hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
f1b7cdef9de310ce5a7fb0146da43f000e1ce55f
18,861
py
Python
gitflow/context.py
abacusresearch/gitflow
81ea7f5d468f9b128cd593f62972f13352bd3a63
[ "MIT" ]
null
null
null
gitflow/context.py
abacusresearch/gitflow
81ea7f5d468f9b128cd593f62972f13352bd3a63
[ "MIT" ]
null
null
null
gitflow/context.py
abacusresearch/gitflow
81ea7f5d468f9b128cd593f62972f13352bd3a63
[ "MIT" ]
null
null
null
import atexit import os import re import shutil from enum import Enum from typing import List, Optional import collections from gitflow import cli, const, repotools, _, utils from gitflow.common import Result from gitflow.const import VersioningScheme from gitflow.properties import PropertyIO from gitflow.repotools import RepoContext from gitflow.version import VersionMatcher, VersionConfig class BuildStepType(Enum): ASSEMBLE = 'assemble', TEST = 'test', INTEGRATION_TEST = 'integration_test', PACKAGE = 'package', DEPLOY = 'deploy' class BuildLabels(Enum): OPENSHIFT_S2I_TEST = 'com.openshift:s2i' class BuildStep(object): name: str = None commands: list = None """a list of command arrays""" labels: set = None """contains labels for mapping to the ci tasks, effectively extending the label set in the enclosing stage""" class BuildStage(object): type: str steps: list = None labels: list = None """contains labels for mapping to ci tasks""" def __init__(self): self.steps = list() self.labels = list() class Config(object): # project properties property_file: str = None sequence_number_property: str = None version_property: str = None # validation mode strict_mode = True # version version_config: VersionConfig = None # repo remote_name = None release_branch_base = None dev_branch_types = ['feature', 'integration', 'fix', 'chore', 'doc', 'issue'] prod_branch_types = ['fix', 'chore', 'doc', 'issue'] # build config version_change_actions: List[List[str]] = None build_stages: list = None # hard config # TODO checks on merge base allow_shared_release_branch_base = False # TODO distinction of commit-based and purely tag based increments allow_qualifier_increments_within_commit = True # TODO config var & CLI option # requires clean workspace and temporary detachment from branches to be pushed push_to_local = False pull_after_bump = True # properties @property def sequential_versioning(self) -> bool: return self.version_config.versioning_scheme == VersioningScheme.SEMVER_WITH_SEQ @property def tie_sequential_version_to_semantic_version(self) -> bool: return self.version_config.versioning_scheme == VersioningScheme.SEMVER_WITH_SEQ @property def commit_version_property(self) -> bool: return self.version_property is not None @property def commit_sequential_version_property(self) -> bool: return self.sequence_number_property is not None \ and self.sequential_versioning @property def requires_property_commits(self) -> bool: return self.commit_version_property \ or self.commit_sequential_version_property class AbstractContext(object): result: Result = None def __init__(self): self.result = Result() def warn(self, message, reason): self.result.warn(message, reason) def error(self, exit_code, message, reason, throw: bool = False): self.result.error(exit_code, message, reason, throw) def fail(self, exit_code, message, reason): self.result.fail(exit_code, message, reason) def add_subresult(self, subresult): self.result.add_subresult(subresult) def has_errors(self): return self.result.has_errors() def abort_on_error(self): return self.result.abort_on_error() def abort(self): return self.result.abort() class Context(AbstractContext): config: Config = None repo: RepoContext = None # args args = None root = None batch = False assume_yes = False dry_run = False verbose = const.ERROR_VERBOSITY pretty = False # matchers release_base_branch_matcher: VersionMatcher = None release_branch_matcher: VersionMatcher = None work_branch_matcher: VersionMatcher = None version_tag_matcher: VersionMatcher = None discontinuation_tag_matcher: VersionMatcher = None # resources temp_dirs: list = None clones: list = None # misc git_version: str = None def __init__(self): super().__init__() atexit.register(self.cleanup) @staticmethod def create(args: dict, result_out: Result) -> 'Context': context = Context() context.config: Config = Config() if args is not None: context.args = args context.batch = context.args['--batch'] context.assume_yes = context.args.get('--assume-yes') context.dry_run = context.args.get('--dry-run') # TODO remove this workaround context.verbose = (context.args['--verbose'] + 1) // 2 context.pretty = context.args['--pretty'] else: context.args = dict() # configure CLI cli.set_allow_color(not context.batch) # initialize repo context and attempt to load the config file if '--root' in context.args and context.args['--root'] is not None: context.root = context.args['--root'] context.repo = RepoContext() context.repo.dir = context.root context.repo.verbose = context.verbose context.git_version = repotools.git_version(context.repo) # context.repo.use_root_dir_arg = semver.compare(context.git_version, "2.9.0") >= 0 context.repo.use_root_dir_arg = False repo_root = repotools.git_rev_parse(context.repo, '--show-toplevel') # None when invalid or bare if repo_root is not None: context.repo.dir = repo_root if context.verbose >= const.TRACE_VERBOSITY: cli.print("--------------------------------------------------------------------------------") cli.print("refs in {repo}:".format(repo=context.repo.dir)) cli.print("--------------------------------------------------------------------------------") for ref in repotools.git_list_refs(context.repo): cli.print(repr(ref)) cli.print("--------------------------------------------------------------------------------") config_dir = context.repo.dir else: context.repo = None config_dir = context.root gitflow_config_file: Optional[str] = None if context.args['--config'] is not None: gitflow_config_file = os.path.join(config_dir, context.args['--config']) if gitflow_config_file is None: result_out.fail(os.EX_DATAERR, _("the specified config file does not exist or is not a regular file: {path}.") .format(path=repr(gitflow_config_file)), None ) else: for config_filename in const.DEFAULT_CONFIGURATION_FILE_NAMES: path = os.path.join(config_dir, config_filename) if os.path.exists(path): gitflow_config_file = path break if gitflow_config_file is None: result_out.fail(os.EX_DATAERR, _("config file not found.") .format(path=repr(gitflow_config_file)), _("Default config files are\n:{list}") .format(list=const.DEFAULT_CONFIGURATION_FILE_NAMES) ) if context.verbose >= const.TRACE_VERBOSITY: cli.print("gitflow_config_file: " + gitflow_config_file) with open(gitflow_config_file) as json_file: config = PropertyIO.get_instance_by_filename(gitflow_config_file).from_stream(json_file) else: config = object() build_config_json = config.get(const.CONFIG_BUILD) context.config.version_change_actions = config.get(const.CONFIG_ON_VERSION_CHANGE, []) context.config.build_stages = list() if build_config_json is not None: stages_json = build_config_json.get('stages') if stages_json is not None: for stage_key, stage_json in stages_json.items(): stage = BuildStage() if isinstance(stage_json, dict): stage.type = stage_json.get('type') or stage_key if stage.type not in const.BUILD_STAGE_TYPES: result_out.fail( os.EX_DATAERR, _("Configuration failed."), _("Invalid build stage type {key}." .format(key=repr(stage.type))) ) stage.name = stage_json.get('name') or stage_key stage_labels = stage_json.get('labels') if isinstance(stage_labels, list): stage.labels.extend(stage_labels) else: stage.labels.append(stage_labels) stage_steps_json = stage_json.get('steps') if stage_steps_json is not None: for step_key, step_json in stage_steps_json.items(): step = BuildStep() if isinstance(step_json, dict): step.name = step_json.get('name') or step_key step.commands = step_json.get('commands') stage_labels = stage_json.get('labels') if isinstance(stage_labels, list): stage.labels.extend(stage_labels) else: stage.labels.append(stage_labels) elif isinstance(step_json, list): step.name = step_key step.type = step_key step.commands = step_json else: result_out.fail( os.EX_DATAERR, _("Configuration failed."), _("Invalid build step definition {type} {key}." .format(type=repr(type(step_json)), key=repr(step_key))) ) stage.steps.append(step) elif isinstance(stage_json, list): stage.type = stage_key stage.name = stage_key if len(stage_json): step = BuildStep() step.name = '#' step.commands = stage_json stage.steps.append(step) else: result_out.fail( os.EX_DATAERR, _("Configuration failed."), _("Invalid build stage definition {key}." .format(key=repr(stage_key))) ) context.config.build_stages.append(stage) context.config.build_stages.sort(key=utils.cmp_to_key(lambda stage_a, stage_b: const.BUILD_STAGE_TYPES.index(stage_a.type) - const.BUILD_STAGE_TYPES.index(stage_b.type) ), reverse=False ) # project properties config context.config.property_file = config.get(const.CONFIG_PROJECT_PROPERTY_FILE) if context.config.property_file is not None: context.config.property_file = os.path.join(context.root, context.config.property_file) context.config.version_property = config.get(const.CONFIG_VERSION_PROPERTY) context.config.sequence_number_property = config.get( const.CONFIG_SEQUENCE_NUMBER_PROPERTY) context.config.version_property = config.get( const.CONFIG_VERSION_PROPERTY) property_names = [property for property in [context.config.sequence_number_property, context.config.version_property] if property is not None] duplicate_property_names = [item for item, count in collections.Counter(property_names).items() if count > 1] if len(duplicate_property_names): result_out.fail(os.EX_DATAERR, _("Configuration failed."), _("Duplicate property names: {duplicate_property_names}").format( duplicate_property_names=', '.join(duplicate_property_names)) ) # version config context.config.version_config = VersionConfig() versioning_scheme = config.get(const.CONFIG_VERSIONING_SCHEME, const.DEFAULT_VERSIONING_SCHEME) if versioning_scheme not in const.VERSIONING_SCHEMES: result_out.fail(os.EX_DATAERR, _("Configuration failed."), _("The versioning scheme {versioning_scheme} is invalid.").format( versioning_scheme=utils.quote(versioning_scheme, '\''))) context.config.version_config.versioning_scheme = const.VERSIONING_SCHEMES[versioning_scheme] if context.config.version_config.versioning_scheme == VersioningScheme.SEMVER: qualifiers = config.get(const.CONFIG_VERSION_TYPES, const.DEFAULT_PRE_RELEASE_QUALIFIERS) if isinstance(qualifiers, str): qualifiers = [qualifier.strip() for qualifier in qualifiers.split(",")] if qualifiers != sorted(qualifiers): result_out.fail( os.EX_DATAERR, _("Configuration failed."), _("Pre-release qualifiers are not specified in ascending order.") ) context.config.version_config.qualifiers = qualifiers context.config.version_config.initial_version = const.DEFAULT_INITIAL_VERSION elif context.config.version_config.versioning_scheme == VersioningScheme.SEMVER_WITH_SEQ: context.config.version_config.qualifiers = None context.config.version_config.initial_version = const.DEFAULT_INITIAL_SEQ_VERSION else: context.fail(os.EX_CONFIG, "configuration error", "invalid versioning scheme") # branch config context.config.remote_name = "origin" context.config.release_branch_base = config.get(const.CONFIG_RELEASE_BRANCH_BASE, const.DEFAULT_RELEASE_BRANCH_BASE) remote_prefix = repotools.create_ref_name(const.REMOTES_PREFIX, context.config.remote_name) context.release_base_branch_matcher = VersionMatcher( [const.LOCAL_BRANCH_PREFIX, remote_prefix], None, re.escape(context.config.release_branch_base), ) context.release_branch_matcher = VersionMatcher( [const.LOCAL_BRANCH_PREFIX, remote_prefix], config.get( const.CONFIG_RELEASE_BRANCH_PREFIX, const.DEFAULT_RELEASE_BRANCH_PREFIX), config.get( const.CONFIG_RELEASE_BRANCH_PATTERN, const.DEFAULT_RELEASE_BRANCH_PATTERN), ) context.work_branch_matcher = VersionMatcher( [const.LOCAL_BRANCH_PREFIX, remote_prefix], [const.BRANCH_PREFIX_DEV, const.BRANCH_PREFIX_PROD], config.get( const.CONFIG_WORK_BRANCH_PATTERN, const.DEFAULT_WORK_BRANCH_PATTERN), ) context.version_tag_matcher = VersionMatcher( [const.LOCAL_TAG_PREFIX], config.get( const.CONFIG_VERSION_TAG_PREFIX, const.DEFAULT_VERSION_TAG_PREFIX), config.get( const.CONFIG_VERSION_TAG_PATTERN, const.DEFAULT_SEMVER_VERSION_TAG_PATTERN if context.config.version_config.versioning_scheme == VersioningScheme.SEMVER else const.DEFAULT_SEMVER_WITH_SEQ_VERSION_TAG_PATTERN) ) context.version_tag_matcher.group_unique_code = None \ if context.config.version_config.versioning_scheme == VersioningScheme.SEMVER \ else 'prerelease_type' context.discontinuation_tag_matcher = VersionMatcher( [const.LOCAL_TAG_PREFIX], config.get( const.CONFIG_DISCONTINUATION_TAG_PREFIX, const.DEFAULT_DISCONTINUATION_TAG_PREFIX), config.get( const.CONFIG_DISCONTINUATION_TAG_PATTERN, const.DEFAULT_DISCONTINUATION_TAG_PATTERN), None ) return context def add_temp_dir(self, dir): if self.temp_dirs is None: self.temp_dirs = list() self.temp_dirs.append(dir) pass def get_release_branches(self, reverse: bool = True): release_branches = list(filter( lambda branch_ref: self.release_branch_matcher.format( branch_ref.name) is not None, repotools.git_list_refs(self.repo, repotools.create_ref_name(const.REMOTES_PREFIX, self.config.remote_name), const.LOCAL_BRANCH_PREFIX) )) release_branches.sort( reverse=reverse, key=self.release_branch_matcher.key_func ) return release_branches def cleanup(self): atexit.unregister(self.cleanup) if self.temp_dirs is not None: for temp_dir in self.temp_dirs: if self.verbose >= const.DEBUG_VERBOSITY: cli.print("deleting temp dir: " + temp_dir) shutil.rmtree(temp_dir) self.temp_dirs.clear() if self.clones is not None: for clone in self.clones: clone.cleanup() self.clones.clear() def __del__(self): self.cleanup()
38.64959
117
0.564233
18,444
0.977891
0
0
14,012
0.742909
0
0
2,061
0.109273
f1b87ee915b0b88ddd9829337e7a6f4316b55ca5
705
py
Python
LeetCode/1219_Path_with_Maximum_Gold/main.py
sungmen/Acmicpc_Solve
0298a6aec84993a4d8767bd2c00490b7201e06a4
[ "MIT" ]
1
2020-07-08T23:16:19.000Z
2020-07-08T23:16:19.000Z
LeetCode/1219_Path_with_Maximum_Gold/main.py
sungmen/Acmicpc_Solve
0298a6aec84993a4d8767bd2c00490b7201e06a4
[ "MIT" ]
1
2020-05-16T03:12:24.000Z
2020-05-16T03:14:42.000Z
LeetCode/1219_Path_with_Maximum_Gold/main.py
sungmen/Acmicpc_Solve
0298a6aec84993a4d8767bd2c00490b7201e06a4
[ "MIT" ]
2
2020-05-16T03:25:16.000Z
2021-02-10T16:51:25.000Z
class Solution: def __init__(self): self.m = 0 self.n = 0 def dfs(self, y, x, grid) -> int: if y < 0 or y >= self.m or x < 0 or x >= self.n or grid[y][x] == 0: return 0 res = 0 tmpGrid = grid[y][x] grid[y][x] = 0 for y_, x_ in ((y, x - 1), (y, x + 1), (y - 1, x), (y + 1, x)): res = max(self.dfs(y_, x_, grid), res) grid[y][x] = tmpGrid return grid[y][x] + res def getMaximumGold(self, grid: List[List[int]]) -> int: self.m = len(grid) self.n = len(grid[0]) res = max(self.dfs(i, j, grid) for i in range(self.m) for j in range(self.n)) return res
32.045455
85
0.453901
705
1
0
0
0
0
0
0
0
0
f1b884785bf603bff438ce57a6af789de6bc8891
2,307
py
Python
test/test_modify_contact.py
peruana80/python_training
0070bdc07b22d80594c029984c9967e56ba51951
[ "Apache-2.0" ]
null
null
null
test/test_modify_contact.py
peruana80/python_training
0070bdc07b22d80594c029984c9967e56ba51951
[ "Apache-2.0" ]
null
null
null
test/test_modify_contact.py
peruana80/python_training
0070bdc07b22d80594c029984c9967e56ba51951
[ "Apache-2.0" ]
null
null
null
from model.contact import Contact from random import randrange def test_modify_contact_name(app, db, check_ui): if len(db.get_group_list()) == 0: app.contact.create(Contact(firstname="test")) old_contacts = db.get_contact_list() index = randrange(len(old_contacts)) contact = Contact(first_name="Zmodyfikuj imie", middle_name="Zmodyfikuj drugie imie", last_name="Zmodyfikuj nazwisko", nickname="Zmodyfikuj ksywe", title="Zmodyfikuj tytul", company="Zmodyfikuj firme", address="Zmodyfikuj adres", home_number="Zmodyfikuj_telefon_domowy", mobile_number="Zmodyfikuj_telefon_komorkowy", work_number="Zmodyfikuj_telefon_sluzbowy", fax="Zmodyfikuj fax", email="Zmodyfikuj email", email2="Zmodyfikuj email2", email3="Zmodyfikuj email3", homepage="Zmodyfikuj strone domowa", byear="1990", ayear="2000", address_2="Zmodyfikuj drugi adres", phone2="Zmodyfikuj_telefon domowy 2", notes="Zmodyfikuj notatki") contact.id=old_contacts[index].id app.contact.modify_contact_by_id(contact) new_contacts = db.get_contact_list() assert len(old_contacts) == len(new_contacts) old_contacts[index] = contact assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) if check_ui: new_contacts = app.contact.get_contact_list() assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) #def test_modify_first_contact_first_name(app): # if app.contact.count() == 0: # app.contact.create(Contact(first_name="test")) # old_contacts = app.contact.get_contact_list() # app.contact.modify_first_contact(Contact(first_name="zmodyfikuj imie")) # new_contacts = app.contact.get_contact_list() # assert len(old_contacts) == len(new_contacts) #def test_modify_first_contact_email(app): # if app.contact.count() == 0: # app.contact.create(Contact(first_name="test")) # old_contacts = app.contact.get_contact_list() # app.contact.modify_first_contact(Contact(last_name="Zmodyfikuj nazwisko")) # new_contacts = app.contact.get_contact_list() # assert len(old_contacts) == len(new_contacts)
56.268293
186
0.702211
0
0
0
0
0
0
0
0
1,129
0.48938
f1b8db0ca9074a5d55378aaf5be9d198fcaa6a0b
734
py
Python
base.py
oknalv/linky
78fba19946e2212b10f3d1a5b27c7d9329556290
[ "MIT" ]
null
null
null
base.py
oknalv/linky
78fba19946e2212b10f3d1a5b27c7d9329556290
[ "MIT" ]
null
null
null
base.py
oknalv/linky
78fba19946e2212b10f3d1a5b27c7d9329556290
[ "MIT" ]
null
null
null
import webapp2 from webapp2_extras import sessions class BaseHandler(webapp2.RequestHandler): def dispatch(self): self.session_store = sessions.get_store(request=self.request) try: webapp2.RequestHandler.dispatch(self) finally: self.session_store.save_sessions(self.response) @webapp2.cached_property def session(self): return self.session_store.get_session() def set_flash(self, type, message_tag): if not self.session.get("flash"): self.session["flash"] = [] self.session["flash"].append([type, message_tag]) def get_flash(self): ret = self.session.get("flash") self.session["flash"] = [] return ret
29.36
69
0.647139
682
0.929155
0
0
95
0.129428
0
0
35
0.047684
f1b9ea9a68748f5299174c8b988d634a02fb6fda
6,999
py
Python
tests/test_helpers.py
albertoalcolea/dbhelpers
c65f77a750cf46874ae7b5b0e6d4930e9df729af
[ "Apache-2.0" ]
2
2015-10-31T20:36:22.000Z
2021-10-05T12:08:10.000Z
tests/test_helpers.py
albertoalcolea/dbhelpers
c65f77a750cf46874ae7b5b0e6d4930e9df729af
[ "Apache-2.0" ]
null
null
null
tests/test_helpers.py
albertoalcolea/dbhelpers
c65f77a750cf46874ae7b5b0e6d4930e9df729af
[ "Apache-2.0" ]
null
null
null
import unittest try: from unittest.mock import Mock, call except ImportError: from mock import Mock, call from dbhelpers import cm_cursor, fetchiter, fetchone_nt, fetchmany_nt, fetchall_nt, fetchiter_nt class HelpersTestCase(unittest.TestCase): def test_cm_cursor(self): """ Creates a context manager for a cursor and it is able to commit on exit. """ conn = Mock(spec=['cursor', 'commit', 'rollback']) cursor_mock = Mock() conn.cursor = Mock(return_value=cursor_mock) conn.commit = Mock() conn.rollback = Mock() # Commit on exit with cm_cursor(conn) as cursor: self.assertEqual(cursor, cursor_mock) self.assertTrue(conn.commit.called) self.assertFalse(conn.rollback.called) conn.commit.reset_mock() # Disable auto commit with cm_cursor(conn, commit=False) as cursor: self.assertEqual(cursor, cursor_mock) self.assertFalse(conn.commit.called) self.assertFalse(conn.rollback.called) # If exception no commit def test_with_exc(conn, commit=True): with cm_cursor(conn, commit=commit) as cursor: raise Exception() # If exception and commit=True, call rollback self.assertRaises(Exception, test_with_exc, conn=conn, commit=True) self.assertFalse(conn.commit.called) self.assertTrue(conn.rollback.called) conn.rollback.reset_mock() # If exception and commit=False, no call commit nor rollback self.assertRaises(Exception, test_with_exc, conn=conn, commit=False) self.assertFalse(conn.commit.called) self.assertFalse(conn.rollback.called) def test_fetchiter(self): cursor = Mock() def test_iterator(cursor, use_server_cursor=False, **kwargs): cursor.fetchmany = Mock(return_value=[1,2,3]) num_it = 0 for row in fetchiter(cursor, **kwargs): if num_it == 3: raise StopIteration self.assertIn(row, [1,2,3]) num_it += 1 if row == 3: # Stop if use_server_cursor: cursor.fetchall = Mock(return_value=[]) else: cursor.fetchmany = Mock(return_value=[]) self.assertEqual(num_it, 3) # Standard test_iterator(cursor) # Size test_iterator(cursor, size=2) cursor.fetchmany.assert_called_with(2) # Batch cursor.fetchmany = Mock(return_value=[1,2]) for row in fetchiter(cursor, batch=True): self.assertEqual(row, [1,2]) # Stop cursor.fetchmany = Mock(return_value=[]) # Server cursor cursor.execute = Mock() cursor.fetchall = Mock(return_value=[1,2,3]) test_iterator(cursor, use_server_cursor=True, size=10, server_cursor='C') calls = [call("FETCH %s FROM C", (10,))] * 2 cursor.execute.assert_has_calls(calls) def test_fetchone_nt(self): cursor = Mock() cursor.description = (('id', 3, 2, 11, 11, 0, 0), ('status', 253, 7, 80, 80, 0, 0)) cursor.fetchone = Mock(return_value=(34, 'info')) r = fetchone_nt(cursor) self.assertEqual(r.__class__.__name__, 'Results') self.assertEqual(r.id, 34) self.assertEqual(r.status, 'info') def test_fetchmany_nt(self): cursor = Mock() cursor.description = (('id', 3, 2, 11, 11, 0, 0), ('status', 253, 7, 80, 80, 0, 0)) cursor.fetchmany = Mock(return_value=((34, 'info'), (99, 'warning'))) r = fetchmany_nt(cursor) self.assertEqual(r.__class__.__name__, 'list') self.assertEqual(r[0].__class__.__name__, 'Results') self.assertEqual(r[0].id, 34) self.assertEqual(r[0].status, 'info') self.assertEqual(r[1].__class__.__name__, 'Results') self.assertEqual(r[1].id, 99) self.assertEqual(r[1].status, 'warning') def test_fetchall_nt(self): cursor = Mock() cursor.description = (('id', 3, 2, 11, 11, 0, 0), ('status', 253, 7, 80, 80, 0, 0)) cursor.fetchall = Mock(return_value=((34, 'info'), (99, 'warning'))) r = fetchall_nt(cursor) self.assertEqual(r.__class__.__name__, 'list') self.assertEqual(r[0].__class__.__name__, 'Results') self.assertEqual(r[0].id, 34) self.assertEqual(r[0].status, 'info') self.assertEqual(r[1].__class__.__name__, 'Results') self.assertEqual(r[1].id, 99) self.assertEqual(r[1].status, 'warning') def test_fetchiter_nt(self): cursor = Mock() cursor.description = (('id', 3, 2, 11, 11, 0, 0), ('status', 253, 7, 80, 80, 0, 0)) # Standard cursor.fetchmany = Mock(return_value=((34, 'info'), (99, 'warning'))) num_it = 0 for row in fetchiter_nt(cursor): self.assertEqual(row.__class__.__name__, 'Results') if num_it == 0: self.assertEqual(row.id, 34) self.assertEqual(row.status, 'info') if num_it == 1: self.assertEqual(row.id, 99) self.assertEqual(row.status, 'warning') if num_it == 2: raise StopIteration num_it += 1 if num_it == 2: cursor.fetchmany = Mock(return_value=[]) self.assertEqual(num_it, 2) # Batch cursor.fetchmany = Mock(return_value=((34, 'info'), (99, 'warning'))) num_it = 0 for row in fetchiter_nt(cursor, batch=True): self.assertEqual(row.__class__.__name__, 'list') self.assertEqual(row[0].__class__.__name__, 'Results') self.assertEqual(row[0].id, 34) self.assertEqual(row[0].status, 'info') self.assertEqual(row[1].__class__.__name__, 'Results') self.assertEqual(row[1].id, 99) self.assertEqual(row[1].status, 'warning') if num_it == 1: raise StopIteration num_it += 1 if num_it == 1: cursor.fetchmany = Mock(return_value=[]) self.assertEqual(num_it, 1) # Server cursor cursor.fetchall = Mock(return_value=((34, 'info'), (99, 'warning'))) num_it = 0 for row in fetchiter_nt(cursor, server_cursor='C'): self.assertEqual(row.__class__.__name__, 'Results') if num_it == 0: self.assertEqual(row.id, 34) self.assertEqual(row.status, 'info') if num_it == 1: self.assertEqual(row.id, 99) self.assertEqual(row.status, 'warning') if num_it == 2: raise StopIteration num_it += 1 if num_it == 2: cursor.fetchall = Mock(return_value=[]) self.assertEqual(num_it, 2)
38.456044
96
0.570796
6,784
0.969281
0
0
0
0
0
0
702
0.1003
f1baa95b451bcaf546bfb42baf9ea8122be52ea7
2,641
py
Python
scripts/joystick_node.py
kscottz/owi_arm
a08f1ed8a5bccfe8cca5a1fd1829beca15a1060f
[ "BSD-2-Clause" ]
null
null
null
scripts/joystick_node.py
kscottz/owi_arm
a08f1ed8a5bccfe8cca5a1fd1829beca15a1060f
[ "BSD-2-Clause" ]
null
null
null
scripts/joystick_node.py
kscottz/owi_arm
a08f1ed8a5bccfe8cca5a1fd1829beca15a1060f
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # THIS SHEBANG IS REALLY REALLY IMPORTANT import rospy import roscpp import numpy as np from sensor_msgs.msg import Joy from std_msgs.msg import Int16MultiArray class JoystickNode(object): def __init__(self): # put away our toys cleanly rospy.on_shutdown(self.shutdown) self.pub = rospy.Publisher('robot', Int16MultiArray, queue_size=1) # subscribe to the joy and state messages # format is topic, message type, callback function rospy.Subscriber("/joy", Joy, self.do_it) rospy.Subscriber("/state", Int16MultiArray, self.update_state) rospy.init_node('joystick_node') # our internal state message self.state = [0,0,0,0,0] # tell ros to chill unless we get a message. rospy.spin() def update_state(self,msg): # update our internal state every time the robot posts an update self.state = msg.data def do_it(self,msg): # Update our state if( self.state is None ): self.state = [0,0,0,0,0] m1 = self.state[1] m2 = self.state[2] m3 = self.state[3] m4 = self.state[4] step = 5 # Update our state from our buttons if(msg.buttons[1] == 1 ): m1+=step elif( msg.buttons[2] == 1 ): m1-=step if(msg.buttons[0] == 1 ): m2+=step elif( msg.buttons[3] ==1 ): m2-=step if(msg.axes[-1] > 0 ): m3+=step elif( msg.axes[-1] < 0 ): m3-=step if(msg.axes[-2] > 0 ): m4+=step elif( msg.axes[-2] < 0 ): m4-=step # check for updates data = [self.state[0], int(np.clip(m1,0,180)), int(np.clip(m2,0,180)), int(np.clip(m3,0,120)), int(np.clip(m4,0,180))] change = any([abs(a-b)>0 for a,b in zip(data,self.state)]) self.state = data # if there is a change if( change ): # Set the new position out on /robot out = Int16MultiArray() rospy.loginfo("sending {0}.".format(data)) out.data = data self.pub.publish(out) def shutdown(self): data = [0,0,0,0] out = Int16MultiArray() print "sending {0}.".format(data) out.data = data pub.publish(out) if __name__ == '__main__': try: # boiler plate to spin up a node. rospy.init_node('joystick_node') node = JoystickNode() except rospy.ROSInterruptException: rospy.logwarn('ERROR!!!')
