hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
9b84b07bfeb0b1498473bf71e8cf00668429868a
1,138
py
Python
datastruct/TreeNode.py
cocobear/LeetCode-in-Python
b4ecd5cb7122467ee479f38497faaabb17e6025e
[ "MIT" ]
null
null
null
datastruct/TreeNode.py
cocobear/LeetCode-in-Python
b4ecd5cb7122467ee479f38497faaabb17e6025e
[ "MIT" ]
null
null
null
datastruct/TreeNode.py
cocobear/LeetCode-in-Python
b4ecd5cb7122467ee479f38497faaabb17e6025e
[ "MIT" ]
null
null
null
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None def __str__(self, depth=0): ret = '' if self.right != None: ret += self.right.__str__(depth + 1) if not self.val: ret += '\n' else: ret += '\n' + (' '*depth) + str(self.val) if self.left != None: ret += self.left.__str__(depth + 1) return ret @staticmethod def constructTree(levelOrder): # 从给定的层先遍历的数组构建一个二叉树 # 给定的数组为一个满二叉树 def conTree(root, levelOrder, i): if i >= len(levelOrder): return if not levelOrder[i]: return tmp = TreeNode(levelOrder[i]) root = tmp root.left = conTree(root.left, levelOrder, 2*i+1) root.right = conTree(root.right, levelOrder, 2*i+2) return root root = None return conTree(root, levelOrder, 0) if __name__ == "__main__": print(TreeNode.constructTree([3,9,20,None,None,15,7])) print(TreeNode.constructTree([2,3,4]))
27.756098
63
0.51406
1,066
0.889816
0
0
599
0.5
0
0
120
0.100167
9b88125439c00c982850039874ca9e2e40963ded
17,936
py
Python
src/test_quality_measures.py
hackalog/dimension_reduction
18c54256f4b1f1fbfe0b99e86b6701e708b7c85c
[ "MIT" ]
1
2018-10-22T11:45:45.000Z
2018-10-22T11:45:45.000Z
src/test_quality_measures.py
hackalog/dimension_reduction
18c54256f4b1f1fbfe0b99e86b6701e708b7c85c
[ "MIT" ]
null
null
null
src/test_quality_measures.py
hackalog/dimension_reduction
18c54256f4b1f1fbfe0b99e86b6701e708b7c85c
[ "MIT" ]
null
null
null
import hypothesis.strategies as st from hypothesis.extra.numpy import arrays from hypothesis import given import unittest import numpy as np from sklearn.base import BaseEstimator import inspect import src.quality_measures as qm from .logging import logger # old functions to test against while refactoring def old_centering_matrix(N): ''' Returns the N x N centering matrix. ''' I_N = np.identity(N) one_N = np.matrix(np.ones(N)).transpose() J = I_N - one_N * one_N.transpose()/N return J def old_doubly_center_matrix(matrix): ''' Doubly center the matrix. That is, -J * matrix * J. Note that this matrix must be square. ''' m, n = matrix.shape assert m == n, "Matrix must be square" J = old_centering_matrix(m) new_matrix = -J * matrix * J return new_matrix / 2 def old_strain(high_distances, low_distances): B = qm.doubly_center_matrix(qm.square_matrix_entries(high_distances)) top = qm.square_matrix_entries(B - qm.square_matrix_entries(low_distances)) result = np.sqrt(np.sum(top)/np.sum(qm.square_matrix_entries(B))) return result def old_point_strain(high_distances, low_distances): B = qm.doubly_center_matrix(qm.square_matrix_entries(high_distances)) top = qm.square_matrix_entries(B - qm.square_matrix_entries(low_distances)) result = np.sum(top, axis=1)/np.sum(qm.square_matrix_entries(B)) return result def knn_to_point_untrustworthiness(high_knn, low_knn, n_neighbors=None, high_rank=None): ''' Given the n_neighbors nearest neighbors in high space and low space, together with the rank matrix, compute the value of "untrustworthiness" of a point (this is the factor that a point contributes negatively to trustworthiness). ''' if n_neighbors is None or high_rank is None: raise ValueError("n_neighbors and high_rank are required") point_scores = [] N = high_knn.shape[0] G_K = qm._trustworthiness_normalizating_factor(n_neighbors, N) for i, low in enumerate(low_knn): trust_indices = set(low).difference(set(high_knn[i])) score = 0 for j in trust_indices: score += (high_rank[i, j] - n_neighbors) * 2 / G_K point_scores.append(score) return np.array(point_scores) def old_point_untrustworthiness(high_distances=None, low_distances=None, high_data=None, low_data=None, metric='euclidean', n_neighbors=None): ''' Given high/low distances or data, compute the value of "untrustworthiness" of a point (this is the factor that a point contributes negatively to trustworthiness). ''' hd, ld, _ = qm.pairwise_distance_differences(high_distances=high_distances, low_distances=low_distances, high_data=high_data, low_data=low_data, metric=metric) if n_neighbors is None: raise ValueError("n_neighbors is required") high_rank = qm.rank_matrix(hd) low_rank = qm.rank_matrix(ld) high_knn = qm.rank_to_knn(high_rank, n_neighbors=n_neighbors) low_knn = qm.rank_to_knn(low_rank, n_neighbors=n_neighbors) point_scores = knn_to_point_untrustworthiness(high_knn, low_knn, n_neighbors=n_neighbors, high_rank=high_rank) return point_scores class test_estimator(BaseEstimator): def fit(self, X): self._return_value = X def transform(self, X): return self._return_value # Start of tests @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_square_matrix_entries(array): matrix = np.matrix(array) s_array = array**2 assert (qm.square_matrix_entries(matrix) == s_array).all() @given(st.integers(min_value=1, max_value=100)) def test_old_new_centering_matrix(N): assert (qm.centering_matrix(N) == old_centering_matrix(N)).all() @given(st.integers(min_value=1, max_value=100)) def test_centering_matrix_output(N): matrix = qm.centering_matrix(N) assert matrix.shape == (N, N) @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_old_new_doubly_center_matrix(matrix): assert (qm.doubly_center_matrix(matrix) == old_doubly_center_matrix(matrix)).all() @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 2), elements=st.floats(min_value=-100, max_value=100))) def test_pairwise_distance_differences_data(high_data, low_data): hd, ld, dd = qm.pairwise_distance_differences(high_data=high_data, low_data=low_data) n_pts = high_data.shape[0] assert hd.shape == (n_pts, n_pts) assert ld.shape == (n_pts, n_pts) assert dd.shape == (n_pts, n_pts) @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_pairwise_distance_differences_dist(high_dist, low_dist): hd, ld, dd = qm.pairwise_distance_differences(high_distances=high_dist, low_distances=low_dist) n_pts = high_dist.shape[0] assert hd.shape == (n_pts, n_pts) assert ld.shape == (n_pts, n_pts) assert dd.shape == (n_pts, n_pts) assert (hd == high_dist).all() assert (ld == low_dist).all() assert (dd == (high_dist-low_dist)).all() @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 2), elements=st.floats(min_value=-100, max_value=100))) def test_stress_data(high_data, low_data): stress = qm.stress(high_data=high_data, low_data=low_data) assert stress.dtype == 'float64' @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_stress_distances(high_distances, low_distances): stress = qm.stress(high_distances=high_distances, low_distances=low_distances) assert stress.dtype == 'float64' @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 2), elements=st.floats(min_value=-100, max_value=100))) def test_point_stress_data(high_data, low_data): pstress = qm.point_stress(high_data=high_data, low_data=low_data) n_pts = high_data.shape[0] assert pstress.shape == (n_pts, ) @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_point_stress_distances(high_distances, low_distances): pstress = qm.point_stress(high_distances=high_distances, low_distances=low_distances) n_pts = high_distances.shape[0] assert pstress.shape == (n_pts, ) @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_old_new_strain(high_distances, low_distances): # all zeros raises an error. tested later. if not (high_distances == 0).all(): assert (qm.strain(high_distances, low_distances) == old_strain(high_distances, low_distances)).all() @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_old_new_point_strain(high_distances, low_distances): # all zeros raises an error. tested later. if not (high_distances == 0).all(): assert (qm.point_strain(high_distances, low_distances) == old_point_strain(high_distances, low_distances)).all() # TODO: Test various input styles. @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_old_new_point_untrustworthiness(high_distances, low_distances, n_neighbors): old = old_point_untrustworthiness(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) new = qm.point_untrustworthiness(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) assert all(old == new) @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_trustworthiness_distances(high_distances, low_distances, n_neighbors): new = qm.trustworthiness(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) old_point = old_point_untrustworthiness(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) assert new == (1-sum(old_point)) assert new >= 0.0 assert new <= 1.0 @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_trustworthiness_data(high_data, low_data, n_neighbors): new = qm.trustworthiness(high_data=high_data, low_data=low_data, n_neighbors=n_neighbors) old_point = old_point_untrustworthiness(high_data=high_data, low_data=low_data, n_neighbors=n_neighbors) assert new == (1-sum(old_point)) assert new >= 0.0 assert new <= 1.0 @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_trustworthiness_point_scores(high_distances, low_distances, n_neighbors): old_point = old_point_untrustworthiness(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) new = qm.trustworthiness(point_scores=old_point) assert new == (1-sum(old_point)) assert new >= 0.0 assert new <= 1.0 @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_continuity_distances(high_distances, low_distances, n_neighbors): new = qm.continuity(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) assert new >= 0.0 assert new <= 1.0 @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_continuity_data(high_data, low_data, n_neighbors): new = qm.continuity(high_data=high_data, low_data=low_data, n_neighbors=n_neighbors) assert new >= 0.0 assert new <= 1.0 @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100)), st.integers(min_value=1, max_value=3)) def test_continuity_point_scores(high_distances, low_distances, n_neighbors): point = qm.point_discontinuity(high_distances=high_distances, low_distances=low_distances, n_neighbors=n_neighbors) new = qm.continuity(point_scores=point) assert new == (1-sum(point)) assert new >= 0.0 assert new <= 1.0 @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100), unique=True), arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100), unique=True), arrays(np.bool, (3, 1)), st.integers(min_value=1, max_value=3)) def test_scorers(hd, ld, target, n_neighbors): key_l = qm.available_quality_measures().keys() high_low_l = ["continuity", "stress", "strain", "trustworthiness"] greater_is_better = ["continuity", "trustworthiness"] estimator = test_estimator() estimator.fit(ld) for key in key_l: if key in greater_is_better: val = 1.0 else: val = -1.0 logger.debug(key) measure = qm.available_quality_measures()[key] scorer = qm.available_scorers()[key] if key in high_low_l: if 'n_neighbors' in inspect.getfullargspec(measure).args: m = measure(high_data=hd, low_data=ld, n_neighbors=n_neighbors) s = scorer(estimator, hd, n_neighbors=n_neighbors) else: m = measure(high_data=hd, low_data=ld) s = scorer(estimator, hd) elif key == '1nn-error': m = measure(data=ld, classes=target) s = scorer(estimator, hd, y=target) else: logger.debug("Untested measure:{key}. Add me to test_scorers") assert False logger.debug(f"measure:{m}, scorer:{s}") if m != 0 and s!=0: assert np.isclose(m/s, val) else: assert s == m @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_rank_matrix_compatibility(matrix): assert (qm.slower_rank_matrix(matrix) == qm.rank_matrix(matrix)).all() class TestEncoding(unittest.TestCase): @given(arrays(np.float, (3, 2), elements=st.floats(min_value=-100, max_value=100))) def test_doubly_center_matrix_input(self, matrix): with self.assertRaises(ValueError): qm.doubly_center_matrix(matrix) @given(arrays(np.float, (3, 3), elements=st.floats(min_value=-100, max_value=100))) def test_pairwise_distance_differences_input(self, matrix): with self.assertRaises(ValueError): qm.pairwise_distance_differences(high_data=matrix) with self.assertRaises(ValueError): qm.pairwise_distance_differences(high_distances=matrix) with self.assertRaises(ValueError): qm.pairwise_distance_differences(low_data=matrix) with self.assertRaises(ValueError): qm.pairwise_distance_differences(low_distances=matrix) def test_point_untrustworthiness_input(self): with self.assertRaises(ValueError): qm.point_untrustworthiness() @given(st.integers(min_value=1, max_value=100)) def test_zero_input_strain(self, N): matrix = np.zeros((N, N)) with self.assertRaises(ValueError): qm.strain(high_distances=matrix, low_distances=matrix) @given(st.integers(min_value=1, max_value=100)) def test_zero_input_point_strain(self, N): matrix = np.zeros((N, N)) with self.assertRaises(ValueError): qm.point_strain(high_distances=matrix, low_distances=matrix) if __name__ == '__main__': unittest.main()
42.301887
79
0.575992
1,747
0.097402
0
0
13,815
0.770239
0
0
1,085
0.060493
9b884dfe98e3224d03e56b0ff9073cf479be11aa
797
py
Python
addons/odoo_elasticsearch/models/trend_search_mapping.py
marionumza/vocal_v12
480990e919c9410903e06e7813ee92800bd6a569
[ "Unlicense" ]
null
null
null
addons/odoo_elasticsearch/models/trend_search_mapping.py
marionumza/vocal_v12
480990e919c9410903e06e7813ee92800bd6a569
[ "Unlicense" ]
null
null
null
addons/odoo_elasticsearch/models/trend_search_mapping.py
marionumza/vocal_v12
480990e919c9410903e06e7813ee92800bd6a569
[ "Unlicense" ]
1
2021-05-05T07:59:08.000Z
2021-05-05T07:59:08.000Z
import logging _logger = logging.getLogger(__name__) from odoo import api, fields, models class TrendSearchMapping(models.Model): _name = 'trend.search.mapping' _order = "sequence" name = fields.Char(string="Keywords", required=True, help="Name of product") trend_search_mapping_id = fields.Many2one('elastic.search.config',string='Field Index Mapping') sequence = fields.Integer(default=5) @api.model def trend_search_map_set_default(self): config_id = self.env['elastic.search.config'].search([],limit=1) config_id.trending_state = 'enable' self.create({ 'name':'imac', 'trend_search_mapping_id':config_id.id }) self.create({ 'name':'ipad', 'trend_search_mapping_id':config_id.id })
30.653846
99
0.667503
705
0.884567
0
0
378
0.474279
0
0
208
0.260979
9b897b3e2e2a162da4ba6ef2e1e00007c3d0d7d3
25,363
py
Python
src/python/twitter/common/app/application.py
wfarner/commons
42988a7a49f012665174538cca53604c7846ee86
[ "Apache-2.0" ]
1
2019-12-20T14:13:27.000Z
2019-12-20T14:13:27.000Z
src/python/twitter/common/app/application.py
wfarner/commons
42988a7a49f012665174538cca53604c7846ee86
[ "Apache-2.0" ]
null
null
null
src/python/twitter/common/app/application.py
wfarner/commons
42988a7a49f012665174538cca53604c7846ee86
[ "Apache-2.0" ]
1
2019-12-20T14:13:29.000Z
2019-12-20T14:13:29.000Z
# ================================================================================================== # Copyright 2011 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== from __future__ import print_function __author__ = 'Dave Buchfuhrer, Brian Wickman' try: import ConfigParser except ImportError: import configparser as ConfigParser import atexit import copy import inspect import optparse import os import shlex import sys import threading from collections import defaultdict, deque from functools import partial from twitter.common import options from twitter.common.app.module import AppModule from twitter.common.app.inspection import Inspection from twitter.common.lang import Compatibility from twitter.common.process import daemonize from twitter.common.util import topological_sort class Application(object): class Error(Exception): pass # enforce a quasi-singleton interface (for resettable applications in test) _Global = None @staticmethod def reset(): """Reset the global application. Only useful for testing.""" Application._Global = Application() @staticmethod def active(): """Return the current resident application object.""" return Application._Global HELP_OPTIONS = [ options.Option("-h", "--help", "--short-help", action="callback", callback=lambda *args, **kwargs: Application.active()._short_help(*args, **kwargs), help="show this help message and exit."), options.Option("--long-help", action="callback", callback=lambda *args, **kwargs: Application.active()._long_help(*args, **kwargs), help="show options from all registered modules, not just the __main__ module.") ] IGNORE_RC_FLAG = '--app_ignore_rc_file' APP_OPTIONS = { 'daemonize': options.Option('--app_daemonize', action='store_true', default=False, dest='twitter_common_app_daemonize', help="Daemonize this application."), 'daemon_stdout': options.Option('--app_daemon_stdout', default='/dev/null', dest='twitter_common_app_daemon_stdout', help="Direct this app's stdout to this file if daemonized."), 'daemon_stderr': options.Option('--app_daemon_stderr', default='/dev/null', dest='twitter_common_app_daemon_stderr', help="Direct this app's stderr to this file if daemonized."), 'pidfile': options.Option('--app_pidfile', default=None, dest='twitter_common_app_pidfile', help="The pidfile to use if --app_daemonize is specified."), 'debug': options.Option('--app_debug', action='store_true', default=False, dest='twitter_common_app_debug', help="Print extra debugging information during application initialization."), 'profiling': options.Option('--app_profiling', action='store_true', default=False, dest='twitter_common_app_profiling', help="Run profiler on the code while it runs. Note this can cause slowdowns."), 'profile_output': options.Option('--app_profile_output', default=None, metavar='FILENAME', dest='twitter_common_app_profile_output', help="Dump the profiling output to a binary profiling format."), 'rc_filename': options.Option('--app_rc_filename', action='store_true', default=False, dest='twitter_common_app_rc_filename', help="Print the filename for the rc file and quit."), 'ignore_rc_file': options.Option(IGNORE_RC_FLAG, action='store_true', default=False, dest='twitter_common_app_ignore_rc_file', help="Ignore default arguments from the rc file."), } NO_COMMAND = 'DEFAULT' OPTIONS = 'options' OPTIONS_ATTR = '__options__' def __init__(self): self._name = None self._registered_modules = [] self._init_modules = [] self._option_targets = defaultdict(dict) self._global_options = {} self._interspersed_args = False self._main_options = Application.HELP_OPTIONS[:] self._usage = "" self._profiler = None self._commands = {} self._reset() for opt in Application.APP_OPTIONS.values(): self.add_option(opt) self._configure_options(None, Application.APP_OPTIONS) def _raise_if_initialized(self, msg="Cannot perform operation after initialization!"): if self.initialized: raise Application.Error(msg) def _raise_if_uninitialized(self, msg="Cannot perform operation before initialization!"): if not self.initialized: raise Application.Error(msg) def _reset(self): """ Resets the state set up by init() so that init() may be called again. """ self.initialized = False self._option_values = options.Values() self._argv = [] def interspersed_args(self, value): self._interspersed_args = bool(value) def _configure_options(self, module, option_dict): for opt_name, opt in option_dict.items(): self._option_targets[module][opt_name] = opt.dest def configure(self, module=None, **kw): """ Configure the application object or its activated modules. Typically application modules export flags that can be defined on the command-line. In order to allow the application to override defaults, these modules may export named parameters to be overridden. For example, the Application object itself exports named variables such as "debug" or "profiling", which can be enabled via: app.configure(debug=True) and app.configure(profiling=True) respectively. They can also be enabled with their command-line argument counterpart, e.g. ./my_application --app_debug --app_profiling Some modules export named options, e.g. twitter.common.app.modules.http exports 'enable', 'host', 'port'. The command-line arguments still take precedence and will override any defaults set by the application in app.configure. To activate these options, just pass along the module name: app.configure(module='twitter.common.app.modules.http', enable=True) """ if module not in self._option_targets: if not self._import_module(module): raise Application.Error('Unknown module to configure: %s' % module) def configure_option(name, value): if name not in self._option_targets[module]: raise Application.Error('Module %s has no option %s' % (module, name)) self.set_option(self._option_targets[module][name], value) for option_name, option_value in kw.items(): configure_option(option_name, option_value) def _main_parser(self): return (options.parser() .interspersed_arguments(self._interspersed_args) .options(self._main_options) .usage(self._usage)) def command_parser(self, command): assert command in self._commands values_copy = copy.deepcopy(self._option_values) parser = self._main_parser() command_group = options.new_group(('For %s only' % command) if command else 'Default') for option in getattr(self._commands[command], Application.OPTIONS_ATTR): op = copy.deepcopy(option) if not hasattr(values_copy, op.dest): setattr(values_copy, op.dest, op.default if op.default != optparse.NO_DEFAULT else None) Application.rewrite_help(op) op.default = optparse.NO_DEFAULT command_group.add_option(op) parser = parser.groups([command_group]).values(values_copy) usage = self._commands[command].__doc__ if usage: parser = parser.usage(usage) return parser def _construct_partial_parser(self): """ Construct an options parser containing only options added by __main__ or global help options registered by the application. """ if hasattr(self._commands.get(self._command), Application.OPTIONS_ATTR): return self.command_parser(self._command) else: return self._main_parser().values(copy.deepcopy(self._option_values)) def _construct_full_parser(self): """ Construct an options parser containing both local and global (module-level) options. """ return self._construct_partial_parser().groups(self._global_options.values()) def _rc_filename(self): rc_short_filename = '~/.%src' % self.name() return os.path.expanduser(rc_short_filename) def _add_default_options(self, argv): """ Return an argument list with options from the rc file prepended. """ rc_filename = self._rc_filename() options = argv if Application.IGNORE_RC_FLAG not in argv and os.path.exists(rc_filename): command = self._command or Application.NO_COMMAND rc_config = ConfigParser.SafeConfigParser() rc_config.read(rc_filename) if rc_config.has_option(command, Application.OPTIONS): default_options_str = rc_config.get(command, Application.OPTIONS) default_options = shlex.split(default_options_str, True) options = default_options + options return options def _parse_options(self, force_args=None): """ Parse options and set self.option_values and self.argv to the values to be passed into the application's main() method. """ argv = sys.argv[1:] if force_args is None else force_args if argv and argv[0] in self._commands: self._command = argv.pop(0) else: self._command = None parser = self._construct_full_parser() self._option_values, self._argv = parser.parse(self._add_default_options(argv)) def _short_help(self, option, opt, value, parser): self._construct_partial_parser().print_help() sys.exit(1) def _long_help(self, option, opt, value, parser): self._construct_full_parser().print_help() sys.exit(1) def _setup_modules(self): """ Setup all initialized modules. """ module_registry = AppModule.module_registry() for bundle in topological_sort(AppModule.module_dependencies()): for module_label in bundle: assert module_label in module_registry module = module_registry[module_label] self._debug_log('Initializing: %s (%s)' % (module.label(), module.description())) try: module.setup_function() except AppModule.Unimplemented: pass self._init_modules.append(module.label()) def _teardown_modules(self): """ Teardown initialized module in reverse initialization order. """ module_registry = AppModule.module_registry() for module_label in reversed(self._init_modules): assert module_label in module_registry module = module_registry[module_label] self._debug_log('Running exit function for %s (%s)' % (module_label, module.description())) try: module.teardown_function() except AppModule.Unimplemented: pass def _maybe_daemonize(self): if self._option_values.twitter_common_app_daemonize: daemonize(pidfile=self._option_values.twitter_common_app_pidfile, stdout=self._option_values.twitter_common_app_daemon_stdout, stderr=self._option_values.twitter_common_app_daemon_stderr) # ------- public exported methods ------- def init(self, force_args=None): """ Initialize the state necessary to run the application's main() function but without actually invoking main. Mostly useful for testing. If force_args specified, use those arguments instead of sys.argv[1:]. """ self._raise_if_initialized("init cannot be called twice. Use reinit if necessary.") self._parse_options(force_args) self._maybe_daemonize() self._setup_modules() self.initialized = True def reinit(self, force_args=None): """ Reinitialize the application. This clears the stateful parts of the application framework and reruns init(). Mostly useful for testing. """ self._reset() self.init(force_args) def argv(self): self._raise_if_uninitialized("Must call app.init() before you may access argv.") return self._argv def add_module_path(self, name, path): """ Add all app.Modules defined by name at path. Typical usage (e.g. from the __init__.py of something containing many app modules): app.add_module_path(__name__, __path__) """ import pkgutil for _, mod, ispkg in pkgutil.iter_modules(path): if ispkg: continue fq_module = '.'.join([name, mod]) __import__(fq_module) for (kls_name, kls) in inspect.getmembers(sys.modules[fq_module], inspect.isclass): if issubclass(kls, AppModule): self.register_module(kls()) def register_module(self, module): """ Register an app.Module and all its options. """ if not isinstance(module, AppModule): raise TypeError('register_module should be called with a subclass of AppModule') if module.label() in self._registered_modules: # Do not reregister. return if hasattr(module, 'OPTIONS'): if not isinstance(module.OPTIONS, dict): raise Application.Error('Registered app.Module %s has invalid OPTIONS.' % module.__module__) for opt in module.OPTIONS.values(): self._add_option(module.__module__, opt) self._configure_options(module.label(), module.OPTIONS) self._registered_modules.append(module.label()) @staticmethod def _get_module_key(module): return 'From module %s' % module def _add_main_option(self, option): self._main_options.append(option) def _add_module_option(self, module, option): calling_module = Application._get_module_key(module) if calling_module not in self._global_options: self._global_options[calling_module] = options.new_group(calling_module) self._global_options[calling_module].add_option(option) @staticmethod def rewrite_help(op): if hasattr(op, 'help') and isinstance(op.help, Compatibility.string): if op.help.find('%default') != -1 and op.default != optparse.NO_DEFAULT: op.help = op.help.replace('%default', str(op.default)) else: op.help = op.help + ((' [default: %s]' % str(op.default)) if op.default != optparse.NO_DEFAULT else '') def _add_option(self, calling_module, option): op = copy.deepcopy(option) if op.dest and hasattr(op, 'default'): self.set_option(op.dest, op.default if op.default != optparse.NO_DEFAULT else None, force=False) Application.rewrite_help(op) op.default = optparse.NO_DEFAULT if calling_module == '__main__': self._add_main_option(op) else: self._add_module_option(calling_module, op) def _get_option_from_args(self, args, kwargs): if len(args) == 1 and kwargs == {} and isinstance(args[0], options.Option): return args[0] else: return options.TwitterOption(*args, **kwargs) def add_option(self, *args, **kwargs): """ Add an option to the application. You may pass either an Option object from the optparse/options module, or pass the *args/**kwargs necessary to construct an Option. """ self._raise_if_initialized("Cannot call add_option() after main()!") calling_module = Inspection.find_calling_module() added_option = self._get_option_from_args(args, kwargs) self._add_option(calling_module, added_option) def command(self, function=None, name=None): """ Decorator to turn a function into an application command. To add a command foo, the following patterns will both work: @app.command def foo(args, options): ... @app.command(name='foo') def bar(args, options): ... """ if name is None: return self._register_command(function) else: return partial(self._register_command, command_name=name) def _register_command(self, function, command_name=None): """ Registers function as the handler for command_name. Uses function.__name__ if command_name is None. """ if Inspection.find_calling_module() == '__main__': if command_name is None: command_name = function.__name__ if command_name in self._commands: raise Application.Error('Found two definitions for command %s' % command_name) self._commands[command_name] = function return function def default_command(self, function): """ Decorator to make a command default. """ if Inspection.find_calling_module() == '__main__': if None in self._commands: defaults = (self._commands[None].__name__, function.__name__) raise Application.Error('Found two default commands: %s and %s' % defaults) self._commands[None] = function return function def command_option(self, *args, **kwargs): """ Decorator to add an option only for a specific command. """ def register_option(function): added_option = self._get_option_from_args(args, kwargs) if not hasattr(function, Application.OPTIONS_ATTR): setattr(function, Application.OPTIONS_ATTR, deque()) getattr(function, Application.OPTIONS_ATTR).appendleft(added_option) return function return register_option def copy_command_options(self, command_function): """ Decorator to copy command options from another command. """ def register_options(function): if hasattr(command_function, Application.OPTIONS_ATTR): if not hasattr(function, Application.OPTIONS_ATTR): setattr(function, Application.OPTIONS_ATTR, deque()) command_options = getattr(command_function, Application.OPTIONS_ATTR) getattr(function, Application.OPTIONS_ATTR).extendleft(command_options) return function return register_options def add_command_options(self, command_function): """ Function to add all options from a command """ module = inspect.getmodule(command_function).__name__ for option in getattr(command_function, Application.OPTIONS_ATTR, []): self._add_option(module, option) def _debug_log(self, msg): if hasattr(self._option_values, 'twitter_common_app_debug') and ( self._option_values.twitter_common_app_debug): print('twitter.common.app debug: %s' % msg, file=sys.stderr) def set_option(self, dest, value, force=True): """ Set a global option value either pre- or post-initialization. If force=False, do not set the default if already overridden by a manual call to set_option. """ if hasattr(self._option_values, dest) and not force: return setattr(self._option_values, dest, value) def get_options(self): """ Return all application options, both registered by __main__ and all imported modules. """ return self._option_values def get_commands(self): """ Return all valid commands registered by __main__ """ return filter(None, self._commands.keys()) def get_commands_and_docstrings(self): """ Generate all valid commands together with their docstrings """ for command, function in self._commands.items(): if command is not None: yield command, function.__doc__ def get_local_options(self): """ Return the options only defined by __main__. """ new_values = options.Values() for opt in self._main_options: if opt.dest: setattr(new_values, opt.dest, getattr(self._option_values, opt.dest)) return new_values def set_usage(self, usage): """ Set the usage message should the user call --help or invalidly specify options. """ self._usage = usage def error(self, message): """ Print the application help message, an error message, then exit. """ self._construct_partial_parser().error(message) def help(self): """ Print the application help message and exit. """ self._short_help(*(None,)*4) def set_name(self, application_name): """ Set the application name. (Autodetect otherwise.) """ self._raise_if_initialized("Cannot set application name.") self._name = application_name def name(self): """ Return the name of the application. If set_name was never explicitly called, the application framework will attempt to autodetect the name of the application based upon the location of __main__. """ if self._name is not None: return self._name else: try: return Inspection.find_application_name() except: return 'unknown' def quit(self, rc, exit_function=sys.exit): self._debug_log('Shutting application down.') self._teardown_modules() self._debug_log('Finishing up module teardown.') nondaemons = 0 self.dump_profile() for thr in threading.enumerate(): self._debug_log(' Active thread%s: %s' % (' (daemon)' if thr.isDaemon() else '', thr)) if thr is not threading.current_thread() and not thr.isDaemon(): nondaemons += 1 if nondaemons: self._debug_log('More than one active non-daemon thread, your application may hang!') else: self._debug_log('Exiting cleanly.') exit_function(rc) def profiler(self): if self._option_values.twitter_common_app_profiling: if self._profiler is None: try: import cProfile as profile except ImportError: import profile self._profiler = profile.Profile() return self._profiler else: return None def dump_profile(self): if self._option_values.twitter_common_app_profiling: if self._option_values.twitter_common_app_profile_output: self.profiler().dump_stats(self._option_values.twitter_common_app_profile_output) else: self.profiler().print_stats(sort='time') def _run_main(self, main_method, *args, **kwargs): try: if self.profiler(): rc = self.profiler().runcall(main_method, *args, **kwargs) else: rc = main_method(*args, **kwargs) except SystemExit as e: rc = e.code self._debug_log('main_method exited with return code = %s' % repr(rc)) except KeyboardInterrupt as e: rc = None self._debug_log('main_method exited with ^C') return rc def _import_module(self, name): """ Import the module, return True on success, False if the import failed. """ try: __import__(name) return True except ImportError: return False def main(self): """ If called from __main__ module, run script's main() method with arguments passed and global options parsed. The following patterns are acceptable for the main method: main() main(args) main(args, options) """ main_module = Inspection.find_calling_module() if main_module != '__main__': # only support if __name__ == '__main__' return # Pull in modules in twitter.common.app.modules if not self._import_module('twitter.common.app.modules'): print('Unable to import twitter app modules!', file=sys.stderr) sys.exit(1) # defer init as long as possible. self.init() if self._option_values.twitter_common_app_rc_filename: print('RC filename: %s' % self._rc_filename()) return try: caller_main = Inspection.find_main_from_caller() except Inspection.InternalError: caller_main = None if None in self._commands: assert caller_main is None, "Error: Cannot define both main and a default command." else: self._commands[None] = caller_main main_method = self._commands[self._command] if main_method is None: commands = sorted(self.get_commands()) if commands: print('Must supply one of the following commands:', ', '.join(commands), file=sys.stderr) else: print('No main() or command defined! Application must define one of these.', file=sys.stderr) sys.exit(1) try: argspec = inspect.getargspec(main_method) except TypeError as e: print('Malformed main(): %s' % e, file=sys.stderr) sys.exit(1) if len(argspec.args) == 1: args = [self._argv] elif len(argspec.args) == 2: args = [self._argv, self._option_values] else: if len(self._argv) != 0: print('main() takes no arguments but got leftover arguments: %s!' % ' '.join(self._argv), file=sys.stderr) sys.exit(1) args = [] rc = self._run_main(main_method, *args) self.quit(rc)
34.791495
101
0.674644
23,829
0.939518
242
0.009541
720
0.028388
0
0
8,667
0.341718
9b89b21d0ec82cd3eb4f531c62145aac5544814d
3,838
py
Python
nas/gui/end_registration_window.py
RolandZitny/BC-NAS
df2b1c643e5dce3b48c72026b4f83f895f33b822
[ "MIT" ]
null
null
null
nas/gui/end_registration_window.py
RolandZitny/BC-NAS
df2b1c643e5dce3b48c72026b4f83f895f33b822
[ "MIT" ]
null
null
null
nas/gui/end_registration_window.py
RolandZitny/BC-NAS
df2b1c643e5dce3b48c72026b4f83f895f33b822
[ "MIT" ]
null
null
null
import base64 import os import matplotlib.pyplot as plt import cv2 import numpy as np from PyQt5 import uic from PyQt5 import QtWidgets from PyQt5 import QtMultimedia from PyQt5 import QtMultimediaWidgets from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtWidgets import QDesktopWidget from nas.gui.login_stimulation_window import LoginStimulationPresentation import config directory_path = os.path.dirname(os.path.abspath(__file__)) ui_path = os.path.join(directory_path, "designs" + os.sep + "end_registration_window.ui") Ui_RegWindow, QtBaseClass = uic.loadUiType(ui_path) # Load .ui file. class EndRegistrationWindow(QtWidgets.QMainWindow, Ui_RegWindow): """ Class to display the final window that confirms the registration. The user can perform a test login from this window. :param reg_user: The object of the registered user. :type reg_user: ``user`` """ def __init__(self, reg_user): QtWidgets.QMainWindow.__init__(self) Ui_RegWindow.__init__(self) self.setupUi(self) self.reg_user = reg_user self.login_window = None self.set_up_window() self.get_reaction_plot() self.set_end_figure() def set_up_window(self): """ Makes other window settings, such as connecting buttons, etc. """ # Center window to screen. qt_rectangle = self.frameGeometry() center_point = QDesktopWidget().availableGeometry().center() qt_rectangle.moveCenter(center_point) self.move(qt_rectangle.topLeft()) qt_rectangle.moveCenter(center_point) self.move(qt_rectangle.topLeft()) self.end_name.setText(self.end_name.text() + " " + self.reg_user.get_name()) self.end_surname.setText(self.end_surname.text() + " " + self.reg_user.get_surname()) self.end_loginId.setText(self.end_loginId.text() + " " + self.reg_user.get_id()) self.TestLogin.clicked.connect(self.testing_log_in) def get_reaction_plot(self): """ Creates a graph of responses to self-face and non-self-face stimuli. This graph is stored at `TMP_END_FIGURE`. """ reactions, react_types = self.reg_user.get_reg_data() self_face_reaction = None non_self_face_reaction = None for i in range(len(react_types)): if react_types[i] == 1: self_face_reaction = reactions[i] non_self_face_reaction = reactions[i + 1] break fig, axs = plt.subplots(2) fig.suptitle('Self-face & Non-self-face reakcia') axs[0].plot(self_face_reaction[0]) axs[0].set_title('Self-face') axs[1].plot(non_self_face_reaction[0]) axs[1].set_title('Non-self-face') plt.setp(axs[0], ylabel='mV') plt.setp(axs[1], ylabel='mV') fig.tight_layout() plt.savefig(config.TMP_END_FIGURE) plt.clf() def set_end_figure(self): """ Draw a graph of the reaction in the window. """ pixmap = QPixmap(config.TMP_END_FIGURE) self.ReactionLabel.setPixmap(QPixmap(pixmap.scaledToHeight(500))) self.clean_tmp() @staticmethod def clean_tmp(): """ Cleans up the temporary files folder. """ if os.path.exists(config.TMP_END_FIGURE): os.remove(config.TMP_END_FIGURE) if os.path.exists(config.TMP_PHOTO): os.remove(config.TMP_PHOTO) if os.path.exists(config.TMP_PROC_PHOTO): os.remove(config.TMP_PROC_PHOTO) def testing_log_in(self): """ Performs a test login. """ self.login_window = LoginStimulationPresentation(self.reg_user) self.login_window.showMaximized() self.hide()
32.252101
94
0.647473
3,238
0.843669
0
0
384
0.100052
0
0
824
0.214695
9b8af184786b7b838926fd6c07d47b9fd8a6c329
445
py
Python
testing/matplotlib_test.py
deranderemark/CigarTracer
3f1172683c57dc7f28dd7517132014b23adfff90
[ "Apache-2.0" ]
null
null
null
testing/matplotlib_test.py
deranderemark/CigarTracer
3f1172683c57dc7f28dd7517132014b23adfff90
[ "Apache-2.0" ]
1
2022-02-06T15:50:07.000Z
2022-02-06T15:50:07.000Z
testing/matplotlib_test.py
deranderemark/CigarTracer
3f1172683c57dc7f28dd7517132014b23adfff90
[ "Apache-2.0" ]
null
null
null
import matplotlib.pyplot as plt # Diagramm und Achsen definieren fig, ax = plt.subplots() # Werte für Tabelle erstellen table_data=[ ["1", 30, 34], ["2", 20, 223], ["3", 33, 2354], ["4", 25, 234], ["5", 12, 929] ] #Tabelle erstellen table = ax.table(cellText=table_data, loc='center', colLabels=['SD', 'ID', 'Score']) # Tabelle ändern table.set_fontsize(14) table.scale(1,4) ax.axis('off') #Tabelle anzeigen plt.show()
17.8
84
0.633708
0
0
0
0
0
0
0
0
157
0.35123
9b8bb3b48e86a641ba4d24045654d0c3bccfafdb
5,242
py
Python
venv/Lib/site-packages/func_timeout/StoppableThread.py
lijj0812/UIAutoDemo
3e13380adeb6cf92410676ff7c125dbee598427f
[ "Apache-2.0" ]
1
2021-01-12T14:39:01.000Z
2021-01-12T14:39:01.000Z
venv/Lib/site-packages/func_timeout/StoppableThread.py
lijj0812/UIAutoDemo
3e13380adeb6cf92410676ff7c125dbee598427f
[ "Apache-2.0" ]
2
2021-06-16T19:56:35.000Z
2021-06-16T19:57:49.000Z
venv/Lib/site-packages/func_timeout/StoppableThread.py
lijj0812/UIAutoDemo
3e13380adeb6cf92410676ff7c125dbee598427f
[ "Apache-2.0" ]
1
2020-09-17T07:56:53.000Z
2020-09-17T07:56:53.000Z
''' Copyright (c) 2016, 2017, 2019 Timothy Savannah All Rights Reserved. Licensed under the Lesser GNU Public License Version 3, LGPLv3. You should have recieved a copy of this with the source distribution as LICENSE, otherwise it is available at https://github.com/kata198/func_timeout/LICENSE ''' import os import ctypes import threading __all__ = ('StoppableThread', 'JoinThread') class StoppableThread(threading.Thread): ''' StoppableThread - A thread that can be stopped by forcing an exception in the execution context. This works both to interrupt code that is in C or in python code, at either the next call to a python function, or the next line in python code. It is recommended that if you call stop ( @see StoppableThread.stop ) that you use an exception that inherits BaseException, to ensure it likely isn't caught. Also, beware unmarked exception handlers in your code. Code like this: while True: try: doSomething() except: continue will never be able to abort, because the exception you raise is immediately caught. The exception is raised over and over, with a specifed delay (default 2.0 seconds) ''' def _stopThread(self, exception, raiseEvery=2.0): ''' _stopThread - @see StoppableThread.stop ''' if self.is_alive() is False: return True self._stderr = open(os.devnull, 'w') # Create "joining" thread which will raise the provided exception # on a repeat, until the thread stops. joinThread = JoinThread(self, exception, repeatEvery=raiseEvery) # Try to prevent spurrious prints joinThread._stderr = self._stderr joinThread.start() joinThread._stderr = self._stderr def stop(self, exception, raiseEvery=2.0): ''' Stops the thread by raising a given exception. @param exception <Exception type> - Exception to throw. Likely, you want to use something that inherits from BaseException (so except Exception as e: continue; isn't a problem) This should be a class/type, NOT an instance, i.e. MyExceptionType not MyExceptionType() @param raiseEvery <float> Default 2.0 - We will keep raising this exception every #raiseEvery seconds, until the thread terminates. If your code traps a specific exception type, this will allow you #raiseEvery seconds to cleanup before exit. If you're calling third-party code you can't control, which catches BaseException, set this to a low number to break out of their exception handler. @return <None> ''' return self._stopThread(exception, raiseEvery) class JoinThread(threading.Thread): ''' JoinThread - The workhouse that stops the StoppableThread. Takes an exception, and upon being started immediately raises that exception in the current context of the thread's execution (so next line of python gets it, or next call to a python api function in C code ). @see StoppableThread for more details ''' def __init__(self, otherThread, exception, repeatEvery=2.0): ''' __init__ - Create a JoinThread (don't forget to call .start() ! ) @param otherThread <threading.Thread> - A thread @param exception <BaseException> - An exception. Should be a BaseException, to prevent "catch Exception as e: continue" type code from never being terminated. If such code is unavoidable, you can try setting #repeatEvery to a very low number, like .00001, and it will hopefully raise within the context of the catch, and be able to break free. @param repeatEvery <float> Default 2.0 - After starting, the given exception is immediately raised. Then, every #repeatEvery seconds, it is raised again, until the thread terminates. ''' threading.Thread.__init__(self) self.otherThread = otherThread self.exception = exception self.repeatEvery = repeatEvery self.daemon = True def run(self): ''' run - The thread main. Will attempt to stop and join the attached thread. ''' # Try to silence default exception printing. self.otherThread._Thread__stderr = self._stderr if hasattr(self.otherThread, '_Thread__stop'): # If py2, call this first to start thread termination cleanly. # Python3 does not need such ( nor does it provide.. ) self.otherThread._Thread__stop() while self.otherThread.is_alive(): # We loop raising exception incase it's caught hopefully this breaks us far out. ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.otherThread.ident), ctypes.py_object(self.exception)) self.otherThread.join(self.repeatEvery) try: self._stderr.close() except: pass # vim: set ts=4 sw=4 expandtab :
39.119403
166
0.647844
4,804
0.916444
0
0
0
0
0
0
3,819
0.728539
