hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
d2d415b3f1a1db25737dd9e6b40de2eb5823d384
325
py
Python
DjangoTry/venv/Lib/site-packages/django_select2/__init__.py
PavelKoksharov/QR-BOOK
8b05cecd7a3cffcec281f2e17da398ad9e4c5de5
[ "MIT" ]
null
null
null
DjangoTry/venv/Lib/site-packages/django_select2/__init__.py
PavelKoksharov/QR-BOOK
8b05cecd7a3cffcec281f2e17da398ad9e4c5de5
[ "MIT" ]
null
null
null
DjangoTry/venv/Lib/site-packages/django_select2/__init__.py
PavelKoksharov/QR-BOOK
8b05cecd7a3cffcec281f2e17da398ad9e4c5de5
[ "MIT" ]
null
null
null
""" This is a Django_ integration of Select2_. The application includes Select2 driven Django Widgets and Form Fields. .. _Django: https://www.djangoproject.com/ .. _Select2: https://select2.org/ """ from django import get_version if get_version() < '3.2': default_app_config = "django_select2.apps.Select2AppConfig"
23.214286
71
0.750769
0
0
0
0
0
0
0
0
245
0.753846
d2d4cdab7ece6cb0f6e54ac92797ae4e32cdf266
673
py
Python
Sorting/bubble.py
Krylovsentry/Algorithms
0cd236f04dc065d5247a6f274bb3db503db591b0
[ "MIT" ]
1
2016-08-21T13:01:42.000Z
2016-08-21T13:01:42.000Z
Sorting/bubble.py
Krylovsentry/Algorithms
0cd236f04dc065d5247a6f274bb3db503db591b0
[ "MIT" ]
null
null
null
Sorting/bubble.py
Krylovsentry/Algorithms
0cd236f04dc065d5247a6f274bb3db503db591b0
[ "MIT" ]
null
null
null
# O(n ** 2) def bubble_sort(slist, asc=True): need_exchanges = False for iteration in range(len(slist))[:: -1]: for j in range(iteration): if asc: if slist[j] > slist[j + 1]: need_exchanges = True slist[j], slist[j + 1] = slist[j + 1], slist[j] else: if slist[j] < slist[j + 1]: need_exchanges = True slist[j], slist[j + 1] = slist[j + 1], slist[j] if not need_exchanges: return slist return slist print(bubble_sort([8, 1, 13, 34, 5, 2, 21, 3, 1], False)) print(bubble_sort([1, 2, 3, 4, 5, 6]))
32.047619
67
0.473997
0
0
0
0
0
0
0
0
11
0.016345
d2d55fb8abaabd881c853630310ad6dc464e75ff
8,247
py
Python
chapter_13/pymail.py
bimri/programming_python
ba52ccd18b9b4e6c5387bf4032f381ae816b5e77
[ "MIT" ]
null
null
null
chapter_13/pymail.py
bimri/programming_python
ba52ccd18b9b4e6c5387bf4032f381ae816b5e77
[ "MIT" ]
null
null
null
chapter_13/pymail.py
bimri/programming_python
ba52ccd18b9b4e6c5387bf4032f381ae816b5e77
[ "MIT" ]
null
null
null
"A Console-Based Email Client" #!/usr/local/bin/python """ ########################################################################## pymail - a simple console email interface client in Python; uses Python poplib module to view POP email messages, smtplib to send new mails, and the email package to extract mail headers and payload and compose mails; ########################################################################## """ import poplib, smtplib, email.utils, mailconfig from email.parser import Parser from email.message import Message fetchEncoding = mailconfig.fetchEncoding def decodeToUnicode(messageBytes, fetchEncoding=fetchEncoding): """ 4E, Py3.1: decode fetched bytes to str Unicode string for display or parsing; use global setting (or by platform default, hdrs inspection, intelligent guess); in Python 3.2/3.3, this step may not be required: if so, return message intact; """ return [line.decode(fetchEncoding) for line in messageBytes] def splitaddrs(field): """ 4E: split address list on commas, allowing for commas in name parts """ pairs = email.utils.getaddresses([field]) # [(name,addr)] return [email.utils.formataddr(pair) for pair in pairs] # [name <addr>] def inputmessage(): import sys From = input('From? ').strip() To = input('To? ').strip() # datetime hdr may be set auto To = splitaddrs(To) # possible many, name+<addr> okay Subj = input('Subj? ').strip() # don't split blindly on ',' or ';' print('Type message text, end with line="."') text = '' while True: line = sys.stdin.readline() if line == '.\n': break text += line return From, To, Subj, text def sendmessage(): From, To, Subj, text = inputmessage() msg = Message() msg['From'] = From msg['To'] = ', '.join(To) # join for hdr, not send msg['Subject'] = Subj msg['Date'] = email.utils.formatdate() # curr datetime, rfc2822 msg.set_payload(text) server = smtplib.SMTP(mailconfig.smtpservername) try: failed = server.sendmail(From, To, str(msg)) # may also raise exc except: print('Error - send failed') else: if failed: print('Failed:', failed) def connect(servername, user, passwd): print('Connecting...') server = poplib.POP3(servername) server.user(user) # connect, log in to mail server server.pass_(passwd) # pass is a reserved word print(server.getwelcome()) # print returned greeting message return server def loadmessages(servername, user, passwd, loadfrom=1): server = connect(servername, user, passwd) try: print(server.list()) (msgCount, msgBytes) = server.stat() print('There are', msgCount, 'mail messages in', msgBytes, 'bytes') print('Retrieving...') msgList = [] # fetch mail now for i in range(loadfrom, msgCount+1): # empty if low >= high (hdr, message, octets) = server.retr(i) # save text on list message = decodeToUnicode(message) # 4E, Py3.1: bytes to str msgList.append('\n'.join(message)) # leave mail on server finally: server.quit() # unlock the mail box assert len(msgList) == (msgCount - loadfrom) + 1 # msg nums start at 1 return msgList def deletemessages(servername, user, passwd, toDelete, verify=True): print('To be deleted:', toDelete) if verify and input('Delete?')[:1] not in ['y', 'Y']: print('Delete cancelled.') else: server = connect(servername, user, passwd) try: print('Deleting messages from server...') for msgnum in toDelete: # reconnect to delete mail server.dele(msgnum) # mbox locked until quit() finally: server.quit() def showindex(msgList): count = 0 # show some mail headers for msgtext in msgList: msghdrs = Parser().parsestr(msgtext, headersonly=True) # expects str in 3.1 count += 1 print('%d:\t%d bytes' % (count, len(msgtext))) for hdr in ('From', 'To', 'Date', 'Subject'): try: print('\t%-8s=>%s' % (hdr, msghdrs[hdr])) except KeyError: print('\t%-8s=>(unknown)' % hdr) if count % 5 == 0: input('[Press Enter key]') # pause after each 5 def showmessage(i, msgList): if 1 <= i <= len(msgList): #print(msgList[i-1]) # old: prints entire mail--hdrs+text print('-' * 79) msg = Parser().parsestr(msgList[i-1]) # expects str in 3.1 content = msg.get_payload() # prints payload: string, or [Messages] if isinstance(content, str): # keep just one end-line at end content = content.rstrip() + '\n' print(content) print('-' * 79) # to get text only, see email.parsers else: print('Bad message number') def savemessage(i, mailfile, msgList): if 1 <= i <= len(msgList): savefile = open(mailfile, 'a', encoding=mailconfig.fetchEncoding) # 4E savefile.write('\n' + msgList[i-1] + '-'*80 + '\n') else: print('Bad message number') def msgnum(command): try: return int(command.split()[1]) except: return -1 # assume this is bad helptext = """ Available commands: i - index display l n? - list all messages (or just message n) d n? - mark all messages for deletion (or just message n) s n? - save all messages to a file (or just message n) m - compose and send a new mail message q - quit pymail ? - display this help text """ def interact(msgList, mailfile): showindex(msgList) toDelete = [] while True: try: command = input('[Pymail] Action? (i, l, d, s, m, q, ?) ') except EOFError: command = 'q' if not command: command = '*' # quit if command == 'q': break # index elif command[0] == 'i': showindex(msgList) # list elif command[0] == 'l': if len(command) == 1: for i in range(1, len(msgList)+1): showmessage(i, msgList) else: showmessage(msgnum(command), msgList) # save elif command[0] == 's': if len(command) == 1: for i in range(1, len(msgList)+1): savemessage(i, mailfile, msgList) else: savemessage(msgnum(command), mailfile, msgList) # delete elif command[0] == 'd': if len(command) == 1: # delete all later toDelete = list(range(1, len(msgList)+1)) # 3.x requires list else: delnum = msgnum(command) if (1 <= delnum <= len(msgList)) and (delnum not in toDelete): toDelete.append(delnum) else: print('Bad message number') # mail elif command[0] == 'm': # send a new mail via SMTP sendmessage() #execfile('smtpmail.py', {}) # alt: run file in own namespace elif command[0] == '?': print(helptext) else: print('What? -- type "?" for commands help') return toDelete if __name__ == '__main__': import getpass, mailconfig mailserver = mailconfig.popservername # ex: 'pop.rmi.net' mailuser = mailconfig.popusername # ex: 'lutz' mailfile = mailconfig.savemailfile # ex: r'c:\stuff\savemail' mailpswd = getpass.getpass('Password for %s?' % mailserver) print('[Pymail email client]') msgList = loadmessages(mailserver, mailuser, mailpswd) # load all toDelete = interact(msgList, mailfile) if toDelete: deletemessages(mailserver, mailuser, mailpswd, toDelete) print('Bye.')
37.830275
84
0.547229
0
0
0
0
0
0
0
0
2,703
0.327756
d2d6774deb12048e5d8199a5f876c5130870f008
1,027
py
Python
dependencyinjection/internal/param_type_resolver.py
Cologler/dependencyinjection-python
dc05c61571f10652d82929ebec4b255f109b840b
[ "MIT" ]
null
null
null
dependencyinjection/internal/param_type_resolver.py
Cologler/dependencyinjection-python
dc05c61571f10652d82929ebec4b255f109b840b
[ "MIT" ]
null
null
null
dependencyinjection/internal/param_type_resolver.py
Cologler/dependencyinjection-python
dc05c61571f10652d82929ebec4b255f109b840b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2017~2999 - cologler <[email protected]> # ---------- # # ---------- import typing import inspect from .errors import ParameterTypeResolveError class ParameterTypeResolver: ''' desgin for resolve type from parameter. ''' def __init__(self, name_map: typing.Dict[str, type]): self._name_map = name_map.copy() def resolve(self, parameter: inspect.Parameter, allow_none): if parameter.annotation is inspect.Parameter.empty: typ = self._name_map.get(parameter.name) if typ is None: msg = "cannot resolve parameter type from name: '{}'".format(parameter.name) raise ParameterTypeResolveError(msg) return typ elif isinstance(parameter.annotation, type): return parameter.annotation elif not allow_none: msg = 'cannot parse type from annotation: {}'.format(parameter.annotation) raise ParameterTypeResolveError(msg)
31.121212
92
0.641675
816
0.794547
0
0
0
0
0
0
259
0.252191
d2d69439ae028b8caac841d651293bd86aa4f321
639
py
Python
rest-api/server.py
phenomax/resnet50-miml-rest
4f78dd2c9454c54d013085eb4d50080d38a833ac
[ "Unlicense" ]
1
2020-08-29T16:51:47.000Z
2020-08-29T16:51:47.000Z
rest-api/server.py
phenomax/resnet50-miml-rest
4f78dd2c9454c54d013085eb4d50080d38a833ac
[ "Unlicense" ]
null
null
null
rest-api/server.py
phenomax/resnet50-miml-rest
4f78dd2c9454c54d013085eb4d50080d38a833ac
[ "Unlicense" ]
null
null
null
import io import os from flask import Flask, request, jsonify from PIL import Image from resnet_model import MyResnetModel app = Flask(__name__) # max filesize 2mb app.config['MAX_CONTENT_LENGTH'] = 2 * 1024 * 1024 # setup resnet model model = MyResnetModel(os.path.dirname(os.path.abspath(__file__))) @app.route("/") def hello(): return jsonify({"message": "Hello from the API"}) @app.route('/predict', methods=['POST']) def predict(): if 'image' not in request.files: return jsonify({"error": "Missing file in request"}) img = request.files['image'] return jsonify({"result": model.predict(img.read())})
22.034483
65
0.694836
0
0
0
0
328
0.513302
0
0
160
0.250391
d2d95eb0f80255c257603ed734e875c5ce26b88b
2,945
py
Python
authors/apps/profiles/tests/test_follow.py
KabohaJeanMark/ah-backend-invictus
a9cf930934e8cbcb4ee370a088df57abe50ee6d6
[ "BSD-3-Clause" ]
7
2021-03-04T09:29:13.000Z
2021-03-17T17:35:42.000Z
authors/apps/profiles/tests/test_follow.py
KabohaJeanMark/ah-backend-invictus
a9cf930934e8cbcb4ee370a088df57abe50ee6d6
[ "BSD-3-Clause" ]
25
2019-04-23T18:51:02.000Z
2021-06-10T21:22:47.000Z
authors/apps/profiles/tests/test_follow.py
KabohaJeanMark/ah-backend-invictus
a9cf930934e8cbcb4ee370a088df57abe50ee6d6
[ "BSD-3-Clause" ]
7
2019-06-29T10:40:38.000Z
2019-09-23T09:05:45.000Z
from django.urls import reverse from rest_framework import status from .base import BaseTestCase class FollowTestCase(BaseTestCase): """Testcases for following a user.""" def test_follow_user_post(self): """Test start following a user.""" url = reverse('follow', kwargs={'username': 'test2'}) response = self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_post_follow_already_followed_user(self): """Test start following a user you already follow.""" url = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) response = self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_follow_missing_user_post(self): """Test trying to start following a missing user.""" url = reverse('follow', kwargs={'username': 'joel'}) response = self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_delete_follow(self): """Test unfollowing a user""" url = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) response = self.client.delete(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_delete_follow_of_not_followed_user(self): """Test unfollowing a user you are not following""" url = reverse('follow', kwargs={'username': 'test2'}) response = self.client.delete(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_list_followers_of_user(self): """Test list followers of a user""" url_followers = reverse('getfollowers', kwargs={'username': 'test2'}) self.client.get(url_followers, HTTP_AUTHORIZATION=self.auth_header) url_follow = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url_follow, HTTP_AUTHORIZATION=self.auth_header) response = self.client.get(url_followers, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_list_user_is_following(self): """Test list users the user is following""" url_following = reverse('getfollowing', kwargs={'username': 'test1'}) self.client.get(url_following, HTTP_AUTHORIZATION=self.auth_header) url_follow = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url_follow, HTTP_AUTHORIZATION=self.auth_header) response = self.client.get(url_following, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK)
50.775862
86
0.711036
2,845
0.966044
0
0
0
0
0
0
570
0.193548
d2dbd1807d449ae04403cf686fe2378b35d5fa68
6,585
py
Python
OpenPNM/Phases/__GenericPhase__.py
thirtywang/OpenPNM
e55ee7ae69a8be3e2b0e6bf24c9ff92b6d24e16a
[ "MIT" ]
null
null
null
OpenPNM/Phases/__GenericPhase__.py
thirtywang/OpenPNM
e55ee7ae69a8be3e2b0e6bf24c9ff92b6d24e16a
[ "MIT" ]
null
null
null
OpenPNM/Phases/__GenericPhase__.py
thirtywang/OpenPNM
e55ee7ae69a8be3e2b0e6bf24c9ff92b6d24e16a
[ "MIT" ]
1
2020-07-02T02:21:10.000Z
2020-07-02T02:21:10.000Z
# -*- coding: utf-8 -*- """ =============================================================================== module __GenericPhase__: Base class for building Phase objects =============================================================================== """ from OpenPNM.Network import GenericNetwork import OpenPNM.Phases.models from OpenPNM.Base import Core, Tools, logging import scipy as sp logger = logging.getLogger(__name__) class GenericPhase(Core): r""" Base class to generate a generic phase object. The user must specify models and parameters for all the properties they require. Classes for several common phases are included with OpenPNM and can be found under OpenPNM.Phases. Parameters ---------- network : OpenPNM Network object The network to which this Phase should be attached components : list of OpenPNM Phase objects These Phase objects are ficticious or virtual phases that are the pure components from which the mixture is made. They are used to calculate and store any pure component data. If none are supplied then this object will act like either a pure component, a mixture whose properties are well known (like air) and need not to be found from consideration of the pure component properties. name : str, optional A unique string name to identify the Phase object, typically same as instance name but can be anything. """ def __init__(self, network=None, components=[], **kwargs): super().__init__(**kwargs) logger.name = self.name if network is None: network = GenericNetwork() self.network.update({network.name: network}) # Initialize label 'all' in the object's own info dictionaries self['pore.all'] = self._net['pore.all'] self['throat.all'] = self._net['throat.all'] # Set standard conditions on the fluid to get started self['pore.temperature'] = 298.0 self['pore.pressure'] = 101325.0 # Register Ohase object in Network dictionary self._net['pore.'+self.name] = True self._net['throat.'+self.name] = True if components != []: for comp in components: self.set_component(phase=comp) self._net.phases.update({self.name: self}) # Connect Phase to Network def __setitem__(self, prop, value): for phys in self._physics: if (prop in phys.keys()) and ('all' not in prop.split('.')): logger.error(prop + ' is already defined in at least one \ associated Physics object') return super().__setitem__(prop, value) def __getitem__(self, key): if key.split('.')[-1] == self.name: element = key.split('.')[0] return self[element+'.all'] if key not in self.keys(): logger.debug(key+' not on Phase, constructing data from Physics') return self._interleave_data(key, sources=self._physics) else: return super().__getitem__(key) def props(self, element=None, mode='all', deep=False): # TODO: The mode 'deep' is deprecated in favor of the deep argument # and should be removed in a future version modes = ['all', 'deep', 'models', 'constants'] mode = self._parse_mode(mode=mode, allowed=modes, single=False) prop_list = [] if ('deep' in mode) or (deep is True): if mode.count('deep') > 0: mode.remove('deep') for phys in self._physics: prop_list.extend(phys.props(element=element, mode=mode)) # Get unique values prop_list = Tools.PrintableList(set(prop_list)) prop_list.extend(super().props(element=element, mode=mode)) return prop_list props.__doc__ = Core.props.__doc__ def set_component(self, phase, mode='add'): r""" This method is used to add or remove a ficticious phase object to this object. Parameters ---------- phase : OpenPNM Phase object This is the ficticious phase object defining a pure component. mode : string Indicates whether to 'add' or 'remove' the supplied Phase object """ if mode == 'add': if phase.name in self.phases(): raise Exception('Phase already present') else: # Associate components with self self.phases.update({phase.name: phase}) # Associate self with components phase.phases.update({self.name: self}) # Add models for components to inherit mixture T and P phase.models.add(propname='pore.temperature', model=OpenPNM.Phases.models.misc.mixture_value) phase.models.add(propname='pore.pressure', model=OpenPNM.Phases.models.misc.mixture_value) # Move T and P models to beginning of regeneration order phase.models.reorder({'pore.temperature': 0, 'pore.pressure': 1}) elif mode == 'remove': if phase.name in self.phases(): self.phases.pop(phase.name) else: raise Exception('Phase not found') def check_mixture_health(self): r""" Query the properties of the 'virtual phases' that make up a mixture to ensure they all add up """ mole_sum = sp.zeros((self.Np,)) for comp in self._phases: try: mole_sum = mole_sum + comp['pore.mole_fraction'] except: pass return mole_sum def check_physics_health(self): r""" Perform a check to find pores which have overlapping or undefined Physics """ phys = self.physics() Ptemp = sp.zeros((self.Np,)) Ttemp = sp.zeros((self.Nt,)) for item in phys: Pind = self['pore.'+item] Tind = self['throat.'+item] Ptemp[Pind] = Ptemp[Pind] + 1 Ttemp[Tind] = Ttemp[Tind] + 1 health = Tools.HealthDict() health['overlapping_pores'] = sp.where(Ptemp > 1)[0].tolist() health['undefined_pores'] = sp.where(Ptemp == 0)[0].tolist() health['overlapping_throats'] = sp.where(Ttemp > 1)[0].tolist() health['undefined_throats'] = sp.where(Ttemp == 0)[0].tolist() return health
39.909091
82
0.577525
6,152
0.934244
0
0
0
0
0
0
2,884
0.437965
d2dbe93b08cbd7c9fba4a7da5b0696432c491446
2,860
py
Python
rqt_mypkg/src/rqt_mypkg/statistics.py
mounteverset/moveit_path_visualizer
15e55c631cb4c4d052763ebd695ce5fcb6de5a4c
[ "BSD-3-Clause" ]
null
null
null
rqt_mypkg/src/rqt_mypkg/statistics.py
mounteverset/moveit_path_visualizer
15e55c631cb4c4d052763ebd695ce5fcb6de5a4c
[ "BSD-3-Clause" ]
null
null
null
rqt_mypkg/src/rqt_mypkg/statistics.py
mounteverset/moveit_path_visualizer
15e55c631cb4c4d052763ebd695ce5fcb6de5a4c
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import sys import copy from moveit_commander import move_group import rospy import moveit_commander import moveit_msgs.msg import geometry_msgs.msg from math import pi, sqrt, pow from std_msgs.msg import String import io import shutil import json #used to convert the points from the gui in a valid message for ros from geometry_msgs.msg import Pose, PoseStamped #used to read out the start points import os from nav_msgs.msg import Path #used for publishing the planned path from start to goal from visualization_msgs.msg import Marker, MarkerArray #used to make a service request from moveit_msgs.srv import GetPositionIKRequest, GetPositionIK from rqt_mypkg import path_planning_interface from trajectory_msgs.msg import JointTrajectoryPoint ## StatsitcisDefinedPath is used to get the path length of given points/positions generated by the Motion Plan class StatisticsDefinedPath(object): ## Returns the path length # @param eef_poses A list of end effector poses derived from the motion between start and goal pose def get_path_length(self, eef_poses): path_length = 0 for i in range(len(eef_poses) - 1): ## @var posex # position x of the given position/point posex = eef_poses[i].position.x ## @var posey # position y of the given position/point posey = eef_poses[i].position.y ## @var posez # position z of the given position/point posez = eef_poses[i].position.z ## @var posex1 # position x of the next given position/point posex1 = eef_poses[i+1].position.x ## @var posey1 # position y of the next given position/point posey1 = eef_poses[i+1].position.y ## @var posez1 # position z of the next given position/point posez1 = eef_poses[i+1].position.z ## @var path_length # formula to get the length of 2 corresponding points path_length += sqrt(pow((posex1 - posex), 2) + pow((posey1- posey), 2))+ pow((posez1-posez),2) return path_length ## Returns the maximum joint acceleration of every acceleration measured # @param motion_plan The motion plan retrieved by the planner def get_max_joint_acceleration(self, motion_plan): ## @var maxlist # This list contains all accelerations given by the motion plan maxlist = [] for i in range(len(motion_plan[1].joint_trajectory.points)): for j in range(len(motion_plan[1].joint_trajectory.points[i].accelerations)): for k in range(len(motion_plan[1].joint_trajectory.points[i].accelerations)): maxlist.append(motion_plan[1].joint_trajectory.points[i].accelerations[j]) return max(maxlist)
39.178082
110
0.681469
1,977
0.691259
0
0
0
0
0
0
1,066
0.372727
d2dbfa2d8a9c4169b00a898c87b761496a338473
596
py
Python
apps/sendmail/admin.py
CasualGaming/studlan
63daed67c1d309e4d5bd755eb68163e2174d0e00
[ "MIT" ]
9
2016-03-15T21:03:49.000Z
2020-12-02T19:45:44.000Z
apps/sendmail/admin.py
piyushd26/studlan
6eb96ebda182f44759b430cd497a727e0ee5bb63
[ "MIT" ]
161
2016-02-05T14:11:50.000Z
2020-10-14T10:13:21.000Z
apps/sendmail/admin.py
piyushd26/studlan
6eb96ebda182f44759b430cd497a727e0ee5bb63
[ "MIT" ]
11
2016-07-27T12:20:05.000Z
2021-04-18T05:49:17.000Z
# -*- coding: utf-8 -*- from django.contrib import admin from .models import Mail class MailAdmin(admin.ModelAdmin): list_display = ['subject', 'sent_time', 'recipients_total', 'successful_mails', 'failed_mails', 'done_sending'] ordering = ['-sent_time'] # Prevent creation def has_add_permission(self, request, obj=None): return False # Prevent changes def save_model(self, request, obj, form, change): pass # Prevent M2M changes def save_related(self, request, form, formsets, change): pass admin.site.register(Mail, MailAdmin)
22.074074
115
0.676174
470
0.788591
0
0
0
0
0
0
175
0.293624
d2dc2ba48e9f74dafb44ffcc8ba8cd1cd50c6109
2,922
py
Python
event/test_event.py
Web-Team-IITI-Gymkhana/gymkhana_server
67f4eba9dc0a55de04b3006ffeb5f608086b89ce
[ "MIT" ]
null
null
null
event/test_event.py
Web-Team-IITI-Gymkhana/gymkhana_server
67f4eba9dc0a55de04b3006ffeb5f608086b89ce
[ "MIT" ]
4
2022-01-14T12:31:33.000Z
2022-01-28T10:25:44.000Z
event/test_event.py
Web-Team-IITI-Gymkhana/gymkhana_server
67f4eba9dc0a55de04b3006ffeb5f608086b89ce
[ "MIT" ]
null
null
null
from uuid import uuid4 from fastapi.testclient import TestClient from ..main import app client = TestClient(app) class Test_Event: record = { "name": "Winter of CP", "description": "It is a coding event held in the month of Decemeber by Programming Club", "created_on": "2022-01-28T21:33:50.795775", "last_update": "2021-01-28T12:33:52.795775", "start_time": "2022-02-19T19:33:10.895775", "end_time": "2022-02-19T21:00:10.895775", "image": "https://www.google.com/search?q=P", "website": "", "notify": True, "is_online": False, "meet_link": "", "venue": "Carbon Building", } updated_record = { "name": "Winter of CP", "description": "It is a coding event held in the month of Decemeber by Programming Club", "created_on": "2022-01-28T21:33:50.795775", "last_update": "2021-01-28T12:33:52.795775", "start_time": "2022-02-19T19:33:10.895775", "end_time": "2022-02-19T21:00:10.895775", "image": "https://www.google.com/search?", "website": "", "notify": False, "is_online": True, "meet_link": "https://meet.google.com/abc-defg-hij", "venue": "", } def test_create(self): response = client.post("/event/", json=self.record) assert response.status_code == 201, f"Received {response.status_code}" response_record = response.json() self.record["id"] = response_record["id"] print(self.record) for key in response_record.keys(): assert self.record[key] == response_record[key] def test_get_one(self): response = client.get(f"/event/{self.record['id']}") assert response.status_code == 200, f"Received {response.status_code}" assert response.json() == self.record def test_get_non_existing(self): response = client.get(f"/event/{uuid4()}") assert response.status_code == 404, f"Received {response.status_code}" assert response.json() == {"detail": "Event not found"} def test_patch(self): response = client.patch( f"/event/{self.record['id']}", json=self.updated_record ) assert response.status_code == 202, f"Received {response.status_code}" assert response.json() == self.updated_record def test_get_all(self): response = client.get("/event/") assert response.status_code == 200, f"Received {response.status_code}" def test_delete(self): response = client.delete(f"/event/{self.record['id']}") assert response.status_code == 204, f"Received {response.status_code}" def test_delete_non_existing(self): response = client.get(f"/event/{uuid4()}") assert response.status_code == 404, f"Received {response.status_code}" assert response.json() == {"detail": "Event not found"}
36.525
97
0.612936
2,802
0.958932
0
0
0
0
0
0
1,205
0.412389
d2dc62d8070e943c3939b3b81fa0c4b500c8b2a5
629
py
Python
zigzag_conversion.py
cheng10/leetcode
8ecab26e354501e7819afe29aa79df2eb8caa8ca
[ "MIT" ]
null
null
null
zigzag_conversion.py
cheng10/leetcode
8ecab26e354501e7819afe29aa79df2eb8caa8ca
[ "MIT" ]
null
null
null
zigzag_conversion.py
cheng10/leetcode
8ecab26e354501e7819afe29aa79df2eb8caa8ca
[ "MIT" ]
null
null
null
class Solution(object): def convert(self, s, numRows): """ :type s: str :type numRows: int :rtype: str """ cycle = 2*(numRows-1) if numRows == 1: cycle = 1 map = [] for i in range(numRows): map.append('') for j in range(len(s)): mod = j % cycle if mod < numRows: map[mod] += s[j] else: map[2*(numRows-1)-mod] += s[j] result = '' for i in range(numRows): result += map[i]; return result
24.192308
46
0.384738
628
0.99841
0
0
0
0
0
0
87
0.138315
d2dc870265729c9617c1afe744f12af18a12c128
24,837
py
Python
src/tests/ftest/soak/soak.py
cdurf1/daos
f57f682ba07560fd35c0991798c5496c20f10769
[ "Apache-2.0" ]
null
null
null
src/tests/ftest/soak/soak.py
cdurf1/daos
f57f682ba07560fd35c0991798c5496c20f10769
[ "Apache-2.0" ]
null
null
null
src/tests/ftest/soak/soak.py
cdurf1/daos
f57f682ba07560fd35c0991798c5496c20f10769
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python """ (C) Copyright 2019 Intel Corporation. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. GOVERNMENT LICENSE RIGHTS-OPEN SOURCE SOFTWARE The Government's rights to use, modify, reproduce, release, perform, display, or disclose this software are subject to the terms of the Apache License as provided in Contract No. 8F-30005. Any reproduction of computer software, computer software documentation, or portions thereof marked with this legend must also reproduce the markings. """ from __future__ import print_function import os import time from apricot import TestWithServers from ior_utils import IorCommand import slurm_utils from test_utils_pool import TestPool from test_utils_container import TestContainer from ClusterShell.NodeSet import NodeSet from general_utils import pcmd import socket class SoakTestError(Exception): """Soak exception class.""" class Soak(TestWithServers): """Execute DAOS Soak test cases. :avocado: recursive Args: TestWithServers (AvocadoTest): Unit Test test cases There are currently two types of soak tests. 1) smoke - runs each specified cmdline (job spec) for a single iteration. The smoke test is to verify the environment is configured properly before running the longer soaks 2) 1 hour - this will run a defined set of jobs and continue to submit the jobs until the time has expired. The tests also use an IOR that is compiled with MPICH and is built with both the DAOS and MPI-IO drivers. """ def job_done(self, args): """Call this function when a job is done. Args: args (list):handle --which job, i.e. the job ID, state --string indicating job completion status """ self.soak_results[args["handle"]] = args["state"] def create_pool(self, pools): """Create a pool that the various tests use for storage. Args: pools: list of pool name from yaml file /run/<test_params>/poollist/* Returns: list: list of TestPool object """ pool_obj_list = [] for pool_name in pools: # Create a pool pool_obj_list.append(TestPool(self.context, self.log)) pool_obj_list[-1].namespace = "/".join(["/run", pool_name, "*"]) pool_obj_list[-1].get_params(self) pool_obj_list[-1].create() self.log.info("Valid Pool UUID is %s", pool_obj_list[-1].uuid) # Commented out due to DAOS-3836. ## Check that the pool was created #self.assertTrue( # pool_obj_list[-1].check_files(self.hostlist_servers), # "Pool data not detected on servers") return pool_obj_list def destroy_pool(self, pool): """Destroy the specified pool - TO DO.""" pass def remote_copy(self, hostlist, remote_dir, local_dir): """Copy files from remote dir to local dir. Args: hostlist (list): list of remote nodes remote_dir (str): remote directory of files local_dir (str): local directory Raises: SoakTestError: if there is an error with the remote copy """ this_host = socket.gethostname() result = pcmd( NodeSet.fromlist(hostlist), "if [ ! -z '$(ls -A {0})' ]; then " "scp -p -r {0}/ \"{1}:'{2}/'\" && rm -rf {0}/*; fi".format( remote_dir, this_host, local_dir), verbose=False) if len(result) > 1 or 0 not in result: raise SoakTestError( "Error executing remote copy: {}".format( ", ".join( [str(result[key]) for key in result if key != 0]))) def create_ior_cmdline(self, job_params, job_spec, pool): """Create an IOR cmdline to run in slurm batch. Args: job_params (str): job params from yaml file job_spec (str): specific ior job to run pool (obj): TestPool obj Returns: cmd: cmdline string """ command = [] iteration = self.test_iteration ior_params = "/".join(["run", job_spec, "*"]) ior_cmd = IorCommand() ior_cmd.namespace = ior_params ior_cmd.get_params(self) if iteration is not None and iteration < 0: ior_cmd.repetitions.update(1000000) ior_cmd.max_duration.update(self.params.get( "time", "/".join([job_params, "*"]))) # IOR job specs with a list of parameters; update each value # transfer_size # block_size # daos object class tsize_list = ior_cmd.transfer_size.value bsize_list = ior_cmd.block_size.value oclass_list = ior_cmd.daos_oclass.value for b_size in bsize_list: ior_cmd.block_size.update(b_size) for o_type in oclass_list: ior_cmd.daos_oclass.update(o_type) for t_size in tsize_list: ior_cmd.transfer_size.update(t_size) ior_cmd.set_daos_params(self.server_group, pool) # export the user environment to test node exports = ["ALL"] if ior_cmd.api.value == "MPIIO": env = { "CRT_ATTACH_INFO_PATH": os.path.join( self.basepath, "install/tmp"), "DAOS_POOL": str(ior_cmd.daos_pool.value), "MPI_LIB": "\"\"", "DAOS_SVCL": str(ior_cmd.daos_svcl.value), "DAOS_SINGLETON_CLI": 1, "FI_PSM2_DISCONNECT": 1 } exports.extend( ["{}={}".format( key, val) for key, val in env.items()]) cmd = "srun -l --mpi=pmi2 --export={} {}".format( ",".join(exports), ior_cmd) command.append(cmd) self.log.debug("<<IOR cmdline >>: %s \n", cmd) return command def create_dmg_cmdline(self, job_params, job_spec, pool): """Create a dmg cmdline to run in slurm batch. Args: job_params (str): job params from yaml file job_spec (str): specific dmg job to run Returns: cmd: [description] """ cmd = "" return cmd def build_job_script(self, nodesperjob, job, pool): """Create a slurm batch script that will execute a list of jobs. Args: nodesperjob(int): number of nodes executing each job job(str): the job that will be defined in the slurm script with /run/"job"/. It is currently defined in the yaml as: Example job: job1: name: job1 - unique name time: 10 - cmdline time in seconds; used in IOR -T param tasks: 1 - number of processes per node --ntaskspernode jobspec: - ior_daos - ior_mpiio pool (obj): TestPool obj Returns: script_list: list of slurm batch scripts """ self.log.info("<<Build Script for job %s >> at %s", job, time.ctime()) script_list = [] # create one batch script per cmdline # get job params job_params = "/run/" + job job_name = self.params.get("name", "/".join([job_params, "*"])) job_specs = self.params.get("jobspec", "/".join([job_params, "*"])) task_list = self.params.get("tasks", "/".join([job_params, "*"])) job_time = self.params.get("time", "/".join([job_params, "*"])) # job_time in minutes:seconds format job_time = str(job_time) + ":00" for job_spec in job_specs: if "ior" in job_spec: # Create IOR cmdline cmd_list = self.create_ior_cmdline(job_params, job_spec, pool) elif "dmg" in job_spec: # create dmg cmdline cmd_list = self.create_dmg_cmdline(job_params, job_spec, pool) else: raise SoakTestError( "<<FAILED: Soak job: {} Job spec {} is invalid>>".format( job, job_spec)) # a single cmdline per batch job; so that a failure is per cmdline # change to multiple cmdlines per batch job later. for cmd in cmd_list: # additional sbatch params for tasks in task_list: output = os.path.join( self.rem_pass_dir, "%N_" + self.test_name + "_" + job_name + "_" + job_spec + "_results.out_%j_%t_" + str(tasks) + "_") num_tasks = nodesperjob * tasks sbatch = { "ntasks-per-node": tasks, "ntasks": num_tasks, "time": job_time, "partition": self.partition_clients, "exclude": NodeSet.fromlist(self.hostlist_servers)} script = slurm_utils.write_slurm_script( self.rem_pass_dir, job_name, output, nodesperjob, [cmd], sbatch) script_list.append(script) return script_list def job_setup(self, test_param, pool): """Create the slurm job batch script . Args: test_param (str): test_param from yaml file pool (obj): TestPool obj Returns: scripts: list of slurm batch scripts """ # Get jobmanager self.job_manager = self.params.get("jobmanager", "/run/*") # Get test params test_params = "".join([test_param, "*"]) self.test_name = self.params.get("name", test_params) self.test_iteration = self.params.get("test_iteration", test_params) self.job_list = self.params.get("joblist", test_params) self.nodesperjob = self.params.get("nodesperjob", test_params) self.soak_results = {} script_list = [] self.log.info( "<<Job_Setup %s >> at %s", self.test_name, time.ctime()) # Create the remote log directories from new loop/pass self.rem_pass_dir = self.log_dir + "/pass" + str(self.loop) self.local_pass_dir = self.outputsoakdir + "/pass" + str(self.loop) result = pcmd( NodeSet.fromlist(self.hostlist_clients), "mkdir -p {}".format(self.rem_pass_dir), verbose=False) if len(result) > 1 or 0 not in result: raise SoakTestError( "<<FAILED: logfile directory not" "created on clients>>: {}".format(", ".join( [str(result[key]) for key in result if key != 0]))) # Create local log directory os.makedirs(self.local_pass_dir) # nodesperjob = -1 indicates to use all nodes in client hostlist if self.nodesperjob < 0: self.nodesperjob = len(self.hostlist_clients) if len(self.hostlist_clients)/self.nodesperjob < 1: raise SoakTestError( "<<FAILED: There are only {} client nodes for this job. " "Job requires {}".format( len(self.hostlist_clients), self.nodesperjob)) if self.job_manager == "slurm": # queue up slurm script and register a callback to retrieve # results. The slurm batch script are single cmdline for now. # scripts is a list of slurm batch scripts with a single cmdline for job in self.job_list: scripts = self.build_job_script(self.nodesperjob, job, pool) script_list.extend(scripts) return script_list else: raise SoakTestError( "<<FAILED: Job manager {} is not yet enabled. " "Job requires slurm".format(self.job_manager)) def job_startup(self, scripts): """Submit job batch script. Args: scripts (list): list of slurm batch scripts to submit to queue Returns: job_id_list: IDs of each job submitted to slurm. """ self.log.info( "<<Job Startup - %s >> at %s", self.test_name, time.ctime()) job_id_list = [] # scripts is a list of batch script files for script in scripts: try: job_id = slurm_utils.run_slurm_script(str(script)) except slurm_utils.SlurmFailed as error: self.log.error(error) # Force the test to exit with failure job_id = None if job_id: print( "<<Job {} started with {} >> at {}".format( job_id, script, time.ctime())) slurm_utils.register_for_job_results( job_id, self, maxwait=self.test_timeout) # keep a list of the job_id's job_id_list.append(int(job_id)) else: # one of the jobs failed to queue; exit on first fail for now. err_msg = "Slurm failed to submit job for {}".format(script) job_id_list = [] raise SoakTestError( "<<FAILED: Soak {}: {}>>".format(self.test_name, err_msg)) return job_id_list def job_completion(self, job_id_list): """Wait for job completion and cleanup. Args: job_id_list: IDs of each job submitted to slurm """ self.log.info( "<<Job Completion - %s >> at %s", self.test_name, time.ctime()) # If there is nothing to do; exit if len(job_id_list) > 0: # wait for all the jobs to finish while len(self.soak_results) < len(job_id_list): # print("<<Waiting for results {} >>".format( # self.soak_results)) time.sleep(2) # check for job COMPLETED and remove it from the job queue for job, result in self.soak_results.items(): # The queue include status of "COMPLETING" # sleep to allow job to move to final state if result == "COMPLETED": job_id_list.remove(int(job)) else: self.log.info( "<< Job %s failed with status %s>>", job, result) if len(job_id_list) > 0: self.log.info( "<<Cancel jobs in queue with id's %s >>", job_id_list) for job in job_id_list: status = slurm_utils.cancel_jobs(int(job)) if status == 0: self.log.info("<<Job %s successfully cancelled>>", job) # job_id_list.remove(int(job)) else: self.log.info("<<Job %s could not be killed>>", job) # gather all the logfiles for this pass and cleanup test nodes # If there is a failure the files can be gathered again in Teardown try: self.remote_copy( self.node_list, self.rem_pass_dir, self.outputsoakdir) except SoakTestError as error: self.log.info("Remote copy failed with %s", error) self.soak_results = {} return job_id_list def execute_jobs(self, test_param, pools): """Execute the overall soak test. Args: test_param (str): test_params from yaml file pools (list): list of TestPool obj Raise: SoakTestError """ cmdlist = [] # Setup cmdlines for jobs for pool in pools: cmdlist.extend(self.job_setup(test_param, pool)) # Gather the job_ids self.job_id_list = self.job_startup(cmdlist) # Initialize the failed_job_list to job_list so that any # unexpected failures will clear the squeue in tearDown self.failed_job_id_list = self.job_id_list # Wait for jobs to finish and cancel/kill jobs if necessary self.failed_job_id_list = self.job_completion(self.job_id_list) # Test fails on first error but could use continue on error here if len(self.failed_job_id_list) > 0: raise SoakTestError( "<<FAILED: The following jobs failed {} >>".format( " ,".join( str(job_id) for job_id in self.failed_job_id_list))) def run_soak(self, test_param): """Run the soak test specified by the test params. Args: test_param (str): test_params from yaml file """ pool_list = self.params.get("poollist", "".join([test_param, "*"])) self.test_timeout = self.params.get("test_timeout", test_param) self.job_id_list = [] start_time = time.time() rank = self.params.get("rank", "/run/container_reserved/*") obj_class = self.params.get( "object_class", "/run/container_reserved/*") # Create the reserved pool with data self.pool = self.create_pool(["pool_reserved"]) self.pool[0].connect() self.container = TestContainer(self.pool[0]) self.container.namespace = "/run/container_reserved/*" self.container.get_params(self) self.container.create() self.container.write_objects(rank, obj_class) while time.time() < start_time + self.test_timeout: print("<<Soak1 PASS {}: time until done {}>>".format( self.loop, (start_time + self.test_timeout - time.time()))) # Create all specified pools self.pool.extend(self.create_pool(pool_list)) try: self.execute_jobs(test_param, self.pool[1:]) except SoakTestError as error: self.fail(error) errors = self.destroy_pools(self.pool[1:]) # delete the test pools from self.pool; preserving reserved pool self.pool = [self.pool[0]] self.assertEqual(len(errors), 0, "\n".join(errors)) self.loop += 1 # Break out of loop if smoke if "smoke" in self.test_name: break # Commented out due to DAOS-3836. ## Check that the reserve pool is still allocated #self.assertTrue( # self.pool[0].check_files(self.hostlist_servers), # "Pool data not detected on servers") # Verify the data after soak is done self.assertTrue( self.container.read_objects(), "Data verification error on reserved pool" "after SOAK completed") def setUp(self): """Define test setup to be done.""" print("<<setUp Started>> at {}".format(time.ctime())) super(Soak, self).setUp() # Initialize loop param for all tests self.loop = 1 self.failed_job_id_list = [] # Fail if slurm partition daos_client is not defined if not self.partition_clients: raise SoakTestError( "<<FAILED: Partition is not correctly setup for daos " "slurm partition>>") # Check if the server nodes are in the client list; # this will happen when only one partition is specified for host_server in self.hostlist_servers: if host_server in self.hostlist_clients: self.hostlist_clients.remove(host_server) self.log.info( "<<Updated hostlist_clients %s >>", self.hostlist_clients) # include test node for log cleanup; remove from client list self.test_node = [socket.gethostname().split('.', 1)[0]] if self.test_node[0] in self.hostlist_clients: self.hostlist_clients.remove(self.test_node[0]) self.log.info( "<<Updated hostlist_clients %s >>", self.hostlist_clients) self.node_list = self.hostlist_clients + self.test_node # self.node_list = self.hostlist_clients # Setup logging directories for soak logfiles # self.output dir is an avocado directory .../data/ self.log_dir = "/tmp/soak" self.outputsoakdir = self.outputdir + "/soak" # Create the remote log directories on all client nodes self.rem_pass_dir = self.log_dir + "/pass" + str(self.loop) self.local_pass_dir = self.outputsoakdir + "/pass" + str(self.loop) # cleanup soak log directories before test on all nodes result = pcmd( NodeSet.fromlist(self.node_list), "rm -rf {}".format(self.log_dir), verbose=False) if len(result) > 1 or 0 not in result: raise SoakTestError( "<<FAILED: Soak directories not removed" "from clients>>: {}".format(", ".join( [str(result[key]) for key in result if key != 0]))) def tearDown(self): """Define tearDown and clear any left over jobs in squeue.""" print("<<tearDown Started>> at {}".format(time.ctime())) # clear out any jobs in squeue; errors_detected = False if len(self.failed_job_id_list) > 0: print("<<Cancel jobs in queue with ids {} >>".format( self.failed_job_id_list)) for job_id in self.failed_job_id_list: try: slurm_utils.cancel_jobs(job_id) except slurm_utils.SlurmFailed as error: self.log.info( " Failed to cancel job %s with error %s", job_id, str( error)) errors_detected = True # One last attempt to copy any logfiles from client nodes try: self.remote_copy( self.node_list, self.rem_pass_dir, self.outputsoakdir) except SoakTestError as error: self.log.info("Remote copy failed with %s", error) errors_detected = True super(Soak, self).tearDown() if errors_detected: self.fail("Errors detected cancelling slurm jobs in tearDown()") def test_soak_smoke(self): """Run soak smoke. Test ID: DAOS-2192 Test Description: This will create a slurm batch job that runs IOR with DAOS with the number of processes determined by the number of nodes. For this test a single pool will be created. It will run for ~10 min :avocado: tags=soak,soak_smoke """ test_param = "/run/smoke/" self.run_soak(test_param) def test_soak_ior_daos(self): """Run soak test with IOR -a daos. Test ID: DAOS-2256 Test Description: This will create a slurm batch job that runs various jobs defined in the soak yaml This test will run for the time specififed in /run/test_param_test_timeout. :avocado: tags=soak,soak_ior,soak_ior_daos """ test_param = "/run/soak_ior_daos/" self.run_soak(test_param) def test_soak_ior_mpiio(self): """Run soak test with IOR -a mpiio. Test ID: DAOS-2401, Test Description: This will create a slurm batch job that runs various jobs defined in the soak yaml This test will run for the time specififed in /run/test_param_test_timeout. :avocado: tags=soak,soak_ior,soak_ior_mpiio """ test_param = "/run/soak_ior_mpiio/" self.run_soak(test_param) def test_soak_stress(self): """Run soak stress. Test ID: DAOS-2256 Test Description: This will create a slurm batch job that runs various jobs defined in the soak yaml This test will run for the time specififed in /run/test_param_test_timeout. :avocado: tags=soak,soak_stress """ test_param = "/run/soak_stress/" self.run_soak(test_param)
39.930868
79
0.566856
23,540
0.94778
0
0
0
0
0
0
11,012
0.443371
d2dcba40eaf1e9db722986c2a78f80438fb6fdb3
1,066
py
Python
aoc/year_2020/day_06/solver.py
logan-connolly/AoC
23f47e72abaf438cc97897616be4d6b057a01bf3
[ "MIT" ]
2
2020-12-06T10:59:52.000Z
2021-09-29T22:14:03.000Z
aoc/year_2020/day_06/solver.py
logan-connolly/AoC
23f47e72abaf438cc97897616be4d6b057a01bf3
[ "MIT" ]
null
null
null
aoc/year_2020/day_06/solver.py
logan-connolly/AoC
23f47e72abaf438cc97897616be4d6b057a01bf3
[ "MIT" ]
2
2021-09-29T22:14:18.000Z
2022-01-18T02:20:26.000Z
"""This is the Solution for Year 2020 Day 06""" import re from aoc.abstracts.solver import Answers, StrLines class Solver: def __init__(self, data: str) -> None: self.data = data def _preprocess(self) -> StrLines: delim = "\n\n" return self.data.split(delim) def _solve_part_one(self, lines: StrLines) -> int: cleaned = [re.sub(r"\n", "", answer).strip() for answer in lines] return sum(len(set(answer)) for answer in cleaned) def _solve_part_two(self, lines: StrLines) -> int: cleaned = [answer.rstrip("\n").split("\n") for answer in lines] shared_answer_count = 0 for group in cleaned: shared_answers = set.intersection(*[set(member) for member in group]) shared_answer_count += len(shared_answers) return shared_answer_count def solve(self) -> Answers: lines = self._preprocess() ans_one = self._solve_part_one(lines) ans_two = self._solve_part_two(lines) return Answers(part_one=ans_one, part_two=ans_two)
32.30303
81
0.641651
952
0.893058
0
0
0
0
0
0
68
0.06379
d2defb686bfc61f23201cb71e5a9d368779c4dfa
98
py
Python
setup.py
kuzxnia/typer
39007237d552e4f4920b2c6e13e5f0ce482d4427
[ "MIT" ]
null
null
null
setup.py
kuzxnia/typer
39007237d552e4f4920b2c6e13e5f0ce482d4427
[ "MIT" ]
3
2020-04-07T12:39:51.000Z
2020-04-09T22:49:16.000Z
setup.py
kuzxnia/typer
39007237d552e4f4920b2c6e13e5f0ce482d4427
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup setup( name="typer", packages=find_packages(), )
16.333333
43
0.744898
0
0
0
0
0
0
0
0
7
0.071429
d2dfa41f3a05071765ff4e4b5a6aecdae50d42b0
7,105
py
Python
speedup.py
hjdeheer/malpaca
a0e5471a06175ef34aa95b3a1caea407e4e624a8
[ "MIT" ]
null
null
null
speedup.py
hjdeheer/malpaca
a0e5471a06175ef34aa95b3a1caea407e4e624a8
[ "MIT" ]
null
null
null
speedup.py
hjdeheer/malpaca
a0e5471a06175ef34aa95b3a1caea407e4e624a8
[ "MIT" ]
null
null
null
import numpy as np from numba import jit, prange from scipy.stats import mode from sklearn.metrics import accuracy_score __all__ = ['dtw_distance', 'KnnDTW'] @jit(nopython=True, fastmath=True) def cosine_distance(u:np.ndarray, v:np.ndarray): assert(u.shape[0] == v.shape[0]) uv = 0 uu = 0 vv = 0 for i in range(u.shape[0]): uv += u[i]*v[i] uu += u[i]*u[i] vv += v[i]*v[i] cos_theta = 1 if uu!=0 and vv!=0: cos_theta = uv/np.sqrt(uu*vv) return 1 - cos_theta @jit(nopython=True, parallel=True, nogil=True) def dtw_distance(dataset1, dataset2): """ Computes the dataset DTW distance matrix using multiprocessing. Args: dataset1: timeseries dataset of shape [N1, T1] dataset2: timeseries dataset of shape [N2, T2] Returns: Distance matrix of shape [N1, N2] """ n1 = dataset1.shape[0] n2 = dataset2.shape[0] dist = np.empty((n1, n2), dtype=np.float64) for i in prange(n1): for j in prange(n2): dist[i][j] = _dtw_distance(dataset1[i], dataset2[j]) return dist @jit(nopython=True, cache=True) def _dtw_distance(series1, series2): """ Returns the DTW similarity distance between two 1-D timeseries numpy arrays. Args: series1, series2 : array of shape [n_timepoints] Two arrays containing n_samples of timeseries data whose DTW distance between each sample of A and B will be compared. Returns: DTW distance between A and B """ l1 = series1.shape[0] l2 = series2.shape[0] E = np.empty((l1, l2)) # Fill First Cell v = series1[0] - series2[0] E[0][0] = v * v # Fill First Column for i in range(1, l1): v = series1[i] - series2[0] E[i][0] = E[i - 1][0] + v * v # Fill First Row for i in range(1, l2): v = series1[0] - series2[i] E[0][i] = E[0][i - 1] + v * v for i in range(1, l1): for j in range(1, l2): v = series1[i] - series2[j] v = v * v v1 = E[i - 1][j] v2 = E[i - 1][j - 1] v3 = E[i][j - 1] if v1 <= v2 and v1 <= v3: E[i][j] = v1 + v elif v2 <= v1 and v2 <= v3: E[i][j] = v2 + v else: E[i][j] = v3 + v return np.sqrt(E[-1][-1]) # Modified from https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping class KnnDTW(object): """K-nearest neighbor classifier using dynamic time warping as the distance measure between pairs of time series arrays Arguments --------- n_neighbors : int, optional (default = 1) Number of neighbors to use by default for KNN """ def __init__(self, n_neighbors=1): self.n_neighbors = n_neighbors def fit(self, x, y): """Fit the model using x as training data and y as class labels Arguments --------- x : array of shape [n_samples, n_timepoints] Training data set for input into KNN classifer y : array of shape [n_samples] Training labels for input into KNN classifier """ self.x = np.copy(x) self.y = np.copy(y) def _dist_matrix(self, x, y): """Computes the M x N distance matrix between the training dataset and testing dataset (y) using the DTW distance measure Arguments --------- x : array of shape [n_samples, n_timepoints] y : array of shape [n_samples, n_timepoints] Returns ------- Distance matrix between each item of x and y with shape [training_n_samples, testing_n_samples] """ dm = dtw_distance(x, y) return dm def predict(self, x): """Predict the class labels or probability estimates for the provided data Arguments --------- x : array of shape [n_samples, n_timepoints] Array containing the testing data set to be classified Returns ------- 2 arrays representing: (1) the predicted class labels (2) the knn label count probability """ np.random.seed(0) dm = self._dist_matrix(x, self.x) # Identify the k nearest neighbors knn_idx = dm.argsort()[:, :self.n_neighbors] # Identify k nearest labels knn_labels = self.y[knn_idx] # Model Label mode_data = mode(knn_labels, axis=1) mode_label = mode_data[0] mode_proba = mode_data[1] / self.n_neighbors return mode_label.ravel(), mode_proba.ravel() def evaluate(self, x, y): """ Predict the class labels or probability estimates for the provided data and then evaluates the accuracy score. Arguments --------- x : array of shape [n_samples, n_timepoints] Array containing the testing data set to be classified y : array of shape [n_samples] Array containing the labels of the testing dataset to be classified Returns ------- 1 floating point value representing the accuracy of the classifier """ # Predict the labels and the probabilities pred_labels, pred_probas = self.predict(x) # Ensure labels are integers y = y.astype('int32') pred_labels = pred_labels.astype('int32') # Compute accuracy measure accuracy = accuracy_score(y, pred_labels) return accuracy def predict_proba(self, x): """Predict the class labels probability estimates for the provided data Arguments --------- x : array of shape [n_samples, n_timepoints] Array containing the testing data set to be classified Returns ------- 2 arrays representing: (1) the predicted class probabilities (2) the knn labels """ np.random.seed(0) dm = self._dist_matrix(x, self.x) # Invert the distance matrix dm = -dm classes = np.unique(self.y) class_dm = [] # Partition distance matrix by class for i, cls in enumerate(classes): idx = np.argwhere(self.y == cls)[:, 0] cls_dm = dm[:, idx] # [N_test, N_train_c] # Take maximum distance vector due to softmax probabilities cls_dm = np.max(cls_dm, axis=-1) # [N_test,] class_dm.append([cls_dm]) # Concatenate the classwise distance matrices and transpose class_dm = np.concatenate(class_dm, axis=0) # [C, N_test] class_dm = class_dm.transpose() # [N_test, C] # Compute softmax probabilities class_dm_exp = np.exp(class_dm - class_dm.max()) class_dm = class_dm_exp / np.sum(class_dm_exp, axis=-1, keepdims=True) probabilities = class_dm knn_labels = np.argmax(class_dm, axis=-1) return probabilities, knn_labels
28.194444
91
0.570443
4,611
0.64898
0
0
2,232
0.314145
0
0
3,628
0.510626
d2dfc266c6056fe94eecb550bf60b54a02eaa933
470
py
Python
setup.py
colineRamee/UAM_simulator_scitech2021
0583f5ce195cf1ec4f6919d6523fa39851c419fc
[ "MIT" ]
1
2021-02-04T15:57:03.000Z
2021-02-04T15:57:03.000Z
setup.py
colineRamee/UAM_simulator_scitech2021
0583f5ce195cf1ec4f6919d6523fa39851c419fc
[ "MIT" ]
null
null
null
setup.py
colineRamee/UAM_simulator_scitech2021
0583f5ce195cf1ec4f6919d6523fa39851c419fc
[ "MIT" ]
2
2021-02-04T04:41:08.000Z
2022-03-01T16:18:14.000Z
from setuptools import setup setup( name='uam_simulator', version='1.0', description='A tool to simulate different architectures for UAM traffic management', author='Coline Ramee', author_email='[email protected]', packages=['uam_simulator'], install_requires=['numpy', 'scikit-learn', 'gurobipy'] ) # If installing from source the package name is gurobipy, if installing with conda it's gurobi, but when importing it's still gurobipy
36.153846
134
0.734043
0
0
0
0
0
0
0
0
310
0.659574
d2e2156c949fb7522a291e88e911e831ba30e23c
1,115
py
Python
DFS/Leetcode1239.py
Rylie-W/LeetRecord
623c4efe88b3af54b8a65f6ec23db850b8c6f46f
[ "Apache-2.0" ]
null
null
null
DFS/Leetcode1239.py
Rylie-W/LeetRecord
623c4efe88b3af54b8a65f6ec23db850b8c6f46f
[ "Apache-2.0" ]
null
null
null
DFS/Leetcode1239.py
Rylie-W/LeetRecord
623c4efe88b3af54b8a65f6ec23db850b8c6f46f
[ "Apache-2.0" ]
null
null
null
class Solution: def maxLength(self, arr) -> int: def helper(word): temp=[] temp[:0]=word res=set() for w in temp: if w not in res: res.add(w) else: return None return res memo=[] for a in arr: temp=helper(a) if temp is not None: memo.append(temp) memo.sort(key=lambda a:len(a),reverse=True) def dfs(index,path): if index==len(memo): return 0 res=0 for i in range(index,len(memo)): if len(path|memo[i])==len(path)+len(memo[i]): res=max(res,len(memo[i])+dfs(i+1,path|memo[i])) return res return dfs(0,set()) if __name__ == '__main__': sol=Solution() arr = ["un", "iq", "ue"] # arr = ["cha", "r", "act", "ers"] # arr = ["abcdefghijklmnopqrstuvwxyz"] # arr=["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"] print(sol.maxLength(arr))
26.547619
90
0.419731
832
0.746188
0
0
0
0
0
0
180
0.161435
d2e2e8b5aeb34c6ee7b5e4eefd603f0d67226b67
419
py
Python
apps/addresses/migrations/0002_address_picture.py
skyride/python-docker-compose
b3ac1a4da4ae2133b94504447a6cb353cc96f45b
[ "MIT" ]
null
null
null
apps/addresses/migrations/0002_address_picture.py
skyride/python-docker-compose
b3ac1a4da4ae2133b94504447a6cb353cc96f45b
[ "MIT" ]
null
null
null
apps/addresses/migrations/0002_address_picture.py
skyride/python-docker-compose
b3ac1a4da4ae2133b94504447a6cb353cc96f45b
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-05-25 22:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('addresses', '0001_initial'), ] operations = [ migrations.AddField( model_name='address', name='picture', field=models.ImageField(default=None, null=True, upload_to='addresses/images/'), ), ]
22.052632
92
0.606205
326
0.778043
0
0
0
0
0
0
109
0.260143
d2e3431a8ca64567f24a9939424b3256a13d8da9
34,809
py
Python
liberapay/payin/common.py
Panquesito7/liberapay.com
d6806390a533061c2b9fb147d7139d06024f9a1b
[ "PostgreSQL", "CC0-1.0" ]
1
2021-07-26T02:07:13.000Z
2021-07-26T02:07:13.000Z
liberapay/payin/common.py
Panquesito7/liberapay.com
d6806390a533061c2b9fb147d7139d06024f9a1b
[ "PostgreSQL", "CC0-1.0" ]
null
null
null
liberapay/payin/common.py
Panquesito7/liberapay.com
d6806390a533061c2b9fb147d7139d06024f9a1b
[ "PostgreSQL", "CC0-1.0" ]
null
null
null
from collections import namedtuple from datetime import timedelta import itertools from operator import attrgetter from pando.utils import utcnow from psycopg2.extras import execute_batch from ..constants import SEPA from ..exceptions import ( AccountSuspended, MissingPaymentAccount, RecipientAccountSuspended, NoSelfTipping, UserDoesntAcceptTips, ) from ..i18n.currencies import Money, MoneyBasket from ..utils import group_by ProtoTransfer = namedtuple( 'ProtoTransfer', 'amount recipient destination context unit_amount period team visibility', ) def prepare_payin(db, payer, amount, route, proto_transfers, off_session=False): """Prepare to charge a user. Args: payer (Participant): the user who will be charged amount (Money): the presentment amount of the charge route (ExchangeRoute): the payment instrument to charge proto_transfers ([ProtoTransfer]): the transfers to prepare off_session (bool): `True` means that the payment is being initiated because it was scheduled, `False` means that the payer has initiated the operation just now Returns: Record: the row created in the `payins` table Raises: AccountSuspended: if the payer's account is suspended """ assert isinstance(amount, Money), type(amount) assert route.participant == payer, (route.participant, payer) assert route.status in ('pending', 'chargeable') if payer.is_suspended or not payer.get_email_address(): raise AccountSuspended() with db.get_cursor() as cursor: payin = cursor.one(""" INSERT INTO payins (payer, amount, route, status, off_session) VALUES (%s, %s, %s, 'pre', %s) RETURNING * """, (payer.id, amount, route.id, off_session)) cursor.run(""" INSERT INTO payin_events (payin, status, error, timestamp) VALUES (%s, %s, NULL, current_timestamp) """, (payin.id, payin.status)) payin_transfers = [] for t in proto_transfers: payin_transfers.append(prepare_payin_transfer( cursor, payin, t.recipient, t.destination, t.context, t.amount, t.visibility, t.unit_amount, t.period, t.team, )) return payin, payin_transfers def update_payin( db, payin_id, remote_id, status, error, amount_settled=None, fee=None, intent_id=None, refunded_amount=None, ): """Update the status and other attributes of a charge. Args: payin_id (int): the ID of the charge in our database remote_id (str): the ID of the charge in the payment processor's database status (str): the new status of the charge error (str): if the charge failed, an error message to show to the payer Returns: Record: the row updated in the `payins` table """ with db.get_cursor() as cursor: payin = cursor.one(""" UPDATE payins SET status = %(status)s , error = %(error)s , remote_id = coalesce(remote_id, %(remote_id)s) , amount_settled = coalesce(amount_settled, %(amount_settled)s) , fee = coalesce(fee, %(fee)s) , intent_id = coalesce(intent_id, %(intent_id)s) , refunded_amount = coalesce(%(refunded_amount)s, refunded_amount) WHERE id = %(payin_id)s RETURNING * , (SELECT status FROM payins WHERE id = %(payin_id)s) AS old_status """, locals()) if not payin: return if remote_id and payin.remote_id != remote_id: raise AssertionError(f"the remote IDs don't match: {payin.remote_id!r} != {remote_id!r}") if status != payin.old_status: cursor.run(""" INSERT INTO payin_events (payin, status, error, timestamp) VALUES (%s, %s, %s, current_timestamp) """, (payin_id, status, error)) if status in ('pending', 'succeeded'): cursor.run(""" UPDATE exchange_routes SET status = 'consumed' WHERE id = %s AND one_off IS TRUE """, (payin.route,)) # Lock to avoid concurrent updates cursor.run("SELECT * FROM participants WHERE id = %s FOR UPDATE", (payin.payer,)) # Update scheduled payins, if appropriate if status in ('pending', 'succeeded'): sp = cursor.one(""" SELECT * FROM scheduled_payins WHERE payer = %s AND payin = %s """, (payin.payer, payin.id)) if not sp: # Try to find a scheduled renewal that matches this payin. # It doesn't have to be an exact match. schedule = cursor.all(""" SELECT * FROM scheduled_payins WHERE payer = %s AND payin IS NULL AND mtime < %s """, (payin.payer, payin.ctime)) today = utcnow().date() schedule.sort(key=lambda sp: abs((sp.execution_date - today).days)) payin_tippees = set(cursor.all(""" SELECT coalesce(team, recipient) AS tippee FROM payin_transfers WHERE payer = %s AND payin = %s """, (payin.payer, payin.id))) for sp in schedule: if any((tr['tippee_id'] in payin_tippees) for tr in sp.transfers): cursor.run(""" UPDATE scheduled_payins SET payin = %s , mtime = current_timestamp WHERE id = %s """, (payin.id, sp.id)) break return payin def adjust_payin_transfers(db, payin, net_amount): """Correct a payin's transfers once the net amount is known. Args: payin (Record): a row from the `payins` table net_amount (Money): the amount of money available to transfer """ payer = db.Participant.from_id(payin.payer) route = db.ExchangeRoute.from_id(payer, payin.route) provider = route.network.split('-', 1)[0] payer_country = route.country # We have to update the transfer amounts in a single transaction to # avoid ending up in an inconsistent state. with db.get_cursor() as cursor: payin_transfers = cursor.all(""" SELECT pt.id, pt.amount, pt.status, pt.remote_id, pt.team, pt.recipient, team_p FROM payin_transfers pt LEFT JOIN participants team_p ON team_p.id = pt.team WHERE pt.payin = %s ORDER BY pt.id FOR UPDATE OF pt """, (payin.id,)) assert payin_transfers if any(pt.status == 'succeeded' for pt in payin_transfers): # At least one of the transfers has already been executed, so it's # too complicated to adjust the amounts now. return transfers_by_tippee = group_by( payin_transfers, lambda pt: (pt.team or pt.recipient) ) prorated_amounts = resolve_amounts(net_amount, { tippee: MoneyBasket(pt.amount for pt in grouped).fuzzy_sum(net_amount.currency) for tippee, grouped in transfers_by_tippee.items() }) teams = set(pt.team for pt in payin_transfers if pt.team is not None) updates = [] for tippee, prorated_amount in prorated_amounts.items(): transfers = transfers_by_tippee[tippee] if tippee in teams: team = transfers[0].team_p tip = payer.get_tip_to(team) try: team_donations = resolve_team_donation( db, team, provider, payer, payer_country, prorated_amount, tip, sepa_only=True, ) except (MissingPaymentAccount, NoSelfTipping): team_amounts = resolve_amounts(prorated_amount, { pt.id: pt.amount.convert(prorated_amount.currency) for pt in transfers }) for pt in transfers: if pt.amount != team_amounts.get(pt.id): assert pt.remote_id is None and pt.status in ('pre', 'pending') updates.append((team_amounts[pt.id], pt.id)) else: team_donations = {d.recipient.id: d for d in team_donations} for pt in transfers: if pt.status == 'failed': continue d = team_donations.pop(pt.recipient, None) if d is None: assert pt.remote_id is None and pt.status in ('pre', 'pending') cursor.run(""" DELETE FROM payin_transfer_events WHERE payin_transfer = %(pt_id)s AND status = 'pending'; DELETE FROM payin_transfers WHERE id = %(pt_id)s; """, dict(pt_id=pt.id)) elif pt.amount != d.amount: assert pt.remote_id is None and pt.status in ('pre', 'pending') updates.append((d.amount, pt.id)) n_periods = prorated_amount / tip.periodic_amount.convert(prorated_amount.currency) for d in team_donations.values(): unit_amount = (d.amount / n_periods).round(allow_zero=False) prepare_payin_transfer( db, payin, d.recipient, d.destination, 'team-donation', d.amount, tip.visibility, unit_amount, tip.period, team=team.id, ) else: pt = transfers[0] if pt.amount != prorated_amount: assert pt.remote_id is None and pt.status in ('pre', 'pending') updates.append((prorated_amount, pt.id)) if updates: execute_batch(cursor, """ UPDATE payin_transfers SET amount = %s WHERE id = %s AND status <> 'succeeded'; """, updates) def resolve_tip( db, tip, tippee, provider, payer, payer_country, payment_amount, sepa_only=False, excluded_destinations=set(), ): """Prepare to fund a tip. Args: tip (Row): a row from the `tips` table tippee (Participant): the intended beneficiary of the donation provider (str): the payment processor ('paypal' or 'stripe') payer (Participant): the donor payer_country (str): the country the money is supposedly coming from payment_amount (Money): the amount of money being sent sepa_only (bool): only consider destination accounts within SEPA excluded_destinations (set): any `payment_accounts.pk` values to exclude Returns: a list of `ProtoTransfer` objects Raises: MissingPaymentAccount: if no suitable destination has been found NoSelfTipping: if the donor would end up sending money to themself RecipientAccountSuspended: if the tippee's account is suspended UserDoesntAcceptTips: if the tippee doesn't accept donations """ assert tip.tipper == payer.id assert tip.tippee == tippee.id if not tippee.accepts_tips: raise UserDoesntAcceptTips(tippee.username) if tippee.is_suspended: raise RecipientAccountSuspended(tippee) if tippee.kind == 'group': return resolve_team_donation( db, tippee, provider, payer, payer_country, payment_amount, tip, sepa_only=sepa_only, excluded_destinations=excluded_destinations, ) else: destination = resolve_destination( db, tippee, provider, payer, payer_country, payment_amount, sepa_only=sepa_only, excluded_destinations=excluded_destinations, ) return [ProtoTransfer( payment_amount, tippee, destination, 'personal-donation', tip.periodic_amount, tip.period, None, tip.visibility, )] def resolve_destination( db, tippee, provider, payer, payer_country, payin_amount, sepa_only=False, excluded_destinations=(), ): """Figure out where to send a payment. Args: tippee (Participant): the intended beneficiary of the payment provider (str): the payment processor ('paypal' or 'stripe') payer (Participant): the user who wants to pay payer_country (str): the country the money is supposedly coming from payin_amount (Money): the payment amount sepa_only (bool): only consider destination accounts within SEPA excluded_destinations (set): any `payment_accounts.pk` values to exclude Returns: Record: a row from the `payment_accounts` table Raises: MissingPaymentAccount: if no suitable destination has been found NoSelfTipping: if the payer would end up sending money to themself """ tippee_id = tippee.id if tippee_id == payer.id: raise NoSelfTipping() currency = payin_amount.currency excluded_destinations = list(excluded_destinations) destination = db.one(""" SELECT * FROM payment_accounts WHERE participant = %(tippee_id)s AND provider = %(provider)s AND is_current AND verified AND coalesce(charges_enabled, true) AND array_position(%(excluded_destinations)s::bigint[], pk) IS NULL AND ( country IN %(SEPA)s OR NOT %(sepa_only)s ) ORDER BY default_currency = %(currency)s DESC , country = %(payer_country)s DESC , connection_ts LIMIT 1 """, dict(locals(), SEPA=SEPA)) if destination: return destination else: raise MissingPaymentAccount(tippee) def resolve_team_donation( db, team, provider, payer, payer_country, payment_amount, tip, sepa_only=False, excluded_destinations=(), ): """Figure out how to distribute a donation to a team's members. Args: team (Participant): the team the donation is for provider (str): the payment processor ('paypal' or 'stripe') payer (Participant): the donor payer_country (str): the country code the money is supposedly coming from payment_amount (Money): the amount of money being sent tip (Row): the row from the `tips` table sepa_only (bool): only consider destination accounts within SEPA excluded_destinations (set): any `payment_accounts.pk` values to exclude Returns: a list of `ProtoTransfer` objects Raises: MissingPaymentAccount: if no suitable destination has been found NoSelfTipping: if the payer would end up sending money to themself RecipientAccountSuspended: if the team or all of its members are suspended """ if team.is_suspended: raise RecipientAccountSuspended(team) currency = payment_amount.currency takes = team.get_current_takes_for_payment(currency, tip.amount) if all(t.is_suspended for t in takes): raise RecipientAccountSuspended(takes) takes = [t for t in takes if not t.is_suspended] if len(takes) == 1 and takes[0].member == payer.id: raise NoSelfTipping() member_ids = tuple([t.member for t in takes]) excluded_destinations = list(excluded_destinations) payment_accounts = {row.participant: row for row in db.all(""" SELECT DISTINCT ON (participant) * FROM payment_accounts WHERE participant IN %(member_ids)s AND provider = %(provider)s AND is_current AND verified AND coalesce(charges_enabled, true) AND array_position(%(excluded_destinations)s::bigint[], pk) IS NULL ORDER BY participant , default_currency = %(currency)s DESC , country = %(payer_country)s DESC , connection_ts """, locals())} del member_ids if not payment_accounts: raise MissingPaymentAccount(team) takes = [t for t in takes if t.member in payment_accounts and t.member != payer.id] if not takes: raise NoSelfTipping() takes.sort(key=lambda t: ( -(t.amount / (t.paid_in_advance + payment_amount)), t.paid_in_advance, t.ctime )) # Try to distribute the donation to multiple members. if sepa_only or provider == 'stripe': sepa_accounts = {a.participant: a for a in db.all(""" SELECT DISTINCT ON (a.participant) a.* FROM payment_accounts a WHERE a.participant IN %(member_ids)s AND a.provider = %(provider)s AND a.is_current AND a.verified AND coalesce(a.charges_enabled, true) AND array_position(%(excluded_destinations)s::bigint[], a.pk) IS NULL AND a.country IN %(SEPA)s ORDER BY a.participant , a.default_currency = %(currency)s DESC , a.connection_ts """, dict(locals(), SEPA=SEPA, member_ids={t.member for t in takes}))} if sepa_only or len(sepa_accounts) > 1 and takes[0].member in sepa_accounts: selected_takes = [ t for t in takes if t.member in sepa_accounts and t.amount != 0 ] if selected_takes: resolve_take_amounts(payment_amount, selected_takes) selected_takes.sort(key=attrgetter('member')) n_periods = payment_amount / tip.periodic_amount.convert(currency) return [ ProtoTransfer( t.resolved_amount, db.Participant.from_id(t.member), sepa_accounts[t.member], 'team-donation', (t.resolved_amount / n_periods).round(allow_zero=False), tip.period, team.id, tip.visibility, ) for t in selected_takes if t.resolved_amount != 0 ] elif sepa_only: raise MissingPaymentAccount(team) # Fall back to sending the entire donation to the member who "needs" it most. member = db.Participant.from_id(takes[0].member) account = payment_accounts[member.id] return [ProtoTransfer( payment_amount, member, account, 'team-donation', tip.periodic_amount, tip.period, team.id, tip.visibility, )] def resolve_take_amounts(payment_amount, takes): """Compute team transfer amounts. Args: payment_amount (Money): the total amount of money to transfer takes (list): rows returned by `team.get_current_takes_for_payment(...)` This function doesn't return anything, instead it mutates the given takes, adding a `resolved_amount` attribute to each one. """ max_weeks_of_advance = 0 for t in takes: if t.amount == 0: t.weeks_of_advance = 0 continue t.weeks_of_advance = t.paid_in_advance / t.amount if t.weeks_of_advance > max_weeks_of_advance: max_weeks_of_advance = t.weeks_of_advance base_amounts = {t.member: t.amount for t in takes} convergence_amounts = { t.member: ( t.amount * (max_weeks_of_advance - t.weeks_of_advance) ).round_up() for t in takes } tr_amounts = resolve_amounts(payment_amount, base_amounts, convergence_amounts) for t in takes: t.resolved_amount = tr_amounts.get(t.member, payment_amount.zero()) def resolve_amounts(available_amount, base_amounts, convergence_amounts=None, payday_id=1): """Compute transfer amounts. Args: available_amount (Money): the payin amount to split into transfer amounts base_amounts (Dict[Any, Money]): a map of IDs to raw transfer amounts convergence_amounts (Dict[Any, Money]): an optional map of IDs to ideal additional amounts payday_id (int): the ID of the current or next payday, used to rotate who receives the remainder when there is a tie Returns a copy of `base_amounts` with updated values. """ min_transfer_amount = Money.MINIMUMS[available_amount.currency] r = {} amount_left = available_amount # Attempt to converge if convergence_amounts: convergence_sum = Money.sum(convergence_amounts.values(), amount_left.currency) if convergence_sum != 0: convergence_amounts = {k: v for k, v in convergence_amounts.items() if v != 0} if amount_left == convergence_sum: # We have just enough money for convergence. return convergence_amounts elif amount_left > convergence_sum: # We have more than enough money for full convergence, the extra # funds will be allocated in proportion to `base_amounts`. r.update(convergence_amounts) amount_left -= convergence_sum else: # We only have enough for partial convergence, the funds will be # allocated in proportion to `convergence_amounts`. base_amounts = convergence_amounts # Compute the prorated amounts base_sum = Money.sum(base_amounts.values(), amount_left.currency) base_ratio = 0 if base_sum == 0 else amount_left / base_sum for key, base_amount in sorted(base_amounts.items()): if base_amount == 0: continue assert amount_left >= min_transfer_amount amount = min((base_amount * base_ratio).round_down(), amount_left) r[key] = amount + r.get(key, 0) amount_left -= amount # Deal with rounding errors if amount_left > 0: # Try to distribute in a way that doesn't skew the percentages much. # If there's a tie, use the payday ID to rotate the winner every week. i = itertools.count(1) n = len(r) def compute_priority(item): key, current_amount = item base_amount = base_amounts[key] * base_ratio return ( (current_amount - base_amount) / base_amount if base_amount else 2, (next(i) - payday_id) % n ) for key, amount in sorted(r.items(), key=compute_priority): r[key] += min_transfer_amount amount_left -= min_transfer_amount if amount_left == 0: break # Final check and return assert amount_left == 0, '%r != 0' % amount_left return r def prepare_payin_transfer( db, payin, recipient, destination, context, amount, visibility, unit_amount=None, period=None, team=None, ): """Prepare the allocation of funds from a payin. Args: payin (Record): a row from the `payins` table recipient (Participant): the user who will receive the money destination (Record): a row from the `payment_accounts` table amount (Money): the amount of money that will be received visibility (int): a copy of `tip.visibility` unit_amount (Money): the `periodic_amount` of a recurrent donation period (str): the period of a recurrent payment team (int): the ID of the project this payment is tied to Returns: Record: the row created in the `payin_transfers` table """ assert recipient.id == destination.participant, (recipient, destination) if recipient.is_suspended: raise RecipientAccountSuspended() if unit_amount: n_units = int(amount / unit_amount.convert(amount.currency)) else: n_units = None return db.one(""" INSERT INTO payin_transfers (payin, payer, recipient, destination, context, amount, unit_amount, n_units, period, team, visibility, status, ctime) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, 'pre', clock_timestamp()) RETURNING * """, (payin.id, payin.payer, recipient.id, destination.pk, context, amount, unit_amount, n_units, period, team, visibility)) def update_payin_transfer( db, pt_id, remote_id, status, error, amount=None, fee=None, update_donor=True, reversed_amount=None, ): """Update the status and other attributes of a payment. Args: pt_id (int): the ID of the payment in our database remote_id (str): the ID of the transfer in the payment processor's database status (str): the new status of the payment error (str): if the payment failed, an error message to show to the payer Returns: Record: the row updated in the `payin_transfers` table """ with db.get_cursor() as cursor: pt = cursor.one(""" UPDATE payin_transfers SET status = %(status)s , error = %(error)s , remote_id = coalesce(remote_id, %(remote_id)s) , amount = COALESCE(%(amount)s, amount) , fee = COALESCE(%(fee)s, fee) , reversed_amount = coalesce(%(reversed_amount)s, reversed_amount) WHERE id = %(pt_id)s RETURNING * , (SELECT amount FROM payin_transfers WHERE id = %(pt_id)s) AS old_amount , (SELECT reversed_amount FROM payin_transfers WHERE id = %(pt_id)s) AS old_reversed_amount , (SELECT status FROM payin_transfers WHERE id = %(pt_id)s) AS old_status """, locals()) if not pt: return if remote_id and pt.remote_id != remote_id: raise AssertionError(f"the remote IDs don't match: {pt.remote_id!r} != {remote_id!r}") if status != pt.old_status: cursor.run(""" INSERT INTO payin_transfer_events (payin_transfer, status, error, timestamp) VALUES (%s, %s, %s, current_timestamp) """, (pt_id, status, error)) # If the payment has failed or hasn't been settled yet, then stop here. if status != 'succeeded': return pt # Update the `paid_in_advance` value of the donation. params = pt._asdict() params['delta'] = pt.amount if pt.old_status == 'succeeded': params['delta'] -= pt.old_amount if pt.reversed_amount: params['delta'] += -(pt.reversed_amount - (pt.old_reversed_amount or 0)) elif pt.old_reversed_amount: params['delta'] += pt.old_reversed_amount if params['delta'] == 0: return pt updated_tips = cursor.all(""" WITH latest_tip AS ( SELECT * FROM tips WHERE tipper = %(payer)s AND tippee = COALESCE(%(team)s, %(recipient)s) ORDER BY mtime DESC LIMIT 1 ) UPDATE tips t SET paid_in_advance = ( coalesce_currency_amount(t.paid_in_advance, t.amount::currency) + convert(%(delta)s, t.amount::currency) ) , is_funded = true FROM latest_tip lt WHERE t.tipper = lt.tipper AND t.tippee = lt.tippee AND t.mtime >= lt.mtime RETURNING t.* """, params) if not updated_tips: # This transfer isn't linked to a tip. return pt assert len(updated_tips) < 10, updated_tips if any(t.paid_in_advance <= 0 for t in updated_tips): cursor.run(""" UPDATE tips SET is_funded = false WHERE tipper = %(payer)s AND paid_in_advance <= 0 """, params) # If it's a team donation, update the `paid_in_advance` value of the take. if pt.context == 'team-donation': updated_takes = cursor.all(""" WITH latest_take AS ( SELECT * FROM takes WHERE team = %(team)s AND member = %(recipient)s AND amount IS NOT NULL ORDER BY mtime DESC LIMIT 1 ) UPDATE takes t SET paid_in_advance = ( coalesce_currency_amount(lt.paid_in_advance, lt.amount::currency) + convert(%(delta)s, lt.amount::currency) ) FROM latest_take lt WHERE t.team = lt.team AND t.member = lt.member AND t.mtime >= lt.mtime RETURNING t.id """, params) assert 0 < len(updated_takes) < 10, params # Recompute the cached `receiving` amount of the donee. cursor.run(""" WITH our_tips AS ( SELECT t.amount FROM current_tips t WHERE t.tippee = %(p_id)s AND t.is_funded ) UPDATE participants AS p SET receiving = taking + coalesce_currency_amount( (SELECT sum(t.amount, p.main_currency) FROM our_tips t), p.main_currency ) , npatrons = (SELECT count(*) FROM our_tips) WHERE p.id = %(p_id)s """, dict(p_id=(pt.team or pt.recipient))) # Recompute the donor's cached `giving` amount and payment schedule. if update_donor: donor = db.Participant.from_id(pt.payer) donor.update_giving() donor.schedule_renewals() return pt def abort_payin(db, payin, error='aborted by payer'): """Mark a payin as cancelled. Args: payin (Record): a row from the `payins` table error (str): the error message to attach to the payin Returns: Record: the row updated in the `payins` table """ payin = update_payin(db, payin.id, payin.remote_id, 'failed', error) db.run(""" WITH updated_transfers as ( UPDATE payin_transfers SET status = 'failed' , error = %(error)s WHERE payin = %(payin_id)s AND status <> 'failed' RETURNING * ) INSERT INTO payin_transfer_events (payin_transfer, status, error, timestamp) SELECT pt.id, 'failed', pt.error, current_timestamp FROM updated_transfers pt """, dict(error=error, payin_id=payin.id)) return payin def record_payin_refund( db, payin_id, remote_id, amount, reason, description, status, error=None, ctime=None, ): """Record a charge refund. Args: payin_id (int): the ID of the refunded payin in our database remote_id (int): the ID of the refund in the payment processor's database amount (Money): the refund amount, must be less or equal to the payin amount reason (str): why this refund was initiated (`refund_reason` SQL type) description (str): details of the circumstances of this refund status (str): the current status of the refund (`refund_status` SQL type) error (str): error message, if the refund has failed ctime (datetime): when the refund was initiated Returns: Record: the row inserted in the `payin_refunds` table """ refund = db.one(""" INSERT INTO payin_refunds (payin, remote_id, amount, reason, description, status, error, ctime) VALUES (%(payin_id)s, %(remote_id)s, %(amount)s, %(reason)s, %(description)s, %(status)s, %(error)s, coalesce(%(ctime)s, current_timestamp)) ON CONFLICT (payin, remote_id) DO UPDATE SET amount = excluded.amount , reason = excluded.reason , description = excluded.description , status = excluded.status , error = excluded.error RETURNING * , ( SELECT old.status FROM payin_refunds old WHERE old.payin = %(payin_id)s AND old.remote_id = %(remote_id)s ) AS old_status """, locals()) notify = ( refund.status in ('pending', 'succeeded') and refund.status != refund.old_status and refund.ctime > (utcnow() - timedelta(hours=24)) ) if notify: payin = db.one("SELECT * FROM payins WHERE id = %s", (refund.payin,)) payer = db.Participant.from_id(payin.payer) payer.notify( 'payin_refund_initiated', payin_amount=payin.amount, payin_ctime=payin.ctime, refund_amount=refund.amount, refund_reason=refund.reason, email_unverified_address=True, ) return refund def record_payin_transfer_reversal( db, pt_id, remote_id, amount, payin_refund_id=None, ctime=None ): """Record a transfer reversal. Args: pt_id (int): the ID of the reversed transfer in our database remote_id (int): the ID of the reversal in the payment processor's database amount (Money): the reversal amount, must be less or equal to the transfer amount payin_refund_id (int): the ID of the associated payin refund in our database ctime (datetime): when the refund was initiated Returns: Record: the row inserted in the `payin_transfer_reversals` table """ return db.one(""" INSERT INTO payin_transfer_reversals (payin_transfer, remote_id, amount, payin_refund, ctime) VALUES (%(pt_id)s, %(remote_id)s, %(amount)s, %(payin_refund_id)s, coalesce(%(ctime)s, current_timestamp)) ON CONFLICT (payin_transfer, remote_id) DO UPDATE SET amount = excluded.amount , payin_refund = excluded.payin_refund RETURNING * """, locals())
39.964409
108
0.579965
0
0
0
0
0
0
0
0
19,136
0.549743
d2e3ae6e131a5fa41bdb17b19d893736dfd4f861
4,967
py
Python
vendor/func_lib/assert_handle.py
diudiu/featurefactory
ee02ad9e3ea66e2eeafe6e11859801f0420c7d9e
[ "MIT" ]
null
null
null
vendor/func_lib/assert_handle.py
diudiu/featurefactory
ee02ad9e3ea66e2eeafe6e11859801f0420c7d9e
[ "MIT" ]
null
null
null
vendor/func_lib/assert_handle.py
diudiu/featurefactory
ee02ad9e3ea66e2eeafe6e11859801f0420c7d9e
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- from vendor.errors.feature import FeatureProcessError """ 此目录下所有功能函数均为: 按一定条件检查传入参数合法性 **若不合法, 将抛出异常** """ def f_assert_not_null(seq): """检测值是否非空或值得列表是否存在非空元素""" if seq in (None, '', [], {}, ()): raise FeatureProcessError("value: %s f_assert_not_null Error" % seq) if isinstance(seq, list): for value in seq: if value in (None, '', {}, [], ()): raise FeatureProcessError("value: %s f_assert_not_null Error" % seq) return seq def f_assert_jsonpath_true(seq): """假设jsonpath查询到的为true seq为[]空列表时代表没查到字段""" if seq in ([],): raise FeatureProcessError("jsonpath not find field") return seq def f_assert_must_int(value_list): """检测列表中的元素是否为int类型""" for value in value_list: if not isinstance(value, int): raise FeatureProcessError('%s f_assert_must_int Error' % value_list) return value_list def f_assert_must_list(value_list): """检测列表中的元素是否为list类型""" for value in value_list: if not isinstance(value, list): raise FeatureProcessError('%s f_assert_must_list Error' % value_list) return value_list def f_assert_must_dict(value_list): """检测列表中的元素是否为dict类型""" for value in value_list: if not isinstance(value, dict): raise FeatureProcessError('%s f_assert_must_dict Error' % value_list) return value_list def f_assert_must_digit(value_list, args=False): """ 检测列表中的元素是否为数字 :param value_list: 待检测列表 :param args: 负数是否通过 false 不通过报异常 True 负数通过 :return: 异常或原值 example: :value_list [-2,'-2', 3] :args false :return 异常 :value_list [-2,'-2', 3] :args True :return [-2,'-2', 3] """ for value in value_list: if args: if not str(value).lstrip('-').isdigit(): raise FeatureProcessError('%s negative number=%s f_assert_must_digit Error' % (value_list, args)) else: if not str(value).isdigit(): raise FeatureProcessError('%s negative number=%s f_assert_must_digit Error' % (value_list, args)) return value_list def f_assert_must_basestring(value_list): """检测列表中的元素是否为字符串""" for value in value_list: if not isinstance(value, basestring): raise FeatureProcessError('%s f_assert_must_basestring Error' % value_list) return value_list def f_assert_must_digit_or_float(value_list, args=False): """ 检测列表中的元素是否为数字或float, args=false 负数报异常 True 负数通过 :param value_list: 待检测列表 :param args: 负数是否通过 false 不通过报异常 True 负数通过 :return: 异常或原值 example: :value_list [-2.0,'-2', 3] :args false :return 异常 :value_list [-2.0,'-2', 3] :args True :return [-2.0,'-2', 3] """ for value in value_list: if args: if not (str(value).count('.') <= 1 and str(value).replace('.', '').lstrip('-').isdigit()): raise FeatureProcessError( '%s negative number=%s f_assert_must_digit_or_float Error' % (value_list, args)) else: if not (str(value).count('.') <= 1 and str(value).replace('.', '').isdigit()): raise FeatureProcessError( '%s negative number=%s f_assert_must_digit_or_float Error' % (value_list, args)) return value_list def f_assert_must_percent(value_list): """ 检测是否是百分数 """ for value in value_list: if not (str(value)[-1] == '%' and (str(value[:-1]).count('.') <= 1 and str(value[:-1]).replace('.', '').isdigit())): raise FeatureProcessError( '%s f_assert_must_percent Error' % value_list) return value_list def f_assert_must_between(value_list, args): """ 检测列表中的元素是否为数字或浮点数且在args的范围内 :param value_list: 待检测列表 :param args: 范围列表 :return: 异常或原值 example: :value_list [2, 2, 3] :args [1,3] :value_list ['-2', '-3', 3] :args ['-5',3] """ assert len(args) == 2 for value in value_list: if not (str(value).count('.') <= 1 and str(value).replace('.', '').lstrip('-').isdigit() and float(args[0]) <= float(value) <= float(args[1])): raise FeatureProcessError('%s f_assert_must_between %s Error' % (value_list, args)) return value_list def f_assert_seq0_gte_seq1(value_list): """检测列表中的第一个元素是否大于等于第二个元素""" if not value_list[0] >= value_list[1]: raise FeatureProcessError('%s f_assert_seq0_gte_seq1 Error' % value_list) return value_list if __name__ == '__main__': print f_assert_must_percent(['7.0%'])
29.742515
124
0.571774
0
0
0
0
0
0
0
0
2,635
0.474518
d2e3af7e8020910904dd800db879455657d8308e
4,993
py
Python
main.py
Potapov-AA/CaesarCipherWithKeyword
4bd520418254b56950be079d0fce638039d4e202
[ "MIT" ]
null
null
null
main.py
Potapov-AA/CaesarCipherWithKeyword
4bd520418254b56950be079d0fce638039d4e202
[ "MIT" ]
null
null
null
main.py
Potapov-AA/CaesarCipherWithKeyword
4bd520418254b56950be079d0fce638039d4e202
[ "MIT" ]
null
null
null
import time from os import system, walk from config import CONFIG from encry import ENCRY from decry import DECRY # Функция настройки конфигурации def conf_setting(): system('CLS') print("Enter key elements: ") # Выбор алфавита alphabet = input("Select the used alphabet [EN]GLISH | [RU]SSIAN: ") # Ввод числового ключа numberKey = input("Enter a numeric key: ") # Ввод ключевого слова stringKey = input("Enter your keyword: ") return CONFIG(alphabet, numberKey, stringKey) def en_message(): print("Encryption") def de_message(): print("Decryption") def select_file(): # Создаем список всех .txt файлов filelist = [] for root, dirs, files in walk("."): for file in files: if file.endswith(".txt"): # Добавляем в список filelist.append(file) s = '' while True: system('CLS') print("List of txt files: ") for i in filelist: print(i) file = input("Select a file: ") try: f = open(file, 'r', encoding='utf-8') s = f.read() f.close() break except Exception: print("Error: file not found") return s # Вывод меню def print_menu(cryptMode, CONF, text): file_text = text while cryptMode != 'EXIT': system('CLS') # Выбор действия cryptMode = input("[E]ncryption|[D]ecryption| [Select] file |[S]etting configure |[Show] configuration |[Show text] |[Exit]: ").upper() # Если команды не существует if cryptMode not in ['E', 'D', 'S', 'EXIT', 'SHOW', 'SELECT', 'SHOW TEXT']: print("Error: command not find!") time.sleep(2) # Если выбрана настройка конфигурации if cryptMode == 'S': CONF = conf_setting() # Если выбран шифровка или дешифровка if cryptMode in ['E', 'D']: # Проверка на то, что файл выбран и проведены настройки конфигурации if CONF is not object: try: if cryptMode == 'E': print("Encryption in progress please wait...") en_text = ENCRY(CONF.alphaList, CONF.new_alphaList, file_text.upper()).new_text() print(file_text) print(en_text) try: f = open("en_text.txt", 'w', encoding='utf-8') f.write(en_text) f.close() print("Successfully. Encrypted file written! (en_text.txt)") input("Please enter something to continue ...") except Exception: print("Error: file don't creat!") input("Please enter something to continue ...") if cryptMode == 'D': print("Decryption in progress please wait...") de_text = DECRY(CONF.alphaList, CONF.new_alphaList, file_text.upper()).new_text() print(file_text) print(de_text) try: f = open("de_text.txt", 'w', encoding='utf-8') f.write(de_text) f.close() print("Successfully. Encrypted file written! (de_text.txt)") input("Please enter something to continue ...") except Exception: print("Error: file don't creat!") input("Please enter something to continue ...") except Exception: print(Exception) time.sleep(2) else: if CONF is object: print("Customize the configuration!") time.sleep(2) if file_text == '': print("Chose file!") time.sleep(2) print("Wait...") time.sleep(2) # Если выбран выбор файла if cryptMode == 'SELECT': file_text = select_file() # Если выбран показать файлы конфигурации if cryptMode == 'SHOW': if CONF is not object: CONF.print_conf() input("Please enter something to continue ...") else: print("Customize the configuration!") time.sleep(2) # Если выбран показать текст if cryptMode == 'SHOW TEXT': if file_text != '': print(file_text) input("Please enter something to continue ...") else: print("Please choose file!") time.sleep(2) if __name__ == '__main__': CONF = object text = '' cryptMode = '' print_menu(cryptMode, CONF, text)
32.848684
143
0.488684
0
0
0
0
0
0
0
0
1,896
0.354326
d2e4753ddf7c063ce13b4c81cfba0d2c46394e4c
504
py
Python
frappe/email/doctype/email_queue_recipient/email_queue_recipient.py
oryxsolutions/frappe
d193ea22d17ca40d57432040a8afad72287d9e23
[ "MIT" ]
null
null
null
frappe/email/doctype/email_queue_recipient/email_queue_recipient.py
oryxsolutions/frappe
d193ea22d17ca40d57432040a8afad72287d9e23
[ "MIT" ]
null
null
null
frappe/email/doctype/email_queue_recipient/email_queue_recipient.py
oryxsolutions/frappe
d193ea22d17ca40d57432040a8afad72287d9e23
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies and contributors # License: MIT. See LICENSE import frappe from frappe.model.document import Document class EmailQueueRecipient(Document): DOCTYPE = "Email Queue Recipient" def is_mail_to_be_sent(self): return self.status == "Not Sent" def is_main_sent(self): return self.status == "Sent" def update_db(self, commit=False, **kwargs): frappe.db.set_value(self.DOCTYPE, self.name, kwargs) if commit: frappe.db.commit()
22.909091
58
0.730159
332
0.65873
0
0
0
0
0
0
147
0.291667
d2e52be160ba41f3c7d6be5212d1c7221d94eb66
3,211
py
Python
tests/groups/family/test_pseudo_dojo.py
mbercx/aiida-pseudo
070bdfa37d30674e1f83bf6d14987aa977426d92
[ "MIT" ]
null
null
null
tests/groups/family/test_pseudo_dojo.py
mbercx/aiida-pseudo
070bdfa37d30674e1f83bf6d14987aa977426d92
[ "MIT" ]
2
2021-09-21T11:28:55.000Z
2021-09-21T12:13:48.000Z
tests/groups/family/test_pseudo_dojo.py
mbercx/aiida-pseudo
070bdfa37d30674e1f83bf6d14987aa977426d92
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # pylint: disable=unused-argument,pointless-statement """Tests for the `PseudoDojoFamily` class.""" import pytest from aiida_pseudo.data.pseudo import UpfData, Psp8Data, PsmlData, JthXmlData from aiida_pseudo.groups.family import PseudoDojoConfiguration, PseudoDojoFamily def test_type_string(clear_db): """Verify the `_type_string` class attribute is correctly set to the corresponding entry point name.""" assert PseudoDojoFamily._type_string == 'pseudo.family.pseudo_dojo' # pylint: disable=protected-access def test_pseudo_types(): """Test the `PseudoDojoFamily.pseudo_types` method.""" assert PseudoDojoFamily.pseudo_types == (UpfData, PsmlData, Psp8Data, JthXmlData) def test_default_configuration(): """Test the `PseudoDojoFamily.default_configuration` class attribute.""" assert isinstance(PseudoDojoFamily.default_configuration, PseudoDojoConfiguration) def test_valid_configurations(): """Test the `PseudoDojoFamily.valid_configurations` class attribute.""" valid_configurations = PseudoDojoFamily.valid_configurations assert isinstance(valid_configurations, tuple) for entry in valid_configurations: assert isinstance(entry, PseudoDojoConfiguration) def test_get_valid_labels(): """Test the `PseudoDojoFamily.get_valid_labels` class method.""" valid_labels = PseudoDojoFamily.get_valid_labels() assert isinstance(valid_labels, tuple) for entry in valid_labels: assert isinstance(entry, str) def test_format_configuration_label(): """Test the `PseudoDojoFamily.format_configuration_label` class method.""" configuration = PseudoDojoConfiguration('0.4', 'PBE', 'SR', 'standard', 'psp8') assert PseudoDojoFamily.format_configuration_label(configuration) == 'PseudoDojo/0.4/PBE/SR/standard/psp8' def test_constructor(): """Test that the `PseudoDojoFamily` constructor validates the label.""" with pytest.raises(ValueError, match=r'the label `.*` is not a valid PseudoDojo configuration label'): PseudoDojoFamily() with pytest.raises(ValueError, match=r'the label `.*` is not a valid PseudoDojo configuration label'): PseudoDojoFamily(label='nc-sr-04_pbe_standard_psp8') label = PseudoDojoFamily.format_configuration_label(PseudoDojoFamily.default_configuration) family = PseudoDojoFamily(label=label) assert isinstance(family, PseudoDojoFamily) @pytest.mark.usefixtures('clear_db') def test_create_from_folder(filepath_pseudos): """Test the `PseudoDojoFamily.create_from_folder` class method.""" family = PseudoDojoFamily.create_from_folder( filepath_pseudos('upf'), 'PseudoDojo/0.4/PBE/SR/standard/psp8', pseudo_type=UpfData ) assert isinstance(family, PseudoDojoFamily) @pytest.mark.usefixtures('clear_db') def test_create_from_folder_duplicate(filepath_pseudos): """Test that `PseudoDojoFamily.create_from_folder` raises for duplicate label.""" label = 'PseudoDojo/0.4/PBE/SR/standard/psp8' PseudoDojoFamily(label=label).store() with pytest.raises(ValueError, match=r'the PseudoDojoFamily `.*` already exists'): PseudoDojoFamily.create_from_folder(filepath_pseudos('upf'), label)
40.64557
110
0.766116
0
0
0
0
785
0.244472
0
0
1,206
0.375584
d2e5ecb02a9dd4eeeac961445b6d9553ecd7b3a1
1,743
py
Python
converter.py
Poudingue/Max2Mitsuba
857c67b91f524de3e33f66958f26b022fa0a38f0
[ "WTFPL" ]
4
2019-10-30T09:18:42.000Z
2020-06-18T12:50:06.000Z
converter.py
Poudingue/Fbx2Mitsuba
857c67b91f524de3e33f66958f26b022fa0a38f0
[ "WTFPL" ]
null
null
null
converter.py
Poudingue/Fbx2Mitsuba
857c67b91f524de3e33f66958f26b022fa0a38f0
[ "WTFPL" ]
null
null
null
import sys import os if sys.version_info[0] != 3 : print("Running in python "+sys.version_info[0]+", should be python 3.") print("Please install python 3.7 from the official site python.org") print("Exiting now.") exit() import shutil import argparse import fbx2tree import builder_fromfbx import time # config is useful to keep info for the different modules import config parser = argparse.ArgumentParser() parser.add_argument("file", help="file") parser.add_argument("-v", "--verbose", help="Print more stuff", action="store_true") parser.add_argument("-d", "--debug", help="Create intermediate xml files for debug", action="store_true") parser.add_argument("--closest", help="Try to stick as close to the original materials in 3dsmax, even if it is at the expense of realism", action="store_true") parser.add_argument("--realist", help="Try to make materials as realist as possible, even if it is at the expense of fidelity to the original scene", action="store_true") args = parser.parse_args() if args.closest and args.realist : print("Incompatible options : --closest and --realist. Choose one, or neither for a balanced result") exit(0) fullname = args.file if fullname.split(".")[-1].lower() != "fbx" : print("The file is not an fbx file") exit(0) config.curr_place = os.path.dirname(os.path.abspath(__file__)) config.filename = ".".join(fullname.split(".")[:-1]).split("\\")[-1]#Remove extension, remove path. config.filepath = "\\".join(fullname.split("\\")[:-1])+"\\"#Keep only path config.verbose = args.verbose config.debug = args.debug config.closest = args.closest config.realist = args.realist fbxtree = fbx2tree.transform() builder_fromfbx.build(fbxtree) print("Conversion finished !")
