hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
23d1f2c4f4ea5639727ded8d5757f9d66fc0cc39
13,959
py
Python
TarSync.py
waynegramlich/Fab
d4a23067a0354ffda106f7032df0501c8db24499
[ "MIT" ]
1
2022-03-20T12:25:34.000Z
2022-03-20T12:25:34.000Z
TarSync.py
waynegramlich/Fab
d4a23067a0354ffda106f7032df0501c8db24499
[ "MIT" ]
null
null
null
TarSync.py
waynegramlich/Fab
d4a23067a0354ffda106f7032df0501c8db24499
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """TarSync.py: Synchronize .fcstd and .tar files. Usage: TarSync.py [OPTIONS] [DIR] ... Recursively scans directories searching for `.fcstd`/`.FCstd` files and synchronizes them with associated `.tar` files. The current directory is used if no explicit directory or files are listed. Options: * [-n] Visit all files without doing anything. Use with [-v] option. * [-v] Verbose mode. Rationale: A FreeCAD `.fcstd` file is basically a bunch of text files compressed with gzip. For fun, the `unzip -l XYZ.fcstd` command lists the files contained in `XYZ.fcstd`. Due to the repetitive nature of the text files contained therein, the gzip algorithm can achieve significant overall file compression. A `git` repository basically consists of a bunch files called blob's, where the term "blob" stands for Binary Large Object. Each blob represents some version of a file stored the repository. Being binary files, `.fcstd` files can be stored inside of a git repository. However, the compressed (i.e. binary) nature of `.fcstd` files can make the git repository storage requirements grow at a pretty rapid rate as multiple versions of the `.fcstd` files get stored into a git repository. To combat the storage growth requirements, `git` uses a compression algorithm that is applied to the repository as a whole. These compressed files are called Pack files. Pack files are generated and updated whenever git decides to do so. Over time, the overall git storage requirements associated with uncompressed files grows at a slower rate than gzip compressed files. In addition, each time a git repositories are synchronized, the over the wire protocol is via Pack file. This program will convert a file from compressed in gzip format into simpler uncompressed format call a `.tar` file. (`tar` stands for Tape ARchive for back in the days of magnetic tapes.) Basically, what this program does is manage two files in tandem, `XYZ.fcstd` and `XYZ.tar`. It does this by comparing the modification times between the two files translates the content of the newer file on top of the older file. When done, both files will have the same modification time. This program works recursively over an entire directory tree. To use this program with a git repository, configure your `.gitignore` to ignore `.fcstd` files in your repository by adding `*.fcstd` to your `.gitignore` file. Run this program before doing a `git commit` Whenever you update your git repository from a remote one, run this program to again, to keep the `.fcstd` files in sync with any updated `.tar` files. """ # [Basic Git Concepts] # (https://www.oreilly.com/library/view/version-control-with/9781449345037/ch04.html) # # FreeCAD forum topics: # [https://forum.freecadweb.org/viewtopic.php?t=38353&start=30](1) # [https://forum.freecadweb.org/viewtopic.php?f=8&t=36844a](2) # [https://forum.freecadweb.org/viewtopic.php?t=40029&start=10](3) # [https://forum.freecadweb.org/viewtopic.php?p=1727](4) # [https://forum.freecadweb.org/viewtopic.php?t=8688](5) # [https://forum.freecadweb.org/viewtopic.php?t=32521](6) # [https://forum.freecadweb.org/viewtopic.php?t=57737)(7) # [https://blog.lambda.cx/posts/freecad-and-git/](8) # [https://tante.cc/2010/06/23/managing-zip-based-file-formats-in-git/](9) from argparse import ArgumentParser from io import BytesIO import os from pathlib import Path from tarfile import TarFile, TarInfo from tempfile import TemporaryDirectory from typing import List, IO, Optional, Tuple import time from zipfile import ZIP_DEFLATED, ZipFile # main(): def main() -> None: """Execute the main program.""" # Create an *argument_parser*: parser: ArgumentParser = ArgumentParser( description="Synchronize .fcstd/.tar files." ) parser.add_argument("directories", metavar="DIR", type=str, nargs="*", help="Directory to recursively scan") parser.add_argument("-n", "--dry-run", action="store_true", help="verbose mode") parser.add_argument("-v", "--verbose", action="store_true", help="verbose mode") parser.add_argument("--unit-test", action="store_true", help="run unit tests") # Parse arguments: arguments = parser.parse_args() directories: Tuple[str, ...] = tuple(arguments.directories) if arguments.unit_test: # Run the unit test: unit_test() directories = () synchronize_directories(directories, arguments.dry_run, arguments.verbose) # synchronize_directories(): def synchronize_directories(directory_names: Tuple[str, ...], dry_run: bool, verbose: bool) -> Tuple[str, ...]: """Synchronize some directories. * Arguments: * *directory_names* (Tuple[str, ...): A list of directories to recursively synchronize. * dry_run (bool): If False, the directories are scanned, but not synchronized. If True, the directories are both scanned and synchronized. * verbose (bool): If True, the a summary message is printed if for each (possible) synchronization. The actual synchronization only occurs if *dry_run* is False. * Returns * (Tuple[str, ...]) containing the summary """ # Recursively find all *fcstd_paths* in *directories*: fcstd_paths: List[Path] = [] directory_name: str for directory_name in directory_names: suffix: str = "fcstd" for suffix in ("fcstd", "fcSTD"): fcstd_paths.extend(Path(directory_name).glob(f"**/*.{suffix}")) # Perform all of the synchronizations: summaries: List[str] = [] for fcstd_path in fcstd_paths: summary: str = synchronize(fcstd_path, dry_run) summaries.append(summary) if verbose: print(summary) # pragma: no unit cover return tuple(summaries) # Synchronize(): def synchronize(fcstd_path: Path, dry_run: bool = False) -> str: """Synchronize an .fcstd file with associated .tar file. * Arguments: * fcstd_path (Path): The `.fcstd` file to synchronize. * dry_run (bool): If True, no synchronization occurs and only the summary string is returned. (Default: False) * Returns: * (str) a summary string. Synchronizes an `.fcstd` file with an associated `.tar` file and. A summary is always returned even in *dry_run* mode. """ # Determine timestamps for *fstd_path* and associated *tar_path*: tar_path: Path = fcstd_path.with_suffix(".tar") fcstd_timestamp: int = int(fcstd_path.stat().st_mtime) if fcstd_path.exists() else 0 tar_timestamp: int = int(tar_path.stat().st_mtime) if tar_path.exists() else 0 # Using the timestamps do the synchronization (or not): zip_file: ZipFile tar_file: TarFile tar_info: TarInfo fcstd_name: str = str(fcstd_path) tar_name: str = str(tar_path) summary: str if fcstd_timestamp > tar_timestamp: # Update *tar_path* from *tar_path*: summary = f"{fcstd_name} => {tar_name}" if not dry_run: with ZipFile(fcstd_path, "r") as zip_file: with TarFile(tar_path, "w") as tar_file: from_names: Tuple[str, ...] = tuple(zip_file.namelist()) for from_name in from_names: from_content: bytes = zip_file.read(from_name) # print(f"Read {fcstd_path}:{from_name}:" # f"{len(from_content)}:{is_ascii(from_content)}") tar_info = TarInfo(from_name) tar_info.size = len(from_content) # print(f"tar_info={tar_info} size={tar_info.size}") tar_file.addfile(tar_info, BytesIO(from_content)) os.utime(tar_path, (fcstd_timestamp, fcstd_timestamp)) # Force modification time. elif tar_timestamp > fcstd_timestamp: # Update *fcstd_path* from *tar_path*: summary = f"{tar_name} => {fcstd_name}" if not dry_run: with TarFile(tar_path, "r") as tar_file: tar_infos: Tuple[TarInfo, ...] = tuple(tar_file.getmembers()) with ZipFile(fcstd_path, "w", ZIP_DEFLATED) as zip_file: for tar_info in tar_infos: buffered_reader: Optional[IO[bytes]] = tar_file.extractfile(tar_info) assert buffered_reader buffer: bytes = buffered_reader.read() # print(f"{tar_info.name}: {len(buffer)}") zip_file.writestr(tar_info.name, buffer) os.utime(fcstd_path, (tar_timestamp, tar_timestamp)) # Force modification time. else: summary = f"{fcstd_name} in sync with {tar_name}" return summary # unit_test(): def unit_test() -> None: """Run the unit test.""" directory_name: str # Use create a temporary *directory_path* to run the tests in: with TemporaryDirectory() as directory_name: a_content: str = "a contents" b_content: str = "b contents" buffered_reader: Optional[IO[bytes]] c_content: str = "c contents" directory_path: Path = Path(directory_name) tar_name: str tar_file: TarFile tar_path: Path = directory_path / "test.tar" tar_path_name: str = str(tar_path) zip_file: ZipFile zip_name: str zip_path: Path = directory_path / "test.fcstd" zip_path_name: str = str(zip_path) # Create *zip_file* with a suffix of `.fcstd`: with ZipFile(zip_path, "w", ZIP_DEFLATED) as zip_file: zip_file.writestr("a", a_content) zip_file.writestr("b", b_content) assert zip_path.exists(), f"{zip_path_name=} not created" zip_timestamp: int = int(zip_path.stat().st_mtime) assert zip_timestamp > 0, f"{zip_path=} had bad timestamp." # Perform synchronize with a slight delay to force a different modification time: time.sleep(1.1) summaries = synchronize_directories((directory_name, ), False, False) assert len(summaries) == 1, "Only 1 summary expected" summary: str = summaries[0] desired_summary: str = f"{zip_path_name} => {tar_path_name}" assert summary == desired_summary, f"{summary} != {desired_summary}" assert tar_path.exists(), f"{tar_path_name=} not created" tar_timestamp: int = int(tar_path.stat().st_mtime) assert tar_timestamp == zip_timestamp, f"{zip_timestamp=} != {tar_timestamp=}" # Now read *tar_file* and verify that it has the correct content: with TarFile(tar_path, "r") as tar_file: tar_infos: Tuple[TarInfo, ...] = tuple(tar_file.getmembers()) for tar_info in tar_infos: buffered_reader = tar_file.extractfile(tar_info) assert buffered_reader, f"Unable to read {tar_file=}" content: str = buffered_reader.read().decode("latin-1") found: bool = False if tar_info.name == "a": assert content == a_content, f"'{content}' != '{a_content}'" found = True elif tar_info.name == "b": assert content == b_content, f"'{content}' != '{b_content}'" found = True assert found, f"Unexpected tar file name {tar_info.name}" # Now run synchronize again and verify that nothing changed: summaries = synchronize_directories((directory_name, ), False, False) assert len(summaries) == 1, "Only one summary expected" summary = summaries[0] desired_summary = f"{str(zip_path)} in sync with {str(tar_path)}" assert summary == desired_summary, f"'{summary}' != '{desired_summary}'" zip_timestamp = int(zip_path.stat().st_mtime) tar_timestamp = int(tar_path.stat().st_mtime) assert tar_timestamp == zip_timestamp, f"timestamps {zip_timestamp=} != {tar_timestamp=}" # Now update *tar_file* with new content (i.e. `git pull`).: time.sleep(1.1) # Use delay to force a different timestamp. with TarFile(tar_path, "w") as tar_file: tar_info = TarInfo("c") tar_info.size = len(c_content) tar_file.addfile(tar_info, BytesIO(bytes(c_content, "latin-1"))) tar_info = TarInfo("a") tar_info.size = len(a_content) tar_file.addfile(tar_info, BytesIO(bytes(a_content, "latin-1"))) # Verify that the timestamp changed and force a synchronize(). new_tar_timestamp: int = int(tar_path.stat().st_mtime) assert new_tar_timestamp > tar_timestamp, f"{new_tar_timestamp=} <= {tar_timestamp=}" summary = synchronize(zip_path) desired_summary = f"{tar_path_name} => {zip_path_name}" assert summary == desired_summary, f"'{summary}' != '{desired_summary}'" # Verify that the *zip_path* got updated verify that the content changed: new_zip_timestamp: int = int(zip_path.stat().st_mtime) assert new_zip_timestamp == new_tar_timestamp, ( f"{new_zip_timestamp=} != {new_tar_timestamp=}") with ZipFile(zip_path, "r") as zip_file: zip_names: Tuple[str, ...] = tuple(zip_file.namelist()) for zip_name in zip_names: zip_content: str = zip_file.read(zip_name).decode("latin-1") assert buffered_reader found = False if zip_name == "a": assert zip_content == a_content, "Content mismatch" found = True elif zip_name == "c": assert zip_content == c_content, "Content mismatch" found = True assert found, "Unexpected file '{zip_name}'" if __name__ == "__main__": main()
45.617647
98
0.646321
0
0
0
0
0
0
0
0
6,855
0.491081
23d1f9c2f299c304c7761f6ac8842a0f28c28618
20,325
py
Python
tcga_encoder/analyses/old/spearmans_input_cluster_from_hidden.py
tedmeeds/tcga_encoder
805f9a5bcc422a43faea45baa0996c88d346e3b4
[ "MIT" ]
2
2017-12-19T15:32:46.000Z
2018-01-12T11:24:24.000Z
tcga_encoder/analyses/old/spearmans_input_cluster_from_hidden.py
tedmeeds/tcga_encoder
805f9a5bcc422a43faea45baa0996c88d346e3b4
[ "MIT" ]
null
null
null
tcga_encoder/analyses/old/spearmans_input_cluster_from_hidden.py
tedmeeds/tcga_encoder
805f9a5bcc422a43faea45baa0996c88d346e3b4
[ "MIT" ]
null
null
null
from tcga_encoder.utils.helpers import * from tcga_encoder.data.data import * #from tcga_encoder.data.pathway_data import Pathways from tcga_encoder.data.hallmark_data import Pathways from tcga_encoder.definitions.tcga import * #from tcga_encoder.definitions.nn import * from tcga_encoder.definitions.locations import * #from tcga_encoder.algorithms import * import seaborn as sns from sklearn.manifold import TSNE, locally_linear_embedding from scipy import stats def join_weights( W_hidden2z, W_hidden ): W = {} n_z = W_hidden2z.shape[1] columns = np.array( ["z_%d"%i for i in range(n_z)]) for input_source, source_w in W_hidden.iteritems(): #pdb.set_trace() W[ input_source ] = pd.DataFrame( np.dot( source_w, W_hidden2z ), index = source_w.index, columns = columns ) return W def get_hidden2z_weights( model_store ): layer = "rec_z_space" model_store.open() w = model_store[ "%s"%(layer) + "/W/w%d"%(0)].values model_store.close() return w def get_hidden_weights( model_store, input_sources, data_store ): rna_genes = data_store["/RNA/FAIR"].columns meth_genes = data_store["/METH/FAIR"].columns mirna_hsas = data_store["/miRNA/FAIR"].columns post_fix = "_scaled" idx=1 n_sources = len(input_sources) W = {} for w_idx, input_source in zip( range(n_sources), input_sources ): w = model_store[ "rec_hidden" + "/W/w%d"%(w_idx)].values #pdb.set_trace() d,k = w.shape columns = np.array( ["h_%d"%i for i in range(k)]) if input_source == "RNA": rows = rna_genes print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) if input_source == "miRNA": rows = mirna_hsas print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) if input_source == "METH": rows = meth_genes #rows = np.array( [ "M-%s"%g for g in meth_genes], dtype=str ) print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) if input_source == "TISSUE": rows = tissue_names print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) model_store.close() return W def auc_standard_error( theta, nA, nN ): # from: Hanley and McNeil (1982), The Meaning and Use of the Area under the ROC Curve # theta: estimated AUC, can be 0.5 for a random test # nA size of population A # nN size of population N Q1=theta/(2.0-theta); Q2=2*theta*theta/(1+theta) SE = np.sqrt( (theta*(1-theta)+(nA-1)*(Q1-theta*theta) + (nN-1)*(Q2-theta*theta) )/(nA*nN) ) return SE def auc_test( true_y, est_y ): n = len(true_y) n_1 = true_y.sum() n_0 = n - n_1 if n_1 == 0 or n_1 == n: return 0.5, 0.0, 0.0, 1.0 auc = roc_auc_score( true_y, est_y ) difference = auc - 0.5 if difference < 0: # switch labels se = auc_standard_error( auc, n_0, n_1 ) se_null = auc_standard_error( 0.5, n_0, n_1 ) else: se = auc_standard_error( 1-auc, n_1, n_0 ) se_null = auc_standard_error( 0.5, n_1, n_0 ) se_combined = np.sqrt( se**2 + se_null**2 ) z_value = np.abs(difference) / se_combined p_value = 1.0 - stats.norm.cdf( np.abs(z_value) ) return auc, se, z_value, p_value def find_keepers_over_groups( z, groups, name, nbr2keep, stats2use ): inners = []; p_inners=[] mx_inner = 0.0 norm_z = np.linalg.norm(z) for X, stat in zip( groups, stats2use ): pearsons = np.zeros( X.shape[1] ) pvalues = np.zeros( X.shape[1] ) for x,x_idx in zip( X.values.T, range(X.shape[1])): if stat == "pearson": pearsons[x_idx], pvalues[x_idx] = stats.pearsonr( z, x ) elif stat == "auc": true_y = (x>0).astype(int) auc, se, zvalue, pvalue = auc_test( true_y, z ) #np.sqrt( ses_tissue**2 + se_r_tissue**2 ) pearsons[x_idx] = auc-0.5 pvalues[x_idx] = pvalue #pdb.set_trace() #norms = norm_z*np.linalg.norm( X, axis=0 ) #inner = pd.Series( np.dot( z, X )/norms, index = X.columns, name=name ) inner = pd.Series( pearsons, index = X.columns, name=name ) p_inner = pd.Series( pvalues, index = X.columns, name=name ) inners.append(inner) p_inners.append(p_inner) this_mx = np.max(np.abs(inner)) if this_mx > mx_inner: mx_inner = this_mx all_keepers = [] #all_pvalues = [] for inner,p_inner in zip(inners,p_inners): #inner.sort_values(inplace=True) #inner = inner / mx_inner #abs_inner = np.abs( inner ) #ordered = np.argsort( -inner.values ) ordered = np.argsort( p_inner.values ) ordered = pd.DataFrame( np.vstack( (inner.values[ordered],p_inner.values[ordered] ) ).T, index =inner.index[ordered],columns=["r","p"] ) #pdb.set_trace() #keepers = pd.concat( [ordered[:nbr2keep], ordered[-nbr2keep:]], axis=0 ) keepers = ordered[:nbr2keep] #pdb.set_trace() #keepers = keepers.sort_values() all_keepers.append(keepers) return all_keepers def find_keepers(z, X, name, nbr2keep): inner = pd.Series( np.dot( z, X ), index = X.columns, name=name ) inner.sort_values(inplace=True) inner = inner / np.max(np.abs(inner)) #signed = np.sign( inner ) abs_inner = np.abs( inner ) ordered = np.argsort( -abs_inner.values ) ordered = pd.Series( inner.values[ordered], index =inner.index[ordered],name=name ) keepers = ordered[:nbr2keep] keepers = keepers.sort_values() return keepers def main( data_location, results_location ): pathway_info = Pathways() data_path = os.path.join( HOME_DIR ,data_location ) #, "data.h5" ) results_path = os.path.join( HOME_DIR, results_location ) data_filename = os.path.join( data_path, "data.h5") fill_filename = os.path.join( results_path, "full_vae_fill.h5" ) model_filename = os.path.join( results_path, "full_vae_model.h5" ) save_dir = os.path.join( results_path, "hallmark_clustering" ) check_and_mkdir(save_dir) z_dir = os.path.join( save_dir, "z_pics" ) check_and_mkdir(z_dir) h_dir = os.path.join( save_dir, "h_pics" ) check_and_mkdir(h_dir) print "HOME_DIR: ", HOME_DIR print "data_filename: ", data_filename print "fill_filename: ", fill_filename print "LOADING stores" data_store = pd.HDFStore( data_filename, "r" ) fill_store = pd.HDFStore( fill_filename, "r" ) model_store = pd.HDFStore( model_filename, "r" ) Z_train = fill_store["/Z/TRAIN/Z/mu"] Z_val = fill_store["/Z/VAL/Z/mu"] #input_sources = ["METH","RNA","miRNA"] input_sources = ["RNA","miRNA","METH"] W_hidden = get_hidden_weights( model_store, input_sources, data_store ) W_hidden2z = get_hidden2z_weights( model_store ) size_per_unit = 0.25 size1 = max( min( 40, int( W_hidden["RNA"].values.shape[0]*size_per_unit ) ), 12 ) size2 = max( min( 40, int( W_hidden["miRNA"].values.shape[0]*size_per_unit )), 12 ) #pdb.set_trace() cmap = sns.palplot(sns.light_palette((260, 75, 60), input="husl")) htmap3 = sns.clustermap ( pd.concat( [W_hidden["RNA"],W_hidden["miRNA"]],0).T.corr(), cmap=cmap, square=True, figsize=(size1,size2) ) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), fontsize=12) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), fontsize=12) htmap3.ax_row_dendrogram.set_visible(False) htmap3.ax_col_dendrogram.set_visible(False) pp.savefig( save_dir + "/weights_rna__mirna_clustermap.png", fmt="png", bbox_inches = "tight") #size2 = max( int( n_inputs*size_per_unit ), 12 ) size1 = max( min( 40, int( W_hidden["RNA"].values.shape[0]*size_per_unit )), 12 ) cmap = sns.palplot(sns.light_palette((260, 75, 60), input="husl")) htmap3 = sns.clustermap ( W_hidden["RNA"].T.corr(), cmap=cmap, square=True, figsize=(size1,size1) ) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), fontsize=12) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), fontsize=12) htmap3.ax_row_dendrogram.set_visible(False) htmap3.ax_col_dendrogram.set_visible(False) pp.savefig( save_dir + "/weights_rna_clustermap.png", fmt="png", bbox_inches = "tight") size1 = max( min( 40, int( W_hidden["miRNA"].values.shape[0]*size_per_unit )), 12 ) htmap3 = sns.clustermap ( W_hidden["miRNA"].T.corr(), cmap=cmap, square=True, figsize=(size1,size1) ) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), fontsize=12) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), fontsize=12) htmap3.ax_row_dendrogram.set_visible(False) htmap3.ax_col_dendrogram.set_visible(False) pp.savefig( save_dir + "/weights_mirna_clustermap.png", fmt="png", bbox_inches = "tight") size1 = max(min( 40, int( W_hidden["METH"].values.shape[0]*size_per_unit )), 12 ) htmap3 = sns.clustermap ( W_hidden["METH"].T.corr(), cmap=cmap, square=True, figsize=(size1,size1) ) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(htmap3.ax_heatmap.yaxis.get_majorticklabels(), fontsize=12) pp.setp(htmap3.ax_heatmap.xaxis.get_majorticklabels(), fontsize=12) htmap3.ax_row_dendrogram.set_visible(False) htmap3.ax_col_dendrogram.set_visible(False) pp.savefig( save_dir + "/weights_meth_clustermap.png", fmt="png", bbox_inches = "tight") #pdb.set_trace() weighted_z = join_weights( W_hidden2z, W_hidden ) #pdb.set_trace() Z = np.vstack( (Z_train.values, Z_val.values) ) n_z = Z.shape[1] #pdb.set_trace() z_names = ["z_%d"%z_idx for z_idx in range(Z.shape[1])] Z = pd.DataFrame( Z, index = np.hstack( (Z_train.index.values, Z_val.index.values)), columns = z_names ) barcodes = np.union1d( Z_train.index.values, Z_val.index.values ) barcodes = data_store["/CLINICAL/observed"][ data_store["/CLINICAL/observed"][["RNA","miRNA","METH","DNA"]].sum(1)==4 ].index.values Z=Z.loc[barcodes] Z_values = Z.values tissues = data_store["/CLINICAL/TISSUE"].loc[barcodes] rna = np.log(1+data_store["/RNA/RSEM"].loc[ barcodes ]) mirna = np.log(1+data_store["/miRNA/RSEM"].loc[ barcodes ]) meth = np.log(0.1+data_store["/METH/METH"].loc[ barcodes ]) dna = data_store["/DNA/channel/0"].loc[ barcodes ] tissue_names = tissues.columns tissue_idx = np.argmax( tissues.values, 1 ) n = len(Z) n_tissues = len(tissue_names) n_h = W_hidden2z.shape[0] rna_normed = rna; mirna_normed = mirna; meth_normed = meth; dna_normed=2*dna-1 for t_idx in range(n_tissues): t_query = tissue_idx == t_idx X = rna[t_query] X -= X.mean(0) X /= X.std(0) rna_normed[t_query] = X X = mirna[t_query] X -= X.mean(0) X /= X.std(0) mirna_normed[t_query] = X X = meth[t_query] X -= X.mean(0) X /= X.std(0) meth_normed[t_query] = X #pdb.set_trace() nbr = 20 Z_keep_rna=[] Z_keep_mirna=[] Z_keep_meth=[] Z_keep_dna = [] for z_idx in range(n_z): z_values = Z_values[:,z_idx] order_z = np.argsort(z_values) rna_w = weighted_z["RNA"][ "z_%d"%(z_idx)] mirna_w = weighted_z["miRNA"][ "z_%d"%(z_idx)] meth_w = weighted_z["METH"][ "z_%d"%(z_idx)] order_rna = np.argsort( -np.abs(rna_w.values) ) order_mirna = np.argsort( -np.abs(mirna_w.values) ) order_meth = np.argsort( -np.abs(meth_w.values) ) rna_w_ordered = pd.Series( rna_w.values[ order_rna ], index = rna_w.index[order_rna], name="RNA") mirna_w_ordered = pd.Series( mirna_w.values[ order_mirna ], index = mirna_w.index[order_mirna], name="miRNA") meth_w_ordered = pd.Series( meth_w.values[ order_meth ], index = meth_w.index[order_meth], name="METH") f = pp.figure( figsize = (12,8)) ax1 = f.add_subplot(321);ax2 = f.add_subplot(323);ax3 = f.add_subplot(325); ax_pie1 = f.add_subplot(133); #ax_pie3 = f.add_subplot(424); ax_pie4 = f.add_subplot(426) max_ax = np.max( np.hstack( (rna_w_ordered[:nbr].values,meth_w_ordered[:nbr].values,mirna_w_ordered[:nbr].values) ) ) min_ax = np.min( np.hstack( (rna_w_ordered[:nbr].values,meth_w_ordered[:nbr].values,mirna_w_ordered[:nbr].values) ) ) h1=rna_w_ordered[:nbr].sort_values(ascending=False).plot(kind='barh',ax=ax1,color="red",legend=False,title=None,fontsize=8); ax1.set_xlim(min_ax,max_ax); ax1.set_title(""); h1.set_xticklabels([]); ax1.legend(["RNA"]) h2=meth_w_ordered[:nbr].sort_values(ascending=False).plot(kind='barh',ax=ax2,color="blue",legend=False,title=None,fontsize=8);ax2.set_xlim(min_ax,max_ax); ax2.set_title(""); h2.set_xticklabels([]); ax2.legend(["METH"]) h3=mirna_w_ordered[:nbr].sort_values(ascending=False).plot(kind='barh',ax=ax3,color="black",legend=False,title=None,fontsize=8); ax3.set_xlim(min_ax,max_ax); ax3.set_title("");ax3.legend(["miRNA"]) neg_rna = pp.find( rna_w_ordered.values<0) ; pos_rna = pp.find( rna_w_ordered.values>0) neg_meth = pp.find( meth_w_ordered.values<0) ; pos_meth = pp.find( meth_w_ordered.values>0) rna_readable = pathway_info.CancerEnrichment(rna_w_ordered[:nbr].index, 1+0*np.abs( rna_w_ordered[:nbr].values) ) meth_readable = pathway_info.CancerEnrichment(meth_w_ordered[:nbr].index, 1+0*np.abs( meth_w_ordered[:nbr].values ) ) # rna_readable_p = pathway_info.CancerEnrichment(rna_w_ordered.index[pos_rna[:20]], 1+0*rna_w_ordered.values[pos_rna[:20]] ) # meth_readable_p = pathway_info.CancerEnrichment(meth_w_ordered.index[pos_meth[:20]], 1+0*meth_w_ordered.values[pos_meth[:20]]) # # # rna_readable_n = pathway_info.CancerEnrichment(rna_w_ordered.index[neg_rna[:20]], -1+0*rna_w_ordered.values[neg_rna[:20]] ) # meth_readable_n = pathway_info.CancerEnrichment(meth_w_ordered.index[neg_meth[:20]], -1+0*meth_w_ordered.values[neg_meth[:20]] ) rna_readable.name="rna" meth_readable.name="meth" # rna_readable_p.name="rna_p" # meth_readable_p.name="meth_p" # rna_readable_n.name="rna_n" # meth_readable_n.name="meth_n" #joined = pd.concat( [rna_readable[:20],\ # meth_readable[:20]], axis=1 ) joined = pd.concat( [rna_readable,\ meth_readable], axis=1 ) # joined = pd.concat( [rna_readable_p,rna_readable_n,\ # meth_readable_p,meth_readable_n], axis=1 ) # # maxvalues = joined.index[ np.argsort( -np.abs(joined.fillna(0)).sum(1).values ) ] # # joined=joined.loc[maxvalues] # joined = joined[:25] #br = joined.plot(kind="barh",ax=ax_pie1,color=["red","red","blue","blue"],legend=False,stacked=True, sort_columns=False,fontsize=8); br = joined.plot(kind="barh",ax=ax_pie1,color=["red","blue"],legend=False,stacked=True, sort_columns=False,fontsize=8); max_ax = np.max( joined.values.flatten() ) min_ax = np.min( joined.values.flatten() ) max_ax = np.max( max_ax, -min_ax ) min_ax = -max_ax #pdb.set_trace() #ax_pie1.set_xlim(min_ax,max_ax); #br = joined.plot(kind="barh",ax=ax_pie1,color=["red","blue"],legend=True,stacked=True, sort_columns=False); pp.suptitle( "Z %d"%(z_idx)) pp.savefig( z_dir + "/z%d_weighted.png"%(z_idx), format="png", dpi=300 ) #pp.show() #pdb.set_trace() pp.close('all') for z_idx in range(n_h): #z_values = Z_values[:,z_idx] #order_z = np.argsort(z_values) rna_w = W_hidden["RNA"][ "h_%d"%(z_idx)] mirna_w = W_hidden["miRNA"][ "h_%d"%(z_idx)] meth_w = W_hidden["METH"][ "h_%d"%(z_idx)] order_rna = np.argsort( -np.abs(rna_w.values) ) order_mirna = np.argsort( -np.abs(mirna_w.values) ) order_meth = np.argsort( -np.abs(meth_w.values) ) rna_w_ordered = pd.Series( rna_w.values[ order_rna ], index = rna_w.index[order_rna], name="RNA") mirna_w_ordered = pd.Series( mirna_w.values[ order_mirna ], index = mirna_w.index[order_mirna], name="miRNA") meth_w_ordered = pd.Series( meth_w.values[ order_meth ], index = meth_w.index[order_meth], name="METH") f = pp.figure( figsize = (12,8)) ax1 = f.add_subplot(321);ax2 = f.add_subplot(323);ax3 = f.add_subplot(325); ax_pie1 = f.add_subplot(133); #ax_pie3 = f.add_subplot(424); ax_pie4 = f.add_subplot(426) max_ax = np.max( np.hstack( (rna_w_ordered[:nbr].values,meth_w_ordered[:nbr].values,mirna_w_ordered[:nbr].values) ) ) min_ax = np.min( np.hstack( (rna_w_ordered[:nbr].values,meth_w_ordered[:nbr].values,mirna_w_ordered[:nbr].values) ) ) h1=rna_w_ordered[:nbr].sort_values(ascending=False).plot(kind='barh',ax=ax1,color="red",legend=False,title=None,fontsize=8); ax1.set_xlim(min_ax,max_ax); ax1.set_title(""); h1.set_xticklabels([]); ax1.legend(["RNA"]) h2=meth_w_ordered[:nbr].sort_values(ascending=False).plot(kind='barh',ax=ax2,color="blue",legend=False,title=None,fontsize=8);ax2.set_xlim(min_ax,max_ax); ax2.set_title(""); h2.set_xticklabels([]); ax2.legend(["METH"]) h3=mirna_w_ordered[:nbr].sort_values(ascending=False).plot(kind='barh',ax=ax3,color="black",legend=False,title=None,fontsize=8); ax3.set_xlim(min_ax,max_ax); ax3.set_title("");ax3.legend(["miRNA"]) neg_rna = pp.find( rna_w_ordered.values<0) ; pos_rna = pp.find( rna_w_ordered.values>0) neg_meth = pp.find( meth_w_ordered.values<0) ; pos_meth = pp.find( meth_w_ordered.values>0) rna_readable = pathway_info.CancerEnrichment(rna_w_ordered[:nbr].index, 1+0*np.abs( rna_w_ordered[:nbr].values) ) meth_readable = pathway_info.CancerEnrichment(meth_w_ordered[:nbr].index, 1+0*np.abs( meth_w_ordered[:nbr].values ) ) # rna_readable_p = pathway_info.CancerEnrichment(rna_w_ordered.index[pos_rna[:20]], 1+0*rna_w_ordered.values[pos_rna[:20]] ) # meth_readable_p = pathway_info.CancerEnrichment(meth_w_ordered.index[pos_meth[:20]], 1+0*meth_w_ordered.values[pos_meth[:20]]) # # # rna_readable_n = pathway_info.CancerEnrichment(rna_w_ordered.index[neg_rna[:20]], -1+0*rna_w_ordered.values[neg_rna[:20]] ) # meth_readable_n = pathway_info.CancerEnrichment(meth_w_ordered.index[neg_meth[:20]], -1+0*meth_w_ordered.values[neg_meth[:20]] ) rna_readable.name="rna" meth_readable.name="meth" # rna_readable_p.name="rna_p" # meth_readable_p.name="meth_p" # rna_readable_n.name="rna_n" # meth_readable_n.name="meth_n" #joined = pd.concat( [rna_readable[:20],\ # meth_readable[:20]], axis=1 ) joined = pd.concat( [rna_readable,\ meth_readable], axis=1 ) # joined = pd.concat( [rna_readable_p,rna_readable_n,\ # meth_readable_p,meth_readable_n], axis=1 ) # # maxvalues = joined.index[ np.argsort( -np.abs(joined.fillna(0)).sum(1).values ) ] # # joined=joined.loc[maxvalues] # joined = joined[:25] #br = joined.plot(kind="barh",ax=ax_pie1,color=["red","red","blue","blue"],legend=False,stacked=True, sort_columns=False,fontsize=8); br = joined.plot(kind="barh",ax=ax_pie1,color=["red","blue"],legend=False,stacked=True, sort_columns=False,fontsize=8); max_ax = np.max( joined.values.flatten() ) min_ax = np.min( joined.values.flatten() ) max_ax = np.max( max_ax, -min_ax ) min_ax = -max_ax #br = joined.plot(kind="barh",ax=ax_pie1,color=["red","blue"],legend=True,stacked=True, sort_columns=False); pp.suptitle( "H %d"%(z_idx)) pp.savefig( h_dir + "/h%d_weighted.png"%(z_idx), format="png", dpi=300 ) #pp.show() #pdb.set_trace() pp.close('all') if __name__ == "__main__": data_location = sys.argv[1] results_location = sys.argv[2] main( data_location, results_location )
42.080745
222
0.667847
0
0
0
0
0
0
0
0
4,912
0.241673
23d49ee738e43aa66d515d38988b95d1c1f66917
102
py
Python
src/django/tests/test_settings.py
segestic/django-builder
802e73241fe29ea1afb2df15a3addee87f39aeaa
[ "MIT" ]
541
2015-05-27T04:34:38.000Z
2022-03-23T18:00:16.000Z
src/django/tests/test_settings.py
segestic/django-builder
802e73241fe29ea1afb2df15a3addee87f39aeaa
[ "MIT" ]
85
2015-05-27T14:27:27.000Z
2022-02-27T18:51:08.000Z
src/django/tests/test_settings.py
segestic/django-builder
802e73241fe29ea1afb2df15a3addee87f39aeaa
[ "MIT" ]
129
2015-05-27T20:55:43.000Z
2022-03-23T14:18:07.000Z
from XXX_PROJECT_NAME_XXX.settings import * # noqa # Override any settings required for tests here
20.4
51
0.794118
0
0
0
0
0
0
0
0
53
0.519608
23d6f93dd725259d766c98af0f0522d89793519e
3,808
py
Python
m2m/search/models.py
blampe/M2M
d8c025481ba961fe85b95f9e851a7678e08227c3
[ "MIT" ]
null
null
null
m2m/search/models.py
blampe/M2M
d8c025481ba961fe85b95f9e851a7678e08227c3
[ "MIT" ]
null
null
null
m2m/search/models.py
blampe/M2M
d8c025481ba961fe85b95f9e851a7678e08227c3
[ "MIT" ]
1
2018-06-27T14:05:43.000Z
2018-06-27T14:05:43.000Z
from django.db import models #from djangosphinx import SphinxSearch, SphinxRelation, SphinxQuerySet #import djangosphinx.apis.current as sphinxapi from advancedsearch.models import Movie, Episode, Song from browseNet.models import Host, Path # Create your models here. class File(models.Model): '''An indexed file on the Network''' id = models.IntegerField(primary_key=True, db_column='ID') # Field name made lowercase. MIDs = models.ForeignKey(Movie, related_name='files', null=True, on_delete=models.SET_NULL) SIDs = models.ForeignKey(Episode, null=True, related_name='files', on_delete=models.SET_NULL) MuIDs = models.ForeignKey(Song, null=True,related_name='files', on_delete=models.SET_NULL) path = models.ForeignKey(Path,db_column='PID') # Field name made lowercase. filename = models.CharField(max_length=765, db_column='FileName') # Field name made lowercase. filenameend = models.CharField(max_length=12, db_column='FileNameEnd') # Field name made lowercase. dateadded = models.DateTimeField(db_column='DateAdded') # Field name made lowercase. filesize = models.BigIntegerField(db_column='FileSize') # Field name made lowercase. filedate = models.DateTimeField(db_column='FileDate') # Field name made lowercase. indexed = models.NullBooleanField(null=True, db_column='Indexed', blank=True) # Field name made lowercase. # good = 1, bad = 0, unclear = 3 goodfile = models.IntegerField(default=1) objects = models.Manager() videoEndings = ".avi|.mpg|.mp4|.m4v|.mov|.mpeg|.wmv|.mkv|.divx|.flv|.m2ts" audioEndings = ".mp3|.flac|.ogg|.wma|.m4a|.aac|.wav|.aif|.au" textEndings = ".txt|.chm|.pdf|.html|.rtf|.doc|.docx|.odt|.tex" imageEndings = ".jpg|.jpeg|.raw|.tiff|.gif|.png|.psd|.tga|.tpic|.svg" def remove_problems(self): self.remove_dne_problem() self.remove_saving_problem() def remove_dne_problem(self): try: self.dneproblem self.dneproblem.delete() self.save() except: pass def remove_saving_problem(self): try: self.savingproblem self.savingproblem.delete() self.save() except: pass def remove_bad_file_problem(self): try: self.badfileproblem self.badfileproblem.delete() self.save() except: pass def remove_under_problem(self): try: self.undefproblem self.undefproblem.delete() self.save() except: pass def __unicode__(self): #-*-coding:iso-8859-1-*- return u'{}'.format(self.filename) class Meta: db_table = u'file' class History(models.Model): uid = models.IntegerField(db_column='UID') # Field name made lowercase. position = models.IntegerField(db_column='Position') # Field name made lowercase. searchstring = models.CharField(max_length=765, db_column='SearchString') # Field name made lowercase. mode = models.IntegerField(db_column='Mode') # Field name made lowercase. hosttype = models.IntegerField(db_column='HostType') # Field name made lowercase. flags = models.IntegerField(db_column='Flags') # Field name made lowercase. date = models.IntegerField(db_column='Date') # Field name made lowercase. datevalue = models.IntegerField(db_column='DateValue') # Field name made lowercase. minsize = models.IntegerField(db_column='MinSize') # Field name made lowercase. maxsize = models.IntegerField(db_column='MaxSize') # Field name made lowercase. hits = models.IntegerField(db_column='Hits') # Field name made lowercase. class Meta: db_table = u'history'
39.666667
110
0.665966
3,520
0.92437
0
0
0
0
0
0
1,181
0.310137
23d7aa18934d135f4447648b4a864fe8e8b4a99c
1,790
py
Python
moods.py
henry232323/Discord-Pesterchum
70be67f3671b35aa6cbe6e4eb66a4a1c07707ce3
[ "MIT" ]
27
2017-01-31T03:28:26.000Z
2021-09-05T21:02:36.000Z
moods.py
henry232323/Discord-Pesterchum
70be67f3671b35aa6cbe6e4eb66a4a1c07707ce3
[ "MIT" ]
18
2018-02-03T16:44:18.000Z
2021-06-26T04:12:17.000Z
moods.py
henry232323/Discord-Pesterchum
70be67f3671b35aa6cbe6e4eb66a4a1c07707ce3
[ "MIT" ]
5
2017-09-23T15:53:08.000Z
2020-07-26T06:19:13.000Z
#!/usr/bin/env python3 # Copyright (c) 2016-2020, henry232323 # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. class Moods(object): moods = ["chummy", "rancorous", "offline", "pleasant", "distraught", "pranky", "smooth", "ecstatic", "relaxed", "discontent", "devious", "sleek", "detestful", "mirthful", "manipulative", "vigorous", "perky", "acceptant", "protective", "mystified", "amazed", "insolent", "bemused"] def __init__(self): self.usermoods = dict() self.value = 0 @staticmethod def getMood(name): name = "offline" if name.lower() == "abscond" else name return Moods.moods.index(name.lower()) @staticmethod def getName(index): return Moods.moods[index]
42.619048
76
0.701117
667
0.372626
0
0
218
0.121788
0
0
1,344
0.750838
23d7e7b0e05f376311c1a1430b049eda79a5c69d
4,465
py
Python
reclass/utils/tests/test_refvalue.py
bbinet/reclass
c08b844b328fa0fe182db49dd423cc203a016ce9
[ "Artistic-2.0" ]
101
2015-01-09T14:59:57.000Z
2021-11-06T23:33:50.000Z
reclass/utils/tests/test_refvalue.py
bbinet/reclass
c08b844b328fa0fe182db49dd423cc203a016ce9
[ "Artistic-2.0" ]
48
2015-01-30T05:53:47.000Z
2019-03-21T23:17:40.000Z
reclass/utils/tests/test_refvalue.py
bbinet/reclass
c08b844b328fa0fe182db49dd423cc203a016ce9
[ "Artistic-2.0" ]
50
2015-01-30T08:56:07.000Z
2020-12-25T02:34:08.000Z
# # -*- coding: utf-8 -*- # # This file is part of reclass (http://github.com/madduck/reclass) # # Copyright © 2007–14 martin f. krafft <[email protected]> # Released under the terms of the Artistic Licence 2.0 # from reclass.utils.refvalue import RefValue from reclass.defaults import PARAMETER_INTERPOLATION_SENTINELS, \ PARAMETER_INTERPOLATION_DELIMITER from reclass.errors import UndefinedVariableError, \ IncompleteInterpolationError import unittest def _var(s): return '%s%s%s' % (PARAMETER_INTERPOLATION_SENTINELS[0], s, PARAMETER_INTERPOLATION_SENTINELS[1]) CONTEXT = {'favcolour':'yellow', 'motd':{'greeting':'Servus!', 'colour':'${favcolour}' }, 'int':1, 'list':[1,2,3], 'dict':{1:2,3:4}, 'bool':True } def _poor_mans_template(s, var, value): return s.replace(_var(var), value) class TestRefValue(unittest.TestCase): def test_simple_string(self): s = 'my cat likes to hide in boxes' tv = RefValue(s) self.assertFalse(tv.has_references()) self.assertEquals(tv.render(CONTEXT), s) def _test_solo_ref(self, key): s = _var(key) tv = RefValue(s) res = tv.render(CONTEXT) self.assertTrue(tv.has_references()) self.assertEqual(res, CONTEXT[key]) def test_solo_ref_string(self): self._test_solo_ref('favcolour') def test_solo_ref_int(self): self._test_solo_ref('int') def test_solo_ref_list(self): self._test_solo_ref('list') def test_solo_ref_dict(self): self._test_solo_ref('dict') def test_solo_ref_bool(self): self._test_solo_ref('bool') def test_single_subst_bothends(self): s = 'I like ' + _var('favcolour') + ' and I like it' tv = RefValue(s) self.assertTrue(tv.has_references()) self.assertEqual(tv.render(CONTEXT), _poor_mans_template(s, 'favcolour', CONTEXT['favcolour'])) def test_single_subst_start(self): s = _var('favcolour') + ' is my favourite colour' tv = RefValue(s) self.assertTrue(tv.has_references()) self.assertEqual(tv.render(CONTEXT), _poor_mans_template(s, 'favcolour', CONTEXT['favcolour'])) def test_single_subst_end(self): s = 'I like ' + _var('favcolour') tv = RefValue(s) self.assertTrue(tv.has_references()) self.assertEqual(tv.render(CONTEXT), _poor_mans_template(s, 'favcolour', CONTEXT['favcolour'])) def test_deep_subst_solo(self): var = PARAMETER_INTERPOLATION_DELIMITER.join(('motd', 'greeting')) s = _var(var) tv = RefValue(s) self.assertTrue(tv.has_references()) self.assertEqual(tv.render(CONTEXT), _poor_mans_template(s, var, CONTEXT['motd']['greeting'])) def test_multiple_subst(self): greet = PARAMETER_INTERPOLATION_DELIMITER.join(('motd', 'greeting')) s = _var(greet) + ' I like ' + _var('favcolour') + '!' tv = RefValue(s) self.assertTrue(tv.has_references()) want = _poor_mans_template(s, greet, CONTEXT['motd']['greeting']) want = _poor_mans_template(want, 'favcolour', CONTEXT['favcolour']) self.assertEqual(tv.render(CONTEXT), want) def test_multiple_subst_flush(self): greet = PARAMETER_INTERPOLATION_DELIMITER.join(('motd', 'greeting')) s = _var(greet) + ' I like ' + _var('favcolour') tv = RefValue(s) self.assertTrue(tv.has_references()) want = _poor_mans_template(s, greet, CONTEXT['motd']['greeting']) want = _poor_mans_template(want, 'favcolour', CONTEXT['favcolour']) self.assertEqual(tv.render(CONTEXT), want) def test_undefined_variable(self): s = _var('no_such_variable') tv = RefValue(s) with self.assertRaises(UndefinedVariableError): tv.render(CONTEXT) def test_incomplete_variable(self): s = PARAMETER_INTERPOLATION_SENTINELS[0] + 'incomplete' with self.assertRaises(IncompleteInterpolationError): tv = RefValue(s) if __name__ == '__main__': unittest.main()
34.882813
76
0.600224
3,472
0.777081
0
0
0
0
0
0
755
0.168979
23d88124e0abeec9041b9f813d746d7445479956
1,506
py
Python
backend/neuroflow/routes/mood.py
isamu-isozaki/neuroflow-challenge
ca29b8e48be4853317ab706acd4731ea0a8bab10
[ "MIT" ]
null
null
null
backend/neuroflow/routes/mood.py
isamu-isozaki/neuroflow-challenge
ca29b8e48be4853317ab706acd4731ea0a8bab10
[ "MIT" ]
null
null
null
backend/neuroflow/routes/mood.py
isamu-isozaki/neuroflow-challenge
ca29b8e48be4853317ab706acd4731ea0a8bab10
[ "MIT" ]
null
null
null
""" Author: Isamu Isozaki ([email protected]) Description: description Created: 2021-12-01T16:32:53.089Z Modified: !date! Modified By: modifier """ from flask import Blueprint, redirect, jsonify, url_for, request from neuroflow.repository import create_mood, get_authorized, load_moods_from_user from functools import wraps from flask_cors import cross_origin blueprint = Blueprint('mood', __name__, url_prefix='/mood') def authorized(): def authorized_decorator(f): @wraps(f) def wrap(*args, **kwargs): if not request.headers.get('Authorization', None): return 'Unauthorized', 401 user = get_authorized(request) if not user: return 'Unauthorized', 401 return f(user, *args, **kwargs) return wrap return authorized_decorator @blueprint.route('', methods=['POST', 'GET']) @cross_origin() @authorized() def mood_processing(user): if request.method == 'POST': try: request_json = request.get_json() mood_val = float(request_json['mood']) assert 0 <= mood_val <= 10 mood = create_mood(mood_val, user) except Exception as e: print(e) return "Invalid request.", 400 del mood['_sa_instance_state'] del mood['user'] return jsonify({'mood': mood}) else: moods = load_moods_from_user(user) return jsonify({'moods': moods})
30.12
82
0.616866
0
0
0
0
928
0.616202
0
0
292
0.193891
23d8fd0ae625c1772c3f3bb0a2d8ee76180f8da6
2,684
py
Python
capstone/upload_to_s3.py
slangenbach/udacity-de-nanodegree
ba885eb4c6fbce063e443375a89b92dbc46fa809
[ "MIT" ]
2
2020-03-07T23:32:41.000Z
2020-05-22T15:35:16.000Z
capstone/upload_to_s3.py
slangenbach/udacity-de-nanodegree
ba885eb4c6fbce063e443375a89b92dbc46fa809
[ "MIT" ]
1
2020-05-25T11:17:15.000Z
2020-05-26T06:58:37.000Z
capstone/upload_to_s3.py
slangenbach/udacity-de-nanodegree
ba885eb4c6fbce063e443375a89b92dbc46fa809
[ "MIT" ]
2