9b8fd2bf80fa07a3bd7f3ddd5254592ae0988fc9
190
py
Python
pics/admin.py
Joseph-Odhiambo/Gallary
f8dfab1149f11de94519afe597fe87f4ed28b9a5
[ "MIT" ]
1
2021-05-19T12:58:15.000Z
2021-05-19T12:58:15.000Z
pics/admin.py
HASSAN1A/Gallery
a73bd93bcecbb830b4d676c9e9dd306880cac6f2
[ "MIT" ]
null
null
null
pics/admin.py
HASSAN1A/Gallery
a73bd93bcecbb830b4d676c9e9dd306880cac6f2
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Image,Areas,Category # Register your models here. admin.site.register(Image) admin.site.register(Areas) admin.site.register(Category)
19
40
0.805263
0
0
0
0
0
0
0
0
28
0.147368
9b902f255bd9d45e07a2e966eeb8f841dbe8fc88
1,985
py
Python
tests/lamvery/cli_test.py
rdtr/lamvery
e9334a0d258c63e6426c7cd320f691b9f21044c1
[ "MIT" ]
101
2015-11-12T11:29:20.000Z
2020-05-24T19:26:37.000Z
tests/lamvery/cli_test.py
rdtr/lamvery
e9334a0d258c63e6426c7cd320f691b9f21044c1
[ "MIT" ]
45
2015-11-13T05:43:18.000Z
2017-04-27T18:14:49.000Z
tests/lamvery/cli_test.py
marcy-terui/lamvery
e9334a0d258c63e6426c7cd320f691b9f21044c1
[ "MIT" ]
22
2016-01-26T00:12:57.000Z
2019-12-13T09:06:43.000Z
# -*- coding: utf-8 -*- from unittest import TestCase from mock import Mock, patch from lamvery.cli import ( main, init, build, configure, deploy, encrypt, encrypt_file, events, decrypt, set_alias, invoke, rollback, api, generate ) class FunctionsTestCase(TestCase): def test_init(self): with patch('lamvery.cli.InitAction'): init(Mock()) def test_archive(self): with patch('lamvery.cli.BuildAction'): build(Mock()) def test_configure(self): with patch('lamvery.cli.ConfigureAction'): configure(Mock()) def test_deploy(self): with patch('lamvery.cli.DeployAction'): deploy(Mock()) def test_encrypt(self): with patch('lamvery.cli.EncryptAction'): encrypt(Mock()) def test_encrypt_file(self): with patch('lamvery.cli.EncryptFileAction'): encrypt_file(Mock()) def test_events(self): with patch('lamvery.cli.EventsAction'): events(Mock()) def test_decrypt(self): with patch('lamvery.cli.DecryptAction'): decrypt(Mock()) def test_set_alias(self): with patch('lamvery.cli.SetAliasAction'): set_alias(Mock()) def test_invoke(args): with patch('lamvery.cli.InvokeAction'): invoke(Mock()) def test_rollback(args): with patch('lamvery.cli.RollbackAction'): rollback(Mock()) def test_api(args): with patch('lamvery.cli.ApiAction'): api(Mock()) def test_generate(args): with patch('lamvery.cli.GenerateAction'): generate(Mock()) @patch('argparse.ArgumentParser') @patch('sys.exit') def test_main(self, argp, ex): main() @patch('argparse.ArgumentParser') @patch('sys.exit') def test_main_error(self, argp, ex): argp.parse_args = Mock(side_effect=Exception) main()
22.816092
53
0.594458
1,693
0.852897
0
0
272
0.137028
0
0
441
0.222166
9b906d0ca190514b42e0b5edafba1d709df76a02
569
py
Python
db-test.py
alexolotl/apt-hunt
25d2a2d565b0b694a8f5e3442ba429ae99688e54
[ "MIT" ]
null
null
null
db-test.py
alexolotl/apt-hunt
25d2a2d565b0b694a8f5e3442ba429ae99688e54
[ "MIT" ]
null
null
null
db-test.py
alexolotl/apt-hunt
25d2a2d565b0b694a8f5e3442ba429ae99688e54
[ "MIT" ]
null
null
null
import sqlite3 from util import post_listing_to_slack from slackclient import SlackClient import settings sc = SlackClient(settings.SLACK_TOKEN) con = sqlite3.connect('listings.db') # with con: # con.row_factory = sqlite3.Row # cur = con.cursor() # # print("SQLite version: %s" % data) # cur.execute("SELECT * FROM Listings") # rows = cur.fetchone() # for row in rows: # print(row) # # post_listing_to_slack(sc, rows) # deletes entire table !!! # with con: # cur = con.cursor() # cur.execute("DROP TABLE IF EXISTS Listings")
22.76
50
0.669596
0
0
0
0
0
0
0
0
382
0.671353
9b9103f77dd912b77e605c95f3235abd9dcb9a29
15,630
py
Python
src/utils.py
asrashley/dash-live
1ffbc57896e4e46855a42af6ef79a1865ebfce55
[ "Apache-2.0" ]
2
2019-11-02T06:26:29.000Z
2020-05-15T16:54:20.000Z
src/utils.py
asrashley/dash-live
1ffbc57896e4e46855a42af6ef79a1865ebfce55
[ "Apache-2.0" ]
1
2020-01-20T17:20:54.000Z
2020-01-21T08:38:30.000Z
src/utils.py
asrashley/dash-live
1ffbc57896e4e46855a42af6ef79a1865ebfce55
[ "Apache-2.0" ]
null
null
null
############################################################################# # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ############################################################################# # # Project Name : Simulated MPEG DASH service # # Author : Alex Ashley # ############################################################################# import base64 import datetime import decimal import io import json import math import os import re import time class Buffer(object): def __init__(self, pos, data): self.pos = pos self.buf = data self.data = memoryview(self.buf) self.size = len(data) self.timestamp = time.time() @property def end(self): return self.pos + self.size class BufferedReader(io.RawIOBase): def __init__(self, reader, buffersize=16384, data=None, offset=0, size=None, max_buffers=30): super(BufferedReader, self).__init__() #print('BufferedReader', reader, buffersize, offset, size) self.reader = reader self.buffers = {} self.buffersize = buffersize self.pos = 0 self.offset = offset self.size = size self.max_buffers = max_buffers self.num_buffers = 0 if data is not None: self.size = len(data) self.buffersize = self.size self.buffers[0] = Buffer(self.pos, data) self.num_buffers = 1 self.max_buffers = self.num_buffers+1 def readable(self): return not self.closed def seek(self, offset, whence=io.SEEK_SET): #print('seek', offset, whence) if whence == io.SEEK_SET: self.pos = offset elif whence == io.SEEK_CUR: self.pos += offset elif whence == io.SEEK_END: if self.size is None: self.reader.seek(0, io.SEEK_END) self.size = self.reader.tell() - self.offset self.pos = self.size + offset self.pos = max(0, self.pos) if self.size is not None: self.pos = min(self.pos, self.size) return self.pos def tell(self): return self.pos def seekable(self): return not self.closed def peek(self, size): #print('peek', self.pos, size) assert size > 0 if self.size is not None: size = min(size, self.size - self.pos) if size <= 0: return r'' bucket = self.pos // self.buffersize end = (self.pos + size) // self.buffersize bucket *= self.buffersize end *= self.buffersize offset = self.pos - bucket rv = [] todo = size while todo: self.cache(bucket) sz = min(todo, self.buffersize-offset) rv.append(self.buffers[bucket].data[offset:].tobytes()) bucket += self.buffersize offset = 0 todo -= sz if len(rv)==1: return rv[0] return r''.join(rv) def cache(self, bucket): #print('cache', bucket) if self.buffers.has_key(bucket): return if self.num_buffers == self.max_buffers: remove = None oldest = None for k,v in self.buffers.iteritems(): if remove is None or v.timestamp < oldest: remove = k oldest = v.timestamp if remove is not None: del self.buffers[remove] self.num_buffers -= 1 if self.reader.tell() != bucket+self.offset: self.reader.seek(bucket+self.offset, io.SEEK_SET) b = Buffer(bucket, self.reader.read(self.buffersize)) if self.size is None and b.size < self.buffersize: self.size = bucket + b.size self.buffers[bucket] = b self.num_buffers += 1 assert self.num_buffers <= self.max_buffers def read(self, n=-1): #print('read', self.pos, n) if n==-1: return self.readall() if self.size is not None: n = min(n, self.size - self.pos) if n <= 0: return r'' b = self.peek(n) self.pos += n return b[:n] def readall(self): self.reader.seek(self.pos) rv = self.reader.read() self.pos += len(rv) return rv # A UTC class, see https://docs.python.org/2.7/library/datetime.html#datetime.tzinfo class UTC(datetime.tzinfo): """UTC""" ZERO = datetime.timedelta(0) def utcoffset(self, dt): return self.ZERO def tzname(self, dt): return "UTC" def dst(self, dt): return self.ZERO def dateTimeToUnixEpoch(dt): """ Convert a dateTime to number of seconds since the Unix epoch. """ epoch = datetime.datetime(year=1970, month=1, day=1, tzinfo=UTC()) return (dt - epoch).total_seconds() def toIsoDateTime(value): """ Convert a datetime to an ISO8601 formatted dateTime string. :param value: the dateTime to convert :returns: an ISO8601 formatted string version of the dateTime """ rv = value.isoformat() if value.tzinfo is None: rv += 'Z' else: # replace +00:00 timezone with Z rv = re.sub('[+-]00:00$','Z',rv) return rv def toIsoDuration(secs): """ Convert a time (in seconds) to an ISO8601 formatted duration string. :param secs: the duration to convert, in seconds :returns: an ISO8601 formatted string version of the duration """ if isinstance(secs,basestring): secs = float(secs) elif isinstance(secs, datetime.timedelta): secs = secs.total_seconds() hrs = math.floor(secs/3600) rv=['PT'] secs %= 3600 mins = math.floor(secs/60) secs %= 60 if hrs: rv.append('%dH'%hrs) if hrs or mins: rv.append('%dM'%mins) rv.append('%0.2fS'%secs) return ''.join(rv) date_hacks = [ (re.compile('Apri[^l]'),'Apr '), (re.compile('Sept[^e]'),'Sep '), (re.compile(r'(\w{3} \d{1,2},? \d{4})\s*-\s*(.*$)'), r'\1 \2' ), (re.compile(r'(\w{3} \d{1,2}), (\d{4}\s*\d{1,2}:\d{2})'), r'\1 \2' ), (re.compile(r'(\w{3})-(\d{2})$'), r'\1 \2' ), (re.compile(r'(.+) ([PCE][SD]?T)$'),r'\1') ] def parse_date(date, format=None): """Try to create a datetime from the given string""" formats = ["%Y-%m-%d", "%m/%d/%y", "%m/%d/%Y", "%b %Y", "%b %y", "%m/xx/%y", "%a %b %d %Y", "%B %d %Y %H:%M", "%b %d %Y %H:%M", "%B %d %Y", "%b %d %Y",'%a %b %d, %Y'] if format is not None: formats.insert(0,format) if not isinstance(date, basestring): date = str(date) d = date tz = datetime.timedelta(0) if re.match('.+\s+ES?T$',date): tz = datetime.timedelta(hours=5) elif re.match('.+\s+EDT$',date): tz = datetime.timedelta(hours=4) elif re.match('.+\s+PS?T$',date): tz = datetime.timedelta(hours=8) elif re.match('.+\s+PDT$',date): tz = datetime.timedelta(hours=7) for regex,sub in date_hacks: d = regex.sub(sub,d) for f in formats: try: rv = datetime.datetime.strptime(d, f) rv += tz; return rv except ValueError: pass try: return time.strptime(date) except ValueError: pass return None def dateTimeFormat(value, fmt): """ Format a date using the given format""" if not value: return value if isinstance(value, basestring): value = parse_date(value) if value is None: return value return value.strftime(fmt) duration_re = re.compile(r'^PT((?P<hours>\d+)[H:])?((?P<minutes>\d+)[M:])?((?P<seconds>[\d.]+)S?)?$') def from_isodatetime(date_time): """ Convert an ISO formated date string to a datetime.datetime or datetime.timedelta """ if not date_time: return None if date_time[:2]=='PT': match = duration_re.match(date_time) if not match: raise ValueError(date_time) hours, minutes, seconds = match.group('hours'), match.group('minutes'), match.group('seconds') secs = 0 if hours is not None: secs += int(match.group('hours'))*3600 if minutes is not None: secs += int(match.group('minutes'))*60 if seconds is not None: secs += float(match.group('seconds')) return datetime.timedelta(seconds=secs) if 'T' in date_time: try: return datetime.datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=UTC()) except ValueError: pass try: return datetime.datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=UTC()) except ValueError: return datetime.datetime.strptime(date_time, "%Y-%m-%dT%H:%MZ").replace(tzinfo=UTC()) if not 'Z' in date_time: try: return datetime.datetime.strptime(date_time, "%Y-%m-%d") except ValueError: return datetime.datetime.strptime(date_time, "%d/%m/%Y") return datetime.datetime.strptime(date_time, "%H:%M:%SZ").replace(tzinfo=UTC()).time() def toHtmlString(item, className=None): """Converts an object in to a form suitable for rendering in an HTML page. """ rv=item if isinstance(item,dict): if className: rv='<table class="%s">'%className else: rv='<table>' for key,val in item.iteritems(): rv.append('<tr><td>%s</td><td>%s</td></tr>'%(str(key),toHtmlString(val))) rv.append('</table>') rv = '\n'.join(rv) elif isinstance(item,(list,tuple)): rv = [] for val in item: rv.append(toHtmlString(val)) if item.__class__ == tuple: rv = ''.join(['(',','.join(rv),')']) else: rv = ''.join(['[',','.join(rv),']']) if className: rv = '<span class="%s">%s</span>'%(className,rv) elif isinstance(item,bool): if className is None: className='' rv = '<span class="bool-yes %s">&check;</span>'%className if item else '<span class="bool-no %s">&cross;</span>'%className else: if className: rv = '<span class="%s">%s</span>'%(className,str(rv)) else: rv = str(rv) return rv def flatten(items, convert_numbers=False): """Converts an object in to a form suitable for storage. flatten will take a dictionary, list or tuple and inspect each item in the object looking for items such as datetime.datetime objects that need to be converted to a canonical form before they can be processed for storage. """ if isinstance(items,dict): rv={} else: rv = [] for item in items: key = None if isinstance(items,dict): key = item item = items[key] if hasattr(item, 'toJSON'): item = item.toJSON(pure=True) elif isinstance(item,(datetime.date, datetime.datetime,datetime.time)): item = toIsoDateTime(item) elif isinstance(item,(datetime.timedelta)): item = toIsoDuration(item) elif convert_numbers and isinstance(item,long): item = '%d'%item elif isinstance(item,decimal.Decimal): item = float(item) elif isinstance(item, basestring): item = str(item).replace("'","\'") elif isinstance(item, (list, set, tuple)): item = flatten(list(item)) elif isinstance(item, dict): item = flatten(item) if callable(item): continue if key: rv[key]=item else: rv.append(item) if items.__class__ == tuple: return tuple(rv) return rv def as_python(value): """Convert the value into a string of Python code. The result is suitable for use with eval() """ if value is None: return 'None' wrap_strings = True if hasattr(value, 'toJSON'): value = value.toJSON() wrap_strings = False if isinstance(value, (list, tuple)): items = map(lambda v: as_python(v), list(value)) try: value = '[{0}]'.format(','.join(items)) except TypeError: print items raise elif isinstance(value, (dict)): items = [] clz = value.get('_type', None) for k, v in value.iteritems(): if k == '_type': continue if clz is None: items.append('"{0}": {1}'.format(k, as_python(v))) else: items.append('{0}={1}'.format(k, as_python(v))) if clz is None: value = '{' + ','.join(items) + '}' else: value = '{0}({1})'.format(clz, ','.join(items)) elif wrap_strings and isinstance(value, (basestring)): if '"' in value: value = ''.join(["'", value, "'"]) else: value = ''.join(['"', value, '"']) elif isinstance(value, (datetime.date, datetime.datetime,datetime.time)): value = 'utils.from_isodatetime("%s")'%(toIsoDateTime(value)) elif isinstance(value, (datetime.timedelta)): value = 'utils.from_isodatetime("%s")'%(toIsoDuration(value)) elif isinstance(value, decimal.Decimal): value = 'decimal.Decimal(%s)'%(value) else: value = str(value) return value def toJson(value, indent=0): if not value: return value try: if isinstance(value, (dict, list)): value = flatten(value) return json.dumps(value, indent=indent) except ValueError: return value def xmlSafe(value): """Convert the given string to a format that is safe for inclusion in an XML document. """ return value.replace('&','&amp;') def default(value, default_value): if value: return value return default_value def scale_timedelta(delta, num, denom): """Scale the given timedelta, avoiding overflows""" secs = num * delta.seconds msecs = num* delta.microseconds secs += msecs / 1000000.0 return secs / denom def toBase64(value): return base64.b64encode(value) def toUuid(value): if not isinstance(value, basestring): value = value.encode('hex') value = value.upper() return '-'.join([value[:8], value[8:12], value[12:16], value[16:20], value[20:] ]) def sizeFormat(value, binary=True): units = ['G', 'M', 'K', ''] mult = 1024 if binary else 1000 while value > mult and units: units.pop() value = value // mult if not units: units = 'T' return '{:d}{}B'.format(value, units[-1]) # # The following code is from djangoappengine/utils.py # try: from google.appengine.api import apiproxy_stub_map have_appserver = bool(apiproxy_stub_map.apiproxy.GetStub('datastore_v3')) on_production_server = have_appserver and not os.environ.get('SERVER_SOFTWARE', '').lower().startswith('devel') except ImportError: pass
32.63048
130
0.55675
4,140
0.264875
0
0
64
0.004095
0
0
3,669
0.234741
9b9174eb28a0ab4b95d4146848ae09c6b7a36f4f
1,883
py
Python
network.py
YanhengWang/Draughts
ad19ccbd3c4fc0defda68c45ed8f2dd14969f2a3
[ "Apache-2.0" ]
null
null
null
network.py
YanhengWang/Draughts
ad19ccbd3c4fc0defda68c45ed8f2dd14969f2a3
[ "Apache-2.0" ]
1
2020-10-12T00:33:54.000Z
2020-10-12T00:33:54.000Z
network.py
YanhengWang/Draughts
ad19ccbd3c4fc0defda68c45ed8f2dd14969f2a3
[ "Apache-2.0" ]
null
null
null
from utils import PATH_LABEL from utils import PATH_DATA_FOLDER import pickle import torch import torch.nn as nn import torch.utils.data as dat class ResBlock(nn.Module): def __init__(self, inChannels, outChannels): super(ResBlock, self).__init__() self.matchDimension = None if inChannels != outChannels: self.matchDimension = nn.Conv2d(inChannels, outChannels, 1, stride = 1, bias = False) self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride = 1, padding = 1, bias = False) self.bn1 = nn.BatchNorm2d(outChannels) self.conv2 = nn.Conv2d(outChannels, outChannels, 3, stride = 1, padding = 1, bias = False) self.bn2 = nn.BatchNorm2d(outChannels) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = nn.functional.relu(out) out = self.conv2(out) out = self.bn2(out) if self.matchDimension == None: out += x else: out += self.matchDimension(x) out = nn.functional.relu(out) return out class ResNet(nn.Module): def __init__(self): super(ResNet, self).__init__() self.conv = nn.Conv2d(4, 32, 3, stride = 1, padding = 1, bias = False) self.bn = nn.BatchNorm2d(32) blockList = [ResBlock(32, 32) for i in range(5)] self.res = nn.Sequential(*blockList) self.pool = nn.AvgPool2d(5) self.fc = nn.Linear(128, 1) def forward(self, x): x = self.conv(x) x = self.bn(x) x = nn.functional.relu(x) x = self.res(x) x = self.pool(x) x = x.view(x.size()[0], -1) x = self.fc(x) x = torch.tanh(x) return x class Dataset(dat.Dataset): def __init__(self): with open(PATH_LABEL, "rb") as f: self.labelList = pickle.load(f) def __getitem__(self, index): with open(PATH_DATA_FOLDER + str(index) + ".dat", "rb") as f: data = torch.FloatTensor(pickle.load(f)) label = torch.FloatTensor([self.labelList[index]]) return data, label def __len__(self): return len(self.labelList)
27.289855
92
0.677111
1,733
0.92034
0
0
0
0
0
0
14
0.007435
9b921382771a3e80faea212dc2044b24ad49e32b
6,623
py
Python
src/client/app/__init__.py
ZackPashkin/toloka-kit
8f650e5d8cdded1949ca633cf78f9b851ce839bb
[ "Apache-2.0" ]
153
2021-02-06T13:41:11.000Z
2022-03-19T17:51:01.000Z
src/client/app/__init__.py
ZackPashkin/toloka-kit
8f650e5d8cdded1949ca633cf78f9b851ce839bb
[ "Apache-2.0" ]
29
2021-01-15T12:54:37.000Z
2022-02-07T07:45:32.000Z
src/client/app/__init__.py
ZackPashkin/toloka-kit
8f650e5d8cdded1949ca633cf78f9b851ce839bb
[ "Apache-2.0" ]
17
2021-01-29T15:20:04.000Z
2022-01-30T07:21:03.000Z
__all__ = [ 'AppProject', 'App', 'AppItem', 'AppItemsCreateRequest', 'AppBatch', 'AppBatchCreateRequest' ] import datetime import decimal from enum import unique from typing import Dict, Any, List from ..primitives.base import BaseTolokaObject from ..project.field_spec import FieldSpec from ...util._extendable_enum import ExtendableStrEnum from ...util._codegen import attribute class _AppError(BaseTolokaObject): """ Attributes: code: String error code. message: Detailed description of the error. payload: Additional information about the error. May have different structure for different errors. """ code: str message: str payload: Any class AppProject(BaseTolokaObject): """An App project with the parameters that you specify when creating it. It will have the interface and quality control already pre-configured, decomposition done, and everything ready to use: all you need is to upload batches and send them for labeling. Attributes: app_id: parent_app_project_id: name: parameters: id: status: Project statuses for asynchronous creation. Allowed values: * CREATING * READY * ARCHIVE * ERROR created: item_price: errors: """ @unique class Status(ExtendableStrEnum): CREATING = 'CREATING' READY = 'READY' ARCHIVED = 'ARCHIVED' ERROR = 'ERROR' app_id: str parent_app_project_id: str name: str parameters: Dict id: str = attribute(readonly=True) status: Status = attribute(readonly=True, autocast=True) created: datetime.datetime = attribute(readonly=True) item_price: decimal.Decimal = attribute(readonly=True) errors: List[_AppError] = attribute(readonly=True) class App(BaseTolokaObject): """An example of a standard task that you want to solve using Toloka. Unlike project templates, you don't have to set up everything yourself. Attributes: id: ID of the App. name: image: Image. description: Overview. constraints_description: Description of limitations. default_item_price: Default processing cost per work item. param_spec: Specification of parameters for creating a project. input_spec: Schema of input data in Toloka format. output_spec: Schema of output data in Toloka format. examples: Task examples. """ id: str name: str image: str description: str constraints_description: str default_item_price: decimal.Decimal param_spec: Dict input_spec: Dict[str, FieldSpec] output_spec: Dict[str, FieldSpec] examples: Any class AppItem(BaseTolokaObject): """A work item with data. It's uploaded into the batch with other items to be collectively sent for labeling. In a TSV file with tasks, each line is a work item. Attributes: batch_id: ID of the batch that includes the item. input_data: The item data following the App schema. id: Item ID. app_project_id: ID of the app project that includes the batch with this item. created: updated: status: Processing status. If the item has the NEW status, it can be edited. In other statuses, the item is immutable. Allowed values: * NEW - new; * PROCESSING - being processed; * COMPLETED - processing complete; * ERROR - error during processing; * CANCELLED - processing canceled; * ARCHIVE - item has been archived; * NO_MONEY - not enough money for processing. output_data: Processing result. errors: created_at: Date and time when the item was created. started_at: Date and time when the item processing started. finished_at: Date and time when the item processing was completed. """ @unique class Status(ExtendableStrEnum): NEW = 'NEW' PROCESSING = 'PROCESSING' COMPLETED = 'COMPLETED' ERROR = 'ERROR' CANCELLED = 'CANCELLED' ARCHIVE = 'ARCHIVE' NO_MONEY = 'NO_MONEY' batch_id: str input_data: Dict[str, Any] id: str = attribute(readonly=True) app_project_id: str = attribute(readonly=True) created: datetime.datetime = attribute(readonly=True) updated: datetime.datetime = attribute(readonly=True) status: Status = attribute(readonly=True, autocast=True) output_data: Dict[str, Any] = attribute(readonly=True) errors: _AppError = attribute(readonly=True) created_at: datetime.datetime = attribute(readonly=True) started_at: datetime.datetime = attribute(readonly=True) finished_at: datetime.datetime = attribute(readonly=True) class AppItemsCreateRequest(BaseTolokaObject): """Request Body. Attributes: batch_id: Batch ID. items: list of items. """ batch_id: str items: List[Dict[str, Any]] class AppBatch(BaseTolokaObject): """A batch of data that you send for labeling at a time. The batch consists of work items. Attributes: id: Batch ID. app_project_id: Project ID. name: status: The state of the batch, calculated based on the states of items comprising it. Allowed values: * NEW * PROCESSING * COMPLETED * ERROR * CANCELLED * ARCHIVE * NO_MONEY items_count: Number of items in the batch. item_price: The cost of processing per item in a batch. cost: The cost of processing per batch. created_at: Date and time when the batch was created. started_at: Date and time when batch processing started. finished_at: Date and time when batch processing was completed. """ @unique class Status(ExtendableStrEnum): NEW = 'NEW' PROCESSING = 'PROCESSING' COMPLETED = 'COMPLETED' ERROR = 'ERROR' CANCELLED = 'CANCELLED' ARCHIVE = 'ARCHIVE' NO_MONEY = 'NO_MONEY' id: str app_project_id: str name: str status: Status = attribute(autocast=True) items_count: int item_price: decimal.Decimal cost: decimal.Decimal created_at: datetime.datetime started_at: datetime.datetime finished_at: datetime.datetime class AppBatchCreateRequest(BaseTolokaObject): """Request Body. Attributes: items: The item data following the App schema. """ items: List[Dict[str, Any]]
30.380734
118
0.653782
6,196
0.935528
0
0
640
0.096633
0
0
3,868
0.584025
9b926fbc1417f4ebd631923a6169eb196f0aff02
760
py
Python
WebApp/main/utility/StringUtility.py
georg-wenzel/ml-data-smell-detection
7dddd401ca1f1a830dfd8b00760659911e5b1086
[ "MIT" ]
1
2022-03-29T14:46:40.000Z
2022-03-29T14:46:40.000Z
WebApp/main/utility/StringUtility.py
georg-wenzel/ml-data-smell-detection
7dddd401ca1f1a830dfd8b00760659911e5b1086
[ "MIT" ]
null
null
null
WebApp/main/utility/StringUtility.py
georg-wenzel/ml-data-smell-detection
7dddd401ca1f1a830dfd8b00760659911e5b1086
[ "MIT" ]
1
2021-06-13T08:24:46.000Z
2021-06-13T08:24:46.000Z
# Utility functions for Strings (i.e. storing common strings once) #define common strings ERR_MISSING_KEY = "The field(s) {0} must be filled in this form." ERR_INVALID_KEY = "The field '{0}' contains an invalid value." ERR_UNAUTHORIZED = "The logged in user does not have access to this value: {0}" MSG_FINISHED_TRAINING = "Your agent {0} has finished training and can now be used." #define error string for (multiple) column mismatch #pass tuple of mismatched columns as defined by AgentUtility.dataset_all_columns_match def ERR_COLUMN_MISMATCH(columns_mismatched): err = ("Column type mismatch: " + " ".join(list(map(lambda x: "\"" + x[0] + "\": Expected " + str(x[1]) + ", but was " + str(x[2]) + ".", columns_mismatched)))) return err
54.285714
138
0.709211
0
0
0
0
0
0
0
0
496
0.652632
9b93e34b4881434ea8a11345bd79b7ea4e4e91b3
2,184
py
Python
lib/python2.7/site-packages/pyami/primefactor.py
leschzinerlab/myami-3.2-freeHand
974b8a48245222de0d9cfb0f433533487ecce60d
[ "MIT" ]
6
2018-05-10T19:12:53.000Z
2021-05-19T21:11:56.000Z
pyami/primefactor.py
vosslab/ctfeval
6cfc648f91c318c3a46a959e4771c3d16d8e741a
[ "Apache-2.0" ]
1
2017-04-15T11:04:39.000Z
2017-04-17T20:21:53.000Z
pyami/primefactor.py
vossman/ctfeval
6cfc648f91c318c3a46a959e4771c3d16d8e741a
[ "Apache-2.0" ]
1
2019-09-05T20:58:37.000Z
2019-09-05T20:58:37.000Z
#!/usr/bin/env python import sys import math maxprime = 12 twomult = 2**2 #==================== def prime_factors(n): """ Return the prime factors of the given number. """ # < 1 is a special case if n <= 1: return [1] factors = [] lastresult = n while True: if lastresult == 1: break c = 2 while True: if lastresult % c == 0: break c += 1 factors.append(c) lastresult /= c return factors #==================== def getAllPrimes(maxn=1028): goodones = [] n = 2 while n <= maxn: if isGoodPrime(n,False): #print n, factors goodones.append(n) n += 2 return goodones #==================== def getAllEvenPrimes(maxn=1028): goodones = [] n = 2 while n <= maxn: if isGoodPrime(n,False): #print n, factors goodones.append(n) n += 2 return goodones #==================== def getNextEvenPrime(num=400): goodones = [] n = num while not isGoodStack(n) and n < 10000: n += 1 return n #==================== def getPrevEvenPrime(num=400): goodones = [] n = num while not isGoodStack(n) and n > 1: n -= 1 return n #==================== def getPrimeLimits(num=4): prev = getPrevEvenPrime(num) next = getNextEvenPrime(num) return (prev, next) #==================== def isGoodPrime(num=4, power_of_4_rule=True): """ Boxsize rules: (1) no prime factor greater than 11 (2) if greater than 4^x, must be multiple of 2^x, """ #print numa if power_of_4_rule: if num % 4 != 0: return False ### get the number of powers of 4 in number power = int(math.floor(math.log(float(num))/math.log(4.0))) ### check to make sure number is divisible by 2 to that power mod = int(2**power) if num % mod != 0: return False ### get prime factors and find maximum factors = prime_factors(num) if max(factors) > maxprime: return False return True #==================== def isGoodStack(num=4): if num % twomult != 0: return False return isGoodPrime(num) #==================== if __name__ == "__main__": if len(sys.argv) > 1: n = int(sys.argv[1]) factors = prime_factors(n) print n, factors prev, next = getPrimeLimits(n) print "Use %d or %d instead"%(prev,next) else: print getAllPrimes()
18.991304
63
0.594322
0
0
0
0
0
0
0
0
618
0.282967
9b94d42c4e5c72f5294c49e1d55e12f33a9b3855
2,027
py
Python
visualization/draw.py
DougMHu/roomba-obstacle-mapping
019b6108c1967c7daabe7b4795cfac7ef0e79cf7
[ "MIT" ]
3
2018-05-26T20:41:27.000Z
2020-10-19T12:40:42.000Z
visualization/draw.py
DougMHu/roomba-obstacle-mapping
019b6108c1967c7daabe7b4795cfac7ef0e79cf7
[ "MIT" ]
null
null
null
visualization/draw.py
DougMHu/roomba-obstacle-mapping
019b6108c1967c7daabe7b4795cfac7ef0e79cf7
[ "MIT" ]
1
2017-01-31T09:47:21.000Z
2017-01-31T09:47:21.000Z
# MIT License # Copyright (c) 2016 Aashiq Ahmed, Shuai Chen, Meha Deora, Douglas Hu # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import turtle turtle.setup(800,800) wn = turtle.Screen() doug = turtle.Turtle() # Draw a grid length = 5 width = 2 step = 50 def draw_row(width, mark): doug.up() for i in range(width): if (mark[i]): doug.down() doug.begin_fill() for j in range(4): doug.fd(step) doug.right(90) if (mark[i]): doug.end_fill() doug.fd(step) doug.up() #draw_row(width,[1,0]) def draw_matrix(mark): doug.up() rows = len(mark) cols = len(mark[0]) orig = doug.fillcolor() doug.fillcolor('red') for row in mark: draw_row(cols, row) doug.fd(-cols*step) doug.right(90) doug.fd(step) doug.left(90) doug.fillcolor(orig) draw_matrix([[0,1],[1,1]]) # doug.left(90) # doug.fd((width-0.5)*step) # doug.right(90) # doug.up() # doug.fd(0.5*step) # doug.down() # doug.pensize(step) # doug.fd((length-1)*step) turtle.getscreen()._root.mainloop() #doug.fd(length*step)
25.658228
80
0.716823
0
0
0
0
0
0
0
0
1,326
0.654169
9b96be5064867858493bac891020397805ad69fe
251
py
Python
igphotoprofile.py
raflimkamal/python_project
6d3321612226fa15b9fcafe4a301160f63d81213
[ "MIT" ]
null
null
null
igphotoprofile.py
raflimkamal/python_project
6d3321612226fa15b9fcafe4a301160f63d81213
[ "MIT" ]
null
null
null
igphotoprofile.py
raflimkamal/python_project
6d3321612226fa15b9fcafe4a301160f63d81213
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[2]: pip install instaloader # In[4]: import instaloader # In[6]: ig = instaloader.Instaloader() dp = input("Enter Insta Username:") ig.download_profile(dp, profile_pic_only = True) # In[ ]:
8.366667
48
0.649402
0
0
0
0
0
0
0
0
91
0.36255
9b9ade24b6474ca9ac882881c781ddb3dc8e1ab1
2,180
py
Python
activate.py
cassidoxa/bottoman
9d04331794ffb8bb745fc175c15db6d4a1f5714c
[ "MIT" ]
null
null
null
activate.py
cassidoxa/bottoman
9d04331794ffb8bb745fc175c15db6d4a1f5714c
[ "MIT" ]
null
null
null
activate.py
cassidoxa/bottoman
9d04331794ffb8bb745fc175c15db6d4a1f5714c
[ "MIT" ]
null
null
null
import json import urllib.request from bottoman import TwitchBot import config from db.db import DatabaseManager def get_user_id_display(user): """ uses twitch's API to get a user's token with their (case insensitive) user name """ client_id = config.client_id token = "srtajsl3jjbhhtfrvk0dlsu33aytv2" header = {"Client-Id": client_id, "Authorization": f'Bearer {token}'} url = f'https://api.twitch.tv/helix/users?login={user}' req = urllib.request.Request(url, headers=header) response = urllib.request.urlopen(req).read().decode('utf-8') response = json.loads(response) return (int(response['data'][0]['id']), response['data'][0]['display_name']) def check_admin(): """ check for an admin. If no admin user, ask for one and add to chatters db. """ dbmgr = DatabaseManager('db/bottoman.db') permissions_list = [i[0] for i in dbmgr.query( "SELECT permissions \ FROM chatters").fetchall()] if 'admin' in permissions_list: return else: admin_flag = False while admin_flag is False: admin = input(f"This bot has no admin. Please enter the name of \ your twitch channel: ") double_check = input(f'The admin account will be {admin}. Is \ this correct? (y/n): ') if double_check.lower() == "y": user_id, name = get_user_id_display(admin) dbmgr.write( "INSERT INTO chatters \ VALUES (?,?,?,?,?,?)", (user_id, name.lower(), name, 'admin', 1, 0,)) dbmgr.close() admin_flag = True elif double_check.lower() == "n": continue else: print(f"Please try again.") continue return # check for admin, initialize bot, join room, send hello message check_admin() bottoman = TwitchBot() bottoman.join_room(bottoman.s) bottoman.send_message(config.join_msg) bottoman.run_time()
29.459459
77
0.559174
0
0
0
0
0
0
0
0
812
0.372477
9b9e8192f42c44f946f004808b8e37a13a83e0b0
478
py
Python
waveshare_snake.py
AndrewCarterUK/MiniGame
6d699c045e84ee3834f23eb0483245195438eff7
[ "MIT" ]
null
null
null
waveshare_snake.py
AndrewCarterUK/MiniGame
6d699c045e84ee3834f23eb0483245195438eff7
[ "MIT" ]
null
null
null
waveshare_snake.py
AndrewCarterUK/MiniGame
6d699c045e84ee3834f23eb0483245195438eff7
[ "MIT" ]
null
null
null
from minigame.waveshare.button import Button from minigame.waveshare.display import Display from minigame.games.snake import Snake WIDTH = 20 HEIGHT = 20 STEP_TIME = 0.5 BLOCK_SIZE = 32 def main(): display = Display() l_button = Button(5) r_button = Button(26) u_button = Button(6) d_button = Button(19) snake = Snake(display, WIDTH, HEIGHT, STEP_TIME, l_button, r_button, u_button, d_button) snake.play() if __name__ == '__main__': main()
19.916667
92
0.698745
0
0
0
0
0
0
0
0
10
0.020921
9b9f8f5cfe54f976ada38f7cf0db4c9ffc2c1571
8,636
py
Python
jumodjango/urls.py
jumoconnect/openjumo
828d993bfbb83777d10a68de6964c7d5bb2c7bd0
[ "MIT" ]
5
2015-03-11T18:59:46.000Z
2018-08-17T17:49:45.000Z
jumodjango/urls.py
kmrifat/openjumo
828d993bfbb83777d10a68de6964c7d5bb2c7bd0
[ "MIT" ]
2
2020-06-05T16:52:17.000Z
2021-02-08T20:24:26.000Z
jumodjango/urls.py
kmrifat/openjumo
828d993bfbb83777d10a68de6964c7d5bb2c7bd0
[ "MIT" ]
6
2016-02-04T00:45:30.000Z
2021-07-07T17:14:50.000Z
from api.api_v1 import api_urls from django.conf.urls.defaults import * from django.conf import settings from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', ) ''' RANDOM URLs ''' urlpatterns += patterns('etc.views', url(r'^about/?$', 'about', name = 'about'), url(r'^help/?$', 'help', name = 'help'), url(r'^jobs/?$', 'jobs', name = 'jobs'), url(r'^team/?$', 'team', name = 'team'), url(r'^blog/?$', 'blog', name = 'blog'), url(r'^contact/?$', 'contact', name = 'contact'), url(r'^privacy/?$', 'privacy', name = 'privacy'), url(r'^terms/?$', 'terms', name = 'terms'), url(r'^/?$', 'index', name = 'index'), url(r'^error/?$', 'throw_error', name = 'throw_error'), url(r'^health_check/?$', 'health_check', name = 'health_check'), ) ''' END OF RANDOM URLs ''' ''' API URLS ''' urlpatterns += patterns('', (r'^api/', include(api_urls())), ) ''' END API URLS ''' ''' USER URLs ''' urlpatterns += patterns('users.views', url(r'^login/?$', 'login_permalink', name = 'login_permalink'), url(r'^logout/?$', 'logout_permalink', name = 'logout_permalink'), url(r'^setup/?$', 'setup', name = 'setup'), url(r'^discover/?$', 'discover', name = 'discover'), url(r'^user/(?P<mongo_id>[a-zA-Z0-9\-_].*)/?$', 'old_user_permalink', name = 'old_user_permalink'), url(r'^forgot_password/?$', 'forgot_password', name = 'forgot_password'), url(r'^reset_password/(?P<reset_id>[a-fA-F0-9].*)/?$', 'reset_password', name = 'reset_password'), url(r'^upload_photo/?$', 'upload_photo', name = 'upload_photo'), url(r'^settings/?$', 'settings', name='settings'), url(r'^settings/notifications/?$', 'notifications', name='settings_notifications'), url(r'^settings/connect/?$', 'connect', name='settings_connect'), url(r'^settings/developer/?$', 'developer', name='settings_developer'), url(r'^users/(?P<user_id>\d*)/follow/?$', 'follow', name='follow_user'), url(r'^users/(?P<user_id>\d*)/unfollow/?$', 'unfollow', name='unfollow_user'), url(r'^users/(?P<user_id>\d*)/followers/?$', 'follower_list', name='user_followers'), url(r'^users/(?P<user_id>\d*)/followings/?$', 'following_list', name='user_followings'), url(r'^remove/?$', 'remove_user', name='remove_user') ) urlpatterns += patterns('users.ajax.views', url(r'^json/v1/user/fbid_check/?$', 'check_fbid', name = 'check_fbid'), url(r'^json/v1/user/fb_login/?$', 'fb_login', name = 'fb_login'), url(r'^json/v1/user/fbot_update/?$', 'fbot_update', name = 'fbot_update'), url(r'^json/v1/user/update/?$', 'update_user', name = 'update_user'), url(r'^json/v1/user/remove/?$', 'remove_user', name = 'remove_user'), url(r'^json/v1/user/reset_password/?$', 'reset_password', name = 'reset_password'), url(r'^json/v1/user/forgot_password/?$', 'forgot_password', name = 'forgot_password'), url(r'^json/v1/user/action/follow/?$', 'follow', name = 'follow'), ) ''' END OF USER URLs ''' ''' ISSUE URLs ''' urlpatterns += patterns('issue.views', url(r'^issue/(?P<mongo_id>[a-zA-Z0-9\-_].*)/?$', 'old_issue_permalink', name = 'old_issue_permalink'), url(r'^issuename/(?P<issuename>[a-zA-Z0-9\-_\ ].*)/?$', 'old_issuename_permalink', name = 'old_issuename_permalink'), url(r'^users/(?P<user_id>\d*)/issues/?$', 'followed_issue_list', name='followed_issue_list') ) ''' ISSUE URLs ''' ''' ORG URLs ''' urlpatterns += patterns('org.views', url(r'^org/categories.js$', 'org_categories', name = 'org_categories'), url(r'^org/claim/(?P<org_id>[0-9a-zA-Z\-_].*)/confirm/?$', 'claim_org_confirm', name = 'claim_org_confirm'), url(r'^org/claim/(?P<org_id>[0-9a-zA-Z\-_].*)/?$', 'claim_org', name = 'claim_org'), url(r'^org/create/?$', 'create_org', name = 'create_org'), url(r'^org/(?P<org_id>\d.*)/details/?$', 'details', name='details_org'), url(r'^org/(?P<org_id>[0-9a-zA-Z\-_].*)/manage/?$', 'manage_org', {'tab': 'about'}, name='manage_org'), url(r'^org/(?P<org_id>[0-9a-zA-Z\-_].*)/manage/connect/?$', 'manage_org', {'tab': 'connect'}, name='manage_org_connect'), url(r'^org/(?P<org_id>[0-9a-zA-Z\-_].*)/manage/more/?$', 'manage_org', {'tab': 'more'}, name='manage_org_more'), url(r'^org/(?P<mongo_id>[a-zA-Z0-9\-_].*)/?$', 'old_org_permalink', name = 'old_org_permalink'), url(r'^orgname/(?P<orgname>[a-zA-Z0-9\-_\ ].*)/?$', 'old_orgname_permalink', name = 'old_orgname_permalink'), url(r'^users/(?P<user_id>\d*)/orgs/?$', 'followed_org_list', name='followed_org_list') ) urlpatterns += patterns('org.ajax.views', url(r'^json/v1/org/fetch_centroid/?$', 'fetch_org_by_centroid', name = 'fetch_org_by_centroid'), url(r'^json/v1/org/update/?$', 'update_org', name = 'update_org'), url(r'^json/v1/org/remove/?$', 'remove_org', name = 'remove_org'), url(r'^json/v1/org/flag/?$', 'flag_org', name = 'flag_org'), url(r'^json/v1/org/create/?$', 'org_create', name = 'org_create'), url(r'^json/v1/org/normalize_facebook_id/?$', 'normalize_facebook_id', name = 'normalize_facebook_id'), ) ''' END OF ORG URLs ''' ''' COMMITMENT URLS ''' urlpatterns += patterns('commitment.views', url(r'^commitments/create/?$', 'create', name='create_commitment'), url(r'^commitments/(?P<commitment_id>\d*)/delete/?$', 'delete', name='delete_commitment'), url(r'^orgs/(?P<entity_id>\d*)/commitments/?$', 'list', {'model_name': 'org.Org'}, name='org_commitments'), url(r'^issues/(?P<entity_id>\d*)/commitments/?$', 'list', {'model_name': 'issue.Issue'}, name='issue_commitments'), ) ''' ACTION URLS ''' urlpatterns += patterns('action.views', url(r'^orgs/(?P<entity_id>\d*)/actions/?$', 'action_list', {'model_name': 'org.Org'}, name='org_action_list'), url(r'^issues/(?P<entity_id>\d*)/actions/?$', 'action_list', {'model_name': 'issue.Issue'}, name='issue_action_list'), ) ''' SEARCH URLS ''' urlpatterns += patterns('search.views', url(r'^json/v1/search/onebox/?$', 'autocomplete', name = 'autocomplete'), url(r'^search/?$', 'search_page', name='search_page'), url(r'^json/v1/search/?$', 'ajax_search', name='ajax_search'), url(r'^json/v1/autocomplete/?$', 'ajax_term_complete', name='ajax_term_complete') ) ''' MAILER URLS ''' urlpatterns += patterns('mailer.views', url(r'^unsubscribe/$', 'unsubscribe', name='unsubscribe'), url(r'^email/text/(?P<username>[a-zA-Z0-9\-_\ ].*)/?$', 'jumo_reader', name = 'jumo_reader'), url(r'^email/(?P<username>[a-zA-Z0-9\-_\ ].*)/?$', 'jumo_reader', name = 'jumo_reader'), #url(r'^notification/(?P<username>[a-zA-Z0-9\-_\ ].*)/?$', 'notification_email', name = 'notification_email'), ) ''' END MAILER URLS ''' ''' ADMIN URLS ''' urlpatterns += patterns('', (r'^admin/org/report/$', 'org.admin_views.report'), (r'^grappelli/', include('grappelli.urls')), (r'^admin/', include(admin.site.urls)), ) if settings.IS_DATAMINE: urlpatterns += patterns('miner.views', url(r'^related_searches/?$', 'related_searches', name='related_searches') ) #if settings.DEBUG: if True: urlpatterns += patterns('django.views.static', (r'^static/(?P<path>.*)$', 'serve', { 'document_root': settings.MEDIA_ROOT, 'show_indexes': True }),) handler500 = 'etc.views.error_500' handler404 = 'etc.views.error_404' ''' ######################################################################################### ### HEY ######################################################################### ################################################## SEE ALL THEM POUND SIGNS? ############ ######################################################################################### ############### THAT MEANS THIS IS AN IMPORTANT MSG ##################################### ######################################################################################### ################################# SO PAY ATTENTION OK? ################################## ######################################################################################### ####### EVERYTHING WILL BREAK IF THIS ISN'T THE LAST LINE OF CODE IN THIS FILE. # ######################################################################################### ################################## WE COOL? ############################################# ######################################################################################### ''' urlpatterns += patterns('etc.views', url(r'^([a-zA-Z0-9\-_].*)/?$', 'clean_url', name = 'entity_url'), )
45.452632
125
0.54736
0
0
0
0
0
0
0
0
6,052
0.700787
9ba08896288342be18a3bdfe4d777157062a927c
2,830
py
Python
modules/layers.py
vliu15/munit
5789d96590519d729f89c9501eba7692fa7054ef
[ "MIT" ]
3
2021-03-04T01:48:03.000Z
2021-12-16T06:55:10.000Z
modules/layers.py
vliu15/munit
5789d96590519d729f89c9501eba7692fa7054ef
[ "MIT" ]
null
null
null
modules/layers.py
vliu15/munit
5789d96590519d729f89c9501eba7692fa7054ef
[ "MIT" ]
null
null
null
# The MIT License # # Copyright (c) 2020 Vincent Liu # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import torch import torch.nn as nn class AdaptiveInstanceNorm2d(nn.Module): ''' Implements 2D Adaptive Instance Normalization ''' def __init__(self, channels, s_dim=8, h_dim=256): super().__init__() self.instance_norm = nn.InstanceNorm2d(channels, affine=False) self.style_scale_transform = self.mlp(s_dim, h_dim, channels) self.style_shift_transform = self.mlp(s_dim, h_dim, channels) @staticmethod def mlp(self, in_dim, h_dim, out_dim): return nn.Sequential( nn.Linear(in_dim, h_dim), nn.ReLU(inplace=True), nn.Linear(h_dim, h_dim), nn.ReLU(inplace=True), nn.Linear(h_dim, out_dim), ) def forward(self, image, w): normalized_image = self.instance_norm(image) style_scale = self.style_scale_transform(w)[:, :, None, None] style_shift = self.style_shift_transform(w)[:, :, None, None] transformed_image = style_scale * normalized_image + style_shift return transformed_image class LayerNorm2d(nn.Module): ''' Implements 2D Layer Normalization ''' def __init__(self, channels, eps=1e-5, affine=True): super().__init__() self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.rand(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): mean = x.flatten(1).mean(1).reshape(-1, 1, 1, 1) std = x.flatten(1).std(1).reshape(-1, 1, 1, 1) x = (x - mean) / (std + self.eps) if self.affine: x = x * self.gamma.reshape(1, -1, 1, 1) + self.beta.reshape(1, -1, 1, 1) return x
36.753247
84
0.674558
1,678
0.592933
0
0
280
0.09894
0
0
1,183
0.418021
9ba3741e685c1d558d552dcb021080523937b319
721
py
Python
lab_new/locust/locustfile.py
mwardbopp/f5-big-iq-lab
70d5b766571f8db8b3bc744e98c183dbdd500089
[ "Apache-2.0" ]
18
2018-07-17T15:17:16.000Z
2021-12-05T21:13:26.000Z
lab_new/locust/locustfile.py
mwardbopp/f5-big-iq-lab
70d5b766571f8db8b3bc744e98c183dbdd500089
[ "Apache-2.0" ]
34
2018-09-11T04:43:47.000Z
2021-04-19T15:58:50.000Z
lab_new/locust/locustfile.py
mwardbopp/f5-big-iq-lab
70d5b766571f8db8b3bc744e98c183dbdd500089
[ "Apache-2.0" ]
54
2018-07-30T12:23:33.000Z
2021-06-11T17:54:28.000Z
import time from locust import HttpUser, task, between # https://docs.locust.io/en/stable/quickstart.html class QuickstartUser(HttpUser): wait_time = between(5, 10) @task def index_page(self): self.client.get("/index.php", verify=False) self.client.get("/contact", verify=False) self.client.get("/wishlist", verify=False) self.client.get("/faq", verify=False) self.client.get("/product/view?id=72", verify=False) self.client.get("/product/view?id=64", verify=False) self.client.get("/product/view?id=56", verify=False) def on_start(self): self.client.post("/user/login", json={"username":"test_user", "password":"123456"}, verify=False)
34.333333
105
0.65742
612
0.848821
0
0
413
0.572816
0
0
204
0.28294
9ba44cd9d91cc8c729aafc0cddc794fc2187f3f9
25,015
py
Python
lizardanalysis/calculations/aep_pep_test.py
JojoReikun/ClimbingLizardDLCAnalysis
6cc38090217a3ffd4860ef6d06ba7967d3c10b7c
[ "MIT" ]
1
2021-03-09T19:12:44.000Z
2021-03-09T19:12:44.000Z
lizardanalysis/calculations/aep_pep_test.py
JojoReikun/ClimbingLizardDLCAnalysis
6cc38090217a3ffd4860ef6d06ba7967d3c10b7c
[ "MIT" ]
null
null
null
lizardanalysis/calculations/aep_pep_test.py
JojoReikun/ClimbingLizardDLCAnalysis