34.86
176
0.724613
0
0
0
0
0
0
0
0
776
0.445209
d2e64e022f433cd3fd044c614f4cd92d7a6f232d
4,256
py
Python
run.py
snandasena/disaster-response-pipeline
709af8c5fcb520dae82dc3b75c30ab2609402f53
[ "MIT" ]
null
null
null
run.py
snandasena/disaster-response-pipeline
709af8c5fcb520dae82dc3b75c30ab2609402f53
[ "MIT" ]
null
null
null
run.py
snandasena/disaster-response-pipeline
709af8c5fcb520dae82dc3b75c30ab2609402f53
[ "MIT" ]
null
null
null
import sys import json import plotly from flask import Flask from flask import render_template, request from plotly.graph_objects import Heatmap, Bar from sklearn.externals import joblib from sqlalchemy import create_engine sys.path.append("common") from common.nlp_common_utils import * if len(sys.argv) == 1: sys.argv.append('./data/DisasterResponse.db') sys.argv.append('./models/classifier.pkl') # this requires for joblib and pickle def tokenize(text): """ Used a common utility functions for tokenize text in to cleaned token list. INPUT: text - raw message OUTPUT: clean_tokens -- cleaned tokenized list """ return tokenize_text(text) # create a flask app app = Flask(__name__, template_folder='app/templates') # database_file_location, model_location = sys.argv[1:] # load data engine = create_engine('sqlite:///{}'.format(database_file_location)) df = pd.read_sql_table('DisasterResponse', engine) # category df df_categories = df.iloc[:, 4:] # load model model = joblib.load(model_location) def generate_graph_with_template(data, title, yaxis_title, xaxi_title): """ This common layout can be used to create Plotly graph layout. INPUT: data - a graph required JSON data i.e list title - a tile of the chart yaxis_title - Y title xaxix_title - X title OUTPUT: layout for particular graph. """ return { 'data': [data], 'layout': { 'title': title, 'yaxis': { 'title': yaxis_title }, 'xaxis': { 'title': xaxi_title } } } def generate_message_genres_bar_chart(): """ create a graph using extracted data for `genre` """ # extract data needed for visuals genre_counts = df.groupby('genre').count()['message'] genre_names = list(genre_counts.index) data = Bar(x=genre_names, y=genre_counts) title = 'Distribution of Message Genres' y_title = 'Count' x_title = 'Genre' return generate_graph_with_template(data, title, y_title, x_title) def generate_message_categories_distribution_bar_chart(): """ create a graph for distribution of the messages. """ data = Bar(x=df_categories.columns, y=list(df_categories.sum().sort_values(ascending=False))) title = 'Distribution of Message Categories' y_title = 'Count' x_title = 'Category' return generate_graph_with_template(data, title, y_title, x_title) def generate_two_cat_relation_heat_map(): """ A correlation matrix for categories """ data = Heatmap( z=df_categories.corr(), y=df_categories.columns, x=df_categories.columns) title = 'Correlation Distribution of Categories' y_title = 'Category' x_title = 'Category' return generate_graph_with_template(data, title, y_title, x_title) def generate_graphs(): # create visuals graphs = [generate_message_genres_bar_chart(), generate_message_categories_distribution_bar_chart(), generate_two_cat_relation_heat_map()] return graphs # index webpage displays cool visuals and receives user input text for model @app.route('/') @app.route('/index') def index(): graphs = generate_graphs() # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graph_json = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) # render web page with plotly graphs return render_template('master.html', ids=ids, graphJSON=graph_json) # web page that handles user query and displays model results @app.route('/go') def go(): # save user input in query query = request.args.get('query', '') # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) # This will render the go.html Please see that file. return render_template( 'go.html', query=query, classification_result=classification_results ) def main(): app.run(host='0.0.0.0', port=3001, debug=True) if __name__ == '__main__': main()
25.95122
79
0.672227
0
0
0
0
836
0.196429
0
0
1,532
0.359962
d2e65a9a5236dcdd44347a721b18b12179871e04
840
py
Python
process.py
s-xie/processing
e0f1a851bed6159a718ae4e4afb3bfe3a30f6af5
[ "MIT" ]
null
null
null
process.py
s-xie/processing
e0f1a851bed6159a718ae4e4afb3bfe3a30f6af5
[ "MIT" ]
null
null
null
process.py
s-xie/processing
e0f1a851bed6159a718ae4e4afb3bfe3a30f6af5
[ "MIT" ]
null
null
null
import re import sys from nltk.tokenize import word_tokenize from unidecode import unidecode from nltk.tokenize import sent_tokenize import argparse parser = argparse.ArgumentParser() parser.add_argument('fin') parser.add_argument('fout') args = parser.parse_args() textproc = TextProc() tokenizer = Tokenizer() sentences=set() with open(args.fin, 'r') as f: count = 0 for line in f: count+=1 sentences.add(line.strip()) if count % 100000==0: print(count) with open(args.fout, 'w') as f: count = 0 group = '' for s in sentences: count+=1 if s !='': group+=s+'\n' if count % 20==0: try: p = sent_tokenize(unidecode(group)) f.write('\n'.join(p)) group = '' except: print("nltk error") if count % 10000==0: print(count)
20
45
0.613095
0
0
0
0
0
0
0
0
43
0.05119
d2e6ff17f08688e760eb2d19c6c6dfcc805a369d
1,071
py
Python
Aula 14 - Estrutura de repetição while/desafio058-jogo-da-adivinhação.py
josue-rosa/Python---Curso-em-Video
2d74c7421a49952b7c3eadb1010533525f2de338
[ "MIT" ]
3
2020-10-07T03:21:07.000Z
2020-10-13T14:18:49.000Z
Aula 14 - Estrutura de repetição while/desafio058-jogo-da-adivinhação.py
josue-rosa/Python---Curso-em-Video
2d74c7421a49952b7c3eadb1010533525f2de338
[ "MIT" ]
null
null
null
Aula 14 - Estrutura de repetição while/desafio058-jogo-da-adivinhação.py
josue-rosa/Python---Curso-em-Video
2d74c7421a49952b7c3eadb1010533525f2de338
[ "MIT" ]
null
null
null
""" Melhore o jogo do DESAFIO 028 onde o computador vai "pensar" em um numero entre 0 e 10. Só que agora o jogador vai tentar adivinhar até acertar, mostrando no final quantos palpites foram necessários para vencer """ """ from random import randint tentativas = 1 computador = randint(0, 10) jogador = int(input('Informe um numero para jogarmos ')) while jogador != computador: jogador = int(input('Errou. Tente novamente. ')) tentativas += 1 print(f'Acertou. Pensei no {computador} também.') print(f'Total de tentativas {tentativas}.') """ # Corrigido do Professor from random import randint computador = randint(0, 10) print('Pensei em um número entre 0 e 10') acertou = False palpites = 0 while not acertou: jogador = int(input('Qual o seu palpite? ')) palpites += 1 if jogador == computador: acertou = True else: if jogador < computador: print('Mais..Tente mais uma vez.') elif jogador > computador: print('Menos. Tente mais uma vez.') print(f'Acertou com {palpites} tentativas. Parabéns!')
28.945946
87
0.687208
0
0
0
0
0
0
0
0
738
0.685237
d2e7114d8d4486671f83a30e7420ce1d69cd65c1
1,550
py
Python
plugins/googlefight.py
serpis/pynik
074e6b2d2282557976eee3681d8bfcd5659c011e
[ "MIT" ]
4
2016-08-09T21:25:23.000Z
2019-08-16T21:55:17.000Z
plugins/googlefight.py
serpis/pynik
074e6b2d2282557976eee3681d8bfcd5659c011e
[ "MIT" ]
10
2015-01-25T21:25:22.000Z
2021-01-28T19:50:22.000Z
plugins/googlefight.py
serpis/pynik
074e6b2d2282557976eee3681d8bfcd5659c011e
[ "MIT" ]
4
2015-05-06T21:45:39.000Z
2018-07-02T16:47:36.000Z
# coding: utf-8 import re import utility from commands import Command def google_pages(string): url = 'http://www.google.se/search?q=' + utility.escape(string) + '&ie=UTF-8&oe=UTF-8' response = utility.read_url(url) data = response["data"] search = re.search('swrnum=(\d+)">', data) if search: result = search.group(1) if result: return int(result, 10) else: return None else: return None def google_divisor(int1, int2): if int1 < int2: biggest = int1 else: biggest = int2 if biggest > 1000000: divisor = 1000000.0 unit = 'm' elif biggest > 1000: divisor = 1000.0 unit = 'k' else: divisor = 1 unit = '' return (divisor, unit) class Googlefight(Command): def __init__(self): pass def trig_googlefight(self, bot, source, target, trigger, argument): args = argument.split('|', 2) if len(args) == 2 and len(args[0]) > 0 and len(args[1]) > 0: result1 = google_pages(args[0]) result2 = google_pages(args[1]) if result1 and result2: grej = google_divisor(result1, result2) result1 = result1 / grej[0] result2 = result2 / grej[0] unit = grej[1] if result1 == result2: return "It's a tie! " + str(result1/1000.0) + "k hits!" elif result1 > result2: return args[0] + ' is the winner! (' + str(result1) + unit + ' to ' + str(result2) + unit + ')' else: return args[1] + ' is the winner! (' + str(result2) + unit + ' to ' + str(result1) + unit + ')' else: return "Couldn't search." else: return "Usage: .googlefight arg1|arg2"
22.142857
100
0.623226
864
0.557419
0
0
0
0
0
0
228
0.147097
d2e7cc251d72d1b4b8afa5565221124b4f826ce6
457
py
Python
was/lib/tuning/actions/ThreadPool.py
rocksun/ucmd
486de31324195f48c4110e327d635aaafe3d74d6
[ "Apache-2.0" ]
2
2019-10-09T06:59:47.000Z
2019-10-10T03:20:17.000Z
was/lib/tuning/actions/ThreadPool.py
rocksun/ucmd
486de31324195f48c4110e327d635aaafe3d74d6
[ "Apache-2.0" ]
null
null
null
was/lib/tuning/actions/ThreadPool.py
rocksun/ucmd
486de31324195f48c4110e327d635aaafe3d74d6
[ "Apache-2.0" ]
1
2021-11-25T06:41:17.000Z
2021-11-25T06:41:17.000Z
import os min=512 max=512 def app_server_tuning(server_confid): server_name=AdminConfig.showAttribute(server_confid, "name") threadpool_list=AdminConfig.list('ThreadPool',server_confid).split("\n") for tp in threadpool_list: if tp.count('WebContainer')==1: print "Modify Server '%s' WebContainer Pool Min=%d, Max=%d"% (server_name, min, max) AdminConfig.modify(tp,[["minimumSize" ,min],["maximumSize" ,max]])
30.466667
96
0.68709
0
0
0
0
0
0
0
0
115
0.251641
d2e833d9d9dbd44a801765209ab9f359cdd98029
6,770
py
Python
app/api/v2/resources/saleorders.py
calebrotich10/store-manager-api-v2
16dff84823e77218f1135c99f0592f113fddee84
[ "MIT" ]
null
null
null
app/api/v2/resources/saleorders.py
calebrotich10/store-manager-api-v2
16dff84823e77218f1135c99f0592f113fddee84
[ "MIT" ]
null
null
null
app/api/v2/resources/saleorders.py
calebrotich10/store-manager-api-v2
16dff84823e77218f1135c99f0592f113fddee84
[ "MIT" ]
1
2018-11-04T18:09:38.000Z
2018-11-04T18:09:38.000Z
"""This module contains objects for saleorders endpoints""" from flask import Flask, jsonify, request, abort, make_response from flask_restful import Resource from flask_jwt_extended import get_jwt_identity, jwt_required from . import common_functions from ..models import products, saleorders from ..utils import verify from .. import database class SaleOrder(Resource): """Class contains CRUD definitions for saleorders """ def post(self): """POST /saleorder endpoint""" user_id = verify.verify_tokens()[1] data = request.get_json() common_functions.no_json_in_request(data) try: items = data['items'] except KeyError: return make_response(jsonify({ "message":"list of items missing" }), 403) if not isinstance(items, (list, )): abort(make_response(jsonify( message="The value should be a list of dictionaries" ), 400)) totalAmount = 0 saleorder = saleorders.SaleOrder(amount=totalAmount, made_by=user_id) saleorder.save() query = """SELECT saleorder_id from saleorders WHERE amount = 0 """ saleorder_id = database.select_from_db(query)[0]['saleorder_id'] items_sold = [] for item in items: try: product = item['product'] except: return make_response(jsonify({ "message":"Kindly specify the product you want to buy" }), 403) try: quantity = item['quantity'] except: return make_response(jsonify({ "message":"Kindly specify the quantity of the product you want" }), 403) if not isinstance(product, int): rollback_saleorder = saleorders.SaleOrder(saleorder_id=saleorder_id) rollback_saleorder.rollback_saleorder() abort(make_response(jsonify( message="Please select the a product you want to purchase" ), 400)) if not isinstance(quantity, int): rollback_saleorder = saleorders.SaleOrder(saleorder_id=saleorder_id) rollback_saleorder.rollback_saleorder() abort(make_response(jsonify( message="Please have a number for the quantity value" ), 400)) if quantity < 1: rollback_saleorder = saleorders.SaleOrder(saleorder_id=saleorder_id) rollback_saleorder.rollback_saleorder() abort(make_response(jsonify( message="Please have a quantity value over 0" ), 400)) query = """SELECT * FROM products WHERE product_id = '{}'""".format(product) product_exists = database.select_from_db(query) if product_exists: product_name = product_exists[0]['product_name'] product_price = product_exists[0]['product_price'] inventory = product_exists[0]['inventory'] if inventory == 0: rollback_saleorder = saleorders.SaleOrder(saleorder_id=saleorder_id) rollback_saleorder.rollback_saleorder() return abort(make_response(jsonify( message="Please eliminate {} from your sale. It is currently out of stock".format(product_name) ), 400)) if quantity > inventory: rollback_saleorder = saleorders.SaleOrder(saleorder_id=saleorder_id) rollback_saleorder.rollback_saleorder() return abort(make_response(jsonify( message="Our current stock cannot serve an order of {}. You can currently order a maximum of {} for the product '{}'".format(quantity, inventory, product_name) ), 400)) product_amount = product_price * quantity current_item = { "product": product_exists[0]['product_name'], "quantity": quantity, "price": product_exists[0]['product_price'], "product_amount": product_amount } items_sold.append(current_item) totalAmount += product_amount sale_item = saleorders.SaleItems(saleorder_id=saleorder_id, product=product, quantity=quantity) sale_item.save() updated_inventory = inventory - quantity product_to_update = products.Products(product_id=product ,inventory=updated_inventory) product_to_update.deduct_inventory() if not product_exists: rollback_saleorder = saleorders.SaleOrder(saleorder_id=saleorder_id) rollback_saleorder.rollback_saleorder() return abort(make_response(jsonify({ "message": "Product with id {} is not available in the store".format(product) }), 404)) update_amount_query = """UPDATE saleorders SET amount = {} WHERE saleorder_id = {}""".format(totalAmount, saleorder_id) database.insert_to_db(update_amount_query) return make_response(jsonify({ "message": "Checkout complete", "items_sold": items_sold, "total_amount": totalAmount }), 201) def get(self): """GET /saleorder endpoint""" verify.verify_tokens() saleorder = saleorders.SaleOrder() get_saleorder = saleorder.get() if not get_saleorder: return make_response(jsonify({ 'message': "No sale orders created yet" }), 404) response = jsonify({ 'message': "Successfully fetched all the sale orders", 'sale_orders': get_saleorder }) response.status_code = 200 return response class SpecificSaleOrder(Resource): """Class contains CRUD definitions for saleorders """ def get(self, saleorder_id): """GET /saleorder/<int:saleorder_id>""" verify.verify_tokens() query = """SELECT * FROM saleorders WHERE saleorder_id = '{}'""".format(saleorder_id) sale_order = database.select_from_db(query) if not sale_order: return make_response(jsonify({ "message": "Sale Order with id {} not found".format(saleorder_id) } ), 404) return make_response(jsonify({ "message": "Sale order fetched successfully", "saleorder": sale_order } ), 200)
39.590643
180
0.578434
6,419
0.948154
0
0
0
0
0
0
1,479
0.218464
d2e9b98d6967be78af6014083084b5dab63e624c
61
py
Python
nautobot/circuits/__init__.py
psmware-ltd/nautobot
ac516287fb8edcc3482bd011839de837c6bbf0df
[ "Apache-2.0" ]
384
2021-02-24T01:40:40.000Z
2022-03-30T10:30:59.000Z
nautobot/circuits/__init__.py
psmware-ltd/nautobot
ac516287fb8edcc3482bd011839de837c6bbf0df
[ "Apache-2.0" ]
1,067
2021-02-24T00:58:08.000Z
2022-03-31T23:38:23.000Z
nautobot/circuits/__init__.py
psmware-ltd/nautobot
ac516287fb8edcc3482bd011839de837c6bbf0df
[ "Apache-2.0" ]
128
2021-02-24T02:45:16.000Z
2022-03-20T18:48:36.000Z
default_app_config = "nautobot.circuits.apps.CircuitsConfig"
30.5
60
0.852459
0
0
0
0
0
0
0
0
39
0.639344
d2e9f3e2143b7da446094a72db5befcb7fc0a728
54,559
py
Python
autogalaxy/profiles/mass_profiles/stellar_mass_profiles.py
Jammy2211/PyAutoModel
02f54e71900de9ec12c9070dc00a4bd001b25afa
[ "MIT" ]
4
2019-10-29T13:27:23.000Z
2020-03-24T11:13:35.000Z
autogalaxy/profiles/mass_profiles/stellar_mass_profiles.py
Jammy2211/PyAutoModel
02f54e71900de9ec12c9070dc00a4bd001b25afa
[ "MIT" ]
null
null
null
autogalaxy/profiles/mass_profiles/stellar_mass_profiles.py
Jammy2211/PyAutoModel
02f54e71900de9ec12c9070dc00a4bd001b25afa
[ "MIT" ]
3
2020-02-12T10:29:59.000Z
2020-03-24T11:13:53.000Z
import copy import numpy as np from scipy.special import wofz from scipy.integrate import quad from typing import List, Tuple import autoarray as aa from autogalaxy.profiles.mass_profiles import MassProfile from autogalaxy.profiles.mass_profiles.mass_profiles import ( MassProfileMGE, MassProfileCSE, ) from autogalaxy.profiles.mass_profiles.mass_profiles import psi_from class StellarProfile: pass class EllGaussian(MassProfile, StellarProfile): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, sigma: float = 0.01, mass_to_light_ratio: float = 1.0, ): """ The elliptical Gaussian light profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). sigma The sigma value of the Gaussian. """ super(EllGaussian, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfile, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) self.mass_to_light_ratio = mass_to_light_ratio self.intensity = intensity self.sigma = sigma def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ return self.deflections_2d_via_analytic_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_analytic_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ deflections = ( self.mass_to_light_ratio * self.intensity * self.sigma * np.sqrt((2 * np.pi) / (1.0 - self.axis_ratio ** 2.0)) * self.zeta_from(grid=grid) ) return self.rotate_grid_from_reference_frame( np.multiply( 1.0, np.vstack((-1.0 * np.imag(deflections), np.real(deflections))).T ) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_integral_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. Note: sigma is divided by sqrt(q) here. """ def calculate_deflection_component(npow, index): deflection_grid = self.axis_ratio * grid[:, index] for i in range(grid.shape[0]): deflection_grid[i] *= ( self.intensity * self.mass_to_light_ratio * quad( self.deflection_func, a=0.0, b=1.0, args=( grid[i, 0], grid[i, 1], npow, self.axis_ratio, self.sigma / np.sqrt(self.axis_ratio), ), )[0] ) return deflection_grid deflection_y = calculate_deflection_component(1.0, 0) deflection_x = calculate_deflection_component(0.0, 1) return self.rotate_grid_from_reference_frame( np.multiply(1.0, np.vstack((deflection_y, deflection_x)).T) ) @staticmethod def deflection_func(u, y, x, npow, axis_ratio, sigma): eta_u = np.sqrt(axis_ratio) * np.sqrt( (u * ((x ** 2) + (y ** 2 / (1 - (1 - axis_ratio ** 2) * u)))) ) return np.exp(-0.5 * np.square(np.divide(eta_u, sigma))) / ( (1 - (1 - axis_ratio ** 2) * u) ** (npow + 0.5) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_eccentric_radii(grid)) def convergence_func(self, grid_radius: float) -> float: return self.mass_to_light_ratio * self.image_2d_via_radii_from(grid_radius) @aa.grid_dec.grid_2d_to_structure def potential_2d_from(self, grid: aa.type.Grid2DLike): return np.zeros(shape=grid.shape[0]) def image_2d_via_radii_from(self, grid_radii: np.ndarray): """Calculate the intensity of the Gaussian light profile on a grid of radial coordinates. Parameters ---------- grid_radii The radial distance from the centre of the profile. for each coordinate on the grid. Note: sigma is divided by sqrt(q) here. """ return np.multiply( self.intensity, np.exp( -0.5 * np.square( np.divide(grid_radii, self.sigma / np.sqrt(self.axis_ratio)) ) ), ) @property def axis_ratio(self): axis_ratio = super().axis_ratio return axis_ratio if axis_ratio < 0.9999 else 0.9999 def zeta_from(self, grid: aa.type.Grid2DLike): q2 = self.axis_ratio ** 2.0 ind_pos_y = grid[:, 0] >= 0 shape_grid = np.shape(grid) output_grid = np.zeros((shape_grid[0]), dtype=np.complex128) scale_factor = self.axis_ratio / (self.sigma * np.sqrt(2.0 * (1.0 - q2))) xs_0 = grid[:, 1][ind_pos_y] * scale_factor ys_0 = grid[:, 0][ind_pos_y] * scale_factor xs_1 = grid[:, 1][~ind_pos_y] * scale_factor ys_1 = -grid[:, 0][~ind_pos_y] * scale_factor output_grid[ind_pos_y] = -1j * ( wofz(xs_0 + 1j * ys_0) - np.exp(-(xs_0 ** 2.0) * (1.0 - q2) - ys_0 * ys_0 * (1.0 / q2 - 1.0)) * wofz(self.axis_ratio * xs_0 + 1j * ys_0 / self.axis_ratio) ) output_grid[~ind_pos_y] = np.conj( -1j * ( wofz(xs_1 + 1j * ys_1) - np.exp(-(xs_1 ** 2.0) * (1.0 - q2) - ys_1 * ys_1 * (1.0 / q2 - 1.0)) * wofz(self.axis_ratio * xs_1 + 1j * ys_1 / self.axis_ratio) ) ) return output_grid def with_new_normalization(self, normalization): mass_profile = copy.copy(self) mass_profile.mass_to_light_ratio = normalization return mass_profile # noinspection PyAbstractClass class AbstractEllSersic(MassProfile, MassProfileMGE, MassProfileCSE, StellarProfile): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The Sersic mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens \ model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profiles """ super(AbstractEllSersic, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfile, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfileMGE, self).__init__() super(MassProfileCSE, self).__init__() self.mass_to_light_ratio = mass_to_light_ratio self.intensity = intensity self.effective_radius = effective_radius self.sersic_index = sersic_index def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): return self.deflections_2d_via_cse_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_mge_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected 2D deflection angles from a grid of (y,x) arc second coordinates, by computing and summing the convergence of each individual cse used to decompose the mass profile. The cored steep elliptical (cse) decomposition of a the elliptical NFW mass profile (e.g. `decompose_convergence_via_cse`) is using equation (12) of Oguri 2021 (https://arxiv.org/abs/2106.11464). Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self._deflections_2d_via_mge_from( grid=grid, sigmas_factor=np.sqrt(self.axis_ratio) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_cse_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected 2D deflection angles from a grid of (y,x) arc second coordinates, by computing and summing the convergence of each individual cse used to decompose the mass profile. The cored steep elliptical (cse) decomposition of a the elliptical NFW mass profile (e.g. `decompose_convergence_via_cse`) is using equation (12) of Oguri 2021 (https://arxiv.org/abs/2106.11464). Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self._deflections_2d_via_cse_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_eccentric_radii(grid)) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_via_mge_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ eccentric_radii = self.grid_to_eccentric_radii(grid=grid) return self._convergence_2d_via_mge_from(grid_radii=eccentric_radii) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_via_cse_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected 2D convergence from a grid of (y,x) arc second coordinates, by computing and summing the convergence of each individual cse used to decompose the mass profile. The cored steep elliptical (cse) decomposition of a the elliptical NFW mass profile (e.g. `decompose_convergence_via_cse`) is using equation (12) of Oguri 2021 (https://arxiv.org/abs/2106.11464). Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ elliptical_radii = self.grid_to_elliptical_radii(grid=grid) return self._convergence_2d_via_cse_from(grid_radii=elliptical_radii) def convergence_func(self, grid_radius: float) -> float: return self.mass_to_light_ratio * self.image_2d_via_radii_from(grid_radius) @aa.grid_dec.grid_2d_to_structure def potential_2d_from(self, grid: aa.type.Grid2DLike): return np.zeros(shape=grid.shape[0]) def image_2d_via_radii_from(self, radius: np.ndarray): """ Returns the intensity of the profile at a given radius. Parameters ---------- radius The distance from the centre of the profile. """ return self.intensity * np.exp( -self.sersic_constant * (((radius / self.effective_radius) ** (1.0 / self.sersic_index)) - 1) ) def decompose_convergence_via_mge(self) -> Tuple[List, List]: radii_min = self.effective_radius / 100.0 radii_max = self.effective_radius * 20.0 def sersic_2d(r): return ( self.mass_to_light_ratio * self.intensity * np.exp( -self.sersic_constant * (((r / self.effective_radius) ** (1.0 / self.sersic_index)) - 1.0) ) ) return self._decompose_convergence_via_mge( func=sersic_2d, radii_min=radii_min, radii_max=radii_max ) def decompose_convergence_via_cse(self,) -> Tuple[List, List]: """ Decompose the convergence of the Sersic profile into cored steep elliptical (cse) profiles. This decomposition uses the standard 2d profile of a Sersic mass profile. Parameters ---------- func The function representing the profile that is decomposed into CSEs. radii_min: The minimum radius to fit radii_max: The maximum radius to fit total_cses The number of CSEs used to approximate the input func. sample_points: int (should be larger than 'total_cses') The number of data points to fit Returns ------- Tuple[List, List] A list of amplitudes and core radii of every cored steep elliptical (cse) the mass profile is decomposed into. """ upper_dex, lower_dex, total_cses, sample_points = cse_settings_from( effective_radius=self.effective_radius, sersic_index=self.sersic_index, sersic_constant=self.sersic_constant, mass_to_light_gradient=0.0, ) scaled_effective_radius = self.effective_radius / np.sqrt(self.axis_ratio) radii_min = scaled_effective_radius / 10.0 ** lower_dex radii_max = scaled_effective_radius * 10.0 ** upper_dex def sersic_2d(r): return ( self.mass_to_light_ratio * self.intensity * np.exp( -self.sersic_constant * ( ((r / scaled_effective_radius) ** (1.0 / self.sersic_index)) - 1.0 ) ) ) return self._decompose_convergence_via_cse_from( func=sersic_2d, radii_min=radii_min, radii_max=radii_max, total_cses=total_cses, sample_points=sample_points, ) @property def sersic_constant(self): """A parameter derived from Sersic index which ensures that effective radius contains 50% of the profile's total integrated light. """ return ( (2 * self.sersic_index) - (1.0 / 3.0) + (4.0 / (405.0 * self.sersic_index)) + (46.0 / (25515.0 * self.sersic_index ** 2)) + (131.0 / (1148175.0 * self.sersic_index ** 3)) - (2194697.0 / (30690717750.0 * self.sersic_index ** 4)) ) @property def ellipticity_rescale(self): return 1.0 - ((1.0 - self.axis_ratio) / 2.0) @property def elliptical_effective_radius(self): """ The effective_radius of a Sersic light profile is defined as the circular effective radius. This is the \ radius within which a circular aperture contains half the profiles's total integrated light. For elliptical \ systems, this won't robustly capture the light profile's elliptical shape. The elliptical effective radius instead describes the major-axis radius of the ellipse containing \ half the light, and may be more appropriate for highly flattened systems like disk galaxies. """ return self.effective_radius / np.sqrt(self.axis_ratio) def with_new_normalization(self, normalization): mass_profile = copy.copy(self) mass_profile.mass_to_light_ratio = normalization return mass_profile class EllSersic(AbstractEllSersic, MassProfileMGE, MassProfileCSE): @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_integral_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ def calculate_deflection_component(npow, index): sersic_constant = self.sersic_constant deflection_grid = self.axis_ratio * grid[:, index] for i in range(grid.shape[0]): deflection_grid[i] *= ( self.intensity * self.mass_to_light_ratio * quad( self.deflection_func, a=0.0, b=1.0, args=( grid[i, 0], grid[i, 1], npow, self.axis_ratio, self.sersic_index, self.effective_radius, sersic_constant, ), )[0] ) return deflection_grid deflection_y = calculate_deflection_component(1.0, 0) deflection_x = calculate_deflection_component(0.0, 1) return self.rotate_grid_from_reference_frame( np.multiply(1.0, np.vstack((deflection_y, deflection_x)).T) ) @staticmethod def deflection_func( u, y, x, npow, axis_ratio, sersic_index, effective_radius, sersic_constant ): eta_u = np.sqrt(axis_ratio) * np.sqrt( (u * ((x ** 2) + (y ** 2 / (1 - (1 - axis_ratio ** 2) * u)))) ) return np.exp( -sersic_constant * (((eta_u / effective_radius) ** (1.0 / sersic_index)) - 1) ) / ((1 - (1 - axis_ratio ** 2) * u) ** (npow + 0.5)) class SphSersic(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The Sersic mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre intensity Overall flux intensity normalisation in the light profiles (electrons per second) effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profile. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, ) class EllExponential(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The EllExponential mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profiles """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity, effective_radius=effective_radius, sersic_index=1.0, mass_to_light_ratio=mass_to_light_ratio, ) class SphExponential(EllExponential): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The Exponential mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profiles. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, mass_to_light_ratio=mass_to_light_ratio, ) class EllDevVaucouleurs(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The EllDevVaucouleurs mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profile. """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity, effective_radius=effective_radius, sersic_index=4.0, mass_to_light_ratio=mass_to_light_ratio, ) class SphDevVaucouleurs(EllDevVaucouleurs): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The DevVaucouleurs mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profiles. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, mass_to_light_ratio=mass_to_light_ratio, ) class EllSersicRadialGradient(AbstractEllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, mass_to_light_gradient: float = 0.0, ): """ Setup a Sersic mass and light profiles. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profile. mass_to_light_gradient The mass-to-light radial gradient. """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, ) self.mass_to_light_gradient = mass_to_light_gradient @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_integral_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ def calculate_deflection_component(npow, index): sersic_constant = self.sersic_constant deflection_grid = self.axis_ratio * grid[:, index] for i in range(grid.shape[0]): deflection_grid[i] *= ( self.intensity * self.mass_to_light_ratio * quad( self.deflection_func, a=0.0, b=1.0, args=( grid[i, 0], grid[i, 1], npow, self.axis_ratio, self.sersic_index, self.effective_radius, self.mass_to_light_gradient, sersic_constant, ), )[0] ) return deflection_grid deflection_y = calculate_deflection_component(1.0, 0) deflection_x = calculate_deflection_component(0.0, 1) return self.rotate_grid_from_reference_frame( np.multiply(1.0, np.vstack((deflection_y, deflection_x)).T) ) @staticmethod def deflection_func( u, y, x, npow, axis_ratio, sersic_index, effective_radius, mass_to_light_gradient, sersic_constant, ): eta_u = np.sqrt(axis_ratio) * np.sqrt( (u * ((x ** 2) + (y ** 2 / (1 - (1 - axis_ratio ** 2) * u)))) ) return ( (((axis_ratio * eta_u) / effective_radius) ** -mass_to_light_gradient) * np.exp( -sersic_constant * (((eta_u / effective_radius) ** (1.0 / sersic_index)) - 1) ) / ((1 - (1 - axis_ratio ** 2) * u) ** (npow + 0.5)) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_eccentric_radii(grid)) def convergence_func(self, grid_radius: float) -> float: return ( self.mass_to_light_ratio * ( ((self.axis_ratio * grid_radius) / self.effective_radius) ** -self.mass_to_light_gradient ) * self.image_2d_via_radii_from(grid_radius) ) def decompose_convergence_via_mge(self): radii_min = self.effective_radius / 100.0 radii_max = self.effective_radius * 20.0 def sersic_radial_gradient_2D(r): return ( self.mass_to_light_ratio * self.intensity * ( ((self.axis_ratio * r) / self.effective_radius) ** -self.mass_to_light_gradient ) * np.exp( -self.sersic_constant * (((r / self.effective_radius) ** (1.0 / self.sersic_index)) - 1.0) ) ) return self._decompose_convergence_via_mge( func=sersic_radial_gradient_2D, radii_min=radii_min, radii_max=radii_max ) def decompose_convergence_via_cse(self) -> Tuple[List, List]: """ Decompose the convergence of the Sersic profile into singular isothermal elliptical (sie) profiles. This decomposition uses the standard 2d profile of a Sersic mass profile. Parameters ---------- func The function representing the profile that is decomposed into CSEs. radii_min: The minimum radius to fit radii_max: The maximum radius to fit total_sies The number of SIEs used to approximate the input func. sample_points: int (should be larger than 'total_sies') The number of data points to fit Returns ------- Tuple[List, List] A list of amplitudes and core radii of every singular isothernal ellipsoids (sie) the mass profile is decomposed into. """ upper_dex, lower_dex, total_cses, sample_points = cse_settings_from( effective_radius=self.effective_radius, sersic_index=self.sersic_index, sersic_constant=self.sersic_constant, mass_to_light_gradient=self.mass_to_light_gradient, ) scaled_effective_radius = self.effective_radius / np.sqrt(self.axis_ratio) radii_min = scaled_effective_radius / 10.0 ** lower_dex radii_max = scaled_effective_radius * 10.0 ** upper_dex def sersic_radial_gradient_2D(r): return ( self.mass_to_light_ratio * self.intensity * ( ((self.axis_ratio * r) / scaled_effective_radius) ** -self.mass_to_light_gradient ) * np.exp( -self.sersic_constant * ( ((r / scaled_effective_radius) ** (1.0 / self.sersic_index)) - 1.0 ) ) ) return self._decompose_convergence_via_cse_from( func=sersic_radial_gradient_2D, radii_min=radii_min, radii_max=radii_max, total_cses=total_cses, sample_points=sample_points, ) class SphSersicRadialGradient(EllSersicRadialGradient): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, mass_to_light_gradient: float = 0.0, ): """ Setup a Sersic mass and light profiles. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profile. mass_to_light_gradient The mass-to-light radial gradient. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, mass_to_light_gradient=mass_to_light_gradient, ) class EllSersicCore(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), effective_radius: float = 0.6, sersic_index: float = 4.0, radius_break: float = 0.01, intensity_break: float = 0.05, gamma: float = 0.25, alpha: float = 3.0, mass_to_light_ratio: float = 1.0, ): """ The elliptical cored-Sersic light profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). radius_break The break radius separating the inner power-law (with logarithmic slope gamma) and outer Sersic function. intensity_break The intensity at the break radius. gamma The logarithmic power-law slope of the inner core profiles alpha : Controls the sharpness of the transition between the inner core / outer Sersic profiles. """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity_break, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, ) self.radius_break = radius_break self.intensity_break = intensity_break self.alpha = alpha self.gamma = gamma def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): return self.deflections_2d_via_mge_from(grid=grid) def image_2d_via_radii_from(self, grid_radii: np.ndarray): """ Calculate the intensity of the cored-Sersic light profile on a grid of radial coordinates. Parameters ---------- grid_radii The radial distance from the centre of the profile. for each coordinate on the grid. """ return np.multiply( np.multiply( self.intensity_prime, np.power( np.add( 1, np.power(np.divide(self.radius_break, grid_radii), self.alpha), ), (self.gamma / self.alpha), ), ), np.exp( np.multiply( -self.sersic_constant, ( np.power( np.divide( np.add( np.power(grid_radii, self.alpha), (self.radius_break ** self.alpha), ), (self.effective_radius ** self.alpha), ), (1.0 / (self.alpha * self.sersic_index)), ) ), ) ), ) def decompose_convergence_via_mge(self): radii_min = self.effective_radius / 50.0 radii_max = self.effective_radius * 20.0 def core_sersic_2D(r): return ( self.mass_to_light_ratio * self.intensity_prime * (1.0 + (self.radius_break / r) ** self.alpha) ** (self.gamma / self.alpha) * np.exp( -self.sersic_constant * ( (r ** self.alpha + self.radius_break ** self.alpha) / self.effective_radius ** self.alpha ) ** (1.0 / (self.sersic_index * self.alpha)) ) ) return self._decompose_convergence_via_mge( func=core_sersic_2D, radii_min=radii_min, radii_max=radii_max ) @property def intensity_prime(self): """Overall intensity normalisation in the rescaled Core-Sersic light profiles (electrons per second)""" return ( self.intensity_break * (2.0 ** (-self.gamma / self.alpha)) * np.exp( self.sersic_constant * ( ((2.0 ** (1.0 / self.alpha)) * self.radius_break) / self.effective_radius ) ** (1.0 / self.sersic_index) ) ) class SphSersicCore(EllSersicCore): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), effective_radius: float = 0.6, sersic_index: float = 4.0, radius_break: float = 0.01, intensity_break: float = 0.05, gamma: float = 0.25, alpha: float = 3.0, ): """ The elliptical cored-Sersic light profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). radius_break The break radius separating the inner power-law (with logarithmic slope gamma) and outer Sersic function. intensity_break The intensity at the break radius. gamma The logarithmic power-law slope of the inner core profiles alpha : Controls the sharpness of the transition between the inner core / outer Sersic profiles. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), effective_radius=effective_radius, sersic_index=sersic_index, radius_break=radius_break, intensity_break=intensity_break, gamma=gamma, alpha=alpha, ) self.radius_break = radius_break self.intensity_break = intensity_break self.alpha = alpha self.gamma = gamma class EllChameleon(MassProfile, StellarProfile): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, core_radius_0: float = 0.01, core_radius_1: float = 0.02, mass_to_light_ratio: float = 1.0, ): """ The elliptical Chamelon mass profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). core_radius_0 : the core size of the first elliptical cored Isothermal profile. core_radius_1 : core_radius_0 + core_radius_1 is the core size of the second elliptical cored Isothermal profile. We use core_radius_1 here is to avoid negative values. Profile form: mass_to_light_ratio * intensity *\ (1.0 / Sqrt(x^2 + (y/q)^2 + core_radius_0^2) - 1.0 / Sqrt(x^2 + (y/q)^2 + (core_radius_0 + core_radius_1)**2.0)) """ super(EllChameleon, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfile, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) self.mass_to_light_ratio = mass_to_light_ratio self.intensity = intensity self.core_radius_0 = core_radius_0 self.core_radius_1 = core_radius_1 def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): return self.deflections_2d_via_analytic_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_analytic_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Following Eq. (15) and (16), but the parameters are slightly different. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ factor = ( 2.0 * self.mass_to_light_ratio * self.intensity / (1 + self.axis_ratio) * self.axis_ratio / np.sqrt(1.0 - self.axis_ratio ** 2.0) ) core_radius_0 = np.sqrt( (4.0 * self.core_radius_0 ** 2.0) / (1.0 + self.axis_ratio) ** 2 ) core_radius_1 = np.sqrt( (4.0 * self.core_radius_1 ** 2.0) / (1.0 + self.axis_ratio) ** 2 ) psi0 = psi_from( grid=grid, axis_ratio=self.axis_ratio, core_radius=core_radius_0 ) psi1 = psi_from( grid=grid, axis_ratio=self.axis_ratio, core_radius=core_radius_1 ) deflection_y0 = np.arctanh( np.divide( np.multiply(np.sqrt(1.0 - self.axis_ratio ** 2.0), grid[:, 0]), np.add(psi0, self.axis_ratio ** 2.0 * core_radius_0), ) ) deflection_x0 = np.arctan( np.divide( np.multiply(np.sqrt(1.0 - self.axis_ratio ** 2.0), grid[:, 1]), np.add(psi0, core_radius_0), ) ) deflection_y1 = np.arctanh( np.divide( np.multiply(np.sqrt(1.0 - self.axis_ratio ** 2.0), grid[:, 0]), np.add(psi1, self.axis_ratio ** 2.0 * core_radius_1), ) ) deflection_x1 = np.arctan( np.divide( np.multiply(np.sqrt(1.0 - self.axis_ratio ** 2.0), grid[:, 1]), np.add(psi1, core_radius_1), ) ) deflection_y = np.subtract(deflection_y0, deflection_y1) deflection_x = np.subtract(deflection_x0, deflection_x1) return self.rotate_grid_from_reference_frame( np.multiply(factor, np.vstack((deflection_y, deflection_x)).T) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_elliptical_radii(grid)) def convergence_func(self, grid_radius: float) -> float: return self.mass_to_light_ratio * self.image_2d_via_radii_from(grid_radius) @aa.grid_dec.grid_2d_to_structure def potential_2d_from(self, grid: aa.type.Grid2DLike): return np.zeros(shape=grid.shape[0]) def image_2d_via_radii_from(self, grid_radii: np.ndarray): """Calculate the intensity of the Chamelon light profile on a grid of radial coordinates. Parameters ---------- grid_radii The radial distance from the centre of the profile. for each coordinate on the grid. """ axis_ratio_factor = (1.0 + self.axis_ratio) ** 2.0 return np.multiply( self.intensity / (1 + self.axis_ratio), np.add( np.divide( 1.0, np.sqrt( np.add( np.square(grid_radii), (4.0 * self.core_radius_0 ** 2.0) / axis_ratio_factor, ) ), ), -np.divide( 1.0, np.sqrt( np.add( np.square(grid_radii), (4.0 * self.core_radius_1 ** 2.0) / axis_ratio_factor, ) ), ), ), ) @property def axis_ratio(self): axis_ratio = super().axis_ratio return axis_ratio if axis_ratio < 0.99999 else 0.99999 def with_new_normalization(self, normalization): mass_profile = copy.copy(self) mass_profile.mass_to_light_ratio = normalization return mass_profile class SphChameleon(EllChameleon): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, core_radius_0: float = 0.01, core_radius_1: float = 0.02, mass_to_light_ratio: float = 1.0, ): """ The spherica; Chameleon mass profile. Profile form: mass_to_light_ratio * intensity *\ (1.0 / Sqrt(x^2 + (y/q)^2 + core_radius_0^2) - 1.0 / Sqrt(x^2 + (y/q)^2 + (core_radius_0 + core_radius_1)**2.0)) Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). core_radius_0 : the core size of the first elliptical cored Isothermal profile. core_radius_1 : core_radius_0 + core_radius_1 is the core size of the second elliptical cored Isothermal profile. We use core_radius_1 here is to avoid negative values. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, core_radius_0=core_radius_0, core_radius_1=core_radius_1, mass_to_light_ratio=mass_to_light_ratio, ) def cse_settings_from( effective_radius, sersic_index, sersic_constant, mass_to_light_gradient ): if mass_to_light_gradient > 0.5: if effective_radius > 0.2: lower_dex = 6.0 upper_dex = np.min( [np.log10((18.0 / sersic_constant) ** sersic_index), 1.1] ) if sersic_index <= 1.2: total_cses = 50 sample_points = 80 elif sersic_index > 3.8: total_cses = 40 sample_points = 50 lower_dex = 6.5 else: total_cses = 30 sample_points = 50 else: if sersic_index <= 1.2: upper_dex = 1.0 total_cses = 50 sample_points = 80 lower_dex = 4.5 elif sersic_index > 3.8: total_cses = 40 sample_points = 50 lower_dex = 6.0 upper_dex = 1.5 else: upper_dex = 1.1 lower_dex = 6.0 total_cses = 30 sample_points = 50 else: upper_dex = np.min( [ np.log10((23.0 / sersic_constant) ** sersic_index), 0.85 - np.log10(effective_radius), ] ) if (sersic_index <= 0.9) and (sersic_index > 0.8): total_cses = 50 sample_points = 80 upper_dex = np.log10((18.0 / sersic_constant) ** sersic_index) lower_dex = 4.3 + np.log10(effective_radius) elif sersic_index <= 0.8: total_cses = 50 sample_points = 80 upper_dex = np.log10((16.0 / sersic_constant) ** sersic_index) lower_dex = 4.0 + np.log10(effective_radius) elif sersic_index > 3.8: total_cses = 40 sample_points = 50 lower_dex = 4.5 + np.log10(effective_radius) else: lower_dex = 3.5 + np.log10(effective_radius) total_cses = 30 sample_points = 50 return upper_dex, lower_dex, total_cses, sample_points
36.372667
129
0.560604
51,804
0.949504
0
0
17,582
0.322257
0
0
19,667
0.360472
d2ea517f3b08f633622c54a6e6b06e1d6019f32c
627
py
Python
installer/core/terraform/resources/variable.py
Diffblue-benchmarks/pacbot
4709eb11f87636bc42a52e7a76b740f9d76d156d
[ "Apache-2.0" ]
1,165
2018-10-05T19:07:34.000Z
2022-03-28T19:34:27.000Z
installer/core/terraform/resources/variable.py
Diffblue-benchmarks/pacbot
4709eb11f87636bc42a52e7a76b740f9d76d156d
[ "Apache-2.0" ]
334
2018-10-10T14:00:41.000Z
2022-03-19T16:32:08.000Z
installer/core/terraform/resources/variable.py
Diffblue-benchmarks/pacbot
4709eb11f87636bc42a52e7a76b740f9d76d156d
[ "Apache-2.0" ]
268
2018-10-05T19:53:25.000Z
2022-03-31T07:39:47.000Z
from core.terraform.resources import BaseTerraformVariable class TerraformVariable(BaseTerraformVariable): """ Base resource class for Terraform tfvar variable Attributes: variable_dict_input (dict/none): Var dict values available_args (dict): Instance configurations variable_type (str): Define the variable i.e. terraform list var or terraform dict var etc """ variable_dict_input = None variable_type = None available_args = { 'variable_name': {'required': True}, 'variable_type': {'required': False}, 'default_value': {'required': False} }
31.35
98
0.6874
565
0.901116
0
0
0
0
0
0
367
0.585327
d2eb169f57649820eef340c3a134f871d837dd00
887
py
Python
bfs.py
mpHarm88/Algorithms-and-Data-Structures-In-Python
a0689e57e0895c375715f39d078704e6faf72f0e
[ "MIT" ]
null
null
null
bfs.py
mpHarm88/Algorithms-and-Data-Structures-In-Python
a0689e57e0895c375715f39d078704e6faf72f0e
[ "MIT" ]
null
null
null
bfs.py
mpHarm88/Algorithms-and-Data-Structures-In-Python
a0689e57e0895c375715f39d078704e6faf72f0e
[ "MIT" ]
null
null
null
class Node(object): def __init__(self, name): self.name = name; self.adjacencyList = []; self.visited = False; self.predecessor = None; class BreadthFirstSearch(object): def bfs(self, startNode): queue = []; queue.append(startNode); startNode.visited = True; # BFS -> queue DFS --> stack BUT usually we implement it with recursion !!! while queue: actualNode = queue.pop(0); print("%s " % actualNode.name); for n in actualNode.adjacencyList: if not n.visited: n.visited = True; queue.append(n); node1 = Node("A"); node2 = Node("B"); node3 = Node("C"); node4 = Node("D"); node5 = Node("E"); node1.adjacencyList.append(node2); node1.adjacencyList.append(node3); node2.adjacencyList.append(node4); node4.adjacencyList.append(node5); bfs = BreadthFirstSearch(); bfs.bfs(node1);
21.634146
83
0.626832
578
0.651635
0
0
0
0
0
0
101
0.113867
d2ed017d8f6bd12bbaded9891125e05125930fde
3,932
py
Python
supervisor/dbus/network/connection.py
peddamat/home-assistant-supervisor-test
5da55772bcb2db3c6d8432cbc08e2ac9fbf480c4
[ "Apache-2.0" ]
1
2022-02-08T21:32:33.000Z
2022-02-08T21:32:33.000Z
supervisor/dbus/network/connection.py
peddamat/home-assistant-supervisor-test
5da55772bcb2db3c6d8432cbc08e2ac9fbf480c4
[ "Apache-2.0" ]
310
2020-03-12T16:02:13.000Z
2022-03-31T06:01:49.000Z
supervisor/dbus/network/connection.py
peddamat/home-assistant-supervisor-test
5da55772bcb2db3c6d8432cbc08e2ac9fbf480c4
[ "Apache-2.0" ]
2
2021-09-22T00:13:58.000Z
2021-09-22T15:06:27.000Z
"""Connection object for Network Manager.""" from ipaddress import ip_address, ip_interface from typing import Optional from ...const import ATTR_ADDRESS, ATTR_PREFIX from ...utils.gdbus import DBus from ..const import ( DBUS_ATTR_ADDRESS_DATA, DBUS_ATTR_CONNECTION, DBUS_ATTR_GATEWAY, DBUS_ATTR_ID, DBUS_ATTR_IP4CONFIG, DBUS_ATTR_IP6CONFIG, DBUS_ATTR_NAMESERVER_DATA, DBUS_ATTR_NAMESERVERS, DBUS_ATTR_STATE, DBUS_ATTR_TYPE, DBUS_ATTR_UUID, DBUS_NAME_CONNECTION_ACTIVE, DBUS_NAME_IP4CONFIG, DBUS_NAME_IP6CONFIG, DBUS_NAME_NM, DBUS_OBJECT_BASE, ) from ..interface import DBusInterfaceProxy from .configuration import IpConfiguration class NetworkConnection(DBusInterfaceProxy): """NetworkConnection object for Network Manager.""" def __init__(self, object_path: str) -> None: """Initialize NetworkConnection object.""" self.object_path = object_path self.properties = {} self._ipv4: Optional[IpConfiguration] = None self._ipv6: Optional[IpConfiguration] = None @property def id(self) -> str: """Return the id of the connection.""" return self.properties[DBUS_ATTR_ID] @property def type(self) -> str: """Return the type of the connection.""" return self.properties[DBUS_ATTR_TYPE] @property def uuid(self) -> str: """Return the uuid of the connection.""" return self.properties[DBUS_ATTR_UUID] @property def state(self) -> int: """Return the state of the connection.""" return self.properties[DBUS_ATTR_STATE] @property def setting_object(self) -> int: """Return the connection object path.""" return self.properties[DBUS_ATTR_CONNECTION] @property def ipv4(self) -> Optional[IpConfiguration]: """Return a ip4 configuration object for the connection.""" return self._ipv4 @property def ipv6(self) -> Optional[IpConfiguration]: """Return a ip6 configuration object for the connection.""" return self._ipv6 async def connect(self) -> None: """Get connection information.""" self.dbus = await DBus.connect(DBUS_NAME_NM, self.object_path) self.properties = await self.dbus.get_properties(DBUS_NAME_CONNECTION_ACTIVE) # IPv4 if self.properties[DBUS_ATTR_IP4CONFIG] != DBUS_OBJECT_BASE: ip4 = await DBus.connect(DBUS_NAME_NM, self.properties[DBUS_ATTR_IP4CONFIG]) ip4_data = await ip4.get_properties(DBUS_NAME_IP4CONFIG) self._ipv4 = IpConfiguration( ip_address(ip4_data[DBUS_ATTR_GATEWAY]) if ip4_data.get(DBUS_ATTR_GATEWAY) else None, [ ip_address(nameserver[ATTR_ADDRESS]) for nameserver in ip4_data.get(DBUS_ATTR_NAMESERVER_DATA, []) ], [ ip_interface(f"{address[ATTR_ADDRESS]}/{address[ATTR_PREFIX]}") for address in ip4_data.get(DBUS_ATTR_ADDRESS_DATA, []) ], ) # IPv6 if self.properties[DBUS_ATTR_IP6CONFIG] != DBUS_OBJECT_BASE: ip6 = await DBus.connect(DBUS_NAME_NM, self.properties[DBUS_ATTR_IP6CONFIG]) ip6_data = await ip6.get_properties(DBUS_NAME_IP6CONFIG) self._ipv6 = IpConfiguration( ip_address(ip6_data[DBUS_ATTR_GATEWAY]) if ip6_data.get(DBUS_ATTR_GATEWAY) else None, [ ip_address(bytes(nameserver)) for nameserver in ip6_data.get(DBUS_ATTR_NAMESERVERS) ], [ ip_interface(f"{address[ATTR_ADDRESS]}/{address[ATTR_PREFIX]}") for address in ip6_data.get(DBUS_ATTR_ADDRESS_DATA, []) ], )
33.606838
88
0.630214
3,232
0.821974
0
0
977
0.248474
1,830
0.465412
597
0.151831
d2efe900f19b7e3838e3eb40b9017e440e296e62
4,969
py
Python
quark/databricks.py
mistsys/quark
7baef5e18d5b9d12384a92487151337878958f36
[ "Apache-2.0" ]
2
2019-02-27T20:51:30.000Z
2021-05-26T02:35:29.000Z
quark/databricks.py
mistsys/quark
7baef5e18d5b9d12384a92487151337878958f36
[ "Apache-2.0" ]
null
null
null
quark/databricks.py
mistsys/quark
7baef5e18d5b9d12384a92487151337878958f36
[ "Apache-2.0" ]
1
2020-05-30T22:59:16.000Z
2020-05-30T22:59:16.000Z
from __future__ import print_function, absolute_import from .beats import Beat from StringIO import StringIO import sys import os import json import urllib import webbrowser try: import pycurl except: print("Need pycurl dependency to use qubole as the deployment platform. Run pip install pycurl in your virtualenv and try this again.") sys.exit(1) class Databricks: def __init__(self, config, options): self.config = config self.options = options projectsDir = self.config.get(self.options.env, "projects_dir") schemasDir = os.path.join(projectsDir, "schemas") schemasFile = os.path.join(schemasDir, "beats.schema.json") if os.path.exists(schemasFile): self.beats = Beat(file(schemasFile).read()) def _q_config(self,item): return self.config.get(self.options.env, "databricks-{}".format(item)) def _do_request(self, method, path, base_url=None, **data): # Uh, only using pycurl because that was the example that was around, will port to requests someday # it's supposed to be faster, so oh well c = pycurl.Curl() #auth_token = self._q_config("auth_token") username = self._q_config("username") password = self._q_config("password") if base_url == None: base_url = self.config.get(self.options.env, "master") url = base_url+ "/" + path buffer = StringIO() c.setopt(c.WRITEDATA, buffer) print("Using", url, file=sys.stderr) c.setopt(pycurl.URL, url) c.setopt(pycurl.HTTPHEADER, ['Accept:application/json']) #c.setopt(pycurl.HTTPHEADER, ["X-AUTH-TOKEN: "+ auth_token, "Content-Type:application/json", "Accept: application/json, text/plain"]) ## Note: Only POST and GET have been tested... ## It's not very obvious with pycurl to do this properly with PUT and DELETE ## Review this if ever needed to add these methods ## http://www.programcreek.com/python/example/2132/pycurl.HTTPHEADER if method.lower() == "post": c.setopt(pycurl.POST,1) post_data = urllib.urlencode(data) print(post_data) c.setopt(pycurl.POSTFIELDS, post_data) elif method.lower() == "get": c.setopt(pycurl.HTTPGET, 1) elif method.lower() == "delete": c.setopt(pycurl.DELETE, 1) elif method.lower() == "put": #c.setopt(pycurl.UPLOAD, 1) post_data = urllib.urlencode(data) c.setopt(pycurl.CUSTOMREQUEST, "PUT") c.setopt(pycurl.POSTFIELDS, post_data) elif method.lower() == "head": c.setopt(pycurl.NOBODY,1) else: print("Unknown method ", method) sys.exit(1) if username != None and password != None: c.setopt(pycurl.USERPWD, '%s:%s' % (username, password)) c.perform() c.close() body = buffer.getvalue() return body def _get_cluster_id(self): cluster_id = self._q_config("cluster_id") assert cluster_id is not None return cluster_id def invoke_task(self,name, *args): if args == (None,): getattr(self,name)() else: getattr(self,name)(*args) def deploy(self, asset_path, *args): # Use multipart upload to libraries/upload print("TBD") def logs(self, job_id): print("TBD") def status(self, job_id): print("TBD") def notebook(self): print("TBD") def _get_clusters(self): resp_body = self._do_request("GET", "clusters/list") j = json.loads(resp_body) return j def describecluster(self, name): clusters = self._get_clusters() for cluster in clusters: if cluster['name'] == name: print(cluster) def lsclusters(self): clusters = self._get_clusters() if len(clusters) == 0: print("No clusters created") for cluster in clusters: print(cluster) def mkcluster(self, name, memory_gb=6, use_spot=True): resp_body = self._do_request("POST", "clusters/create", name=name, memoryGB=memory_gb, useSpot=use_spot ) print(resp_body) def lslibraries(self): resp_body = self._do_request("GET", "libraries/list") j = json.loads(resp_body) print(j) def describelibraries(self): resp_body = self._do_request("GET", "libraries/status") j = json.loads(resp_body) print(j) def rmlibrary(self, library_id): resp_body = self._do_request("DELETE", "clusters/create", libraryId=library_id) print(resp_body) def attachlibrary(self, library_id, cluster_id): print("TBD") def schedule(self, asset_path, schedule_id, schedule_iso8601): print("TBD")
33.126667
141
0.602737
4,606
0.926947
0
0
0
0
0
0
1,111
0.223586
d2efeac4ab430fe4ec37a8045db0d9bc80676c48
9,658
py
Python
appimagebuilder/builder/deploy/apt/venv.py
mssalvatore/appimage-builder
2ecb7973cedfff9d03a21258419e515c48cafe84
[ "MIT" ]
null
null
null
appimagebuilder/builder/deploy/apt/venv.py
mssalvatore/appimage-builder
2ecb7973cedfff9d03a21258419e515c48cafe84
[ "MIT" ]
null
null
null
appimagebuilder/builder/deploy/apt/venv.py
mssalvatore/appimage-builder
2ecb7973cedfff9d03a21258419e515c48cafe84
[ "MIT" ]
null
null
null
# Copyright 2020 Alexis Lopez Zubieta # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. import fnmatch import hashlib import logging import os import subprocess from pathlib import Path from urllib import request from appimagebuilder.common import shell from .package import Package DEPENDS_ON = ["dpkg-deb", "apt-get", "apt-key", "fakeroot", "apt-cache"] class Venv: def __init__( self, base_path: str, sources: [str], keys: [str], architectures: [], user_options: {} = None, ): self.logger = logging.getLogger("apt") self._deps = shell.resolve_commands_paths(DEPENDS_ON) self.sources = sources self.keys = keys self.architectures = architectures self.user_options = user_options self._generate_paths(base_path) self._write_apt_conf(user_options, architectures) self._write_sources_list(sources) self._write_keys(keys) self._write_dpkg_arch(architectures) def _generate_paths(self, base_path): self._base_path = Path(base_path).absolute() self._apt_conf_path = self._base_path / "apt.conf" self._apt_conf_parts_path = self._base_path / "apt.conf.d" self._apt_sources_list_path = self._base_path / "sources.list" self._apt_sources_list_parts_path = self._base_path / "sources.list.d" self._apt_preferences_parts_path = self._base_path / "preferences.d" self._apt_key_parts_path = self._base_path / "keys" self._dpkg_path = self._base_path / "dpkg" self._dpkg_status_path = self._dpkg_path / "status" self._apt_archives_path = self._base_path / "archives" self._base_path.mkdir(parents=True, exist_ok=True) self._apt_conf_parts_path.mkdir(parents=True, exist_ok=True) self._apt_preferences_parts_path.mkdir(parents=True, exist_ok=True) self._apt_key_parts_path.mkdir(parents=True, exist_ok=True) self._dpkg_path.mkdir(parents=True, exist_ok=True) self._dpkg_status_path.touch(exist_ok=True) def _write_apt_conf(self, user_options, architectures: [str]): options = { "Dir": self._base_path, "Dir::State": self._base_path, "Dir::Cache": self._base_path, "Dir::Etc::Main": self._apt_conf_path, "Dir::Etc::Parts": self._apt_conf_parts_path, "Dir::Etc::SourceList": self._apt_sources_list_path, "Dir::Etc::SourceListParts": self._apt_sources_list_parts_path, "Dir::Etc::PreferencesParts": self._apt_preferences_parts_path, "Dir::Etc::TrustedParts": self._apt_key_parts_path, "Dir::State::status": self._dpkg_status_path, "Dir::Ignore-Files-Silently": False, "APT::Install-Recommends": False, "APT::Install-Suggests": False, "APT::Immediate-Configure": False, "APT::Architecture": architectures[0], "APT::Architectures": architectures, "Acquire::Languages": "none", } if user_options: options.update(user_options) # write apt.conf with open(self._apt_conf_path, "w") as f: for k, v in options.items(): if isinstance(v, str): f.write('%s "%s";\n' % (k, v)) continue if isinstance(v, list): f.write("%s {" % k) for sv in v: f.write('"%s"; ' % sv) f.write("}\n") continue f.write("%s %s;\n" % (k, v)) def _write_sources_list(self, sources): with open(self._apt_sources_list_path, "w") as f: for line in sources: f.write("%s\n" % line) def _write_keys(self, keys: [str]): for key_url in keys: key_url_hash = hashlib.md5(key_url.encode()).hexdigest() key_path = os.path.join(self._apt_key_parts_path, "%s.asc" % key_url_hash) if not os.path.exists(key_path): self.logger.info("Download key file: %s" % key_url) request.urlretrieve(key_url, key_path) def _get_environment(self): env = os.environ.copy() env["APT_CONFIG"] = self._apt_conf_path env["DEBIAN_FRONTEND"] = "noninteractive" return env def set_installed_packages(self, packages): with open(self._dpkg_status_path, "w") as f: for package in packages: f.write( "Package: %s\n" "Status: install ok installed\n" "Version: %s\n" "Architecture: %s\n" "\n" % (package.name, package.version, package.arch) ) def _run_apt_cache_show(self, package_names: [str]): if not package_names: return None command = "{apt-cache} show %s" % " ".join(package_names) command = command.format(**self._deps) self.logger.debug(command) _proc = subprocess.run( command, stdout=subprocess.PIPE, shell=True, env=self._get_environment() ) shell.assert_successful_result(_proc) return _proc def update(self) -> None: command = "apt-get update" self.logger.info(command) _proc = subprocess.run(command, shell=True, env=self._get_environment()) shell.assert_successful_result(_proc) def search_names(self, patterns: [str]): output = self._run_apt_cache_pkgnames() packages = output.stdout.decode("utf-8").splitlines() filtered_packages = [] for pattern in patterns: filtered_packages.extend(fnmatch.filter(packages, pattern)) return filtered_packages def _run_apt_cache_pkgnames(self): command = "{apt-cache} pkgnames".format(**self._deps) self.logger.debug(command) proc = subprocess.run( command, stdout=subprocess.PIPE, shell=True, env=self._get_environment() ) shell.assert_successful_result(proc) return proc def resolve_packages(self, packages: [Package]) -> [Package]: packages_str = [str(package) for package in packages] output = self._run_apt_get_install_download_only(packages_str) stdout_str = output.stderr.decode("utf-8") installed_packages = [] for line in stdout_str.splitlines(): if line.startswith("Dequeuing") and line.endswith(".deb"): file_path = Path(line.split(" ")[1]) installed_packages.append(Package.from_file_path(file_path)) return installed_packages def _run_apt_get_install_download_only(self, packages: [str]): command = ( "{apt-get} install -y --no-install-recommends --download-only -o Debug::pkgAcquire=1 " "{packages}".format(**self._deps, packages=" ".join(packages)) ) self.logger.debug(command) command = subprocess.run( command, stderr=subprocess.PIPE, shell=True, env=self._get_environment(), ) shell.assert_successful_result(command) return command def resolve_archive_paths(self, packages: [Package]): paths = [ self._apt_archives_path / pkg.get_expected_file_name() for pkg in packages ] return paths def extract_package(self, package, target): path = self._apt_archives_path / package.get_expected_file_name() command = "{dpkg-deb} -x {archive} {directory}".format( **self._deps, archive=path, directory=target ) self.logger.debug(command) output = subprocess.run(command, shell=True, env=self._get_environment()) shell.assert_successful_result(output) def _write_dpkg_arch(self, architectures: [str]): with open(self._dpkg_path / "arch", "w") as f: for arch in architectures: f.write("%s\n" % arch) def search_packages(self, names): packages = [] pkg_name = None pkg_version = None pkg_arch = None output = self._run_apt_cache_show(names) for line in output.stdout.decode("utf-8").splitlines(): if line.startswith("Package:"): pkg_name = line.split(" ", maxsplit=2)[1] if line.startswith("Architecture"): pkg_arch = line.split(" ", maxsplit=2)[1] if line.startswith("Version:"): pkg_version = line.split(" ", maxsplit=2)[1] # empty lines indicate the end of a package description block if not line and pkg_name: packages.append(Package(pkg_name, pkg_version, pkg_arch)) pkg_name = None pkg_arch = None pkg_version = None # empty lines indicate the end of a package description block if pkg_name: packages.append(Package(pkg_name, pkg_version, pkg_arch)) return packages
37.003831
98
0.610685
8,746
0.905571
0
0
0
0
0
0
1,782
0.18451
d2f040bef7df7c165fa2e1f80723815e7bebcf83
11,453
py
Python
tests/test_assertion_method.py
katakumpo/nicepy
fa2b0bae8e4b66d92e756687ded58d355c444eca
[ "MIT" ]
null
null
null
tests/test_assertion_method.py
katakumpo/nicepy
fa2b0bae8e4b66d92e756687ded58d355c444eca
[ "MIT" ]
null
null
null
tests/test_assertion_method.py
katakumpo/nicepy
fa2b0bae8e4b66d92e756687ded58d355c444eca
[ "MIT" ]
null
null
null
# -*- coding: utf-8 *-* import logging from unittest import TestCase from nicepy import assert_equal_struct, multi_assert_equal_struct, pretty_repr, permuteflat log = logging.getLogger(__name__) class Foo(object): def __init__(self, **kwargs): for k, v in kwargs.iteritems(): self[k] = v def __setitem__(self, name, value): # helper to add attributes per self[attr] = value -> self.attr == value setattr(self, name, value) def __repr__(self): return pretty_repr(self, ignore_own_repr=True) class TestAssertEqualStruct(TestCase): def run_assert(self, args, expected_msg=None): log.debug('args: %s' % str(args)) msg = None try: assert_equal_struct(*args) except AssertionError as e: msg = e.message log.debug('msg: %s' % msg) self.assertEqual(msg, expected_msg) def check(self, actual_classes=(list,), expected_classes=(list,), expected_obj=None, expected_kwargs={}, working_obj=None, working_kwargs={}, failing_obj=None, failing_kwargs={}, failure_msg=None, namepaths=None, expected_namepaths=None): for actual_cls, expected_cls in permuteflat(actual_classes, expected_classes): expected_obj = expected_obj or expected_cls(**expected_kwargs) working_obj = working_obj or actual_cls(**working_kwargs) self.run_assert((working_obj, expected_obj, namepaths, expected_namepaths)) failing_obj = failing_obj or actual_cls(**failing_kwargs) self.run_assert((failing_obj, expected_obj, namepaths, expected_namepaths), failure_msg) def test_directly(self): """ *assert_equal_struct* can compare similar flat structures directly. """ self.check(actual_classes=(dict, Foo), expected_classes=(dict, Foo), expected_kwargs=dict(x=1), working_kwargs=dict(x=1, y=2), failing_kwargs=dict(x=3, y=2), failure_msg='actual values != expected values:\n\tx: 3 != 1') self.check(expected_obj=[1], working_obj=[1, 2], failing_obj=[3, 2], failure_msg='actual values != expected values:\n\t0: 3 != 1') def test_with_namepaths(self): """ With namepaths *assert_equal_struct* can compare similar structures and structures with lists of values in full depth. This ignores all additional paths at the expected object. """ self.check(actual_classes=(dict, Foo), expected_classes=(dict, Foo), expected_kwargs=dict(x=1, y=4), namepaths=['x'], working_kwargs=dict(x=1, y=2), failing_kwargs=dict(x=3, y=2), failure_msg='actual values != expected values:\n\tx: 3 != 1') self.check(actual_classes=(dict, Foo), expected_obj=[1, 4], namepaths=['x'], working_kwargs=dict(x=1, y=2), failing_kwargs=dict(x=3, y=2), failure_msg='actual values != expected values:\n\tx: 3 != 1') self.check(expected_obj=[1, 4], namepaths=['0'], working_obj=[1, 2], failing_obj=[3, 2], failure_msg='actual values != expected values:\n\t0: 3 != 1') def test_with_namepaths_and_expected_namepaths(self): """ Like just with namepaths, the values are sometimes at other paths at the expected object and will be compared using expected_namepaths in same order as namepaths. """ self.check(actual_classes=(dict, Foo), expected_classes=(dict, Foo), expected_kwargs=dict(a=1, b=4), namepaths=['x'], expected_namepaths=['a'], working_kwargs=dict(x=1, y=2), failing_kwargs=dict(x=3, y=2), failure_msg='actual values != expected values:\n\tx != a: 3 != 1') self.check(actual_classes=(dict, Foo), expected_obj=[4, 1], namepaths=['x'], expected_namepaths=['1'], working_kwargs=dict(x=1, y=2), failing_kwargs=dict(x=3, y=2), failure_msg='actual values != expected values:\n\tx != 1: 3 != 1') self.check(expected_obj=[4, 1], namepaths=['0'], expected_namepaths=['1'], working_obj=[1, 2], failing_obj=[3, 2], failure_msg='actual values != expected values:\n\t0 != 1: 3 != 1') class TestMultiAssertEqualStruct(TestCase): def run_assert(self, args, expected_msg=None): log.debug('args: %s' % str(args)) msg = None try: multi_assert_equal_struct(*args) except AssertionError as e: msg = e.message log.debug('msg: %s' % msg) self.assertEqual(msg, expected_msg) def check(self, actual_classes=(list,), expected_classes=(list,), expected_objs=None, expected_kwargs_list=[], working_objs=None, working_kwargs_list=[], failing_objs=None, failing_kwargs_list=[], failure_msg=None, namepaths=None, expected_namepaths=None): for actual_cls1, actual_cls2, expected_cls1, expected_cls2 in \ permuteflat(*([actual_classes] * 2 + [expected_classes] * 2)): if not expected_objs: expected_objs = (expected_cls1(**expected_kwargs_list[0]), expected_cls2(**expected_kwargs_list[1])) if not working_objs: working_objs = (actual_cls1(**working_kwargs_list[0]), actual_cls2(**working_kwargs_list[1])) self.run_assert((working_objs, expected_objs, namepaths, expected_namepaths)) if not failing_objs: failing_objs = (actual_cls1(**failing_kwargs_list[0]), actual_cls2(**failing_kwargs_list[1])) self.run_assert((failing_objs, expected_objs, namepaths, expected_namepaths), failure_msg) def test_directly(self): """ *multi_assert_equal_struct* can compare multiple similar flat structures directly. """ self.check(actual_classes=(dict, Foo), expected_classes=(dict, Foo), expected_kwargs_list=[dict(x=1), dict(x=2, y=3)], working_kwargs_list=[dict(x=1, y=0), dict(x=2, y=3)], failing_kwargs_list=[dict(x=4, y=0), dict(x=2, y=5)], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\tx: 4 != 1\n'\ 'Index 1: actual values != expected values:\n\ty: 5 != 3') self.check(expected_objs=[[1], [2, 3]], working_objs=[[1, 0], [2, 3]], failing_objs=[[4, 0], [2, 5]], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\t0: 4 != 1\n'\ 'Index 1: actual values != expected values:\n\t1: 5 != 3') def test_with_namepaths(self): """ With namepaths *multi_assert_equal_struct* can compare multiple similar structures and structures with lists of values in full depth. This ignores all additional paths at the expected objects. """ self.check(actual_classes=(dict, Foo), expected_classes=(dict, Foo), expected_kwargs_list=[dict(x=1), dict(x=2, y=3)], working_kwargs_list=[dict(x=1, y=0), dict(x=2)], failing_kwargs_list=[dict(x=4, y=0), dict(x=5)], namepaths=['x'], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\tx: 4 != 1\n'\ 'Index 1: actual values != expected values:\n\tx: 5 != 2') self.check(actual_classes=(dict, Foo), expected_objs=[[1], [2, 0]], working_kwargs_list=[dict(x=1, y=5), dict(x=2)], failing_kwargs_list=[dict(x=3, y=5), dict(x=4)], namepaths=['x'], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\tx: 3 != 1\n'\ 'Index 1: actual values != expected values:\n\tx: 4 != 2') self.check(expected_objs=[[1], [2, 3]], working_objs=[[1, 0], [2, 0]], failing_objs=[[4, 0], [5, 0]], namepaths=['0'], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\t0: 4 != 1\n'\ 'Index 1: actual values != expected values:\n\t0: 5 != 2') def test_with_namepaths_and_expected_namepaths(self): """ Like just with namepaths, the values are sometimes at other paths at the expected object and will be compared using expected_namepaths in same order as namepaths. """ self.check(actual_classes=(dict, Foo), expected_classes=(dict, Foo), expected_kwargs_list=[dict(y=1), dict(y=2, x=3)], working_kwargs_list=[dict(x=1, y=0), dict(x=2)], failing_kwargs_list=[dict(x=4, y=0), dict(x=5)], namepaths=['x'], expected_namepaths=['y'], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\tx != y: 4 != 1\n'\ 'Index 1: actual values != expected values:\n\tx != y: 5 != 2') self.check(actual_classes=(dict, Foo), expected_objs=[[0, 1], [0, 2]], working_kwargs_list=[dict(x=1, y=5), dict(x=2)], failing_kwargs_list=[dict(x=3, y=5), dict(x=4)], namepaths=['x'], expected_namepaths=['1'], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\tx != 1: 3 != 1\n'\ 'Index 1: actual values != expected values:\n\tx != 1: 4 != 2') self.check(expected_objs=[[1, 2], [3, 4]], working_objs=[[2, 1], [4, 3]], failing_objs=[[2, 5], [6, 3]], namepaths=['0', '1'], expected_namepaths=['1', '0'], failure_msg='Multi-assert failed:\n' \ 'Index 0: actual values != expected values:\n\t1 != 0: 5 != 1\n'\ 'Index 1: actual values != expected values:\n\t0 != 1: 6 != 4')
42.895131
100
0.516546
11,248
0.982101
0
0
0
0
0
0
2,782
0.242906
d2f17cb8a3f0726fbc17e46d02f025d7c4a03f17
4,322
py
Python
usaspending_api/awards/migrations/0074_auto_20170320_1607.py
toolness/usaspending-api
ed9a396e20a52749f01f43494763903cc371f9c2
[ "CC0-1.0" ]
1
2021-06-17T05:09:00.000Z
2021-06-17T05:09:00.000Z
usaspending_api/awards/migrations/0074_auto_20170320_1607.py
toolness/usaspending-api
ed9a396e20a52749f01f43494763903cc371f9c2
[ "CC0-1.0" ]
null
null
null
usaspending_api/awards/migrations/0074_auto_20170320_1607.py
toolness/usaspending-api
ed9a396e20a52749f01f43494763903cc371f9c2
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-03-20 16:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('awards', '0073_auto_20170320_1455'), ] operations = [ migrations.AlterField( model_name='award', name='fain', field=models.CharField(blank=True, db_index=True, help_text='An identification code assigned to each financial assistance award tracking purposes. The FAIN is tied to that award (and all future modifications to that award) throughout the award’s life. Each FAIN is assigned by an agency. Within an agency, FAIN are unique: each new award must be issued a new FAIN. FAIN stands for Federal Award Identification Number, though the digits are letters, not numbers.', max_length=30, null=True), ), migrations.AlterField( model_name='award', name='period_of_performance_current_end_date', field=models.DateField(db_index=True, help_text='The current, not original, period of performance end date', null=True, verbose_name='End Date'), ), migrations.AlterField( model_name='award', name='period_of_performance_start_date', field=models.DateField(db_index=True, help_text='The start date for the period of performance', null=True, verbose_name='Start Date'), ), migrations.AlterField( model_name='award', name='piid', field=models.CharField(blank=True, db_index=True, help_text='Procurement Instrument Identifier - A unique identifier assigned to a federal contract, purchase order, basic ordering agreement, basic agreement, and blanket purchase agreement. It is used to track the contract, and any modifications or transactions related to it. After October 2017, it is between 13 and 17 digits, both letters and numbers.', max_length=50, null=True), ), migrations.AlterField( model_name='award', name='potential_total_value_of_award', field=models.DecimalField(blank=True, db_index=True, decimal_places=2, help_text='The sum of the potential_value_of_award from associated transactions', max_digits=20, null=True, verbose_name='Potential Total Value of Award'), ), migrations.AlterField( model_name='award', name='total_obligation', field=models.DecimalField(db_index=True, decimal_places=2, help_text='The amount of money the government is obligated to pay for the award', max_digits=15, null=True, verbose_name='Total Obligated'), ), migrations.AlterField( model_name='award', name='total_outlay', field=models.DecimalField(db_index=True, decimal_places=2, help_text='The total amount of money paid out for this award', max_digits=15, null=True), ), migrations.AlterField( model_name='award', name='type', field=models.CharField(choices=[('U', 'Unknown Type'), ('02', 'Block Grant'), ('03', 'Formula Grant'), ('04', 'Project Grant'), ('05', 'Cooperative Agreement'), ('06', 'Direct Payment for Specified Use'), ('07', 'Direct Loan'), ('08', 'Guaranteed/Insured Loan'), ('09', 'Insurance'), ('10', 'Direct Payment unrestricted'), ('11', 'Other'), ('A', 'BPA Call'), ('B', 'Purchase Order'), ('C', 'Delivery Order'), ('D', 'Definitive Contract')], db_index=True, default='U', help_text='\tThe mechanism used to distribute funding. The federal government can distribute funding in several forms. These award types include contracts, grants, loans, and direct payments.', max_length=5, null=True, verbose_name='Award Type'), ), migrations.AlterField( model_name='award', name='uri', field=models.CharField(blank=True, db_index=True, help_text='The uri of the award', max_length=70, null=True), ), migrations.AlterField( model_name='transaction', name='federal_action_obligation', field=models.DecimalField(blank=True, db_index=True, decimal_places=2, help_text='The obligation of the federal government for this transaction', max_digits=20, null=True), ), ]
65.484848
726
0.672837
4,166
0.96346
0
0
0
0
0
0
2,083
0.48173
d2f1e1f4951c3e0fd8684c1a41e6225fa4a4907c
100
py
Python
COVIDSafepassage/passsystem/apps.py
VICS-CORE/safepassage_server
58bc04dbfa55430c0218567211e5259de77518ae
[ "MIT" ]
null
null
null
COVIDSafepassage/passsystem/apps.py
VICS-CORE/safepassage_server
58bc04dbfa55430c0218567211e5259de77518ae
[ "MIT" ]
8
2020-04-25T09:42:25.000Z
2022-03-12T00:23:32.000Z
COVIDSafepassage/passsystem/apps.py
VICS-CORE/safepassage_server
58bc04dbfa55430c0218567211e5259de77518ae
[ "MIT" ]
null
null
null
from django.apps import AppConfig class PasssystemConfig(AppConfig): name = 'passsystem'
16.666667
35
0.73
59
0.59
0
0
0
0
0
0
12
0.12
d2f36e17b1fe05c90facefa1af9d3583979040ce
220
py
Python
src/intervals/once.py
Eagerod/tasker
b2bfbd6557063da389d1839f4f151bb4ad78b075
[ "MIT" ]
null
null
null
src/intervals/once.py
Eagerod/tasker
b2bfbd6557063da389d1839f4f151bb4ad78b075
[ "MIT" ]
null
null
null
src/intervals/once.py
Eagerod/tasker
b2bfbd6557063da389d1839f4f151bb4ad78b075
[ "MIT" ]
null
null
null
from base_interval import BaseInterval class OnceInterval(BaseInterval): @staticmethod def next_interval(start_date): return start_date @staticmethod def approximate_period(): return 0
18.333333
38
0.718182
178
0.809091
0
0
134
0.609091
0
0
0
0
d2f4c426757a6a0f92d35c0788647479f59e49fb
118,437
py
Python
env/Lib/site-packages/azure/mgmt/storage/storagemanagement.py
Ammar12/simplebanking
6080d638b2e98bfcf96d782703e1dce25aebfcbc
[ "MIT" ]
null
null
null
env/Lib/site-packages/azure/mgmt/storage/storagemanagement.py
Ammar12/simplebanking
