hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
c862cc8467bd7e489f5a6229b8441ad05ef1b1a6
20,515
py
Python
django_comments_xtd/tests/models.py
lyoniionly/django-comments-xtd
bc62a7359b9b460185e0fe4a7a1958bc9ef5599c
[ "BSD-2-Clause" ]
null
null
null
django_comments_xtd/tests/models.py
lyoniionly/django-comments-xtd
bc62a7359b9b460185e0fe4a7a1958bc9ef5599c
[ "BSD-2-Clause" ]
null
null
null
django_comments_xtd/tests/models.py
lyoniionly/django-comments-xtd
bc62a7359b9b460185e0fe4a7a1958bc9ef5599c
[ "BSD-2-Clause" ]
null
null
null
from datetime import datetime from django.db import models from django.db.models import permalink from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.test import TestCase as DjangoTestCase from django_comments_xtd.models import (XtdComment, MaxThreadLevelExceededException) class PublicManager(models.Manager): """Returns published articles that are not in the future.""" def published(self): return self.get_query_set().filter(publish__lte=datetime.now()) class Article(models.Model): """Article, that accepts comments.""" title = models.CharField('title', max_length=200) slug = models.SlugField('slug', unique_for_date='publish') body = models.TextField('body') allow_comments = models.BooleanField('allow comments', default=True) publish = models.DateTimeField('publish', default=datetime.now) objects = PublicManager() class Meta: db_table = 'demo_articles' ordering = ('-publish',) @permalink def get_absolute_url(self): return ('articles-article-detail', None, {'year': self.publish.year, 'month': int(self.publish.strftime('%m').lower()), 'day': self.publish.day, 'slug': self.slug}) class Diary(models.Model): """Diary, that accepts comments.""" body = models.TextField('body') allow_comments = models.BooleanField('allow comments', default=True) publish = models.DateTimeField('publish', default=datetime.now) objects = PublicManager() class Meta: db_table = 'demo_diary' ordering = ('-publish',) class ArticleBaseTestCase(DjangoTestCase): def setUp(self): self.article_1 = Article.objects.create( title="September", slug="september", body="During September...") self.article_2 = Article.objects.create( title="October", slug="october", body="What I did on October...") class XtdCommentManagerTestCase(ArticleBaseTestCase): def test_for_app_models(self): # there is no comment posted yet to article_1 nor article_2 count = XtdComment.objects.for_app_models("tests.article").count() self.assert_(count == 0) article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) # post one comment to article_1 XtdComment.objects.create(content_type = article_ct, object_pk = self.article_1.id, content_object = self.article_1, site = site, comment ="just a testing comment", submit_date = datetime.now()) count = XtdComment.objects.for_app_models("tests.article").count() self.assert_(count == 1) # post one comment to article_2 XtdComment.objects.create(content_type = article_ct, object_pk = self.article_2.id, content_object = self.article_2, site = site, comment = "yet another comment", submit_date = datetime.now()) count = XtdComment.objects.for_app_models("tests.article").count() self.assert_(count == 2) # post a second comment to article_2 XtdComment.objects.create(content_type = article_ct, object_pk = self.article_2.id, content_object = self.article_2, site = site, comment = "and another one", submit_date = datetime.now()) count = XtdComment.objects.for_app_models("tests.article").count() self.assert_(count == 3) # In order to methods save and test _calculate_thread_ata, simulate the # following threads, in order of arrival: # # testcase cmt.id parent level-0 level-1 level-2 # step1 1 - c1 <- cmt1 # step1 2 - c2 <- cmt2 # step2 3 1 -- c3 <- cmt1 to cmt1 # step2 4 1 -- c4 <- cmt2 to cmt1 # step3 5 2 -- c5 <- cmt1 to cmt2 # step4 6 5 -- -- c6 <- cmt1 to cmt1 to cmt2 # step4 7 4 -- -- c7 <- cmt1 to cmt2 to cmt1 # step5 8 3 -- -- c8 <- cmt1 to cmt1 to cmt1 # step5 9 - c9 <- cmt9 def thread_test_step_1(article): article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) # post Comment 1 with parent_id 0 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="comment 1 to article", submit_date = datetime.now()) # post Comment 2 with parent_id 0 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="comment 2 to article", submit_date = datetime.now()) def thread_test_step_2(article): article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) # post Comment 3 to parent_id 1 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="comment 1 to comment 1", submit_date = datetime.now(), parent_id = 1) # post Comment 4 to parent_id 1 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="comment 2 to comment 1", submit_date = datetime.now(), parent_id = 1) def thread_test_step_3(article): article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) # post Comment 5 to parent_id 2 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="comment 1 to comment 1", submit_date = datetime.now(), parent_id = 2) def thread_test_step_4(article): article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) # post Comment 6 to parent_id 5 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="cmt 1 to cmt 1 to cmt 2", submit_date = datetime.now(), parent_id = 5) # post Comment 7 to parent_id 4 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="cmt 1 to cmt 2 to cmt 1", submit_date = datetime.now(), parent_id = 4) def thread_test_step_5(article): article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) # post Comment 8 to parent_id 3 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="cmt 1 to cmt 1 to cmt 1", submit_date = datetime.now(), parent_id = 3) # post Comment 9 with parent_id 0 XtdComment.objects.create(content_type = article_ct, object_pk = article.id, content_object = article, site = site, comment ="cmt 1 to cmt 2 to cmt 1", submit_date = datetime.now()) class BaseThreadStep1TestCase(ArticleBaseTestCase): def setUp(self): super(BaseThreadStep1TestCase, self).setUp() thread_test_step_1(self.article_1) ( # cmt.id thread_id parent_id level order self.c1, # 1 1 1 0 1 self.c2 # 2 2 2 0 1 ) = XtdComment.objects.all() def test_threaded_comments_step_1_level_0(self): # comment 1 self.assert_(self.c1.parent_id == 1 and self.c1.thread_id == 1) self.assert_(self.c1.level == 0 and self.c1.order == 1) # comment 2 self.assert_(self.c2.parent_id == 2 and self.c2.thread_id == 2) self.assert_(self.c2.level == 0 and self.c2.order == 1) class ThreadStep2TestCase(ArticleBaseTestCase): def setUp(self): super(ThreadStep2TestCase, self).setUp() thread_test_step_1(self.article_1) thread_test_step_2(self.article_1) ( # cmt.id thread_id parent_id level order self.c1, # 1 1 1 0 1 self.c3, # 3 1 1 1 2 self.c4, # 4 1 1 1 3 self.c2 # 2 2 2 0 1 ) = XtdComment.objects.all() def test_threaded_comments_step_2_level_0(self): # comment 1 self.assert_(self.c1.parent_id == 1 and self.c1.thread_id == 1) self.assert_(self.c1.level == 0 and self.c1.order == 1) # comment 2 self.assert_(self.c2.parent_id == 2 and self.c2.thread_id == 2) self.assert_(self.c2.level == 0 and self.c2.order == 1) def test_threaded_comments_step_2_level_1(self): # comment 3 self.assert_(self.c3.parent_id == 1 and self.c3.thread_id == 1) self.assert_(self.c3.level == 1 and self.c3.order == 2) # comment 4 self.assert_(self.c4.parent_id == 1 and self.c4.thread_id == 1) self.assert_(self.c4.level == 1 and self.c4.order == 3) class ThreadStep3TestCase(ArticleBaseTestCase): def setUp(self): super(ThreadStep3TestCase, self).setUp() thread_test_step_1(self.article_1) thread_test_step_2(self.article_1) thread_test_step_3(self.article_1) ( # cmt.id thread_id parent_id level order self.c1, # 1 1 1 0 1 self.c3, # 3 1 1 1 2 self.c4, # 4 1 1 1 3 self.c2, # 2 2 2 0 1 self.c5 # 5 2 2 1 2 ) = XtdComment.objects.all() def test_threaded_comments_step_3_level_0(self): # comment 1 self.assert_(self.c1.parent_id == 1 and self.c1.thread_id == 1) self.assert_(self.c1.level == 0 and self.c1.order == 1) # comment 2 self.assert_(self.c2.parent_id == 2 and self.c2.thread_id == 2) self.assert_(self.c2.level == 0 and self.c2.order == 1) def test_threaded_comments_step_3_level_1(self): # comment 3 self.assert_(self.c3.parent_id == 1 and self.c3.thread_id == 1) self.assert_(self.c3.level == 1 and self.c3.order == 2) # comment 4 self.assert_(self.c4.parent_id == 1 and self.c4.thread_id == 1) self.assert_(self.c4.level == 1 and self.c4.order == 3) # comment 5 self.assert_(self.c5.parent_id == 2 and self.c5.thread_id == 2) self.assert_(self.c5.level == 1 and self.c5.order == 2) class ThreadStep4TestCase(ArticleBaseTestCase): def setUp(self): super(ThreadStep4TestCase, self).setUp() thread_test_step_1(self.article_1) thread_test_step_2(self.article_1) thread_test_step_3(self.article_1) thread_test_step_4(self.article_1) ( # cmt.id thread_id parent_id level order self.c1, # 1 1 1 0 1 self.c3, # 3 1 1 1 2 self.c4, # 4 1 1 1 3 self.c7, # 7 1 4 2 4 self.c2, # 2 2 2 0 1 self.c5, # 5 2 2 1 2 self.c6 # 6 2 5 2 3 ) = XtdComment.objects.all() def test_threaded_comments_step_4_level_0(self): # comment 1 self.assert_(self.c1.parent_id == 1 and self.c1.thread_id == 1) self.assert_(self.c1.level == 0 and self.c1.order == 1) # comment 2 self.assert_(self.c2.parent_id == 2 and self.c2.thread_id == 2) self.assert_(self.c2.level == 0 and self.c2.order == 1) def test_threaded_comments_step_4_level_1(self): # comment 3 self.assert_(self.c3.parent_id == 1 and self.c3.thread_id == 1) self.assert_(self.c3.level == 1 and self.c3.order == 2) # comment 4 self.assert_(self.c4.parent_id == 1 and self.c4.thread_id == 1) self.assert_(self.c4.level == 1 and self.c4.order == 3) # comment 5 self.assert_(self.c5.parent_id == 2 and self.c5.thread_id == 2) self.assert_(self.c5.level == 1 and self.c5.order == 2) def test_threaded_comments_step_4_level_2(self): # comment 6 self.assert_(self.c6.parent_id == 5 and self.c6.thread_id == 2) self.assert_(self.c6.level == 2 and self.c6.order == 3) # comment 7 self.assert_(self.c7.parent_id == 4 and self.c7.thread_id == 1) self.assert_(self.c7.level == 2 and self.c7.order == 4) class ThreadStep5TestCase(ArticleBaseTestCase): def setUp(self): super(ThreadStep5TestCase, self).setUp() thread_test_step_1(self.article_1) thread_test_step_2(self.article_1) thread_test_step_3(self.article_1) thread_test_step_4(self.article_1) thread_test_step_5(self.article_1) ( # cmt.id thread_id parent_id level order self.c1, # 1 1 1 0 1 self.c3, # 3 1 1 1 2 self.c8, # 8 1 3 2 3 self.c4, # 4 1 1 1 4 self.c7, # 7 1 4 2 5 self.c2, # 2 2 2 0 1 self.c5, # 5 2 2 1 2 self.c6, # 6 2 5 2 3 self.c9 # 9 9 9 0 1 ) = XtdComment.objects.all() def test_threaded_comments_step_5_level_0(self): # comment 1 self.assert_(self.c1.parent_id == 1 and self.c1.thread_id == 1) self.assert_(self.c1.level == 0 and self.c1.order == 1) # comment 2 self.assert_(self.c2.parent_id == 2 and self.c2.thread_id == 2) self.assert_(self.c2.level == 0 and self.c2.order == 1) # comment 9 self.assert_(self.c9.parent_id == 9 and self.c9.thread_id == 9) self.assert_(self.c9.level == 0 and self.c9.order == 1) def test_threaded_comments_step_5_level_1(self): # comment 3 self.assert_(self.c3.parent_id == 1 and self.c3.thread_id == 1) self.assert_(self.c3.level == 1 and self.c3.order == 2) # comment 4 self.assert_(self.c4.parent_id == 1 and self.c4.thread_id == 1) self.assert_(self.c4.level == 1 and self.c4.order == 4) # changed # comment 5 self.assert_(self.c5.parent_id == 2 and self.c5.thread_id == 2) self.assert_(self.c5.level == 1 and self.c5.order == 2) def test_threaded_comments_step_5_level_2(self): # comment 6 self.assert_(self.c6.parent_id == 5 and self.c6.thread_id == 2) self.assert_(self.c6.level == 2 and self.c6.order == 3) # comment 7 self.assert_(self.c7.parent_id == 4 and self.c7.thread_id == 1) self.assert_(self.c7.level == 2 and self.c7.order == 5) # changed # comment 8 self.assert_(self.c8.parent_id == 3 and self.c8.thread_id == 1) self.assert_(self.c8.level == 2 and self.c8.order == 3) def test_exceed_max_thread_level_raises_exception(self): article_ct = ContentType.objects.get(app_label="tests", model="article") site = Site.objects.get(pk=1) with self.assertRaises(MaxThreadLevelExceededException): XtdComment.objects.create(content_type = article_ct, object_pk = self.article_1.id, content_object = self.article_1, site = site, comment = ("cmt 1 to cmt 2 to " "cmt 1"), submit_date = datetime.now(), parent_id = 8) # already max thread # level class DiaryBaseTestCase(DjangoTestCase): def setUp(self): self.day_in_diary = Diary.objects.create(body="About Today...") diary_ct = ContentType.objects.get(app_label="tests", model="diary") site = Site.objects.get(pk=1) XtdComment.objects.create(content_type = diary_ct, object_pk = self.day_in_diary.id, content_object = self.day_in_diary, site = site, comment ="cmt to day in diary", submit_date = datetime.now()) def test_max_thread_level_by_app_model(self): diary_ct = ContentType.objects.get(app_label="tests", model="diary") site = Site.objects.get(pk=1) with self.assertRaises(MaxThreadLevelExceededException): XtdComment.objects.create(content_type = diary_ct, object_pk = self.day_in_diary.id, content_object = self.day_in_diary, site = site, comment = ("cmt to cmt to day " "in diary"), submit_date = datetime.now(), parent_id = 1) # already max thread # level
46.625
80
0.497295
14,541
0.708798
0
0
283
0.013795
0
0
4,044
0.197124
c862ff0586dafe12df4bfd251af96f7087dbad08
900
py
Python
app/api/v1/routes.py
kwanj-k/storemanager-API
e51511545a717341a7b1eb100eb3eab625a8b011
[ "MIT" ]
1
2019-05-08T08:39:08.000Z
2019-05-08T08:39:08.000Z
app/api/v1/routes.py
kwanj-k/storemanager-API
e51511545a717341a7b1eb100eb3eab625a8b011
[ "MIT" ]
2
2019-10-21T17:56:01.000Z
2019-10-29T07:36:39.000Z
app/api/v1/routes.py
kwanj-k/storemanager-API
e51511545a717341a7b1eb100eb3eab625a8b011
[ "MIT" ]
null
null
null
""" This file contains all the version one routes """ # Third party imports from flask import Blueprint, request from flask_restplus import Api, Resource, fields # Local application imports from .views.products_views import v1 as pro_routes from .views.sales_views import v1 as sales_routes from .views.stores_views import v1 as stores_routes from .views.auth import v1 as auth_routes authorizations = { 'apikey': { 'type': 'apiKey', 'in': 'header', 'name': 'Authorization' }} v_1 = Blueprint('v_1', __name__, url_prefix="/api/v1") api = Api(v_1) v1 = api.namespace( 'v1', description='Store manager Api without persitent data storage', authorizations=authorizations) api.add_namespace(pro_routes, path="/products/") api.add_namespace(sales_routes, path="/sales") api.add_namespace(stores_routes, path="/stores") api.add_namespace(auth_routes, path="/")
26.470588
67
0.73
0
0
0
0
0
0
0
0
256
0.284444
c8643e92fdc3cc522b5000bf37f329ece9e89e82
5,605
py
Python
tests/test_region_aggregation.py
IAMconsortium/nomenclature
15973d86d91e38424fe30719d44a1f23526c6eea
[ "Apache-2.0" ]
9
2021-06-10T15:11:23.000Z
2022-02-02T16:22:01.000Z
tests/test_region_aggregation.py
IAMconsortium/nomenclature
15973d86d91e38424fe30719d44a1f23526c6eea
[ "Apache-2.0" ]
83
2021-06-22T09:04:29.000Z
2022-03-21T16:29:54.000Z
tests/test_region_aggregation.py
IAMconsortium/nomenclature
15973d86d91e38424fe30719d44a1f23526c6eea
[ "Apache-2.0" ]
3
2021-06-17T10:44:48.000Z
2021-09-16T15:30:03.000Z
from pathlib import Path import jsonschema import pydantic import pytest from nomenclature.processor.region import ( ModelMappingCollisionError, RegionAggregationMapping, RegionProcessor, ) from conftest import TEST_DATA_DIR TEST_FOLDER_REGION_MAPPING = TEST_DATA_DIR / "region_aggregation" def test_mapping(): mapping_file = "working_mapping.yaml" # Test that the file is read and represented correctly obs = RegionAggregationMapping.from_file(TEST_FOLDER_REGION_MAPPING / mapping_file) exp = { "model": "model_a", "file": (TEST_FOLDER_REGION_MAPPING / mapping_file).relative_to(Path.cwd()), "native_regions": [ {"name": "region_a", "rename": "alternative_name_a"}, {"name": "region_b", "rename": "alternative_name_b"}, {"name": "region_c", "rename": None}, ], "common_regions": [ { "name": "common_region_1", "constituent_regions": ["region_a", "region_b"], }, { "name": "common_region_2", "constituent_regions": ["region_c"], }, ], } assert obs.dict() == exp @pytest.mark.parametrize( "file, error_type, error_msg_pattern", [ ( "illegal_mapping_invalid_format_dict.yaml", jsonschema.ValidationError, ".*common_region_1.*not.*'array'.*", ), ( "illegal_mapping_illegal_attribute.yaml", jsonschema.ValidationError, "Additional properties are not allowed.*", ), ( "illegal_mapping_conflict_regions.yaml", pydantic.ValidationError, ".*Name collision in native and common regions.*common_region_1.*", ), ( "illegal_mapping_duplicate_native.yaml", pydantic.ValidationError, ".*Name collision in native regions.*alternative_name_a.*", ), ( "illegal_mapping_duplicate_native_rename.yaml", pydantic.ValidationError, ".*Name collision in native regions.*alternative_name_a.*", ), ( "illegal_mapping_duplicate_common.yaml", pydantic.ValidationError, ".*Name collision in common regions.*common_region_1.*", ), ( "illegal_mapping_model_only.yaml", pydantic.ValidationError, ".*one of the two: 'native_regions', 'common_regions'.*", ), ], ) def test_illegal_mappings(file, error_type, error_msg_pattern): # This is to test a few different failure conditions with pytest.raises(error_type, match=f"{error_msg_pattern}{file}.*"): RegionAggregationMapping.from_file(TEST_FOLDER_REGION_MAPPING / file) @pytest.mark.parametrize( "region_processor_path", [ TEST_DATA_DIR / "regionprocessor_working", (TEST_DATA_DIR / "regionprocessor_working").relative_to(Path.cwd()), ], ) def test_region_processor_working(region_processor_path): obs = RegionProcessor.from_directory(region_processor_path) exp_data = [ { "model": "model_a", "file": ( TEST_DATA_DIR / "regionprocessor_working/mapping_1.yaml" ).relative_to(Path.cwd()), "native_regions": [ {"name": "World", "rename": None}, ], "common_regions": None, }, { "model": "model_b", "file": ( TEST_DATA_DIR / "regionprocessor_working/mapping_2.yaml" ).relative_to(Path.cwd()), "native_regions": None, "common_regions": [ { "name": "World", "constituent_regions": ["region_a", "region_b"], } ], }, ] exp_models = {value["model"] for value in exp_data} exp_dict = {value["model"]: value for value in exp_data} assert exp_models == set(obs.mappings.keys()) assert all(exp_dict[m] == obs.mappings[m].dict() for m in exp_models) def test_region_processor_not_defined(simple_definition): # Test a RegionProcessor with regions that are not defined in the data structure # definition error_msg = ( "model_(a|b)\n.*region_a.*mapping_(1|2).yaml.*value_error.region_not_defined." "*\n.*model_(a|b)\n.*region_a.*mapping_(1|2).yaml.*value_error." "region_not_defined" ) with pytest.raises(pydantic.ValidationError, match=error_msg): RegionProcessor.from_directory( TEST_DATA_DIR / "regionprocessor_not_defined" ).validate_mappings(simple_definition) def test_region_processor_duplicate_model_mapping(): error_msg = ".*model_a.*mapping_(1|2).yaml.*mapping_(1|2).yaml" with pytest.raises(ModelMappingCollisionError, match=error_msg): RegionProcessor.from_directory(TEST_DATA_DIR / "regionprocessor_duplicate") def test_region_processor_wrong_args(): # Test if pydantic correctly type checks the input of RegionProcessor.from_directory # Test with an integer with pytest.raises(pydantic.ValidationError, match=".*path\n.*not a valid path.*"): RegionProcessor.from_directory(123) # Test with a file, a path pointing to a directory is required with pytest.raises( pydantic.ValidationError, match=".*path\n.*does not point to a directory.*", ): RegionProcessor.from_directory( TEST_DATA_DIR / "regionprocessor_working/mapping_1.yaml" )
33.562874
88
0.615165
0
0
0
0
2,935
0.52364
0
0
2,138
0.381445
c8645ddbacbee9365d7d4fed6a9839538bcee96a
828
py
Python
bin/util/ckan-datasets-in-group.py
timrdf/csv2rdf4lod-automation-prod
d7e096fda18aea6236b6245b1e4a221101611640
[ "Apache-2.0" ]
56
2015-01-15T13:11:28.000Z
2021-11-16T14:50:48.000Z
bin/util/ckan-datasets-in-group.py
timrdf/csv2rdf4lod-automation-prod
d7e096fda18aea6236b6245b1e4a221101611640
[ "Apache-2.0" ]
10
2015-02-17T19:19:39.000Z
2021-12-10T21:04:37.000Z
bin/util/ckan-datasets-in-group.py
timrdf/csv2rdf4lod-automation-prod
d7e096fda18aea6236b6245b1e4a221101611640
[ "Apache-2.0" ]
13
2015-08-25T18:48:35.000Z
2021-12-13T15:28:16.000Z
#!/usr/bin/env python # #3> <> prov:specializationOf <https://github.com/timrdf/csv2rdf4lod-automation/blob/master/bin/util/ckan-datasets-in-group.py>; #3> prov:wasDerivedFrom <https://raw.github.com/timrdf/DataFAQs/master/packages/faqt.python/faqt/faqt.py>, #3> <https://github.com/timrdf/DataFAQs/raw/master/services/sadi/ckan/lift-ckan.py>; # # Requires: http://pypi.python.org/pypi/ckanclient # easy_install http://pypi.python.org/packages/source/c/ckanclient/ckanclient-0.10.tar.gz import ckanclient def datasets_in_group(ckan_loc='http://datahub.io', group_name='lodcloud'): ckan = ckanclient.CkanClient(base_location=ckan_loc+'/api') group = ckan.group_entity_get(group_name) for dataset in group['packages']: print dataset if __name__=='__main__': datasets_in_group()
41.4
127
0.729469
0
0
0
0
0
0
0
0
564
0.681159
c86486b7aff3805a872796537a88993f82f85be5
191
py
Python
CaloOnlineTools/EcalTools/python/ecalExclusiveTrigFilter_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
CaloOnlineTools/EcalTools/python/ecalExclusiveTrigFilter_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
CaloOnlineTools/EcalTools/python/ecalExclusiveTrigFilter_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms ecalExclusiveTrigFilter = cms.EDFilter("EcalExclusiveTrigFilter", # Global trigger tag l1GlobalReadoutRecord = cms.string("gtDigis") )
21.222222
65
0.759162
0
0
0
0
0
0
0
0
54
0.282723
c8657a8c0a88d1cd1bd12e0d16b56dc5546e1b6c
2,300
py
Python
render_object.py
VanGy-code/3D-House-Blender
8a9d91b1f3cc3988c0dcd7079223f2e541f9ec71
[ "MIT" ]
null
null
null
render_object.py
VanGy-code/3D-House-Blender
8a9d91b1f3cc3988c0dcd7079223f2e541f9ec71
[ "MIT" ]
null
null
null
render_object.py
VanGy-code/3D-House-Blender
8a9d91b1f3cc3988c0dcd7079223f2e541f9ec71
[ "MIT" ]
1
2021-11-22T00:50:45.000Z
2021-11-22T00:50:45.000Z
import bpy import os import json import numpy as np from decimal import Decimal from mathutils import Vector, Matrix import argparse import numpy as np import sys sys.path.append(os.path.dirname(__file__)) sys.path.append(os.path.dirname(__file__)+'/tools') from tools.utils import * from tools.blender_interface import BlenderInterface if __name__ == '__main__': p = argparse.ArgumentParser(description='Renders given obj file by rotation a camera around it.') p.add_argument('--mesh_fpath', type=str, required=True, help='The path the output will be dumped to.') p.add_argument('--output_dir', type=str, required=True, help='The path the output will be dumped to.') p.add_argument('--num_observations', type=int, required=True, help='The path the output will be dumped to.') p.add_argument('--sphere_radius', type=float, required=True, help='The path the output will be dumped to.') p.add_argument('--mode', type=str, required=True, help='Options: train and test') argv = sys.argv argv = sys.argv[sys.argv.index("--") + 1:] opt = p.parse_args(argv) instance_name = opt.mesh_fpath.split('/')[-3] instance_dir = os.path.join(opt.output_dir, instance_name) # Start Render renderer = BlenderInterface(resolution=128) if opt.mode == 'train': cam_locations = sample_spherical(opt.num_observations, opt.sphere_radius) elif opt.mode == 'test': cam_locations = get_archimedean_spiral(opt.sphere_radius, opt.num_observations) obj_location = np.zeros((1,3)) cv_poses = look_at(cam_locations, obj_location) blender_poses = [cv_cam2world_to_bcam2world(m) for m in cv_poses] shapenet_rotation_mat = np.array([[1.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, -1.0000000e+00, -1.2246468e-16], [0.0000000e+00, 1.2246468e-16, -1.0000000e+00]]) rot_mat = np.eye(3) hom_coords = np.array([[0., 0., 0., 1.]]).reshape(1, 4) obj_pose = np.concatenate((rot_mat, obj_location.reshape(3,1)), axis=-1) obj_pose = np.concatenate((obj_pose, hom_coords), axis=0) renderer.import_mesh(opt.mesh_fpath, scale=1., object_world_matrix=obj_pose) renderer.render(instance_dir, blender_poses, write_cam_params=True)
41.818182
112
0.694348
0
0
0
0
0
0
0
0
366
0.15913
c866107dba038466832105575d5f0486fb0c0c27
1,281
py
Python
resources/tests/test_users.py
pacofvf/agency_performance_model
1692d7e11ac3141715845d2a4ecf416563539f89
[ "MIT" ]
2
2018-01-10T05:51:31.000Z
2018-01-18T21:25:45.000Z
resources/tests/test_users.py
pacofvf/pivot_table_api
1692d7e11ac3141715845d2a4ecf416563539f89
[ "MIT" ]
null
null
null
resources/tests/test_users.py
pacofvf/pivot_table_api
1692d7e11ac3141715845d2a4ecf416563539f89
[ "MIT" ]
null
null
null
#!/usr/bin/python import unittest import json import base64 from mock import patch import api class UserTests(unittest.TestCase): def setUp(self): api.app.testing = True self.app = api.app.test_client() def test_user_creation(self): with patch('models.db.session'): response = self.app.post('/user', data={'username': 'demo', 'password': 'demo'}, headers={'Authorization': 'Basic '+base64.b64encode('demo:demo')}) print response.data data = json.loads(response.data.decode()) self.assertTrue(isinstance(data, dict)) self.assertIn('status', data) self.assertEquals(data['status'], 'success') def test_get_user(self): with patch('models.user.User'): response = self.app.get('/user/123131', headers={'Authorization': 'Basic '+base64.b64encode('demo:demo')}) print response.data data = json.loads(response.data.decode()) self.assertTrue(isinstance(data, dict)) self.assertIn('status', data) self.assertEquals(data['status'], 'error') if __name__ == '__main__': unittest.main()
33.710526
103
0.565183
1,135
0.886027
0
0
0
0
0
0
233
0.181889
c86659332f0223beeafc6e01030a75e258e463d5
2,717
py
Python
mapel/elections/features/clustering.py
kaszperro/mapel
d4e6486ee97f5d5a5a737c581ba3f9f874ebcef3
[ "MIT" ]
null
null
null
mapel/elections/features/clustering.py
kaszperro/mapel
d4e6486ee97f5d5a5a737c581ba3f9f874ebcef3
[ "MIT" ]
null
null
null
mapel/elections/features/clustering.py
kaszperro/mapel
d4e6486ee97f5d5a5a737c581ba3f9f874ebcef3
[ "MIT" ]
null
null
null
import numpy as np def clustering_v1(experiment, num_clusters=20): from scipy.cluster.hierarchy import dendrogram, linkage, fcluster import scipy.spatial.distance as ssd # skip the paths SKIP = ['UNID', 'ANID', 'STID', 'ANUN', 'STUN', 'STAN', 'Mallows', 'Urn', 'Identity', 'Uniformity', 'Antagonism', 'Stratification', ] new_names = [] for i, a in enumerate(list(experiment.distances)): if not any(tmp in a for tmp in SKIP): new_names.append(a) print(len(new_names)) distMatrix = np.zeros([len(new_names), len(new_names)]) for i, a in enumerate(new_names): for j, b in enumerate(new_names): if a != b: distMatrix[i][j] = experiment.distances[a][b] # Zd = linkage(ssd.squareform(distMatrix), method="complete") # cld = fcluster(Zd, 500, criterion='distance').reshape(len(new_names), 1) Zd = linkage(ssd.squareform(distMatrix), method="complete") cld = fcluster(Zd, 12, criterion='maxclust').reshape(len(new_names), 1) clusters = {} for i, name in enumerate(new_names): clusters[name] = cld[i][0] for name in experiment.coordinates: if name not in clusters: clusters[name] = 0 return {'value': clusters} def clustering_kmeans(experiment, num_clusters=20): from sklearn.cluster import KMeans points = list(experiment.coordinates.values()) kmeans = KMeans(n_clusters=num_clusters) kmeans.fit(points) y_km = kmeans.fit_predict(points) # plt.scatter(points[y_km == 0, 0], points[y_km == 0, 1], s=100, c='red') # plt.scatter(points[y_km == 1, 0], points[y_km == 1, 1], s=100, c='black') # plt.scatter(points[y_km == 2, 0], points[y_km == 2, 1], s=100, c='blue') # plt.scatter(points[y_km == 3, 0], points[y_km == 3, 1], s=100, c='cyan') # all_distances = [] # for a,b in combinations(experiment.distances, 2): # all_distances.append([a, b, experiment.distances[a][b]]) # all_distances.sort(key=lambda x: x[2]) # # clusters = {a: None for a in experiment.distances} # num_clusters = 0 # for a,b,dist in all_distances: # if clusters[a] is None and clusters[b] is None: # clusters[a] = num_clusters # clusters[b] = num_clusters # num_clusters += 1 # elif clusters[a] is None and clusters[b] is not None: # clusters[a] = clusters[b] # elif clusters[a] is not None and clusters[b] is None: # clusters[b] = clusters[a] clusters = {} for i, name in enumerate(experiment.coordinates): clusters[name] = y_km[i] return {'value': clusters}
33.54321
79
0.606183
0
0
0
0
0
0
0
0
1,197
0.440559
c86693ef8ab98f83a2f7c7800edbe9c593122043
561
py
Python
day15-1.py
kenleung5e28/advent-of-code-2021
f6de211f0d4f3bafa19572bf28e3407f0fab6d58
[ "MIT" ]
null
null
null
day15-1.py
kenleung5e28/advent-of-code-2021
f6de211f0d4f3bafa19572bf28e3407f0fab6d58
[ "MIT" ]
null
null
null
day15-1.py
kenleung5e28/advent-of-code-2021
f6de211f0d4f3bafa19572bf28e3407f0fab6d58
[ "MIT" ]
null
null
null
import math grid = [] with open('input-day15.txt') as file: for line in file: line = line.rstrip() grid.append([int(s) for s in line]) n = len(grid) costs = [[math.inf] * n for _ in range(n)] costs[0][0] = 0 queue = [(0, 0)] while len(queue) > 0: x1, y1 = queue.pop(0) for dx, dy in [(1, 0), (0, 1), (-1, 0), (0, -1)]: x, y = x1 + dx, y1 + dy if x >= 0 and y >= 0 and x < n and y < n: cost = costs[x1][y1] + grid[x][y] if cost < costs[x][y]: costs[x][y] = cost queue.append((x, y)) print(costs[n - 1][n - 1])
24.391304
51
0.504456
0
0
0
0
0
0
0
0
17
0.030303
c8669721869b7d885f2345a687dcb60a71f978c7
2,930
py
Python
OSMTagFinder/thesaurus/relatedterm.py
geometalab/OSMTagFinder
9ffe854a2bebbd7f96facd7e236434e761fee884
[ "MIT" ]
20
2015-01-18T19:57:40.000Z
2020-06-15T22:06:42.000Z
OSMTagFinder/thesaurus/relatedterm.py
geometalab/OSMTagFinder
9ffe854a2bebbd7f96facd7e236434e761fee884
[ "MIT" ]
4
2015-01-18T22:16:15.000Z
2021-03-31T18:32:22.000Z
OSMTagFinder/thesaurus/relatedterm.py
geometalab/OSMTagFinder
9ffe854a2bebbd7f96facd7e236434e761fee884
[ "MIT" ]
2
2019-01-16T15:43:41.000Z
2020-06-15T22:03:31.000Z
# -*- coding: utf-8 -*- ''' Created on 16.11.2014 @author: Simon Gwerder ''' from utilities.configloader import ConfigLoader from rdfgraph import RDFGraph class RelatedTerm: rdfGraph = RDFGraph() cl = ConfigLoader() termSchemeName = cl.getThesaurusString('TERM_SCHEME_NAME') termSchemeTitle = cl.getThesaurusString('TERM_SCHEME_TITLE') creator = cl.getThesaurusString('CREATOR') termScheme = None def __init__(self, rdfGraph): if rdfGraph is not None: self.rdfGraph = rdfGraph self.termScheme = self.rdfGraph.addConceptScheme(self.termSchemeName, self.termSchemeTitle, self.creator) # doesn't matter if called a lot def createTerm(self, keyTagConcept, prefLabelEN, prefLabelDE): label = prefLabelEN.decode("utf-8") if self.rdfGraph.isInKeyScheme(keyTagConcept): label = keyTagConcept.split('Key:')[1] else: label = keyTagConcept.split('Tag:')[1] label = (label.replace('=','_')).decode("utf-8") termConcept = self.rdfGraph.addConcept(self.termSchemeName + '/' + label) self.rdfGraph.addInScheme(termConcept, self.termSchemeName) self.rdfGraph.addPrefLabel(termConcept, prefLabelEN, language='en') self.rdfGraph.addPrefLabel(termConcept, prefLabelDE, language='de') self.rdfGraph.addRelatedMatch(keyTagConcept, termConcept) self.rdfGraph.addRelatedMatch(termConcept, keyTagConcept) return termConcept def addAltLabelEN(self, termConcept, altLabelEN): self.rdfGraph.addAltLabel(termConcept, altLabelEN, 'en') return termConcept def addAltLabelDE(self, termConcept, altLabelDE): self.rdfGraph.addAltLabel(termConcept, altLabelDE, 'de') return termConcept def addNarrowerLiteralEN(self, termConcept, narrowerEN): self.rdfGraph.addNarrowerLiteral(termConcept, narrowerEN, 'en') return termConcept def addNarrowerLiteralDE(self, termConcept, narrowerDE): self.rdfGraph.addNarrowerLiteral(termConcept, narrowerDE, 'de') return termConcept def addBroaderLiteralEN(self, termConcept, broaderEN): self.rdfGraph.addBroaderLiteral(termConcept, broaderEN, 'en') return termConcept def addBroaderLiteralDE(self, termConcept, broaderDE): self.rdfGraph.addBroaderLiteral(termConcept, broaderDE, 'de') return termConcept def removeAltLabelLiteral(self, termConcept, altLabelObj): self.rdfGraph.removeAltLabelLiteral(termConcept, altLabelObj) def removeBroaderLiteral(self, termConcept, broaderObj): self.rdfGraph.removeAltLabelLiteral(termConcept, broaderObj) def removeNarrowerLiteral(self, termConcept, narrowerObj): self.rdfGraph.removeAltLabelLiteral(termConcept, narrowerObj) def save(self): self.rdfGraph.serialize(self.rdfGraph.filePath) return self.rdfGraph.filePath
34.880952
146
0.713652
2,766
0.944027
0
0
0
0
0
0
221
0.075427
c86731656ffa6ef2b38ba405b2722abcba4b7c94
1,217
py
Python
Algorithms/Sorting and Searching/sorting/merge sort/merge-sort-return-list.py
bulentsiyah/Python-Basics-Algorithms-Data-Structures-Object-Oriented-Programming-Job-Interview-Questions
3a67bdac1525495e6874c5bde61882848f60381d
[ "MIT" ]
14
2021-01-23T11:28:16.000Z
2021-12-07T16:08:23.000Z
Algorithms/Sorting and Searching/sorting/merge sort/merge-sort-return-list.py
bulentsiyah/Python-Basics-Algorithms-Data-Structures-Object-Oriented-Programming-Job-Interview-Questions
3a67bdac1525495e6874c5bde61882848f60381d
[ "MIT" ]
null
null
null
Algorithms/Sorting and Searching/sorting/merge sort/merge-sort-return-list.py
bulentsiyah/Python-Basics-Algorithms-Data-Structures-Object-Oriented-Programming-Job-Interview-Questions
3a67bdac1525495e6874c5bde61882848f60381d
[ "MIT" ]
2
2021-02-03T12:28:19.000Z
2021-09-14T09:50:08.000Z
arr: list = [54,26,93,17,77,31,44,55,20] def merge_sort(arr: list): result: list = helper(arr, 0, len(arr) - 1) for i in range(len(arr)): arr[i] = result[i] def helper(arr: list, start: int, end: int) -> list: if start > end: return [] elif start == end: return [arr[start]] else: midpoint: int = start + (end - start) // 2 leftList = helper(arr, start, midpoint) rightList = helper(arr, midpoint + 1, end) return mergelists(leftList, rightList) def mergelists(leftList: list, rightList: list) -> list: arr: list = [None] * (len(leftList) + len(rightList)) i = j = k = 0 while i < len(leftList) and j < len(rightList): if leftList[i] < rightList[j]: arr[k] = leftList[i] i += 1 else: arr[k] = rightList[j] j += 1 k += 1 while i < len(leftList): arr[k] = leftList[i] i += 1 k += 1 while j < len(rightList): arr[k] = rightList[j] j += 1 k += 1 return arr print(arr) merge_sort(arr) print(arr)
24.836735
61
0.474117
0
0
0
0
0
0
0
0
0
0
c867bd2b7a6b9e73aa95e644913f2d2ac179784c
3,406
py
Python
cve-manager/cve_manager/handler/task_handler/callback/cve_scan.py
seandong37tt4qu/jeszhengq
32b3737ab45e89e8c5b71cdce871cefd2c938fa8
[ "MulanPSL-1.0" ]
null
null
null
cve-manager/cve_manager/handler/task_handler/callback/cve_scan.py
seandong37tt4qu/jeszhengq
32b3737ab45e89e8c5b71cdce871cefd2c938fa8
[ "MulanPSL-1.0" ]
null
null
null
cve-manager/cve_manager/handler/task_handler/callback/cve_scan.py
seandong37tt4qu/jeszhengq
32b3737ab45e89e8c5b71cdce871cefd2c938fa8
[ "MulanPSL-1.0" ]
null
null
null
#!/usr/bin/python3 # ****************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2021-2022. All rights reserved. # licensed under the Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # http://license.coscl.org.cn/MulanPSL2 # THIS SOFTWARE IS PROVIDED ON AN 'AS IS' BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v2 for more details. # ******************************************************************************/ """ Time: Author: Description: callback function of the cve scanning task. """ from aops_utils.log.log import LOGGER from cve_manager.handler.task_handler.callback import TaskCallback from cve_manager.conf.constant import ANSIBLE_TASK_STATUS, CVE_SCAN_STATUS class CveScanCallback(TaskCallback): """ Callback function for cve scanning. """ def __init__(self, user, proxy, host_info): """ Args: user (str): who the scanned hosts belongs to. proxy (object): database proxy host_info (list): host info, e.g. hostname, ip, etc. """ self.user = user task_info = {} for info in host_info: host_name = info.get('host_name') task_info[host_name] = info super().__init__(None, proxy, task_info) def v2_runner_on_unreachable(self, result): host_name, result_info, task_name = self._get_info(result) self.result[host_name][task_name] = { "info": result_info['msg'], "status": ANSIBLE_TASK_STATUS.UNREACHABLE} LOGGER.debug("task name: %s, user: %s, host name: %s, result: %s", task_name, self.user, host_name, ANSIBLE_TASK_STATUS.UNREACHABLE) self.save_to_db(task_name, host_name, CVE_SCAN_STATUS.DONE) def v2_runner_on_ok(self, result): host_name, result_info, task_name = self._get_info(result) self.result[host_name][task_name] = { "info": result_info['stdout'], "status": ANSIBLE_TASK_STATUS.SUCCEED} LOGGER.debug("task name: %s, user: %s, host name: %s, result: %s", task_name, self.user, host_name, ANSIBLE_TASK_STATUS.SUCCEED) self.save_to_db(task_name, host_name, CVE_SCAN_STATUS.DONE) def v2_runner_on_failed(self, result, ignore_errors=False): host_name, result_info, task_name = self._get_info(result) self.result[host_name][task_name] = { "info": result_info['stderr'], "status": ANSIBLE_TASK_STATUS.FAIL} LOGGER.debug("task name: %s, user: %s, host name: %s, result: %s", task_name, self.user, host_name, ANSIBLE_TASK_STATUS.FAIL) self.save_to_db(task_name, host_name, CVE_SCAN_STATUS.DONE) def save_to_db(self, task_name, host_name, status): """ Set the status of the host to database. Args: task_name (str): task name in playbook. host_name (str) status (str) """ host_id = self.task_info[host_name]['host_id'] self.proxy.update_scan_status([host_id]) LOGGER.debug("task name: %s, host_id: %s, status: %s", task_name, host_id, status)
40.547619
98
0.625954
2,425
0.711979
0
0
0
0
0
0
1,493
0.438344
c867e56be1f71eb568a6e918ed29a6d7c65c450d
58
py
Python
mean-var-std/main.py
PedroEduardoSS/Data-Analisys-projects
f06c2d7091a9a61509525019f2f0375e21698f6a
[ "MIT" ]
null
null
null
mean-var-std/main.py
PedroEduardoSS/Data-Analisys-projects
f06c2d7091a9a61509525019f2f0375e21698f6a
[ "MIT" ]
null
null
null
mean-var-std/main.py
PedroEduardoSS/Data-Analisys-projects
f06c2d7091a9a61509525019f2f0375e21698f6a
[ "MIT" ]
null
null
null
from mean_var_std import * calculate([0,1,2,3,4,5,6,7,8])
19.333333
30
0.689655
0
0
0
0
0
0
0
0
0
0
c86aa619ebc8f014032a97d24de5e8f90b466d18
2,416
py
Python
tests/result/test_gatling.py
LaudateCorpus1/perfsize
710d6a5ae0918002e736f3aba8cd5cacb2b11326
[ "Apache-2.0" ]
5
2021-08-02T22:44:32.000Z
2022-01-07T20:53:48.000Z
tests/result/test_gatling.py
intuit/perfsize
710d6a5ae0918002e736f3aba8cd5cacb2b11326
[ "Apache-2.0" ]
1
2022-02-24T08:05:51.000Z
2022-02-24T08:05:51.000Z
tests/result/test_gatling.py
LaudateCorpus1/perfsize
710d6a5ae0918002e736f3aba8cd5cacb2b11326
[ "Apache-2.0" ]
1
2022-02-24T08:05:41.000Z
2022-02-24T08:05:41.000Z
from datetime import datetime from decimal import Decimal from perfsize.perfsize import ( lt, lte, gt, gte, eq, neq, Condition, Result, Run, Config, Plan, StepManager, EnvironmentManager, LoadManager, ResultManager, Reporter, Workflow, ) from perfsize.environment.mock import MockEnvironmentManager from perfsize.load.mock import MockLoadManager from perfsize.reporter.mock import MockReporter from perfsize.result.mock import MockResultManager from perfsize.result.gatling import Metric, GatlingResultManager from perfsize.step.mock import MockStepManager from pprint import pprint import pytest from unittest.mock import patch class TestGatlingResultManager: def test_gatling_result_manager(self) -> None: # A plan would define the various configs possible for testing. # A step manager would pick the next config to test. # This test is starting with a given Config and an associated Run. config = Config( parameters={ "endpoint_name": "LEARNING-model-sim-public-c-1", "endpoint_config_name": "LEARNING-model-sim-public-c-1-0", "model_name": "model-sim-public", "instance_type": "ml.t2.medium", "initial_instance_count": "1", "ramp_start_tps": "0", "ramp_minutes": "0", "steady_state_tps": "1", "steady_state_minutes": "1", }, requirements={ Metric.latency_success_p99: [ Condition(lt(Decimal("200")), "value < 200"), Condition(gte(Decimal("0")), "value >= 0"), ], Metric.percent_fail: [ Condition(lt(Decimal("0.01")), "value < 0.01"), Condition(gte(Decimal("0")), "value >= 0"), ], }, ) run = Run( id="test_run_tag", start=datetime.fromisoformat("2021-04-01T00:00:00"), end=datetime.fromisoformat("2021-04-01T01:00:00"), results=[], ) # GatlingResultManager will parse simulation.log and populate results result_manager = GatlingResultManager( results_path="examples/perfsize-results-root" ) result_manager.query(config, run) pprint(run.results)
33.09589
77
0.591474
1,716
0.710265
0
0
0
0
0
0
675
0.279387
c86bfc31df7a20be6ab83d39b12b217359bfd5df
3,904
py
Python
__main__.py
GbaCretin/dmf2mlm
8a0d3d219aecb9aa14a66537e2deb02651bdfe7d
[ "MIT" ]
2
2021-06-13T15:55:55.000Z
2021-09-14T08:21:53.000Z
__main__.py
GbaCretin/dmf2mlm
8a0d3d219aecb9aa14a66537e2deb02651bdfe7d
[ "MIT" ]
6
2022-03-22T10:02:35.000Z
2022-03-31T19:28:13.000Z
__main__.py
GbaCretin/dmf2mlm
8a0d3d219aecb9aa14a66537e2deb02651bdfe7d
[ "MIT" ]
null
null
null
from src import dmf,mzs,utils,sfx from pathlib import Path import argparse def print_info(mlm_sdata): if len(mlm_sdata.songs) <= 0: return for i in range(len(mlm_sdata.songs[0].channels)): channel = mlm_sdata.songs[0].channels[i] print("\n================[ {0:01X} ]================".format(i)) if channel == None: print("Empty") continue for event in channel.events: print(event) if isinstance(event, mzs.SongComJumpToSubEL): sub_el = mlm_sdata.songs[0].sub_event_lists[i][event.sub_el_idx] sub_el.print() print("\t--------") def print_df_info(mod, channels: [int]): for ch in channels: print("|####[${0:02X}]####".format(ch), end='') print("|") for i in range(mod.pattern_matrix.rows_in_pattern_matrix): for ch in channels: subel_idx = mod.pattern_matrix.matrix[ch][i] print("|====(${0:02X})====".format(subel_idx), end='') print("|") for j in range(mod.pattern_matrix.rows_per_pattern): for ch in channels: pat_idx = mod.pattern_matrix.matrix[ch][i] row = mod.patterns[ch][pat_idx].rows[j] note_lbl = "--" oct_lbl = "-" vol_lbl = "--" inst_lbl = "--" fx0_lbl = "----" if row.octave != None: oct_lbl = str(row.octave) if row.note == dmf.Note.NOTE_OFF: note_lbl = "~~" oct_lbl = "~" elif row.note != None: note_lbl = row.note.name.ljust(2, '-').replace('S', '#') if row.volume != None: vol_lbl = "{:02X}".format(row.volume) if row.instrument != None: inst_lbl = "{:02X}".format(row.instrument) if len(row.effects) > 0: fx0 = row.effects[0] if fx0.code == dmf.EffectCode.EMPTY: fx0_lbl = "--" else: fx0_lbl = "{:02X}".format(fx0.code.value) if fx0.value == None: fx0_lbl += "--" else: fx0_lbl += "{:02X}".format(fx0.value) print("|{0}{1} {2}{3} {4}".format(note_lbl, oct_lbl, vol_lbl, inst_lbl, fx0_lbl), end='') print("|") parser = argparse.ArgumentParser(description='Convert DMF modules and SFX to an MLM driver compatible format') parser.add_argument('dmf_module_paths', type=str, nargs='*', help="The paths to the input DMF files") parser.add_argument('--sfx-directory', type=Path, help="Path to folder containing .raw files (Only absolute paths; Must be 18500Hz 16bit mono)") parser.add_argument('--sfx-header', type=Path, help="Where to save the generated SFX c header (Only absolute paths)") args = parser.parse_args() dmf_modules = [] sfx_samples = None if args.sfx_directory != None: print("Parsing SFX... ", end='', flush=True) sfx_samples = sfx.SFXSamples(args.sfx_directory) print("OK") if args.sfx_header != None: print("Generating SFX Header... ", end='', flush=True) c_header = sfx_samples.generate_c_header() print("OK") print(f"Saving SFX Header as '{args.sfx_header}'... ", end='', flush=True) with open(args.sfx_header, "w") as file: file.write(c_header) print("OK") for i in range(len(args.dmf_module_paths)): with open(args.dmf_module_paths[i], "rb") as file: print(f"Parsing '{args.dmf_module_paths[i]}'... ", end='', flush=True) mod = dmf.Module(file.read()) print("OK") print(f"Optimizing '{args.dmf_module_paths[i]}'... ", end='', flush=True) mod.patch_for_mzs() mod.optimize() print("OK") dmf_modules.append(mod) mlm_sdata = mzs.SoundData() print(f"Converting DMFs... ", end='', flush=True) mlm_sdata.add_dmfs(dmf_modules) print("OK") if sfx_samples != None: print(f"Converting SFX... ", end='', flush=True) mlm_sdata.add_sfx(sfx_samples, False) print("OK") #print_df_info(dmf_modules[0], [0, 4, 7]) #print_info(mlm_sdata) print(f"Compiling... ", end='', flush=True) mlm_compiled_sdata = mlm_sdata.compile_sdata() mlm_compiled_vrom = mlm_sdata.compile_vrom() print("OK") with open("m1_sdata.bin", "wb") as file: file.write(mlm_compiled_sdata) with open("vrom.bin", "wb") as file: file.write(mlm_compiled_vrom)
30.984127
144
0.649846
0
0
0
0
0
0
0
0
911
0.23335
c06e2030a941664f4cc84a738c586a21db2c9695
1,169
py
Python
python/8.Making-a-POST-Request.py
17nikhil/codecademy
58fbd652691c9df8139544965ebb0e9748142538
[ "Apache-2.0" ]
null
null
null
python/8.Making-a-POST-Request.py
17nikhil/codecademy
58fbd652691c9df8139544965ebb0e9748142538
[ "Apache-2.0" ]
null
null
null
python/8.Making-a-POST-Request.py
17nikhil/codecademy
58fbd652691c9df8139544965ebb0e9748142538
[ "Apache-2.0" ]
1
2018-10-03T14:36:31.000Z
2018-10-03T14:36:31.000Z
# Using the Requests library, you can make a POST request by using the requests.post() method. You aren't just GETting data with a POST - you can pass your own data into the request as well, like so: # # requests.post("http://placekitten.com/", data="myDataToPost") # We're going to make the same request as the one shown on line 2 through line 5. Request header lines (line 3 and line 4) are usually created automatically, so we don't have to worry about them. The body of the request on line 5 is what we will need to add to our POST. # # Instructions # We created the body of the request as a dictionary on line 9. Call requests.post() on the URL http://codecademy.com/learn-http/ and pass the argument data=body, as in the example above, to create the POST request; set this result equal to a new variable named response. ########## Example request ############# # POST /learn-http HTTP/1.1 # Host: www.codecademy.com # Content-Type: text/html; charset=UTF-8 # Name=Eric&Age=26 import requests body = {'Name': 'Eric', 'Age': '26'} # Make the POST request here, passing body as the data: response = requests.post('http://codecademy.com/learn-http/', data=body)
53.136364
271
0.726262
0
0
0
0
0
0
0
0
1,081
0.924722
c06f05eaa2d985c3d75a5edbcfcca422b525cddf
2,630
py
Python
python/zephyr/models/__init__.py
r-pad/zephyr
c8f45e207c11bfc2b21df169db65a7df892d2848
[ "MIT" ]
18
2021-05-27T04:40:38.000Z
2022-02-08T19:46:31.000Z
python/zephyr/models/__init__.py
r-pad/zephyr
c8f45e207c11bfc2b21df169db65a7df892d2848
[ "MIT" ]
null
null
null
python/zephyr/models/__init__.py
r-pad/zephyr
c8f45e207c11bfc2b21df169db65a7df892d2848
[ "MIT" ]
2
2021-11-07T12:42:00.000Z
2022-03-01T12:51:54.000Z
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import time from functools import partial from .linear import MLP, LogReg from .pointnet import PointNet from .pointnet2 import PointNet2SSG from .pointnet3 import PointNet3SSG from .dgcnn import DGCNN # from .masked_conv import ConvolutionalPoseModel from .point_mlp import PointMLP from pytorch_lightning.core.lightning import LightningModule def getModel(model_name, args, mode="train"): if args.resume_path is None or mode == 'train': if model_name == 'mlp': model = MLP(args.dim_agg, args) if model_name == "pmlp": model = PointMLP(args.dim_point, args) elif model_name[:2] == 'lg': model = LogReg(args.dim_agg, args) elif model_name == "pn": model = PointNet(args.dim_point, args) elif model_name == "pn2": model = PointNet2SSG(args.dim_point, args, num_class=1) elif model_name == "pn3": model = PointNet3SSG(args.dim_point, args, num_class=1) elif model_name == "dgcnn": model = DGCNN(args.dim_point, args, num_class=1) # elif model_name == "maskconv": # model = ConvolutionalPoseModel(args) else: raise Exception("Unknown model name:", model_name) else: if model_name == 'mlp': model = MLP.load_from_checkpoint(args.resume_path, args.dim_agg, args) elif model_name == "pmlp": model = PointMLP.load_from_checkpoint(args.resume_path, args.dim_point, args) elif model_name[:2] == 'lg': model = LogReg.load_from_checkpoint(args.resume_path, args.dim_agg, args) elif model_name == "pn": model = PointNet.load_from_checkpoint(args.resume_path, args.dim_point, args) elif model_name == "pn2": model = PointNet2SSG.load_from_checkpoint(args.resume_path, args.dim_point, args, num_class=1) elif model_name == "pn3": model = PointNet3SSG.load_from_checkpoint(args.resume_path, args.dim_point, args, num_class=1) elif model_name == "dgcnn": model = DGCNN.load_from_checkpoint(args.resume_path, args.dim_point, args, num_class=1) # elif model_name == "maskconv": # model = ConvolutionalPoseModel.load_from_checkpoint(args.resume_path, args) else: raise Exception("Unknown model name:", model_name) if not args.pretrained_pnfeat is None: model.loadPretrainedFeat(args.pretrained_pnfeat) return model