6cc38090217a3ffd4860ef6d06ba7967d3c10b7c
[ "MIT" ]
null
null
null
def aep_pep_test(**kwargs): """ Calculates two different things: 1.) The x and y coordinates of the AEP and PEP, relative to the coxa of a respective leg 2.) The swing phases and the stance phases, identifying on a frame by frame basis Return: results data frame with 30 key value pairs: x6 allocation of swing and stance phases for each foot/leg x6 x coordinates of AEP for each foot/leg x6 y coordinates for AEP for each foot/leg x6 x coordinates for PEP for each foot/leg x6 y coordinates for PEP for each foot/leg """ import os.path import pandas as pd from pandas import np from pathlib import Path from lizardanalysis.utils import animal_settings from scipy import signal import math # print("footfall_by_switches") # define necessary **kwargs: data = kwargs.get('data') data_rows_count = kwargs.get('data_rows_count') config = kwargs.get('config') filename = kwargs.get('filename') likelihood = kwargs.get('likelihood') animal = kwargs.get('animal') df_result_current = kwargs.get('df_result_current') # added in this so that you can get the estimated values from alpha # so long as that column currently resides in the data frame config_file = Path(config).resolve() # result folder for footfall plots step_detection_folder = os.path.join(str(config_file).rsplit(os.path.sep, 1)[0], "analysis-results", "step_detection") # create file path for foot fall pattern diagrams plotting_footfall_folder = os.path.join(step_detection_folder, "footfall-pattern-diagrams") # TODO: instead of hard-coding the feet and the three points for body_motion, # TODO: let the user choose based on labels available in DLC result file: Choose feet & choose body motion scorer = data.columns[1][0] feet = animal_settings.get_list_of_feet(animal) relative = False plotting_footfall_patterns = True # define cut-off value -> crops X% of frames on each side of video p_cut_off = 0.05 body_motion = {"frame": [], "mean_motion_x": []} abdomen_diff = 0 head_diff = 0 # assuming that the body from the head to the abdomen is rigid? # this for loop is used to calculate the x coordinate difference between a given frame and the previous # therefore gives you can indicator of the direction of motion # if the [row] - [row-1] > 0 , then the stick insect is moving to the right # if the [row] - [row-1] < 0, then the stick insect is moving to the left for row in range(1, data_rows_count): if data.loc[row][scorer, "head", 'likelihood'] >= likelihood and data.loc[row - 1][ scorer, "head", 'likelihood'] >= likelihood: head_diff = data.loc[row][scorer, "head"] - data.loc[row - 1][scorer, "head"] if data.loc[row][scorer, "abdomen", 'likelihood'] >= likelihood and data.loc[row - 1][ scorer, "abdomen", 'likelihood'] >= likelihood: abdomen_dif = data.loc[row][scorer, "abdomen"] - data.loc[row - 1][scorer, "abdomen"] body_motion["frame"].append(row - 1) body_motion["mean_motion_x"].append(abs((head_diff + abdomen_diff) / 2.0)) # am taking the absolute value, because if the stick insect walks to the left, then you don't want to # switch the which sign changes indicates swing/pep and which sign change indicates stance/aep. # taking the average of the differences, to determine the average 'speed' i.e. the displacement over one frame of the whole body # one class instance and one result array for every foot, since every foot needs its own counter calculators = {} results = {} # for every foot, need to do within the original for loop, so all foot calculations are performed for a given frame foot_motions = {} rel_foot_motions = {} # left the for loop for the body motion, and will now be working with for loops for the foot motion for foot in feet: foot_motions[f"{foot}"] = [] rel_foot_motions[f"rel_{foot}"] = [] # if the [row] - [row-1] > 0 , then the stick insect FOOT is moving to the right # if the [row] - [row-1] < 0, then the stick insect FOOT is moving to the left # taking an absolute value for the body and foot motions avoid issues with directions (?) foot_motion = 0 for row in range(1, data_rows_count): if data.loc[row][scorer, f"{foot}", 'likelihood'] >= likelihood and data.loc[row - 1][scorer, f"{foot}",'likelihood'] >= likelihood: foot_motion = abs(data.loc[row][scorer, f"{foot}", 'x'] - data.loc[row - 1][ scorer, f"{foot}", 'x']) foot_motions[f"{foot}"].append(foot_motion) rel_foot_motions[f"rel_{foot}"].append(foot_motion - body_motion['mean_motion_x'][row - 1]) else: foot_motions[f"foot"].append # now need to store the body motion data, the foot motion data, and the relative foot motion all in a dataframe # this dataframe within the loop is only for one foot dict_df = {'body_motion': body_motion['mean_motion_x'], 'foot_motion': foot_motions[f"{foot}"], "rel_foot_motion": rel_foot_motions[f"rel_{foot}"]} print(dict_df) df = pd.DataFrame.from_dict(dict_df) intersections = smooth_and_plot(df, data_rows_count, p_cut_off, relative, foot, filename, step_detection_folder) ###################################################################################################################### # the smooth_and_plot function returns 'intersection_dict' # intersection dict is: {"idx":[], "sign":[]} # idx = the idx of the number list/array of differences in the sign, only storing when the differences are non-zero # sign = stores the sign of the number associated with the index of the non zero number # positive => start of swing =>PEP # negative => start of stance => AEP # gives the alpha_estimation values for the rom_list = [col for col in df_result_current.columns if ("rom_angle_{}".format(foot) in col)] aep_pep_angle = [] # for loop will calculate the angle that defines the femur-coxa vector relative to the normal # to the body axis, running through the coxa of the foot of interest for angle in range(len(rom_list)): aep_pep_angle.append(90 - angle) foot_chars = list(foot) f_t_joint_lpx = [] f_t_joint_lpy = [] t_c_joint_lpx = [] t_c_joint_lpy = [] # low pass filter application of the coordinate data alone? # is this necessary b, a = signal.butter(3, 0.1, btype='lowpass', analog=False) f_t_joint_lpx = signal.filtfilt(b, a, (data.loc[:, (scorer, "{}m{}".format(foot_chars[0], foot_chars[1]), "x")])) f_t_joint_lpy = signal.filtfilt(b, a, (data.loc[:, (scorer, "{}m{}".format(foot_chars[0], foot_chars[1]), "y")])) t_c_joint_lpx = signal.filtfilt(b, a, (data.loc[:, (scorer, "{}b{}".format(foot_chars[0], foot_chars[1]), "x")])) t_c_joint_lpy = signal.filtfilt(b, a, (data.loc[:, (scorer, "{}b{}".format(foot_chars[0], foot_chars[1]), "y")])) # ensuring that the values for the keys are defined as arrays, so that you can append for the # following for loop results_aep = {"{}_x".format(foot): [], "{}_y".format(foot): []} results_pep = {"{}_x".format(foot): [], "{}_y".format(foot): []} for i in range(2, data_rows_count): if i - 2 in intersections["idx"]: # atm just leaving the likelihood check # is it worth doing, considering the alpha angles depended on those likelihoods anyway? # so you would be just checking the same likelihood even though # now calculating the Euclidean distance between the coxa label and the femur label f_t_joint_co = (f_t_joint_lpx[i], f_t_joint_lpy[i]) t_c_joint_co = (t_c_joint_lpx[i], t_c_joint_lpy[i]) distance = np.sqrt( (f_t_joint_co[0] - t_c_joint_co[0]) ** 2 + (f_t_joint_co[1] - t_c_joint_co[1]) ** 2) # calibrate distance with conversion factor # NEED TO WRITE THE CONVERSION FACTOR! distance_calib = distance # / conv_fac # results_aep = {} # results_pep = {} if intersections["sign"][i - 2] > 0: # this means you are transitioning to the swing phase, so should be PEP results_pep[f"{foot}_x"].append((math.cos(aep_pep_angle[i]) * distance_calib)) results_pep[f"{foot}_y"].append((math.sin(aep_pep_angle[i]) * distance_calib)) if intersections["sign"][i - 2] < 0: # this means you are transitioning to the stance phase so should be aep results_aep[f"{foot}_x"].append((math.cos(aep_pep_angle[i]) * distance_calib)) results_aep[f"{foot}_y"].append((math.sin(aep_pep_angle[i]) * distance_calib)) # therefore should now have two dictionaries that contain the x coordinates and the y coordinates # of the aep and the pep for each foot # one aep value and one pep value per stepping cycle ##################################################################################################################### # initializes class instance for every foot and empty result dict to be filled with the swing and stance phases: calculators[foot] = StridesAndStances() # "S10" = string of 10 characters: stance/stride + counter 000n results[foot] = calculators[foot].determine_stride_phases(intersections, data_rows_count) # rename dictionary keys of results results = {'stepphase_' + key: value for (key, value) in results.items()} results_aep = {"AEP_" + key: value for (key, value) in results_aep.items()} results_pep = {"PEP_" + key: value for (key, value) in results_pep.items()} # print("results: ", results) if plotting_footfall_patterns: """ plots a foot fall pattern diagram for every DLC result csv file/every lizard run """ plot_footfall_pattern(results, data_rows_count, filename, plotting_footfall_folder) ## need to add the result of the code here! # last step must be combining the three results dictionaries results.update(results_aep) results.update(results_pep) return results # shouldn't matter whether the stick insect walks in a straight horizontal line or not, because you're only looking at # the switch in the direction of movement # therefore, as long as the insect doesn't walk completely vertically suddenly, then the algorithm should still work def smooth_and_plot(df, data_rows_count, p_cut_off, relative, foot, filename, step_detection_folder, plotting=True): # smoothing of the raw input data from foot motion and body motion, using the Butterworth low-pass filter an a Savintzky- # Golay smoothing alogirthm. Then, the intersection points are computed between the smoothed body and foot curves # If relative is TRUE: body motion is already subtracted from the foot motion, hence foot is relative to the x-axis # If relative is FALSE: the intersection of the foot motion and body motion data curves needs to be determined import numpy as np import matplotlib.pyplot as plt from scipy import signal import os import errno # savgol filter smoothing window (must be odd!) smooth_wind = 13 x_cut_off_value = int(round(data_rows_count * p_cut_off, 0)) x = np.linspace(0, data_rows_count - 1, data_rows_count - 1) b, a = signal.butter(3, 0.1, btype='lowpass', analog=False) x_cut_off = np.linspace(x_cut_off_value, data_rows_count - 1, int(data_rows_count - 1 - x_cut_off_value)) if plotting == True: # initiate plot plt.figure() plt.axvline(x_cut_off_value, color='black', label='cutoff 0.05%') if relative == True: """Uses the relative foot motion i.e. the foot motion where body motion has been subtracted""" rel_foot_motion_low_passed = signal.filtfilt(b, a, df['rel_foot_motion']) # smooth curves with Savitzky-Golay filter: y_foot_rel = df.loc[x_cut_off_value:, 'rel_foot_motion'] y_foot_rel_lp = rel_foot_motion_low_passed[x_cut_off_value:] # two different types of filtering (?) # smooth without the low pass filter y_foot_rel_smoothed = signal.savgol_filter(y_foot_rel, smooth_wind, 3) # smooth with the low pass filter y_foot_rel_lp_smoothed = signal.savgol_filter(y_foot_rel_lp, smooth_wind, 3) x_axis_f = np.zeros(data_rows_count - 1 - x_cut_off_value) # get the indexes of the frames where you are transitioning from swing -> stance or stance -> swing idx = np.argwhere(np.diff(np.sign(x_axis_f - y_foot_rel_smoothed))).flatten() intersections_dict = {"idx": [], "sign": []} for i in idx: intersections_dict["idx"].append(i) intersections_dict["sign"].append(np.sign(x_axis_f[i] - y_foot_rel_smoothed[i])) intersections_dict["idx"] = [b + x_cut_off_value for b in intersections_dict['idx']] if plotting == True: df['rel_foot_motion'].plot(color='#f5c242') # plot_rel_foot plt.plot(x, rel_foot_motion_low_passed, color='green', label='rel_foot_motion low pass (lp) filter') plt.plot(x_cut_off, y_foot_rel_smoothed, color='red', label='rel_foot_motion_smoothed') plt.plot(x_cut_off, y_foot_rel_lp_smoothed, color='lightgreen', label='rel_foot_motion_lp_smoothed') plt.plot(x_cut_off[idx], y_foot_rel_lp_smoothed[idx], 'ko') # plot intersection points # edit here -> second argument was changed from x_axis_f to y_foot_rel_lp_smoothed for i in range(len(intersections_dict['idx'])): plt.annotate(intersections_dict['idx'][i], (x_cut_off[intersections_dict['idx'][i] - x_cut_off_value] - 5, y_foot_rel_lp_smoothed[intersections_dict['idx'][i] - x_cut_off_value] + 3)) # another edit here? else: """ Uses the foot motion and the body motion and computes the intersection points for the smoothed curves. Intersection points for the lizard standing (bodymotion -> 0) will get excluded by using a body-motion threshold of 10% of max(body_motion_lp_smoothed). """ # lowpass filter for body motion body_motion_low_passed = signal.filtfilt(b, a, df['body_motion']) # lowpass filter for foot motion foot_motion_low_passed = signal.filtfilt(b, a, df['foot_motion']) # smooth curves: y_body = df.loc[x_cut_off_value:, 'body_motion'] y_body_lp = body_motion_low_passed[x_cut_off_value:] y_foot = df.loc[x_cut_off_value:, 'foot_motion'] y_foot_lp = foot_motion_low_passed[x_cut_off_value:] # smooth original body motion without low pass filter y_body_smoothed = signal.savgol_filter(y_body, 51, 3) # smooth low-pass-filtered body motion y_body_lp_smoothed = signal.savgol_filter(y_body_lp, 17, 3) # smooth original foot motion without low pass filter y_foot_smoothed = signal.savgol_filter(y_foot, 17, 3) # smooth low-pass-filtered rel foot motion y_foot_lp_smoothed = signal.savgol_filter(y_foot_lp, 17, 3) # compute and plot intersection points: idx = np.argwhere(np.diff(np.sign(y_body_lp_smoothed - y_foot_lp_smoothed))).flatten() intersections_dict = {"idx": [], "sign": []} max_body_motion = max([abs(max(y_body_lp_smoothed)), abs(min(y_body_lp_smoothed))]) body_motion_stand = round(max_body_motion * 0.1, 2) # print(f"max body motion: {max_body_motion}, 10%: {body_motion_stand}") for i in idx: # exclude all intersections which are within 0+-1% of max body motion (~standing) if abs(y_body_lp_smoothed[i]) >= body_motion_stand: intersections_dict["idx"].append(i) intersections_dict["sign"].append(np.sign(y_body_lp_smoothed[i] - y_foot_lp_smoothed[i])) intersections_dict['idx'] = [b + x_cut_off_value for b in intersections_dict['idx']] # print("x intersections: ", intersections_dict) # remove intersection points when lizard has stopped walking (usually in the end): # intersections_dict = remove_standing_intersections(intersections_dict, y_body_lp_smoothed, y_foot_lp_smoothed) if plotting == True: df['body_motion'].plot(color='#3089db') # plot body motion df['foot_motion'].plot(color='#d68f00') # plot foot motion plt.plot(x, body_motion_low_passed, color='lightblue', label='body_motion low pass (lp) filter') plt.plot(x, foot_motion_low_passed, color='green', label='foot_motion low pass (lp) filter') plt.plot(x_cut_off, y_body_smoothed, color='#160578', label='body_motion_smoothed') plt.plot(x_cut_off, y_foot_smoothed, color='red', label='foot_motion_smoothed') plt.plot(x_cut_off, y_body_lp_smoothed, color='#9934b3', label='body_motion_lp_smoothed') plt.plot(x_cut_off, y_foot_lp_smoothed, color='lightgreen', label='foot_motion_lp_smoothed') plt.plot(x_cut_off[idx], y_body_lp_smoothed[idx], 'ko') # plot intersection points for i in range(len(intersections_dict['idx'])): plt.annotate(intersections_dict['idx'][i], (x_cut_off[intersections_dict['idx'][i] - x_cut_off_value] - 5, y_body_lp_smoothed[intersections_dict['idx'][i] - x_cut_off_value] + 3)) if plotting == True: # set y-limits, add legend and display plots plt.axhline(0, color='black') plt.ylim(-30, 30) plt.legend() plt.xlabel('frames') plt.ylabel('dx/frame') filename_title = filename.split("_", 2)[:2] filename_title = filename_title[0] + filename_title[1] plt.title(f"{filename_title}-{foot}") # plt.show() try: os.makedirs(step_detection_folder) # print("folder for curve_fitting plots created") except OSError as e: if e.errno != errno.EEXIST: raise if relative == True: plt.savefig(os.path.join(step_detection_folder, f"steps_{filename_title}_{foot}_rel.pdf")) else: plt.savefig(os.path.join(step_detection_folder, f"steps_{filename_title}_{foot}.pdf")) # plt.show() plt.close() return intersections_dict ## removed the unused function, might need to put back in at some point class StridesAndStances: """ class to detect stride and stance phases for current feet => initialize class instance for every foot. This method iterates through all frames, if the current frame is one of the intersection points, the sign of the point will be checked. If the sign is positive the phase will be set to swing and the swing_phase_counter increased by 1. All frames until the next intersection will be assigned that phase name and number. Rows before and after first and last index respectively will be filled with np.nan. """ def __init__(self): import numpy as np self.stride_phase_counter = 0 self.stance_phase_counter = 0 self.phase = 'UNKNOWN' self.current_phase = np.nan def determine_stride_phases(self, intersection_dict, data_rows_count): """ Function to detect the swing or stance phases using the intersection points and their signs. Return: list with one entry for every row. """ import numpy as np # create empty list with length of data rows count: results = np.full((data_rows_count,), '', dtype='S10') index = 0 for row in range(data_rows_count): # switch swing or stance depending on sign of intersection point if row in intersection_dict['idx']: index = intersection_dict['idx'].index(row) # find the index in list of current idx sign = intersection_dict['sign'][index] # find the respective sign # if sign is positive, the phase till next idx will be swing self.current_phase = self.assign_swing_or_stance(sign) # fill all rows until next idx with that swing or stance number results[row] = self.current_phase # fill all rows after last idx with np.nan if index != 0: results[intersection_dict['idx'][index]:] = np.nan # print("results: ", results) return results # Todo: Go through intersection_dict and assign correct swing or stance phase for every row def assign_swing_or_stance(self, sign): if sign > 0: # swing if self.phase == 'stance' or self.phase == 'UNKNOWN': self.stride_phase_counter += 1 self.phase = 'swing' # originally called stride retval = f'swing{self.stride_phase_counter:04d}' else: # stance if self.phase == 'swing' or self.phase == 'UNKNOWN': self.stance_phase_counter += 1 self.phase = 'stance' retval = f'stance{self.stance_phase_counter:04d}' return retval def __str__(self): return f"swings: {self.stride_phase_counter}, stances: {self.stance_phase_counter}" def plot_footfall_pattern(results, data_rows_count, filename, plotting_footfall_folder): """ takes the result dataframe and creates a new dataframe for plotting. Every foot gets assigned an individual number. The dataframe is then filtered for strings containing "stride", the strides get replaced by the respective number, while all stances will be NaN. In the plot strides are therefore displayed as bars and stances are empty. """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.patches import Patch import os import errno df_plot = pd.DataFrame(columns=results.keys(), index=range(data_rows_count)) # filter here and only fill in stances as numbers => stances bars, strides white for i, key in enumerate(results): df_plot[key] = [i + 1 if s.startswith(b'stance') else np.NaN for s in results[key]] key_list = [key for key in df_plot.columns] colors = False if colors: cmap = plt.cm.coolwarm legend_elements = [Line2D([0], [0], color=cmap(0.), lw=4, label=key_list[0]), Line2D([0], [0], color=cmap(.33), lw=4, label=key_list[1]), Line2D([0], [0], color=cmap(.66), lw=4, label=key_list[2]), Line2D([0], [0], color=cmap(1.), lw=4, label=key_list[3]), Line2D([0], [0], color='black', lw=4, label='stance phases'), Line2D([0], [0], color='white', lw=4, label='stride phases')] fig, ax = plt.subplots() df_plot.plot(linewidth=10, color=cmap(np.linspace(0, 1, 5)), ax=ax) ax.legend(handles=legend_elements) else: legend_elements = [Line2D([0], [0], color='white', lw=1, label='1 = FL | 2 = FR | 3 = HR | 4 = HL'), Line2D([0], [0], color='black', lw=4, label='stance phases'), Line2D([0], [0], color='white', lw=4, label='stride phases')] fig, ax = plt.subplots() df_plot.plot(linewidth=10, color='black', ax=ax) ax.legend(handles=legend_elements) # saves footfall pattern diagrams as pdf in defined result folder. If folder is not extant yet, it will be created try: os.makedirs(plotting_footfall_folder) except OSError as e: if e.errno != errno.EEXIST: raise plt.savefig(os.path.join(plotting_footfall_folder, "{}.pdf".format(filename))) plt.clf() plt.close()
49.534653
136
0.625625
2,785
0.111333
0
0
0
0
0
0
10,788
0.431261
9ba6402b03516602907bdd9d7c0d28f9b0666716
1,601
py
Python
python/test.py
drulm/Spark_Knapsack
ef8ab8b6ac6762391b63ff29ebf857a65f98698d
[ "Apache-2.0" ]
7
2018-04-18T00:51:29.000Z
2021-05-30T12:58:36.000Z
python/test.py
darrell-ulm/Spark_Knapsack
ef8ab8b6ac6762391b63ff29ebf857a65f98698d
[ "Apache-2.0" ]
null
null
null
python/test.py
darrell-ulm/Spark_Knapsack
ef8ab8b6ac6762391b63ff29ebf857a65f98698d
[ "Apache-2.0" ]
2
2019-05-28T03:13:26.000Z
2019-11-22T19:50:14.000Z
# -------------------------------------------- # Test the Approximate Knapsack function test # -------------------------------------------- # Pull in the knapsack library. import random from pyspark.sql import SparkSession from knapsack import knapsack # Create the SparkContext. sc = SparkSession \ .builder \ .appName("Knapsack Approximation Algorithm Test") \ .getOrCreate() # Knapsack problem size. N = 10 # Setup sample data for knapsack. knapsackData = [('item_' + str(k), random.uniform(1.0, 10.0), random.uniform(1.0, 10.0)) for k in range(N)] # Make a Dataframe with item(s), weight(s), and value(s) for the knapsack. knapsackData = sc.createDataFrame(knapsackData, ['item', 'weights', 'values']) # Display the original data print "Original Data:" print knapsackData.show() print "\n" # Create a random maximum weight W = random.uniform(N * 1.3, N * 1.6) # Show the weight. print "W: " print W print "\n" # Call the knapsack greedy approximation function, with data and size 5. k = knapsack.knapsackApprox(knapsackData, W) # Show the results Dataframe. print "Selected Elements:" print k.show() print "\n" # Show totals for selected elements of knapsack. sumValues = k.rdd.map(lambda x: x["values"]).reduce(lambda x, y: x+y) sumWeights = k.rdd.map(lambda x: x["weights"]).reduce(lambda x, y: x+y) numResults = k.count() print "Totals:" print "Sum Values: ", sumValues print "Sum Weights: ", sumWeights print numResults print "\n" # ------------------------------------------ # End of Approximate Knapsack function test # ------------------------------------------
26.245902
107
0.634603
0
0
0
0
0
0
0
0
863
0.539038
9ba65d1715a7fcfaf9934b6a6bcb75b319f1120c
413
py
Python
mysite/blog/views.py
josonle/LearningDjango
62558aa141c5872c2380e5daa336da199a54b0e1
[ "MIT" ]
1
2019-02-19T07:38:02.000Z
2019-02-19T07:38:02.000Z
mysite/blog/views.py
josonle/LearningDjango
62558aa141c5872c2380e5daa336da199a54b0e1
[ "MIT" ]
null
null
null
mysite/blog/views.py
josonle/LearningDjango
62558aa141c5872c2380e5daa336da199a54b0e1
[ "MIT" ]
null
null
null
from django.shortcuts import render,get_object_or_404 from .models import BlogArticles # Create your views here. def blog_title(request): blogs=BlogArticles.objects.all() return render(request,"blog/titles.html",{"blogs":blogs}) def article(request,a_id): blog=get_object_or_404(BlogArticles,id=a_id) publish_time=blog.publish return render(request,"blog/article.html",{'blog':blog,'publish':publish_time})
34.416667
80
0.79661
0
0
0
0
0
0
0
0
84
0.20339
9ba95d022de0cbe77839799064d678253b042077
204
py
Python
tests/test_gluupostgres.py
danilosoarescardoso/cloud-native-edition
b8aa66119dc4440b1ca3741a4065c9ae7feb42fb
[ "Apache-2.0" ]
1
2021-04-04T04:25:49.000Z
2021-04-04T04:25:49.000Z
tests/test_gluupostgres.py
danilosoarescardoso/cloud-native-edition
b8aa66119dc4440b1ca3741a4065c9ae7feb42fb
[ "Apache-2.0" ]
null
null
null
tests/test_gluupostgres.py
danilosoarescardoso/cloud-native-edition
b8aa66119dc4440b1ca3741a4065c9ae7feb42fb
[ "Apache-2.0" ]
null
null
null
import pygluu.kubernetes.postgres as module0 from pygluu.kubernetes.postgres import Postgres def test_base_exception(): try: var0 = module0.Postgres() except BaseException: pass
20.4
47
0.72549
0
0
0
0
0
0
0
0
0
0
9ba99aa02744fe90eebce52ab7ecf4ce0854c775
1,367
py
Python
Medium/918. Maximum Sum Circular Subarray/solution (1).py
czs108/LeetCode-Solutions
889f5b6a573769ad077a6283c058ed925d52c9ec
[ "MIT" ]
3
2020-05-09T12:55:09.000Z
2022-03-11T18:56:05.000Z
Medium/918. Maximum Sum Circular Subarray/solution (1).py
czs108/LeetCode-Solutions
889f5b6a573769ad077a6283c058ed925d52c9ec
[ "MIT" ]
null
null
null
Medium/918. Maximum Sum Circular Subarray/solution (1).py
czs108/LeetCode-Solutions
889f5b6a573769ad077a6283c058ed925d52c9ec
[ "MIT" ]
1
2022-03-11T18:56:16.000Z
2022-03-11T18:56:16.000Z
# 918. Maximum Sum Circular Subarray # Runtime: 1028 ms, faster than 5.09% of Python3 online submissions for Maximum Sum Circular Subarray. # Memory Usage: 18.6 MB, less than 33.98% of Python3 online submissions for Maximum Sum Circular Subarray. import math class Solution: def maxSubarraySumCircular(self, nums: list[int]) -> int: def max_one_interval() -> int: curr_max_sum, max_sum = -math.inf, -math.inf for x in nums: curr_max_sum = max(x, curr_max_sum + x) max_sum = max(max_sum, curr_max_sum) return max_sum def max_two_interval() -> int: right_sums = [-math.inf] * len(nums) right_sums[-1] = nums[-1] for i in range(len(nums) - 2, -1, -1): right_sums[i] = right_sums[i + 1] + nums[i] max_right_sums = [-math.inf] * len(nums) max_right_sums[-1] = right_sums[-1] for i in range(len(nums) - 2, -1, -1): max_right_sums[i] = max(max_right_sums[i + 1], right_sums[i]) max_sum = -math.inf left_sum = 0 for i in range(len(nums) - 2): left_sum += nums[i] max_sum = max(max_sum, left_sum + max_right_sums[i + 2]) return max_sum return max(max_one_interval(), max_two_interval())
35.973684
106
0.567666
1,103
0.806876
0
0
0
0
0
0
244
0.178493
9ba9d75f770e59ab5f8bd4c1745fa1e171a92981
10,644
py
Python
testing.py
gustxsr/learning-with-assemblies
4158829adf4500a9ae868ca7c64ffef90753c66b
[ "MIT" ]
null
null
null
testing.py
gustxsr/learning-with-assemblies
4158829adf4500a9ae868ca7c64ffef90753c66b
[ "MIT" ]
null
null
null
testing.py
gustxsr/learning-with-assemblies
4158829adf4500a9ae868ca7c64ffef90753c66b
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from scipy.signal import convolve from matplotlib.gridspec import GridSpec import matplotlib as mpl rng = np.random.default_rng() def k_cap(input, cap_size): """ Given a vector input it returns the highest cap_size entries from cap_zie """ output = np.zeros_like(input) if len(input.shape) == 1: idx = np.argsort(input)[-cap_size:] output[idx] = 1 else: idx = np.argsort(input, axis=-1)[:, -cap_size:] np.put_along_axis(output, idx, 1, axis=-1) return output class brain_region: """ Creates a brain region from assembly calculus """ def __init__(self, n_neurons , n_in, cap_size, id: int ) -> None: """ Creates a brain region that takes """ self.id=id self.n_neurons=n_neurons self._n_in=n_in self.cap_size=cap_size mask = np.zeros((self.n_neurons, self.n_neurons), dtype=bool) # NXN array of zeros W = np.zeros((self.n_neurons, self.n_neurons)) mask_a = np.zeros((self._n_in, self.n_neurons), dtype=bool) # image to N matrix A = np.zeros((self._n_in, self.n_neurons)) mask = (rng.random((self.n_neurons, self.n_neurons)) < sparsity) & np.logical_not(np.eye(n_neurons, dtype=bool)) # Creating matrix from N to B with no entries in the diagonal W = np.ones((self.n_neurons, self.n_neurons)) * mask W /= W.sum(axis=0) # Transition probabiliy matrix mask_a = rng.random((self._n_in, self.n_neurons)) < sparsity A = np.ones((self._n_in, self.n_neurons)) * mask_a A /= A.sum(axis=0) W = np.ones_like(W) * mask A = np.ones_like(A) * mask_a W /= W.sum(axis=0, keepdims=True) A /= A.sum(axis=0, keepdims=True) self._W=W self._A=A self.mask=mask self.mask_a=mask_a self.act_h = np.zeros(self.n_neurons) self.bias = np.zeros(self.n_neurons) self.b = -1 self.classify_act_h=np.zeros(self.n_neurons) def next(self, input, initial=False, final=False ): """ It computes the activation output of the input going through this brain region. """ if initial: self.act_h = np.zeros(self.n_neurons) act_h_new = k_cap(self.act_h @ self._W + input @ self._A + self.bias, self.cap_size) # output a NXN array for the neurons that are activated. The first part is from self activiation and second from inoput self._A[(input > 0)[:, np.newaxis] & (act_h_new > 0)[np.newaxis, :]] *= 1 + beta self._W[(self.act_h > 0)[:, np.newaxis] & (act_h_new > 0)[np.newaxis, :]] *= 1 + beta self.act_h = act_h_new if final: self.reinforce_bias() print("Shape of act_h:"+str(self.act_h.shape)) return self.act_h.copy() def reinforce_bias(self): """ This function is meant to be called at the end of each round to renormalize the transition matrices """ self.bias[self.act_h>0]+=-1 # after all rounds the activated neurons have a smaller bias so they more likely to fire self._A /= self._A.sum(axis=0, keepdims=True) self._W /= self._W.sum(axis=0, keepdims=True) def classify(self,input, n_examples, initial=False, ): if initial: self.classify_act_h=np.zeros((n_examples , self.n_neurons)) self.classify_act_h=k_cap(self.classify_act_h @ self._W + input @ self._A + self.bias, self.cap_size) return self.classify_act_h class assembly_network: """ This class is meant to implement the assembly calculus structure This generalizes for multiple inputs and brain regions """ def __init__(self, number_of_inputs: int , sparsity:int, layers: list, beta: float) -> None: """ Initializes the structure of the Brain Region. It takes the number of inputs and then a list for layers that should contain tuples of the form (neurons, cap_size). """ self.n_in = number_of_inputs # Vector of 28X28 pixels # List with pairs of tuples (n, c) where n is the number of neurons and c is the size of the cap self.create_layers(layers) # Creates all the structure for the brain regions self.sparsity = sparsity self.beta =beta def create_layers(self, layers)-> None: """ Creates brain regions according to the list from layers The layers list should contain tuples of the form (number of neurons, cap size) """ self.layers=[] temp=self.n_in+0 for k, (neurons, cap_size) in enumerate(layers): self.layers.append(brain_region(neurons, temp, cap_size, k)) temp=neurons+0 def next(self, input: np.array, initial=False, final=False ): """ During the training process, it puts the input through the network and it runs it through all the layers """ temp=input print(self.layers) for k , brain_region_k in enumerate(self.layers): new_temp=brain_region_k.next(temp, initial=initial, final=final) temp=new_temp return temp def classify(self,input, initial=False ): temp=input for brain_region in self.layers: print("temp shape"+str(temp.shape)) temp=brain_region.classify(temp, input.shape[0], initial) return temp class classification_mnist: def __init__(self, kernels: list ,train_path: str, test_path: str, number_of_inputs: int , sparsity:int, layers: list, beta: float ) : """ Creates a MNIST recognition architecture based on assembly calculus """ self.cap_size=layers[-1][1] self.n_neurons= layers[-1][0] self.n_in=number_of_inputs self.assembly_network=assembly_network(number_of_inputs, sparsity, layers, beta , ) self.get_files( train_path, test_path) self.create_training_data(kernels) self.create_testing_data(kernels) def create_training_data(self ,kernels= [np.ones((1, 3, 3))] ): """ Creates a data set with n_examples from the files obtained by get_files """ self.train_examples = [] for kernel in kernels: self.train_examples.append(np.zeros((10, self.n_examples, 784))) for i in range(10): #Does the convulution between a all 1's 3X3 kernel and each of the images self.train_examples[-1][i] = k_cap(convolve(self.train_imgs[self.train_labels == i][:self.n_examples].reshape(-1, 28, 28), kernel, mode='same').reshape(-1, 28 * 28), self.cap_size) def create_testing_data(self ,kernels= [np.ones((1, 3, 3))] ): """ Creates a data set with n_examples from the files obtained by get_files """ self.test_examples = [] for kernel in kernels: self.test_examples.append( np.zeros((10, self.n_examples, 784) )) for i in range(10): #Does the convulution between a all 1's 3X3 kernel and each of the images self.test_examples[-1][i] = k_cap(convolve(self.test_imgs[self.test_labels == i][:self.n_examples].reshape(-1, 28, 28), kernel, mode='same').reshape(-1, 28 * 28), self.cap_size) def get_files(self, train_path: str, test_path: str)-> None: """ Given two paths it retrieves the data structure encoded in those paths. traun_path should be the path of the training data and test_path should be the path for test data. Assumes a csv format on nthe data on the paths """ test_data = np.loadtxt(test_path, delimiter=',') train_data = np.loadtxt(train_path, delimiter=',') self.train_imgs = train_data[:, 1:] self.train_imgs.shape self.test_imgs = test_data[:, 1:] self.train_labels = train_data[:, 0] self.test_labels = test_data[:, 0] def train_model(self, n_rounds)-> np.array: """ Given the number of rounds (images that will be shown to the model) The program runs and trains the edge weights for the network. """ self.activations = np.zeros((10, n_rounds, self.n_neurons)) for i in range(10): # iterations for each of the labels for j in range(n_rounds): # for each of the rounds input = self.train_examples[0][i, j] # image inputs act_h= self.assembly_network.next(input, initial=(j==0), final= (j==n_rounds-1) ) # output a NXN array for the neurons that are activated. The first part is from self activiation and second from inoput self.activations[i, j] = act_h return self.activations def classify(self, n_rounds, test=True )-> dict: """ When called, this function runs one batch of data through the whole network and then returns a dictionary with succes rates """ if test: examples=self.test_examples[0] else: examples=self.train_examples[0] self.n_examples=examples.shape[1] #### RUNS THROUGH NETWORK outputs = np.zeros((10, n_rounds+1, self.n_examples, self.n_neurons)) for i in np.arange(10): for j in range(n_rounds): outputs[i, j+1] = self.assembly_network.classify(examples[i], initial= (j==0)) # run each one network for n_rounds and save the neurons active at each step #### STARTS CLASSIFICATION c = np.zeros((10, self.n_neurons)) for i in range(10): c[i, outputs[i, 1].sum(axis=0).argsort()[-self.cap_size:]] = 1 predictions = (outputs[:, 1] @ c.T).argmax(axis=-1) acc = (predictions == np.arange(10)[:, np.newaxis]).sum(axis=-1) / self.n_examples return acc n_in = 784 # Vector of 28X28 pixels cap_size = 200 # Size of the cap sparsity = 0.1 n_rounds = 10 n_examples=800 beta = 1e0 train_path="./data/mnist/mnist_train.csv" layers=[ (2000,200)]# number of neurons in network with respective cap_size test_path="./data/mnist/mnist_test.csv" kernels=[np.ones((1, 3, 3))] classify_two=classification_mnist(kernels,train_path,test_path, n_in , sparsity, layers, beta) classify_two.train_model( 5) print(classify_two.classify( 5, test=False))
37.087108
217
0.613209
9,504
0.892897
0
0
0
0
0
0
3,228
0.303269
9bab281692147103f4b861c83d053ce8c6a1c16f
4,398
py
Python
src/chatstats.py
brendancsmith/cohort-facebook
a7b37d14b7152349930bc10f69cb72446d6c3581
[ "MIT" ]
null
null
null
src/chatstats.py
brendancsmith/cohort-facebook
a7b37d14b7152349930bc10f69cb72446d6c3581
[ "MIT" ]
null
null
null
src/chatstats.py
brendancsmith/cohort-facebook
a7b37d14b7152349930bc10f69cb72446d6c3581
[ "MIT" ]
null
null
null
from collections import Counter, defaultdict from datetime import datetime from statistics import mean from dateutil.parser import parse as parse_datetime from dateutil import rrule def num_comments_by_user(comments): commenters = (comment['from']['name'] for comment in comments) counter = Counter(commenters) return counter def percent_empty_comments_by_user(emptyComments, nonEmptyComments): numEmptyCommentsByUser = num_comments_by_user(emptyComments) numNonEmptyCommentsByUser = num_comments_by_user(nonEmptyComments) # TODO: could break if a user doesn't have one type of comment percentEmptyCommentsByUser = Counter() for user in numNonEmptyCommentsByUser: numEmpty = numEmptyCommentsByUser[user] numTotal = numEmpty + numNonEmptyCommentsByUser[user] percentEmptyCommentsByUser[user] = numEmpty / numTotal return percentEmptyCommentsByUser def num_comments_by_day(comments): dts = datetimes(comments) counter = Counter(dt.date() for dt in dts) first_day = min(counter.keys()) last_day = datetime.now().date() all_dates = (dt.date() for dt in rrule.rrule(rrule.DAILY, dtstart=first_day, until=last_day)) for date in all_dates: if date not in counter: counter[date] = 0 return counter def avg_word_count_by_user(comments, default_word_count=1): wordCountsByUser = defaultdict(list) for comment in comments: name = comment['from']['name'] words = None if 'message' not in comment: words = default_word_count else: words = len(comment['message'].split()) wordCountsByUser[name].append(words) avgWordCountByUser = dict((user, mean(wordCounts)) for user, wordCounts in wordCountsByUser.items()) return avgWordCountByUser def longest_comment_by_users(comments): longestCommentByUser = defaultdict(int) commentsByUser = defaultdict(list) for comment in comments: name = comment['from']['name'] commentsByUser[name].append(comment) for name, comments in commentsByUser.items(): commentLengths = (len(comment['message']) for comment in comments) maxCommentLength = max(commentLengths) longestCommentByUser[name] = maxCommentLength return longestCommentByUser def word_count_by_day(comments): wordCountsByDay = defaultdict(int) for comment in comments: timestamp = comment['created_time'] date = parse_datetime(timestamp).date() words = len(comment['message'].split()) wordCountsByDay[date] += words first_day = min(wordCountsByDay.keys()) last_day = datetime.now().date() all_dates = (dt.date() for dt in rrule.rrule(rrule.DAILY, dtstart=first_day, until=last_day)) for date in all_dates: if date not in wordCountsByDay: wordCountsByDay[date] = 0 return wordCountsByDay def daily_activity_by_user(comments): first_day = min(parse_datetime(comment['created_time']).date() for comment in comments) last_day = datetime.now().date() all_dates = [dt.date() for dt in rrule.rrule(rrule.DAILY, dtstart=first_day, until=last_day)] activityByUser = defaultdict(list) for comment in comments: user = comment['from']['name'] timestamp = comment['created_time'] date = parse_datetime(timestamp).date() activityByUser[user].append(date) make_blank_counter = lambda: Counter(dict(zip(all_dates, [0] * len(all_dates)))) dailyActivityByUser = {} for user, activity in activityByUser.items(): dailyActivityByUser[user] = make_blank_counter() dailyActivityByUser[user].update(activity) return dailyActivityByUser def datetimes(comments): timestamps = (comment['created_time'] for comment in comments) dts = map(parse_datetime, timestamps) return dts def corpus(comments): messages = [comment['message'] for comment in comments if 'message' in comment] corpus = '\n'.join(messages) return corpus
29.918367
91
0.648931
0
0
0
0
0
0
0
0
224
0.050932
9bac9dcd120d634f437ebef6f5de2fb78cd0ef74
741
py
Python
app/model/user_signup.py
dwdraugr/YADS
c8036d8196a3158636aaa4f1910033e70ec8ecb4
[ "Apache-2.0" ]
3
2019-09-02T11:26:58.000Z
2019-12-06T15:54:38.000Z
app/model/user_signup.py
dwdraugr/YADS
c8036d8196a3158636aaa4f1910033e70ec8ecb4
[ "Apache-2.0" ]
null
null
null
app/model/user_signup.py
dwdraugr/YADS
c8036d8196a3158636aaa4f1910033e70ec8ecb4
[ "Apache-2.0" ]
null
null
null
import app.model.model as model import hashlib class UserSignup(model.Model): def __init__(self): super(UserSignup, self).__init__() def signup(self, username, password, email): cursor = self.matchadb.cursor(dictionary=True) query = [ username, email, ] cursor.execute("SELECT id FROM users WHERE username = %s OR email = %s", tuple(query)) data = cursor.fetchall() if cursor.rowcount == 0: query.append(hashlib.sha3_512(password.encode('utf-8')).hexdigest()) cursor.execute("INSERT INTO users (id, username, password, email) VALUES " "(NULL, %s, %s, %s)", tuple(query)) cursor.execute()
35.285714
94
0.584345
692
0.933873
0
0
0
0
0
0
142
0.191633
9bae71f7a1d534c3b03ab7c28df3edc847994f0b
2,125
py
Python
utils/lsms/compositional_histogram_cutoff.py
allaffa/HydraGNN
b48f75cd3fe1b0d03bae9af3e6bdc2bb29f8b9c6
[ "BSD-3-Clause" ]
1
2022-01-30T16:50:51.000Z
2022-01-30T16:50:51.000Z
utils/lsms/compositional_histogram_cutoff.py
allaffa/HydraGNN
b48f75cd3fe1b0d03bae9af3e6bdc2bb29f8b9c6
[ "BSD-3-Clause" ]
1
2022-02-03T11:45:53.000Z
2022-02-09T17:59:37.000Z
utils/lsms/compositional_histogram_cutoff.py
kshitij-v-mehta/HydraGNN
d27958270b2beb35f98e4403239e3c5c77ad4a04
[ "BSD-3-Clause" ]
null
null
null
import os import shutil import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt def find_bin(comp, nbins): bins = np.linspace(0, 1, nbins) for bi in range(len(bins) - 1): if comp > bins[bi] and comp < bins[bi + 1]: return bi return nbins - 1 def compositional_histogram_cutoff( dir, elements_list, histogram_cutoff, num_bins, overwrite_data=False, create_plots=True, ): """ Downselect LSMS data with maximum number of samples per binary composition. """ if dir.endswith("/"): dir = dir[:-1] new_dir = dir + "_histogram_cutoff/" if os.path.exists(new_dir): if overwrite_data: shutil.rmtree(new_dir) else: print("Exiting: path to histogram cutoff data already exists") return if not os.path.exists(new_dir): os.makedirs(new_dir) comp_final = [] comp_all = np.zeros([num_bins]) for filename in tqdm(os.listdir(dir)): path = os.path.join(dir, filename) # This is LSMS specific - it assumes only one header line and only atoms following. atoms = np.loadtxt(path, skiprows=1) elements, counts = np.unique(atoms[:, 0], return_counts=True) # Fixup for the pure component cases. for e, elem in enumerate(elements_list): if elem not in elements: elements = np.insert(elements, e, elem) counts = np.insert(counts, e, 0) num_atoms = atoms.shape[0] composition = counts[0] / num_atoms b = find_bin(composition, num_bins) comp_all[b] += 1 if comp_all[b] < histogram_cutoff: comp_final.append(composition) new_path = os.path.join(new_dir, filename) os.symlink(path, new_path) if create_plots: plt.figure(0) plt.hist(comp_final, bins=num_bins) plt.savefig("composition_histogram_cutoff.png") plt.figure(1) w = 1 / num_bins plt.bar(np.linspace(0, 1, num_bins), comp_all, width=w) plt.savefig("composition_initial.png")
27.960526
91
0.610353
0
0
0
0
0
0
0
0
348
0.163765
9baf6c3804173cb531cd1c2955cba4bc19bd4390
109
py
Python
CVcontact/urls.py
siavashMehran/Portfolio
a592ec51122d96e8e336365fd3cd039a7f223221
[ "MIT" ]
null
null
null
CVcontact/urls.py
siavashMehran/Portfolio
a592ec51122d96e8e336365fd3cd039a7f223221
[ "MIT" ]
null
null
null
CVcontact/urls.py
siavashMehran/Portfolio
a592ec51122d96e8e336365fd3cd039a7f223221
[ "MIT" ]
null
null
null
from django.urls import path from .views import contactMe urlpatterns = [ path('contact', contactMe) ]
13.625
30
0.724771
0
0
0
0
0
0
0
0
9
0.082569
9bb0067ad50b3ebfd94976cc78cce86faed75925
1,256
py
Python
PointMatcher/actions/export.py
daisatojp/PointMatcher
927bd4dd676b18da763ccaab2f429f27de281710
[ "MIT" ]
2
2021-01-05T03:42:50.000Z
2022-03-16T07:17:02.000Z
PointMatcher/actions/export.py
daisatojp/PointMatcher
927bd4dd676b18da763ccaab2f429f27de281710
[ "MIT" ]
4
2021-01-07T06:28:01.000Z
2021-01-18T11:59:56.000Z
PointMatcher/actions/export.py
daisatojp/PointMatcher
927bd4dd676b18da763ccaab2f429f27de281710
[ "MIT" ]
null
null
null
import os.path as osp from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import QAction from PyQt5.QtWidgets import QFileDialog from PointMatcher.utils.filesystem import icon_path class ExportAction(QAction): def __init__(self, parent): super(ExportAction, self).__init__('Export', parent) self.p = parent self.setIcon(QIcon(icon_path('save'))) self.setShortcut('Ctrl+Alt+S') self.triggered.connect(self.export) self.setEnabled(False) def export(self, _value=False): if (self.p.annotDir is not None) and osp.exists(self.p.annotDir): defaultDir = self.p.annotDir elif (self.p.imageDir is not None) and osp.exists(self.p.imageDir): defaultDir = self.p.imageDir else: defaultDir = '.' defaultDir = self.p.settings.get('exportPath', defaultDir) filters = 'json file (*.json)' filename = QFileDialog.getSaveFileName( self.p, 'choose file name to be exported', defaultDir, filters) if filename: if isinstance(filename, (tuple, list)): filename = filename[0] self.p.matching.export(filename) self.p.settings['exportPath'] = osp.dirname(filename)
35.885714
75
0.642516
1,073
0.854299
0
0
0
0
0
0
106
0.084395
9bb08d27951cdcbd92a25a4408ad1a1b8fb55f34
1,345
py
Python
test/test_CommandHead.py
jcandan/WonderPy
ee82322b082e94015258b34b27f23501f8130fa2
[ "MIT" ]
46
2018-07-31T20:30:41.000Z
2022-03-23T17:14:51.000Z
test/test_CommandHead.py
jcandan/WonderPy
ee82322b082e94015258b34b27f23501f8130fa2
[ "MIT" ]
24
2018-08-01T09:59:29.000Z
2022-02-26T20:57:51.000Z
test/test_CommandHead.py
jcandan/WonderPy
ee82322b082e94015258b34b27f23501f8130fa2
[ "MIT" ]
24
2018-08-01T19:14:31.000Z
2021-02-18T13:26:40.000Z