6080d638b2e98bfcf96d782703e1dce25aebfcbc
[ "MIT" ]
null
null
null
env/Lib/site-packages/azure/mgmt/storage/storagemanagement.py
Ammar12/simplebanking
6080d638b2e98bfcf96d782703e1dce25aebfcbc
[ "MIT" ]
null
null
null
# # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Warning: This code was generated by a tool. # # Changes to this file may cause incorrect behavior and will be lost if the # code is regenerated. from datetime import datetime import json from requests import Session, Request import time import uuid try: from urllib import quote, unquote except: from urllib.parse import quote, unquote from azure.common import AzureHttpError from azure.mgmt.common import AzureOperationResponse, OperationStatusResponse, OperationStatus, Service from azure.mgmt.common.arm import ResourceBase, ResourceBaseExtended class StorageAccountCreateResponse(AzureOperationResponse): """ The Create storage account operation response. """ def __init__(self, **kwargs): super(StorageAccountCreateResponse, self).__init__(**kwargs) self._storage_account = kwargs.get('storage_account') self._operation_status_link = kwargs.get('operation_status_link') self._retry_after = kwargs.get('retry_after') self._status = kwargs.get('status') @property def operation_status_link(self): """ Gets the URL where the status of the create operation can be checked. """ return self._operation_status_link @operation_status_link.setter def operation_status_link(self, value): self._operation_status_link = value @property def retry_after(self): """ Gets the delay that the client should use when checking for the status of the operation. This delay is specified in seconds as an integer; min 5 seconds, max 900 seconds (15 minutes). The storage resource provider will return 25 seconds initially. """ return self._retry_after @retry_after.setter def retry_after(self, value): self._retry_after = value @property def status(self): """ Gets the status of the create request. """ return self._status @status.setter def status(self, value): self._status = value @property def storage_account(self): """ Gets the storage account with the created properties populated. """ return self._storage_account @storage_account.setter def storage_account(self, value): self._storage_account = value class CheckNameAvailabilityResponse(AzureOperationResponse): """ The CheckNameAvailability operation response. """ def __init__(self, **kwargs): super(CheckNameAvailabilityResponse, self).__init__(**kwargs) self._name_available = kwargs.get('name_available') self._reason = kwargs.get('reason') self._message = kwargs.get('message') @property def message(self): """ Gets an error message explaining the Reason value in more detail. """ return self._message @message.setter def message(self, value): self._message = value @property def name_available(self): """ Gets a boolean value that indicates whether the name is available for you to use. If true, the name is available. If false, the name has already been taken or invalid and cannot be used. """ return self._name_available @name_available.setter def name_available(self, value): self._name_available = value @property def reason(self): """ Gets the reason that a storage account name could not be used. The Reason element is only returned if NameAvailable is false. """ return self._reason @reason.setter def reason(self, value): self._reason = value class StorageAccountCreateParameters(object): """ The parameters to provide for the account. """ def __init__(self, **kwargs): self._account_type = kwargs.get('account_type') self._location = kwargs.get('location') self._tags = kwargs.get('tags') @property def account_type(self): """ Gets or sets the account type. """ return self._account_type @account_type.setter def account_type(self, value): self._account_type = value @property def location(self): """ Gets or sets the location of the resource. This will be one of the supported and registered Azure Geo Regions (e.g. West US, East US, Southeast Asia, etc.). The geo region of a resource cannot be changed once it is created. """ return self._location @location.setter def location(self, value): self._location = value @property def tags(self): """ Gets or sets a list of key value pairs that describe the resource. These tags can be used in viewing and grouping this resource (across resource groups). A maximum of 15 tags can be provided for a resource. Each tag must have a key no greater than 128 characters and value no greater than 256 characters. """ return self._tags @tags.setter def tags(self, value): self._tags = value class StorageAccountGetPropertiesResponse(AzureOperationResponse): """ The Get storage account operation response. """ def __init__(self, **kwargs): super(StorageAccountGetPropertiesResponse, self).__init__(**kwargs) self._storage_account = kwargs.get('storage_account') @property def storage_account(self): """ Gets the returned storage account. """ return self._storage_account @storage_account.setter def storage_account(self, value): self._storage_account = value class StorageAccountListKeysResponse(AzureOperationResponse): """ The ListKeys operation response. """ def __init__(self, **kwargs): super(StorageAccountListKeysResponse, self).__init__(**kwargs) self._storage_account_keys = kwargs.get('storage_account_keys') @property def storage_account_keys(self): """ Gets the access keys for the storage account. """ return self._storage_account_keys @storage_account_keys.setter def storage_account_keys(self, value): self._storage_account_keys = value class StorageAccountListResponse(AzureOperationResponse): """ The list storage accounts operation response. """ def __init__(self, **kwargs): super(StorageAccountListResponse, self).__init__(**kwargs) self._storage_accounts = kwargs.get('storage_accounts') self._next_link = kwargs.get('next_link') @property def next_link(self): """ Gets the link to the next set of results. Currently this will always be empty as the API does not support pagination. """ return self._next_link @next_link.setter def next_link(self, value): self._next_link = value @property def storage_accounts(self): """ Gets the list of storage accounts and their properties. """ return self._storage_accounts @storage_accounts.setter def storage_accounts(self, value): self._storage_accounts = value class StorageAccountUpdateResponse(AzureOperationResponse): """ The Update storage account operation response. """ def __init__(self, **kwargs): super(StorageAccountUpdateResponse, self).__init__(**kwargs) self._storage_account = kwargs.get('storage_account') @property def storage_account(self): """ Gets the storage account with the updated properties populated. """ return self._storage_account @storage_account.setter def storage_account(self, value): self._storage_account = value class StorageAccountUpdateParameters(object): """ The parameters to update on the account. """ def __init__(self, **kwargs): self._account_type = kwargs.get('account_type') self._custom_domain = kwargs.get('custom_domain') self._tags = kwargs.get('tags') @property def account_type(self): """ Gets or sets the account type. Note that StandardZRS and PremiumLRS accounts cannot be changed to other account types, and other account types cannot be changed to StandardZRS or PremiumLRS. """ return self._account_type @account_type.setter def account_type(self, value): self._account_type = value @property def custom_domain(self): """ User domain assigned to the storage account. Name is the CNAME source. Only one custom domain is supported per storage account at this time. To clear the existing custom domain, use an empty string for the custom domain name property. """ return self._custom_domain @custom_domain.setter def custom_domain(self, value): self._custom_domain = value @property def tags(self): """ Gets or sets a list of key value pairs that describe the resource. These tags can be used in viewing and grouping this resource (across resource groups). A maximum of 15 tags can be provided for a resource. Each tag must have a key no greater than 128 characters and value no greater than 256 characters. This is a full replace so all the existing tags will be replaced on Update. """ return self._tags @tags.setter def tags(self, value): self._tags = value class StorageAccountRegenerateKeyResponse(AzureOperationResponse): """ The RegenerateKey operation response. """ def __init__(self, **kwargs): super(StorageAccountRegenerateKeyResponse, self).__init__(**kwargs) self._storage_account_keys = kwargs.get('storage_account_keys') @property def storage_account_keys(self): """ Gets the access keys associated with the storage account, one of which mayhave been regenerated by this operation. """ return self._storage_account_keys @storage_account_keys.setter def storage_account_keys(self, value): self._storage_account_keys = value class KeyName(object): """ The key names. """ key1 = "key1" key2 = "key2" class StorageAccount(ResourceBaseExtended): """ The storage account. """ def __init__(self, **kwargs): super(StorageAccount, self).__init__(**kwargs) self._provisioning_state = kwargs.get('provisioning_state') self._account_type = kwargs.get('account_type') self._primary_endpoints = kwargs.get('primary_endpoints') self._primary_location = kwargs.get('primary_location') self._status_of_primary = kwargs.get('status_of_primary') self._last_geo_failover_time = kwargs.get('last_geo_failover_time') self._secondary_endpoints = kwargs.get('secondary_endpoints') self._secondary_location = kwargs.get('secondary_location') self._status_of_secondary = kwargs.get('status_of_secondary') self._creation_time = kwargs.get('creation_time') self._custom_domain = kwargs.get('custom_domain') @property def account_type(self): """ Gets the type of the storage account. """ return self._account_type @account_type.setter def account_type(self, value): self._account_type = value @property def creation_time(self): """ Gets the creation date and time of the storage account in UTC. """ return self._creation_time @creation_time.setter def creation_time(self, value): self._creation_time = value @property def custom_domain(self): """ Gets the user assigned custom domain assigned to this storage account. """ return self._custom_domain @custom_domain.setter def custom_domain(self, value): self._custom_domain = value @property def last_geo_failover_time(self): """ Gets the timestamp of the most recent instance of a failover to the secondary location. Only the most recent timestamp is retained. This element is not returned if there has never been a failover instance. Only available if the accountType is StandardGRS or StandardRAGRS. """ return self._last_geo_failover_time @last_geo_failover_time.setter def last_geo_failover_time(self, value): self._last_geo_failover_time = value @property def primary_endpoints(self): """ Gets the URLs that are used to perform a retrieval of a public blob, queue or table object.Note that StandardZRS and PremiumLRS accounts only return the blob endpoint. """ return self._primary_endpoints @primary_endpoints.setter def primary_endpoints(self, value): self._primary_endpoints = value @property def primary_location(self): """ Gets the location of the primary for the storage account. """ return self._primary_location @primary_location.setter def primary_location(self, value): self._primary_location = value @property def provisioning_state(self): """ Gets the status of the storage account at the time the operation was called. """ return self._provisioning_state @provisioning_state.setter def provisioning_state(self, value): self._provisioning_state = value @property def secondary_endpoints(self): """ Gets the URLs that are used to perform a retrieval of a public blob, queue or table object from the secondary location of the storage account. Only available if the accountType is StandardRAGRS. """ return self._secondary_endpoints @secondary_endpoints.setter def secondary_endpoints(self, value): self._secondary_endpoints = value @property def secondary_location(self): """ Gets the location of the geo replicated secondary for the storage account. Only available if the accountType is StandardGRS or StandardRAGRS. """ return self._secondary_location @secondary_location.setter def secondary_location(self, value): self._secondary_location = value @property def status_of_primary(self): """ Gets the status indicating whether the primary location of the storage account is available or unavailable. """ return self._status_of_primary @status_of_primary.setter def status_of_primary(self, value): self._status_of_primary = value @property def status_of_secondary(self): """ Gets the status indicating whether the secondary location of the storage account is available or unavailable. Only available if the accountType is StandardGRS or StandardRAGRS. """ return self._status_of_secondary @status_of_secondary.setter def status_of_secondary(self, value): self._status_of_secondary = value class ProvisioningState(object): creating = "Creating" resolving_dns = "ResolvingDNS" succeeded = "Succeeded" class AccountType(object): standard_lrs = "Standard_LRS" standard_zrs = "Standard_ZRS" standard_grs = "Standard_GRS" standard_ragrs = "Standard_RAGRS" premium_lrs = "Premium_LRS" class Endpoints(object): """ The URIs that are used to perform a retrieval of a public blob, queue or table object. """ def __init__(self, **kwargs): self._blob = kwargs.get('blob') self._queue = kwargs.get('queue') self._table = kwargs.get('table') @property def blob(self): """ Gets the blob endpoint. """ return self._blob @blob.setter def blob(self, value): self._blob = value @property def queue(self): """ Gets the queue endpoint. """ return self._queue @queue.setter def queue(self, value): self._queue = value @property def table(self): """ Gets the table endpoint. """ return self._table @table.setter def table(self, value): self._table = value class AccountStatus(object): available = "Available" unavailable = "Unavailable" class CustomDomain(object): """ The custom domain assigned to this storage account. This can be set via Update. """ def __init__(self, **kwargs): self._name = kwargs.get('name') self._use_sub_domain = kwargs.get('use_sub_domain') @property def name(self): """ Gets or sets the custom domain name. Name is the CNAME source. """ return self._name @name.setter def name(self, value): self._name = value @property def use_sub_domain(self): """ Indicates whether indirect CName validation is enabled. Default value is false. This should only be set on updates """ return self._use_sub_domain @use_sub_domain.setter def use_sub_domain(self, value): self._use_sub_domain = value class Reason(object): account_name_invalid = "AccountNameInvalid" already_exists = "AlreadyExists" class StorageAccountKeys(object): """ The access keys for the storage account. """ def __init__(self, **kwargs): self._key1 = kwargs.get('key1') self._key2 = kwargs.get('key2') @property def key1(self): """ Gets the value of key 1. """ return self._key1 @key1.setter def key1(self, value): self._key1 = value @property def key2(self): """ Gets the value of key 2. """ return self._key2 @key2.setter def key2(self, value): self._key2 = value class StorageManagementClient(Service): """ The Storage Management Client. """ @property def api_version(self): """ Gets the API version. """ return self._api_version @property def long_running_operation_initial_timeout(self): """ Gets or sets the initial timeout for Long Running Operations. """ return self._long_running_operation_initial_timeout @long_running_operation_initial_timeout.setter def long_running_operation_initial_timeout(self, value): self._long_running_operation_initial_timeout = value @property def long_running_operation_retry_timeout(self): """ Gets or sets the retry timeout for Long Running Operations. """ return self._long_running_operation_retry_timeout @long_running_operation_retry_timeout.setter def long_running_operation_retry_timeout(self, value): self._long_running_operation_retry_timeout = value @property def storage_accounts(self): """ Operations for managing storage accounts. """ return self._storage_accounts def __init__(self, credentials, **kwargs): super(StorageManagementClient, self).__init__(credentials, **kwargs) if getattr(self, '_base_uri', None) is None: self._base_uri = 'https://management.azure.com/' if getattr(self, '_api_version', None) is None: self._api_version = '2015-05-01-preview' if getattr(self, '_long_running_operation_initial_timeout', None) is None: self._long_running_operation_initial_timeout = -1 if getattr(self, '_long_running_operation_retry_timeout', None) is None: self._long_running_operation_retry_timeout = -1 self._storage_accounts = StorageAccountOperations(self) def parse_account_type(self, value): """ Parse enum values for type AccountType. Args: value (string): The value to parse. Returns: AccountType: The enum value. """ if 'Standard_LRS'.lower() == value.lower(): return AccountType.StandardLRS if 'Standard_ZRS'.lower() == value.lower(): return AccountType.StandardZRS if 'Standard_GRS'.lower() == value.lower(): return AccountType.StandardGRS if 'Standard_RAGRS'.lower() == value.lower(): return AccountType.StandardRAGRS if 'Premium_LRS'.lower() == value.lower(): return AccountType.PremiumLRS raise IndexError('value is outside the valid range.') def account_type_to_string(self, value): """ Convert an enum of type AccountType to a string. Args: value (AccountType): The value to convert to a string. Returns: string: The enum value as a string. """ if value == AccountType.StandardLRS: return 'Standard_LRS' if value == AccountType.StandardZRS: return 'Standard_ZRS' if value == AccountType.StandardGRS: return 'Standard_GRS' if value == AccountType.StandardRAGRS: return 'Standard_RAGRS' if value == AccountType.PremiumLRS: return 'Premium_LRS' raise IndexError('value is outside the valid range.') def parse_key_name(self, value): """ Parse enum values for type KeyName. Args: value (string): The value to parse. Returns: KeyName: The enum value. """ if 'key1'.lower() == value.lower(): return KeyName.Key1 if 'key2'.lower() == value.lower(): return KeyName.Key2 raise IndexError('value is outside the valid range.') def key_name_to_string(self, value): """ Convert an enum of type KeyName to a string. Args: value (KeyName): The value to convert to a string. Returns: string: The enum value as a string. """ if value == KeyName.Key1: return 'key1' if value == KeyName.Key2: return 'key2' raise IndexError('value is outside the valid range.') def get_create_operation_status(self, operation_status_link): """ The Get Create Operation Status operation returns the status of the specified create operation. After calling the asynchronous Begin Create operation, you can call Get Create Operation Status to determine whether the operation has succeeded, failed, or is still in progress. Args: operation_status_link (string): The URL where the status of the long-running create operation can be checked. Returns: StorageAccountCreateResponse: The Create storage account operation response. """ # Validate if operation_status_link is None: raise ValueError('operation_status_link cannot be None.') # Tracing # Construct URL url = '' url = url + operation_status_link url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'GET' # Set Headers http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Send Request response = self.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200 and status_code != 202 and status_code != 500: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200 or status_code == 202 or status_code == 500: response_content = body result = StorageAccountCreateResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: storage_account_instance = StorageAccount(tags={}) result.storage_account = storage_account_instance id_value = response_doc.get('id', None) if id_value is not None: id_instance = id_value storage_account_instance.id = id_instance name_value = response_doc.get('name', None) if name_value is not None: name_instance = name_value storage_account_instance.name = name_instance type_value = response_doc.get('type', None) if type_value is not None: type_instance = type_value storage_account_instance.type = type_instance location_value = response_doc.get('location', None) if location_value is not None: location_instance = location_value storage_account_instance.location = location_instance tags_sequence_element = response_doc.get('tags', None) if tags_sequence_element is not None: for property in tags_sequence_element: tags_key = property tags_value = tags_sequence_element[property] storage_account_instance.tags[tags_key] = tags_value properties_value = response_doc.get('properties', None) if properties_value is not None: provisioning_state_value = properties_value.get('provisioningState', None) if provisioning_state_value is not None: provisioning_state_instance = provisioning_state_value storage_account_instance.provisioning_state = provisioning_state_instance account_type_value = properties_value.get('accountType', None) if account_type_value is not None: account_type_instance = account_type_value storage_account_instance.account_type = account_type_instance primary_endpoints_value = properties_value.get('primaryEndpoints', None) if primary_endpoints_value is not None: primary_endpoints_instance = Endpoints() storage_account_instance.primary_endpoints = primary_endpoints_instance blob_value = primary_endpoints_value.get('blob', None) if blob_value is not None: blob_instance = blob_value primary_endpoints_instance.blob = blob_instance queue_value = primary_endpoints_value.get('queue', None) if queue_value is not None: queue_instance = queue_value primary_endpoints_instance.queue = queue_instance table_value = primary_endpoints_value.get('table', None) if table_value is not None: table_instance = table_value primary_endpoints_instance.table = table_instance primary_location_value = properties_value.get('primaryLocation', None) if primary_location_value is not None: primary_location_instance = primary_location_value storage_account_instance.primary_location = primary_location_instance status_of_primary_value = properties_value.get('statusOfPrimary', None) if status_of_primary_value is not None: status_of_primary_instance = status_of_primary_value storage_account_instance.status_of_primary = status_of_primary_instance last_geo_failover_time_value = properties_value.get('lastGeoFailoverTime', None) if last_geo_failover_time_value is not None: last_geo_failover_time_instance = last_geo_failover_time_value storage_account_instance.last_geo_failover_time = last_geo_failover_time_instance secondary_location_value = properties_value.get('secondaryLocation', None) if secondary_location_value is not None: secondary_location_instance = secondary_location_value storage_account_instance.secondary_location = secondary_location_instance status_of_secondary_value = properties_value.get('statusOfSecondary', None) if status_of_secondary_value is not None: status_of_secondary_instance = status_of_secondary_value storage_account_instance.status_of_secondary = status_of_secondary_instance creation_time_value = properties_value.get('creationTime', None) if creation_time_value is not None: creation_time_instance = creation_time_value storage_account_instance.creation_time = creation_time_instance custom_domain_value = properties_value.get('customDomain', None) if custom_domain_value is not None: custom_domain_instance = CustomDomain() storage_account_instance.custom_domain = custom_domain_instance name_value2 = custom_domain_value.get('name', None) if name_value2 is not None: name_instance2 = name_value2 custom_domain_instance.name = name_instance2 use_sub_domain_value = custom_domain_value.get('useSubDomain', None) if use_sub_domain_value is not None: use_sub_domain_instance = use_sub_domain_value custom_domain_instance.use_sub_domain = use_sub_domain_instance secondary_endpoints_value = properties_value.get('secondaryEndpoints', None) if secondary_endpoints_value is not None: secondary_endpoints_instance = Endpoints() storage_account_instance.secondary_endpoints = secondary_endpoints_instance blob_value2 = secondary_endpoints_value.get('blob', None) if blob_value2 is not None: blob_instance2 = blob_value2 secondary_endpoints_instance.blob = blob_instance2 queue_value2 = secondary_endpoints_value.get('queue', None) if queue_value2 is not None: queue_instance2 = queue_value2 secondary_endpoints_instance.queue = queue_instance2 table_value2 = secondary_endpoints_value.get('table', None) if table_value2 is not None: table_instance2 = table_value2 secondary_endpoints_instance.table = table_instance2 result.status_code = status_code result.retry_after = int(response.headers.get('retryafter', '0')) result.request_id = response.headers.get('x-ms-request-id') if status_code == 409: result.status = OperationStatus.Failed if status_code == 500: result.status = OperationStatus.InProgress if status_code == 202: result.status = OperationStatus.InProgress if status_code == 200: result.status = OperationStatus.Succeeded return result class StorageAccountOperations(object): """ Operations for managing storage accounts. __NOTE__: An instance of this class is automatically created for an instance of the [StorageManagementClient] """ def __init__(self, client): self._client = client @property def client(self): """ Gets a reference to the Microsoft.Azure.Management.Storage.StorageManagementClient. """ return self._client def begin_create(self, resource_group_name, account_name, parameters): """ Asynchronously creates a new storage account with the specified parameters. Existing accounts cannot be updated with this API and should instead use the Update Storage Account API. If an account is already created and subsequent PUT request is issued with exact same set of properties, then HTTP 200 would be returned. Args: resource_group_name (string): The name of the resource group within the user’s subscription. account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. parameters (StorageAccountCreateParameters): The parameters to provide for the created account. Returns: StorageAccountCreateResponse: The Create storage account operation response. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') if account_name is None: raise ValueError('account_name cannot be None.') if len(account_name) < 3: raise IndexError('account_name is outside the valid range.') if len(account_name) > 24: raise IndexError('account_name is outside the valid range.') for account_name_char in account_name: if account_name_char.islower() == False and account_name_char.isdigit() == False: raise IndexError('account_name is outside the valid range.') if parameters is None: raise ValueError('parameters cannot be None.') if parameters.account_type is None: raise ValueError('parameters.account_type cannot be None.') if parameters.location is None: raise ValueError('parameters.location cannot be None.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts/' url = url + quote(account_name) query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'PUT' # Set Headers http_request.headers['Content-Type'] = 'application/json' http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Serialize Request request_content = None request_doc = None storage_account_create_parameters_json_value = {} request_doc = storage_account_create_parameters_json_value storage_account_create_parameters_json_value['location'] = parameters.location if parameters.tags is not None: tags_dictionary = {} for tags_key in parameters.tags: tags_value = parameters.tags[tags_key] tags_dictionary[tags_key] = tags_value storage_account_create_parameters_json_value['tags'] = tags_dictionary properties_value = {} storage_account_create_parameters_json_value['properties'] = properties_value properties_value['accountType'] = str(parameters.account_type) if parameters.account_type is not None else 'StandardLRS' request_content = json.dumps(request_doc) http_request.data = request_content http_request.headers['Content-Length'] = len(request_content) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200 and status_code != 202: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200 or status_code == 202: response_content = body result = StorageAccountCreateResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: storage_account_instance = StorageAccount(tags={}) result.storage_account = storage_account_instance id_value = response_doc.get('id', None) if id_value is not None: id_instance = id_value storage_account_instance.id = id_instance name_value = response_doc.get('name', None) if name_value is not None: name_instance = name_value storage_account_instance.name = name_instance type_value = response_doc.get('type', None) if type_value is not None: type_instance = type_value storage_account_instance.type = type_instance location_value = response_doc.get('location', None) if location_value is not None: location_instance = location_value storage_account_instance.location = location_instance tags_sequence_element = response_doc.get('tags', None) if tags_sequence_element is not None: for property in tags_sequence_element: tags_key2 = property tags_value2 = tags_sequence_element[property] storage_account_instance.tags[tags_key2] = tags_value2 properties_value2 = response_doc.get('properties', None) if properties_value2 is not None: provisioning_state_value = properties_value2.get('provisioningState', None) if provisioning_state_value is not None: provisioning_state_instance = provisioning_state_value storage_account_instance.provisioning_state = provisioning_state_instance account_type_value = properties_value2.get('accountType', None) if account_type_value is not None: account_type_instance = account_type_value storage_account_instance.account_type = account_type_instance primary_endpoints_value = properties_value2.get('primaryEndpoints', None) if primary_endpoints_value is not None: primary_endpoints_instance = Endpoints() storage_account_instance.primary_endpoints = primary_endpoints_instance blob_value = primary_endpoints_value.get('blob', None) if blob_value is not None: blob_instance = blob_value primary_endpoints_instance.blob = blob_instance queue_value = primary_endpoints_value.get('queue', None) if queue_value is not None: queue_instance = queue_value primary_endpoints_instance.queue = queue_instance table_value = primary_endpoints_value.get('table', None) if table_value is not None: table_instance = table_value primary_endpoints_instance.table = table_instance primary_location_value = properties_value2.get('primaryLocation', None) if primary_location_value is not None: primary_location_instance = primary_location_value storage_account_instance.primary_location = primary_location_instance status_of_primary_value = properties_value2.get('statusOfPrimary', None) if status_of_primary_value is not None: status_of_primary_instance = status_of_primary_value storage_account_instance.status_of_primary = status_of_primary_instance last_geo_failover_time_value = properties_value2.get('lastGeoFailoverTime', None) if last_geo_failover_time_value is not None: last_geo_failover_time_instance = last_geo_failover_time_value storage_account_instance.last_geo_failover_time = last_geo_failover_time_instance secondary_location_value = properties_value2.get('secondaryLocation', None) if secondary_location_value is not None: secondary_location_instance = secondary_location_value storage_account_instance.secondary_location = secondary_location_instance status_of_secondary_value = properties_value2.get('statusOfSecondary', None) if status_of_secondary_value is not None: status_of_secondary_instance = status_of_secondary_value storage_account_instance.status_of_secondary = status_of_secondary_instance creation_time_value = properties_value2.get('creationTime', None) if creation_time_value is not None: creation_time_instance = creation_time_value storage_account_instance.creation_time = creation_time_instance custom_domain_value = properties_value2.get('customDomain', None) if custom_domain_value is not None: custom_domain_instance = CustomDomain() storage_account_instance.custom_domain = custom_domain_instance name_value2 = custom_domain_value.get('name', None) if name_value2 is not None: name_instance2 = name_value2 custom_domain_instance.name = name_instance2 use_sub_domain_value = custom_domain_value.get('useSubDomain', None) if use_sub_domain_value is not None: use_sub_domain_instance = use_sub_domain_value custom_domain_instance.use_sub_domain = use_sub_domain_instance secondary_endpoints_value = properties_value2.get('secondaryEndpoints', None) if secondary_endpoints_value is not None: secondary_endpoints_instance = Endpoints() storage_account_instance.secondary_endpoints = secondary_endpoints_instance blob_value2 = secondary_endpoints_value.get('blob', None) if blob_value2 is not None: blob_instance2 = blob_value2 secondary_endpoints_instance.blob = blob_instance2 queue_value2 = secondary_endpoints_value.get('queue', None) if queue_value2 is not None: queue_instance2 = queue_value2 secondary_endpoints_instance.queue = queue_instance2 table_value2 = secondary_endpoints_value.get('table', None) if table_value2 is not None: table_instance2 = table_value2 secondary_endpoints_instance.table = table_instance2 result.status_code = status_code result.operation_status_link = response.headers.get('location') result.retry_after = int(response.headers.get('retryafter', '0')) result.request_id = response.headers.get('x-ms-request-id') if status_code == 409 or status_code == 400: result.status = OperationStatus.Failed if status_code == 200: result.status = OperationStatus.Succeeded return result def check_name_availability(self, account_name): """ Checks that account name is valid and is not in use. Args: account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Returns: CheckNameAvailabilityResponse: The CheckNameAvailability operation response. """ # Validate if account_name is None: raise ValueError('account_name cannot be None.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/providers/Microsoft.Storage/checkNameAvailability' query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'POST' # Set Headers http_request.headers['Content-Type'] = 'application/json' http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Serialize Request request_content = None request_doc = None storage_account_check_name_availability_parameters_value = {} request_doc = storage_account_check_name_availability_parameters_value storage_account_check_name_availability_parameters_value['name'] = account_name storage_account_check_name_availability_parameters_value['type'] = 'Microsoft.Storage/storageAccounts' request_content = json.dumps(request_doc) http_request.data = request_content http_request.headers['Content-Length'] = len(request_content) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = CheckNameAvailabilityResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: name_available_value = response_doc.get('nameAvailable', None) if name_available_value is not None: name_available_instance = name_available_value result.name_available = name_available_instance reason_value = response_doc.get('reason', None) if reason_value is not None: reason_instance = reason_value result.reason = reason_instance message_value = response_doc.get('message', None) if message_value is not None: message_instance = message_value result.message = message_instance result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def create(self, resource_group_name, account_name, parameters): """ Asynchronously creates a new storage account with the specified parameters. Existing accounts cannot be updated with this API and should instead use the Update Storage Account API. If an account is already created and subsequent create request is issued with exact same set of properties, the request succeeds.The max number of storage accounts that can be created per subscription is limited to 20. Args: resource_group_name (string): The name of the resource group within the user’s subscription. account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. parameters (StorageAccountCreateParameters): The parameters to provide for the created account. Returns: StorageAccountCreateResponse: The Create storage account operation response. """ client2 = self.client response = client2.storage_accounts.begin_create(resource_group_name, account_name, parameters) if response.status == OperationStatus.succeeded: return response result = client2.get_create_operation_status(response.operation_status_link) delay_in_seconds = response.retry_after if delay_in_seconds == 0: delay_in_seconds = 25 if client2.long_running_operation_initial_timeout >= 0: delay_in_seconds = client2.long_running_operation_initial_timeout while (result.status != OperationStatus.in_progress) == False: time.sleep(delay_in_seconds) result = client2.get_create_operation_status(response.operation_status_link) delay_in_seconds = result.retry_after if delay_in_seconds == 0: delay_in_seconds = 25 if client2.long_running_operation_retry_timeout >= 0: delay_in_seconds = client2.long_running_operation_retry_timeout return result def delete(self, resource_group_name, account_name): """ Deletes a storage account in Microsoft Azure. Args: resource_group_name (string): The name of the resource group within the user’s subscription. account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Returns: AzureOperationResponse: A standard service response including an HTTP status code and request ID. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') if account_name is None: raise ValueError('account_name cannot be None.') if len(account_name) < 3: raise IndexError('account_name is outside the valid range.') if len(account_name) > 24: raise IndexError('account_name is outside the valid range.') for account_name_char in account_name: if account_name_char.islower() == False and account_name_char.isdigit() == False: raise IndexError('account_name is outside the valid range.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts/' url = url + quote(account_name) query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'DELETE' # Set Headers http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200 and status_code != 204: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response result = AzureOperationResponse() result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def get_properties(self, resource_group_name, account_name): """ Returns the properties for the specified storage account including but not limited to name, account type, location, and account status. The ListKeys operation should be used to retrieve storage keys. Args: resource_group_name (string): The name of the resource group within the user’s subscription. account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Returns: StorageAccountGetPropertiesResponse: The Get storage account operation response. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') if account_name is None: raise ValueError('account_name cannot be None.') if len(account_name) < 3: raise IndexError('account_name is outside the valid range.') if len(account_name) > 24: raise IndexError('account_name is outside the valid range.') for account_name_char in account_name: if account_name_char.islower() == False and account_name_char.isdigit() == False: raise IndexError('account_name is outside the valid range.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts/' url = url + quote(account_name) query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'GET' # Set Headers http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = StorageAccountGetPropertiesResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: storage_account_instance = StorageAccount(tags={}) result.storage_account = storage_account_instance id_value = response_doc.get('id', None) if id_value is not None: id_instance = id_value storage_account_instance.id = id_instance name_value = response_doc.get('name', None) if name_value is not None: name_instance = name_value storage_account_instance.name = name_instance type_value = response_doc.get('type', None) if type_value is not None: type_instance = type_value storage_account_instance.type = type_instance location_value = response_doc.get('location', None) if location_value is not None: location_instance = location_value storage_account_instance.location = location_instance tags_sequence_element = response_doc.get('tags', None) if tags_sequence_element is not None: for property in tags_sequence_element: tags_key = property tags_value = tags_sequence_element[property] storage_account_instance.tags[tags_key] = tags_value properties_value = response_doc.get('properties', None) if properties_value is not None: provisioning_state_value = properties_value.get('provisioningState', None) if provisioning_state_value is not None: provisioning_state_instance = provisioning_state_value storage_account_instance.provisioning_state = provisioning_state_instance account_type_value = properties_value.get('accountType', None) if account_type_value is not None: account_type_instance = account_type_value storage_account_instance.account_type = account_type_instance primary_endpoints_value = properties_value.get('primaryEndpoints', None) if primary_endpoints_value is not None: primary_endpoints_instance = Endpoints() storage_account_instance.primary_endpoints = primary_endpoints_instance blob_value = primary_endpoints_value.get('blob', None) if blob_value is not None: blob_instance = blob_value primary_endpoints_instance.blob = blob_instance queue_value = primary_endpoints_value.get('queue', None) if queue_value is not None: queue_instance = queue_value primary_endpoints_instance.queue = queue_instance table_value = primary_endpoints_value.get('table', None) if table_value is not None: table_instance = table_value primary_endpoints_instance.table = table_instance primary_location_value = properties_value.get('primaryLocation', None) if primary_location_value is not None: primary_location_instance = primary_location_value storage_account_instance.primary_location = primary_location_instance status_of_primary_value = properties_value.get('statusOfPrimary', None) if status_of_primary_value is not None: status_of_primary_instance = status_of_primary_value storage_account_instance.status_of_primary = status_of_primary_instance last_geo_failover_time_value = properties_value.get('lastGeoFailoverTime', None) if last_geo_failover_time_value is not None: last_geo_failover_time_instance = last_geo_failover_time_value storage_account_instance.last_geo_failover_time = last_geo_failover_time_instance secondary_location_value = properties_value.get('secondaryLocation', None) if secondary_location_value is not None: secondary_location_instance = secondary_location_value storage_account_instance.secondary_location = secondary_location_instance status_of_secondary_value = properties_value.get('statusOfSecondary', None) if status_of_secondary_value is not None: status_of_secondary_instance = status_of_secondary_value storage_account_instance.status_of_secondary = status_of_secondary_instance creation_time_value = properties_value.get('creationTime', None) if creation_time_value is not None: creation_time_instance = creation_time_value storage_account_instance.creation_time = creation_time_instance custom_domain_value = properties_value.get('customDomain', None) if custom_domain_value is not None: custom_domain_instance = CustomDomain() storage_account_instance.custom_domain = custom_domain_instance name_value2 = custom_domain_value.get('name', None) if name_value2 is not None: name_instance2 = name_value2 custom_domain_instance.name = name_instance2 use_sub_domain_value = custom_domain_value.get('useSubDomain', None) if use_sub_domain_value is not None: use_sub_domain_instance = use_sub_domain_value custom_domain_instance.use_sub_domain = use_sub_domain_instance secondary_endpoints_value = properties_value.get('secondaryEndpoints', None) if secondary_endpoints_value is not None: secondary_endpoints_instance = Endpoints() storage_account_instance.secondary_endpoints = secondary_endpoints_instance blob_value2 = secondary_endpoints_value.get('blob', None) if blob_value2 is not None: blob_instance2 = blob_value2 secondary_endpoints_instance.blob = blob_instance2 queue_value2 = secondary_endpoints_value.get('queue', None) if queue_value2 is not None: queue_instance2 = queue_value2 secondary_endpoints_instance.queue = queue_instance2 table_value2 = secondary_endpoints_value.get('table', None) if table_value2 is not None: table_instance2 = table_value2 secondary_endpoints_instance.table = table_instance2 result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def list(self): """ Lists all the storage accounts available under the subscription. Note that storage keys are not returned; use the ListKeys operation for this. Returns: StorageAccountListResponse: The list storage accounts operation response. """ # Validate # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/providers/Microsoft.Storage/storageAccounts' query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'GET' # Set Headers http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = StorageAccountListResponse(storage_accounts=[]) response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: value_array = response_doc.get('value', None) if value_array is not None: for value_value in value_array: storage_account_json_instance = StorageAccount(tags={}) result.storage_accounts.append(storage_account_json_instance) id_value = value_value.get('id', None) if id_value is not None: id_instance = id_value storage_account_json_instance.id = id_instance name_value = value_value.get('name', None) if name_value is not None: name_instance = name_value storage_account_json_instance.name = name_instance type_value = value_value.get('type', None) if type_value is not None: type_instance = type_value storage_account_json_instance.type = type_instance location_value = value_value.get('location', None) if location_value is not None: location_instance = location_value storage_account_json_instance.location = location_instance tags_sequence_element = value_value.get('tags', None) if tags_sequence_element is not None: for property in tags_sequence_element: tags_key = property tags_value = tags_sequence_element[property] storage_account_json_instance.tags[tags_key] = tags_value properties_value = value_value.get('properties', None) if properties_value is not None: provisioning_state_value = properties_value.get('provisioningState', None) if provisioning_state_value is not None: provisioning_state_instance = provisioning_state_value storage_account_json_instance.provisioning_state = provisioning_state_instance account_type_value = properties_value.get('accountType', None) if account_type_value is not None: account_type_instance = account_type_value storage_account_json_instance.account_type = account_type_instance primary_endpoints_value = properties_value.get('primaryEndpoints', None) if primary_endpoints_value is not None: primary_endpoints_instance = Endpoints() storage_account_json_instance.primary_endpoints = primary_endpoints_instance blob_value = primary_endpoints_value.get('blob', None) if blob_value is not None: blob_instance = blob_value primary_endpoints_instance.blob = blob_instance queue_value = primary_endpoints_value.get('queue', None) if queue_value is not None: queue_instance = queue_value primary_endpoints_instance.queue = queue_instance table_value = primary_endpoints_value.get('table', None) if table_value is not None: table_instance = table_value primary_endpoints_instance.table = table_instance primary_location_value = properties_value.get('primaryLocation', None) if primary_location_value is not None: primary_location_instance = primary_location_value storage_account_json_instance.primary_location = primary_location_instance status_of_primary_value = properties_value.get('statusOfPrimary', None) if status_of_primary_value is not None: status_of_primary_instance = status_of_primary_value storage_account_json_instance.status_of_primary = status_of_primary_instance last_geo_failover_time_value = properties_value.get('lastGeoFailoverTime', None) if last_geo_failover_time_value is not None: last_geo_failover_time_instance = last_geo_failover_time_value storage_account_json_instance.last_geo_failover_time = last_geo_failover_time_instance secondary_location_value = properties_value.get('secondaryLocation', None) if secondary_location_value is not None: secondary_location_instance = secondary_location_value storage_account_json_instance.secondary_location = secondary_location_instance status_of_secondary_value = properties_value.get('statusOfSecondary', None) if status_of_secondary_value is not None: status_of_secondary_instance = status_of_secondary_value storage_account_json_instance.status_of_secondary = status_of_secondary_instance creation_time_value = properties_value.get('creationTime', None) if creation_time_value is not None: creation_time_instance = creation_time_value storage_account_json_instance.creation_time = creation_time_instance custom_domain_value = properties_value.get('customDomain', None) if custom_domain_value is not None: custom_domain_instance = CustomDomain() storage_account_json_instance.custom_domain = custom_domain_instance name_value2 = custom_domain_value.get('name', None) if name_value2 is not None: name_instance2 = name_value2 custom_domain_instance.name = name_instance2 use_sub_domain_value = custom_domain_value.get('useSubDomain', None) if use_sub_domain_value is not None: use_sub_domain_instance = use_sub_domain_value custom_domain_instance.use_sub_domain = use_sub_domain_instance secondary_endpoints_value = properties_value.get('secondaryEndpoints', None) if secondary_endpoints_value is not None: secondary_endpoints_instance = Endpoints() storage_account_json_instance.secondary_endpoints = secondary_endpoints_instance blob_value2 = secondary_endpoints_value.get('blob', None) if blob_value2 is not None: blob_instance2 = blob_value2 secondary_endpoints_instance.blob = blob_instance2 queue_value2 = secondary_endpoints_value.get('queue', None) if queue_value2 is not None: queue_instance2 = queue_value2 secondary_endpoints_instance.queue = queue_instance2 table_value2 = secondary_endpoints_value.get('table', None) if table_value2 is not None: table_instance2 = table_value2 secondary_endpoints_instance.table = table_instance2 next_link_value = response_doc.get('nextLink', None) if next_link_value is not None: next_link_instance = next_link_value result.next_link = next_link_instance result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def list_by_resource_group(self, resource_group_name): """ Lists all the storage accounts available under the given resource group. Note that storage keys are not returned; use the ListKeys operation for this. Args: resource_group_name (string): The name of the resource group within the user’s subscription. Returns: StorageAccountListResponse: The list storage accounts operation response. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts' query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'GET' # Set Headers http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = StorageAccountListResponse(storage_accounts=[]) response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: value_array = response_doc.get('value', None) if value_array is not None: for value_value in value_array: storage_account_json_instance = StorageAccount(tags={}) result.storage_accounts.append(storage_account_json_instance) id_value = value_value.get('id', None) if id_value is not None: id_instance = id_value storage_account_json_instance.id = id_instance name_value = value_value.get('name', None) if name_value is not None: name_instance = name_value storage_account_json_instance.name = name_instance type_value = value_value.get('type', None) if type_value is not None: type_instance = type_value storage_account_json_instance.type = type_instance location_value = value_value.get('location', None) if location_value is not None: location_instance = location_value storage_account_json_instance.location = location_instance tags_sequence_element = value_value.get('tags', None) if tags_sequence_element is not None: for property in tags_sequence_element: tags_key = property tags_value = tags_sequence_element[property] storage_account_json_instance.tags[tags_key] = tags_value properties_value = value_value.get('properties', None) if properties_value is not None: provisioning_state_value = properties_value.get('provisioningState', None) if provisioning_state_value is not None: provisioning_state_instance = provisioning_state_value storage_account_json_instance.provisioning_state = provisioning_state_instance account_type_value = properties_value.get('accountType', None) if account_type_value is not None: account_type_instance = account_type_value storage_account_json_instance.account_type = account_type_instance primary_endpoints_value = properties_value.get('primaryEndpoints', None) if primary_endpoints_value is not None: primary_endpoints_instance = Endpoints() storage_account_json_instance.primary_endpoints = primary_endpoints_instance blob_value = primary_endpoints_value.get('blob', None) if blob_value is not None: blob_instance = blob_value primary_endpoints_instance.blob = blob_instance queue_value = primary_endpoints_value.get('queue', None) if queue_value is not None: queue_instance = queue_value primary_endpoints_instance.queue = queue_instance table_value = primary_endpoints_value.get('table', None) if table_value is not None: table_instance = table_value primary_endpoints_instance.table = table_instance primary_location_value = properties_value.get('primaryLocation', None) if primary_location_value is not None: primary_location_instance = primary_location_value storage_account_json_instance.primary_location = primary_location_instance status_of_primary_value = properties_value.get('statusOfPrimary', None) if status_of_primary_value is not None: status_of_primary_instance = status_of_primary_value storage_account_json_instance.status_of_primary = status_of_primary_instance last_geo_failover_time_value = properties_value.get('lastGeoFailoverTime', None) if last_geo_failover_time_value is not None: last_geo_failover_time_instance = last_geo_failover_time_value storage_account_json_instance.last_geo_failover_time = last_geo_failover_time_instance secondary_location_value = properties_value.get('secondaryLocation', None) if secondary_location_value is not None: secondary_location_instance = secondary_location_value storage_account_json_instance.secondary_location = secondary_location_instance status_of_secondary_value = properties_value.get('statusOfSecondary', None) if status_of_secondary_value is not None: status_of_secondary_instance = status_of_secondary_value storage_account_json_instance.status_of_secondary = status_of_secondary_instance creation_time_value = properties_value.get('creationTime', None) if creation_time_value is not None: creation_time_instance = creation_time_value storage_account_json_instance.creation_time = creation_time_instance custom_domain_value = properties_value.get('customDomain', None) if custom_domain_value is not None: custom_domain_instance = CustomDomain() storage_account_json_instance.custom_domain = custom_domain_instance name_value2 = custom_domain_value.get('name', None) if name_value2 is not None: name_instance2 = name_value2 custom_domain_instance.name = name_instance2 use_sub_domain_value = custom_domain_value.get('useSubDomain', None) if use_sub_domain_value is not None: use_sub_domain_instance = use_sub_domain_value custom_domain_instance.use_sub_domain = use_sub_domain_instance secondary_endpoints_value = properties_value.get('secondaryEndpoints', None) if secondary_endpoints_value is not None: secondary_endpoints_instance = Endpoints() storage_account_json_instance.secondary_endpoints = secondary_endpoints_instance blob_value2 = secondary_endpoints_value.get('blob', None) if blob_value2 is not None: blob_instance2 = blob_value2 secondary_endpoints_instance.blob = blob_instance2 queue_value2 = secondary_endpoints_value.get('queue', None) if queue_value2 is not None: queue_instance2 = queue_value2 secondary_endpoints_instance.queue = queue_instance2 table_value2 = secondary_endpoints_value.get('table', None) if table_value2 is not None: table_instance2 = table_value2 secondary_endpoints_instance.table = table_instance2 next_link_value = response_doc.get('nextLink', None) if next_link_value is not None: next_link_instance = next_link_value result.next_link = next_link_instance result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def list_keys(self, resource_group_name, account_name): """ Lists the access keys for the specified storage account. Args: resource_group_name (string): The name of the resource group. account_name (string): The name of the storage account. Returns: StorageAccountListKeysResponse: The ListKeys operation response. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') if account_name is None: raise ValueError('account_name cannot be None.') if len(account_name) < 3: raise IndexError('account_name is outside the valid range.') if len(account_name) > 24: raise IndexError('account_name is outside the valid range.') for account_name_char in account_name: if account_name_char.islower() == False and account_name_char.isdigit() == False: raise IndexError('account_name is outside the valid range.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts/' url = url + quote(account_name) url = url + '/listKeys' query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'POST' # Set Headers http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = StorageAccountListKeysResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: storage_account_keys_instance = StorageAccountKeys() result.storage_account_keys = storage_account_keys_instance key1_value = response_doc.get('key1', None) if key1_value is not None: key1_instance = key1_value storage_account_keys_instance.key1 = key1_instance key2_value = response_doc.get('key2', None) if key2_value is not None: key2_instance = key2_value storage_account_keys_instance.key2 = key2_instance result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def regenerate_key(self, resource_group_name, account_name, regenerate_key): """ Regenerates the access keys for the specified storage account. Args: resource_group_name (string): The name of the resource group within the user’s subscription. account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. regenerate_key (KeyName): Specifies name of the key which should be regenerated. Returns: StorageAccountRegenerateKeyResponse: The RegenerateKey operation response. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') if account_name is None: raise ValueError('account_name cannot be None.') if len(account_name) < 3: raise IndexError('account_name is outside the valid range.') if len(account_name) > 24: raise IndexError('account_name is outside the valid range.') for account_name_char in account_name: if account_name_char.islower() == False and account_name_char.isdigit() == False: raise IndexError('account_name is outside the valid range.') if regenerate_key is None: raise ValueError('regenerate_key cannot be None.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts/' url = url + quote(account_name) url = url + '/regenerateKey' query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'POST' # Set Headers http_request.headers['Content-Type'] = 'application/json' http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Serialize Request request_content = None request_doc = None storage_account_regenerate_key_parameters_value = {} request_doc = storage_account_regenerate_key_parameters_value storage_account_regenerate_key_parameters_value['keyName'] = str(regenerate_key) if regenerate_key is not None else 'Key1' request_content = json.dumps(request_doc) http_request.data = request_content http_request.headers['Content-Length'] = len(request_content) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = StorageAccountRegenerateKeyResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: storage_account_keys_instance = StorageAccountKeys() result.storage_account_keys = storage_account_keys_instance key1_value = response_doc.get('key1', None) if key1_value is not None: key1_instance = key1_value storage_account_keys_instance.key1 = key1_instance key2_value = response_doc.get('key2', None) if key2_value is not None: key2_instance = key2_value storage_account_keys_instance.key2 = key2_instance result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result def update(self, resource_group_name, account_name, parameters): """ Updates the account type or tags for a storage account. It can also be used to add a custom domain (note that custom domains cannot be added via the Create operation). Only one custom domain is supported per storage account. This API can only be used to update one of tags, accountType, or customDomain per call. To update multiple of these properties, call the API multiple times with one change per call. This call does not change the storage keys for the account. If you want to change storage account keys, use the RegenerateKey operation. The location and name of the storage account cannot be changed after creation. Args: resource_group_name (string): The name of the resource group within the user’s subscription. account_name (string): The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. parameters (StorageAccountUpdateParameters): The parameters to update on the account. Note that only one property can be changed at a time using this API. Returns: StorageAccountUpdateResponse: The Update storage account operation response. """ # Validate if resource_group_name is None: raise ValueError('resource_group_name cannot be None.') if account_name is None: raise ValueError('account_name cannot be None.') if len(account_name) < 3: raise IndexError('account_name is outside the valid range.') if len(account_name) > 24: raise IndexError('account_name is outside the valid range.') for account_name_char in account_name: if account_name_char.islower() == False and account_name_char.isdigit() == False: raise IndexError('account_name is outside the valid range.') if parameters is None: raise ValueError('parameters cannot be None.') if parameters.custom_domain is not None: if parameters.custom_domain.name is None: raise ValueError('parameters.custom_domain.name cannot be None.') # Tracing # Construct URL url = '' url = url + '/subscriptions/' if self.client.credentials.subscription_id is not None: url = url + quote(self.client.credentials.subscription_id) url = url + '/resourceGroups/' url = url + quote(resource_group_name) url = url + '/providers/Microsoft.Storage/storageAccounts/' url = url + quote(account_name) query_parameters = [] query_parameters.append('api-version=2015-05-01-preview') if len(query_parameters) > 0: url = url + '?' + '&'.join(query_parameters) base_url = self.client.base_uri # Trim '/' character from the end of baseUrl and beginning of url. if base_url[len(base_url) - 1] == '/': base_url = base_url[0 : len(base_url) - 1] if url[0] == '/': url = url[1 : ] url = base_url + '/' + url url = url.replace(' ', '%20') # Create HTTP transport objects http_request = Request() http_request.url = url http_request.method = 'PATCH' # Set Headers http_request.headers['Content-Type'] = 'application/json' http_request.headers['x-ms-client-request-id'] = str(uuid.uuid4()) # Serialize Request request_content = None request_doc = None storage_account_update_parameters_json_value = {} request_doc = storage_account_update_parameters_json_value if parameters.tags is not None: tags_dictionary = {} for tags_key in parameters.tags: tags_value = parameters.tags[tags_key] tags_dictionary[tags_key] = tags_value storage_account_update_parameters_json_value['tags'] = tags_dictionary properties_value = {} storage_account_update_parameters_json_value['properties'] = properties_value if parameters.account_type is not None: properties_value['accountType'] = str(parameters.account_type) if parameters.account_type is not None else 'StandardLRS' if parameters.custom_domain is not None: custom_domain_value = {} properties_value['customDomain'] = custom_domain_value custom_domain_value['name'] = parameters.custom_domain.name if parameters.custom_domain.use_sub_domain is not None: custom_domain_value['useSubDomain'] = parameters.custom_domain.use_sub_domain request_content = json.dumps(request_doc) http_request.data = request_content http_request.headers['Content-Length'] = len(request_content) # Send Request response = self.client.send_request(http_request) body = response.content status_code = response.status_code if status_code != 200: error = AzureHttpError(body, response.status_code) raise error # Create Result result = None # Deserialize Response if status_code == 200: response_content = body result = StorageAccountUpdateResponse() response_doc = None if response_content: response_doc = json.loads(response_content.decode()) if response_doc is not None: storage_account_instance = StorageAccount(tags={}) result.storage_account = storage_account_instance id_value = response_doc.get('id', None) if id_value is not None: id_instance = id_value storage_account_instance.id = id_instance name_value = response_doc.get('name', None) if name_value is not None: name_instance = name_value storage_account_instance.name = name_instance type_value = response_doc.get('type', None) if type_value is not None: type_instance = type_value storage_account_instance.type = type_instance location_value = response_doc.get('location', None) if location_value is not None: location_instance = location_value storage_account_instance.location = location_instance tags_sequence_element = response_doc.get('tags', None) if tags_sequence_element is not None: for property in tags_sequence_element: tags_key2 = property tags_value2 = tags_sequence_element[property] storage_account_instance.tags[tags_key2] = tags_value2 properties_value2 = response_doc.get('properties', None) if properties_value2 is not None: provisioning_state_value = properties_value2.get('provisioningState', None) if provisioning_state_value is not None: provisioning_state_instance = provisioning_state_value storage_account_instance.provisioning_state = provisioning_state_instance account_type_value = properties_value2.get('accountType', None) if account_type_value is not None: account_type_instance = account_type_value storage_account_instance.account_type = account_type_instance primary_endpoints_value = properties_value2.get('primaryEndpoints', None) if primary_endpoints_value is not None: primary_endpoints_instance = Endpoints() storage_account_instance.primary_endpoints = primary_endpoints_instance blob_value = primary_endpoints_value.get('blob', None) if blob_value is not None: blob_instance = blob_value primary_endpoints_instance.blob = blob_instance queue_value = primary_endpoints_value.get('queue', None) if queue_value is not None: queue_instance = queue_value primary_endpoints_instance.queue = queue_instance table_value = primary_endpoints_value.get('table', None) if table_value is not None: table_instance = table_value primary_endpoints_instance.table = table_instance primary_location_value = properties_value2.get('primaryLocation', None) if primary_location_value is not None: primary_location_instance = primary_location_value storage_account_instance.primary_location = primary_location_instance status_of_primary_value = properties_value2.get('statusOfPrimary', None) if status_of_primary_value is not None: status_of_primary_instance = status_of_primary_value storage_account_instance.status_of_primary = status_of_primary_instance last_geo_failover_time_value = properties_value2.get('lastGeoFailoverTime', None) if last_geo_failover_time_value is not None: last_geo_failover_time_instance = last_geo_failover_time_value storage_account_instance.last_geo_failover_time = last_geo_failover_time_instance secondary_location_value = properties_value2.get('secondaryLocation', None) if secondary_location_value is not None: secondary_location_instance = secondary_location_value storage_account_instance.secondary_location = secondary_location_instance status_of_secondary_value = properties_value2.get('statusOfSecondary', None) if status_of_secondary_value is not None: status_of_secondary_instance = status_of_secondary_value storage_account_instance.status_of_secondary = status_of_secondary_instance creation_time_value = properties_value2.get('creationTime', None) if creation_time_value is not None: creation_time_instance = creation_time_value storage_account_instance.creation_time = creation_time_instance custom_domain_value2 = properties_value2.get('customDomain', None) if custom_domain_value2 is not None: custom_domain_instance = CustomDomain() storage_account_instance.custom_domain = custom_domain_instance name_value2 = custom_domain_value2.get('name', None) if name_value2 is not None: name_instance2 = name_value2 custom_domain_instance.name = name_instance2 use_sub_domain_value = custom_domain_value2.get('useSubDomain', None) if use_sub_domain_value is not None: use_sub_domain_instance = use_sub_domain_value custom_domain_instance.use_sub_domain = use_sub_domain_instance secondary_endpoints_value = properties_value2.get('secondaryEndpoints', None) if secondary_endpoints_value is not None: secondary_endpoints_instance = Endpoints() storage_account_instance.secondary_endpoints = secondary_endpoints_instance blob_value2 = secondary_endpoints_value.get('blob', None) if blob_value2 is not None: blob_instance2 = blob_value2 secondary_endpoints_instance.blob = blob_instance2 queue_value2 = secondary_endpoints_value.get('queue', None) if queue_value2 is not None: queue_instance2 = queue_value2 secondary_endpoints_instance.queue = queue_instance2 table_value2 = secondary_endpoints_value.get('table', None) if table_value2 is not None: table_instance2 = table_value2 secondary_endpoints_instance.table = table_instance2 result.status_code = status_code result.request_id = response.headers.get('x-ms-request-id') return result
44.012263
133
0.558753
117,146
0.988966
0
0
13,432
0.113395
0
0
25,760
0.21747
d2f56951f340d9aa264e8c54df9fedc28d30df30
1,832
py
Python
src/nucleotide/component/linux/gcc/atom/rtl.py
dmilos/nucleotide
aad5d60508c9e4baf4888069284f2cb5c9fd7c55
[ "Apache-2.0" ]
1
2020-09-04T13:00:04.000Z
2020-09-04T13:00:04.000Z
src/nucleotide/component/linux/gcc/atom/rtl.py
dmilos/nucleotide
aad5d60508c9e4baf4888069284f2cb5c9fd7c55
[ "Apache-2.0" ]
1
2020-04-10T01:52:32.000Z
2020-04-10T09:11:29.000Z
src/nucleotide/component/linux/gcc/atom/rtl.py
dmilos/nucleotide
aad5d60508c9e4baf4888069284f2cb5c9fd7c55
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 # Copyright 2015 Dejan D. M. Milosavljevic # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import platform import nucleotide import nucleotide.component import nucleotide.component.function def _linux_RTL_LINKFLAGS( P_data ): I_flag = '' #if( 'dynamic' == P_data['type'] ): # I_flag += 'D' if( 'static' == P_data['type'] ): I_flag += '-static' return [ I_flag ] atom_linux_RTL = { 'platform' : { 'host' : 'Linux', 'guest' : 'Linux' }, 'cc' : { 'vendor': 'FSF', 'name' : 'gcc', 'version': 'X' }, 'config' : { 'LINKFLAGS' : _linux_RTL_LINKFLAGS }, 'name' :'RTL', 'class': [ 'RTL', 'linux:RTL' ] } class RTL: def __init__(self): pass @staticmethod def extend( P_option ): nucleotide.component.function.extend( P_option, 'A:linux:RTL', atom_linux_RTL ) atom_linux_RTL['platform']['host'] = 'X'; nucleotide.component.function.extend( P_option, 'x:linux:RTL', atom_linux_RTL ) atom_linux_RTL['platform']['guest'] = 'X'; nucleotide.component.function.extend( P_option, 'y:linux:RTL', atom_linux_RTL ) @staticmethod def check(): pass
27.343284
104
0.60917
561
0.306223
0
0
502
0.274017
0
0
904
0.49345
d2f5d91da9ad5c16c7e8d867f33c570f4ad80d87
1,127
py
Python
notebooks/denerator_tests/actions/config.py
Collen-Roller/Rasa-Denerator
728d21d93f21a18c9de7be303ceae59392de9a41
[ "MIT" ]
11
2019-09-11T13:48:53.000Z
2021-11-26T00:48:57.000Z
notebooks/denerator_tests/actions/config.py
Collen-Roller/Rasa-Denerator
728d21d93f21a18c9de7be303ceae59392de9a41
[ "MIT" ]
2
2019-10-18T17:21:54.000Z
2021-10-08T06:45:11.000Z
notebooks/denerator_tests/actions/config.py
Collen-Roller/Rasa-Denerator
728d21d93f21a18c9de7be303ceae59392de9a41
[ "MIT" ]
4
2019-10-04T14:43:06.000Z
2021-06-16T21:23:23.000Z
import os policy_model_dir = os.environ.get("POLICY_MODEL_DIR", "models/dialogue/") rasa_nlu_config = os.environ.get("RASA_NLU_CONFIG", "nlu_config.yml") account_sid = os.environ.get("ACCOUNT_SID", "") auth_token = os.environ.get("AUTH_TOKEN", "") twilio_number = os.environ.get("TWILIO_NUMBER", "") platform_api = os.environ.get("RASA_API_ENDPOINT_URL", "") self_port = int(os.environ.get("SELF_PORT", "5001")) core_model_dir = os.environ.get("CORE_MODEL_DIR", "models/dialogue/") remote_core_endpoint = os.environ.get("RASA_REMOTE_CORE_ENDPOINT_URL", "") rasa_core_token = os.environ.get("RASA_CORE_TOKEN", "") mailchimp_api_key = os.environ.get("MAILCHIMP_API_KEY", "") mailchimp_list = os.environ.get("MAILCHIMP_LIST", "") gdrive_credentials = os.environ.get("GDRIVE_CREDENTIALS", "") access_token = os.environ.get("TELEGRAM_TOKEN", "") verify = os.environ.get("TELEGRAM_VERIFY", "rasas_bot") webhook_url = os.environ.get("WEBHOOK_URL", "https://website-demo.rasa.com/webhook") rasa_platform_token = os.environ.get("RASA_PLATFORM_TOKEN", "") rasa_nlg_endpoint = os.environ.get("RASA_NLG_ENDPOINT_URL", "")
30.459459
84
0.747116
0
0
0
0
0
0
0
0
450
0.39929
d2f65b3512d928c10cc32ae1efdfb3cff693d569
876
py
Python
python/moderation_text_token_demo.py
huaweicloud/huaweicloud-sdk-moderation
fa7cfda017a71ec8abf3afc57a0e476dd7508167
[ "Apache-2.0" ]
8
2019-06-04T06:24:54.000Z
2022-01-29T13:16:53.000Z
python/moderation_text_token_demo.py
huaweicloud/huaweicloud-sdk-moderation
fa7cfda017a71ec8abf3afc57a0e476dd7508167
[ "Apache-2.0" ]
4
2021-12-14T21:21:03.000Z
2022-01-04T16:34:33.000Z
python/moderation_text_token_demo.py
huaweicloud/huaweicloud-sdk-moderation
fa7cfda017a71ec8abf3afc57a0e476dd7508167
[ "Apache-2.0" ]
8
2019-08-12T02:18:03.000Z
2021-11-30T10:39:23.000Z
# -*- coding:utf-8 -*- from moderation_sdk.gettoken import get_token from moderation_sdk.moderation_text import moderation_text from moderation_sdk.utils import init_global_env if __name__ == '__main__': # Services currently support North China-Beijing(cn-north-4),China East-Shanghai1(cn-east-3), CN-Hong Kong(ap-southeast-1),AP-Singapore(ap-southeast-3) init_global_env('cn-north-4') # # access moderation text enhance,posy data by token # user_name = '******' password = '******' account_name = '******' # the same as user_name in commonly use token = get_token(user_name, password, account_name) # call interface use the text result = moderation_text(token, '666666luo聊请+110亚砷酸钾六位qq,fuck666666666666666', 'content', ['ad', 'politics', 'porn', 'abuse', 'contraband', 'flood']) print(result)
38.086957
155
0.680365
0
0
0
0
0
0
0
0
458
0.512304
d2f6c77eeb49683e8ab27570e5b6c4f101091a5b
2,195
py
Python
tests/system/action/test_general.py
FinnStutzenstein/openslides-backend
fffc152f79d3446591e07a6913d9fdf30b46f577
[ "MIT" ]
null
null
null
tests/system/action/test_general.py
FinnStutzenstein/openslides-backend
fffc152f79d3446591e07a6913d9fdf30b46f577
[ "MIT" ]
null
null
null
tests/system/action/test_general.py
FinnStutzenstein/openslides-backend
fffc152f79d3446591e07a6913d9fdf30b46f577
[ "MIT" ]
null
null
null
from .base import BaseActionTestCase class GeneralActionWSGITester(BaseActionTestCase): """ Tests the action WSGI application in general. """ def test_request_wrong_method(self) -> None: response = self.client.get("/") self.assert_status_code(response, 405) def test_request_wrong_media_type(self) -> None: response = self.client.post("/") self.assert_status_code(response, 400) self.assertIn("Wrong media type.", response.json["message"]) def test_request_missing_body(self) -> None: response = self.client.post("/", content_type="application/json") self.assert_status_code(response, 400) self.assertIn("Failed to decode JSON object", response.json["message"]) def test_request_fuzzy_body(self) -> None: response = self.client.post( "/", json={"fuzzy_key_Eeng7pha3a": "fuzzy_value_eez3Ko6quu"}, ) self.assert_status_code(response, 400) self.assertIn("data must be array", response.json["message"]) def test_request_fuzzy_body_2(self) -> None: response = self.client.post( "/", json=[{"fuzzy_key_Voh8in7aec": "fuzzy_value_phae3iew4W"}], ) self.assert_status_code(response, 400) self.assertIn( "data[0] must contain ['action', 'data'] properties", response.json["message"], ) def test_request_no_existing_action(self) -> None: response = self.request("fuzzy_action_hamzaeNg4a", {}) self.assert_status_code(response, 400) self.assertIn( "Action fuzzy_action_hamzaeNg4a does not exist.", response.json["message"], ) def test_health_route(self) -> None: response = self.client.get("/health") self.assert_status_code(response, 200) self.assertIn("healthinfo", response.json) actions = response.json["healthinfo"]["actions"] some_example_actions = ( "topic.create", "motion.delete", "user.update_temporary", ) for action in some_example_actions: self.assertIn(action, actions.keys())