43.114754
107
0.646388
0
0
0
0
0
0
0
0
369
0.140304
c070571b2741261b60b7d7b775818838f5089fed
1,938
py
Python
golpy/main.py
dkuska/golpy
a7bc73693090c252fa5ac587fe0d6c77472d9e9c
[ "MIT" ]
1
2021-01-06T09:19:19.000Z
2021-01-06T09:19:19.000Z
golpy/main.py
dkuska/golpy
a7bc73693090c252fa5ac587fe0d6c77472d9e9c
[ "MIT" ]
null
null
null
golpy/main.py
dkuska/golpy
a7bc73693090c252fa5ac587fe0d6c77472d9e9c
[ "MIT" ]
null
null
null
import golpy.controller.controller as controller import golpy.view.view as view import golpy.model.gamemodel as model import golpy.eventmanager.eventmanager as eventm import golpy.config as config import log.log as log import argparse def pass_args(): """ Takes Argument from the command line and returns an ArgumentParser""" parser = argparse.ArgumentParser(description="2D Cellular Automata Viewer supporting multiple formats") parser.add_argument("-rule", "-r", type=str, default=config.default_rule, help='String describing the used rule') parser.add_argument("-mode", "-m", type=str, default=config.default_mode, help="String describing Game Mode") parser.add_argument("-size", "-s", type=int, default=config.default_size, help="Integer describing size of the universe. I.e. -size 200 will correspond to a (200 x 200) cell universe") parser.add_argument("-topology", "-t", type=str, default=config.default_topology, help="String describing the topology of the universe. Default being Torus-shaped") parser.add_argument("-speed", "-sp", type=int, default=config.default_speed, help="Integer describing the maximum FPS possible for the animation") parser.add_argument("-windowsize", "-w", type=int, default=config.default_window_size, help="Integer describing the window size in pixels") return parser.parse_args() def run(): args = pass_args() logger = log.Logger() event_manager = eventm.EventManager() game_model = model.GameModel(event_manager, rule_str=args.rule, field_size=(args.size, args.size)) game_view = view.View(event_manager, game_model, size=args.windowsize, tick_rate=args.speed) game_controller = controller.Controller(event_manager, game_model) game_model.run() if __name__ == '__main__': run()
46.142857
134
0.697626
0
0
0
0
0
0
0
0
569
0.293602
c07059d11303ea7e0150379f0e66db3230da9433
2,899
py
Python
tests/orca_unit_testing/test_series_str.py
jiajiaxu123/Orca
e86189e70c1d0387816bb98b8047a6232fbda9df
[ "Apache-2.0" ]
20
2019-12-02T11:49:12.000Z
2021-12-24T19:34:32.000Z
tests/orca_unit_testing/test_series_str.py
jiajiaxu123/Orca
e86189e70c1d0387816bb98b8047a6232fbda9df
[ "Apache-2.0" ]
null
null
null
tests/orca_unit_testing/test_series_str.py
jiajiaxu123/Orca
e86189e70c1d0387816bb98b8047a6232fbda9df
[ "Apache-2.0" ]
5
2019-12-02T12:16:22.000Z
2021-10-22T02:27:47.000Z
import unittest import orca from setup.settings import * from pandas.util.testing import * class SeriesStrTest(unittest.TestCase): def setUp(self): self.PRECISION = 5 @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") @property def ps(self): return pd.Series(['Foo', 'ss ', 'sW', 'qa'], name='x') @property def os(self): return orca.Series(self.ps) @property def psa(self): return pd.Series([10, 1, 19, np.nan], index=['a', 'b', 'c', 'd']) @property def psb(self): return pd.Series([-1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) def test_series_str_count(self): assert_series_equal(self.ps.str.count('a'), self.os.str.count("a").to_pandas(),check_dtype=False) def test_series_str_startsWith(self): assert_series_equal(self.ps.str.startswith('Fo'), self.os.str.startswith('Fo').to_pandas(), check_dtype=False) def test_series_str_endswith(self): assert_series_equal(self.ps.str.endswith('W'), self.os.str.endswith('W').to_pandas(), check_dtype=False) def test_series_str_find(self): assert_series_equal(self.ps.str.find('Fo'), self.os.str.find('Fo').to_pandas(), check_dtype=False) def test_series_str_get(self): assert_series_equal(self.ps.str.get(1), self.os.str.get(1).to_pandas(), check_dtype=False) def test_series_str_just(self): # TODO: pandas not cut the str when length is not enough # assert_series_equal(self.ps.str.ljust(1), self.os.str.ljust(1).to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.ljust(10), self.os.str.ljust(10).to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.ljust(10,'A'), self.os.str.ljust(10,'A').to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.rjust(10), self.os.str.rjust(10).to_pandas(), check_dtype=False) assert_series_equal(self.ps.str.rjust(10, 'A'), self.os.str.rjust(10, 'A').to_pandas(), check_dtype=False) def test_series_str_is(self): assert_series_equal(self.ps.str.isalnum(),self.os.str.isalnum().to_pandas()) assert_series_equal(self.ps.str.isalpha(), self.os.str.isalpha().to_pandas()) assert_series_equal(self.ps.str.isdigit(), self.os.str.isdigit().to_pandas()) assert_series_equal(self.ps.str.isspace(), self.os.str.isspace().to_pandas()) assert_series_equal(self.ps.str.islower(), self.os.str.islower().to_pandas()) assert_series_equal(self.ps.str.isupper(), self.os.str.isupper().to_pandas()) assert_series_equal(self.ps.str.istitle(), self.os.str.istitle().to_pandas()) assert_series_equal(self.ps.str.isnumeric(), self.os.str.isnumeric().to_pandas()) assert_series_equal(self.ps.str.isdecimal(), self.os.str.isdecimal().to_pandas())
43.924242
118
0.675405
2,805
0.967575
0
0
488
0.168334
0
0
283
0.09762
c0712a7efbb3bde035967d1fd7d0d7a42cb89f4b
278
py
Python
inputs/in4.py
mabbaszade/transportation-problem
64ab4db7f836513c388073b5e2e9c64d7c439fde
[ "MIT" ]
null
null
null
inputs/in4.py
mabbaszade/transportation-problem
64ab4db7f836513c388073b5e2e9c64d7c439fde
[ "MIT" ]
null
null
null
inputs/in4.py
mabbaszade/transportation-problem
64ab4db7f836513c388073b5e2e9c64d7c439fde
[ "MIT" ]
null
null
null
ITERATION_NUM = 10 MAX_POPULATION = 500 CROSSOVER_RATE = 1 MUTATION_RATE = 1 supplies = { 'S1': 20, 'S2': 15, 'S3': 40 } demands = { 'D1': 20, 'D2': 30, 'D3': 25 } cost = [[2, 3, 1], [5, 4, 8], [5, 6, 8] ]
12.636364
21
0.406475
0
0
0
0
0
0
0
0
24
0.086331
c0712de2126b7958548be086996c8304d5bf2f45
89
py
Python
Project/Connect/apps.py
AashishKhanal69/PeakyBlinders_ADC7_PartII
a4474c02be4ee8f8405b51df2f1d215e56ac192d
[ "bzip2-1.0.6" ]
null
null
null
Project/Connect/apps.py
AashishKhanal69/PeakyBlinders_ADC7_PartII
a4474c02be4ee8f8405b51df2f1d215e56ac192d
[ "bzip2-1.0.6" ]
null
null
null
Project/Connect/apps.py
AashishKhanal69/PeakyBlinders_ADC7_PartII
a4474c02be4ee8f8405b51df2f1d215e56ac192d
[ "bzip2-1.0.6" ]
null
null
null
from django.apps import AppConfig class ConnectConfig(AppConfig): name = 'Connect'
14.833333
33
0.752809
52
0.58427
0
0
0
0
0
0
9
0.101124
c072ef7683ac75d9de6d4b4eb8e1ab74898e3920
914
py
Python
spatial/edge.py
jbschwartz/spatial
04dc619ae024ebb4f516cd6483f835421c7d84b1
[ "MIT" ]
1
2022-01-02T22:03:09.000Z
2022-01-02T22:03:09.000Z
spatial/edge.py
jbschwartz/spatial
04dc619ae024ebb4f516cd6483f835421c7d84b1
[ "MIT" ]
null
null
null
spatial/edge.py
jbschwartz/spatial
04dc619ae024ebb4f516cd6483f835421c7d84b1
[ "MIT" ]
null
null
null
from functools import cached_property from .vector3 import Vector3 class Edge: """An edge created by two points.""" def __init__(self, start: Vector3, end: Vector3) -> None: self.start = start self.end = end def __eq__(self, other: object) -> bool: """Return True if this edge is equal to the other.""" if isinstance(other, Edge): if self.start == other.start and self.end == other.end: return True if self.start == other.end and self.end == other.start: return True return False return NotImplemented @cached_property def length(self) -> float: """Return the length of the edge.""" return self.vector.length() @cached_property def vector(self) -> Vector3: """Return the edge's vector from start to end.""" return self.end - self.start
26.114286
67
0.591904
843
0.922319
0
0
272
0.297593
0
0
174
0.190372
c07358522633a4b5223edee437652e807e46cb27
1,054
py
Python
timer.py
ryanleesmith/race-timer
3a058e3689c9435751b06909d5b7a14db618d2da
[ "MIT" ]
null
null
null
timer.py
ryanleesmith/race-timer
3a058e3689c9435751b06909d5b7a14db618d2da
[ "MIT" ]
null
null
null
timer.py
ryanleesmith/race-timer
3a058e3689c9435751b06909d5b7a14db618d2da
[ "MIT" ]
null
null
null
from gps import * import math import time import json import threading gpsd = None poller = None class Poller(threading.Thread): def __init__(self): threading.Thread.__init__(self) global gpsd gpsd = gps(mode=WATCH_ENABLE|WATCH_NEWSTYLE) self.current_value = None self.running = True def run(self): global gpsd, poller while poller.running: gpsd.next() def timer(): global gpsd, poller poller = Poller() try: poller.start() while True: speed = gpsd.fix.speed if math.isnan(speed): speed = 0 #print(speed) #print(gpsd.fix.mode) #print(gpsd.satellites) dump = json.dumps({'x': int(round(time.time() * 1000)), 'y': speed}) yield 'event: SPEED\ndata: {}\n\n'.format(dump) time.sleep(0.1) except (KeyboardInterrupt, SystemExit): print("\nKilling Thread...") poller.running = False poller.join()
23.422222
80
0.555028
335
0.317837
617
0.585389
0
0
0
0
112
0.106262
c073994563fd9d56aecce3609828c1cbf0a8170a
31,133
py
Python
vkwave/bots/addons/easy/easy_handlers.py
amishakov/vkwave
377d470fc4b84b64516fffcabc6d682bf86b5d7f
[ "MIT" ]
null
null
null
vkwave/bots/addons/easy/easy_handlers.py
amishakov/vkwave
377d470fc4b84b64516fffcabc6d682bf86b5d7f
[ "MIT" ]
null
null
null
vkwave/bots/addons/easy/easy_handlers.py
amishakov/vkwave
377d470fc4b84b64516fffcabc6d682bf86b5d7f
[ "MIT" ]
null
null
null
import json import random import warnings from typing import Any, Callable, Dict, List, Union, Type, Optional, NoReturn from pydantic import PrivateAttr from vkwave.bots import BotEvent, BotType, EventTypeFilter, UserEvent from vkwave.bots.core import BaseFilter from vkwave.bots.core.dispatching.filters.builtin import get_payload, get_text from vkwave.bots.core.dispatching.handler.callback import BaseCallback from vkwave.bots.core.dispatching.handler.cast import caster as callback_caster from vkwave.bots.core.types.json_types import JSONEncoder from vkwave.types.bot_events import BotEventType from vkwave.types.objects import ( BaseBoolInt, MessagesMessageAttachment, MessagesMessageAttachmentType, UsersUser, ) from vkwave.types.responses import BaseOkResponse, MessagesEditResponse, MessagesSendResponse from vkwave.types.user_events import EventId try: import aiofile except ImportError: aiofile = None class SimpleUserEvent(UserEvent): def __init__(self, event: UserEvent): super().__init__(event.object, event.api_ctx) self.user_data = event.user_data def __setitem__(self, key: Any, item: Any) -> None: self.user_data[key] = item def __getitem__(self, key: Any) -> Any: return self.user_data[key] @property def text(self) -> str: return get_text(self) @property def peer_id(self) -> int: return self.object.object.peer_id @property def from_id(self) -> int: return self.object.object.message_data.from_id @property def user_id(self) -> int: return self.from_id if self.peer_id > 2e9 else self.peer_id async def get_user( self, raw_mode: bool = False, **kwargs ) -> Union["UsersUser", dict]: # getting information about the sender raw_user = ( await self.api_ctx.api_request("users.get", {"user_ids": self.user_id, **kwargs}) )["response"][0] return raw_user if raw_mode else UsersUser(**raw_user) async def answer( self, message: Optional[str] = None, domain: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, reply_to: Optional[int] = None, forward_messages: Optional[List[int]] = None, forward: Optional[str] = None, sticker_id: Optional[int] = None, group_id: Optional[int] = None, keyboard: Optional[str] = None, template: Optional[str] = None, payload: Optional[str] = None, content_source: Optional[str] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, intent: Optional[str] = None, subscribe_id: Optional[int] = None, expire_ttl: Optional[int] = None, silent: Optional[bool] = None, ) -> MessagesSendResponse: return await self.api_ctx.messages.send( message=message, forward=forward, template=template, content_source=content_source, intent=intent, subscribe_id=subscribe_id, expire_ttl=expire_ttl, silent=silent, domain=domain, lat=lat, long=long, attachment=attachment, reply_to=reply_to, forward_messages=forward_messages, sticker_id=sticker_id, group_id=group_id, keyboard=keyboard, payload=payload, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, peer_id=self.object.object.peer_id, random_id=random.randint(-2147483648, 2147483647), ) async def long_answer( self, message: str, domain: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, reply_to: Optional[int] = None, forward_messages: Optional[List[int]] = None, forward: Optional[str] = None, sticker_id: Optional[int] = None, group_id: Optional[int] = None, keyboard: Optional[str] = None, template: Optional[str] = None, payload: Optional[str] = None, content_source: Optional[str] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, intent: Optional[str] = None, subscribe_id: Optional[int] = None, expire_ttl: Optional[int] = None, silent: Optional[bool] = None, ) -> List[MessagesSendResponse]: """ Shortcut for sending message > 4096 lenght :return: Message IDs """ message_ids: List[MessagesSendResponse] = [] for x in range(0, len(message), 4096): message_id = await self.answer( message=message[x:x+4096], forward=forward, template=template, content_source=content_source, intent=intent, subscribe_id=subscribe_id, expire_ttl=expire_ttl, silent=silent, domain=domain, lat=lat, long=long, attachment=attachment, reply_to=reply_to, forward_messages=forward_messages, sticker_id=sticker_id, group_id=group_id, keyboard=keyboard, payload=payload, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, ) message_ids.append(message_id) return message_ids async def reply( self, message: Optional[str] = None, domain: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, forward_messages: Optional[List[int]] = None, forward: Optional[str] = None, sticker_id: Optional[int] = None, group_id: Optional[int] = None, keyboard: Optional[str] = None, template: Optional[str] = None, payload: Optional[str] = None, content_source: Optional[str] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, intent: Optional[str] = None, subscribe_id: Optional[int] = None, expire_ttl: Optional[int] = None, silent: Optional[bool] = None, ) -> MessagesSendResponse: return await self.api_ctx.messages.send( message=message, forward=forward, template=template, content_source=content_source, intent=intent, subscribe_id=subscribe_id, expire_ttl=expire_ttl, silent=silent, domain=domain, lat=lat, long=long, attachment=attachment, reply_to=self.object.object.message_id, forward_messages=forward_messages, sticker_id=sticker_id, group_id=group_id, keyboard=keyboard, payload=payload, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, peer_id=self.object.object.peer_id, random_id=random.randint(-2147483648, 2147483647), ) async def edit( self, message: Optional[str] = None, return_raw_response: bool = False, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, keep_forward_messages: Optional[BaseBoolInt] = None, keep_snippets: Optional[BaseBoolInt] = None, group_id: Optional[int] = None, dont_parse_links: Optional[bool] = None, message_id: Optional[int] = None, conversation_message_id: Optional[int] = None, template: Optional[str] = None, keyboard: Optional[str] = None, ) -> MessagesEditResponse: return await self.api_ctx.messages.edit( message=message, peer_id=self.object.object.peer_id, return_raw_response=return_raw_response, lat=lat, long=long, attachment=attachment, keep_forward_messages=keep_forward_messages, keep_snippets=keep_snippets, group_id=group_id, dont_parse_links=dont_parse_links, message_id=message_id or self.object.object.message_id, conversation_message_id=conversation_message_id, template=template, keyboard=keyboard, ) async def set_activity( self, type: Optional[str] = None, user_id: Optional[int] = None, group_id: Optional[int] = None, ) -> MessagesSendResponse: """ type: typing — пользователь начал набирать текст, audiomessage — пользователь записывает голосовое сообщение """ return await self.api_ctx.messages.set_activity( user_id=user_id, type=type, peer_id=self.object.object.peer_id, group_id=group_id, ) def _check_event_type(event_type: str): if event_type not in ( BotEventType.MESSAGE_NEW, BotEventType.MESSAGE_EDIT, BotEventType.MESSAGE_REPLY, BotEventType.MESSAGE_TYPING_STATE, BotEventType.MESSAGE_ALLOW, ): raise RuntimeError("You cant use event.answer() with this event") class SimpleAttachment(MessagesMessageAttachment): _event: "SimpleBotEvent" = PrivateAttr() _data: Optional[bytes] = PrivateAttr() _allowed_types: List[MessagesMessageAttachmentType] = PrivateAttr() _url_types: Dict[MessagesMessageAttachmentType, Callable] = PrivateAttr() def __init__(self, attachment: MessagesMessageAttachment, event: "SimpleBotEvent"): super().__init__(**attachment.dict()) self._event = event self._data = None self._allowed_types = [ MessagesMessageAttachmentType.AUDIO_MESSAGE, MessagesMessageAttachmentType.DOC, MessagesMessageAttachmentType.AUDIO, MessagesMessageAttachmentType.PHOTO, MessagesMessageAttachmentType.GRAFFITI, ] self._url_types = { MessagesMessageAttachmentType.PHOTO: lambda _attachment: _attachment.photo.sizes[ -1 ].url, MessagesMessageAttachmentType.AUDIO_MESSAGE: lambda _attachment: _attachment.audio_message.link_ogg, MessagesMessageAttachmentType.DOC: lambda _attachment: _attachment.doc.url, MessagesMessageAttachmentType.AUDIO: lambda _attachment: _attachment.audio.url, MessagesMessageAttachmentType.GRAFFITI: lambda _attachment: _attachment.graffiti.url, } @property def url(self) -> str: return self._url_types[self.type](self) async def download(self) -> Union[NoReturn, bytes]: if self._data is not None: return self._data if self.type not in self._allowed_types: raise RuntimeError("cannot download this attachment type") url = self.url client, token = await self._event.api_ctx.api_options.get_client_and_token() data = await client.http_client.request_data(method="GET", url=url) self._data = data return data async def save(self, path: str): attach_data = self._data if attach_data is None: attach_data = await self.download() if aiofile is None: warnings.warn("aiofile is not installed, saving synchronously") with open(path, "wb") as f: f.write(attach_data) return async with aiofile.async_open(path, "wb") as afp: await afp.write(attach_data) class Attachments(list): def __init__(self, event: "SimpleBotEvent"): super().__init__( [ SimpleAttachment(attachment, event=event) for attachment in event.object.object.message.attachments ] ) class SimpleBotEvent(BotEvent): """Базовый класс события.""" def __init__(self, event: BotEvent): super().__init__(event.object, event.api_ctx) self.user_data = event.user_data self._attachments: Optional[Attachments] = None self._payload: Optional[dict] = None def __setitem__(self, key: Any, item: Any) -> None: self.user_data[key] = item def __getitem__(self, key: Any) -> Any: return self.user_data[key] @property def text(self) -> str: """Получает текст сообщения Returns: str: Текст """ return get_text(self) @property def peer_id(self) -> int: """Получает идентификатор чата Returns: int: идентификатор чата """ if self.object.type == BotEventType.MESSAGE_EVENT.value: return self.object.object.peer_id return self.object.object.message.peer_id @property def from_id(self) -> int: """Получает идентификатор отправителя Returns: int: идентификатор отправителя """ if self.object.type == BotEventType.MESSAGE_EVENT.value: return self.object.object.user_id return self.object.object.message.from_id @property def payload(self) -> Optional[dict]: """Получает payload события Returns: int: payload события """ current_payload = get_payload(self) if current_payload is None: return current_payload if self._payload is None: self._payload = ( json.loads(current_payload) if not isinstance(current_payload, dict) else current_payload ) return self._payload @property def attachments(self) -> Optional[List[SimpleAttachment]]: """Получает список вложений Returns: Optional[List[SimpleAttachment]]: список вложений """ if self.object.object.message.attachments is None: return None if self._attachments is None: self._attachments = Attachments(event=self) return self._attachments @property def user_id(self) -> int: """Шорткат для выбора from_id или peer_id Returns: int: идентификатор пользователя """ return self.from_id if self.peer_id > 2e9 else self.peer_id async def get_user(self, raw_mode: bool = False, **kwargs) -> Union["UsersUser", dict]: """Получение объекта пользователя Returns: Union["UsersUser", dict]: Объект пользователя """ raw_user = ( await self.api_ctx.api_request("users.get", {"user_ids": self.user_id, **kwargs}) )["response"][0] return raw_user if raw_mode else UsersUser(**raw_user) async def edit( self, message: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, keep_forward_messages: Optional[BaseBoolInt] = None, keep_snippets: Optional[BaseBoolInt] = None, group_id: Optional[int] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, message_id: Optional[int] = None, conversation_message_id: Optional[int] = None, template: Optional[str] = None, keyboard: Optional[str] = None, ) -> MessagesEditResponse: """Шорткат для редактирования своего сообщения. Args: message (Optional[str]): Текст. lat (Optional[int]): Широта. long (Optional[int]): Долгота. attachment (Optional[str]): Вложения (строка с идентификаторами, разделёнными запятой). keep_forward_messages (Optional[BaseBoolInt]): — сохранить прикрепленные пересланные сообщения. keep_snippets (Optional[BaseBoolInt]): 1 — сохранить прикрепленные внешние ссылки (сниппеты). group_id (Optional[int]): Идентификатор группы. dont_parse_links (Optional[bool]): 1 — не создавать сниппет ссылки из сообщения. disable_mentions (Optional[bool]): 1 — отключить уведомление об упоминании в сообщении. message_id (Optional[int]): Идентификатор сообщения. conversation_message_id (Optional[int]): Идентификатор сообщения в беседе. template (Optional[str]): Шаблон. keyboard (Optional[str]): Клавиатура. Returns: MessagesEditResponse: Ответ сервера """ _check_event_type(self.object.type) return await self.api_ctx.messages.edit( peer_id=self.object.object.message.peer_id, message=message, lat=lat, long=long, attachment=attachment, keep_forward_messages=keep_forward_messages, keep_snippets=keep_snippets, group_id=group_id, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, message_id=message_id, conversation_message_id=conversation_message_id, template=template, keyboard=keyboard ) async def reply( self, message: Optional[str] = None, domain: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, sticker_id: Optional[int] = None, group_id: Optional[int] = None, keyboard: Optional[str] = None, template: Optional[str] = None, payload: Optional[str] = None, content_source: Optional[str] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, intent: Optional[str] = None, subscribe_id: Optional[int] = None, expire_ttl: Optional[int] = None, silent: Optional[bool] = None, json_serialize: JSONEncoder = json.dumps, ) -> MessagesSendResponse: """Шорткат для отправки ответа на сообщение пользователю, от которого пришло событие Args: message (Optional[str]): Текст. domain (Optional[str]): Короткая ссылка пользователя. lat (Optional[int]): Широта. long (Optional[int]): Долгота. attachment (Optional[str]): Вложения (строка с идентификаторами, разделёнными запятой). sticker_id (Optional[int]): Идентификатор прикрепляемого стикера. group_id (Optional[int]): Идентификатор группы. keyboard (Optional[str]): Клавиатура. template (Optional[str]): Шаблон (карусель, например). payload (Optional[str]): Payload. content_source (Optional[str]): Источник [пользовательского контента](https://vk.com/dev/bots_docs_2?f=3.3.+%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F+%D1%81+%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D0%BA%D0%B8%D0%BC+%D0%BA%D0%BE%D0%BD%D1%82%D0%B5%D0%BD%D1%82%D0%BE%D0%BC). dont_parse_links (Optional[bool]): 1 &mdash; не создавать сниппет ссылки из сообщения. disable_mentions (Optional[bool]): 1 &mdash; отключить создание упоминаний. intent (Optional[str]): Строка, описывающая [интенты](https://vk.com/dev/bots_docs_4?f=7.+%D0%98%D0%BD%D1%82%D0%B5%D0%BD%D1%82%D1%8B). subscribe_id (Optional[int]): число, которое в будущем будет предназначено для работы с интентами. expire_ttl (Optional[int]): ???. silent (Optional[bool]): ???. json_serialize (JSONEncoder): сериализация. Returns: MessagesSendResponse - Ответ сервера """ _check_event_type(self.object.type) forward = { "is_reply": 1, "conversation_message_ids": self.object.object.message.conversation_message_id, "peer_id": self.object.object.message.peer_id, } return await self.api_ctx.messages.send( forward=json_serialize(forward), intent=intent, subscribe_id=subscribe_id, expire_ttl=expire_ttl, silent=silent, domain=domain, lat=lat, long=long, attachment=attachment, sticker_id=sticker_id, group_id=group_id, keyboard=keyboard, payload=payload, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, peer_id=self.object.object.message.peer_id, message=message, random_id=0, template=template, content_source=content_source, ) async def answer( self, message: Optional[str] = None, domain: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, reply_to: Optional[int] = None, forward_messages: Optional[List[int]] = None, forward: Optional[str] = None, sticker_id: Optional[int] = None, group_id: Optional[int] = None, keyboard: Optional[str] = None, template: Optional[str] = None, payload: Optional[str] = None, content_source: Optional[str] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, intent: Optional[str] = None, subscribe_id: Optional[int] = None, expire_ttl: Optional[int] = None, silent: Optional[bool] = None, ) -> MessagesSendResponse: """Шорткат для отправки сообщения пользователю, от которого пришло событие. Args: message (Optional[str]): Текст. domain (Optional[str]): Короткая ссылка пользователя. lat (Optional[int]): Широта. long (Optional[int]): Долгота. attachment (Optional[str]): Вложения (строка с идентификаторами, разделёнными запятой). reply_to (Optional[int]): Идентификатор сообщения, на которое нужно ответить. forward_messages (Optional[List[int]]): Идентификаторы пересылаемых сообщений. forward (Optional[str]): JSON-объект (подробнее в [документации ВК](https://vk.com/dev/messages.send)). sticker_id (Optional[int]): Идентификатор прикрепляемого стикера. group_id (Optional[int]): Идентификатор группы. keyboard (Optional[str]): Клавиатура. template (Optional[str]): Шаблон (карусель, например). payload (Optional[str]): Payload. content_source (Optional[str]): Источник [пользовательского контента](https://vk.com/dev/bots_docs_2?f=3.3.+%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F+%D1%81+%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D0%BA%D0%B8%D0%BC+%D0%BA%D0%BE%D0%BD%D1%82%D0%B5%D0%BD%D1%82%D0%BE%D0%BC). dont_parse_links (Optional[bool]): 1 &mdash; не создавать сниппет ссылки из сообщения. disable_mentions (Optional[bool]): 1 &mdash; отключить создание упоминаний. intent (Optional[str]): Строка, описывающая [интенты](https://vk.com/dev/bots_docs_4?f=7.+%D0%98%D0%BD%D1%82%D0%B5%D0%BD%D1%82%D1%8B). subscribe_id (Optional[int]): число, которое в будущем будет предназначено для работы с интентами. expire_ttl (Optional[int]): ???. silent (Optional[bool]): ???. :return: Message ID """ _check_event_type(self.object.type) return await self.api_ctx.messages.send( forward=forward, intent=intent, subscribe_id=subscribe_id, expire_ttl=expire_ttl, silent=silent, domain=domain, lat=lat, long=long, attachment=attachment, reply_to=reply_to, forward_messages=forward_messages, sticker_id=sticker_id, group_id=group_id, keyboard=keyboard, payload=payload, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, peer_id=self.object.object.message.peer_id, message=message, random_id=0, template=template, content_source=content_source, ) async def long_answer( self, message: Optional[str] = None, domain: Optional[str] = None, lat: Optional[int] = None, long: Optional[int] = None, attachment: Optional[str] = None, reply_to: Optional[int] = None, forward_messages: Optional[List[int]] = None, forward: Optional[str] = None, sticker_id: Optional[int] = None, group_id: Optional[int] = None, keyboard: Optional[str] = None, template: Optional[str] = None, payload: Optional[str] = None, content_source: Optional[str] = None, dont_parse_links: Optional[bool] = None, disable_mentions: Optional[bool] = None, intent: Optional[str] = None, subscribe_id: Optional[int] = None, expire_ttl: Optional[int] = None, silent: Optional[bool] = None, ) -> List[MessagesSendResponse]: """ Shortcut for sending messages > 4096 length :return: Message IDs """ _check_event_type(self.object.type) message_ids: List[MessagesSendResponse] = [] for x in range(0, len(message), 4096): message_id = await self.answer( forward=forward, intent=intent, subscribe_id=subscribe_id, expire_ttl=expire_ttl, silent=silent, domain=domain, lat=lat, long=long, attachment=attachment, reply_to=reply_to, forward_messages=forward_messages, sticker_id=sticker_id, group_id=group_id, keyboard=keyboard, payload=payload, dont_parse_links=dont_parse_links, disable_mentions=disable_mentions, message=message[x:x+4096], template=template, content_source=content_source, ) message_ids.append(message_id) return message_ids async def set_activity( self, type: Optional[str] = None, user_id: Optional[int] = None, group_id: Optional[int] = None, ) -> MessagesSendResponse: """Изменение статуса активности Args: type (Optional[str], optional): Тип активности. (`typing` — пользователь начал набирать текст, `audiomessage` — пользователь записывает голосовое сообщение) user_id (Optional[int], optional): Идентификатор пользователя-получателя. group_id (Optional[int], optional): Идентификатор группы. Returns: MessagesSendResponse: Результат запроса. """ _check_event_type(self.object.type) return await self.api_ctx.messages.set_activity( user_id=user_id, type=type, peer_id=self.object.object.message.peer_id, group_id=group_id, ) async def callback_answer(self, event_data: str) -> BaseOkResponse: """Ответ на нажатие callback кнопки. Args: event_data (Dict[str, str]): [описание данных](https://vk.com/dev/bots_docs_5?f=4.4.%2BCallback-%D0%BA%D0%BD%D0%BE%D0%BF%D0%BA%D0%B8) для ответа на callback Raises: RuntimeError: Если вызван, когда событие не MessageEvent типа. Returns: BaseOkResponse: Результат запроса """ if self.object.type != BotEventType.MESSAGE_EVENT: raise RuntimeError("You cant use event.callback_answer() with this event") return await self.api_ctx.messages.send_message_event_answer( user_id=self.object.object.user_id, peer_id=self.object.object.peer_id, event_id=self.object.object.event_id, event_data=event_data, ) class SimpleBotCallback(BaseCallback): def __init__( self, func: Any, bot_type: BotType, event_type: Type[Union[SimpleUserEvent, SimpleBotEvent]] ): self.bot_type = bot_type self.func = callback_caster.cast(func) self.event_type = event_type async def execute(self, event: Union[UserEvent, BotEvent]) -> Any: if self.bot_type is BotType.BOT: new_event = self.event_type(event) else: new_event = self.event_type(event) return await self.func.execute(new_event) def __repr__(self): return f"<SimpleBotCallback {self.func.__name__} bot_type={self.bot_type}>" def simple_bot_handler(router, event: Optional[Type[SimpleBotEvent]] = None, *filters: BaseFilter): """ Handler for all bot events """ def decorator(func: Callable[..., Any]): record = router.registrar.new() record.with_filters(*filters) record.handle(SimpleBotCallback(func, BotType.BOT, event or SimpleBotEvent)) router.registrar.register(record.ready()) return func return decorator def simple_user_handler(router, *filters: BaseFilter, event: Optional[Type[SimpleUserEvent]] = None): """ Handler for all user events """ def decorator(func: Callable[..., Any]): record = router.registrar.new() record.with_filters(*filters) record.handle(SimpleBotCallback(func, BotType.USER, event or SimpleUserEvent)) router.registrar.register(record.ready()) return func return decorator def simple_bot_message_handler(router, *filters: BaseFilter, event: Optional[Type[SimpleBotEvent]] = None): """ Handler only for message events """ def decorator(func: Callable[..., Any]): record = router.registrar.new() record.with_filters(*filters) record.filters.append(EventTypeFilter(BotEventType.MESSAGE_NEW)) record.handle(SimpleBotCallback(func, BotType.BOT, event or SimpleBotEvent)) router.registrar.register(record.ready()) return func return decorator def simple_user_message_handler(router, *filters: BaseFilter, event: Optional[Type[SimpleUserEvent]] = None): """ Handler only for message events """ def decorator(func: Callable[..., Any]): record = router.registrar.new() record.with_filters(*filters) record.filters.append(EventTypeFilter(EventId.MESSAGE_EVENT.value)) record.handle(SimpleBotCallback(func, BotType.USER, event or SimpleUserEvent)) router.registrar.register(record.ready()) return func return decorator
37.195938
335
0.615039
29,848
0.901181
0
0
2,587
0.078108
24,244
0.731983
9,269
0.279853
c074c692de4483f97d3f233f58a66ad3a9239b2d
1,337
py
Python
src/scs_core/osio/data/message_body.py
seoss/scs_core
0d4323c5697a39eb44a887f179ba5dca3716c1d2
[ "MIT" ]
3
2019-03-12T01:59:58.000Z
2020-09-12T07:27:42.000Z
src/scs_core/osio/data/message_body.py
seoss/scs_core
0d4323c5697a39eb44a887f179ba5dca3716c1d2
[ "MIT" ]
1
2018-04-20T07:58:38.000Z
2021-03-27T08:52:45.000Z
src/scs_core/osio/data/message_body.py
seoss/scs_core
0d4323c5697a39eb44a887f179ba5dca3716c1d2
[ "MIT" ]
4
2017-09-29T13:08:43.000Z
2019-10-09T09:13:58.000Z
""" Created on 7 Nov 2016 @author: Bruno Beloff ([email protected]) example: 25 June 2016 17:44:28 BST: {"datum":{"conc":92,"dens":184},"measured-at":"2016-06-25T17:41:01+01:00"} """ from collections import OrderedDict from scs_core.data.json import JSONable # -------------------------------------------------------------------------------------------------------------------- class MessageBody(JSONable): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- def __init__(self, data): """ Constructor """ self.__data = data # string # ---------------------------------------------------------------------------------------------------------------- def as_json(self): jdict = OrderedDict() jdict['data'] = self.data return jdict # ---------------------------------------------------------------------------------------------------------------- @property def data(self): return self.__data # ---------------------------------------------------------------------------------------------------------------- def __str__(self, *args, **kwargs): return "MessageBody:{data:%s}" % self.data
25.711538
118
0.324607
934
0.698579
0
0
56
0.041885
0
0
872
0.652206
c078fecfd19302ee3b513baaaa01bf856eb712e7
24,154
py
Python
pysnmp/CISCO-FC-PM-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/CISCO-FC-PM-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/CISCO-FC-PM-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module CISCO-FC-PM-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-FC-PM-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:40:52 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ValueRangeConstraint, ConstraintsUnion, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueRangeConstraint", "ConstraintsUnion", "SingleValueConstraint", "ValueSizeConstraint") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") PerfIntervalCount, PerfCurrentCount, PerfTotalCount = mibBuilder.importSymbols("PerfHist-TC-MIB", "PerfIntervalCount", "PerfCurrentCount", "PerfTotalCount") ModuleCompliance, NotificationGroup, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "ObjectGroup") iso, Bits, ModuleIdentity, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Integer32, NotificationType, Counter32, Gauge32, IpAddress, Unsigned32, Counter64, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "Bits", "ModuleIdentity", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Integer32", "NotificationType", "Counter32", "Gauge32", "IpAddress", "Unsigned32", "Counter64", "TimeTicks") TextualConvention, TruthValue, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "TruthValue", "DisplayString") ciscoFcPmMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 99997)) ciscoFcPmMIB.setRevisions(('2005-02-06 00:00',)) if mibBuilder.loadTexts: ciscoFcPmMIB.setLastUpdated('200502060000Z') if mibBuilder.loadTexts: ciscoFcPmMIB.setOrganization('Cisco Systems, Inc.') ciscoFcPmMIBNotifs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 0)) ciscoFcPmMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1)) ciscoFcPmMIBConform = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2)) cfcpmPortPerfStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 1)) cfcpmPortErrorStatusBlock = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2)) cfcpmPortPerfStatusTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 1, 1), ) if mibBuilder.loadTexts: cfcpmPortPerfStatusTable.setStatus('current') cfcpmPortPerfStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: cfcpmPortPerfStatusEntry.setStatus('current') cfcpmTimeElapsed = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 899))).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmTimeElapsed.setStatus('current') cfcpmValidIntervals = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 1, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 96))).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmValidIntervals.setStatus('current') cfcpmInvalidIntervals = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 96))).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmInvalidIntervals.setStatus('current') cfcpmTotalPortErrorTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1), ) if mibBuilder.loadTexts: cfcpmTotalPortErrorTable.setStatus('current') cfcpmTotalPortErrorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: cfcpmTotalPortErrorEntry.setStatus('current') cfcpmtPortRxLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 1), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortRxLinkResets.setStatus('current') cfcpmtPortTxLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 2), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortTxLinkResets.setStatus('current') cfcpmtPortLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 3), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortLinkResets.setStatus('current') cfcpmtPortRxOfflineSequences = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 4), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortRxOfflineSequences.setStatus('current') cfcpmtPortTxOfflineSequences = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 5), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortTxOfflineSequences.setStatus('current') cfcpmtPortLinkFailures = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 6), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortLinkFailures.setStatus('current') cfcpmtPortSynchLosses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 7), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortSynchLosses.setStatus('current') cfcpmtPortSignalLosses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 8), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortSignalLosses.setStatus('current') cfcpmtPortPrimSeqProtocolErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 9), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortPrimSeqProtocolErrors.setStatus('current') cfcpmtPortInvalidTxWords = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 10), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortInvalidTxWords.setStatus('current') cfcpmtPortInvalidCRCs = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 11), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortInvalidCRCs.setStatus('current') cfcpmtPortInvalidOrderedSets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 12), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortInvalidOrderedSets.setStatus('current') cfcpmtPortFramesTooLong = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 13), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortFramesTooLong.setStatus('current') cfcpmtPortTruncatedFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 14), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortTruncatedFrames.setStatus('current') cfcpmtPortAddressErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 15), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortAddressErrors.setStatus('current') cfcpmtPortDelimiterErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 16), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortDelimiterErrors.setStatus('current') cfcpmtPortEncDisparityErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 17), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortEncDisparityErrors.setStatus('current') cfcpmtPortOtherErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 1, 1, 18), PerfTotalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmtPortOtherErrors.setStatus('current') cfcpmCurrentPortErrorTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2), ) if mibBuilder.loadTexts: cfcpmCurrentPortErrorTable.setStatus('current') cfcpmCurrentPortErrorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: cfcpmCurrentPortErrorEntry.setStatus('current') cfcpmcPortRxLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 1), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortRxLinkResets.setStatus('current') cfcpmcPortTxLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 2), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortTxLinkResets.setStatus('current') cfcpmcPortLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 3), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortLinkResets.setStatus('current') cfcpmcPortRxOfflineSequences = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 4), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortRxOfflineSequences.setStatus('current') cfcpmcPortTxOfflineSequences = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 5), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortTxOfflineSequences.setStatus('current') cfcpmcPortLinkFailures = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 6), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortLinkFailures.setStatus('current') cfcpmcPortSynchLosses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 7), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortSynchLosses.setStatus('current') cfcpmcPortSignalLosses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 8), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortSignalLosses.setStatus('current') cfcpmcPortPrimSeqProtocolErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 9), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortPrimSeqProtocolErrors.setStatus('current') cfcpmcPortInvalidTxWords = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 10), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortInvalidTxWords.setStatus('current') cfcpmcPortInvalidCRCs = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 11), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortInvalidCRCs.setStatus('current') cfcpmcPortInvalidOrderedSets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 12), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortInvalidOrderedSets.setStatus('current') cfcpmcPortFramesTooLong = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 13), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortFramesTooLong.setStatus('current') cfcpmcPortTruncatedFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 14), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortTruncatedFrames.setStatus('current') cfcpmcPortAddressErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 15), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortAddressErrors.setStatus('current') cfcpmcPortDelimiterErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 16), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortDelimiterErrors.setStatus('current') cfcpmcPortEncDisparityErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 17), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortEncDisparityErrors.setStatus('current') cfcpmcPortOtherErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 2, 1, 18), PerfCurrentCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmcPortOtherErrors.setStatus('current') cfcpmIntervalPortErrorTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3), ) if mibBuilder.loadTexts: cfcpmIntervalPortErrorTable.setStatus('current') cfcpmIntervalPortErrorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "CISCO-FC-PM-MIB", "cfcpmiPortErrorIntervalNumber")) if mibBuilder.loadTexts: cfcpmIntervalPortErrorEntry.setStatus('current') cfcpmiPortErrorIntervalNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 96))) if mibBuilder.loadTexts: cfcpmiPortErrorIntervalNumber.setStatus('current') cfcpmiPortRxLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 2), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortRxLinkResets.setStatus('current') cfcpmiPortTxLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 3), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortTxLinkResets.setStatus('current') cfcpmiPortLinkResets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 4), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortLinkResets.setStatus('current') cfcpmiPortRxOfflineSequences = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 5), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortRxOfflineSequences.setStatus('current') cfcpmiPortTxOfflineSequences = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 6), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortTxOfflineSequences.setStatus('current') cfcpmiPortLinkFailures = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 7), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortLinkFailures.setStatus('current') cfcpmiPortSynchLosses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 8), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortSynchLosses.setStatus('current') cfcpmiPortSignalLosses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 9), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortSignalLosses.setStatus('current') cfcpmiPortPrimSeqProtocolErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 10), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortPrimSeqProtocolErrors.setStatus('current') cfcpmiPortInvalidTxWords = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 11), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortInvalidTxWords.setStatus('current') cfcpmiPortInvalidCRCs = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 12), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortInvalidCRCs.setStatus('current') cfcpmiPortInvalidOrderedSets = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 13), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortInvalidOrderedSets.setStatus('current') cfcpmiPortFramesTooLong = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 14), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortFramesTooLong.setStatus('current') cfcpmiPortTruncatedFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 15), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortTruncatedFrames.setStatus('current') cfcpmiPortAddressErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 16), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortAddressErrors.setStatus('current') cfcpmiPortDelimiterErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 17), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortDelimiterErrors.setStatus('current') cfcpmiPortEncDisparityErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 18), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortEncDisparityErrors.setStatus('current') cfcpmiPortOtherErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 19), PerfIntervalCount()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortOtherErrors.setStatus('current') cfcpmiPortValidData = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 99997, 1, 2, 3, 1, 20), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: cfcpmiPortValidData.setStatus('current') cfcpmMibCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2, 1)) cfcpmMibGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2, 2)) cfcpmMibCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2, 1, 