2020-03-31T13:00:01.000Z
2021-07-14T14:34:37.000Z
import logging import time from pathlib import Path from configparser import ConfigParser import boto3 from botocore.exceptions import ClientError def create_bucket(bucket_name: str, region: str = 'us-west-2'): """ Create S3 bucket https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-example-creating-buckets.html :param bucket_name: Name of S3 bucket :param region: AWS region where bucket is created :return: True if bucket is created or already exists, False if ClientError occurs """ try: s3_client = boto3.client('s3', region=region) # list buckets response = s3_client.list_buckets() # check if bucket exists if bucket_name not in response['Buckets']: s3_client.create_bucket(Bucket=bucket_name) else: logging.warning(f"{bucket_name} already exist in AWS region {region}") except ClientError as e: logging.exception(e) return False return True def upload_file(file_name: str, bucket: str, object_name: str = None, region: str = 'us-west-2'): """ Upload file to S3 bucket https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-uploading-files.html :param file_name: Path to file including filename :param bucket: Bucket where file is uploaded to :param object_name: Name of file inside S3 bucket :param region: AWS region where bucket is located :return: True if upload succeeds, False if ClientError occurs """ if object_name is None: object_name = file_name try: s3_client = boto3.client('s3', region=region) s3_client.upload_file(file_name, bucket, object_name) except ClientError as e: logging.exception(e) return False return True if __name__ == '__main__': # load config config = ConfigParser() config.read('app.cfg') # start logging logging.basicConfig(level=config.get("logging", "level"), format="%(asctime)s - %(levelname)s - %(message)s") logging.info("Started") # start timer start_time = time.perf_counter() # define data_path = Path(__file__).parent.joinpath('data') # check if bucket exists create_bucket(bucket_name='fff-streams') # upload files to S3 upload_file(data_path.joinpath('world_happiness_2017.csv'), bucket='fff-streams', object_name='world_happiness.csv') upload_file(data_path.joinpath('temp_by_city_clean.csv'), bucket='fff-streams', object_name='temp_by_city.csv') # stop timer stop_time = time.perf_counter() logging.info(f"Uploaded files in {(stop_time - start_time):.2f} seconds") logging.info("Finished")
31.209302
120
0.688897
0
0
0
0
0
0
0
0
1,248
0.464978
23da034ad35f31e90c8e53d6592ca43cf2dabf3f
4,734
py
Python
Timer.py
Dark-Night-Base/MCDP
fbdba3c2b7a919d625067cbd473cdbe779af3256
[ "MIT" ]
null
null
null
Timer.py
Dark-Night-Base/MCDP
fbdba3c2b7a919d625067cbd473cdbe779af3256
[ "MIT" ]
null
null
null
Timer.py
Dark-Night-Base/MCDP
fbdba3c2b7a919d625067cbd473cdbe779af3256
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import time help_msg = '''------ §aMCR 时钟插件帮助信息 §f------ §b!!time help §f- §c显示帮助消息 §b!!time ct §f- §c显示当前时间 §b!!time timer [秒] §f- §c开启倒计时 §b!!time stopwatch start §f- §c开启秒表 §b!!time stopwatch stop §f- §c停止秒表 --------------------------------''' no_input = '''------ §a温馨提示 §f------ §c未知指令 请输入 !!time help 获取帮助 --------------------------------''' stop_T = False def on_info(server, info): if info.is_player == 1: if info.content.startswith('!!time'): args = info.content.split(' ') if len(args) == 1: for line in help_msg.splitlines(): server.tell(info.player, line) elif args[1] == 'help': for line in help_msg.splitlines(): server.tell(info.player, line) elif args[1] == 'ct': t = time.localtime() current_time = time.strftime("%H:%M:%S", t) int_current_time = int(time.strftime("%H", t)) if int_current_time in range(6, 12): server.tell(info.player, "------ §a当前时间 §f------") server.tell(info.player, "§b 早上好") server.tell(info.player, "§b 现在时间是: " + current_time) server.tell(info.player, "--------------------------------") elif int_current_time in range(12, 19): server.tell(info.player, "------ §a当前时间 §f------") server.tell(info.player, "§b 下午好") server.tell(info.player, "§b 现在时间是: " + current_time) server.tell(info.player, "--------------------------------") elif int_current_time in range(19, 24): server.tell(info.player, "------ §a当前时间 §f------") server.tell(info.player, "§b 晚上好") server.tell(info.player, "§b 现在时间是: " + current_time) server.tell(info.player, "--------------------------------") elif int_current_time in range(0, 6): server.tell(info.player, "------ §a当前时间 §f------") server.tell(info.player, "§b 晚上好") server.tell(info.player, "§b 现在时间是: " + current_time) server.tell(info.player, "--------------------------------") else: server.tell(info.player, "------ §a当前时间 §f------") server.tell(info.player, "§b 现在时间是: " + current_time) server.tell(info.player, "--------------------------------") elif args[1] == 'timer': second = int(args[2]) count = 0 while count < second: count_now = second - count if count_now >= 30: server.tell(info.player, "倒计时还剩: " + "§a" + str(count_now)) time.sleep(1) count += 1 elif 30 > count_now > 10: server.tell(info.player, "倒计时还剩: " + "§e" + str(count_now)) time.sleep(1) count += 1 else: server.tell(info.player, "倒计时还剩: " + "§c" + str(count_now)) time.sleep(1) count += 1 server.tell(info.player, "时间到!") server.execute( 'execute at ' + info.player + ' run playsound minecraft:block.bell.use player ' + info.player) server.execute( 'execute at ' + info.player + ' run playsound minecraft:block.bell.use player ' + info.player) server.execute( 'execute at ' + info.player + ' run playsound minecraft:block.bell.use player ' + info.player) elif args[1] == 'stopwatch': status = args[2] if status == 'start': start(server, info) elif status == 'stop': stop(server, info) else: for line in no_input.splitlines(): server.tell(info.player, line) def on_load(server, old): server.add_help_message('!!time', '时钟系统帮助') def start(server, info): global stop_T stop_T = True start_time = time.time() server.tell(info.player, "§b秒表开启") while stop_T: r = round(time.time() - start_time, 0) server.tell(info.player, "§b计时: " + str(r) + " 秒") time.sleep(1) def stop(server, info): global stop_T if stop_T: stop_T = False server.tell(info.player, "§b秒表已停止") else: server.tell(info.player, "§b秒表未开启")
41.526316
114
0.444022
0
0
0
0
0
0
0
0
1,408
0.277493
23dbf2b9d9cefc92e0075e49e75f8a00b52cb7f9
4,174
py
Python
core/loader.py
CrackerCat/ZetaSploit
4589d467c9fb81c1a5075cd43358b2df9b896530
[ "MIT" ]
3
2020-12-04T07:29:31.000Z
2022-01-30T10:14:41.000Z
core/loader.py
CrackerCat/ZetaSploit
4589d467c9fb81c1a5075cd43358b2df9b896530
[ "MIT" ]
null
null
null
core/loader.py
CrackerCat/ZetaSploit
4589d467c9fb81c1a5075cd43358b2df9b896530
[ "MIT" ]
1
2021-03-27T06:14:43.000Z
2021-03-27T06:14:43.000Z
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import sys import time import threading import os from core.badges import badges from core.helper import helper class loader: def __init__(self): self.badges = badges() self.helper = helper() def get_module(self, mu, name, folderpath): folderpath_list = folderpath.split(".") for i in dir(mu): if i == name: pass return getattr(mu, name) else: if i in folderpath_list: i = getattr(mu, i) return self.get_module(i, name, folderpath) def import_plugins(self, plugin_owner, plugin_system, controller): plugins = dict() plugin_path = "plugins/" + plugin_owner + "/" + plugin_system for plugin_type in os.listdir(plugin_path): plugin_path = plugin_path + "/" + plugin_type for plugin in os.listdir(plugin_path): if plugin == '__init__.py' or plugin[-3:] != '.py': continue else: try: plugin_directory = plugin_path.replace("/", ".").replace("\\", ".") + "." + plugin[:-3] plugin_file = __import__(plugin_directory) plugin_object = self.get_module(plugin_file, plugin[:-3], plugin_directory) plugin_object = plugin_object.ZetaSploitPlugin(controller) plugins[plugin_object.details['Name']] = plugin_object except Exception as e: print(self.badges.E + "Failed to load plugin! Reason: "+str(e)) return plugins def import_modules(self): modules = dict() module_path = "modules" for module_system in os.listdir(module_path): module_path = module_path + "/" + module_system for module_type in os.listdir(module_path): module_path = module_path + "/" + module_type for module in os.listdir(module_path): if module == '__init__.py' or module[-3:] != '.py': continue else: try: module_directory = module_path.replace("/", ".").replace("\\", ".") + "." + module[:-3] module_file = __import__(module_directory) module_object = self.get_module(module_file, module[:-3], module_directory) module_object = module_object.ZetaSploitModule() modules[module_object.details['Name']] = module_object except Exception as e: print(self.badges.E + "Failed to load plugin! Reason: " + str(e)) return modules def load_plugins(self, owner, system, controller): plugins = self.import_plugins(owner, system, controller) return plugins def load_modules(self): modules = self.import_modules() return modules
43.030928
115
0.598946
2,929
0.701725
0
0
0
0
0
0
1,285
0.307858
23dc4f684d9d5300357e5bf6d8fabca6e13f5585
8,556
py
Python
parameter_setting/parameters_setting_cropping_impact.py
MorganeAudrain/Calcium_new
1af0ab4f70b91d1ca55c6053112c1744b1da1bd3
[ "MIT" ]
null
null
null
parameter_setting/parameters_setting_cropping_impact.py
MorganeAudrain/Calcium_new
1af0ab4f70b91d1ca55c6053112c1744b1da1bd3
[ "MIT" ]
null
null
null
parameter_setting/parameters_setting_cropping_impact.py
MorganeAudrain/Calcium_new
1af0ab4f70b91d1ca55c6053112c1744b1da1bd3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 5 @author: Melisa Maidana This script runs different cropping parameters, motion correct the cropped images using reasonable motion correction parameters that were previously selected by using the parameters_setting_motion_correction scripts, and then run source extraction (with multiple parameters) and creates figures of the cropped image and the extracted cells from that image. The idea is to compare the resulting source extraction neural footprint for different cropping selections. Ideally the extracted sources should be similar. If that is the case, then all the parameter setting for every step can be run in small pieces of the image, select the best ones, and implemented lated in the complete image. """ import os import sys import psutil import logging import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import pylab as pl # This should be in another file. Let's leave it here for now sys.path.append('/home/sebastian/Documents/Melisa/calcium_imaging_analysis/src/') sys.path.remove('/home/sebastian/Documents/calcium_imaging_analysis') import src.configuration import caiman as cm import src.data_base_manipulation as db from src.steps.cropping import run_cropper as main_cropping from src.steps.motion_correction import run_motion_correction as main_motion_correction from src.steps.source_extraction import run_source_extraction as main_source_extraction import src.analysis.metrics as metrics from caiman.source_extraction.cnmf.cnmf import load_CNMF #Paths analysis_states_database_path = 'references/analysis/analysis_states_database.xlsx' backup_path = 'references/analysis/backup/' #parameters_path = 'references/analysis/parameters_database.xlsx' ## Open thw data base with all data states_df = db.open_analysis_states_database() mouse = 51565 session = 1 trial = 1 is_rest = 1 # CROPPING # Select the rows for cropping x1_crops = np.arange(200,0,-50) x2_crops = np.arange(350,550,50) y1_crops = np.arange(200,0,-50) y2_crops = np.arange(350,550,50) n_processes = psutil.cpu_count() cm.cluster.stop_server() # Start a new cluster c, dview, n_processes = cm.cluster.setup_cluster(backend='local', n_processes=n_processes, # number of process to use, if you go out of memory try to reduce this one single_thread=False) logging.info(f'Starting cluster. n_processes = {n_processes}.') #parametrs for motion correction parameters_motion_correction = {'motion_correct': True, 'pw_rigid': True, 'save_movie_rig': False, 'gSig_filt': (5, 5), 'max_shifts': (25, 25), 'niter_rig': 1, 'strides': (48, 48), 'overlaps': (96, 96), 'upsample_factor_grid': 2, 'num_frames_split': 80, 'max_deviation_rigid': 15, 'shifts_opencv': True, 'use_cuda': False, 'nonneg_movie': True, 'border_nan': 'copy'} #parameters for source extraction gSig = 5 gSiz = 4 * gSig + 1 corr_limits = np.linspace(0.4, 0.6, 5) pnr_limits = np.linspace(3, 7, 5) cropping_v = np.zeros(5) motion_correction_v = np.zeros(5) selected_rows = db.select(states_df,'cropping', mouse = mouse, session = session, trial = trial , is_rest = is_rest) mouse_row = selected_rows.iloc[0] for kk in range(4): cropping_interval = [x1_crops[kk], x2_crops[kk], y1_crops[kk], y2_crops[kk]] parameters_cropping = {'crop_spatial': True, 'cropping_points_spatial': cropping_interval, 'crop_temporal': False, 'cropping_points_temporal': []} mouse_row = main_cropping(mouse_row, parameters_cropping) cropping_v[kk] = mouse_row.name[5] states_df = db.append_to_or_merge_with_states_df(states_df, mouse_row) db.save_analysis_states_database(states_df, path=analysis_states_database_path, backup_path = backup_path) states_df = db.open_analysis_states_database() for kk in range(4): selected_rows = db.select(states_df, 'motion_correction', 56165, cropping_v = cropping_v[kk]) mouse_row = selected_rows.iloc[0] mouse_row_new = main_motion_correction(mouse_row, parameters_motion_correction, dview) mouse_row_new = metrics.get_metrics_motion_correction(mouse_row_new, crispness=True) states_df = db.append_to_or_merge_with_states_df(states_df, mouse_row_new) db.save_analysis_states_database(states_df, path=analysis_states_database_path, backup_path = backup_path) motion_correction_v[kk]=mouse_row_new.name[6] states_df = db.open_analysis_states_database() for ii in range(corr_limits.shape[0]): for jj in range(pnr_limits.shape[0]): parameters_source_extraction = {'session_wise': False, 'fr': 10, 'decay_time': 0.1, 'min_corr': corr_limits[ii], 'min_pnr': pnr_limits[jj], 'p': 1, 'K': None, 'gSig': (gSig, gSig), 'gSiz': (gSiz, gSiz), 'merge_thr': 0.7, 'rf': 60, 'stride': 30, 'tsub': 1, 'ssub': 2, 'p_tsub': 1, 'p_ssub': 2, 'low_rank_background': None, 'nb': 0, 'nb_patch': 0, 'ssub_B': 2, 'init_iter': 2, 'ring_size_factor': 1.4, 'method_init': 'corr_pnr', 'method_deconvolution': 'oasis', 'update_background_components': True, 'center_psf': True, 'border_pix': 0, 'normalize_init': False, 'del_duplicates': True, 'only_init': True} for kk in range(4): selected_rows = db.select(states_df, 'source_extraction', 56165, cropping_v = cropping_v[kk]) mouse_row = selected_rows.iloc[0] mouse_row_new = main_source_extraction(mouse_row, parameters_source_extraction, dview) states_df = db.append_to_or_merge_with_states_df(states_df, mouse_row_new) db.save_analysis_states_database(states_df, path=analysis_states_database_path, backup_path=backup_path) states_df = db.open_analysis_states_database() for ii in range(corr_limits.shape[0]): for jj in range(pnr_limits.shape[0]): figure, axes = plt.subplots(4, 3, figsize=(50, 30)) version = ii * pnr_limits.shape[0] + jj +1 for kk in range(4): selected_rows = db.select(states_df, 'component_evaluation', 56165, cropping_v=cropping_v[kk], motion_correction_v = 1, source_extraction_v= version) mouse_row = selected_rows.iloc[0] decoding_output = mouse_row['decoding_output'] decoded_file = eval(decoding_output)['main'] m = cm.load(decoded_file) axes[kk,0].imshow(m[0, :, :], cmap='gray') cropping_interval = [x1_crops[kk], x2_crops[kk], y1_crops[kk], y2_crops[kk]] [x_, _x, y_, _y] = cropping_interval rect = Rectangle((y_, x_), _y - y_, _x - x_, fill=False, color='r', linestyle='--', linewidth = 3) axes[kk,0].add_patch(rect) output_cropping = mouse_row['cropping_output'] cropped_file = eval(output_cropping)['main'] m = cm.load(cropped_file) axes[kk,1].imshow(m[0, :, :], cmap='gray') output_source_extraction = eval(mouse_row['source_extraction_output']) cnm_file_path = output_source_extraction['main'] cnm = load_CNMF(db.get_file(cnm_file_path)) corr_path = output_source_extraction['meta']['corr']['main'] cn_filter = np.load(db.get_file(corr_path)) axes[kk, 2].imshow(cn_filter) coordinates = cm.utils.visualization.get_contours(cnm.estimates.A, np.shape(cn_filter), 0.2, 'max') for c in coordinates: v = c['coordinates'] c['bbox'] = [np.floor(np.nanmin(v[:, 1])), np.ceil(np.nanmax(v[:, 1])), np.floor(np.nanmin(v[:, 0])), np.ceil(np.nanmax(v[:, 0]))] axes[kk, 2].plot(*v.T, c='w',linewidth=3) fig_dir ='/home/sebastian/Documents/Melisa/calcium_imaging_analysis/data/interim/cropping/meta/figures/cropping_inicialization/' fig_name = fig_dir + db.create_file_name(2,mouse_row.name) + '_corr_' + f'{round(corr_limits[ii],1)}' + '_pnr_' + f'{round(pnr_limits[jj])}' + '.png' figure.savefig(fig_name)
50.329412
161
0.661524
0
0
0
0
0
0
0
0
2,446
0.285881
23dd6ab36e5a83840094cc404aedad771f6f9076
1,676
py
Python
src/data/energidataservice_api.py
titanbender/electricity-price-forecasting
c288a9b6d7489ac03ee800318539195bd1cd2650
[ "MIT" ]
1
2021-04-15T13:05:03.000Z
2021-04-15T13:05:03.000Z
src/data/energidataservice_api.py
titanbender/electricity-price-forecasting
c288a9b6d7489ac03ee800318539195bd1cd2650
[ "MIT" ]
1
2018-12-11T13:41:45.000Z
2018-12-11T14:15:15.000Z
src/data/energidataservice_api.py
titanbender/electricity-price-forecasting
c288a9b6d7489ac03ee800318539195bd1cd2650
[ "MIT" ]
1
2020-01-01T21:03:02.000Z
2020-01-01T21:03:02.000Z
import pandas as pd import json import urllib2 def download_nordpool(limit, output_file): ''' The method downloads the nordpool available data from www.energidataservice.dk and saves it in a csv file limit: Int, the number of maximum rows of data to download output_file: Str, the name of the output file ''' url = 'https://api.energidataservice.dk/datastore_search?resource_id=8bd7a37f-1098-4643-865a-01eb55c62d21&limit=' + str(limit) print("downloading nordpool data ...") fileobj = urllib2.urlopen(url) data = json.loads(fileobj.read()) nordpool_df = pd.DataFrame.from_dict(data['result']['records']) # the data is stored inside two dictionaries nordpool_df.to_csv(output_file) print("nordpool data has been downloaded and saved") def download_dayforward(limit, output_file): ''' The method downloads the available day ahead spotprices in DK and neighboring countries data from www.energidataservice.dk and saves it in a csv file limit: Int, the number of maximum rows of data to download output_file: Str, the name of the output file ''' url = 'https://api.energidataservice.dk/datastore_search?resource_id=c86859d2-942e-4029-aec1-32d56f1a2e5d&limit=' + str(limit) print("downloading day forward data ...") fileobj = urllib2.urlopen(url) data = json.loads(fileobj.read()) nordpool_df = pd.DataFrame.from_dict(data['result']['records']) # the data is stored inside two dictionaries nordpool_df.to_csv(output_file) print("day forward data has been downloaded and saved") if __name__ == '__main__': print("connecting with the API") download_nordpool(10000000, 'nordpool_data.csv') download_dayforward(10000000, 'dayforward_data.csv')
37.244444
127
0.7679
0
0
0
0
0
0
0
0
1,063
0.634248
23df352466c71a2286ba6b66bb76f8b89e0ba1ff
1,873
py
Python
models/cnn.py
amayuelas/NNKGReasoning
0e3623b344fd4e3088ece897f898ddbb1f80888d
[ "MIT" ]
1
2022-03-16T22:20:12.000Z
2022-03-16T22:20:12.000Z
models/cnn.py
amayuelas/NNKGReasoning
0e3623b344fd4e3088ece897f898ddbb1f80888d
[ "MIT" ]
2
2022-03-22T23:34:38.000Z
2022-03-24T17:35:53.000Z
models/cnn.py
amayuelas/NNKGReasoning
0e3623b344fd4e3088ece897f898ddbb1f80888d
[ "MIT" ]
null
null
null
from typing import Any import torch import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self, entity_dim): super(CNN, self).__init__() self.dim = entity_dim self.conv1 = nn.Conv1d(in_channels=1, out_channels=10, kernel_size=6) self.conv2 = nn.Conv1d(in_channels=10, out_channels=10, kernel_size=6) self.pool = nn.MaxPool1d(kernel_size=5) self.fc1 = nn.Linear(int(self.dim / 25 - 2) * 10, self.dim) self.fc2 = nn.Linear(self.dim, self.dim * 2) self.fc3 = nn.Linear(self.dim * 2, self.dim) def forward(self, x): x = x.unsqueeze(1) x = self.pool(self.conv1(x)) x = self.pool(self.conv2(x)) x = x.view(-1, x.shape[1] * x.shape[2]) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class CNN2(nn.Module): def __init__(self, entity_dim): super(CNN2, self).__init__() self.dim = entity_dim self.conv1 = nn.Conv1d(in_channels=1, out_channels=10, kernel_size=6) self.conv2 = nn.Conv1d(in_channels=10, out_channels=10, kernel_size=6) self.pool = nn.MaxPool1d(kernel_size=5) self.fc1 = nn.Linear(2 * int(self.dim / 25 - 2) * 10, 2 * self.dim) self.fc3 = nn.Linear(self.dim * 2, self.dim) def forward(self, x1, x2): x1 = x1.unsqueeze(1) x1 = self.pool(self.conv1(x1)) x1 = self.pool(self.conv2(x1)) x2 = x2.unsqueeze(1) x2 = self.pool(self.conv1(x2)) x2 = self.pool(self.conv2(x2)) x = torch.cat((x1, x2), dim=-1) x = x.view(-1, x.shape[1] * x.shape[2]) x = F.relu(self.fc1(x)) x = self.fc3(x) return x
31.745763
75
0.538708
1,778
0.949279
0
0
0
0
0
0
0
0
23df5a83027200920168a92b6eedd813725d6db4
2,608
py
Python
students/K33421/Novikova Veronika/practice/warriors_project/warriors_app/views.py
aglaya-pill/ITMO_ICT_WebDevelopment_2021-2022
a63691317a72fb9b29ae537bc3d7766661458c22
[ "MIT" ]
null
null
null
students/K33421/Novikova Veronika/practice/warriors_project/warriors_app/views.py
aglaya-pill/ITMO_ICT_WebDevelopment_2021-2022
a63691317a72fb9b29ae537bc3d7766661458c22
[ "MIT" ]
null
null
null
students/K33421/Novikova Veronika/practice/warriors_project/warriors_app/views.py
aglaya-pill/ITMO_ICT_WebDevelopment_2021-2022
a63691317a72fb9b29ae537bc3d7766661458c22
[ "MIT" ]
null
null
null
from rest_framework import generics from rest_framework.response import Response from rest_framework.views import APIView from .serializers import * class WarriorListView(APIView): def get(self, request): warriors = Warrior.objects.all() serializer = WarriorSerializer(warriors, many=True) return Response({"Warriors": serializer.data}) class ProfessionCreateView(APIView): def post(self, request): profession = request.data.get("profession") serializer = ProfessionSerializer(data=profession) if serializer.is_valid(raise_exception=True): profession_saved = serializer.save() return Response({"Success": "Profession '{}' created succesfully.".format(profession_saved.title)}) class SkillCreateView(APIView): def post(self, request): skill = request.data.get("skill") serializer = SkillSerializer(data=skill) if serializer.is_valid(raise_exception=True): serializer.save() return Response({"Success": "Created successfully."}) class WarriorCreateView(generics.CreateAPIView): serializer_class = WarriorSerializer queryset = Warrior.objects.all() class ProfessionView(APIView): def get(self, request): prof = Profession.objects.all() serializer = ProfessionSerializer(prof, many=True) return Response({"Profession": serializer.data}) class SkillView(APIView): def get(self, request): skill = Skill.objects.all() serializer = SkillSerializer(skill, many=True) return Response({"Skill": serializer.data}) class WarriorSkillCreateView(generics.CreateAPIView): serializer_class = WarriorSkillSerializer queryset = SkillOfWarrior.objects.all() class WarriorsSkills(APIView): def get(self, request): skill = Warrior.objects.all() serializer = WarriorSkillsSerializer(skill, many=True) return Response({"Skill": serializer.data}) class WarriorsProfessions(APIView): def get(self, request): prof = Warrior.objects.all() serializer = WarriorProfSerializer(prof, many=True) return Response({"Professions": serializer.data}) class SingleWarriorView(generics.RetrieveAPIView): serializer_class = SingleWarriorSerializer queryset = Warrior.objects.all() class WarriorUpdateView(generics.UpdateAPIView): serializer_class = WarriorSerializer queryset = Warrior.objects.all() lookup_field = 'pk' class WarriorDestroyView(generics.DestroyAPIView): queryset = Warrior.objects.all() serializer_class = WarriorSerializer
29.636364
107
0.71434
2,423
0.929064
0
0
0
0
0
0
151
0.057899
23e0261a193fa6f445356c45a1780f878354e500
157
py
Python
utils/platform.py
dennisding/build
e9342c2f235f64a8e125b3e6208426f1c2a12346
[ "Apache-2.0" ]
null
null
null
utils/platform.py
dennisding/build
e9342c2f235f64a8e125b3e6208426f1c2a12346
[ "Apache-2.0" ]
null
null
null
utils/platform.py
dennisding/build
e9342c2f235f64a8e125b3e6208426f1c2a12346
[ "Apache-2.0" ]
null
null
null
# -*- encoding:utf-8 -*- class Platform: def __init__(self): pass class Win(Platform): pass class Ios(Platform): pass class Android(Platform): pass
11.214286
24
0.687898
125
0.796178
0
0
0
0
0
0
24
0.152866
23e0459ade4fcfb40deaedb8969b8ab2785c8442
1,801
py
Python
drone/flight/driving/motor_dummy.py
dpm76/eaglebone
46403d03359a780f385ccb1f05b462869eddff89
[ "ISC" ]
null
null
null
drone/flight/driving/motor_dummy.py
dpm76/eaglebone
46403d03359a780f385ccb1f05b462869eddff89
[ "ISC" ]
18
2016-03-30T08:43:45.000Z
2017-03-27T11:14:17.000Z
drone/flight/driving/motor_dummy.py
dpm76/eaglebone
46403d03359a780f385ccb1f05b462869eddff89
[ "ISC" ]
2
2016-03-06T20:38:06.000Z
2019-09-10T14:46:35.000Z
''' Created on 19 de ene. de 2016 @author: david ''' import time class MotorDummy(object): MAX_THROTTLE = 80.0 #percentage def __init__(self, motorId): """ Constructor @param motorId: Identificator of the motor. A number between 0 to 3 (in case of quadcopter) """ self._motorId = motorId self._throttle = 0.0 def start(self): self._throttle = 0.0 def setThrottle(self, throttle): self._throttle = float(throttle) time.sleep(0.001) def getThrottle(self): return self._throttle def addThrottle(self, increment): """ Increases or decreases the motor's throttle @param increment: Value added to the current throttle percentage. This can be negative to decrease. """ self.setThrottle(self._throttle + increment) def setMaxThrottle(self): """ Sends the max throttle signal (useful for calibrating process) """ self._throttle = 100.0 def setMinThrottle(self): """ Sends the min throttle signal (useful for calibrating process, or setting the motor in stand-by state) """ self._throttle = 0.0 def standBy(self): """ Set the motor in stand-by state """ self.setMinThrottle() def idle(self): """ Set the motor in idle state """ self._throttle = 0.0 def stop(self): """ Stops the motor """ self._throttle = 0.0
20.465909
110
0.494725
1,732
0.961688
0
0
0
0
0
0
751
0.416991
23e397535cfd73ea5daf63a3a67cc1be6978c490
29,136
py
Python
src/valr_python/ws_client.py
duncan-lumina/valr-python
9c94b76990416b4b709d507b538bd8265ed51312
[ "MIT" ]
6
2019-12-31T17:25:14.000Z
2021-12-15T14:30:05.000Z
src/valr_python/ws_client.py
duncan-lumina/valr-python
9c94b76990416b4b709d507b538bd8265ed51312
[ "MIT" ]
17
2020-01-03T00:03:30.000Z
2022-03-14T19:17:50.000Z
src/valr_python/ws_client.py
duncan-lumina/valr-python
9c94b76990416b4b709d507b538bd8265ed51312
[ "MIT" ]
6
2020-06-24T03:23:37.000Z
2021-12-17T14:20:46.000Z
import asyncio from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Type from typing import Union try: import simplejson as json except ImportError: import json import websockets from valr_python.enum import AccountEvent from valr_python.enum import CurrencyPair from valr_python.enum import MessageFeedType from valr_python.enum import TradeEvent from valr_python.enum import WebSocketType from valr_python.exceptions import HookNotFoundError from valr_python.exceptions import WebSocketAPIException from valr_python.utils import JSONType from valr_python.utils import _get_valr_headers __all__ = ('WebSocketClient',) def get_event_type(ws_type: WebSocketType) -> Type[Union[TradeEvent, AccountEvent]]: return TradeEvent if ws_type == WebSocketType.TRADE else AccountEvent class WebSocketClient: """The WebSocket API is an advanced technology that makes it possible to open a two-way interactive communication session between a client and a server. With this API, you can send messages to a server and receive event-driven responses without having to poll the server for a reply. Example Usage ~~~~~~~~~~~~~ >>> import asyncio >>> from typing import Dict >>> from pprint import pprint >>> from valr_python import WebSocketClient >>> from valr_python.enum import TradeEvent >>> from valr_python.enum import WebSocketType >>> >>> def pretty_hook(data: Dict): ... pprint(data) >>> >>> c = WebSocketClient(api_key='api_key', api_secret='api_secret', currency_pairs=['BTCZAR'], ... ws_type=WebSocketType.TRADE.name, ... trade_subscriptions=[TradeEvent.MARKET_SUMMARY_UPDATE.name], ... hooks={TradeEvent.MARKET_SUMMARY_UPDATE.name : pretty_hook}) >>> loop = asyncio.get_event_loop() >>> loop.run_until_complete(c.run()) {'currencyPairSymbol': 'BTCZAR', 'data': {'askPrice': '151601', 'baseVolume': '314.7631144', 'bidPrice': '151600', 'changeFromPrevious': '2.14', 'created': '2020-02-06T22:47:03.129Z', 'currencyPairSymbol': 'BTCZAR', 'highPrice': '152440', 'lastTradedPrice': '151600', 'lowPrice': '146765', 'previousClosePrice': '148410', 'quoteVolume': '47167382.04552981'}, 'type': 'MARKET_SUMMARY_UPDATE'} Connection ~~~~~~~~~~ Our WebSocket API is accessible on the following address: wss://api.valr.com. Account WebSocket connection: In order to receive streaming updates about your VALR account, you would open up a WebSocket connection to wss://api.valr.com/ws/account Trade WebSocket connection: In order to receive streaming updates about Trade data, you would open up a WebSocket connection to wss://api.valr.com/ws/trade Authentication ~~~~~~~~~~~~~~ Our WebSocket API needs authentication. To authenticate, pass in the following headers to the first call that establishes the WebSocket connection. X-VALR-API-KEY: Your API Key X-VALR-SIGNATURE: Generated signature. The signature is generated using the following parameters: Api Secret Timestamp of request HTTP verb 'GET' Path (either /ws/account or /ws/trade) Request Body should be empty X-VALR-TIMESTAMP: Timestamp of the request The headers that are passed to establish the connection are the same 3 headers you pass to any authenticated call to the REST API. Subscribing to events ~~~~~~~~~~~~~~~~~~~~~ Once you open a connection to Account, you are automatically subscribed to all messages for all events on the Account WebSocket connection. You will start receiving message feeds pertaining to your VALR account. For example, you will receive messages when your balance is updated or when a new trade is executed on your account. On the other hand, when you open a connection to Trade, in order to receive message feeds about trading data, you must subscribe to events you are interested in on the Trade WebSocket connection. For example, if you want to receive messages when markets fluctuate, you must send a message on the connection with the following payload: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"MARKET_SUMMARY_UPDATE", "pairs":[ "BTCZAR" ] } ] } Here, the event you are subscribing to is called MARKET_SUMMARY_UPDATE and the currency pair you are subscribing to is an array. We currently only support BTCZAR and ETHZAR. XRPZAR will be added in due course. Unsubscribing from events ~~~~~~~~~~~~~~~~~~~~~~~~~ When you are no longer interested in receiving messages for certain events on the Trade WebSocket connection, you can send a synthetic "unsubscribe" message. For example, if you want to unsubscribe from MARKET_SUMMARY_UPDATE event, you would send a message as follows: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"MARKET_SUMMARY_UPDATE", "pairs":[ ] } ] } Staying connected with Ping-Pong messages ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To ensure that you stay connected to either the Account or Trade WebSocket you can send a "PING" message on the WebSocket you wish to monitor. VALR will respond with a PONG event. The message must be as follows: { "type": "PING" } Events (On Trade WebSocket) ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here is a list of events you can subscribe to on the Trade WebSocket connection: Event Description AGGREGATED_ORDERBOOK_UPDATE When subscribed to this event for a given currency pair, the client receives the top 20 bids and asks from the order book for that currency pair. MARKET_SUMMARY_UPDATE When subscribed to this event for a given currency pair, the client receives a message feed with the latest market summary for that currency pair. NEW_TRADE_BUCKET When subscribed to this event for a given currency pair, the client receives the Open, High, Low, Close data valid for the last 60 seconds. NEW_TRADE When subscribed to this event for a given currency pair, the client receives message feeds with the latest trades that are executed for that currency pair. AGGREGATED_ORDERBOOK_UPDATE In order to subscribe to AGGREGATED_ORDERBOOK_UPDATE for BTCZAR and ETHZAR, you must send the following message on the Trade WebSocket connection once it is opened: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"AGGREGATED_ORDERBOOK_UPDATE", "pairs":[ "BTCZAR", "ETHZAR" ] } ] } To unsubscribe, send the following message: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"AGGREGATED_ORDERBOOK_UPDATE", "pairs":[ ] } ] } MARKET_SUMMARY_UPDATE In order to subscribe to MARKET_SUMMARY_UPDATE for just BTCZAR, you must send the following message on the Trade WebSocket connection once it is opened: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"MARKET_SUMMARY_UPDATE", "pairs":[ "BTCZAR" ] } ] } To unsubscribe, send the following message: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"MARKET_SUMMARY_UPDATE", "pairs":[ ] } ] } NEW_TRADE_BUCKET In order to subscribe to NEW_TRADE_BUCKET for BTCZAR as well as ETHZAR, you must send the following message on the Trade WebSocket connection once it is opened: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"NEW_TRADE_BUCKET", "pairs":[ "BTCZAR", "ETHZAR" ] } ] } To unsubscribe, send the following message: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"NEW_TRADE_BUCKET", "pairs":[ ] } ] } NEW_TRADE In order to subscribe to NEW_TRADE just for BTCZAR, you must send the following message on the Trade WebSocket connection once it is opened: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"NEW_TRADE", "pairs":[ "BTCZAR" ] } ] } To unsubscribe, send the following message: { "type":"SUBSCRIBE", "subscriptions":[ { "event":"NEW_TRADE", "pairs":[ ] } ] } Message Feeds (On Trade WebSocket) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As and when events occur, the message feeds come through to the Trade WebSocket connection for the events the client has subscribed to. You will find an example message feed for each event specified above. AGGREGATED_ORDERBOOK_UPDATE Sample message feed: { "type":"AGGREGATED_ORDERBOOK_UPDATE", "currencyPairSymbol":"BTCZAR", "data":{ "Asks":[ { "side":"sell", "quantity":"0.005", "price":"9500", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"0.01", "price":"9750", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"0.643689", "price":"10000", "currencyPair":"BTCZAR", "orderCount":3 }, { "side":"sell", "quantity":"0.2", "price":"11606", "currencyPair":"BTCZAR", "orderCount":2 }, { "side":"sell", "quantity":"0.67713484", "price":"14000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"1", "price":"15000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"1", "price":"16000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"1", "price":"17000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"1", "price":"18000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"sell", "quantity":"1", "price":"19000", "currencyPair":"BTCZAR", "orderCount":1 } ], "Bids":[ { "side":"buy", "quantity":"0.038", "price":"9000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8802", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.2", "price":"8801", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8800", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8700", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8600", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8500", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8400", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.3", "price":"8200", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8100", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"0.1", "price":"8000", "currencyPair":"BTCZAR", "orderCount":1 }, { "side":"buy", "quantity":"1.08027437", "price":"1", "currencyPair":"BTCZAR", "orderCount":3 } ] } } MARKET_SUMMARY_UPDATE Sample message feed: { "type":"MARKET_SUMMARY_UPDATE", "currencyPairSymbol":"BTCZAR", "data":{ "currencyPairSymbol":"BTCZAR", "askPrice":"9500", "bidPrice":"9000", "lastTradedPrice":"9500", "previousClosePrice":"9000", "baseVolume":"0.0551", "highPrice":"10000", "lowPrice":"9000", "created":"2016-04-25T19:41:16.237Z", "changeFromPrevious":"5.55" } } NEW_TRADE_BUCKET Sample message feed: { "type":"NEW_TRADE_BUCKET", "currencyPairSymbol":"BTCZAR", "data":{ "currencyPairSymbol":"BTCZAR", "bucketPeriodInSeconds":60, "startTime":"2019-04-25T19:41:00Z", "open":"9500", "high":"9500", "low":"9500", "close":"9500", "volume":"0" } } NEW_TRADE Sample message feed: { "type":"NEW_TRADE", "currencyPairSymbol":"BTCZAR", "data":{ "price":"9500", "quantity":"0.001", "currencyPair":"BTCZAR", "tradedAt":"2019-04-25T19:51:55.393Z", "takerSide":"buy" } } Message Feeds (On Account WebSocket) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As and when events occur, the message feeds come through to the Account WebSocket connection. As mentioned previously, the client is automatically subscribed to all events on the Account WebSocket connection as soon as the connection is established. That means, the client need not subscribe to events on the Account WebSocket connection. That also means that the client cannot unsubscribe from these events. Here is a list of events that occur on the Account WebSocket and the corresponding sample message feed: NEW_ACCOUNT_HISTORY_RECORD : NEW SUCCESSFUL TRANSACTION Sample message feed: { "type":"NEW_ACCOUNT_HISTORY_RECORD", "data":{ "transactionType":{ "type":"SIMPLE_BUY", "description":"Simple Buy" }, "debitCurrency":{ "symbol":"R", "decimalPlaces":2, "isActive":true, "shortName":"ZAR", "longName":"Rand", "supportedWithdrawDecimalPlaces":2 }, "debitValue":"10", "creditCurrency":{ "symbol":"BTC", "decimalPlaces":8, "isActive":true, "shortName":"BTC", "longName":"Bitcoin", "supportedWithdrawDecimalPlaces":8 }, "creditValue":"0.00104473", "feeCurrency":{ "symbol":"BTC", "decimalPlaces":8, "isActive":true, "shortName":"BTC", "longName":"Bitcoin", "supportedWithdrawDecimalPlaces":8 }, "feeValue":"0.00000789", "eventAt":"2019-04-25T20:36:53.426Z", "additionalInfo":{ "costPerCoin":9500, "costPerCoinSymbol":"R", "currencyPairSymbol":"BTCZAR" } } } BALANCE_UPDATE : BALANCE HAS BEEN UPDATED Sample message feed: { "type":"BALANCE_UPDATE", "data":{ "currency":{ "symbol":"BTC", "decimalPlaces":8, "isActive":true, "shortName":"BTC", "longName":"Bitcoin", "supportedWithdrawDecimalPlaces":8 }, "available":"0.88738681", "reserved":"0.97803484", "total":"1.86542165" } } NEW_ACCOUNT_TRADE : NEW TRADE EXECUTED ON YOUR ACCOUNT Sample message feed: { "type":"NEW_ACCOUNT_TRADE", "currencyPairSymbol":"BTCZAR", "data":{ "price":"9500", "quantity":"0.00105263", "currencyPair":"BTCZAR", "tradedAt":"2019-04-25T20:36:53.426Z", "side":"buy" } } INSTANT_ORDER_COMPLETED: NEW SIMPLE BUY/SELL EXECUTED Sample message feed: { "type":"INSTANT_ORDER_COMPLETED", "data":{ "orderId":"247dc157-bb5b-49af-b476-2f613b780697", "success":true, "paidAmount":"10", "paidCurrency":"R", "receivedAmount":"0.00104473", "receivedCurrency":"BTC", "feeAmount":"0.00000789", "feeCurrency":"BTC", "orderExecutedAt":"2019-04-25T20:36:53.445" } } OPEN_ORDERS_UPDATE : NEW ORDER ADDED TO OPEN ORDERS Sample message feed (all open orders are returned) : { "type":"OPEN_ORDERS_UPDATE", "data":[ { "orderId":"38511e49-a755-4f8f-a2b1-232bae6967dc", "side":"sell", "remainingQuantity":"0.1", "originalPrice":"10000", "currencyPair":{ "id":1, "symbol":"BTCZAR", "baseCurrency":{ "id":2, "symbol":"BTC", "decimalPlaces":8, "isActive":true, "shortName":"BTC", "longName":"Bitcoin", "currencyDecimalPlaces":8, "supportedWithdrawDecimalPlaces":8 }, "quoteCurrency":{ "id":1, "symbol":"R", "decimalPlaces":2, "isActive":true, "shortName":"ZAR", "longName":"Rand", "currencyDecimalPlaces":2, "supportedWithdrawDecimalPlaces":2 }, "shortName":"BTC/ZAR", "exchange":"VALR", "active":true, "minBaseAmount":0.0001, "maxBaseAmount":2, "minQuoteAmount":10, "maxQuoteAmount":100000 }, "createdAt":"2019-04-17T19:51:35.776Z", "originalQuantity":"0.1", "filledPercentage":"0.00", "customerOrderId":"" }, { "orderId":"d1d9f20a-778c-4f4a-98a1-d336da960158", "side":"sell", "remainingQuantity":"0.1", "originalPrice":"10000", "currencyPair":{ "id":1, "symbol":"BTCZAR", "baseCurrency":{ "id":2, "symbol":"BTC", "decimalPlaces":8, "isActive":true, "shortName":"BTC", "longName":"Bitcoin", "currencyDecimalPlaces":8, "supportedWithdrawDecimalPlaces":8 }, "quoteCurrency":{ "id":1, "symbol":"R", "decimalPlaces":2, "isActive":true, "shortName":"ZAR", "longName":"Rand", "currencyDecimalPlaces":2, "supportedWithdrawDecimalPlaces":2 }, "shortName":"BTC/ZAR", "exchange":"VALR", "active":true, "minBaseAmount":0.0001, "maxBaseAmount":2, "minQuoteAmount":10, "maxQuoteAmount":100000 }, "createdAt":"2019-04-20T13:48:44.922Z", "originalQuantity":"0.1", "filledPercentage":"0.00", "customerOrderId":"4" } ] } ORDER_PROCESSED : ORDER PROCESSED Sample message feed: { "type":"ORDER_PROCESSED", "data":{ "orderId":"247dc157-bb5b-49af-b476-2f613b780697", "success":true, "failureReason":"" } } ORDER_STATUS_UPDATE : ORDER STATUS HAS BEEN UPDATED Sample message feed: { "type":"ORDER_STATUS_UPDATE", "data":{ "orderId":"247dc157-bb5b-49af-b476-2f613b780697", "orderStatusType":"Filled", "currencyPair":{ "id":1, "symbol":"BTCZAR", "baseCurrency":{ "id":2, "symbol":"BTC", "decimalPlaces":8, "isActive":true, "shortName":"BTC", "longName":"Bitcoin", "currencyDecimalPlaces":8, "supportedWithdrawDecimalPlaces":8 }, "quoteCurrency":{ "id":1, "symbol":"R", "decimalPlaces":2, "isActive":true, "shortName":"ZAR", "longName":"Rand", "currencyDecimalPlaces":2, "supportedWithdrawDecimalPlaces":2 }, "shortName":"BTC/ZAR", "exchange":"VALR", "active":true, "minBaseAmount":0.0001, "maxBaseAmount":2, "minQuoteAmount":10, "maxQuoteAmount":100000 }, "originalPrice":"80000", "remainingQuantity":"0.01", "originalQuantity":"0.01", "orderSide":"buy", "orderType":"limit", "failedReason":"", "orderUpdatedAt":"2019-05-10T14:47:24.826Z", "orderCreatedAt":"2019-05-10T14:42:37.333Z", "customerOrderId":"4" } } orderStatusType can be one of the following values: "Placed", "Failed", "Cancelled", "Filled", "Partially Filled", "Instant Order Balance Reserve Failed", "Instant Order Balance Reserved","Instant Order Completed". FAILED_CANCEL_ORDER : UNABLE TO CANCEL ORDER Sample message feed: { "type":"FAILED_CANCEL_ORDER", "data":{ "orderId":"247dc157-bb5b-49af-b476-2f613b780697", "message":"An error occurred while cancelling your order." } } NEW_PENDING_RECEIVE : NEW PENDING CRYPTO DEPOSIT Sample message feed: { "type":"NEW_PENDING_RECEIVE", "data":{ "currency":{ "id":3, "symbol":"ETH", "decimalPlaces":8, "isActive":true, "shortName":"ETH", "longName":"Ethereum", "currencyDecimalPlaces":18, "supportedWithdrawDecimalPlaces":8 }, "receiveAddress":"0xA7Fae2Fd50886b962d46FF4280f595A3982aeAa5", "transactionHash":"0x804bbfa946b57fc5ffcb0c37ec02e7503435d19c35bf8eb0b0c6deb289f7009a", "amount":0.01, "createdAt":"2019-04-25T21:16:28Z", "confirmations":1, "confirmed":false } } This message feed is sent through every time there is an update to the number of confirmations to this pending deposit. SEND_STATUS_UPDATE : CRYPTO WITHDRAWAL STATUS UPDATE Sample message feed: { "type":"SEND_STATUS_UPDATE", "data":{ "uniqueId":"beb8a612-1a1a-4d68-9bd3-96d5ea341119", "status":"SEND_BROADCASTED", "confirmations":0 } } """ _WEBSOCKET_API_URI = 'wss://api.valr.com' _ACCOUNT_CONNECTION = f'{_WEBSOCKET_API_URI}{WebSocketType.ACCOUNT.value}' _TRADE_CONNECTION = f'{_WEBSOCKET_API_URI}{WebSocketType.TRADE.value}' def __init__(self, api_key: str, api_secret: str, hooks: Dict[str, Callable], currency_pairs: Optional[List[str]] = None, ws_type: str = 'trade', trade_subscriptions: Optional[List[str]] = None): self._api_key = api_key self._api_secret = api_secret self._ws_type = WebSocketType[ws_type.upper()] self._hooks = {get_event_type(self._ws_type)[e.upper()]: f for e, f in hooks.items()} if currency_pairs: self._currency_pairs = [CurrencyPair[p.upper()] for p in currency_pairs] else: self._currency_pairs = [p for p in CurrencyPair] if self._ws_type == WebSocketType.ACCOUNT: self._uri = self._ACCOUNT_CONNECTION else: self._uri = self._TRADE_CONNECTION if self._ws_type == WebSocketType.TRADE: if trade_subscriptions: self._trade_subscriptions = [TradeEvent[e] for e in trade_subscriptions] else: self._trade_subscriptions = [e for e in TradeEvent] elif trade_subscriptions: raise ValueError(f'trade subscriptions requires ws_type of {WebSocketType.TRADE.name} ') else: self._trade_subscriptions = None async def run(self): """Open an async websocket connection, consume responses and executed mapped hooks. Async hooks are also supported. The method relies on the underlying 'websockets' libraries ping-pong support. No API-level ping-pong messages are sent to keep the connection alive (not necessary). Support for custom-handling of websockets.exceptions.ConnectionClosed must be handled in the application. """ headers = _get_valr_headers(api_key=self._api_key, api_secret=self._api_secret, method='GET', path=self._ws_type.value, data='') async with websockets.connect(self._uri, ssl=True, extra_headers=headers) as ws: if self._ws_type == WebSocketType.TRADE: await ws.send(self.get_subscribe_data(self._currency_pairs, self._trade_subscriptions)) async for message in ws: data = json.loads(message) try: # ignore auth and subscription response messages if data['type'] not in (MessageFeedType.SUBSCRIBED.name, MessageFeedType.AUTHENTICATED.name): func = self._hooks[get_event_type(self._ws_type)[data['type']]] # apply hooks to mapped stream events if asyncio.iscoroutinefunction(func): await func(data) else: func(data) except KeyError: events = [e.name for e in get_event_type(self._ws_type)] if data['type'] in events: raise HookNotFoundError(f'no hook supplied for {data["type"]} event') raise WebSocketAPIException(f'WebSocket API failed to handle {data["type"]} event: {data}') @staticmethod def get_subscribe_data(currency_pairs, events) -> JSONType: """Get subscription data for ws client request""" subscriptions = [{"event": e.name, "pairs": [p.name for p in currency_pairs]} for e in events] data = { "type": MessageFeedType.SUBSCRIBE.name, "subscriptions": subscriptions } return json.dumps(data, default=str)