35.403226
79
0.625968
2,155
0.981777
0
0
0
0
0
0
519
0.236446
d2f71173ca42ab7fa57a0943b698ed9189ef93d3
2,897
py
Python
src/thead/cls/amsart.py
jakub-oprsal/thead
df175adf6ad0b3b16ec0703a31e7020327df4c92
[ "MIT" ]
null
null
null
src/thead/cls/amsart.py
jakub-oprsal/thead
df175adf6ad0b3b16ec0703a31e7020327df4c92
[ "MIT" ]
null
null
null
src/thead/cls/amsart.py
jakub-oprsal/thead
df175adf6ad0b3b16ec0703a31e7020327df4c92
[ "MIT" ]
null
null
null
from .common import * HEADER = r'''\usepackage{tikz} \definecolor{purple}{cmyk}{0.55,1,0,0.15} \definecolor{darkblue}{cmyk}{1,0.58,0,0.21} \usepackage[colorlinks, linkcolor=black, urlcolor=darkblue, citecolor=purple]{hyperref} \urlstyle{same} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{claim}[theorem]{Claim} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} ''' def render_pdfmeta(authors, title): author_list = authors_list(authors, short=True) return f'''\\hypersetup{{% pdftitle = {{{title}}}, pdfauthor = {{{author_list}}}}}\n''' def render_author(author): out = render_command('author', author['name']) if 'affiliation' in author: out += render_command('address', ", ".join(value for _, value in author['affiliation'].items())) if 'email' in author: out += render_command('email', author['email']) return out def render_funding(funds): funding_note = '\n'.join(grant['note'] for grant in funds if 'note' in grant) return render_command('thanks', funding_note) def render_acks(acks): return f'\\subsection*{{Acknowledgements}}\n\n{acks.strip()}\n' def header(data, cname=None, classoptions=[], **kwargs): if cname is None: cname = 'amsart' if 'noheader' in classoptions: classoptions.remove('noheader') include_header = False else: include_header = True headers = [ render_command( 'documentclass', cname, ','.join(classoptions)), render_encs] if include_header: headers.append(HEADER) if 'include' in kwargs: headers += [include(file) for file in kwargs['include']] shorttitle = data['shorttitle'] if 'shorttitle' in data else '' headers += [ render_pdfmeta(data['authors'], data['title']), begin_document, render_command('title', data['title'], shorttitle), '\n'.join(map(render_author, data['authors']))] if 'funding' in data: headers.append(render_funding(data['funding'])) if 'abstract' in data: headers.append(render_abstract(data['abstract'])) if 'keywords' in data: headers.append(render_keywords(data['keywords'])) headers += [maketitle, ''] return '\n'.join(headers) def footer(data, bib): footers = [''] if 'acknowledgements' in data: # and not anonymous: footers.append(render_acks(data['acknowledgements'])) if bib: footers.append(render_bib('alphaurl', bib)) footers.append(end_document) return '\n'.join(footers)
27.074766
75
0.643079
0
0
0
0
0
0
0
0
1,125
0.388333
d2f89e6b57c9a1b93947576a30ec79f4c0bc634e
88
py
Python
Workflow/packages/__init__.py
MATS64664-2021-Group-2/Hydride-Connect-Group-2
fa95d38174ffd85461bf66f923c38a3908a469a7
[ "MIT" ]
null
null
null
Workflow/packages/__init__.py
MATS64664-2021-Group-2/Hydride-Connect-Group-2
fa95d38174ffd85461bf66f923c38a3908a469a7
[ "MIT" ]
2
2021-04-12T20:30:48.000Z
2021-05-24T14:07:24.000Z
Workflow/packages/__init__.py
MATS64664-2021-Group-2/Hydride_Connection
fa95d38174ffd85461bf66f923c38a3908a469a7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Apr 15 11:31:06 2021 @author: a77510jm """
11
35
0.579545
0
0
0
0
0
0
0
0
85
0.965909
d2f90e2105f715bfa385ede947f0041c8746e8c3
6,133
py
Python
in_progress/GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_Aligned_Rotator.py
fedelopezar/nrpytutorial
753acd954be4a2f99639c9f9fd5e623689fc7493
[ "BSD-2-Clause" ]
1
2021-12-13T05:51:18.000Z
2021-12-13T05:51:18.000Z
in_progress/GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_Aligned_Rotator.py
fedelopezar/nrpytutorial
753acd954be4a2f99639c9f9fd5e623689fc7493
[ "BSD-2-Clause" ]
null
null
null
in_progress/GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_Aligned_Rotator.py
fedelopezar/nrpytutorial
753acd954be4a2f99639c9f9fd5e623689fc7493
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # <a id='top'></a> # # # # $\texttt{GiRaFFEfood}$: Initial data for $\texttt{GiRaFFE}$ # # ## Aligned Rotator # # $$\label{top}$$ # # This module provides another initial data option for $\texttt{GiRaFFE}$. This is a flat-spacetime test with initial data $$A_{\phi} = \frac{\mu \varpi}{r^3},$$ where $\mu = B_p R_{\rm NS} / 2$, $R_{\rm NS}$ is the neutron star radius, and $\varpi = \sqrt{x^2+y^2}$ is the cylindrical radius. We let $A_r = A_\theta = 0$. # # Additionally, the drift velocity $v^i = \Omega \textbf{e}_z \times \textbf{r} = [ijk] \Omega \textbf{e}^j_z x^k$, where $[ijk]$ is the Levi-Civita permutation symbol and $\textbf{e}^i_z = (0,0,1)$. # <a id='preliminaries'></a> # # ### Steps 0-1: Preliminaries # $$\label{preliminaries}$$ # # \[Back to [top](#top)\] # # Here, we will import the NRPy+ core modules and set the reference metric to Cartesian, set commonly used NRPy+ parameters, and set C parameters that will be set from outside the code eventually generated from these expressions. We will also set up a parameter to determine what initial data is set up, although it won't do much yet. # Step 0: Import the NRPy+ core modules and set the reference metric to Cartesian import NRPy_param_funcs as par import indexedexp as ixp import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import reference_metric as rfm par.set_parval_from_str("reference_metric::CoordSystem","Cartesian") rfm.reference_metric() # Step 1a: Set commonly used parameters. thismodule = __name__ B_p_aligned_rotator,R_NS_aligned_rotator = par.Cparameters("REAL",thismodule, # B_p_aligned_rotator = the intensity of the magnetic field and # R_NS_aligned_rotator= "Neutron star" radius ["B_p_aligned_rotator","R_NS_aligned_rotator"], [1e-5, 1.0]) # The angular velocity of the "neutron star" Omega_aligned_rotator = par.Cparameters("REAL",thismodule,"Omega_aligned_rotator",1e3) # <a id='step2'></a> # # ### Step 2: Set the vectors A in Spherical coordinates # $$\label{step2}$$ # # \[Back to [top](#top)\] # # We will first build the fundamental vector $A_i$ in spherical coordinates (see [Table 3](https://arxiv.org/pdf/1704.00599.pdf)). Note that we use reference_metric.py to set $r$ and $\theta$ in terms of Cartesian coordinates; this will save us a step later when we convert to Cartesian coordinates. So, we set # \begin{align} # A_{\phi} &= \frac{\mu \varpi}{r^3}, \\ # \end{align} # with $\mu = B_p R_{\rm NS} / 2$, $R_{\rm NS}$ is the neutron star radius, and $\varpi = \sqrt{x^2+y^2}$ def GiRaFFEfood_NRPy_Aligned_Rotator(): r = rfm.xxSph[0] varpi = sp.sqrt(rfm.xx_to_Cart[0]**2 + rfm.xx_to_Cart[1]**2) mu = B_p_aligned_rotator * R_NS_aligned_rotator**3 / 2 ASphD = ixp.zerorank1() ASphD[2] = mu * varpi**2 / (r**3) # The other components were already declared to be 0. # <a id='step3'></a> # # ### Step 3: Use the Jacobian matrix to transform the vectors to Cartesian coordinates. # $$\label{step3}$$ # # \[Back to [top](#top)\] # # Now, we will use the coordinate transformation definitions provided by reference_metric.py to build the Jacobian # $$ # \frac{\partial x_{\rm Sph}^j}{\partial x_{\rm Cart}^i}, # $$ # where $x_{\rm Sph}^j \in \{r,\theta,\phi\}$ and $x_{\rm Cart}^i \in \{x,y,z\}$. We would normally compute its inverse, but since none of the quantities we need to transform have upper indices, it is not necessary. Then, since $A_i$ and has one lower index, it will need to be multiplied by the Jacobian: # # $$ # A_i^{\rm Cart} = A_j^{\rm Sph} \frac{\partial x_{\rm Sph}^j}{\partial x_{\rm Cart}^i}, # $$ # Step 3: Use the Jacobian matrix to transform the vectors to Cartesian coordinates. drrefmetric__dx_0UDmatrix = sp.Matrix([[sp.diff(rfm.xxSph[0],rfm.xx[0]), sp.diff(rfm.xxSph[0],rfm.xx[1]), sp.diff(rfm.xxSph[0],rfm.xx[2])], [sp.diff(rfm.xxSph[1],rfm.xx[0]), sp.diff(rfm.xxSph[1],rfm.xx[1]), sp.diff(rfm.xxSph[1],rfm.xx[2])], [sp.diff(rfm.xxSph[2],rfm.xx[0]), sp.diff(rfm.xxSph[2],rfm.xx[1]), sp.diff(rfm.xxSph[2],rfm.xx[2])]]) #dx__drrefmetric_0UDmatrix = drrefmetric__dx_0UDmatrix.inv() # We don't actually need this in this case. global AD AD = ixp.zerorank1(DIM=3) for i in range(3): for j in range(3): AD[i] = drrefmetric__dx_0UDmatrix[(j,i)]*ASphD[j] # <a id='step4'></a> # # ### Step 4: Calculate $v^i$ # $$\label{step4}$$ # # \[Back to [top](#top)\] # # Here, we will calculate the drift velocity $v^i = \Omega \textbf{e}_z \times \textbf{r} = [ijk] \Omega \textbf{e}^j_z x^k$, where $[ijk]$ is the Levi-Civita permutation symbol and $\textbf{e}^i_z = (0,0,1)$. Conveniently, in flat space, the drift velocity reduces to the Valencia velocity because $\alpha = 1$ and $\beta^i = 0$. # Step 4: Calculate v^i LeviCivitaSymbolDDD = ixp.LeviCivitaSymbol_dim3_rank3() import Min_Max_and_Piecewise_Expressions as noif unit_zU = ixp.zerorank1() unit_zU[2] = sp.sympify(1) global ValenciavU ValenciavU = ixp.zerorank1() for i in range(3): for j in range(3): for k in range(3): ValenciavU[i] += noif.coord_leq_bound(r,R_NS_aligned_rotator)*LeviCivitaSymbolDDD[i][j][k] * Omega_aligned_rotator * unit_zU[j] * rfm.xx[k] # ### NRPy+ Module Code Validation # # \[Back to [top](#top)\] # # Here, as a code validation check, we verify agreement in the SymPy expressions for the $\texttt{GiRaFFE}$ Aligned Rotator initial data equations we intend to use between # 1. this tutorial and # 2. the NRPy+ [GiRaFFEfood_NRPy_Aligned_Rotator.py](../edit/GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_Aligned_Rotator.py) module. #
43.807143
334
0.633458
0
0
0
0
0
0
0
0
4,001
0.652372
d2fa22173570793bad17191d495756a260b18a45
803
py
Python
deploys/call_httpx.py
vic9527/ViClassifier
fd6c4730e880f35a9429277a6025219315e067cc
[ "MIT" ]
1
2021-11-03T05:05:34.000Z
2021-11-03T05:05:34.000Z
deploys/call_httpx.py
vic9527/viclassifier
fd6c4730e880f35a9429277a6025219315e067cc
[ "MIT" ]
null
null
null
deploys/call_httpx.py
vic9527/viclassifier
fd6c4730e880f35a9429277a6025219315e067cc
[ "MIT" ]
null
null
null
""" 比requests更强大python库,让你的爬虫效率提高一倍 https://mp.weixin.qq.com/s/jqGx-4t4ytDDnXxDkzbPqw HTTPX 基础教程 https://zhuanlan.zhihu.com/p/103824900 """ def interface(url, data): import httpx head = {"Content-Type": "application/json; charset=UTF-8"} return httpx.request('POST', url, json=data, headers=head) if __name__ == '__main__': post_url = "http://127.0.0.1:8888" post_data = {"image": 112, "name": 1} response = interface(post_url, post_data) print('status_code: ', response.status_code) # 打印状态码 # print('url: ', response.url) # 打印请求url # print('headers: ', response.headers) # 打印头信息 # print('cookies: ', response.cookies) # 打印cookie信息 print('text: ', response.text) # 以文本形式打印网页源码 # print('content: ', response.content) #以字节流形式打印
27.689655
62
0.651308
0
0
0
0
0
0
0
0
602
0.65506
d2fb4e383d869720b16333431cb622b5be807b1f
9,034
py
Python
src/rgt/THOR/THOR.py
mguo123/pan_omics
e1cacd543635b398fb08c0b31d08fa6b7c389658
[ "MIT" ]
null
null
null
src/rgt/THOR/THOR.py
mguo123/pan_omics
e1cacd543635b398fb08c0b31d08fa6b7c389658
[ "MIT" ]
null
null
null
src/rgt/THOR/THOR.py
mguo123/pan_omics
e1cacd543635b398fb08c0b31d08fa6b7c389658
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ THOR detects differential peaks in multiple ChIP-seq profiles associated with two distinct biological conditions. Copyright (C) 2014-2016 Manuel Allhoff ([email protected]) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. @author: Manuel Allhoff """ # Python from __future__ import print_function import sys # Internal from .dpc_help import get_peaks, _fit_mean_var_distr, initialize, merge_output, handle_input from .tracker import Tracker from .postprocessing import _output_BED, _output_narrowPeak from ..THOR.neg_bin_rep_hmm import NegBinRepHMM, get_init_parameters, _get_pvalue_distr from ..THOR.RegionGiver import RegionGiver from ..THOR.postprocessing import filter_by_pvalue_strand_lag from .. import __version__ # External TEST = False #enable to test THOR locally def _write_info(tracker, report, **data): """Write information to tracker""" tracker.write(text=data['func_para'][0], header="Parameters for both estimated quadr. function y=max(|a|*x^2 + x + |c|, 0) (a)") tracker.write(text=data['func_para'][1], header="Parameters for both estimated quadr. function y=max(|a|*x^2 + x + |c|, 0) (c)") #tracker.write(text=data['init_mu'], header="Inital parameter estimate for HMM's Neg. Bin. Emission distribution (mu)") #tracker.write(text=data['init_alpha'], header="Inital parameter estimate for HMM's Neg. Bin. Emission distribution (alpha)") #tracker.write(text=data['m'].mu, header="Final HMM's Neg. Bin. Emission distribution (mu)") #tracker.write(text=data['m'].alpha, header="Final HMM's Neg. Bin. Emission distribution (alpha)") #tracker.write(text=data['m']._get_transmat(), header="Transmission matrix") if report: tracker.make_html() def train_HMM(region_giver, options, bamfiles, genome, chrom_sizes, dims, inputs, tracker): """Train HMM""" while True: train_regions = region_giver.get_training_regionset() exp_data = initialize(name=options.name, dims=dims, genome_path=genome, regions=train_regions, stepsize=options.stepsize, binsize=options.binsize, bamfiles=bamfiles, exts=options.exts, inputs=inputs, exts_inputs=options.exts_inputs, debug=options.debug, verbose=options.verbose, no_gc_content=options.no_gc_content, factors_inputs=options.factors_inputs, chrom_sizes=chrom_sizes, tracker=tracker, norm_regions=options.norm_regions, scaling_factors_ip=options.scaling_factors_ip, save_wig=options.save_wig, housekeeping_genes=options.housekeeping_genes, test=TEST, report=options.report, chrom_sizes_dict=region_giver.get_chrom_dict(), end=True, counter=0, output_bw=False, save_input=options.save_input, m_threshold=options.m_threshold, a_threshold=options.a_threshold, rmdup=options.rmdup) if exp_data.count_positive_signal() > len(train_regions.sequences[0]) * 0.00001: tracker.write(text=" ".join(map(lambda x: str(x), exp_data.exts)), header="Extension size (rep1, rep2, input1, input2)") tracker.write(text=map(lambda x: str(x), exp_data.scaling_factors_ip), header="Scaling factors") break func, func_para = _fit_mean_var_distr(exp_data.overall_coverage, options.name, options.debug, verbose=options.verbose, outputdir=options.outputdir, report=options.report, poisson=options.poisson) exp_data.compute_putative_region_index() print('Compute HMM\'s training set', file=sys.stderr) training_set, s0, s1, s2 = exp_data.get_training_set(TEST, exp_data, options.name, options.foldchange, options.threshold, options.size_ts, 3) init_alpha, init_mu = get_init_parameters(s0, s1, s2) m = NegBinRepHMM(alpha=init_alpha, mu=init_mu, dim_cond_1=dims[0], dim_cond_2=dims[1], func=func) training_set_obs = exp_data.get_observation(training_set) print('Train HMM', file=sys.stderr) m.fit([training_set_obs], options.hmm_free_para) distr = _get_pvalue_distr(m.mu, m.alpha, tracker) return m, exp_data, func_para, init_mu, init_alpha, distr def run_HMM(region_giver, options, bamfiles, genome, chrom_sizes, dims, inputs, tracker, exp_data, m, distr): """Run trained HMM chromosome-wise on genomic signal and call differential peaks""" output, pvalues, ratios, no_bw_files = [], [], [], [] print("Compute HMM's posterior probabilities and Viterbi path to call differential peaks", file=sys.stderr) for i, r in enumerate(region_giver): end = True if i == len(region_giver) - 1 else False print("- taking into account %s" % r.sequences[0].chrom, file=sys.stderr) exp_data = initialize(name=options.name, dims=dims, genome_path=genome, regions=r, stepsize=options.stepsize, binsize=options.binsize, bamfiles=bamfiles, exts=exp_data.exts, inputs=inputs, exts_inputs=exp_data.exts_inputs, debug=options.debug, verbose=False, no_gc_content=options.no_gc_content, factors_inputs=exp_data.factors_inputs, chrom_sizes=chrom_sizes, tracker=tracker, norm_regions=options.norm_regions, scaling_factors_ip=exp_data.scaling_factors_ip, save_wig=options.save_wig, housekeeping_genes=options.housekeeping_genes, test=TEST, report=False, chrom_sizes_dict=region_giver.get_chrom_dict(), gc_content_cov=exp_data.gc_content_cov, avg_gc_content=exp_data.avg_gc_content, gc_hist=exp_data.gc_hist, end=end, counter=i, m_threshold=options.m_threshold, a_threshold=options.a_threshold, rmdup=options.rmdup) if exp_data.no_data: continue no_bw_files.append(i) exp_data.compute_putative_region_index() if exp_data.indices_of_interest is None: continue states = m.predict(exp_data.get_observation(exp_data.indices_of_interest)) inst_ratios, inst_pvalues, inst_output = get_peaks(name=options.name, states=states, DCS=exp_data, distr=distr, merge=options.merge, exts=exp_data.exts, pcutoff=options.pcutoff, debug=options.debug, p=options.par, no_correction=options.no_correction, merge_bin=options.merge_bin, deadzones=options.deadzones) # if not inst_output: output += inst_output pvalues += inst_pvalues ratios += inst_ratios res_output, res_pvalues, res_filter_pass = filter_by_pvalue_strand_lag(ratios, options.pcutoff, pvalues, output, options.no_correction, options.name, options.singlestrand) _output_BED(options.name, res_output, res_pvalues, res_filter_pass) _output_narrowPeak(options.name, res_output, res_pvalues, res_filter_pass) merge_output(bamfiles, dims, options, no_bw_files, chrom_sizes) def main(): options, bamfiles, genome, chrom_sizes, dims, inputs = handle_input() tracker = Tracker(options.name + '-setup.info', bamfiles, genome, chrom_sizes, dims, inputs, options, __version__) region_giver = RegionGiver(chrom_sizes, options.regions) m, exp_data, func_para, init_mu, init_alpha, distr = train_HMM(region_giver, options, bamfiles, genome, chrom_sizes, dims, inputs, tracker) run_HMM(region_giver, options, bamfiles, genome, chrom_sizes, dims, inputs, tracker, exp_data, m, distr) _write_info(tracker, options.report, func_para=func_para, init_mu=init_mu, init_alpha=init_alpha, m=m)
55.765432
132
0.649878
0
0
0
0
0
0
0
0
2,000
0.221386
d2fb7b436323415834f7a74459e3f1d624c2d737
5,864
py
Python
web/api/classroom.py
bbougon/crm-pilates
47de4bad3d48208f9b499139fcddb7f8955b2509
[ "MIT" ]
null
null
null
web/api/classroom.py
bbougon/crm-pilates
47de4bad3d48208f9b499139fcddb7f8955b2509
[ "MIT" ]
2
2021-05-26T20:47:29.000Z
2021-07-11T23:18:55.000Z
web/api/classroom.py
bbougon/crm-pilates
47de4bad3d48208f9b499139fcddb7f8955b2509
[ "MIT" ]
1
2021-06-30T15:20:54.000Z
2021-06-30T15:20:54.000Z
from http import HTTPStatus from typing import Tuple from uuid import UUID from fastapi import status, APIRouter, Response, Depends, HTTPException from command.command_handler import Status from domain.classroom.classroom_creation_command_handler import ClassroomCreated from domain.classroom.classroom_type import ClassroomSubject from domain.commands import ClassroomCreationCommand, ClassroomPatchCommand from domain.exceptions import DomainException, AggregateNotFoundException from infrastructure.command_bus_provider import CommandBusProvider from web.presentation.domain.detailed_classroom import DetailedClassroom from web.presentation.service.classroom_service import get_detailed_classroom from web.schema.classroom_response import ClassroomReadResponse, ClassroomCreatedResponse from web.schema.classroom_schemas import ClassroomCreation, ClassroomPatch router = APIRouter() @router.post("/classrooms", response_model=ClassroomCreatedResponse, status_code=status.HTTP_201_CREATED, responses={ 201: { "description": "Create a classroom", "headers": { "location": { "description": "The absolute path URL location of the newly created classroom", "schema": {"type": "URL"}, } } }, 404: { "description": "See body message details" }, 409: { "description": "See body message details" } } ) def create_classroom(classroom_creation: ClassroomCreation, response: Response, command_bus_provider: CommandBusProvider = Depends(CommandBusProvider)): try: command = ClassroomCreationCommand(classroom_creation.name, classroom_creation.position, classroom_creation.duration, ClassroomSubject[classroom_creation.subject], classroom_creation.start_date, classroom_creation.stop_date, list(map(lambda attendee: attendee.id, classroom_creation.attendees))) from command.response import Response result: Tuple[Response, Status] = command_bus_provider.command_bus.send(command) event: ClassroomCreated = result[0].event response.headers["location"] = f"/classrooms/{event.root_id}" return { "name": event.name, "id": event.root_id, "position": event.position, "subject": event.subject.value, "schedule": { "start": event.schedule.start, "stop": event.schedule.stop }, "duration": ClassroomReadResponse.to_duration(event.duration), "attendees": list(map(lambda attendee: {"id": attendee["id"]}, event.attendees)) } except AggregateNotFoundException as e: raise HTTPException(status_code=HTTPStatus.NOT_FOUND, detail=f"One of the attendees with id '{e.unknown_id}' has not been found") except DomainException as e: raise HTTPException(status_code=HTTPStatus.CONFLICT, detail=e.message) @router.get("/classrooms/{id}", response_model=ClassroomReadResponse, responses={ 404: { "description": "Classroom has not been found" } } ) def get_classroom(id: UUID): try: detailed_classroom: DetailedClassroom = get_detailed_classroom(id) return { "name": detailed_classroom.name, "id": detailed_classroom.id, "position": detailed_classroom.position, "subject": detailed_classroom.subject.value, "schedule": { "start": detailed_classroom.start, "stop": detailed_classroom.stop }, "duration": { "duration": detailed_classroom.duration.duration, "time_unit": detailed_classroom.duration.time_unit }, "attendees": detailed_classroom.attendees } except AggregateNotFoundException: raise HTTPException(status_code=HTTPStatus.NOT_FOUND, detail=f"Classroom with id '{str(id)}' not found") @router.patch("/classrooms/{id}", status_code=status.HTTP_204_NO_CONTENT, description="Add attendees to a classroom. This resource works as a patch, " "you must provide all classroom attendees (i.e: you had Clara already added to the classroom," " if you want John to join, you must provide both Clara and John " "otherwise Clara will be removed", responses={ 404: { "description": "See body message details" }, 409: { "description": "See body message details" } } ) def update_classroom(id: UUID, classroom_patch: ClassroomPatch, command_bus_provider: CommandBusProvider = Depends(CommandBusProvider)): try: command_bus_provider.command_bus.send( ClassroomPatchCommand(id, list(map(lambda client: client.id, classroom_patch.attendees)))) except AggregateNotFoundException as e: raise HTTPException(status_code=HTTPStatus.NOT_FOUND, detail=f"One of the attendees with id '{e.unknown_id}' has not been found") except DomainException as e: raise HTTPException(status_code=HTTPStatus.CONFLICT, detail=e.message)
45.8125
120
0.603342
0
0
0
0
4,966
0.846862
0
0
1,043
0.177865
d2fb7f6e9f85db6c80048daaef30c307b92d98da
2,145
py
Python
community_codebook/eda.py
etstieber/ledatascifi-2022
67bc56a60ec498c62ceba03e0b6b9ae8f3fc7fd9
[ "MIT" ]
null
null
null
community_codebook/eda.py
etstieber/ledatascifi-2022
67bc56a60ec498c62ceba03e0b6b9ae8f3fc7fd9
[ "MIT" ]
3
2022-01-30T18:34:22.000Z
2022-02-10T15:48:48.000Z
community_codebook/eda.py
etstieber/ledatascifi-2022
67bc56a60ec498c62ceba03e0b6b9ae8f3fc7fd9
[ "MIT" ]
14
2022-01-26T10:45:19.000Z
2022-03-28T15:59:56.000Z
############################################################### # # This function is... INSUFFICIENT. It was developed as an # illustration of EDA lessons in the 2021 class. It's quick and # works well. # # Want a higher grade version of me? Then try pandas-profiling: # https://github.com/pandas-profiling/pandas-profiling # ############################################################### def insufficient_but_starting_eda(df,cat_vars_list=None): ''' Parameters ---------- df : DATAFRAME cat_vars_list : LIST, optional A list of strings containing variable names in the dataframe for variables where you want to see the number of unique values and the 10 most common values. Likely used for categorical values. Returns ------- None. It simply prints. Description ------- This function will print a MINIMUM amount of info about a new dataframe. You should ****look**** at all this output below and consider the data exploration and cleaning questions from https://ledatascifi.github.io/ledatascifi-2021/content/03/02e_eda_golden.html#member Also LOOK at more of the data manually. Then write up anything notable you observe. TIP: put this function in your codebook to reuse easily. PROTIP: Improve this function (better outputs, better formatting). FEATURE REQUEST: optionally print the nunique and top 10 values under the describe matrix FEATURE REQUEST: optionally print more stats (percentiles) ''' print(df.head(), '\n---') print(df.tail(), '\n---') print(df.columns, '\n---') print("The shape is: ",df.shape, '\n---') print("Info:",df.info(), '\n---') # memory usage, name, dtype, and # of non-null obs (--> # of missing obs) per variable print(df.describe(), '\n---') # summary stats, and you can customize the list! if cat_vars_list != None: for var in cat_vars_list: print(var,"has",df[var].nunique(),"values and its top 10 most common are:") print(df[var].value_counts().head(10), '\n---')
35.75
124
0.607459
0
0
0
0
0
0
0
0
1,753
0.817249
d2fd24c8d34e5c25a5210eb1ab2a18308730ef2b
2,778
py
Python
angr/codenode.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
2
2018-05-02T17:41:36.000Z
2020-05-18T02:49:16.000Z
angr/codenode.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
null
null
null
angr/codenode.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
1
2019-08-07T01:42:01.000Z
2019-08-07T01:42:01.000Z
import logging l = logging.getLogger("angr.codenode") class CodeNode(object): __slots__ = ['addr', 'size', '_graph', 'thumb'] def __init__(self, addr, size, graph=None, thumb=False): self.addr = addr self.size = size self.thumb = thumb self._graph = graph def __len__(self): return self.size def __eq__(self, other): if type(other) is Block: # pylint: disable=unidiomatic-typecheck raise TypeError("You do not want to be comparing a CodeNode to a Block") return type(self) is type(other) and \ self.addr == other.addr and \ self.size == other.size and \ self.is_hook == other.is_hook and \ self.thumb == other.thumb def __ne__(self, other): return not self == other def __cmp__(self, other): raise TypeError("Comparison with a code node") def __hash__(self): return hash((self.addr, self.size)) def successors(self): if self._graph is None: raise ValueError("Cannot calculate successors for graphless node") return list(self._graph.successors(self)) def predecessors(self): if self._graph is None: raise ValueError("Cannot calculate predecessors for graphless node") return list(self._graph.predecessors(self)) def __getstate__(self): return (self.addr, self.size) def __setstate__(self, dat): self.__init__(*dat) is_hook = None class BlockNode(CodeNode): __slots__ = ['bytestr'] is_hook = False def __init__(self, addr, size, bytestr=None, **kwargs): super(BlockNode, self).__init__(addr, size, **kwargs) self.bytestr = bytestr def __repr__(self): return '<BlockNode at %#x (size %d)>' % (self.addr, self.size) def __getstate__(self): return (self.addr, self.size, self.bytestr, self.thumb) def __setstate__(self, dat): self.__init__(*dat[:-1], thumb=dat[-1]) class HookNode(CodeNode): __slots__ = ['sim_procedure'] is_hook = True def __init__(self, addr, size, sim_procedure, **kwargs): super(HookNode, self).__init__(addr, size, **kwargs) self.sim_procedure = sim_procedure def __repr__(self): return '<HookNode %r at %#x (size %s)>' % (self.sim_procedure, self.addr, self.size) def __hash__(self): return hash((self.addr, self.size, self.sim_procedure)) def __eq__(self, other): return super(HookNode, self).__eq__(other) and \ self.sim_procedure == other.sim_procedure def __getstate__(self): return (self.addr, self.size, self.sim_procedure) def __setstate__(self, dat): self.__init__(*dat) from .block import Block
27.78
92
0.62527
2,689
0.967963
0
0
0
0
0
0
349
0.12563
d2fd57ba506b050706da4ce9ab6b0a547ce3b622
806
py
Python
第12章/program/Requester/Launcher.py
kingname/SourceCodeOfBook
ab7275108994dca564905818b678bbd2f771c18e
[ "MIT" ]
274
2018-10-01T11:07:25.000Z
2022-03-17T13:48:45.000Z
第12章/program/Requester/Launcher.py
kingname/SourceCodeOfBook
ab7275108994dca564905818b678bbd2f771c18e
[ "MIT" ]
6
2019-02-28T14:18:21.000Z
2022-03-02T14:57:39.000Z
第12章/program/Requester/Launcher.py
kingname/SourceCodeOfBook
ab7275108994dca564905818b678bbd2f771c18e
[ "MIT" ]
110
2018-10-16T06:08:37.000Z
2022-03-16T08:19:29.000Z
import os scrapy_project_path = '/Users/kingname/book/chapter_12/DeploySpider' os.chdir(scrapy_project_path) #切换工作区,进入爬虫工程根目录执行命令 os.system('scrapyd-deploy') import json import time import requests start_url = 'http://45.76.110.210:6800/schedule.json' start_data = {'project': 'DeploySpider', 'spider': 'Example'} end_url = 'http://45.76.110.210:6800/cancel.json' end_data = {'project': 'DeploySpider'} result = requests.post(start_url, data=start_data, auth=('kingname', 'genius')).text result = requests.post(end_url, data=end_data, auth=('kingname', 'genius')).text # result_dict = json.loads(result) # job_id = result_dict['jobid'] # print(f'启动的爬虫,jobid为:{job_id}') # # time.sleep(5) # end_data['job'] = job_id # result = requests.post(end_url, data=end_data).text # print(result)
26.866667
84
0.719603
0
0
0
0
0
0
0
0
523
0.60814
d2fdf4a6c5371384e165ae59f3bd959f997c90d9
511
py
Python
unittest_example/mathfunc.py
RobinCPC/experiment_code
0d3791a97815651945ad7787ba4e6c7df037740b
[ "MIT" ]
null
null
null
unittest_example/mathfunc.py
RobinCPC/experiment_code
0d3791a97815651945ad7787ba4e6c7df037740b
[ "MIT" ]
null
null
null
unittest_example/mathfunc.py
RobinCPC/experiment_code
0d3791a97815651945ad7787ba4e6c7df037740b
[ "MIT" ]
null
null
null
""" Simple math operating functions for unit test """ def add(a, b): """ Adding to parameters and return result :param a: :param b: :return: """ return a + b def minus(a, b): """ subtraction :param a: :param b: :return: """ return a - b def multi(a, b): """ multiple :param a: :param b: :return: """ return a * b def divide(a, b): """ division :param a: :param b: :return: """ return a // b
11.613636
45
0.473581
0
0
0
0
0
0
0
0
346
0.677104
d2ff009598eedc70cbe497c5d19827bdffd07954
144,055
py
Python
test/test_parameters.py
HubukiNinten/imgaug
2570c5651ed1c90addbaffc0f8be226646c55334
[ "MIT" ]
1
2019-10-25T17:43:20.000Z
2019-10-25T17:43:20.000Z
test/test_parameters.py
HubukiNinten/imgaug
2570c5651ed1c90addbaffc0f8be226646c55334
[ "MIT" ]
null
null
null
test/test_parameters.py
HubukiNinten/imgaug
2570c5651ed1c90addbaffc0f8be226646c55334
[ "MIT" ]
null
null
null
from __future__ import print_function, division, absolute_import import itertools import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import skimage import skimage.data import skimage.morphology import scipy import scipy.special import imgaug as ia import imgaug.random as iarandom from imgaug import parameters as iap from imgaug.testutils import reseed def _eps(arr): if ia.is_np_array(arr) and arr.dtype.kind == "f": return np.finfo(arr.dtype).eps return 1e-4 class Test_handle_continuous_param(unittest.TestCase): def test_value_range_is_none(self): result = iap.handle_continuous_param( 1, "[test1]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_nones(self): result = iap.handle_continuous_param( 1, "[test1b]", value_range=(None, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_stochastic_parameter(self): result = iap.handle_continuous_param( iap.Deterministic(1), "[test2]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_integers(self): result = iap.handle_continuous_param( 1, "[test3]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range(self): with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test4]", value_range=(2, 12), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test4]" in str(context.exception)) def test_param_is_inside_value_range_and_no_lower_bound(self): # value within value range (without lower bound) result = iap.handle_continuous_param( 1, "[test5]", value_range=(None, 12), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range_and_no_lower_bound(self): # value outside of value range (without lower bound) with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test6]", value_range=(None, 0), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test6]" in str(context.exception)) def test_param_is_inside_value_range_and_no_upper_bound(self): # value within value range (without upper bound) result = iap.handle_continuous_param( 1, "[test7]", value_range=(-1, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range_and_no_upper_bound(self): # value outside of value range (without upper bound) with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test8]", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test8]" in str(context.exception)) def test_tuple_as_value_but_no_tuples_allowed(self): # tuple as value, but no tuples allowed with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test9]", value_range=None, tuple_to_uniform=False, list_to_choice=True) self.assertTrue("[test9]" in str(context.exception)) def test_tuple_as_value_and_tuples_allowed(self): # tuple as value and tuple allowed result = iap.handle_continuous_param( (1, 2), "[test10]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Uniform)) def test_tuple_as_value_and_tuples_allowed_and_inside_value_range(self): # tuple as value and tuple allowed and tuple within value range result = iap.handle_continuous_param( (1, 2), "[test11]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Uniform)) def test_tuple_value_and_allowed_and_partially_outside_value_range(self): # tuple as value and tuple allowed and tuple partially outside of # value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test12]", value_range=(1.5, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test12]" in str(context.exception)) def test_tuple_value_and_allowed_and_fully_outside_value_range(self): # tuple as value and tuple allowed and tuple fully outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test13]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test13]" in str(context.exception)) def test_list_as_value_but_no_lists_allowed(self): # list as value, but no list allowed with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2, 3], "[test14]", value_range=None, tuple_to_uniform=True, list_to_choice=False) self.assertTrue("[test14]" in str(context.exception)) def test_list_as_value_and_lists_allowed(self): # list as value and list allowed result = iap.handle_continuous_param( [1, 2, 3], "[test15]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Choice)) def test_list_value_and_allowed_and_partially_outside_value_range(self): # list as value and list allowed and list partially outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2], "[test16]", value_range=(1.5, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test16]" in str(context.exception)) def test_list_value_and_allowed_and_fully_outside_of_value_range(self): # list as value and list allowed and list fully outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2], "[test17]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test17]" in str(context.exception)) def test_value_inside_value_range_and_value_range_given_as_callable(self): # single value within value range given as callable def _value_range(x): return -1 < x < 1 result = iap.handle_continuous_param( 1, "[test18]", value_range=_value_range, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_bad_datatype_as_value_range(self): # bad datatype for value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test19]", value_range=False, tuple_to_uniform=True, list_to_choice=True) self.assertTrue( "Unexpected input for value_range" in str(context.exception)) class Test_handle_discrete_param(unittest.TestCase): def test_float_value_inside_value_range_but_no_floats_allowed(self): # float value without value range when no float value is allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1.5, "[test0]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.assertTrue("[test0]" in str(context.exception)) def test_value_range_is_none(self): # value without value range result = iap.handle_discrete_param( 1, "[test1]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_nones(self): # value without value range as (None, None) result = iap.handle_discrete_param( 1, "[test1b]", value_range=(None, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_is_stochastic_parameter(self): # stochastic parameter result = iap.handle_discrete_param( iap.Deterministic(1), "[test2]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_inside_value_range(self): # value within value range result = iap.handle_discrete_param( 1, "[test3]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range(self): # value outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test4]", value_range=(2, 12), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test4]" in str(context.exception)) def test_value_inside_value_range_no_lower_bound(self): # value within value range (without lower bound) result = iap.handle_discrete_param( 1, "[test5]", value_range=(None, 12), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range_no_lower_bound(self): # value outside of value range (without lower bound) with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test6]", value_range=(None, 0), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test6]" in str(context.exception)) def test_value_inside_value_range_no_upper_bound(self): # value within value range (without upper bound) result = iap.handle_discrete_param( 1, "[test7]", value_range=(-1, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range_no_upper_bound(self): # value outside of value range (without upper bound) with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test8]", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test8]" in str(context.exception)) def test_value_is_tuple_but_no_tuples_allowed(self): # tuple as value, but no tuples allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 2), "[test9]", value_range=None, tuple_to_uniform=False, list_to_choice=True, allow_floats=True) self.assertTrue("[test9]" in str(context.exception)) def test_value_is_tuple_and_tuples_allowed(self): # tuple as value and tuple allowed result = iap.handle_discrete_param( (1, 2), "[test10]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_inside_value_range(self): # tuple as value and tuple allowed and tuple within value range result = iap.handle_discrete_param( (1, 2), "[test11]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_inside_vr_allow_floats_false(self): # tuple as value and tuple allowed and tuple within value range with # allow_floats=False result = iap.handle_discrete_param( (1, 2), "[test11b]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_partially_outside_value_range(self): # tuple as value and tuple allowed and tuple partially outside of # value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 3), "[test12]", value_range=(2, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test12]" in str(context.exception)) def test_value_tuple_and_allowed_and_fully_outside_value_range(self): # tuple as value and tuple allowed and tuple fully outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 2), "[test13]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test13]" in str(context.exception)) def test_value_list_but_not_allowed(self): # list as value, but no list allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 2, 3], "[test14]", value_range=None, tuple_to_uniform=True, list_to_choice=False, allow_floats=True) self.assertTrue("[test14]" in str(context.exception)) def test_value_list_and_allowed(self): # list as value and list allowed result = iap.handle_discrete_param( [1, 2, 3], "[test15]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Choice)) def test_value_list_and_allowed_and_partially_outside_value_range(self): # list as value and list allowed and list partially outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 3], "[test16]", value_range=(2, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test16]" in str(context.exception)) def test_value_list_and_allowed_and_fully_outside_value_range(self): # list as value and list allowed and list fully outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 2], "[test17]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test17]" in str(context.exception)) def test_value_inside_value_range_given_as_callable(self): # single value within value range given as callable def _value_range(x): return -1 < x < 1 result = iap.handle_discrete_param( 1, "[test18]", value_range=_value_range, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_bad_datatype_as_value_range(self): # bad datatype for value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test19]", value_range=False, tuple_to_uniform=True, list_to_choice=True) self.assertTrue( "Unexpected input for value_range" in str(context.exception)) class Test_handle_categorical_string_param(unittest.TestCase): def test_arg_is_all(self): valid_values = ["class1", "class2"] param = iap.handle_categorical_string_param( ia.ALL, "foo", valid_values) assert isinstance(param, iap.Choice) assert param.a == valid_values def test_arg_is_valid_str(self): valid_values = ["class1", "class2"] param = iap.handle_categorical_string_param( "class1", "foo", valid_values) assert isinstance(param, iap.Deterministic) assert param.value == "class1" def test_arg_is_invalid_str(self): valid_values = ["class1", "class2"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( "class3", "foo", valid_values) expected = ( "Expected parameter 'foo' to be one of: class1, class2. " "Got: class3.") assert expected == str(ctx.exception) def test_arg_is_valid_list(self): valid_values = ["class1", "class2", "class3"] param = iap.handle_categorical_string_param( ["class1", "class3"], "foo", valid_values) assert isinstance(param, iap.Choice) assert param.a == ["class1", "class3"] def test_arg_is_list_with_invalid_types(self): valid_values = ["class1", "class2", "class3"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( ["class1", False], "foo", valid_values) expected = ( "Expected list provided for parameter 'foo' to only contain " "strings, got types: str, bool." ) assert expected in str(ctx.exception) def test_arg_is_invalid_list(self): valid_values = ["class1", "class2", "class3"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( ["class1", "class4"], "foo", valid_values) expected = ( "Expected list provided for parameter 'foo' to only contain " "the following allowed strings: class1, class2, class3. " "Got strings: class1, class4." ) assert expected in str(ctx.exception) def test_arg_is_stochastic_param(self): param = iap.Deterministic("class1") param_out = iap.handle_categorical_string_param( param, "foo", ["class1"]) assert param_out is param def test_arg_is_invalid_datatype(self): with self.assertRaises(Exception) as ctx: _ = iap.handle_categorical_string_param( False, "foo", ["class1"]) expected = "Expected parameter 'foo' to be imgaug.ALL" assert expected in str(ctx.exception) class Test_handle_probability_param(unittest.TestCase): def test_bool_like_values(self): for val in [True, False, 0, 1, 0.0, 1.0]: with self.subTest(param=val): p = iap.handle_probability_param(val, "[test1]") assert isinstance(p, iap.Deterministic) assert p.value == int(val) def test_float_probabilities(self): for val in [0.0001, 0.001, 0.01, 0.1, 0.9, 0.99, 0.999, 0.9999]: with self.subTest(param=val): p = iap.handle_probability_param(val, "[test2]") assert isinstance(p, iap.Binomial) assert isinstance(p.p, iap.Deterministic) assert val-1e-8 < p.p.value < val+1e-8 def test_probability_is_stochastic_parameter(self): det = iap.Deterministic(1) p = iap.handle_probability_param(det, "[test3]") assert p == det def test_probability_has_bad_datatype(self): with self.assertRaises(Exception) as context: _p = iap.handle_probability_param("test", "[test4]") self.assertTrue("Expected " in str(context.exception)) def test_probability_is_negative(self): with self.assertRaises(AssertionError): _p = iap.handle_probability_param(-0.01, "[test5]") def test_probability_is_above_100_percent(self): with self.assertRaises(AssertionError): _p = iap.handle_probability_param(1.01, "[test6]") class Test_force_np_float_dtype(unittest.TestCase): def test_common_dtypes(self): dtypes = [ ("float16", "float16"), ("float32", "float32"), ("float64", "float64"), ("uint8", "float64"), ("int32", "float64") ] for dtype_in, expected in dtypes: with self.subTest(dtype_in=dtype_in): arr = np.zeros((1,), dtype=dtype_in) observed = iap.force_np_float_dtype(arr).dtype assert observed.name == expected class Test_both_np_float_if_one_is_float(unittest.TestCase): def test_float16_float32(self): a1 = np.zeros((1,), dtype=np.float16) b1 = np.zeros((1,), dtype=np.float32) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float16" assert b2.dtype.name == "float32" def test_float16_int32(self): a1 = np.zeros((1,), dtype=np.float16) b1 = np.zeros((1,), dtype=np.int32) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float16" assert b2.dtype.name == "float64" def test_int32_float16(self): a1 = np.zeros((1,), dtype=np.int32) b1 = np.zeros((1,), dtype=np.float16) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float64" assert b2.dtype.name == "float16" def test_int32_uint8(self): a1 = np.zeros((1,), dtype=np.int32) b1 = np.zeros((1,), dtype=np.uint8) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float64" assert b2.dtype.name == "float64" class Test_draw_distributions_grid(unittest.TestCase): def setUp(self): reseed() def test_basic_functionality(self): params = [mock.Mock(), mock.Mock()] params[0].draw_distribution_graph.return_value = \ np.zeros((1, 1, 3), dtype=np.uint8) params[1].draw_distribution_graph.return_value = \ np.zeros((1, 1, 3), dtype=np.uint8) draw_grid_mock = mock.Mock() draw_grid_mock.return_value = np.zeros((4, 3, 2), dtype=np.uint8) with mock.patch('imgaug.imgaug.draw_grid', draw_grid_mock): grid_observed = iap.draw_distributions_grid( params, rows=2, cols=3, graph_sizes=(20, 21), sample_sizes=[(1, 2), (3, 4)], titles=["A", "B"]) assert grid_observed.shape == (4, 3, 2) assert params[0].draw_distribution_graph.call_count == 1 assert params[1].draw_distribution_graph.call_count == 1 assert params[0].draw_distribution_graph.call_args[1]["size"] == (1, 2) assert params[0].draw_distribution_graph.call_args[1]["title"] == "A" assert params[1].draw_distribution_graph.call_args[1]["size"] == (3, 4) assert params[1].draw_distribution_graph.call_args[1]["title"] == "B" assert draw_grid_mock.call_count == 1 assert draw_grid_mock.call_args[0][0][0].shape == (20, 21, 3) assert draw_grid_mock.call_args[0][0][1].shape == (20, 21, 3) assert draw_grid_mock.call_args[1]["rows"] == 2 assert draw_grid_mock.call_args[1]["cols"] == 3 class Test_draw_distributions_graph(unittest.TestCase): def test_basic_functionality(self): # this test is very rough as we get a not-very-well-defined image out # of the function param = iap.Uniform(0.0, 1.0) graph_img = param.draw_distribution_graph(title=None, size=(10000,), bins=100) # at least 10% of the image should be white-ish (background) nb_white = np.sum(graph_img[..., :] > [200, 200, 200]) nb_all = np.prod(graph_img.shape) graph_img_title = param.draw_distribution_graph(title="test", size=(10000,), bins=100) assert graph_img.ndim == 3 assert graph_img.shape[2] == 3 assert nb_white > 0.1 * nb_all assert graph_img_title.ndim == 3 assert graph_img_title.shape[2] == 3 assert not np.array_equal(graph_img_title, graph_img) class TestStochasticParameter(unittest.TestCase): def setUp(self): reseed() def test_copy(self): other_param = iap.Uniform(1.0, 10.0) param = iap.Discretize(other_param) other_param.a = [1.0] param_copy = param.copy() param.other_param.a[0] += 1 assert isinstance(param_copy, iap.Discretize) assert isinstance(param_copy.other_param, iap.Uniform) assert param_copy.other_param.a[0] == param.other_param.a[0] def test_deepcopy(self): other_param = iap.Uniform(1.0, 10.0) param = iap.Discretize(other_param) other_param.a = [1.0] param_copy = param.deepcopy() param.other_param.a[0] += 1 assert isinstance(param_copy, iap.Discretize) assert isinstance(param_copy.other_param, iap.Uniform) assert param_copy.other_param.a[0] != param.other_param.a[0] class TestStochasticParameterOperators(unittest.TestCase): def setUp(self): reseed() def test_multiply_stochasic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 * param2 assert isinstance(param3, iap.Multiply) assert param3.other_param == param1 assert param3.val == param2 def test_multiply_stochastic_param_with_integer(self): param1 = iap.Normal(0, 1) param3 = param1 * 2 assert isinstance(param3, iap.Multiply) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_multiply_integer_with_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 * param1 assert isinstance(param3, iap.Multiply) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_multiply_string_with_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" * param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_multiply_stochastic_param_with_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 * "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_divide_stochastic_params(self): # Divide (__truediv__) param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 / param2 assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert param3.val == param2 def test_divide_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1 / 2 assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_divide_integer_by_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 / param1 assert isinstance(param3, iap.Divide) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_divide_string_by_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" / param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_divide_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 / "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_div_stochastic_params(self): # Divide (__div__) param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1.__div__(param2) assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert param3.val == param2 def test_div_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1.__div__(2) assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_div_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1.__div__("test") self.assertTrue("Invalid datatypes" in str(context.exception)) def test_rdiv_stochastic_param_by_integer(self): # Divide (__rdiv__) param1 = iap.Normal(0, 1) param3 = param1.__rdiv__(2) assert isinstance(param3, iap.Divide) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_rdiv_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1.__rdiv__("test") self.assertTrue("Invalid datatypes" in str(context.exception)) def test_floordiv_stochastic_params(self): # Divide (__floordiv__) param1_int = iap.DiscreteUniform(0, 10) param2_int = iap.Choice([1, 2]) param3 = param1_int // param2_int assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert param3.other_param.other_param == param1_int assert param3.other_param.val == param2_int def test_floordiv_symbol_stochastic_param_by_integer(self): param1_int = iap.DiscreteUniform(0, 10) param3 = param1_int // 2 assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert param3.other_param.other_param == param1_int assert isinstance(param3.other_param.val, iap.Deterministic) assert param3.other_param.val.value == 2 def test_floordiv_symbol_integer_by_stochastic_param(self): param1_int = iap.DiscreteUniform(0, 10) param3 = 2 // param1_int assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert isinstance(param3.other_param.other_param, iap.Deterministic) assert param3.other_param.other_param.value == 2 assert param3.other_param.val == param1_int def test_floordiv_symbol_string_by_stochastic_should_fail(self): param1_int = iap.DiscreteUniform(0, 10) with self.assertRaises(Exception) as context: _ = "test" // param1_int self.assertTrue("Invalid datatypes" in str(context.exception)) def test_floordiv_symbol_stochastic_param_by_string_should_fail(self): param1_int = iap.DiscreteUniform(0, 10) with self.assertRaises(Exception) as context: _ = param1_int // "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_add_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 + param2 assert isinstance(param3, iap.Add) assert param3.other_param == param1 assert param3.val == param2 def test_add_integer_to_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = param1 + 2 assert isinstance(param3, iap.Add) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_add_stochastic_param_to_integer(self): param1 = iap.Normal(0, 1) param3 = 2 + param1 assert isinstance(param3, iap.Add) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_add_stochastic_param_to_string(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" + param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_add_string_to_stochastic_param(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 + "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_subtract_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 - param2 assert isinstance(param3, iap.Subtract) assert param3.other_param == param1 assert param3.val == param2 def test_subtract_integer_from_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = param1 - 2 assert isinstance(param3, iap.Subtract) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_subtract_stochastic_param_from_integer(self): param1 = iap.Normal(0, 1) param3 = 2 - param1 assert isinstance(param3, iap.Subtract) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_subtract_stochastic_param_from_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" - param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_subtract_string_from_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 - "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_exponentiate_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 ** param2 assert isinstance(param3, iap.Power) assert param3.other_param == param1 assert param3.val == param2 def test_exponentiate_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1 ** 2 assert isinstance(param3, iap.Power) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_exponentiate_integer_by_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 ** param1 assert isinstance(param3, iap.Power) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_exponentiate_string_by_stochastic_param(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" ** param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_exponentiate_stochastic_param_by_string(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 ** "test" self.assertTrue("Invalid datatypes" in str(context.exception)) class TestBinomial(unittest.TestCase): def setUp(self): reseed() def test___init___p_is_zero(self): param = iap.Binomial(0) assert ( param.__str__() == param.__repr__() == "Binomial(Deterministic(int 0))" ) def test___init___p_is_one(self): param = iap.Binomial(1.0) assert ( param.__str__() == param.__repr__() == "Binomial(Deterministic(float 1.00000000))" ) def test_p_is_zero(self): param = iap.Binomial(0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 0 assert np.all(samples == 0) def test_p_is_one(self): param = iap.Binomial(1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_p_is_50_percent(self): param = iap.Binomial(0.5) sample = param.draw_sample() samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert sample.shape == tuple() assert samples.shape == (10000,) assert sample in [0, 1] assert len(unique) == 2 for val, count in zip(unique, counts): if val == 0: assert 5000 - 500 < count < 5000 + 500 elif val == 1: assert 5000 - 500 < count < 5000 + 500 else: assert False def test_p_is_list(self): param = iap.Binomial(iap.Choice([0.25, 0.75])) for _ in sm.xrange(10): samples = param.draw_samples((1000,)) p = np.sum(samples) / samples.size assert ( (0.25 - 0.05 < p < 0.25 + 0.05) or (0.75 - 0.05 < p < 0.75 + 0.05) ) def test_p_is_tuple(self): param = iap.Binomial((0.0, 1.0)) last_p = 0.5 diffs = [] for _ in sm.xrange(30): samples = param.draw_samples((1000,)) p = np.sum(samples).astype(np.float32) / samples.size diffs.append(abs(p - last_p)) last_p = p nb_p_changed = sum([diff > 0.05 for diff in diffs]) assert nb_p_changed > 15 def test_samples_same_values_for_same_seeds(self): param = iap.Binomial(0.5) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestChoice(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Choice([0, 1, 2]) assert ( param.__str__() == param.__repr__() == "Choice(a=[0, 1, 2], replace=True, p=None)" ) def test_value_is_list(self): param = iap.Choice([0, 1, 2]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1, 2] assert np.all( np.logical_or( np.logical_or(samples == 0, samples == 1), samples == 2 ) ) def test_sampled_values_match_expected_counts(self): param = iap.Choice([0, 1, 2]) samples = param.draw_samples((10000,)) expected = 10000/3 expected_tolerance = expected * 0.05 for v in [0, 1, 2]: count = np.sum(samples == v) assert ( expected - expected_tolerance < count < expected + expected_tolerance ) def test_value_is_list_containing_negative_number(self): param = iap.Choice([-1, 1]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 1] assert np.all(np.logical_or(samples == -1, samples == 1)) def test_value_is_list_of_floats(self): param = iap.Choice([-1.2, 1.7]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert ( ( -1.2 - _eps(sample) < sample < -1.2 + _eps(sample) ) or ( 1.7 - _eps(sample) < sample < 1.7 + _eps(sample) ) ) assert np.all( np.logical_or( np.logical_and( -1.2 - _eps(sample) < samples, samples < -1.2 + _eps(sample) ), np.logical_and( 1.7 - _eps(sample) < samples, samples < 1.7 + _eps(sample) ) ) ) def test_value_is_list_of_strings(self): param = iap.Choice(["first", "second", "third"]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in ["first", "second", "third"] assert np.all( np.logical_or( np.logical_or( samples == "first", samples == "second" ), samples == "third" ) ) def test_sample_without_replacing(self): param = iap.Choice([1+i for i in sm.xrange(100)], replace=False) samples = param.draw_samples((50,)) seen = [0 for _ in sm.xrange(100)] for sample in samples: seen[sample-1] += 1 assert all([count in [0, 1] for count in seen]) def test_non_uniform_probabilities_over_elements(self): param = iap.Choice([0, 1], p=[0.25, 0.75]) samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert len(unique) == 2 for val, count in zip(unique, counts): if val == 0: assert 2500 - 500 < count < 2500 + 500 elif val == 1: assert 7500 - 500 < count < 7500 + 500 else: assert False def test_list_contains_stochastic_parameter(self): param = iap.Choice([iap.Choice([0, 1]), 2]) samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert len(unique) == 3 for val, count in zip(unique, counts): if val in [0, 1]: assert 2500 - 500 < count < 2500 + 500 elif val == 2: assert 5000 - 500 < count < 5000 + 500 else: assert False def test_samples_same_values_for_same_seeds(self): param = iap.Choice([-1, 0, 1, 2, 3]) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) def test_value_is_bad_datatype(self): with self.assertRaises(Exception) as context: _ = iap.Choice(123) self.assertTrue( "Expected a to be an iterable" in str(context.exception)) def test_p_is_bad_datatype(self): with self.assertRaises(Exception) as context: _ = iap.Choice([1, 2], p=123) self.assertTrue("Expected p to be" in str(context.exception)) def test_value_and_p_have_unequal_lengths(self): with self.assertRaises(Exception) as context: _ = iap.Choice([1, 2], p=[1]) self.assertTrue("Expected lengths of" in str(context.exception)) class TestDiscreteUniform(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.DiscreteUniform(0, 2) assert ( param.__str__() == param.__repr__() == "DiscreteUniform(Deterministic(int 0), Deterministic(int 2))" ) def test_bounds_are_ints(self): param = iap.DiscreteUniform(0, 2) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1, 2] assert np.all( np.logical_or( np.logical_or(samples == 0, samples == 1), samples == 2 ) ) def test_samples_match_expected_counts(self): param = iap.DiscreteUniform(0, 2) samples = param.draw_samples((10000,)) expected = 10000/3 expected_tolerance = expected * 0.05 for v in [0, 1, 2]: count = np.sum(samples == v) assert ( expected - expected_tolerance < count < expected + expected_tolerance ) def test_lower_bound_is_negative(self): param = iap.DiscreteUniform(-1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or(samples == -1, samples == 0), samples == 1 ) ) def test_bounds_are_floats(self): param = iap.DiscreteUniform(-1.2, 1.2) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or( samples == -1, samples == 0 ), samples == 1 ) ) def test_lower_and_upper_bound_have_wrong_order(self): param = iap.DiscreteUniform(1, -1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or( samples == -1, samples == 0 ), samples == 1 ) ) def test_lower_and_upper_bound_are_the_same(self): param = iap.DiscreteUniform(1, 1) sample = param.draw_sample() samples = param.draw_samples((100,)) assert sample == 1 assert np.all(samples == 1) def test_samples_same_values_for_same_seeds(self): param = iap.Uniform(-1, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestPoisson(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Poisson(1) assert ( param.__str__() == param.__repr__() == "Poisson(Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Poisson(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_poisson(self): param = iap.Poisson(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).poisson( lam=1, size=(100, 1000)) assert samples.shape == (100, 1000) for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: count_direct = int(np.sum(samples_direct == i)) count = np.sum(samples == i) tolerance = max(count_direct * 0.1, 250) assert count_direct - tolerance < count < count_direct + tolerance def test_samples_same_values_for_same_seeds(self): param = iap.Poisson(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestNormal(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Normal(0, 1) assert ( param.__str__() == param.__repr__() == "Normal(loc=Deterministic(int 0), scale=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Normal(0, 1) sample = param.draw_sample() assert sample.shape == tuple() def test_via_comparison_to_np_normal(self): param = iap.Normal(0, 1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).normal(loc=0, scale=1, size=(100, 1000)) samples = np.clip(samples, -1, 1) samples_direct = np.clip(samples_direct, -1, 1) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(-1.0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(-1.0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_loc_is_stochastic_parameter(self): param = iap.Normal(iap.Choice([-100, 100]), 1) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if -100 - 10 < exp < -100 + 10: seen[0] += 1 elif 100 - 10 < exp < 100 + 10: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_scale(self): param1 = iap.Normal(0, 1) param2 = iap.Normal(0, 100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.std(samples1) < np.std(samples2) assert 100 - 10 < np.std(samples2) < 100 + 10 def test_samples_same_values_for_same_seeds(self): param = iap.Normal(0, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestTruncatedNormal(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.TruncatedNormal(0, 1) expected = ( "TruncatedNormal(" "loc=Deterministic(int 0), " "scale=Deterministic(int 1), " "low=Deterministic(float -inf), " "high=Deterministic(float inf)" ")" ) assert ( param.__str__() == param.__repr__() == expected ) def test___init___custom_range(self): param = iap.TruncatedNormal(0, 1, low=-100, high=50.0) expected = ( "TruncatedNormal(" "loc=Deterministic(int 0), " "scale=Deterministic(int 1), " "low=Deterministic(int -100), " "high=Deterministic(float 50.00000000)" ")" ) assert ( param.__str__() == param.__repr__() == expected ) def test_scale_is_zero(self): param = iap.TruncatedNormal(0.5, 0, low=-10, high=10) samples = param.draw_samples((100,)) assert np.allclose(samples, 0.5) def test_scale(self): param1 = iap.TruncatedNormal(0.0, 0.1, low=-100, high=100) param2 = iap.TruncatedNormal(0.0, 5.0, low=-100, high=100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.std(samples1) < np.std(samples2) assert np.isclose(np.std(samples1), 0.1, rtol=0, atol=0.20) assert np.isclose(np.std(samples2), 5.0, rtol=0, atol=0.40) def test_loc_is_stochastic_parameter(self): param = iap.TruncatedNormal(iap.Choice([-100, 100]), 0.01, low=-1000, high=1000) seen = [0, 0] for _ in sm.xrange(200): samples = param.draw_samples((5,)) observed = np.mean(samples) dist1 = np.abs(-100 - observed) dist2 = np.abs(100 - observed) if dist1 < 1: seen[0] += 1 elif dist2 < 1: seen[1] += 1 else: assert False assert np.isclose(seen[0], 100, rtol=0, atol=20) assert np.isclose(seen[1], 100, rtol=0, atol=20) def test_samples_are_within_bounds(self): param = iap.TruncatedNormal(0, 10.0, low=-5, high=7.5) samples = param.draw_samples((1000,)) # are all within bounds assert np.all(samples >= -5.0 - 1e-4) assert np.all(samples <= 7.5 + 1e-4) # at least some samples close to bounds assert np.any(samples <= -4.5) assert np.any(samples >= 7.0) # at least some samples close to loc assert np.any(np.abs(samples) < 0.5) def test_samples_same_values_for_same_seeds(self): param = iap.TruncatedNormal(0, 1) samples1 = param.draw_samples((10, 5), random_state=1234) samples2 = param.draw_samples((10, 5), random_state=1234) assert np.allclose(samples1, samples2) def test_samples_different_values_for_different_seeds(self): param = iap.TruncatedNormal(0, 1) samples1 = param.draw_samples((10, 5), random_state=1234) samples2 = param.draw_samples((10, 5), random_state=2345) assert not np.allclose(samples1, samples2) class TestLaplace(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Laplace(0, 1) assert ( param.__str__() == param.__repr__() == "Laplace(loc=Deterministic(int 0), scale=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Laplace(0, 1) sample = param.draw_sample() assert sample.shape == tuple() def test_via_comparison_to_np_laplace(self): param = iap.Laplace(0, 1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).laplace(loc=0, scale=1, size=(100, 1000)) assert samples.shape == (100, 1000) samples = np.clip(samples, -1, 1) samples_direct = np.clip(samples_direct, -1, 1) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(-1.0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(-1.0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_loc_is_stochastic_parameter(self): param = iap.Laplace(iap.Choice([-100, 100]), 1) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if -100 - 10 < exp < -100 + 10: seen[0] += 1 elif 100 - 10 < exp < 100 + 10: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_scale(self): param1 = iap.Laplace(0, 1) param2 = iap.Laplace(0, 100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.var(samples1) < np.var(samples2) def test_scale_is_zero(self): param1 = iap.Laplace(1, 0) samples = param1.draw_samples((100,)) assert np.all(np.logical_and( samples > 1 - _eps(samples), samples < 1 + _eps(samples) )) def test_samples_same_values_for_same_seeds(self): param = iap.Laplace(0, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestChiSquare(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.ChiSquare(1) assert ( param.__str__() == param.__repr__() == "ChiSquare(df=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.ChiSquare(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_chisquare(self): param = iap.ChiSquare(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).chisquare(df=1, size=(100, 1000)) assert samples.shape == (100, 1000) assert np.all(0 <= samples) samples = np.clip(samples, 0, 3) samples_direct = np.clip(samples_direct, 0, 3) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 3.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 3.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_df_is_stochastic_parameter(self): param = iap.ChiSquare(iap.Choice([1, 10])) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if 1 - 1.0 < exp < 1 + 1.0: seen[0] += 1 elif 10 - 4.0 < exp < 10 + 4.0: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_larger_df_leads_to_more_variance(self): param1 = iap.ChiSquare(1) param2 = iap.ChiSquare(10) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.var(samples1) < np.var(samples2) assert 2*1 - 1.0 < np.var(samples1) < 2*1 + 1.0 assert 2*10 - 5.0 < np.var(samples2) < 2*10 + 5.0 def test_samples_same_values_for_same_seeds(self): param = iap.ChiSquare(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestWeibull(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Weibull(1) assert ( param.__str__() == param.__repr__() == "Weibull(a=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Weibull(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_weibull(self): param = iap.Weibull(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).weibull(a=1, size=(100, 1000)) assert samples.shape == (100, 1000) assert np.all(0 <= samples) samples = np.clip(samples, 0, 2) samples_direct = np.clip(samples_direct, 0, 2) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 2.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 2.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_argument_is_stochastic_parameter(self): param = iap.Weibull(iap.Choice([1, 0.5])) expected_first = scipy.special.gamma(1 + 1/1) expected_second = scipy.special.gamma(1 + 1/0.5) seen = [0, 0] for _ in sm.xrange(100): samples = param.draw_samples((50000,)) observed = np.mean(samples) matches_first = ( expected_first - 0.2 * expected_first < observed < expected_first + 0.2 * expected_first ) matches_second = ( expected_second - 0.2 * expected_second < observed < expected_second + 0.2 * expected_second ) if matches_first: seen[0] += 1 elif matches_second: seen[1] += 1 else: assert False assert 50 - 25 < seen[0] < 50 + 25 assert 50 - 25 < seen[1] < 50 + 25 def test_different_strengths(self): param1 = iap.Weibull(1) param2 = iap.Weibull(0.5) samples1 = param1.draw_samples((10000,)) samples2 = param2.draw_samples((10000,)) expected_first = ( scipy.special.gamma(1 + 2/1) - (scipy.special.gamma(1 + 1/1))**2 ) expected_second = ( scipy.special.gamma(1 + 2/0.5) - (scipy.special.gamma(1 + 1/0.5))**2 ) assert np.var(samples1) < np.var(samples2) assert ( expected_first - 0.2 * expected_first < np.var(samples1) < expected_first + 0.2 * expected_first ) assert ( expected_second - 0.2 * expected_second < np.var(samples2) < expected_second + 0.2 * expected_second ) def test_samples_same_values_for_same_seeds(self): param = iap.Weibull(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestUniform(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Uniform(0, 1.0) assert ( param.__str__() == param.__repr__() == "Uniform(Deterministic(int 0), Deterministic(float 1.00000000))" ) def test_draw_sample(self): param = iap.Uniform(0, 1.0) sample = param.draw_sample() assert sample.shape == tuple() assert 0 - _eps(sample) < sample < 1.0 + _eps(sample) def test_draw_samples(self): param = iap.Uniform(0, 1.0) samples = param.draw_samples((10, 5)) assert samples.shape == (10, 5) assert np.all( np.logical_and( 0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_via_density_histogram(self): param = iap.Uniform(0, 1.0) samples = param.draw_samples((10000,)) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0.0, 1.0), density=False) density_expected = 1.0/nb_bins density_tolerance = 0.05 for nb_samples in hist: density = nb_samples / samples.size assert ( density_expected - density_tolerance < density < density_expected + density_tolerance ) def test_negative_value(self): param = iap.Uniform(-1.0, 1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_wrong_argument_order(self): param = iap.Uniform(1.0, -1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_arguments_are_integers(self): param = iap.Uniform(-1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_arguments_are_identical(self): param = iap.Uniform(1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert 1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( 1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_samples_same_values_for_same_seeds(self): param = iap.Uniform(-1.0, 1.0) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestBeta(unittest.TestCase): @classmethod def _mean(cls, alpha, beta): return alpha / (alpha + beta) @classmethod def _var(cls, alpha, beta): return (alpha * beta) / ((alpha + beta)**2 * (alpha + beta + 1)) def setUp(self): reseed() def test___init__(self): param = iap.Beta(0.5, 0.5) assert ( param.__str__() == param.__repr__() == "Beta(" "Deterministic(float 0.50000000), " "Deterministic(float 0.50000000)" ")" ) def test_draw_sample(self): param = iap.Beta(0.5, 0.5) sample = param.draw_sample() assert sample.shape == tuple() assert 0 - _eps(sample) < sample < 1.0 + _eps(sample) def test_draw_samples(self): param = iap.Beta(0.5, 0.5) samples = param.draw_samples((100, 1000)) assert samples.shape == (100, 1000) assert np.all( np.logical_and( 0 - _eps(samples) <= samples, samples <= 1.0 + _eps(samples) ) ) def test_via_comparison_to_np_beta(self): param = iap.Beta(0.5, 0.5) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).beta( a=0.5, b=0.5, size=(100, 1000)) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_argument_is_stochastic_parameter(self): param = iap.Beta(iap.Choice([0.5, 2]), 0.5) expected_first = self._mean(0.5, 0.5) expected_second = self._mean(2, 0.5) seen = [0, 0] for _ in sm.xrange(100): samples = param.draw_samples((10000,)) observed = np.mean(samples) if expected_first - 0.05 < observed < expected_first + 0.05: seen[0] += 1 elif expected_second - 0.05 < observed < expected_second + 0.05: seen[1] += 1 else: assert False assert 50 - 25 < seen[0] < 50 + 25 assert 50 - 25 < seen[1] < 50 + 25 def test_compare_curves_of_different_arguments(self): param1 = iap.Beta(2, 2) param2 = iap.Beta(0.5, 0.5) samples1 = param1.draw_samples((10000,)) samples2 = param2.draw_samples((10000,)) expected_first = self._var(2, 2) expected_second = self._var(0.5, 0.5) assert np.var(samples1) < np.var(samples2) assert ( expected_first - 0.1 * expected_first < np.var(samples1) < expected_first + 0.1 * expected_first ) assert ( expected_second - 0.1 * expected_second < np.var(samples2) < expected_second + 0.1 * expected_second ) def test_samples_same_values_for_same_seeds(self): param = iap.Beta(0.5, 0.5) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestDeterministic(unittest.TestCase): def setUp(self): reseed() def test___init__(self): pairs = [ (0, "Deterministic(int 0)"), (1.0, "Deterministic(float 1.00000000)"), ("test", "Deterministic(test)") ] for value, expected in pairs: with self.subTest(value=value): param = iap.Deterministic(value) assert ( param.__str__() == param.__repr__() == expected ) def test_samples_same_values_for_same_seeds(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0 ] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) rs1 = iarandom.RNG(123456) rs2 = iarandom.RNG(123456) samples1 = param.draw_samples(20, random_state=rs1) samples2 = param.draw_samples(20, random_state=rs2) assert np.array_equal(samples1, samples2) def test_draw_sample_int(self): values = [-100, -54, -1, 0, 1, 54, 100] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) sample1 = param.draw_sample() sample2 = param.draw_sample() assert sample1.shape == tuple() assert sample1 == sample2 def test_draw_sample_float(self): values = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) sample1 = param.draw_sample() sample2 = param.draw_sample() assert sample1.shape == tuple() assert np.isclose( sample1, sample2, rtol=0, atol=_eps(sample1)) def test_draw_samples_int(self): values = [-100, -54, -1, 0, 1, 54, 100] shapes = [10, 10, (5, 3), (5, 3), (4, 5, 3), (4, 5, 3)] for value, shape in itertools.product(values, shapes): with self.subTest(value=value, shape=shape): param = iap.Deterministic(value) samples = param.draw_samples(shape) shape_expected = ( shape if isinstance(shape, tuple) else tuple([shape])) assert samples.shape == shape_expected assert np.all(samples == value) def test_draw_samples_float(self): values = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] shapes = [10, 10, (5, 3), (5, 3), (4, 5, 3), (4, 5, 3)] for value, shape in itertools.product(values, shapes): with self.subTest(value=value, shape=shape): param = iap.Deterministic(value) samples = param.draw_samples(shape) shape_expected = ( shape if isinstance(shape, tuple) else tuple([shape])) assert samples.shape == shape_expected assert np.allclose(samples, value, rtol=0, atol=_eps(samples)) def test_argument_is_stochastic_parameter(self): seen = [0, 0] for _ in sm.xrange(200): param = iap.Deterministic(iap.Choice([0, 1])) seen[param.value] += 1 assert 100 - 50 < seen[0] < 100 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_argument_has_invalid_type(self): with self.assertRaises(Exception) as context: _ = iap.Deterministic([1, 2, 3]) self.assertTrue( "Expected StochasticParameter object or number or string" in str(context.exception)) class TestFromLowerResolution(unittest.TestCase): def setUp(self): reseed() def test___init___size_percent(self): param = iap.FromLowerResolution(other_param=iap.Deterministic(0), size_percent=1, method="nearest") assert ( param.