hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
fd107c2da7b904339edb0406a2c83b2ca10efada
8,850
py
Python
coadd_mdetsims/tests/test_shear_bias_meas.py
beckermr/metadetect-coadding-sims
15ccaec353aa61c69ac9d78d1dfca8ce25bca3cf
[ "BSD-3-Clause" ]
null
null
null
coadd_mdetsims/tests/test_shear_bias_meas.py
beckermr/metadetect-coadding-sims
15ccaec353aa61c69ac9d78d1dfca8ce25bca3cf
[ "BSD-3-Clause" ]
null
null
null
coadd_mdetsims/tests/test_shear_bias_meas.py
beckermr/metadetect-coadding-sims
15ccaec353aa61c69ac9d78d1dfca8ce25bca3cf
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import pytest from ..shear_bias_meas import ( measure_shear_metadetect, estimate_m_and_c, estimate_m_and_c_patch_avg) def test_measure_shear_metadetect_smoke(): dtype = [('flags', 'i4'), ('wmom_g', 'f4', (2,)), ('wmom_s2n', 'f4'), ('wmom_T_ratio', 'f4'), ('ormask', 'i4')] rng = np.random.RandomState(seed=10) res = {} for key in ['noshear', '1p', '1m', '2p', '2m']: res[key] = np.zeros(10, dtype=dtype) for col in ['wmom_s2n', 'wmom_T_ratio']: res[key][col] = rng.uniform(size=10) * 10 res[key]['wmom_g'][:, 0] = rng.uniform(size=10) * 10 res[key]['wmom_g'][:, 1] = rng.uniform(size=10) * 10 res[key]['flags'] = (rng.uniform(size=10) * 1.5).astype(np.int32) res[key]['ormask'] = (rng.uniform(size=10) * 1.5).astype(np.int32) val = measure_shear_metadetect( res, s2n_cut=2, t_ratio_cut=1, cut_interp=False) assert val is not None for key in ['1p', '1m', '1', '2p', '2m', '2']: gkey = 'g' + key nkey = 'n' + key reskey = key if ('p' in key or 'm' in key) else 'noshear' ind = int(key[0]) - 1 q = ((res[reskey]['wmom_s2n'] > 2) & (res[reskey]['wmom_T_ratio'] > 1) & (res[reskey]['flags'] == 0)) assert np.mean(res[reskey]['wmom_g'][q, ind]) == val[gkey][0] assert len(res[reskey]['wmom_g'][q, ind]) == val[nkey][0] val = measure_shear_metadetect( res, s2n_cut=2, t_ratio_cut=1, cut_interp=True) assert val is not None for key in ['1p', '1m', '1', '2p', '2m', '2']: gkey = 'g' + key nkey = 'n' + key reskey = key if ('p' in key or 'm' in key) else 'noshear' ind = int(key[0]) - 1 q = ((res[reskey]['wmom_s2n'] > 2) & (res[reskey]['wmom_T_ratio'] > 1) & (res[reskey]['flags'] == 0) & (res[reskey]['ormask'] == 0)) assert np.mean(res[reskey]['wmom_g'][q, ind]) == val[gkey][0] assert len(res[reskey]['wmom_g'][q, ind]) == val[nkey][0] @pytest.mark.parametrize('kind', ['noshear', '1p', '1m', '2p', '2m']) def test_measure_shear_metadetect_none(kind): dtype = [('flags', 'i4'), ('wmom_g', 'f4', (2,)), ('wmom_s2n', 'f4'), ('wmom_T_ratio', 'f4'), ('ormask', 'i4')] rng = np.random.RandomState(seed=10) res = {} for key in ['noshear', '1p', '1m', '2p', '2m']: res[key] = np.zeros(10, dtype=dtype) for col in ['wmom_s2n', 'wmom_T_ratio']: res[key][col] = rng.uniform(size=10) * 10 res[key]['wmom_g'][:, 0] = rng.uniform(size=10) * 10 res[key]['wmom_g'][:, 1] = rng.uniform(size=10) * 10 res[key]['flags'] = (rng.uniform(size=10) * 1.5).astype(np.int32) res[key]['ormask'] = (rng.uniform(size=10) * 1.5).astype(np.int32) for key in ['noshear', '1p', '1m', '2p', '2m']: # we make sure it would return something if not for the bad flags etc val = measure_shear_metadetect( res, s2n_cut=2, t_ratio_cut=1, cut_interp=False) assert val is not None val = measure_shear_metadetect( res, s2n_cut=2, t_ratio_cut=1, cut_interp=True) assert val is not None # now test some columns for col, col_val in [ ('flags', 1), ('wmom_s2n', 0), ('wmom_T_ratio', 0)]: old_col_val = res[key][col].copy() res[key][col] = col_val val = measure_shear_metadetect( res, s2n_cut=2, t_ratio_cut=1, cut_interp=False) assert val is None res[key][col] = old_col_val old_flags = res[key]['ormask'].copy() res[key]['ormask'] = 1 val = measure_shear_metadetect( res, s2n_cut=2, t_ratio_cut=1, cut_interp=True) assert val is None res[key]['ormask'] = old_flags @pytest.mark.parametrize('g_true,step,swap12', [ (0.01, 0.02, True), (0.01, 0.02, False), (0.005, 0.05, False)]) def test_estimate_m_and_c(g_true, step, swap12): rng = np.random.RandomState(seed=10) def _shear_meas(g_true, _step, e1, e2): if _step == 0: _gt = g_true * (1.0 + 0.01) cadd = 0.05 * 10 else: _gt = g_true cadd = 0.0 if swap12: return np.mean(e1) + cadd + _step*10, np.mean(10*(_gt+_step)+e2) else: return np.mean(10*(_gt+_step)+e1), np.mean(e2) + cadd + _step*10 sn = 0.01 n_gals = 100000 n_sim = 1000 pres = np.zeros(n_sim, dtype=[ ('g1p', 'f4'), ('n1p', 'f4'), ('g1m', 'f4'), ('n1m', 'f4'), ('g1', 'f4'), ('n1', 'f4'), ('g2p', 'f4'), ('n2p', 'f4'), ('g2m', 'f4'), ('n2m', 'f4'), ('g2', 'f4'), ('n2', 'f4')]) mres = np.zeros(n_sim, dtype=[ ('g1p', 'f4'), ('n1p', 'f4'), ('g1m', 'f4'), ('n1m', 'f4'), ('g1', 'f4'), ('n1', 'f4'), ('g2p', 'f4'), ('n2p', 'f4'), ('g2m', 'f4'), ('n2m', 'f4'), ('g2', 'f4'), ('n2', 'f4')]) for i in range(n_sim): e1 = rng.normal(size=n_gals) * sn e2 = rng.normal(size=n_gals) * sn g1, g2 = _shear_meas(g_true, 0, e1, e2) g1p, g2p = _shear_meas(g_true, step, e1, e2) g1m, g2m = _shear_meas(g_true, -step, e1, e2) pres['g1p'][i] = g1p pres['g1m'][i] = g1m pres['g1'][i] = g1 pres['g2p'][i] = g2p pres['g2m'][i] = g2m pres['g2'][i] = g2 pres['n1p'][i] = n_gals pres['n1m'][i] = n_gals pres['n1'][i] = n_gals pres['n2p'][i] = n_gals pres['n2m'][i] = n_gals pres['n2'][i] = n_gals g1, g2 = _shear_meas(-g_true, 0, e1, e2) g1p, g2p = _shear_meas(-g_true, step, e1, e2) g1m, g2m = _shear_meas(-g_true, -step, e1, e2) mres['g1p'][i] = g1p mres['g1m'][i] = g1m mres['g1'][i] = g1 mres['g2p'][i] = g2p mres['g2m'][i] = g2m mres['g2'][i] = g2 mres['n1p'][i] = n_gals mres['n1m'][i] = n_gals mres['n1'][i] = n_gals mres['n2p'][i] = n_gals mres['n2m'][i] = n_gals mres['n2'][i] = n_gals m, _, c, _ = estimate_m_and_c( pres, mres, g_true, swap12=swap12, step=step) assert np.allclose(m, 0.01) assert np.allclose(c, 0.05) @pytest.mark.parametrize('g_true,step,swap12', [ (0.01, 0.02, True), (0.01, 0.02, False), (0.005, 0.05, False)]) def test_estimate_m_and_c_patch_avg(g_true, step, swap12): rng = np.random.RandomState(seed=10) def _shear_meas(g_true, _step, e1, e2): if _step == 0: _gt = g_true * (1.0 + 0.01) cadd = 0.05 * 10 else: _gt = g_true cadd = 0.0 if swap12: return np.mean(e1) + cadd + _step*10, np.mean(10*(_gt+_step)+e2) else: return np.mean(10*(_gt+_step)+e1), np.mean(e2) + cadd + _step*10 sn = 0.01 n_gals = 100000 n_sim = 1000 pres = np.zeros(n_sim, dtype=[ ('g1p', 'f4'), ('n1p', 'f4'), ('g1m', 'f4'), ('n1m', 'f4'), ('g1', 'f4'), ('n1', 'f4'), ('g2p', 'f4'), ('n2p', 'f4'), ('g2m', 'f4'), ('n2m', 'f4'), ('g2', 'f4'), ('n2', 'f4')]) mres = np.zeros(n_sim, dtype=[ ('g1p', 'f4'), ('n1p', 'f4'), ('g1m', 'f4'), ('n1m', 'f4'), ('g1', 'f4'), ('n1', 'f4'), ('g2p', 'f4'), ('n2p', 'f4'), ('g2m', 'f4'), ('n2m', 'f4'), ('g2', 'f4'), ('n2', 'f4')]) for i in range(n_sim): e1 = rng.normal(size=n_gals) * sn e2 = rng.normal(size=n_gals) * sn g1, g2 = _shear_meas(g_true, 0, e1, e2) g1p, g2p = _shear_meas(g_true, step, e1, e2) g1m, g2m = _shear_meas(g_true, -step, e1, e2) pres['g1p'][i] = g1p pres['g1m'][i] = g1m pres['g1'][i] = g1 pres['g2p'][i] = g2p pres['g2m'][i] = g2m pres['g2'][i] = g2 pres['n1p'][i] = n_gals pres['n1m'][i] = n_gals pres['n1'][i] = n_gals pres['n2p'][i] = n_gals pres['n2m'][i] = n_gals pres['n2'][i] = n_gals g1, g2 = _shear_meas(-g_true, 0, e1, e2) g1p, g2p = _shear_meas(-g_true, step, e1, e2) g1m, g2m = _shear_meas(-g_true, -step, e1, e2) mres['g1p'][i] = g1p mres['g1m'][i] = g1m mres['g1'][i] = g1 mres['g2p'][i] = g2p mres['g2m'][i] = g2m mres['g2'][i] = g2 mres['n1p'][i] = n_gals mres['n1m'][i] = n_gals mres['n1'][i] = n_gals mres['n2p'][i] = n_gals mres['n2m'][i] = n_gals mres['n2'][i] = n_gals m, _, c, _ = estimate_m_and_c_patch_avg( pres, mres, g_true, swap12=swap12, step=step) assert np.allclose(m, 0.01) assert np.allclose(c, 0.05)
34.570313
77
0.490508
0
0
0
0
6,773
0.765311
0
0
1,365
0.154237
fd1270311d2747042f749172a656ddde2d001d75
1,221
py
Python
src/topologies/simple.py
sevenEng/Resolving-Consensus
a508701e19bd4ec0df735f5b094487983272dbb6
[ "MIT" ]
null
null
null
src/topologies/simple.py
sevenEng/Resolving-Consensus
a508701e19bd4ec0df735f5b094487983272dbb6
[ "MIT" ]
null
null
null
src/topologies/simple.py
sevenEng/Resolving-Consensus
a508701e19bd4ec0df735f5b094487983272dbb6
[ "MIT" ]
null
null
null
from mininet.net import Mininet from mininet.node import Controller, UserSwitch, IVSSwitch, OVSSwitch from mininet.log import info, setLogLevel setLogLevel("info") import importlib switch_num = 1 def add_switch(net): global switch_num res = "s%s" % str(switch_num) switch_num += 1 return net.addSwitch(res) host_num = 1 def add_host(net): global host_num res = "h%s" % str(host_num) host_num += 1 return net.addHost(res) client_num = 1 def add_client(net): global client_num res = "mc%s" % str(client_num) client_num += 1 return net.addHost(res) def setup(n="3", nc="10"): n = int(n) nc = int(nc) # - Core setup ------- net = Mininet(controller=Controller) info("*** Adding controller\n") net.addController("c0") info("*** Adding switches\n") sw = add_switch(net) info("*** Adding hosts and links\n") cluster = [add_host(net) for _ in range(n)] clients = [add_client(net) for _ in range(nc)] for host in cluster: net.addLink(host, sw) for client in clients: net.addLink(client, sw) net.start() cluster_ips = [host.IP() for host in cluster] return (net, cluster, clients)
18.784615
69
0.633907
0
0
0
0
0
0
0
0
133
0.108927
fd1396e2ed5013e365c0832fe7ee283e5e1bda20
856
py
Python
lunchapi/permissions.py
pesusieni999/lunchapplication
2aa2a4320a2ad85b39b74c5dcc3d960a46cdb6ef
[ "MIT" ]
null
null
null
lunchapi/permissions.py
pesusieni999/lunchapplication
2aa2a4320a2ad85b39b74c5dcc3d960a46cdb6ef
[ "MIT" ]
null
null
null
lunchapi/permissions.py
pesusieni999/lunchapplication
2aa2a4320a2ad85b39b74c5dcc3d960a46cdb6ef
[ "MIT" ]
null
null
null
from rest_framework import permissions __author__ = "Ville Myllynen" __copyright__ = "Copyright 2017, Ohsiha Project" __credits__ = ["Ville Myllynen"] __license__ = "MIT" __version__ = "1.0" __maintainer__ = "Ville Myllynen" __email__ = "[email protected]" __status__ = "Development" class IsOwnerOrReadOnly(permissions.BasePermission): """ Object-level permission to only allow owners of an object to edit it. Assumes the model instance has an `author` attribute. """ def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS: return True # Instance must have an attribute named `author`. return obj.author == request.user
31.703704
73
0.712617
556
0.649533
0
0
0
0
0
0
426
0.497664
fd139df441393f7003990ec4900a0d7e845e7545
3,994
py
Python
MsSampleFmpDevicePkg/Tools/ConvertCerToH.py
kuqin12/mu_plus
f78c66d0508a7b884b3f73d7c86648656bf07fbb
[ "BSD-2-Clause" ]
null
null
null
MsSampleFmpDevicePkg/Tools/ConvertCerToH.py
kuqin12/mu_plus
f78c66d0508a7b884b3f73d7c86648656bf07fbb
[ "BSD-2-Clause" ]
null
null
null
MsSampleFmpDevicePkg/Tools/ConvertCerToH.py
kuqin12/mu_plus
f78c66d0508a7b884b3f73d7c86648656bf07fbb
[ "BSD-2-Clause" ]
null
null
null
## # Copyright (c) 2016, Microsoft Corporation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## ## # This is a sample tool and should not be used in production environments. # # This tool takes in sample certificates (.cer files) and outputs a .h file containing the # certificates. ### import re import sys print "This is a sample tool and should not be used in production environments\n" raw_input('Press any key to continue . . .\n') ### Parse input parameters ### if len(sys.argv) == 1 or sys.argv[1] == "-h" or sys.argv[1] == "-H" or sys.argv[1] == "-?": print "This tool creates Certs.h with one or more certificates\n" print "usage: ConvertCerToH.py <CertFiles...>" print "example: ConvertCerToH.py SAMPLE_DEVELOPMENT.cer SAMPLE_PRODUCTION.cer" print "example: ConvertCerToH.py SAMPLE_DEVELOPMENT1.cer SAMPLE_DEVELOPMENT2.cer SAMPLE_PRODUCTION.cer" print "example: ConvertCerToH.py SAMPLE_PRODUCTION.cer" sys.exit(-1) if len(sys.argv) > 11: print "Error: Currently limiting number of certificates to 10" print "usage: ConvertCerToH.py <CertFiles...>" sys.exit(-1) ### Process Certificates ### Certs = [] sys.argv.remove(sys.argv[0]) for fileName in sys.argv: print "Processing", fileName # Open cert file file = open(fileName, "rb") # Read binary file Cert = file.read() # Close cert file file.close() CertHex = map(hex,map(ord,Cert)) Cert = re.sub(r'\'|\[|\]', "", str(CertHex)) Certs.append(Cert) ### Write certificates to Certs.h ### # Open header file HeaderFile = open("Certs.h", "w") HeaderFile.write("//\n") HeaderFile.write("// Certs.h\n") HeaderFile.write("//\n\n") HeaderFile.write("//\n") HeaderFile.write("// These are the binary DER encoded Product Key certificates \n") HeaderFile.write("// used to sign the UEFI capsule payload.\n") HeaderFile.write("//\n\n") index = 1 for Cert in Certs: HeaderFile.write("CONST UINT8 CapsulePublicKeyCert"+str(index)+"[] =\n") HeaderFile.write("{\n") HeaderFile.write(Cert) HeaderFile.write("\n};\n\n") index = index + 1 HeaderFile.write("CONST CAPSULE_VERIFICATION_CERTIFICATE CapsuleVerifyCertificates[] = {\n") index = 1 for Cert in Certs: HeaderFile.write(" {CapsulePublicKeyCert"+str(index)+", sizeof(CapsulePublicKeyCert"+str(index)+")},\n") index = index + 1 HeaderFile.write("};\n\n") HeaderFile.write("CONST CAPSULE_VERIFICATION_CERTIFICATE_LIST CapsuleVerifyCertificateList = {\n") HeaderFile.write(" sizeof(CapsuleVerifyCertificates)/sizeof(CAPSULE_VERIFICATION_CERTIFICATE),\n") HeaderFile.write(" CapsuleVerifyCertificates\n") HeaderFile.write("};\n\n") # Close header file HeaderFile.close() print "\nCopy the output file Certs.h to folder MsSampleFmpDevicePkg\Library\CapsuleKeyBaseLib"
33.847458
107
0.73986
0
0
0
0
0
0
0
0
2,912
0.729094
fd16505a157e42c0095152f4d85cf3c6e225daa0
2,899
py
Python
webtraversallibrary/app_info.py
redfungus/webtraversallibrary
d5013edc061deba40e859dcfcda314c7055ce82a
[ "Apache-2.0" ]
null
null
null
webtraversallibrary/app_info.py
redfungus/webtraversallibrary
d5013edc061deba40e859dcfcda314c7055ce82a
[ "Apache-2.0" ]
null
null
null
webtraversallibrary/app_info.py
redfungus/webtraversallibrary
d5013edc061deba40e859dcfcda314c7055ce82a
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Extract version information from several possible sources in a pre-assigned priority: * environment * git context * .gitinfo file * default value """ import os import subprocess def get_commit_hash(short: bool = False) -> str: """ Extract commit hash from either the environment, or the ``.gitinfo`` file. If nothing works, returns "unknown". """ git_command = ["git", "rev-parse", "HEAD"] if short: git_command.insert(2, "--short") try: return subprocess.check_output(git_command, universal_newlines=True, stderr=subprocess.DEVNULL).strip() except subprocess.CalledProcessError: pass # This may be a source copy without .git information. Look for .gitinfo file try: with open(".gitinfo") as f: return f.readline().strip() except OSError: pass # As a last resort, return a special value return "unknown" def get_branch_name() -> str: """ Extract branch name from either the environment, or the ``.gitinfo`` file. Returns "unknown" if it couldn't be found. """ # If explicitly set, take the environment variable if "BRANCH_NAME" in os.environ: return os.environ["BRANCH_NAME"] # Otherwise, try to get the context from current directory git metadata try: branch_name = subprocess.check_output( ["bash", "-c", 'git branch --list | grep -e "*" | cut -c 3-'], universal_newlines=True, stderr=subprocess.DEVNULL, ).strip() if branch_name: # The piped command chain will "succeed" even if "git branch --list" returns nothing # In that case, branch_name will be empty and should not be returned return branch_name except subprocess.CalledProcessError: pass # If that's not available either, look for the .gitinfo file that gets added to Docker containers try: with open(".gitinfo") as f: return f.readlines()[-1].strip() except OSError: pass # As a last resort, return a special value return "unknown"
32.573034
111
0.67506
0
0
0
0
0
0
0
0
1,872
0.64574
fd166522613f70d68340ce87a9e8c0bff5f78c6b
4,863
py
Python
aws_reporting.py
jeberhar/DevOpsLearner
f9dce9cf2dc6e75494c1372a339e9f13e836102d
[ "MIT" ]
null
null
null
aws_reporting.py
jeberhar/DevOpsLearner
f9dce9cf2dc6e75494c1372a339e9f13e836102d
[ "MIT" ]
null
null
null
aws_reporting.py
jeberhar/DevOpsLearner
f9dce9cf2dc6e75494c1372a339e9f13e836102d
[ "MIT" ]
null
null
null
#!/usr/bin/env python import boto import boto.ec2 import sys from boto.ec2.connection import EC2Connection import pprint account_string = "YOUR_ACCOUNT_STRING" #change this for each AWS account class ansi_color: #unused class due to CSV file limitations red = '\033[31m' green = '\033[32m' reset = '\033[0m' grey = '\033[1;30m' def instance_info(i): groups = "" volume_info = "" count = 1 statusDummy = "Status Checks not available" alarmDummy = "Alarm Status not available" #logic for instance name if 'Name' in i.tags: name = str(i.tags['Name']) if name == "": name = '!!! No name specified !!!' else: name = '??? Name not in attributes for instance ???' #n = n.ljust(16)[:16] #if i.state == 'running': # n = ansi_color.green + n + ansi_color.reset #else: # n = ansi_color.red + n + ansi_color.reset #logic for public DNS if i.state == 'running': pub_name = i.public_dns_name else: pub_name = "Machine not running - no public DNS name" #pub_name = ansi_color.red + pub_name + ansi_color.reset #logic for private DNS if i.state == 'running': priv_name = i.private_dns_name else: priv_name = "Machine not running - no private DNS name" #priv_name = ansi_color.red + priv_name + ansi_color.reset #logic for instance groups for group_name in i.groups: groups = groups + str(group_name.name) if len(i.groups) > 1: if count < len(i.groups): groups = groups + " AND " count = count + 1 info = account_string info = info + "," + name info = info + "," + i.id info = info + "," + i.instance_type info = info + "," + i.placement info = info + ',' + i.state #info = info + ',' + statusDummy #info = info + ',' + alarmDummy info = info + ',' + pub_name info = info + "," + str(i.ip_address) info = info + ',' + priv_name info = info + "," + str(i.key_name) info = info + "," + str(i.monitored) info = info + "," + str(i.launch_time) info = info + ',' + groups #EBS reporting works but painfully slow..... for current_volumes in volumes: #print "\t" + str(current_volumes) + "\n" if current_volumes.attachment_state() == 'attached': filter = {'block-device-mapping.volume-id':current_volumes.id} #print "Starting connection for all instances....\n" volumesinstance = conn.get_all_instances(filters=filter) #print "Volumes by instance: " + str(len(volumesinstance)) #print "Ending connection for all instances....\n" ids = [z for k in volumesinstance for z in k.instances] for s in ids: if (i.id == s.id): #print "SUCCESS!!" volume_info = volume_info + str(current_volumes.id) + ',' + str(s.id) + ',' + str(current_volumes.attach_data.device) + ',' + str(current_volumes.size) + ',' info = info + ',' + volume_info volume_info = "" return info def print_instance(i): print instance_info(i) ####main program execution#### regions = sys.argv[1:] volume_info = "" if len(regions) == 0: regions=['us-east-1'] if len(regions) == 1 and regions[0] == "all": working_regions = boto.ec2.regions() #print working_regions #DEBUG: uncomment to view all the regions that will be searched for "all" else: working_regions = [ boto.ec2.get_region(x) for x in regions ] for current_working_region in working_regions: print "\n================" print current_working_region.name print "================" print "Account Name,Instance Name,Instance ID,Instance Type,Availability Zone,Instance State,Public DNS,Public IP,Private DNS,Key Name,Monitoring,Launch Time,Security Groups,Attached Volume ID,Attached Volume Instance ID,Mounted Device Name,Attached Volume Size" try: conn = boto.connect_ec2(region = current_working_region) #conn = EC2Connection() #same as boto.connect_ec2() reservations = conn.get_all_instances() volumes = conn.get_all_volumes() #print "Volumes array has length of: " + str(len(volumes)) instances = [i for r in reservations for i in r.instances] #pp = pprint.PrettyPrinter(indent=4) for r in reservations: for i in r.instances: #pp.pprint(i.__dict__) print_instance(i) #print_ebs_info(i) except boto.exception.EC2ResponseError: print "ERROR -- Could not connect to " + current_working_region.name pass
37.122137
267
0.584002
156
0.032079
0
0
0
0
0
0
1,872
0.384948
fd1683f2abe7dd47f1cee08ed7abab26a488dbc0
1,832
py
Python
code/functions/one_hop_majority_vote.py
YatongChen/decoupled_smoothing_on_graph
b5110db92841c00193577adb0f5d3daa70f46845
[ "MIT" ]
5
2019-02-25T20:05:47.000Z
2021-06-23T21:38:52.000Z
code/functions/one_hop_majority_vote.py
YatongChen/decoupled_smoothing_on_graphs
b5110db92841c00193577adb0f5d3daa70f46845
[ "MIT" ]
null
null
null
code/functions/one_hop_majority_vote.py
YatongChen/decoupled_smoothing_on_graphs
b5110db92841c00193577adb0f5d3daa70f46845
[ "MIT" ]
null
null
null
# one hop helper function def one_hop_majority_vote(G, gender_y_update,train_index, test_index): A = np.array(nx.adjacency_matrix(G).todense()) D = np.diag(np.sum(A, axis=1)) d = np.diag(D) theta = [None]*len(gender_y_update) accuracy_score_benchmark = np.sum(gender_y_update[train_index])/len(train_index) accuracy = [] micro_auc = [] wt_auc = [] for j in train_index: theta[j] = gender_y_update[j] for j in test_index: #print(j) j_neighbor = list(G.neighbors(j)) j_neighbor_label = list(set(j_neighbor).intersection(train_index)) if len(j_neighbor_label) ==0: theta[j] = accuracy_score_benchmark else: theta[j] = np.sum(theta[ii] for ii in j_neighbor_label)/len(j_neighbor_label) preference_by_class_matrix =np.zeros((len(theta),2)) preference_by_class_matrix[:,1] = theta preference_by_class_matrix[:,0] = np.subtract(1, preference_by_class_matrix[:,1]) test_index = np.array(test_index) micro_auc.append(metrics.roc_auc_score(label_binarize(gender_y_update[test_index],np.unique(gender_y_update)),preference_by_class_matrix[test_index,:][:,1]-preference_by_class_matrix[test_index,:][:,0],average='micro')) wt_auc.append(metrics.roc_auc_score(label_binarize(gender_y_update[test_index],np.unique(gender_y_update)),preference_by_class_matrix[test_index,:][:,1]-preference_by_class_matrix[test_index,:][:,0],average='weighted')) ## f1-score version y_true = label_binarize(gender_y_update[test_index],np.unique(gender_y_update)) y_pred = ((preference_by_class_matrix[test_index,:][:,1]) >accuracy_score_benchmark)+0 accuracy.append(f1_score(y_true, y_pred, average='macro')) return(theta, micro_auc, wt_auc, accuracy)
50.888889
231
0.69869
0
0
0
0
0
0
0
0
77
0.042031
fd16885dbeb4939e362807cdc853aa44683b010f
18,284
py
Python
alphago/alphago.py
noahwaterfieldprice/alphago
4a7bba6d9758ccf1d2f2d7ae964b5d5d48021ee8
[ "MIT" ]
4
2018-02-12T09:11:26.000Z
2022-01-24T20:46:15.000Z
alphago/alphago.py
noahwaterfieldprice/alphago
4a7bba6d9758ccf1d2f2d7ae964b5d5d48021ee8
[ "MIT" ]
null
null
null
alphago/alphago.py
noahwaterfieldprice/alphago
4a7bba6d9758ccf1d2f2d7ae964b5d5d48021ee8
[ "MIT" ]
3
2018-08-23T15:08:54.000Z
2020-03-13T14:21:08.000Z
from collections import OrderedDict import numpy as np from tqdm import tqdm import tensorflow as tf from .player import MCTSPlayer, RandomPlayer, OptimalPlayer from .evaluator import evaluate from .mcts_tree import MCTSNode, mcts from .utilities import sample_distribution __all__ = ["train_alphago", "self_play", "process_self_play_data", "process_training_data"] def compute_checkpoint_name(step, path): return path + "{}.checkpoint".format(step) def train_alphago(game, create_estimator, self_play_iters, training_iters, checkpoint_path, summary_path, alphago_steps=100, evaluate_every=1, batch_size=32, mcts_iters=100, c_puct=1.0, replay_length=100000, num_evaluate_games=500, win_rate=0.55, verbose=True, restore_step=None, self_play_file_path=None): """Trains AlphaGo on the game. Parameters ---------- game: object An object that has the attributes a game needs. create_estimator: func Creates a trainable estimator for the game. The estimator should have a train function. self_play_iters: int Number of self-play games to play each self-play step. training_iters: int Number of training iters to use for each training step. checkpoint_path: str Where to save the checkpoints to. summary_path: str Where to save the summaries (tensorboard) to. alphago_steps: int Number of steps to run the alphago loop for. evaluate_every: int Evaluate the network every evaluate_every steps. batch_size: int Batch size to train with. mcts_iters: int Number of iterations to run MCTS for. c_puct: float Parameter for MCTS. See AlphaGo paper. replay_length: int The amount of training data to use. Only train on the most recent training data. num_evaluate_games: int Number of games to evaluate the players for. win_rate: float Number between 0 and 1. Only update self-play player when training player beats self-play player by at least this rate. verbose: bool Whether or not to output progress. restore_step: int or None If given, restore the network from the checkpoint at this step. self_play_file_path: str or None Where to load self play data from, if given. """ # TODO: Do self-play, training and evaluating in parallel. # We use a fixed estimator (the best one that's been trained) to # generate self-play training data. We then train the training estimator # on that data. We produce a checkpoint every 1000 training steps. This # checkpoint is then evaluated against the current best neural network. # If it beats the current best network by at least 55% then it becomes # the new best network. # 1 is the fixed player, and 2 is the training player. self_play_estimator = create_estimator() training_estimator = create_estimator() graph = tf.Graph() sess = tf.Session(graph=graph) with graph.as_default(): tf_success_rate = tf.placeholder( tf.float32, name='success_rate_summary') success_rate_summary = tf.summary.scalar( 'success_rate_summary', tf_success_rate) tf_success_rate_random = tf.placeholder( tf.float32, name='success_rate_random') success_rate_random_summary = tf.summary.scalar( 'success_rate_random', tf_success_rate_random) #tf_success_rate_optimal = tf.placeholder( # tf.float32, name='success_rate_optimal') #success_rate_optimal_summary = tf.summary.scalar( # 'success_rate_optimal', tf_success_rate_optimal) #merged_summary = tf.summary.merge([success_rate_summary, # success_rate_random_summary, # success_rate_optimal_summary]) merged_summary = tf.summary.merge([success_rate_summary, success_rate_random_summary]) sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter(summary_path) if restore_step: restore_path = compute_checkpoint_name(restore_step, checkpoint_path) self_play_estimator.restore(restore_path) training_estimator.restore(restore_path) all_losses = [] self_play_data = None initial_step = restore_step + 1 if restore_step else 0 for alphago_step in range(initial_step, initial_step + alphago_steps): self_play_data = generate_self_play_data( game, self_play_estimator, mcts_iters, c_puct, self_play_iters, verbose=verbose, data=self_play_data) training_data = process_training_data(self_play_data, replay_length) if len(training_data) < 100: continue optimise_estimator(training_estimator, training_data, batch_size, training_iters, writer=writer, verbose=verbose) # Evaluate the players and choose the best. if alphago_step % evaluate_every == 0: success_rate, success_rate_random = \ evaluate_model(game, self_play_estimator, training_estimator, mcts_iters, c_puct, num_evaluate_games, verbose=verbose) summary = sess.run(merged_summary, feed_dict= {tf_success_rate: success_rate, tf_success_rate_random: success_rate_random}) writer.add_summary(summary, training_estimator.global_step) checkpoint_model(training_estimator, alphago_step, checkpoint_path) # If training player beats self-play player by a large enough # margin, then it becomes the new best estimator. if success_rate > win_rate: # Create a new self player, with the weights of the most # recent training_estimator. if verbose: print("Updating self-play player.") print("Restoring from step: {}".format(alphago_step)) self_play_estimator = create_estimator() restore_path = compute_checkpoint_name(alphago_step, checkpoint_path) self_play_estimator.restore(restore_path) return all_losses def optimise_estimator(estimator, training_data, batch_size, training_iters, mode='reinforcement', writer=None, verbose=True): summary = estimator.train(training_data, batch_size, training_iters, mode=mode, writer=writer, verbose=verbose) return summary def evaluate_model(game, player1, player2, mcts_iters, c_puct, num_games, verbose=True): # Checkpoint the model. # TODO: Implement evaluation # TODO: Choose tau more systematically. if verbose: print("Evaluating. Self-player vs training, then training vs " "self-player") wins1, wins2, draws = evaluate_estimators_in_both_positions( game, player1.create_estimate_fn(), player2.create_estimate_fn(), mcts_iters, c_puct, num_games, tau=0.01, verbose=verbose) if verbose: print("Self-play player wins: {}, Training player wins: {}, " "Draws: {}".format(wins1, wins2, draws)) success_rate = (wins2 + draws) / (wins1 + wins2 + draws) if verbose: print("Win + draw rate for training player: {}".format( success_rate)) # Also evaluate against a random player wins1, wins2, draws = evaluate_mcts_against_random_player( game, player2.create_estimate_fn(), mcts_iters, c_puct, num_games, tau=0.01, verbose=verbose) success_rate_random = (wins1 + draws) / (wins1 + wins2 + draws) if verbose: print("Training player vs random. Wins: {}, Losses: {}, " "Draws: {}".format(wins1, wins2, draws)) ## Also evaluate against an optimal player #wins1, wins2, draws = evaluate_mcts_against_optimal_player( # game, player2.create_estimate_fn(), mcts_iters, c_puct, num_games, # tau=0.1, verbose=verbose) #success_rate_optimal = (wins1 + draws) / (wins1 + wins2 + draws) #if verbose: # print("Training player vs optimal. Wins: {}, Losses: {}, " # "Draws: {}".format(wins1, wins2, draws)) #return success_rate, success_rate_random, success_rate_optimal return success_rate, success_rate_random def checkpoint_model(player, step, path): """Checkpoint the training player. """ checkpoint_name = compute_checkpoint_name(step, path) player.save(checkpoint_name) def evaluate_mcts_against_optimal_player(game, estimator, mcts_iters, c_puct, num_evaluate_games, tau, verbose=True): # Evaluate estimator1 vs estimator2. players = {1: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau), 2: OptimalPlayer(game)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 = player1_results[1] wins2 = player1_results[-1] draws = player1_results[0] # Evaluate estimator2 vs estimator1. players = {1: OptimalPlayer(game), 2: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 += player1_results[-1] wins2 += player1_results[1] draws += player1_results[0] return wins1, wins2, draws def evaluate_mcts_against_random_player(game, estimator, mcts_iters, c_puct, num_evaluate_games, tau, verbose=True): # Evaluate estimator1 vs estimator2. players = {1: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau), 2: RandomPlayer(game)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 = player1_results[1] wins2 = player1_results[-1] draws = player1_results[0] # Evaluate estimator2 vs estimator1. players = {1: RandomPlayer(game), 2: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 += player1_results[-1] wins2 += player1_results[1] draws += player1_results[0] return wins1, wins2, draws def evaluate_estimators_in_both_positions(game, estimator1, estimator2, mcts_iters, c_puct, num_evaluate_games, tau, verbose=True): # Evaluate estimator1 vs estimator2. players = {1: MCTSPlayer(game, estimator1, mcts_iters, c_puct, tau=tau), 2: MCTSPlayer(game, estimator2, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 = player1_results[1] wins2 = player1_results[-1] draws = player1_results[0] # Evaluate estimator2 vs estimator1. players = {1: MCTSPlayer(game, estimator2, mcts_iters, c_puct, tau=tau), 2: MCTSPlayer(game, estimator1, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 += player1_results[-1] wins2 += player1_results[1] draws += player1_results[0] return wins1, wins2, draws def generate_self_play_data(game, estimator, mcts_iters, c_puct, num_iters, data=None, verbose=True): """Generates self play data for a number of iterations for a given estimator. Saves to save_file_path, if given. """ # if save_file_path is not None: # with open(save_file_path, 'r') as f: # data = json.load(save_file_path) # index = max(data.keys()) + 1 if data is not None: index = max(data.keys()) + 1 else: data = OrderedDict() index = 0 # Collect self-play training data using the best estimator. disable_tqdm = False if verbose else True for _ in tqdm(range(num_iters), disable=disable_tqdm): data[index] = self_play( game, estimator.create_estimate_fn(), mcts_iters, c_puct) index += 1 # if save_file_path is not None: # with open(save_file_path, 'w') as f: # json.dump(data, f) return data def self_play(game, estimator, mcts_iters, c_puct): """Plays a single game using MCTS to choose actions for both players. Parameters ---------- game: Game An object representing the game to be played. estimator: func An estimate function. mcts_iters: int Number of iterations to run MCTS for. c_puct: float Parameter for MCTS. Returns ------- game_state_list: list A list of game states encountered in the self-play game. Starts with the initial state and ends with a terminal state. action_probs_list: list A list of action probability dictionaries, as returned by MCTS each time the algorithm has to take an action. The ith action probabilities dictionary corresponds to the ith game_state, and action_probs_list has length one less than game_state_list, since we don't have to move in a terminal state. """ node = MCTSNode(game.initial_state, game.current_player(game.initial_state)) game_state_list = [node.game_state] action_probs_list = [] action_list = [] move_count = 0 while not node.is_terminal: # TODO: Choose this better. tau = 1 if move_count >= 10: tau = 1 / (move_count - 10 + 1) # First run MCTS to compute action probabilities. action_probs = mcts(node, game, estimator, mcts_iters, c_puct, tau=tau) # Choose the action according to the action probabilities. action = sample_distribution(action_probs) action_list.append(action) # Play the action node = node.children[action] # Add the action probabilities and game state to the list. action_probs_list.append(action_probs) game_state_list.append(node.game_state) move_count += 1 data = process_self_play_data(game_state_list, action_list, action_probs_list, game, game.action_indices) return data def process_training_data(self_play_data, replay_length=None): """Takes self play data and returns a list of tuples (state, action_probs, utility) suitable for training an estimator. Parameters ---------- self_play_data: dict Dictionary with keys given by an index (int) and values given by a log of the game. This is a list of tuples as in generate self play data. replay_length: int or None If given, only return the last replay_length (state, probs, utility) tuples. """ training_data = [] for index, game_log in self_play_data.items(): for (state, action, probs_vector, z) in game_log: training_data.append((state, probs_vector, z)) print("Training data length: {}".format(len(training_data))) print("Self play data length: {}".format(len(self_play_data))) if replay_length is not None: training_data = training_data[-replay_length:] return training_data def process_self_play_data(states_, actions_, action_probs_, game, action_indices): """Takes a list of states and action probabilities, as returned by play, and creates training data from this. We build up a list consisting of (state, probs, z) tuples, where player is the player in state 'state', and 'z' is the utility to 'player' in 'last_state'. We omit the terminal state from the list as there are no probabilities to train. TODO: Potentially include the terminal state in order to train the value. # TODO: why the underscores in the parameter names? Parameters ---------- states_: list A list of n states, with the last being terminal. actions_: list A list of n-1 actions, being the action taken in the corresponding state. action_probs_: list A list of n-1 dictionaries containing action probabilities. The ith dictionary applies to the ith state, representing the probabilities returned by play of taking each available action in the state. game: Game An object representing the game to be played. action_indices: dict A dictionary mapping actions (in the form of the legal_actions function) to action indices (to be used for training the neural network). Returns ------- training_data: list A list consisting of (state, action, probs, z) tuples, where player is the player in state 'state', and 'z' is the utility to 'player' in 'last_state'. """ # Get the outcome for the game. This should be the last state in states_. last_state = states_.pop() outcome = game.utility(last_state) # Now action_probs_ and states_ are the same length. training_data = [] for state, action, probs in zip(states_, actions_, action_probs_): # Get the player in the state, and the value to this player of the # terminal state. player = game.current_player(state) z = outcome[player] # Convert the probs dictionary to a numpy array using action_indices. probs_vector = np.zeros(len(action_indices)) for a, prob in probs.items(): probs_vector[action_indices[a]] = prob non_nan_state = np.nan_to_num(state) training_data.append((non_nan_state, action, probs_vector, z)) return training_data
39.152034
80
0.644553
0
0
0
0
0
0
0
0
7,753
0.424032
fd16ab23714a63a2de7b1edeefc67fc983b65d54
835
py
Python
SRCTF/SRCTF/django_reuse/reuse/migrations/0002_auto_20160829_1452.py
yinyueacm/work-uga
d8fd104b8c5600e1715491fc5eeffaf5c0b5896c
[ "MIT" ]
1
2019-01-11T03:20:34.000Z
2019-01-11T03:20:34.000Z
SRCTF/SRCTF/django_reuse/reuse/migrations/0002_auto_20160829_1452.py
yinyueacm/yinyue-thesis
d8fd104b8c5600e1715491fc5eeffaf5c0b5896c
[ "MIT" ]
null
null
null
SRCTF/SRCTF/django_reuse/reuse/migrations/0002_auto_20160829_1452.py
yinyueacm/yinyue-thesis
d8fd104b8c5600e1715491fc5eeffaf5c0b5896c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-29 14:52 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('reuse', '0001_initial'), ] operations = [ migrations.CreateModel( name='Pswd_table', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pswd', models.CharField(default='123456', max_length=20)), ], ), migrations.AddField( model_name='guest', name='pswd', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to='reuse.Pswd_table'), ), ]
28.793103
118
0.602395
645
0.772455
0
0
0
0
0
0
156
0.186826
fd17609bb6160f46ba3a4f3809db927e0e55536c
5,976
py
Python
complexity_science/ca/ca/ca1d.py
KristerJazz/complexity-science
2340b7467d50c45d06fa93db7603f7f2778d3c4c
[ "BSD-3-Clause" ]
null
null
null
complexity_science/ca/ca/ca1d.py
KristerJazz/complexity-science
2340b7467d50c45d06fa93db7603f7f2778d3c4c
[ "BSD-3-Clause" ]
2
2021-03-28T16:23:00.000Z
2021-04-05T08:10:35.000Z
complexity_science/ca/ca/ca1d.py
KristerJazz/complexity-science
2340b7467d50c45d06fa93db7603f7f2778d3c4c
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from .rule_manager import RuleManager class CA1D(): def __init__(self, N): """ Creates an uninitialized 1D cellular automata object with length N ------------- Parameters: N = number of cells n1 : left neighbor n2 : right neighbor ------------- Returns: None """ self.num_cells = N self.cells = np.zeros([N]) self.rm = RuleManager() self.update_neighbors() def update_neighbors(self): """ Updates the neighbor dictionary according to the neighborhood """ raise NotImplementedError("This is the base 1D CA class; please use a CA with predetermined neighborhood; SimpleCA, CA_nt, CA_t.") def set_rule(self, rule_object): """ Sets the CA rule to a wolfram rule number ------------- Parameters: rule_number = values from (0-255). Refer to wolfram's rule numbers ------------- Returns: None """ self.rm.set_rule(rule_object) def evolve(self): """ Evolves the CA according to the rule applied. Updates the state of the cell. cell = new_state Updates the neighbor according to the new_state n1 = left neighbor of new_state n2 = right neighbor of new_state ------------- Returns: new_state = new state after applying the rule """ new_state = self.rm.apply(self.cells, self.neighbors) self.cells = new_state #Dont forget to update neighbors after evolution self.update_neighbors() return new_state def initialize_index(self, index_list): """ Initializes the ca from the list of index cells[index] = 1 Automatically updates neighbors after initialization ------------- Parameters: index_list = list of index to be initialized with value 1 ------------- Returns: None : Updates the cell with initialized values """ assert(type(index_list)==type([])), "index_list must be a list" self.cells = np.zeros([self.num_cells], dtype=int) for i in index_list: self.cells[i] = 1 self.update_neighbors() def initialize_binary(self, ratio): """ Initializes the CA with a ratio of 1 and 0 values Automatically updates neighbors after initialization ------------- Parameters: ratio = ratio of "1" state over the "0" state ------------- Returns: None : Updates the cell with initialized values """ self.cells = (np.random.random(self.num_cells)>ratio).astype(int) self.update_neighbors() def reset(self): """ Initializes the cells with zero values ------------- Returns: None : Updates the cells to zero values """ self.cells = np.zeros(self.num_cells) self.update_neighbors() def initialize_random(self): """ Initializes the CA with a random value from 0 to 1 Automatically updates neighbors after initialization ------------- Returns: None : Updates the cell with initialized values """ self.cells = np.random.random(self.num_cells) self.update_neighbors() def run(self, iterations, show_figure=True): """ Run cellular automata according to the wolfram rule_number assigned. ------------- Parameters: iterations = number of times for the rule to be applied show_figure = Default is True, outputs the figure at run time ------------- Returns: result = resulting N x iteration array of the CA evolution """ result = [self.cells] for i in range(iterations): result.append(self.evolve()) if show_figure: plt.imshow(result, cmap='Greens') plt.show() plt.clf() return result def add_rule(self, rule_object): """ Add the rule object to the rule manager. This rule will apply for every evolve() function call. """ self.rm.add_rule(rule_object) def reset_rule(self): """ Resets the rule list from RuleManager """ self.rm.reset_rule() class SimpleCA(CA1D): def __init__(self, N): CA1D.__init__(self, N) self.neighborhood = "No neighbors are automatically considered" def update_neighbors(self): """ No neighors """ pass class CA_t(CA1D): def __init__(self, N): CA1D.__init__(self, N) self.neighborhood = "Two neighbors (left and right) are automatically considered" def update_neighbors(self): """ Update the neighbor values n1 : left neighbor n2 : right neighbor ------------- Returns: None """ self.neighbors = {} self.neighbors['left'] = np.roll(self.cells, 1) self.neighbors['right'] = np.roll(self.cells, -1) class CA_nt(CA1D): def __init__(self, N): CA1D.__init__(self, N) self.neighborhood = "Two neighbors (left and right) are automatically considered with non toroidal boundaries" def update_neighbors(self): """ Update the neighbor values n1 : left neighbor n2 : right neighbor ------------- Returns: None """ self.neighbors = {} left = np.roll(self.cells, 1) left[0] = 0 right = np.roll(self.cells, -1) right[-1] = 0 self.neighbors['left'] = left self.neighbors['right'] = right