1)).setObjects(("CISCO-FC-PM-MIB", "cfcpmPortStatusGroup"), ("CISCO-FC-PM-MIB", "cfcpmMandatoryGroup"), ("CISCO-FC-PM-MIB", "cfcpmOptionalGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cfcpmMibCompliance = cfcpmMibCompliance.setStatus('current') cfcpmPortStatusGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2, 2, 1)).setObjects(("CISCO-FC-PM-MIB", "cfcpmTimeElapsed"), ("CISCO-FC-PM-MIB", "cfcpmValidIntervals"), ("CISCO-FC-PM-MIB", "cfcpmInvalidIntervals")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cfcpmPortStatusGroup = cfcpmPortStatusGroup.setStatus('current') cfcpmMandatoryGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2, 2, 2)).setObjects(("CISCO-FC-PM-MIB", "cfcpmtPortPrimSeqProtocolErrors"), ("CISCO-FC-PM-MIB", "cfcpmcPortPrimSeqProtocolErrors"), ("CISCO-FC-PM-MIB", "cfcpmiPortPrimSeqProtocolErrors"), ("CISCO-FC-PM-MIB", "cfcpmiPortValidData")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cfcpmMandatoryGroup = cfcpmMandatoryGroup.setStatus('current') cfcpmOptionalGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 99997, 2, 2, 3)).setObjects(("CISCO-FC-PM-MIB", "cfcpmtPortRxLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmtPortTxLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmtPortLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmtPortRxOfflineSequences"), ("CISCO-FC-PM-MIB", "cfcpmtPortTxOfflineSequences"), ("CISCO-FC-PM-MIB", "cfcpmtPortLinkFailures"), ("CISCO-FC-PM-MIB", "cfcpmtPortSynchLosses"), ("CISCO-FC-PM-MIB", "cfcpmtPortSignalLosses"), ("CISCO-FC-PM-MIB", "cfcpmtPortInvalidTxWords"), ("CISCO-FC-PM-MIB", "cfcpmtPortInvalidCRCs"), ("CISCO-FC-PM-MIB", "cfcpmtPortInvalidOrderedSets"), ("CISCO-FC-PM-MIB", "cfcpmtPortFramesTooLong"), ("CISCO-FC-PM-MIB", "cfcpmtPortTruncatedFrames"), ("CISCO-FC-PM-MIB", "cfcpmtPortAddressErrors"), ("CISCO-FC-PM-MIB", "cfcpmtPortDelimiterErrors"), ("CISCO-FC-PM-MIB", "cfcpmtPortEncDisparityErrors"), ("CISCO-FC-PM-MIB", "cfcpmtPortOtherErrors"), ("CISCO-FC-PM-MIB", "cfcpmcPortRxLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmcPortTxLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmcPortLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmcPortRxOfflineSequences"), ("CISCO-FC-PM-MIB", "cfcpmcPortTxOfflineSequences"), ("CISCO-FC-PM-MIB", "cfcpmcPortLinkFailures"), ("CISCO-FC-PM-MIB", "cfcpmcPortSynchLosses"), ("CISCO-FC-PM-MIB", "cfcpmcPortSignalLosses"), ("CISCO-FC-PM-MIB", "cfcpmcPortInvalidTxWords"), ("CISCO-FC-PM-MIB", "cfcpmcPortInvalidCRCs"), ("CISCO-FC-PM-MIB", "cfcpmcPortInvalidOrderedSets"), ("CISCO-FC-PM-MIB", "cfcpmcPortFramesTooLong"), ("CISCO-FC-PM-MIB", "cfcpmcPortTruncatedFrames"), ("CISCO-FC-PM-MIB", "cfcpmcPortAddressErrors"), ("CISCO-FC-PM-MIB", "cfcpmcPortDelimiterErrors"), ("CISCO-FC-PM-MIB", "cfcpmcPortEncDisparityErrors"), ("CISCO-FC-PM-MIB", "cfcpmcPortOtherErrors"), ("CISCO-FC-PM-MIB", "cfcpmiPortRxLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmiPortTxLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmiPortLinkResets"), ("CISCO-FC-PM-MIB", "cfcpmiPortRxOfflineSequences"), ("CISCO-FC-PM-MIB", "cfcpmiPortTxOfflineSequences"), ("CISCO-FC-PM-MIB", "cfcpmiPortLinkFailures"), ("CISCO-FC-PM-MIB", "cfcpmiPortSynchLosses"), ("CISCO-FC-PM-MIB", "cfcpmiPortSignalLosses"), ("CISCO-FC-PM-MIB", "cfcpmiPortInvalidTxWords"), ("CISCO-FC-PM-MIB", "cfcpmiPortInvalidCRCs"), ("CISCO-FC-PM-MIB", "cfcpmiPortInvalidOrderedSets"), ("CISCO-FC-PM-MIB", "cfcpmiPortFramesTooLong"), ("CISCO-FC-PM-MIB", "cfcpmiPortTruncatedFrames"), ("CISCO-FC-PM-MIB", "cfcpmiPortAddressErrors"), ("CISCO-FC-PM-MIB", "cfcpmiPortDelimiterErrors"), ("CISCO-FC-PM-MIB", "cfcpmiPortEncDisparityErrors"), ("CISCO-FC-PM-MIB", "cfcpmiPortOtherErrors")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cfcpmOptionalGroup = cfcpmOptionalGroup.setStatus('current') mibBuilder.exportSymbols("CISCO-FC-PM-MIB", cfcpmtPortSynchLosses=cfcpmtPortSynchLosses, cfcpmPortStatusGroup=cfcpmPortStatusGroup, cfcpmtPortFramesTooLong=cfcpmtPortFramesTooLong, cfcpmtPortTxLinkResets=cfcpmtPortTxLinkResets, cfcpmcPortTxOfflineSequences=cfcpmcPortTxOfflineSequences, cfcpmiPortRxOfflineSequences=cfcpmiPortRxOfflineSequences, cfcpmcPortInvalidCRCs=cfcpmcPortInvalidCRCs, cfcpmcPortInvalidOrderedSets=cfcpmcPortInvalidOrderedSets, cfcpmtPortEncDisparityErrors=cfcpmtPortEncDisparityErrors, cfcpmcPortPrimSeqProtocolErrors=cfcpmcPortPrimSeqProtocolErrors, cfcpmTimeElapsed=cfcpmTimeElapsed, cfcpmMibCompliances=cfcpmMibCompliances, cfcpmiPortPrimSeqProtocolErrors=cfcpmiPortPrimSeqProtocolErrors, cfcpmInvalidIntervals=cfcpmInvalidIntervals, cfcpmcPortSynchLosses=cfcpmcPortSynchLosses, cfcpmValidIntervals=cfcpmValidIntervals, cfcpmiPortEncDisparityErrors=cfcpmiPortEncDisparityErrors, cfcpmMibGroups=cfcpmMibGroups, cfcpmcPortRxOfflineSequences=cfcpmcPortRxOfflineSequences, cfcpmMibCompliance=cfcpmMibCompliance, cfcpmPortPerfStatusEntry=cfcpmPortPerfStatusEntry, cfcpmiPortValidData=cfcpmiPortValidData, cfcpmtPortRxOfflineSequences=cfcpmtPortRxOfflineSequences, cfcpmIntervalPortErrorEntry=cfcpmIntervalPortErrorEntry, cfcpmPortErrorStatusBlock=cfcpmPortErrorStatusBlock, ciscoFcPmMIBConform=ciscoFcPmMIBConform, cfcpmcPortSignalLosses=cfcpmcPortSignalLosses, cfcpmOptionalGroup=cfcpmOptionalGroup, cfcpmPortPerfStatusTable=cfcpmPortPerfStatusTable, cfcpmtPortRxLinkResets=cfcpmtPortRxLinkResets, PYSNMP_MODULE_ID=ciscoFcPmMIB, cfcpmTotalPortErrorEntry=cfcpmTotalPortErrorEntry, cfcpmtPortLinkResets=cfcpmtPortLinkResets, cfcpmiPortRxLinkResets=cfcpmiPortRxLinkResets, cfcpmiPortSignalLosses=cfcpmiPortSignalLosses, cfcpmiPortInvalidTxWords=cfcpmiPortInvalidTxWords, cfcpmcPortAddressErrors=cfcpmcPortAddressErrors, cfcpmiPortErrorIntervalNumber=cfcpmiPortErrorIntervalNumber, cfcpmIntervalPortErrorTable=cfcpmIntervalPortErrorTable, cfcpmiPortDelimiterErrors=cfcpmiPortDelimiterErrors, cfcpmPortPerfStatus=cfcpmPortPerfStatus, cfcpmcPortLinkFailures=cfcpmcPortLinkFailures, cfcpmCurrentPortErrorEntry=cfcpmCurrentPortErrorEntry, cfcpmiPortInvalidCRCs=cfcpmiPortInvalidCRCs, cfcpmcPortEncDisparityErrors=cfcpmcPortEncDisparityErrors, cfcpmiPortFramesTooLong=cfcpmiPortFramesTooLong, cfcpmtPortLinkFailures=cfcpmtPortLinkFailures, cfcpmcPortOtherErrors=cfcpmcPortOtherErrors, cfcpmtPortOtherErrors=cfcpmtPortOtherErrors, cfcpmcPortInvalidTxWords=cfcpmcPortInvalidTxWords, cfcpmiPortInvalidOrderedSets=cfcpmiPortInvalidOrderedSets, cfcpmtPortInvalidTxWords=cfcpmtPortInvalidTxWords, cfcpmiPortTxLinkResets=cfcpmiPortTxLinkResets, cfcpmtPortTruncatedFrames=cfcpmtPortTruncatedFrames, ciscoFcPmMIBNotifs=ciscoFcPmMIBNotifs, cfcpmtPortAddressErrors=cfcpmtPortAddressErrors, cfcpmcPortLinkResets=cfcpmcPortLinkResets, cfcpmiPortOtherErrors=cfcpmiPortOtherErrors, cfcpmcPortDelimiterErrors=cfcpmcPortDelimiterErrors, cfcpmCurrentPortErrorTable=cfcpmCurrentPortErrorTable, cfcpmiPortTruncatedFrames=cfcpmiPortTruncatedFrames, cfcpmcPortTxLinkResets=cfcpmcPortTxLinkResets, cfcpmtPortInvalidOrderedSets=cfcpmtPortInvalidOrderedSets, cfcpmMandatoryGroup=cfcpmMandatoryGroup, cfcpmcPortTruncatedFrames=cfcpmcPortTruncatedFrames, ciscoFcPmMIBObjects=ciscoFcPmMIBObjects, cfcpmiPortAddressErrors=cfcpmiPortAddressErrors, cfcpmiPortLinkFailures=cfcpmiPortLinkFailures, cfcpmiPortTxOfflineSequences=cfcpmiPortTxOfflineSequences, cfcpmtPortTxOfflineSequences=cfcpmtPortTxOfflineSequences, cfcpmiPortLinkResets=cfcpmiPortLinkResets, cfcpmtPortDelimiterErrors=cfcpmtPortDelimiterErrors, cfcpmtPortSignalLosses=cfcpmtPortSignalLosses, ciscoFcPmMIB=ciscoFcPmMIB, cfcpmtPortInvalidCRCs=cfcpmtPortInvalidCRCs, cfcpmTotalPortErrorTable=cfcpmTotalPortErrorTable, cfcpmtPortPrimSeqProtocolErrors=cfcpmtPortPrimSeqProtocolErrors, cfcpmiPortSynchLosses=cfcpmiPortSynchLosses, cfcpmcPortRxLinkResets=cfcpmcPortRxLinkResets, cfcpmcPortFramesTooLong=cfcpmcPortFramesTooLong)
137.238636
3,967
0.770928
0
0
0
0
0
0
0
0
5,014
0.207585
c078ff18aa77981230542dee77a093f9d2cdb667
13,841
py
Python
layer_manager/models.py
lueho/BRIT
1eae630c4da6f072aa4e2139bc406db4f4756391
[ "MIT" ]
null
null
null
layer_manager/models.py
lueho/BRIT
1eae630c4da6f072aa4e2139bc406db4f4756391
[ "MIT" ]
4
2022-03-29T20:52:31.000Z
2022-03-29T20:52:31.000Z
layer_manager/models.py
lueho/BRIT
1eae630c4da6f072aa4e2139bc406db4f4756391
[ "MIT" ]
null
null
null
import django.contrib.gis.db.models as gis_models from django.apps import apps from django.db import models, connection from django.urls import reverse from distributions.models import TemporalDistribution, Timestep from inventories.models import Scenario, InventoryAlgorithm from materials.models import SampleSeries, MaterialComponent from .exceptions import InvalidGeometryType, NoFeaturesProvided, TableAlreadyExists class LayerField(models.Model): """ Holds all field definitions of GIS layers. Used to recreate a dynamically created model in case it is lost from the apps registry. """ field_name = models.CharField(max_length=63) data_type = models.CharField(max_length=10) def data_type_object(self): if self.data_type == 'float': return models.FloatField() elif self.data_type == 'int': return models.IntegerField() @staticmethod def model_field_type(data_type: str): if data_type == 'float': return models.FloatField(blank=True, null=True) elif data_type == 'int': return models.IntegerField(blank=True, null=True) elif data_type == 'str': return models.CharField(blank=True, null=True, max_length=200) class LayerManager(models.Manager): supported_geometry_types = ['Point', 'MultiPoint', 'LineString', 'MultiLineString', 'Polygon', 'MultiPolygon', ] def create_or_replace(self, **kwargs): results = kwargs.pop('results') if 'features' not in results or len(results['features']) == 0: raise NoFeaturesProvided(results) else: features = results['features'] fields = {} # The data types of the fields are detected from their content. Any column that has only null values # will be omitted completely if features: fields_with_unknown_datatype = list(features[0].keys()) for feature in features: if not fields_with_unknown_datatype: break for key, value in feature.items(): if feature[key] and key in fields_with_unknown_datatype: fields[key] = type(value).__name__ fields_with_unknown_datatype.remove(key) # At this point there might be fields left out because there were only null values from which the # data type could be detected. They should be omitted but this information should be logged # TODO: add omitted columns info to log kwargs['geom_type'] = fields.pop('geom') if kwargs['geom_type'] not in self.supported_geometry_types: raise InvalidGeometryType(kwargs['geom_type']) kwargs['table_name'] = 'result_of_scenario_' + \ str(kwargs['scenario'].id) + '_algorithm_' + \ str(kwargs['algorithm'].id) + '_feedstock_' + \ str(kwargs['feedstock'].id) layer, created = super().get_or_create(table_name=kwargs['table_name'], defaults=kwargs) if created: layer.add_layer_fields(fields) feature_collection = layer.update_or_create_feature_collection() layer.create_feature_table() else: if layer.is_defined_by(fields=fields, **kwargs): feature_collection = layer.get_feature_collection() feature_collection.objects.all().delete() else: layer.delete() layer = super().create(**kwargs) layer.add_layer_fields(fields) feature_collection = layer.update_or_create_feature_collection() layer.create_feature_table() layer.delete_aggregated_values() for feature in features: feature_collection.objects.create(**feature) if 'aggregated_values' in results: layer.add_aggregated_values(results['aggregated_values']) if 'aggregated_distributions' in results: layer.add_aggregated_distributions(results['aggregated_distributions']) return layer, feature_collection class Layer(models.Model): """ Registry of all created layers. This main model holds all meta information about each layer. When a new layer record is created, another custom model named "features collection" is automatically generated, preserving the original shape of the gis source dataset as much as required. The feature collection can be used to manage the actual features of the layer. It will create a separate database table with the name given in "table_name" to store the features. """ name = models.CharField(max_length=56) geom_type = models.CharField(max_length=20) table_name = models.CharField(max_length=200) scenario = models.ForeignKey(Scenario, on_delete=models.CASCADE) feedstock = models.ForeignKey(SampleSeries, on_delete=models.CASCADE) algorithm = models.ForeignKey(InventoryAlgorithm, on_delete=models.CASCADE) layer_fields = models.ManyToManyField(LayerField) objects = LayerManager() class Meta: constraints = [ models.UniqueConstraint(fields=['table_name'], name='unique table_name') ] def add_aggregated_values(self, aggregates: []): for aggregate in aggregates: LayerAggregatedValue.objects.create(name=aggregate['name'], value=aggregate['value'], unit=aggregate['unit'], layer=self) def add_aggregated_distributions(self, distributions): for distribution in distributions: dist = TemporalDistribution.objects.get(id=distribution['distribution']) aggdist = LayerAggregatedDistribution.objects.create(name=distribution['name'], distribution=dist, layer=self) for dset in distribution['sets']: distset = DistributionSet.objects.create( aggregated_distribution=aggdist, timestep_id=dset['timestep'] ) for share in dset['shares']: DistributionShare.objects.create( component_id=share['component'], average=share['average'], standard_deviation=0.0, # TODO distribution_set=distset ) def add_layer_fields(self, fields: dict): for field_name, data_type in fields.items(): field, created = LayerField.objects.get_or_create(field_name=field_name, data_type=data_type) self.layer_fields.add(field) def as_dict(self): return { 'name': self.name, 'geom_type': self.geom_type, 'table_name': self.table_name, 'scenario': self.scenario, 'feedstock': self.feedstock, 'inventory_algorithm': self.algorithm, 'layer_fields': [field for field in self.layer_fields.all()], 'aggregated_results': [ {'name': aggregate.name, 'value': int(aggregate.value), 'unit': aggregate.unit} for aggregate in self.layeraggregatedvalue_set.all() ] } def update_or_create_feature_collection(self): """ Dynamically creates model connected to this layer instance that is used to handle its features and store them in a separate custom database table. """ # Empty app registry from any previous version of this model model_name = self.table_name if model_name in apps.all_models['layer_manager']: del apps.all_models['layer_manager'][model_name] attrs = { '__module__': 'layer_manager.models', 'geom': getattr(gis_models, self.geom_type + 'Field')(srid=4326) } # Add all custom columns to model for field in self.layer_fields.all(): attrs[field.field_name] = LayerField.model_field_type(field.data_type) # Create model class and assign table_name model = type(model_name, (models.Model,), attrs) model._meta.layer = self model._meta.db_table = self.table_name return model def create_feature_table(self): """ Creates a new table with all given fields from a model :return: """ feature_collection = self.get_feature_collection() # Check if any table of the name already exists with connection.cursor() as cursor: cursor.execute(f"SELECT to_regclass('{feature_collection._meta.db_table}')") if cursor.fetchone()[0]: raise TableAlreadyExists # After cleanup, now create the new version of the result table with connection.schema_editor() as schema_editor: schema_editor.create_model(feature_collection) def feature_table_url(self): return reverse('scenario_result_map', kwargs={'pk': self.scenario.id, 'algo_pk': self.algorithm.id}) def delete(self, **kwargs): self.delete_feature_table() del apps.all_models['layer_manager'][self.table_name] super().delete() def delete_feature_table(self): """ Deletes a table from a given model :return: """ feature_collection = self.get_feature_collection() with connection.cursor() as cursor: cursor.execute(f"SELECT to_regclass('{feature_collection._meta.db_table}')") if cursor.fetchone()[0] is None: return with connection.schema_editor() as schema_editor: schema_editor.delete_model(feature_collection) def delete_aggregated_values(self): LayerAggregatedValue.objects.filter(layer=self).delete() def get_feature_collection(self): """ Returns the feature collection model that is used to manage the features connected to this layer. """ # If the model is already registered, return original model if self.table_name in apps.all_models['layer_manager']: return apps.all_models['layer_manager'][self.table_name] else: return self.update_or_create_feature_collection() def is_defined_by(self, **kwargs): fields = {field.field_name: field.data_type for field in self.layer_fields.all()} comparisons = [ self.table_name == kwargs['table_name'], self.geom_type == kwargs['geom_type'], self.scenario == kwargs['scenario'], self.algorithm == kwargs['algorithm'], fields == kwargs['fields'] ] return all(comparisons) class LayerAggregatedValue(models.Model): """ Class to hold all aggregated results from a result layer """ name = models.CharField(max_length=63) value = models.FloatField() unit = models.CharField(max_length=15, blank=True, null=True, default='') layer = models.ForeignKey(Layer, on_delete=models.CASCADE) DISTRIBUTION_TYPES = ( ('seasonal', 'seasonal'), # Assumes array with length 12 for each month of the year ) class LayerAggregatedDistribution(models.Model): """ Holds desired aggregated distributions for a layer. Intended for seasonal distributions broken down to feedstock components but any other distribution works as well. """ name = models.CharField(max_length=255, null=True) type = models.CharField(max_length=255, choices=DISTRIBUTION_TYPES, null=True) distribution = models.ForeignKey(TemporalDistribution, on_delete=models.CASCADE, null=True) layer = models.ForeignKey(Layer, on_delete=models.CASCADE, null=True) @property def shares(self): return DistributionShare.objects.filter(distribution_set__aggregated_distribution=self) @property def components(self): return MaterialComponent.objects.filter( id__in=[share['component'] for share in self.shares.values('component').distinct()] ) @property def serialized(self): dist = [] for component in self.components: component_dist = { 'label': component.name, 'data': {}, 'unit': 'Mg/a' } # data = {} for timestep in self.distribution.timestep_set.all(): try: # TODO: find better way to deal with the fact that there is not a value for every component/timestep combination share = self.shares.get(component=component, distribution_set__timestep=timestep) component_dist['data'][timestep.name] = share.average except: pass # component_dist['data'].append(data) dist.append(component_dist) return dist class DistributionSet(models.Model): timestep = models.ForeignKey(Timestep, on_delete=models.CASCADE, null=True) aggregated_distribution = models.ForeignKey(LayerAggregatedDistribution, on_delete=models.CASCADE, null=True) class DistributionShare(models.Model): distribution_set = models.ForeignKey(DistributionSet, on_delete=models.CASCADE) component = models.ForeignKey(MaterialComponent, on_delete=models.CASCADE, null=True) average = models.FloatField() standard_deviation = models.DecimalField(decimal_places=2, max_digits=5)
40.589443
134
0.627556
13,282
0.959613
0
0
1,468
0.106062
0
0
3,263
0.235749
c07be394b73091661999efe65e37d5d6f073209b
4,205
py
Python
src/evaluation/regression.py
lyonva/Nue
90680de00b0c76f6bfdbed71b785671e7c3a3f54
[ "Apache-2.0" ]
null
null
null
src/evaluation/regression.py
lyonva/Nue
90680de00b0c76f6bfdbed71b785671e7c3a3f54
[ "Apache-2.0" ]
null
null
null
src/evaluation/regression.py
lyonva/Nue
90680de00b0c76f6bfdbed71b785671e7c3a3f54
[ "Apache-2.0" ]
null
null
null
from evaluation import MetricScorer from .formulas import mar, sa, sd, sdar, effect_size, mmre, mdmre, pred25, pred40 from baseline import MARP0 class MAR(MetricScorer): def setConstants(self): self.name = "mar" self.problem = "regression" self.greater_is_better = False self.lo = 0 self.hi = 20000 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return mar(self, y_true, y_pred) class SDAR(MetricScorer): def setConstants(self): self.name = "sdar" self.problem = "regression" self.greater_is_better = False self.lo = 0 self.hi = 200000 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return sdar(self, y_true, y_pred) class SA(MetricScorer): def setConstants(self): self.name = "sa" self.problem = "regression" self.greater_is_better = True self.lo = 0 self.hi = 1 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return sa(self, y_true, y_pred) class SD(MetricScorer): def setConstants(self): self.name = "sd" self.problem = "regression" self.greater_is_better = True self.lo = 0 self.hi = 1 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return sd(self, y_true, y_pred) class EFFECTSIZE(MetricScorer): def setConstants(self): self.name = "effect size" self.problem = "regression" self.greater_is_better = True self.lo = 0 self.hi = 1 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return effect_size(self, y_true, y_pred) class MMRE(MetricScorer): def setConstants(self): self.name = "mmre" self.problem = "regression" self.greater_is_better = False self.lo = 0 self.hi = 20000 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return mmre(self, y_true, y_pred) class MdMRE(MetricScorer): def setConstants(self): self.name = "mdmre" self.problem = "regression" self.greater_is_better = False self.lo = 0 self.hi = 20000 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return mdmre(self, y_true, y_pred) class PRED25(MetricScorer): def setConstants(self): self.name = "pred25" self.problem = "regression" self.greater_is_better = True self.lo = 0 self.hi = 1 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return pred25(self, y_true, y_pred) class PRED40(MetricScorer): def setConstants(self): self.name = "pred40" self.problem = "regression" self.greater_is_better = True self.lo = 0 self.hi = 1 # Not really, but upped bound is infinity self.baseline = MARP0 self.unifeature = False self.composite = None def _score_func(self, y_true, y_pred, X=None, estimator=None): return pred40(self, y_true, y_pred)
31.616541
81
0.617122
4,039
0.960523
0
0
0
0
0
0
538
0.127943
c07ca44e33380193eabc6f8bec1ebe24f8d013c9
8,212
py
Python
bin/CAD/Abaqus/AbaqusGeometry.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
null
null
null
bin/CAD/Abaqus/AbaqusGeometry.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
null
null
null
bin/CAD/Abaqus/AbaqusGeometry.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
null
null
null
""" AbaqusGeometry.py For use with Abaqus 6.13-1 (Python 2.6.2). Created by Ozgur Yapar <[email protected]> Robert Boyles <[email protected]> - Includes modules which take care of geometrical operations in the part and assembly level. """ import re import math from numpy import array, cross, transpose, vstack, dot from abaqusConstants import * import numpy.linalg as LA import string as STR def regexFriendly(inString): """ Clean up coordinates read from STEP file, prior to applying regular expressions. """ outString = STR.replace(inString, '\'', '%') outString = STR.replace(outString, '(', '') outString = STR.replace(outString, ')', ',') return outString def coordinate(stepString): """ Extract tuple of cartesian coordinates from STEP coordinate string. """ e = re.compile(',\S+,,') # regular expression coordFind = e.search(stepString) # extract substring containing coordinates coordList = coordFind.group(0).strip(',').split(',') # separate x, y, and z coordinates by commas coords = (float(coordList[0]), float(coordList[1]), float(coordList[2])) # convert coordinate strings to a tuple of floats return coords # return the coordinate tuple # calculates transformation matrix between two coordinate systems as defined in STEP def get3DTransformArray(fromDir1, fromDir2, toDir1, toDir2): """ Calculate transformation matrix between two coordinate systems as defined in STEP. """ fromDir1 = array(fromDir1) # convert u1 vector to an array object fromDir2 = array(fromDir2) # convert u2 vector to an array object fromDir3 = cross(fromDir1, fromDir2) # extrapolate u3 vector from u1 and u2 toDir1 = array(toDir1) # convert v1 vector to an array object toDir2 = array(toDir2) # convert v2 vector to an array object toDir3 = cross(toDir1, toDir2) # extrapolate v3 vector from v1 and v2 inva = LA.inv(transpose(vstack([fromDir1, fromDir2, fromDir3]))) b = transpose(vstack([toDir1, toDir2, toDir3])) transformArray = dot(b, inva) return transformArray def unv(center, planarA, planarB): """ Use vector operations to get unit normal vector, given a center coordinate and two planar coordinates. """ center = array(center) planarA = array(planarA) planarB = array(planarB) vA = planarA - center vB = planarB - center xV = cross(vA, vB) return xV/LA.norm(xV) def transCoord(fromCoord, transformArray, translationVector): """ Transform/translate a cartesian point from one coordinate system to another. """ vprod = dot(transformArray, fromCoord) vprod = vprod + translationVector toCoord = tuple(vprod) return toCoord def asmRecursion(asm, subAsms, asmParts): """ Recursively identifies parts in sub-assemblies, in the order they are imported from STEP. """ parts = [] try: for child in subAsms[asm]: if child in subAsms: parts.extend(asmRecursion(child, subAsms, asmParts)) else: parts.extend(asmParts[child]) except KeyError: pass if asm in asmParts: parts.extend(asmParts[asm]) return parts def coordTransform(localTMs, localTVs, asm, subAsms, asmParts, localCoords): """ Iterate through sub-assemblies and top-level parts to transform/translate every datum point to assembly coordinates; uses transCoord() Note: Ignores top-level datums in highest assembly, which will not exist in a CyPhy assembly anyway """ globalCoords = {} # create dictionary object to hold new point library if asm in subAsms: # if assembly has sub-assemblies: for subAsm in subAsms[asm]: # for each sub-assembly in the assembly: subCoords = coordTransform(localTMs, localTVs, subAsm, # get point library local to sub-assembly subAsms, asmParts, localCoords) for part in subCoords.keys(): # for each component in chosen sub-assembly: globalCoords.update([[part, {}]]) # create new entry in globalCoords for (point, coord) in subCoords[part].iteritems(): # for each point in part/sub-sub-assembly: globalCoords[part].update([[point.upper(), transCoord( # translate/transform point to globalCoords array(coord), localTMs[subAsm], localTVs[subAsm])]]) globalCoords.update([[subAsm, {}]]) # create entry for sub-assembly in globalCoords for (point, coord) in localCoords[subAsm].iteritems(): # for each point specified at top level of that sub-assembly: globalCoords[subAsm].update([[point.upper(), transCoord( # translate/transform point to globalCoords array(coord), localTMs[subAsm], localTVs[subAsm])]]) if asm in asmParts: # if assembly has top-level parts: for part in asmParts[asm]: # for each top-level part: globalCoords.update([[part, {}]]) # create new entry in globalCoords for (point, coord) in localCoords[part].iteritems(): # for each point in part: globalCoords[part].update([[point.upper(), transCoord( # translate/transform point to globalCoords array(coord), localTMs[part], localTVs[part])]]) return globalCoords def myMask(idnums): """ Produce mask string for getSequenceFromMask(...) from a feature ID or set of IDs. """ try: idnums = tuple(idnums) # make the input a tuple! except TypeError: # if input is not iterable: idnums = (idnums,) # make it a tuple anyway! powersum = 0 # integer to hold mask number for num in idnums: # iterating through input IDs: powersum += 2**num # add 2**ID to powersum rawmask = hex(powersum)[2:] # convert powermask to hexadecimal rawmask = STR.rstrip(rawmask, 'L') # strip "long" character, if necessary if max(idnums) < 32: # if hex number is 8 digits or less: mask = '[#' + rawmask + ' ]' # create mask else: # if hex number is >8 digits: maskpieces = [] # container for fragments of hex string piececount = int(math.ceil(len(rawmask)/8)) # number of times to split hex string for i in range(piececount): # for each split needed: maskpieces.append(rawmask[-8:]) # append last 8 characters of hex string to fragment list rawmask = rawmask[:-8] # trim last 8 characters from hex string maskpieces.append(rawmask) # append remaining hex string to fragment list mask = '[#' + STR.join(maskpieces, ' #') + ' ]' # join fragments, using the correct delimiters, to create mask return mask def toBC(constraint): """ Translates a degree of freedom as read from the XML to the appropriate SymbolicConstant. """ if constraint == 'FIXED': return 0 elif constraint == 'FREE': return UNSET else: return float(constraint)
53.673203
121
0.565392
0
0
0
0
0
0
0
0
3,163
0.385168
c07dacc643d713f89a754dcc9e2a89ae590b2576
2,143
py
Python
analysis/11-compress-jacobians.py
lmjohns3/cube-experiment
ab6d1a9df95efebc369d184ab1c748d73d5c3313
[ "MIT" ]
null
null
null
analysis/11-compress-jacobians.py
lmjohns3/cube-experiment
ab6d1a9df95efebc369d184ab1c748d73d5c3313
[ "MIT" ]
null
null
null
analysis/11-compress-jacobians.py
lmjohns3/cube-experiment
ab6d1a9df95efebc369d184ab1c748d73d5c3313
[ "MIT" ]
null
null
null
import climate import glob import gzip import io import lmj.cubes import logging import numpy as np import os import pandas as pd import pickle import theanets def compress(source, k, activation, **kwargs): fns = sorted(glob.glob(os.path.join(source, '*', '*_jac.csv.gz'))) logging.info('%s: found %d jacobians', source, len(fns)) # the clipping operation affects about 2% of jacobian values. dfs = [np.clip(pd.read_csv(fn, index_col='time').dropna(), -10, 10) for fn in fns] B, N = 128, dfs[0].shape[1] logging.info('loaded %s rows of %d-D data from %d files', sum(len(df) for df in dfs), N, len(dfs)) def batch(): batch = np.zeros((B, N), 'f') for b in range(B): a = np.random.randint(len(dfs)) batch[b] = dfs[a].iloc[np.random.randint(len(dfs[a])), :] return [batch] pca = theanets.Autoencoder([N, (k, activation), (N, 'tied')]) pca.train(batch, **kwargs) key = '{}_k{}'.format(activation, k) if 'hidden_l1' in kwargs: key += '_s{hidden_l1:.4f}'.format(**kwargs) for df, fn in zip(dfs, fns): df = pd.DataFrame(pca.encode(df.values.astype('f')), index=df.index) s = io.StringIO() df.to_csv(s, index_label='time') out = fn.replace('_jac', '_jac_' + key) with gzip.open(out, 'wb') as handle: handle.write(s.getvalue().encode('utf-8')) logging.info('%s: saved %s', out, df.shape) out = os.path.join(source, 'pca_{}.pkl'.format(key)) pickle.dump(pca, open(out, 'wb')) @climate.annotate( root='load data files from subject directories in this path', k=('compress to this many dimensions', 'option', None, int), activation=('use this activation function', 'option'), ) def main(root, k=1000, activation='relu'): for subject in lmj.cubes.Experiment(root).subjects: compress(subject.root, k, activation, momentum=0.9, hidden_l1=0.01, weight_l1=0.01, monitors={'hid1:out': (0.01, 0.1, 1, 10)}) if __name__ == '__main__': climate.call(main)
30.614286
76
0.591227
0
0
0
0
512
0.238917
0
0
422
0.19692
c07f103a6a6e92a6245209f932b8d90c064fd018
21,369
py
Python
commerce/views.py
zlkca/ehetuan-api
da84cd4429bd33e8fe191327ec267bf105f41453
[ "MIT" ]
1
2020-05-27T18:17:01.000Z
2020-05-27T18:17:01.000Z
commerce/views.py
zlkca/ehetuan-api
da84cd4429bd33e8fe191327ec267bf105f41453
[ "MIT" ]
6
2020-06-05T18:14:56.000Z
2021-09-07T23:53:08.000Z
commerce/views.py
zlkca/ehetuan-api
da84cd4429bd33e8fe191327ec267bf105f41453
[ "MIT" ]
null
null
null
import json import os import logging from datetime import datetime from django.db.models import Q,Count from django.http import JsonResponse from django.views.generic import View from django.views.decorators.csrf import csrf_exempt from django.utils.decorators import method_decorator from django.conf import settings from rest_framework_jwt.settings import api_settings from django.core.exceptions import ObjectDoesNotExist#EmptyResultSet, MultipleObjectsReturned from django.contrib.auth import get_user_model from commerce.models import Restaurant, Picture, Product, Category, Order, OrderItem, Style, PriceRange, FavoriteProduct from account.models import Province, City, Address from utils import to_json, obj_to_json, get_data_from_token logger = logging.getLogger(__name__) def processPictures(product, pictures): # pid --- product id # pictures --- dict that pass from the front end reindex = False pic = None for picture in pictures: try: pic = Picture.objects.get(product_id=product.id, index=picture['index']) except: pic = None if pic: if picture['status'] == 'removed': reindex = True rmPicture(pic) elif picture['status'] == 'changed': savePicture(product, pic, picture) pic.save() else:# new pic = Picture() savePicture(product, pic, picture) if reindex: reindexPicture(product.id) def savePicture(product, pic, picture): # product --- Product model object # pic --- Picture model object # picture --- dict from front end pic.index = picture['index'] pic.name = picture['name'] pic.product = product pic.image.save(picture['image'].name, picture['image'].file, True) pic.save() def getDefaultPicture(pictures): if pictures.count() == 0: return '' else: if pictures.count()>0 and pictures[0].image.name: return pictures[0].image.name else: return '' def rmPicture(pic): try: os.remove(pic.image.path) except: print('remove image failed') pic.image.delete() pic.delete() def reindexPicture(pid): # pid --- product id pics = Picture.objects.filter(product_id=pid).order_by('index') i = 0 for pic in pics: pic.index = i i = i + 1 pic.save() def saveProduct(params): _id = params.get('id') if _id: item = Product.objects.get(id=_id) else: item = Product() item.name = params.get('name') item.description = params.get('description') item.price = params.get('price') item.currency = params.get('currency') restaurant_id = params.get('restaurant_id') try: item.restaurant = Restaurant.objects.get(id=restaurant_id) except: item.restaurant = None #item.category = category item.save() # item.categories.clear() # Assume there is only one image # n_pics = int(params.get('n_pictures')) # pictures = [] # for i in range(n_pics): # name = params.get('name%s'%i) # status = params.get('image_status%s'%i) # image = req.FILES.get('image%s'%i) # pictures.append({'index':i,'name':name, 'status':status, 'image':image}) # # self.processPictures(item, pictures) # # # select default picture # pics = Picture.objects.filter(product_id=item.id) # item.fpath = self.getDefaultPicture(pics) # item.save() return item def find_restaurants_by_location(lat, lng, distance): query = """SELECT *, ( 3959 * acos(cos(radians(%s)) * cos(radians(lat)) * cos(radians(lng) - radians(%s)) + sin(radians(%s)) * sin(radians(lat ))) ) AS distance FROM commerce_restaurant HAVING distance < %s ORDER BY distance LIMIT 0, 20;"""%(lat, lng, lat, distance) try: return Restaurant.objects.raw(query) except: return None @method_decorator(csrf_exempt, name='dispatch') class RestaurantView(View): def getList(self, req): lat = req.GET.get('lat') lng = req.GET.get('lng') distance = 25 # km restaurants = [] admin_id = req.GET.get('admin_id') if admin_id: # need address try: item = Restaurant.objects.get(admin_id=admin_id) restaurant = to_json(item) restaurant['address'] = self.getAddress(item) return JsonResponse({'data':[restaurant]}) except Exception: return JsonResponse({'data':[]}) elif lat and lng: # do not need address restaurants = find_restaurants_by_location(lat, lng, distance) else: try: restaurants = Restaurant.objects.all()#.annotate(n_products=Count('product')) except Exception: return JsonResponse({'data':[]}) rs =[] for r in restaurants: rs.append(to_json(r)) return JsonResponse({'data': rs }) def getAddress(self, restaurant): addr_id = restaurant.address.id item = None try: item = Address.objects.get(id=addr_id) except: item = None return to_json(item) def get(self, req, *args, **kwargs): pid = kwargs.get('id') if pid: try: item = Restaurant.objects.get(id=int(pid)) p = obj_to_json(item, False) p['address'] = self.getAddress(item) return JsonResponse({'data':p}) except Exception as e: print(e.message); return JsonResponse({'data':''}) else: # get list return self.getList(req)#JsonResponse({'data':''}) def delete(self, req, *args, **kwargs): pid = int(kwargs.get('id')) if pid: instance = Restaurant.objects.get(id=pid) instance.delete() items = Restaurant.objects.filter().order_by('-updated') return JsonResponse({'data':to_json(items)}) return JsonResponse({'data':[]}) def post(self, req, *args, **kwargs): params = req.POST authorizaion = req.META['HTTP_AUTHORIZATION'] token = authorizaion.replace("Bearer ", "") data = get_data_from_token(token) # if data and data['username']=='admin': _id = params.get('id') if _id: item = Restaurant.objects.get(id=_id) else: item = Restaurant() item.name = params.get('name') item.description = params.get('description') item.lat = float(params.get('lat')) item.lng = float(params.get('lng')) item.created = item.created if item.created else datetime.now() addr_id = params.get('address_id') if(addr_id): addr = Address.objects.get(id=addr_id) self.saveAddress(addr, params) item.address = addr else: addr = Address() self.saveAddress(addr, params) item.address = addr item.save() image_status = params.get('image_status') if image_status == 'changed': self.rmPicture(item) image = req.FILES.get("image") item.image.save(image.name, image.file, True) item.save() return JsonResponse({'data':to_json(item)}) def saveAddress(self, addr1, params): addr1.street = params.get('street') addr1.sub_locality = params.get('sub_locality') addr1.postal_code = params.get('postal_code') addr1.lat = params.get('lat') addr1.lng = params.get('lng') addr1.province = params.get('province') addr1.city = params.get('city') addr1.save() def rmPicture(self, item): try: os.remove(item.image.path) except: print('remove image failed') item.image.delete() @method_decorator(csrf_exempt, name='dispatch') class CategoryView(View): def getList(self): categories = [] try: categories = Category.objects.all()#.annotate(n_products=Count('product')) except Exception as e: logger.error('Get category Exception:%s'%e) return JsonResponse({'data':[]}) return JsonResponse({'data': to_json(categories)}) def get(self, req, *args, **kwargs): cid = kwargs.get('id') if cid: cid = int(cid) try: item = Category.objects.get(id=cid) return JsonResponse({'data':to_json(item)}) except Exception as e: return JsonResponse({'data':''}) else: return self.getList() def delete(self, req, *args, **kwargs): pid = int(kwargs.get('id')) if pid: instance = Category.objects.get(id=pid) instance.delete() items = Category.objects.filter().order_by('-updated') return JsonResponse({'data':to_json(items)}) return JsonResponse({'data':[]}) def post(self, req, *args, **kwargs): ubody = req.body.decode('utf-8') params = json.loads(ubody) _id = params.get('id') if _id: item = Category.objects.get(id=_id) else: item = Category() item.name = params.get('name') item.description = params.get('description') # item.status = params.get('status') item.save() return JsonResponse({'data':to_json(item)}) @method_decorator(csrf_exempt, name='dispatch') class ProductListView(View): def get(self, req, *args, **kwargs): ''' get product list ''' products = [] cats = req.GET.get('cats') restaurants = req.GET.get('ms') colors = req.GET.get('colors') keyword = req.GET.get('keyword') kwargs = {} q = None if cats: q = Q(categories__id__in=cats.split(',')) if restaurants: if q: q = q | Q(restaurant__id__in=restaurants.split(',')) else: q = Q(restaurant__id__in=restaurants.split(',')) if colors: if q: q = q | Q(color__id__in=colors.split(',')) else: q = Q(restaurant__id__in=restaurants.split(',')) restaurant_id = req.GET.get('restaurant_id') category_id = req.GET.get('category_id') if restaurant_id: products = Product.objects.filter(restaurant_id=restaurant_id).annotate(n_likes=Count('favoriteproduct')) elif category_id: products = Product.objects.filter(category_id=category_id).annotate(n_likes=Count('favoriteproduct')) elif cats or restaurants or colors: if keyword: products = Product.objects.filter(q).filter(Q(name__icontains=keyword) |Q(categories__name__icontains=keyword) |Q(restaurant__name__icontains=keyword) |Q(color__name__icontains=keyword)) else: products = Product.objects.filter(q) else: if keyword: products = Product.objects.filter(Q(name__icontains=keyword) |Q(categories__name__icontains=keyword) |Q(restaurant__name__icontains=keyword) |Q(color__name__icontains=keyword)) else: products = Product.objects.filter().annotate(n_likes=Count('favoriteproduct')) ps = to_json(products) for p in ps: try: pics = Picture.objects.filter(product_id=p['id']) except: pics = None if pics: p['pictures'] = to_json(pics) #s = [] # for product in products: # items = Item.objects.filter(product_id=product.id) # p = product.to_json() # p['n_likes'] = product.n_likes # p['n_items'] = len(items) # p['items'] = [items[0].to_json()] # fp = None # try: # fp = FavoriteProduct.objects.get(user_id=uid) # except: # pass # # p['like'] = fp.status if fp else False # s.append(p) return JsonResponse({'data':ps}) def post(self, req, *args, **kwargs): authorizaion = req.META['HTTP_AUTHORIZATION'] token = authorizaion.replace("Bearer ", "") data = get_data_from_token(token) for key in req.POST: params = json.loads(req.POST[key]) index = int(key.replace('info_', '')) product = saveProduct(params) image_status = params.get('image_status') if image_status == 'unchange': pass elif image_status == 'changed' or image_status == 'add': pictures = [] image = req.FILES.get('image%s'%index) pictures.append({'index':0,'name':'', 'status':image_status, 'image':image}) processPictures(product, pictures) # select default picture pics = Picture.objects.filter(product_id=product.id) product.fpath = getDefaultPicture(pics) product.save() return JsonResponse({'data':[]}) @method_decorator(csrf_exempt, name='dispatch') class ProductFilterView(View): def get(self, req, *args, **kwargs): categories = Category.objects.all(); styles = Style.objects.all(); price_ranges = PriceRange.objects.all(); return JsonResponse({'categories':categories, 'styles':styles, 'price_ranges':price_ranges}) @method_decorator(csrf_exempt, name='dispatch') class ProductView(View): def get(self, req, *args, **kwargs): ''' get product detail with multiple items ''' pid = int(kwargs.get('id')) if pid: try: products = Product.objects.filter(id=pid) except Exception as e: return JsonResponse({'product':''}) else: return JsonResponse({'product':''}) product = products[0] pics = Picture.objects.filter(product_id=product.id) ps = [] for pic in pics: ps.append(to_json(pic)) p = to_json(product) p['pictures'] = ps return JsonResponse({'data':p}) def delete(self, req, *args, **kwargs): pid = int(kwargs.get('id')) if pid: instance = Product.objects.get(id=pid) instance.delete() items = Product.objects.filter().order_by('-updated') return JsonResponse({'data':to_json(items)}) return JsonResponse({'data':[]}) def post(self, req, *args, **kwargs): params = req.POST authorizaion = req.META['HTTP_AUTHORIZATION'] token = authorizaion.replace("Bearer ", "") data = get_data_from_token(token) if data and data['username']=='admin' or data['utype']=='business': item = saveProduct(params) item.categories.clear() categories = params.get('categories').split(',') for cat_id in categories: try: category = Category.objects.get(id=cat_id) except: category = None item.categories.add(category) n_pics = int(params.get('n_pictures')) pictures = [] for i in range(n_pics): name = params.get('name%s'%i) status = params.get('image_status%s'%i) image = req.FILES.get('image%s'%i) pictures.append({'index':i,'name':name, 'status':status, 'image':image}) processPictures(item, pictures) # select default picture pics = Picture.objects.filter(product_id=item.id) item.fpath = getDefaultPicture(pics) item.save() return JsonResponse({'tokenValid': True,'data':to_json(item)}) return JsonResponse({'tokenValid':False, 'data':''}) @method_decorator(csrf_exempt, name='dispatch') class OrderView(View): def getList(self, rid=None): orders = [] try: if rid: orders = Order.objects.filter(restaurant_id=rid).order_by('created') else: orders = Order.objects.all().order_by('created')#.annotate(n_products=Count('product')) r = to_json(orders) for order in orders: items = OrderItem.objects.filter(order_id=order.id) ri = next((x for x in r if x['id'] == order.id), None) ri['items'] = to_json(items) ri['user']['username'] = order.user.username except Exception as e: logger.error('Get Order Exception:%s'%e) return JsonResponse({'data':[]}) return JsonResponse({'data': r}) def get(self, req, *args, **kwargs): cid = kwargs.get('id') if cid: cid = int(cid) try: item = Order.objects.get(id=cid) return JsonResponse({'data':to_json(item)}) except Exception as e: return JsonResponse({'data':''}) else: rid = req.GET.get('restaurant_id') return self.getList(rid) def post(self, req, *args, **kwargs): authorizaion = req.META['HTTP_AUTHORIZATION'] token = authorizaion.replace("Bearer ", "") data = get_data_from_token(token) if data: uid = data['id'] ubody = req.body.decode('utf-8') d = json.loads(ubody) # dict: {'orders': [{'restaurant_id': 2, 'items': [{'pid': 1, 'name': '土豆排骨', 'price': '12.000', 'restaurant_id': #2, 'quantity': 4}, {'pid': 2, 'name': '泡椒豆腐', 'price': '12.000', 'restaurant_id': 2, 'quantity': 2}]}], #'user_id': 7} orders = d.get("orders") for data in orders: rid = data['restaurant_id'] items = data['items'] order = Order() try: restaurant = Restaurant.objects.get(id=rid) user = get_user_model().objects.get(id=uid) order.restaurant = restaurant order.user = user order.save() except Exception as e: print(e) if order.id: for item in items: orderItem = OrderItem() orderItem.order = order orderItem.product = Product.objects.get(id=item['pid']) orderItem.quantity = item['quantity'] orderItem.product_name = orderItem.product.name orderItem.price = orderItem.product.price orderItem.save() return JsonResponse({'success': True}) return JsonResponse({'success':False}) @method_decorator(csrf_exempt, name='dispatch') class FavoriteProductView(View): def get(self, req, *args, **kwargs): uid = req.GET.get('user_id') ps = Product.objects.annotate(n_likes=Count('favoriteproduct')) favorites = [] for p in ps: product = p.to_json() product['n_likes'] = p.n_likes fp = None try: fp = FavoriteProduct.objects.get(user_id=uid) except: pass product['favorate'] = fp.status if fp else False favorites.append(product) return JsonResponse({'favorites':favorites}) def post(self, req, *args, **kwargs): ubody = req.body.decode('utf-8') d = json.loads(ubody) uid = d.get("user_id") pid = d.get("product_id") try: like = FavoriteProduct.objects.get(user_id=uid, product_id=pid) like.delete() except ObjectDoesNotExist: like = FavoriteProduct() like.product = Product.objects.get(id=pid) like.user = get_user_model().objects.get(id=uid) like.status = True like.save() return JsonResponse({'success':'true'})
36.15736
126
0.530675
16,697
0.780781
0
0
17,033
0.796493
0
0
3,989
0.186533
c07fe33cae576add35e02a5f464a4a05467459e8
5,666
py
Python
api/views.py
huatxu/erasmusbackend
d8f86ee857a292a133106e75e9c920b905b5b10d
[ "MIT" ]
null
null
null
api/views.py
huatxu/erasmusbackend
d8f86ee857a292a133106e75e9c920b905b5b10d
[ "MIT" ]
null
null
null
api/views.py
huatxu/erasmusbackend
d8f86ee857a292a133106e75e9c920b905b5b10d
[ "MIT" ]
null
null
null