__str__() == param.__repr__() == "FromLowerResolution(" "size_percent=Deterministic(int 1), " "method=Deterministic(nearest), " "other_param=Deterministic(int 0)" ")" ) def test___init___size_px(self): param = iap.FromLowerResolution(other_param=iap.Deterministic(0), size_px=1, method="nearest") assert ( param.__str__() == param.__repr__() == "FromLowerResolution(" "size_px=Deterministic(int 1), " "method=Deterministic(nearest), " "other_param=Deterministic(int 0)" ")" ) def test_binomial_hwc(self): param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples = param.draw_samples((8, 8, 1)) uq = np.unique(samples) assert samples.shape == (8, 8, 1) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_binomial_nhwc(self): param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples_nhwc = param.draw_samples((1, 8, 8, 1)) uq = np.unique(samples_nhwc) assert samples_nhwc.shape == (1, 8, 8, 1) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_draw_samples_with_too_many_dimensions(self): # (N, H, W, C, something) causing error param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) with self.assertRaises(Exception) as context: _ = param.draw_samples((1, 8, 8, 1, 1)) self.assertTrue( "FromLowerResolution can only generate samples of shape" in str(context.exception) ) def test_binomial_hw3(self): # C=3 param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples = param.draw_samples((8, 8, 3)) uq = np.unique(samples) assert samples.shape == (8, 8, 3) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_different_size_px_arguments(self): # different sizes in px param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=16) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_different_size_px_arguments_with_tuple(self): # different sizes in px, one given as tuple (a, b) param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=(2, 16)) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(400): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_different_size_px_argument_with_stochastic_parameters(self): # different sizes in px, given as StochasticParameter param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=iap.Deterministic(1)) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=iap.Choice([8, 16])) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_px_has_invalid_datatype(self): # bad datatype for size_px with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_px=False) self.assertTrue("Expected " in str(context.exception)) def test_min_size(self): # min_size param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=1, min_size=16) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent(self): # different sizes in percent param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=0.01) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=0.8) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent_as_stochastic_parameters(self): # different sizes in percent, given as StochasticParameter param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=iap.Deterministic(0.01)) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=iap.Choice([0.4, 0.8])) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent_has_invalid_datatype(self): # bad datatype for size_percent with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=False) self.assertTrue("Expected " in str(context.exception)) def test_method(self): # method given as StochasticParameter param = iap.FromLowerResolution( iap.Binomial(0.5), size_px=4, method=iap.Choice(["nearest", "linear"])) seen = [0, 0] for _ in sm.xrange(200): samples = param.draw_samples((16, 16, 1)) nb_in_between = np.sum( np.logical_and(0.05 < samples, samples < 0.95)) if nb_in_between == 0: seen[0] += 1 else: seen[1] += 1 assert 100 - 50 < seen[0] < 100 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_method_has_invalid_datatype(self): # bad datatype for method with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_px=4, method=False) self.assertTrue("Expected " in str(context.exception)) def test_samples_same_values_for_same_seeds(self): # multiple calls with same random_state param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) samples1 = param.draw_samples((10, 5, 1), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5, 1), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestClip(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Clip(iap.Deterministic(0), -1, 1) assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), -1.000000, 1.000000)" ) def test_value_within_bounds(self): param = iap.Clip(iap.Deterministic(0), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 0 assert np.all(samples == 0) def test_value_exactly_at_upper_bound(self): param = iap.Clip(iap.Deterministic(1), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_value_exactly_at_lower_bound(self): param = iap.Clip(iap.Deterministic(-1), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == -1 assert np.all(samples == -1) def test_value_is_within_bounds_and_float(self): param = iap.Clip(iap.Deterministic(0.5), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert 0.5 - _eps(sample) < sample < 0.5 + _eps(sample) assert np.all( np.logical_and( 0.5 - _eps(sample) <= samples, samples <= 0.5 + _eps(sample) ) ) def test_value_is_above_upper_bound(self): param = iap.Clip(iap.Deterministic(2), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_value_is_below_lower_bound(self): param = iap.Clip(iap.Deterministic(-2), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == -1 assert np.all(samples == -1) def test_value_is_sometimes_without_bounds_sometimes_beyond(self): param = iap.Clip(iap.Choice([0, 2]), -1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1] assert np.all(np.logical_or(samples == 0, samples == 1)) def test_samples_same_values_for_same_seeds(self): param = iap.Clip(iap.Choice([0, 2]), -1, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) def test_lower_bound_is_none(self): param = iap.Clip(iap.Deterministic(0), None, 1) sample = param.draw_sample() assert sample == 0 assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), None, 1.000000)" ) def test_upper_bound_is_none(self): param = iap.Clip(iap.Deterministic(0), 0, None) sample = param.draw_sample() assert sample == 0 assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), 0.000000, None)" ) def test_both_bounds_are_none(self): param = iap.Clip(iap.Deterministic(0), None, None) sample = param.draw_sample() assert sample == 0 assert ( param.__str__() == param.__repr__() == "Clip(Deterministic(int 0), None, None)" ) class TestDiscretize(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Discretize(iap.Deterministic(0)) assert ( param.__str__() == param.__repr__() == "Discretize(Deterministic(int 0))" ) def test_applied_to_deterministic(self): values = [-100.2, -54.3, -1.0, -1, -0.7, -0.00043, 0, 0.00043, 0.7, 1.0, 1, 54.3, 100.2] for value in values: with self.subTest(value=value): param = iap.Discretize(iap.Deterministic(value)) value_expected = np.round( np.float64([value]) ).astype(np.int32)[0] sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == value_expected assert np.all(samples == value_expected) # TODO why are these tests applied to DiscreteUniform instead of Uniform? def test_applied_to_discrete_uniform(self): param_orig = iap.DiscreteUniform(0, 1) param = iap.Discretize(param_orig) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1] assert np.all(np.logical_or(samples == 0, samples == 1)) def test_applied_to_discrete_uniform_with_wider_range(self): param_orig = iap.DiscreteUniform(0, 2) param = iap.Discretize(param_orig) samples1 = param_orig.draw_samples((10000,)) samples2 = param.draw_samples((10000,)) assert np.all(np.abs(samples1 - samples2) < 0.2*(10000/3)) def test_samples_same_values_for_same_seeds(self): param_orig = iap.DiscreteUniform(0, 2) param = iap.Discretize(param_orig) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Multiply(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Multiply(Deterministic(int 0), Deterministic(int 1), False)" ) def test_multiply_example_integer_values(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), v2) samples = p.draw_samples((2, 3)) assert p.draw_sample() == v1 * v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int64) + v1 * v2 ) def test_multiply_example_integer_values_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), iap.Deterministic(v2)) samples = p.draw_samples((2, 3)) assert p.draw_sample() == v1 * v2 assert samples.dtype.name == "int32" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int32) + v1 * v2 ) def test_multiply_example_float_values(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 * v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 * v2 ) def test_multiply_example_float_values_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Multiply(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 * v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 * v2 ) def test_multiply_by_stochastic_parameter(self): param = iap.Multiply(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 1.0 * 2.0 + _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_multiply_by_stochastic_parameter_elementwise(self): param = iap.Multiply(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 1.0 * 2.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_multiply_stochastic_parameter_by_fixed_value(self): param = iap.Multiply(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 2.0 * 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_multiply_stochastic_parameter_by_fixed_value_elementwise(self): param = iap.Multiply(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 * 1.0 - _eps(samples)) assert np.all(samples < 2.0 * 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestDivide(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Divide(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Divide(Deterministic(int 0), Deterministic(int 1), False)" ) def test_divide_integers(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == (v1 / v2) assert samples.dtype.kind == "f" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_integers_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == (v1 / v2) assert samples.dtype.kind == "f" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_floats(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( (v1 / v2) - _eps(sample) <= sample <= (v1 / v2) + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_floats_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): if v2 == 0: v2 = 1 with self.subTest(left=v1, right=v2): p = iap.Divide(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( (v1 / v2) - _eps(sample) <= sample <= (v1 / v2) + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + (v1 / v2) ) def test_divide_by_stochastic_parameter(self): param = iap.Divide(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 2.0) - _eps(samples)) assert np.all(samples < (1.0 / 1.0) + _eps(samples)) assert ( samples_sorted[0] - _eps(samples) < samples_sorted[-1] < samples_sorted[0] + _eps(samples) ) def test_divide_by_stochastic_parameter_elementwise(self): param = iap.Divide(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 2.0) - _eps(samples)) assert np.all(samples < (1.0 / 1.0) + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples) < samples_sorted[-1] < samples_sorted[0] + _eps(samples) ) def test_divide_stochastic_parameter_by_float(self): param = iap.Divide(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 1.0) - _eps(samples)) assert np.all(samples < (2.0 / 1.0) + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples) < samples_sorted[-1] < samples_sorted[0] + _eps(samples) ) def test_divide_stochastic_parameter_by_float_elementwise(self): param = iap.Divide(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > (1.0 / 1.0) - _eps(samples)) assert np.all(samples < (2.0 / 1.0) + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted) < samples_sorted[-1] < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted) ) def test_divide_by_stochastic_parameter_that_can_by_zero(self): # test division by zero automatically being converted to division by 1 param = iap.Divide(2, iap.Choice([0, 2]), elementwise=True) samples = param.draw_samples((10, 20)) samples_unique = np.sort(np.unique(samples.flatten())) assert samples_unique[0] == 1 and samples_unique[1] == 2 def test_divide_by_zero(self): param = iap.Divide(iap.Deterministic(1), 0, elementwise=False) sample = param.draw_sample() assert sample == 1 class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Add(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Add(Deterministic(int 0), Deterministic(int 1), False)" ) def test_add_integers(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 + v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int32) + v1 + v2 ) def test_add_integers_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 + v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int32) + v1 + v2 ) def test_add_floats(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 + v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 + v2 ) def test_add_floats_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Add(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert np.isclose(sample, v1 + v2, atol=1e-3, rtol=0) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float32) + v1 + v2 ) def test_add_stochastic_parameter(self): param = iap.Add(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 1.0 + 2.0 + _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_add_stochastic_parameter_elementwise(self): param = iap.Add(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 1.0 + 2.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_add_to_stochastic_parameter(self): param = iap.Add(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 2.0 + 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_add_to_stochastic_parameter_elementwise(self): param = iap.Add(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples >= 1.0 + 1.0 - _eps(samples)) assert np.all(samples <= 2.0 + 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestSubtract(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Subtract(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Subtract(Deterministic(int 0), Deterministic(int 1), False)" ) def test_subtract_integers(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 - v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int64) + v1 - v2 ) def test_subtract_integers_both_deterministic(self): values_int = [-100, -54, -1, 0, 1, 54, 100] for v1, v2 in itertools.product(values_int, values_int): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert sample == v1 - v2 assert samples.dtype.kind == "i" assert np.array_equal( samples, np.zeros((2, 3), dtype=np.int64) + v1 - v2 ) def test_subtract_floats(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), v2) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert v1 - v2 - _eps(sample) < sample < v1 - v2 + _eps(sample) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + v1 - v2 ) def test_subtract_floats_both_deterministic(self): values_float = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for v1, v2 in itertools.product(values_float, values_float): with self.subTest(left=v1, right=v2): p = iap.Subtract(iap.Deterministic(v1), iap.Deterministic(v2)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert v1 - v2 - _eps(sample) < sample < v1 - v2 + _eps(sample) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + v1 - v2 ) def test_subtract_stochastic_parameter(self): param = iap.Subtract(iap.Deterministic(1.0), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 2.0 - _eps(samples)) assert np.all(samples < 1.0 - 1.0 + _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_subtract_stochastic_parameter_elementwise(self): param = iap.Subtract(iap.Deterministic(1.0), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 2.0 - _eps(samples)) assert np.all(samples < 1.0 - 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_subtract_from_stochastic_parameter(self): param = iap.Subtract(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 1.0 - _eps(samples)) assert np.all(samples < 2.0 - 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_subtract_from_stochastic_parameter_elementwise(self): param = iap.Subtract(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 - 1.0 - _eps(samples)) assert np.all(samples < 2.0 - 1.0 + _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestPower(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Power(iap.Deterministic(0), 1, elementwise=False) assert ( param.__str__() == param.__repr__() == "Power(Deterministic(int 0), Deterministic(int 1), False)" ) def test_pairs(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.0, -1.0, 0.0, 1.0, 54.0, 100.0 ] exponents = [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] for base, exponent in itertools.product(values, exponents): if base < 0 and ia.is_single_float(exponent): continue if base == 0 and exponent < 0: continue with self.subTest(base=base, exponent=exponent): p = iap.Power(iap.Deterministic(base), exponent) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( base ** exponent - _eps(sample) < sample < base ** exponent + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + base ** exponent ) def test_pairs_both_deterministic(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.0, -1.0, 0.0, 1.0, 54.0, 100.0 ] exponents = [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] for base, exponent in itertools.product(values, exponents): if base < 0 and ia.is_single_float(exponent): continue if base == 0 and exponent < 0: continue with self.subTest(base=base, exponent=exponent): p = iap.Power(iap.Deterministic(base), iap.Deterministic(exponent)) sample = p.draw_sample() samples = p.draw_samples((2, 3)) assert ( base ** exponent - _eps(sample) < sample < base ** exponent + _eps(sample) ) assert samples.dtype.kind == "f" assert np.allclose( samples, np.zeros((2, 3), dtype=np.float64) + base ** exponent ) def test_exponent_is_stochastic_parameter(self): param = iap.Power(iap.Deterministic(1.5), (1.0, 2.0), elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.5 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 1.5 ** 2.0 + 2 * _eps(samples)) assert ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_exponent_is_stochastic_parameter_elementwise(self): param = iap.Power(iap.Deterministic(1.5), (1.0, 2.0), elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.5 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 1.5 ** 2.0 + 2 * _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_value_is_uniform(self): param = iap.Power(iap.Uniform(1.0, 2.0), 1.0, elementwise=False) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 2.0 ** 1.0 + 2 * _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) def test_value_is_uniform_elementwise(self): param = iap.Power(iap.Uniform(1.0, 2.0), 1.0, elementwise=True) samples = param.draw_samples((10, 20)) samples_sorted = np.sort(samples.flatten()) assert samples.shape == (10, 20) assert np.all(samples > 1.0 ** 1.0 - 2 * _eps(samples)) assert np.all(samples < 2.0 ** 1.0 + 2 * _eps(samples)) assert not ( samples_sorted[0] - _eps(samples_sorted[0]) < samples_sorted[-1] < samples_sorted[0] + _eps(samples_sorted[0]) ) class TestAbsolute(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Absolute(iap.Deterministic(0)) assert ( param.__str__() == param.__repr__() == "Absolute(Deterministic(int 0))" ) def test_fixed_values(self): simple_values = [-1.5, -1, -1.0, -0.1, 0, 0.0, 0.1, 1, 1.0, 1.5] for value in simple_values: with self.subTest(value=value): param = iap.Absolute(iap.Deterministic(value)) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) if ia.is_single_float(value): assert ( abs(value) - _eps(sample) < sample < abs(value) + _eps(sample) ) assert np.all(abs(value) - _eps(samples) < samples) assert np.all(samples < abs(value) + _eps(samples)) else: assert sample == abs(value) assert np.all(samples == abs(value)) def test_value_is_stochastic_parameter(self): param = iap.Absolute(iap.Choice([-3, -1, 1, 3])) sample = param.draw_sample() samples = param.draw_samples((10, 10)) samples_uq = np.sort(np.unique(samples)) assert sample.shape == tuple() assert sample in [3, 1] assert samples.shape == (10, 10) assert len(samples_uq) == 2 assert samples_uq[0] == 1 and samples_uq[1] == 3 class TestRandomSign(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.RandomSign(iap.Deterministic(0), 0.5) assert ( param.__str__() == param.__repr__() == "RandomSign(Deterministic(int 0), 0.50)" ) def test_value_is_deterministic(self): param = iap.RandomSign(iap.Deterministic(1)) samples = param.draw_samples((1000,)) n_positive = np.sum(samples == 1) n_negative = np.sum(samples == -1) assert samples.shape == (1000,) assert n_positive + n_negative == 1000 assert 350 < n_positive < 750 def test_value_is_deterministic_many_samples(self): param = iap.RandomSign(iap.Deterministic(1)) seen = [0, 0] for _ in sm.xrange(1000): sample = param.draw_sample() assert sample.shape == tuple() if sample == 1: seen[1] += 1 else: seen[0] += 1 n_negative, n_positive = seen assert n_positive + n_negative == 1000 assert 350 < n_positive < 750 def test_value_is_stochastic_parameter(self): param = iap.RandomSign(iap.Choice([1, 2])) samples = param.draw_samples((4000,)) seen = [0, 0, 0, 0] seen[0] = np.sum(samples == -2) seen[1] = np.sum(samples == -1) seen[2] = np.sum(samples == 1) seen[3] = np.sum(samples == 2) assert np.sum(seen) == 4000 assert all([700 < v < 1300 for v in seen]) def test_samples_same_values_for_same_seeds(self): param = iap.RandomSign(iap.Choice([1, 2])) samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.array_equal(samples1, samples2) assert np.sum(samples1 == -2) > 50 assert np.sum(samples1 == -1) > 50 assert np.sum(samples1 == 1) > 50 assert np.sum(samples1 == 2) > 50 class TestForceSign(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.ForceSign(iap.Deterministic(0), True, "invert", 1) assert ( param.__str__() == param.__repr__() == "ForceSign(Deterministic(int 0), True, invert, 1)" ) def test_single_sample_positive(self): param = iap.ForceSign(iap.Deterministic(1), positive=True, mode="invert") sample = param.draw_sample() assert sample.shape == tuple() assert sample == 1 def test_single_sample_negative(self): param = iap.ForceSign(iap.Deterministic(1), positive=False, mode="invert") sample = param.draw_sample() assert sample.shape == tuple() assert sample == -1 def test_many_samples_positive(self): param = iap.ForceSign(iap.Deterministic(1), positive=True, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == 1) def test_many_samples_negative(self): param = iap.ForceSign(iap.Deterministic(1), positive=False, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == -1) def test_many_samples_negative_value_to_positive(self): param = iap.ForceSign(iap.Deterministic(-1), positive=True, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == 1) def test_many_samples_negative_value_to_negative(self): param = iap.ForceSign(iap.Deterministic(-1), positive=False, mode="invert") samples = param.draw_samples(100) assert samples.shape == (100,) assert np.all(samples == -1) def test_many_samples_stochastic_value_to_positive(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="invert") samples = param.draw_samples(1000) n_twos = np.sum(samples == 2) n_ones = np.sum(samples == 1) assert samples.shape == (1000,) assert n_twos + n_ones == 1000 assert 200 < n_twos < 700 assert 200 < n_ones < 700 def test_many_samples_stochastic_value_to_positive_reroll(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="reroll") samples = param.draw_samples(1000) n_twos = np.sum(samples == 2) n_ones = np.sum(samples == 1) assert samples.shape == (1000,) assert n_twos + n_ones == 1000 assert n_twos > 0 assert n_ones > 0 def test_many_samples_stochastic_value_to_positive_reroll_max_count(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="reroll", reroll_count_max=100) samples = param.draw_samples(100) n_twos = np.sum(samples == 2) n_ones = np.sum(samples == 1) assert samples.shape == (100,) assert n_twos + n_ones == 100 assert n_twos < 5 def test_samples_same_values_for_same_seeds(self): param = iap.ForceSign(iap.Choice([-2, 1]), positive=True, mode="invert") samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.array_equal(samples1, samples2) class TestPositive(unittest.TestCase): def setUp(self): reseed() def test_many_samples_reroll(self): param = iap.Positive(iap.Deterministic(-1), mode="reroll", reroll_count_max=1) samples = param.draw_samples((100,)) assert samples.shape == (100,) assert np.all(samples == 1) class TestNegative(unittest.TestCase): def setUp(self): reseed() def test_many_samples_reroll(self): param = iap.Negative(iap.Deterministic(1), mode="reroll", reroll_count_max=1) samples = param.draw_samples((100,)) assert samples.shape == (100,) assert np.all(samples == -1) class TestIterativeNoiseAggregator(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.IterativeNoiseAggregator(iap.Deterministic(0), iterations=(1, 3), aggregation_method="max") assert ( param.__str__() == param.__repr__() == ( "IterativeNoiseAggregator(" "Deterministic(int 0), " "DiscreteUniform(Deterministic(int 1), " "Deterministic(int 3)" "), " "Deterministic(max)" ")" ) ) def test_value_is_deterministic_max_1_iter(self): param = iap.IterativeNoiseAggregator(iap.Deterministic(1), iterations=1, aggregation_method="max") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert sample == 1 assert np.all(samples == 1) def test_value_is_stochastic_avg_200_iter(self): param = iap.IterativeNoiseAggregator(iap.Choice([0, 50]), iterations=200, aggregation_method="avg") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert 25 - 10 < sample < 25 + 10 assert np.all(np.logical_and(25 - 10 < samples, samples < 25 + 10)) def test_value_is_stochastic_max_100_iter(self): param = iap.IterativeNoiseAggregator(iap.Choice([0, 50]), iterations=100, aggregation_method="max") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert sample == 50 assert np.all(samples == 50) def test_value_is_stochastic_min_100_iter(self): param = iap.IterativeNoiseAggregator(iap.Choice([0, 50]), iterations=100, aggregation_method="min") sample = param.draw_sample() samples = param.draw_samples((2, 4)) assert sample.shape == tuple() assert samples.shape == (2, 4) assert sample == 0 assert np.all(samples == 0) def test_value_is_stochastic_avg_or_max_100_iter_evaluate_counts(self): seen = [0, 0, 0, 0] for _ in sm.xrange(100): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=100, aggregation_method=["avg", "max"]) samples = param.draw_samples((1, 1)) diff_0 = abs(0 - samples[0, 0]) diff_25 = abs(25 - samples[0, 0]) diff_50 = abs(50 - samples[0, 0]) if diff_25 < 10.0: seen[0] += 1 elif diff_50 < _eps(samples): seen[1] += 1 elif diff_0 < _eps(samples): seen[2] += 1 else: seen[3] += 1 assert seen[2] <= 2 # around 0.0 assert seen[3] <= 2 # 0.0+eps <= x < 15.0 or 35.0 < x < 50.0 or >50.0 assert 50 - 20 < seen[0] < 50 + 20 assert 50 - 20 < seen[1] < 50 + 20 def test_value_is_stochastic_avg_tuple_as_iter_evaluate_histograms(self): # iterations as tuple param = iap.IterativeNoiseAggregator( iap.Uniform(-1.0, 1.0), iterations=(1, 100), aggregation_method="avg") diffs = [] for _ in sm.xrange(100): samples = param.draw_samples((1, 1)) diff = abs(samples[0, 0] - 0.0) diffs.append(diff) nb_bins = 3 hist, _ = np.histogram(diffs, bins=nb_bins, range=(-1.0, 1.0), density=False) assert hist[1] > hist[0] assert hist[1] > hist[2] def test_value_is_stochastic_max_list_as_iter_evaluate_counts(self): # iterations as list seen = [0, 0] for _ in sm.xrange(400): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=[1, 100], aggregation_method=["max"]) samples = param.draw_samples((1, 1)) diff_0 = abs(0 - samples[0, 0]) diff_50 = abs(50 - samples[0, 0]) if diff_50 < _eps(samples): seen[0] += 1 elif diff_0 < _eps(samples): seen[1] += 1 else: assert False assert 300 - 50 < seen[0] < 300 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_value_is_stochastic_all_100_iter(self): # test ia.ALL as aggregation_method # note that each method individually and list of methods are already # tested, so no in depth test is needed here param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=100, aggregation_method=ia.ALL) assert isinstance(param.aggregation_method, iap.Choice) assert len(param.aggregation_method.a) == 3 assert [v in param.aggregation_method.a for v in ["min", "avg", "max"]] def test_value_is_stochastic_max_2_iter(self): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=2, aggregation_method="max") samples = param.draw_samples((2, 1000)) nb_0 = np.sum(samples == 0) nb_50 = np.sum(samples == 50) assert nb_0 + nb_50 == 2 * 1000 assert 0.25 - 0.05 < nb_0 / (2 * 1000) < 0.25 + 0.05 def test_samples_same_values_for_same_seeds(self): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=5, aggregation_method="avg") samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.allclose(samples1, samples2) def test_stochastic_param_as_aggregation_method(self): param = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=5, aggregation_method=iap.Deterministic("max")) assert isinstance(param.aggregation_method, iap.Deterministic) assert param.aggregation_method.value == "max" def test_bad_datatype_for_aggregation_method(self): with self.assertRaises(Exception) as context: _ = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=5, aggregation_method=False) self.assertTrue( "Expected aggregation_method to be" in str(context.exception)) def test_bad_datatype_for_iterations(self): with self.assertRaises(Exception) as context: _ = iap.IterativeNoiseAggregator( iap.Choice([0, 50]), iterations=False, aggregation_method="max") self.assertTrue("Expected iterations to be" in str(context.exception)) class TestSigmoid(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Sigmoid( iap.Deterministic(0), threshold=(-10, 10), activated=True, mul=1, add=0) assert ( param.__str__() == param.__repr__() == ( "Sigmoid(" "Deterministic(int 0), " "Uniform(" "Deterministic(int -10), " "Deterministic(int 10)" "), " "Deterministic(int 1), " "1, " "0)" ) ) def test_activated_is_true(self): param = iap.Sigmoid( iap.Deterministic(5), add=0, mul=1, threshold=0.5, activated=True) expected = 1 / (1 + np.exp(-(5 * 1 + 0 - 0.5))) sample = param.draw_sample() samples = param.draw_samples((5, 10)) assert sample.shape == tuple() assert samples.shape == (5, 10) assert expected - _eps(sample) < sample < expected + _eps(sample) assert np.all( np.logical_and( expected - _eps(samples) < samples, samples < expected + _eps(samples) ) ) def test_activated_is_false(self): param = iap.Sigmoid( iap.Deterministic(5), add=0, mul=1, threshold=0.5, activated=False) expected = 5 sample = param.draw_sample() samples = param.draw_samples((5, 10)) assert sample.shape == tuple() assert samples.shape == (5, 10) assert expected - _eps(sample) < sample < expected + _eps(sample) assert np.all( np.logical_and( expected - _eps(sample) < samples, samples < expected + _eps(sample) ) ) def test_activated_is_probabilistic(self): param = iap.Sigmoid( iap.Deterministic(5), add=0, mul=1, threshold=0.5, activated=0.5) expected_first = 5 expected_second = 1 / (1 + np.exp(-(5 * 1 + 0 - 0.5))) seen = [0, 0] for _ in sm.xrange(1000): sample = param.draw_sample() diff_first = abs(sample - expected_first) diff_second = abs(sample - expected_second) if diff_first < _eps(sample): seen[0] += 1 elif diff_second < _eps(sample): seen[1] += 1 else: assert False assert 500 - 150 < seen[0] < 500 + 150 assert 500 - 150 < seen[1] < 500 + 150 def test_value_is_stochastic_param(self): param = iap.Sigmoid( iap.Choice([1, 10]), add=0, mul=1, threshold=0.5, activated=True) expected_first = 1 / (1 + np.exp(-(1 * 1 + 0 - 0.5))) expected_second = 1 / (1 + np.exp(-(10 * 1 + 0 - 0.5))) seen = [0, 0] for _ in sm.xrange(1000): sample = param.draw_sample() diff_first = abs(sample - expected_first) diff_second = abs(sample - expected_second) if diff_first < _eps(sample): seen[0] += 1 elif diff_second < _eps(sample): seen[1] += 1 else: assert False assert 500 - 150 < seen[0] < 500 + 150 assert 500 - 150 < seen[1] < 500 + 150 def test_mul_add_threshold_with_various_fixed_values(self): muls = [0.1, 1, 10.3] adds = [-5.7, -0.0734, 0, 0.0734, 5.7] vals = [-1, -0.7, 0, 0.7, 1] threshs = [-5.7, -0.0734, 0, 0.0734, 5.7] for mul, add, val, thresh in itertools.product(muls, adds, vals, threshs): with self.subTest(mul=mul, add=add, val=val, threshold=thresh): param = iap.Sigmoid( iap.Deterministic(val), add=add, mul=mul, threshold=thresh) sample = param.draw_sample() samples = param.draw_samples((2, 3)) dt = sample.dtype val_ = np.array([val], dtype=dt) mul_ = np.array([mul], dtype=dt) add_ = np.array([add], dtype=dt) thresh_ = np.array([thresh], dtype=dt) expected = ( 1 / ( 1 + np.exp( -(val_ * mul_ + add_ - thresh_) ) ) ) assert sample.shape == tuple() assert samples.shape == (2, 3) assert ( expected - 5*_eps(sample) < sample < expected + 5*_eps(sample) ) assert np.all( np.logical_and( expected - 5*_eps(sample) < samples, samples < expected + 5*_eps(sample) ) ) def test_samples_same_values_for_same_seeds(self): param = iap.Sigmoid( iap.Choice([1, 10]), add=0, mul=1, threshold=0.5, activated=True) samples1 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((100, 10), random_state=iarandom.RNG(1234)) assert samples1.shape == (100, 10) assert samples2.shape == (100, 10) assert np.array_equal(samples1, samples2)
34.712048
83
0.557204
143,054
0.993051
0
0
200
0.001388
0
0
7,815
0.05425
9600225ca5edde94d999985a5e32bc3c498cea99
1,731
py
Python
ml_snek/datasets/jsnek_dataset.py
joram/ml-snek
e1ed8aa831a4683dfe51a6af0cb25a44c3978903
[ "MIT" ]
null
null
null
ml_snek/datasets/jsnek_dataset.py
joram/ml-snek
e1ed8aa831a4683dfe51a6af0cb25a44c3978903
[ "MIT" ]
13
2019-12-25T21:04:49.000Z
2020-01-04T20:25:05.000Z
ml_snek/datasets/jsnek_dataset.py
joram/ml-snek
e1ed8aa831a4683dfe51a6af0cb25a44c3978903
[ "MIT" ]
null
null
null
""" jsnek_saved_games_dataset that returns flat (vectorized) data """ from .jsnek_base_dataset import JSnekBaseDataset from .. import utils class JSnekDataset(JSnekBaseDataset): """Represents a board state in the following way: board_state: `torch.Tensor` Board state in torch.Tensor format. Board state can either be C x H x W or (C*H*W) if board_state_as_vector = True direction: `torch.Tensor` Direction taken in one-hot format """ def __init__( self, board_state_as_vector=False, direction_as_index=False, max_frames=-1 ): super().__init__(max_frames=max_frames) self.board_state_as_vector = board_state_as_vector self.direction_as_index = direction_as_index def __getitem__(self, index): """ Parameters ---------- index : int Index of datum Returns ------- board_state: `torch.Tensor` Board state in torch.Tensor format. Board state can either be C x H x W or (C*H*W) if board_state_as_vector = True direction: `torch.Tensor` Direction taken in one-hot format or Index if direction_as_index = True """ frame, winner_id, direction = super().__getitem__(index) board_state = utils.frame_to_image(frame, winner_id) if self.board_state_as_vector: board_state = board_state.view([board_state.numel()]) if self.direction_as_index: direction = utils.direction_to_index(direction) else: direction = utils.direction_to_onehot(direction) return board_state, direction
26.630769
82
0.622184
1,587
0.916811
0
0
0
0
0
0
855
0.493934
960075d5d481ca0949f159a6dd4c4e2e599c3197
391
py
Python
src/posts/migrations/0007_recipe_preface.py
eduardkh/matkonim2
d836b16403d7fce0db88dd39dac2ba24575e6fca
[ "MIT" ]
null
null
null
src/posts/migrations/0007_recipe_preface.py
eduardkh/matkonim2
d836b16403d7fce0db88dd39dac2ba24575e6fca
[ "MIT" ]
null
null
null
src/posts/migrations/0007_recipe_preface.py
eduardkh/matkonim2
d836b16403d7fce0db88dd39dac2ba24575e6fca
[ "MIT" ]
null
null
null
# Generated by Django 3.2.7 on 2021-09-15 15:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('posts', '0006_auto_20210914_0910'), ] operations = [ migrations.AddField( model_name='recipe', name='preface', field=models.TextField(blank=True, null=True), ), ]
20.578947
58
0.595908
298
0.762148
0
0
0
0
0
0
96
0.245524
96021a52c512a37d56b88bb769ca1d2cad4e3a5c
490
py
Python
app/database/db.py
flych3r/spotify-tracker
306d549da6a57866ea480c85286d870e7653a1eb
[ "MIT" ]
2
2021-06-25T00:24:13.000Z
2021-07-10T13:00:39.000Z
app/database/db.py
flych3r/spotify-tracker
306d549da6a57866ea480c85286d870e7653a1eb
[ "MIT" ]
null
null
null
app/database/db.py
flych3r/spotify-tracker
306d549da6a57866ea480c85286d870e7653a1eb
[ "MIT" ]
2
2021-05-16T01:40:39.000Z
2021-07-10T12:59:07.000Z
import os import databases import sqlalchemy DB_CONNECTOR = os.getenv('APP_DB_CONNECTOR') DB_USERNAME = os.getenv('APP_DB_USERNAME') DB_PASSWORD = os.getenv('APP_DB_PASSWORD') DB_HOST = os.getenv('APP_DB_HOST') DB_PORT = os.getenv('APP_DB_PORT') DB_DATABASE = os.getenv('APP_DB_DATABASE') DB_URL = f'{DB_CONNECTOR}://{DB_USERNAME}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_DATABASE}' db: databases.Database = databases.Database(DB_URL) metadata: sqlalchemy.MetaData = sqlalchemy.MetaData()
28.823529
90
0.777551
0
0
0
0
0
0
0
0
176
0.359184
96023217ef1c244003018d7cd3aa5cc748e1d708
7,631
py
Python
examples/stl10/main_info.py
hehaodele/align_uniform
898b9fed960316d4cab6f8b6080490125fc362cd
[ "MIT" ]
null
null
null
examples/stl10/main_info.py
hehaodele/align_uniform
898b9fed960316d4cab6f8b6080490125fc362cd
[ "MIT" ]
null
null
null
examples/stl10/main_info.py
hehaodele/align_uniform
898b9fed960316d4cab6f8b6080490125fc362cd
[ "MIT" ]
null
null
null
import os import time import argparse import torchvision import torch import torch.nn as nn from util import AverageMeter, TwoAugUnsupervisedDataset from encoder import SmallAlexNet from align_uniform import align_loss, uniform_loss import json def parse_option(): parser = argparse.ArgumentParser('STL-10 Representation Learning with Alignment and Uniformity Losses') parser.add_argument('--align_w', type=float, default=1, help='Alignment loss weight') parser.add_argument('--unif_w', type=float, default=1, help='Uniformity loss weight') parser.add_argument('--align_alpha', type=float, default=2, help='alpha in alignment loss') parser.add_argument('--unif_t', type=float, default=2, help='t in uniformity loss') parser.add_argument('--batch_size', type=int, default=768, help='Batch size') parser.add_argument('--epochs', type=int, default=200, help='Number of training epochs') parser.add_argument('--lr', type=float, default=None, help='Learning rate. Default is linear scaling 0.12 per 256 batch size') parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='Learning rate decay rate') parser.add_argument('--lr_decay_epochs', default=[155, 170, 185], nargs='*', type=int, help='When to decay learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum') parser.add_argument('--weight_decay', type=float, default=1e-4, help='L2 weight decay') parser.add_argument('--feat_dim', type=int, default=128, help='Feature dimensionality') parser.add_argument('--num_workers', type=int, default=20, help='Number of data loader workers to use') parser.add_argument('--log_interval', type=int, default=40, help='Number of iterations between logs') parser.add_argument('--gpus', default=[0], nargs='*', type=int, help='List of GPU indices to use, e.g., --gpus 0 1 2 3') parser.add_argument('--data_folder', type=str, default='./data', help='Path to data') parser.add_argument('--result_folder', type=str, default='./results', help='Base directory to save model') parser.add_argument('--suffix', type=str, default='info', help='Name Suffix') opt = parser.parse_args() opt.data_folder = '/afs/csail.mit.edu/u/h/hehaodele/radar/Hao/datasets' opt.result_folder = '/afs/csail.mit.edu/u/h/hehaodele/radar/Hao/projects/align_uniform/results' if opt.lr is None: opt.lr = 0.12 * (opt.batch_size / 256) print(json.dumps(vars(opt), indent=2, default=lambda o: o.__dict__)) opt.gpus = list(map(lambda x: torch.device('cuda', x), opt.gpus)) exp_name = f"align{opt.align_w:g}alpha{opt.align_alpha:g}_unif{opt.unif_w:g}t{opt.unif_t:g}" if len(opt.suffix) > 0: exp_name += f'_{opt.suffix}' opt.save_folder = os.path.join( opt.result_folder, exp_name, ) os.makedirs(opt.save_folder, exist_ok=True) return opt def get_data_loader(opt): from util import RandomResizedCropWithBox, TwoAugUnsupervisedDatasetWithBox transform_crop = RandomResizedCropWithBox(64, scale=(0.08, 1)) transform_others = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ColorJitter(0.4, 0.4, 0.4, 0.4), torchvision.transforms.RandomGrayscale(p=0.2), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.44087801806139126, 0.42790631331699347, 0.3867879370752931), (0.26826768628079806, 0.2610450402318512, 0.26866836876860795), ), ]) dataset = TwoAugUnsupervisedDatasetWithBox( torchvision.datasets.STL10(opt.data_folder, 'train+unlabeled', download=True), transform_crop, transform_others) return torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, num_workers=opt.num_workers, shuffle=True, pin_memory=True) def get_rate(x): return sum(x) / len(x) * 100 def main(): opt = parse_option() print(f'Optimize: {opt.align_w:g} * loss_align(alpha={opt.align_alpha:g}) + {opt.unif_w:g} * loss_uniform(t={opt.unif_t:g})') torch.cuda.set_device(opt.gpus[0]) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True encoder = nn.DataParallel(SmallAlexNet(feat_dim=opt.feat_dim).to(opt.gpus[0]), opt.gpus) optim = torch.optim.SGD(encoder.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay) scheduler = torch.optim.lr_scheduler.MultiStepLR(optim, gamma=opt.lr_decay_rate, milestones=opt.lr_decay_epochs) loader = get_data_loader(opt) align_meter = AverageMeter('align_loss') unif_meter = AverageMeter('uniform_loss') loss_meter = AverageMeter('total_loss') it_time_meter = AverageMeter('iter_time') info_rate_meter = AverageMeter('info_rate') noni_rate_meter = AverageMeter('noni_rate') for epoch in range(opt.epochs): align_meter.reset() unif_meter.reset() loss_meter.reset() it_time_meter.reset() t0 = time.time() for ii, (im_x, info_x, im_y, info_y) in enumerate(loader): optim.zero_grad() x, y = encoder(torch.cat([im_x.to(opt.gpus[0]), im_y.to(opt.gpus[0])])).chunk(2) align_loss_val = align_loss(x, y, alpha=opt.align_alpha) unif_loss_val = (uniform_loss(x, t=opt.unif_t) + uniform_loss(y, t=opt.unif_t)) / 2 loss = align_loss_val * opt.align_w + unif_loss_val * opt.unif_w info_x, info_y = info_x.to(opt.gpus[0]), info_y.to(opt.gpus[0]) info_x_idx, noni_x_idx = info_x > 0.5, info_x < 0.2 info_y_idx, noni_y_idx = info_y > 0.5, info_y < 0.2 info_pair_idx = info_x_idx & info_y_idx if info_pair_idx.any(): align_loss_info = align_loss(x[info_pair_idx], y[info_pair_idx], alpha=opt.align_alpha) else: align_loss_info = 0 uniform_loss_noninfo = 0 if noni_x_idx.any(): uniform_loss_noninfo += uniform_loss(x[noni_x_idx], t=opt.unif_t) if noni_y_idx.any(): uniform_loss_noninfo += uniform_loss(y[noni_y_idx], t=opt.unif_t) uniform_loss_noninfo /= 2 loss_info = align_loss_info * opt.align_w + uniform_loss_noninfo * opt.unif_w loss = loss + loss_info align_meter.update(align_loss_val, x.shape[0]) unif_meter.update(unif_loss_val) loss_meter.update(loss, x.shape[0]) info_rate_meter.update((get_rate(info_x_idx)+get_rate(info_y_idx))/2) noni_rate_meter.update((get_rate(noni_x_idx)+get_rate(noni_y_idx))/2) loss.backward() optim.step() it_time_meter.update(time.time() - t0) if ii % opt.log_interval == 0: print(f"Epoch {epoch}/{opt.epochs}\tIt {ii}/{len(loader)}\t" + f"{align_meter}\t{unif_meter}\t{loss_meter}\t{it_time_meter}\t{info_rate_meter}\t{noni_rate_meter}") t0 = time.time() scheduler.step() if epoch % 40 == 0: ckpt_file = os.path.join(opt.save_folder, f'encoder-ep{epoch}.pth') torch.save(encoder.module.state_dict(), ckpt_file) ckpt_file = os.path.join(opt.save_folder, 'encoder.pth') torch.save(encoder.module.state_dict(), ckpt_file) print(f'Saved to {ckpt_file}') if __name__ == '__main__': main()
43.357955
129
0.657974
0
0
0
0
0
0
0
0
1,482
0.194208
96024e0d78c0a224ad13e044ee7fc8d5953df2e6
259
py
Python
app/__init__.py
nic-mon/IAIOLab
b8c4a23c95ee722938b393e4824b7fc94447f17c
[ "MIT" ]
null
null
null
app/__init__.py
nic-mon/IAIOLab
b8c4a23c95ee722938b393e4824b7fc94447f17c
[ "MIT" ]
null
null
null
app/__init__.py
nic-mon/IAIOLab
b8c4a23c95ee722938b393e4824b7fc94447f17c
[ "MIT" ]
1
2018-04-11T00:34:09.000Z
2018-04-11T00:34:09.000Z
from flask import Flask """ 1. Creating a flask application instance, the name argument is passed to flask application constructor. It's used to determine the root path""" app = Flask(__name__) app.config.from_object('config') from app import views, models
28.777778
82
0.776062
0
0
0
0
0
0
0
0
155
0.598456
96037b162a17a26e6138061ce184f323626f7486
5,305
py
Python
ptf/tests/linerate/qos_metrics.py
dariusgrassi/upf-epc
aef4648db118d6e1bdb23a07e4774177bd58fc50
[ "Apache-2.0" ]
null
null
null
ptf/tests/linerate/qos_metrics.py
dariusgrassi/upf-epc
aef4648db118d6e1bdb23a07e4774177bd58fc50
[ "Apache-2.0" ]
13
2021-12-15T18:39:52.000Z
2022-03-31T00:08:21.000Z
ptf/tests/linerate/qos_metrics.py
dariusgrassi/upf-epc
aef4648db118d6e1bdb23a07e4774177bd58fc50
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # Copyright(c) 2021 Open Networking Foundation import time from ipaddress import IPv4Address from pprint import pprint from trex_test import TrexTest from grpc_test import * from trex_stl_lib.api import ( STLVM, STLPktBuilder, STLStream, STLTXCont, ) import ptf.testutils as testutils UPF_DEST_MAC = "0c:c4:7a:19:6d:ca" # Port setup TREX_SENDER_PORT = 0 TREX_RECEIVER_PORT = 1 BESS_SENDER_PORT = 2 BESS_RECEIVER_PORT = 3 # Test specs DURATION = 10 RATE = 100_000 # 100 Kpps UE_COUNT = 10_000 # 10k UEs GTPU_PORT = 2152 PKT_SIZE = 64 class PerFlowQosMetricsTest(TrexTest, GrpcTest): """ Generates 1 Mpps downlink traffic for 10k dest UE IP addresses. Uses BESS-UPF QoS metrics to verify baseline packet loss, latency, and jitter results. """ @autocleanup def runTest(self): n3TEID = 0 startIP = IPv4Address('16.0.0.1') endIP = startIP + UE_COUNT - 1 accessIP = IPv4Address('10.128.13.29') enbIP = IPv4Address('10.27.19.99') # arbitrary ip for non-existent eNodeB for gtpu encap # program UPF for downlink traffic by installing PDRs and FARs print("Installing PDRs and FARs...") for i in range(UE_COUNT): # install N6 DL PDR to match UE dst IP pdrDown = self.createPDR( srcIface = CORE, dstIP = int(startIP + i), srcIfaceMask = 0xFF, dstIPMask = 0xFFFFFFFF, precedence = 255, fseID = n3TEID + i + 1, # start from 1 ctrID = 0, farID = i, qerIDList = [N6, 1], needDecap = 0, ) self.addPDR(pdrDown) # install N6 DL FAR for encap farDown = self.createFAR( farID = i, fseID = n3TEID + i + 1, # start from 1 applyAction = ACTION_FORWARD, dstIntf = DST_ACCESS, tunnelType = 0x1, tunnelIP4Src = int(accessIP), tunnelIP4Dst = int(enbIP), # only one eNB to send to downlink tunnelTEID = 0, tunnelPort = GTPU_PORT, ) self.addFAR(farDown) # install N6 DL/UL application QER qer = self.createQER( gate = GATE_UNMETER, qerID = N6, fseID = n3TEID + i + 1, # start from 1 qfi = 9, ulGbr = 0, ulMbr = 0, dlGbr = 0, dlMbr = 0, burstDurationMs = 10, ) self.addApplicationQER(qer) # set up trex to send traffic thru UPF print("Setting up TRex client...") vm = STLVM() vm.var( name="dst", min_value=str(startIP), max_value=str(endIP), size=4, op="random", ) vm.write(fv_name="dst", pkt_offset="IP.dst") vm.fix_chksum() pkt = testutils.simple_udp_packet( pktlen=PKT_SIZE, eth_dst=UPF_DEST_MAC, with_udp_chksum=False, ) stream = STLStream( packet=STLPktBuilder(pkt=pkt, vm=vm), mode=STLTXCont(pps=RATE), ) self.trex_client.add_streams(stream, ports=[BESS_SENDER_PORT]) print("Running traffic...") s_time = time.time() self.trex_client.start( ports=[BESS_SENDER_PORT], mult="1", duration=DURATION ) # FIXME: pull QoS metrics at end instead of while traffic running time.sleep(DURATION - 5) if self.trex_client.is_traffic_active(): stats = self.getSessionStats(q=[90, 99, 99.9], quiet=True) preQos = stats["preQos"] postDlQos = stats["postDlQos"] postUlQos = stats["postUlQos"] self.trex_client.wait_on_traffic(ports=[BESS_SENDER_PORT]) print(f"Duration was {time.time() - s_time}") trex_stats = self.trex_client.get_stats() sent_packets = trex_stats['total']['opackets'] recv_packets = trex_stats['total']['ipackets'] # 0% packet loss self.assertEqual( sent_packets, recv_packets, f"Didn't receive all packets; sent {sent_packets}, received {recv_packets}", ) for fseid in postDlQos: lat = fseid['latency']['percentileValuesNs'] jitter = fseid['jitter']['percentileValuesNs'] # 99th %ile latency < 100 us self.assertLessEqual( int(lat[1]) / 1000, 100, f"99th %ile latency was higher than 100 us! Was {int(lat[1]) / 1000} us" ) # 99.9th %ile latency < 200 us self.assertLessEqual( int(lat[2]) / 1000, 200, f"99.9th %ile latency was higher than 200 us! Was {int(lat[2]) / 1000} us" ) # 99th% jitter < 100 us self.assertLessEqual( int(jitter[1]) / 1000, 100, f"99th %ile jitter was higher than 100 us! Was {int(jitter[1]) / 1000} us" ) return
30.314286
96
0.535344
4,709
0.887653
0
0
4,477
0.843921
0
0
1,407
0.265221
9604a31aa1a2fd0161bb919247c6389804233e2e
6,209
py
Python
archives_app/documents_serializers.py
DITGO/2021.1-PC-GO1-Archives
d9f28bb29dbe96331b6e2d0beb7ca37875d61300
[ "MIT" ]
1
2021-08-22T13:39:56.000Z
2021-08-22T13:39:56.000Z
archives_app/documents_serializers.py
DITGO/2021.1-PC-GO1-Archives
d9f28bb29dbe96331b6e2d0beb7ca37875d61300
[ "MIT" ]
36
2021-09-01T19:12:17.000Z
2022-03-18T23:43:13.000Z
archives_app/documents_serializers.py
DITGO/2021.1-PC-GO1-Archives
d9f28bb29dbe96331b6e2d0beb7ca37875d61300
[ "MIT" ]
5
2021-09-10T21:01:07.000Z
2021-09-17T16:35:21.000Z
from rest_framework import serializers from archives_app.documents_models import (FrequencyRelation, BoxArchiving, AdministrativeProcess, OriginBox, FrequencySheet, DocumentTypes) class FrequencySupport(serializers.ModelSerializer): def get_document_type(self, obj): if obj.document_type_id is not None: return obj.document_type_id.document_name return None class BoxArchivingSerializer(serializers.ModelSerializer): def get_shelf_number(self, obj): if obj.shelf_id is not None: return obj.shelf_id.number return None def get_rack_number(self, obj): if obj.rack_id is not None: return obj.rack_id.number return None def get_abbreviation_name(self, obj): if obj.abbreviation_id is not None: return obj.abbreviation_id.name return "" def get_sender_unity(self, obj): if obj.sender_unity is not None: return obj.sender_unity.unity_name return "" def get_doc_types(self, obj): if obj.document_types is not None: doc_types = [] for obj in obj.document_types.all(): doc_types.append(obj.document_type_id.document_name) return doc_types return "" def get_temporalities(self, obj): if obj.document_types is not None: doc_types = [] for obj in obj.document_types.all(): doc_types.append(obj.temporality_date) return doc_types return None shelf_number = serializers.SerializerMethodField('get_shelf_number') rack_number = serializers.SerializerMethodField('get_rack_number') abbreviation_name = serializers.SerializerMethodField('get_abbreviation_name') sender_unity_name = serializers.SerializerMethodField('get_sender_unity') document_type_name = serializers.SerializerMethodField('get_doc_types') temporality_date = serializers.SerializerMethodField('get_temporalities') class Meta: model = BoxArchiving fields = ( "id", "process_number", "sender_unity", "notes", "received_date", "document_url", "cover_sheet", "filer_user", "abbreviation_name", "shelf_number", "rack_number", "origin_box_id", "abbreviation_id", "shelf_id", "rack_id", "document_types", "sender_unity_name", "document_type_name", "temporality_date" ) class FrequencyRelationSerializer(FrequencySupport): def get_sender_unity(self, obj): if obj.sender_unity is not None: return obj.sender_unity.unity_name return "" document_type_name = serializers.SerializerMethodField( 'get_document_type' ) sender_unity_name = serializers.SerializerMethodField('get_sender_unity') class Meta: model = FrequencyRelation fields = ( "id", "process_number", "notes", "document_date", "received_date", "temporality_date", "reference_period", "filer_user", "sender_unity", "document_type_id", "document_type_name", "sender_unity_name" ) class AdministrativeProcessSerializer(serializers.ModelSerializer): def get_document_subject(self, obj): if obj.subject_id is not None: return obj.subject_id.subject_name return None def get_sender_unity(self, obj): if obj.sender_unity is not None: return obj.sender_unity.unity_name return "" def get_sender_user(self, obj): if obj.sender_user is not None: return obj.sender_user.name return "" sender_unity_name = serializers.SerializerMethodField('get_sender_unity') sender_user_name = serializers.SerializerMethodField('get_sender_user') document_subject_name = serializers.SerializerMethodField( 'get_document_subject' ) class Meta: model = AdministrativeProcess fields = ("id", "process_number", "notes", "filer_user", "notice_date", "interested", "cpf_cnpj", "reference_month_year", "sender_user", "sender_user_name", "archiving_date", "is_filed", "is_eliminated", "temporality_date", "send_date", "administrative_process_number", "sender_unity", "subject_id", "dest_unity_id", "unity_id", "document_subject_name", "sender_unity_name" ) class OriginBoxSerializer(serializers.ModelSerializer): class Meta: model = OriginBox fields = '__all__' class DocumentTypesSerializer(serializers.ModelSerializer): class Meta: model = DocumentTypes fields = '__all__' class FrequencySheetSerializer(FrequencySupport): def get_person_name(self, obj): if obj.person_id is not None: return obj.person_id.name return "" document_type_name = serializers.SerializerMethodField( 'get_document_type' ) person_name = serializers.SerializerMethodField('get_person_name') class Meta: model = FrequencySheet fields = ("id", "person_id", "person_name", "cpf", "role", "category", "workplace", "municipal_area", "reference_period", "notes", "process_number", "document_type_id", "temporality_date", "document_type_name" )
29.995169
82
0.573522
5,922
0.953777
0
0
0
0
0
0
1,207
0.194395
960632beca7334764b877e64f50cf461743b9b2b
7,132
py
Python
src/fparser/common/tests/test_base_classes.py
sturmianseq/fparser
bf3cba3f31a72671d4d4a93b6ef4f9832006219f
[ "BSD-3-Clause" ]
33
2017-08-18T16:31:27.000Z
2022-03-28T09:43:50.000Z
src/fparser/common/tests/test_base_classes.py
sturmianseq/fparser
bf3cba3f31a72671d4d4a93b6ef4f9832006219f
[ "BSD-3-Clause" ]
319
2017-01-12T14:22:07.000Z
2022-03-23T20:53:25.000Z
src/fparser/common/tests/test_base_classes.py
sturmianseq/fparser
bf3cba3f31a72671d4d4a93b6ef4f9832006219f
[ "BSD-3-Clause" ]
17
2017-10-13T07:12:28.000Z
2022-02-11T14:42:18.000Z
# -*- coding: utf-8 -*- ############################################################################## # Copyright (c) 2017 Science and Technology Facilities Council # # All rights reserved. # # Modifications made as part of the fparser project are distributed # under the following license: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################## # Modified M.Hambley, UK Met Office ############################################################################## ''' Test battery associated with fparser.common.base_classes package. ''' import re import pytest import fparser.common.base_classes import fparser.common.readfortran import fparser.common.sourceinfo import fparser.common.utils from fparser import api def test_statement_logging(log, monkeypatch): ''' Tests the Statement class' logging methods. ''' class DummyParser(object): ''' Null parser harness. ''' def __init__(self, reader): self.reader = reader reader = fparser.common.readfortran.FortranStringReader("dummy = 1") parser = DummyParser(reader) monkeypatch.setattr(fparser.common.base_classes.Statement, 'process_item', lambda x: None, raising=False) unit_under_test = fparser.common.base_classes.Statement(parser, None) unit_under_test.error('Scary biscuits') assert(log.messages == {'critical': [], 'debug': [], 'error': ['Scary biscuits'], 'info': [], 'warning': []}) log.reset() unit_under_test.warning('Trepidacious Cetations') assert(log.messages == {'critical': [], 'debug': [], 'error': [], 'info': [], 'warning': ['Trepidacious Cetations']}) log.reset() unit_under_test.info('Hilarious Ontologies') assert(log.messages == {'critical': [], 'debug': [], 'error': [], 'info': ['Hilarious Ontologies'], 'warning': []}) def test_log_comment_mix(log): ''' Tests that unexpected Fortran 90 comment in fixed format source is logged. ''' class EndDummy(fparser.common.base_classes.EndStatement): ''' Dummy EndStatement. ''' match = re.compile(r'\s*end(\s*thing\s*\w*|)\s*\Z', re.I).match class BeginHarness(fparser.common.base_classes.BeginStatement): ''' Dummy BeginStatement. ''' end_stmt_cls = EndDummy classes = [] match = re.compile(r'\s*thing\s+(\w*)\s*\Z', re.I).match def get_classes(self): ''' Returns an empty list of contained statements. ''' return [] code = ' x=1 ! Cheese' parent = fparser.common.readfortran.FortranStringReader( code, ignore_comments=False) parent.set_format(fparser.common.sourceinfo.FortranFormat(False, True)) item = fparser.common.readfortran.Line(code, (1, 1), None, None, parent) with pytest.raises(fparser.common.utils.AnalyzeError): __ = BeginHarness(parent, item) expected = ' 1: x=1 ! Cheese <== ' \ + 'no parse pattern found for "x=1 ! cheese" ' \ + "in 'BeginHarness' block, " \ + 'trying to remove inline comment (not in Fortran 77).' result = log.messages['warning'][0].split('\n')[1] assert result == expected def test_log_unexpected(log): ''' Tests that an unexpected thing between begin and end statements logs an event. ''' class EndThing(fparser.common.base_classes.EndStatement): ''' Dummy EndStatement class. ''' isvalid = True match = re.compile(r'\s*end(\s+thing(\s+\w+)?)?\s*$', re.I).match class BeginThing(fparser.common.base_classes.BeginStatement): ''' Dummy BeginStatement class. ''' end_stmt_cls = EndThing classes = [] match = re.compile(r'\s*thing\s+(\w+)?\s*$', re.I).match def get_classes(self): ''' Returns an empty list of contained classes. ''' return [] code = [' jumper', ' end thing'] parent = fparser.common.readfortran.FortranStringReader('\n'.join(code)) parent.set_format(fparser.common.sourceinfo.FortranFormat(False, True)) item = fparser.common.readfortran.Line(code[0], (1, 1), None, None, parent) with pytest.raises(fparser.common.utils.AnalyzeError): __ = BeginThing(parent, item) expected = ' 1: jumper <== no parse pattern found for "jumper" ' \ "in 'BeginThing' block." result = log.messages['warning'][0].split('\n')[1] assert result == expected def test_space_after_enddo(): '''Make sure that there is no space after an 'END DO' without name, but there is a space if there is a name after 'END DO'. ''' # Unnamed loop: source_str = '''\ subroutine foo integer i, r do i = 1,100 r = r + 1 end do end subroutine foo ''' tree = api.parse(source_str, isfree=True, isstrict=False) assert "END DO " not in tree.tofortran() # Named loop: source_str = '''\ subroutine foo integer i, r loop1: do i = 1,100 r = r + 1 end do loop1 end subroutine foo ''' tree = api.parse(source_str, isfree=True, isstrict=False) assert "END DO loop1" in tree.tofortran()
35.839196
79
0.599411
1,302
0.182557
0
0
0
0
0
0
3,760
0.527201
96065ad383494de22a076bf5a911760ad23ad0e8
87
py
Python
pyvecorg/__main__.py
torsava/pyvec.org
809812395e4bffdb0522a52c6a7f7468ffc7ccd6
[ "MIT" ]
3
2016-09-08T09:28:02.000Z
2019-08-25T11:56:26.000Z
pyvecorg/__main__.py
torsava/pyvec.org
809812395e4bffdb0522a52c6a7f7468ffc7ccd6
[ "MIT" ]
97
2016-08-20T17:11:34.000Z
2022-03-29T07:52:13.000Z
pyvecorg/__main__.py
torsava/pyvec.org
809812395e4bffdb0522a52c6a7f7468ffc7ccd6
[ "MIT" ]
7
2016-11-26T20:38:29.000Z
2021-08-20T11:11:47.000Z
from elsa import cli from pyvecorg import app cli(app, base_url='http://pyvec.org')
12.428571
37
0.735632
0
0
0
0
0
0
0
0
18
0.206897
96072e15a870bb0da5695f16be671c56e832f75e
10,397
py
Python
ppython/input_handler.py
paberr/ppython
0c59d503cbd1ca619ad51b627614ae2dd9549c38
[ "MIT" ]
1
2016-06-15T17:21:22.000Z
2016-06-15T17:21:22.000Z
ppython/input_handler.py
paberr/ppython
0c59d503cbd1ca619ad51b627614ae2dd9549c38
[ "MIT" ]
null
null
null
ppython/input_handler.py
paberr/ppython
0c59d503cbd1ca619ad51b627614ae2dd9549c38
[ "MIT" ]
null
null
null
import curtsies.events as ev import sys DELIMITERS = ' .' WHITESPACE = ' ' def print_console(txt, npadding=0, newline=False, flush=True): """ Prints txt without newline, cursor positioned at the end. :param txt: The text to print :param length: The txt will be padded with spaces to fit this length :param newline: If True, a newline character will be appended :return: """ sys.stdout.write('\r{0}{1}'.format(txt, WHITESPACE * npadding)) if newline: sys.stdout.write('\n') if flush: sys.stdout.flush() def move_next_line(): sys.stdout.write('\n') sys.stdout.flush() def find_next_in_list(lst, what, start=0, reverse=False): """ Finds the next occurrence of what in lst starting at start. :param lst: The list to search :param what: The item to find, should be an iterable :param start: The starting position in the list :param reverse: Set this to True in order to traverse the list towards 0 :return: False if no occurrence found, index otherwise """ if start < 0 or start >= len(lst): return False end = -1 if reverse else len(lst) step = -1 if reverse else 1 for i in range(start, end, step): if lst[i] in what: return i return False class InputHandler: def __init__(self, history): self._input = [] self._position = 0 self._handlers = {} self._highlight = None self._max_length = 0 self._complete = None self._history = history self._prefix = '' def process_input(self, c): """ Processes the input captured by curtsies. :param c: the input, either a curtsies keystroke or an event :return: False if program should stop, the current line otherwise """ if isinstance(c, ev.Event): return self._process_event(c) else: return self._process_char(c) def register_handler(self, key, handler): if key not in self._handlers: self._handlers[key] = [] self._handlers[key].append(handler) def set_highlighter(self, highlight): self._highlight = highlight def set_completer(self, complete): self._complete = complete def set_prefix(self, prefix): self._prefix = prefix def _process_char(self, c): """ Processes keystrokes internally, may call handlers as well. :param c: The curtsies keystroke :return: The current line """ if len(c) == 1: self._insert(c) elif c == '<LEFT>': self._left() elif c == '<RIGHT>': self._right() elif c == '<UP>': self._hist_up() elif c == '<DOWN>': self._hist_down() elif c == '<SPACE>': self._insert(' ') elif c == '<TAB>': if not self._tab_completion(): self._insert(' ') elif c == '<BACKSPACE>': self._back() elif c == '<Ctrl-w>': self._delete_last_word() elif c == '<DELETE>': self._delete() elif c == '<HOME>' or c == '<Ctrl-a>': self._home() elif c == '<END>' or c == '<Ctrl-e>': self._end() elif c == '<Ctrl-u>': self._delete_before() elif c == '<Ctrl-k>': self._delete_after() elif c == '<Esc+f>': self._move_word_forwards() elif c == '<Esc+b>': self._move_word_backwards() elif c == '<Ctrl-r>': pass # history search mode elif c == '<ESC>': pass # history search mode elif c == '<Ctrl-j>': old_line = self._newline() if c in self._handlers: for handler in self._handlers[c]: handler(old_line) elif c == '<Ctrl-c>' or c == '<Ctrl-d>': return False # new lines are handled differently if c in self._handlers and c != '<Ctrl-j>': # call handlers if necessary for handler in self._handlers[c]: handler(self._curline()) return self._curline() def _process_event(self, e): """ Processes events internally. :param e: The event :return: False in case of SigInt, the input otherwise """ if isinstance(e, ev.SigIntEvent): return False elif isinstance(e, ev.PasteEvent): for c in e.events: self.process_input(c) return self._curline() def _line_changed(self): self._history.edit(self._curline()) def _hist_up(self): """ Moves up in the history object. :return: """ self._input = list(self._history.move_up()) self._position = len(self._input) self.draw() def _hist_down(self): """ Moves down in the history object. :return: """ self._input = list(self._history.move_down()) self._position = len(self._input) self.draw() def _curline(self): """ Returns the current line. :return: current line """ return ''.join(self._input) def _insert(self, c): """ Inserts a character at current position, moves cursor forward and redraws. :param c: character :return: """ if len(c) > 1: # only insert single characters for cc in c: self._insert(cc) return self._input.insert(self._position, c) self._position += 1 self._line_changed() self.draw() def _left(self): """ Moves cursor back and redraws. :return: """ if self._position > 0: self._position -= 1 self.draw() def _home(self): """ Moves cursor home and redraws. :return: """ self._position = 0 self.draw() def _right(self): """ Moves cursor forward and redraws. :return: """ if self._position < len(self._input): self._position += 1 self.draw() def _end(self): """ Moves cursor to end and redraws. :return: """ self._position = len(self._input) self.draw() def _move_word_forwards(self): """ Moves cursor towards the next delimiter. :return: """ next_del = find_next_in_list(self._input, DELIMITERS, start=self._position+1) if next_del is False: self._end() else: self._position = next_del self.draw() def _move_word_backwards(self): """ Moves cursor towards the next delimiter. :return: """ next_del = find_next_in_list(self._input, DELIMITERS, start=self._position-2, reverse=True) if next_del is False: self._home() else: self._position = next_del + 1 self.draw() def _delete_last_word(self): """ Deletes until last delimiter. :return: """ next_del = find_next_in_list(self._input, DELIMITERS, start=self._position - 2, reverse=True) if next_del is False: next_del = 0 else: next_del += 1 del self._input[next_del:self._position] self._position = next_del self._line_changed() self.draw() def _back(self): """ Removes element in front of cursor, moves cursor back and redraws. :return: """ if self._position > 0: del self._input[self._position - 1] self._position -= 1 self._line_changed() self.draw() def _delete(self): """ Removes element behind cursor and redraws. :return: """ if self._position < len(self._input): del self._input[self._position] self._line_changed() self.draw() def _delete_before(self): """ Deletes everything in front of the cursor. :return: """ self._input = self._input[self._position:] self._position = 0 self._line_changed() self.draw() def _delete_after(self): """ Deletes everything after the cursor. :return: """ self._input = self._input[:self._position] self._line_changed() self.draw() def _newline(self): """ Creates a new line and returns the old one. :return: old line """ self._history.commit() old_line = self._curline() self._position = 0 self._max_length = 0 self._input = [] move_next_line() return old_line def draw(self): """ Draws input with cursor at right position. :return: """ whole_line = self._curline() cursor_line = whole_line[:self._position] # add prefix whole_line = self._prefix + whole_line cursor_line = self._prefix + cursor_line self._max_length = max(len(whole_line), self._max_length) # highlight texts if self._highlight is not None: whole_line_h = self._highlight(whole_line).strip() cursor_line_h = self._highlight(cursor_line).strip() else: whole_line_h = whole_line cursor_line_h = cursor_line # first print whole line npadding = max(0, self._max_length - len(whole_line)) print_console(whole_line_h, npadding=npadding, flush=False) # then print for cursor position print_console(cursor_line_h) def _tab_completion(self): """ Calls completion function. If possible insert completion. :return: True if completion was successful """ if self._complete is not None: # try completing completion = self._complete(self._curline()[:self._position]) if completion is not False: # if successful, insert the completion for c in completion: self._insert(c) return True return False
28.1
101
0.541406
9,103
0.875541
0
0
0
0
0
0
3,192
0.307012
960742a391af9a30c0acaaa433fd60815de5da1f
1,601
py
Python
pycon_graphql/events/tests/test_models.py
CarlosMart626/graphql-workshop-pycon.co2019
466e56052efcfc7455336a0ac5c6637c68fcb3b9
[ "MIT" ]
1
2019-02-10T12:35:14.000Z
2019-02-10T12:35:14.000Z
pycon_graphql/events/tests/test_models.py
CarlosMart626/graphql-workshop-pycon.co2019
466e56052efcfc7455336a0ac5c6637c68fcb3b9
[ "MIT" ]
null
null
null
pycon_graphql/events/tests/test_models.py
CarlosMart626/graphql-workshop-pycon.co2019
466e56052efcfc7455336a0ac5c6637c68fcb3b9
[ "MIT" ]
1
2019-02-10T15:02:30.000Z
2019-02-10T15:02:30.000Z
from django.core.exceptions import ValidationError from django.utils import timezone from django.test import TestCase from events.models import Event, Invitee from users.tests.factories import UserFactory from users.models import get_sentinel_user class EventModelTestCase(TestCase): def setUp(self): self.main_event = Event.objects.create( title="Pycon 2019 - GraphQL Workshop", description="Descripción del evento", invitee_capacity=100, event_day=timezone.now().date(), initial_hour="13:00", end_hour="15:00", place_name="Universidad Javeriana", latitude='4.62844', longitude='-74.06508', zoom=19, ) self.platform_users = UserFactory.create_batch(10) for user in self.platform_users: self.main_event.enroll_user(user) def test_event_model(self): self.assertEqual(str(self.main_event), "Pycon 2019 - GraphQL Workshop") self.assertEqual(self.main_event.invitees_count(), 10) self.assertEqual(Invitee.objects.filter(event=self.main_event).count(), 10) def test_error_already_enrolled_user(self): user = self.platform_users[0] with self.assertRaises(ValidationError): self.main_event.enroll_user(user) def test_delete_enrolled_user(self): new_user = UserFactory() invitee = self.main_event.enroll_user(new_user) new_user.delete() invitee.refresh_from_db(fields=("user",)) self.assertEqual(invitee.user, get_sentinel_user())
36.386364
83
0.67208
1,351
0.843321
0
0
0
0
0
0
150
0.093633
9607844773359aa6aa0c7976c01c1f1c73d9292a
145
py
Python
cryptos.py
pogoetic/tricero
6cb60e780bf9056ad9887a84e2ba7d73787ac2fc
[ "MIT" ]
null
null
null
cryptos.py
pogoetic/tricero
6cb60e780bf9056ad9887a84e2ba7d73787ac2fc
[ "MIT" ]
null
null
null
cryptos.py
pogoetic/tricero
6cb60e780bf9056ad9887a84e2ba7d73787ac2fc
[ "MIT" ]
null
null
null
cryptolist = ['ETH','BTC','XRP','EOS','ADA','NEO','STEEM', 'BTS','ZEC','XMR','XVG','XEM','OMG','MIOTA','XTZ','SC', 'CVC','BAT','XLM','ZRX','VEN']
48.333333
58
0.524138
0
0
0
0
0
0
0
0
108
0.744828
96085c19f88d75b4448b45a1368f150dc76f3edb
2,615
py
Python
python/test/utils/test_sliced_data_iterator.py
kodavatimahendra/nnabla
72009f670af075f17ffca9c809b07d48cca30bd9
[ "Apache-2.0" ]
null
null
null
python/test/utils/test_sliced_data_iterator.py
kodavatimahendra/nnabla
72009f670af075f17ffca9c809b07d48cca30bd9
[ "Apache-2.0" ]
null
null
null
python/test/utils/test_sliced_data_iterator.py
kodavatimahendra/nnabla
72009f670af075f17ffca9c809b07d48cca30bd9
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import numpy as np from nnabla.utils.data_source_loader import load_image from nnabla.utils.data_iterator import data_iterator_simple from .test_data_iterator import check_data_iterator_result @pytest.mark.parametrize("num_of_slices", [2, 3, 5]) @pytest.mark.parametrize("size", [50]) @pytest.mark.parametrize("batch_size", [1, 5, 11]) @pytest.mark.parametrize("shuffle", [False, True]) def test_sliced_data_iterator(test_data_csv_png_10, num_of_slices, size, batch_size, shuffle): def test_load_func(position): return np.full((1), position, dtype=np.float32) di = data_iterator_simple(test_load_func, size, batch_size, shuffle=shuffle) import fractions def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0 max_epoch = lcm(batch_size, size) / size all_data = [] for slice_pos in range(num_of_slices): sliced_di = di.slice(num_of_slices=num_of_slices, slice_pos=slice_pos) sliced_data = {} while True: current_epoch = sliced_di.epoch if current_epoch > max_epoch + 1: break data = sliced_di.next() if current_epoch not in sliced_data: sliced_data[current_epoch] = [] for dat in data: for d in dat: sliced_data[current_epoch].append(d) all_data.append(sliced_data) epochs = {} for slice_pos, sliced_data in enumerate(all_data): for epoch in sorted(sliced_data.keys()): if epoch not in epochs: epochs[epoch] = [] epochs[epoch].append(set(sliced_data[epoch])) for epoch in sorted(epochs.keys()): x0 = epochs[epoch][0] acceptable_size = batch_size amount = size // num_of_slices if acceptable_size < amount: acceptable_size = amount for dup in [x0 & x for x in epochs[epoch][1:]]: assert len(dup) < amount
34.866667
94
0.66348
0
0
0
0
1,785
0.6826
0
0
635
0.24283
96090a33ab17b3ef5237b33e54e263f6d813f39f
819
py
Python
python/leetcode/646.py
ParkinWu/leetcode
b31312bdefbb2be795f3459e1a76fbc927cab052
[ "MIT" ]
null
null
null
python/leetcode/646.py
ParkinWu/leetcode
b31312bdefbb2be795f3459e1a76fbc927cab052
[ "MIT" ]
null
null
null
python/leetcode/646.py
ParkinWu/leetcode
b31312bdefbb2be795f3459e1a76fbc927cab052
[ "MIT" ]
null
null
null
# 给出 n 个数对。 在每一个数对中,第一个数字总是比第二个数字小。 # # 现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。 # # 给定一个对数集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。 # # 示例 : # # 输入: [[1,2], [2,3], [3,4]] # 输出: 2 # 解释: 最长的数对链是 [1,2] -> [3,4] # 注意: # # 给出数对的个数在 [1, 1000] 范围内。 # # 来源:力扣(LeetCode) # 链接:https://leetcode-cn.com/problems/maximum-length-of-pair-chain # 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 from typing import List class Solution: def findLongestChain(self, pairs: List[List[int]]) -> int: pairs.sort(key=lambda p: p[1]) tmp = pairs[0] ans = 1 for p in pairs: if p[0] > tmp[1]: tmp = p ans += 1 return ans if __name__ == '__main__': s = Solution() assert s.findLongestChain([[1, 2], [2, 3], [3, 4]]) == 2
22.75
70
0.57265
278
0.223833
0
0
0
0
0
0
821
0.661031
960b4705f7f9212fc6fe401b9f516bcb627b27a2
19,044
py
Python
FactorTestMain.py
WeiYouyi/FactorTest
fc23e23252614ce4ed8973416f7fbb2d0dbb5ccc
[ "MIT" ]
null
null
null
FactorTestMain.py
WeiYouyi/FactorTest
fc23e23252614ce4ed8973416f7fbb2d0dbb5ccc
[ "MIT" ]
null
null
null
FactorTestMain.py
WeiYouyi/FactorTest
fc23e23252614ce4ed8973416f7fbb2d0dbb5ccc
[ "MIT" ]
null
null
null