31.440476
74
0.540704
2,229
0.843998
0
0
0
0
0
0
583
0.22075
f1bc287fa4269a85fe5cdf284f15691d29943f53
650
py
Python
nomiapp/nomiapp/doctype/configuracion_isr/configuracion_isr.py
YefriTavarez/NomiApp
a532ae7a3871ee91ec6f17b4b46ba67db7a056b5
[ "MIT" ]
1
2016-12-29T13:58:28.000Z
2016-12-29T13:58:28.000Z
nomiapp/nomiapp/doctype/configuracion_isr/configuracion_isr.py
YefriTavarez/NomiApp
a532ae7a3871ee91ec6f17b4b46ba67db7a056b5
[ "MIT" ]
null
null
null
nomiapp/nomiapp/doctype/configuracion_isr/configuracion_isr.py
YefriTavarez/NomiApp
a532ae7a3871ee91ec6f17b4b46ba67db7a056b5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, Soldeva, SRL and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class ConfiguracionISR(Document): pass @frappe.whitelist() def getRangosISR(): return frappe.db.sql("SELECT field, value \ FROM `tabSingles` \ WHERE doctype='Configuracion ISR' \ AND (field like 'from%' OR field like 'to%') \ ORDER BY field", as_dict=1) comment = """return frappe.db.sql("SELECT value \ FROM `tabSingles` \ WHERE doctype='Configuracion ISR'\ AND field='{0}'" .format(field),as_dict=1)"""
26
51
0.716923
39
0.06
0
0
384
0.590769
0
0
419
0.644615
f1be0f593e7493f91a2f96246f4cf8a9df42b366
1,367
py
Python
electrumsv_sdk/builtin_components/electrumsv_server/local_tools.py
electrumsv/electrumsv-sdk
2d4b9474b2e2fc5518bba10684c5d5130ffb6328
[ "OML" ]
4
2020-07-06T12:13:14.000Z
2021-07-29T12:45:27.000Z
electrumsv_sdk/builtin_components/electrumsv_server/local_tools.py
electrumsv/electrumsv-sdk
2d4b9474b2e2fc5518bba10684c5d5130ffb6328
[ "OML" ]
62
2020-07-04T04:50:27.000Z
2021-08-19T21:06:10.000Z
electrumsv_sdk/builtin_components/electrumsv_server/local_tools.py
electrumsv/electrumsv-sdk
2d4b9474b2e2fc5518bba10684c5d5130ffb6328
[ "OML" ]
3
2021-01-21T09:22:45.000Z
2021-06-12T10:16:03.000Z
import logging import typing from electrumsv_sdk.utils import get_directory_name COMPONENT_NAME = get_directory_name(__file__) logger = logging.getLogger(COMPONENT_NAME) if typing.TYPE_CHECKING: from .electrumsv_server import Plugin class LocalTools: """helper for operating on plugin-specific state (like source dir, port, datadir etc.)""" def __init__(self, plugin: 'Plugin'): self.plugin = plugin self.cli_inputs = plugin.cli_inputs self.logger = logging.getLogger(self.plugin.COMPONENT_NAME) def get_network_choice(self) -> str: network_options = [ self.cli_inputs.cli_extension_args['regtest'], self.cli_inputs.cli_extension_args['testnet'], self.cli_inputs.cli_extension_args['scaling_testnet'], self.cli_inputs.cli_extension_args['main'] ] assert len([is_selected for is_selected in network_options if is_selected]) in {0, 1}, \ "can only select 1 network" network_choice = "regtest" if self.cli_inputs.cli_extension_args['testnet']: network_choice = "testnet" elif self.cli_inputs.cli_extension_args['scaling_testnet']: network_choice = "scaling-testnet" elif self.cli_inputs.cli_extension_args['main']: network_choice = "main" return network_choice
34.175
96
0.686906
1,122
0.820775
0
0
0
0
0
0
238
0.174104
f1be97cb28ba644933394a127fc92f299492f132
4,955
py
Python
cluster/core/include/python/http_parser.py
JarryShaw/broapt
5a6253af862cb618718d8fad69343a23ef2ac9e4
[ "BSD-3-Clause" ]
3
2020-04-25T08:47:55.000Z
2020-11-04T11:18:21.000Z
cluster/core/include/python/http_parser.py
JarryShaw/broapt
5a6253af862cb618718d8fad69343a23ef2ac9e4
[ "BSD-3-Clause" ]
11
2020-06-15T16:28:15.000Z
2021-11-29T17:11:07.000Z
source/include/python/http_parser.py
JarryShaw/broapt
5a6253af862cb618718d8fad69343a23ef2ac9e4
[ "BSD-3-Clause" ]
3
2019-07-24T02:41:37.000Z
2021-12-06T09:38:58.000Z
# -*- coding: utf-8 -*- # pylint: disable=all import base64 import binascii import contextlib import math import os import textwrap import time import urllib.parse from const import LOGS_PATH from logparser import parse from utils import is_nan, print_file # from utils import IPAddressJSONEncoder, is_nan, print_file # today DATE = time.strftime('%Y-%m-%d') # log path LOGS = os.path.join(LOGS_PATH, 'http') os.makedirs(LOGS, exist_ok=True) # http log HTTP_LOG = os.path.join(LOGS_PATH, 'http', f'{DATE}.log') # macros SEPARATOR = '\t' SET_SEPARATOR = ',' EMPTY_FIELD = '(empty)' UNSET_FIELD = 'NoDef' FIELDS = ('scrip', 'ad', 'ts', 'url', 'ref', 'ua', 'dstip', 'cookie', 'src_port', 'json', 'method', 'body') TYPES = ('addr', 'string', 'time', 'string', 'string', 'string', 'addr', 'string', 'port', 'vector[string]', 'string', 'string') def hexlify(string): hex_string = binascii.hexlify(string.encode()).decode() return ''.join(map(lambda s: f'\\x{s}', textwrap.wrap(hex_string, 2))) def init(HTTP_LOG): print_file(f'#separator {hexlify(SEPARATOR)}', file=HTTP_LOG) print_file(f'#set_separator{SEPARATOR}{SET_SEPARATOR}', file=HTTP_LOG) print_file(f'#empty_field{SEPARATOR}{EMPTY_FIELD}', file=HTTP_LOG) print_file(f'#unset_field{SEPARATOR}{UNSET_FIELD}', file=HTTP_LOG) print_file(f'#path{SEPARATOR}http', file=HTTP_LOG) print_file(f'#open{SEPARATOR}{time.strftime("%Y-%m-%d-%H-%M-%S")}', file=HTTP_LOG) print_file(f'#fields{SEPARATOR}{SEPARATOR.join(FIELDS)}', file=HTTP_LOG) print_file(f'#types{SEPARATOR}{SEPARATOR.join(TYPES)}', file=HTTP_LOG) def make_url(line): host = line.get('host') if is_nan(host): host = str() uri = line.get('uri') if is_nan(uri): uri = str() url = urllib.parse.urljoin(host, uri) port = int(line['id.resp_p']) if port == 80: base = 'http://%s' % line['id.resp_h'] else: base = 'http://%s:%s' % (line['id.resp_h'], line['id.resp_p']) return urllib.parse.urljoin(base, url) def make_b64(data): if is_nan(data): return None return base64.b64encode(data.encode()).decode() def make_json(line): client_headers = line.get('client_header_names') if is_nan(client_headers): client_headers = list() server_headers = line.get('server_header_names') if is_nan(server_headers): server_headers = list() headers = list() headers.extend(filter(lambda header: not is_nan(header), client_headers)) headers.extend(filter(lambda header: not is_nan(header), server_headers)) return ','.join(filter(lambda header: len(header), headers)) def beautify(obj): if obj is None: return UNSET_FIELD if isinstance(obj, str): return obj or EMPTY_FIELD if isinstance(obj, (set, list, tuple)): return SET_SEPARATOR.join(obj) or EMPTY_FIELD return str(obj) or EMPTY_FIELD def generate(log_name): global DATE, HTTP_LOG date = time.strftime('%Y-%m-%d') if date != DATE: close() DATE = date HTTP_LOG = os.path.join(LOGS_PATH, 'http', f'{DATE}.log') init(HTTP_LOG) log_root = os.path.join(LOGS_PATH, log_name) http_log = os.path.join(log_root, 'http.log') if not os.path.isfile(http_log): return LOG_HTTP = parse(http_log) for (index, line) in LOG_HTTP.context.iterrows(): # record = dict( # srcip=line['id.orig_h'], # ad=None, # ts=math.floor((line['ts'] if LOG_HTTP.format == 'json' else line['ts'].timestamp()) * 1000), # url=make_url(line), # ref=make_b64(line.get('referrer')), # ua=make_ua(line), # dstip=line['id.resp_h'], # cookie=make_cookie(line), # src_port=int(line['id.orig_p']), # # json=make_json(line), # method=line['method'], # body=line['post_body'], # ) record = ( # scrip line['id.orig_h'], # ad None, # ts math.floor((line['ts'] if LOG_HTTP.format == 'json' else line['ts'].timestamp()) * 1000), # url make_url(line), # ref make_b64(line.get('referrer')), # ua make_b64(line.get('user_agent')), # dstip line['id.resp_h'], # cookie make_b64(line.get('cookies')), # src_port int(line['id.orig_p']), # json make_json(line), # method line.get('method'), # body make_b64(line.get('post_body')), ) # data = json.dumps(record, cls=IPAddressJSONEncoder) data = '\t'.join(map(lambda obj: beautify(obj), record)) print_file(data, file=HTTP_LOG) def close(): print_file(f'#close{SEPARATOR}{time.strftime("%Y-%m-%d-%H-%M-%S")}', file=HTTP_LOG)
30.030303
128
0.594147
0
0
0
0
0
0
0
0
1,582
0.319273
f1c021de79d124febfa8a831e976cd4dc12aeed9
1,647
py
Python
src/compute_trust_values.py
johndpope/FacialRetargeting
5fb0c1da6af6c3d59aef264f567bfa7a244d0764
[ "MIT" ]
21
2020-08-19T02:52:16.000Z
2022-02-25T12:35:04.000Z
src/compute_trust_values.py
johndpope/FacialRetargeting
5fb0c1da6af6c3d59aef264f567bfa7a244d0764
[ "MIT" ]
3
2020-10-16T07:11:25.000Z
2021-06-30T10:26:04.000Z
src/compute_trust_values.py
johndpope/FacialRetargeting
5fb0c1da6af6c3d59aef264f567bfa7a244d0764
[ "MIT" ]
7
2020-08-24T08:30:53.000Z
2022-03-28T15:55:24.000Z
import numpy as np from src.compute_corr_coef import compute_corr_coef from utils.plotting import plot_similarities def compute_trust_values(dsk, do_plot=False): """ Compute trust values following formula 6 k:= number of blendshapes n:= num_features (num_markers*3) :param dsk: delta_sk vector (k, n) :param do_plot: decide if we want to plot the between-correlation matrix :return: trust values vector (k,) """ if len(np.shape(dsk)) != 2: raise ValueError("[COMPUTE TRUST VALUE] dsk dimensions not supported ({}) instead of 2".format(len(np.shape(dsk)))) # compute between-blendshape correlation ckl = compute_corr_coef(dsk, dsk) ckl = np.maximum(ckl, np.zeros(np.shape(ckl))) if do_plot: plot_similarities(ckl, "Between blendshapes correlation", vmin=0, vmax=1) # compute lower triangle num_k = np.shape(ckl)[0] low_trig = np.zeros(num_k) for k in range(num_k): val = 0 for l in range(k): val += ckl[k, l] low_trig[k] = val max_low_trig = np.max(low_trig) # compute trust values (formula 6) tk = np.zeros(num_k) for k in range(len(tk)): tk[k] = 1 - low_trig[k]/max_low_trig return tk if __name__ == '__main__': """ test compute_trust_values function run: python -m src.compute_trust_values """ np.random.seed(0) from utils.re_order_delta import re_order_delta # test compute trust values sk = np.random.rand(6, 3) # (k, n) sorted_sk = re_order_delta(sk) tk = compute_trust_values(sorted_sk, do_plot=False) print("tk") print(tk)
26.564516
123
0.651488
0
0
0
0
0
0
0
0
629
0.381906
f1c16c5d4d00c03eee3d9db1e1fe2c9c3aca5189
2,042
py
Python
test/core/test_constant.py
haikusw/jaqalpaq
d507e894cb897756a1e51c99582b736254995b4e
[ "Apache-2.0" ]
8
2021-02-19T23:25:28.000Z
2021-09-24T20:11:13.000Z
test/core/test_constant.py
haikusw/jaqalpaq
d507e894cb897756a1e51c99582b736254995b4e
[ "Apache-2.0" ]
null
null
null
test/core/test_constant.py
haikusw/jaqalpaq
d507e894cb897756a1e51c99582b736254995b4e
[ "Apache-2.0" ]
null
null
null
import unittest from jaqalpaq.core.parameter import ParamType from jaqalpaq.core.constant import Constant from . import randomize from . import common class ConstantTester(unittest.TestCase): def test_valid_types(self): """Test that a Constant can only be created from valid types.""" valid_values = [ (randomize.random_float(), ParamType.FLOAT), (randomize.random_integer(), ParamType.INT), ] for value, kind in valid_values: const, name, _ = common.make_random_constant( value=value, return_params=True ) self.assertEqual(kind, const.kind) self.assertEqual(name, const.name) # Note that we can also create a Constant from another Constant, but Jaqal # currently cannot make use of this functionality. reg = common.make_random_register() qubit = common.choose_random_qubit_getitem(reg) invalid_values = [None, reg, qubit] for value in invalid_values: with self.assertRaises(Exception): Constant(randomize.random_identifier(), value) def test_value(self): """Test that a constant yields the same value it was created with.""" const, _, value = common.make_random_constant(return_params=True) common.assert_values_same(self, value, const.value) def test_resolve_value(self): """Test that constants ignore the context given in resolve_value and return their stored value.""" const = common.make_random_constant() other_const = common.make_random_constant() context = {const.name: other_const.value} exp_value = const.value act_value = const.resolve_value(context) common.assert_values_same(self, exp_value, act_value) def test_classical(self): """Test that all constants are appropriately labeled as classical.""" self.assertTrue(common.make_random_constant().classical) if __name__ == "__main__": unittest.main()
37.127273
82
0.669931
1,838
0.900098
0
0
0
0
0
0
442
0.216454
f1c26fda7f69a42db47f3f5783c055c679831e9b
8,035
py
Python
src/richard/videos/migrations/0001_initial.py
pyvideo/richard
894f5380e07d7e66453fe730891a21aca32d8edb
[ "Apache-2.0" ]
51
2015-01-24T07:53:56.000Z
2020-08-30T12:19:39.000Z
src/richard/videos/migrations/0001_initial.py
westurner/richard
894f5380e07d7e66453fe730891a21aca32d8edb
[ "Apache-2.0" ]
34
2015-02-23T11:15:00.000Z
2016-01-04T11:25:42.000Z
src/richard/videos/migrations/0001_initial.py
westurner/richard
894f5380e07d7e66453fe730891a21aca32d8edb
[ "Apache-2.0" ]
16
2015-03-20T17:36:09.000Z
2022-01-07T01:04:17.000Z
# -*- coding: utf-8 -*- # richard -- video index system # Copyright (C) 2012, 2013, 2014, 2015 richard contributors. See AUTHORS. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(help_text='The complete title for the category. e.g. PyCon 2010', max_length=255)), ('description', models.TextField(default='', help_text='Use Markdown', blank=True)), ('url', models.URLField(default='', help_text='URL for the category. e.g. If this category was a conference, this would be the url for the conference web-site.', blank=True)), ('start_date', models.DateField(help_text='If the category was an event, then this is the start date for the event.', null=True, blank=True)), ('whiteboard', models.CharField(default='', help_text='Editor notes for this category.', max_length=255, blank=True)), ('slug', models.SlugField(unique=True)), ('added', models.DateTimeField(auto_now_add=True, null=True)), ], options={ 'ordering': ['title'], 'verbose_name': 'category', 'verbose_name_plural': 'categories', }, bases=(models.Model,), ), migrations.CreateModel( name='Language', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('iso639_1', models.CharField(max_length=3)), ('name', models.CharField(max_length=20)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='RelatedUrl', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.URLField(max_length=255)), ('description', models.CharField(default='', max_length=255, blank=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Speaker', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('slug', models.SlugField(unique=True)), ], options={ 'ordering': ['name'], 'verbose_name': 'speaker', 'verbose_name_plural': 'speakers', }, bases=(models.Model,), ), migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('tag', models.CharField(max_length=30)), ], options={ 'ordering': ['tag'], 'verbose_name': 'tag', 'verbose_name_plural': 'tags', }, bases=(models.Model,), ), migrations.CreateModel( name='Video', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('state', models.IntegerField(default=2, choices=[(1, 'Live'), (2, 'Draft')])), ('title', models.CharField(max_length=255)), ('summary', models.TextField(default='', help_text='Use Markdown', blank=True)), ('description', models.TextField(default='', help_text='Use Markdown', blank=True)), ('quality_notes', models.TextField(default='', blank=True)), ('copyright_text', models.TextField(blank=True)), ('embed', models.TextField(blank=True)), ('thumbnail_url', models.URLField(max_length=255, null=True, blank=True)), ('duration', models.IntegerField(help_text=b'In seconds', null=True, blank=True)), ('video_ogv_length', models.IntegerField(null=True, blank=True)), ('video_ogv_url', models.URLField(max_length=255, null=True, blank=True)), ('video_ogv_download_only', models.BooleanField(default=False)), ('video_mp4_length', models.IntegerField(null=True, blank=True)), ('video_mp4_url', models.URLField(max_length=255, null=True, blank=True)), ('video_mp4_download_only', models.BooleanField(default=False)), ('video_webm_length', models.IntegerField(null=True, blank=True)), ('video_webm_url', models.URLField(max_length=255, null=True, blank=True)), ('video_webm_download_only', models.BooleanField(default=False)), ('video_flv_length', models.IntegerField(null=True, blank=True)), ('video_flv_url', models.URLField(max_length=255, null=True, blank=True)), ('video_flv_download_only', models.BooleanField(default=False)), ('source_url', models.URLField(max_length=255, null=True, blank=True)), ('whiteboard', models.CharField(default='', max_length=255, blank=True)), ('recorded', models.DateField(null=True, blank=True)), ('added', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('slug', models.SlugField(unique=True)), ('category', models.ForeignKey(related_name='videos', to='videos.Category')), ('language', models.ForeignKey(to='videos.Language', null=True)), ('speakers', models.ManyToManyField(related_name='videos', to='videos.Speaker', blank=True)), ('tags', models.ManyToManyField(related_name='videos', to='videos.Tag', blank=True)), ], options={ 'ordering': ['-recorded', 'title'], 'get_latest_by': 'recorded', 'verbose_name': 'video', 'verbose_name_plural': 'videos', }, bases=(models.Model,), ), migrations.CreateModel( name='VideoUrlStatus', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('check_date', models.DateTimeField()), ('status_code', models.IntegerField()), ('status_message', models.CharField(max_length=255, blank=True)), ('url', models.URLField(max_length=255)), ('video', models.ForeignKey(to='videos.Video')), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='relatedurl', name='video', field=models.ForeignKey(related_name='related_urls', to='videos.Video'), preserve_default=True, ), ]
49.598765
191
0.571873
7,161
0.891226
0
0
0
0
0
0
2,303
0.286621
f1c41c955777189a3b733180afda82b9ed458a7c
1,399
py
Python
descwl_shear_sims/tests/test_artifacts.py
LSSTDESC/descwl_shear_sims
1c696518104b7f301dd6c69571239431c6232110
[ "BSD-3-Clause" ]
null
null
null
descwl_shear_sims/tests/test_artifacts.py
LSSTDESC/descwl_shear_sims
1c696518104b7f301dd6c69571239431c6232110
[ "BSD-3-Clause" ]
11
2019-12-10T23:30:27.000Z
2019-12-24T13:59:32.000Z
descwl_shear_sims/tests/test_artifacts.py
LSSTDESC/wl-shear-testing-sims
6e4a0baa6f664b5bc52b08b55614eaa58c8b0748
[ "BSD-3-Clause" ]
null
null
null
""" copy-paste from my (beckermr) personal code here https://github.com/beckermr/metadetect-coadding-sims """ import numpy as np import galsim from descwl_shear_sims.masking import get_bmask_and_set_image from descwl_shear_sims.artifacts import ( generate_bad_columns, generate_cosmic_rays, ) def test_basic_mask(): image = galsim.ImageD(np.zeros((100, 100))) bmask = get_bmask_and_set_image( image=image, rng=None, cosmic_rays=False, bad_columns=False, ) assert np.all(bmask.array == 0) def test_generate_cosmic_rays_smoke(): rng = np.random.RandomState(seed=10) msk = generate_cosmic_rays(shape=(64, 64), rng=rng) assert np.any(msk) def test_generate_cosmic_rays_seed(): rng = np.random.RandomState(seed=10) msk1 = generate_cosmic_rays(shape=(64, 64), rng=rng) rng = np.random.RandomState(seed=10) msk2 = generate_cosmic_rays(shape=(64, 64), rng=rng) assert np.array_equal(msk1, msk2) def test_generate_bad_columns_smoke(): rng = np.random.RandomState(seed=10) msk = generate_bad_columns(shape=(64, 64), rng=rng) assert np.any(msk) def test_generate_bad_columns_seed(): rng = np.random.RandomState(seed=10) msk1 = generate_bad_columns(shape=(64, 64), rng=rng) rng = np.random.RandomState(seed=10) msk2 = generate_bad_columns(shape=(64, 64), rng=rng) assert np.array_equal(msk1, msk2)
25.436364
68
0.719085
0
0
0
0
0
0
0
0
109
0.077913
f1c44279c1c78e6d3ae1d50d41837fb4c6fd7df0
2,270
py
Python
stylobate_mgmt/commands/init.py
digitaltembo/stylobate-mgmt
26483aab27d2496dcbd71d7de2f5780bc43a959e
[ "MIT" ]
null
null
null
stylobate_mgmt/commands/init.py
digitaltembo/stylobate-mgmt
26483aab27d2496dcbd71d7de2f5780bc43a959e
[ "MIT" ]
null
null
null
stylobate_mgmt/commands/init.py
digitaltembo/stylobate-mgmt
26483aab27d2496dcbd71d7de2f5780bc43a959e
[ "MIT" ]
null
null
null
from getpass import getpass import os from .utils import Command from .db import DB class Init(Command): name = 'init' description = "Initializes a new Stylobate project, forking the original" def add_args(self, parser): parser.add_argument( 'name', type=str, help='The name of the stylobate project' ) parser.add_argument( 'directory', type=str, nargs='?', help='Path to the directory that the project will be placed in' ) def main(self, args): parent_dir = args.directory if args.directory else os.getcwd() name = args.name self.initialize_project(args.name, parent_dir) def initialize_project(self, project_name, parent_dir): self.print('Initializing new project {} in directory {}'.format(project_name, parent_dir)) self.execute('gh repo create -d "Stylobate-based Web Application" {}'.format(project_name), abs_dir=parent_dir) proj_dir = os.path.join(parent_dir, project_name) proj_ctxt = self.context.new_context(proj_dir) if not os.path.isdir(proj_dir): # So they shouuuld say yes while creating the repo to make this git directory locally, but they may not proj_ctxt.execute('mkdir {}'.format(project_name)) proj_ctxt.execute('git init') else: # GitHub CLI clones the remote repo over HTTP :( proj_ctxt.execute('git remote remove origin') username = self.input("Username for 'https://github.com'") proj_ctxt.execute('git remote add origin [email protected]:{}/{}.git'.format(username, project_name)) proj_ctxt.execute('git remote add upstream [email protected]:digitaltembo/stylobate.git') proj_ctxt.execute('git pull upstream master') proj_ctxt.execute('git push -u origin master') proj_ctxt.execute('python -m venv venv', 'backend') proj_ctxt.execute('venv/bin/pip install -r requirements.txt', 'backend') proj_ctxt.execute('yarn install', 'frontend') username = self.input("Superuser email") password = self.input("Superuser password") DB(proj_ctxt).add_superuser(username, password)
33.382353
119
0.644934
2,178
0.959471
0
0
0
0
0
0
821
0.361674
f1c47788397390c41f153d775e370f60b472f99d
628
py
Python
leetcode_submissions/7.reverse-integer.18198620.ac.py
aenon/online_judge
bff3991519cd4f2d80dea9b17680dbc5d4c44b9b
[ "MIT" ]
null
null
null
leetcode_submissions/7.reverse-integer.18198620.ac.py
aenon/online_judge
bff3991519cd4f2d80dea9b17680dbc5d4c44b9b
[ "MIT" ]
null
null
null
leetcode_submissions/7.reverse-integer.18198620.ac.py
aenon/online_judge
bff3991519cd4f2d80dea9b17680dbc5d4c44b9b
[ "MIT" ]
1
2015-01-10T16:02:43.000Z
2015-01-10T16:02:43.000Z
#!/usr/bin/env python # Reverse Integer https://oj.leetcode.com/problems/reverse-integer/ # Reverse digits of an integer. # Example1: x = 123, return 321 # Example2: x = -123, return -321 #Math # Xilin SUN # Dec 7 2014 class Solution: # @return an integer def reverse(self, x): if x > 2147483646: return 0 if x < -2147483647: return 0 isPositive = True if x < 0: isPositive = False x = -x rev = 0 while x != 0: rev = 10 * rev + x % 10 x = x / 10 if rev > 2147483646: return 0 if rev < -2147483647: return 0 if isPositive: return rev return -rev
19.030303
68
0.593949
395
0.628981
0
0
0
0
0
0
240
0.382166
f1c529b5976d0a2cdf007169fc8e0ee8525206e1
1,400
py
Python
src/z3c/configurator/tests.py
zopefoundation/z3c.configurator
390416d2fa61ddf97c28e6af32eae3660bb725e2
[ "ZPL-2.1" ]
null
null
null
src/z3c/configurator/tests.py
zopefoundation/z3c.configurator
390416d2fa61ddf97c28e6af32eae3660bb725e2
[ "ZPL-2.1" ]
1
2021-01-08T15:34:08.000Z
2021-01-08T15:34:08.000Z
src/z3c/configurator/tests.py
zopefoundation/z3c.configurator
390416d2fa61ddf97c28e6af32eae3660bb725e2
[ "ZPL-2.1" ]
1
2015-04-03T05:49:32.000Z
2015-04-03T05:49:32.000Z
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################# """Configurator Test Setup""" import re import doctest from zope.component import testing from zope.testing.renormalizing import RENormalizing def setUp(test): testing.setUp(test) def tearDown(test): testing.tearDown() def test_suite(): checker = RENormalizing(( (re.compile("u'(.*?)'"), "'\\1'"), (re.compile("<type 'unicode'>"), "<class 'str'>"), (re.compile("zope.schema._bootstrapinterfaces.RequiredMissing"), "RequiredMissing"), (re.compile("zope.schema._bootstrapinterfaces.WrongType"), "WrongType"), )) return doctest.DocFileSuite( 'README.txt', setUp=setUp, tearDown=tearDown, checker=checker, optionflags=doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS)
31.818182
78
0.620714
0
0
0
0
0
0
0
0
835
0.596429
f1c67bf4245b574bcd2ed4dfcba7d08e3e6e8419
174
py
Python
example.py
LucasHazardous/SkinReaper
c910cebe2aed3dd8e442515e4415f3e253e5a4ac
[ "MIT" ]
null
null
null
example.py
LucasHazardous/SkinReaper
c910cebe2aed3dd8e442515e4415f3e253e5a4ac
[ "MIT" ]
null
null
null
example.py
LucasHazardous/SkinReaper
c910cebe2aed3dd8e442515e4415f3e253e5a4ac
[ "MIT" ]
null
null
null
from skin_reaper import SkinReaper if __name__ == "__main__": r = SkinReaper() data = r.harvestLinks(5) r.setSkinPreview() r.collectRandom(data) r.kill()
21.75
34
0.666667
0
0
0
0
0
0
0
0
10
0.057471
f1c6b2f9d9acd98dcef1131f691572e33395120a
528
py
Python
time_to_speech.py
besi/stereopi
c03a1ae990af67dde4e2cd832a20b49d697de230
[ "MIT" ]
2
2020-02-18T18:10:50.000Z
2020-08-04T21:00:29.000Z
time_to_speech.py
besi/stereopi
c03a1ae990af67dde4e2cd832a20b49d697de230
[ "MIT" ]
4
2020-02-19T10:46:02.000Z
2021-01-09T18:52:45.000Z
time_to_speech.py
besi/stereopi
c03a1ae990af67dde4e2cd832a20b49d697de230
[ "MIT" ]
null
null
null
# Credits go to <http://codereview.stackexchange.com/q/37522> import random import time def current_time(): '''Returns a tuple containing (hour, minute) for current local time.''' local_time = time.localtime(time.time()) return (local_time.tm_hour, local_time.tm_min) (hour, minute) = current_time() def ishtime(hours, minutes): hours = hours % 24 if minutes == 0: return(str(hours) + ' sharp') return(str(hours) + ' . . . and ' + str(minutes) + ' minutes') print(ishtime(hour, minute))
22
75
0.657197
0
0
0
0
0
0
0
0
163
0.308712
f1c6e01e5913573733f519b9c5d164e6fed7195b
575
py
Python
setup.py
ckuzma/solar-viability-tester
c34d03d1914374279ca269ab402eb5074f7555a6
[ "MIT" ]
null
null
null
setup.py
ckuzma/solar-viability-tester
c34d03d1914374279ca269ab402eb5074f7555a6
[ "MIT" ]
2
2017-04-03T13:59:00.000Z
2017-04-06T04:57:50.000Z
setup.py
ckuzma/solar-viability-tester
c34d03d1914374279ca269ab402eb5074f7555a6
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='solar-viability-tester', version='1.0.0', description='Solar viability tester utilizing the AT&T IoT Starter Kit and PubNub.', long_description=long_description, url='https://github.com/ckuzma/solar-viability-tester', license='Apache-2.0' )
30.263158
89
0.707826
0
0
0
0
0
0
0
0
230
0.4
f1c78560c5fc55f8dc09c8791ab3fa9dcc1ccd67
31,028
py
Python
framework/framework.py
wbqhb/SEPC
1a5e03b70984b759b615424dc06f530d5de00f51
[ "MIT" ]
null
null
null
framework/framework.py
wbqhb/SEPC
1a5e03b70984b759b615424dc06f530d5de00f51
[ "MIT" ]
null
null
null
framework/framework.py
wbqhb/SEPC
1a5e03b70984b759b615424dc06f530d5de00f51