30.864407
120
0.512699
28,271
0.970312
0
0
405
0.0139
1,847
0.063392
25,465
0.874005
23e4cf7747f358650ecc3229b90396e47c6f5137
110
py
Python
bagua/torch_api/compression.py
fossabot/bagua
2a8434159bfa502e61739b5eabd91dca57c9256c
[ "MIT" ]
1
2021-06-23T08:13:15.000Z
2021-06-23T08:13:15.000Z
bagua/torch_api/compression.py
fossabot/bagua
2a8434159bfa502e61739b5eabd91dca57c9256c
[ "MIT" ]
null
null
null
bagua/torch_api/compression.py
fossabot/bagua
2a8434159bfa502e61739b5eabd91dca57c9256c
[ "MIT" ]
null
null
null
from enum import Enum class Compressor(Enum): NoneCompressor = None Uint8Compressor = "MinMaxUInt8"
15.714286
35
0.736364
85
0.772727
0
0
0
0
0
0
13
0.118182
23e64fd0f143ca1fd055ab9e432dcd782eb331eb
2,215
py
Python
emailer.py
dblossom/raffle-checker
807d33a305e836579a423986be2a7ff7c2d655e1
[ "MIT" ]
null
null
null
emailer.py
dblossom/raffle-checker
807d33a305e836579a423986be2a7ff7c2d655e1
[ "MIT" ]
null
null
null
emailer.py
dblossom/raffle-checker
807d33a305e836579a423986be2a7ff7c2d655e1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from database import Database from rafflecollector import RaffleCollector import os import smtplib, ssl from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart import schedule import time class Emailer: db = Database() email_id = os.environ['RAFFLE_EMAIL'] email_pass = os.environ['RAFFLE_EMAIL_PASSWORD'] port = 465 # For SSL context = ssl.create_default_context() message = MIMEMultipart("alternative") def __init__(self): self.send_alive_email() self.check_db_tickets() def check_db_tickets(self): ticket_list = self.db.get_all_tickets() rc = RaffleCollector() raffle_winners = rc.winning_numbers() for key, value in raffle_winners.items(): for tup in ticket_list: if tup[0] == int(value): self.build_message(self.db.get_email_pid(tup[1]), tup[0]) self.send_email() def build_message(self,to_email,ticket): self.message["From"] = self.email_id self.message["To"] = to_email self.message["Subject"] = "Congratulations, You're a winner!" text = """\ Congratulations! Ticket# """ + str(ticket) + """ is a winner! """ winner_message = MIMEText(text,"plain") self.message.attach(winner_message) def send_email(self): with smtplib.SMTP_SSL("smtp.gmail.com", self.port, context=self.context) as server: server.login(self.email_id, self.email_pass) server.sendmail(self.email_id, self.message["To"], self.message.as_string()) def send_alive_email(self): self.message["From"] = self.email_id self.message["To"] = self.db.get_email_pid(1) self.message["Subject"] = "Daily heartbeat email!" text = """\ This is your daily heartbeat email! """ heartbeat = MIMEText(text,"plain") self.message.attach(heartbeat) self.send_email() if __name__ == "__main__": e = Emailer() schedule.every().day.at("22:00").do(e.__init__) while True: schedule.run_pending() time.sleep(1)
31.642857
91
0.621219
1,806
0.81535
0
0
0
0
0
0
358
0.161625
23e79af618c8a287421e1a5d39cd45ed069fab6f
4,391
py
Python
website_handling/website_check.py
Dr3xler/CookieConsentChecker
816cdfb9d9dc741c57dbcd5e9c9ef59837196631
[ "MIT" ]
null
null
null
website_handling/website_check.py
Dr3xler/CookieConsentChecker
816cdfb9d9dc741c57dbcd5e9c9ef59837196631
[ "MIT" ]
3
2021-04-29T22:57:09.000Z
2021-05-03T15:32:39.000Z
website_handling/website_check.py
Dr3xler/CookieConsentChecker
816cdfb9d9dc741c57dbcd5e9c9ef59837196631
[ "MIT" ]
1
2021-08-29T09:53:09.000Z
2021-08-29T09:53:09.000Z
import os import json import shutil import time from pathlib import Path from sys import platform # TODO: (stackoverflow.com/question/17136514/how-to-get-3rd-party-cookies) # stackoverflow.com/questions/22200134/make-selenium-grab-all-cookies, add the selenium, phantomjs part to catch ALL cookies # TODO: Maybe save cookies to global variable to compare them in another function without saving them? ''' loading more than one addon for firefox to use with selenium: extensions = [ '[email protected]', '', '' ] for extension in extensions: driver.install_addon(extension_dir + extension, temporary=True) ''' def load_with_addon(driver, websites): """This method will load all websites with 'i don't care about cookies' preinstalled. Afterwards it will convert the cookies to dicts and save them locally for comparison Be aware that this method will delete all saved cookies""" print('creating dir for cookies with addon...') # checks if cookie dir already exists, creates an empty dir. if len(os.listdir('data/save/with_addon/')) != 0: shutil.rmtree('data/save/with_addon/') os.mkdir('data/save/with_addon/') print('saving cookies in firefox with addons ...') # the extension directory needs to be the one of your local machine # linux if platform == "linux": extension_dir = os.getenv("HOME") + "/.mozilla/firefox/7ppp44j6.default-release/extensions/" driver.install_addon(extension_dir + '[email protected]', temporary=True) # windows if platform == "win32": extension_dir = str( Path.home()) + "/AppData/Roaming/Mozilla/Firefox/Profiles/shdzeteb.default-release/extensions/" print(extension_dir) driver.install_addon(extension_dir + '[email protected]', temporary=True) for website in websites: name = website.split('www.')[1] driver.get(website) driver.execute_script("return document.readyState") cookies_addons = driver.get_cookies() cookies_dict = {} cookiecount = 0 for cookie in cookies_addons: cookies_dict = cookie print('data/save/with_addon/%s/%s_%s.json' % (name, name, cookiecount)) print(cookies_dict) # creates the website dir if not os.path.exists('data/save/with_addon/%s/' % name): os.mkdir('data/save/with_addon/%s/' % name) # saves the cookies into the website dir with open('data/save/with_addon/%s/%s_%s.json' % (name, name, cookiecount), 'w') as file: json.dump(cookies_dict, file, sort_keys=True) cookiecount += 1 def load_without_addon(driver, websites): """This method will load all websites on a vanilla firefox version. Afterwards it will convert the cookies to dicts and save them locally for comparison Be aware that this method will delete all saved cookies""" print('creating dir for cookies in vanilla...') # checks if cookie dir already exists, creates an empty dir. if len(os.listdir('data/save/without_addon/')) != 0: shutil.rmtree('data/save/without_addon/') os.mkdir('data/save/without_addon') print('saving cookies in firefox without addons ...') for website in websites: name = website.split('www.')[1] driver.get(website) driver.execute_script("return document.readyState") time.sleep(5) cookies_vanilla = driver.get_cookies() cookies_dict = {} cookiecount = 0 for cookie in cookies_vanilla: cookies_dict = cookie print('data/save/without_addon/%s/%s_%s.json' % (name, name, cookiecount)) print(cookies_dict) # creates the website dir if not os.path.exists('data/save/without_addon/%s/' % name): os.mkdir('data/save/without_addon/%s/' % name) # saves the cookies into the website dir with open('data/save/without_addon/%s/%s_%s.json' % (name, name, cookiecount), 'w') as file: json.dump(cookies_dict, file, sort_keys=True) cookiecount += 1 def close_driver_session(driver): """This method will end the driver session and close all windows. Driver needs to be initialized again afterwards""" driver.quit()
35.128
125
0.662491
0
0
0
0
0
0
0
0
2,312
0.526532
23e9be3b6c2cc45718ae9d2bebea994634002d02
925
py
Python
src/utils/import_lock.py
ThatOneAnimeGuy/seiso
f8ad20a0ec59b86b88149723eafc8e6d9f8be451
[ "BSD-3-Clause" ]
3
2021-11-08T05:23:08.000Z
2021-11-08T09:46:51.000Z
src/utils/import_lock.py
ThatOneAnimeGuy/seiso
f8ad20a0ec59b86b88149723eafc8e6d9f8be451
[ "BSD-3-Clause" ]
null
null
null
src/utils/import_lock.py
ThatOneAnimeGuy/seiso
f8ad20a0ec59b86b88149723eafc8e6d9f8be451
[ "BSD-3-Clause" ]
2
2021-11-08T05:23:12.000Z
2021-11-16T01:16:35.000Z
from flask import current_app from ..internals.database.database import get_cursor def take_lock(service, artist_service_id, post_service_id): query = 'INSERT INTO post_import_lock (service, artist_service_id, post_service_id) VALUES (%s, %s, %s) ON CONFLICT DO NOTHING RETURNING id' with get_cursor() as cursor: cursor.execute(query, (service, artist_service_id, post_service_id,)) result = cursor.fetchone() if result is None: return None return result['id'] def release_lock(lock_id): try: query = 'DELETE FROM post_import_lock WHERE id = %s' with get_cursor() as cursor: cursor.execute(query, (lock_id,)) except: current_app.logger.exception(f'Could not release post import lock {lock_id}') def clear_lock_table(): query = 'DELETE FROM post_import_lock' with get_cursor() as cursor: cursor.execute(query)
35.576923
144
0.68973
0
0
0
0
0
0
0
0
257
0.277838
23ecadb81a5ec6b2f9e0c728e946a750d6f1f36e
93
py
Python
modules/tankshapes/__init__.py
bullseyestudio/guns-game
3104c44e43ea7f000f6b9e756d622f98110d0a21
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
modules/tankshapes/__init__.py
bullseyestudio/guns-game
3104c44e43ea7f000f6b9e756d622f98110d0a21
[ "Apache-2.0", "BSD-3-Clause" ]
1
2018-11-21T04:50:57.000Z
2018-11-21T04:50:57.000Z
modules/tankshapes/__init__.py
bullseyestudio/guns-game
3104c44e43ea7f000f6b9e756d622f98110d0a21
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
""" Tank shapes package for Guns. This init file marks the package as a usable module. """
15.5
52
0.709677
0
0
0
0
0
0
0
0
92
0.989247
23ece7de650d89db697b4f1ccb8b587a85d078b4
99
py
Python
jonathan/Aufgabe23/1.py
codingkrabbe/adventofcode
21965a9519e8c20ab154354fd4b4ad3c807b7b95
[ "MIT" ]
5
2021-12-01T21:44:22.000Z
2021-12-09T19:11:21.000Z
jonathan/Aufgabe23/1.py
codingkrabbe/adventofcode
21965a9519e8c20ab154354fd4b4ad3c807b7b95
[ "MIT" ]
null
null
null
jonathan/Aufgabe23/1.py
codingkrabbe/adventofcode
21965a9519e8c20ab154354fd4b4ad3c807b7b95
[ "MIT" ]
3
2021-12-01T21:41:20.000Z
2021-12-03T14:17:24.000Z
def main(): lines = open('input.txt', 'r').readlines() if __name__ == '__main__': main()
14.142857
46
0.565657
0
0
0
0
0
0
0
0
24
0.242424
23ed67548a141b4172f60911a628a2325339dc44
4,468
py
Python
podstreamer.py
Swall0w/pymusic
73e08e6a5ad4c6d418a0074fc3a83be0896cf97c
[ "MIT" ]
1
2017-06-08T11:41:00.000Z
2017-06-08T11:41:00.000Z
podstreamer.py
Swall0w/pymusic
73e08e6a5ad4c6d418a0074fc3a83be0896cf97c
[ "MIT" ]
null
null
null
podstreamer.py
Swall0w/pymusic
73e08e6a5ad4c6d418a0074fc3a83be0896cf97c
[ "MIT" ]
null
null
null
import feedparser import vlc import argparse import sys import time import curses import wget def arg(): parser = argparse.ArgumentParser( description='Simple Podcast Streamer.') parser.add_argument('--add', '-a', type=str, default=None, help='Pass Podcast an URL argument that you want to add.') parser.add_argument('--list', '-l', action='store_true', help='Podcast lists that are contained.') parser.add_argument('--delete', '-d', type=int, default=-1, help='delete podcast channel.') parser.add_argument('--detail', type=int, default=-1, help='See podcast channel detail.') parser.add_argument('--play', '-p', action='store_true', help='Play Podcast. Please pass channel and\ track argument with play argument.') parser.add_argument('--download', action='store_true', help='Download Podcast. Please pass channel and track argument') parser.add_argument('--channel', '-c', type=int, help='Podcast Channel that you want to listen to.') parser.add_argument('--track', '-t', type=int, help='Podcast track that you want to listen to.') return parser.parse_args() def converttime(times): minutes, seconds = divmod(times, 60) hours, minutes = divmod(minutes, 60) return int(hours), int(minutes), int(seconds) def stream(rss_url, track): try: rssdata = feedparser.parse(rss_url) rssdata = rssdata.entries[track] except: print('Unexepted Error: {0}'.format(sys.exc_info())) sys.exit(1) mp3_url = rssdata.media_content[0]['url'] player = vlc.MediaPlayer(mp3_url) player.audio_set_volume(100) player.play() stdscr = curses.initscr() curses.noecho() curses.cbreak() stdscr.nodelay(1) while True: try: if player.is_playing(): status = 'playing...' else: status = 'pause...' key_input = stdscr.getch() if key_input == ord('k'): player.audio_set_volume(int(player.audio_get_volume() + 5)) elif key_input == ord('j'): player.audio_set_volume(int(player.audio_get_volume() - 5)) elif key_input == ord('l'): player.set_time(player.get_time() + 10000) elif key_input == ord('h'): player.set_time(player.get_time() - 10000) elif key_input == ord(' '): player.pause() elif key_input == ord('q'): curses.nocbreak() curses.echo() curses.endwin() sys.exit(0) else: pass hours, minutes, seconds = converttime(player.get_time() / 1000) m_hours, m_minutes, m_seconds = converttime( player.get_length() / 1000) comment = '\r{0} time: {1:0>2}:{2:0>2}:{3:0>2} /\ {4:0>2}:{5:0>2}:{6:0>2} volume:{7} '.format( status, hours, minutes, seconds, m_hours, m_minutes, m_seconds, player.audio_get_volume() ) stdscr.addstr(0, 0, rssdata.title) stdscr.addstr(1, 0, comment) stdscr.refresh() time.sleep(0.1) except KeyboardInterrupt: curses.nocbreak() curses.echo() curses.endwin() def write_list(filename,items): with open(filename, 'w') as f: for item in items: f.write(item + '\n') def detail(channel_url): rssdata = feedparser.parse(channel_url) for index, entry in enumerate(rssdata.entries): print(index, entry.title) def main(): args = arg() # Load Channels with open('.channels', 'r') as f: channels = [item.strip() for item in f.readlines()] if args.list: for index, channel in enumerate(channels): print(index, channel) if args.add: channels.append(args.add) write_list('.channels', channels) if args.delete>=0: del channels[args.delete] write_list('.channels', channels) if args.detail >= 0: detail(channels[args.detail]) if args.play: stream(channels[args.channel], args.track) if args.download: mp3_url = feedparser.parse(channels[args.channel]).entries[ args.track].media_content[0]['url'] wget.download(mp3_url) if __name__ == '__main__': main()
30.813793
75
0.57744
0
0
0
0
0
0
0
0
765
0.171218
23edadd6c1315ae3bef9cd266a3d92857c911930
229
py
Python
tfbs_footprinter-runner.py
thirtysix/TFBS_footprinting
f627e0a5186e00fe166dad46b21d9b2742b51760
[ "MIT" ]
null
null
null
tfbs_footprinter-runner.py
thirtysix/TFBS_footprinting
f627e0a5186e00fe166dad46b21d9b2742b51760
[ "MIT" ]
null
null
null
tfbs_footprinter-runner.py
thirtysix/TFBS_footprinting
f627e0a5186e00fe166dad46b21d9b2742b51760
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Convenience wrapper for running tfbs_footprinter directly from source tree.""" from tfbs_footprinter.tfbs_footprinter import main if __name__ == '__main__': main()
17.615385
81
0.694323
0
0
0
0
0
0
0
0
135
0.58952
23ee7f3b59a96672f837686dde3019287c34f061
2,573
py
Python
metalfi/src/data/meta/importance/shap.py
CemOezcan/metalfi
d7a071eea0229ce621fa07e3474a26d43bfaac66
[ "MIT" ]
2
2019-12-05T07:57:14.000Z
2019-12-05T13:02:08.000Z
metalfi/src/data/meta/importance/shap.py
CemOezcan/metalfi
d7a071eea0229ce621fa07e3474a26d43bfaac66
[ "MIT" ]
31
2019-12-05T15:14:47.000Z
2020-12-04T14:37:46.000Z
metalfi/src/data/meta/importance/shap.py
CemOezcan/metalfi
d7a071eea0229ce621fa07e3474a26d43bfaac66
[ "MIT" ]
1
2020-12-04T13:40:11.000Z
2020-12-04T13:40:11.000Z
import shap from pandas import DataFrame from sklearn.preprocessing import StandardScaler from metalfi.src.data.meta.importance.featureimportance import FeatureImportance class ShapImportance(FeatureImportance): def __init__(self, dataset): super(ShapImportance, self).__init__(dataset) self._name = "_SHAP" def calculateScores(self): sc = StandardScaler() X = DataFrame(data=sc.fit_transform(self._data_frame.drop(self._target, axis=1)), columns=self._data_frame.drop(self._target, axis=1).columns) y = self._data_frame[self._target] for model in self._linear_models: self._feature_importances.append(self.linearShap(model, X, y)) for model in self._tree_models: self._feature_importances.append(self.treeShap(model, X, y)) for model in self._kernel_models: self._feature_importances.append(self.kernelShap(model, X, y)) def treeShap(self, model, X, y): model.fit(X, y) imp = shap.TreeExplainer(model).shap_values(X) #shap.summary_plot(imp[1], X, plot_type="bar") return self.createDataFrame(imp[1], X) def linearShap(self, model, X, y): model.fit(X, y) imp = shap.LinearExplainer(model, X).shap_values(X) #shap.summary_plot(imp, X, plot_type="bar") return self.createDataFrame(imp, X) def treeRegressionShap(self, model, X, y): model.fit(X, y) imp = shap.TreeExplainer(model).shap_values(X) #shap.summary_plot(imp, X, plot_type="bar") return self.createDataFrame(imp, X) def kernelShap(self, model, X, y, k=10): model.fit(X, y) X_summary = shap.kmeans(X, k) imp = shap.KernelExplainer(model.predict, X_summary).shap_values(X) #shap.summary_plot(imp, X, plot_type="bar") return self.createDataFrame(imp, X) def createDataFrame(self, array, X): if str(type(array)).endswith("'list'>"): importances = list(map(lambda x: x / len(array), map(sum, zip(*[self.calculateImportances(c) for c in array])))) else: importances = self.calculateImportances(array) return DataFrame(data=importances, index=X.columns, columns=["Importances"]) def calculateImportances(self, array): importances = list() for i in range(len(array[0])): importances.append(sum([abs(x[i]) for x in array]) / len(array)) return importances
34.306667
93
0.629227
2,397
0.931597
0
0
0
0
0
0
204
0.079285
23ef7212ca626e96219a55f6302d2adc0e8dabbe
5,704
py
Python
Engine.py
MaciejKrol51/chess
457590768d338b900253ba345e64e56afbdf1ddd
[ "Apache-2.0" ]
null
null
null
Engine.py
MaciejKrol51/chess
457590768d338b900253ba345e64e56afbdf1ddd
[ "Apache-2.0" ]
null
null
null
Engine.py
MaciejKrol51/chess
457590768d338b900253ba345e64e56afbdf1ddd
[ "Apache-2.0" ]
null
null
null
def is_area_in_board(area): if 0 <= area[0] <= 7 and 0 <= area[1] <= 7: return True return False def cancel_castling(checker): if abs(checker.val) == 50 or abs(checker.val) == 900: checker.castling = False def is_king_beaten(board, color): for row in board: for area in row: if area.checker is not None and area.checker.color != color: # wedlug Pycharm is not if area.checker.king_attack(board): return True return False class Engine: def __init__(self): self.b_check = False self.b_move_check = 0 self.w_check = False self.w_move_check = 0 self.move_count = 0 self.win = 1 def what_kind_of_move(self, prev_pos, new_pos, board): checker = board[prev_pos[0]][prev_pos[1]].checker if abs(checker.val) == 10 and new_pos in checker.set_passe(board, self.move_count): return 'Passe' elif abs(checker.val) == 900 and new_pos in checker.set_castling(board): return 'Castling' else: return 'Normal' def normal_move(self, prev_pos, new_pos, board): checker = board[prev_pos[0]][prev_pos[1]].checker cancel_castling(checker) checker.pos = new_pos board[prev_pos[0]][prev_pos[1]].checker = None board[new_pos[0]][new_pos[1]].checker = checker def move_checker(self, prev_pos, new_pos, board): checker = board[prev_pos[0]][prev_pos[1]].checker if abs(checker.val) == 10: self.passe_move(prev_pos, new_pos, board) elif abs(checker.val) == 900: self.castling_move(prev_pos, new_pos, board) else: self.normal_move(prev_pos, new_pos, board) self.move_count += 1 def castling_move(self, prev_pos, new_pos, board): if new_pos in board[prev_pos[0]][prev_pos[1]].checker.set_castling(board): row = 0 if self.which_tour() == 1: row = 7 board[row][4].checker.castling = False self.normal_move((row, 4), new_pos, board) if new_pos[1] == 2: self.normal_move((row, 0), (row, 3), board) else: self.normal_move((row, 7), (row, 5), board) else: self.normal_move(prev_pos, new_pos, board) def passe_move(self, prev_pos, new_pos, board): if new_pos in board[prev_pos[0]][prev_pos[1]].checker.set_double_move(board): board[prev_pos[0]][prev_pos[1]].checker.move_passe = self.move_count self.normal_move(prev_pos, new_pos, board) elif new_pos in board[prev_pos[0]][prev_pos[1]].checker.set_passe(board, self.move_count): self.normal_move(prev_pos, new_pos, board) color = board[new_pos[0]][new_pos[1]].checker.color board[new_pos[0] + 1 * color][new_pos[1]].checker = None else: self.normal_move(prev_pos, new_pos, board) board[new_pos[0]][new_pos[1]].checker.is_promotion(board) def is_check(self, w_king_beat, b_king_beat): if w_king_beat and b_king_beat: if self.w_check is False and self.b_check is False: self.w_check = True self.w_move_check = self.move_count self.b_check = True self.b_move_check = self.move_count elif w_king_beat and self.w_check is False: self.w_check = True self.w_move_check = self.move_count self.b_check = False self.b_move_check = 0 elif b_king_beat and self.b_check is False: self.b_check = True self.b_move_check = self.move_count self.w_check = False self.w_move_check = 0 def is_checkmate(self): if self.w_check is True and self.move_count != self.w_move_check and self.move_count - self.w_move_check <= 2: self.win = -1 return True elif self.b_check is True and self.move_count != self.b_move_check and self.move_count - self.b_move_check <= 2: self.win = 1 return True else: return False def is_end(self, board): w_king_beat = is_king_beaten(board, 1) b_king_beat = is_king_beaten(board, -1) if w_king_beat or b_king_beat: self.is_check(w_king_beat, b_king_beat) return self.is_checkmate() self.w_check = False self.w_move_check = 0 self.b_check = False self.b_move_check = 0 return False def which_tour(self): if self.move_count % 2 == 0: return 1 else: return -1 def copy(self): copy = Engine() copy.b_check = self.b_check copy.b_move_check = self.b_move_check copy.w_check = self.w_check copy.w_move_check = self.w_move_check copy.move_count = self.move_count copy.win = self.win return copy def value_of_table(self, board, bot): ans = 0 for row in range(8): for area in range(8): if board[row][area].checker is not None: ans += board[row][area].checker.val #+ bot.get_position_val(board[row][area].checker) return ans def back_move(self, prev_pos, now_pos, move_checker, beat_checker, board): board[prev_pos[0]][prev_pos[1]].checker = move_checker board[now_pos[0]][now_pos[1]].checker = beat_checker self.move_count -= 1
37.526316
121
0.577489
5,162
0.904979
0
0
0
0
0
0
99
0.017356
23f06c21c858b67e6817ed29322c8b3b1f30395d
2,281
py
Python
jsportal_docsite/portal/markdown_extensions/__init__.py
jumpscale7/prototypes
a17f20aa203d4965708b6e0e3a34582f55baac30
[ "Apache-2.0" ]
null
null
null
jsportal_docsite/portal/markdown_extensions/__init__.py
jumpscale7/prototypes
a17f20aa203d4965708b6e0e3a34582f55baac30
[ "Apache-2.0" ]
null
null
null
jsportal_docsite/portal/markdown_extensions/__init__.py
jumpscale7/prototypes
a17f20aa203d4965708b6e0e3a34582f55baac30
[ "Apache-2.0" ]
null
null
null
""" Original code Copyright 2009 [Waylan Limberg](http://achinghead.com) All changes Copyright 2008-2014 The Python Markdown Project Changed by Mohammad Tayseer to add CSS classes to table License: [BSD](http://www.opensource.org/licenses/bsd-license.php) """ from __future__ import absolute_import from __future__ import unicode_literals from markdown import Extension from markdown.extensions.tables import TableProcessor from markdown.util import etree class BootstrapTableProcessor(TableProcessor): # This method actually was copied from TableProcessor.run. The only change is adding # `table.set('class', 'table')` to set Bootstrap table class def run(self, parent, blocks): """ Parse a table block and build table. """ block = blocks.pop(0).split('\n') header = block[0].strip() seperator = block[1].strip() rows = block[2:] # Get format type (bordered by pipes or not) border = False if header.startswith('|'): border = True # Get alignment of columns align = [] for c in self._split_row(seperator, border): if c.startswith(':') and c.endswith(':'): align.append('center') elif c.startswith(':'): align.append('left') elif c.endswith(':'): align.append('right') else: align.append(None) # Build table table = etree.SubElement(parent, 'table') table.set('class', 'table table-striped table-bordered table-hover') thead = etree.SubElement(table, 'thead') self._build_row(header, thead, align, border) tbody = etree.SubElement(table, 'tbody') for row in rows: self._build_row(row.strip(), tbody, align, border) class BootstrapTableExtension(Extension): """ Add tables to Markdown. """ def extendMarkdown(self, md, md_globals): """ Add an instance of TableProcessor to BlockParser. """ md.parser.blockprocessors.add('bootstraptable', BootstrapTableProcessor(md.parser), '<hashheader') def makeExtension(*args, **kwargs): return BootstrapTableExtension(*args, **kwargs)
35.092308
88
0.621657
1,725
0.756247
0
0
0
0
0
0
767
0.336256
23f14aa8cb681028e47a2e9707262f0b7d8d18f4
6,320
py
Python
NAS/single-path-one-shot/src/MNIST/test.py
naviocean/SimpleCVReproduction
61b43e3583977f42e6f91ef176ec5e1701e98d33
[ "Apache-2.0" ]
923
2020-01-11T06:36:53.000Z
2022-03-31T00:26:57.000Z
NAS/single-path-one-shot/src/MNIST/test.py
Twenty3hree/SimpleCVReproduction
9939f8340c54dbd69b0017cecad875dccf428f26
[ "Apache-2.0" ]
25
2020-02-27T08:35:46.000Z
2022-01-25T08:54:19.000Z
NAS/single-path-one-shot/src/MNIST/test.py
Twenty3hree/SimpleCVReproduction
9939f8340c54dbd69b0017cecad875dccf428f26
[ "Apache-2.0" ]
262
2020-01-02T02:19:40.000Z
2022-03-23T04:56:16.000Z
import argparse import json import logging import os import sys import time import cv2 import numpy as np import PIL import torch import torch.nn as nn import torchvision.datasets as datasets import torchvision.transforms as transforms from PIL import Image from angle import generate_angle # from cifar100_dataset import get_dataset from slimmable_resnet20 import mutableResNet20 from utils import (ArchLoader, AvgrageMeter, CrossEntropyLabelSmooth, accuracy, get_lastest_model, get_parameters, save_checkpoint, bn_calibration_init) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def get_args(): parser = argparse.ArgumentParser("ResNet20-Cifar100-oneshot") parser.add_argument('--arch-batch', default=200, type=int, help="arch batch size") parser.add_argument( '--path', default="Track1_final_archs.json", help="path for json arch files") parser.add_argument('--eval', default=False, action='store_true') parser.add_argument('--eval-resume', type=str, default='./snet_detnas.pkl', help='path for eval model') parser.add_argument('--batch-size', type=int, default=10240, help='batch size') parser.add_argument('--save', type=str, default='./weights', help='path for saving trained weights') parser.add_argument('--label-smooth', type=float, default=0.1, help='label smoothing') parser.add_argument('--auto-continue', type=bool, default=True, help='report frequency') parser.add_argument('--display-interval', type=int, default=20, help='report frequency') parser.add_argument('--val-interval', type=int, default=10000, help='report frequency') parser.add_argument('--save-interval', type=int, default=10000, help='report frequency') parser.add_argument('--train-dir', type=str, default='data/train', help='path to training dataset') parser.add_argument('--val-dir', type=str, default='data/val', help='path to validation dataset') args = parser.parse_args() return args def main(): args = get_args() # archLoader arch_loader = ArchLoader(args.path) # Log log_format = '[%(asctime)s] %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%d %I:%M:%S') t = time.time() local_time = time.localtime(t) if not os.path.exists('./log'): os.mkdir('./log') fh = logging.FileHandler(os.path.join( 'log/train-{}{:02}{}'.format(local_time.tm_year % 2000, local_time.tm_mon, t))) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) use_gpu = False if torch.cuda.is_available(): use_gpu = True val_loader = torch.utils.data.DataLoader( datasets.MNIST(root="./data", train=False, transform=transforms.Compose([ transforms.Resize(32), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) print('load data successfully') model = mutableResNet20(10) criterion_smooth = CrossEntropyLabelSmooth(1000, 0.1) if use_gpu: model = nn.DataParallel(model) loss_function = criterion_smooth.cuda() device = torch.device("cuda") else: loss_function = criterion_smooth device = torch.device("cpu") model = model.to(device) print("load model successfully") all_iters = 0 print('load from latest checkpoint') lastest_model, iters = get_lastest_model() if lastest_model is not None: all_iters = iters checkpoint = torch.load( lastest_model, map_location=None if use_gpu else 'cpu') model.load_state_dict(checkpoint['state_dict'], strict=True) # 参数设置 args.loss_function = loss_function args.val_dataloader = val_loader print("start to validate model") validate(model, device, args, all_iters=all_iters, arch_loader=arch_loader) def validate(model, device, args, *, all_iters=None, arch_loader=None): assert arch_loader is not None objs = AvgrageMeter() top1 = AvgrageMeter() top5 = AvgrageMeter() loss_function = args.loss_function val_dataloader = args.val_dataloader model.eval() # model.apply(bn_calibration_init) max_val_iters = 0 t1 = time.time() result_dict = {} arch_dict = arch_loader.get_arch_dict() base_model = mutableResNet20(10).cuda() with torch.no_grad(): for key, value in arch_dict.items(): # 每一个网络 max_val_iters += 1 # print('\r ', key, ' iter:', max_val_iters, end='') for data, target in val_dataloader: # 过一遍数据集 target = target.type(torch.LongTensor) data, target = data.to(device), target.to(device) output = model(data, value["arch"]) prec1, prec5 = accuracy(output, target, topk=(1, 5)) print("acc1: ", prec1.item()) n = data.size(0) top1.update(prec1.item(), n) top5.update(prec5.item(), n) tmp_dict = {} tmp_dict['arch'] = value['arch'] tmp_dict['acc'] = top1.avg result_dict[key] = tmp_dict with open("acc_result.json","w") as f: json.dump(result_dict, f) # angle_result_dict = {} # with torch.no_grad(): # for key, value in arch_dict.items(): # angle = generate_angle(base_model, model.module, value["arch"]) # tmp_dict = {} # tmp_dict['arch'] = value['arch'] # tmp_dict['acc'] = angle.item() # print("angle: ", angle.item()) # angle_result_dict[key] = tmp_dict # print('\n', "="*10, "RESULTS", "="*10) # for key, value in result_dict.items(): # print(key, "\t", value) # print("="*10, "E N D", "="*10) # with open("angle_result.json", "w") as f: # json.dump(angle_result_dict, f) if __name__ == "__main__": main()
31.287129
91
0.612025
0
0
0
0
0
0
0
0
1,612
0.253858
23f14e1f84f7c3d2bff9dca3e337c8e7cd4c2c5e
3,231
py
Python
examples/pixel/plot_0_image.py
DeepanshS/csdmpy
ae8d20dd09f217bb462af67a3145bb6fcb025def
[ "BSD-3-Clause" ]
7
2020-01-04T20:46:08.000Z
2021-05-26T21:09:25.000Z
examples/pixel/plot_0_image.py
deepanshs/csdmpy
bd4e138b10694491113b10177a89305697f1752c
[ "BSD-3-Clause" ]
16
2021-06-09T06:28:27.000Z
2022-03-01T18:12:33.000Z
examples/pixel/plot_0_image.py
deepanshs/csdmpy
bd4e138b10694491113b10177a89305697f1752c
[ "BSD-3-Clause" ]
1
2020-01-03T17:04:16.000Z
2020-01-03T17:04:16.000Z
# -*- coding: utf-8 -*- """ Image, 2D{3} datasets ^^^^^^^^^^^^^^^^^^^^^ """ # %% # The 2D{3} dataset is two dimensional, :math:`d=2`, with # a single three-component dependent variable, :math:`p=3`. # A common example from this subset is perhaps the RGB image dataset. # An RGB image dataset has two spatial dimensions and one dependent # variable with three components corresponding to the red, green, and blue color # intensities. # # The following is an example of an RGB image dataset. import csdmpy as cp filename = "https://osu.box.com/shared/static/vdxdaitsa9dq45x8nk7l7h25qrw2baxt.csdf" ImageData = cp.load(filename) print(ImageData.data_structure) # %% # The tuple of the dimension and dependent variable instances from # ``ImageData`` instance are x = ImageData.dimensions y = ImageData.dependent_variables # %% # respectively. There are two dimensions, and the coordinates along each # dimension are print("x0 =", x[0].coordinates[:10]) # %% print("x1 =", x[1].coordinates[:10]) # %% # respectively, where only first ten coordinates along each dimension is displayed. # %% # The dependent variable is the image data, as also seen from the # :attr:`~csdmpy.DependentVariable.quantity_type` attribute # of the corresponding :ref:`dv_api` instance. print(y[0].quantity_type) # %% # From the value `pixel_3`, `pixel` indicates a pixel data, while `3` # indicates the number of pixel components. # %% # As usual, the components of the dependent variable are accessed through # the :attr:`~csdmpy.DependentVariable.components` attribute. # To access the individual components, use the appropriate array indexing. # For example, print(y[0].components[0]) # %% # will return an array with the first component of all data values. In this case, # the components correspond to the red color intensity, also indicated by the # corresponding component label. The label corresponding to # the component array is accessed through the # :attr:`~csdmpy.DependentVariable.component_labels` # attribute with appropriate indexing, that is print(y[0].component_labels[0]) # %% # To avoid displaying larger output, as an example, we print the shape of # each component array (using Numpy array's `shape` attribute) for the three # components along with their respective labels. # %% print(y[0].component_labels[0], y[0].components[0].shape) # %% print(y[0].component_labels[1], y[0].components[1].shape) # %% print(y[0].component_labels[2], y[0].components[2].shape) # %% # The shape (768, 1024) corresponds to the number of points from the each # dimension instances. # %% # .. note:: # In this example, since there is only one dependent variable, the index # of `y` is set to zero, which is ``y[0]``. The indices for the # :attr:`~csdmpy.DependentVariable.components` and the # :attr:`~csdmpy.DependentVariable.component_labels`, # on the other hand, spans through the number of components. # %% # Now, to visualize the dataset as an RGB image, import matplotlib.pyplot as plt ax = plt.subplot(projection="csdm") ax.imshow(ImageData, origin="upper") plt.tight_layout() plt.show()
31.990099
85
0.701021
0
0
0
0
0
0
0
0
2,518
0.779325
23f1798fb64ee4b5169a0bf90b985ef75feb7390
76
py
Python
xdl/blueprints/__init__.py
mcrav/xdl
c120a1cf50a9b668a79b118700930eb3d60a9298
[ "MIT" ]
null
null
null
xdl/blueprints/__init__.py
mcrav/xdl
c120a1cf50a9b668a79b118700930eb3d60a9298
[ "MIT" ]
null
null
null
xdl/blueprints/__init__.py
mcrav/xdl
c120a1cf50a9b668a79b118700930eb3d60a9298
[ "MIT" ]
null
null
null
from .procedure import ( CrossCouplingBlueprint, GenericBlueprint )
15.2
27
0.75
0
0
0
0
0
0
0
0
0
0
23f2b2f6f97b3acdf979b2b92b12fa1475acc97b
141
py
Python
ex013 - Reajuste Salarial/app.py
daphi-ny/python-exercicios
0836fd1a134f07dc1cb29f7c31fce75fff65f963
[ "MIT" ]
null
null
null
ex013 - Reajuste Salarial/app.py
daphi-ny/python-exercicios
0836fd1a134f07dc1cb29f7c31fce75fff65f963
[ "MIT" ]
null
null
null
ex013 - Reajuste Salarial/app.py
daphi-ny/python-exercicios
0836fd1a134f07dc1cb29f7c31fce75fff65f963
[ "MIT" ]
null
null
null
s = float(input('Digite o valor do salário: R$ ')) p = s + (s * 15 / 100) print('o salário de R$ {} com mais 15% ficará {:.2f}'.format(s, p))
47
67
0.58156
0
0
0
0
0
0
0
0
82
0.569444
23f63778d171661ca3379def8f64e54d84bf8d22
2,868
py
Python
analysis/files/files.py
mg98/arbitrary-data-on-blockchains
6450e638cf7c54f53ef247ff779770b22128a024
[ "MIT" ]
1
2022-03-21T01:51:44.000Z
2022-03-21T01:51:44.000Z
analysis/files/files.py
mg98/arbitrary-data-on-blockchains
6450e638cf7c54f53ef247ff779770b22128a024
[ "MIT" ]
null
null
null
analysis/files/files.py
mg98/arbitrary-data-on-blockchains
6450e638cf7c54f53ef247ff779770b22128a024
[ "MIT" ]
null
null
null
import codecs import sqlite3 import json from fnmatch import fnmatch from abc import ABC, abstractmethod class FilesAnalysis(ABC): """Abstraction for analysis of transaction input data that contain popular file types.""" def __init__(self, chain: str, limit: int = 0, content_types: list[str] = ['*']): """ Initialize files analysis. :param chain Blockchain. :param limit Limit results processed by BigQuery. :param content_types List of considerable content types for this analysis. Asterix-sign supported. """ self.chain = chain self.limit = limit self.file_signatures = FilesAnalysis.get_file_signatures(content_types) def __enter__(self): self.conn = sqlite3.connect("results.db") return self def __exit__(self, type, val, tb): self.conn.close() def insert(self, hash: str, content_type: str, method: str, block_timestamp: str, type: str, data: str, to_contract: bool = False): self.conn.execute(""" INSERT INTO files_results ( chain, hash, content_type, method, block_timestamp, type, data, to_contract ) VALUES (?, ?, ?, ?, ?, ?, ?, ?) """, (self.chain, hash, content_type, method, block_timestamp, type, data, to_contract)) self.conn.commit() @staticmethod def get_file_signatures(content_types: list[str]) -> dict[str,list[str]]: """Returns dict of file signatures filtered by `content_types`.""" with open('analysis/files/file-signatures.json') as f: file_signatures = json.load(f) return { content_type : file_signatures[content_type] for content_type in list( filter(lambda k: any(fnmatch(k, ct) for ct in content_types), file_signatures) ) } def get_content_type(self, input): """Returns content type detected in input (candidate with most signature digits).""" top_candidate = (None, 0) # tuple of content type and signature length for (content_type, sigs) in self.file_signatures.items(): for sig in sigs: if sig in input: if top_candidate[1] < len(sig): top_candidate = (content_type, len(sig)) return top_candidate[0] @staticmethod def hex_to_base64(hex_value: str): """Converts hex to base64.""" return codecs.encode(codecs.decode(hex_value, 'hex'), 'base64').decode() def run(self): """Runs the query on BigQuery and persists results to the database.""" # setup database self.conn.execute(""" CREATE TABLE IF NOT EXISTS files_results ( chain TEXT, hash TEXT, content_type TEXT, method TEXT, to_contract BOOLEAN, type TEXT, data TEXT, block_timestamp DATETIME, deleted BOOLEAN DEFAULT 0 ) """) self.conn.execute("DELETE FROM files_results WHERE chain = ?", (self.chain,)) self.conn.commit() self.run_core() @abstractmethod def run_core(self): """Runs the query on BigQuery and persists results to the database.""" raise NotImplementedError("Must override run_core")
32.224719
132
0.709902
2,761
0.962692
0
0
744
0.259414
0
0
1,230
0.42887
23f755b41ceb13c51fd1941958609398bf18c29d
3,615
py
Python
info/models/movie.py
wojciezki/movie_info
88f089e8eaa5310cf5b03f7aae4f6c9b871282f2
[ "MIT" ]
null
null
null
info/models/movie.py
wojciezki/movie_info
88f089e8eaa5310cf5b03f7aae4f6c9b871282f2
[ "MIT" ]
3
2020-02-11T23:47:00.000Z
2021-06-10T21:13:10.000Z
info/models/movie.py
wojciezki/movie_info
88f089e8eaa5310cf5b03f7aae4f6c9b871282f2
[ "MIT" ]
null
null
null