from FactorTest.FactorTestPara import * from FactorTest.FactorTestBox import * class FactorTest(): def __init__(self): self.startdate=20000101 self.enddate=21000101 self.factorlist=[] self.FactorDataBase={'v':pd.DataFrame(columns=['time','code'])} self.filterStockDF='FULL' self.retData = getRetData() #统一为time、code time为int code 为str self.ICList={} self.portfolioList={} self.ICAns={} self.portfolioAns={} self.portfolioGroup = pd.DataFrame(columns=['time', 'code']) self.annualTurnover = {} self.year_performance={} self.WR={} self.PL={} pd.options.mode.use_inf_as_na = True #剔除inf self.dataProcess=dataProcess(self.FactorDataBase) def getFactor(self,Factor): #考虑:频率统一为月度 ,sql型数据 if('month' in Factor): Factor.rename(columns={'month':'time'},inplace=True) if('date' in Factor): Factor.rename(columns={'date':'time'},inplace=True) factorList=Factor.columns if(len(factorList)<=2): print('error') return Factor else: factorList=getfactorname(Factor,['code','time']) for factorname in factorList: if(factorname in self.factorlist):#如果重复则先删除信息再重新载入 rest=pd.Series(self.factorlist) self.factorlist=rest[rest!=factorname].tolist() del self.FactorDataBase['v'][factorname] self.FactorDataBase['v']=self.FactorDataBase['v'].merge(Factor[['time','code',factorname]],on=['time','code'],how='outer') self.factorlist=self.factorlist+[factorname] def calcIC(self,factorlist='',startMonth='',endMonth=''): if(factorlist==''): factorlist=self.factorlist if(type(factorlist)==str): factorlist=[factorlist] if(startMonth==''): startMonth=int(str(self.startdate)[:6]) if(endMonth==''): endMonth=int(str(self.enddate)[:6]) RetData=self.retData RetData=RetData[RetData.time>=startMonth] RetData=RetData[RetData.time<=endMonth] if(type(self.filterStockDF)==pd.DataFrame): RetData=setStockPool(RetData,self.filterStockDF) for facname in factorlist: Mer=self.FactorDataBase['v'][['time','code',facname]].merge(RetData,on=['time','code'],how='outer').dropna() self.ICList[facname],self.ICAns[facname]=calcIC(Mer,facname) if(len(factorlist)==1): print(facname+':') print(self.ICAns[facname]) if(len(factorlist)>1): print(self.ICDF) def calcLongShort(self,factorlist='',startMonth='',endMonth='',t=5,asc=''): if(factorlist==''): factorlist=self.factorlist if(type(factorlist)==str): factorlist=[factorlist] if(startMonth==''): startMonth=int(str(self.startdate)[:6]) if(endMonth==''): endMonth=int(str(self.enddate)[:6]) RetData=self.retData RetData=RetData[RetData.time>=startMonth] RetData=RetData[RetData.time<=endMonth] if(type(self.filterStockDF)==pd.DataFrame): RetData=setStockPool(RetData,self.filterStockDF) for facname in factorlist: Mer=self.FactorDataBase['v'][['time','code',facname]].merge(RetData,on=['time','code'],how='outer').dropna() if(asc!=''): ascloc=asc else: ascloc=False if(facname in self.ICAns): if(self.ICAns[facname]['IC:']<0): ascloc=True Mer = Mer.groupby('time').apply(lambda x: isinGroupT(x, facname, asc=ascloc, t=t)).reset_index(drop=True) ls_ret = calcGroupRet(Mer,facname,RetData) ls_ret['多空组合'] = ls_ret[1] - ls_ret[t] # 第一组-第五组 if (facname in self.portfolioGroup.columns): # 如果重复则先删除信息再重新载入 self.portfolioGroup = self.portfolioGroup.drop(columns=facname) self.portfolioGroup = self.portfolioGroup.merge(Mer[['time','code',facname]], on=['time', 'code'], how='outer') self.portfolioList[facname]=ls_ret self.portfolioAns[facname]=evaluatePortfolioRet(ls_ret[1]-ls_ret[t]) self.annualTurnover[facname] = calcAnnualTurnover(self.portfolioGroup, facname) if(len(factorlist)==1): print(facname+':') ls_ret1=ls_ret.reset_index().copy() ls_ret1['time']=ls_ret1['time'].apply(lambda x:str(x)) ls_ret1.set_index('time').apply(lambda x:x+1).cumprod().plot() print(self.portfolioAns[facname]) plt.show() if(len(factorlist)>1): print(self.portfolioDF) def doubleSorting(self,factor_list,method='cond',startMonth=200001,endMonth=210001,t1=5,t2=5,asc=''): ''' Parameters ---------- factor_list : list 必须传入一个列表 ['fac1','fac2'],表示求fac2在fac1条件下的双重排序 fac2在fac1条件下的双重排序命名为:'fac2|fac1'. method : str 'cond' or 'idp' 'cond'为条件双重排序,'idp'为独立双重排序 t1, t2 : int t1, t2分别为fac1, fac2的分组数, 默认为5 Returns ------- 第一个返回值为t1*t2年化收益率矩阵. 第二个返回值为t1*t2信息比率矩阵 portfolioList和portfolioGroup做相应更新 ''' data = self.FactorDataBase['v'][['time','code']+factor_list].copy() data = data[data.time>=startMonth] data = data[data.time<=endMonth] RetData=self.retData RetData=RetData[RetData.time>=startMonth] RetData=RetData[RetData.time<=endMonth] if(asc!=''): ascloc=asc else: ascloc=False if method=='cond': data = data.merge(RetData, on=['time','code'], how='outer').dropna() data = data.groupby('time').apply(isinGroupT, factor_list[0], asc=ascloc, t=t1).reset_index(drop=True) data = data.groupby(['time',factor_list[0]]).apply(isinGroupT, factor_list[1], asc=ascloc, t=t2).reset_index(drop=True) facname=('%s|%s'%(factor_list[1], factor_list[0])) data[facname] = data[factor_list[0]].apply(lambda x: str(x))+data[factor_list[1]].apply(lambda x: str(x)) #条件分组编号 ls_ret = calcGroupRet(data,facname,RetData) #条件分组收益率 fac2_ls_ret = calcGroupRet(data,factor_list[1],RetData) ls_ret['多空组合'] = fac2_ls_ret[1] - fac2_ls_ret[t2] self.portfolioList[facname]=ls_ret self.portfolioGroup = self.portfolioGroup.merge(data[['time','code',facname]], on=['time', 'code'], how='outer') def ARIR(Rev_seq,t=12): ret_mean=e**(np.log(Rev_seq+1).mean()*12)-1 ret_sharpe=Rev_seq.mean()*t/Rev_seq.std()/t**0.5 return pd.DataFrame({'年化收益率':ret_mean, '信息比率':ret_sharpe}) tmp = ARIR(ls_ret.drop('多空组合',axis=1)) tmp_AnlRet,tmp_IR = tmp['年化收益率'].values.reshape((t2,t1)),tmp['信息比率'].values.reshape((t2,t1)) tmp_AnlRet,tmp_IR = pd.DataFrame(tmp_AnlRet,columns=[factor_list[1]+'_'+str(i) for i in range(1,t2+1)],index=[factor_list[0]+'_'+str(i) for i in range(1,t1+1)]),pd.DataFrame(tmp_IR,columns=[factor_list[1]+'_'+str(i) for i in range(1,t2+1)],index=[factor_list[0]+'_'+str(i) for i in range(1,t1+1)]) return tmp_AnlRet,tmp_IR #常规测试流程 def autotest(self,factorlist='',startMonth='',endMonth='',t=5,asc=''): self.calcIC(factorlist,startMonth,endMonth) self.calcLongShort(factorlist,startMonth,endMonth,t,asc) #计算按因子值排名前K def calcTopK(self,factorlist='',startMonth='',endMonth='',k=30,asc='',base=''): if(factorlist==''): factorlist=self.factorlist if(type(factorlist)==str): factorlist=[factorlist] if(startMonth==''): startMonth=int(str(self.startdate)[:6]) if(endMonth==''): endMonth=int(str(self.enddate)[:6]) RetData=self.retData RetData=RetData[RetData.time>=startMonth] RetData=RetData[RetData.time<=endMonth] if(type(self.filterStockDF)==pd.DataFrame): RetData=setStockPool(RetData,self.filterStockDF) if ((base != '') & (base in self.portfolioGroup.columns)): factorDB = self.portfolioGroup[self.portfolioGroup[base] == 1][['time', 'code']].merge(self.FactorDataBase['v'],on=['time', 'code'],how='outer').dropna() elif (base == ''): factorDB = self.FactorDataBase['v'] else: print('error') return factorlist for facname in factorlist: Mer=factorDB[['time','code',facname]].merge(RetData,on=['time','code'],how='outer').dropna() if(asc!=''): ascloc=asc else: ascloc=False if(facname in self.ICAns): if(self.ICAns[facname]['IC:']<0): ascloc=True Mer = Mer.groupby('time').apply(lambda x: isinTopK(x, facname, ascloc, k=k)).reset_index(drop=True) topk_list = calcGroupRet(Mer,facname,RetData) if (facname in self.portfolioGroup.columns): # 如果重复则先删除信息再重新载入 self.portfolioGroup = self.portfolioGroup.drop(columns=facname) # portfoliogroup为1,表明按asc排序该股票的因子值在前k之内,为2表明因子值在倒数k个之内 self.portfolioGroup = self.portfolioGroup.merge(Mer[['time','code',facname]], on=['time', 'code'], how='outer').fillna(0) self.portfolioList[facname]=topk_list self.portfolioAns[facname]=evaluatePortfolioRet(topk_list[1]-topk_list[0]) self.annualTurnover[facname] = calcAnnualTurnover(self.portfolioGroup, facname) if(len(factorlist)==1): print(facname+':') topk_list['ls']=topk_list[1]-topk_list[0] calc_plot(topk_list.apply(lambda x:x+1).cumprod()) print(self.portfolioAns[facname]) plt.show() if(len(factorlist)>1): print(self.portfolioDF) def calcFutureRet(self,factorlist='',startMonth='',endMonth='',L=36,t=5,asc=''): ''' Parameters ---------- factorlist : TYPE, optional 需要测试的因子 'factor1' 或 ['factor1','factor2'] 可留空 startMonth :int 起始月份 201001 可留空 endMonth : int 终止月份 形如202201 可留空 L : 向后看的月数,默认36个月 t : int 分组数,默认为5. asc : T or F 方向, 默认为True 从小到大 False为从大到小 Returns ------- 返回每个月向后未来1到36个月的收益均值,存储在Test.FutureRet里面 ''' if(factorlist==''): factorlist=self.factorlist if(type(factorlist)==str): factorlist=[factorlist] if(startMonth==''): startMonth=int(str(self.startdate)[:6]) if(endMonth==''): endMonth=int(str(self.enddate)[:6]) RetData=self.retData.pivot(index='time',columns='code',values='ret') self.FutureRet=pd.DataFrame(columns=factorlist) RetData=RetData.apply(lambda x:np.log(x+1)) for i in tqdm(range(1,L+1)): Ret_loc=RetData.rolling(window=i).sum().apply(lambda x:np.e**x-1).shift(-1*i+1).dropna(how='all').stack().reset_index() Ret_loc.columns=['time','code','ret'] Ret_loc=Ret_loc[Ret_loc.time>=startMonth] Ret_loc=Ret_loc[Ret_loc.time<=endMonth] if(type(self.filterStockDF)==pd.DataFrame): Ret_loc=setStockPool(RetData,self.filterStockDF) for facname in factorlist: if(asc!=''): ascloc=asc else: ascloc=False if(facname in self.ICAns): if(self.ICAns[facname]['IC:']<0): ascloc=True Mer=self.FactorDataBase['v'][['time','code',facname]].merge(Ret_loc,on=['time','code'],how='outer').dropna() Mer=Mer.groupby('time').apply(isinGroupT,facname,asc=ascloc,t=t).reset_index(drop=True) ls_ret=calcGroupRet(Mer,facname,Ret_loc).reset_index() self.FutureRet.loc[i,facname]=(ls_ret[1]-ls_ret[t]).mean()#第一组-第五组 self.FutureRet.plot() #计算胜率赔率 def displayWinRate(self,factorlist=''): if(factorlist==''): factorlist=self.portfolioList.keys() for facname in factorlist: Mer=self.portfolioGroup[['time','code',facname]].merge(self.retData,on=['time','code'],how='outer').dropna() L=Mer.groupby(['time']).apply(calcGroupWR,facname,self.retData) self.WR[facname]=L.mean()['WR'] self.PL[facname]=L.mean()['PL'] print(pd.concat([pd.Series(self.WR,name='WR'),pd.Series(self.PL,name='PL')],axis=1)) #展示年度收益 def displayYearPerformance(self,factorlist='',t=5): ''' 分年度打印: 一、五组业绩 一-五 收益率、信息比例、月胜率、最大回撤FB.evaluatePortfolioRet ''' if(factorlist==''): factorlist=self.portfolioList.keys() if(type(factorlist)==str): factorlist=[factorlist] for facname in factorlist: portfolio=self.portfolioList[facname].reset_index() portfolio['time']=portfolio['time'].apply(lambda x:str(x)[:4]) portfolioyear=portfolio.groupby('time') ans=pd.DataFrame() for year in portfolio.time.sort_values().unique(): portfolio_loc=portfolioyear.get_group(year).set_index('time') ans1=evaluatePortfolioRet(portfolio_loc['多空组合']) ans1.loc[1]=(portfolio_loc[1]+1).prod()-1 ans1.loc[t]=(portfolio_loc[t]+1).prod()-1 ans1.name=year ans=ans.append(ans1) self.year_performance[facname]=ans #计算相关性矩阵 1.因子值矩阵 2.IC矩阵 def calcCorrMatrix(self,CorType=stats.spearmanr): ''' self.factorCorr 因子相关性 ICCorr IC序列相关性 默认使用 stats.spearmanr 可换成stats.pearsonr Parameters ---------- CorType : TYPE, optional DESCRIPTION. The default is stats.spearmanr. Returns ------- None. ''' self.factorCorr=pd.DataFrame([],index=self.factorlist,columns=self.factorlist) self.ICCorr=pd.DataFrame([],index=self.factorlist,columns=self.factorlist) for i in range(len(self.factorlist)): for j in range(len(self.factorlist)): if(i<j): fac=self.FactorDataBase['v'][['time','code',self.factorlist[i],self.factorlist[j]]].dropna() fac=fac.groupby('time').apply(lambda x:CorType(x[self.factorlist[i]],x[self.factorlist[j]])[0]) self.factorCorr.loc[self.factorlist[i],self.factorlist[j]]=fac.mean() if(self.factorlist[i] in self.ICList and self.factorlist[j] in self.ICList): A=pd.DataFrame(self.ICList[self.factorlist[i]],columns=[1]) A[2]=self.ICList[self.factorlist[j]] A=A.dropna() self.ICCorr.loc[self.factorlist[i],self.factorlist[j]]=CorType(A[1],A[2])[0] print('因子相关性:') print(self.factorCorr) print('IC相关性:') print(self.ICCorr.dropna(how='all').dropna(how='all',axis=1)) #测试与Barra因子 def calcCorrBarra(self,factorlist=''): if(factorlist==''): factorlist=self.factorlist if(type(factorlist)==str): factorlist=[factorlist] factor_tmp,Barra_list=addXBarra(self.FactorDataBase['v'][['time','code']+factorlist]) Corr_Mat=pd.DataFrame(index=factorlist,columns=Barra_list) for fac in factorlist: for barra in Barra_list: corr_loc=factor_tmp[['time',fac,barra]].dropna() Corr_Mat.loc[fac,barra]=corr_loc.groupby('time').apply(lambda x:stats.spearmanr(x[fac],x[barra])[0]).mean() self.Corr_Mat=Corr_Mat print('与Barra相关性') print(self.Corr_Mat.T) #得到纯因子,后缀为 +_pure def calcPureFactor(self,factorlist=''): if(factorlist==''): factorlist=self.factorlist if(type(factorlist)==str): factorlist=[factorlist] for fac in factorlist: factorDF=calcNeuBarra(self.FactorDataBase['v'], fac) self.getFactor(factorDF[['time','code',fac+'_pure']].dropna()) @property def ICDF(self): return pd.DataFrame(self.ICAns).T @property def portfolioDF(self): return pd.DataFrame(self.portfolioAns).T class IndTest(FactorTest): def __init__(self): self.startdate=20000101 self.enddate=21000101 self.factorlist=[] self.FactorDataBase={'v':pd.DataFrame(columns=['time','code'])} self.filterStockDF='FULL' self.retData = getIndRetData() #统一为time、code time为int code 为str self.ICList={} self.portfolioList={} self.ICAns={} self.portfolioAns={} self.portfolioGroup = pd.DataFrame(columns=['time', 'code']) self.annualTurnover = {} self.year_performance={} self.indStatus=pd.read_csv(filepathtestdata+'sw1.csv').set_index('申万代码') pd.options.mode.use_inf_as_na = True #剔除inf self.dataProcess=dataProcess(self.FactorDataBase) #将个股转换为行业数据 @staticmethod def convertStocktoInd(Factor,func=lambda x:x.mean()): if('month' in Factor): Factor.rename(columns={'month':'time'},inplace=True) if('date' in Factor): Factor.rename(columns={'date':'time'},inplace=True) factorList=Factor.columns if(len(factorList)<=2): print('error') return Factor else: factorList=getfactorname(Factor,['code','time']) DF=pd.DataFrame(columns=['time','code']) indStatus=pd.read_csv(filepathtestdata+'sw1.csv').set_index('申万代码') for facname in factorList: DataLoc=Factor[['time','code',facname]] DataLoc=DataLoc.pipe(getSWIndustry,freq='month') DataLoc=DataLoc.groupby(['time','SWind']).mean().reset_index() A=DataLoc.groupby('SWind') for ind in DataLoc['SWind'].unique(): DataLoc.loc[A.get_group(ind)['SWind'].index,'code']=indStatus.loc[ind,'代码'] DF=DF.merge(DataLoc[['time','code',facname]],on=['time','code'],how='outer') return DF
45.342857
313
0.56548
19,895
0.994949
0
0
1,293
0.064663
0
0
3,783
0.189188
960b6014f14f9123b0ec09ae60429c45aaf956f5
3,094
py
Python
src/qm/terachem/terachem.py
hkimaf/unixmd
616634c720d0589fd600e3268afab9da957e18bb
[ "MIT" ]
null
null
null
src/qm/terachem/terachem.py
hkimaf/unixmd
616634c720d0589fd600e3268afab9da957e18bb
[ "MIT" ]
null
null
null
src/qm/terachem/terachem.py
hkimaf/unixmd
616634c720d0589fd600e3268afab9da957e18bb
[ "MIT" ]
null
null
null
from __future__ import division from qm.qm_calculator import QM_calculator from misc import call_name import os class TeraChem(QM_calculator): """ Class for common parts of TeraChem :param string basis_set: Basis set information :param string functional: Exchange-correlation functional information :param string precision: Precision in the calculations :param string root_path: Path for TeraChem root directory :param integer ngpus: Number of GPUs :param integer,list gpu_id: ID of used GPUs :param string version: Version of TeraChem """ def __init__(self, functional, basis_set, root_path, ngpus, \ gpu_id, precision, version): # Save name of QM calculator and its method super().__init__() # Initialize TeraChem common variables self.functional = functional self.basis_set = basis_set self.root_path = root_path if (not os.path.isdir(self.root_path)): error_message = "Root directory for TeraChem binary not found!" error_vars = f"root_path = {self.root_path}" raise FileNotFoundError (f"( {self.qm_method}.{call_name()} ) {error_message} ( {error_vars} )") self.qm_path = os.path.join(self.root_path, "bin") # Set the environmental variables for TeraChem lib_dir = os.path.join(self.root_path, "lib") os.environ["TeraChem"] = self.root_path os.environ["LD_LIBRARY_PATH"] += os.pathsep + os.path.join(lib_dir) self.ngpus = ngpus self.gpu_id = gpu_id if (self.gpu_id == None): error_message = "GPU ID must be set in running script!" error_vars = f"gpu_id = {self.gpu_id}" raise ValueError (f"( {self.qm_method}.{call_name()} ) {error_message} ( {error_vars} )") if (isinstance(self.gpu_id, list)): if (len(self.gpu_id) != self.ngpus): error_message = "Number of elements for GPU ID must be equal to number of GPUs!" error_vars = f"len(gpu_id) = {len(self.gpu_id)}, ngpus = {self.ngpus}" raise ValueError (f"( {self.qm_method}.{call_name()} ) {error_message} ( {error_vars} )") else: error_message = "Type of GPU ID must be list consisting of integer!" error_vars = f"gpu_id = {self.gpu_id}" raise TypeError (f"( {self.qm_method}.{call_name()} ) {error_message} ( {error_vars} )") self.precision = precision self.version = version if (isinstance(self.version, str)): if (self.version != "1.93"): error_message = "Other versions not implemented!" error_vars = f"version = {self.version}" raise ValueError (f"( {self.qm_method}.{call_name()} ) {error_message} ( {error_vars} )") else: error_message = "Type of version must be string!" error_vars = f"version = {self.version}" raise TypeError (f"( {self.qm_method}.{call_name()} ) {error_message} ( {error_vars} )")
43.577465
108
0.61894
2,978
0.962508
0
0
0
0
0
0
1,507
0.487072
960c00e5d06118cad7de3e170d517ce0e7416494
11,668
py
Python
tests/unit/modules/test_reg_win.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
null
null
null
tests/unit/modules/test_reg_win.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
null
null
null
tests/unit/modules/test_reg_win.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' :synopsis: Unit Tests for Windows Registry Module 'module.reg' :platform: Windows :maturity: develop :codeauthor: Damon Atkins <https://github.com/damon-atkins> versionadded:: 2016.11.0 ''' # Import Python future libs from __future__ import absolute_import from __future__ import unicode_literals # Import Python Libs import sys import time # Import Salt Testing Libs from tests.support.unit import TestCase, skipIf from tests.support.helpers import destructiveTest # Import Salt Libs import salt.modules.reg as win_mod_reg from salt.ext import six try: from salt.ext.six.moves import winreg as _winreg # pylint: disable=import-error,no-name-in-module NO_WINDOWS_MODULES = False except ImportError: NO_WINDOWS_MODULES = True PY2 = sys.version_info[0] == 2 # The following used to make sure we are not # testing already existing data # Note strftime retunrns a str, so we need to make it unicode TIMEINT = int(time.time()) if PY2: TIME_INT_UNICODE = six.text_type(TIMEINT) TIMESTR = time.strftime('%X %x %Z').decode('utf-8') else: TIMESTR = time.strftime('%X %x %Z') TIME_INT_UNICODE = str(TIMEINT) # pylint: disable=R0204 # we do not need to prefix this with u, as we are # using from __future__ import unicode_literals UNICODETEST_WITH_SIGNS = 'Testing Unicode \N{COPYRIGHT SIGN},\N{TRADE MARK SIGN},\N{REGISTERED SIGN} '+TIMESTR UNICODETEST_WITHOUT_SIGNS = 'Testing Unicode'+TIMESTR UNICODE_TEST_KEY = 'UnicodeKey \N{TRADE MARK SIGN} '+TIME_INT_UNICODE UNICODE_TEST_KEY_DEL = 'Delete Me \N{TRADE MARK SIGN} '+TIME_INT_UNICODE @skipIf(NO_WINDOWS_MODULES, 'requires Windows OS to test Windows registry') class RegWinTestCase(TestCase): ''' Test cases for salt.modules.reg ''' @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_read_reg_plain(self): ''' Test - Read a registry value from a subkey using Pythen 2 Strings or Pythen 3 Bytes ''' if not PY2: self.skipTest('Invalid for Python Version 2') subkey = b'Software\\Microsoft\\Windows NT\\CurrentVersion' vname = b'PathName' handle = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, subkey, 0, _winreg.KEY_ALL_ACCESS ) (current_vdata, dummy_current_vtype) = _winreg.QueryValueEx(handle, vname) _winreg.CloseKey(handle) test_vdata = win_mod_reg.read_value(b'HKEY_LOCAL_MACHINE', subkey, vname)[b'vdata'] self.assertEqual( test_vdata, current_vdata) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_read_reg_unicode(self): ''' Test - Read a registry value from a subkey using Pythen 2 Unicode or Pythen 3 Str i.e. Unicode ''' subkey = 'Software\\Microsoft\\Windows NT\\CurrentVersion' vname = 'PathName' handle = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, subkey, 0, _winreg.KEY_ALL_ACCESS ) (current_vdata, dummy_current_vtype) = _winreg.QueryValueEx(handle, vname) _winreg.CloseKey(handle) test_vdata = win_mod_reg.read_value( 'HKEY_LOCAL_MACHINE', subkey, vname)['vdata'] self.assertEqual(test_vdata, current_vdata) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_list_keys_fail(self): ''' Test - Read list the keys under a subkey which does not exist. ''' subkey = 'ThisIsJunkItDoesNotExistIhope' test_list = win_mod_reg.list_keys('HKEY_LOCAL_MACHINE', subkey) # returns a tuple with first item false, and second item a reason test = isinstance(test_list, tuple) and (not test_list[0]) self.assertTrue(test) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_list_keys(self): ''' Test - Read list the keys under a subkey ''' subkey = 'Software\\Microsoft\\Windows NT\\CurrentVersion' test_list = win_mod_reg.list_keys('HKEY_LOCAL_MACHINE', subkey) test = len(test_list) > 5 # Their should be a lot more than 5 items self.assertTrue(test) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_list_values_fail(self): ''' Test - List the values under a subkey which does not exist. ''' subkey = 'ThisIsJunkItDoesNotExistIhope' test_list = win_mod_reg.list_values('HKEY_LOCAL_MACHINE', subkey) # returns a tuple with first item false, and second item a reason test = isinstance(test_list, tuple) and (not test_list[0]) self.assertTrue(test) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_list_values(self): ''' Test - List the values under a subkey. ''' subkey = r'Software\Microsoft\Windows NT\CurrentVersion' test_list = win_mod_reg.list_values('HKEY_LOCAL_MACHINE', subkey) test = len(test_list) > 5 # There should be a lot more than 5 items self.assertTrue(test) # Not considering this destructive as its writing to a private space @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_set_value_unicode(self): ''' Test - set a registry plain text subkey name to a unicode string value ''' vname = 'TestUniccodeString' subkey = 'Software\\SaltStackTest' test1_success = False test2_success = False test1_success = win_mod_reg.set_value( 'HKEY_LOCAL_MACHINE', subkey, vname, UNICODETEST_WITH_SIGNS ) # Now use _winreg direct to see if it worked as expected if test1_success: handle = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, subkey, 0, _winreg.KEY_ALL_ACCESS ) (current_vdata, dummy_current_vtype) = _winreg.QueryValueEx(handle, vname) _winreg.CloseKey(handle) test2_success = (current_vdata == UNICODETEST_WITH_SIGNS) self.assertTrue(test1_success and test2_success) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_set_value_unicode_key(self): ''' Test - set a registry Unicode subkey name with unicode characters within to a integer ''' test_success = win_mod_reg.set_value( 'HKEY_LOCAL_MACHINE', 'Software\\SaltStackTest', UNICODE_TEST_KEY, TIMEINT, 'REG_DWORD' ) self.assertTrue(test_success) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_del_value(self): ''' Test - Create Directly and Delete with salt a registry value ''' subkey = 'Software\\SaltStackTest' vname = UNICODE_TEST_KEY_DEL vdata = 'I will be deleted' if PY2: handle = _winreg.CreateKeyEx( _winreg.HKEY_LOCAL_MACHINE, subkey.encode('mbcs'), 0, _winreg.KEY_ALL_ACCESS ) _winreg.SetValueEx( handle, vname.encode('mbcs'), 0, _winreg.REG_SZ, vdata.encode('mbcs') ) else: handle = _winreg.CreateKeyEx( _winreg.HKEY_LOCAL_MACHINE, subkey, 0, _winreg.KEY_ALL_ACCESS ) _winreg.SetValueEx(handle, vname, 0, _winreg.REG_SZ, vdata) _winreg.CloseKey(handle) # time.sleep(15) # delays for 15 seconds test_success = win_mod_reg.delete_value( 'HKEY_LOCAL_MACHINE', subkey, vname ) self.assertTrue(test_success) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") def test_del_key_recursive_user(self): ''' Test - Create directly key/value pair and Delete recusivly with salt ''' subkey = 'Software\\SaltStackTest' vname = UNICODE_TEST_KEY_DEL vdata = 'I will be deleted recursive' if PY2: handle = _winreg.CreateKeyEx( _winreg.HKEY_CURRENT_USER, subkey.encode('mbcs'), 0, _winreg.KEY_ALL_ACCESS ) _winreg.SetValueEx( handle, vname.encode('mbcs'), 0, _winreg.REG_SZ, vdata.encode('mbcs') ) else: handle = _winreg.CreateKeyEx( _winreg.HKEY_CURRENT_USER, subkey, 0, _winreg.KEY_ALL_ACCESS ) _winreg.SetValueEx(handle, vname, 0, _winreg.REG_SZ, vdata) _winreg.CloseKey(handle) # time.sleep(15) # delays for 15 seconds so you can run regedit & watch it happen test_success = win_mod_reg.delete_key_recursive('HKEY_CURRENT_USER', subkey) self.assertTrue(test_success) @skipIf(not sys.platform.startswith("win"), "requires Windows OS") @destructiveTest def test_del_key_recursive_machine(self): ''' This is a DESTRUCTIVE TEST it creates a new registry entry. And then destroys the registry entry recusively , however it is completed in its own space within the registry. We mark this as destructiveTest as it has the potential to detroy a machine if salt reg code has a large error in it. ''' subkey = 'Software\\SaltStackTest' vname = UNICODE_TEST_KEY_DEL vdata = 'I will be deleted recursive' if PY2: handle = _winreg.CreateKeyEx( _winreg.HKEY_LOCAL_MACHINE, subkey.encode('mbcs'), 0, _winreg.KEY_ALL_ACCESS ) _winreg.SetValueEx( handle, vname.encode('mbcs'), 0, _winreg.REG_SZ, vdata.encode('mbcs') ) else: handle = _winreg.CreateKeyEx( _winreg.HKEY_LOCAL_MACHINE, subkey, 0, _winreg.KEY_ALL_ACCESS ) _winreg.SetValueEx(handle, vname, 0, _winreg.REG_SZ, vdata) _winreg.CloseKey(handle) # time.sleep(15) # delays for 15 seconds so you can run regedit and watch it happen test_success = win_mod_reg.delete_key_recursive('HKEY_LOCAL_MACHINE', subkey) self.assertTrue(test_success) # pylint: disable=W0511 # TODO: Test other hives, other than HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER
38.508251
110
0.573706
9,979
0.855245
0
0
10,055
0.861759
0
0
3,925
0.33639
960c27eda1d8cb31a885faeca6a1d05da5d1bc43
9,197
py
Python
glacier/glacierexception.py
JeffAlyanak/amazon-glacier-cmd-interface
f9e50cbc49156233a87f1975323e315370aeeabe
[ "MIT" ]
166
2015-01-01T14:14:56.000Z
2022-02-20T21:59:45.000Z
glacier/glacierexception.py
JeffAlyanak/amazon-glacier-cmd-interface
f9e50cbc49156233a87f1975323e315370aeeabe
[ "MIT" ]
31
2015-01-04T13:18:02.000Z
2022-01-10T18:40:52.000Z
glacier/glacierexception.py
JeffAlyanak/amazon-glacier-cmd-interface
f9e50cbc49156233a87f1975323e315370aeeabe
[ "MIT" ]
75
2015-01-03T10:33:41.000Z
2022-02-22T21:21:47.000Z
import traceback import re import sys import logging """ ********** Note by wvmarle: This file contains the complete code from chained_exception.py plus the error handling code from GlacierWrapper.py, allowing it to be used in other modules like glaciercorecalls as well. ********** """ class GlacierException(Exception): """ An extension of the built-in Exception class, this handles an additional cause keyword argument, adding it as cause attribute to the exception message. It logs the error message (amount of information depends on the log level) and passes it on to a higher level to handle. Furthermore it allows for the upstream handler to call for a complete stack trace or just a simple error and cause message. TODO: describe usage. """ ERRORCODE = {'InternalError': 127, # Library internal error. 'UndefinedErrorCode': 126, # Undefined code. 'NoResults': 125, # Operation yielded no results. 'GlacierConnectionError': 1, # Can not connect to Glacier. 'SdbConnectionError': 2, # Can not connect to SimpleDB. 'CommandError': 3, # Command line is invalid. 'VaultNameError': 4, # Invalid vault name. 'DescriptionError': 5, # Invalid archive description. 'IdError': 6, # Invalid upload/archive/job ID given. 'RegionError': 7, # Invalid region given. 'FileError': 8, # Error related to reading/writing a file. 'ResumeError': 9, # Problem resuming a multipart upload. 'NotReady': 10, # Requested download is not ready yet. 'BookkeepingError': 11, # Bookkeeping not available. 'SdbCommunicationError': 12, # Problem reading/writing SimpleDB data. 'ResourceNotFoundException': 13, # Glacier can not find the requested resource. 'InvalidParameterValueException': 14, # Parameter not accepted. 'DownloadError': 15, # Downloading an archive failed. 'SNSConnectionError': 126, # Can not connect to SNS 'SNSConfigurationError': 127, # Problem with configuration file 'SNSParameterError':128, # Problem with arguments passed to SNS } def __init__(self, message, code=None, cause=None): """ Constructor. Logs the error. :param message: the error message. :type message: str :param code: the error code. :type code: str :param cause: explanation on what caused the error. :type cause: str """ self.logger = logging.getLogger(self.__class__.__name__) self.exitcode = self.ERRORCODE[code] if code in self.ERRORCODE else 254 self.code = code if cause: self.logger.error('ERROR: %s'% cause) self.cause = cause if isinstance(cause, tuple) else (cause,) self.stack = traceback.format_stack()[:-2] else: self.logger.error('An error occurred, exiting.') self.cause = () # Just wrap up a cause-less exception. # Get the stack trace for this exception. self.stack = ( traceback.format_stack()[:-2] + traceback.format_tb(sys.exc_info()[2])) # ^^^ let's hope the information is still there; caller must take # care of this. self.message = message self.logger.info(self.fetch(message=True)) self.logger.debug(self.fetch(stack=True)) if self.exitcode == 254: self.logger.debug('Unknown error code: %s.'% code) # Works as a generator to help get the stack trace and the cause # written out. def causeTree(self, indentation=' ', alreadyMentionedTree=[], stack=False, message=False): """ Returns a complete stack tree, an error message, or both. Returns a warning if neither stack or message are True. """ if stack: yield "Traceback (most recent call last):\n" ellipsed = 0 for i, line in enumerate(self.stack): if (ellipsed is not False and i < len(alreadyMentionedTree) and line == alreadyMentionedTree[i]): ellipsed += 1 else: if ellipsed: yield " ... (%d frame%s repeated)\n" % ( ellipsed, "" if ellipsed == 1 else "s") ellipsed = False # marker for "given out" yield line if message: exc = self if self.message is None else self.message for line in traceback.format_exception_only(exc.__class__, exc): yield line if self.cause: yield ("Caused by: %d exception%s\n" % (len(self.cause), "" if len(self.cause) == 1 else "s")) for causePart in self.cause: if hasattr(causePart,"causeTree"): for line in causePart.causeTree(indentation, self.stack): yield re.sub(r'([^\n]*\n)', indentation + r'\1', line) else: for line in traceback.format_exception_only(causePart.__class__, causePart): yield re.sub(r'([^\n]*\n)', indentation + r'\1', line) if not message and not stack: yield ('No output. Specify message=True and/or stack=True \ to get output when calling this function.\n') def write(self, stream=None, indentation=' ', message=False, stack=False): """ Writes the error details to sys.stderr or a stream. """ stream = sys.stderr if stream is None else stream for line in self.causeTree(indentation, message=message, stack=stack): stream.write(line) def fetch(self, indentation=' ', message=False, stack=False): """ Fetches the error details and returns them as string. """ out = '' for line in self.causeTree(indentation, message=message, stack=stack): out += line return out class InputException(GlacierException): """ Exception that is raised when there is someting wrong with the user input. """ VaultNameError = 1 VaultDescriptionError = 2 def __init__(self, message, code=None, cause=None): """ Handles the exception. :param message: the error message. :type message: str :param code: the error code. :type code: :param cause: explanation on what caused the error. :type cause: str """ GlacierException.__init__(self, message, code=code, cause=cause) class ConnectionException(GlacierException): """ Exception that is raised when there is something wrong with the connection. """ GlacierConnectionError = 1 SdbConnectionError = 2 def __init__(self, message, code=None, cause=None): """ Handles the exception. :param message: the error message. :type message: str :param code: the error code. :type code: :param cause: explanation on what caused the error. :type cause: str """ GlacierException.__init__(self, message, code=code, cause=cause) class CommunicationException(GlacierException): """ Exception that is raised when there is something wrong in the communication with an external library like boto. """ def __init__(self, message, code=None, cause=None): """ Handles the exception. :param message: the error message. :type message: str :param code: the error code. :type code: :param cause: explanation on what caused the error. :type cause: str """ GlacierException.__init__(self, message, code=code, cause=cause) class ResponseException(GlacierException): """ Exception that is raised when there is an http response error. """ def __init__(self, message, code=None, cause=None): GlacierException.__init__(self, message, code=code, cause=cause) if __name__ == '__main__': class ChildrenException(Exception): def __init__(self, message): Exception.__init__(self, message) class ParentException(GlacierException): def __init__(self, message, cause=None): if cause: GlacierException.__init__(self, message, cause=cause) else: GlacierException.__init__(self, message) try: try: raise ChildrenException("parent") except ChildrenException, e: raise ParentException("children", cause=e) except ParentException, e: e.write(indentation='|| ')
38.805907
100
0.577145
8,630
0.938349
1,937
0.210612
0
0
0
0
4,075
0.443079
960d016ae24c4293c672a990c11ba81afe431984
29,912
py
Python
modes/import_corpus.py
freingruber/JavaScript-Raider
d1c1fff2fcfc60f210b93dbe063216fa1a83c1d0
[ "Apache-2.0" ]
91
2022-01-24T07:32:34.000Z
2022-03-31T23:37:15.000Z
modes/import_corpus.py
zeusguy/JavaScript-Raider
d1c1fff2fcfc60f210b93dbe063216fa1a83c1d0
[ "Apache-2.0" ]
null
null
null
modes/import_corpus.py
zeusguy/JavaScript-Raider
d1c1fff2fcfc60f210b93dbe063216fa1a83c1d0
[ "Apache-2.0" ]
11
2022-01-24T14:21:12.000Z
2022-03-31T23:37:23.000Z
# Copyright 2022 @ReneFreingruber # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This mode can be started by passing the "--import_corpus_mode" flag to the fuzzer # or by starting the fuzzer the first time (when no OUTPUT directory exists yet). # # The script imports new testcases into the current corpus. # Please note that the progress of the script is not linear (especially when creating an initial corpus). # The script will start slow (because it will find a lot of testcases with new behavior and this requires # standardization, minimization & state creation. # These operations are slow because they require to restart the JS engine multiple times, # and therefore it will take a longer time. After some time, the import-mode will be faster because it finds less files # with new coverage. At the end, the mode will again be slow (or maybe very slow) because it's processing the # bigger testcases (testcases are sorted based on file size and handled from small files to big files). # State creation for big input files is extremely slow. # It's maybe better to skip these big testcases and continue because later testcases can maybe further be # minimized (which would then be again fast). => I created my initial corpus with a different script, # skipping the big testcases is therefore not implemented here yet (and must manually be done). # TODO: In my original code I also removed v8 native functions because they quickly lead to crashes # But I couldn't find the code anymore. I guess this should be implemented in this file somewhere at the end? # This affect at least the functions: # %ProfileCreateSnapshotDataBlob # %LiveEditPatchScript # %IsWasmCode # %IsAsmWasmCode # %ConstructConsString # %HaveSameMap # %IsJSReceiver # %HasSmiElements # %HasObjectElements # %HasDoubleElements # %HasDictionaryElements # %HasHoleyElements # %HasSloppyArgumentsElements # %HaveSameMap # %HasFastProperties # %HasPackedElements # # More information can be found in my master thesis page 115. import utils import os import config as cfg import native_code.speed_optimized_functions as speed_optimized_functions from native_code.executor import Execution_Status import sys import random import string import re code_prefix = "function my_opt_func() {\n" code_suffix1 = """ } %OptimizeFunctionOnNextCall(my_opt_func); my_opt_func(); """ code_suffix2 = """ } %PrepareFunctionForOptimization(my_opt_func); %OptimizeFunctionOnNextCall(my_opt_func); my_opt_func(); """ code_suffix3 = """ } my_opt_func(); %PrepareFunctionForOptimization(my_opt_func); %OptimizeFunctionOnNextCall(my_opt_func); my_opt_func(); """ # These are just used for debugging debugging_number_exceptions = 0 debugging_number_success = 0 debugging_number_new_coverage = 0 def import_corpus_mode(input_dir_to_import): global code_prefix, code_suffix1, code_suffix2, code_suffix3 utils.msg("[i] Going to import another corpus to the current corpus...") utils.msg("[i] Corpus dir which will be imported is: %s" % input_dir_to_import) files_to_handle = [] already_seen_file_hashes = set() utils.msg("[i] Going to read all files in directory... (this can take some time)") for filename_to_import in os.listdir(input_dir_to_import): if filename_to_import.endswith(".js"): input_file_to_import = os.path.join(input_dir_to_import, filename_to_import) # Just get file size with open(input_file_to_import, 'r') as fobj: content = fobj.read().rstrip() sample_hash = utils.calc_hash(content) if sample_hash not in already_seen_file_hashes: # new file files_to_handle.append((input_file_to_import, len(content))) already_seen_file_hashes.add(sample_hash) utils.msg("[i] Finished reading files. Going to sort files based on file size...") # Sort based on filesize => start with small files => this ensures that the minimizer is faster files_to_handle.sort(key=lambda x: x[1]) utils.msg("[i] Finished sorting, going to start importing...") # Now start to import file by file cfg.my_status_screen.set_current_operation("Importing") total_number_files_to_import = len(files_to_handle) number_files_already_imported = 0 for entry in files_to_handle: (input_file_to_import, filesize) = entry number_files_already_imported += 1 utils.msg("[i] Importing file (%d/%d): %s" % (number_files_already_imported, total_number_files_to_import, input_file_to_import)) with open(input_file_to_import, 'r') as fobj: content = fobj.read().rstrip() if len(content) > 200000: # 200 KB continue # big files are too slow and are bad for mutation, so skip them if '\x00' in content: continue # ignore files with null bytes for the moment because the Python to C conversation does not support this # Check normal execution: check_if_testcase_triggers_new_behavior(content) # Check adapted execution (e.g. with removed testsuite functions) samples = preprocess_testcase(content) for sample in samples: check_if_testcase_triggers_new_behavior(sample) # Now check if it triggers more coverage if the code gets compiled: check_if_testcase_triggers_new_behavior(code_prefix + sample + code_suffix1) check_if_testcase_triggers_new_behavior(code_prefix + sample + code_suffix2) check_if_testcase_triggers_new_behavior(code_prefix + sample + code_suffix3) if cfg.deterministic_preprocessing_enabled: # And now start to preprocess all imported files! This can take a VERY long runtime # => I would not recommend running this because it can easily take several weeks of runtime. # It maybe makes sense for the first small testcases cfg.deterministically_preprocess_queue_func() return total_number_files_to_import def check_if_testcase_triggers_new_behavior(content): if len(content) > 10000: # 10 KB # big files are too slow and are bad for mutation, so skip them # Side note: I'm checking here for 10KB and in the above function for 200KB # because this function is maybe invoked with sub-functionality from the main script # which can be a lot smaller return previous_stats_new_behavior = cfg.my_status_screen.get_stats_new_behavior() # Restart the engine so that every testcase starts in a new v8 process # (=> this slows down the process but having a good input corpus is important) # If you want to be faster, you can maybe skip the engine restart here cfg.exec_engine.restart_engine() cfg.perform_execution_func(content, state=None) current_stats_new_behavior = cfg.my_status_screen.get_stats_new_behavior() if current_stats_new_behavior == previous_stats_new_behavior: # File didn't result in new coverage and was therefore not imported (importing would be done by perform_execution() )! # Just to get sure that there was not a flawed execution, I try it again here cfg.perform_execution_func(content, state=None) # This is a debug version of the above one. # The above one does all the required calculations (standardization, minimization, state creation) # which is very slow. But If I just want to quickly check how many files I can import, # then I'm using this debugging versions (which skips all these steps) # This version does also not restart the exec engine. # To use it, just replace the call with this function def check_if_testcase_triggers_new_behavior_debugging(content): global debugging_number_exceptions, debugging_number_success, debugging_number_new_coverage if len(content) > 10000: # 10 KB return result = cfg.exec_engine.execute_safe(content) if result.status == Execution_Status.SUCCESS: debugging_number_success += 1 if result.num_new_edges > 0: debugging_number_new_coverage += 1 # Dump the new coverage statistics number_triggered_edges, total_number_possible_edges = cfg.exec_engine.get_number_triggered_edges() if total_number_possible_edges == 0: total_number_possible_edges = 1 # avoid division by zero triggered_edges_in_percent = (100 * number_triggered_edges) / float(total_number_possible_edges) utils.msg("[i] Found new coverage! (%d success, %d exceptions, %d new coverage); New Coverage: %.4f %%" % (debugging_number_success, debugging_number_exceptions, debugging_number_new_coverage, triggered_edges_in_percent)) elif result.status == Execution_Status.EXCEPTION_THROWN: debugging_number_exceptions += 1 # TODO: This is pretty old code and needs a lot of refactoring/improvement ... # TODO: Also better implement these whole "\t" and " " and "\ņ" checking... # One testcase file can contain multiple testcases # That's why this function returns a list of samples def preprocess_testcase(code): ret = [] tmp = "" for line in code.split("\n"): line_check = line.strip() if line_check.startswith("import ") \ or line_check.startswith("import(") \ or line_check.startswith("export ") \ or line_check.startswith("loaded++") \ or line_check.startswith("await import"): continue # remove import and export statements tmp += line + "\n" code = tmp # All the following function replacements where manually found # The replacements can be found by starting this script and # dumping all testcases which trigger an exception # Then the testcases can manually be analyzed to understand # why they lead to an exception. By doing this, the following # functions were identified which are not defined as default # JavaScript functions (in v8). # Identification of these functions took a long time and corpus # coverage can still greatly be improved by identifying more such # functions. However, this is a time consuming task. # Example: Replace wscript.echo() function calls with console.log() pattern = re.compile("wscript.echo", re.IGNORECASE) code = pattern.sub("console.log", code) pattern = re.compile("CollectGarbage", re.IGNORECASE) code = pattern.sub("gc", code) code = code.replace("writeLine", "console.log") code = code.replace("WScript.SetTimeout", "setTimeout") code = code.replace("helpers.writeln", "console.log") code = code.replace("$ERROR", "console.log") code = code.replace("helpers.printObject", "console.log") code = code.replace("WScript.Arguments", "[]") code = code.replace("assert.unreachable()", "") code = code.replace("assertUnreachable()", "") code = code.replace("$DONOTEVALUATE()", "") code = code.replace("assertStmt", "eval") code = code.replace("inSection", "Number") code = code.replace("numberOfDFGCompiles", "Number") code = code.replace("optimizeNextInvocation", "%OptimizeFunctionOnNextCall") code = code.replace("printBugNumber", "console.log") code = code.replace("printStatus", "console.log") code = code.replace("saveStack()", "0") code = code.replace("gcPreserveCode()", "gc()") code = code.replace("platformSupportsSamplingProfiler()", "true") # Example: # var OProxy = $262.createRealm().global.Proxy; # => # var OProxy = Proxy; code = code.replace("$262.createRealm().global.", "") # Quit() is detected as a crash because v8 is closed, therefore I remove it # However, there can be functions like test_or_quit() where it could incorrectly remove quit() # Therefore I check for a space or a tab before. This is not a perfect solution, but filters # out some crashes # TODO: I now implemented better JavaScript parsing and should use the fuzzer functionality to replace it.. code = code.replace(" quit()", "") code = code.replace("\tquit()", "") code = code.replace("\nquit()", "\n") code = code.replace(" quit(0)", "") code = code.replace("\tquit(0)", "") code = code.replace("\nquit(0)", "\n") code = code.replace("trueish", "true") # it seems like SpiderMonkey accepts "trueish" as argument to asserEq oder reportCompare functions... code = remove_function_call(code, "this.WScript.LoadScriptFile") code = remove_function_call(code, "wscript.loadscriptfile") code = code.replace("WScript.LoadScript(", "eval(") code = code.replace("evalcx(", "eval(") # from SpiderMonkey, however, it can have a 2nd argument for the context; so this modification is not 100% correct code = remove_function_call(code, "WScript.LoadModuleFile") code = remove_function_call(code, "WScript.LoadModule") code = remove_function_call(code, "WScript.Attach") code = remove_function_call(code, "WScript.Detach") code = remove_function_call(code, "saveStack") # I already removed "saveStack()" but this here is to remove saveStack calls where an argument is passed code = remove_function_call(code, "WScript.FalseFile") code = remove_function_call(code, "assert.fail") code = remove_function_call(code, "assert.isUndefined") code = remove_function_call(code, "description") code = remove_function_call(code, "assertOptimized") code = remove_function_call(code, "assertDoesNotThrow") code = remove_function_call(code, "assertUnoptimized") code = remove_function_call(code, "assertPropertiesEqual") code = remove_function_call(code, "$DONE") code = code.replace("$DONE", "1") code = remove_function_call(code, "assertParts") code = remove_function_call(code, "verifyProperty") code = remove_function_call(code, "verifyWritable") code = remove_function_call(code, "verifyNotWritable") code = remove_function_call(code, "verifyEnumerable") code = remove_function_call(code, "verifyNotEnumerable") code = remove_function_call(code, "verifyConfigurable") code = remove_function_call(code, "verifyNotConfigurable") code = remove_function_call(code, "assertThrowsInstanceOf") code = remove_function_call(code, "testOption") code = remove_function_call(code, "assert.calls") code = remove_function_call(code, "generateBinaryTests") code = remove_function_call(code, "crash") # TODO , does this detect too many functions which end with "crash"? # can also be code like =>crash("foo"); # This is a special function in SpiderMonkey which supports fuzzing (?) code = remove_function_call(code, "offThreadCompileScript") code = remove_function_call(code, "startgc") # maybe I should change it with the gc() function? But then I need to remove the startgc() argument code = remove_function_call(code, "gczeal") # some other garbage collection related stuff in SpiderMonkey code = remove_function_call(code, "gcslice") code = remove_function_call(code, "schedulezone") code = remove_function_call(code, "schedulegc") code = remove_function_call(code, "unsetgczeal") code = remove_function_call(code, "gcstate") # The following is for checks like: # if (this.WScript && this.WScript.LoadScriptFile) { # Which should become: # if (False && False) { code = code.replace("WScript.LoadScriptFile", "False") code = code.replace("WScript.LoadScript", "False") code = code.replace("WScript.LoadModuleFile", "False") code = code.replace("WScript.LoadModule", "False") code = code.replace("this.WScript", "False") code = code.replace("this.False", "False") code = code.replace("WScript", "False") code = code.replace("$MAX_ITERATIONS", "5") code = remove_function_call(code, "utils.load") if " load" not in code and "\tload" not in code: # Little hack, I want to remove load function calls at the start of a file which load other JS files # But if load is used as a function e.g.: as code like: # function load(a) { # I don't want to remove it code = remove_function_call(code, "load") code = remove_function_call(code, "assert.isnotundefined") code = remove_function_call(code, "assert.isdefined") code = remove_function_call(code, "assert.throws") code = remove_function_call(code, "assert_throws") code = remove_function_call(code, "assertThrows") code = remove_function_call(code, "assertDoesNotThrow") code = remove_function_call(code, "shouldThrow") code = remove_function_call(code, "assertNull") code = remove_function_call(code, "shouldBeEqualToString") code = remove_function_call(code, "assertThrowsEquals") code = remove_function_call(code, "new BenchmarkSuite") # This is not a function but it works code = remove_function_call(code, "assertNoEntry") code = remove_function_call(code, "assertEntry") code = remove_function_call(code, " timeout") code = remove_function_call(code, "\ttimeout") code = remove_function_call(code, "\ntimeout") code = remove_function_call(code, "testFailed") code = remove_function_call(code, "finishJSTest") code = remove_function_call(code, "assertIteratorDone") code = remove_function_call(code, "assertIteratorNext") code = remove_function_call(code, "assertThrowsValue") code = remove_function_call(code, "Assertion") code = remove_function_call(code, "assertStackLengthEq") code = remove_function_call(code, "noInline") code = remove_function_call(code, "enableGeckoProfiling") code = remove_function_call(code, "enableSingleStepProfiling") code = remove_function_call(code, "enableSingleStepProfiling") code = remove_function_call(code, "disableSingleStepProfiling") code = remove_function_call(code, "enableGeckoProfilingWithSlowAssertions") code = remove_function_call(code, "assertThrownErrorContains") code = remove_function_call(code, "assertDecl") # can maybe be fixed better code = remove_function_call(code, "assertExpr") code = remove_function_call(code, "assert.compareIterator") code = remove_function_call(code, "$DETACHBUFFER") code = remove_function_call(code, "checkSpeciesAccessorDescriptor") code = remove_function_call(code, "assertPropertyExists") code = remove_function_call(code, "assertPropertyDoesNotExist") code = remove_function_call(code, "assert_equal_to_array") code = replace_assert_function(code, "assert.sameValue", "==") code = replace_assert_function(code, "reportCompare", "==") code = replace_assert_function(code, "assert.areNotEqual", "!=") code = replace_assert_function(code, "assert.areEqual", "==") code = replace_assert_function(code, "assert.equals", "==") code = replace_assert_function(code, "assert.strictEqual", "===") code = replace_assert_function(code, "assert_equals", "==") code = replace_assert_function(code, "assertMatches", "==") code = replace_assert_function(code, "assertSame", "==") code = replace_assert_function(code, "assertEqualsDelta", "==") code = replace_assert_function(code, "assertNotEquals", "!=") code = replace_assert_function(code, "assert.notSameValue", "!=") code = replace_assert_function(code, "assertEq", "==") code = replace_assert_function(code, "verifyEqualTo", "==") code = replace_assert_function(code, "assert.compareArray", "==") code = replace_assert_function(code, "compareArray", "==") code = replace_assert_function(code, "assertDeepEq", "==") code = replace_assert_function(code, "assertArrayEquals", "==") code = replace_assert_function(code, "assertArray", "==") code = replace_assert_function(code, "assertEqArray", "==") # They must not be patched if only v8 is checked, they don't lead to a crash # Only the static assert lead to a crash # code = replace_assert_function(code, "%StrictEqual", "===") # code = replace_assert_function(code, "%StrictNotEqual", "!==") # code = replace_assert_function(code, "%Equal", "==") # %GreaterThanOrEqual # %LessThan # %GreaterThan # %LessThanOrEqual # # TODO: # patching "assertIteratorResult" is more complicated.. # TODO: More complicated : # verifySymbolSplitResult # TODO WebKit: # assert.var fhgjeduyko=array[i]; # => var fhgjeduyko=array[i]; code = replace_assert_function(code, "assertInstanceof", "instanceof") code = replace_assert_function(code, "assertEquals", "==") code = replace_assert_function(code, "assertNotSame", "!=") # assertNotSame(Atomics.wake, Atomics.notify); # The remove_assert_function() calls are for assert functions which just have 1 argument code = remove_assert_function(code, "assert.isTrue") code = remove_assert_function(code, "assert.isFalse") code = remove_assert_function(code, "assert.assertFalse") code = remove_assert_function(code, "assertFalse") code = remove_assert_function(code, "assertTrue") code = remove_assert_function(code, "assert_true") code = remove_assert_function(code, "%TurbofanStaticAssert") code = remove_assert_function(code, "assert.shouldBeTrue") code = remove_assert_function(code, "assert.shouldBeFalse") code = remove_assert_function(code, "assert.shouldBe") code = remove_assert_function(code, "assert.assertNotNull") code = remove_assert_function(code, "shouldBeTrue") code = remove_assert_function(code, "shouldBeFalse") code = remove_assert_function(code, "shouldBe") code = remove_assert_function(code, "assertNotNull") code = remove_assert_function(code, "testJSON") code = remove_assert_function(code, "assertNativeFunction") code = remove_assert_function(code, "assert_malformed") code = remove_assert_function(code, "assertIteratorResult") code = remove_assert_function(code, "assert.doesNotThrow") code = remove_assert_function(code, "assert") # This should be one of the last replacements! # This is a stupid last hack, in some cases assert.throws is not correctly detected because it's inside a string # which is later evaluated. That means the logic to detect the end of the function call does not correctly work # Therefore it's not removed above, here I just replace it with a call to Number to ensure that it does not crash code = code.replace("assert.throws", "Number") if "testRunner.run" in code: # TODO I also need to add function definitions from the start # E.g.: WebKit testcase: tc50725.js # or tc1061.js from ChakraCore start_testcases = ["body: function () {", "body() {"] while True: finished = True for start_testcase in start_testcases: if start_testcase in code: finished = False if finished: break for start_testcase in start_testcases: if start_testcase not in code: continue idx = code.index(start_testcase) rest = code[idx + len(start_testcase):] idx_end = speed_optimized_functions.get_index_of_next_symbol_not_within_string(rest, "}") testcase_code = rest[:idx_end] code = rest[idx_end + 1:] ret.append(testcase_code) elif "oomTest" in code: code = "function oomTest(func_name) { func_name(); }\n" + code ret.append(code) elif "runtest" in code: code = "function runtest(func_name) { func_name(); }\n" + code ret.append(code) else: # Just add it ret.append(code) return ret def remove_function_call(code, function_call_str): if function_call_str[-1] != "(": function_call_str = function_call_str + "(" function_call_str = function_call_str.lower() while True: code_lowered = code.lower() if function_call_str not in code_lowered: return code idx = code_lowered.index(function_call_str) if idx != 0: previous_char = code[idx-1] if previous_char != "\n" and previous_char != " " and previous_char != "\t": return code before = code[:idx] tmp = code[idx + len(function_call_str):] idx_end = speed_optimized_functions.get_index_of_next_symbol_not_within_string(tmp, ")") if idx_end == -1: # print("TODO Internal error in remove_function_call():") # print("function_call_str:") # print(function_call_str) # print("code:") # print(code) # sys.exit(-1) return code try: after = tmp[idx_end+1:] except: # The ")" symbol was the last symbol in the string after = "" code = before+after def replace_assert_function(code, assert_function_str, comparison_str): if assert_function_str[-1] != "(": assert_function_str = assert_function_str + "(" original_code = code original_code_len = len(original_code) while True: if len(code) > original_code_len: # This means the last iterations contained a bug # E.g.: if I replaced something like reportCompare(1,2) but the # actual JavaScript code didn't contain a second argument => # reportCompare(1) # Then this code can be incorrect and start to create bigger samples # I catch this here and just return the unmodified code # Another option is that a regex string is not correctly detected return original_code if assert_function_str not in code: return code # Examples: # assert.sameValue(typeof f, 'function'); # assert.sameValue(f(), 'function declaration'); idx = code.index(assert_function_str) before = code[:idx] rest = code[idx + len(assert_function_str):] idx_end = speed_optimized_functions.get_index_of_next_symbol_not_within_string(rest, ",") part1 = rest[:idx_end] rest = rest[idx_end + 1:] idx_end = speed_optimized_functions.get_index_of_next_symbol_not_within_string(rest, ")") if idx_end == -1: return code # return the unmodified code; this is most likely because the regex string was not correctly detected # and inside the regex string a symbol from another string was used... idx_command = speed_optimized_functions.get_index_of_next_symbol_not_within_string(rest, ",") if idx_command == -1: idx_command = idx_end elif idx_command > idx_end: idx_command = idx_end if idx_end == 0: return code # some buggy case part2 = rest[:idx_command] rest = rest[idx_end + 1:] if len(rest) == 0: # can happen with some funny unicode testcases return original_code if rest[0] == ";": rest = rest[1:] # remove the ";" code = before + part1.strip() + " " + comparison_str + " " + part2.strip() + ";" + rest else: code = before + part1.strip() + " " + comparison_str + " " + part2.strip() + " " + rest def remove_assert_function(code, assert_function_str): if assert_function_str[-1] != "(": assert_function_str = assert_function_str + "(" while True: if assert_function_str not in code: return code # Examples: # assert.isTrue(/error in callback/.test(frames[0]), `Invalid first frame "${frames[0]}" for ${builtin.name}`); idx = code.index(assert_function_str) before = code[:idx] rest = code[idx + len(assert_function_str):] idx_end = speed_optimized_functions.get_index_of_next_symbol_not_within_string(rest, ")") idx_command = speed_optimized_functions.get_index_of_next_symbol_not_within_string(rest, ",") if idx_end == -1: # print("TODO Internal coding error in remove_assert_function():") # print("assert_function_str: %s" % assert_function_str) # print(code) # print("----------------------") # print("Rest:") # print(rest) # sys.exit(-1) return code if idx_command == -1: idx_command = idx_end elif idx_command > idx_end: idx_command = idx_end assert_statement = rest[:idx_command] rest = rest[idx_end+1:] # I add here a var *varname* statement because functions can not be standalone. # E.g.: # assert.doesNotThrow(function() { Object.defineProperty(obj, key, { value: 'something', enumerable: true }); }, "Object.defineProperty uses ToPropertyKey. Property is added to the object"); # would result in: # function() { ....} # this would throw an exception, but # var xyz = function() { ... } # doesn't throw random_variable_name = ''.join(random.sample(string.ascii_lowercase, 10)) if rest[0] == ";": rest = rest[1:] # remove the ";" code = before + "var " + random_variable_name + "=" + assert_statement.strip() + ";" + rest else: code = before + "var " + random_variable_name + "=" + assert_statement.strip() + " " + rest
46.7375
233
0.688587
0
0
0
0
0
0
0
0
13,886
0.464213
960d83d2c94c5959a98a0bd8469e0e2f1a880ff6
5,590
py
Python
crazyflie_demo/scripts/mapping/mapper.py
wydmynd/crazyflie_tom
0d1cc63dcd0f055d78da82515729ce2098e086cf
[ "MIT" ]
null
null
null
crazyflie_demo/scripts/mapping/mapper.py
wydmynd/crazyflie_tom
0d1cc63dcd0f055d78da82515729ce2098e086cf
[ "MIT" ]
null
null
null
crazyflie_demo/scripts/mapping/mapper.py
wydmynd/crazyflie_tom
0d1cc63dcd0f055d78da82515729ce2098e086cf
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Simple occupancy-grid-based mapping without localization. Subscribed topics: /scan Published topics: /map /map_metadata Author: Nathan Sprague Version: 2/13/14 """ import rospy from nav_msgs.msg import OccupancyGrid, MapMetaData from geometry_msgs.msg import Pose, Point, Quaternion from sensor_msgs.msg import LaserScan import numpy as np class Map(object): """ The Map class stores an occupancy grid as a two dimensional numpy array. Public instance variables: width -- Number of columns in the occupancy grid. height -- Number of rows in the occupancy grid. resolution -- Width of each grid square in meters. origin_x -- Position of the grid cell (0,0) in origin_y -- in the map coordinate system. grid -- numpy array with height rows and width columns. Note that x increases with increasing column number and y increases with increasing row number. """ def __init__(self, origin_x=-2.5, origin_y=-2.5, resolution=.1, width=50, height=50): """ Construct an empty occupancy grid. Arguments: origin_x, origin_y -- The position of grid cell (0,0) in the map coordinate frame. resolution-- width and height of the grid cells in meters. width, height -- The grid will have height rows and width columns cells. width is the size of the x-dimension and height is the size of the y-dimension. The default arguments put (0,0) in the center of the grid. """ self.origin_x = origin_x self.origin_y = origin_y self.resolution = resolution self.width = width self.height = height self.grid = np.zeros((height, width)) def to_message(self): """ Return a nav_msgs/OccupancyGrid representation of this map. """ grid_msg = OccupancyGrid() # Set up the header. grid_msg.header.stamp = rospy.Time.now() grid_msg.header.frame_id = "map" # .info is a nav_msgs/MapMetaData message. grid_msg.info.resolution = self.resolution grid_msg.info.width = self.width grid_msg.info.height = self.height # Rotated maps are not supported... quaternion represents no # rotation. grid_msg.info.origin = Pose(Point(self.origin_x, self.origin_y, 0), Quaternion(0, 0, 0, 1)) # Flatten the numpy array into a list of integers from 0-100. # This assumes that the grid entries are probalities in the # range 0-1. This code will need to be modified if the grid # entries are given a different interpretation (like # log-odds). flat_grid = self.grid.reshape((self.grid.size,)) * 100 grid_msg.data = list(np.round(flat_grid)) return grid_msg def set_cell(self, x, y, val): """ Set the value of a cell in the grid. Arguments: x, y - This is a point in the map coordinate frame. val - This is the value that should be assigned to the grid cell that contains (x,y). This would probably be a helpful method! Feel free to throw out point that land outside of the grid. """ pass class Mapper(object): """ The Mapper class creates a map from laser scan data. """ def __init__(self): """ Start the mapper. """ rospy.init_node('mapper') self._map = Map() # Setting the queue_size to 1 will prevent the subscriber from # buffering scan messages. This is important because the # callback is likely to be too slow to keep up with the scan # messages. If we buffer those messages we will fall behind # and end up processing really old scans. Better to just drop # old scans and always work with the most recent available. rospy.Subscriber('scan', LaserScan, self.scan_callback, queue_size=1) # Latched publishers are used for slow changing topics like # maps. Data will sit on the topic until someone reads it. self._map_pub = rospy.Publisher('map', OccupancyGrid, latch=True) self._map_data_pub = rospy.Publisher('map_metadata', MapMetaData, latch=True) rospy.spin() def scan_callback(self, scan): """ Update the map on every scan callback. """ # Fill some cells in the map just so we can see that something is # being published. self._map.grid[0, 0] = 1.0 self._map.grid[0, 1] = .9 self._map.grid[0, 2] = .7 self._map.grid[1, 0] = .5 self._map.grid[2, 0] = .3 # Now that the map is updated, publish it! rospy.loginfo("Scan is processed, publishing updated map.") self.publish_map() def publish_map(self): """ Publish the map. """ grid_msg = self._map.to_message() self._map_data_pub.publish(grid_msg.info) self._map_pub.publish(grid_msg) if __name__ == '__main__': try: m = Mapper() except rospy.ROSInterruptException: pass
33.878788
75
0.581038
5,101
0.912522
0
0
0
0
0
0
3,251
0.581574
960dcc8a44c5847743443e7deb1bcd0169e59d72
469
py
Python
flags.py
oaxiom/glbase3
9d3fc1efaad58ffb97e5b8126c2a96802daf9bac
[ "MIT" ]
8
2019-06-11T02:13:20.000Z
2022-02-22T09:27:23.000Z
flags.py
JackNg88/glbase3
4af190d06b89ef360dcba201d9e4e81f41ef8379
[ "MIT" ]
6
2020-12-18T15:08:14.000Z
2021-05-22T00:31:57.000Z
flags.py
JackNg88/glbase3
4af190d06b89ef360dcba201d9e4e81f41ef8379
[ "MIT" ]
2
2020-05-06T04:27:03.000Z
2022-02-22T09:28:25.000Z
""" flags.py . should be renamed helpers... . This file is scheduled for deletion """ """ valid accessory tags: "any_tag": {"code": "code_insert_as_string"} # execute arbitrary code to construct this key. "dialect": csv.excel_tab # dialect of the file, default = csv, set this to use tsv. or sniffer "skip_lines": number # number of lines to skip at the head of the file. "skiptill": skip until I see the first instance of <str> """ # lists of format-specifiers.
23.45
94
0.712154
0
0
0
0
0
0
0
0
463
0.987207
960deebf26b738896cbcd2ee2bd2d46605e19141
2,106
py
Python
packages/jet_bridge/jet_bridge/app.py
goncalomi/jet-bridge
ed968ac3407affdc99059faafb86ec67ac995838
[ "MIT" ]
2
2020-04-18T14:34:44.000Z
2020-04-18T14:34:47.000Z
packages/jet_bridge/jet_bridge/app.py
goncalomi/jet-bridge
ed968ac3407affdc99059faafb86ec67ac995838
[ "MIT" ]
null
null
null
packages/jet_bridge/jet_bridge/app.py
goncalomi/jet-bridge
ed968ac3407affdc99059faafb86ec67ac995838
[ "MIT" ]
null
null
null
import os import tornado.ioloop import tornado.web from jet_bridge.handlers.temporary_redirect import TemporaryRedirectHandler from jet_bridge_base import settings as base_settings from jet_bridge_base.views.api import ApiView from jet_bridge_base.views.image_resize import ImageResizeView from jet_bridge_base.views.file_upload import FileUploadView from jet_bridge_base.views.message import MessageView from jet_bridge_base.views.model import ModelViewSet from jet_bridge_base.views.model_description import ModelDescriptionView from jet_bridge_base.views.register import RegisterView from jet_bridge_base.views.reload import ReloadView from jet_bridge_base.views.sql import SqlView from jet_bridge import settings, media from jet_bridge.handlers.view import view_handler from jet_bridge.handlers.not_found import NotFoundHandler from jet_bridge.router import Router def make_app(): router = Router() router.register('/api/models/(?P<model>[^/]+)/', view_handler(ModelViewSet)) urls = [ (r'/', TemporaryRedirectHandler, {'url': "/api/"}), (r'/register/', view_handler(RegisterView)), (r'/api/', view_handler(ApiView)), (r'/api/register/', view_handler(RegisterView)), (r'/api/model_descriptions/', view_handler(ModelDescriptionView)), (r'/api/sql/', view_handler(SqlView)), (r'/api/messages/', view_handler(MessageView)), (r'/api/file_upload/', view_handler(FileUploadView)), (r'/api/image_resize/', view_handler(ImageResizeView)), (r'/api/reload/', view_handler(ReloadView)), (r'/media/(.*)', tornado.web.StaticFileHandler, {'path': settings.MEDIA_ROOT}), ] urls += router.urls if settings.MEDIA_STORAGE == media.MEDIA_STORAGE_FILE: urls.append((r'/media/(.*)', tornado.web.StaticFileHandler, {'path': settings.MEDIA_ROOT})) return tornado.web.Application( handlers=urls, debug=settings.DEBUG, default_handler_class=NotFoundHandler, template_path=os.path.join(base_settings.BASE_DIR, 'templates'), autoreload=settings.DEBUG )
39
99
0.738367
0
0
0
0
0
0
0
0
248
0.117759
960e05f94b044cbb96eace708beb765aa68c9708
1,553
py
Python
openslides_backend/services/media/adapter.py
FinnStutzenstein/openslides-backend
fffc152f79d3446591e07a6913d9fdf30b46f577
[ "MIT" ]
null
null
null
openslides_backend/services/media/adapter.py
FinnStutzenstein/openslides-backend
fffc152f79d3446591e07a6913d9fdf30b46f577
[ "MIT" ]
null
null
null
openslides_backend/services/media/adapter.py
FinnStutzenstein/openslides-backend
fffc152f79d3446591e07a6913d9fdf30b46f577
[ "MIT" ]
null
null
null
import requests from ...shared.exceptions import MediaServiceException from ...shared.interfaces.logging import LoggingModule from .interface import MediaService class MediaServiceAdapter(MediaService): """ Adapter to connect to media service. """ def __init__(self, media_url: str, logging: LoggingModule) -> None: self.logger = logging.getLogger(__name__) self.media_url = media_url + "/" def _upload(self, file: str, id: int, mimetype: str, subpath: str) -> None: url = self.media_url + subpath + "/" payload = {"file": file, "id": id, "mimetype": mimetype} self.logger.debug("Starting upload of file") try: response = requests.post(url, json=payload) except requests.exceptions.ConnectionError: msg = "Connect to mediaservice failed." self.logger.debug("Upload of file: " + msg) raise MediaServiceException(msg) if response.status_code != 200: msg = f"Mediaservice Error: {str(response.content)}" self.logger.debug("Upload of file: " + msg) raise MediaServiceException(msg) self.logger.debug("File successfully uploaded to the media service") def upload_mediafile(self, file: str, id: int, mimetype: str) -> None: subpath = "upload_mediafile" self._upload(file, id, mimetype, subpath) def upload_resource(self, file: str, id: int, mimetype: str) -> None: subpath = "upload_resource" self._upload(file, id, mimetype, subpath)
37.878049
79
0.647778
1,387
0.89311
0
0
0
0
0
0
302
0.194462
960faa636c63399c1988c58ce0e7c98b90dc797e
169
py
Python
Lib/async/test/test_echoupper.py
pyparallel/pyparallel
11e8c6072d48c8f13641925d17b147bf36ee0ba3
[ "PSF-2.0" ]
652
2015-07-26T00:00:17.000Z
2022-02-24T18:30:04.000Z
Lib/async/test/test_echoupper.py
tpn/pyparallel
11e8c6072d48c8f13641925d17b147bf36ee0ba3
[ "PSF-2.0" ]
8
2015-09-07T03:38:19.000Z
2021-05-23T03:18:51.000Z
Lib/async/test/test_echoupper.py
tpn/pyparallel
11e8c6072d48c8f13641925d17b147bf36ee0ba3
[ "PSF-2.0" ]
40
2015-07-24T19:45:08.000Z
2021-11-01T14:54:56.000Z
import async from async.services import EchoUpperData server = async.server('10.211.55.3', 20007) async.register(transport=server, protocol=EchoUpperData) async.run()
21.125
56
0.792899
0
0
0
0
0
0
0
0
13
0.076923
960fe6f4df41a131c506151d154738d3ea6e3c53
533
py
Python
alerter/src/alerter/alert_code/node/evm_alert_code.py
SimplyVC/panic
2f5c327ea0d14b6a49dc8f4599a255048bc2ff6d
[ "Apache-2.0" ]
41
2019-08-23T12:40:42.000Z
2022-03-28T11:06:02.000Z
alerter/src/alerter/alert_code/node/evm_alert_code.py
SimplyVC/panic
2f5c327ea0d14b6a49dc8f4599a255048bc2ff6d
[ "Apache-2.0" ]
147
2019-08-30T22:09:48.000Z
2022-03-30T08:46:26.000Z
alerter/src/alerter/alert_code/node/evm_alert_code.py
SimplyVC/panic
2f5c327ea0d14b6a49dc8f4599a255048bc2ff6d
[ "Apache-2.0" ]
3
2019-09-03T21:12:28.000Z
2021-08-18T14:27:56.000Z
from ..alert_code import AlertCode class EVMNodeAlertCode(AlertCode): NoChangeInBlockHeight = 'evm_node_alert_1' BlockHeightUpdatedAlert = 'evm_node_alert_2' BlockHeightDifferenceIncreasedAboveThresholdAlert = 'evm_node_alert_3' BlockHeightDifferenceDecreasedBelowThresholdAlert = 'evm_node_alert_4' InvalidUrlAlert = 'evm_node_alert_5' ValidUrlAlert = 'evm_node_alert_6' NodeWentDownAtAlert = 'evm_node_alert_7' NodeBackUpAgainAlert = 'evm_node_alert_8' NodeStillDownAlert = 'evm_node_alert_9'
38.071429
74
0.806754
495
0.928705
0
0
0
0
0
0
162
0.30394
96106fecaab4ad8d3cfef08e2a652f7ab8fec921
422
py
Python
blaze/compute/tests/test_pmap.py
jdmcbr/blaze
79515a8f0d25a0ff7f87a4cfbed615858241c832
[ "BSD-3-Clause" ]
1
2015-05-17T23:17:12.000Z
2015-05-17T23:17:12.000Z
blaze/compute/tests/test_pmap.py
jreback/blaze
85c39335cac4ef7f2921a7f621bc13525880fc44
[ "BSD-3-Clause" ]
null
null
null
blaze/compute/tests/test_pmap.py
jreback/blaze
85c39335cac4ef7f2921a7f621bc13525880fc44
[ "BSD-3-Clause" ]
null
null
null
from blaze import compute, resource, symbol, discover from blaze.utils import example flag = [False] def mymap(func, *args): flag[0] = True return map(func, *args) def test_map_called_on_resource_star(): r = resource(example('accounts_*.csv')) s = symbol('s', discover(r)) flag[0] = False a = compute(s.count(), r) b = compute(s.count(), r, map=mymap) assert a == b assert flag[0]
21.1
53
0.637441
0
0
0
0
0
0
0
0
19
0.045024
9610832f6a592c17ec9781319d909b5b964100ab
15,186
py
Python
mwtab/mwschema.py
MoseleyBioinformaticsLab/mwtab
1bc1e3715538348b29a5760a9c3184fe04f568a6
[ "BSD-3-Clause-Clear" ]
7
2018-02-02T07:50:20.000Z
2021-03-14T22:46:58.000Z
mwtab/mwschema.py
MoseleyBioinformaticsLab/mwtab
1bc1e3715538348b29a5760a9c3184fe04f568a6
[ "BSD-3-Clause-Clear" ]
2
2019-02-14T08:38:54.000Z
2020-02-19T08:08:02.000Z
mwtab/mwschema.py
MoseleyBioinformaticsLab/mwtab
1bc1e3715538348b29a5760a9c3184fe04f568a6
[ "BSD-3-Clause-Clear" ]
1
2019-10-12T23:38:44.000Z