import unittest from mock import Mock from test.robotTestUtil import RobotTestUtil class MyTestCase(unittest.TestCase): def test_head_turn(self): robot = RobotTestUtil.make_fake_dash() robot.stage_cmds = Mock() m = robot.stage_cmds robot.commands.head.do_pan_angle (90) robot.commands.head.do_tilt_angle (10) robot.commands.head.do_pan_voltage (75) robot.commands.head.do_tilt_voltage (85) robot.commands.head.do_pan_tilt_angle (-45.3, -30.3) robot.commands.head.do_pan_tilt_voltage(-10.3, -11.3) self.assertEquals(m.call_count, 8) self.assertAlmostEquals(m.call_args_list[0][0][0]['203']['degree'], 90) self.assertAlmostEquals(m.call_args_list[1][0][0]['202']['degree'], -10) self.assertAlmostEquals(m.call_args_list[2][0][0]['213']['prcnt' ], 75) self.assertAlmostEquals(m.call_args_list[3][0][0]['214']['prcnt' ], -85) self.assertAlmostEquals(m.call_args_list[4][0][0]['203']['degree'], -45.3) self.assertAlmostEquals(m.call_args_list[5][0][0]['202']['degree'], 30.3) self.assertAlmostEquals(m.call_args_list[6][0][0]['213']['prcnt' ], -10.3) self.assertAlmostEquals(m.call_args_list[7][0][0]['214']['prcnt' ], 11.3) if __name__ == '__main__': unittest.main()
40.757576
82
0.646097
1,210
0.899628
0
0
0
0
0
0
110
0.081784
9bb204788fee823d3cdd79e26af5c6bd4b825e8a
3,866
py
Python
feature_options.py
soarsmu/HERMES
9b38eedd1f7fcc3321048cc25d15c38268e6fd0b
[ "MIT" ]
2
2022-01-15T11:31:40.000Z
2022-03-09T11:27:28.000Z
feature_options.py
soarsmu/HERMES
9b38eedd1f7fcc3321048cc25d15c38268e6fd0b
[ "MIT" ]
null
null
null
feature_options.py
soarsmu/HERMES
9b38eedd1f7fcc3321048cc25d15c38268e6fd0b
[ "MIT" ]
null
null
null
import click class ExperimentOption(): def __init__(self): self.data_set_size = -1 self.ignore_number = True self.use_github_issue = True self.use_jira_ticket = True self.use_comments = True self.use_bag_of_word = True self.positive_weights = [0.5] self.max_n_gram = 1 self.min_document_frequency = 1 self.use_linked_commits_only = False # if self.use_issue_classifier = False, issue's information is attached to commit message self.use_issue_classifier = True self.fold_to_run = 10 self.use_stacking_ensemble = True self.tf_idf_threshold = -1 self.use_patch_context_lines = False self.unlabeled_size = -1 def read_option_from_command_line(size, unlabeled_size, ignore_number, github_issue, jira_ticket, use_comments, positive_weights, max_n_gram, min_document_frequency, use_linked_commits_only, use_issue_classifier, fold_to_run, use_stacking_ensemble, tf_idf_threshold, use_patch_context_line): experiment_option = ExperimentOption() experiment_option.data_set_size = size experiment_option.unlabeled_size = unlabeled_size experiment_option.ignore_number = ignore_number experiment_option.use_github_issue = github_issue experiment_option.use_jira_ticket = jira_ticket experiment_option.use_comments = use_comments experiment_option.positive_weights = list(positive_weights) experiment_option.max_n_gram = max_n_gram experiment_option.min_document_frequency = min_document_frequency experiment_option.use_linked_commits_only = use_linked_commits_only experiment_option.use_issue_classifier = use_issue_classifier experiment_option.fold_to_run = fold_to_run experiment_option.use_stacking_ensemble = use_stacking_ensemble experiment_option.tf_idf_threshold = tf_idf_threshold experiment_option.use_patch_context_lines = use_patch_context_line click.echo("Running process with these options:") if experiment_option.data_set_size == -1: click.echo(" Data set size: Full data") else: click.echo(" Data set size: {}".format(experiment_option.data_set_size)) click.echo(" Ignore number as token: {}".format(experiment_option.ignore_number)) click.echo(" Use github issue: {}".format(experiment_option.use_github_issue)) click.echo(" Use jira ticket: {}".format(experiment_option.use_jira_ticket)) click.echo(" Use comments: {}".format(experiment_option.use_comments)) click.echo(" Use bag of words: {}".format(experiment_option.use_bag_of_word)) click.echo(" Positive weights: {}".format(experiment_option.positive_weights)) click.echo(" Max N-gram: {}".format(experiment_option.max_n_gram)) click.echo(" Min document frequency: {}".format(experiment_option.min_document_frequency)) click.echo(" Use linked commit only: {}".format(experiment_option.use_linked_commits_only)) click.echo(" Use issue classifier: {}".format(experiment_option.use_issue_classifier)) click.echo(" Fold to run: {}".format(experiment_option.fold_to_run)) click.echo(" Use stacking ensemble: {}".format(experiment_option.use_stacking_ensemble)) click.echo(" Tf-idf threshold: {}".format(experiment_option.tf_idf_threshold)) click.echo(" Use patch context lines: {}".format(experiment_option.use_patch_context_lines)) if experiment_option.unlabeled_size != -1: click.echo(" Unlabeled size: {}".format(experiment_option.unlabeled_size)) return experiment_option
51.546667
99
0.693999
734
0.18986
0
0
0
0
0
0
585
0.151319
9bb22f65833ccdf573c2ff6580ffe37f01d473f8
247
py
Python
sciapp/action/advanced/macros.py
Pad0y/imagepy
23f41b64ade02f94b566b0d23a4b6459c1a1578d
[ "BSD-4-Clause" ]
null
null
null
sciapp/action/advanced/macros.py
Pad0y/imagepy
23f41b64ade02f94b566b0d23a4b6459c1a1578d
[ "BSD-4-Clause" ]
null
null
null
sciapp/action/advanced/macros.py
Pad0y/imagepy
23f41b64ade02f94b566b0d23a4b6459c1a1578d
[ "BSD-4-Clause" ]
null
null
null
class Macros: def __init__(self, title, cmds): self.title = title self.cmds = cmds def __call__(self): return self def start(self, app, para=None, callafter=None): app.run_macros(self.cmds, callafter)
22.454545
52
0.615385
246
0.995951
0
0
0
0
0
0
0
0
9bb4070df0345465e234b3e6738bbb40c587c512
2,038
py
Python
py_randomprime/__init__.py
UltiNaruto/py-randomprime
597d3636c2e40e11ed92d4808200ded879ccb244
[ "MIT" ]
null
null
null
py_randomprime/__init__.py
UltiNaruto/py-randomprime
597d3636c2e40e11ed92d4808200ded879ccb244
[ "MIT" ]
2
2021-05-24T18:05:11.000Z
2021-05-31T08:07:29.000Z
py_randomprime/__init__.py
henriquegemignani/py-randomprime
aac48b44761cbb8d857a4d72e06dfac17efc1fae
[ "MIT" ]
2
2021-08-18T01:17:19.000Z
2021-11-26T15:08:34.000Z
import copy import os import json from pathlib import Path from typing import Callable, Optional from . import rust, version class BaseProgressNotifier: def notify_total_bytes(self, total_size: int): raise NotImplementedError() def notify_writing_file(self, file_name: bytes, file_bytes: int): raise NotImplementedError() def notify_writing_header(self): raise NotImplementedError() def notify_flushing_to_disk(self): raise NotImplementedError() class ProgressNotifier(BaseProgressNotifier): total_size: int = 0 bytes_so_far: int = 0 def __init__(self, callback: Callable[[float, str], None]): self.callback = callback def notify_total_bytes(self, total_size: int): self.total_size += total_size def notify_writing_file(self, file_name: bytes, file_bytes: int): self.callback(self.bytes_so_far / self.total_size, "Writing file {}".format(file_name.decode("utf-8"))) self.bytes_so_far += file_bytes def notify_writing_header(self): self.callback(self.bytes_so_far / self.total_size, "Writing ISO header") def notify_flushing_to_disk(self): self.callback(1, "Flushing written data to the disk") def patch_iso_raw(config_str: str, notifier: BaseProgressNotifier): if notifier is None: raise ValueError("notifier is None") return rust.patch_iso(config_str, notifier) def patch_iso(input_iso: Path, output_iso: Path, config: dict, notifier: BaseProgressNotifier): new_config = copy.copy(config) new_config["inputIso"] = os.fspath(input_iso) new_config["outputIso"] = os.fspath(output_iso) return patch_iso_raw(json.dumps(new_config), notifier) def symbols_for_file(input_file: Path) -> Optional[dict]: v = rust.get_iso_mp1_version(os.fspath(input_file)) if v is not None: return rust.get_mp1_symbols(v) def symbols_for_version(v: str) -> Optional[dict]: return rust.get_mp1_symbols(v) __version__ = version.version VERSION = version.version
29.536232
111
0.723749
1,098
0.538763
0
0
0
0
0
0
118
0.0579
9bb514fb57dd5b2a6965770909c4eb7274835dca
3,453
py
Python
secistsploit/modules/auxiliary/whatweb.py
reneaicisneros/SecistSploit
b4e1bb0a213bee39c3bb79ab36e03e19122b80c0
[ "MIT" ]
15
2018-12-06T16:03:32.000Z
2021-06-23T01:17:00.000Z
secistsploit/modules/auxiliary/whatweb.py
reneaicisneros/SecistSploit
b4e1bb0a213bee39c3bb79ab36e03e19122b80c0
[ "MIT" ]
null
null
null
secistsploit/modules/auxiliary/whatweb.py
reneaicisneros/SecistSploit
b4e1bb0a213bee39c3bb79ab36e03e19122b80c0
[ "MIT" ]
6
2019-03-01T04:10:00.000Z
2020-02-26T08:43:54.000Z
# -*- coding: UTF-8 -*- import os from secistsploit.core.exploit import * from secistsploit.core.http.http_client import HTTPClient class Exploit(HTTPClient): __info__ = { "name": "whatweb", "description": "whatweb", "authors": ( "jjiushi", ), "references": ( "www.422926799.github.io" "www.422926799.github.io" ), } target = OptString("www.whatweb.net", "Target URl") domain = OptString("", "Target domain or IP") port = OptPort(443, "Target HTTP port") files = OptString("", "Files to import") iplist = OptString( "", "Batch detection of IP segments, such as input like 1.1.1.") def __init__(self): self.endianness = "<" def run(self): rhost = (self.domain) file = (self.files) iplist = (self.iplist) if rhost != '': headers = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36', 'Connection': 'keep-alive', 'Content-Length': '383', } data = { 'target': '{}'.format(rhost), } response = self.http_request( method="POST", path="/whatweb.php", headers=headers, data=data, ) if response: print('[+] url:{}'.format(rhost)) print('[+] fingerprint:{}'.format(response.text)) if rhost == '' and file != '': if os.path.exists(file): print('[+] {} Open ok'.format(file)) else: print('[-] {} Not Found'.format(file)) dk = open(file, 'r') for rd in dk.readlines(): qc = "".join(rd.split('\n')) headers = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36', 'Connection': 'keep-alive', 'Content-Length': '383', } data = { 'target': '{}'.format(qc), } response = self.http_request( method="POST", path="/whatweb.php", headers=headers, data=data, ) if response: print('[+] url:{}'.format(qc)) print('[+] fingerprint:{}'.format(response.text)) if rhost == '' and iplist != '': for i in range(1, 255): ip = iplist + str(i) headers = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36', 'Connection': 'keep-alive', 'Content-Length': '383', } data = { 'target': '{}'.format(ip), } response = self.http_request( method="POST", path="/whatweb.php", headers=headers, data=data, ) if response: print('[+] url:{}'.format(ip)) print('[+] fingerprint:{}'.format(response.text))
34.188119
141
0.435274
3,318
0.960904
0
0
0
0
0
0
1,027
0.297423
9bb942cefeb3547baf593097bb2c4998d052f1b8
3,285
py
Python
pygnss/__init__.py
nmerlene/pygnss
9dc59e57cf5a4bdf0ca56c2b6a23d622ffda4c5a
[ "MIT" ]
null
null
null
pygnss/__init__.py
nmerlene/pygnss
9dc59e57cf5a4bdf0ca56c2b6a23d622ffda4c5a
[ "MIT" ]
null
null
null
pygnss/__init__.py
nmerlene/pygnss
9dc59e57cf5a4bdf0ca56c2b6a23d622ffda4c5a
[ "MIT" ]
null
null
null
from pathlib import Path import logging import xarray from time import time from typing import Union # from .io import opener from .rinex2 import rinexnav2, _scan2 from .rinex3 import rinexnav3, _scan3 # for NetCDF compression. too high slows down with little space savings. COMPLVL = 1 def readrinex(rinexfn: Path, outfn: Path=None, use: Union[str, list, tuple]=None, verbose: bool=True) -> xarray.Dataset: """ Reads OBS, NAV in RINEX 2,3. Plain ASCII text or GZIP .gz. """ nav = None obs = None rinexfn = Path(rinexfn).expanduser() # %% detect type of Rinex file if rinexfn.suffix == '.gz': fnl = rinexfn.stem.lower() else: fnl = rinexfn.name.lower() if fnl.endswith('n') or fnl.endswith('n.rnx'): nav = rinexnav(rinexfn, outfn) elif fnl.endswith('o') or fnl.endswith('o.rnx'): obs = rinexobs(rinexfn, outfn, use=use, verbose=verbose) elif rinexfn.suffix.endswith('.nc'): nav = rinexnav(rinexfn) obs = rinexobs(rinexfn) else: raise ValueError(f"I dont know what type of file you're trying to read: {rinexfn}") return obs, nav def getRinexVersion(fn: Path) -> float: """verify RINEX version""" fn = Path(fn).expanduser() with opener(fn) as f: ver = float(f.readline()[:9]) # yes :9 return ver # %% Navigation file def rinexnav(fn: Path, ofn: Path=None, group: str='NAV') -> xarray.Dataset: """ Read RINEX 2,3 NAV files in ASCII or GZIP""" fn = Path(fn).expanduser() if fn.suffix == '.nc': try: return xarray.open_dataset(fn, group=group) except OSError: logging.error(f'Group {group} not found in {fn}') return ver = getRinexVersion(fn) if int(ver) == 2: nav = rinexnav2(fn) elif int(ver) == 3: nav = rinexnav3(fn) else: raise ValueError(f'unknown RINEX verion {ver} {fn}') if ofn: ofn = Path(ofn).expanduser() print('saving NAV data to', ofn) wmode = 'a' if ofn.is_file() else 'w' nav.to_netcdf(ofn, group=group, mode=wmode) return nav # %% Observation File def rinexobs(fn: Path, ofn: Path=None, use: Union[str, list, tuple]=None, group: str='OBS', verbose: bool=False) -> xarray.Dataset: """ Read RINEX 2,3 OBS files in ASCII or GZIP """ fn = Path(fn).expanduser() if fn.suffix == '.nc': try: logging.debug(f'loading {fn} with xarray') return xarray.open_dataset(fn, group=group) except OSError: logging.error(f'Group {group} not found in {fn}') return tic = time() ver = getRinexVersion(fn) if int(ver) == 2: obs = _scan2(fn, use, verbose) elif int(ver) == 3: obs = _scan3(fn, use, verbose) else: raise ValueError(f'unknown RINEX verion {ver} {fn}') print(f"finished in {time()-tic:.2f} seconds") if ofn: ofn = Path(ofn).expanduser() print('saving OBS data to', ofn) wmode = 'a' if ofn.is_file() else 'w' enc = {k: {'zlib': True, 'complevel': COMPLVL, 'fletcher32': True} for k in obs.data_vars} obs.to_netcdf(ofn, group=group, mode=wmode, encoding=enc) return obs
28.318966
120
0.595129
0
0
0
0
0
0
0
0
759
0.23105
9bb96ea949af7533581d8e4cca76f381e779a9b0
5,201
py
Python
classroom/pref_graph.py
norabelrose/whisper
79642bab696f3e166b6af61a447602e8e5d58270
[ "MIT" ]
null
null
null
classroom/pref_graph.py
norabelrose/whisper
79642bab696f3e166b6af61a447602e8e5d58270
[ "MIT" ]
null
null
null
classroom/pref_graph.py
norabelrose/whisper
79642bab696f3e166b6af61a447602e8e5d58270
[ "MIT" ]
null
null
null
from typing import TYPE_CHECKING import networkx as nx from .fas import eades_fas if TYPE_CHECKING: # Prevent circular import from .pref_dag import PrefDAG class PrefGraph(nx.DiGraph): """ `PrefGraph` represents a possibly cyclic set of preferences over clips as a weighted directed graph. Edge weights represent the strength of the preference of A over B, and indifferences are represented as edges with zero weights. Clips are represented as string IDs. If you want to prevent cycles from being added to the graph in an online fashion, you should probably use `PrefDAG` instead. """ @property def indifferences(self) -> nx.Graph: """Return a read-only, undirected view of the subgraph containing only indifferences.""" edge_view = self.edges return nx.graphviews.subgraph_view( self, filter_edge=lambda a, b: edge_view[a, b].get('weight', 1.0) == 0.0 ).to_undirected(as_view=True) @property def nonisolated(self) -> 'PrefGraph': deg_view = self.degree return nx.graphviews.subgraph_view( self, filter_node=lambda n: deg_view(n) > 0 ) @property def strict_prefs(self) -> nx.DiGraph: """Return a read-only view of the subgraph containing only strict preferences.""" edge_view = self.edges return nx.graphviews.subgraph_view( self, filter_edge=lambda a, b: edge_view[a, b].get('weight', 1.0) > 0 ) def __repr__(self) -> str: num_indiff = self.indifferences.number_of_edges() num_prefs = self.strict_prefs.number_of_edges() return f'{type(self).__name__}({num_prefs} strict prefs, {num_indiff} indifferences)' def add_indiff(self, a: str, b: str, **attr): """Try to dd the indifference relation `a ~ b`, and throw an error if the expected coherence properties of the graph would be violated.""" if attr.setdefault('weight', 0.0) != 0.0: raise CoherenceViolation("Indifferences cannot have nonzero weight") self.add_edge(a, b, **attr) def add_edge(self, a: str, b: str, **attr): """Add an edge to the graph, and check for coherence violations. Usually you should use the `add_pref` or `add_indiff` wrapper methods instead of this method.""" if attr.get('weight', 1) < 0: raise CoherenceViolation("Preferences must have non-negative weight") super().add_edge(a, b, **attr) add_pref = add_edge def draw(self): """Displays a visualization of the graph using `matplotlib`. Strict preferences are shown as solid arrows, and indifferences are dashed lines.""" strict_subgraph = self.strict_prefs pos = nx.drawing.spring_layout(strict_subgraph) nx.draw_networkx_nodes(strict_subgraph, pos) nx.draw_networkx_edges(strict_subgraph, pos) nx.draw_networkx_edges(self.indifferences, pos, arrowstyle='-', style='dashed') nx.draw_networkx_labels(strict_subgraph, pos) def acyclic_subgraph(self) -> 'PrefDAG': """Return an acyclic subgraph of this graph as a `PrefDAG`. The algorithm will try to remove as few preferences as possible, but it is not guaranteed to be optimal. If the graph is already acyclic, the returned `PrefDAG` will be isomorphic to this graph.""" from .pref_dag import PrefDAG fas = set(eades_fas(self.strict_prefs)) return PrefDAG(( (u, v, d) for u, v, d in self.edges(data=True) # type: ignore if (u, v) not in fas )) def is_quasi_transitive(self) -> bool: """Return whether the strict preferences are acyclic.""" return nx.is_directed_acyclic_graph(self.strict_prefs) def pref_prob(self, a: str, b: str, eps: float = 5e-324) -> float: """Return the probability that `a` is preferred to `b`.""" a_weight = self.pref_weight(a, b) denom = a_weight + self.pref_weight(b, a) # If there's no strict preference between a and b, then the # probability that A is preferred to B is 1/2. return (a_weight + eps) / (denom + 2 * eps) def pref_weight(self, a: str, b: str, default: float = 0.0) -> float: """ Return the weight of the preference `a > b`, or 0.0 if there is no such preference. Preferences with no explicit weight are assumed to have weight 1. """ attrs = self.edges.get((a, b), None) return attrs.get('weight', 1.0) if attrs is not None else default def unlink(self, a: str, b: str): """Remove the preference relation between `a` and `b`.""" try: self.remove_edge(a, b) except nx.NetworkXError: # Try removing the edge in the other direction. try: self.remove_edge(b, a) except nx.NetworkXError: raise KeyError(f"No preference relation between {a} and {b}") class CoherenceViolation(Exception): """Raised when an operation would violate the coherence of the graph.""" pass
42.284553
104
0.635455
5,033
0.967699
0
0
881
0.169391
0
0
2,223
0.427418
9bbc0decb0390376acbaa65e5a7c58faddf9f153
516
py
Python
scaffolder/templates/django/views.py
javidgon/wizard
a75a4c10f84c756c2466c9afaaadf3b2c0cf3a43
[ "MIT" ]
null
null
null
scaffolder/templates/django/views.py
javidgon/wizard
a75a4c10f84c756c2466c9afaaadf3b2c0cf3a43
[ "MIT" ]
null
null
null
scaffolder/templates/django/views.py
javidgon/wizard
a75a4c10f84c756c2466c9afaaadf3b2c0cf3a43
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.views import generic from .models import {% for model in app.models %}{{ model.name }}{% if not loop.last %}, {% endif %}{% endfor %} {% for model in app.models %}class {{ model.name }}IndexView(generic.ListView): model = {{ model.name }} template_name = '{{ model.name | lower }}s/index.html' class {{ model.name }}DetailView(generic.DetailView): model = {{ model.name }} template_name = '{{ model.name | lower }}s/detail.html' {% endfor %}
30.352941
112
0.656977
0
0
0
0
0
0
0
0
77
0.149225
9bbcdfbd01a5563f9c4786b31c8c24dcfa3b565b
683
py
Python
hisitter/reviews/permissions.py
babysitter-finder/backend
5c37c6876ca13b5794ac44e0342b810426acbc76
[ "MIT" ]
1
2021-02-25T01:02:40.000Z
2021-02-25T01:02:40.000Z
hisitter/reviews/permissions.py
babysitter-finder/backend
5c37c6876ca13b5794ac44e0342b810426acbc76
[ "MIT" ]
null
null
null
hisitter/reviews/permissions.py
babysitter-finder/backend
5c37c6876ca13b5794ac44e0342b810426acbc76
[ "MIT" ]
1
2020-11-23T20:57:47.000Z
2020-11-23T20:57:47.000Z
""" Reviews permissions.""" # Python import logging # Django Rest Framework from rest_framework.permissions import BasePermission class IsServiceOwner(BasePermission): """ This permission allow determine if the user is a client, if not permission is denied. """ def has_permission(self, request, view): """ Manage the permission if the user is a client. """ try: user = request.user.user_client if user == view.service.user_client: return True else: return False except Exception as error: logging.info(f'We have a problem that Exception raise {error}')
28.458333
75
0.628111
547
0.800878
0
0
0
0
0
0
267
0.390922
9bbd9c4b8b498fde19563e3848c89d37d52b9838
1,678
py
Python
pk.py
CnybTseng/SOSNet
9f1e96380388dde75fe0737ec0b3516669054205
[ "MIT" ]
null
null
null
pk.py
CnybTseng/SOSNet
9f1e96380388dde75fe0737ec0b3516669054205
[ "MIT" ]
null
null
null
pk.py
CnybTseng/SOSNet
9f1e96380388dde75fe0737ec0b3516669054205
[ "MIT" ]
null
null
null
import sys import torch import timeit sys.path.append('../JDE') from mot.models.backbones import ShuffleNetV2 from sosnet import SOSNet if __name__ == '__main__': print('SOSNet PK ShuffleNetV2') model1 = ShuffleNetV2( stage_repeat={'stage2': 4, 'stage3': 8, 'stage4': 4}, stage_out_channels={'conv1': 24, 'stage2': 48, 'stage3': 96, 'stage4': 192, 'conv5': 1024}).cuda().eval() arch={ 'conv1': {'out_channels': 64}, 'stage2': {'out_channels': 256, 'repeate': 2, 'out': True}, 'stage3': {'out_channels': 384, 'repeate': 2, 'out': True}, 'stage4': {'out_channels': 512, 'repeate': 2, 'out': True}, 'conv5': {'out_channels': 1024}} model2 = SOSNet(arch).cuda().eval() x = torch.rand(1, 3, 224, 224).cuda() loops = 1000 with torch.no_grad(): start = timeit.default_timer() for _ in range(loops): y = model1(x) torch.cuda.synchronize() end = timeit.default_timer() latency = (end - start) / loops print('ShuffleNetV2 latency: {} seconds.'.format(latency)) for yi in y: print(yi.shape) with torch.no_grad(): start = timeit.default_timer() for _ in range(loops): y = model2(x) torch.cuda.synchronize() end = timeit.default_timer() latency = (end - start) / loops print('SOSNet latency: {} seconds.'.format(latency)) for yi in y: print(yi.shape) with torch.autograd.profiler.profile(use_cuda=True, record_shapes=True) as prof: model2(x) print(prof.key_averages().table())
37.288889
85
0.567342
0
0
0
0
0
0
0
0
318
0.189511
9bbda2f39a11084b661e8fe58491f418c2a36b6f
2,255
py
Python
test/generate_netmhcpan_functions.py
til-unc/mhcgnomes
0bfbe193daeb7cd38d958222f6071dd657e9fb6e
[ "Apache-2.0" ]
6
2020-10-27T15:31:32.000Z
2020-11-29T03:26:06.000Z
test/generate_netmhcpan_functions.py
til-unc/mhcgnomes
0bfbe193daeb7cd38d958222f6071dd657e9fb6e
[ "Apache-2.0" ]
4
2020-10-27T14:57:16.000Z
2020-11-04T21:56:39.000Z
test/generate_netmhcpan_functions.py
pirl-unc/mhcgnomes
0bfbe193daeb7cd38d958222f6071dd657e9fb6e
[ "Apache-2.0" ]
null
null
null
import pandas as pd NETMHCPAN_3_0_DEST = "test_netmhcpan_3_0_alleles.py" NETMHCPAN_3_0_SOURCE = "netmhcpan_3_0_alleles.txt" NETMHCPAN_4_0_DEST = "test_netmhcpan_4_0_alleles.py" NETMHCPAN_4_0_SOURCE = "netmhcpan_4_0_alleles.txt" special_chars = " *:-,/." def generate(src, dst, exclude=set()): alleles = set() with open(dst, "w") as f: f.write("from mhcgnomes import parse, Allele, Gene, AlleleWithoutGene\n") with open(src) as alleles_file: for line in alleles_file: line = line.strip() if line.startswith("#"): continue elif not line: continue parts = line.split() allele_name = parts[0] if allele_name in exclude: continue if allele_name in alleles: print("Skipping repeat allele: '%s'" % allele_name) continue alleles.add(allele_name) fn_name = allele_name.replace("\"", "").strip() for c in special_chars: fn_name = fn_name.replace(c, "_") fn_name = fn_name.replace("__", "_") f.write(f"\ndef test_{fn_name}():") f.write(f"\n result = parse('{allele_name}')") if ":" in allele_name: f.write( f"""\n assert result.__class__ is Allele, \\ 'Expected parse(\"{allele_name}\") to be Allele but got %s' % (result,)""") else: f.write( f"""\n assert result.__class__ in (Gene, Allele, AlleleWithoutGene), \\ 'Unexpected type for parse(\"{allele_name}\"): %s' % (result,)""") f.write("\n") print(f"Wrote {len(alleles)} from {src} tests to {dst}") return alleles netmhcpan_3_0_alleles = generate( src=NETMHCPAN_3_0_SOURCE, dst=NETMHCPAN_3_0_DEST) generate( src=NETMHCPAN_4_0_SOURCE, dst=NETMHCPAN_4_0_DEST, exclude=netmhcpan_3_0_alleles)
35.234375
107
0.501552
0
0
0
0
0
0
0
0
689
0.305543
9bbdac1e6d8dd9f71aa6f189c3f63b6af713637c
343
py
Python
Dataset/Leetcode/test/11/489.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
Dataset/Leetcode/test/11/489.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
Dataset/Leetcode/test/11/489.py
kkcookies99/UAST
fff81885aa07901786141a71e5600a08d7cb4868
[ "MIT" ]
null
null
null
class Solution: def XXX(self, height: List[int]) -> int: ans, i, j = 0, 0, len(height) - 1 while i < j: val = min(height[i], height[j]) ans = max(val * (j - i), ans) if height[i] == val: i += 1 if height[j] == val: j -= 1 return ans
26.384615
44
0.390671
340
0.991254
0
0
0
0
0
0
0
0
9bbde6aa054a0343fb01e156fb53162fe6c254c5
96
py
Python
python/tests/test_linked_list.py
Leenhazaimeh/data-structures-and-algorithms
d55d55bf8c98e768cb929326b5ec8c18fb5c8384
[ "MIT" ]
null
null
null
python/tests/test_linked_list.py
Leenhazaimeh/data-structures-and-algorithms
d55d55bf8c98e768cb929326b5ec8c18fb5c8384
[ "MIT" ]
10
2021-07-29T18:56:48.000Z
2021-09-11T19:11:00.000Z
python/tests/test_linked_list.py
Leenhazaimeh/data-structures-and-algorithms
d55d55bf8c98e768cb929326b5ec8c18fb5c8384
[ "MIT" ]
3
2021-08-16T06:16:37.000Z
2021-12-05T14:29:51.000Z
# from linked_list.linked_list import LinkedList # def test_import(): # assert LinkedList
16
48
0.75
0
0
0
0
0
0
0
0
91
0.947917
9bbf5d23053e93f4be3618d38f8307dfe71dd5b9
2,156
py
Python
美团爬取商家信息/paquxinxi.py
13060923171/Crawl-Project2
effab1bf31979635756fc272a7bcc666bb499be2
[ "MIT" ]
14
2020-10-27T05:52:20.000Z
2021-11-07T20:24:55.000Z
美团爬取商家信息/paquxinxi.py
13060923171/Crawl-Project2
effab1bf31979635756fc272a7bcc666bb499be2
[ "MIT" ]
1
2021-09-17T07:40:00.000Z
2021-09-17T07:40:00.000Z
美团爬取商家信息/paquxinxi.py
13060923171/Crawl-Project2
effab1bf31979635756fc272a7bcc666bb499be2
[ "MIT" ]
8
2020-11-18T14:23:12.000Z
2021-11-12T08:55:08.000Z
import requests import re import json headers = { "Origin": "https://bj.meituan.com", "Host": "apimobile.meituan.com", "Referer": "https://bj.meituan.com/s/%E7%81%AB%E9%94%85/", "Cookie": "uuid=692a53319ce54d0c91f3.1597223761.1.0.0; ci=1; rvct=1; _lxsdk_cuid=173e1f47707c8-0dcd4ff30b4ae3-3323765-e1000-173e1f47707c8; _lxsdk_s=173e1f47708-21d-287-4d9%7C%7C35", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36" } def get_parse(url): html = requests.get(url,headers = headers) if html.status_code: get_html(html) else: print(html.status_code) def get_html(html): content = html.text #店名 titles= re.compile('","title":"(.*?)",',re.S|re.I) title = titles.findall(content) #地址 addresses = re.compile(',"address":"(.*?)",', re.S | re.I) address = addresses.findall(content) #评分 avgscores = re.compile(',"avgscore":(.*?),', re.S | re.I) avgscore = avgscores.findall(content) #评价人数 commentses = re.compile(',"comments":(.*?),', re.S | re.I) comments = commentses.findall(content) #联系电话 phones = re.compile('"phone":"(.*?)",', re.S | re.I) phone = phones.findall(content) for i in range(len(title)): try: t = title[i] a = address[i] avg = avgscore[i] c = comments[i] p = phone[i] print(t,a,avg,c,p) dowload(t,a,avg,c,p) except: pass def dowload(t,a,avg,c,p): data = { '店铺名称': t, '店铺地址': a, '店铺评分': avg, '评价人数': c, '电话': p } with open("美团信息.txt","a+",encoding="utf-8")as f: f.write(json.dumps(data,ensure_ascii=False)+"\n") print("写入成功") if __name__ == '__main__': #在这个URL里面offse参数每次翻页增加32,limit参数是一次请求的数据量,q是搜索关键词poi/pcsearch/1?其中的1是北京城市的id编号。 for i in range(0,33,32): url = "https://apimobile.meituan.com/group/v4/poi/pcsearch/1?uuid=692a53319ce54d0c91f3.1597223761.1.0.0&userid=-1&limit=32&offset={}&cateId=-1&q=%E7%81%AB%E9%94%85".format(i) get_parse(url)
33.169231
185
0.590909
0
0
0
0
0
0
0
0
1,017
0.437231
9bc11053555c82b404c0a0cf86d08e3626d9e05f
4,071
py
Python
entity_resolution/EntityClass.py
GeoJamesJones/ArcGIS-Senzing-Prototype
ebe7f1c3f516525f4bfbf5b4f1446e8c6612a67b
[ "MIT" ]
null
null
null
entity_resolution/EntityClass.py
GeoJamesJones/ArcGIS-Senzing-Prototype
ebe7f1c3f516525f4bfbf5b4f1446e8c6612a67b
[ "MIT" ]
null
null
null
entity_resolution/EntityClass.py
GeoJamesJones/ArcGIS-Senzing-Prototype
ebe7f1c3f516525f4bfbf5b4f1446e8c6612a67b
[ "MIT" ]
null
null
null
from __future__ import annotations import json from typing import List, Dict from entity_resolution import EntityResolution class Entity: def __init__(self, entity_fields: List[str], data: List[str], source_fields: List[str], attr_dicts: List[Dict[str, List[str] | str]], record_type: str): self.entity_fields = entity_fields self.data = data self.source_fields = source_fields self.attr_dicts = attr_dicts self.record_type = record_type skip_values = [ EntityResolution.NAME_FULL.value, EntityResolution.NAME_ORG.value, EntityResolution.NAME_LAST.value, EntityResolution.NAME_FIRST.value, EntityResolution.NAME_MIDDLE.value, EntityResolution.NAME_PREFIX.value, EntityResolution.NAME_SUFFIX.value, EntityResolution.ADDR_FULL.value, EntityResolution.ADDR_LINE1.value, EntityResolution.ADDR_LINE2.value, EntityResolution.ADDR_LINE3.value, EntityResolution.ADDR_LINE4.value, EntityResolution.ADDR_LINE5.value, EntityResolution.ADDR_LINE6.value, EntityResolution.ADDR_CITY.value, EntityResolution.ADDR_STATE.value, EntityResolution.ADDR_ZIP.value, EntityResolution.ADDR_COUNTRY.value, EntityResolution.ADDR_FD.value, EntityResolution.ADDR_TD.value, EntityResolution.PHONE_NUM.value, EntityResolution.PHONE_FD.value, EntityResolution.PHONE_TD.value, ] field_map = {} for i,j in enumerate(self.source_fields): field_map[j] = i self.data_dict = {key:str(value) for (key,value) in zip(self.entity_fields, self.data) if key not in skip_values} self.data_dict["RECORD_TYPE"] = self.record_type for d in attr_dicts: if EntityResolution.NAME_TYPE.value in d.keys(): name = {EntityResolution.NAME_TYPE.value: d[EntityResolution.NAME_TYPE.value]} data_index = [] for i in d['source_fields']: data_index.append(field_map[i]) for x in data_index: name[entity_fields[x]] = str(data[x]) if 'NAME_LIST' not in self.data_dict.keys(): self.data_dict['NAME_LIST'] = [] self.data_dict['NAME_LIST'].append(name) else: self.data_dict['NAME_LIST'].append(name) if EntityResolution.ADDR_TYPE.value in d.keys(): addr = {EntityResolution.ADDR_TYPE.value: d[EntityResolution.ADDR_TYPE.value]} data_index = [] for i in d['source_fields']: data_index.append(field_map[i]) for x in data_index: addr[entity_fields[x]] = str(data[x]) if 'ADDR_LIST' not in self.data_dict.keys(): self.data_dict['ADDR_LIST'] = [] self.data_dict['ADDR_LIST'].append(addr) else: self.data_dict['ADDR_LIST'].append(addr) if EntityResolution.PHONE_TYPE.value in d.keys(): phone = {EntityResolution.PHONE_TYPE.value: d[EntityResolution.PHONE_TYPE.value]} data_index = [] for i in d['source_fields']: data_index.append(field_map[i]) for x in data_index: phone[entity_fields[x]] = str(data[x]) if 'PHONE_LIST' not in self.data_dict.keys(): self.data_dict['PHONE_LIST'] = [] self.data_dict['PHONE_LIST'].append(phone) else: self.data_dict['PHONE_LIST'].append(phone) def to_json(self) -> str: return json.dumps(self.data_dict)
36.675676
121
0.561778
3,942
0.968312
0
0
0
0
0
0
194
0.047654
32ca34b8eacf24dc530fada37a04db8272ab0be6
523
py
Python
langcreator/system.py
xzripper/LanguageCreator
65421063161166d3e4f97e4b874909259b665fce
[ "MIT" ]
2
2021-12-12T16:48:20.000Z
2021-12-31T17:48:21.000Z
langcreator/system.py
xzripper/LanguageCreator
65421063161166d3e4f97e4b874909259b665fce
[ "MIT" ]
null
null
null
langcreator/system.py
xzripper/LanguageCreator
65421063161166d3e4f97e4b874909259b665fce
[ "MIT" ]
null
null
null
import subprocess import sys import os subprocess = subprocess sys = sys os = os def output(command: str, remlstc: bool) -> str: """ Get output from console command. If remlstc is True, it's return an output without a useless newline. :param command: The command. :param remlstc: Remove last character from output. """ return subprocess.check_output(command, shell=True, encoding='cp866')[:-1] if remlstc else subprocess.check_output(command, shell=True, encoding='cp866')
27.526316
158
0.692161
0
0
0
0
0
0
0
0
230
0.439771
32cada166139a42c2081b8a48a2bcd39a15cb5ab
2,612
py
Python
create_categories.py
Botomatik/JackBot
58651d8b5a5bcead2a2eb79849019cb4f972b7cd
[ "MIT" ]
null
null
null
create_categories.py
Botomatik/JackBot
58651d8b5a5bcead2a2eb79849019cb4f972b7cd
[ "MIT" ]
null
null
null
create_categories.py
Botomatik/JackBot
58651d8b5a5bcead2a2eb79849019cb4f972b7cd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Program to batch create categories. The program expects a generator containing a list of page titles to be used as base. The following command line parameters are supported: -always (not implemented yet) Don't ask, just do the edit. -overwrite (not implemented yet). -parent The name of the parent category. -basename The base to be used for the new category names. Example: create_categories.py -lang:commons -family:commons -links:User:Multichill/Wallonia -parent:"Cultural heritage monuments in Wallonia" -basename:"Cultural heritage monuments in" """ __version__ = '$Id$' # # (C) Multichill, 2011 # (C) xqt, 2011 # # Distributed under the terms of the MIT license. # # import os, sys, re, codecs import urllib, httplib, urllib2 import catlib import time import socket import StringIO import wikipedia as pywikibot import config import pagegenerators def createCategory(page, parent, basename): title = page.title(withNamespace=False) newpage = pywikibot.Page(pywikibot.getSite(u'commons', u'commons'), u'Category:' + basename + u' ' + title) newtext = u'' newtext += u'[[Category:' + parent + u'|' + title + u']]\n' newtext += u'[[Category:' + title + u']]\n' if not newpage.exists(): #FIXME: Add user prompting and -always option pywikibot.output(newpage.title()) pywikibot.showDiff(u'', newtext) comment = u'Creating new category' #FIXME: Add exception handling newpage.put(newtext, comment) else: #FIXME: Add overwrite option pywikibot.output(u'%s already exists, skipping' % (newpage.title(),)) def main(args): ''' Main loop. Get a generator and options. ''' generator = None parent = u'' basename = u'' always = False genFactory = pagegenerators.GeneratorFactory() for arg in pywikibot.handleArgs(): if arg == '-always': always = True elif arg.startswith('-parent:'): parent = arg [len('-parent:'):].strip() elif arg.startswith('-basename'): basename = arg [len('-basename:'):].strip() else: genFactory.handleArg(arg) generator = genFactory.getCombinedGenerator() if generator: for page in generator: createCategory(page, parent, basename) else: pywikibot.output(u'No pages to work on') pywikibot.output(u'All done') if __name__ == "__main__": try: main(sys.argv[1:]) finally: pywikibot.stopme()
25.359223
78
0.630551
0
0
0
0
0
0
0
0
1,135
0.434533
32cae26d8eb99a201dc12930e81a1edb58d4cace
10,287
py
Python
avod/core/losses.py
Zengyi-Qin/TLNet
11fa48160158b550ad2dc810ed564eebe17e8f5e
[ "Apache-2.0" ]
114
2019-03-13T01:42:22.000Z
2022-03-31T07:56:04.000Z
avod/core/losses.py
Zengyi-Qin/TLNet
11fa48160158b550ad2dc810ed564eebe17e8f5e
[ "Apache-2.0" ]
12
2019-03-26T08:18:13.000Z
2021-05-19T14:36:27.000Z
avod/core/losses.py
Zengyi-Qin/TLNet
11fa48160158b550ad2dc810ed564eebe17e8f5e
[ "Apache-2.0" ]
22
2019-03-22T10:44:49.000Z
2021-04-01T00:11:07.000Z
"""Classification and regression loss functions for object detection. Localization losses: * WeightedL2LocalizationLoss * WeightedSmoothL1LocalizationLoss Classification losses: * WeightedSoftmaxClassificationLoss * WeightedSigmoidClassificationLoss """ from abc import ABCMeta from abc import abstractmethod import tensorflow as tf from avod.core import ops class Loss(object): """Abstract base class for loss functions.""" __metaclass__ = ABCMeta def __call__(self, prediction_tensor, target_tensor, ignore_nan_targets=False, scope=None, **params): """Call the loss function. Args: prediction_tensor: a tensor representing predicted quantities. target_tensor: a tensor representing regression or classification targets. ignore_nan_targets: whether to ignore nan targets in the loss computation. E.g. can be used if the target tensor is missing groundtruth data that shouldn't be factored into the loss. scope: Op scope name. Defaults to 'Loss' if None. **params: Additional keyword arguments for specific implementations of the Loss. Returns: loss: a tensor representing the value of the loss function. """ with tf.name_scope(scope, 'Loss', [prediction_tensor, target_tensor, params]) as scope: if ignore_nan_targets: target_tensor = tf.where(tf.is_nan(target_tensor), prediction_tensor, target_tensor) return self._compute_loss( prediction_tensor, target_tensor, **params) @abstractmethod def _compute_loss(self, prediction_tensor, target_tensor, **params): """Method to be overriden by implementations. Args: prediction_tensor: a tensor representing predicted quantities target_tensor: a tensor representing regression or classification targets **params: Additional keyword arguments for specific implementations of the Loss. Returns: loss: a tensor representing the value of the loss function """ pass class WeightedL2LocalizationLoss(Loss): """L2 localization loss function with anchorwise output support. Loss[b,a] = .5 * ||weights[b,a] * (prediction[b,a,:] - target[b,a,:])||^2 """ def _compute_loss(self, prediction_tensor, target_tensor, weights): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, code_size] representing the (encoded) predicted locations of objects. target_tensor: A float tensor of shape [batch_size, num_anchors, code_size] representing the regression targets weights: a float tensor of shape [batch_size, num_anchors] Returns: loss: a (scalar) tensor representing the value of the loss function or a float tensor of shape [batch_size, num_anchors] """ weighted_diff = (prediction_tensor - target_tensor) * tf.expand_dims( weights, 2) square_diff = 0.5 * tf.square(weighted_diff) return tf.reduce_sum(square_diff) class WeightedSigmoidClassificationLoss(Loss): """Sigmoid cross entropy classification loss function.""" def _compute_loss(self, prediction_tensor, target_tensor, weights, class_indices=None): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] class_indices: (Optional) A 1-D integer tensor of class indices. If provided, computes loss only for the specified class indices. Returns: loss: a (scalar) tensor representing the value of the loss function or a float tensor of shape [batch_size, num_anchors] """ weights = tf.expand_dims(weights, 2) if class_indices is not None: weights *= tf.reshape( ops.indices_to_dense_vector(class_indices, tf.shape(prediction_tensor)[2]), [1, 1, -1]) per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits( labels=target_tensor, logits=prediction_tensor)) return tf.reduce_sum(per_entry_cross_ent * weights) class WeightedSmoothL1Loss(Loss): """Smooth L1 localization loss function. The smooth L1_loss is defined elementwise as .5 x^2 if |x|<1 and |x|-.5 otherwise, where x is the difference between predictions and target. See also Equation (3) in the Fast R-CNN paper by Ross Girshick (ICCV 2015) """ def _compute_loss(self, prediction_tensor, target_tensor, weight): """Compute loss function. Args: prediction_tensor: A float tensor of shape [num_anchors, code_size] representing the (encoded) predicted locations of objects. target_tensor: A float tensor of shape [num_anchors, code_size] representing the regression targets Returns: loss: an anchorwise tensor of shape [num_anchors] representing the value of the loss function """ diff = prediction_tensor - target_tensor abs_diff = tf.abs(diff) abs_diff_lt_1 = tf.less(abs_diff, 1) anchorwise_smooth_l1norm = tf.reduce_sum( tf.where(abs_diff_lt_1, 0.5 * tf.square(abs_diff), abs_diff - 0.5), axis=1) * weight return anchorwise_smooth_l1norm class WeightedSoftmaxLoss(Loss): """Softmax cross-entropy loss function.""" def _compute_loss(self, prediction_tensor, target_tensor, weight): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets Returns: loss: a (scalar) tensor representing the value of the loss function """ num_classes = prediction_tensor.get_shape().as_list()[-1] per_row_cross_ent = (tf.nn.softmax_cross_entropy_with_logits( labels=tf.reshape(target_tensor, [-1, num_classes]), logits=tf.reshape(prediction_tensor, [-1, num_classes]))) per_row_cross_ent = tf.reshape(per_row_cross_ent, [-1, 1]) positive_cls = tf.cast(tf.argmax(tf.reshape(target_tensor, [-1, num_classes]), axis=1), tf.float32) weight_cls = tf.reshape((positive_cls + 0.1) * 10, [-1, 1]) pred_argmax = tf.argmax(tf.reshape(prediction_tensor, [-1, num_classes]), axis=1) true_argmax = tf.argmax(tf.reshape(target_tensor, [-1, num_classes]), axis=1) accuracy_all = tf.reduce_mean(tf.cast(tf.equal(pred_argmax, true_argmax), tf.float32)) pred_positive = tf.cast(tf.greater(pred_argmax, 0), tf.float32) true_positive = tf.cast(tf.greater(true_argmax, 0), tf.float32) accuracy_positive = tf.reduce_sum(true_positive * tf.cast(tf.equal(pred_positive, \ true_positive), tf.float32)) / (tf.reduce_sum(true_positive) + 1e-2) #accuracy_positive = tf.constant(num_classes) #accuracy_positive = tf.reduce_sum(true_positive) / (tf.reduce_sum(tf.ones_like(true_positive, dtype=tf.float32)) + 1e-2) return tf.reduce_sum(per_row_cross_ent) * weight, accuracy_all, accuracy_positive class WeightedSoftmaxLossPiecewise(object): """Softmax cross-entropy loss function.""" def _compute_loss(self, prediction_tensor, target_tensor, pos_gt, neg_gt, weight, balance=1.0): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets Returns: loss: a (scalar) tensor representing the value of the loss function """ num_classes = prediction_tensor.get_shape().as_list()[-1] per_row_cross_ent = (tf.nn.softmax_cross_entropy_with_logits( labels=tf.reshape(target_tensor, [-1, num_classes]), logits=tf.reshape(prediction_tensor, [-1, num_classes]))) pred_argmax = tf.argmax(tf.reshape(prediction_tensor, [-1, num_classes]), axis=1) true_argmax = tf.argmax(tf.reshape(target_tensor, [-1, num_classes]), axis=1) equal_all = tf.cast(tf.equal(pred_argmax, true_argmax), tf.float32) accuracy_neg = tf.reduce_sum(equal_all * neg_gt) / (tf.reduce_sum(neg_gt) + 1e-2) accuracy_pos = tf.reduce_sum(equal_all * pos_gt) / (tf.reduce_sum(pos_gt) + 1e-2) #accuracy_positive = tf.constant(num_classes) #accuracy_positive = tf.reduce_sum(true_positive) / (tf.reduce_sum(tf.ones_like(true_positive, dtype=tf.float32)) + 1e-2) #rate = tf.reduce_sum(neg_gt) / (tf.reduce_sum(pos_gt) + 1e-2) pos_loss = tf.reduce_sum(per_row_cross_ent * pos_gt) * weight / (tf.reduce_sum(pos_gt) + 1e-2) neg_loss = tf.reduce_sum(per_row_cross_ent * neg_gt) * weight / (tf.reduce_sum(neg_gt) + 1e-2) return pos_loss * balance + neg_loss, accuracy_neg, accuracy_pos
44.150215
129
0.636726
9,902
0.962574
0
0
572
0.055604
0
0
5,310
0.516185
32cd6811a8df581555a9e17bfebdb7625e6646ac
19,282
py
Python
routing/views.py
iqqmuT/tsari
343ef5cf08ee24bdb710e94c0b6fb334264e5677
[ "MIT" ]
null
null
null
routing/views.py
iqqmuT/tsari
343ef5cf08ee24bdb710e94c0b6fb334264e5677
[ "MIT" ]
2
2020-02-11T22:09:10.000Z
2020-06-05T18:02:28.000Z
routing/views.py
iqqmuT/tsari
343ef5cf08ee24bdb710e94c0b6fb334264e5677
[ "MIT" ]
null
null
null