from django.shortcuts import render from api.models import Comida, Cerveza, Titulo, TipoComida from django.http import Http404 from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import serializers import csv import os class CervezaSerializer(serializers.ModelSerializer): class Meta: model = Cerveza fields = ['id', 'nombre', 'estilo', 'pais', 'pais_ingles', 'alcohol', 'color', 'amargor', 'descripcion', 'descripcion_ingles', 'disponible', 'imagen', 'artesanal', 'tipo', 'recomendada', 'formato', 'precio', 'formato_2', 'precio_2', 'formato_3', 'precio_3', 'sin_gluten', 'aparece', 'barril'] class ComidaList(APIView): """ List all snippets, or create a new snippet. """ def get(self, request, format=None): comidas = Comida.objects.filter(disponible=True, tipo__aparece=True).order_by('tipo__orden', 'orden', 'nombre') serializer = ComidaSerializer(comidas, many=True) return Response(serializer.data) class ComidaSerializer(serializers.ModelSerializer): tipo = serializers.SerializerMethodField('get_tipo') def get_tipo(self, obj): return obj.tipo.nombre + '-' + obj.tipo.nombre_ingles class Meta: model = Comida fields = ('id', 'nombre', 'nombre_ingles', 'descripcion', 'descripcion_ingles', 'tipo', 'precio', 'precio_2', 'altramuces', 'apio', 'cacahuete', 'crustaceo', 'gluten', 'huevo', 'lacteos', 'moluscos', 'mostaza', 'nueces', 'pescado', 'sesamo', 'soja', 'sulfitos', 'disponible') class TituloSerializer(serializers.ModelSerializer): class Meta: model = Titulo fields = ['titulo_1', 'titulo_1_ingles', 'titulo_2', 'titulo_2_ingles'] class CervezaList(APIView): """ List all snippets, or create a new snippet. """ def get(self, request, format=None): cervezas = Cerveza.objects.all() serializer = CervezaSerializer(cervezas, many=True) titulos = Titulo.objects.first() titulosSerializer = TituloSerializer(titulos) return Response({"titulos": titulosSerializer.data, "cervezas": serializer.data}) import csv import os def cast_bool(entry): try: if not entry: return False trues = ['sí', 'si'] return entry.lower() in trues except Exception: return False def cast_price(entry): result = entry result = result.replace('€', '') result = result.replace(',', '.') result = result.strip() if result: return float(result) return 0.0 def load_csv(): with open(f'{os.path.dirname(os.path.abspath(__file__))}/carta-cervezas.csv', newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: try: cerveza = Cerveza.objects.create( nombre=row['Nombre'], estilo = row['Estilo'], pais = row['País'], pais_ingles = row['País Ingles'], alcohol = row['Alcohol'], color = row['Color'], amargor = row['Amargor'], descripcion = row['Descripcion'], descripcion_ingles = row['Descripcion ingles'], disponible = cast_bool(row['Disponible']), imagen = row['Imagen'], artesanal = cast_bool(row['Artesanal']), tipo = row['Tipo'], recomendada = cast_bool(row['Recomendada']), formato = row['Formato'], precio = cast_price(row['Precio']), formato_2 = row['formato 2'], precio_2 = cast_price(row['precio 2']), formato_3 = row['formato 3'], precio_3 = cast_price(row['precio 3']), sin_gluten = cast_bool(row['Sin gluten']), aparece = cast_bool(row['Aparece']), barril = cast_bool(row['Barril']) ) cerveza.save() except Exception: pass with open(f'{os.path.dirname(os.path.abspath(__file__))}/carta-comida.csv', newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: try: comida = Comida.objects.create( nombre=row['Nombre'], nombre_ingles=row['Nombre ingles'], descripcion=row['Descripcion'], descripcion_ingles=row['Descripcion ingles'], tipo=row['Tipo'], precio=cast_price(row['Precio']), precio_2=cast_price(row['precio 2']), altramuces=cast_bool(row['Altramuces']), apio=cast_bool(row['Apio']), cacahuete=cast_bool(row['Cacahuete']), crustaceo=cast_bool(row['Crustaceo']), gluten=cast_bool(row['Gluten']), huevo=cast_bool(row['Huevo']), lacteos=cast_bool(row['Lacteos']), moluscos=cast_bool(row['Moluscos']), mostaza=cast_bool(row['Mostaza']), nueces=cast_bool(row['Nueces']), pescado=cast_bool(row['Pescado']), sesamo=cast_bool(row['Sesamo']), soja=cast_bool(row['Soja']), sulfitos=cast_bool(row['Sulfitos']), disponible=cast_bool(row['Disponible']) ) comida.save() except Exception as exc: pass
39.901408
300
0.55683
1,858
0.327632
0
0
0
0
0
0
1,292
0.227826
c081b2d11a5b435dcb1b7be483e436c803475836
232
gyp
Python
binding.gyp
sony/node-win-usbdev
bcdbd277419f1e34b1778390ec1624ccce63068d
[ "Apache-2.0" ]
3
2017-06-28T12:00:36.000Z
2021-11-08T12:34:26.000Z
binding.gyp
sony/node-win-usbdev
bcdbd277419f1e34b1778390ec1624ccce63068d
[ "Apache-2.0" ]
1
2018-02-16T04:32:55.000Z
2018-02-16T04:32:55.000Z
binding.gyp
sony/node-win-usbdev
bcdbd277419f1e34b1778390ec1624ccce63068d
[ "Apache-2.0" ]
3
2017-07-31T23:19:07.000Z
2022-03-25T17:02:51.000Z
{ "targets": [ { "target_name": "usb_dev", "sources": [ "usb_dev.cc" ], "include_dirs" : [ "<!(node -e \"require('nan')\")" ], "libraries": [ "-lsetupapi" ] } ] }
15.466667
42
0.37069
0
0
0
0
0
0
0
0
121
0.517094
c083ad9611b00848cfe7baab07a7e05df20d4b0d
1,011
py
Python
insert_table.py
Cassiel60/python
3f451e398a8705a5859d347d5fcdcfd9a5671e1c
[ "MIT" ]
null
null
null
insert_table.py
Cassiel60/python
3f451e398a8705a5859d347d5fcdcfd9a5671e1c
[ "MIT" ]
null
null
null
insert_table.py
Cassiel60/python
3f451e398a8705a5859d347d5fcdcfd9a5671e1c
[ "MIT" ]
1
2019-12-19T00:34:02.000Z
2019-12-19T00:34:02.000Z
''' table AD contains RS,ADID;table Parkinson contains RS,PDID;table variant contains ADID, PDID insert table variant one way: below two way: by merge ''' import sys ,re import pandas as pd varfil1=r'C:\Users\BAIOMED07\Desktop\AD_Database_20170629.xls' varfil2=r'C:\Users\BAIOMED07\Desktop\parkinson_TOTAL.xls' varfil3=r'C:\Users\BAIOMED07\Desktop\alleles_IonXpress_066.txt' df1=pd.read_excel(varfil1) print df1.head(1) df2=pd.read_excel(varfil2) print df2.head(1) df=df1[df1['dbSNP'].isin(df2['dbSNP'])] print df.head(2) df.to_excel('1.xlsx',index=0) df3=pd.read_csv(varfil3,sep='\t') df3['pkiq']='-' for index,row in df2.iterrows(): rs=row['dbSNP'] row1=df1[df1['dbSNP']==rs] if not len(row1): continue # when drug locus is not in row1 #import pdb; pdb.set_trace() uniq=row1['UniqueID'].values.tolist()[0] row2=df3[df3['Allele Name']==uniq] df3.loc[row2.index,'pkiq']=row['UniqueID'] print df3.head(1) res_1=df3[df3['Allele Name'].isin(df['UniqueID'])] res_1.to_excel('2.xlsx',index=0)
25.275
87
0.723046
0
0
0
0
0
0
0
0
492
0.486647
c08a254cca4494b2d1aa73495456b23d2cb83ea5
390
py
Python
1_Ejemplo_practico_ECG/utils.py
IEEE-UPIBI/Comunicacion-Serial-Python-Arduino
806916a5d47e8d29933e1402296e2ca6d5d5a79e
[ "MIT" ]
null
null
null
1_Ejemplo_practico_ECG/utils.py
IEEE-UPIBI/Comunicacion-Serial-Python-Arduino
806916a5d47e8d29933e1402296e2ca6d5d5a79e
[ "MIT" ]
1
2021-04-23T23:20:42.000Z
2021-04-23T23:20:42.000Z
2_Ejemplo_practico_SensorMPU6050/utils.py
IEEE-UPIBI/Comunicacion-Serial-Python-Arduino
806916a5d47e8d29933e1402296e2ca6d5d5a79e
[ "MIT" ]
null
null
null
import serial import time ### FUNCTIONS #### #### SERIAL COMMUNICATION #### def arduino_communication(COM="COM5",BAUDRATE=9600,TIMEOUT=1): """ Initalizes connection with Arduino Board """ try: arduino = serial.Serial(COM, BAUDRATE , timeout=TIMEOUT) time.sleep(2) except: print("Error de coneccion con el puerto") return arduino
16.956522
64
0.628205
0
0
0
0
0
0
0
0
136
0.348718
c08b025b2f074208a6371fa035f6cf38f392405a
3,595
py
Python
trav_lib/visualize.py
thwhitfield/trav_lib
46185f5545d958eba1538c769a98d07908dd0d19
[ "MIT" ]
null
null
null
trav_lib/visualize.py
thwhitfield/trav_lib
46185f5545d958eba1538c769a98d07908dd0d19
[ "MIT" ]
null
null
null
trav_lib/visualize.py
thwhitfield/trav_lib
46185f5545d958eba1538c769a98d07908dd0d19
[ "MIT" ]
null
null
null
"""Classes and functions used for data visualization""" import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt def plot_correlation_matrix_heat_map(df,label,qty_fields=10): df = pd.concat([df[label],df.drop(label,axis=1)],axis=1) correlation_matrix = df.corr() index = correlation_matrix.sort_values(label, ascending=False).index correlation_matrix = correlation_matrix[index].sort_values(label,ascending=False) fig,ax = plt.subplots() fig.set_size_inches((10,10)) sns.heatmap(correlation_matrix.iloc[:qty_fields,:qty_fields],annot=True,fmt='.2f',ax=ax) # Code added due to bug in matplotlib 3.1.1 bottom, top = ax.get_ylim() ax.set_ylim(bottom + .5, top - .5) return(fig,ax) def plot_log_hist(s,bin_factor=1,min_exp=None): """Plot 2 histograms with log x scales, one for positive values & one for negative values. Bin_factor is used to scale how many bins to use (1 is default and corresponds to one bin per order of magnitude. Higher than 1 will skew the bins away from even powers of 10). Parameters ---------- s: pandas series (generally using df[col]) Series or column of dataframe to analyze bin_factor: int Default 1, used to scale how many bins to use min_exp: int The minimum exponent to use in creating bins & plotting. This can be set manually for cases where you want a specific minimum value to be shown. Returns ------- fig, (ax1,ax2): matplotlib fig and ax objects """ # Split series into positive & negative components s_pos = s[s >= 0] s_neg = s[s < 0].abs() # Not the best way to deal with this, but this was the easiest solution for now. # TODO Fix this code to deal with no negative values or no positive values more appropriately if s_neg.shape[0] == 0: s_neg.loc[0] = 1 if s_pos.shape[0] == 0: s_pos.loc[0] = 1 # Calculate appropriate min_exp if none provied if min_exp == None: threshold = s_pos.shape[0] - (s_pos==0).sum() for i in range(10): n_betw = s_pos[s_pos!=0].between(0,10**-i).sum() if not (n_betw / threshold) > .1: min_exp = -i break # Clip values to the 10**min_exp so that they are included in the histograms (if # this isn't done then values which are 0 will be excluded from the histogram) s_pos = s_pos.clip(lower=10**min_exp) s_neg = s_neg.clip(lower=10**min_exp) # Calculate the lowest integer which encompases all the positive and negative values pos_max = int(np.ceil(np.log10(max(s_pos)))) neg_max = int(np.ceil(np.log10(max(s_neg)))) # Use that for both negative & positive values plot_max = max(pos_max,neg_max) # Create the bins (bin spacing is logarithmic) bins = np.logspace(min_exp,plot_max,(plot_max+1)*bin_factor) fig,(ax1,ax2) = plt.subplots(nrows=1,ncols=2,sharey=True) fig.set_size_inches((10,5)) s_neg.hist(bins=bins,ax=ax1) ax1.set_xscale('log') ax1.set_title('Distribution of Negative Values') ax1.set_xlabel('Negative values') s_pos.hist(bins=bins,ax=ax2) ax2.set_xscale('log') ax2.set_title('Distribution of Positive Values') ax2.set_xlabel('Positive Values') # Invert axis so that values are increasingly negative from right to left. # Decrease the spacing between the two subplots ax1.invert_xaxis() plt.subplots_adjust(wspace=.02) return(fig,(ax1,ax2))
35.594059
97
0.662309
0
0
0
0
0
0
0
0
1,704
0.473992
c08cb3b6fdb628373adc1c5e8da4f386b0294fba
1,828
py
Python
test/test_configeditor.py
ta-assistant/Admin-CLI
1c03ede0e09d8ddc270646937aa7af463c55f1f5
[ "MIT" ]
1
2021-07-22T15:43:02.000Z
2021-07-22T15:43:02.000Z
test/test_configeditor.py
ta-assistant/Admin-CLI
1c03ede0e09d8ddc270646937aa7af463c55f1f5
[ "MIT" ]
28
2021-05-15T08:18:21.000Z
2021-08-02T06:12:30.000Z
test/test_configeditor.py
ta-assistant/TA-CLI
1c03ede0e09d8ddc270646937aa7af463c55f1f5
[ "MIT" ]
null
null
null
import unittest import os, sys, inspect, json currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) from lib.file_management.configeditor import ConfigEditor from lib.file_management.file_management_lib import DirManagement class TestSendData(unittest.TestCase): def setUp(self) -> None: self.path = os.path.join(parentdir,"ta") DirManagement.create_dir(self.path) workdata = { "workDraft": { "outputDraft": [ "ID", "param1", "param2", "comment" ], "fileDraft": "{ID}_test.py" }, "scores": [ { "ID": "6310545000", "param1": "100", "param2": "print('hello')", "comment": "good" }] } with open(os.path.join(self.path, "work.json"), "w") as create: json.dump(workdata, create) self.con = ConfigEditor('testWork2', parentdir) self.con.writeconfig() return super().setUp() def test_writeconfig(self): """ return None """ self.assertIsNone(self.con.writeconfig()) def test_readconfig(self): """ return str """ self.assertIs(type(self.con.readconfig()), dict) def test_ishaveconfig(self): """ return None """ self.assertIsNone(self.con.ishaveconfig()) def test_checkdata(self): """ return None """ self.assertIsNone(self.con.checkdata()) def tearDown(self) -> None: """ retrun None """ DirManagement.remove_dir(os.path.join(parentdir,"ta")) return super().tearDown() if __name__ == '__main__': unittest.main()
25.041096
86
0.561816
1,450
0.793217
0
0
0
0
0
0
371
0.202954
c08e3ff69724d52b478b9cfd81ca7910c42f6c6e
7,390
py
Python
chemreg/compound/migrations/0001_vega_sprint.py
Chemical-Curation/chemcurator
bcd7fab84e407f06502e6873c38820724d4e54e7
[ "MIT" ]
1
2020-10-05T18:02:24.000Z
2020-10-05T18:02:24.000Z
chemreg/compound/migrations/0001_vega_sprint.py
Chemical-Curation/chemcurator_django
bcd7fab84e407f06502e6873c38820724d4e54e7
[ "MIT" ]
207
2020-01-30T19:17:44.000Z
2021-02-24T19:45:29.000Z
chemreg/compound/migrations/0001_vega_sprint.py
Chemical-Curation/chemcurator_django
bcd7fab84e407f06502e6873c38820724d4e54e7
[ "MIT" ]
null
null
null
# Generated by Django 3.0.3 on 2020-11-18 06:06 import chemreg.common.utils import chemreg.common.validators import chemreg.compound.models import chemreg.compound.utils from django.conf import settings from django.db import migrations, models import django.db.models.deletion def fwd_create_illdefined_querystructuretype(apps, schema_editor): QueryStructureType = apps.get_model("compound", "QueryStructureType") db_alias = schema_editor.connection.alias QueryStructureType.objects.using(db_alias).create( name="ill-defined", label="Ill defined", short_description="Ill defined", long_description="Ill defined", ) def rev_create_illdefined_querystructuretype(apps, schema_editor): QueryStructureType = apps.get_model("compound", "QueryStructureType") db_alias = schema_editor.connection.alias QueryStructureType.objects.using(db_alias).filter(name="ill-defined").delete() class Migration(migrations.Migration): initial = True dependencies = [ ("contenttypes", "0002_remove_content_type_name"), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name="BaseCompound", fields=[ ("created_at", models.DateTimeField(auto_now_add=True)), ("updated_at", models.DateTimeField(auto_now=True)), ( "id", models.CharField( default=chemreg.compound.utils.build_cid, max_length=50, primary_key=True, serialize=False, unique=True, ), ), ("structure", models.TextField()), ("qc_note", models.TextField(blank=True, default="")), ( "created_by", models.ForeignKey( default=chemreg.common.utils.get_current_user_pk, editable=False, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="basecompound_created_by_set", to=settings.AUTH_USER_MODEL, ), ), ( "polymorphic_ctype", models.ForeignKey( editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="polymorphic_compound.basecompound_set+", to="contenttypes.ContentType", ), ), ( "replaced_by", models.ForeignKey( default=None, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="replaces", to="compound.BaseCompound", ), ), ( "updated_by", models.ForeignKey( editable=False, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="basecompound_updated_by_set", to=settings.AUTH_USER_MODEL, ), ), ], options={"ordering": ["pk"],}, ), migrations.CreateModel( name="DefinedCompound", fields=[ ( "basecompound_ptr", models.OneToOneField( auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to="compound.BaseCompound", ), ), ("inchikey", models.CharField(max_length=29, null=True)), ], options={"abstract": False, "base_manager_name": "objects",}, bases=("compound.basecompound",), ), migrations.CreateModel( name="QueryStructureType", fields=[ ("created_at", models.DateTimeField(auto_now_add=True)), ("updated_at", models.DateTimeField(auto_now=True)), ( "name", models.SlugField( max_length=49, primary_key=True, serialize=False, unique=True ), ), ("label", models.CharField(max_length=99, unique=True)), ("short_description", models.CharField(max_length=499)), ("long_description", models.TextField()), ("deprecated", models.BooleanField(default=False)), ( "created_by", models.ForeignKey( default=chemreg.common.utils.get_current_user_pk, editable=False, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="querystructuretype_created_by_set", to=settings.AUTH_USER_MODEL, ), ), ( "updated_by", models.ForeignKey( editable=False, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="querystructuretype_updated_by_set", to=settings.AUTH_USER_MODEL, ), ), ], options={"ordering": ["pk"], "abstract": False,}, ), migrations.RunPython( fwd_create_illdefined_querystructuretype, rev_create_illdefined_querystructuretype, ), migrations.CreateModel( name="IllDefinedCompound", fields=[ ( "basecompound_ptr", models.OneToOneField( auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to="compound.BaseCompound", ), ), ( "query_structure_type", models.ForeignKey( default=chemreg.compound.models.get_illdefined_qst, on_delete=django.db.models.deletion.PROTECT, to="compound.QueryStructureType", validators=[chemreg.common.validators.validate_deprecated], ), ), ], options={ "verbose_name": "ill-defined compound", "abstract": False, "base_manager_name": "objects", }, bases=("compound.basecompound",), ), ]
38.092784
85
0.472666
6,449
0.872666
0
0
0
0
0
0
1,070
0.14479
c08e8f408c1440f68bb49f4c21e145acaad7cc8e
3,466
py
Python
TwitterCode/crawler.py
aghriss/CS5502_project
68403f38ef26067360cb22404cdabe0d0543097a
[ "MIT" ]
null
null
null
TwitterCode/crawler.py
aghriss/CS5502_project
68403f38ef26067360cb22404cdabe0d0543097a
[ "MIT" ]
null
null
null
TwitterCode/crawler.py
aghriss/CS5502_project
68403f38ef26067360cb22404cdabe0d0543097a
[ "MIT" ]
null
null
null
''' Twitter Crawler to get tweets and user data ''' import tweepy import json import os import time def get_counts_quantile(tweets): counts = [] for t in tweets: counts.append() def save_tweet(result): """Function to save tweepy result status""" pass def save_user(result_set): """Function to save tweepy set fo result statuses""" pass class TweetCrawler(): def __init__(self, credentials_path, save_path, location_id=None): assert os.path.exists(save_path) assert os.path.exists(credentials_path) self.save_path = save_path self.location_id = 23424977 try: with open(credentials_path,"r") as f: creds = json.load(f) f.close() self.api = tweepy.API(tweepy.AppAuthHandler(creds['API_KEY'], creds['SECRET_KEY'])) except: raise "Auth Error, check credentials and connection" if location_id: self.location_id = location_id def crawl(self): location, trends = self.get_trends() for trend in trends: query = trend['query'] trending = self.get_trending_tweets(query) non_trending = self.get_untrending_tweets(query) self.store(trending, trending=True) self.store(non_trending, trensing=False) def get_trends(self,): trends_dict = self.api.trends_place(self.location_id)[0] location_name = trends_dict['locations'][0]['name'] non_empty_trends = list(filter(lambda x: x['tweet_volume'] is not None, trends_dict['trends'])) print("Retrieved %i for location: %s"%(len(non_empty_trends), location_name)) return location_name, non_empty_trends def get_trending_tweets(self, query): popular_tweets = self.api.search(query, count=500, result_type="popular") tuples = [] for popular in popular_tweets: user_timeline = self.api.user_timeline(popular.author.id, count=200) tuples.append([popular, user_timeline]) return tuples def get_untrending_tweets(self, query): popular_tweets = self.api.search(query, count=500, result_type="recent") tuples = [] for popular in popular_tweets: user_timeline = self.get_user(popular.author.id) tuples.append([popular, user_timeline]) return tuples def get_user(self, user_id): time.sleep(0.1) return self.api.user_timeline(user_id, count=200) def save_user(self, user): print("Saving user %s"%user.id_str) json.dump(user._json, open(os.path.join(self.save_path, "user_"+user.id_str+".json"), 'w')) def save_tweet(self, tweet): print("Saving tweet %s"%tweet.id_str) json.dump(tweet._json, open(os.path.join(self.save_path, "tweet_"+ tweet.id_str+".json"), 'w')) def rate_status(self): state = self.api.rate_limit_status() limits = state['resources']['statuses'] return {'tweet':limits['/statuses/show/:id']['remaining'], 'users': limits['/statuses/user_timeline']['remaining']} def get_tweet(self, tweet_id): time.sleep(0.1) return self.api.get_status(tweet_id) #crawler = TweetCrawler("twitter_credentials.json", './data') #self=crawler
32.698113
103
0.611656
2,995
0.864108
0
0
0
0
0
0
554
0.159838
c08e9da0f8073946d9eb1f38656fc0912b347134
2,206
py
Python
instruments/swap.py
neoyung/IrLib
942793c49a477c9f5747410be74daf868391f289
[ "MIT" ]
1
2021-10-04T03:15:50.000Z
2021-10-04T03:15:50.000Z
instruments/swap.py
neoyung/IrLib
942793c49a477c9f5747410be74daf868391f289
[ "MIT" ]
null
null
null
instruments/swap.py
neoyung/IrLib
942793c49a477c9f5747410be74daf868391f289
[ "MIT" ]
null
null
null
from irLib.instruments.instrument import instrument from irLib.helpers.schedule import period from irLib.instruments.legs import fixLeg, floatLeg class swap(instrument): def __init__(self, tradeDate, spotLag=period(0, 'day'), position='long', *legs): super().__init__(tradeDate, spotLag, position) self.legs = legs def setPricingEngine(self, discountCurve): self.discountCurve = discountCurve self.pricingEngine = self.discountCurve for leg in self.legs: leg.setPricingEngine(discountCurve) def calculateNPV(self, day): super().calculateNPV() NPV = 0 for leg in self.legs: NPV += leg.calculateNPV(day) return NPV * self.longShort def isExpired(self, day): return all([leg.isExpired(day) for leg in self.legs]) class vanillaSwap(swap): def __init__(self, tradeDate, payer, fixSchedule, floatSchedule, floatingCurve, discountCurve=None, spotLag=period(0, 'day'), swapRate=None): assert payer in ('payer', 'receiver'), 'payer or receiver?' self.payer = payer self.position = 'long' if self.payer == 'payer' else 'short' self.floatLeg = floatLeg( tradeDate, floatingCurve, floatSchedule, spotLag) self.fixLeg = fixLeg(tradeDate, 1., fixSchedule, spotLag) super().__init__(tradeDate, spotLag, self.position, self.fixLeg, self.floatLeg) if swapRate is None: assert discountCurve is not None, 'need discount curve to determine swap rate' super().setPricingEngine(discountCurve) self.dayCount = self.discountCurve.dayCount self.tenor = self.dayCount.getYearFrac(min(self.floatLeg.schedule.startDate, self.fixLeg.schedule.startDate), max(self.floatLeg.schedule.terminationDate, self.fixLeg.schedule.terminationDate)) self.swapRate = self.floatLeg.calculateNPV( self.tradeDate) / self.fixLeg.calculateNPV(self.tradeDate) else: self.swapRate = swapRate self.fixLeg.rate = self.swapRate self.fixLeg.position = 'short' self.fixLeg.longShort = -1
41.622642
145
0.655938
2,054
0.931097
0
0
0
0
0
0
124
0.05621
c08f4ab3e25ce0f369e7d00947095aeb1fb9b437
21,083
py
Python
skhubness/neighbors/lsh.py
VarIr/scikit-hubness
6eaeedda2c4b52bb7bf2553b3c5b04a076287ae3
[ "BSD-3-Clause" ]
33
2019-08-05T12:29:19.000Z
2022-03-08T18:48:28.000Z
skhubness/neighbors/lsh.py
AndreasPhilippi/scikit-hubness
6eaeedda2c4b52bb7bf2553b3c5b04a076287ae3
[ "BSD-3-Clause" ]
84
2019-07-12T09:05:42.000Z
2022-03-31T08:50:15.000Z
skhubness/neighbors/lsh.py
AndreasPhilippi/scikit-hubness
6eaeedda2c4b52bb7bf2553b3c5b04a076287ae3
[ "BSD-3-Clause" ]
9
2019-09-26T11:03:04.000Z
2021-07-01T08:43:11.000Z
# -*- coding: utf-8 -*- # SPDX-License-Identifier: BSD-3-Clause # PEP 563: Postponed Evaluation of Annotations from __future__ import annotations from functools import partial import multiprocessing as mp from typing import Tuple, Union import warnings import numpy as np from sklearn.base import BaseEstimator from sklearn.metrics import euclidean_distances, pairwise_distances from sklearn.metrics.pairwise import cosine_distances from sklearn.utils.validation import check_is_fitted, check_array, check_X_y try: import puffinn except ImportError: puffinn = None # pragma: no cover try: import falconn except ImportError: falconn = None # pragma: no cover from tqdm.auto import tqdm from .approximate_neighbors import ApproximateNearestNeighbor from ..utils.check import check_n_candidates __all__ = ['FalconnLSH', 'PuffinnLSH', ] class PuffinnLSH(BaseEstimator, ApproximateNearestNeighbor): """ Wrap Puffinn LSH for scikit-learn compatibility. Parameters ---------- n_candidates: int, default = 5 Number of neighbors to retrieve metric: str, default = 'euclidean' Distance metric, allowed are "angular", "jaccard". Other metrics are partially supported, such as 'euclidean', 'sqeuclidean'. In these cases, 'angular' distances are used to find the candidate set of neighbors with LSH among all indexed objects, and (squared) Euclidean distances are subsequently only computed for the candidates. memory: int, default = None Max memory usage. If None, determined heuristically. recall: float, default = 0.90 Probability of finding the true nearest neighbors among the candidates n_jobs: int, default = 1 Number of parallel jobs verbose: int, default = 0 Verbosity level. If verbose > 0, show tqdm progress bar on indexing and querying. Attributes ---------- valid_metrics: List of valid distance metrics/measures """ valid_metrics = ["angular", "cosine", "euclidean", "sqeuclidean", "minkowski", "jaccard", ] metric_map = {'euclidean': 'angular', 'sqeuclidean': 'angular', 'minkowski': 'angular', 'cosine': 'angular', } def __init__(self, n_candidates: int = 5, metric: str = 'euclidean', memory: int = None, recall: float = 0.9, n_jobs: int = 1, verbose: int = 0, ): if puffinn is None: # pragma: no cover raise ImportError(f'Please install the `puffinn` package, before using this class:\n' f'$ git clone https://github.com/puffinn/puffinn.git\n' f'$ cd puffinn\n' f'$ python3 setup.py build\n' f'$ pip install .\n') from None super().__init__(n_candidates=n_candidates, metric=metric, n_jobs=n_jobs, verbose=verbose, ) self.memory = memory self.recall = recall def fit(self, X, y=None) -> PuffinnLSH: """ Build the puffinn LSH index and insert data from X. Parameters ---------- X: np.array Data to be indexed y: any Ignored Returns ------- self: Puffinn An instance of Puffinn with a built index """ if y is None: X = check_array(X) else: X, y = check_X_y(X, y) self.y_train_ = y if self.metric not in self.valid_metrics: warnings.warn(f'Invalid metric "{self.metric}". Using "euclidean" instead') self.metric = 'euclidean' try: self._effective_metric = self.metric_map[self.metric] except KeyError: self._effective_metric = self.metric # Larger memory means many iterations (time-recall trade-off) memory = max(np.multiply(*X.shape) * 8 * 500, 1024**2) if self.memory is not None: memory = max(self.memory, memory) # Construct the index index = puffinn.Index(self._effective_metric, X.shape[1], memory, ) disable_tqdm = False if self.verbose else True for v in tqdm(X, desc='Indexing', disable=disable_tqdm): index.insert(v.tolist()) index.rebuild() self.index_ = index self.n_indexed_ = X.shape[0] self.X_indexed_norm_ = np.linalg.norm(X, ord=2, axis=1).reshape(-1, 1) return self def kneighbors(self, X=None, n_candidates=None, return_distance=True) -> Union[Tuple[np.array, np.array], np.array]: """ Retrieve k nearest neighbors. Parameters ---------- X: np.array or None, optional, default = None Query objects. If None, search among the indexed objects. n_candidates: int or None, optional, default = None Number of neighbors to retrieve. If None, use the value passed during construction. return_distance: bool, default = True If return_distance, will return distances and indices to neighbors. Else, only return the indices. """ check_is_fitted(self, 'index_') index = self.index_ if n_candidates is None: n_candidates = self.n_candidates n_candidates = check_n_candidates(n_candidates) # For compatibility reasons, as each sample is considered as its own # neighbor, one extra neighbor will be computed. if X is None: n_query = self.n_indexed_ X = np.array([index.get(i) for i in range(n_query)]) search_from_index = True else: X = check_array(X) n_query = X.shape[0] search_from_index = False dtype = X.dtype # If chosen metric is not among the natively supported ones, reorder the neighbors reorder = True if self.metric not in ('angular', 'cosine', 'jaccard') else False # If fewer candidates than required are found for a query, # we save index=-1 and distance=NaN neigh_ind = -np.ones((n_query, n_candidates), dtype=np.int32) if return_distance or reorder: neigh_dist = np.empty_like(neigh_ind, dtype=dtype) * np.nan metric = 'cosine' if self.metric == 'angular' else self.metric disable_tqdm = False if self.verbose else True if search_from_index: # search indexed against indexed for i in tqdm(range(n_query), desc='Querying', disable=disable_tqdm, ): # Find the approximate nearest neighbors. # Each of the true `n_candidates` nearest neighbors # has at least `recall` chance of being found. ind = index.search_from_index(i, n_candidates, self.recall, ) neigh_ind[i, :len(ind)] = ind if return_distance or reorder: X_neigh_denormalized = \ X[ind] * self.X_indexed_norm_[ind].reshape(len(ind), -1) neigh_dist[i, :len(ind)] = pairwise_distances(X[i:i+1, :] * self.X_indexed_norm_[i], X_neigh_denormalized, metric=metric, ) else: # search new query against indexed for i, x in tqdm(enumerate(X), desc='Querying', disable=disable_tqdm, ): # Find the approximate nearest neighbors. # Each of the true `n_candidates` nearest neighbors # has at least `recall` chance of being found. ind = index.search(x.tolist(), n_candidates, self.recall, ) neigh_ind[i, :len(ind)] = ind if return_distance or reorder: X_neigh_denormalized =\ np.array([index.get(i) for i in ind]) * self.X_indexed_norm_[ind].reshape(len(ind), -1) neigh_dist[i, :len(ind)] = pairwise_distances(x.reshape(1, -1), X_neigh_denormalized, metric=metric, ) if reorder: sort = np.argsort(neigh_dist, axis=1) neigh_dist = np.take_along_axis(neigh_dist, sort, axis=1) neigh_ind = np.take_along_axis(neigh_ind, sort, axis=1) if return_distance: return neigh_dist, neigh_ind else: return neigh_ind class FalconnLSH(ApproximateNearestNeighbor): """Wrapper for using falconn LSH Falconn is an approximate nearest neighbor library, that uses multiprobe locality-sensitive hashing. Parameters ---------- n_candidates: int, default = 5 Number of neighbors to retrieve radius: float or None, optional, default = None Retrieve neighbors within this radius. Can be negative: See Notes. metric: str, default = 'euclidean' Distance metric, allowed are "angular", "euclidean", "manhattan", "hamming", "dot" num_probes: int, default = 50 The number of buckets the query algorithm probes. The higher number of probes is, the better accuracy one gets, but the slower queries are. n_jobs: int, default = 1 Number of parallel jobs verbose: int, default = 0 Verbosity level. If verbose > 0, show tqdm progress bar on indexing and querying. Attributes ---------- valid_metrics: List of valid distance metrics/measures Notes ----- From the falconn docs: radius can be negative, and for the distance function 'negative_inner_product' it actually makes sense. """ valid_metrics = ['euclidean', 'l2', 'minkowski', 'squared_euclidean', 'sqeuclidean', 'cosine', 'neg_inner', 'NegativeInnerProduct'] def __init__(self, n_candidates: int = 5, radius: float = 1., metric: str = 'euclidean', num_probes: int = 50, n_jobs: int = 1, verbose: int = 0): if falconn is None: # pragma: no cover raise ImportError(f'Please install the `falconn` package, before using this class:\n' f'$ pip install falconn') from None super().__init__(n_candidates=n_candidates, metric=metric, n_jobs=n_jobs, verbose=verbose, ) self.num_probes = num_probes self.radius = radius def fit(self, X: np.ndarray, y: np.ndarray = None) -> FalconnLSH: """ Setup the LSH index from training data. Parameters ---------- X: np.array Data to be indexed y: any Ignored Returns ------- self: FalconnLSH An instance of LSH with a built index """ X = check_array(X, dtype=[np.float32, np.float64]) if self.metric in ['euclidean', 'l2', 'minkowski']: self.metric = 'euclidean' distance = falconn.DistanceFunction.EuclideanSquared elif self.metric in ['squared_euclidean', 'sqeuclidean']: self.metric = 'sqeuclidean' distance = falconn.DistanceFunction.EuclideanSquared elif self.metric in ['cosine', 'NegativeInnerProduct', 'neg_inner']: self.metric = 'cosine' distance = falconn.DistanceFunction.NegativeInnerProduct else: warnings.warn(f'Invalid metric "{self.metric}". Using "euclidean" instead') self.metric = 'euclidean' distance = falconn.DistanceFunction.EuclideanSquared # Set up the LSH index lsh_construction_params = falconn.get_default_parameters(*X.shape, distance=distance) lsh_index = falconn.LSHIndex(lsh_construction_params) lsh_index.setup(X) self.X_train_ = X self.y_train_ = y self.index_ = lsh_index return self def kneighbors(self, X: np.ndarray = None, n_candidates: int = None, return_distance: bool = True) -> Union[Tuple[np.array, np.array], np.array]: """ Retrieve k nearest neighbors. Parameters ---------- X: np.array or None, optional, default = None Query objects. If None, search among the indexed objects. n_candidates: int or None, optional, default = None Number of neighbors to retrieve. If None, use the value passed during construction. return_distance: bool, default = True If return_distance, will return distances and indices to neighbors. Else, only return the indices. """ check_is_fitted(self, ["index_", 'X_train_']) # Check the n_neighbors parameter if n_candidates is None: n_candidates = self.n_candidates elif n_candidates <= 0: raise ValueError(f"Expected n_neighbors > 0. Got {n_candidates:d}") else: if not np.issubdtype(type(n_candidates), np.integer): raise TypeError(f"n_neighbors does not take {type(n_candidates)} value, enter integer value") if X is not None: X = check_array(X, dtype=self.X_train_.dtype) query_is_train = False X = check_array(X, accept_sparse='csr') n_retrieve = n_candidates else: query_is_train = True X = self.X_train_ # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_retrieve = n_candidates + 1 # Configure the LSH query objects (one per parallel worker) query = self.index_.construct_query_pool(num_probes=self.num_probes, num_query_objects=self.n_jobs) if return_distance: if self.metric == 'euclidean': distances = partial(euclidean_distances, squared=False) elif self.metric == 'sqeuclidean': distances = partial(euclidean_distances, squared=True) elif self.metric == 'cosine': distances = cosine_distances else: raise ValueError(f'Internal error: unrecognized metric "{self.metric}"') # Allocate memory for neighbor indices (and distances) n_objects = X.shape[0] neigh_ind = np.empty((n_objects, n_candidates), dtype=np.int32) if return_distance: neigh_dist = np.empty_like(neigh_ind, dtype=X.dtype) # If verbose, show progress bar on the search loop disable_tqdm = False if self.verbose else True if self.n_jobs > 1: def pquery(ix): i, x = ix return i, np.array(query.find_k_nearest_neighbors(x, k=n_retrieve)) with mp.pool.ThreadPool(processes=self.n_jobs) as pool: i_knn = list(tqdm(pool.imap_unordered(func=pquery, iterable=enumerate(X), chunksize=10), disable=False if self.verbose else True, total=X.shape[0], unit='vectors', desc='LSH query')) for i, knn in tqdm(i_knn, desc='Collecting results', disable=disable_tqdm): if query_is_train: knn = knn[1:] neigh_ind[i, :knn.size] = knn if return_distance: neigh_dist[i, :knn.size] = distances(X[i].reshape(1, -1), self.X_train_[knn]) # LSH may yield fewer neighbors than n_neighbors. # We set distances to NaN, and indices to -1 if knn.size < n_candidates: neigh_ind[i, knn.size:] = -1 if return_distance: neigh_dist[i, knn.size:] = np.nan else: for i, x in tqdm(enumerate(X), desc='LSH', disable=disable_tqdm, ): knn = np.array(query.find_k_nearest_neighbors(x, k=n_retrieve)) if query_is_train: knn = knn[1:] neigh_ind[i, :knn.size] = knn if return_distance: neigh_dist[i, :knn.size] = distances(x.reshape(1, -1), self.X_train_[knn]) # LSH may yield fewer neighbors than n_neighbors. # We set distances to NaN, and indices to -1 if knn.size < n_candidates: neigh_ind[i, knn.size:] = -1 if return_distance: neigh_dist[i, knn.size:] = np.nan if return_distance: return neigh_dist, neigh_ind else: return neigh_ind def radius_neighbors(self, X: np.ndarray = None, radius: float = None, return_distance: bool = True) -> Union[Tuple[np.array, np.array], np.array]: """ Retrieve neighbors within a certain radius. Parameters ---------- X: np.array or None, optional, default = None Query objects. If None, search among the indexed objects. radius: float or None, optional, default = None Retrieve neighbors within this radius. Can be negative: See Notes. return_distance: bool, default = True If return_distance, will return distances and indices to neighbors. Else, only return the indices. Notes ----- From the falconn docs: radius can be negative, and for the distance function 'negative_inner_product' it actually makes sense. """ check_is_fitted(self, ["index_", 'X_train_']) # Constructing a query object query = self.index_.construct_query_object() query.set_num_probes(self.num_probes) if return_distance: if self.metric == 'euclidean': distances = partial(euclidean_distances, squared=False) elif self.metric == 'sqeuclidean': distances = partial(euclidean_distances, squared=True) elif self.metric == 'cosine': distances = cosine_distances else: raise ValueError(f'Internal error: unrecognized metric "{self.metric}"') if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr', dtype=self.X_train_.dtype) else: query_is_train = True X = self.X_train_ if radius is None: radius = self.radius # LSH uses squared Euclidean internally if self.metric == 'euclidean': radius *= radius # Add a small number to imitate <= threshold radius += 1e-7 # Allocate memory for neighbor indices (and distances) n_objects = X.shape[0] neigh_ind = np.empty(n_objects, dtype='object') if return_distance: neigh_dist = np.empty_like(neigh_ind) # If verbose, show progress bar on the search loop disable_tqdm = False if self.verbose else True for i, x in tqdm(enumerate(X), desc='LSH', disable=disable_tqdm, ): knn = np.array(query.find_near_neighbors(x, threshold=radius)) if len(knn) == 0: knn = np.array([], dtype=int) else: if query_is_train: knn = knn[1:] neigh_ind[i] = knn if return_distance: if len(knn): neigh_dist[i] = distances(x.reshape(1, -1), self.X_train_[knn]).ravel() else: neigh_dist[i] = np.array([]) if return_distance: return neigh_dist, neigh_ind else: return neigh_ind
39.481273
120
0.54774
20,221
0.959114
0
0
0
0
0
0
7,549
0.358061
c09039628dfca0497559485ef917b2eee5612ab1
11,859
py
Python
virtualreality/calibration/manual_color_mask_calibration.py
sahasam/hobo_vr
0cf5824c91719055156ec23cf8dda2d921be948a
[ "MIT" ]
null
null
null
virtualreality/calibration/manual_color_mask_calibration.py
sahasam/hobo_vr
0cf5824c91719055156ec23cf8dda2d921be948a
[ "MIT" ]
null
null
null
virtualreality/calibration/manual_color_mask_calibration.py
sahasam/hobo_vr
0cf5824c91719055156ec23cf8dda2d921be948a
[ "MIT" ]
null
null
null
""" pyvr calibrate. Usage: pyvr calibrate [options] Options: -h, --help -c, --camera <camera> Source of the camera to use for calibration [default: 0] -r, --resolution <res> Input resolution in width and height [default: -1x-1] -n, --n_masks <n_masks> Number of masks to calibrate [default: 1] -l, --load_from_file <file> Load previous calibration settings [default: ranges.pickle] -s, --save <file> Save calibration settings to a file [default: ranges.pickle] """ import logging import pickle import sys from copy import copy from pathlib import Path from typing import Optional, List import cv2 from docopt import docopt from virtualreality import __version__ class ColorRange(object): def __init__(self, color_num, hue_center=0, hue_range=180, sat_center=0, sat_range=180, val_center=0, val_range=180 ): self.color_num = color_num self.hue_center = hue_center self.hue_range = hue_range self.sat_center = sat_center self.sat_range = sat_range self.val_center = val_center self.val_range = val_range class CalibrationData(object): def __init__(self, width=1, height=1, auto_exposure=0.25, exposure=0, saturation=50, num_colors=4): self.width = width self.height = height self.exposure = exposure self.saturation = saturation self.num_colors = num_colors self.color_ranges: List[ColorRange] = [] color_dist = 180 // num_colors for color in range(num_colors): self.color_ranges.append(ColorRange(color, *[color * color_dist, color_dist] * 3)) @classmethod def load_from_file(cls, load_file: str = str(Path(__file__).parent) + "ranges.pickle") -> Optional[ 'CalibrationData']: """Load the calibration data from a file.""" try: with open(load_file, "rb") as file: ranges = pickle.load(file) return ranges except FileNotFoundError as fe: logging.warning(f"Could not load calibration file '{load_file}'.") def save_to_file(self, save_file: str = str(Path(__file__).parent) + "ranges.pickle") -> None: with open(save_file, "wb") as file: pickle.dump(self, file) def colordata_to_blob(colordata, mapdata): ''' translates CalibrationData object to BlobTracker format masks :colordata: CalibrationData object :mapdata: a map dict with key representing the mask name and value representing the mask number ''' out = {} for key, clr_range_index in mapdata.items(): temp = colordata.color_ranges[clr_range_index] out[key] = { 'h':(temp.hue_center, temp.hue_range), 's':(temp.sat_center, temp.sat_range), 'v':(temp.val_center, temp.val_range), } return out def load_mapdata_from_file(path): ''' loads mapdata from file, for use in colordata_to_blob ''' with open(path, 'rb') as file: return pickle.load(file) def save_mapdata_to_file(path, mapdata): ''' save mapdata to file, for use in colordata_to_blob ''' with open(path, "wb") as file: pickle.dump(mapdata, file) def list_supported_capture_properties(cap: cv2.VideoCapture): """List the properties supported by the capture device.""" # thanks: https://stackoverflow.com/q/47935846/782170 supported = list() for attr in dir(cv2): if attr.startswith("CAP_PROP") and cap.get(getattr(cv2, attr)) != -1: supported.append(attr) return supported def get_color_mask(hsv, color_range: ColorRange): color_low = [ color_range.hue_center - color_range.hue_range, color_range.sat_center - color_range.sat_range, color_range.val_center - color_range.val_range, ] color_high = [ color_range.hue_center + color_range.hue_range, color_range.sat_center + color_range.sat_range, color_range.val_center + color_range.val_range, ] color_low_neg = copy(color_low) color_high_neg = copy(color_high) for c in range(3): if c==0: c_max = 180 else: c_max = 255 if color_low_neg[c] < 0: color_low_neg[c] = c_max + color_low_neg[c] color_high_neg[c] = c_max color_low[c] = 0 elif color_high_neg[c] > c_max: color_low_neg[c] = 0 color_high_neg[c] = color_high_neg[c] - c_max color_high[c] = c_max mask1 = cv2.inRange(hsv, tuple(color_low), tuple(color_high)) mask2 = cv2.inRange(hsv, tuple(color_low_neg), tuple(color_high_neg)) mask = cv2.bitwise_or(mask1, mask2) return mask def _set_default_camera_properties(vs, cam, vs_supported, frame_width, frame_height): if "CAP_PROP_FOURCC" not in vs_supported: logging.warning(f"Camera {cam} does not support setting video codec.") else: vs.set(cv2.CAP_PROP_FOURCC, cv2.CAP_OPENCV_MJPEG) if "CAP_PROP_AUTO_EXPOSURE" not in vs_supported: logging.warning(f"Camera {cam} does not support turning on/off auto exposure.") else: vs.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0.25) if "CAP_PROP_EXPOSURE" not in vs_supported: logging.warning(f"Camera {cam} does not support directly setting exposure.") else: vs.set(cv2.CAP_PROP_EXPOSURE, -7) if "CAP_PROP_EXPOSURE" not in vs_supported: logging.warning(f"Camera {cam} does not support directly setting exposure.") else: vs.set(cv2.CAP_PROP_EXPOSURE, -7) if "CAP_PROP_FRAME_HEIGHT" not in vs_supported: logging.warning(f"Camera {cam} does not support requesting frame height.") else: vs.set(cv2.CAP_PROP_FRAME_HEIGHT, frame_height) if "CAP_PROP_FRAME_WIDTH" not in vs_supported: logging.warning(f"Camera {cam} does not support requesting frame width.") else: vs.set(cv2.CAP_PROP_FRAME_WIDTH, frame_width) def manual_calibration( cam=0, num_colors_to_track=4, frame_width=-1, frame_height=-1, load_file="", save_file="ranges.pickle" ): """Manually calibrate the hsv ranges and camera settings used for blob tracking.""" vs = cv2.VideoCapture(cam) vs.set(cv2.CAP_PROP_EXPOSURE, -7) vs_supported = list_supported_capture_properties(vs) _set_default_camera_properties(vs, cam, vs_supported, frame_width, frame_height) cam_window = f"camera {cam} input" cv2.namedWindow(cam_window) if "CAP_PROP_EXPOSURE" in vs_supported: cv2.createTrackbar( "exposure", cam_window, 0, 16, lambda x: vs.set(cv2.CAP_PROP_EXPOSURE, x - 8), ) if "CAP_PROP_SATURATION" in vs_supported: cv2.createTrackbar( "saturation", cam_window, 0, 100, lambda x: vs.set(cv2.CAP_PROP_SATURATION, x), ) else: logging.warning(f"Camera {cam} does not support setting saturation.") ranges = None if load_file: ranges = CalibrationData.load_from_file(load_file) if ranges is None: ranges = CalibrationData(width=frame_width, height=frame_height, num_colors=num_colors_to_track) tracker_window_names = [] for color in range(num_colors_to_track): tracker_window_names.append(f"color {color}") cv2.namedWindow(tracker_window_names[color]) cv2.createTrackbar( "hue center", tracker_window_names[color], ranges.color_ranges[color].hue_center, 180, lambda _: None, ) cv2.createTrackbar( "hue range", tracker_window_names[color], ranges.color_ranges[color].hue_range, 180, lambda _: None, ) cv2.createTrackbar( "sat center", tracker_window_names[color], ranges.color_ranges[color].sat_center, 255, lambda _: None, ) cv2.createTrackbar( "sat range", tracker_window_names[color], ranges.color_ranges[color].sat_range, 255, lambda _: None, ) cv2.createTrackbar( "val center", tracker_window_names[color], ranges.color_ranges[color].val_center, 255, lambda _: None, ) cv2.createTrackbar( "val range", tracker_window_names[color], ranges.color_ranges[color].val_range, 255, lambda _: None, ) while 1: ret, frame = vs.read() if frame is None: break blurred = cv2.GaussianBlur(frame, (3, 3), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) exposure = cv2.getTrackbarPos("exposure", cam_window) saturation = cv2.getTrackbarPos("saturation", cam_window) ranges.exposure = exposure - 8 ranges.saturation = saturation for color in range(num_colors_to_track): hue_center = cv2.getTrackbarPos("hue center", tracker_window_names[color]) hue_range = cv2.getTrackbarPos("hue range", tracker_window_names[color]) sat_center = cv2.getTrackbarPos("sat center", tracker_window_names[color]) sat_range = cv2.getTrackbarPos("sat range", tracker_window_names[color]) val_center = cv2.getTrackbarPos("val center", tracker_window_names[color]) val_range = cv2.getTrackbarPos("val range", tracker_window_names[color]) ranges.color_ranges[color].hue_center = hue_center ranges.color_ranges[color].hue_range = hue_range ranges.color_ranges[color].sat_center = sat_center ranges.color_ranges[color].sat_range = sat_range ranges.color_ranges[color].val_center = val_center ranges.color_ranges[color].val_range = val_range mask = get_color_mask(hsv, ranges.color_ranges[color]) res = cv2.bitwise_and(hsv, hsv, mask=mask) cv2.imshow(tracker_window_names[color], res) cv2.imshow(cam_window, frame) k = cv2.waitKey(1) & 0xFF if k in [ord("q"), 27]: break for color in range(num_colors_to_track): hue_center = cv2.getTrackbarPos("hue center", tracker_window_names[color]) hue_range = cv2.getTrackbarPos("hue range", tracker_window_names[color]) sat_center = cv2.getTrackbarPos("sat center", tracker_window_names[color]) sat_range = cv2.getTrackbarPos("sat range", tracker_window_names[color]) val_center = cv2.getTrackbarPos("val center", tracker_window_names[color]) val_range = cv2.getTrackbarPos("val range", tracker_window_names[color]) print(f"hue_center[{color}]: {hue_center}") print(f"hue_range[{color}]: {hue_range}") print(f"sat_center[{color}]: {sat_center}") print(f"sat_range[{color}]: {sat_range}") print(f"val_center[{color}]: {val_center}") print(f"val_range[{color}]: {val_range}") if save_file: ranges.save_to_file(save_file) print(f'ranges saved to list in "{save_file}".') print("You can use this in the pyvr tracker using the --calibration-file argument.") vs.release() cv2.destroyAllWindows() def main(): """Calibrate entry point.""" # allow calling from both python -m and from pyvr: argv = sys.argv[1:] if len(argv) < 2 or sys.argv[1] != "calibrate": argv = ["calibrate"] + argv args = docopt(__doc__, version=f"pyvr version {__version__}", argv=argv) width, height = args["--resolution"].split("x") if args["--camera"].isdigit(): cam = int(args["--camera"]) else: cam = args["--camera"] manual_calibration( cam=cam, num_colors_to_track=int(args["--n_masks"]), frame_width=int(width), frame_height=int(height), load_file=args["--load_from_file"], save_file=args["--save"], )
35.827795
114
0.646935
1,688
0.142339
0
0
446
0.037609
0
0
2,651
0.223543
c091621b5f0a091f64683171c4c8e2bb52a88c66
155
py
Python
lambda_handlers/validators/__init__.py
renovate-tests/lambda-handlers
0b14013f19b597524a8d50f7ea8813ee726c584c
[ "Apache-2.0" ]
null
null
null
lambda_handlers/validators/__init__.py
renovate-tests/lambda-handlers
0b14013f19b597524a8d50f7ea8813ee726c584c
[ "Apache-2.0" ]
null
null
null
lambda_handlers/validators/__init__.py
renovate-tests/lambda-handlers
0b14013f19b597524a8d50f7ea8813ee726c584c
[ "Apache-2.0" ]
null
null
null
from .jsonschema_validator import JSONSchemaValidator as jsonschema # noqa from .marshmallow_validator import MarshmallowValidator as marshmallow # noqa
51.666667
78
0.858065
0
0
0
0
0
0
0
0
12
0.077419
c091c64c9f6b764d68bafb5d1ad27be880d8e240
227
py
Python
xonsh/aliases/dir.py
yjpark/dotfiles
ae9ad72eb2e2a4d3da4c600d24782720229d1a4b
[ "MIT" ]
7
2015-12-18T04:33:01.000Z
2019-09-17T06:09:51.000Z
xonsh/aliases/dir.py
yjpark/dotfiles
ae9ad72eb2e2a4d3da4c600d24782720229d1a4b
[ "MIT" ]
1
2016-05-12T15:32:47.000Z
2016-05-12T15:32:47.000Z
xonsh/aliases/dir.py
yjpark/dotfiles
ae9ad72eb2e2a4d3da4c600d24782720229d1a4b
[ "MIT" ]
4
2016-11-29T04:06:19.000Z
2019-12-26T14:32:46.000Z
aliases['cd-'] = 'cd -' aliases['cl'] = 'cd (ls -1Ft | head -1)' aliases['..'] = 'cd ..' aliases['...'] = 'cd ../..' aliases['....'] = 'cd ../../..' aliases['.....'] = 'cd ../../../..' aliases['......'] = 'cd ../../../../..'