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2021/5/4 下午3:05 # @Author : godwaitup # @FileName: framework.py # original framework for joint extraction. import torch.optim as optim from torch import nn import os import data_loader import torch.nn.functional as F import numpy as np import json from functools import partial from data_loader import cmed_collate_fn import torch def _to_sub(triple_list, head_only=False, lang='ENGLISH'): ret = set() for triple in triple_list: if lang is 'CHINESE': triple = (triple[0].replace('$', ' ').lower(), triple[1], triple[2].replace('$', ' ').lower()) if head_only: ret.add(triple[0].split(" ")[0]) else: ret.add(triple[0]) return ret def _to_obj(triple_list, head_only=False, lang='ENGLISH'): ret = set() for triple in triple_list: if lang is 'CHINESE': triple = (triple[0].replace('$', ' ').lower(), triple[1], triple[2].replace('$', ' ').lower()) if head_only: ret.add(triple[2].split(" ")[0]) else: ret.add(triple[2]) return ret def _to_ep(triple_list, head_only=False, lang='ENGLISH'): ret = set() for triple in triple_list: if lang is 'CHINESE': triple = (triple[0].replace('$', ' ').lower(), triple[1], triple[2].replace('$', ' ').lower()) if head_only: _h = triple[0].split(" ") _t = triple[2].split(" ") ret.add(tuple((_h[0], _t[0]))) else: ret.add(tuple((triple[0], triple[2]))) return ret def _to_triple(triple_list, head_only=False, lang='ENGLISH'): ret = set() for triple in triple_list: # print("lang:{} A:{}".format(lang, triple)) if lang is 'CHINESE': triple = (triple[0].replace('$', ' ').lower(), triple[1], triple[2].replace('$', ' ').lower()) # print("B:{}".format(triple)) if head_only: _h = triple[0].split(" ") _t = triple[2].split(" ") ret.add(tuple((_h[0], triple[1], _t[0]))) else: ret.add(tuple((triple[0], triple[1], triple[2]))) return ret def _load_gold_data(data_gold, data_id, head_only=False, gold_type='EP', lang='ENGLISH'): _tokens, _triples = data_gold[data_id] if gold_type == 'EP': gold_value = _to_ep(_triples, head_only, lang=lang) elif gold_type == 'sub': gold_value = _to_sub(_triples, head_only, lang=lang) elif gold_type == 'obj': gold_value = _to_obj(_triples, head_only, lang=lang) elif gold_type == 'ALL': gold_value = _to_triple(_triples, head_only, lang=lang) return gold_value, _tokens def _cal_prf(correct_num, predict_num, gold_num): eval_p = correct_num / (predict_num + 1e-10) eval_r = correct_num / (gold_num + 1e-10) eval_f = 2 * eval_p * eval_r / (eval_p + eval_r + 1e-10) return eval_p, eval_r, eval_f class Framework(object): def __init__(self, con, wandb_log): self.config = con self.wandb_log = wandb_log def train(self, model_pattern): # initialize the model ori_model = model_pattern(self.config) ori_model.cuda() # define the optimizer optimizer = optim.Adam(filter(lambda p: p.requires_grad, ori_model.parameters()), lr=self.config.learning_rate) # whether use multi GPU if self.config.multi_gpu: model = nn.DataParallel(ori_model) else: model = ori_model # define the loss function def loss(gold, pred, mask): pred = pred.squeeze(-1) los = F.binary_cross_entropy(pred, gold, reduction='none') if mask is None: los = torch.sum(los)/self.config.rel_num return los if los.shape != mask.shape: mask = mask.unsqueeze(-1) los = torch.sum(los * mask) / torch.sum(mask) return los # check the checkpoint dir if not os.path.exists(self.config.checkpoint_dir): os.mkdir(self.config.checkpoint_dir) # get the data loader train_data_loader = data_loader.get_loader(self.config, tokenizer=self.config.tokenizer, prefix=self.config.train_prefix, collate_fn=partial(cmed_collate_fn, num_rels=self.config.rel_num)) dev_data_loader = data_loader.get_loader(self.config, tokenizer=self.config.tokenizer, prefix=self.config.dev_prefix, is_test=True, collate_fn=partial(cmed_collate_fn, num_rels=self.config.rel_num)) test_data_loader = data_loader.get_loader(self.config, tokenizer=self.config.tokenizer, prefix=self.config.test_prefix, is_test=True, collate_fn=partial(cmed_collate_fn, num_rels=self.config.rel_num)) model.train() global_step = 0 loss_sum = 0 ent_boundary_loss_sum = 0 ent_span_loss_sum = 0 ent_pair_loss_sum = 0 rel_loss_sum = 0 best_f1_score = -1 best_test_f1 = 0 best_test_h_f1 = 0 best_epoch = 0 # the training loop for epoch in range(self.config.max_epoch): train_data_prefetcher = data_loader.DataPreFetcher(train_data_loader) data = train_data_prefetcher.next() while data is not None: if self.config.model_name == 'SGCN' or self.config.model_name == 'SGCN_NO_STEP': pred_sub_heads, pred_sub_tails, pred_obj_heads, pred_obj_tails, \ sim_sub_h2t, sim_sub_t2h, sim_obj_h2t, sim_obj_t2h, \ sim_sub_oh, sim_sub_ot, sim_obj_sh, sim_obj_st, pred_rels = model(data) # entity boundary loss loss_sub_heads = loss(data['em_sub_heads'], pred_sub_heads, mask=data['mask']) loss_sub_tails = loss(data['em_sub_tails'], pred_sub_tails, mask=data['mask']) loss_obj_heads = loss(data['em_obj_heads'], pred_obj_heads, mask=data['mask']) loss_obj_tails = loss(data['em_obj_tails'], pred_obj_tails, mask=data['mask']) # entity span loss loss_sub_h2t = loss(data['sub_h2t'], sim_sub_h2t, mask=data['mask']) loss_sub_t2h = loss(data['sub_t2h'], sim_sub_t2h, mask=data['mask']) loss_obj_h2t = loss(data['obj_h2t'], sim_obj_h2t, mask=data['mask']) loss_obj_t2h = loss(data['obj_t2h'], sim_obj_t2h, mask=data['mask']) # entity pair loss loss_sub2objh = loss(data['sub2obj_h'], sim_sub_oh, mask=data['mask']) loss_sub2objt = loss(data['sub2obj_t'], sim_sub_ot, mask=data['mask']) loss_obj2subh = loss(data['obj2sub_h'], sim_obj_sh, mask=data['mask']) loss_obj2subt = loss(data['obj2sub_t'], sim_obj_st, mask=data['mask']) # relation loss loss_rel = loss(data['rel_labels'], pred_rels, mask=None) ent_boundary_loss = loss_sub_heads + loss_sub_tails + loss_obj_heads + loss_obj_tails ent_span_loss = loss_sub_h2t + loss_sub_t2h + loss_obj_h2t + loss_obj_t2h ent_pair_loss = loss_sub2objh + loss_sub2objt + loss_obj2subh + loss_obj2subt total_loss = ent_boundary_loss + ent_span_loss + ent_pair_loss + loss_rel optimizer.zero_grad() total_loss.backward() optimizer.step() global_step += 1 loss_sum += total_loss.item() ent_boundary_loss_sum += ent_boundary_loss.item() ent_span_loss_sum += ent_span_loss.item() ent_pair_loss_sum += ent_pair_loss.item() rel_loss_sum += loss_rel.item() if global_step % self.config.period == 0: # print(loss_sum) if self.wandb_log is not None: self.wandb_log.log({"LOSS_SUM:": loss_sum}) loss_sum = 0 ent_boundary_loss_sum = 0 ent_span_loss_sum = 0 ent_pair_loss_sum = 0 rel_loss_sum = 0 data = train_data_prefetcher.next() elif self.config.model_name == 'Casrel': pred_sub_heads, pred_sub_tails, pred_s2ro_heads, pred_s2ro_tails = model(data) # entity boundary loss loss_sub_heads = loss(data['em_sub_heads'], pred_sub_heads, mask=data['mask']) loss_sub_tails = loss(data['em_sub_tails'], pred_sub_tails, mask=data['mask']) # relation loss loss_s2ro_heads = loss(data['batch_s2ro_heads'], pred_s2ro_heads, mask=data['mask']) loss_s2ro_tails = loss(data['batch_s2ro_tails'], pred_s2ro_tails, mask=data['mask']) ent_boundary_loss = loss_sub_heads + loss_sub_tails rel_loss = loss_s2ro_heads + loss_s2ro_tails total_loss = ent_boundary_loss + rel_loss optimizer.zero_grad() total_loss.backward() optimizer.step() global_step += 1 loss_sum += total_loss.item() ent_boundary_loss_sum += ent_boundary_loss.item() rel_loss_sum += rel_loss.item() if global_step % self.config.period == 0: if self.wandb_log is not None: self.wandb_log.log({"LOSS_SUM:": loss_sum}) loss_sum = 0 ent_boundary_loss_sum = 0 ent_span_loss_sum = 0 ent_pair_loss_sum = 0 rel_loss_sum = 0 data = train_data_prefetcher.next() if (epoch + 1) % self.config.test_epoch == 0: model.eval() # call the test function dev_triple_p, dev_triple_r, dev_triple_f, dev_triple_hp, dev_triple_hr, dev_triple_hf, \ dev_ep_p, dev_ep_r, dev_ep_f, dev_ep_hp, dev_ep_hr, dev_ep_hf, \ dev_sub_p, dev_sub_r, dev_sub_f, dev_sub_hp, dev_sub_hr, dev_sub_hf, \ dev_obj_p, dev_obj_r, dev_obj_f, dev_obj_hp, dev_obj_hr, dev_obj_hf = self.test(dev_data_loader, self.config.step_dim, self.config.step_matrix, model) test_triple_p, test_triple_r, test_triple_f, test_triple_hp, test_triple_hr, test_triple_hf, \ test_ep_p, test_ep_r, test_ep_f, test_ep_hp, test_ep_hr, test_ep_hf, \ test_sub_p, test_sub_r, test_sub_f, test_sub_hp, test_sub_hr, test_sub_hf, \ test_obj_p, test_obj_r, test_obj_f, test_obj_hp, test_obj_hr, test_obj_hf = self.test(test_data_loader, self.config.step_dim, self.config.step_matrix, model) model.train() # eval_f1_score if dev_triple_f > best_f1_score: best_epoch = epoch best_f1_score = dev_triple_f best_test_h_f1 = test_triple_hf best_test_f1 = test_triple_f # save the best model path = os.path.join(self.config.checkpoint_dir, self.config.model_save_name) if not self.config.debug: torch.save(ori_model.state_dict(), path) if self.wandb_log is not None: self.wandb_log.log({ "BEST_EPOCH:": best_epoch, "DEV_Triple_F1": dev_triple_f, "DEV_TripleH_F1": dev_triple_hf, "DEV_EP_F1": dev_ep_f, "DEV_SUB_F1": dev_sub_f, "DEV_OBJ_F1": dev_obj_f, "DEV_EPH_F1": dev_ep_hf, "DEV_SUBH_F1": dev_sub_hf, "DEV_OBJH_F1": dev_obj_hf, "best_test_h_f1": best_test_h_f1, "best_test_f1": best_test_f1, "current_epoch": epoch}) # manually release the unused cache torch.cuda.empty_cache() def cal_sub_prob(self, head_idx, tail_idx, trans_head_idx, trans_tail_idx, pred_heads, pred_tails, head_walk_step, tail_walk_step, model, encoded_txt, seq_len): _head_prob = pred_heads[0][head_idx][0].tolist() _tail_prob = pred_tails[0][tail_idx][0].tolist() _head_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() _tail_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() _head_mapping[0][0][head_idx] = 1 _tail_mapping[0][0][tail_idx] = 1 _head_mapping = _head_mapping.to(encoded_txt) _tail_mapping = _tail_mapping.to(encoded_txt) sub_span = model.gen_span_emb(torch.LongTensor([head_idx]), torch.LongTensor([tail_idx]), encoded_txt) # predict entity span sim_ent_ht, sim_ent_th = model.sub_span_trans(_head_mapping, _tail_mapping, head_walk_step, tail_walk_step, encoded_txt, seq_len) _h2t_prob = sim_ent_ht[0][tail_idx][0].tolist() _t2h_prob = sim_ent_th[0][head_idx][0].tolist() # span_prob = _head_prob * _h2t_prob + _tail_prob * _t2h_prob # trans head idx sim_ent_gh, sim_ent_gt = model.sub_entity_trans(sub_span, head_walk_step, tail_walk_step, encoded_txt, seq_len) trans_head_prob = sim_ent_gh[0][trans_head_idx][0].tolist() trans_tail_prob = sim_ent_gt[0][trans_tail_idx][0].tolist() return _head_prob, _h2t_prob, _tail_prob, _t2h_prob, trans_head_prob, trans_tail_prob def cal_obj_prob(self, head_idx, tail_idx, trans_head_idx, trans_tail_idx, pred_heads, pred_tails, head_walk_step, tail_walk_step, model, encoded_txt, seq_len): _head_prob = pred_heads[0][head_idx][0].tolist() _tail_prob = pred_tails[0][tail_idx][0].tolist() _head_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() _tail_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() _head_mapping[0][0][head_idx] = 1 _tail_mapping[0][0][tail_idx] = 1 _head_mapping = _head_mapping.to(encoded_txt) _tail_mapping = _tail_mapping.to(encoded_txt) obj_span = model.gen_span_emb(torch.LongTensor([head_idx]), torch.LongTensor([tail_idx]), encoded_txt) # predict entity span sim_ent_ht, sim_ent_th = model.obj_span_trans(_head_mapping, _tail_mapping, head_walk_step, tail_walk_step, encoded_txt, seq_len) _h2t_prob = sim_ent_ht[0][tail_idx][0].tolist() _t2h_prob = sim_ent_th[0][head_idx][0].tolist() # span_prob = _head_prob * _h2t_prob + _tail_prob * _t2h_prob # trans head idx sim_ent_gh, sim_ent_gt = model.obj_entity_trans(obj_span, head_walk_step, tail_walk_step, encoded_txt, seq_len) trans_head_prob = sim_ent_gh[0][trans_head_idx][0].tolist() trans_tail_prob = sim_ent_gt[0][trans_tail_idx][0].tolist() return _head_prob, _h2t_prob, _tail_prob, _t2h_prob, trans_head_prob, trans_tail_prob def cal_rel_prob(self, sub_head_idx, sub_tail_idx, obj_head_idx, obj_tail_idx, model, encoded_txt, rel_bar=0.5): sub_head_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() sub_tail_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() sub_head_mapping[0][0][sub_head_idx] = 1 sub_tail_mapping[0][0][sub_tail_idx] = 1 sub_head_mapping = sub_head_mapping.to(encoded_txt) sub_tail_mapping = sub_tail_mapping.to(encoded_txt) obj_head_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() obj_tail_mapping = torch.Tensor(1, 1, encoded_txt.size(1)).zero_() obj_head_mapping[0][0][obj_head_idx] = 1 obj_tail_mapping[0][0][obj_tail_idx] = 1 obj_head_mapping = obj_head_mapping.to(encoded_txt) obj_tail_mapping = obj_tail_mapping.to(encoded_txt) pred_rels = model.rel_classification(sub_head_mapping, sub_tail_mapping, obj_head_mapping, obj_tail_mapping, encoded_txt) pred_rels_idx = np.where(pred_rels.cpu()[0] > rel_bar)[0] return pred_rels_idx def _cal_ep_score(self, sub_span_prob, obj_span_prob, sub_trans_prob, obj_trans_prob): _score = sub_span_prob*sub_trans_prob + obj_span_prob*obj_trans_prob return _score def test(self, x_data_loader, step_dim, step_matrix, model): test_data_prefetcher = data_loader.DataPreFetcher(x_data_loader) data = test_data_prefetcher.next() pred_eps_id = list() data_id = 0 data_gold = list() id2rel = json.load(open(os.path.join(self.config.data_path, 'rel2id.json')))[0] print(id2rel) def make_step(sample_idx, text_len): walk_step = np.zeros((text_len, step_dim)) for i in range(text_len): walk_step[i] = step_matrix[i - sample_idx + self.config.max_len] walk_step_t = torch.Tensor(walk_step) walk_step_t = walk_step_t.unsqueeze(0) walk_step_t = walk_step_t.to(torch.device('cuda')) return walk_step_t while data is not None: with torch.no_grad(): token_ids = data['token_ids'] tokens = data['tokens'][0] mask = data['mask'] gold_triples = data['triples'][0] data_gold.append((tokens, gold_triples)) seq_len = len(tokens) encoded_text = model.get_encoded_text(token_ids, mask) if self.config.model_name == 'SGCN' or self.config.model_name == 'SGCN_NO_STEP': pred_sub_heads, pred_sub_tails, pred_obj_heads, pred_obj_tails = model.pred_entity_boundary(encoded_text) _bar = 0.1 max_span_len = 30 span_sub_heads = np.where(pred_sub_heads.cpu()[0] > _bar)[0] span_sub_tails = np.where(pred_sub_tails.cpu()[0] > _bar)[0] span_obj_heads = np.where(pred_obj_heads.cpu()[0] > _bar)[0] span_obj_tails = np.where(pred_obj_tails.cpu()[0] > _bar)[0] pred_eps = dict() for _sub_head_idx in span_sub_heads: for _sub_tail_idx in span_sub_tails: for _obj_head_idx in span_obj_heads: for _obj_tail_idx in span_obj_tails: if _sub_head_idx <= _sub_tail_idx and _obj_head_idx <= _obj_tail_idx and (_sub_tail_idx - _sub_head_idx) < max_span_len and (_obj_tail_idx - _obj_head_idx) < max_span_len: sub_head_walk_step = make_step(_sub_head_idx, seq_len) sub_tail_walk_step = make_step(_sub_tail_idx, seq_len) obj_head_walk_step = make_step(_obj_head_idx, seq_len) obj_tail_walk_step = make_step(_obj_tail_idx, seq_len) # cal span prob and trans prob sub_head_prob, sub_h2t_prob, sub_tail_prob, sub_t2h_prob, sub_trans_head_prob, sub_trans_tail_prob = \ self.cal_sub_prob(_sub_head_idx, _sub_tail_idx, _obj_head_idx, _obj_tail_idx, pred_sub_heads, pred_sub_tails, sub_head_walk_step, sub_tail_walk_step, model, encoded_text, seq_len) obj_head_prob, obj_h2t_prob, obj_tail_prob, obj_t2h_prob, obj_trans_head_prob, obj_trans_tail_prob = \ self.cal_obj_prob(_obj_head_idx, _obj_tail_idx, _sub_head_idx, _sub_tail_idx, pred_obj_heads, pred_obj_tails, obj_head_walk_step, obj_tail_walk_step, model, encoded_text, seq_len) sub_span_prob = sub_head_prob * sub_h2t_prob + sub_tail_prob * sub_t2h_prob obj_span_prob = obj_head_prob * obj_h2t_prob + obj_tail_prob * obj_t2h_prob sub_trans_prob = sub_trans_head_prob * sub_trans_tail_prob obj_trans_prob = obj_trans_head_prob * obj_trans_tail_prob ep_score = self._cal_ep_score(sub_span_prob, obj_span_prob, sub_trans_prob, obj_trans_prob) if ep_score > 2.5: pred_rels_idx = self.cal_rel_prob(_sub_head_idx, _sub_tail_idx, _obj_head_idx, _obj_tail_idx, model, encoded_text) for rel_idx in pred_rels_idx: rel_idx = str(rel_idx) if (_sub_head_idx, _sub_tail_idx, _obj_head_idx, _obj_tail_idx, id2rel[rel_idx]) not in pred_eps: pred_eps[(_sub_head_idx, _sub_tail_idx, _obj_head_idx, _obj_tail_idx, id2rel[rel_idx])] = ep_score else: if ep_score > pred_eps[(_sub_head_idx, _sub_tail_idx, _obj_head_idx, _obj_tail_idx, id2rel[rel_idx])]: pred_eps[(_sub_head_idx, _sub_tail_idx, _obj_head_idx, _obj_tail_idx, id2rel[rel_idx])] = ep_score else: ent_bar = 0.5 rel_bar = 0.5 pred_eps = dict() pred_sub_heads, pred_sub_tails = model.get_subs(encoded_text) sub_heads, sub_tails = np.where(pred_sub_heads.cpu()[0] > ent_bar)[0], \ np.where(pred_sub_tails.cpu()[0] > ent_bar)[0] subjects = [] for sub_head in sub_heads: sub_tail = sub_tails[sub_tails >= sub_head] if len(sub_tail) > 0: sub_tail = sub_tail[0] subject = tokens[sub_head: sub_tail] subjects.append((subject, sub_head, sub_tail)) if subjects: triple_list = [] # [subject_num, seq_len, bert_dim] repeated_encoded_text = encoded_text.repeat(len(subjects), 1, 1) # [subject_num, 1, seq_len] sub_head_mapping = torch.Tensor(len(subjects), 1, encoded_text.size(1)).zero_() sub_tail_mapping = torch.Tensor(len(subjects), 1, encoded_text.size(1)).zero_() for subject_idx, subject in enumerate(subjects): sub_head_mapping[subject_idx][0][subject[1]] = 1 sub_tail_mapping[subject_idx][0][subject[2]] = 1 sub_tail_mapping = sub_tail_mapping.to(repeated_encoded_text) sub_head_mapping = sub_head_mapping.to(repeated_encoded_text) pred_obj_heads, pred_obj_tails = model.get_objs_for_specific_sub(sub_head_mapping, sub_tail_mapping, repeated_encoded_text) for subject_idx, subject in enumerate(subjects): obj_heads, obj_tails = np.where(pred_obj_heads.cpu()[subject_idx] > rel_bar), np.where(pred_obj_tails.cpu()[subject_idx] > rel_bar) for obj_head, rel_head in zip(*obj_heads): for obj_tail, rel_tail in zip(*obj_tails): if obj_head <= obj_tail and rel_head == rel_tail: ep_score = pred_obj_tails.cpu()[subject_idx][obj_head][rel_head].item() rel_head = str(rel_head) if (subject[1], subject[2], obj_head, obj_tail, id2rel[rel_head]) not in pred_eps: pred_eps[(subject[1], subject[2], obj_head, obj_tail, id2rel[rel_head])] = ep_score else: if ep_score > pred_eps[(subject[1], subject[2], obj_head, obj_tail, id2rel[rel_head])]: pred_eps[(subject[1], subject[2], obj_head, obj_tail, id2rel[rel_head])] = ep_score break for _ep in pred_eps: pred_eps_id.append((_ep[0], _ep[1], _ep[2], _ep[3], pred_eps[_ep], data_id, _ep[4])) data_id += 1 data = test_data_prefetcher.next() pred_eps_id = sorted(pred_eps_id, key=lambda x: x[4], reverse=True) def element_prf(pred_eps_id, data_gold, head_only=False, gold_type='EP', lang='ENGLISH'): correct_num, pred_num, gold_num = 0, 0, 0 v_pred_entity_pair = set() # To calculate gold number for item in data_gold: gold_triples = item[1] if gold_type == 'EP': gold_info = _to_ep(gold_triples, head_only, lang=lang) elif gold_type == 'sub': gold_info = _to_sub(gold_triples, head_only, lang=lang) elif gold_type == 'obj': gold_info = _to_obj(gold_triples, head_only, lang=lang) elif gold_type == 'ALL': gold_info = _to_triple(gold_triples, head_only, lang=lang) # print(head_only, gold_info) gold_num += len(gold_info) # print("gold_type:{}, gold_num:{}".format(gold_type, gold_num)) for _eps_id in pred_eps_id: gold_results, _tokens = _load_gold_data(data_gold, _eps_id[5], head_only, gold_type, lang=lang) sub = _tokens[_eps_id[0]: _eps_id[1]+1] sub = self.config.tokenizer.convert_tokens_to_string(sub) if lang is 'CHINESE': sub = sub.replace(' ', '') sub = sub.replace('$', ' ') sub = sub.strip().replace(" - ", "-") if head_only: sub = sub.split(" ")[0] obj = _tokens[_eps_id[2]: _eps_id[3]+1] obj = self.config.tokenizer.convert_tokens_to_string(obj) # obj = ''.join([i.lstrip("##") for i in obj]) #obj = ' '.join(obj.split('[unused1]')) obj = obj.strip().replace(" - ", "-") if lang is 'CHINESE': obj = obj.replace(' ', '') obj = obj.replace('$', ' ') if head_only: obj = obj.split(" ")[0] rel = _eps_id[6] if gold_type == 'EP': pred_info = (sub, obj, _eps_id[5]) elif gold_type == 'sub': pred_info = (sub, _eps_id[5]) elif gold_type == 'obj': pred_info = (obj, _eps_id[5]) elif gold_type == 'ALL': pred_info = (sub, rel, obj, _eps_id[5]) if pred_info not in v_pred_entity_pair: v_pred_entity_pair.add(pred_info) else: continue if gold_type == 'EP': pred_info = (sub, obj) elif gold_type == 'sub': pred_info = (sub) elif gold_type == 'obj': pred_info = (obj) elif gold_type == 'ALL': pred_info = (sub, rel, obj) # print(head_only, pred_info) if pred_info in gold_results: correct_num += 1 #else: # if gold_type == 'ALL' and head_only == False: # print("pred_info:{}".format(pred_info)) # print("gold_results:{}".format(gold_results)) pred_num += 1 p, r, f = _cal_prf(correct_num, pred_num, gold_num) print("gold_type:{} head_only:{} gold_num:{} pred_num:{} correct_num:{}, p:{},r:{},f:{},".format(gold_type, head_only, gold_num, pred_num, correct_num, p, r, f)) return p, r, f # print(pred_eps_id) triple_p, triple_r, triple_f = element_prf(pred_eps_id, data_gold, gold_type='ALL', lang=self.config.dataset_lang) triple_hp, triple_hr, triple_hf = element_prf(pred_eps_id, data_gold, head_only=True, gold_type='ALL', lang=self.config.dataset_lang) ep_p, ep_r, ep_f = element_prf(pred_eps_id, data_gold, gold_type='EP', lang=self.config.dataset_lang) ep_hp, ep_hr, ep_hf = element_prf(pred_eps_id, data_gold, head_only=True, gold_type='EP', lang=self.config.dataset_lang) sub_p, sub_r, sub_f = element_prf(pred_eps_id, data_gold, gold_type='sub', lang=self.config.dataset_lang) sub_hp, sub_hr, sub_hf = element_prf(pred_eps_id, data_gold, head_only=True, gold_type='sub', lang=self.config.dataset_lang) obj_p, obj_r, obj_f = element_prf(pred_eps_id, data_gold, gold_type='obj', lang=self.config.dataset_lang) obj_hp, obj_hr, obj_hf = element_prf(pred_eps_id, data_gold, head_only=True, gold_type='obj', lang=self.config.dataset_lang) return triple_p, triple_r, triple_f, triple_hp, triple_hr, triple_hf, \ ep_p, ep_r, ep_f, ep_hp, ep_hr, ep_hf, \ sub_p, sub_r, sub_f, sub_hp, sub_hr, sub_hf, \ obj_p, obj_r, obj_f, obj_hp, obj_hr, obj_hf def testall(self, model_pattern): model = model_pattern(self.config) path = os.path.join(self.config.checkpoint_dir, self.config.model_save_name) model.load_state_dict(torch.load(path)) model.cuda() model.eval() test_data_loader = data_loader.get_loader(self.config, tokenizer=self.config.tokenizer, prefix=self.config.dev_prefix, is_test=True, collate_fn=partial(cmed_collate_fn, num_rels=self.config.rel_num)) self.test(test_data_loader, self.config.step_dim, self.config.step_matrix, model) return
48.786164
223
0.561718
28,090
0.905195
0
0
0
0
0
0
2,322
0.074826
f1c88d2448c823f942e8276b943c094ce146f49b
799
py
Python
tests/settings.py
rjw57/componentsdb
7e5fd96d3afbbcde09d2f7fba1d6c86975e41272
[ "MIT" ]
null
null
null
tests/settings.py
rjw57/componentsdb
7e5fd96d3afbbcde09d2f7fba1d6c86975e41272
[ "MIT" ]
null
null
null
tests/settings.py
rjw57/componentsdb
7e5fd96d3afbbcde09d2f7fba1d6c86975e41272
[ "MIT" ]
null
null
null
""" Settings for application when being run in the test suite. """ import os import sys # Add the directory containing this file to the search path sys.path.append(os.path.dirname(os.path.abspath(__file__))) # Import function to generate a self-signed cert dynamically from x509cert import gen_self_signed_cert DEBUG = True TESTING = True SECRET_KEY = 'bonjour, monde' # Configure the testing database. The database URI is specified by the # COMPONENTSDB_DATABASE_URI environment variable. SQLALCHEMY_DATABASE_URI = os.environ.get( 'COMPONENTSDB_DATABASE_URI', 'sqlite://' ) SQLALCHEMY_ECHO = True _cert, _key = gen_self_signed_cert() GOOGLE_OAUTH2_CERTS = {'selfsigned': _cert} GOOGLE_OAUTH2_ALLOWED_CLIENT_IDS = ['my-client'] TESTING_GOOGLE_OAUTH2_CERT_PRIV_KEYS = {'selfsigned': _key}
26.633333
70
0.787234
0
0
0
0
0
0
0
0
394
0.493116
f1c8a2ea1e6774516b221761cec538d39be7d6c1
254
py
Python
learn-python/sort_with_key.py
barissimsek/gopython
7e2c1bdb20b2a908c601794ea9dbf71ea035a869
[ "Apache-2.0" ]
null
null
null
learn-python/sort_with_key.py
barissimsek/gopython
7e2c1bdb20b2a908c601794ea9dbf71ea035a869
[ "Apache-2.0" ]
null
null
null
learn-python/sort_with_key.py
barissimsek/gopython
7e2c1bdb20b2a908c601794ea9dbf71ea035a869
[ "Apache-2.0" ]
null
null
null
ips = [ '10.0.0.5', '10.5.3.1', '192.168.11.10', '2.2.2.2', '100.0.0.1', '20.3.2.4' ] def getKey(item): return tuple(int(part) for part in item.split('.')) def sort_ips(iplist): return sorted(ips, key=getKey) print(sort_ips(ips))
12.095238
52
0.566929
0
0
0
0
0
0
0
0
68
0.267717
f1c983b126df00c8a011720ca60d9fd2cfbf09df
5,330
py
Python
tbss_wm_atlas_stats.py
shanqing-cai/MRI_analysis
39b3d48e2158623ffd9a8a6ea47d16a4a7b83cd9
[ "BSD-4-Clause" ]
1
2016-02-08T18:31:36.000Z
2016-02-08T18:31:36.000Z
tbss_wm_atlas_stats.py
shanqing-cai/MRI_analysis
39b3d48e2158623ffd9a8a6ea47d16a4a7b83cd9
[ "BSD-4-Clause" ]
null
null
null
tbss_wm_atlas_stats.py
shanqing-cai/MRI_analysis
39b3d48e2158623ffd9a8a6ea47d16a4a7b83cd9
[ "BSD-4-Clause" ]
null
null
null
#!/usr/bin/python import os import sys import glob import argparse import tempfile import numpy as np from scipy.io import * from scipy import stats from subprocess import Popen, PIPE from scai_utils import * from get_qdec_info import get_qdec_info from read_xml_labels import read_xml_labels atlas_label_fn = \ "/usr/share/fsl/5.0/data/atlases/JHU/JHU-ICBM-labels-1mm.nii.gz" atlas_label_xml = \ "/usr/share/fsl/5.0/data/atlases/JHU-labels.xml" P_THRESH_UNC = 0.05 if __name__ == "__main__": ap = argparse.ArgumentParser(description="Get stats (e.g., average FA) from in atlas-defined WM regions in TBSS-aligned diffusion-tensor images") ap.add_argument("tbssDir", help="Base TBSS directory (e.g., /users/cais/STUT/analysis/dt_tbss_dtiprep2)") if len(sys.argv) == 1: ap.print_help() sys.exit(0) # === Parse input arguments === # args = ap.parse_args() tbssDir = args.tbssDir # === Input sanity check === # check_dir(tbssDir) statsDir = os.path.join(tbssDir, "stats") check_dir(statsDir) origDir = os.path.join(tbssDir, "origdata") check_dir(origDir) check_file(atlas_label_fn) # === Read JHU-ICBM labels === # check_file(atlas_label_xml) labs = read_xml_labels(atlas_label_xml) # === Locate the all_FA image === # allFA = os.path.join(statsDir, "all_FA.nii.gz") check_file(allFA) # === Find out the subject IDs and their groups === # origDir = os.path.join(tbssDir, "origdata") check_dir(origDir) ds = glob.glob(os.path.join(origDir, "S??.nii.gz")) ds.sort() sIDs = [] idxPWS = [] idxPFS = [] for (i0, d) in enumerate(ds): [tpath, tfn] = os.path.split(d) sID = tfn.replace(".nii.gz", "") sIDs.append(sID) if get_qdec_info(sID, "diagnosis") == "PWS": idxPWS.append(i0) elif get_qdec_info(sID, "diagnosis") == "PFS": idxPFS.append(i0) else: raise Exception, "Unrecognized diagnosis for subject %s: %s" % \ (sID, get_qdec_info(sID, "diagnosis")) # === Split the all_FA image, for later use by fslstats === # splitBase = tempfile.mktemp() split_cmd = "fslsplit %s %s -t" % (allFA, splitBase) saydo(split_cmd) splitFNs = glob.glob(splitBase + "*.nii.gz") splitFNs.sort() if len(splitFNs) != len(sIDs): raise Exception, "Number of volumes in 4D series %s (%d) does not match the number of subjects in origdata (%d)" % \ (allFA, len(splitFNs), len(sIDs)) # === Iterate through the WM labels and get the stats info === # labRes = {"labels": [], "meanFA": [], "tt_t": [], "tt_p": []} for (i0, lab) in enumerate(labs['name']): ind = labs['ind'][i0] if ind == 0: continue print("\nProcessing label #%d: %s\n" % (i0, lab)) labRes["labels"].append(lab) labRes["meanFA"].append({"PWS": [], "PFS": []}) tmpfn = tempfile.mktemp() + ".nii.gz" # == Binarize, get label mask == # bin_cmd = "mri_binarize --i %s --match %d --o %s" % \ (atlas_label_fn, ind, tmpfn) saydo(bin_cmd) check_file(tmpfn) # == Use fslstats to get the masked mean == # t_vals = [-1] * len(sIDs) for (i1, splitFN) in enumerate(splitFNs): (sout, serr) = Popen(["fslstats", splitFN, "-k", tmpfn, "-m"], \ stdout=PIPE, stderr=PIPE).communicate() if len(serr) > 0: raise Exception, \ "ERROR occurred during fslstats on %s" % splitFN t_vals[i1] = float(sout.split(' ')[0]) t_vals = np.array(t_vals) labRes["meanFA"][-1]["PWS"] = t_vals[idxPWS] labRes["meanFA"][-1]["PFS"] = t_vals[idxPFS] (t, p) = stats.ttest_ind(labRes["meanFA"][-1]["PWS"], \ labRes["meanFA"][-1]["PFS"]) labRes["tt_t"].append(t) labRes["tt_p"].append(p) os.system("rm -f %s" % tmpfn) os.system("rm -f %s*" % splitBase) # === Save results to mat file === # resMatFN = "/users/cais/STUT/scripts/tbss_wm_atlas_stats.mat" os.system("rm -f %s" % resMatFN) savemat(resMatFN, labRes) check_file(resMatFN) print("\nINFO: Results saved to .mat file: %s" % resMatFN) # === Print results === # print("=== Significant results at P_THRESH_UNC = %f ===" % P_THRESH_UNC) for (i0, labName) in enumerate(labRes["labels"]): if labRes["tt_p"][i0] < P_THRESH_UNC: mean_PFS = np.mean(labRes["meanFA"][i0]["PFS"]) mean_PWS = np.mean(labRes["meanFA"][i0]["PWS"]) ste_PFS = np.std(labRes["meanFA"][i0]["PFS"]) / \ np.sqrt(len(idxPFS)) ste_PWS = np.std(labRes["meanFA"][i0]["PWS"]) / \ np.sqrt(len(idxPWS)) print("WM label [%s]:" % labName) print("\tPFS: mean = %f; SE = %f" % (mean_PFS, ste_PFS)) print("\tPWS: mean = %f; SE = %f" % (mean_PWS, ste_PWS)) print("\tt = %f; p = %f" % \ (labRes["tt_t"][i0], labRes["tt_p"][i0]))
32.108434
149
0.547842
0
0
0
0
0
0
0
0
1,650
0.309568
f1cbb897fe4f7aa594e93ad56844d2bed4a73d65
1,995
py
Python
Alt_DE/psacard/psa_card/code/loadall_auction_items.py
royadityak94/Interview
40a7f7e2edddbb525bc6b71ea72d6cd2bda5708f
[ "MIT" ]
null
null
null
Alt_DE/psacard/psa_card/code/loadall_auction_items.py
royadityak94/Interview
40a7f7e2edddbb525bc6b71ea72d6cd2bda5708f
[ "MIT" ]
null
null
null
Alt_DE/psacard/psa_card/code/loadall_auction_items.py
royadityak94/Interview
40a7f7e2edddbb525bc6b71ea72d6cd2bda5708f
[ "MIT" ]
null
null
null
# Module to scrap all auction listings on the auction prices page from selenium import webdriver from bs4 import BeautifulSoup import csv import os # Utility to write as .csv file format def save_to_csv(data, SAVE_PATH, MODE): if not os.path.exists(SAVE_PATH.split('/')[0]): os.makedirs(SAVE_PATH.split('/')[0]) fileWriter = csv.DictWriter(open(SAVE_PATH, MODE), data[0].keys(), delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) fileWriter.writeheader() fileWriter.writerows(data) # Selenium Driver Handler def load_driver(SELENIUM_EXECUTABLE_PATH=r'/mnt/c/Users/adity/Downloads/Chrome/geckodriver-v0.27.0-win64/geckodriver.exe'): driver = webdriver.Firefox(executable_path=SELENIUM_EXECUTABLE_PATH) return driver # Main handler controlling all auction listing parsing def fetch_auction_items(AUCTION_PRICES_PATH, BASE_PATH, SAVE_PATH, MODE): driver = load_driver() driver.get(AUCTION_PRICES_PATH) soup=BeautifulSoup(driver.page_source, features="lxml") auction_items = soup.find_all("table", attrs={"class": "auction-summary-results"}) auction_data = [] # Iteratiing over full-auction set for item in auction_items: item_info = {} item_info['name'] = item.find('a').contents[0] item_info['url'] = BASE_PATH + item.find('a')['href'] item_info['count'] = int(item.findAll('td')[-1].contents[0]) item_info['category'] = 'basketball_cards' auction_data.append(item_info) # Write to file save_to_csv(auction_data, SAVE_PATH, MODE) driver.quit() return # Entry-point of the progran def main(): BASE_PATH='https://www.psacard.com' AUCTION_PRICES_PATH=BASE_PATH + '/auctionprices/#2basketball%20cards%7Cbasketb' SAVE_PATH='logs/allauctionprices.csv' fetch_auction_items(AUCTION_PRICES_PATH, BASE_PATH, SAVE_PATH, 'w') # Capability for stand-alone execution if __name__ == '__main__': main()
37.641509