29.15122
138
0.54836
5,877
0.983434
0
0
0
0
0
0
3,440
0.575636
fd1902e85156fc45744e6e48892733db33d5f755
4,373
py
Python
extract_skip_thought.py
youngfly11/ReferCOCO-Pretraining-Detectron2
8c8536a4d822b3cf9140380442a440d42e948c38
[ "Apache-2.0" ]
2
2020-08-14T08:00:53.000Z
2020-11-21T11:01:55.000Z
extract_skip_thought.py
youngfly11/ReferCOCO-Pretraining-Detectron2
8c8536a4d822b3cf9140380442a440d42e948c38
[ "Apache-2.0" ]
null
null
null
extract_skip_thought.py
youngfly11/ReferCOCO-Pretraining-Detectron2
8c8536a4d822b3cf9140380442a440d42e948c38
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/6/25 22:41 # @Author : Yongfei Liu # @Email : [email protected] import numpy as np import os.path as osp import os import pickle from collections import OrderedDict import torch import json from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES def check_objects_vocab(): with open('./flickr30k_datasets/objects_vocab.txt', 'r') as load_f: object_vocab = load_f.readlines() with open('./flickr30k_datasets/skip-thoughts/dictionary.txt', 'r') as load_f: skip_dict = load_f.readlines() object_v1 = [] for vocab in object_vocab: object_v1.append(vocab.strip()) skip_v1 = [] for sk_dict in skip_dict: skip_v1.append(sk_dict.strip()) for vocab in object_v1: vocab = vocab.split(' ') for vo in vocab: if vo not in skip_v1: print(vocab) def _make_emb_state_dict(self, dictionary, parameters): weight = torch.zeros(len(self.vocab)+1, 620) # first dim = zeros -> +1 unknown_params = parameters[dictionary['UNK']] nb_unknown = 0 for id_weight, word in enumerate(self.vocab): if word in dictionary: id_params = dictionary[word] params = parameters[id_params] else: print('Warning: word `{}` not in dictionary'.format(word)) params = unknown_params nb_unknown += 1 weight[id_weight+1] = torch.from_numpy(params) state_dict = OrderedDict({'weight':weight}) if nb_unknown > 0: print('Warning: {}/{}({}) words are not in dictionary, thus set UNK embedding parameter to init' .format(nb_unknown, len(self.vocab), len(dictionary))) return state_dict def extract_embedding(): # {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"}, path = './RefSegDatasets/refseg_anno' dataset = 'refcoco+' # object_vocab = [] # for cat in COCO_CATEGORIES: # thing = cat['isthing'] # if thing==1: # object_vocab.append(cat['name']) # with open('./flickr30k_datasets/objects_vocab.txt', 'r') as load_f: # object_vocab = load_f.readlines() with open('./flickr30k_datasets/skip-thoughts/dictionary.txt', 'r') as load_f: skip_dict = load_f.readlines() skip_dict = {word.strip():idx for idx, word in enumerate(skip_dict)} path_params = './flickr30k_datasets/skip-thoughts/utable.npy' params = np.load(path_params, encoding='latin1', allow_pickle=True) # to load from python2 # object_embed = [] # for vocab in object_vocab: # vocab = vocab.strip().split(' ') # vocab_eb = [] # for vb in vocab: # vb_idx = skip_dict.get(vb) # vocab_eb.append(params[vb_idx].squeeze()) # # vocab_eb = np.stack(vocab_eb, axis=0).mean(0) # object_embed.append(vocab_eb) # # object_embed = np.array(object_embed) ## 1600*620 # print('object_dim', object_embed.shape) # # with open(osp.join(path, dataset, 'skip_label.pkl'), 'wb') as pickle_dump: # pickle.dump(object_embed, pickle_dump) vocab_file = open(osp.join(path, dataset, 'vocab.json')) vocab = json.load(vocab_file) vocab_file.close() # add_vocab = ['relate', 'butted'] # vocab.extend(add_vocab) skip_thoughts_dict = {} for vb in vocab: vb = vb.strip() vb_idx = skip_dict.get(vb) if vb_idx is not None: skip_thoughts_dict[vb] = params[vb_idx].squeeze() else: vb_split = vb.split('-') vb_split_embed = [] for vbs in vb_split: vbs_idx = skip_dict.get(vbs) if vbs_idx is not None: vb_split_embed.append(params[vbs_idx].squeeze()) else: print(vb, 'not in dictionary') break if len(vb_split_embed) == len(vb_split): # print(vb, 'are in list') vb_split_embed = np.stack(vb_split_embed, axis=0).mean(0) skip_thoughts_dict[vb] = vb_split_embed print(len(vocab)) with open(osp.join(path, dataset, 'skip_vocab.pkl'), 'wb') as pickle_dump: pickle.dump(skip_thoughts_dict, pickle_dump) if __name__ == '__main__': extract_embedding()
30.58042
104
0.607363
0
0
0
0
0
0
0
0
1,546
0.353533
fd1912c311e861ca371e1043073ef9f199c996c4
4,909
py
Python
pyutil_mongo/cfg.py
chhsiao1981/pyutil_mongo
facea2376b48dd7157d4633ab8128c8daf7e59ef
[ "MIT" ]
null
null
null
pyutil_mongo/cfg.py
chhsiao1981/pyutil_mongo
facea2376b48dd7157d4633ab8128c8daf7e59ef
[ "MIT" ]
null
null
null
pyutil_mongo/cfg.py
chhsiao1981/pyutil_mongo
facea2376b48dd7157d4633ab8128c8daf7e59ef
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Attributes: config (dict): Description logger (logging.Logger): Description """ import logging import pymongo logger = None config = {} class MongoMap(object): """Info about MongoDB Attributes: ca (None, optional): ssl-ca cert (None, optional): ssl-cert collection_map (dict): mapping for the collection-name in the code vs. real collection-name in the mongo. db_name (str, optional): db-name used in the code. ensure_index (None, optional): ensure-index ensure_unique_index (None, optional): ensure-unique-index hostname (str): hostname of the real mongo. mongo_db_name (str, optional): real db-name in mongodb. ssl (bool, optional): whether to use ssl """ def __init__(self, collection_map: dict, ensure_index=None, ensure_unique_index=None, db_name="mongo", hostname="localhost:27017", mongo_db_name="test", ssl=False, cert=None, ca=None): self.db_name = db_name self.hostname = hostname self.mongo_db_name = mongo_db_name self.collection_map = collection_map self.ensure_index = ensure_index self.ensure_unique_index = ensure_unique_index self.ssl = ssl self.cert = cert self.ca = ca def init(the_logger: logging.Logger, mongo_maps: list): """init Args: the_logger (logging.Logger): Description mongo_maps (list): list of MongoDB info Returns: TYPE: Description """ global logger logger = the_logger return restart_mongo(mongo_maps=mongo_maps) def restart_mongo(collection_name="", db_name="", mongo_maps=None): """restarting mongo Args: collection_name (str, optional): collection-name db_name (str, optional): db-name mongo_maps (None, optional): mongo-maps Returns: TYPE: Description """ ''' initialize mongo ''' global config if mongo_maps is None: mongo_maps = [each['mongo_map'] for each in config.values()] if len(mongo_maps) == 0: return errs = [] for idx, mongo_map in enumerate(mongo_maps): each_err = _init_mongo_map_core(mongo_map, collection_name=collection_name, db_name=db_name) if each_err: errs.append(each_err) logger.error('(%s/%s): e: %s', idx, len(mongo_maps), each_err) if not errs: return None err_str = ','.join(['%s' % (each) for each in errs]) return Exception(err_str) def _init_mongo_map_core(mongo_map: MongoMap, collection_name="", db_name=""): """Summary Args: mongo_map (MongoMap): Description collection_name (str, optional): Description db_name (str, optional): Description Returns: TYPE: Description """ global config global logger mongo_map_db_name, hostname, mongo_db_name, collection_map, ensure_index, ensure_unique_index = mongo_map.db_name, mongo_map.hostname, mongo_map.mongo_db_name, mongo_map.collection_map, mongo_map.ensure_index, mongo_map.ensure_unique_index if db_name != '' and mongo_map_db_name != db_name: return if collection_name != '' and collection_name not in collection_map: return if collection_name == '' and mongo_map_db_name in config: return Exception('db already in config: db_name: %s config: %s', mongo_map_db_name, config[mongo_map_db_name]) if ensure_index is None: ensure_index = {} if ensure_unique_index is None: ensure_unique_index = {} # mongo_server_url mongo_server_url = 'mongodb://%s/%s' % (hostname, mongo_db_name) # mongo-server-client mongo_kwargs = {} if mongo_map.ssl: mongo_kwargs.update({ 'ssl': True, 'authSource': '$external', 'authMechanism': 'MONGODB-X509', 'ssl_certfile': mongo_map.cert, 'ssl_ca_certs': mongo_map.ca, }) mongo_server_client = pymongo.MongoClient( mongo_server_url, **mongo_kwargs, )[mongo_db_name] # config-by-db-name config_by_db_name = {'mongo_map': mongo_map, 'db': {}, 'url': mongo_server_url} # collection for (key, val) in collection_map.items(): logger.info('mongo: %s => %s', key, val) config_by_db_name['db'][key] = mongo_server_client[val] # enure index for key, val in ensure_index.items(): logger.info('to ensure_index: key: %s', key) config_by_db_name['db'][key].create_index(val, background=True) # enure unique index for key, val in ensure_unique_index.items(): logger.info('to ensure_unique_index: key: %s', key) config_by_db_name['db'][key].create_index(val, background=True, unique=True) config[mongo_map_db_name] = config_by_db_name def clean(): """Reset config """ global config config = {}
28.375723
243
0.646771
1,113
0.226726
0
0
0
0
0
0
1,780
0.362599
fd196b9ee70ef729b16290f14477ca8c3d79df73
172
py
Python
exhaustive_search/05_multiple-arrays/05-01-01.py
fumiyanll23/algo-method
d86ea1d399cbc5a1db0ae49d0c82e41042f661ab
[ "MIT" ]
null
null
null
exhaustive_search/05_multiple-arrays/05-01-01.py
fumiyanll23/algo-method
d86ea1d399cbc5a1db0ae49d0c82e41042f661ab
[ "MIT" ]
null
null
null
exhaustive_search/05_multiple-arrays/05-01-01.py
fumiyanll23/algo-method
d86ea1d399cbc5a1db0ae49d0c82e41042f661ab
[ "MIT" ]
null
null
null
# input N, M = map(int, input().split()) As = [*map(int, input().split())] Bs = [*map(int, input().split())] # compute # output print(sum(A > B for B in Bs for A in As))
17.2
41
0.569767
0
0
0
0
0
0
0
0
24
0.139535
fd19ca0b5b114583ad7ed023250d660c51840010
141
py
Python
solutions/1639.py
nxexox/acm.timus
9548d2a0b54fdd99bd60071f3be2fb7f897a7303
[ "MIT" ]
null
null
null
solutions/1639.py
nxexox/acm.timus
9548d2a0b54fdd99bd60071f3be2fb7f897a7303
[ "MIT" ]
null
null
null
solutions/1639.py
nxexox/acm.timus
9548d2a0b54fdd99bd60071f3be2fb7f897a7303
[ "MIT" ]
null
null
null
#!/usr/bin/python a, b = [int(i) for i in input().split()] c = a * b if c % 2 == 0: print('[:=[first]') else: print('[second]=:]')
14.1
40
0.475177
0
0
0
0
0
0
0
0
42
0.297872
fd19e6853abb785c9505d8a5f4aaf9326f1ad438
374
py
Python
lstmcpipe/config/__init__.py
cta-observatory/lst-i-rf
7a634e0b3b07dda2b20df47875d97616eab65821
[ "MIT" ]
2
2021-02-01T17:30:46.000Z
2021-02-22T13:59:49.000Z
lstmcpipe/config/__init__.py
cta-observatory/lst-i-rf
7a634e0b3b07dda2b20df47875d97616eab65821
[ "MIT" ]
106
2021-04-16T21:15:20.000Z
2022-03-31T23:02:50.000Z
lstmcpipe/config/__init__.py
cta-observatory/lstmcpipe
7a634e0b3b07dda2b20df47875d97616eab65821
[ "MIT" ]
3
2022-03-02T09:23:09.000Z
2022-03-03T16:00:25.000Z
import os from shutil import which from .pipeline_config import load_config __all__ = ["load_config"] def export_env(outdir="."): if which("conda") is not None: os.system((f"conda env export > {os.path.join(outdir, 'conda_env.yml')}")) elif which("pip") is not None: os.system(f"python -m pip freeze > {os.path.join(outdir, 'requirements.txt')}")
28.769231
87
0.671123
0
0
0
0
0
0
0
0
157
0.419786
fd1a5012b7966cdeb8f03d71591cc6d8a74c6420
2,337
py
Python
tests/stakkr_compose_test.py
dwade75/stakkr
ae77607e84b5b305ae8f5a14eb8f22237d943a29
[ "Apache-2.0" ]
null
null
null
tests/stakkr_compose_test.py
dwade75/stakkr
ae77607e84b5b305ae8f5a14eb8f22237d943a29
[ "Apache-2.0" ]
null
null
null
tests/stakkr_compose_test.py
dwade75/stakkr
ae77607e84b5b305ae8f5a14eb8f22237d943a29
[ "Apache-2.0" ]
null
null
null
import os import sys import stakkr.stakkr_compose as sc import subprocess import unittest base_dir = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, base_dir + '/../') # https://docs.python.org/3/library/unittest.html#assert-methods class StakkrComposeTest(unittest.TestCase): services = { 'a': 'service_a.yml', 'b': 'service_b.yml', } def test_get_invalid_config_in_cli(self): cmd = ['stakkr-compose', '-c', base_dir + '/static/config_invalid.ini'] result = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for line in result.stdout: self.assertRegex(line.decode(), 'Failed validating.*config_invalid.ini.*') break def test_get_uid(self): uid = '1000' if os.name == 'nt' else str(os.getuid()) self.assertEqual(sc._get_uid(None), uid) def test_get_gid(self): gid = '1000' if os.name == 'nt' else str(os.getgid()) self.assertEqual(sc._get_gid(None), gid) def test_get_uid_whenset(self): self.assertEqual(sc._get_uid(1000), '1000') def test_get_gid_whenset(self): self.assertEqual(sc._get_gid(1000), '1000') def test_get_wrong_enabled_service(self): with self.assertRaises(SystemExit): sc.get_enabled_services(['c']) def test_get_right_enabled_service(self): services_files = sc.get_enabled_services(['maildev']) self.assertTrue(services_files[0].endswith('static/services/maildev.yml')) def test_get_available_services(self): services = sc.get_available_services() self.assertTrue('apache' in services) self.assertTrue('mongo' in services) self.assertTrue('php' in services) self.assertTrue('elasticsearch' in services) self.assertEqual('static/services/apache.yml', services['apache'][-26:]) self.assertEqual('static/services/mongo.yml', services['mongo'][-25:]) def test_get_valid_configured_services(self): services = sc.get_configured_services(base_dir + '/static/config_valid.ini') self.assertTrue('maildev' in services) self.assertTrue('php' in services) self.assertFalse('mongo' in services) self.assertFalse('elasticsearch' in services) if __name__ == "__main__": unittest.main()
31.16
86
0.670946
2,037
0.87163
0
0
0
0
0
0
445
0.190415
fd1dc3801dfc8c9bd5d0968ee738990d98e2881b
2,792
py
Python
DQIC/backtesting/run.py
bladezzw/DeepQuantInChina
ce74a9bf8db91e3545ccc3e7af81f80796a536fa
[ "MIT" ]
8
2019-04-14T03:05:19.000Z
2020-02-13T18:35:41.000Z
DQIC/backtesting/run.py
bladezzw/DeepQuantInChina
ce74a9bf8db91e3545ccc3e7af81f80796a536fa
[ "MIT" ]
null
null
null
DQIC/backtesting/run.py
bladezzw/DeepQuantInChina
ce74a9bf8db91e3545ccc3e7af81f80796a536fa
[ "MIT" ]
2
2019-05-08T08:23:50.000Z
2020-01-23T03:54:41.000Z
import os,sys BASE_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(BASE_DIR) import datetime import time from backtesting.backtest import Backtest from backtesting.data import HistoricCSVDataHandler from backtesting.execution import SimulatedExecutionHandler from backtesting.portfolio import Portfolio,Portfolio_For_futures from Strategy.strategy import MovingAverageCrossStrategy def exc_time(func, *args, **kwargs): """ 计算运行时间 :param func: a function :param args: arguements of the function :param kwargs: arguements of the function :return: time costed on running the function """ def wrapper(func, *args, **kwargs): start_time = time.time() func(*args, **kwargs) stop_time = time.time() print("run time is %s" % (stop_time - start_time)) return wrapper(func, *args, **kwargs) if __name__ == "__main__": csv_dir = r"~/data" symbol_list = ['000001.SH'] initial_capital = 5000.0 start_date = datetime.datetime(2012,1,1,0,0,0) # 这个没用上. heartbeat = 0.0 #default: MACS = MovingAverageCrossStrategy(short_window=10,long_window=30) MACS = MovingAverageCrossStrategy commission = 5 exchangeID = '' lever = 10 # 杠杆,(在期货中,一手跳动一个单位的价格,如:rb一手,跳动1个点表示10元) backtest_type = 'futures' if backtest_type == 'stock': backtest = Backtest(csv_dir=csv_dir, symbol_list=symbol_list, initial_capital=initial_capital, heartbeat=heartbeat, start_date=start_date, data_handler=HistoricCSVDataHandler, execution_handler=SimulatedExecutionHandler, portfolio=Portfolio, strategy=MACS, commission=commission, exchangeID=None, lever=1 ) elif backtest_type == 'futures': backtest = Backtest(csv_dir=csv_dir, symbol_list=symbol_list, initial_capital=initial_capital, heartbeat=heartbeat, start_date=start_date, data_handler=HistoricCSVDataHandler, execution_handler=SimulatedExecutionHandler, portfolio=Portfolio_For_futures, strategy=MACS, commission=commission, exchangeID=exchangeID, lever=lever ) exc_time(backtest.simulate_trading) # run time is 1.2880792617797852
33.638554
78
0.567335
0
0
0
0
0
0
0
0
497
0.173291
fd1e95f3c8250711415f3acb25bf5e3b26c63f39
3,306
py
Python
Emergency/DB/DRAW3D.py
LeeDaeil/CNS_Autonomous
2ae3688cfd654b9669893e3cdf4cdf1ac0748b9f
[ "Apache-2.0" ]
2
2020-03-22T14:35:00.000Z
2020-05-26T05:06:41.000Z
Emergency/DB/DRAW3D.py
LeeDaeil/CNS_Autonomous
2ae3688cfd654b9669893e3cdf4cdf1ac0748b9f
[ "Apache-2.0" ]
null
null
null
Emergency/DB/DRAW3D.py
LeeDaeil/CNS_Autonomous
2ae3688cfd654b9669893e3cdf4cdf1ac0748b9f
[ "Apache-2.0" ]
null
null
null
import matplotlib.pylab as plt import numpy as np import pandas as pd from COMMONTOOL import PTCureve DB = pd.read_csv('0_228.txt') # DB = pd.read_csv('../3차 검증/322.txt') # target_time = 100 # for i in range(0, len(DB)): # if DB['KCNTOMS'].loc[i] != target_time: # DB.drop([i], inplace=True) # else: # target_time += 100 x, y, z, zero = [], [], [], [] PTY, PTX, BotZ, UpZ = [], [], [], [] RateX, RateY, RateZ = [], [], [] SaveTIMETEMP = {'Temp':0, 'Time':0} for temp, t, pres, co1, co2 in zip(DB['UAVLEG2'].tolist(), DB['KCNTOMS'].tolist(), DB['ZINST65'].tolist(), DB['KLAMPO6'].tolist(), DB['KLAMPO9'].tolist()): x.append(temp) y.append(-t) z.append(pres) if co1 == 0 and co2 == 1 and t > 1500: if SaveTIMETEMP['Time'] == 0: SaveTIMETEMP['Time'] = t SaveTIMETEMP['Temp'] = temp rate = -55 / (60 * 60 * 5) get_temp = rate * (t - SaveTIMETEMP['Time']) + SaveTIMETEMP['Temp'] RateX.append(get_temp) RateY.append(-t) RateZ.append(0) zero.append(0) Temp = [] UpPres = [] BotPres = [] for _ in range(0, 350): uppres, botpres = PTCureve()._get_pres(_) Temp.append([_]) UpPres.append([uppres]) BotPres.append([botpres]) PTX = np.array(Temp) BotZ = np.array(BotPres) UpZ = np.array(UpPres) PTY = np.array([[0] for _ in range(0, 350)]) PTX = np.hstack([PTX[:, 0:1], Temp]) BotZ = np.hstack([BotZ[:, 0:1], BotPres]) UpZ = np.hstack([UpZ[:, 0:1], UpPres]) PTY = np.hstack([PTY[:, 0:1], np.array([[-t] for _ in range(0, 350)])]) print(np.shape(PTX)) fig = plt.figure() ax1 = plt.axes(projection='3d') ax1.plot3D(RateX, RateY, RateZ, color='orange', lw=1.5, ls='--') ax1.plot3D([170, 0, 0, 170, 170], [y[-1], y[-1], 0, 0, y[-1]], [29.5, 29.5, 29.5, 29.5, 29.5], color='black', lw=0.5, ls='--') ax1.plot3D([170, 0, 0, 170, 170], [y[-1], y[-1], 0, 0, y[-1]], [17, 17, 17, 17, 17], color='black', lw=0.5, ls='--') ax1.plot3D([170, 170], [y[-1], y[-1]], [17, 29.5], color='black', lw=0.5, ls='--') ax1.plot3D([170, 170], [0, 0], [17, 29.5], color='black', lw=0.5, ls='--') ax1.plot3D([0, 0], [y[-1], y[-1]], [17, 29.5], color='black', lw=0.5, ls='--') ax1.plot3D([0, 0], [0, 0], [17, 29.5], color='black', lw=0.5, ls='--') ax1.plot_surface(PTX, PTY, UpZ, rstride=8, cstride=8, alpha=0.15, color='r') ax1.plot_surface(PTX, PTY, BotZ, rstride=8, cstride=8, alpha=0.15, color='r') # ax1.scatter(PTX, PTY, BotZ, marker='*') ax1.plot3D(x, y, z, color='blue', lw=1.5) # linewidth or lw: float ax1.plot3D([x[-1], x[-1]], [y[-1], y[-1]], [0, z[-1]], color='blue', lw=0.5, ls='--') ax1.plot3D([0, x[-1]], [y[-1], y[-1]], [z[-1], z[-1]], color='blue', lw=0.5, ls='--') ax1.plot3D([x[-1], x[-1]], [0, y[-1]], [z[-1], z[-1]], color='blue', lw=0.5, ls='--') # each ax1.plot3D(x, y, zero, color='black', lw=1, ls='--') # temp ax1.plot3D(zero, y, z, color='black', lw=1, ls='--') # pres ax1.plot3D(x, zero, z, color='black', lw=1, ls='--') # PT # 절대값 처리 ax1.set_yticklabels([int(_) for _ in abs(ax1.get_yticks())]) ax1.set_xlabel('Temperature') ax1.set_ylabel('Time [Tick]') ax1.set_zlabel('Pressure') ax1.set_xlim(0, 350) ax1.set_zlim(0, 200) plt.show()
30.897196
85
0.5366
0
0
0
0
0
0
0
0
608
0.183022
fd1f6bede9086f03b21d05de1c334c5625e057f0
658
py
Python
aeroplast/images.py
kk6/aeroplast
8347bf071f43a560b865a7f37b76fb05f5cea57d
[ "MIT" ]
1
2019-11-12T07:02:20.000Z
2019-11-12T07:02:20.000Z
aeroplast/images.py
kk6/aeroplast
8347bf071f43a560b865a7f37b76fb05f5cea57d
[ "MIT" ]
14
2018-11-13T09:57:09.000Z
2019-04-05T20:02:46.000Z
aeroplast/images.py
kk6/aeroplast
8347bf071f43a560b865a7f37b76fb05f5cea57d
[ "MIT" ]
1
2018-12-20T07:52:59.000Z
2018-12-20T07:52:59.000Z
# -*- coding: utf-8 -*- """ Transparent PNG conversion ~~~~~~~~~~~~~~~~~~~~~~~~~~ """ from PIL import Image def get_new_size(original_size): """ Returns each width and height plus 2px. :param original_size: Original image's size :return: Width / height after calculation :rtype: tuple """ return tuple(x + 2 for x in original_size) def resize_image(image, size): """ Resize the image to fit in the specified size. :param image: Original image. :param size: Tuple of (width, height). :return: Resized image. :rtype: :py:class: `~PIL.Image.Image` """ image.thumbnail(size) return image
18.8
50
0.617021
0
0
0
0
0
0
0
0
466
0.708207
fd22786701bf4e42b8d3932674e46c80a650982c
678
py
Python
common/common/management/commands/makemessages.py
FSTUM/rallyetool-v2
2f3e2b5cb8655abe023ed1215b7182430b75bb23
[ "MIT" ]
1
2021-10-30T09:31:02.000Z
2021-10-30T09:31:02.000Z
common/common/management/commands/makemessages.py
FSTUM/rallyetool-v2
2f3e2b5cb8655abe023ed1215b7182430b75bb23
[ "MIT" ]
9
2021-11-23T10:13:43.000Z
2022-03-01T15:04:15.000Z
common/common/management/commands/makemessages.py
CommanderStorm/rallyetool-v2
721413d6df8afc9347dac7ee83deb3a0ad4c01bc
[ "MIT" ]
1
2021-10-16T09:07:47.000Z
2021-10-16T09:07:47.000Z
from django.core.management.commands import makemessages class Command(makemessages.Command): def build_potfiles(self): potfiles = super().build_potfiles() for potfile in sorted(set(potfiles)): self._remove_pot_creation_date(potfile) return potfiles @staticmethod def _remove_pot_creation_date(path): modified_lines = [] with open(path, "rb") as file: for line in file: if not line.startswith(b'"POT-Creation-Date: '): modified_lines.append(line) with open(path, "wb") as file: for line in modified_lines: file.write(line)
27.12
64
0.610619
618
0.911504
0
0
378
0.557522
0
0
31
0.045723
fd2333a5ba2bad8fcd4a158981a7c15852072e07
6,529
py
Python
app/api/v2/users/views_update.py
Raywire/iReporter
ac58414b84b9c96f0be5e0d477355d0811d8b9c5
[ "MIT" ]
3
2019-01-09T15:17:28.000Z
2019-12-01T18:40:50.000Z
app/api/v2/users/views_update.py
Raywire/iReporter
ac58414b84b9c96f0be5e0d477355d0811d8b9c5
[ "MIT" ]
13
2018-11-30T05:33:13.000Z
2021-04-30T20:46:41.000Z
app/api/v2/users/views_update.py
Raywire/iReporter
ac58414b84b9c96f0be5e0d477355d0811d8b9c5
[ "MIT" ]
3
2018-12-02T16:10:12.000Z
2019-01-04T14:51:04.000Z
"""Views for users""" from flask_restful import Resource from flask import jsonify, request from app.api.v2.users.models import UserModel from app.api.v2.decorator import token_required, get_token from app.api.v2.send_email import send class UserStatus(Resource): """Class with method for updating a specific user admin status""" def __init__(self): self.db = UserModel() @token_required def patch(current_user, self, username): """method to promote a user""" user = self.db.get_user(username) if user is None: return jsonify({ "status": 404, "message": "user does not exist" }) if current_user['isadmin'] is not True or self.db.get_user(username)['id'] is 1: return jsonify({ "status": 403, "message": "You cannot change the status of this user" }) if current_user['username'] == username: return jsonify({ "status": 403, "message": "You cannot change your own admin status" }) user_status_updated = self.db.promote_user(username) if user_status_updated is True: success_message = { "username": username, "message": "User status has been updated" } return jsonify({ "status": 200, "data": success_message }) class UserActivity(Resource): """Class with method for disabling or enabling user activity""" def __init__(self): self.db = UserModel() @token_required def patch(current_user, self, username): """method to deactivate/activate a user""" user = self.db.get_user(username) if user is None: return jsonify({ "status": 404, "message": "user does not exist" }) if current_user['isadmin'] is not True or user['id'] == 1: return jsonify({ "status": 403, "message": "You cannot change this user's active status" }) if current_user['username'] == username: return jsonify({ "status": 403, "message": "You cannot change your own active status" }) user_activity_updated = self.db.activate_user(username) if user_activity_updated is True: return jsonify({ "status": 200, "data": { "username": username, "message": "User active status has been updated" } }) class UserProfilePic(Resource): """Class with method for uploading a user's profile picture""" def __init__(self): self.db = UserModel() @token_required def patch(current_user, self, username): """method to upload a user's profile picture""" if current_user['username'] != username: return jsonify({ "status": 403, "message": "A user can only upload a picture to their own profile" }) upload_status = self.db.upload_profile_pic(username) if upload_status == 'File type not supported' or upload_status == 'select an image' or upload_status == 'no file part': return jsonify({ "status": 400, "message": upload_status }) if upload_status is True: return jsonify({ "status": 200, "data": { "username": username, "message": "Your profile picture has been uploaded" } }) class VerifyAccount(Resource): """Class with method to verify a user's account""" @token_required def patch(current_user, self, username): """Method to verify a user's account""" loggedin_user = UserModel().get_user(username) if current_user['verification'] is False: return {"message": "Verification failed please use the link in your email address"}, 403 if loggedin_user is None: return jsonify({ "status": 404, "message": "user does not exist" }) if current_user['username'] != username: return jsonify({ "status": 403, "message": "A user can only verify their own account" }) verification = UserModel().verify_user(username) if verification == 'account verified': return jsonify({ "status": 200, "data": { "username": username, "message": "Your account has been verified" } }) class RequestVerification(Resource): """Class with method to request an account verification link""" @token_required def post(current_user, self, username): """Method to request account verification""" unverified_user = UserModel().get_user(username) if current_user['username'] != username: return { "status": 403, "message": "A user can only request verification for their own account" }, 403 email = unverified_user['email'] public_id = unverified_user['public_id'] json_verification_link = request.json.get('verificationlink', None) verification_token = get_token(public_id, 30, True).decode('UTF-8') if json_verification_link is None: return { "message": { "verificationlink": "This key is required" } }, 400 verification_link = json_verification_link + '?username=' + username + '?token=' + verification_token verification_message = "If you didn't ask to verify this address, you can ignore this email.\n\nThanks,\n\nYour iReporter team" subject = "Account Verification" body = "Follow this link within half an hour to verify your email address: {0}\n{1}".format( verification_link, verification_message) if send(email, subject, body) is True: return jsonify({ "status": 200, "message": "Verification link has been sent to your email" }) return { "status": 400, "message": "Verification failed please try again" }, 400
33.482051
135
0.551386
6,278
0.961556
0
0
5,602
0.858018
0
0
2,047
0.313524
fd247bba2b56b1306086374a12025c1833517c10
7,357
py
Python
LoadDataAndPrepare/Make_Dictionaries/4_make_reviews_all_words_vocab_dictionary.py
ngrover2/Automatic_Lexicon_Induction
b58a1d55f294293161dc23ab2e6d669c1c5e90d8
[ "MIT" ]
null
null
null
LoadDataAndPrepare/Make_Dictionaries/4_make_reviews_all_words_vocab_dictionary.py
ngrover2/Automatic_Lexicon_Induction
b58a1d55f294293161dc23ab2e6d669c1c5e90d8
[ "MIT" ]
null
null
null
LoadDataAndPrepare/Make_Dictionaries/4_make_reviews_all_words_vocab_dictionary.py
ngrover2/Automatic_Lexicon_Induction
b58a1d55f294293161dc23ab2e6d669c1c5e90d8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import os import traceback import ujson from pprint import pprint from textblob import TextBlob as tb from textblob import Word as wd import shutil from collections import defaultdict from gensim.corpora import Dictionary from socialconfig import config class get_reviews_iterable(object): def __init__(self, rfname): self.read_file = rfname def __iter__(self): try: print("Opening file:{file}".format(file=self.read_file)) with open(self.read_file,'r') as file: for line in file: yield line except: raise print("Error reading {f}:".format(f=self.read_file)) # print(traceback.format_exc()) class make_dictionaries(object): """docstring for ClassName""" def __init__(self): pass def create_dictionary(self): YELP_DATASET_DIR = config.get("YELP_DATASET_DIR",None) SAVE_REVIEWS_BY_CATEGORY_DIRECTORY = config.get("SAVE_REVIEWS_BY_CATEGORY_DIRECTORY",None) SAVE_DICTIONARY_DIR = config.get("SAVE_DICTIONARY_DIR",None) SAVE_BAG_OF_WORDS_DIR = config.get("SAVE_BAG_OF_WORDS_DIR",None) SAVE_N_BAG_OF_WORDS_DOCS_PER_FILE = int(config.get("SAVE_N_BAG_OF_WORDS_DOCS_PER_FILE",25000)) if not (YELP_DATASET_DIR and SAVE_REVIEWS_BY_CATEGORY_DIRECTORY and SAVE_DICTIONARY_DIR and SAVE_BAG_OF_WORDS_DIR and SAVE_DICTIONARY_DIR): print("config keys are not set correctly in the config file: socialconfig.py") exit(0) SAVE_UNFILTERED_DICTIONARY_DIR = os.path.join(SAVE_DICTIONARY_DIR,"Unfiltered") if not os.path.exists(SAVE_REVIEWS_BY_CATEGORY_DIRECTORY) and not os.path.isdir(SAVE_REVIEWS_BY_CATEGORY_DIRECTORY): raise("Directory {d} does not exist".format(d=SAVE_REVIEWS_BY_CATEGORY_DIRECTORY)) if not (os.path.exists(SAVE_BAG_OF_WORDS_DIR) and os.path.isdir(SAVE_BAG_OF_WORDS_DIR)): os.makedirs(SAVE_BAG_OF_WORDS_DIR) if not (os.path.exists(SAVE_UNFILTERED_DICTIONARY_DIR) and os.path.isdir(SAVE_UNFILTERED_DICTIONARY_DIR)): os.makedirs(SAVE_UNFILTERED_DICTIONARY_DIR) for pardir, sub_dirs, files in os.walk(SAVE_REVIEWS_BY_CATEGORY_DIRECTORY): if len(files) > 0: error_count = 0 review_docs = [] negative_docs = [] positive_docs = [] doc_count = 0 docs_per_file = SAVE_N_BAG_OF_WORDS_DOCS_PER_FILE file_num = str((doc_count/docs_per_file) + 1) for file in files: if "yelp_reviews_" in file and "category" in pardir: reviews = get_reviews_iterable(os.path.join(pardir,file)) yelp_category = pardir.split('/')[-1] CATEGORY_SPECIFIC_BAG_OF_WORDS_DIR = os.path.join(SAVE_BAG_OF_WORDS_DIR,yelp_category) if not (os.path.exists(CATEGORY_SPECIFIC_BAG_OF_WORDS_DIR) and os.path.isdir(CATEGORY_SPECIFIC_BAG_OF_WORDS_DIR)): os.makedirs(CATEGORY_SPECIFIC_BAG_OF_WORDS_DIR) fname = os.path.join(SAVE_BAG_OF_WORDS_DIR,yelp_category,"{cat}_file_{file_num}.txt".format(cat=yelp_category,file_num=file_num)) bow_file = open(fname,'w') print("Writing docs (in bag of words form) for {cat} to directory: {d}".format(cat=yelp_category,d=os.path.join(SAVE_BAG_OF_WORDS_DIR,yelp_category))) for review in reviews: try: review_dict = ujson.loads(review) except: error_count += 1 pass adjs = review_dict.get("adjectives",None) rating = int(review_dict.get("rating",-1)) if adjs: doc_count += 1 bow_file.write(ujson.dumps(adjs.encode("utf-8")) + "\n") review_docs.append(adjs.strip().split()) if (doc_count%docs_per_file) == 0: if bow_file: bow_file.close() file_num = str((doc_count/docs_per_file) + 1) fname = os.path.join(SAVE_BAG_OF_WORDS_DIR,yelp_category,"{cat}_file_{file_num}.txt".format(cat=yelp_category,file_num=file_num)) bow_file = open(fname,'w') if rating: if rating > 3: positive_docs.append(adjs.strip().split()) elif rating < 3: negative_docs.append(adjs.strip().split()) else: pass print("Wrote {total} docs in {cat} category".format(total=str(doc_count),cat=yelp_category)) dictionary = Dictionary(review_docs) CATEGORY_SPECIFIC_DICT_DIR = os.path.join(SAVE_UNFILTERED_DICTIONARY_DIR,yelp_category) POSITIVE_SUB_DIR = os.path.join(CATEGORY_SPECIFIC_DICT_DIR,"positive") NEGATIVE_SUB_DIR = os.path.join(CATEGORY_SPECIFIC_DICT_DIR,"negative") if not (os.path.exists(CATEGORY_SPECIFIC_DICT_DIR) and os.path.isdir(CATEGORY_SPECIFIC_DICT_DIR)): os.makedirs(CATEGORY_SPECIFIC_DICT_DIR) os.makedirs(POSITIVE_SUB_DIR) os.makedirs(NEGATIVE_SUB_DIR) dictionary.save(os.path.join(CATEGORY_SPECIFIC_DICT_DIR,"{yelp_category}_dict.dict".format(yelp_category=yelp_category))) dictionary.save_as_text(os.path.join(CATEGORY_SPECIFIC_DICT_DIR,"{yelp_category}_dict.txt".format(yelp_category=yelp_category))) sorted_doc_freqs = sorted(dictionary.dfs.items(),key = lambda x : x[1],reverse=True) # print("Will save file in:\n " + os.path.join(CATEGORY_SPECIFIC_DICT_DIR,"{yelp_category}_dict.txt".format(yelp_category=yelp_category))) with open(os.path.join(CATEGORY_SPECIFIC_DICT_DIR,"{yelp_category}_words_doc_frequencies.txt".format(yelp_category=yelp_category)),'w') as df_file: for (token_id,doc_freq) in sorted_doc_freqs: df_file.write(str(dictionary.get(token_id,"Unknown").encode('utf-8')) + " " + str(doc_freq) + "\n") del dictionary del review_docs del sorted_doc_freqs pos_dictionary = Dictionary(positive_docs) del positive_docs neg_dictionary = Dictionary(negative_docs) del negative_docs pos_dictionary.save(os.path.join(POSITIVE_SUB_DIR,"{yelp_category}_pos_dict.dict".format(yelp_category=yelp_category))) pos_dictionary.save_as_text(os.path.join(POSITIVE_SUB_DIR,"{yelp_category}_pos_dict.txt".format(yelp_category=yelp_category))) sorted_pos_doc_freqs = sorted(pos_dictionary.dfs.items(),key = lambda x : x[1],reverse=True) with open(os.path.join(POSITIVE_SUB_DIR,"{yelp_category}_pos_words_doc_frequencies.txt".format(yelp_category=yelp_category)),'w') as df_file: for (token_id,doc_freq) in sorted_pos_doc_freqs: df_file.write(str(pos_dictionary.get(token_id,"Unknown").encode('utf-8')) + " " + str(doc_freq) + "\n") del pos_dictionary del sorted_pos_doc_freqs neg_dictionary.save(os.path.join(NEGATIVE_SUB_DIR,"{yelp_category}_neg_dict.dict".format(yelp_category=yelp_category))) neg_dictionary.save_as_text(os.path.join(NEGATIVE_SUB_DIR,"{yelp_category}_neg_dict.txt".format(yelp_category=yelp_category))) sorted_neg_doc_freqs = sorted(neg_dictionary.dfs.items(),key = lambda x : x[1],reverse=True) with open(os.path.join(NEGATIVE_SUB_DIR,"{yelp_category}_neg_words_doc_frequencies.txt".format(yelp_category=yelp_category)),'w') as df_file: for (token_id,doc_freq) in sorted_neg_doc_freqs: df_file.write(str(neg_dictionary.get(token_id,"Unknown").encode('utf-8')) + " " + str(doc_freq) + "\n") del neg_dictionary del sorted_neg_doc_freqs print("{count} {cat} reviews were discarded because of parsing errors".format(count=error_count,cat=yelp_category)) print("Created dictionary for {cat} tokens".format(cat=yelp_category)) if __name__ == "__main__": try: mk = make_dictionaries() mk.create_dictionary() except: raise
42.773256
156
0.740791
6,956
0.945494
276
0.037515
0
0
0
0
1,254
0.17045
fd25176d16569d58b76384f5892d5e731b3f5603
434
py
Python
tests/test_demo.py
PrabhuLoganathan/Pytest-Selenium-POM--Google
d0b50faf28a0c3797d1b0bc838d77f82dd0be81c
[ "MIT" ]
null
null
null
tests/test_demo.py
PrabhuLoganathan/Pytest-Selenium-POM--Google
d0b50faf28a0c3797d1b0bc838d77f82dd0be81c
[ "MIT" ]
1
2021-04-22T12:02:19.000Z
2021-04-22T12:02:19.000Z
tests/test_demo.py
wadle/test_demo_pytest_selenium
bc9f2b4a9da895568da2cc3f0bc904f78775884c
[ "MIT" ]
1
2020-11-26T20:03:07.000Z
2020-11-26T20:03:07.000Z
from pages.demo_page import DemoPage class TestDemo: def test_open_page(self, browser): """ :param browser: :return: """ obj = DemoPage(browser) obj.open_page() def test_verify_page_title(self, browser): """ :param browser: :return: """ obj = DemoPage(browser) obj.open_page() assert obj.driver.title == "Google"
16.074074
46
0.532258
392
0.903226
0
0
0
0
0
0
122
0.281106
fd266f079f9daa527e01e31d5df3c4df79e8150b
1,126
py
Python
day 03/day03_part1.py
MischaDy/PyAdventOfCode2020
3e0a1a61ac930d7e30a0104ac617008297508fcb
[ "CC0-1.0" ]
2
2020-12-17T18:49:20.000Z
2021-02-20T16:48:14.000Z
day 03/day03_part1.py
MischaDy/PyAdventOfCode2020
3e0a1a61ac930d7e30a0104ac617008297508fcb
[ "CC0-1.0" ]
null
null
null
day 03/day03_part1.py
MischaDy/PyAdventOfCode2020
3e0a1a61ac930d7e30a0104ac617008297508fcb
[ "CC0-1.0" ]
3
2020-12-20T19:08:32.000Z
2020-12-26T22:11:15.000Z
from helpers.cyclic_list import CyclicList from helpers.coordinates2d import Coordinates2D RUN_TEST = False TEST_SOLUTION = 7 TEST_INPUT_FILE = 'test_input_day_03.txt' INPUT_FILE = 'input_day_03.txt' START = Coordinates2D((0, 0)) # top left corner TRAJECTORY = Coordinates2D((3, 1)) # right 3, down 1 ARGS = [START, TRAJECTORY] def main_part1(input_file, start, trajectory): with open(input_file) as file: tree_map = list(map(lambda line: CyclicList(line.rstrip()), file.readlines())) solution = count_trees(tree_map, trajectory, start) return solution def count_trees(tree_map, trajectory, start): bottom = len(tree_map) cur_pos = start num_trees = 0 # start is a tree-free square while cur_pos.y < bottom: num_trees += tree_map[cur_pos.y][cur_pos.x] == '#' cur_pos = cur_pos + trajectory return num_trees if __name__ == '__main__': if RUN_TEST: solution = main_part1(TEST_INPUT_FILE, *ARGS) print(solution) assert (TEST_SOLUTION == solution) else: solution = main_part1(INPUT_FILE, *ARGS) print(solution)
26.186047
86
0.688277
0
0
0
0
0
0
0
0
117
0.103908
fd279c40ef3cc1786017d66b7c1e1b885d2e67e1
807
py
Python
binary_tree/e_path_sum.py
dhrubach/python-code-recipes
14356c6adb1946417482eaaf6f42dde4b8351d2f
[ "MIT" ]
null
null
null
binary_tree/e_path_sum.py
dhrubach/python-code-recipes
14356c6adb1946417482eaaf6f42dde4b8351d2f
[ "MIT" ]
null
null
null
binary_tree/e_path_sum.py
dhrubach/python-code-recipes
14356c6adb1946417482eaaf6f42dde4b8351d2f
[ "MIT" ]
null
null
null
############################################### # LeetCode Problem Number : 112 # Difficulty Level : Easy # URL : https://leetcode.com/problems/path-sum/ ############################################### from binary_search_tree.tree_node import TreeNode class BinaryTree: def hasPathSum(self, root: TreeNode, sum: int) -> bool: if not root: return False def dfs(node: TreeNode, total: int) -> bool: nonlocal sum res = False total += node.val if not node.left and not node.right: return total == sum if node.left: res = dfs(node.left, total) if node.right and not res: res = dfs(node.right, total) return res return dfs(root, 0)
25.21875
59
0.484511
552
0.684015
0
0
0
0
0
0
197
0.244114
fd2a11e31304af5fc6efc0099f574785c36f1cf8
127
py
Python
High School/9th Grade APCSP (Python)/Unit 7/07.02.03.py
SomewhereOutInSpace/Computer-Science-Class
f5d21850236a7a18dc53b4a650ecbe9a11781f1d
[ "Unlicense" ]
null
null
null
High School/9th Grade APCSP (Python)/Unit 7/07.02.03.py
SomewhereOutInSpace/Computer-Science-Class
f5d21850236a7a18dc53b4a650ecbe9a11781f1d
[ "Unlicense" ]
null
null
null
High School/9th Grade APCSP (Python)/Unit 7/07.02.03.py
SomewhereOutInSpace/Computer-Science-Class
f5d21850236a7a18dc53b4a650ecbe9a11781f1d
[ "Unlicense" ]
null
null
null
st1 = input() st2 = input() st3 = input() listy = [st1, st2, st3] listy.sort() print(listy[0]) print(listy[1]) print(listy[2])
14.111111
23
0.629921
0
0
0
0
0
0
0
0
0
0
fd2a6655ca5c2bb5ada546fc62616fc063ba84a1
3,900
py
Python
tests/unit/guests/linux/storage/disk.py
tessia-project/tessia-baselib
07004b7f6462f081a6f7e810954fd7e0d2cdcf6b
[ "Apache-2.0" ]
1
2022-01-27T01:32:14.000Z
2022-01-27T01:32:14.000Z
tests/unit/guests/linux/storage/disk.py
tessia-project/tessia-baselib
07004b7f6462f081a6f7e810954fd7e0d2cdcf6b
[ "Apache-2.0" ]
null
null
null
tests/unit/guests/linux/storage/disk.py
tessia-project/tessia-baselib
07004b7f6462f081a6f7e810954fd7e0d2cdcf6b
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test module for disk module """ # # IMPORTS # from tessia.baselib.common.ssh.client import SshClient from tessia.baselib.common.ssh.shell import SshShell from tessia.baselib.guests.linux.storage import disk as disk_module from unittest import mock from unittest import TestCase # # CONSTANTS AND DEFINITIONS # PARAMS_WITH_SYS_ATTRS = { "system_attributes": { "libvirt": "somexml" }, "volume_id": "some_disk_id" } PARAMS_WITHOUT_SYS_ATTRS = { "volume_id": "some_disk_id" } # # CODE # class TestDisk(TestCase): """ Class that provides unit tests for the DiskBase class. """ def setUp(self): """ Create mocks that are used in all test cases. """ # since the class is abstract we need to define a concrete child class # to be able to instantiate it class DiskConcrete(disk_module.DiskBase): """ Concrete class of DiskBase """ def activate(self, *args, **kwargs): super().activate(*args, **kwargs) self._disk_cls = DiskConcrete patcher = mock.patch.object(disk_module, 'sleep', autospec=True) patcher.start() self.addCleanup(patcher.stop) self._mock_host_conn = mock.Mock(spec_set=SshClient) self._mock_shell = mock.Mock(spec_set=SshShell) self._mock_host_conn.open_shell.return_value = self._mock_shell # setUp() def _create_disk(self, parameters): """ Auxiliary method to create a disk. """ return self._disk_cls(parameters, self._mock_host_conn) def test_abstract_methods(self): """ Confirm that abstract methods raise NotImplementedError if called. """ disk = self._create_disk(PARAMS_WITH_SYS_ATTRS) self.assertRaises(NotImplementedError, disk.activate) # test_abstract_methods() def test_init(self): """ Test proper initialization """ disk = self._create_disk(PARAMS_WITH_SYS_ATTRS) self.assertEqual(disk.volume_id, 'some_disk_id') # test_init() def test_enable_device(self): """ Test the protected method that enable the device. """ disk = self._create_disk({'volume_id': 'some_id'}) devicenr = "some device number" self._mock_shell.run.side_effect = [(0, ""), (0, "")] disk._enable_device(devicenr) cmd1 = "echo free {} > /proc/cio_ignore".format(devicenr) cmd2 = 'chccwdev -e {}'.format(devicenr) calls = [mock.call(cmd1), mock.call(cmd2)] self.assertEqual(self._mock_shell.run.mock_calls, calls) # test_enable_device() def test_enable_device_fails(self): """ Test the protected method that enable the device in the case it fails to be enabled. """ disk = self._create_disk({'volume_id': 'some_id'}) devicenr = "some device number" ret_output = [(0, "")] # _enable_device perform many attempts for _ in range(0, 6): ret_output.append((1, "")) self._mock_shell.run.side_effect = ret_output self.assertRaisesRegex(RuntimeError, "Failed to activate", disk._enable_device, devicenr) # test_enable_device_fails() # TestBaseDisk