22.7
40
0.339207
0
0
0
0
0
0
0
0
134
0.590308
c09416ca42570e30634d8a60a3175bf1c430d092
1,894
py
Python
database.py
tzoch/dropbox-bot
2bf36e2d4146bf8c00169362f9767ed059643787
[ "MIT" ]
3
2016-03-08T04:43:22.000Z
2020-08-25T20:07:28.000Z
database.py
tzoch/dropbox-bot
2bf36e2d4146bf8c00169362f9767ed059643787
[ "MIT" ]
null
null
null
database.py
tzoch/dropbox-bot
2bf36e2d4146bf8c00169362f9767ed059643787
[ "MIT" ]
null
null
null
#! /usr/bin/python ''' Class to handle database connections and queries for Dropbox Mirror Bot ''' import sqlite3 class Database(object): def __init__(self, database=":memory:"): self._database = database c = self.cursor() query = '''CREATE TABLE IF NOT EXISTS dropbox_submissions ( processed_id INTEGER PRIMARY KEY ASC, submission_id VARCHAR(10) UNIQUE)''' c.execute(query) self.conn.commit() query = '''CREATE TABLE IF NOT EXISTS dropbox_images ( id INTEGER PRIMARY KEY ASC, imgur_id VARCHAR(10), deletehash VARCHAR(40))''' c.execute(query) self.conn.commit() @property def conn(self): if not hasattr(self, '_connection'): self._connection = sqlite3.connect(self._database) return self._connection def cursor(self): return self.conn.cursor() def close(self): self.conn.close() def is_processed(self, submission_id): '''Return true if the submission has already been processed''' c = self.cursor() query = '''SELECT submission_id FROM dropbox_submissions WHERE submission_id = (?)''' c.execute(query, (submission_id,)) if c.fetchone(): return True return False def mark_as_processed(self, submission_id): c = self.cursor() query = '''INSERT INTO dropbox_submissions (submission_id) VALUES (?)''' c.execute(query , (submission_id,)) self.conn.commit() def log_image(self, img_id, img_deletehash): c = self.cursor() query = '''INSERT INTO dropbox_images (imgur_id, deletehash) VALUES (?, ?)''' c.execute(query, (img_id, img_deletehash)) self.conn.commit()
30.063492
70
0.577614
1,776
0.937698
0
0
169
0.089229
0
0
796
0.420275
c09416d25e79ddab37c35127443d972589822576
796
py
Python
tests/starter/test_starter_admin_email.py
elifesciences/elife-bot
d3a102c8030e4b7ec83cbd45e5f839dba4f9ffd9
[ "MIT" ]
17
2015-02-10T07:10:29.000Z
2021-05-14T22:24:45.000Z
tests/starter/test_starter_admin_email.py
elifesciences/elife-bot
d3a102c8030e4b7ec83cbd45e5f839dba4f9ffd9
[ "MIT" ]
459
2015-03-31T18:24:23.000Z
2022-03-30T19:44:40.000Z
tests/starter/test_starter_admin_email.py
elifesciences/elife-bot
d3a102c8030e4b7ec83cbd45e5f839dba4f9ffd9
[ "MIT" ]
9
2015-04-18T16:57:31.000Z
2020-10-30T11:49:13.000Z
import unittest from mock import patch from starter.starter_AdminEmail import starter_AdminEmail from tests.activity.classes_mock import FakeLogger from tests.classes_mock import FakeLayer1 import tests.settings_mock as settings_mock class TestStarterAdminEmail(unittest.TestCase): def setUp(self): self.fake_logger = FakeLogger() self.starter = starter_AdminEmail(settings_mock, logger=self.fake_logger) @patch("boto.swf.layer1.Layer1") def test_start(self, fake_conn): fake_conn.return_value = FakeLayer1() self.assertIsNone(self.starter.start(settings_mock)) @patch("boto.swf.layer1.Layer1") def test_start_workflow(self, fake_conn): fake_conn.return_value = FakeLayer1() self.assertIsNone(self.starter.start_workflow())
34.608696
81
0.761307
559
0.702261
0
0
357
0.448492
0
0
48
0.060302
c09430f692b1d375bbff6b77320ac21d3531ed34
15,963
py
Python
tests/commit/math/test__tensors.py
eliasdjo/PhiFlow
dc88dca696d25a5ea5793aa48fae390469f0d829
[ "MIT" ]
null
null
null
tests/commit/math/test__tensors.py
eliasdjo/PhiFlow
dc88dca696d25a5ea5793aa48fae390469f0d829
[ "MIT" ]
null
null
null
tests/commit/math/test__tensors.py
eliasdjo/PhiFlow
dc88dca696d25a5ea5793aa48fae390469f0d829
[ "MIT" ]
null
null
null
from unittest import TestCase import numpy as np import phi from phi import math from phi.math import channel, batch from phi.math._shape import CHANNEL_DIM, BATCH_DIM, shape_stack, spatial from phi.math._tensors import TensorStack, CollapsedTensor, wrap, tensor, cached from phi.math.backend import Backend BACKENDS = phi.detect_backends() class TestTensors(TestCase): def test_tensor_from_constant(self): for backend in BACKENDS: with backend: for const in (1, 1.5, True, 1+1j): tens = math.wrap(const) self.assertEqual(math.NUMPY, tens.default_backend) self.assertTrue(isinstance(tens.native(), (int, float, bool, complex)), msg=backend) math.assert_close(tens, const) tens = math.tensor(const) self.assertEqual(backend, math.choose_backend(tens), f'{const} was not converted to the specified backend') math.assert_close(tens, const) def test_tensor_from_native(self): for creation_backend in BACKENDS: native = creation_backend.ones((4,)) for backend in BACKENDS: with backend: tens = math.tensor(native, convert=False) self.assertEqual(creation_backend, tens.default_backend) math.assert_close(tens, native) tens = math.tensor(native) self.assertEqual(backend, tens.default_backend, f'Conversion failed from {creation_backend} to {backend}') math.assert_close(tens, native) def test_tensor_from_tuple_of_numbers(self): data_tuple = (1, 2, 3) for backend in BACKENDS: with backend: tens = math.tensor(data_tuple, convert=False) self.assertEqual(math.NUMPY, math.choose_backend(tens)) math.assert_close(tens, data_tuple) tens = math.tensor(data_tuple) self.assertEqual(backend, math.choose_backend(tens)) math.assert_close(tens, data_tuple) def test_tensor_from_tuple_of_tensor_like(self): native = ([1, 2, 3], math.zeros(channel(vector=3))) for backend in BACKENDS: with backend: tens = wrap(native, batch(stack=2), channel(vector=3)) self.assertEqual(math.NUMPY, math.choose_backend(tens)) self.assertEqual(batch(stack=2) & channel(vector=3), tens.shape) tens = tensor(native, batch(stack=2), channel(vector=3)) self.assertEqual(backend, math.choose_backend(tens)) self.assertEqual(batch(stack=2) & channel(vector=3), tens.shape) def test_tensor_from_tensor(self): ref = math.stack([math.zeros(spatial(x=5)), math.zeros(spatial(x=4))], batch('stack')) for backend in BACKENDS: with backend: tens = math.tensor(ref, convert=False) self.assertEqual(math.NUMPY, math.choose_backend(tens)) self.assertEqual(2, tens.shape.get_size('stack')) self.assertEqual(('stack', 'x'), tens.shape.names) tens = math.tensor(ref) self.assertEqual(backend, math.choose_backend(tens)) self.assertEqual(backend, math.choose_backend(tens.stack[0])) self.assertEqual(backend, math.choose_backend(tens.stack[1])) tens = math.tensor(ref, batch('n1', 'n2')) self.assertEqual(backend, math.choose_backend(tens)) def test_multi_dim_tensor_from_numpy(self): v = math.tensor(np.ones([1, 4, 3, 2]), batch('batch'), spatial('x,y'), channel('vector')) self.assertEqual((1, 4, 3, 2), v.shape.sizes) v = math.tensor(np.ones([10, 4, 3, 2]), batch('batch'), spatial('x,y'), channel('vector')) self.assertEqual((10, 4, 3, 2), v.shape.sizes) def test_tensor_from_shape(self): s = spatial(x=4, y=3) t = math.tensor(s) math.assert_close(t, [4, 3]) self.assertEqual(t.shape.get_item_names('dims'), ('x', 'y')) def test_native_constant_ops(self): v = math.tensor(np.ones([1, 4, 3, 2]), batch('batch'), spatial('x,y'), channel('vector')) math.assert_close(v + 1, 2) math.assert_close(v * 3, 3) math.assert_close(v / 2, 0.5) math.assert_close(v ** 2, 1) math.assert_close(2 ** v, 2) math.assert_close(v + [0, 1], [1, 2]) def test_native_native_ops(self): v = math.ones(batch(batch=10) & spatial(x=4, y=3) & channel(vector=2)) d = v.unstack('vector')[0] math.assert_close(v + d, d + v, 2) math.assert_close(v * d, d * v, 1) def test_native_unstack(self): v = math.ones(batch(batch=10), spatial(x=4, y=3), channel(vector=2)) vx, vy = v.vector.unstack() self.assertEqual((10, 4, 3), vx.shape.sizes) self.assertEqual(4, len(v.x.unstack())) self.assertEqual(10, len(v.batch.unstack())) def test_native_slice(self): v = math.ones(batch(batch=10), spatial(x=4, y=3), channel(vector=2)) self.assertEqual((10, 4, 3), v.vector[0].shape.sizes) self.assertEqual((10, 2, 2), v.y[0:2].x[0].shape.sizes) def test_stacked_shapes(self): t0 = math.ones(batch(batch=10) & spatial(x=4, y=3) & channel(vector=2)) for dim in t0.shape.names: tensors = t0.unstack(dim) stacked = math.stack(tensors, t0.shape[dim].with_sizes([None])) self.assertEqual(set(t0.shape.names), set(stacked.shape.names)) self.assertEqual(t0.shape.volume, stacked.shape.volume) def test_stacked_native(self): t0 = math.ones(batch(batch=10) & spatial(x=4, y=3) & channel(vector=2)) tensors = t0.unstack('vector') stacked = math.stack(tensors, channel('vector2')) math.assert_close(stacked, t0) self.assertEqual((10, 4, 3, 2), stacked.native(stacked.shape).shape) self.assertEqual((4, 3, 2, 10), stacked.native(order=('x', 'y', 'vector2', 'batch')).shape) self.assertEqual((2, 10, 3, 4), stacked.native(order=('vector2', 'batch', 'y', 'x')).shape) # this should re-stack since only the stacked dimension position is different def test_stacked_get(self): t0 = math.ones(batch(batch=10) & spatial(x=4, y=3) & channel(vector=2)) tensors = t0.unstack('vector') stacked = math.stack(tensors, channel('channel')) self.assertEqual(tensors, stacked.channel.unstack()) assert tensors[0] is stacked.channel[0] assert tensors[1] is stacked.channel[1:2].channel.unstack()[0] self.assertEqual(4, len(stacked.x.unstack())) def test_shape_math(self): vector = math.ones(spatial(x=4, y=3) & channel(vector=2)) vector *= vector.shape.spatial math.assert_close(vector.vector[0], 4) math.assert_close(vector.vector[1], 3) def test_collapsed(self): scalar = math.zeros(spatial(x=4, y=3)) math.assert_close(scalar, 0) self.assertEqual((4, 3), scalar.shape.sizes) self.assertEqual(4, scalar.y[0].shape.size) self.assertEqual(0, scalar.y[0].x[0].shape.rank) self.assertEqual(3, len(scalar.y.unstack())) def test_collapsed_op2(self): # Collapsed + Collapsed a = math.zeros(channel(vector=4)) b = math.ones(batch(batch=3)) c = a + b self.assertIsInstance(c, CollapsedTensor) self.assertEqual(c.shape.volume, 12) self.assertEqual(c._inner.shape.volume, 1) # Collapsed + Native n = math.ones(channel(vector=3)) + (0, 1, 2) math.assert_close(n, (1, 2, 3)) def test_semi_collapsed(self): scalar = math.ones(spatial(x=4, y=3)) scalar = CollapsedTensor(scalar, scalar.shape._expand(batch(batch=10))) self.assertEqual((10, 4, 3), scalar.shape.sizes) self.assertEqual(4, len(scalar.x.unstack())) self.assertEqual(10, len(scalar.batch.unstack())) self.assertEqual(0, scalar.y[0].batch[0].x[0].shape.rank) def test_zeros_nonuniform(self): nonuniform = shape_stack(batch('stack'), batch(time=1) & spatial(x=3, y=3), spatial(x=3, y=4), channel()) self.assertEqual(math.zeros(nonuniform).shape, nonuniform) self.assertEqual(math.ones(nonuniform).shape, nonuniform) self.assertEqual(math.random_normal(nonuniform).shape, nonuniform) self.assertEqual(math.random_uniform(nonuniform).shape, nonuniform) def test_close_different_shapes(self): a = math.ones(channel(vector='x,y')) b = math.wrap(3) self.assertFalse(math.close(a, b)) self.assertFalse(math.close(cached(a), b)) math.assert_close(a+2, b) def test_repr(self): print("--- Eager ---") print(repr(math.zeros(batch(b=10)))) print(repr(math.zeros(batch(b=10)) > 0)) print(repr(math.ones(channel(vector=3)))) print(repr(math.ones(batch(vector=3)))) def tracable(x): print(x) return x print("--- Placeholders ---") for backend in BACKENDS: if backend.supports(Backend.jit_compile): with backend: math.jit_compile(tracable)(math.ones(channel(vector=3))) def test_tensor_like(self): class Success(Exception): pass class MyObjV: def __init__(self, x): self.x = x def __value_attrs__(self): return 'x', def __with_tattrs__(self, **tattrs): math.assert_close(tattrs['x'], 1) raise Success class MyObjT: def __init__(self, x1, x2): self.x1 = x1 self.x2 = x2 def __variable_attrs__(self): return 'x1', 'x2' v = MyObjV(math.wrap(0)) t = MyObjT(math.wrap(0), math.wrap(1)) self.assertIsInstance(v, math.TensorLike) self.assertIsInstance(t, math.TensorLike) try: math.cos(v) except Success: pass try: math.cos(t) except AssertionError: pass def test_Dict(self): d1 = math.Dict(a=1, b=math.ones(), c=math.ones(spatial(x=3))) math.assert_close(d1 * 2, d1 + d1, 2 * d1, 2 / d1) math.assert_close(0 + d1, d1, d1 - 0, abs(d1), round(d1)) math.assert_close(-d1, 0 - d1) math.assert_close(d1 // 2, d1 * 0, d1 % 1) math.assert_close(d1 / 2, d1 * 0.5, 0.5 * d1) math.assert_close(math.sin(d1 * 0), d1 * 0) def test_collapsed_non_uniform_tensor(self): non_uniform = math.stack([math.zeros(spatial(a=2)), math.ones(spatial(a=3))], batch('b')) e = math.expand(non_uniform, channel('vector')) assert e.shape.without('vector') == non_uniform.shape def test_slice_by_item_name(self): t = math.tensor(spatial(x=4, y=3)) math.assert_close(t.dims['x'], 4) math.assert_close(t.dims['y'], 3) math.assert_close(t.dims['y,x'], (3, 4)) math.assert_close(t.dims[('y', 'x')], (3, 4)) math.assert_close(t.dims[spatial('x,y')], (4, 3)) def test_serialize_tensor(self): t = math.random_normal(batch(batch=10), spatial(x=4, y=3), channel(vector=2)) math.assert_close(t, math.from_dict(math.to_dict(t))) def test_flip_item_names(self): t = math.zeros(spatial(x=4, y=3), channel(vector='x,y')) self.assertEqual(('x', 'y'), t.vector.item_names) t_ = t.vector.flip() self.assertEqual(('y', 'x'), t_.vector.item_names) t_ = t.vector[::-1] self.assertEqual(('y', 'x'), t_.vector.item_names) def test_op2_incompatible_item_names(self): t1 = math.random_normal(channel(vector='x,y,z')) t2 = math.random_normal(channel(vector='r,g,b')) self.assertEqual(('r', 'g', 'b'), t2.vector.item_names) try: t1 + t2 self.fail("Tensors with incompatible item names cannot be added") except math.IncompatibleShapes: pass t1 + t1 t2_ = t2 + math.random_normal(channel(vector=3)) self.assertEqual(('r', 'g', 'b'), t2_.vector.item_names) t2_ = math.random_normal(channel(vector=3)) + t2 self.assertEqual(('r', 'g', 'b'), t2_.vector.item_names) def test_layout_single(self): a = object() t = math.layout(a) self.assertEqual(a, t.native()) def test_layout_list(self): a = ['a', 'b', 'c'] t = math.layout(a, channel(letters=a)) self.assertEqual(a, t.native()) self.assertEqual('a', t.letters['a'].native()) self.assertEqual('a', t.letters['b, a'].letters['a'].native()) def test_layout_tree(self): a = [['a', 'b1'], 'b2', 'c'] t = math.layout(a, channel(outer='list,b2,c', inner=None)) self.assertEqual(a, t.native()) self.assertEqual(['a', 'b1'], t.outer['list'].native()) self.assertEqual('a', t.outer['list'].inner[0].native()) self.assertEqual(['a', 'b', 'c'], t.inner[0].native()) self.assertEqual('a', t.inner[0].outer['list'].native()) def test_layout_size(self): a = [['a', 'b1'], 'b2', 'c'] t = math.layout(a, channel(outer='list,b2,c', inner=None)) self.assertEqual(3, t.shape.get_size('outer')) self.assertEqual(2, t.outer['list'].shape.get_size('inner')) self.assertEqual(1, t.outer['c'].shape.get_size('inner')) def test_layout_dict(self): a = {'a': 'text', 'b': [0, 1]} t = math.layout(a, channel('dict,inner')) self.assertEqual(a, t.native()) self.assertEqual(('a', 'b'), t.shape.get_item_names('dict')) self.assertEqual(a, t.native()) self.assertEqual('text', t.dict['a'].native()) self.assertEqual('e', t.dict['a'].inner[1].native()) self.assertEqual(1, t.dict['b'].inner[1].native()) self.assertEqual(('e', 1), t.inner[1].native()) def test_layout_dict_conflict(self): a = [dict(a=1), dict(b=2)] t = math.layout(a, channel('outer,dict')) self.assertEqual(None, t.shape.get_item_names('dict')) self.assertEqual(a, t.native()) self.assertEqual([1, 2], t.dict[0].native()) self.assertEqual(2, t.dict[0].outer[1].native()) def test_layout_None(self): none = math.layout(None) self.assertEqual(None, none.native()) l = math.layout([None, None], channel('v')) self.assertEqual(None, none.v[0].native()) def test_iterate_0d(self): total = 0. for value in math.ones(): total += value self.assertIsInstance(total, float) self.assertEqual(total, 1) def test_iterate_1d(self): total = 0. for value in math.ones(channel(vector=3)): total += value self.assertIsInstance(total, float) self.assertEqual(total, 3) def test_iterate_2d(self): total = 0. for value in math.ones(channel(v1=2, v2=2)): total += value self.assertIsInstance(total, float) self.assertEqual(total, 4) def test_iterate_layout(self): a = [dict(a=1), dict(b=2)] t = math.layout(a, channel('outer,dict')) total = [] for d in t: total.append(d) self.assertEqual(total, [1, 2]) def test_default_backend_layout(self): self.assertIsNone(math.layout(None).default_backend) def test_reduction_properties(self): t = math.meshgrid(x=2, y=2) self.assertEqual(0.5, t.mean) self.assertEqual(0.5, t.std) self.assertEqual(1, t.max) self.assertEqual(0, t.min) self.assertEqual(4, t.sum) self.assertEqual(False, t.all) self.assertEqual(True, t.any)
40.930769
178
0.58811
15,616
0.978262
0
0
0
0
0
0
879
0.055065
c094fb0ecd2841945312d32ccd2105e21bce1b3b
1,202
py
Python
index/admin.py
KolibriSolutions/BepMarketplace
c47d252fd744cde6b927e37c34d7a103c6162be5
[ "BSD-3-Clause" ]
1
2019-06-29T15:24:24.000Z
2019-06-29T15:24:24.000Z
index/admin.py
KolibriSolutions/BepMarketplace
c47d252fd744cde6b927e37c34d7a103c6162be5
[ "BSD-3-Clause" ]
2
2020-01-12T17:47:33.000Z
2020-01-12T17:47:45.000Z
index/admin.py
KolibriSolutions/BepMarketplace
c47d252fd744cde6b927e37c34d7a103c6162be5
[ "BSD-3-Clause" ]
2
2019-06-29T15:24:26.000Z
2020-01-08T15:15:03.000Z
# Bep Marketplace ELE # Copyright (c) 2016-2021 Kolibri Solutions # License: See LICENSE file or https://github.com/KolibriSolutions/BepMarketplace/blob/master/LICENSE # from django.contrib import admin from django.shortcuts import reverse from django.utils.html import format_html from .models import Track, Broadcast, FeedbackReport, UserMeta, Term, UserAcceptedTerms class UserMetaAdmin(admin.ModelAdmin): search_fields = ['User__username', 'Fullname', 'User__email', 'User__username'] list_filter = ('User__groups', 'Cohort', 'EnrolledBEP', 'EnrolledExt') list_display = ['Fullname', 'User', 'user_link'] def user_link(self, obj): url = reverse('admin:auth_user_change', args=[obj.User.id]) return format_html("<a href='{}'>{}</a>", url, obj) class UserAcceptedTermsAdmin(admin.ModelAdmin): search_fields = ['User__username'] class FeedbackReportAdmin(admin.ModelAdmin): list_filter = ['Status'] admin.site.register(Term) admin.site.register(UserAcceptedTerms, UserAcceptedTermsAdmin) admin.site.register(UserMeta, UserMetaAdmin) admin.site.register(Broadcast) admin.site.register(FeedbackReport, FeedbackReportAdmin) admin.site.register(Track)
33.388889
102
0.757903
568
0.472546
0
0
0
0
0
0
368
0.306156
c0955acbb8e9da3cf689449a7886da397be4ac74
9,025
py
Python
stacks/firecares_web.py
FireCARES/firecares-ansible
f650798a7a343626402f6d46782651a2f7a5f086
[ "MIT" ]
1
2017-02-12T13:38:57.000Z
2017-02-12T13:38:57.000Z
stacks/firecares_web.py
FireCARES/firecares-ansible
f650798a7a343626402f6d46782651a2f7a5f086
[ "MIT" ]
16
2015-10-21T13:00:54.000Z
2021-09-23T23:21:07.000Z
stacks/firecares_web.py
FireCARES/firecares-ansible
f650798a7a343626402f6d46782651a2f7a5f086
[ "MIT" ]
4
2015-08-19T00:52:54.000Z
2017-02-13T08:14:10.000Z
from datetime import datetime from pytz import timezone from troposphere import Ref, Template, Parameter, GetAZs, Output, Join, GetAtt, autoscaling, ec2, elasticloadbalancing as elb t = Template() t.add_description("Create FireCARES Webserver Load Balancer, Auto-Scaling group and Celery beat VM") base_ami = "ami-7646e460" now = datetime.utcnow().replace(tzinfo=timezone('UTC')).isoformat() key_name = t.add_parameter(Parameter( "KeyName", Description="Name of an existing EC2 KeyPair to enable SSH access to the instances", Type="AWS::EC2::KeyPair::KeyName", ConstraintDescription="Must be the name of an existing EC2 KeyPair." )) ami = t.add_parameter(Parameter( "baseAmi", Description="Name of the AMI to use", Type="String", ConstraintDescription="Must be the name of an existing AMI.", Default=base_ami )) beatami = t.add_parameter(Parameter( "beatAmi", Description="Name of the beat AMI", Type="String", ConstraintDescription="Must be the name of an existing AMI." )) web_capacity = t.add_parameter(Parameter( "WebServerCapacity", Default="2", Description="The initial number of WebServer instances", Type="Number", ConstraintDescription="must be between 1 and 5 EC2 instances.", MinValue="1", MaxValue="5", )) commit = t.add_parameter(Parameter( "CommitHash", Description="Commit hash used for building the web VM", Type="String" )) beat_instance_class = t.add_parameter(Parameter( "BeatInstanceClass", Default="t2.large", Description="Celery beat EC2 instance type", Type="String", ConstraintDescription="must be a valid EC2 instance type.", AllowedValues=[ "t1.micro", "t2.nano", "t2.micro", "t2.small", "t2.medium", "t2.large", "m1.small", "m1.medium", "m1.large", "m1.xlarge", "m2.xlarge", "m2.2xlarge", "m2.4xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "c1.medium", "c1.xlarge", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "g2.2xlarge", "g2.8xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "i2.xlarge", "i2.2xlarge", "i2.4xlarge", "i2.8xlarge", "d2.xlarge", "d2.2xlarge", "d2.4xlarge", "d2.8xlarge", "hi1.4xlarge", "hs1.8xlarge", "cr1.8xlarge", "cc2.8xlarge", "cg1.4xlarge" ] )) web_instance_class = t.add_parameter(Parameter( "WebInstanceClass", Default="t2.small", Description="WebServer EC2 instance type", Type="String", ConstraintDescription="must be a valid EC2 instance type.", AllowedValues=[ "t1.micro", "t2.nano", "t2.micro", "t2.small", "t2.medium", "t2.large", "m1.small", "m1.medium", "m1.large", "m1.xlarge", "m2.xlarge", "m2.2xlarge", "m2.4xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "c1.medium", "c1.xlarge", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "g2.2xlarge", "g2.8xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "i2.xlarge", "i2.2xlarge", "i2.4xlarge", "i2.8xlarge", "d2.xlarge", "d2.2xlarge", "d2.4xlarge", "d2.8xlarge", "hi1.4xlarge", "hs1.8xlarge", "cr1.8xlarge", "cc2.8xlarge", "cg1.4xlarge" ] )) environment = t.add_parameter(Parameter( "Environment", Description="Stack environment (e.g. prod, dev, int)", Type="String", MinLength="1", MaxLength="12", Default="dev", )) load_balancer = t.add_resource(elb.LoadBalancer( "LoadBalancer", CrossZone=True, AvailabilityZones=GetAZs(""), LoadBalancerName=Join('-', ['fc', Ref(environment), Ref(commit)]), AppCookieStickinessPolicy=[ { "PolicyName": "AppCookieBasedPolicy", "CookieName": "sticky" } ], Listeners=[ { "LoadBalancerPort": "80", "InstancePort": "80", "Protocol": "HTTP" }, { "LoadBalancerPort": "443", "InstancePort": "80", "Protocol": "HTTPS", "SSLCertificateId": "arn:aws:acm:us-east-1:164077527722:certificate/a8085d69-3f7b-442e-baa6-70f3bd9b4981", "PolicyNames": [ "AppCookieBasedPolicy" ] } ] )) web_sg = t.add_resource(ec2.SecurityGroup( "WebServers", GroupDescription=Join(' - ', ["FireCARES webserver group", Ref(environment), Ref(commit)]), SecurityGroupIngress=[ ec2.SecurityGroupRule("ELBAccess", IpProtocol="tcp", FromPort="80", ToPort="80", SourceSecurityGroupOwnerId=GetAtt(load_balancer, "SourceSecurityGroup.OwnerAlias"), SourceSecurityGroupName=GetAtt(load_balancer, "SourceSecurityGroup.GroupName") ), ec2.SecurityGroupRule("JenkinsAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="54.173.150.226/32"), ec2.SecurityGroupRule("TylerAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="73.173.214.176/32"), ec2.SecurityGroupRule("JoeAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="65.254.97.100/32"), ec2.SecurityGroupRule("JoeAccess2", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="108.66.75.162/32"), ec2.SecurityGroupRule("JoeAccess3", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="71.86.4.190/32"), ec2.SecurityGroupRule("JoeAccess4", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="75.133.14.178/32"), ec2.SecurityGroupRule("SontagAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="47.215.167.239/32"), ec2.SecurityGroupRule("SontagAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="54.87.125.141/32"), ec2.SecurityGroupRule("SontagAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="54.167.99.192/32"), ec2.SecurityGroupRule("SontagAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="52.205.224.226/32"), ec2.SecurityGroupRule("SontagAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="52.206.122.170/32"), ec2.SecurityGroupRule("SontagAccess", IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="52.202.117.147/32") ], )) launch_configuration = t.add_resource(autoscaling.LaunchConfiguration( "WebServerLaunchConfiguration", ImageId=Ref(ami), InstanceType=Ref(web_instance_class), KeyName=Ref(key_name), SecurityGroups=[Ref(web_sg)] )) beat = t.add_resource(ec2.Instance( "BeatInstance", ImageId=Ref(beatami), InstanceType=Ref(beat_instance_class), KeyName=Ref(key_name), SecurityGroups=[Ref(web_sg)], Tags=[ ec2.Tag("environment", Ref(environment)), ec2.Tag("Name", Join('-', ['celerybeat', Ref(environment), Ref(commit)])), ec2.Tag("Group", Join('-', ['celerybeat', Ref(environment)])) ] )) autoscaling_group = t.add_resource(autoscaling.AutoScalingGroup( "WebserverAutoScale", AvailabilityZones=['us-east-1b', 'us-east-1c'], DesiredCapacity=Ref(web_capacity), MinSize="1", MaxSize="5", Tags=[ autoscaling.Tag("environment", Ref(environment), True), autoscaling.Tag("Name", Join('-', ['web-server', Ref(environment), Ref(commit)]), True), autoscaling.Tag("Group", Join('-', ['web-server', Ref(environment)]), True) ], LoadBalancerNames=[Ref(load_balancer)], HealthCheckType="EC2", LaunchConfigurationName=Ref(launch_configuration) )) t.add_output([ Output( "stackURL", Description="Stack url", Value=Join("", [GetAtt(load_balancer, 'DNSName')]), ) ]) t.add_output([ Output( "WebServerSecurityGroup", Description="Web server security group.", Value=Join("", [GetAtt(web_sg, 'GroupId')]), ) ]) t.add_output([ Output( "AMI", Description="Web server ami image group.", Value=Ref(ami), ) ]) if __name__ == '__main__': print t.to_json()
29.493464
125
0.582493
0
0
0
0
0
0
0
0
3,445
0.381717
c095ea2cd17b98f861280b8dd90e12ab34027235
513
py
Python
solutions/unitReview/gcd.py
mrparkonline/python3_while
3b24be84d16230e2b923276dca4c943f4c5ad26d
[ "MIT" ]
null
null
null
solutions/unitReview/gcd.py
mrparkonline/python3_while
3b24be84d16230e2b923276dca4c943f4c5ad26d
[ "MIT" ]
null
null
null
solutions/unitReview/gcd.py
mrparkonline/python3_while
3b24be84d16230e2b923276dca4c943f4c5ad26d
[ "MIT" ]
null
null
null
# GCD Program from math import gcd # input num1 = int(input('Enter a number: ')) num2 = int(input('Enter another number: ')) # processing & output divisor = 1 upper_limit = min(num1, num2) gcd_answer = 0 #print(num1, 'and', num2, 'share these factors:') print('GCD of', num1, 'and', num2, 'is:') while divisor <= upper_limit: if num1 % divisor == 0 and num2 % divisor == 0: gcd_answer = divisor divisor += 1 # end of while loop print(gcd_answer) print('Math Module GCD:', gcd(num1,num2))
22.304348
51
0.651072
0
0
0
0
0
0
0
0
187
0.364522
c096a0804783d5b361fcbd0253a74c4dbbc3423f
447
py
Python
topk/gen_count.py
ririripley/recipes
04267c68a7424326b4aa8dd14b1a879b59ab887c
[ "BSD-3-Clause" ]
1,418
2015-01-07T09:40:09.000Z
2022-03-29T08:37:02.000Z
topk/gen_count.py
algoideas/recipes
77bc5cb180e49edb31983938386ef23f752e2d2f
[ "BSD-3-Clause" ]
22
2015-02-17T17:31:18.000Z
2022-02-08T07:00:29.000Z
topk/gen_count.py
algoideas/recipes
77bc5cb180e49edb31983938386ef23f752e2d2f
[ "BSD-3-Clause" ]
854
2015-01-03T11:56:10.000Z
2022-03-31T08:50:28.000Z
#!/usr/bin/python import random word_len = 5 alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' output = open('word_count', 'w') words = set() N = 1000*1000 for x in xrange(N): arr = [random.choice(alphabet) for i in range(word_len)] words.add(''.join(arr)) print len(words) for word in words: output.write(word) output.write('\t') output.write(str(random.randint(1, 2*N))) output.write('\n')
20.318182
75
0.686801
0
0
0
0
0
0
0
0
106
0.237136
c09740c69f29292cd8143f6167d141bb98d730a6
728
py
Python
notification/views.py
ChristopherOloo/KilimoQAPortal
c905a42282bbce70b5477862185ad332185307ce
[ "MIT" ]
67
2022-01-05T18:59:23.000Z
2022-03-18T13:13:39.000Z
notification/views.py
ChristopherOloo/KilimoQAPortal
c905a42282bbce70b5477862185ad332185307ce
[ "MIT" ]
3
2022-01-10T10:03:23.000Z
2022-03-11T16:58:38.000Z
notification/views.py
ChristopherOloo/KilimoQAPortal
c905a42282bbce70b5477862185ad332185307ce
[ "MIT" ]
4
2022-01-08T17:39:19.000Z
2022-02-28T07:40:16.000Z
from django.shortcuts import render from .models import PrivRepNotification,Notification from django.http import JsonResponse, HttpResponseRedirect, HttpResponse def read_All_Notifications(request): notifics = Notification.objects.filter(noti_receiver=request.user).order_by('-date_created') for objs in notifics: objs.is_read = True objs.save() # return HttpResponse(status=204) return JsonResponse({'action': 'readedAll'}) def read_All_Priv_Notifications(request): notifications = PrivRepNotification.objects.filter(for_user=request.user) for obj in notifications: obj.is_read = True obj.save() return JsonResponse({'action':'readedAllPrivNotifications'})
26.962963
96
0.747253
0
0
0
0
0
0
0
0
103
0.141484
c0984d7ef444e29454bfa97d1cc9a76bb27bd524
1,243
py
Python
sortedListToBST.py
pflun/learningAlgorithms
3101e989488dfc8a56f1bf256a1c03a837fe7d97
[ "MIT" ]
null
null
null
sortedListToBST.py
pflun/learningAlgorithms
3101e989488dfc8a56f1bf256a1c03a837fe7d97
[ "MIT" ]
null
null
null
sortedListToBST.py
pflun/learningAlgorithms
3101e989488dfc8a56f1bf256a1c03a837fe7d97
[ "MIT" ]
null
null
null
# Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def sortedListToBST(self, head): if not head: return None pre_mid, mid = self.sortedListToBSTHelper(head) root = TreeNode(mid.val) if pre_mid != None: pre_mid.next = None else: head = None root.left = self.sortedListToBST(head) root.right = self.sortedListToBST(mid.next) return root def sortedListToBSTHelper(self, head): prev = None slow = head fast = head.next while fast != None and fast.next != None: prev = slow slow = slow.next fast = fast.next.next return prev, slow head = ListNode(1) p1 = ListNode(2) p2 = ListNode(3) p3 = ListNode(4) p4 = ListNode(5) p5 = ListNode(6) p6 = ListNode(7) head.next = p1 p1.next = p2 p2.next = p3 p3.next = p4 p4.next = p5 p5.next = p6 test = Solution() print test.sortedListToBST(head).val
21.067797
55
0.584875
905
0.728077
0
0
0
0
0
0
72
0.057924
c099053af9b9ff299e9a4615defe7551e4d4dfdc
1,105
py
Python
train.py
divyanshrm/Polyth-Net-Classification-of-Polythene-Bags-Using-Deep-Dearning
f52c0887cb12cf1322a37d1042917be5d679c725
[ "MIT" ]
null
null
null
train.py
divyanshrm/Polyth-Net-Classification-of-Polythene-Bags-Using-Deep-Dearning
f52c0887cb12cf1322a37d1042917be5d679c725
[ "MIT" ]
null
null
null
train.py
divyanshrm/Polyth-Net-Classification-of-Polythene-Bags-Using-Deep-Dearning
f52c0887cb12cf1322a37d1042917be5d679c725
[ "MIT" ]
null
null
null
import tensorflow as tf import tensorflow.keras as k import numpy as np from load_and_augment import load_and_augment_data from modelconfig import modelconfig from compile_model import compile_model_adam import compile_model if __name__=='__main__': path=r'/content/drive/My Drive/data' testing_path=r'/content/drive/My Drive/test/' training_gen,val_gen,test_gen=load_and_augment_data(path,testing_path) model=modelconfig(0.25) model=compile_model_adam(model,0.001,1.2) cb=tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto') history=model.fit_generator(generator=training_gen,steps_per_epoch=25,epochs=100,validation_data=val_gen, validation_steps=10,callbacks=[cb]) training=pd.DataFrame(history.history) training.to_csv('training_statistics.csv',index=False) evaluation_test=model.evaluate_gen(test_gen) print('test accuracy= {} and f1={}'.format(evaluation_test[1],evaluation_test[2])) model.save('model_polythene.h5')
42.5
143
0.729412
0
0
0
0
0
0
0
0
163
0.147511
c09b58cc8746669f100104bd829d92eb5454df67
1,548
py
Python
fb2_get_list.py
kawaiigamer/python-tools
68fd75299657811fef36339732c80539ccad386e
[ "Unlicense" ]
null
null
null
fb2_get_list.py
kawaiigamer/python-tools
68fd75299657811fef36339732c80539ccad386e
[ "Unlicense" ]
null
null
null
fb2_get_list.py
kawaiigamer/python-tools
68fd75299657811fef36339732c80539ccad386e
[ "Unlicense" ]
null
null
null
import os import glob import codecs from typing import List def dirs(root_dit: str) -> List[str]: return next(os.walk(root_dit))[1] def select_directory_from_list(directories: List[str]) -> str: for i in range(0, len(directories)): print("(%d) %s" % (i, directories[i])) while True: try: return directories[int(input('Directory to check(number)_->'))] except Exception as e: print("Wrong input: %s" % e) continue def text_between(_str: str, begin: str, end: str) -> str: start = _str.find(begin) stop = _str.find(end) if start != -1 and stop != -1: return _str[start+len(begin):stop] else: return "" def f2b_print_data_list(): checking_directory = select_directory_from_list(dirs('.')) f2b_files = glob.glob("%s/*.fb2" % checking_directory) counter = 0 for f2b_file in f2b_files: try: text = codecs.open(f2b_file, 'r', encoding='utf8').read() counter += 1 print("%d. %s - %s %s %s" % (counter, text_between(text, "<book-title>", "</book-title>"), text_between(text, "<first-name>", "</first-name>"), text_between(text, "<middle-name>", "</middle-name>"), text_between(text, "<last-name>", "</last-name>") )) except Exception as e: print("Exception while parsing %s: %s" % (f2b_file, e)) if __name__ == "__main__": f2b_print_data_list()
29.207547
75
0.554264
0
0
0
0
0
0
0
0
258
0.166667
c09c7f0c8e41ed1996a2664259286c39cad5f12c
2,403
py
Python
simplecaptcha/fields.py
Kromey/django-simplecaptcha
ad462f8742be19b1e87103f097853d41e21d0e0a
[ "MIT" ]
5
2015-11-12T06:31:08.000Z
2017-03-09T06:45:46.000Z
simplecaptcha/fields.py
Kromey/django-simplecaptcha
ad462f8742be19b1e87103f097853d41e21d0e0a
[ "MIT" ]
null
null
null
simplecaptcha/fields.py
Kromey/django-simplecaptcha
ad462f8742be19b1e87103f097853d41e21d0e0a
[ "MIT" ]
null
null
null
import time from django import forms from django.core.exceptions import ValidationError from .widgets import CaptchaWidget from .settings import DURATION class CaptchaField(forms.MultiValueField): """A field that contains and validates a simple catcha question WARNING: If you use this field directly in your own forms, you may be caught by surprise by the fact that Django forms rely upon class object rather than instance objects for its fields. This means that your captcha will not be updated when you instantiate a new form, and you'll end up asking your users the same question over and over -- largely defeating the purpose of a captcha! To solve this, either use the @decorator instead, or be sure to call upon the widget to update its captcha question. """ widget = CaptchaWidget def __init__(self, *args, **kwargs): """Sets up the MultiValueField""" fields = ( forms.CharField(), forms.CharField(), forms.CharField(), ) super().__init__(fields, *args, **kwargs) def compress(self, data_list): """Validates the captcha answer and returns the result If no data is provided, this method will simply return None. Otherwise, it will validate that the provided answer and timestamp hash to the supplied hash value, and that the timestamp is within the configured time that captchas are considered valid. """ if data_list: # Calculate the hash of the supplied values hashed = self.widget.hash_answer(answer=data_list[0], timestamp=data_list[1]) # Current time timestamp = time.time() if float(data_list[1]) < timestamp - DURATION: raise ValidationError("Captcha expired, please try again", code='invalid') elif hashed != data_list[2]: raise ValidationError("Incorrect answer", code='invalid') # Return the supplied answer return data_list[0] else: return None @property def label(self): """The captcha field's label is the captcha question itself""" return self.widget._question @label.setter def label(self, value): """The question is generated by the widget and cannot be externally set""" pass
35.338235
90
0.650853
2,241
0.932584
0
0
275
0.11444
0
0
1,275
0.530587
c09e72d5be2ef0cef0c360e31efc8610a74ed555
4,940
py
Python
skills_taxonomy_v2/analysis/sentence_classifier/notebooks/Skills Classifier 1.0 - Doccano Baseline Classifier.py
india-kerle/skills-taxonomy-v2
a71366dfea3c35580dbafddba9470f83795805ae
[ "MIT" ]
3
2021-11-21T17:21:12.000Z
2021-12-10T21:19:57.000Z
skills_taxonomy_v2/analysis/sentence_classifier/notebooks/Skills Classifier 1.0 - Doccano Baseline Classifier.py
india-kerle/skills-taxonomy-v2
a71366dfea3c35580dbafddba9470f83795805ae
[ "MIT" ]
16
2021-10-06T11:20:35.000Z
2022-02-02T11:44:28.000Z
skills_taxonomy_v2/analysis/sentence_classifier/notebooks/Skills Classifier 1.0 - Doccano Baseline Classifier.py
india-kerle/skills-taxonomy-v2
a71366dfea3c35580dbafddba9470f83795805ae
[ "MIT" ]
1
2021-10-04T12:27:20.000Z
2021-10-04T12:27:20.000Z
# --- # jupyter: # jupytext: # cell_metadata_filter: -all # comment_magics: true # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Existing skill tags data # 1. Look at data # 2. Build a simple baseline classifier # # Karlis tagged 50 jobs with where the skills were mentioned. Can we train something to identify sentences as about skills or not? # # Would be helpful for taking out the junk. # + from sklearn.linear_model import LogisticRegression import json import random from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split from sklearn.metrics import ( accuracy_score, classification_report, f1_score, precision_score, recall_score, ) # - # ### Import data with open( "../../../../inputs/karlis_ojo_manually_labelled/OJO_test_labelling_April2021_jobs.jsonl", "r", ) as file: jobs_data = [json.loads(line) for line in file] jobs_data[0].keys() with open( "../../../../inputs/karlis_ojo_manually_labelled/OJO_test_labelling_April2021_labels.json", "r", ) as file: labels_data = json.load(file) label_type_dict = {label_type["id"]: label_type["text"] for label_type in labels_data} label_type_dict # ### Restructuring to have a look # + all_job_tags_text = {} for job_id, job_info in enumerate(jobs_data): text = job_info["text"] annotations = job_info["annotations"] job_tags_text = {} for label_number, label_type in label_type_dict.items(): job_tags_text[label_type] = [ text[label["start_offset"] : label["end_offset"]] for label in annotations if label["label"] == label_number ] all_job_tags_text[job_id] = job_tags_text # - job_id = 1 print(jobs_data[job_id]["text"]) print("\n") print(all_job_tags_text[job_id]["SKILL"]) print(all_job_tags_text[job_id]["SKILL-RELATED"]) # ## Create a basic classifier # Label sentences with containing skills (1) or not (0) # # Method assumes sentences are split by full stop and will run into problems if the skill has a full stop in. def label_sentences(job_id): annotations = jobs_data[job_id]["annotations"] skill_spans = [ (label["start_offset"], label["end_offset"]) for label in annotations if label["label"] in [1, 5] ] sentences = jobs_data[job_id]["text"].split(".") # Indices of where sentences start and end sentences_ix = [] for i, sentence in enumerate(sentences): if i == 0: start = 0 else: start = sentences_ix[i - 1][1] + 1 sentences_ix.append((start, start + len(sentence))) # Find which sentences contain skills sentences_label = [0] * len(sentences) for (skill_start, skill_end) in skill_spans: for i, (sent_s, sent_e) in enumerate(sentences_ix): if sent_s <= skill_start and sent_e >= skill_end: sentences_label[i] = 1 return sentences, sentences_label # Testing job_id = 2 sentences, sentences_label = label_sentences(job_id) print(all_job_tags_text[job_id]["SKILL"]) print(all_job_tags_text[job_id]["SKILL-RELATED"]) print([sentences[i] for i, label in enumerate(sentences_label) if label == 1]) print([sentences[i] for i, label in enumerate(sentences_label) if label == 0]) # Create training dataset X = [] y = [] for job_id in range(len(jobs_data)): sentences, sentences_label = label_sentences(job_id) for sentence, sentence_label in zip(sentences, sentences_label): X.append(sentence) y.append(sentence_label) # + # Random shuffle data points shuffle_index = list(range(len(X))) random.Random(42).shuffle(shuffle_index) X = [X[i] for i in shuffle_index] y = [y[i] for i in shuffle_index] # Split test/train set train_split = 0.75 len_train = round(len(X) * train_split) X_train = X[0:len_train] y_train = y[0:len_train] X_test = X[len_train:] y_test = y[len_train:] # - print(len(X)) print(len(y_train)) print(len(y_test)) vectorizer = CountVectorizer( analyzer="word", token_pattern=r"(?u)\b\w+\b", ngram_range=(1, 2), stop_words="english", ) X_train_vect = vectorizer.fit_transform(X_train) model = MultinomialNB() model = model.fit(X_train_vect, y_train) X_test_vect = vectorizer.transform(X_test) y_test_pred = model.predict(X_test_vect) print(classification_report(y_test, y_test_pred)) # + # LogisticRegression model = LogisticRegression(max_iter=1000, class_weight="balanced") model = model.fit(X_train_vect, y_train) X_test_vect = vectorizer.transform(X_test) y_test_pred = model.predict(X_test_vect) print(classification_report(y_test, y_test_pred)) # -
26.417112
130
0.696964
0
0
0
0
0
0
0
0
1,458
0.295142
c0a105c9215ae6c27a0f573e79372161fa79223f
3,054
py
Python
exhibitor/migrations/0001_initial.py
Make-Munich/SaBoT
cabc7e2f5e0f7166d94d2ef683f75d8d3be02834
[ "MIT" ]
19
2016-04-09T10:13:26.000Z
2020-06-21T23:14:16.000Z
exhibitor/migrations/0001_initial.py
Make-Munich/SaBoT
cabc7e2f5e0f7166d94d2ef683f75d8d3be02834
[ "MIT" ]
13
2017-01-14T20:42:45.000Z
2019-08-10T22:48:44.000Z
exhibitor/migrations/0001_initial.py
Make-Munich/SaBoT
cabc7e2f5e0f7166d94d2ef683f75d8d3be02834
[ "MIT" ]
9
2016-04-09T12:52:48.000Z