128
0.700752
0
0
0
0
0
0
0
0
616
0.308772
f1cbcf01c46f003c5909284f4d2d85198beda10f
96
py
Python
venv/lib/python3.8/site-packages/numpy/typing/tests/data/pass/numerictypes.py
GiulianaPola/select_repeats
17a0d053d4f874e42cf654dd142168c2ec8fbd11
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/numpy/typing/tests/data/pass/numerictypes.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/numpy/typing/tests/data/pass/numerictypes.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/7d/da/46/b543433b18dcfd975ecc18a25baa2105812baf0edc0bdbfae3890e1df2
96
96
0.895833
0
0
0
0
0
0
0
0
0
0
f1ccaa26614fd533c6b9140b49b0a5e2c602d313
3,343
py
Python
onirim/card/_location.py
cwahbong/onirim-py
d1110c4280d54e3b8b2d1dcef31ee433f32cb7e3
[ "MIT" ]
null
null
null
onirim/card/_location.py
cwahbong/onirim-py
d1110c4280d54e3b8b2d1dcef31ee433f32cb7e3
[ "MIT" ]
null
null
null
onirim/card/_location.py
cwahbong/onirim-py
d1110c4280d54e3b8b2d1dcef31ee433f32cb7e3
[ "MIT" ]
null
null
null
"""Location cards.""" import logging from onirim.card._base import ColorCard from onirim import exception from onirim import util LOGGER = logging.getLogger(__name__) class LocationKind(util.AutoNumberEnum): """ Enumerated kinds of locations. Attributes: sun moon key """ sun = () moon = () key = () def _can_obtain_door(content): """ Check if the explored cards can obtain a door. """ last_card = content.explored[-1] same_count = 0 for card in reversed(content.explored): if last_card.color == card.color: same_count += 1 else: break return same_count % 3 == 0 class _Location(ColorCard): """Location card without special effect.""" def __init__(self, color, kind=None): super().__init__(color) if kind is not None: self._kind = kind def _class_name(self): return "{} location".format(self._kind.name) def _do_drawn(self, core): core.content.hand.append(self) def _do_play(self, core): observer = core.observer content = core.content if content.explored and content.explored[-1].kind == self.kind: raise exception.ConsecutiveSameKind content.explored.append(self) content.hand.remove(self) if _can_obtain_door(content): observer.on_door_obtained_by_explore(core.content) color = content.explored[-1].color card = content.piles.pull_door(color) if card is not None: content.opened.append(card) if len(content.opened) == 8: raise exception.Win def _on_discard(self, core): """ Do additional operations after discard a card from hand to discarded pile. """ pass def _do_discard(self, core): content = core.content content.hand.remove(self) content.piles.put_discard(self) self._on_discard(core) def sun(color): """ Make a sun location card with specific color. Args: color (Color): The specific color. Returns: Card: A sun location card. """ return _Location(color, LocationKind.sun) def moon(color): """ Make a moon location card with specific color. Args: color (Color): The specific color. Returns: Card: A moon location card. """ return _Location(color, LocationKind.moon) class _KeyLocation(_Location): """ Key location card implementation. """ _kind = LocationKind.key def _on_discard(self, core): actor = core.actor content = core.content drawn = content.piles.draw(5) discarded_idx, back_idxes = actor.key_discard_react(core.content, drawn) LOGGER.info( "Agent choose key discard react %s, %s", discarded_idx, back_idxes) # TODO check returned value content.piles.put_discard(drawn[discarded_idx]) content.piles.put_undrawn_iter(drawn[idx] for idx in back_idxes) def key(color): """ Make a key location card with specific color. Args: color (Color): The specific color. Returns: Card: A key location card. """ return _KeyLocation(color)
23.055172
80
0.606342
2,142
0.640742
0
0
0
0
0
0
954
0.285372
f1ccfab0d2faebbdb592b40f848ee1bf3127a09c
4,247
py
Python
gitlabform/gitlabform/test/test_branches.py
rbartuzel/gitlabform
4027ef4d6bbbef7313ed6fcf07cef8fd1ad76d18
[ "MIT" ]
null
null
null
gitlabform/gitlabform/test/test_branches.py
rbartuzel/gitlabform
4027ef4d6bbbef7313ed6fcf07cef8fd1ad76d18
[ "MIT" ]
null
null
null
gitlabform/gitlabform/test/test_branches.py
rbartuzel/gitlabform
4027ef4d6bbbef7313ed6fcf07cef8fd1ad76d18
[ "MIT" ]
null
null
null
import pytest from gitlabform.gitlabform import GitLabForm from gitlabform.gitlabform.test import create_group, create_project_in_group, get_gitlab, create_readme_in_project, \ GROUP_NAME PROJECT_NAME = 'branches_project' GROUP_AND_PROJECT_NAME = GROUP_NAME + '/' + PROJECT_NAME @pytest.fixture(scope="module") def gitlab(request): gl = get_gitlab() create_group(GROUP_NAME) create_project_in_group(GROUP_NAME, PROJECT_NAME) create_readme_in_project(GROUP_AND_PROJECT_NAME) # in master branch branches = ['protect_branch_but_allow_all', 'protect_branch_and_disallow_all', 'protect_branch_and_allow_merges', 'protect_branch_and_allow_pushes'] for branch in branches: gl.create_branch(GROUP_AND_PROJECT_NAME, branch, 'master') def fin(): # delete all created branches for branch_to_delete in branches: gl.delete_branch(GROUP_AND_PROJECT_NAME, branch_to_delete) request.addfinalizer(fin) return gl # provide fixture value protect_branch_but_allow_all = """ gitlab: api_version: 4 project_settings: gitlabform_tests_group/branches_project: branches: protect_branch_but_allow_all: protected: true developers_can_push: true developers_can_merge: true """ protect_branch_and_disallow_all = """ gitlab: api_version: 4 project_settings: gitlabform_tests_group/branches_project: branches: protect_branch_and_disallow_all: protected: true developers_can_push: false developers_can_merge: false """ mixed_config = """ gitlab: api_version: 4 project_settings: gitlabform_tests_group/branches_project: branches: protect_branch_and_allow_merges: protected: true developers_can_push: false developers_can_merge: true protect_branch_and_allow_pushes: protected: true developers_can_push: true developers_can_merge: false """ unprotect_branches = """ gitlab: api_version: 4 project_settings: gitlabform_tests_group/branches_project: branches: protect_branch_and_allow_merges: protected: false protect_branch_and_allow_pushes: protected: false """ class TestBranches: def test__protect_branch_but_allow_all(self, gitlab): gf = GitLabForm(config_string=protect_branch_but_allow_all, project_or_group=GROUP_AND_PROJECT_NAME) gf.main() branch = gitlab.get_branch(GROUP_AND_PROJECT_NAME, 'protect_branch_but_allow_all') assert branch['protected'] is True assert branch['developers_can_push'] is True assert branch['developers_can_merge'] is True def test__protect_branch_and_disallow_all(self, gitlab): gf = GitLabForm(config_string=protect_branch_and_disallow_all, project_or_group=GROUP_AND_PROJECT_NAME) gf.main() branch = gitlab.get_branch(GROUP_AND_PROJECT_NAME, 'protect_branch_and_disallow_all') assert branch['protected'] is True assert branch['developers_can_push'] is False assert branch['developers_can_merge'] is False def test__mixed_config(self, gitlab): gf = GitLabForm(config_string=mixed_config, project_or_group=GROUP_AND_PROJECT_NAME) gf.main() branch = gitlab.get_branch(GROUP_AND_PROJECT_NAME, 'protect_branch_and_allow_merges') assert branch['protected'] is True assert branch['developers_can_push'] is False assert branch['developers_can_merge'] is True branch = gitlab.get_branch(GROUP_AND_PROJECT_NAME, 'protect_branch_and_allow_pushes') assert branch['protected'] is True assert branch['developers_can_push'] is True assert branch['developers_can_merge'] is False gf = GitLabForm(config_string=unprotect_branches, project_or_group=GROUP_AND_PROJECT_NAME) gf.main() branch = gitlab.get_branch(GROUP_AND_PROJECT_NAME, 'protect_branch_and_allow_merges') assert branch['protected'] is False branch = gitlab.get_branch(GROUP_AND_PROJECT_NAME, 'protect_branch_and_allow_pushes') assert branch['protected'] is False
31.227941
117
0.721215
2,024
0.476572
0
0
733
0.172592
0
0
1,758
0.413939
f1cdf2cb5f5f7dc477b7b2cf95774b2b25e88788
2,543
py
Python
bespin/layers.py
delfick/bespin
4fa21875f0cdc32a70b33cdc90ce5196c0a2cbcd
[ "MIT" ]
5
2017-04-05T00:46:41.000Z
2017-11-09T01:21:44.000Z
bespin/layers.py
delfick/bespin
4fa21875f0cdc32a70b33cdc90ce5196c0a2cbcd
[ "MIT" ]
69
2016-10-11T04:40:09.000Z
2022-01-12T23:57:27.000Z
bespin/layers.py
delfick/bespin
4fa21875f0cdc32a70b33cdc90ce5196c0a2cbcd
[ "MIT" ]
7
2016-10-11T04:32:21.000Z
2017-12-18T05:59:17.000Z
from bespin.errors import StackDepCycle class Layers(object): """ Used to order the creation of many stacks. Usage:: layers = Layers({"stack1": stack1, "stack2": "stack2, "stack3": stack3, "stack4": stack4}) layers.add_to_layers("stack3") for layer in layers.layered: # might get something like # [("stack3", stack4), ("stack2", stack2)] # [("stack3", stack3)] When we create the layers, it will do a depth first addition of all dependencies and only add a stack to a layer that occurs after all it's dependencies. Cyclic dependencies will be complained about. """ def __init__(self, stacks, all_stacks=None): self.stacks = stacks self.all_stacks = all_stacks if self.all_stacks is None: self.all_stacks = stacks self.accounted = {} self._layered = [] def reset(self): """Make a clean slate (initialize layered and accounted on the instance)""" self.accounted = {} self._layered = [] @property def layered(self): """Yield list of [[(name, stack), ...], [(name, stack), ...], ...]""" result = [] for layer in self._layered: nxt = [] for name in layer: nxt.append((name, self.all_stacks[name])) result.append(nxt) return result def add_all_to_layers(self): """Add all the stacks to layered""" for stack in sorted(self.stacks): self.add_to_layers(stack) def add_to_layers(self, name, chain=None): layered = self._layered if name not in self.accounted: self.accounted[name] = True else: return if chain is None: chain = [] chain = chain + [name] for dependency in sorted(self.all_stacks[name].dependencies(self.all_stacks)): dep_chain = list(chain) if dependency in chain: dep_chain.append(dependency) raise StackDepCycle(chain=dep_chain) self.add_to_layers(dependency, dep_chain) layer = 0 for dependency in self.all_stacks[name].dependencies(self.all_stacks): for index, deps in enumerate(layered): if dependency in deps: if layer <= index: layer = index + 1 continue if len(layered) == layer: layered.append([]) layered[layer].append(name)
31.012195
98
0.563508
2,500
0.983091
0
0
329
0.129375
0
0
769
0.302399
f1ce356bd1c13f7cdfe09167b87b3a43fdb85c66
6,851
py
Python
src/pulsebox/events.py
rhosak/pulsebox
f2ce859ac5cd968bcd85a1e0eedf320414602a40
[ "MIT" ]
3
2019-02-23T23:15:48.000Z
2020-03-23T12:33:15.000Z
src/pulsebox/events.py
rhosak/pulsebox
f2ce859ac5cd968bcd85a1e0eedf320414602a40
[ "MIT" ]
null
null
null
src/pulsebox/events.py
rhosak/pulsebox
f2ce859ac5cd968bcd85a1e0eedf320414602a40
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """events.py Pulse sequence events for the Arduino Due pulsebox. Radim Hošák <hosak(at)optics.upol.cz> 2021 Quantum Optics Lab Olomouc """ from functools import reduce from pulsebox.codeblocks import state_change, loop, channel_states_to_odsr from pulsebox.config import calibration, pulsebox_pincount class DelayEvent(): def __init__(self, time_string=None, iters=None, duration=None, loop_suffix="0"): if time_string: duration = read_time(time_string) iters = time2iters(duration) elif duration: iters = time2iters(duration) elif iters: duration = calibration * iters codeblock = loop(iters, loop_suffix) self.duration = duration self.iters = iters self.loop_suffix = loop_suffix self.codeblock = codeblock def from_time_string(self): duration = read_time(time_string) __init__(self, duration) def __repr__(self): return f"Delay: {self.duration} s " \ f"({self.iters} iters)" class StateChangeEvent(): def __init__(self, channel_states): odsr = channel_states_to_odsr(channel_states) codeblock = state_change(odsr_value=odsr) self.channel_states = channel_states self.odsr = odsr self.codeblock = codeblock def __repr__(self): # msg = "Pulsebox state change: \n" msg = "State change: " for channel, state in enumerate(self.channel_states): msg += f"{state}" if channel % 4 == 3 and (channel + 1) < pulsebox_pincount: msg +="." # msg += f"\tCH{channel}: {state}" msg += f" ({self.odsr})" return msg class PulseEvent(): def __init__(self, channel, timestamp, duration): self.channel = channel self.timestamp = timestamp self.duration = duration self.flips = [FlipEvent(channel, timestamp=timestamp), FlipEvent(channel, timestamp=(timestamp+duration))] def __repr__(self): return f"Pulse on channel {self.channel} - " \ f"start: {self.timestamp} s, duration: {self.duration} s" class FlipEvent(): """The fundamental channel flip event. User pulse sequence input is transformed into a sequence of pulsebox channel flips. """ def __init__(self, channel, time_string=None, timestamp=None): if not timestamp: if not time_string: raise ValueError("Neither time string nor timestamp given.") timestamp = read_time(time_string) self.channel = channel self.timestamp = timestamp def __repr__(self): return f"Channel {self.channel} flip at {self.timestamp} s" def read_time(time_string): """Calculate time from a string containing a number and a time unit. The unit is denoted by the last character of `time_string`. Time is calculated by multiplying the 'number part' of `time_string` by a factor corresponding to the unit. The following units are accepted: * n: nanoseconds (factor = 1e-9) * u: microseconds (1e-6) * m: milliseconds (1e-3) * s: seconds (1) * TODO: c: MCU clock cycles (12e-9) * TODO: i: delay loop iterations (see `calibration` in config.ini) Args: * time_string (str): The (number + unit) string, for example "1m" Returns: * float time: Time (in seconds). """ factors = { "n": 1e-9, "u": 1e-6, "m": 1e-3, "s": 1 } # Check that the time string is properly formatted, e. g. time part # is followed by the unit part. The string should contain at least two # character, otherwise splitting it into two parts will raise an IndexError. try: number, unit = time_string[:-1], time_string[-1] except (IndexError, TypeError): raise ValueError("Invalid time string given.") # If the 'time part' cannot be converted to float, this raises a ValueError. number = float(number) if number < 0: raise ValueError("Negative time values are not allowed.") # Check that a valid time unit was specified. If no unit was specified, # then what we call 'unit' will in fact be the last digit of the time value # and as we do not use numeric unit symbols, we still get an error. try: factor = factors[unit] except KeyError: raise ValueError("Invalid time unit given.") time = number * factor return time def time2iters(time): """Get the number of loop iterations required to achieve a given time delay. Args: * time (float): The time to convert to the number of delay loop iters. Returns: * int iters: The number of iterations through the ASM delay loop required to produce a delay of a given length. Notes: The possible delay times are discrete, with a step given by the structure of the ASM loop. This step is given by the `calibration` variable in the config. For example, if our delays for 1, 2, and 3 delay loop iterations are 50 ns, 100 ns, and 150 ns, respectively, and we want to convert 120 ns to delay loop iterations, we would see that 2.4 iterations are required. As this is impossible, we round this to the nearest integer amount of iterations. In this case, that's 2 iterations and instead of 120 ns delay we produced a 100 ns delay. """ if time < 0: raise ValueError("Negative time is not allowed.") iters = int(round(time / calibration)) return iters def parse_events(event_string, channel=None): """Convert a long string of events into an array of event instances. """ event_substrings = event_string.split(" ") events = [] for substring in event_substrings: try: event_type, event_params = substring[0], substring[1:] except (IndexError, ValueError): print(f"CH {channel} - Invalid event string: " \ f"{event_string.__repr__()}") return events if event_type.lower() == "p": # PulseEvent # Pulse event contains two timestrings - start and duration. # Separate them. timestamp, duration = None, None for n, ch in enumerate(event_params): if ch.isalpha(): timestamp = read_time(event_params[:n+1]) duration = read_time(event_params[n+1:]) break pe = PulseEvent(channel, timestamp, duration) new_events = pe.flips for event in new_events: events.append(event) return events
34.084577
80
0.618888
2,461
0.359113
0
0
0
0
0
0
3,218
0.469575
f1d17c8b8c557bcd6739e64fad4920995078f733
160
py
Python
7KYU/words_to_sentence.py
yaznasivasai/python_codewars
25493591dde4649dc9c1ec3bece8191a3bed6818
[ "MIT" ]
4
2021-07-17T22:48:03.000Z
2022-03-25T14:10:58.000Z
7KYU/words_to_sentence.py
yaznasivasai/python_codewars
25493591dde4649dc9c1ec3bece8191a3bed6818
[ "MIT" ]
null
null
null
7KYU/words_to_sentence.py
yaznasivasai/python_codewars
25493591dde4649dc9c1ec3bece8191a3bed6818
[ "MIT" ]
3
2021-06-14T14:18:16.000Z
2022-03-16T06:02:02.000Z
def words_to_sentence(words: list) -> str: """ This function create a string from a list of strings, separated by space. """ return ' '.join(words)
40
85
0.6625
0
0
0
0
0
0
0
0
84
0.525
f1d2400def017bc7e08b7a2881ecb907828aa29c
1,839
py
Python
saber/postprocessing/blob_detect/blob_detect.py
elenimath/saber
71acab9798cf3aee1c4d64b09453e5234f8fdf1e
[ "Apache-2.0" ]
12
2018-05-14T17:43:18.000Z
2021-11-16T04:03:33.000Z
saber/postprocessing/blob_detect/blob_detect.py
elenimath/saber
71acab9798cf3aee1c4d64b09453e5234f8fdf1e
[ "Apache-2.0" ]
34
2019-05-06T19:13:36.000Z
2021-05-06T19:12:35.000Z
saber/postprocessing/blob_detect/blob_detect.py
elenimath/saber
71acab9798cf3aee1c4d64b09453e5234f8fdf1e
[ "Apache-2.0" ]
3
2019-10-08T17:42:17.000Z
2021-07-28T05:52:02.000Z
# Copyright 2020 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from skimage.measure import label, regionprops import argparse def get_parser(): parser = argparse.ArgumentParser(description="Blob Detect Tool") parser.set_defaults(func=lambda _: parser.print_help()) parser.add_argument("-i", "--input", required=True, help="Input numpy array file") parser.add_argument( "--min", required=True, help="minimum area for region to be counted" ) parser.add_argument( "--max", required=True, help="maximum area for region to be counted" ) parser.add_argument("-o", "--outfile", required=True, help="Output file") return parser def blob_detect(dense_map, min, max): labels = label(dense_map) regions = regionprops(labels) output = np.empty((0, dense_map.ndim)) for props in regions: if props.area >= float(min) and props.area <= float(max): output = np.concatenate((output, [props.centroid]), axis=0) return output def main(): parser = get_parser() args = parser.parse_args() input_array = np.load(args.input) output_array = blob_detect(input_array, min=args.min, max=args.max) np.save(args.outfile, output_array) if __name__ == "__main__": main()
34.055556
86
0.707993
0
0
0
0
0
0
0
0
790
0.429581
f1d2cd28a494d8ac54d14b248cb64af3757ff63c
3,291
py
Python
tests/test_analyzer.py
kozajaku/spectra-analyzer
00de0d89fc4f210dca05249a2e823c6c49f3e917
[ "MIT" ]
null
null
null
tests/test_analyzer.py
kozajaku/spectra-analyzer
00de0d89fc4f210dca05249a2e823c6c49f3e917
[ "MIT" ]
null
null
null
tests/test_analyzer.py
kozajaku/spectra-analyzer
00de0d89fc4f210dca05249a2e823c6c49f3e917
[ "MIT" ]
null
null
null
import pytest import os from tests import test_analyzer from spectra_analyzer import analyzer def file_ref(name): """Helper function for getting paths to testing spectra.""" file = os.path.join(os.path.dirname(test_analyzer.__file__), "test_analyzer", name) return file def normalized(spectrum): """Test if passed spectrum is truly normalized.""" for i in range(spectrum.shape[0]): if spectrum[i] < 0.0 or spectrum[i] > 1.0: return False return True @pytest.fixture def spectrum_inst(): """Returns instance of Spectrum class for further testing.""" spectrum_file = file_ref("binary.vot") return analyzer.Spectrum.read_spectrum(spectrum_file) @pytest.mark.parametrize("file", ["binary.vot", "spectrum.asc", "spectrum.csv", "spectrum.fits", "spectrum.fit", "spectrum.txt", "tabledata.vot"]) def test_fit_reader(file): """Test spectrum reader for individual spectra formats.""" spectrum_file = file_ref(file) res = analyzer.Spectrum.read_spectrum(spectrum_file) assert res is not None assert normalized(res.spectrum) def test_trans_parameters(spectrum_inst): """Test modification of transformation parameters inside spectrum instance.""" # test initial parameters assert spectrum_inst.freq0 == 0 assert spectrum_inst.wSize == 5 scales = len(spectrum_inst.scales) assert scales == 48 # set for the specific spectrum mod = spectrum_inst.modify_parameters mod(48, 0) assert spectrum_inst.freq0 == 47 assert spectrum_inst.wSize == 0 mod(48, 10) assert spectrum_inst.freq0 == 47 assert spectrum_inst.wSize == 0 mod(48, 1) assert spectrum_inst.freq0 == 47 assert spectrum_inst.wSize == 0 mod(47, 1) assert spectrum_inst.freq0 == 47 assert spectrum_inst.wSize == 0 mod(46, 2) assert spectrum_inst.freq0 == 46 assert spectrum_inst.wSize == 1 mod(0, 48) assert spectrum_inst.freq0 == 0 assert spectrum_inst.wSize == 47 mod(0, 47) assert spectrum_inst.freq0 == 0 assert spectrum_inst.wSize == 47 mod(1, 47) assert spectrum_inst.freq0 == 1 assert spectrum_inst.wSize == 46 def test_spectrum_plotting(spectrum_inst): """Test that spectrum plotting returns some output.""" plot = spectrum_inst.plot_spectrum() assert type(plot) == str assert len(plot) > 0 def test_cwt_plotting(spectrum_inst): """Test that cwt plotting returns some output.""" plot = spectrum_inst.plot_cwt() assert type(plot) == str assert len(plot) > 0 def test_transformation_plotting(spectrum_inst): """Test that transformation plotting returns some output.""" plot = spectrum_inst.plot_reduced_spectrum() assert type(plot) == str assert len(plot) > 0 plot = spectrum_inst.plot_reduced_spectrum(only_transformation=True) assert type(plot) == str assert len(plot) > 0 def test_rec_invalidation(spectrum_inst): """Test that _rec variable is properly invalidated after parameter modification.""" assert spectrum_inst._rec is None spectrum_inst.plot_reduced_spectrum() assert spectrum_inst._rec is not None spectrum_inst.modify_parameters(5, 4) assert spectrum_inst._rec is None
31.644231
96
0.696141
0
0
0
0
628
0.190823
0
0
739
0.224552
f1d3dc26cb6e1253349d57f3b6bf5b06931d5da6
774
py
Python
forms_app/views.py
sudee404/forms_project
ba60e41d13d72c80f412a7928e32000db200ea17
[ "Apache-2.0" ]
null
null
null
forms_app/views.py
sudee404/forms_project
ba60e41d13d72c80f412a7928e32000db200ea17
[ "Apache-2.0" ]
null
null
null
forms_app/views.py
sudee404/forms_project
ba60e41d13d72c80f412a7928e32000db200ea17
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render from .models import User from . import forms # Create your views here. def index(request): context = { 'django':'The Web Framework for Developers with a deadline' } return render(request,'index.html', context=context) def signup(request): sign_up = forms.UserForm() if request.method == "POST": sign_up = forms.UserForm(request.POST) if sign_up.is_valid(): sign_up.save(commit=True) return index(request) data = { 'form':sign_up, } return render(request,'signup.html',context=data) def userlist(request): users = User.objects.order_by('name') data = { 'users':users, } return render(request,'userlist.html',context = data)
26.689655
67
0.639535
0
0
0
0
0
0
0
0
148
0.191214
f1d3eb9d9dab05a31381c38ed24576dd96752996
920
py
Python
python_submitty_utils/tests/test_string_utils.py
zeez2030/Submitty
7118944ff4adc6f15d76984eb10a1e862926d724
[ "BSD-3-Clause" ]
411
2016-06-14T20:52:25.000Z
2022-03-31T21:20:25.000Z
python_submitty_utils/tests/test_string_utils.py
KaelanWillauer/Submitty
cf9b6ceda15ec0a661e2ca81ea7864790094c64a
[ "BSD-3-Clause" ]
5,730
2016-05-23T21:04:32.000Z
2022-03-31T10:08:06.000Z
python_submitty_utils/tests/test_string_utils.py
KaelanWillauer/Submitty
cf9b6ceda15ec0a661e2ca81ea7864790094c64a
[ "BSD-3-Clause" ]
423
2016-09-22T21:11:30.000Z
2022-03-29T18:55:28.000Z
import unittest from submitty_utils import string_utils class TestUser(unittest.TestCase): def testNegativeLength(self): self.assertEqual(string_utils.generate_random_string(-1), '') def testZeroLength(self): self.assertEqual(string_utils.generate_random_string(0), '') def testPositiveLength(self): self.assertEqual(len(string_utils.generate_random_string(1)), 1) def testRandom(self): # Very low chance of generating the same string twice. for _ in range(10): self.assertNotEqual(string_utils.generate_random_string(10), string_utils.generate_random_string(10)) self.assertNotEqual(string_utils.generate_random_string(100), string_utils.generate_random_string(100)) self.assertNotEqual(string_utils.generate_random_string(1000), string_utils.generate_random_string(1000)) if __name__ == '__main__': unittest.main()
36.8
117
0.742391
812
0.882609
0
0
0
0
0
0
68
0.073913
f1d87b5f62ca7da3adff2398d764af03ea29ed10
486
py
Python
simple/file.py
asafonov/simple-backup
4e90162cb10219537da42c57d49f8f2409ba7148
[ "MIT" ]
null
null
null
simple/file.py
asafonov/simple-backup
4e90162cb10219537da42c57d49f8f2409ba7148
[ "MIT" ]
null
null
null
simple/file.py
asafonov/simple-backup
4e90162cb10219537da42c57d49f8f2409ba7148
[ "MIT" ]
null
null
null
import os class FileHandler: def __init__(self): self.directory = os.path.expanduser('~') + '/.simple_backup' if not os.path.exists(self.directory): os.mkdir(self.directory) def save (self, filename, data): f = open(self.directory + '/' + filename, 'w') f.write(data) f.close() def load (self, filename): f = open(self.directory + '/' + filename) data = f.read() f.close() return data
23.142857
68
0.549383
474
0.975309
0
0
0
0
0
0
29
0.059671
f1d9fe63dcda29a6aafbbbb348278fbcaa1eb8c3
3,449
py
Python
metrics.py
mksarker/data_preprocessing
dabdb7f3dbf1c4bf5ee49a39aef2cb258539b027
[ "MIT" ]
null
null
null
metrics.py
mksarker/data_preprocessing
dabdb7f3dbf1c4bf5ee49a39aef2cb258539b027
[ "MIT" ]
null
null
null
metrics.py
mksarker/data_preprocessing
dabdb7f3dbf1c4bf5ee49a39aef2cb258539b027
[ "MIT" ]
null
null
null
import os import argparse import logging import numpy as np import SimpleITK as sitk logging.basicConfig(level=logging.INFO) from tqdm import tqdm import cv2 import sys from PIL import Image from sklearn import metrics def Accuracy(y_true, y_pred): TP = np.sum(np.logical_and(y_pred == 255, y_true == 255)) TN = np.sum(np.logical_and(y_pred == 0, y_true == 0)) FP = np.sum(np.logical_and(y_pred == 255, y_true == 0)) FN = np.sum(np.logical_and(y_pred == 0, y_true == 255)) accuracy = (TP + TN)/float(TP + TN + FP + FN) return accuracy def Dice(y_true, y_pred): """Returns Dice Similarity Coefficient for ground truth and predicted masks.""" #print(y_true.dtype) #print(y_pred.dtype) y_true = np.squeeze(y_true)/255 y_pred = np.squeeze(y_pred)/255 y_true.astype('bool') y_pred.astype('bool') intersection = np.logical_and(y_true, y_pred).sum() return ((2. * intersection.sum()) + 1.) / (y_true.sum() + y_pred.sum() + 1.) def IoU(Gi,Si): #print(Gi.shape, Si.shape) Gi = np.squeeze(Gi)/255 Si = np.squeeze(Si)/255 Gi.astype('bool') Si.astype('bool') intersect = 1.0*np.sum(np.logical_and(Gi,Si)) union = 1.0*np.sum(np.logical_or(Gi,Si)) return intersect/union def Sensitivity(y_true, y_pred): TP = np.sum(np.logical_and(y_pred == 255, y_true == 255)) TN = np.sum(np.logical_and(y_pred == 0, y_true == 0)) FP = np.sum(np.logical_and(y_pred == 255, y_true == 0)) FN = np.sum(np.logical_and(y_pred == 0, y_true == 255)) sensitivity = TP/float(TP + FN) return sensitivity def Specificity(y_true, y_pred): TP = np.sum(np.logical_and(y_pred == 255, y_true == 255)) TN = np.sum(np.logical_and(y_pred == 0, y_true == 0)) FP = np.sum(np.logical_and(y_pred == 255, y_true == 0)) FN = np.sum(np.logical_and(y_pred == 0, y_true == 255)) specificity = TN/float(TN+FP) return specificity def main(): parser = argparse.ArgumentParser(description='ELM line segmentation') parser.add_argument('--label_dir', type=str, default='/home/vivek/Music/demo/stack/seg', help='folder of test label') parser.add_argument('--pred_dir', type=str, default='/home/vivek/Music/demo/stack/pred', help='folder of pred masks') args = parser.parse_args() labels = [os.path.join(args.label_dir, x) for x in os.listdir(os.path.join(args.label_dir)) if 'raw' not in x] preds = [os.path.join(args.pred_dir, x) for x in os.listdir(os.path.join(args.pred_dir)) if 'raw' not in x] mean_dice = [] mean_iou = [] mean_sensitivity = [] mean_specificity = [] mean_accuracy = [] for l, p in zip(labels, preds): logging.info("Process %s and %s" % (p, l)) G = sitk.GetArrayFromImage(sitk.ReadImage(l)) S = sitk.GetArrayFromImage(sitk.ReadImage(p)) mean_accuracy.append(Accuracy(G, S)) mean_dice.append(Dice(G, S)) mean_iou.append(IoU(G, S)) mean_sensitivity.append(Sensitivity(G, S)) mean_specificity.append(Specificity(G, S)) print ('Mean_Accuracy = ', np.mean(np.array(mean_accuracy))) print ('Mean_Dice = ', np.mean(np.array(mean_dice))) print ('Mean_IoU = ', np.mean(np.array(mean_iou))) print ('Mean_Sensitivity = ', np.mean(np.array(mean_sensitivity))) print ('Mean_Specificity = ', np.mean(np.array(mean_specificity))) if __name__ == '__main__': main()