30
78
0.646923
2,792
0.715897
0
0
0
0
0
0
1,740
0.446154
fd2a6afac5326ae943f8dfecdd01a780b28ea0e3
5,888
py
Python
scripts/mv_drawables.py
euitam/MoveDrawable
33923276d856de8effff9e958ba7a33767739137
[ "Apache-2.0" ]
null
null
null
scripts/mv_drawables.py
euitam/MoveDrawable
33923276d856de8effff9e958ba7a33767739137
[ "Apache-2.0" ]
null
null
null
scripts/mv_drawables.py
euitam/MoveDrawable
33923276d856de8effff9e958ba7a33767739137
[ "Apache-2.0" ]
null
null
null
import sys, os, errno, shutil, signal, subprocess from glob import glob class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def printTitle(): print bcolors.WARNING print " _ _ _ _ " print " /_\ _ __ __| |_ __ ___ (_) __| |" print " //_\\\\| '_ \ / _` | '__/ _ \| |/ _` |" print "/ _ \ | | | (_| | | | (_) | | (_| |" print "\_/ \_/_| |_|\__,_|_| \___/|_|\__,_|" print "" print " ___ _ _ " print " / \_ __ __ ___ ____ _| |__ | | ___ " print " / /\ / '__/ _` \ \ /\ / / _` | '_ \| |/ _ \\" print " / /_//| | | (_| |\ V V / (_| | |_) | | __/" print "/___,' |_| \__,_| \_/\_/ \__,_|_.__/|_|\___|" print bcolors.ENDC def moveFileToTmp(file): destFile = '' if '1.5x' in file: filename = os.path.basename(file).replace('@1.5x', '').replace('1.5x', '').strip() destFile = HDPI_DIR + filename elif '2x' in file: filename = os.path.basename(file).replace('@2x', '').replace('2x', '').strip() destFile = XHDPI_DIR + filename elif '3x' in file: filename = os.path.basename(file).replace('@3x', '').replace('3x', '').strip() destFile = XXHDPI_DIR + filename elif '4x' in file: filename = os.path.basename(file).replace('@4x', '').replace('4x', '').strip() destFile = XXXHDPI_DIR + filename else: filename = os.path.basename(file).replace('@1x', '').replace('1x', '').strip() destFile = MDPI_DIR + filename if len(destFile) > 0: shutil.copyfile(file, destFile) def createDirIfNotExists(directory): try: os.makedirs(directory) except OSError as e: if e.errno != errno.EEXIST: raise def renameFile(srcFilename, destFilename): images = [y for x in os.walk(TMP_DIR) for y in glob(os.path.join(x[0], srcFilename))] for file in images: dirName = os.path.dirname(file) os.rename(file, dirName + '/' + destFilename) def moveToDest(cwebp): for folder in RESULT_DIRS: currentFolder = TMP_DIR + folder destFolder = destDir + folder createDirIfNotExists(destFolder) srcFiles = os.listdir(currentFolder) for file in srcFiles: fullFileName = os.path.join(currentFolder, file) if len(cwebp) > 0: destFile = destFolder + file.replace('.png', '.webp').strip() FNULL = open(os.devnull, 'w') subprocess.call([cwebp, '-q', '80', fullFileName, '-o', destFile], stdout=FNULL, stderr=subprocess.STDOUT) else: destFile = destFolder + file shutil.move(fullFileName, destFile) print "move {} to {}".format(fullFileName, destFile) def cleanup(): if os.path.isdir(TMP_DIR): shutil.rmtree(TMP_DIR) def getWebpConverter(): base_dir = os.path.dirname(os.path.realpath(__file__)) cwebp = "{}/cwebp".format(base_dir) if os.path.isfile(cwebp): return cwebp else: return "" def sigint_handler(signum, frame): print "" print "" print bcolors.WARNING + "Exit script requested" + bcolors.ENDC sys.exit() signal.signal(signal.SIGINT, sigint_handler) # BEGIN SCRIPT printTitle() print bcolors.FAIL print "Exit script anytime with CTRL+C" print bcolors.ENDC # Check argument number if len(sys.argv) < 3: print "Usage: {} SRC_DIRECTORY ANDROID_RESOURCES_DIRECTORY".format(sys.argv[0]) sys.exit() srcDir = sys.argv[1] destDir = sys.argv[2] TMP_DIR = srcDir + '/tmp' MDPI = '/drawable-mdpi/' HDPI = '/drawable-hdpi/' XHDPI = '/drawable-xhdpi/' XXHDPI = '/drawable-xxhdpi/' XXXHDPI = '/drawable-xxxhdpi/' MDPI_DIR = TMP_DIR + MDPI HDPI_DIR = TMP_DIR + HDPI XHDPI_DIR = TMP_DIR + XHDPI XXHDPI_DIR = TMP_DIR + XXHDPI XXXHDPI_DIR = TMP_DIR + XXXHDPI RESULT_DIRS = [MDPI, HDPI, XHDPI, XXHDPI, XXXHDPI] cleanup() # Check source directory if not os.path.isdir(srcDir): print "{} should be a directory".format(srcDir) exit() # Check destination directory if not os.path.isdir(destDir): print "{} should be a directory".format(destDir) exit() if not os.path.isdir(destDir+'/values'): print "{} is not an Android resources directory".format(destDir) exit() if not os.path.isdir(destDir+'/layout'): print "{} is not an Android resources directory".format(destDir) exit() images = [y for x in os.walk(srcDir) for y in glob(os.path.join(x[0], '*.png'))] if len(images) == 0: print bcolors.FAIL+"No files to process"+bcolors.ENDC exit() # CONSTANTS # Create density directories createDirIfNotExists(MDPI_DIR) createDirIfNotExists(HDPI_DIR) createDirIfNotExists(XHDPI_DIR) createDirIfNotExists(XXHDPI_DIR) createDirIfNotExists(XXXHDPI_DIR) for file in images: # print "- {}".format(file) moveFileToTmp(file) # build distinct names newImages = [y for x in os.walk(TMP_DIR) for y in glob(os.path.join(x[0], '*.png'))] distinctNames = [] print bcolors.BOLD + 'Drawable files found:' + bcolors.ENDC for file in newImages: name = os.path.basename(file) if not name in distinctNames: print '- {}'.format(name) distinctNames.append(name) # Ask for renaming print "" if len(distinctNames): print bcolors.HEADER + "Any existing file will be overwritten by the renaming" + bcolors.ENDC for name in distinctNames: newName = raw_input('Rename '+bcolors.OKBLUE+name.replace('.png', '')+bcolors.ENDC+' to ('+bcolors.UNDERLINE+'leave blank to skip renaming'+bcolors.ENDC+'): ') newName = "{}.png".format(newName).strip() if len(newName) > 0: renameFile(name, newName) # Ask for WebP compression cwebp = getWebpConverter() compress = False if len(cwebp) > 0: compressResponse = raw_input('Compress files to WebP format? [y] or [n] ') compressResponse = compressResponse.strip() if len(compressResponse) > 0 and (compressResponse == 'y' or compressResponse == 'Y'): compress = True # Move to destination folder if compress: moveToDest(cwebp) else: moveToDest("") print "" print bcolors.OKGREEN + '{} resource files moved to workspace'.format(len(newImages)) + bcolors.ENDC cleanup()
28.038095
160
0.667969
178
0.030231
0
0
0
0
0
0
1,553
0.263757
fd2ae8dc293d1b7377165b6678e015927d2d75d1
5,479
py
Python
kornia/x/trainer.py
AK391/kornia
a2535eb7593ee2fed94d23cc720804a16f9f0e7e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kornia/x/trainer.py
AK391/kornia
a2535eb7593ee2fed94d23cc720804a16f9f0e7e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kornia/x/trainer.py
AK391/kornia
a2535eb7593ee2fed94d23cc720804a16f9f0e7e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import logging from typing import Callable, Dict import torch import torch.nn as nn from torch.utils.data import DataLoader # the accelerator library is a requirement for the Trainer # but it is optional for grousnd base user of kornia. try: from accelerate import Accelerator except ImportError: Accelerator = None from .metrics import AverageMeter from .utils import Configuration, TrainerState logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) callbacks_whitelist = [ "preprocess", "augmentations", "evaluate", "fit", "checkpoint", "terminate" ] class Trainer: """Base class to train the different models in kornia. .. warning:: The API is experimental and subject to be modified based on the needs of kornia models. Args: model: the nn.Module to be optimized. train_dataloader: the data loader used in the training loop. valid_dataloader: the data loader used in the validation loop. criterion: the nn.Module with the function that computes the loss. optimizer: the torch optimizer object to be used during the optimization. scheduler: the torch scheduler object with defiing the scheduling strategy. accelerator: the Accelerator object to distribute the training. config: a TrainerConfiguration structure containing the experiment hyper parameters. callbacks: a dictionary containing the pointers to the functions to overrides. The main supported hooks are ``evaluate``, ``preprocess``, ``augmentations`` and ``fit``. .. important:: The API heavily relies on `accelerate <https://github.com/huggingface/accelerate/>`_. In order to use it, you must: ``pip install kornia[x]`` .. seealso:: Learn how to use the API in our documentation `here <https://kornia.readthedocs.io/en/latest/get-started/training.html>`_. """ def __init__( self, model: nn.Module, train_dataloader: DataLoader, valid_dataloader: DataLoader, criterion: nn.Module, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler.CosineAnnealingLR, config: Configuration, callbacks: Dict[str, Callable] = {}, ) -> None: # setup the accelerator if Accelerator is None: raise ModuleNotFoundError( "accelerate library is not installed: pip install kornia[x]") self.accelerator = Accelerator() # setup the data related objects self.model = self.accelerator.prepare(model) self.train_dataloader = self.accelerator.prepare(train_dataloader) self.valid_dataloader = self.accelerator.prepare(valid_dataloader) self.criterion = criterion.to(self.device) self.optimizer = self.accelerator.prepare(optimizer) self.scheduler = scheduler self.config = config # configure callbacks for fn_name, fn in callbacks.items(): if fn_name not in callbacks_whitelist: raise ValueError(f"Not supported: {fn_name}.") setattr(self, fn_name, fn) # hyper-params self.num_epochs = config.num_epochs self._logger = logging.getLogger('train') @property def device(self) -> torch.device: return self.accelerator.device def backward(self, loss: torch.Tensor) -> None: self.accelerator.backward(loss) def fit_epoch(self, epoch: int) -> None: # train loop self.model.train() losses = AverageMeter() for sample_id, sample in enumerate(self.train_dataloader): source, target = sample # this might change with new pytorch dataset structure self.optimizer.zero_grad() # perform the preprocess and augmentations in batch img = self.preprocess(source) img = self.augmentations(img) # make the actual inference output = self.model(img) loss = self.criterion(output, target) self.backward(loss) self.optimizer.step() losses.update(loss.item(), img.shape[0]) if sample_id % 50 == 0: self._logger.info( f"Train: {epoch + 1}/{self.num_epochs} " f"Sample: {sample_id + 1}/{len(self.train_dataloader)} " f"Loss: {losses.val:.3f} {losses.avg:.3f}" ) def fit(self,) -> None: # execute the main loop # NOTE: Do not change and keep this structure clear for readability. for epoch in range(self.num_epochs): # call internally the training loop # NOTE: override to customize your evaluation routine self.fit_epoch(epoch) # call internally the evaluation loop # NOTE: override to customize your evaluation routine valid_stats = self.evaluate() self.checkpoint(self.model, epoch, valid_stats) state = self.terminate(self.model, epoch, valid_stats) if state == TrainerState.TERMINATE: break # END OF THE EPOCH self.scheduler.step() ... def evaluate(self): ... def preprocess(self, x): return x def augmentations(self, x): return x def checkpoint(self, *args, **kwargs): ... def terminate(self, *args, **kwargs): ...
34.459119
95
0.632962
4,882
0.891039
0
0
86
0.015696
0
0
2,259
0.412302
fd2c1f1342cad7325a43f5762d5c2d1d94cfe573
2,795
py
Python
datasets/transformations/jpeg_compress.py
bytedance/Hammer
388ed20b3d9b34f33f5357d75f8fe5d726782ec8
[ "MIT" ]
97
2022-02-08T09:00:57.000Z
2022-03-23T05:33:35.000Z
datasets/transformations/jpeg_compress.py
bytedance/Hammer
388ed20b3d9b34f33f5357d75f8fe5d726782ec8
[ "MIT" ]
null
null
null
datasets/transformations/jpeg_compress.py
bytedance/Hammer
388ed20b3d9b34f33f5357d75f8fe5d726782ec8
[ "MIT" ]
7
2022-02-08T15:13:02.000Z
2022-03-19T19:11:13.000Z
# python3.7 """Implements JPEG compression on images.""" import cv2 import numpy as np try: import nvidia.dali.fn as fn import nvidia.dali.types as types except ImportError: fn = None from utils.formatting_utils import format_range from .base_transformation import BaseTransformation __all__ = ['JpegCompress'] class JpegCompress(BaseTransformation): """Applies random JPEG compression to images. This transformation can be used as an augmentation by distorting images. In other words, the input image(s) will be first compressed (i.e., encoded) with a random quality ratio, and then decoded back to the image space. The distortion is introduced in the encoding process. Args: quality_range: The range within which to uniformly sample a quality value after compression. 100 means highest and 0 means lowest. (default: (40, 60)) prob: Probability of applying JPEG compression. (default: 0.5) """ def __init__(self, prob=0.5, quality_range=(40, 60)): super().__init__(support_dali=(fn is not None)) self.prob = np.clip(prob, 0, 1) self.quality_range = format_range(quality_range, min_val=0, max_val=100) def _CPU_forward(self, data): # Early return if no compression is needed. if np.random.uniform() >= self.prob: return data # Set compression quality. quality = np.random.randint(*self.quality_range) encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality] # Compress images. outputs = [] for image in data: _, encoded_image = cv2.imencode('.jpg', image, encode_param) decoded_image = cv2.imdecode(encoded_image, cv2.IMREAD_UNCHANGED) if decoded_image.ndim == 2: decoded_image = decoded_image[:, :, np.newaxis] outputs.append(decoded_image) return outputs def _DALI_forward(self, data): # Set compression quality. if self.quality_range[0] == self.quality_range[1]: quality = self.quality_range[0] else: quality = fn.random.uniform(range=self.quality_range) quality = fn.cast(quality, dtype=types.INT32) # Compress images. compressed_data = fn.jpeg_compression_distortion( data, quality=quality) if not isinstance(compressed_data, (list, tuple)): compressed_data = [compressed_data] # Determine whether the transformation should be applied. cond = fn.random.coin_flip(dtype=types.BOOL, probability=self.prob) outputs = [] for image, compressed_image in zip(data, compressed_data): outputs.append(compressed_image * cond + image * (cond ^ True)) return outputs
35.379747
80
0.65975
2,465
0.881932
0
0
0
0
0
0
872
0.311986
fd2ca1a6e56d2464e000ae2d9a68e5afd6f6c238
2,046
py
Python
venv/VFR/flask_app_3d.py
flhataf/Virtual-Fitting-Room
e5b41849df963cebd3b7deb7e87d643ece5b6d18
[ "MIT" ]
null
null
null
venv/VFR/flask_app_3d.py
flhataf/Virtual-Fitting-Room
e5b41849df963cebd3b7deb7e87d643ece5b6d18
[ "MIT" ]
null
null
null
venv/VFR/flask_app_3d.py
flhataf/Virtual-Fitting-Room
e5b41849df963cebd3b7deb7e87d643ece5b6d18
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Feb 15 00:31:35 2021 @author: RayaBit """ from flask import Flask, render_template, Response from imutils.video import VideoStream from skeletonDetector import skeleton import cv2 from skeleton3DDetector import Skeleton3dDetector from visualization import Visualizer import time app = Flask(__name__) @app.route('/') def index(): return render_template('index2.html') def gen(): vs = VideoStream(src=0).start() #vs = cv2.VideoCapture("kid3.mp4") # sk3d = Skeleton3dDetector(width = vs.get(3), height = vs.get(4))#width and height? # 320, 240 sk3d = Skeleton3dDetector(width = 320, height = 240)#width and height? init_buff=[] for _ in range(2): frame = vs.read() while frame is None: frame = vs.read() processed_fram, x = skeleton(frame) init_buff.append(x) sk3d.fill_buff(init_buff) cv2.waitKey(0) #prev_frame = processed_fram visualizer = Visualizer(frame.shape[0], frame.shape[1]) while cv2.waitKey(1) < 0: # breaks on pressing q t = time.time() frame = vs.read() if frame is None: continue prev_frame = processed_fram #curr actually processed_fram, x = skeleton(frame) kps3d = sk3d.detect(x) # buff is initialized fr3d are kps3d for prev_frame img = visualizer.draw(prev_frame,kps3d) cv2.putText(img, "time taken = {:.2f} sec".format(time.time() - t), (50, 50), cv2.FONT_HERSHEY_COMPLEX, .5, (255, 50, 0), 2, lineType=cv2.LINE_AA) (flag, encodedImage) = cv2.imencode(".jpg", img) if not flag: continue yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n') @app.route('/video_feed') def video_feed(): return Response(gen(), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': app.run(host="127.0.0.1", port=8087)
26.571429
115
0.616813
0
0
1,422
0.695015
195
0.095308
0
0
525
0.256598
fd2dbbfa0aac3167c6b35b08529f51283edf8826
8,144
py
Python
schedsi/threads/thread.py
z33ky/schedsi
3affe28a3e1d2001c639d7c0423cb105d1991590
[ "CC0-1.0" ]
1
2017-08-03T12:58:53.000Z
2017-08-03T12:58:53.000Z
schedsi/threads/thread.py
z33ky/schedsi
3affe28a3e1d2001c639d7c0423cb105d1991590
[ "CC0-1.0" ]
null
null
null
schedsi/threads/thread.py
z33ky/schedsi
3affe28a3e1d2001c639d7c0423cb105d1991590
[ "CC0-1.0" ]
null
null
null
"""Define the :class:`Thread`.""" import threading from schedsi.cpu import request as cpurequest from schedsi.cpu.time import Time #: Whether to log individual times, or only the sum LOG_INDIVIDUAL = True class _ThreadStats: # pylint: disable=too-few-public-methods """Thread statistics.""" def __init__(self): """Create a :class:`_ThreadStats`.""" self.finished_time = None self.response_time = None self.ctxsw = [] self.run = [] self.total_run = Time(0) self.wait = [[]] class Thread: """The basic thread class. A thread has * an associated module * a locally unique thread id * ready time (`None` if finished) * response units - after how many units to set :attr:`stats.response_time` (`None` if irrelevant) * remaining workload (`None` if infinite) * a lock indicating whether this thread is currently active * :class:`_ThreadStats` """ def __init__(self, module, tid=None, *, ready_time=0, units=None, response_units=None): """Create a :class:`Thread`.""" assert ready_time >= 0 assert units is None or units >= 0 assert response_units is None or units is None or response_units <= units self.module = module if tid is None: tid = str(module.num_work_threads()) self.tid = tid self.ready_time = ready_time self.response_units = response_units self.remaining = units self.is_running = threading.Lock() self.stats = _ThreadStats() def execute(self): """Simulate execution. The thread will run for as long as it can. Yields a :class:`~schedsi.cpurequest.Request`. Consumes the current time. """ locked = self.is_running.acquire(False) assert locked current_time = yield cpurequest.Request.current_time() while True: current_time = yield from self._execute(current_time, None) def _update_ready_time(self, current_time): """Update ready_time while executing. Includes some checks to make sure the state is sane. """ assert self.ready_time is not None and 0 <= self.ready_time <= current_time assert self.is_running.locked() self.ready_time = current_time def _execute(self, current_time, run_time): """Simulate execution. Update some state. Yields an execute :class:`~schedsi.cpurequest.Request` respecting :attr:`remaining`, so it won't yield more than that. Returns the next current time or None if :attr:`remaining` is 0. """ assert not self.is_finished() self._update_ready_time(current_time) if run_time is None: run_time = self.remaining else: assert run_time > 0 assert self.remaining is None or run_time <= self.remaining current_time = yield cpurequest.Request.execute(run_time) if self.is_finished(): yield cpurequest.Request.idle() return return current_time def is_finished(self): """Check if the :class:`Thread` is finished. Returns True if the :class:`Thread` still has something to do, False otherwise. """ return self.remaining == 0 def run_ctxsw(self, _current_time, run_time): """Update runtime state. This should be called just after a context switch to another thread when this was just the active thread, or when returning to this thread, whether the context switch was successful or not. `current_time` refers to the time just after the context switch. """ if not self.is_running.locked(): # this can happen if the thread was just switched to when the timer elapsed # and we now switch away from this thread locked = self.is_running.acquire(False) assert locked if LOG_INDIVIDUAL: self.stats.ctxsw.append(run_time) def run_background(self, _current_time, _run_time): """Update runtime state. This should be called while the thread is in the context stack, but not active (not the top). `_current_time` refers to the time just after the active thread has run. """ assert self.is_running.locked() # never called for work threads assert False def run_crunch(self, current_time, run_time): """Update runtime state. This should be called while the thread is active. `current_time` refers to the time just after this thread has run. """ assert self.is_running.locked() self.stats.total_run += run_time if LOG_INDIVIDUAL: self.stats.run[-1].append(run_time) assert self.stats.total_run == sum(map(sum, self.stats.run)) self.ready_time += run_time assert self.ready_time == current_time if self.response_units is not None: self.response_units -= run_time if self.response_units <= 0: self.stats.response_time = current_time + self.response_units self.response_units = None if self.remaining is not None: assert self.remaining >= run_time self.remaining -= run_time if self.is_finished(): # the job was completed within the slice self.end() return def end(self): """End execution.""" assert self.is_finished() assert self.response_units is None self.stats.finished_time = self.ready_time # never start again self.ready_time = None def suspend(self, current_time): """Become suspended. This should be called when the thread becomes inactive, but will be resumed later. `current_time` refers to the time before the context switch away from this thread. """ if self.is_running.locked(): if LOG_INDIVIDUAL: # only record waiting time if the thread has executed self.stats.wait.append([]) if self.ready_time is not None: self.ready_time = max(self.ready_time, current_time) else: assert self.stats.finished_time > 0 def resume(self, current_time, returning): """Resume execution. This should be called after :meth:`suspend` to become active again. `current_time` refers to the time just after the context switch. """ if self.is_finished(): return assert self.ready_time is not None if returning: self._update_ready_time(current_time) else: if current_time >= self.ready_time: if LOG_INDIVIDUAL: # we only want to record waiting time if the thread is ready to execute self.stats.wait[-1].append(current_time - self.ready_time) self.stats.run.append([]) # we can't use _update_ready_time() here because we might not yet be executing self.ready_time = current_time def finish(self, _current_time): """Become inactive. This should be called when the thread becomes inactive. """ assert self.is_running.locked() self.is_running.release() def get_statistics(self, current_time): """Obtain statistics. Not thread-safe. """ # the CPU should be locked during this # this means we can read data without locking self.is_running stats = self.stats.__dict__.copy() if not self.is_finished() and current_time >= self.ready_time: assert self.ready_time is not None stats['waiting'] = current_time - self.ready_time if stats['wait'] and stats['wait'][-1] == []: stats['wait'].pop() stats['remaining'] = self.remaining return stats
32.706827
94
0.608915
7,930
0.973723
1,215
0.14919
0
0
0
0
3,229
0.396488
fd2e8e4f0baea2b1df6722ef44a729d6280f10cc
5,552
py
Python
application/src/initializer/auxiliary_methods.py
eyardley/CSC648-SoftwareEngineering-Snapster
6dbe1cf9b34de6d6dbc6be75db3a34583f67c01a
[ "MIT" ]
null
null
null
application/src/initializer/auxiliary_methods.py
eyardley/CSC648-SoftwareEngineering-Snapster
6dbe1cf9b34de6d6dbc6be75db3a34583f67c01a
[ "MIT" ]
3
2021-06-08T21:39:12.000Z
2022-01-13T02:46:20.000Z
application/src/initializer/auxiliary_methods.py
eyardley/CSC648-SoftwareEngineering-Snapster
6dbe1cf9b34de6d6dbc6be75db3a34583f67c01a
[ "MIT" ]
1
2021-05-09T21:01:28.000Z
2021-05-09T21:01:28.000Z
def fill_team_about(db): ############################### # FILL TEAM ABOUT TABLE # ############################### print('Inserting data into team member profiles table') add_about_team_query = ("INSERT INTO team_about " "(name, link, position, image, description, facebook, twitter, instagram, linkedin) " "VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)") team_about_entries = [ ('Avery Chen', '/avery', 'Back-end Member', 'static/team_images/avery.jpg', 'Undergraduate student at SFSU', '', '', '', ''), ('Akhil Gandu', '/akhil', 'GitHub Master', 'static/team_images/akhil.jpg', 'Graduate Student at SFSU', 'https://www.facebook.com/rockstar290', 'https://twitter.com/Rockstar5645', 'https://www.instagram.com/akhil_gandu/', 'https://www.linkedin.com/in/akhilgandu/'), ('Chris Eckhardt', '/chris', 'Back-end lead', 'static/team_images/chris.jpg', 'Undergrad at SFState', '', '', 'https://www.instagram.com/chris_evan_eckhardt/', 'https://www.linkedin.com/in/christopher-eckhardt-04abb1119/'), ('Elliot Yardley', '/elliot', 'Front-end lead', 'static/team_images/elliot.jpg', 'Graduate Student, SFSU', '', '', '', ''), ('Thomas Yu', '/thomas', 'Front End Member', 'static/team_images/Thomas.jpg', 'Undergraduate Student, SFSU', '', '', '', ''), ('Bakulia Kurmant', '/bakulia', 'Team Lead', 'static/team_images/bakulia.jpg', 'In my spare time I like going outdoors, techno music, reading, traveling', '', '', 'https://www.instagram.com/bakuliak/?hl=en', 'https://www.linkedin.com/in/bakulia-kurmant/') ] for team_about_entry in team_about_entries: db.query(add_about_team_query, team_about_entry) db.commit() print('Inserted data into team member profiles table') def fill_media_types(db): ############################ # FILL MEDIA TYPES # ############################ print('Initializing media types table with an enumeration of available media types') add_media_type_query = ("INSERT INTO media_types " "(media_type)" "VALUES (%s)") media_types_entries = [ ('all',), ('image',), ('video',), ('audio',), ('document',) ] for media_type_entry in media_types_entries: db.query(add_media_type_query, media_type_entry) db.commit() print('Media types table initialized') def fill_digital_media(db): ############################ # FILL DIGITAL MEDIA # ############################ print('Inserting data test entries into digital media table') add_digital_media_query = ("INSERT INTO digital_media " "(owner_id, name, description, file_path, thumbnail_path, category, media_type, price, approval) " "VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)") digital_media_entries = [ ('1', 'sponge bob 1', 'this is the first test photo', 'M2_test_images/sb1.jpg', 'thumbnails/sb1_t.jpg', 'all', 'image', 00.00, 1), ('2', 'sponge bob 2', 'this is the second test photo', 'M2_test_images/sb2.jpg','thumbnails/sb2_t.jpg' , 'all', 'image' , 89.99, 1), ('3', 'sponge bob 3', 'this is the third test photo', 'M2_test_images/sb3.jpg','thumbnails/sb3_t.jpg' , 'all', 'image' , 00.00, 1), ('4', 'sponge bob 4', 'this is the fourth test photo', 'M2_test_images/sb4.jpg','thumbnails/sb4_t.jpg' , 'all', 'image' , 69.99, 1), ('5', 'sponge bob 5', 'this is the fifth test photo', 'M2_test_images/sb5.jpg','thumbnails/sb5_t.jpg' , 'all', 'image' , 00.00, 1), ('1', 'sponge bob 6', 'this is the sixth test photo', 'M2_test_images/sb1.jpg', 'thumbnails/sb1_t.jpg', 'all', 'image', 99.99, 1), ('2', 'sponge bob 7', 'this is the seventh test photo', 'M2_test_images/sb2.jpg','thumbnails/sb2_t.jpg' , 'all', 'image' , 89.99, 1), ('3', 'sponge bob 8', 'this is the eight test photo', 'M2_test_images/sb3.jpg','thumbnails/sb3_t.jpg' , 'all', 'image' , 79.99, 1), ('4', 'sponge bob 9', 'this is the ninth test photo', 'M2_test_images/sb4.jpg','thumbnails/sb4_t.jpg' , 'all', 'image' , 69.99, 1), ('5', 'sponge bob 10', 'this is the tenth test photo', 'M2_test_images/sb5.jpg','thumbnails/sb5_t.jpg' , 'all', 'image' , 59.99, 1), ('1', 'sponge bob 11', 'this is the eleventh test photo', 'M2_test_images/sb1.jpg', 'thumbnails/sb1_t.jpg', 'all', 'image', 99.99, 1), ('2', 'sponge bob 12', 'this is the twelfth test photo', 'M2_test_images/sb2.jpg','thumbnails/sb2_t.jpg' , 'all', 'image' , 89.99, 1), ('3', 'sponge bob 13', 'this is the thirteenth test photo', 'M2_test_images/sb3.jpg','thumbnails/sb3_t.jpg' , 'all', 'image' , 79.99, 1), ('4', 'sponge bob 14', 'this is the fourteenth test photo', 'M2_test_images/sb4.jpg','thumbnails/sb4_t.jpg' , 'all', 'image' , 69.99, 1), ('5', 'sponge bob 15', 'this is the fifteenth test photo', 'M2_test_images/sb5.jpg','thumbnails/sb5_t.jpg' , 'all', 'image' , 59.99, 0) ] for digital_media_entry in digital_media_entries: db.query(add_digital_media_query, digital_media_entry) db.commit() print('Initialization of digital media entries table complete')
52.377358
263
0.568444
0
0
0
0
0
0
0
0
3,596
0.647695
fd3187f8e540b93ec7789114fa6cc6e3969608ec
1,335
py
Python
pyBRML/pyBRML/core.py
anich003/brml_toolkit
de8218bdf333902431d4c0055fcf5cb3dc47d0c1
[ "MIT" ]
null
null
null
pyBRML/pyBRML/core.py
anich003/brml_toolkit
de8218bdf333902431d4c0055fcf5cb3dc47d0c1
[ "MIT" ]
null
null
null
pyBRML/pyBRML/core.py
anich003/brml_toolkit
de8218bdf333902431d4c0055fcf5cb3dc47d0c1
[ "MIT" ]
null
null
null
import copy from pyBRML import utils from pyBRML import Array def multiply_potentials(list_of_potentials): """ Returns the product of each potential in list_of_potentials, useful for calculating joint probabilities. For example, if the joint probability of a system is defined as p(A,B,C) = p(C|A,B) p(A) p(B) then, list_of_potentials should contain 3 potentials corresponding to each factor. Since, potentials can be defined in an arbitrary order, each potential will be reshaped and cast using numpy ndarray functions before being multiplied, taking advantage of numpy's broadcasting functionality. """ # Collect the set of variables from each pot. Used to reshape each potential.table variable_set = set(var for potential in list_of_potentials for var in potential.variables) variable_set = list(variable_set) # Copy potentials to avoid mutating original objects potentials = copy.deepcopy(list_of_potentials) # Reshape each potential prior to taking their product for pot in potentials: pot = utils.format_table(pot.variables, pot.table, variable_set) # Multiply potentials and return new_potential = potentials[0] for pot in potentials[1:]: new_potential.table = new_potential.table * pot.table return new_potential
35.131579
94
0.743071
0
0
0
0
0
0
0
0
761
0.570037
fd3394f2b7968055dc2a5d2b8bdde46ae4644c49
2,098
py
Python
lib/akf_known_uncategories.py
UB-Mannheim/docxstruct
dd6d99b6fd6f5660fdc61a14b60e70a54ac9be85
[ "Apache-2.0" ]
1
2019-03-06T14:59:44.000Z
2019-03-06T14:59:44.000Z
lib/akf_known_uncategories.py
UB-Mannheim/docxstruct
dd6d99b6fd6f5660fdc61a14b60e70a54ac9be85
[ "Apache-2.0" ]
null
null
null
lib/akf_known_uncategories.py
UB-Mannheim/docxstruct
dd6d99b6fd6f5660fdc61a14b60e70a54ac9be85
[ "Apache-2.0" ]
null
null
null
import re class KnownUncategories(object): """ List of known entries in test_data which are no categories, but are recognized as such """ def __init__(self): # un-category regex strings (care for commas) self.uc = [ "Beteiligung", # 1956: is part of Beteiligungen "Ferngespräche", # 1956: is part of Fernruf/Telefon "Kapital", # 1956: is part of multiple top-level items "Umstellung \d\d?", # 1956: is part of Grundkapital or other "Dividenden ab \d{4}.*", # 1956: is part of Dividenden or other (with year or yearspan)s "^Kurs.*", # 1956: second level tag "ab \d{4}(\/\d{2})?" # 1956: i.e "ab 1949/50"-part of other categories ] # non-specific keys (which get not removed from original-rest in analysis) self.nkeys = [ "street", "street_number", "additional_info", "city", "name", "title", "rest", "location", "number_Sa.-Nr.", "rest_info", "bank", "title", "amount", "ord_number", "organization", ] # create corresponding regexes self.uc_regex = [] for item in self.uc: regex_compiled = re.compile(item) self.uc_regex.append(regex_compiled) @property def uncategories(self): return self.uc @property def unkeys(self): return self.nkeys def check_uncategories(self, text_to_check): """ Allows to compare a tag against the existing uncategories :param text_to_check: tag text :return: True if un-category, False if not """ for regex_to_check in self.uc_regex: match_result = regex_to_check.search(text_to_check) if match_result is not None: return True return False
31.313433
108
0.515253
2,088
0.994759
0
0
117
0.055741
0
0
968
0.461172
fd33bdf592a5bbf5b20d72627b7e89fa294ef5bf
1,640
py
Python
maps/templatetags/mapas_tags.py
lsalta/mapground
d927d283dab6f756574bd88b3251b9e68f000ca7
[ "MIT" ]
null
null
null
maps/templatetags/mapas_tags.py
lsalta/mapground
d927d283dab6f756574bd88b3251b9e68f000ca7
[ "MIT" ]
3
2020-02-11T23:04:56.000Z
2021-06-10T18:07:53.000Z
maps/templatetags/mapas_tags.py
lsalta/mapground
d927d283dab6f756574bd88b3251b9e68f000ca7
[ "MIT" ]
1
2021-08-20T14:49:09.000Z
2021-08-20T14:49:09.000Z
from django import template register = template.Library() def mostrar_resumen_mapa(context, m, order_by): # print context to_return = { 'mapa': m, 'order_by': order_by, } return to_return @register.inclusion_tag('mapas/lista_mapas.html') def mostrar_mapas(lista_mapas, order_by): to_return = { 'lista_mapas': lista_mapas, 'order_by': order_by } return to_return register.inclusion_tag('mapas/mapa.html', takes_context=True)(mostrar_resumen_mapa) def quitar_char(value, arg): return value.replace(arg, ' ') register.filter('quitar_char',quitar_char) def replace_text(value, replacement): rep = replacement.split(',') try: return value.replace(rep[0], rep[1]) except: return value register.filter('replace_text',replace_text) def truncar_string(value, max_length=0): if max_length==0: return value return value[:max_length]+('...' if len(value)>max_length else '') register.filter('truncar_string',truncar_string) def get_range(value): """ Filter - returns a list containing range made from given value Usage (in template): <ul>{% for i in 3|get_range %} <li>{{ i }}. Do something</li> {% endfor %}</ul> Results with the HTML: <ul> <li>0. Do something</li> <li>1. Do something</li> <li>2. Do something</li> </ul> Instead of 3 one may use the variable set in the views """ try: return range( value ) except: return None register.filter('get_range',get_range) def sort_by(queryset, order): return queryset.order_by(*order.split(',')) register.filter('sort_by',sort_by)
22.777778
83
0.668902
0
0
0
0
201
0.122561
0
0
570
0.347561
fd349e3352814cffd9d5b6c0c4f84624bb4c6bc6
1,868
py
Python
app/services/aggregator/aggr.py
maestro-server/report-app
0bf9014400f2979c51c1c544347d5134c73facdf
[ "Apache-2.0" ]
1
2020-05-19T20:18:05.000Z
2020-05-19T20:18:05.000Z
app/services/aggregator/aggr.py
maestro-server/report-app
0bf9014400f2979c51c1c544347d5134c73facdf
[ "Apache-2.0" ]
2
2019-10-21T14:56:04.000Z
2020-03-27T12:48:26.000Z
app/services/aggregator/aggr.py
maestro-server/report-app
0bf9014400f2979c51c1c544347d5134c73facdf
[ "Apache-2.0" ]
null
null
null
import pandas as pd from pydash.objects import get class Aggregator(object): def __init__(self, field, lens=None, sublens='_id', include=[], opts={}): self._field = field self._lens = lens self._sublens = sublens self._result = [] self._transf = [] self._include = include self._opts = opts self._df = None def execute(self, df, entity='all'): if (not self._include) or (entity in self._include): self.aggregate(df) def aggregate(self, df): self._tmp_dataframe = df \ .dropna() \ .apply(self.transformData) if "stack" in self._transf: self._tmp_dataframe = self._tmp_dataframe.stack() \ .reset_index(level=1, drop=True) self.groupCount() def groupAggrCount(self): self._result = self._tmp_dataframe \ .groupby(self._sub) \ .agg({self._aggrk: self._aggr}) \ .get(self._aggrk) def groupCount(self): self._result = self._tmp_dataframe \ .groupby(self._tmp_dataframe) \ .count() def transformData(self, data): if isinstance(data, dict): data = get(data, self._lens) if isinstance(data, list): self._transf.append("stack") data = map(self.reducev, data) return pd.Series(data) return data def reducev(self, data): if isinstance(data, dict): return get(data, self._sublens) return data def getField(self): return self._field def uniqueField(self): arr = [self._field] if self._lens: arr += self._lens.split(".") return "_".join(arr) def getResult(self): return self._result def getOpts(self): return self._opts
23.64557
77
0.556745
1,814
0.971092
0
0
0
0
0
0
30
0.01606
fd375dd0458ad06acf734748313eaba69b115090
310
py
Python
email.py
zhaoxiaoyunok/python-library-fuzzers
83db496f75280795415821097802a96fbf72f50f
[ "MIT" ]
4
2019-07-03T06:01:08.000Z
2019-07-29T08:07:54.000Z
email.py
zhaoxiaoyunok/python-library-fuzzers
83db496f75280795415821097802a96fbf72f50f
[ "MIT" ]
null
null
null
email.py
zhaoxiaoyunok/python-library-fuzzers
83db496f75280795415821097802a96fbf72f50f
[ "MIT" ]
4
2019-07-03T03:24:56.000Z
2021-12-11T12:30:31.000Z
from email.parser import BytesParser, Parser from email.policy import default, HTTP def FuzzerRunOne(FuzzerInput): try: Parser(policy=HTTP).parsestr(FuzzerInput.decode("utf-8", "replace")) # #Parser(policy=default).parsestr(FuzzerInput.decode("utf-8", "replace")) except: pass
28.181818
81
0.696774
0
0
0
0
0
0
0
0
93
0.3
fd37bfae595f1bdb3cabeb62c9beddb408f90236
315
py
Python
tests/conftest.py
calpt/flask-filealchemy
b3575299f0230d5a64865af8066122c2e0c485ec
[ "MIT" ]
16
2018-10-16T03:32:39.000Z
2020-09-04T02:05:37.000Z
tests/conftest.py
calpt/flask-filealchemy
b3575299f0230d5a64865af8066122c2e0c485ec
[ "MIT" ]
8
2019-02-25T10:59:15.000Z
2019-03-11T08:36:57.000Z
tests/conftest.py
calpt/flask-filealchemy
b3575299f0230d5a64865af8066122c2e0c485ec
[ "MIT" ]
3
2019-11-22T23:46:16.000Z
2020-06-05T19:17:23.000Z
from flask import Flask from flask_sqlalchemy import SQLAlchemy import pytest @pytest.fixture def app(): return Flask(__name__) @pytest.fixture def db(app): app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///:memory:' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False return SQLAlchemy(app)
18.529412
64
0.742857
0
0
0
0
231
0.733333
0
0
77
0.244444
fd3bd480b9c0a1b8e0dc9e02d722d288943bec44
357
py
Python
DataStructuresAndAlgorithms/sorting algorithms/SelectionSort.py
armaan2k/Training-Exercises
6dd94efb6cd6e0dc6c24e2b7d5e74588a74d190d
[ "MIT" ]
null
null
null
DataStructuresAndAlgorithms/sorting algorithms/SelectionSort.py
armaan2k/Training-Exercises
6dd94efb6cd6e0dc6c24e2b7d5e74588a74d190d
[ "MIT" ]
null
null
null
DataStructuresAndAlgorithms/sorting algorithms/SelectionSort.py
armaan2k/Training-Exercises
6dd94efb6cd6e0dc6c24e2b7d5e74588a74d190d
[ "MIT" ]
null
null
null
def selection_sort(A): n = len(A) for i in range(n - 1): position = i for j in range(i + 1, n): if A[j] < A[position]: position = j temp = A[i] A[i] = A[position] A[position] = temp A = [3, 5, 8, 9, 6, 2] print('Original Array: ', A) selection_sort(A) print('Sorted Array: ', A)
21
34
0.473389
0
0
0
0
0
0
0
0
34
0.095238
fd3cb5b3e208b581d3cf014077d7e88f0727e79e
3,465
py
Python
books/models.py
MattRijk/finance-ebook-site
c564d4bc9578f0a6f47efa53f0c81893fbee08f7
[ "MIT" ]
1
2020-05-16T12:48:02.000Z
2020-05-16T12:48:02.000Z
books/models.py
MattRijk/finance-ebook-site
c564d4bc9578f0a6f47efa53f0c81893fbee08f7
[ "MIT" ]
null
null
null
books/models.py
MattRijk/finance-ebook-site
c564d4bc9578f0a6f47efa53f0c81893fbee08f7
[ "MIT" ]
3
2017-12-06T11:18:10.000Z
2020-05-16T12:49:32.000Z
from django.db import models from django.core.urlresolvers import reverse from django.utils import timezone from django.utils.text import slugify class Author(models.Model): name = models.CharField(max_length=50, unique=False) slug = models.SlugField(max_length=200, blank=True, unique=False) def __str__(self): return self.name def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.name) super(Author, self).save(*args, **kwargs) class Book(models.Model): title = models.CharField(max_length=255, unique=True) slug = models.SlugField(max_length=200, blank=True, unique=False) year = models.CharField(max_length=10) pages = models.CharField(max_length=10) filesize = models.CharField(max_length=20) file_format = models.CharField(max_length=20) pdf = models.FileField(upload_to='pdfs/') # image = models.FileField(upload_to='images/') image = models.FileField(upload_to='images/') authors = models.ManyToManyField(Author, through='BookHasAuthor') published = models.DateTimeField(default=timezone.now) class Meta: ordering = ('-published',) def __str__(self): return self.title def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.title) super(Book, self).save(*args, **kwargs) def get_absolute_url(self): return reverse('books:detail_view', kwargs={'slug': self.slug}) class Category(models.Model): title = models.CharField(max_length=50) slug = models.SlugField(max_length=200, blank=True, unique=False) books = models.ManyToManyField(Book, through='BookHasCategory') class Meta: verbose_name_plural = 'Categories' def __str__(self): return self.title def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.title) super(Category, self).save(*args, **kwargs) class BookHasAuthor(models.Model): name = models.CharField(max_length=45, blank=True, unique=False) slug = models.SlugField(max_length=200, blank=True, unique=False) author = models.ForeignKey(Author) book = models.ForeignKey(Book) class Meta: unique_together = ['author', 'book'] def __str__(self): return self.name def save(self, *args, **kwargs): if not self.slug or self.name: self.name = self.author.name self.slug = slugify(self.name) super(BookHasAuthor, self).save(*args, **kwargs) class BookHasCategory(models.Model): title = models.CharField(max_length=45, blank=True, unique=False) slug = models.SlugField(max_length=200, blank=True, unique=False) book = models.ForeignKey(Book) category = models.ForeignKey(Category) class Meta: unique_together = ['book', 'category'] verbose_name_plural = 'Book has categories' def __str__(self): return self.title def save(self, *args, **kwargs): if not self.slug: self.title = self.category.title self.slug = slugify(self.title) super(BookHasCategory, self).save(*args, **kwargs)
33
72
0.610967
3,226
0.931025
0
0
0
0
0
0
200
0.05772
fd3e69529a275a604f79403141c9d3a32f7b625b
341
py
Python
bucketlist_django/bucketlist_django/settings/development.py
andela-tadesanya/django-bucketlist-application
315ceb77e635fe051b5600ada460af938c140af1
[ "MIT" ]
null
null
null
bucketlist_django/bucketlist_django/settings/development.py
andela-tadesanya/django-bucketlist-application
315ceb77e635fe051b5600ada460af938c140af1
[ "MIT" ]