2018-08-16T19:08:16.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-11 13:45 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Exhibitor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('createDate', models.DateField(auto_now_add=True)), ('modifyDate', models.DateField(auto_now=True)), ('projectName', models.CharField(max_length=128, verbose_name='Project name')), ('logo', models.ImageField(blank=True, upload_to=b'exhibitors/logos', verbose_name='Project logo')), ('homepage', models.URLField(blank=True, verbose_name='Project homepage url')), ('descriptionDE', models.TextField(blank=True, verbose_name='Description text of your project (German)')), ('descriptionEN', models.TextField(blank=True, verbose_name='Description text of your project (English)')), ('boothPreferedLocation', models.PositiveIntegerField(choices=[(1, b'Mensa'), (2, b'First Floor'), (0, b'No preference')], default=0, verbose_name='Do you have a preferred location for your booth?')), ('boothNumTables', models.PositiveIntegerField(blank=True, null=True, verbose_name='How many tables do you need (roughly 1.20m x 0.80m)?')), ('boothNumChairs', models.PositiveIntegerField(blank=True, null=True, verbose_name='How many chairs do you need?')), ('boothComment', models.TextField(blank=True, verbose_name='Here you have the chance to leave us further comments regarding your booth:')), ('accepted', models.BooleanField(default=False, editable=False)), ('owner', models.ForeignKey(editable=False, on_delete=django.db.models.deletion.CASCADE, related_name='exhibitors', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='ExhibitorParticipants', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('isAdmin', models.BooleanField(default=False)), ('project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exhibitor.Exhibitor')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='exhibitor', name='participants', field=models.ManyToManyField(blank=True, editable=False, related_name='exhibitorparticipation', through='exhibitor.ExhibitorParticipants', to=settings.AUTH_USER_MODEL), ), ]
57.622642
216
0.655206
2,830
0.926654
0
0
0
0
0
0
834
0.273084
c0a1254294cd0330d5440776840a312ac8bb2711
1,455
py
Python
pyatlas/tests/programatic_apikey_pytests.py
jasonmimick/pyatlas
4b0198d0c6f87691175d79629b2689f02e58ec8b
[ "Apache-2.0" ]
null
null
null
pyatlas/tests/programatic_apikey_pytests.py
jasonmimick/pyatlas
4b0198d0c6f87691175d79629b2689f02e58ec8b
[ "Apache-2.0" ]
null
null
null
pyatlas/tests/programatic_apikey_pytests.py
jasonmimick/pyatlas
4b0198d0c6f87691175d79629b2689f02e58ec8b
[ "Apache-2.0" ]
null
null
null
import pytest import pprint import string import random import os from pyatlas import AtlasClient #from testutils import * @pytest.fixture def public_key(): return "NGKMIHEO" @pytest.fixture def private_key(): return "66bcc7de-b0de-4d8d-9695-ef97637c6895" @pytest.fixture def client(public_key, private_key): return AtlasClient(public_key, private_key) @pytest.fixture def project_name(): return new_test_project_name() @pytest.fixture def org_id(): return "5d371dda553855dd17d4fcf9" @pytest.fixture def project(client, project_name, org_id): print(f'Creating new project for test project_name:{project_name}') project = client.create_project( project_name, org_id=org_id ) return project def test_create_apikey(client,project): project_name=project['content']['name'] print(f'project_name={project_name}') desc = f"test key for project {project_name}" key = client.create_apikey(project_name=project_name ,description=desc) print('-------------------- start generated apikey --------------------') print(key) print('-------------------- end generated apikey --------------------') assert key is not None ## utils def random_token(N=5): token=''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(N)) print(f'token={token}') return token def new_test_project_name(): project_name=f'pyatlas-test-{random_token()}' return project_name
25.982143
103
0.707904
0
0
0
0
577
0.396564
0
0
429
0.294845
c0a2cc928103a456829c10c8f15fb433031cebc9
6,036
py
Python
etils/epath/abstract_path.py
google/etils
ff4c222cd6ce2f416d66a3cd64b39125f5ad25de
[ "Apache-2.0" ]
13
2021-12-14T19:18:53.000Z
2022-03-30T17:09:20.000Z
etils/epath/abstract_path.py
google/etils
ff4c222cd6ce2f416d66a3cd64b39125f5ad25de
[ "Apache-2.0" ]
2
2022-01-07T01:34:33.000Z
2022-01-12T01:35:33.000Z
etils/epath/abstract_path.py
google/etils
ff4c222cd6ce2f416d66a3cd64b39125f5ad25de
[ "Apache-2.0" ]
1
2022-01-04T14:34:30.000Z
2022-01-04T14:34:30.000Z
# Copyright 2022 The etils Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Abstract path.""" from __future__ import annotations import os import pathlib import typing from typing import Any, AnyStr, Iterator, Optional, Type, TypeVar from etils.epath.typing import PathLike T = TypeVar('T') # Ideally, `Path` should be `abc.ABC`. However this trigger pytype errors # when calling `Path()` (can't instantiate abstract base class) # Also this allow path childs to only partially implement the Path API (e.g. # read only path) def abstractmethod(fn: T) -> T: return fn class Path(pathlib.PurePosixPath): """Abstract base class for pathlib.Path-like API. See [pathlib.Path](https://docs.python.org/3/library/pathlib.html) documentation. """ def __new__(cls: Type[T], *args: PathLike) -> T: """Create a new path. ```python path = abcpath.Path() ``` Args: *args: Paths to create Returns: path: The registered path """ from etils.epath import register # pylint: disable=g-import-not-at-top if cls == Path: if not args: return register.make_path('.') root, *parts = args return register.make_path(root).joinpath(*parts) else: return super().__new__(cls, *args) # ====== Pure paths ====== # py3.9 backport of PurePath.is_relative_to. def is_relative_to(self, *other: PathLike) -> bool: """Return True if the path is relative to another path or False.""" try: self.relative_to(*other) return True except ValueError: return False def format(self: T, *args: Any, **kwargs: Any) -> T: """Apply `str.format()` to the path.""" return type(self)(os.fspath(self).format(*args, **kwargs)) # pytype: disable=not-instantiable # ====== Read-only methods ====== @abstractmethod def exists(self) -> bool: """Returns True if self exists.""" raise NotImplementedError @abstractmethod def is_dir(self) -> bool: """Returns True if self is a dir.""" raise NotImplementedError def is_file(self) -> bool: """Returns True if self is a file.""" return not self.is_dir() @abstractmethod def iterdir(self: T) -> Iterator[T]: """Iterates over the directory.""" raise NotImplementedError @abstractmethod def glob(self: T, pattern: str) -> Iterator[T]: """Yielding all matching files (of any kind).""" # Might be able to implement using `iterdir` (recursivelly for `rglob`). raise NotImplementedError def rglob(self: T, pattern: str) -> Iterator[T]: """Yielding all matching files recursivelly (of any kind).""" return self.glob(f'**/{pattern}') def expanduser(self: T) -> T: """Returns a new path with expanded `~` and `~user` constructs.""" if '~' not in self.parts: # pytype: disable=attribute-error return self raise NotImplementedError @abstractmethod def resolve(self: T, strict: bool = False) -> T: """Returns the absolute path.""" raise NotImplementedError @abstractmethod def open( self, mode: str = 'r', encoding: Optional[str] = None, errors: Optional[str] = None, **kwargs: Any, ) -> typing.IO[AnyStr]: """Opens the file.""" raise NotImplementedError def read_bytes(self) -> bytes: """Reads contents of self as bytes.""" with self.open('rb') as f: return f.read() def read_text(self, encoding: Optional[str] = None) -> str: """Reads contents of self as bytes.""" with self.open('r', encoding=encoding) as f: return f.read() # ====== Write methods ====== @abstractmethod def mkdir( self, mode: int = 0o777, parents: bool = False, exist_ok: bool = False, ) -> None: """Create a new directory at this given path.""" raise NotImplementedError @abstractmethod def rmdir(self) -> None: """Remove the empty directory at this given path.""" raise NotImplementedError @abstractmethod def rmtree(self) -> None: """Remove the directory, including all sub-files.""" raise NotImplementedError @abstractmethod def unlink(self, missing_ok: bool = False) -> None: """Remove this file or symbolic link.""" raise NotImplementedError def write_bytes(self, data: bytes) -> int: """Writes content as bytes.""" with self.open('wb') as f: return f.write(data) def write_text( self, data: str, encoding: Optional[str] = None, errors: Optional[str] = None, ) -> int: """Writes content as str.""" if encoding and encoding.lower() not in {'utf8', 'utf-8'}: raise NotImplementedError(f'Non UTF-8 encoding not supported for {self}') if errors: raise NotImplementedError(f'Error not supported for writing {self}') with self.open('w') as f: return f.write(data) def touch(self, mode: int = 0o666, exist_ok: bool = True) -> None: """Create a file at this given path.""" if mode != 0o666: raise NotImplementedError(f'Only mode=0o666 supported for {self}') if self.exists(): if exist_ok: return else: raise FileExistsError(f'{self} already exists.') self.write_text('') @abstractmethod def rename(self: T, target: PathLike) -> T: """Renames the path.""" @abstractmethod def replace(self: T, target: PathLike) -> T: """Overwrites the destination path.""" @abstractmethod def copy(self: T, dst: PathLike, overwrite: bool = False) -> T: """Copy the current file to the given destination."""
28.338028
98
0.650431
4,949
0.819914
0
0
1,902
0.315109
0
0
2,594
0.429755
c0a387ecd74cdd18e1dae76a145f773dea75a7b7
262
py
Python
src/syntax/statements/__init__.py
andaviaco/tronido
08a1619a0e8c10f35ed6710eb6e1f72dc5b87421
[ "MIT" ]
null
null
null
src/syntax/statements/__init__.py
andaviaco/tronido
08a1619a0e8c10f35ed6710eb6e1f72dc5b87421
[ "MIT" ]
null
null
null
src/syntax/statements/__init__.py
andaviaco/tronido
08a1619a0e8c10f35ed6710eb6e1f72dc5b87421
[ "MIT" ]
null
null
null
from .ifstat import IfStat from .returnstat import ReturnStat from .whilestat import WhileStat from .breakstat import BreakStat from .switchstat import SwitchStat from .casestat import CaseStat from .forstat import ForStat from .continuestat import ContinueStat
29.111111
38
0.847328
0
0
0
0
0
0
0
0
0
0
c0a3c20650d9f2b0b50513762c0375912b29d194
2,594
py
Python
tests/test_action_guest_process_start.py
lingfish/stackstorm-vsphere
49199f5ebdc05b70b7504962e104642b0c30ba30
[ "Apache-2.0" ]
null
null
null
tests/test_action_guest_process_start.py
lingfish/stackstorm-vsphere
49199f5ebdc05b70b7504962e104642b0c30ba30
[ "Apache-2.0" ]
2
2019-03-25T18:03:02.000Z
2019-03-26T13:13:59.000Z
tests/test_action_guest_process_start.py
lingfish/stackstorm-vsphere
49199f5ebdc05b70b7504962e104642b0c30ba30
[ "Apache-2.0" ]
1
2021-03-05T10:12:21.000Z
2021-03-05T10:12:21.000Z
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import mock from vsphere_base_action_test_case import VsphereBaseActionTestCase from guest_process_start import StartProgramInGuest __all__ = [ 'StartProgramInGuestTestCase' ] class StartProgramInGuestTestCase(VsphereBaseActionTestCase): __test__ = True action_cls = StartProgramInGuest @mock.patch('pyVmomi.vim.vm.guest.ProcessManager') def test_normal(self, mock_process_manager): # Vary the arguments list including passing None # Each tuple has two array items, [0] is arguments input # [1] is expected cmdspec for argdata in (None, 'onearg', 'two arguments'): (action, mock_vm) = self.mock_one_vm('vm-12345') mockProcMgr = mock.Mock() mockProcMgr.StartProgramInGuest = mock.Mock() mockProcMgr.StartProgramInGuest.return_value = 12345 action.si_content.guestOperationsManager = mock.Mock() action.si_content.guestOperationsManager.processManager =\ mockProcMgr mock_process_manager.ProgramSpec.return_value = 'cmdspec' envvars = ["A=B", "C=D"] if argdata else None result = action.run(vm_id='vm-12345', username='u', password='p', command='c', arguments=argdata, workdir='/tmp', envvar=envvars) mock_process_manager.ProgramSpec.assert_called_with( arguments='' if not argdata else argdata, envVariables=envvars, programPath='c', workingDirectory='/tmp' ) mockProcMgr.StartProgramInGuest.assert_called_once_with( mock_vm, action.guest_credentials, 'cmdspec', ) self.assertEqual(result, 12345)
43.233333
74
0.658443
1,663
0.641095
0
0
1,539
0.593292
0
0
1,057
0.407479
c0a3f676d422bbdd29b5d1ae6fd198e164330819
4,192
py
Python
src/soda/mutator.py
UCLA-VAST/soda
1b3994ded643d82ebc2fce7b1eb1d13c70800897
[ "MIT" ]
9
2020-05-09T19:52:46.000Z
2021-09-15T13:45:27.000Z
src/soda/mutator.py
UCLA-VAST/soda
1b3994ded643d82ebc2fce7b1eb1d13c70800897
[ "MIT" ]
1
2021-07-26T08:51:49.000Z
2021-07-26T08:51:49.000Z
src/soda/mutator.py
UCLA-VAST/soda
1b3994ded643d82ebc2fce7b1eb1d13c70800897
[ "MIT" ]
1
2020-10-28T03:06:44.000Z
2020-10-28T03:06:44.000Z
from typing import ( Iterable, Mapping, MutableMapping, Optional, Tuple, TypeVar, Union, ) import collections import logging import operator import types from haoda import ir from soda import tensor import soda.visitor _logger = logging.getLogger().getChild(__name__) def shift(obj, offset, excluded=(), op=operator.sub, verbose=False): """Shift soda.ir.Ref with the given offset. All soda.ir.Ref, excluding the given names, will be shifted with the given offset using the given operator. The operator will be applied pointwise on the original index and the given offset. Args: obj: A haoda.ir.Node or a tensor.Tensor object. offset: Second operand given to the operator. excluded: Sequence of names to be excluded from the mutation. Default to (). op: Shifting operator. Should be either add or sub. Default to sub. verbose: Whether to log shiftings. Default to False. Returns: Mutated obj. If obj is an IR node, it will be a different object than the input. If obj is a tensor, it will be the same object but with fields mutated. """ if op not in (operator.add, operator.sub): _logger.warn('shifting with neither + nor -, which most likely is an error') def visitor(obj, args): if isinstance(obj, ir.Ref): if obj.name not in excluded: new_idx = tuple(op(a, b) for a, b in zip(obj.idx, offset)) if verbose: _logger.debug('reference %s(%s) shifted to %s(%s)', obj.name, ', '.join(map(str, obj.idx)), obj.name, ', '.join(map(str, new_idx))) obj.idx = new_idx if isinstance(obj, ir.Node): return obj.visit(visitor) if isinstance(obj, tensor.Tensor): obj.mutate(visitor) else: raise TypeError('argument is not an IR node or a tensor') return obj def normalize(obj: Union[ir.Node, Iterable[ir.Node]], references: Optional[Mapping[str, Tuple[int, ...]]] = None): """Make the least access index 0. Works on an ir.Node or an iterable of ir.Nodes. If it is shifted, a different object is constructed and returned. Otherwise, obj will be returned as-is. Args: obj: A node or an iterable of nodes. Returns: Normalized node or iterable. Raises: TypeError: If argument is not an ir.Node or an iterable of ir.Nodes. """ if isinstance(obj, types.GeneratorType): return normalize(tuple(obj)) norm_idx = soda.visitor.get_normalize_index(obj, references) shifter = lambda x: shift(x, norm_idx) if any(norm_idx) else x if isinstance(obj, collections.Iterable): return type(obj)(map(shifter, obj)) # type: ignore if isinstance(obj, ir.Node): return shifter(obj) raise TypeError('argument is not an ir.Node or an iterable of ir.Nodes') NodeT = TypeVar('NodeT', bound=ir.Node) def replace_expressions( obj: NodeT, cses: MutableMapping[NodeT, ir.Ref], used: Optional[MutableMapping[NodeT, NodeT]] = None, references: Optional[Mapping[str, Tuple[int, ...]]] = None, ) -> NodeT: """Get AST with common subexpression elimination. Get AST with the given common subexpressions. If used is not None, the used common subexpressions will be added to used. Args: obj: An ir.Node. cses: Dict mapping normalized common subexpressions to the new ir.Ref. used: Set of used common subexpressions, or None. Returns: The ir.Node as the AST. """ def visitor( obj: NodeT, args: Tuple[MutableMapping[NodeT, ir. Ref], Optional[MutableMapping[NodeT, NodeT]]] ) -> NodeT: cses, used = args norm_idx = soda.visitor.get_normalize_index(obj, references) normalized = shift(obj, norm_idx) if any(norm_idx) else obj if normalized in cses: if used is not None: if normalized not in used: used[normalized] = replace_expressions( normalized, {k: v for k, v in cses.items() if k != normalized}, used) new_obj = shift(cses[normalized], norm_idx, op=operator.add) _logger.debug('replacing %s with %s', obj, new_obj) return new_obj return obj return obj.visit(visitor, (cses, used))
32.246154
80
0.669132
0
0
0
0
0
0
0
0
1,741
0.415315
c0a4975e4ff94754e10e515af8e9f52525f2cf81
485
py
Python
tests/skillmap_parser_test.py
niyue/skillmap
ca1011d5f822134ad1d7c5f7f243da30a0731170
[ "MIT" ]
69
2022-02-27T13:05:20.000Z
2022-03-31T23:12:48.000Z
tests/skillmap_parser_test.py
chandrab/skillmap
6d07dc5392b0fd66d310db8cb85051cf9e0e93df
[ "MIT" ]
1
2022-02-27T22:44:36.000Z
2022-03-02T01:15:52.000Z
tests/skillmap_parser_test.py
chandrab/skillmap
6d07dc5392b0fd66d310db8cb85051cf9e0e93df
[ "MIT" ]
2
2022-02-27T23:37:15.000Z
2022-03-14T12:32:22.000Z
from skillmap.skillmap_parser import SkillMapParser def test_parse_toml(): parser = SkillMapParser() skill_map = parser.parse('tests/url_shortener.toml') assert skill_map assert skill_map['skillmap']['name'] == "url shortener" assert skill_map['groups']['webui']['name'] == "web ui" assert skill_map['groups']['webui']['skills']['url_validator']['name'] == "url validator" assert skill_map['groups']['webui']['skills']['url_validator']['icon'] == "globe"
40.416667
93
0.682474
0
0
0
0
0
0
0
0
196
0.404124
c0a71acf6116e8faa1f0455b3919ee53b2e3be9c
2,923
py
Python
htdocs/plotting/auto/scripts/p66.py
jamayfieldjr/iem
275b77a65f3b12e26e6cbdb230786b9c7d2b9c9a
[ "MIT" ]
1
2019-10-07T17:01:24.000Z
2019-10-07T17:01:24.000Z
htdocs/plotting/auto/scripts/p66.py
jamayfieldjr/iem
275b77a65f3b12e26e6cbdb230786b9c7d2b9c9a
[ "MIT" ]
null
null
null
htdocs/plotting/auto/scripts/p66.py
jamayfieldjr/iem
275b77a65f3b12e26e6cbdb230786b9c7d2b9c9a
[ "MIT" ]
null
null
null
"""Consec days""" import calendar from pandas.io.sql import read_sql from pyiem.plot.use_agg import plt from pyiem.util import get_autoplot_context, get_dbconn PDICT = {'above': 'Temperature At or Above (AOA) Threshold', 'below': 'Temperature Below Threshold'} PDICT2 = {'high': 'High Temperature', 'low': 'Low Temperature'} def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['description'] = """This chart presents the daily frequency of the given date having the prescribed number of previous days above or below some provided treshold.""" desc['arguments'] = [ dict(type='station', name='station', default='IATDSM', label='Select Station:', network='IACLIMATE'), dict(type='select', name='var', default='high', options=PDICT2, label='Select which daily variable'), dict(type='select', name='dir', default='above', options=PDICT, label='Select temperature direction'), dict(type='int', name='threshold', default='60', label='Temperature Threshold (F):'), dict(type='int', name='days', default='7', label='Number of Days:') ] return desc def plotter(fdict): """ Go """ pgconn = get_dbconn('coop') ctx = get_autoplot_context(fdict, get_description()) station = ctx['station'] days = ctx['days'] threshold = ctx['threshold'] varname = ctx['var'] mydir = ctx['dir'] table = "alldata_%s" % (station[:2],) agg = "min" if mydir == 'above' else 'max' op = ">=" if mydir == 'above' else '<' df = read_sql(""" with data as (select day, """+agg+"""("""+varname+""") OVER (ORDER by day ASC ROWS BETWEEN %s PRECEDING and CURRENT ROW) as agg from """ + table + """ where station = %s) select extract(doy from day) as doy, sum(case when agg """+op+""" %s then 1 else 0 end) / count(*)::float * 100. as freq from data GROUP by doy ORDER by doy asc """, pgconn, params=(days - 1, station, threshold), index_col='doy') fig, ax = plt.subplots(1, 1, sharex=True) label = "AOA" if mydir == 'above' else 'below' ax.set_title(("[%s] %s\nFrequency of %s Consec Days" r" with %s %s %s$^\circ$F " ) % (station, ctx['_nt'].sts[station]['name'], days, varname.capitalize(), label, threshold)) ax.set_ylabel("Frequency of Days [%]") ax.set_ylim(0, 100) ax.set_yticks([0, 5, 10, 25, 50, 75, 90, 95, 100]) ax.grid(True) ax.bar(df.index.values, df['freq'], width=1) ax.set_xticks((1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 365)) ax.set_xticklabels(calendar.month_abbr[1:]) ax.set_xlim(0, 366) return fig, df if __name__ == '__main__': plotter(dict())
34.388235
75
0.584673
0
0
0
0
0
0
0
0
1,234
0.422169
c0a82c8edb06be2ad657e3733a1e2ee863cd955f
32
py
Python
resolwe/rest/__init__.py
plojyon/resolwe
1bee6f0860fdd087534adf1680e9350d79ab97cf
[ "Apache-2.0" ]
27
2015-12-07T18:29:12.000Z
2022-03-16T08:01:47.000Z
resolwe/rest/__init__.py
plojyon/resolwe
1bee6f0860fdd087534adf1680e9350d79ab97cf
[ "Apache-2.0" ]
681
2015-12-01T11:52:24.000Z
2022-03-21T07:43:37.000Z
resolwe/rest/__init__.py
plojyon/resolwe
1bee6f0860fdd087534adf1680e9350d79ab97cf
[ "Apache-2.0" ]
28
2015-12-01T08:32:57.000Z
2021-12-14T00:04:16.000Z
"""Resolwe REST API helpers."""
16
31
0.65625
0
0
0
0
0
0
0
0
31
0.96875
c0a873492ea0286949973b05633bb259a0fc0b1d
422
py
Python
requests/requests-custom_authentication.py
all3g/pieces
bc378fd22ddc700891fe7f34ab0d5b341141e434
[ "CNRI-Python" ]
34
2016-10-31T02:05:24.000Z
2018-11-08T14:33:13.000Z
requests/requests-custom_authentication.py
join-us/python-programming
bc378fd22ddc700891fe7f34ab0d5b341141e434
[ "CNRI-Python" ]
2
2017-05-11T03:00:31.000Z
2017-11-01T23:37:37.000Z
requests/requests-custom_authentication.py
join-us/python-programming
bc378fd22ddc700891fe7f34ab0d5b341141e434
[ "CNRI-Python" ]
21
2016-08-19T09:05:45.000Z
2018-11-08T14:33:16.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- from requests.auth import AuthBase class PizzaAuth(AuthBase): """Attaches HTTP Pizza Authentication to the given Request object.""" def __init__(self, username): # setup any auth-related data here. self.username = username def __call__(self, r): # modify and return the request r.headers['X-Pizza'] = self.username return r
24.823529
73
0.64455
341
0.808057
0
0
0
0
0
0
184
0.436019
c0a93dc0b3c06bf5e6cdc0aa43def476e965448d
866
py
Python
csv_test.py
mii012345/deep-learning
660785157446583eefeefa9d5dc25927aab6a9e4
[ "MIT" ]
3
2017-06-04T06:59:38.000Z
2017-06-05T14:01:48.000Z
csv_test.py
mii012345/deep-learning
660785157446583eefeefa9d5dc25927aab6a9e4
[ "MIT" ]
null
null
null
csv_test.py
mii012345/deep-learning
660785157446583eefeefa9d5dc25927aab6a9e4
[ "MIT" ]
null
null
null
import csv import numpy as np import pickle with open('data (2).csv','r') as f: csv = csv.reader(f) csvlist = [] for i in csv: csvlist.append(i) #6行目から mas = [] for i in range(364): i+=6 a = 0 b = 0 c = 0 date = csvlist[i][0] weather = csvlist[i][1] if date[0:10] == "2016/11/1 " or date[0:10] == "2016/11/2 " or date[0:10] == "2016/11/3 " or date[0:9] == "2016/11/4" or date[0:9] == "2016/11/5" or date[0:9] == "2016/11/6" or date[0:9] == "2016/11/7": continue if weather == "1" or weather == "2": a = 1 elif weather == "3" or weather == "4" or weather == "5" or weather == "6": b = 1 else: c = 1 w = [a,b,c] print(date[0:10]) mas.append(w) mas = np.array(mas) with open('tenki_num.pkl','wb') as f: pickle.dump(mas,f)
24.055556
207
0.489607
0
0
0
0
0
0
0
0
149
0.170481
c0ab2b2d4a6d03d592483deeff8d92956a06c0e7
287
py
Python
src/test_main.py
HenrikPilz/BMEcatConverter
28c6840fc70a3f04e3eae5fc7be32c7bc779c1da
[ "BSD-3-Clause" ]
1
2021-03-14T08:20:51.000Z
2021-03-14T08:20:51.000Z
src/test_main.py
HenrikPilz/BMEcatConverter
28c6840fc70a3f04e3eae5fc7be32c7bc779c1da
[ "BSD-3-Clause" ]
1
2021-11-29T09:56:18.000Z
2021-12-01T22:01:13.000Z
src/test_main.py
HenrikPilz/BMEcatConverter
28c6840fc70a3f04e3eae5fc7be32c7bc779c1da
[ "BSD-3-Clause" ]
2
2021-08-30T08:14:34.000Z
2021-09-28T15:10:23.000Z
import os import test import unittest def tests(): if not os.path.exists("../test_output"): os.makedirs(os.path.join(os.path.dirname(__file__), "../test_output"), exist_ok=True) unittest.main(test) # if __name__ == '__main__': # Datenmodultests tests()
19.133333
94
0.648084
0
0
0
0
0
0
0
0
79
0.275261
c0ab90f34a7bc1c416809bd67bdc787e6a30c4a3
99
py
Python
problem/01000~09999/02857/2857.py3.py
njw1204/BOJ-AC
1de41685725ae4657a7ff94e413febd97a888567
[ "MIT" ]
1
2019-04-19T16:37:44.000Z
2019-04-19T16:37:44.000Z
problem/01000~09999/02857/2857.py3.py
njw1204/BOJ-AC
1de41685725ae4657a7ff94e413febd97a888567
[ "MIT" ]
1
2019-04-20T11:42:44.000Z
2019-04-20T11:42:44.000Z
problem/01000~09999/02857/2857.py3.py
njw1204/BOJ-AC
1de41685725ae4657a7ff94e413febd97a888567
[ "MIT" ]
3
2019-04-19T16:37:47.000Z
2021-10-25T00:45:00.000Z
a=1 for i in range(5): if 'FBI' in input(): print(i+1,end=' ') a=0 if a: print('HE GOT AWAY!')
16.5
27
0.555556
0
0
0
0
0
0
0
0
22
0.222222
c0abaf869bbe93d0c4be20bb53db1ca7697f6d3d
1,971
py
Python
ntm/ntm.py
clemkoa/ntm
723d4ebea63f8f9439fd1c56f36e3cb680c8a277
[ "MIT" ]
41
2020-05-19T05:48:04.000Z
2021-11-24T11:31:08.000Z
ntm/ntm.py
clemkoa/ntm
723d4ebea63f8f9439fd1c56f36e3cb680c8a277
[ "MIT" ]
3
2021-06-07T09:00:59.000Z
2021-12-30T17:21:07.000Z
ntm/ntm.py
clemkoa/ntm
723d4ebea63f8f9439fd1c56f36e3cb680c8a277
[ "MIT" ]
4
2020-12-31T17:39:42.000Z
2021-12-29T14:11:43.000Z
import torch from torch import nn import torch.nn.functional as F from ntm.controller import Controller from ntm.memory import Memory from ntm.head import ReadHead, WriteHead class NTM(nn.Module): def __init__(self, vector_length, hidden_size, memory_size, lstm_controller=True): super(NTM, self).__init__() self.controller = Controller(lstm_controller, vector_length + 1 + memory_size[1], hidden_size) self.memory = Memory(memory_size) self.read_head = ReadHead(self.memory, hidden_size) self.write_head = WriteHead(self.memory, hidden_size) self.fc = nn.Linear(hidden_size + memory_size[1], vector_length) nn.init.xavier_uniform_(self.fc.weight, gain=1) nn.init.normal_(self.fc.bias, std=0.01) def get_initial_state(self, batch_size=1): self.memory.reset(batch_size) controller_state = self.controller.get_initial_state(batch_size) read = self.memory.get_initial_read(batch_size) read_head_state = self.read_head.get_initial_state(batch_size) write_head_state = self.write_head.get_initial_state(batch_size) return (read, read_head_state, write_head_state, controller_state) def forward(self, x, previous_state): previous_read, previous_read_head_state, previous_write_head_state, previous_controller_state = previous_state controller_input = torch.cat([x, previous_read], dim=1) controller_output, controller_state = self.controller(controller_input, previous_controller_state) # Read read_head_output, read_head_state = self.read_head(controller_output, previous_read_head_state) # Write write_head_state = self.write_head(controller_output, previous_write_head_state) fc_input = torch.cat((controller_output, read_head_output), dim=1) state = (read_head_output, read_head_state, write_head_state, controller_state) return F.sigmoid(self.fc(fc_input)), state
50.538462
118
0.742263
1,793
0.909691
0
0
0
0
0
0
13
0.006596
c0af4a37c3b086f10b2224f1101fb1be4a7fdce1
3,468
py
Python
facebook_business/adobjects/adkeywordstats.py
enricapq/facebook-python-business-sdk
49c569ac5cf812b1bcb533520c35896b0436fa4c
[ "CNRI-Python" ]
null
null
null
facebook_business/adobjects/adkeywordstats.py
enricapq/facebook-python-business-sdk
49c569ac5cf812b1bcb533520c35896b0436fa4c
[ "CNRI-Python" ]
null
null
null
facebook_business/adobjects/adkeywordstats.py
enricapq/facebook-python-business-sdk
49c569ac5cf812b1bcb533520c35896b0436fa4c
[ "CNRI-Python" ]
1
2018-09-24T14:04:48.000Z
2018-09-24T14:04:48.000Z
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject from facebook_business.adobjects.abstractcrudobject import AbstractCrudObject from facebook_business.adobjects.objectparser import ObjectParser from facebook_business.api import FacebookRequest from facebook_business.typechecker import TypeChecker """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """ class AdKeywordStats( AbstractCrudObject, ): def __init__(self, fbid=None, parent_id=None, api=None): self._isAdKeywordStats = True super(AdKeywordStats, self).__init__(fbid, parent_id, api) class Field(AbstractObject.Field): actions = 'actions' clicks = 'clicks' cost_per_total_action = 'cost_per_total_action' cost_per_unique_click = 'cost_per_unique_click' cpc = 'cpc' cpm = 'cpm' cpp = 'cpp' ctr = 'ctr' frequency = 'frequency' id = 'id' impressions = 'impressions' name = 'name' reach = 'reach' spend = 'spend' total_actions = 'total_actions' total_unique_actions = 'total_unique_actions' unique_actions = 'unique_actions' unique_clicks = 'unique_clicks' unique_ctr = 'unique_ctr' unique_impressions = 'unique_impressions' # @deprecated get_endpoint function is deprecated @classmethod def get_endpoint(cls): return 'keywordstats' _field_types = { 'actions': 'list<AdsActionStats>', 'clicks': 'unsigned int', 'cost_per_total_action': 'float', 'cost_per_unique_click': 'float', 'cpc': 'float', 'cpm': 'float', 'cpp': 'float', 'ctr': 'float', 'frequency': 'float', 'id': 'string', 'impressions': 'unsigned int', 'name': 'string', 'reach': 'unsigned int', 'spend': 'float', 'total_actions': 'unsigned int', 'total_unique_actions': 'unsigned int', 'unique_actions': 'list<AdsActionStats>', 'unique_clicks': 'unsigned int', 'unique_ctr': 'float', 'unique_impressions': 'unsigned int', } @classmethod def _get_field_enum_info(cls): field_enum_info = {} return field_enum_info
35.387755
79
0.684544
1,878
0.541522
0
0
176
0.05075
0
0
1,992
0.574394
c0b3ae1a797739b59abdda1942df55aaa68ec172
1,198
py
Python
DQM/TrackingMonitorSource/python/StandaloneTrackMonitor_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
DQM/TrackingMonitorSource/python/StandaloneTrackMonitor_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
DQM/TrackingMonitorSource/python/StandaloneTrackMonitor_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer standaloneTrackMonitor = DQMEDAnalyzer('StandaloneTrackMonitor', moduleName = cms.untracked.string("StandaloneTrackMonitor"), folderName = cms.untracked.string("highPurityTracks"), vertexTag = cms.untracked.InputTag("selectedPrimaryVertices"), puTag = cms.untracked.InputTag("addPileupInfo"), clusterTag = cms.untracked.InputTag("siStripClusters"), trackInputTag = cms.untracked.InputTag('selectedTracks'), offlineBeamSpot = cms.untracked.InputTag('offlineBeamSpot'), trackQuality = cms.untracked.string('highPurity'), doPUCorrection = cms.untracked.bool(False), isMC = cms.untracked.bool(True), puScaleFactorFile = cms.untracked.string("PileupScaleFactor_run203002.root"), haveAllHistograms = cms.untracked.bool(False), verbose = cms.untracked.bool(False), trackEtaH = cms.PSet(Xbins = cms.int32(60), Xmin = cms.double(-3.0),Xmax = cms.double(3.0)), trackPtH = cms.PSet(Xbins = cms.int32(100),Xmin = cms.double(0.0),Xmax = cms.double(100.0)) )
59.9
104
0.687813
0
0
0
0
0
0
0
0
202
0.168614
c0b40331943eedccfdcfa2dfe402031536f745fe
7,266
py
Python
tests/test_spatialvector.py
jungr-ait/spatialmath-python
140d499e733ed9775762df90d36e4b2c4c2fc6eb
[ "MIT" ]
183
2020-04-24T02:49:36.000Z
2022-03-31T16:13:38.000Z
tests/test_spatialvector.py
jungr-ait/spatialmath-python
140d499e733ed9775762df90d36e4b2c4c2fc6eb
[ "MIT" ]
29
2020-05-21T04:13:33.000Z
2022-02-15T12:46:17.000Z
tests/test_spatialvector.py
jungr-ait/spatialmath-python
140d499e733ed9775762df90d36e4b2c4c2fc6eb
[ "MIT" ]
39
2020-05-06T11:22:55.000Z
2022-03-21T14:15:16.000Z
import unittest import numpy.testing as nt import numpy as np from spatialmath.spatialvector import * class TestSpatialVector(unittest.TestCase): def test_list_powers(self): x = SpatialVelocity.Empty() self.assertEqual(len(x), 0) x.append(SpatialVelocity([1, 2, 3, 4, 5, 6])) self.assertEqual(len(x), 1) x.append(SpatialVelocity([7, 8, 9, 10, 11, 12])) self.assertEqual(len(x), 2) y = x[0] self.assertIsInstance(y, SpatialVelocity) self.assertEqual(len(y), 1) self.assertTrue(all(y.A == np.r_[1, 2, 3, 4, 5, 6])) y = x[1] self.assertIsInstance(y, SpatialVelocity) self.assertEqual(len(y), 1) self.assertTrue(all(y.A == np.r_[7, 8, 9, 10, 11, 12])) x.insert(0, SpatialVelocity([20, 21, 22, 23, 24, 25])) y = x[0] self.assertIsInstance(y, SpatialVelocity) self.assertEqual(len(y), 1) self.assertTrue(all(y.A == np.r_[20, 21, 22, 23, 24, 25])) y = x[1] self.assertIsInstance(y, SpatialVelocity) self.assertEqual(len(y), 1) self.assertTrue(all(y.A == np.r_[1, 2, 3, 4, 5, 6])) def test_velocity(self): a = SpatialVelocity([1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialVelocity) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialM6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) a = SpatialVelocity(np.r_[1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialVelocity) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialM6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) s = str(a) self.assertIsInstance(s, str) self.assertEqual(s.count('\n'), 0) self.assertTrue(s.startswith('SpatialVelocity')) r = np.random.rand(6, 10) a = SpatialVelocity(r) self.assertIsInstance(a, SpatialVelocity) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialM6) self.assertEqual(len(a), 10) b = a[3] self.assertIsInstance(b, SpatialVelocity) self.assertIsInstance(b, SpatialVector) self.assertIsInstance(b, SpatialM6) self.assertEqual(len(b), 1) self.assertTrue(all(b.A == r[:,3])) s = str(a) self.assertIsInstance(s, str) self.assertEqual(s.count('\n'), 9) def test_acceleration(self): a = SpatialAcceleration([1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialAcceleration) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialM6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) a = SpatialAcceleration(np.r_[1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialAcceleration) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialM6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) s = str(a) self.assertIsInstance(s, str) self.assertEqual(s.count('\n'), 0) self.assertTrue(s.startswith('SpatialAcceleration')) r = np.random.rand(6, 10) a = SpatialAcceleration(r) self.assertIsInstance(a, SpatialAcceleration) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialM6) self.assertEqual(len(a), 10) b = a[3] self.assertIsInstance(b, SpatialAcceleration) self.assertIsInstance(b, SpatialVector) self.assertIsInstance(b, SpatialM6) self.assertEqual(len(b), 1) self.assertTrue(all(b.A == r[:,3])) s = str(a) self.assertIsInstance(s, str) def test_force(self): a = SpatialForce([1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialForce) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialF6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) a = SpatialForce(np.r_[1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialForce) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialF6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) s = str(a) self.assertIsInstance(s, str) self.assertEqual(s.count('\n'), 0) self.assertTrue(s.startswith('SpatialForce')) r = np.random.rand(6, 10) a = SpatialForce(r) self.assertIsInstance(a, SpatialForce) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialF6) self.assertEqual(len(a), 10) b = a[3] self.assertIsInstance(b, SpatialForce) self.assertIsInstance(b, SpatialVector) self.assertIsInstance(b, SpatialF6) self.assertEqual(len(b), 1) self.assertTrue(all(b.A == r[:, 3])) s = str(a) self.assertIsInstance(s, str) def test_momentum(self): a = SpatialMomentum([1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialMomentum) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialF6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) a = SpatialMomentum(np.r_[1, 2, 3, 4, 5, 6]) self.assertIsInstance(a, SpatialMomentum) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialF6) self.assertEqual(len(a), 1) self.assertTrue(all(a.A == np.r_[1, 2, 3, 4, 5, 6])) s = str(a) self.assertIsInstance(s, str) self.assertEqual(s.count('\n'), 0) self.assertTrue(s.startswith('SpatialMomentum')) r = np.random.rand(6, 10) a = SpatialMomentum(r) self.assertIsInstance(a, SpatialMomentum) self.assertIsInstance(a, SpatialVector) self.assertIsInstance(a, SpatialF6) self.assertEqual(len(a), 10) b = a[3] self.assertIsInstance(b, SpatialMomentum) self.assertIsInstance(b, SpatialVector) self.assertIsInstance(b, SpatialF6) self.assertEqual(len(b), 1) self.assertTrue(all(b.A == r[:, 3])) s = str(a) self.assertIsInstance(s, str) def test_arith(self): # just test SpatialVelocity since all types derive from same superclass r1 = np.r_[1, 2, 3, 4, 5, 6] r2 = np.r_[7, 8, 9, 10, 11, 12] a1 = SpatialVelocity(r1) a2 = SpatialVelocity(r2) self.assertTrue(all((a1 + a2).A == r1 + r2)) self.assertTrue(all((a1 - a2).A == r1 - r2)) self.assertTrue(all((-a1).A == -r1)) def test_inertia(self): # constructor # addition pass def test_products(self): # v x v = a *, v x F6 = a # a x I, I x a # v x I, I x v # twist x v, twist x a, twist x F pass # ---------------------------------------------------------------------------------------# if __name__ == '__main__': unittest.main()
32.58296
90
0.579136
7,019
0.966006
0
0
0
0
0
0
370
0.050922
c0b679addf1f8188d5d6b4db7a0f798d7c5b295a
3,048
py
Python
python/meta-regex.py
tbedford/code-snippets
9afe36c2726829f14fa5ec11acb8214bed704938
[ "MIT" ]
null
null
null
python/meta-regex.py
tbedford/code-snippets
9afe36c2726829f14fa5ec11acb8214bed704938
[ "MIT" ]
null
null
null
python/meta-regex.py
tbedford/code-snippets
9afe36c2726829f14fa5ec11acb8214bed704938
[ "MIT" ]
1
2018-10-09T02:03:12.000Z
2018-10-09T02:03:12.000Z
# \s Returns a match where the string contains a white space character # \S Returns a match where the string DOES NOT contain a white space character import re s1 = ''' --- slug: python-non-greedy-regexes title: Python non-greedy regexes summary: How to make Python regexes a little less greedy using the `?` modifier. cat: Code date_published: 2019-10-19 date_updated: 2019-10-19 --- # How to make Python regexes a little less greedy There are these little things that once you learn about them you wonder how you ever did without them. The Python non-greedy modifier definitely falls into that category. I spent far t Here was the problem: ``` --- title: This is some title description: This is the description --- Some content... ``` This is a simplified version of the metadata that each piece of content on the site has. What the code needs to do is extract the metadata and the content. This seems straightforward. You might come up with: ``` ---\s([\s\S]*)\s---\s([\s\S]*) ``` We can simplify that but getting rid of the extra new lines in our captured text by using the `.strip()` function in Python so you end up with: ``` ---([\s\S]*)---([\s\S]*) ``` The metadata drops into the first `()` and the content into the second `()` and there are rainbows and unicorns and all is good in the world. Until this happens... ``` --- title: This is some title description: This is the description --- Some content... Item | Description --- | --- A | A thing B | Another thing Some more content... ``` And now there are tears because it all goes horribly wrong. You see Python regexes are downright greedy. They try to match as much text as possible. Which means your regex now matches right down to the first `---` in the Markdown table. This is where you probably start trying all kinds of variations on your regex to restrict the match to only the metadata. But there's an easy little fix... ``` ---([\s\S]*?)---([\s\S]*) ``` The secret is that addition of the `?` operator. Like many operators it has many functions but when it's next to `*` it means "don't be so darn greedy". Here's the actual code where I use it: ``` python def extract_parts(source): m = re.search(r'---([\s\S]*?)---([\s\S]*)', source, re.MULTILINE) metadata = m.group(1) markdown = m.group(2) return metadata.strip(), markdown.strip() ``` This little `?` turns out to be hellishly useful. For example: ``` html <p>Para 1</p><p>Para 2></p> ``` If you only want the first para you could use `<p>.*?</p>`, and you'd only match the first para. You can test this out with the following code: ``` python import re s = "<p>para 1</p><p>para 2</p>" m = re.search(r'<p>.*</p>', s) print(m.group(0)) m = re.search(r'<p>.*?</p>', s) print(m.group(0)) ``` Yes. Useful indeed. Once you know about the non-greedy operator you'll wonder how you ever did without it! ''' # Greedy *? to for matched delimiters def extract(source): m = re.search(r'---([\s\S]*?)---', source, re.MULTILINE) return m.group(1).strip() print(extract(s1))
26.973451
392
0.686024
0
0
0
0
0
0
0
0
2,913
0.955709
c0b773458653a85f2fb1e0a33ea41844604c6b4f
3,006
py
Python
xdl-algorithm-solution/DIN_WITH_MOGUJIE_DATA/script/train.py
xiaobaoding/x-deeplearning
1280043aba15ff57ac5e973bcce2489c698380d2
[ "Apache-2.0" ]
null
null
null
xdl-algorithm-solution/DIN_WITH_MOGUJIE_DATA/script/train.py
xiaobaoding/x-deeplearning
1280043aba15ff57ac5e973bcce2489c698380d2
[ "Apache-2.0" ]
null
null
null
xdl-algorithm-solution/DIN_WITH_MOGUJIE_DATA/script/train.py
xiaobaoding/x-deeplearning
1280043aba15ff57ac5e973bcce2489c698380d2
[ "Apache-2.0" ]
null
null
null
#coding=utf-8 # Copyright (C) 2016-2018 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import sys import time import math import random import argparse import tensorflow as tf import numpy from model import * from utils import * import xdl from xdl.python.training.train_session import QpsMetricsHook, MetricsPrinterHook #config here parser = argparse.ArgumentParser() parser.add_argument("-s", "--seed", help="random seed", default=3) parser.add_argument("-jt", "--job_type", help="'train' or 'test'", default='train') parser.add_argument("-m", "--model", help="'din' or 'dien'", default='din_mogujie') parser.add_argument("-si", "--save_interval", help="checkpoint save interval steps", default=20000) parser.add_argument("-dr", "--data_dir", help="data dir") args, unknown = parser.parse_known_args() seed = args.seed job_type = args.job_type model_type = args.model save_interval = args.save_interval def get_data_prefix(): return "../data/" #return args.data_dir train_file = os.path.join(get_data_prefix(), "train_data.tfrecords") def train(): if model_type == 'din_mogujie': model = Model_DIN_MOGUJIE( EMBEDDING_DIM, HIDDEN_SIZE, ATTENTION_SIZE,False, train_file,batch_size) else: raise Exception('only support din_mogujie and dien') #data set with xdl.model_scope('train'): train_ops = model.build_network() lr = 0.001 # Adam Adagrad train_ops.append(xdl.Adam(lr).optimize()) hooks = [] log_format = "[%(time)s] lstep[%(lstep)s] gstep[%(gstep)s] lqps[%(lqps)s] gqps[%(gqps)s] loss[%(loss)s]" hooks = [QpsMetricsHook(), MetricsPrinterHook(log_format)] if xdl.get_task_index() == 0: hooks.append(xdl.CheckpointHook(save_interval)) train_sess = xdl.TrainSession(hooks=hooks) """ with xdl.model_scope('test'): test_ops = model.build_network( EMBEDDING_DIM, is_train=False) test_sess = xdl.TrainSession() """ model.run(train_ops, train_sess) def test(): pass if __name__ == '__main__': SEED = seed if SEED is None: SEED = 3 tf.set_random_seed(SEED) numpy.random.seed(SEED) random.seed(SEED) if job_type == 'train': train() elif job_type == 'test': test() else: print('job type must be train or test, do nothing...')