import json from datetime import datetime, timedelta from dateutil import parser as dateparser from django.contrib.auth.decorators import user_passes_test from django.db.models import Q from django.http import HttpResponseNotFound, JsonResponse from django.shortcuts import render from django.utils import timezone from avdb.models import \ Convention, \ Equipment, \ EquipmentType, \ Location, \ LocationType, \ TransportOrder, \ TransportOrderLine import logging logger = logging.getLogger(__name__) # TO data structure # { # 'disabled': False, # 'equipment': 1, # 'week': '2018-05-28T09:00:00+00:00', # 'from': { # 'location': 9, # 'load_out': '2018-06-19T08:00:00+00:00' # }, # 'to': { # 'location': 4, # 'convention': 7, # 'load_in': '2018-06-19T09:00:00+00:00' # }, # 'name': 'First TO', # 'notes': 'Notes', # 'unitNotes': 'Uniittinotes' # } @user_passes_test(lambda u: u.is_superuser) def index(request, year): video_types = EquipmentType.objects.filter(name__istartswith='Video').order_by('name') audio_types = EquipmentType.objects.filter(name__istartswith='Audio').order_by('name') elec_types = EquipmentType.objects.filter(name__istartswith='Electricity').order_by('name') #video_eqs = Equipment.objects.filter(equipment_type__name__istartswith='Video') #audio_eqs = Equipment.objects.filter(equipment_type__name__istartswith='Audio') #elec_eqs = Equipment.objects.filter(equipment_type__name__istartswith='Electricity') # get time period first = _get_first_convention(year) last = _get_last_convention(year) if first is None or last is None: return HttpResponseNotFound("No conventions found for year %d" % year) start_date = first.load_in end_date = last.load_out # move start_date backwards to previous monday + 1 week start_date = start_date - timedelta(days=start_date.weekday() + 7) # move end_date forwards by week end_date = end_date + timedelta(weeks=2) weeks = [] monday = start_date while monday < end_date: weeks.append({ 'monday': _get_previous_monday(monday), 'sunday': _get_next_sunday(monday), 'number': monday.isocalendar()[1], }) monday = monday + timedelta(weeks=1) to_data = [] equipment_groups = [] equipment_groups.extend(_add_eq_group(video_types, weeks, to_data)) equipment_groups.extend(_add_eq_group(audio_types, weeks, to_data)) equipment_groups.extend(_add_eq_group(elec_types, weeks, to_data)) #equipment_groups = [ # _handle_equipments(video_eqs, weeks, to_data), # _handle_equipments(audio_eqs, weeks, to_data), # _handle_equipments(elec_eqs, weeks, to_data), #] return render(request, 'routing/index.html', { 'year': year, 'equipment_groups': equipment_groups, 'weeks': weeks, 'conventions': json.dumps(_get_conventions_json()), 'start': start_date, 'end': end_date, 'other_locations': _get_other_locations(), 'locations_json': json.dumps(_get_locations_json()), 'json': json.dumps(to_data), }) def _add_eq_group(equipment_types, weeks, to_data): groups = [] for eq_type in equipment_types: eqs = Equipment.objects.filter(equipment_type=eq_type, disabled=False) groups.append(_handle_equipments(eqs, weeks, to_data)) return groups # Save JSON request def save(request, year): data = json.loads(request.body.decode('utf-8')) # Disable all existing TransportOrders for this year, # and enable only those we are editing/creating _disable_all_tos(year) # Remove existing TransportOrderLines for this year # We will re-create new TransportOrderLines eq_ids = set() for to_data in data['tos']: eq_ids.add(to_data['equipment']) for id in eq_ids: _remove_tols(id, year) # transit_from is storage for transit information transit_from = None for to_data in data['tos']: if to_data['disabled'] == False: if 'inTransit' in to_data['from'].keys() and to_data['from']['inTransit'] == True and ('inTransit' not in to_data['to'].keys() or to_data['to']['inTransit'] == False): # end of transit # from.load_out is saved to last TO in transit in UI if 'load_out' in to_data['from'].keys(): transit_from['load_out'] = to_data['from']['load_out'] # copy 'from' data from beginning of transit to_data['from'] = transit_from transit_from = None # save TO data tol = _save_to_data(to_data) else: if 'inTransit' in to_data['to'].keys() and to_data['to']['inTransit'] == True and ('inTransit' not in to_data['from'].keys() or to_data['from']['inTransit'] == False): # save 'from' data from beginning of transit transit_from = to_data['from'] return JsonResponse({ 'ok': True }) def _save_to_data(to_data): """Saves TransportOrder data.""" to = _get_or_create_to(to_data) if to is None: # could not create TO return None #week = dateparser.parse(to_data['week']) #monday = _get_previous_monday(week) #sunday = _get_next_sunday(week) # create new TransportOrderLine tol = TransportOrderLine( equipment=Equipment.objects.get(pk=to_data['equipment']), transport_order=to, ) tol.save() return tol def _disable_all_tos(year): """Disables all TransportOrders from given year.""" start = datetime(year, 1, 1) end = datetime(year, 12, 31, 23, 59, 59) tos = TransportOrder.objects.filter( Q(from_loc_load_out__range=(start, end)) | Q(to_loc_load_in__range=(start, end)) | Q(from_convention__load_out__range=(start, end)) | Q(to_convention__load_in__range=(start, end)) ) for to in tos: to.disabled = True to.save() def _get_or_create_to(to_data): """Gets or creates TransportOrder with given data.""" from_location = None from_convention = None from_load_out = None if 'from' in to_data.keys(): if 'convention' in to_data['from'].keys() and to_data['from']['convention'] is not None: id = to_data['from']['convention'] from_convention = Convention.objects.get(pk=id) if 'location' in to_data['from'].keys() and to_data['from']['location'] is not None: id = to_data['from']['location'] from_location = Location.objects.get(pk=id) if from_convention is None and 'load_out' in to_data['from'].keys() and _is_valid_datetime(to_data['from']['load_out']): from_load_out = dateparser.parse(to_data['from']['load_out']) to_location = None to_convention = None to_load_in = None if 'from' in to_data.keys(): if 'convention' in to_data['to'].keys() and to_data['to']['convention'] is not None: id = to_data['to']['convention'] to_convention = Convention.objects.get(pk=id) if 'location' in to_data['to'].keys() and to_data['to']['location'] is not None: id = to_data['to']['location'] to_location = Location.objects.get(pk=id) if to_convention is None and 'load_in' in to_data['to'].keys() and _is_valid_datetime(to_data['to']['load_in']): to_load_in = dateparser.parse(to_data['to']['load_in']) if from_location is None or to_location is None: # can't create TransportOrder with empty Locations return None to, created = TransportOrder.objects.get_or_create( from_convention=from_convention, to_convention=to_convention, from_loc=from_location, to_loc=to_location, from_loc_load_out=from_load_out, to_loc_load_in=to_load_in, ) # update other fields if 'name' in to_data.keys(): to.name = to_data['name'] if 'notes' in to_data.keys(): to.notes = to_data['notes'] if 'unitNotes' in to_data.keys(): to.unit_notes = to_data['unitNotes'] to.disabled = False to.save() return to def _is_valid_datetime(s): try: dateparser.parse(s) return True except ValueError: logger.error("Invalid datetime '%s'" % s) return False def _get_previous_monday(d): """Returns previous monday from given datetime.""" monday = d - timedelta(days=d.weekday()) # set time to 00:00:00 return datetime(monday.year, monday.month, monday.day, 0, 0, 0) def _get_next_sunday(d): sunday = d + timedelta(days=6-d.weekday()) # set time to 23:59:59 return datetime(sunday.year, sunday.month, sunday.day, 23, 59, 59) def _get_first_convention(year): try: return Convention.objects.filter(load_in__year=year).earliest('load_in') except Convention.DoesNotExist: return None def _get_last_convention(year): try: return Convention.objects.filter(load_out__year=year).latest('load_out') except Convention.DoesNotExist: return None def _get_conventions_json(): data = {} for conv in Convention.objects.all(): d = { 'name': conv.routing_name() } if conv.load_in is not None: d['load_in'] = conv.load_in.isoformat() if conv.load_out is not None: d['load_out'] = conv.load_out.isoformat() data[conv.id] = d return data def _get_locations_json(): data = {} for loc in Location.objects.all(): d = { 'name': loc.name, } data[loc.id] = d return data def _get_earliest_to(year): try: return TransportOrder.objects.filter(from_loc_load_out__year=year).earliest('from_loc_load_out') except TransportOrder.DoesNotExist: return None def _get_latest_to(year): try: return TransportOrder.objects.filter(to_loc_load_in__year=year).latest('to_loc_load_in') except TransportOrder.DoesNotExist: return None def _handle_equipments(equipments, weeks, to_data): objs = [] for equipment in equipments: eq_weeks = [] selected = { 'name': 'Select', 'type': None } start_location = selected latest_location = None latest_convention = None for week in weeks: # transport data tod = { #'transportOrder': None, 'disabled': False, 'equipment': equipment.pk, 'week': week['monday'].isoformat(), 'from': { #'location': None, #'convention': None, }, 'to': { #'location': None, #'convention': None, } } #if latest_location is not None: # tod['from']['location'] = latest_location # tod['to']['location'] = latest_location #if latest_convention is not None: # tod['from']['convention'] = latest_convention # tod['to']['convention'] = latest_convention # find matching TransportOrderLine and fill information from there to toData object filter_start = week['monday'] - timedelta(days=3) filter_end = week['sunday'] - timedelta(days=3) tols = _find_tols(equipment.pk, filter_start, filter_end) if len(tols): to = tols.first().transport_order tod['id'] = to.pk tod['name'] = to.name tod['notes'] = to.notes tod['unitNotes'] = to.unit_notes if to.from_loc is not None: tod['from']['location'] = to.from_loc.pk if start_location['type'] is None: selected = { 'name': to.from_loc.name, 'type': 'location' } start_location = selected # set selected for previous empty weeks for old_eq_week in eq_weeks: if old_eq_week['selected']['type'] is None: old_eq_week['selected'] = selected if len(eq_weeks) > 0: eq_weeks[len(eq_weeks)-1]['selected'] = { 'name': to.from_loc.name, 'type': 'location' } if to.from_convention is not None: tod['from']['convention'] = to.from_convention.pk tod['from']['location'] = to.from_convention.location.pk if to.from_convention.load_out is not None: tod['from']['load_out'] = to.from_convention.load_out.isoformat() if start_location['type'] is None: selected = { 'name': to.from_convention.routing_name(), 'type': 'convention', } start_location = selected # set selected for previous empty weeks for old_eq_week in eq_weeks: if old_eq_week['selected']['type'] is None: old_eq_week['selected'] = selected if len(eq_weeks) > 0: eq_weeks[len(eq_weeks)-1]['selected'] = { 'name': to.from_convention.routing_name(), 'type': 'convention', } if to.from_loc_load_out is not None: tod['from']['load_out'] = to.from_loc_load_out.isoformat() # special case: in transit transit_length = to.transit_length() if transit_length is not None and transit_length.days > 7: _handle_in_transit(to, tod, to_data, eq_weeks) if to.to_loc is not None: tod['to']['location'] = to.to_loc.pk selected = { 'name': to.to_loc.name, 'type': 'location' } latest_location = to.to_loc.pk if to.to_convention is not None: tod['to']['convention'] = to.to_convention.pk tod['to']['location'] = to.to_convention.location.pk if to.to_convention.load_in is not None: tod['to']['load_in'] = to.to_convention.load_in.isoformat() selected = { 'name': to.to_convention.routing_name(), 'type': 'convention', } latest_convention = to.to_convention.pk if 'inTransit' in tod['to'].keys() and tod['to']['inTransit'] == True: selected = { 'name': 'In transit', 'type': 'inTransit', } if to.to_loc_load_in is not None: tod['to']['load_in'] = to.to_loc_load_in.isoformat() to_data.append(tod) # week data w = { 'week': week, #'to_idx': len(to_data) - 1, # index for to_data 'convention': None, 'conventions': _get_conventions(week['monday'], week['sunday']), 'other_locations': _get_other_locations(), 'selected': selected, } eq_weeks.append(w) objs.append({ 'eq': equipment, 'weeks': eq_weeks, 'start_location': start_location, }) return objs def _handle_in_transit(to, tod, to_data, eq_weeks): transit_weeks = to.transit_length().days / 7 convention = None location = None if 'convention' in tod['from'].keys(): convention = tod['from']['convention'] if 'location' in tod['from'].keys(): location = tod['from']['location'] tod['from']['inTransit'] = True tod['from']['convention'] = None tod['from']['location'] = None i = 0 l = len(to_data) l2 = len(eq_weeks) while i < transit_weeks - 2: to_data[l-i-1]['to']['inTransit'] = True to_data[l-i-1]['from']['inTransit'] = True eq_weeks[l2-i-1]['selected'] = { 'name': 'In transit', 'type': 'inTransit', } i = i + 1 to_data[l-i-1]['to']['inTransit'] = True to_data[l-i-1]['from']['convention'] = convention to_data[l-i-1]['from']['location'] = location eq_weeks[l2-i-1]['selected'] = { 'name': 'In transit', 'type': 'inTransit', } convention_cache = {} def _get_conventions(start, end): key = start.isoformat() + end.isoformat() if key not in convention_cache.keys(): convention_cache[key] = Convention.objects.filter( starts__gte=start, ends__lte=end, ) return convention_cache[key] location_cache = {} def _get_other_locations(): """Returns all locations except convention venues.""" if 'all' not in location_cache.keys(): conv_venue = LocationType.objects.get(name='Convention venue') location_cache['all'] = Location.objects.exclude(loc_type=conv_venue) return location_cache['all'] def _find_tols(equipment_id, start, end): """Returns existing TransportOrderLines matching with given arguments. Matches only if load_in is matching between start and end.""" #logger.error('Trying to find TOL') #logger.error(equipment_id) #logger.error(start_time) #logger.error(end_time) tols = TransportOrderLine.objects.filter( equipment__id=equipment_id).filter( Q(transport_order__to_loc_load_in__range=(start, end)) | Q(transport_order__to_convention__load_in__range=(start, end)) #Q(transport_order__from_loc_load_out__range=(start, end)) | Q(transport_order__to_loc_load_in__range=(start, end)) | Q(transport_order__from_convention__load_out__range=(start, end)) | Q(transport_order__to_convention__load_in__range=(start, end)) ) return tols def _remove_tols(equipment_id, year): """Removes all TransportOrderLines for given equipment id and from that year.""" start = datetime(year, 1, 1) end = datetime(year, 12, 31, 23, 59, 59) TransportOrderLine.objects.filter( equipment__id=equipment_id, transport_order__from_loc_load_out__range=(start, end), ).delete() TransportOrderLine.objects.filter( equipment__id=equipment_id, transport_order__to_loc_load_in__range=(start, end), ).delete() TransportOrderLine.objects.filter( equipment__id=equipment_id, transport_order__from_convention__load_out__range=(start, end), ).delete() TransportOrderLine.objects.filter( equipment__id=equipment_id, transport_order__to_convention__load_in__range=(start, end), ).delete()
36.041121
256
0.587283
0
0
0
0
2,272
0.11783
0
0
4,904
0.25433
32cf5c6af409ad539e05135e062b11460576c4f6
5,575
py
Python
my_ner.py
shouxieai/nlp-bilstm_crf-ner
907381325eeb0a2c29004e1c617bea7312579ba8
[ "Apache-2.0" ]
16
2021-12-14T10:51:25.000Z
2022-03-30T10:10:09.000Z
my_ner.py
shouxieai/nlp-bilstm-ner
907381325eeb0a2c29004e1c617bea7312579ba8
[ "Apache-2.0" ]
1
2022-03-23T04:28:50.000Z
2022-03-23T04:28:50.000Z
my_ner.py
shouxieai/nlp-bilstm-ner
907381325eeb0a2c29004e1c617bea7312579ba8
[ "Apache-2.0" ]
2
2021-12-08T02:48:01.000Z
2021-12-13T13:03:25.000Z
import os from torch.utils.data import Dataset,DataLoader import torch import torch.nn as nn from sklearn.metrics import f1_score def build_corpus(split, make_vocab=True, data_dir="data"): """读取数据""" assert split in ['train', 'dev', 'test'] word_lists = [] tag_lists = [] with open(os.path.join(data_dir, split+".char.bmes"), 'r', encoding='utf-8') as f: word_list = [] tag_list = [] for line in f: if line != '\n': word, tag = line.strip('\n').split() word_list.append(word) tag_list.append(tag) else: word_lists.append(word_list) tag_lists.append(tag_list) word_list = [] tag_list = [] word_lists = sorted(word_lists, key=lambda x: len(x), reverse=True) tag_lists = sorted(tag_lists, key=lambda x: len(x), reverse=True) # 如果make_vocab为True,还需要返回word2id和tag2id if make_vocab: word2id = build_map(word_lists) tag2id = build_map(tag_lists) word2id['<UNK>'] = len(word2id) word2id['<PAD>'] = len(word2id) tag2id['<PAD>'] = len(tag2id) return word_lists, tag_lists, word2id, tag2id else: return word_lists, tag_lists def build_map(lists): maps = {} for list_ in lists: for e in list_: if e not in maps: maps[e] = len(maps) return maps class MyDataset(Dataset): def __init__(self,datas,tags,word_2_index,tag_2_index): self.datas = datas self.tags = tags self.word_2_index = word_2_index self.tag_2_index = tag_2_index def __getitem__(self,index): data = self.datas[index] tag = self.tags[index] data_index = [self.word_2_index.get(i,self.word_2_index["<UNK>"]) for i in data] tag_index = [self.tag_2_index[i] for i in tag] return data_index,tag_index def __len__(self): assert len(self.datas) == len(self.tags) return len(self.datas) def batch_data_pro(self,batch_datas): global device data , tag = [],[] da_len = [] for da,ta in batch_datas: data.append(da) tag.append(ta) da_len.append(len(da)) max_len = max(da_len) data = [i + [self.word_2_index["<PAD>"]] * (max_len - len(i)) for i in data] tag = [i + [self.tag_2_index["<PAD>"]] * (max_len - len(i)) for i in tag] data = torch.tensor(data,dtype=torch.long,device = device) tag = torch.tensor(tag,dtype=torch.long,device = device) return data , tag, da_len class MyModel(nn.Module): def __init__(self,embedding_num,hidden_num,corpus_num,bi,class_num,pad_index): super().__init__() self.embedding_num = embedding_num self.hidden_num = hidden_num self.corpus_num = corpus_num self.bi = bi self.embedding = nn.Embedding(corpus_num,embedding_num) self.lstm = nn.LSTM(embedding_num,hidden_num,batch_first=True,bidirectional=bi) if bi: self.classifier = nn.Linear(hidden_num*2,class_num) else: self.classifier = nn.Linear(hidden_num, class_num) self.cross_loss = nn.CrossEntropyLoss(ignore_index=pad_index) def forward(self,data_index,data_len , tag_index=None): em = self.embedding(data_index) pack = nn.utils.rnn.pack_padded_sequence(em,data_len,batch_first=True) output,_ = self.lstm(pack) output,lens = nn.utils.rnn.pad_packed_sequence(output,batch_first=True) pre = self.classifier(output) self.pre = torch.argmax(pre, dim=-1).reshape(-1) if tag_index is not None: loss = self.cross_loss(pre.reshape(-1,pre.shape[-1]),tag_index.reshape(-1)) return loss if __name__ == "__main__": device = "cuda:0" if torch.cuda.is_available() else "cpu" train_word_lists, train_tag_lists, word_2_index, tag_2_index = build_corpus("train") dev_word_lists, dev_tag_lists = build_corpus("dev", make_vocab=False) test_word_lists, test_tag_lists = build_corpus("test", make_vocab=False) corpus_num = len(word_2_index) class_num = len(tag_2_index) train_batch_size = 5 dev_batch_size = len(dev_word_lists) epoch = 100 lr = 0.001 embedding_num = 128 hidden_num = 129 bi = True train_dataset = MyDataset(train_word_lists,train_tag_lists,word_2_index, tag_2_index) train_dataloader = DataLoader(train_dataset,batch_size=train_batch_size,shuffle=False,collate_fn=train_dataset.batch_data_pro) dev_dataset = MyDataset(dev_word_lists, dev_tag_lists, word_2_index, tag_2_index) dev_dataloader = DataLoader(dev_dataset, batch_size=dev_batch_size, shuffle=False,collate_fn=dev_dataset.batch_data_pro) model = MyModel(embedding_num,hidden_num,corpus_num,bi,class_num,word_2_index["<PAD>"]) model = model.to(device) opt = torch.optim.Adam(model.parameters(),lr = lr) for e in range(epoch): model.train() for data , tag, da_len in train_dataloader: loss = model.forward(data,da_len,tag) loss.backward() opt.step() opt.zero_grad() model.eval() # F1,准确率,精确率,召回率 for dev_data , dev_tag, dev_da_len in dev_dataloader: test_loss = model.forward(dev_data,dev_da_len,dev_tag) score = f1_score(dev_tag.reshape(-1).cpu().numpy(),model.pre.cpu().numpy(),average="micro") print(score) break
32.794118
130
0.63139
2,404
0.427682
0
0
0
0
0
0
262
0.046611
32cf7fd469a0aec109e44e66849bad3789086158
245
py
Python
test.py
karttur/geoimagine03-support
3971db215382bd16f207eca3ef1d9d81e4298b41
[ "BSD-3-Clause" ]
null
null
null
test.py
karttur/geoimagine03-support
3971db215382bd16f207eca3ef1d9d81e4298b41
[ "BSD-3-Clause" ]
null
null
null
test.py
karttur/geoimagine03-support
3971db215382bd16f207eca3ef1d9d81e4298b41
[ "BSD-3-Clause" ]
null
null
null
''' Created on 28 Jan 2021 @author: thomasgumbricht ''' from string import whitespace def CheckWhitespace(s): ''' ''' return True in [c in s for c in whitespace] s = 'dumsnut' print (CheckWhitespace(s))
13.611111
51
0.591837
0
0
0
0
0
0
0
0
80
0.326531
32cfbeee160a6e50ceb471701c99ace872cbfe2b
362
py
Python
leetcode/409.py
windniw/just-for-fun
54e5c2be145f3848811bfd127f6a89545e921570
[ "Apache-2.0" ]
1
2019-08-28T23:15:25.000Z
2019-08-28T23:15:25.000Z
leetcode/409.py
windniw/just-for-fun
54e5c2be145f3848811bfd127f6a89545e921570
[ "Apache-2.0" ]
null
null
null
leetcode/409.py
windniw/just-for-fun
54e5c2be145f3848811bfd127f6a89545e921570
[ "Apache-2.0" ]
null
null
null
""" link: https://leetcode.com/problems/longest-palindrome problem: 问用s中字符组成的最长回文串长度 solution: map 记录字符出现次数 """ class Solution: def longestPalindrome(self, s: str) -> int: m, res = collections.defaultdict(int), 0 for x in s: m[x] += 1 for x in m: res += m[x] // 2 * 2 return min(len(s), res + 1)
18.1
54
0.558011
243
0.595588
0
0
0
0
0
0
161
0.394608
32cfc631e8d4a50ff93f3a9a349602c8342fb97a
847
py
Python
nickenbot/config.py
brlafreniere/nickenbot
f13ec78057ec25823eb16df6ffab3a32eddfd3ca
[ "MIT" ]
1
2016-08-10T12:20:58.000Z
2016-08-10T12:20:58.000Z
nickenbot/config.py
brlafreniere/nickenbot
f13ec78057ec25823eb16df6ffab3a32eddfd3ca
[ "MIT" ]
null
null
null
nickenbot/config.py
brlafreniere/nickenbot
f13ec78057ec25823eb16df6ffab3a32eddfd3ca
[ "MIT" ]
null
null
null
import yaml import os import sys current_dir = os.path.dirname(os.path.realpath(__file__)) project_dir = os.path.realpath(os.path.join(current_dir, "..")) class ConfigManager: network = None config = None @classmethod def load(clss): if clss.network: config_filepath = os.path.join(project_dir, 'config/%s.config.yaml' % clss.network) else: config_filepath = os.path.join(project_dir, 'config/config.yaml') config_file = open(config_filepath, 'r') config_yaml = config_file.read() clss.config = yaml.load(config_yaml) @classmethod def get(clss, key): if not clss.config: clss.load() if not clss.config: print("Configuration not found. Exiting.") sys.exit(1) return clss.config[key]
27.322581
95
0.615112
689
0.813459
0
0
620
0.731995
0
0
85
0.100354
32d046c8c2ed3ece0b08aa280a40083f8b7d16ab
2,277
py
Python
qna/views.py
channprj/KU-PL
7fc3719b612a819ed1bd443695d7f13f509ee596
[ "MIT" ]
null
null
null
qna/views.py
channprj/KU-PL
7fc3719b612a819ed1bd443695d7f13f509ee596
[ "MIT" ]
null
null
null
qna/views.py
channprj/KU-PL
7fc3719b612a819ed1bd443695d7f13f509ee596
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.shortcuts import redirect from django.shortcuts import get_object_or_404 from django.utils import timezone from .forms import QuestionForm from .forms import AnswerForm from .models import Question from .models import Answer def question_list(request): questions = Question.objects.filter(created_date__lte = timezone.now()).order_by('-updated_date') return render(request, 'qna/question_list.htm', {'questions': questions}) def question_detail(request, pk): question = get_object_or_404(Question, pk=pk) if request.method == "POST": form = AnswerForm(request.POST) if form.is_valid(): answer = form.save(commit=False) answer.question = question answer.user = request.user answer.updated_date = timezone.now() answer.save() return redirect('qna.views.question_detail', pk=question.pk) else: form = AnswerForm() return render(request, 'qna/question_detail.htm', {'question': question, 'form': form}) def question_new(request): if request.method == "POST": form = QuestionForm(request.POST) if form.is_valid(): question = form.save(commit=False) question.user = request.user question.updated_date = timezone.now() question.save() return redirect('qna.views.question_detail', pk=question.pk) else: form = QuestionForm() return render(request, 'qna/question_edit.htm', {'form': form}) def question_edit(request, pk): question = get_object_or_404(Question, pk=pk) if request.method == "POST": form = QuestionForm(request.POST, instance=question) if form.is_valid(): question = form.save(commit=False) question.user = request.user question.updated_date = timezone.now() question.save() return redirect('qna.views.question_detail', pk=question.pk) else: form = QuestionForm(instance=question) return render(request, 'qna/question_edit.htm', {'form': form}) def question_remove(request, pk): question = get_object_or_404(Question, pk=pk) question.delete() return redirect('qna.views.question_list')
35.030769
101
0.665349
0
0
0
0
0
0
0
0
272
0.119455
32d33f3c862ddf8043ee8ce09e1a526264e7c51a
1,648
py
Python
python/tests/test_oci.py
miku/labe
2d784f418e24ab6fef9f76791c9fdd02dd505657
[ "MIT" ]
null
null
null
python/tests/test_oci.py
miku/labe
2d784f418e24ab6fef9f76791c9fdd02dd505657
[ "MIT" ]
null
null
null
python/tests/test_oci.py
miku/labe
2d784f418e24ab6fef9f76791c9fdd02dd505657
[ "MIT" ]
1
2021-09-16T10:51:00.000Z
2021-09-16T10:51:00.000Z
""" Unit tests for labe. Most not mocked yet, hence slow. """ import collections import socket import pytest import requests from labe.oci import get_figshare_download_link, get_terminal_url def no_internet(host="8.8.8.8", port=53, timeout=3): """ Host: 8.8.8.8 (google-public-dns-a.google.com) OpenPort: 53/tcp Service: domain (DNS/TCP) """ try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port)) return False except socket.error as ex: return True @pytest.mark.skipif(no_internet(), reason="no internet") def test_get_redirct_url(): with pytest.raises(requests.exceptions.MissingSchema): get_terminal_url("undefined") assert get_terminal_url("https://google.com") == "https://www.google.com/" assert get_terminal_url("http://google.com") == "https://www.google.com/?gws_rd=ssl" assert (get_terminal_url("https://doi.org/10.1111/icad.12417") == "https://onlinelibrary.wiley.com/doi/10.1111/icad.12417") @pytest.mark.skipif(no_internet(), reason="no internet") def test_get_figshare_download_link(): Case = collections.namedtuple("Case", "link result") cases = ( Case( "https://doi.org/10.6084/m9.figshare.6741422.v11", "https://figshare.com/ndownloader/articles/6741422/versions/11", ), Case( "https://doi.org/10.6084/m9.figshare.6741422.v7", "https://figshare.com/ndownloader/articles/6741422/versions/7", ), ) for c in cases: assert get_figshare_download_link(c.link) == c.result
30.518519
88
0.662621
0
0
0
0
1,072
0.650485
0
0
653
0.396238
32d559b8ce0d7d1c7f26302620ef00f9255a82dc
26,404
py
Python
pyNastran/bdf/cards/test/test_dynamic.py
ACea15/pyNastran
5ffc37d784b52c882ea207f832bceb6b5eb0e6d4
[ "BSD-3-Clause" ]
293
2015-03-22T20:22:01.000Z
2022-03-14T20:28:24.000Z
pyNastran/bdf/cards/test/test_dynamic.py
ACea15/pyNastran
5ffc37d784b52c882ea207f832bceb6b5eb0e6d4
[ "BSD-3-Clause" ]
512
2015-03-14T18:39:27.000Z
2022-03-31T16:15:43.000Z
pyNastran/bdf/cards/test/test_dynamic.py
ACea15/pyNastran
5ffc37d784b52c882ea207f832bceb6b5eb0e6d4
[ "BSD-3-Clause" ]
136
2015-03-19T03:26:06.000Z
2022-03-25T22:14:54.000Z
"""tests dynamic cards and dynamic load cards""" import unittest from io import StringIO import numpy as np import pyNastran from pyNastran.bdf.bdf import BDF, read_bdf, CrossReferenceError from pyNastran.bdf.cards.test.utils import save_load_deck #ROOT_PATH = pyNastran.__path__[0] class TestDynamic(unittest.TestCase): """ The cards tested are: * TSTEP """ def test_tstep(self): """tests a TSTEP card""" model = BDF(debug=None) sid = 42 n1 = n2 = 5 dt1 = dt2 = 0.1 no1 = no2 = 3 card = ['TSTEP', sid, n1, dt1, no1, None, None, None, None, None, n2, dt2, no2] model.add_card(card, card[0], comment='tstep comment') model.validate() tstep = model.tsteps[42] tstep.raw_fields() tstep.write_card() tstep.write_card(size=16) sid = 43 N = 5 DT = 0.1 NO = 3 tstep2 = model.add_tstep(sid, N, DT, NO) tstep2.raw_fields() tstep2.write_card() tstep2.write_card(size=16) save_load_deck(model) def test_tstepnl(self): """tests a TSTEPNL card""" model = BDF(debug=None) card = ['TSTEPNL', 250, 100, .01, 1, 'ADAPT', 2, 10, 'PW', 1.E-2, 1.E-3, 1.E-6, 2, 10, 2, .02, None, 5, 5, 0, 0.75, 16.0, 0.1, 20.,] model.add_card(card, card[0], comment='tstepnl comment') model.validate() tstepnl = model.tstepnls[250] tstepnl.raw_fields() tstepnl.write_card() tstepnl.write_card(size=16) sid = 42 ndt = 10 dt = 3. no = 5 tstepnl2 = model.add_tstepnl(sid, ndt, dt, no) tstepnl2.raw_fields() tstepnl2.write_card() tstepnl2.write_card(size=16) save_load_deck(model) def test_delay(self): """tests a two field DELAY card""" model = BDF(debug=False) node1, c1, t1 = 100, 3, 0.3 node2, c2, t2 = 101, 4, 0.4 sid = 42 card_lines = ['DELAY', sid, node1, c1, t1, node2, c2, t2] model.add_card(card_lines, card_lines[0], comment='', is_list=True, has_none=True) model.add_grid(100, [0., 0., 0.]) model.add_grid(101, [0., 0., 0.]) model.validate() model.cross_reference() #print(model.delays[42]) save_load_deck(model) def test_dphase(self): """tests a two field DPHASE card""" model = BDF(debug=False) node1, c1, t1 = 100, 3, 0.3 node2, c2, t2 = 101, 4, 0.4 sid = 42 card_lines = ['DPHASE', sid, node1, c1, t1, node2, c2, t2] model.add_card(card_lines, card_lines[0], comment='', is_list=True, has_none=True) model.add_grid(100, [0., 0., 0.]) model.add_grid(101, [0., 0., 0.]) model.validate() model.cross_reference() #print(model.dphases[42]) save_load_deck(model) def test_freq(self): """tests FREQ, FREQ1, FREQ2, FREQ4""" model = BDF(debug=False) sid = 101 freqs = 0.1 freq = model.add_freq(sid, freqs, comment='freq') #print(freq) freqs = [2.0, 3.0] freq = model.add_freq(sid, freqs, comment='freq') #print(freq) f1 = 0. df = 2.0 freq1 = model.add_freq1(sid, f1, df, ndf=5, comment='freq1') assert len(freq1.freqs) == 6, 'freqs=%s' % freq1.freqs #print(freq1) f1 = 1. f2 = 8.0 freq2 = model.add_freq2(sid, f1, f2, nf=6, comment='freq2') assert len(freq2.freqs) == 7, 'freqs=%s' % freq2.freqs assert np.allclose(freq2.freqs.max(), f2), freq2.freqs #print(freq2) freq4 = model.add_freq4(sid, f1, f2, fspread=0.1, nfm=3, comment='freq4') #print(model.frequencies[sid]) #print(freq4) fractions = [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] freq5 = model.add_freq5(sid, fractions, f1=0., f2=100., comment='freq5') fractions = np.linspace(0., 1.) unused_freq5b = model.add_freq5(sid, fractions, f1=0., f2=100., comment='freq5') model.validate() freq.raw_fields() freq.write_card() freq.write_card(size=16) freq1.raw_fields() freq1.write_card() freq1.write_card(size=16) freq2.raw_fields() freq2.write_card() freq2.write_card(size=16) freq4.raw_fields() freq4.write_card() freq4.write_card(size=16) freq5.raw_fields() freq5.write_card() freq5.write_card(size=16) bdf_file = StringIO() model.write_bdf(bdf_file, close=False) unused_out = bdf_file.getvalue() bdf_file.seek(0) model2 = read_bdf(bdf_file, punch=True, debug=False) model2.uncross_reference() model2.safe_cross_reference() model2.uncross_reference() save_load_deck(model) def test_tload(self): """tests DLOAD, TLOAD1, TLOAD2, TABLED2 cards""" model = BDF(debug=False) model.set_error_storage(nparse_errors=0, stop_on_parsing_error=True, nxref_errors=0, stop_on_xref_error=True) sid = 2 excite_id = 20 delay = 0 tid = 42 tload1 = model.add_tload1(sid, excite_id, tid, delay=0, Type='LOAD', us0=0.0, vs0=0.0, comment='tload1') tload1 = model.add_tload1(sid, excite_id, tid, delay=1., Type='DISP', us0=0.0, vs0=0.0, comment='') tload1 = model.add_tload1(sid, excite_id, tid, delay=2, Type='VELO', us0=0.0, vs0=0.0, comment='') tload1 = model.add_tload1(sid, excite_id, tid, delay=0, Type='ACC', us0=0.0, vs0=0.0, comment='') nid = 100 model.add_grid(nid, [0., 0., 0.]) darea_id = excite_id component = 4 scale = 1. model.add_darea(darea_id, nid, component, scale, comment='') sid = 3 excite_id = 30 tload2 = model.add_tload2(sid, excite_id, delay=0, Type='LOAD', T1=0., T2=None, frequency=0., phase=0., c=0., b=0., us0=0., vs0=0., comment='tload2') tload2 = model.add_tload2(sid, excite_id, delay=1., Type='D', T1=0., T2=None, frequency=0., phase=0., c=0., b=0., us0=0., vs0=0., comment='') tload2 = model.add_tload2(sid, excite_id, delay=2, Type='V', T1=0., T2=None, frequency=0., phase=0., c=0., b=0., us0=0., vs0=0., comment='') tload2 = model.add_tload2(sid, excite_id, delay=0, Type='A', T1=0., T2=1., frequency=0., phase=0., c=0., b=0., us0=0., vs0=0., comment='') darea_id = excite_id component = 4 scale = 1. model.add_darea(darea_id, nid, component, scale, comment='') delay_id = 2 nodes = 100 components = 2 delays = 1.5 delay = model.add_delay(delay_id, nodes, components, delays) sid = 1 scale = 1.0 scale_factors = 1. load_ids = 2 dload = model.add_dload(sid, scale, scale_factors, load_ids, comment='dload') x1 = 0.1 x = np.linspace(0., 1.) y = np.sin(x) tabled2 = model.add_tabled2(tid, x1, x, y, comment='tabled2') model.pop_parse_errors() delay.validate() delay.raw_fields() delay.write_card() delay.write_card(size=16) tload1.validate() tload1.raw_fields() tload1.write_card() tload1.write_card(size=16) tload2.validate() tload2.raw_fields() tload2.write_card() tload2.write_card(size=16) dload.validate() dload.raw_fields() dload.write_card() dload.write_card(size=16) tabled2.validate() tabled2.raw_fields() tabled2.write_card() tabled2.write_card(size=16) model.validate() model.cross_reference() model.pop_xref_errors() bdf_file = StringIO() model.write_bdf(bdf_file, close=False) unused_out = bdf_file.getvalue() bdf_file.seek(0) unused_outs = model.get_bdf_stats(return_type='list') unused_outs = model.get_bdf_stats(return_type='string') time = 0.5 out1 = tload1.get_load_at_time(time, scale=1.) out2 = tload2.get_load_at_time(time, scale=1.) #print(out1) assert len(out1) == 1, out1 assert len(out2) == 1, out2 #print(out1) #print(out2) time = [0.5, 0.9] out1 = tload1.get_load_at_time(time, scale=1.) out2 = tload2.get_load_at_time(time, scale=1.) assert len(out1) == 2, out1 assert len(out2) == 2, out2 #print(out1) #print(out2) model2 = read_bdf(bdf_file, punch=True, debug=False) model2.uncross_reference() model2.safe_cross_reference() model2.uncross_reference() #print(out) #print(outs) save_load_deck(model, run_renumber=False, run_convert=False) def test_rload(self): """tests DLOAD, RLOAD1, RLOAD2, TABLED2 cards""" model = BDF(debug=False) #model.case_control_deck = CaseControlDeck(['DLOAD=2', 'BEGIN BULK']) sid = 2 excite_id = 20 delay = 0 tid = 42 rload1 = model.add_rload1(sid, excite_id, delay=0, dphase=0, tc=0, td=0, Type='LOAD', comment='rload1') rload1 = model.add_rload1(sid, excite_id, delay=1., dphase=0, tc=0, td=0, Type='DISP', comment='rload1') rload1 = model.add_rload1(sid, excite_id, delay=2, dphase=0, tc=0, td=0, Type='VELO', comment='rload1') rload1 = model.add_rload1(sid, excite_id, delay=0, dphase=0, tc=0, td=0, Type='ACC', comment='rload1') sid = 3 excite_id = 30 rload2 = model.add_rload2(sid, excite_id, delay=0, dphase=0, tb=0, tp=0, Type='LOAD', comment='rload2') rload2 = model.add_rload2(sid, excite_id, delay=1., dphase=0, tb=0, tp=0, Type='D', comment='rload2') rload2 = model.add_rload2(sid, excite_id, delay=2, dphase=0, tb=0, tp=0, Type='V', comment='rload2') rload2 = model.add_rload2(sid, excite_id, delay=0, dphase=0, tb=0, tp=0, Type='A', comment='rload2') excite_id = 20 nid = 21 c = 1 scale = 1.0 model.add_darea(excite_id, nid, c, scale, comment='darea') model.add_grid(nid, [0., 0., 0.]) excite_id = 30 model.add_darea(excite_id, nid, c, scale, comment='darea') delay_id = 2 nodes = 100 components = 2 delays = 1.5 delay = model.add_delay(delay_id, nodes, components, delays) sid = 1 scale = 1.0 scale_factors = 1. load_ids = 2 dload = model.add_dload(sid, scale, scale_factors, load_ids, comment='dload') x1 = 0.1 x = np.linspace(0., 1.) y = np.sin(x) tabled2 = model.add_tabled2(tid, x1, x, y, comment='tabled2') model.pop_parse_errors() delay.validate() delay.raw_fields() delay.write_card() delay.write_card(size=16) rload1.validate() rload1.raw_fields() rload1.write_card() rload1.write_card(size=16) rload2.validate() rload2.raw_fields() rload2.write_card() rload2.write_card(size=16) dload.validate() dload.raw_fields() dload.write_card() dload.write_card(size=16) tabled2.validate() tabled2.raw_fields() tabled2.write_card() tabled2.write_card(size=16) model.validate() model.cross_reference() model.pop_xref_errors() #print(model.dareas) bdf_file = StringIO() model.write_bdf(bdf_file, close=False) unused_out = bdf_file.getvalue() bdf_file.seek(0) unused_outs = model.get_bdf_stats(return_type='list') unused_outs = model.get_bdf_stats(return_type='string') freq = 0.5 out1 = rload1.get_load_at_freq(freq, scale=1.) #out2 = rload2.get_load_at_time(freq, scale=1.) #print(out1) #print(out2) assert len(out1) == 1, out1 #assert len(out2) == 1, out2 freq = [0.5, 0.9] out1 = rload1.get_load_at_freq(freq, scale=1.) #out2 = rload2.get_load_at_freq(freq, scale=1.) #print(out1) #print(out2) assert len(out1) == 2, out1 #assert len(out2) == 2, out2 model2 = read_bdf(bdf_file, punch=True, debug=False) model2.uncross_reference() model2.safe_cross_reference() model2.uncross_reference() #print(out) #print(outs) save_load_deck(model, run_renumber=False, run_convert=False) def test_ascre(self): """tests ASCRE, DELAY, DPHASE, TABLED2""" model = BDF(debug=False) sid = 1 excite_id = 2 rho = 1.0 b = 2.0 acsrce = model.add_acsrce(sid, excite_id, rho, b, delay=0, dphase=0, power=0, comment='acsrce') acsrce.raw_fields() sid = 3 excite_id = 4 rho = 1.0 b = 2.0 delay = 3 dphase = 4 power = 5 unused_acsrce2 = model.add_acsrce(sid, excite_id, rho, b, delay=delay, dphase=dphase, power=power) nodes = 4 components = 5 delays = 6.0 delay = model.add_delay(sid, nodes, components, delays, comment='') nodes = 4 components = 6 phase_leads = 2.0 delay = model.add_dphase(sid, nodes, components, phase_leads) tid = power x1 = 1. x = np.linspace(0., 1.) + 10. y = np.sin(x) + 2. model.add_tabled2(tid, x1, x, y, comment='tabled2') model.add_grid(4, [0., 0., 0.]) model.validate() model.pop_parse_errors() model.cross_reference() model.pop_xref_errors() save_load_deck(model, run_convert=False) def test_nlparm(self): """tests NLPARM""" model = BDF(debug=False) nlparm_id = 42 model.add_nlparm(nlparm_id, comment='nlparm') save_load_deck(model) def test_nlpci(self): """tests NLPCI""" model = BDF(debug=False) nlpci_id = 42 nlpci = model.add_nlpci(nlpci_id, Type='CRIS', minalr=0.25, maxalr=4., scale=0., desiter=12, mxinc=20, comment='nlpci') nlpci.raw_fields() #print(nlpci) save_load_deck(model) #def test_rotord(self): #"""tests ROTORD""" #model = BDF(debug=False) #sid = 42 #rstart = 10.0 #rstep = 11.0 #numstep = 10 #rids = [] #rsets = [31] #rspeeds = [None] #rcords = [] #w3s = [] #w4s = [] #rforces = [] #brgsets = [] #rotord = model.add_rotord( #sid, rstart, rstep, numstep, #rids, rsets, rspeeds, rcords, w3s, w4s, rforces, brgsets, #refsys='ROT', cmout=0.0, runit='RPM', #funit='RPM', zstein='NO', orbeps=1.e-6, #roprt=0, sync=1, etype=1, eorder=1.0, #threshold=0.02, maxiter=10, comment='rotord') #rotord.validate() #save_load_deck(model) def test_loadcyn(self): """tests LOADCYN""" model = BDF(debug=False, log=None, mode='msc') sid = 42 scale = 4. segment_id = 10 scales = [1.] load_ids = [3] loadcyn = model.add_loadcyn(sid, scale, segment_id, scales, load_ids, segment_type=None, comment='loadcyn') loadcyn.validate() model.pop_parse_errors() card = loadcyn.write_card(size=8) loadcyn.write_card(size=16, is_double=False) loadcyn.write_card(size=16, is_double=True) loadcyn.raw_fields() str(loadcyn) #print(model.loads) model.loads = {} model.add_card(card.split('\n')[1:], 'LOADCYN', comment='', is_list=False, has_none=True) model.cross_reference() model.uncross_reference() model.safe_cross_reference() save_load_deck(model, run_convert=False) def test_deform(self): """tests DEFORM""" model = BDF(debug=False, log=None, mode='msc') sid = 42 eid = 10 deformation = 32. deform = model.add_deform(sid, eid, deformation, comment='deform') deform.validate() model.pop_parse_errors() card = deform.write_card(size=8) deform.write_card(size=16, is_double=False) deform.write_card(size=16, is_double=True) deform.raw_fields() str(deform) model.loads = {} model.add_card(card.split('\n')[1:], 'DEFORM', comment='', is_list=False, has_none=True) model.pop_parse_errors() with self.assertRaises(CrossReferenceError): model.cross_reference() with self.assertRaises(CrossReferenceError): model.pop_xref_errors() model.uncross_reference() model.reset_errors() model.safe_cross_reference() delta = 0.1 eid1 = 11 eid2 = 12 eid3 = 13 fields = ['DEFORM', sid, eid1, delta, eid2, delta, eid3, delta] model.add_card(fields, 'DEFORM') eid = 10 nids = [2, 3] mid = 100 model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [1., 0., 0.]) E = 3.0e7 G = None nu = 0.3 model.add_mat1(mid, E, G, nu) model.add_conrod(eid, mid, nids, A=0.0, j=0.0, c=0.0, nsm=0.0, comment='') model.add_conrod(eid1, mid, nids, A=0.0, j=0.0, c=0.0, nsm=0.0, comment='') model.add_conrod(eid2, mid, nids, A=0.0, j=0.0, c=0.0, nsm=0.0, comment='') model.add_conrod(eid3, mid, nids, A=0.0, j=0.0, c=0.0, nsm=0.0, comment='') model.cross_reference() save_load_deck(model) def test_rforce(self): """tests RFORCE""" model = BDF(debug=False, log=None, mode='msc') #model._nxref_errors = 0 sid = 42 nid = 2 cid = 1 scale = 2. r123 = [0., 1., 2.] rforce = model.add_rforce(sid, nid, scale, r123, cid=cid, method=1, racc=0., mb=0, idrf=0, comment='rforce') rforce.validate() card = rforce.write_card(size=8) rforce.write_card(size=16, is_double=False) rforce.write_card(size=16, is_double=True) rforce.raw_fields() str(rforce) model.loads = {} model.add_card(card.split('\n')[1:], 'RFORCE', comment='', is_list=False, has_none=True) model.pop_parse_errors() with self.assertRaises(CrossReferenceError): model.cross_reference() with self.assertRaises(CrossReferenceError): model.pop_xref_errors() model.uncross_reference() model.reset_errors() with self.assertRaises(KeyError): model.safe_cross_reference() model.reset_errors() model.add_grid(2, [0., 0., 0.]) model.add_cord2r(cid, [0., 0., 0.], [0., 0., 1.], [1., 0., 0.], rid=0, comment='') model.cross_reference() save_load_deck(model, run_convert=False) def test_rforce1(self): """tests RFORCE1""" model = BDF(debug=False, log=None, mode='msc') sid = 42 nid = 2 scale = 2. #r123 = None group_id = -4 cid = 1 rforce1 = model.add_rforce1(sid, nid, scale, group_id, cid=cid, r123=None, racc=0., mb=0, method=2, comment='rforce1') rforce1.validate() rforce1b = model.add_rforce1(sid, nid, scale, group_id, cid=0, r123=[1., 2., 3.], racc=0., mb=0, method=2, comment='rforce1') rforce1b.validate() model.pop_parse_errors() card = rforce1.write_card(size=8) rforce1.write_card(size=16, is_double=False) rforce1.write_card(size=16, is_double=True) rforce1.raw_fields() str(rforce1) model.loads = {} model.add_card(card.split('\n')[1:], 'RFORCE1', comment='', is_list=False, has_none=True) model.pop_parse_errors() with self.assertRaises(CrossReferenceError): model.cross_reference() with self.assertRaises(CrossReferenceError): model.pop_xref_errors() model.uncross_reference() model.reset_errors() with self.assertRaises(KeyError): model.safe_cross_reference() model.reset_errors() model.add_grid(2, [0., 0., 0.]) model.add_cord2r(cid, [0., 0., 0.], [0., 0., 1.], [1., 0., 0.], rid=0, comment='') model.cross_reference() save_load_deck(model, run_convert=False) def _test_dynamic1(self): """ xref test for: - DLOAD -> DAREA -> NID DLOAD take priority useful for dynamic nodal forces/disp/vel/acc """ msg = """ SOL 108 CEND SUBCASE 1 DLOAD = 33 DISP(PLOT) = ALL BEGIN BULK $DLOAD SID S S1 L1 S2 L2 DLOAD, 33, 1.0, 1.0, 35, 1.0, 36 $RLOAD1 SID EXCITEID DELAY DPHASE TC TD TYPE RLOAD1, 35, 29, 0.2, 5.0, 40, 0.0, 0 RLOAD1, 36, 29, 31, 32, 4.0, 41, 0 $DAREA SID GRID COMP SCALE DAREA, 29, 30, 1, 5.2 $DELAY SID GRID COMP LAG DELAY, 31, 30, 1, 0.2 $DPHASE SID GRID COMP ANGLE DPHASE, 32, 30, 1, 5.0 $TABLED1 TID XAXIS YAXIS $ x1 y1 x2 y2 x3 y3 x4 y4 TABLED1, 40, LINEAR, LINEAR ,0.0, 4.0, 2.0, 8.0, 6.0, 8.0, ENDT TABLED1, 41, LINEAR, LINEAR ,0.0, 0.5, 0.6, 0.4, 0.8, 0.7, ENDT GRID,30 """ model = BDF(debug=False) bdf_file = StringIO() bdf_file.write(msg) bdf_file.seek(0) model.read_bdf(bdf_file) #In the example: # * The DLOAD case control command selects the loading reference # by the DLOAD bulk entry having SID = 33 as the dynamic # loading for the analysis. # * The DLOAD bulk entry combines the dynamic loads defined by # two RLOAD1 entries having SIDs of 35 and 36. Neither dynamic # load is scaled using the DLOAD entry. # * Both RLOAD1 entries reference the same DAREA entry. Thus, # both dynamic loads are applied to the same degree-of-freedom. # In this example, it is a single degree-of-freedom, Component 1 # of Grid 30. Both dynamic loads are scaled 5.2 times by the # DAREA entry. # * Because the dynamic loads are applied at only one # degree-of-freedom, the time delay and phase angle can be # defined directly on the RLOAD1 entries. This is the case # for the RLOAD1 entry having SID = 35. However, for # demonstration purposes, the RLOAD1 entry having SID = 36 # references DELAY and DPHASE bulk entries. Both approaches # define a delay of 0.2 and a phase angle of 5.0 for the # corresponding dynamic load. # * C(f) for the RLOAD1 entry having SID = 35 is defined by the # TABLED1 entry having TID = 40. (See Figure 6-6.) D(f) for # this same RLOAD1 entry is defined as zero. # * C(f) for the RLOAD1 entry having SID = 36 is a constant # value of 4.0. D(f) for this same RLOAD entry is defined by # the TABLED1 entry having TID = 41. def _test_dynamic2(self): """ xref test for: - LOADSET -> LSEQ -> FORCE, PLOAD - DLOAD -> RLOAD1 -> TABLED1 LOADSET take priority useful for generalized dynamic forces/disp/vel/acc """ msg = """ SOL 108 CEND SUBCASE 1 LOADSET = 27 DLOAD = 25 DISP(PLOT) = ALL BEGIN BULK $LSEQ SID EXCITEID LID LSEQ, 27, 28, 26 $RLOAD1 SID EXCITEID DELAY DPHASE TC TD RLOAD1, 25, 28, 0.0, 10.0, 29 $FORCE SID GRID CID F N1 N2 N3 FORCE, 26, 425, , 2.5, 1.0 $PLOAD SID PRES GRID1 GRID2 GRID3 GRID4 PLOAD, 26, 50.0, 63, 64, 88, 91 $TABLED1 TID XAXIS YAXIS $ x1 y1 x2 y2 x3 y3 x4 y4 TABLED1, 29, LINEAR, LINEAR ,0.0, 0.5, 0.6, 0.4, 0.8, 0.7, ENDT """ model = BDF(debug=False) bdf_file = StringIO() bdf_file.write(msg) bdf_file.seek(0) model.read_bdf(bdf_file) #In the example: # * The LOADSET request in case control selects the LSEQ entry # having SID = 27. # * The LSEQ entry references the static loads having SID = 26. # These loads include the FORCE and PLOAD entries. The FORCE # and PLOAD entries provide the spatial distribution of the # dynamic loading. # * The DLOAD request in case control selects the RLOAD1 entry # having SID = 25. # * The RLOAD1 entry references a TABLED1 entry having TID = 29. # This TABLED1 entry defines C(f) for the RLOAD1 entry. Because # the TD field on the RLOAD1 entry is undefined, D(f) defaults # to zero. # * The EXCITEID fields of the LSEQ and RLOAD1 entries are both # 28, thereby linking the temporal and spatial distributions of # the dynamic loading. Thus, the dynamic load defined by the # RLOAD1 entry is: # o Scaled by 2.5 and applied as a force to Component 1 of Grid 425. # o Scaled by 50.0 and applied as a pressure to the quadrilateral # element face defined by Grids 63, 64, 88, and 91. if __name__ == '__main__': # pragma: no cover unittest.main()
34.069677
97
0.549879
26,049
0.986555
0
0
0
0
0
0
6,107
0.231291
32d6f22794e1af28d1b004461271504fb7680002
4,691
py
Python
src/kv/benchmark/runbench.py
showapicxt/iowow
a29ac5b28f1b6c2817061c2a43b7222176458876
[ "MIT" ]
242
2015-08-13T06:38:10.000Z
2022-03-17T13:49:56.000Z
src/kv/benchmark/runbench.py
showapicxt/iowow
a29ac5b28f1b6c2817061c2a43b7222176458876
[ "MIT" ]
44
2018-04-08T07:12:02.000Z
2022-03-04T06:15:01.000Z
src/kv/benchmark/runbench.py
showapicxt/iowow
a29ac5b28f1b6c2817061c2a43b7222176458876
[ "MIT" ]
18
2016-01-14T09:50:34.000Z
2022-01-26T23:07:40.000Z