null
null
null
bucketlist_django/bucketlist_django/settings/development.py
andela-tadesanya/django-bucketlist-application
315ceb77e635fe051b5600ada460af938c140af1
[ "MIT" ]
null
null
null
# load defaults and override with devlopment settings from defaults import * DEBUG = True WSGI_APPLICATION = 'bucketlist_django.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'bucketlist', 'USER': 'bucketlist', 'PASSWORD': 'bucketlist' } }
21.3125
59
0.653959
0
0
0
0
0
0
0
0
204
0.59824
fd45eaa50a88cd4355e2753ab9dc9b6e727d52ec
1,198
py
Python
storyboard/tests/plugin/scheduler/test_base.py
Sitcode-Zoograf/storyboard
5833f87e20722c524a1e4a0b8e1fb82206fb4e5c
[ "Apache-2.0" ]
null
null
null
storyboard/tests/plugin/scheduler/test_base.py
Sitcode-Zoograf/storyboard
5833f87e20722c524a1e4a0b8e1fb82206fb4e5c
[ "Apache-2.0" ]
null
null
null
storyboard/tests/plugin/scheduler/test_base.py
Sitcode-Zoograf/storyboard
5833f87e20722c524a1e4a0b8e1fb82206fb4e5c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2015 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing permissions and # limitations under the License. from storyboard.plugin.scheduler.base import SchedulerPluginBase import storyboard.tests.base as base class TestSchedulerBasePlugin(base.TestCase): """Test the scheduler app.""" def test_plugin_name(self): plugin = TestPlugin(dict()) self.assertEqual( "storyboard.tests.plugin.scheduler.test_base:TestPlugin", plugin.get_name()) class TestPlugin(SchedulerPluginBase): """Test plugin to test the non-abstract methods.""" def enabled(self): return True def run(self): pass def trigger(self): pass
29.219512
78
0.717863
484
0.404007
0
0
0
0
0
0
728
0.607679
fd464df7fbbebbe26bc4d827bb8cf980aecbe03a
13,019
py
Python
src/model/build_models.py
VinGPan/classification_model_search
fab7ce6fc131b858f1b79633e0f7b86d1446c93d
[ "MIT" ]
null
null
null
src/model/build_models.py
VinGPan/classification_model_search
fab7ce6fc131b858f1b79633e0f7b86d1446c93d
[ "MIT" ]
null
null
null
src/model/build_models.py
VinGPan/classification_model_search
fab7ce6fc131b858f1b79633e0f7b86d1446c93d
[ "MIT" ]
null
null
null
import os import os.path import pickle from shutil import copyfile import numpy as np import pandas as pd import xgboost as xgb from sklearn.decomposition import KernelPCA from sklearn.decomposition import PCA from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.exceptions import ConvergenceWarning from sklearn.externals import joblib from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.manifold import Isomap from sklearn.manifold import LocallyLinearEmbedding from sklearn.metrics import accuracy_score, balanced_accuracy_score, r2_score, mean_absolute_error, mean_squared_error from sklearn.metrics import make_scorer from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.svm import SVC from sklearn.utils.testing import ignore_warnings from src.model.utils import makedir from src.utils.logging import logger ##################################################################### # HERE IS LIST OF VARIES LIBRARIES WE STUDIED DURING SCS_3253_024 Machine Learning COURSE that are # relevant to classification problem. We will tray use as many ideas as possible for this project. ##################################################################### def add_preproc_step(preproc_str, steps): if preproc_str == 'min_max': steps.append(('preprocs', MinMaxScaler())) elif preproc_str == 'standard_scalar': steps.append(('preprocs', StandardScaler())) elif preproc_str == 'none': pass else: logger.error("unsupported preprocs option " + preproc_str) raise Exception("unsupported preprocs option " + preproc_str) def add_transform_step(transforms_str, steps, transforms_info, param_grid): if transforms_str == 'pca': steps.append(('transforms', PCA())) elif transforms_str == 'kpca': steps.append(('transforms', KernelPCA(kernel='rbf'))) elif transforms_str == 'lle': steps.append(('transforms', LocallyLinearEmbedding())) # elif transforms_str == 'mds': # steps.append(('transforms', MDS())) # DOES NOT HAVE transform() function # param_grid[0]["transforms__n_components"] = [3, 4, 5] elif transforms_str == 'isomap': steps.append(('transforms', Isomap())) # elif transforms_str == 'tsne': # DOES NOT HAVE transform() function # steps.append(('transforms', TSNE())) # param_grid[0]["transforms__n_components"] = [3, 4, 5] elif transforms_str == 'none': pass else: logger.error("unsupported transforms option " + transforms_str) raise Exception("unsupported transforms option " + transforms_str) if 'params' in transforms_info: for trans_param in transforms_info['params']: vals = trans_param['vals'] name = trans_param['name'] for vidx in range(len(vals)): if vals[vidx] == 'None': vals[vidx] = None param_grid[0]["transforms__" + name] = vals def add_classifier_step(clf_str, steps, clf_info, param_grid, tot_classes): ########### classifiers ################ if clf_str == 'logistic': steps.append(('clf', LogisticRegression(multi_class='auto', random_state=0, solver='liblinear'))) elif clf_str == 'naive_bayes': steps.append(('clf', GaussianNB())) elif clf_str == 'knn': steps.append(('clf', KNeighborsClassifier())) elif clf_str == 'random_forest': steps.append(('clf', RandomForestClassifier())) elif clf_str == 'svc': steps.append(('clf', SVC(class_weight='balanced', random_state=42))) elif clf_str == 'xgboost': steps.append(('clf', xgb.XGBClassifier(random_state=42, objective="multi:softmax", num_class=tot_classes))) elif clf_str == 'adaboost': steps.append(('clf', AdaBoostClassifier(random_state=42))) elif clf_str == 'gradboost': steps.append(('clf', GradientBoostingClassifier(random_state=42))) ######################################### elif clf_str == 'linear': steps.append(('clf', LinearRegression())) else: logger.error("Classifier option " + clf_str + " not supported") raise Exception("Classifier option " + clf_str + " not supported") if 'params' in clf_info: for clf_param in clf_info['params']: vals = clf_param['vals'] name = clf_param['name'] for vidx in range(len(vals)): if vals[vidx] == 'None': vals[vidx] = None param_grid[0]["clf__" + name] = vals def get_crashed_list(configs): crashed_list_fname = "output/" + configs["experiment_name"] + "/" + "crashed.txt" if os.path.exists(crashed_list_fname): fid = open(crashed_list_fname, "r") crashed_list = [] for line in fid: crashed_list.append(line.strip()) fid.close() else: crashed_list = [] fid = open(crashed_list_fname, "w") fid.close() return crashed_list, crashed_list_fname @ignore_warnings(category=ConvergenceWarning) def build_models(configs): mtype = configs['mtype'] data_path = "output/" + configs['experiment_name'] + "/features.csv" train_path = "output/" + configs['experiment_name'] + "/train.csv" val_path = train_path.replace("train.csv", "val.csv") makedir("output/" + configs['experiment_name'] + "/interim") logger.info('Building Models for ' + str(train_path)) # Read train and val sets X = pd.read_csv(data_path) y = X[configs['target']].values X = X.drop([configs['target']], axis=1) X = X.values ids = list((pd.read_csv(train_path, header=None).values)[:, 0]) ids.extend(list((pd.read_csv(val_path, header=None).values)[:, 0])) X = X[ids, :] y = y[ids] all_scores_path = "output/" + configs["experiment_name"] + "/all_scores.pkl" all_scores_done_flg = "output/" + configs["experiment_name"] + "/all_scores_flg" crashed_list, crashed_list_fname = get_crashed_list(configs) if os.path.exists(all_scores_path) and os.path.exists(all_scores_done_flg): # If allready model building is done just return the results. # This is heplful to display result in a jupyter notebook. logger.info('All the models have been built already.') else: all_scores = [] if mtype == 'classification': tot_classes = np.unique(y).shape[0] else: tot_classes = None # For Each classifier - For Each Data transform - For each Dimensionality reduction BUILD THE MODEL! for clf_info in configs["models"]["classifiers"]: for preproc_str in configs["models"]["preprocs"]: for transforms_info in configs["models"]["transforms"]: transforms_str = transforms_info['name'] clf_str = clf_info['name'] res_path = "output/" + configs["experiment_name"] + "/interim/" + clf_str + "_" + preproc_str + \ "_" + transforms_str + ".pkl" model_str = 'classifier "' + clf_str + '" with preprocessing "' + preproc_str + \ '" and with transform "' + transforms_str + '"' logger.info('Building ' + model_str) ################# ADD IMPUTERS ################################# steps = [('imputer', SimpleImputer(strategy='mean'))] param_grid = [{}] ################################################################### ################# PICK A DATA TRANSFORM ########################### add_preproc_step(preproc_str, steps) ################################################################### ################### PICK A Dimensionality reduction method ################ add_transform_step(transforms_str, steps, transforms_info, param_grid) ################################################################### ##################### PICK A classifier ####################### add_classifier_step(clf_str, steps, clf_info, param_grid, tot_classes) ################################################################### ##################### Perform grid search ##################### pipeline = Pipeline(steps=steps) if mtype == 'classification': scoring = {'balanced_accuracy': make_scorer(balanced_accuracy_score), 'accuracy': make_scorer(accuracy_score), 'f1': 'f1_micro'} refit = 'balanced_accuracy' else: scoring = {'r2': make_scorer(r2_score), 'mae': make_scorer(mean_absolute_error), 'mse': make_scorer(mean_squared_error)} refit = 'r2' clf = GridSearchCV(estimator=pipeline, cv=5, param_grid=param_grid, verbose=1, scoring=scoring, refit=refit) if os.path.exists(res_path): logger.info('Model has been built already. Loading the model ' + str(res_path)) clf = joblib.load(res_path) elif model_str in crashed_list: logger.info('Model fails to build. Ignoring. Please consider modifying the params.') continue else: try: clf.fit(X, y) except Exception as e: logger.info("Model building crashed for " + model_str) logger.error(e, exc_info=True) fid = open(crashed_list_fname, "a") fid.write(model_str + "\n") fid.close() continue joblib.dump(clf, res_path) ################################################################### ################### Record scores ################ cv_results = clf.cv_results_ score_info = {'classifier': clf_str, 'preprocess': preproc_str, 'transform': transforms_str, 'res_path': res_path} for scorer in scoring: best_index = np.nonzero(cv_results['rank_test_%s' % scorer] == 1)[0][0] best_score = cv_results['mean_test_%s' % scorer][best_index] if scorer == 'balanced_accuracy': score_info['balanced_accuracy'] = np.round(best_score * 100, 1) elif scorer == 'accuracy': score_info['accuracy'] = np.round(best_score * 100, 1) elif scorer == 'f1': score_info['f1_score'] = np.round(best_score, 2) elif scorer == 'r2': score_info['r2'] = np.round(best_score, 2) elif scorer == 'mae': score_info['mae'] = np.round(best_score, 2) elif scorer == 'mse': score_info['mse'] = np.round(best_score, 2) if mtype == 'classification': res_str = ' => accuracy = ' + str(score_info['accuracy']) + '%, F1 = ' + \ str(score_info['f1_score']) else: res_str = ' => r2 = ' + str(score_info['r2']) logger.info(model_str + res_str) all_scores.append(score_info) pickle.dump(all_scores, open(all_scores_path, "wb")) ################################################################### # end each transforms # end each preprocs # end each classifiers if mtype == 'classification': all_scores = sorted(all_scores, key=lambda x: x['balanced_accuracy'], reverse=True) else: all_scores = sorted(all_scores, key=lambda x: x['r2'], reverse=True) best_model_path = "output/" + configs["experiment_name"] + "/best_model.pkl" copyfile(all_scores[0]['res_path'], best_model_path) fid = open(all_scores_done_flg, "wb") fid.close() logger.info("All the models are built.")
47.688645
118
0.541132
0
0
0
0
7,659
0.588294
0
0
3,653
0.28059
fd4aa50f6950d8285cebb403be0898f64adbb857
2,495
py
Python
gleague/gleague/frontend/seasons.py
Nuqlear/genkstaleague
664ed1d3ebea9c43053546fc2d658083cc16526b
[ "MIT" ]
7
2015-08-18T01:21:48.000Z
2021-04-30T03:10:38.000Z
gleague/gleague/frontend/seasons.py
Nuqlear/genkstaleague
664ed1d3ebea9c43053546fc2d658083cc16526b
[ "MIT" ]
1
2019-04-28T10:02:39.000Z
2019-05-06T08:11:56.000Z
gleague/gleague/frontend/seasons.py
Nuqlear/genkstaleague
664ed1d3ebea9c43053546fc2d658083cc16526b
[ "MIT" ]
3
2015-08-14T09:42:25.000Z
2018-11-08T07:07:58.000Z
from flask import Blueprint from flask import abort from flask import render_template from flask import request from flask import current_app from sqlalchemy import desc from gleague.core import db from gleague.models import Match from gleague.models import Season from gleague.models import SeasonStats from gleague.models.queries import season_analytic seasons_bp = Blueprint("seasons", __name__) def get_season_number_and_id(season_number): if season_number == -1: season = Season.current() else: season = Season.query.filter(Season.number == season_number).first() if not season: abort(404) return season.number, season.id @seasons_bp.route("/current/players", methods=["GET"]) @seasons_bp.route("/<int:season_number>/players", methods=["GET"]) def players(season_number=-1): season_number, s_id = get_season_number_and_id(season_number) q = request.args.get("q") sort = request.args.get("sort", "pts") page = int(request.args.get("page", 1)) stats = SeasonStats.get_stats(season_number, q, sort) stats = stats.paginate(page, current_app.config["TOP_PLAYERS_PER_PAGE"], True) seasons = [season[0] for season in db.session.query(Season.number).all()] return render_template( "/season/players.html", stats=stats, sort=sort, seasons=seasons, season_number=season_number, ) @seasons_bp.route("/current/records", methods=["GET"]) @seasons_bp.route("/<int:season_number>/records", methods=["GET"]) def records(season_number=-1): season_number, s_id = get_season_number_and_id(season_number) template_context = { "season_number": season_number, "seasons": [season[0] for season in db.session.query(Season.number).all()], } template_context.update(season_analytic.get_all_season_records(season_number)) return render_template("/season/records.html", **template_context) @seasons_bp.route("/current/heroes", methods=["GET"]) @seasons_bp.route("/<int:season_number>/heroes", methods=["GET"]) def heroes(season_number=-1): season_number, s_id = get_season_number_and_id(season_number) sort = request.args.get("sort", "played") return render_template( "/season/heroes.html", season_number=season_number, seasons=[season[0] for season in db.session.query(Season.number).all()], sort=sort, is_desc=desc, in_season_heroes=season_analytic.get_player_heroes(s_id, sort), )
34.652778
83
0.710621
0
0
0
0
1,806
0.723848
0
0
326
0.130661
fd4d6ed01b3decd5927f1d836a338350d16f500c
941
py
Python
LC_problems/822.py
Howardhuang98/Blog
cf58638d6d0bbf55b95fe08e43798e7dd14219ac
[ "MIT" ]
null
null
null
LC_problems/822.py
Howardhuang98/Blog
cf58638d6d0bbf55b95fe08e43798e7dd14219ac
[ "MIT" ]
null
null
null
LC_problems/822.py
Howardhuang98/Blog
cf58638d6d0bbf55b95fe08e43798e7dd14219ac
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @File : 822.py @Contact : [email protected] @Modify Time : 2022/3/29 13:19 ------------ """ from typing import List class Solution: def flipgame(self, fronts: List[int], backs: List[int]) -> int: ans = float('+inf') for i in range(len(fronts)): if fronts[i] == backs[i]: continue for x in [fronts[i], backs[i]]: success = True for j in range(len(fronts)): if j == i: continue if x != fronts[j] or x != backs[j]: continue else: success = False break if success: ans = min(ans, x) return ans if __name__ == '__main__': s = Solution() print(s.flipgame([1],[1]))
27.676471
67
0.420829
665
0.706695
0
0
0
0
0
0
185
0.196599
fd4d784f79a128a2168a7d3f9c317a2fb64d12f1
22,795
py
Python
result/analyze.py
kuriatsu/PIE_RAS
8dd33b4d4f7b082337a2645c0a72082374768b52
[ "Apache-2.0" ]
null
null
null
result/analyze.py
kuriatsu/PIE_RAS
8dd33b4d4f7b082337a2645c0a72082374768b52
[ "Apache-2.0" ]
null
null
null
result/analyze.py
kuriatsu/PIE_RAS
8dd33b4d4f7b082337a2645c0a72082374768b52
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/python3 # -*- coding: utf-8 -*- import pickle import pandas as pd import xml.etree.ElementTree as ET import math import seaborn as sns import matplotlib.pyplot as plt import numpy as np import csv import glob import scikit_posthocs as sp from scipy import stats import os from scipy import stats import scikit_posthocs as sp sns.set(context='paper', style='whitegrid') hue_order = ["traffic light", "crossing intention", "trajectory"] eps=0.01 tl_black_list = [ "3_3_96tl", "3_3_102tl", "3_4_107tl", "3_4_108tl", "3_5_112tl", "3_5_113tl", "3_5_116tl", "3_5_117tl", "3_5_118tl", "3_5_119tl", "3_5_122tl", "3_5_123tl", "3_5_126tl", "3_5_127tl", "3_6_128tl", "3_6_137tl", "3_7_142tl", "3_8_153tl", "3_8_160tl", "3_9_173tl", "3_9_174tl", "3_9_179tl", "3_10_185tl", "3_10_188tl", "3_11_205tl", "3_12_218tl", "3_12_221tl", "3_15_241tl", "3_16_256tl", "3_16_257tl", ] opposite_anno_list = ["3_16_259tl", "3_16_258tl", "3_16_249tl"] log_data = None data_path = "/home/kuriatsu/Dropbox/data/pie202203" for file in glob.glob(os.path.join(data_path, "log*.csv")): buf = pd.read_csv(file) filename =file.split("/")[-1] count = int(filename.replace("log_data_", "").split("_")[-1].replace(".csv", "")) print("{}".format(filename)) if count in [0, 1, 2]: print("skipped") continue trial = filename.split("_")[-1].replace(".csv", "") buf["subject"] = filename.replace("log_data_", "").split("_")[0] buf["task"] = filename.replace("log_data_", "").split("_")[1] correct_list = [] response_list = [] for idx, row in buf.iterrows(): if row.id in tl_black_list: row.last_state = -2 if row.last_state == -1: # no intervention correct_list.append(-1) response_list.append(-1) elif int(row.last_state) == int(row.state): if row.id in opposite_anno_list: correct_list.append(1) if row.last_state == 1: response_list.append(3) elif row.last_state == 0: response_list.append(0) else: print(f"last_state{row.last_state}, state{row.state}") response_list.append(4) # ignored=4 else: correct_list.append(0) if row.last_state == 1: response_list.append(1) elif row.last_state == 0: response_list.append(2) else: print(f"last_state{row.last_state}, state{row.state}") response_list.append(4) # ignored=4 else: if row.id in opposite_anno_list: correct_list.append(0) if row.last_state == 1: response_list.append(1) elif row.last_state == 0: response_list.append(2) else: print(f"last_state{row.last_state}, state{row.state}") response_list.append(4) # ignored=4 else: correct_list.append(1) if row.last_state == 1: response_list.append(3) elif row.last_state == 0: response_list.append(0) else: print(f"last_state{row.last_state}, state{row.state}") response_list.append(4) # ignored=4 buf["correct"] = correct_list buf["response"] = response_list len(correct_list) if log_data is None: log_data = buf else: log_data = log_data.append(buf, ignore_index=True) task_list = {"int": "crossing intention", "tl": "traffic light", "traj":"trajectory"} subject_data = pd.DataFrame(columns=["subject", "task", "acc", "int_length", "missing"]) for subject in log_data.subject.drop_duplicates(): for task in log_data.task.drop_duplicates(): for length in log_data.int_length.drop_duplicates(): target = log_data[(log_data.subject == subject) & (log_data.task == task) & (log_data.int_length == length)] # acc = len(target[target.correct == 1])/(len(target)) acc = len(target[target.correct == 1])/(len(target[target.correct == 0]) + len(target[target.correct == 1])+eps) missing = len(target[target.correct == -1])/(len(target[target.correct != -2])+eps) buf = pd.DataFrame([(subject, task_list.get(task), acc, length, missing)], columns=subject_data.columns) subject_data = pd.concat([subject_data, buf]) subject_data.acc = subject_data.acc * 100 subject_data.missing = subject_data.missing * 100 # sns.barplot(x="task", y="acc", hue="int_length", data=subject_data, ci="sd") # sns.barplot(x="task", y="acc", data=subject_data, ci="sd") ################################################ print("check intervene acc") ################################################ for length in subject_data.int_length.drop_duplicates(): print(f"acc : length={length}") target_df = subject_data[subject_data.int_length == length] _, norm_p = stats.shapiro(target_df.acc.dropna()) _, var_p = stats.levene( target_df[target_df.task == 'trajectory'].acc.dropna(), target_df[target_df.task == 'crossing intention'].acc.dropna(), target_df[target_df.task == 'traffic light'].acc.dropna(), center='median' ) # if norm_p < 0.05 or var_p < 0.05: # print(f"norm:{norm_p}, var:{var_p}") # print('steel-dwass\n', sp.posthoc_dscf(target_df, val_col='acc', group_col='task')) # else: # multicomp_result = multicomp.MultiComparison(np.array(target_df.dropna(how='any').acc, dtype="float64"), target_df.dropna(how='any').type) # print(f"norm:{norm_p}, var:{var_p}") # print('levene', multicomp_result.tukeyhsd().summary()) if norm_p < 0.05 or var_p < 0.05: _, anova_p = stats.friedmanchisquare( target_df[target_df.task == "trajectory"].acc, target_df[target_df.task == "crossing intention"].acc, target_df[target_df.task == "traffic light"].acc, ) print(f"norm:{norm_p}, var:{var_p}") print("anova(friedman test)", anova_p) if anova_p < 0.05: print('conover\n', sp.posthoc_conover(target_df, val_col="acc", group_col="task")) print('steel-dwass\n', sp.posthoc_dscf(target_df, val_col='acc', group_col='task')) else: # melted_df = pd.melt(target_df, id_vars=["subject", "acc", "int_length"], var_name="task", value_name="rate") aov = stats_anova.AnovaRM(melted_df, "missing", "subject", ["task"]) print(f"norm:{norm_p}, var:{var_p}") print("reperted anova: ", aov.fit()) multicomp_result = multicomp.MultiComparison(melted_df[length], nasa_df.task) print(melted_df.tukeyhsd().summary()) fig, ax = plt.subplots() sns.pointplot(x="int_length", y="acc", data=subject_data, hue="task", hue_order=hue_order, ax=ax, capsize=0.1, ci="sd") ax.set_ylim(0.0, 100.0) ax.set_xlabel("intervention time [s]", fontsize=18) ax.set_ylabel("intervention accuracy [%]", fontsize=18) ax.tick_params(labelsize=14) ax.legend(fontsize=14) plt.show() ################################################ print("check miss rate") ################################################ for length in subject_data.int_length.drop_duplicates(): print(f"miss : length={length}") target_df = subject_data[subject_data.int_length == length] _, norm_p = stats.shapiro(target_df.missing.dropna()) _, var_p = stats.levene( target_df[target_df.task == 'trajectory'].missing.dropna(), target_df[target_df.task == 'crossing intention'].missing.dropna(), target_df[target_df.task == 'traffic light'].missing.dropna(), center='median' ) # if norm_p < 0.05 or var_p < 0.05: # print(f"norm:{norm_p}, var:{var_p}") # print('steel-dwass\n', sp.posthoc_dscf(target_df, val_col='missing', group_col='task')) # else: # multicomp_result = multicomp.MultiComparison(np.array(target_df.dropna(how='any').missing, dtype="float64"), target_df.dropna(how='any').type) # print(f"norm:{norm_p}, var:{var_p}") # print('levene', multicomp_result.tukeyhsd().summary()) if norm_p < 0.05 or var_p < 0.05: _, anova_p = stats.friedmanchisquare( target_df[target_df.task == "trajectory"].missing, target_df[target_df.task == "crossing intention"].missing, target_df[target_df.task == "traffic light"].missing, ) print(f"norm:{norm_p}, var:{var_p}") print("anova(friedman test)", anova_p) if anova_p < 0.05: print('steel-dwass\n', sp.posthoc_dscf(target_df, val_col='missing', group_col='task')) print('conover\n', sp.posthoc_conover(target_df, val_col="missing", group_col="task")) else: # melted_df = pd.melt(target_df, id_vars=["subject", "acc", "int_length"], var_name="task", value_name="rate") aov = stats_anova.AnovaRM(melted_df, "missing", "subject", ["task"]) print(f"norm:{norm_p}, var:{var_p}") print("reperted anova: ", aov.fit()) multicomp_result = multicomp.MultiComparison(melted_df[length], nasa_df.task) print(melted_df.tukeyhsd().summary()) fig, ax = plt.subplots() sns.pointplot(x="int_length", y="missing", data=subject_data, hue="task", hue_order=hue_order, ax = ax, capsize=0.1, ci=95) ax.set_ylim(0.0, 100.0) ax.set_xlabel("intervention time [s]", fontsize=18) ax.set_ylabel("intervention missing rate [%]", fontsize=18) ax.tick_params(labelsize=14) ax.legend(fontsize=14) plt.show() ##################################### # mean val show ##################################### target = subject_data[subject_data.task == "crossing intention"] print("int acc mean: 1.0:{}, 3.0:{}, 5.0:{}, 8.0:{}\n std {} {} {} {}".format( target[target.int_length == 1.0].acc.mean(), target[target.int_length == 3.0].acc.mean(), target[target.int_length == 5.0].acc.mean(), target[target.int_length == 8.0].acc.mean(), target[target.int_length == 1.0].acc.std(), target[target.int_length == 3.0].acc.std(), target[target.int_length == 5.0].acc.std(), target[target.int_length == 8.0].acc.std(), )) target = subject_data[subject_data.task == "trajectory"] print("traj acc mean: 1.0:{}, 3.0:{}, 5.0:{}, 8.0:{}\n std {} {} {} {}".format( target[target.int_length == 1.0].acc.mean(), target[target.int_length == 3.0].acc.mean(), target[target.int_length == 5.0].acc.mean(), target[target.int_length == 8.0].acc.mean(), target[target.int_length == 1.0].acc.std(), target[target.int_length == 3.0].acc.std(), target[target.int_length == 5.0].acc.std(), target[target.int_length == 8.0].acc.std(), )) target = subject_data[subject_data.task == "traffic light"] print("tl acc mean: 1.0:{}, 3.0:{}, 5.0:{}, 8.0:{}\n std {} {} {} {}".format( target[target.int_length == 1.0].acc.mean(), target[target.int_length == 3.0].acc.mean(), target[target.int_length == 5.0].acc.mean(), target[target.int_length == 8.0].acc.mean(), target[target.int_length == 1.0].acc.std(), target[target.int_length == 3.0].acc.std(), target[target.int_length == 5.0].acc.std(), target[target.int_length == 8.0].acc.std(), )) target = subject_data[subject_data.task == "crossing intention"] print("int missing mean: 1.0:{}, 3.0:{}, 5.0:{}, 8.0:{}\n std {} {} {} {}".format( target[target.int_length == 1.0].missing.mean(), target[target.int_length == 3.0].missing.mean(), target[target.int_length == 5.0].missing.mean(), target[target.int_length == 8.0].missing.mean(), target[target.int_length == 1.0].missing.std(), target[target.int_length == 3.0].missing.std(), target[target.int_length == 5.0].missing.std(), target[target.int_length == 8.0].missing.std(), )) target = subject_data[subject_data.task == "trajectory"] print("traj missing mean: 1.0:{}, 3.0:{}, 5.0:{}, 8.0:{}\n std {} {} {} {}".format( target[target.int_length == 1.0].missing.mean(), target[target.int_length == 3.0].missing.mean(), target[target.int_length == 5.0].missing.mean(), target[target.int_length == 8.0].missing.mean(), target[target.int_length == 1.0].missing.std(), target[target.int_length == 3.0].missing.std(), target[target.int_length == 5.0].missing.std(), target[target.int_length == 8.0].missing.std(), )) target = subject_data[subject_data.task == "traffic light"] print("tl missing mean: 1.0:{}, 3.0:{}, 5.0:{}, 8.0:{}\n std {} {} {} {}".format( target[target.int_length == 1.0].missing.mean(), target[target.int_length == 3.0].missing.mean(), target[target.int_length == 5.0].missing.mean(), target[target.int_length == 8.0].missing.mean(), target[target.int_length == 1.0].missing.std(), target[target.int_length == 3.0].missing.std(), target[target.int_length == 5.0].missing.std(), target[target.int_length == 8.0].missing.std(), )) ########################################### # collect wrong intervention ids ########################################### task_list = {"int": "crossing intention", "tl": "traffic light", "traj":"trajectory"} id_data = pd.DataFrame(columns=["id", "task", "false_rate", "missing", "total"]) for id in log_data.id.drop_duplicates(): for task in log_data.task.drop_duplicates(): for length in log_data.int_length.drop_duplicates(): target = log_data[(log_data.id == id) & (log_data.task == task) & (log_data.int_length == length)] # acc = len(target[target.correct == 1])/(len(target)) total = len(target) name = id.replace("tl","")+task+"_"+str(length) if len(target) > 0: false_rate = len(target[target.correct == 0])/len(target) else: false_rate = 0.0 missing = len(target[target.correct == -1]) buf = pd.DataFrame([(name, task, false_rate, missing, total)], columns=id_data.columns) id_data = pd.concat([id_data, buf]) pd.set_option("max_rows", None) sort_val = id_data.sort_values(["false_rate","total"], ascending=False) false_playlist = sort_val[(sort_val.false_rate>0.0)&(sort_val.total>1)] print(false_playlist) false_playlist.to_csv("/home/kuriatsu/Dropbox/data/pie202203/false_playlist.csv") # sns.barplot(x="id", y="acc", hue="int_length", data=id_data) ############################################################################################### print("response rate stacked bar plot") ############################################################################################### response_summary_pred = pd.DataFrame(columns=["int_length", "task", "response", "count"]) for int_length in log_data.int_length.drop_duplicates(): for task in log_data.task.drop_duplicates(): for response in [0, 1, 2, 3, -1]: buf = pd.Series([int_length, task, response, len(log_data[(log_data.int_length==int_length) & (log_data.task==task) & (log_data.response <= response)])/len(log_data[(log_data.int_length==int_length) & (log_data.task==task) & (log_data.response!=4)])], index=response_summary_pred.columns) response_summary_pred = response_summary_pred.append(buf, ignore_index=True) fig, axes = plt.subplots() cr = sns.barplot(x="task", y="count", hue="int_length", data=response_summary_pred[response_summary_pred.response==3], ax=axes, palette=sns.color_palette(["turquoise"]*6), edgecolor="0.2", order=["tl", "int", "traj"]) fa = sns.barplot(x="task", y="count", hue="int_length", data=response_summary_pred[response_summary_pred.response==2], ax=axes, palette=sns.color_palette(["orangered"]*6), edgecolor="0.2", order=["tl", "int", "traj"]) miss = sns.barplot(x="task", y="count", hue="int_length", data=response_summary_pred[response_summary_pred.response==1], ax=axes, palette=sns.color_palette(["lightsalmon"]*6), edgecolor="0.2", order=["tl", "int", "traj"]) hit = sns.barplot(x="task", y="count", hue="int_length", data=response_summary_pred[response_summary_pred.response==0], ax=axes, palette=sns.color_palette(["teal"]*6), edgecolor="0.2", order=["tl", "int", "traj"]) no_int = sns.barplot(x="task", y="count", hue="int_length", data=response_summary_pred[response_summary_pred.response==-1], ax=axes, palette=sns.color_palette(["gray"]*6), edgecolor="0.2", order=["tl", "int", "traj"]) axes.set_xticks([-0.3, -0.1, 0.1, 0.3, 0.7, 0.9, 1.1, 1.3, 1.7, 1.9, 2.1, 2.3]) axes.set_xticklabels(["1.0", "3.0", "5.0", "8.0", "1.0", "3.0", "5.0", "8.0", "1.0", "3.0", "5.0", "8.0"], fontsize=14) # axes.set_yticklabels(fontsize=14) ax_pos = axes.get_position() fig.text(ax_pos.x1-0.75, ax_pos.y1-0.84, "traffic light", fontsize=14) fig.text(ax_pos.x1-0.55, ax_pos.y1-0.84, "crossing intention", fontsize=14) fig.text(ax_pos.x1-0.25, ax_pos.y1-0.84, "trajectory", fontsize=14) axes.tick_params(labelsize=14) axes.set_ylabel("Response Rate", fontsize=18) axes.set_xlabel("") handles, labels = axes.get_legend_handles_labels() axes.legend(handles[::4], ["CR", "FA", "miss", "hit", "no_int"], bbox_to_anchor=(1.0, 1.0), loc='upper left', fontsize=14) plt.show() ############################################### # Workload ############################################### workload = pd.read_csv("{}/workload.csv".format(data_path)) workload.satisfy = 10-workload.satisfy workload_melted = pd.melt(workload, id_vars=["subject", "type"], var_name="scale", value_name="score") #### nasa-tlx #### for item in workload_melted.scale.drop_duplicates(): print(item) _, norm_p1 = stats.shapiro(workload[workload.type == "trajectory"][item]) _, norm_p2 = stats.shapiro(workload[workload.type == "crossing intention"][item]) _, norm_p3 = stats.shapiro(workload[workload.type == "traffic light"][item]) _, var_p = stats.levene( workload[workload.type == "trajectory"][item], workload[workload.type == "crossing intention"][item], workload[workload.type == "traffic light"][item], center='median' ) if norm_p1 < 0.05 or norm_p2 < 0.05 or norm_p3 < 0.05 or norm_p4 < 0.05: _, anova_p = stats.friedmanchisquare( workload[workload.type == "trajectory"][item], workload[workload.type == "crossing intention"][item], workload[workload.type == "traffic light"][item], ) print("anova(friedman test)", anova_p) if anova_p < 0.05: print(sp.posthoc_conover(workload, val_col=item, group_col="type")) else: melted_df = pd.melt(nasa_df, id_vars=["name", "experiment_type"], var_name="type", value_name="score") aov = stats_anova.AnovaRM(workload_melted[workload_melted.type == item], "score", "subject", ["type"]) print("reperted anova: ", aov.fit()) multicomp_result = multicomp.MultiComparison(workload_melted[item], nasa_df.type) print(multicomp_result.tukeyhsd().summary()) fig, ax = plt.subplots() sns.barplot(x="scale", y="score", data=workload_melted, hue="type", hue_order=hue_order, ax=ax) ax.set_ylim(0, 10) ax.legend(bbox_to_anchor=(0.0, 1.0), loc='lower left', fontsize=14) ax.set_xlabel("scale", fontsize=18) ax.set_ylabel("score (lower is better)", fontsize=18) ax.tick_params(labelsize=14) plt.show() ############################################### # necessary time ############################################### time = pd.read_csv("/home/kuriatsu/Dropbox/documents/subjective_time.csv") fig, ax = plt.subplots() # mean_list = [ # time[time.type=="crossing intention"].ideal_time.mean(), # time[time.type=="trajectory"].ideal_time.mean(), # time[time.type=="traffic light"].ideal_time.mean(), # ] # sem_list = [ # time[time.type=="crossing intention"].ideal_time.sem(), # time[time.type=="trajectory"].ideal_time.sem(), # time[time.type=="traffic light"].ideal_time.sem(), # ] _, norm_p = stats.shapiro(time.ideal_time.dropna()) _, var_p = stats.levene( time[time.type == 'crossing intention'].ideal_time.dropna(), time[time.type == 'trajectory'].ideal_time.dropna(), time[time.type == 'traffic light'].ideal_time.dropna(), center='median' ) if norm_p < 0.05 or var_p < 0.05: print('steel-dwass\n', sp.posthoc_dscf(time, val_col='ideal_time', group_col='type')) else: multicomp_result = multicomp.MultiComparison(np.array(time.dropna(how='any').ideal_time, dtype="float64"), time.dropna(how='any').type) print('levene', multicomp_result.tukeyhsd().summary()) sns.pointplot(x="type", y="ideal_time", hue="type", hue_order=hue_order, data=time, join=False, ax=ax, capsize=0.1, ci=95) ax.set_ylim(0.5,3.5) plt.yticks([1, 2, 3, 4], ["<3", "3-5", "5-8", "8<"]) plt.show() ############################################### # compare prediction and intervention ############################################### with open("/home/kuriatsu/Dropbox/data/pie202203/database.pkl", "rb") as f: database = pickle.load(f) tl_result = pd.read_csv("/home/kuriatsu/Dropbox/data/pie202203/tlr_result.csv") overall_result = pd.DataFrame(columns=["id", "task", "subject", "gt", "int", "prediction"]) log_data = None data_path = "/home/kuriatsu/Dropbox/data/pie202203" for file in glob.glob(os.path.join(data_path, "log*.csv")): buf = pd.read_csv(file) filename =file.split("/")[-1] count = float(filename.replace("log_data_", "").split("_")[-1].replace(".csv", "")) print("{}".format(filename)) if count in [0, 1, 2]: print("skipped") continue subject = filename.replace("log_data_", "").split("_")[0] task = filename.replace("log_data_", "").split("_")[1] for idx, row in buf.iterrows(): if task != "tl": database_id = row.id+task+"_"+str(float(row.int_length)) prediction = (database[database_id].get("likelihood") <= 0.5) gt = False if row.state else True else: database_id = row.id+"_"+str(float(row.int_length)) prediction = 1 if float(tl_result[tl_result.id == row.id].result) == 2 else 0 gt = False if row.state else True if row.id in tl_black_list: intervention = -2 if row.last_state == -1: # no intervention intervention = -1 else: if row.id in opposite_anno_list: intervention = False if row.last_state else True else: intervention = row.last_state buf = pd.DataFrame([(row.id, task, subject, int(gt), int(intervention), int(prediction))], columns = overall_result.columns) overall_result = pd.concat([overall_result, buf]) overall_result.to_csv("/home/kuriatsu/Dropbox/data/pie202203/acc.csv")
44.696078
222
0.612547
0
0
0
0
0
0
0
0
6,655
0.29195
fd4df1f5acd3eb66e203334228aa56f68ab7a4a9
302
py
Python
tests/huge.py
nbdy/podb
684ed6b8330c0d18a2b89d6521cb15586d1f95a4
[ "MIT" ]
null
null
null
tests/huge.py
nbdy/podb
684ed6b8330c0d18a2b89d6521cb15586d1f95a4
[ "MIT" ]
null
null
null
tests/huge.py
nbdy/podb
684ed6b8330c0d18a2b89d6521cb15586d1f95a4
[ "MIT" ]
null
null
null
import unittest from podb import DB from tqdm import tqdm from . import HugeDBItem db = DB("huge") class HugeDBTest(unittest.TestCase): def test_huge_insert(self): for _ in tqdm(range(1000000)): db.insert(HugeDBItem.random()) if __name__ == '__main__': unittest.main()
17.764706
42
0.682119
150
0.496689
0
0
0
0
0
0
16
0.05298
fd5095688e3adf6f9ca25f40240ff9d7e4246e41
153
py
Python
moto/sts/__init__.py
pll/moto
e49e67aba5d108b03865bdb42124206ea7e572ea
[ "Apache-2.0" ]
null
null
null
moto/sts/__init__.py
pll/moto
e49e67aba5d108b03865bdb42124206ea7e572ea
[ "Apache-2.0" ]
null
null
null
moto/sts/__init__.py
pll/moto
e49e67aba5d108b03865bdb42124206ea7e572ea
[ "Apache-2.0" ]
null
null
null
from .models import sts_backend from ..core.models import base_decorator sts_backends = {"global": sts_backend} mock_sts = base_decorator(sts_backends)
25.5
40
0.810458
0
0
0
0
0
0
0
0
8
0.052288
fd518544ef8c44c965453eb8925336fcec4f3ee3
3,005
py
Python
convert_nbrId_to_orgnr.py
obtitus/barnehagefakta_osm
4539525f6defcc67a087cc57baad996f8d76b8bd
[ "Apache-2.0" ]
1
2018-10-05T17:00:23.000Z
2018-10-05T17:00:23.000Z
convert_nbrId_to_orgnr.py
obtitus/barnehagefakta_osm
4539525f6defcc67a087cc57baad996f8d76b8bd
[ "Apache-2.0" ]
6
2016-05-29T09:33:06.000Z
2019-12-18T20:24:50.000Z
convert_nbrId_to_orgnr.py
obtitus/barnehagefakta_osm
4539525f6defcc67a087cc57baad996f8d76b8bd
[ "Apache-2.0" ]
null
null
null
# Database switched from having nsrId to using orgnr, this script helps with this conversion. import os import re import json import subprocess from glob import glob from utility_to_osm import file_util if __name__ == '__main__': data_dir = 'data' #'barnehagefakta_osm_data/data' nsrId_to_orgnr_filename = 'nsrId_to_orgnr.json' if False: # Done once, on a old dump of the database, to get mapping from nsrId to orgnr nsrId_to_orgnr = dict() for kommune_nr in os.listdir(data_dir): folder = os.path.join(data_dir, kommune_nr) if os.path.isdir(folder): print(folder) count = 0 for filename in glob(os.path.join(folder, 'barnehagefakta_no_nbrId*.json')): content = file_util.read_file(filename) if content == '404': # cleanup os.remove(filename) continue dct = json.loads(content) nsrId = dct['nsrId'] orgnr = dct['orgnr'] if nsrId in nsrId_to_orgnr and nsrId_to_orgnr[nsrId] != orgnr: raise ValueError('Duplicate key %s, %s != %s' % (nsrId, nsrId_to_orgnr[nsrId], orgnr)) nsrId_to_orgnr[nsrId] = orgnr count += 1 print('Found', count) with open(nsrId_to_orgnr_filename, 'w') as f: json.dump(nsrId_to_orgnr, f) content = file_util.read_file(nsrId_to_orgnr_filename) nsrId_to_orgnr = json.loads(content) if True: # Rename files for kommune_nr in os.listdir(data_dir): folder = os.path.join(data_dir, kommune_nr) if os.path.isdir(folder): print(folder) count = 0 for filename in glob(os.path.join(folder, 'barnehagefakta_no_nbrId*.json')): reg = re.search('barnehagefakta_no_nbrId(\d+)', filename) if reg: nbrId = reg.group(1) try: orgnr = nsrId_to_orgnr[nbrId] except KeyError as e: content = file_util.read_file(filename) print('ERROR', repr(e), filename, content) if content == '404': os.remove(filename) continue new_filename = filename.replace('barnehagefakta_no_nbrId%s' % nbrId, 'barnehagefakta_no_orgnr%s' % orgnr) subprocess.run(['git', 'mv', filename, new_filename]) # if the file is still there, probably not version controlled if os.path.exists(filename): os.rename(filename, new_filename)
40.608108
110
0.509151
0
0
0
0
0
0
0
0
547
0.18203
fd51dbb2cb05ef487bcf83c509336b681bc19872
769
py
Python
regcore/tests/layer_tests.py
navigo/regulations-core
0b2a2034baacfa1cc5ff87f14db7d1aaa8d260c3
[ "CC0-1.0" ]
17
2016-06-14T19:06:02.000Z
2021-10-03T23:46:00.000Z
regcore/tests/layer_tests.py
navigo/regulations-core
0b2a2034baacfa1cc5ff87f14db7d1aaa8d260c3
[ "CC0-1.0" ]
42
2016-04-06T22:34:26.000Z
2020-04-14T22:00:24.000Z
regcore/tests/layer_tests.py
navigo/regulations-core
0b2a2034baacfa1cc5ff87f14db7d1aaa8d260c3
[ "CC0-1.0" ]
20
2016-05-04T06:04:34.000Z
2020-10-07T16:16:03.000Z
from django.test import TestCase from regcore.layer import standardize_params class LayerParamsTests(TestCase): def test_old_format(self): lp = standardize_params('label', 'version') self.assertEqual(lp.doc_type, 'cfr') self.assertEqual(lp.doc_id, 'version/label') self.assertEqual(lp.tree_id, 'label') def test_new_format(self): lp = standardize_params('cfr', 'version/label') self.assertEqual(lp.doc_type, 'cfr') self.assertEqual(lp.doc_id, 'version/label') self.assertEqual(lp.tree_id, 'label') lp = standardize_params('preamble', 'docid') self.assertEqual(lp.doc_type, 'preamble') self.assertEqual(lp.doc_id, 'docid') self.assertEqual(lp.tree_id, 'docid')
33.434783
55
0.669701
687
0.893368
0
0
0
0
0
0
131
0.170351
fd5213aa3c0233313738c5ac6fd68800d2601767
459
py
Python
asal.py
kedigucuk01/asal-sayi-bulucu
dffc81cec5c4bbd6b4423d8991a5559a79f26f92
[ "MIT" ]
2
2021-06-10T16:27:42.000Z
2021-06-11T10:54:24.000Z
asal.py
kedigucuk01/asal-sayi-bulucu
dffc81cec5c4bbd6b4423d8991a5559a79f26f92
[ "MIT" ]
1
2021-06-15T11:08:58.000Z
2021-08-10T20:23:11.000Z
asal.py
kedigucuk01/asal-sayi-bulucu
dffc81cec5c4bbd6b4423d8991a5559a79f26f92
[ "MIT" ]
null
null
null
while True: try: i = int(input("Sayı giriniz: ")) # 2 except ValueError: print("Hata Kodu: 5786, \nAçıklama: Lütfen bir \"tam sayı\" giriniz.") else: for s in range(2, i, 1): if i%s == 0: print(f"{i} sayısı, asal değildir.") break else: if s == i - 1: print(f"{i} sayısı, asal bir sayıdır.") if i < 2: print(f"{i} sayısı, asal değildir.") elif i == 2: print(f"{i} sayısı, asal bir sayıdır.")
