thread...\n") sys.exit(0) ############################################################################### # main definition def main(): global target global listen global port global command global upload # Set the option # If the options are not parsing properly, then try gnu_getopt if not len(sys.argv[1:]): menu() try: options, remainder = getopt.getopt(sys.argv[1:], 'ht:lp:cu', ['help', 'target', 'listen', 'port', 'command', 'upload']) except getopt.GetoptError as err: print str(err) menu() for opt, arg in options: if opt in ('-h', '--help'): menu() elif opt in ('-t', '--target'): target = arg elif opt in ('-l', '--listen'): listen = True elif opt in ('-p', '--port'): port = int(arg) elif opt in ('-c', '--command'): command = arg elif opt in ('-u', '--upload'): upload = True else: assert False, "Invalid option" # This throws an error print "Target: %s" % target print "Listen: %s" % listen print "Port: %d" % port if port > 0: if not listen and len(target): print "Client mode" elif listen: serverMode() else: # This could probably be cleaned up a little since the functions will have looping menu() else: menu() ############################################################################### # Program execution try: main() except KeyboardInterrupt: print "" sys.exit(0)
23.617512
121
0.607415
0
0
0
0
0
0
0
0
2,533
0.494244
48938090ba940fdf1245ccfb1e1b41da0dfdb8ec
4,356
py
Python
code/striatal_model/neuron_model_tuning.py
weidel-p/go-robot-nogo-robot
026f1f753125089a03504320cc94a76888a0efc5
[ "MIT" ]
1
2020-09-23T22:16:10.000Z
2020-09-23T22:16:10.000Z
code/striatal_model/neuron_model_tuning.py
weidel-p/go-robot-nogo-robot
026f1f753125089a03504320cc94a76888a0efc5
[ "MIT" ]
null
null
null
code/striatal_model/neuron_model_tuning.py
weidel-p/go-robot-nogo-robot
026f1f753125089a03504320cc94a76888a0efc5
[ "MIT" ]
null
null
null
import nest import pylab as pl import pickle from nest import voltage_trace from nest import raster_plot as rplt import numpy as np from params import * seed = [np.random.randint(0, 9999999)] * num_threads def calcFI(): #amplitudesList = np.arange(3.5,4.5,0.1) amplitudesList = np.arange(100, 500, 50.) listD1 = [] listD2 = [] for amp in amplitudesList: nest.ResetKernel() nest.SetKernelStatus({"resolution": timestep, "overwrite_files": True, "rng_seeds": seed, "print_time": True, "local_num_threads": num_threads}) nest.CopyModel("iaf_cond_alpha", "d1", d1_params) #nest.CopyModel("izhikevich", "d1", d1_params_iz) nest.CopyModel("iaf_cond_alpha", "d2", d2_params) #nest.CopyModel("izhikevich", "d2", d2_params_iz) d1 = nest.Create("d1", 1) d2 = nest.Create("d2", 1) dc = nest.Create("dc_generator", 1) sd = nest.Create("spike_detector", 2) mult = nest.Create("multimeter", 1, params={ "withgid": True, "withtime": True, "record_from": ["V_m"]}) nest.Connect(d1, [sd[0]]) nest.Connect(d2, [sd[1]]) nest.Connect(dc, d1) nest.Connect(dc, d2) nest.Connect(mult, d1) nest.Connect(mult, d2) nest.SetStatus(dc, params={"amplitude": amp}) nest.Simulate(10000.) evs_d1 = nest.GetStatus([sd[0]])[0]["events"]["senders"] ts_d1 = nest.GetStatus([sd[0]])[0]["events"]["times"] evs_d2 = nest.GetStatus([sd[1]])[0]["events"]["senders"] ts_d2 = nest.GetStatus([sd[1]])[0]["events"]["times"] listD1.append(len(ts_d1) / 10.0) listD2.append(len(ts_d2) / 10.0) # voltage_trace.from_device(mult) # pl.show() FI = dict() FI["d1"] = listD1 FI["d2"] = listD2 pickle.dump(FI, open("../../data/FI.pickle", "w")) pl.figure() pl.text(70, 62, "A", fontweight='bold', fontsize=15) pl.plot(amplitudesList, listD1, 'bo-', label='D1', linewidth=1.5) pl.plot(amplitudesList, listD2, 'go-', label='D2', linewidth=1.5) pl.legend(loc='best') pl.xlabel("Amplitude(pA)", fontweight='bold', fontsize=14) pl.ylabel("Firing rate (sps)", fontweight='bold', fontsize=14) for x in pl.gca().get_xticklabels(): x.set_fontweight('bold') x.set_fontsize(10) for x in pl.gca().get_yticklabels(): x.set_fontweight('bold') x.set_fontsize(10) pl.savefig("../../data/FI.pdf") print "d1", FI["d1"], "d2", FI["d2"], amplitudesList pl.figure() voltage_trace.from_device(mult) pl.show() def checkConninMV(): nest.ResetKernel() nest.SetKernelStatus({"resolution": timestep, "overwrite_files": True, "rng_seeds": seed, "print_time": True, "local_num_threads": num_threads}) nest.CopyModel("iaf_cond_alpha", "d21", d2_params) #nest.CopyModel("izhikevich", "d1", d1_params_iz) nest.CopyModel("iaf_cond_alpha", "d22", d2_params) #nest.CopyModel("izhikevich", "d2", d2_params_iz) d21 = nest.Create("d21", 1) d22 = nest.Create("d22", 1) nest.SetStatus(d22, {'I_e': 27.}) # Has to be tuned so that d2 is at -80 # nest.SetStatus(d1,{'I_e':69.}) # Has to be tuned so that d1 is at -80 dc = nest.Create("dc_generator", 1) sd = nest.Create("spike_detector", 2) mult = nest.Create("multimeter", 1, params={ "withgid": True, "withtime": True, "record_from": ["V_m"]}) nest.Connect(d21, [sd[0]]) nest.Connect(d22, [sd[1]]) nest.Connect(dc, d21) # nest.Connect(dc,d2) # nest.Connect(mult,d1) nest.Connect(mult, d22) nest.Connect(d21, d22, syn_spec={'weight': jd2d2}) nest.SetStatus(dc, params={"amplitude": 250.}) nest.Simulate(1000.) evs_d1 = nest.GetStatus([sd[0]])[0]["events"]["senders"] ts_d1 = nest.GetStatus([sd[0]])[0]["events"]["times"] V_m = nest.GetStatus(mult)[0]["events"]["V_m"] ts = nest.GetStatus(mult)[0]["events"]["times"] inds = np.where(ts > 400.) Vmmin = np.min(V_m[inds]) print "conn_strength", Vmmin + 80. # pl.figure(1) # rplt.from_device(sd) pl.figure(2) voltage_trace.from_device(mult) pl.plot(ts_d1, np.ones(len(ts_d1)) * -80., 'r|', markersize=10) pl.show() calcFI() # checkConninMV()
32.75188
97
0.597107
0
0
0
0
0
0
0
0
1,223
0.280762
4893c3ed4760195e110268be8d490ec224a54ecd
1,434
py
Python
fastf1/tests/test_livetiming.py
JellybeanAsh/Fast-F1
cf0cb20fdd3e89fdee3755097722db5ced3a23b5
[ "MIT" ]
690
2020-07-31T15:37:59.000Z
2022-03-31T20:51:46.000Z
fastf1/tests/test_livetiming.py
JellybeanAsh/Fast-F1
cf0cb20fdd3e89fdee3755097722db5ced3a23b5
[ "MIT" ]
90
2020-07-25T11:00:15.000Z
2022-03-31T01:59:59.000Z
fastf1/tests/test_livetiming.py
JellybeanAsh/Fast-F1
cf0cb20fdd3e89fdee3755097722db5ced3a23b5
[ "MIT" ]
68
2020-07-21T23:21:29.000Z
2022-03-30T16:12:01.000Z
import os from fastf1.core import Session, Weekend from fastf1.livetiming.data import LiveTimingData def test_file_loading_w_errors(): # load file with many errors and invalid data without crashing livedata = LiveTimingData('fastf1/testing/reference_data/livedata/with_errors.txt') livedata.load() def test_file_loading(): # load a valid file livedata = LiveTimingData('fastf1/testing/reference_data/livedata/2021_1_FP3.txt') livedata.load() weekend = Weekend(2021, 1) session = Session(weekend=weekend, session_name='test_session') session.load_laps(with_telemetry=True, livedata=livedata) assert session.laps.shape == (274, 26) assert session.car_data['44'].shape == (17362, 10) def test_duplicate_removal(tmpdir): # create a temporary file with two identical lines of data tmpfile = os.path.join(tmpdir, 'tmpfile.txt') data = "['TimingAppData', {'Lines': {'22': {'Stints': {'0': {" \ "'LapFlags': 0, 'Compound': 'UNKNOWN', 'New': 'false'," \ "'TyresNotChanged': '0', 'TotalLaps': 0, 'StartLaps':" \ "0}}}}}, '2021-03-27T12:00:32.086Z']\n" with open(tmpfile, 'w') as fobj: fobj.write(data) fobj.write(data) livedata = LiveTimingData(tmpfile) assert len(livedata.get('TimingAppData')) == 1 livedata = LiveTimingData(tmpfile, remove_duplicates=False) assert len(livedata.get('TimingAppData')) == 2
34.142857
87
0.679219
0
0
0
0
0
0
0
0
517
0.36053
48946b441f56097b2a5a11c0168a86635a484d94
1,768
py
Python
src/plot/S0_read_jld2.py
OUCyf/NoiseCC
ad47e6894568bd007cd0425f766ba8aa243f83e1
[ "MIT" ]
4
2021-12-13T09:16:07.000Z
2022-01-06T15:45:02.000Z
src/plot/S0_read_jld2.py
OUCyf/NoiseCC
ad47e6894568bd007cd0425f766ba8aa243f83e1
[ "MIT" ]
null
null
null
src/plot/S0_read_jld2.py
OUCyf/NoiseCC
ad47e6894568bd007cd0425f766ba8aa243f83e1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 21 20:09:08 2021 ###################### ##### read h5 ######## ###################### # 1.read h5-file h5_file = h5py.File(files[1],'r') # 2.show all keys in h5-file h5_file.keys() # 3.循环读取所有 keys in h5-file for key in h5_file.keys(): onekey = key onekey_name = h5_file[key].name # 4.已知某个group的 key "NN" h5_file["NN"] h5_file["NN"].keys() f_dict = dict(h5_file["NN"]) f_dict.keys() # 所有的keyword # 5.读取 group 的 datasets data = f_dict["data"][()] # 建议 data = f_dict["data"].value # data 是 numpy 的 ndarray 多维数组模式 trace = data[0] # 某一道数据 # 6.读取 group 的 Int Float 类型 baz = f_dict["baz"].value baz = h5_file["NN"]["baz"].value # 7.读取 group 的 字符串 # encode的作用是将unicode编码转换成其他编码的字符串,如str2.encode(‘utf8’),表示将unicode编码的字符串str2转换成utf8编码 comp = h5_file["NN"]["comp"].value[0].decode('utf-8') # 8. 关闭文件 f_dict.close() ###################### ##### write h5 ######## ###################### @author: yf """ #%% import numpy as np import h5py import os import glob #%% 1. set parameter file = "../../data/BJ.081_BJ.084__2020_04_11_00_00_00T2021_04_13_00_00_00__all.jld2" chan = "NN" dt = 0.005 #%% 2. read h5 # open file f = h5py.File(file,'r') # read data data = f[chan]["data"][0] # read parameters azi = f[chan]["azi"][()] baz = f[chan]["baz"][()] maxlag = f[chan]["maxlag"][()] cc_len = f[chan]["cc_len"][()] cc_step = f[chan]["cc_step"][()] corr_type = f[chan]["corr_type"][()] comp = f[chan]["comp"][()] dist = f[chan]["dist"][()] # dist = f[chan]["dist"].value lat = f[chan]["lat"][()] lon = f[chan]["lon"][()] N_glob = f[chan]["N_glob"][()] N_read = f[chan]["N_read"][()] N_good = f[chan]["N_good"][()] name = f[chan]["name"][()][0].decode('utf-8') # close h5-file f.close()
19.644444
84
0.581448
0
0
0
0
0
0
0
0
1,461
0.754649
48946d309358ecb51872d9f0d80dff7d64dcb48a
872
py
Python
setup.py
MrJakeSir/theming
fd572c871fb4fd67cc4f9517558570d652ad1f0c
[ "MIT" ]
3
2021-10-02T02:23:50.000Z
2021-10-02T16:03:33.000Z
setup.py
MrJakeSir/themify
fd572c871fb4fd67cc4f9517558570d652ad1f0c
[ "MIT" ]
null
null
null
setup.py
MrJakeSir/themify
fd572c871fb4fd67cc4f9517558570d652ad1f0c
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name = 'colormate', packages = ['colormate'], version = '0.2214', license='MIT', description = 'A package to theme terminal scripts with custom colors and text formatting', author = 'Rodrigo', author_email = '[email protected]', url = 'https://github.com/mrjakesir/themify', download_url = 'https://github.com/MrJakeSir/themify/archive/refs/tags/v_0.3.1.tar.gz', keywords = ['Colors', 'Scripting', 'Theme', 'Theming'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], )
36.333333
93
0.661697
0
0
0
0
0
0
0
0
605
0.693807
4894cec7ad1d16f91926da91173205b79ee1b463
1,620
py
Python
tests/test_compound_where.py
WinVector/data_algebra
3d6002ddf8231d310e03537a0435df0554b62234
[ "BSD-3-Clause" ]
37
2019-08-28T08:16:48.000Z
2022-03-14T21:18:39.000Z
tests/test_compound_where.py
WinVector/data_algebra
3d6002ddf8231d310e03537a0435df0554b62234
[ "BSD-3-Clause" ]
1
2019-09-02T23:13:29.000Z
2019-09-08T01:43:10.000Z
tests/test_compound_where.py
WinVector/data_algebra
3d6002ddf8231d310e03537a0435df0554b62234
[ "BSD-3-Clause" ]
3
2019-08-28T12:23:11.000Z
2020-02-08T19:22:31.000Z
import data_algebra import data_algebra.test_util from data_algebra.data_ops import * # https://github.com/WinVector/data_algebra import data_algebra.util import data_algebra.SQLite def test_compount_where_and(): d = data_algebra.default_data_model.pd.DataFrame( { "a": ["a", "b", None, None], "b": ["c", None, "d", None], "x": [1, 2, None, None], "y": [3, None, 4, None], } ) ops = describe_table(d, table_name="d").select_rows( 'a == "a" and b == "c" and x > 0 and y < 4' ) db_handle = data_algebra.SQLite.SQLiteModel().db_handle(conn=None) sql = db_handle.to_sql(ops) assert isinstance(sql, str) expect = data_algebra.default_data_model.pd.DataFrame( {"a": ["a"], "b": ["c"], "x": [1.0], "y": [3.0],} ) data_algebra.test_util.check_transform(ops=ops, data=d, expect=expect) def test_compount_where_amp(): d = data_algebra.default_data_model.pd.DataFrame( { "a": ["a", "b", None, None], "b": ["c", None, "d", None], "x": [1, 2, None, None], "y": [3, None, 4, None], } ) ops = describe_table(d, table_name="d").select_rows( 'a == "a" & b == "c" & x > 0 & y < 4' ) db_handle = data_algebra.SQLite.SQLiteModel().db_handle(conn=None) sql = db_handle.to_sql(ops) assert isinstance(sql, str) expect = data_algebra.default_data_model.pd.DataFrame( {"a": ["a"], "b": ["c"], "x": [1.0], "y": [3.0],} ) data_algebra.test_util.check_transform(ops=ops, data=d, expect=expect)
28.421053
80
0.56358
0
0
0
0
0
0
0
0
213
0.131481
4895a29e1cbfd7f3cbc0290d21c2ee285348e317
385
py
Python
students/admin.py
eustone/sms
0b785c8a6cc7f8c6035f1b46092d5b8e8750ab7f
[ "Apache-2.0" ]
null
null
null
students/admin.py
eustone/sms
0b785c8a6cc7f8c6035f1b46092d5b8e8750ab7f
[ "Apache-2.0" ]
7
2021-03-19T01:09:50.000Z
2022-03-12T00:20:49.000Z
students/admin.py
eustone/sms
0b785c8a6cc7f8c6035f1b46092d5b8e8750ab7f
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import Student # Register your models here. class StudentAdmin(admin.ModelAdmin): list_display = ('first_name','middle_name', 'last_name','identification_number') search_fields = ('first_name','middle_name', 'last_name','identification_number') admin.site.register(Student,StudentAdmin)
27.5
56
0.696104
248
0.644156
0
0
0
0
0
0
146
0.379221
4896bd7de479f88113218577909931ad2456610b
18,819
py
Python
lshmm/viterbi/vit_diploid_variants_samples.py
jeromekelleher/lshmm
58e0c3395f222e756bb10a0063f5118b20176a01
[ "MIT" ]
null
null
null
lshmm/viterbi/vit_diploid_variants_samples.py
jeromekelleher/lshmm
58e0c3395f222e756bb10a0063f5118b20176a01
[ "MIT" ]
9
2022-02-24T14:20:09.000Z
2022-03-01T17:54:47.000Z
lshmm/vit_diploid_variants_samples.py
astheeggeggs/ls_hmm
11af1eb886ef3db2869cdd50954fba5565fcef51
[ "MIT" ]
1
2022-02-28T17:07:36.000Z
2022-02-28T17:07:36.000Z
"""Collection of functions to run Viterbi algorithms on dipoid genotype data, where the data is structured as variants x samples.""" import numba as nb import numpy as np # https://github.com/numba/numba/issues/1269 @nb.njit def np_apply_along_axis(func1d, axis, arr): """Create numpy-like functions for max, sum etc.""" assert arr.ndim == 2 assert axis in [0, 1] if axis == 0: result = np.empty(arr.shape[1]) for i in range(len(result)): result[i] = func1d(arr[:, i]) else: result = np.empty(arr.shape[0]) for i in range(len(result)): result[i] = func1d(arr[i, :]) return result @nb.njit def np_amax(array, axis): """Numba implementation of numpy vectorised maximum.""" return np_apply_along_axis(np.amax, axis, array) @nb.njit def np_sum(array, axis): """Numba implementation of numpy vectorised sum.""" return np_apply_along_axis(np.sum, axis, array) @nb.njit def np_argmax(array, axis): """Numba implementation of numpy vectorised argmax.""" return np_apply_along_axis(np.argmax, axis, array) # def forwards_viterbi_dip_naive(n, m, G, s, e, r): # # Initialise # V = np.zeros((m, n, n)) # P = np.zeros((m, n, n)).astype(np.int64) # c = np.ones(m) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V[0,:,:] = 1/(n**2) * e[0,index] # r_n = r/n # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # for j1 in range(n): # for j2 in range(n): # # Get the vector to maximise over # v = np.zeros((n,n)) # for k1 in range(n): # for k2 in range(n): # v[k1, k2] = V[l-1,k1, k2] # if ((k1 == j1) and (k2 == j2)): # v[k1, k2] *= ((1 - r[l])**2 + 2*(1-r[l]) * r_n[l] + r_n[l]**2) # elif ((k1 == j1) or (k2 == j2)): # v[k1, k2] *= (r_n[l] * (1 - r[l]) + r_n[l]**2) # else: # v[k1, k2] *= r_n[l]**2 # V[l,j1,j2] = np.amax(v) * e[l, index[j1, j2]] # P[l,j1,j2] = np.argmax(v) # c[l] = np.amax(V[l,:,:]) # V[l,:,:] *= 1/c[l] # ll = np.sum(np.log10(c)) # return V, P, ll @nb.njit def forwards_viterbi_dip_naive(n, m, G, s, e, r): """Naive implementation of LS diploid Viterbi algorithm.""" # Initialise V = np.zeros((m, n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V[0, j1, j2] = 1 / (n ** 2) * e[0, index_tmp] for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) for j1 in range(n): for j2 in range(n): # Get the vector to maximise over v = np.zeros((n, n)) for k1 in range(n): for k2 in range(n): v[k1, k2] = V[l - 1, k1, k2] if (k1 == j1) and (k2 == j2): v[k1, k2] *= ( (1 - r[l]) ** 2 + 2 * (1 - r[l]) * r_n[l] + r_n[l] ** 2 ) elif (k1 == j1) or (k2 == j2): v[k1, k2] *= r_n[l] * (1 - r[l]) + r_n[l] ** 2 else: v[k1, k2] *= r_n[l] ** 2 V[l, j1, j2] = np.amax(v) * e[l, index[j1, j2]] P[l, j1, j2] = np.argmax(v) c[l] = np.amax(V[l, :, :]) V[l, :, :] *= 1 / c[l] ll = np.sum(np.log10(c)) return V, P, ll # def forwards_viterbi_dip_naive_low_mem(n, m, G, s, e, r): # # Initialise # V = np.zeros((n,n)) # P = np.zeros((m,n,n)).astype(np.int64) # c = np.ones(m) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V_previous = 1/(n**2) * e[0,index] # r_n = r/n # # Take a look at Haploid Viterbi implementation in Jeromes code and see if we can pinch some ideas. # # Diploid Viterbi, with smaller memory footprint. # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # for j1 in range(n): # for j2 in range(n): # # Get the vector to maximise over # v = np.zeros((n,n)) # for k1 in range(n): # for k2 in range(n): # v[k1, k2] = V_previous[k1, k2] # if ((k1 == j1) and (k2 == j2)): # v[k1, k2] *= ((1 - r[l])**2 + 2*(1-r[l]) * r_n[l] + r_n[l]**2) # elif ((k1 == j1) or (k2 == j2)): # v[k1, k2] *= (r_n[l] * (1 - r[l]) + r_n[l]**2) # else: # v[k1, k2] *= r_n[l]**2 # V[j1,j2] = np.amax(v) * e[l,index[j1, j2]] # P[l,j1,j2] = np.argmax(v) # c[l] = np.amax(V) # V_previous = np.copy(V) / c[l] # ll = np.sum(np.log10(c)) # return V, P, ll @nb.njit def forwards_viterbi_dip_naive_low_mem(n, m, G, s, e, r): """Naive implementation of LS diploid Viterbi algorithm, with reduced memory.""" # Initialise V = np.zeros((n, n)) V_previous = np.zeros((n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V_previous[j1, j2] = 1 / (n ** 2) * e[0, index_tmp] # Take a look at Haploid Viterbi implementation in Jeromes code and see if we can pinch some ideas. # Diploid Viterbi, with smaller memory footprint. for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) for j1 in range(n): for j2 in range(n): # Get the vector to maximise over v = np.zeros((n, n)) for k1 in range(n): for k2 in range(n): v[k1, k2] = V_previous[k1, k2] if (k1 == j1) and (k2 == j2): v[k1, k2] *= ( (1 - r[l]) ** 2 + 2 * (1 - r[l]) * r_n[l] + r_n[l] ** 2 ) elif (k1 == j1) or (k2 == j2): v[k1, k2] *= r_n[l] * (1 - r[l]) + r_n[l] ** 2 else: v[k1, k2] *= r_n[l] ** 2 V[j1, j2] = np.amax(v) * e[l, index[j1, j2]] P[l, j1, j2] = np.argmax(v) c[l] = np.amax(V) V_previous = np.copy(V) / c[l] ll = np.sum(np.log10(c)) return V, P, ll # def forwards_viterbi_dip_low_mem(n, m, G, s, e, r): # # Initialise # V = np.zeros((n, n)) # P = np.zeros((m,n,n)).astype(np.int64) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V_previous = 1/(n**2) * e[0,index] # c = np.ones(m) # r_n = r/n # # Diploid Viterbi, with smaller memory footprint, rescaling, and using the structure of the HMM. # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # c[l] = np.amax(V_previous) # argmax = np.argmax(V_previous) # V_previous *= 1/c[l] # V_rowcol_max = np_amax(V_previous, 0) # arg_rowcol_max = np_argmax(V_previous, 0) # no_switch = (1 - r[l])**2 + 2*(r_n[l]*(1 - r[l])) + r_n[l]**2 # single_switch = r_n[l]*(1 - r[l]) + r_n[l]**2 # double_switch = r_n[l]**2 # j1_j2 = 0 # for j1 in range(n): # for j2 in range(n): # V_single_switch = max(V_rowcol_max[j1], V_rowcol_max[j2]) # P_single_switch = np.argmax(np.array([V_rowcol_max[j1], V_rowcol_max[j2]])) # if P_single_switch == 0: # template_single_switch = j1*n + arg_rowcol_max[j1] # else: # template_single_switch = arg_rowcol_max[j2]*n + j2 # V[j1,j2] = V_previous[j1,j2] * no_switch # No switch in either # P[l, j1, j2] = j1_j2 # # Single or double switch? # single_switch_tmp = single_switch * V_single_switch # if (single_switch_tmp > double_switch): # # Then single switch is the alternative # if (V[j1,j2] < single_switch * V_single_switch): # V[j1,j2] = single_switch * V_single_switch # P[l, j1, j2] = template_single_switch # else: # # Double switch is the alternative # if V[j1, j2] < double_switch: # V[j1, j2] = double_switch # P[l, j1, j2] = argmax # V[j1,j2] *= e[l, index[j1, j2]] # j1_j2 += 1 # V_previous = np.copy(V) # ll = np.sum(np.log10(c)) + np.log10(np.amax(V)) # return V, P, ll @nb.njit def forwards_viterbi_dip_low_mem(n, m, G, s, e, r): """LS diploid Viterbi algorithm, with reduced memory.""" # Initialise V = np.zeros((n, n)) V_previous = np.zeros((n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V_previous[j1, j2] = 1 / (n ** 2) * e[0, index_tmp] # Diploid Viterbi, with smaller memory footprint, rescaling, and using the structure of the HMM. for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) c[l] = np.amax(V_previous) argmax = np.argmax(V_previous) V_previous *= 1 / c[l] V_rowcol_max = np_amax(V_previous, 0) arg_rowcol_max = np_argmax(V_previous, 0) no_switch = (1 - r[l]) ** 2 + 2 * (r_n[l] * (1 - r[l])) + r_n[l] ** 2 single_switch = r_n[l] * (1 - r[l]) + r_n[l] ** 2 double_switch = r_n[l] ** 2 j1_j2 = 0 for j1 in range(n): for j2 in range(n): V_single_switch = max(V_rowcol_max[j1], V_rowcol_max[j2]) P_single_switch = np.argmax( np.array([V_rowcol_max[j1], V_rowcol_max[j2]]) ) if P_single_switch == 0: template_single_switch = j1 * n + arg_rowcol_max[j1] else: template_single_switch = arg_rowcol_max[j2] * n + j2 V[j1, j2] = V_previous[j1, j2] * no_switch # No switch in either P[l, j1, j2] = j1_j2 # Single or double switch? single_switch_tmp = single_switch * V_single_switch if single_switch_tmp > double_switch: # Then single switch is the alternative if V[j1, j2] < single_switch * V_single_switch: V[j1, j2] = single_switch * V_single_switch P[l, j1, j2] = template_single_switch else: # Double switch is the alternative if V[j1, j2] < double_switch: V[j1, j2] = double_switch P[l, j1, j2] = argmax V[j1, j2] *= e[l, index[j1, j2]] j1_j2 += 1 V_previous = np.copy(V) ll = np.sum(np.log10(c)) + np.log10(np.amax(V)) return V, P, ll # def forwards_viterbi_dip_naive_vec(n, m, G, s, e, r): # # Initialise # V = np.zeros((m,n,n)) # P = np.zeros((m,n,n)).astype(np.int64) # c = np.ones(m) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V[0,:,:] = 1/(n**2) * e[0,index] # r_n = r/n # # Jumped the gun - vectorising. # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # for j1 in range(n): # for j2 in range(n): # v = (r_n[l]**2) * np.ones((n,n)) # v[j1,j2] += (1-r[l])**2 # v[j1, :] += (r_n[l] * (1 - r[l])) # v[:, j2] += (r_n[l] * (1 - r[l])) # v *= V[l-1,:,:] # V[l,j1,j2] = np.amax(v) * e[l,index[j1, j2]] # P[l,j1,j2] = np.argmax(v) # c[l] = np.amax(V[l,:,:]) # V[l,:,:] *= 1/c[l] # ll = np.sum(np.log10(c)) # return V, P, ll @nb.jit def forwards_viterbi_dip_naive_vec(n, m, G, s, e, r): """Vectorised LS diploid Viterbi algorithm using numpy.""" # Initialise V = np.zeros((m, n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V[0, j1, j2] = 1 / (n ** 2) * e[0, index_tmp] # Jumped the gun - vectorising. for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) for j1 in range(n): for j2 in range(n): v = (r_n[l] ** 2) * np.ones((n, n)) v[j1, j2] += (1 - r[l]) ** 2 v[j1, :] += r_n[l] * (1 - r[l]) v[:, j2] += r_n[l] * (1 - r[l]) v *= V[l - 1, :, :] V[l, j1, j2] = np.amax(v) * e[l, index[j1, j2]] P[l, j1, j2] = np.argmax(v) c[l] = np.amax(V[l, :, :]) V[l, :, :] *= 1 / c[l] ll = np.sum(np.log10(c)) return V, P, ll def forwards_viterbi_dip_naive_full_vec(n, m, G, s, e, r): """Fully vectorised naive LS diploid Viterbi algorithm using numpy.""" char_both = np.eye(n * n).ravel().reshape((n, n, n, n)) char_col = np.tile(np.sum(np.eye(n * n).reshape((n, n, n, n)), 3), (n, 1, 1, 1)) char_row = np.copy(char_col).T rows, cols = np.ogrid[:n, :n] # Initialise V = np.zeros((m, n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) index = ( 4 * np.equal(G[0, :, :], s[0, 0]).astype(np.int64) + 2 * (G[0, :, :] == 1).astype(np.int64) + np.int64(s[0, 0] == 1) ) V[0, :, :] = 1 / (n ** 2) * e[0, index] r_n = r / n for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) v = ( (r_n[l] ** 2) + (1 - r[l]) ** 2 * char_both + (r_n[l] * (1 - r[l])) * (char_col + char_row) ) v *= V[l - 1, :, :] P[l, :, :] = np.argmax(v.reshape(n, n, -1), 2) # Have to flatten to use argmax V[l, :, :] = v.reshape(n, n, -1)[rows, cols, P[l, :, :]] * e[l, index] c[l] = np.amax(V[l, :, :]) V[l, :, :] *= 1 / c[l] ll = np.sum(np.log10(c)) return V, P, ll @nb.jit def backwards_viterbi_dip(m, V_last, P): """Run a backwards pass to determine the most likely path.""" assert V_last.ndim == 2 assert V_last.shape[0] == V_last.shape[1] # Initialisation path = np.zeros(m).astype(np.int64) path[m - 1] = np.argmax(V_last) # Backtrace for j in range(m - 2, -1, -1): path[j] = P[j + 1, :, :].ravel()[path[j + 1]] return path def get_phased_path(n, path): """Obtain the phased path.""" return np.unravel_index(path, (n, n)) @nb.jit def path_ll_dip(n, m, G, phased_path, s, e, r): """Evaluate log-likelihood path through a reference panel which results in sequence s.""" index = ( 4 * np.int64(np.equal(G[0, phased_path[0][0], phased_path[1][0]], s[0, 0])) + 2 * np.int64(G[0, phased_path[0][0], phased_path[1][0]] == 1) + np.int64(s[0, 0] == 1) ) log_prob_path = np.log10(1 / (n ** 2) * e[0, index]) old_phase = np.array([phased_path[0][0], phased_path[1][0]]) r_n = r / n for l in range(1, m): index = ( 4 * np.int64(np.equal(G[l, phased_path[0][l], phased_path[1][l]], s[0, l])) + 2 * np.int64(G[l, phased_path[0][l], phased_path[1][l]] == 1) + np.int64(s[0, l] == 1) ) current_phase = np.array([phased_path[0][l], phased_path[1][l]]) phase_diff = np.sum(~np.equal(current_phase, old_phase)) if phase_diff == 0: log_prob_path += np.log10( (1 - r[l]) ** 2 + 2 * (r_n[l] * (1 - r[l])) + r_n[l] ** 2 ) elif phase_diff == 1: log_prob_path += np.log10(r_n[l] * (1 - r[l]) + r_n[l] ** 2) else: log_prob_path += np.log10(r_n[l] ** 2) log_prob_path += np.log10(e[l, index]) old_phase = current_phase return log_prob_path
33.307965
132
0.435145
0
0
0
0
10,251
0.544715
0
0
8,128
0.431904
4896e1b1c5caef0d1e5aee9a140b1ba801b67e72
6,704
py
Python
src/test/test_pg_function.py
gyana/alembic_utils
a4bc7f5f025335faad7b178eb84ab78093e525ec
[ "MIT" ]
null
null
null
src/test/test_pg_function.py
gyana/alembic_utils
a4bc7f5f025335faad7b178eb84ab78093e525ec
[ "MIT" ]
null
null
null
src/test/test_pg_function.py
gyana/alembic_utils
a4bc7f5f025335faad7b178eb84ab78093e525ec
[ "MIT" ]
null
null
null
from alembic_utils.pg_function import PGFunction from alembic_utils.replaceable_entity import register_entities from alembic_utils.testbase import TEST_VERSIONS_ROOT, run_alembic_command TO_UPPER = PGFunction( schema="public", signature="toUpper(some_text text default 'my text!')", definition=""" returns text as $$ begin return upper(some_text) || 'abc'; end; $$ language PLPGSQL; """, ) def test_create_revision(engine) -> None: register_entities([TO_UPPER]) run_alembic_command( engine=engine, command="revision", command_kwargs={"autogenerate": True, "rev_id": "1", "message": "create"}, ) migration_create_path = TEST_VERSIONS_ROOT / "1_create.py" with migration_create_path.open() as migration_file: migration_contents = migration_file.read() assert "op.create_entity" in migration_contents assert "op.drop_entity" in migration_contents assert "op.replace_entity" not in migration_contents assert "from alembic_utils.pg_function import PGFunction" in migration_contents # Execute upgrade run_alembic_command(engine=engine, command="upgrade", command_kwargs={"revision": "head"}) # Execute Downgrade run_alembic_command(engine=engine, command="downgrade", command_kwargs={"revision": "base"}) def test_update_revision(engine) -> None: engine.execute(TO_UPPER.to_sql_statement_create()) # Update definition of TO_UPPER UPDATED_TO_UPPER = PGFunction( TO_UPPER.schema, TO_UPPER.signature, r'''returns text as $$ select upper(some_text) || 'def' -- """ \n \\ $$ language SQL immutable strict;''', ) register_entities([UPDATED_TO_UPPER]) # Autogenerate a new migration # It should detect the change we made and produce a "replace_function" statement run_alembic_command( engine=engine, command="revision", command_kwargs={"autogenerate": True, "rev_id": "2", "message": "replace"}, ) migration_replace_path = TEST_VERSIONS_ROOT / "2_replace.py" with migration_replace_path.open() as migration_file: migration_contents = migration_file.read() assert "op.replace_entity" in migration_contents assert "op.create_entity" not in migration_contents assert "op.drop_entity" not in migration_contents assert "from alembic_utils.pg_function import PGFunction" in migration_contents # Execute upgrade run_alembic_command(engine=engine, command="upgrade", command_kwargs={"revision": "head"}) # Execute Downgrade run_alembic_command(engine=engine, command="downgrade", command_kwargs={"revision": "base"}) def test_noop_revision(engine) -> None: engine.execute(TO_UPPER.to_sql_statement_create()) register_entities([TO_UPPER]) output = run_alembic_command( engine=engine, command="revision", command_kwargs={"autogenerate": True, "rev_id": "3", "message": "do_nothing"}, ) migration_do_nothing_path = TEST_VERSIONS_ROOT / "3_do_nothing.py" with migration_do_nothing_path.open() as migration_file: migration_contents = migration_file.read() assert "op.create_entity" not in migration_contents assert "op.drop_entity" not in migration_contents assert "op.replace_entity" not in migration_contents assert "from alembic_utils" not in migration_contents # Execute upgrade run_alembic_command(engine=engine, command="upgrade", command_kwargs={"revision": "head"}) # Execute Downgrade run_alembic_command(engine=engine, command="downgrade", command_kwargs={"revision": "base"}) def test_drop(engine) -> None: # Manually create a SQL function engine.execute(TO_UPPER.to_sql_statement_create()) # Register no functions locally register_entities([], schemas=["public"]) run_alembic_command( engine=engine, command="revision", command_kwargs={"autogenerate": True, "rev_id": "1", "message": "drop"}, ) migration_create_path = TEST_VERSIONS_ROOT / "1_drop.py" with migration_create_path.open() as migration_file: migration_contents = migration_file.read() assert "op.drop_entity" in migration_contents assert "op.create_entity" in migration_contents assert "from alembic_utils" in migration_contents assert migration_contents.index("op.drop_entity") < migration_contents.index("op.create_entity") # Execute upgrade run_alembic_command(engine=engine, command="upgrade", command_kwargs={"revision": "head"}) # Execute Downgrade run_alembic_command(engine=engine, command="downgrade", command_kwargs={"revision": "base"}) def test_has_no_parameters(engine) -> None: # Error was occuring in drop statement when function had no parameters # related to parameter parsing to drop default statements SIDE_EFFECT = PGFunction( schema="public", signature="side_effect()", definition=""" returns integer as $$ select 1; $$ language SQL; """, ) # Register no functions locally register_entities([SIDE_EFFECT], schemas=["public"]) run_alembic_command( engine=engine, command="revision", command_kwargs={"autogenerate": True, "rev_id": "1", "message": "no_arguments"}, ) migration_create_path = TEST_VERSIONS_ROOT / "1_no_arguments.py" with migration_create_path.open() as migration_file: migration_contents = migration_file.read() assert "op.drop_entity" in migration_contents # Execute upgrade run_alembic_command(engine=engine, command="upgrade", command_kwargs={"revision": "head"}) # Execute Downgrade run_alembic_command(engine=engine, command="downgrade", command_kwargs={"revision": "base"}) def test_ignores_extension_functions(engine) -> None: # Extensions contain functions and don't have local representations # Unless they are excluded, every autogenerate migration will produce # drop statements for those functions try: engine.execute("create extension if not exists unaccent;") register_entities([], schemas=["public"]) run_alembic_command( engine=engine, command="revision", command_kwargs={"autogenerate": True, "rev_id": "1", "message": "no_drops"}, ) migration_create_path = TEST_VERSIONS_ROOT / "1_no_drops.py" with migration_create_path.open() as migration_file: migration_contents = migration_file.read() assert "op.drop_entity" not in migration_contents finally: engine.execute("drop extension if exists unaccent;")