2019-10-12T23:38:44.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ mwtab.mwschema ~~~~~~~~~~~~~~ This module provides schema definitions for different sections of the ``mwTab`` Metabolomics Workbench format. """ import sys from schema import Schema, Optional, Or if sys.version_info.major == 2: str = unicode metabolomics_workbench_schema = Schema( { "VERSION": str, "CREATED_ON": str, Optional("STUDY_ID"): str, Optional("ANALYSIS_ID"): str, Optional("PROJECT_ID"): str, Optional("HEADER"): str, Optional("DATATRACK_ID"): str } ) project_schema = Schema( { "PROJECT_TITLE": str, Optional("PROJECT_TYPE"): str, "PROJECT_SUMMARY": str, "INSTITUTE": str, Optional("DEPARTMENT"): str, Optional("LABORATORY"): str, "LAST_NAME": str, "FIRST_NAME": str, "ADDRESS": str, "EMAIL": str, "PHONE": str, Optional("FUNDING_SOURCE"): str, Optional("PROJECT_COMMENTS"): str, Optional("PUBLICATIONS"): str, Optional("CONTRIBUTORS"): str, Optional("DOI"): str } ) study_schema = Schema( { "STUDY_TITLE": str, Optional("STUDY_TYPE"): str, "STUDY_SUMMARY": str, "INSTITUTE": str, Optional("DEPARTMENT"): str, Optional("LABORATORY"): str, "LAST_NAME": str, "FIRST_NAME": str, "ADDRESS": str, "EMAIL": str, "PHONE": str, Optional("NUM_GROUPS"): str, Optional("TOTAL_SUBJECTS"): str, Optional("NUM_MALES"): str, Optional("NUM_FEMALES"): str, Optional("STUDY_COMMENTS"): str, Optional("PUBLICATIONS"): str, # assumed Optional("SUBMIT_DATE"): str # assumed } ) subject_schema = Schema( { "SUBJECT_TYPE": str, "SUBJECT_SPECIES": str, Optional("TAXONOMY_ID"): str, Optional("GENOTYPE_STRAIN"): str, Optional("AGE_OR_AGE_RANGE"): str, Optional("WEIGHT_OR_WEIGHT_RANGE"): str, Optional("HEIGHT_OR_HEIGHT_RANGE"): str, Optional("GENDER"): str, Optional("HUMAN_RACE"): str, Optional("HUMAN_ETHNICITY"): str, Optional("HUMAN_TRIAL_TYPE"): str, Optional("HUMAN_LIFESTYLE_FACTORS"): str, Optional("HUMAN_MEDICATIONS"): str, Optional("HUMAN_PRESCRIPTION_OTC"): str, Optional("HUMAN_SMOKING_STATUS"): str, Optional("HUMAN_ALCOHOL_DRUG_USE"): str, Optional("HUMAN_NUTRITION"): str, Optional("HUMAN_INCLUSION_CRITERIA"): str, Optional("HUMAN_EXCLUSION_CRITERIA"): str, Optional("ANIMAL_ANIMAL_SUPPLIER"): str, Optional("ANIMAL_HOUSING"): str, Optional("ANIMAL_LIGHT_CYCLE"): str, Optional("ANIMAL_FEED"): str, Optional("ANIMAL_WATER"): str, Optional("ANIMAL_INCLUSION_CRITERIA"): str, Optional("CELL_BIOSOURCE_OR_SUPPLIER"): str, Optional("CELL_STRAIN_DETAILS"): str, Optional("SUBJECT_COMMENTS"): str, Optional("CELL_PRIMARY_IMMORTALIZED"): str, Optional("CELL_PASSAGE_NUMBER"): str, Optional("CELL_COUNTS"): str, Optional("SPECIES_GROUP"): str } ) subject_sample_factors_schema = Schema( [ { "Subject ID": str, "Sample ID": str, "Factors": dict, Optional("Additional sample data"): { Optional("RAW_FILE_NAME"): str, Optional(str): str } } ] ) collection_schema = Schema( { "COLLECTION_SUMMARY": str, Optional("COLLECTION_PROTOCOL_ID"): str, Optional("COLLECTION_PROTOCOL_FILENAME"): str, Optional("COLLECTION_PROTOCOL_COMMENTS"): str, Optional("SAMPLE_TYPE"): str, # assumed optional due to large number of files without Optional("COLLECTION_METHOD"): str, Optional("COLLECTION_LOCATION"): str, Optional("COLLECTION_FREQUENCY"): str, Optional("COLLECTION_DURATION"): str, Optional("COLLECTION_TIME"): str, Optional("VOLUMEORAMOUNT_COLLECTED"): str, Optional("STORAGE_CONDITIONS"): str, Optional("COLLECTION_VIALS"): str, Optional("STORAGE_VIALS"): str, Optional("COLLECTION_TUBE_TEMP"): str, Optional("ADDITIVES"): str, Optional("BLOOD_SERUM_OR_PLASMA"): str, Optional("TISSUE_CELL_IDENTIFICATION"): str, Optional("TISSUE_CELL_QUANTITY_TAKEN"): str } ) treatment_schema = Schema( { "TREATMENT_SUMMARY": str, Optional("TREATMENT_PROTOCOL_ID"): str, Optional("TREATMENT_PROTOCOL_FILENAME"): str, Optional("TREATMENT_PROTOCOL_COMMENTS"): str, Optional("TREATMENT"): str, Optional("TREATMENT_COMPOUND"): str, Optional("TREATMENT_ROUTE"): str, Optional("TREATMENT_DOSE"): str, Optional("TREATMENT_DOSEVOLUME"): str, Optional("TREATMENT_DOSEDURATION"): str, Optional("TREATMENT_VEHICLE"): str, Optional("ANIMAL_VET_TREATMENTS"): str, Optional("ANIMAL_ANESTHESIA"): str, Optional("ANIMAL_ACCLIMATION_DURATION"): str, Optional("ANIMAL_FASTING"): str, Optional("ANIMAL_ENDP_EUTHANASIA"): str, Optional("ANIMAL_ENDP_TISSUE_COLL_LIST"): str, Optional("ANIMAL_ENDP_TISSUE_PROC_METHOD"): str, Optional("ANIMAL_ENDP_CLINICAL_SIGNS"): str, Optional("HUMAN_FASTING"): str, Optional("HUMAN_ENDP_CLINICAL_SIGNS"): str, Optional("CELL_STORAGE"): str, Optional("CELL_GROWTH_CONTAINER"): str, Optional("CELL_GROWTH_CONFIG"): str, Optional("CELL_GROWTH_RATE"): str, Optional("CELL_INOC_PROC"): str, Optional("CELL_MEDIA"): str, Optional("CELL_ENVIR_COND"): str, Optional("CELL_HARVESTING"): str, Optional("PLANT_GROWTH_SUPPORT"): str, Optional("PLANT_GROWTH_LOCATION"): str, Optional("PLANT_PLOT_DESIGN"): str, Optional("PLANT_LIGHT_PERIOD"): str, Optional("PLANT_HUMIDITY"): str, Optional("PLANT_TEMP"): str, Optional("PLANT_WATERING_REGIME"): str, Optional("PLANT_NUTRITIONAL_REGIME"): str, Optional("PLANT_ESTAB_DATE"): str, Optional("PLANT_HARVEST_DATE"): str, Optional("PLANT_GROWTH_STAGE"): str, Optional("PLANT_METAB_QUENCH_METHOD"): str, Optional("PLANT_HARVEST_METHOD"): str, Optional("PLANT_STORAGE"): str, Optional("CELL_PCT_CONFLUENCE"): str, Optional("CELL_MEDIA_LASTCHANGED"): str } ) sampleprep_schema = Schema( { "SAMPLEPREP_SUMMARY": str, Optional("SAMPLEPREP_PROTOCOL_ID"): str, Optional("SAMPLEPREP_PROTOCOL_FILENAME"): str, Optional("SAMPLEPREP_PROTOCOL_COMMENTS"): str, Optional("PROCESSING_METHOD"): str, Optional("PROCESSING_STORAGE_CONDITIONS"): str, Optional("EXTRACTION_METHOD"): str, Optional("EXTRACT_CONCENTRATION_DILUTION"): str, Optional("EXTRACT_ENRICHMENT"): str, Optional("EXTRACT_CLEANUP"): str, Optional("EXTRACT_STORAGE"): str, Optional("SAMPLE_RESUSPENSION"): str, Optional("SAMPLE_DERIVATIZATION"): str, Optional("SAMPLE_SPIKING"): str, Optional("ORGAN"): str, Optional("ORGAN_SPECIFICATION"): str, Optional("CELL_TYPE"): str, Optional("SUBCELLULAR_LOCATION"): str } ) chromatography_schema = Schema( { Optional("CHROMATOGRAPHY_SUMMARY"): str, "CHROMATOGRAPHY_TYPE": str, "INSTRUMENT_NAME": str, "COLUMN_NAME": str, Optional("FLOW_GRADIENT"): str, Optional("FLOW_RATE"): str, Optional("COLUMN_TEMPERATURE"): str, Optional("METHODS_FILENAME"): str, Optional("SOLVENT_A"): str, Optional("SOLVENT_B"): str, Optional("METHODS_ID"): str, Optional("COLUMN_PRESSURE"): str, Optional("INJECTION_TEMPERATURE"): str, Optional("INTERNAL_STANDARD"): str, Optional("INTERNAL_STANDARD_MT"): str, Optional("RETENTION_INDEX"): str, Optional("RETENTION_TIME"): str, Optional("SAMPLE_INJECTION"): str, Optional("SAMPLING_CONE"): str, Optional("ANALYTICAL_TIME"): str, Optional("CAPILLARY_VOLTAGE"): str, Optional("MIGRATION_TIME"): str, Optional("OVEN_TEMPERATURE"): str, Optional("PRECONDITIONING"): str, Optional("RUNNING_BUFFER"): str, Optional("RUNNING_VOLTAGE"): str, Optional("SHEATH_LIQUID"): str, Optional("TIME_PROGRAM"): str, Optional("TRANSFERLINE_TEMPERATURE"): str, Optional("WASHING_BUFFER"): str, Optional("WEAK_WASH_SOLVENT_NAME"): str, Optional("WEAK_WASH_VOLUME"): str, Optional("STRONG_WASH_SOLVENT_NAME"): str, Optional("STRONG_WASH_VOLUME"): str, Optional("TARGET_SAMPLE_TEMPERATURE"): str, Optional("SAMPLE_LOOP_SIZE"): str, Optional("SAMPLE_SYRINGE_SIZE"): str, Optional("RANDOMIZATION_ORDER"): str, Optional("CHROMATOGRAPHY_COMMENTS"): str } ) analysis_schema = Schema( { "ANALYSIS_TYPE": str, Optional("LABORATORY_NAME"): str, Optional("OPERATOR_NAME"): str, Optional("DETECTOR_TYPE"): str, Optional("SOFTWARE_VERSION"): str, Optional("ACQUISITION_DATE"): str, Optional("ANALYSIS_PROTOCOL_FILE"): str, Optional("ACQUISITION_PARAMETERS_FILE"): str, Optional("PROCESSING_PARAMETERS_FILE"): str, Optional("DATA_FORMAT"): str, # not specified in mwTab specification (assumed) Optional("ACQUISITION_ID"): str, Optional("ACQUISITION_TIME"): str, Optional("ANALYSIS_COMMENTS"): str, Optional("ANALYSIS_DISPLAY"): str, Optional("INSTRUMENT_NAME"): str, Optional("INSTRUMENT_PARAMETERS_FILE"): str, Optional("NUM_FACTORS"): str, Optional("NUM_METABOLITES"): str, Optional("PROCESSED_FILE"): str, Optional("RANDOMIZATION_ORDER"): str, Optional("RAW_FILE"): str, } ) ms_schema = Schema( { "INSTRUMENT_NAME": str, "INSTRUMENT_TYPE": str, "MS_TYPE": str, "ION_MODE": str, "MS_COMMENTS": str, # changed to required Optional("CAPILLARY_TEMPERATURE"): str, Optional("CAPILLARY_VOLTAGE"): str, Optional("COLLISION_ENERGY"): str, Optional("COLLISION_GAS"): str, Optional("DRY_GAS_FLOW"): str, Optional("DRY_GAS_TEMP"): str, Optional("FRAGMENT_VOLTAGE"): str, Optional("FRAGMENTATION_METHOD"): str, Optional("GAS_PRESSURE"): str, Optional("HELIUM_FLOW"): str, Optional("ION_SOURCE_TEMPERATURE"): str, Optional("ION_SPRAY_VOLTAGE"): str, Optional("IONIZATION"): str, Optional("IONIZATION_ENERGY"): str, Optional("IONIZATION_POTENTIAL"): str, Optional("MASS_ACCURACY"): str, Optional("PRECURSOR_TYPE"): str, Optional("REAGENT_GAS"): str, Optional("SOURCE_TEMPERATURE"): str, Optional("SPRAY_VOLTAGE"): str, Optional("ACTIVATION_PARAMETER"): str, Optional("ACTIVATION_TIME"): str, Optional("ATOM_GUN_CURRENT"): str, Optional("AUTOMATIC_GAIN_CONTROL"): str, Optional("BOMBARDMENT"): str, Optional("CDL_SIDE_OCTOPOLES_BIAS_VOLTAGE"): str, Optional("CDL_TEMPERATURE"): str, Optional("DATAFORMAT"): str, Optional("DESOLVATION_GAS_FLOW"): str, Optional("DESOLVATION_TEMPERATURE"): str, Optional("INTERFACE_VOLTAGE"): str, Optional("IT_SIDE_OCTOPOLES_BIAS_VOLTAGE"): str, Optional("LASER"): str, Optional("MATRIX"): str, Optional("NEBULIZER"): str, Optional("OCTPOLE_VOLTAGE"): str, Optional("PROBE_TIP"): str, Optional("RESOLUTION_SETTING"): str, Optional("SAMPLE_DRIPPING"): str, Optional("SCAN_RANGE_MOVERZ"): str, Optional("SCANNING"): str, Optional("SCANNING_CYCLE"): str, Optional("SCANNING_RANGE"): str, Optional("SKIMMER_VOLTAGE"): str, Optional("TUBE_LENS_VOLTAGE"): str, Optional("MS_RESULTS_FILE"): Or(str, dict) } ) nmr_schema = Schema( { "INSTRUMENT_NAME": str, "INSTRUMENT_TYPE": str, "NMR_EXPERIMENT_TYPE": str, Optional("NMR_COMMENTS"): str, Optional("FIELD_FREQUENCY_LOCK"): str, Optional("STANDARD_CONCENTRATION"): str, "SPECTROMETER_FREQUENCY": str, Optional("NMR_PROBE"): str, Optional("NMR_SOLVENT"): str, Optional("NMR_TUBE_SIZE"): str, Optional("SHIMMING_METHOD"): str, Optional("PULSE_SEQUENCE"): str, Optional("WATER_SUPPRESSION"): str, Optional("PULSE_WIDTH"): str, Optional("POWER_LEVEL"): str, Optional("RECEIVER_GAIN"): str, Optional("OFFSET_FREQUENCY"): str, Optional("PRESATURATION_POWER_LEVEL"): str, Optional("CHEMICAL_SHIFT_REF_CPD"): str, Optional("TEMPERATURE"): str, Optional("NUMBER_OF_SCANS"): str, Optional("DUMMY_SCANS"): str, Optional("ACQUISITION_TIME"): str, Optional("RELAXATION_DELAY"): str, Optional("SPECTRAL_WIDTH"): str, Optional("NUM_DATA_POINTS_ACQUIRED"): str, Optional("REAL_DATA_POINTS"): str, Optional("LINE_BROADENING"): str, Optional("ZERO_FILLING"): str, Optional("APODIZATION"): str, Optional("BASELINE_CORRECTION_METHOD"): str, Optional("CHEMICAL_SHIFT_REF_STD"): str, Optional("BINNED_INCREMENT"): str, Optional("BINNED_DATA_NORMALIZATION_METHOD"): str, Optional("BINNED_DATA_PROTOCOL_FILE"): str, Optional("BINNED_DATA_CHEMICAL_SHIFT_RANGE"): str, Optional("BINNED_DATA_EXCLUDED_RANGE"): str } ) data_schema = Schema( [ { Or("Metabolite", "Bin range(ppm)", only_one=True): str, Optional(str): str, }, ] ) extended_schema = Schema( [ { "Metabolite": str, Optional(str): str, "sample_id": str }, ] ) ms_metabolite_data_schema = Schema( { "Units": str, "Data": data_schema, "Metabolites": data_schema, Optional("Extended"): extended_schema } ) nmr_binned_data_schema = Schema( { "Units": str, "Data": data_schema } ) section_schema_mapping = { "METABOLOMICS WORKBENCH": metabolomics_workbench_schema, "PROJECT": project_schema, "STUDY": study_schema, "ANALYSIS": analysis_schema, "SUBJECT": subject_schema, "SUBJECT_SAMPLE_FACTORS": subject_sample_factors_schema, "COLLECTION": collection_schema, "TREATMENT": treatment_schema, "SAMPLEPREP": sampleprep_schema, "CHROMATOGRAPHY": chromatography_schema, "MS": ms_schema, "NM": nmr_schema, "MS_METABOLITE_DATA": ms_metabolite_data_schema, "NMR_METABOLITE_DATA": ms_metabolite_data_schema, "NMR_BINNED_DATA": nmr_binned_data_schema, }
34.049327
94
0.61965
0
0
0
0
0
0
0
0
6,224
0.409851
9610da1cf47afbf95b11be72f8e2780125e49449
27,544
py
Python
functions/asmm_xml.py
EUFAR/asmm-eufar
69ede7a24f757392e63f04091e86c50ab129016f
[ "BSD-3-Clause" ]
null
null
null
functions/asmm_xml.py
EUFAR/asmm-eufar
69ede7a24f757392e63f04091e86c50ab129016f
[ "BSD-3-Clause" ]
2
2015-06-12T09:28:29.000Z
2015-06-12T09:34:16.000Z
functions/asmm_xml.py
eufarn7sp/asmm-eufar
69ede7a24f757392e63f04091e86c50ab129016f
[ "BSD-3-Clause" ]
null
null
null
import datetime import xml.dom.minidom import logging from PyQt5 import QtCore, QtWidgets from functions.button_functions import add_read NAMESPACE_URI = 'http://www.eufar.net/ASMM' def create_asmm_xml(self, out_file_name): logging.debug('asmm_xml.py - create_asmm_xml - out_file_name ' + out_file_name) doc = xml.dom.minidom.Document() doc_root = add_element(doc, "MissionMetadata", doc) doc_root.setAttribute("xmlns:asmm", NAMESPACE_URI) current_date = datetime.date.isoformat(datetime.date.today()) if not self.create_date: self.create_date = current_date add_element(doc, "CreationDate", doc_root, self.create_date) add_element(doc, "RevisionDate", doc_root, current_date) ############################ # Flight Information ############################ flightInformation = add_element(doc, "FlightInformation", doc_root) add_element(doc, "FlightNumber", flightInformation, self.flightNumber_ln.text()) add_element(doc, "Date", flightInformation, self.date_dt.date().toString(QtCore.Qt.ISODate)) add_element(doc, "ProjectAcronym", flightInformation, self.projectAcronym_ln.text()) add_element(doc, "MissionScientist", flightInformation, self.missionSci_ln.text()) add_element(doc, "FlightManager", flightInformation, self.flightManager_ln.text()) operator = self.operator_cb.currentText() aircraft = self.aircraft_cb.currentText() country = '' manufacturer = '' registration = '' if operator == 'Other...': operator = self.newOperator_ln.text() aircraft = self.newAircraft_ln.text() registration = self.newRegistration_ln.text() manufacturer = self.newManufacturer_ln.text() if self.newCountry_cb.currentText() != 'Make a choice...': country = self.newCountry_cb.currentText() elif operator != 'Make a choice...': if aircraft != 'Make a choice...': index = -1 index = aircraft.find(' - ') if (index != -1): registration = aircraft[index + 3:] if len(registration) > 3: aircraft = aircraft[0:index] for i in range(len(self.new_operators_aircraft)): if registration != '' and len(registration) > 3: if registration == self.new_operators_aircraft[i][2]: index = self.new_operators_aircraft[i][1].find(', '); manufacturer = self.new_operators_aircraft[i][1][: index] country = self.new_operators_aircraft[i][3] break else: index = self.new_operators_aircraft[i][1].find(', '); aircraft_from_table = self.new_operators_aircraft[i][1][index + 2:] if aircraft == aircraft_from_table: manufacturer = self.new_operators_aircraft[i][1][: index] country = self.new_operators_aircraft[i][3] registration = self.new_operators_aircraft[i][2] break else: aircraft = '' else: operator = '' aircraft = '' for key, value in self.new_country_code.items(): if value == country: country = key break add_element(doc, "Platform", flightInformation, aircraft) add_element(doc, "Operator", flightInformation, operator) add_element(doc, "OperatorCountry", flightInformation, country) add_element(doc, "Manufacturer", flightInformation, manufacturer) add_element(doc, "RegistrationNumber", flightInformation, registration) if self.location_cb.currentText() == "Make a choice...": add_element(doc, "Localisation", flightInformation, "") elif self.detailList.currentText() == "Make a choice...": add_element(doc, "Localisation", flightInformation, "") else: add_element(doc, "Localisation", flightInformation, self.detailList.currentText()) ########################### # Metadata Contact Info ########################### contactInfo = add_element(doc, "ContactInfo", doc_root) add_element(doc, "ContactName", contactInfo, self.contactName_ln.text()) if self.contact_cb.currentText() == 'Make a choice...': add_element(doc, "ContactRole", contactInfo, '') else: add_element(doc, "ContactRole", contactInfo, self.contact_cb.currentText()) add_element(doc, "ContactEmail", contactInfo, self.contactEmail_ln.text()) ############################ # Scientific Aims ############################ scientificAims = add_element(doc, "ScientificAims", doc_root) add_check_elements(doc, self.scientific_aims_check_dict, "SA_Code", scientificAims) if self.sa_ck_list: for i in range(self.gridLayout_5.count()): if isinstance(self.gridLayout_5.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_5.itemAt(i).widget().isChecked(): add_element(doc,"SA_User", scientificAims, self.gridLayout_5.itemAt(i).widget(). text()) add_element(doc, "SA_Other", scientificAims, self.SAOtherTextBox.toPlainText()) ############################ # Geographical Region ############################ geographicalRegion = add_element(doc, "GeographicalRegion", doc_root) geographicBoundingBox = add_element(doc, "GeographicBoundingBox", geographicalRegion) add_element(doc, "westBoundLongitude", geographicBoundingBox, self.westBoundLongitudeLine.text()) add_element(doc, "eastBoundLongitude", geographicBoundingBox, self.eastBoundLongitudeLine.text()) add_element(doc, "northBoundLatitude", geographicBoundingBox, self.northBoundLatitudeLine.text()) add_element(doc, "southBoundLatitude", geographicBoundingBox, self.southBoundLatitudeLine.text()) add_element(doc, "minAltitude", geographicBoundingBox, self.minAltitudeLine.text()) add_element(doc, "maxAltitude", geographicBoundingBox, self.maxAltitudeLine.text()) add_check_elements(doc, self.geographical_region_check_dict, "GR_Code", geographicalRegion) if self.gr_ck_list: for i in range(self.gridLayout_8.count()): if isinstance(self.gridLayout_8.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_8.itemAt(i).widget().isChecked(): add_element(doc,"GR_User", geographicalRegion, self.gridLayout_8.itemAt(i). widget().text()) add_element(doc, "GR_Other", geographicalRegion, self.GROtherTextBox.toPlainText()) ############################ # Atmospheric Features ############################ atmosphericFeatures = add_element(doc, "AtmosFeatures", doc_root) add_check_elements(doc, self.atmospheric_features_check_dict, "AF_Code", atmosphericFeatures) if self.af_ck_list: for i in range(self.gridLayout_9.count()): if isinstance(self.gridLayout_9.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_9.itemAt(i).widget().isChecked(): add_element(doc,"AF_User", atmosphericFeatures, self.gridLayout_9.itemAt(i). widget().text()) add_element(doc, "AF_Other", atmosphericFeatures, self.AFOtherTextBox.toPlainText()) ############################ # Cloud Types ############################ cloudTypes = add_element(doc, "CloudTypes", doc_root) add_check_elements(doc, self.cloud_types_check_dict, "CT_Code", cloudTypes) if self.ct_ck_list: for i in range(self.gridLayout_10.count()): if isinstance(self.gridLayout_10.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_10.itemAt(i).widget().isChecked(): add_element(doc,"CT_User", cloudTypes, self.gridLayout_10.itemAt(i).widget(). text()) add_element(doc, "CT_Other", cloudTypes, self.CTOtherTextBox.toPlainText()) ############################ # Particles Sampled ############################ particlesSampled = add_element(doc, "ParticlesSampled", doc_root) add_check_elements(doc, self.particles_sampled_check_dict, "PS_Code", particlesSampled) if self.ps_ck_list: for i in range(self.gridLayout_11.count()): if isinstance(self.gridLayout_11.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_11.itemAt(i).widget().isChecked(): add_element(doc,"PS_User", particlesSampled, self.gridLayout_11.itemAt(i). widget().text()) add_element(doc, "PS_Other", particlesSampled, self.PSOtherTextBox.toPlainText()) ############################ # Surfaces Overflown ############################ surfacesOverflown = add_element(doc, "SurfacesOverflown", doc_root) add_check_elements(doc, self.surfaces_overflown_check_dict, "SO_Code", surfacesOverflown) if self.so_ck_list: for i in range(self.gridLayout_13.count()): if isinstance(self.gridLayout_13.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_13.itemAt(i).widget().isChecked(): add_element(doc,"SO_User", surfacesOverflown, self.gridLayout_13.itemAt(i). widget().text()) add_element(doc, "SO_Other", surfacesOverflown, self.SOOtherTextBox.toPlainText()) ############################ # Altitude Ranges ############################ altitudeRanges = add_element(doc, "AltitudeRanges", doc_root) add_check_elements(doc, self.altitude_ranges_check_dict, "AR_Code", altitudeRanges) if self.ar_ck_list: for i in range(self.gridLayout_14.count()): if isinstance(self.gridLayout_14.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_14.itemAt(i).widget().isChecked(): add_element(doc,"AR_User", altitudeRanges, self.gridLayout_14.itemAt(i). widget().text()) add_element(doc, "AR_Other", altitudeRanges, self.AROtherTextBox.toPlainText()) ############################ # Flight Types ############################ flightTypes = add_element(doc, "FlightTypes", doc_root) add_check_elements(doc, self.flight_types_check_dict, "FT_Code", flightTypes) if self.fm_ck_list: for i in range(self.gridLayout_15.count()): if isinstance(self.gridLayout_15.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_15.itemAt(i).widget().isChecked(): add_element(doc,"FT_User", flightTypes, self.gridLayout_15.itemAt(i).widget(). text()) add_element(doc, "FT_Other", flightTypes, self.FTOtherTextBox.toPlainText()) ############################ # Satellite coordination ############################ satelliteCoordination = add_element(doc, "SatelliteCoordination", doc_root) add_check_elements(doc, self.satellite_coordination_check_dict, "SC_Code", satelliteCoordination) if self.sc_ck_list: for i in range(self.gridLayout_25.count()): if isinstance(self.gridLayout_25.itemAt(i).widget(), QtWidgets.QCheckBox): if self.gridLayout_25.itemAt(i).widget().isChecked(): add_element(doc,"SC_User", satelliteCoordination, self.gridLayout_25.itemAt(i). widget().text()) add_element(doc, "SC_Other", satelliteCoordination, self.SCOtherTextBox.toPlainText()) ############################ # Surface Observations ############################ surfaceObs = add_element(doc, "SurfaceObs", doc_root) for item in self.ground_site_list: add_element(doc, "GroundSite", surfaceObs, item) for item in self.research_vessel_list: add_element(doc, "ResearchVessel", surfaceObs, item) for item in self.arm_site_list: add_element(doc, "ArmSite", surfaceObs, item) for item in self.arm_mobile_list: add_element(doc, "ArmMobile", surfaceObs, item) ############################ # Other Comments ############################ if self.OtherCommentsTextBox.toPlainText(): add_element(doc, "OtherComments", doc_root, self.OtherCommentsTextBox.toPlainText()) ############################ # File Creation ############################ f = open(out_file_name, 'w') f.write(doc.toprettyxml()) f.close() self.saved = True self.modified = False logging.debug('asmm_xml.py - create_asmm_xml - file created successfully') def read_asmm_xml(self, in_file_name): logging.debug('asmm_xml.py - read_asmm_xml - out_file_name ' + in_file_name) self.reset_all_fields() f = open(in_file_name, 'r') doc = xml.dom.minidom.parse(f) ############################ # Flight Information ############################ self.create_date = get_element_value(doc, "CreationDate") flightInformation = get_element(doc, "FlightInformation") set_text_value(self.flightNumber_ln, flightInformation, "FlightNumber") date = get_element_value(flightInformation, "Date") self.date_dt.setDate(QtCore.QDate.fromString(date, QtCore.Qt.ISODate)) set_text_value(self.projectAcronym_ln, flightInformation, "ProjectAcronym") set_text_value(self.missionSci_ln, flightInformation, "MissionScientist") set_text_value(self.flightManager_ln, flightInformation, "FlightManager") operator = get_element_value(flightInformation, "Operator") aircraft = get_element_value(flightInformation, "Platform") registration = get_element_value(flightInformation, "RegistrationNumber") aircraft_found = False if registration: for i in range(len(self.new_operators_aircraft)): if registration == self.new_operators_aircraft[i][2]: aircraft_found = True self.operator_cb.setCurrentIndex(self.operator_cb.findText(operator)) self.operator_changed() index = self.aircraft_cb.findText(aircraft) if index != -1: self.aircraft_cb.setCurrentIndex(index) else: index = self.aircraft_cb.findText(aircraft + ' - ' + registration) self.aircraft_cb.setCurrentIndex(index) break if not aircraft_found: self.operator_cb.setCurrentIndex(1) self.operator_changed() self.newOperator_ln.setText(operator) self.newAircraft_ln.setText(aircraft) self.newRegistration_ln.setText(registration) self.newManufacturer_ln.setText(get_element_value(flightInformation, "Manufacturer")) if get_element_value(flightInformation, "OperatorCountry"): self.newCountry_cb.setCurrentIndex(self.newCountry_cb.findText(get_element_value(flightInformation, "OperatorCountry"))) else: self.operator_cb.setCurrentIndex(1) self.operator_changed() self.newOperator_ln.setText(operator) self.newAircraft_ln.setText(aircraft) self.newRegistration_ln.setText(registration) self.newManufacturer_ln.setText(get_element_value(flightInformation, "Manufacturer")) if get_element_value(flightInformation, "OperatorCountry"): index = self.newCountry_cb.findText(get_element_value(flightInformation, "OperatorCountry")) if index != -1: self.newCountry_cb.setCurrentIndex(index) combo_text = get_element_value(flightInformation, "Localisation") if combo_text != None: if combo_text in self.countries: self.location_cb.setCurrentIndex(self.location_cb.findText("Countries")) self.detailList.clear() self.detailList.setEnabled(True) self.detailList.addItems(self.countries) self.detailList.setCurrentIndex(self.detailList.findText(combo_text)) elif combo_text in self.continents: self.location_cb.setCurrentIndex(self.location_cb.findText("Continents")) self.detailList.clear() self.detailList.setEnabled(True) self.detailList.addItems(self.continents) self.detailList.setCurrentIndex(self.detailList.findText(combo_text)) elif combo_text in self.oceans: self.location_cb.setCurrentIndex(self.location_cb.findText("Oceans")) self.detailList.clear() self.detailList.setEnabled(True) self.detailList.addItems(self.oceans) self.detailList.setCurrentIndex(self.detailList.findText(combo_text)) elif combo_text in self.regions: self.location_cb.setCurrentIndex(self.location_cb.findText("Regions")) self.detailList.clear() self.detailList.setEnabled(True) self.detailList.addItems(self.regions) self.detailList.setCurrentIndex(self.detailList.findText(combo_text)) ############################# # Metadata Contact Info ############################# contactInfo = get_element(doc, "ContactInfo") set_text_value(self.contactName_ln, contactInfo, "ContactName") set_text_value(self.contactEmail_ln, contactInfo, "ContactEmail") combo_text = get_element_value(contactInfo, "ContactRole") if combo_text != None: self.contact_cb.setCurrentIndex(self.contact_cb.findText(combo_text)) ############################# # Scientific Aims ############################# scientificAims = get_element(doc, "ScientificAims") try: set_check_values(self.scientific_aims_check_dict, scientificAims, "SA_Code") except IndexError: set_check_values(self.old_scientific_aims_check_dict, scientificAims, "SA_Code") set_text_value(self.SAOtherTextBox, scientificAims, "SA_Other") values = get_element_values(scientificAims, "SA_User") for item in values: add_read(self, "SA", item) ############################# # Geographical Region ############################# geographicalRegion = get_element(doc, "GeographicalRegion") geographicBoundingBox = get_element(geographicalRegion, "GeographicBoundingBox") set_text_value_coord(self, self.westBoundLongitudeLine, geographicBoundingBox, "westBoundLongitude") set_text_value_coord(self, self.eastBoundLongitudeLine, geographicBoundingBox, "eastBoundLongitude") set_text_value_coord(self, self.northBoundLatitudeLine, geographicBoundingBox, "northBoundLatitude") set_text_value_coord(self, self.southBoundLatitudeLine, geographicBoundingBox, "southBoundLatitude") set_text_value_coord(self, self.minAltitudeLine, geographicBoundingBox, "minAltitude") set_text_value_coord(self, self.maxAltitudeLine, geographicBoundingBox, "maxAltitude") try: set_check_values(self.geographical_region_check_dict, geographicalRegion, "GR_Code") except IndexError: set_check_values(self.old_geographical_region_check_dict, geographicalRegion, "GR_Code") set_text_value(self.GROtherTextBox, geographicalRegion, "GR_Other") values = get_element_values(geographicalRegion, "GR_User") for item in values: add_read(self, "GR", item) ############################# # Atmospheric Features ############################# atmosphericFeatures = get_element(doc, "AtmosFeatures") try: set_check_values(self.atmospheric_features_check_dict, atmosphericFeatures, "AF_Code") except IndexError: set_check_values(self.old_atmospheric_features_check_dict, atmosphericFeatures, "AF_Code") set_text_value(self.AFOtherTextBox, atmosphericFeatures, "AF_Other") values = get_element_values(atmosphericFeatures, "AF_User") for item in values: add_read(self, "AF", item) ############################# # Cloud Types ############################# cloudTypes = get_element(doc, "CloudTypes") try: set_check_values(self.cloud_types_check_dict, cloudTypes, "CT_Code") except IndexError: set_check_values(self.old_cloud_types_check_dict, cloudTypes, "CT_Code") set_text_value(self.CTOtherTextBox, cloudTypes, "CT_Other") values = get_element_values(cloudTypes, "CT_User") for item in values: add_read(self, "CT", item) ############################# # Particles Sampled ############################# particlesSampled = get_element(doc, "ParticlesSampled") try: set_check_values(self.particles_sampled_check_dict, particlesSampled, "PS_Code") except IndexError: set_check_values(self.old_particles_sampled_check_dict, particlesSampled, "PS_Code") set_text_value(self.PSOtherTextBox, particlesSampled, "PS_Other") values = get_element_values(particlesSampled, "PS_User") for item in values: add_read(self, "PS", item) ############################# # Surfaces Overflown ############################# surfacesOverflown = get_element(doc, "SurfacesOverflown") try: set_check_values(self.surfaces_overflown_check_dict, surfacesOverflown, "SO_Code") except IndexError: set_check_values(self.old_surfaces_overflown_check_dict, surfacesOverflown, "SO_Code") set_text_value(self.SOOtherTextBox, surfacesOverflown, "SO_Other") values = get_element_values(surfacesOverflown, "SO_User") for item in values: add_read(self, "SO", item) ############################# # Altitude Ranges ############################# altitudeRanges = get_element(doc, "AltitudeRanges") try: set_check_values(self.altitude_ranges_check_dict, altitudeRanges, "AR_Code") except IndexError: set_check_values(self.old_altitude_ranges_check_dict, altitudeRanges, "AR_Code") set_text_value(self.AROtherTextBox, altitudeRanges, "AR_Other") values = get_element_values(altitudeRanges, "AR_User") for item in values: add_read(self, "AR", item) ############################# # Flight Types ############################# flightTypes = get_element(doc, "FlightTypes") try: set_check_values(self.flight_types_check_dict, flightTypes, "FT_Code") except IndexError: set_check_values(self.old_flight_types_check_dict, flightTypes, "FT_Code") set_text_value(self.FTOtherTextBox, flightTypes, "FT_Other") values = get_element_values(flightTypes, "FT_User") for item in values: add_read(self, "FM", item) ############################# # Satellite Coordination ############################# satelliteCoordination = get_element(doc, "SatelliteCoordination") try: set_check_values(self.satellite_coordination_check_dict, satelliteCoordination, "SC_Code") except IndexError: set_check_values(self.old_satellite_coordination_check_dict, satelliteCoordination, "SC_Code") set_text_value(self.SCOtherTextBox, satelliteCoordination, "SC_Other") values = get_element_values(satelliteCoordination, "SC_User") for item in values: add_read(self, "SC", item) ############################# # Surface Observations ############################# surfaceObservations = get_element(doc, "SurfaceObs") self.ground_site_list = get_element_values(surfaceObservations, "GroundSite") self.groundListWidget.addItems(self.ground_site_list) self.research_vessel_list = get_element_values(surfaceObservations, "ResearchVessel") self.vesselListWidget.addItems(self.research_vessel_list) self.arm_site_list = get_element_values(surfaceObservations, "ArmSite") self.armListWidget.addItems(self.arm_site_list) self.arm_mobile_list = get_element_values(surfaceObservations, "ArmMobile") self.armMobileListWidget.addItems(self.arm_mobile_list) ############################## # Other Comments ############################## set_text_value(self.OtherCommentsTextBox, doc, "OtherComments") logging.debug('asmm_xml.py - create_asmm_xml - file read successfully') def get_element(parent, element_name): logging.debug('asmm_xml.py - get_element - parent ' + str(parent) + ' ; element_name ' + str(element_name)) return parent.getElementsByTagNameNS(NAMESPACE_URI, element_name)[0] def get_element_value(parent, element_name): logging.debug('asmm_xml.py - get_element_value - parent ' + str(parent) + ' ; element_name ' + str(element_name)) elements = parent.getElementsByTagNameNS(NAMESPACE_URI, element_name) if elements: element = elements[0] nodes = element.childNodes for node in nodes: if node.nodeType == node.TEXT_NODE: return node.data.strip() def get_element_values(parent, element_name): logging.debug('asmm_xml.py - get_element_values - parent ' + str(parent) + ' ; element_name ' + str(element_name)) value_list = [] elements = parent.getElementsByTagNameNS(NAMESPACE_URI, element_name) for element in elements: value_list.append(element.childNodes[0].data.strip()) return value_list def set_check_values(check_dict, parent, element_name): logging.debug('asmm_xml.py - set_check_values - parent ' + str(parent) + ' ; element_name ' + str(element_name)) elements = parent.getElementsByTagNameNS(NAMESPACE_URI, element_name) for element in elements: check_widget = find_key(check_dict, element.childNodes[0].data.strip()) if check_widget is not None: check_widget.setChecked(True) def set_text_value(text_widget, parent, element_name): logging.debug('asmm_xml.py - set_text_value - parent ' + str(parent) + ' ; element_name ' + str(element_name)) node_data = get_element_value(parent, element_name) if node_data: text_widget.setText(node_data) def set_text_value_coord(self, text_widget, parent, element_name): logging.debug('asmm_xml.py - set_text_value_coord - parent ' + str(parent) + ' ; element_name ' + str(element_name)) node_data = get_element_value(parent, element_name) if node_data: text_widget.setText(clean_coordinate_string(self, node_data)) def add_element(doc, element_name, parent, value=None): logging.debug('asmm_xml.py - add_element - parent ' + str(parent) + ' ; element_name ' + str(element_name) + ' ; value ' + str(value)) new_element = doc.createElementNS(NAMESPACE_URI, "asmm:" + element_name) if value: new_text = doc.createTextNode(value) new_element.appendChild(new_text) parent.appendChild(new_element) return new_element def add_check_elements(doc, check_dict, code_name, parent): logging.debug('asmm_xml.py - add_check_elements - parent ' + str(parent) + ' ; element_name ' + str(code_name)) for key, val in iter(check_dict.items()): if key.isChecked(): add_element(doc, code_name, parent, val) def find_key(dic, val): return [k for k, v in iter(dic.items()) if v == val][0] def clean_coordinate_string(self, string): logging.debug('asmm_xml.py - clean_coordinate_string - string ' + string) for key, val in self.coordinate_units_list.items(): try: string = string[:string.index(key)] if val < 0: string = '-' + string break except ValueError: pass return string
46.37037
138
0.647255
0
0
0
0
0
0
0
0
4,994
0.18131
9610eaf838ce8599d05cfd89f28acb8943b4bb46
191
py
Python
github/models.py
pyprism/Hiren-Git-Commit-Reminder
253ba078f63cc9bf3f39a5b735a783c4846b5ba7
[ "MIT" ]
null
null
null
github/models.py
pyprism/Hiren-Git-Commit-Reminder
253ba078f63cc9bf3f39a5b735a783c4846b5ba7
[ "MIT" ]
null
null
null
github/models.py
pyprism/Hiren-Git-Commit-Reminder
253ba078f63cc9bf3f39a5b735a783c4846b5ba7
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Hiren(models.Model): access_token = models.CharField(max_length=200) authorized = models.BooleanField(default=False)
19.1
51
0.759162
130
0.680628
0
0
0
0
0
0
26
0.136126
961296a2dbd17acbbeca5341d04b5200b3df15a3
4,973
py
Python
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/Axon/idGen.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
1
2017-03-28T06:41:51.000Z
2017-03-28T06:41:51.000Z
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/Axon/idGen.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
null
null
null
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/Axon/idGen.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
1
2016-12-13T21:08:58.000Z
2016-12-13T21:08:58.000Z
#!/usr/bin/python # # Copyright (C) 2004 British Broadcasting Corporation and Kamaelia Contributors(1) # All Rights Reserved. # # You may only modify and redistribute this under the terms of any of the # following licenses(2): Mozilla Public License, V1.1, GNU General # Public License, V2.0, GNU Lesser General Public License, V2.1 # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://kamaelia.sourceforge.net/AUTHORS - please extend this file, # not this notice. # (2) Reproduced in the COPYING file, and at: # http://kamaelia.sourceforge.net/COPYING # Under section 3.5 of the MPL, we are using this text since we deem the MPL # notice inappropriate for this file. As per MPL/GPL/LGPL removal of this # notice is prohibited. # # Please contact us via: [email protected] # to discuss alternative licensing. # ------------------------------------------------------------------------- """\ ==================== Unique ID generation ==================== The methods of the idGen class are used to generate unique IDs in various forms (numbers, strings, etc) which are used to give microprocesses and other Axon objects a unique identifier and name. * Every Axon.Microprocess.microprocess gets a unique ID * Axon.ThreadedComponent.threadedcomponent uses unique IDs to identify threads Generating a new unique ID -------------------------- Do not use the idGen class defined in this module directly. Instead, use any of these module methods to obtain a unique ID: * **Axon.idGen.newId(thing)** - returns a unique identifier as a string based on the class name of the object provided * **Axon.idGen.strId(thing)** - returns a unique identifier as a string based on the class name of the object provided * **Axon.idGen.numId()** - returns a unique identifier as a number * **Axon.idGen.tupleId(thing)** - returns both the numeric and string versions of a new unique id as a tuple (where the string version is based on the class name of the object provided) Calling tupleId(thing) is *not* equivalent to calling numId() then strId(thing) because doing that would return two different id values! Examples:: >>> x=Component.component() >>> idGen.newId(x) 'Component.component_4' >>> idGen.strId(x) 'Component.component_5' >>> idGen.numId() 6 >>> idGen.tupleId(x) (7, 'Component.component_7') """ import debug; debugger = debug.debug() debugger.useConfig() Debug = debugger.debug # idGen - A class to provide Unique Identifiers # # Ids can provide be provided as numerical, string or a tuple. # # numerical ids are integers allocated on a "next integer" basis. # eg object 1, apple 2, orange 3. (Not object 1, apple 2, orange 3) # # string ids consist of the '__str__' of the object, with the numerical # id tacked on the end. # # tuple ids consists : '(the numerical id, the string id)' # class idGen(object): """\ Unique ID creator. Use numId(), strId(), and tupleId() methods to obtain unique IDs. """ lowestAllocatedId = 0 def nextId(self): """\ **INTERNAL** Returns the next unique id, incrementing the private class variable """ idGen.lowestAllocatedId = idGen.lowestAllocatedId +1 return idGen.lowestAllocatedId next = nextId # pseudonym def idToString(self,thing,aNumId): """\ **INTERNAL** Combines the 'str()' of the object's class with the id to form a string id """ # This next line takes <class '__main__.foo'> # and chops out the __main__.foo part r = str(thing.__class__)[8:][:-2] + "_" + str(aNumId) return r def numId(self): """Allocates & returns the next available id""" result = self.nextId() assert Debug("idGen.numId", 1, "idGen.numId:", result) return result def strId(self,thing): """\ Allocates & returns the next available id combined with the object's class name, in string form """ theId = self.nextId() strid = self.idToString(thing,theId) assert Debug("idGen.strId", 1, "idGen.strId:", strid) return strid def tupleId(self,thing): """\ Allocates the next available id and returns it both as a tuple (num,str) containing both the numeric version and a string version where it is combined with the object's class name. """ theId = self.nextId() strId = self.idToString(thing,theId) assert Debug("idGen.tupleId", 1, "idGen.tupleId:", theId, strId) return theId, strId newId = idGen().strId strId=idGen().strId numId=idGen().numId tupleId=idGen().tupleId if __name__ == '__main__': class foo: pass class bar: pass class bibble: pass print newId(foo()) print newId(bar()) print newId(bibble())
31.474684
83
0.646893
1,763
0.354514
0
0
0
0
0
0
3,797
0.763523
961374e180229cec23558c1850e6a56b8464ae8b
63,005
py
Python
pyCEvNS/flux.py
athompson-tamu/pyCEvNS
feb3f83c706e6604608eae83c50ac79ced9140bf
[ "MIT" ]
null
null
null
pyCEvNS/flux.py
athompson-tamu/pyCEvNS
feb3f83c706e6604608eae83c50ac79ced9140bf
[ "MIT" ]
null
null
null
pyCEvNS/flux.py
athompson-tamu/pyCEvNS
feb3f83c706e6604608eae83c50ac79ced9140bf
[ "MIT" ]
null
null
null
""" flux related class and functions """ from scipy.integrate import quad import pandas as pd from .helper import LinearInterp, polar_to_cartesian, lorentz_boost, lorentz_matrix from .oscillation import survival_solar from .parameters import * def _invs(ev): return 1/ev**2 class FluxBaseContinuous: def __init__(self, ev, flux, norm=1): self.norm = norm self.ev = ev self.fx = flux self.ev_min = self.ev[0] self.ev_max = self.ev[-1] self.binw = self.ev[1:] - self.ev[:-1] self.precalc = {None: self.binw*(self.fx[1:]+self.fx[:-1])/2} def __call__(self, ev): if ev == self.ev_min: return self.fx[0] * self.norm if ev == self.ev_max: return self.fx[-1] * self.norm if self.ev_min < ev < self.ev_max: idx = self.ev.searchsorted(ev) l1 = ev - self.ev[idx-1] l2 = self.ev[idx] - ev h1 = self.fx[idx-1] h2 = self.fx[idx] return (l1*h2 + l2*h1) / (l1 + l2) * self.norm return 0 def integrate(self, ea, eb, weight_function=None): if eb <= ea: return 0 res = 0 if weight_function not in self.precalc: weighted = weight_function(self.ev)*self.fx self.precalc[weight_function] = self.binw * (weighted[1:]+weighted[:-1]) / 2 eb = min(eb, self.ev_max) ea = max(ea, self.ev_min) idxmin = self.ev.searchsorted(ea, side='right') idxmax = self.ev.searchsorted(eb, side='left') if idxmin == idxmax: l1 = ea - self.ev[idxmin - 1] l2 = self.ev[idxmin] - ea h1 = self.fx[idxmin - 1] * weight_function(self.ev[idxmin - 1]) \ if weight_function is not None else self.fx[idxmin - 1] h2 = self.fx[idxmin] * weight_function(self.ev[idxmin]) \ if weight_function is not None else self.fx[idxmin] ha = (l1*h2+l2*h1)/(l1+l2) l1 = eb - self.ev[idxmax - 1] l2 = self.ev[idxmax] - eb hb = (l1*h2+l2*h1)/(l1+l2) return (ha + hb) * (eb - ea) / 2 * self.norm res += np.sum(self.precalc[weight_function][idxmin:idxmax-1]) l1 = ea - self.ev[idxmin-1] l2 = self.ev[idxmin] - ea h1 = self.fx[idxmin-1]*weight_function(self.ev[idxmin-1]) \ if weight_function is not None else self.fx[idxmin-1] h2 = self.fx[idxmin]*weight_function(self.ev[idxmin]) \ if weight_function is not None else self.fx[idxmin] res += ((l1*h2+l2*h1)/(l1+l2)+h2)*l2/2 l1 = eb - self.ev[idxmax - 1] l2 = self.ev[idxmax] - eb h1 = self.fx[idxmax - 1] * weight_function(self.ev[idxmax - 1]) \ if weight_function is not None else self.fx[idxmax-1] h2 = self.fx[idxmax] * weight_function(self.ev[idxmax]) \ if weight_function is not None else self.fx[idxmax] res += ((l1 * h2 + l2 * h1) / (l1 + l2) + h1) * l1 / 2 return res * self.norm class Flux: """ flux class, flux at source """ def __init__(self, fl_name, delimiter=',', fl_unc=0): """ initializing flux, can take in user provided flux restrictions: user provided data must have 7 columns, first column is neutrino energy in MeV, other columns are neutrino flux in cm^2/s/MeV, they are enu, munu, taunu, enubar, munubar, taunubar :param fl_name: name of the flux or path to the file or array of neutrino flux :param delimiter: delimiter of the input file, default is ',' :param fl_unc: uncertainty of flux """ if isinstance(fl_name, str): self.fl_name = fl_name.lower() else: self.fl_name = 'default' if self.fl_name == 'reactor': self.evMin = 0.0 self.evMax = 30 # MeV self.flUn = 0.02 fpers = 3.0921 * (10 ** 16) # antineutrinos per fission nuperf = 6.14102 self.__nuflux1m = nuperf * fpers / (4 * np.pi) * (meter_by_mev ** 2) elif self.fl_name in ['sns', 'prompt', 'delayed']: self.evMin = 0 self.evMax = 52 # MeV self.flUn = 0.1 self.__norm = 1.13 * (10 ** 11) * (meter_by_mev ** 2) elif self.fl_name in ['solar', 'b8', 'f17', 'n13', 'o15', 'pp', 'hep']: f = np.genfromtxt(pkg_resources.resource_filename(__name__, 'data/' + self.fl_name + '.csv'), delimiter=',') self.flUn = 0 self.evMin = f[0, 0] self.evMax = f[-1, 0] self.__nue = LinearInterp(f[:, 0], f[:, 1] * ((100 * meter_by_mev) ** 2)) else: if isinstance(fl_name, np.ndarray): f = fl_name else: f = np.genfromtxt(fl_name, delimiter=delimiter) self.evMin = np.amin(f[:, 0]) self.evMax = np.amax(f[:, 0]) self.flUn = fl_unc self.__nue = LinearInterp(f[:, 0], f[:, 1] * ((100 * meter_by_mev) ** 2)) self.__numu = LinearInterp(f[:, 0], f[:, 2] * ((100 * meter_by_mev) ** 2)) self.__nutau = LinearInterp(f[:, 0], f[:, 3] * ((100 * meter_by_mev) ** 2)) self.__nuebar = LinearInterp(f[:, 0], f[:, 4] * ((100 * meter_by_mev) ** 2)) self.__numubar = LinearInterp(f[:, 0], f[:, 5] * ((100 * meter_by_mev) ** 2)) self.__nutaubar = LinearInterp(f[:, 0], f[:, 6] * ((100 * meter_by_mev) ** 2)) def flux(self, ev, flavor='e', f=None, **kwargs): """ differential neutrino flux at the detector, unit MeV^-3*s^-1 :param ev: nuetrino energy :param flavor: nuetrino flavor :param f: function that convolves with neutrino flux, typically neutrino oscillation, the first argument must be neutrino energy, the last two arguments must be input flavor nui and out put flavor nuf :param kwargs: parameters with keys that goes into function f :return: neutrino flux """ if self.fl_name == 'reactor': # Phys.Rev.D39, 11 Vogel # 5.323608902707208 = Integrate[Exp[.870 - .16*e - .091*e^2], {e, 0, 10}] # reactor neutrino is actually anti-neutrino, this may cause problem when doing electron scattering if flavor == 'ebar': if f is not None: return np.exp(0.87 - 0.16 * ev - 0.091 * (ev ** 2)) / 5.323608902707208 * \ f(ev, nui='ebar', nuf=flavor, **kwargs) return np.exp(0.87 - 0.16 * ev - 0.091 * (ev ** 2)) / 5.323608902707208 * self.__nuflux1m elif flavor[-1] == 'r': if f is not None: return np.exp(0.87 - 0.16 * ev - 0.091 * (ev ** 2)) / 5.323608902707208 * \ f(ev, nui='ebar', nuf=flavor, **kwargs) return 0 else: return 0 elif self.fl_name in ['sns', 'delayed']: if flavor[-1] != 'r': if f is not None: return (3 * ((ev / (2 / 3 * 52)) ** 2) - 2 * ((ev / (2 / 3 * 52)) ** 3)) / 29.25 * self.__norm * \ f(ev, nui='e', nuf=flavor, **kwargs) return (3 * ((ev / (2 / 3 * 52)) ** 2) - 2 * ((ev / (2 / 3 * 52)) ** 3)) / 29.25 * self.__norm \ if flavor == 'e' else 0 else: if f is not None: return (3 * ((ev / 52) ** 2) - 2 * ((ev / 52) ** 3)) / 26 * self.__norm * \ f(ev, nui='mubar', nuf=flavor, **kwargs) return (3 * ((ev / 52) ** 2) - 2 * ((ev / 52) ** 3)) / 26 * self.__norm if flavor == 'mubar' else 0 elif self.fl_name == 'prompt': return 0 elif self.fl_name in ['solar', 'b8', 'f17', 'n13', 'o15', 'pp', 'hep']: if flavor[-1] != 'r': if f is None: f = survival_solar return self.__nue(ev) * f(ev, nui='e', nuf=flavor, **kwargs) return 0 else: if flavor[-1] != 'r': if f is None: if flavor == 'e': return self.__nue(ev) elif flavor == 'mu': return self.__numu(ev) elif flavor == 'tau': return self.__nutau(ev) else: return 0 return self.__nue(ev) * f(ev, nui='e', nuf=flavor, **kwargs) + \ self.__numu(ev) * f(ev, nui='mu', nuf=flavor, **kwargs) + \ self.__nutau(ev) * f(ev, nui='tau', nuf=flavor, **kwargs) else: if f is None: if flavor == 'ebar': return self.__nuebar(ev) elif flavor == 'mubar': return self.__numubar(ev) elif flavor == 'taubar': return self.__nutaubar(ev) else: return 0 return self.__nuebar(ev) * f(ev, nui='ebar', nuf=flavor, **kwargs) + \ self.__numubar(ev) * f(ev, nui='mubar', nuf=flavor, **kwargs) + \ self.__nutaubar(ev) * f(ev, nui='taubar', nuf=flavor, **kwargs) def fint(self, er, m, flavor='e', f=None, **kwargs): """ flux integration over the range that can produce a recoil energy er :param er: recoil energy :param m: mass of the target, it can be an array :param flavor: neutrino flavor :param f: function that convolves with neutrino flux, typically neutrino oscillation, the first argument must be neutrino energy, the last two arguments must be input flavor nui and out put flavor nuf :param kwargs: parameters with keys that goes into function f :return: the result of integration, it can be an array """ emin = 0.5 * (np.sqrt(er ** 2 + 2 * er * m) + er) def fx(ev): return self.flux(ev, flavor, f, **kwargs) if not isinstance(emin, np.ndarray): res = quad(fx, emin, self.evMax)[0] # no need to check range, because outside evMin and evMax are 0 if self.fl_name == 'solar': if f is None: f = survival_solar # pep res += 1.44e8 * ((100 * meter_by_mev) ** 2) * f(1.439, nui='e', nuf=flavor, **kwargs) \ if emin < 1.439 else 0 # be7 res += 5e9 * ((100 * meter_by_mev) ** 2) * f(0.8613, nui='e', nuf=flavor, **kwargs) \ if emin < 0.8613 else 0 elif self.fl_name in ['sns', 'prompt']: if f is None and flavor == 'mu': # prompt neutrino res += self.__norm if emin <= 29 else 0 elif f is not None and flavor[-1] != 'r': res += self.__norm * f(29, nui='mu', nuf=flavor, **kwargs) if emin <= 29 else 0 else: res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = quad(fx, emin[i], self.evMax)[0] if self.fl_name == 'solar': if f is None: f = survival_solar # pep res[i] += 1.44e8 * ((100 * meter_by_mev) ** 2) * f(1.439, nui='e', nuf=flavor, **kwargs) \ if emin[i] < 1.439 else 0 # be7 res[i] += 5e9 * ((100 * meter_by_mev) ** 2) * f(0.8613, nui='e', nuf=flavor, **kwargs) \ if emin[i] < 0.8613 else 0 elif self.fl_name in ['sns', 'prompt']: if f is None and flavor == 'mu': # prompt neutrino res[i] += self.__norm if emin[i] <= 29 else 0 elif f is not None and flavor[-1] != 'r': res[i] += self.__norm * f(29, nui='mu', nuf=flavor, **kwargs) if emin[i] <= 29 else 0 return res def fintinv(self, er, m, flavor='e', f=None, **kwargs): """ flux/ev integration over the range that can produce a recoil energy er :param er: recoil energy :param m: mass of the target, it can be an array :param flavor: neutrino flavor :param f: function that convolves with neutrino flux, typically neutrino oscillation, the first argument must be neutrino energy, the last two arguments must be input flavor nui and out put flavor nuf :param kwargs: parameters with keys that goes into function f :return: the result of integration, it can be an array """ emin = 0.5 * (np.sqrt(er ** 2 + 2 * er * m) + er) def finv(ev): """ flux/ev """ return self.flux(ev, flavor, f, **kwargs) / ev if not isinstance(emin, np.ndarray): res = quad(finv, emin, self.evMax)[0] if self.fl_name == 'solar': if f is None: f = survival_solar # pep res += 1.44e8 * ((100 * meter_by_mev) ** 2) * f(1.439, nui='e', nuf=flavor, **kwargs) / 1.439 \ if emin < 1.439 else 0 # be7 res += 5e9 * ((100 * meter_by_mev) ** 2) * f(0.8613, nui='e', nuf=flavor, **kwargs) / 0.8613 \ if emin < 0.8613 else 0 elif self.fl_name in ['sns', 'prompt']: if f is None and flavor == 'mu': # prompt neutrino res += self.__norm / 29 if emin <= 29 else 0 elif f is not None and flavor[-1] != 'r': res += self.__norm / 29 * f(29, nui='mu', nuf=flavor, **kwargs) if emin <= 29 else 0 else: res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = quad(finv, emin[i], self.evMax)[0] if self.fl_name == 'solar': if f is None: f = survival_solar # pep res[i] += 1.44e8 * ((100 * meter_by_mev) ** 2) * f(1.439, nui='e', nuf=flavor, **kwargs) / \ 1.439 if emin[i] < 1.439 else 0 # be7 res[i] += 5e9 * ((100 * meter_by_mev) ** 2) * f(0.8613, nui='e', nuf=flavor, **kwargs) / \ 0.8613 if emin[i] < 0.8613 else 0 elif self.fl_name in ['sns', 'prompt']: if f is None and flavor == 'mu': # prompt neutrino res[i] += self.__norm / 29 if emin[i] <= 29 else 0 elif f is not None and flavor[-1] != 'r': res[i] += self.__norm / 29 * f(29, nui='mu', nuf=flavor, **kwargs) \ if emin[i] <= 29 else 0 return res def fintinvs(self, er, m, flavor='e', f=None, **kwargs): """ flux/ev^2 integration over the range that can produce a recoil energy er :param er: recoil energy :param m: mass of the target, it can be an array :param flavor: neutrino flavor :param f: function that convolves with neutrino flux, typically neutrino oscillation, the first argument must be neutrino energy, the last two arguments must be input flavor nui and out put flavor nuf :param kwargs: parameters with keys that goes into function f :return: the result of integration, it can be an array """ emin = 0.5 * (np.sqrt(er ** 2 + 2 * er * m) + er) def finvs(ev): """ flux/ev^2 """ return self.flux(ev, flavor, f, **kwargs) / (ev ** 2) if not isinstance(emin, np.ndarray): res = quad(finvs, emin, self.evMax)[0] if self.fl_name == 'solar': if f is None: f = survival_solar # pep res += 1.44e8 * ((100 * meter_by_mev) ** 2) * f(1.439, nui='e', nuf=flavor, **kwargs) / 1.439**2\ if emin < 1.439 else 0 # be7 res += 5e9 * ((100 * meter_by_mev) ** 2) * f(0.8613, nui='e', nuf=flavor, **kwargs) / 0.8613**2 \ if emin < 0.8613 else 0 elif self.fl_name in ['sns', 'prompt']: if f is None and flavor == 'mu': # prompt neutrino res += self.__norm / 29**2 if emin <= 29 else 0 elif f is not None and flavor[-1] != 'r': res += self.__norm / 29**2 * f(29, nui='mu', nuf=flavor, **kwargs) if emin <= 29 else 0 else: res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = quad(finvs, emin[i], self.evMax)[0] if self.fl_name == 'solar': if f is None: f = survival_solar # pep res[i] += 1.44e8 * ((100 * meter_by_mev) ** 2) * f(1.439, nui='e', nuf=flavor, **kwargs) / \ 1.439**2 if emin[i] < 1.439 else 0 # be7 res[i] += 5e9 * ((100 * meter_by_mev) ** 2) * f(0.8613, nui='e', nuf=flavor, **kwargs) / \ 0.8613**2 if emin[i] < 0.8613 else 0 elif self.fl_name in ['sns', 'prompt']: if f is None and flavor == 'mu': # prompt neutrino res[i] += self.__norm / 29**2 if emin[i] <= 29 else 0 elif f is not None and flavor[-1] != 'r': res[i] += self.__norm / 29**2 * f(29, nui='mu', nuf=flavor, **kwargs) \ if emin[i] <= 29 else 0 return res class NeutrinoFluxFactory: def __init__(self): self.flux_list = ['solar', 'solar_b8', 'solar_f17', 'solar_hep', 'solar_n13', 'solar_o15', 'solar_pp', 'solar_pep', 'solar_be7', 'coherent', 'coherent_prompt', 'coherent_delayed', 'far_beam_nu', 'far_beam_nubar', 'atmospheric','jsns_prompt', 'jsns_delayed', 'jsns_prompt_continuous', 'near_beam_nu', 'near_beam_nubar',] def print_available(self): print(self.flux_list) def interp_flux(self, nrg, data): return np.interp(nrg, data[:,0], data[:,1]) def get(self, flux_name, **kwargs): if flux_name not in self.flux_list: print('flux name not in current list: ', self.flux_list) raise Exception('flux not found.') if flux_name in ['solar_b8', 'solar_f17', 'solar_hep', 'solar_n13', 'solar_o15', 'solar_pp']: f = np.genfromtxt(pkg_resources.resource_filename(__name__, 'data/' + flux_name[6:] + '.csv'), delimiter=',') return NeutrinoFlux(continuous_fluxes={'ev': f[:, 0], 'e': f[:, 1]}) if flux_name == 'solar': f = np.genfromtxt(pkg_resources.resource_filename(__name__, 'data/' + flux_name + '.csv'), delimiter=',') return NeutrinoFlux(continuous_fluxes={'ev': f[:, 0], 'e': f[:, 1]}, delta_fluxes={'e': [(1.439, 1.44e8), (0.8613, 5e9)]}) if flux_name == 'pep': return NeutrinoFlux(delta_fluxes={'e': [(1.439, 1.44e8), ]}) if flux_name == 'be7': return NeutrinoFlux(delta_fluxes={'e': [(0.8613, 5e9), ]}) if flux_name == 'coherent': def de(evv): return (3 * ((evv / (2 / 3 * 52)) ** 2) - 2 * ((evv / (2 / 3 * 52)) ** 3)) / 29.25 def dmubar(evv): return (3 * ((evv / 52) ** 2) - 2 * ((evv / 52) ** 3)) / 26 ev = np.linspace(0.001, 52, 100) return NeutrinoFlux(continuous_fluxes={'ev': ev, 'e': de(ev), 'mubar': dmubar(ev)}, delta_fluxes={'mu': [(29, 1)]}, norm=1.13 * (10 ** 7)) ## default unit is /(cm^2*s) if flux_name == 'coherent_delayed': def de(evv): return (3 * ((evv / (2 / 3 * 52)) ** 2) - 2 * ((evv / (2 / 3 * 52)) ** 3)) / 29.25 def dmubar(evv): return (3 * ((evv / 52) ** 2) - 2 * ((evv / 52) ** 3)) / 26 ev = np.linspace(0.001, 52, kwargs['npoints'] if 'npoints' in kwargs else 100) return NeutrinoFlux(continuous_fluxes={'ev': ev, 'e': de(ev), 'mubar': dmubar(ev)}, norm=1.13 * (10 ** 7)) if flux_name == 'coherent_prompt': return NeutrinoFlux(delta_fluxes={'mu': [(29, 1)]}, norm=1.13 * (10 ** 7)) if flux_name == 'jsns': nu_e = np.genfromtxt(pkg_resources.resource_filename(__name__, "data/jsns2/jsns_nu_e.txt"), delimiter=',') nu_mu = np.genfromtxt(pkg_resources.resource_filename(__name__, "data/jsns2/jsns_nu_mu_nodelta.txt"), delimiter=',') nubar_mu = np.genfromtxt(pkg_resources.resource_filename(__name__, "data/jsns2/jsns_nubar_mu.txt"), delimiter=',') norm_nu_e = quad(self.interp_flux, 0, 300, args=(nu_e,))[0] norm_nu_mu = quad(self.interp_flux, 0, 300, args=(nu_mu,))[0] norm_nubar_mu = quad(self.interp_flux, 0, 300, args=(nubar_mu,))[0] def numuPDF(energy): return self.interp_flux(energy, nu_mu) / norm_nu_mu def nuePDF(energy): return self.interp_flux(energy, nu_e) / norm_nu_e def nubarmuPDF(energy): return self.interp_flux(energy, nubar_mu) / norm_nubar_mu edges = np.arange(0, 302, 2) # energy bin edges ev = (edges[:-1] + edges[1:]) / 2 return NeutrinoFlux(continuous_fluxes={'ev': ev, 'e': nuePDF(ev), 'mubar': nubarmuPDF(ev), 'mu': numuPDF(ev)}, delta_fluxes={'mu': [(29, 1),(236, 0.013)]}, norm=4.9 * (10 ** 7)) ## default unit is /(cm^2*s) if flux_name == 'jsns_delayed': nu_e = np.genfromtxt(pkg_resources.resource_filename(__name__, "data/jsns2/jsns_nu_e.txt"), delimiter=',') nubar_mu = np.genfromtxt(pkg_resources.resource_filename(__name__, "data/jsns2/jsns_nubar_mu.txt"), delimiter=',') norm_nu_e = quad(self.interp_flux, 0, 300, args=(nu_e,))[0] norm_nubar_mu = quad(self.interp_flux, 0, 300, args=(nubar_mu,))[0] def nuePDF(energy): return self.interp_flux(energy, nu_e) / norm_nu_e def nubarmuPDF(energy): return self.interp_flux(energy, nubar_mu) / norm_nubar_mu edges = np.arange(0, 302, 2) # energy bin edges ev = (edges[:-1] + edges[1:]) / 2 return NeutrinoFlux(continuous_fluxes={'ev': ev, 'e': nuePDF(ev), 'mubar': nubarmuPDF(ev)}, norm=3 * (10 ** 7)) if flux_name == 'jsns_prompt': return NeutrinoFlux(delta_fluxes={'mu': [(29, 1),(236, 0.013)]}, norm=1.85 * (10 ** 7)) if flux_name == 'jsns_prompt_continuous': nu_mu = np.genfromtxt(pkg_resources.resource_filename(__name__, "data/jsns2/jsns_nu_mu_nodelta.txt"), delimiter=',') norm_nu_mu = quad(self.interp_flux, 0, 300, args=(nu_mu,))[0] def numuPDF(energy): return self.interp_flux(energy, nu_mu) / norm_nu_mu edges = np.arange(0, 302, 2) # energy bin edges ev = (edges[:-1] + edges[1:]) / 2 return NeutrinoFlux(continuous_fluxes={'ev': ev, 'mu': numuPDF(ev)}, norm=1.85 * (10 ** 4)) if flux_name == 'far_beam_nu': far_beam_txt = 'data/dune_beam_fd_nu_flux_120GeVoptimized.txt' f_beam = np.genfromtxt(pkg_resources.resource_filename(__name__, far_beam_txt), delimiter=',') nu = {'ev': f_beam[:, 0], 'e': f_beam[:, 1], 'mu': f_beam[:, 2], 'ebar': f_beam[:, 4], 'mubar': f_beam[:, 5]} return NeutrinoFlux(continuous_fluxes=nu) if flux_name == 'far_beam_nubar': far_beam_txt = 'data/dune_beam_fd_antinu_flux_120GeVoptimized.txt' f_beam = np.genfromtxt(pkg_resources.resource_filename(__name__, far_beam_txt), delimiter=',') nu = {'ev': f_beam[:, 0], 'e': f_beam[:, 1], 'mu': f_beam[:, 2], 'ebar': f_beam[:, 4], 'mubar': f_beam[:, 5]} return NeutrinoFlux(continuous_fluxes=nu) if flux_name == 'near_beam_nu': far_beam_txt = 'data/dune_beam_nd_nu_flux_120GeVoptimized.txt' f_beam = np.genfromtxt(pkg_resources.resource_filename(__name__, far_beam_txt)) nu = {'ev': f_beam[:, 0], 'e': f_beam[:, 1], 'mu': f_beam[:, 2], 'ebar': f_beam[:, 4], 'mubar': f_beam[:, 5]} return NeutrinoFlux(continuous_fluxes=nu) if flux_name == 'near_beam_nubar': far_beam_txt = 'data/dune_beam_nd_antinu_flux_120GeVoptimized.txt' f_beam = np.genfromtxt(pkg_resources.resource_filename(__name__, far_beam_txt)) nu = {'ev': f_beam[:, 0], 'e': f_beam[:, 1], 'mu': f_beam[:, 2], 'ebar': f_beam[:, 4], 'mubar': f_beam[:, 5]} return NeutrinoFlux(continuous_fluxes=nu) if flux_name == 'atmospheric': if 'zenith' not in kwargs: raise Exception('please specify zenith angle') zen = np.round(kwargs['zenith'], decimals=3) zen_list = np.round(np.linspace(-0.975, 0.975, 40), decimals=3) if zen not in zen_list: print('available choice of zenith angle: ', zen_list) raise Exception('zenith angle not available') idx = (0.975 - zen) / 0.05 * 61 f_atmos = np.genfromtxt(pkg_resources.resource_filename(__name__, 'data/atmos.txt'), delimiter=',') nu = {'ev': f_atmos[int(round(idx)):int(round(idx))+61, 0], 'e': f_atmos[int(round(idx)):int(round(idx))+61, 2], 'mu': f_atmos[int(round(idx)):int(round(idx))+61, 3], 'ebar': f_atmos[int(round(idx)):int(round(idx))+61, 5], 'mubar': f_atmos[int(round(idx)):int(round(idx))+61, 6]} return NeutrinoFlux(continuous_fluxes=nu) class NeutrinoFlux: def __init__(self, continuous_fluxes=None, delta_fluxes=None, norm=1): self.norm = norm * ((100 * meter_by_mev) ** 2) self.ev_min = None self.ev_max = None if continuous_fluxes is None: self.nu = None elif isinstance(continuous_fluxes, dict): self.ev = continuous_fluxes['ev'] sorted_idx = np.argsort(self.ev) self.ev = self.ev[sorted_idx] self.ev_min = self.ev[0] self.ev_max = self.ev[-1] if self.ev_min == 0: raise Exception('flux with neutrino energy equal to zeros is not supported. ' 'please consider using a small value for your lower bound.') self.nu = {'e': continuous_fluxes['e'][sorted_idx] if 'e' in continuous_fluxes else None, 'mu': continuous_fluxes['mu'][sorted_idx] if 'mu' in continuous_fluxes else None, 'tau': continuous_fluxes['tau'][sorted_idx] if 'tau' in continuous_fluxes else None, 'ebar': continuous_fluxes['ebar'][sorted_idx] if 'ebar' in continuous_fluxes else None, 'mubar': continuous_fluxes['mubar'][sorted_idx] if 'mubar' in continuous_fluxes else None, 'taubar': continuous_fluxes['taubar'][sorted_idx] if 'taubar' in continuous_fluxes else None} self.binw = self.ev[1:] - self.ev[:-1] self.precalc = {None: {flr: self.binw*(flx[1:]+flx[:-1])/2 if flx is not None else None for flr, flx in self.nu.items()}} else: raise Exception('only support dict as input.') if delta_fluxes is None: self.delta_nu = None elif isinstance(delta_fluxes, dict): self.delta_nu = {'e': delta_fluxes['e'] if 'e' in delta_fluxes else None, 'mu': delta_fluxes['mu'] if 'mu' in delta_fluxes else None, 'tau': delta_fluxes['tau'] if 'tau' in delta_fluxes else None, 'ebar': delta_fluxes['ebar'] if 'ebar' in delta_fluxes else None, 'mubar': delta_fluxes['mubar'] if 'mubar' in delta_fluxes else None, 'taubar': delta_fluxes['taubar'] if 'taubar' in delta_fluxes else None} for flavor in self.delta_nu: # grab the maximum energy of the delta fluxes if self.delta_nu[flavor] is None: continue energies = [self.delta_nu[flavor][i][0] for i in range(len(self.delta_nu[flavor]))] if self.ev_max is None or max(energies) > self.ev_max: self.ev_max = max(energies) else: raise Exception("'delta_fluxes' must be a dictionary of a list of tuples! e.g. {'e': [(12, 4), (14, 15)], ...}") def __call__(self, ev, flavor): if self.nu is None or self.nu[flavor] is None: return 0 if ev == self.ev_min: return self.nu[flavor][0] * self.norm if ev == self.ev_max: return self.nu[flavor][-1] * self.norm if self.ev_min < ev < self.ev_max: idx = self.ev.searchsorted(ev) l1 = ev - self.ev[idx - 1] l2 = self.ev[idx] - ev h1 = self.nu[flavor][idx - 1] h2 = self.nu[flavor][idx] return (l1*h2+l2*h1)/(l1+l2) * self.norm return 0 def integrate(self, ea, eb, flavor, weight_function=None): """ Please avoid using lambda as your weight_function!!! :param ea: :param eb: :param flavor: :param weight_function: :return: """ if eb <= ea: return 0 res = 0 if self.delta_nu is not None and self.delta_nu[flavor] is not None: for deltas in self.delta_nu[flavor]: if ea < deltas[0] <= eb: # self.ev_max should be included with <= res += deltas[1] if weight_function is None else deltas[1]*weight_function(deltas[0]) if self.nu is not None and self.nu[flavor] is not None: if weight_function not in self.precalc: weight = weight_function(self.ev) self.precalc[weight_function] = {flr: self.binw*((flx*weight)[1:]+(flx*weight)[:-1])/2 if flx is not None else None for flr, flx in self.nu.items()} eb = min(eb, self.ev_max) ea = max(ea, self.ev_min) idxmin = self.ev.searchsorted(ea, side='right') idxmax = self.ev.searchsorted(eb, side='left') if idxmin == idxmax: l1 = ea - self.ev[idxmin - 1] l2 = self.ev[idxmin] - ea h1 = self.nu[flavor][idxmin - 1] * weight_function(self.ev[idxmin - 1]) \ if weight_function is not None else self.nu[flavor][idxmin - 1] h2 = self.nu[flavor][idxmin] * weight_function(self.ev[idxmin]) \ if weight_function is not None else self.nu[flavor][idxmin] ha = (l1*h2+l2*h1)/(l1+l2) l1 = eb - self.ev[idxmax - 1] l2 = self.ev[idxmax] - eb hb = (l1*h2+l2*h1)/(l1+l2) return (ha + hb) * (eb - ea) / 2 * self.norm res += np.sum(self.precalc[weight_function][flavor][idxmin:idxmax-1]) l1 = ea - self.ev[idxmin-1] l2 = self.ev[idxmin] - ea h1 = self.nu[flavor][idxmin-1]*weight_function(self.ev[idxmin-1]) \ if weight_function is not None else self.nu[flavor][idxmin-1] h2 = self.nu[flavor][idxmin]*weight_function(self.ev[idxmin]) \ if weight_function is not None else self.nu[flavor][idxmin] res += ((l1*h2+l2*h1)/(l1+l2)+h2)*l2/2 l1 = eb - self.ev[idxmax - 1] l2 = self.ev[idxmax] - eb h1 = self.nu[flavor][idxmax - 1] * weight_function(self.ev[idxmax - 1]) \ if weight_function is not None else self.nu[flavor][idxmax-1] h2 = self.nu[flavor][idxmax] * weight_function(self.ev[idxmax]) \ if weight_function is not None else self.nu[flavor][idxmax] res += ((l1 * h2 + l2 * h1) / (l1 + l2) + h1) * l1 / 2 return res * self.norm def change_parameters(self): pass class DMFlux: """ Dark matter flux at COHERENT """ def __init__(self, dark_photon_mass, life_time, coupling_quark, dark_matter_mass, detector_distance=19.3, pot_mu=0.75, pot_sigma=0.25, size=100000, mono_energy=None): """ initialize and generate flux :param dark_photon_mass: dark photon mass :param life_time: life time of dark photon in rest frame, unit in micro second :param coupling_quark: dark photon coupling to quarks :param dark_matter_mass: mass of dark matter, unit in MeV :param detector_distance: distance from the detector to the Hg target :param pot_mu: mean of guassian distribution of proton on target, unit in micro second :param pot_sigma: std of guassian distribution of proton on target, unit in micro second :param size: size of sampling dark photons """ self.dp_m = dark_photon_mass self.dm_m = dark_matter_mass self.epsi_quark = coupling_quark self.det_dist = detector_distance / meter_by_mev self.dp_life = life_time * 1e-6 * c_light / meter_by_mev self.pot_mu = pot_mu * 1e-6 * c_light / meter_by_mev self.pot_sigma = pot_sigma * 1e-6 * c_light / meter_by_mev if mono_energy is None: self.timing, self.energy = self._generate(size) else: self.timing, self.energy = self._mono_flux(mono_energy, pot_mu) self.ed_min = self.energy.min() self.ed_max = self.energy.max() self.dm_norm = self.epsi_quark**2*0.23*1e20 / (4*np.pi*(detector_distance**2)*24*3600) * (meter_by_mev**2) * \ self.timing.shape[0] * 2 / size def _generate(self, size=1000000): """ generate dark matter flux at COHERENT :param size: size of sampling dark photons :return: time and energy histogram of dark matter """ dp_m = self.dp_m dp_e = ((massofpi+massofp)**2 - massofn**2 + dp_m**2)/(2*(massofpi+massofp)) dp_p = np.sqrt(dp_e ** 2 - dp_m ** 2) dp_v = dp_p / dp_e gamma = dp_e / dp_m tau = self.dp_life * gamma tf = np.random.normal(self.pot_mu, self.pot_sigma, size) # POT t = np.random.exponential(tau, size) # life time of each dark photon cs = np.random.uniform(-1, 1, size) # direction of each dark photon # in rest frame estar = dp_m / 2 pstar = np.sqrt(estar ** 2 - self.dm_m ** 2) pstarx = pstar * cs pstary = pstar * np.sqrt(1 - cs ** 2) # boost to lab frame elab = gamma * (estar + dp_v * pstarx) plabx = gamma * (pstarx + dp_v * estar) plaby = pstary vx = plabx / elab vy = plaby / elab timing = [] energy = [] for i in range(size): a = vx[i] ** 2 + vy[i] ** 2 b = 2 * vx[i] * t[i] * dp_v cc = dp_v ** 2 * t[i] ** 2 - self.det_dist ** 2 if b ** 2 - 4 * a * cc >= 0: if (-b - np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) > 0: timing.append((-b - np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) + t[i] + tf[i]) energy.append(elab[i]) if (-b + np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) > 0: timing.append((-b + np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) + t[i] + tf[i]) energy.append(elab[i]) return np.array(timing) / c_light * meter_by_mev * 1e6, np.array(energy) def _mono_flux(self, e_chi, t_trig, size=1000): return np.random.normal(loc=t_trig, scale=0.01*t_trig, size=size), np.random.normal(loc=e_chi, scale=0.005*e_chi, size=size) def flux(self, ev): """ dark matter flux :param ev: dark matter energy :return: dark matter flux """ return 1/(self.ed_max-self.ed_min)*self.dm_norm if self.ed_min <= ev <= self.ed_max else 0 def fint(self, er, m, **kwargs): """ flux/(ex^2-mx^2) integration :param er: recoil energy in MeV :param m: target nucleus mass in MeV :param kwargs: other argument :return: flux/(ex^2-mx^2) integration """ emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) emin = 0.0 * emin def integrand(ex): return self.flux(ex)/(ex**2 - self.dm_m**2) if not isinstance(emin, np.ndarray): res = quad(integrand, emin, self.ed_max)[0] else: res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = quad(integrand, emin[i], self.ed_max)[0] return res def fint1(self, er, m, **kwargs): """ flux*ex/(ex^2-mx^2) integration :param er: recoil energy in MeV :param m: target nucleus mass in MeV :param kwargs: other argument :return: flux*ex/(ex^2-mx^2) integration """ emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) emin = 0.0 * emin def integrand(ex): return self.flux(ex) * ex / (ex ** 2 - self.dm_m ** 2) if not isinstance(emin, np.ndarray): res = quad(integrand, emin, self.ed_max)[0] else: res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = quad(integrand, emin[i], self.ed_max)[0] return res def fint2(self, er, m, **kwargs): """ flux*ex^2/(ex^2-mx^2) integration :param er: recoil energy in MeV :param m: target nucleus mass in MeV :param kwargs: other argument :return: flux*ex^2/(ex^2-mx^2) integration """ emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) emin = 0.0 * emin def integrand(ex): return self.flux(ex) * ex**2 / (ex ** 2 - self.dm_m ** 2) if not isinstance(emin, np.ndarray): res = quad(integrand, emin, self.ed_max)[0] else: res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = quad(integrand, emin[i], self.ed_max)[0] return res class DMFluxIsoPhoton(FluxBaseContinuous): def __init__(self, photon_distribution, dark_photon_mass, coupling, dark_matter_mass, life_time=0.001, detector_distance=19.3, pot_rate=5e20, pot_sample=100000, brem_suppress=True, pot_mu=0.7, pot_sigma=0.15, sampling_size=100, nbins=20, verbose=False): self.nbins = nbins self.photon_flux = photon_distribution self.dp_m = dark_photon_mass self.dm_m = dark_matter_mass self.epsilon = coupling self.life_time = life_time # input in mus, internal in s self.det_dist = detector_distance # meters self.pot_rate = pot_rate # the number of POT/day in the experiment self.pot_mu = pot_mu self.pot_sigma = pot_sigma self.pot_sample = pot_sample # the number of POT in photon_distribution self.time = [] self.energy = [] self.weight = [] self.norm = 1 self.sampling_size = sampling_size self.supp = brem_suppress # add phase space suppression self.verbose = verbose for photon_events in photon_distribution: if self.verbose: print("getting photons from E =", photon_events[0], "Size =", photon_events[1]) self._generate_single(photon_events, self.sampling_size) normalization = self.epsilon ** 2 * (self.pot_rate / self.pot_sample) \ / (4 * np.pi * (self.det_dist ** 2) * 24 * 3600) * (meter_by_mev**2) self.norm = normalization self.weight = [x * self.norm for x in self.weight] self.timing = np.array(self.time) * 1e6 hist, bin_edges = np.histogram(self.energy, bins=nbins, weights=self.weight, density=True) super().__init__((bin_edges[:-1] + bin_edges[1:]) / 2, hist, norm=np.sum(self.weight)) def getScaledWeights(self): wgt = self.weight wgt = [x * self.norm * 24 * 3600 / (meter_by_mev**2) for x in wgt] return wgt def simulate(self): self.time = [] self.energy = [] self.weight = [] normalization = self.epsilon ** 2 * (self.pot_rate / self.pot_sample) \ / (4 * np.pi * (self.det_dist ** 2) * 24 * 3600) * (meter_by_mev**2) self.norm = normalization for photon_events in self.photon_flux: if self.verbose: print("getting photons from E =", photon_events[0], "Size =", photon_events[1]) self._generate_single(photon_events, self.sampling_size) self.weight = [x * self.norm for x in self.weight] self.timing = np.array(self.time) * 1e6 hist, bin_edges = np.histogram(self.energy, bins=self.nbins, weights=self.weight, density=True) super().__init__((bin_edges[:-1] + bin_edges[1:]) / 2, hist, norm=np.sum(self.weight)) def _generate_single(self, photon_events, nsamples): # Initiate photon position, energy and momentum. if photon_events[0]**2 < self.dp_m**2: return dp_m = self.dp_m dp_e = photon_events[0] dp_p = np.sqrt(dp_e ** 2 - self.dp_m ** 2) dp_momentum = np.array([dp_e, 0, 0, dp_p]) # dark photon to dark matter dm_m = self.dm_m dm_e = self.dp_m / 2 dm_p = np.sqrt(dm_e ** 2 - dm_m ** 2) # Directional sampling. dp_wgt = photon_events[1] / nsamples # Event weight # Brem suppression if self.supp == True: el_e = 1.0773*dp_e + 13.716 # most likely electron energy that produced this dark photon supp_fact = min(1, 1154 * np.exp(-24.42 * np.power(dp_m/el_e, 0.3174))) dp_wgt *= supp_fact ## optimize #pos = np.zeros(3) ## optimize t = np.random.normal(self.pot_mu * 1e-6, self.pot_sigma * 1e-6, nsamples) t_dp = np.random.exponential(1e-6 * self.life_time * dp_momentum[0] / dp_m, nsamples) t += t_dp csd = np.random.uniform(-1, 1, nsamples) phid = np.random.uniform(0, 2 * np.pi, nsamples) boost_matr = lorentz_matrix(np.array([-dp_momentum[1] / dp_momentum[0], -dp_momentum[2] / dp_momentum[0], -dp_momentum[3] / dp_momentum[0]])) pos_z = c_light * t_dp * dp_momentum[3] / dp_momentum[0] # position is along z by construction for i in range(nsamples): dm_momentum = np.array([dm_e, dm_p * np.sqrt(1 - csd[i] ** 2) * np.cos(phid[i]), dm_p * np.sqrt(1 - csd[i] ** 2) * np.sin(phid[i]), dm_p * csd[i]]) dm_momentum = boost_matr @ dm_momentum # dark matter arrives at detector, assuming azimuthal symmetric # append the time and energy spectrum of the DM. # DM particle 1 v = dm_momentum[1:] / dm_momentum[0] * c_light a = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] #np.sum(v ** 2) b = 2*v[2]*pos_z[i] # dot product is along z by construction c = pos_z[i]**2 - self.det_dist ** 2 if b ** 2 - 4 * a * c >= 0: t_dm = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a) if t_dm >= 0: if self.verbose: print("adding weight", dp_wgt) self.time.append(t[i]+t_dm) self.energy.append(dm_momentum[0]) self.weight.append(dp_wgt) t_dm = (-b + np.sqrt(b ** 2 - 4 * a * c)) / (2 * a) if t_dm >= 0: if self.verbose: print("adding weight", dp_wgt) self.time.append(t[i]+t_dm) self.energy.append(dm_momentum[0]) self.weight.append(dp_wgt) # DM particle 2 v = (dp_momentum - dm_momentum)[1:] / (dp_momentum - dm_momentum)[0] * c_light a = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] #np.sum(v ** 2) b = b = 2*v[2]*pos_z[i] c = pos_z[i]**2 - self.det_dist ** 2 if b ** 2 - 4 * a * c >= 0: t_dm = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a) if t_dm >= 0: if self.verbose: print("adding weight", dp_wgt) self.time.append(t[i]+t_dm) self.energy.append((dp_momentum - dm_momentum)[0]) self.weight.append(dp_wgt) t_dm = (-b + np.sqrt(b ** 2 - 4 * a * c)) / (2 * a) if t_dm >= 0: if self.verbose: print("adding weight", dp_wgt) self.time.append(t[i]+t_dm) self.energy.append((dp_momentum - dm_momentum)[0]) self.weight.append(dp_wgt) def fint(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f0) return res def fint1(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f1) return res def fint2(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f2) return res def f0(self, ev): return 1/(ev**2 - self.dm_m**2) def f1(self, ev): return ev/(ev**2 - self.dm_m**2) def f2(self, ev): return ev**2 / (ev**2 - self.dm_m**2) class DMFluxFromPiMinusAbsorption: r""" Dark matter flux from pi^- + p -> A^\prime + n -> \chi + \chi + n """ def __init__(self, dark_photon_mass, coupling_quark, dark_matter_mass, life_time=0.001, detector_distance=19.3, pot_rate=5e20, pot_mu=0.7, pot_sigma=0.15, pion_rate=18324/500000, sampling_size=100000): """ initialize and generate flux default values are COHERENT experiment values :param dark_photon_mass: dark photon mass :param life_time: life time of dark photon in rest frame, unit in micro second :param coupling_quark: dark photon coupling to quarks divided by electron charge :param dark_matter_mass: mass of dark matter, unit in MeV :param detector_distance: distance from the detector to the target :param pot_rate: proton on target rate, unit POT/day :param pot_mu: mean of guassian distribution of proton on target, unit in micro second :param pot_sigma: std of guassian distribution of proton on target, unit in micro second :param pion_rate: pi^- production rate :param sampling_size: size of sampling dark photons """ self.dp_m = dark_photon_mass self.dm_m = dark_matter_mass self.epsi_quark = coupling_quark self.det_dist = detector_distance / meter_by_mev self.life_time = life_time # input in mus, internal in s self.pot_mu = pot_mu self.pot_sigma = pot_sigma self.pot_rate = pot_rate self.pion_rate = pion_rate self.sampling_size = sampling_size self.timing = [] self.energy = [] self.ed_min = None self.ed_max = None self.norm = None self.simulate() self.ev_min = self.ed_min self.ev_max = self.ed_max def get_lifetime(self, g, m): return ((16 * np.pi ** 2) / ((g ** 2) * m)) * mev_per_hz def simulate(self): """ generate dark matter flux """ # First check that the dp mass is less than the pi- mass. if self.dp_m > massofpi: self.norm = 0.0 return dp_m = self.dp_m dp_e = ((massofpi + massofp) ** 2 - massofn ** 2 + dp_m ** 2) / (2 * (massofpi + massofp)) dp_p = np.sqrt(dp_e ** 2 - dp_m ** 2) dp_v = dp_p / dp_e gamma = dp_e / dp_m tau = (self.life_time * 1e-6 * c_light / meter_by_mev) * gamma tf = np.random.normal(self.pot_mu * 1e-6 * c_light / meter_by_mev, self.pot_sigma * 1e-6 * c_light / meter_by_mev, self.sampling_size) # POT t = np.random.exponential(tau, self.sampling_size) # life time of each dark photon cs = np.random.uniform(-1, 1, self.sampling_size) # direction of each dark photon # in rest frame estar = dp_m / 2 pstar = np.sqrt(estar ** 2 - self.dm_m ** 2) pstarx = pstar * cs pstary = pstar * np.sqrt(1 - cs ** 2) # boost to lab frame elab = gamma * (estar + dp_v * pstarx) plabx = gamma * (pstarx + dp_v * estar) plaby = pstary vx = plabx / elab vy = plaby / elab timing = [] energy = [] for i in range(self.sampling_size): a = vx[i] ** 2 + vy[i] ** 2 b = 2 * vx[i] * t[i] * dp_v cc = dp_v ** 2 * t[i] ** 2 - self.det_dist ** 2 if b ** 2 - 4 * a * cc >= 0: if (-b - np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) > 0: timing.append((-b - np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) + t[i] + tf[i]) energy.append(elab[i]) if (-b + np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) > 0: timing.append((-b + np.sqrt(b ** 2 - 4 * a * cc)) / (2 * a) + t[i] + tf[i]) energy.append(elab[i]) self.timing = np.array(timing) / c_light * meter_by_mev * 1e6 self.energy = np.array(energy) self.ed_min = min(energy) self.ed_max = max(energy) self.ev_min = self.ed_min self.ev_max = self.ed_max self.norm = self.epsi_quark ** 2 * self.pot_rate * self.pion_rate / (4 * np.pi * (self.det_dist ** 2) * 24 * 3600) * \ self.timing.shape[0] * 2 / self.sampling_size def __call__(self, ev): """ dark matter flux, the spectrum is flat because of isotropic :param ev: dark matter energy :return: dark matter flux """ return 1 / (self.ed_max - self.ed_min) * self.norm if self.ed_min <= ev <= self.ed_max else 0 def integrate(self, ea, eb, weight_function=None): """ adaptive quadrature can achieve almost linear time on simple weight function, no need to do precalculation :param ea: lowerbound :param eb: upperbound :param weight_function: weight function :return: integration of the flux, weighted by the weight function """ if eb <= ea: return 0 eb = min(eb, self.ed_max) ea = max(ea, self.ed_min) if weight_function is None: return (eb - ea) / (self.ed_max - self.ed_min) * self.norm return quad(weight_function, ea, eb, epsrel=1e-3)[0] / (self.ed_max - self.ed_min) * self.norm def change_parameters(self, dark_photon_mass=None, life_time=None, coupling_quark=None, dark_matter_mass=None, detector_distance=None, pot_rate=None, pot_mu=None, pot_sigma=None, pion_rate=None, sampling_size=None): self.dp_m = dark_photon_mass if dark_photon_mass is not None else self.dp_m self.dp_life = life_time * 1e-6 * c_light / meter_by_mev if life_time is not None else self.dp_life self.epsi_quark = coupling_quark if coupling_quark is not None else self.epsi_quark self.dm_m = dark_matter_mass if dark_matter_mass is not None else self.dm_m self.det_dist = detector_distance / meter_by_mev if detector_distance is not None else self.det_dist self.pot_rate = pot_rate if pot_rate is not None else self.pot_rate self.pot_mu = pot_mu * 1e-6 * c_light / meter_by_mev if pot_mu is not None else self.pot_mu self.pot_sigma = pot_sigma * 1e-6 * c_light / meter_by_mev if pot_sigma is not None else self.pot_sigma self.pion_rate = self.pion_rate if pion_rate is not None else self.pion_rate self.sampling_size = sampling_size if sampling_size is not None else self.sampling_size self.simulate() def fint(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f0) return res def fint1(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f1) return res def fint2(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f2) return res def f0(self, ev): return 1/(ev**2 - self.dm_m**2) def f1(self, ev): return ev/(ev**2 - self.dm_m**2) def f2(self, ev): return ev**2 / (ev**2 - self.dm_m**2) class DMFluxFromPi0Decay(FluxBaseContinuous): """ z direction is the direction of the beam """ def __init__(self, pi0_distribution, dark_photon_mass, coupling_quark, dark_matter_mass, meson_mass=massofpi0, life_time=0.001, detector_distance=19.3, detector_direction=0, detector_width=0.1, pot_rate=5e20, pot_mu=0.7, pot_sigma=0.15, pion_rate=52935/500000, nbins=20): self.pi0_distribution = pi0_distribution self.dp_m = dark_photon_mass self.life_time = life_time self.epsilon = coupling_quark # input in mus, internal in s self.dm_m = dark_matter_mass self.meson_mass = meson_mass self.det_dist = detector_distance self.det_direc = detector_direction self.det_width = detector_width self.pot_rate = pot_rate self.pot_mu = pot_mu self.pot_sigma = pot_sigma self.pion_rate = pion_rate self.time = [] self.energy = [] self.nbins = nbins self.dm_m = dark_matter_mass for pi0_events in pi0_distribution: # must be in the form [azimuth, cos(zenith), kinetic energy] self._generate_single(pi0_events) self.timing = np.array(self.time)*1e6 hist, bin_edges = np.histogram(self.energy, bins=nbins, density=True) ps_factor = np.heaviside(self.meson_mass - self.dp_m, 0.0) * 2 * self.epsilon**2 * (1 - (self.dp_m / self.meson_mass)**2)**3 super().__init__((bin_edges[:-1]+bin_edges[1:])/2, hist, norm=ps_factor*pot_rate*pion_rate*len(self.time)/len(pi0_distribution)/ (2*np.pi*(min(1.0, detector_direction+detector_width/2)-max(-1.0, detector_direction-detector_width/2))*detector_distance**2*24*3600) *(meter_by_mev**2)) def get_lifetime(self, g, m): return ((16 * np.pi ** 2) / ((g ** 2) * m)) * mev_per_hz def simulate(self): self.time = [] self.energy = [] for pi0_events in self.pi0_distribution: # must be in the form [azimuth, cos(zenith), kinetic energy] self._generate_single(pi0_events) self.timing = np.array(self.time)*1e6 hist, bin_edges = np.histogram(self.energy, bins=self.nbins, density=True) ps_factor = np.heaviside(self.meson_mass - self.dp_m, 0.0) * 2 * self.epsilon**2 * (1 - (self.dp_m / self.meson_mass)**2)**3 norm = ps_factor * self.pot_rate * self.pion_rate * \ len(self.time)/len(self.pi0_distribution)/ \ (2*np.pi*(min(1.0, self.det_direc+self.det_width/2)-max(-1.0, self.det_direc-self.det_width/2))*self.det_dist**2*24*3600)*(meter_by_mev**2) super().__init__((bin_edges[:-1]+bin_edges[1:])/2, hist, norm=norm) def _generate_single(self, pi0_events): if self.dp_m > self.meson_mass: return pos = np.zeros(3) t = 0 t += np.random.normal(self.pot_mu * 1e-6, self.pot_sigma * 1e-6) pi_e = self.meson_mass + pi0_events[2] pi_p = np.sqrt(pi_e**2 - self.meson_mass**2) pi_v = pi_p / pi_e t_pi = np.random.exponential(8.4e-17*pi_e/self.meson_mass) pos += pi_v * polar_to_cartesian(pi0_events[:2]) * t_pi * c_light t += t_pi # pi0 to dark photon dp_m = self.dp_m dp_e = (self.meson_mass**2 + dp_m**2)/(2*self.meson_mass) dp_p = (self.meson_mass**2 - dp_m**2)/(2*self.meson_mass) cs = np.random.uniform(-1, 1) phi = np.random.uniform(0, 2*np.pi) dp_momentum = np.array([dp_e, dp_p*np.sqrt(1-cs**2)*np.cos(phi), dp_p*np.sqrt(1-cs**2)*np.sin(phi), dp_p*cs]) dp_momentum = lorentz_boost(dp_momentum, -pi_v*polar_to_cartesian(pi0_events[:2])) t_dp = np.random.exponential((self.life_time*1e-6)*dp_momentum[0]/dp_m) pos += c_light*t_dp*np.array([dp_momentum[1]/dp_momentum[0], dp_momentum[2]/dp_momentum[0], dp_momentum[3]/dp_momentum[0]]) t += t_dp # dark photon to dark matter dm_m = self.dm_m dm_e = dp_m / 2 dm_p = np.sqrt(dm_e**2 - dm_m**2) csd = np.random.uniform(-1, 1) phid = np.random.uniform(0, 2*np.pi) dm_momentum = np.array([dm_e, dm_p*np.sqrt(1-csd**2)*np.cos(phid), dm_p*np.sqrt(1-csd**2)*np.sin(phid), dm_p*csd]) dm_momentum = lorentz_boost(dm_momentum, np.array([-dp_momentum[1]/dp_momentum[0], -dp_momentum[2]/dp_momentum[0], -dp_momentum[3]/dp_momentum[0]])) # dark matter arrives at detector, assuming azimuthal symmetric v = dm_momentum[1:]/dm_momentum[0]*c_light a = np.sum(v**2) b = 2*np.sum(v*pos) #2 * v[2] * (c_light * dp_p / dp_e) * t_dp c = np.sum(pos**2) - self.det_dist**2 if b**2 - 4*a*c >= 0: t_dm = (-b+np.sqrt(b**2-4*a*c))/(2*a) if t_dm >= 0: #and self.det_direc-self.det_width/2 <= (pos[2]+v[2]*t_dm)/np.sqrt(np.sum((v*t_dm + pos)**2)) <= self.det_direc+self.det_width/2: self.time.append(t+t_dm) self.energy.append(dm_momentum[0]) t_dm = (-b-np.sqrt(b**2-4*a*c))/(2*a) if t_dm >= 0: #and self.det_direc-self.det_width/2 <= (pos[2]+v[2]*t_dm)/np.sqrt(np.sum((v*t_dm + pos)**2)) <= self.det_direc+self.det_width/2: self.time.append(t+t_dm) self.energy.append(dm_momentum[0]) v = (dp_momentum-dm_momentum)[1:]/(dp_momentum-dm_momentum)[0]*c_light a = np.sum(v**2) b = 2*np.sum(v*pos) c = np.sum(pos**2) - self.det_dist**2 if b**2 - 4*a*c >= 0: t_dm = (-b+np.sqrt(b**2-4*a*c))/(2*a) if t_dm >= 0: #and self.det_direc-self.det_width/2 <= (pos[2]+v[2]*t_dm)/np.sqrt(np.sum((v*t_dm + pos)**2)) <= self.det_direc+self.det_width/2: self.time.append(t+t_dm) self.energy.append((dp_momentum-dm_momentum)[0]) t_dm = (-b-np.sqrt(b**2-4*a*c))/(2*a) if t_dm >= 0: #and self.det_direc-self.det_width/2 <= (pos[2]+v[2]*t_dm)/np.sqrt(np.sum((v*t_dm + pos)**2)) <= self.det_direc+self.det_width/2: self.time.append(t+t_dm) self.energy.append((dp_momentum-dm_momentum)[0]) def to_pandas(self): return pd.DataFrame({'time': self.time, 'energy': self.energy}) def fint(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f0) return res def fint1(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f1) return res def fint2(self, er, m): if np.isscalar(m): m = np.array([m]) emin = 0.5 * (np.sqrt((er**2*m+2*er*m**2+2*er*self.dm_m**2+4*m*self.dm_m**2)/m) + er) res = np.zeros_like(emin) for i in range(emin.shape[0]): res[i] = self.integrate(emin[i], self.ev_max, weight_function=self.f2) return res def f0(self, ev): return 1/(ev**2 - self.dm_m**2) def f1(self, ev): return ev/(ev**2 - self.dm_m**2) def f2(self, ev): return ev**2 / (ev**2 - self.dm_m**2)