20.863636
73
0.542484
0
0
0
0
0
0
0
0
224
0.468619
fd543b58f8ff3f846e998d58939fe4d5bc4acf05
5,859
py
Python
main.py
MO-RISE/crowsnest-connector-cluon-n2k
11eaefd8ebe76829ec8fe91f99da9acbc84e5187
[ "Apache-2.0" ]
null
null
null
main.py
MO-RISE/crowsnest-connector-cluon-n2k
11eaefd8ebe76829ec8fe91f99da9acbc84e5187
[ "Apache-2.0" ]
null
null
null
main.py
MO-RISE/crowsnest-connector-cluon-n2k
11eaefd8ebe76829ec8fe91f99da9acbc84e5187
[ "Apache-2.0" ]
null
null
null
"""Main entrypoint for this application""" from pathlib import Path from math import degrees from datetime import datetime import logging import warnings from environs import Env from streamz import Stream from paho.mqtt.client import Client as MQTT from pycluon import OD4Session, Envelope as cEnvelope from pycluon.importer import import_odvd from marulc import NMEA2000Parser from marulc.utils import filter_on_pgn, deep_get from marulc.exceptions import MultiPacketInProcessError from brefv.envelope import Envelope from brefv.messages.observations.rudder import Rudder from brefv.messages.observations.propeller import Propeller # Reading config from environment variables env = Env() CLUON_CID = env.int("CLUON_CID", 111) MQTT_BROKER_HOST = env("MQTT_BROKER_HOST") MQTT_BROKER_PORT = env.int("MQTT_BROKER_PORT", 1883) MQTT_CLIENT_ID = env("MQTT_CLIENT_ID", None) MQTT_TRANSPORT = env("MQTT_TRANSPORT", "tcp") MQTT_TLS = env.bool("MQTT_TLS", False) MQTT_USER = env("MQTT_USER", None) MQTT_PASSWORD = env("MQTT_PASSWORD", None) MQTT_BASE_TOPIC = env("MQTT_BASE_TOPIC", "/test/test") RUDDER_CONFIG = env.dict("RUDDER_CONFIG", default={}) PROPELLER_CONFIG = env.dict("PROPELLER_CONFIG", default={}) LOG_LEVEL = env.log_level("LOG_LEVEL", logging.WARNING) ## Import and generate code for message specifications THIS_DIR = Path(__file__).parent memo = import_odvd(THIS_DIR / "memo" / "memo.odvd") # Setup logger logging.basicConfig(level=LOG_LEVEL) logging.captureWarnings(True) warnings.filterwarnings("once") LOGGER = logging.getLogger("crowsnest-connector-cluon-n2k") mq = MQTT(client_id=MQTT_CLIENT_ID, transport=MQTT_TRANSPORT) # Not empty filter not_empty = lambda x: x is not None ## Main entrypoint for N2k frames entrypoint = Stream() parser = NMEA2000Parser() def unpack_n2k_frame(envelope: cEnvelope): """Extract an n2k frame from an envelope and unpack it using marulc""" LOGGER.info("Got envelope from pycluon") try: frame = memo.memo_raw_NMEA2000() frame.ParseFromString(envelope.serialized_data) LOGGER.debug("Frame: %s", frame.data) msg = parser.unpack(frame.data) LOGGER.debug("Unpacked: %s", msg) msg["timestamp"] = envelope.sampled return msg except MultiPacketInProcessError: LOGGER.debug("Multi-packet currently in process") return None except Exception: # pylint: disable=broad-except LOGGER.exception("Exception when unpacking a frame") return None unpacked = entrypoint.map(unpack_n2k_frame).filter(not_empty) ## Rudder def pgn127245_to_brefv(msg): """Converting a marulc dict to a brefv messages and packaging it into a a brefv construct""" n2k_id = str(deep_get(msg, "Fields", "instance")) if sensor_id := RUDDER_CONFIG.get(n2k_id): crowsnest_id = list(RUDDER_CONFIG.keys()).index(n2k_id) rud = Rudder( sensor_id=sensor_id, angle=degrees(-1 * msg["Fields"]["angleOrder"]) ) # Negating to adhere to brefv conventions envelope = Envelope( sent_at=datetime.utcfromtimestamp(msg["timestamp"]).isoformat(), message_type="https://mo-rise.github.io/brefv/0.1.0/messages/observations/rudder.json", message=rud.dict( exclude_none=True, exclude_unset=True, exclude_defaults=True ), ) LOGGER.info("Brefv envelope with Rudder message assembled") LOGGER.debug("Envelope:\n%s", envelope) return f"/observations/rudder/{crowsnest_id}", envelope warnings.warn(f"No Rudder config found for N2k instance id: {n2k_id}") return None brefv_rudder = ( unpacked.filter(filter_on_pgn(127245)).map(pgn127245_to_brefv).filter(not_empty) ) ## Propeller (Using engine data for now...) def pgn127488_to_brefv(msg): """Converting a marulc dict to a brefv messages and packaging it into a a brefv construct""" n2k_id = str(deep_get(msg, "Fields", "instance")) if sensor_id := PROPELLER_CONFIG.get(n2k_id): crowsnest_id = list(PROPELLER_CONFIG.keys()).index(n2k_id) prop = Propeller(sensor_id=sensor_id, rpm=msg["Fields"]["speed"]) envelope = Envelope( sent_at=datetime.utcfromtimestamp(msg["timestamp"]).isoformat(), message_type="https://mo-rise.github.io/brefv/0.1.0/messages/observations/propeller.json", # pylint: disable=line-too-long message=prop.dict( exclude_none=True, exclude_unset=True, exclude_defaults=True ), ) LOGGER.info("Brefv envelope with Propeller message assembled") LOGGER.debug("Envelope:\n%s", envelope) return f"/observations/propeller/{crowsnest_id}", envelope warnings.warn(f"No Propeller config found for {n2k_id}") return None brefv_propeller = ( unpacked.filter(filter_on_pgn(127488)).map(pgn127488_to_brefv).filter(not_empty) ) # Finally, publish to mqtt def to_mqtt(data): """Push data to a mqtt topic""" subtopic, envelope = data topic = f"{MQTT_BASE_TOPIC}{subtopic}" LOGGER.debug("Publishing on %s", topic) try: mq.publish( topic, envelope.json(), ) except Exception: # pylint: disable=broad-except LOGGER.exception("Failed publishing to broker!") if __name__ == "__main__": print("All setup done, lets start processing messages!") # Connect remaining pieces brefv_rudder.latest().rate_limit(0.1).sink(to_mqtt) brefv_propeller.latest().rate_limit(0.1).sink(to_mqtt) # Connect to broker mq.username_pw_set(MQTT_USER, MQTT_PASSWORD) if MQTT_TLS: mq.tls_set() mq.connect(MQTT_BROKER_HOST, MQTT_BROKER_PORT) # Register triggers session = OD4Session(CLUON_CID) session.add_data_trigger(10002, entrypoint.emit) mq.loop_forever()
30.046154
135
0.70524
0
0
0
0
0
0
0
0
1,821
0.310804
fd54b2677eda2400e60664de51925feee4550c09
7,569
py
Python
cocapi/client/api.py
bim-ba/coc-api
69ff957803cb991dfad8df3af752d193171f2ef0
[ "Unlicense" ]
1
2022-03-29T12:39:36.000Z
2022-03-29T12:39:36.000Z
cocapi/client/api.py
bim-ba/coc-api
69ff957803cb991dfad8df3af752d193171f2ef0
[ "Unlicense" ]
null
null
null
cocapi/client/api.py
bim-ba/coc-api
69ff957803cb991dfad8df3af752d193171f2ef0
[ "Unlicense" ]
null
null
null
from typing import Any, Optional from dataclasses import dataclass, field import aiohttp from ..types import aliases from ..types import exceptions @dataclass class BaseMethod: # config base_url: aliases.Url | None = field(init=False, default=None) default_http_method: aliases.RequestMethod | None = field(init=False, default=None) # actual dataclass members path: aliases.RelativeUrl method: Optional[aliases.RequestMethod] = None url: aliases.Url = field(init=False) def __post_init__(self): if not self.base_url: raise NotImplementedError( f"You must define static field 'base_url' for {self.__class__}" ) from None if not self.method and not self.default_http_method: raise NotImplementedError( f"You must define either static field 'default_http_method' or pass it directly in {self.__class__}" ) from None self.method = self.default_http_method if self.method is None else self.method self.url = self.base_url + self.path def __call__(self, **kwargs: Any): try: self.url = self.url.format(**kwargs) return self except KeyError as error: (missing_field,) = error.args raise KeyError( f"Missing field: '{missing_field}' when formatting {self.url}" ) from error class Methods: class Method(BaseMethod): base_url = "https://api.clashofclans.com/v1" default_http_method = "GET" # clans CLANS = Method("/clans") """`GET`: `/clans`""" CLAN = Method("/clans/{clantag}") """`GET`: `/clans/{clantag:str}`""" CLAN_WARLOG = Method("/clans/{clantag}/warlog") """`GET`: `/clans/{clantag:str}/warlog`""" CLAN_MEMBERS = Method("/clans/{clantag}/members") """`GET`: `/clans/{clantag:str}/members`""" CLAN_CURRENT_WAR = Method("/clans/{clantag}/currentwar") """`GET`: `/clans/{clantag:str}/currentwar`""" CLAN_CURRENT_WAR_LEAGUEGROUP = Method("/clans/{clantag}/currentwar/leaguegroup") """`GET`: `/clans/{clantag:str}/currentwar/leaguegroup`""" CLAN_CURRENT_LEAGUE_WAR = Method("/clanwarleagues/wars/{wartag}") """`GET`: `/clanwarleagues/wars/{wartag:str}`""" # players PLAYER = Method("/players/{playertag}") """`GET`: `/players/{playertag:str}`""" PLAYER_VERIFY_API_TOKEN = Method("/players/{playertag}/verifytoken", "POST") """`POST`: `/players/{playertag:str}/verifytoken`""" # leagues LEAGUES = Method("/leagues") """`GET`: `/leagues`""" LEAGUE_INFO = Method("/leagues/{league_id}") """`GET`: `/leagues/{league_id:int}`""" LEAGUE_SEASONS = Method("/leagues/{league_id}/seasons") """`GET`: `/leagues/{league_id:int}/seasons`""" LEAGUE_SEASONS_RANKINGS = Method("/leagues/{league_id}/seasons/{season_id}") """`GET`: `/leagues/{league_id:int}/seasons/{season_id:int}`""" WARLEAGUES = Method("/warleagues") """`GET`: `/warleagues`""" WARLEAGUE_INFORMATION = Method("/warleagues/{league_id}") """`GET`: `/warleagues/{league_id:int}`""" # locations LOCATIONS = Method("/locations") """`GET`: `/locations`""" LOCATION = Method("/locations/{location_id}") """`GET`: `/locations/{location_id:int}`""" # rankings CLAN_RANKINGS = Method("/locations/{location_id}/rankings/clans") """`GET`: `/locations/{location_id:int}/rankings/clans`""" PLAYER_RANKINGS = Method("/locations/{location_id}/rankings/players") """`GET`: `/locations/{location_id:int}/rankings/players`""" CLAN_VERSUS_RANKINGS = Method("/locations/{location_id}/rankings/clans-versus") """`GET`: `/locations/{location_id:int}/rankings/clans-versus`""" PLAYER_VERSUS_RANKINGS = Method("/locations/{location_id}/rankings/players-versus") """`GET`: `/locations/{location_id:int}/rankings/players-versus`""" # goldpass GOLDPASS = Method("/goldpass/seasons/current") """`GET`: `/goldpass/seasons/current`""" # labels CLAN_LABELS = Method("/labels/clans") """`GET`: `/labels/clans`""" PLAYER_LABELS = Method("/labels/players") """`GET`: `/labels/players`""" # not used, but can be class ServiceMethods: class Method(BaseMethod): base_url = "https://developer.clashofclans.com/api" default_http_method = "POST" # developer-api LOGIN = Method("/login") """`POST`: `/login`""" LIST_KEY = Method("/apikey/list") """`POST`: `/apikey/list`""" CREATE_KEY = Method("/apikey/create") """`POST`: `/apikey/create`""" REVOKE_KEY = Method("/apikey/revoke") """`POST`: `/apikey/revoke`""" async def check_result(response: aiohttp.ClientResponse): """ Validate request for success. Parameters ---------- response : aiohttp.ClientResponse Actual response Raises ------ ``IncorrectParameters``, ``AccessDenied``, ``ResourceNotFound``, ``TooManyRequests``, ``UnknownError``, ``ServiceUnavailable`` According to the official Clash of Clans API -------------------------------------------- - ``200`` Succesfull response. - ``400`` Client provided incorrect parameters for the request. - ``403`` Access denied, either because of missing/incorrect credentials or used API token does not grant access to the requested resource. - ``404`` Resource was not found. - ``429`` Request was throttled, because amount of requests was above the threshold defined for the used API token. - ``500`` Unknown error happened when handling the request. - ``503`` Service is temprorarily unavailable because of maintenance. """ # because json decoding must be executed in request context manager json = await response.json() if not response.ok: match response.status: case 400: raise exceptions.IncorrectParameters(response) case 403: raise exceptions.AccessDenied(response) case 404: raise exceptions.ResourceNotFound(response) case 429: raise exceptions.TooManyRequests(response) case 503: raise exceptions.ServiceUnavailable(response) case _: # 500 also response_data = { "error": json.get("error"), "description": json.get("description"), "reason": json.get("reason"), "message": json.get("message"), } raise exceptions.UnknownError(response, data=response_data) return response async def make_request( session: aiohttp.ClientSession, api_method: BaseMethod, **kwargs: Any, ) -> aiohttp.ClientResponse: """ Parameters ---------- session : ``aiohttp.ClientSession`` Client session to be used for requests api_method : ``BaseMethod`` Request API method **kwargs: This keyword arguments are compatible with :meth:``aiohttp.ClientSession.request`` Returns ------- aiohttp.ClientResponse Response object. """ params = kwargs.pop("params", None) if params is not None: filtered_params = { key: value for key, value in params.items() if value is not None } kwargs["params"] = filtered_params async with session.request( method=api_method.method, # type: ignore url=api_method.url, **kwargs, ) as response: return await check_result(response)
34.880184
143
0.62069
4,480
0.591888
0
0
1,262
0.166733
2,890
0.381821
3,797
0.501651
fd56674cc383ba9fa6321e89c2463e251d94abf2
28,594
py
Python
ratings.py
struct-rgb/ratings
40d56455406cfee9731c564e54ed7610b5a9641c
[ "MIT" ]
null
null
null
ratings.py
struct-rgb/ratings
40d56455406cfee9731c564e54ed7610b5a9641c
[ "MIT" ]
null
null
null
ratings.py
struct-rgb/ratings
40d56455406cfee9731c564e54ed7610b5a9641c
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import re import json import random from pathlib import Path from datetime import date from typing import Any, Callable, Set, Tuple import gi gi.require_version("Gtk", "3.0") from gi.repository import Gtk from tags import Filter, Box, CompilationError, escape, enum_subject_parser_factory, tagset, PredicateDefinitions, DEFAULT_BOOL_PARSER, highlighting from model import Search, Sort, Score, Status, Page, Tag, Rating, Model # # filter setup # parser_score = enum_subject_parser_factory(Score) parser_status = enum_subject_parser_factory(Status) #################### # RANDOM PREDICATE # #################### def parser_random(string: str) -> float: if string == 'nan': raise ValueError("percentage cannot be nan") percent = float(string) if percent < 0.0 or 100.0 < percent: raise ValueError(f"percentage {percent} is not in range 0 to 100 inclusive") return percent def action_random(percent: float, ignore: Any) -> bool: return random.random() * 100 <= percent PREDICATES = PredicateDefinitions( action=lambda tag, rating: tag in rating.tags ) ################### # COUNT PREDICATE # ################### count_pattern = re.compile(r"^(\d+)\s+of\s+(.*)$") def parser_count(string: str) -> Tuple[Box[int], Callable[[Any], bool]]: items = count_pattern.fullmatch(string) if not items: raise ValueError(f"subject {string} is not of the form: <number> of <expression>") integer = int(items[1]) if integer < 0: raise ValueError(f"counting must begin from 0 or greater, not {integer}") try: subroutine = Filter(items[2], PREDICATES) except CompilationError as e: # intercept the error and change the source # to the source that we're trying to compile e.reason = "in quotation: " + e.reason e.source = source raise e return (Box(integer), subroutine) def action_count(subject: Tuple[Box[int], Callable[[Any], bool]], rating: Rating) -> bool: integer, subroutine = subject if integer.value != 0 and subroutine(rating): integer.value -= 1 return True return False ################## # EVAL PREDICATE # ################## def parser_eval(source): try: return Filter(source, PREDICATES) except CompilationError as e: # intercept the error and change the source # to the source that we're trying to compile e.reason = "in quotation: " + e.reason e.source = source raise e def parser_lower_str(source): return source.lower() ################### # DATE PREDICATES # ################### def parser_date(isoformat: str): try: return date.fromisoformat(isoformat) except ValueError as e: raise ValueError("date must be in the format YYYY-MM-DD") (PREDICATES .define("tag", readme="filter for ratings with the specified tag", action=lambda tag, rating: tag in rating.tags, parser=lambda x: x, ) .define("score", readme="filter for ratings with the specified score", action=lambda score, rating: score == rating.score, parser=parser_score, ) .define("minimum score", readme="filter for ratings with at least a certain score", action=lambda score, rating: rating.score >= score, parser=parser_score, ) .define("maximum score", readme="filter for ratings with at most a certain score", action=lambda score, rating: rating.score <= score, parser=parser_score, ) .define("status", readme="filter for ratings with the specified status", action=lambda status, rating: status == rating.status, parser=parser_status, ) .define("minimum status", readme="filter for ratings with at least a certain status", action=lambda status, rating: rating.status >= status, parser=parser_status, ) .define("maximum status", readme="filter for ratings with at most a certain status", action=lambda status, rating: rating.status <= status, parser=parser_status, ) .define("tags", readme="filter for ratings with a specific number of tags", action=lambda number, rating: len(rating.tags) == number, parser=int, ) .define("minimum tags", readme="filter for ratings with a specific number of tags", action=lambda number, rating: len(rating.tags) >= number, parser=int, ) .define("maximum tags", readme="filter for ratings with a specific number of tags", action=lambda number, rating: len(rating.tags) <= number, parser=int, ) .define("random", readme="filter ratings with a percent chance to include each", action=action_random, parser=parser_random, pure=False ) .define("count", # TODO possibly remove readme="filter for a certain number of results at most", action=action_count, parser=parser_count, pure=False ) .define("eval", # TODO possibly remove readme="evaluate a string as an expression", action=lambda function, rating: function(rating), parser=parser_eval, pure=False ) .define("title", readme="filter for ratings with certain text in the title (case insensitive)", action=lambda string, rating: rating.title.lower().find(string) != -1, parser=parser_lower_str, ) .define("comment", readme="filter for ratings with certain text in the comments (case insensitive)", action=lambda string, rating: rating.comments.lower().find(string) != -1, parser=parser_lower_str, ) .define("text", readme="filter for ratings with certain text in the title or the comments (case insensitive)", action=lambda string, rating: ( rating.title.lower().find(string) != -1 or rating.comments.lower().find(string) != -1 ), parser=parser_lower_str, ) .define("commented", readme="filter for ratings that either have or lack a comment", action=lambda boolean, rating: bool(rating.comments) == boolean, parser=DEFAULT_BOOL_PARSER, ) .define("value", readme="a literal boolean value; true or false", action=lambda boolean, rating: boolean, parser=DEFAULT_BOOL_PARSER, ) .define("modified", readme="ratings modified on YYYY-MM-DD", action=lambda day, rating: rating.modified == day, parser=parser_date, ) .define("modified after", readme="ratings modified after YYYY-MM-DD", action=lambda day, rating: rating.modified > day, parser=parser_date, ) .define("modified before", readme="ratings modified before YYYY-MM-DD", action=lambda day, rating: rating.modified < day, parser=parser_date, ) .define("created", readme="ratings created on YYYY-MM-DD", action=lambda day, rating: rating.created == day, parser=parser_date, ) .define("created after", readme="ratings created after YYYY-MM-DD", action=lambda day, rating: rating.created > day, parser=parser_date, ) .define("created before", readme="ratings created before YYYY-MM-DD", action=lambda day, rating: rating.created < day, parser=parser_date, ) # alias definitions .alias("minimum score", "min score") .alias("maximum score", "max score") .alias("minimum status", "min status") .alias("maximum status", "max status") .alias("minimum tags", "min tags") .alias("maximum tags", "max tags") .alias("commented", "has comment") ) def create_rating_filter(filter_tab): search = filter_tab.search if search == Search.COMMENTS: criterion = filter_tab.query.lower() elif search == Search.ADVANCED: adv = filter_tab.advanced criterion = Filter(adv if adv else filter_tab.query, PREDICATES) elif search == Search.TITLE: criterion = filter_tab.query.lower() else: pass def function(rating): if search == Search.COMMENTS: if rating.comments.lower().find(criterion) == -1: return False elif search == Search.ADVANCED: if not criterion(rating): return False elif search == Search.TITLE: if rating.title.lower().find(criterion) == -1: return False else: pass return True return function def create_tagging_filter(filter_tab): search = filter_tab.tags_search criterion = filter_tab.tags_query.lower() def function(tag): if search == Search.COMMENTS: if tag.description.lower().find(criterion) == -1: return False elif search == Search.TITLE: if tag.name.lower().find(criterion) == -1: return False else: pass return True return (lambda item: True) if criterion == "" else function class FilterTab(object): def __init__(self, builder, model): self._search = builder.get_object("filter_search_combobox") self._tags_search = builder.get_object("filter_tags_search_combobox") self._tags_ascending = builder.get_object("filter_tags_ascending") self._tags_descending = builder.get_object("filter_tags_descending") self._sort = builder.get_object("filter_sort_combobox") self._query = builder.get_object("search_entry") self._tags_query = builder.get_object("tagging_search_entry") self._ascending = builder.get_object("filter_ascending") self._descending = builder.get_object("filter_descending") self.model = model self._advanced = builder.get_object("highlight_textview").get_buffer() self._advanced.create_tag("operator", foreground="red", background=None) self._advanced.create_tag("predicate", foreground="magenta") self._advanced.create_tag("grouping", foreground="red") self._advanced.create_tag("error", foreground="white", background="red") self.reset() self.reset_tags() def reset(self): self.advanced = "" self.search = Search.TITLE self.sort = Sort.TITLE def reset_tags(self): self.tags_search = Search.TITLE # BUG setting sorting does not actually work # only sorts by title regardless of function def configure_sorting(self, tree_sortable): # a descending order is a good default if self.descending: order = Gtk.SortType.DESCENDING else: order = Gtk.SortType.ASCENDING tree_sortable.set_sort_column_id(0, order) sort = self.sort if sort == Sort.SCORE: def sort_func(model, a, b, userdata): x = userdata[model.get(a, 1)].score y = userdata[model.get(b, 1)].score return 1 if x > y else -1 if x < y else 0 elif sort == Sort.STATUS: def sort_func(model, a, b, userdata): x = userdata[model.get(a, 1)].status y = userdata[model.get(b, 1)].status return 1 if x > y else -1 if x < y else 0 elif sort == Sort.TITLE: def sort_func(model, a, b, userdata): x = userdata[model.get(a, 1)].title y = userdata[model.get(b, 1)].title return 1 if x > y else -1 if x < y else 0 else: raise ValueError('Enum value "%s" unknown for Sort' % sort) tree_sortable.set_sort_func(1, sort_func, self.model.ratings) def configure_sorting_tags(self, tree_sortable): # a descending order is a good default if self.tags_descending: order = Gtk.SortType.DESCENDING else: order = Gtk.SortType.ASCENDING tree_sortable.set_sort_column_id(0, order) def _check_tag(self, criterion, tag): return True def create(self, kind): if kind is Rating: return create_rating_filter(self) elif kind is Tag: return create_tagging_filter(self) else: # TODO raise TypeError("kind must be one of Rating or Tag") def highlight(self): highlights = highlighting(self.advanced, PREDICATES.keys()) self._advanced.remove_all_tags(*self._advanced.get_bounds()) for position, token, tag in highlights: start = self._advanced.get_iter_at_offset(position) end = self._advanced.get_iter_at_offset(position + len(token)) self._advanced.apply_tag_by_name(tag, start, end) @property def query(self): return self._query.get_text() @query.setter def query(self, value): self._query.set_text(value) @property def advanced(self): return self._advanced.get_text(*self._advanced.get_bounds(), True) @advanced.setter def advanced(self, value): self._advanced.set_text(value) self.highlight() @property def tags_query(self): return self._tags_query.get_text() @tags_query.setter def tags_query(self, value): self._tags_query.set_text(value) @property def ascending(self): return self._ascending.get_active() @ascending.setter def ascending(self, value): self._ascending.set_active(value) @property def descending(self): return self._descending.get_active() @descending.setter def descending(self, value): self._descending.set_active(value) @property def tags_ascending(self): return self._tags_ascending.get_active() @ascending.setter def tags_ascending(self, value): self._tags_ascending.set_active(value) @property def tags_descending(self): return self._tags_descending.get_active() @descending.setter def tags_descending(self, value): self._tags_descending.set_active(value) @property def search(self): return Search(int(self._search.get_active_id())) @search.setter def search(self, value): self._search.set_active_id(str(value.value)) @property def tags_search(self): return Search(int(self._tags_search.get_active_id())) @tags_search.setter def tags_search(self, value): self._tags_search.set_active_id(str(value.value)) @property def sort(self): return Sort(int(self._sort.get_active_id())) @sort.setter def sort(self, value): self._sort.set_active_id(str(value.value)) class EditorTab(object): def __init__(self, builder, model): self._idnum = builder.get_object("id_label") self._title = builder.get_object("title_entry") self._score = builder.get_object("score_combobox") self._recommendation = builder.get_object("recommend_combobox") self._status = builder.get_object("status_combobox") self._comments = builder.get_object("comments_textview").get_buffer() self._tags = builder.get_object("tags_textview").get_buffer() self._original_tags = None self._created_label = builder.get_object("created_label") self._modified_label = builder.get_object("modified_label") self._created = date.today() self._modified = date.today() self.model = model def copy_to(self, rating): modified = ( rating.score != self.score or rating.status != self.status or rating.title != self.title or rating.comments != self.comments ) rating.title = self.title rating.score = self.score rating.status = self.status rating.comments = self.comments if self._original_tags != self._tags.get_text(*self._tags.get_bounds(), True): self.model.change_tags(rating, self.tags) modified = True if modified: rating.modified = date.today() self.modified = rating.modified def copy_from(self, value): self.idnum = value.idnum self.title = value.title self.score = value.score self.status = value.status self.comments = value.comments self.tags = value.tags # set date attributes/labels these are not edittable self.created = value.created self.modified = value.modified @property def idnum(self): return self._idnum.get_text() @idnum.setter def idnum(self, number): self._idnum.set_text(str(number)) @property def title(self): return self._title.get_text() @title.setter def title(self, text): self._title.set_text(text) @property def score(self): return Score(int(self._score.get_active_id())) @score.setter def score(self, value): self._score.set_active_id(str(value.value)) @property def status(self): return Status(int(self._status.get_active_id())) @status.setter def status(self, value): self._status.set_active_id(str(value.value)) @property def comments(self): start, end = self._comments.get_bounds() return self._comments.get_text(start, end, True) @comments.setter def comments(self, text): self._comments.set_text(text) @property def tags(self): start, end = self._tags.get_bounds() text = self._tags.get_text(start, end, True) return tagset(text) @tags.setter def tags(self, tag_set): self._original_tags = ", ".join([escape(tag) for tag in tag_set]) self._tags.set_text(self._original_tags) @property def created(self): return self._created @created.setter def created(self, day): self._created = day self._created_label.set_text(day.isoformat()) @property def modified(self): return self._modified @modified.setter def modified(self, day): self._modified = day self._modified_label.set_text(day.isoformat()) def clear(self): self.title = "" self.score = Score.UNSPECIFIED self.status = Status.UNSPECIFIED self.comments = "" self.tags = "" self._created = date.today() self._modified = date.today() class FilesTab(object): def __init__(self, builder): self._path = builder.get_object("filepath_entry") self._chooser = builder.get_object("file_chooser_button") self._chooser.set_current_folder(str(Path.home())) # self.update_path() @property def path(self): return self._path.get_text() @path.setter def path(self, text): self._path.set_text(text) def update_path(self): self.path = self._chooser.get_filename() class TaggingTab(object): def __init__(self, builder, model): self._idnum = builder.get_object("tagging_id_label") self._name = builder.get_object("tagging_name_entry") self._description = builder.get_object("tagging_description_textview").get_buffer() self._original_name = None self.selected = None self.selected_row = None self.model = model def sort_func(model, a, b, userdata): x = model.get(a, 0) y = model.get(b, 0) return 1 if x > y else -1 if x < y else 0 self.liststore = Gtk.ListStore(str) self.liststore.set_sort_column_id(0, Gtk.SortType.DESCENDING) self.liststore.set_sort_func(0, sort_func, self.model.tags) self.treeview = builder.get_object("tagging_treeview") self.treeview.set_model(self.liststore) self.title_column = Gtk.TreeViewColumn("Name", Gtk.CellRendererText(), text=0) self.treeview.append_column(self.title_column) self.results_label = builder.get_object("tagging_results_label") self.instances_label = builder.get_object("tagging_instances_label") self.filter = lambda item: True def copy_to(self, tag): name = self.name if self._original_name is not None and name != self._original_name: self.model.rename(tag, name) self.selected = None self.refresh() tag.description = self.description def copy_from(self, tag): self.idnum = tag.idnum self.name = tag.name self._original_name = self.name self.description = tag.description if tag.instances == 1: self.instances_label.set_text("1 instance") else: self.instances_label.set_text("%i instances" % tag.instances) def change_selection(self): if self.selected is not None: self.copy_to(self.selected) model, tag = self.treeview.get_selection().get_selected() if tag is None: return name = model.get_value(tag, 0) self.selected = self.model.tags[name] self.selected_row = self.liststore[tag] self.copy_from(self.model.tags[name]) def remove(self): self.model.remove(self.selected) tag = self.liststore.get_iter_first() while tag is not None: if self.liststore.get_value(tag, 0) == self.selected.name: has_next_row = self.liststore.remove(tag) break tag = self.liststore.iter_next(tag) if has_next_row or (tag := self.liststore.get_iter_first()) is not None: name = self.liststore.get_value(tag, 0) self.selected = self.model.tags[name] path = self.liststore.get_path(tag) self.selected_row = self.liststore[path] self.treeview.set_cursor(path, self.title_column, False) self.copy_from(self.selected) else: self.selected = None self.name = "" self.description = "" self.idnum = -1 self.instances_label.set_text("0 instances") def vacuum(self): self.model.vacuum() self.refresh() def refresh(self): results = self.model.fill_in(Tag, self.liststore, self.filter) self.results_label.set_text("%i results" % results) if self.selected is not None: for row in self.liststore: if row[0] == self.selected.name: self.selected_row = row break else: self.selected = None self.selected_row = None @property def idnum(self): return self._idnum.get_text() @idnum.setter def idnum(self, number): self._idnum.set_text(str(number)) @idnum.setter def idnum(self, number): self._idnum.set_text(str(number)) @property def name(self): return self._name.get_text() @name.setter def name(self, value): self._name.set_text(value) @property def description(self): start, end = self._description.get_bounds() return self._description.get_text(start, end, True) @description.setter def description(self, text): self._description.set_text(text) class Rater: # # Location of configuration file # CONFIG = Path.home() / ".ratings.json" def __init__(self): builder = Gtk.Builder.new_from_file("ratings.glade") self.selected = None self.selected_row = None self.model = Model() self.editor = EditorTab(builder, self.model) self.filter = FilterTab(builder, self.model) self.files = FilesTab(builder) self.tagging = TaggingTab(builder, self.model) self.liststore = Gtk.ListStore(str, int) self.treeview = builder.get_object("search_treeview") self.treeview.set_model(self.liststore) self.title_column = Gtk.TreeViewColumn("Title", Gtk.CellRendererText(), text=0) self.treeview.append_column(self.title_column) self.filter.configure_sorting(self.liststore) self.rater_window = builder.get_object("rater_window") self.rater_window.connect("destroy", self.exit_rater) self.rater_window.show_all() self.results_label = builder.get_object("results_label") self.message_window = builder.get_object("message_window") self.query_label = builder.get_object("message_window_query_label") self.error_label = builder.get_object("message_window_error_label") # TODO fix it so that closing the message window via border icon doesn't destroy it self.message_window.connect("destroy", self.on_close_message_button_clicked ) self.message_window.connect("delete-event", lambda widget, event: self.close_message_window() ) self.message_window.connect("response", lambda widget, event: self.close_message_window() ) builder.connect_signals(self) if Rater.CONFIG.is_file(): config = json.loads(Rater.CONFIG.read_text()) file = config["last_open"] self.files.path = file if file is not None else "" if not self.open_file(): self.new_file() else: self.file = None self.new_file() def exit_rater(self, widget): Rater.CONFIG.write_text( json.dumps({"last_open": self.file}, indent=4) ) Gtk.main_quit() def close_message_window(self): self.message_window.hide() def open_file(self): if not self.model.load(self.files.path): return False results = self.model.fill_in(Tag, self.tagging.liststore) self.tagging.results_label.set_text("%i results" % results) results = self.model.fill_in(Rating, self.liststore) self.results_label.set_text("%s results" % results) tag = self.liststore.get_iter_first() index = self.liststore.get_value(tag, 1) self.selected = self.model.ratings[index] path = self.liststore.get_path(tag) self.selected_row = self.liststore[path] self.treeview.set_cursor(path, self.title_column, False) self.editor.copy_from(self.selected) self.file = self.files.path return True def save_file(self): if self.selected is not None: self.editor.copy_to(self.selected) self.model.save(self.files.path) def new_file(self): self.liststore.clear() self.model.clear() self.new_rating() def new_rating(self): if self.selected is not None: self.editor.copy_to(self.selected) self.selected = self.model.create_rating() tag = self.liststore.prepend( [self.selected.title, self.selected.idnum] ) path = self.liststore.get_path(tag) self.selected_row = self.liststore[path] self.treeview.set_cursor(path, self.title_column, False) self.editor.copy_from(self.selected) def delete_rating(self): self.model.remove(self.selected) tag = self.liststore.get_iter_first() while tag is not None: if self.liststore.get_value(tag, 1) == self.selected.idnum: has_next_row = self.liststore.remove(tag) break tag = self.liststore.iter_next(tag) if has_next_row or (tag := self.liststore.get_iter_first()) is not None: idnum = self.liststore.get_value(tag, 1) self.selected = self.model.ratings[idnum] path = self.liststore.get_path(tag) self.selected_row = self.liststore[path] self.treeview.set_cursor(path, self.title_column, False) self.editor.copy_from(self.selected) else: self.new_rating() def change_selection(self): if self.selected is not None: self.editor.copy_to(self.selected) model, tag = self.treeview.get_selection().get_selected() if tag is None: return idnum = model.get_value(tag, 1) self.selected = self.model.ratings[idnum] self.selected_row = self.liststore[tag] self.editor.copy_from(self.selected) def on_new_rating_button_clicked(self, widget): self.new_rating() def on_delete_rating_button_clicked(self, widget): self.delete_rating() def on_search_treeview_row_activated(self, widget, column, index): self.change_selection() def on_tagging_treeview_row_activated(self, widget, column, index): self.tagging.change_selection() def on_title_entry_changed(self, widget): if self.selected_row is not None: self.selected_row[0] = self.editor.title def on_filter_apply_clicked(self, widget, option_a=None, option_b=None): try: function = self.filter.create(Rating) except CompilationError as error: self.query_label.set_text( "%s%s" % ( error.source if error.source else self.filter.query, "\n" + error.underline_string() if error.position else "", ) ) self.error_label.set_text(error.reason) self.message_window.show_all() return self.liststore.clear() results = self.model.fill_in(Rating, self.liststore, function) self.results_label.set_text("%i results" % results) if self.selected is not None: for row in self.liststore: if row[1] == self.selected.idnum: self.selected_row = row break else: self.selected = None self.selected_row = None self.filter.configure_sorting(self.liststore) def on_filter_tags_apply_clicked(self, widget, option_a=None, option_b=None): self.tagging.filter = self.filter.create(Tag) self.filter.configure_sorting_tags(self.tagging.liststore) self.tagging.refresh() def on_filter_reset_clicked(self, widget): self.filter.reset() def on_filter_tags_reset_clicked(self, widget): self.filter.reset_tags() def on_switch_page(self, widget, page, index): if self.selected is not None: self.editor.copy_to(self.selected) if index == Page.TAGGING.value: self.tagging.refresh() elif self.tagging.selected is not None: self.tagging.copy_to(self.tagging.selected) def on_file_chooser_button_file_set(self, other): self.files.update_path() def on_open_file_button_clicked(self, widget): self.open_file() def on_save_file_button_clicked(self, widget): self.save_file() def on_new_file_button_clicked(self, widget): self.new_file() def on_attach_tag_button_clicked(self, widget): if self.selected is not None and self.tagging.selected is not None: self.model.attach_tag(self.selected, self.tagging.selected) self.editor.tags = self.selected.tags def on_detach_tag_button_clicked(self, widget): if self.selected is not None and self.tagging.selected is not None: self.model.detach_tag(self.selected, self.tagging.selected) self.editor.tags = self.selected.tags def on_delete_tag_button_clicked(self, widget): if self.selected is not None and self.tagging.selected is not None: self.editor.tags = self.selected.tags self.tagging.remove() def on_vacuum_tag_button_clicked(self, widget): self.tagging.vacuum() def on_search_tag_button_clicked(self, widget): self.filter.search = Search.ADVANCED self.filter.advanced = "" self.filter.query = self.tagging.name self.on_filter_apply_clicked(widget) def on_close_message_button_clicked(self, widget): self.close_message_window() def on_highlight_buffer_changed(self, widget): self.filter.highlight() def main(): rater = Rater() Gtk.main() if __name__ == '__main__': main()