34.735751
100
0.702118
0
0
0
0
0
0
0
0
2,309
0.344421
48976b6d6b5db52348271fa437cb2c3858865703
1,723
py
Python
proof_of_work/multiagent/turn_based/v6/environmentv6.py
michaelneuder/parkes_lab_fa19
18d9f564e0df9c17ac5d54619ed869d778d4f6a4
[ "MIT" ]
null
null
null
proof_of_work/multiagent/turn_based/v6/environmentv6.py
michaelneuder/parkes_lab_fa19
18d9f564e0df9c17ac5d54619ed869d778d4f6a4
[ "MIT" ]
null
null
null
proof_of_work/multiagent/turn_based/v6/environmentv6.py
michaelneuder/parkes_lab_fa19
18d9f564e0df9c17ac5d54619ed869d778d4f6a4
[ "MIT" ]
null
null
null
import numpy as np np.random.seed(0) class Environment(object): def __init__(self, alpha, T, mining_cost=0.5): self.alpha = alpha self.T = T self.current_state = None self.mining_cost = mining_cost def reset(self): self.current_state = (0, 0) return self.current_state def getNextStateAdopt(self, rand_val): self.current_state = (0, 0) return np.asarray(self.current_state), 0 def getNextStateOverride(self, rand_val): a, h = self.current_state if a <= h: self.current_state = (0, 0) return np.asarray(self.current_state), -100 self.current_state = (a - h - 1, 0) return np.asarray(self.current_state), h + 1 def getNextStateMine(self, rand_val): a, h = self.current_state if (a == self.T) or (h == self.T): return self.getNextStateAdopt(rand_val) if rand_val < self.alpha: self.current_state = (a + 1, h) else: self.current_state = (a, h + 1) return np.asarray(self.current_state), -1*self.alpha*self.mining_cost def takeAction(self, action, rand_val=None): assert(action in [0, 1, 2]) if not rand_val: rand_val = np.random.uniform() if action == 0: return self.getNextStateAdopt(rand_val) elif action == 1: return self.getNextStateOverride(rand_val) else: return self.getNextStateMine(rand_val) def main(): env = Environment(alpha=0.35, T=9) print(env.reset(0.01)) print(env.takeAction(2, 0.01)) print(env.takeAction(1, 0.01)) if __name__ == "__main__": main()
31.327273
77
0.585607
1,488
0.86361
0
0
0
0
0
0
10
0.005804
4897778aee005c5aa1bda6eba1bb9679879bf2ca
549
py
Python
passgen-py/setup.py
hassanselim0/PassGen
70e0187bfd58e0dc1fba5dbeea5b95769a599f60
[ "MIT" ]
null
null
null
passgen-py/setup.py
hassanselim0/PassGen
70e0187bfd58e0dc1fba5dbeea5b95769a599f60
[ "MIT" ]
1
2020-08-11T22:00:51.000Z
2020-08-11T23:55:48.000Z
passgen-py/setup.py
hassanselim0/PassGen
70e0187bfd58e0dc1fba5dbeea5b95769a599f60
[ "MIT" ]
1
2020-08-10T15:50:21.000Z
2020-08-10T15:50:21.000Z
from setuptools import setup, find_packages setup( name='passgen-py', packages=find_packages(), version='1.1', description='Generate Passwords Deterministically based on a Master Password.', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3' ], python_requires='>=3.6, <4', entry_points={ 'console_scripts': [ 'passgen=src:cli', ], }, install_requires=['click', 'pyperclip'], )
26.142857
83
0.599271
0
0
0
0
0
0
0
0
256
0.466302
489780fa9ccacfe9a097c426e6e4d2cf96e01913
163
py
Python
python-peculiarities/source/MultiplicationComplication.py
noamt/presentations
c5031ae0558d19be920ee1641ba2fc5f4fd88773
[ "Unlicense" ]
null
null
null
python-peculiarities/source/MultiplicationComplication.py
noamt/presentations
c5031ae0558d19be920ee1641ba2fc5f4fd88773
[ "Unlicense" ]
null
null
null
python-peculiarities/source/MultiplicationComplication.py
noamt/presentations
c5031ae0558d19be920ee1641ba2fc5f4fd88773
[ "Unlicense" ]
null
null
null
# https://codegolf.stackexchange.com/a/11480 multiplication = [] for i in range(10): multiplication.append(i * (i + 1)) for x in multiplication: print(x)
20.375
44
0.680982
0
0
0
0
0
0
0
0
44
0.269939
4898793ace916333da3e62990ff5fb14ce91eb0e
4,762
py
Python
bin/mkSampleInfo.py
icbi-lab/nextNEOpi
d9f6ccf5178e7ef1742b95e740ce3f39405f21dd
[ "BSD-3-Clause-Clear" ]
24
2021-06-16T07:20:43.000Z
2022-03-23T05:40:01.000Z
bin/mkSampleInfo.py
abyssum/nextNEOpi
f7de4c76c7d98be485f8db0999ad278cd17fa642
[ "BSD-3-Clause-Clear" ]
2
2021-12-09T16:43:45.000Z
2022-02-18T14:03:36.000Z
bin/mkSampleInfo.py
abyssum/nextNEOpi
f7de4c76c7d98be485f8db0999ad278cd17fa642
[ "BSD-3-Clause-Clear" ]
5
2021-08-25T06:54:47.000Z
2022-03-03T06:11:31.000Z
#!/usr/bin/env python """ Requirements: * Python >= 3.7 * Pysam Copyright (c) 2021 Dietmar Rieder <[email protected]> MIT License <http://opensource.org/licenses/MIT> """ RELEASE = False __version_info__ = ( "0", "1", ) __version__ = ".".join(__version_info__) __version__ += "-dev" if not RELEASE else "" import os import sys import argparse def parse_csin(csin_fh, csin_info): for line in csin_fh: if line.find("MHC I CSiN") != -1: _, csin_v = line.split(" = ") csin_info["MHCI"] = round(float(csin_v.strip()), 3) if line.find("MHC II CSiN") != -1: _, csin_v = line.split(" = ") csin_info["MHCII"] = round(float(csin_v.strip()), 3) if line.find("Total CSiN") != -1: _, csin_v = line.split(" = ") csin_info["combined"] = round(float(csin_v.strip()), 3) return csin_info def parse_tmb(tmb_fh, tmb_info, tmb_type): for line in tmb_fh: if line.find("Coverage") != -1: _, v = line.split("\t") if tmb_type == "all": tmb_info["cov_genome"] = v.strip() if tmb_type == "coding": tmb_info["cov_coding"] = v.strip() if line.find("Variants") != -1: _, v = line.split("\t") if tmb_type == "all": tmb_info["variants_tot"] = v.strip() if tmb_type == "coding": tmb_info["variants_coding"] = v.strip() if line.find("Mutational load (") != -1: _, v = line.split("\t") if tmb_type == "all": tmb_info["TMB"] = round(float(v.strip()), 3) if tmb_type == "coding": tmb_info["TMB_coding"] = round(float(v.strip()), 3) if line.find("Mutational load clonal") != -1: _, v = line.split("\t") if tmb_type == "all": tmb_info["TMB_clonal"] = round(float(v.strip()), 3) if tmb_type == "coding": tmb_info["TMB_clonal_coding"] = round(float(v.strip()), 3) return tmb_info def write_output(out_fh, tmb_info, csin_info, sample_name): header_fields = [ "SampleID", "TMB", "TMB_clonal", "TMB_coding", "TMB_clonal_coding", "variants_total", "variants_coding", "coverage_genome", "coverage_coding", "CSiN_MHC_I", "CSiN_MHC_II", "CSiN_combined", ] data_fields = [ sample_name, tmb_info["TMB"], tmb_info["TMB_clonal"], tmb_info["TMB_coding"], tmb_info["TMB_clonal_coding"], tmb_info["variants_tot"], tmb_info["variants_coding"], tmb_info["cov_genome"], tmb_info["cov_coding"], csin_info["MHCI"], csin_info["MHCII"], csin_info["combined"], ] out_fh.write("\t".join(header_fields) + "\n") out_fh.write("\t".join(map(str, data_fields)) + "\n") def _file_write(fname): """Returns an open file handle if the given filename exists.""" return open(fname, "w") def _file_read(fname): """Returns an open file handle if the given filename exists.""" return open(fname, "r") if __name__ == "__main__": usage = __doc__.split("\n\n\n") parser = argparse.ArgumentParser(description="Compile sample info sheet") parser.add_argument( "--tmb", required=True, type=_file_read, help="TMB file", ) parser.add_argument( "--tmb_coding", required=True, type=_file_read, help="TMB coding file", ) parser.add_argument( "--csin", required=True, type=_file_read, help="CSiN file", ) parser.add_argument( "--out", required=True, type=_file_write, help="Output file", ) parser.add_argument( "--sample_name", required=True, type=str, help="Sample name", ) parser.add_argument( "--version", action="version", version="%(prog)s " + __version__ ) args = parser.parse_args() tmb = args.tmb tmb_coding = args.tmb_coding csin = args.csin out = args.out sample_name = args.sample_name tmb_info = { "cov_genome": 0, "cov_coding": 0, "variants_tot": 0, "variants_coding": 0, "TMB": 0, "TMB_clonal": 0, "TMB_coding": 0, "TMB_clonal_coding": 0, } csin_info = {"MHCI": 0, "MHCII": 0, "combined": 0} tmb_info = parse_tmb(tmb, tmb_info, "all") tmb_info = parse_tmb(tmb_coding, tmb_info, "coding") csin_info = parse_csin(csin, csin_info) write_output(out, tmb_info, csin_info, sample_name) out.close()
26.309392
77
0.545569
0
0
0
0
0
0
0
0
1,284
0.269635
489a6ae22cd0b248814c3b6aa65494aabadf9db8
3,115
py
Python
garrick.py
SebNickel/garrick
b2ebf24054bc2770ced1674bd102022f8d01b169
[ "MIT" ]
null
null
null
garrick.py
SebNickel/garrick
b2ebf24054bc2770ced1674bd102022f8d01b169
[ "MIT" ]
null
null
null
garrick.py
SebNickel/garrick
b2ebf24054bc2770ced1674bd102022f8d01b169
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sys import colorama from pick_db_file import pick_db_file import db_connection import card_repository from review_cards import review_cards from new_card import new_card from new_cards import new_cards import review from user_colors import print_info, print_instruction, print_error from usage_info import print_usage_info def main(): # Initialise colorama colorama.init() valid_args = ['-n', '-n2', '-s', '-s2', '-e', '-e2', '-b', '-bf', '-bb', '-bs', '-bl', '-br'] if len(sys.argv) > 1 and sys.argv[1] not in valid_args: print_usage_info(sys.argv) if sys.argv[1] not in ['-h', '--help']: sys.exit(1) sys.exit() db_file = pick_db_file() conn, cursor = db_connection.connect(db_file) card_repository.create_table_if_not_exists(conn, cursor) if len(sys.argv) == 1: table_is_empty = card_repository.check_if_empty(cursor) if table_is_empty: print_error("You don't have any cards yet.") print_instruction( 'Create some cards by launching garrick with one of the following options first:' ) print_instruction('\t-n\tCreate cards starting in one-way mode.') print_instruction('\t-n2\tCreate cards starting in two-way mode.') print_instruction('\t-s\tCreate cards starting in single-line and one-way mode.') print_instruction('\t-s2\tCreate cards starting in single-line and two-way mode.') print_instruction('\t-e\tCreate cards starting in editor mode and in one-way mode.') print_instruction('\t-s2\tCreate cards starting in editor mode and in two-way mode.') else: review.review(conn, cursor) elif sys.argv[1] == '-n': new_cards(conn, cursor, two_way_card=False, single_line_mode=False, editor_mode=False) elif sys.argv[1] == '-n2': new_cards(conn, cursor, two_way_card=True, single_line_mode=False, editor_mode=False) elif sys.argv[1] == '-s': new_cards(conn, cursor, two_way_card=False, single_line_mode=True, editor_mode=False) elif sys.argv[1] == '-s2': new_cards(conn, cursor, two_way_card=True, single_line_mode=True, editor_mode=False) elif sys.argv[1] == '-e': new_cards(conn, cursor, two_way_card=False, single_line_mode=False, editor_mode=True) elif sys.argv[1] == '-e2': new_cards(conn, cursor, two_way_card=True, single_line_mode=False, editor_mode=True) elif sys.argv[1] == '-b': review.browse_by_regex(conn, cursor) elif sys.argv[1] == '-bf': review.browse_by_regex_front(conn, cursor) elif sys.argv[1] == '-bb': review.browse_by_regex_back(conn, cursor) elif sys.argv[1] == '-bs': review.browse_by_score(conn, cursor) elif sys.argv[1] == '-bl': review.browse_by_last_viewed(conn, cursor) elif sys.argv[1] == '-br': review.browse_by_last_viewed_reverse(conn, cursor) print_info('Kbai') db_connection.disconnect(conn, cursor) if __name__ == '__main__': main()
40.454545
97
0.65618
0
0
0
0
0
0
0
0
643
0.206421
489b07c5f60a2349d39829b932ee2b381db5353d
14,996
py
Python
perceiver/train/dataset.py
kawa-work/deepmind-research
8fb75643598f680fdde8d20342b1b82bd2c0abb2
[ "Apache-2.0" ]
10,110
2019-08-27T20:05:30.000Z
2022-03-31T16:31:56.000Z
perceiver/train/dataset.py
subhayuroy/deepmind-research
769bfdbeafbcb472cb8e2c6cfa746b53ac82efc2
[ "Apache-2.0" ]
317
2019-11-09T10:19:10.000Z
2022-03-31T00:05:19.000Z
perceiver/train/dataset.py
subhayuroy/deepmind-research
769bfdbeafbcb472cb8e2c6cfa746b53ac82efc2
[ "Apache-2.0" ]
2,170
2019-08-28T12:53:36.000Z
2022-03-31T13:15:11.000Z
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ImageNet dataset with pre-processing and augmentation. Deng, et al CVPR 2009 - ImageNet: A large-scale hierarchical image database. https://image-net.org/ """ import enum from typing import Any, Generator, Mapping, Optional, Sequence, Text, Tuple import jax import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds import tensorflow_probability as tfp from perceiver.train import autoaugment Batch = Mapping[Text, np.ndarray] MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255) STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255) AUTOTUNE = tf.data.experimental.AUTOTUNE INPUT_DIM = 224 # The number of pixels in the image resize. class Split(enum.Enum): """ImageNet dataset split.""" TRAIN = 1 TRAIN_AND_VALID = 2 VALID = 3 TEST = 4 @classmethod def from_string(cls, name: Text) -> 'Split': return {'TRAIN': Split.TRAIN, 'TRAIN_AND_VALID': Split.TRAIN_AND_VALID, 'VALID': Split.VALID, 'VALIDATION': Split.VALID, 'TEST': Split.TEST}[name.upper()] @property def num_examples(self): return {Split.TRAIN_AND_VALID: 1281167, Split.TRAIN: 1271167, Split.VALID: 10000, Split.TEST: 50000}[self] def load( split: Split, *, is_training: bool, # batch_dims should be: # [device_count, per_device_batch_size] or [total_batch_size] batch_dims: Sequence[int], augmentation_settings: Mapping[str, Any], # The shape to which images are resized. im_dim: int = INPUT_DIM, threadpool_size: int = 48, max_intra_op_parallelism: int = 1, ) -> Generator[Batch, None, None]: """Loads the given split of the dataset.""" start, end = _shard(split, jax.host_id(), jax.host_count()) im_size = (im_dim, im_dim) total_batch_size = np.prod(batch_dims) tfds_split = tfds.core.ReadInstruction(_to_tfds_split(split), from_=start, to=end, unit='abs') ds = tfds.load('imagenet2012:5.*.*', split=tfds_split, decoders={'image': tfds.decode.SkipDecoding()}) options = tf.data.Options() options.experimental_threading.private_threadpool_size = threadpool_size options.experimental_threading.max_intra_op_parallelism = ( max_intra_op_parallelism) options.experimental_optimization.map_parallelization = True if is_training: options.experimental_deterministic = False ds = ds.with_options(options) if is_training: if jax.host_count() > 1: # Only cache if we are reading a subset of the dataset. ds = ds.cache() ds = ds.repeat() ds = ds.shuffle(buffer_size=10 * total_batch_size, seed=0) else: if split.num_examples % total_batch_size != 0: raise ValueError(f'Test/valid must be divisible by {total_batch_size}') def crop_augment_preprocess(example): image, _ = _preprocess_image( example['image'], is_training, im_size, augmentation_settings) label = tf.cast(example['label'], tf.int32) out = {'images': image, 'labels': label} if is_training: if augmentation_settings['cutmix']: out['mask'] = cutmix_padding(*im_size) out['cutmix_ratio'] = tf.reduce_mean(out['mask']) if augmentation_settings['mixup_alpha'] is not None: beta = tfp.distributions.Beta( augmentation_settings['mixup_alpha'], augmentation_settings['mixup_alpha']) out['mixup_ratio'] = beta.sample() return out ds = ds.map(crop_augment_preprocess, num_parallel_calls=AUTOTUNE) # Mixup/cutmix by temporarily batching (using the per-device batch size): use_cutmix = augmentation_settings['cutmix'] use_mixup = augmentation_settings['mixup_alpha'] is not None if is_training and (use_cutmix or use_mixup): inner_batch_size = batch_dims[-1] # Apply mixup, cutmix, or mixup + cutmix on batched data. # We use data from 2 batches to produce 1 mixed batch. ds = ds.batch(inner_batch_size * 2) if not use_cutmix and use_mixup: ds = ds.map(my_mixup, num_parallel_calls=AUTOTUNE) elif use_cutmix and not use_mixup: ds = ds.map(my_cutmix, num_parallel_calls=AUTOTUNE) elif use_cutmix and use_mixup: ds = ds.map(my_mixup_cutmix, num_parallel_calls=AUTOTUNE) # Unbatch for further processing. ds = ds.unbatch() for batch_size in reversed(batch_dims): ds = ds.batch(batch_size) ds = ds.prefetch(AUTOTUNE) yield from tfds.as_numpy(ds) # cutmix_padding, my_cutmix, my_mixup, and my_mixup_cutmix taken from: # https://github.com/deepmind/deepmind-research/blob/master/nfnets/dataset.py def cutmix_padding(h, w): """Returns image mask for CutMix. Taken from (https://github.com/google/edward2/blob/master/experimental /marginalization_mixup/data_utils.py#L367) Args: h: image height. w: image width. """ r_x = tf.random.uniform([], 0, w, tf.int32) r_y = tf.random.uniform([], 0, h, tf.int32) # Beta dist in paper, but they used Beta(1,1) which is just uniform. image1_proportion = tf.random.uniform([]) patch_length_ratio = tf.math.sqrt(1 - image1_proportion) r_w = tf.cast(patch_length_ratio * tf.cast(w, tf.float32), tf.int32) r_h = tf.cast(patch_length_ratio * tf.cast(h, tf.float32), tf.int32) bbx1 = tf.clip_by_value(tf.cast(r_x - r_w // 2, tf.int32), 0, w) bby1 = tf.clip_by_value(tf.cast(r_y - r_h // 2, tf.int32), 0, h) bbx2 = tf.clip_by_value(tf.cast(r_x + r_w // 2, tf.int32), 0, w) bby2 = tf.clip_by_value(tf.cast(r_y + r_h // 2, tf.int32), 0, h) # Create the binary mask. pad_left = bbx1 pad_top = bby1 pad_right = tf.maximum(w - bbx2, 0) pad_bottom = tf.maximum(h - bby2, 0) r_h = bby2 - bby1 r_w = bbx2 - bbx1 mask = tf.pad( tf.ones((r_h, r_w)), paddings=[[pad_top, pad_bottom], [pad_left, pad_right]], mode='CONSTANT', constant_values=0) mask.set_shape((h, w)) return mask[..., None] # Add channel dim. def my_cutmix(batch): """Apply CutMix: https://arxiv.org/abs/1905.04899.""" batch = dict(**batch) bs = tf.shape(batch['images'])[0] // 2 mask = batch['mask'][:bs] images = (mask * batch['images'][:bs] + (1.0 - mask) * batch['images'][bs:]) mix_labels = batch['labels'][bs:] labels = batch['labels'][:bs] ratio = batch['cutmix_ratio'][:bs] return {'images': images, 'labels': labels, 'mix_labels': mix_labels, 'ratio': ratio} def my_mixup(batch): """Apply mixup: https://arxiv.org/abs/1710.09412.""" batch = dict(**batch) bs = tf.shape(batch['images'])[0] // 2 ratio = batch['mixup_ratio'][:bs, None, None, None] images = (ratio * batch['images'][:bs] + (1.0 - ratio) * batch['images'][bs:]) mix_labels = batch['labels'][bs:] labels = batch['labels'][:bs] ratio = ratio[..., 0, 0, 0] # Unsqueeze return {'images': images, 'labels': labels, 'mix_labels': mix_labels, 'ratio': ratio} def my_mixup_cutmix(batch): """Apply mixup to half the batch, and cutmix to the other.""" batch = dict(**batch) bs = tf.shape(batch['images'])[0] // 4 mixup_ratio = batch['mixup_ratio'][:bs, None, None, None] mixup_images = (mixup_ratio * batch['images'][:bs] + (1.0 - mixup_ratio) * batch['images'][bs:2*bs]) mixup_labels = batch['labels'][:bs] mixup_mix_labels = batch['labels'][bs:2*bs] cutmix_mask = batch['mask'][2*bs:3*bs] cutmix_images = (cutmix_mask * batch['images'][2*bs:3*bs] + (1.0 - cutmix_mask) * batch['images'][-bs:]) cutmix_labels = batch['labels'][2*bs:3*bs] cutmix_mix_labels = batch['labels'][-bs:] cutmix_ratio = batch['cutmix_ratio'][2*bs : 3*bs] return {'images': tf.concat([mixup_images, cutmix_images], axis=0), 'labels': tf.concat([mixup_labels, cutmix_labels], axis=0), 'mix_labels': tf.concat([mixup_mix_labels, cutmix_mix_labels], 0), 'ratio': tf.concat([mixup_ratio[..., 0, 0, 0], cutmix_ratio], axis=0)} def _to_tfds_split(split: Split) -> tfds.Split: """Returns the TFDS split appropriately sharded.""" # NOTE: Imagenet did not release labels for the test split used in the # competition, so it has been typical at DeepMind to consider the VALID # split the TEST split and to reserve 10k images from TRAIN for VALID. if split in ( Split.TRAIN, Split.TRAIN_AND_VALID, Split.VALID): return tfds.Split.TRAIN else: assert split == Split.TEST return tfds.Split.VALIDATION def _shard( split: Split, shard_index: int, num_shards: int) -> Tuple[int, int]: """Returns [start, end) for the given shard index.""" assert shard_index < num_shards arange = np.arange(split.num_examples) shard_range = np.array_split(arange, num_shards)[shard_index] start, end = shard_range[0], (shard_range[-1] + 1) if split == Split.TRAIN: # Note that our TRAIN=TFDS_TRAIN[10000:] and VALID=TFDS_TRAIN[:10000]. offset = Split.VALID.num_examples start += offset end += offset return start, end def _preprocess_image( image_bytes: tf.Tensor, is_training: bool, image_size: Sequence[int], augmentation_settings: Mapping[str, Any], ) -> Tuple[tf.Tensor, tf.Tensor]: """Returns processed and resized images.""" # Get the image crop. if is_training: image, im_shape = _decode_and_random_crop(image_bytes) image = tf.image.random_flip_left_right(image) else: image, im_shape = _decode_and_center_crop(image_bytes) assert image.dtype == tf.uint8 # Optionally apply RandAugment: https://arxiv.org/abs/1909.13719 if is_training: if augmentation_settings['randaugment'] is not None: # Input and output images are dtype uint8. image = autoaugment.distort_image_with_randaugment( image, num_layers=augmentation_settings['randaugment']['num_layers'], magnitude=augmentation_settings['randaugment']['magnitude']) # Resize and normalize the image crop. # NOTE: Bicubic resize (1) casts uint8 to float32 and (2) resizes without # clamping overshoots. This means values returned will be outside the range # [0.0, 255.0] (e.g. we have observed outputs in the range [-51.1, 336.6]). image = tf.image.resize( image, image_size, tf.image.ResizeMethod.BICUBIC) image = _normalize_image(image) return image, im_shape def _normalize_image(image: tf.Tensor) -> tf.Tensor: """Normalize the image to zero mean and unit variance.""" image -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=image.dtype) image /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=image.dtype) return image def _distorted_bounding_box_crop( image_bytes: tf.Tensor, *, jpeg_shape: tf.Tensor, bbox: tf.Tensor, min_object_covered: float, aspect_ratio_range: Tuple[float, float], area_range: Tuple[float, float], max_attempts: int, ) -> Tuple[tf.Tensor, tf.Tensor]: """Generates cropped_image using one of the bboxes randomly distorted.""" bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( jpeg_shape, bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) # Crop the image to the specified bounding box. offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = [offset_y, offset_x, target_height, target_width] if image_bytes.dtype == tf.dtypes.string: image = tf.image.decode_and_crop_jpeg(image_bytes, tf.stack(crop_window), channels=3) else: image = tf.image.crop_to_bounding_box(image_bytes, *crop_window) im_shape = tf.stack([target_height, target_width]) return image, im_shape def _decode_whole_image(image_bytes: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: image = tf.io.decode_jpeg(image_bytes, channels=3) im_shape = tf.io.extract_jpeg_shape(image_bytes, output_type=tf.int32) return image, im_shape def _decode_and_random_crop( image_bytes: tf.Tensor ) -> Tuple[tf.Tensor, tf.Tensor]: """Make a random crop of INPUT_DIM.""" if image_bytes.dtype == tf.dtypes.string: jpeg_shape = tf.image.extract_jpeg_shape(image_bytes) else: jpeg_shape = tf.shape(image_bytes) bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) image, im_shape = _distorted_bounding_box_crop( image_bytes, jpeg_shape=jpeg_shape, bbox=bbox, min_object_covered=0.1, aspect_ratio_range=(3 / 4, 4 / 3), area_range=(0.08, 1.0), max_attempts=10) if tf.reduce_all(tf.equal(jpeg_shape, tf.shape(image))): # If the random crop failed fall back to center crop. image, im_shape = _decode_and_center_crop(image_bytes, jpeg_shape) return image, im_shape def _center_crop(image, crop_dim): """Center crops an image to a target dimension.""" image_height = image.shape[0] image_width = image.shape[1] offset_height = ((image_height - crop_dim) + 1) // 2 offset_width = ((image_width - crop_dim) + 1) // 2 return tf.image.crop_to_bounding_box( image, offset_height, offset_width, crop_dim, crop_dim) def _decode_and_center_crop( image_bytes: tf.Tensor, jpeg_shape: Optional[tf.Tensor] = None, ) -> Tuple[tf.Tensor, tf.Tensor]: """Crops to center of image with padding then scales.""" if jpeg_shape is None: if image_bytes.dtype == tf.dtypes.string: jpeg_shape = tf.image.extract_jpeg_shape(image_bytes) else: jpeg_shape = tf.shape(image_bytes) image_height = jpeg_shape[0] image_width = jpeg_shape[1] padded_center_crop_size = tf.cast( ((INPUT_DIM / (INPUT_DIM + 32)) * tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop_window = [offset_height, offset_width, padded_center_crop_size, padded_center_crop_size] if image_bytes.dtype == tf.dtypes.string: image = tf.image.decode_and_crop_jpeg(image_bytes, tf.stack(crop_window), channels=3) else: image = tf.image.crop_to_bounding_box(image_bytes, *crop_window) im_shape = tf.stack([padded_center_crop_size, padded_center_crop_size]) return image, im_shape
35.367925
80
0.684449
520
0.034676
3,217
0.214524
400
0.026674
0
0
3,759
0.250667
489b33857f5199eb9d0dc568f0aa601495f6f304
12,621
py
Python
pyapprox/manipulate_polynomials.py
samtx/pyapprox
c926d910e30fbcfed7d0621175d3b0268d59f852
[ "MIT" ]
null
null
null
pyapprox/manipulate_polynomials.py
samtx/pyapprox
c926d910e30fbcfed7d0621175d3b0268d59f852
[ "MIT" ]
null
null
null
pyapprox/manipulate_polynomials.py
samtx/pyapprox
c926d910e30fbcfed7d0621175d3b0268d59f852
[ "MIT" ]
null
null
null
import numpy as np from scipy.special import factorial from pyapprox.indexing import hash_array from pyapprox.indexing import compute_hyperbolic_level_indices def multiply_multivariate_polynomials(indices1,coeffs1,indices2,coeffs2): """ TODO: instead of using dictionary to colect terms consider using unique_indices,repeated_idx=np.unique( indices[active_idx,:],axis=1,return_inverse=True) as is done in multivariate_polynomials.conditional_moments_of_polynomial_chaos_expansion. Choose which one is faster Parameters ---------- index : multidimensional index multidimensional index specifying the polynomial degree in each dimension Returns ------- """ num_vars = indices1.shape[0] num_indices1 = indices1.shape[1] num_indices2 = indices2.shape[1] assert num_indices1==coeffs1.shape[0] assert num_indices2==coeffs2.shape[0] assert num_vars==indices2.shape[0] indices_dict = dict() max_num_indices = num_indices1*num_indices2 indices = np.empty((num_vars,max_num_indices),int) coeffs = np.empty((max_num_indices),float) kk = 0 for ii in range(num_indices1): index1 = indices1[:,ii] coeff1 = coeffs1[ii] for jj in range(num_indices2): index= index1+indices2[:,jj] key = hash_array(index) coeff = coeff1*coeffs2[jj] if key in indices_dict: coeffs[indices_dict[key]]+=coeff else: indices_dict[key]=kk indices[:,kk]=index coeffs[kk]=coeff kk+=1 indices = indices[:,:kk] coeffs = coeffs[:kk] return indices, coeffs def coeffs_of_power_of_nd_linear_polynomial(num_vars, degree, linear_coeffs): """ Compute the polynomial (coefficients and indices) obtained by raising a linear multivariate polynomial (no constant term) to some power. Parameters ---------- num_vars : integer The number of variables degree : integer The power of the linear polynomial linear_coeffs: np.ndarray (num_vars) The coefficients of the linear polynomial Returns ------- coeffs: np.ndarray (num_terms) The coefficients of the new polynomial indices : np.ndarray (num_vars, num_terms) The set of multivariate indices that define the new polynomial """ assert len(linear_coeffs)==num_vars coeffs, indices=multinomial_coeffs_of_power_of_nd_linear_polynomial( num_vars, degree) for ii in range(indices.shape[1]): index = indices[:,ii] for dd in range(num_vars): degree = index[dd] coeffs[ii] *= linear_coeffs[dd]**degree return coeffs, indices def substitute_polynomial_for_variables_in_polynomial( indices_in,coeffs_in,indices,coeffs,var_idx): num_vars, num_terms = indices.shape new_indices = [] new_coeffs = [] for ii in range(num_terms): index = indices[:,ii] pows = index[var_idx] ind,cf = substitute_polynomial_for_variables_in_single_basis_term( indices_in,coeffs_in,index,coeffs[ii],var_idx,pows) new_indices.append(ind) new_coeffs.append(cf) new_indices = np.hstack(new_indices) new_coeffs = np.vstack(new_coeffs) return new_indices, new_coeffs def substitute_polynomial_for_variables_in_single_basis_term( indices_in,coeffs_in,basis_index,basis_coeff,var_idx,global_var_idx, num_global_vars): """ var_idx : np.ndarray (nsub_vars) The dimensions in basis_index which will be substituted global_var_idx : [ np.ndarray(nvars[ii]) for ii in num_inputs] The index of the active variables for each input """ num_inputs = var_idx.shape[0] assert num_inputs==len(indices_in) assert num_inputs==len(coeffs_in) assert basis_coeff.shape[0]==1 assert var_idx.max()<basis_index.shape[0] assert basis_index.shape[1]==1 assert len(global_var_idx)==num_inputs # store input indices in global_var_idx temp = [] for ii in range(num_inputs): ind = np.zeros((num_global_vars,indices_in[ii].shape[1])) ind[global_var_idx,:] = indices_in[ii] temp.append(ind) indices_in = temp jj=0 degree = basis_index[var_idx[jj]] c1,ind1 = coeffs_of_power_of_polynomial( indices_in,coeffs_in[:,jj:jj+1],degree) for jj in range(1,var_idx.shape[0]): degree = basis_index[var_idx[jj]] c2,ind2 = coeffs_of_power_of_polynomial( indices_in,coeffs_in[:,jj:jj+1],degree) ind1,c1 = multiply_multivariate_polynomials(ind1,c1,ind2,c2) # this mask may be wrong. I might be confusing global and var idx mask = np.ones(basis_index.shape[0],dtype=bool); mask[var_idx]=False print(ind1.shape,mask.shape) ind1[mask,:] += basis_index[mask] c1*=basis_coeff return ind1, c1 def composition_of_polynomials(indices_list,coeffs_list): npolys = len(indices_list) assert npolys==len(coeffs_list) for ii in range(1,npolys): new_poly = 2 return new_poly def coeffs_of_power_of_polynomial(indices, coeffs, degree): """ Compute the polynomial (coefficients and indices) obtained by raising a multivariate polynomial to some power. TODO: Deprecate coeffs_of_power_of_nd_linear_polynomial as that function can be obtained as a special case of this function Parameters ---------- indices : np.ndarray (num_vars,num_terms) The indices of the multivariate polynomial coeffs: np.ndarray (num_vars) The coefficients of the polynomial Returns ------- coeffs: np.ndarray (num_terms) The coefficients of the new polynomial indices : np.ndarray (num_vars, num_terms) The set of multivariate indices that define the new polynomial """ num_vars, num_terms = indices.shape assert indices.shape[1]==coeffs.shape[0] multinomial_coeffs, multinomial_indices = \ multinomial_coeffs_of_power_of_nd_linear_polynomial(num_terms, degree) new_indices = np.zeros((num_vars,multinomial_indices.shape[1])) new_coeffs = np.tile(multinomial_coeffs[:,np.newaxis],coeffs.shape[1]) for ii in range(multinomial_indices.shape[1]): multinomial_index = multinomial_indices[:,ii] for dd in range(num_terms): deg = multinomial_index[dd] new_coeffs[ii] *= coeffs[dd]**deg new_indices[:,ii] += indices[:,dd]*deg return new_coeffs, new_indices def group_like_terms(coeffs, indices): if coeffs.ndim==1: coeffs = coeffs[:,np.newaxis] num_vars,num_indices = indices.shape indices_dict = {} for ii in range(num_indices): key = hash_array(indices[:,ii]) if not key in indices_dict: indices_dict[key] = [coeffs[ii],ii] else: indices_dict[key] = [indices_dict[key][0]+coeffs[ii],ii] new_coeffs = np.empty((len(indices_dict),coeffs.shape[1])) new_indices = np.empty((num_vars,len(indices_dict)),dtype=int) ii=0 for key, item in indices_dict.items(): new_indices[:,ii] = indices[:,item[1]] new_coeffs[ii] = item[0] ii+=1 return new_coeffs, new_indices def multinomial_coefficient(index): """Compute the multinomial coefficient of an index [i1,i2,...,id]. Parameters ---------- index : multidimensional index multidimensional index specifying the polynomial degree in each dimension Returns ------- coeff : double the multinomial coefficient """ level = index.sum() denom = np.prod(factorial(index)) coeff = factorial(level)/denom return coeff def multinomial_coefficients(indices): coeffs = np.empty((indices.shape[1]),float) for i in range(indices.shape[1]): coeffs[i] = multinomial_coefficient(indices[:,i]) return coeffs def multinomial_coeffs_of_power_of_nd_linear_polynomial(num_vars,degree): """ Compute the multinomial coefficients of the individual terms obtained when taking the power of a linear polynomial (without constant term). Given a linear multivariate polynomial e.g. e.g. (x1+x2+x3)**2 = x1**2+2*x1*x2+2*x1*x3+2*x2**2+x2*x3+x3**2 return the coefficients of each quadratic term, i.e. [1,2,2,1,2,1] Parameters ---------- num_vars : integer the dimension of the multivariate polynomial degree : integer the power of the linear polynomial Returns ------- coeffs: np.ndarray (num_terms) the multinomial coefficients of the polynomial obtained when raising the linear multivariate polynomial to the power=degree indices: np.ndarray (num_terms) the indices of the polynomial obtained when raising the linear multivariate polynomial to the power=degree """ indices = compute_hyperbolic_level_indices(num_vars,degree,1.0) coeffs = multinomial_coefficients(indices) return coeffs, indices def add_polynomials(indices_list, coeffs_list): """ Add many polynomials together. Example: p1 = x1**2+x2+x3, p2 = x2**2+2*x3 p3 = p1+p2 return the degrees of each term in the the polynomial p3 = x1**2+x2+3*x3+x2**2 [2, 1, 1, 2] and the coefficients of each of these terms [1., 1., 3., 1.] Parameters ---------- indices_list : list [np.ndarray (num_vars,num_indices_i)] List of polynomial indices. indices_i may be different for each polynomial coeffs_list : list [np.ndarray (num_indices_i,num_qoi)] List of polynomial coefficients. indices_i may be different for each polynomial. num_qoi must be the same for each list element. Returns ------- indices: np.ndarray (num_vars,num_terms) the polynomial indices of the polynomial obtained from summing the polynomials. This will be the union of the indices of the input polynomials coeffs: np.ndarray (num_terms,num_qoi) the polynomial coefficients of the polynomial obtained from summing the polynomials """ num_polynomials = len(indices_list) assert num_polynomials==len(coeffs_list) indices_dict = dict() indices = [] coeff = [] ii=0; kk=0 for jj in range(indices_list[ii].shape[1]): assert coeffs_list[ii].ndim==2 assert coeffs_list[ii].shape[0]==indices_list[ii].shape[1] index=indices_list[ii][:,jj] indices_dict[hash_array(index)]=kk indices.append(index) coeff.append(coeffs_list[ii][jj,:].copy()) kk+=1 for ii in range(1,num_polynomials): #print indices_list[ii].T,num_polynomials assert coeffs_list[ii].ndim==2 assert coeffs_list[ii].shape[0]==indices_list[ii].shape[1] for jj in range(indices_list[ii].shape[1]): index=indices_list[ii][:,jj] key = hash_array(index) if key in indices_dict: nn = indices_dict[key] coeff[nn]+=coeffs_list[ii][jj,:] else: indices_dict[key]=kk indices.append(index) coeff.append(coeffs_list[ii][jj,:].copy()) kk+=1 indices = np.asarray(indices).T coeff = np.asarray(coeff) return indices, coeff def get_indices_double_set(indices): """ Given muultivariate indices [i1,i2,...,] Compute its double set by [i1*i1,i1*i2,...,i2*i2,i2*i3...] The double set will only contain unique indices Parameters ---------- indices : np.ndarray (num_vars,num_indices) The initial indices Returns ------- double_set_indices : np.ndarray (num_vars,num_indices) The double set of indices """ dummy_coeffs = np.zeros(indices.shape[1]) double_set_indices = multiply_multivariate_polynomials( indices,dummy_coeffs,indices,dummy_coeffs)[0] return double_set_indices def shift_momomial_expansion(coef,shift,scale): assert coef.ndim==1 shifted_coef = np.zeros_like(coef) shifted_coef[0]=coef[0] nterms = coef.shape[0] for ii in range(1,nterms): temp = np.polynomial.polynomial.polypow([1,-shift],ii) shifted_coef[:ii+1] += coef[ii]*temp[::-1]/scale**ii return shifted_coef #Some of these functions can be replaced by numpy functions described at #https://docs.scipy.org/doc/numpy/reference/routines.polynomials.polynomial.html