import subprocess import argparse import os import random from collections import OrderedDict from parse import parse from bokeh.io import export_png from bokeh.plotting import figure, output_file, show, save from bokeh.models import ColumnDataSource, FactorRange from bokeh.transform import factor_cmap from bokeh.layouts import gridplot from bokeh.embed import components parser = argparse.ArgumentParser(description='IWKV Benchmarks') parser.add_argument( '-b', '--basedir', help='Base directory with benchmark executables', default='.', nargs='?') args = parser.parse_args() basedir = os.path.abspath(args.basedir) print('Base directory:', basedir) benchmarks = [ 'iwkv', 'lmdb', 'bdb', 'wiredtiger', 'kyc', 'tc' #'leveldb' ] runs = [] runs += [{'b': 'fillrandom2', 'n': n, 'vz': vz, 'rs': 2853624176, 'sizestats': True} for n in (int(1e6),) for vz in (1000,)] runs += [{'b': 'fillrandom2,readrandom,deleterandom', 'n': n, 'vz': vz, 'kz': kz, 'rs': 2105940112} for n in (int(2e6),) for vz in (40, 400,) for kz in (16, 1024,)] runs += [{'b': 'fillseq,overwrite,deleteseq', 'n': n, 'kz': kz, 'rs': 570078848} for n in (int(2e6),) for vz in (400,) for kz in (16, 1024,)] runs += [{'b': 'fillrandom2,readrandom,readseq,readreverse', 'n': n, 'vz': vz, 'rs': 1513135152} for n in (int(10e6),) for vz in (200,)] runs += [{'b': 'fillrandom2', 'n': n, 'vz': vz, 'rs': 3434783568} for n in (int(10e3),) for vz in ((200 * 1024),)] results = OrderedDict() def fill_result(bm, run, sizestats, line): key = ' '.join(['-{} {}'.format(a, v) for a, v in run.items()]) if key not in results: results[key] = OrderedDict() if bm not in results[key]: results[key][bm] = OrderedDict() res = results[key][bm] pval = parse('done: {} in {}', line) if sizestats: pval = parse('db size: {} ({})', line) if pval and 'db size' not in res: print(line, flush=True) res['db size'] = int(pval[0]) / (1024 * 1024) elif pval: print(line, flush=True) res[pval[0]] = int(pval[1]) def run_benchmark_run(bm, run): args = ['{}/{}_benchmark'.format(basedir, bm)] sizestats = False for a, v in run.items(): if a in ('sizestats',): sizestats = True continue args.append('-{}'.format(a)) args.append(str(v)) print('Run {}'.format(' '.join(args)), flush=True) with subprocess.Popen(args, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, universal_newlines=True, cwd=basedir, bufsize=1) as output: for line in output.stdout: fill_result(bm, run, sizestats, line.strip()) output.wait() def run_benchmark(bm): for run in runs: run_benchmark_run(bm, run) def run(): for b in benchmarks: run_benchmark(b) def main(): run() plots = [] palette = ["#00B377", "#e84d60", "#0054AE", "#c9d9d3", "#BFF500", "#555555", "#DFBFFF", "#B1D28F", "#FFAA00", "#A18353", "#888888", "#718dbf"] for bn, rmap in results.items(): pfactors = None x = [(bm, brun) for bm in iter(rmap) for brun in iter(rmap[bm])] if len([v for v in x if v[1] == 'db size']): sizestats = True else: sizestats = False if pfactors is None: pfactors = [f[1] for f in x] counts = [rmap[bm][brun] for bm in iter(rmap) for brun in iter(rmap[bm])] source = ColumnDataSource(data=dict(x=x, counts=counts)) p = figure(x_range=FactorRange(*x), plot_height=350, plot_width=750, title=bn) # y_axis_type="log" p.vbar(x='x', top='counts', width=0.9, source=source, line_color='white', fill_color=factor_cmap('x', palette=palette, factors=pfactors, start=1, end=2)) p.y_range.start = 0 p.yaxis.axis_label = 'Time ms' if not sizestats else 'Database file size (MB)' p.x_range.range_padding = 0.1 p.xaxis.major_label_orientation = 1 p.xgrid.grid_line_color = None p.toolbar_location = None plots.append(p) os.makedirs("charts", exist_ok=True) export_png(p, filename="charts/{}.png".format(bn)) p.toolbar_location = "right" grid = gridplot(plots, ncols=1, merge_tools=False) output_file('benchmark_results_raw.html') save(grid) show(grid) if __name__ == '__main__': main()
31.273333
99
0.568322
0
0
0
0
0
0
0
0
733
0.156257
32d7c7852b8b937ddf9034af3749422522ced7eb
2,792
py
Python
tests/utils/test_parser.py
ccechatelier/bcdi
cbe3b7960414b03f8e98336c3fcd7b367de441ca
[ "CECILL-B" ]
18
2020-04-30T08:48:39.000Z
2022-03-30T14:42:01.000Z
tests/utils/test_parser.py
ccechatelier/bcdi
cbe3b7960414b03f8e98336c3fcd7b367de441ca
[ "CECILL-B" ]
78
2019-06-30T03:45:58.000Z
2022-03-23T15:04:44.000Z
tests/utils/test_parser.py
ccechatelier/bcdi
cbe3b7960414b03f8e98336c3fcd7b367de441ca
[ "CECILL-B" ]
16
2019-07-03T17:18:53.000Z
2022-01-12T15:54:56.000Z
# -*- coding: utf-8 -*- # BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-05/2021 : DESY PHOTON SCIENCE # authors: # Jerome Carnis, [email protected] from pathlib import Path import unittest from bcdi.utils.parser import ConfigParser here = Path(__file__).parent CONFIG = str(here.parents[1] / "conf/config_postprocessing.yml") def run_tests(test_class): suite = unittest.TestLoader().loadTestsFromTestCase(test_class) runner = unittest.TextTestRunner(verbosity=2) return runner.run(suite) class TestConfigParser(unittest.TestCase): """ Tests on the class ConfigParser. def __init__(self, file_path : str, script_type : str = "preprocessing") -> None : """ def setUp(self) -> None: self.command_line_args = {"scan": 999999999, "root_folder": str(here)} self.parser = ConfigParser(CONFIG, self.command_line_args) def test_init_file_path(self): self.assertTrue(self.parser.file_path == CONFIG) def test_init_file_path_2(self): self.assertTrue(self.parser.arguments is None) def test_init_file_path_wrong_type(self): with self.assertRaises(TypeError): ConfigParser(1234, self.command_line_args) def test_init_file_path_wrong_file_extension(self): with self.assertRaises(ValueError): ConfigParser("C:/test.txt", self.command_line_args) def test_init_file_path_not_existing(self): with self.assertRaises(ValueError): ConfigParser("C:/test.yml", self.command_line_args) def test_init_command_line_args(self): self.assertTrue(self.parser.command_line_args == self.command_line_args) def test_init_command_line_args_none(self): parser = ConfigParser(CONFIG, None) self.assertTrue(parser.command_line_args is None) def test_init_raw_config(self): self.assertIsInstance(self.parser.raw_config, bytes) def test_filter_dict(self): dic = {"scan": "9999", "sdd": None} output = self.parser.filter_dict(dic) self.assertTrue(output == {"scan": "9999"}) def test_filter_dict_filter_value(self): dic = {"scan": "9999", "sdd": None, "test": True} output = self.parser.filter_dict(dic, filter_value=True) self.assertTrue(output == {"scan": "9999", "sdd": None}) def test_load_arguments(self): args = self.parser.load_arguments() # "scan" is also key in CONFIG, which means that the overriding by the optional # --scan argument from the command line works as expected self.assertTrue(args.get("scan") == self.command_line_args["scan"]) if __name__ == "__main__": run_tests(TestConfigParser)
34.469136
87
0.690544
2,105
0.75394
0
0
0
0
0
0
700
0.250716
32d936fc21c284d747f6a37882f102cf2a32a1e5
567
py
Python
src/directory-starter/README_text.py
hannahweber244/directory-starter
0cb12b6e9dfe9c3a6eb5029d7d0b6cb5da52b44b
[ "MIT" ]
null
null
null
src/directory-starter/README_text.py
hannahweber244/directory-starter
0cb12b6e9dfe9c3a6eb5029d7d0b6cb5da52b44b
[ "MIT" ]
null
null
null
src/directory-starter/README_text.py
hannahweber244/directory-starter
0cb12b6e9dfe9c3a6eb5029d7d0b6cb5da52b44b
[ "MIT" ]
null
null
null
""" # [REPO NAME] ## Table of contents [Here you can use a table of contents to keep your README structured.] ## Overview [Here you give a short overview over the motivation behind your project and what problem it solves.] ## How to use it [Here you can explain how your tool/project is usable.] ### Requirements and dependencies [If there are any requirements or dependencies to use what you developed, you can put those here.] ## Additional information [Here you can include an overview over the structure of your code, additional information, tests etc.] """
31.5
102
0.75485
0
0
0
0
0
0
0
0
567
1
32da7030ea8ed7c10970c252248ba50cc03bff1f
152
py
Python
kfdda/models/__init__.py
ll1l11/pymysql-test
de5747366bbf23ecb0b1f01059b3a69c8ac4936d
[ "MIT" ]
null
null
null
kfdda/models/__init__.py
ll1l11/pymysql-test
de5747366bbf23ecb0b1f01059b3a69c8ac4936d
[ "MIT" ]
null
null
null
kfdda/models/__init__.py
ll1l11/pymysql-test
de5747366bbf23ecb0b1f01059b3a69c8ac4936d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from ..core import db from ..helpers import JSONSerializer class BaseModel(db.Model, JSONSerializer): __abstract__ = True
19
42
0.710526
66
0.434211
0
0
0
0
0
0
23
0.151316
32db89f97cc25f33ad056f8860c98d1fafd8baab
2,652
py
Python
chapt05/triangle.py
ohlogic/PythonOpenGLSuperBible4Glut
a0d01caaeb811002c191c28210268b5fcbb8b379
[ "MIT" ]
null
null
null
chapt05/triangle.py
ohlogic/PythonOpenGLSuperBible4Glut
a0d01caaeb811002c191c28210268b5fcbb8b379
[ "MIT" ]
null
null
null
chapt05/triangle.py
ohlogic/PythonOpenGLSuperBible4Glut
a0d01caaeb811002c191c28210268b5fcbb8b379
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # Demonstrates OpenGL color triangle # Ben Smith # [email protected] # # based heavily on ccube.cpp # OpenGL SuperBible # Program by Richard S. Wright Jr. import math from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * ESCAPE = b'\033' xRot = 0.0 yRot = 0.0 def InitGL(Width, Height): # Black background glClearColor(0.0, 0.0, 0.0, 1.0) # Called to draw scene def DrawGLScene(): # Clear the window with current clearing color glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # Enable smooth shading glShadeModel(GL_SMOOTH) # Draw the triangle glBegin(GL_TRIANGLES) # Red Apex glColor3ub(255,0,0) glVertex3f(0.0,200.0,0.0) # Green on the right bottom corner glColor3ub(0,255,0) glVertex3f(200.0,-70.0,0.0) # Blue on the left bottom corner glColor3ub(0,0,255) glVertex3f(-200.0, -70.0, 0.0) glEnd() glutSwapBuffers() def ReSizeGLScene(w, h): # Prevent a divide by zero if(h == 0): h = 1 # Set Viewport to window dimensions glViewport(0, 0, w, h) # Reset coordinate system glLoadIdentity() # Window is higher than wide if w <= h: windowHeight = 250.0 * h / w windowWidth = 250.0 else: #window wider than high windowWidth = 250.0 * w/h windowHeight = 250.0 # Set the clipping volume glOrtho(-windowWidth, windowWidth, -windowHeight, windowHeight, 1.0, -1.0) def keyPressed(key, x, y): if key == ESCAPE: glutDestroyWindow(window) sys.exit() # Main program entry point if __name__ == '__main__': glutInit() glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH) glutInitWindowSize(640, 480) glutInitWindowPosition(0, 0) window = glutCreateWindow("RGB Triangle") glutDisplayFunc(DrawGLScene) # Uncomment this line to get full screen. #glutFullScreen() #glutIdleFunc(DrawGLScene) #glutTimerFunc( int(1.0/60.0), update, 0) glutReshapeFunc(ReSizeGLScene) glutKeyboardFunc(keyPressed) #glutSpecialFunc (specialkeyPressed); # Initialize our window. InitGL(640, 480) # Start Event Processing Engine glutMainLoop()
21.737705
83
0.562217
0
0
0
0
0
0
0
0
851
0.32089
32e013bad1fb65c5a409199a8b804f1d0f72e07c
1,379
py
Python
sdpremote/utils/user.py
gudn/sdpremote
431234420ea1e0c752432eac6000c11a75851375
[ "MIT" ]
null
null
null
sdpremote/utils/user.py
gudn/sdpremote
431234420ea1e0c752432eac6000c11a75851375
[ "MIT" ]
null
null
null
sdpremote/utils/user.py
gudn/sdpremote
431234420ea1e0c752432eac6000c11a75851375
[ "MIT" ]
null
null
null
import binascii from base64 import b64decode from typing import Optional from fastapi import Depends, Header, status from fastapi.exceptions import HTTPException def _user_header(authorization: Optional[str] = Header(None)) -> str: if not authorization: raise HTTPException(status.HTTP_401_UNAUTHORIZED) splitted = authorization.split() if len(splitted) != 2: raise HTTPException( status.HTTP_401_UNAUTHORIZED, 'only support basic authz schema', ) schema, value = splitted if schema != 'Basic': raise HTTPException( status.HTTP_401_UNAUTHORIZED, 'only support basic authz schema', ) try: value = b64decode(value).decode() except binascii.Error: raise HTTPException( status.HTTP_401_UNAUTHORIZED, 'unable to decode value', ) splitted = value.split(':') if len(splitted) != 2: raise HTTPException(status.HTTP_401_UNAUTHORIZED, 'invalid value') user = splitted[0] if not user: raise HTTPException(status.HTTP_401_UNAUTHORIZED, 'invalid value') return user def user( user: Optional[str] = None, login: str = Depends(_user_header), ) -> str: if user is not None and user != login: raise HTTPException(status.HTTP_403_FORBIDDEN) return login
26.018868
74
0.649021
0
0
0
0
0
0
0
0
130
0.094271
32e2062c20d3f7d54552e963b99e3b7f219ffa2e
19,175
py
Python
ScreenTrainer.py
ZihaoChen0319/CMB-Segmentation
99c5788baacc280ca5dbe02f3e18403e399fb238
[ "Apache-2.0" ]
null
null
null
ScreenTrainer.py
ZihaoChen0319/CMB-Segmentation
99c5788baacc280ca5dbe02f3e18403e399fb238
[ "Apache-2.0" ]
null
null
null
ScreenTrainer.py
ZihaoChen0319/CMB-Segmentation
99c5788baacc280ca5dbe02f3e18403e399fb238
[ "Apache-2.0" ]
null
null
null
import torch.nn as nn import os import torch.optim as optim from tqdm import tqdm import numpy as np import torch import torch.nn.functional as nnf import SimpleITK as sitk import json from scipy import ndimage import medpy.io as mio from Utils import find_binary_object from MyDataloader import get_train_cases, get_cmbdataloader from MyNetwork import ScreenNet from MyLoss import FocalLoss from PairwiseMeasures_modified import PairwiseMeasures class ScreenTrainer(nn.Module): def __init__(self, data_path, model_save_path, dataset_path, device='cuda', all_epoch=50, fold=0, bbox=(20, 20, 16), batch_size=32, loss='ce', optimizer='sgd', init_lr=1e-3, decay_exponent=0.9, config=None, if_test=False, random_negatives=1e5, aug_num=10, add_fp=False, resample_num=(10000, 10000, 10000), modality=('T1', 'T2', 'T2S')): """ Trainer of the Screening Network. """ super(ScreenTrainer, self).__init__() self.bbox = bbox self.batch_size = batch_size self.init_lr = init_lr self.decay_exponent = decay_exponent self.all_epoch = all_epoch self.config = config self.resample_num = resample_num self.modality = modality self.aug_num = aug_num self.fold = fold self.random_negatives = random_negatives # path define self.data_path = data_path self.dataset_path = dataset_path self.model_name = model_save_path.split('/')[-2] self.model_save_path = model_save_path + 'fold_%d/' % fold if not os.path.exists(self.model_save_path): os.makedirs(self.model_save_path) # device self.device = device # load division of data if os.path.exists(dataset_path + 'fold_division.json'): with open(dataset_path + 'fold_division.json', mode='r') as f: splits = json.load(f) self.train_list_sub = splits[str(fold)]['train'] self.val_list_sub = splits[str(fold)]['val'] else: self.train_list_sub = [] self.val_list_sub = [] print('Data division is empty!') # training and validation samples if not if_test: self.dataset_name = 'fold_%d/bbox-%d-%d-%d_neg-%d_aug-%d/' % \ (fold, self.bbox[0], self.bbox[1], self.bbox[2], random_negatives, aug_num) if not os.path.exists(dataset_path + self.dataset_name): os.makedirs(dataset_path + self.dataset_name) # load or generate the training samples if os.path.exists(dataset_path + self.dataset_name + 'pos.json'): with open(dataset_path + self.dataset_name + 'pos.json', mode='r') as f: self.train_cases_pos = json.load(f) if os.path.exists(dataset_path + self.dataset_name + 'neg.json'): with open(dataset_path + self.dataset_name + 'neg.json', mode='r') as f: self.train_cases_neg = json.load(f) else: self.train_cases_pos, self.train_cases_neg = get_train_cases( data_path=self.data_path, train_list=self.train_list_sub, bbox=self.bbox, seed=2021, if_translation=True, random_negatives=random_negatives, aug_num=aug_num) with open(dataset_path + self.dataset_name + 'pos.json', mode='w') as f: json.dump(self.train_cases_pos, f) with open(dataset_path + self.dataset_name + 'neg.json', mode='w') as f: json.dump(self.train_cases_neg, f) # load false positive samples self.train_cases_fp = [] if add_fp: if os.path.exists(dataset_path + 'fold_%d/fp_%s_current.json' % (self.fold, self.model_name)): with open(dataset_path + 'fold_%d/fp_%s_current.json' % (self.fold, self.model_name), mode='r') as f: self.train_cases_fp = json.load(f) print('Dataset: pos %d, neg %d, fp %d' % (len(self.train_cases_pos), len(self.train_cases_neg), len(self.train_cases_fp))) else: self.train_cases_fp = [] self.train_cases_pos = [] self.train_cases_neg = [] # model self.model = ScreenNet(is_fc=False, in_channel=len(modality), num_class=2) self.model.to(self.device) # loss function if loss == 'ce': self.loss_fc = nn.CrossEntropyLoss() elif loss == 'weighted ce': self.loss_fc = nn.CrossEntropyLoss(weight=torch.tensor([0.25, 0.75], device=device)) elif loss == 'focal loss': self.loss_fc = FocalLoss(alpha=0.25, gamma=2, num_classes=2) else: raise ValueError('No such optimizer') # optimizer if optimizer == 'sgd': self.optimizer = optim.SGD(self.model.parameters(), lr=init_lr, momentum=0.99, nesterov=True) elif optimizer == 'adam': self.optimizer = optim.Adam(self.model.parameters(), lr=init_lr) else: raise ValueError('No such optimizer') self.epoch = 1 self.lr = init_lr self.train_metric = [0] * 3 self.test_metric = [0] * 4 def train_epoch(self): self.model.train() train_accum = [0] * 6 train_cases_fp = self.train_cases_fp.copy() train_cases_pos = self.train_cases_pos.copy() train_cases_neg = self.train_cases_neg.copy() # randomly choose training samples, ensuring that the number of samples is fixed under different conditions if len(self.resample_num): train_cases_pos = np.random.choice(train_cases_pos, size=self.resample_num[0]).tolist() train_cases_neg = np.random.choice(train_cases_neg, size=self.resample_num[1]).tolist() if len(train_cases_fp): train_cases_fp = np.random.choice(train_cases_fp, size=self.resample_num[2]).tolist() data_list = train_cases_pos + train_cases_neg + train_cases_fp dataloader = get_cmbdataloader( data_path=self.data_path, dataset_index=data_list, bbox=self.bbox, batch_size=self.batch_size, shuffle=True, pin_memory=True, num_workers=2, modality=self.modality ) dataloader = tqdm(dataloader) for img_batch, label_batch in dataloader: img_batch = img_batch.to(self.device).float() label_batch = label_batch.to(self.device) pred_batch = self.model(img_batch) loss = self.loss_fc(pred_batch, label_batch) self.optimizer.zero_grad() loss.backward() self.optimizer.step() y_hat = pred_batch.argmax(axis=1).detach().cpu().numpy() y = label_batch.detach().cpu().numpy() train_accum[0] += img_batch.shape[0] train_accum[1] += loss.detach().cpu().numpy() * img_batch.shape[0] train_accum[2] += np.sum(y_hat == y) # acc train_accum[3] += np.sum((y_hat == 1) & (y == 1)) # tp train_accum[4] += np.sum((y_hat == 1) & (y != 1)) # fp train_accum[5] += np.sum((y_hat != 1) & (y == 1)) # fn self.train_metric[0] = train_accum[1] / train_accum[0] # loss self.train_metric[1] = train_accum[2] / train_accum[0] # acc self.train_metric[2] = 2 * train_accum[3] / np.clip(2 * train_accum[3] + train_accum[4] + train_accum[5], a_min=1e-5, a_max=1e10) # f1 dataloader.set_description('Epoch: %d, ' % self.epoch + 'train loss %.4f, ' % self.train_metric[0] + 'train acc %.4f, ' % self.train_metric[1] + 'train f1 %.4f, ' % self.train_metric[2]) return self.train_metric def val_epoch(self): self.model.eval() test_accum = [0] * 6 for pat in self.val_list_sub: data_list = [] for mod in self.modality: data_list.append(np.load(self.data_path + '%s/%s_space-T2S_%s.npy' % (pat, pat, mod))) img = np.stack(data_list, axis=0) cmb, h = mio.load(self.data_path + '%s/%s_space-T2S_CMB.nii.gz' % (pat, pat)) pred, pred_post, n_obj, pred_init_space, candidates_list, score_init_space = \ self.inference(img, patch_size=(160, 160, 80), thresh=0.1, size=2, if_nms=True) pe = PairwiseMeasures(ref_img=cmb, seg_img=pred_init_space, analysis='microbleeds', measures=('f1_score', 'tp', 'fn', 'fp'), connectivity=3, pixdim=h.get_voxel_spacing(), empty=True, threshold=0.5, thresh_assign=3) tp, fn, fp = pe.m_dict['tp'][0](), pe.m_dict['fn'][0](), pe.m_dict['fp'][0]() f1 = pe.m_dict['f1_score'][0]() test_accum[0] += 1 test_accum[1] += tp test_accum[2] += fn test_accum[3] += fp test_accum[4] += f1 if np.sum(cmb) else 0 test_accum[5] += 1 if np.sum(cmb) else 0 print('%s: TP %d, FN %d, FP %d, F1 %.4f' % (pat, tp, fn, fp, f1)) self.test_metric[0] = test_accum[1] # TP self.test_metric[1] = test_accum[2] # FN self.test_metric[2] = test_accum[3] / test_accum[0] # avg FP self.test_metric[3] = test_accum[4] / test_accum[5] # avg F1 print('Epoch: %d, TP %d, FN %d, avg FP %.4f, avg F1 %.4f' % (self.epoch, self.test_metric[0], self.test_metric[1], self.test_metric[2], self.test_metric[3])) return self.test_metric def get_fp(self, thresh=0.1, if_aug=False): """Obtain false positives by applying initial model on training data""" print(' --- Obtaining FP --- ') self.model.eval() if if_aug: if os.path.exists(self.dataset_path + 'fold_%d/fp_%s_current_aug.json' % (self.fold, self.model_name)): with open(self.dataset_path + 'fold_%d/fp_%s_current_aug.json' % (self.fold, self.model_name), mode='r') as f: fp = json.load(f) with open(self.dataset_path + 'fold_%d/fp_%s_epoch-%d_aug.json' % (self.fold, self.model_name, self.epoch), mode='w') as f: json.dump(fp, f) else: if os.path.exists(self.dataset_path + 'fold_%d/fp_%s_current.json' % (self.fold, self.model_name)): with open(self.dataset_path + 'fold_%d/fp_%s_current.json' % (self.fold, self.model_name), mode='r') as f: fp = json.load(f) with open(self.dataset_path + 'fold_%d/fp_%s_epoch-%d.json' % (self.fold, self.model_name, self.epoch), mode='w') as f: json.dump(fp, f) aug_list = [] if if_aug: for pat in self.train_list_sub: for i in range(self.aug_num): aug_list.append(pat + '_aug%d' % i) fp_list = self.train_cases_fp if len(self.train_cases_fp) else [] loader = tqdm(self.train_list_sub + aug_list) for pat in loader: data_list = [] for mod in self.modality: data_list.append(np.load(self.data_path + '%s/%s_space-T2S_%s.npy' % (pat, pat, mod))) cmb = np.load(self.data_path + '%s/%s_space-T2S_CMB.npy' % (pat, pat), mmap_mode='r') shape = cmb.shape img = np.stack(data_list, axis=0) pred, pred_post, n_obj, pred_init_space, candidates_list, score_init_space = \ self.inference(img, patch_size=(160, 160, 80), thresh=thresh, size=4) for (x, y, z) in candidates_list: if x > shape[0] - self.bbox[0] // 2 or x < self.bbox[0] // 2 or \ y > shape[1] - self.bbox[1] // 2 or y < self.bbox[1] // 2 or \ z > shape[2] - self.bbox[2] // 2 or z < self.bbox[2] // 2: continue if np.sum(cmb[x - 1:x + 1, y - 1:y + 1, z - 1:z + 1]): sample = {'pat': pat, 'start': (x, y, z), 'have cmb': 1} else: sample = {'pat': pat, 'start': (x, y, z), 'have cmb': 0} fp_list.append(sample) loader.set_description('FP num: %d' % len(fp_list)) self.train_cases_fp = fp_list with open(self.dataset_path + 'fold_%d/fp_%s_current.json' % (self.fold, self.model_name), mode='w') as f: json.dump(fp_list, f) print(' --- Finish, FP num: %d ---' % len(fp_list)) return fp_list def adjust_lr(self): """Adjust the learning rate following ‘poly’ policy""" self.lr = self.init_lr * (1 - self.epoch / self.all_epoch) ** self.decay_exponent for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr return self.lr def save_model(self, force=False): """Save the model every epoch(current) and every 5 epochs(epoch_xx)""" state = { 'epoch': self.epoch, 'state_dict': self.model.state_dict(), 'config': self.config, } torch.save(state, self.model_save_path + 'current.pth.tar') if self.epoch % 5 == 0 or force: torch.save(state, self.model_save_path + 'epoch_%d_%d_%d_%.4f_%.4f.pth.tar' % (self.epoch, self.test_metric[0], self.test_metric[1], self.test_metric[2], self.test_metric[3])) def load_model(self, model_name='current', silent=False): all_saved_models = os.listdir(self.model_save_path) matched_model = [model for model in all_saved_models if model.startswith(model_name)] if len(matched_model) == 1: checkpoint = torch.load(self.model_save_path + matched_model[0], map_location={'cuda:0': self.device}) self.epoch = checkpoint['epoch'] + 1 self.model.load_state_dict(checkpoint['state_dict']) self.model.to(self.device) # self.config = checkpoint['config'] self.adjust_lr() elif len(matched_model) > 1: raise ValueError('Too many matched models!') if not silent: print('Screen model: %s, device: %s, epoch: %d' % (self.model_save_path + model_name, self.device, self.epoch)) def inference(self, data: np.ndarray, patch_size=None, thresh=0.5, size=2, if_nms=True): if len(data.shape) == 3: data = np.expand_dims(data, axis=0) shape = [data.shape[1], data.shape[2], data.shape[3]] # compute the output size and the patches location, exactly corresponding to the architecture of ScreenNet if patch_size is None: patch_size = shape out_size = [(shape[0] - 8) // 2 - 5, (shape[1] - 8) // 2 - 5, (shape[2] - 4) // 2 - 5] out_patch_size = [(patch_size[0] - 8) // 2 - 5, (patch_size[1] - 8) // 2 - 5, (patch_size[2] - 4) // 2 - 5] # print(data.shape, out_size, out_patch_size) num_xyz = [out_size[i] // out_patch_size[i] for i in range(3)] overlap_xyz = [((num_xyz[i] + 1) * out_patch_size[i] - out_size[i]) // num_xyz[i] for i in range(3)] x_starts = [(out_patch_size[0] - overlap_xyz[0]) * n for n in range(num_xyz[0])] x_starts.append(out_size[0] - out_patch_size[0]) y_starts = [(out_patch_size[1] - overlap_xyz[1]) * n for n in range(num_xyz[1])] y_starts.append(out_size[1] - out_patch_size[1]) z_starts = [(out_patch_size[2] - overlap_xyz[2]) * n for n in range(num_xyz[2])] z_starts.append(out_size[2] - out_patch_size[2]) out_starts = [(x, y, z) for z in z_starts for y in y_starts for x in x_starts] starts = [(2*x, 2*y, 2*z) for (x, y, z) in out_starts] # inference by sliding window strategy pred = np.zeros(out_size) overlap = np.zeros(out_size) data = torch.tensor(data).float() for st, out_st in zip(starts, out_starts): data_patch = data[:, st[0]:st[0] + patch_size[0], st[1]:st[1] + patch_size[1], st[2]:st[2] + patch_size[2]] data_patch = data_patch.to(self.device).unsqueeze(0) pred_patch = self.model(data_patch).detach() pred_patch = nnf.softmax(pred_patch, dim=1).squeeze()[1].detach().cpu().numpy() pred[out_st[0]:out_st[0] + out_patch_size[0], out_st[1]:out_st[1] + out_patch_size[1], out_st[2]:out_st[2] + out_patch_size[2]] += pred_patch overlap[out_st[0]:out_st[0] + out_patch_size[0], out_st[1]:out_st[1] + out_patch_size[1], out_st[2]:out_st[2] + out_patch_size[2]] += 1 pred /= overlap pred_th = pred.copy() pred_th[pred_th < thresh] = 0 if if_nms: pred_itk = sitk.GetImageFromArray(pred_th) pred_itk = sitk.RegionalMaxima(pred_itk) pred_post = sitk.GetArrayFromImage(pred_itk) labeled, n_obj = find_binary_object(pred_post) maxima_list = ndimage.center_of_mass(labeled, labeled, range(1, n_obj+1)) else: pred_post = pred_th.copy() pred_post[pred_post >= thresh] = 1 labeled, n_obj = find_binary_object(pred_post) maxima_list = ndimage.center_of_mass(labeled, labeled, range(1, n_obj + 1)) # find candidates score_init_space = np.zeros(shape) score_init_space[9:pred.shape[0] * 2 + 9, 9:pred.shape[1] * 2 + 9, 7:pred.shape[2] * 2 + 7] = \ nnf.interpolate(torch.tensor(pred, dtype=torch.float32).unsqueeze(0).unsqueeze(0), scale_factor=2, mode='trilinear', align_corners=False).squeeze().numpy() # map the results back to input volume space pred_init_space = np.zeros(shape) candidates_list = [] for (x, y, z) in maxima_list: x = int(2 * x + 9) y = int(2 * y + 9) z = int(2 * z + 7) if x < 0 or x >= shape[0] \ or y < 0 or y >= shape[1] \ or z < 0 or z >= shape[2]: continue pred_init_space[max(x-size//2, 0):min(x+size//2, shape[0]), max(y-size//2, 0):min(y+size//2, shape[1]), max(z-size//2, 0):min(z+size//2, shape[1])] = 1 candidates_list.append((x, y, z)) return pred, pred_post, n_obj, pred_init_space, candidates_list, score_init_space
50.460526
140
0.557445
18,702
0.975129
0
0
0
0
0
0
2,163
0.11278
32e36a60281e09d72c79ad1807ea74035aa73e60
534
py
Python
examples/earthquakes/main.py
admariner/beneath
a6aa2c220e4a646be792379528ae673f4bef440b
[ "MIT" ]
65
2021-04-27T13:13:09.000Z
2022-01-24T00:26:06.000Z
examples/earthquakes/main.py
admariner/beneath
a6aa2c220e4a646be792379528ae673f4bef440b
[ "MIT" ]
22
2021-10-06T10:30:40.000Z
2021-12-10T11:36:55.000Z
examples/earthquakes/main.py
admariner/beneath
a6aa2c220e4a646be792379528ae673f4bef440b
[ "MIT" ]
4
2021-04-24T15:29:51.000Z
2022-03-30T16:20:12.000Z
import beneath from generators import earthquakes with open("schemas/earthquake.graphql", "r") as file: EARTHQUAKES_SCHEMA = file.read() if __name__ == "__main__": p = beneath.Pipeline(parse_args=True) p.description = "Continually pings the USGS earthquake API" earthquakes = p.generate(earthquakes.generate_earthquakes) p.write_table( earthquakes, "earthquakes", schema=EARTHQUAKES_SCHEMA, description="Earthquakes fetched from https://earthquake.usgs.gov/", ) p.main()
28.105263
76
0.700375
0
0
0
0
0
0
0
0
152
0.284644
32e3ce811bff9ec736c02ce8188ebe9e69d6a483
5,073
py
Python
examples/tf_vision/tensorflow_saved_model_service.py
siddharthgee/multi-model-server
bd795b402330b491edd5d2a235b8b8c2ef9fcb58
[ "Apache-2.0" ]
null
null
null
examples/tf_vision/tensorflow_saved_model_service.py
siddharthgee/multi-model-server
bd795b402330b491edd5d2a235b8b8c2ef9fcb58
[ "Apache-2.0" ]
null
null
null
examples/tf_vision/tensorflow_saved_model_service.py
siddharthgee/multi-model-server
bd795b402330b491edd5d2a235b8b8c2ef9fcb58
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # http://www.apache.org/licenses/LICENSE-2.0 # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ TensorflowSavedModelService defines an API for running a tensorflow saved model """ import json import os import tensorflow as tf from model_handler import ModelHandler class TensorflowSavedModelService(ModelHandler): """ TensorflowSavedModelService defines the fundamental loading model and inference operations when serving a TF saved model. This is a base class and needs to be inherited. """ def __init__(self): super(TensorflowSavedModelService, self).__init__() self.predictor = None self.labels = None self.signature = None self.epoch = 0 # noinspection PyMethodMayBeStatic def get_model_files_prefix(self, context): return context.manifest["model"]["modelName"] def initialize(self, context): """ Initialize model. This will be called during model loading time :param context: Initial context contains model server system properties. :return: """ super(TensorflowSavedModelService, self).initialize(context) properties = context.system_properties model_dir = properties.get("model_dir") signature_file_path = os.path.join(model_dir, "signature.json") if not os.path.isfile(signature_file_path): raise RuntimeError("Missing signature.json file.") with open(signature_file_path) as f: self.signature = json.load(f) #Define signature.json and work here data_names = [] data_shapes = [] for input_data in self.signature["inputs"]: data_name = input_data["data_name"] data_shape = input_data["data_shape"] # Replace 0 entry in data shape with 1 for binding executor. for idx in range(len(data_shape)): if data_shape[idx] == 0: data_shape[idx] = 1 data_names.append(data_name) data_shapes.append((data_name, tuple(data_shape))) self.predictor = tf.contrib.predictor.from_saved_model(model_dir) def inference(self, model_input): """ Internal inference methods for TF - saved model. Run forward computation and return output. :param model_input: list of dict of {name : numpy_array} Batch of preprocessed inputs in tensor dict. :return: list of dict of {name: numpy_array} Batch of inference output tensor dict """ if self.error is not None: return None # Check input shape check_input_shape(model_input, self.signature) #Restricting to one request which contains the whole batch. Remove this line if adding custom batching support model_input = model_input[0] results = self.predictor(model_input) return results def check_input_shape(inputs, signature): """ Check input data shape consistency with signature. Parameters ---------- inputs : List of dicts Input data in this format [{input_name: input_tensor, input2_name: input2_tensor}, {...}] signature : dict Dictionary containing model signature. """ assert isinstance(inputs, list), 'Input data must be a list.' for input_dict in inputs: assert isinstance(input_dict, dict), 'Each request must be dict of input_name: input_tensor.' assert len(input_dict) == len(signature["inputs"]), \ "Input number mismatches with " \ "signature. %d expected but got %d." \ % (len(signature['inputs']), len(input_dict)) for tensor_name, sig_input in zip(input_dict, signature["inputs"]): assert len(input_dict[tensor_name].shape) == len(sig_input["data_shape"]), \ 'Shape dimension of input %s mismatches with ' \ 'signature. %d expected but got %d.' \ % (sig_input['data_name'], len(sig_input['data_shape']), len(input_dict[tensor_name].shape)) for idx in range(len(input_dict[tensor_name].shape)): if idx != 0 and sig_input['data_shape'][idx] != 0: assert sig_input['data_shape'][idx] == input_dict[tensor_name].shape[idx], \ 'Input %s has different shape with ' \ 'signature. %s expected but got %s.' \ % (sig_input['data_name'], sig_input['data_shape'], input_dict[tensor_name].shape)
38.431818
118
0.640647
2,649
0.522176
0
0
0
0
0
0
2,441
0.481175
32e4f05624819cc83857abc3b6af4086f2c2a88e
167
py
Python
setup.py
kimballa/arduino-dbg
639d73b6d96996218cf9aafde52f3683c9d93775
[ "BSD-3-Clause" ]
null
null
null
setup.py
kimballa/arduino-dbg
639d73b6d96996218cf9aafde52f3683c9d93775
[ "BSD-3-Clause" ]
null
null
null
setup.py
kimballa/arduino-dbg
639d73b6d96996218cf9aafde52f3683c9d93775
[ "BSD-3-Clause" ]
null
null
null
# Minimal setup.py # # Enables installing requirements as declared in setup.cfg. # From this directory, run: # pip install . from setuptools import setup setup()
18.555556
59
0.736527
0
0
0
0
0
0
0
0
124
0.742515
32e63e4af47da5e138ff28bb64adb55087df265e
7,113
py
Python
apps/etl/models.py
diudiu/featurefactory
ee02ad9e3ea66e2eeafe6e11859801f0420c7d9e
[ "MIT" ]
null
null
null
apps/etl/models.py
diudiu/featurefactory
ee02ad9e3ea66e2eeafe6e11859801f0420c7d9e
[ "MIT" ]
null
null
null
apps/etl/models.py
diudiu/featurefactory
ee02ad9e3ea66e2eeafe6e11859801f0420c7d9e
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- """ common models """ from django.db import models from apps.common.models import BaseModel from apps.datasource.models import DsInterfaceInfo class FeatureType(models.Model): id = models.AutoField(u'主键', primary_key=True) feature_type_desc = models.CharField(u'特征类型解释', max_length=2048) is_delete = models.BooleanField(u'是否逻辑删除', default=False) class Meta: db_table = 'fic_feature_type' verbose_name = u'特征类型配置表' verbose_name_plural = u'特征类型配置表' def __unicode__(self): return "%s" % self.feature_type_desc class FeatureCardType(models.Model): id = models.AutoField(u'主键', primary_key=True) feature_type_desc = models.CharField(u'特征评分卡类型解释', max_length=2048) is_delete = models.BooleanField(u'是否逻辑删除', default=False) class Meta: db_table = 'fic_feature_card_type' verbose_name = u'特征评分卡类型配置表' verbose_name_plural = u'特征评分卡类型配置表' def __unicode__(self): return "%s" % self.feature_type_desc class FeatureRuleType(models.Model): id = models.AutoField(u'主键', primary_key=True) feature_type_desc = models.CharField(u'特征规则类型解释', max_length=2048) is_delete = models.BooleanField(u'是否逻辑删除', default=False) class Meta: db_table = 'fic_feature_rule_type' verbose_name = u'特征规则类型配置表' verbose_name_plural = u'特征规则类型配置表' def __unicode__(self): return "%s" % self.feature_type_desc class FeatureConf(BaseModel): id = models.AutoField(u'主键', primary_key=True) feature_name = models.CharField(u'特征字段名', max_length=64) feature_name_cn = models.CharField(u'特征中文名', max_length=128) collect_type = models.CharField(u'数据获取方式', max_length=64, null=True) data_identity = models.CharField(u'参数字段名', max_length=2048, null=True) feature_type = models.ForeignKey(FeatureType, db_column="feature_type", null=True) feature_rule_type = models.ForeignKey(FeatureRuleType, db_column="feature_rule_type", null=True) feature_card_type = models.ForeignKey(FeatureCardType, db_column="feature_card_type", null=True) feature_select_value = models.CharField(u'特征可选值', max_length=2048, null=True) class Meta: db_table = 'fic_feature_common_conf' verbose_name = u'一般特征处理逻辑配置表' verbose_name_plural = u'一般特征处理逻辑配置表' class FeatureShuntConf(BaseModel): id = models.AutoField(u'主键', primary_key=True) feature_name = models.CharField(u'特征字段名', max_length=64) shunt_key = models.CharField(u'分流依据字段名称', max_length=64) shunt_type = models.CharField(u'分流逻辑名', max_length=256) shunt_value = models.CharField(u'分流比较值', max_length=256) data_identity = models.CharField(u'原始数据标识', max_length=64) class Meta: db_table = 'fic_feature_shunt_conf' verbose_name = u'分流处理逻辑配置表' verbose_name_plural = u'分流处理逻辑配置表' class FeatureRelevanceConf(BaseModel): id = models.AutoField(u'主键', primary_key=True) feature_name = models.CharField(u'特征字段名', max_length=64) depend_feature = models.CharField(u'此特征依赖的其他特征名', max_length=64, null=True) data_identity = models.CharField(u'', max_length=64) class Meta: db_table = 'fic_feature_relevance_conf' verbose_name = u'依赖关系处理逻辑配置表' verbose_name_plural = u'依赖关系处理逻辑配置表' class PreFieldInfo(BaseModel): id = models.AutoField(u'主键', primary_key=True) field_name = models.CharField(u'字段名称', max_length=64) field_name_cn = models.CharField(u'中文名称', max_length=64) source = models.CharField(u'数据来源', max_length=64, null=True) path = models.CharField(u'JsonPath路径', max_length=256, null=True) class Meta: db_table = 'fic_pre_field_info' verbose_name = u'预处理字段表' verbose_name_plural = u'预处理字段表' class FeatureProcess(models.Model): id = models.AutoField(u'主键', primary_key=True) feature_name = models.CharField(u'特征字段名', max_length=100, unique=True) feature_data_type = models.CharField(u'特征字段类型', max_length=50) default_value = models.CharField(u'特征缺省值', max_length=100) json_path_list = models.TextField(u'特征处理流程', null=True) f_map_and_filter_chain = models.CharField(u'特征处理前置map链', max_length=2048, null=True) reduce_chain = models.CharField(u'特征处理reduce链', max_length=2048, null=True) l_map_and_filter_chain = models.CharField(u'特征处理后置map链', max_length=2048, null=True) class Meta: db_table = 'fic_feature_process_info' verbose_name = u'特征计算方式配置表' verbose_name_plural = u'特征计算方式配置表' class LoanAgencyModel(BaseModel): """ 贷款经理信息 """ source_name = models.CharField(u'来源网站名称', max_length=128, null=True, blank=True) source_url = models.CharField(u'信息来源url', max_length=1024, null=True, blank=True) source_url_mapping = models.CharField(u'映射url', max_length=255, null=True, blank=True) name = models.CharField(u'联系人名称', max_length=32, null=True, blank=True) telephone = models.CharField(u'手机号', max_length=64, null=True, blank=True) business_released_date = models.DateField(u'信息发布日期', null=True, blank=True) father_type = models.CharField(u'分类', max_length=20, null=True, blank=True) reservation_counts = models.IntegerField(u'预约次数', default=0) qq = models.CharField(u'qq号', max_length=15, db_index=True, null=True) view_counts = models.IntegerField(u'浏览次数', default=0) child_type = models.CharField(u'子分类', max_length=128, null=True, blank=True) company_name = models.CharField(u'公司名称', max_length=128, null=True, blank=True) company_addr = models.CharField(u'公司地址', max_length=255, null=True, blank=True) company_register_date = models.DateField(u'注册时间', null=True) company_url = models.CharField(u'公司官网', max_length=128, null=True, blank=True) publish_city = models.CharField(u'信息发布城市', max_length=50, null=True, blank=True) from_which_id = models.CharField(u'原始记录的id', max_length=64, null=True, blank=True) from_which_model = models.CharField(u'来自哪个模型', max_length=64, null=True, blank=True, help_text=u'使用app_label:model_name的形式存储') class Meta: db_table = 'do_loan_manager_info' verbose_name_plural = u'贷款经理信息' verbose_name = u'贷款经理信息' class P2PTelephoneModel(models.Model): company_name = models.CharField(u'公司名称', max_length=64, null=True, blank=True) telephone = models.CharField(u'客服电话', max_length=64, null=True, blank=True) province = models.CharField(u'省份或直辖市名称', max_length=32, null=True, blank=True) class Meta: db_table = 'do_p2p_telephone' class FuncLibSource(models.Model): FUNC_TYPE_CHOICES = [ ('M', u'map'), ('F', u'filter'), ('R', u'reduce'), ('A', u'assert'), ] func_name = models.CharField(u'函数名', max_length=80, primary_key=True) func_desc = models.TextField(u'函数描述', null=True) func_type = models.CharField(u'函数类型', choices=FUNC_TYPE_CHOICES, default="M", max_length=10, db_index=True) class Meta: db_table = 'fic_func_lib' verbose_name = u'函数库配置表' verbose_name_plural = u'函数库配置表'
39.082418
111
0.707578
7,836
0.974506
0
0
0
0
0
0
2,099
0.261037
32e861d95e4d1e621303b5ebac3624de50614805
4,007
py
Python
mazegen/solver.py
alekratz/mazegen
2799a5cf790cec4bab94a147315cc8541c5efec7
[ "MIT" ]
null
null
null
mazegen/solver.py
alekratz/mazegen
2799a5cf790cec4bab94a147315cc8541c5efec7
[ "MIT" ]
null
null
null
mazegen/solver.py
alekratz/mazegen
2799a5cf790cec4bab94a147315cc8541c5efec7
[ "MIT" ]
null
null
null
import random from typing import Optional from .grid import * class Solver: def __init__(self, grid: Grid): self._grid = grid self._backtrack = [] self._pos = (0, 0) self._dir = None self._backtracking = False self._branches = { self._pos: set(self.valid_cells().keys()), } # Add entrance and exit self.grid.cells[0][0].remove_wall(Wall.NORTH) self.grid.cells[self.grid.height - 1][self.grid.width - 1].remove_wall( Wall.EAST ) @property def is_done(self) -> bool: return self.goal == self.pos @property def goal(self): return (self.grid.width - 1, self.grid.height - 1) @property def grid(self): return self._grid @property def pos(self): return self._pos @property def cell(self): x, y = self.pos return self.grid.cells[y][x] @property def backtracking(self) -> bool: return self._backtracking def valid_cells(self): "Gets the cells that are available to move into." cell = self.cell return {w: n for w, n in self.cell.neighbors().items() if w not in cell.walls} def move(self, wall: Wall): assert wall in self.valid_cells() x, y = self.pos if wall == Wall.NORTH: y -= 1 elif wall == Wall.SOUTH: y += 1 elif wall == Wall.EAST: x += 1 elif wall == Wall.WEST: x -= 1 else: assert False # Add this motion to the backtrack list self._backtrack.append(self.pos) self._pos = (x, y) def step(self): if self.is_done: return valid_cells = self.valid_cells() # Register this branch if there are multiple targets to go to if len(valid_cells) > 1 and self.pos not in self._branches: self._branches[self.pos] = set(valid_cells.keys()) # Also, if we have backtrack positions available, disable the cell that we just came # from. if self._backtrack: x1, y1 = self.pos x2, y2 = self._backtrack[-1] diff = (x2 - x1, y2 - y1) if diff == (-1, 0): wall = Wall.WEST elif diff == (1, 0): wall = Wall.EAST elif diff == (0, -1): wall = Wall.NORTH elif diff == (0, 1): wall = Wall.SOUTH else: assert False self._branches[self.pos].remove(wall) if self.pos in self._branches and self._branches[self.pos]: # Choose a direction to move if we're at a branch self._backtracking = False self._dir = random.choice(list(self._branches[self.pos])) self._branches[self.pos].remove(self._dir) if self.backtracking: # Set up for backtracking, but there's no backtrack left. if not self._backtrack: self._backtracking = False self.step() else: self._pos = self._backtrack.pop() else: if self._dir not in valid_cells: # Can't move this direction, try these options in this order: # * Choose a random direction on this branch if we are on a branch, # * Start backtracking if self.pos in self._branches and self._branches[self.pos]: self._dir = random.choice(list(self._branches[self.pos])) self._branches[self.pos].remove(self._dir) else: self._backtracking = True # TODO : prevent stack overflow where we have no backtrack available assert self._backtrack self.step() return self.move(self._dir)
32.056
96
0.520839
3,942
0.983778
0
0
442
0.110307
0
0
587
0.146494
32e9f9206385a627a8ad3b33526b3f3d199fd0d3
78
py
Python
practice.py
dajimmy1120/AvatarGAN
be264914223490ee9c23e59ad5a414da1aef4824
[ "Apache-2.0" ]
null
null
null
practice.py
dajimmy1120/AvatarGAN
be264914223490ee9c23e59ad5a414da1aef4824
[ "Apache-2.0" ]
null
null
null
practice.py
dajimmy1120/AvatarGAN
be264914223490ee9c23e59ad5a414da1aef4824
[ "Apache-2.0" ]
null
null
null
from keras_segmentation.pretrained import pspnet_101_voc12 pspnet_101_voc12()
26
58
0.897436
0
0
0
0
0
0
0
0
0
0
32ea368fa5ba2732d1c51618d8edfc516b6eb773
1,224
py
Python
example/RunModel/Abaqus_Model_Example/process_odb.py
volpatto/UQpy
acbe1d6e655e98917f56b324f019881ea9ccca82
[ "MIT" ]
null
null
null
example/RunModel/Abaqus_Model_Example/process_odb.py
volpatto/UQpy
acbe1d6e655e98917f56b324f019881ea9ccca82
[ "MIT" ]
null
null
null
example/RunModel/Abaqus_Model_Example/process_odb.py
volpatto/UQpy
acbe1d6e655e98917f56b324f019881ea9ccca82
[ "MIT" ]
null
null
null
from odbAccess import * from abaqusConstants import * from textRepr import * import timeit import numpy as np import os import sys start_time = timeit.default_timer() index = sys.argv[-1] # print(index) # index = float(index) index = int(index) # print(index) odbFile = os.path.join(os.getcwd(), "single_element_simulation_" + str(index) + ".odb") odb = openOdb(path=odbFile) step1 = odb.steps.values()[0] his_key = 'Element PART-1-1.1 Int Point 1 Section Point 1' region = step1.historyRegions[his_key] LE22 = region.historyOutputs['LE22'].data S22 = region.historyOutputs['S22'].data # t = np.array(LE22)[:, 0] x = np.array(LE22)[:, 1] y = np.array(S22)[:, 1] fnm = os.path.join(os.getcwd(), 'Output', 'output_element_{0}.csv'.format(index)) if not os.path.exists(os.path.dirname(fnm)): try: os.makedirs(os.path.dirname(fnm)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise output_file = open(fnm, 'wb') for k in range(len(x)): output_file.write('%13.6e, %13.6e\n' % (x[k], y[k])) output_file.close() elapsed = timeit.default_timer() - start_time print('Finished running odb_process_script. It took ' + str(elapsed) + ' s to run.')