35.556701
114
0.643665
0
0
0
0
0
0
0
0
456
0.132212
f1db626c6c51f4c9710e0e6d1e887229859a9043
2,757
py
Python
src/app/parser/parser.py
IliaValov/SofiaAirPurity
71d0b005a9f8f5bfabfae99d1f4f8e1d11825adf
[ "MIT" ]
null
null
null
src/app/parser/parser.py
IliaValov/SofiaAirPurity
71d0b005a9f8f5bfabfae99d1f4f8e1d11825adf
[ "MIT" ]
1
2021-12-02T23:20:51.000Z
2021-12-02T23:20:51.000Z
src/app/parser/parser.py
IliaValov/SofiaAirPurity
71d0b005a9f8f5bfabfae99d1f4f8e1d11825adf
[ "MIT" ]
1
2022-01-10T15:18:27.000Z
2022-01-10T15:18:27.000Z
from app.models.enums.station import Station class Parser: def __init__(self, data): self.data = data def getDataByStation(self, station): airDataForStation = {"timeSet": [], "level": [], "airType": [], "invalid": []} for d in self.data: if int(d.station) == station: airDataForStation["timeSet"].append(d.timeset) airDataForStation["level"].append(d.level) airDataForStation["airType"].append(int(d.airType)) airDataForStation["invalid"].append(d.isInvalid) return airDataForStation def getDataByStationAndPolluter(self, station, polluter): airDataForStation = {"timeSet": [], "level": [], "invalid": []} for d in self.data: if int(d.station) == station and int(d.airType) == polluter: airDataForStation["timeSet"].append(d.timeset) airDataForStation["level"].append(d.level) airDataForStation["invalid"].append(d.isInvalid) return airDataForStation def getDataByStationAndLevel(self, station, levelStart, levelEnd): airDataForStation = {"timeSet": [], "level": [], "invalid": []} for d in self.data: if int(d.station) == station and levelStart <= levelEnd and levelStart <= float(d.level) and float(d.level) <= levelEnd: airDataForStation["timeSet"].append(d.timeset) airDataForStation["level"].append(d.level) airDataForStation["invalid"].append(d.isInvalid) return airDataForStation def getDataByTimeSet(self, start, end): airDataForStation = {"station": [], "timeSet": [], "level": [], "airType": [], "invalid": []} for d in self.data: if start <= end and start <= d.timeset and d.timeset <= end: airDataForStation["station"].append(int(d.station)) airDataForStation["timeSet"].append(d.timeset) airDataForStation["level"].append(d.level) airDataForStation["airType"].append(int(d.airType)) airDataForStation["invalid"].append(d.isInvalid) return airDataForStation def getDataByStationAndTimeSet(self, station, start, end): airDataForStation = {"timeSet": [], "level": [], "airType": [], "invalid": []} for d in self.data: if int(d.station) == station and start <= end and start <= d.timeset and d.timeset <= end: airDataForStation["timeSet"].append(d.timeset) airDataForStation["level"].append(d.level) airDataForStation["airType"].append(int(d.airType)) airDataForStation["invalid"].append(d.isInvalid) return airDataForStation
50.127273
132
0.602466
2,710
0.982952
0
0
0
0
0
0
322
0.116794
f1dc37b00019bdcd4fd7800d93e149be0dfe2bdf
11,747
py
Python
synapse/tools/storm.py
vertexproject/synapse
9712e2aee63914441c59ce6cfc060fe06a2e5920
[ "Apache-2.0" ]
216
2017-01-17T18:52:50.000Z
2022-03-31T18:44:49.000Z
synapse/tools/storm.py
vertexproject/synapse
9712e2aee63914441c59ce6cfc060fe06a2e5920
[ "Apache-2.0" ]
2,189
2017-01-17T22:31:48.000Z
2022-03-31T20:41:45.000Z
synapse/tools/storm.py
vertexproject/synapse
9712e2aee63914441c59ce6cfc060fe06a2e5920
[ "Apache-2.0" ]
44
2017-01-17T16:50:57.000Z
2022-03-16T18:35:52.000Z
import os import sys import copy import asyncio import logging import argparse import synapse.exc as s_exc import synapse.common as s_common import synapse.telepath as s_telepath import synapse.lib.cli as s_cli import synapse.lib.cmd as s_cmd import synapse.lib.node as s_node import synapse.lib.time as s_time import synapse.lib.output as s_output import synapse.lib.parser as s_parser import synapse.lib.msgpack as s_msgpack logger = logging.getLogger(__name__) ERROR_COLOR = '#ff0066' WARNING_COLOR = '#f4e842' NODEEDIT_COLOR = "lightblue" welcome = ''' Welcome to the Storm interpreter! Local interpreter (non-storm) commands may be executed with a ! prefix: Use !quit to exit. Use !help to see local interpreter commands. ''' class QuitCmd(s_cli.CmdQuit): ''' Quit the current command line interpreter. Example: !quit ''' _cmd_name = '!quit' class HelpCmd(s_cli.CmdHelp): ''' List interpreter extended commands and display help output. Example: !help foocmd ''' _cmd_name = '!help' class StormCliCmd(s_cli.Cmd): # cut the Cmd instance over to using argparser and cmdrargv split def getArgParser(self): desc = self.getCmdDoc() pars = s_cmd.Parser(prog=self._cmd_name, description=desc, outp=self._cmd_cli.outp) return pars def getCmdOpts(self, text): pars = self.getArgParser() argv = s_parser.Parser(text).cmdrargs() return pars.parse_args(argv[1:]) class RunFileCmd(StormCliCmd): ''' Run a local storm file. Example: !runfile /path/to/file.storm ''' _cmd_name = '!runfile' def getArgParser(self): pars = StormCliCmd.getArgParser(self) pars.add_argument('stormfile', help='A local file containing a storm query.') return pars async def runCmdOpts(self, opts): if not os.path.isfile(opts.stormfile): self.printf(f'no such file: {opts.stormfile}') return with open(opts.stormfile, 'rb') as fd: text = fd.read().decode() self.printf(f'running storm file: {opts.stormfile}') await self._cmd_cli.storm(text) class PushFileCmd(StormCliCmd): ''' Upload a file and create a file:bytes node. Example: !pushfile /path/to/file ''' _cmd_name = '!pushfile' def getArgParser(self): pars = StormCliCmd.getArgParser(self) pars.add_argument('filepath', help='A local file to push to the Cortex.') return pars async def runCmdOpts(self, opts): if not os.path.isfile(opts.filepath): self.printf(f'no such file: {opts.filepath}') return self.printf(f'uploading file: {opts.filepath}') async with await self._cmd_cli.item.getAxonUpload() as upload: with open(opts.filepath, 'rb') as fd: byts = fd.read(10000000) while byts: await upload.write(byts) byts = fd.read(10000000) size, sha256 = await upload.save() opts = {'vars': { 'sha256': s_common.ehex(sha256), 'name': os.path.basename(opts.filepath), }} await self._cmd_cli.storm('[ file:bytes=$sha256 ] { -:name [:name=$name] }', opts=opts) class PullFileCmd(StormCliCmd): ''' Download a file by sha256 and store it locally. Example: !pullfile c00adfcc316f8b00772cdbce2505b9ea539d74f42861801eceb1017a44344ed3 /path/to/savefile ''' _cmd_name = '!pullfile' def getArgParser(self): pars = StormCliCmd.getArgParser(self) pars.add_argument('sha256', help='The SHA256 of the file to download.') pars.add_argument('filepath', help='The file path to save the downloaded file to.') return pars async def runCmdOpts(self, opts): self.printf(f'downloading sha256: {opts.sha256}') try: with s_common.genfile(opts.filepath) as fd: async for byts in self._cmd_cli.item.getAxonBytes(opts.sha256): byts = fd.write(byts) self.printf(f'saved to: {opts.filepath}') except asyncio.CancelledError as e: raise except s_exc.SynErr as e: self.printf(e.errinfo.get('mesg', str(e))) class ExportCmd(StormCliCmd): ''' Export the results of a storm query into a nodes file. Example: // Export nodes to a file !export dnsa.nodes { inet:fqdn#mynodes -> inet:dns:a } // Export nodes to a file and only include specific tags !export fqdn.nodes { inet:fqdn#mynodes } --include-tags footag ''' _cmd_name = '!export' def getArgParser(self): pars = StormCliCmd.getArgParser(self) pars.add_argument('filepath', help='The file path to save the export to.') pars.add_argument('query', help='The Storm query to export nodes from.') pars.add_argument('--include-tags', nargs='*', help='Only include the specified tags in output.') pars.add_argument('--no-tags', default=False, action='store_true', help='Do not include any tags on exported nodes.') return pars async def runCmdOpts(self, opts): self.printf(f'exporting nodes') queryopts = {} if opts.include_tags: queryopts['scrub'] = {'include': {'tags': opts.include_tags}} if opts.no_tags: queryopts['scrub'] = {'include': {'tags': []}} try: query = opts.query[1:-1] with s_common.genfile(opts.filepath) as fd: cnt = 0 async for pode in self._cmd_cli.item.exportStorm(query, opts=queryopts): byts = fd.write(s_msgpack.en(pode)) cnt += 1 self.printf(f'saved {cnt} nodes to: {opts.filepath}') except asyncio.CancelledError as e: raise except s_exc.SynErr as e: self.printf(e.errinfo.get('mesg', str(e))) class StormCli(s_cli.Cli): histfile = 'storm_history' async def __anit__(self, item, outp=s_output.stdout, opts=None): await s_cli.Cli.__anit__(self, item, outp=outp) self.indented = False self.cmdprompt = 'storm> ' self.stormopts = {'repr': True} self.hidetags = False self.hideprops = False self._print_skips = [] def initCmdClasses(self): self.addCmdClass(QuitCmd) self.addCmdClass(HelpCmd) self.addCmdClass(ExportCmd) self.addCmdClass(RunFileCmd) self.addCmdClass(PullFileCmd) self.addCmdClass(PushFileCmd) def printf(self, mesg, addnl=True, color=None): if self.indented: s_cli.Cli.printf(self, '') self.indented = False return s_cli.Cli.printf(self, mesg, addnl=addnl, color=color) async def runCmdLine(self, line, opts=None): if line[0] == '!': return await s_cli.Cli.runCmdLine(self, line) await self.storm(line, opts=opts) async def handleErr(self, mesg): err = mesg[1] if err[0] == 'BadSyntax': pos = err[1].get('at', None) text = err[1].get('text', None) tlen = len(text) mesg = err[1].get('mesg', None) if pos is not None and text is not None and mesg is not None: text = text.replace('\n', ' ') # Handle too-long text if tlen > 60: text = text[max(0, pos - 30):pos + 30] if pos < tlen - 30: text += '...' if pos > 30: text = '...' + text pos = 33 self.printf(text) self.printf(f'{" " * pos}^') self.printf(f'Syntax Error: {mesg}', color=ERROR_COLOR) return text = err[1].get('mesg', err[0]) self.printf(f'ERROR: {text}', color=ERROR_COLOR) def _printNodeProp(self, name, valu): self.printf(f' {name} = {valu}') async def storm(self, text, opts=None): realopts = copy.deepcopy(self.stormopts) if opts is not None: realopts.update(opts) async for mesg in self.item.storm(text, opts=realopts): mtyp = mesg[0] if mtyp in self._print_skips: continue if mtyp == 'node': node = mesg[1] formname, formvalu = s_node.reprNdef(node) self.printf(f'{formname}={formvalu}') if not self.hideprops: for name in sorted(s_node.props(node).keys()): valu = s_node.reprProp(node, name) if name[0] != '.': name = ':' + name self._printNodeProp(name, valu) if not self.hidetags: for tag in sorted(s_node.tagsnice(node)): valu = s_node.reprTag(node, tag) tprops = s_node.reprTagProps(node, tag) printed = False if valu: self.printf(f' #{tag} = {valu}') printed = True if tprops: for prop, pval in tprops: self.printf(f' #{tag}:{prop} = {pval}') printed = True if not printed: self.printf(f' #{tag}') elif mtyp == 'node:edits': edit = mesg[1] count = sum(len(e[2]) for e in edit.get('edits', ())) s_cli.Cli.printf(self, '.' * count, addnl=False, color=NODEEDIT_COLOR) self.indented = True elif mtyp == 'fini': took = mesg[1].get('took') took = max(took, 1) count = mesg[1].get('count') pers = float(count) / float(took / 1000) self.printf('complete. %d nodes in %d ms (%d/sec).' % (count, took, pers)) elif mtyp == 'print': self.printf(mesg[1].get('mesg')) elif mtyp == 'warn': info = mesg[1] warn = info.pop('mesg', '') xtra = ', '.join([f'{k}={v}' for k, v in info.items()]) if xtra: warn = ' '.join([warn, xtra]) self.printf(f'WARNING: {warn}', color=WARNING_COLOR) elif mtyp == 'err': await self.handleErr(mesg) def getArgParser(): pars = argparse.ArgumentParser(prog='synapse.tools.storm') pars.add_argument('cortex', help='A telepath URL for the Cortex.') pars.add_argument('onecmd', nargs='?', help='A single storm command to run and exit.') return pars async def main(argv, outp=s_output.stdout): pars = getArgParser() opts = pars.parse_args(argv) path = s_common.getSynPath('telepath.yaml') telefini = await s_telepath.loadTeleEnv(path) async with await s_telepath.openurl(opts.cortex) as proxy: if telefini is not None: proxy.onfini(telefini) async with await StormCli.anit(proxy, outp=outp, opts=opts) as cli: if opts.onecmd: await cli.runCmdLine(opts.onecmd) return # pragma: no cover cli.colorsenabled = True cli.printf(welcome) await cli.addSignalHandlers() await cli.runCmdLoop() if __name__ == '__main__': # pragma: no cover sys.exit(asyncio.run(main(sys.argv[1:])))
29.589421
125
0.556823
9,937
0.845918
0
0
0
0
7,154
0.609007
2,665
0.226866
f1dcbdb70b490e3b7a9741698dbd0c921ce6d7ff
374
py
Python
Feature Selection/variance-thresholding-binary-features.py
WyckliffeAluga/data-chronicles
5219fe9cdbafb9fd7be88727483952c4c13f2790
[ "MIT" ]
null
null
null
Feature Selection/variance-thresholding-binary-features.py
WyckliffeAluga/data-chronicles
5219fe9cdbafb9fd7be88727483952c4c13f2790
[ "MIT" ]
null
null
null
Feature Selection/variance-thresholding-binary-features.py
WyckliffeAluga/data-chronicles
5219fe9cdbafb9fd7be88727483952c4c13f2790
[ "MIT" ]
1
2021-02-09T12:22:55.000Z
2021-02-09T12:22:55.000Z
from sklearn.feature_selection import VarianceThreshold # Create feature matrix with: # Feature 0: 80% class 0 # Feature 1: 80% class 1 # Feature 2: 60% class 0, 40% class 1 X = [[0, 1, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0]] # Run threshold by variance thresholder = VarianceThreshold(threshold=(.75 * (1 - .75))) thresholder.fit_transform(X)
23.375
60
0.628342
0
0
0
0
0
0
0
0
141
0.377005
f1dd06b091ae6fa97dc90f3e28bc1d5770af8082
1,677
py
Python
scripts/03_BuildLITypeModels/14_TrainLemmaModel.py
danielplatt/LemmInflect
7db0633098409800fbe7056bdab7d6f5f144cebb
[ "MIT" ]
157
2019-05-11T21:17:20.000Z
2022-03-21T12:05:12.000Z
scripts/03_BuildLITypeModels/14_TrainLemmaModel.py
danielplatt/LemmInflect
7db0633098409800fbe7056bdab7d6f5f144cebb
[ "MIT" ]
10
2019-05-14T19:49:04.000Z
2021-06-03T13:15:16.000Z
scripts/03_BuildLITypeModels/14_TrainLemmaModel.py
danielplatt/LemmInflect
7db0633098409800fbe7056bdab7d6f5f144cebb
[ "MIT" ]
20
2019-08-21T12:40:51.000Z
2021-10-02T15:06:07.000Z
#!/usr/bin/python3 import sys sys.path.insert(0, '../..') # make '..' first in the lib search path import gzip import numpy from lemminflect.kmodels.ModelLemma import ModelLemma from lemminflect.kmodels.ModelLemmaInData import ModelLemmaInData from lemminflect.kmodels.ModelLemmaClasses import ModelLemmaClasses from lemminflect import config if __name__ == '__main__': # Load the lemmatization data print('Loading ', config.lemma_tcorp_fn) indata = ModelLemmaInData(config.lemma_tcorp_fn) print('Loaded {:,} entries'.format(len(indata.entries))) # Load the lemmatization rules print('Loading ', config.model_lemma_cl_fn) rules = ModelLemmaClasses(config.model_lemma_cl_fn) # Convert data into training format X = [] Y = [] input_len = ModelLemmaInData.WVEC_LEN input_letters = ModelLemmaInData.getLetterClasses() output_rules = rules.rules for entry in indata.entries: rule = ModelLemmaClasses.computeSuffixRule(entry.infl, entry.lemma) idx = rules.getRuleIndex(rule) vec = ModelLemmaInData.wordToVec(entry.infl, entry.category) X.append( vec ) Y.append( idx ) X = numpy.asarray(X, dtype='float32') Y = numpy.asarray(Y, dtype='int32') print('X.shape= ', X.shape) print('Y.shape= ', Y.shape) print() # Create the model batch_size = 32 nepochs = 50 model = ModelLemma() model.create(input_len, input_letters, output_rules) model.model.summary() model.train(X, Y, batch_size, nepochs) print() print('Saving model to ', config.model_lemma_fn) model.save(config.model_lemma_fn) print('done')
31.641509
75
0.690519
0
0
0
0
0
0
0
0
290
0.172928
f1dd06cdb53d42d5c3f71ef66179e31f525e4e55
9,006
py
Python
python/snips_nlu_parsers/builtin_entities.py
f-laurens/snips-nlu-parsers
82d24c0b4258acd1191af5d558b7592a18f2dada
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
14
2019-04-17T15:10:39.000Z
2022-02-14T09:38:47.000Z
python/snips_nlu_parsers/builtin_entities.py
f-laurens/snips-nlu-parsers
82d24c0b4258acd1191af5d558b7592a18f2dada
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
4
2019-04-07T19:36:24.000Z
2020-05-28T12:46:37.000Z
python/snips_nlu_parsers/builtin_entities.py
f-laurens/snips-nlu-parsers
82d24c0b4258acd1191af5d558b7592a18f2dada
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
43
2019-04-20T07:31:57.000Z
2022-01-12T16:24:13.000Z
# coding=utf-8 from __future__ import (absolute_import, division, print_function, unicode_literals) import json from _ctypes import byref, pointer from builtins import range, str from ctypes import c_char_p, string_at from snips_nlu_parsers.utils import (CStringArray, check_ffi_error, lib, string_array_pointer, string_pointer) _ALL_LANGUAGES = None _SUPPORTED_ENTITIES = dict() _SUPPORTED_GAZETTEER_ENTITIES = dict() _SUPPORTED_GRAMMAR_ENTITIES = dict() _ENTITIES_EXAMPLES = dict() _ALL_BUILTIN_ENTITIES = None _ALL_GAZETTEER_ENTITIES = None _ALL_GRAMMAR_ENTITIES = None _BUILTIN_ENTITIES_SHORTNAMES = dict() _COMPLETE_ENTITY_ONTOLOGY = None _LANGUAGE_ENTITY_ONTOLOGY = dict() def get_all_languages(): """Lists all the supported languages""" global _ALL_LANGUAGES if _ALL_LANGUAGES is None: lib.snips_nlu_ontology_supported_languages.restype = CStringArray array = lib.snips_nlu_ontology_supported_languages() _ALL_LANGUAGES = set( array.data[i].decode("utf8") for i in range(array.size)) return _ALL_LANGUAGES def get_all_builtin_entities(): """Lists the builtin entities that are supported in at least one language""" global _ALL_BUILTIN_ENTITIES if _ALL_BUILTIN_ENTITIES is None: lib.snips_nlu_ontology_all_builtin_entities.restype = CStringArray array = lib.snips_nlu_ontology_all_builtin_entities() _ALL_BUILTIN_ENTITIES = set( array.data[i].decode("utf8") for i in range(array.size)) return _ALL_BUILTIN_ENTITIES def get_all_gazetteer_entities(): """Lists the gazetteer entities that are supported in at least one language""" global _ALL_GAZETTEER_ENTITIES if _ALL_GAZETTEER_ENTITIES is None: lib.snips_nlu_ontology_all_gazetteer_entities.restype = CStringArray array = lib.snips_nlu_ontology_all_gazetteer_entities() _ALL_GAZETTEER_ENTITIES = set( array.data[i].decode("utf8") for i in range(array.size)) return _ALL_GAZETTEER_ENTITIES def get_all_grammar_entities(): """Lists the grammar entities that are supported in at least one language""" global _ALL_GRAMMAR_ENTITIES if _ALL_GRAMMAR_ENTITIES is None: lib.snips_nlu_ontology_all_grammar_entities.restype = CStringArray array = lib.snips_nlu_ontology_all_grammar_entities() _ALL_GRAMMAR_ENTITIES = set( array.data[i].decode("utf8") for i in range(array.size)) return _ALL_GRAMMAR_ENTITIES def get_builtin_entity_shortname(entity): """Get the short name of the entity Examples: >>> get_builtin_entity_shortname(u"snips/amountOfMoney") 'AmountOfMoney' """ global _BUILTIN_ENTITIES_SHORTNAMES if entity not in _BUILTIN_ENTITIES_SHORTNAMES: with string_pointer(c_char_p()) as ptr: exit_code = lib.snips_nlu_ontology_entity_shortname( entity.encode("utf8"), byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "builtin entity shortname") result = string_at(ptr) _BUILTIN_ENTITIES_SHORTNAMES[entity] = result.decode("utf8") return _BUILTIN_ENTITIES_SHORTNAMES[entity] def get_supported_entities(language): """Lists the builtin entities supported in the specified *language* Returns: list of str: the list of entity labels """ global _SUPPORTED_ENTITIES if not isinstance(language, str): raise TypeError("Expected language to be of type 'str' but found: %s" % type(language)) if language not in _SUPPORTED_ENTITIES: with string_array_pointer(pointer(CStringArray())) as ptr: exit_code = lib.snips_nlu_parsers_supported_builtin_entities( language.encode("utf8"), byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "supported entities") array = ptr.contents _SUPPORTED_ENTITIES[language] = set( array.data[i].decode("utf8") for i in range(array.size)) return _SUPPORTED_ENTITIES[language] def get_supported_gazetteer_entities(language): """Lists the gazetteer entities supported in the specified *language* Returns: list of str: the list of entity labels """ global _SUPPORTED_GAZETTEER_ENTITIES if not isinstance(language, str): raise TypeError("Expected language to be of type 'str' but found: %s" % type(language)) if language not in _SUPPORTED_GAZETTEER_ENTITIES: with string_array_pointer(pointer(CStringArray())) as ptr: exit_code = \ lib.snips_nlu_parsers_supported_builtin_gazetteer_entities( language.encode("utf8"), byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "supported gazetteer entities") array = ptr.contents _SUPPORTED_GAZETTEER_ENTITIES[language] = set( array.data[i].decode("utf8") for i in range(array.size)) return _SUPPORTED_GAZETTEER_ENTITIES[language] def get_supported_grammar_entities(language): """Lists the grammar entities supported in the specified *language* Returns: list of str: the list of entity labels """ global _SUPPORTED_GRAMMAR_ENTITIES if not isinstance(language, str): raise TypeError("Expected language to be of type 'str' but found: %s" % type(language)) if language not in _SUPPORTED_GRAMMAR_ENTITIES: with string_array_pointer(pointer(CStringArray())) as ptr: exit_code = lib.snips_nlu_parsers_supported_grammar_entities( language.encode("utf8"), byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "supported grammar entities") array = ptr.contents _SUPPORTED_GRAMMAR_ENTITIES[language] = set( array.data[i].decode("utf8") for i in range(array.size)) return _SUPPORTED_GRAMMAR_ENTITIES[language] def get_builtin_entity_examples(builtin_entity_kind, language): """Provides some examples of the builtin entity in the specified language """ global _ENTITIES_EXAMPLES if not isinstance(builtin_entity_kind, str): raise TypeError("Expected `builtin_entity_kind` to be of type 'str' " "but found: %s" % type(builtin_entity_kind)) if not isinstance(language, str): raise TypeError("Expected `language` to be of type 'str' but found: %s" % type(language)) if builtin_entity_kind not in _ENTITIES_EXAMPLES: _ENTITIES_EXAMPLES[builtin_entity_kind] = dict() if language not in _ENTITIES_EXAMPLES[builtin_entity_kind]: with string_array_pointer(pointer(CStringArray())) as ptr: exit_code = lib.snips_nlu_parsers_builtin_entity_examples( builtin_entity_kind.encode("utf8"), language.encode("utf8"), byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "builtin entity examples") array = ptr.contents _ENTITIES_EXAMPLES[builtin_entity_kind][language] = list( array.data[i].decode("utf8") for i in range(array.size)) return _ENTITIES_EXAMPLES[builtin_entity_kind][language] def get_complete_entity_ontology(): """Lists the complete entity ontology for all languages in JSON format """ global _COMPLETE_ENTITY_ONTOLOGY if _COMPLETE_ENTITY_ONTOLOGY is None: with string_pointer(c_char_p()) as ptr: exit_code = lib.snips_nlu_parsers_complete_entity_ontology_json(byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "complete entity ontology") json_str = string_at(ptr).decode("utf8") _COMPLETE_ENTITY_ONTOLOGY = json.loads(json_str, encoding="utf8") return _COMPLETE_ENTITY_ONTOLOGY def get_language_entity_ontology(language): """Lists the complete entity ontology for the specified language in JSON format """ global _LANGUAGE_ENTITY_ONTOLOGY if language not in _LANGUAGE_ENTITY_ONTOLOGY: with string_pointer(c_char_p()) as ptr: exit_code = lib.snips_nlu_parsers_language_entity_ontology_json( language.encode("utf8"), byref(ptr)) check_ffi_error(exit_code, "Something went wrong when retrieving " "language entity ontology") json_str = string_at(ptr).decode("utf8") _LANGUAGE_ENTITY_ONTOLOGY[language] = json.loads(json_str, encoding="utf8") return _LANGUAGE_ENTITY_ONTOLOGY[language]
40.751131
87
0.67777
0
0
0
0
0
0
0
0
1,953
0.216855
f1decafed3dd9912b1ab456a5f7d5b245e48033e
521
py
Python
picoctf-2019/got/shellcode.py
onealmond/hacking-lab
631e615944add02db3c2afef47bf1de7171eb065
[ "MIT" ]
9
2021-04-20T15:28:36.000Z
2022-03-08T19:53:48.000Z
picoctf-2019/got/shellcode.py
onealmond/hacking-lab
631e615944add02db3c2afef47bf1de7171eb065
[ "MIT" ]
null
null
null
picoctf-2019/got/shellcode.py
onealmond/hacking-lab
631e615944add02db3c2afef47bf1de7171eb065
[ "MIT" ]
6
2021-06-24T03:25:21.000Z
2022-02-20T21:44:52.000Z
import os;os.environ['TMPDIR'] = os.path.join(os.environ['HOME'], 'tmp') import pwn remote_binary = "/problems/got_5_c5119617c90aa544a639812dbc41e24e/vuln" def segfault(): try: pr = pwn.process(remote_binary) elf = pwn.ELF(remote_binary, False) print(elf.got) pr.sendlineafter("Input address\n", str(elf.got["exit"])) pr.sendlineafter("Input value?\n", str(elf.sym["win"])) rsp = pr.readall(timeout=0.5) print(rsp) finally: pr.close() segfault()
27.421053
72
0.629559
0
0
0
0
0
0
0
0
118
0.226488
f1e15b839857a50eb242db9bce20dc2231b79a03
9,518
py
Python
miscellaneous/utils.py
tingyuansen/Weak_Lensing
f8f0833345687648c467b4dea7074d9596c81c14
[ "MIT" ]
null
null
null
miscellaneous/utils.py
tingyuansen/Weak_Lensing
f8f0833345687648c467b4dea7074d9596c81c14
[ "MIT" ]
null
null
null
miscellaneous/utils.py
tingyuansen/Weak_Lensing
f8f0833345687648c467b4dea7074d9596c81c14