32.44473
120
0.659853
0
0
0
0
0
0
0
0
5,061
0.400998
489cc2435903d89dac82418e6c3f47ec952a38f4
12,303
py
Python
core/data/load_data.py
Originofamonia/mcan-vqa
e7e9fdc654d72dbbcbc03e43ae8a59c16b6d10d1
[ "Apache-2.0" ]
null
null
null
core/data/load_data.py
Originofamonia/mcan-vqa
e7e9fdc654d72dbbcbc03e43ae8a59c16b6d10d1
[ "Apache-2.0" ]
null
null
null
core/data/load_data.py
Originofamonia/mcan-vqa
e7e9fdc654d72dbbcbc03e43ae8a59c16b6d10d1
[ "Apache-2.0" ]
null
null
null
# -------------------------------------------------------- # mcan-vqa (Deep Modular Co-Attention Networks) # Licensed under The MIT License [see LICENSE for details] # Written by Yuhao Cui https://github.com/cuiyuhao1996 # -------------------------------------------------------- import h5py import pickle import random import numpy as np from numpy.random import default_rng import pandas as pd import glob, json, torch, time from torch.utils.data import Dataset, DataLoader from core.data.data_utils import img_feat_path_load, img_feat_load, ques_load, tokenize, ans_stat from core.data.data_utils import pad_img_feat, proc_ques, proc_ans, proc_mimic_ans class CustomDataset(Dataset): def __init__(self, opt): self.opt = opt # ---- Raw data loading ---- # Loading all image paths # if self.opt.preload: self.img_feat_path_list = [] split_list = opt.split[opt.run_mode].split('+') # change this for split # split_list = ['test'] for split in split_list: if split in ['train', 'val', 'test']: self.img_feat_path_list += glob.glob(opt.img_feat_path[split] + '*.npz') # Loading question word list self.stat_ques_list = \ json.load(open(opt.question_path['train'], 'r'))['questions'] + \ json.load(open(opt.question_path['val'], 'r'))['questions'] + \ json.load(open(opt.question_path['test'], 'r'))['questions'] + \ json.load(open(opt.question_path['vg'], 'r'))['questions'] # Loading answer word list # self.stat_ans_list = \ # json.load(open(__C.answer_path['train'], 'r'))['annotations'] + \ # json.load(open(__C.answer_path['val'], 'r'))['annotations'] # Loading question and answer list self.ques_list = [] self.ans_list = [] # split_list = opt.split[opt.run_mode].split('+') # split_list = ['train', 'val', 'test'] for split in split_list: self.ques_list += json.load(open(opt.question_path[split], 'r'))['questions'] # if opt.run_mode in ['train']: self.ans_list += json.load(open(opt.answer_path[split], 'r'))['annotations'] # Define run data size if opt.run_mode in ['train']: self.data_size = self.ans_list.__len__() else: self.data_size = self.ques_list.__len__() print('== Dataset size:', self.data_size) # ---- Data statistic ---- # {image id} -> {image feature absolutely path} if self.opt.preload: print('==== Pre-Loading features ...') time_start = time.time() self.iid_to_img_feat = img_feat_load(self.img_feat_path_list) time_end = time.time() print('==== Finished in {}s'.format(int(time_end-time_start))) else: self.iid_to_img_feat_path = img_feat_path_load(self.img_feat_path_list) # {question id} -> {question} self.qid_to_ques = ques_load(self.ques_list) # Tokenize self.token_to_ix, self.pretrained_emb = tokenize(self.stat_ques_list, opt.use_glove) self.token_size = self.token_to_ix.__len__() print('== Question token vocab size:', self.token_size) # Answers statistic # Make answer dict during training does not guarantee # the same order of {ans_to_ix}, so we published our # answer dict to ensure that our pre-trained model # can be adapted on each machine. # Thanks to Licheng Yu (https://github.com/lichengunc) # for finding this bug and providing the solutions. # self.ans_to_ix, self.ix_to_ans = ans_stat(self.stat_ans_list, __C.ANS_FREQ) self.ans_to_ix, self.ix_to_ans = ans_stat('core/data/answer_dict.json') self.ans_size = self.ans_to_ix.__len__() print('== Answer vocab size (occurr more than {} times):'.format(8), self.ans_size) print('load dataset finished.') def __getitem__(self, idx): # For code safety img_feat_iter = np.zeros(1) ques_ix_iter = np.zeros(1) ans_iter = np.zeros(1) # Process ['train'] and ['val', 'test'] respectively if self.opt.run_mode in ['train']: # Load the run data from list ans = self.ans_list[idx] ques = self.qid_to_ques[str(ans['question_id'])] # Process image feature from (.npz) file if self.opt.preload: img_feat_x = self.iid_to_img_feat[str(ans['image_id'])] else: img_feats = np.load(self.iid_to_img_feat_path[str(ans['image_id'])]) img_feat_x = img_feats['x'].transpose((1, 0)) img_feat_iter = pad_img_feat(img_feat_x, self.opt.img_feat_pad_size) boxes = pad_img_feat(img_feats['bbox'], self.opt.img_feat_pad_size) # Process question ques_ix_iter = proc_ques(ques, self.token_to_ix, self.opt.max_token) # Process answer ans_iter = proc_ans(ans, self.ans_to_ix) return torch.from_numpy(img_feat_iter), \ torch.from_numpy(ques_ix_iter), \ torch.from_numpy(ans_iter), torch.from_numpy(boxes), torch.tensor([idx]), self.opt.run_mode else: # Load the run data from list ques = self.ques_list[idx] # # Process image feature from (.npz) file # img_feat = np.load(self.iid_to_img_feat_path[str(ques['image_id'])]) # img_feat_x = img_feat['x'].transpose((1, 0)) # Process image feature from (.npz) file if self.opt.preload: img_feat_x = self.iid_to_img_feat[str(ques['image_id'])] else: img_feats = np.load(self.iid_to_img_feat_path[str(ques['image_id'])]) img_feat_x = img_feats['x'].transpose((1, 0)) img_feat_iter = pad_img_feat(img_feat_x, self.opt.img_feat_pad_size) # Process question ques_ix_iter = proc_ques(ques, self.token_to_ix, self.opt.max_token) # only works for batchsize=1 return torch.from_numpy(img_feat_iter), \ torch.from_numpy(ques_ix_iter), \ torch.from_numpy(ans_iter), img_feats, idx def __len__(self): return self.data_size class MIMICDatasetBase(Dataset): """ MIMIC dataset base: includes everything but (train/val/test) qa pickles """ def __init__(self, opt) -> None: super().__init__() self.opt = opt # self.chexpert_df = pd.read_csv(f'/home/qiyuan/2021summer/physionet.org/files/mimic-cxr-jpg/2.0.0/mimic-cxr-2.0.0-chexpert.csv.gz') f1 = h5py.File(opt.cxr_img_feat_path, 'r') print(f'keys: {f1.keys()}') self.image_features = f1['image_features'] # [377110, 60, 1024], 36 ana + 24 finding # self.bbox_label = f1['bbox_label'] # [377k, 60] # self.image_adj_matrix = f1['image_adj_matrix'] # [377k, 100, 100] self.image_bb = f1['image_bb'] # [377k, 60, 4] # self.pos_boxes = f1['pos_boxes'] # [377k, 2] # self.semantic_adj_matrix = f1['semantic_adj_matrix'] # [377k, 100, 100] self.spatial_features = f1['spatial_features'] # [377k, 60, 6] f5 = h5py.File(opt.ana_pool_finding_path, 'r') print(f'f5 keys: {f5.keys()}') # anatomical box pooled findings feature self.ana_pooled_feats = f5['image_features'] # [377k, 26, 1024] self.v_dim = self.ana_pooled_feats.chunks[-1] # visual feat dim self.s_dim = self.spatial_features.chunks[-1] # spatial dim with open(opt.mimic_ans_dict_path['ans2idx'], 'rb') as f3: self.ans_to_ix = pickle.load(f3) # because no_finding becomes yes or no, so 15 labels with open(opt.mimic_ans_dict_path['idx2ans'], 'rb') as f4: self.ix_to_ans = pickle.load(f4) self.ans_size = self.ans_to_ix.__len__() # was self.ans_to_ix.__len__() print('== Answer vocab size (occurr more than {} times):'.format(8), self.ans_size) print('load mimic base dataset finished.') class MIMICDatasetSplit(MIMICDatasetBase): """ train/val/test split of MIMIC QA dataset """ def __init__(self, opt) -> None: super().__init__(opt) with open(opt.mimic_qa_path[opt.run_mode], 'rb') as f2: self.qa = pickle.load(f2) # qa pairs # if opt.run_mode == 'train': # self.qa = random.sample(self.qa, 20000) self.token_to_ix, self.pretrained_emb = tokenize(self.qa, opt.use_glove) self.token_size = self.token_to_ix.__len__() self.data_size = self.qa.__len__() print('== Question token vocab size:', self.token_size) def __getitem__(self, idx): img_feat_iter = np.zeros(1) ques_ix_iter = np.zeros(1) ans_iter = np.zeros(1) qa = self.qa[idx] # subject_id = int(qa['subject_id'][:-2]) # study_id = int(qa['study_id'][:-2]) # multi_label = (self.chexpert_df[(self.chexpert_df['study_id']==study_id) & (self.chexpert_df['subject_id']==subject_id)] > 0).values # multi_label = multi_label[0][2:].astype('float32') # Process question ques_ix_iter = proc_ques(qa, self.token_to_ix, self.opt.max_token) # Process answer ans_iter = np.array(proc_mimic_ans(qa['answer'], self.ans_to_ix)) # only train for yes if self.opt.run_mode in ['train']: # randomly dropout some dim of features rand_dim = np.random.choice(np.arange(self.v_dim), replace=False, size=int(self.v_dim * 0.2)) img_feats = np.copy(self.image_features[qa['image']]) # must, or can't dropout img_feats[:, rand_dim] = 0 # img_feats = np.array(self.image_features[qa['image']]) # ana_find_feats = np.array(self.ana_pooled_feats[qa['image']]) # img_feats = ana_find_feats img_feat_iter = pad_img_feat(img_feats, self.opt.img_feat_pad_size) # return torch.from_numpy(img_feat_iter), \ # torch.from_numpy(ques_ix_iter), torch.from_numpy(ans_iter), \ # torch.tensor([idx]), # self.opt.run_mode else: # ['val', 'test'] img_feats = self.image_features[qa['image']] img_feat_iter = pad_img_feat(img_feats, self.opt.img_feat_pad_size) boxes = pad_img_feat(self.image_bb[qa['image']], self.opt.img_feat_pad_size) # only works for batchsize=1 return torch.from_numpy(img_feat_iter), \ torch.from_numpy(ques_ix_iter), torch.from_numpy(ans_iter), \ torch.tensor([idx]) # img_feats, boxes, def __len__(self): return self.data_size class CustomLoader(DataLoader): def __init__(self, dataset, opt): # self.dataset = dataset self.opt = opt self.init_kwargs = { 'dataset': dataset, 'batch_size': self.opt.batch_size, 'shuffle': True, 'collate_fn': self.collate_fn, 'num_workers': self.opt.num_workers, 'pin_memory': self.opt.pin_mem, 'drop_last': True, } super().__init__(**self.init_kwargs) @staticmethod def collate_fn(data): # if data[0][-1] == 'train': # img_feat_iter, ques_ix_iter, ans_iter, idx = zip(*data) # img_feat_iter = torch.stack(img_feat_iter, dim=0) # ques_ix_iter = torch.stack(ques_ix_iter, dim=0) # ans_iter = torch.stack(ans_iter, dim=0) # idx = torch.stack(idx, dim=0) # # multi_label = torch.stack(multi_label, dim=0) # return img_feat_iter, ques_ix_iter, ans_iter, idx # else: img_feat_iter, ques_ix_iter, ans_iter, idx = zip(*data) img_feat_iter = torch.stack(img_feat_iter, dim=0) ques_ix_iter = torch.stack(ques_ix_iter, dim=0) ans_iter = torch.stack(ans_iter, dim=0) idx = torch.stack(idx, dim=0) # multi_label = torch.stack(multi_label, dim=0) return img_feat_iter, ques_ix_iter, ans_iter, idx # tentatively removed img_feats, boxes,
42.71875
142
0.600992
11,633
0.945542
0
0
943
0.076648
0
0
4,608
0.374543
489dcb5eb95e27bdfa01e5e5808a8eedc54c5b9e
140
py
Python
src/scrapers/models/__init__.py
jskroodsma/helpradar
d9a2198db30995e790ab4f1611e15b85540cd3f8
[ "MIT" ]
null
null
null
src/scrapers/models/__init__.py
jskroodsma/helpradar
d9a2198db30995e790ab4f1611e15b85540cd3f8
[ "MIT" ]
null
null
null
src/scrapers/models/__init__.py
jskroodsma/helpradar
d9a2198db30995e790ab4f1611e15b85540cd3f8
[ "MIT" ]
null
null
null
from .database import Db from .initiatives import InitiativeBase, Platform, ImportBatch, InitiativeImport, BatchImportState, InitiativeGroup
70
115
0.864286
0
0
0
0
0
0
0
0
0
0
489e4aad3b2feb84feec86ee49098494b4522381
3,987
py
Python
spyder/widgets/ipythonconsole/debugging.py
Bhanditz/spyder
903ee4ace0f85ece730bcb670b1b92d464486f1a
[ "MIT" ]
1
2019-06-12T17:31:10.000Z
2019-06-12T17:31:10.000Z
spyder/widgets/ipythonconsole/debugging.py
Bhanditz/spyder
903ee4ace0f85ece730bcb670b1b92d464486f1a
[ "MIT" ]
null
null
null
spyder/widgets/ipythonconsole/debugging.py
Bhanditz/spyder
903ee4ace0f85ece730bcb670b1b92d464486f1a
[ "MIT" ]
1
2019-01-16T06:51:50.000Z
2019-01-16T06:51:50.000Z
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ Widget that handles communications between a console in debugging mode and Spyder """ import ast from qtpy.QtCore import Qt from qtconsole.rich_jupyter_widget import RichJupyterWidget class DebuggingWidget(RichJupyterWidget): """ Widget with the necessary attributes and methods to handle communications between a console in debugging mode and Spyder """ # --- Public API -------------------------------------------------- def write_to_stdin(self, line): """Send raw characters to the IPython kernel through stdin""" self.kernel_client.input(line) def set_spyder_breakpoints(self): """Set Spyder breakpoints into a debugging session""" if self._reading: self.kernel_client.input( "!get_ipython().kernel._set_spyder_breakpoints()") def dbg_exec_magic(self, magic, args=''): """Run an IPython magic while debugging.""" code = "!get_ipython().kernel.shell.run_line_magic('{}', '{}')".format( magic, args) self.kernel_client.input(code) def refresh_from_pdb(self, pdb_state): """ Refresh Variable Explorer and Editor from a Pdb session, after running any pdb command. See publish_pdb_state in utils/ipython/spyder_kernel.py and notify_spyder in utils/site/sitecustomize.py and """ if 'step' in pdb_state and 'fname' in pdb_state['step']: fname = pdb_state['step']['fname'] lineno = pdb_state['step']['lineno'] self.sig_pdb_step.emit(fname, lineno) if 'namespace_view' in pdb_state: self.sig_namespace_view.emit(ast.literal_eval( pdb_state['namespace_view'])) if 'var_properties' in pdb_state: self.sig_var_properties.emit(ast.literal_eval( pdb_state['var_properties'])) # ---- Private API (overrode by us) ---------------------------- def _handle_input_request(self, msg): """Save history and add a %plot magic.""" if self._hidden: raise RuntimeError('Request for raw input during hidden execution.') # Make sure that all output from the SUB channel has been processed # before entering readline mode. self.kernel_client.iopub_channel.flush() def callback(line): # Save history to browse it later self._control.history.append(line) # This is the Spyder addition: add a %plot magic to display # plots while debugging if line.startswith('%plot '): line = line.split()[-1] code = "__spy_code__ = get_ipython().run_cell('%s')" % line self.kernel_client.input(code) else: self.kernel_client.input(line) if self._reading: self._reading = False self._readline(msg['content']['prompt'], callback=callback, password=msg['content']['password']) def _event_filter_console_keypress(self, event): """Handle Key_Up/Key_Down while debugging.""" key = event.key() if self._reading: self._control.current_prompt_pos = self._prompt_pos if key == Qt.Key_Up: self._control.browse_history(backward=True) return True elif key == Qt.Key_Down: self._control.browse_history(backward=False) return True elif key in (Qt.Key_Return, Qt.Key_Enter): self._control.reset_search_pos() return super(DebuggingWidget, self)._event_filter_console_keypress(event) else: return super(DebuggingWidget, self)._event_filter_console_keypress(event)
36.577982
80
0.600953
3,639
0.912487
0
0
0
0
0
0
1,569
0.39343
489e5789fc9bdd522af9556ca44141058ccb8f59
27
py
Python
python/testData/completion/relativeImport/pkg/main.after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/completion/relativeImport/pkg/main.after.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/completion/relativeImport/pkg/main.after.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
from .string import <caret>
27
27
0.777778
0
0
0
0
0
0
0
0
0
0
48a016a1659ce678fbb42661714443c79c8a4486
9,848
py
Python
code/scripts/train_fxns_nonimage.py
estherrolf/representation-matters
502e351e21fc6b33aaa5c96b8c1409c76807f5a7
[ "BSD-3-Clause" ]
1
2021-11-28T09:29:33.000Z
2021-11-28T09:29:33.000Z
code/scripts/train_fxns_nonimage.py
estherrolf/representation-matters
502e351e21fc6b33aaa5c96b8c1409c76807f5a7
[ "BSD-3-Clause" ]
null
null
null
code/scripts/train_fxns_nonimage.py
estherrolf/representation-matters
502e351e21fc6b33aaa5c96b8c1409c76807f5a7
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import sklearn.metrics from dataset_chunking_fxns import subsample_df_by_groups import sklearn import sklearn.linear_model from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler import time # learning function: logistic regression multi-class def fit_logistic_regression_multiclass(X, y, seed, model_kwargs = {'penalty': 'l2', 'C':1}, weights=None): if weights is None: weights = np.ones(len(y)) else: weights = weights clf = sklearn.linear_model.LogisticRegression(**model_kwargs, random_state = seed, multi_class='multinomial', max_iter=1000, n_jobs = None) clf.fit(X, y, sample_weight=weights) return clf # learning function: logistic regression def fit_logistic_regression(X, y, seed, model_kwargs = {'penalty': 'l2', 'C':1}, weights=None): if weights is None: weights = np.ones(len(y)) else: weights = weights clf = sklearn.linear_model.LogisticRegression(**model_kwargs, random_state = seed, multi_class='ovr', max_iter=5000, n_jobs = None) clf.fit(X, y, sample_weight=weights) return clf def fit_rf_classifier(X, y, seed, model_kwargs = {'max_depth': None, 'n_estimators': 100}, weights=None): clf = RandomForestClassifier(**model_kwargs, random_state = seed, n_jobs=20) if weights is None: weights = np.ones(y.shape) clf.fit(X, y, sample_weight=weights) return clf def fit_rf_regressor(X, y, seed, model_kwargs = {'max_depth': None, 'n_estimators': 100}, weights=None): clf = RandomForestRegressor(**model_kwargs, random_state = seed, n_jobs=20) if weights is None: weights = 1.0 clf.fit(X, y, sample_weight = weights) return clf def fit_ridge_regression(X, y, seed, model_kwargs = {'alpha': 1.0}, weights=None): reg = sklearn.linear_model.Ridge(**model_kwargs, normalize=True, random_state = seed, solver='svd') if weights is None: weights = np.ones(len(y)) reg.fit(X, y, sample_weight=weights) return reg def subset_and_train(data, features, group_key, label_key, subset_sizes, pred_fxn, model_kwargs, acc_fxns, predict_prob=False, reweight = False, reweight_target_dist = None, fold_key = 'fold', eval_key='test', seed_start = 0, num_seeds = 5, verbose=True): accs_total, accs_by_group = {}, {} for acc_key in acc_fxns.keys(): accs_total[acc_key] = np.zeros((subset_sizes.shape[1],num_seeds)) accs_by_group[acc_key] = np.zeros((2,subset_sizes.shape[1],num_seeds)) groups = [[x] for x in range(subset_sizes.shape[0])] # run the training for s,seed in enumerate(range(seed_start,seed_start + num_seeds)): rs_this = np.random.RandomState(seed) print(seed,": ", end='') for i in range(subset_sizes.shape[1]): t1 = time.time() print(i, end = ' ') group_sizes_this = subset_sizes[:,i] if verbose: print(group_sizes_this, end = '') # subsample the dataset (training points only) data_subset = subsample_df_by_groups(data, group_key, groups, fold_key = fold_key, group_sizes = group_sizes_this, rs = rs_this, keep_test_val = True, shuffle=True) data_subset_train = data_subset[data_subset[fold_key] == 'train'] # eval on the following set data_subset_val = data_subset[data_subset[fold_key] == eval_key] # index into features train_idxs_this_round = data_subset_train['X_idxs'] val_idxs_this_round = data_subset_val['X_idxs'] X_train = features[train_idxs_this_round] X_val = features[val_idxs_this_round] y_train, g_train = data_subset_train[label_key].values, data_subset_train[group_key].values y_val, g_val = data_subset_val[label_key].values, data_subset_val[group_key].values if reweight: # weights per group group_fracs_this = group_sizes_this / group_sizes_this.sum() train_weights_per_group = np.array(reweight_target_dist) / group_fracs_this # print('train_weights_per_group ', train_weights_per_group) # print(train_weights_per_group) # weight per instance train_weights = np.array(train_weights_per_group)[g_train.astype(int)] # scale so that weights sum to n_train train_weights = len(train_weights) * train_weights / train_weights.sum() else: train_weights = None # allow for passing in lists of model kwargs, in case HPs need to change with allocation if isinstance(model_kwargs, (list)): model_kwargs_this = model_kwargs[i] if verbose: print(model_kwargs_this) else: model_kwargs_this = model_kwargs clf = pred_fxn(X_train, y_train, seed, weights=train_weights, model_kwargs=model_kwargs_this) if predict_prob: # take probability of class 1 as the prediction preds = clf.predict_proba(X_val)[:,1] else: preds = clf.predict(X_val) # if preds are already binary, this won't change anything rounded_preds = np.asarray([int(p > 0.5) for p in preds]) for acc_key, acc_fxn in acc_fxns.items(): if acc_key == 'acc': accs_total[acc_key][i,s] = acc_fxn(y_val, rounded_preds) else: accs_total[acc_key][i,s] = acc_fxn(y_val, preds) for g in range(2): for acc_key, acc_fxn in acc_fxns.items(): if acc_key == 'acc': accs_by_group[acc_key][g,i,s] = acc_fxn(y_val[g_val == g], rounded_preds[g_val == g]) else: accs_by_group[acc_key][g,i,s] = acc_fxn(y_val[g_val == g], preds[g_val == g]) t2 = time.time() #print() if verbose: print('took {0} minutes'.format((t2-t1)/60)) print() return accs_by_group, accs_total def cv_subset_and_train(data, features, group_key, label_key, subset_sizes, pred_fxn, model_kwargs, acc_fxns, predict_prob = False, reweight=False, reweight_target_dist=None, num_seeds = 5, verbose=True): accs_total, accs_by_group = {}, {} for acc_key in acc_fxns.keys(): accs_total[acc_key] = np.zeros((subset_sizes.shape[1],num_seeds)) accs_by_group[acc_key] = np.zeros((2,subset_sizes.shape[1],num_seeds)) for seed in range(num_seeds): r = subset_and_train(data, features, group_key=group_key, label_key=label_key, subset_sizes=subset_sizes, pred_fxn = pred_fxn, model_kwargs = model_kwargs, acc_fxns = acc_fxns, reweight=reweight, reweight_target_dist = reweight_target_dist, predict_prob = predict_prob, eval_key='val', fold_key = 'cv_fold_{0}'.format(seed), seed_start = seed, num_seeds = 1, verbose=verbose) accs_by_group_this_seed, accs_total_this_seed = r for acc_key in acc_fxns.keys(): accs_total[acc_key][:,seed] = accs_total_this_seed[acc_key].reshape(-1) accs_by_group[acc_key][:,:,seed] = accs_by_group_this_seed[acc_key].reshape(2,-1) return accs_by_group, accs_total
39.870445
109
0.491166
0
0
0
0
0
0
0
0
806
0.081844
48a147ad6df1458c845aa4fd687c23becb0926e9
6,206
py
Python
MITx-6.00.1x-EDX-Introduction-to-Computer-Science/Week-7/PSET-7/phraseTriggers.py
lilsweetcaligula/MIT6.00.1x
ee2902782a08ff685e388b2f40c09ea8c9c5fcfe
[ "MIT" ]
null
null
null
MITx-6.00.1x-EDX-Introduction-to-Computer-Science/Week-7/PSET-7/phraseTriggers.py
lilsweetcaligula/MIT6.00.1x
ee2902782a08ff685e388b2f40c09ea8c9c5fcfe
[ "MIT" ]
null
null
null
MITx-6.00.1x-EDX-Introduction-to-Computer-Science/Week-7/PSET-7/phraseTriggers.py
lilsweetcaligula/MIT6.00.1x
ee2902782a08ff685e388b2f40c09ea8c9c5fcfe
[ "MIT" ]
null
null
null
""" PSET-7 Part 2: Triggers (PhraseTriggers) At this point, you have no way of writing a trigger that matches on "New York City" -- the only triggers you know how to write would be a trigger that would fire on "New" AND "York" AND "City" -- which also fires on the phrase "New students at York University love the city". It's time to fix this. Since here you're asking for an exact match, we will require that the cases match, but we'll be a little more flexible on word matching. So, "New York City" will match: * New York City sees movie premiere * In the heart of New York City's famous cafe * New York Cityrandomtexttoproveapointhere but will not match: * I love new york city * I love New York City!!!!!!!!!!!!!! PROBLEM 9 Implement a phrase trigger (PhraseTrigger) that fires when a given phrase is in any of the story's subject, title, or summary. The phrase should be an argument to the class's constructor. """ # Enter your code for WordTrigger, TitleTrigger, # SubjectTrigger, SummaryTrigger, and PhraseTrigger in this box class WordTrigger(Trigger): def __init__(self, word): self.word = word def internalAreCharsEqualIgnoreCase(self, c1, c2): if type(c1) != str or type(c2) != str: raise TypeError("Arg not of type str") if len(c1) > 1 or len(c2) > 1: raise TypeError("Expected a char. Length not equal to 1") return c1[0] == c2[0] or \ (ord(c1[0]) > 0x60 and (ord(c1[0]) - 0x20 == ord(c2[0])) or ord(c1[0]) < 0x5A and (ord(c1[0]) + 0x20 == ord(c2[0]))) def isWordIn(self, text): """ Returns True if word is present in text as whole word. False otherwise. """ charsMatched = 0 firstCharMatchInd = -1 for i in range( len(text) ): if self.internalAreCharsEqualIgnoreCase(text[i], self.word[0]): # case-insensitive check for text[i] == self.word[0] firstCharMatchInd = i charsMatched += 1 wordInd = 1 while wordInd < len(self.word) and wordInd + firstCharMatchInd < len(text): if self.internalAreCharsEqualIgnoreCase(self.word[wordInd], text[wordInd + firstCharMatchInd]): # case-insensitive check for self.word[wordInd] == text[wordInd + firstCharMatchInd] charsMatched += 1 wordInd += 1 elif self.internalAreCharsEqualIgnoreCase(self.word[wordInd], self.word[0]): # case-insensitive check for text[i] == self.word[0] charsMatched = 1 firstCharMatchInd = wordInd + firstCharMatchInd wordInd = firstCharMatchInd continue else: charsMatched = 0 i = wordInd + firstCharMatchInd break if charsMatched == len(self.word): if len(self.word) == len(text): return True elif firstCharMatchInd > 0 and firstCharMatchInd + len(self.word) == len(text): if text[firstCharMatchInd - 1].isspace() or text[firstCharMatchInd - 1] in string.punctuation: return True elif firstCharMatchInd == 0 and firstCharMatchInd + len(self.word) + 1 < len(text): if text[firstCharMatchInd + len(self.word)].isspace() or text[firstCharMatchInd + len(self.word)] in string.punctuation: return True else: if (text[firstCharMatchInd - 1].isspace() or text[firstCharMatchInd - 1] in string.punctuation) \ and (text[firstCharMatchInd + len(self.word)].isspace() or text[firstCharMatchInd + len(self.word)] in string.punctuation): return True return False class TitleTrigger(WordTrigger): def evaluate(self, story): """ Returns True if an alert should be generated for the given news item, or False otherwise. """ return self.isWordIn( story.getTitle() ) class SubjectTrigger(WordTrigger): def evaluate(self, story): """ Returns True if an alert should be generated for the given news item, or False otherwise. """ return self.isWordIn( story.getSubject() ) class SummaryTrigger(WordTrigger): def evaluate(self, story): """ Returns True if an alert should be generated for the given news item, or False otherwise. """ return self.isWordIn( story.getSummary() ) class PhraseTrigger(Trigger): def __init__(self, phrase): self.word = phrase def isWordIn(self, text): charsMatched = 0 firstCharMatchInd = -1 for i in range( len(text) ): if text[i] == self.word[0]: firstCharMatchInd = i charsMatched += 1 wordInd = 1 while wordInd < len(self.word) and wordInd + firstCharMatchInd < len(text): if self.word[wordInd] == text[wordInd + firstCharMatchInd]: charsMatched += 1 wordInd += 1 elif self.word[wordInd] == self.word[0]: charsMatched = 1 firstCharMatchInd = wordInd + firstCharMatchInd wordInd = firstCharMatchInd continue else: charsMatched = 0 i = wordInd + firstCharMatchInd break if charsMatched == len(self.word): return True return False def evaluate(self, story): return self.isWordIn( story.getTitle() ) or \ self.isWordIn( story.getSubject() ) or \ self.isWordIn( story.getSummary() )
41.099338
150
0.549468
5,104
0.82243
0
0
0
0
0
0
1,795
0.289236
48a22194d70cb5daa8b009c12fc1c26cc1c8d905
1,522
py
Python
vault/tests/unit/test_views.py
Natan7/vault
ad0e9d5434dc59c9573afefef5e4eb390a7383ae
[ "Apache-2.0" ]
1
2017-03-02T19:32:31.000Z
2017-03-02T19:32:31.000Z
vault/tests/unit/test_views.py
Natan7/vault
ad0e9d5434dc59c9573afefef5e4eb390a7383ae
[ "Apache-2.0" ]
null
null
null
vault/tests/unit/test_views.py
Natan7/vault
ad0e9d5434dc59c9573afefef5e4eb390a7383ae
[ "Apache-2.0" ]
2
2018-03-14T16:56:53.000Z
2018-03-14T17:20:07.000Z
# -*- coding: utf-8 -*- from unittest import TestCase from mock import Mock, patch from vault.tests.fakes import fake_request from vault.views import SetProjectView from django.utils.translation import ugettext as _ class SetProjectTest(TestCase): def setUp(self): self.view = SetProjectView.as_view() self.request = fake_request(method='GET') self.request.user.is_authenticated = lambda: False def tearDown(self): patch.stopall() def test_set_project_needs_authentication(self): response = self.view(self.request) self.assertEqual(response.status_code, 302) @patch('vault.views.switch') def test_set_new_project_id_to_session(self, mock_switch): self.request.user.is_authenticated = lambda: True self.assertEqual(self.request.session.get('project_id'), '1') response = self.view(self.request, project_id=2) self.assertEqual(self.request.session.get('project_id'), 2) @patch('vault.views.switch') def test_set_new_project_id_to_session_exception(self, mock_switch): self.request.user.is_authenticated = lambda: True mock_switch.side_effect = ValueError() self.assertEqual(self.request.session.get('project_id'), '1') response = self.view(self.request, project_id=2) self.assertEqual(self.request.session.get('project_id'), 2) msgs = [msg for msg in self.request._messages] self.assertEqual(msgs[0].message, _('Unable to change your project.'))