# Create your models here. import datetime from django.db import models from rest_framework.compat import MinValueValidator class Movie(models.Model): title = models.CharField(max_length=512) year = models.IntegerField(validators=[MinValueValidator(0), ], null=True, blank=True) rated = models.CharField(max_length=64, null=True, blank=True) released = models.CharField(max_length=64, null=True, blank=True) runtime = models.CharField(max_length=64, null=True, blank=True) genre = models.CharField(max_length=64, null=True, blank=True) director = models.CharField(max_length=512, null=True, blank=True) writer = models.CharField(max_length=512, null=True, blank=True) actors = models.TextField(null=True, blank=True) plot = models.TextField(null=True, blank=True) language = models.CharField(max_length=64, null=True, blank=True) country = models.CharField(max_length=64, null=True, blank=True) awards = models.CharField(max_length=512, null=True, blank=True) poster = models.TextField(null=True, blank=True) ratings = models.TextField(null=True, blank=True) metascore = models.CharField(max_length=64, null=True, blank=True) imdbrating = models.CharField(max_length=64, null=True, blank=True) imdbvotes = models.CharField(max_length=64, null=True, blank=True) imdbid = models.CharField(max_length=64, null=True, blank=True) type = models.CharField(max_length=64, null=True, blank=True) dvd = models.CharField(max_length=64, null=True, blank=True) boxoffice = models.CharField(max_length=512, null=True, blank=True) production = models.CharField(max_length=512, null=True, blank=True) website = models.CharField(max_length=512, null=True, blank=True) def __str__(self): return f'{self.title}' def total_comments(self, request): from_date = request.query_params.get('from_date', None) to_date = request.query_params.get('to_date', None) if from_date and to_date: from_date = datetime.datetime.strptime(from_date, "%Y-%m-%d").date() to_date = datetime.datetime.strptime(to_date, "%Y-%m-%d").date() return self.comments.filter(created__lte=to_date, created__gte=from_date).count() else: return self.comments.all().count()
41.079545
93
0.458645
3,487
0.964592
0
0
0
0
0
0
81
0.022407
23faddb427ccf2b4a51011515cdd3a2b5edefbe2
1,211
py
Python
examples/pymt-frostnumbermodel-multidim-parameter-study.py
csdms/dakotathon
6af575b0c21384b2a1ab51e26b6a08512313bd84
[ "MIT" ]
8
2019-09-11T12:59:57.000Z
2021-08-11T16:31:58.000Z
examples/pymt-frostnumbermodel-multidim-parameter-study.py
csdms/dakota
6af575b0c21384b2a1ab51e26b6a08512313bd84
[ "MIT" ]
66
2015-04-06T17:11:21.000Z
2019-02-03T18:09:52.000Z
examples/pymt-frostnumbermodel-multidim-parameter-study.py
csdms/dakota
6af575b0c21384b2a1ab51e26b6a08512313bd84
[ "MIT" ]
5
2015-03-24T22:39:34.000Z
2018-04-21T12:14:05.000Z
"""An example of using Dakota as a component with PyMT. This example requires a WMT executor with PyMT installed, as well as the CSDMS Dakota interface and FrostNumberModel installed as components. """ import os from pymt.components import MultidimParameterStudy, FrostNumberModel from dakotathon.utils import configure_parameters c, d = FrostNumberModel(), MultidimParameterStudy() parameters = { "component": type(c).__name__, "descriptors": ["T_air_min", "T_air_max"], "partitions": [3, 3], "lower_bounds": [-20.0, 5.0], "upper_bounds": [-5.0, 20.0], "response_descriptors": [ "frostnumber__air", "frostnumber__surface", "frostnumber__stefan", ], "response_statistics": ["median", "median", "median"], } parameters, substitutes = configure_parameters(parameters) parameters["run_directory"] = c.setup(os.getcwd(), **substitutes) cfg_file = "frostnumber_model.cfg" # get from pymt eventually parameters["initialize_args"] = cfg_file dtmpl_file = cfg_file + ".dtmpl" os.rename(cfg_file, dtmpl_file) parameters["template_file"] = dtmpl_file d.setup(parameters["run_directory"], **parameters) d.initialize("dakota.yaml") d.update() d.finalize()
27.522727
68
0.721718
0
0
0
0
0
0
0
0
549
0.453344
23fdbc64ade39f6aaca5e42eb2790bc7ac6b2823
4,427
py
Python
tensorflow/train_pretrained.py
sevakon/mobilenetv2
e6634da41c377ae1c76662d061e6b2b804a3b09c
[ "MIT" ]
1
2020-01-17T07:54:02.000Z
2020-01-17T07:54:02.000Z
tensorflow/train_pretrained.py
sevakon/mobilenetv2
e6634da41c377ae1c76662d061e6b2b804a3b09c
[ "MIT" ]
null
null
null
tensorflow/train_pretrained.py
sevakon/mobilenetv2
e6634da41c377ae1c76662d061e6b2b804a3b09c
[ "MIT" ]
null
null
null
from callback import ValidationHistory from dataloader import Dataloader from normalizer import Normalizer import tensorflow as tf import numpy as np import argparse def get_model(input_shape, n_classes): base_model = tf.keras.applications.MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet') model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(n_classes, activation='softmax') ]) model.summary() return model def get_model_with_nn_head(input_shape, n_classes): base_model = tf.keras.applications.MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet') model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(.1), tf.keras.layers.Dense(n_classes, activation='softmax') ]) model.summary() return model def write_metrics_to_file(loss_acc, fold_idx): file = open("pretrained_model/metrics_fold{}.txt".format(fold_idx), "x") file.write('Best saved model validation accuracy: {}\n'.format(loss_acc[1])) file.write('Best saved model validation loss: {}\n'.format(loss_acc[0])) file.close() def train(config, fold_idx): print(' ... TRAIN MODEL ON FOLD #{}'.format(fold_idx + 1)) loader = Dataloader(img_size=config.input_size, n_folds=config.n_folds, seed=config.seed) loader = loader.fit(config.folder) classes = loader.classes train, train_steps = loader.train(batch_size=config.batch_size, fold_idx=fold_idx, normalize=False) val, val_steps = loader.val(64, fold_idx) model = get_model((config.input_size, config.input_size, 3), len(classes)) model.compile(optimizer=tf.keras.optimizers.Adam(), # Optimizer # Loss function to minimize loss=tf.keras.losses.CategoricalCrossentropy(), # List of metrics to monitor metrics=[tf.keras.metrics.CategoricalAccuracy()]) filepath="pretrained_model/mobilenet_fold{}".format(fold_idx) checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath, monitor='val_categorical_accuracy', verbose=1, save_best_only=True, mode='max') logdir = "logs/fold{}/".format(fold_idx) tensorboard = tf.keras.callbacks.TensorBoard(log_dir=logdir) val_history = ValidationHistory() callbacks = [checkpoint, tensorboard, val_history] model.fit(train.repeat(), epochs=config.epochs, steps_per_epoch = train_steps, validation_data=val.repeat(), validation_steps=val_steps, callbacks=callbacks) write_metrics_to_file(val_history.best_model_stats('acc'), fold_idx) if __name__ == '__main__': parser = argparse.ArgumentParser() # Required arguments parser.add_argument( "-f", "--folder", required=True, help="Path to directory containing images") # Optional arguments. parser.add_argument( "-s", "--input_size", type=int, default=224, help="Input image size.") parser.add_argument( "-b", "--batch_size", type=int, default=2, help="Number of images in a training batch.") parser.add_argument( "-e", "--epochs", type=int, default=100, help="Number of training epochs.") parser.add_argument( "-seed", "--seed", type=int, default=42, help="Seed for data reproducing.") parser.add_argument( "-n", "--n_folds", type=int, default=5, help="Number of folds for CV Training") args = parser.parse_args() for fold_idx in range(args.n_folds): train(args, fold_idx)
33.793893
87
0.5733
0
0
0
0
0
0
0
0
678
0.153151
23fe13301d5fe663179594a9c1c64fdce727026b
1,354
py
Python
source/test.py
valrus/alfred-org-mode-workflow
30f81772ad16519317ccb170d36782e387988633
[ "MIT" ]
52
2016-08-04T02:15:52.000Z
2021-12-20T20:33:07.000Z
source/test.py
valrus/alfred-org-mode-workflow
30f81772ad16519317ccb170d36782e387988633
[ "MIT" ]
3
2019-11-15T15:13:51.000Z
2020-11-25T10:42:34.000Z
source/test.py
valrus/alfred-org-mode-workflow
30f81772ad16519317ccb170d36782e387988633
[ "MIT" ]
9
2019-03-06T04:21:29.000Z
2021-08-16T02:28:33.000Z
# coding=utf-8 from orgmode_entry import OrgmodeEntry entry = u'#A Etwas machen:: DL: Morgen S: Heute Ausstellung am 23.09.2014 12:00 oder am Montag bzw. am 22.10 13:00 sollte man anschauen. ' org = OrgmodeEntry() # Use an absolute path org.inbox_file = '/Users/Alex/Documents/Planung/Planning/Inbox.org' org.delimiter = ':: ' # tag to separate the head from the body of the entry org.heading_suffix = "\n* " # depth of entry org.use_priority_tags = True # use priority tags: #b => [#B] org.priority_tag = '#' # tag that marks a priority value org.add_creation_date = True # add a creation date org.replace_absolute_dates = True # convert absolute dates like 01.10 15:00 into orgmode dates => <2016-10-01 Sun 15:00> org.replace_relative_dates = True # convert relative dates like monday or tomorrow into orgmode dates # Convert a schedule pattern into an org scheduled date org.convert_scheduled = True # convert sche org.scheduled_pattern = "S: " # Convert a deadline pattern into an org deadline org.convert_deadlines = True org.deadline_pattern = "DL: " org.smart_line_break = True # convert a pattern into a linebreak org.line_break_pattern = "\s\s" # two spaces # Cleanup spaces (double, leading, and trailing) org.cleanup_spaces = True entry = 'TODO ' + entry message = org.add_entry(entry).encode('utf-8') print(message)
33.02439
140
0.739291
0
0
0
0
0
0
0
0
784
0.579025
23fead2b5260640c347d0b505721cb2630c98560
407
py
Python
25/00/2.py
pylangstudy/201706
f1cc6af6b18e5bd393cda27f5166067c4645d4d3
[ "CC0-1.0" ]
null
null
null
25/00/2.py
pylangstudy/201706
f1cc6af6b18e5bd393cda27f5166067c4645d4d3
[ "CC0-1.0" ]
70
2017-06-01T11:02:51.000Z
2017-06-30T00:35:32.000Z
25/00/2.py
pylangstudy/201706
f1cc6af6b18e5bd393cda27f5166067c4645d4d3
[ "CC0-1.0" ]
null
null
null
import gzip import bz2 import lzma s = b'witch which has which witches wrist watch' with open('2.txt', 'wb') as f: f.write(s) with gzip.open('2.txt.gz', 'wb') as f: f.write(s) with bz2.open('2.txt.bz2', 'wb') as f: f.write(s) with lzma.open('2.txt.xz', 'wb') as f: f.write(s) print('txt', len(s)) print('gz ', len(gzip.compress(s))) print('bz2', len(bz2.compress(s))) print('xz ', len(lzma.compress(s)))
25.4375
49
0.641278
0
0
0
0
0
0
0
0
118
0.289926
23ff90db58dc31d3acc655b347ff8c32734fce8f
751
py
Python
timezones.py
rayjustinhuang/BitesofPy
03b694c5259ff607621419d9677c5caff90a6057
[ "MIT" ]
null
null
null
timezones.py
rayjustinhuang/BitesofPy
03b694c5259ff607621419d9677c5caff90a6057
[ "MIT" ]
null
null
null
timezones.py
rayjustinhuang/BitesofPy
03b694c5259ff607621419d9677c5caff90a6057
[ "MIT" ]
null
null
null
import pytz from datetime import datetime MEETING_HOURS = range(6, 23) # meet from 6 - 22 max TIMEZONES = set(pytz.all_timezones) def within_schedule(utc, *timezones): """Receive a utc datetime and one or more timezones and check if they are all within schedule (MEETING_HOURS)""" times = [] timezone_list = list(timezones) for zone in timezone_list: if zone not in TIMEZONES: raise ValueError tz = pytz.timezone(zone) times.append(pytz.utc.localize(utc).astimezone(tz)) boolean = [] for time in times: if time.hour in MEETING_HOURS: boolean.append(True) else: boolean.append(False) return all(boolean) pass
25.033333
68
0.624501
0
0
0
0
0
0
0
0
141
0.18775
9b000540f0f753d3e1bc63731ed866572a4a795c
450
py
Python
config.py
saurabhchardereal/kernel-tracker
60d53e6ae377925f8540f148b742869929337088
[ "MIT" ]
null
null
null
config.py
saurabhchardereal/kernel-tracker
60d53e6ae377925f8540f148b742869929337088
[ "MIT" ]
null
null
null
config.py
saurabhchardereal/kernel-tracker
60d53e6ae377925f8540f148b742869929337088
[ "MIT" ]
null
null
null
from os import sys, environ from tracker.__main__ import args # Name of the file to save kernel versions json DB_FILE_NAME = "data.json" # By default looks up in env for api and chat id or just put your stuff in here # directly if you prefer it that way BOT_API = environ.get("BOT_API") CHAT_ID = environ.get("CHAT_ID") if args.notify: if (BOT_API and CHAT_ID) is None: print("Either BOT_API or CHAT_ID is empty!") sys.exit(1)
28.125
79
0.717778
0
0
0
0
0
0
0
0
228
0.506667
9b019d69f7dc7afa332c3b317d1c035ebf327b40
94
py
Python
dive_sites/apps.py
Scuba-Chris/dive_site_api
9c5f2a26e6c8a1e2eeaf6cd1b4174e764f83a6b6
[ "MIT" ]
null
null
null
dive_sites/apps.py
Scuba-Chris/dive_site_api
9c5f2a26e6c8a1e2eeaf6cd1b4174e764f83a6b6
[ "MIT" ]
7
2020-06-05T21:03:39.000Z
2021-09-22T18:33:33.000Z
dive_sites/apps.py
Scuba-Chris/dive_site_api
9c5f2a26e6c8a1e2eeaf6cd1b4174e764f83a6b6
[ "MIT" ]
null
null
null
from django.apps import AppConfig class DiveSitesConfig(AppConfig): name = 'dive_sites'
15.666667
33
0.765957
57
0.606383
0
0
0
0
0
0
12
0.12766
9b02acdde4f64a083c7db9498cddd0e187f2c1df
615
py
Python
week9/tests/test_utils.py
zzsza/kyle-school
8cf6cffd3d86a25c29f914a9d4802cdb8e6dd478
[ "MIT" ]
189
2019-11-15T11:33:50.000Z
2022-03-27T08:23:35.000Z
week9/tests/test_utils.py
zzsza/kyle-school
8cf6cffd3d86a25c29f914a9d4802cdb8e6dd478
[ "MIT" ]
3
2020-05-29T03:26:32.000Z
2021-07-11T15:46:07.000Z
week9/tests/test_utils.py
zzsza/kyle-school
8cf6cffd3d86a25c29f914a9d4802cdb8e6dd478
[ "MIT" ]
39
2019-11-16T04:02:06.000Z
2022-03-21T04:18:14.000Z
# test_utils.py를 아래 내용으로 overwrite합니다(-a 옵션 없이!) import pytest import pandas as pd import datetime from utils import is_working_day, load_data def test_is_working_day(): assert is_working_day(datetime.date(2020,7,5)) == False assert is_working_day(datetime.date(2020,7,4)) == False assert is_working_day(datetime.date(2020,7,6)) == True @pytest.fixture(scope="session") def result_fixture(): result = load_data() return result def test_len(result_fixture): assert len(result_fixture) == 150 def test_object_type(result_fixture): assert isinstance(result_fixture, pd.DataFrame)
21.964286
59
0.747967
0
0
0
0
97
0.150855
0
0
85
0.132193
9b02d42862a5d0797afc71d43094512a70c96510
3,302
py
Python
Packs/dnstwist/Integrations/dnstwist/dnstwist.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/dnstwist/Integrations/dnstwist/dnstwist.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/dnstwist/Integrations/dnstwist/dnstwist.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import json import subprocess from CommonServerPython import * TWIST_EXE = '/dnstwist/dnstwist.py' if demisto.command() == 'dnstwist-domain-variations': KEYS_TO_MD = ["whois_updated", "whois_created", "dns_a", "dns_mx", "dns_ns"] DOMAIN = demisto.args()['domain'] LIMIT = int(demisto.args()['limit']) WHOIS = demisto.args().get('whois') def get_dnstwist_result(domain, include_whois): args = [TWIST_EXE, '-f', 'json'] if include_whois: args.append('-w') args.append(domain) res = subprocess.check_output(args) return json.loads(res) def get_domain_to_info_map(dns_twist_result): results = [] for x in dns_twist_result: temp = {} # type: dict for k, v in x.items(): if k in KEYS_TO_MD: if x["domain"] not in temp: temp["domain-name"] = x["domain"] if k == "dns_a": temp["IP Address"] = v else: temp[k] = v if temp: results.append(temp) return results dnstwist_result = get_dnstwist_result(DOMAIN, WHOIS == 'yes') new_result = get_domain_to_info_map(dnstwist_result) md = tableToMarkdown('dnstwist for domain - ' + DOMAIN, new_result, headers=["domain-name", "IP Address", "dns_mx", "dns_ns", "whois_updated", "whois_created"]) domain_context = new_result[0] # The requested domain for variations domains_context_list = new_result[1:LIMIT + 1] # The variations domains domains = [] for item in domains_context_list: temp = {"Name": item["domain-name"]} if "IP Address" in item: temp["IP"] = item["IP Address"] if "dns_mx" in item: temp["DNS-MX"] = item["dns_mx"] if "dns_ns" in item: temp["DNS-NS"] = item["dns_ns"] if "whois_updated" in item: temp["WhoisUpdated"] = item["whois_updated"] if "whois_created" in item: temp["WhoisCreated"] = item["whois_created"] domains.append(temp) ec = {"Domains": domains} if "domain-name" in domain_context: ec["Name"] = domain_context["domain-name"] if "IP Address" in domain_context: ec["IP"] = domain_context["IP Address"] if "dns_mx" in domain_context: ec["DNS-MX"] = domain_context["dns_mx"] if "dns_ns" in domain_context: ec["DNS-NS"] = domain_context["dns_ns"] if "whois_updated" in domain_context: ec["WhoisUpdated"] = domain_context["whois_updated"] if "whois_created" in domain_context: ec["WhoisCreated"] = domain_context["whois_created"] entry_result = { 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': dnstwist_result, 'HumanReadable': md, 'ReadableContentsFormat': formats['markdown'], 'EntryContext': {'dnstwist.Domain(val.Name == obj.Name)': ec} } demisto.results(entry_result) if demisto.command() == 'test-module': # This is the call made when pressing the integration test button. subprocess.check_output([TWIST_EXE, '-h'], stderr=subprocess.STDOUT) demisto.results('ok') sys.exit(0)
35.891304
117
0.58934
0
0
0
0
0
0
0
0
982
0.297396
9b036ad8294f9db8fecca4b31663a18176793718
595
py
Python
venv/Lib/site-packages/classutils/introspection.py
avim2809/CameraSiteBlocker
bfc0434e75e8f3f95c459a4adc86b7673200816e
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/classutils/introspection.py
avim2809/CameraSiteBlocker
bfc0434e75e8f3f95c459a4adc86b7673200816e
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/classutils/introspection.py
avim2809/CameraSiteBlocker
bfc0434e75e8f3f95c459a4adc86b7673200816e
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 import inspect def caller(frame=2): """ Returns the object that called the object that called this function. e.g. A calls B. B calls calling_object. calling object returns A. :param frame: 0 represents this function 1 represents the caller of this function (e.g. B) 2 (default) represents the caller of B :return: object reference """ stack = inspect.stack() try: obj = stack[frame][0].f_locals[u'self'] except KeyError: pass # Not called from an object else: return obj
24.791667
72
0.616807
0
0
0
0
0
0
0
0
407
0.684034
9b049ff801a11852ac7c1f7e34a2e069aca68527
3,395
py
Python
test/test_resourcerequirements.py
noralsydmp/icetea
b486cdc8e0d2211e118f1f8211aa4d284ca02422
[ "Apache-2.0" ]
6
2018-08-10T17:11:10.000Z
2020-04-29T07:05:36.000Z
test/test_resourcerequirements.py
noralsydmp/icetea
b486cdc8e0d2211e118f1f8211aa4d284ca02422
[ "Apache-2.0" ]
58
2018-08-13T08:36:08.000Z
2021-07-07T08:32:52.000Z
test/test_resourcerequirements.py
noralsydmp/icetea
b486cdc8e0d2211e118f1f8211aa4d284ca02422
[ "Apache-2.0" ]
7
2018-08-10T12:53:18.000Z
2021-11-08T05:15:42.000Z
# pylint: disable=missing-docstring,protected-access """ Copyright 2017 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from icetea_lib.ResourceProvider.ResourceRequirements import ResourceRequirements class ResourceRequirementTestcase(unittest.TestCase): def setUp(self): self.simple_testreqs = { "type": "process", "allowed_platforms": [], "expires": 2000, "nick": None, "tags": {"test": True} } self.simple_testreqs2 = { "type": "process", "allowed_platforms": ["DEV3"], "nick": None, } self.recursion_testreqs = { "type": "process", "allowed_platforms": ["DEV3"], "application": {"bin": "test_binary"}, "nick": None, } self.actual_descriptor1 = {"platform_name": "DEV2", "resource_type": "mbed"} self.actual_descriptor2 = {"platform_name": "DEV1", "resource_type": "process"} self.actual_descriptor3 = {"platform_name": "DEV3", "resource_type": "process"} self.actual_descriptor4 = {"resource_type": "process", "bin": "test_binary"} def test_get(self): dutreq = ResourceRequirements(self.simple_testreqs) self.assertEqual(dutreq.get("type"), "process") dutreq = ResourceRequirements(self.recursion_testreqs) self.assertEqual(dutreq.get("application.bin"), "test_binary") self.assertIsNone(dutreq.get("application.bin.not_exist")) def test_set(self): dutreq = ResourceRequirements(self.simple_testreqs) dutreq.set("test_key", "test_val") self.assertEqual(dutreq._requirements["test_key"], "test_val") # Test override dutreq.set("test_key", "test_val2") self.assertEqual(dutreq._requirements["test_key"], "test_val2") # test tags merging. Also a test for set_tag(tags=stuff) dutreq.set("tags", {"test": False, "test2": True}) self.assertEqual(dutreq._requirements["tags"], {"test": False, "test2": True}) dutreq.set("tags", {"test2": False}) self.assertEqual(dutreq._requirements["tags"], {"test": False, "test2": False}) def test_set_tags(self): dutreq = ResourceRequirements(self.simple_testreqs) dutreq._set_tag(tag="test", value=False) dutreq._set_tag(tag="test2", value=True) self.assertDictEqual(dutreq._requirements["tags"], {"test": False, "test2": True}) def test_empty_tags(self): dutreq = ResourceRequirements(self.simple_testreqs) dutreq._set_tag("test", value=None) dutreq.remove_empty_tags() self.assertEqual(dutreq._requirements["tags"], {}) self.assertEqual(dutreq.remove_empty_tags(tags={"test1": True, "test2": None}), {"test1": True}) if __name__ == '__main__': unittest.main()
38.146067
90
0.648895
2,630
0.774669
0
0
0
0
0
0
1,338
0.394109
9b04ad53449f706663e52db825a5918226304aab
321
py
Python
hadoop_example/reduce.py
hatbot-team/hatbot
e7fea42b5431cc3e93d9e484c5bb5232d8f2e981
[ "MIT" ]
1
2016-05-26T08:18:36.000Z
2016-05-26T08:18:36.000Z
hadoop_example/reduce.py
hatbot-team/hatbot
e7fea42b5431cc3e93d9e484c5bb5232d8f2e981
[ "MIT" ]
null
null
null
hadoop_example/reduce.py
hatbot-team/hatbot
e7fea42b5431cc3e93d9e484c5bb5232d8f2e981
[ "MIT" ]
null
null
null
#!/bin/python3 import sys prev = '' cnt = 0 for x in sys.stdin.readlines(): q, w = x.split('\t')[0], int(x.split('\t')[1]) if (prev == q): cnt += 1 else: if (cnt > 0): print(prev + '\t' + str(cnt)) prev = q cnt = w if (cnt > 0): print(prev + '\t' + str(cnt))
17.833333
50
0.433022
0
0
0
0
0
0
0
0
32
0.099688
9b076c62dfd81be9905f0f82e953e93e7d7c02e5
313
py
Python
covid19_id/pemeriksaan_vaksinasi/vaksinasi_harian.py
hexatester/covid19-id
8d8aa3f9092a40461a308f4db054ab4f95374849
[ "MIT" ]
null
null
null
covid19_id/pemeriksaan_vaksinasi/vaksinasi_harian.py
hexatester/covid19-id
8d8aa3f9092a40461a308f4db054ab4f95374849
[ "MIT" ]
null
null
null
covid19_id/pemeriksaan_vaksinasi/vaksinasi_harian.py
hexatester/covid19-id
8d8aa3f9092a40461a308f4db054ab4f95374849
[ "MIT" ]
null
null
null
import attr from covid19_id.utils import ValueInt @attr.dataclass(slots=True) class VaksinasiHarian: key_as_string: str key: int doc_count: int jumlah_vaksinasi_2: ValueInt jumlah_vaksinasi_1: ValueInt jumlah_jumlah_vaksinasi_1_kum: ValueInt jumlah_jumlah_vaksinasi_2_kum: ValueInt
20.866667
43
0.782748
231
0.738019
0
0
259
0.827476
0
0
0
0
9b0792a063a2b49e22d50a2e57caac25388b1b3e
511
py
Python
tests/blockchain/test_hashing_and_proof.py
thecoons/blockchain
426ede04d058b5eb0e595fcf6e9c71d16605f9a7
[ "MIT" ]
null
null
null
tests/blockchain/test_hashing_and_proof.py
thecoons/blockchain
426ede04d058b5eb0e595fcf6e9c71d16605f9a7
[ "MIT" ]
null
null
null
tests/blockchain/test_hashing_and_proof.py
thecoons/blockchain
426ede04d058b5eb0e595fcf6e9c71d16605f9a7
[ "MIT" ]
null
null
null
import json import hashlib from .test_case.blockchain import BlockchainTestCase class TestHashingAndProofs(BlockchainTestCase): def test_hash_is_correct(self): self.create_block() new_block = self.blockchain.last_block new_block_json = json.dumps( self.blockchain.last_block, sort_keys=True ).encode() new_hash = hashlib.sha256(new_block_json).hexdigest() assert len(new_hash) == 64 assert new_hash == self.blockchain.hash(new_block)
26.894737
61
0.702544
427
0.835616
0
0
0
0
0
0
0
0
9b0816140cf40f94ed1ecf980a99d990c62d409b
14,495
py
Python
xgbse/_kaplan_neighbors.py
gdmarmerola/xgboost-survival-embeddings
cb672d5c2bf09c7d8cbf9edf7807a153bce4db40
[ "Apache-2.0" ]
null
null
null
xgbse/_kaplan_neighbors.py
gdmarmerola/xgboost-survival-embeddings
cb672d5c2bf09c7d8cbf9edf7807a153bce4db40
[ "Apache-2.0" ]
null
null
null
xgbse/_kaplan_neighbors.py
gdmarmerola/xgboost-survival-embeddings
cb672d5c2bf09c7d8cbf9edf7807a153bce4db40
[ "Apache-2.0" ]
null
null
null
import warnings import numpy as np import pandas as pd import xgboost as xgb import scipy.stats as st from sklearn.neighbors import BallTree from xgbse._base import XGBSEBaseEstimator from xgbse.converters import convert_data_to_xgb_format, convert_y from xgbse.non_parametric import ( calculate_kaplan_vectorized, get_time_bins, calculate_interval_failures, ) # at which percentiles will the KM predict KM_PERCENTILES = np.linspace(0, 1, 11) DEFAULT_PARAMS = { "objective": "survival:aft", "eval_metric": "aft-nloglik", "aft_loss_distribution": "normal", "aft_loss_distribution_scale": 1, "tree_method": "hist", "learning_rate": 5e-2, "max_depth": 8, "booster": "dart", "subsample": 0.5, "min_child_weight": 50, "colsample_bynode": 0.5, } DEFAULT_PARAMS_TREE = { "objective": "survival:cox", "eval_metric": "cox-nloglik", "tree_method": "exact", "max_depth": 100, "booster": "dart", "subsample": 1.0, "min_child_weight": 30, "colsample_bynode": 1.0, } # class to turn XGB into a kNN with a kaplan meier in the NNs class XGBSEKaplanNeighbors(XGBSEBaseEstimator): """ ## XGBSEKaplanNeighbor Convert xgboost into a nearest neighbor model, where we use hamming distance to define similar elements as the ones that co-ocurred the most at the ensemble terminal nodes. Then, at each neighbor-set compute survival estimates with the Kaplan-Meier estimator. """ def __init__(self, xgb_params=DEFAULT_PARAMS, n_neighbors=30, radius=None): """ Args: xgb_params (Dict): parameters for XGBoost model, see https://xgboost.readthedocs.io/en/latest/parameter.html n_neighbors (Int): number of neighbors for computing KM estimates radius (Float): If set, uses a radius around the point for neighbors search """ self.xgb_params = xgb_params self.n_neighbors = n_neighbors self.radius = radius self.persist_train = False self.index_id = None self.radius = None def fit( self, X, y, num_boost_round=1000, validation_data=None, early_stopping_rounds=None, verbose_eval=0, persist_train=True, index_id=None, time_bins=None, ): """ Transform feature space by fitting a XGBoost model and outputting its leaf indices. Build search index in the new space to allow nearest neighbor queries at scoring time. Args: X ([pd.DataFrame, np.array]): design matrix to fit XGBoost model y (structured array(numpy.bool_, numpy.number)): binary event indicator as first field, and time of event or time of censoring as second field. num_boost_round (Int): Number of boosting iterations. validation_data (Tuple): Validation data in the format of a list of tuples [(X, y)] if user desires to use early stopping early_stopping_rounds (Int): Activates early stopping. Validation metric needs to improve at least once in every **early_stopping_rounds** round(s) to continue training. See xgboost.train documentation. verbose_eval ([Bool, Int]): level of verbosity. See xgboost.train documentation. persist_train (Bool): whether or not to persist training data to use explainability through prototypes index_id (pd.Index): user defined index if intended to use explainability through prototypes time_bins (np.array): specified time windows to use when making survival predictions Returns: XGBSEKaplanNeighbors: fitted instance of XGBSEKaplanNeighbors """ self.E_train, self.T_train = convert_y(y) if time_bins is None: time_bins = get_time_bins(self.T_train, self.E_train) self.time_bins = time_bins # converting data to xgb format dtrain = convert_data_to_xgb_format(X, y, self.xgb_params["objective"]) # converting validation data to xgb format evals = () if validation_data: X_val, y_val = validation_data dvalid = convert_data_to_xgb_format( X_val, y_val, self.xgb_params["objective"] ) evals = [(dvalid, "validation")] # training XGB self.bst = xgb.train( self.xgb_params, dtrain, num_boost_round=num_boost_round, early_stopping_rounds=early_stopping_rounds, evals=evals, verbose_eval=verbose_eval, ) # creating nearest neighbor index leaves = self.bst.predict(dtrain, pred_leaf=True) self.tree = BallTree(leaves, metric="hamming", leaf_size=40) if persist_train: self.persist_train = True if index_id is None: index_id = X.index.copy() self.index_id = index_id return self def predict( self, X, time_bins=None, return_ci=False, ci_width=0.683, return_interval_probs=False, ): """ Make queries to nearest neighbor search index build on the transformed XGBoost space. Compute a Kaplan-Meier estimator for each neighbor-set. Predict the KM estimators. Args: X (pd.DataFrame): data frame with samples to generate predictions time_bins (np.array): specified time windows to use when making survival predictions return_ci (Bool): whether to return confidence intervals via the Exponential Greenwood formula ci_width (Float): width of confidence interval return_interval_probs (Bool): Boolean indicating if interval probabilities are supposed to be returned. If False the cumulative survival is returned. Returns: (pd.DataFrame): A dataframe of survival probabilities for all times (columns), from a time_bins array, for all samples of X (rows). If return_interval_probs is True, the interval probabilities are returned instead of the cumulative survival probabilities. upper_ci (np.array): upper confidence interval for the survival probability values lower_ci (np.array): lower confidence interval for the survival probability values """ # converting to xgb format d_matrix = xgb.DMatrix(X) # getting leaves and extracting neighbors leaves = self.bst.predict(d_matrix, pred_leaf=True) if self.radius: assert self.radius > 0, "Radius must be positive" neighs, _ = self.tree.query_radius( leaves, r=self.radius, return_distance=True ) number_of_neighbors = np.array([len(neigh) for neigh in neighs]) if np.argwhere(number_of_neighbors == 1).shape[0] > 0: # If there is at least one sample without neighbors apart from itself # a warning is raised suggesting a radius increase warnings.warn( "Warning: Some samples don't have neighbors apart from itself. Increase the radius", RuntimeWarning, ) else: _, neighs = self.tree.query(leaves, k=self.n_neighbors) # gathering times and events/censors for neighbor sets T_neighs = self.T_train[neighs] E_neighs = self.E_train[neighs] # vectorized (very fast!) implementation of Kaplan Meier curves if time_bins is None: time_bins = self.time_bins # calculating z-score from width z = st.norm.ppf(0.5 + ci_width / 2) preds_df, upper_ci, lower_ci = calculate_kaplan_vectorized( T_neighs, E_neighs, time_bins, z ) if return_ci and return_interval_probs: raise ValueError( "Confidence intervals for interval probabilities is not supported. Choose between return_ci and return_interval_probs." ) if return_interval_probs: preds_df = calculate_interval_failures(preds_df) return preds_df if return_ci: return preds_df, upper_ci, lower_ci return preds_df def _align_leaf_target(neighs, target): # getting times and events for each leaf element target_neighs = neighs.apply(lambda x: target[x]) # converting to vectorized kaplan format # filling nas due to different leaf sizes with 0 target_neighs = ( pd.concat([pd.DataFrame(e) for e in target_neighs.values], axis=1) .T.fillna(0) .values ) return target_neighs # class to turn XGB into a kNN with a kaplan meier in the NNs class XGBSEKaplanTree(XGBSEBaseEstimator): """ ## XGBSEKaplanTree Single tree implementation as a simplification to `XGBSEKaplanNeighbors`. Instead of doing nearest neighbor searches, fit a single tree via `xgboost` and calculate KM curves at each of its leaves. """ def __init__( self, xgb_params=DEFAULT_PARAMS_TREE, ): self.xgb_params = xgb_params self.persist_train = False self.index_id = None """ Args: xgb_params (Dict): parameters for fitting the tree, see https://xgboost.readthedocs.io/en/latest/parameter.html """ def fit( self, X, y, persist_train=True, index_id=None, time_bins=None, ci_width=0.683, **xgb_kwargs, ): """ Fit a single decision tree using xgboost. For each leaf in the tree, build a Kaplan-Meier estimator. Args: X ([pd.DataFrame, np.array]): design matrix to fit XGBoost model y (structured array(numpy.bool_, numpy.number)): binary event indicator as first field, and time of event or time of censoring as second field. persist_train (Bool): whether or not to persist training data to use explainability through prototypes index_id (pd.Index): user defined index if intended to use explainability through prototypes time_bins (np.array): specified time windows to use when making survival predictions ci_width (Float): width of confidence interval Returns: XGBSEKaplanTree: Trained instance of XGBSEKaplanTree """ E_train, T_train = convert_y(y) if time_bins is None: time_bins = get_time_bins(T_train, E_train) self.time_bins = time_bins # converting data to xgb format dtrain = convert_data_to_xgb_format(X, y, self.xgb_params["objective"]) # training XGB self.bst = xgb.train(self.xgb_params, dtrain, num_boost_round=1, **xgb_kwargs) # getting leaves leaves = self.bst.predict(dtrain, pred_leaf=True) # organizing elements per leaf leaf_neighs = ( pd.DataFrame({"leaf": leaves}) .groupby("leaf") .apply(lambda x: list(x.index)) ) # getting T and E for each leaf T_leaves = _align_leaf_target(leaf_neighs, T_train) E_leaves = _align_leaf_target(leaf_neighs, E_train) # calculating z-score from width z = st.norm.ppf(0.5 + ci_width / 2) # vectorized (very fast!) implementation of Kaplan Meier curves ( self._train_survival, self._train_upper_ci, self._train_lower_ci, ) = calculate_kaplan_vectorized(T_leaves, E_leaves, time_bins, z) # adding leaf indexes self._train_survival = self._train_survival.set_index(leaf_neighs.index) self._train_upper_ci = self._train_upper_ci.set_index(leaf_neighs.index) self._train_lower_ci = self._train_lower_ci.set_index(leaf_neighs.index) if persist_train: self.persist_train = True if index_id is None: index_id = X.index.copy() self.tree = BallTree(leaves.reshape(-1, 1), metric="hamming", leaf_size=40) self.index_id = index_id return self def predict(self, X, return_ci=False, return_interval_probs=False): """ Run samples through tree until terminal nodes. Predict the Kaplan-Meier estimator associated to the leaf node each sample ended into. Args: X (pd.DataFrame): data frame with samples to generate predictions return_ci (Bool): whether to return confidence intervals via the Exponential Greenwood formula return_interval_probs (Bool): Boolean indicating if interval probabilities are supposed to be returned. If False the cumulative survival is returned. Returns: preds_df (pd.DataFrame): A dataframe of survival probabilities for all times (columns), from a time_bins array, for all samples of X (rows). If return_interval_probs is True, the interval probabilities are returned instead of the cumulative survival probabilities. upper_ci (np.array): upper confidence interval for the survival probability values lower_ci (np.array): lower confidence interval for the survival probability values """ # converting to xgb format d_matrix = xgb.DMatrix(X) # getting leaves and extracting neighbors leaves = self.bst.predict(d_matrix, pred_leaf=True) # searching for kaplan meier curves in leaves preds_df = self._train_survival.loc[leaves].reset_index(drop=True) upper_ci = self._train_upper_ci.loc[leaves].reset_index(drop=True) lower_ci = self._train_lower_ci.loc[leaves].reset_index(drop=True) if return_ci and return_interval_probs: raise ValueError( "Confidence intervals for interval probabilities is not supported. Choose between return_ci and return_interval_probs." ) if return_interval_probs: preds_df = calculate_interval_failures(preds_df) return preds_df if return_ci: return preds_df, upper_ci, lower_ci return preds_df
34.186321
135
0.635598
12,906
0.890376
0
0
0
0
0
0
7,717
0.53239
9b086dcb5153716593628ec1966115cfb5eef668
3,932
py
Python
homework_2/1.py
jelic98/raf_mu
8b965fa41d5f89eeea371ab7b8e15bd167325b5f
[ "Apache-2.0" ]
null
null
null
homework_2/1.py
jelic98/raf_mu
8b965fa41d5f89eeea371ab7b8e15bd167325b5f
[ "Apache-2.0" ]
null
null
null
homework_2/1.py
jelic98/raf_mu
8b965fa41d5f89eeea371ab7b8e15bd167325b5f
[ "Apache-2.0" ]
1
2021-05-30T15:26:52.000Z
2021-05-30T15:26:52.000Z
import math import numpy as np import pandas as pd import tensorflow as tf import datetime as dt import matplotlib.pyplot as plt import matplotlib.dates as mdates import warnings warnings.filterwarnings('ignore') # Hiperparametri epoch_max = 10 alpha_max = 0.025 alpha_min = 0.001 batch_size = 32 window_size = 14 test_ratio = 0.1 max_time = 16 lstm_size = 64 # Ucitavanje podataka csv = pd.read_csv('data/sp500.csv') dates, data = csv['Date'].values, csv['Close'].values # Konverzija datuma dates = [dt.datetime.strptime(d, '%Y-%m-%d').date() for d in dates] dates = [dates[i + max_time] for i in range(len(dates) - max_time)] # Grupisanje podataka pomocu kliznog prozora data = [data[i : i + window_size] for i in range(len(data) - window_size)] # Normalizacija podataka norm = [data[0][0]] + [data[i-1][-1] for i, _ in enumerate(data[1:])] data = [curr / norm[i] - 1.0 for i, curr in enumerate(data)] nb_samples = len(data) - max_time nb_train = int(nb_samples * (1.0 - test_ratio)) nb_test = nb_samples - nb_train nb_batches = math.ceil(nb_train / batch_size) # Grupisanje podataka za propagaciju greske kroz vreme x = [data[i : i + max_time] for i in range(nb_samples)] y = [data[i + max_time][-1] for i in range(nb_samples)] # Skup podataka za treniranje train_x = [x[i : i + batch_size] for i in range(0, nb_train, batch_size)] train_y = [y[i : i + batch_size] for i in range(0, nb_train, batch_size)] # Skup podataka za testiranje test_x, test_y = x[-nb_test:], y[-nb_test:] # Skup podataka za denormalizaciju norm_y = [norm[i + max_time] for i in range(nb_samples)] norm_test_y = norm_y[-nb_test:] tf.reset_default_graph() # Cene tokom prethodnih dana X = tf.placeholder(tf.float32, [None, max_time, window_size]) # Cena na trenutni dan Y = tf.placeholder(tf.float32, [None]) # Stopa ucenja L = tf.placeholder(tf.float32) # LSTM sloj rnn = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(lstm_size)]) # Izlaz LSTM sloja val, _ = tf.nn.dynamic_rnn(rnn, X, dtype=tf.float32) val = tf.transpose(val, [1, 0, 2]) # Poslednji izlaz LSTM sloja last = tf.gather(val, val.get_shape()[0] - 1) # Obucavajuci parametri weight = tf.Variable(tf.random_normal([lstm_size, 1])) bias = tf.Variable(tf.constant(0.0, shape=[1])) # Predvidjena cena prediction = tf.add(tf.matmul(last, weight), bias) # MSE za predikciju loss = tf.reduce_mean(tf.square(tf.subtract(prediction, Y))) # Gradijentni spust pomocu Adam optimizacije optimizer = tf.train.AdamOptimizer(L).minimize(loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Treniranje modela for epoch in range(epoch_max): # Adaptiranje stope ucenja epoch_loss, alpha = 0, max(alpha_min, alpha_max * (1 - epoch / epoch_max)) # Mini batch gradijentni spust for b in np.random.permutation(nb_batches): loss_val, _ = sess.run([loss, optimizer], {X: train_x[b], Y: train_y[b], L: alpha}) epoch_loss += loss_val print('Epoch: {}/{}\tLoss: {}'.format(epoch+1, epoch_max, epoch_loss)) # Testiranje modela test_pred = sess.run(prediction, {X: test_x, Y: test_y, L: alpha}) # Tacnost modela za predikciju monotonosti fluktuacije cene acc = sum(1 for i in range(nb_test) if test_pred[i] * test_y[i] > 0) / nb_test print('Accuracy: {}'.format(acc)) # Denormalizacija podataka denorm_y = [(curr + 1.0) * norm_test_y[i] for i, curr in enumerate(test_y)] denorm_pred = [(curr + 1.0) * norm_test_y[i] for i, curr in enumerate(test_pred)] # Prikazivanje predikcija plt.figure(figsize=(16,4)) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=7)) plt.plot(dates[-nb_test:], denorm_y, '-b', label='Actual') plt.plot(dates[-nb_test:], denorm_pred, '--r', label='Predicted') plt.gcf().autofmt_xdate() plt.legend() plt.show()
31.206349
95
0.694557
0
0
0
0
0
0
0
0
822
0.209054
9b091fad5fab76f79772a42218911d8db0cd0709
420
py
Python
src/pretalx/submission/migrations/0053_reviewphase_can_tag_submissions.py
lili668668/pretalx
5ba2185ffd7c5f95254aafe25ad3de340a86eadb
[ "Apache-2.0" ]
418
2017-10-05T05:52:49.000Z
2022-03-24T09:50:06.000Z
src/pretalx/submission/migrations/0053_reviewphase_can_tag_submissions.py
lili668668/pretalx
5ba2185ffd7c5f95254aafe25ad3de340a86eadb
[ "Apache-2.0" ]
1,049
2017-09-16T09:34:55.000Z
2022-03-23T16:13:04.000Z
src/pretalx/submission/migrations/0053_reviewphase_can_tag_submissions.py
lili668668/pretalx
5ba2185ffd7c5f95254aafe25ad3de340a86eadb
[ "Apache-2.0" ]
155
2017-10-16T18:32:01.000Z
2022-03-15T12:48:33.000Z
# Generated by Django 3.1 on 2020-10-10 14:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("submission", "0052_auto_20201010_1307"), ] operations = [ migrations.AddField( model_name="reviewphase", name="can_tag_submissions", field=models.CharField(default="never", max_length=12), ), ]
22.105263
67
0.621429
329
0.783333
0
0
0
0
0
0
123
0.292857
9b09888d30cc7622a264796e061dbd4cba10dd9a
440
py
Python
zzzeeksphinx/theme.py
aidos/zzzeeksphinx
c0fa4be4d40752632e879ec109850caa316ec8af
[ "MIT" ]
3
2017-08-10T22:26:25.000Z
2017-09-10T16:07:23.000Z
zzzeeksphinx/theme.py
zzzeek/zzzeeksphinx
663f5c353e9c3ef3f9676384d429f504feaf20d3
[ "MIT" ]
9
2020-07-18T12:31:49.000Z
2021-10-08T15:19:43.000Z
zzzeeksphinx/theme.py
zzzeek/zzzeeksphinx
663f5c353e9c3ef3f9676384d429f504feaf20d3
[ "MIT" ]
1
2021-02-20T20:57:00.000Z
2021-02-20T20:57:00.000Z
from os import path package_dir = path.abspath(path.dirname(__file__)) def setup(app): app.add_html_theme("zsbase", path.join(package_dir, "themes", "zsbase")) app.add_html_theme( "zzzeeksphinx", path.join(package_dir, "themes", "zzzeeksphinx") ) app.add_html_theme("zsmako", path.join(package_dir, "themes", "zsmako")) return { "parallel_read_safe": True, "parallel_write_safe": True, }
25.882353
76
0.665909
0
0
0
0
0
0
0
0
125
0.284091
9b0a82ae7938b94fafa2d863a1f8c7ee8913dbbc
2,674
py
Python
playground/toy_grads_compositional.py
TUIlmenauAMS/nca_mss
f0deb4b0acd0e317fb50340a57979c2e0a43c293
[ "MIT" ]
2
2019-08-15T11:51:17.000Z
2019-08-15T12:59:37.000Z
playground/toy_grads_compositional.py
TUIlmenauAMS/nca_mss
f0deb4b0acd0e317fb50340a57979c2e0a43c293
[ "MIT" ]
1
2020-08-11T14:25:45.000Z
2020-08-11T14:25:45.000Z
playground/toy_grads_compositional.py
TUIlmenauAMS/nca_mss
f0deb4b0acd0e317fb50340a57979c2e0a43c293
[ "MIT" ]
1
2021-03-16T12:30:31.000Z
2021-03-16T12:30:31.000Z