26.305428
148
0.708435
20,378
0.712667
0
0
3,710
0.129747
0
0
3,782
0.132266
fd567ff8b78d041903de62043964d3c66a7450a4
10,218
py
Python
K64F Python Interfacing Testing/Loop_Read.py
Marnold212/CamLab-K64F
20689b4be38aa329990dbfe13eec43d74b3ae27a
[ "Apache-2.0" ]
null
null
null
K64F Python Interfacing Testing/Loop_Read.py
Marnold212/CamLab-K64F
20689b4be38aa329990dbfe13eec43d74b3ae27a
[ "Apache-2.0" ]
null
null
null
K64F Python Interfacing Testing/Loop_Read.py
Marnold212/CamLab-K64F
20689b4be38aa329990dbfe13eec43d74b3ae27a
[ "Apache-2.0" ]
null
null
null
import numpy as np from serial.serialutil import SerialException import serial.tools.list_ports as port_list import serial import time def Hex_To_Dec(input): # input of form "40048024" return int(input, 16) def Hex_To_Bin(input): # input of form "40048024" return bin(int(input, 16)) def Hex_To_Bytes(input): # input of form "40048024" return bytes.fromhex(input) # def List_All_Mbed_USB_Devices(self): def List_All_Mbed_USB_Devices(): ports = list(port_list.comports()) Num_Serial_Devices = len(ports) Num_Mbed_Devices = 0 COM_PORTS = [] connectionType = [] # Create a unique value for USB K64F devices which trigger new functions # Say 11 = mbed USB, 10 = mbed ANY, 12 = mbed TCP, 14 = mbed WIFI VID_PID = [] # USB VID:PID are the Vendor/Product ID respectively - smae for each K64F Board? - You can determine HIC ID from last 8 digits of Serial Number? # Note that the 0240 at the start of Serial Number refers to the K64F Family ID_USB = [] # ID_USB will be the USB serial number - should be unique Baud_Rate = [] # For now assume all operating at 9600 - may change later so might need to add later on # IP = [] # Don't think we need this for USB Serial(Mbed) devices if Num_Serial_Devices > 0: for i in range(Num_Serial_Devices): COM_Port = ports[i].usb_description() # ports[i].device outputs COM_PORT (Note port[i][0][0:16] is a particular device - port[i][0] is the COM Port of the device) if(ports[i][1].startswith("mbed Serial Port")): # port[i] is a particular device - port[i][1] is the description of the device - port[i][1][0:16] are the characters containing the mbed Serial Port description default_baudrate = 115200 # Assume all boards use default baudrate of 9600 try: Serial_device = serial.Serial(port=COM_Port, baudrate=default_baudrate, bytesize=8, timeout=1, stopbits=serial.STOPBITS_ONE) except: raise Exception ("Issues connecting with mbed Device on %s", COM_Port) # Need to implement proper error handling # How can we/Do we need to check we have actually connected to device - and that it is meant to be used for what we are using it for if(not Serial_device.readable()): raise Exception ("Issues connecting with mbed Device on %s", COM_Port) # Need to implement proper error handling Num_Mbed_Devices += 1 COM_PORTS.append(COM_Port) USB_INFO = ports[i].usb_info().split('=') # USB-PID should be Unique USB_VIDPID = USB_INFO[1].split(' ')[0] VID_PID.append(USB_VIDPID) USB_Serial_Number = USB_INFO[2].split(' ')[0] ID_USB.append(USB_Serial_Number) connectionType.append(11) # Added 10 onto definitions used by LJM library to avoid mixing up - however can change if confusing Serial_device.close() # Close COM Port communication once info obtained if(ports[i][1].startswith("USB Serial Device")): default_baudrate = 115200 # Assume all boards use default baudrate of 9600 try: Serial_device = serial.Serial(port=COM_Port, baudrate=default_baudrate, bytesize=8, timeout=1, stopbits=serial.STOPBITS_ONE) except: raise Exception ("Issues connecting with mbed Device on %s", COM_Port) # Need to implement proper error handling # How can we/Do we need to check we have actually connected to device - and that it is meant to be used for what we are using it for if(not Serial_device.readable()): raise Exception ("Issues connecting with mbed Device on %s", COM_Port) # Need to implement proper error handling Num_Mbed_Devices += 1 COM_PORTS.append(COM_Port) USB_INFO = ports[i].usb_info().split('=') # USB-PID should be Unique USB_VIDPID = USB_INFO[1].split(' ')[0] VID_PID.append(USB_VIDPID) USB_Serial_Number = USB_INFO[2].split(' ')[0] ID_USB.append(USB_Serial_Number) connectionType.append(11) # Added 10 onto definitions used by LJM library to avoid mixing up - however can change if confusing Serial_device.close() # Close COM Port communication once info obtained return(Num_Mbed_Devices, COM_PORTS, connectionType, ID_USB, VID_PID) def _Serial_Read_Raw(Serial_Device, Expected_Bytes): serialString = "" # Used to hold data coming over UART # NEED TO ADD A TIMEOUT TO FOLLOWING LINE # Removing while(1) should allow the read(size=Expected_Bytes) to naturally timeout after configured time ''' Don't need this chucnk since we know how many bytes we expect to get back Therefore we can use the builtin timeout from the pyserial library while(1): print(self.Serial_Device.in_waiting) if self.Serial_Device.in_waiting > 0: # Read data out of the buffer until a carriage return / new line is found # Note there is an inherant issue with this where, if a transmitted value has the equivalent hex value of 0a, it triggers the end of line # If we are sending unsigned bytes across channel, inevitably some will have the value of '\n' character # serialString = serialPort.readline() ''' serialString = Serial_Device.read(size=Expected_Bytes) serialString = serialString.hex() # Decode bytes into raw hex values # if(serialString[Expected_Bytes-1] != 10): # 10 = 0x0a = '\n' LF character in Ascii if(serialString[-2: ] != '0a'): # 10 = 0x0a = '\n' LF character in Ascii # raise Exception ("Issue with Received Data") # Need to implement proper error handling print("Error", serialString) else: return serialString[:-2] # def Reverse_4byte_hex(input): # reverse = "" # if(len(input) == 4*2): # reverse += input[6:8] + input[4:6] + input[2:4] + input[0:2] # return reverse def Reverse_Hex_Byte_Order(input): reverse = "" if(len(input) %2 == 0): # Should be twice as many hex characters as bytes therefore even number of hex Num_Bytes = len(input) / 2 x = (int)(Num_Bytes) while(x > 0): y = 2 * (x - 1) reverse += input[y : y+2] x -= 1 return reverse def ADC_8x_16_Raw_Read(Serial_Device): Expected_Bytes = 8*2 + 4 + 1 # Inlcude EOL Char Raw = _Serial_Read_Raw(Serial_Device, Expected_Bytes) data = [] seconds = Hex_To_Dec(Reverse_Hex_Byte_Order(Raw[0:8])) for x in range(2, 8+2, 2): # Bytes y = x+1 # Due to byte order of device - data.append(Hex_To_Dec(Raw[(4*y) + 0 : (4*y) + 4])) data.append(Hex_To_Dec(Raw[(4*x) + 0 : (4*x) + 4])) return seconds, data # Assumes Data recieved is def Convert_ADC_Raw(Raw_Reading, ADC_Resolution, Max_Min_Voltage): Signed_Value = np.int16(Raw_Reading) quant_step = (2 * Max_Min_Voltage) / (2**ADC_Resolution) return Signed_Value * quant_step def Decode_Time_In_Secs(HEX_four_bytes): return Hex_To_Dec(Reverse_Hex_Byte_Order(HEX_four_bytes)) def Decode_8x16_Raw(HEX_sixteen_bytes): if(len(HEX_sixteen_bytes) != 16*2): raise ValueError Raw_Readings = [] for x in range(8): Raw_Readings.append(Hex_To_Dec(Reverse_Hex_Byte_Order(HEX_sixteen_bytes[4*x : 4*(x+1)]))) return Raw_Readings def Decode_6_Compressed_PWM_Duty(HEX_six_bytes): if(len(HEX_six_bytes) != 6*2): raise ValueError Duty_Cycles = [] for x in range(6): Duty_Cycles.append(Hex_To_Dec(HEX_six_bytes[2*x : 2*x + 2]) / 100.) return Duty_Cycles def Decode_Raw_Data(Raw_Data): Results = [] for sample in Raw_Data: entry = [] time = Decode_Time_In_Secs(sample[0:(4*2)]) entry.append(time) entry.append(Decode_8x16_Raw(sample[4 * 2 : (4 + (2*8)) * 2])) entry.append(Decode_6_Compressed_PWM_Duty(sample[(4 + (2*8)) * 2 : 40 + 6*2])) Results.append(entry) return Results # for x in range(2, 8+2, 2): # Bytes # y = x+1 # Due to byte order of device - # entry.append(Hex_To_Dec(sample[(4*y) + 0 : (4*y) + 4])) # entry.append(Hex_To_Dec(sample[(4*x) + 0 : (4*x) + 4])) # # entry.append(Convert_ADC_Raw(Hex_To_Dec(sample[(4*y) + 0 : (4*y) + 4]), 16, 5)) # # entry.append(Convert_ADC_Raw(Hex_To_Dec(sample[(4*x) + 0 : (4*x) + 4]), 16, 5)) # Results.append(entry) # Testing if __name__ == "__main__": mbed_USB_info = List_All_Mbed_USB_Devices() for i in range(5): print(mbed_USB_info[i]) # serial_port = serial.Serial(port=mbed_USB_info[1][0], baudrate=115200, bytesize=8, timeout=1, stopbits=serial.STOPBITS_ONE) # for x in range(1000): # raw_data = ADC_8x_16_Raw_Read(serial_port) # # raw_data = serial_port.read(1) # data = [] # for x in range(8): # data.append(Convert_ADC_Raw(raw_data[1][x], 16, 5)) # # print(raw_data) # print(data, raw_data [0]) Bytes_Per_Sample = 32 Number_Samples = 300 Serial_Baudrate = 230400 # 962100 serial_port = serial.Serial(port=mbed_USB_info[1][0], baudrate=Serial_Baudrate, bytesize=8, timeout=1, stopbits=serial.STOPBITS_ONE) data = [] for x in range(Number_Samples): raw = serial_port.read(Bytes_Per_Sample).hex() data.append(raw) # print(data) # print(data) Formatted = Decode_Raw_Data(data) print(Formatted[0], Formatted[Number_Samples - 1]) # print(Results[0:2]) # # Serial_device = serial.Serial(port="COM4", baudrate=9600, bytesize=8, timeout=1, stopbits=serial.STOPBITS_ONE) # Target_Register = "0x40048024" # Received_String = Read_K64F_Hex_Register(Serial_device, Target_Register, 4) # print("READ COMMAND (0x30): Requested Register = %s; Contents of Register(Hex) = %s" % (Target_Register , Received_String[:-2]))
47.305556
224
0.641124
0
0
0
0
0
0
0
0
4,763
0.466138
fd57c568a71d49ca653bf0ce40af26241330267b
190
py
Python
geosolver/text/generate_rules.py
mhrmm/geosolver
13ae2972c58d5ba4c4878576f9fba8569cc99629
[ "Apache-2.0" ]
83
2015-09-14T13:50:42.000Z
2022-03-12T10:24:38.000Z
geosolver/text/generate_rules.py
nehamjadhav/geosolver
13ae2972c58d5ba4c4878576f9fba8569cc99629
[ "Apache-2.0" ]
8
2021-07-21T09:55:42.000Z
2022-02-15T02:31:47.000Z
geosolver/text/generate_rules.py
nehamjadhav/geosolver
13ae2972c58d5ba4c4878576f9fba8569cc99629
[ "Apache-2.0" ]
33
2015-06-16T18:52:43.000Z
2021-12-16T08:58:27.000Z
from geosolver.ontology.ontology_definitions import FunctionSignature, signatures from geosolver.text.rule import TagRule from geosolver.utils.num import is_number __author__ = 'minjoon'
23.75
81
0.847368
0
0
0
0
0
0
0
0
9
0.047368
fd5911cef504b719bc6cc6d734809ba588ffa54f
1,433
py
Python
fhir_dataframes/store.py
Tiro-health/fhir-dataframes
57086b7bb385ffbce55f57747903eca7a7f84665
[ "MIT" ]
1
2022-02-09T08:16:09.000Z
2022-02-09T08:16:09.000Z
fhir_dataframes/store.py
Tiro-health/fhir-dataframes
57086b7bb385ffbce55f57747903eca7a7f84665
[ "MIT" ]
null
null
null
fhir_dataframes/store.py
Tiro-health/fhir-dataframes
57086b7bb385ffbce55f57747903eca7a7f84665
[ "MIT" ]
null
null
null
from __future__ import annotations from itertools import tee from typing import Iterable, Optional, Sequence, Union import pandas as pd from tiro_fhir import Resource from fhir_dataframes import code_accessor class LocalFHIRStore: def __init__(self, resources: Iterable[Resource] = []): self._resources: Iterable[Resource] = resources @property def resources(self): self._resources, result = tee(self._resources) return result def to_pandas(self, keys: Optional[Sequence[str]] = None): records = [resource.record(keys) for resource in self.resources] return pd.DataFrame(records) def __getitem__(self, key: Union[str, Sequence[str]]): if isinstance(key, str): return self.to_pandas([key]) else: return self.to_pandas(key) def get_by_resource_type(self, resource_type: str) -> LocalFHIRStore: return LocalFHIRStore( resources=filter(lambda r: r.resourceType == resource_type, self.resources) ) def _repr_html_(self) -> str: return pd.Series(self.resources).to_frame(name="resource")._repr_html_() @property def Observation(self): return self.get_by_resource_type("Observation") @property def Procedure(self): return self.get_by_resource_type("Procedure") @property def Condition(self): return self.get_by_resource_type("Condition")
30.489362
87
0.686671
1,221
0.852059
0
0
379
0.26448
0
0
45
0.031403
fd5ed16b310aacd62d38f7ed79f88685cc24b454
1,189
py
Python
senlerpy/senler.py
tezmen/SenlerPy
ce8ab8512ed795e8e6f1e7ff76f54c6aa2d3cd82
[ "Apache-2.0" ]
2
2019-03-19T08:46:27.000Z
2020-11-12T10:55:59.000Z
senlerpy/senler.py
tezmen/SenlerPy
ce8ab8512ed795e8e6f1e7ff76f54c6aa2d3cd82
[ "Apache-2.0" ]
1
2021-03-30T16:55:09.000Z
2021-03-30T16:55:09.000Z
senlerpy/senler.py
tezmen/SenlerPy
ce8ab8512ed795e8e6f1e7ff76f54c6aa2d3cd82
[ "Apache-2.0" ]
7
2019-03-19T08:47:35.000Z
2021-08-24T11:47:41.000Z
# -*- coding: utf-8 -*- import json import logging from .request import RequestApi from .exceptions import ApiError, WrongId, HttpError logger = logging.getLogger(__name__) class Senler: def __init__(self, secret, vk_group_id=None): self.vk_group = vk_group_id self.__secret = str(secret).strip() self._rq = RequestApi(self.secret) def __error_handler(self, response): if bool(response['success']): return response raise ApiError(response) def __call__(self, method, **kwargs): if 'vk_group_id' not in kwargs.keys(): if self.vk_group is None: raise WrongId('vk_group_id is not specified by any of the methods') kwargs['vk_group_id'] = self.vk_group response = self._rq.send(str(method), kwargs) json_response = {} try: json_response = json.loads(response.text) except: logger.debug(f'{response.status_code}:{response.text}') raise HttpError(f'status_code:{response.status_code}, error with decode json') return self.__error_handler(json_response) @property def secret(self): return self.__secret @property def vk_group(self): return self.__vk_group @vk_group.setter def vk_group(self, value): self.__vk_group = str(value)
25.847826
81
0.735071
1,012
0.851135
0
0
181
0.152229
0
0
212
0.178301
fd5f3466a377d682676cf2f35cddaec4567f59df
11,354
py
Python
robinhoodbot/main.py
bpk9/Robinhood-Stock-Trading-Bot
c2ab0dd58f5236ee051ad38277c8ba5c46bd0aa4
[ "MIT" ]
null
null
null
robinhoodbot/main.py
bpk9/Robinhood-Stock-Trading-Bot
c2ab0dd58f5236ee051ad38277c8ba5c46bd0aa4
[ "MIT" ]
null
null
null
robinhoodbot/main.py
bpk9/Robinhood-Stock-Trading-Bot
c2ab0dd58f5236ee051ad38277c8ba5c46bd0aa4
[ "MIT" ]
null
null
null
import pyotp import robin_stocks as r import pandas as pd import numpy as np import ta as ta from pandas.plotting import register_matplotlib_converters from ta import * from misc import * from tradingstats import * from config import * #Log in to Robinhood #Put your username and password in a config.py file in the same directory (see sample file) totp = pyotp.TOTP(rh_2fa_code).now() login = r.login(rh_username,rh_password, totp) #Safe divide by zero division function def safe_division(n, d): return n / d if d else 0 def get_spy_symbols(): """ Returns: the symbol for each stock in the S&P 500 as a list of strings """ symbols = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')[0]['Symbol'] return list(symbols.values.flatten()) def get_watchlist_symbols(): """ Returns: the symbol for each stock in your watchlist as a list of strings """ my_list_names = [] symbols = [] for name in r.get_all_watchlists(info='name'): my_list_names.append(name) for name in my_list_names: list = r.get_watchlist_by_name(name) for item in list: instrument_data = r.get_instrument_by_url(item.get('instrument')) symbol = instrument_data['symbol'] symbols.append(symbol) return symbols def get_portfolio_symbols(): """ Returns: the symbol for each stock in your portfolio as a list of strings """ symbols = [] holdings_data = r.get_open_stock_positions() for item in holdings_data: if not item: continue instrument_data = r.get_instrument_by_url(item.get('instrument')) symbol = instrument_data['symbol'] symbols.append(symbol) return symbols def get_position_creation_date(symbol, holdings_data): """Returns the time at which we bought a certain stock in our portfolio Args: symbol(str): Symbol of the stock that we are trying to figure out when it was bought holdings_data(dict): dict returned by r.get_open_stock_positions() Returns: A string containing the date and time the stock was bought, or "Not found" otherwise """ instrument = r.get_instruments_by_symbols(symbol) url = instrument[0].get('url') for dict in holdings_data: if(dict.get('instrument') == url): return dict.get('created_at') return "Not found" def get_modified_holdings(): """ Retrieves the same dictionary as r.build_holdings, but includes data about when the stock was purchased, which is useful for the read_trade_history() method in tradingstats.py Returns: the same dict from r.build_holdings, but with an extra key-value pair for each position you have, which is 'bought_at': (the time the stock was purchased) """ holdings = r.build_holdings() holdings_data = r.get_open_stock_positions() for symbol, dict in holdings.items(): bought_at = get_position_creation_date(symbol, holdings_data) bought_at = str(pd.to_datetime(bought_at)) holdings[symbol].update({'bought_at': bought_at}) return holdings def golden_cross(stockTicker, n1, n2, direction=""): """Determine if a golden/death cross has occured for a specified stock in the last X trading days Args: stockTicker(str): Symbol of the stock we're querying n1(int): Specifies the short-term indicator as an X-day moving average. n2(int): Specifies the long-term indicator as an X-day moving average. (n1 should be smaller than n2 to produce meaningful results, e.g n1=50, n2=200) direction(str): "above" if we are searching for an upwards cross, "below" if we are searching for a downwaords cross. Optional, used for printing purposes Returns: 1 if the short-term indicator crosses above the long-term one 0 if the short-term indicator crosses below the long-term one price(float): last listed close price """ history = get_historicals(stockTicker) closingPrices = [] dates = [] for item in history: closingPrices.append(float(item['close_price'])) dates.append(item['begins_at']) price = pd.Series(closingPrices) dates = pd.Series(dates) dates = pd.to_datetime(dates) ema1 = ta.trend.EMAIndicator(price, int(n1)).ema_indicator() ema2 = ta.trend.EMAIndicator(price, int(n2)).ema_indicator() if plot: show_plot(price, ema1, ema2, dates, symbol=stockTicker, label1=str(n1)+" day EMA", label2=str(n2)+" day EMA") return ema1.iat[-1] > ema2.iat[-1], closingPrices[len(closingPrices) - 1] def get_rsi(symbol, days): """Determine the relative strength index for a specified stock in the last X trading days Args: symbol(str): Symbol of the stock we're querying days(int): Specifies the maximum number of days that the cross can occur by Returns: rsi(float): Relative strength index value for a specified stock in the last X trading days """ history = get_historicals(symbol) closingPrices = [ float(item['close_price']) for item in history ] price = pd.Series(closingPrices) rsi = ta.momentum.RSIIndicator(close=price, window=int(days), fillna=False).rsi() return rsi.iat[-1] def get_macd(symbol): """Determine the Moving Average Convergence/Divergence for a specified stock Args: symbol(str): Symbol of the stock we're querying Returns: rsi(float): Moving Average Convergence/Divergence value for a specified stock """ history = get_historicals(symbol) closingPrices = [ float(item['close_price']) for item in history ] price = pd.Series(closingPrices) macd = ta.trend.MACD(price).macd_diff() return macd.iat[-1] def get_buy_rating(symbol): """Determine the listed investor rating for a specified stock Args: symbol(str): Symbol of the stock we're querying Returns: rating(int): 0-100 rating of a particular stock """ ratings = r.get_ratings(symbol=symbol)['summary'] if ratings: return ratings['num_buy_ratings'] / (ratings['num_buy_ratings'] + ratings['num_hold_ratings'] + ratings['num_sell_ratings']) * 100 return 0 def sell_holdings(symbol, holdings_data): """ Place an order to sell all holdings of a stock. Args: symbol(str): Symbol of the stock we want to sell holdings_data(dict): dict obtained from get_modified_holdings() method """ shares_owned = int(float(holdings_data[symbol].get("quantity"))) if not debug: r.order_sell_market(symbol, shares_owned) print("####### Selling " + str(shares_owned) + " shares of " + symbol + " #######") def buy_holdings(potential_buys, profile_data, holdings_data): """ Places orders to buy holdings of stocks. This method will try to order an appropriate amount of shares such that your holdings of the stock will roughly match the average for the rest of your portfoilio. If the share price is too high considering the rest of your holdings and the amount of buying power in your account, it will not order any shares. Args: potential_buys(list): List of strings, the strings are the symbols of stocks we want to buy symbol(str): Symbol of the stock we want to sell holdings_data(dict): dict obtained from r.build_holdings() or get_modified_holdings() method """ cash = float(profile_data.get('cash')) portfolio_value = float(profile_data.get('equity')) - cash ideal_position_size = (safe_division(portfolio_value, len(holdings_data))+cash/len(potential_buys))/(2 * len(potential_buys)) prices = r.get_latest_price(potential_buys) for i in range(0, len(potential_buys)): stock_price = float(prices[i]) if(ideal_position_size < stock_price < ideal_position_size*1.5): num_shares = int(ideal_position_size*1.5/stock_price) elif (stock_price < ideal_position_size): num_shares = int(ideal_position_size/stock_price) else: print("####### Tried buying shares of " + potential_buys[i] + ", but not enough buying power to do so#######") break print("####### Buying " + str(num_shares) + " shares of " + potential_buys[i] + " #######") if not debug: r.order_buy_market(potential_buys[i], num_shares) def scan_stocks(): """ The main method. Sells stocks in your portfolio if their 50 day moving average crosses below the 200 day, and buys stocks in your watchlist if the opposite happens. ############################################################################################### WARNING: Comment out the sell_holdings and buy_holdings lines if you don't actually want to execute the trade. ############################################################################################### If you sell a stock, this updates tradehistory.txt with information about the position, how much you've earned/lost, etc. """ if debug: print("----- DEBUG MODE -----\n") print("----- Starting scan... -----\n") register_matplotlib_converters() spy_symbols = get_spy_symbols() portfolio_symbols = get_portfolio_symbols() holdings_data = get_modified_holdings() potential_buys = [] sells = [] stock_data = [] print("Current Portfolio: " + str(portfolio_symbols) + "\n") # print("Current Watchlist: " + str(watchlist_symbols) + "\n") print("----- Scanning portfolio for stocks to sell -----\n") print() print("PORTFOLIO") print("-------------------") print() print ("{}\t{}\t\t{}\t{}\t{}\t{}".format('SYMBOL', 'PRICE', 'RSI', 'MACD', 'RATING', 'EMA')) print() for symbol in portfolio_symbols: cross, price = golden_cross(symbol, n1=50, n2=200, direction="below") data = {'symbol': symbol, 'price': price, 'cross': cross, 'rsi': get_rsi(symbol=symbol, days=14), 'macd': get_macd(symbol=symbol), 'buy_rating': get_buy_rating(symbol=symbol)} stock_data.append(data) print ("{}\t${:.2f}\t\t{}\t{}\t{}\t{}".format(data['symbol'], data['price'], rsi_to_str(data['rsi']), macd_to_str(data['macd']), rating_to_str(data['buy_rating']), cross_to_str(data['cross']))) if(cross == False): sell_holdings(symbol, holdings_data) sells.append(symbol) profile_data = r.build_user_profile() print("\n----- Scanning S&P 500 for stocks to buy -----\n") for symbol in spy_symbols: if(symbol not in portfolio_symbols): cross, price = golden_cross(symbol, n1=50, n2=200, direction="above") stock_data.append({'symbol': symbol, 'price': price, 'cross': cross, 'rsi': get_rsi(symbol=symbol, days=14), 'macd': get_macd(symbol=symbol), 'buy_rating': get_buy_rating(symbol=symbol)}) if(cross == True): potential_buys.append(symbol) if(len(potential_buys) > 0): buy_holdings(potential_buys, profile_data, holdings_data) if(len(sells) > 0): update_trade_history(sells, holdings_data, "tradehistory.txt") print("----- Scan over -----\n") print_table(stock_data) if debug: print("----- DEBUG MODE -----\n") #execute the scan scan_stocks()
42.365672
201
0.656068
0
0
0
0
0
0
0
0
5,418
0.477189
fd60adf005e921981d0393064770bc769120bb9d
3,401
py
Python
slivka/server/forms/file_proxy.py
warownia1/Slivca
5491afec63c8cd41d6f1389a5dd0ba9877b888a1
[ "Apache-2.0" ]
5
2016-09-01T15:30:46.000Z
2019-07-15T12:26:46.000Z
slivka/server/forms/file_proxy.py
warownia1/Slivca
5491afec63c8cd41d6f1389a5dd0ba9877b888a1
[ "Apache-2.0" ]
75
2016-08-31T11:32:49.000Z
2021-05-12T14:33:17.000Z
slivka/server/forms/file_proxy.py
warownia1/Slivca
5491afec63c8cd41d6f1389a5dd0ba9877b888a1
[ "Apache-2.0" ]
3
2017-06-01T10:21:04.000Z
2020-06-12T10:32:49.000Z
import io import os import shutil from base64 import urlsafe_b64decode from bson import ObjectId from slivka.db.documents import UploadedFile, JobRequest class FileProxy: _file: io.IOBase = None closed = property(lambda self: self._file is None or self.file.closed) fileno = property(lambda self: self.file.fileno) flush = property(lambda self: self.file.flush) isatty = property(lambda self: self.file.isatty) read = property(lambda self: self.file.read) readable = property(lambda self: self.file.readable) readinto = property(lambda self: self.file.readinto) readline = property(lambda self: self.file.readline) readlines = property(lambda self: self.file.readlines) seek = property(lambda self: self.file.seek) seekable = property(lambda self: self.file.seekable) tell = property(lambda self: self.file.tell) truncate = property(lambda self: self.file.truncate) writable = property(lambda self: self.file.writable) write = property(lambda self: self.file.write) writelines = property(lambda self: self.file.writelines) @staticmethod def from_id(file_id, database): tokens = file_id.split('/', 1) if len(tokens) == 1: # user uploaded file _id = ObjectId(urlsafe_b64decode(file_id)) uf = UploadedFile.find_one(database, _id=_id) if uf is None: return None return FileProxy(path=uf.path) else: # job output file job_uuid, filename = tokens request = JobRequest.find_one(database, id=job_uuid) if request is not None: path = os.path.join(request.job.cwd, filename) if os.path.isfile(path): return FileProxy(path=path) return None def __init__(self, file=None, path=None): self.file = file self.path = path def __iter__(self): return iter(self.file) def __enter__(self): return self def __exit__(self, _exc_type, _exc_value, _tb): self.close() def reopen(self): if not self.closed: self.seek(0) elif self.path and os.path.exists(self.path): self.file = open(self.path, 'rb') else: raise OSError("can't open the file.") return self def _get_file(self): if self._file is None: if self.path is None: raise ValueError("file not set") self.reopen() return self._file def _set_file(self, file): self._file = file def _del_file(self): del self._file file = property(_get_file, _set_file, _del_file) def save_as(self, path, fp=None): """ Saves the file at the specified location. If ``fp`` is specified it will be used to write the content. Otherwise, a new file at ``path`` will be created. :param path: Path to the destination file :param fp: File-like object at the location specified by ``path`` """ self.reopen() path = os.path.realpath(path) if fp: shutil.copyfileobj(self.file, fp) else: with open(path, 'wb') as dst: shutil.copyfileobj(self.file, dst) self.path = path def close(self): if self._file is not None: self._file.close()
31.490741
76
0.612173
3,242
0.953249
0
0
706
0.207586
0
0
402
0.118201
fd618c3a159e9f99d7c6ca6d044db4a500817e13
1,160
py
Python
debug_toolbar/panels/profiling.py
chrismaille/fastapi-debug-toolbar
76d1e78eda4a23fc2b3e3d3c978ee9d8dbf025ae
[ "BSD-3-Clause" ]
36
2021-07-22T08:11:31.000Z
2022-01-31T13:09:26.000Z
debug_toolbar/panels/profiling.py
chrismaille/fastapi-debug-toolbar
76d1e78eda4a23fc2b3e3d3c978ee9d8dbf025ae
[ "BSD-3-Clause" ]
10
2021-07-21T19:39:38.000Z
2022-02-26T15:35:35.000Z
debug_toolbar/panels/profiling.py
chrismaille/fastapi-debug-toolbar
76d1e78eda4a23fc2b3e3d3c978ee9d8dbf025ae
[ "BSD-3-Clause" ]
2
2021-07-28T09:55:13.000Z
2022-02-18T11:29:25.000Z
import typing as t from fastapi import Request, Response from pyinstrument import Profiler from starlette.concurrency import run_in_threadpool from debug_toolbar.panels import Panel from debug_toolbar.types import Stats from debug_toolbar.utils import is_coroutine, matched_endpoint class ProfilingPanel(Panel): title = "Profiling" template = "panels/profiling.html" async def process_request(self, request: Request) -> Response: self.profiler = Profiler(**self.toolbar.settings.PROFILER_OPTIONS) endpoint = matched_endpoint(request) if endpoint is None: return await super().process_request(request) is_async = is_coroutine(endpoint) async def call(func: t.Callable) -> None: await run_in_threadpool(func) if not is_async else func() await call(self.profiler.start) try: response = await super().process_request(request) finally: await call(self.profiler.stop) return response async def generate_stats(self, request: Request, response: Response) -> Stats: return {"content": self.profiler.output_html()}
30.526316
82
0.70431
872
0.751724
0
0
0
0
769
0.662931
43
0.037069
fd63367d2463bae216c32c0f3162ba07be04c060
3,003
py
Python
test/system/auto/simple/compaction.py
marciosilva/accumulo
70404cbd1e0a2d2b7c2235009e158979abeef35f
[ "Apache-2.0" ]
3
2021-11-11T05:18:23.000Z
2021-11-11T05:18:43.000Z
test/system/auto/simple/compaction.py
jatrost/accumulo
6be40f2f3711aaa7d0b68b5b6852b79304af3cff
[ "Apache-2.0" ]
1
2021-06-22T09:52:37.000Z
2021-06-22T09:52:37.000Z
test/system/auto/simple/compaction.py
isabella232/accumulo-1
70404cbd1e0a2d2b7c2235009e158979abeef35f
[ "Apache-2.0" ]
1
2021-06-22T09:33:38.000Z
2021-06-22T09:33:38.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import unittest from simple.bulk import SimpleBulkTest N = 100000 COUNT = 5 log = logging.getLogger('test.auto') class CompactionTest(SimpleBulkTest): "Start a clean accumulo, bulk import a lot of map files, read while a multi-pass compaction is happening" order = 26 tableSettings = SimpleBulkTest.tableSettings.copy() tableSettings['test_ingest'] = { 'table.compaction.major.ratio': 1.0 } settings = SimpleBulkTest.settings.copy() settings.update({ 'tserver.compaction.major.files.open.max':4, 'tserver.compaction.major.delay': 1, 'tserver.compaction.major.concurrent.max':1, }) def createRFiles(self, host): handle = self.runClassOn( self.masterHost(), 'org.apache.accumulo.server.test.CreateRFiles', "testrf 4 0 500000 59".split()) out, err = handle.communicate() self.assert_(handle.returncode == 0) def runTest(self): # initialize the database self.createTable('test_ingest') self.execute(self.masterHost(), 'hadoop dfs -rmr /testrf'.split()) self.execute(self.masterHost(), 'hadoop dfs -rmr /testrfFail'.split()) # insert some data self.createRFiles(self.masterHost()) self.bulkLoad(self.masterHost(), '/testrf') out, err, code = self.shell(self.masterHost(), "table !METADATA\nscan -b ! -c ~tab,file\n") self.assert_(code == 0) beforeCount = len(out.split('\n')) log.info("Verifying Ingestion") for c in range(5): handles = [] for i in range(COUNT): handles.append(self.verify(self.hosts[i%len(self.hosts)], N, i * N)) for h in handles: out, err = h.communicate() self.assert_(h.returncode == 0) out, err, code = self.shell(self.masterHost(), "table !METADATA\nscan -b ! -c ~tab,file\n") self.assert_(code == 0) afterCount = len(out.split('\n')) self.assert_(afterCount < beforeCount) self.shutdown_accumulo() def suite(): result = unittest.TestSuite() result.addTest(CompactionTest()) return result
33.741573
109
0.656011
1,975
0.657676
0
0
0
0
0
0
1,342
0.446886
fd651bee99ddf05837b752023ba0b7975d179d63
660
py
Python
src/featurehub/problems/__init__.py
vishalbelsare/FeatureHub
dca517338b6e1359faa47ba309f05691cb96e8f8
[ "MIT" ]
85
2017-09-11T22:37:34.000Z
2022-02-26T09:07:05.000Z
src/featurehub/problems/__init__.py
HDI-Project/FeatureFactory
dca517338b6e1359faa47ba309f05691cb96e8f8
[ "MIT" ]
5
2018-08-08T15:34:36.000Z
2018-11-15T04:52:10.000Z
src/featurehub/problems/__init__.py
HDI-Project/FeatureFactory
dca517338b6e1359faa47ba309f05691cb96e8f8
[ "MIT" ]
18
2017-11-01T04:14:16.000Z
2021-09-27T00:53:32.000Z
import imp import sys from sqlalchemy.exc import ProgrammingError from featurehub.user.session import Session from featurehub.admin.admin import Commands try: for _problem in Commands().get_problems(): # Create a session for each problem and make it importable _commands = Session(_problem) _module = imp.new_module(_problem) _module.__dict__['commands'] = _commands sys.modules['featurehub.problems.' + _problem] = _module except ProgrammingError: print("Competition not initialized properly. User commands " "unavailable. Please contact the competition administrator.", file=sys.stderr)
33
71
0.725758
0
0
0
0
0
0
0
0
204
0.309091
b5b97c67425c6b42d928076e5a8d8cb8fc8a23c8
12,107
py
Python
python/lexical_analysis.py
Compiler-Construction-Uni-Freiburg/lecture-notes-2021
56300e6649e32f0594bbbd046a2e19351c57dd0c
[ "BSD-3-Clause" ]
1
2022-01-05T07:11:01.000Z
2022-01-05T07:11:01.000Z
python/lexical_analysis.py
Compiler-Construction-Uni-Freiburg/lecture-notes-2021
56300e6649e32f0594bbbd046a2e19351c57dd0c
[ "BSD-3-Clause" ]
null
null
null
python/lexical_analysis.py
Compiler-Construction-Uni-Freiburg/lecture-notes-2021
56300e6649e32f0594bbbd046a2e19351c57dd0c
[ "BSD-3-Clause" ]
null
null
null