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # *Author: Dezso Ribli* """ Util functions for training CNN on weak lesnsing maps. Mostly data loaders and data generators with some additional functionality. """ import numpy as np # https://github.com/IntelPython/mkl_fft/issues/11 #np.fft.restore_all() import cv2 import math import os def step_decay(epoch, base_lr, epochs_drop, drop=0.1): """Helper for step learning rate decay.""" lrate = base_lr for epoch_drop in epochs_drop: lrate *= math.pow(drop,math.floor(epoch/epoch_drop)) return lrate def load_training_data(mapsize=512, grfized=False, exclude_fid=False, dense_grid=False, random_split=False, from_files=False): """Load data for different training scenarios.""" if not grfized and (not dense_grid) and (not random_split): # the default data to loas X_train, X_test, y_train, y_test = load_sparse_grid(imsize=mapsize, from_files=from_files) elif grfized: # equivalent gaussian random filed maps assert not from_files X_train, X_test, y_train, y_test = load_grf_sparse_grid() elif dense_grid: assert not from_files # data with additional points around a cosmology X_train, X_test, y_train, y_test = load_dense_grid(imsize=mapsize) elif random_split: # random train and test split X_train, X_test, y_train, y_test = load_randomsplit_grid( imsize=mapsize, from_files=from_files) # aleays predict newidf, why not, it takes not time # anyway we will not use it with the experiemnts fn = '../../data/columbia_data_fiducial_new_idf_pix'+str(mapsize)+'.npy' X_new_idf = np.load(fn) y_new_idf = np.ones((len(y_test),2)) y_new_idf[:,0], y_new_idf[:,1] = 0.309, 0.816 if exclude_fid: # exclude fiducial cosmo params if asked for idx = (y_train[:,0] == 0.309) & (y_train[:,1] == 0.816) X_train, y_train = X_train[~idx], y_train[~idx] return X_train, X_test, X_new_idf, y_train, y_test, y_new_idf def load_sparse_grid(d='../../data/sparsegrid/', imsize = 512, from_files=False): if from_files: # only load filenames X_train = np.arange(len(os.listdir(os.path.join(d, 'train')))) X_test = np.arange(len(os.listdir(os.path.join(d, 'test')))) else: # load the files themselves X_train = np.load(d+'sparse_grid_final_'+str(imsize)+'pix_x_train.npy') X_test = np.load(d+'sparse_grid_final_'+str(imsize)+'pix_x_test.npy') y_train = np.load(d+'sparse_grid_final_'+str(imsize)+'pix_y_train.npy') y_test = np.load(d+'sparse_grid_final_'+str(imsize)+'pix_y_test.npy') return X_train, X_test, y_train, y_test """Loaders for various experiments.""" def load_grf_sparse_grid(d='../../data/grf/', case='a',imsize=512): X_train = np.load(d+'grf'+case+'_sparse_grid_final_'+str(imsize)+'pix_x_train.npy') X_test = np.load(d+'grf'+case+'_sparse_grid_final_'+str(imsize)+'pix_x_test.npy') y_train = np.load(d+'grf_sparse_grid_final_'+str(imsize)+'pix_y_train.npy') y_test = np.load(d+'grf_sparse_grid_final_'+str(imsize)+'pix_y_test.npy') return X_train, X_test, y_train, y_test def load_dense_grid(d='../../data/densegrid/', imsize = 512): X_train = np.load(d+'dense_grid_final_'+str(imsize)+'pix_x_train.npy') X_test = np.load(d+'dense_grid_final_'+str(imsize)+'pix_x_test.npy') y_train = np.load(d+'dense_grid_final_'+str(imsize)+'pix_y_train.npy') y_test = np.load(d+'dense_grid_final_'+str(imsize)+'pix_y_test.npy') return X_train, X_test, y_train, y_test def load_randomsplit_grid(d='../../data/randomsplit/sparse_512/', imsize = 512, from_files=False): if from_files: # only load filenames X_train = np.arange(len(os.listdir(os.path.join(d, 'train')))) X_test = np.arange(len(os.listdir(os.path.join(d, 'test')))) else: # load the files themselves X_train = np.load(d+'sparse_randomsplit_'+str(imsize)+'pix_x_train.npy') X_test = np.load(d+'sparse_randomsplit_'+str(imsize)+'pix_x_test.npy') y_train = np.load(d+'sparse_randomsplit_'+str(imsize)+'pix_y_train.npy') y_test = np.load(d+'sparse_randomsplit_'+str(imsize)+'pix_y_test.npy') return X_train, X_test, y_train, y_test class DataGenerator(): """ Data generator. Generates minibatches of data and labels. Usage: from imgen import ImageGenerator g = DataGenerator(data, labels) """ def __init__(self, x, y, batch_size=1, shuffle=True, seed=0, ng=None, smoothing = None, map_size = 512, y_shape = (2,), augment = False, scale = 60*3.5, d = None, from_files=False): """Initialize data generator.""" self.x, self.y = x, y self.from_files = from_files self.d = d self.batch_size = batch_size self.x_shape, self.y_shape = (map_size, map_size, 1), y_shape self.shuffle = shuffle self.augment = augment self.seed = seed self.rng = np.random.RandomState(self.seed) if not from_files: assert x.shape[1] == x.shape[2] # rectangular!!! self.A_pix = (float(scale)/map_size)**2 self.ng = ng self.smoothing = smoothing self.scale = float(scale) self.n_data = len(x) self.n_steps = len(x)//batch_size + (len(x) % batch_size > 0) self.i = 0 self.reset_indices_and_reshuffle(force=True) def reset_indices_and_reshuffle(self, force=False): """Reset indices and reshuffle images when needed.""" if self.i == self.n_data or force: if self.shuffle: self.index = self.rng.permutation(self.n_data) else: self.index = np.arange(self.n_data) self.i = 0 def next(self): """Get next batch of images.""" x = np.zeros((self.batch_size,)+self.x_shape) y = np.zeros((self.batch_size,)+self.y_shape) for i in range(self.batch_size): x[i],y[i] = self.next_one() return x,y def next_one(self): """Get next 1 image.""" # reset index, reshuffle if necessary self.reset_indices_and_reshuffle() # get next x if not self.from_files: # simply index from array x = self.x[self.index[self.i]] else: # load from file fn = str(self.x[self.index[self.i]]) + '.npy' x = np.load(os.path.join(self.d, fn)) x = self.process_map(x) y = self.y[[self.index[self.i]]] self.i += 1 # increment counter return x, y def process_map(self, x_in): """Process data.""" x = np.array([x_in],copy=True) if self.augment: # flip and transpose x = aug_ims(x, self.rng.rand()>0.5, self.rng.rand()>0.5, self.rng.rand()>0.5) if self.ng: # add noise if ng is not None x = add_shape_noise(x, self.A_pix, self.ng, self.rng) if self.smoothing: # smooth if smoothing is not None x[0,:,:,0] = smooth(x[0,:,:,0], self.smoothing, self.scale) return x def predict_on_generator(model, datagen, augment): """Predict on data generator with augmentation.""" datagen.reset_indices_and_reshuffle(force=True) y_true, y_pred = [],[] for i in range(datagen.n_data): xi,yi = datagen.next() y_true.append(yi) y_pred_tmp = np.zeros(yi.shape) if augment: for ai in [0,1]: for aj in [0,1]: for ak in [0,1]: y_pred_tmp += model.predict_on_batch( aug_ims(xi,ai,aj,ak)) y_pred.append(y_pred_tmp/8.) else: y_pred.append(model.predict_on_batch(xi)) y_true = np.vstack(y_true) y_pred = np.vstack(y_pred) return y_true, y_pred def aug_ims(ims, fliplr=0, flipud=0, T=0): """Augment images with flips and transposition.""" ims_aug = np.array(ims, copy=True) for i in range(len(ims_aug)): if fliplr: # flip left right ims_aug[i] = np.fliplr(ims_aug[i]) if flipud: # flip up down ims_aug[i] = np.flipud(ims_aug[i]) if T: # transpose ims_aug[i,:,:,0] = ims_aug[i,:,:,0].T return ims_aug def add_shape_noise(x, A, ng, rng=None, sige=0.4): """Add shape noise""" sigpix = sige / (2 * A * ng)**0.5 # final pixel noise scatter # add shape noise to map if rng: # use given random generator return x + rng.normal(loc=0, scale=sigpix, size=x.shape) else: # or just a random noise return x + np.random.normal(loc=0, scale=sigpix, size=x.shape) def smooth(x, smoothing_scale_arcmin, map_size_arcmin): """Smooth by Gaussian kernel.""" # smoothing kernel width in pixels instead of arcmins map_size_pix = x.shape[0] s = (smoothing_scale_arcmin * map_size_pix) / map_size_arcmin # cut off at: 6 sigma + 1 pixel # for large smooothing area and odd pixel number cutoff = 6 * int(s+1) + 1 return cv2.GaussianBlur(x, ksize=(cutoff, cutoff), sigmaX=s, sigmaY=s)
37.179688
87
0.604434
3,064
0.321916
0
0
0
0
0
0
2,544
0.267283
f1e232b6730dde2945dc690b0f6fddabcc0f6b8b
4,683
py
Python
bert/utils/common.py
rschoon/bert
5aeb394dd7c1fcf5995d2f7cd6a25ef3ac81ce13
[ "MIT" ]
null
null
null
bert/utils/common.py
rschoon/bert
5aeb394dd7c1fcf5995d2f7cd6a25ef3ac81ce13
[ "MIT" ]
null
null
null
bert/utils/common.py
rschoon/bert
5aeb394dd7c1fcf5995d2f7cd6a25ef3ac81ce13
[ "MIT" ]
null
null
null
import hashlib import io import json import os import re import struct def decode_bin(s, encoding=None): if encoding is None: encoding = "utf-8" if encoding in ("bin", "binary", "bytes", "raw"): return s return s.decode(encoding) class open_output(object): def __init__(self, filename, mode="wb"): self._dirname = os.path.dirname(filename) self.filename = str(filename) self._tmpname = self.filename+".tmp" self.mode = mode self._fileobj = None def __enter__(self): if self._dirname: os.makedirs(self._dirname, exist_ok=True) self._fileobj = open(self._tmpname, self.mode) return self._fileobj def __exit__(self, type, value, tb): self.close(value is None) def close(self, commit=True): if self._fileobj is not None: self._fileobj.close() if commit: os.rename(self._tmpname, self.filename) else: os.unlink(self._tmpname) self._fileobj = None def expect_file_mode(mode, _sub_mode_re=re.compile('^(u|g|o)=([rwx]+)$')): if mode is None or mode == "": return None if isinstance(mode, int): return mode modes = mode.split(",") rv = 0 for sm in modes: m = _sub_mode_re.match(sm) if not m: raise ValueError('Invalud mode value %s in %s' % (sm, mode)) shift = ("o", "g", "u").index(m.group(1))*3 bits = 0 for bi in m.group(2): bits |= 2**('x', 'w', 'r').index(bi) rv |= (bits << shift) return rv def json_hash(name, value): h = hashlib.new(name) h.update(json.dumps(value, sort_keys=True).encode('utf-8')) return h.hexdigest() def _file_hash(name, filename, chunk_size=2**16): h = hashlib.new(name) sz = 0 with open(filename, "rb") as f: while True: chunk = f.read() if not chunk: break sz += len(chunk) h.update(chunk) return h, sz def file_hash(name, filename): filename = os.fspath(filename) if os.path.isfile(filename): h, _ = _file_hash(name, filename) return h.hexdigest() h = hashlib.new(name) dirs = [filename] while dirs: dirs = sorted(dirs) dirname = dirs.pop() for n in os.listdir(dirname): fn = os.path.join(dirname, n) if os.path.isdir(fn): dirs.append(fn) else: fn_u8 = fn.encode('utf-8') h.update(struct.pack('L', len(fn_u8))) h.update(fn_u8) hf, sf = _file_hash(name, fn) h.update(struct.pack('Q', sf)) h.update(hf.digest()) return h.hexdigest() def value_hash(name, value): h = hashlib.new(name) if isinstance(value, str): value = value.encode('utf-8') h.update(value) return h.hexdigest() class IOHashWriter(io.IOBase): def __init__(self, hash_name, fileobj): if not fileobj.writable(): raise ValueError("IOHashWriter requires writable fileobj") self._h = hashlib.new(hash_name) self._inner = fileobj def digest(self): return self._h.digest() def hexdigest(self): return self._h.hexdigest() @property def closed(self): return self._inner.closed def close(self): pass def fileno(self): return self._inner.fileno() def seek(self): raise OSError("Not seekable") def seekable(self): return False def tell(self): return self._inner.tell() def readable(self): return False def truncate(self, size=None): raise OSError("Not truncatable") def writable(self): return self._inner.writable() def write(self, b): self._h.update(b) return self._inner.write(b) class TeeBytesWriter(io.RawIOBase): def __init__(self, *fileobjs): self.fileobjs = fileobjs self.offset = 0 def readable(self): return False def tell(self): return self.offset def write(self, b): self.offset += len(b) for f in self.fileobjs: f.write(b) class IOFromIterable(io.RawIOBase): def __init__(self, iterable): self._iter = iter(iterable) self._pos = 0 def readinto(self, buf): try: chunk = next(self._iter) except StopIteration: return 0 sz = len(chunk) buf[:sz] = chunk self._pos += sz return sz def tell(self): return self._pos
23.771574
74
0.558189
2,494
0.532565
0
0
65
0.01388
0
0
216
0.046124
f1e2aa05c0131a4119034421ecbeb1cb9810d8c8
2,080
py
Python
boaphys/elements.py
janpipek/boaphys
f32d972e22ebede2f24bf69506125b7c59a4c8c0
[ "MIT" ]
null
null
null
boaphys/elements.py
janpipek/boaphys
f32d972e22ebede2f24bf69506125b7c59a4c8c0
[ "MIT" ]
null
null
null
boaphys/elements.py
janpipek/boaphys
f32d972e22ebede2f24bf69506125b7c59a4c8c0
[ "MIT" ]
null
null
null
class Element: def __init__(self, name : str, symbol : str, Z : int): self.name = name self.symbol = symbol self.Z = Z def __repr__(self): return "Element(\"{0}\", Z={1})".format(self.name, self.Z) def __str__(self): return self.symbol class _Table: def __init__(self): self._data = [ Element("Hydrogen", "H", 1), Element("Helium", "He", 2), Element("Lithium", "Li", 3), Element("Beryllium", "Be", 4) ] for element in self._data: setattr(self, element.symbol, element) setattr(self, element.name, element) def __getitem__(self, x): if isinstance(x, int): return next((element for element in self._data if element.Z == x), None) elif isinstance(x, str): if len(x) <= 2: return next((element for element in self._data if element.symbol == x), None) else: return next((element for element in self._data if element.name == x), None) else: raise IndexError() def __iter__(self): return iter(self._data) table = _Table() class Isotope: def __init__(self, element, A : int): self.element = as_element(element) self.A = A def __getattr__(self, name): return getattr(self.element, name) def __str__(self): return "{0}-{1}".format(self.element.symbol, self.A) @property def Z(self) -> int: return self.element.Z @property def N(self) -> int: """Number of neutrons.""" return self.A - self.Z def as_element(a): if isinstance(a, Element): return a else: return table[a] def as_isotope(a): if isinstance(a, Isotope): return a if isinstance(a, (tuple, list)): return Isotope(*a) if isinstance(a, str): raise NotImplementedError()
27.012987
93
0.516827
1,693
0.813942
0
0
161
0.077404
0
0
112
0.053846
f1e338fa1474985107d12ea6bcd66b88abed94fc
2,924
py
Python
projects/vdk-plugins/airflow-provider-vdk/tests/hooks/test_vdkhook.py
vmware/versatile-data-kit
c4e10324a4f3203c58079cb18203880f68053f15
[ "Apache-2.0" ]
100
2021-10-04T09:32:04.000Z
2022-03-30T11:23:53.000Z
projects/vdk-plugins/airflow-provider-vdk/tests/hooks/test_vdkhook.py
vmware/versatile-data-kit
c4e10324a4f3203c58079cb18203880f68053f15
[ "Apache-2.0" ]
208
2021-10-04T16:56:40.000Z
2022-03-31T10:41:44.000Z
projects/vdk-plugins/airflow-provider-vdk/tests/hooks/test_vdkhook.py
vmware/versatile-data-kit
c4e10324a4f3203c58079cb18203880f68053f15
[ "Apache-2.0" ]
14
2021-10-11T14:15:13.000Z
2022-03-11T13:39:17.000Z
# Copyright 2021 VMware, Inc. # SPDX-License-Identifier: Apache-2.0 import logging import unittest from unittest import mock from vdk.plugin.control_api_auth.authentication import Authentication from vdk_provider.hooks.vdk import VDKHook log = logging.getLogger(__name__) # Monkey-patch the authentication logic to allow for more granular testing # of the VDKHook class PatchedAuth(Authentication): def read_access_token(self) -> str: return "test1token" class TestVDKHook(unittest.TestCase): @mock.patch.dict( "os.environ", AIRFLOW_CONN_CONN_VDK="http://https%3A%2F%2Fwww.vdk-endpoint.org" ) def setUp(self): self.hook = VDKHook( conn_id="conn_vdk", job_name="test_job", team_name="test_team", auth=PatchedAuth(), ) @mock.patch("taurus_datajob_api.api_client.ApiClient.call_api") def test_start_job_execution(self, mock_call_api): mock_call_api.return_value = (None, None, {"Location": "job-execution-id-01"}) self.hook.start_job_execution() assert ( mock_call_api.call_args_list[0][0][0] == "/data-jobs/for-team/{team_name}/jobs/{job_name}/deployments/{deployment_id}/executions" and mock_call_api.call_args_list[0][0][1] == "POST" and mock_call_api.call_args_list[0][0][2] == { "team_name": "test_team", "job_name": "test_job", "deployment_id": "production", } ) @mock.patch("taurus_datajob_api.api_client.ApiClient.request") def test_cancel_job_execution(self, mocked_api_client_request): request_url = "https://www.vdk-endpoint.org/data-jobs/for-team/test_team/jobs/test_job/executions/test_execution_id" self.hook.cancel_job_execution("test_execution_id") assert mocked_api_client_request.call_args_list[0][0] == ("DELETE", request_url) @mock.patch("taurus_datajob_api.api_client.ApiClient.deserialize") @mock.patch("taurus_datajob_api.api_client.ApiClient.request") def test_get_job_execution_status(self, mocked_api_client_request, _): request_url = "https://www.vdk-endpoint.org/data-jobs/for-team/test_team/jobs/test_job/executions/test_execution_id" self.hook.get_job_execution_status("test_execution_id") assert mocked_api_client_request.call_args_list[0][0] == ("GET", request_url) @mock.patch("taurus_datajob_api.api_client.ApiClient.deserialize") @mock.patch("taurus_datajob_api.api_client.ApiClient.request") def test_get_job_execution_log(self, mocked_api_client_request, _): request_url = "https://www.vdk-endpoint.org/data-jobs/for-team/test_team/jobs/test_job/executions/test_execution_id/logs" self.hook.get_job_execution_log("test_execution_id") assert mocked_api_client_request.call_args_list[0][0] == ("GET", request_url)
38.986667
129
0.703146
2,552
0.872777
0
0
2,384
0.815321
0
0
1,137
0.388851
f1e3adf84f989f48fb009dcc9e422f44d758219c
720
py
Python
skater/util/logger.py
RPUTHUMA/Skater
317460b88065b41eebe6790e9efdbb0595cbe450
[ "UPL-1.0" ]
718
2017-05-19T22:49:40.000Z
2019-03-27T06:40:54.000Z
skater/util/logger.py
quant1729/Skater
b46a4abe3465ddc7b19ffc762ad45d1414b060a6
[ "UPL-1.0" ]
114
2017-05-24T16:55:59.000Z
2019-03-27T12:48:18.000Z
skater/util/logger.py
quant1729/Skater
b46a4abe3465ddc7b19ffc762ad45d1414b060a6
[ "UPL-1.0" ]
121
2017-05-22T17:20:19.000Z
2019-03-21T15:06:19.000Z
"""Funcs for logging""" import logging _CRITICAL = logging.CRITICAL _ERROR = logging.ERROR _WARNING = logging.WARNING _INFO = logging.INFO _DEBUG = logging.DEBUG _NOTSET = logging.NOTSET def build_logger(log_level, logger_name, capture_warning=True): logger = logging.Logger(logger_name) # All warnings are logged by default logging.captureWarnings(capture_warning) logger.setLevel(log_level) msg_formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) stream_handler = logging.StreamHandler() stream_handler.setFormatter(msg_formatter) stream_handler.setFormatter(msg_formatter) logger.addHandler(stream_handler) return logger
24
63
0.740278
0
0
0
0
0
0
0
0
113
0.156944
f1e59d1d38ade7999a6cd5e7982c060b5e15cc11
575
py
Python
algorithms/code/leetcode/lc217_contains_duplicate/lc217_contains_duplicate.py
altermarkive/training
6a13f5b2f466156ad5db0e25da0e601d2404b4c3
[ "MIT" ]
null
null
null
algorithms/code/leetcode/lc217_contains_duplicate/lc217_contains_duplicate.py
altermarkive/training
6a13f5b2f466156ad5db0e25da0e601d2404b4c3
[ "MIT" ]
1
2022-02-16T11:28:56.000Z
2022-02-16T11:28:56.000Z
algorithms/code/leetcode/lc217_contains_duplicate/lc217_contains_duplicate.py
altermarkive/training
6a13f5b2f466156ad5db0e25da0e601d2404b4c3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # https://leetcode.com/problems/contains-duplicate/ import unittest from typing import List class Solution: def containsDuplicate(self, nums: List[int]) -> bool: seen = set() for num in nums: if num in seen: return True seen.add(num) return False class TestCode(unittest.TestCase): def test_0_5_7(self): self.assertFalse(Solution().containsDuplicate([0, 5, 7])) def test_0_5_7_5_10(self): self.assertTrue(Solution().containsDuplicate([0, 5, 7, 5, 10]))
23
71
0.626087
452
0.786087
0
0
0
0
0
0
73
0.126957
f1e6fe5da799ee54688ff5ee8d7c10fc529546e8
1,818
py
Python
examples/hsmm-geo.py
bikash/pyhsmm
94fab0ea66072a639b20163c40db04c18069496c
[ "MIT" ]
1
2015-11-08T05:20:39.000Z
2015-11-08T05:20:39.000Z
examples/hsmm-geo.py
bikash/pyhsmm
94fab0ea66072a639b20163c40db04c18069496c
[ "MIT" ]
null
null
null
examples/hsmm-geo.py
bikash/pyhsmm
94fab0ea66072a639b20163c40db04c18069496c
[ "MIT" ]
null
null
null
from __future__ import division import numpy as np np.seterr(divide='ignore') # these warnings are usually harmless for this code from matplotlib import pyplot as plt import copy, os import pyhsmm from pyhsmm.util.text import progprint_xrange ################### # generate data # ################### T = 1000 obs_dim = 2 N = 4 obs_hypparams = {'mu_0':np.zeros(obs_dim), 'sigma_0':np.eye(obs_dim), 'kappa_0':0.25, 'nu_0':obs_dim+2} dur_hypparams = {'alpha_0':10*1, 'beta_0':10*100} true_obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in range(N)] true_dur_distns = [pyhsmm.distributions.GeometricDuration(**dur_hypparams) for state in range(N)] truemodel = pyhsmm.models.GeoHSMM( alpha=6., init_state_concentration=6., obs_distns=true_obs_distns, dur_distns=true_dur_distns) data, labels = truemodel.generate(T) plt.figure() truemodel.plot() temp = np.concatenate(((0,),truemodel.states_list[0].durations.cumsum())) changepoints = zip(temp[:-1],temp[1:]) changepoints[-1] = (changepoints[-1][0],T) # because last duration might be censored ######################### # posterior inference # ######################### Nmax = 25 obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] dur_distns = [pyhsmm.distributions.GeometricDuration(**dur_hypparams) for state in range(Nmax)] posteriormodel = pyhsmm.models.GeoHSMMPossibleChangepoints( alpha=6., init_state_concentration=6., obs_distns=obs_distns, dur_distns=dur_distns) posteriormodel.add_data(data,changepoints=changepoints) for idx in progprint_xrange(50): posteriormodel.resample_model() plt.figure() posteriormodel.plot() plt.show()
25.25
95
0.669417
0
0
0
0
0
0
0
0
279
0.153465
f1e7704fa789f92ccdaa67ed757a654c38ed5fda
2,644
py
Python
drf_nested/mixins/update_nested_mixin.py
promoteinternational/drf-nested
0042b9e4c100df4ae43a10684c30348160b39187
[ "MIT" ]
1
2020-01-05T07:23:48.000Z
2020-01-05T07:23:48.000Z
drf_nested/mixins/update_nested_mixin.py
promoteinternational/drf-nested
0042b9e4c100df4ae43a10684c30348160b39187
[ "MIT" ]
null
null
null
drf_nested/mixins/update_nested_mixin.py
promoteinternational/drf-nested
0042b9e4c100df4ae43a10684c30348160b39187
[ "MIT" ]
2
2019-08-12T07:36:57.000Z
2019-11-30T01:40:30.000Z
from django.db import transaction from rest_framework.exceptions import ValidationError from .base_nested_mixin import BaseNestedMixin class UpdateNestedMixin(BaseNestedMixin): @transaction.atomic def update(self, instance, validated_data): """ :param instance: :param validated_data: :return: """ self._errors = {} if self._has_nested_fields(validated_data): validated_data, nested_fields_data = self._get_nested_fields(validated_data, remove_fields=True) nested_field_types = self.extract_nested_types(nested_fields_data) # Updating or creating direct relations like ForeignKeys before we create initial instance for field in nested_field_types["direct_relations"]: field_name = field.get('name') field_data = field.get('data') if isinstance(field_data, dict): nested_instance = self._update_or_create_direct_relations(field_name, field_data) validated_data[field.get("original_name")] = nested_instance elif field_data is None: validated_data[field.get("original_name")] = field_data model_instance = super().update(instance, validated_data) # Updating or creating reversed relations like the models that have the current model as ForeignKeys # using created initial instance for field in nested_field_types["reverse_relations"]: field_name = field.get('name') field_data = field.get('data') self._update_or_create_reverse_relation(field_name, field_data, model_instance) # Updating or creating generic relations using created initial instance for field in nested_field_types["generic_relations"]: field_name = field.get('name') field_data = field.get('data') self._update_or_create_generic_relation(field_name, field_data, model_instance) # Updating or creating many-to-many relations using created initial instance for field in nested_field_types["many_to_many_fields"]: field_name = field.get('name') field_data = field.get('data') self._update_or_create_many_to_many_field(field_name, field_data, model_instance) if self._errors: raise ValidationError(self._errors) else: model_instance = super().update(instance, validated_data) model_instance.refresh_from_db() return model_instance
44.066667
112
0.655825
2,505
0.947428
0
0
2,459
0.93003
0
0
612
0.231467
f1e8ea63244e88c3991257407c19f60101c1fe1a
27
py
Python
sbpack/version.py
jdidion/sbpack
84bd7867a0630a826280a702db715377aa879f6a
[ "Apache-2.0" ]
11
2020-08-12T09:33:46.000Z
2022-02-18T15:27:26.000Z
sbpack/version.py
jdidion/sbpack
84bd7867a0630a826280a702db715377aa879f6a
[ "Apache-2.0" ]
35
2020-06-12T16:52:36.000Z
2022-03-25T04:29:02.000Z
sbpack/version.py
jdidion/sbpack
84bd7867a0630a826280a702db715377aa879f6a
[ "Apache-2.0" ]
2
2021-09-27T16:17:26.000Z
2022-01-12T22:18:12.000Z
__version__ = "2021.10.07"
13.5
26
0.703704
0
0
0
0
0
0
0
0
12
0.444444
f1e91dba84a62775f1e1edc376c14039a6a6b66f
179
py
Python
forayer/datasets/__init__.py
dobraczka/forayer
df6783f85fb063f58e8b96acef924f9fd2532227
[ "MIT" ]
5
2021-09-06T13:50:44.000Z
2022-02-14T09:39:09.000Z
forayer/datasets/__init__.py
dobraczka/forayer
df6783f85fb063f58e8b96acef924f9fd2532227
[ "MIT" ]
5
2021-09-07T06:53:41.000Z
2022-01-17T09:51:53.000Z
forayer/datasets/__init__.py
dobraczka/forayer
df6783f85fb063f58e8b96acef924f9fd2532227
[ "MIT" ]
null
null
null
"""Make datasets available.""" from forayer.datasets.oaei_kg import OAEIKGDataset from forayer.datasets.open_ea import OpenEADataset __all__ = ["OpenEADataset", "OAEIKGDataset"]
29.833333
50
0.804469
0
0
0
0
0
0
0
0
60
0.335196
f1ed8dbfedb221a10fa60ea9b89b4d29afac3606
227
py
Python
challenge/admin.py
dpmpolo/anniv
27081ca5bc514050c10ecc5e5c0994a4d5a7066f
[ "MIT" ]
null
null
null
challenge/admin.py
dpmpolo/anniv
27081ca5bc514050c10ecc5e5c0994a4d5a7066f
[ "MIT" ]
null
null
null
challenge/admin.py
dpmpolo/anniv
27081ca5bc514050c10ecc5e5c0994a4d5a7066f
[ "MIT" ]
null
null
null
from django.contrib import admin from challenge.models import Goal, GoalInstance, SignificantOther # Register your models here. admin.site.register(Goal) admin.site.register(GoalInstance) admin.site.register(SignificantOther)
28.375
65
0.837004
0
0
0
0
0
0
0
0
28
0.123348
f1ee53bc0c6e33469f0d38aac5f3576590fc8660
14,142
py
Python
allocate.py
tomdavsmi/ncl-spa
baa714071d18cc388ccc73702d78a53f7096db6e
[ "MIT" ]
null
null
null
allocate.py
tomdavsmi/ncl-spa
baa714071d18cc388ccc73702d78a53f7096db6e
[ "MIT" ]
null
null
null
allocate.py
tomdavsmi/ncl-spa
baa714071d18cc388ccc73702d78a53f7096db6e
[ "MIT" ]
null
null
null
import library import random import re def allocate(studPrefs,unassignedStudents,lecturerprefs,projLects,lectProjs,lecturercaps,projCaps,randomise,updates,iterationLimit): # Create projected preference list - first pass; add students not on lecturer's list for k, v in studPrefs.items(): for project in v: idx = library.firstidx(lecturerprefs[projLects[project]],k) if idx == -1: lecturerprefs[projLects[project]].append(k) projectedPrefs = {} # Create projected preference list - second pass; add students to projected list for k, v in projLects.items(): for student in lecturerprefs[v]: if library.firstidx(studPrefs[student], k) > -1: if k not in projectedPrefs: projectedPrefs.update({k: []}) projectedPrefs[k].append(student) else: projectedPrefs[k].append(student) maxidx = 0 done = 0 iters = 0 projAssignments = dict() lectAssignments = dict() studAssignments = dict() nProj = 0 currentStudent = "" while done != 1: iters += 1 if randomise == 1: random.shuffle(unassignedStudents) if iters > iterationLimit & iterationLimit != -1: print("Maximum number of iterations "+str(iterationLimit)+" before convergence") done = 1 if len(unassignedStudents) > 0: for value in unassignedStudents: currentStudent = value nProj = len(studPrefs[currentStudent]) if nProj > 0: break if nProj > 0: ### We have a student who still has projects in their list - heart of the alogrithm currentProject = studPrefs[currentStudent][0] currentLecturer = projLects[currentProject] if currentProject not in projAssignments: projAssignments.update({currentProject:[]}) projAssignments[currentProject].append(currentStudent) else: projAssignments[currentProject].append(currentStudent) if currentLecturer not in lectAssignments: lectAssignments.update({currentLecturer:[]}) lectAssignments[currentLecturer].append(currentStudent) else: lectAssignments[currentLecturer].append(currentStudent) studAssignments.update({currentStudent:currentProject}) idx = library.firstidx(unassignedStudents,currentStudent) unassignedStudents.pop(idx) if updates == True: print(str(iters)+" : Assigned "+currentStudent+" to project "+currentProject+" with supervisor "+currentLecturer+"\n") #Is the project the student was just assigned to overloaded? if len(projAssignments[currentProject]) > int(projCaps[currentProject]): maxidx = -1 for value in projAssignments[currentProject]: idx = library.firstidx(projectedPrefs[currentProject], value) if idx == -1: maxidx = idx worst = value break if idx > maxidx: maxidx = idx worst = value if updates == True: print("Project " + currentProject + " is overloaded. Removing " + worst + ".\n") idx = library.firstidx(lectAssignments[currentLecturer],worst) lectAssignments[currentLecturer].pop(idx) idx = library.firstidx(projAssignments[currentProject],worst) projAssignments[currentProject].pop(idx) if worst not in unassignedStudents: unassignedStudents.append(worst) if worst in studAssignments: studAssignments.pop(worst) #Is the lecturer of the project the student was just assigned to overloaded? if len(lectAssignments[currentLecturer]) > int(lecturercaps[currentLecturer]): maxidx = -1 for value in lectAssignments[currentLecturer]: idx = library.firstidx(lecturerprefs[currentLecturer],value) if idx == -1: maxidx = idx worst = value break if idx > maxidx: maxidx = idx worst = value if updates == True: print("Lecturer " + currentLecturer + " is overloaded. Removing " + worst + ".