# -*- coding: utf-8 -*- __author__ = 'S.I. Mimilakis' __copyright__ = 'MacSeNet' import torch from torch.autograd import Variable import numpy as np dtype = torch.DoubleTensor np.random.seed(2183) torch.manual_seed(2183) # D is the "batch size"; N is input dimension; # H is hidden dimension; N_out is output dimension. D, N, H, N_out = 1, 20, 20, 20 # Create random Tensors to hold input and outputs, and wrap them in Variables. # Setting requires_grad=False indicates that we do not need to compute gradients # with respect to these Variables during the backward pass. x = Variable(torch.randn(N, D).type(dtype), requires_grad=True) y = Variable(torch.randn(N_out, D).type(dtype), requires_grad=False) # Create random Tensors for weights, and wrap them in Variables. # Setting requires_grad=True indicates that we want to compute gradients with # respect to these Variables during the backward pass. layers = [] biases = [] w_e = Variable(torch.randn(N, H).type(dtype), requires_grad=True) b_e = Variable(torch.randn(H,).type(dtype), requires_grad=True) w_d = Variable(torch.randn(H, N_out).type(dtype), requires_grad=True) b_d = Variable(torch.randn(N_out,).type(dtype), requires_grad=True) layers.append(w_e) layers.append(w_d) biases.append(b_e) biases.append(b_d) # Matrices we need the gradients wrt parameters = torch.nn.ParameterList() p_e = torch.nn.Parameter(torch.randn(N, H).type(dtype), requires_grad=True) p_d = torch.nn.Parameter(torch.randn(H, N_out).type(dtype), requires_grad=True) parameters.append(p_e) parameters.append(p_d) # Non-linearity relu = torch.nn.ReLU() comb_matrix = torch.autograd.Variable(torch.eye(N), requires_grad=True).double() for index in range(2): b_sc_m = relu(parameters[index].mm((layers[index] + biases[index]).t())) b_scaled = layers[index] * b_sc_m comb_matrix = torch.matmul(b_scaled, comb_matrix) y_pred = torch.matmul(comb_matrix, x) loss = (y - y_pred).norm(1) loss.backward() delta_term = (torch.sign(y_pred - y)).mm(x.t()) # With relu w_tilde_d = relu(parameters[1].mm((layers[1] + biases[1]).t())) * w_d w_tilde_e = w_e * relu(parameters[0].mm((layers[0] + biases[0]).t())) relu_grad_dec = p_d.mm((w_d + b_d).t()).gt(0).double() relu_grad_enc = p_e.mm((w_e + b_e).t()).gt(0).double() p_d_grad_hat = (delta_term.mm(w_tilde_e.t()) * w_d * relu_grad_dec).mm((w_d + b_d)) p_e_grad_hat = (w_tilde_d.t().mm(delta_term) * w_e * relu_grad_enc).mm((w_e + b_e)) print('Error between autograd computation and calculated:'+str((parameters[1].grad - p_d_grad_hat).abs().max())) print('Error between autograd computation and calculated:'+str((parameters[0].grad - p_e_grad_hat).abs().max())) # EOF
33.012346
112
0.726253
0
0
0
0
0
0
0
0
729
0.272625
9b0afc3b991d4aa30a7baf6f443e94f56c8d47d5
2,657
py
Python
Servers/Frontend/project/main/views.py
chrisbvt/ML-MalwareDetection
e00d0a0026a7c28886c3d2ab8ca9933e60f049cc
[ "MIT" ]
null
null
null
Servers/Frontend/project/main/views.py
chrisbvt/ML-MalwareDetection
e00d0a0026a7c28886c3d2ab8ca9933e60f049cc
[ "MIT" ]
2
2021-02-08T20:36:58.000Z
2022-03-29T21:58:35.000Z
Servers/Frontend/project/main/views.py
chrisbvt/ML-MalwareDetection
e00d0a0026a7c28886c3d2ab8ca9933e60f049cc
[ "MIT" ]
null
null
null
# project/main/views.py ################# #### imports #### ################# import os import json import requests import pickle from flask import Blueprint, Flask, jsonify, request, g, url_for, abort, redirect, flash, render_template, current_app from flask_login import current_user from flask_login import login_required from .forms import UploadForm from werkzeug.utils import secure_filename from project.indexer_lib import get_metadata_from_file ################ #### config #### ################ main_blueprint = Blueprint('main', __name__,) ################ #### routes #### ################ @main_blueprint.route('/', methods=['GET', 'POST']) def home(): if request.method == 'POST': # check if the post request has the file part if 'file' not in request.files: flash('No file part') return redirect(request.url) uploaded_file = request.files['file'] # if user does not select file, browser also # submit a empty part without filename if uploaded_file: filename = secure_filename(uploaded_file.filename) uploaded_file.save(os.path.join(current_app.config['UPLOAD_FOLDER'], filename)) full_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename) sha1, md5, frame = get_metadata_from_file(full_path) url = "https://" + current_app.config['ML_SERVER'] + ":" + current_app.config['ML_PORT'] + "/ml/classify_file" payload = {'sha1': sha1, 'md5': md5, 'metadata': pickle.dumps(frame)} print "Url was: %s" % url print "Payload length was: %d" % len(pickle.dumps(frame)) req = requests.post(url, data=payload, verify=False) print "Response was: " print req.text response_json = json.loads(req.text) rating = abs(int(response_json["Malicious"]) - 1) print rating return render_template('main/analysis.html', sha1=sha1, md5=md5, rating=rating, file_name=filename, current_user=current_user) else: return render_template('main/index.html', message="File failed to upload", form=UploadForm(), current_user=current_user) return render_template('main/index.html', form=UploadForm(), current_user=current_user) @main_blueprint.route('/about') def about(): return render_template('main/about.html', current_user=current_user) @main_blueprint.route('/terms') def terms(): return render_template('main/terms.html', current_user=current_user)
34.960526
122
0.617237
0
0
0
0
2,040
0.767783
0
0
643
0.242002
9b0ea10947bac276566d22b561a64d291c54aa39
3,195
py
Python
blog/forms.py
oversabiproject/ghostrr
0bf49537ddf0436d08d705b29bffbd49b66e7c65
[ "MIT" ]
null
null
null
blog/forms.py
oversabiproject/ghostrr
0bf49537ddf0436d08d705b29bffbd49b66e7c65
[ "MIT" ]
null
null
null
blog/forms.py
oversabiproject/ghostrr
0bf49537ddf0436d08d705b29bffbd49b66e7c65
[ "MIT" ]
null
null
null
import string from django import forms from django.conf import settings from django.shortcuts import get_object_or_404 from accounts.models import User, Profile from .models import Blogs from .utils import get_limit_for_level, write_to_limit class EditLimitForm(forms.Form): free_limit = forms.IntegerField(help_text='Enter the limit for the free users') pro_limit = forms.IntegerField(help_text='Enter the limit for the pro users') enterprise_limit = forms.IntegerField(help_text='Enter the limit for the enterprise users') def save(self): free_limit = self.cleaned_data.get("free_limit") pro_limit = self.cleaned_data.get("pro_limit") enterprise_limit = self.cleaned_data.get("enterprise_limit") write_to_limit(free_limit, pro_limit, enterprise_limit) return 'Saved' class CreateBlogForm(forms.Form): pk = forms.IntegerField() title = forms.CharField(max_length=255, help_text='Enter a meaningful title of 5-15 words for the blog.') sentence = forms.CharField(widget=forms.TextInput(), help_text='Enter the first two or more meaningful sentences to set the blog context, approximately 50 - 100 words expected.') copy_text = forms.CharField(widget=forms.TextInput(), required=False) copy_length = forms.IntegerField(help_text='Select the length of copy you want') def clean_copy_length(self): copy_length = int(self.data.get('copy_length')) if copy_length not in [1,2]: raise forms.ValidationError('Invalid length selected') return copy_length def clean_title(self): title = self.data.get('title') if len(title.split(' ')) < 5: raise forms.ValidationError('Very few words have been entered for the title. Please enter at least 5 words') if len(title.split(' ')) > 30: raise forms.ValidationError('A lot of words have been entered for the title. Please enter less than 30 words only') return title def clean_sentence(self): sentence = self.data.get('sentence') sentence_split = sentence.split('.') sentence_len = len(sentence_split) # # Validate length # if sentence_len < 10: # raise forms.ValidationError('Input sentences are too few') # Validate words length word_len = 0 for i in sentence_split: word_len += len(i.split(' ')) if word_len < 50: raise forms.ValidationError('Very few words have been entered for the Blog description. Please enter at least 50 words') if word_len > 200: raise forms.ValidationError('A lot of words have been entered. Please enter less than 200 words') # # Validate length extra # word_avg = word_len / sentence_len # if word_avg < 15: # raise forms.ValidationError('Sentences entered are too short, Consider making the sentences more longer or meaningful.') # # Reducing punctuation marks # for i in string.punctuation: # sentence = sentence.replace(i+i,i) return sentence def save(self, commit=True): title = self.cleaned_data.get('title') sentence = self.cleaned_data.get('sentence') copy_text = self.cleaned_data.get('copy_text') copy_length = self.cleaned_data.get('copy_length') # Creating new blog blog = Blogs(title=title, sentence=sentence, copy_length=copy_length, copy_text=copy_text) return blog
34.728261
179
0.747418
2,944
0.92144
0
0
0
0
0
0
1,242
0.388732
9b0f367d08c895d53158d4654de98cbeabd4b541
1,032
py
Python
Class Work/Recursion & Search /app.py
Pondorasti/CS-1.2
c86efa40f8a09c1ca1ce0b937ca63a07108bfc6c
[ "MIT" ]
null
null
null
Class Work/Recursion & Search /app.py
Pondorasti/CS-1.2
c86efa40f8a09c1ca1ce0b937ca63a07108bfc6c
[ "MIT" ]
null
null
null
Class Work/Recursion & Search /app.py
Pondorasti/CS-1.2
c86efa40f8a09c1ca1ce0b937ca63a07108bfc6c
[ "MIT" ]
null
null
null
a = [1, 2, 3, 5, 6] def recursive_search(array, item_to_find, current_index=0): if current_index == len(array): return None elif array[current_index] == item_to_find: return current_index else: return recursive_search(array, item_to_find, current_index + 1) # print(recursive_search(a, 3)) def binary_search(array, target): start = 0 end = len(array) - 1 while (start <= end): mid = (start + end) // 2 if array[mid] == target: return mid elif target < array[mid]: end = mid - 1 else: start = mid + 1 return None a = [3,4,5,6,10,12,20] print(binary_search(a, 5)) def recursive_fibonacci(index, current_index = 1, first = 0, second = 1): if index == 0: return 0 elif index == current_index: return second else: return recursive_fibonacci(index, current_index = current_index + 1, first = second, second = first + second) print(recursive_fibonacci(0))
21.957447
117
0.593992
0
0
0
0
0
0
0
0
31
0.030039
9b0fef936f066c73b4c06e85baae1161aaa35969
1,134
py
Python
src/heap/tests/test_max_binary_heap.py
codermrhasan/data-structures-and-algorithms
98c828bad792d3d6cdd909a8c6935583a8d9f468
[ "MIT" ]
null
null
null
src/heap/tests/test_max_binary_heap.py
codermrhasan/data-structures-and-algorithms
98c828bad792d3d6cdd909a8c6935583a8d9f468
[ "MIT" ]
null
null
null
src/heap/tests/test_max_binary_heap.py
codermrhasan/data-structures-and-algorithms
98c828bad792d3d6cdd909a8c6935583a8d9f468
[ "MIT" ]
null
null
null
from heap.max_binary_heap import MaxBinaryHeap def test_exists_and_instantiation(): assert MaxBinaryHeap assert MaxBinaryHeap() def test_properties(): bh = MaxBinaryHeap() bh.heapList = [1,2,3] assert bh.heapList == [1,2,3] def test_percUp(): bh = MaxBinaryHeap() bh.heapList = [3,2,1,4] bh.percUp() assert bh.heapList == [4,3,1,2] def test_insert(): bh = MaxBinaryHeap() bh.insert(1) bh.insert(2) bh.insert(3) bh.insert(4) assert bh.heapList == [4,3,2,1] def test_maxChild(): bh = MaxBinaryHeap() bh.heapList = [4,3,2,1] assert bh.heapList[bh.maxChild(0)] == 3 assert bh.heapList[bh.maxChild(1)] == 1 def test_percDown(): bh = MaxBinaryHeap() bh.heapList = [1,4,3,2] bh.percDown() assert bh.heapList == [4,2,3,1] def test_delMax(): bh = MaxBinaryHeap() bh.heapList=[4,3,2,1] data = bh.delMax() assert data == 4 assert bh.heapList == [3,1,2] bh.delMax() bh.delMax() assert bh.heapList == [1] def test_buildHeap(): bh = MaxBinaryHeap() bh.buildHeap([1,2,3,4]) assert bh.heapList == [4,2,3,1]
22.235294
46
0.611993
0
0
0
0
0
0
0
0
0
0
9b10e4943ad1ee0b4dae85b2c1d4d6a1aefffc28
409
py
Python
network_anomaly/code/del_duplicate.py
kidrabit/Data-Visualization-Lab-RND
baa19ee4e9f3422a052794e50791495632290b36
[ "Apache-2.0" ]
1
2022-01-18T01:53:34.000Z
2022-01-18T01:53:34.000Z
network_anomaly/code/del_duplicate.py
kidrabit/Data-Visualization-Lab-RND
baa19ee4e9f3422a052794e50791495632290b36
[ "Apache-2.0" ]
null
null
null
network_anomaly/code/del_duplicate.py
kidrabit/Data-Visualization-Lab-RND
baa19ee4e9f3422a052794e50791495632290b36
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- def del_duplicate(ip_combine): ip_combine = list(set(ip_combine)) ip_combine_temp = [] del ip_combine[0] # print(len(ip_combine)) for i in range(len(ip_combine)): ip1, ip2 = ip_combine[i].split(":") if ip2+":"+ip1 not in ip_combine_temp: ip_combine_temp.append(ip_combine[i]) # print(len(ip_combine_temp)) return ip_combine_temp
31.461538
49
0.635697
0
0
0
0
0
0
0
0
90
0.220049
9b119221fff46228bdcf97a9b0a6cdd84ac53dfa
6,623
py
Python
klusta/kwik/mock.py
hrnciar/klusta
408e898e8d5dd1788841d1f682e51d0dc003a296
[ "BSD-3-Clause" ]
45
2016-03-19T14:39:40.000Z
2021-12-15T06:34:57.000Z
klusta/kwik/mock.py
hrnciar/klusta
408e898e8d5dd1788841d1f682e51d0dc003a296
[ "BSD-3-Clause" ]
73
2016-03-19T16:15:45.000Z
2022-02-22T16:37:16.000Z
klusta/kwik/mock.py
hrnciar/klusta
408e898e8d5dd1788841d1f682e51d0dc003a296
[ "BSD-3-Clause" ]
41
2016-04-08T14:04:00.000Z
2021-09-09T20:49:41.000Z
# -*- coding: utf-8 -*- """Mock Kwik files.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import os.path as op import numpy as np import numpy.random as nr from .mea import staggered_positions from .h5 import open_h5 from .model import _create_clustering #------------------------------------------------------------------------------ # Mock functions #------------------------------------------------------------------------------ def artificial_waveforms(n_spikes=None, n_samples=None, n_channels=None): # TODO: more realistic waveforms. return .25 * nr.normal(size=(n_spikes, n_samples, n_channels)) def artificial_features(*args): return .25 * nr.normal(size=args) def artificial_masks(n_spikes=None, n_channels=None): masks = nr.uniform(size=(n_spikes, n_channels)) masks[masks < .25] = 0 return masks def artificial_traces(n_samples, n_channels): # TODO: more realistic traces. return .25 * nr.normal(size=(n_samples, n_channels)) def artificial_spike_clusters(n_spikes, n_clusters, low=0): return nr.randint(size=n_spikes, low=low, high=max(1, n_clusters)) def artificial_spike_samples(n_spikes, max_isi=50): return np.cumsum(nr.randint(low=0, high=max_isi, size=n_spikes)) def artificial_correlograms(n_clusters, n_samples): return nr.uniform(size=(n_clusters, n_clusters, n_samples)) def mock_prm(dat_path): return dict( prb_file='1x32_buzsaki', traces=dict( raw_data_files=[dat_path, dat_path], voltage_gain=10., sample_rate=20000, n_channels=32, dtype='int16', ), spikedetekt={ 'n_features_per_channel': 4, }, klustakwik2={}, ) #------------------------------------------------------------------------------ # Mock Kwik file #------------------------------------------------------------------------------ def create_mock_kwik(dir_path, n_clusters=None, n_spikes=None, n_channels=None, n_features_per_channel=None, n_samples_traces=None, with_kwx=True, with_kwd=True, add_original=True, ): """Create a test kwik file.""" filename = op.join(dir_path, '_test.kwik') kwx_filename = op.join(dir_path, '_test.kwx') kwd_filename = op.join(dir_path, '_test.raw.kwd') # Create the kwik file. with open_h5(filename, 'w') as f: f.write_attr('/', 'kwik_version', 2) def _write_metadata(key, value): f.write_attr('/application_data/spikedetekt', key, value) _write_metadata('sample_rate', 20000.) # Filter parameters. _write_metadata('filter_low', 500.) _write_metadata('filter_high_factor', 0.95 * .5) _write_metadata('filter_butter_order', 3) _write_metadata('extract_s_before', 15) _write_metadata('extract_s_after', 25) _write_metadata('n_features_per_channel', n_features_per_channel) # Create spike times. spike_samples = artificial_spike_samples(n_spikes).astype(np.int64) spike_recordings = np.zeros(n_spikes, dtype=np.uint16) # Size of the first recording. recording_size = 2 * n_spikes // 3 if recording_size > 0: # Find the recording offset. recording_offset = spike_samples[recording_size] recording_offset += spike_samples[recording_size + 1] recording_offset //= 2 spike_recordings[recording_size:] = 1 # Make sure the spike samples of the second recording start over. spike_samples[recording_size:] -= spike_samples[recording_size] spike_samples[recording_size:] += 10 else: recording_offset = 1 if spike_samples.max() >= n_samples_traces: raise ValueError("There are too many spikes: decrease 'n_spikes'.") f.write('/channel_groups/1/spikes/time_samples', spike_samples) f.write('/channel_groups/1/spikes/recording', spike_recordings) f.write_attr('/channel_groups/1', 'channel_order', np.arange(1, n_channels - 1)[::-1]) graph = np.array([[1, 2], [2, 3]]) f.write_attr('/channel_groups/1', 'adjacency_graph', graph) # Create channels. positions = staggered_positions(n_channels) for channel in range(n_channels): group = '/channel_groups/1/channels/{0:d}'.format(channel) f.write_attr(group, 'name', str(channel)) f.write_attr(group, 'position', positions[channel]) # Create spike clusters. clusterings = [('main', n_clusters)] if add_original: clusterings += [('original', n_clusters * 2)] for clustering, n_clusters_rec in clusterings: spike_clusters = artificial_spike_clusters(n_spikes, n_clusters_rec) groups = {0: 0, 1: 1, 2: 2} _create_clustering(f, clustering, 1, spike_clusters, groups) # Create recordings. f.write_attr('/recordings/0', 'name', 'recording_0') f.write_attr('/recordings/1', 'name', 'recording_1') f.write_attr('/recordings/0/raw', 'hdf5_path', kwd_filename) f.write_attr('/recordings/1/raw', 'hdf5_path', kwd_filename) # Create the kwx file. if with_kwx: with open_h5(kwx_filename, 'w') as f: f.write_attr('/', 'kwik_version', 2) features = artificial_features(n_spikes, (n_channels - 2) * n_features_per_channel) masks = artificial_masks(n_spikes, (n_channels - 2) * n_features_per_channel) fm = np.dstack((features, masks)).astype(np.float32) f.write('/channel_groups/1/features_masks', fm) # Create the raw kwd file. if with_kwd: with open_h5(kwd_filename, 'w') as f: f.write_attr('/', 'kwik_version', 2) traces = artificial_traces(n_samples_traces, n_channels) # TODO: int16 traces f.write('/recordings/0/data', traces[:recording_offset, ...].astype(np.float32)) f.write('/recordings/1/data', traces[recording_offset:, ...].astype(np.float32)) return filename
36.191257
79
0.562434
0
0
0
0
0
0
0
0
1,731
0.261362
9b11b55cfbda19b56fe51d5da114dd0268d96bc2
1,824
py
Python
telluride_decoding/preprocess_audio.py
RULCSoft/telluride_decoding
ff2a5b421a499370b379e7f4fc3f28033c045e17
[ "Apache-2.0" ]
8
2019-07-03T15:33:52.000Z
2021-10-21T00:56:43.000Z
telluride_decoding/preprocess_audio.py
RULCSoft/telluride_decoding
ff2a5b421a499370b379e7f4fc3f28033c045e17
[ "Apache-2.0" ]
3
2020-09-02T19:04:36.000Z
2022-03-12T19:46:50.000Z
telluride_decoding/preprocess_audio.py
RULCSoft/telluride_decoding
ff2a5b421a499370b379e7f4fc3f28033c045e17
[ "Apache-2.0" ]
7
2019-07-03T15:50:24.000Z
2020-11-26T12:16:10.000Z
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Code to compute the audio intensity for preprocessing. Code that stores incoming arbitrary audio data, and then yields fixed window sizes for processing (like computing the intensity.) After initializing the object, add a block of data to the object, and then pull fixed sized blocks of data with a given half_window_width, and separated by window_step samples. Data is always X x num_features, where X can change from add_data call to call, but num_features must not change. Do not reuse the object because it has internal state from previous calls. """ import numpy as np from telluride_decoding import result_store class AudioIntensityStore(result_store.WindowedDataStore): """Process a window of data, calculating the mean-squared value. """ def next_window(self): for win in super(AudioIntensityStore, self).next_window(): yield np.mean(np.square(win)) class AudioLoudnessMick(result_store.WindowedDataStore): """Process a window of data, using Mick's loudness approximation. """ def next_window(self): for audio_data in super(AudioLoudnessMick, self).next_window(): yield np.mean(np.abs(audio_data) ** np.log10(2))
36.48
80
0.733553
535
0.293311
266
0.145833
0
0
0
0
1,343
0.736294
9b122420662104df8bedddda57c416404fd43cea
3,355
py
Python
aioouimeaux/device/__init__.py
frawau/aioouimeaux
ea473ded95e41e350793b0e289944a359049c501
[ "BSD-3-Clause" ]
2
2019-01-26T02:44:14.000Z
2019-08-06T00:40:56.000Z
aioouimeaux/device/__init__.py
frawau/aioouimeaux
ea473ded95e41e350793b0e289944a359049c501
[ "BSD-3-Clause" ]
1
2019-05-23T22:35:27.000Z
2019-05-25T20:23:50.000Z
aioouimeaux/device/__init__.py
frawau/aioouimeaux
ea473ded95e41e350793b0e289944a359049c501
[ "BSD-3-Clause" ]
null
null
null
import logging from urllib.parse import urlsplit import asyncio as aio from functools import partial from .api.service import Service from .api.xsd import device as deviceParser from ..utils import requests_get log = logging.getLogger(__name__) class DeviceUnreachable(Exception): pass class UnknownService(Exception): pass class UnknownSignal(Exception): pass class NotACallable(Exception): pass class Device(object): def __init__(self, url): self._state = None self.host = urlsplit(url).hostname #self.port = urlsplit(url).port self.services = {} self.initialized = aio.Future() self._callback = {"statechange":None} xx = aio.ensure_future(self._get_xml(url)) async def _get_xml(self,url): base_url = url.rsplit('/', 1)[0] xml = await requests_get(url) self._config = deviceParser.parseString(xml.raw_body).device sl = self._config.serviceList for svc in sl.service: svcname = svc.get_serviceType().split(':')[-2] service = Service(svc, base_url) await service.initialized service.eventSubURL = base_url + svc.get_eventSubURL() self.services[svcname] = service setattr(self, svcname, service) fut = self.basicevent.GetBinaryState() await fut self._state = fut.result()["BinaryState"] self.initialized.set_result(True) def register_callback(self,signal,func): if func is not None: if signal not in self._callback: raise UnknownSignal if not callable(func): raise NotACallable self._callback[signal]=func def _update_state(self, value): self._state = int(value) if self._callback["statechange"]: if aio.iscoroutinefunction(self._callback["statechange"]): aio.ensure_future(self._callback["statechange"](self)) else: self._callback["statechange"](self) def get_state(self, force_update=False): """ Returns 0 if off and 1 if on. """ if force_update or self._state is None: xx = self.basicevent.GetBinaryState() return self._state def get_service(self, name): try: return self.services[name] except KeyError: raise UnknownService(name) def list_services(self): return self.services.keys() def ping(self): try: self.get_state() except Exception: raise DeviceUnreachable(self) def explain(self,prefix=""): for name, svc in self.services.items(): print("{}{}".format(prefix, name)) print(prefix+'-' * len(name)) for aname, action in svc.actions.items(): print("%s %s(%s)" % (prefix,aname, ', '.join(action.args))) print() @property def model(self): return self._config.modelDescription @property def name(self): return self._config.friendlyName @property def serialnumber(self): return self._config.serialNumber def test(): device = Device("http://10.42.1.102:49152/setup.xml") print(device.get_service('basicevent').SetBinaryState(BinaryState=1)) if __name__ == "__main__": test()
28.432203
76
0.614903
2,910
0.867362
0
0
223
0.066468
702
0.20924
253
0.07541
9b1232a2760be1096b010b97407d362bad15d50f
2,012
py
Python
src/lib/localtime.py
RonaldHiemstra/BronartsmeiH
1ad3838b43abfe9a1f3416334439c8056aa50dde
[ "MIT" ]
null
null
null
src/lib/localtime.py
RonaldHiemstra/BronartsmeiH
1ad3838b43abfe9a1f3416334439c8056aa50dde
[ "MIT" ]
3
2021-03-17T16:05:01.000Z
2021-05-01T18:47:43.000Z
src/lib/localtime.py
RonaldHiemstra/BronartsmeiH
1ad3838b43abfe9a1f3416334439c8056aa50dde
[ "MIT" ]
null
null
null
"""File providing localtime support.""" import time import network import ntptime from machine import RTC, reset from config import Config system_config = Config('system_config.json') class Localtime(): """Synchronized realtime clock using NTP.""" def __init__(self, utc_offset=None): self.utc_offset = utc_offset or system_config.get('utc_offset') self.__synced = None self._sync() def _sync(self): try: ntptime.settime() # Synchronize the system time using NTP except Exception as ex: print('ERROR: ntp.settime() failed. err:', ex) if network.WLAN().isconnected(): reset() # year, month, day, day_of_week, hour, minute, second, millisecond datetime_ymd_w_hms_m = list(RTC().datetime()) datetime_ymd_w_hms_m[4] += self.utc_offset RTC().init(datetime_ymd_w_hms_m) self.__synced = datetime_ymd_w_hms_m[2] del datetime_ymd_w_hms_m def now(self): """Retrieve a snapshot of the current time in milliseconds accurate.""" class Now(): """Class representing a snapshot of the current time.""" def __init__(self): (self.year, self.mon, self.day, self.dow, self.hour, self.min, self.sec, self.msec) = RTC().datetime() self._time = None def get_time(self) -> float: """Convert this time snapshot to a time float value.""" if self._time is None: self._time = time.mktime([self.year, self.mon, self.day, self.hour, self.min, self.sec, 0, 0]) # self._time += self.msec / 1000 # float overflow when adding msec :( return self._time snapshot = Now() if snapshot.day != self.__synced and snapshot.hour == 4: # sync every day @ 4am self._sync() snapshot = Now() return snapshot
39.45098
92
0.578032
1,825
0.907058
0
0
0
0
0
0
531
0.263917
9b126b83c2c4f4a5775d0727f5ece4feb0b27a5c
448
py
Python
accounts/api/urls.py
tejaswari7/JagratiWebApp
e9030f8bd6319a7bb43e036bb7bc43cca01d64a1
[ "MIT" ]
59
2019-12-05T13:23:14.000Z
2021-12-07T13:54:25.000Z
accounts/api/urls.py
tejaswari7/JagratiWebApp
e9030f8bd6319a7bb43e036bb7bc43cca01d64a1
[ "MIT" ]
266
2020-09-22T16:22:56.000Z
2021-10-17T18:13:11.000Z
accounts/api/urls.py
tejaswari7/JagratiWebApp
e9030f8bd6319a7bb43e036bb7bc43cca01d64a1
[ "MIT" ]
213
2020-05-20T18:17:21.000Z
2022-03-06T11:03:42.000Z
from django.urls import path from . import views urlpatterns = [ path('register/', views.registration_view, name='api_register'), path('login/', views.LoginView.as_view(), name='api_login'), path('complete_profile/', views.complete_profile_view, name='api_complete_profile'), path('logout/', views.LogoutView.as_view(), name='api_logout'), path('check_login_status/', views.check_login_status, name='api_check_login_status'), ]
44.8
89
0.736607
0
0
0
0
0
0
0
0
151
0.337054
9b148edd9574c90b50e4da5fcd67e478a02f6b95
8,347
py
Python
IPython/kernel/multikernelmanager.py
techtonik/ipython
aff23ecf89ba87ee49168d3cecc213bdbc3b06f9
[ "BSD-3-Clause-Clear" ]
1
2022-03-13T23:06:43.000Z
2022-03-13T23:06:43.000Z
IPython/kernel/multikernelmanager.py
andreasjansson/ipython
09b4311726f46945b936c699f7a6489d74d7397f
[ "BSD-3-Clause-Clear" ]
null
null
null
IPython/kernel/multikernelmanager.py
andreasjansson/ipython
09b4311726f46945b936c699f7a6489d74d7397f
[ "BSD-3-Clause-Clear" ]
1
2020-05-03T10:25:12.000Z
2020-05-03T10:25:12.000Z
"""A kernel manager for multiple kernels Authors: * Brian Granger """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import import os import uuid import zmq from zmq.eventloop.zmqstream import ZMQStream from IPython.config.configurable import LoggingConfigurable from IPython.utils.importstring import import_item from IPython.utils.traitlets import ( Instance, Dict, Unicode, Any, DottedObjectName, ) #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- class DuplicateKernelError(Exception): pass class MultiKernelManager(LoggingConfigurable): """A class for managing multiple kernels.""" kernel_manager_class = DottedObjectName( "IPython.kernel.blockingkernelmanager.BlockingKernelManager", config=True, help="""The kernel manager class. This is configurable to allow subclassing of the KernelManager for customized behavior. """ ) def _kernel_manager_class_changed(self, name, old, new): self.kernel_manager_factory = import_item(new) kernel_manager_factory = Any(help="this is kernel_manager_class after import") def _kernel_manager_factory_default(self): return import_item(self.kernel_manager_class) context = Instance('zmq.Context') def _context_default(self): return zmq.Context.instance() connection_dir = Unicode('') _kernels = Dict() def list_kernel_ids(self): """Return a list of the kernel ids of the active kernels.""" # Create a copy so we can iterate over kernels in operations # that delete keys. return list(self._kernels.keys()) def __len__(self): """Return the number of running kernels.""" return len(self.list_kernel_ids()) def __contains__(self, kernel_id): return kernel_id in self._kernels def start_kernel(self, **kwargs): """Start a new kernel. The caller can pick a kernel_id by passing one in as a keyword arg, otherwise one will be picked using a uuid. To silence the kernel's stdout/stderr, call this using:: km.start_kernel(stdout=PIPE, stderr=PIPE) """ kernel_id = kwargs.pop('kernel_id', unicode(uuid.uuid4())) if kernel_id in self: raise DuplicateKernelError('Kernel already exists: %s' % kernel_id) # kernel_manager_factory is the constructor for the KernelManager # subclass we are using. It can be configured as any Configurable, # including things like its transport and ip. km = self.kernel_manager_factory(connection_file=os.path.join( self.connection_dir, "kernel-%s.json" % kernel_id), config=self.config, ) km.start_kernel(**kwargs) # start just the shell channel, needed for graceful restart km.start_channels(shell=True, iopub=False, stdin=False, hb=False) self._kernels[kernel_id] = km return kernel_id def shutdown_kernel(self, kernel_id, now=False): """Shutdown a kernel by its kernel uuid. Parameters ========== kernel_id : uuid The id of the kernel to shutdown. now : bool Should the kernel be shutdown forcibly using a signal. """ k = self.get_kernel(kernel_id) k.shutdown_kernel(now=now) k.shell_channel.stop() del self._kernels[kernel_id] def shutdown_all(self, now=False): """Shutdown all kernels.""" for kid in self.list_kernel_ids(): self.shutdown_kernel(kid, now=now) def interrupt_kernel(self, kernel_id): """Interrupt (SIGINT) the kernel by its uuid. Parameters ========== kernel_id : uuid The id of the kernel to interrupt. """ return self.get_kernel(kernel_id).interrupt_kernel() def signal_kernel(self, kernel_id, signum): """Sends a signal to the kernel by its uuid. Note that since only SIGTERM is supported on Windows, this function is only useful on Unix systems. Parameters ========== kernel_id : uuid The id of the kernel to signal. """ return self.get_kernel(kernel_id).signal_kernel(signum) def restart_kernel(self, kernel_id): """Restart a kernel by its uuid, keeping the same ports. Parameters ========== kernel_id : uuid The id of the kernel to interrupt. """ return self.get_kernel(kernel_id).restart_kernel() def get_kernel(self, kernel_id): """Get the single KernelManager object for a kernel by its uuid. Parameters ========== kernel_id : uuid The id of the kernel. """ km = self._kernels.get(kernel_id) if km is not None: return km else: raise KeyError("Kernel with id not found: %s" % kernel_id) def get_connection_info(self, kernel_id): """Return a dictionary of connection data for a kernel. Parameters ========== kernel_id : uuid The id of the kernel. Returns ======= connection_dict : dict A dict of the information needed to connect to a kernel. This includes the ip address and the integer port numbers of the different channels (stdin_port, iopub_port, shell_port, hb_port). """ km = self.get_kernel(kernel_id) return dict(transport=km.transport, ip=km.ip, shell_port=km.shell_port, iopub_port=km.iopub_port, stdin_port=km.stdin_port, hb_port=km.hb_port, ) def _make_url(self, transport, ip, port): """Make a ZeroMQ URL for a given transport, ip and port.""" if transport == 'tcp': return "tcp://%s:%i" % (ip, port) else: return "%s://%s-%s" % (transport, ip, port) def _create_connected_stream(self, kernel_id, socket_type, channel): """Create a connected ZMQStream for a kernel.""" cinfo = self.get_connection_info(kernel_id) url = self._make_url(cinfo['transport'], cinfo['ip'], cinfo['%s_port' % channel] ) sock = self.context.socket(socket_type) self.log.info("Connecting to: %s" % url) sock.connect(url) return ZMQStream(sock) def create_iopub_stream(self, kernel_id): """Return a ZMQStream object connected to the iopub channel. Parameters ========== kernel_id : uuid The id of the kernel. Returns ======= stream : ZMQStream """ iopub_stream = self._create_connected_stream(kernel_id, zmq.SUB, 'iopub') iopub_stream.socket.setsockopt(zmq.SUBSCRIBE, b'') return iopub_stream def create_shell_stream(self, kernel_id): """Return a ZMQStream object connected to the shell channel. Parameters ========== kernel_id : uuid The id of the kernel. Returns ======= stream : ZMQStream """ shell_stream = self._create_connected_stream(kernel_id, zmq.DEALER, 'shell') return shell_stream def create_hb_stream(self, kernel_id): """Return a ZMQStream object connected to the hb channel. Parameters ========== kernel_id : uuid The id of the kernel. Returns ======= stream : ZMQStream """ hb_stream = self._create_connected_stream(kernel_id, zmq.REQ, 'hb') return hb_stream
32.103846
84
0.576614
7,260
0.869774
0
0
0
0
0
0
4,255
0.509764
9b15d3d976307caf107a8e4d5a8af162262589b1
256
py
Python
python-codes/100-exercises/example11.py
yjwx0017/test
80071d6b4b83e78282a7607e6311f5c71c87bb3c
[ "MIT" ]
null
null
null
python-codes/100-exercises/example11.py
yjwx0017/test
80071d6b4b83e78282a7607e6311f5c71c87bb3c
[ "MIT" ]
1
2016-09-29T05:34:12.000Z
2016-09-30T16:26:07.000Z
python-codes/100-exercises/example11.py
yjwx0017/test
80071d6b4b83e78282a7607e6311f5c71c87bb3c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- # 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子, # 小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? # 2 2 4 6 10 ... # 输出前20个月 f1 = 2 f2 = 2 for i in range(1, 20): print '%d\n%d' % (f1, f2) f1 = f1 + f2 f2 = f1 + f2
17.066667
43
0.582031
0
0
0
0
0
0
0
0
311
0.754854
9b17a28e7a678defe48fd07eac1522b08da41fac
13,312
py
Python
light8/Configs/Config.danceshow2002.py
drewp/light9
ab173a40d095051546e532962f7a33ac502943a6
[ "MIT" ]
2
2018-10-05T13:32:46.000Z
2022-01-01T22:51:20.000Z
light8/Configs/Config.danceshow2002.py
drewp/light9
ab173a40d095051546e532962f7a33ac502943a6
[ "MIT" ]
4
2021-06-08T19:33:40.000Z
2022-03-11T23:18:06.000Z
light8/Configs/Config.danceshow2002.py
drewp/light9
ab173a40d095051546e532962f7a33ac502943a6
[ "MIT" ]
null
null
null
from random import randrange from time import time from __future__ import generators,division from Subs import * patch = { 'side l' : 45, 'side r' : 46, 'main 1' : 1, 'main 2' : 2, 'main 3' : 3, 'main 4' : 4, 'main 5' : 5, 'main 6' : 6, 'main 7' : 7, 'main 8' : 8, 'main 9' : 9, 'main 10' : 10, 'center sc' : 20, 'sr sky' : 43, 'blacklight' : 15, 'house':68, ('b0 1 r' ,'b01'):54, # left bank over house ('b0 2 p' ,'b02'):53, ('b0 3 o' ,'b03'):52, ('b0 4 b' ,'b04'):51, ('b0 5 r' ,'b05'):50, ('b0 6 lb','b06'):49, ('b1 1' ,'b11'):55, # mid bank ('b1 2' ,'b12'):56, ('b1 3' ,'b13'):57, ('b1 4' ,'b14'):58, ('b1 5' ,'b15'):59, ('b1 6' ,'b16'):60, ('b2 1 lb','b21'):61, # right bank ('b2 2 r' ,'b22'):62, ('b2 3 b' ,'b23'):63, ('b2 4 o' ,'b24'):64, ('b2 5 p' ,'b25'):65, ('b2 6 r' ,'b26'):66, } from util import maxes,scaledict FL=100 def fulls(chans): # pass a list or multiple args return dict([(c,FL) for c in chans]) def levs(chans,levs): return dict([(c,v) for c,v in zip(chans,levs)]) def blacklight(params, slideradjuster): params.add_param('nd',CheckboxParam()) while 1: yield {'blacklight':100*params['nd']} def strobe(params, slideradjuster): patterns = { 'blue' : fulls((23,27,31,35,'b0 4 b','b2 3 b')), 'cyc' : {42:FL,43:FL}, 'scp all' : fulls((13,16,18,19,39)), '1-5' : fulls(range(1, 6)), } params.add_param('offtime',SliderParam(range=(0.1,0.3), res=0.001, initial=0.11, length=100)) params.add_param('ontime',SliderParam(range=(0.0,0.8), res=0.001, length=100)) params.add_param('pattern',ListParam(patterns.keys())) params.add_param('current',LabelParam('none')) params.add_param('count',SliderParam(range=(0, 10), res=1, initial=0)) lastchanged = time() state = 0 blinkcounter = 0 my_pattern = None while 1: if params['count'] and blinkcounter > params['count']: blinkcounter = 0 slideradjuster.set(0) if params['pattern'] != None: params['current'] = params['pattern'] my_pattern = params['pattern'] if state == 0: delay = params['offtime'] else: delay = params['ontime'] if time() > (lastchanged + delay): # ready for change state = not state lastchanged = time() blinkcounter += 0.5 try: # protect against keyerrors (and possibly everything else) if state: yield patterns[my_pattern] else: yield scaledict(patterns[my_pattern], .1) except: yield {} def chase(params, slideradjuster): patterns = { 'all': ( fulls(('b01','b21')), fulls(('b02','b22')), fulls(('b03','b23')), fulls(('b04','b24')), fulls(('b05','b25')), fulls(('b06','b26')), ), 'red':( fulls(('b0 1 r','b2 2 r')), fulls(('b0 5 r','b2 6 r'))), 'randcol':([fulls((x,)) for x in ("b21 b23 b25 b03 b06 b24 b22 "+ "b24 b03 b23 b01 b04 b05 b22 "+ "b02 b02 b26 b21 b06 b25 b26 "+ "b01 b04 b05").split()]), 'ctrpong':[fulls((x,)) for x in ( "b11 b12 b13 b14 b15 b16 b15 b14 b13 b12".split())], 'l-r': ( fulls(('b01','b11','b21')), fulls(('b02','b12','b22')), fulls(('b03','b13','b23')), fulls(('b04','b14','b24')), fulls(('b05','b15','b25')), fulls(('b06','b16','b26'))), 'flutter':( fulls(('main 6','b15')), fulls(('main 1','b12')), fulls(('main 2','b11')), fulls(('b12', 'main 3')), fulls(('b15', 'main 9')), fulls(('b16', 'main 4')), fulls(('main 4','b13')), fulls(('main 3','b11')), fulls(('main 8','b15')), fulls(('main 9','b12')), fulls(('b11', 'main 1')), fulls(('main 5','b15')), fulls(('b13', 'main 6')), fulls(('b14', 'main 2')), fulls(('main 7','b16')), ), 'randstage':([fulls((x,)) for x in (""" b22 27 b04 26 b26 21 28 b25 23 b02 31 b05 32 34 b03 24 b01 25 b23 29 22 35 30 b24 33 36 """).split()]), } params.add_param('steptime',SliderParam(range=(.1,3), initial=.4,length=150)) params.add_param('overlap',SliderParam(range=(0,8),initial=1.5)) params.add_param('pattern',ListParam(options=patterns.keys(), initial='all')) params.add_param('current',LabelParam('none')) steps=() def fn(x): warm=.1 # the _/\_ wave for each step. input 0..1, output 0..1 if x<0 or x>1: return warm if x<.5: return warm+(1.0-warm)*(x*2) else: return warm+(1.0-warm)*(2-(x*2)) def stepbrightness(stepnum,numsteps,overlap,pos): startpos = stepnum/numsteps p=( (pos-startpos)*(1.0+overlap) )%1.0 ret=fn( p ) #print "step %(stepnum)i/%(numsteps)i pos %(pos)f ,p=%(p)f is %(ret)f" % locals() return ret queued=[] # list of steps, each step is starttime,stepcue lastaddtime=time()-100 currentpattern='all' steps=patterns[currentpattern] stepsiter=iter(()) while 1: params['current'] = params['pattern'] # changed pattern? if params['pattern']!=currentpattern and params['pattern'] in patterns: currentpattern=params['pattern'] steps=patterns[currentpattern] stepsiter=iter(steps) # restart iterator # time to put a new step in the queue? if time()>lastaddtime+params['steptime']: lastaddtime=time() try: nextstep = stepsiter.next() except StopIteration: stepsiter=iter(steps) nextstep=stepsiter.next() queued.append( (time(),nextstep) ) # loop over queue, putting still-active (scaled) steps in shiftedsteps keepers=[] shiftedsteps=[] for started,s in queued: steptime = time()-started finish = started+(1.0+params['overlap'])*params['steptime'] pos = (time()-started)/(finish-started) if time()<finish: keepers.append((started,s)) shiftedsteps.append( scaledict(s,fn(pos)) ) if len(keepers)>30: print "too many steps in chase - dumping some" queued=keepers[:20] else: queued=keepers # pos=(time()%params['steptime'])/params['steptime'] # 0..1 animated variable # shiftedsteps=[] # for i,s in zip(range(0,len(steps)),steps): # shiftedsteps.append( scaledict(s, stepbrightness(i,len(steps),params['overlap'],pos)) ) yield maxes(shiftedsteps) def randomdimmer(params, slideradjuster): params.add_param('magic', CheckboxParam()) params.add_param('cheese', TextParam()) params.add_param('stuff', ListParam(('a', 'b', 'c'))) curtime = time() dim = 1 while 4: if time() - curtime > 1: dim = randrange(1, 64) curtime = time() yield {dim : 100, 20 : params.get_param_value('magic')} subs = { 'over pit sm' : levs(range(1, 13),(100,0,0,91,77,79,86,55,92,77,59,0)), 'over pit lg' : fulls(range(1, 13)), ('house', 'black') : { 68:100 }, ('cyc', 'lightBlue'):{42:FL,43:FL}, ('scp hot ctr', 'yellow'):{18:FL}, ('scp more', '#AAAA00'):{18:FL,14:FL}, ('scp all', '#AAAA00'):fulls((13,16,18,19,39)), ('col oran', '#EEEE99'):fulls((21,25,29,33)), ('col red', 'red'):fulls((24,28,32,36)), ('col red big', 'red'):fulls((24,28,32,36, 'b0 1 r','b0 5 r','b2 2 r','b2 6 r')), ('col blue', 'blue'):fulls((23,27,31,35,'b0 4 b','b2 3 b')), ('col gree', 'green'):fulls((22,26,30,34)), 'sidepost':fulls((45,46)), 'edges':fulls((55,60,49,54,61,66)), 'bank1ctr':fulls(('b12','b13','b14','b15')), ('blacklight', 'purple'):blacklight, 'over pit ctr' : fulls((6,)), ('strobe', 'grey'):strobe, # 'midstage' : dict([(r, 100) for r in range(11, 21)]), # 'backstage' : dict([(r, 100) for r in range(21, 31)]), # 'frontchase' : mr_effect, 'chase' : chase, 'chase2' : chase, # 'random' : randomdimmer, } subs["*10"] = { "14" : 46.000000, "18" : 46.000000, "22" : 88.000000, "23" : 95.000000, "24" : 19.000000, "26" : 88.000000, "27" : 95.000000, "28" : 19.000000, "30" : 88.000000, "31" : 95.000000, "32" : 19.000000, "34" : 88.000000, "35" : 95.000000, "36" : 19.000000, "b0 5 r" : 7.000000, "b0 4 b" : 95.000000, "b0 1 r" : 7.000000, "b2 2 r" : 7.000000, "b2 3 b" : 95.000000, "b2 6 r" : 7.000000, } subs["*13"] = { "main 1" : 51.0, "main 2" : 51.0, "main 3" : 51.0, "main 4" : 51.0, "main 5" : 51.0, "main 6" : 51.0, "main 7" : 51.0, "main 8" : 51.0, "main 9" : 51.0, "main 10" : 51.0, "11" : 51.0, "12" : 51.0, "blacklight" : 0.0, "21" : 56.0, "22" : 50.0, "24" : 51.0, "25" : 56.0, "26" : 50.0, "28" : 51.0, "29" : 56.0, "30" : 50.0, "32" : 51.0, "33" : 56.0, "34" : 50.0, "36" : 51.0, "b0 5 r" : 51.0, "b0 1 r" : 51.0, "b2 2 r" : 51.0, "b2 6 r" : 51.0, } subs["*16"] = { "main 1" : 54, "main 4" : 49, "main 5" : 41, "main 6" : 43, "main 7" : 46, "main 8" : 29, "main 9" : 50, "main 10" : 41, "11" : 32, "13" : 77, "16" : 77, "18" : 77, "19" : 77, "39" : 77, "42" : 30, "sr sky" : 30,} subs["*3"] = { "main 1" : 47, "main 2" : 47, "main 3" : 47, "main 4" : 47, "main 5" : 47, "main 6" : 47, "main 7" : 47, "main 8" : 47, "main 9" : 47, "main 10" : 47, "11" : 47, "12" : 47, "blacklight" : 0, "21" : 67, "22" : 69, "23" : 69, "24" : 78, "25" : 67, "26" : 69, "27" : 69, "28" : 78, "29" : 67, "30" : 69, "31" : 69, "32" : 78, "33" : 67, "34" : 69, "35" : 69, "36" : 78, "b0 4 b" : 69, "b1 2" : 61, "b1 3" : 61, "b1 4" : 61, "b1 5" : 61, "b2 3 b" : 69,} subs["*12"] = { "main 1" : 25, "main 4" : 23, "main 5" : 19, "main 6" : 20, "main 7" : 22, "main 8" : 14, "main 9" : 23, "main 10" : 19, "11" : 15, "13" : 36, "16" : 36, "18" : 36, "19" : 36, "22" : 65, "23" : 100, "24" : 23, "26" : 65, "27" : 100, "28" : 23, "30" : 65, "31" : 100, "32" : 23, "34" : 65, "35" : 100, "36" : 23, "39" : 36, "b0 4 b" : 100, "b1 2" : 62, "b1 3" : 62, "b1 4" : 62, "b1 5" : 62, "b2 3 b" : 100,} subs["*curtain"] = { "main 4" : 44, "main 5" : 37, "main 6" : 86, "main 7" : 42, "main 8" : 32, "main 9" : 45, "42" : 41, "sr sky" : 41, "b0 6 lb" : 27, "b0 1 r" : 27, "b1 1" : 27, "b1 2" : 100, "b1 3" : 100, "b1 4" : 100, "b1 5" : 100, "b1 6" : 27, "b2 1 lb" : 27, "b2 6 r" : 27, } subs["ba outrs"] = fulls("b01 b02 b03 b04 b05 b06 b21 b22 b23 b24 b25 b26".split()) subs["ba some"] = {'b02':40,'b03':FL,'b04':FL,'b05':40, 'b22':40,'b23':FL,'b24':FL,'b25':40,} subs['*curtain'].update(subs['ba some']) subs["*2"] = { "main 1" : 77, "main 4" : 70, "main 5" : 59, "main 6" : 61, "main 7" : 66, "main 8" : 42, "main 9" : 71, "main 10" : 59, "11" : 45, "24" : 77, "28" : 77, "32" : 77, "36" : 77, "b0 5 r" : 77, "b0 1 r" : 77, "b2 2 r" : 77, "b2 6 r" : 77,} subs["*6"] = { "main 1" : 37, "main 4" : 33, "main 5" : 28, "main 6" : 29, "main 7" : 32, "main 8" : 20, "main 9" : 34, "main 10" : 28, "11" : 22, "13" : 37, "blacklight" : 0, "16" : 37, "18" : 37, "19" : 37, "21" : 82, "22" : 82, "23" : 82, "24" : 82, "25" : 82, "26" : 82, "27" : 82, "28" : 82, "29" : 82, "30" : 82, "31" : 82, "32" : 82, "33" : 82, "34" : 82, "35" : 82, "36" : 82, "39" : 37, "b0 5 r" : 82, "b0 4 b" : 82, "b0 1 r" : 82, "b2 2 r" : 82, "b2 3 b" : 82, "b2 6 r" : 82,} subs["*8"] = { "13" : 60, "16" : 60, "18" : 60, "19" : 60, "22" : 14, "23" : 100, "26" : 14, "27" : 100, "30" : 14, "31" : 100, "34" : 14, "35" : 100, "39" : 60, "b0 6 lb" : 14, "b0 4 b" : 100, "b0 1 r" : 14, "b1 1" : 14, "b1 2" : 70, "b1 3" : 70, "b1 4" : 70, "b1 5" : 70, "b1 6" : 14, "b2 1 lb" : 14, "b2 3 b" : 100, "b2 6 r" : 14,} subs["*5"] = { "main 1" : 81, "main 4" : 74, "main 5" : 62, "main 6" : 64, "main 7" : 70, "main 8" : 44, "main 9" : 75, "main 10" : 62, "11" : 48, "21" : 29, "24" : 29, "25" : 29, "28" : 29, "29" : 29, "32" : 29, "33" : 29, "36" : 29, "42" : 37, "sr sky" : 37, "b0 5 r" : 29, "b0 4 b" : 72, "b0 3 o" : 72, "b0 2 p" : 29, "b2 2 r" : 29, "b2 3 b" : 72, "b2 4 o" : 72, "b2 5 p" : 29,}