30.06
112
0.663007
0
0
0
0
0
0
0
0
1,348
0.448436
c0b94e63b8ef518a54d1b8787a0fbfafc3083387
53
py
Python
script/__init__.py
KaoruNishikawa/nanten_tools
f5af30a40e8d558ae247c8e864fdea5edc0f5fb7
[ "MIT" ]
null
null
null
script/__init__.py
KaoruNishikawa/nanten_tools
f5af30a40e8d558ae247c8e864fdea5edc0f5fb7
[ "MIT" ]
null
null
null
script/__init__.py
KaoruNishikawa/nanten_tools
f5af30a40e8d558ae247c8e864fdea5edc0f5fb7
[ "MIT" ]
null
null
null
__version__ = "0.1.0" __author__ = "Kaoru Nishikawa"
17.666667
30
0.716981
0
0
0
0
0
0
0
0
24
0.45283
c0ba497faffdf2c98170646061c1181fdbd7ee74
1,542
py
Python
feature_extract/config.py
bradysalz/MinVAD
4d4a396b381bbb4714b434f60e09fb2fa7d3c474
[ "MIT" ]
null
null
null
feature_extract/config.py
bradysalz/MinVAD
4d4a396b381bbb4714b434f60e09fb2fa7d3c474
[ "MIT" ]
2
2016-12-09T21:16:28.000Z
2016-12-09T21:29:10.000Z
feature_extract/config.py
bradysalz/MinVAD
4d4a396b381bbb4714b434f60e09fb2fa7d3c474
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Nov 21 18:51:11 2016 @author: brady """ #################### TRAINING #################### # POS DIRS TRAIN_CLEAN = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\clean' TRAIN_0DB = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\0db' TRAIN_5DB = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\5db' TRAIN_10DB = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\10db' TRAIN_15DB = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\15db' TRAIN_ALLDB = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\all_data' TRAIN_AN4 = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\an4_clstk' TRAIN_MSAK = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\msak0' TRAIN_FSEW = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\fsew0' # NEG DIRS TRAIN_KITCHEN = r'C:\Users\brady\GitHub\MinVAD\data\train\negative\building_106_kitchen\training_segments' TRAIN_URBAN = r'C:\Users\brady\GitHub\MinVAD\data\train\negative\UrbanSound\data' # Label Helpers TRAIN_LABELS = r'C:\Users\brady\GitHub\MinVAD\data\train\positive\clean' POS_DIRS = [TRAIN_ALLDB, TRAIN_MSAK, TRAIN_FSEW] NEG_DIRS = [TRAIN_KITCHEN, TRAIN_URBAN] #################### TESTING #################### TEST_0DB = r'C:\Users\brady\GitHub\MinVAD\data\test\positive\0db' TEST_5DB = r'C:\Users\brady\GitHub\MinVAD\data\test\positive\5db' TEST_10DB = r'C:\Users\brady\GitHub\MinVAD\data\test\positive\10db' TEST_15DB = r'C:\Users\brady\GitHub\MinVAD\data\test\positive\15db' TEST_DIRS = [TEST_0DB, TEST_5DB, TEST_10DB, TEST_15DB]
41.675676
106
0.732815
0
0
0
0
0
0
0
0
1,162
0.753567
c0ba62a6a723e9a0a8608f8d14f5550d2b17eba4
6,735
py
Python
kuka_arm/scripts/IK_server.py
congthanh184/RoboND-Kinematics-Project
4c14ad5a9461fa5cdf465a04f8f11ff296b00760
[ "MIT" ]
null
null
null
kuka_arm/scripts/IK_server.py
congthanh184/RoboND-Kinematics-Project
4c14ad5a9461fa5cdf465a04f8f11ff296b00760
[ "MIT" ]
null
null
null
kuka_arm/scripts/IK_server.py
congthanh184/RoboND-Kinematics-Project
4c14ad5a9461fa5cdf465a04f8f11ff296b00760
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (C) 2017 Udacity Inc. # # This file is part of Robotic Arm: Pick and Place project for Udacity # Robotics nano-degree program # # All Rights Reserved. # Author: Harsh Pandya # import modules import rospy import tf from kuka_arm.srv import * from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from geometry_msgs.msg import Pose from mpmath import * from sympy import * import numpy class KukaR210: def __init__(self): self.alpha0 = self.alpha2 = self.alpha6 = 0 self.alpha1 = self.alpha3 = self.alpha5 = -pi/2 self.alpha4 = pi/2 self.a0 = self.a4 = self.a5 = self.a6 = 0 self.a1 = 0.35 self.a2 = 1.25 self.a3 = -0.054 self.d2 = self.d3 = self.d5 = self.d6 = 0 self.d1 = 0.75 self.d4 = 1.5 self.dg = 0.303 self.d34 = 0.96 self.d45 = 0.54 qz = tf.transformations.rotation_matrix(pi, (0,0,1)) qy = tf.transformations.rotation_matrix(-pi/2, (0,1,0)) self.R_corr = numpy.dot(qz, qy) def get_dh_transformation(self, alpha, a, d, theta): xaxis, zaxis = (1, 0, 0), (0, 0, 1) qx = tf.transformations.rotation_matrix(alpha, xaxis) qz = tf.transformations.rotation_matrix(theta, zaxis) ax = tf.transformations.translation_matrix((a, 0, 0)) dz = tf.transformations.translation_matrix((0, 0, d)) T = numpy.dot(numpy.dot(qx, ax), numpy.dot(qz, dz)) return T # Get joint2 position def get_joint2_position(self, q1): T0_1 = self.get_dh_transformation(self.alpha0, self.a0, self.d1, q1) T1_2 = self.get_dh_transformation(0, self.a1, 0, 0) T = numpy.dot(T0_1, T1_2) return T[0:3, 3] def get_T0_3_inv(self, q1, q2, q3): T0_1 = self.get_dh_transformation(self.alpha0, self.a0, self.d1, q1) T1_2 = self.get_dh_transformation(self.alpha1, self.a1, self.d2, q2 - (numpy.pi/2)) T2_3 = self.get_dh_transformation(self.alpha2, self.a2, self.d3, q3) T0_3 = numpy.dot(numpy.dot(T0_1, T1_2), T2_3) return numpy.linalg.inv(T0_3) def get_ee_pose_base(self, position, orientation): ee_pose = numpy.dot(tf.transformations.translation_matrix((position.x, position.y, position.z)), tf.transformations.quaternion_matrix((orientation.x, orientation.y, orientation.z, orientation.w))) return numpy.dot(ee_pose, self.R_corr) def get_wrist_position(self, ee_base): return ee_base[0:3, 3] - self.dg * ee_base[0:3, 2] def vec_len(self, vec): sqr_len = [pos**2 for pos in vec] return numpy.sqrt(sum(sqr_len)) def IK(self, ee_position, ee_orientation): # calculate wrist position from ee position and orientation ee_base = self.get_ee_pose_base(ee_position, ee_orientation) wrist_pos = self.get_wrist_position(ee_base) # calculate theta1 by wrist position q1 = numpy.arctan2(wrist_pos[1], wrist_pos[0]) # calculate triangle's side oppsition with theta3 vec_J2_W = numpy.subtract(wrist_pos, self.get_joint2_position(q1)) side_B = self.vec_len(vec_J2_W) side_d4_cor = numpy.sqrt(self.d4**2 + self.a3**2) delta = numpy.arctan2(abs(self.a3), self.d34) - numpy.arctan2(abs(self.a3), self.d4) # find theta 3 prime which expresses the relative angle with theta 2 c3_prime = (side_B**2 - self.a2**2 - side_d4_cor**2) / (2 * self.a2 * side_d4_cor) prime3 = numpy.arctan2(numpy.sqrt(1 - (c3_prime**2)), c3_prime) # find theta2 and theta3 beta = numpy.arctan2(vec_J2_W[2], numpy.sqrt(vec_J2_W[0]**2 + vec_J2_W[1]**2)) gamma = numpy.arctan2(Kuka.d4 * numpy.sin(prime3), Kuka.d4 * numpy.cos(prime3) + Kuka.a2) q2 = (numpy.pi/2) - beta - gamma q3 = prime3 - (numpy.pi/2) - delta # get T3_6 T0_3_inv = self.get_T0_3_inv(q1, q2, q3) T3_6 = numpy.dot(T0_3_inv, ee_base) # calculate theta4, theta5, theta6 q4 = numpy.arctan2( T3_6[2][2], -T3_6[0][2]) q5 = numpy.arctan2( numpy.sqrt(1 - T3_6[1][2]**2), T3_6[1][2]) q6 = numpy.arctan2( -T3_6[1][1], T3_6[1][0]) return (q1, q2, q3, q4, q5, q6) Kuka = KukaR210() def handle_calculate_IK(req): rospy.loginfo("Received %s eef-poses from the plan" % len(req.poses)) if len(req.poses) < 1: print "No valid poses received" return -1 else: ### Your FK code here # Create symbols # # # Create Modified DH parameters # # # Define Modified DH Transformation matrix # # # Create individual transformation matrices # # # Extract rotation matrices from the transformation matrices # # ### joint_trajectory_list = [] # Initialize service response for x in xrange(0, len(req.poses)): # IK code starts here joint_trajectory_point = JointTrajectoryPoint() # Extract end-effector position and orientation from request # px,py,pz = end-effector position # roll, pitch, yaw = end-effector orientation px = req.poses[x].position.x py = req.poses[x].position.y pz = req.poses[x].position.z (roll, pitch, yaw) = tf.transformations.euler_from_quaternion( [req.poses[x].orientation.x, req.poses[x].orientation.y, req.poses[x].orientation.z, req.poses[x].orientation.w]) ### Your IK code here # Compensate for rotation discrepancy between DH parameters and Gazebo # # # Calculate joint angles using Geometric IK method # # ### position = req.poses[x].position orientation = req.poses[x].orientation (theta1, theta2, theta3, theta4, theta5, theta6) = Kuka.IK(position, orientation) # Populate response for the IK request # In the next line replace theta1,theta2...,theta6 by your joint angle variables joint_trajectory_point.positions = [theta1, theta2, theta3, theta4, theta5, theta6] joint_trajectory_list.append(joint_trajectory_point) rospy.loginfo("length of Joint Trajectory List: %s" % len(joint_trajectory_list)) return CalculateIKResponse(joint_trajectory_list) def IK_server(): # initialize node and declare calculate_ik service rospy.init_node('IK_server') s = rospy.Service('calculate_ik', CalculateIK, handle_calculate_IK) print "Ready to receive an IK request" rospy.spin() if __name__ == "__main__": IK_server()
35.634921
119
0.621678
3,850
0.571641
0
0
0
0
0
0
1,416
0.210245
c0bafd320c0a8a62b60bbf8a3554bd41b71dc5db
12,205
py
Python
bin/ADFRsuite/lib/python2.7/site-packages/radical/utils/profile.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
null
null
null
bin/ADFRsuite/lib/python2.7/site-packages/radical/utils/profile.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
null
null
null
bin/ADFRsuite/lib/python2.7/site-packages/radical/utils/profile.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
1
2021-11-04T21:48:14.000Z
2021-11-04T21:48:14.000Z
import os import csv import glob import time import threading from .misc import name2env as ru_name2env from .misc import get_hostname as ru_get_hostname from .misc import get_hostip as ru_get_hostip from .read_json import read_json as ru_read_json # ------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------ # class Profiler(object): """ This class is really just a persistent file handle with a convenience call (prof()) to write lines with timestamp and events. Any profiling intelligence is applied when reading and evaluating the created profiles. """ fields = ['time', 'name', 'uid', 'state', 'event', 'msg'] # -------------------------------------------------------------------------- # def __init__(self, name, env_name=None, path=None): """ Open the file handle, sync the clock, and write timestam_zero """ # use the profiler name as basis for the env check if not env_name: env_name = '%s' % ru_name2env(name) if not path: path = os.getcwd() self._path = path self._name = name self._enabled = False # example: for RADICAL_PILOT_COMPONENT, we check # RADICAL_PILOT_COMPONENT_PROFILE # RADICAL_PILOT_PROFILE # RADICAL_PROFILE # if any of those is set in env, the profiler is enabled env_elems = env_name.split('_') if env_elems[-1] == 'PROFILE': env_elems = env_elems[:-1] env_check = '' for elem in env_elems: env_check += '%s_' % elem if '%sPROFILE' % env_check in os.environ: self._enabled = True break # FIXME if 'RADICAL_PILOT_PROFILE' in os.environ: self._enabled = True if not self._enabled: return # profiler is enabled - sync time and open handle self._ts_zero, self._ts_abs, self._ts_mode = self._timestamp_init() try: os.makedirs(self._path) except OSError: pass # already exists self._handle = open("%s/%s.prof" % (self._path, self._name), 'a') # write header and time normalization info self._handle.write("#%s\n" % (','.join(Profiler.fields))) self._handle.write("%.4f,%s:%s,%s,%s,%s,%s\n" % \ (self.timestamp(), self._name, "", "", "", 'sync abs', "%s:%s:%s:%s:%s" % ( ru_get_hostname(), ru_get_hostip(), self._ts_zero, self._ts_abs, self._ts_mode))) # ------------------------------------------------------------------------------ # @property def enabled(self): return self._enabled # ------------------------------------------------------------------------------ # def close(self): if not self._enabled: return if self._enabled: self.prof("END") self._handle.close() # ------------------------------------------------------------------------------ # def flush(self): if not self._enabled: return if self._enabled: # see https://docs.python.org/2/library/stdtypes.html#file.flush self.prof("flush") self._handle.flush() os.fsync(self._handle.fileno()) # ------------------------------------------------------------------------------ # def prof(self, event, uid=None, state=None, msg=None, timestamp=None, logger=None, name=None): if not self._enabled: return if not timestamp: timestamp = self.timestamp() if not name: name = self._name # if uid is a list, then recursively call self.prof for each uid given if isinstance(uid, list): for _uid in uid: self.prof(event, _uid, state, msg, timestamp, logger) return if logger: logger("%s (%10s%s) : %s", event, uid, state, msg) tid = threading.current_thread().name if None == uid : uid = '' if None == msg : msg = '' if None == state: state = '' self._handle.write("%.4f,%s:%s,%s,%s,%s,%s\n" \ % (timestamp, name, tid, uid, state, event, msg)) # -------------------------------------------------------------------------- # def _timestamp_init(self): """ return a tuple of [system time, absolute time] """ # retrieve absolute timestamp from an external source # # We first try to contact a network time service for a timestamp, if that # fails we use the current system time. try: import ntplib ntphost = os.environ.get('RADICAL_UTILS_NTPHOST', '0.pool.ntp.org') t_one = time.time() response = ntplib.NTPClient().request(ntphost, timeout=1) t_two = time.time() ts_ntp = response.tx_time ts_sys = (t_one + t_two) / 2.0 return [ts_sys, ts_ntp, 'ntp'] except Exception: pass # on any errors, we fall back to system time t = time.time() return [t,t, 'sys'] # -------------------------------------------------------------------------- # def timestamp(self): return time.time() # -------------------------------------------------------------------------- # def timestamp(): return time.time() # ------------------------------------------------------------------------------ # def read_profiles(profiles): """ We read all profiles as CSV files and convert them into lists of dicts. """ ret = dict() for prof in profiles: rows = list() with open(prof, 'r') as csvfile: reader = csv.DictReader(csvfile, fieldnames=Profiler.fields) for row in reader: if row['time'].startswith('#'): # skip header continue row['time'] = float(row['time']) rows.append(row) ret[prof] = rows return ret # ------------------------------------------------------------------------------ # def combine_profiles(profs): """ We merge all profiles and sort by time. This routine expects all profiles to have a synchronization time stamp. Two kinds of sync timestamps are supported: absolute (`sync abs`) and relative (`sync rel`). Time syncing is done based on 'sync abs' timestamps. We expect one such absolute timestamp to be available per host (the first profile entry will contain host information). All timestamps from the same host will be corrected by the respectively determined NTP offset. """ pd_rel = dict() # profiles which have relative time refs t_host = dict() # time offset per host p_glob = list() # global profile t_min = None # absolute starting point of profiled session c_end = 0 # counter for profile closing tag # first get all absolute timestamp sync from the profiles, for all hosts for pname, prof in profs.iteritems(): if not len(prof): print 'empty profile %s' % pname continue if not prof[0]['msg'] or ':' not in prof[0]['msg']: print 'unsynced profile %s' % pname continue t_prof = prof[0]['time'] host, ip, t_sys, t_ntp, t_mode = prof[0]['msg'].split(':') host_id = '%s:%s' % (host, ip) if t_min: t_min = min(t_min, t_prof) else : t_min = t_prof if t_mode != 'sys': continue # determine the correction for the given host t_sys = float(t_sys) t_ntp = float(t_ntp) t_off = t_sys - t_ntp if host_id in t_host and t_host[host_id] != t_off: print 'conflicting time sync for %s (%s)' % (pname, host_id) continue t_host[host_id] = t_off # now that we can align clocks for all hosts, apply that correction to all # profiles for pname, prof in profs.iteritems(): if not len(prof): continue if not prof[0]['msg']: continue host, ip, _, _, _ = prof[0]['msg'].split(':') host_id = '%s:%s' % (host, ip) if host_id in t_host: t_off = t_host[host_id] else: print 'WARNING: no time offset for %s' % host_id t_off = 0.0 t_0 = prof[0]['time'] t_0 -= t_min # correct profile timestamps for row in prof: t_orig = row['time'] row['time'] -= t_min row['time'] -= t_off # count closing entries if row['event'] == 'END': c_end += 1 # add profile to global one p_glob += prof # # Check for proper closure of profiling files # if c_end == 0: # print 'WARNING: profile "%s" not correctly closed.' % prof # if c_end > 1: # print 'WARNING: profile "%s" closed %d times.' % (prof, c_end) # sort by time and return p_glob = sorted(p_glob[:], key=lambda k: k['time']) return p_glob # ------------------------------------------------------------------------------ # def clean_profile(profile, sid, state_final, state_canceled): """ This method will prepare a profile for consumption in radical.analytics. It performs the following actions: - makes sure all events have a `ename` entry - remove all state transitions to `CANCELLED` if a different final state is encountered for the same uid - assignes the session uid to all events without uid - makes sure that state transitions have an `ename` set to `state` """ entities = dict() # things which have a uid if not isinstance(state_final, list): state_final = [state_final] for event in profile: uid = event['uid' ] state = event['state'] time = event['time' ] name = event['event'] # we derive entity_type from the uid -- but funnel # some cases into the session if uid: event['entity_type'] = uid.split('.',1)[0] else: event['entity_type'] = 'session' event['uid'] = sid uid = sid if uid not in entities: entities[uid] = dict() entities[uid]['states'] = dict() entities[uid]['events'] = list() if name == 'advance': # this is a state progression assert(state) assert(uid) event['event_name'] = 'state' if state in state_final and state != state_canceled: # a final state other than CANCELED will cancel any previous # CANCELED state. if state_canceled in entities[uid]['states']: del(entities[uid]['states'][state_canceled]) if state in entities[uid]['states']: # ignore duplicated recordings of state transitions # FIXME: warning? continue # raise ValueError('double state (%s) for %s' % (state, uid)) entities[uid]['states'][state] = event else: # FIXME: define different event types (we have that somewhere) event['event_name'] = 'event' entities[uid]['events'].append(event) # we have evaluated, cleaned and sorted all events -- now we recreate # a clean profile out of them ret = list() for uid,entity in entities.iteritems(): ret += entity['events'] for state,event in entity['states'].iteritems(): ret.append(event) # sort by time and return ret = sorted(ret[:], key=lambda k: k['time']) return ret # ------------------------------------------------------------------------------
28.990499
84
0.498484
5,151
0.42204
0
0
62
0.00508
0
0
5,162
0.422941
c0bb7b8a74c23f921be8c3f93658d3fa62727ccc
5,214
py
Python
input_fn.py
ilyakhov/pytorch-word2vec
bb9b0ed408a12e3652d2d897330292b7b93c7997
[ "MIT" ]
12
2019-05-22T13:08:42.000Z
2021-07-11T07:12:37.000Z
input_fn.py
ilyakhov/pytorch-word2vec
bb9b0ed408a12e3652d2d897330292b7b93c7997
[ "MIT" ]
null
null
null
input_fn.py
ilyakhov/pytorch-word2vec
bb9b0ed408a12e3652d2d897330292b7b93c7997
[ "MIT" ]
1
2021-02-20T09:04:19.000Z
2021-02-20T09:04:19.000Z
import numpy as np import torch from torch.utils.data import Dataset class CBOWDataSet(Dataset): def __init__(self, corpus, pipeline='hier_softmax', nodes_index=None, turns_index=None, vocab_size=None, neg_samples=None, max_path_len=17, window_size=6, device=None, skip_target=False, dtype=torch.float32): """ :param corpus: the flat list of tokens :param pipeline: 'hier_softmax'/'neg_sampling' params for 'hierarchical softmax' pipeline: :param nodes_index: index of nodes from leaf parent to the root :param turns_index: the list of 1/-1 indices: 1 — the leaf is the left child of corresponding node -1 — the leaf is the right child :param vocab_size: is used for padding :param max_path_len: length of the longest path from word (leaf) to the root params for 'negative sampling' pipeline: :param neg_samples: the number of negative samples :param window_size: word context size :param device: cuda:0/cuda:1/cpu :param dtype: torch float type """ self.window_size = window_size self.step = window_size // 2 self.left_step = self.step self.right_step = window_size - self.step self.corpus = corpus[-self.left_step:] + corpus + \ corpus[:self.right_step] self.device = device self.dtype = dtype self.pipeline = pipeline if self.pipeline == 'hier_softmax': self.nodes_index = nodes_index self.max_path_len = max_path_len self.turns_index = turns_index self.vocab_size = vocab_size self.skip_target = skip_target elif self.pipeline == 'neg_sampling': self.np_corpus = np.array(self.corpus) self.neg_samples = neg_samples else: raise NotImplementedError( f'Pipeline for "pipeline": {self.pipeline}') def __len__(self): return len(self.corpus) - self.window_size def __getitem__(self, item): if self.pipeline == 'hier_softmax': return self.__h_getitem(item) elif self.pipeline == 'neg_sampling': return self.__n_getitem(item) else: raise NotImplementedError( f'__getitem__ for pipeline: {self.pipeline}') def __h_getitem(self, i): """ Hierarchical softmax pipepline :param i: item index :return: torch tensors: context, target, nodes, mask, turns_coeffs """ i += self.left_step target = self.corpus[i] context = self.corpus[(i - self.left_step):i] context += self.corpus[(i + 1):(i + self.right_step + 1)] try: assert len(context) == self.window_size except AssertionError: raise Exception( 'Context size is not valid: context - ' '{0} has size - {1}; window_size - {2}' .format(context, len(context), self.window_size) ) nodes = self.nodes_index[target] nodes_len = len(nodes) mask = np.zeros(self.max_path_len) mask[:nodes_len] = 1 pad_len = self.max_path_len - nodes_len nodes = np.concatenate([nodes, np.ones(pad_len) * self.vocab_size]) # nodes = np.concatenate([nodes, np.ones(pad_len) * -1]) nodes = torch.tensor(nodes, dtype=torch.long, device=self.device) turns_coeffs = self.turns_index.get(target) turns_coeffs = np.concatenate([turns_coeffs, np.zeros(pad_len)]) turns_coeffs = torch.tensor(turns_coeffs, dtype=self.dtype, device=self.device) mask = torch.tensor(mask, dtype=self.dtype, device=self.device) context = torch.tensor(context, dtype=torch.long, device=self.device) target = torch.tensor(target, dtype=torch.long, device=self.device) if self.skip_target is False: return context, target, nodes, mask, turns_coeffs else: return context, nodes, mask, turns_coeffs def __n_getitem(self, i): """ Negative sampling pipeline :param i: item index :return: torch tensors: context, target, neg_samples """ i += self.left_step target = self.corpus[i] context = self.corpus[(i - self.left_step):i] context += self.corpus[(i + 1):(i + self.right_step + 1)] try: assert len(context) == self.window_size except AssertionError: raise Exception( 'Context size is not valid: context - ' '{0} has size - {1}; window_size - {2}' .format(context, len(context), self.window_size) ) context = torch.tensor(context, dtype=torch.long, device=self.device) target = torch.tensor(target, dtype=torch.long, device=self.device) return context, target
36.71831
77
0.575374
5,145
0.98601
0
0
0
0
0
0
1,518
0.290916
c0bc31b78e193431b864fc09c2a40bbe17627b76
301
py
Python
1 ano/logica-de-programacao/condicionais/peso-animais-maior-menor.py
Biguelini/Atividades-Tecnico-em-Informatica
468e9ac05a666143d8752d053854ecc22bcc8b79
[ "MIT" ]
4
2021-04-27T01:00:32.000Z
2021-09-24T16:25:48.000Z
1 ano/logica-de-programacao/condicionais/peso-animais-maior-menor.py
Biguelini/Atividades-Tecnico-em-Informatica
468e9ac05a666143d8752d053854ecc22bcc8b79
[ "MIT" ]
null
null
null
1 ano/logica-de-programacao/condicionais/peso-animais-maior-menor.py
Biguelini/Atividades-Tecnico-em-Informatica
468e9ac05a666143d8752d053854ecc22bcc8b79
[ "MIT" ]
1
2021-05-12T18:28:06.000Z
2021-05-12T18:28:06.000Z
peso1 = float(input('Digite o peso do primeiro animal... ')) peso2 = float(input('Digite o peso do segundo animal... ')) if peso1 > peso2: print('O primeiro animal é mais pesado') elif peso1 < peso2: print('O segundo animal é mais pesado') else: print('Os dois animais têm o mesmo peso')
30.1
60
0.681063
0
0
0
0
0
0
0
0
177
0.582237
c0bd2f1bb8af7bb26fd427d057716fce6e53b345
607
py
Python
uniform_distribution.py
khinthandarkyaw98/Python_Practice
9b431129c79315a57dae81048a22bf85c4b5132c
[ "MIT" ]
null
null
null
uniform_distribution.py
khinthandarkyaw98/Python_Practice
9b431129c79315a57dae81048a22bf85c4b5132c
[ "MIT" ]
null
null
null
uniform_distribution.py
khinthandarkyaw98/Python_Practice
9b431129c79315a57dae81048a22bf85c4b5132c
[ "MIT" ]
null
null
null
# uniform_distribution # used to describe the probability where every event has equal chances of # occuring """ E.g. Generation of random numbers. It has three parameters. a - lower bound - default 0.0 b - upper bound - default 1.0 size = The shape of the returned array """ # 2x3 uniform distribution sample from numpy import random x = random.uniform(size = (2, 3)) print(x) # visulization of uniform distribution # from numpy import random import matplotlib.pyplot as plt import seaborn as sns sns.distplot(random.uniform(size = 1000), hist = False) plt.show()
20.233333
75
0.70346
0
0
0
0
0
0
0
0
383
0.630972
c0c0cf39ce27029feb9aa7a105da2d19af17d25d
1,563
py
Python
delivery/services/external_program_service.py
mariya/arteria-delivery
ec2fd79cfc6047a44dd251183b971535e9afd0dc
[ "MIT" ]
null
null
null
delivery/services/external_program_service.py
mariya/arteria-delivery
ec2fd79cfc6047a44dd251183b971535e9afd0dc
[ "MIT" ]
18
2016-11-10T14:32:54.000Z
2019-10-14T07:07:54.000Z
delivery/services/external_program_service.py
mariya/arteria-delivery
ec2fd79cfc6047a44dd251183b971535e9afd0dc
[ "MIT" ]
6
2016-10-18T12:16:46.000Z
2019-09-11T11:38:17.000Z
from tornado.process import Subprocess from tornado import gen from subprocess import PIPE from delivery.models.execution import ExecutionResult, Execution class ExternalProgramService(object): """ A service for running external programs """ @staticmethod def run(cmd): """ Run a process and do not wait for it to finish :param cmd: the command to run as a list, i.e. ['ls','-l', '/'] :return: A instance of Execution """ p = Subprocess(cmd, stdout=PIPE, stderr=PIPE, stdin=PIPE) return Execution(pid=p.pid, process_obj=p) @staticmethod @gen.coroutine def wait_for_execution(execution): """ Wait for an execution to finish :param execution: instance of Execution :return: an ExecutionResult for the execution """ status_code = yield execution.process_obj.wait_for_exit(raise_error=False) out = execution.process_obj.stdout.read().decode('UTF-8') err = execution.process_obj.stderr.read().decode('UTF-8') return ExecutionResult(out, err, status_code) @staticmethod def run_and_wait(cmd): """ Run an external command and wait for it to finish :param cmd: the command to run as a list, i.e. ['ls','-l', '/'] :return: an ExecutionResult for the execution """ execution = ExternalProgramService.run(cmd) return ExternalProgramService.wait_for_execution(execution)
29.490566
82
0.621881
1,399
0.895074
470
0.300704
1,284
0.821497
0
0
608
0.388996
c0c468474802f951d70f92ebb743554a56f1d46b
1,577
py
Python
Estructuras de control/ejercicio12.py
mariapdm/talleres_de_algoritmos
fc9ad8f8ad2c3cb4f4ae0a7fad2e36824bba2afb
[ "MIT" ]
null
null
null
Estructuras de control/ejercicio12.py
mariapdm/talleres_de_algoritmos
fc9ad8f8ad2c3cb4f4ae0a7fad2e36824bba2afb
[ "MIT" ]
null
null
null
Estructuras de control/ejercicio12.py
mariapdm/talleres_de_algoritmos
fc9ad8f8ad2c3cb4f4ae0a7fad2e36824bba2afb
[ "MIT" ]
null
null
null
""" Datos de entrada nota_examen_ matematicas-->nem-->float nota_ta1_matematicas-->ntm--> nota_ta2_matematicas-->nttm--> nota_ta3_matematicas-->ntttm--> nota_examen_fisica-->nef-->float nota_ta1_fisica-->ntf-->float nota_ta2_fisica-->nttf-->float nota_examen_quimica-->neq-->float nota_ta1_quimica-->ntq-->float nota_ta2_quimica-->nttq-->float nota_ta3_quimica-->ntttq-->float Datos de salida Promedio_tres-->pt-->float promedio_matematicas-->pm-->float promedio_fisica-->pf-->float promedio_quimica-->pq-->float """ #Entradas nem=float(input("Ingrese la nota del examen de matemáticas: ")) ntm=float(input("Ingrese la nota de la 1ra tarea de matemáticas: ")) nttm=float(input("Ingrese la nota de la 2da tarea de matemáticas: ")) ntttm=float(input("Ingrese la nota de la 3ra tarea de matemáticas: ")) nef=float(input("Ingrese la nota del examen de física: ")) ntf=float(input("Ingrese la nota de la 1ra tarea de física: ")) nttf=float(input("Ingrese la nota de la 2da tarea de física: ")) neq=float(input("Ingrese la nota del examen de química: ")) ntq=float(input("Ingrese la nota de la 1ra tarea de química: ")) nttq=float(input("Ingrese la nota de la 2da tarea de química: ")) ntttq=float(input("Ingrese la nota de la 3ra tarea de química: ")) #Caja negra pm=(nem*0.90)+(((ntm+nttm+ntttm)/3)*0.1) pf=(nef*0.8)+(((ntf+nttf)/2)*0.2) pq=(neq*0.85)+(((ntq+nttq+ntttq)/3)*0.15) pt=(pm+pf+pq)/3 #Salidas print("El promedio de las tres materias es: ", pt) print("El promedio de matemáticas es: ", pm) print("El promedio de física es: ", pf) print("El promedio de química es: ", pq)
38.463415
70
0.726062
0
0
0
0
0
0
0
0
1,191
0.748586
c0c491c66e363814a85776c34ddeffc5e419a0b3
9,667
py
Python
xraydb/materials.py
chemmatcars/XModFit
7d1298448d1908d78797fd67ce0a00ecfaf17629
[ "MIT" ]
null
null
null
xraydb/materials.py
chemmatcars/XModFit
7d1298448d1908d78797fd67ce0a00ecfaf17629
[ "MIT" ]
null
null
null
xraydb/materials.py
chemmatcars/XModFit
7d1298448d1908d78797fd67ce0a00ecfaf17629
[ "MIT" ]
null
null
null
import os import numpy as np from collections import namedtuple from .chemparser import chemparse from .xray import mu_elam, atomic_mass from .utils import get_homedir _materials = None Material = namedtuple('Material', ('formula', 'density', 'name', 'categories')) def get_user_materialsfile(): """return name for user-specific materials.dat file With $HOME being the users home directory, this will be $HOME/.config/xraydb/materials.dat """ return os.path.join(get_homedir(), '.config', 'xraydb', 'materials.dat') def _read_materials_db(): """return _materials dictionary, creating it if needed""" global _materials if _materials is None: # initialize materials table _materials = {} def read_materialsfile(fname): with open(fname, 'r') as fh: lines = fh.readlines() for line in lines: line = line.strip() if len(line) > 2 and not line.startswith('#'): words = [i.strip() for i in line.split('|')] name = words[0].lower() formula = None if len(words) == 3: # older style # "name | formula | density" or "name | density | formula" iformula = 1 try: density = float(words[2]) except ValueError: density = float(words[1]) iformula = 2 formula = words[iformula] categories = [] elif len(words) == 4: # newer style, with categories density = float(words[1]) categories = [w.strip() for w in words[2].split(',')] formula = words[3] if formula is not None: formula = formula.replace(' ', '') _materials[name] = Material(formula, density, name, categories) # first, read from standard list local_dir, _ = os.path.split(__file__) fname = os.path.join(local_dir, 'materials.dat') if os.path.exists(fname): read_materialsfile(fname) # next, read from users materials file fname = get_user_materialsfile() if os.path.exists(fname): read_materialsfile(fname) return _materials def material_mu(name, energy, density=None, kind='total'): """X-ray attenuation length (in 1/cm) for a material by name or formula Args: name (str): chemical formul or name of material from materials list. energy (float or ndarray): energy or array of energies in eV density (None or float): material density (gr/cm^3). kind (str): 'photo' or 'total' for whether to return the photo-absorption or total cross-section ['total'] Returns: absorption length in 1/cm Notes: 1. material names are not case sensitive, chemical compounds are case sensitive. 2. mu_elam() is used for mu calculation. 3. if density is None and material is known, that density will be used. Examples: >>> material_mu('H2O', 10000.0) 5.32986401658495 """ global _materials if _materials is None: _materials = _read_materials_db() formula = None _density = None mater = _materials.get(name.lower(), None) if mater is None: for key, val in _materials.items(): if name.lower() == val[0].lower(): # match formula mater = val break # default to using passed in name as a formula if formula is None: if mater is None: formula = name else: formula = mater.formula if density is None and mater is not None: density = mater.density if density is None: raise Warning('material_mu(): must give density for unknown materials') mass_tot, mu = 0.0, 0.0 for elem, frac in chemparse(formula).items(): mass = frac * atomic_mass(elem) mu += mass * mu_elam(elem, energy, kind=kind) mass_tot += mass return density*mu/mass_tot def material_mu_components(name, energy, density=None, kind='total'): """material_mu_components: absorption coefficient (in 1/cm) for a compound Args: name (str): chemical formul or name of material from materials list. energy (float or ndarray): energy or array of energies in eV density (None or float): material density (gr/cm^3). kind (str): 'photo' or 'total'for whether to return photo-absorption or total cross-section ['total'] Returns: dict for constructing mu per element, with elements 'mass' (total mass), 'density', and 'elements' (list of atomic symbols for elements in material). For each element, there will be an item (atomic symbol as key) with tuple of (stoichiometric fraction, atomic mass, mu) Examples: >>> xraydb.material_mu('quartz', 10000) 50.36774553547068 >>> xraydb.material_mu_components('quartz', 10000) {'mass': 60.0843, 'density': 2.65, 'elements': ['Si', 'O'], 'Si': (1, 28.0855, 33.87943243018506), 'O': (2.0, 15.9994, 5.952824815297084)} """ global _materials if _materials is None: _materials = _read_materials_db() mater = _materials.get(name.lower(), None) if mater is None: formula = name if density is None: raise Warning('material_mu(): must give density for unknown materials') else: formula = mater.formula density = mater.density out = {'mass': 0.0, 'density': density, 'elements':[]} for atom, frac in chemparse(formula).items(): mass = atomic_mass(atom) mu = mu_elam(atom, energy, kind=kind) out['mass'] += frac*mass out[atom] = (frac, mass, mu) out['elements'].append(atom) return out def get_material(name): """look up material name, return formula and density Args: name (str): name of material or chemical formula Returns: chemical formula, density of material Examples: >>> xraydb.get_material('kapton') ('C22H10N2O5', 1.43) See Also: find_material() """ material = find_material(name) if material is None: return None return material.formula, material.density def find_material(name): """look up material name, return material instance Args: name (str): name of material or chemical formula Returns: material instance Examples: >>> xraydb.find_material('kapton') Material(formula='C22H10N2O5', density=1.42, name='kapton', categories=['polymer']) See Also: get_material() """ global _materials if _materials is None: _materials = _read_materials_db() mat = _materials.get(name.lower(), None) if mat is not None: return mat for mat in _materials.values(): if mat.formula == name: return mat return None def get_materials(force_read=False, categories=None): """get dictionary of all available materials Args: force_read (bool): whether to force a re-reading of the materials database [False] categories (list of strings or None): restrict results to those that match category names Returns: dict with keys of material name and values of Materials instances Examples: >>> for name, m in xraydb.get_materials().items(): ... print(name, m) ... water H2O 1.0 lead Pb 11.34 aluminum Al 2.7 kapton C22H10N2O5 1.42 polyimide C22H10N2O5 1.42 nitrogen N 0.00125 argon Ar 0.001784 ... """ global _materials if force_read or _materials is None: _materials = _read_materials_db() return _materials def add_material(name, formula, density, categories=None): """add a material to the users local material database Args: name (str): name of material formula (str): chemical formula density (float): density categories (list of strings or None): list of category names Returns: None Notes: the data will be saved to $HOME/.config/xraydb/materials.dat in the users home directory, and will be useful in subsequent sessions. Examples: >>> xraydb.add_material('becopper', 'Cu0.98e0.02', 8.3, categories=['metal']) """ global _materials if _materials is None: _materials = _read_materials_db() formula = formula.replace(' ', '') if categories is None: categories = [] _materials[name.lower()] = Material(formula, float(density), name, categories) fname = get_user_materialsfile() if os.path.exists(fname): fh = open(fname, 'r') text = fh.readlines() fh.close() else: parent, _ = os.path.split(fname) if not os.path.exists(parent): try: os.makedirs(parent) except FileExistsError: pass text = ['# user-specific database of materials\n', '# name | density | categories | formulan'] catstring = ', '.join(categories) text.append(" %s | %g | %s | %s\n" % (name, density, catstring, formula)) with open(fname, 'w') as fh: fh.write(''.join(text))
31.90429
91
0.58529
0
0
0
0
0
0
0
0
4,664
0.482466
c0c62d4eee91d75a65403ff152657c9c03089c57
1,069
py
Python
client.py
simondlevy/sockets
f49dd677b6508859f01c9c54101b38e802d6370e
[ "MIT" ]
null
null
null
client.py
simondlevy/sockets
f49dd677b6508859f01c9c54101b38e802d6370e
[ "MIT" ]
null
null
null
client.py
simondlevy/sockets
f49dd677b6508859f01c9c54101b38e802d6370e
[ "MIT" ]
1
2018-06-12T03:32:26.000Z
2018-06-12T03:32:26.000Z
#!/usr/bin/env python3 ''' Server script for simple client/server example Copyright (C) Simon D. Levy 2021 MIT License ''' from threading import Thread from time import sleep import socket from struct import unpack from header import ADDR, PORT def comms(data): ''' Communications thread ''' # Connect to the client sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((ADDR, PORT)) # Loop until main thread quits while True: # Receive and unpack three floating-point numbers data[0], data[1], data[2] = unpack('=fff', sock.recv(12)) # Yield to the main thread sleep(0.001) def main(): # Create a list to receiver the data data = [0, 0, 0] # Start the client on its own thread t = Thread(target=comms, args=(data,)) t.setDaemon(True) t.start() # Loop until user hits CTRL-C while True: try: print('%3.3f %3.3f %3.3f ' % tuple(data)) sleep(.01) except KeyboardInterrupt: break main()