33.086957
78
0.704336
1,301
0.854796
0
0
884
0.580815
0
0
154
0.101183
48a2c6f00acb55753f06b34ad48a128100334441
2,364
py
Python
qa/tasks/cephfs/test_dump_tree.py
rpratap-bot/ceph
9834961a66927ae856935591f2fd51082e2ee484
[ "MIT" ]
4
2020-04-08T03:42:02.000Z
2020-10-01T20:34:48.000Z
qa/tasks/cephfs/test_dump_tree.py
rpratap-bot/ceph
9834961a66927ae856935591f2fd51082e2ee484
[ "MIT" ]
93
2020-03-26T14:29:14.000Z
2020-11-12T05:54:55.000Z
qa/tasks/cephfs/test_dump_tree.py
rpratap-bot/ceph
9834961a66927ae856935591f2fd51082e2ee484
[ "MIT" ]
23
2020-03-24T10:28:44.000Z
2020-09-24T09:42:19.000Z
from tasks.cephfs.cephfs_test_case import CephFSTestCase import random import os class TestDumpTree(CephFSTestCase): def get_paths_to_ino(self): inos = {} p = self.mount_a.run_shell(["find", "./"]) paths = p.stdout.getvalue().strip().split() for path in paths: inos[path] = self.mount_a.path_to_ino(path, False) return inos def populate(self): self.mount_a.run_shell(["git", "clone", "https://github.com/ceph/ceph-qa-suite"]) def test_basic(self): self.mount_a.run_shell(["mkdir", "parent"]) self.mount_a.run_shell(["mkdir", "parent/child"]) self.mount_a.run_shell(["touch", "parent/child/file"]) self.mount_a.run_shell(["mkdir", "parent/child/grandchild"]) self.mount_a.run_shell(["touch", "parent/child/grandchild/file"]) inos = self.get_paths_to_ino() tree = self.fs.mds_asok(["dump", "tree", "/parent/child", "1"]) target_inos = [inos["./parent/child"], inos["./parent/child/file"], inos["./parent/child/grandchild"]] for ino in tree: del target_inos[target_inos.index(ino['ino'])] # don't catch! assert(len(target_inos) == 0) def test_random(self): random.seed(0) self.populate() inos = self.get_paths_to_ino() target = random.sample(inos.keys(), 1)[0] if target != "./": target = os.path.dirname(target) subtree = [path for path in inos.keys() if path.startswith(target)] target_inos = [inos[path] for path in subtree] tree = self.fs.mds_asok(["dump", "tree", target[1:]]) for ino in tree: del target_inos[target_inos.index(ino['ino'])] # don't catch! assert(len(target_inos) == 0) target_depth = target.count('/') maxdepth = max([path.count('/') for path in subtree]) - target_depth depth = random.randint(0, maxdepth) target_inos = [inos[path] for path in subtree \ if path.count('/') <= depth + target_depth] tree = self.fs.mds_asok(["dump", "tree", target[1:], str(depth)]) for ino in tree: del target_inos[target_inos.index(ino['ino'])] # don't catch! assert(len(target_inos) == 0)
35.283582
76
0.571489
2,281
0.96489
0
0
0
0
0
0
380
0.160745
48a598d9751db785f23d9a8e28422d557cff93bc
966
py
Python
catkin_ws/src/devel_scripts/stepper.py
AROMAeth/robo_code
d920adee8eb7ab285ba50aa31c71d631adc35480
[ "MIT" ]
null
null
null
catkin_ws/src/devel_scripts/stepper.py
AROMAeth/robo_code
d920adee8eb7ab285ba50aa31c71d631adc35480
[ "MIT" ]
null
null
null
catkin_ws/src/devel_scripts/stepper.py
AROMAeth/robo_code
d920adee8eb7ab285ba50aa31c71d631adc35480
[ "MIT" ]
null
null
null
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) control_pins = [7,11,13,15] for pin in control_pins: GPIO.setup(pin, GPIO.OUT) GPIO.output(pin, 0) halfstep_seq = [ [1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0], [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1] ] # speed from 0 to 1 (one being the fastest) # steps 50 steps = one rotation def move_backward(steps, speed): for i in range(steps): for halfstep in range(8): for pin in range(4): GPIO.output(control_pins[pin], halfstep_seq[halfstep][pin]) time.sleep(max(0.001/speed,0.001)) def move_forward(steps, speed): for i in range(steps): for halfstep in range(7,-1,-1): for pin in range(4): GPIO.output(control_pins[pin], halfstep_seq[halfstep][pin]) time.sleep(max(0.001/speed,0.001)) for k in range(1,10,1): move_forward(50,0.1) time.sleep(0.5) #move_forward(50,0.25) time.sleep(1) #move_backward(500,0.5) GPIO.cleanup()
18.576923
67
0.635611
0
0
0
0
0
0
0
0
119
0.123188
48a7ec0bb39b709f9863a091b7d85367791f1dab
2,924
py
Python
Experimental/OpenCVExp.py
awesomesauce12/6DBytes-CV
8e48c6e629eedcd5098a0b0f8c90c48e38d5abf8
[ "MIT" ]
1
2016-06-24T23:09:43.000Z
2016-06-24T23:09:43.000Z
Experimental/OpenCVExp.py
awesomesauce12/image-recognition
8e48c6e629eedcd5098a0b0f8c90c48e38d5abf8
[ "MIT" ]
null
null
null
Experimental/OpenCVExp.py
awesomesauce12/image-recognition
8e48c6e629eedcd5098a0b0f8c90c48e38d5abf8
[ "MIT" ]
null
null
null
import numpy as np import cv2 import os import math os.system("fswebcam -r 507x456 --no-banner image11.jpg") def showImage(capImg): cv2.imshow('img', capImg) cv2.waitKey(0) cv2.destroyAllWindows() img = cv2.imread('image11.jpg',-1) height, width, channel = img.shape topy= height topx = width hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower_color = np.array([0,255,255]) upper_color = np.array([0,255,255]) mask = cv2.inRange(hsv, lower_color, upper_color) res = cv2.bitwise_and(img,img, mask=mask) '''def draw_circle(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDBLCLK: cv2.circle(img, (x,y), 100, (255,255,255), -1)''' '''cap = cv2.VideoCapture(-1) while(True): ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('hjhj', gray) if cv2.waitKey(0) & 0xFF -- ord('q'): break cap.release() cv2.destroyAllWindows()''' propx = (topx/512) propy = (topy/512) '''lineX1 = int(0*propx) lineY2 = int(0*propy) lineX2 = int(511*propx) lineY1 = int(511*propy) img = cv2.line(img, (lineX1,lineY1), (lineX2, lineY2), (255,255,255), 5)''' w = 100*(propx+propy)/2 x1 = int(topx/2 - w/2) x2 = int(topx/2 + w/2) y1 = int(topy/2 + w/2) y2 = int(topy/2 - w/2) img = cv2.rectangle(res, (x1,y1), (x2,y2), (0,255,0),3) img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) showImage(img) ret, thresh = cv2.threshold(img, 15, 250, 0) showImage(thresh) image, contours, heirarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #showImage(image) cv2.drawContours(img, contours, 0, (0,255,0), 3) showImage(img) print('Num of Contours ', len(contours)) cnt = contours[0] M = cv2.moments(cnt) print (M) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) area = cv2.contourArea(cnt) print (cx) print (cy) print (area) '''xCircle = 40*propx xCircle = int(xCircle) yCircle = xCircle radCircle = xCircle img = cv2.circle(img, (xCircle, yCircle), radCircle, (0,0,255),-1) x3 = int(topx - 60*propx) y3 = int(topy - 110*propy) minAx = int(50*propx) majAx = int(100*propy) img = cv2.ellipse(img, (x3, y3), (minAx,majAx), 0, 0, 360, (0,150,255), -1)''' '''pt1X = int(70*propx) pt1Y = int(60*propy) pt2X = int(154*propx) pt2Y = int(23*propy) pt3X = int(500*propx) pt3Y = int(3*propy)''' #pts = np.array([[pt1X, pt1Y], [pt2X, pt2Y], [pt3X, pt3Y]], np.int32) #pts = pts.reshape((-1,1,2)) #img = cv2.polylines(img, [pts], True, (100,100,234)) #font = cv2.FONT_HERSHEY_SIMPLEX #startPtX = int(240*propx) #startPtY = int(240*propy) #scale = 2*(propx + propy)/2 #cv2.putText(img, 'Apurva', (startPtX, startPtY), font, scale, (210, 80, 150), 4, cv2.LINE_AA) #cv2.imshow("kl", img) '''cv2.setMouseCallback('kl', draw_circle)''' '''''' #cv2.imshow('frame', img) #cv2.imshow('mask',mask) cv2.imshow('res',res) '''sd = img[130:200, 175:245] img[20:90, 140:210]=sd cv2.imshow("kl", img)''' cv2.waitKey(0) cv2.destroyAllWindows()
21.5
94
0.651505
0
0
0
0
0
0
0
0
1,707
0.583789
48a84cb7d32acc3cbc3af963ca0e81cc7ff163d9
424
py
Python
poem/Poem/urls_public.py
kzailac/poem
9f898e3cc3378ef1c49517b4cf6335a93a3f49b0
[ "Apache-2.0" ]
null
null
null
poem/Poem/urls_public.py
kzailac/poem
9f898e3cc3378ef1c49517b4cf6335a93a3f49b0
[ "Apache-2.0" ]
null
null
null
poem/Poem/urls_public.py
kzailac/poem
9f898e3cc3378ef1c49517b4cf6335a93a3f49b0
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import include from django.http import HttpResponseRedirect from django.urls import re_path from Poem.poem_super_admin.admin import mysuperadmin urlpatterns = [ re_path(r'^$', lambda x: HttpResponseRedirect('/poem/superadmin/')), re_path(r'^superadmin/', mysuperadmin.urls), re_path(r'^saml2/', include(('djangosaml2.urls', 'poem'), namespace='saml2')), ]
32.615385
72
0.688679
0
0
0
0
0
0
0
0
80
0.188679
48a8ac917e1b840d71d262dd221cf4cb43769865
902
py
Python
optimism/ReadMesh.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
null
null
null
optimism/ReadMesh.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
1
2022-03-12T00:01:12.000Z
2022-03-12T00:01:12.000Z
optimism/ReadMesh.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
3
2021-12-23T19:53:31.000Z
2022-03-27T23:12:03.000Z
import json from optimism.JaxConfig import * from optimism import Mesh def read_json_mesh(meshFileName): with open(meshFileName, 'r', encoding='utf-8') as jsonFile: meshData = json.load(jsonFile) coordinates = np.array(meshData['coordinates']) connectivity = np.array(meshData['connectivity'], dtype=int) nodeSets = {} for key in meshData['nodeSets']: nodeSets[key] = np.array(meshData['nodeSets'][key]) sideSets = {} exodusSideSets = meshData['sideSets'] for key in exodusSideSets: elements = np.array(exodusSideSets[key][0], dtype=int) sides = np.array(exodusSideSets[key][1], dtype=int) sideSets[key] = np.column_stack((elements, sides)) blocks=None return Mesh.construct_mesh_from_basic_data(coordinates, connectivity, blocks, nodeSets, sideSets)
31.103448
74
0.643016
0
0
0
0
0
0
0
0
67
0.074279
48a9df7987bdd5e6e1faa8cd6a7c8279d997c6ae
1,058
py
Python
networkx/algorithms/approximation/ramsey.py
rakschahsa/networkx
6cac55b1064c3c346665f9281680fa3b66442ad0
[ "BSD-3-Clause" ]
445
2019-01-26T13:50:26.000Z
2022-03-18T05:17:38.000Z
SLpackage/private/thirdparty/pythonpkgs/networkx/networkx_2.2/lib/python2.7/site-packages/networkx/algorithms/approximation/ramsey.py
fanglab/6mASCOPE
3f1fdcb7693ff152f17623ce549526ec272698b1
[ "BSD-3-Clause" ]
242
2019-01-29T15:48:27.000Z
2022-03-31T22:09:21.000Z
SLpackage/private/thirdparty/pythonpkgs/networkx/networkx_2.2/lib/python2.7/site-packages/networkx/algorithms/approximation/ramsey.py
fanglab/6mASCOPE
3f1fdcb7693ff152f17623ce549526ec272698b1
[ "BSD-3-Clause" ]
31
2019-03-10T09:51:27.000Z
2022-02-14T23:11:12.000Z
# -*- coding: utf-8 -*- """ Ramsey numbers. """ # Copyright (C) 2011 by # Nicholas Mancuso <[email protected]> # All rights reserved. # BSD license. import networkx as nx from ...utils import arbitrary_element __all__ = ["ramsey_R2"] __author__ = """Nicholas Mancuso ([email protected])""" def ramsey_R2(G): r"""Approximately computes the Ramsey number `R(2;s,t)` for graph. Parameters ---------- G : NetworkX graph Undirected graph Returns ------- max_pair : (set, set) tuple Maximum clique, Maximum independent set. """ if not G: return set(), set() node = arbitrary_element(G) nbrs = nx.all_neighbors(G, node) nnbrs = nx.non_neighbors(G, node) c_1, i_1 = ramsey_R2(G.subgraph(nbrs).copy()) c_2, i_2 = ramsey_R2(G.subgraph(nnbrs).copy()) c_1.add(node) i_2.add(node) # Choose the larger of the two cliques and the larger of the two # independent sets, according to cardinality. return max(c_1, c_2, key=len), max(i_1, i_2, key=len)
24.604651
70
0.63138
0
0
0
0
0
0
0
0
582
0.550095
48acd263a6439030b9241f1881827f94f5753592
677
py
Python
pysyte/oss/linux.py
git-wwts/pysyte
625658138cdb5affc1a6a89a9f2c7e3667ee80c2
[ "MIT" ]
1
2021-11-10T15:24:36.000Z
2021-11-10T15:24:36.000Z
pysyte/oss/linux.py
git-wwts/pysyte
625658138cdb5affc1a6a89a9f2c7e3667ee80c2
[ "MIT" ]
12
2020-01-15T00:19:41.000Z
2021-05-11T14:52:04.000Z
pysyte/oss/linux.py
git-wwts/pysyte
625658138cdb5affc1a6a89a9f2c7e3667ee80c2
[ "MIT" ]
2
2015-01-31T11:51:06.000Z
2015-01-31T21:29:19.000Z
"""Linux-specific code""" from pysyte.types import paths def xdg_home(): """path to $XDG_CONFIG_HOME >>> assert xdg_home() == paths.path('~/.config').expand() """ return paths.environ_path("XDG_CONFIG_HOME", "~/.config") def xdg_home_config(filename): """path to that file in $XDG_CONFIG_HOME >>> assert xdg_home_config('fred') == paths.path('~/.config/fred').expand() """ return xdg_home() / filename def xdg_dirs(): """paths in $XDG_CONFIG_DIRS""" return paths.environ_paths("XDG_CONFIG_DIRS") def xdg_homes(): return [xdg_home()] bash_paste = "xclip -selection clipboard" bash_copy = "xclip -selection clipboard -o"
19.911765
79
0.660266
0
0
0
0
0
0
0
0
387
0.57164
48ae6c1d7db7737a61286051c58656fa1c61b3ae
387
py
Python
osu/osu_overlay.py
HQupgradeHQ/Daylight
a110a0f618877f5cccd66c4d75115c765d8f62a0
[ "MIT" ]
2
2020-07-30T14:07:19.000Z
2020-08-01T05:28:29.000Z
osu/osu_overlay.py
HQupgradeHQ/Daylight
a110a0f618877f5cccd66c4d75115c765d8f62a0
[ "MIT" ]
null
null
null
osu/osu_overlay.py
HQupgradeHQ/Daylight
a110a0f618877f5cccd66c4d75115c765d8f62a0
[ "MIT" ]
null
null
null
import mpv import keyboard import time p = mpv.MPV() p.play("song_name.mp4") def play_pause(): p.pause = not p.pause keyboard.add_hotkey("e", play_pause) def full(): p.fullscreen = not p.fullscreen keyboard.add_hotkey("2", full) def go_to_start(): p.time_pos = 2 keyboard.add_hotkey("1", go_to_start) while 1: time.sleep(40)
12.09375
38
0.620155
0
0
0
0
0
0
0
0
24
0.062016
48b02d948060f886a636e1dc8c11abff122b4be1
91,989
py
Python
test/unit/common/test_db.py
dreamhost/swift
e90424e88bfaae17bf16f5c32b4d18deb5a6e71f
[ "Apache-2.0" ]
null
null
null
test/unit/common/test_db.py
dreamhost/swift
e90424e88bfaae17bf16f5c32b4d18deb5a6e71f
[ "Apache-2.0" ]
null
null
null
test/unit/common/test_db.py
dreamhost/swift
e90424e88bfaae17bf16f5c32b4d18deb5a6e71f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2010-2011 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for swift.common.db """ from __future__ import with_statement import hashlib import os import unittest from shutil import rmtree, copy from StringIO import StringIO from time import sleep, time from uuid import uuid4 import simplejson import sqlite3 import swift.common.db from swift.common.db import AccountBroker, chexor, ContainerBroker, \ DatabaseBroker, DatabaseConnectionError, dict_factory, get_db_connection from swift.common.utils import normalize_timestamp from swift.common.exceptions import LockTimeout class TestDatabaseConnectionError(unittest.TestCase): def test_str(self): err = \ DatabaseConnectionError(':memory:', 'No valid database connection') self.assert_(':memory:' in str(err)) self.assert_('No valid database connection' in str(err)) err = DatabaseConnectionError(':memory:', 'No valid database connection', timeout=1357) self.assert_(':memory:' in str(err)) self.assert_('No valid database connection' in str(err)) self.assert_('1357' in str(err)) class TestDictFactory(unittest.TestCase): def test_normal_case(self): conn = sqlite3.connect(':memory:') conn.execute('CREATE TABLE test (one TEXT, two INTEGER)') conn.execute('INSERT INTO test (one, two) VALUES ("abc", 123)') conn.execute('INSERT INTO test (one, two) VALUES ("def", 456)') conn.commit() curs = conn.execute('SELECT one, two FROM test') self.assertEquals(dict_factory(curs, curs.next()), {'one': 'abc', 'two': 123}) self.assertEquals(dict_factory(curs, curs.next()), {'one': 'def', 'two': 456}) class TestChexor(unittest.TestCase): def test_normal_case(self): self.assertEquals(chexor('d41d8cd98f00b204e9800998ecf8427e', 'new name', normalize_timestamp(1)), '4f2ea31ac14d4273fe32ba08062b21de') def test_invalid_old_hash(self): self.assertRaises(TypeError, chexor, 'oldhash', 'name', normalize_timestamp(1)) def test_no_name(self): self.assertRaises(Exception, chexor, 'd41d8cd98f00b204e9800998ecf8427e', None, normalize_timestamp(1)) class TestGetDBConnection(unittest.TestCase): def test_normal_case(self): conn = get_db_connection(':memory:') self.assert_(hasattr(conn, 'execute')) def test_invalid_path(self): self.assertRaises(DatabaseConnectionError, get_db_connection, 'invalid database path / name') class TestDatabaseBroker(unittest.TestCase): def setUp(self): self.testdir = os.path.join(os.path.dirname(__file__), 'db') rmtree(self.testdir, ignore_errors=1) os.mkdir(self.testdir) def tearDown(self): rmtree(self.testdir, ignore_errors=1) def test_memory_db_init(self): broker = DatabaseBroker(':memory:') self.assertEqual(broker.db_file, ':memory:') self.assertRaises(AttributeError, broker.initialize, normalize_timestamp('0')) def test_disk_db_init(self): db_file = os.path.join(self.testdir, '1.db') broker = DatabaseBroker(db_file) self.assertEqual(broker.db_file, db_file) self.assert_(broker.conn is None) def test_initialize(self): self.assertRaises(AttributeError, DatabaseBroker(':memory:').initialize, normalize_timestamp('1')) stub_dict = {} def stub(*args, **kwargs): for key in stub_dict.keys(): del stub_dict[key] stub_dict['args'] = args for key, value in kwargs.items(): stub_dict[key] = value broker = DatabaseBroker(':memory:') broker._initialize = stub broker.initialize(normalize_timestamp('1')) self.assert_(hasattr(stub_dict['args'][0], 'execute')) self.assertEquals(stub_dict['args'][1], '0000000001.00000') with broker.get() as conn: conn.execute('SELECT * FROM outgoing_sync') conn.execute('SELECT * FROM incoming_sync') broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) broker._initialize = stub broker.initialize(normalize_timestamp('1')) self.assert_(hasattr(stub_dict['args'][0], 'execute')) self.assertEquals(stub_dict['args'][1], '0000000001.00000') with broker.get() as conn: conn.execute('SELECT * FROM outgoing_sync') conn.execute('SELECT * FROM incoming_sync') def test_delete_db(self): def init_stub(conn, put_timestamp): conn.execute('CREATE TABLE test (one TEXT)') conn.execute('CREATE TABLE test_stat (id TEXT)') conn.execute('INSERT INTO test_stat (id) VALUES (?)', (str(uuid4),)) conn.execute('INSERT INTO test (one) VALUES ("1")') conn.commit() stub_called = [False] def delete_stub(*a, **kw): stub_called[0] = True broker = DatabaseBroker(':memory:') broker.db_type = 'test' broker._initialize = init_stub # Initializes a good broker for us broker.initialize(normalize_timestamp('1')) self.assert_(broker.conn is not None) broker._delete_db = delete_stub stub_called[0] = False broker.delete_db('2') self.assert_(stub_called[0]) broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) broker.db_type = 'test' broker._initialize = init_stub broker.initialize(normalize_timestamp('1')) broker._delete_db = delete_stub stub_called[0] = False broker.delete_db('2') self.assert_(stub_called[0]) # ensure that metadata was cleared m2 = broker.metadata self.assert_(not any(v[0] for v in m2.itervalues())) self.assert_(all(v[1] == normalize_timestamp('2') for v in m2.itervalues())) def test_get(self): broker = DatabaseBroker(':memory:') got_exc = False try: with broker.get() as conn: conn.execute('SELECT 1') except Exception: got_exc = True broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) got_exc = False try: with broker.get() as conn: conn.execute('SELECT 1') except Exception: got_exc = True self.assert_(got_exc) def stub(*args, **kwargs): pass broker._initialize = stub broker.initialize(normalize_timestamp('1')) with broker.get() as conn: conn.execute('CREATE TABLE test (one TEXT)') try: with broker.get() as conn: conn.execute('INSERT INTO test (one) VALUES ("1")') raise Exception('test') conn.commit() except Exception: pass broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) with broker.get() as conn: self.assertEquals( [r[0] for r in conn.execute('SELECT * FROM test')], []) with broker.get() as conn: conn.execute('INSERT INTO test (one) VALUES ("1")') conn.commit() broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) with broker.get() as conn: self.assertEquals( [r[0] for r in conn.execute('SELECT * FROM test')], ['1']) orig_renamer = swift.common.db.renamer try: swift.common.db.renamer = lambda a, b: b qpath = os.path.dirname(os.path.dirname(os.path.dirname( os.path.dirname(self.testdir)))) if qpath: qpath += '/quarantined/tests/db' else: qpath = 'quarantined/tests/db' # Test malformed database copy(os.path.join(os.path.dirname(__file__), 'malformed_example.db'), os.path.join(self.testdir, '1.db')) broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) broker.db_type = 'test' exc = None try: with broker.get() as conn: conn.execute('SELECT * FROM test') except Exception, err: exc = err self.assertEquals(str(exc), 'Quarantined %s to %s due to malformed database' % (self.testdir, qpath)) # Test corrupted database copy(os.path.join(os.path.dirname(__file__), 'corrupted_example.db'), os.path.join(self.testdir, '1.db')) broker = DatabaseBroker(os.path.join(self.testdir, '1.db')) broker.db_type = 'test' exc = None try: with broker.get() as conn: conn.execute('SELECT * FROM test') except Exception, err: exc = err self.assertEquals(str(exc), 'Quarantined %s to %s due to corrupted database' % (self.testdir, qpath)) finally: swift.common.db.renamer = orig_renamer def test_lock(self): broker = DatabaseBroker(os.path.join(self.testdir, '1.db'), timeout=.1) got_exc = False try: with broker.lock(): pass except Exception: got_exc = True self.assert_(got_exc) def stub(*args, **kwargs): pass broker._initialize = stub broker.initialize(normalize_timestamp('1')) with broker.lock(): pass with broker.lock(): pass broker2 = DatabaseBroker(os.path.join(self.testdir, '1.db'), timeout=.1) broker2._initialize = stub with broker.lock(): got_exc = False try: with broker2.lock(): pass except LockTimeout: got_exc = True self.assert_(got_exc) try: with broker.lock(): raise Exception('test') except Exception: pass with broker.lock(): pass def test_newid(self): broker = DatabaseBroker(':memory:') broker.db_type = 'test' broker.db_contains_type = 'test' uuid1 = str(uuid4()) def _initialize(conn, timestamp): conn.execute('CREATE TABLE test (one TEXT)') conn.execute('CREATE TABLE test_stat (id TEXT)') conn.execute('INSERT INTO test_stat (id) VALUES (?)', (uuid1,)) conn.commit() broker._initialize = _initialize broker.initialize(normalize_timestamp('1')) uuid2 = str(uuid4()) broker.newid(uuid2) with broker.get() as conn: uuids = [r[0] for r in conn.execute('SELECT * FROM test_stat')] self.assertEquals(len(uuids), 1) self.assertNotEquals(uuids[0], uuid1) uuid1 = uuids[0] points = [(r[0], r[1]) for r in conn.execute('SELECT sync_point, ' 'remote_id FROM incoming_sync WHERE remote_id = ?', (uuid2,))] self.assertEquals(len(points), 1) self.assertEquals(points[0][0], -1) self.assertEquals(points[0][1], uuid2) conn.execute('INSERT INTO test (one) VALUES ("1")') conn.commit() uuid3 = str(uuid4()) broker.newid(uuid3) with broker.get() as conn: uuids = [r[0] for r in conn.execute('SELECT * FROM test_stat')] self.assertEquals(len(uuids), 1) self.assertNotEquals(uuids[0], uuid1) uuid1 = uuids[0] points = [(r[0], r[1]) for r in conn.execute('SELECT sync_point, ' 'remote_id FROM incoming_sync WHERE remote_id = ?', (uuid3,))] self.assertEquals(len(points), 1) self.assertEquals(points[0][1], uuid3) broker.newid(uuid2) with broker.get() as conn: uuids = [r[0] for r in conn.execute('SELECT * FROM test_stat')] self.assertEquals(len(uuids), 1) self.assertNotEquals(uuids[0], uuid1) points = [(r[0], r[1]) for r in conn.execute('SELECT sync_point, ' 'remote_id FROM incoming_sync WHERE remote_id = ?', (uuid2,))] self.assertEquals(len(points), 1) self.assertEquals(points[0][1], uuid2) def test_get_items_since(self): broker = DatabaseBroker(':memory:') broker.db_type = 'test' broker.db_contains_type = 'test' def _initialize(conn, timestamp): conn.execute('CREATE TABLE test (one TEXT)') conn.execute('INSERT INTO test (one) VALUES ("1")') conn.execute('INSERT INTO test (one) VALUES ("2")') conn.execute('INSERT INTO test (one) VALUES ("3")') conn.commit() broker._initialize = _initialize broker.initialize(normalize_timestamp('1')) self.assertEquals(broker.get_items_since(-1, 10), [{'one': '1'}, {'one': '2'}, {'one': '3'}]) self.assertEquals(broker.get_items_since(-1, 2), [{'one': '1'}, {'one': '2'}]) self.assertEquals(broker.get_items_since(1, 2), [{'one': '2'}, {'one': '3'}]) self.assertEquals(broker.get_items_since(3, 2), []) self.assertEquals(broker.get_items_since(999, 2), []) def test_get_sync(self): broker = DatabaseBroker(':memory:') broker.db_type = 'test' broker.db_contains_type = 'test' uuid1 = str(uuid4()) def _initialize(conn, timestamp): conn.execute('CREATE TABLE test (one TEXT)') conn.execute('CREATE TABLE test_stat (id TEXT)') conn.execute('INSERT INTO test_stat (id) VALUES (?)', (uuid1,)) conn.execute('INSERT INTO test (one) VALUES ("1")') conn.commit() pass broker._initialize = _initialize broker.initialize(normalize_timestamp('1')) uuid2 = str(uuid4()) self.assertEquals(broker.get_sync(uuid2), -1) broker.newid(uuid2) self.assertEquals(broker.get_sync(uuid2), 1) uuid3 = str(uuid4()) self.assertEquals(broker.get_sync(uuid3), -1) with broker.get() as conn: conn.execute('INSERT INTO test (one) VALUES ("2")') conn.commit() broker.newid(uuid3) self.assertEquals(broker.get_sync(uuid2), 1) self.assertEquals(broker.get_sync(uuid3), 2) self.assertEquals(broker.get_sync(uuid2, incoming=False), -1) self.assertEquals(broker.get_sync(uuid3, incoming=False), -1) broker.merge_syncs([{'sync_point': 1, 'remote_id': uuid2}], incoming=False) self.assertEquals(broker.get_sync(uuid2), 1) self.assertEquals(broker.get_sync(uuid3), 2) self.assertEquals(broker.get_sync(uuid2, incoming=False), 1) self.assertEquals(broker.get_sync(uuid3, incoming=False), -1) broker.merge_syncs([{'sync_point': 2, 'remote_id': uuid3}], incoming=False) self.assertEquals(broker.get_sync(uuid2, incoming=False), 1) self.assertEquals(broker.get_sync(uuid3, incoming=False), 2) def test_merge_syncs(self): broker = DatabaseBroker(':memory:') def stub(*args, **kwargs): pass broker._initialize = stub broker.initialize(normalize_timestamp('1')) uuid2 = str(uuid4()) broker.merge_syncs([{'sync_point': 1, 'remote_id': uuid2}]) self.assertEquals(broker.get_sync(uuid2), 1) uuid3 = str(uuid4()) broker.merge_syncs([{'sync_point': 2, 'remote_id': uuid3}]) self.assertEquals(broker.get_sync(uuid2), 1) self.assertEquals(broker.get_sync(uuid3), 2) self.assertEquals(broker.get_sync(uuid2, incoming=False), -1) self.assertEquals(broker.get_sync(uuid3, incoming=False), -1) broker.merge_syncs([{'sync_point': 3, 'remote_id': uuid2}, {'sync_point': 4, 'remote_id': uuid3}], incoming=False) self.assertEquals(broker.get_sync(uuid2, incoming=False), 3) self.assertEquals(broker.get_sync(uuid3, incoming=False), 4) self.assertEquals(broker.get_sync(uuid2), 1) self.assertEquals(broker.get_sync(uuid3), 2) broker.merge_syncs([{'sync_point': 5, 'remote_id': uuid2}]) self.assertEquals(broker.get_sync(uuid2), 5) def test_get_replication_info(self): self.get_replication_info_tester(metadata=False) def test_get_replication_info_with_metadata(self): self.get_replication_info_tester(metadata=True) def get_replication_info_tester(self, metadata=False): broker = DatabaseBroker(':memory:', account='a') broker.db_type = 'test' broker.db_contains_type = 'test' broker_creation = normalize_timestamp(1) broker_uuid = str(uuid4()) broker_metadata = metadata and simplejson.dumps( {'Test': ('Value', normalize_timestamp(1))}) or '' def _initialize(conn, put_timestamp): if put_timestamp is None: put_timestamp = normalize_timestamp(0) conn.executescript(''' CREATE TABLE test ( ROWID INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT UNIQUE, created_at TEXT ); CREATE TRIGGER test_insert AFTER INSERT ON test BEGIN UPDATE test_stat SET test_count = test_count + 1, hash = chexor(hash, new.name, new.created_at); END; CREATE TRIGGER test_update BEFORE UPDATE ON test BEGIN SELECT RAISE(FAIL, 'UPDATE not allowed; DELETE and INSERT'); END; CREATE TRIGGER test_delete AFTER DELETE ON test BEGIN UPDATE test_stat SET test_count = test_count - 1, hash = chexor(hash, old.name, old.created_at); END; CREATE TABLE test_stat ( account TEXT, created_at TEXT, put_timestamp TEXT DEFAULT '0', delete_timestamp TEXT DEFAULT '0', test_count INTEGER, hash TEXT default '00000000000000000000000000000000', id TEXT %s ); INSERT INTO test_stat (test_count) VALUES (0); ''' % (metadata and ", metadata TEXT DEFAULT ''" or "")) conn.execute(''' UPDATE test_stat SET account = ?, created_at = ?, id = ?, put_timestamp = ? ''', (broker.account, broker_creation, broker_uuid, put_timestamp)) if metadata: conn.execute('UPDATE test_stat SET metadata = ?', (broker_metadata,)) conn.commit() broker._initialize = _initialize put_timestamp = normalize_timestamp(2) broker.initialize(put_timestamp) info = broker.get_replication_info() self.assertEquals(info, {'count': 0, 'hash': '00000000000000000000000000000000', 'created_at': broker_creation, 'put_timestamp': put_timestamp, 'delete_timestamp': '0', 'max_row': -1, 'id': broker_uuid, 'metadata': broker_metadata}) insert_timestamp = normalize_timestamp(3) with broker.get() as conn: conn.execute(''' INSERT INTO test (name, created_at) VALUES ('test', ?) ''', (insert_timestamp,)) conn.commit() info = broker.get_replication_info() self.assertEquals(info, {'count': 1, 'hash': 'bdc4c93f574b0d8c2911a27ce9dd38ba', 'created_at': broker_creation, 'put_timestamp': put_timestamp, 'delete_timestamp': '0', 'max_row': 1, 'id': broker_uuid, 'metadata': broker_metadata}) with broker.get() as conn: conn.execute('DELETE FROM test') conn.commit() info = broker.get_replication_info() self.assertEquals(info, {'count': 0, 'hash': '00000000000000000000000000000000', 'created_at': broker_creation, 'put_timestamp': put_timestamp, 'delete_timestamp': '0', 'max_row': 1, 'id': broker_uuid, 'metadata': broker_metadata}) return broker def test_metadata(self): # Initializes a good broker for us broker = self.get_replication_info_tester(metadata=True) # Add our first item first_timestamp = normalize_timestamp(1) first_value = '1' broker.update_metadata({'First': [first_value, first_timestamp]}) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) # Add our second item second_timestamp = normalize_timestamp(2) second_value = '2' broker.update_metadata({'Second': [second_value, second_timestamp]}) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) self.assert_('Second' in broker.metadata) self.assertEquals(broker.metadata['Second'], [second_value, second_timestamp]) # Update our first item first_timestamp = normalize_timestamp(3) first_value = '1b' broker.update_metadata({'First': [first_value, first_timestamp]}) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) self.assert_('Second' in broker.metadata) self.assertEquals(broker.metadata['Second'], [second_value, second_timestamp]) # Delete our second item (by setting to empty string) second_timestamp = normalize_timestamp(4) second_value = '' broker.update_metadata({'Second': [second_value, second_timestamp]}) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) self.assert_('Second' in broker.metadata) self.assertEquals(broker.metadata['Second'], [second_value, second_timestamp]) # Reclaim at point before second item was deleted broker.reclaim(normalize_timestamp(3)) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) self.assert_('Second' in broker.metadata) self.assertEquals(broker.metadata['Second'], [second_value, second_timestamp]) # Reclaim at point second item was deleted broker.reclaim(normalize_timestamp(4)) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) self.assert_('Second' in broker.metadata) self.assertEquals(broker.metadata['Second'], [second_value, second_timestamp]) # Reclaim after point second item was deleted broker.reclaim(normalize_timestamp(5)) self.assert_('First' in broker.metadata) self.assertEquals(broker.metadata['First'], [first_value, first_timestamp]) self.assert_('Second' not in broker.metadata) class TestContainerBroker(unittest.TestCase): """ Tests for swift.common.db.ContainerBroker """ def test_creation(self): """ Test swift.common.db.ContainerBroker.__init__ """ broker = ContainerBroker(':memory:', account='a', container='c') self.assertEqual(broker.db_file, ':memory:') broker.initialize(normalize_timestamp('1')) with broker.get() as conn: curs = conn.cursor() curs.execute('SELECT 1') self.assertEqual(curs.fetchall()[0][0], 1) def test_exception(self): """ Test swift.common.db.ContainerBroker throwing a conn away after unhandled exception """ first_conn = None broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) with broker.get() as conn: first_conn = conn try: with broker.get() as conn: self.assertEquals(first_conn, conn) raise Exception('OMG') except Exception: pass self.assert_(broker.conn is None) def test_empty(self): """ Test swift.common.db.ContainerBroker.empty """ broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) self.assert_(broker.empty()) broker.put_object('o', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') self.assert_(not broker.empty()) sleep(.00001) broker.delete_object('o', normalize_timestamp(time())) self.assert_(broker.empty()) def test_reclaim(self): broker = ContainerBroker(':memory:', account='test_account', container='test_container') broker.initialize(normalize_timestamp('1')) broker.put_object('o', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 1) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 0) broker.reclaim(normalize_timestamp(time() - 999), time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 1) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 0) sleep(.00001) broker.delete_object('o', normalize_timestamp(time())) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 1) broker.reclaim(normalize_timestamp(time() - 999), time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 1) sleep(.00001) broker.reclaim(normalize_timestamp(time()), time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 0) # Test the return values of reclaim() broker.put_object('w', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('x', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('y', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('z', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') # Test before deletion res = broker.reclaim(normalize_timestamp(time()), time()) broker.delete_db(normalize_timestamp(time())) def test_delete_object(self): """ Test swift.common.db.ContainerBroker.delete_object """ broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) broker.put_object('o', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 1) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 0) sleep(.00001) broker.delete_object('o', normalize_timestamp(time())) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM object " "WHERE deleted = 1").fetchone()[0], 1) def test_put_object(self): """ Test swift.common.db.ContainerBroker.put_object """ broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) # Create initial object timestamp = normalize_timestamp(time()) broker.put_object('"{<object \'&\' name>}"', timestamp, 123, 'application/x-test', '5af83e3196bf99f440f31f2e1a6c9afe') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 123) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], '5af83e3196bf99f440f31f2e1a6c9afe') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # Reput same event broker.put_object('"{<object \'&\' name>}"', timestamp, 123, 'application/x-test', '5af83e3196bf99f440f31f2e1a6c9afe') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 123) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], '5af83e3196bf99f440f31f2e1a6c9afe') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # Put new event sleep(.00001) timestamp = normalize_timestamp(time()) broker.put_object('"{<object \'&\' name>}"', timestamp, 124, 'application/x-test', 'aa0749bacbc79ec65fe206943d8fe449') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 124) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], 'aa0749bacbc79ec65fe206943d8fe449') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # Put old event otimestamp = normalize_timestamp(float(timestamp) - 1) broker.put_object('"{<object \'&\' name>}"', otimestamp, 124, 'application/x-test', 'aa0749bacbc79ec65fe206943d8fe449') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 124) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], 'aa0749bacbc79ec65fe206943d8fe449') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # Put old delete event dtimestamp = normalize_timestamp(float(timestamp) - 1) broker.put_object('"{<object \'&\' name>}"', dtimestamp, 0, '', '', deleted=1) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 124) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], 'aa0749bacbc79ec65fe206943d8fe449') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # Put new delete event sleep(.00001) timestamp = normalize_timestamp(time()) broker.put_object('"{<object \'&\' name>}"', timestamp, 0, '', '', deleted=1) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 1) # Put new event sleep(.00001) timestamp = normalize_timestamp(time()) broker.put_object('"{<object \'&\' name>}"', timestamp, 123, 'application/x-test', '5af83e3196bf99f440f31f2e1a6c9afe') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 123) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], '5af83e3196bf99f440f31f2e1a6c9afe') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # We'll use this later sleep(.0001) in_between_timestamp = normalize_timestamp(time()) # New post event sleep(.0001) previous_timestamp = timestamp timestamp = normalize_timestamp(time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], previous_timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 123) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], '5af83e3196bf99f440f31f2e1a6c9afe') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) # Put event from after last put but before last post timestamp = in_between_timestamp broker.put_object('"{<object \'&\' name>}"', timestamp, 456, 'application/x-test3', '6af83e3196bf99f440f31f2e1a6c9afe') with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM object").fetchone()[0], '"{<object \'&\' name>}"') self.assertEquals(conn.execute( "SELECT created_at FROM object").