38.810496
100
0.457031
0
0
6,566
0.493239
0
0
0
0
4,396
0.330228
9b1b79fb32008ae0e7fb1fae04c9752108435ac6
3,672
py
Python
python/src/scipp/__init__.py
g5t/scipp
d819c930a5e438fd65e42e2e4e737743b8d39d37
[ "BSD-3-Clause" ]
null
null
null
python/src/scipp/__init__.py
g5t/scipp
d819c930a5e438fd65e42e2e4e737743b8d39d37
[ "BSD-3-Clause" ]
null
null
null
python/src/scipp/__init__.py
g5t/scipp
d819c930a5e438fd65e42e2e4e737743b8d39d37
[ "BSD-3-Clause" ]
null
null
null
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 Scipp contributors (https://github.com/scipp) # @file # @author Simon Heybrock # flake8: noqa from . import runtime_config user_configuration_filename = runtime_config.config_filename config = runtime_config.load() del runtime_config from ._scipp import _debug_ if _debug_: import warnings def custom_formatwarning(msg, *args, **kwargs): return str(msg) + '\n' warnings.formatwarning = custom_formatwarning warnings.warn( 'You are running a "Debug" build of scipp. For optimal performance use a "Release" build.' ) from ._scipp import __version__ # Import classes from ._scipp.core import Variable, DataArray, Dataset, GroupByDataArray, \ GroupByDataset, Unit # Import errors from ._scipp.core import BinEdgeError, BinnedDataError, CoordError, \ DataArrayError, DatasetError, DimensionError, \ DTypeError, NotFoundError, SizeError, SliceError, \ UnitError, VariableError, VariancesError # Import submodules from ._scipp.core import units, dtype, buckets, geometry # Import functions from ._scipp.core import choose, divide, floor_divide, logical_and, \ logical_or, logical_xor, minus, mod, plus, times # Import python functions from .show import show, make_svg from .table import table from .plotting import plot from .extend_units import * from .html import to_html, make_html from .object_list import _repr_html_ from ._utils import collapse, slices from ._utils.typing import is_variable, is_dataset, is_data_array, \ is_dataset_or_array from .compat.dict import to_dict, from_dict from .sizes import _make_sizes # Wrappers for free functions from _scipp.core from ._bins import * from ._counts import * from ._comparison import * from ._cumulative import * from ._dataset import * from ._groupby import * from ._math import * from ._operations import * from ._unary import * from ._reduction import * from ._shape import * from ._trigonometry import * from ._variable import * setattr(Variable, '_repr_html_', make_html) setattr(DataArray, '_repr_html_', make_html) setattr(Dataset, '_repr_html_', make_html) from .io.hdf5 import to_hdf5 as _to_hdf5 setattr(Variable, 'to_hdf5', _to_hdf5) setattr(DataArray, 'to_hdf5', _to_hdf5) setattr(Dataset, 'to_hdf5', _to_hdf5) setattr(Variable, 'sizes', property(_make_sizes)) setattr(DataArray, 'sizes', property(_make_sizes)) setattr(Dataset, 'sizes', property(_make_sizes)) from ._bins import _bins, _set_bins, _events setattr(Variable, 'bins', property(_bins, _set_bins)) setattr(DataArray, 'bins', property(_bins, _set_bins)) setattr(Dataset, 'bins', property(_bins, _set_bins)) setattr(Variable, 'events', property(_events)) setattr(DataArray, 'events', property(_events)) from ._structured import _fields setattr( Variable, 'fields', property( _fields, doc= """Provides access to fields of structured types such as vectors or matrices.""" )) from ._bins import _groupby_bins setattr(GroupByDataArray, 'bins', property(_groupby_bins)) setattr(GroupByDataset, 'bins', property(_groupby_bins)) setattr(Variable, 'plot', plot) setattr(DataArray, 'plot', plot) setattr(Dataset, 'plot', plot) # Prevent unwanted conversion to numpy arrays by operations. Properly defining # __array_ufunc__ should be possible by converting non-scipp arguments to # variables. The most difficult part is probably mapping the ufunc to scipp # functions. for _obj in [Variable, DataArray, Dataset]: setattr(_obj, '__array_ufunc__', None)
31.930435
98
0.735566
0
0
0
0
0
0
0
0
877
0.238834
9b1bd86935affb209f3416a74dae1cedee23495f
1,733
py
Python
SimpleBeep.py
RalphBacon/219-Raspberry-Pi-PICO-Sound-Generation
1c7a5cbfb5373aa5eccde00638bbdff062c57a2d
[ "MIT" ]
2
2021-07-15T14:11:29.000Z
2022-03-25T23:20:54.000Z
SimpleBeep.py
RalphBacon/219-Raspberry-Pi-PICO-Sound-Generation
1c7a5cbfb5373aa5eccde00638bbdff062c57a2d
[ "MIT" ]
null
null
null
SimpleBeep.py
RalphBacon/219-Raspberry-Pi-PICO-Sound-Generation
1c7a5cbfb5373aa5eccde00638bbdff062c57a2d
[ "MIT" ]
1
2021-07-15T14:11:48.000Z
2021-07-15T14:11:48.000Z
# Import the required 'libraries' for pin definitions and PWM from machine import Pin, PWM # Also import a subset for sleep and millisecond sleep. If you just import # the utime you will have to prefix each call with "utime." from utime import sleep, sleep_ms # Define what the buzzer object is - a PWM output on pin 15 buzzer = PWM(Pin(15)) # A list of frequencies tones = (200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1400, 1500) # Define the function to play a single tone then stop def buzz(freq): # Set the frequence buzzer.freq(freq) # Set the duty cycle (affects volume) buzzer.duty_u16(15000); # Let the sound continue for X milliseconds sleep_ms(30); # Now switch the sound off buzzer.duty_u16(0); # And delay a small amount (gap between tones) sleep_ms(20); # Define a similar functionm with no delay between tones def buzz2(freq): buzzer.freq(freq) buzzer.duty_u16(15000); # Now sound the tones, one after the other for tone in range(len(tones)): buzz(tones[tone]) # Small gap in SECONDS after the ascending tones sleep(1) # Don't do this, it puts the device to Seep Sleep but it reboots on wakeup just # like the ESP8266 #machine.deepsleep(1) # Now sound the tones IN REVERSE ORDER ie descending for tone in range(len(tones) -1, -1, -1): buzz(tones[tone]) # Another delay sleep(1) # Now sound ALL the frequencies from X to Y for tone in range(500, 2500): buzz2(tone) sleep_ms(5) buzzer.duty_u16(0); # And repeat in reverse order for tone in range(2500, 500, -1): buzz2(tone) sleep_ms(4) buzzer.duty_u16(0);
28.883333
119
0.671091
0
0
0
0
0
0
0
0
924
0.533179
9b1c20b6056395f07046b2fb8132dfe7ff823554
1,789
py
Python
vendor/packages/sqlalchemy/test/orm/test_bind.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
2
2016-05-09T09:17:35.000Z
2016-08-03T16:30:16.000Z
test/orm/test_bind.py
clones/sqlalchemy
c9f08aa78a48ba53dd221d3c5de54e5956ecf806
[ "MIT" ]
null
null
null
test/orm/test_bind.py
clones/sqlalchemy
c9f08aa78a48ba53dd221d3c5de54e5956ecf806
[ "MIT" ]
null
null
null
from sqlalchemy.test.testing import assert_raises, assert_raises_message from sqlalchemy import MetaData, Integer from sqlalchemy.test.schema import Table from sqlalchemy.test.schema import Column from sqlalchemy.orm import mapper, create_session import sqlalchemy as sa from sqlalchemy.test import testing from test.orm import _base class BindTest(_base.MappedTest): @classmethod def define_tables(cls, metadata): Table('test_table', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('data', Integer)) @classmethod def setup_classes(cls): class Foo(_base.BasicEntity): pass @classmethod @testing.resolve_artifact_names def setup_mappers(cls): meta = MetaData() test_table.tometadata(meta) assert meta.tables['test_table'].bind is None mapper(Foo, meta.tables['test_table']) @testing.resolve_artifact_names def test_session_bind(self): engine = self.metadata.bind for bind in (engine, engine.connect()): try: sess = create_session(bind=bind) assert sess.bind is bind f = Foo() sess.add(f) sess.flush() assert sess.query(Foo).get(f.id) is f finally: if hasattr(bind, 'close'): bind.close() @testing.resolve_artifact_names def test_session_unbound(self): sess = create_session() sess.add(Foo()) assert_raises_message( sa.exc.UnboundExecutionError, ('Could not locate a bind configured on Mapper|Foo|test_table ' 'or this Session'), sess.flush)
29.816667
75
0.618222
1,450
0.810509
0
0
1,388
0.775852
0
0
132
0.073784
9b1c4ea2bc7164000ac7237aaef4748989fffac3
2,607
py
Python
pdftables/pdf_document.py
tessact/pdftables
89b0c0f7215fa50651b37e5b1505229c329cc0ab
[ "BSD-2-Clause" ]
73
2015-01-07T01:42:45.000Z
2021-01-20T01:19:04.000Z
pdftables/pdf_document.py
MartinThoma/pdftables
bd34a86cba8b70d1af2267cf8a30f387f7e5a43e
[ "BSD-2-Clause" ]
1
2020-08-02T18:31:16.000Z
2020-08-02T18:31:16.000Z
pdftables/pdf_document.py
MartinThoma/pdftables
bd34a86cba8b70d1af2267cf8a30f387f7e5a43e
[ "BSD-2-Clause" ]
40
2015-03-10T05:24:37.000Z
2019-08-30T06:11:02.000Z
""" Backend abstraction for PDFDocuments """ import abc import os DEFAULT_BACKEND = "poppler" BACKEND = os.environ.get("PDFTABLES_BACKEND", DEFAULT_BACKEND).lower() # TODO(pwaller): Use abstract base class? # What does it buy us? Can we enforce that only methods specified in an ABC # are used by client code? class PDFDocument(object): __metaclass__ = abc.ABCMeta @classmethod def get_backend(cls, backend=None): """ Returns the PDFDocument class to use based on configuration from enviornment or pdf_document.BACKEND """ # If `cls` is not already a subclass of the base PDFDocument, pick one if not issubclass(cls, PDFDocument): return cls if backend is None: backend = BACKEND # Imports have to go inline to avoid circular imports with the backends if backend == "pdfminer": from pdf_document_pdfminer import PDFDocument as PDFDoc return PDFDoc elif backend == "poppler": from pdf_document_poppler import PDFDocument as PDFDoc return PDFDoc raise NotImplementedError("Unknown backend '{0}'".format(backend)) @classmethod def from_path(cls, path): Class = cls.get_backend() return Class(path) @classmethod def from_fileobj(cls, fh): # TODO(pwaller): For now, put fh into a temporary file and call # .from_path. Future: when we have a working stream input function for # poppler, use that. raise NotImplementedError Class = cls._get_backend() # return Class(fh) # This is wrong since constructor now takes a path. def __init__(self, *args, **kwargs): raise RuntimeError( "Don't use this constructor, use a {0}.from_* method instead!" .format(self.__class__.__name__)) @abc.abstractmethod def __len__(self): """ Return the number of pages in the PDF """ @abc.abstractmethod def get_page(self, number): """ Return a PDFPage for page `number` (0 indexed!) """ @abc.abstractmethod def get_pages(self): """ Return all pages in the document: TODO(pwaller) move implementation here """ class PDFPage(object): __metaclass__ = abc.ABCMeta @abc.abstractmethod def get_glyphs(self): """ Obtain a list of bounding boxes (Box instances) for all glyphs on the page. """ @abc.abstractproperty def size(self): """ (width, height) of page """
27.15625
80
0.623322
2,288
0.877637
0
0
1,937
0.743
0
0
1,196
0.458765
9b1ea81c58845b4a3bb52fdf9a88f5aa5548c833
3,316
py
Python
Chapter08/ppo/ppo_kb.py
rwill128/TensorFlow-Reinforcement-Learning-Quick-Start-Guide
45ec2bd23a49ed72ce75f8c8d440ce7840c8ffce
[ "MIT" ]
40
2019-05-19T01:29:12.000Z
2022-03-27T04:37:31.000Z
Chapter08/ppo/ppo_kb.py
rwill128/TensorFlow-Reinforcement-Learning-Quick-Start-Guide
45ec2bd23a49ed72ce75f8c8d440ce7840c8ffce
[ "MIT" ]
null
null
null
Chapter08/ppo/ppo_kb.py
rwill128/TensorFlow-Reinforcement-Learning-Quick-Start-Guide
45ec2bd23a49ed72ce75f8c8d440ce7840c8ffce
[ "MIT" ]
19
2019-05-02T19:55:57.000Z
2022-02-26T01:51:45.000Z
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import gym from class_ppo import * from gym_torcs import TorcsEnv #---------------------------------------------------------------------------------------- EP_MAX = 2000 EP_LEN = 1000 GAMMA = 0.95 A_LR = 1e-4 C_LR = 1e-4 BATCH = 128 A_UPDATE_STEPS = 10 C_UPDATE_STEPS = 10 S_DIM, A_DIM = 29, 3 METHOD = dict(name='clip', epsilon=0.1) # train_test = 0 for train; =1 for test train_test = 0 # irestart = 0 for fresh restart; =1 for restart from ckpt file irestart = 0 iter_num = 0 if (irestart == 0): iter_num = 0 #---------------------------------------------------------------------------------------- sess = tf.Session() ppo = PPO(sess, S_DIM, A_DIM, A_LR, C_LR, A_UPDATE_STEPS, C_UPDATE_STEPS, METHOD) saver = tf.train.Saver() env = TorcsEnv(vision=False, throttle=True, gear_change=False) #---------------------------------------------------------------------------------------- if (train_test == 0 and irestart == 0): sess.run(tf.global_variables_initializer()) else: saver.restore(sess, "ckpt/model") for ep in range(iter_num, EP_MAX): print("-"*50) print("episode: ", ep) if np.mod(ep, 100) == 0: ob = env.reset(relaunch=True) #relaunch TORCS every N episode because of the memory leak error else: ob = env.reset() s = np.hstack((ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ, ob.wheelSpinVel/100.0, ob.rpm)) buffer_s, buffer_a, buffer_r = [], [], [] ep_r = 0 for t in range(EP_LEN): # in one episode a = ppo.choose_action(s) a[0] = np.clip(a[0],-1.0,1.0) a[1] = np.clip(a[1],0.0,1.0) a[2] = np.clip(a[2],0.0,1.0) #print("a: ", a) ob, r, done, _ = env.step(a) s_ = np.hstack((ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ, ob.wheelSpinVel/100.0, ob.rpm)) if (train_test == 0): buffer_s.append(s) buffer_a.append(a) buffer_r.append(r) s = s_ ep_r += r if (train_test == 0): # update ppo if (t+1) % BATCH == 0 or t == EP_LEN-1 or done == True: #if t == EP_LEN-1 or done == True: v_s_ = ppo.get_v(s_) discounted_r = [] for r in buffer_r[::-1]: v_s_ = r + GAMMA * v_s_ discounted_r.append(v_s_) discounted_r.reverse() bs = np.array(np.vstack(buffer_s)) ba = np.array(np.vstack(buffer_a)) br = np.array(discounted_r)[:, np.newaxis] buffer_s, buffer_a, buffer_r = [], [], [] print("ppo update") ppo.update(bs, ba, br) #print("screen out: ") #ppo.screen_out(bs, ba, br) #print("-"*50) if (done == True): break print('Ep: %i' % ep,"|Ep_r: %i" % ep_r,("|Lam: %.4f" % METHOD['lam']) if METHOD['name'] == 'kl_pen' else '',) if (train_test == 0): with open("performance.txt", "a") as myfile: myfile.write(str(ep) + " " + str(t) + " " + str(round(ep_r,4)) + "\n") if (train_test == 0 and ep%25 == 0): saver.save(sess, "ckpt/model")
25.507692
123
0.495778
0
0
0
0
0
0
0
0
712
0.214717
9b2030f197c3c1a90df176f2d19174c439599012
681
py
Python
test/gui/documentationwidget.py
pySUMO/pysumo
889969f94bd45e2b67e25ff46452378351ca5186
[ "BSD-2-Clause" ]
7
2015-08-21T17:17:35.000Z
2021-03-02T21:40:00.000Z
test/gui/documentationwidget.py
pySUMO/pysumo
889969f94bd45e2b67e25ff46452378351ca5186
[ "BSD-2-Clause" ]
2
2015-04-14T12:40:37.000Z
2015-04-14T12:44:03.000Z
test/gui/documentationwidget.py
pySUMO/pysumo
889969f94bd45e2b67e25ff46452378351ca5186
[ "BSD-2-Clause" ]
null
null
null
""" Test case for the DocumentationWidget """ from tempfile import mkdtemp from pySUMOQt import MainWindow import pysumo import shutil """ Steps: 1. Open pySUMO 2. Open Merge.kif 3. Open DocumentationWidget 3a. Switch to the Ontology tab in the DocumentationWidget 4. Type subrelation into the search field 4a. Press Enter 5. Open TextEditor 5a. Select Merge.kif in TextEditor 6. Press one of the links listed under "Merge" 7. Switch to the WordNet tab in the DocumentationWidget 8. Search for 'Object' 9. Search for 'Table' """ if __name__ == "__main__": tmpdir = mkdtemp() pysumo.CONFIG_PATH = tmpdir MainWindow.main() shutil.rmtree(tmpdir, ignore_errors=True)
24.321429
57
0.756241
0
0
0
0
0
0
0
0
448
0.657856
9b22737cee51dac49b519ede06b216b061a09833
1,628
py
Python
py/garage/tests/threads/test_executors.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
3
2016-01-04T06:28:52.000Z
2020-09-20T13:18:40.000Z
py/garage/tests/threads/test_executors.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
py/garage/tests/threads/test_executors.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
import unittest import threading from garage.threads import executors class ExecutorTest(unittest.TestCase): def test_executor(self): pool = executors.WorkerPool() self.assertEqual(0, len(pool)) # No jobs, no workers are hired. with executors.Executor(pool, 1) as executor: self.assertEqual(0, len(pool)) self.assertEqual(0, len(pool)) with executors.Executor(pool, 1) as executor: f1 = executor.submit(sum, (1, 2, 3)) f2 = executor.submit(sum, (4, 5, 6)) self.assertEqual(0, len(pool)) self.assertEqual(6, f1.result()) self.assertEqual(15, f2.result()) self.assertEqual(1, len(pool)) for worker in pool: self.assertFalse(worker._get_future().done()) def test_shutdown(self): pool = executors.WorkerPool() self.assertEqual(0, len(pool)) with executors.Executor(pool, 1) as executor: f1 = executor.submit(sum, (1, 2, 3)) f2 = executor.submit(sum, (4, 5, 6)) self.assertEqual(0, len(pool)) self.assertEqual(6, f1.result()) self.assertEqual(15, f2.result()) executor.shutdown(wait=False) # shutdown(wait=False) does not return workers to the pool. self.assertEqual(0, len(pool)) event = threading.Event() with executors.Executor(pool, 1) as executor: executor.submit(event.wait) executor.shutdown(wait=False) self.assertFalse(executor._work_queue) if __name__ == '__main__': unittest.main()
29.071429
67
0.595823
1,504
0.923833
0
0
0
0
0
0
101
0.062039
9b227c99cc76d04bed95afc7abf3ffae257b32fd
2,619
py
Python
exporter/BattleRoyal.py
dl-stuff/dl-datamine
aae37710d2525aaa2b83f809e908be67f074c2d2
[ "MIT" ]
3
2020-04-29T12:35:33.000Z
2022-03-22T20:08:22.000Z
exporter/BattleRoyal.py
dl-stuff/dl-datamine
aae37710d2525aaa2b83f809e908be67f074c2d2
[ "MIT" ]
1
2020-10-23T00:08:35.000Z
2020-10-29T04:10:35.000Z
exporter/BattleRoyal.py
dl-stuff/dl-datamine
aae37710d2525aaa2b83f809e908be67f074c2d2
[ "MIT" ]
4
2020-04-05T15:09:08.000Z
2020-10-21T15:08:34.000Z
import os import json from tqdm import tqdm from loader.Database import DBViewIndex, DBView, check_target_path from exporter.Shared import snakey from exporter.Adventurers import CharaData from exporter.Dragons import DragonData class BattleRoyalCharaSkin(DBView): def __init__(self, index): super().__init__(index, "BattleRoyalCharaSkin") def process_result(self, res, **kwargs): self.link(res, "_BaseCharaId", "CharaData", full_query=False) self.index["CharaData"].set_animation_reference(res["_BaseCharaId"]) self.link(res, "_SpecialSkillId", "SkillData", **kwargs) self.index["ActionParts"].animation_reference filtered_res = {} filtered_res["_Id"] = res["_Id"] for name_key in ("_Name", "_NameJP", "_NameCN"): filtered_res[name_key] = res["_BaseCharaId"][name_key] filtered_res["_SpecialSkillId"] = res["_SpecialSkillId"] return filtered_res def export_all_to_folder(self, out_dir="./out", ext=".json"): where = "_SpecialSkillId != 0" out_dir = os.path.join(out_dir, "_br") all_res = self.get_all(where=where) check_target_path(out_dir) sorted_res = {} for res in tqdm(all_res, desc="_br"): res = self.process_result(res) sorted_res[res["_Id"]] = res out_name = snakey(f"_chara_skin.json") output = os.path.join(out_dir, out_name) with open(output, "w", newline="", encoding="utf-8") as fp: json.dump(sorted_res, fp, indent=2, ensure_ascii=False, default=str) class BattleRoyalUnit(DBView): def __init__(self, index): super().__init__(index, "BattleRoyalUnit") @staticmethod def outfile_name(res, ext=".json"): c_res = res["_BaseCharaDataId"] name = "UNKNOWN" if "_Name" not in c_res else c_res["_Name"] if "_SecondName" not in c_res else c_res["_SecondName"] return f'{res["_Id"]}_{name}{ext}' def process_result(self, res, **kwargs): self.link(res, "_BaseCharaDataId", "CharaData", condense=False) # self.link(res, "_DragonDataId", "DragonData", **kwargs) self.link(res, "_SkillId", "SkillData", **kwargs) for ab in range(1, 11): self.link(res, f"_ItemAbility{ab:02}", "AbilityData", **kwargs) return res def export_all_to_folder(self, out_dir="./out", ext=".json"): out_dir = os.path.join(out_dir, "_br") super().export_all_to_folder(out_dir, ext) if __name__ == "__main__": index = DBViewIndex() view = BattleRoyalUnit(index) view.export_all_to_folder()
37.956522
124
0.649866
2,262
0.863688
0
0
261
0.099656
0
0
567
0.216495
9b26d22dac1fa85ff57a7518cc0afd23693491bf
111
py
Python
adonai/user/api/queries.py
Egnod/adonai
b365d81c826fd7b626c9145154ee0136ea73fac1
[ "MIT" ]
6
2020-01-20T20:02:09.000Z
2020-02-24T08:40:23.000Z
adonai/user/api/queries.py
Egnod/adonai
b365d81c826fd7b626c9145154ee0136ea73fac1
[ "MIT" ]
null
null
null
adonai/user/api/queries.py
Egnod/adonai
b365d81c826fd7b626c9145154ee0136ea73fac1
[ "MIT" ]
null
null
null
from .user.queries import UserQuery # isort:skip from .user_group.queries import UserGroupQuery # isort:skip
37
60
0.801802
0
0
0
0
0
0
0
0
24
0.216216
f1955c751f92a084391167fe5becfed42fd578e2
772
py
Python
test/test_slope_heuristic.py
StatisKit/Core
79d8ec07c203eb7973a6cf482852ddb2e8e1e93e
[ "Apache-2.0" ]
null
null
null
test/test_slope_heuristic.py
StatisKit/Core
79d8ec07c203eb7973a6cf482852ddb2e8e1e93e
[ "Apache-2.0" ]
7
2018-03-20T14:23:16.000Z
2019-04-09T11:57:57.000Z
test/test_slope_heuristic.py
StatisKit/Core
79d8ec07c203eb7973a6cf482852ddb2e8e1e93e
[ "Apache-2.0" ]
7
2017-04-28T07:41:01.000Z
2021-03-15T18:17:20.000Z
import matplotlib matplotlib.use('Agg') from statiskit import core from statiskit.data import core as data import unittest from nose.plugins.attrib import attr @attr(linux=True, osx=True, win=True, level=1) class TestSlopeHeuristic(unittest.TestCase): @classmethod def setUpClass(cls): """Test multivariate data construction""" cls._data = data.load('capushe') @attr(win=False) def test_slope_heuristic(self): """Test slope heuristic""" sh = core.SlopeHeuristic([pen.value for pen in self._data.pen.events], [-contrast.value for contrast in self._data.contrast.events]) sh.plot() @classmethod def tearDownClass(cls): """Test multivariate data deletion""" del cls._data
25.733333
140
0.676166
544
0.704663
0
0
609
0.78886
0
0
118
0.15285
f1966b5ea95fad48b2c50f6ae0e84a62362e0d49
688
py
Python
holteandtalley/test/matToJson.py
garrettdreyfus/HolteAndTalleyMLDPy
baab854ef955664437f04fdc7de100dcc894bbda
[ "MIT" ]
18
2019-03-07T06:25:58.000Z
2022-03-07T04:38:36.000Z
holteandtalley/test/matToJson.py
garrettdreyfus/HolteAndTalleyMLDPy
baab854ef955664437f04fdc7de100dcc894bbda
[ "MIT" ]
null
null
null
holteandtalley/test/matToJson.py
garrettdreyfus/HolteAndTalleyMLDPy
baab854ef955664437f04fdc7de100dcc894bbda
[ "MIT" ]
3
2020-06-21T23:22:19.000Z
2022-03-07T05:11:14.000Z
from scipy.io import loadmat import pickle mldinfo =loadmat('mldinfo.mat')["mldinfo"] out={} print(mldinfo) for i in mldinfo: line={} line["floatNumber"] = i[0] line["cycleNumber"] = i[26] line["tempMLTFIT"] = i[27] line["tempMLTFITIndex"] = i[28] line["densityMLTFIT"] = i[30] line["salinityMLTFIT"] = i[31] line["steepest"] = i[29] line["tempAlgo"] = i[4] line["salinityAlgo"] = i[8] line["densityAlgo"] = i[9] line["tempThreshold"] = i[13] line["densityThreshold"] = i[17] line["tempGradient"] = i[21] line["densityGradient"] = i[22] out[i[0],i[26]]=line with open("matOutput.pickle","wb") as f: pickle.dump(out,f)
25.481481
42
0.604651
0
0
0
0
0
0
0
0
241
0.350291
f19839bccee38959af0b437965974c79d3cf702f
1,578
py
Python
natlas-server/natlas-db.py
purplesecops/natlas
74edd7ba9b5c265ec06dfdb3f7ee0b38751e5ef8
[ "Apache-2.0" ]
500
2018-09-27T17:28:11.000Z
2022-03-30T02:05:57.000Z
natlas-server/natlas-db.py
purplesecops/natlas
74edd7ba9b5c265ec06dfdb3f7ee0b38751e5ef8
[ "Apache-2.0" ]
888
2018-09-20T05:04:46.000Z
2022-03-28T04:11:22.000Z
natlas-server/natlas-db.py
purplesecops/natlas
74edd7ba9b5c265ec06dfdb3f7ee0b38751e5ef8
[ "Apache-2.0" ]
79
2019-02-13T19:49:21.000Z
2022-02-27T16:39:04.000Z
#!/usr/bin/env python """ This is a special app instance that allows us to perform database operations without going through the app's migration_needed check. Running this script is functionally equivalent to what `flask db` normally does. The reason we can't continue to use that is that command is that it invokes the app instance from FLASK_APP env variable (natlas-server.py) which performs the migration check and exits during initialization. """ import argparse from app import create_app from config import Config from migrations import migrator parser_desc = """Perform database operations for Natlas.\ It is best practice to take a backup of your database before you upgrade or downgrade, just in case something goes wrong.\ """ def main(): parser = argparse.ArgumentParser(description=parser_desc) group = parser.add_mutually_exclusive_group(required=True) group.add_argument( "--upgrade", action="store_true", help="Perform a database upgrade, if necessary", ) group.add_argument( "--downgrade", action="store_true", help="Revert the most recent database upgrade. Danger: This will destroy data as necessary to revert to the previous version.", ) args = parser.parse_args() config = Config() app = create_app(config, migrating=True) if args.upgrade: app.config.update({"DB_AUTO_UPGRADE": True}) migrator.handle_db_upgrade(app) elif args.downgrade: migrator.handle_db_downgrade(app) if __name__ == "__main__": main()
33.574468
135
0.716096
0
0
0
0
0
0
0
0
882
0.558935
f19909329b0b6001c89ab80ab88194f8528fba3b
4,368
py
Python
ontask/action/forms/crud.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
33
2017-12-02T04:09:24.000Z
2021-11-07T08:41:57.000Z
ontask/action/forms/crud.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
189
2017-11-16T04:06:29.000Z
2022-03-11T23:35:59.000Z
ontask/action/forms/crud.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
30
2017-11-30T03:35:44.000Z
2022-01-31T03:08:08.000Z
# -*- coding: utf-8 -*- """Forms to process action related fields. ActionUpdateForm: Basic form to process the name/description of an action ActionForm: Inherits from Basic to process name, description and type ActionDescriptionForm: Inherits from basic but process only description (for surveys) FilterForm: Form to process filter elements ConditionForm: Form to process condition elements """ from builtins import str import json from typing import Dict from django import forms from django.utils.translation import ugettext_lazy as _ from ontask import models from ontask.core import RestrictedFileField import ontask.settings class ActionUpdateForm(forms.ModelForm): """Basic class to edit name and description.""" def __init__(self, *args, **kwargs): """Store user and wokflow.""" self.workflow = kwargs.pop('workflow') super().__init__(*args, **kwargs) def clean(self) -> Dict: """Verify that the name is not taken.""" form_data = super().clean() # Check if the name already exists name_exists = self.workflow.actions.filter( name=self.data['name'], ).exclude(id=self.instance.id).exists() if name_exists: self.add_error( 'name', _('There is already an action with this name.'), ) return form_data class Meta: """Select Action and the two fields.""" model = models.Action fields = ('name', 'description_text') class ActionForm(ActionUpdateForm): """Edit name, description and action type.""" def __init__(self, *args: str, **kargs: str): """Adjust widget choices depending on action type.""" super().__init__(*args, **kargs) at_field = self.fields['action_type'] at_field.widget.choices = [ (key, value) for key, value in models.Action.AVAILABLE_ACTION_TYPES.items()] if len(models.Action.AVAILABLE_ACTION_TYPES) == 1: # There is only one type of action. No need to generate the field. # Set to value and hide at_field.widget = forms.HiddenInput() at_field.initial = models.Action.AVAILABLE_ACTION_TYPES.items( )[0][0] class Meta(ActionUpdateForm.Meta): """Select action and the three fields.""" model = models.Action fields = ('name', 'description_text', 'action_type') class ActionDescriptionForm(forms.ModelForm): """Form to edit the description of an action.""" class Meta: """Select model and the description field.""" model = models.Action fields = ('description_text',) class ActionImportForm(forms.Form): """Form to edit information to import an action.""" upload_file = RestrictedFileField( max_upload_size=int(ontask.settings.MAX_UPLOAD_SIZE), content_types=json.loads(str(ontask.settings.CONTENT_TYPES)), allow_empty_file=False, label=_('File with previously exported OnTask actions'), help_text=_('File containing a previously exported action'), ) class RubricCellForm(forms.ModelForm): """Edit the content of a RubricCellForm.""" class Meta: """Select Action and the two fields.""" model = models.RubricCell fields = ('description_text', 'feedback_text') class RubricLOAForm(forms.Form): """Edit the levels of attainment of a rubric.""" levels_of_attainment = forms.CharField( strip=True, required=True, label=_('Comma separated list of levels of attainment')) def __init__(self, *args, **kwargs): """Store the criteria.""" self.criteria = kwargs.pop('criteria') super().__init__(*args, **kwargs) self.fields['levels_of_attainment'].initial = ', '.join( self.criteria[0].categories) def clean(self) -> Dict: """Check that the number of LOAs didn't change.""" form_data = super().clean() current_n_loas = [ loa for loa in form_data['levels_of_attainment'].split(',') if loa] if len(current_n_loas) != len(self.criteria[0].categories): self.add_error( 'levels_of_attainment', _('The number of levels cannot change.')) return form_data
29.315436
78
0.63576
3,708
0.848901
0
0
0
0
0
0
1,617
0.370192
f199c3663d40296d492582d4c84325e0a23a8f49
27,740
py
Python
Latest/venv/Lib/site-packages/traitsui/value_tree.py
adamcvj/SatelliteTracker
49a8f26804422fdad6f330a5548e9f283d84a55d
[ "Apache-2.0" ]
1
2022-01-09T20:04:31.000Z
2022-01-09T20:04:31.000Z
Latest/venv/Lib/site-packages/traitsui/value_tree.py
adamcvj/SatelliteTracker
49a8f26804422fdad6f330a5548e9f283d84a55d
[ "Apache-2.0" ]
1
2022-02-15T12:01:57.000Z
2022-03-24T19:48:47.000Z
Latest/venv/Lib/site-packages/traitsui/value_tree.py
adamcvj/SatelliteTracker
49a8f26804422fdad6f330a5548e9f283d84a55d
[ "Apache-2.0" ]
null
null
null
#------------------------------------------------------------------------------ # # Copyright (c) 2006, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in enthought/LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! # # Author: David C. Morrill # Date: 01/05/2006 # #------------------------------------------------------------------------------ """ Defines tree node classes and editors for various types of values. """ #------------------------------------------------------------------------- # Imports: #------------------------------------------------------------------------- from __future__ import absolute_import import inspect from operator import itemgetter from types import FunctionType, MethodType from traits.api import Any, Bool, HasPrivateTraits, HasTraits, Instance, List, Str from .tree_node import ObjectTreeNode, TreeNode, TreeNodeObject from .editors.tree_editor import TreeEditor import six #------------------------------------------------------------------------- # 'SingleValueTreeNodeObject' class: #------------------------------------------------------------------------- class SingleValueTreeNodeObject(TreeNodeObject): """ A tree node for objects of types that have a single value. """ #------------------------------------------------------------------------- # Trait definitions: #------------------------------------------------------------------------- # The parent of this node parent = Instance(TreeNodeObject) # Name of the value name = Str # User-specified override of the default label label = Str # The value itself value = Any # Is the value readonly? readonly = Bool(False) #------------------------------------------------------------------------- # Returns whether chidren of this object are allowed or not: #------------------------------------------------------------------------- def tno_allows_children(self, node): """ Returns whether this object can have children (False for this class). """ return False #------------------------------------------------------------------------- # Returns whether or not the object has children: #------------------------------------------------------------------------- def tno_has_children(self, node): """ Returns whether the object has children (False for this class). """ return False #------------------------------------------------------------------------- # Returns whether or not the object's children can be renamed: #------------------------------------------------------------------------- def tno_can_rename(self, node): """ Returns whether the object's children can be renamed (False for this class). """ return False #------------------------------------------------------------------------- # Returns whether or not the object's children can be copied: #------------------------------------------------------------------------- def tno_can_copy(self, node): """ Returns whether the object's children can be copied (True for this class). """ return True #------------------------------------------------------------------------- # Returns whether or not the object's children can be deleted: #------------------------------------------------------------------------- def tno_can_delete(self, node): """ Returns whether the object's children can be deleted (False for this class). """ return False #------------------------------------------------------------------------- # Returns whether or not the object's children can be inserted (or just # appended): #------------------------------------------------------------------------- def tno_can_insert(self, node): """ Returns whether the object's children can be inserted (False, meaning children are appended, for this class). """ return False #------------------------------------------------------------------------- # Returns the icon for a specified object: #------------------------------------------------------------------------- def tno_get_icon(self, node, is_expanded): """ Returns the icon for a specified object. """ return ('@icons:%s_node' % self.__class__.__name__[: -4].lower()) #------------------------------------------------------------------------- # Sets the label for a specified node: #------------------------------------------------------------------------- def tno_set_label(self, node, label): """ Sets the label for a specified object. """ if label == '?': label = '' self.label = label #------------------------------------------------------------------------- # Gets the label to display for a specified object: #------------------------------------------------------------------------- def tno_get_label(self, node): """ Gets the label to display for a specified object. """ if self.label != '': return self.label if self.name == '': return self.format_value(self.value) return '%s: %s' % (self.name, self.format_value(self.value)) #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return repr(value) #------------------------------------------------------------------------- # Returns the correct node type for a specified value: #------------------------------------------------------------------------- def node_for(self, name, value): """ Returns the correct node type for a specified value. """ for type, node in basic_types(): if isinstance(value, type): break else: node = OtherNode if inspect.isclass(value): node = ClassNode elif hasattr(value, '__class__'): node = ObjectNode return node(parent=self, name=name, value=value, readonly=self.readonly) #------------------------------------------------------------------------- # 'MultiValueTreeNodeObject' class: #------------------------------------------------------------------------- class MultiValueTreeNodeObject(SingleValueTreeNodeObject): """ A tree node for objects of types that have multiple values. """ #------------------------------------------------------------------------- # Returns whether chidren of this object are allowed or not: #------------------------------------------------------------------------- def tno_allows_children(self, node): """ Returns whether this object can have children (True for this class). """ return True #------------------------------------------------------------------------- # Returns whether or not the object has children: #------------------------------------------------------------------------- def tno_has_children(self, node): """ Returns whether the object has children (True for this class). """ return True #------------------------------------------------------------------------- # 'StringNode' class: #------------------------------------------------------------------------- class StringNode(SingleValueTreeNodeObject): """ A tree node for strings. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ n = len(value) if len(value) > 80: value = '%s...%s' % (value[:42], value[-35:]) return '%s [%d]' % (repr(value), n) #------------------------------------------------------------------------- # 'NoneNode' class: #------------------------------------------------------------------------- class NoneNode(SingleValueTreeNodeObject): """ A tree node for None values. """ pass #------------------------------------------------------------------------- # 'BoolNode' class: #------------------------------------------------------------------------- class BoolNode(SingleValueTreeNodeObject): """ A tree node for Boolean values. """ pass #------------------------------------------------------------------------- # 'IntNode' class: #------------------------------------------------------------------------- class IntNode(SingleValueTreeNodeObject): """ A tree node for integer values. """ pass #------------------------------------------------------------------------- # 'FloatNode' class: #------------------------------------------------------------------------- class FloatNode(SingleValueTreeNodeObject): """ A tree node for floating point values. """ pass #------------------------------------------------------------------------- # 'ComplexNode' class: #------------------------------------------------------------------------- class ComplexNode(SingleValueTreeNodeObject): """ A tree node for complex number values. """ pass #------------------------------------------------------------------------- # 'OtherNode' class: #------------------------------------------------------------------------- class OtherNode(SingleValueTreeNodeObject): """ A tree node for single-value types for which there is not another node type. """ pass #------------------------------------------------------------------------- # 'TupleNode' class: #------------------------------------------------------------------------- class TupleNode(MultiValueTreeNodeObject): """ A tree node for tuples. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return 'Tuple(%d)' % len(value) #------------------------------------------------------------------------- # Returns whether or not the object has children: #------------------------------------------------------------------------- def tno_has_children(self, node): """ Returns whether the object has children, based on the length of the tuple. """ return (len(self.value) > 0) #------------------------------------------------------------------------- # Gets the object's children: #------------------------------------------------------------------------- def tno_get_children(self, node): """ Gets the object's children. """ node_for = self.node_for value = self.value if len(value) > 500: return ([node_for('[%d]' % i, x) for i, x in enumerate(value[: 250])] + [StringNode(value='...', readonly=True)] + [node_for('[%d]' % i, x) for i, x in enumerate(value[-250:])]) return [node_for('[%d]' % i, x) for i, x in enumerate(value)] #------------------------------------------------------------------------- # 'ListNode' class: #------------------------------------------------------------------------- class ListNode(TupleNode): """ A tree node for lists. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return 'List(%d)' % len(value) #------------------------------------------------------------------------- # Returns whether or not the object's children can be deleted: #------------------------------------------------------------------------- def tno_can_delete(self, node): """ Returns whether the object's children can be deleted. """ return (not self.readonly) #------------------------------------------------------------------------- # Returns whether or not the object's children can be inserted (or just # appended): #------------------------------------------------------------------------- def tno_can_insert(self, node): """ Returns whether the object's children can be inserted (vs. appended). """ return (not self.readonly) #------------------------------------------------------------------------- # 'SetNode' class: #------------------------------------------------------------------------- class SetNode(ListNode): """ A tree node for sets. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return 'Set(%d)' % len(value) #------------------------------------------------------------------------- # 'ArrayNode' class: #------------------------------------------------------------------------- class ArrayNode(TupleNode): """ A tree node for arrays. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return 'Array(%s)' % ','.join([str(n) for n in value.shape]) #------------------------------------------------------------------------- # 'DictNode' class: #------------------------------------------------------------------------- class DictNode(TupleNode): """ A tree node for dictionaries. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return 'Dict(%d)' % len(value) #------------------------------------------------------------------------- # Gets the object's children: #------------------------------------------------------------------------- def tno_get_children(self, node): """ Gets the object's children. """ node_for = self.node_for items = [(repr(k), v) for k, v in self.value.items()] items.sort(key=itemgetter(0)) if len(items) > 500: return ([node_for('[%s]' % k, v) for k, v in items[: 250]] + [StringNode(value='...', readonly=True)] + [node_for('[%s]' % k, v) for k, v in items[-250:]]) return [node_for('[%s]' % k, v) for k, v in items] #------------------------------------------------------------------------- # Returns whether or not the object's children can be deleted: #------------------------------------------------------------------------- def tno_can_delete(self, node): """ Returns whether the object's children can be deleted. """ return (not self.readonly) #------------------------------------------------------------------------- # 'FunctionNode' class: #------------------------------------------------------------------------- class FunctionNode(SingleValueTreeNodeObject): """ A tree node for functions """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return 'Function %s()' % (value.__name__) #--------------------------------------------------------------------------- # 'MethodNode' class: #--------------------------------------------------------------------------- class MethodNode(MultiValueTreeNodeObject): #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ type = 'B' if value.__self__ is None: type = 'Unb' return '%sound method %s.%s()' % ( type, value.__self__.__class__.__name__, value.__func__.__name__) #------------------------------------------------------------------------- # Returns whether or not the object has children: #------------------------------------------------------------------------- def tno_has_children(self, node): """ Returns whether the object has children. """ return (self.value.__func__ is not None) #------------------------------------------------------------------------- # Gets the object's children: #------------------------------------------------------------------------- def tno_get_children(self, node): """ Gets the object's children. """ return [self.node_for('Object', self.value.__self__)] #------------------------------------------------------------------------- # 'ObjectNode' class: #------------------------------------------------------------------------- class ObjectNode(MultiValueTreeNodeObject): """ A tree node for objects. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ try: klass = value.__class__.__name__ except: klass = '???' return '%s(0x%08X)' % (klass, id(value)) #------------------------------------------------------------------------- # Returns whether or not the object has children: #------------------------------------------------------------------------- def tno_has_children(self, node): """ Returns whether the object has children. """ try: return (len(self.value.__dict__) > 0) except: return False #------------------------------------------------------------------------- # Gets the object's children: #------------------------------------------------------------------------- def tno_get_children(self, node): """ Gets the object's children. """ items = [(k, v) for k, v in self.value.__dict__.items()] items.sort(key=itemgetter(0)) return [self.node_for('.' + k, v) for k, v in items] #------------------------------------------------------------------------- # 'ClassNode' class: #------------------------------------------------------------------------- class ClassNode(ObjectNode): """ A tree node for classes. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return value.__name__ #------------------------------------------------------------------------- # 'TraitsNode' class: #------------------------------------------------------------------------- class TraitsNode(ObjectNode): """ A tree node for traits. """ #------------------------------------------------------------------------- # Returns whether or not the object has children: #------------------------------------------------------------------------- def tno_has_children(self, node): """ Returns whether the object has children. """ return (len(self._get_names()) > 0) #------------------------------------------------------------------------- # Gets the object's children: #------------------------------------------------------------------------- def tno_get_children(self, node): """ Gets the object's children. """ names = sorted(self._get_names()) value = self.value node_for = self.node_for nodes = [] for name in names: try: item_value = getattr(value, name, '<unknown>') except Exception as excp: item_value = '<%s>' % excp nodes.append(node_for('.' + name, item_value)) return nodes #------------------------------------------------------------------------- # Gets the names of all defined traits/attributes: #------------------------------------------------------------------------- def _get_names(self): """ Gets the names of all defined traits or attributes. """ value = self.value names = {} for name in value.trait_names(type=lambda x: x != 'event'): names[name] = None for name in value.__dict__.keys(): names[name] = None return list(names.keys()) #------------------------------------------------------------------------- # Sets up/Tears down a listener for 'children replaced' on a specified # object: #------------------------------------------------------------------------- def tno_when_children_replaced(self, node, listener, remove): """ Sets up or removes a listener for children being replaced on a specified object. """ self._listener = listener self.value.on_trait_change(self._children_replaced, remove=remove, dispatch='ui') def _children_replaced(self): self._listener(self) #------------------------------------------------------------------------- # Sets up/Tears down a listener for 'children changed' on a specified # object: #------------------------------------------------------------------------- def tno_when_children_changed(self, node, listener, remove): """ Sets up or removes a listener for children being changed on a specified object. """ pass #------------------------------------------------------------------------- # 'RootNode' class: #------------------------------------------------------------------------- class RootNode(MultiValueTreeNodeObject): """ A root node. """ #------------------------------------------------------------------------- # Returns the formatted version of the value: #------------------------------------------------------------------------- def format_value(self, value): """ Returns the formatted version of the value. """ return '' #------------------------------------------------------------------------- # Gets the object's children: #------------------------------------------------------------------------- def tno_get_children(self, node): """ Gets the object's children. """ return [self.node_for('', self.value)] #------------------------------------------------------------------------- # Define the mapping of object types to nodes: #------------------------------------------------------------------------- _basic_types = None def basic_types(): global _basic_types if _basic_types is None: # Create the mapping of object types to nodes: _basic_types = [ (type(None), NoneNode), (str, StringNode), (six.text_type, StringNode), (bool, BoolNode), (int, IntNode), (float, FloatNode), (complex, ComplexNode), (tuple, TupleNode), (list, ListNode), (set, SetNode), (dict, DictNode), (FunctionType, FunctionNode), (MethodType, MethodNode), (HasTraits, TraitsNode) ] try: from numpy import array _basic_types.append((type(array([1])), ArrayNode)) except ImportError: pass return _basic_types #------------------------------------------------------------------------- # '_ValueTree' class: #------------------------------------------------------------------------- class _ValueTree(HasPrivateTraits): #------------------------------------------------------------------------- # Trait definitions: #------------------------------------------------------------------------- # List of arbitrary Python values contained in the tree: values = List(SingleValueTreeNodeObject) #------------------------------------------------------------------------- # Defines the value tree editor(s): #------------------------------------------------------------------------- # Nodes in a value tree: value_tree_nodes = [ ObjectTreeNode( node_for=[NoneNode, StringNode, BoolNode, IntNode, FloatNode, ComplexNode, OtherNode, TupleNode, ListNode, ArrayNode, DictNode, SetNode, FunctionNode, MethodNode, ObjectNode, TraitsNode, RootNode, ClassNode]) ] # Editor for a value tree: value_tree_editor = TreeEditor( auto_open=3, hide_root=True, editable=False, nodes=value_tree_nodes ) # Editor for a value tree with a root: value_tree_editor_with_root = TreeEditor( auto_open=3, editable=False, nodes=[ ObjectTreeNode( node_for=[NoneNode, StringNode, BoolNode, IntNode, FloatNode, ComplexNode, OtherNode, TupleNode, ListNode, ArrayNode, DictNode, SetNode, FunctionNode, MethodNode, ObjectNode, TraitsNode, RootNode, ClassNode] ), TreeNode(node_for=[_ValueTree], auto_open=True, children='values', move=[SingleValueTreeNodeObject], copy=False, label='=Values', icon_group='traits_node', icon_open='traits_node') ] ) #------------------------------------------------------------------------- # Defines a 'ValueTree' trait: #------------------------------------------------------------------------- # Trait for a value tree: ValueTree = Instance(_ValueTree, (), editor=value_tree_editor_with_root)
34.805521
82
0.369755
20,043
0.722531
0
0
0
0
0
0
17,533
0.632048
f199cbd96d64f014fd31d99a8774f29dfb8baff8
3,400
py
Python
apps/events/tests/admin_tests.py
Kpaubert/onlineweb4
9ac79f163bc3a816db57ffa8477ea88770d97807
[ "MIT" ]
32
2017-02-22T13:38:38.000Z
2022-03-31T23:29:54.000Z
apps/events/tests/admin_tests.py
Kpaubert/onlineweb4
9ac79f163bc3a816db57ffa8477ea88770d97807
[ "MIT" ]
694
2017-02-15T23:09:52.000Z
2022-03-31T23:16:07.000Z
apps/events/tests/admin_tests.py
Kpaubert/onlineweb4
9ac79f163bc3a816db57ffa8477ea88770d97807
[ "MIT" ]
35
2017-09-02T21:13:09.000Z
2022-02-21T11:30:30.000Z
from django.contrib.auth.models import Group from django.test import TestCase from django.urls import reverse, reverse_lazy from django_dynamic_fixture import G from apps.authentication.models import OnlineUser from ..constants import EventType from ..models import Event from .utils import ( add_event_permissions, add_to_group, create_committee_group, generate_event, ) EVENTS_ADMIN_LIST_URL = reverse_lazy("admin:events_event_changelist") EVENTS_DASHBOARD_INDEX_URL = reverse_lazy("dashboard_events_index") def event_admin(event: Event) -> str: return reverse("admin:events_event_change", args=(event.id,)) def attendance_list(event: Event) -> str: return reverse("event_attendees_pdf", args=(event.id,)) def event_dashboard(event: Event) -> str: return reverse("dashboard_events_edit", args=(event.id,)) class EventAdminTestCase(TestCase): def setUp(self): self.admin_group = create_committee_group(G(Group, name="Arrkom")) self.other_group: Group = G(Group, name="Buddy") add_event_permissions(self.admin_group) self.user: OnlineUser = G(OnlineUser) self.client.force_login(self.user) self.event = generate_event(EventType.SOSIALT, organizer=self.admin_group) # General committee members should not be able to access event admin pages. self.expected_resp_code_own_django = 302 self.expected_resp_code_own_dashboard = 403 def test_view_event_list_admin(self): resp = self.client.get(EVENTS_ADMIN_LIST_URL) self.assertEqual(self.expected_resp_code_own_django, resp.status_code) def test_view_event_detail_admin(self): resp = self.client.get(event_admin(self.event)) self.assertEqual(self.expected_resp_code_own_django, resp.status_code) def test_view_event_attendance_list(self): resp = self.client.get(attendance_list(self.event)) self.assertEqual(self.expected_resp_code_own_django, resp.status_code) def test_view_event_list_dashboard(self): resp = self.client.get(EVENTS_DASHBOARD_INDEX_URL) self.assertEqual(self.expected_resp_code_own_dashboard, resp.status_code) def test_view_event_detail_dashboard(self): resp = self.client.get(event_dashboard(self.event)) self.assertEqual(self.expected_resp_code_own_dashboard, resp.status_code) class EventAdminGroupTestCase(EventAdminTestCase): def setUp(self): super().setUp() self.event = generate_event(EventType.SOSIALT, organizer=self.admin_group) add_to_group(self.admin_group, self.user) self.expected_resp_code_own_django = 200 self.expected_resp_code_own_dashboard = 200 def test_cannot_view_event_attendance_list_for_bedkom(self): event = generate_event() resp = self.client.get(attendance_list(event)) self.assertEqual(302, resp.status_code) def test_cannot_view_event_detail_admin_for_bedkom(self): event = generate_event(EventType.BEDPRES, organizer=self.other_group) resp = self.client.get(event_admin(event)) self.assertEqual(302, resp.status_code) def test_cannot_view_event_detail_dashboard_for_bedkom(self): event = generate_event(EventType.BEDPRES, organizer=self.other_group) resp = self.client.get(event_dashboard(event)) self.assertEqual(403, resp.status_code)
33.009709
83
0.746471
2,549
0.749706
0
0
0
0
0
0
216
0.063529
f19a9b4226505a42ffa94930bb3319c14ebc1a93
359
py
Python
pyuvs/l1b/_files.py
kconnour/maven-iuvs
fc6ff5d6b7799c78b2ccf34e4316fc151ec87ee8
[ "BSD-3-Clause" ]
null
null
null
pyuvs/l1b/_files.py
kconnour/maven-iuvs
fc6ff5d6b7799c78b2ccf34e4316fc151ec87ee8
[ "BSD-3-Clause" ]
null
null
null
pyuvs/l1b/_files.py
kconnour/maven-iuvs
fc6ff5d6b7799c78b2ccf34e4316fc151ec87ee8
[ "BSD-3-Clause" ]
null
null
null
from pyuvs.files import DataFilenameCollection class L1bDataFilenameCollection: def __init__(self, files: DataFilenameCollection): self.__files = files def __raise_value_error_if_not_all_l1b(self) -> None: if not self.__files.all_l1b(): message = 'Some files are not all level 1b.' raise ValueError(message)
29.916667
57
0.70195
309
0.860724
0
0
0
0
0
0
34
0.094708
f19aa91679864846081cef43f5707f10afbe079f
9,380
py
Python
instagram.py
Breizhux/picture-dl
3e2bfa590097db56d3326a4aa36d0dd37c1bacc3
[ "Unlicense" ]
null
null
null
instagram.py
Breizhux/picture-dl
3e2bfa590097db56d3326a4aa36d0dd37c1bacc3
[ "Unlicense" ]
2
2019-09-06T12:19:18.000Z
2019-09-06T15:21:36.000Z
instagram.py
Breizhux/picture-dl
3e2bfa590097db56d3326a4aa36d0dd37c1bacc3
[ "Unlicense" ]
null
null
null
# coding: utf-8 import urllib2 import message_box from ast import literal_eval class InfoExtractor(): """ Extractor Information class for Instagram Instagram InfoExtractor that, given url, extract information about the image (or images) the URL refers to. This information includes the real image URL, the image title, author and others. The information is stored in a list of dictionary.""" def __init__(self, url, verbose) : self.url = url # self.print_ = message_box.print_(verbose) self.result_list = [] self.raw_informations = None self.info_dictionary = { 'username' : None, 'author' : None, 'profile_url' : None, 'is_several_images' : False, 'id' : None, 'title' : None, 'format' : ".jpg", #all images from instagram are jpg 'description' : None, 'comments' : None, 'date' : None, 'localization' : None, 'real_urls_and_dimensions' : [], # list of urls and dimensions(W-H), 'like_nb' : None,} # ex : [["url1", 1080, 1080],["url2", 640, 640]] def get_informations(self) : self.raw_informations = self.download_webpage_informations(self.url) #type dictionary if self.get_type_link(self.raw_informations) == "post" : self.get_information_single_image(self.raw_informations) return self.result_list elif self.get_type_link(self.raw_informations) == "account" : self.get_information_many_images(self.raw_informations) return self.result_list elif self.get_type_link(self.raw_informations) == "tagpage" : self.get_informations_tagpage_images(self.raw_informations) return self.result_list else : return "Invalid url" def download_webpage_informations(self, url) : """ Return the dictionary of image(s) and account informations. """ request = urllib2.Request(url) fh = urllib2.urlopen(request) source_code = fh.read() source_code = source_code[ source_code.index('<script type="text/javascript">window._sharedData = ')+52: source_code.index(';</script>\n<script type="text/javascript">window.__initialDataLoaded(window._sharedData);</script>')] source_code = source_code.replace("false", "False") source_code = source_code.replace("true", "True") source_code = source_code.replace("null", "None") dict_of_information = literal_eval(source_code) return dict_of_information def get_type_link(self, webpage_info) : """ Return type url from Instagram : many images (acount) or single image or undeterminate. The determination find if in the dictionary of source code of page exist the ['entry_data']['PostPage'] keys (simple post) or ['entry_data']['ProfilePage'] keys exists (account url)""" webpage_info = webpage_info['entry_data'] if webpage_info.has_key('PostPage') : return "post" elif webpage_info.has_key('ProfilePage') : self.info_dictionary['is_several_images'] = True return "account" elif webpage_info.has_key('TagPage') : self.info_dictionary['is_several_images'] = True return "tagpage" else : return "undeterminate" def get_information_single_image(self, raw_informations) : """ Complete the dictionary with information of code source webpage. The result is locate in a list of result (result list) in the form of dictionary.""" webpage_info = raw_informations['entry_data']['PostPage'][0]['graphql']['shortcode_media'] self.info_dictionary['username'] = webpage_info['owner']['username'] self.info_dictionary['author'] = webpage_info['owner']['full_name'] self.info_dictionary['profile_url'] = webpage_info['owner']['profile_pic_url'] self.info_dictionary['id'] = webpage_info['shortcode'] title, description = self.get_title_and_description(webpage_info) self.info_dictionary['title'] = title self.info_dictionary['description'] = description self.info_dictionary['comments'] = webpage_info['edge_media_to_comment'] self.info_dictionary['localization'] = webpage_info['localization'] for i in webpage_info['display_resources'] : self.info_dictionary['real_urls_and_dimensions'].append([ i['src'], i['config_width'], i['config_height']]) #self.info_dictionary["sizes"] self.info_dictionary['like_nb'] = webpage_info['edge_media_preview_like']['count'] self.complete_result_list() def get_information_many_images(self, raw_informations) : """ Complete dictionary and put this in result list at the rate of one dictionary per image. The dictionary is reset at each loop of research information for one image. """ webpage_info = raw_informations['entry_data']['ProfilePage'][0]['graphql']['user'] for i in webpage_info['edge_owner_to_timeline_media']['edges'] : self.info_dictionary['username'] = webpage_info['username'] self.info_dictionary['author'] = webpage_info['full_name'] self.info_dictionary['profile_url'] = webpage_info['profile_pic_url_hd'] self.info_dictionary['id'] = i['node']['shortcode'] title, description = self.get_title_and_description(i['node']) self.info_dictionary['title'] = title self.info_dictionary['description'] = description self.info_dictionary['comments'] = i['node']['edge_media_to_comment'] self.info_dictionary['localization'] = i['node']['localization'] for j in i['node']['thumbnail_resources'] : self.info_dictionary['real_urls_and_dimensions'].append([ j['src'], j['config_width'], j['config_height']]) self.info_dictionary['real_urls_and_dimensions'].append([ i['node']['display_url'], i['node']['dimensions']['width'], i['node']['dimensions']['height']]) self.info_dictionary['like_nb'] = i['node']['edge_liked_by']['count'] self.complete_result_list() def get_informations_tagpage_images(self, raw_informations) : """ Complete dictionary and put this in result list at the rate of one dictionary per image. The dictionary is reset at each loop of research information for one image. """ webpage_info = raw_informations['entry_data']['TagPage'][0]['graphql']['hashtag'] for i in webpage_info['edge_hashtag_to_media']['edges'] : self.info_dictionary['username'] = webpage_info['name'] self.info_dictionary['author'] = webpage_info['name'] self.info_dictionary['id'] = i['node']['shortcode'] title, description = self.get_title_and_description(i['node']) self.info_dictionary['title'] = title self.info_dictionary['description'] = description self.info_dictionary['comments'] = i['node']['edge_media_to_comment'] for j in i['node']['thumbnail_resources'] : self.info_dictionary['real_urls_and_dimensions'].append([ j['src'], j['config_width'], j['config_height']]) self.info_dictionary['real_urls_and_dimensions'].append([ i['node']['display_url'], i['node']['dimensions']['width'], i['node']['dimensions']['height']]) self.info_dictionary['like_nb'] = i['node']['edge_liked_by']['count'] self.complete_result_list() def get_title_and_description(self, webpage_info) : """ Return a title for image with description of image. if description don't exists, it can't found title. The title is crop to the first caracter found : [#,.,!,?,\n]""" if len(webpage_info['edge_media_to_caption']['edges']) == 0 : return "No title :(", "Because no description..." description = webpage_info['edge_media_to_caption']['edges'][0]['node']['text'] end_title = ["#", ".", "!", "?", "\n"] i = 1 while description[i] not in end_title and i < len(description)-1 : i+=1 title = description[:i] if i < len(description) else "No title found ;(" return title.strip().replace("/","-"), description def complete_result_list(self) : """ Copy dictionary to result list, the list of dictionary. There is one dictionary per image. After append dictionary in list, clear it. """ self.result_list.append(self.info_dictionary) self.info_dictionary = { 'username' : None, 'author' : None, 'profile_url' : None, 'is_several_images' : False, 'id' : None, 'title' : None, 'format' : ".jpg", 'description' : None, 'comments' : None, 'date' : None, 'localization' : None, 'real_urls_and_dimensions' : [], 'like_nb' : None,}
50.430108
133
0.615032
9,298
0.991258
0
0
0
0
0
0
3,848
0.410235
f19bffe1d8db01545aa2bac87ec675c56149bef9
195
py
Python
kali/comandosOs.py
NandoDev-lab/AssistenteEmPython
3d6e7c4abef39154e710e82807d0534586294c1c
[ "MIT" ]
1
2021-06-30T18:08:42.000Z
2021-06-30T18:08:42.000Z
kali/comandosOs.py
NandoDev-lab/AssistenteEmPython
3d6e7c4abef39154e710e82807d0534586294c1c
[ "MIT" ]
null
null
null
kali/comandosOs.py
NandoDev-lab/AssistenteEmPython
3d6e7c4abef39154e710e82807d0534586294c1c
[ "MIT" ]
null
null
null
import sys import os import subprocess import pyautogui import time subprocess.run("C:/Windows/system32/cmd.exe") time.sleep(3) pyautogui.typewrite("python")
8.478261
46
0.651282
0
0
0
0
0
0
0
0
37
0.189744
f19c254391cc08472493c02b34a771daed15156b
75
py
Python
main.py
TTRSQ/pip-test
acc81731555f4a3566a76f670fe95d0384ec4ab7
[ "MIT" ]
null
null
null
main.py
TTRSQ/pip-test
acc81731555f4a3566a76f670fe95d0384ec4ab7
[ "MIT" ]
null
null
null
main.py
TTRSQ/pip-test
acc81731555f4a3566a76f670fe95d0384ec4ab7
[ "MIT" ]
null
null
null
#自作関数のインポート import pip_test if __name__ == '__main__': pip_test.hello()
15
26
0.733333
0
0
0
0
0
0
0
0
41
0.431579
f19cbc9fa4b054f10523c99c5ea25ef1f89616fb
26
py
Python
port/boost/__init__.py
happyxianyu/fxpkg
6d69f410474e71518cc8c6291892dd069c357c75
[ "Apache-2.0" ]
null
null
null
port/boost/__init__.py
happyxianyu/fxpkg
6d69f410474e71518cc8c6291892dd069c357c75
[ "Apache-2.0" ]
null
null
null
port/boost/__init__.py
happyxianyu/fxpkg
6d69f410474e71518cc8c6291892dd069c357c75
[ "Apache-2.0" ]
null
null
null
from .main import MainPort
26
26
0.846154
0
0
0
0
0
0
0
0
0
0
f19e04b462dda85e0bd45e84d17a144a85a0f4c3
1,830
py
Python
tests/test_invenio_s3.py
lnielsen/invenio-s3
442136d580ba99b9d1922a9afffa716e62e29ec8
[ "MIT" ]
null
null
null
tests/test_invenio_s3.py
lnielsen/invenio-s3
442136d580ba99b9d1922a9afffa716e62e29ec8
[ "MIT" ]
19
2019-01-23T16:59:55.000Z
2021-07-30T15:12:27.000Z
tests/test_invenio_s3.py
lnielsen/invenio-s3
442136d580ba99b9d1922a9afffa716e62e29ec8
[ "MIT" ]
9
2018-10-31T10:40:56.000Z
2020-12-09T07:44:45.000Z
# -*- coding: utf-8 -*- # # Copyright (C) 2018, 2019 Esteban J. G. Gabancho. # # Invenio-S3 is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Module tests.""" from __future__ import absolute_import, print_function from invenio_s3 import InvenioS3 def test_version(): """Test version import.""" from invenio_s3 import __version__ assert __version__ def test_init(appctx): """Test extension initialization.""" assert 'invenio-s3' in appctx.extensions appctx.config['S3_ENDPOINT_URL'] = 'https://example.com:1234' appctx.config['S3_REGION_NAME'] = 'eu-west-1' s3_connection_info = appctx.extensions['invenio-s3'].init_s3fs_info assert s3_connection_info['client_kwargs'][ 'endpoint_url'] == 'https://example.com:1234' assert s3_connection_info['client_kwargs'][ 'region_name'] == 'eu-west-1' def test_access_key(appctx): """Test correct access key works together with flawed one.""" appctx.config['S3_ACCCESS_KEY_ID'] = 'secret' try: # Delete the cached value in case it's there already del appctx.extensions['invenio-s3'].__dict__['init_s3fs_info'] except KeyError: pass s3_connection_info = appctx.extensions['invenio-s3'].init_s3fs_info assert s3_connection_info['key'] == 'secret' def test_secret_key(appctx): """Test correct secret key works together with flawed one.""" appctx.config['S3_SECRECT_ACCESS_KEY'] = 'secret' try: # Delete the cached value in case it's there already del appctx.extensions['invenio-s3'].__dict__['init_s3fs_info'] except KeyError: pass s3_connection_info = appctx.extensions['invenio-s3'].init_s3fs_info assert s3_connection_info['secret'] == 'secret'
33.272727
72
0.701639
0
0
0
0
0
0
0
0
880
0.480874
f1a11c9a3c3f708c9cfe435d2e5adfed43004799
600
py
Python
textattack/constraints/pre_transformation/max_word_index_modification.py
cclauss/TextAttack
98b8d6102aa47bf3c41afedace0215d48f8ed046
[ "MIT" ]
1
2021-06-24T19:35:18.000Z
2021-06-24T19:35:18.000Z
textattack/constraints/pre_transformation/max_word_index_modification.py
53X/TextAttack
e6a7969abc1e28a2a8a7e2ace709b78eb9dc94be
[ "MIT" ]
null
null
null
textattack/constraints/pre_transformation/max_word_index_modification.py
53X/TextAttack
e6a7969abc1e28a2a8a7e2ace709b78eb9dc94be
[ "MIT" ]
1
2021-11-12T05:26:21.000Z
2021-11-12T05:26:21.000Z
from textattack.constraints.pre_transformation import PreTransformationConstraint from textattack.shared.utils import default_class_repr class MaxWordIndexModification(PreTransformationConstraint): """ A constraint disallowing the modification of words which are past some maximum length limit """ def __init__(self, max_length): self.max_length = max_length def _get_modifiable_indices(self, current_text): """ Returns the word indices in current_text which are able to be deleted """ return set(range(min(self.max_length, len(current_text.words))))
37.5
95
0.765
460
0.766667
0
0
0
0
0
0
185
0.308333
f1a149c6c08f22569c5bb980bf68d3996a092d95
2,012
bzl
Python
bazel/utils/merge_kwargs.bzl
george-enf/enkit
af32fede472f04f77965b972c7ef3008f52c8caf
[ "BSD-3-Clause" ]
null
null
null
bazel/utils/merge_kwargs.bzl
george-enf/enkit
af32fede472f04f77965b972c7ef3008f52c8caf
[ "BSD-3-Clause" ]
1
2021-10-01T05:24:29.000Z
2021-10-01T05:24:29.000Z
bazel/utils/merge_kwargs.bzl
george-enf/enkit
af32fede472f04f77965b972c7ef3008f52c8caf
[ "BSD-3-Clause" ]
null
null
null
# TODO(jonathan): try to simplify this. def merge_kwargs(d1, d2, limit = 5): """Combine kwargs in a useful way. merge_kwargs combines dictionaries by inserting keys from d2 into d1. If the same key exists in both dictionaries: * if the value is a scalar, d2[key] overrides d1[key]. * if the value is a list, the contents of d2[key] not already in d1[key] are appended to d1[key]. * if the value is a dict, the sub-dictionaries are merged similarly (scalars are overriden, lists are appended). By default, this function limits recursion to 5 levels. The "limit" argument can be specified if deeper recursion is needed. """ merged = {} to_expand = [(merged, d1, k) for k in d1] + [(merged, d2, k) for k in d2] for _ in range(limit): expand_next = [] for m, d, k in to_expand: if k not in m: if type(d[k]) == "list": m[k] = list(d[k]) continue if type(d[k]) == "dict": m[k] = dict(d[k]) continue # type must be scalar: m[k] = d[k] continue if type(m[k]) == "dict": expand_next.extend([(m[k], d[k], k2) for k2 in d[k]]) continue if type(m[k]) == "list": # uniquify as we combine lists: for item in d[k]: if item not in m[k]: m[k].append(item) continue # type must be scalar: m[k] = d[k] to_expand = expand_next if not to_expand: break # If <limit> layers of recursion were not enough, explicitly fail. if to_expand: fail("merge_kwargs: exceeded maximum recursion limit.") return merged def add_tag(k, t): """Returns a kwargs dict that ensures tag `t` is present in kwargs["tags"].""" return merge_kwargs(k, {"tags": [t]})
32.983607
82
0.524851
0
0
0
0
0
0
0
0
935
0.464712
f1a1a49462e4695e563f4953333c397736ce81f0
24,083
py
Python
remote_sensing_core.py
HNoorazar/KC
2c78de218ce9dc732da228051fbf4b42badc97ea
[ "MIT" ]
null
null
null
remote_sensing_core.py
HNoorazar/KC
2c78de218ce9dc732da228051fbf4b42badc97ea
[ "MIT" ]
null
null
null
remote_sensing_core.py
HNoorazar/KC
2c78de218ce9dc732da228051fbf4b42badc97ea
[ "MIT" ]
null
null
null
# import libraries import os, os.path import numpy as np import pandas as pd # import geopandas as gpd import sys from IPython.display import Image # from shapely.geometry import Point, Polygon from math import factorial import scipy from statsmodels.sandbox.regression.predstd import wls_prediction_std from sklearn.linear_model import LinearRegression from patsy import cr from datetime import date import datetime import time from pprint import pprint import matplotlib.pyplot as plt import seaborn as sb ################################################################ ##### ##### Function definitions ##### ################################################################ ######################################################################## def addToDF_SOS_EOS_White(pd_TS, VegIdx = "EVI", onset_thresh=0.15, offset_thresh=0.15): """ In this methods the NDVI_Ratio = (NDVI - NDVI_min) / (NDVI_Max - NDVI_min) is computed. SOS or onset is when NDVI_ratio exceeds onset-threshold and EOS is when NDVI_ratio drops below off-set-threshold. """ pandaFrame = pd_TS.copy() VegIdx_min = pandaFrame[VegIdx].min() VegIdx_max = pandaFrame[VegIdx].max() VegRange = VegIdx_max - VegIdx_min + sys.float_info.epsilon colName = VegIdx + "_ratio" pandaFrame[colName] = (pandaFrame[VegIdx] - VegIdx_min) / VegRange SOS_candidates = pandaFrame[colName] - onset_thresh EOS_candidates = offset_thresh - pandaFrame[colName] BOS, EOS = find_signChange_locs_DifferentOnOffset(SOS_candidates, EOS_candidates) pandaFrame['SOS'] = BOS * pandaFrame[VegIdx] pandaFrame['EOS'] = EOS * pandaFrame[VegIdx] return(pandaFrame) ######################################################################## def correct_big_jumps_1DaySeries(dataTMS_jumpie, give_col, maxjump_perDay = 0.015): """ in the function correct_big_jumps_preDefinedJumpDays(.) we have to define the jump_amount and the no_days_between_points. For example if we have a jump more than 0.4 in less than 20 dats, then that is an outlier detected. Here we modify the approach to be flexible in the following sense: if the amount of increase in NDVI is more than #_of_Days * 0.02 then an outlier is detected and we need interpolation. 0.015 came from the SG based paper that used 0.4 jump in NDVI for 20 days. That translates into 0.02 = 0.4 / 20 per day. But we did choose 0.015 as default """ dataTMS = dataTMS_jumpie.copy() dataTMS = initial_clean(df = dataTMS, column_to_be_cleaned = give_col) dataTMS.sort_values(by=['image_year', 'doy'], inplace=True) dataTMS.reset_index(drop=True, inplace=True) dataTMS['system_start_time'] = dataTMS['system_start_time'] / 1000 thyme_vec = dataTMS['system_start_time'].values.copy() Veg_indks = dataTMS[give_col].values.copy() time_diff = thyme_vec[1:] - thyme_vec[0:len(thyme_vec)-1] time_diff_in_days = time_diff / 86400 time_diff_in_days = time_diff_in_days.astype(int) Veg_indks_diff = Veg_indks[1:] - Veg_indks[0:len(thyme_vec)-1] jump_indexes = np.where(Veg_indks_diff > maxjump_perDay) jump_indexes = jump_indexes[0] jump_indexes = jump_indexes.tolist() # It is possible that the very first one has a big jump in it. # we cannot interpolate this. so, lets just skip it. if len(jump_indexes) > 0: if jump_indexes[0] == 0: jump_indexes.pop(0) if len(jump_indexes) > 0: for jp_idx in jump_indexes: if Veg_indks_diff[jp_idx] >= (time_diff_in_days[jp_idx] * maxjump_perDay): # # form a line using the adjacent points of the big jump: # x1, y1 = thyme_vec[jp_idx-1], Veg_indks[jp_idx-1] x2, y2 = thyme_vec[jp_idx+1], Veg_indks[jp_idx+1] # print (x1) # print (x2) m = np.float(y2 - y1) / np.float(x2 - x1) # slope b = y2 - (m*x2) # intercept # replace the big jump with linear interpolation Veg_indks[jp_idx] = m * thyme_vec[jp_idx] + b dataTMS[give_col] = Veg_indks return(dataTMS) ######################################################################## def correct_big_jumps_preDefinedJumpDays(dataTS_jumpy, given_col, jump_amount = 0.4, no_days_between_points=20): dataTS = dataTS_jumpy.copy() dataTS = initial_clean(df = dataTS, column_to_be_cleaned = given_col) dataTS.sort_values(by=['image_year', 'doy'], inplace=True) dataTS.reset_index(drop=True, inplace=True) dataTS['system_start_time'] = dataTS['system_start_time'] / 1000 thyme_vec = dataTS['system_start_time'].values.copy() Veg_indks = dataTS[given_col].values.copy() time_diff = thyme_vec[1:] - thyme_vec[0:len(thyme_vec)-1] time_diff_in_days = time_diff / 86400 time_diff_in_days = time_diff_in_days.astype(int) Veg_indks_diff = Veg_indks[1:] - Veg_indks[0:len(thyme_vec)-1] jump_indexes = np.where(Veg_indks_diff > 0.4) jump_indexes = jump_indexes[0] # It is possible that the very first one has a big jump in it. # we cannot interpolate this. so, lets just skip it. if jump_indexes[0] == 0: jump_indexes.pop(0) if len(jump_indexes) > 0: for jp_idx in jump_indexes: if time_diff_in_days[jp_idx] >= 20: # # form a line using the adjacent points of the big jump: # x1, y1 = thyme_vec[jp_idx-1], Veg_indks[jp_idx-1] x2, y2 = thyme_vec[jp_idx+1], Veg_indks[jp_idx+1] m = np.float(y2 - y1) / np.float(x2 - x1) # slope b = y2 - (m*x2) # intercept # replace the big jump with linear interpolation Veg_indks[jp_idx] = m * thyme_vec[jp_idx] + b dataTS[given_col] = Veg_indks return(dataTS) ######################################################################## def initial_clean(df, column_to_be_cleaned): dt_copy = df.copy() # remove the useles system:index column if ("system:index" in list(dt_copy.columns)): dt_copy = dt_copy.drop(columns=['system:index']) # Drop rows whith NA in column_to_be_cleaned column. dt_copy = dt_copy[dt_copy[column_to_be_cleaned].notna()] if (column_to_be_cleaned in ["NDVI", "EVI"]): # # 1.5 and -1.5 are just indicators for values that have violated the boundaries. # dt_copy.loc[dt_copy[column_to_be_cleaned] > 1, column_to_be_cleaned] = 1.5 dt_copy.loc[dt_copy[column_to_be_cleaned] < -1, column_to_be_cleaned] = -1.5 return (dt_copy) ######################################################################## def convert_human_system_start_time_to_systemStart_time(humantimeDF): epoch_vec = pd.to_datetime(humantimeDF['human_system_start_time']).values.astype(np.int64) // 10 ** 6 # add 83000000 mili sec. since system_start_time is 1 day ahead of image_taken_time # that is recorded in human_system_start_time column. epoch_vec = epoch_vec + 83000000 humantimeDF['system_start_time'] = epoch_vec """ not returning anything does the operation in place. so, you have to use this function like convert_human_system_start_time_to_systemStart_time(humantimeDF) If you do: humantimeDF = convert_human_system_start_time_to_systemStart_time(humantimeDF) Then humantimeDF will be nothing, since we are not returning anything. """ ######################################################################## def add_human_start_time_by_YearDoY(a_Reg_DF): """ This function is written for regularized data where we miss the Epoch time and therefore, cannot convert it to human_start_time using add_human_start_time() function Learn: x = pd.to_datetime(datetime.datetime(2016, 1, 1) + datetime.timedelta(213 - 1)) x year = 2020 DoY = 185 x = str(date.fromordinal(date(year, 1, 1).toordinal() + DoY - 1)) x datetime.datetime(2016, 1, 1) + datetime.timedelta(213 - 1) """ DF_C = a_Reg_DF.copy() # DF_C.image_year = DF_C.image_year.astype(float) DF_C.doy = DF_C.doy.astype(int) DF_C['human_system_start_time'] = pd.to_datetime(DF_C['image_year'].astype(int) * 1000 + DF_C['doy'], format='%Y%j') # DF_C.reset_index(drop=True, inplace=True) # DF_C['human_system_start_time'] = "1" # for row_no in np.arange(0, len(DF_C)): # year = DF_C.loc[row_no, 'image_year'] # DoY = DF_C.loc[row_no, 'doy'] # x = str(date.fromordinal(date(year, 1, 1).toordinal() + DoY - 1)) # DF_C.loc[row_no, 'human_system_start_time'] = x return(DF_C) ######################################################################## ######################################################################## ######################################################################## # # Kirti look here # # detect passing the threshod def find_signChange_locs_EqualOnOffset(a_vec): asign = np.sign(a_vec) # we can drop .values here. sign_change = ((np.roll(asign, 1) - asign) != 0).astype(int) """ np.sign considers 0 to have it's own sign, different from either positive or negative values. So: """ sz = asign == 0 while sz.any(): asign[sz] = np.roll(asign, 1)[sz] sz = asign == 0 """ numpy.roll does a circular shift, so if the last element has different sign than the first, the first element in the sign_change array will be 1. """ sign_change[0] = 0 """ # Another solution for sign change: np.where(np.diff(np.sign(Vector)))[0] np.where(np.diff(np.sign(Vector)))[0] """ return(sign_change) def regularize_movingWindow_windowSteps_2Yrs(one_field_df, SF_yr=2017, veg_idxs, window_size=10): # # This function almost returns a data frame with data # that are window_size away from each other. i.e. regular space in time. # **** For **** 5 months + 12 months. # a_field_df = one_field_df.copy() # initialize output dataframe regular_cols = ['ID', 'Acres', 'county', 'CropGrp', 'CropTyp', 'DataSrc', 'ExctAcr', 'IntlSrD', 'Irrigtn', 'LstSrvD', 'Notes', 'RtCrpTy', 'Shap_Ar', 'Shp_Lng', 'TRS', 'image_year', 'SF_year', 'doy', veg_idxs] # # for a good measure we start at 213 (214 does not matter either) # and the first # first_year_steps = list(range(213, 365, 10)) first_year_steps[-1] = 366 full_year_steps = list(range(1, 365, 10)) full_year_steps[-1] = 366 DoYs = first_year_steps + full_year_steps # # There are 5 months first and then a full year # (31+30+30+30+31) + 365 = 517 days. If we do every 10 days # then we have 51 data points # no_days = 517 no_steps = int(no_days/window_size) regular_df = pd.DataFrame(data = None, index = np.arange(no_steps), columns = regular_cols) regular_df['ID'] = a_field_df.ID.unique()[0] regular_df['Acres'] = a_field_df.Acres.unique()[0] regular_df['county'] = a_field_df.county.unique()[0] regular_df['CropGrp'] = a_field_df.CropGrp.unique()[0] regular_df['CropTyp'] = a_field_df.CropTyp.unique()[0] regular_df['DataSrc'] = a_field_df.DataSrc.unique()[0] regular_df['ExctAcr'] = a_field_df.ExctAcr.unique()[0] regular_df['IntlSrD'] = a_field_df.IntlSrD.unique()[0] regular_df['Irrigtn'] = a_field_df.Irrigtn.unique()[0] regular_df['LstSrvD'] = a_field_df.LstSrvD.unique()[0] regular_df['Notes'] = str(a_field_df.Notes.unique()[0]) regular_df['RtCrpTy'] = str(a_field_df.RtCrpTy.unique()[0]) regular_df['Shap_Ar'] = a_field_df.Shap_Ar.unique()[0] regular_df['Shp_Lng'] = a_field_df.Shp_Lng.unique()[0] regular_df['TRS'] = a_field_df.TRS.unique()[0] regular_df['SF_year'] = a_field_df.SF_year.unique()[0] # I will write this in 3 for-loops. # perhaps we can do it in a cleaner way like using zip or sth. # ##################################################### # # First year (last 5 months of previous year) # # ##################################################### for row_or_count in np.arange(len(first_year_steps)-1): curr_year = SF_yr - 1 curr_time_window = a_field_df[a_field_df.image_year == curr_year].copy() curr_time_window = curr_time_window[curr_time_window.doy >= first_year_steps[row_or_count]] curr_time_window = curr_time_window[curr_time_window.doy < first_year_steps[row_or_count+1]] """ In each time window peak the maximum of present values If in a window (e.g. 10 days) we have no value observed by Sentinel, then use -1.5 as an indicator. That will be a gap to be filled. (function fill_theGap_linearLine). """ if len(curr_time_window)==0: regular_df.loc[row_or_count, veg_idxs] = -1.5 else: regular_df.loc[row_or_count, veg_idxs] = max(curr_time_window[veg_idxs]) regular_df.loc[row_or_count, 'image_year'] = curr_year regular_df.loc[row_or_count, 'doy'] = first_year_steps[row_or_count] ############################################# # # Full year (main year, 12 months) # ############################################# row_count_start = len(first_year_steps) - 1 row_count_end = row_count_start + len(full_year_steps) - 1 for row_or_count in np.arange(row_count_start, row_count_end): curr_year = SF_yr curr_count = row_or_count - row_count_start curr_time_window = a_field_df[a_field_df.image_year == curr_year].copy() curr_time_window = curr_time_window[curr_time_window.doy >= full_year_steps[curr_count]] curr_time_window = curr_time_window[curr_time_window.doy < full_year_steps[curr_count+1]] """ In each time window pick the maximum of present values If in a window (e.g. 10 days) we have no value observed by Sentinel, then use -1.5 as an indicator. That will be a gap to be filled (function fill_theGap_linearLine). """ if len(curr_time_window)==0: regular_df.loc[row_or_count, veg_idxs] = -1.5 else: regular_df.loc[row_or_count, veg_idxs] = max(curr_time_window[veg_idxs]) regular_df.loc[row_or_count, 'image_year'] = curr_year regular_df.loc[row_or_count, 'doy'] = full_year_steps[curr_count] return(regular_df) def extract_XValues_of_2Yrs_TS(regularized_TS, SF_yr): # old name extract_XValues_of_RegularizedTS_2Yrs(). # I do not know why I had Regularized in it. # new name extract_XValues_of_2Yrs_TS """ Jul 1. This function is being written since Kirti said we do not need to have parts of the next year. i.e. if we are looking at