27.818182
87
0.684641
0
0
0
0
0
0
0
0
312
0.254902
32eaa0a294af2308ff208fed9c050fd370b31fec
8,526
py
Python
analysis_methods/shuff_time.py
gbrookshire/simulated_rhythmic_sampling
5c9ed507847a75dbe38d10d78b54441ae83f5831
[ "MIT" ]
null
null
null
analysis_methods/shuff_time.py
gbrookshire/simulated_rhythmic_sampling
5c9ed507847a75dbe38d10d78b54441ae83f5831
[ "MIT" ]
null
null
null
analysis_methods/shuff_time.py
gbrookshire/simulated_rhythmic_sampling
5c9ed507847a75dbe38d10d78b54441ae83f5831
[ "MIT" ]
null
null
null
""" Tools to perform analyses by shuffling in time, as in Landau & Fries (2012) and Fiebelkorn et al. (2013). """ import os import yaml import numpy as np import statsmodels.api as sm from statsmodels.stats.multitest import multipletests from .utils import avg_repeated_timepoints, dft # Load the details of the behavioral studies _pathname = os.path.dirname(os.path.abspath(__file__)) _behav_fname = os.path.join(_pathname, '../behav_details.yaml') behav_details = yaml.safe_load(open(_behav_fname)) def landau(x, t, fs, k_perm): """ Analyze the data as in Landau & Fries (2012) Parameters ---------- x : nd.array Array of Hit (1) or Miss (0) for each trial t : nd.array Time-stamp (SOA) for each trial Returns ------- res : dict The results of the randomization test as returned by `time_shuffled_perm`, plus these items: t : np.ndarray The time-stamps of the individual trials t_agg : np.ndarray The time-steps for the aggregated accuracy time-series x_agg : np.ndarray The aggregated accuracy time-series p_corr : np.ndarray P-values corrected for multiple comparisons using Bonforroni correction """ def landau_spectrum_trialwise(x_perm): """ Helper to compute spectrum on shuffled data """ _, x_avg = avg_repeated_timepoints(t, x_perm) f, y = landau_spectrum(x_avg, fs) return f, y # Compute the results res = time_shuffled_perm(landau_spectrum_trialwise, x, k_perm) res['t'] = t res['t_agg'], res['x_agg'] = avg_repeated_timepoints(t, x) # Correct for multiple comparisons across frequencies _, p_corr, _, _ = multipletests(res['p'], method='bonferroni') res['p_corr'] = p_corr return res def landau_spectrum(x, fs, detrend_ord=1): """ Get the spectrum of behavioral data as in Landau & Fries (2012) The paper doesn't specifically mention detrending, but A.L. says they always detrend with a 2nd-order polynomial. That matches the data -- without detrending, there should have been a peak at freq=0 due to the offset from mean accuracy being above 0. 2021-06-14: AL tells me they used linear detrending. The paper says the data were padded before computing the FFT, but doesn't specify the padding or NFFT. I've chosen a value to match the frequency resolution in the plots. Parameters ---------- x : np.ndarray The data time-series Returns ------- f : np.ndarray The frequencies of the amplitude spectrum y : np.ndarray The amplitude spectrum """ details = behav_details['landau'] # Detrend the data x = sm.tsa.tsatools.detrend(x, order=detrend_ord) # Window the data x = window(x, np.hanning(len(x))) # Get the spectrum f, y = dft(x, fs, details['nfft']) return f, y def fiebelkorn(x, t, k_perm): """ Search for statistically significant behavioral oscillations as in Fiebelkorn et al. (2013) Parameters ---------- x : np.ndarray A sequence of accuracy (Hit: 1, Miss: 0) for each trial t : np.ndarray The time-stamps for each trial k_perm : int The number of times to randomly shuffle the data when computing the permuted surrogate distribution Returns ------- res : dict The results as given by `time_shuffled_perm`plus these items: t : np.ndarray The original time-stamps of the raw data p_corr : np.ndarray P-values for each frequency, corrected for multiple comparisons using FDR """ # Compute the results res = time_shuffled_perm(lambda xx: fiebelkorn_spectrum(xx, t), x, k_perm) res['t'] = t # Correct for multiple comparisons across frequencies _, p_corr, _, _ = multipletests(res['p'], method='fdr_bh') res['p_corr'] = p_corr return res def fiebelkorn_binning(x_trial, t_trial): """ Given accuracy and time-points, find the time-smoothed average accuracy Parameters ---------- x_trial : np.ndarray Accuracy (Hit: 1, Miss: 0) of each trial t_trial : np.ndarray The time-stamp of each trial Returns ------- x_bin : np.ndarray The average accuracy within each time bin t_bin : np.ndarray The centers of each time bin """ details = behav_details['fiebelkorn'] # Time-stamps of the center of each bin t_bin = np.arange(details['t_start'], details['t_end'] + 1e-10, details['bin_step']) # Accuracy within each bin x_bin = [] for i_bin in range(len(t_bin)): bin_center = t_bin[i_bin] bin_start = bin_center - (details['bin_width'] / 2) bin_end = bin_center + (details['bin_width'] / 2) bin_sel = (bin_start <= t_trial) & (t_trial <= bin_end) x_bin_avg = np.mean(x_trial[bin_sel]) x_bin.append(x_bin_avg) x_bin = np.array(x_bin) return x_bin, t_bin def fiebelkorn_spectrum(x, t): """ Compute the spectrum of accuracy data as in Fiebelkorn et al. (2013) Parameters ---------- x : np.ndarray The data for each trial t : np.ndarray The time-stamp for each trial Returns ------- f : np.ndarray The frequencies of the resulting spectrum y : np.ndarray The amplitude spectrum """ details = behav_details['fiebelkorn'] # Get the moving average of accuracy x_bin, t_bin = fiebelkorn_binning(x, t) # Detrend the binned data x_bin = sm.tsa.tsatools.detrend(x_bin, order=2) # Window the data x_bin = window(x_bin, np.hanning(len(x_bin))) # Get the spectrum f, y = dft(x_bin, 1 / details['bin_step'], details['nfft']) # Only keep frequencies that were reported in the paper f_keep = f <= details['f_max'] f = f[f_keep] y = y[f_keep] return f, y def time_shuffled_perm(analysis_fnc, x, k_perm): """ Run a permutation test by shuffling the time-stamps of individual trials. Parameters ---------- analysis_fnc : function The function that will be used to generate the spectrum x : np.ndarray The data time-series k_perm : int How many permutations to run Returns ------- res : dict Dictionary of the results of the randomization analysis x : np.ndarray The raw data x_perm : np.ndarray The shuffled data f : np.ndarray The frequencies of the resulting spectrum y_emp : np.ndarray The spectrum of the empirical (unshuffled) data y_avg : np.ndarray The spectra of the shuffled permutations y_cis : np.ndarray Confidence intervals for the spectra, at the 2.5th, 95th, and 97.5th percentile p : np.ndarray P-values (uncorrected for multiple comparisons) for each frequency """ # Compute the empirical statistics f, y_emp = analysis_fnc(x) # Run a bootstrapped permutation test. # Create a surrogate distribution by randomly shuffling resps in time. x_perm = [] y_perm = [] x_shuff = x.copy() for k in range(k_perm): np.random.shuffle(x_shuff) _, y_perm_k = analysis_fnc(x_shuff) y_perm.append(y_perm_k) if k < 10: # Keep a few permutations for illustration x_perm.append(x_shuff.copy()) # Find statistically significant oscillations # Sometimes we get p=0 if no perms are larger than emp. Note that in this # case, a Bonferroni correction doesn't have any effect on the p-values. p = np.mean(np.vstack([y_perm, y_emp]) > y_emp, axis=0) # Get summary of simulated spectra y_avg = np.mean(y_perm, 1) y_cis = np.percentile(y_perm, [2.5, 95, 97.5], 1) # Bundle the results together res = {} res['x'] = x res['x_perm'] = np.array(x_perm) res['f'] = f res['y_emp'] = y_emp res['y_perm'] = np.array(y_perm) res['y_avg'] = y_avg res['y_cis'] = y_cis res['p'] = p return res def window(x, win): """ Apply a window to a segment of data Parameters ---------- x : np.ndarray The data win : np.ndarray The window Returns ------- x : np.ndarray The windowed data """ return np.multiply(win, x.T).T
29
79
0.62327
0
0
0
0
0
0
0
0
5,588
0.655407
32eb29b8500dc60a31bfc242ef317ed9ccbd65b5
1,411
py
Python
configs/common/ARM_A7.py
baz21/g5
e81b0df094c5ff80fbbcc37618e81e206a3c9de9
[ "BSD-3-Clause" ]
null
null
null
configs/common/ARM_A7.py
baz21/g5
e81b0df094c5ff80fbbcc37618e81e206a3c9de9
[ "BSD-3-Clause" ]
null
null
null
configs/common/ARM_A7.py
baz21/g5
e81b0df094c5ff80fbbcc37618e81e206a3c9de9
[ "BSD-3-Clause" ]
null
null
null
from m5.objects import * # https://en.wikipedia.org/wiki/Raspberry_Pi # https://en.wikipedia.org/wiki/ARM_Cortex-A7 # Instruction Cache class ARM_A7_ICache(Cache): tag_latency = 1 data_latency = 1 response_latency = 1 mshrs = 2 tgts_per_mshr = 8 size = '16kB' # OK assoc = 2 is_read_only = True # Writeback clean lines as well writeback_clean = True # Data Cache class ARM_A7_DCache(Cache): tag_latency = 2 data_latency = 2 response_latency = 2 mshrs = 6 tgts_per_mshr = 8 size = '16kB' # OK assoc = 2 write_buffers = 16 # Consider the L2 a victim cache also for clean lines writeback_clean = True # L2 Cache class ARM_A7_L2(Cache): tag_latency = 12 data_latency = 12 response_latency = 12 mshrs = 16 tgts_per_mshr = 8 size = '128kB' # OK assoc = 16 write_buffers = 8 prefetch_on_access = True clusivity = 'mostly_excl' # Simple stride prefetcher prefetcher = StridePrefetcher(degree=8, latency = 1) tags = RandomRepl() # L3 Cache, NONE class ARM_A7_L3(Cache): pass # TLB Cache, NONE class ARM_A7_iTLBL2(Cache): tag_latency = 4 data_latency = 4 response_latency = 4 mshrs = 6 tgts_per_mshr = 8 size = '1kB' assoc = 4 write_buffers = 16 is_read_only = True # Writeback clean lines as well writeback_clean = True # end
20.75
57
0.649894
1,197
0.848335
0
0
0
0
0
0
358
0.253721
32ebbb19735d64f55f4b8caaf8724aa49e1ddf29
172
py
Python
webapp/models/__init__.py
xaldey/otus_blog
32600506d447c0b76c7e0323389d17428d197181
[ "Apache-2.0" ]
null
null
null
webapp/models/__init__.py
xaldey/otus_blog
32600506d447c0b76c7e0323389d17428d197181
[ "Apache-2.0" ]
null
null
null
webapp/models/__init__.py
xaldey/otus_blog
32600506d447c0b76c7e0323389d17428d197181
[ "Apache-2.0" ]
null
null
null
from .create_db import Session, engine, Base from .models import User, Post, Tag __all__ = [ "Session", "engine", "Base", "User", "Post", "Tag", ]
14.333333
44
0.569767
0
0
0
0
0
0
0
0
40
0.232558
32ef88405f3f3c3db42531c5dfa16c38dbb4d202
1,405
py
Python
Easy/112.PathSum.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
39
2020-07-04T11:15:13.000Z
2022-02-04T22:33:42.000Z
Easy/112.PathSum.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
1
2020-07-15T11:53:37.000Z
2020-07-15T11:53:37.000Z
Easy/112.PathSum.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
20
2020-07-14T19:12:53.000Z
2022-03-02T06:28:17.000Z
""" Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. Note: A leaf is a node with no children. Example: Given the below binary tree and sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1 return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22. """ #Difficulty: Easy #114 / 114 test cases passed. #Runtime: 44 ms #Memory Usage: 15.6 MB #Runtime: 44 ms, faster than 72.99% of Python3 online submissions for Path Sum. #Memory Usage: 15.6 MB, less than 43.57% of Python3 online submissions for Path Sum. # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def hasPathSum(self, root: TreeNode, summ: int) -> bool: result = [] s = 0 self.summFunc(root, s, result) return True if summ in result else False def summFunc(self, root, s, result): if not root: return 0 s += root.val self.summFunc(root.left, s, result) self.summFunc(root.right, s, result) if not root.left and not root.right: result.append(s)
28.673469
84
0.577936
468
0.333096
0
0
0
0
0
0
920
0.654804
32f125ad1d76b4e0fde9ddfeb972aeb7353e40c7
42
py
Python
downloads.py
Jamal135/fine-grained-sentiment-app
4754cefd77ccfa99b15a7721c3471aeacec650c9
[ "MIT" ]
null
null
null
downloads.py
Jamal135/fine-grained-sentiment-app
4754cefd77ccfa99b15a7721c3471aeacec650c9
[ "MIT" ]
null
null
null
downloads.py
Jamal135/fine-grained-sentiment-app
4754cefd77ccfa99b15a7721c3471aeacec650c9
[ "MIT" ]
null
null
null
import nltk nltk.download('vader_lexicon')
21
30
0.833333
0
0
0
0
0
0
0
0
15
0.357143
32f16560a7eafdb17a4951c61d182a0eaa97e4e4
880
py
Python
src/Tools/Button.py
hieuhdh/Multi-tasking-program
2f064a554f647247c84979b7a27f0797d1e1b5af
[ "MIT" ]
null
null
null
src/Tools/Button.py
hieuhdh/Multi-tasking-program
2f064a554f647247c84979b7a27f0797d1e1b5af
[ "MIT" ]
null
null
null
src/Tools/Button.py
hieuhdh/Multi-tasking-program
2f064a554f647247c84979b7a27f0797d1e1b5af
[ "MIT" ]
null
null
null
from tkinter import* from tkinter import Button, font from tkinter.font import BOLD import tkinter.ttk as ttk from tkhtmlview import HTMLLabel from tkhtmlview import HTMLText def frameButton(frame, xx, yy, text, backgroundcolor, foregroundcolor, cmd, images): def IN(e): button['background'] = backgroundcolor button['foreground']= '#120b26' def OUT(e): button['background'] = foregroundcolor button['foreground']= '#120b26' button = Button(frame, text = text, width = 30, height = 2, fg = '#120b26', border = 0, bg = foregroundcolor, activeforeground = '#120b26', activebackground = backgroundcolor, command=(cmd), font = ("Microsoft Sans Serif", 12, "bold"), cursor="hand2", borderwidth=0, image = images ) button.bind("<Enter>", IN) button.bind("<Leave>", OUT) button.place(x = xx, y = yy)
40
303
0.659091
0
0
0
0
0
0
0
0
137
0.155682
32f6cfa5b601a97d41e10a68ea610b54a023b9f0
864
py
Python
src/test.py
ayieko168/Arduino-Oscilloscope
5a0634437010f4303c86aef141f33cc6a628b3dc
[ "MIT" ]
null
null
null
src/test.py
ayieko168/Arduino-Oscilloscope
5a0634437010f4303c86aef141f33cc6a628b3dc
[ "MIT" ]
null
null
null
src/test.py
ayieko168/Arduino-Oscilloscope
5a0634437010f4303c86aef141f33cc6a628b3dc
[ "MIT" ]
null
null
null
import pyqtgraph as pg import pyqtgraph.exporters import numpy as np import math from time import sleep f = 10 t = 0 Samples = 1000 # while True: # y2 = np.sin( 2* np.pi * f * t) # print(y) # t+=0.01 # sleep(0.25) def update(): global f, t, ys, y2 print(len(y2)) if len(y2) == Samples: y2.pop(y2.index(y2[0])) y2.append(np.sin( 2 * np.pi * f * t)) t += 0.0001 c2.updateData(y2) # define the data theTitle = "pyqtgraph plot" y2 = [] # create plot plt = pg.plot() plt.showGrid(x=True,y=True) dat2 = [] c2 = pg.PlotCurveItem(dat2) plt.addItem(c2) timer = pg.QtCore.QTimer () timer.timeout.connect(update) timer.start(0.1) ## Start Qt event loop. if __name__ == '__main__': import sys if sys.flags.interactive != 1 or not hasattr(pg.QtCore, 'PYQT_VERSION'): pg.QtGui.QApplication.exec_()
16.941176
76
0.618056
0
0
0
0
0
0
0
0
186
0.215278
32f73e3a96427c84bfa7bd842e7e9ab6eeb893b6
931
py
Python
Aula07/Exercicio2.py
PabloSchumacher/TrabalhosPython
828edd35eb40442629211bc9f1477f75fb025d74
[ "bzip2-1.0.6", "MIT" ]
null
null
null
Aula07/Exercicio2.py
PabloSchumacher/TrabalhosPython
828edd35eb40442629211bc9f1477f75fb025d74
[ "bzip2-1.0.6", "MIT" ]
null
null
null
Aula07/Exercicio2.py
PabloSchumacher/TrabalhosPython
828edd35eb40442629211bc9f1477f75fb025d74
[ "bzip2-1.0.6", "MIT" ]
null
null
null
#--- Exercicio 2 - Dicionários #--- Escreva um programa que leia os dados de 11 jogadores #--- Jogador: Nome, Posicao, Numero, PernaBoa #--- Crie um dicionario para armazenar os dados #--- Imprima todos os jogadores e seus dados lista_jogador = [] for i in range(0,11): dicionario_jogador = {'Nome':'', 'Posicao':'', 'Numero':'','Pernaboa':''} dicionario_jogador['Nome'] = input(f'Digite o nome do {i+1}° jogador: ') dicionario_jogador['Posicao'] = input(f'Digite a posição do {i+1}° jogador: ') dicionario_jogador['Numero'] = int(input(f'Digite o número do {i+1}° jogador: ')) dicionario_jogador['Pernaboa'] = input(f'Digite o perna boa do {i+1}° jogador: ') lista_jogador.append(dicionario_jogador) for j in lista_jogador: print(f"Nome: {dicionario_jogador['Nome']} - Posição: {dicionario_jogador['Posicao']} - Numero: {dicionario_jogador['Numero']} - Pernaboa: {dicionario_jogador['Pernaboa']}")
46.55
177
0.688507
0
0
0
0
0
0
0
0
628
0.667375
32f8e7bf61b54b514d134bdb102d258bdc2af2ce
669
py
Python
Tiny ImageNet Challenge/train_data.py
Vishal-V/Mastering-TensorFlow-2.x
83e18cf84dc5c391c5f902978ee5a80e1be4a31d
[ "MIT" ]
3
2020-05-15T16:57:39.000Z
2020-09-16T20:53:58.000Z
Tiny ImageNet Challenge/train_data.py
Vishal-V/Mastering-Tensorflow
83e18cf84dc5c391c5f902978ee5a80e1be4a31d
[ "MIT" ]
null
null
null
Tiny ImageNet Challenge/train_data.py
Vishal-V/Mastering-Tensorflow
83e18cf84dc5c391c5f902978ee5a80e1be4a31d
[ "MIT" ]
4
2020-03-30T16:11:41.000Z
2020-09-15T20:28:27.000Z
# Iterate over epochs. for epoch in range(3): print(f'Epoch {epoch+1}') # Iterate over the batches of the dataset. for step, x_batch_train in enumerate(train_data): with tf.GradientTape() as tape: reconstructed = autoencoder(x_batch_train) # Compute reconstruction loss loss = mse_loss(x_batch_train, reconstructed) #loss += sum(autoencoder.losses) # Add KLD regularization loss grads = tape.gradient(loss, autoencoder.trainable_variables) optimizer.apply_gradients(zip(grads, autoencoder.trainable_variables)) loss_metric(loss) if step % 100 == 0: print(f'Step {step}: mean loss = {loss_metric.result()}')
35.210526
74
0.707025
0
0
0
0
0
0
0
0
224
0.334828
32f92084cffe12b7f31fc3604eb9852e4502b8d7
1,422
py
Python
utils/generate_topics.py
ahoho/scholar
fe1b7ba590563e245e7765d100cfff091ba20c54
[ "Apache-2.0" ]
null
null
null
utils/generate_topics.py
ahoho/scholar
fe1b7ba590563e245e7765d100cfff091ba20c54
[ "Apache-2.0" ]
null
null
null
utils/generate_topics.py
ahoho/scholar
fe1b7ba590563e245e7765d100cfff091ba20c54
[ "Apache-2.0" ]
null
null
null
################################################################ # Generate top-N words for topics, one per line, to stdout ################################################################ import os import sys import argparse import numpy as np import file_handling as fh def get_top_n_topic_words(beta, vocab, n=30): K, V = beta.shape out = [] for i in range(K): topic = [] vocab_dist = beta[i] top_word_indices = vocab_dist.argsort()[-n:][::-1] for ind in top_word_indices: topic.append(vocab[ind]) out.append(topic) return out def main(call=None): # handle command line parser = argparse.ArgumentParser() parser.add_argument("model_path", help="path for model directory") parser.add_argument( "-n", dest="n_words", type=int, default=30, help="number of words to show in each topic" ) options = parser.parse_args(call) model_path = options.model_path n_words = options.n_words ## load Beta beta = np.load(os.path.join(model_path, 'beta.npz'))['beta'] ## load vocab vocab = fh.read_json(os.path.join(model_path, 'vocab.json')) # get and print topics topics = get_top_n_topic_words(beta, vocab, n_words) for topic in topics: topicstring = ' '.join(topic) print(topicstring) if __name__ == "__main__": main()
25.392857
70
0.563291
0
0
0
0
0
0
0
0
386
0.271449
32fc43425ea47a93c10fa87eeeea81ca0922ca0c
918
py
Python
AutomateboringStuff/3. Functions/try_nd_except.py
gabriel-marchetti/Exercicios-Python
0f1eac7eee48081cf899d25bed0ec5dbc70a3542
[ "MIT" ]
2
2021-12-21T23:28:02.000Z
2021-12-21T23:28:03.000Z
AutomateboringStuff/3. Functions/try_nd_except.py
gabriel-marchetti/Exercicios-Python
0f1eac7eee48081cf899d25bed0ec5dbc70a3542
[ "MIT" ]
1
2021-12-22T12:05:11.000Z
2021-12-22T13:02:52.000Z
AutomateboringStuff/3. Functions/try_nd_except.py
gabriel-marchetti/Exercicios-Python
0f1eac7eee48081cf899d25bed0ec5dbc70a3542
[ "MIT" ]
null
null
null
# Quando tivermos um programa onde claramente temos um caso # indesejável, então podemos usar a função do python dita # try_and_except. # Vamos supor que desejamos fazer uma função que faça uma # divisão, então podemos fazer a seguinte estrutura de # código def divisão(divideBy): return 42 / divideBy # veja que nesse caso, se dermos o argumento zero, então # iremos ganhar um erro no terminal # por conta disso existem dois métodos que podemos usar # para resolver esse caso def spam(divideBy): try: return 42 / divideBy except ZeroDivisionError: print('Erro: Argumento Inválido') print(spam(2)) print(spam(12)) print(spam(0)) print(spam(1)) # Outro modo de escrevermos é através de: def spam2(divideBy): return 42 / divideBy try: print(spam(2)) print(spam(12)) print(spam(0)) print(spam(1)) except ZeroDivisionError: print('Error: Invalid argument.')
20.863636
59
0.713508
0
0
0
0
0
0
0
0
531
0.568522
32fcb908b2dfd2baf6aec8baabfb5d1f269220d0
1,577
py
Python
src/plyer_lach/platforms/android/email.py
locksmith47/turing-sim-kivy
f57de9d52494245c56f67dd7e63121434bb0553f
[ "MIT" ]
null
null
null
src/plyer_lach/platforms/android/email.py
locksmith47/turing-sim-kivy
f57de9d52494245c56f67dd7e63121434bb0553f
[ "MIT" ]
null
null
null
src/plyer_lach/platforms/android/email.py
locksmith47/turing-sim-kivy
f57de9d52494245c56f67dd7e63121434bb0553f
[ "MIT" ]
null
null
null
from jnius import autoclass, cast from kivy.logger import Logger from plyer_lach.facades import Email from plyer_lach.platforms.android import activity Intent = autoclass('android.content.Intent') AndroidString = autoclass('java.lang.String') URI = autoclass('android.net.Uri') class AndroidEmail(Email): def _send(self, **kwargs): intent = Intent(Intent.ACTION_SEND) intent.setType('*/*') recipient = kwargs.get('recipient') subject = kwargs.get('subject') text = kwargs.get('text') create_chooser = kwargs.get('create_chooser') file_path = kwargs.get('file_path') if recipient: intent.putExtra(Intent.EXTRA_EMAIL, [recipient]) if subject: android_subject = cast('java.lang.CharSequence', AndroidString(subject)) intent.putExtra(Intent.EXTRA_SUBJECT, android_subject) if file_path: file_uri = URI.parse('file://' + file_path) Logger.info(str(file_uri.toString())) intent.putExtra(Intent.EXTRA_STREAM, cast('android.os.Parcelable', file_uri)) Logger.info('Added file') if create_chooser: chooser_title = cast('java.lang.CharSequence', AndroidString('Send message with:')) activity.startActivity(Intent.createChooser(intent, chooser_title)) else: activity.startActivity(intent) def instance(): return AndroidEmail()
36.674419
89
0.606848
1,252
0.793912
0
0
0
0
0
0
229
0.145212
32ff2b91e7cdacd12f1c52a76ec14a6214fafa45
452
py
Python
main.py
rishi-chauhan/sudoku
2b07954b2f3ab5146ab0f96eb4d0509a3ea45eb2
[ "MIT" ]
null
null
null
main.py
rishi-chauhan/sudoku
2b07954b2f3ab5146ab0f96eb4d0509a3ea45eb2
[ "MIT" ]
null
null
null
main.py
rishi-chauhan/sudoku
2b07954b2f3ab5146ab0f96eb4d0509a3ea45eb2
[ "MIT" ]
null
null
null
"""Main class for sudoku game. Run this to solve the game.""" from board import Board # ENTRIES contains the values of each cell ENTRIES = [0, 0, 0, 2, 6, 0, 7, 0, 1, 6, 8, 0, 0, 7, 0, 0, 9, 0, 1, 9, 0, 0, 0, 4, 5, 0, 0, 8, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 6, 0, 2, 9, 0, 0, 0, 5, 0, 0, 0, 3, 0, 2, 8, 0, 0, 9, 3, 0, 0, 0, 7, 4, 0, 4, 0, 0, 5, 0, 0, 3, 6, 7, 0, 3, 0, 1, 8, 0, 0, 0] board = Board(ENTRIES)
37.666667
67
0.446903
0
0
0
0
0
0
0
0
103
0.227876
fd00768ed39187f9b978abbf6c4d123c662329a9
121
py
Python
fuzzer/fuzzing_strategies/base_strategy/base_strategy.py
Dyfox100/Libstemmer_Fuzzer
263d6e64e007116a348d994851aa05e4c0c35358
[ "MIT" ]
null
null
null
fuzzer/fuzzing_strategies/base_strategy/base_strategy.py
Dyfox100/Libstemmer_Fuzzer
263d6e64e007116a348d994851aa05e4c0c35358
[ "MIT" ]
null
null
null
fuzzer/fuzzing_strategies/base_strategy/base_strategy.py
Dyfox100/Libstemmer_Fuzzer
263d6e64e007116a348d994851aa05e4c0c35358
[ "MIT" ]
null
null
null
import abc class Abstract_Strategy(metaclass=abc.ABCMeta): @abc.abstractmethod def generate(self): pass
17.285714
47
0.710744
108
0.892562
0
0
56
0.46281
0
0
0
0
fd009473c74aa4ae5995e6b6bc84914f1edd33ca
2,215
py
Python
netbox/dcim/migrations/0100_application.py
fireman0865/PingBox
0f00eaf88b88e9441fffd5173a1501e56c13db03
[ "Apache-2.0" ]
1
2021-09-23T00:06:51.000Z
2021-09-23T00:06:51.000Z
netbox/dcim/migrations/0100_application.py
fireman0865/PingBox
0f00eaf88b88e9441fffd5173a1501e56c13db03
[ "Apache-2.0" ]
2
2021-06-08T21:05:10.000Z
2021-09-08T01:46:58.000Z
netbox/dcim/migrations/0100_application.py
fireman0865/PingBox
0f00eaf88b88e9441fffd5173a1501e56c13db03
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.10 on 2020-03-04 09:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('virtualization', '0013_deterministic_ordering'), ('dcim', '0099_powerfeed_negative_voltage'), ] operations = [ migrations.CreateModel( name='Application', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False)), ('created', models.DateField(auto_now_add=True, null=True)), ('last_updated', models.DateTimeField(auto_now=True, null=True)), ('name', models.CharField(max_length=100, unique=True)), ('slug', models.SlugField(max_length=100, unique=True)), ('database', models.CharField(blank=True, max_length=50)), ('language', models.CharField(blank=True, max_length=50)), ('version', models.CharField(blank=True, max_length=100)), ('application_team', models.CharField(blank=True, max_length=100)), ('link', models.CharField(blank=True, max_length=100, null=True)), ('environnement', models.CharField(blank=True, max_length=50)), ('application_maintainer', models.CharField(blank=True, max_length=100, null=True)), ('profilepardefaut', models.CharField(blank=True, max_length=100, null=True)), ('actualprofile', models.CharField(blank=True, max_length=100, null=True)), ('platform', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='applications', to='dcim.Platform')), ('virtual_machine', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='applications', to='virtualization.VirtualMachine')), ], options={ 'ordering': ['name', 'slug', 'platform', 'database', 'virtual_machine', 'language', 'environnement', 'version', 'application_team', 'link', 'application_maintainer', 'profilepardefaut', 'actualprofile'], }, ), ]
55.375
219
0.628442
2,088
0.942664
0
0
0
0
0
0
584
0.263657
fd00db8ee275e84aadc9a08c115a590eab1c8a65
1,934
py
Python
pam_notify.py
aNNufriy/pamNotifier
088ec0cb87c026a0fbc8e6275fc891bf653af645
[ "MIT" ]
1
2020-03-21T21:37:57.000Z
2020-03-21T21:37:57.000Z
pam_notify.py
aNNufriy/pamNotifier
088ec0cb87c026a0fbc8e6275fc891bf653af645
[ "MIT" ]
null
null
null
pam_notify.py
aNNufriy/pamNotifier
088ec0cb87c026a0fbc8e6275fc891bf653af645
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys import smtplib import time import syslog import telegram import yaml from email.MIMEMultipart import MIMEMultipart from email.MIMEText import MIMEText # Author:: Alexander Schedrov ([email protected]) # Copyright:: Copyright (c) 2019 Alexander Schedrov # License:: MIT def pam_sm_open_session(pamh, flags, args): cwd = '/etc/ssh/pam/' whitelist=[line.rstrip('\n') for line in open(cwd+'whitelist','r')] if not any(pamh.rhost==s for s in whitelist): if pamh.get_user()!="git": message = '%s: [%s] logged in from [%s]' % (os.uname()[1],pamh.get_user(),pamh.rhost) syslog.syslog(message) with open(cwd+'parameters.yml', 'r') as stream: try: params = yaml.safe_load(stream) send_tg_message(params['tg'], message) send_em_message(params['em'], message) return pamh.PAM_SUCCESS except Exception, e: syslog.syslog(syslog.LOG_ERR, str(e)) return pamh.PAM_SERVICE_ERR def pam_sm_close_session(pamh, flags, args): return pamh.PAM_SUCCESS def send_tg_message(tgparams, message): bot = telegram.Bot(token=tgparams['bot_token']) bot.sendMessage(chat_id=tgparams['chat_id'], text=message) def send_em_message(emparams, message, host=os.uname()[1]): timestring = time.strftime("[%Y-%m-%d %H:%M:%S]") mpartmsg = MIMEMultipart() mpartmsg['From'] = emparams['adr_from'] mpartmsg['To'] = emparams['adr_to'] mpartmsg['Subject'] = host+' ssh login' mpartmsg.attach(MIMEText(message)) emclient = smtplib.SMTP_SSL(emparams['smtp_server'],465) emclient.ehlo() emclient.login(emparams['adr_from'], emparams['password']) emclient.sendmail(emparams['adr_from'], emparams['adr_to'], mpartmsg.as_string()) emclient.quit()
33.344828
97
0.635471
0
0
0
0
0
0
0
0
373
0.192865
fd032c799cd2f082ede61113614415437237b7bc
40,263
py
Python
src/eventail/async_service/pika/base.py
allo-media/eventail
aed718d733709f1a522fbfec7083ddd8ed7b5039
[ "MIT" ]
2
2019-12-12T15:08:25.000Z
2020-05-19T08:52:06.000Z
src/eventail/async_service/pika/base.py
allo-media/eventail
aed718d733709f1a522fbfec7083ddd8ed7b5039
[ "MIT" ]
10
2021-01-19T15:03:51.000Z
2022-03-08T15:48:22.000Z
src/eventail/async_service/pika/base.py
allo-media/eventail
aed718d733709f1a522fbfec7083ddd8ed7b5039
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # MIT License # # Copyright (c) 2018-2019 Groupe Allo-Media # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """ A base class implementing AM service architecture and its requirements. Inspired from pika complete examples. """ import functools import json import logging import os import signal import socket import traceback from contextlib import contextmanager from typing import Any, Callable, Dict, Generator, List, Optional, Sequence, Tuple import cbor import pika from eventail.gelf import GELF from eventail.log_criticity import ALERT, EMERGENCY, ERROR, WARNING LOGGER = logging.getLogger("async_service") JSON_MODEL = Dict[str, Any] HEADER = Dict[str, str] class Service(object): """This is an example service that will handle unexpected interactions with RabbitMQ such as channel and connection closures. If RabbitMQ closes the connection, this class will stop and indicate that reconnection is necessary. You should look at the output, as there are limited reasons why the connection may be closed, which usually are tied to permission related issues or socket timeouts. If the channel is closed, it will indicate a problem with one of the commands that were issued and that should surface in the output as well. To leverage the binary nature of AMQP messages, we use CBOR instead of JSON as data serialization (transparent). Moreover, CBOR is much faster and much more compact than JSON. """ ID = os.getpid() HOSTNAME = socket.gethostname() EVENT_EXCHANGE = "events" CMD_EXCHANGE = "commands" LOG_EXCHANGE = "logs" EVENT_EXCHANGE_TYPE = "topic" CMD_EXCHANGE_TYPE = "topic" LOG_EXCHANGE_TYPE = "topic" RETRY_DELAY = 15 # in seconds #: Heartbeat interval, must be superior to the expected blocking processing time (in seconds). #: Beware that the actual delay is negotiated with the broker, and the lower value is taken, so #: configure Rabbitmq accordingly. HEARTBEAT = 60 #: When rabbitmq is low on resources, it may temporarily block the connection. #: We can specify a timeout if it is not acceptable to the service (in seconds) BLOCKED_TIMEOUT = 3600 #: In production, experiment with higher prefetch values #: for higher consumer throughput PREFETCH_COUNT = 3 def __init__( self, amqp_urls: List[str], event_routing_keys: Sequence[str], command_routing_keys: Sequence[str], logical_service: str, ) -> None: """Create a new instance of the consumer class, passing in the AMQP URL used to connect to RabbitMQ. :param str amqp_urls: List of AMQP urls. The service will try to connect to one of them, in a round-robin fashion. """ self._urls = amqp_urls self._event_routing_keys = event_routing_keys self._command_routing_keys = command_routing_keys self.logical_service = logical_service self.url_idx = 0 self._event_queue = logical_service + ".events" self._command_queue = logical_service + ".commands" self.exclusive_queues = False self._serialize: Callable[..., bytes] = cbor.dumps self._mime_type = "application/cbor" self._connection: pika.SelectConnection self._channel: pika.channel.Channel self._log_channel: pika.channel.Channel for s in (signal.SIGHUP, signal.SIGTERM, signal.SIGINT): signal.signal(s, lambda _s, _f: self.stop()) def reset_connection_state(self) -> None: self._bind_count = (len(self._event_routing_keys) or 1) + ( len(self._command_routing_keys) or 1 ) self.should_reconnect = False self.was_consuming = False self._closing = False self._event_consumer_tag: Optional[str] = None self._command_consumer_tag: Optional[str] = None self._consuming = False # for events publishing only self._deliveries: Dict[ int, Tuple[str, str, JSON_MODEL, str, bool, Optional[HEADER]] ] = {} self._acked = 0 self._nacked = 0 self._message_number = 0 def connect(self) -> pika.SelectConnection: """This method connects to RabbitMQ, returning the connection handle. When the connection is established, the on_connection_open method will be invoked by pika. :rtype: pika.SelectConnection """ self.reset_connection_state() url = self._urls[self.url_idx] self.url_idx = (self.url_idx + 1) % len(self._urls) LOGGER.info("Connecting to %s", url) connection_params = pika.URLParameters(url) connection_params.heartbeat = self.HEARTBEAT connection_params.blocked_connection_timeout = self.BLOCKED_TIMEOUT return pika.SelectConnection( parameters=connection_params, on_open_callback=self.on_connection_open, on_open_error_callback=self.on_connection_open_error, on_close_callback=self.on_connection_closed, ) def close_connection(self) -> None: self._consuming = False if self._connection.is_closing or self._connection.is_closed: LOGGER.info("Connection is closing or already closed") else: LOGGER.info("Closing connection") self._connection.close() def on_connection_open(self, _unused_connection: pika.BaseConnection) -> None: """This method is called by pika once the connection to RabbitMQ has been established. It passes the handle to the connection object in case we need it, but in this case, we'll just mark it unused. :param pika.SelectConnection _unused_connection: The connection """ LOGGER.info("Connection opened") self.open_channels() def on_connection_open_error( self, _unused_connection: pika.BaseConnection, err: Exception ) -> None: """This method is called by pika if the connection to RabbitMQ can't be established. :param pika.SelectConnection _unused_connection: The connection :param Exception err: The error """ LOGGER.error("Connection open failed: %s", err) self.reconnect(True) def on_connection_closed( self, _unused_connection: pika.BaseConnection, reason: Exception ) -> None: """This method is invoked by pika when the connection to RabbitMQ is closed unexpectedly. Since it is unexpected, we will reconnect to RabbitMQ if it disconnects. :param pika.connection.Connection connection: The closed connection obj :param Exception reason: exception representing reason for loss of connection. """ if self._closing: self._connection.ioloop.stop() else: self.reconnect(True) def reconnect(self, should_reconnect=True) -> None: """Will be invoked if the connection can't be opened or is closed. Indicates that a reconnect is necessary then stops the ioloop. """ self.should_reconnect = should_reconnect self.stop(should_reconnect) def open_channels(self) -> None: """Open a new channel with RabbitMQ by issuing the Channel.Open RPC command. When RabbitMQ responds that the channel is open, the on_channel_open callback will be invoked by pika. """ LOGGER.info("Creating channels") self._connection.channel( on_open_callback=functools.partial(self.on_channel_open, main=True) ) self._connection.channel( on_open_callback=functools.partial(self.on_channel_open, main=False) ) def on_channel_open(self, channel: pika.channel.Channel, main: bool) -> None: """This method is invoked by pika when the channel has been opened. The channel object is passed in so we can make use of it. Since the channel is now open, we'll declare the exchanges to use. :param pika.channel.Channel channel: The channel object """ LOGGER.info("Channel opened") if main: self._channel = channel self.setup_exchange(self.EVENT_EXCHANGE, self.EVENT_EXCHANGE_TYPE, channel) self.setup_exchange(self.CMD_EXCHANGE, self.CMD_EXCHANGE_TYPE, channel) else: self._log_channel = channel self.setup_exchange(self.LOG_EXCHANGE, self.LOG_EXCHANGE_TYPE, channel) self.add_on_channel_close_callback(channel) def add_on_channel_close_callback(self, channel: pika.channel.Channel) -> None: """This method tells pika to call the on_channel_closed method if RabbitMQ unexpectedly closes the channel. """ LOGGER.info("Adding channel close callback") channel.add_on_close_callback(self.on_channel_closed) def on_channel_closed( self, channel: pika.channel.Channel, reason: Exception ) -> None: """Invoked by pika when RabbitMQ unexpectedly closes the channel. Channels are usually closed if you attempt to do something that violates the protocol, such as re-declare an exchange or queue with different parameters. In this case, we'll close the connection to shutdown the object. :param pika.channel.Channel: The closed channel :param Exception reason: why the channel was closed """ LOGGER.warning("Channel %i was closed: %s", channel, reason) self.close_connection() def setup_exchange( self, exchange_name: str, exchange_type: str, channel: pika.channel.Channel ) -> None: """Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC command. When it is complete, the on_exchange_declareok method will be invoked by pika. :param str|unicode exchange_name: The name of the exchange to declare """ LOGGER.info("Declaring exchange: %s", exchange_name) # Note: using functools.partial is not required, it is demonstrating # how arbitrary data can be passed to the callback when it is called cb = functools.partial(self.on_exchange_declareok, exchange_name=exchange_name) channel.exchange_declare( exchange=exchange_name, exchange_type=exchange_type, callback=cb, durable=True, ) def on_exchange_declareok( self, _unused_frame: pika.frame.Method, exchange_name: str ) -> None: """Invoked by pika when RabbitMQ has finished the Exchange.Declare RPC command. :param pika.frame.Method unused_frame: Exchange.DeclareOk response frame :param str|unicode userdata: Extra user data (exchange name) """ LOGGER.info("Exchange declared: %s", exchange_name) if ( exchange_name == self.EVENT_EXCHANGE and self._event_routing_keys or exchange_name == self.CMD_EXCHANGE and self._command_routing_keys ): self.setup_queue(exchange_name) elif exchange_name != self.LOG_EXCHANGE: self._bind_count -= 1 if self._bind_count == 0: self.set_qos() def setup_queue(self, exchange_name: str) -> None: """Setup the queue on RabbitMQ by invoking the Queue.Declare RPC command. When it is complete, the on_queue_declareok method will be invoked by pika. :param str|unicode exchange: The name of exchange to bind. """ cb = functools.partial(self.on_queue_declareok, exchange_name=exchange_name) if self.exclusive_queues: LOGGER.info("Declaring exclusive on exchange %s", exchange_name) self._channel.queue_declare("", exclusive=True, callback=cb) else: queue = ( self._event_queue if exchange_name == self.EVENT_EXCHANGE else self._command_queue ) LOGGER.info("Declaring queue %s on exchange %s", queue, exchange_name) self._channel.queue_declare(queue=queue, durable=True, callback=cb) def on_queue_declareok(self, frame: pika.frame.Method, exchange_name: str) -> None: """Method invoked by pika when the Queue.Declare RPC call made in setup_queue has completed. In this method we will bind the queue and exchange together with the routing key by issuing the Queue.Bind RPC command. When this command is complete, the on_bindok method will be invoked by pika. :param pika.frame.Method frame: The Queue.DeclareOk frame """ queue_name = frame.method.queue routing_keys: Sequence[str] if exchange_name == self.EVENT_EXCHANGE: routing_keys = self._event_routing_keys self._event_queue = queue_name else: routing_keys = self._command_routing_keys self._command_queue = queue_name LOGGER.info("Binding %s to %s with %s", exchange_name, queue_name, routing_keys) for key in routing_keys: self._channel.queue_bind( queue_name, exchange_name, routing_key=key, callback=self.on_bindok ) def on_bindok(self, _unused_frame: pika.frame.Method) -> None: """Invoked by pika when the Queue.Bind method has completed. At this point we will set the prefetch count for the channel. :param pika.frame.Method _unused_frame: The Queue.BindOk response frame """ LOGGER.info("Queue bound") self._bind_count -= 1 if self._bind_count == 0: self.set_qos() def set_qos(self) -> None: """This method sets up the consumer prefetch to only be delivered PREFETCH_COUNT at a time. The consumer must acknowledge this message before RabbitMQ will deliver another one. You should experiment with different prefetch values to achieve desired performance. """ self._channel.basic_qos( prefetch_count=self.PREFETCH_COUNT, callback=self.on_basic_qos_ok ) def on_basic_qos_ok(self, _unused_frame: pika.frame.Method) -> None: """Invoked by pika when the Basic.QoS method has completed. At this point we will start consuming messages by calling start_consuming which will invoke the needed RPC commands to start the process. :param pika.frame.Method _unused_frame: The Basic.QosOk response frame """ LOGGER.info("QOS set to: %d", self.PREFETCH_COUNT) self.enable_delivery_confirmations() self.start_consuming() def enable_delivery_confirmations(self) -> None: """Send the Confirm.Select RPC method to RabbitMQ to enable delivery confirmations on the channel. The only way to turn this off is to close the channel and create a new one. When the message is confirmed from RabbitMQ, the on_delivery_confirmation method will be invoked passing in a Basic.Ack or Basic.Nack method from RabbitMQ that will indicate which messages it is confirming or rejecting. """ LOGGER.info("Issuing Confirm.Select RPC command") self._channel.confirm_delivery(self.on_delivery_confirmation) def on_delivery_confirmation(self, method_frame: pika.frame.Method) -> None: """Invoked by pika when RabbitMQ responds to a Basic.Publish RPC command, passing in either a Basic.Ack or Basic.Nack frame with the delivery tag of the message that was published. The delivery tag is an integer counter indicating the message number that was sent on the channel via Basic.Publish. Here we're just doing house keeping to keep track of stats and remove message numbers that we expect a delivery confirmation of from the list used to keep track of messages that are pending confirmation. BEWARE: the `ack` and `nack` received here are emitted by the broker, not by other services! They mean the broker accepted/received the message or not. Unroutable messages won't raise a `nack`. If you want to be notified of unroutable messages, you need to set `mandatory=True` on the emitted message and implement `handle_returned_message`. The unroutable message will then be returned to this callback. :param pika.frame.Method method_frame: Basic.Ack or Basic.Nack frame """ confirmation_type: str = method_frame.method.NAME.split(".")