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT size FROM object").fetchone()[0], 456) self.assertEquals(conn.execute( "SELECT content_type FROM object").fetchone()[0], 'application/x-test3') self.assertEquals(conn.execute( "SELECT etag FROM object").fetchone()[0], '6af83e3196bf99f440f31f2e1a6c9afe') self.assertEquals(conn.execute( "SELECT deleted FROM object").fetchone()[0], 0) def test_get_info(self): """ Test swift.common.db.ContainerBroker.get_info """ broker = ContainerBroker(':memory:', account='test1', container='test2') broker.initialize(normalize_timestamp('1')) info = broker.get_info() self.assertEquals(info['account'], 'test1') self.assertEquals(info['container'], 'test2') self.assertEquals(info['hash'], '00000000000000000000000000000000') info = broker.get_info() self.assertEquals(info['object_count'], 0) self.assertEquals(info['bytes_used'], 0) broker.put_object('o1', normalize_timestamp(time()), 123, 'text/plain', '5af83e3196bf99f440f31f2e1a6c9afe') info = broker.get_info() self.assertEquals(info['object_count'], 1) self.assertEquals(info['bytes_used'], 123) sleep(.00001) broker.put_object('o2', normalize_timestamp(time()), 123, 'text/plain', '5af83e3196bf99f440f31f2e1a6c9afe') info = broker.get_info() self.assertEquals(info['object_count'], 2) self.assertEquals(info['bytes_used'], 246) sleep(.00001) broker.put_object('o2', normalize_timestamp(time()), 1000, 'text/plain', '5af83e3196bf99f440f31f2e1a6c9afe') info = broker.get_info() self.assertEquals(info['object_count'], 2) self.assertEquals(info['bytes_used'], 1123) sleep(.00001) broker.delete_object('o1', normalize_timestamp(time())) info = broker.get_info() self.assertEquals(info['object_count'], 1) self.assertEquals(info['bytes_used'], 1000) sleep(.00001) broker.delete_object('o2', normalize_timestamp(time())) info = broker.get_info() self.assertEquals(info['object_count'], 0) self.assertEquals(info['bytes_used'], 0) info = broker.get_info() self.assertEquals(info['x_container_sync_point1'], -1) self.assertEquals(info['x_container_sync_point2'], -1) def test_set_x_syncs(self): broker = ContainerBroker(':memory:', account='test1', container='test2') broker.initialize(normalize_timestamp('1')) info = broker.get_info() self.assertEquals(info['x_container_sync_point1'], -1) self.assertEquals(info['x_container_sync_point2'], -1) broker.set_x_container_sync_points(1, 2) info = broker.get_info() self.assertEquals(info['x_container_sync_point1'], 1) self.assertEquals(info['x_container_sync_point2'], 2) def test_get_report_info(self): broker = ContainerBroker(':memory:', account='test1', container='test2') broker.initialize(normalize_timestamp('1')) info = broker.get_info() self.assertEquals(info['account'], 'test1') self.assertEquals(info['container'], 'test2') self.assertEquals(info['object_count'], 0) self.assertEquals(info['bytes_used'], 0) self.assertEquals(info['reported_object_count'], 0) self.assertEquals(info['reported_bytes_used'], 0) broker.put_object('o1', normalize_timestamp(time()), 123, 'text/plain', '5af83e3196bf99f440f31f2e1a6c9afe') info = broker.get_info() self.assertEquals(info['object_count'], 1) self.assertEquals(info['bytes_used'], 123) self.assertEquals(info['reported_object_count'], 0) self.assertEquals(info['reported_bytes_used'], 0) sleep(.00001) broker.put_object('o2', normalize_timestamp(time()), 123, 'text/plain', '5af83e3196bf99f440f31f2e1a6c9afe') info = broker.get_info() self.assertEquals(info['object_count'], 2) self.assertEquals(info['bytes_used'], 246) self.assertEquals(info['reported_object_count'], 0) self.assertEquals(info['reported_bytes_used'], 0) sleep(.00001) broker.put_object('o2', normalize_timestamp(time()), 1000, 'text/plain', '5af83e3196bf99f440f31f2e1a6c9afe') info = broker.get_info() self.assertEquals(info['object_count'], 2) self.assertEquals(info['bytes_used'], 1123) self.assertEquals(info['reported_object_count'], 0) self.assertEquals(info['reported_bytes_used'], 0) put_timestamp = normalize_timestamp(time()) sleep(.001) delete_timestamp = normalize_timestamp(time()) broker.reported(put_timestamp, delete_timestamp, 2, 1123) info = broker.get_info() self.assertEquals(info['object_count'], 2) self.assertEquals(info['bytes_used'], 1123) self.assertEquals(info['reported_put_timestamp'], put_timestamp) self.assertEquals(info['reported_delete_timestamp'], delete_timestamp) self.assertEquals(info['reported_object_count'], 2) self.assertEquals(info['reported_bytes_used'], 1123) sleep(.00001) broker.delete_object('o1', normalize_timestamp(time())) info = broker.get_info() self.assertEquals(info['object_count'], 1) self.assertEquals(info['bytes_used'], 1000) self.assertEquals(info['reported_object_count'], 2) self.assertEquals(info['reported_bytes_used'], 1123) sleep(.00001) broker.delete_object('o2', normalize_timestamp(time())) info = broker.get_info() self.assertEquals(info['object_count'], 0) self.assertEquals(info['bytes_used'], 0) self.assertEquals(info['reported_object_count'], 2) self.assertEquals(info['reported_bytes_used'], 1123) def test_list_objects_iter(self): """ Test swift.common.db.ContainerBroker.list_objects_iter """ broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) for obj1 in xrange(4): for obj2 in xrange(125): broker.put_object('%d/%04d' % (obj1, obj2), normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') for obj in xrange(125): broker.put_object('2/0051/%04d' % obj, normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') for obj in xrange(125): broker.put_object('3/%04d/0049' % obj, normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') listing = broker.list_objects_iter(100, '', None, None, '') self.assertEquals(len(listing), 100) self.assertEquals(listing[0][0], '0/0000') self.assertEquals(listing[-1][0], '0/0099') listing = broker.list_objects_iter(100, '', '0/0050', None, '') self.assertEquals(len(listing), 50) self.assertEquals(listing[0][0], '0/0000') self.assertEquals(listing[-1][0], '0/0049') listing = broker.list_objects_iter(100, '0/0099', None, None, '') self.assertEquals(len(listing), 100) self.assertEquals(listing[0][0], '0/0100') self.assertEquals(listing[-1][0], '1/0074') listing = broker.list_objects_iter(55, '1/0074', None, None, '') self.assertEquals(len(listing), 55) self.assertEquals(listing[0][0], '1/0075') self.assertEquals(listing[-1][0], '2/0004') listing = broker.list_objects_iter(10, '', None, '0/01', '') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '0/0100') self.assertEquals(listing[-1][0], '0/0109') listing = broker.list_objects_iter(10, '', None, '0/', '/') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '0/0000') self.assertEquals(listing[-1][0], '0/0009') listing = broker.list_objects_iter(10, '', None, '', '/') self.assertEquals(len(listing), 4) self.assertEquals([row[0] for row in listing], ['0/', '1/', '2/', '3/']) listing = broker.list_objects_iter(10, '2', None, None, '/') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['2/', '3/']) listing = broker.list_objects_iter(10, '2/',None, None, '/') self.assertEquals(len(listing), 1) self.assertEquals([row[0] for row in listing], ['3/']) listing = broker.list_objects_iter(10, '2/0050', None, '2/', '/') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '2/0051') self.assertEquals(listing[1][0], '2/0051/') self.assertEquals(listing[2][0], '2/0052') self.assertEquals(listing[-1][0], '2/0059') listing = broker.list_objects_iter(10, '3/0045', None, '3/', '/') self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['3/0045/', '3/0046', '3/0046/', '3/0047', '3/0047/', '3/0048', '3/0048/', '3/0049', '3/0049/', '3/0050']) broker.put_object('3/0049/', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') listing = broker.list_objects_iter(10, '3/0048', None, None, None) self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['3/0048/0049', '3/0049', '3/0049/', '3/0049/0049', '3/0050', '3/0050/0049', '3/0051', '3/0051/0049', '3/0052', '3/0052/0049']) listing = broker.list_objects_iter(10, '3/0048', None, '3/', '/') self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['3/0048/', '3/0049', '3/0049/', '3/0050', '3/0050/', '3/0051', '3/0051/', '3/0052', '3/0052/', '3/0053']) listing = broker.list_objects_iter(10, None, None, '3/0049/', '/') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['3/0049/', '3/0049/0049']) listing = broker.list_objects_iter(10, None, None, None, None, '3/0049') self.assertEquals(len(listing), 1) self.assertEquals([row[0] for row in listing], ['3/0049/0049']) listing = broker.list_objects_iter(2, None, None, '3/', '/') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['3/0000', '3/0000/']) listing = broker.list_objects_iter(2, None, None, None, None, '3') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['3/0000', '3/0001']) def test_list_objects_iter_prefix_delim(self): """ Test swift.common.db.ContainerBroker.list_objects_iter """ broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) broker.put_object('/pets/dogs/1', normalize_timestamp(0), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('/pets/dogs/2', normalize_timestamp(0), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('/pets/fish/a', normalize_timestamp(0), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('/pets/fish/b', normalize_timestamp(0), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('/pets/fish_info.txt', normalize_timestamp(0), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('/snakes', normalize_timestamp(0), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') #def list_objects_iter(self, limit, marker, prefix, delimiter, path=None, # format=None): listing = broker.list_objects_iter(100, None, None, '/pets/f', '/') self.assertEquals([row[0] for row in listing], ['/pets/fish/', '/pets/fish_info.txt']) listing = broker.list_objects_iter(100, None, None, '/pets/fish', '/') self.assertEquals([row[0] for row in listing], ['/pets/fish/', '/pets/fish_info.txt']) listing = broker.list_objects_iter(100, None, None, '/pets/fish/', '/') self.assertEquals([row[0] for row in listing], ['/pets/fish/a', '/pets/fish/b']) def test_double_check_trailing_delimiter(self): """ Test swift.common.db.ContainerBroker.list_objects_iter for a container that has an odd file with a trailing delimiter """ broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) broker.put_object('a', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('a/', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('a/a', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('a/a/a', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('a/a/b', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('a/b', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('b', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('b/a', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('b/b', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('c', normalize_timestamp(time()), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') listing = broker.list_objects_iter(15, None, None, None, None) self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['a', 'a/', 'a/a', 'a/a/a', 'a/a/b', 'a/b', 'b', 'b/a', 'b/b', 'c']) listing = broker.list_objects_iter(15, None, None, '', '/') self.assertEquals(len(listing), 5) self.assertEquals([row[0] for row in listing], ['a', 'a/', 'b', 'b/', 'c']) listing = broker.list_objects_iter(15, None, None, 'a/', '/') self.assertEquals(len(listing), 4) self.assertEquals([row[0] for row in listing], ['a/', 'a/a', 'a/a/', 'a/b']) listing = broker.list_objects_iter(15, None, None, 'b/', '/') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['b/a', 'b/b']) def test_chexor(self): broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) broker.put_object('a', normalize_timestamp(1), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker.put_object('b', normalize_timestamp(2), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') hasha = hashlib.md5('%s-%s' % ('a', '0000000001.00000')).digest() hashb = hashlib.md5('%s-%s' % ('b', '0000000002.00000')).digest() hashc = ''.join(('%2x' % (ord(a)^ord(b)) for a, b in zip(hasha, hashb))) self.assertEquals(broker.get_info()['hash'], hashc) broker.put_object('b', normalize_timestamp(3), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') hashb = hashlib.md5('%s-%s' % ('b', '0000000003.00000')).digest() hashc = ''.join(('%02x' % (ord(a)^ord(b)) for a, b in zip(hasha, hashb))) self.assertEquals(broker.get_info()['hash'], hashc) def test_newid(self): """test DatabaseBroker.newid""" broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) id = broker.get_info()['id'] broker.newid('someid') self.assertNotEquals(id, broker.get_info()['id']) def test_get_items_since(self): """test DatabaseBroker.get_items_since""" broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) broker.put_object('a', normalize_timestamp(1), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') max_row = broker.get_replication_info()['max_row'] broker.put_object('b', normalize_timestamp(2), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') items = broker.get_items_since(max_row, 1000) self.assertEquals(len(items), 1) self.assertEquals(items[0]['name'], 'b') def test_sync_merging(self): """ exercise the DatabaseBroker sync functions a bit """ broker1 = ContainerBroker(':memory:', account='a', container='c') broker1.initialize(normalize_timestamp('1')) broker2 = ContainerBroker(':memory:', account='a', container='c') broker2.initialize(normalize_timestamp('1')) self.assertEquals(broker2.get_sync('12345'), -1) broker1.merge_syncs([{'sync_point': 3, 'remote_id': '12345'}]) broker2.merge_syncs(broker1.get_syncs()) self.assertEquals(broker2.get_sync('12345'), 3) def test_merge_items(self): broker1 = ContainerBroker(':memory:', account='a', container='c') broker1.initialize(normalize_timestamp('1')) broker2 = ContainerBroker(':memory:', account='a', container='c') broker2.initialize(normalize_timestamp('1')) broker1.put_object('a', normalize_timestamp(1), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker1.put_object('b', normalize_timestamp(2), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') id = broker1.get_info()['id'] broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(len(items), 2) self.assertEquals(['a', 'b'], sorted([rec['name'] for rec in items])) broker1.put_object('c', normalize_timestamp(3), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(len(items), 3) self.assertEquals(['a', 'b', 'c'], sorted([rec['name'] for rec in items])) def test_merge_items_overwrite(self): """test DatabaseBroker.merge_items""" broker1 = ContainerBroker(':memory:', account='a', container='c') broker1.initialize(normalize_timestamp('1')) id = broker1.get_info()['id'] broker2 = ContainerBroker(':memory:', account='a', container='c') broker2.initialize(normalize_timestamp('1')) broker1.put_object('a', normalize_timestamp(2), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker1.put_object('b', normalize_timestamp(3), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) broker1.put_object('a', normalize_timestamp(4), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(['a', 'b'], sorted([rec['name'] for rec in items])) for rec in items: if rec['name'] == 'a': self.assertEquals(rec['created_at'], normalize_timestamp(4)) if rec['name'] == 'b': self.assertEquals(rec['created_at'], normalize_timestamp(3)) def test_merge_items_post_overwrite_out_of_order(self): """test DatabaseBroker.merge_items""" broker1 = ContainerBroker(':memory:', account='a', container='c') broker1.initialize(normalize_timestamp('1')) id = broker1.get_info()['id'] broker2 = ContainerBroker(':memory:', account='a', container='c') broker2.initialize(normalize_timestamp('1')) broker1.put_object('a', normalize_timestamp(2), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker1.put_object('b', normalize_timestamp(3), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) broker1.put_object('a', normalize_timestamp(4), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(['a', 'b'], sorted([rec['name'] for rec in items])) for rec in items: if rec['name'] == 'a': self.assertEquals(rec['created_at'], normalize_timestamp(4)) if rec['name'] == 'b': self.assertEquals(rec['created_at'], normalize_timestamp(3)) self.assertEquals(rec['content_type'], 'text/plain') items = broker2.get_items_since(-1, 1000) self.assertEquals(['a', 'b'], sorted([rec['name'] for rec in items])) for rec in items: if rec['name'] == 'a': self.assertEquals(rec['created_at'], normalize_timestamp(4)) if rec['name'] == 'b': self.assertEquals(rec['created_at'], normalize_timestamp(3)) broker1.put_object('b', normalize_timestamp(5), 0, 'text/plain', 'd41d8cd98f00b204e9800998ecf8427e') broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(['a', 'b'], sorted([rec['name'] for rec in items])) for rec in items: if rec['name'] == 'a': self.assertEquals(rec['created_at'], normalize_timestamp(4)) if rec['name'] == 'b': self.assertEquals(rec['created_at'], normalize_timestamp(5)) self.assertEquals(rec['content_type'], 'text/plain') def premetadata_create_container_stat_table(self, conn, put_timestamp=None): """ Copied from swift.common.db.ContainerBroker before the metadata column was added; used for testing with TestContainerBrokerBeforeMetadata. Create the container_stat table which is specifc to the container DB. :param conn: DB connection object :param put_timestamp: put timestamp """ if put_timestamp is None: put_timestamp = normalize_timestamp(0) conn.executescript(""" CREATE TABLE container_stat ( account TEXT, container TEXT, created_at TEXT, put_timestamp TEXT DEFAULT '0', delete_timestamp TEXT DEFAULT '0', object_count INTEGER, bytes_used INTEGER, reported_put_timestamp TEXT DEFAULT '0', reported_delete_timestamp TEXT DEFAULT '0', reported_object_count INTEGER DEFAULT 0, reported_bytes_used INTEGER DEFAULT 0, hash TEXT default '00000000000000000000000000000000', id TEXT, status TEXT DEFAULT '', status_changed_at TEXT DEFAULT '0' ); INSERT INTO container_stat (object_count, bytes_used) VALUES (0, 0); """) conn.execute(''' UPDATE container_stat SET account = ?, container = ?, created_at = ?, id = ?, put_timestamp = ? ''', (self.account, self.container, normalize_timestamp(time()), str(uuid4()), put_timestamp)) class TestContainerBrokerBeforeMetadata(TestContainerBroker): """ Tests for swift.common.db.ContainerBroker against databases created before the metadata column was added. """ def setUp(self): self._imported_create_container_stat_table = \ ContainerBroker.create_container_stat_table ContainerBroker.create_container_stat_table = \ premetadata_create_container_stat_table broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) exc = None with broker.get() as conn: try: conn.execute('SELECT metadata FROM container_stat') except BaseException, err: exc = err self.assert_('no such column: metadata' in str(exc)) def tearDown(self): ContainerBroker.create_container_stat_table = \ self._imported_create_container_stat_table broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) with broker.get() as conn: conn.execute('SELECT metadata FROM container_stat') def prexsync_create_container_stat_table(self, conn, put_timestamp=None): """ Copied from swift.common.db.ContainerBroker before the x_container_sync_point[12] columns were added; used for testing with TestContainerBrokerBeforeXSync. Create the container_stat table which is specifc to the container DB. :param conn: DB connection object :param put_timestamp: put timestamp """ if put_timestamp is None: put_timestamp = normalize_timestamp(0) conn.executescript(""" CREATE TABLE container_stat ( account TEXT, container TEXT, created_at TEXT, put_timestamp TEXT DEFAULT '0', delete_timestamp TEXT DEFAULT '0', object_count INTEGER, bytes_used INTEGER, reported_put_timestamp TEXT DEFAULT '0', reported_delete_timestamp TEXT DEFAULT '0', reported_object_count INTEGER DEFAULT 0, reported_bytes_used INTEGER DEFAULT 0, hash TEXT default '00000000000000000000000000000000', id TEXT, status TEXT DEFAULT '', status_changed_at TEXT DEFAULT '0', metadata TEXT DEFAULT '' ); INSERT INTO container_stat (object_count, bytes_used) VALUES (0, 0); """) conn.execute(''' UPDATE container_stat SET account = ?, container = ?, created_at = ?, id = ?, put_timestamp = ? ''', (self.account, self.container, normalize_timestamp(time()), str(uuid4()), put_timestamp)) class TestContainerBrokerBeforeXSync(TestContainerBroker): """ Tests for swift.common.db.ContainerBroker against databases created before the x_container_sync_point[12] columns were added. """ def setUp(self): self._imported_create_container_stat_table = \ ContainerBroker.create_container_stat_table ContainerBroker.create_container_stat_table = \ prexsync_create_container_stat_table broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) exc = None with broker.get() as conn: try: conn.execute('''SELECT x_container_sync_point1 FROM container_stat''') except BaseException, err: exc = err self.assert_('no such column: x_container_sync_point1' in str(exc)) def tearDown(self): ContainerBroker.create_container_stat_table = \ self._imported_create_container_stat_table broker = ContainerBroker(':memory:', account='a', container='c') broker.initialize(normalize_timestamp('1')) with broker.get() as conn: conn.execute('SELECT x_container_sync_point1 FROM container_stat') class TestAccountBroker(unittest.TestCase): """ Tests for swift.common.db.AccountBroker """ def test_creation(self): """ Test swift.common.db.AccountBroker.__init__ """ broker = AccountBroker(':memory:', account='a') self.assertEqual(broker.db_file, ':memory:') got_exc = False try: with broker.get() as conn: pass except Exception: got_exc = True self.assert_(got_exc) broker.initialize(normalize_timestamp('1')) with broker.get() as conn: curs = conn.cursor() curs.execute('SELECT 1') self.assertEqual(curs.fetchall()[0][0], 1) def test_exception(self): """ Test swift.common.db.AccountBroker throwing a conn away after exception """ first_conn = None broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) with broker.get() as conn: first_conn = conn try: with broker.get() as conn: self.assertEquals(first_conn, conn) raise Exception('OMG') except Exception: pass self.assert_(broker.conn is None) def test_empty(self): """ Test swift.common.db.AccountBroker.empty """ broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) self.assert_(broker.empty()) broker.put_container('o', normalize_timestamp(time()), 0, 0, 0) self.assert_(not broker.empty()) sleep(.00001) broker.put_container('o', 0, normalize_timestamp(time()), 0, 0) self.assert_(broker.empty()) def test_reclaim(self): broker = AccountBroker(':memory:', account='test_account') broker.initialize(normalize_timestamp('1')) broker.put_container('c', normalize_timestamp(time()), 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 1) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 0) broker.reclaim(normalize_timestamp(time() - 999), time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 1) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 0) sleep(.00001) broker.put_container('c', 0, normalize_timestamp(time()), 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 1) broker.reclaim(normalize_timestamp(time() - 999), time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 1) sleep(.00001) broker.reclaim(normalize_timestamp(time()), time()) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 0) # Test reclaim after deletion. Create 3 test containers broker.put_container('x', 0, 0, 0, 0) broker.put_container('y', 0, 0, 0, 0) broker.put_container('z', 0, 0, 0, 0) res = broker.reclaim(normalize_timestamp(time()), time()) # self.assertEquals(len(res), 2) # self.assert_(isinstance(res, tuple)) # containers, account_name = res # self.assert_(containers is None) # self.assert_(account_name is None) # Now delete the account broker.delete_db(normalize_timestamp(time())) res = broker.reclaim(normalize_timestamp(time()), time()) # self.assertEquals(len(res), 2) # self.assert_(isinstance(res, tuple)) # containers, account_name = res # self.assertEquals(account_name, 'test_account') # self.assertEquals(len(containers), 3) # self.assert_('x' in containers) # self.assert_('y' in containers) # self.assert_('z' in containers) # self.assert_('a' not in containers) def test_delete_container(self): """ Test swift.common.db.AccountBroker.delete_container """ broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) broker.put_container('o', normalize_timestamp(time()), 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 1) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 0) sleep(.00001) broker.put_container('o', 0, normalize_timestamp(time()), 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 0").fetchone()[0], 0) self.assertEquals(conn.execute( "SELECT count(*) FROM container " "WHERE deleted = 1").fetchone()[0], 1) def test_get_container_timestamp(self): """ Test swift.common.db.AccountBroker.get_container_timestamp """ broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) # Create initial container timestamp = normalize_timestamp(time()) broker.put_container('container_name', timestamp, 0, 0, 0) # test extant map ts = broker.get_container_timestamp('container_name') self.assertEquals(ts, timestamp) # test missing map ts = broker.get_container_timestamp('something else') self.assertEquals(ts, None) def test_put_container(self): """ Test swift.common.db.AccountBroker.put_container """ broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) # Create initial container timestamp = normalize_timestamp(time()) broker.put_container('"{<container \'&\' name>}"', timestamp, 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT put_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 0) # Reput same event broker.put_container('"{<container \'&\' name>}"', timestamp, 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT put_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 0) # Put new event sleep(.00001) timestamp = normalize_timestamp(time()) broker.put_container('"{<container \'&\' name>}"', timestamp, 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT put_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 0) # Put old event otimestamp = normalize_timestamp(float(timestamp) - 1) broker.put_container('"{<container \'&\' name>}"', otimestamp, 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT put_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 0) # Put old delete event dtimestamp = normalize_timestamp(float(timestamp) - 1) broker.put_container('"{<container \'&\' name>}"', 0, dtimestamp, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT put_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT delete_timestamp FROM container").fetchone()[0], dtimestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 0) # Put new delete event sleep(.00001) timestamp = normalize_timestamp(time()) broker.put_container('"{<container \'&\' name>}"', 0, timestamp, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT delete_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 1) # Put new event sleep(.00001) timestamp = normalize_timestamp(time()) broker.put_container('"{<container \'&\' name>}"', timestamp, 0, 0, 0) with broker.get() as conn: self.assertEquals(conn.execute( "SELECT name FROM container").fetchone()[0], '"{<container \'&\' name>}"') self.assertEquals(conn.execute( "SELECT put_timestamp FROM container").fetchone()[0], timestamp) self.assertEquals(conn.execute( "SELECT deleted FROM container").fetchone()[0], 0) def test_get_info(self): """ Test swift.common.db.AccountBroker.get_info """ broker = AccountBroker(':memory:', account='test1') broker.initialize(normalize_timestamp('1')) info = broker.get_info() self.assertEquals(info['account'], 'test1') self.assertEquals(info['hash'], '00000000000000000000000000000000') info = broker.get_info() self.assertEquals(info['container_count'], 0) broker.put_container('c1', normalize_timestamp(time()), 0, 0, 0) info = broker.get_info() self.assertEquals(info['container_count'], 1) sleep(.00001) broker.put_container('c2', normalize_timestamp(time()), 0, 0, 0) info = broker.get_info() self.assertEquals(info['container_count'], 2) sleep(.00001) broker.put_container('c2', normalize_timestamp(time()), 0, 0, 0) info = broker.get_info() self.assertEquals(info['container_count'], 2) sleep(.00001) broker.put_container('c1', 0, normalize_timestamp(time()), 0, 0) info = broker.get_info() self.assertEquals(info['container_count'], 1) sleep(.00001) broker.put_container('c2', 0, normalize_timestamp(time()), 0, 0) info = broker.get_info() self.assertEquals(info['container_count'], 0) def test_list_containers_iter(self): """ Test swift.common.db.AccountBroker.list_containers_iter """ broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) for cont1 in xrange(4): for cont2 in xrange(125): broker.put_container('%d/%04d' % (cont1, cont2), normalize_timestamp(time()), 0, 0, 0) for cont in xrange(125): broker.put_container('2/0051/%04d' % cont, normalize_timestamp(time()), 0, 0, 0) for cont in xrange(125): broker.put_container('3/%04d/0049' % cont, normalize_timestamp(time()), 0, 0, 0) listing = broker.list_containers_iter(100, '', None, None, '') self.assertEquals(len(listing), 100) self.assertEquals(listing[0][0], '0/0000') self.assertEquals(listing[-1][0], '0/0099') listing = broker.list_containers_iter(100, '', '0/0050', None, '') self.assertEquals(len(listing), 51) self.assertEquals(listing[0][0], '0/0000') self.assertEquals(listing[-1][0], '0/0050') listing = broker.list_containers_iter(100, '0/0099', None, None, '') self.assertEquals(len(listing), 100) self.assertEquals(listing[0][0], '0/0100') self.assertEquals(listing[-1][0], '1/0074') listing = broker.list_containers_iter(55, '1/0074', None, None, '') self.assertEquals(len(listing), 55) self.assertEquals(listing[0][0], '1/0075') self.assertEquals(listing[-1][0], '2/0004') listing = broker.list_containers_iter(10, '', None, '0/01', '') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '0/0100') self.assertEquals(listing[-1][0], '0/0109') listing = broker.list_containers_iter(10, '', None, '0/01', '/') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '0/0100') self.assertEquals(listing[-1][0], '0/0109') listing = broker.list_containers_iter(10, '', None, '0/', '/') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '0/0000') self.assertEquals(listing[-1][0], '0/0009') listing = broker.list_containers_iter(10, '', None, '', '/') self.assertEquals(len(listing), 4) self.assertEquals([row[0] for row in listing], ['0/', '1/', '2/', '3/']) listing = broker.list_containers_iter(10, '2/', None, None, '/') self.assertEquals(len(listing), 1) self.assertEquals([row[0] for row in listing], ['3/']) listing = broker.list_containers_iter(10, '', None, '2', '/') self.assertEquals(len(listing), 1) self.assertEquals([row[0] for row in listing], ['2/']) listing = broker.list_containers_iter(10, '2/0050', None, '2/', '/') self.assertEquals(len(listing), 10) self.assertEquals(listing[0][0], '2/0051') self.assertEquals(listing[1][0], '2/0051/') self.assertEquals(listing[2][0], '2/0052') self.assertEquals(listing[-1][0], '2/0059') listing = broker.list_containers_iter(10, '3/0045', None, '3/', '/') self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['3/0045/', '3/0046', '3/0046/', '3/0047', '3/0047/', '3/0048', '3/0048/', '3/0049', '3/0049/', '3/0050']) broker.put_container('3/0049/', normalize_timestamp(time()), 0, 0, 0) listing = broker.list_containers_iter(10, '3/0048', None, None, None) self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['3/0048/0049', '3/0049', '3/0049/', '3/0049/0049', '3/0050', '3/0050/0049', '3/0051', '3/0051/0049', '3/0052', '3/0052/0049']) listing = broker.list_containers_iter(10, '3/0048', None, '3/', '/') self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['3/0048/', '3/0049', '3/0049/', '3/0050', '3/0050/', '3/0051', '3/0051/', '3/0052', '3/0052/', '3/0053']) listing = broker.list_containers_iter(10, None, None, '3/0049/', '/') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['3/0049/', '3/0049/0049']) def test_double_check_trailing_delimiter(self): """ Test swift.common.db.AccountBroker.list_containers_iter for an account that has an odd file with a trailing delimiter """ broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) broker.put_container('a', normalize_timestamp(time()), 0, 0, 0) broker.put_container('a/', normalize_timestamp(time()), 0, 0, 0) broker.put_container('a/a', normalize_timestamp(time()), 0, 0, 0) broker.put_container('a/a/a', normalize_timestamp(time()), 0, 0, 0) broker.put_container('a/a/b', normalize_timestamp(time()), 0, 0, 0) broker.put_container('a/b', normalize_timestamp(time()), 0, 0, 0) broker.put_container('b', normalize_timestamp(time()), 0, 0, 0) broker.put_container('b/a', normalize_timestamp(time()), 0, 0, 0) broker.put_container('b/b', normalize_timestamp(time()), 0, 0, 0) broker.put_container('c', normalize_timestamp(time()), 0, 0, 0) listing = broker.list_containers_iter(15, None, None, None, None) self.assertEquals(len(listing), 10) self.assertEquals([row[0] for row in listing], ['a', 'a/', 'a/a', 'a/a/a', 'a/a/b', 'a/b', 'b', 'b/a', 'b/b', 'c']) listing = broker.list_containers_iter(15, None, None, '', '/') self.assertEquals(len(listing), 5) self.assertEquals([row[0] for row in listing], ['a', 'a/', 'b', 'b/', 'c']) listing = broker.list_containers_iter(15, None, None, 'a/', '/') self.assertEquals(len(listing), 4) self.assertEquals([row[0] for row in listing], ['a/', 'a/a', 'a/a/', 'a/b']) listing = broker.list_containers_iter(15, None, None, 'b/', '/') self.assertEquals(len(listing), 2) self.assertEquals([row[0] for row in listing], ['b/a', 'b/b']) def test_chexor(self): broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) broker.put_container('a', normalize_timestamp(1), normalize_timestamp(0), 0, 0) broker.put_container('b', normalize_timestamp(2), normalize_timestamp(0), 0, 0) hasha = hashlib.md5('%s-%s' % ('a', '0000000001.00000-0000000000.00000-0-0') ).digest() hashb = hashlib.md5('%s-%s' % ('b', '0000000002.00000-0000000000.00000-0-0') ).digest() hashc = \ ''.join(('%02x' % (ord(a)^ord(b)) for a, b in zip(hasha, hashb))) self.assertEquals(broker.get_info()['hash'], hashc) broker.put_container('b', normalize_timestamp(3), normalize_timestamp(0), 0, 0) hashb = hashlib.md5('%s-%s' % ('b', '0000000003.00000-0000000000.00000-0-0') ).digest() hashc = \ ''.join(('%02x' % (ord(a)^ord(b)) for a, b in zip(hasha, hashb))) self.assertEquals(broker.get_info()['hash'], hashc) def test_merge_items(self): broker1 = AccountBroker(':memory:', account='a') broker1.initialize(normalize_timestamp('1')) broker2 = AccountBroker(':memory:', account='a') broker2.initialize(normalize_timestamp('1')) broker1.put_container('a', normalize_timestamp(1), 0, 0, 0) broker1.put_container('b', normalize_timestamp(2), 0, 0, 0) id = broker1.get_info()['id'] broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(len(items), 2) self.assertEquals(['a', 'b'], sorted([rec['name'] for rec in items])) broker1.put_container('c', normalize_timestamp(3), 0, 0, 0) broker2.merge_items(broker1.get_items_since( broker2.get_sync(id), 1000), id) items = broker2.get_items_since(-1, 1000) self.assertEquals(len(items), 3) self.assertEquals(['a', 'b', 'c'], sorted([rec['name'] for rec in items])) def premetadata_create_account_stat_table(self, conn, put_timestamp): """ Copied from swift.common.db.AccountBroker before the metadata column was added; used for testing with TestAccountBrokerBeforeMetadata. Create account_stat table which is specific to the account DB. :param conn: DB connection object :param put_timestamp: put timestamp """ conn.executescript(""" CREATE TABLE account_stat ( account TEXT, created_at TEXT, put_timestamp TEXT DEFAULT '0', delete_timestamp TEXT DEFAULT '0', container_count INTEGER, object_count INTEGER DEFAULT 0, bytes_used INTEGER DEFAULT 0, hash TEXT default '00000000000000000000000000000000', id TEXT, status TEXT DEFAULT '', status_changed_at TEXT DEFAULT '0' ); INSERT INTO account_stat (container_count) VALUES (0); """) conn.execute(''' UPDATE account_stat SET account = ?, created_at = ?, id = ?, put_timestamp = ? ''', (self.account, normalize_timestamp(time()), str(uuid4()), put_timestamp)) class TestAccountBrokerBeforeMetadata(TestAccountBroker): """ Tests for swift.common.db.AccountBroker against databases created before the metadata column was added. """ def setUp(self): self._imported_create_account_stat_table = \ AccountBroker.create_account_stat_table AccountBroker.create_account_stat_table = \ premetadata_create_account_stat_table broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) exc = None with broker.get() as conn: try: conn.execute('SELECT metadata FROM account_stat') except BaseException, err: exc = err self.assert_('no such column: metadata' in str(exc)) def tearDown(self): AccountBroker.create_account_stat_table = \ self._imported_create_account_stat_table broker = AccountBroker(':memory:', account='a') broker.initialize(normalize_timestamp('1')) with broker.get() as conn: conn.execute('SELECT metadata FROM account_stat') if __name__ == '__main__': unittest.main()
45.270177
94
0.582309
86,499
0.940319
0
0
0
0
0
0
25,042
0.272228
48b05f987fe0e54d587244c5320a33f91ef59a44
10,824
py
Python
robocorp-code/tests/robocorp_code_tests/fixtures.py
mardukbp/robotframework-lsp
57b4b2b14b712c9bf90577924a920fb9b9e831c7
[ "ECL-2.0", "Apache-2.0" ]
92
2020-01-22T22:15:29.000Z
2022-03-31T05:19:16.000Z
robocorp-code/tests/robocorp_code_tests/fixtures.py
mardukbp/robotframework-lsp
57b4b2b14b712c9bf90577924a920fb9b9e831c7
[ "ECL-2.0", "Apache-2.0" ]
604
2020-01-25T17:13:27.000Z
2022-03-31T18:58:24.000Z
robocorp-code/tests/robocorp_code_tests/fixtures.py
mardukbp/robotframework-lsp
57b4b2b14b712c9bf90577924a920fb9b9e831c7
[ "ECL-2.0", "Apache-2.0" ]
39
2020-02-06T00:38:06.000Z
2022-03-15T06:14:19.000Z
import os import pytest from robocorp_ls_core.protocols import IConfigProvider from robocorp_ls_core.robotframework_log import get_logger from robocorp_ls_core.unittest_tools.cases_fixture import CasesFixture from robocorp_code.protocols import IRcc, ActionResult import sys from typing import Any from pathlib import Path from robocorp_code_tests.protocols import IRobocorpLanguageServerClient log = get_logger(__name__) IMAGE_IN_BASE64 = "iVBORw0KGgoAAAANSUhEUgAAAb8AAAAiCAYAAADPnNdbAAAAAXNSR0IArs4c6QAAAJ1JREFUeJzt1TEBACAMwDDAv+fhAo4mCvp1z8wsAAg5vwMA4DXzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgBzzAyDH/ADIMT8AcswPgJwLXQ0EQMJRx4AAAAAASUVORK5CYII=" @pytest.fixture def language_server_client_class(): from robocorp_code_tests.robocode_language_server_client import ( RobocorpLanguageServerClient, ) return RobocorpLanguageServerClient @pytest.fixture def language_server_class(): from robocorp_code.robocorp_language_server import RobocorpLanguageServer return RobocorpLanguageServer @pytest.fixture def main_module(): from robocorp_code import __main__ return __main__ @pytest.fixture def rcc_location() -> str: from robocorp_code.rcc import download_rcc from robocorp_code.rcc import get_default_rcc_location location = get_default_rcc_location() download_rcc(location, force=False) return location @pytest.fixture def ci_endpoint() -> str: ci_endpoint = os.environ.get("CI_ENDPOINT") if ci_endpoint is None: raise AssertionError("CI_ENDPOINT env variable must be specified for tests.") return ci_endpoint @pytest.fixture def ci_credentials() -> str: ci_credentials = os.environ.get("CI_CREDENTIALS") if ci_credentials is None: raise AssertionError("ci_credentials env variable must be specified for tests.") return ci_credentials @pytest.fixture def rcc_config_location(tmpdir) -> str: config_dir = tmpdir.join("config") os.makedirs(str(config_dir)) return str(config_dir.join("config_test.yaml")) @pytest.fixture(scope="session") def cases(tmpdir_factory) -> CasesFixture: basename = "res áéíóú" copy_to = str(tmpdir_factory.mktemp(basename)) f = __file__ original_resources_dir = os.path.join(os.path.dirname(f), "_resources") assert os.path.exists(original_resources_dir) return CasesFixture(copy_to, original_resources_dir) @pytest.fixture def robocorp_home(tmpdir) -> str: # import shutil # # ret = "c:/temp/tests_robohome" # shutil.rmtree(os.path.join(ret, ".robocorp_code"), ignore_errors=True) # return ret return str(tmpdir.join("robocorp_home")) @pytest.fixture def config_provider( ws_root_path: str, rcc_location: str, ci_endpoint: str, rcc_config_location: str, robocorp_home: str, ): from robocorp_code.robocorp_config import RobocorpConfig from robocorp_ls_core.ep_providers import DefaultConfigurationProvider config = RobocorpConfig() config.update( { "robocorp": { "home": robocorp_home, "rcc": { "location": rcc_location, "endpoint": ci_endpoint, "config_location": rcc_config_location, }, } } ) return DefaultConfigurationProvider(config) @pytest.fixture def rcc(config_provider: IConfigProvider, rcc_config_location: str) -> IRcc: from robocorp_code.rcc import Rcc rcc = Rcc(config_provider) # We don't want to track tests. # There's a bug in which the --do-not-track doesn't work the first time. result = rcc._run_rcc( "configure identity --do-not-track --config".split() + [rcc_config_location] ) assert result.success result_msg = result.result assert result_msg if "disabled" not in result_msg: raise AssertionError(f"Did not expect {result_msg}") return rcc @pytest.fixture def rcc_conda_installed(rcc: IRcc): result = rcc.check_conda_installed() assert result.success, r"Error: {result}" return rcc _WS_INFO = ( { "id": "workspace_id_1", "name": "CI workspace", "orgId": "affd282c8f9fe", "orgName": "My Org Name", "orgShortName": "654321", "shortName": "123456", # Can be some generated number or something provided by the user. "state": "active", "url": "http://url1", }, { "id": "workspace_id_2", "name": "My Other workspace", "orgId": "affd282c8f9fe", "orgName": "My Org Name", "orgShortName": "1234567", "shortName": "7654321", "state": "active", "url": "http://url2", }, ) _PACKAGE_INFO_WS_2: dict = {} _PACKAGE_INFO_WS_1: dict = { "activities": [ {"id": "452", "name": "Package Name 1"}, {"id": "453", "name": "Package Name 2"}, ] } class RccPatch(object): def __init__(self, monkeypatch, tmpdir): from robocorp_code.rcc import Rcc self.monkeypatch = monkeypatch self._current_mock = self.mock_run_rcc_default self._original = Rcc._run_rcc self._package_info_ws_1 = _PACKAGE_INFO_WS_1 self.custom_handler: Any = None self.tmpdir = tmpdir def mock_run_rcc(self, args, *starargs, **kwargs) -> ActionResult: return self._current_mock(args, *starargs, **kwargs) def mock_run_rcc_default(self, args, *sargs, **kwargs) -> ActionResult: import json import copy from robocorp_code.rcc import ACCOUNT_NAME import shutil if self.custom_handler is not None: ret = self.custom_handler(args, *sargs, **kwargs) if ret is not None: return ret if args[:4] == ["cloud", "workspace", "--workspace", "workspace_id_1"]: # List packages for workspace 1 return ActionResult( success=True, message=None, result=json.dumps(self._package_info_ws_1) ) if args[:4] == ["cloud", "workspace", "--workspace", "workspace_id_2"]: # List packages for workspace 2 return ActionResult( success=True, message=None, result=json.dumps(_PACKAGE_INFO_WS_2) ) if args[:3] == ["cloud", "workspace", "--config"]: # List workspaces workspace_info = _WS_INFO return ActionResult( success=True, message=None, result=json.dumps(workspace_info) ) if args[:3] == ["cloud", "push", "--directory"]: if args[4:8] == ["--workspace", "workspace_id_1", "--robot", "2323"]: return ActionResult(success=True) if args[4:8] == ["--workspace", "workspace_id_1", "--robot", "453"]: return ActionResult(success=True) if args[:5] == ["cloud", "new", "--workspace", "workspace_id_1", "--robot"]: # Submit a new package to ws 1 cp = copy.deepcopy(self._package_info_ws_1) cp["activities"].append({"id": "2323", "name": args[5]}) self._package_info_ws_1 = cp return ActionResult( success=True, message=None, result="Created new robot named {args[5]} with identity 2323.", ) if args[:4] == ["config", "credentials", "-j", "--verified"]: return ActionResult( success=True, message=None, result=json.dumps( [ { "account": ACCOUNT_NAME, "identifier": "001", "endpoint": "https://endpoint.foo.bar", "secret": "123...", "verified": 1605525807, } ] ), ) if args[:3] == ["holotree", "variables", "--space"]: space_name = args[3] conda_prefix = Path(self.tmpdir.join(f"conda_prefix_{space_name}")) conda_prefix.mkdir() conda_yaml = args[-2] assert conda_yaml.endswith("conda.yaml") shutil.copyfile(conda_yaml, conda_prefix / "identity.yaml") return ActionResult( success=True, message=None, result=json.dumps( [ {"key": "PYTHON_EXE", "value": sys.executable}, {"key": "SPACE_NAME", "value": args[3]}, {"key": "CONDA_PREFIX", "value": str(conda_prefix)}, {"key": "TEMP", "value": str(self.tmpdir.join("_temp_dir_"))}, ] ), ) raise AssertionError(f"Unexpected args: {args}") def mock_run_rcc_should_not_be_called(self, args, *sargs, **kwargs): raise AssertionError( "This should not be called at this time (data should be cached)." ) def apply(self) -> None: from robocorp_code.rcc import Rcc self.monkeypatch.setattr(Rcc, "_run_rcc", self.mock_run_rcc) def disallow_calls(self) -> None: self._current_mock = self.mock_run_rcc_should_not_be_called @pytest.fixture def rcc_patch(monkeypatch, tmpdir): return RccPatch(monkeypatch, tmpdir) @pytest.fixture def initialization_options(): return {"do-not-track": True} @pytest.fixture def language_server_initialized( language_server_tcp: IRobocorpLanguageServerClient, ws_root_path: str, rcc_location: str, ci_endpoint: str, rcc_config_location: str, initialization_options, ): from robocorp_code.commands import ROBOCORP_RUN_IN_RCC_INTERNAL language_server = language_server_tcp language_server.initialize( ws_root_path, initialization_options=initialization_options ) language_server.settings( { "settings": { "robocorp": { "rcc": { "location": rcc_location, "endpoint": ci_endpoint, "config_location": rcc_config_location, } } } } ) result = language_server.execute_command( ROBOCORP_RUN_IN_RCC_INTERNAL, [ { "args": "configure identity --do-not-track --config".split() + [rcc_config_location] } ], ) assert result["result"]["success"] if "disabled" not in result["result"]["result"]: raise AssertionError(f"Unexpected result: {result}") return language_server
30.490141
324
0.610957
4,396
0.405947
0
0
4,820
0.445101
0
0
2,475
0.228553
48b0b31dabd46b83a7d8a1c53e2be4a3ab952b42
2,182
py
Python
tensorflow_model_optimization/python/core/quantization/keras/quantize_emulatable_layer.py
akarmi/model-optimization
2d3faaa361ecb3639f4a29da56e0e6ed52336318
[ "Apache-2.0" ]
1
2019-10-10T06:14:45.000Z
2019-10-10T06:14:45.000Z
tensorflow_model_optimization/python/core/quantization/keras/quantize_emulatable_layer.py
akarmi/model-optimization
2d3faaa361ecb3639f4a29da56e0e6ed52336318
[ "Apache-2.0" ]
null
null
null
tensorflow_model_optimization/python/core/quantization/keras/quantize_emulatable_layer.py
akarmi/model-optimization
2d3faaa361ecb3639f4a29da56e0e6ed52336318
[ "Apache-2.0" ]
1
2019-10-10T06:14:48.000Z
2019-10-10T06:14:48.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstract Base Class for quantize emulation in custom keras layers.""" import abc import six @six.add_metaclass(abc.ABCMeta) class QuantizeEmulatableLayer(object): """Abstract Base Class for quantize emulation in custom keras layers. Custom keras layers which want to implement quantization of their operations during training should implement this class. """ @abc.abstractmethod def get_quantizable_weights(self): """Returns list of quantizable weight tensors. All the weight tensors which the layer wants to be quantized during training must be returned by this method. Returns: List of weight tensors/kernels in the keras layer which must be quantized during training. """ raise NotImplementedError('Must be implemented in subclasses.') @abc.abstractmethod def set_quantizable_weights(self, weights): """Sets list of quantizable weight tensors. This method replaces the existing quantizable weight tensors for the layer with the specified set of weights. Arguments: weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of `get_quantizable_weights`). Raises: ValueError: If the provided weights list does not match the layer's specifications. """ raise NotImplementedError('Must be implemented in subclasses.')