from dataclasses import dataclass from functools import reduce from typing import Callable, Iterable, Iterator ''' The first phase of a compiler is called `lexical analysis` implemented by a `scanner` or `lexer`. It breaks a program into a sequence `lexemes`: meaningful substrings of the input. It also transforms lexemes into `tokens`: symbolic representations of lexemes with some internalized information. The classic, state-of-the-art method to specify lexemes is by regular expressions. ''' ''' 1. Representation of regular expressions. ''' @dataclass class Regexp: 'abstract class for AST of regular expressions' def is_null(self): return False @dataclass class Null (Regexp): 'empty set: {}' def is_null(self): return True @dataclass class Epsilon (Regexp): 'empty word: { "" }' @dataclass class Symbol (Regexp): 'single symbol: { "a" }' sym: str @dataclass class Concat(Regexp): 'concatenation: r1.r2' left: Regexp right: Regexp @dataclass class Alternative(Regexp): 'alternative: r1|r2' left: Regexp right: Regexp @dataclass class Repeat(Regexp): 'Kleene star: r*' body: Regexp ## smart constructors for regular expressions ## goal: construct regexps in "normal form" ## * avoid Null() subexpressions ## * Epsilon() subexpressions as much as possible ## * nest concatenation and alternative to the right null = Null() epsilon = Epsilon() symbol = Symbol def concat(r1, r2): match (r1, r2): case (Null(), _) | (_, Null()): return null case (Epsilon(), _): return r2 case (_, Epsilon()): return r1 case (Concat(r11, r12), _): return Concat(r11, concat(r12, r2)) case _: return Concat(r1, r2) def alternative(r1, r2): match (r1, r2): case (Null(), _): return r2 case (_, Null()): return r1 case (Alternative(r11, r12), _): return Alternative(r11, alternative(r12, r2)) case _: return Alternative(r1, r2) def repeat(r: Regexp) -> Regexp: match r: case Null() | Epsilon(): return epsilon case Repeat(r1): # r** == r* return r case _: return Repeat(r) ## utilities to construct regular expressions def optional(r : Regexp) -> Regexp: 'construct r?' return alternative(r, epsilon) def repeat_one(r : Regexp) -> Regexp: 'construct r+' return concat(r, repeat(r)) def concat_list(rs : Iterable[Regexp]) -> Regexp: return reduce(lambda out, r: concat(out, r), rs, epsilon) def alternative_list(rs : Iterable[Regexp]) -> Regexp: return reduce(lambda out, r: alternative(out, r), rs, null) ## a few examples for regular expressions (taken from JavaScript definition) ''' ⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ⟨hexdigit⟩ ::= ⟨digit⟩ | A | B | C | D | E | F | a | b | c | d | e | f ⟨hexprefix⟩ ::= 0x | 0X ⟨sign⟩ ::= ⟨empty⟩ | - ⟨empty⟩ ::= ⟨integer-literal⟩ ::= ⟨sign⟩ ⟨digit⟩+ | ⟨sign⟩ ⟨hexprefix⟩ ⟨hexdigit⟩+ ⟨letter⟩ ::= A | B | C | ...| Z | a | b | c | ...| z ⟨identifier-start⟩ ::= ⟨letter⟩ | $ | _ ⟨identifier-part⟩ ::= ⟨identifier-start⟩ | ⟨digit⟩ ⟨identifier⟩ ::= ⟨identifier-start⟩ ⟨identifier-part⟩* ''' def class_regexp(s: str) -> Regexp: 'returns a regexp for the alternative of all characters in s' return alternative_list(map(symbol, s)) def string_regexp(s: str) -> Regexp: 'returns a regexp for the concatenation of all characters in s' return concat_list(map(symbol, s)) def char_range_regexp(c1: str, c2: str) -> Regexp: return alternative_list(map(symbol, map(chr, range(ord(c1), ord(c2)+1)))) digit = class_regexp("0123456789") hexdigit = alternative(digit, class_regexp("ABCDEFabcdef")) hexprefix = alternative(string_regexp("0x"), string_regexp("0X")) sign = optional(symbol('-')) integer_literal = concat(sign, repeat_one(digit)) integer_literal_js = alternative( concat(sign, repeat_one(digit)), concat_list([sign, hexprefix, repeat_one(hexdigit)])) lc_letter = alternative_list(map(symbol, map(chr, range(ord('a'), ord('z')+1)))) uc_letter = alternative_list(map(symbol, map(chr, range(ord('A'), ord('Z')+1)))) letter = alternative(lc_letter, uc_letter) identifier_start = alternative_list([letter, symbol('$'), symbol('_')]) identifier_part = alternative(identifier_start, digit) identifier = concat(identifier_start, repeat(identifier_part)) blank_characters = "\t " line_end_characters = "\n\r" white_space = repeat_one(class_regexp(blank_characters + line_end_characters)) ''' 2. Executing regular expressions The standard method to 'execute' regular expressions is to transform them into finite automata. Here we use a different method to execute them directly using `derivatives`. This method uses regular expressions themselves as states of an automaton without constructing it. We consider a regexp a final state if it accepts the empty word "". This condition can be checked by a simple function on the regexp. ''' def accepts_empty(r : Regexp) -> bool: 'check if r accepts the empty word' match r: case Null() | Symbol(_): return False case Epsilon() | Repeat(_): return True case Concat(r1, r2): return accepts_empty(r1) and accepts_empty(r2) case Alternative(r1, r2): return accepts_empty(r1) or accepts_empty(r2) ''' The transition function of a (deterministic) finite automaton maps state `r0` and symbol `s` to the next state, say, `r1`. If the state `r0` recognizes any words `w` that start with `s` (w[0] == s), then state `r1` recognizes all those words `w` with the first letter removed (w[1:]). This construction is called the `derivative` of a language by symbol `s`: derivative(L, s) = { w[1:] | w in L and w[0] == s } If L is the language recognized by regular expression `r0`, then we can effectively compute a regular expression for derivative(L, s)! As follows: ''' def after_symbol(s : str, r : Regexp) -> Regexp: 'produces regexp after r consumes symbol s' match r: case Null() | Epsilon(): return null case Symbol(s_expected): return epsilon if s == s_expected else null case Alternative(r1, r2): return alternative(after_symbol(s, r1), after_symbol(s, r2)) case Concat(r1, r2): return alternative(concat(after_symbol(s, r1), r2), after_symbol(s, r2) if accepts_empty(r1) else null) case Repeat(r1): return concat(after_symbol(s, r1), Repeat(r1)) ## matching against a regular expression def matches(r : Regexp, ss: str) -> bool: i = 0 while i < len(ss): r = after_symbol(ss[i], r) if r.is_null(): return False i += 1 # reached end of string return accepts_empty(r) ######################################################################## ''' 3. Lexer descriptions A lexer (scanner) is different from a finite automaton in several aspects. 1. The lexer must classify the next lexeme from a choice of several regular expressions. It cannot match a single regexp, but it has to keep track and manage matching for several regexps at the same time. 2. The lexer follows the `maximum munch` rule, which says that the next lexeme is the longest prefix that matches one of the regular expressions. 3. Once a lexeme is identified, the lexer must turn it into a token and attribute. Re maximum munch consider this input: ifoundsalvationinapubliclavatory Suppose that `if` is a keyword, why should the lexer return <identifier> for this input? Similarly: returnSegment would count as an identifier even though starting with the keyword `return`. These requirements motivate the following definitions. A lex_action * takes some (s : str, i : int position in s, j : int pos in s) * consumes the lexeme sitting at s[i:j] * returns (token for s[i:j], some k >= j) ''' class Token: pass # abstract class of tokens Position = int # input position lex_result = tuple[Token, Position] lex_action = Callable[[str, Position, Position], lex_result] # a lexer rule attaches a lex_action to a regular expression @dataclass class Lex_rule: re : Regexp action: lex_action # a lexer tries to match its input to a list of lex rules Lex_state = list[Lex_rule] # reading a symbol advances the regular expression of each lex rule def next_state(state: Lex_state, ss: str, i: int): return list(filter(lambda rule: not (rule.re.is_null()), [Lex_rule(after_symbol(ss[i], rule.re), rule.action) for rule in state])) def initial_state(rules: list[Lex_rule]) -> Lex_state: return rules def matched_rules(state: Lex_state) -> Lex_state: return [rule for rule in state if accepts_empty(rule.re)] def is_stuck(state: Lex_state) -> bool: return not state ##################################################################### class ScanError (Exception): pass @dataclass class Match: action: lex_action final : Position @dataclass class Scan: spec: Lex_state def scan_one(self) -> Callable[[str, Position], lex_result]: return lambda ss, i: self.scan_one_token(ss, i) def scan_one_token(self, ss: str, i: Position) -> lex_result: state = self.spec j = i last_match = None while j < len(ss) and not is_stuck(state): state = next_state(state, ss, j); j += 1 all_matches = matched_rules(state) if all_matches: this_match = all_matches[0] last_match = Match(this_match.action, j) match last_match: case None: raise ScanError("no lexeme found:", ss[i:]) case Match(action, final): return action(ss, i, final) raise ScanError("internal error: last_match=", last_match) def make_scanner(scan_one: Callable[[str, Position], lex_result], ss: str) -> Iterator[Token]: i = 0 while i < len(ss): (token, i) = scan_one(ss, i) yield (token) ## example: excerpt from JavaScript scanner escaped_char = concat(symbol('\\'), alternative(symbol('\\'), symbol('"'))) content_char = alternative_list([symbol(chr(a)) for a in range(ord(' '), 128) if a not in [ord('\\'), ord('"')]]) string_literal = concat_list([symbol('"'), repeat(alternative(escaped_char, content_char)), symbol('"')]) @dataclass class Return(Token): pass @dataclass class Intlit(Token): value: int @dataclass class Ident(Token): name: str @dataclass class Lparen(Token): pass @dataclass class Rparen(Token): pass @dataclass class Slash(Token): pass @dataclass class Strlit(Token): value: str string_spec: Lex_state = [ Lex_rule(escaped_char, lambda ss, i, j: (ss[i+1], j)), Lex_rule(content_char, lambda ss, i, j: (ss[i], j)) ] string_token = Scan(string_spec).scan_one() def strlit(ss: str) -> Strlit: "use subsidiary scanner to transform string content" return Strlit("".join(make_scanner(string_token, ss))) js_spec: Lex_state = [ Lex_rule(string_regexp("return"), lambda ss, i, j: (Return(), j)), Lex_rule(integer_literal, lambda ss, i, j: (Intlit(int(ss[i:j])), j)), Lex_rule(identifier, lambda ss, i, j: (Ident(ss[i:j]), j)), Lex_rule(white_space, lambda ss, i, j: js_token(ss, j)), Lex_rule(symbol("("), lambda ss, i, j: (Lparen(), j)), Lex_rule(symbol(")"), lambda ss, i, j: (Rparen(), j)), Lex_rule(symbol("/"), lambda ss, i, j: (Slash(), j)), Lex_rule(string_literal, lambda ss, i, j: (strlit(ss[i+1:j-1]), j)) ] js_token = Scan(js_spec).scan_one() def example1(): return js_token(" 42...", 0) def example2(): sc = make_scanner(js_token, "return Segment (pi / 2)") for ta in sc: print(ta) def example3(): sc = make_scanner(js_token, 'return "foobar\\"..."') for ta in sc: print(ta)
32.810298
105
0.641943
1,737
0.142435
186
0.015252
1,848
0.151538
0
0
4,534
0.371792
b5ba7ba10498502b304fe0e8be303cfbec8a9050
179
py
Python
tapiriik/web/views/dashboard.py
prohfesor/tapiriik
0c476f8bb6b3d51674f0117b054777405ff2ee0d
[ "Apache-2.0" ]
1,445
2015-01-01T21:43:31.000Z
2022-03-17T13:40:23.000Z
tapiriik/web/views/dashboard.py
prohfesor/tapiriik
0c476f8bb6b3d51674f0117b054777405ff2ee0d
[ "Apache-2.0" ]
441
2015-01-02T03:37:49.000Z
2022-03-31T18:18:03.000Z
tapiriik/web/views/dashboard.py
prohfesor/tapiriik
0c476f8bb6b3d51674f0117b054777405ff2ee0d
[ "Apache-2.0" ]
333
2015-01-06T12:14:15.000Z
2022-03-27T19:58:48.000Z
from django.shortcuts import render from django.views.decorators.csrf import ensure_csrf_cookie @ensure_csrf_cookie def dashboard(req): return render(req, "dashboard.html")
22.375
59
0.810056
0
0
0
0
80
0.446927
0
0
16
0.089385
b5bab08cb20bbb7d8d1adf2e537dc3cd96869fbf
2,830
py
Python
rcommander/src/rcommander/trigger_tool.py
rummanwaqar/rcommander-core
7106d5868db76c47dea6ad11118a54351a8bd390
[ "BSD-3-Clause" ]
4
2015-04-08T09:57:43.000Z
2021-08-12T01:44:37.000Z
rcommander/src/rcommander/trigger_tool.py
jhu-lcsr-forks/rcommander-core
1a0350e9b93687eff6a4407f72b5250be5f56919
[ "BSD-3-Clause" ]
1
2015-03-12T09:10:27.000Z
2015-03-12T09:10:27.000Z
rcommander/src/rcommander/trigger_tool.py
jhu-lcsr-forks/rcommander-core
1a0350e9b93687eff6a4407f72b5250be5f56919
[ "BSD-3-Clause" ]
3
2015-03-12T10:59:17.000Z
2021-06-21T02:13:57.000Z
import tool_utils as tu import PyQt4.QtGui as qtg import PyQt4.QtCore as qtc from PyQt4.QtGui import * from PyQt4.QtCore import * import smach import rospy from msg import Trigger TRIGGER_TOPIC = 'trigger' class TriggerTool(tu.ToolBase): def __init__(self, rcommander): tu.ToolBase.__init__(self, rcommander, 'wait_trigger', 'Trigger', TriggerState) self.trigger_pub = rospy.Publisher(TRIGGER_TOPIC, Trigger) def fill_property_box(self, pbox): formlayout = pbox.layout() self.time_out_box = qtg.QDoubleSpinBox(pbox) self.time_out_box.setMinimum(1.) self.time_out_box.setMaximum(1000.) self.time_out_box.setSingleStep(1.) self.trigger_button = qtg.QPushButton(pbox) self.trigger_button.setText('Send Trigger') self.rcommander.connect(self.trigger_button, qtc.SIGNAL('clicked()'), self.send_trigger_cb) formlayout.addRow('&Time out', self.time_out_box) formlayout.addRow(self.trigger_button) self.reset() pbox.update() def send_trigger_cb(self): self.trigger_pub.publish(Trigger('a trigger!')) rospy.sleep(.5) self.trigger_pub.publish(Trigger('a trigger!')) def new_node(self, name=None): if name == None: nname = self.name + str(self.counter) else: nname = name return TriggerState(nname, self.time_out_box.value()) def set_node_properties(self, node): self.time_out_box.setValue(node.time_out) def reset(self): self.time_out_box.setValue(10.) class TriggerState(tu.StateBase): def __init__(self, name, time_out): tu.StateBase.__init__(self, name) self.time_out = time_out def get_smach_state(self): return TriggerStateSmach(time_out = self.time_out) class TriggerStateSmach(smach.State): ## #@param message if self.message is None we will wait for a message, else use provided message #@param time_out if we have to wait for a message specify how long to wait before timing out def __init__(self, time_out): smach.State.__init__(self, outcomes = ['succeeded', 'preempted', 'timed_out'], input_keys = [], output_keys = []) self.time_out = time_out def execute(self, userdata): msg = None t_start = rospy.get_time() while msg == None: try: msg = rospy.wait_for_message(TRIGGER_TOPIC, Trigger, .1) except rospy.ROSException, e: pass if self.preempt_requested(): self.service_preempt() return 'preempted' if (self.time_out != None) and ((rospy.get_time() - t_start) > self.time_out): return 'timed_out' return 'succeeded'
29.479167
99
0.639929
2,613
0.923322
0
0
0
0
0
0
345
0.121908
b5bace535ed77ddf8b3b03e2ed93c9e75ae9c3a6
1,488
py
Python
tests/helpers/fake_tunnel.py
intdata-bsc/idact
54cb65a711c145351e205970c27c83e6393cccf5
[ "MIT" ]
5
2018-12-06T15:40:34.000Z
2019-06-19T11:22:58.000Z
tests/helpers/fake_tunnel.py
garstka/idact
b9c8405c94db362c4a51d6bfdf418b14f06f0da1
[ "MIT" ]
9
2018-12-06T16:35:26.000Z
2019-04-28T19:01:40.000Z
tests/helpers/fake_tunnel.py
intdata-bsc/idact
54cb65a711c145351e205970c27c83e6393cccf5
[ "MIT" ]
2
2019-04-28T19:18:58.000Z
2019-06-17T06:56:28.000Z
from contextlib import contextmanager from idact import ClusterConfig from idact.detail.nodes.node_impl import NodeImpl from idact.detail.tunnel.tunnel_internal import TunnelInternal class FakeTunnel(TunnelInternal): """Does nothing besides holding the remote port. Local port is ignored. :param there: Remote port. """ def __init__(self, here: int, there: int): assert here is not None assert here != 0 self._here = here self._there = there @property def here(self) -> int: return self._here @property def there(self) -> int: return self._there def close(self): pass def __eq__(self, other): return self.__dict__ == other.__dict__ def __str__(self): return "FakeTunnel(here={here},there={there})".format( here=self._here, there=self._there) def __repr__(self): return str(self) @property def config(self) -> ClusterConfig: raise NotImplementedError() @contextmanager def use_fake_tunnel(): """A context manager that replaces :meth:`.NodeImpl.tunnel` with a method returning :class:`.FakeTunnel`.""" def fake_tunnel(_, there: int, here: int): return FakeTunnel(here=here, there=there) saved_tunnel = NodeImpl.tunnel try: NodeImpl.tunnel = fake_tunnel yield finally: NodeImpl.tunnel = saved_tunnel
22.892308
68
0.625672
892
0.599462
390
0.262097
616
0.413978
0
0
279
0.1875
b5bbdd0d4bc19356fb3ff4442955d7c4c889b2e9
3,226
py
Python
app/airtable/base_school_db/educators_schools.py
WildflowerSchools/wf-airtable-api
963021e5108462d33efa222fedb00890e1788ad6
[ "MIT" ]
null
null
null
app/airtable/base_school_db/educators_schools.py
WildflowerSchools/wf-airtable-api
963021e5108462d33efa222fedb00890e1788ad6
[ "MIT" ]
null
null
null
app/airtable/base_school_db/educators_schools.py
WildflowerSchools/wf-airtable-api
963021e5108462d33efa222fedb00890e1788ad6
[ "MIT" ]
null
null
null
from datetime import date from typing import Optional, Union from pydantic import BaseModel, Field, validator from . import educators as educators_models from . import schools as schools_models from app.airtable.response import AirtableResponse from app.airtable.validators import get_first_or_default_none class CreateUpdateAirtableEducatorsSchoolsFields(BaseModel): educator: Optional[list[str]] = Field(alias="Educator") school: Optional[list[str]] = Field(alias="School") roles: Optional[list[str]] = Field(alias="Roles (staging)") currently_active: Optional[bool] = Field(alias="Currently Active") start_date: Optional[date] = Field(alias="Start Date") end_date: Optional[date] = Field(alias="End Date") mark_for_deletion: Optional[bool] = Field(alias="Mark for deletion") class Config: allow_population_by_field_name = True class AirtableFindEducatorsSchoolsFields(CreateUpdateAirtableEducatorsSchoolsFields): educator_id: Optional[list[str]] = Field(alias="Educator Record ID") school_id: Optional[list[str]] = Field(alias="School Record ID") class AirtableEducatorsSchoolsFields(CreateUpdateAirtableEducatorsSchoolsFields): educator: Optional[Union[str, object]] = Field(alias="Educator") school: Optional[Union[str, object]] = Field(alias="School") _get_first_or_default_none = validator("educator", "school", pre=True, allow_reuse=True)(get_first_or_default_none) def load_educator_relationship(self): from ..client import AirtableClient airtable_client = AirtableClient() if self.educator is None: return None _record = None _id = None if isinstance(self.educator, educators_models.AirtableEducatorResponse): _record = self.educator elif isinstance(self.educator, str): _id = self.educator if _record is None: airtable_educator = airtable_client.get_educator_by_id(educator_id=_id, load_relationships=False) _record = airtable_educator self.educator = _record return _record def load_school_relationship(self): from ..client import AirtableClient airtable_client = AirtableClient() if self.school is None: return None _record = None _id = None if isinstance(self.school, schools_models.AirtableSchoolResponse): _record = self.school elif isinstance(self.school, str): _id = self.school if _record is None: airtable_school = airtable_client.get_school_by_id(school_id=_id) _record = airtable_school self.school = _record return _record def load_relationships(self): self.load_educator_relationship() self.load_school_relationship() class AirtableEducatorsSchoolsResponse(AirtableResponse): fields: AirtableEducatorsSchoolsFields def load_relationships(self): self.fields.load_relationships() class ListAirtableEducatorsSchoolsResponse(BaseModel): __root__: list[AirtableEducatorsSchoolsResponse] def load_relationships(self): for r in self.__root__: r.load_relationships()
32.26
119
0.712027
2,901
0.899256
0
0
0
0
0
0
168
0.052077
b5bc0b82b561c3ccd0c214272db1e77e19243f08
4,003
py
Python
rad/rest/client/cli/zpool/cmd_zpool_list.py
guillermomolina/rad-rest-client
c22528764bdf9dddc5ff7d269d7465d34878a7e3
[ "Apache-2.0" ]
1
2021-09-17T13:40:13.000Z
2021-09-17T13:40:13.000Z
rad/rest/client/cli/zpool/cmd_zpool_list.py
guillermomolina/rad-rest-client
c22528764bdf9dddc5ff7d269d7465d34878a7e3
[ "Apache-2.0" ]
null
null
null
rad/rest/client/cli/zpool/cmd_zpool_list.py
guillermomolina/rad-rest-client
c22528764bdf9dddc5ff7d269d7465d34878a7e3
[ "Apache-2.0" ]
1
2021-09-17T16:26:32.000Z
2021-09-17T16:26:32.000Z
# Copyright 2021, Guillermo Adrián Molina # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import json import yaml from rad.rest.client.util import print_table, print_parsable from rad.rest.client.api.authentication_1 import Session from rad.rest.client.api.zfsmgr_1 import Zpool from rad.rest.client.api.zfsmgr_1.zpool_resource import ZpoolResource LOG = logging.getLogger(__name__) class CmdZpoolList: name = 'list' aliases = ['ls'] @staticmethod def init_parser(subparsers, parent_parser): parser = subparsers.add_parser(CmdZpoolList.name, aliases=CmdZpoolList.aliases, parents=[parent_parser], formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='List ZFS pools', help='List ZFS pools') parser.add_argument('-c', '--columns', nargs='+', choices=ZpoolResource.get_property_names(), default=['name', 'size', 'allocated', 'free', 'capacity', 'dedupratio', 'health', 'altroot'], help='Specify wich columns to show in the table') parser.add_argument('-s', '--sort-by', choices=ZpoolResource.get_property_names(), default='name', help='Specify the sort order in the table') group = parser.add_mutually_exclusive_group() group.add_argument('-t', '--table', action='store_true', default=True, help='Show output in table format') group.add_argument('-y', '--yaml', action='store_true', help='Show output in yaml format') group.add_argument('-j', '--json', action='store_true', help='Show output in json format') group.add_argument('-d', '--delimiter', help='Show output in a parsable format delimited by the string') def __init__(self, options): with Session(protocol=options.protocol, hostname=options.hostname, port=options.port) as session: zpool_instances = session.list_objects(Zpool()) zpool_resources = [instance.get_properties( options.columns) for instance in zpool_instances] zpools = [] for zfs_resource in zpool_resources: resource = {} for property in zfs_resource.properties: resource[property.name] = property zpools.append(resource) # sort by key if options.sort_by is not None: zpools = sorted(zpools, key=lambda i: i[options.sort_by]) if options.json: resources = [resource.to_json() for resource in zpool_resources] print(json.dumps(resources, indent=4)) elif options.yaml: resources = [resource.to_json() for resource in zpool_resources] print(yaml.dump(resources)) elif options.delimiter is not None: print_parsable(zpools, options.delimiter) elif options.table: print_table(zpools)
43.043011
105
0.572321
3,088
0.771229
0
0
1,804
0.450549
0
0
1,047
0.261489
b5bcf620df665e14fd0ade4b0917ffe41b1ea768
3,736
py
Python
Sofware/main.py
Mark-MDO47/PiPod
990042ff5ad69d9fc93d1bd5bd684db730156222
[ "MIT" ]
63
2018-08-02T20:50:41.000Z
2022-03-02T02:42:48.000Z
Sofware/main.py
Mark-MDO47/PiPod
990042ff5ad69d9fc93d1bd5bd684db730156222
[ "MIT" ]
2
2018-08-30T16:31:48.000Z
2021-12-02T01:28:23.000Z
Sofware/main.py
Mark-MDO47/PiPod
990042ff5ad69d9fc93d1bd5bd684db730156222
[ "MIT" ]
14
2018-08-05T04:45:07.000Z
2022-02-18T10:56:20.000Z
#!/usr/bin/python3 import playback import display import navigation import device import pygame done = False music = playback.music() view = display.view() menu = navigation.menu() PiPod = device.PiPod() menu.loadMetadata() status = PiPod.getStatus() songMetadata = music.getStatus() displayUpdate = pygame.USEREVENT + 1 pygame.time.set_timer(displayUpdate, 500) view.update(status, menu.menuDict, songMetadata) while not done: music.loop() for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: PiPod.toggleSleep() elif event.key == pygame.K_u: music.volumeUp() elif event.key == pygame.K_d: music.volumeDown() elif event.key == pygame.K_UP: if status[2]: music.volumeUp() elif menu.menuDict["current"] == "musicController": menu.gotomenu() else: action = menu.up() elif event.key == pygame.K_DOWN: if status[2]: music.volumeDown() elif menu.menuDict["current"] == "musicController": music.shuffle() menu.menuDict["Queue"] = music.playlist else: action = menu.down() elif event.key == pygame.K_LEFT: if status[2] or menu.menuDict["current"] == "musicController": music.prev() else: action = menu.left() elif event.key == pygame.K_RIGHT: if status[2] or menu.menuDict["current"] == "musicController": music.next() else: action = menu.right() if action == "updateList": music.updateList(menu.menuDict["Queue"]) elif event.key == pygame.K_RETURN: if status[2] or menu.menuDict["current"] == "musicController": music.playPause() else: action = menu.select() if action == "play": music.loadList(menu.menuDict["Queue"]) music.play() elif action == "clearQueue": menu.menuDict["Queue"] = [] music.clearQueue() elif action == "updateLibrary": if music.updateLibrary(): done = True elif action == "toggleSleep": PiPod.toggleSleep() elif action == "shutdown": while not PiPod.shutdown(): view.popUp("Shutdown") elif action == "reboot": while not PiPod.reboot(): view.popUp("Reboot") elif action == "playAtIndex": if menu.menuDict["selectedItem"] == 0: music.clearQueue() menu.menuDict["Queue"] = [] else: music.playAtIndex(menu.menuDict["selectedItem"]-1) status = PiPod.getStatus() songMetadata = music.getStatus() view.update(status, menu.menuDict, songMetadata) # display.update() without arguments updates the entire display just like display.flip() pygame.time.Clock().tick( 30) # Limit the framerate to 20 FPS, this is to ensure it doesn't use all of the CPU resources
34.592593
103
0.482869
0
0
0
0
0
0
0
0
496
0.132762
b5bd68a22d06b0793abe8bb8a40789d31dac7150
3,250
py
Python
cloudshell/cli/session/telnet_session.py
test-gh-org-workflow/probable-garbanzo
c6b8a0dbc573a2a0073b5ab7c8619c4d0baf7088
[ "Apache-2.0" ]
4
2017-01-31T14:05:19.000Z
2019-04-10T16:35:44.000Z
cloudshell/cli/session/telnet_session.py
test-gh-org-workflow/probable-garbanzo
c6b8a0dbc573a2a0073b5ab7c8619c4d0baf7088
[ "Apache-2.0" ]
89
2016-05-25T14:17:38.000Z
2022-03-17T13:09:59.000Z
cloudshell/cli/session/telnet_session.py
test-gh-org-workflow/probable-garbanzo
c6b8a0dbc573a2a0073b5ab7c8619c4d0baf7088
[ "Apache-2.0" ]
6
2016-07-21T12:24:10.000Z
2022-02-21T06:33:18.000Z
import socket import telnetlib from collections import OrderedDict from cloudshell.cli.session.connection_params import ConnectionParams from cloudshell.cli.session.expect_session import ExpectSession from cloudshell.cli.session.session_exceptions import ( SessionException, SessionReadEmptyData, SessionReadTimeout, ) class TelnetSessionException(SessionException): pass class TelnetSession(ExpectSession, ConnectionParams): SESSION_TYPE = "TELNET" AUTHENTICATION_ERROR_PATTERN = "%.*($|\n)" def __init__( self, host, username, password, port=None, on_session_start=None, *args, **kwargs ): ConnectionParams.__init__( self, host, port=port, on_session_start=on_session_start ) ExpectSession.__init__(self, *args, **kwargs) if hasattr(self, "port") and self.port is None: self.port = 23 self.username = username self.password = password self._handler = None def __eq__(self, other): """Is equal. :type other: TelnetSession """ return ( ConnectionParams.__eq__(self, other) and self.username == other.username and self.password == other.password ) def __del__(self): self.disconnect() def _connect_actions(self, prompt, logger): action_map = OrderedDict() action_map[ "[Ll]ogin:|[Uu]ser:|[Uu]sername:" ] = lambda session, logger: session.send_line(session.username, logger) action_map["[Pp]assword:"] = lambda session, logger: session.send_line( session.password, logger ) self.hardware_expect( None, expected_string=prompt, timeout=self._timeout, logger=logger, action_map=action_map, ) self._on_session_start(logger) def _initialize_session(self, prompt, logger): self._handler = telnetlib.Telnet() self._handler.open(self.host, int(self.port), self._timeout) if self._handler.get_socket() is None: raise TelnetSessionException( self.__class__.__name__, "Failed to open telnet connection." ) self._handler.get_socket().send(telnetlib.IAC + telnetlib.WILL + telnetlib.ECHO) def disconnect(self): """Disconnect / close the session.""" if self._handler: self._handler.close() self._active = False def _send(self, command, logger): """Send message / command to device. :param command: message / command to send :type command: str """ byte_command = command.encode() self._handler.write(byte_command) def _receive(self, timeout, logger): """Read session buffer.""" timeout = timeout if timeout else self._timeout self._handler.get_socket().settimeout(timeout) try: byte_data = self._handler.read_some() except socket.timeout: raise SessionReadTimeout() if not byte_data: raise SessionReadEmptyData() data = byte_data.decode() return data
27.542373
88
0.614462
2,912
0.896
0
0
0
0
0
0
356
0.109538
b5bdd10944be47a0eef70a2d5c3fc45fddcfaaf6
5,698
py
Python
src/contentbase/auditor.py
ClinGen/clincoded
5624c74546ce2a44eda00ee632a8de8c2099da10
[ "MIT" ]
30
2015-09-23T20:38:57.000Z
2021-03-10T03:12:46.000Z
src/contentbase/auditor.py
ClinGen/clincoded
5624c74546ce2a44eda00ee632a8de8c2099da10
[ "MIT" ]
2,132
2015-06-08T21:50:35.000Z
2022-02-15T22:44:18.000Z
src/contentbase/auditor.py
ClinGen/clincoded
5624c74546ce2a44eda00ee632a8de8c2099da10
[ "MIT" ]
10
2015-09-25T20:11:25.000Z
2020-12-09T02:58:44.000Z
""" Cross-object data auditing Schema validation allows for checking values within a single object. We also need to perform higher order checking between linked objects. """ from past.builtins import basestring import logging import venusian logger = logging.getLogger(__name__) def includeme(config): config.registry['auditor'] = Auditor() config.add_directive('add_audit_checker', add_audit_checker) config.add_request_method(audit, 'audit') # Same as logging _levelNames = { 0: 'NOTSET', 10: 'DEBUG', 20: 'INFO', 30: 'DCC_ACTION', 40: 'WARNING', 50: 'NOT_COMPLIANT', 60: 'ERROR', 'DEBUG': 10, 'ERROR': 60, 'INFO': 20, 'NOTSET': 0, 'WARNING': 40, 'NOT_COMPLIANT': 50, 'DCC_ACTION': 30, } class AuditFailure(Exception): def __init__(self, category, detail=None, level=0, path=None, name=None): super(AuditFailure, self) self.category = category self.detail = detail if not isinstance(level, int): level = _levelNames[level] self.level = level self.path = path self.name = name def __json__(self, request=None): return { 'category': self.category, 'detail': self.detail, 'level': self.level, 'level_name': _levelNames[self.level], 'path': self.path, 'name': self.name, } class Auditor(object): """ Data audit manager """ _order = 0 def __init__(self): self.type_checkers = {} def add_audit_checker(self, checker, item_type, condition=None, frame='embedded'): checkers = self.type_checkers.setdefault(item_type, []) self._order += 1 # consistent execution ordering if isinstance(frame, list): frame = tuple(sorted(frame)) checkers.append((self._order, checker, condition, frame)) def audit(self, request, types, path, **kw): if isinstance(types, basestring): types = [types] checkers = set() checkers.update(*(self.type_checkers.get(item_type, ()) for item_type in types)) errors = [] system = { 'request': request, 'path': path, 'types': types, } system.update(kw) for order, checker, condition, frame in sorted(checkers): if frame is None: uri = path elif isinstance(frame, basestring): uri = '%s@@%s' % (path, frame) else: uri = '%s@@expand?expand=%s' % (path, '&expand='.join(frame)) value = request.embed(uri) if condition is not None: try: if not condition(value, system): continue except Exception as e: detail = '%s: %r' % (checker.__name__, e) failure = AuditFailure( 'audit condition error', detail, 'ERROR', path, checker.__name__) errors.append(failure.__json__(request)) logger.warning('audit condition error auditing %s', path, exc_info=True) continue try: try: result = checker(value, system) except AuditFailure as e: e = e.__json__(request) if e['path'] is None: e['path'] = path e['name'] = checker.__name__ errors.append(e) continue if result is None: continue if isinstance(result, AuditFailure): result = [result] for item in result: if isinstance(item, AuditFailure): item = item.__json__(request) if item['path'] is None: item['path'] = path item['name'] = checker.__name__ errors.append(item) continue raise ValueError(item) except Exception as e: detail = '%s: %r' % (checker.__name__, e) failure = AuditFailure( 'audit script error', detail, 'ERROR', path, checker.__name__) errors.append(failure.__json__(request)) logger.warning('audit script error auditing %s', path, exc_info=True) continue return errors # Imperative configuration def add_audit_checker(config, checker, item_type, condition=None, frame='embedded'): auditor = config.registry['auditor'] config.action(None, auditor.add_audit_checker, (checker, item_type, condition, frame)) # Declarative configuration def audit_checker(item_type, condition=None, frame='embedded'): """ Register an audit checker """ def decorate(checker): def callback(scanner, factory_name, factory): scanner.config.add_audit_checker( checker, item_type, condition, frame) venusian.attach(checker, callback, category='auditor') return checker return decorate def audit(request, types=None, path=None, context=None, **kw): auditor = request.registry['auditor'] if path is None: path = request.path if context is None: context = request.context if types is None: types = [context.item_type] + context.base_types return auditor.audit( request=request, types=types, path=path, root=request.root, context=context, registry=request.registry, **kw)
32.56
92
0.551071
3,792
0.665497
0
0
0
0
0
0
849
0.149
b5be5d0470828bf2d8483755e027514f357777f6
1,694
py
Python
PyTrinamic/ic/TMC2130/TMC2130.py
trinamic-AA/PyTrinamic
b054f4baae8eb6d3f5d2574cf69c232f66abb4ee
[ "MIT" ]
37
2019-01-13T11:08:45.000Z
2022-03-25T07:18:15.000Z
PyTrinamic/ic/TMC2130/TMC2130.py
trinamic-AA/PyTrinamic
b054f4baae8eb6d3f5d2574cf69c232f66abb4ee
[ "MIT" ]
56
2019-02-25T02:48:27.000Z
2022-03-31T08:45:34.000Z
PyTrinamic/ic/TMC2130/TMC2130.py
trinamic-AA/PyTrinamic
b054f4baae8eb6d3f5d2574cf69c232f66abb4ee
[ "MIT" ]
26
2019-01-14T05:20:16.000Z
2022-03-08T13:27:35.000Z
''' Created on 14.10.2019 @author: JM ''' from PyTrinamic.ic.TMC2130.TMC2130_register import TMC2130_register from PyTrinamic.ic.TMC2130.TMC2130_register_variant import TMC2130_register_variant from PyTrinamic.ic.TMC2130.TMC2130_fields import TMC2130_fields from PyTrinamic.helpers import TMC_helpers class TMC2130(): """ Class for the TMC2130 IC """ def __init__(self, channel): self.__channel = channel self.registers = TMC2130_register self.fields = TMC2130_fields self.variants = TMC2130_register_variant self.MOTORS = 2 def showChipInfo(self): print("TMC2130 chip info: The TMC2130 is a high-performane driver IC for two phase stepper motors. Standard SPI and STEP/DIR simply communication. Voltage supply: 4.75 - 46V") def writeRegister(self, registerAddress, value, channel): raise NotImplementedError def readRegister(self, registerAddress, channel): raise NotImplementedError def writeRegisterField(self, field, value): return self.writeRegister(field[0], TMC_helpers.field_set(self.readRegister(field[0], self.__channel), field[1], field[2], value), self.__channel) def readRegisterField(self, field): return TMC_helpers.field_get(self.readRegister(field[0], self.__channel), field[1], field[2]) def moveBy(self, motor, distance, velocity): if not(0 <= motor < self.MOTORS): raise ValueError position = self.readRegister(self.registers.XACTUAL, self.__channel, signed=True) self.moveTo(motor, position + distance, velocity) return position + distance def get_pin_state(self): pass
32.576923
183
0.707202
1,389
0.819953
0
0
0
0
0
0
250
0.14758
b5be6e33c1957ff7fe4d9e1d181d17faa43d7603
319
py
Python
setup.py
space-cadet/tncontract
a5503951e218a91e9ba03e11c601b95b6bfcb72a
[ "MIT" ]
39
2016-09-19T01:22:43.000Z
2022-01-12T07:26:29.000Z
setup.py
space-cadet/tncontract
a5503951e218a91e9ba03e11c601b95b6bfcb72a
[ "MIT" ]
9
2016-09-25T22:51:35.000Z
2019-07-14T16:56:12.000Z
setup.py
space-cadet/tncontract
a5503951e218a91e9ba03e11c601b95b6bfcb72a
[ "MIT" ]
12
2017-02-14T11:55:30.000Z
2021-02-01T01:09:31.000Z
from setuptools import setup, find_packages # Get version from tncontract/version.py exec(open("tncontract/version.py").read()) setup( name = "tncontract", version = __version__, packages = find_packages(), author = "Andrew Darmawan", license = "MIT", install_requires = ["numpy", "scipy"], )
22.785714
43
0.677116
0
0
0
0
0
0
0
0
111
0.347962
b5bf153601a744508ecc99c7f24b1fb9627883ce
150
py
Python
exampleb.py
JFletcher94/tBot
051281c81b5712f7ecdb4355b7ea7f6551dec7c7
[ "MIT" ]
null
null
null
exampleb.py
JFletcher94/tBot
051281c81b5712f7ecdb4355b7ea7f6551dec7c7
[ "MIT" ]
null
null
null
exampleb.py
JFletcher94/tBot
051281c81b5712f7ecdb4355b7ea7f6551dec7c7
[ "MIT" ]
null
null
null
#exampleb generates a full tweet #examplet only calls get_string() def get_string(): '''generate full tweet text''' return 'example #text'
18.75
34
0.7
0
0
0
0
0
0
0
0
110
0.733333
b5bf895845b26e76fb4d05e08f9ee6d0b182cce7
37
py
Python
reto_numeros_nones.py
Naxred/PensamientoComputacionalPython
a19fe394fd8b6265d486d432bbc5774d0cf35368
[ "Unlicense" ]
null
null
null
reto_numeros_nones.py
Naxred/PensamientoComputacionalPython
a19fe394fd8b6265d486d432bbc5774d0cf35368
[ "Unlicense" ]
null
null
null
reto_numeros_nones.py
Naxred/PensamientoComputacionalPython
a19fe394fd8b6265d486d432bbc5774d0cf35368
[ "Unlicense" ]
null
null
null
for x in range(1,100,2): print(x)
18.5
24
0.594595
0
0
0
0
0
0
0
0
0
0
b5c11f56555074149df0acc7544e0c995e6baf54
3,213
py
Python
gryphon/data_service/auditors/trades_volume_auditor.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
1,109
2019-06-20T19:23:27.000Z
2022-03-20T14:03:43.000Z
gryphon/data_service/auditors/trades_volume_auditor.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
63
2019-06-21T05:36:17.000Z
2021-05-26T21:08:15.000Z
gryphon/data_service/auditors/trades_volume_auditor.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
181
2019-06-20T19:42:05.000Z
2022-03-21T13:05:13.000Z
# -*- coding: utf-8 -*- from datetime import timedelta from delorean import Delorean from sqlalchemy import and_ from twisted.internet import defer from twisted.internet import reactor from twisted.internet.defer import inlineCallbacks from twisted.internet.task import LoopingCall from twisted.python import log from gryphon.data_service.auditors.auditor import Auditor import gryphon.data_service.util as util from gryphon.lib.models.emeraldhavoc.base import EmeraldHavocBase from gryphon.lib.twistedbitcoinwisdom import TwistedBitcoinWisdom metadata = EmeraldHavocBase.metadata trades = metadata.tables['trade'] EXCHANGES = ['KRAKEN', 'BITSTAMP', 'BITFINEX', 'CAVIRTEX', 'VAULTOFSATOSHI'] class TradesVolumeAuditor(Auditor): def start(self): self.redis = yield util.setup_redis() self.setup_mysql() self.looping_call = LoopingCall(self.audit).start(30) @defer.inlineCallbacks def target_volume_in_trade_list(self, trade_list, target_volume): n = len(trade_list) found_match = False def offline_summation(lower_bound, upper_bound, trade_list, trades, target_volume): perm_sum = 0 for k in range(lower_bound, upper_bound): perm_sum += trade_list[k][trades.c.volume] return perm_sum == target_volume if not n: defer.returnValue(target_volume == 0) elif target_volume == 0: # TODO Fix this. defer.returnValue(False) else: for i in range(n): for j in range(n - i, n + 1): found_match = yield reactor.callLater( 0, offline_summation, j - (n - i), j, trade_list, trades, target_volume, ) if found_match: break defer.returnValue(found_match) @inlineCallbacks def audit(self, exchanges=EXCHANGES): now = Delorean().datetime outer_min = now outer_max = Delorean(now - timedelta(minutes=9)).datetime inner_max = Delorean(now - timedelta(minutes=6)).datetime inner_min = Delorean(now - timedelta(minutes=3)).datetime for exchange in exchanges: real_volume = yield TwistedBitcoinWisdom(exchange=exchange)\ .volume_in_period(inner_max, inner_min) real_volume = real_volume.amount result = yield self.engine.execute( trades.select(trades) .where(and_( trades.c.exchange.startswith(exchange), trades.c.timestamp.between(outer_max, outer_min), )) ) d_trades = yield result.fetchall() target_in_trades = yield self.target_volume_in_trade_list( d_trades, real_volume, ) if not target_in_trades: log.err('Trade Volume Audit Failed : %s' % (exchange)) else: log.msg('Trade Volume Audit Passed : %s' % (exchange))
32.13
91
0.591659
2,512
0.781824
2,412
0.7507
2,309
0.718643
0
0
164
0.051043
b5c68bd329a9e17d20d1b6dbb51e72b824cb0447
370
py
Python
shablbot/__main__.py
Blackgard/vk-bot-python
5d1eb269d76567a8e31dec47c0ea3c5cc1bcbc3c
[ "MIT" ]
5
2019-11-12T05:15:07.000Z
2022-01-20T06:26:55.000Z
shablbot/__main__.py
Blackgard/vk-bot-python
5d1eb269d76567a8e31dec47c0ea3c5cc1bcbc3c
[ "MIT" ]
1
2021-06-02T00:33:47.000Z
2021-06-02T00:33:47.000Z
shablbot/__main__.py
Blackgard/vk-bot-python
5d1eb269d76567a8e31dec47c0ea3c5cc1bcbc3c
[ "MIT" ]
2
2021-12-18T17:03:10.000Z
2022-01-29T17:08:35.000Z
""" Shablbot manager commands """ import sys def main(): try: from shablbot.core.manager_commands import manager_command except ImportError as exc: raise ImportError( "Couldn't import Shablbot. Are you sure it's installed and activate venv?" ) from exc manager_command(sys.argv) if __name__ == '__main__': main()
18.5
86
0.654054
0
0
0
0
0
0
0
0
117
0.316216
b5c6fd5f851fb29a3b78c943cdd438c87f4e64cf
726
py
Python
Patterns_Custom_Row-Column_PYTHON.py
sukantadas194/Patters.Python
14e62b61defca2e1f192f6ac8b1484c0a9745cfb
[ "BSD-2-Clause" ]
null
null
null
Patterns_Custom_Row-Column_PYTHON.py
sukantadas194/Patters.Python
14e62b61defca2e1f192f6ac8b1484c0a9745cfb
[ "BSD-2-Clause" ]
null
null
null
Patterns_Custom_Row-Column_PYTHON.py
sukantadas194/Patters.Python
14e62b61defca2e1f192f6ac8b1484c0a9745cfb
[ "BSD-2-Clause" ]
null
null
null
#Print Custom Row-Column Patterns.. #e.g. '''@ @ @ @ # @ @ @ @ # @ @ @ @''' w = print("What do you want to print?") wa = str(input("Answer : ")) try: m1 = print("How many rows do you want to print?") n1 = int(input("Answer : ")) m2 = print("How many columns do you want to print?") n2 = int(input("Answer : ")) if n1 <= 0 or n2 <= 0: print("Wrong Input") print("Input should be positive & greater than '0'") print("Start over again..") for k in range(n1): for i in range(n2): print(wa, end=" ") print() except: print("Wrong Input") print("Only numbers are accepted") print("Start over again..")