\n") idx = library.firstidx(lectAssignments[currentLecturer], worst) lectAssignments[currentLecturer].pop(idx) if worst in studAssignments: idx = library.firstidx(projAssignments[studAssignments[worst]], worst) projAssignments[studAssignments[worst]].pop(idx) if worst not in unassignedStudents: unassignedStudents.append(worst) if worst in studAssignments: studAssignments.pop(worst) #Is the project full? if len(projAssignments[currentProject]) == int(projCaps[currentProject]): maxidx = -1 for value in projAssignments[currentProject]: idx = library.firstidx(projectedPrefs[currentProject], value) if idx == -1: maxidx = idx worst = value break if idx > maxidx: maxidx = idx worst = value if updates == True: print("Project "+currentProject+" is full: removing successors to "+worst) idx = library.firstidx(projectedPrefs[currentProject],worst) a = [] if idx == -1 or idx == len(projectedPrefs[currentProject])-1: pass else: for i in range(idx+1,len(projectedPrefs[currentProject])): a.append(projectedPrefs[currentProject][i]) for i in a: while True: idx = library.firstidx(studPrefs[i],currentProject) if idx > -1: studPrefs[i].pop(idx) if idx == -1: break #Is the lecturer full? if len(lectAssignments[currentLecturer]) == int(lecturercaps[currentLecturer]): maxidx = -1 for value in lectAssignments[currentLecturer]: idx = library.firstidx(lecturerprefs[currentLecturer], value) if idx == -1: maxidx = idx worst = value break if idx > maxidx: maxidx = idx worst = value if updates == True: print("Lecturer "+currentLecturer+" is full: removing successors to "+worst+"\n") idx = library.firstidx(lecturerprefs[currentLecturer],worst) a = [] if idx == -1 or idx == len(lecturerprefs[currentLecturer])-1: pass else: for i in range(idx+1,len(lecturerprefs[currentLecturer])): a.append(lecturerprefs[currentLecturer][i]) for i in a: for project in lectProjs[currentLecturer]: while True: idx = library.firstidx(projectedPrefs[project], i) if idx > -1: projectedPrefs[project].pop(idx) if idx == -1: break while True: idx = library.firstidx(studPrefs[i],project) if idx > -1: studPrefs[i].pop(idx) if idx == -1: break if updates == True: print(str(iters)+": Remaining students:" + str(unassignedStudents)+"\n-------------\n") else: done= 1 else: done= 1 return {"Student Assignments":studAssignments, "Lecturer Assignments": lectAssignments, "Project Assignments": projAssignments, "Unassigned Students": unassignedStudents} def random_distribute(unassignedStudents,studAssignments,projAssignments,projCaps,lectAssignments,lecturercaps, lectProjs, projLects, updates): freeprojects = [] unassignedStudentsCopy = unassignedStudents freeprojects = library.findFreeProjects(projAssignments, projCaps, lectAssignments, lecturercaps, lectProjs) if updates == True: print("***Distributing remaining "+str(len(unassignedStudents))+" students***\n") if updates == True and len(unassignedStudents) <= len(freeprojects): print(str( len(freeprojects)) + " projects are available. All remaining students will be randomly allocated a project\n") elif updates == True and len(freeprojects) < len(unassignedStudents): diff = len(unassignedStudents) - len(freeprojects) print( str(len(freeprojects)) + " projects are available. " + str(diff) + " students will not be assigned to projects\n") for student in unassignedStudentsCopy: if len(freeprojects) > 0: thisproject = random.choice(freeprojects) thislecturer = projLects[thisproject] if thisproject not in projAssignments: projAssignments.update({thisproject: []}) projAssignments[thisproject].append(student) else: projAssignments[thisproject].append(student) if thislecturer not in lectAssignments: lectAssignments.update({thislecturer: []}) lectAssignments[thislecturer].append(student) else: lectAssignments[thislecturer].append(student) if updates: print("Student "+student+" has been allocated to project "+thisproject+" with lecturer "+thislecturer) studAssignments.update({student:thisproject}) freeprojects.pop(0) for student in studAssignments: if student in unassignedStudents: unassignedStudents.remove(student) return{"Student Assignments": studAssignments, "Lecturer Assignments":lectAssignments, "Project Assignments":projAssignments, "Unassigned Students": unassignedStudents} def topic_distribute(unassignedStudents,studTopicPrefs,studAssignments,projAssignments,projCaps,lectAssignments,lecturercaps, projLects, lectProjs, updates): freeprojects = [] unassignedStudentsCopy = unassignedStudents freeprojects = library.findFreeProjects(projAssignments, projCaps, lectAssignments, lecturercaps, lectProjs) if updates == True: print("***Distributing remaining " + str(len(unassignedStudents)) + " students***\n") elif updates == True and len(freeprojects) < len(unassignedStudents): diff = len(unassignedStudents) - len(freeprojects) print( str(len( freeprojects)) + " projects are available. " + diff + " students will not be assigned to projects\n") inorgfree = [] orgfree = [] medfree = [] physfree = [] for project in freeprojects: if re.match("I[A-Z][0-9][0-9]", project) is not None: inorgfree.append(project) if re.match("O[A-Z][0-9][0-9]", project) is not None: orgfree.append(project) if re.match("P[A-Z][0-9][0-9]", project) is not None: physfree.append(project) if re.match("M[A-Z][0-9][0-9]", project) is not None: medfree.append(project) for student in unassignedStudentsCopy: print("Assigning student "+student) if len(freeprojects) > 0: print("There are "+str(len(freeprojects))+" projects remaining") for topic in studTopicPrefs[student]: print("Currently looking for an "+topic+" project") if topic == "I" and len(inorgfree) > 0: print("Found I") thisproject = random.choice(inorgfree) thislecturer = projLects[thisproject] if thisproject not in projAssignments: projAssignments.update({thisproject: []}) projAssignments[thisproject].append(student) else: projAssignments[thisproject].append(student) if thislecturer not in lectAssignments: lectAssignments.update({thislecturer: []}) lectAssignments[thislecturer].append(student) else: lectAssignments[thislecturer].append(student) studAssignments.update({student: thisproject}) freeprojects.remove(thisproject) inorgfree.remove(thisproject) #unassignedStudents.remove(student) if updates: print("Allocated "+student+" to project "+thisproject+" with lecturer "+ thislecturer+"\n") break if topic == "O" and len(orgfree) > 0: print("Found O") thisproject = random.choice(orgfree) thislecturer = projLects[thisproject] if thisproject not in projAssignments: projAssignments.update({thisproject: []}) projAssignments[thisproject].append(student) else: projAssignments[thisproject].append(student) if thislecturer not in lectAssignments: lectAssignments.update({thislecturer: []}) lectAssignments[thislecturer].append(student) else: lectAssignments[thislecturer].append(student) studAssignments.update({student: thisproject}) freeprojects.remove(thisproject) orgfree.remove(thisproject) #unassignedStudents.remove(student) if updates: print( "Allocated " + student + " to project " + thisproject + " with lecturer " + thislecturer + "\n") break if topic == "P" and len(physfree) > 0: print("Found P") thisproject = random.choice(physfree) thislecturer = projLects[thisproject] if thisproject not in projAssignments: projAssignments.update({thisproject: []}) projAssignments[thisproject].append(student) else: projAssignments[thisproject].append(student) if thislecturer not in lectAssignments: lectAssignments.update({thislecturer: []}) lectAssignments[thislecturer].append(student) else: lectAssignments[thislecturer].append(student) studAssignments.update({student: thisproject}) freeprojects.remove(thisproject) physfree.remove(thisproject) #unassignedStudents.remove(student) if updates: print( "Allocated " + student + " to project " + thisproject + " with lecturer " + thislecturer + "\n") break if topic == "M" and len(medfree) > 0: print("Found M") thisproject = random.choice(medfree) thislecturer = projLects[thisproject] if thisproject not in projAssignments: projAssignments.update({thisproject: []}) projAssignments[thisproject].append(student) else: projAssignments[thisproject].append(student) if thislecturer not in lectAssignments: lectAssignments.update({thislecturer: []}) lectAssignments[thislecturer].append(student) else: lectAssignments[thislecturer].append(student) studAssignments.update({student: thisproject}) freeprojects.remove(thisproject) medfree.remove(thisproject) #unassignedStudents.remove(student) if updates: print( "Allocated " + student + " to project " + thisproject + " with lecturer " + thislecturer + "\n") break for student in studAssignments: if student in unassignedStudents: unassignedStudents.remove(student) #random.shuffle(unassignedStudentsCopy) return{"Student Assignments": studAssignments, "Lecturer Assignments":lectAssignments, "Project Assignments":projAssignments, "Unassigned Students": unassignedStudents}
38.53406
172
0.680031
0
0
0
0
0
0
0
0
1,979
0.139938
f1f067f028748782da40d03c616d1804024a0dea
3,271
py
Python
tests/models/classifiers/test_logistic.py
harmsm/epistasis
741b25b3e28015aeeba8d4efc94af1e1d811cd63
[ "Unlicense" ]
null
null
null
tests/models/classifiers/test_logistic.py
harmsm/epistasis
741b25b3e28015aeeba8d4efc94af1e1d811cd63
[ "Unlicense" ]
null
null
null
tests/models/classifiers/test_logistic.py
harmsm/epistasis
741b25b3e28015aeeba8d4efc94af1e1d811cd63
[ "Unlicense" ]
2
2020-04-02T00:58:24.000Z
2021-11-16T13:30:30.000Z
import pytest # External imports import numpy as np from gpmap import GenotypePhenotypeMap # Module to test import epistasis from epistasis.models.classifiers import * THRESHOLD = 0.2 @pytest.fixture def gpm(test_data): """ Create a genotype-phenotype map """ d = test_data[0] return GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"], wildtype=d["wildtype"]) def test_init(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) # Tests assert model.order == 1 assert model.model_type == "local" def test_fit(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() assert hasattr(model, "classes") assert hasattr(model, "epistasis") assert hasattr(model, "coef_") def test_predict(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() ypred = model.predict() assert len(ypred) == model.gpm.num_genotypes def test_predict_proba(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() probs = model.predict_proba() # check probs is the right length assert len(probs) == model.gpm.num_genotypes # Check probs are between 0 and 1 assert np.all(probs <= 1) assert np.all(probs >= 0) def test_predict_log_proba(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() probs = model.predict_log_proba() # check probs is the right length assert len(probs) == model.gpm.num_genotypes # Check log probs are less than or equal to 0 assert np.all(probs <= 0) def test_score(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() score = model.score() # Test score is between 0 and 1 assert 0 <= score <= 1 def test_thetas(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() # Check thetas is the correct length assert len(model.thetas) == len(model.coef_[0]) def test_hypothesis(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() # these should be equal if working properly pred = model.predict_proba()[:, 0] hypo = model.hypothesis() #np.testing.assert_almost_equal(pred, hypo) def test_lnlikelihood(gpm): model = EpistasisLogisticRegression(threshold=THRESHOLD, model_type="local") model.add_gpm(gpm) model.fit() lnlike = model.lnlikelihood() # Check we get a float assert lnlike.dtype == float
27.258333
60
0.61174
0
0
0
0
284
0.086824
0
0
535
0.163559
f1f07ae2628711dd9b1d256f9780dc722c6f8e53
381
py
Python
backend/notifications/admin.py
solitariaa/CMPUT404-project-socialdistribution
f9e23a10e209f8bf7ed062e105f44038751f7c74
[ "W3C-20150513" ]
1
2022-03-01T03:03:40.000Z
2022-03-01T03:03:40.000Z
backend/notifications/admin.py
solitariaa/CMPUT404-project-socialdistribution
f9e23a10e209f8bf7ed062e105f44038751f7c74
[ "W3C-20150513" ]
51
2022-02-09T06:18:27.000Z
2022-03-28T19:01:54.000Z
backend/notifications/admin.py
solitariaa/CMPUT404-project-socialdistribution
f9e23a10e209f8bf7ed062e105f44038751f7c74
[ "W3C-20150513" ]
2
2022-03-13T20:58:10.000Z
2022-03-19T06:29:56.000Z
from django.contrib import admin from .models import Notification class NotificationAdmin(admin.ModelAdmin): ordering = ('published',) search_fields = ('get_author',) list_display = ('id', 'get_author', 'published', 'summary') def get_author(self, obj: Notification): return obj.author.displayName admin.site.register(Notification, NotificationAdmin)
23.8125
63
0.727034
257
0.674541
0
0
0
0
0
0
59
0.154856
f1f2709a9b0d54f4549f4f5b2c964cce095a32f9
3,655
py
Python
example/experiments/01_experiment.py
dzwiedziu-nkg/credo-classify-framework
45417b505b4f4b20a7248f3487ca57a3fd49ccee
[ "MIT" ]
null
null
null
example/experiments/01_experiment.py
dzwiedziu-nkg/credo-classify-framework
45417b505b4f4b20a7248f3487ca57a3fd49ccee
[ "MIT" ]
null
null
null
example/experiments/01_experiment.py
dzwiedziu-nkg/credo-classify-framework
45417b505b4f4b20a7248f3487ca57a3fd49ccee
[ "MIT" ]
3
2020-06-19T15:41:19.000Z
2020-06-29T12:47:05.000Z
import bz2 import time import urllib.request import io from typing import List, Tuple from credo_cf import load_json_from_stream, progress_and_process_image, group_by_device_id, group_by_resolution, too_often, near_hot_pixel2, \ too_bright from credo_cf import xor_preprocess from credo_cf.commons.utils import get_and_add WORKING_SET = 'http://mars.iti.pk.edu.pl/~nkg/credo/working_set.json.bz2' time_profile = {} def download_working_set(url: str) -> Tuple[List[dict], int]: print('Download working set...') data = urllib.request.urlopen(url).read() print('Decompress...') json_content = bz2.decompress(data).decode("utf-8") print('Prase JSON...') objs, count, errors = load_json_from_stream(io.StringIO(json_content), progress_and_process_image) print('Parsed %d, skipped %d' % (count, count - len(objs))) return objs, count def start_analyze(all_detections): # print('Make custom grayscale conversion...') # for d in all_detections: # convert_to_gray(d) ts_load = time.time() print('Group by devices...') by_devices = group_by_device_id(all_detections) get_and_add(time_profile, 'grouping', time.time() - ts_load) drop_counts = {} leave_good = 0 print('Run experiment...') dev_no = 0 dev_count = len(by_devices.keys()) for device_id, device_detections in by_devices.items(): ts_load = time.time() by_resolution = group_by_resolution(device_detections) get_and_add(time_profile, 'grouping', time.time() - ts_load) for resolution, detections in by_resolution.items(): dev_no += 1 print('Start device %d of %d, detectons count: %d' % (dev_no, dev_count, len(detections))) # too_often ts_load = time.time() goods = detections bads, goods = too_often(goods) get_and_add(drop_counts, 'too_often', len(bads)) get_and_add(time_profile, 'too_often', time.time() - ts_load) # too_bright ts_load = time.time() bads, goods = too_bright(goods, 70, 70) get_and_add(time_profile, 'too_bright', time.time() - ts_load) get_and_add(drop_counts, 'too_bright', len(bads)) # xor filter ts_load = time.time() if len(goods) > 1: x_or = xor_preprocess(goods) get_and_add(time_profile, 'xor', time.time() - ts_load) # near_hot_pixel2 ts_load = time.time() bads, goods = near_hot_pixel2(goods) get_and_add(time_profile, 'near_hot_pixel2', time.time() - ts_load) get_and_add(drop_counts, 'drop_near_hot_pixel2', len(bads)) # end, counting goods leave_good += len(goods) print('\nCount of cut off by filters:') for f, v in drop_counts.items(): print('%s: %d' % (f, v)) print('Goods: %d' % leave_good) def main(): # config data source, please uncomment and use one from both ts_load = time.time() # choice 1: download from website working_sets = [download_working_set(WORKING_SET)] # download our working set from our hosting # choice 2: load from files # file_names = ['working_set.json'] # working_sets = [load_json(fn, progress_and_process_image) for fn in file_names] get_and_add(time_profile, 'load', time.time() - ts_load) for all_detections, count in working_sets: start_analyze(all_detections) print('\nTime count:') for ts, tv in time_profile.items(): print('time: %03d - %s' % (int(tv), ts)) if __name__ == '__main__': main()
31.782609
142
0.642681
0
0
0
0
0
0
0
0
885
0.242134
f1f2862dcb680020685252fc0444e7b7a36ac2b8
427
py
Python
apptweak/ios.py
gudhati/apptweak-api-python-library
f4a7f7e34548d6d216f3a297d63944c7adbf9667
[ "MIT" ]
5
2019-05-21T14:44:57.000Z
2020-10-30T04:08:13.000Z
apptweak/ios.py
gudhati/apptweak-api-python-library
f4a7f7e34548d6d216f3a297d63944c7adbf9667
[ "MIT" ]
1
2020-08-28T02:42:37.000Z
2020-08-28T07:52:54.000Z
apptweak/ios.py
gudhati/apptweak-api-python-library
f4a7f7e34548d6d216f3a297d63944c7adbf9667
[ "MIT" ]
5
2019-07-18T13:38:01.000Z
2021-06-09T04:12:35.000Z
from apptweak.plateform import * class Ios(Plateform): plateform_name = 'ios' def __init__(self): super().__init__(self.plateform_name) @classmethod def ratings(self, application_id, params = {}): return self.applications(application_id, API_END_PATH['ratings'], params) @classmethod def backlinks(self, application_id): raise Exception('Not implemented for this plateform')
26.6875
81
0.697892
392
0.918033
0
0
261
0.611241
0
0
50
0.117096
f1f2f70605379c3a09598bf2b8739bb4f47caa1b
3,944
py
Python
30-Days-Of-Python/30-Days-Of-Python/19_file_handling.py
zhaobingwang/python-samples
d59f84d2b967cc793cb9b8999f8cdef349fd6fd5
[ "MIT" ]
null
null
null
30-Days-Of-Python/30-Days-Of-Python/19_file_handling.py
zhaobingwang/python-samples
d59f84d2b967cc793cb9b8999f8cdef349fd6fd5
[ "MIT" ]
null
null
null
30-Days-Of-Python/30-Days-Of-Python/19_file_handling.py
zhaobingwang/python-samples
d59f84d2b967cc793cb9b8999f8cdef349fd6fd5
[ "MIT" ]
null
null
null
print('---------- Opening Files for Reading ----------') f = open('./files/reading_file_example.txt') print(f) # <_io.TextIOWrapper name='./files/reading_file_example.txt' mode='r' encoding='cp936'> print('\t---------- read() ----------') # read(): read the whole text as string. If we want to limit the number of characters we read, # we can limit it by passing int value to the methods. f = open('./files/reading_file_example.txt') txt = f.read() print(type(txt)) # <class 'str'> print(txt) # Hello,Python! f.close() f = open('./files/reading_file_example.txt') txt = f.read(5) print(type(txt)) # <class 'str'> print(txt) # Hello f.close() print('\t---------- readline(): read only the first line ----------') f = open('./files/reading_file_example.txt') line = f.readline() print(type(line)) # <class 'str'> print(line) # Hello,Python! f.close() print('\t---------- readlines(): read all the text line by line and returns a list of lines ----------') f = open('./files/reading_file_example.txt') lines = f.readlines() print(type(lines)) # <class 'list'> print(lines) # ['Hello,Python!'] f.close() print('\t---------- splitlines() ----------') f = open('./files/reading_file_example.txt') lines = f.read().splitlines() print(type(lines)) # <class 'list'> print(lines) # ['Hello,Python!'] f.close() print('\t---------- Another way to close a file ----------') with open('./files/reading_file_example.txt') as f: lines = f.read().splitlines() print(type(lines)) # <class 'list'> print(lines) # ['Hello,Python!'] print('---------- Opening Files for Writing and Updating ----------') # To write to an existing file, we must add a mode as parameter to the open() function: # "a" - append - will append to the end of the file, if the file does not exist it raise FileNotFoundError. # "w" - write - will overwrite any existing content, if the file does not exist it creates. with open('./files/writing_file_example.txt', 'a') as f: f.write('Hello,Python!') with open('./files/writing_file_example.txt', 'w') as f: f.write('Hello,Java!') print('---------- Deleting Files ----------') import os if os.path.exists('./files/writing_file_example.txt'): os.remove('./files/writing_file_example.txt') else: os.remove('The file does not exist!') print('---------- File Types ----------') print('\t---------- File with json Extension ----------') # dictionary person_dct = { "name": "Zhang San", "country": "China", "city": "Hangzhou", "skills": ["Java", "C#", "Python"] } # JSON: A string form a dictionary person_json = "{'name': 'Zhang San', 'country': 'China', 'city': 'Hangzhou', 'skills': ['Java', 'C#', 'Python']}" # we use three quotes and make it multiple line to make it more readable person_json = '''{ "name":"Zhang San", "country":"China", "city":"Hangzhou", "skills":["Java", "C#","Python"] }''' print('\t---------- Changing JSON to Dictionary ----------') import json person_json = '''{ "name":"Zhang San", "country":"China", "city":"Hangzhou", "skills":["Java", "C#","Python"] }''' person_dct = json.loads(person_json) print(person_dct) print(person_dct['name']) print('\t---------- Changing Dictionary to JSON ----------') person_dct = { "name": "Zhang San", "country": "China", "city": "Hangzhou", "skills": ["Java", "C#", "Python"] } person_json = json.dumps(person_dct, indent=4) # indent could be 2, 4, 8. It beautifies the json print(type(person_json)) # <class 'str'> print(person_json) print('\t---------- Saving as JSON File ----------') person_dct = { "name": "Zhang San", "country": "China", "city": "Hangzhou", "skills": ["Java", "C#", "Python"] } with open('./files/json_example.json', 'w', encoding='utf-8') as f: json.dump(person_dct, f, ensure_ascii=False, indent=4) print('\t---------- File with csv Extension ----------') import csv # with open('./files/csv_example.csv') as f:
31.806452
113
0.606491
0
0
0
0
0
0
0
0
2,681
0.679767
f1f6211abde32ba71ccaac35e7c39eb9935dfa7c
2,491
py
Python
data/grady-memorial-hospital/parse.py
Afellman/hospital-chargemaster
1b87bc64d95d97c0538be7633f9e469e5db624e2
[ "MIT" ]
34
2019-01-18T00:15:58.000Z
2022-03-26T15:01:08.000Z
data/grady-memorial-hospital/parse.py
wsheffel/hospital-chargemaster
b3473c798fd2f343f7f02c1e32496f9eea9fa94d
[ "MIT" ]
8
2019-01-16T22:06:11.000Z
2019-02-25T00:59:25.000Z
data/grady-memorial-hospital/parse.py
wsheffel/hospital-chargemaster
b3473c798fd2f343f7f02c1e32496f9eea9fa94d
[ "MIT" ]
10
2019-02-20T14:58:16.000Z
2021-11-22T21:57:04.000Z
#!/usr/bin/env python import os from glob import glob import json import pandas import datetime import sys here = os.path.dirname(os.path.abspath(__file__)) folder = os.path.basename(here) latest = '%s/latest' % here year = datetime.datetime.today().year output_data = os.path.join(here, 'data-latest.tsv') output_year = os.path.join(here, 'data-%s.tsv' % year) # Function read zip into memory def extract_zip(input_file): input_zip = ZipFile(input_file) return {name: input_zip.read(name) for name in input_zip.namelist()} # Don't continue if we don't have latest folder if not os.path.exists(latest): print('%s does not have parsed data.' % folder) sys.exit(0) # Don't continue if we don't have results.json results_json = os.path.join(latest, 'records.json') if not os.path.exists(results_json): print('%s does not have results.json' % folder) sys.exit(1) with open(results_json, 'r') as filey: results = json.loads(filey.read()) columns = ['charge_code', 'price', 'description', 'hospital_id', 'filename', 'charge_type'] df = pandas.DataFrame(columns=columns) for result in results: filename = os.path.join(latest, result['filename']) if not os.path.exists(filename): print('%s is not found in latest folder.' % filename) continue if os.stat(filename).st_size == 0: print('%s is empty, skipping.' % filename) continue contents = None if filename.endswith('txt'): # ['DESCRIPTION', 'Unnamed: 1', 'PRICE'] contents = pandas.read_csv(filename) contents = contents.dropna(how='all') print("Parsing %s" % filename) print(contents.head()) # Update by row for row in contents.iterrows(): idx = df.shape[0] + 1 price = row[1]['PRICE'].replace('$','').replace(',','').strip() entry = [None, # charge code price, # price row[1]["DESCRIPTION"], # description result['hospital_id'], # hospital_id result['filename'], 'standard'] # filename df.loc[idx,:] = entry # Remove empty rows df = df.dropna(how='all') # Save data! print(df.shape) df.to_csv(output_data, sep='\t', index=False) df.to_csv(output_year, sep='\t', index=False)
29.654762
75
0.583701
0
0
0
0
0
0
0
0
643
0.258129
f1f62ac7868b351e283f53daaf44f5e2562dfc27
10,476
py
Python
DeterministicParticleFlowControl/tests/test_pytorch_kernel.py
dimitra-maoutsa/DeterministicParticleFlowControl
106bc9b01d7a4888e4ded18c5fb5a989fe672386
[ "MIT" ]
6
2021-12-13T14:30:31.000Z
2022-01-24T07:54:57.000Z
DeterministicParticleFlowControl/tests/test_pytorch_kernel.py
dimitra-maoutsa/DeterministicParticleFlowControl
106bc9b01d7a4888e4ded18c5fb5a989fe672386
[ "MIT" ]
10
2021-12-18T23:04:53.000Z
2022-02-05T02:06:34.000Z
DeterministicParticleFlowControl/tests/test_pytorch_kernel.py
dimitra-maoutsa/DeterministicParticleFlowControl
106bc9b01d7a4888e4ded18c5fb5a989fe672386
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Jan 10 07:20:39 2022 @author: maout """ import numpy as np from scipy.spatial.distance import cdist import torch #from score_function_estimators import my_cdist from typing import Union from torch.autograd import grad #%% select available device def set_device(): device = "cuda" if torch.cuda.is_available() else "cpu" if device != "cuda": print("GPU is not enabled in this notebook. \n" "If you want to enable it, in the menu under `Runtime` -> \n" "`Hardware accelerator.` and select `GPU` from the dropdown menu") else: print("GPU is enabled in this notebook. \n" "If you want to disable it, in the menu under `Runtime` -> \n" "`Hardware accelerator.` and select `None` from the dropdown menu") return device #%% class RBF(object): """ Class for implementing a Gaussian RBF kernel in pytorch. Attributes ---------- length_scale : float or list or numpy.array Length scale of the kernel. Either single float for a single lengthscale across all dimension or a vector of floats for different lengthscales across each dimension. Defauls is 1.0 signal_variance : float, optional This not getting used yet. The default is 1.0. device : Union[bool,str], optional Selected device where the computations will be executed,i.e. cpu or gpu. The default is None, which executes calculations on the cpu. multil : Union[bool, None], optional Boolean indicator determining whether lengthscale is a vector or a single value. The default is False. K_data : numpy.ndarray Storage for the evaluation of the kernel on the datapoints (X, Y) in order to be reused in the calculations of the gradient of the Kernel. Methods ------- Kernel(X, Y): Computes the kernel for the inouts X, and Y. Stores and returns the result at K_data. Input arrays are of dimensionality (N, D) and (M, D) respectively. Resulting Kernel has (N, M) dimension. gradient_X(X, Y): Computes the gadient of the kernel with respect to the first argument along all D dimensions. """ def __init__(self, length_scale: Union[float, torch.tensor, np.ndarray]=1.0, signal_variance: float=1.0, device: Union[bool,str]=None, multil: Union[bool, None]=False) -> None: """ Initialising function for RBF Gaussian kernels using pytorch. Creates an object with necessary parammeters. Parameters ---------- length_scale : Union[float, torch.tensor, np.ndarray], optional Lenghtscale estimated from data. Can be either a single float, or a vector for floats for different lengthscales for each dimension. The default is 1.0. signal_variance : float, optional This not getting used yet. The default is 1.0. device : Union[bool,str], optional Selected device where the computations will be executed,i.e. cpu or gpu. The default is None, which executes calculations on the cpu. multil : Union[bool, None], optional Boolean indicator determining whether lengthscale is a vector or a single value. The default is False. TO DO: Remove this option and just check whether length_scale input is a vector or a single float. Returns ------- Instance of the object. """ # initialize parameters if device is None: self.device = torch.device("cpu") else: self.device = device self.length_scale = torch.tensor(length_scale, dtype=torch.float32, device=self.device, requires_grad=True) self.signal_variance = torch.tensor(signal_variance, dtype=torch.float32, device=self.device, requires_grad=True) self.multil = torch.tensor(multil, dtype=torch.bool, device=self.device, requires_grad=False) if self.multil: ##expand dimensions of lengtscale vector to enable broadcasting self.length_scale = self.length_scale[None, None, :] self.K_data = torch.tensor(0, dtype=torch.float32, device=self.device, requires_grad=False) def Kernel(self, X: np.ndarray, Y: Union[bool, np.ndarray]=None) -> np.ndarray: if not torch.is_tensor(X): # convert inputs to pytorch tensors if not already pytorched X = torch.tensor(X, dtype=torch.float32, device=self.device) N, D = X.shape if Y is None: Y = X elif not torch.is_tensor(Y): Y = torch.tensor(Y, dtype=torch.float32, device=self.device) M, _ = Y.shape # Re-indexing X_i = X[:, None, :] # shape (N, D) -> (N, 1, D) Y_j = Y[None, :, :] # shape (M, D) -> (1, M, D) if not self.multil: ##if a single lengthscale is provided # |X_i - Y_j|^2 # (N, M, D) sqd = torch.sum( (X_i - Y_j)**2, 2) # Divide by length scale sqd = torch.div(sqd, self.length_scale.to(self.device)**2) K = torch.exp( -0.5* sqd ) else: sqd1 = torch.div( (X_i - Y_j)**2, self.length_scale.to(self.device)**2) sqd = torch.sum( sqd1, 2) K = torch.exp( -0.5* sqd ) K = torch.mul(self.signal_variance, K) # Signal Variance self.K_data = K return K#.detach().to_numpy() def gradient_X(self, X: np.ndarray, Y: Union[bool, np.ndarray]=None) -> np.ndarray: N, D = X.shape M,_ = Y.shape diffs = X[:,None]-Y redifs = torch.div(diffs, self.length_scale.to(self.device)**2) redifs = torch.einsum( 'ijk,ij->ijk', redifs, self.K_data) return redifs def gradient_X2(self, X): return None def gradient_XX(self,X: np.ndarray, Y: Union[bool, np.ndarray]=None) -> np.ndarray: # Convert to tensor that requires Grad X = torch.tensor(self.length_scale, dtype=torch.float32, device=self.device,requires_grad=True) if Y is None: Y = X else: Y = torch.tensor(Y, dtype=torch.float32, device=self.device, requires_grad=True) # compute the gradient kernel w.r.t. to the two inputs J = grad(self.__call__(X, Y)) return J def gradient_XX2(self, X, Y=None): return None #%% numpy versions of kernels functions def Knp(x,y,l,multil=False): if multil: res = np.ones((x.shape[0],y.shape[0])) for ii in range(len(l)): tempi = np.zeros((x[:,ii].size, y[:,ii].size )) ##puts into tempi the cdist result tempi = cdist(x[:,ii].reshape(-1,1), y[:,ii].reshape(-1,1),metric='sqeuclidean') res = np.multiply(res,np.exp(-tempi/(2*l[ii]*l[ii]))) return res else: tempi = np.zeros((x.shape[0], y.shape[0] )) tempi = cdist(x, y,'sqeuclidean') #this sets into the array tempi the cdist result return np.exp(-0.5*tempi/(l*l)) def grdx_K_all(x,y,l,multil=False): #gradient with respect to the 1st argument - only which_dim N,dim = x.shape M,_ = y.shape diffs = x[:,None]-y redifs = np.zeros((1*N,M,dim)) for ii in range(dim): if multil: redifs[:,:,ii] = np.multiply(diffs[:,:,ii],Knp(x,y,l,True))/(l[ii]*l[ii]) else: redifs[:,:,ii] = np.multiply(diffs[:,:,ii],Knp(x,y,l))/(l*l) return redifs #%% DEVICE = set_device() dtype = torch.float dim = 2 N = 3 M = 4 X = torch.randn(N, dim, device=DEVICE) Z = torch.randn(M, dim, device=DEVICE) # common device agnostic way of writing code that can run on cpu OR gpu # that we provide for you in each of the tutorials #%% test kernel evaluation with single lengthscale lengthsc = 2 # pytorched K_instance = RBF(length_scale=lengthsc, multil=False, device=DEVICE) ##instance of kernel object - non-evaluated if DEVICE=='cpu': Ktorch = K_instance.Kernel(X, Z).detach().numpy() gradK_torch = K_instance.gradient_X(X, Z).detach().numpy() else: Ktorch = K_instance.Kernel(X, Z).cpu().detach().numpy() gradK_torch = K_instance.gradient_X(X, Z).cpu().detach().numpy() # numpyed if DEVICE=='cpu': K_numpy = Knp(X.detach().numpy(), Z.detach().numpy(),l=lengthsc, multil=False).astype(np.float32) grad_K_numpy = grdx_K_all(X.detach().numpy(), Z.detach().numpy(), l=lengthsc, multil=False).astype(np.float32) else: K_numpy = Knp(X.cpu().detach().numpy(), Z.cpu().detach().numpy(),l=lengthsc, multil=False).astype(np.float32) grad_K_numpy = grdx_K_all(X.cpu().detach().numpy(), Z.cpu().detach().numpy(), l=lengthsc, multil=False).astype(np.float32) np.testing.assert_allclose(Ktorch, K_numpy, rtol=1e-06) np.testing.assert_allclose(gradK_torch, grad_K_numpy, rtol=1e-06) #%% test kernel evaluation with multiple lengthscales lengthsc = np.array([1,2]) # pytorched if DEVICE=='cpu': K_instance2 = RBF(length_scale=lengthsc, multil=True, device=DEVICE) ##instance of kernel object - non-evaluated Ktorch = K_instance2.Kernel(X, Z).detach().numpy() gradK_torch = K_instance2.gradient_X(X, Z).detach().numpy() else: K_instance2 = RBF(length_scale=lengthsc, multil=True, device=DEVICE) ##instance of kernel object - non-evaluated Ktorch = K_instance2.Kernel(X, Z).cpu().detach().numpy() gradK_torch = K_instance2.gradient_X(X, Z).cpu().detach().numpy() # numpyed if DEVICE=='cpu': K_numpy = Knp(X.detach().numpy(), Z.detach().numpy(),l=lengthsc, multil=True).astype(np.float32) grad_K_numpy = grdx_K_all(X.detach().numpy(), Z.detach().numpy(), l=lengthsc, multil=True).astype(np.float32) else: K_numpy = Knp(X.cpu().detach().numpy(), Z.cpu().detach().numpy(),l=lengthsc, multil=True).astype(np.float32) grad_K_numpy = grdx_K_all(X.cpu().detach().numpy(), Z.cpu().detach().numpy(), l=lengthsc, multil=True).astype(np.float32) np.testing.assert_allclose(Ktorch, K_numpy, rtol=1e-06) np.testing.assert_allclose(gradK_torch, grad_K_numpy, rtol=1e-06)