35.770492
80
0.706691
1,362
0.624198
0
0
1,394
0.638863
0
0
1,865
0.85472
48b322c1b5c9322a3e7a06f6f8cf4904f59abc42
1,373
py
Python
GEN_cell_culture/phase_plotting.py
dezeraecox/GEN_cell_culture
70ca933bef53347e916e20e6b86dc9dc9da11825
[ "MIT" ]
null
null
null
GEN_cell_culture/phase_plotting.py
dezeraecox/GEN_cell_culture
70ca933bef53347e916e20e6b86dc9dc9da11825
[ "MIT" ]
1
2019-08-04T22:44:54.000Z
2019-08-04T22:44:54.000Z
GEN_cell_culture/phase_plotting.py
dezeraecox/GEN_cell_culture
70ca933bef53347e916e20e6b86dc9dc9da11825
[ "MIT" ]
null
null
null
import os import re import string import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from GEN_Utils import FileHandling from loguru import logger logger.info("Import OK") # Set sample-specific variables input_path = 'examples/python/gauss_models/' output_path = 'examples/python/phase_plotting/' plate_sample = ['TPE only', '1', '1.5', '2', '3', '4']*4 plate_cords = [f'{x}{y}' for x in string.ascii_uppercase[0:4] for y in range(1, 7)] sample_map = dict(zip(plate_cords, plate_sample)) if not os.path.exists(output_path): os.mkdir(output_path) # Read in summary df and preview summary = pd.read_excel(f'{input_path}summary.xlsx') # Assign sample-specific descriptors to summary table summary['plate'] = summary['sample'].str[0] summary['well'] = summary['sample'].str[1:] summary['sample'] = summary['well'].map(sample_map) phase_name = ['G', 'S', 'M'] phase_num = [1, 2, 3] phase_map = dict(zip(phase_name, phase_num)) # Generate line-plot fig = plt.subplots() for phase in phase_name: sns.lineplot(summary['sample'], summary[phase], label=phase, ci='sd') plt.ylabel("Proportion of cells in phase") plt.xlabel(r'Density(x 10$^ 5$)') plt.title('Phase distribution') plt.legend(bbox_to_anchor=(1.1, 1.0), title='Phase') plt.tight_layout() plt.autoscale() plt.savefig(f'{output_path}line_plot.png')
27.46
73
0.718135
0
0
0
0
0
0
0
0
445
0.324108
48b3cc7ab2adb8652b3ac164a64a50173d354d2a
4,759
py
Python
PlatformerGame/malmopy/explorers.py
MrMaik/platformer-ml-game
bbcabe3ddea1e3cfddb01b4cd60c8dd1bd79acac
[ "MIT" ]
10
2020-01-05T19:33:33.000Z
2022-02-04T14:56:09.000Z
PlatformerGame/malmopy/explorers.py
MrMaik/platformer-ml-game
bbcabe3ddea1e3cfddb01b4cd60c8dd1bd79acac
[ "MIT" ]
1
2019-12-18T15:16:44.000Z
2019-12-18T15:16:44.000Z
PlatformerGame/malmopy/explorers.py
MrMaik/platformer-ml-game
bbcabe3ddea1e3cfddb01b4cd60c8dd1bd79acac
[ "MIT" ]
6
2019-12-18T14:45:37.000Z
2021-09-13T12:48:28.000Z
# -------------------------------------------------------------------------------------------------- # Copyright (c) 2018 Microsoft Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # -------------------------------------------------------------------------------------------------- """Module containing explorer classes""" from numpy import random as np_random from .summaries import ScalarSummary from .triggers import each_step from .abc import Explorer, EpsilonFunction, Visualizable class ConstantEpsilon(EpsilonFunction): """Epsilon function which returns a constant value regardless of step.""" def __init__(self, epsilon): """ Args: epsilon -- the constant epsilon value """ self._epsilon = epsilon def epsilon(self, step): return self._epsilon class LinearEpsilon(EpsilonFunction): """ This function uses linear interpolation between epsilon_max and epsilon_min to linearly anneal epsilon as a function of the current episode. 3 cases exist: - If 0 <= episode < eps_min_time then epsilon = interpolator(episode) - If episode >= eps_min_time then epsilon then epsilon = eps_min - Otherwise epsilon = eps_max """ def __init__(self, eps_max, eps_min, eps_min_time): """ Args: eps_max -- the maximum epsilon value eps_min -- the minimum epsilon value eps_min_time -- the number of steps until epsilon is at its minimum """ assert eps_max > eps_min assert eps_min_time > 0 self._eps_min_time = eps_min_time self._eps_min = eps_min self._eps_max = eps_max self._delta = -(eps_max - eps_min) / eps_min_time def epsilon(self, step): """The epsilon value at a specific step. Args: step -- the step during training """ if step < 0: return self._eps_max if step > self._eps_min_time: return self._eps_min return self._delta * step + self._eps_max class EpsilonGreedyExplorer(Explorer, Visualizable): """Explorer which determines whether to explore by sampling from a Bernoulli distribution.""" def __init__(self, epsilon_function): """ Args: epsilon_function -- an instance of EpsilonFunction """ assert isinstance(epsilon_function, EpsilonFunction) self._epsilon = epsilon_function self._epsilon_summary = ScalarSummary("EpsilonGreedy/Epsilon", each_step()) @property def metrics(self): return [self._epsilon_summary] def is_exploring(self, step): epsilon = self._epsilon(step) self._epsilon_summary.add(epsilon) return np_random.binomial(1, epsilon) def explore(self, step, action_space): return action_space.sample() class ConstantExplorer(EpsilonGreedyExplorer): """Explorer which explores with a constant probability.""" def __init__(self, epsilon): """ Args: epsilon -- the probability that the agent will explore """ super(ConstantExplorer, self).__init__(ConstantEpsilon(epsilon)) class LinearEpsilonGreedyExplorer(EpsilonGreedyExplorer): """Explorer which uses a LinearEpsilon function.""" def __init__(self, eps_max, eps_min, eps_min_time): """ Args: eps_max -- the maximum epsilon value eps_min -- the minimum epsilon value eps_min_time -- the number of steps until epsilon is at its minimum """ epsilon_function = LinearEpsilon(eps_max, eps_min, eps_min_time) super(LinearEpsilonGreedyExplorer, self).__init__(epsilon_function)
36.328244
100
0.65497
3,229
0.678504
0
0
71
0.014919
0
0
2,791
0.586468
48b5904c4c46f166269a35d1d5aae2ecfb57bef7
765
py
Python
Lib/icecreamscrape/__main__.py
kdwatt15/icecreamscrape
aefe18d795bb9ae8daabda7f8e26653df7d47c44
[ "MIT" ]
null
null
null
Lib/icecreamscrape/__main__.py
kdwatt15/icecreamscrape
aefe18d795bb9ae8daabda7f8e26653df7d47c44
[ "MIT" ]
1
2020-06-07T17:56:13.000Z
2020-06-07T17:56:13.000Z
Lib/icecreamscrape/__main__.py
kdwatt15/icecreamscrape
aefe18d795bb9ae8daabda7f8e26653df7d47c44
[ "MIT" ]
null
null
null
# Standard imports import sys # Project imports from icecreamscrape.cli import cli from icecreamscrape.webdriver import driver_factory from icecreamscrape import composites as comps from icecreamscrape.composites import create_timestamped_dir def main(args=sys.argv[1:]): """ Main function. :param: args is used for testing """ user_inputs = cli(args) url = user_inputs.params.url active_features = user_inputs.active_features if len(active_features) > 0: time_dir = create_timestamped_dir() with driver_factory(url) as driver: for feature in active_features: getattr(sys.modules[comps.__name__], feature)(driver, time_dir) def init(): """ Init construction allows for testing """ if __name__ == "__main__": sys.exit(main()) init()
24.677419
60
0.75817
0
0
0
0
0
0
0
0
144
0.188235
48b8c62b25b3330d58b5291c6fc3a3f2df2e485f
5,051
py
Python
tests/models/programdb/mission/mission_unit_test.py
weibullguy/ramstk
3ec41d7e2933045a7a8028aed6c6b04365495095
[ "BSD-3-Clause" ]
4
2018-08-26T09:11:36.000Z
2019-05-24T12:01:02.000Z
tests/models/programdb/mission/mission_unit_test.py
weibullguy/ramstk
3ec41d7e2933045a7a8028aed6c6b04365495095
[ "BSD-3-Clause" ]
52
2018-08-24T12:51:22.000Z
2020-12-28T04:59:42.000Z
tests/models/programdb/mission/mission_unit_test.py
weibullguy/ramstk
3ec41d7e2933045a7a8028aed6c6b04365495095
[ "BSD-3-Clause" ]
1
2018-10-11T07:57:55.000Z
2018-10-11T07:57:55.000Z
# pylint: skip-file # type: ignore # -*- coding: utf-8 -*- # # tests.controllers.mission.mission_unit_test.py is part of The # RAMSTK Project # # All rights reserved. # Copyright since 2007 Doyle "weibullguy" Rowland doyle.rowland <AT> reliaqual <DOT> com """Test class for testing Mission module algorithms and models.""" # Third Party Imports import pytest from pubsub import pub from treelib import Tree # RAMSTK Package Imports from ramstk.models.dbrecords import RAMSTKMissionRecord from ramstk.models.dbtables import RAMSTKMissionTable from tests import ( MockDAO, UnitTestDeleteMethods, UnitTestGetterSetterMethods, UnitTestInsertMethods, UnitTestSelectMethods, ) @pytest.mark.usefixtures("test_record_model", "unit_test_table_model") class TestCreateMissionModels: """Class for unit testing Mission model __init__() methods. Because each table model contains unique attributes, these methods must be local to the module being tested. """ __test__ = True @pytest.mark.unit def test_record_model_create(self, test_record_model): """Should return a Mission record model instance.""" assert isinstance(test_record_model, RAMSTKMissionRecord) # Verify class attributes are properly initialized. assert test_record_model.__tablename__ == "ramstk_mission" assert test_record_model.revision_id == 1 assert test_record_model.description == "Test mission #1" assert test_record_model.mission_time == 100.0 assert test_record_model.time_units == "hours" @pytest.mark.unit def test_data_manager_create(self, unit_test_table_model): """Return a Mission table model instance.""" assert isinstance(unit_test_table_model, RAMSTKMissionTable) assert isinstance(unit_test_table_model.tree, Tree) assert isinstance(unit_test_table_model.dao, MockDAO) assert unit_test_table_model._db_id_colname == "fld_mission_id" assert unit_test_table_model._db_tablename == "ramstk_mission" assert unit_test_table_model._tag == "mission" assert unit_test_table_model._root == 0 assert unit_test_table_model._revision_id == 0 assert pub.isSubscribed( unit_test_table_model.do_get_attributes, "request_get_mission_attributes" ) assert pub.isSubscribed( unit_test_table_model.do_get_tree, "request_get_mission_tree" ) assert pub.isSubscribed( unit_test_table_model.do_select_all, "selected_revision" ) assert pub.isSubscribed( unit_test_table_model.do_update, "request_update_mission" ) assert pub.isSubscribed( unit_test_table_model.do_update_all, "request_update_all_mission" ) assert pub.isSubscribed( unit_test_table_model.do_delete, "request_delete_mission" ) assert pub.isSubscribed( unit_test_table_model.do_insert, "request_insert_mission" ) @pytest.mark.usefixtures("test_attributes", "unit_test_table_model") class TestSelectMission(UnitTestSelectMethods): """Class for unit testing Mission table do_select() and do_select_all().""" __test__ = True _record = RAMSTKMissionRecord _tag = "mission" @pytest.mark.usefixtures("test_attributes", "unit_test_table_model") class TestInsertMission(UnitTestInsertMethods): """Class for unit testing Mission table do_insert() method.""" __test__ = True _next_id = 0 _record = RAMSTKMissionRecord _tag = "mission" @pytest.mark.skip(reason="Mission records are non-hierarchical.") def test_do_insert_child(self, test_attributes, unit_test_table_model): """Should not run because Mission records are not hierarchical.""" pass @pytest.mark.usefixtures("test_attributes", "unit_test_table_model") class TestDeleteMission(UnitTestDeleteMethods): """Class for unit testing Mission table do_delete() method.""" __test__ = True _next_id = 0 _record = RAMSTKMissionRecord _tag = "mission" @pytest.mark.usefixtures("test_attributes", "test_record_model") class TestGetterSetterMission(UnitTestGetterSetterMethods): """Class for unit testing Mission table methods that get or set.""" __test__ = True _id_columns = [ "revision_id", "mission_id", ] _test_attr = "mission_time" _test_default_value = 0.0 @pytest.mark.unit def test_get_record_model_attributes(self, test_record_model): """Should return a dict of attribute key:value pairs. This method must be local because the attributes are different for each database record model. """ _attributes = test_record_model.get_attributes() assert isinstance(_attributes, dict) assert _attributes["revision_id"] == 1 assert _attributes["description"] == "Test mission #1" assert _attributes["mission_time"] == 100.0 assert _attributes["time_units"] == "hours"
33.673333
88
0.713324
3,988
0.789547
0
0
4,331
0.857454
0
0
1,848
0.365868
48b9335e8465f09c7a066bfa90b273be5d354b55
569
py
Python
src/streamlink/packages/flashmedia/flv.py
RomanKornev/streamlink
acdefee0822b9c10628b91a166f9abe084e44800
[ "BSD-2-Clause" ]
5
2019-07-26T17:03:26.000Z
2020-10-17T23:23:43.000Z
src/streamlink/packages/flashmedia/flv.py
RomanKornev/streamlink
acdefee0822b9c10628b91a166f9abe084e44800
[ "BSD-2-Clause" ]
9
2018-01-14T15:20:23.000Z
2021-03-08T20:29:51.000Z
src/streamlink/packages/flashmedia/flv.py
bumplzz69/streamlink
34abc43875d7663ebafa241573dece272e93d88b
[ "BSD-2-Clause" ]
4
2018-01-14T13:27:25.000Z
2021-11-15T22:28:30.000Z
#!/usr/bin/env python from .error import FLVError from .compat import is_py2 from .tag import Header, Tag class FLV(object): def __init__(self, fd=None, strict=False): self.fd = fd self.header = Header.deserialize(self.fd) self.strict = strict def __iter__(self): return self def __next__(self): try: tag = Tag.deserialize(self.fd, strict=self.strict) except (IOError, FLVError): raise StopIteration return tag if is_py2: next = __next__ __all__ = ["FLV"]
18.966667
62
0.606327
439
0.771529
0
0
0
0
0
0
26
0.045694
48b9e626c31a3acad3ffc788ac2313af13310a0d
120
py
Python
tests/core/test_core_renderer.py
timvink/pheasant
eb5b0a8b5473baad5ad4903984433fe763f5312e
[ "MIT" ]
24
2018-05-25T15:23:30.000Z
2021-06-09T10:56:52.000Z
tests/core/test_core_renderer.py
timvink/pheasant
eb5b0a8b5473baad5ad4903984433fe763f5312e
[ "MIT" ]
14
2019-04-30T10:51:01.000Z
2020-09-16T20:37:30.000Z
tests/core/test_core_renderer.py
timvink/pheasant
eb5b0a8b5473baad5ad4903984433fe763f5312e
[ "MIT" ]
9
2019-06-12T10:54:18.000Z
2022-01-15T21:19:05.000Z
from pheasant.renderers.jupyter.jupyter import Jupyter jupyter = Jupyter() jupyter.findall("{{3}}3{{5}}") jupyter.page
20
54
0.75
0
0
0
0
0
0
0
0
13
0.108333
48ba4f165b3430e0ef9885d29722f28bf1be64bd
687
py
Python
chapter2-5-your-code-in-multiple-servers/packer/webapp.py
andrecp/devops-fundamentals-to-k8s
9ea1cfdcfcc07faf195bd26faa5917628385cdfc
[ "MIT" ]
null
null
null
chapter2-5-your-code-in-multiple-servers/packer/webapp.py
andrecp/devops-fundamentals-to-k8s
9ea1cfdcfcc07faf195bd26faa5917628385cdfc
[ "MIT" ]
null
null
null
chapter2-5-your-code-in-multiple-servers/packer/webapp.py
andrecp/devops-fundamentals-to-k8s
9ea1cfdcfcc07faf195bd26faa5917628385cdfc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import json from http.server import HTTPServer, BaseHTTPRequestHandler num_requests = 0 class Handler(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() def do_GET(self): self._set_headers() global num_requests num_requests += 1 content = json.dumps({"num_requests": num_requests}).encode("utf8") self.wfile.write(content) if __name__ == "__main__": http_service = HTTPServer(("0.0.0.0", 8000), Handler) print(f"Starting http service on 0.0.0.0:8000") http_service.serve_forever()
27.48
75
0.678311
401
0.583697
0
0
0
0
0
0
133
0.193595
48bb529c5d5a0817b3c6e3353e857c62a73b8a16
91
py
Python
run.py
ellotecnologia/galadriel
16b592818d8beb8407805e43f2f881975b245d94
[ "MIT" ]
null
null
null
run.py
ellotecnologia/galadriel
16b592818d8beb8407805e43f2f881975b245d94
[ "MIT" ]
null
null
null
run.py
ellotecnologia/galadriel
16b592818d8beb8407805e43f2f881975b245d94
[ "MIT" ]
null
null
null
from app.app import create_app from config import BaseConfig app = create_app(BaseConfig)
18.2
30
0.824176
0
0
0
0
0
0
0
0
0
0
48bb6abe88059d9888226636da8508d01f476cba
3,896
py
Python
retarget/make_data.py
EggPool/rx-experiments
a8659a94e1b0822a9e7f4121407fb2b5ededa192
[ "MIT" ]
1
2021-06-20T16:58:21.000Z
2021-06-20T16:58:21.000Z
retarget/make_data.py
EggPool/rx-experiments
a8659a94e1b0822a9e7f4121407fb2b5ededa192
[ "MIT" ]
null
null
null
retarget/make_data.py
EggPool/rx-experiments
a8659a94e1b0822a9e7f4121407fb2b5ededa192
[ "MIT" ]
2
2019-11-26T12:18:18.000Z
2022-03-28T19:22:55.000Z
""" Create data for simulations (c) 2019 - EggdraSyl """ import json # from mockup import Blockchain, Block from minersimulator import MinerSimulator from math import sin, pi SPECIAL_MIN_TIME = 5 * 60 def init_stable( start, end, block_time=60, target="0000000000000028acfa28a803d2000000000000000000000000000000000000", file="stable.json", ): start_time = 0 blocks = [] for height in range(start, end): block = { "time": start_time, "height": height, "special_min": True if block_time > SPECIAL_MIN_TIME else False, "target": target, "block_time": block_time, # This one is not native. } start_time += block_time blocks.append(block) with open("data/init/{}".format(file), "w") as fp: json.dump(blocks, fp) def hash_stable(hash_count: int, hash_rate:int, file="stable.json"): simu = MinerSimulator(hash_rate) hashes = [] for i in range(hash_count): hashes.append((simu.hash_rate, simu.HEX(simu.get_min_hash()))) with open("data/live/{}".format(file), "w") as fp: json.dump(hashes, fp, indent=2) def hash_arithmetic(hash_count: int, start: int, increment: int, file="arithmetic.json"): simu = MinerSimulator(start) hashes = [] for i in range(hash_count): hashes.append((simu.hash_rate, simu.HEX(simu.get_min_hash()))) simu.hash_rate += increment with open("data/live/{}".format(file), "w") as fp: json.dump(hashes, fp, indent=2) def hash_step(hash_count: int, start: int, h_end: int, file="step.json"): simu = MinerSimulator(start) hashes = [] for i in range(hash_count): hashes.append((simu.hash_rate,simu.HEX(simu.get_min_hash()))) if i == hash_count//2: simu.hash_rate = h_end with open("data/live/{}".format(file), "w") as fp: json.dump(hashes, fp, indent=2) def hash_sinus(hash_count: int, base: int, amplitude: int, period: int, file="sinus.json"): simu = MinerSimulator(base) hashes = [] for i in range(hash_count): hashes.append((simu.hash_rate,simu.HEX(simu.get_min_hash()))) simu.hash_rate = base + amplitude * sin(i * 2 * pi / period) with open("data/live/{}".format(file), "w") as fp: json.dump(hashes, fp, indent=2) if __name__ == "__main__": init_stable( 0, 1000, block_time=3600, target="0000000000000028acfa28a803d2000000000000000000000000000000000000", file="stable_3600_14.json", ) init_stable( 0, 1000, block_time=60 * 5, target="000000ffffffffff28acfa28a803d20000000000000000000000000000000000", file="stable_300_6.json", ) init_stable( 0, 1000, block_time=60 * 5, target="00000ffffffffff28acfa28a803d200000000000000000000000000000000000", file="stable_300_5.json", ) init_stable( 0, 1000, block_time=60 * 5, target="0000ffffffffff28acfa28a803d2000000000000000000000000000000000000", file="stable_300_4.json", ) init_stable( 0, 1000, block_time=60 * 5, target="000ffffffffff28acfa28a803d2000000000000000000000000000000000000", file="stable_300_3.json", ) hash_stable(10000, 167, file="stable_167.json") hash_stable(10000, 1670, file="stable_1670.json") hash_stable(10000, 16700, file="stable_16700.json") hash_arithmetic(10000, 167, 16, file="arithmetic_167_16.json") hash_step(10000, 167, 500, file="step_up_167_500.json") hash_step(10000, 500, 167, file="step_down_500_167.json") hash_sinus(10000, 300, 150, 60*12, file="sinus_300_150_720.json") hash_sinus(10000, 300, 100, 1440, file="sinus_300_100_1440.json") hash_sinus(10000, 300, 100, 2880, file="sinus_300_100_2880.json")
30.4375
91
0.641427
0
0
0
0
0
0
0
0
1,017
0.261037
48bb8a2d0cac5d726a9c18529c0114315a34c2c3
13,473
py
Python
software/pynguin/tests/testcase/statements/test_primitivestatements.py
se2p/artifact-pynguin-ssbse2020
32b5f4d27ef1b81e5c541471e98fa6e50f5ce8a6
[ "CC-BY-4.0" ]
3
2020-08-20T10:27:13.000Z
2021-11-02T20:28:16.000Z
software/pynguin/tests/testcase/statements/test_primitivestatements.py
se2p/artifact-pynguin-ssbse2020
32b5f4d27ef1b81e5c541471e98fa6e50f5ce8a6
[ "CC-BY-4.0" ]
null
null
null
software/pynguin/tests/testcase/statements/test_primitivestatements.py
se2p/artifact-pynguin-ssbse2020
32b5f4d27ef1b81e5c541471e98fa6e50f5ce8a6
[ "CC-BY-4.0" ]
null
null
null
# This file is part of Pynguin. # # Pynguin is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pynguin is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pynguin. If not, see <https://www.gnu.org/licenses/>. from unittest import mock from unittest.mock import MagicMock import pytest import pynguin.configuration as config import pynguin.testcase.defaulttestcase as dtc import pynguin.testcase.statements.primitivestatements as prim import pynguin.testcase.testcase as tc import pynguin.testcase.variable.variablereferenceimpl as vri @pytest.mark.parametrize( "statement_type,value", [ pytest.param(prim.IntPrimitiveStatement, 42), pytest.param(prim.FloatPrimitiveStatement, 42.23), pytest.param(prim.StringPrimitiveStatement, "foo"), pytest.param(prim.BooleanPrimitiveStatement, True), ], ) def test_primitive_statement_value(statement_type, test_case_mock, value): statement = statement_type(test_case_mock, value) assert statement.value == value @pytest.mark.parametrize( "statement_type", [ pytest.param(prim.IntPrimitiveStatement), pytest.param(prim.FloatPrimitiveStatement), pytest.param(prim.StringPrimitiveStatement), pytest.param(prim.BooleanPrimitiveStatement), ], ) def test_primitive_statement_value_none(statement_type, test_case_mock): statement = statement_type(test_case_mock, None) assert statement.value is not None @pytest.mark.parametrize( "statement_type,value,new_value", [ pytest.param(prim.IntPrimitiveStatement, 42, 23), pytest.param(prim.FloatPrimitiveStatement, 2.1, 1.2), pytest.param(prim.StringPrimitiveStatement, "foo", "bar"), pytest.param(prim.BooleanPrimitiveStatement, True, False), ], ) def test_primitive_statement_set_value( statement_type, test_case_mock, value, new_value ): statement = statement_type(test_case_mock, value) statement.value = new_value assert statement.value == new_value @pytest.mark.parametrize( "statement_type,test_case,new_test_case,value", [ pytest.param( prim.IntPrimitiveStatement, MagicMock(tc.TestCase), MagicMock(tc.TestCase), 42, ), pytest.param( prim.FloatPrimitiveStatement, MagicMock(tc.TestCase), MagicMock(tc.TestCase), 42.23, ), pytest.param( prim.StringPrimitiveStatement, MagicMock(tc.TestCase), MagicMock(tc.TestCase), "foo", ), pytest.param( prim.BooleanPrimitiveStatement, MagicMock(tc.TestCase), MagicMock(tc.TestCase), True, ), ], ) def test_primitive_statement_clone(statement_type, test_case, new_test_case, value): statement = statement_type(test_case, value) new_statement = statement.clone(new_test_case) assert new_statement.test_case == new_test_case assert ( new_statement.return_value.variable_type == statement.return_value.variable_type ) assert new_statement.value == statement.value @pytest.mark.parametrize( "statement_type,test_case,value,visitor_method", [ pytest.param( prim.IntPrimitiveStatement, MagicMock(tc.TestCase), 42, "visit_int_primitive_statement", ), pytest.param( prim.FloatPrimitiveStatement, MagicMock(tc.TestCase), 2.1, "visit_float_primitive_statement", ), pytest.param( prim.StringPrimitiveStatement, MagicMock(tc.TestCase), "foo", "visit_string_primitive_statement", ), pytest.param( prim.BooleanPrimitiveStatement, MagicMock(tc.TestCase), True, "visit_boolean_primitive_statement", ), ], ) def test_primitive_statement_accept(statement_type, test_case, value, visitor_method): stmt = statement_type(test_case, value) visitor = MagicMock() stmt.accept(visitor) getattr(visitor, visitor_method).assert_called_once_with(stmt) @pytest.mark.parametrize( "statement_type,value", [ pytest.param(prim.IntPrimitiveStatement, 42), pytest.param(prim.FloatPrimitiveStatement, 42.23), pytest.param(prim.StringPrimitiveStatement, "foo"), pytest.param(prim.BooleanPrimitiveStatement, True), ], ) def test_primitive_statement_equals_same(statement_type, value): test_case = MagicMock(tc.TestCase) statement = statement_type(test_case, value) assert statement.__eq__(statement) @pytest.mark.parametrize( "statement_type,value", [ pytest.param(prim.IntPrimitiveStatement, 42), pytest.param(prim.FloatPrimitiveStatement, 42.23), pytest.param(prim.StringPrimitiveStatement, "foo"), pytest.param(prim.BooleanPrimitiveStatement, True), ], ) def test_primitive_statement_equals_other_type(statement_type, value): test_case = MagicMock(tc.TestCase) statement = statement_type(test_case, value) assert not statement.__eq__(test_case) @pytest.mark.parametrize( "statement_type,value", [ pytest.param(prim.IntPrimitiveStatement, 42), pytest.param(prim.FloatPrimitiveStatement, 42.23), pytest.param(prim.StringPrimitiveStatement, "foo"), pytest.param(prim.BooleanPrimitiveStatement, True), ], ) def test_primitive_statement_equals_clone(statement_type, value): test_case = MagicMock(tc.TestCase) statement = statement_type(test_case, value) test_case.statements = [statement] test_case2 = MagicMock(tc.TestCase) clone = statement.clone(test_case2) test_case2.statements = [clone] assert statement.__eq__(clone) def test_none_statement_equals_clone(): test_case = MagicMock(tc.TestCase) statement = prim.NoneStatement(test_case, type(None)) test_case.statements = [statement] test_case2 = MagicMock(tc.TestCase) clone = statement.clone(test_case2) test_case2.statements = [clone] assert statement.__eq__(clone) @pytest.mark.parametrize( "statement_type,value", [ pytest.param(prim.IntPrimitiveStatement, 42), pytest.param(prim.FloatPrimitiveStatement, 42.23), pytest.param(prim.StringPrimitiveStatement, "foo"), pytest.param(prim.BooleanPrimitiveStatement, True), ], ) def test_primitive_statement_hash(statement_type, value): statement = statement_type(MagicMock(tc.TestCase), value) assert statement.__hash__() != 0 def test_int_primitive_statement_randomize_value(test_case_mock): statement = prim.IntPrimitiveStatement(test_case_mock) statement.randomize_value() assert isinstance(statement.value, int) def test_float_primitive_statement_randomize_value(test_case_mock): statement = prim.FloatPrimitiveStatement(test_case_mock) statement.randomize_value() assert isinstance(statement.value, float) def test_bool_primitive_statement_randomize_value(test_case_mock): statement = prim.BooleanPrimitiveStatement(test_case_mock) statement.randomize_value() assert statement.value or not statement.value def test_string_primitive_statement_randomize_value(test_case_mock): statement = prim.StringPrimitiveStatement(test_case_mock) statement.randomize_value() assert 0 <= len(statement.value) <= config.INSTANCE.string_length def test_none_statement_randomize_value(test_case_mock): statement = prim.NoneStatement(test_case_mock, type(None)) statement.randomize_value() assert statement.value is None def test_none_statement_delta(test_case_mock): statement = prim.NoneStatement(test_case_mock, type(None)) statement.delta() assert statement.value is None def test_string_primitive_statement_random_deletion(test_case_mock): sample = list("Test") result = prim.StringPrimitiveStatement._random_deletion(sample) assert len(result) <= len(sample) def test_string_primitive_statement_random_insertion(test_case_mock): sample = list("Test") result = prim.StringPrimitiveStatement._random_insertion(sample) assert len(result) >= len(sample) def test_string_primitive_statement_random_insertion_empty(test_case_mock): sample = list("") result = prim.StringPrimitiveStatement._random_insertion(sample) assert len(result) >= len(sample) def test_string_primitive_statement_random_replacement(test_case_mock): sample = list("Test") result = prim.StringPrimitiveStatement._random_replacement(sample) assert len(result) == len(sample) def test_string_primitive_statement_delta_none(test_case_mock): value = "t" statement = prim.StringPrimitiveStatement(test_case_mock, value) with mock.patch("pynguin.utils.randomness.next_float") as float_mock: float_mock.side_effect = [1.0, 1.0, 1.0] statement.delta() assert statement.value == value def test_string_primitive_statement_delta_all(test_case_mock): value = "te" statement = prim.StringPrimitiveStatement(test_case_mock, value) with mock.patch("pynguin.utils.randomness.next_char") as char_mock: char_mock.side_effect = ["a", "b"] with mock.patch("pynguin.utils.randomness.next_int") as int_mock: int_mock.return_value = 0 with mock.patch("pynguin.utils.randomness.next_float") as float_mock: deletion = [0.0, 0.0, 1.0] replacement = [0.0, 0.0] insertion = [0.0, 0.0, 1.0] float_mock.side_effect = deletion + replacement + insertion statement.delta() assert statement.value == "ba" def test_int_primitive_statement_delta(test_case_mock): config.INSTANCE.max_delta = 10 statement = prim.IntPrimitiveStatement(test_case_mock, 1) with mock.patch("pynguin.utils.randomness.next_gaussian") as gauss_mock: gauss_mock.return_value = 0.5 statement.delta() assert statement.value == 6 def test_float_primitive_statement_delta_max(test_case_mock): config.INSTANCE.max_delta = 10 statement = prim.FloatPrimitiveStatement(test_case_mock, 1.5) with mock.patch("pynguin.utils.randomness.next_gaussian") as gauss_mock: gauss_mock.return_value = 0.5 with mock.patch("pynguin.utils.randomness.next_float") as float_mock: float_mock.return_value = 0.0 statement.delta() assert statement.value == 6.5 def test_float_primitive_statement_delta_gauss(test_case_mock): config.INSTANCE.max_delta = 10 statement = prim.FloatPrimitiveStatement(test_case_mock, 1.0) with mock.patch("pynguin.utils.randomness.next_gaussian") as gauss_mock: gauss_mock.return_value = 0.5 with mock.patch("pynguin.utils.randomness.next_float") as float_mock: float_mock.return_value = 1.0 / 3.0 statement.delta() assert statement.value == 1.5 def test_float_primitive_statement_delta_round(test_case_mock): statement = prim.FloatPrimitiveStatement(test_case_mock, 1.2345) with mock.patch("pynguin.utils.randomness.next_int") as int_mock: int_mock.return_value = 2 with mock.patch("pynguin.utils.randomness.next_float") as float_mock: float_mock.return_value = 2.0 / 3.0 statement.delta() assert statement.value == 1.23 def test_boolean_primitive_statement_delta(test_case_mock): statement = prim.BooleanPrimitiveStatement(test_case_mock, True) statement.delta() assert not statement.value def test_primitive_statement_mutate(test_case_mock): statement = prim.BooleanPrimitiveStatement(test_case_mock, True) statement.mutate() assert not statement.value def test_primitive_statement_accessible(test_case_mock): statement = prim.IntPrimitiveStatement(test_case_mock, 0) assert statement.accessible_object() is None def test_primitive_statement_references(test_case_mock): statement = prim.IntPrimitiveStatement(test_case_mock, 0) assert {statement.return_value} == statement.get_variable_references() def test_primitive_statement_replace(test_case_mock): statement = prim.IntPrimitiveStatement(test_case_mock, 0) new = vri.VariableReferenceImpl(test_case_mock, int) statement.replace(statement.return_value, new) assert statement.return_value == new def test_primitive_statement_replace_ignore(test_case_mock): statement = prim.IntPrimitiveStatement(test_case_mock, 0) new = prim.FloatPrimitiveStatement(test_case_mock, 0).return_value old = statement.return_value statement.replace(new, new) assert statement.return_value == old def test_primitive_statement_get_position(): test_case = dtc.DefaultTestCase() statement = prim.IntPrimitiveStatement(test_case, 5) test_case.add_statement(statement) assert statement.get_position() == 0
34.724227
88
0.720255
0
0
0
0
5,749
0.426705
0
0
1,538
0.114154
48bbe200dfeacc3fe42e8fdff56e3de41ac32c2b
725
py
Python
src/data/download/datasets/download_tencent_test.py
lcn-kul/conferencing-speech-2022
1089b2baaf2fcf3ac8ef44c65b80da2e5b2c331b
[ "MIT" ]
1
2022-03-30T15:06:18.000Z
2022-03-30T15:06:18.000Z
src/data/download/datasets/download_tencent_test.py
lcn-kul/conferencing-speech-2022
1089b2baaf2fcf3ac8ef44c65b80da2e5b2c331b
[ "MIT" ]
null
null
null
src/data/download/datasets/download_tencent_test.py
lcn-kul/conferencing-speech-2022
1089b2baaf2fcf3ac8ef44c65b80da2e5b2c331b
[ "MIT" ]
null
null
null
from pathlib import Path from src import constants from src.data.download.utils.download_dataset_zip import download_dataset_zip def download_tencent_test( tmp_dir: Path = None, tqdm_name: str = None, tqdm_idx: int = None, ): """Download the test set of the Tencent Corpus and extract it to the appropriate directory.""" download_dataset_zip( name="tencent_test", data_url=constants.TENCENT_TEST_URL, output_dir=constants.TENCENT_TEST_DIR, extracted_name=constants.TENCENT_TEST_ZIP_FOLDER, tmp_dir=tmp_dir, tqdm_name=tqdm_name, tqdm_idx=tqdm_idx, ) if __name__ == "__main__": download_tencent_test(tqdm_name="tencent", tqdm_idx=0)
25.892857
77
0.714483
0
0
0
0
0
0
0
0
131
0.18069
48bc446a06d58d6a75df610f9236257a1d789475
9,669
py
Python
malaya_speech/train/model/fastspeechsplit/model.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
111
2020-08-31T04:58:54.000Z
2022-03-29T15:44:18.000Z
malaya_speech/train/model/fastspeechsplit/model.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
14
2020-12-16T07:27:22.000Z
2022-03-15T17:39:01.000Z
malaya_speech/train/model/fastspeechsplit/model.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
29
2021-02-09T08:57:15.000Z
2022-03-12T14:09:19.000Z
import tensorflow as tf from ..fastspeech.model import ( TFFastSpeechEncoder, TFTacotronPostnet, TFFastSpeechLayer, ) from ..speechsplit.model import InterpLnr import numpy as np import copy class Encoder_6(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Encoder_6, self).__init__(name='Encoder_6', **kwargs) self.dim_neck_3 = hparams.dim_neck_3 self.freq_3 = hparams.freq_3 self.dim_f0 = hparams.dim_f0 self.dim_enc_3 = hparams.dim_enc_3 self.dim_emb = hparams.dim_spk_emb self.chs_grp = hparams.chs_grp self.before_dense_1 = tf.keras.layers.Dense( units=self.dim_enc_3, dtype=tf.float32, name='before_dense_1' ) config_1 = copy.deepcopy(config) config_1.hidden_size = self.dim_enc_3 self.layer_1 = [ TFFastSpeechLayer(config_1, name='layer_._{}'.format(i)) for i in range(config_1.num_hidden_layers) ] self.encoder_dense_1 = tf.keras.layers.Dense( units=self.dim_neck_3, dtype=tf.float32, name='encoder_dense_1', ) self.interp = InterpLnr(hparams) def call(self, x, attention_mask, training=True): x = self.before_dense_1(x) for no, layer_module in enumerate(self.layer_1): x = layer_module([x, attention_mask], training=training)[0] x = self.interp( x, tf.tile([tf.shape(x)[1]], [tf.shape(x)[0]]), training=training, ) x = self.encoder_dense_1(x) return x class Encoder_7(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Encoder_7, self).__init__(name='Encoder_7', **kwargs) self.config = config self.dim_neck = hparams.dim_neck self.dim_neck_3 = hparams.dim_neck_3 self.dim_freq = hparams.dim_freq self.dim_enc = hparams.dim_enc self.dim_enc_3 = hparams.dim_enc_3 self.before_dense_1 = tf.keras.layers.Dense( units=self.dim_enc, dtype=tf.float32, name='before_dense_1' ) self.before_dense_2 = tf.keras.layers.Dense( units=self.dim_enc_3, dtype=tf.float32, name='before_dense_2' ) config_1 = copy.deepcopy(config) config_1.hidden_size = self.dim_enc self.layer_1 = [ TFFastSpeechLayer(config_1, name='layer_._{}'.format(i)) for i in range(config_1.num_hidden_layers) ] config_2 = copy.deepcopy(config) config_2.hidden_size = self.dim_enc_3 self.layer_2 = [ TFFastSpeechLayer(config_2, name='layer_._{}'.format(i)) for i in range(config_2.num_hidden_layers) ] self.encoder_dense_1 = tf.keras.layers.Dense( units=self.dim_neck, dtype=tf.float32, name='encoder_dense_1' ) self.encoder_dense_2 = tf.keras.layers.Dense( units=self.dim_neck_3, dtype=tf.float32, name='encoder_dense_2', ) self.interp = InterpLnr(hparams) def call(self, x_f0, attention_mask, training=True): x = x_f0[:, :, : self.dim_freq] f0 = x_f0[:, :, self.dim_freq:] x = self.before_dense_1(x) f0 = self.before_dense_2(f0) seq_length = tf.shape(x_f0)[1] for no, layer_module in enumerate(self.layer_1): x = layer_module([x, attention_mask], training=training)[0] f0 = self.layer_2[no]([f0, attention_mask], training=training)[0] x_f0 = tf.concat((x, f0), axis=2) x_f0 = self.interp( x_f0, tf.tile([tf.shape(x_f0)[1]], [tf.shape(x)[0]]), training=training, ) x = x_f0[:, :, : self.dim_enc] f0 = x_f0[:, :, self.dim_enc:] x = x_f0[:, :, : self.dim_enc] f0 = x_f0[:, :, self.dim_enc:] x = self.encoder_dense_1(x) f0 = self.encoder_dense_2(f0) return x, f0 class Encoder_t(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Encoder_t, self).__init__(name='Encoder_t', **kwargs) self.dim_neck_2 = hparams.dim_neck_2 self.freq_2 = hparams.freq_2 self.dim_freq = hparams.dim_freq self.dim_enc_2 = hparams.dim_enc_2 self.dim_emb = hparams.dim_spk_emb self.chs_grp = hparams.chs_grp config = copy.deepcopy(config) config.num_hidden_layers = 1 config.hidden_size = self.dim_enc_2 self.config = config self.before_dense = tf.keras.layers.Dense( units=self.dim_enc_2, dtype=tf.float32, name='before_dense_1' ) self.encoder = TFFastSpeechEncoder(config, name='encoder') self.encoder_dense = tf.keras.layers.Dense( units=self.dim_neck_2, dtype=tf.float32, name='encoder_dense' ) def call(self, x, attention_mask, training=True): x = self.before_dense(x) seq_length = tf.shape(x)[1] f = self.encoder([x, attention_mask], training=training)[0] return self.encoder_dense(f) class Decoder_3(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Decoder_3, self).__init__(name='Decoder_3', **kwargs) self.config = config self.encoder = TFFastSpeechEncoder(config, name='encoder') self.before_dense = tf.keras.layers.Dense( units=config.hidden_size, dtype=tf.float32, name='before_dense_1', ) self.linear_projection = tf.keras.layers.Dense( units=hparams.dim_freq, dtype=tf.float32, name='self.linear_projection', ) def call(self, x, attention_mask, training=True): x = self.before_dense(x) seq_length = tf.shape(x)[1] f = self.encoder([x, attention_mask], training=training)[0] return self.linear_projection(f) class Decoder_4(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Decoder_4, self).__init__(name='Decoder_4', **kwargs) self.config = config self.encoder = TFFastSpeechEncoder(config, name='encoder') self.before_dense = tf.keras.layers.Dense( units=config.hidden_size, dtype=tf.float32, name='before_dense_1', ) self.linear_projection = tf.keras.layers.Dense( units=hparams.dim_f0, dtype=tf.float32, name='self.linear_projection', ) def call(self, x, attention_mask, training=True): x = self.before_dense(x) seq_length = tf.shape(x)[1] f = self.encoder([x, attention_mask], training=training)[0] return self.linear_projection(f) class Model(tf.keras.Model): def __init__(self, config, hparams, **kwargs): super(Model, self).__init__(name='speechsplit', **kwargs) self.encoder_1 = Encoder_7( config.encoder_self_attention_params, hparams ) self.encoder_2 = Encoder_t( config.encoder_self_attention_params, hparams ) self.decoder = Decoder_3(config.decoder_self_attention_params, hparams) self.freq = hparams.freq self.freq_2 = hparams.freq_2 self.freq_3 = hparams.freq_3 def call(self, x_f0, x_org, c_trg, mel_lengths, training=True): max_length = tf.cast(tf.reduce_max(mel_lengths), tf.int32) attention_mask = tf.sequence_mask( lengths=mel_lengths, maxlen=max_length, dtype=tf.float32 ) attention_mask.set_shape((None, None)) codes_x, codes_f0 = self.encoder_1( x_f0, attention_mask, training=training ) codes_2 = self.encoder_2(x_org, attention_mask, training=training) code_exp_1 = codes_x code_exp_3 = codes_f0 code_exp_2 = codes_2 c_trg = tf.tile(tf.expand_dims(c_trg, 1), (1, tf.shape(x_f0)[1], 1)) encoder_outputs = tf.concat( (code_exp_1, code_exp_2, code_exp_3, c_trg), axis=-1 ) mel_outputs = self.decoder( encoder_outputs, attention_mask, training=training ) return codes_x, codes_f0, codes_2, encoder_outputs, mel_outputs class Model_F0(tf.keras.Model): def __init__(self, config, hparams, **kwargs): super(Model_F0, self).__init__(name='speechsplit_f0', **kwargs) self.encoder_2 = Encoder_t( config.encoder_self_attention_params, hparams ) self.encoder_3 = Encoder_6( config.encoder_self_attention_params, hparams ) self.decoder = Decoder_4(config.decoder_self_attention_params, hparams) self.freq_2 = hparams.freq_2 self.freq_3 = hparams.freq_3 def call(self, x_org, f0_trg, mel_lengths, training=True): max_length = tf.cast(tf.reduce_max(mel_lengths), tf.int32) attention_mask = tf.sequence_mask( lengths=mel_lengths, maxlen=max_length, dtype=tf.float32 ) attention_mask.set_shape((None, None)) codes_2 = self.encoder_2(x_org, attention_mask, training=training) code_exp_2 = codes_2 codes_3 = self.encoder_3(f0_trg, attention_mask, training=training) code_exp_3 = codes_3 self.o = [code_exp_2, code_exp_3] encoder_outputs = tf.concat((code_exp_2, code_exp_3), axis=-1) mel_outputs = self.decoder( encoder_outputs, attention_mask, training=training ) return codes_2, codes_3, encoder_outputs, mel_outputs
34.532143
79
0.617541
9,445
0.976833
0
0
0
0
0
0
357
0.036922
48bc4c72c304a6d7aeeb0dab781f82a2616fe4d3
4,766
py
Python
test/test_memory_leaks.py
elventear/psutil
c159f3352dc5f699143960840e4f6535174690ed
[ "BSD-3-Clause" ]
4
2015-01-06T01:39:12.000Z
2019-12-09T10:27:44.000Z
test/test_memory_leaks.py