18.431034
65
0.613658
0
0
0
0
0
0
0
0
418
0.39102
c0c65039eac0d1c182008b9f53dbb8727df88022
151
py
Python
home/views.py
kerol/kerolgaodotcom
7993bb5f40dd1f6b3ebdef4d90728cd77651c026
[ "BSD-3-Clause" ]
1
2016-03-02T02:49:00.000Z
2016-03-02T02:49:00.000Z
home/views.py
kerol/kerolgaodotcom
7993bb5f40dd1f6b3ebdef4d90728cd77651c026
[ "BSD-3-Clause" ]
null
null
null
home/views.py
kerol/kerolgaodotcom
7993bb5f40dd1f6b3ebdef4d90728cd77651c026
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf8 -*- from django.shortcuts import render # Create your views here. def index(request): return render(request, 'about.html')
15.1
40
0.682119
0
0
0
0
0
0
0
0
60
0.397351
c0c6c96cefa40fab2593e89ee811e26649ffff4f
15,126
py
Python
old/compute_T.py
azhan137/cylinder_t_matrix
73a496c07dbbb02896b2baf727d452765da9aac3
[ "MIT" ]
1
2022-03-18T11:52:36.000Z
2022-03-18T11:52:36.000Z
old/compute_T.py
AmosEgel/cylinder_t_matrix
78f6607993af5babdda384969c45cf3ac6461257
[ "MIT" ]
null
null
null
old/compute_T.py
AmosEgel/cylinder_t_matrix
78f6607993af5babdda384969c45cf3ac6461257
[ "MIT" ]
1
2020-12-07T13:11:00.000Z
2020-12-07T13:11:00.000Z
import numpy as np from numpy.polynomial import legendre from smuthi import spherical_functions as sf import bessel_functions as bf ##Codebase for computing the T-matrix and its derivative with respect to height and radius for a cylindrical scatterer # with circular cross-section in spherical coordinates. # # inputs: # lmax: maximum orbital angular momentum expansion order, an integer # Ntheta: number of sections for discretization # geometric_params: radius (0) and height (1) in an array # n0: refractive index of medium # ns: refractive index of scatterer # wavelength: excitation wavelength # particle_type: shape of particle (cylinder, ellipsoid, etc) def compute_T(lmax, Ntheta, geometric_params, n0, ns, wavelength, particle_type): [Q, dQ] = compute_Q(lmax, Ntheta, geometric_params, n0, ns, wavelength, 3, particle_type) [rQ, drQ] = compute_Q(lmax, Ntheta, geometric_params, n0, ns, wavelength, 1, particle_type) Qinv = np.linalg.inv(Q) T = rQ*Qinv dT = np.zeros((np.shape(drQ))) num_geometric_params = np.size(geometric_params) for geometric_idx in np.arange(0, num_geometric_params): dT[:, :, geometric_idx] = np.matmul(drQ[:, :, geometric_idx] - np.matmul(T, dQ[:, :, geometric_idx]), Qinv) return T, dT def compute_Q(lmax, Ntheta, geometric_params, n0, ns, wavelength, nu, particle_type): if particle_type is 'cylinder': a = geometric_params[0] h = geometric_params[1] [J11, J12, J21, J22, dJ11, dJ12, dJ21, dJ22] = compute_J_cyl(lmax, Ntheta, a, h, n0, ns, wavelength, nu) elif particle_type is 'ellipsoid': print('ellipsoid not supported') else: print('particle type ' + particle_type + ' not supported.') return 0 ki = 2*np.pi*n0/wavelength ks = 2*np.pi*ns/wavelength P = -1j * ki * (ks * J21 + ki * J12) R = -1j * ki * (ks * J11 + ki * J22) S = -1j * ki * (ks * J22 + ki * J11) U = -1j * ki * (ks * J12 + ki * J21) dP = -1j * ki * (ks * dJ21 + ki * dJ12) dR = -1j * ki * (ks * dJ11 + ki * dJ22) dS = -1j * ki * (ks * dJ22 + ki * dJ11) dU = -1j * ki * (ks * dJ12 + ki * dJ21) Q = np.block([ [P, R], [S, U] ]) nmax = np.size(Q[:, 1]) num_geometric_params = np.size(geometric_params) dQ = np.zeros((nmax, nmax, num_geometric_params)) for geometric_idx in np.arange(0, num_geometric_params): dQ[:, :, geometric_idx] = np.block([ [dP[:, :, geometric_idx], dR[:, :, geometric_idx]], [dS[:, :, geometric_idx], dU[:, :, geometric_idx]] ]) return Q, dQ #function that computes the J surface integrals and their derivatives with respect to cylinder radius (a) and cylinder # height (h). Expands up to a specified lmax, and approximates the integrals using gaussian quadrature with Ntheta # points for the two integrals required. # n0 is refractive index of medium # ns is refractive index of scatterer # wavelength is illumination wavelength # nu = 1 or 3 # 1: b_li are the spherical Bessel functions of the first kind (j_n(x)) # involved in rQ and drQ computation # 3: b_li are the spherical Hankel functions of the first kind (h_n(x)) # involved in Q and dQ computation #care should be taken to expand lmax to sufficient order, #where lmax should be greater than (ns-n_0)*max(2*a,h)/wavelength def compute_J_cyl(lmax, Ntheta, a, h, n0, ns, wavelength, nu): #dimension of final T-matrix is 2*nmax x 2*nmax for each individual matrix nmax = int(lmax*(lmax+2)) #preallocate space for both J and dJ matrices of size nmax x nmax for J matrices #and dJ matrices are nmax x nmax x 2 #dJ[:,:,0] is dJ/da #dJ[:,:,1] is dJ/dh J11 = np.zeros((nmax, nmax), dtype=np.complex_) J12 = np.zeros((nmax, nmax), dtype=np.complex_) J21 = np.zeros((nmax, nmax), dtype=np.complex_) J22 = np.zeros((nmax, nmax), dtype=np.complex_) dJ11 = np.zeros((nmax, nmax, 2), dtype=np.complex_) dJ12 = np.zeros((nmax, nmax, 2), dtype=np.complex_) dJ21 = np.zeros((nmax, nmax, 2), dtype=np.complex_) dJ22 = np.zeros((nmax, nmax, 2), dtype=np.complex_) #find the angle theta at which the corner of the cylinder is at theta_edge = np.arctan(2*a/h) #prepare gauss-legendre quadrature for interval of [-1,1] to perform numerical integral [x_norm, wt_norm] = legendre.leggauss(Ntheta) #rescale integration points and weights to match actual bounds: # circ covers the circular surface of the cylinder (end caps) # body covers the rectangular surface of the cylinder (body area) #circ integral goes from 0 to theta_edge, b = theta_edge, a = 0 theta_circ = theta_edge/2*x_norm+theta_edge/2 wt_circ = theta_edge/2*wt_norm #body integral goes from theta_edge to pi/2, b = pi/2, a = theta_edge theta_body = (np.pi/2-theta_edge)/2*x_norm+(np.pi/2+theta_edge)/2 wt_body = (np.pi/2-theta_edge)/2*wt_norm #merge the circ and body lists into a single map theta_map = np.concatenate((theta_circ, theta_body), axis=0) weight_map = np.concatenate((wt_circ, wt_body), axis=0) #identify indices corresponding to the circular end caps and rectangular body circ_idx = np.arange(0, Ntheta) body_idx = np.arange(Ntheta, 2*Ntheta) #k vectors of the light in medium (ki) and in scatterer (ks) ki = 2*np.pi*n0/wavelength ks = 2*np.pi*ns/wavelength #precompute trig functions ct = np.cos(theta_map) st = np.sin(theta_map) #normal vector for circular surface (circ) requires tangent tant = np.tan(theta_map[circ_idx]) #normal vector for rectangular surface (body) requires cotangent cott = 1/np.tan(theta_map[body_idx]) #precompute spherical angular polynomials [p_lm, pi_lm, tau_lm] = sf.legendre_normalized(ct, st, lmax) #radial coordinate of the surface, and the derivatives with respect to a and h #r_c: radial coordinate of circular end cap #r_b: radial coordinate of rectangular body r_c = h/2/ct[circ_idx] dr_c = r_c/h r_b = a/st[body_idx] dr_b = r_b/a #merge radial coordiantes into a single vector r = np.concatenate((r_c, r_b), axis=0) #derivatives of the integration limits for performing derivatives da_edge = 2*h/(h**2+4*a**2) dh_edge = -2*a/(h**2+4*a**2) #loop through each individual element of the J11, J12, J21, J22 matrices for li in np.arange(1, lmax+1): #precompute bessel functiosn and derivatives b_li = bf.sph_bessel(nu, li, ki*r) db_li = bf.d1Z_Z_sph_bessel(nu, li, ki*r) db2_li = bf.d2Z_Z_sph_bessel(nu, li, ki*r) d1b_li = bf.d1Z_sph_bessel(nu, li, ki*r) for lp in np.arange(1, lmax+1): #precompute bessel functions and derivatives j_lp = bf.sph_bessel(1, lp, ks*r) dj_lp = bf.d1Z_Z_sph_bessel(1, lp, ks*r) dj2_lp = bf.d2Z_Z_sph_bessel(1, lp, ks*r) d1j_lp = bf.d1Z_sph_bessel(1, lp, ks*r) #compute normalization factor lfactor = 1/np.sqrt(li*(li+1)*lp*(lp+1)) for mi in np.arange(-li, li+1): #compute row index where element is placed n_i = compute_n(lmax, 1, li, mi)-1 #precompute spherical harmonic functions p_limi = p_lm[li][abs(mi)] pi_limi = pi_lm[li][abs(mi)] tau_limi = tau_lm[li][abs(mi)] for mp in np.arange(-lp, lp+1): #compute col index where element is placed n_p = compute_n(lmax, 1, lp, mp)-1 #precompute spherical harmonic functions p_lpmp = p_lm[lp][abs(mp)] pi_lpmp = pi_lm[lp][abs(mp)] tau_lpmp = tau_lm[lp][abs(mp)] #compute selection rules that includes symmetries sr_1122 = selection_rules(li, mi, lp, mp, 1) sr_1221 = selection_rules(li, mi, lp, mp, 2) #perform integral about phi analytically. This is roughly a sinc function if mi == mp: phi_exp = np.pi else: phi_exp = -1j*(np.exp(1j*(mp-mi)*np.pi)-1)/(mp-mi) #for J11 and J22 integrals if sr_1122 != 0: prefactor = sr_1122*lfactor*phi_exp ang = mp*pi_lpmp*tau_limi+mi*pi_limi*tau_lpmp J11_r = -1j*weight_map*prefactor*r**2*st*j_lp*b_li*ang J11[n_i, n_p] = np.sum(J11_r) dJ11dr = 2*r*j_lp*b_li+r**2*(ks*d1j_lp*b_li+ki*d1b_li*j_lp) dJ11[n_i, n_p, 0] = np.sum(-1j*prefactor*weight_map[body_idx]*st[body_idx]*dJ11dr[body_idx]*ang[body_idx]*dr_b) dJ11[n_i, n_p, 1] = np.sum(-1j*prefactor*weight_map[circ_idx]*st[circ_idx]*dJ11dr[circ_idx]*ang[circ_idx]*dr_c) J22_r = -1j*prefactor*weight_map*st/ki/ks*dj_lp*db_li*ang J22_db = lp*(lp+1)*mi*pi_limi*p_lpmp J22_dj = li*(li+1)*mp*pi_lpmp*p_limi J22_t = -1j*prefactor*weight_map*st/ki/ks*(J22_db*j_lp*db_li+J22_dj*b_li*dj_lp) J22[n_i, n_p] = sum(J22_r)+sum(J22_t[circ_idx]*tant)+sum(J22_t[body_idx]*-cott) dJ22edge = st[Ntheta]*(J22_db[Ntheta]*j_lp[Ntheta]*db_li[Ntheta]+J22_dj[Ntheta]*dj_lp[Ntheta]*b_li[Ntheta])*(st[Ntheta]/ct[Ntheta]+ct[Ntheta]/st[Ntheta]) dJ22da1 = -1j/ki/ks*(ks*dj2_lp[body_idx]*db_li[body_idx]+ki*db2_li[body_idx]*dj_lp[body_idx])*dr_b*st[body_idx]*ang[body_idx] dJ22da2 = 1j/ki/ks*cott*st[body_idx]*dr_b*(J22_db[body_idx]*(ks*d1j_lp[body_idx]*db_li[body_idx]+ki*j_lp[body_idx]*db2_li[body_idx])+J22_dj[body_idx]*(ki*d1b_li[body_idx]*dj_lp[body_idx]+ks*dj2_lp[body_idx]*b_li[body_idx])) dJ22dh1 = -1j/ki/ks*(ks*dj2_lp[circ_idx]*db_li[circ_idx]+ki*db2_li[circ_idx]*dj_lp[circ_idx])*dr_c*st[circ_idx]*ang[circ_idx] dJ22dh2 = -1j/ki/ks*tant*st[circ_idx]*dr_c*(J22_db[circ_idx]*(ks*d1j_lp[circ_idx]*db_li[circ_idx]+ki*j_lp[circ_idx]*db2_li[circ_idx])+J22_dj[circ_idx]*(ki*d1b_li[circ_idx]*dj_lp[circ_idx]+ks*dj2_lp[circ_idx]*b_li[circ_idx])) dJ22[n_i, n_p, 0] = np.sum(prefactor*weight_map[body_idx]*dJ22da1)+np.sum(prefactor*weight_map[body_idx]*dJ22da2)+prefactor*dJ22edge*da_edge dJ22[n_i, n_p, 1] = np.sum(prefactor*weight_map[circ_idx]*dJ22dh1)+np.sum(prefactor*weight_map[circ_idx]*dJ22dh2)+prefactor*dJ22edge*dh_edge #for J12 and J21 integrals if sr_1221 != 0: prefactor = sr_1221*lfactor*phi_exp ang = mi*mp*pi_limi*pi_lpmp+tau_limi*tau_lpmp J12_r = prefactor*weight_map/ki*r*st*j_lp*db_li*ang J12_t = prefactor*weight_map/ki*r*st*li*(li+1)*j_lp*b_li*p_limi*tau_lpmp J12[n_i, n_p] = np.sum(J12_r)+np.sum(J12_t[circ_idx]*tant)+np.sum(J12_t[body_idx]*-cott) dJ12edge = li*(li+1)/ki/r[Ntheta]*st[Ntheta]*j_lp[Ntheta]*b_li[Ntheta]*tau_lpmp[Ntheta]*p_limi[Ntheta]*(st[Ntheta]/ct[Ntheta]+ct[Ntheta]/st[Ntheta]) dJ12da1 = dr_b/ki*(j_lp[body_idx]*db_li[body_idx]+r_b*(ks*d1j_lp[body_idx]*b_li[body_idx]+ki*j_lp[body_idx]*d1b_li[body_idx]))*st[body_idx]*ang[body_idx] dJ12da2 = -li*(li+1)/ki*dr_b*(j_lp[body_idx]*b_li[body_idx]+r_b*(ks*d1j_lp[body_idx]*b_li[body_idx]+ki*j_lp[body_idx]*d1b_li[body_idx]))*cott*st[body_idx]*tau_lpmp[body_idx]*p_limi[body_idx] dJ12dh1 = dr_c/ki*(j_lp[circ_idx]*db_li[circ_idx]+r_c*(ks*d1j_lp[circ_idx]*b_li[circ_idx]+ki*j_lp[circ_idx]*d1b_li[circ_idx]))*st[circ_idx]*ang[circ_idx] dJ12dh2 = li*(li+1)/ki*dr_c*(j_lp[circ_idx]*b_li[circ_idx]+r_c*(ks*d1j_lp[circ_idx]*b_li[circ_idx]+ki*j_lp[circ_idx]*d1b_li[circ_idx]))*tant*st[circ_idx]*tau_lpmp[circ_idx]*p_limi[circ_idx] dJ12[n_i, n_p, 0] = np.sum(prefactor*weight_map[body_idx]*dJ12da1)+np.sum(prefactor*weight_map[body_idx]*dJ12da2)+prefactor*dJ12edge*da_edge dJ12[n_i, n_p, 1] = np.sum(prefactor*weight_map[circ_idx]*dJ12dh1)+np.sum(prefactor*weight_map[body_idx]*dJ12da2)+prefactor*dJ12edge*dh_edge J21_r = -prefactor*weight_map/ks*r*st*dj_lp*b_li*ang J21_t = -prefactor*weight_map/ks*r*st*lp*(lp+1)*j_lp*b_li*p_lpmp*tau_limi J21[n_i, n_p] = np.sum(J21_r)+np.sum(J21_t[circ_idx]*tant)+np.sum(J21_t[body_idx]*-cott) dJ21edge = -lp*(lp+1)/ks/r[Ntheta]*st[Ntheta]*j_lp[Ntheta]*b_li[Ntheta]*tau_lpmp[Ntheta]*p_limi[Ntheta]*(st[Ntheta]/ct[Ntheta]+ct[Ntheta]/st[Ntheta]) dJ21da1 = -dr_b/ks*(b_li[body_idx]*dj_lp[body_idx]+r_b*(ki*d1b_li[body_idx]*dj_lp[body_idx]+ks*dj2_lp[body_idx]*b_li[body_idx]))*st[body_idx]*ang[body_idx] dJ21da2 = lp*(lp+1)/ks*dr_b*(j_lp[body_idx]*b_li[body_idx]+r_b*(ks*d1j_lp[body_idx]*b_li[body_idx]+ki*d1b_li[body_idx]*j_lp[body_idx]))*cott*st[body_idx]*tau_limi[body_idx]*p_lpmp[body_idx] dJ21dh1 = -dr_c/ks*(b_li[circ_idx]*dj_lp[circ_idx]+r_c*(ki*d1b_li[circ_idx]*dj_lp[circ_idx]+ks*dj2_lp[circ_idx]*b_li[circ_idx]))*st[circ_idx]*ang[circ_idx] dJ21dh2 = -lp*(lp+1)/ks*dr_c*(j_lp[circ_idx]*b_li[circ_idx]+r_c*(ks*d1j_lp[circ_idx]*b_li[circ_idx]+ki*d1b_li[circ_idx]*j_lp[circ_idx]))*tant*st[circ_idx]*tau_limi[circ_idx]*p_lpmp[circ_idx] dJ21[n_i, n_p, 0] = np.sum(prefactor*weight_map[body_idx]*dJ21da1)+np.sum(prefactor*weight_map[body_idx]*dJ21da2)+prefactor*dJ21edge*da_edge dJ21[n_i, n_p, 1] = np.sum(prefactor*weight_map[circ_idx]*dJ21dh1)+np.sum(prefactor*weight_map[circ_idx]*dJ21dh2)+prefactor*dJ21edge*dh_edge return J11, J12, J21, J22, dJ11, dJ12, dJ21, dJ22 #compute n index (single index) for matrix element given its p (polarization), l (orbital angular momementum index), # and m (azimuthal angular momentum index. def compute_n(lmax, p, l, m): return (p-1)*lmax*(lmax+2)+(l-1)*(l+1)+m+l+1 #selection rules taking into account different symmetries for an axisymmetric particle def selection_rules(li, mi, lp, mp, diag_switch): if diag_switch == 1: return np.float_power(-1, mi)*(1+np.float_power(-1, mp-mi))*(1+(-1)**(lp+li+1)) elif diag_switch == 2: return np.float_power(-1, mi)*(1+np.float_power(-1, mp-mi))*(1+(-1)**(lp+li)) else: return 0 if __name__ == '__main__': import matplotlib.pyplot as plt cyl_params = np.array([500,860]) [J11, J12, J21, J22, dJ11, dJ12, dJ21, dJ22] = compute_J_cyl(3,30,200,460,1,1.52,1000,3) [T, dT] = compute_T(6,30,cyl_params,1,4,1000,'cylinder') img1 = plt.imshow(np.abs(T)) plt.colorbar() plt.title('T') plt.show()
52.703833
248
0.628719
0
0
0
0
0
0
0
0
3,519
0.232646
c0c7d98ec94365b9cf9f0e166a19f7b2371bc3ed
982
py
Python
run_tests.py
aquarioos/dvik-print
b897936168dab51c9e0f9fd84993065428896be4
[ "MIT" ]
1
2018-09-19T22:27:32.000Z
2018-09-19T22:27:32.000Z
run_tests.py
aquarioos/dvik-print
b897936168dab51c9e0f9fd84993065428896be4
[ "MIT" ]
null
null
null
run_tests.py
aquarioos/dvik-print
b897936168dab51c9e0f9fd84993065428896be4
[ "MIT" ]
null
null
null
# -*- coding: utf8 -*- from __future__ import division, absolute_import, print_function import os import sys import datetime as dt import dvik_print as dvp if __name__ == '__main__': print(sys.version) O = { 'lista': ['el1', 'el2', 1, 2, 3, 4, None, False], 'zbiór': {1, 2, 1, 2, 'a', 'a', 'b', 'b'}, 'krotka': ('oto', 'elementy', 'naszej', 'krotki'), ('krotka', 'klucz'): { 'klucz1': ['jakaś', 'lista', 123], 'klucz2': dt.datetime.now(), 'klucz3': dt }, (123, 'asd'): {123, 234, 345}, (123, 'asd1'): (123, 234, 345) } # deklarujemy obiekt dvp.PrettyPrint pp = dvp.PrettyPrint(tab=2, head=3, tail=2, max_str_len=50, show_line=True, filename=__file__) # obiekt jest wywoływalny # w ten sposób wypisze na # standardowe wyjście obiekt O pp(O, var='zmienna') # można użyć wartości domyślnych pp_domyslny = dvp.PrettyPrint() pp_domyslny(O)
26.540541
98
0.566191
0
0
0
0
0
0
0
0
338
0.340726
c0c85207554af0054a2d3560e6e8d9cb080608eb
6,200
py
Python
nwb_conversion_tools/datainterfaces/ecephys/basesortingextractorinterface.py
miketrumpis/nwb-conversion-tools
4d5c270b70eb4f1c09f98a6c04b51ccdf20336c1
[ "BSD-3-Clause" ]
null
null
null
nwb_conversion_tools/datainterfaces/ecephys/basesortingextractorinterface.py
miketrumpis/nwb-conversion-tools
4d5c270b70eb4f1c09f98a6c04b51ccdf20336c1
[ "BSD-3-Clause" ]
null
null
null
nwb_conversion_tools/datainterfaces/ecephys/basesortingextractorinterface.py
miketrumpis/nwb-conversion-tools
4d5c270b70eb4f1c09f98a6c04b51ccdf20336c1
[ "BSD-3-Clause" ]
null
null
null
"""Authors: Cody Baker and Ben Dichter.""" from abc import ABC from pathlib import Path import spikeextractors as se import numpy as np from pynwb import NWBFile, NWBHDF5IO from pynwb.ecephys import SpikeEventSeries from jsonschema import validate from ...basedatainterface import BaseDataInterface from ...utils.json_schema import ( get_schema_from_hdmf_class, get_base_schema, get_schema_from_method_signature, fill_defaults, ) from ...utils.common_writer_tools import default_export_ops, default_export_ops_schema from ...utils import export_ecephys_to_nwb from .baserecordingextractorinterface import BaseRecordingExtractorInterface, map_si_object_to_writer, OptionalPathType class BaseSortingExtractorInterface(BaseDataInterface, ABC): """Primary class for all SortingExtractor intefaces.""" SX = None def __init__(self, **source_data): super().__init__(**source_data) self.sorting_extractor = self.SX(**source_data) self.writer_class = map_si_object_to_writer(self.sorting_extractor)(self.sorting_extractor) def get_metadata_schema(self): """Compile metadata schema for the RecordingExtractor.""" metadata_schema = super().get_metadata_schema() # Initiate Ecephys metadata metadata_schema["properties"]["Ecephys"] = get_base_schema(tag="Ecephys") metadata_schema["properties"]["Ecephys"]["required"] = [] metadata_schema["properties"]["Ecephys"]["properties"] = dict( UnitProperties=dict( type="array", minItems=0, renderForm=False, items={"$ref": "#/properties/Ecephys/properties/definitions/UnitProperties"}, ), ) # Schema definition for arrays metadata_schema["properties"]["Ecephys"]["properties"]["definitions"] = dict( UnitProperties=dict( type="object", additionalProperties=False, required=["name"], properties=dict( name=dict(type="string", description="name of this units column"), description=dict(type="string", description="description of this units column"), ), ), ) return metadata_schema def subset_sorting(self): """ Subset a recording extractor according to stub and channel subset options. Parameters ---------- stub_test : bool, optional (default False) """ self.writer_class = map_si_object_to_writer(self.sorting_extractor)( self.sorting_extractor, stub=True, ) def run_conversion( self, nwbfile: NWBFile, metadata: dict, stub_test: bool = False, write_ecephys_metadata: bool = False, save_path: OptionalPathType = None, overwrite: bool = False, **kwargs, ): """ Primary function for converting the data in a SortingExtractor to the NWB standard. Parameters ---------- nwbfile: NWBFile nwb file to which the recording information is to be added metadata: dict metadata info for constructing the nwb file (optional). Should be of the format metadata['Ecephys']['UnitProperties'] = dict(name=my_name, description=my_description) stub_test: bool, optional (default False) If True, will truncate the data to run the conversion faster and take up less memory. write_ecephys_metadata: bool (optional, defaults to False) Write electrode information contained in the metadata. save_path: PathType Required if an nwbfile is not passed. Must be the path to the nwbfile being appended, otherwise one is created and written. overwrite: bool If using save_path, whether or not to overwrite the NWBFile if it already exists. skip_unit_features: list list of unit feature names to skip writing to units table. skip_unit_properties: list list of unit properties to skip writing to units table. unit_property_descriptions: dict custom descriptions for unit properties: >>> dict(prop_name='description') the Other way to add custom descrptions is to override the default metadata: >>> metadata = self.get_metadata() >>> metadata["Ecephys"] = dict() >>> metadata["Ecephys"].update(UnitProperties=[dict(name='prop_name1', description='description1'), >>> dict(name='prop_name1', description='description1')]) """ if stub_test: self.subset_sorting() if write_ecephys_metadata and "Ecephys" in metadata: class TempEcephysInterface(BaseRecordingExtractorInterface): RX = se.NumpyRecordingExtractor n_channels = max([len(x["data"]) for x in metadata["Ecephys"]["Electrodes"]]) temp_ephys = TempEcephysInterface(timeseries=np.array(range(n_channels)), sampling_frequency=1) temp_ephys.run_conversion(nwbfile=nwbfile, metadata=metadata, write_electrical_series=False) conversion_opts = default_export_ops() conversion_opts.update(**kwargs) # construct unit property descriptions: property_descriptions = dict() for metadata_column in metadata.get("Ecephys", dict()).get("UnitProperties", []): property_descriptions.update({metadata_column["name"]: metadata_column["description"]}) conversion_opts["unit_property_descriptions"].update(property_descriptions) conversion_opt_schema = default_export_ops_schema() validate(instance=conversion_opts, schema=conversion_opt_schema) self.writer_class.add_to_nwb(nwbfile, metadata, **conversion_opts) if save_path is not None: if overwrite: if Path(save_path).exists(): Path(save_path).unlink() with NWBHDF5IO(str(save_path), mode="w") as io: io.write(self.writer_class.nwbfile)
42.465753
119
0.647581
5,501
0.887258
0
0
0
0
0
0
2,634
0.424839
c0c8cb69c19ab4dd40d043117a7822abefc679ef
1,711
py
Python
buildscripts/resmokelib/testing/testcases/cpp_libfuzzer_test.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
buildscripts/resmokelib/testing/testcases/cpp_libfuzzer_test.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
buildscripts/resmokelib/testing/testcases/cpp_libfuzzer_test.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
"""The libfuzzertest.TestCase for C++ libfuzzer tests.""" import datetime import os from buildscripts.resmokelib import core from buildscripts.resmokelib import utils from buildscripts.resmokelib.testing.fixtures import interface as fixture_interface from buildscripts.resmokelib.testing.testcases import interface class CPPLibfuzzerTestCase(interface.ProcessTestCase): """A C++ libfuzzer test to execute.""" REGISTERED_NAME = "cpp_libfuzzer_test" DEFAULT_TIMEOUT = datetime.timedelta(hours=1) def __init__( # pylint: disable=too-many-arguments self, logger, program_executable, program_options=None, runs=1000000, corpus_directory_stem="corpora"): """Initialize the CPPLibfuzzerTestCase with the executable to run.""" interface.ProcessTestCase.__init__(self, logger, "C++ libfuzzer test", program_executable) self.program_executable = program_executable self.program_options = utils.default_if_none(program_options, {}).copy() self.runs = runs self.corpus_directory = f"{corpus_directory_stem}/corpus-{self.short_name()}" self.merged_corpus_directory = f"{corpus_directory_stem}-merged/corpus-{self.short_name()}" os.makedirs(self.corpus_directory, exist_ok=True) def _make_process(self): default_args = [ self.program_executable, "-max_len=100000", "-rss_limit_mb=5000", "-max_total_time=3600", # 1 hour is the maximum amount of time to allow a fuzzer to run f"-runs={self.runs}", self.corpus_directory, ] return core.programs.make_process(self.logger, default_args, **self.program_options)
38.022222
100
0.707189
1,391
0.812975
0
0
0
0
0
0
504
0.294565
c0c904cad48edbd6699de73edf6362e41250b47a
509
py
Python
app/exceptions.py
syedwaseemjan/RiskManager
c788daf533b125740ccd1fb09acebe023ca286b7
[ "MIT" ]
null
null
null
app/exceptions.py
syedwaseemjan/RiskManager
c788daf533b125740ccd1fb09acebe023ca286b7
[ "MIT" ]
null
null
null
app/exceptions.py
syedwaseemjan/RiskManager
c788daf533b125740ccd1fb09acebe023ca286b7
[ "MIT" ]
null
null
null
class RiskManagerError(Exception): """Base application error class.""" def __init__(self, msg): self.msg = msg class RiskDoesNotExist(RiskManagerError): def __init__(self): super(RiskDoesNotExist, self).__init__( "No risk record found for the provided ID. Are you sure you have provided correct ID?") class RiskManagerFormError(Exception): """Raise when an error processing a form occurs.""" def __init__(self, errors=None): self.errors = errors
25.45
99
0.681729
502
0.986248
0
0
0
0
0
0
172
0.337917
c0c9967167f2ebbfb12ea4280bc6aa6f0ee2cebd
1,278
py
Python
data_curation/genome_annotations/preprocess_SEA.py
talkowski-lab/rCNV2
fcc1142d8c13b58d18a37fe129e9bb4d7bd6641d
[ "MIT" ]
7
2021-01-28T15:46:46.000Z
2022-02-07T06:50:40.000Z
data_curation/genome_annotations/preprocess_SEA.py
talkowski-lab/rCNV2
fcc1142d8c13b58d18a37fe129e9bb4d7bd6641d
[ "MIT" ]
1
2021-03-02T01:33:53.000Z
2021-03-02T01:33:53.000Z
data_curation/genome_annotations/preprocess_SEA.py
talkowski-lab/rCNV2
fcc1142d8c13b58d18a37fe129e9bb4d7bd6641d
[ "MIT" ]
3
2021-02-21T19:49:12.000Z
2021-12-22T15:56:21.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2020 Ryan L. Collins <[email protected]> # and the Talkowski Laboratory # Distributed under terms of the MIT license. """ Parse simple SEA super-enhancer BED by cell types """ import argparse import csv import subprocess def main(): """ Main block """ # Parse command line arguments and options parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('bed', help='Path to BED4 of super enhancers') parser.add_argument('outdir', help='Output directory') args = parser.parse_args() outfiles = {} with open(args.bed) as fin: for chrom, start, end, source in csv.reader(fin, delimiter='\t'): source = source.replace(' ', '_').replace('(', '').replace(')', '') if source not in outfiles.keys(): outfiles[source] = open('{}/SEA.{}.bed'.format(args.outdir, source), 'w') outfiles[source].write('\t'.join([chrom, start, end]) + '\n') for outfile in outfiles.values(): outpath = outfile.name outfile.close() subprocess.run(['bgzip', '-f', outpath]) if __name__ == '__main__': main()
26.081633
89
0.622066
0
0
0
0
0
0
0
0
439
0.343505
c0cba6784c6a4d07543a90ca7bc4b5a773c81fe7
2,461
py
Python
src/transforms/imageCropDivide/dev/generate_nodenk.py
MrLixm/Foundry_Nuke
078115043b6a4c09bdcf1b5031e995ef296bd604
[ "Apache-2.0" ]
null
null
null
src/transforms/imageCropDivide/dev/generate_nodenk.py
MrLixm/Foundry_Nuke
078115043b6a4c09bdcf1b5031e995ef296bd604
[ "Apache-2.0" ]
null
null
null
src/transforms/imageCropDivide/dev/generate_nodenk.py
MrLixm/Foundry_Nuke
078115043b6a4c09bdcf1b5031e995ef296bd604
[ "Apache-2.0" ]
null
null
null
""" python>3 """ import os.path import re from pathlib import Path VERSION = 7 BASE = r""" set cut_paste_input [stack 0] version 12.2 v5 push $cut_paste_input Group { name imageCropDivide tile_color 0x5c3d84ff note_font_size 25 note_font_color 0xffffffff selected true xpos 411 ypos -125 addUserKnob {20 User} addUserKnob {3 width_max} addUserKnob {3 height_max -STARTLINE} addUserKnob {3 width_source} addUserKnob {3 height_source -STARTLINE} addUserKnob {26 "" +STARTLINE} addUserKnob {22 icd_script l "Copy Setup to ClipBoard" T "$SCRIPT$" +STARTLINE} addUserKnob {26 info l " " T "press ctrl+v in the nodegraph after clicking the above button"} addUserKnob {20 Info} addUserKnob {26 infotext l "" +STARTLINE T "2022 - Liam Collod<br> Visit <a style=\"color:#fefefe;\" href=\"https://github.com/MrLixm/Foundry_Nuke/tree/main/src/transforms/imageCropDivide\">the GitHub repo</a> "} addUserKnob {26 "" +STARTLINE} addUserKnob {26 versiontext l "" T "version $VERSION$"} } Input { inputs 0 name Input1 xpos 0 } Output { name Output1 xpos 0 ypos 300 } end_group """ MODULE_BUTTON_PATH = Path("..") / "button.py" NODENK_PATH = Path("..") / "node.nk" def increment_version(): this = Path(__file__) this_code = this.read_text(encoding="utf-8") version = re.search(r"VERSION\s*=\s*(\d+)", this_code) assert version, f"Can't find <VERSION> in <{this}> !" new_version = int(version.group(1)) + 1 new_code = f"VERSION = {new_version}" new_code = this_code.replace(version.group(0), str(new_code)) this.write_text(new_code, encoding="utf-8") print(f"[{__name__}][increment_version] Incremented {this} to {new_version}.") return def run(): increment_version() btnscript = MODULE_BUTTON_PATH.read_text(encoding="utf-8") # sanitize for nuke btnscript = btnscript.replace("\\", r'\\') btnscript = btnscript.split("\n") btnscript = r"\n".join(btnscript) btnscript = btnscript.replace("\"", r'\"') btnscript = btnscript.replace("{", r'\{') btnscript = btnscript.replace("}", r'\}') node_content = BASE.replace("$SCRIPT$", btnscript) node_content = node_content.replace("$VERSION$", str(VERSION+1)) NODENK_PATH.write_text(node_content, encoding="utf-8") print(f"[{__name__}][run] node.nk file written to {NODENK_PATH}") print(f"[{__name__}][run] Finished.") return if __name__ == '__main__': # print(__file__) run()
25.905263
213
0.683056
0
0
0
0
0
0
0
0
1,439
0.584722
c0cd5d7d340b27b3217620ef4b12a1391841820b
2,294
py
Python
workflow/tests/test_experiment_qc.py
JAMKuttan/chipseq_analysis
f8e4853bfdb4de8540026ae0b23235d72a1114ad
[ "MIT" ]
null
null
null
workflow/tests/test_experiment_qc.py
JAMKuttan/chipseq_analysis
f8e4853bfdb4de8540026ae0b23235d72a1114ad
[ "MIT" ]
null
null
null
workflow/tests/test_experiment_qc.py
JAMKuttan/chipseq_analysis
f8e4853bfdb4de8540026ae0b23235d72a1114ad
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import pytest import os import pandas as pd from io import StringIO import experiment_qc test_output_path = os.path.dirname(os.path.abspath(__file__)) + \ '/../output/experimentQC/' DESIGN_STRING = """sample_id\texperiment_id\tbiosample\tfactor\ttreatment\treplicate\tcontrol_id\tbam_reads A_1\tA\tLiver\tH3K27ac\tNone\t1\tB_1\tA_1.bam A_2\tA\tLiver\tH3K27ac\tNone\t2\tB_2\tA_2.bam B_1\tB\tLiver\tInput\tNone\t1\tB_1\tB_1.bam B_2\tB\tLiver\tInput\tNone\t2\tB_2\tB_2.bam """ @pytest.fixture def design_bam(): design_file = StringIO(DESIGN_STRING) design_df = pd.read_csv(design_file, sep="\t") return design_df @pytest.mark.unit def test_check_update_controls(design_bam): new_design = experiment_qc.update_controls(design_bam) assert new_design.loc[0, 'control_reads'] == "B_1.bam" @pytest.mark.singleend def test_coverage_singleend(): assert os.path.exists(os.path.join(test_output_path, 'sample_mbs.npz')) assert os.path.exists(os.path.join(test_output_path, 'coverage.pdf')) @pytest.mark.singleend def test_spearman_singleend(): assert os.path.exists(os.path.join(test_output_path, 'heatmap_SpearmanCorr.pdf')) @pytest.mark.singleend def test_pearson_singleend(): assert os.path.exists(os.path.join(test_output_path, 'heatmap_PearsonCorr.pdf')) @pytest.mark.singleend def test_fingerprint_singleend(): assert os.path.exists(os.path.join(test_output_path, 'ENCLB144FDT_fingerprint.pdf')) assert os.path.exists(os.path.join(test_output_path, 'ENCLB831RUI_fingerprint.pdf')) @pytest.mark.pairdend def test_coverage_pairedend(): assert os.path.exists(os.path.join(test_output_path, 'sample_mbs.npz')) assert os.path.exists(os.path.join(test_output_path, 'coverage.pdf')) @pytest.mark.pairdend def test_spearman_pairedend(): assert os.path.exists(os.path.join(test_output_path, 'heatmap_SpearmanCorr.pdf')) @pytest.mark.pairdend def test_pearson_pairedend(): assert os.path.exists(os.path.join(test_output_path, 'heatmap_PearsonCorr.pdf')) @pytest.mark.pairdend def test_fingerprint_pairedend(): assert os.path.exists(os.path.join(test_output_path, 'ENCLB568IYX_fingerprint.pdf')) assert os.path.exists(os.path.join(test_output_path, 'ENCLB637LZP_fingerprint.pdf'))
30.586667
107
0.773322
0
0
0
0
1,748
0.761988
0
0
629
0.274194
c0d13bb4fa90665ac270a6c1d4953230e7cffcc2
371
py
Python
sensors/routing.py
edisondotme/motoPi
18ddd46d97a4db0918fd2c3cc1ffc60600158124
[ "MIT" ]
2
2021-05-10T22:04:36.000Z
2022-01-10T03:23:04.000Z
sensors/routing.py
edisondotme/motoPi
18ddd46d97a4db0918fd2c3cc1ffc60600158124
[ "MIT" ]
1
2017-02-13T08:18:49.000Z
2017-02-14T07:11:18.000Z
sensors/routing.py
edisondotme/motoPi
18ddd46d97a4db0918fd2c3cc1ffc60600158124
[ "MIT" ]
1
2021-05-10T22:04:57.000Z
2021-05-10T22:04:57.000Z
from channels.routing import route from .consumers import ws_message, ws_connect, ws_disconnect # TODO: Edit this to make proper use of channels.routing.route() or not channel_routing = { # route("websocket.receive", ws_message, path=r"^/chat/"), "websocket.connect": ws_connect, "websocket.receive": ws_message, "websocket.disconnect": ws_disconnect, }
30.916667
72
0.74124
0
0
0
0
0
0
0
0
191
0.514825
c0d1e420d8a5ef2c04e4e14f531037003c9ed4f0
3,626
py
Python
native_client_sdk/src/build_tools/tests/test_generate_make.py
junmin-zhu/chromium-rivertrail
eb1a57aca71fe68d96e48af8998dcfbe45171ee1
[ "BSD-3-Clause" ]
5
2018-03-10T13:08:42.000Z
2021-07-26T15:02:11.000Z
native_client_sdk/src/build_tools/tests/test_generate_make.py
quisquous/chromium
b25660e05cddc9d0c3053b3514f07037acc69a10
[ "BSD-3-Clause" ]
1
2015-07-21T08:02:01.000Z
2015-07-21T08:02:01.000Z
native_client_sdk/src/build_tools/tests/test_generate_make.py
jianglong0156/chromium.src
d496dfeebb0f282468827654c2b3769b3378c087
[ "BSD-3-Clause" ]
6
2016-11-14T10:13:35.000Z
2021-01-23T15:29:53.000Z
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import copy import datetime import os import posixpath import subprocess import sys import unittest SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) BUILD_TOOLS_DIR = os.path.dirname(SCRIPT_DIR) sys.path.append(BUILD_TOOLS_DIR) import generate_make BASIC_DESC = { 'TOOLS': ['newlib', 'glibc'], 'TARGETS': [ { 'NAME' : 'hello_world', 'TYPE' : 'main', 'SOURCES' : ['hello_world.c'], }, ], 'DEST' : 'examples' } class TestFunctions(unittest.TestCase): def testPatsubst(self): val = generate_make.GenPatsubst(32, 'FOO', 'cc', 'CXX') gold = '$(patsubst %.cc,%_32.o,$(FOO_CXX))' self.assertEqual(val, gold) def testPatsubst(self): val = generate_make.GenPatsubst(32, 'FOO', 'cc', 'CXX') gold = '$(patsubst %.cc,%_32.o,$(FOO_CXX))' self.assertEqual(val, gold) def testSetVar(self): val = generate_make.SetVar('FOO',[]) self.assertEqual(val, 'FOO:=\n') val = generate_make.SetVar('FOO',['BAR']) self.assertEqual(val, 'FOO:=BAR\n') items = ['FOO_' + 'x' * (i % 13) for i in range(50)] for i in range(10): wrapped = generate_make.SetVar('BAR_' + 'x' * i, items) lines = wrapped.split('\n') for line in lines: if len(line) > 79: self.assertEqual(line, 'Less than 80 at ' + str(i)) class TestValidateFormat(unittest.TestCase): def _append_result(self, msg): self.result += msg return self.result def _validate(self, src, msg): format = generate_make.DSC_FORMAT self.result = '' result = generate_make.ValidateFormat(src, format, lambda msg: self._append_result(msg)) if msg: self.assertEqual(self.result, msg) else: self.assertEqual(result, True) def testGoodDesc(self): testdesc = copy.deepcopy(BASIC_DESC) self._validate(testdesc, None) def testMissingKey(self): testdesc = copy.deepcopy(BASIC_DESC) del testdesc['TOOLS'] self._validate(testdesc, 'Missing required key TOOLS.') testdesc = copy.deepcopy(BASIC_DESC) del testdesc['TARGETS'][0]['NAME'] self._validate(testdesc, 'Missing required key NAME.') def testNonEmpty(self): testdesc = copy.deepcopy(BASIC_DESC) testdesc['TOOLS'] = [] self._validate(testdesc, 'Expected non-empty value for TOOLS.') testdesc = copy.deepcopy(BASIC_DESC) testdesc['TARGETS'] = [] self._validate(testdesc, 'Expected non-empty value for TARGETS.') testdesc = copy.deepcopy(BASIC_DESC) testdesc['TARGETS'][0]['NAME'] = '' self._validate(testdesc, 'Expected non-empty value for NAME.') def testBadValue(self): testdesc = copy.deepcopy(BASIC_DESC) testdesc['TOOLS'] = ['newlib', 'glibc', 'badtool'] self._validate(testdesc, 'Value badtool not expected in TOOLS.') def testExpectStr(self): testdesc = copy.deepcopy(BASIC_DESC) testdesc['TOOLS'] = ['newlib', True, 'glibc'] self._validate(testdesc, 'Value True not expected in TOOLS.') def testExpectList(self): testdesc = copy.deepcopy(BASIC_DESC) testdesc['TOOLS'] = 'newlib' self._validate(testdesc, 'Key TOOLS expects LIST not STR.') # TODO(noelallen): Add test which generates a real make and runs it. def main(): suite = unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__]) result = unittest.TextTestRunner(verbosity=2).run(suite) return int(not result.wasSuccessful()) if __name__ == '__main__': sys.exit(main())
29.008
79
0.671539
2,667
0.735521
0
0
0
0
0
0
941
0.259515
c0d2686a32c098e3878691628a43110629043f78
1,089
py
Python
main.py
YasunoriMATSUOKA/photo-hunt
e3ca9e8f42c8a6c6b02c9fdcee9ea44a30d18f66
[ "MIT" ]
null
null
null
main.py
YasunoriMATSUOKA/photo-hunt
e3ca9e8f42c8a6c6b02c9fdcee9ea44a30d18f66
[ "MIT" ]
null
null
null
main.py
YasunoriMATSUOKA/photo-hunt
e3ca9e8f42c8a6c6b02c9fdcee9ea44a30d18f66
[ "MIT" ]
null
null
null
from PhotoHunt import PhotoHunt # Todo: 各URLあたり1~2個の未検出、誤検出等の課題はあるが、概ね意図通り動作する状態となった url_list = [ "https://www.saizeriya.co.jp/entertainment/images/1710/body.png", "https://www.saizeriya.co.jp/entertainment/images/1801/body.png", "https://www.saizeriya.co.jp/entertainment/images/1804/body.png", "https://www.saizeriya.co.jp/entertainment/images/1806/body.png", "https://www.saizeriya.co.jp/entertainment/images/1810/body.png", "https://www.saizeriya.co.jp/entertainment/images/1812/body.png", "https://www.saizeriya.co.jp/entertainment/images/1904/body.png", "https://www.saizeriya.co.jp/entertainment/images/1907/body.png", "https://www.saizeriya.co.jp/entertainment/images/1910/body.png", "https://www.saizeriya.co.jp/entertainment/images/1912/body.png", "https://www.saizeriya.co.jp/entertainment/images/2003/body.png", "https://www.saizeriya.co.jp/entertainment/images/2007/body.png", "https://www.saizeriya.co.jp/entertainment/images/2009/body.png" ] for url in url_list: photo_hunt = PhotoHunt(url) photo_hunt.execute()
47.347826
69
0.733701
0
0
0
0
0
0
0
0
962
0.824336
c0d317f2e8f8665da9e599f1dc02201ed251fea1
568
py
Python
Curso_em_Video_py3/ex069.py
Rodrigo98Matos/Projetos_py
6428e2c09d28fd8a717743f4434bc788e7d7d3cc
[ "MIT" ]
1
2021-05-11T12:39:43.000Z
2021-05-11T12:39:43.000Z
Curso_em_Video_py3/ex069.py
Rodrigo98Matos/Projetos_py
6428e2c09d28fd8a717743f4434bc788e7d7d3cc
[ "MIT" ]
null
null
null
Curso_em_Video_py3/ex069.py
Rodrigo98Matos/Projetos_py
6428e2c09d28fd8a717743f4434bc788e7d7d3cc
[ "MIT" ]
null
null
null
a = b = c = 0 while True: flag = '' i = -1 s = '' while i < 0: i = int(input('idade:\t')) while s != 'M' and s != 'F': s = str(input('Sexo [M] [F]:\t')).strip().upper()[0] if i > 18: a += 1 if s == 'M': b += 1 elif i < 20: c += 1 while flag != 'S' and flag != 'N': flag = str(input('Você quer cadastrar mais pessoas? [S] [N]\t')).strip().upper()[0] if flag == 'N': break print(f'Tem {a} pessoas maior de 18 anos!\nTem {b} homens!\nTem {c} mulheres com menos de 20 anos!')
27.047619
100
0.452465
0
0
0
0
0
0
0
0
188
0.330404