what is going on in a field in 2017, we only need data since Aug. 2016 till the end of 2017. We do not need anything in 2018. """ X_values_prev_year = regularized_TS[regularized_TS.image_year == (SF_yr - 1)]['doy'].copy().values X_values_full_year = regularized_TS[regularized_TS.image_year == (SF_yr)]['doy'].copy().values if check_leap_year(SF_yr - 1): X_values_full_year = X_values_full_year + 366 else: X_values_full_year = X_values_full_year + 365 return (np.concatenate([X_values_prev_year, X_values_full_year])) def regularize_movingWindow_windowSteps_12Months(one_field_df, SF_yr=2017, V_idxs="NDVI", window_size=10): # # This function almost returns a data frame with data # that are window_size away from each other. i.e. regular space in time. # copy the field input into the new variale. a_field_df = one_field_df.copy() # initialize output dataframe regular_cols = ['ID', 'Acres', 'county', 'CropGrp', 'CropTyp', 'DataSrc', 'ExctAcr', 'IntlSrD', 'Irrigtn', 'LstSrvD', 'Notes', 'RtCrpTy', 'Shap_Ar', 'Shp_Lng', 'TRS', 'image_year', 'SF_year', 'doy', V_idxs] full_year_steps = list(range(1, 365, 10)) # [1, 10, 20, 30, ..., 360] full_year_steps[-1] = 366 # save the last extra 5 (or 6) days. DoYs = full_year_steps no_days = 366 # number of days in a year no_steps = int(no_days/window_size) # regular_df = pd.DataFrame(data = None, index = np.arange(no_steps), columns = regular_cols) regular_df['ID'] = a_field_df.ID.unique()[0] regular_df['Acres'] = a_field_df.Acres.unique()[0] regular_df['county'] = a_field_df.county.unique()[0] regular_df['CropGrp'] = a_field_df.CropGrp.unique()[0] regular_df['CropTyp'] = a_field_df.CropTyp.unique()[0] regular_df['DataSrc'] = a_field_df.DataSrc.unique()[0] regular_df['ExctAcr'] = a_field_df.ExctAcr.unique()[0] regular_df['IntlSrD'] = a_field_df.IntlSrD.unique()[0] regular_df['Irrigtn'] = a_field_df.Irrigtn.unique()[0] regular_df['LstSrvD'] = a_field_df.LstSrvD.unique()[0] regular_df['Notes'] = str(a_field_df.Notes.unique()[0]) regular_df['RtCrpTy'] = str(a_field_df.RtCrpTy.unique()[0]) regular_df['Shap_Ar'] = a_field_df.Shap_Ar.unique()[0] regular_df['Shp_Lng'] = a_field_df.Shp_Lng.unique()[0] regular_df['TRS'] = a_field_df.TRS.unique()[0] regular_df['SF_year'] = a_field_df.SF_year.unique()[0] # I will write this in 3 for-loops. # perhaps we can do it in a cleaner way like using zip or sth. # for row_or_count in np.arange(len(full_year_steps)-1): curr_year = SF_yr curr_time_window = a_field_df[a_field_df.image_year == curr_year].copy() # [1, 10, 20, 30, ..., 350, 366] curr_time_window = curr_time_window[curr_time_window.doy >= full_year_steps[row_or_count]] curr_time_window = curr_time_window[curr_time_window.doy < full_year_steps[row_or_count+1]] if len(curr_time_window)==0: # this means in that time window there is no NDVI value regular_df.loc[row_or_count, V_idxs] = -1.5 # indicator for missing value else: regular_df.loc[row_or_count, V_idxs] = max(curr_time_window[V_idxs]) regular_df.loc[row_or_count, 'image_year'] = curr_year regular_df.loc[row_or_count, 'doy'] = full_year_steps[row_or_count] return (regular_df) def fill_theGap_linearLine(regular_TS, V_idx, SF_year): # regular_TS: is output of function (regularize_movingWindow_windowSteps_12Months) a_regularized_TS = regular_TS.copy() if (len(a_regularized_TS.image_year.unique()) == 2): x_axis = extract_XValues_of_2Yrs_TS(regularized_TS = a_regularized_TS, SF_yr = SF_year) elif (len(a_regularized_TS.image_year.unique()) == 3): x_axis = extract_XValues_of_3Yrs_TS(regularized_TS = a_regularized_TS, SF_yr = SF_year) elif (len(a_regularized_TS.image_year.unique()) == 1): x_axis = a_regularized_TS["doy"].values.copy() TS_array = a_regularized_TS[V_idx].copy().values """ TS_array[0] = -1.5 TS_array[51] = -1.5 TS_array[52] = -1.5 TS_array[53] = -1.5 TS_array.shape """ """ -1.5 is an indicator of missing values by Sentinel, i.e. a gap. The -1.5 was used as indicator in the function regularize_movingWindow_windowSteps_2Yrs() """ missing_indicies = np.where(TS_array == -1.5)[0] Notmissing_indicies = np.where(TS_array != -1.5)[0] # # Check if the first or last k values are missing # if so, replace them with proper number and shorten the task # left_pointer = Notmissing_indicies[0] right_pointer = Notmissing_indicies[-1] if left_pointer > 0: TS_array[:left_pointer] = TS_array[left_pointer] if right_pointer < (len(TS_array) - 1): TS_array[right_pointer:] = TS_array[right_pointer] # # update indexes. # missing_indicies = np.where(TS_array == -1.5)[0] Notmissing_indicies = np.where(TS_array != -1.5)[0] # left_pointer = Notmissing_indicies[0] stop = right_pointer right_pointer = left_pointer + 1 missing_indicies = np.where(TS_array == -1.5)[0] while len(missing_indicies) > 0: left_pointer = missing_indicies[0] - 1 left_value = TS_array[left_pointer] right_pointer = missing_indicies[0] while TS_array[right_pointer] == -1.5: right_pointer += 1 right_value = TS_array[right_pointer] if (right_pointer - left_pointer) == 2: # if there is a single gap, then we have just average of the # values # Avoid extra computation! # TS_array[left_pointer + 1] = 0.5 * (TS_array[left_pointer] + TS_array[right_pointer]) else: # form y= ax + b slope = (right_value - left_value) / (x_axis[right_pointer] - x_axis[left_pointer]) # a b = right_value - (slope * x_axis[right_pointer]) TS_array[left_pointer+1 : right_pointer] = slope * x_axis[left_pointer+1 : right_pointer] + b missing_indicies = np.where(TS_array == -1.5)[0] a_regularized_TS[V_idx] = TS_array return (a_regularized_TS) ######################################################################## ######################################################################## ######################################################################## # # These will not give what we want. It is a 10-days window # The days are actual days. i.e. between each 2 entry of our # time series there is already some gap. # def add_human_start_time(HDF): HDF.system_start_time = HDF.system_start_time / 1000 time_array = HDF["system_start_time"].values.copy() human_time_array = [time.strftime('%Y-%m-%d', time.localtime(x)) for x in time_array] HDF["human_system_start_time"] = human_time_array return(HDF) ######################################################################## def check_leap_year(year): if (year % 4) == 0: if (year % 100) == 0: if (year % 400) == 0: return (True) else: return (False) else: return (True) else: return (False) ######################################################################## def find_difference_date_by_systemStartTime(earlier_day_epoch, later_day_epoch): # # Given two epoch time, find the difference between them in number of days # early = datetime.datetime.fromtimestamp(earlier_day_epoch) late = datetime.datetime.fromtimestamp(later_day_epoch) diff = ( late - early).days return (diff) ######################################################################## def correct_timeColumns_dataTypes(dtf): dtf.system_start_time = dtf.system_start_time/1000 dtf = dtf.astype({'doy': 'int', 'image_year': 'int'}) return(dtf) def keep_WSDA_columns(dt_dt): needed_columns = ['ID', 'Acres', 'CovrCrp', 'CropGrp', 'CropTyp', 'DataSrc', 'ExctAcr', 'IntlSrD', 'Irrigtn', 'LstSrvD', 'Notes', 'RtCrpTy', 'Shap_Ar', 'Shp_Lng', 'TRS', 'county', 'year'] """ # Using DataFrame.drop df.drop(df.columns[[1, 2]], axis=1, inplace=True) # drop by Name df1 = df1.drop(['B', 'C'], axis=1) """ dt_dt = dt_dt[needed_columns] return dt_dt def convert_TS_to_a_row(a_dt): a_dt = keep_WSDA_columns(a_dt) a_dt = a_dt.drop_duplicates() return(a_dt) def save_matlab_matrix(filename, matDict): """ Write a MATLAB-formatted matrix file given a dictionary of variables. """ try: sio.savemat(filename, matDict) except: print("ERROR: could not write matrix file " + filename)
37.222566
120
0.614334
0
0
0
0
0
0
0
0
9,314
0.386746
f1a1c6bbb5f8fd9057ce629a8986541e09412fdc
251
py
Python
thaniya_server/src/thaniya_server/flask/FlaskFilter_tagsToStr.py
jkpubsrc/Thaniya
4ebdf2854e3d7888af7396adffa22628b4ab2267
[ "Apache-1.1" ]
1
2021-01-20T18:27:22.000Z
2021-01-20T18:27:22.000Z
thaniya_server/src/thaniya_server/flask/FlaskFilter_tagsToStr.py
jkpubsrc/Thaniya
4ebdf2854e3d7888af7396adffa22628b4ab2267
[ "Apache-1.1" ]
null
null
null
thaniya_server/src/thaniya_server/flask/FlaskFilter_tagsToStr.py
jkpubsrc/Thaniya
4ebdf2854e3d7888af7396adffa22628b4ab2267
[ "Apache-1.1" ]
null
null
null
from .AbstractFlaskTemplateFilter import AbstractFlaskTemplateFilter # # ... # class FlaskFilter_tagsToStr(AbstractFlaskTemplateFilter): def __call__(self, tags:list): if tags: return ", ".join(tags) else: return "" # #
7.84375
68
0.677291
151
0.601594
0
0
0
0
0
0
15
0.059761
f1a479eb0ca5a8f8bbec21a491ef98b110500e1b
1,584
py
Python
python/qisrc/test/test_qisrc_foreach.py
vbarbaresi/qibuild
eab6b815fe0af49ea5c41ccddcd0dff2363410e1
[ "BSD-3-Clause" ]
null
null
null
python/qisrc/test/test_qisrc_foreach.py
vbarbaresi/qibuild
eab6b815fe0af49ea5c41ccddcd0dff2363410e1
[ "BSD-3-Clause" ]
null
null
null
python/qisrc/test/test_qisrc_foreach.py
vbarbaresi/qibuild
eab6b815fe0af49ea5c41ccddcd0dff2363410e1
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2012-2018 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the COPYING file. def test_qisrc_foreach(qisrc_action, record_messages): worktree = qisrc_action.worktree worktree.create_project("not_in_git") git_worktree = qisrc_action.git_worktree git_worktree.create_git_project("git_project") qisrc_action("foreach", "ls") assert not record_messages.find("not_in_git") assert record_messages.find("git_project") record_messages.reset() qisrc_action("foreach", "ls", "--all") assert record_messages.find("not_in_git") assert record_messages.find("git_project") def test_non_cloned_groups(qisrc_action, git_server, record_messages): git_server.create_group("foo", ["a.git", "b.git"]) git_server.create_group("bar", ["b.git", "c.git"]) qisrc_action("init", git_server.manifest_url, "--group", "foo") record_messages.reset() qisrc_action("foreach", "--group", "bar", "ls") warning = record_messages.find(r"\[WARN \]") assert warning assert "Group bar is not currently in use" in warning def test_do_not_warn_on_subgroups(qisrc_action, git_server, record_messages): git_server.create_group("big", ["a.git", "b.git"]) git_server.create_group("small", ["b.git"]) qisrc_action("init", git_server.manifest_url, "--group", "big") record_messages.reset() qisrc_action("foreach", "--group", "small", "ls") assert not record_messages.find(r"\[WARN \]") assert record_messages.find(r"\* \(1/1\) b")
40.615385
77
0.709596
0
0
0
0
0
0
0
0
514
0.324495
f1a543e42a5ea04e653279a8af75516ed7470802
144
py
Python
onnxmltools/convert/libsvm/operator_converters/__init__.py
xhochy/onnxmltools
cb2782b155ff67dc1e586f36a27c5d032070c801
[ "Apache-2.0" ]
623
2018-02-16T20:43:01.000Z
2022-03-31T05:00:17.000Z
onnxmltools/convert/libsvm/operator_converters/__init__.py
xhochy/onnxmltools
cb2782b155ff67dc1e586f36a27c5d032070c801
[ "Apache-2.0" ]
339
2018-02-26T21:27:04.000Z
2022-03-31T03:16:50.000Z
onnxmltools/convert/libsvm/operator_converters/__init__.py
xhochy/onnxmltools
cb2782b155ff67dc1e586f36a27c5d032070c801
[ "Apache-2.0" ]
152
2018-02-24T01:20:22.000Z
2022-03-31T07:41:35.000Z
# SPDX-License-Identifier: Apache-2.0 # To register converter for libsvm operators, import associated modules here. from . import SVMConverter
28.8
77
0.798611
0
0
0
0
0
0
0
0
114
0.791667
f1aa3fd77846f2c70da5ebcb50efbe7da8be193b
333
py
Python
aspen/renderers.py
galuszkak/aspen.py
a29047d6d4eefa47413e35a18068946424898364
[ "MIT" ]
null
null
null
aspen/renderers.py
galuszkak/aspen.py
a29047d6d4eefa47413e35a18068946424898364
[ "MIT" ]
null
null
null
aspen/renderers.py
galuszkak/aspen.py
a29047d6d4eefa47413e35a18068946424898364
[ "MIT" ]
null
null
null
# for backwards compatibility with aspen-renderer modules from .simplates.renderers import Factory, Renderer Factory, Renderer # make pyflakes happy import warnings warnings.warn('aspen.renderers is deprecated and will be removed in a future version. ' 'Please use aspen.simplates.renderers instead.', FutureWarning)
37
87
0.780781
0
0
0
0
0
0
0
0
198
0.594595
f1ad55c7e2b9846cac3302cc84dc78c54a2ce31b
3,562
py
Python
coursework/src/highscore.py
SpeedoDevo/G51FSE
bf5e203d936965e254eff1efa0b74edc368a6cda
[ "MIT" ]
null
null
null
coursework/src/highscore.py
SpeedoDevo/G51FSE
bf5e203d936965e254eff1efa0b74edc368a6cda
[ "MIT" ]
null
null
null
coursework/src/highscore.py
SpeedoDevo/G51FSE
bf5e203d936965e254eff1efa0b74edc368a6cda
[ "MIT" ]
null
null
null
import pygame import sys import collections # for ordered dict import pickle # for saving and loading highscores from constants import (SCREEN_WIDTH, SCREEN_HEIGHT, RED, GREEN, GREY, BLACK, WHITE) # class that shows, saves and loads highscores class ScoreTable(pygame.sprite.Sprite): # passing in bg so that it's never reinitialized def __init__(self, screen, clock, bg): pygame.sprite.Sprite.__init__(self) self.titleFont = pygame.font.Font('image/langdon.otf', 50) self.title = self.titleFont.render("highscores", True, GREY) self.titleRect = self.title.get_rect() # center on top of the screen self.titleRect.center = (SCREEN_WIDTH/2,75) self.scoreFont = pygame.font.Font('image/muzarela.ttf', 30) self.clock = clock self.screen = screen self.bg = bg # last sores the player's last highscore self.last = 0 self.load() def draw(self,screen): #update then blit bg self.bg.update() screen.blit(self.bg.image,self.bg.rect) screen.blit(self.title,self.titleRect) for i in range(len(self.hs)): #red color for the user's highscore if list(self.hs.items())[i][0] == self.last: color = RED else: color = WHITE self.text = self.scoreFont.render(str(i+1) + ". " + str(list(self.hs.items())[i][1]) + ": " + str(list(self.hs.items())[i][0]), True, color) self.textrect = self.text.get_rect() # position text based on iteration number self.textrect.center = (SCREEN_WIDTH/2,(150+i*35)) self.screen.blit(self.text,self.textrect) pygame.display.update() def update(self): for event in pygame.event.get(): # let the game quit if event.type == pygame.QUIT: pygame.quit() sys.exit(0) # quit from hstable with click or enter if event.type == pygame.MOUSEBUTTONDOWN or (event.type == pygame.KEYDOWN and event.key == pygame.K_RETURN): return True return False def run(self): while 1: # because we are out of the game loop here we need an own ticking self.clock.tick(70) self.draw(self.screen) if self.update(): return def getLowest(self): # get the lowest score to decide whether it's high enough fot adding in the table return min(list(self.hs.keys())) def submitScore(self,name,score): # delete the last self.hs.popitem() # add item self.hs[score] = name # save which was it self.last = score # reorder list self.hs = collections.OrderedDict(sorted(self.hs.items(), reverse=True)) # save to file self.save() def noHS(self): # remove highlighting if the score wasn't high enough self.last = None def save(self): # pickle highscores into file pickle.dump(self.hs, open("hs.dat", "wb"), 2) def load(self): # load highscores if it already exists try: self.hs = pickle.load(open("hs.dat", "rb")) # create new file if it doesn't except: temp = {50000:"SpeedoDevo", 40000:"OliGee", 30000:"Jaume", 20000:"Kyle", 10000:"Steve", 9000:"Danielle", 8000:"Phil", 7000:"Mark", 6000:"Hugh", 5000:"Lisa"} self.hs = collections.OrderedDict(sorted(temp.items(), reverse=True)) self.save()
37.893617
168
0.588433
3,317
0.931218
0
0
0
0
0
0
898
0.252106
f1afaf0a95380f8c421a56c623e2af9bfd01fd81
27,795
py
Python
BAT/BAT.py
baba-hashimoto/BAT.py
8c7ad986dd0854961175079b98ce4f6507fee87a
[ "MIT" ]
null
null
null
BAT/BAT.py
baba-hashimoto/BAT.py
8c7ad986dd0854961175079b98ce4f6507fee87a
[ "MIT" ]
null
null
null
BAT/BAT.py
baba-hashimoto/BAT.py
8c7ad986dd0854961175079b98ce4f6507fee87a
[ "MIT" ]
1
2022-03-26T11:34:20.000Z
2022-03-26T11:34:20.000Z
#!/usr/bin/env python2 import glob as glob import os as os import re import shutil as shutil import signal as signal import subprocess as sp import sys as sys from lib import build from lib import scripts from lib import setup from lib import analysis ion_def = [] poses_list = [] poses_def = [] release_eq = [] translate_apr = [] attach_rest = [] lambdas = [] weights = [] components = [] aa1_poses = [] aa2_poses = [] # Read arguments that define input file and stage if len(sys.argv) < 5: scripts.help_message() sys.exit(0) for i in [1, 3]: if '-i' == sys.argv[i].lower(): input_file = sys.argv[i + 1] elif '-s' == sys.argv[i].lower(): stage = sys.argv[i + 1] else: scripts.help_message() sys.exit(1) # Open input file with open(input_file) as f_in: # Remove spaces and tabs lines = (line.strip(' \t\n\r') for line in f_in) lines = list(line for line in lines if line) # Non-blank lines in a list for i in range(0, len(lines)): # split line using the equal sign, and remove text after # if not lines[i][0] == '#': lines[i] = lines[i].split('#')[0].split('=') # Read parameters from input file for i in range(0, len(lines)): if not lines[i][0] == '#': lines[i][0] = lines[i][0].strip().lower() lines[i][1] = lines[i][1].strip() if lines[i][0] == 'pull_ligand': if lines[i][1].lower() == 'yes': pull_ligand = 'yes' elif lines[i][1].lower() == 'no': pull_ligand = 'no' else: print('Wrong input! Please use yes or no to indicate whether to pull out the ligand or not.') sys.exit(1) elif lines[i][0] == 'temperature': temperature = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'eq_steps1': eq_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'eq_steps2': eq_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'prep_steps1': prep_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'prep_steps2': prep_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'a_steps1': a_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'a_steps2': a_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l_steps1': l_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l_steps2': l_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 't_steps1': t_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 't_steps2': t_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'u_steps1': u_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'u_steps2': u_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'c_steps1': c_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'c_steps2': c_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'r_steps1': r_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'r_steps2': r_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'e_steps1': e_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'e_steps2': e_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'v_steps1': v_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'v_steps2': v_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'w_steps1': w_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'w_steps2': w_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'f_steps1': f_steps1 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'f_steps2': f_steps2 = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'pull_spacing': pull_spacing = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'poses_list': newline = lines[i][1].strip('\'\"-,.:;#()][').split(',') for j in range(0, len(newline)): poses_list.append(scripts.check_input('int', newline[j], input_file, lines[i][0])) elif lines[i][0] == 'calc_type': calc_type = lines[i][1].lower() elif lines[i][0] == 'celpp_receptor': celp_st = lines[i][1] elif lines[i][0] == 'p1': H1 = lines[i][1] elif lines[i][0] == 'p2': H2 = lines[i][1] elif lines[i][0] == 'p3': H3 = lines[i][1] elif lines[i][0] == 'ligand_name': mol = lines[i][1] elif lines[i][0] == 'fe_type': if lines[i][1].lower() == 'rest': fe_type = lines[i][1].lower() elif lines[i][1].lower() == 'dd': fe_type = lines[i][1].lower() elif lines[i][1].lower() == 'pmf': fe_type = lines[i][1].lower() elif lines[i][1].lower() == 'all': fe_type = lines[i][1].lower() elif lines[i][1].lower() == 'pmf-rest': fe_type = lines[i][1].lower() elif lines[i][1].lower() == 'dd-rest': fe_type = lines[i][1].lower() elif lines[i][1].lower() == 'custom': fe_type = lines[i][1].lower() else: print('Free energy type not recognized, please choose all, rest (restraints), dd (double decoupling) or pmf (umbrella sampling), pmf-rest, dd-rest, or custom') sys.exit(1) elif lines[i][0] == 'dd_type': if lines[i][1].lower() == 'mbar': dd_type = lines[i][1].lower() elif lines[i][1].lower() == 'ti': dd_type = lines[i][1].lower() else: print('Double decoupling type not recognized, please choose ti or mbar') sys.exit(1) elif lines[i][0] == 'blocks': blocks = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'hmr': if lines[i][1].lower() == 'yes': hmr = 'yes' elif lines[i][1].lower() == 'no': hmr = 'no' else: print('Wrong input! Please use yes or no to indicate whether hydrogen mass repartitioning ' 'will be used.') sys.exit(1) elif lines[i][0] == 'water_model': if lines[i][1].lower() == 'tip3p': water_model = lines[i][1].upper() elif lines[i][1].lower() == 'tip4pew': water_model = lines[i][1].upper() elif lines[i][1].lower() == 'spce': water_model = lines[i][1].upper() else: print('Water model not supported. Please choose TIP3P, TIP4PEW or SPCE') sys.exit(1) elif lines[i][0] == 'num_waters': num_waters = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'neutralize_only': if lines[i][1].lower() == 'yes': neut = 'yes' elif lines[i][1].lower() == 'no': neut = 'no' else: print('Wrong input! Please choose neutralization only or add extra ions') sys.exit(1) elif lines[i][0] == 'cation': cation = lines[i][1] elif lines[i][0] == 'anion': anion = lines[i][1] elif lines[i][0] == 'num_cations': num_cations = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'num_cat_ligbox': num_cat_ligbox = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'buffer_x': buffer_x = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'buffer_y': buffer_y = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'lig_buffer': lig_buffer = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'rec_distance_force': rec_distance_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'rec_angle_force': rec_angle_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'rec_dihcf_force': rec_dihcf_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'rec_discf_force': rec_discf_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'lig_distance_force': lig_distance_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'lig_angle_force': lig_angle_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'lig_dihcf_force': lig_dihcf_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'lig_discf_force': lig_discf_force = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l1_x': l1_x = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l1_y': l1_y = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l1_z': l1_z = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l1_zm': l1_zm = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'l1_range': l1_range = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'min_adis': min_adis = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'max_adis': max_adis = scripts.check_input('float', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'rec_bb': if lines[i][1].lower() == 'yes': rec_bb = 'yes' elif lines[i][1].lower() == 'no': rec_bb = 'no' else: print('Wrong input! Please use yes or no to indicate whether protein backbone restraints' 'will be used.') sys.exit(1) elif lines[i][0] == 'bb_start': bb_start = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'bb_end': bb_end = scripts.check_input('int', lines[i][1], input_file, lines[i][0]) elif lines[i][0] == 'bb_equil': if lines[i][1].lower() == 'yes': bb_equil = lines[i][1].lower() else: bb_equil = 'no' elif lines[i][0] == 'release_eq': strip_line = lines[i][1].strip('\'\"-,.:;#()][').split() for j in range(0, len(strip_line)): release_eq.append(scripts.check_input('float', strip_line[j], input_file, lines[i][0])) elif lines[i][0] == 'translate_apr': strip_line = lines[i][1].strip('\'\"-,.:;#()][').split() for j in range(0, len(strip_line)): translate_apr.append(scripts.check_input('float', strip_line[j], input_file, lines[i][0])) elif lines[i][0] == 'attach_rest': strip_line = lines[i][1].strip('\'\"-,.:;#()][').split() for j in range(0, len(strip_line)): attach_rest.append(scripts.check_input('float', strip_line[j], input_file, lines[i][0])) elif lines[i][0] == 'lambdas': strip_line = lines[i][1].strip('\'\"-,.:;#()][').split() for j in range(0, len(strip_line)): lambdas.append(scripts.check_input('float', strip_line[j], input_file, lines[i][0])) elif lines[i][0] == 'weights': strip_line = lines[i][1].strip('\'\"-,.:;#()][').split() for j in range(0, len(strip_line)): weights.append(scripts.check_input('float', strip_line[j], input_file, lines[i][0])) elif lines[i][0] == 'components': strip_line = lines[i][1].strip('\'\"-,.:;#()][').split() for j in range(0, len(strip_line)): components.append(strip_line[j]) elif lines[i][0] == 'ntpr': ntpr = lines[i][1] elif lines[i][0] == 'ntwr': ntwr = lines[i][1] elif lines[i][0] == 'ntwe': ntwe = lines[i][1] elif lines[i][0] == 'ntwx': ntwx = lines[i][1] elif lines[i][0] == 'cut': cut = lines[i][1] elif lines[i][0] == 'gamma_ln': gamma_ln = lines[i][1] elif lines[i][0] == 'barostat': barostat = lines[i][1] elif lines[i][0] == 'receptor_ff': receptor_ff = lines[i][1] elif lines[i][0] == 'ligand_ff': if lines[i][1].lower() == 'gaff': ligand_ff = 'gaff' elif lines[i][1].lower() == 'gaff2': ligand_ff = 'gaff2' else: print('Wrong input! Available options for ligand force-field are gaff and gaff2') sys.exit(1) elif lines[i][0] == 'dt': dt = lines[i][1] # Number of simulations, 1 equilibrium and 1 production apr_sim = 2 # Define free energy components if fe_type == 'rest': components = ['c', 'a', 'l', 't', 'r'] elif fe_type == 'dd': components = ['e', 'v', 'f', 'w'] elif fe_type == 'pmf': components = ['u'] elif fe_type == 'all': components = ['c', 'a', 'l', 't', 'r', 'u', 'v', 'w', 'e', 'f'] elif fe_type == 'pmf-rest': components = ['c', 'a', 'l', 't', 'r', 'u'] elif fe_type == 'dd-rest': components = ['c', 'a', 'l', 't', 'r', 'e', 'v', 'w', 'f'] # Pull ligand out or not if pull_ligand == 'no': translate_apr = [ 0.00 ] pull_spacing = 1.0 prep_steps2 = 0 # Do not apply protein backbone restraints if rec_bb == 'no': bb_start = 1 bb_end = 0 bb_equil = 'no' # Create poses definitions if calc_type == 'dock': for i in range(0, len(poses_list)): poses_def.append('pose'+str(poses_list[i])) elif calc_type == 'crystal': poses_def = [celp_st] # Total distance apr_distance = translate_apr[-1] rng = 0 # Create restraint definitions rest = [rec_distance_force, rec_angle_force, rec_dihcf_force, rec_discf_force, lig_distance_force, lig_angle_force, lig_dihcf_force, lig_discf_force] # Create ion definitions ion_def = [cation, anion, num_cations] ion_lig = [cation, anion, num_cat_ligbox] # Define number of steps for all stages dic_steps1 = {} dic_steps2 = {} dic_steps1['a'] = a_steps1 dic_steps2['a'] = a_steps2 dic_steps1['l'] = l_steps1 dic_steps2['l'] = l_steps2 dic_steps1['t'] = t_steps1 dic_steps2['t'] = t_steps2 dic_steps1['c'] = c_steps1 dic_steps2['c'] = c_steps2 dic_steps1['r'] = r_steps1 dic_steps2['r'] = r_steps2 if stage == 'equil': comp = 'q' win = 0 trans_dist = 0 # Create equilibrium systems for all poses listed in the input file for i in range(0, len(poses_def)): rng = len(release_eq) - 1 pose = poses_def[i] if not os.path.exists('./all-poses/'+pose+'.pdb'): continue print('Setting up '+str(poses_def[i])) # Get number of simulations num_sim = len(release_eq) # Create aligned initial complex anch = build.build_equil(pose, celp_st, mol, H1, H2, H3, calc_type, l1_x, l1_y, l1_z, l1_zm, l1_range, min_adis, max_adis, ligand_ff) if anch == 'anch1': aa1_poses.append(pose) os.chdir('../') continue if anch == 'anch2': aa2_poses.append(pose) os.chdir('../') continue # Solvate system with ions print('Creating box...') build.create_box(hmr, pose, mol, num_waters, water_model, ion_def, neut, buffer_x, buffer_y, stage, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) # Apply restraints and prepare simulation files print('Equil release weights:') for i in range(0, len(release_eq)): weight = release_eq[i] print('%s' %str(weight)) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) shutil.copy('./'+pose+'/disang.rest', './'+pose+'/disang%02d.rest' %int(i)) shutil.copy('./'+pose+'/disang%02d.rest' %int(0), './'+pose+'/disang.rest') setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, eq_steps1, eq_steps2, rng) os.chdir('../') if len(aa1_poses) != 0: print('\n') print 'WARNING: Could not find the ligand first anchor L1 for', aa1_poses print 'The ligand is most likely not in the defined binding site in these systems.' if len(aa2_poses) != 0: print('\n') print 'WARNING: Could not find the ligand L2 or L3 anchors for', aa2_poses print 'Try reducing the min_adis parameter in the input file.' elif stage == 'prep': win = 0 weight = 100.0 comp = 's' # Prepare systems after equilibration for poses listed in the input file for i in range(0, len(poses_def)): pose = poses_def[i] if not os.path.exists('./equil/'+pose): continue print('Setting up '+str(poses_def[i])) # Get number of simulations num_sim = int(apr_distance/pull_spacing)+1 rng = num_sim - 1 # Create aligned initial complex fwin = len(release_eq) - 1 anch = build.build_prep(pose, mol, fwin, l1_x, l1_y, l1_z, l1_zm, l1_range, min_adis, max_adis) if anch == 'anch1': aa1_poses.append(pose) os.chdir('../') continue if anch == 'anch2': aa2_poses.append(pose) os.chdir('../') continue # Solvate system with ions print('Creating box...') build.create_box(hmr, pose, mol, num_waters, water_model, ion_def, neut, buffer_x, buffer_y, stage, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) # Apply restraints and prepare simulation files print('Pulling distance interval: %s' %pull_spacing) print('Total pulling distance: %s' %apr_distance) print('Creating pulling steps...') for i in range(0, num_sim): trans_dist = float(i*pull_spacing) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) shutil.copy('./'+pose+'/disang.rest', './'+pose+'/disang%03d.rest' %int(i)) shutil.copy('./'+pose+'/disang%03d.rest' %int(0), './'+pose+'/disang.rest') setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, prep_steps1, prep_steps2, rng) os.chdir('../') if len(aa1_poses) != 0: print('\n') print 'WARNING: Could not find the ligand first anchor L1 for', aa1_poses print 'The ligand most likely left the binding site during equilibration.' if len(aa2_poses) != 0: print('\n') print 'WARNING: Could not find the ligand L2 or L3 anchors for', aa2_poses print 'Try reducing the min_adis parameter in the input file.' elif stage == 'fe': # Create systems for all poses after preparation num_sim = apr_sim # Create and move to apr directory if not os.path.exists('fe'): os.makedirs('fe') os.chdir('fe') for i in range(0, len(poses_def)): pose = poses_def[i] if not os.path.exists('../prep/'+pose): continue print('Setting up '+str(poses_def[i])) # Create and move to pose directory if not os.path.exists(pose): os.makedirs(pose) os.chdir(pose) # Generate folder and restraints for all components and windows for j in range(0, len(components)): comp = components[j] # Translation (umbrella) if (comp == 'u'): if not os.path.exists('pmf'): os.makedirs('pmf') os.chdir('pmf') weight = 100.0 for k in range(0, len(translate_apr)): trans_dist = translate_apr[k] win = k print('window: %s%02d distance: %s' %(comp, int(win), str(trans_dist))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, u_steps1, u_steps2, rng) os.chdir('../') # Ligand conformational release in a small box elif (comp == 'c'): if not os.path.exists('rest'): os.makedirs('rest') os.chdir('rest') trans_dist = 0 for k in range(0, len(attach_rest)): weight = attach_rest[k] win = k if int(win) == 0: print('window: %s%02d weight: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) print('Creating box for ligand only...') build.ligand_box(mol, lig_buffer, water_model, neut, ion_lig, comp, ligand_ff) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, c_steps1, c_steps2, rng) else: print('window: %s%02d weight: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, c_steps1, c_steps2, rng) os.chdir('../') # Receptor conformational release in a separate box elif (comp == 'r'): if not os.path.exists('rest'): os.makedirs('rest') os.chdir('rest') trans_dist = translate_apr[-1] for k in range(0, len(attach_rest)): weight = attach_rest[k] win = k if int(win) == 0: print('window: %s%02d weight: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) print('Creating box for apo protein...') build.create_box(hmr, pose, mol, num_waters, water_model, ion_def, neut, buffer_x, buffer_y, stage, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, r_steps1, r_steps2, rng) else: print('window: %s%02d weight: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, r_steps1, r_steps2, rng) os.chdir('../') # Van der Waals decoupling # site elif (comp == 'v'): if not os.path.exists('dd'): os.makedirs('dd') os.chdir('dd') trans_dist = 0 if not os.path.exists('site'): os.makedirs('site') os.chdir('site') for k in range(0, len(lambdas)): weight = lambdas[k] win = k print('window: %s%02d lambda: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.dec_files(temperature, mol, num_sim, pose, comp, win, stage, v_steps1, v_steps2, weight, lambdas) os.chdir('../../') # bulk elif (comp == 'w'): if not os.path.exists('dd'): os.makedirs('dd') os.chdir('dd') trans_dist = 0 if not os.path.exists('bulk'): os.makedirs('bulk') os.chdir('bulk') for k in range(0, len(lambdas)): weight = lambdas[k] win = k if int(win) == 0: print('window: %s%02d lambda: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) print('Creating box for ligand only...') build.ligand_box(mol, lig_buffer, water_model, neut, ion_lig, comp, ligand_ff) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) setup.dec_files(temperature, mol, num_sim, pose, comp, win, stage, w_steps1, w_steps2, weight, lambdas) else: print('window: %s%02d lambda: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.dec_files(temperature, mol, num_sim, pose, comp, win, stage, w_steps1, w_steps2, weight, lambdas) os.chdir('../../') # Charge decoupling # site elif (comp == 'e'): if not os.path.exists('dd'): os.makedirs('dd') os.chdir('dd') trans_dist = 0 if not os.path.exists('site'): os.makedirs('site') os.chdir('site') for k in range(0, len(lambdas)): weight = lambdas[k] win = k print('window: %s%02d lambda: %s' %(comp, int(win), str(weight))) build.build_dec(hmr, mol, pose, comp, win, water_model, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.dec_files(temperature, mol, num_sim, pose, comp, win, stage, e_steps1, e_steps2, weight, lambdas) os.chdir('../../') # bulk elif (comp == 'f'): if not os.path.exists('dd'): os.makedirs('dd') os.chdir('dd') trans_dist = 0 if not os.path.exists('bulk'): os.makedirs('bulk') os.chdir('bulk') for k in range(0, len(lambdas)): weight = lambdas[k] win = k if int(win) == 0: print('window: %s%02d lambda: %s' %(comp, int(win), str(weight))) build.build_dec(hmr, mol, pose, comp, win, water_model, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) print('Creating box for ligand decharging in bulk...') build.ligand_box(mol, lig_buffer, water_model, neut, ion_lig, comp, ligand_ff) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) setup.dec_files(temperature, mol, num_sim, pose, comp, win, stage, f_steps1, f_steps2, weight, lambdas) else: print('window: %s%02d lambda: %s' %(comp, int(win), str(weight))) build.build_dec(hmr, mol, pose, comp, win, water_model, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.dec_files(temperature, mol, num_sim, pose, comp, win, stage, f_steps1, f_steps2, weight, lambdas) os.chdir('../../') # Attachments in the bound system else: if not os.path.exists('rest'): os.makedirs('rest') os.chdir('rest') trans_dist = 0 for k in range(0, len(attach_rest)): weight = attach_rest[k] win = k print('window: %s%02d weight: %s' %(comp, int(win), str(weight))) build.build_apr(hmr, mol, pose, comp, win, trans_dist, pull_spacing, ntpr, ntwr, ntwe, ntwx, cut, gamma_ln, barostat, receptor_ff, ligand_ff, dt) setup.restraints(pose, rest, bb_start, bb_end, weight, stage, mol, trans_dist, comp, bb_equil) steps1 = dic_steps1[comp] steps2 = dic_steps2[comp] setup.sim_files(hmr, temperature, mol, num_sim, pose, comp, win, stage, steps1, steps2, rng) os.chdir('../') os.chdir('../') elif stage == 'analysis': # Free energies MBAR/TI and analytical calculations for i in range(0, len(poses_def)): pose = poses_def[i] analysis.fe_values(blocks, components, temperature, pose, attach_rest, translate_apr, lambdas, weights, dd_type, rest) os.chdir('../../')
43.565831
188
0.612916
0
0
0
0
0
0
0
0
5,569
0.20036
f1b05065492f951ddbe7f464e95a73ced555ef67
693
py
Python
mooringlicensing/migrations/0184_auto_20210630_1422.py
jawaidm/mooringlicensing
b22e74209da8655c8ad3af99e00f36d17c8ef73f
[ "Apache-2.0" ]
null
null
null
mooringlicensing/migrations/0184_auto_20210630_1422.py
jawaidm/mooringlicensing
b22e74209da8655c8ad3af99e00f36d17c8ef73f
[ "Apache-2.0" ]
2
2021-03-05T06:48:11.000Z
2021-03-26T08:14:17.000Z
mooringlicensing/migrations/0184_auto_20210630_1422.py
jawaidm/mooringlicensing
b22e74209da8655c8ad3af99e00f36d17c8ef73f
[ "Apache-2.0" ]
2
2021-09-19T15:45:19.000Z
2021-10-05T05:07:41.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2021-06-30 06:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mooringlicensing', '0183_auto_20210629_1156'), ] operations = [ migrations.AlterField( model_name='sticker', name='status', field=models.CharField(choices=[('ready', 'Ready'), ('printing', 'Printing'), ('current', 'Current'), ('to_be_returned', 'To be Returned'), ('returned', 'Returned'), ('lost', 'Lost'), ('expired', 'Expired'), ('cancelled', 'Cancelled')], default='ready', max_length=40), ), ]
33
281
0.620491
534
0.770563
0
0
0
0
0
0
295
0.425685
f1b0c5d59ac79b7bc53e1a8befc59467c9a655ae
3,188
py
Python
judge/download.py
tokusumi/judge-cli
e6883ba55dc37e8ca2f328105a4df57b0b3145ba
[ "MIT" ]
null
null
null
judge/download.py
tokusumi/judge-cli
e6883ba55dc37e8ca2f328105a4df57b0b3145ba
[ "MIT" ]
6
2021-04-04T06:19:30.000Z
2021-09-18T16:48:41.000Z
judge/download.py
tokusumi/judge-cli
e6883ba55dc37e8ca2f328105a4df57b0b3145ba
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Optional, Tuple import typer from onlinejudge import utils from pydantic.networks import HttpUrl from pydantic.types import DirectoryPath from judge.schema import JudgeConfig from judge.tools.download import DownloadArgs, LoginForm, SaveArgs from judge.tools.download import download as download_tool from judge.tools.download import save as save_tool class DownloadJudgeConfig(JudgeConfig): URL: HttpUrl testdir: DirectoryPath class CLILoginForm(LoginForm): def get_credentials(self) -> Tuple[str, str]: username = typer.prompt("What's your username?") password = typer.prompt("What's your password?", hide_input=True) return username, password def main( workdir: Path = typer.Argument(".", help="a directory path for working directory"), url: Optional[str] = typer.Option(None, help="a download URL"), directory: Path = typer.Option(None, help="a directory path for test cases"), no_store: bool = typer.Option(False, help="testcases is shown but not saved"), format: str = typer.Option("sample-%i.%e", help="custom filename format"), login: bool = typer.Option(False, help="login into target service"), cookie: Path = typer.Option(utils.default_cookie_path, help="directory for cookie"), ) -> None: """ Here is shortcut for download with `online-judge-tools`. At first, call `judge conf` for configuration. Pass `problem` at `contest` you want to test. Ex) the following leads to download test cases for Problem `C` at `ABC 051`: ```download``` """ typer.echo("Load configuration...") if not workdir.exists(): typer.secho(f"Not exists: {str(workdir.resolve())}", fg=typer.colors.BRIGHT_RED) raise typer.Abort() try: _config = JudgeConfig.from_toml(workdir) except KeyError as e: typer.secho(str(e), fg=typer.colors.BRIGHT_RED) raise typer.Abort() __config = _config.dict() if url or directory: # check arguments if url: __config["URL"] = url if directory: __config["testdir"] = directory.resolve() try: config = DownloadJudgeConfig(**__config) except KeyError as e: typer.secho(str(e), fg=typer.colors.BRIGHT_RED) raise typer.Abort() typer.echo(f"Download {config.URL}") try: login_form: Optional[LoginForm] = None if login: login_form = CLILoginForm() testcases = download_tool( DownloadArgs( url=config.URL, login_form=login_form, cookie=cookie, ) ) except Exception as e: typer.secho(str(e), fg=typer.colors.BRIGHT_RED) raise typer.Abort() if not no_store: try: save_tool( testcases, SaveArgs( format=format, directory=Path(config.testdir), ), ) except Exception as e: typer.secho(str(e), fg=typer.colors.BRIGHT_RED) raise typer.Abort() if __name__ == "__main__": typer.run(main)
30.653846
88
0.631117
328
0.102886
0
0
0
0
0
0
661
0.20734
f1b1cfe08adc3b1c3d213a90411b75dbb6594980
682
py
Python
labs/Bonus_Labs/custom/filter_plugins/ntc.py
ryanaa08/NPA
45173efa60713858bb8b1d884fe12c50fe69920c
[ "BSD-Source-Code" ]
1
2021-11-06T20:39:22.000Z
2021-11-06T20:39:22.000Z
labs/Bonus_Labs/custom/filter_plugins/ntc.py
krishnakadiyala/NPAcourse
74f097107839d990b44adcee69d4f949696a332c
[ "BSD-Source-Code" ]
null
null
null
labs/Bonus_Labs/custom/filter_plugins/ntc.py
krishnakadiyala/NPAcourse
74f097107839d990b44adcee69d4f949696a332c
[ "BSD-Source-Code" ]
null
null
null
import re import difflib from ansible import errors def diff(pre_change, post_change=''): try: netdiff = list( difflib.unified_diff( pre_change.splitlines(), post_change.splitlines() ) ) if netdiff: header = ''.join(netdiff[0:3]) result = '\n'.join(netdiff[4:]) final = header + result return final except Exception, e: raise errors.AnsibleFilterError('diff plugin error: %s' % str(e) ) class FilterModule(object): ''' A filter to diff two strings. ''' def filters(self): return { 'diff' : diff }
22.733333
74
0.527859
145
0.21261
0
0
0
0
0
0
74
0.108504
f1b716086bee59aea60d9505833a19bb60e79bc5
161
py
Python
smart_note_diploma/core/urls.py
yerkebulan19971212/dipploma
d274088aa477dadd7971950b80ef9ea3ea366a6b
[ "MIT" ]
null
null
null
smart_note_diploma/core/urls.py
yerkebulan19971212/dipploma
d274088aa477dadd7971950b80ef9ea3ea366a6b
[ "MIT" ]
null
null
null
smart_note_diploma/core/urls.py
yerkebulan19971212/dipploma
d274088aa477dadd7971950b80ef9ea3ea366a6b
[ "MIT" ]
null
null
null
from django.urls import path from .api.view import get_all_countries_view app_name = "core" urlpatterns = [ path('all-countries', get_all_countries_view) ]
20.125
49
0.770186
0
0
0
0
0
0
0
0
21
0.130435