[1].lower() delivery_tag: int = method_frame.method.delivery_tag multiple: bool = method_frame.method.multiple LOGGER.info("Received %s for delivery tag: %i", confirmation_type, delivery_tag) confirm_range: List[int] if multiple: confirm_range = [ i for i in sorted(self._deliveries.keys()) if i <= delivery_tag ] else: confirm_range = [delivery_tag] num_confirms = len(confirm_range) if confirmation_type == "ack": self._acked += num_confirms elif confirmation_type == "nack": self._nacked += num_confirms # The broker in is trouble, resend later for i in confirm_range: self.call_later( self.RETRY_DELAY, lambda args=self._deliveries[i]: self._emit(*args) ) for i in confirm_range: del self._deliveries[i] LOGGER.info( "Published %i messages, %i have yet to be confirmed, " "%i were acked and %i were nacked", self._message_number, len(self._deliveries), self._acked, self._nacked, ) def start_consuming(self) -> None: """This method sets up the consumer by first calling add_on_cancel_callback so that the object is notified if RabbitMQ cancels the consumer. It then issues the Basic.Consume RPC command which returns the consumer tag that is used to uniquely identify the consumer with RabbitMQ. We keep the value to use it when we want to cancel consuming. The on_message method is passed in as a callback pika will invoke when a message is fully received. """ LOGGER.info("Issuing consumer related RPC commands") self.add_on_cancel_callback() self.add_on_return_callback() if self._event_routing_keys: self._event_consumer_tag = self._channel.basic_consume( self._event_queue, self.on_message ) self._consuming = True if self._command_routing_keys: self._command_consumer_tag = self._channel.basic_consume( self._command_queue, self.on_message ) self._consuming = True self.was_consuming = True self.on_ready() def add_on_cancel_callback(self) -> None: """Add a callback that will be invoked if RabbitMQ cancels the consumer for some reason. If RabbitMQ does cancel the consumer, on_consumer_cancelled will be invoked by pika. """ LOGGER.info("Adding consumer cancellation callback") self._channel.add_on_cancel_callback(self.on_consumer_cancelled) def add_on_return_callback(self) -> None: """Add a callback that will be invoked to return an unroutable message.""" LOGGER.info("Adding return callback") self._channel.add_on_return_callback(self.on_message_returned) def on_consumer_cancelled(self, method_frame: pika.frame.Method) -> None: """Invoked by pika when RabbitMQ sends a Basic.Cancel for a consumer receiving messages. :param pika.frame.Method method_frame: The Basic.Cancel frame """ LOGGER.info("Consumer was cancelled remotely, shutting down: %r", method_frame) if not (self._channel.is_closed or self._channel.is_closing): self._channel.close() def on_message_returned( self, ch: pika.channel.Channel, basic_return: pika.spec.Basic.Return, properties: pika.spec.BasicProperties, body: bytes, ): """Invoked by pika when a message is returned. A message maybe returned if: * it was sent with the `mandatory` flag on True; * the broker was unable to route it to a queue. :param pika.channel.Channel ch: The channel object :param pika.Spec.Basic.Return basic_deliver: method :param pika.Spec.BasicProperties: properties :param bytes body: The message body """ decoder = cbor if properties.content_type == "application/cbor" else json # If we are not able to decode our own payload, better crash the service now payload: JSON_MODEL = decoder.loads(body) if body else None routing_key: str = basic_return.routing_key envelope: Dict[str, str] = {} if properties.reply_to: envelope["reply_to"] = properties.reply_to if properties.correlation_id: envelope["correlation_id"] = properties.correlation_id if properties.headers: envelope.update(properties.headers) LOGGER.info("Received returned message: %s", routing_key) try: self.handle_returned_message(routing_key, payload, envelope) except Exception as e: # unexpected error self.log( EMERGENCY, "in handle_returned_message [{}] {}".format(self.logical_service, e), conversation_id=envelope.get("conversation_id", ""), ) # Crash the service now self.stop() def on_message( self, ch: pika.channel.Channel, basic_deliver: pika.spec.Basic.Deliver, properties: pika.spec.BasicProperties, body: bytes, ) -> None: """Invoked by pika when a message is delivered from RabbitMQ. The channel is passed for your convenience. The basic_deliver object that is passed in carries the exchange, routing key, delivery tag and a redelivered flag for the message. The properties passed in is an instance of BasicProperties with the message properties and the body is the message that was sent. :param pika.channel.Channel ch: The channel object :param pika.Spec.Basic.Deliver: basic_deliver method :param pika.Spec.BasicProperties: properties :param bytes body: The message body """ headers: HEADER = properties.headers decoder = cbor if properties.content_type == "application/cbor" else json routing_key: str = basic_deliver.routing_key exchange: str = basic_deliver.exchange if headers is None or "conversation_id" not in headers: self.log(EMERGENCY, f"Missing headers on {routing_key}") # unrecoverable error, send to dead letter ch.basic_nack(delivery_tag=basic_deliver.delivery_tag, requeue=False) return conversation_id = headers["conversation_id"] try: payload: JSON_MODEL = decoder.loads(body) if body else None except ValueError: self.log( EMERGENCY, f"Unable to decode payload for {routing_key}; dead lettering.", conversation_id=conversation_id, ) # Unrecoverable, put to dead letter ch.basic_nack(delivery_tag=basic_deliver.delivery_tag, requeue=False) return LOGGER.info("Received message from %s: %s", exchange, routing_key) if exchange == self.CMD_EXCHANGE: correlation_id = properties.correlation_id reply_to = properties.reply_to status = headers.get("status", "") if headers else "" if not (reply_to or status): self.log( EMERGENCY, "invalid enveloppe for command/result: {}; dead lettering.".format( headers ), conversation_id=conversation_id, ) # Unrecoverable. Put to dead letter ch.basic_nack(delivery_tag=basic_deliver.delivery_tag, requeue=False) return if reply_to: with self.ack_policy( ch, basic_deliver, conversation_id, reply_to, correlation_id ): self.handle_command( routing_key, payload, conversation_id, reply_to, correlation_id ) else: with self.ack_policy( ch, basic_deliver, conversation_id, reply_to, correlation_id ): self.handle_result( routing_key, payload, conversation_id, status, correlation_id ) else: with self.ack_policy(ch, basic_deliver, conversation_id, "", ""): self.handle_event(routing_key, payload, conversation_id) @contextmanager def ack_policy( self, ch: pika.channel.Channel, deliver: pika.spec.Basic.Deliver, conversation_id: str, reply_to: str, correlation_id: str, ) -> Generator[None, None, None]: try: yield None except Exception: error = traceback.format_exc() self.log( ALERT, f"Unhandled error while processing message {deliver.routing_key}", error, conversation_id=conversation_id, ) # retry once if not deliver.redelivered: ch.basic_nack(delivery_tag=deliver.delivery_tag, requeue=True) else: # dead letter self.log( EMERGENCY, f"Giving up on {deliver.routing_key}", error, conversation_id=conversation_id, ) ch.basic_nack(delivery_tag=deliver.delivery_tag, requeue=False) else: ch.basic_ack(delivery_tag=deliver.delivery_tag) def stop_consuming(self) -> None: """Tell RabbitMQ that you would like to stop consuming by sending the Basic.Cancel RPC command. """ if not (self._channel.is_closed or self._channel.is_closing): LOGGER.info("Sending a Basic.Cancel RPC command to RabbitMQ") for consumer_tag in (self._event_consumer_tag, self._command_consumer_tag): if consumer_tag is not None: cb = functools.partial(self.on_cancelok, userdata=consumer_tag) self._channel.basic_cancel(consumer_tag, cb) def on_cancelok(self, _unused_frame: pika.frame.Method, userdata: str) -> None: """This method is invoked by pika when RabbitMQ acknowledges the cancellation of a consumer. At this point we will close the channel. This will invoke the on_channel_closed method once the channel has been closed, which will in-turn close the connection. :param pika.frame.Method _unused_frame: The Basic.CancelOk frame :param str|unicode userdata: Extra user data (consumer tag) """ self._consuming = False LOGGER.info( "RabbitMQ acknowledged the cancellation of the consumer: %s", userdata ) self.close_channel() def close_channel(self) -> None: """Call to close the channel with RabbitMQ cleanly by issuing the Channel.Close RPC command. """ LOGGER.info("Closing the channels") self._channel.close() self._log_channel.close() def _emit( self, exchange: str, routing_key: str, message: JSON_MODEL, conversation_id: str, mandatory: bool, reply_to: str = "", correlation_id: str = "", headers: Optional[HEADER] = None, ) -> None: """Send a message. The `message` is any data conforming to the JSON model. """ if headers is None: headers = {} headers["conversation_id"] = conversation_id self._channel.basic_publish( exchange=exchange, routing_key=routing_key, body=self._serialize(message), mandatory=mandatory, properties=pika.BasicProperties( delivery_mode=2, # make message persistent content_type=self._mime_type, reply_to=reply_to, correlation_id=correlation_id, headers=headers, ), ) self._message_number += 1 self._deliveries[self._message_number] = ( exchange, routing_key, message, conversation_id, mandatory, headers, ) LOGGER.info("Published message # %i", self._message_number) # Public interface def use_json(self) -> None: """Force sending message serialized in plain JSON instead of CBOR.""" self._serialize = lambda message: json.dumps(message).encode("utf-8") self._mime_type = "application/json" def use_exclusive_queues(self) -> None: """Force usage of exclusive queues. This is useful for debug tools that should not leave a queue behind them (overflow risk) and not interfere between instances. """ self.exclusive_queues = True def log( self, criticity: int, short: str, full: str = "", conversation_id: str = "", additional_fields: Dict = {}, ) -> None: """Log to the log bus. Parameters: - `criticity`: int, in the syslog scale - `short`: str, short description of log - `full`: str, the full message of the log (appears as `message` in Graylog) - `additional_fields: Dict, data to be merged into the GELF payload as additional fields """ gelf = GELF(self, criticity, short, full, conversation_id, additional_fields) LOGGER.debug("Application logged: %s\n%s", short, full) # no persistent messages, no delivery confirmations self._log_channel.basic_publish( exchange=self.LOG_EXCHANGE, routing_key=gelf.routing_key, body=gelf.payload, ) def send_command( self, command: str, message: JSON_MODEL, conversation_id: str, reply_to: str, correlation_id: str, mandatory: bool = True, ) -> None: """Send a command message. The `message` is any data conforming to the JSON model. if `mandatory` is True (default) and you have implemented `handle_returned_message`, then it will be called if your message is unroutable.""" self._emit( self.CMD_EXCHANGE, command, message, conversation_id, mandatory, reply_to=reply_to, correlation_id=correlation_id, ) def return_success( self, destination: str, message: JSON_MODEL, conversation_id: str, correlation_id: str, mandatory: bool = True, ) -> None: """Send a successful result message. The `message` is any data conforming to the JSON model. if `mandatory` is True (default) and you have implemented `handle_returned_message`, then it will be called if your message is unroutable.""" headers = {"status": "success"} self._emit( self.CMD_EXCHANGE, destination, message, conversation_id, mandatory, correlation_id=correlation_id, headers=headers, ) def return_error( self, destination: str, message: JSON_MODEL, conversation_id: str, correlation_id: str, mandatory: bool = True, ) -> None: """Send a failure result message. The `message` is any data conforming to the JSON model. If `mandatory` is True (default) and you have implemented `handle_returned_message`, then it will be called if your message is unroutable.""" headers = {"status": "error"} self._emit( self.CMD_EXCHANGE, destination, message, conversation_id, mandatory, correlation_id=correlation_id, headers=headers, ) def publish_event( self, event: str, message: JSON_MODEL, conversation_id: str, mandatory: bool = False, ) -> None: """Publish an event on the bus. The ``event`` is the name of the event, and the `message` is any data conforming to the JSON model. If `mandatory` is True and you have implemented `handle_returned_message`, then it will be called if your message is unroutable. The default is False because some events maybe unused yet. """ self._emit(self.EVENT_EXCHANGE, event, message, conversation_id, mandatory) def call_later(self, delay: int, callback: Callable) -> None: """Call `callback` after `delay` seconds.""" self._connection.ioloop.call_later(delay, callback) def run(self) -> None: """Run the service by connecting to RabbitMQ and then starting the IOLoop to block and allow the SelectConnection to operate. """ self._connection = self.connect() self._connection.ioloop.start() def stop(self, reconnect=False) -> None: """Cleanly shutdown the connection to RabbitMQ by stopping the consumer with RabbitMQ. When RabbitMQ confirms the cancellation, on_cancelok will be invoked by pika, which will then closing the channel and connection. The IOLoop is started again if this method is invoked when CTRL-C is pressed raising a KeyboardInterrupt exception. This exception stops the IOLoop which needs to be running for pika to communicate with RabbitMQ. All of the commands issued prior to starting the IOLoop will be buffered but not processed. This method is automatically triggered if we receive one of these UNIX signals: signal.SIGHUP, signal.SIGTERM, signal.SIGINT. """ self.should_reconnect = reconnect if not self._closing: if not self._connection.is_closed: self.log(WARNING, "Shutting down…") self._closing = True LOGGER.info("Stopping") if self._consuming: self.stop_consuming() try: self._connection.ioloop.start() except RuntimeError: # already running! pass else: self._connection.ioloop.stop() LOGGER.info("Stopped") def handle_event( self, event: str, payload: JSON_MODEL, conversation_id: str ) -> None: """Handle incoming event (may be overwritten by subclasses). The `payload` is already decoded and is a python data structure compatible with the JSON data model. You should never do any filtering here: use the routing keys intead (see ``__init__()``). The default implementation dispatches the messages by calling methods in the form ``self.on_KEY(payload)`` where key is the routing key. """ handler = getattr(self, "on_" + event) if handler is not None: handler(payload, conversation_id) else: self.log( ERROR, f"unexpected event {event}; check your subscriptions!", conversation_id=conversation_id, ) def handle_command( self, command: str, payload: JSON_MODEL, conversation_id: str, reply_to: str, correlation_id: str, ) -> None: """Handle incoming commands (may be overwriten by subclasses). The `payload` is already decoded and is a python data structure compatible with the JSON data model. You should never do any filtering here: use the routing keys intead (see ``__init__()``). Expected errors should be returned with the ``return_error`` method. The default implementation dispatches the messages by calling methods in the form ``self.on_COMMAND(payload, reply_to, correlation_id)`` where COMMAND is what is left after stripping the ``service.`` prefix from the routing key. """ handler = getattr(self, "on_" + command.split(".")[-1]) if handler is not None: handler(payload, conversation_id, reply_to, correlation_id) else: # should never happens: means we misconfigured the routing keys self.log( ERROR, f"unexpected command {command}; check your subscriptions!", conversation_id=conversation_id, ) def handle_result( self, key: str, payload: JSON_MODEL, conversation_id: str, status: str, correlation_id: str, ) -> None: """Handle incoming result (may be overwritten by subclasses). The `payload` is already decoded and is a python data structure compatible with the JSON data model. You should never do any filtering here: use the routing keys intead (see ``__init__()``). The ``key`` is the routing key and ``status`` is either "success" or "error". The default implementation dispatches the messages by calling methods in the form ``self.on_KEY(payload, status, correlation_id)`` where KEY is what is left after stripping the ``service.`` prefix from the routing key. """ handler = getattr(self, "on_" + key.split(".")[-1]) if handler is not None: handler(payload, conversation_id, status, correlation_id) else: # should never happens: means we misconfigured the routing keys self.log( ERROR, f"unexpected result {key}; check your subscriptions!", conversation_id=conversation_id, ) # Abstract methods def handle_returned_message( self, key: str, payload: JSON_MODEL, envelope: Dict[str, str] ): """Invoked when a message is returned (to be implemented by subclasses). A message maybe returned if: * it was sent with the `mandatory` flag on True; * and the broker was unable to route it to a queue. """ pass def on_ready(self) -> None: """Code to execute once the service comes online. (to be implemented by subclasses) """ pass
39.014535
108
0.634304
38,561
0.95749
1,104
0.027413
1,124
0.02791
0
0
18,631
0.462618
fd0394b6bd7363e7ed4aa89ca0603954bd731b42
889
py
Python
CLI/mainmenue.py
MeatBoyed/PasswordBank2
f4367b22902ce1282772b184899e3d6e899c1cca
[ "MIT" ]
1
2021-02-08T17:45:28.000Z
2021-02-08T17:45:28.000Z
CLI/mainmenue.py
MeatBoyed/PasswordBank2
f4367b22902ce1282772b184899e3d6e899c1cca
[ "MIT" ]
null
null
null
CLI/mainmenue.py
MeatBoyed/PasswordBank2
f4367b22902ce1282772b184899e3d6e899c1cca
[ "MIT" ]
null
null
null
from .mock_api.utils import GetSelection from .viewAccounts import ViewAccounts from .addAccount import AddAccount def MainMenue(): headerMessage = ( """\n\n=========================================================\n===================== Main Menue ========================\n""") print(headerMessage) accessMessage = ( """1: Search for Account(s)\n2: Add an Account\n3: Quit\n\n=========================================================""") print(accessMessage) while True: select = GetSelection() print("---------------------------------------------------------") if select == 1: ViewAccounts() elif select == 2: AddAccount() pass elif select == 3: print("Quitting account") break else: print("Enter a valid select option")
26.939394
137
0.418448
0
0
0
0
0
0
0
0
353
0.397075
fd03c109230a47c1540cdcf65dcdedac9302a120
7,342
py
Python
dataset.py
Intelligent-Computing-Lab-Yale/Energy-Separation-Training
9336862a10c915a482d427e8a36367f648e7dd40
[ "MIT" ]
2
2022-03-31T02:36:52.000Z
2022-03-31T06:13:25.000Z
dataset.py
Intelligent-Computing-Lab-Yale/Energy-Separation-Training
9336862a10c915a482d427e8a36367f648e7dd40
[ "MIT" ]
null
null
null
dataset.py
Intelligent-Computing-Lab-Yale/Energy-Separation-Training
9336862a10c915a482d427e8a36367f648e7dd40
[ "MIT" ]
null
null
null
import torch import torchvision from torchvision import datasets, transforms from torch.utils.data import DataLoader import os def get10(batch_size, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs): data_root = os.path.expanduser(os.path.join(data_root, 'cifar10-data')) num_workers = kwargs.setdefault('num_workers', 1) kwargs.pop('input_size', None) print("Building CIFAR-10 data loader with {} workers".format(num_workers)) ds = [] if train: train_loader = torch.utils.data.DataLoader( datasets.CIFAR10( root=data_root, train=True, download=True, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])), batch_size=batch_size, shuffle=True, **kwargs) ds.append(train_loader) if val: test_loader = torch.utils.data.DataLoader( datasets.CIFAR10( root=data_root, train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])), batch_size=batch_size, shuffle=False, **kwargs) ds.append(test_loader) ds = ds[0] if len(ds) == 1 else ds return ds def get100(batch_size, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs): data_root = os.path.expanduser(os.path.join(data_root, 'cifar100-data')) num_workers = kwargs.setdefault('num_workers', 1) kwargs.pop('input_size', None) print("Building CIFAR-100 data loader with {} workers".format(num_workers)) ds = [] if train: train_loader = torch.utils.data.DataLoader( datasets.CIFAR100( root=data_root, train=True, download=True, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor() # transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ])), batch_size=batch_size, shuffle=True, **kwargs) ds.append(train_loader) if val: test_loader = torch.utils.data.DataLoader( datasets.CIFAR100( root=data_root, train=False, download=True, transform=transforms.Compose([ transforms.ToTensor() # transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ])), batch_size=batch_size, shuffle=False, **kwargs) ds.append(test_loader) ds = ds[0] if len(ds) == 1 else ds return ds def svhn(batch_size, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs): data_root = os.path.expanduser(os.path.join(data_root, 'svhn-data')) num_workers = kwargs.setdefault('num_workers', 1) kwargs.pop('input_size', None) print("Building SVHN data loader with {} workers".format(num_workers)) ds = [] if train: train_loader = torch.utils.data.DataLoader( datasets.SVHN( root=data_root, split='train', download=True, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])), batch_size=batch_size, shuffle=True, **kwargs) ds.append(train_loader) if val: test_loader = torch.utils.data.DataLoader( datasets.SVHN( root=data_root, split='test', download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])), batch_size=batch_size, shuffle=False, **kwargs) ds.append(test_loader) ds = ds[0] if len(ds) == 1 else ds return ds class normalize(object): def __init__(self, mean, absmax): self.mean = mean self.absmax = absmax def __call__(self, tensor): # Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. # Returns: Tensor: Normalized image. for t, m, am in zip(tensor, self.mean, self.absmax): t.sub_(m).div_(am) return tensor def tinyimagenet(batch_size): traindir = os.path.join('/gpfs/loomis/project/panda/shared/tiny-imagenet-200/train') valdir = os.path.join('/gpfs/loomis/project/panda/shared/tiny-imagenet-200/val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ds = [] train_dataset = torchvision.datasets.ImageFolder( traindir, transforms.Compose([ # transforms.Pad(4), # transforms.RandomCrop(32), transforms.RandomCrop(64, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), # normalize, ])) trainloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, drop_last=True) ds.append(trainloader) testloader = torch.utils.data.DataLoader( torchvision.datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(64), transforms.ToTensor(), # normalize, ])), batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True, drop_last=True) ds.append(testloader) ds = ds[0] if len(ds) == 1 else ds return ds def imagenet(batch_size): traindir = os.path.join('/gpfs/loomis/project/panda/shared/imagenet_2012/train') valdir = os.path.join('/gpfs/loomis/project/panda/shared/imagenet/val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ds = [] train_dataset = torchvision.datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomCrop(64, padding=8), transforms.RandomHorizontalFlip(), transforms.ToTensor(), # normalize, ])) trainloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, drop_last=True) ds.append(trainloader) testloader = torch.utils.data.DataLoader( torchvision.datasets.ImageFolder(valdir, transforms.Compose([ transforms.ToTensor(), # normalize, ])), batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True, drop_last=True) ds.append(testloader) ds = ds[0] if len(ds) == 1 else ds return ds
40.120219
96
0.578725
389
0.052983
0
0
0
0
0
0
1,066
0.145192
fd04dad88b99035b710b66d225ec5a6739f0249b
25,604
py
Python
tests/st/ops/cpu/test_scatter_arithmetic_op.py
PowerOlive/mindspore
bda20724a94113cedd12c3ed9083141012da1f15
[ "Apache-2.0" ]
3,200
2020-02-17T12:45:41.000Z
2022-03-31T20:21:16.000Z
tests/st/ops/cpu/test_scatter_arithmetic_op.py
zimo-geek/mindspore
665ec683d4af85c71b2a1f0d6829356f2bc0e1ff
[ "Apache-2.0" ]
176
2020-02-12T02:52:11.000Z
2022-03-28T22:15:55.000Z
tests/st/ops/cpu/test_scatter_arithmetic_op.py
zimo-geek/mindspore
665ec683d4af85c71b2a1f0d6829356f2bc0e1ff
[ "Apache-2.0" ]
621
2020-03-09T01:31:41.000Z
2022-03-30T03:43:19.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class TestScatterAddNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterAddNet, self).__init__() self.scatter_add = P.ScatterAdd(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_add(self.inputx, self.indices, self.updates) return out def scatter_add_net(inputx, indices, updates): lock = True net = TestScatterAddNet(lock, inputx, indices, updates) return net() def scatter_add_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterAddNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_small_float32(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[6., 8., 10.], [12., 14., 16.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterAddNet(lock, inputx, indices, updates) net() expected = np.array([[6., 8., 10.], [12., 14., 16.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_large_shape_float32(): inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32)) indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32)) updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]], [[13., 14., 15., 16.], [17., 18., 19., 20.], [21., 22., 23., 24.]]], [[[73., 74., 75., 76.], [77., 78., 79., 80.], [81., 82., 83., 84.]], [[85., 86., 87., 88.], [89., 90., 91., 92.], [93., 94., 95., 96.]]], [[[25., 26., 27., 28.], [29., 30., 31., 32.], [33., 34., 35., 36.]], [[37., 38., 39., 40.], [41., 42., 43., 44.], [45., 46., 47., 48.]]], [[[49., 50., 51., 52.], [53., 54., 55., 56.], [57., 58., 59., 60.]], [[61., 62., 63., 64.], [65., 66., 67., 68.], [69., 70., 71., 72.]]]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_small_float32_use_locking_false(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([1, 0]).astype(np.int32)) updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32)) output = scatter_add_use_locking_false_net(inputx, indices, updates) expected = np.array([[3., 4., 5.], [0., 1., 2.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_input_less_than_1_float32(): inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516], [0.876542, 0.451611, 0.55112], [0.111244, 0.633333, 0.34444]]).astype(np.float32)) indices = Tensor(np.array([[[1, 0, 2], [2, 2, 0]], [[1, 0, 1], [2, 1, 2]]]).astype(np.int32)) updates = Tensor(np.arange(34, 70).reshape((2, 2, 3, 3)).astype(np.float32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[141.21414, 144.41515, 147.51517], [208.87654, 212.45161, 216.55112], [257.11124, 262.63333, 267.34442]], dtype=np.float32) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_float16(): inputx = Tensor(np.zeros((2, 3)).astype(np.float16)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float16)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[6., 8., 10.], [12., 14., 16.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_large_float16(): inputx = Tensor(np.zeros((2, 3, 4)).astype(np.float16)) indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[[138., 140., 142., 144.], [146., 148., 150., 152.], [154., 156., 158., 160.]], [[186., 188., 190., 192.], [194., 196., 198., 200.], [202., 204., 206., 208.]]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_disordered_float16(): inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16))) indices = Tensor(np.array([[[0, 1, 2], [2, 1, 0]], [[0, 0, 0], [2, 2, 2]]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[464., 468., 472., 476.], [187., 188., 189., 190.], [492., 496., 500., 504.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_large_int32(): inputx = Tensor(np.zeros((2, 3, 4)).astype(np.int32)) indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[[138., 140., 142., 144.], [146., 148., 150., 152.], [154., 156., 158., 160.]], [[186., 188., 190., 192.], [194., 196., 198., 200.], [202., 204., 206., 208.]]]).astype(np.int32) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_disordered_int32(): inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32))) indices = Tensor(np.array([[[0, 1, 2], [2, 1, 0]], [[0, 0, 0], [2, 2, 2]]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[464., 468., 472., 476.], [187., 188., 189., 190.], [492., 496., 500., 504.]]).astype(np.int32) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterSubNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterSubNet, self).__init__() self.scatter_sub = P.ScatterSub(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_sub(self.inputx, self.indices, self.updates) return out def scatter_sub_net(inputx, indices, updates): lock = True net = TestScatterSubNet(lock, inputx, indices, updates) return net() def scatter_sub_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterSubNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_sub_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterSubNet(lock, inputx, indices, updates) net() expected = np.array([[-6., -8., -10.], [-12., -14., -16.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_sub_large_shape_float32(): inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32)) indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32)) updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32)) output = scatter_sub_net(inputx, indices, updates) expected = np.array( [[[[1.0, 0.0, -1.0, -2.0], [-3.0, -4.0, -5.0, -6.0], [-7.0, -8.0, -9.0, -10.0]], [[-11.0, -12.0, -13.0, -14.0], [-15.0, -16.0, -17.0, -18.0], [-19.0, -20.0, -21.0, -22.0]]], [[[-71.0, -72.0, -73.0, -74.0], [-75.0, -76.0, -77.0, -78.0], [-79.0, -80.0, -81.0, -82.0]], [[-83.0, -84.0, -85.0, -86.0], [-87.0, -88.0, -89.0, -90.0], [-91.0, -92.0, -93.0, -94.0]]], [[[-23.0, -24.0, -25.0, -26.0], [-27.0, -28.0, -29.0, -30.0], [-31.0, -32.0, -33.0, -34.0]], [[-35.0, -36.0, -37.0, -38.0], [-39.0, -40.0, -41.0, -42.0], [-43.0, -44.0, -45.0, -46.0]]], [[[-47.0, -48.0, -49.0, -50.0], [-51.0, -52.0, -53.0, -54.0], [-55.0, -56.0, -57.0, -58.0]], [[-59.0, -60.0, -61.0, -62.0], [-63.0, -64.0, -65.0, -66.0], [-67.0, -68.0, -69.0, -70.0]]]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_sub_small_float32_use_locking_false(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([1, 0]).astype(np.int32)) updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32)) output = scatter_sub_use_locking_false_net(inputx, indices, updates) expected = np.array([[-3., -4., -5.], [-0., -1., -2.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterMulNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterMulNet, self).__init__() self.scatter_mul = P.ScatterMul(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_mul(self.inputx, self.indices, self.updates) return out def scatter_mul_net(inputx, indices, updates): lock = True net = TestScatterMulNet(lock, inputx, indices, updates) return net() def scatter_mul_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterMulNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_mul_input_updated(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterMulNet(lock, inputx, indices, updates) net() expected = np.array([[0., 7., 16.], [27., 40., 55.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_mul_output_updated_float32(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_mul_net(inputx, indices, updates) expected = np.array([[0., 7., 16.], [27., 40., 55.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_mul_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_mul_use_locking_false_net(inputx, indices, updates) expected = np.array([[0., 7., 16.], [27., 40., 55.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterDivNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterDivNet, self).__init__() self.scatter_div = P.ScatterDiv(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_div(self.inputx, self.indices, self.updates) return out def scatter_div_net(inputx, indices, updates): lock = True net = TestScatterDivNet(lock, inputx, indices, updates) return net() def scatter_div_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterDivNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_div_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(1, 13).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterDivNet(lock, inputx, indices, updates) net() expected = np.array([[0., 0., 0.], [0., 0., 0.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_div_output_updated_float32(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(1, 13).reshape((2, 2, 3)).astype(np.float32)) output = scatter_div_net(inputx, indices, updates) expected = np.array([[0., 0., 0.], [0., 0., 0.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_div_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32) * 10) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.ones(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_div_use_locking_false_net(inputx, indices, updates) expected = np.array([[10., 10., 10.], [10., 10., 10.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterMaxNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterMaxNet, self).__init__() self.scatter_max = P.ScatterMax(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_max(self.inputx, self.indices, self.updates) return out def scatter_max_net(inputx, indices, updates): lock = True net = TestScatterMaxNet(lock, inputx, indices, updates) return net() def scatter_max_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterMaxNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_max_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterMaxNet(lock, inputx, indices, updates) net() expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_max_output_updated_float32(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_max_net(inputx, indices, updates) expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_max_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32) * 10) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_max_use_locking_false_net(inputx, indices, updates) expected = np.array([[10., 10., 10.], [10., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterMinNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterMinNet, self).__init__() self.scatter_min = P.ScatterMin(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_min(self.inputx, self.indices, self.updates) return out def scatter_min_net(inputx, indices, updates): lock = True net = TestScatterMinNet(lock, inputx, indices, updates) return net() def scatter_min_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterMinNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_min_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterMinNet(lock, inputx, indices, updates) net() expected = np.array([[0., 0., 0.], [0., 0., 0.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_min_output_updated_float32(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_min_net(inputx, indices, updates) expected = np.array([[0., 1., 1.], [1., 1., 1.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_min_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_min_use_locking_false_net(inputx, indices, updates) expected = np.array([[0., 1., 1.], [1., 1., 1.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterUpdateNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterUpdateNet, self).__init__() self.scatter_update = P.ScatterUpdate(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_update(self.inputx, self.indices, self.updates) return out def scatter_update_net(inputx, indices, updates): lock = True net = TestScatterUpdateNet(lock, inputx, indices, updates) return net() def scatter_update_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterUpdateNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_update_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterUpdateNet(lock, inputx, indices, updates) net() expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_update_output_updated_float32(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_update_net(inputx, indices, updates) expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_update_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_update_use_locking_false_net(inputx, indices, updates) expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected)
39.757764
82
0.594712
3,480
0.135916
0
0
18,762
0.732776
0
0
854
0.033354
fd06722fb8cfe07ace7e4c46b654df0346766b26
4,181
py
Python
nn_similarity_index/cwt_kernel_mat.py
forgi86/xfer
56d98a66d6adb2466d1a73b52f3b27193930a008
[ "Apache-2.0" ]
244
2018-08-31T18:35:29.000Z
2022-03-20T01:12:50.000Z
nn_similarity_index/cwt_kernel_mat.py
forgi86/xfer
56d98a66d6adb2466d1a73b52f3b27193930a008
[ "Apache-2.0" ]
26
2018-08-29T15:31:21.000Z
2021-06-24T08:05:53.000Z
nn_similarity_index/cwt_kernel_mat.py
forgi86/xfer
56d98a66d6adb2466d1a73b52f3b27193930a008
[ "Apache-2.0" ]
57
2018-09-11T13:40:35.000Z
2022-02-22T14:43:34.000Z
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== import os os.environ["OMP_NUM_THREADS"] = "1" import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import torchvision.models as models import numpy as np from abc import ABC import os import argparse from sketched_kernels import SketchedKernels from utils import * if __name__ == "__main__": # Get arguments from the command line parser = argparse.ArgumentParser(description='PyTorch CWT sketching kernel matrices') parser.add_argument('--datapath', type=str, help='absolute path to the dataset') parser.add_argument('--modelname', type=str, help='model name') parser.add_argument('--pretrained', action='store_true', help='whether to load a pretrained ImageNet model') parser.add_argument('--seed', default=0, type=int, help='random seed for sketching') parser.add_argument('--task', default='cifar10', type=str, choices=['cifar10', 'cifar100', 'svhn', 'stl10'], help='the name of the dataset, cifar10 or cifar100 or svhn or stl10') parser.add_argument('--split', default='train', type=str, help='split of the dataset, train or test') parser.add_argument('--bsize', default=512, type=int, help='batch size for computing the kernel') parser.add_argument('--M', '--num-buckets-sketching', default=512, type=int, help='number of buckets in Sketching') parser.add_argument('--T', '--num-buckets-per-sample', default=1, type=int, help='number of buckets each data sample is sketched to') parser.add_argument('--freq_print', default=10, type=int, help='frequency for printing the progress') args = parser.parse_args() # Set the backend and the random seed for running our code device = 'cuda' if torch.cuda.is_available() else 'cpu' torch.manual_seed(args.seed) if device == 'cuda': cudnn.benchmark = True torch.cuda.manual_seed(args.seed) # The size of images for training and testing ImageNet models imgsize = 224 # Generate a dataloader that iteratively reads data # Load a model, either pretrained or not loader = load_dataset(args.task, args.split, args.bsize, args.datapath, imgsize) net = load_model(device, args.modelname, pretrained=True) # Set the model to be in the evaluation mode. VERY IMPORTANT! # This step to fix the running statistics in batchnorm layers, # and disable dropout layers net.eval() csm = SketchedKernels(net, loader, imgsize, device, args.M, args.T, args.freq_print) csm.compute_sketched_kernels() # Compute sketched kernel matrices for each layer for layer_id in range(len(csm.kernel_matrices)): nkme = (csm.kernel_matrices[layer_id].sum() ** 0.5) / csm.n_samples print("The norm of the kernel mean embedding of layer {:d} is {:.4f}".format(layer_id, nkme)) del net, loader torch.cuda.empty_cache() # Save the sketched kernel matrices savepath = 'sketched_kernel_mat/' if not os.path.isdir(savepath): os.mkdir(savepath) save_filename = '{}_{}_{}_{}.npy'.format(args.modelname, args.split, args.task, args.seed) np.save(savepath + save_filename, csm.kernel_matrices)
40.201923
112
0.648649
0
0
0
0
0
0
0
0
1,908
0.45635
fd067b6667868f936c5b7ba2c71c491e3eeb9190
844
py
Python
venv/Lib/site-packages/traits/observation/events.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
1
2022-01-18T17:56:51.000Z
2022-01-18T17:56:51.000Z
venv/Lib/site-packages/traits/observation/events.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
null
null
null
venv/Lib/site-packages/traits/observation/events.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
null
null
null
# (C) Copyright 2005-2021 Enthought, Inc., Austin, TX # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in LICENSE.txt and may be redistributed only under # the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! """ Event objects received by change handlers added using observe. """ from traits.observation._dict_change_event import ( # noqa: F401 DictChangeEvent, ) from traits.observation._list_change_event import ( # noqa: F401 ListChangeEvent, ) from traits.observation._set_change_event import ( # noqa: F401 SetChangeEvent, ) from traits.observation._trait_change_event import ( # noqa: F401 TraitChangeEvent, )
29.103448
71
0.760664
0
0
0
0
0
0
0
0
516
0.611374
fd077dfb9ba449d6f886f45f49324f828fa9d71b
827
py
Python
src/run_hid_4_network2.py
Naresh1318/Effect_of_injected_noise_in_deep_NN
0d001ea2c4d33011204247cb4c066b0da6632c04
[ "Unlicense" ]
2
2016-09-11T08:47:29.000Z
2016-11-19T10:29:47.000Z
src/run_hid_4_network2.py
Naresh1318/Effect_of_injected_noise_in_deep_NN
0d001ea2c4d33011204247cb4c066b0da6632c04
[ "Unlicense" ]
null
null
null
src/run_hid_4_network2.py
Naresh1318/Effect_of_injected_noise_in_deep_NN
0d001ea2c4d33011204247cb4c066b0da6632c04
[ "Unlicense" ]
null
null
null
import mnist_loader import network2 import numpy as np training_data, validation_data, test_data = mnist_loader.load_data_wrapper() eta = 0.9 m_b_s = 10 epochs = 30 trials = 10 trial_ev = [] for t in xrange(trials): net = network2.Network([784, 50, 50, 50, 50, 10], cost=network2.CrossEntropyCost) net.default_weight_initializer() _,ev,_,_ = net.SGD(training_data[:1000], epochs, m_b_s, eta, evaluation_data=test_data[:1000],monitor_evaluation_accuracy=True) print "Trial {} Complete".format(t + 1) print "Maximum Evaluation Accuracy : {}".format(np.amax(ev)) trial_ev.append(np.amax(ev)) Avg_ev = np.mean(trial_ev) Max_ev = np.amax(trial_ev) print "Average Evaluation Accuracy for {} trials is {}".format(trials,Avg_ev) print "Maximum Evaluation Accuracy for {} trials is {}".format(trials,Max_ev)
33.08
131
0.732769
0
0
0
0
0
0
0
0
151
0.182588
fd08718d6dac06e0024584cff9f9907168ac0518
1,918
py
Python
wsm/backend/asyncwhois/base.py
Rayologist/windows-sshd-manager
4f78a0cdaa12fe3c2a785aca31066c3be886878b
[ "Apache-2.0" ]
9
2022-02-09T09:09:43.000Z
2022-02-09T09:10:06.000Z
wsm/backend/asyncwhois/base.py
Rayologist/windows-sshd-manager
4f78a0cdaa12fe3c2a785aca31066c3be886878b
[ "Apache-2.0" ]
null
null
null
wsm/backend/asyncwhois/base.py
Rayologist/windows-sshd-manager
4f78a0cdaa12fe3c2a785aca31066c3be886878b
[ "Apache-2.0" ]
null
null
null
from abc import ABC, abstractmethod from typing import List, Any from ipaddress import IPv4Address from dataclasses import dataclass, FrozenInstanceError from types import SimpleNamespace from enum import Enum, auto class Kind(Enum): CREATE_WHOIS = auto() GET_WHOIS = auto() GET_WHOIS_BY_IP = auto() GET_IP_WITHOUT_WHOIS = auto() GET_IP_WITH_WHOIS = auto() UPDATE_WHOIS_BY_IP = auto() GET_CACHE_BY_IP = auto() class FrozenSimpleNamespace(SimpleNamespace): def __init__(self, **kwargs): super().__init__(**kwargs) def __setattr__(self, name: str, value: Any) -> None: raise FrozenInstanceError(f"cannot assign to field '{name}'") @dataclass(frozen=True) class Action: kind: Kind payload: dict def __post_init__(self): super().__setattr__("payload", FrozenSimpleNamespace(**self.payload)) class BaseWhoisExtractor(ABC): __slots__ = () @abstractmethod def extract(self, whois_result): pass class BaseCacheHandler(ABC): __slots__ = () @abstractmethod async def create(self, action: Action): raise NotImplementedError @abstractmethod async def read(self, action: Action): raise NotImplementedError @abstractmethod async def update(self, action: Action): raise NotImplementedError @abstractmethod async def delete(self, action: Action): raise NotImplementedError class BaseAsyncWhois(ABC): __slots__ = () @property @abstractmethod def lookup_failed(self) -> List[IPv4Address]: pass @abstractmethod async def async_whois(self, ips: List[IPv4Address], cache: bool = True): pass @property @abstractmethod def extractor(self) -> BaseWhoisExtractor: raise NotImplementedError @property @abstractmethod def cache(self) -> BaseCacheHandler: raise NotImplementedError
22.302326
77
0.688738
1,660
0.865485
0
0
1,024
0.533889
375
0.195516
43
0.022419
fd0c1d5bae5b02c0610c8254bb0ed033a6e6d1e5
1,079
py
Python
optaux/helper_functions/check_nonvalidated_auxs.py
coltonlloyd/OptAux
3ee1f8cdfa32f1a732ad41d5f854659159694160
[ "MIT" ]
1
2019-06-05T10:41:06.000Z
2019-06-05T10:41:06.000Z
optaux/helper_functions/check_nonvalidated_auxs.py
coltonlloyd/OptAux
3ee1f8cdfa32f1a732ad41d5f854659159694160
[ "MIT" ]
null
null
null
optaux/helper_functions/check_nonvalidated_auxs.py
coltonlloyd/OptAux
3ee1f8cdfa32f1a732ad41d5f854659159694160
[ "MIT" ]
null
null
null
import cobra from optaux import resources resource_dir = resources.__path__[0] met_to_rs = {'EX_pydam_e': ['PDX5PS', 'PYDXK', 'PYDXNK'], 'EX_orot_e': ['DHORTS', 'UPPRT', 'URIK2'], 'EX_thr__L_e': ['PTHRpp', 'THRS'], 'EX_pro__L_e': ['AMPTASEPG', 'P5CR'], 'EX_skm_e': ['DHQTi'], 'EX_cys__L_e': ['AMPTASECG', 'CYSS']} for m, rs in met_to_rs.items(): ijo = cobra.io.load_json_model('%s/iJO1366.json' % resource_dir) ijo.reactions.EX_o2_e.lower_bound = -20 biomass_reaction = list(ijo.objective.keys())[0] biomass_reaction.lower_bound = .1 biomass_reaction.upper_bound = .1 for r in rs: for g in [i.id for i in ijo.reactions.get_by_id(r).genes]: print(ijo.genes.get_by_id(g).name, [i.id for i in ijo.genes.get_by_id(g).reactions]) ijo.genes.get_by_id(g).remove_from_model() ijo.objective = m ijo.reactions.get_by_id(m).lower_bound = -10 ijo.optimize() print(m, ijo.solution.f) ijo.reactions.get_by_id(m).lower_bound = 0
33.71875
68
0.615385
0
0
0
0
0
0
0
0
189
0.175162
fd0f8e0645346f82a2ff9bdf244ca7d9bf72405b
186
py
Python
xauto/common/futils.py
sababa11/xauto
107e59344b4624941387a4dff0d439719075ebf4
[ "Apache-2.0" ]
null
null
null
xauto/common/futils.py
sababa11/xauto
107e59344b4624941387a4dff0d439719075ebf4
[ "Apache-2.0" ]
null
null
null
xauto/common/futils.py
sababa11/xauto
107e59344b4624941387a4dff0d439719075ebf4
[ "Apache-2.0" ]
null
null
null
import os import sys def get_workdir(): """ get_workdir() -> workdir: [str] Returns the current workdir. """ return os.path.realpath(os.path.dirname(sys.argv[0]))
15.5
57
0.629032
0
0
0
0
0
0
0
0
81
0.435484
fd105e9dfaa8a1cb5dda8aab7e3ed98167bf73e4
10,430
py
Python
csv-to-mysql.py
LongPhan1912/Youtube-Playlist-Extractor
80b10e0b459c2cb264113cfaff644f5f28650813
[ "CC0-1.0" ]
null
null
null
csv-to-mysql.py
LongPhan1912/Youtube-Playlist-Extractor
80b10e0b459c2cb264113cfaff644f5f28650813
[ "CC0-1.0" ]
null
null
null
csv-to-mysql.py
LongPhan1912/Youtube-Playlist-Extractor
80b10e0b459c2cb264113cfaff644f5f28650813
[ "CC0-1.0" ]
null
null
null
import csv import MySQLdb # installing MySQL: https://dev.mysql.com/doc/refman/8.0/en/osx-installation-pkg.html # how to start, watch: https://www.youtube.com/watch?v=3vsC05rxZ8c # or read this (absolutely helpful) guide: https://www.datacamp.com/community/tutorials/mysql-python # this is mainly created to get a database of all the songs in my Favorites playlist # if you wish to change the topic to 'FILM', 'SPORTS', or 'POLITICS' # 1/ initially, set up the MySQL connection and craft a cursor mydb = MySQLdb.connect(host='localhost', user='root', passwd='yourPasswordHere') cursor = mydb.cursor() # 2/ create a database: cursor.execute("CREATE DATABASE mydb") mydb.commit() # 3/ after database is created, comment out steps 1/ and 2/ and uncomment step 3/ # mydb = MySQLdb.connect(host='localhost', user='root', passwd='', database="mydb") # cursor = mydb.cursor() # from here on out, whenever you call `cursor.execute()`, call `mydb.commit()` right afterwards # 4/ create a table -- three options available to you # the table's hardcoded right now so if the columns here are changed then other def initialise_main_music_table(table_name): cursor.execute("CREATE TABLE " + table_name + " (songID INTEGER PRIMARY KEY AUTO_INCREMENT, \ songTitle VARCHAR(150) NOT NULL, \ artist VARCHAR(100) NOT NULL, \ genre VARCHAR(100) NOT NULL, \ videoLink VARCHAR(100) NOT NULL, \ viewCount BIGINT NOT NULL, \ likeToDislikeRatio decimal(5, 4) NOT NULL)") mydb.commit() # the main music table helps extract info to create sub tables for a specific music category def initialise_custom_music_table(table_name, main_music_table_name): cursor.execute("CREATE TABLE " + table_name + " (categorySongID INTEGER PRIMARY KEY AUTO_INCREMENT, \ mainSongID INTEGER NOT NULL DEFAULT 1, \ FOREIGN KEY(mainSongID) REFERENCES " + main_music_table_name + "(songID), \ songTitle VARCHAR(150) NOT NULL, \ artist VARCHAR(100) NOT NULL, \ genre VARCHAR(100) NOT NULL, \ videoLink VARCHAR(100) NOT NULL, \ viewCount BIGINT NOT NULL, \ likeToDislikeRatio decimal(5, 4) NOT NULL)") mydb.commit() # def create_custom_table(table_name): # cursor.execute("CREATE TABLE " + table_name # + " (tableID INTEGER PRIMARY KEY AUTO_INCREMENT, \ # videoTitle VARCHAR(150) NOT NULL, \ # author VARCHAR(100) NOT NULL, \ # category VARCHAR(100) NOT NULL, \ # videoLink VARCHAR(100) NOT NULL, \ # viewCount BIGINT NOT NULL, \ # likeToDislikeRatio decimal(5, 4) NOT NULL)") # mydb.commit() # 5/ from a list of wanted fields, the function searches for the index corresponding to each field on the list # and stores the index inside a dict (easy to look up and flexible if the order of the columns in the csv file is changed) def get_indices_of_csv_table_items(csv_file_name, wanted_items): indices = {} with open(csv_file_name) as csv_file: csv_data = csv.reader(csv_file, delimiter=',') csv_headings = next(csv_data) for idx, heading in enumerate(csv_headings): if heading in wanted_items: indices[heading] = idx csv_file.close() return indices wanted_items = ['song_name', 'artist', 'topics', 'video_link', 'view_count', 'like_to_dislike_ratio'] # 6/ fill up our main table with the relevant data def populate_main_music_table_from_csv(csv_file_name, table_name): indices = get_indices_of_csv_table_items(csv_file_name, wanted_items) with open(csv_file_name) as csv_file: csv_data = csv.reader(csv_file, delimiter=',') csv_headings = next(csv_data) for idx, row in enumerate(csv_data): song_name = row[indices['song_name']] artist = row[indices['artist']] if ' - Topic' in artist: artist = artist[:artist.index(' - Topic')] genre = row[indices['topics']][1:-1] video_link = row[indices['video_link']] view_count = int(row[indices['view_count']]) ratio = 0 if row[indices['like_to_dislike_ratio']]: ratio = float(row[indices['like_to_dislike_ratio']][:-1]) / 100 if 'MUSIC' in genre: cursor.execute(f"INSERT INTO {table_name} (songTitle, artist, genre, videoLink, viewCount, likeToDislikeRatio)\ VALUES(%s, %s, %s, %s, %s, %s)", (song_name, artist, genre, video_link, view_count, ratio)) mydb.commit() # remember to commit after populating the table csv_file.close() # 7/ fill up our custom table using data from the main music table def populate_custom_music_table(your_new_table_name, main_music_table_name, column, chosen_value): cursor.execute(f"INSERT INTO {your_new_table_name} (mainSongID, songTitle, artist, genre, videoLink, viewCount, likeToDislikeRatio)\ SELECT songID, songTitle, artist, genre, videoLink, viewCount, likeToDislikeRatio \ FROM {main_music_table_name} WHERE {column} LIKE '%{chosen_value}%'") mydb.commit() # ------------------------------------------------------------------- # -------------------SUPPLEMENTARY FUNCTIONS START------------------- # ------------------------------------------------------------------- # add a field after table is created (new field placed after a specific column of a table) def add_new_column(table_name, new_column_name, data_type, pivot_column): cursor.execute(f"ALTER TABLE {table_name} ADD {new_column_name} {data_type} NOT NULL AFTER {pivot_column}") mydb.commit() # change data type for any given field def modify_data_type(table_name, column_name, new_data_type): cursor.execute(f"ALTER TABLE {table_name} MODIFY COLUMN {column_name} {new_data_type}") mydb.commit() # delete all the data from a specified table def delete_data_from_table(table_name): cursor.execute(f"DELETE FROM {table_name}") mydb.commit() def delete_selected_record_from_table(table_name, record): cursor.execute(f"DELETE FROM {table_name} WHERE address = {record}") mydb.commit() # make a table disappear from existence :) def drop_table(table_name): cursor.execute(f"DROP TABLE {table_name}") mydb.commit() def print_table_plain(table_name): cursor.execute(f"SELECT * FROM {table_name}") result = cursor.fetchall() for row in result: print(row) # print out all the songs in the playlist # 'DESC' means descending order (most popular song on top) and 'ASC' is the opposite def print_table_by_criteria(table_name, order_criteria, order): if order_criteria != '' and order != '': cursor.execute(f"SELECT * FROM {table_name} ORDER BY {order_criteria} {order}") for item in cursor: print(item) # show the name of all the tables present in the database def show_tables(): cursor.execute("SHOW TABLES") tables = cursor.fetchall() print(tables) # check if a table already exists def check_table_exists(table_name): cursor.execute(""" SELECT COUNT(*) FROM information_schema.tables WHERE table_name = '{0}' """.format(table_name.replace('\'', '\'\''))) return True if cursor.fetchone()[0] == 1 else False # optional / not required function: should you wish to look up the different video topics # if you want to search for all topics, leave `selected_topic` as an empty string def get_all_selected_topics(csv_file_name, selected_topic): res = [] indices = get_indices_of_csv_table_items(csv_file_name, wanted_items) with open(csv_file_name) as csv_file: csv_data = csv.reader(csv_file, delimiter=',') csv_headings = next(csv_data) for idx, row in enumerate(csv_data): topics = row[indices['topics']][1:-1] topic_list = topics.split(', ') for item in topic_list: if selected_topic in item and item not in res: res.append(item) return res # ------------------------------------------------------------------ # -------------------SUPPLEMENTARY FUNCTIONS ENDS------------------- # ------------------------------------------------------------------ # 8/ Create main music table def build_main_music_table(csv_file_name, main_music_table_name): initialise_main_music_table(main_music_table_name) populate_main_music_table_from_csv(csv_file_name, main_music_table_name) # 9/ Build a new music table based on the genre you love def build_your_custom_music_table(your_new_table_name, main_music_table_name, column, chosen_value): if check_table_exists(main_music_table_name) == False: build_main_music_table(main_music_table_name) initialise_custom_music_table(your_new_table_name, main_music_table_name) populate_custom_music_table(your_new_table_name, main_music_table_name, column, chosen_value) def main(): # example; feel free to change the variable names to your choosing csv_file_name = 'favorite-playlist.csv' # name of csv file (use `main-extractor.py` first to create a csv file) your_new_table_name = 'ElectronicMusic' # name your table main_music_table_name = 'MainMusic' # name the main music table column = 'genre' # column choices: songTitle, artist, genre, videoLink, viewCount, likeToDislikeRatio chosen_value = 'ELECTRONIC MUSIC' # what you'd like to query, e.g. artist name or song title or genre # to get a list of all possible video topics or music genres, you can run the function get_all_selected_topics() # e.g. get_all_selected_topics('favorite-playlist.csv', order_criteria = 'viewCount' # e.g. viewCount or likeToDislikeRatio or artist name in alphabetical order ascending_order = False # change to true if you want to print the table in ascending order (i.e. lowest order at the top) order = 'ASC' if ascending_order == True else 'DESC' build_your_custom_music_table(your_new_table_name, main_music_table_name, column, chosen_value) print_table_by_criteria(your_new_table_name, order_criteria, order) if __name__ == "__main__": main()
48.287037
136
0.661266
0
0
0
0
0
0
0
0
5,935
0.569032