48.09542
163
0.53164
62,689
0.994985
0
0
0
0
0
0
11,155
0.177049
9613fedd3e0d7142ca8e288d57dc930f5c14893f
7,252
py
Python
enso/contrib/minimessages.py
blackdaemon/enso-launcher-continued
346f82811e77caf73560619cdeb16afabfbf1fce
[ "BSD-3-Clause" ]
7
2015-09-19T20:57:32.000Z
2020-12-31T16:34:42.000Z
enso/contrib/minimessages.py
blackdaemon/enso-launcher-continued
346f82811e77caf73560619cdeb16afabfbf1fce
[ "BSD-3-Clause" ]
21
2015-11-03T23:15:25.000Z
2018-10-11T21:57:45.000Z
enso/contrib/minimessages.py
blackdaemon/enso-launcher-continued
346f82811e77caf73560619cdeb16afabfbf1fce
[ "BSD-3-Clause" ]
4
2015-09-15T17:18:00.000Z
2021-06-16T07:06:06.000Z
# Author : Pavel Vitis "blackdaemon" # Email : [email protected] # # Copyright (c) 2010, Pavel Vitis <[email protected]> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of Enso nor the names of its contributors may # be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- # # enso.contrib.minimessages # # ---------------------------------------------------------------------------- """ An Enso plugin that makes all mini-messages related commands available. Commands: hide mini messages """ # ---------------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------------- from xml.sax.saxutils import escape as xml_escape import enso.messages from enso.commands import CommandManager, CommandObject from enso.commands.factories import ArbitraryPostfixFactory from enso.contrib.scriptotron.ensoapi import EnsoApi from enso.contrib.scriptotron.tracebacks import safetyNetted from enso.messages import MessageManager, TimedMiniMessage ensoapi = EnsoApi() # ---------------------------------------------------------------------------- # The 'hide mini messages' command # --------------------------------------------------------------------------- class HideMiniMessagesCommand(CommandObject): """ The 'hide mini messages' command. """ NAME = "hide mini messages" DESCRIPTION = "Hides all mini messages." def __init__(self): super(HideMiniMessagesCommand, self).__init__() self.setDescription(self.DESCRIPTION) self.setName(self.NAME) @safetyNetted def run(self): MessageManager.get().finishMessages() # ---------------------------------------------------------------------------- # The 'show mini message' testing command # --------------------------------------------------------------------------- class ShowMiniMessageCommand(CommandObject): """ The 'show mini message {text}' command. """ LOREMIPSUM = u"Lorem ipsum dolor sit amet, consectetur adipiscing elit. "\ "Nunc fringilla ipsum dapibus mi porta et laoreet turpis porta. Class aptent "\ "taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. "\ "Duis commodo massa nec arcu mollis auctor. Nunc et orci quis lacus suscipit "\ "dictum eu vitae est. Donec neque massa, pretium sed venenatis sed, consequat "\ "quis est. Proin auctor consequat euismod. Praesent iaculis placerat libero eu "\ "gravida. Curabitur ullamcorper velit sit amet tortor fermentum fringilla. "\ "Pellentesque non lectus mauris, a iaculis ipsum. Cum sociis natoque penatibus "\ "et magnis dis parturient montes, nascetur ridiculus mus. Vivamus mauris nibh, "\ "ultrices in accumsan in, bibendum sed mi. Ut ut nunc a mi vestibulum luctus. "\ "Sed ornare euismod justo a condimentum." def __init__(self, postfix): super(ShowMiniMessageCommand, self).__init__() self._postfix = postfix self._msgmanager = MessageManager.get() @safetyNetted def run(self): import random text = self._postfix if text and "," in text: timeout, text = text.split(",") timeout = max(int(timeout), 0) else: timeout = None if not text: pos = random.randint(0, self.LOREMIPSUM.count(" ") - 10 + 1) cnt = random.randint(5, 10) words = self.LOREMIPSUM.split() text = " ".join(words[pos:pos + cnt]) if text[0].upper() != text[0]: text = "..." + text if text[-1] != ".": text = text + "..." if timeout: caption = "test message (timed %ds)" % timeout else: caption = "test message" msg = xml_escape(text) caption = xml_escape(caption) if caption: xmltext = u"<p>%s</p><caption>%s</caption>" % (msg, caption) else: xmltext = u"<p>%s</p>" % (msg) msg = TimedMiniMessage( primaryXml=None, miniXml=xmltext, waitTime=timeout ) self._msgmanager.newMessage(msg) class ShowMiniMessageFactory(ArbitraryPostfixFactory): """ Generates a "show mini message {text}" command. """ PREFIX = "show mini message " DESCRIPTION = "Show mini message with given timeout and text, both optional." HELP_TEXT = "{timeout,text}" NAME = "%s%s" % (PREFIX, HELP_TEXT) def _generateCommandObj(self, postfix): cmd = ShowMiniMessageCommand(postfix) cmd.setDescription(self.DESCRIPTION) cmd.setName(self.NAME) cmd.setHelp(self.HELP_TEXT) return cmd class ShowRecentMessageCommand(CommandObject): """ The 'show recent message' command. """ NAME = "show recent message" DESCRIPTION = "Show recent message." def __init__(self): super(ShowRecentMessageCommand, self).__init__() self.setDescription(self.DESCRIPTION) self.setName(self.NAME) @safetyNetted def run(self): if not enso.messages.displayRecentMessage(): ensoapi.display_message(u"No recent messages.") # ---------------------------------------------------------------------------- # Plugin initialization # --------------------------------------------------------------------------- def load(): cmdMan = CommandManager.get() cmdMan.registerCommand( HideMiniMessagesCommand.NAME, HideMiniMessagesCommand() ) cmdMan.registerCommand( ShowMiniMessageFactory.NAME, ShowMiniMessageFactory() ) cmdMan.registerCommand( ShowRecentMessageCommand.NAME, ShowRecentMessageCommand() ) # vim:set tabstop=4 shiftwidth=4 expandtab:
34.533333
90
0.59818
3,797
0.52358
0
0
1,368
0.188638
0
0
3,993
0.550607
9616192a13cde5beffe85342bdb0bcbe725c8e0a
3,597
py
Python
article_curation/test_article_curation.py
mrkarezina/graph-recommendation-api
8ed3895f7816b095ec27f3c1d972bf5b8e163b34
[ "MIT" ]
null
null
null
article_curation/test_article_curation.py
mrkarezina/graph-recommendation-api
8ed3895f7816b095ec27f3c1d972bf5b8e163b34
[ "MIT" ]
null
null
null
article_curation/test_article_curation.py
mrkarezina/graph-recommendation-api
8ed3895f7816b095ec27f3c1d972bf5b8e163b34
[ "MIT" ]
null
null
null
import unittest from unittest.mock import Mock import json from processor import scrape_article import main class ArticleCurationTestCase(unittest.TestCase): def test_article_fetch(self): response = scrape_article( url='https://www.cnn.com/2019/03/25/us/yale-rescinds-student-admissions-scandal/index.html') self.assertGreater(len(response["text"].split()), 150) self.assertIn("Yale rescinds", response["title"]) self.assertIn("http", response["img_url"]) # Tricky url, tests if the extended newspaper component works response = scrape_article( url='http://www.physiciansnewsnetwork.com/ximed/study-hospital-physician-vertical-integration-has-little-impact-on-quality/article_257c41a0-3a11-11e9-952b-97cc981efd76.html') self.assertGreater(len(response["text"].split()), 150) self.assertIn("http", response["img_url"]) def test_article_fetch_endpoint(self): """ Test the actual endpoint by simulating the request object :return: """ data = { "article_url": "https://techcrunch.com/2019/05/01/alexa-in-skill-purchasing-which-lets-developers-make-money-from-voice-apps-launches-internationally" } req = Mock(get_json=Mock(return_value=data), args=data) response, code, headers = main.fetch_article(req) self.assertEqual(code, 200) self.assertGreater(len(json.loads(response)["text"].split()), 150) # Testing a bad url, see error message data = { "article_url": "https://example.com/test123" } req = Mock(get_json=Mock(return_value=data), args=data) response, code, headers = main.fetch_article(req) self.assertEqual(code, 500) def test_download_rss_endpoint(self): data = { "rss_url": "http://rss.cnn.com/rss/cnn_topstories.rss" } req = Mock(get_json=Mock(return_value=data), args=data) response, code, headers = main.download_rss(req) self.assertEqual(code, 200) self.assertGreater(len(json.loads(response)), 1) def test_fetch_rss_endpoint(self): data = { "rss_url": "http://rss.cnn.com/rss/cnn_topstories.rss" } req = Mock(get_json=Mock(return_value=data), args=data) response, code, headers = main.fetch_rss(req) self.assertEqual(code, 200) self.assertGreater(len(json.loads(response)), 1) # Test case when rss not in DB data = { "rss_url": "http://www.example.com/example.rss" } req = Mock(get_json=Mock(return_value=data), args=data) response, code, headers = main.fetch_rss(req) self.assertEqual(code, 404) # def test_get_article_dicts_from_rss_cache(self): # # start = time.time() # for i in range(1000): # article_dicts = get_article_dicts_from_rss('http://rss.cnn.com/rss/cnn_topstories.rss') # # end = time.time() # total_time = end - start # # # Make less than 10 sec, so cache works # self.assertLess(total_time, 10) # # def test_get_article_dicts_from_rss(self): # # article_dicts = get_article_dicts_from_rss('http://rss.cnn.com/rss/cnn_topstories.rss') # self.assertGreater(len(article_dicts), 0) # # for article in article_dicts: # self.assertIn("http", article["img_url"]) # # # Make sure title has more than 0 characters # self.assertGreater(len(article["title"]), 0)
34.586538
186
0.633584
3,485
0.968863
0
0
0
0
0
0
1,611
0.447873
9616936f76e77083ea419e018de9e5eaec39224e
4,715
py
Python
test.py
chdre/noise-randomized
c803fd6c6fd641a0b1c0f4880920584a647587bc
[ "MIT" ]
null
null
null
test.py
chdre/noise-randomized
c803fd6c6fd641a0b1c0f4880920584a647587bc
[ "MIT" ]
null
null
null
test.py
chdre/noise-randomized
c803fd6c6fd641a0b1c0f4880920584a647587bc
[ "MIT" ]
3
2021-10-05T09:01:51.000Z
2021-10-05T09:37:06.000Z
import unittest class PerlinTestCase(unittest.TestCase): def test_perlin_1d_range(self): from noise import pnoise1 for i in range(-10000, 10000): x = i * 0.49 n = pnoise1(x) self.assertTrue(-1.0 <= n <= 1.0, (x, n)) def test_perlin_1d_octaves_range(self): from noise import pnoise1 for i in range(-1000, 1000): for o in range(10): x = i * 0.49 n = pnoise1(x, octaves=o + 1) self.assertTrue(-1.0 <= n <= 1.0, (x, n)) def test_perlin_1d_base(self): from noise import pnoise1 self.assertEqual(pnoise1(0.5), pnoise1(0.5, base=0)) self.assertNotEqual(pnoise1(0.5), pnoise1(0.5, base=5)) self.assertNotEqual(pnoise1(0.5, base=5), pnoise1(0.5, base=1)) def test_perlin_2d_range(self): from noise import pnoise2 for i in range(-10000, 10000): x = i * 0.49 y = -i * 0.67 n = pnoise2(x, y) self.assertTrue(-1.0 <= n <= 1.0, (x, y, n)) def test_perlin_2d_octaves_range(self): from noise import pnoise2 for i in range(-1000, 1000): for o in range(10): x = -i * 0.49 y = i * 0.67 n = pnoise2(x, y, octaves=o + 1) self.assertTrue(-1.0 <= n <= 1.0, (x, n)) def test_perlin_2d_base(self): from noise import pnoise2 x, y = 0.73, 0.27 self.assertEqual(pnoise2(x, y), pnoise2(x, y, base=0)) self.assertNotEqual(pnoise2(x, y), pnoise2(x, y, base=5)) self.assertNotEqual(pnoise2(x, y, base=5), pnoise2(x, y, base=1)) def test_perlin_3d_range(self): from noise import pnoise3 for i in range(-10000, 10000): x = -i * 0.49 y = i * 0.67 z = -i * 0.727 n = pnoise3(x, y, z) self.assertTrue(-1.0 <= n <= 1.0, (x, y, z, n)) def test_perlin_3d_octaves_range(self): from noise import pnoise3 for i in range(-1000, 1000): x = i * 0.22 y = -i * 0.77 z = -i * 0.17 for o in range(10): n = pnoise3(x, y, z, octaves=o + 1) self.assertTrue(-1.0 <= n <= 1.0, (x, y, z, n)) def test_perlin_3d_base(self): from noise import pnoise3 x, y, z = 0.1, 0.7, 0.33 self.assertEqual(pnoise3(x, y, z), pnoise3(x, y, z, base=0)) self.assertNotEqual(pnoise3(x, y, z), pnoise3(x, y, z, base=5)) self.assertNotEqual(pnoise3(x, y, z, base=5), pnoise3(x, y, z, base=1)) class SimplexTestCase(unittest.TestCase): def test_randomize(self): from noise import randomize self.assertTrue(randomize(4096,23490)) def test_simplex_2d_range(self): from noise import snoise2 for i in range(-10000, 10000): x = i * 0.49 y = -i * 0.67 n = snoise2(x, y) self.assertTrue(-1.0 <= n <= 1.0, (x, y, n)) def test_simplex_2d_octaves_range(self): from noise import snoise2 for i in range(-1000, 1000): for o in range(10): x = -i * 0.49 y = i * 0.67 n = snoise2(x, y, octaves=o + 1) self.assertTrue(-1.0 <= n <= 1.0, (x, n)) def test_simplex_3d_range(self): from noise import snoise3 for i in range(-10000, 10000): x = i * 0.31 y = -i * 0.7 z = i * 0.19 n = snoise3(x, y, z) self.assertTrue(-1.0 <= n <= 1.0, (x, y, z, n)) def test_simplex_3d_octaves_range(self): from noise import snoise3 for i in range(-1000, 1000): x = -i * 0.12 y = i * 0.55 z = i * 0.34 for o in range(10): n = snoise3(x, y, z, octaves=o + 1) self.assertTrue(-1.0 <= n <= 1.0, (x, y, z, o+1, n)) def test_simplex_4d_range(self): from noise import snoise4 for i in range(-10000, 10000): x = i * 0.88 y = -i * 0.11 z = -i * 0.57 w = i * 0.666 n = snoise4(x, y, z, w) self.assertTrue(-1.0 <= n <= 1.0, (x, y, z, w, n)) def test_simplex_4d_octaves_range(self): from noise import snoise4 for i in range(-1000, 1000): x = -i * 0.12 y = i * 0.55 z = i * 0.34 w = i * 0.21 for o in range(10): n = snoise4(x, y, z, w, octaves=o + 1) self.assertTrue(-1.0 <= n <= 1.0, (x, y, z, w, o+1, n)) if __name__ == '__main__': unittest.main()
32.972028
79
0.487381
4,644
0.984942
0
0
0
0
0
0
10
0.002121
961a0eab590ae86fe03daebff4911d080dc4f38a
3,829
py
Python
pipelines/controllers/datasets.py
platiagro/pipeline-generator
d84b9512c39970c469154eaed56f08780ebf21eb
[ "Apache-2.0" ]
1
2020-05-19T14:57:55.000Z
2020-05-19T14:57:55.000Z
pipelines/controllers/datasets.py
platiagro/pipelines
d84b9512c39970c469154eaed56f08780ebf21eb
[ "Apache-2.0" ]
93
2020-04-25T21:10:49.000Z
2020-12-15T18:25:49.000Z
pipelines/controllers/datasets.py
platiagro/pipelines
d84b9512c39970c469154eaed56f08780ebf21eb
[ "Apache-2.0" ]
6
2019-09-05T12:37:59.000Z
2020-08-08T00:08:25.000Z
# -*- coding: utf-8 -*- import platiagro import pandas as pd from werkzeug.exceptions import NotFound from pipelines.database import db_session from pipelines.models import Operator from pipelines.models.utils import raise_if_experiment_does_not_exist def get_dataset_name(experiment_id, operator_id,): """Retrieves a dataset name from experiment. Args: experiment_id(str): the experiment uuid operator_id(str): the operator uuid Returns: Dataset name """ raise_if_experiment_does_not_exist(experiment_id) operator = Operator.query.get(operator_id) if operator is None: raise NotFound("The specified operator does not exist") # get dataset name dataset = operator.parameters.get('dataset') if dataset is None: # try to find dataset name in other operators operators = db_session.query(Operator) \ .filter_by(experiment_id=experiment_id) \ .filter(Operator.uuid != operator_id) \ .all() for operator in operators: dataset = operator.parameters.get('dataset') if dataset: break if dataset is None: raise NotFound() return dataset def get_dataset_pagination(application_csv, name, operator_id, page, page_size, run_id): """Retrieves a dataset. Args: application_csv(bool): if is to return dataset as csv name(str): the dataset name operator_id(str): the operator uuid page_size(int) : record numbers page(int): page number run_id (str): the run id. Returns: Dataset """ try: metadata = platiagro.stat_dataset(name=name, operator_id=operator_id) if "run_id" not in metadata: raise FileNotFoundError() dataset = platiagro.load_dataset(name=name, operator_id=operator_id, run_id=run_id) except FileNotFoundError as e: raise NotFound(str(e)) if page_size == -1: if application_csv: return dataset.to_csv(index=False) dataset = dataset.to_dict(orient="split") del dataset["index"] return dataset else: dataset = dataset.to_dict(orient="split") del dataset["index"] pdataset = pagination_datasets(page=page, page_size=page_size, dataset=dataset) if application_csv: df = pd.DataFrame(columns=pdataset['columns'], data=pdataset['data']) return df.to_csv(index=False) return pdataset def pagination_datasets(page, page_size, dataset): """pagination of datasets. Args: page_size(int) : record numbers page(int): page number dataset(json): data to be paged Returns: Paged dataset """ try: count = 0 new_datasets = [] total_elements = len(dataset['data']) page = (page * page_size) - page_size for i in range(page, total_elements): new_datasets.append(dataset['data'][i]) count += 1 if page_size == count: response = { 'columns': dataset['columns'], 'data': new_datasets, 'total': len(dataset['data']) } return response if len(new_datasets) == 0: raise NotFound("The informed page does not contain records") else: response = { 'columns': dataset['columns'], 'data': new_datasets, 'total': len(dataset['data']) } return response except RuntimeError: raise NotFound("The specified page does not exist")
32.176471
91
0.58527
0
0
0
0
0
0
0
0
1,054
0.275268
961b41ac7e12348d2cd9bb21a06c9a3f33d3b4af
4,545
py
Python
tests/test_message.py
jfkinslow/flask-mailing
dda99214b783b60fabc7dfad209fff4438eaf61c
[ "MIT" ]
null
null
null
tests/test_message.py
jfkinslow/flask-mailing
dda99214b783b60fabc7dfad209fff4438eaf61c
[ "MIT" ]
null
null
null
tests/test_message.py
jfkinslow/flask-mailing
dda99214b783b60fabc7dfad209fff4438eaf61c
[ "MIT" ]
null
null
null
import pytest from flask_mailing.schemas import Message, MultipartSubtypeEnum from flask_mailing.msg import MailMsg import os CONTENT = "file test content" def test_initialize(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) assert message.subject == "test subject" def test_recipients_properly_initialized(): message = Message( subject="test subject", recipients=[], body="test", subtype="plain" ) assert message.recipients == [] def test_add_recipient_method(): message = Message( subject="test subject", recipients=[], body="test", subtype="plain" ) message.add_recipient("[email protected]") assert message.recipients == ["[email protected]"] def test_sendto_properly_set(): msg = Message(subject="subject", recipients=["[email protected]", "[email protected]"], cc=["[email protected]"], bcc=["[email protected]"], reply_to=["[email protected]"]) assert len(msg.recipients) == 2 assert len(msg.cc) == 1 assert len(msg.bcc) == 1 assert len(msg.reply_to) == 1 def test_plain_message(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) assert message.body == "test" def test_charset(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) assert message.charset == "utf-8" def test_message_str(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) assert type(message.body) == str def test_plain_message_with_attachments(): directory = os.getcwd() attachement = directory + "/files/attachement.txt" msg = Message(subject="testing", recipients=["[email protected]"], attachments=[attachement], body="test mail body") with open(attachement, "w") as file: file.write(CONTENT) assert len(msg.attachments) == 1 def test_plain_message_with_attach_method(): directory = os.getcwd() attachement = directory + "/files/attachement_1.txt" msg = Message(subject="testing", recipients=["[email protected]"], body="test mail body") with open(attachement, "w") as file: file.write(CONTENT) with open(attachement, "rb") as fp: msg.attach("attachement_1.txt", fp.read()) assert len(msg.attachments) == 1 def test_empty_subject_header(): message = Message( subject="", recipients=["[email protected]"], body="test", subtype="plain" ) assert len(message.subject) == 0 def test_bcc(): msg = Message(subject="subject", recipients=[], bcc=["[email protected]"]) assert len(msg.bcc) == 1 assert msg.bcc == ["[email protected]"] def test_replyto(): msg = Message(subject="subject", recipients=[], reply_to=["[email protected]"]) assert len(msg.reply_to) == 1 assert msg.reply_to == ["[email protected]"] def test_cc(): msg = Message(subject="subject", recipients=[], cc=["[email protected]"]) assert len(msg.cc) == 1 assert msg.cc == ["[email protected]"] def test_multipart_subtype(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) assert message.multipart_subtype == MultipartSubtypeEnum.mixed @pytest.mark.asyncio async def test_msgid_header(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) msg = MailMsg(**message.dict()) msg_object = await msg._message('[email protected]') assert msg_object['Message-ID'] is not None @pytest.mark.asyncio async def test_message_charset(): message = Message( subject="test subject", recipients=["[email protected]"], body="test", subtype="plain" ) msg = MailMsg(**message.dict()) msg_object = await msg._message('[email protected]') assert msg_object._charset is not None assert msg_object._charset == "utf-8"
24.175532
105
0.59824
0
0
0
0
719
0.158196
677
0.148955
958
0.210781
961ccfb0c6fb46c865492bed7af363f36b450b4b
1,239
py
Python
utils/checks.py
JDJGInc/JDBot
057bcc5c80452c9282606e9bf66219e614aac5e1
[ "MIT" ]
12
2021-01-09T06:17:51.000Z
2022-03-18T06:30:15.000Z
utils/checks.py
JDJGInc/JDBot
057bcc5c80452c9282606e9bf66219e614aac5e1
[ "MIT" ]
21
2021-03-21T16:43:45.000Z
2022-02-01T16:02:26.000Z
utils/checks.py
JDJGInc/JDBot
057bcc5c80452c9282606e9bf66219e614aac5e1
[ "MIT" ]
25
2021-03-21T16:33:56.000Z
2022-03-12T16:52:25.000Z
import discord def check(ctx): def inner(m): return m.author == ctx.author return inner def Membercheck(ctx): def inner(m): return m.author == ctx.guild.me return inner def warn_permission(ctx, Member): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages and ctx.author.top_role > Member.top_role and ctx.author.guild_permissions >= Member.guild_permissions #bug with user with same permissions maybe and other stuff(seems fixed for right now, leaving note just in case.) if isinstance(ctx.channel, discord.DMChannel): return True def cleanup_permission(ctx): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages if isinstance(ctx.channel, discord.DMChannel): return True def mutual_guild_check(ctx, user): mutual_guilds = set(ctx.author.mutual_guilds) mutual_guilds2 = set(user.mutual_guilds) return bool(mutual_guilds.intersection(mutual_guilds2)) async def filter_commands(ctx, command_list): async def check(cmd, ctx): try: return await cmd.can_run(ctx) except: return False return [cmd for cmd in command_list if await check(cmd, ctx)]
27.533333
158
0.742534
0
0
0
0
0
0
222
0.179177
113
0.091203
961ceec2cadcdefd7771e879e51fe43976210c30
46,670
py
Python
scripts/mgear/rigbits/eye_rigger.py
stormstudios/rigbits
37ce738952a3cd31ba8a18b8989f5ea491d03bf0
[ "MIT" ]
1
2020-08-11T01:17:19.000Z
2020-08-11T01:17:19.000Z
scripts/mgear/rigbits/eye_rigger.py
stormstudios/rigbits
37ce738952a3cd31ba8a18b8989f5ea491d03bf0
[ "MIT" ]
null
null
null
scripts/mgear/rigbits/eye_rigger.py
stormstudios/rigbits
37ce738952a3cd31ba8a18b8989f5ea491d03bf0
[ "MIT" ]
null
null
null
"""Rigbits eye rigger tool""" import json import traceback from functools import partial import mgear.core.pyqt as gqt import pymel.core as pm from maya.app.general.mayaMixin import MayaQWidgetDockableMixin from mgear.core import meshNavigation, curve, applyop, node, primitive, icon from mgear.core import transform, utils, attribute, skin, string from mgear.vendor.Qt import QtCore, QtWidgets from pymel.core import datatypes from mgear import rigbits ########################################################## # Eye rig constructor ########################################################## def eyeRig(eyeMesh, edgeLoop, blinkH, namePrefix, offset, rigidLoops, falloffLoops, headJnt, doSkin, parent=None, ctlName="ctl", sideRange=False, customCorner=False, intCorner=None, extCorner=None, ctlGrp=None, defGrp=None): """Create eyelid and eye rig Args: eyeMesh (TYPE): Description edgeLoop (TYPE): Description blinkH (TYPE): Description namePrefix (TYPE): Description offset (TYPE): Description rigidLoops (TYPE): Description falloffLoops (TYPE): Description headJnt (TYPE): Description doSkin (TYPE): Description parent (None, optional): Description ctlName (str, optional): Description sideRange (bool, optional): Description customCorner (bool, optional): Description intCorner (None, optional): Description extCorner (None, optional): Description ctlGrp (None, optional): Description defGrp (None, optional): Description Returns: TYPE: Description """ # Checkers if edgeLoop: edgeLoopList = [pm.PyNode(e) for e in edgeLoop.split(",")] else: pm.displayWarning("Please set the edge loop first") return if eyeMesh: try: eyeMesh = pm.PyNode(eyeMesh) except pm.MayaNodeError: pm.displayWarning("The object %s can not be found in the " "scene" % (eyeMesh)) return else: pm.displayWarning("Please set the eye mesh first") if doSkin: if not headJnt: pm.displayWarning("Please set the Head Jnt or unCheck " "Compute Topological Autoskin") return # Initial Data bboxCenter = meshNavigation.bboxCenter(eyeMesh) extr_v = meshNavigation.getExtremeVertexFromLoop(edgeLoopList, sideRange) upPos = extr_v[0] lowPos = extr_v[1] inPos = extr_v[2] outPos = extr_v[3] edgeList = extr_v[4] vertexList = extr_v[5] # Detect the side L or R from the x value if inPos.getPosition(space='world')[0] < 0.0: side = "R" inPos = extr_v[3] outPos = extr_v[2] normalPos = outPos npw = normalPos.getPosition(space='world') normalVec = npw - bboxCenter else: side = "L" normalPos = outPos npw = normalPos.getPosition(space='world') normalVec = bboxCenter - npw # Manual Vertex corners if customCorner: if intCorner: try: if side == "R": inPos = pm.PyNode(extCorner) else: inPos = pm.PyNode(intCorner) except pm.MayaNodeError: pm.displayWarning("%s can not be found" % intCorner) return else: pm.displayWarning("Please set the internal eyelid corner") return if extCorner: try: normalPos = pm.PyNode(extCorner) npw = normalPos.getPosition(space='world') if side == "R": outPos = pm.PyNode(intCorner) normalVec = npw - bboxCenter else: outPos = pm.PyNode(extCorner) normalVec = bboxCenter - npw except pm.MayaNodeError: pm.displayWarning("%s can not be found" % extCorner) return else: pm.displayWarning("Please set the external eyelid corner") return # Check if we have prefix: if namePrefix: namePrefix = string.removeInvalidCharacter(namePrefix) else: pm.displayWarning("Prefix is needed") return def setName(name, ind=None): namesList = [namePrefix, side, name] if ind is not None: namesList[1] = side + str(ind) name = "_".join(namesList) return name if pm.ls(setName("root")): pm.displayWarning("The object %s already exist in the scene. Please " "choose another name prefix" % setName("root")) return # Eye root eye_root = primitive.addTransform(None, setName("root")) eyeCrv_root = primitive.addTransform(eye_root, setName("crvs")) # Eyelid Main crvs try: upEyelid = meshNavigation.edgeRangeInLoopFromMid( edgeList, upPos, inPos, outPos) upCrv = curve.createCurveFromOrderedEdges( upEyelid, inPos, setName("upperEyelid"), parent=eyeCrv_root) upCrv_ctl = curve.createCurveFromOrderedEdges( upEyelid, inPos, setName("upCtl_crv"), parent=eyeCrv_root) pm.rebuildCurve(upCrv_ctl, s=2, rt=0, rpo=True, ch=False) lowEyelid = meshNavigation.edgeRangeInLoopFromMid( edgeList, lowPos, inPos, outPos) lowCrv = curve.createCurveFromOrderedEdges( lowEyelid, inPos, setName("lowerEyelid"), parent=eyeCrv_root) lowCrv_ctl = curve.createCurveFromOrderedEdges( lowEyelid, inPos, setName("lowCtl_crv"), parent=eyeCrv_root) pm.rebuildCurve(lowCrv_ctl, s=2, rt=0, rpo=True, ch=False) except UnboundLocalError: if customCorner: pm.displayWarning("This error is maybe caused because the custom " "Corner vertex is not part of the edge loop") pm.displayError(traceback.format_exc()) return upBlink = curve.createCurveFromCurve( upCrv, setName("upblink_crv"), nbPoints=30, parent=eyeCrv_root) lowBlink = curve.createCurveFromCurve( lowCrv, setName("lowBlink_crv"), nbPoints=30, parent=eyeCrv_root) upTarget = curve.createCurveFromCurve( upCrv, setName("upblink_target"), nbPoints=30, parent=eyeCrv_root) lowTarget = curve.createCurveFromCurve( lowCrv, setName("lowBlink_target"), nbPoints=30, parent=eyeCrv_root) midTarget = curve.createCurveFromCurve( lowCrv, setName("midBlink_target"), nbPoints=30, parent=eyeCrv_root) rigCrvs = [upCrv, lowCrv, upCrv_ctl, lowCrv_ctl, upBlink, lowBlink, upTarget, lowTarget, midTarget] for crv in rigCrvs: crv.attr("visibility").set(False) # localBBOX localBBox = eyeMesh.getBoundingBox(invisible=True, space='world') wRadius = abs((localBBox[0][0] - localBBox[1][0])) dRadius = abs((localBBox[0][1] - localBBox[1][1]) / 1.7) # Groups if not ctlGrp: ctlGrp = "rig_controllers_grp" try: ctlSet = pm.PyNode(ctlGrp) except pm.MayaNodeError: pm.sets(n=ctlGrp, em=True) ctlSet = pm.PyNode(ctlGrp) if not defGrp: defGrp = "rig_deformers_grp" try: defset = pm.PyNode(defGrp) except pm.MayaNodeError: pm.sets(n=defGrp, em=True) defset = pm.PyNode(defGrp) # Calculate center looking at averagePosition = ((upPos.getPosition(space='world') + lowPos.getPosition(space='world') + inPos.getPosition(space='world') + outPos.getPosition(space='world')) / 4) if side == "R": negate = False offset = offset over_offset = dRadius else: negate = False over_offset = dRadius if side == "R" and sideRange or side == "R" and customCorner: axis = "z-x" # axis = "zx" else: axis = "z-x" t = transform.getTransformLookingAt( bboxCenter, averagePosition, normalVec, axis=axis, negate=negate) over_npo = primitive.addTransform( eye_root, setName("center_lookatRoot"), t) over_ctl = icon.create(over_npo, setName("over_%s" % ctlName), t, icon="square", w=wRadius, d=dRadius, ro=datatypes.Vector(1.57079633, 0, 0), po=datatypes.Vector(0, 0, over_offset), color=4) node.add_controller_tag(over_ctl) attribute.add_mirror_config_channels(over_ctl) attribute.setKeyableAttributes( over_ctl, params=["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"]) if side == "R": over_npo.attr("rx").set(over_npo.attr("rx").get() * -1) over_npo.attr("ry").set(over_npo.attr("ry").get() + 180) over_npo.attr("sz").set(-1) if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost": pass else: pm.sets(ctlSet, add=over_ctl) center_lookat = primitive.addTransform( over_ctl, setName("center_lookat"), t) # Tracking # Eye aim control t_arrow = transform.getTransformLookingAt(bboxCenter, averagePosition, upPos.getPosition(space='world'), axis="zy", negate=False) radius = abs((localBBox[0][0] - localBBox[1][0]) / 1.7) arrow_npo = primitive.addTransform(eye_root, setName("aim_npo"), t_arrow) arrow_ctl = icon.create(arrow_npo, setName("aim_%s" % ctlName), t_arrow, icon="arrow", w=1, po=datatypes.Vector(0, 0, radius), color=4) if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost": pass else: pm.sets(ctlSet, add=arrow_ctl) attribute.setKeyableAttributes(arrow_ctl, params=["rx", "ry", "rz"]) # tracking custom trigger if side == "R": tt = t_arrow else: tt = t aimTrigger_root = primitive.addTransform( center_lookat, setName("aimTrigger_root"), tt) aimTrigger_lvl = primitive.addTransform( aimTrigger_root, setName("aimTrigger_lvl"), tt) aimTrigger_lvl.attr("tz").set(1.0) aimTrigger_ref = primitive.addTransform( aimTrigger_lvl, setName("aimTrigger_ref"), tt) aimTrigger_ref.attr("tz").set(0.0) # connect trigger with arrow_ctl pm.parentConstraint(arrow_ctl, aimTrigger_ref, mo=True) # Controls lists upControls = [] trackLvl = [] # upper eyelid controls upperCtlNames = ["inCorner", "upInMid", "upMid", "upOutMid", "outCorner"] cvs = upCrv_ctl.getCVs(space="world") if side == "R" and not sideRange: # if side == "R": cvs = [cv for cv in reversed(cvs)] for i, cv in enumerate(cvs): if utils.is_odd(i): color = 14 wd = .5 icon_shape = "circle" params = ["tx", "ty", "tz"] else: color = 4 wd = .7 icon_shape = "square" params = ["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"] t = transform.setMatrixPosition(t, cvs[i]) npo = primitive.addTransform(center_lookat, setName("%s_npo" % upperCtlNames[i]), t) npoBase = npo if i == 2: # we add an extra level to input the tracking ofset values npo = primitive.addTransform(npo, setName("%s_trk" % upperCtlNames[i]), t) trackLvl.append(npo) ctl = icon.create(npo, setName("%s_%s" % (upperCtlNames[i], ctlName)), t, icon=icon_shape, w=wd, d=wd, ro=datatypes.Vector(1.57079633, 0, 0), po=datatypes.Vector(0, 0, offset), color=color) attribute.add_mirror_config_channels(ctl) node.add_controller_tag(ctl, over_ctl) upControls.append(ctl) if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost": pass else: pm.sets(ctlSet, add=ctl) attribute.setKeyableAttributes(ctl, params) if side == "R": npoBase.attr("ry").set(180) npoBase.attr("sz").set(-1) # adding parent average contrains to odd controls for i, ctl in enumerate(upControls): if utils.is_odd(i): pm.parentConstraint(upControls[i - 1], upControls[i + 1], ctl.getParent(), mo=True) # lower eyelid controls lowControls = [upControls[0]] lowerCtlNames = ["inCorner", "lowInMid", "lowMid", "lowOutMid", "outCorner"] cvs = lowCrv_ctl.getCVs(space="world") if side == "R" and not sideRange: cvs = [cv for cv in reversed(cvs)] for i, cv in enumerate(cvs): # we skip the first and last point since is already in the uper eyelid if i in [0, 4]: continue if utils.is_odd(i): color = 14 wd = .5 icon_shape = "circle" params = ["tx", "ty", "tz"] else: color = 4 wd = .7 icon_shape = "square" params = ["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"] t = transform.setMatrixPosition(t, cvs[i]) npo = primitive.addTransform(center_lookat, setName("%s_npo" % lowerCtlNames[i]), t) npoBase = npo if i == 2: # we add an extra level to input the tracking ofset values npo = primitive.addTransform(npo, setName("%s_trk" % lowerCtlNames[i]), t) trackLvl.append(npo) ctl = icon.create(npo, setName("%s_%s" % (lowerCtlNames[i], ctlName)), t, icon=icon_shape, w=wd, d=wd, ro=datatypes.Vector(1.57079633, 0, 0), po=datatypes.Vector(0, 0, offset), color=color) attribute.add_mirror_config_channels(ctl) lowControls.append(ctl) if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost": pass else: pm.sets(ctlSet, add=ctl) attribute.setKeyableAttributes(ctl, params) # mirror behaviout on R side controls if side == "R": npoBase.attr("ry").set(180) npoBase.attr("sz").set(-1) for lctl in reversed(lowControls[1:]): node.add_controller_tag(lctl, over_ctl) lowControls.append(upControls[-1]) # adding parent average contrains to odd controls for i, ctl in enumerate(lowControls): if utils.is_odd(i): pm.parentConstraint(lowControls[i - 1], lowControls[i + 1], ctl.getParent(), mo=True) # Connecting control crvs with controls applyop.gear_curvecns_op(upCrv_ctl, upControls) applyop.gear_curvecns_op(lowCrv_ctl, lowControls) # adding wires w1 = pm.wire(upCrv, w=upBlink)[0] w2 = pm.wire(lowCrv, w=lowBlink)[0] w3 = pm.wire(upTarget, w=upCrv_ctl)[0] w4 = pm.wire(lowTarget, w=lowCrv_ctl)[0] # adding blendshapes bs_upBlink = pm.blendShape(upTarget, midTarget, upBlink, n="blendShapeUpBlink") bs_lowBlink = pm.blendShape(lowTarget, midTarget, lowBlink, n="blendShapeLowBlink") bs_mid = pm.blendShape(lowTarget, upTarget, midTarget, n="blendShapeLowBlink") # setting blendshape reverse connections rev_node = pm.createNode("reverse") pm.connectAttr(bs_upBlink[0].attr(midTarget.name()), rev_node + ".inputX") pm.connectAttr(rev_node + ".outputX", bs_upBlink[0].attr(upTarget.name())) rev_node = pm.createNode("reverse") pm.connectAttr(bs_lowBlink[0].attr(midTarget.name()), rev_node + ".inputX") pm.connectAttr(rev_node + ".outputX", bs_lowBlink[0].attr(lowTarget.name())) rev_node = pm.createNode("reverse") pm.connectAttr(bs_mid[0].attr(upTarget.name()), rev_node + ".inputX") pm.connectAttr(rev_node + ".outputX", bs_mid[0].attr(lowTarget.name())) # setting default values bs_mid[0].attr(upTarget.name()).set(blinkH) # joints root jnt_root = primitive.addTransformFromPos( eye_root, setName("joints"), pos=bboxCenter) # head joint if headJnt: try: headJnt = pm.PyNode(headJnt) jnt_base = headJnt except pm.MayaNodeError: pm.displayWarning( "Aborted can not find %s " % headJnt) return else: # Eye root jnt_base = jnt_root eyeTargets_root = primitive.addTransform(eye_root, setName("targets")) eyeCenter_jnt = rigbits.addJnt(arrow_ctl, jnt_base, grp=defset, jntName=setName("center_jnt")) # Upper Eyelid joints ################################################## cvs = upCrv.getCVs(space="world") upCrv_info = node.createCurveInfoNode(upCrv) # aim constrain targets and joints upperEyelid_aimTargets = [] upperEyelid_jnt = [] upperEyelid_jntRoot = [] for i, cv in enumerate(cvs): # aim targets trn = primitive.addTransformFromPos(eyeTargets_root, setName("upEyelid_aimTarget", i), pos=cv) upperEyelid_aimTargets.append(trn) # connecting positions with crv pm.connectAttr(upCrv_info + ".controlPoints[%s]" % str(i), trn.attr("translate")) # joints jntRoot = primitive.addJointFromPos(jnt_root, setName("upEyelid_jnt_base", i), pos=bboxCenter) jntRoot.attr("radius").set(.08) jntRoot.attr("visibility").set(False) upperEyelid_jntRoot.append(jntRoot) applyop.aimCns(jntRoot, trn, axis="zy", wupObject=jnt_root) jnt_ref = primitive.addJointFromPos(jntRoot, setName("upEyelid_jnt_ref", i), pos=cv) jnt_ref.attr("radius").set(.08) jnt_ref.attr("visibility").set(False) jnt = rigbits.addJnt(jnt_ref, jnt_base, grp=defset, jntName=setName("upEyelid_jnt", i)) upperEyelid_jnt.append(jnt) # Lower Eyelid joints ################################################## cvs = lowCrv.getCVs(space="world") lowCrv_info = node.createCurveInfoNode(lowCrv) # aim constrain targets and joints lowerEyelid_aimTargets = [] lowerEyelid_jnt = [] lowerEyelid_jntRoot = [] for i, cv in enumerate(cvs): if i in [0, len(cvs) - 1]: continue # aim targets trn = primitive.addTransformFromPos(eyeTargets_root, setName("lowEyelid_aimTarget", i), pos=cv) lowerEyelid_aimTargets.append(trn) # connecting positions with crv pm.connectAttr(lowCrv_info + ".controlPoints[%s]" % str(i), trn.attr("translate")) # joints jntRoot = primitive.addJointFromPos(jnt_root, setName("lowEyelid_base", i), pos=bboxCenter) jntRoot.attr("radius").set(.08) jntRoot.attr("visibility").set(False) lowerEyelid_jntRoot.append(jntRoot) applyop.aimCns(jntRoot, trn, axis="zy", wupObject=jnt_root) jnt_ref = primitive.addJointFromPos(jntRoot, setName("lowEyelid_jnt_ref", i), pos=cv) jnt_ref.attr("radius").set(.08) jnt_ref.attr("visibility").set(False) jnt = rigbits.addJnt(jnt_ref, jnt_base, grp=defset, jntName=setName("lowEyelid_jnt", i)) lowerEyelid_jnt.append(jnt) # Channels # Adding and connecting attributes for the blink up_ctl = upControls[2] blink_att = attribute.addAttribute( over_ctl, "blink", "float", 0, minValue=0, maxValue=1) blinkMult_att = attribute.addAttribute( over_ctl, "blinkMult", "float", 1, minValue=1, maxValue=2) midBlinkH_att = attribute.addAttribute( over_ctl, "blinkHeight", "float", blinkH, minValue=0, maxValue=1) mult_node = node.createMulNode(blink_att, blinkMult_att) pm.connectAttr(mult_node + ".outputX", bs_upBlink[0].attr(midTarget.name())) pm.connectAttr(mult_node + ".outputX", bs_lowBlink[0].attr(midTarget.name())) pm.connectAttr(midBlinkH_att, bs_mid[0].attr(upTarget.name())) low_ctl = lowControls[2] # Adding channels for eye tracking upVTracking_att = attribute.addAttribute(up_ctl, "vTracking", "float", .02, minValue=0, maxValue=1, keyable=False, channelBox=True) upHTracking_att = attribute.addAttribute(up_ctl, "hTracking", "float", .01, minValue=0, maxValue=1, keyable=False, channelBox=True) lowVTracking_att = attribute.addAttribute(low_ctl, "vTracking", "float", .01, minValue=0, maxValue=1, keyable=False, channelBox=True) lowHTracking_att = attribute.addAttribute(low_ctl, "hTracking", "float", .01, minValue=0, maxValue=1, keyable=False, channelBox=True) mult_node = node.createMulNode(upVTracking_att, aimTrigger_ref.attr("ty")) pm.connectAttr(mult_node + ".outputX", trackLvl[0].attr("ty")) mult_node = node.createMulNode(upHTracking_att, aimTrigger_ref.attr("tx")) pm.connectAttr(mult_node + ".outputX", trackLvl[0].attr("tx")) mult_node = node.createMulNode(lowVTracking_att, aimTrigger_ref.attr("ty")) pm.connectAttr(mult_node + ".outputX", trackLvl[1].attr("ty")) mult_node = node.createMulNode(lowHTracking_att, aimTrigger_ref.attr("tx")) pm.connectAttr(mult_node + ".outputX", trackLvl[1].attr("tx")) # Tension on blink node.createReverseNode(blink_att, w1.scale[0]) node.createReverseNode(blink_att, w3.scale[0]) node.createReverseNode(blink_att, w2.scale[0]) node.createReverseNode(blink_att, w4.scale[0]) ########################################### # Reparenting ########################################### if parent: try: if isinstance(parent, basestring): parent = pm.PyNode(parent) parent.addChild(eye_root) except pm.MayaNodeError: pm.displayWarning("The eye rig can not be parent to: %s. Maybe " "this object doesn't exist." % parent) ########################################### # Auto Skinning ########################################### if doSkin: # eyelid vertex rows totalLoops = rigidLoops + falloffLoops vertexLoopList = meshNavigation.getConcentricVertexLoop(vertexList, totalLoops) vertexRowList = meshNavigation.getVertexRowsFromLoops(vertexLoopList) # we set the first value 100% for the first initial loop skinPercList = [1.0] # we expect to have a regular grid topology for r in range(rigidLoops): for rr in range(2): skinPercList.append(1.0) increment = 1.0 / float(falloffLoops) # we invert to smooth out from 100 to 0 inv = 1.0 - increment for r in range(falloffLoops): for rr in range(2): if inv < 0.0: inv = 0.0 skinPercList.append(inv) inv -= increment # this loop add an extra 0.0 indices to avoid errors for r in range(10): for rr in range(2): skinPercList.append(0.0) # base skin geo = pm.listRelatives(edgeLoopList[0], parent=True)[0] # Check if the object has a skinCluster objName = pm.listRelatives(geo, parent=True)[0] skinCluster = skin.getSkinCluster(objName) if not skinCluster: skinCluster = pm.skinCluster(headJnt, geo, tsb=True, nw=2, n='skinClsEyelid') eyelidJoints = upperEyelid_jnt + lowerEyelid_jnt pm.progressWindow(title='Auto skinning process', progress=0, max=len(eyelidJoints)) firstBoundary = False for jnt in eyelidJoints: pm.progressWindow(e=True, step=1, status='\nSkinning %s' % jnt) skinCluster.addInfluence(jnt, weight=0) v = meshNavigation.getClosestVertexFromTransform(geo, jnt) for row in vertexRowList: if v in row: it = 0 # iterator inc = 1 # increment for i, rv in enumerate(row): try: perc = skinPercList[it] t_val = [(jnt, perc), (headJnt, 1.0 - perc)] pm.skinPercent(skinCluster, rv, transformValue=t_val) if rv.isOnBoundary(): # we need to compare with the first boundary # to check if the row have inverted direction # and offset the value if not firstBoundary: firstBoundary = True firstBoundaryValue = it else: if it < firstBoundaryValue: it -= 1 elif it > firstBoundaryValue: it += 1 inc = 2 except IndexError: continue it = it + inc pm.progressWindow(e=True, endProgress=True) # Eye Mesh skinning skinCluster = skin.getSkinCluster(eyeMesh) if not skinCluster: skinCluster = pm.skinCluster(eyeCenter_jnt, eyeMesh, tsb=True, nw=1, n='skinClsEye') ########################################################## # Eye Rig UI ########################################################## class eyeRigUI(MayaQWidgetDockableMixin, QtWidgets.QDialog): valueChanged = QtCore.Signal(int) def __init__(self, parent=None): super(eyeRigUI, self).__init__(parent) self.create() def create(self): self.setWindowTitle("Rigbits: Eye Rigger") self.setWindowFlags(QtCore.Qt.Window) self.setAttribute(QtCore.Qt.WA_DeleteOnClose, 1) self.create_controls() self.create_layout() self.create_connections() def create_controls(self): # Geometry input controls self.geometryInput_group = QtWidgets.QGroupBox("Geometry Input") self.eyeball_label = QtWidgets.QLabel("Eyeball:") self.eyeball_lineEdit = QtWidgets.QLineEdit() self.eyeball_button = QtWidgets.QPushButton("<<") self.edgeloop_label = QtWidgets.QLabel("Edge Loop:") self.edgeloop_lineEdit = QtWidgets.QLineEdit() self.edgeloop_button = QtWidgets.QPushButton("<<") # Manual corners self.manualCorners_group = QtWidgets.QGroupBox("Custom Eye Corners") self.manualCorners_check = QtWidgets.QCheckBox( "Set Manual Vertex Corners") self.manualCorners_check.setChecked(False) self.intCorner_label = QtWidgets.QLabel("Internal Corner") self.intCorner_lineEdit = QtWidgets.QLineEdit() self.intCorner_button = QtWidgets.QPushButton("<<") self.extCorner_label = QtWidgets.QLabel("External Corner") self.extCorner_lineEdit = QtWidgets.QLineEdit() self.extCorner_button = QtWidgets.QPushButton("<<") # Blink heigh slider self.blinkHeigh_group = QtWidgets.QGroupBox("Blink High") self.blinkHeight_value = QtWidgets.QSpinBox() self.blinkHeight_value.setRange(0, 100) self.blinkHeight_value.setSingleStep(10) self.blinkHeight_value.setValue(20) self.blinkHeight_slider = QtWidgets.QSlider(QtCore.Qt.Horizontal) self.blinkHeight_slider.setRange(0, 100) self.blinkHeight_slider.setSingleStep( self.blinkHeight_slider.maximum() / 10.0) self.blinkHeight_slider.setValue(20) # Name prefix self.prefix_group = QtWidgets.QGroupBox("Name Prefix") self.prefix_lineEdit = QtWidgets.QLineEdit() self.prefix_lineEdit.setText("eye") self.control_group = QtWidgets.QGroupBox("Control Name Extension") self.control_lineEdit = QtWidgets.QLineEdit() self.control_lineEdit.setText("ctl") # joints self.joints_group = QtWidgets.QGroupBox("Joints") self.headJnt_label = QtWidgets.QLabel("Head or Eye area Joint:") self.headJnt_lineEdit = QtWidgets.QLineEdit() self.headJnt_button = QtWidgets.QPushButton("<<") # Topological Autoskin self.topoSkin_group = QtWidgets.QGroupBox("Skin") self.rigidLoops_label = QtWidgets.QLabel("Rigid Loops:") self.rigidLoops_value = QtWidgets.QSpinBox() self.rigidLoops_value.setRange(0, 30) self.rigidLoops_value.setSingleStep(1) self.rigidLoops_value.setValue(2) self.falloffLoops_label = QtWidgets.QLabel("Falloff Loops:") self.falloffLoops_value = QtWidgets.QSpinBox() self.falloffLoops_value.setRange(0, 30) self.falloffLoops_value.setSingleStep(1) self.falloffLoops_value.setValue(4) self.topSkin_check = QtWidgets.QCheckBox( 'Compute Topological Autoskin') self.topSkin_check.setChecked(True) # Options self.options_group = QtWidgets.QGroupBox("Options") self.parent_label = QtWidgets.QLabel("Rig Parent:") self.parent_lineEdit = QtWidgets.QLineEdit() self.parent_button = QtWidgets.QPushButton("<<") self.ctlShapeOffset_label = QtWidgets.QLabel("Controls Offset:") self.ctlShapeOffset_value = QtWidgets.QDoubleSpinBox() self.ctlShapeOffset_value.setRange(0, 10) self.ctlShapeOffset_value.setSingleStep(.05) self.ctlShapeOffset_value.setValue(.05) self.sideRange_check = QtWidgets.QCheckBox( "Use Z axis for wide calculation (i.e: Horse and fish side eyes)") self.sideRange_check.setChecked(False) self.ctlGrp_label = QtWidgets.QLabel("Controls Group:") self.ctlGrp_lineEdit = QtWidgets.QLineEdit() self.ctlGrp_button = QtWidgets.QPushButton("<<") self.deformersGrp_label = QtWidgets.QLabel("Deformers Group:") self.deformersGrp_lineEdit = QtWidgets.QLineEdit() self.deformersGrp_button = QtWidgets.QPushButton("<<") # Build button self.build_button = QtWidgets.QPushButton("Build Eye Rig") self.export_button = QtWidgets.QPushButton("Export Config to json") def create_layout(self): # Eyeball Layout eyeball_layout = QtWidgets.QHBoxLayout() eyeball_layout.setContentsMargins(1, 1, 1, 1) eyeball_layout.addWidget(self.eyeball_label) eyeball_layout.addWidget(self.eyeball_lineEdit) eyeball_layout.addWidget(self.eyeball_button) # Edge Loop Layout edgeloop_layout = QtWidgets.QHBoxLayout() edgeloop_layout.setContentsMargins(1, 1, 1, 1) edgeloop_layout.addWidget(self.edgeloop_label) edgeloop_layout.addWidget(self.edgeloop_lineEdit) edgeloop_layout.addWidget(self.edgeloop_button) # Geometry Input Layout geometryInput_layout = QtWidgets.QVBoxLayout() geometryInput_layout.setContentsMargins(6, 1, 6, 2) geometryInput_layout.addLayout(eyeball_layout) geometryInput_layout.addLayout(edgeloop_layout) self.geometryInput_group.setLayout(geometryInput_layout) # Blink High Layout blinkHeight_layout = QtWidgets.QHBoxLayout() blinkHeight_layout.setContentsMargins(1, 1, 1, 1) blinkHeight_layout.addWidget(self.blinkHeight_value) blinkHeight_layout.addWidget(self.blinkHeight_slider) self.blinkHeigh_group.setLayout(blinkHeight_layout) # joints Layout headJnt_layout = QtWidgets.QHBoxLayout() headJnt_layout.addWidget(self.headJnt_label) headJnt_layout.addWidget(self.headJnt_lineEdit) headJnt_layout.addWidget(self.headJnt_button) joints_layout = QtWidgets.QVBoxLayout() joints_layout.setContentsMargins(6, 4, 6, 4) joints_layout.addLayout(headJnt_layout) self.joints_group.setLayout(joints_layout) # topological autoskin Layout skinLoops_layout = QtWidgets.QGridLayout() skinLoops_layout.addWidget(self.rigidLoops_label, 0, 0) skinLoops_layout.addWidget(self.falloffLoops_label, 0, 1) skinLoops_layout.addWidget(self.rigidLoops_value, 1, 0) skinLoops_layout.addWidget(self.falloffLoops_value, 1, 1) topoSkin_layout = QtWidgets.QVBoxLayout() topoSkin_layout.setContentsMargins(6, 4, 6, 4) topoSkin_layout.addWidget(self.topSkin_check, alignment=QtCore.Qt.Alignment()) topoSkin_layout.addLayout(skinLoops_layout) self.topoSkin_group.setLayout(topoSkin_layout) # Manual Corners Layout intCorner_layout = QtWidgets.QHBoxLayout() intCorner_layout.addWidget(self.intCorner_label) intCorner_layout.addWidget(self.intCorner_lineEdit) intCorner_layout.addWidget(self.intCorner_button) extCorner_layout = QtWidgets.QHBoxLayout() extCorner_layout.addWidget(self.extCorner_label) extCorner_layout.addWidget(self.extCorner_lineEdit) extCorner_layout.addWidget(self.extCorner_button) manualCorners_layout = QtWidgets.QVBoxLayout() manualCorners_layout.setContentsMargins(6, 4, 6, 4) manualCorners_layout.addWidget(self.manualCorners_check, alignment=QtCore.Qt.Alignment()) manualCorners_layout.addLayout(intCorner_layout) manualCorners_layout.addLayout(extCorner_layout) self.manualCorners_group.setLayout(manualCorners_layout) # Options Layout parent_layout = QtWidgets.QHBoxLayout() parent_layout.addWidget(self.parent_label) parent_layout.addWidget(self.parent_lineEdit) parent_layout.addWidget(self.parent_button) offset_layout = QtWidgets.QHBoxLayout() offset_layout.addWidget(self.ctlShapeOffset_label) offset_layout.addWidget(self.ctlShapeOffset_value) ctlGrp_layout = QtWidgets.QHBoxLayout() ctlGrp_layout.addWidget(self.ctlGrp_label) ctlGrp_layout.addWidget(self.ctlGrp_lineEdit) ctlGrp_layout.addWidget(self.ctlGrp_button) deformersGrp_layout = QtWidgets.QHBoxLayout() deformersGrp_layout.addWidget(self.deformersGrp_label) deformersGrp_layout.addWidget(self.deformersGrp_lineEdit) deformersGrp_layout.addWidget(self.deformersGrp_button) options_layout = QtWidgets.QVBoxLayout() options_layout.setContentsMargins(6, 1, 6, 2) options_layout.addLayout(parent_layout) options_layout.addLayout(offset_layout) options_layout.addWidget(self.blinkHeigh_group) options_layout.addWidget(self.sideRange_check) options_layout.addLayout(ctlGrp_layout) options_layout.addLayout(deformersGrp_layout) self.options_group.setLayout(options_layout) # Name prefix namePrefix_layout = QtWidgets.QVBoxLayout() namePrefix_layout.setContentsMargins(1, 1, 1, 1) namePrefix_layout.addWidget(self.prefix_lineEdit) self.prefix_group.setLayout(namePrefix_layout) # Name prefix controlExtension_layout = QtWidgets.QVBoxLayout() controlExtension_layout.setContentsMargins(1, 1, 1, 1) controlExtension_layout.addWidget(self.control_lineEdit) self.control_group.setLayout(controlExtension_layout) # Main Layout main_layout = QtWidgets.QVBoxLayout() main_layout.setContentsMargins(6, 6, 6, 6) main_layout.addWidget(self.prefix_group) main_layout.addWidget(self.control_group) main_layout.addWidget(self.geometryInput_group) main_layout.addWidget(self.manualCorners_group) main_layout.addWidget(self.options_group) main_layout.addWidget(self.joints_group) main_layout.addWidget(self.topoSkin_group) main_layout.addWidget(self.build_button) main_layout.addWidget(self.export_button) self.setLayout(main_layout) def create_connections(self): self.blinkHeight_value.valueChanged[int].connect( self.blinkHeight_slider.setValue) self.blinkHeight_slider.valueChanged[int].connect( self.blinkHeight_value.setValue) self.eyeball_button.clicked.connect(partial(self.populate_object, self.eyeball_lineEdit)) self.parent_button.clicked.connect(partial(self.populate_object, self.parent_lineEdit)) self.headJnt_button.clicked.connect(partial(self.populate_object, self.headJnt_lineEdit, 1)) self.edgeloop_button.clicked.connect(self.populate_edgeloop) self.build_button.clicked.connect(self.buildRig) self.export_button.clicked.connect(self.exportDict) self.intCorner_button.clicked.connect(partial(self.populate_element, self.intCorner_lineEdit, "vertex")) self.extCorner_button.clicked.connect(partial(self.populate_element, self.extCorner_lineEdit, "vertex")) self.ctlGrp_button.clicked.connect(partial(self.populate_element, self.ctlGrp_lineEdit, "objectSet")) self.deformersGrp_button.clicked.connect(partial( self.populate_element, self.deformersGrp_lineEdit, "objectSet")) # SLOTS ########################################################## def populate_element(self, lEdit, oType="transform"): if oType == "joint": oTypeInst = pm.nodetypes.Joint elif oType == "vertex": oTypeInst = pm.MeshVertex elif oType == "objectSet": oTypeInst = pm.nodetypes.ObjectSet else: oTypeInst = pm.nodetypes.Transform oSel = pm.selected() if oSel: if isinstance(oSel[0], oTypeInst): lEdit.setText(oSel[0].name()) else: pm.displayWarning( "The selected element is not a valid %s" % oType) else: pm.displayWarning("Please select first one %s." % oType) def populate_object(self, lEdit, oType=None): if oType == 1: oType = pm.nodetypes.Joint else: oType = pm.nodetypes.Transform oSel = pm.selected() if oSel: if isinstance(oSel[0], oType): lEdit.setText(oSel[0].name()) else: pm.displayWarning("The selected element is not a valid object") else: pm.displayWarning("Please select first the object.") def populate_edgeloop(self): oSel = pm.selected(fl=1) if oSel: edgeList = "" separator = "" for e in oSel: if isinstance(e, pm.MeshEdge): if edgeList: separator = "," edgeList = edgeList + separator + str(e) if not edgeList: pm.displayWarning("Please select first the eyelid edge loop.") elif len(edgeList.split(",")) < 4: pm.displayWarning("The minimun edge count is 4") else: self.edgeloop_lineEdit.setText(edgeList) else: pm.displayWarning("Please select first the eyelid edge loop.") def populateDict(self): self.buildDict = {} blinkH = float(self.blinkHeight_value.value()) / 100.0 self.buildDict["eye"] = [self.eyeball_lineEdit.text(), self.edgeloop_lineEdit.text(), blinkH, self.prefix_lineEdit.text(), self.ctlShapeOffset_value.value(), self.rigidLoops_value.value(), self.falloffLoops_value.value(), self.headJnt_lineEdit.text(), self.topSkin_check.isChecked(), self.parent_lineEdit.text(), self.control_lineEdit.text(), self.sideRange_check.isChecked(), self.manualCorners_check.isChecked(), self.intCorner_lineEdit.text(), self.extCorner_lineEdit.text(), self.ctlGrp_lineEdit.text(), self.deformersGrp_lineEdit.text()] def buildRig(self): self.populateDict() eyeRig(*self.buildDict["eye"]) def exportDict(self): self.populateDict() data_string = json.dumps(self.buildDict, indent=4, sort_keys=True) filePath = pm.fileDialog2( dialogStyle=2, fileMode=0, fileFilter='Eyes Rigger Configuration .eyes (*%s)' % ".eyes") if not filePath: return if not isinstance(filePath, basestring): filePath = filePath[0] f = open(filePath, 'w') f.write(data_string) f.close() # build lips from json file: def eyesFromfile(path): buildDict = json.load(open(path)) eyeRig(*buildDict["eye"]) def showEyeRigUI(*args): gqt.showDialog(eyeRigUI) if __name__ == "__main__": showEyeRigUI() # path = "C:\\Users\\miquel\\Desktop\\eye_L.eyes" # eyesFromfile(path) # path = "C:\\Users\\miquel\\Desktop\\eye_R.eyes" # eyesFromfile(path)
38.698176
79
0.541526
16,004
0.342918
0
0
0
0
0
0
6,718
0.143947
961d4ae687b3642af37cc358422318fe31255362
3,260
py
Python
Python/expert/interact_with_linux/solution.py
fpichl/ProgrammingTasks
da494022455dd77de1c99a6c6e4962616e9764e6
[ "Unlicense" ]
2
2018-10-18T16:35:56.000Z
2019-03-07T06:16:18.000Z
Python/expert/interact_with_linux/solution.py
fpichl/ProgrammingTasks
da494022455dd77de1c99a6c6e4962616e9764e6
[ "Unlicense" ]
2
2019-11-13T09:25:54.000Z
2021-08-19T08:23:32.000Z
Python/expert/interact_with_linux/solution.py
fpichl/ProgrammingTasks
da494022455dd77de1c99a6c6e4962616e9764e6
[ "Unlicense" ]
3
2019-05-22T12:20:05.000Z
2019-08-30T12:57:56.000Z
#!/usr/bin/env python3 import os import shutil import sys import pathlib import logging # I will NEVER EVER use subproccess again # At least not for something like Popen try: from sh import wget except Exception: print('[!] Just install sh right now!(pip install --user sh)') sys.exit(0) # Dumb Python2 support if sys.version_info[0] == 2: input = raw_input # Path where this python script is located when it's run curr_dir = pathlib.Path(os.path.dirname(os.path.abspath(__file__))) # The URL url = input('[$] Url(none for ema.perfact.de): ') url = url if url else 'ema.perfact.de' print('[*] Url: {}\n'.format(url)) # Get name of the directory where the whole page should be saved dir_name = input('[$] Directory name for the page(none for "1337"): ') dir_name = dir_name if dir_name else '1337' page_dir = curr_dir / dir_name if page_dir.is_dir(): print('[!] {} is already a directory and will be overwritten!'.format(page_dir)) choice = input('[!] Continue?(y/n):').lower() if choice != 'y': sys.exit(0) print('[*] Directory to save the page: {}\n'.format(dir_name)) # Get name of directory where the files will be saved we actually want to save save_name = input('[$] Directory name to save findings(none for "saved"): ') save_name = save_name if save_name else 'saved' save_dir = curr_dir / save_name if save_dir.is_dir(): print('[!] {} is already a directory!'.format(save_dir)) choice = input('[!] Delete it?(y/n): '.format(save_dir)).lower() if choice == 'y': shutil.rmtree(save_dir.absolute().as_posix()) else: sys.exit(0) os.makedirs(save_dir.absolute().as_posix()) print('[*] Directory to save findings: {}\n'.format(save_name)) # The searchterm (which files we want to copy) print('[*] Everything with the following substring will be copied') search_term = input('[$] Files to copy to that directory(none for ".png"): ') search_term = search_term if search_term else '.png' print('[*] Searchterm: {}\n'.format(search_term)) input('\n[$] Press any key to continue...') # We will give these exit_codes to the wget call later # to disabled every exit/error message (will look horribly else) exit_codes = (i for i in range(0, 9)) # Sets off the wget -m <url> -P <directory> commande # It's written so weird, so we can see the output of the program try: for line in wget('-m', url, '-P', dir_name, _iter=True, _err_to_out=True, _out_bufsize=1, _ok_code=exit_codes): print(line) except Exception: pass # Copying the files we want to save try: # Get every file with the correct searchterm from the folder where the webpage is saved files = list(page_dir.glob("**/*{}".format(search_term))) if not files: print("[!] No matching files found") else: print("[*] Copying {} *{} files...".format(len(files), search_term)) for f in files: shutil.copy(f.absolute().as_posix(), save_dir.absolute().as_posix()) except Exception as e: print('[!] Something went wrong while copying data') print(e) # Deleting the saved webpage, cause we don't need it anymore print('\n[*] Cleaning up...\n') if page_dir.is_dir(): shutil.rmtree(page_dir.absolute().as_posix()) print('[*] All done!')
33.958333
91
0.674233
0
0
0
0
0
0
0
0
1,589
0.487423
961e5e18627878c209a335c0392cc2286e8803ad
323
py
Python
Asap-3.8.4/Projects/NanoparticleMC/misc/viewatomsmc.py
auag92/n2dm
03403ef8da303b79478580ae76466e374ec9da60
[ "MIT" ]
1
2021-10-19T11:35:34.000Z
2021-10-19T11:35:34.000Z
Asap-3.8.4/Projects/NanoparticleMC/misc/viewatomsmc.py
auag92/n2dm
03403ef8da303b79478580ae76466e374ec9da60
[ "MIT" ]
null
null
null
Asap-3.8.4/Projects/NanoparticleMC/misc/viewatomsmc.py
auag92/n2dm
03403ef8da303b79478580ae76466e374ec9da60
[ "MIT" ]
3
2016-07-18T19:22:48.000Z
2021-07-06T03:06:42.000Z
import ase from ase import Atoms from ase.atom import Atom import sys from ase.visualize import view import pickle f = open(sys.argv[1],'r') #The .amc file p = pickle.load(f) positions = p['atomspositions'] atms = Atoms() for p0 in positions: a = Atom('Au',position=p0) atms.append(a) atms.center(vacuum=2) view(atms)
17
40
0.721362
0
0
0
0
0
0
0
0
37
0.114551
961e930045b962f6aec047adbd1d0fd8f14a977a
453
py
Python
bot_settings_example.py
nikmedoed/BalanceBot
731e6d09d71bbf8d7802d0b42a570947343d3ce6
[ "MIT" ]
null
null
null
bot_settings_example.py
nikmedoed/BalanceBot
731e6d09d71bbf8d7802d0b42a570947343d3ce6
[ "MIT" ]
null
null
null
bot_settings_example.py
nikmedoed/BalanceBot
731e6d09d71bbf8d7802d0b42a570947343d3ce6
[ "MIT" ]
null
null
null
# это dev среда TELEGRAM_TOKEN = "..." RELATIVE_CHAT_IDS = [ "...", '...'] TEXT = { "bot_info": ('Привет, я бот, который отвечает за равномерное распределение участников по комнатам.\n\n' 'Нажми кнопку, если готов сменить комнату'), "get_link": "Получить рекомендацию", "new_room": "Ваша новая комната\n%s", "nothing_to_change": "На данный момент ничего менять не требуется" } def logger(*message): print(message)
30.2
107
0.655629
0
0
0
0
0
0
0
0
489
0.765258
961f8e0ded1739e7f84175c2bdac8bbf64966432
8,270
py
Python
test/xslt/borrowed/sm_20000304.py
zepheira/amara
d3ffe07d6e2266b34d72b012a82d572c8edbf1e7
[ "Apache-2.0" ]
6
2015-01-30T03:50:36.000Z
2022-03-20T16:09:58.000Z
test/xslt/borrowed/sm_20000304.py
zepheira/amara
d3ffe07d6e2266b34d72b012a82d572c8edbf1e7
[ "Apache-2.0" ]
2
2015-02-04T17:18:47.000Z
2019-09-27T23:39:52.000Z
test/xslt/borrowed/sm_20000304.py
zepheira/amara
d3ffe07d6e2266b34d72b012a82d572c8edbf1e7
[ "Apache-2.0" ]
6
2015-02-04T16:16:18.000Z
2019-10-30T20:07:48.000Z
######################################################################## # test/xslt/sm20000304.py # Example from Steve Muench <[email protected]> # to Jon Smirl <[email protected]> # on 4 March 2000 """ From: "Steve Muench" <[email protected]> To: <[email protected]> Subject: Re: SVG charts and graphs from XML input Date: Sat, 4 Mar 2000 18:02:53 -0800 (19:02 MST) This is by no means a bullet-proof, one-size-fits all charting stylesheet, but it *was* my first foray into SVG from XSLT. Given XML results of an Oracle XSQL Page like: <xsql:query xmlns:xsql="urn:oracle-xsql" connection="demo"> select ename, sal from dept </xsql:query> Which under the covers produces a dynamic XML doc like: [SNIP source] The following "salchart.xsl" XSLT stylesheet renders a dynamic bar chart with "cool colors" for the employees in the department. You may have to modify the namespace of the Java extension functions to get it to work in XT or Saxon or other XSLT engines. [SNIP stylesheet] """ import os import cStringIO import unittest from amara.lib import treecompare from amara.test import test_main from amara.test.xslt import xslt_test, filesource, stringsource ### dalke - added to make the imports work def NumberValue(x): return x #Extensions ORACLE_JAVA_NS = 'http://www.oracle.com/XSL/Transform/java' JAVA_COLOR_NS = ORACLE_JAVA_NS + '/java.awt.Color' JAVA_INTEGER_NS = ORACLE_JAVA_NS + '/java.lang.Integer' def Java_Color_GetHSBColor(context, hue, saturation, brightness): hue = NumberValue(hue) saturation = NumberValue(saturation) brightness = NumberValue(brightness) if saturation == 0: r = g = b = int(brightness * 255) else: r = g = b = 0 h = (hue - int(hue)) * 6.0 f = h - int(h) p = brightness * (1.0 - saturation) q = brightness * (1.0 - saturation * f) t = brightness * (1.0 - (saturation * (1.0 - f))) h = int(h) if h == 0: r = int(brightness * 255) g = int(t * 255) b = int(p * 255) elif h == 1: r = int(q * 255) g = int(brightness * 255) b = int(p * 255) elif h == 2: r = int(p * 255) g = int(brightness * 255) b = int(t * 255) elif h == 3: r = int(p * 255) g = int(q * 255) b = int(brightness * 255) elif h == 4: r = int(t * 255) g = int(p * 255) b = int(brightness * 255) elif h == 5: r = int(brightness * 255) g = int(p * 255) b = int(q * 255) return 0xff000000L | (r << 16) | (g << 8) | (b << 0) def Java_Color_GetRed(context, color): color = NumberValue(color) return (long(color) >> 16) & 0xff def Java_Color_GetGreen(context, color): color = NumberValue(color) return (long(color) >> 8) & 0xff def Java_Color_GetBlue(context, color): color = NumberValue(color) return long(color) & 0xff def Java_Integer_ToHexString(context, number): return '%X' % NumberValue(number) ExtFunctions = { (JAVA_COLOR_NS, 'getHSBColor') : Java_Color_GetHSBColor, (JAVA_COLOR_NS, 'getRed') : Java_Color_GetRed, (JAVA_COLOR_NS, 'getGreen') : Java_Color_GetGreen, (JAVA_COLOR_NS, 'getBlue') : Java_Color_GetBlue, (JAVA_INTEGER_NS, 'toHexString') : Java_Integer_ToHexString, } class test_xslt_call_template_ed_20010101(xslt_test): source = stringsource("""<?xml version = '1.0'?> <ROWSET> <ROW num="1"> <ENAME>CLARK</ENAME> <SAL>2450</SAL> </ROW> <ROW num="2"> <ENAME>KING</ENAME> <SAL>3900</SAL> </ROW> <ROW num="3"> <ENAME>MILLER</ENAME> <SAL>1300</SAL> </ROW> </ROWSET> """) transform = stringsource('''<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:Color="http://www.oracle.com/XSL/Transform/java/java.awt.Color" xmlns:Integer="http://www.oracle.com/XSL/Transform/java/java.lang.Integer" exclude-result-prefixes="Color Integer"> <xsl:output media-type="image/svg"/> <xsl:template match="/"> <svg xml:space="preserve" width="1000" height="1000"> <desc>Salary Chart</desc> <g style="stroke:#000000;stroke-width:1;font-family:Arial;font-size:16"> <xsl:for-each select="ROWSET/ROW"> <xsl:call-template name="drawBar"> <xsl:with-param name="rowIndex" select="position()"/> <xsl:with-param name="ename" select="ENAME"/> <xsl:with-param name="sal" select="number(SAL)"/> </xsl:call-template> </xsl:for-each> </g> </svg> </xsl:template> <xsl:template name="drawBar"> <xsl:param name="rowIndex" select="number(0)"/> <xsl:param name="ename"/> <xsl:param name="sal" select="number(0)"/> <xsl:variable name="xOffset" select="number(100)"/> <xsl:variable name="yOffset" select="number(20)"/> <xsl:variable name="barHeight" select="number(25)"/> <xsl:variable name="gap" select="number(10)"/> <xsl:variable name="x" select="$xOffset"/> <xsl:variable name="y" select="$yOffset + $rowIndex * ($barHeight + $gap)"/> <xsl:variable name="barWidth" select="$sal div number(10)"/> <rect x="{$x}" y="{$y}" height="{$barHeight}" width="{$barWidth}"> <xsl:attribute name="style"> <xsl:text>fill:#</xsl:text> <xsl:call-template name="getCoolColorStr" xml:space="default"> <xsl:with-param name="colorIndex" select="$rowIndex"/> <xsl:with-param name="totalColors" select="number(14)"/> </xsl:call-template> <xsl:text> </xsl:text> </xsl:attribute> </rect> <xsl:variable name="fontHeight" select="number(18)"/> <text x="20" y="{$y + $fontHeight}"> <xsl:value-of select="$ename"/> </text> <xsl:variable name="x2" select="$xOffset + $barWidth + 10"/> <text x="{$x2}" y="{$y + $fontHeight}"> <xsl:value-of select="$sal"/> </text> </xsl:template> <xsl:template name="getCoolColorStr"> <xsl:param name="colorIndex"/> <xsl:param name="totalColors"/> <xsl:variable name="SATURATION" select="number(0.6)"/> <xsl:variable name="BRIGHTNESS" select="number(0.9)"/> <xsl:variable name="hue" select="$colorIndex div $totalColors"/> <xsl:variable name="c" select="Color:getHSBColor($hue, $SATURATION, $BRIGHTNESS)"/> <xsl:variable name="r" select="Color:getRed($c)"/> <xsl:variable name="g" select="Color:getGreen($c)"/> <xsl:variable name="b" select="Color:getBlue($c)"/> <xsl:variable name="rs" select="Integer:toHexString($r)"/> <xsl:variable name="gs" select="Integer:toHexString($g)"/> <xsl:variable name="bs" select="Integer:toHexString($b)"/> <xsl:if test="$r &lt; 16">0</xsl:if><xsl:value-of select="$rs"/> <xsl:if test="$g &lt; 16">0</xsl:if><xsl:value-of select="$gs"/> <xsl:if test="$b &lt; 16">0</xsl:if><xsl:value-of select="$bs"/> </xsl:template> </xsl:stylesheet> ''') parameters = {} expected = """<?xml version='1.0' encoding='UTF-8'?> <svg height='1000' xml:space='preserve' width='1000'> <desc>Salary Chart</desc> <g style='stroke:#000000;stroke-width:1;font-family:Arial;font-size:16'> <rect height='25' x='100' style='fill:#E5965B ' width='245' y='55'/><text x='20' y='73'>CLARK</text><text x='355' y='73'>2450</text> <rect height='25' x='100' style='fill:#E5D15B ' width='390' y='90'/><text x='20' y='108'>KING</text><text x='500' y='108'>3900</text> <rect height='25' x='100' style='fill:#BEE55B ' width='130' y='125'/><text x='20' y='143'>MILLER</text><text x='240' y='143'>1300</text> </g> </svg>""" # def test_transform(self): # import sys # from amara.xslt import transform # # result = transform(self.source, self.transform, output=io) # # #FIXME: the numerics break under Python 2.3 # test_harness.XsltTest(tester, source, [sheet], expected_1, # extensionModules=[__name__]) # # self.assert_(treecompare.html_compare(self.expected, io.getvalue())) # # return # Hide the test framework from nose del xslt_test if __name__ == '__main__': test_main()
32.687747
143
0.606167
4,739
0.573035
0
0
0
0
0
0
5,769
0.697582
961fc04d55a2472f650b925e3c30b289d25af832
123
py
Python
model-server/config.py
campos537/deep-fashion-system
1de31dd6260cc967e1832cff63ae7e537a3a4e9d
[ "Unlicense" ]
1
2021-04-06T00:43:26.000Z
2021-04-06T00:43:26.000Z
model-server/config.py
campos537/deep-fashion-system
1de31dd6260cc967e1832cff63ae7e537a3a4e9d
[ "Unlicense" ]
null
null
null
model-server/config.py
campos537/deep-fashion-system
1de31dd6260cc967e1832cff63ae7e537a3a4e9d
[ "Unlicense" ]
null
null
null
import json def Config(config_path): with open(config_path) as config_file: return json.load(config_file)
20.5
42
0.707317
0
0
0
0
0
0
0
0
0
0