elventear/psutil
c159f3352dc5f699143960840e4f6535174690ed
[ "BSD-3-Clause" ]
null
null
null
test/test_memory_leaks.py
elventear/psutil
c159f3352dc5f699143960840e4f6535174690ed
[ "BSD-3-Clause" ]
2
2016-10-21T03:15:34.000Z
2018-12-10T03:40:50.000Z
#!/usr/bin/env python # # $Id$ # """ Note: this is targeted for python 2.x. To run it under python 3.x you need to use 2to3 tool first: $ 2to3 -w test/test_memory_leaks.py """ import os import gc import sys import unittest import psutil from test_psutil import reap_children, skipUnless, skipIf, \ POSIX, LINUX, WINDOWS, OSX, BSD LOOPS = 1000 TOLERANCE = 4096 class TestProcessObjectLeaks(unittest.TestCase): """Test leaks of Process class methods and properties""" def setUp(self): gc.collect() def tearDown(self): reap_children() def execute(self, method, *args, **kwarks): # step 1 p = psutil.Process(os.getpid()) for x in xrange(LOOPS): obj = getattr(p, method) if callable(obj): retvalue = obj(*args, **kwarks) else: retvalue = obj # property del x, p, obj, retvalue gc.collect() rss1 = psutil.Process(os.getpid()).get_memory_info()[0] # step 2 p = psutil.Process(os.getpid()) for x in xrange(LOOPS): obj = getattr(p, method) if callable(obj): retvalue = obj(*args, **kwarks) else: retvalue = obj # property del x, p, obj, retvalue gc.collect() rss2 = psutil.Process(os.getpid()).get_memory_info()[0] # comparison difference = rss2 - rss1 if difference > TOLERANCE: self.fail("rss1=%s, rss2=%s, difference=%s" %(rss1, rss2, difference)) def test_name(self): self.execute('name') def test_cmdline(self): self.execute('cmdline') def test_ppid(self): self.execute('ppid') def test_uid(self): self.execute('uid') def test_uid(self): self.execute('gid') @skipIf(POSIX) def test_username(self): self.execute('username') def test_create_time(self): self.execute('create_time') def test_get_num_threads(self): self.execute('get_num_threads') def test_get_threads(self): self.execute('get_num_threads') def test_get_cpu_times(self): self.execute('get_cpu_times') def test_get_memory_info(self): self.execute('get_memory_info') def test_is_running(self): self.execute('is_running') @skipUnless(WINDOWS) def test_resume(self): self.execute('resume') @skipUnless(WINDOWS) def test_getcwd(self): self.execute('getcwd') @skipUnless(WINDOWS) def test_get_open_files(self): self.execute('get_open_files') @skipUnless(WINDOWS) def test_get_connections(self): self.execute('get_connections') class TestModuleFunctionsLeaks(unittest.TestCase): """Test leaks of psutil module functions.""" def setUp(self): gc.collect() def execute(self, function, *args, **kwarks): # step 1 for x in xrange(LOOPS): obj = getattr(psutil, function) if callable(obj): retvalue = obj(*args, **kwarks) else: retvalue = obj # property del x, obj, retvalue gc.collect() rss1 = psutil.Process(os.getpid()).get_memory_info()[0] # step 2 for x in xrange(LOOPS): obj = getattr(psutil, function) if callable(obj): retvalue = obj(*args, **kwarks) else: retvalue = obj # property del x, obj, retvalue gc.collect() rss2 = psutil.Process(os.getpid()).get_memory_info()[0] # comparison difference = rss2 - rss1 if difference > TOLERANCE: self.fail("rss1=%s, rss2=%s, difference=%s" %(rss1, rss2, difference)) def test_get_pid_list(self): self.execute('get_pid_list') @skipIf(POSIX) def test_pid_exists(self): self.execute('pid_exists', os.getpid()) def test_process_iter(self): self.execute('process_iter') def test_used_phymem(self): self.execute('used_phymem') def test_avail_phymem(self): self.execute('avail_phymem') def test_total_virtmem(self): self.execute('total_virtmem') def test_used_virtmem(self): self.execute('used_virtmem') def test_avail_virtmem(self): self.execute('avail_virtmem') def test_cpu_times(self): self.execute('cpu_times') def test_main(): test_suite = unittest.TestSuite() test_suite.addTest(unittest.makeSuite(TestProcessObjectLeaks)) test_suite.addTest(unittest.makeSuite(TestModuleFunctionsLeaks)) unittest.TextTestRunner(verbosity=2).run(test_suite) if __name__ == '__main__': test_main()
24.822917
82
0.599245
4,075
0.855015
0
0
515
0.108057
0
0
747
0.156735
48bc6e9f0498c16dbcd64706a2f744500361365e
8,516
py
Python
ga4gh/search/compliance/util/local_server.py
ga4gh-discovery/ga4gh-search-compliance
58c693ca2f96d145f4ccba08aec23e4ebe1f7599
[ "Apache-2.0" ]
null
null
null
ga4gh/search/compliance/util/local_server.py
ga4gh-discovery/ga4gh-search-compliance
58c693ca2f96d145f4ccba08aec23e4ebe1f7599
[ "Apache-2.0" ]
null
null
null
ga4gh/search/compliance/util/local_server.py
ga4gh-discovery/ga4gh-search-compliance
58c693ca2f96d145f4ccba08aec23e4ebe1f7599
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Module compliance_suite.report_server.py This module contains class definition of small web server utility. Serves final report results as HTML. """ import datetime import time import http.server import socketserver import os import logging import inspect import socket import webbrowser import shutil import sys import threading import json import jinja2 as j2 import ga4gh.search.compliance as pkg_dir from ga4gh.search.compliance.config.configuration import Configuration def capitalize(text): """capitalizes a word, for use in rendering template Args: text (str): word to capitalize Returns: capitalized (str): capitalized word """ return text[0].upper() + text[1:] def get_route_status(route_obj): count_d = { "incomplete": 0, "pass": 0, "fail": 0, "warn": 0, "skip": 0 } symbol_d = { "0": "incomplete", "1": "pass", "2": "warn", "3": "fail", "4": "skip", } ret = { "btn": "btn-danger", "text": "No Tests Run" } for test_case_report in route_obj["test_case_reports"]: count_d[symbol_d[str(test_case_report["status"])]] += 1 if count_d["fail"] > 0 or count_d["skip"] > 0: ret = { "btn": "btn-danger", "text": "%s Failed / %s Skipped" % (str(count_d["fail"]), str(count_d["skip"])) } if count_d["pass"] > 0: ret = { "btn": "btn-success", "text": "Pass" } return ret class LocalServer(object): """Creates web server, serves test report as HTML The ReportServer spins up a small, local web server to host test result reports once the final JSON object has been generated. The server can be shut down with CTRL+C. Attributes: port (Port): object representing free port to serve content httpd (TCPServer): handle for web server thread (Thread): thread serves content indefinitely, can be killed safely from the outside via CTRL+C web_dir (str): directory which host web files (CSS and generated HTML) cwd (str): working directory to change back to after creating server render_helper (dict): contains data structures and functions to be passed to rendering engine to aid in rendering HTML """ def __init__(self): """instantiates a ReportServer object""" self.port = None self.httpd = None self.thread = None self.web_dir = Configuration.get_instance().get_output_dir() self.web_resource_dir = os.path.join( os.path.dirname(pkg_dir.__file__), "web" ) self.cwd = os.getcwd() self.render_helper = { "s": { # s: structures "endpoints": [ "service_info", "tables", "table_info", "table_data", "search" ], "formatted": { "service_info": "Service Info", "tables": "Tables", "table_info": "Table Info", "table_data": "Table Data", "search": "Search" }, "status": { 0: { "status": "INCOMPLETE", "css_class": "text-danger", "fa_class": "fa-times-circle" }, 1: { "status": "PASS", "css_class": "text-success", "fa_class": "fa-check-circle" }, 2: { "status": "WARN", "css_class": "text-danger", "fa_class": "fa-times-circle" }, 3: { "status": "FAIL", "css_class": "text-danger", "fa_class": "fa-times-circle" }, 4: { "status": "SKIP", "css_class": "text-info", "fa_class": "fa-ban" } } }, "f": { # f: functions "capitalize": capitalize, "format_test_name": lambda text: " ".join( [capitalize(t) for t in text.split("_")] ), "server_name_url": lambda name: \ name.lower().replace(" ", "") + ".html", "rm_space": lambda text: text.replace(" ", "_")\ .replace(",", ""), "timestamp": lambda: \ datetime.datetime.now(datetime.timezone.utc)\ .strftime("%B %d, %Y at %l:%M %p (%Z)"), "route_status": get_route_status } } def setup(self): self.__set_free_port() self.__copy_web_resource_dir() self.__render_html() def serve(self, uptime=3600): """serves server as separate thread so it can be stopped from outside Args: uptime (int): server will remain up for this time in seconds unless shutdown by user """ try: self.thread = threading.Thread(target=self.__start_mock_server, args=(uptime,)) self.thread.start() time.sleep(uptime) except KeyboardInterrupt as e: print("stopping server") finally: self.httpd.shutdown() os.chdir(self.cwd) def __set_free_port(self): """get free port on local machine on which to run the report server This function is used in conftest and the return of this is a free port available in the system on which the mock server will be run. This port will be passed to start_mock_server as a required parameter from conftest.py Returns: (Port): free port on which to run server """ s = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM) s.bind(('localhost', 0)) address, port = s.getsockname() s.close() self.port = port def __copy_web_resource_dir(self): for subdir in ["public"]: src = os.path.join(self.web_resource_dir, subdir) dst = os.path.join(self.web_dir, subdir) shutil.copytree(src, dst) def __render_html(self): data = None with open(self.web_dir + "/ga4gh-search-compliance-report.json", "r") as f: data = json.load(f) # set up jinja2 rendering engine view_loader = j2.FileSystemLoader(searchpath=self.web_resource_dir) view_env = j2.Environment(loader=view_loader) # render the index/homepage home_template = view_env.get_template("views/home.html") home_rendered = home_template.render(data=data, h=self.render_helper) home_path = self.web_dir + "/index.html" open(home_path, "w").write(home_rendered) for server_report in data["server_reports"]: report_template = view_env.get_template("views/report.html") report_rendered = report_template.render(server_report=server_report, h=self.render_helper) report_path = self.web_dir + "/" + \ self.render_helper["f"]["server_name_url"](server_report["name"]) open(report_path, "w").write(report_rendered) def __start_mock_server(self, uptime): """run server to serve final test report Args: port (Port): port on which to run the server """ os.chdir(self.web_dir) Handler = http.server.SimpleHTTPRequestHandler self.httpd = socketserver.TCPServer(("", self.port), Handler) logging.info("serving at http://localhost:" + str(self.port)) webbrowser.open("http://localhost:" + str(self.port)) logging.info("server will shut down after " + str(uptime) + " seconds, " + "press CTRL+C to shut down manually") self.httpd.serve_forever()
33.136187
83
0.516557
6,876
0.807421
0
0
0
0
0
0
3,238
0.380225
48bc7c9db7dabf6628ee230ef0c1f45b6794af0d
2,146
py
Python
api/routefinder.py
shingkid/DrWatson-ToTheRescue_SCDFXIBM
009d2b4599b276ea760dbd888718a25332893075
[ "MIT" ]
1
2020-06-12T10:24:31.000Z
2020-06-12T10:24:31.000Z
api/routefinder.py
yankai364/Dr-Watson
22bd885d028e118fa5abf5a9d0ea373b7020ca1d
[ "MIT" ]
3
2020-09-24T15:36:33.000Z
2022-02-10T02:32:42.000Z
api/routefinder.py
shingkid/DrWatson-ToTheRescue_SCDFXIBM
009d2b4599b276ea760dbd888718a25332893075
[ "MIT" ]
1
2020-06-14T10:09:58.000Z
2020-06-14T10:09:58.000Z
import csv import pandas as pd import numpy as np import networkx as nx class RouteFinder(): def __init__(self): G = nx.Graph() with open('data/node_pairs.csv') as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for row in readCSV: # add edges G.add_edge(row[0],row[1]) self.G = G def reset_graph(self): G = nx.Graph() with open('data/node_pairs.csv') as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for row in readCSV: # add edges G.add_edge(row[0],row[1]) self.G = G def remove_node(self,nodes): self.G.remove_nodes_from(nodes) def optimal_route(self,source,target): return nx.shortest_path(self.G, source, target) def optimal_entry_route(self,target): exits = ['Exit_4','Exit_3','Exit_2','Exit_1'] optimal_route = [] shortest_path_length = 0 for exit in exits: try: curr_path = nx.shortest_path(self.G, exit, target) curr_length = len(curr_path) if shortest_path_length == 0 or curr_length < shortest_path_length: optimal_route = curr_path shortest_path_length = curr_length except: msg = 'No paths found' if shortest_path_length == 0: return msg return optimal_route def optimal_exit_route(self,source): exits = ['Exit_1','Exit_2','Exit_3','Exit_4'] optimal_route = [] shortest_path_length = 0 for exit in exits: try: curr_path = nx.shortest_path(self.G, source, exit) curr_length = len(curr_path) if shortest_path_length == 0 or curr_length < shortest_path_length: optimal_route = curr_path shortest_path_length = curr_length except: msg = 'No paths found' if shortest_path_length == 0: return msg return optimal_route
24.11236
83
0.547996
2,072
0.965517
0
0
0
0
0
0
166
0.077353
48bd4369d1643a3a728218455de1ea42bfd683e8
8,084
py
Python
lectures/extensions/hyperbolic_discounting/replication_code/.mywaflib/waflib/extras/rst.py
loikein/ekw-lectures
a2f5436f10515ab26eab323fca8c37c91bdc5dcd
[ "MIT" ]
4
2019-11-15T15:21:27.000Z
2020-07-08T15:04:30.000Z
lectures/extensions/hyperbolic_discounting/replication_code/.mywaflib/waflib/extras/rst.py
loikein/ekw-lectures
a2f5436f10515ab26eab323fca8c37c91bdc5dcd
[ "MIT" ]
9
2019-11-18T15:54:36.000Z
2020-07-14T13:56:53.000Z
lectures/extensions/hyperbolic_discounting/replication_code/.mywaflib/waflib/extras/rst.py
loikein/ekw-lectures
a2f5436f10515ab26eab323fca8c37c91bdc5dcd
[ "MIT" ]
3
2021-01-25T15:41:30.000Z
2021-09-21T08:51:36.000Z
#!/usr/bin/env python # Jérôme Carretero, 2013 (zougloub) """ reStructuredText support (experimental) Example:: def configure(conf): conf.load('rst') if not conf.env.RST2HTML: conf.fatal('The program rst2html is required') def build(bld): bld( features = 'rst', type = 'rst2html', # rst2html, rst2pdf, ... source = 'index.rst', # mandatory, the source deps = 'image.png', # to give additional non-trivial dependencies ) By default the tool looks for a set of programs in PATH. The tools are defined in `rst_progs`. To configure with a special program use:: $ RST2HTML=/path/to/rst2html waf configure This tool is experimental; don't hesitate to contribute to it. """ import re from waflib import Errors from waflib import Logs from waflib import Node from waflib import Task from waflib import Utils from waflib.TaskGen import before_method from waflib.TaskGen import feature rst_progs = "rst2html rst2xetex rst2latex rst2xml rst2pdf rst2s5 rst2man rst2odt rst2rtf".split() def parse_rst_node(task, node, nodes, names, seen, dirs=None): # TODO add extensibility, to handle custom rst include tags... if dirs is None: dirs = (node.parent, node.get_bld().parent) if node in seen: return seen.append(node) code = node.read() re_rst = re.compile( r"^\s*.. ((?P<subst>\|\S+\|) )?(?P<type>include|image|figure):: (?P<file>.*)$", re.M ) for match in re_rst.finditer(code): ipath = match.group("file") itype = match.group("type") Logs.debug("rst: visiting %s: %s", itype, ipath) found = False for d in dirs: Logs.debug("rst: looking for %s in %s", ipath, d.abspath()) found = d.find_node(ipath) if found: Logs.debug("rst: found %s as %s", ipath, found.abspath()) nodes.append((itype, found)) if itype == "include": parse_rst_node(task, found, nodes, names, seen) break if not found: names.append((itype, ipath)) class docutils(Task.Task): """ Compile a rst file. """ def scan(self): """ A recursive regex-based scanner that finds rst dependencies. """ nodes = [] names = [] seen = [] node = self.inputs[0] if not node: return (nodes, names) parse_rst_node(self, node, nodes, names, seen) Logs.debug("rst: %r: found the following file deps: %r", self, nodes) if names: Logs.warn("rst: %r: could not find the following file deps: %r", self, names) return ([v for (t, v) in nodes], [v for (t, v) in names]) def check_status(self, msg, retcode): """ Check an exit status and raise an error with a particular message :param msg: message to display if the code is non-zero :type msg: string :param retcode: condition :type retcode: boolean """ if retcode != 0: raise Errors.WafError(f"{msg!r} command exit status {retcode!r}") def run(self): """ Runs the rst compilation using docutils """ raise NotImplementedError() class rst2html(docutils): color = "BLUE" def __init__(self, *args, **kw): docutils.__init__(self, *args, **kw) self.command = self.generator.env.RST2HTML self.attributes = ["stylesheet"] def scan(self): nodes, names = docutils.scan(self) for attribute in self.attributes: stylesheet = getattr(self.generator, attribute, None) if stylesheet is not None: ssnode = self.generator.to_nodes(stylesheet)[0] nodes.append(ssnode) Logs.debug("rst: adding dep to %s %s", attribute, stylesheet) return nodes, names def run(self): cwdn = self.outputs[0].parent src = self.inputs[0].path_from(cwdn) dst = self.outputs[0].path_from(cwdn) cmd = self.command + [src, dst] cmd += Utils.to_list(getattr(self.generator, "options", [])) for attribute in self.attributes: stylesheet = getattr(self.generator, attribute, None) if stylesheet is not None: stylesheet = self.generator.to_nodes(stylesheet)[0] cmd += ["--%s" % attribute, stylesheet.path_from(cwdn)] return self.exec_command(cmd, cwd=cwdn.abspath()) class rst2s5(rst2html): def __init__(self, *args, **kw): rst2html.__init__(self, *args, **kw) self.command = self.generator.env.RST2S5 self.attributes = ["stylesheet"] class rst2latex(rst2html): def __init__(self, *args, **kw): rst2html.__init__(self, *args, **kw) self.command = self.generator.env.RST2LATEX self.attributes = ["stylesheet"] class rst2xetex(rst2html): def __init__(self, *args, **kw): rst2html.__init__(self, *args, **kw) self.command = self.generator.env.RST2XETEX self.attributes = ["stylesheet"] class rst2pdf(docutils): color = "BLUE" def run(self): cwdn = self.outputs[0].parent src = self.inputs[0].path_from(cwdn) dst = self.outputs[0].path_from(cwdn) cmd = self.generator.env.RST2PDF + [src, "-o", dst] cmd += Utils.to_list(getattr(self.generator, "options", [])) return self.exec_command(cmd, cwd=cwdn.abspath()) @feature("rst") @before_method("process_source") def apply_rst(self): """ Create :py:class:`rst` or other rst-related task objects """ if self.target: if isinstance(self.target, Node.Node): tgt = self.target elif isinstance(self.target, str): tgt = self.path.get_bld().make_node(self.target) else: self.bld.fatal( f"rst: Don't know how to build target name {self.target} which is not a string or Node for {self}" ) else: tgt = None tsk_type = getattr(self, "type", None) src = self.to_nodes(self.source) assert len(src) == 1 src = src[0] if tsk_type is not None and tgt is None: if tsk_type.startswith("rst2"): ext = tsk_type[4:] else: self.bld.fatal("rst: Could not detect the output file extension for %s" % self) tgt = src.change_ext(".%s" % ext) elif tsk_type is None and tgt is not None: out = tgt.name ext = out[out.rfind(".") + 1 :] self.type = "rst2" + ext elif tsk_type is not None and tgt is not None: # the user knows what he wants pass else: self.bld.fatal("rst: Need to indicate task type or target name for %s" % self) deps_lst = [] if getattr(self, "deps", None): deps = self.to_list(self.deps) for filename in deps: n = self.path.find_resource(filename) if not n: self.bld.fatal(f"Could not find {filename!r} for {self!r}") if not n in deps_lst: deps_lst.append(n) try: task = self.create_task(self.type, src, tgt) except KeyError: self.bld.fatal(f"rst: Task of type {self.type} not implemented (created by {self})") task.env = self.env # add the manual dependencies if deps_lst: try: lst = self.bld.node_deps[task.uid()] for n in deps_lst: if not n in lst: lst.append(n) except KeyError: self.bld.node_deps[task.uid()] = deps_lst inst_to = getattr(self, "install_path", None) if inst_to: self.install_task = self.add_install_files(install_to=inst_to, install_from=task.outputs[:]) self.source = [] def configure(self): """ Try to find the rst programs. Do not raise any error if they are not found. You'll have to use additional code in configure() to die if programs were not found. """ for p in rst_progs: self.find_program(p, mandatory=False)
29.289855
114
0.593147
3,383
0.418377
0
0
2,305
0.285061
0
0
2,403
0.29718
48bf7ed2085cdea54fbe4837b4e8e76a67b7373c
1,339
py
Python
mofa/analytics/tests/test_participationAnalytics/test_quizParticipation.py
BoxInABoxICT/BoxPlugin
ad351978faa37ab867a86d2f4023a2b3e5a2ce19
[ "Apache-2.0" ]
null
null
null
mofa/analytics/tests/test_participationAnalytics/test_quizParticipation.py
BoxInABoxICT/BoxPlugin
ad351978faa37ab867a86d2f4023a2b3e5a2ce19
[ "Apache-2.0" ]
null
null
null
mofa/analytics/tests/test_participationAnalytics/test_quizParticipation.py
BoxInABoxICT/BoxPlugin
ad351978faa37ab867a86d2f4023a2b3e5a2ce19
[ "Apache-2.0" ]
null
null
null
import unittest import json import os from unittest.mock import MagicMock, patch from analytics.src.participationAnalytics import quizParticipation class TestQuizParticipation(unittest.TestCase): @patch("analytics.src.participationAnalytics.quizParticipation.runQuery") def test_generateData(self, lrs_mock): """ Tests if the analysis is performed correctly """ # Setup mock for database query d = os.path.dirname(os.path.realpath(__file__)) f = open(f'{d}/quizQuery.json') lrs_mock.side_effect = [json.load(f)] # Run the test correct_result = { "http://localhost/mod/quiz/view.php?id=1": 3, "http://localhost/mod/quiz/view.php?id=2": 1, "http://localhost/mod/quiz/view.php?id=5": 1 } actual_result = quizParticipation.generateData(0) self.assertEqual(correct_result, actual_result) @patch("analytics.src.participationAnalytics.quizParticipation.runQuery") def test_generateData_error(self, lrs_mock): """ Tests if an error is passed trough correctly """ # Setup mock for database query error = {"error": "mock error"} lrs_mock.side_effect = [error] # Run test self.assertEqual(error, quizParticipation.generateData(2))
32.658537
77
0.657207
1,187
0.886482
0
0
1,128
0.84242
0
0
515
0.384615
48bf9da5843cf6858ec4f1074f331bc92553a1cd
1,171
py
Python
visualize_cam.py
mhamdan91/Gradcam_eager
ee732ff65256ef1692caf94c8c0b4bdbe22d2d1d
[ "MIT" ]
2
2019-09-19T18:08:26.000Z
2019-10-11T12:42:22.000Z
visualize_cam.py
mhamdan91/Gradcam_eager
ee732ff65256ef1692caf94c8c0b4bdbe22d2d1d
[ "MIT" ]
null
null
null
visualize_cam.py
mhamdan91/Gradcam_eager
ee732ff65256ef1692caf94c8c0b4bdbe22d2d1d
[ "MIT" ]
null
null
null
# from utils import Sample_main import gradcam_main import numpy as np import tensorflow as tf import argparse import os tf.logging.set_verbosity(tf.logging.ERROR) # disable to see tensorflow warnings def cam(in_path='sample.bmp', out_path = 'sample.png',): gradcam_main.cam_vis(in_path, out_path) def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_image', default='sample.bmp', type=str, help= '(Full name of the input image -- default set to sample.bmp') parser.add_argument('-o', '--output_image', default='sample.png', type=str, help='Full name of output image (should be .png) -- default set to ' 'input_image.png') args = parser.parse_args() if args.input_image != 'sample.bmp' and args.output_image == 'sample.png': out_name = args.input_image out_name = out_name.replace('bmp', 'png') else: out_name = args.output_image out_name = out_name.replace('bmp', 'png') cam(args.input_image, out_name) # In case referenced by other modules if __name__ == '__main__': main()
34.441176
150
0.64304
0
0
0
0
0
0
0
0
385
0.328779
48bfa6a9870aa2f95044df7a3145739de4a0dc15
1,681
py
Python
tests/molecular/molecules/building_block/test_with_functional_groups.py
andrewtarzia/stk
1ac2ecbb5c9940fe49ce04cbf5603fd7538c475a
[ "MIT" ]
21
2018-04-12T16:25:24.000Z
2022-02-14T23:05:43.000Z
tests/molecular/molecules/building_block/test_with_functional_groups.py
JelfsMaterialsGroup/stk
0d3e1b0207aa6fa4d4d5ee8dfe3a29561abb08a2
[ "MIT" ]
8
2019-03-19T12:36:36.000Z
2020-11-11T12:46:00.000Z
tests/molecular/molecules/building_block/test_with_functional_groups.py
supramolecular-toolkit/stk
0d3e1b0207aa6fa4d4d5ee8dfe3a29561abb08a2
[ "MIT" ]
5
2018-08-07T13:00:16.000Z
2021-11-01T00:55:10.000Z
from ..utilities import ( has_same_structure, is_equivalent_molecule, is_equivalent_building_block, are_equivalent_functional_groups, ) def test_with_functional_groups(building_block, get_functional_groups): """ Test :meth:`.BuildingBlock.with_functional_groups`. Parameters ---------- building_block : :class:`.BuildingBlock` The building block to test. get_functional_groups : :class:`callable` Takes a single parameter, `building_block` and returns the `functional_groups` parameter to use for this test. Returns ------- None : :class:`NoneType` """ # Save clone to check immutability. clone = building_block.clone() _test_with_functional_groups( building_block=building_block, functional_groups=tuple(get_functional_groups(building_block)), ) is_equivalent_building_block(building_block, clone) has_same_structure(building_block, clone) def _test_with_functional_groups(building_block, functional_groups): """ Test :meth:`.BuildingBlock.with_functional_groups`. Parameters ---------- building_block : :class:`.BuildingBlock` The building block to test. functional_groups : :class:`tuple` of :class:`.FunctionalGroup` The functional groups the new building block should hold. Returns ------- None : :class:`NoneType` """ new = building_block.with_functional_groups(functional_groups) are_equivalent_functional_groups( new.get_functional_groups(), functional_groups, ) is_equivalent_molecule(building_block, new) has_same_structure(building_block, new)
26.68254
71
0.702558
0
0
0
0
0
0
0
0
812
0.483046
48bfa7e063bfbe3193516ebfca7f4a3ae8dc8a0a
9,512
py
Python
tests/master/test_master.py
bk-mtg/piwheels
67152dd1cfd5bd03ea90a8f0255103a9ee9c71d6
[ "BSD-3-Clause" ]
null
null
null
tests/master/test_master.py
bk-mtg/piwheels
67152dd1cfd5bd03ea90a8f0255103a9ee9c71d6
[ "BSD-3-Clause" ]
null
null
null
tests/master/test_master.py
bk-mtg/piwheels
67152dd1cfd5bd03ea90a8f0255103a9ee9c71d6
[ "BSD-3-Clause" ]
null
null
null
# The piwheels project # Copyright (c) 2017 Ben Nuttall <https://github.com/bennuttall> # Copyright (c) 2017 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os from unittest import mock from threading import Thread import pytest from conftest import find_message from piwheels import __version__, protocols, transport from piwheels.master import main, const @pytest.fixture() def mock_pypi(request): with mock.patch('xmlrpc.client.ServerProxy') as proxy: proxy().changelog_since_serial.return_value = [] yield proxy @pytest.fixture() def mock_signal(request): with mock.patch('signal.signal') as signal: yield signal @pytest.fixture() def mock_context(request, zmq_context): with mock.patch('piwheels.transport.Context') as ctx_mock: # Pass thru calls to Context.socket, but ignore everything else (in # particular, destroy and term calls as we want the testing context to # stick around) ctx_mock().socket.side_effect = zmq_context.socket yield ctx_mock @pytest.fixture() def master_thread(request, mock_pypi, mock_context, mock_systemd, mock_signal, tmpdir, db_url, db, with_schema): main_thread = None def _master_thread(args=None): nonlocal main_thread if args is None: args = [] main_thread = Thread(daemon=True, target=main, args=([ '--dsn', db_url, '--output-path', str(tmpdir.join('output')), '--status-queue', 'ipc://' + str(tmpdir.join('status-queue')), '--control-queue', 'ipc://' + str(tmpdir.join('control-queue')), '--slave-queue', 'ipc://' + str(tmpdir.join('slave-queue')), '--file-queue', 'ipc://' + str(tmpdir.join('file-queue')), '--import-queue', 'ipc://' + str(tmpdir.join('import-queue')), '--log-queue', 'ipc://' + str(tmpdir.join('log-queue')), ] + list(args),)) return main_thread yield _master_thread if main_thread is not None and main_thread.is_alive(): with mock_context().socket( transport.PUSH, protocol=reversed(protocols.master_control)) as control: control.connect('ipc://' + str(tmpdir.join('control-queue'))) control.send_msg('QUIT') main_thread.join(10) assert not main_thread.is_alive() @pytest.fixture() def master_control(request, tmpdir, mock_context): control = mock_context().socket( transport.PUSH, protocol=reversed(protocols.master_control)) control.connect('ipc://' + str(tmpdir.join('control-queue'))) yield control control.close() def test_help(capsys): with pytest.raises(SystemExit): main(['--help']) out, err = capsys.readouterr() assert out.startswith('usage:') assert '--pypi-xmlrpc' in out def test_version(capsys): with pytest.raises(SystemExit): main(['--version']) out, err = capsys.readouterr() assert out.strip() == __version__ def test_no_root(caplog): with mock.patch('os.geteuid') as geteuid: geteuid.return_value = 0 assert main([]) != 0 assert find_message(caplog.records, message='Master must not be run as root') def test_quit_control(mock_systemd, master_thread, master_control): thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) master_control.send_msg('QUIT') thread.join(10) assert not thread.is_alive() def test_system_exit(mock_systemd, master_thread, caplog): with mock.patch('piwheels.master.PiWheelsMaster.main_loop') as main_loop: main_loop.side_effect = SystemExit(1) thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) thread.join(10) assert not thread.is_alive() assert find_message(caplog.records, message='shutting down on SIGTERM') def test_system_ctrl_c(mock_systemd, master_thread, caplog): with mock.patch('piwheels.master.PiWheelsMaster.main_loop') as main_loop: main_loop.side_effect = KeyboardInterrupt() thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) thread.join(10) assert not thread.is_alive() assert find_message(caplog.records, message='shutting down on Ctrl+C') def test_bad_control(mock_systemd, master_thread, master_control, caplog): thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) master_control.send(b'FOO') master_control.send_msg('QUIT') thread.join(10) assert not thread.is_alive() assert find_message(caplog.records, message='unable to deserialize data') def test_status_passthru(tmpdir, mock_context, mock_systemd, master_thread): with mock_context().socket(transport.PUSH, protocol=protocols.monitor_stats) as int_status, \ mock_context().socket(transport.SUB, protocol=reversed(protocols.monitor_stats)) as ext_status: ext_status.connect('ipc://' + str(tmpdir.join('status-queue'))) ext_status.subscribe('') thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) # Wait for the first statistics message (from BigBrother) to get the # SUB queue working msg, data = ext_status.recv_msg() assert msg == 'STATS' data['builds_count'] = 12345 int_status.connect(const.INT_STATUS_QUEUE) int_status.send_msg('STATS', data) # Try several times to read the passed-thru message; other messages # (like stats from BigBrother) will be sent to ext-status too for i in range(3): msg, copy = ext_status.recv_msg() if msg == 'STATS': assert copy == data break else: assert False, "Didn't see modified STATS passed-thru" def test_kill_control(mock_systemd, master_thread, master_control): with mock.patch('piwheels.master.SlaveDriver.kill_slave') as kill_slave: thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) master_control.send_msg('KILL', 1) master_control.send_msg('QUIT') thread.join(10) assert not thread.is_alive() assert kill_slave.call_args == mock.call(1) def test_pause_resume(mock_systemd, master_thread, master_control, caplog): thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) master_control.send_msg('PAUSE') master_control.send_msg('RESUME') master_control.send_msg('QUIT') thread.join(10) assert not thread.is_alive() assert find_message(caplog.records, message='pausing operations') assert find_message(caplog.records, message='resuming operations') def test_new_monitor(mock_systemd, master_thread, master_control, caplog): with mock.patch('piwheels.master.SlaveDriver.list_slaves') as list_slaves: thread = master_thread() thread.start() assert mock_systemd._ready.wait(10) master_control.send_msg('HELLO') master_control.send_msg('QUIT') thread.join(10) assert not thread.is_alive() assert find_message(caplog.records, message='sending status to new monitor') assert list_slaves.call_args == mock.call() def test_debug(mock_systemd, master_thread, master_control, caplog): thread = master_thread(args=['--debug', 'master.the_scribe', '--debug', 'master.the_architect']) thread.start() assert mock_systemd._ready.wait(10) master_control.send_msg('QUIT') thread.join(10) assert not thread.is_alive() assert find_message(caplog.records, name='master.the_scribe', levelname='DEBUG', message='<< QUIT None') assert find_message(caplog.records, name='master.the_architect', levelname='DEBUG', message='<< QUIT None')
38.983607
107
0.678616
0
0
2,184
0.229605
2,274
0.239066
0
0
3,080
0.323802
48c0042b454fab2f52a5d4277d95dcb8ccdc7da6
1,254
py
Python
dibase/rpi/gpio/test/pinid-platformtests.py
ralph-mcardell/dibase-rpi-python
724c18d1f3c6745b3dddf582ea2272ed4e2df8ac
[ "BSD-3-Clause" ]
null
null
null
dibase/rpi/gpio/test/pinid-platformtests.py
ralph-mcardell/dibase-rpi-python
724c18d1f3c6745b3dddf582ea2272ed4e2df8ac
[ "BSD-3-Clause" ]
null
null
null
dibase/rpi/gpio/test/pinid-platformtests.py
ralph-mcardell/dibase-rpi-python
724c18d1f3c6745b3dddf582ea2272ed4e2df8ac
[ "BSD-3-Clause" ]
null
null
null
''' Part of the dibase.rpi.gpio.test package. GPIO pin id support classes' platform tests. Underlying GPIO pin ids are those used by the Linux gpiolib and used to identify a device's GPIO pins in the Linux sys filesystem GPIO sub-tree. Developed by R.E. McArdell / Dibase Limited. Copyright (c) 2012 Dibase Limited License: dual: GPL or BSD. ''' import unittest import sys if __name__ == '__main__': # Add path to directory containing the dibase package directory sys.path.insert(0, './../../../..') from dibase.rpi.gpio import pinid class PinIdRPiPlatforrmTestCases(unittest.TestCase): def test_0000_get_rpi_major_revision_index_returns_zero_or_positive_int(self): returned_rev_index = pinid.PinId._get_rpi_major_revision_index() self.assertIsNotNone(returned_rev_index) self.assertIsInstance(returned_rev_index,int) self.assertTrue(returned_rev_index>=0) def test_0020_PinId_value_of_p1_sda_0_or_2(self): rev_index = pinid.PinId._get_rpi_major_revision_index() p1_sda_gpio_id = pinid.PinId.p1_sda() self.assertTrue((rev_index==0 and p1_sda_gpio_id==0) or p1_sda_gpio_id==2) if __name__ == '__main__': unittest.main()
33.891892
83
0.719298
604
0.481659
0
0
0
0
0
0
489
0.389952
48c34cc81742111643982bd0d218ec0140e5a1a0
7,503
py
Python
analysis.py
tj294/2.5D-RB
f72f79d349ff27a058f503ccca58d63babb298e2
[ "MIT" ]
null
null
null
analysis.py
tj294/2.5D-RB
f72f79d349ff27a058f503ccca58d63babb298e2
[ "MIT" ]
null
null
null
analysis.py
tj294/2.5D-RB
f72f79d349ff27a058f503ccca58d63babb298e2
[ "MIT" ]
null
null
null
""" Analysis code for plotting vertical flux transport and/or a gif of temperature, velocity and KE from the merged output of a Dedalus Rayleigh-Bérnard code. Author: Tom Joshi-Cale """ # ==================== # IMPORTS # ==================== import numpy as np import h5py import argparse import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import pathlib import os import shutil import time import imageio from dedalus import public as de from dedalus.tools import post # ==================== # CLA PARSING # ==================== parser = argparse.ArgumentParser() parser.add_argument( "-i", "--input", help="Folder where the processing data is stored", required=True ) parser.add_argument( "-t", "--heatmap", help="Plot a gif of the temperature heatmap", action="store_true" ) parser.add_argument( "-f", "--flux", help="Plot the average flux contributions", action="store_true" ) parser.add_argument( "-k", "--KE", help="Plot the kinetic energy only", action="store_true" ) args = parser.parse_args() direc = os.path.normpath(args.input) + "/" with h5py.File(direc + "run_params/run_params_s1.h5", "r") as f: a = int(np.array(f["tasks"]["a"])) y = de.Fourier("y", 256, interval=(0, a), dealias=3 / 2) z = de.Chebyshev("z", 64, interval=(0, 1), dealias=3 / 2) y = np.array(y.grid(1)) z = np.array(z.grid(1)) # ==================== # Plot Fluxes # ==================== if args.flux: avg_t_start = float(input("Start average at: ")) avg_t_stop = float(input("End average at: ")) with h5py.File(direc + "analysis/analysis_s1.h5", "r") as file: L_cond_arr = np.array(file["tasks"]["L_cond"])[:, 0] L_conv_arr = np.array(file["tasks"]["L_conv"])[:, 0] KE = np.array(file["tasks"]["KE"])[:, 0] snap_t = np.array(file["scales"]["sim_time"]) if ( (avg_t_start <= snap_t[0]) or (avg_t_start >= snap_t[-1]) or (avg_t_stop <= snap_t[0]) or (avg_t_stop >= snap_t[-1]) ): print( "Average time period out of simulation range: {} -> {}".format( snap_t[0], snap_t[-1] ) ) pass ASI = np.abs(snap_t - avg_t_start).argmin() if np.isnan(avg_t_stop): AEI = -1 else: AEI = np.abs(snap_t - avg_t_stop).argmin() avg_t_range = snap_t[AEI] - snap_t[ASI] print("Averaging between {} and {}".format(snap_t[ASI], snap_t[AEI])) mean_L_cond = np.mean(np.array(L_cond_arr[ASI:AEI]), axis=0) mean_L_conv = np.mean(np.array(L_conv_arr[ASI:AEI]), axis=0) mean_L_tot = mean_L_cond + mean_L_conv del_L = np.max(np.abs(1.0 - mean_L_tot)) print("max del_L = {}".format(del_L)) fig = plt.figure(figsize=(6, 6)) KE_ax = fig.add_subplot(311) KE_ax.plot(snap_t, KE, "k", label="Kinetic Energy") KE_ax.set_xlabel(r"time [$\tau_\kappa$]") KE_ax.set_ylabel("KE") KE_ax.axvspan( snap_t[ASI], snap_t[AEI], color="r", alpha=0.5, label="Flux averaging" ) L_ax = fig.add_subplot(212) L_ax.plot(z, mean_L_cond, "r", linestyle="-", label=r"$L_{cond}$") L_ax.plot(z, mean_L_conv, "g", linestyle="-", label=r"$L_{conv}$") L_ax.plot(z, mean_L_tot, "k", ls="-", label=r"$L_{total}$") L_ax.set_xlabel("z") L_ax.set_ylabel("L") L_ax.legend() plt.savefig(direc + "fluxes.png") plt.show() plt.close() # ==================== # Plot heatmap # ==================== if args.heatmap: filenames = [] os.makedirs(direc + "figure", exist_ok=True) with h5py.File(direc + "analysis/analysis_s1.h5", "r") as file: KE = np.array(file["tasks"]["KE"])[:, 0] with h5py.File(direc + "snapshots/snapshots_s1.h5", "r") as file: T = np.array(file["tasks"]["T"]) v = np.array(file["tasks"]["v"]) w = np.array(file["tasks"]["w"]) snap_t = np.array(file["scales"]["sim_time"]) snap_iter = np.array(file["scales"]["iteration"]) yy, zz = np.meshgrid(y, z) maxT = np.max(T) maxV = np.max(v) maxW = np.max(w) n_iter = len(T[:, 0:, 0]) start_time = time.time() print("Plotting {} graphs".format(n_iter)) try: for i in range(0, int(n_iter)): fig = plt.figure(figsize=(8, 6)) gs = gridspec.GridSpec(ncols=2, nrows=3, figure=fig) T_ax = fig.add_subplot(gs[0:2, 0]) v_ax = fig.add_subplot(gs[0, 1]) w_ax = fig.add_subplot(gs[1, 1]) KE_ax = fig.add_subplot(gs[2, :]) if (i % 50 == 0) and (i != 0): sec_per_frame = (time.time() - start_time) / i eta = sec_per_frame * (n_iter - i) print( "image {}/{} at {:.3f}ips \t| ETA in {}m {}s".format( i, n_iter, sec_per_frame, int(eta // 60), int(eta % 60) ) ) fig.suptitle( "Iteration: {}\n".format(snap_iter[i]) + r"Sim Time: {:.2f} $\tau_\kappa$".format(snap_t[i]) ) c1 = v_ax.contourf( yy, zz, np.transpose(v[i, :, :]), levels=np.linspace(np.min(v), maxV), cmap="coolwarm", ) c1_bar = fig.colorbar(c1, ax=v_ax) c1_bar.set_label("v", rotation=0) v_ax.set_ylabel("z") v_ax.set_xlabel("y") v_ax.invert_xaxis() c2 = w_ax.contourf( yy, zz, np.transpose(w[i, :, :]), levels=np.linspace(np.min(w), maxW), cmap="coolwarm", ) c2_bar = fig.colorbar(c2, ax=w_ax) c2_bar.set_label("w", rotation=0) w_ax.set_ylabel("z") w_ax.set_xlabel("y") w_ax.invert_xaxis() c3 = T_ax.contourf( yy, zz, np.transpose(T[i, :, :]), levels=np.linspace(0, maxT), cmap="coolwarm", ) c3_bar = fig.colorbar(c3, ax=T_ax) c3_bar.set_label("T", rotation=0) T_ax.set_ylabel("z") T_ax.set_xlabel("y") T_ax.invert_xaxis() KE_ax.plot(snap_t[:i], KE[:i], "k") KE_ax.set_xlabel(r"time [$\tau_\kappa$]") KE_ax.set_ylabel("KE") KE_ax.set_ylim([0, 1.1 * np.max(KE)]) KE_ax.set_xlim([0, np.max(snap_t)]) plt.tight_layout() plt.savefig(direc + "figure/fig_{:03d}.png".format(i)) filenames.append(direc + "figure/fig_{:03d}.png".format(i)) plt.close() plt.clf() except KeyboardInterrupt: print("ending loop") print("completed in {:.2f} sec".format(time.time() - start_time)) print("Creating gif...") with imageio.get_writer(direc + "info.gif", mode="I") as writer: for filename in filenames: image = imageio.imread(filename) writer.append_data(image) print("Removing raw image files...") shutil.rmtree(direc + "figure") if args.KE: with h5py.File(direc + "analysis/analysis_s1.h5", "r") as f: KE = np.array(f["tasks"]["KE"])[:, 0] snap_t = np.array(f["scales"]["sim_time"]) fig = plt.figure(figsize=(6, 4)) ax = fig.add_subplot(111) ax.plot(snap_t, KE, "k") ax.set_xlabel(r"time [$\tau_\kappa$]") ax.set_ylabel("KE") plt.show() plt.close() print("done.")