26.888889
61
0.506887
0
0
0
0
0
0
0
0
369
0.508264
b5c737a61480861fc56685c1832b7805d5bbd65b
17,116
py
Python
app/cluegame.py
dabreese00/clue-solver
3b99778075882974459e1c75792e7d051b6fe20a
[ "MIT" ]
null
null
null
app/cluegame.py
dabreese00/clue-solver
3b99778075882974459e1c75792e7d051b6fe20a
[ "MIT" ]
null
null
null
app/cluegame.py
dabreese00/clue-solver
3b99778075882974459e1c75792e7d051b6fe20a
[ "MIT" ]
null
null
null
"""cluegame.py -- Classes to track Clue game events and make inferences The board game Clue is also known as Cluedo. This module contains classes that make it possible to record specific knowledge-generating events that a Clue player may observe during the course of a game (such as, for example, that Player A showed Player B one of either Card X, Card Y, or Card Z). More to the point, Clue is a game about building knowledge through logical inference. As such, these classes are designed to track not only these events themselves, but also the sum total of game knowledge that can be logically inferred from them. Classes: ClueCardType -- an Enum of possible card types in the game ClueRelationType -- an Enum of possible types of Player-Card relation Player -- a player in the Clue game Card -- a card in the Clue game ClueRelation -- an individual Player-Card relation that is known Game -- a tracker and inference engine for total game knowledge Functions: normalize_to_list -- matches an object (or its name) to a list of objects """ from app.objectfilter import ObjectFilter import enum import pickle import os import collections class ClueCardType(enum.Enum): """an Enum of possible card types in a Clue game""" PERSON = "Person" WEAPON = "Weapon" ROOM = "Room" class ClueRelationType(enum.Enum): """an Enum of possible types of Player-Card relation to record in Clue These represent my own semi-invented terminology for describing a player's knowledge in a Clue game. In case their meanings are not entirely self-evident, an explanation of these terms and how they relate to player knowledge in the game of Clue can be found the package README.md file; see esp. the "Theory" section. """ HAVE = "have" PASS = "pass" SHOW = "show" Player = collections.namedtuple('Player', 'name hand_size') Player.__doc__ += ': A player in the Clue game' Player.name.__doc__ = 'A name by which this player is identified' Player.hand_size.__doc__ = 'Number of cards in hand of this player' Card = collections.namedtuple('Card', 'name card_type') Card.__doc__ += ': A card in the Clue game' Card.name.__doc__ = 'A name by which this card is identified' Card.card_type.__doc__ = 'Which ClueCardType this card belongs to' def normalize_to_list(obj, lst): """Returns a matching member of a Player or Card list, if possible. Assumes names of objects in the list are unique, for match by name. Arguments: obj -- a Player, Card, or a name (string) representing one lst -- a list of Players or Cards Returns: a Player or Card from the list, matching obj """ if obj in lst: return obj try: my_obj = next(o for o in lst if o.name == obj) except(StopIteration): raise ValueError("No such Player/Card {} in list {}".format( obj, lst)) return my_obj class ClueRelation(collections.namedtuple( 'ClueRelation', 'rel_type player cards')): """A generalized representation of a piece of Clue game knowledge to record A ClueRelation instance represents knowledge of a specific type of relationship between a given Player, and one or more given Cards. How many Cards are in a relation, depends on the relation's type: A HAVE or PASS relation has 1 card. A SHOW relation has 3 cards. Instance variables: rel_type -- a ClueRelationType, defining the type of this relation player -- the Player who is involved in this relation cards -- a list of the Card(s) involved in this relation The __contains__ method is signficiantly customized (perhaps "bastardized") to aid querying. """ __slots__ = () def __repr__(self): return "ClueRelation(Type={}, Player={}, Cards={})".format( self.rel_type, self.player, self.cards) def __contains__(self, obj): """Checks for any of several distinct conditions The inherited method is overridden, in a slight abuse, to check whether ANY of the following two conditions holds (logical "or"): - a given Player is self.player - a given Card is in self.cards - a given ClueCardType is represented among self.cards The last condition may seem strange, but I found it a useful trick to help keep the semantics consistently intuitive for certain queries that become relevant when making inferences in the game of Clue. If I come up with a better way (i.e. a simple way to query lists of ClueRelations with intuitive-enough semantics that avoids the need for it), then I may consider removing this last condition, as it seems potentially confusing. """ return obj == self.player \ or obj in self.cards \ or obj in [c.card_type for c in self.cards] class ClueRelationFilter(ObjectFilter): """A tool to query a list of ClueRelations Public methods (besides inherited methods): match -- recursively tests aspects of a ClueRelation """ def match(self, relation): """Recursively check if relation matches all filter statements. Arguments: relation -- the relation to check """ if self.statement == "and": return self.left.match(relation) and self.right.match(relation) elif self.statement == "or": return self.left.match(relation) or self.right.match(relation) elif self.statement == "not": return not self.left.match(relation) elif self.statement == "all": return True elif self.statement in list(ClueRelationType): return relation.rel_type == self.statement else: return self.statement in relation class Game: """Encapsulates and updates the total state of the game knowledge. The Game instance knows the following: - a set of Cards (self.cards) - a set of Players (self.players) - all known ClueRelations between Players and Cards (self.relations) - which Cards are "in the file", meaning the Clue confidential file -- this is how you win folks! (self.cards_in_the_file) The Game instance provides public methods to record new ClueRelations as they become known. These same public methods also recursively check for and record the consequences of any logical deductions that follow from each newly-discovered ClueRelation. There are also save/load/delete methods to handle persisting the game state. Public methods: record_have record_pass record_show save Class methods: load delete Instance variables: players cards cards_in_the_file relations """ def __init__(self, clue_cards_persons, clue_cards_weapons, clue_cards_rooms, players): """Initializes the game state. Creates a set of Players and a set of Cards. All other instance variables are initialized to empty. Arguments: clue_cards_persons -- a list of Person card names to play with clue_cards_weapons -- a list of Weapon card names to play with clue_cards_rooms -- a list of Room card names to play with players -- a list of tuples representing all Players in the Game """ # Setup the Cards clue_cards = { ClueCardType.PERSON: clue_cards_persons, ClueCardType.WEAPON: clue_cards_weapons, ClueCardType.ROOM: clue_cards_rooms } self.cards = set() for t in ClueCardType: for n in clue_cards[t]: if n not in [c.name for c in self.cards]: self.cards.add(Card(n, t)) else: raise ValueError("Duplicate card name: {}".format(n)) # Setup the Players self.players = set() for p in players: new_p = Player._make(p) if new_p.name not in [q.name for q in self.players]: self.players.add(new_p) else: raise ValueError( "Duplicate player name: {}".format(new_p.name)) num_cards_in_the_file = len(clue_cards.keys()) num_cards_in_hands = sum([p.hand_size for p in self.players]) if len(self.cards) != num_cards_in_the_file + num_cards_in_hands: raise ValueError("Player hand sizes and card count don't add up!") # Setup the Game state knowledge self.relations = [] @property def cards_in_the_file(self): """If we know that no player has a given card, it is in the file!""" cards_in_the_file = set() for c in self.cards: players_passing = [r.player for r in ( ClueRelationFilter(c) + ClueRelationFilter(ClueRelationType.PASS) ).get(self.relations)] if len(players_passing) == len(self.players): cards_in_the_file.add(c) return cards_in_the_file def record_have(self, player, card): """Record a HAVE relation, and make deductions accordingly. This is a thin wrapper for self.__record_clue_relation, solely to enhance external usability. """ self.__record_clue_relation(ClueRelationType.HAVE, player, [card]) def record_pass(self, player, card): """Record a PASS relation, and make deductions accordingly. This is a thin wrapper for self.__record_clue_relation, solely to enhance external usability. """ self.__record_clue_relation(ClueRelationType.PASS, player, [card]) def record_show(self, player, cards): """Record a SHOW relation, and make deductions accordingly. This is a thin wrapper for self.__record_clue_relation, solely to enhance external usability. """ self.__record_clue_relation(ClueRelationType.SHOW, player, cards) def __record_clue_relation(self, rel_type, player, cards): """Record a new ClueRelation, and make deductions accordingly.""" player, cards = self.__normalize_input(player, cards) if rel_type in [ClueRelationType.HAVE, ClueRelationType.PASS]: # Check for any redundancy or conflict with an existing HAVE/PASS matching_haves_passes = ( ClueRelationFilter(player) + ClueRelationFilter(cards[0]) + ( ClueRelationFilter(ClueRelationType.HAVE) / ClueRelationFilter(ClueRelationType.PASS) ) ).get(self.relations) for h in matching_haves_passes: if h.rel_type == rel_type: return # Ignore attempted duplicate. else: raise ValueError("Cannot mark Relation {} {} {}; ".format( rel_type, player, cards[0]) + "the opposite is already marked!") rel = ClueRelation( rel_type=rel_type, player=player, cards=cards) if rel: self.relations.append(rel) self.__draw_inferences_from_new_relation(rel) def __draw_inferences_from_new_relation(self, new_relation): """Make and record all possible logical inferences from a ClueRelation Given a newly-recorded ClueRelation, identify all possible additional ClueRelations that can be inferred, and record them too (which may in turn cause additional calls to __draw_inferences_..., and so on). Arguments: new_relation -- a (ostensibly newly-recorded) ClueRelation """ player = new_relation.player if new_relation.rel_type == ClueRelationType.HAVE: card = new_relation.cards[0] self.__deduce_other_player_passes_from_have(player, card) self.__deduce_player_passes_from_known_whole_hand(player) self.__deduce_card_passes_from_cardtype_completion( card.card_type) elif new_relation.rel_type == ClueRelationType.PASS: card = new_relation.cards[0] matching_shows = ( ClueRelationFilter(player) + ClueRelationFilter(card) + ClueRelationFilter(ClueRelationType.SHOW) ).get(self.relations) for s in matching_shows: self.__deduce_have_from_show(s) elif new_relation.rel_type == ClueRelationType.SHOW: self.__deduce_have_from_show(new_relation) def __deduce_other_player_passes_from_have(self, player, card): """If player has card, we infer all other players do not have card.""" for other_p in self.players: if other_p != player: self.record_pass(other_p, card) def __deduce_player_passes_from_known_whole_hand(self, player): """If all player's cards are known, mark passes for all other cards.""" known_cards_in_hand = [r.cards[0] for r in ( ClueRelationFilter(player) + ClueRelationFilter(ClueRelationType.HAVE) ).get(self.relations)] if len(known_cards_in_hand) == player.hand_size: for other_c in self.cards: if other_c not in known_cards_in_hand: self.record_pass(player, other_c) def __deduce_card_passes_from_cardtype_completion(self, cluecardtype): """If all cards but 1 of this type are accounted for, mark passes. If we know which player has every card of this type but 1, mark passes for all players for the remaining card. """ cards_of_type_located = [r.cards[0] for r in ( ClueRelationFilter(cluecardtype) + ClueRelationFilter(ClueRelationType.HAVE) ).get(self.relations)] cards_of_type_total = [] for card_name in [c.name for c in self.cards if c.card_type == cluecardtype]: cards_of_type_total.append( normalize_to_list(card_name, self.cards)) if len(cards_of_type_located) == len(cards_of_type_total) - 1: remaining_card = ( set(cards_of_type_total) - set(cards_of_type_located) ).pop() for p in self.players: self.record_pass(p, remaining_card) def __deduce_have_from_show(self, show): """If given SHOW has 2 PASSed cards for player, infer & record a HAVE. If show.cards contains exactly 2 cards that show.player has PASSes recorded for, then infer and record a HAVE for show.player and the 3rd card. """ q = ClueRelationFilter() for c in show.cards: q = q / ClueRelationFilter(c) q = q + ClueRelationFilter(show.player) if len((q + ClueRelationFilter(ClueRelationType.HAVE) ).get(self.relations)) == 0: passed_cards = [r.cards[0] for r in (q + ClueRelationFilter(ClueRelationType.PASS) ).get(self.relations)] unpassed_cards = set(show.cards) - set(passed_cards) if len(unpassed_cards) == 1: for c in unpassed_cards: self.record_have(show.player, c) def __normalize_input(self, player, cards): """Allow to pass in Players/Cards either as objects, or by name Assumes that Player and Card names are unique. Arguments: player -- a Player object, or name (string) to normalize cards -- a list of Card objects, or names (strings) to normalize Returns: a Player object and a list of Card objects from the current Game """ player = normalize_to_list(player, self.players) my_cards = [] for c in cards: my_cards.append( normalize_to_list(c, self.cards)) cards = my_cards return player, cards def save(self, path): """Persists the Game state to a file. BEWARE: Overwrites any existing file at 'path'. """ with open(path, 'wb') as dbfile: pickle.dump(self, dbfile) def load(obj, path): """Loads a persisted Game state from a file.""" if os.path.isfile(path): with open(path, 'rb') as dbfile: return pickle.load(dbfile) else: return None def delete(obj, path): """Deletes a persisted Game state in a file. BEWARE: Deletes any existing file at 'path'. """ os.remove(path) Game.load = classmethod(Game.load) Game.delete = classmethod(Game.delete)
37.535088
79
0.62649
14,715
0.859722
0
0
510
0.029797
0
0
8,394
0.490418
b5cdf29e6b6b8257a8b1c9b388ba9bf3693defbc
726
py
Python
config.py
adesolagbenga0052/web-app
c6d6ca3f998897986ac25a1e93477af0a8bfacf6
[ "Apache-2.0" ]
null
null
null
config.py
adesolagbenga0052/web-app
c6d6ca3f998897986ac25a1e93477af0a8bfacf6
[ "Apache-2.0" ]
null
null
null
config.py
adesolagbenga0052/web-app
c6d6ca3f998897986ac25a1e93477af0a8bfacf6
[ "Apache-2.0" ]
null
null
null
"""Flask configuration.""" from os import environ, path basedir = path.abspath(path.dirname(__file__)) class Config: """Base config.""" SECRET_KEY = "qsZ5srBF9-j3tgdMsd11hdbg2VLUyKQYqWFQ1EZyKI6PDVVTLXduxWoM1N0wESR0zFvSPFDs9ogpMjgl9wFxXw" STATIC_FOLDER = 'static' TEMPLATES_FOLDER = 'templates' class ProdConfig(Config): FLASK_ENV = 'production' DEBUG = False TESTING = False SQLALCHEMY_DATABASE_URI ="sqlite:///databank.sqlite" SQLALCHEMY_TRACK_MODIFICATIONS = False class DevConfig(Config): FLASK_ENV = 'development' DEBUG = True TESTING = True SQLALCHEMY_DATABASE_URI = "sqlite:///test.db" SQLALCHEMY_TRACK_MODIFICATIONS = True
27.923077
106
0.698347
596
0.820937
0
0
0
0
0
0
222
0.305785
b5cff4fdd46f8909e02bbf2707f338423530762f
691
py
Python
tests/test_metrics.py
tolmanam/python-nomad-alt
f93d3f6553cdb1ee16dadabd385208b5cc550024
[ "MIT" ]
null
null
null
tests/test_metrics.py
tolmanam/python-nomad-alt
f93d3f6553cdb1ee16dadabd385208b5cc550024
[ "MIT" ]
null
null
null
tests/test_metrics.py
tolmanam/python-nomad-alt
f93d3f6553cdb1ee16dadabd385208b5cc550024
[ "MIT" ]
null
null
null
from nomad_alt import Nomad import json import uuid from pprint import pformat import os import pytest import nomad_alt.exceptions import tests.common as common @pytest.fixture def nomad_setup(): n = Nomad(host=common.IP, port=common.NOMAD_PORT, ssl_verify=False, token=common.NOMAD_TOKEN) with open(common.EXAMPLE_JOB_JSON) as fh: n.jobs.create(json.loads(fh.read())) yield n n.jobs.stop(common.EXAMPLE_JOB_NAME, purge=True) def test_metrics(nomad_setup): res = nomad_setup.metrics.fetch() assert res is not None assert 'Counters' in res assert 'Gauges' in res assert 'Points' in res assert 'Samples' in res assert 'Timestamp' in res
24.678571
97
0.732272
0
0
272
0.393632
288
0.416787
0
0
46
0.06657
b5d0213de62ed3ea48e3a10bf0cc5d6b41c2e553
5,979
py
Python
djproject/pictureupload/views.py
missingDown/webForUpload
fbd5ed9e8cfcd4ad906913f4a31c24e87919f9a3
[ "MIT" ]
null
null
null
djproject/pictureupload/views.py
missingDown/webForUpload
fbd5ed9e8cfcd4ad906913f4a31c24e87919f9a3
[ "MIT" ]
null
null
null
djproject/pictureupload/views.py
missingDown/webForUpload
fbd5ed9e8cfcd4ad906913f4a31c24e87919f9a3
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse import logging import json import base64 import time # Create your views here. logger = logging.getLogger(__name__) # 文件上传:form-data/Multipart方式 POST方法 def index(request): sendfile = request.FILES.items() haveFiles = False for key,value in sendfile: fileData = request.FILES.getlist(key) if len(fileData): haveFiles = True for fl in fileData: name = fl.name with open('/home/hych007/project/serverproject/'+name, 'wb') as fp: fp.write(bytes(fl.read())) if not haveFiles: result = {"errcode": 511, "errmsg": "form-data中未读取到图片信息"} return HttpResponse(json.dumps(result), content_type="application/json") cameraCode = request.POST.get("cameraCode", "") if not cameraCode: result = {"errcode": 501, "errmsg": "cameraCode摄像头编号不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") doorCode = request.POST.get("i3310A", "") if not doorCode: result = {"errcode": 505, "errmsg": "i3310A门禁编码不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") userCode = request.POST.get("i3310D", "") if not userCode: result = {"errcode": 507, "errmsg": "i3310D用户唯一标识码不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") photoCodes = request.POST.get("photoCodes", "") if not len(photoCodes): result = {"errcode": 502, "errmsg": "photoCode照片编号不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") dataTimes = request.POST.get("dataTimes", "") if not len(dataTimes): result = {"errcode": 503, "errmsg": "dataTime拍照时间不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") result = {"errcode": 200, "errmsg": "上传成功"} return HttpResponse(json.dumps(result), content_type="application/json") # 文件上传:Body中传Json方式 POST方法 def body(request): try: jsData = json.loads(str(request.body, encoding='utf-8')) except Exception as e: result = {"errcode": -1, "errmsg": "数据不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") if not isinstance(jsData, list): result = {"errcode": 500, "errmsg": "上传的json数据错误"} return HttpResponse(json.dumps(result), content_type="application/json") for data in jsData: imgData = data.get("base64String", "") if len(imgData) <= 23: result = {"errcode": 509, "errmsg": "照片转Base64String 编码后的字符串不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") imgData = imgData[23:] temp = base64.b64decode(imgData) picName = time.strftime("%Y%m%d%H%M%S", time.localtime()) #图片文件的读写要用二进制模式 with open("/home/hych007/project/serverproject/"+picName+".jpeg", 'wb') as f: f.write(temp) cameraCode = data.get("cameraCode", "") if not cameraCode: result = {"errcode": 501, "errmsg": "cameraCode摄像头编号不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") doorCode = data.get("i3310A", "") if not doorCode: result = {"errcode": 505, "errmsg": "i3310A门禁编码不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") userCode = data.get("i3310D", "") if not userCode: result = {"errcode": 507, "errmsg": "i3310D用户唯一标识码不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") photoCode = data.get("photoCode", "") if not photoCode: result = {"errcode": 502, "errmsg": "photoCode照片编号不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") dataTime = data.get("dataTime", "") if not dataTime: result = {"errcode": 503, "errmsg": "dataTime拍照时间不能为空"} return HttpResponse(json.dumps(result), content_type="application/json") result = {"errcode": 200, "errmsg": "上传成功"} return HttpResponse(json.dumps(result), content_type="application/json") # 提供图片下载功能 def picture(request): file = open("/home/hych007/project/100001.png", "rb") response = HttpResponse(content=file.read(), content_type="image/png") return response # def writeLog(text): # with open('/mnt/testlog.txt', 'a+') as fp: # fp.write(text+'\n') # 文件上传:form-data/Multipart方式 PUT方法 def puttest(request): # writeLog('get a request') if(request.method != "PUT"): result = {"errcode": 1, "errmsg": "Not put method"} # writeLog('Not put method') return HttpResponse(json.dumps(result), content_type="application/json") put, files = request.parse_file_upload(request.META, request) # request.FILES.update(files) # request.POST = put.dict() fileitems = files.items() haveFiles = False for key, value in fileitems: # fileData = files.get(key) if value: haveFiles = True # 图片文件的读写要用二进制模式 name = value.name with open('/home/hych007/project/serverproject/' + name, 'wb') as fp: fp.write(bytes(value.read())) if not haveFiles: result = {"errcode": 2, "errmsg": "No file data"} # writeLog('No file data') return HttpResponse(json.dumps(result), content_type="application/json") dataInfo = put.get("FaceDataRecord", "") if not dataInfo: result = {"errcode": 3, "errmsg": "no FaceDataRecord data"} # writeLog('no FaceDataRecord data') return HttpResponse(json.dumps(result), content_type="application/json") result = {"errcode": 200, "errmsg": dataInfo} # writeLog('request secceed') return HttpResponse(json.dumps(result), content_type="application/json")
38.082803
85
0.632882
0
0
0
0
0
0
0
0
2,267
0.355719
b5d05429ba74cb0c817d19e6c37641ec569991cf
2,191
py
Python
logparser/logs/logs.py
rkorte/rticonnextdds-logparser
e8d0446c8d1318e68886a58e95c3f1ba4a1fa455
[ "Apache-2.0" ]
11
2016-06-28T13:26:01.000Z
2021-06-07T09:18:32.000Z
logparser/logs/logs.py
rkorte/rticonnextdds-logparser
e8d0446c8d1318e68886a58e95c3f1ba4a1fa455
[ "Apache-2.0" ]
27
2016-10-26T19:57:16.000Z
2019-04-12T16:48:11.000Z
logparser/logs/logs.py
rkorte/rticonnextdds-logparser
e8d0446c8d1318e68886a58e95c3f1ba4a1fa455
[ "Apache-2.0" ]
7
2016-08-28T17:24:15.000Z
2021-12-10T11:28:20.000Z
# Log Parser for RTI Connext. # # Copyright 2016 Real-Time Innovations, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Create the global list of regular expressions and functions. Functions: + add_regex: Compile the regex and add it to the list. + create_regex_list: Create the list of regular expressions and functions. """ from __future__ import absolute_import import re from logparser.logs.custom.logs import get_regex_list as custom_regex from logparser.logs.debug.logs import get_regex_list as debug_regex from logparser.logs.events.logs import get_regex_list as events_regex from logparser.logs.micro.logs import get_regex_list as micro_regex from logparser.logs.micro.micro import init as init_micro from logparser.logs.network.logs import get_regex_list as network_regex from logparser.logs.routing.logs import get_regex_list as routing_regex def add_regex(log_list, method, regex): """Compile the regex and add it to the list.""" log_list.append((method, re.compile(regex))) def create_regex_list(state): """Create the list of regular expressions and functions.""" init_micro(state) # pylint: disable=W0106 expressions = [] [add_regex(expressions, expr[0], expr[1]) for expr in micro_regex()] [add_regex(expressions, expr[0], expr[1]) for expr in network_regex()] [add_regex(expressions, expr[0], expr[1]) for expr in events_regex()] [add_regex(expressions, expr[0], expr[1]) for expr in routing_regex()] [add_regex(expressions, expr[0], expr[1]) for expr in custom_regex()] if state['debug']: [add_regex(expressions, expr[0], expr[1]) for expr in debug_regex()] return expressions
40.574074
76
0.748517
0
0
0
0
0
0
0
0
977
0.445915
b5d0c034f7242aa14fa3baca13d703e86f187f17
276
py
Python
torrents/tests/test_file.py
noahgoldman/torwiz
213be5cf3b62d2c18c09e2fe4b869c549c263f32
[ "MIT" ]
1
2015-03-09T01:58:23.000Z
2015-03-09T01:58:23.000Z
torrents/tests/test_file.py
noahgoldman/torwiz
213be5cf3b62d2c18c09e2fe4b869c549c263f32
[ "MIT" ]
3
2015-04-01T22:49:58.000Z
2015-05-01T19:09:11.000Z
torrents/tests/test_file.py
noahgoldman/torwiz
213be5cf3b62d2c18c09e2fe4b869c549c263f32
[ "MIT" ]
null
null
null
from bson.objectid import ObjectId from torrents.file import TorrentFile class TestTorrentFile: def test_get_output_file(self): id1 = ObjectId() file1 = TorrentFile(id1) assert file1.get_output_file() == 'torrent_files/' + str(id1) + '.torrent'
25.090909
82
0.695652
200
0.724638
0
0
0
0
0
0
26
0.094203
b5d13876f65729d4efb83ad2b61955efd49a0d23
2,444
py
Python
google/cloud/storage/benchmarks/storage_throughput_plots.py
millerantonio810/google-cloud-cpp
71582d922bc22b0dcbc58234f36c726ea3b7c171
[ "Apache-2.0" ]
1
2021-01-16T02:43:50.000Z
2021-01-16T02:43:50.000Z
google/cloud/storage/benchmarks/storage_throughput_plots.py
millerantonio810/google-cloud-cpp
71582d922bc22b0dcbc58234f36c726ea3b7c171
[ "Apache-2.0" ]
null
null
null
google/cloud/storage/benchmarks/storage_throughput_plots.py
millerantonio810/google-cloud-cpp
71582d922bc22b0dcbc58234f36c726ea3b7c171
[ "Apache-2.0" ]
1
2020-05-09T20:12:05.000Z
2020-05-09T20:12:05.000Z
#!/usr/bin/env python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Summarize the results from running storage_throughput_benchmark.""" # %% import argparse import pandas as pd import plotnine as p9 from scipy.stats import mannwhitneyu # %% pd.set_option("precision", 2) # %% def load_benchmark_output(file): """Loads the output generated by storage_throughput_benchmark.""" df = pd.read_csv(file, comment="#", names=["Op", "Api", "Bytes", "ElapsedMs"]) df["MiB"] = df.Bytes / 1024 / 1024 df["MiBs"] = df.MiB * 1000 / df.ElapsedMs return df # %% def compare_api(df, op_name, alpha=0.05): subset = df[df.Op == op_name] stat, p = mannwhitneyu( subset[subset.Api == "XML"].MiBs, subset[subset.Api == "JSON"].MiBs ) print( "\n\n===== %s XML vs. JSON =====\np-value=%.3f Statistics=%.3f" % (op_name, p, stat) ) print(subset.groupby(by="Api").MiBs.describe(percentiles=[0.50, 0.90, 0.95])) if p > alpha: print("%s/XML vs. READ/JSON: same distribution (fail to reject H0)" % op_name) else: print("%s/XML vs. READ/JSON: different distribution (reject H0)" % op_name) # %% parser = argparse.ArgumentParser() parser.add_argument( "--input-file", type=argparse.FileType("r"), required=True, help="the benchmark output file to load", ) parser.add_argument( "--output-file", type=str, required=True, help="the name for the output plot" ) args = parser.parse_args() # %% data = load_benchmark_output(args.input_file) # %% print(data.head()) # %% print(data.describe()) # %% ( p9.ggplot( data=data[(data.Op != "CREATE") & (data.Op != "DELETE")], mapping=p9.aes(x="Op", y="MiBs", color="Api"), ) + p9.facet_wrap(facets="Op", labeller="label_both", scales="free") + p9.geom_boxplot() ).save(args.output_file) # %% compare_api(data, "READ") compare_api(data, "WRITE")
26.857143
86
0.657529
0
0
0
0
0
0
0
0
1,173
0.479951
b5d20cd2d199da5465fadfa36c7ff94c0bda75f4
711
py
Python
djAidESILV/products/migrations/0002_auto_20200522_1921.py
Kulumbaf/AidESILV
04dad828048edffdd3662b24c415edce22fd3ea3
[ "MIT" ]
null
null
null
djAidESILV/products/migrations/0002_auto_20200522_1921.py
Kulumbaf/AidESILV
04dad828048edffdd3662b24c415edce22fd3ea3
[ "MIT" ]
null
null
null
djAidESILV/products/migrations/0002_auto_20200522_1921.py
Kulumbaf/AidESILV
04dad828048edffdd3662b24c415edce22fd3ea3
[ "MIT" ]
null
null
null
# Generated by Django 2.2.12 on 2020-05-22 19:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0001_initial'), ] operations = [ migrations.AddField( model_name='product', name='baby_product', field=models.BooleanField(default=False, verbose_name='Produit pour enfant'), ), migrations.AddField( model_name='product', name='category', field=models.CharField(choices=[('A', 'Alimentation'), ('P', 'Pharmacie'), ('Q', 'Quotidien'), ('NA', 'Non-attribué')], default='NA', max_length=2, verbose_name='Catégorie'), ), ]
29.625
186
0.590717
619
0.868163
0
0
0
0
0
0
215
0.301543
b5d2438e72ede4149becee229525d2ab304971e9
939
py
Python
vietocr/train.py
lzmisscc/vietocr
df0d9a53e714d08d6b0b4ee52ab46fbc0b991bf3
[ "Apache-2.0" ]
null
null
null
vietocr/train.py
lzmisscc/vietocr
df0d9a53e714d08d6b0b4ee52ab46fbc0b991bf3
[ "Apache-2.0" ]
null
null
null
vietocr/train.py
lzmisscc/vietocr
df0d9a53e714d08d6b0b4ee52ab46fbc0b991bf3
[ "Apache-2.0" ]
null
null
null
import argparse import logging from vietocr.model.trainer import Trainer from vietocr.tool.config import Cfg import sys sys.path.insert(0, './') from char import character logging.basicConfig(level=logging.INFO, ) def main(): parser = argparse.ArgumentParser() parser.add_argument('config', help='see example at ') parser.add_argument('--checkpoint', help='your checkpoint') args = parser.parse_args() config_base = Cfg.load_config_from_file("config/base.yml") config = Cfg.load_config_from_file(args.config) config_base.update(config) config = config_base config['vocab'] = character trainer = Trainer(config, pretrained=False) # args.checkpoint = config.trainer["checkpoint"] # if args.checkpoint: # trainer.load_checkpoint(args.checkpoint) # logging.info(f"Load checkpoint form {args.checkpoint}....") trainer.train() if __name__ == '__main__': main()
28.454545
68
0.707135
0
0
0
0
0
0
0
0
272
0.28967
b5d34bad89b324ae2f55b466eea757d21d9ed3d6
363
py
Python
django_eveonline_connector/migrations/0018_remove_evetoken_primary.py
KryptedGaming/django-eveonline-connector
95fa146f4fcdf6bce84548b5cac1e5bf09cd72a0
[ "MIT" ]
3
2020-03-07T13:58:45.000Z
2021-02-06T20:16:50.000Z
django_eveonline_connector/migrations/0018_remove_evetoken_primary.py
KryptedGaming/django-eveonline-connector
95fa146f4fcdf6bce84548b5cac1e5bf09cd72a0
[ "MIT" ]
66
2019-12-17T20:54:22.000Z
2021-06-10T20:39:04.000Z
django_eveonline_connector/migrations/0018_remove_evetoken_primary.py
KryptedGaming/django-eveonline-connector
95fa146f4fcdf6bce84548b5cac1e5bf09cd72a0
[ "MIT" ]
2
2020-01-17T20:04:52.000Z
2021-07-11T22:11:42.000Z
# Generated by Django 2.2.10 on 2020-02-27 18:21 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('django_eveonline_connector', '0017_primaryevecharacterassociation'), ] operations = [ migrations.RemoveField( model_name='evetoken', name='primary', ), ]
20.166667
78
0.630854
277
0.763085
0
0
0
0
0
0
132
0.363636
b5d4e05a5e5fe08d9de941f7f2c1980a53f27d2a
598
py
Python
Plug-and-play module/SematicEmbbedBlock.py
riciche/SimpleCVReproduction
4075de39f9c61f1359668a413f6a5d98903fcf97
[ "Apache-2.0" ]
923
2020-01-11T06:36:53.000Z
2022-03-31T00:26:57.000Z
Plug-and-play module/SematicEmbbedBlock.py
riciche/SimpleCVReproduction
4075de39f9c61f1359668a413f6a5d98903fcf97
[ "Apache-2.0" ]
25
2020-02-27T08:35:46.000Z
2022-01-25T08:54:19.000Z
Plug-and-play module/SematicEmbbedBlock.py
riciche/SimpleCVReproduction
4075de39f9c61f1359668a413f6a5d98903fcf97
[ "Apache-2.0" ]
262
2020-01-02T02:19:40.000Z
2022-03-23T04:56:16.000Z
import torch.nn as nn """ https://zhuanlan.zhihu.com/p/76378871 arxiv: 1804.03821 ExFuse """ class SematicEmbbedBlock(nn.Module): def __init__(self, high_in_plane, low_in_plane, out_plane): super(SematicEmbbedBlock, self).__init__() self.conv3x3 = nn.Conv2d(high_in_plane, out_plane, 3, 1, 1) self.upsample = nn.UpsamplingBilinear2d(scale_factor=2) self.conv1x1 = nn.Conv2d(low_in_plane, out_plane, 1) def forward(self, high_x, low_x): high_x = self.upsample(self.conv3x3(high_x)) low_x = self.conv1x1(low_x) return high_x * low_x
29.9
67
0.688963
503
0.841137
0
0
0
0
0
0
70
0.117057
b5d543bdac2737ffc8b7efa718d7cd3c1a92a7cd
1,539
py
Python
utilities.py
Fredrik-Oberg/volkswagencarnet
877123f4053c66d11d1f99abfc1dc4bbc74effde
[ "MIT" ]
null
null
null
utilities.py
Fredrik-Oberg/volkswagencarnet
877123f4053c66d11d1f99abfc1dc4bbc74effde
[ "MIT" ]
null
null
null
utilities.py
Fredrik-Oberg/volkswagencarnet
877123f4053c66d11d1f99abfc1dc4bbc74effde
[ "MIT" ]
null
null
null
from datetime import date, datetime from base64 import b64encode from string import ascii_letters as letters, digits from sys import argv from os import environ as env from os.path import join, dirname, expanduser from itertools import product import json import logging import re _LOGGER = logging.getLogger(__name__) def find_path(src, path): """Simple navigation of a hierarchical dict structure using XPATH-like syntax. >>> find_path(dict(a=1), 'a') 1 >>> find_path(dict(a=1), '') {'a': 1} >>> find_path(dict(a=None), 'a') >>> find_path(dict(a=1), 'b') Traceback (most recent call last): ... KeyError: 'b' >>> find_path(dict(a=dict(b=1)), 'a.b') 1 >>> find_path(dict(a=dict(b=1)), 'a') {'b': 1} >>> find_path(dict(a=dict(b=1)), 'a.c') Traceback (most recent call last): ... KeyError: 'c' """ if not path: return src if isinstance(path, str): path = path.split(".") return find_path(src[path[0]], path[1:]) def is_valid_path(src, path): """ >>> is_valid_path(dict(a=1), 'a') True >>> is_valid_path(dict(a=1), '') True >>> is_valid_path(dict(a=1), None) True >>> is_valid_path(dict(a=1), 'b') False """ try: find_path(src, path) return True except KeyError: return False def camel2slug(s): """Convert camelCase to camel_case. >>> camel2slug('fooBar') 'foo_bar' """ return re.sub("([A-Z])", "_\\1", s).lower().lstrip("_")
19.481013
82
0.587394
0
0
0
0
0
0
0
0
842
0.547109
b5d85732ed11a9abee1adac3c37bfb5f5d7fe0c2
9,874
py
Python
nslsii/__init__.py
ke-zhang-rd/nslsii
d3f942cda8eac713ac625dbcf4285e108c04f154
[ "BSD-3-Clause" ]
null
null
null
nslsii/__init__.py
ke-zhang-rd/nslsii
d3f942cda8eac713ac625dbcf4285e108c04f154
[ "BSD-3-Clause" ]
null
null
null
nslsii/__init__.py
ke-zhang-rd/nslsii
d3f942cda8eac713ac625dbcf4285e108c04f154
[ "BSD-3-Clause" ]
null
null
null
from IPython import get_ipython from ._version import get_versions __version__ = get_versions()['version'] del get_versions def import_star(module, ns): def public(name): return not name.startswith('_') ns.update({name: getattr(module, name) for name in dir(module) if public(name)}) def configure_base(user_ns, broker_name, *, bec=True, epics_context=False, magics=True, mpl=True, ophyd_logging=True, pbar=True): """ Perform base setup and instantiation of important objects. This factory function instantiates essential objects to data collection environments at NSLS-II and adds them to the current namespace. In some cases (documented below), it will check whether certain variables already exist in the user name space, and will avoid creating them if so. The following are added: * ``RE`` -- a RunEngine This is created only if an ``RE`` instance does not currently exist in the namespace. * ``db`` -- a Broker (from "databroker"), subscribe to ``RE`` * ``bec`` -- a BestEffortCallback, subscribed to ``RE`` * ``peaks`` -- an alias for ``bec.peaks`` * ``sd`` -- a SupplementalData preprocessor, added to ``RE.preprocessors`` * ``pbar_maanger`` -- a ProgressBarManager, set as the ``RE.waiting_hook`` And it performs some low-level configuration: * creates a context in ophyd's control layer (``ophyd.setup_ophyd()``) * turns out interactive plotting (``matplotlib.pyplot.ion()``) * bridges the RunEngine and Qt event loops (``bluesky.utils.install_kicker()``) * logs ERROR-level log message from ophyd to the standard out Parameters ---------- user_ns: dict a namespace --- for example, ``get_ipython().user_ns`` broker_name : Union[str, Broker] Name of databroker configuration or a Broker instance. bec : boolean, optional True by default. Set False to skip BestEffortCallback. epics_context : boolean, optional True by default. Set False to skip ``setup_ophyd()``. magics : boolean, optional True by default. Set False to skip registration of custom IPython magics. mpl : boolean, optional True by default. Set False to skip matplotlib ``ion()`` at event-loop bridging. ophyd_logging : boolean, optional True by default. Set False to skip ERROR-level log configuration for ophyd. pbar : boolean, optional True by default. Set false to skip ProgressBarManager. Returns ------- names : list list of names added to the namespace Examples -------- Configure IPython for CHX. >>>> configure_base(get_ipython().user_ns, 'chx'); """ ns = {} # We will update user_ns with this at the end. # Set up a RunEngine and use metadata backed by a sqlite file. from bluesky import RunEngine from bluesky.utils import get_history # if RunEngine already defined grab it # useful when users make their own custom RunEngine if 'RE' in user_ns: RE = user_ns['RE'] else: RE = RunEngine(get_history()) ns['RE'] = RE # Set up SupplementalData. # (This is a no-op until devices are added to it, # so there is no need to provide a 'skip_sd' switch.) from bluesky import SupplementalData sd = SupplementalData() RE.preprocessors.append(sd) ns['sd'] = sd if isinstance(broker_name, str): # Set up a Broker. from databroker import Broker db = Broker.named(broker_name) ns['db'] = db else: db = broker_name RE.subscribe(db.insert) if pbar: # Add a progress bar. from bluesky.utils import ProgressBarManager pbar_manager = ProgressBarManager() RE.waiting_hook = pbar_manager ns['pbar_manager'] = pbar_manager if magics: # Register bluesky IPython magics. from bluesky.magics import BlueskyMagics get_ipython().register_magics(BlueskyMagics) if bec: # Set up the BestEffortCallback. from bluesky.callbacks.best_effort import BestEffortCallback _bec = BestEffortCallback() RE.subscribe(_bec) ns['bec'] = _bec ns['peaks'] = _bec.peaks # just as alias for less typing if mpl: # Import matplotlib and put it in interactive mode. import matplotlib.pyplot as plt ns['plt'] = plt plt.ion() # Make plots update live while scans run. from bluesky.utils import install_kicker install_kicker() if epics_context: # Create a context in the underlying EPICS client. from ophyd import setup_ophyd setup_ophyd() if not ophyd_logging: # Turn on error-level logging, particularly useful for knowing when # pyepics callbacks fail. import logging import ophyd.ophydobj ch = logging.StreamHandler() ch.setLevel(logging.ERROR) ophyd.ophydobj.logger.addHandler(ch) # convenience imports # some of the * imports are for 'back-compatibility' of a sort -- we have # taught BL staff to expect LiveTable and LivePlot etc. to be in their # namespace import numpy as np ns['np'] = np import bluesky.callbacks ns['bc'] = bluesky.callbacks import_star(bluesky.callbacks, ns) import bluesky.plans ns['bp'] = bluesky.plans import_star(bluesky.plans, ns) import bluesky.plan_stubs ns['bps'] = bluesky.plan_stubs import_star(bluesky.plan_stubs, ns) # special-case the commonly-used mv / mvr and its aliases mov / movr4 ns['mv'] = bluesky.plan_stubs.mv ns['mvr'] = bluesky.plan_stubs.mvr ns['mov'] = bluesky.plan_stubs.mov ns['movr'] = bluesky.plan_stubs.movr import bluesky.preprocessors ns['bpp'] = bluesky.preprocessors import bluesky.callbacks.broker import_star(bluesky.callbacks.broker, ns) import bluesky.simulators import_star(bluesky.simulators, ns) user_ns.update(ns) return list(ns) def configure_olog(user_ns, *, callback=None, subscribe=True): """ Setup a callback that publishes some metadata from the RunEngine to Olog. Also, add the public contents of pyOlog.ophyd_tools to the namespace. This is expected to be run after :func:`configure_base`. It expects to find an instance of RunEngine named ``RE`` in the user namespace. Additionally, if the user namespace contains the name ``logbook``, that is expected to be an instance ``pyOlog.SimpleOlogClient``. Parameters ---------- user_ns: dict a namespace --- for example, ``get_ipython().user_ns`` callback : callable, optional a hook for customizing the logbook_cb_factory; if None a default is used subscribe : boolean, optional True by default. Set to False to skip the subscription. (You still get pyOlog.ophyd_tools.) Returns ------- names : list list of names added to the namespace Examples -------- Configure the Olog. >>>> configure_olog(get_ipython().user_ns); """ # Conceptually our task is simple: add a subscription to the RunEngine that # publishes to the Olog using the Python wrapper of its REST API, pyOlog. # In practice this is messy because we have deal with the many-layered API # of pyOlog and, more importantly, ensure that slowness or errors from the # Olog do not affect the run. Historically the Olog deployment has not been # reliable, so it is important to be robust against these issues. Of # course, by ignoring Olog errors, we leave gaps in the log, which is not # great, but since all data is saved to a databroker anyway, we can always # re-generate them later. ns = {} # We will update user_ns with this at the end. from bluesky.callbacks.olog import logbook_cb_factory from functools import partial from pyOlog import SimpleOlogClient import queue import threading from warnings import warn # This is for pyOlog.ophyd_tools.get_logbook, which simply looks for # a variable called 'logbook' in the global IPython namespace. if 'logbook' in user_ns: simple_olog_client = user_ns['logbook'] else: simple_olog_client = SimpleOlogClient() ns['logbook'] = simple_olog_client if subscribe: if callback is None: # list of logbook names to publish to LOGBOOKS = ('Data Acquisition',) generic_logbook_func = simple_olog_client.log configured_logbook_func = partial(generic_logbook_func, logbooks=LOGBOOKS) callback = logbook_cb_factory(configured_logbook_func) def submit_to_olog(queue, cb): while True: name, doc = queue.get() # waits until document is available try: cb(name, doc) except Exception as exc: warn('This olog is giving errors. This will not be logged.' 'Error:' + str(exc)) olog_queue = queue.Queue(maxsize=100) olog_thread = threading.Thread(target=submit_to_olog, args=(olog_queue, callback), daemon=True) olog_thread.start() def send_to_olog_queue(name, doc): try: olog_queue.put((name, doc), block=False) except queue.Full: warn('The olog queue is full. This will not be logged.') RE = user_ns['RE'] RE.subscribe(send_to_olog_queue, 'start') import pyOlog.ophyd_tools import_star(pyOlog.ophyd_tools, ns) user_ns.update(ns) return list(ns)
34.404181
79
0.645331
0
0
0
0
0
0
0
0
5,370
0.543853
b5d8aec11bfc5cc12bac4a3e909d08cecced6658
6,260
py
Python
utils/depot.py
Nikronic/Optimized-MDVRP
92587bf4c110c7e6597cc3120dd0556a6e170ce2
[ "MIT" ]
16
2019-09-08T13:04:10.000Z
2022-03-04T06:52:34.000Z
utils/depot.py
zhangruijuan/Optimized-MDVRP
92587bf4c110c7e6597cc3120dd0556a6e170ce2
[ "MIT" ]
6
2019-09-19T20:38:19.000Z
2019-10-14T17:35:54.000Z
utils/depot.py
Nikronic/Optimized-MDVRP
92587bf4c110c7e6597cc3120dd0556a6e170ce2
[ "MIT" ]
4
2021-01-15T11:45:16.000Z
2021-12-18T14:14:54.000Z
import numpy as np from typing import List from copy import deepcopy from utils.customer import Customer class Depot: """ Depot class represents a list of nodes assigned to this depot which we call a route. This class is going to be filled by `Customers` class. """ def __init__(self, id, x, y, capacity, depot_customers: List[Customer] = None): """ :param id: ID assigned to node for tracking :param x: X coordinate of depot :param y: Y coordinate of depot :param capacity: The maximum capacity of the Depot (in this project, it is filled by 'weight' of `Customers`. In other words, it indicates vehicles weight limit) :param depot_customers: A list of `Customer`s :return: A list of `Customers` assigned to this depot """ if depot_customers is None: depot_customers = [] self.id = id self.x = x self.y = y self.capacity = capacity self.depot_customers = depot_customers self.routes_ending_indices = [] if depot_customers is not None: for i, c in enumerate(depot_customers): if c.null: self.routes_ending_indices.append(i) self.size = self.depot_customers.__len__() def route_ending_index(self) -> List[int]: """ Sorts then returns the list of indices corresponding to the the index of null customer representing the end of a route in a `Depot`. :return: A sorted list of ints indices """ return sorted(self.routes_ending_indices) def used_capacity(self) -> float: """ Returns a float number that demonstrates how much of the capacity of the `Depot` has been used. :return: A float number """ return sum([customer.cost for customer in self]) def get_all(self) -> List[Customer]: """ Returns all `Customer`s as a list independently using deep copy :return: A list """ return deepcopy(self.depot_customers) def add(self, customer: Customer): """ Adds a `Customer` to the `Depot` :param customer: Customer class instance :return: None """ if customer.null == True: self.routes_ending_indices.insert(self.routes_ending_indices.__len__() - 1, self.len()) self.depot_customers.append(customer) def clear(self): """ Clear the `Depot` from `Customer`s :return: None """ self.routes_ending_indices = [] self.depot_customers.clear() def len(self) -> int: """ Return the number of `Customer`s in the `Depot` :return: int depot size """ return self.depot_customers.__len__() def contains(self, customer: Customer) -> bool: """ Looks for the `Customer` in the `Depot` and returns if it exist :param customer: A 'Customer` class instance :return: Bool true or false """ return self.depot_customers.__contains__(customer) def copy(self) -> List[Customer]: """ A shallow copy of the `Customer`s in the `Depot` using builtin `Copy` method :return: a list """ return self.depot_customers.copy() def index(self, customer: Customer) -> int: """ Returns the index of the `Customer` in the `Depot` :param customer: A `Customer` class instance :return: A int number as the index """ return self.depot_customers.index(customer) def insert(self, index: int, customer: Customer): """ Insterts a new `Customer` into a specific `index` :param customer: A `Customer` class instance :return: None """ if customer.null == True: self.routes_ending_indices.insert(self.routes_ending_indices.__len__() - 1, index) return self.depot_customers.insert(index, customer) def remove(self, customer: Customer) -> bool: """ Removes a `Customer` from the `Depot` :param customer: a `Customer` class instance :return: bool, if `Customer` does not exist returns False, else True """ if self.contains(customer): if customer.null == True: self.routes_ending_indices.remove(self.index(customer)) self.depot_customers.remove(customer) return True return False def remove_at(self, index: int) -> bool: """ Remove a `Customer` at defined `index` from `Depot` :param index: an int number :return: bool, if `Customer` does not exist returns False, else True """ if index <= self.len(): if self.depot_customers[index].null == True: self.routes_ending_indices.remove(index) self.depot_customers.remove(self.depot_customers[index]) return True return False def __getitem__(self, index: int): """ Makes the class itself subscribable :param index: The index to List :return: A `Customer` class from List of `Customer`s. """ return self.depot_customers[index] def describe(self, print_members=False, verbosity=False): """ Print the specifics of the `Depot` :param print_members: Whether or not print the specifics of the `Customer`s in the `Depot` :param verbosity: if True, it prints all information of all members, otherwise, only IDs :return: """ print('-=-=-=-=-=-=-=-=-=-=-=- Depot: STARTED -=-=-=-=-=-=-=-=-=-=-=-') if verbosity: print('ID:{}, coordinate=[{}, {}], capacity={}, size={}'.format( self.id, self.x, self.y, self.capacity, self.size)) if print_members: print('Members: ') for c in self.depot_customers: c.describe() else: print('ID={}, capacity={}/{}'.format(self.id, self.used_capacity(), self.capacity), sep='') print('Members IDs=') print([c.id for c in self]) print('-=-=-=-=-=-=-=-=-=-=-=- Depot: Finished -=-=-=-=-=-=-=-=-=-=-=-')
35.367232
118
0.585304
6,151
0.982588
0
0
0
0
0
0
3,044
0.486262
b5d915f6cc267b773bbe24b2332fae333a3982c5
714
py
Python
fake.py
Wsky51/dfs-node-restapi
bab7605c609d4b53cd11686a576b74c1ae2871b7
[ "Apache-2.0" ]
null
null
null
fake.py
Wsky51/dfs-node-restapi
bab7605c609d4b53cd11686a576b74c1ae2871b7
[ "Apache-2.0" ]
null
null
null
fake.py
Wsky51/dfs-node-restapi
bab7605c609d4b53cd11686a576b74c1ae2871b7
[ "Apache-2.0" ]
null
null
null
"""create fake data to the db file""" from config import data_nodes, get_db from type import DataNodeStatus, DataNode from datetime import timedelta from config import get_second_datetime def create_fake_data_status(data_node: DataNode): now = get_second_datetime() db = get_db() for i in range(100): status = DataNodeStatus( # 每十次宕机一次 dead=i % 10 == 0, capacity=1000, used=100 + (i % 7), datetime=now + timedelta(minutes=i) ) db.save(data_node.node_id, status) def create_fake_data(): for data_node in data_nodes: create_fake_data_status(data_node) if __name__ == '__main__': create_fake_data()
24.62069
49
0.648459
0
0
0
0
0
0
0
0
70
0.096154
b5d9899c07fca487f770f0c61e19c1fd8ac3a831
78
py
Python
config.py
NormanLo4319/Project-1
a7b6bf6adc681a94cc23be5934ddbed1cf7ab6a6
[ "MIT" ]
1
2020-07-19T07:10:01.000Z
2020-07-19T07:10:01.000Z
config.py
NormanLo4319/Food-Enviroment-Project
a7b6bf6adc681a94cc23be5934ddbed1cf7ab6a6
[ "MIT" ]
null
null
null
config.py
NormanLo4319/Food-Enviroment-Project
a7b6bf6adc681a94cc23be5934ddbed1cf7ab6a6
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[ ]: gkey="Enter Your Key Here"
8.666667
26
0.602564
0
0
0
0
0
0
0
0
65
0.833333
b5da3aa622fc6ae31ee50b900da3081886393cc7
215
py
Python
category_tree/helper.py
bharathramh92/shop
0c5800b2d36fbe1bfffaf555c3dc741d020aa5d7
[ "MIT" ]
1
2016-05-27T22:13:37.000Z
2016-05-27T22:13:37.000Z
category_tree/helper.py
bharathramh92/shop
0c5800b2d36fbe1bfffaf555c3dc741d020aa5d7
[ "MIT" ]
null
null
null
category_tree/helper.py
bharathramh92/shop
0c5800b2d36fbe1bfffaf555c3dc741d020aa5d7
[ "MIT" ]
null
null
null
from category_tree.categories import data def get_store_name_from_child(store_id): while data[store_id]['parent_category'] is not None: store_id = data[store_id]['parent_category'] return store_id
26.875
56
0.75814
0
0
0
0
0
0
0
0
34
0.15814
b5db0b0b72cf05ff56cc67988018bcfa4797221d
371
py
Python
tests/pull_keys.py
patleeman/geckoboard_push
52c05db22b3c630d326a9650551720f583f0168f
[ "MIT" ]
null
null
null
tests/pull_keys.py
patleeman/geckoboard_push
52c05db22b3c630d326a9650551720f583f0168f
[ "MIT" ]
null
null
null
tests/pull_keys.py
patleeman/geckoboard_push
52c05db22b3c630d326a9650551720f583f0168f
[ "MIT" ]
null
null
null
''' Module to pull keys from test geckoboard widgets. ''' import os import json def get_keys(): settings_folder = os.path.dirname(__file__) settings_file = os.path.join(settings_folder,'gecko_settings.json') with open(settings_file, 'r') as file: json_data = json.load(file) return json_data if __name__ == '__main__': print(get_keys())
23.1875
71
0.692722
0
0
0
0
0
0
0
0
91
0.245283
b5db74f8420d00fdc906f19f599f41aad18c69af
2,596
py
Python
pajbot/web/common/menu.py
JoachimFlottorp/pajbot
4fb88c403dedb20d95be80e38da72be1ed064901
[ "MIT" ]
128
2015-12-28T01:02:30.000Z
2019-05-24T21:20:50.000Z
pajbot/web/common/menu.py
JoachimFlottorp/pajbot
4fb88c403dedb20d95be80e38da72be1ed064901
[ "MIT" ]
277
2015-05-03T18:48:57.000Z
2019-05-23T17:41:28.000Z
pajbot/web/common/menu.py
JoachimFlottorp/pajbot
4fb88c403dedb20d95be80e38da72be1ed064901
[ "MIT" ]
96
2015-08-07T18:49:50.000Z
2019-05-20T19:49:27.000Z
from __future__ import annotations from typing import Any, Dict, List, Union import logging from pajbot.web.utils import get_cached_enabled_modules log = logging.getLogger(__name__) class MenuItem: def __init__( self, href: Union[str, List[MenuItem]], menu_id: str, caption: str, enabled: bool = True, level: int = 100, ) -> None: self.href = href self.id = menu_id self.caption = caption self.enabled = enabled self.level = level self.type = "single" if isinstance(self.href, list): self.type = "multi" def init(app): @app.context_processor def menu() -> Dict[str, Any]: enabled_modules = get_cached_enabled_modules() # Menu items that are shown for normal users menu_items: List[MenuItem] = [ MenuItem("/", "home", "Home"), MenuItem("/commands", "commands", "Commands"), MenuItem("/points", "points", "Points", "chatters_refresh" in enabled_modules), MenuItem("/stats", "stats", "Stats"), MenuItem("/decks", "decks", "Decks", "deck" in enabled_modules), MenuItem("/playsounds", "user_playsounds", "Playsounds", "playsound" in enabled_modules), ] # Menu items that are shown to admin when in an /admin page admin_menu_items: List[MenuItem] = [ MenuItem("/", "home", "Home"), MenuItem("/admin", "admin_home", "Admin Home"), MenuItem( [ MenuItem("/admin/banphrases", "admin_banphrases", "Banphrases"), MenuItem("/admin/links/blacklist", "admin_links_blacklist", "Blacklisted links"), MenuItem("/admin/links/whitelist", "admin_links_whitelist", "Whitelisted links"), ], "filters", "Filters", ), MenuItem("/admin/commands", "admin_commands", "Commands"), MenuItem("/admin/timers", "admin_timers", "Timers"), MenuItem("/admin/moderators", "admin_moderators", "Moderators"), MenuItem("/admin/modules", "admin_modules", "Modules"), MenuItem("/admin/playsounds", "admin_playsounds", "Playsounds", "playsound" in enabled_modules), MenuItem("/admin/streamer", "admin_streamer", "Streamer Info"), ] data = { "enabled_modules": enabled_modules, "nav_bar_header": menu_items, "nav_bar_admin_header": admin_menu_items, } return data
35.081081
108
0.571649
446
0.171803
0
0
1,939
0.746918
0
0
888
0.342065
b5db8ac1529ed13c3cad056d88e711f36bbfbbe1
611
py
Python
Python/463.py
FlyAndNotDown/LeetCode
889819ff7f64819e966fc6f9dd80110cf2bf6d3c
[ "MIT" ]
4
2018-06-18T05:39:25.000Z
2022-01-04T07:35:52.000Z
Python/463.py
FlyAndNotDown/LeetCode
889819ff7f64819e966fc6f9dd80110cf2bf6d3c
[ "MIT" ]
20
2019-11-30T03:42:40.000Z
2020-05-17T03:25:43.000Z
Python/463.py
FlyAndNotDown/LeetCode
889819ff7f64819e966fc6f9dd80110cf2bf6d3c
[ "MIT" ]
2
2020-02-08T14:10:42.000Z
2021-09-23T13:51:36.000Z
""" @no 463 @name Island Perimeter """ class Solution: def islandPerimeter(self, grid): """ :type grid: List[List[int]] :rtype: int """ ans = 0 for i in range(len(grid)): for j in range(len(grid[i])): if grid[i][j] == 1: if i - 1 < 0 or grid[i - 1][j] == 0: ans += 1 if i + 1 > len(grid) - 1 or grid[i + 1][j] == 0: ans += 1 if j - 1 < 0 or grid[i][j - 1] == 0: ans += 1 if j + 1 > len(grid[i]) - 1 or grid[i][j + 1] == 0: ans += 1 return ans
30.55
80
0.392799
571
0.934534
0
0
0
0
0
0
109
0.178396