31.52521
88
0.53432
0
0
0
0
0
0
0
0
1,655
0.220549
48c388d2a91f2301d0f59df1f50eb64349cced6a
2,104
py
Python
direct_gd_predict/hash-profile.py
wac/meshop
ea5703147006e5e85617af897e1d1488e6f29f32
[ "0BSD" ]
1
2016-05-08T14:54:31.000Z
2016-05-08T14:54:31.000Z
direct_gd_predict/hash-profile.py
wac/meshop
ea5703147006e5e85617af897e1d1488e6f29f32
[ "0BSD" ]
null
null
null
direct_gd_predict/hash-profile.py
wac/meshop
ea5703147006e5e85617af897e1d1488e6f29f32
[ "0BSD" ]
null
null
null
import sys import heapq import optparse from bitcount2 import bitcount hasher={} profile={} key_list=[] key_col=0 def usage(): print sys.argv[0]," [profile_file]" print " Load the profile lines from profile_file" print " Hash function uses the features listed in profile_file" print " and tests for p-value greater/less than or equal (0/1)" print " Hash all the profiles from stdin" exit(1) def do_hash(hasher, p, key_list): hashval="" # for k, v in hasher.iteritems(): for k in key_list: v=hasher[k] if k in p and p[k] < v: hashval=hashval+"1" else: hashval=hashval+"0" return hashval sep='|' key_col=0 #feature_col=1 #score_col=6 in_feature_col=0 in_score_col=1 process_feature_col=1 process_score_col=6 parser = optparse.OptionParser() #parser.add_option("-n", dest="heapsize", # default=50, action="store", type="int") #parser.add_option("-R", "--random", dest="use_random", # default=False, action="store_true") (options, args) = parser.parse_args(sys.argv) if (len(args) > 1): profile_filename=args[1] else: usage() for line in open(profile_filename): if line[0]=='#': continue tuples=line.strip().split(sep) key=tuples[in_feature_col] key_list.append(key) hasher[key]=tuples[in_score_col] curr_profile={} old_key="" for line in sys.stdin: line=line.strip() if line[0]=='#': print line continue tuples=line.split(sep) curr_key=tuples[key_col] if not old_key: old_key=curr_key if not old_key==curr_key: hashval=do_hash(hasher, curr_profile, key_list) hashval_int=int(hashval, 2) print old_key+sep+hashval+sep+str(hashval_int)+sep+str(bitcount(hashval_int)) curr_profile={} old_key=curr_key curr_profile[tuples[process_feature_col]]=tuples[process_score_col] hashval=do_hash(hasher, curr_profile, key_list) hashval_int=int(hashval, 2) print old_key+sep+hashval+sep+str(hashval_int)+sep+str(bitcount(hashval_int))
23.120879
85
0.65827
0
0
0
0
0
0
0
0
504
0.239544
48c5df022af8f3cc4834d472772e95a600e0b3cc
3,804
py
Python
sdk/eventgrid/azure-eventgrid/azure/eventgrid/aio/_publisher_client_async.py
conniey/azure-sdk-for-python
f779de8e53dbec033f98f976284e6d9491fd60b3
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/eventgrid/azure-eventgrid/azure/eventgrid/aio/_publisher_client_async.py
conniey/azure-sdk-for-python
f779de8e53dbec033f98f976284e6d9491fd60b3
[ "MIT" ]
null
null
null
sdk/eventgrid/azure-eventgrid/azure/eventgrid/aio/_publisher_client_async.py
conniey/azure-sdk-for-python
f779de8e53dbec033f98f976284e6d9491fd60b3
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, TYPE_CHECKING from azure.core import AsyncPipelineClient from msrest import Deserializer, Serializer from .._models import CloudEvent, EventGridEvent, CustomEvent from .._helpers import _get_topic_hostname_only_fqdn, _get_authentication_policy, _is_cloud_event from azure.core.pipeline.policies import AzureKeyCredentialPolicy from azure.core.credentials import AzureKeyCredential from .._generated.aio import EventGridPublisherClient as EventGridPublisherClientAsync from .. import _constants as constants if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Union, Dict, List SendType = Union[ CloudEvent, EventGridEvent, CustomEvent, Dict, List[CloudEvent], List[EventGridEvent], List[CustomEvent], List[Dict] ] class EventGridPublisherClient(object): """Asynchronous EventGrid Python Publisher Client. :param str topic_hostname: The topic endpoint to send the events to. :param credential: The credential object used for authentication which implements SAS key authentication or SAS token authentication. :type credential: Union[~azure.core.credentials.AzureKeyCredential, azure.eventgrid.EventGridSharedAccessSignatureCredential] """ def __init__(self, topic_hostname, credential, **kwargs): # type: (str, Union[AzureKeyCredential, EventGridSharedAccessSignatureCredential], Any) -> None auth_policy = _get_authentication_policy(credential) self._client = EventGridPublisherClientAsync(authentication_policy=auth_policy, **kwargs) topic_hostname = _get_topic_hostname_only_fqdn(topic_hostname) self._topic_hostname = topic_hostname async def send(self, events, **kwargs): # type: (SendType) -> None """Sends event data to topic hostname specified during client initialization. :param events: A list or an instance of CloudEvent/EventGridEvent/CustomEvent to be sent. :type events: SendType :keyword str content_type: The type of content to be used to send the events. Has default value "application/json; charset=utf-8" for EventGridEvents, with "cloudevents-batch+json" for CloudEvents :rtype: None :raises: :class:`ValueError`, when events do not follow specified SendType. """ if not isinstance(events, list): events = [events] if all(isinstance(e, CloudEvent) for e in events) or all(_is_cloud_event(e) for e in events): kwargs.setdefault("content_type", "application/cloudevents-batch+json; charset=utf-8") await self._client.publish_cloud_event_events(self._topic_hostname, events, **kwargs) elif all(isinstance(e, EventGridEvent) for e in events) or all(isinstance(e, dict) for e in events): kwargs.setdefault("content_type", "application/json; charset=utf-8") await self._client.publish_events(self._topic_hostname, events, **kwargs) elif all(isinstance(e, CustomEvent) for e in events): serialized_events = [dict(e) for e in events] await self._client.publish_custom_event_events(self._topic_hostname, serialized_events, **kwargs) else: raise ValueError("Event schema is not correct.")
49.402597
137
0.701367
2,468
0.648791
0
0
0
0
1,574
0.413775
1,711
0.44979
48c82cf824c0f047f355b4e4cd11359596e54a76
5,037
py
Python
multi_tool.py
zbigos/multi_project_tools
cb9996d0fea0c2c763054ad5f78e904a68b9c80e
[ "Apache-2.0" ]
null
null
null
multi_tool.py
zbigos/multi_project_tools
cb9996d0fea0c2c763054ad5f78e904a68b9c80e
[ "Apache-2.0" ]
null
null
null
multi_tool.py
zbigos/multi_project_tools
cb9996d0fea0c2c763054ad5f78e904a68b9c80e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import logging, sys, argparse from collect import Collection if __name__ == '__main__': parser = argparse.ArgumentParser(description="test a project repo") parser.add_argument('--force-delete', help='instead of aborting on existing files, delete them', action='store_const', const=True) subparsers = parser.add_subparsers(help='help for subcommand', dest="command") parser.add_argument('--config', help="the config file listing all project directories", default='projects.yaml') parser.add_argument('--local-config', help="the local environment config file", default='local.yaml') parser.add_argument('--project', help="just run for a single project, supply project ID", type=int) parser.add_argument('--test-module', help="run the module's test", action='store_const', const=True) parser.add_argument('--prove-wrapper', help="check the wrapper proof", action='store_const', const=True) parser.add_argument('--test-caravel', help="check the caravel test", action='store_const', const=True) parser.add_argument('--test-gds', help="check the gds", action='store_const', const=True) parser.add_argument('--test-lvs', help="check the gds against powered verilog", action='store_const', const=True) parser.add_argument('--test-tristate-z', help="check outputs are z when not active", action='store_const', const=True) parser.add_argument('--test-ports', help="check ports defined in yaml match the verilog", action='store_const', const=True) parser.add_argument('--test-git', help="check gitsha on disk matches the config", action='store_const', const=True) parser.add_argument('--test-all', help="run all the checks for each project", action='store_const', const=True) parser.add_argument('--test-from', help="run all the checks for all projects with id equal or more than the given id", type=int) parser.add_argument('--openram', help="use OpenRAM - instantiate the bridge, wrapper and do the wiring", action='store_const', const=True) parser.add_argument('--clone-shared-repos', help="clone shared repos defined in projects.yaml", action='store_const', const=True) parser.add_argument('--clone-repos', help="git clone the repo", action='store_const', const=True) parser.add_argument('--create-openlane-config', help="create the OpenLane & caravel_user_project config", action='store_const', const=True) parser.add_argument('--gate-level', help="create the caravel includes file with gate level includes", action='store_const', const=True) parser.add_argument('--copy-project', help="copy project's RTL and tests to correct locations in caravel_user_project", action='store_const', const=True) parser.add_argument('--copy-gds', help="copy the projects GDS and LEF files", action='store_const', const=True) parser.add_argument('--generate-doc', help="generate a index.md file with information about each project", action='store_const', const=True) parser.add_argument('--dump-hash', help="print current commit hash of each project along with author and title", action='store_const', const=True) parser.add_argument('--fill', help="for testing, repeat the given projects this number of times", type=int) parser.add_argument('--annotate-image', help="annotate the multi_macro.png image generated by klayout", action='store_const', const=True) parser.add_argument('--dump-macro-position', help="use the macro.cfg + gds to create a list of positions and sizes", action='store_const', const=True) parser.add_argument('--layout-tool', help="run the manual layout tool on current designs", action='store_const', const=True) parser.add_argument('--layout-tool-downscale', help="scale factor for layout tool", type=int) args = parser.parse_args() # setup log log_format = logging.Formatter('%(asctime)s - %(module)-15s - %(levelname)-8s - %(message)s') # configure the client logging log = logging.getLogger('') # has to be set to debug as is the root logger log.setLevel(logging.INFO) # create console handler and set level to info ch = logging.StreamHandler(sys.stdout) # create formatter for console ch.setFormatter(log_format) log.addHandler(ch) collection = Collection(args) # run any tests specified by arguments collection.run_tests() if args.layout_tool: collection.launch_layout_tool(args.layout_tool_downscale) # create all the OpenLane config for the user collection wrapper if args.create_openlane_config: collection.create_openlane_config() # copy gds to correct place if args.copy_gds: collection.copy_all_gds() if args.copy_project: collection.copy_all_project_files_to_caravel() # generate doc if args.generate_doc: collection.generate_docs() # image if args.annotate_image: collection.annotate_image() # dump macro pos - wip for assisted macro placement if args.dump_macro_position: collection.get_macro_pos()
59.258824
157
0.728608
0
0
0
0
0
0
0
0
2,548
0.505857
48c98054b3a6ea0035473ed0534ee80b41dcebb8
4,327
py
Python
benchbuild/projects/benchbuild/bots.py
ognarb/benchbuild
ad93ae0666e3100fd36c697793c0db1ba52938d0
[ "MIT" ]
null
null
null
benchbuild/projects/benchbuild/bots.py
ognarb/benchbuild
ad93ae0666e3100fd36c697793c0db1ba52938d0
[ "MIT" ]
null
null
null
benchbuild/projects/benchbuild/bots.py
ognarb/benchbuild
ad93ae0666e3100fd36c697793c0db1ba52938d0
[ "MIT" ]
null
null
null
from plumbum import local from benchbuild import project from benchbuild.utils import compiler, download, run, wrapping from benchbuild.utils.cmd import make, mkdir @download.with_git("https://github.com/bsc-pm/bots", limit=5) class BOTSGroup(project.Project): """ Barcelona OpenMP Task Suite. Barcelona OpenMP Task Suite is a collection of applications that allow to test OpenMP tasking implementations and compare its behaviour under certain circumstances: task tiedness, throttle and cut-offs mechanisms, single/multiple task generators, etc. Alignment: Aligns sequences of proteins. FFT: Computes a Fast Fourier Transformation. Floorplan: Computes the optimal placement of cells in a floorplan. Health: Simulates a country health system. NQueens: Finds solutions of the N Queens problem. Sort: Uses a mixture of sorting algorithms to sort a vector. SparseLU: Computes the LU factorization of a sparse matrix. Strassen: Computes a matrix multiply with Strassen's method. """ DOMAIN = 'bots' GROUP = 'bots' VERSION = 'HEAD' path_dict = { "alignment": "serial/alignment", "fft": "serial/fft", "fib": "serial/fib", "floorplan": "serial/floorplan", "health": "serial/health", "knapsack": "serial/knapsack", "nqueens": "serial/nqueens", "sort": "serial/sort", "sparselu": "serial/sparselu", "strassen": "serial/strassen", "uts": "serial/uts" } input_dict = { "alignment": ["prot.100.aa", "prot.20.aa"], "floorplan": ["input.15", "input.20", "input.5"], "health": ["large.input", "medium.input", "small.input", "test.input"], "knapsack": [ "knapsack-012.input", "knapsack-016.input", "knapsack-020.input", "knapsack-024.input", "knapsack-032.input", "knapsack-036.input", "knapsack-040.input", "knapsack-044.input", "knapsack-048.input", "knapsack-064.input", "knapsack-096.input", "knapsack-128.input" ], "uts": [ "huge.input", "large.input", "medium.input", "small.input", "test.input", "tiny.input" ] } SRC_FILE = "bots.git" def compile(self): self.download() makefile_config = local.path(self.src_file) / "config" / "make.config" clang = compiler.cc(self) with open(makefile_config, 'w') as config: lines = [ "LABEL=benchbuild", "ENABLE_OMPSS=", "OMPSSC=", "OMPC=", "CC={cc}", "OMPSSLINK=", "OMPLINK={cc} -fopenmp", "CLINK={cc}", "OPT_FLAGS=", "CC_FLAGS=", "OMPC_FLAGS=", "OMPSSC_FLAGS=", "OMPC_FINAL_FLAGS=", "OMPSSC_FINAL_FLAG=", "CLINK_FLAGS=", "OMPLINK_FLAGS=", "OMPSSLINK_FLAGS=", ] lines = [l.format(cc=clang) + "\n" for l in lines] config.writelines(lines) mkdir(local.path(self.src_file) / "bin") with local.cwd(self.src_file): run.run(make["-C", self.path_dict[self.name]]) def run_tests(self, runner): binary_name = "{name}.benchbuild.serial".format(name=self.name) binary_path = local.path(self.src_file) / "bin" / binary_name exp = wrapping.wrap(binary_path, self) if self.name in self.input_dict: for test_input in self.input_dict[self.name]: input_file = local.path( self.src_file) / "inputs" / self.name / test_input runner(exp["-f", input_file]) else: runner(exp) class Alignment(BOTSGroup): NAME = 'alignment' class FFT(BOTSGroup): NAME = 'fft' class Fib(BOTSGroup): NAME = 'fib' class FloorPlan(BOTSGroup): NAME = 'floorplan' class Health(BOTSGroup): NAME = 'health' class Knapsack(BOTSGroup): NAME = 'knapsack' class NQueens(BOTSGroup): NAME = 'nqueens' class Sort(BOTSGroup): NAME = 'sort' class SparseLU(BOTSGroup): NAME = 'sparselu' class Strassen(BOTSGroup): NAME = 'strassen' class UTS(BOTSGroup): NAME = 'uts'
28.655629
79
0.580079
4,063
0.938988
0
0
3,637
0.840536
0
0
1,971
0.455512
48c9b882f54e25efdd1d54210cde93be6398663c
668
py
Python
clients/python/setup.py
timtadh/queued
9c46a49a73103de9a929718c223326149cb9accd
[ "BSD-3-Clause" ]
4
2015-12-29T05:07:50.000Z
2022-02-10T20:27:40.000Z
clients/python/setup.py
timtadh/queued
9c46a49a73103de9a929718c223326149cb9accd
[ "BSD-3-Clause" ]
1
2015-04-16T15:56:26.000Z
2015-04-16T15:56:26.000Z
clients/python/setup.py
timtadh/queued
9c46a49a73103de9a929718c223326149cb9accd
[ "BSD-3-Clause" ]
8
2015-02-24T12:05:16.000Z
2022-02-10T20:27:41.000Z
try: from setuptools import setup setup # quiet "redefinition of unused ..." warning from pyflakes # arguments that distutils doesn't understand setuptools_kwargs = { 'install_requires': [ ], 'provides': ['queued'], 'zip_safe': False } except ImportError: from distutils.core import setup setuptools_kwargs = {} setup(name='queued', version=1.1, description=( 'A client for queued' ), author='Tim Henderson', author_email='[email protected]', url='queued.org', packages=['queued',], platforms=['unix'], scripts=[], **setuptools_kwargs )
23.034483
69
0.586826
0
0
0
0
0
0
0
0
234
0.350299
48ca7f075d0516343cadcc4c408fff80c48e1083
11,129
py
Python
sym_executor.py
zhangzhenghsy/fiber
af1a8c8b01d4935849df73b01ccfeccbba742205
[ "BSD-2-Clause" ]
null
null
null
sym_executor.py
zhangzhenghsy/fiber
af1a8c8b01d4935849df73b01ccfeccbba742205
[ "BSD-2-Clause" ]
null
null
null
sym_executor.py
zhangzhenghsy/fiber
af1a8c8b01d4935849df73b01ccfeccbba742205
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python import angr,simuvex import sys,os import time from utils_sig import * from sym_tracer import Sym_Tracer from sig_recorder import Sig_Recorder #This class is responsible for performing symbolic execution. class Sym_Executor(object): def __init__(self,options=None,dbg_out=False): self.tracer = None self.recorder = None self.dbg_out = dbg_out self._whitelist = set() self._all_bbs = set() self._num_find = 10 self.options = options def _get_initial_state(self,proj,start,targetfunc=None): if proj is None: return None st = proj.factory.blank_state(addr=start,symbolic_sp=True) # print st.arch.registers.keys() # We can customize the symbolic execution by setting various options in the state # for a full list of available options: # https://github.com/angr/simuvex/blob/master/simuvex/s_options.py # E.g. st.options.add(simuvex.o.LAZY_SOLVES) ('options' is a set) # CALLLESS to do intra-procedure analysis st.options.add(simuvex.o.CALLLESS) if targetfunc is not None: st.options.add(str(hex(targetfunc))) # To prevent the engine from discarding log history st.options.add(simuvex.o.TRACK_ACTION_HISTORY) if self.options.get('simplify_ast',True): st.options.add(simuvex.o.SIMPLIFY_EXPRS) st.options.add(simuvex.o.SIMPLIFY_MEMORY_READS) st.options.add(simuvex.o.SIMPLIFY_MEMORY_WRITES) st.options.add(simuvex.o.SIMPLIFY_EXIT_GUARD) #TODO: Find a way to deal with function side-effect (i.e. a function call will output to a parameter, then the parameter will be used in a condition later) st.options.add(simuvex.o.IGNORE_EXIT_GUARDS) st.options.add(simuvex.o.IGNORE_MERGE_CONDITIONS) st.options.add(simuvex.o.DONT_MERGE_UNCONSTRAINED) #Use customized addr conc strategy st.memory.read_strategies = [angr.concretization_strategies.SimConcretizationStrategyHZ(limit=3)] st.memory.write_strategies = [angr.concretization_strategies.SimConcretizationStrategyHZ(limit=3)] #print st.options return st #Include all the BBs along the path from start to ends in the cfg into the whitelist. #The CFG here is CFGAcc. def _prep_whitelist(self,cfg,cfg_bounds,ends,start=None,proj=None,sym_tab=None,cfg2=None,cfg_bounds2=None,ends2=None,start2=None,func_cfg=None): #print "cfg:", [hex(n.addr) for n in cfg.nodes()] #print cfg.functions[cfg_bounds[0]] if cfg is None or cfg_bounds is None or len(cfg_bounds) < 2: print '_prep_whitelist(): Incomplete CFG information' return #for addr in cfg2.functions: # print cfg2.functions[addr] if cfg2 is not None: func_cfg2 = get_func_cfg(cfg2,cfg_bounds2[0],proj=proj,sym_tab=sym_tab) if func_cfg is None: print 'No func_cfg is available at %x' % cfg_bounds[0] return start = cfg_bounds[0] self._all_bbs = set([x.addr for x in func_cfg.nodes()]) #print '_all_bbs: ' + str([hex(x) for x in list(self._all_bbs)]) #print '_all_bbs2: '+str([hex(x) for x in list(set([x.addr for x in func_cfg2.nodes()]))]) if cfg2 is not None: self._all_bbs = self._all_bbs.union(set([x.addr for x in func_cfg2.nodes()])) self._whitelist = get_node_addrs_between(func_cfg,start,ends,from_func_start=(start == cfg_bounds[0])) if cfg2 is not None: self._whitelist= self._whitelist.union(get_node_addrs_between(func_cfg2,start2,ends2,from_func_start=(start2 == cfg_bounds2[0]))) l = list(self._whitelist) l.sort() #print 'whitelist: ' + str([hex(x) for x in l]) l = list(self._all_bbs) l.sort() #print '_all_bbs: ' + str([hex(x) for x in l]) if self.dbg_out: l = list(self._whitelist) l.sort() print 'whitelist: ' + str([hex(x) for x in l]) return #Why we put a absolutely 'False' find_func here: #(1)We rely on an accurate whitelist and all the nodes in the list should be explored, so we don't want #to stop at a certain node. #(2)With this find_func, basically we will have no states in the 'found' stash in the end, but that's OK #because all the things we want to do will be done along the symbolic execution process. def _find_func(self,p): return False def _avoid_func(self,p): #print 'avoid_func: ' + str(hex(p.addr)) + ' ' + str(p.addr in whitelist) #One problem is that, sometimes p.addr is in the middle of a certain BB, while in whitelist we only have start addresses of BBs. #Currently for these cases, we will let it continue to execute because it will align to the BB starts later. with open('testexplorenodes','a') as f: f.write(str(hex(p.addr))+'\n') return False if p.addr not in self._all_bbs else (not p.addr in self._whitelist) #This is basically the 'hook_complete' used in 'explorer' technique, simply deciding whether num_find has been reached. def _vt_terminator(self,smg): return len(smg.stashes['found']) >= self._num_find def _prep_veritesting_options(self,find=None,avoid=None,num_find=10): if find is None: find = self._find_func if avoid is None: avoid = self._avoid_func #We need to construct an 'explorer' as an 'exploration_technique' used in the internal SimManager of Veritesting, #which is basically the same one as used in normal DSE SimManager (by invoking 'explore()' method) #NOTE that the Veritesting mode will use a separate SimManager, so we have to make TWO 'explorer'. exp_tech = angr.exploration_techniques.Explorer(find=find,avoid=avoid,num_find=num_find) veritesting_options = {} #NOTE: 'loop_unrolling_limit' is compared and considered as 'passed' with '>=' instead of '>', that means if we use '1', no loops will be even entered. #However we want exactly ONE loop execution, so we should should use '2' here actually. veritesting_options['loop_unrolling_limit'] = 2 veritesting_options['tech'] = exp_tech #NOTE that original 'explorer' technique will set a 'hook_complete' in SimManager, which will be passed from 'run()' to 'step()' #as a 'until_func', however, Veritesting will not invoke 'run()', instead, it calls 'step()' directly, so this hook is basically #invalidated. To deal with this, we provide a 'terminator' to Veritesting, which will terminate Veritesting when len(stashes[found]) > num_find veritesting_options['terminator'] = self._vt_terminator return veritesting_options #Do the symbolic execution on the given CFG, from start to target, with Veritesting and Whitelist mechanisms. #Params: #proj: the angr project. #states: if it's None, creates a default initial state@start, if start is None, then @cfg_bounds[0]. #cfg: cfg_accurate. #cfg_bounds: a 2-element list, specifying the area of the target function (to be executed) in the cfg. #start: Where to start the symbolic execution? Must be within the cfg_bounds. #targets: Where to end the symbolic execution? Must be within the cfg_bounds. Can specify multiple targets in a list. #Ret: #The resulting SimManager. def try_sym_exec(self,proj,cfg,cfg_bounds,targets,states=None,start=None,new_tracer=False,tracer=None,new_recorder=False,recorder=None,sym_tab=None,sigs=None,cfg2=None,cfg_bounds2=None,targets2=None, start2=None,func_cfg=None,num_find=10): #print "start1: ", hex(start) #print "start2: ", hex(start2) if cfg is None or cfg_bounds is None or len(cfg_bounds) < 2: print 'No CFG information available for sym exec.' return None #This is the start point of sym exec. st = start if start is not None else cfg_bounds[0] if start2 is not None: st=start2 #Fill initial state. #print 'hex(start)', hex(start) #print 'str(hex(start))', str(hex(start)) if states is None: if start2 is not None: init_state = self._get_initial_state(proj,st,start) #init_state = self._get_initial_state(proj,start) else: init_state = self._get_initial_state(proj,st) states = [init_state] #Whether we need to create a new Sym_Tracer to trace the symbolic execution if new_tracer: self.tracer = Sym_Tracer(symbol_table=sym_tab,dbg_out=self.dbg_out) #for example:<class 'sym_tracer.Sym_Tracer'>: {'addr_collision': False, 'dbg_out': True, 'symbol_table': <sym_table.Sym_Table object at 0x7fffeba54890>, '_addr_conc_buf': [], '_sym_map': {}} #Clear any remaining breakpoints self.tracer.stop_trace(states) self.tracer.trace(states) else: self.tracer = tracer #Whether we need to create a new Sig_Recorder if new_recorder: if sigs is None: print 'You must provide sigs if you want to use new recorder' return if self.tracer is None: print 'You must provide tracer or specify new_tracer flag if you want to use new recorder' return self.recorder = Sig_Recorder(sigs,self.tracer,dbg_out=dbg_out) #Clear any remaining breakpoints self.recorder.stop_record(states) #Record structural information (nodes and their relationships) and semantic information of 'root' #instructions with per-instruction breakpoint, the structural information has already been partly recorded in the initial signature. self.recorder.record(states) else: self.recorder = recorder #Set the whitelist of basic blocks, we only want to include the BBs that along the paths from st to targets. self._prep_whitelist(cfg,cfg_bounds,targets,start,proj=proj,sym_tab=sym_tab,cfg2=cfg2,cfg_bounds2=cfg_bounds2,ends2=targets2,start2=start2,func_cfg=func_cfg) self._num_find = num_find #Set the VeriTesting options veritesting_options = self._prep_veritesting_options(num_find=self._num_find) #Construct the simulation execution manager smg = proj.factory.simgr(thing=states, veritesting=True, veritesting_options=veritesting_options) #TODO: Do we still need to use loop limiter for the main DSE SimManager since Veritesting has already got a built-in loop limiter? #limiter = angr.exploration_techniques.looplimiter.LoopLimiter(count=0, discard_stash='spinning') #smg.use_technique(limiter) t0 = time.time() smg.explore(find=self._find_func, avoid=self._avoid_func, num_find=self._num_find) print ['%s:%d ' % (name,len(stash)) for name, stash in smg.stashes.items()] print 'Time elapsed: ' + str(time.time() - t0) return smg
54.287805
243
0.673556
10,905
0.979872
0
0
0
0
0
0
5,151
0.462845
48ca956ecd40df08896e125936a630042abd2d96
2,228
py
Python
apim-migration-testing-tool/Python/venv/lib/python3.6/site-packages/pymysql/constants/CR.py
tharindu1st/apim-migration-resources
dd68aa8c53cf310392bb72e699dd24c57b109cfb
[ "Apache-2.0" ]
1,573
2015-01-01T07:19:06.000Z
2022-03-30T09:06:06.000Z
apim-migration-testing-tool/Python/venv/lib/python3.6/site-packages/pymysql/constants/CR.py
tharindu1st/apim-migration-resources
dd68aa8c53cf310392bb72e699dd24c57b109cfb
[ "Apache-2.0" ]
1,691
2015-01-03T11:03:23.000Z
2022-03-30T07:27:28.000Z
apim-migration-testing-tool/Python/venv/lib/python3.6/site-packages/pymysql/constants/CR.py
tharindu1st/apim-migration-resources
dd68aa8c53cf310392bb72e699dd24c57b109cfb
[ "Apache-2.0" ]
895
2015-01-03T19:56:15.000Z
2022-03-18T18:30:57.000Z
# flake8: noqa # errmsg.h CR_ERROR_FIRST = 2000 CR_UNKNOWN_ERROR = 2000 CR_SOCKET_CREATE_ERROR = 2001 CR_CONNECTION_ERROR = 2002 CR_CONN_HOST_ERROR = 2003 CR_IPSOCK_ERROR = 2004 CR_UNKNOWN_HOST = 2005 CR_SERVER_GONE_ERROR = 2006 CR_VERSION_ERROR = 2007 CR_OUT_OF_MEMORY = 2008 CR_WRONG_HOST_INFO = 2009 CR_LOCALHOST_CONNECTION = 2010 CR_TCP_CONNECTION = 2011 CR_SERVER_HANDSHAKE_ERR = 2012 CR_SERVER_LOST = 2013 CR_COMMANDS_OUT_OF_SYNC = 2014 CR_NAMEDPIPE_CONNECTION = 2015 CR_NAMEDPIPEWAIT_ERROR = 2016 CR_NAMEDPIPEOPEN_ERROR = 2017 CR_NAMEDPIPESETSTATE_ERROR = 2018 CR_CANT_READ_CHARSET = 2019 CR_NET_PACKET_TOO_LARGE = 2020 CR_EMBEDDED_CONNECTION = 2021 CR_PROBE_SLAVE_STATUS = 2022 CR_PROBE_SLAVE_HOSTS = 2023 CR_PROBE_SLAVE_CONNECT = 2024 CR_PROBE_MASTER_CONNECT = 2025 CR_SSL_CONNECTION_ERROR = 2026 CR_MALFORMED_PACKET = 2027 CR_WRONG_LICENSE = 2028 CR_NULL_POINTER = 2029 CR_NO_PREPARE_STMT = 2030 CR_PARAMS_NOT_BOUND = 2031 CR_DATA_TRUNCATED = 2032 CR_NO_PARAMETERS_EXISTS = 2033 CR_INVALID_PARAMETER_NO = 2034 CR_INVALID_BUFFER_USE = 2035 CR_UNSUPPORTED_PARAM_TYPE = 2036 CR_SHARED_MEMORY_CONNECTION = 2037 CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR = 2038 CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR = 2039 CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR = 2040 CR_SHARED_MEMORY_CONNECT_MAP_ERROR = 2041 CR_SHARED_MEMORY_FILE_MAP_ERROR = 2042 CR_SHARED_MEMORY_MAP_ERROR = 2043 CR_SHARED_MEMORY_EVENT_ERROR = 2044 CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR = 2045 CR_SHARED_MEMORY_CONNECT_SET_ERROR = 2046 CR_CONN_UNKNOW_PROTOCOL = 2047 CR_INVALID_CONN_HANDLE = 2048 CR_SECURE_AUTH = 2049 CR_FETCH_CANCELED = 2050 CR_NO_DATA = 2051 CR_NO_STMT_METADATA = 2052 CR_NO_RESULT_SET = 2053 CR_NOT_IMPLEMENTED = 2054 CR_SERVER_LOST_EXTENDED = 2055 CR_STMT_CLOSED = 2056 CR_NEW_STMT_METADATA = 2057 CR_ALREADY_CONNECTED = 2058 CR_AUTH_PLUGIN_CANNOT_LOAD = 2059 CR_DUPLICATE_CONNECTION_ATTR = 2060 CR_AUTH_PLUGIN_ERR = 2061 CR_ERROR_LAST = 2061
32.289855
47
0.745063
0
0
0
0
0
0
0
0
24
0.010772
48cccf1158ee9bcd15cefd678338ca10d4234710
992
py
Python
check-challenge.py
gjaiswal108/Check-if-Challenge-problem-added-in-codechef
74b29725ad38bdf0dc210dbdb67fccf056ec6d8c
[ "Apache-2.0" ]
null
null
null
check-challenge.py
gjaiswal108/Check-if-Challenge-problem-added-in-codechef
74b29725ad38bdf0dc210dbdb67fccf056ec6d8c
[ "Apache-2.0" ]
null
null
null
check-challenge.py
gjaiswal108/Check-if-Challenge-problem-added-in-codechef
74b29725ad38bdf0dc210dbdb67fccf056ec6d8c
[ "Apache-2.0" ]
null
null
null
import requests,smtplib,time from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart r =requests.get('https://www.codechef.com/JUNE19B/') while(1): if('(Challenge)' in r.text): s = smtplib.SMTP('smtp.gmail.com', 587) s.starttls() s.login("sender_gmail_id", "password") msg= MIMEMultipart("alternative") msg["Subject"]="Challenge Problem added" msg["From"]="sender_gmail_id" msg["To"]="receiver_gmail_id" text="I guess challenge problem is added in long challenge,check it on codechef." html="<h4>I guess challenge problem is added in long challenge,check it on codechef.</h4><br/><a href='https://www.codechef.com/'>Click here to visit. </a>" msg.attach(MIMEText(html, "html")) s.sendmail("sender_gmail_id","receiver_gmail_id",msg.as_string()) s.quit() print('sent') break print('Sleeping...') time.sleep(3600) print('Trying again...')
41.333333
164
0.647177
0
0
0
0
0
0
0
0
489
0.492944
48cd5f2495ad481cbf1d4200796edf478513850e
2,840
py
Python
applications/tensorflow/click_through_rate/din/test/test_attention_fcn.py
kew96/GraphcoreExamples
22dc0d7e3755b0a7f16cdf694c6d10c0f91ee8eb
[ "MIT" ]
null
null
null
applications/tensorflow/click_through_rate/din/test/test_attention_fcn.py
kew96/GraphcoreExamples
22dc0d7e3755b0a7f16cdf694c6d10c0f91ee8eb
[ "MIT" ]
null
null
null
applications/tensorflow/click_through_rate/din/test/test_attention_fcn.py
kew96/GraphcoreExamples
22dc0d7e3755b0a7f16cdf694c6d10c0f91ee8eb
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests covering attention used by the DIN model. """ import tensorflow as tf import unittest import pytest import numpy as np import sys from pathlib import Path # Add common module to path common_path = Path(Path(__file__).absolute().parent.parent.parent) sys.path.append(str(common_path)) from common.utils import din_attention from din.din_model import DIN seed = 3 tf.set_random_seed(seed) @pytest.mark.category1 @pytest.mark.ipus(1) class TestDINFCN(unittest.TestCase): """Testing att layer""" @classmethod def setUpClass(cls): cls.model_dtype = tf.float32 cls.ATTENTION_SIZE = 1 def test_att_results(self): # test attention layer output query_value = np.ones([4, 2], np.float32) query_value = query_value * 0.8 query_inp = tf.placeholder(shape=[4, 2], dtype='float32') facts_value = np.ones([4, 8, 2], np.float32) facts_value = facts_value * 0.5 facts_inp = tf.placeholder(shape=[4, 8, 2], dtype='float32') mask_value = np.ones([4, 8], np.float32) mask_value = mask_value * 0.2 mask_inp = tf.placeholder(shape=[4, 8], dtype='float32') out = din_attention(query_inp, facts_inp, self.ATTENTION_SIZE, mask_inp) with tf.compat.v1.Session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(out, feed_dict={query_inp: query_value, facts_inp: facts_value, mask_inp: mask_value}) y0 = np.float32(0.5) y1 = np.float32(0.5) self.assertAlmostEqual(output[0, 0, 0], y0, delta = 0.01) self.assertAlmostEqual(output[0, 0, 0], y1, delta = 0.01) def test_fcn_results(self): # test fcn results inputs_value = np.ones([2, 6, 2], np.float32) inp = tf.placeholder(shape=[2, 6, 2], dtype='float32') y_hat = DIN.build_fcn_net(self, inp) with tf.compat.v1.Session() as sess: sess.run(tf.global_variables_initializer()) y = sess.run(y_hat, feed_dict={inp: inputs_value}) y0 = np.float32(0.5225718) y1 = np.float32(0.47742826) self.assertAlmostEqual(y[0, 0, 0], y0, delta = 0.01) self.assertAlmostEqual(y[0, 0, 1], y1, delta = 0.01)
34.216867
116
0.669366
1,791
0.630634
0
0
1,835
0.646127
0
0
778
0.273944
48cd84239fff9070a94f62f2913b39c9eded80ea
204
py
Python
shiva/constants.py
tooxie/shiva-server
4d169aae8d4cb01133f62701b14610695e48c297
[ "MIT" ]
70
2015-01-09T15:15:15.000Z
2022-01-14T09:51:55.000Z
shiva/constants.py
tooxie/shiva-server
4d169aae8d4cb01133f62701b14610695e48c297
[ "MIT" ]
14
2015-01-04T10:08:26.000Z
2021-12-13T19:35:07.000Z
shiva/constants.py
tooxie/shiva-server
4d169aae8d4cb01133f62701b14610695e48c297
[ "MIT" ]
19
2015-01-02T22:42:01.000Z
2022-01-14T09:51:59.000Z
# -*- coding: utf-8 -*- class HTTP: BAD_REQUEST = 400 UNAUTHORIZED = 401 FORBIDDEN = 403 NOT_FOUND = 404 METHOD_NOT_ALLOWED = 405 CONFLICT = 409 UNSUPPORTED_MEDIA_TYPE = 415
17
32
0.632353
177
0.867647
0
0
0
0
0
0
23
0.112745