37.683453
180
0.612447
5,834
0.556892
0
0
0
0
0
0
4,112
0.392516
f1f6905a9916f479816181eeb443cb6b650cc61b
11,075
py
Python
components.py
zachgk/tfcomponents
6c33349ab13549debfc9b347df795c82e38cfa73
[ "MIT" ]
null
null
null
components.py
zachgk/tfcomponents
6c33349ab13549debfc9b347df795c82e38cfa73
[ "MIT" ]
null
null
null
components.py
zachgk/tfcomponents
6c33349ab13549debfc9b347df795c82e38cfa73
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import tensorflow as tf import tflearn from tflearn import variables as vs from tflearn import activations from tflearn import initializations from tflearn import losses from tflearn import utils def condition(cond, t, f): if cond is True: return t elif cond is False: return f else: return tf.cond(cond, lambda: t, lambda: f) class objectview(object): def __init__(self, d): self.__dict__.update(d) componentInherit = { 'globalDroppath': False, 'localDroppath': False, 'localDroppathProb': .5, 'parentType': '', 'currentType': '' } class TFComponent: def __getitem__(self, incoming): global componentInherit inheritBak = componentInherit.copy() if 'localDroppath' in self.opts: componentInherit['localDroppath'] = self.opts['localDroppath'] if 'globalDroppath' in self.opts: componentInherit['globalDroppath'] = self.opts['globalDroppath'] componentInherit['parentType'] = componentInherit['currentType'] componentInherit['currentType'] = type(self).__name__ opts = objectview(self.opts) if isinstance(incoming, TFComponentVal) and (not hasattr(self, 'noDirect')): incoming = incoming.resolve() net = self.get(incoming, opts, componentInherit) if isinstance(net, TFComponentVal) and componentInherit['parentType'] is '': net = net.resolve() componentInherit = inheritBak return net class TFComponentVal: pass class Identity(TFComponent): def __init__(self, **kwargs): self.noDirect = True self.opts = { } self.opts.update(kwargs) def get(self, incoming, opts, inherit): return incoming class Sequence(TFComponent): def __init__(self, blocks, **kwargs): self.noDirect = True self.blocks = blocks self.opts = { 'name': "Sequence" } self.opts.update(kwargs) def get(self, incoming, opts, inherit): resnet = incoming with tf.name_scope(opts.name): for blk in self.blocks: resnet = blk[resnet] return resnet class ParallelVal(TFComponentVal): def __init__(self, opts, inherit, scope): self.blocks = list() self.opts = opts self.inherit = inherit self.scope = scope def resolve(self): opts = self.opts inherit = self.inherit with tf.name_scope(self.scope): is_training = tflearn.get_training_mode() blocks = tf.pack(self.blocks) basic = tf.reduce_sum(blocks, 0) oneChoice = tf.random_uniform([], maxval=len(self.blocks), dtype='int32') one = tf.cond(is_training, lambda: tf.gather(blocks,oneChoice), lambda: basic) someChoice = tf.less(tf.random_uniform([len(self.blocks)]), inherit['localDroppathProb']) some = tf.cond(is_training, lambda: tf.reduce_sum(tf.boolean_mask(blocks,someChoice), 0), lambda: basic) some = tf.cond(tf.reduce_any(someChoice), lambda: some, lambda: one) resnet = condition(inherit['globalDroppath'], one, condition(inherit['localDroppath'], some, basic)) return resnet class Parallel(TFComponent): def __init__(self, blocks, **kwargs): self.noDirect = True self.blocks = blocks self.opts = { 'name': "Parallel" } self.opts.update(kwargs) def get(self, incoming, opts, inherit): resnet = incoming with tf.name_scope(opts.name) as scope: blocksMixed = [blk[resnet] for blk in self.blocks] blocks = ParallelVal(opts, inherit, scope) for blk in blocksMixed: if isinstance(blk, ParallelVal): blocks.blocks = blocks.blocks + blk.blocks else: blocks.blocks.append(blk) return blocks class Chain(TFComponent): def __init__(self, size, block, **kwargs): self.noDirect = True self.size = size self.block = block self.opts = { 'name': "Chain" } self.opts.update(kwargs) def get(self, incoming, opts, inherit): resnet = incoming with tf.name_scope(opts.name): for i in range(self.size): resnet = self.block[resnet] return resnet class Fractal(TFComponent): def __init__(self, size, block, **kwargs): self.noDirect = True self.size = size self.block = block self.opts = { 'name': "Fractal" } self.opts.update(kwargs) def get(self, incoming, opts, inherit): resnet = incoming with tf.name_scope(opts.name): if self.size <= 1: return self.block[resnet] else: sub = Fractal(self.size-1, self.block) resnet = Parallel([self.block, Chain(2, sub)])[resnet] return resnet class Residual(TFComponent): def __init__(self, block, **kwargs): self.noDirect = True self.block = block self.opts = { 'name': "Residual" } self.opts.update(kwargs) def get(self, incoming, opts, inherit): resnet = incoming with tf.name_scope(opts.name): resnet = Parallel([Identity(), self.block]) return resnet class Conv2d(TFComponent): def __init__(self, nb_filter, filter_size, **kwargs): self.nb_filter = nb_filter self.filter_size = filter_size self.opts = { 'strides': 1, 'padding': 'same', 'activation': 'linear', 'bias': True, 'weights_init': 'uniform_scaling', 'bias_init': 'zeros', 'regularizer': None, 'weight_decay': 0.001, 'trainable': True, 'restore': True, 'name': "Conv2D" } self.opts.update(kwargs) def get(self, incoming, opts, inherit): assert opts.padding in ['same', 'valid', 'SAME', 'VALID'], \ "Padding must be same' or 'valid'" input_shape = utils.get_incoming_shape(incoming) assert len(input_shape) == 4, "Incoming Tensor shape must be 4-D" filter_size = utils.autoformat_filter_conv2d(self.filter_size, input_shape[-1], self.nb_filter) strides = utils.autoformat_kernel_2d(opts.strides) padding = utils.autoformat_padding(opts.padding) with tf.name_scope(opts.name) as scope: W_init = opts.weights_init if isinstance(opts.weights_init, str): W_init = initializations.get(opts.weights_init)() W_regul = None if opts.regularizer: W_regul = lambda x: losses.get(opts.regularizer)(x, opts.weight_decay) W = vs.variable(scope + 'W', shape=filter_size, regularizer=W_regul, initializer=W_init, trainable=opts.trainable, restore=opts.restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, W) b = None if opts.bias: b_init = initializations.get(opts.bias_init)() b = vs.variable(scope + 'b', shape=self.nb_filter, initializer=b_init, trainable=opts.trainable, restore=opts.restore) # Track per layer variables tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, b) inference = tf.nn.conv2d(incoming, W, strides, padding) if b: inference = tf.nn.bias_add(inference, b) if isinstance(opts.activation, str): inference = activations.get(opts.activation)(inference) elif hasattr(activation, '__call__'): inference = activation(inference) else: raise ValueError("Invalid Activation.") # Track activations. tf.add_to_collection(tf.GraphKeys.ACTIVATIONS, inference) # Add attributes to Tensor to easy access weights. inference.scope = scope inference.W = W inference.b = b return inference class ShallowResidualBlock(TFComponent): def __init__(self, out_channels, **kwargs): self.out_channels = out_channels self.opts = { 'downsample': False, 'downsample_strides': 2, 'activation': 'relu', 'batch_norm': True, 'bias': True, 'weights_init': 'variance_scaling', 'bias_init': 'zeros', 'regularizer': 'L2', 'weight_decay': 0.0001, 'trainable': True, 'restore': True, 'name': 'ResidualBlock' } self.opts.update(kwargs) def get(self, incoming, opts, inherit): resnet = incoming in_channels = incoming.get_shape().as_list()[-1] with tf.name_scope(opts.name): identity = resnet if not downsample: opts.downsample_strides = 1 if opts.batch_norm: resnet = tflearn.batch_normalization(resnet) resnet = tflearn.activation(resnet, opts.activation) resnet = conv_2d(resnet, self.out_channels, 3, opts.downsample_strides, 'same', 'linear', opts.bias, opts.weights_init, opts.bias_init, opts.regularizer, opts.weight_decay, opts.trainable, opts.restore) if opts.batch_norm: resnet = tflearn.batch_normalization(resnet) resnet = tflearn.activation(resnet, opts.activation) resnet = conv_2d(resnet, self.out_channels, 3, 1, 'same', 'linear', opts.bias, opts.weights_init, opts.bias_init, opts.regularizer, opts.weight_decay, opts.trainable, opts.restore) # Downsampling if opts.downsample_strides > 1: identity = tflearn.avg_pool_2d(identity, 1, opts.downsample_strides) # Projection to new dimension if in_channels != self.out_channels: ch = (self.out_channels - in_channels)//2 identity = tf.pad(identity, [[0, 0], [0, 0], [0, 0], [ch, ch]]) in_channels = self.out_channels #resnet = resnet + identity return resnet
34.182099
116
0.557562
10,433
0.942032
0
0
0
0
0
0
1,100
0.099323
f1f9c0eee8a8c52481a3d1792850e6310a0a8163
1,984
py
Python
tests/unit/warnings_test.py
gamechanger/dusty
dd9778e3a4f0c623209e53e98aa9dc1fe76fc309
[ "MIT" ]
421
2015-06-02T16:29:59.000Z
2021-06-03T18:44:42.000Z
tests/unit/warnings_test.py
gamechanger/dusty
dd9778e3a4f0c623209e53e98aa9dc1fe76fc309
[ "MIT" ]
404
2015-06-02T20:23:42.000Z
2019-08-21T16:59:41.000Z
tests/unit/warnings_test.py
gamechanger/dusty
dd9778e3a4f0c623209e53e98aa9dc1fe76fc309
[ "MIT" ]
16
2015-06-16T17:21:02.000Z
2020-03-27T02:27:09.000Z
from ..testcases import DustyTestCase from dusty.warnings import Warnings class TestWarnings(DustyTestCase): def setUp(self): super(TestWarnings, self).setUp() self.warnings = Warnings() def test_warn(self): message_1 = 'Something is wrong, yo' message_2 = 'Yo this thing is also wrong' self.warnings.warn('test', message_1) self.assertItemsEqual(self.warnings._stored, {'test': [message_1]}) self.warnings.warn('test', message_2) self.assertItemsEqual(self.warnings._stored, {'test': [message_1, message_2]}) def test_has_warnings(self): self.assertFalse(self.warnings.has_warnings) self.warnings.warn('test', 'yo') self.assertTrue(self.warnings.has_warnings) def test_pretty_with_no_warnings(self): self.assertEqual(self.warnings.pretty(), "") def test_pretty(self): message_1 = 'Something is wrong, yo' message_2 = 'Something is very wrong, and that something takes way more than 80 characters to communicate the fact that it is wrong' self.warnings.warn('test', message_1) self.warnings.warn('test', message_2) self.assertEqual(self.warnings.pretty(), "WARNING (test): Something is wrong, yo\nWARNING (test): Something is very wrong, and that something takes way more than 80 characters to\ncommunicate the fact that it is wrong\n") def test_clear_namespace(self): self.warnings.warn('test', 'Something is wrong, yo') self.assertEqual(len(self.warnings._stored['test']), 1) self.warnings.clear_namespace('test') self.assertEqual(len(self.warnings._stored['test']), 0) def test_clear_namespace_leaves_others_unaffected(self): self.warnings.warn('test', 'Something is wrong, yo') self.assertEqual(len(self.warnings._stored['test']), 1) self.warnings.clear_namespace('some-other-namespace') self.assertEqual(len(self.warnings._stored['test']), 1)
45.090909
229
0.689516
1,907
0.96119
0
0
0
0
0
0
536
0.270161
f1fa3f6469623ef44f7b253d9c5da8307b330081
4,655
py
Python
dndice.py
Ar4093/PythonUtils
fd2d1e0eab51c40cd75b42a513f6e76ea8f76bb3
[ "MIT" ]
null
null
null
dndice.py
Ar4093/PythonUtils
fd2d1e0eab51c40cd75b42a513f6e76ea8f76bb3
[ "MIT" ]
null
null
null
dndice.py
Ar4093/PythonUtils
fd2d1e0eab51c40cd75b42a513f6e76ea8f76bb3
[ "MIT" ]
null
null
null
from random import randint import re # Supported formats: # [A]dX[(L|H|K)n][.Y1[.Y2[...]]] # A - number of dice # X - number of sides of dice # . - operation: allowed are + - * x / # Ln/Hn/Kn - discard the Lowest n dice or Keep the Highest n dice. - will only apply the first of these, in order LHK # Y1,Y2,... - operand # warning: doesn't respect order of operations. So +5*3 will first add 5, then multiply by 3. # example: 4d6+3 rolls 4 dice with 6 faces each, afterwards adds 3. # Thanks to tara, maximum number of allowed dice/faces is 999. # Parse a single dice roll def randomDice(dice): try: # Format for the whole roll diceexp = re.compile('(?:\D+)?(\d{0,3})d(\d{1,3})((([\+\-\*x\/LH])(\d+))+)?',re.IGNORECASE) # Format for modifiers addsexp = re.compile('[\+\-\*x\/LH]\d+',re.IGNORECASE) numexp = re.compile('(\d+)') m = diceexp.match(dice) # Result of rolls result = 0 rolls = [] # Weird input? if not m: return 0 # Get the number of dice to roll dicenum = 0 if m.group(1) == "" or m.group(1) == None: dicenum = 1 else: dicenum = int(m.group(1)) # Get the number of faces on each dice facenum = int(m.group(2)) # Roll the dice for i in range(dicenum): rolls.append(randint(1,facenum)) # result += randint(1,facenum) # sort the rolls for further processing rolls.sort() if 'l' in dice.lower(): index = dice.lower().find('l') + 1 number = int(numexp.match(dice[index:]).group()) # Can't drop more dice than available, drop all of them if number > dicenum: return 0 for i in range(number,len(rolls)): result += rolls[i] elif 'h' in dice.lower(): index = dice.lower().find('h') + 1 number = int(numexp.match(dice[index:]).group()) # Can't keep more dice than available, keeping all of them if number > dicenum: number = dicenum for i in range(len(rolls)-number,len(rolls)): result += rolls[i] elif 'k' in dice.lower(): index = dice.lower().find('k') + 1 number = int(numexp.match(dice[index:]).group()) # Can't keep more dice than available, keeping all of them if number > dicenum: number = dicenum for i in range(len(rolls)-number,len(rolls)): result += rolls[i] else: for i in range(len(rolls)): result += rolls[i] # Any modifiers present? if not m.group(3) == None: # Split them up n = addsexp.findall(m.group(3)) # Modifiers for i in range(len(n)): # Value of modifier modval = int(n[i][1:]) # Type of modifier if n[i][0] == '+': result += modval elif n[i][0] == '-': result -= modval elif n[i][0] in '*x': result *= modval elif n[i][0] == '/': result /= modval return result except: return None # Parse a whole expression. # # Format: dice1[+dice2[+dice3[...]]] # dice1, dice2, dice3, ...: Any valid dice format as written in the randomDice function. # # Returns: The total of all rolls as integer, None if there was no valid dice notation found def dnDice(dice): # Pattern diceexp1 = re.compile('(\d{0,3}d\d{1,3})(([\+\-\*x\/HLK]\d+(?!d))+)?', re.IGNORECASE) # Total roll total = 0 results = diceexp1.findall(dice) if len(results) == 0: return None else: # Total up the rolls for d in results: string = "" # Discard the last part of the matched expression, it's a weird duplicate, join the rest together (the modifiers get split off) for part in dice: string += part t = randomDice(string) if t == None: return None else: try: total += randomDice(string) except: return None return total
34.738806
140
0.478195
0
0
0
0
0
0
0
0
1,631
0.350376
f1fbbda465699c148d64aca8b6b9736f618761e2
2,471
py
Python
cfg/configure_model.py
dadelani/sentiment-discovery
0cbfc5f6345dacbf52f1f806a9e136a61ca35cf8
[ "BSD-3-Clause" ]
2
2019-04-24T08:23:54.000Z
2020-06-24T10:25:34.000Z
cfg/configure_model.py
mikekestemont/sentiment-discovery
84bf39846ddf6b099d99318214a013269b5b0e61
[ "BSD-3-Clause" ]
null
null
null
cfg/configure_model.py
mikekestemont/sentiment-discovery
84bf39846ddf6b099d99318214a013269b5b0e61
[ "BSD-3-Clause" ]
1
2019-03-23T08:07:33.000Z
2019-03-23T08:07:33.000Z
import os from sentiment_discovery.reparameterization import remove_weight_norm from sentiment_discovery.model import make_model class ModuleConfig(object): def __init__(self, parser): super(ModuleConfig, self).__init__() self.parser = parser def apply(self, cfg, opt): """make model and format model path for reloading parameters""" print('configuring model') cell_type = opt.rnn_type num_layers = opt.layers embed_size = opt.embed_size hidden_size = opt.rnn_size # set in configure_data data_size = opt.data_size dropout = opt.dropout w_norm = opt.weight_norm lstm_only = opt.lstm_only saved_path = '' if opt.load_model != '': model_dir = cfg.logger.get_log_dir(opt.model_dir) saved_path = os.path.join(model_dir, opt.load_model) print(embed_size) model, recurrent_module, embedder_module, chkpt = make_model( cell_type=cell_type, num_layers=num_layers, embed_size=embed_size, hidden_size=hidden_size, data_size=data_size, dropout=dropout, weight_norm=w_norm, lstm_only=lstm_only, saved_path=saved_path) cfg.model = model cfg.chkpt = chkpt nParams = sum([p.nelement() for p in cfg.model.parameters()]) print('* number of parameters: %d' % nParams) def configure_model(parser): """add cmdline args for configuring models""" parser.add_argument('-load_model', default='', help="""a specific checkpoint file to load from experiment's model directory""") parser.add_argument('-should_test', action='store_true', help='whether to train or evaluate a model') parser.add_argument('-model_dir', default='model', help='directory where models are saved to/loaded from') parser.add_argument('-rnn_type', default='mlstm', help='mlstm, lstm or gru') parser.add_argument('-layers', type=int, default=1, help='Number of layers in the rnn') parser.add_argument('-rnn_size', type=int, default=4096, help='Size of hidden states') parser.add_argument('-embed_size', type=int, default=64, help='Size of embeddings') parser.add_argument('-weight_norm', action='store_true', help='whether to use weight normalization for training NNs') parser.add_argument('-lstm_only', action='store_true', help='if `-weight_norm` is applied to the model, apply it to the lstm parmeters only') parser.add_argument('-dropout', type=float, default=0.1, help='Dropout probability.') return ModuleConfig(parser)
39.854839
93
0.718737
1,115
0.451234
0
0
0
0
0
0
763
0.308782
f1fcac439aa33bb2b7ada9c60628d61b4b1afd6c
4,309
py
Python
tests/backends/console/test_env.py
j5api/j5
d3158cfd3d0d19ed33aba0c5c2c1f17a38fe12c7
[ "MIT" ]
10
2019-01-19T13:09:37.000Z
2021-06-18T13:40:10.000Z
tests/backends/console/test_env.py
j5api/j5
d3158cfd3d0d19ed33aba0c5c2c1f17a38fe12c7
[ "MIT" ]
681
2019-01-22T18:12:23.000Z
2022-03-25T14:14:31.000Z
tests/backends/console/test_env.py
j5api/j5
d3158cfd3d0d19ed33aba0c5c2c1f17a38fe12c7
[ "MIT" ]
8
2019-02-22T21:45:47.000Z
2021-11-17T19:43:33.000Z
"""Tests for the ConsoleEnvironment and Console helper.""" from j5.backends.console import Console def test_console_instantiation() -> None: """Test that we can create a console.""" console = Console("MockConsole") assert type(console) is Console assert console._descriptor == "MockConsole" def test_console_info() -> None: """Test that the console can output information.""" class MockPrintConsole(Console): """Define a testing print function.""" def _print(self, text: str) -> None: """Mock printing function.""" assert text == "TestBoard: Test the console info" console = MockPrintConsole("TestBoard") console.info("Test the console info") def test_console_read() -> None: """Test that we can read from the console.""" class MockInputConsole(Console): """Define a testing input function.""" def _input(self, prompt: str) -> str: """Mock some input.""" return str(reversed(prompt)) console = MockInputConsole("TestBoard") assert str(console.read("Enter Test Input")) == str(reversed("Enter Test Input")) def test_console_read_none_type() -> None: """Test that we can read None from console, i.e any input.""" class ConsoleNone(Console): """Define a testing input function.""" def _input(self, prompt: str) -> str: """Mock some input.""" return "string" console = ConsoleNone("TestBoard") assert console.read("Enter test input", None) is None def test_console_read_bad_type() -> None: """Test that the console emits an error if it cannot cast to the desired type.""" class MockConsoleWithState(Console): """A mock console with state.""" def __init__(self, descriptor: str) -> None: super().__init__(descriptor) self.bad_attempt_count = 0 def _input(self, prompt: str) -> str: # noqa: A003 """Mock some input.""" if self.bad_attempt_count == 0: self.bad_attempt_count += 1 return "Not an int" return "6" def _print(self, text: str) -> None: # noqa: A003,T002 """Mock printing function.""" if self.bad_attempt_count == 0: assert text == "TestConsole: Unable to construct a int from 'Not an int'" console = MockConsoleWithState("TestConsole") assert console.read("I want an int", int) == 6 def test_console_handle_boolean_correctly() -> None: """Test that the console handles bools correctly.""" class MockConsoleBoolean(Console): """A mock console with state.""" true_cases = ["yes", "YES", "YeS", "True"] false_cases = ["no", "NO", "No", "False"] extra_cases = ["bees", "foo", "0", "True"] def __init__(self, descriptor: str) -> None: super().__init__(descriptor) self._pos = 0 self.cases = self.true_cases + self.false_cases + self.extra_cases def _input(self, prompt: str) -> str: # noqa: A003 """Mock some input.""" val = self.cases[self._pos] self._pos += 1 return val def _print(self, text: str) -> None: # noqa: A003,T002 """Mock printing function.""" if self._pos in [8, 9, 10, 11]: assert text == f"TestConsole: Unable to construct a bool " \ f"from '{self.cases[self._pos - 1]}'" else: raise AssertionError() @property def is_finished(self) -> bool: """Check if all of the cases have been consumed.""" return self._pos == len(self.cases) console = MockConsoleBoolean("TestConsole") for _ in MockConsoleBoolean.true_cases: val = console.read("I want an bool", bool, check_stdin=False) assert isinstance(val, bool) assert val for _ in MockConsoleBoolean.false_cases: val = console.read("I want an bool", bool, check_stdin=False) assert isinstance(val, bool) assert not val # Test if false inputs are skipped. val = console.read("I want an bool", bool, check_stdin=False) assert isinstance(val, bool) assert val assert console.is_finished
31.918519
89
0.598283
2,437
0.56556
0
0
160
0.037132
0
0
1,365
0.316779
f1ff198ad462185fb2910c252e87000aebf824f5
6,351
py
Python
backend/modules/cache.py
fheyen/ClaVis
528ca85dd05606d39761b5a00d755500cf1cd2f6
[ "MIT" ]
2
2021-01-11T20:09:32.000Z
2021-05-14T14:52:48.000Z
backend/modules/cache.py
fheyen/ClaVis
528ca85dd05606d39761b5a00d755500cf1cd2f6
[ "MIT" ]
null
null
null
backend/modules/cache.py
fheyen/ClaVis
528ca85dd05606d39761b5a00d755500cf1cd2f6
[ "MIT" ]
null
null
null
from os import listdir, remove, makedirs from os.path import isfile, join, exists import shutil import joblib from termcolor import cprint import json from pathlib import Path _cache_path = None _log_actions = True def init(cache_path, log_actions=True): """ Initializes the cache. Keyword Arguments: - cache_path: directory where cached files are saved - log_actions: when true, all actions are logged """ global _cache_path, _log_actions _log_actions = log_actions _cache_path = cache_path try: if not exists(cache_path): makedirs(cache_path) except Exception as e: cprint(e, 'red') def write(filename, data): """ Pickles a file and writes it to the cache. Keyword Arguments: - filename: name of the file to write to - data: object to cache """ if _log_actions: cprint('Writing to cache: "{}"'.format(filename), 'green') joblib.dump(data, join(_cache_path, filename)) def write_plain(filename, data, add_extension=True): """ Simply writes the textual data to a file. """ if _log_actions: cprint('Writing to cache (plain): "{}"'.format(filename), 'green') if add_extension: filename += '.json' with open(join(_cache_path, filename), 'w') as f: f.write(data) def write_dict_json(filename, data, add_extension=True): """ Writes a dictionary to file using JSON format. """ if _log_actions: cprint('Writing to cache (json): "{}"'.format(filename), 'green') json_string = json.dumps(data, sort_keys=False, indent=4) if add_extension: filename += '.json' with open(join(_cache_path, filename), 'w') as f: f.write(json_string) def read(filename): """ Reads a file from the cache and unpickles it. Keyword Arguments: - filename: name of the file to read Returns: - data: unpickled object """ if _log_actions: cprint('Loading from cache: "{}"'.format(filename), 'green') return joblib.load(join(_cache_path, filename)) def read_multiple(filenames): """ Reads multiple file from the cache and unpickles them. Keyword Arguments: - filenames: names of the files to read Returns: - result: unpickled object - success_files: list of successful filenames - errors: filenames for which exceptions happened """ result = [] success_files = [] errors = [] for f in filenames: try: result.append(read(f)) success_files.append(f) except Exception as e: cprint(f'Loading {f} failed!', 'red') cprint(e, 'red') errors.append(f) return result, success_files, errors def read_plain(filename): """ Reads a file from the cache and unpickles it. Keyword Arguments: - filename: name of the file to read Returns: - data: unpickled object """ if _log_actions: cprint('Loading from cache: "{}"'.format(filename), 'green') return Path(join(_cache_path, filename)).read_text() def delete(filename): """ Removes all files from the cache that have names starting with filename. """ deleted = 0 errors = 0 for f in entries(): try: if f.startswith(filename): remove(join(_cache_path, f)) deleted += 1 except: cprint(f'Cannot remove from cache: {filename}', 'red') errors += 1 cprint(f'Removed from cache all files starting with {filename}', 'green') msg = f'Removed {deleted} files, {errors} errors' cprint(msg, 'yellow') return { 'type': 'success' if errors == 0 else 'error', 'msg': msg } def delete_all_clf_projs(): """ Deletes all classifier projections """ deleted = 0 errors = 0 for f in entries(): try: if '__clf_proj_' in f: remove(join(_cache_path, f)) deleted += 1 except: cprint(f'Cannot remove from cache: {f}', 'red') errors += 1 cprint(f'Removed from cache all classifier projections', 'green') msg = f'Removed {deleted} files, {errors} errors' cprint(msg, 'yellow') return { 'type': 'success' if errors == 0 else 'error', 'msg': msg } def clear(): """ Deletes the cache. """ cprint('Clearing cache', 'yellow') shutil.rmtree(_cache_path, ignore_errors=True) def entries(): """ Lists all files in the cache. Returns: - list of all file names in the cache directory """ return [f for f in listdir(_cache_path) if isfile(join(_cache_path, f))] def content(): """ Returns all .json files in the cache to allow showing what classifiers etc. have been trained so far. Returns: - a dictionary containing all files' contents """ cached_files = entries() json_files = [f for f in cached_files if f.endswith('_args.json')] datasets = [] classifiers = [] projections = [] classifier_projections = [] for f in json_files: try: filepath = join(_cache_path, f) contents = Path(filepath).read_text() json_dict = { 'file': f, 'args': json.loads(contents) } if '__proj_' in f: projections.append(json_dict) elif '__clf_proj_' in f: classifier_projections.append(json_dict) elif '__clf_' in f: # send scores for cached classifications score_file = f.replace('_args.json', '_scores.json') scores = Path(join(_cache_path, score_file)).read_text() json_dict['scores'] = json.loads(scores) classifiers.append(json_dict) elif f.startswith('data_'): datasets.append(json_dict) except Exception as e: cprint( f'Error: Some related files may be missing for file {f}, check if you copied files correctly or run you jobs again!', 'red') cprint(e, 'red') return { 'datasets': datasets, 'classifiers': classifiers, 'projections': projections, 'classifier_projections': classifier_projections }
26.352697
140
0.597859
0
0
0
0
0
0
0
0
2,483
0.390962
7b00a8aae5f5c462bd8742df1743968940cbb675
8,123
py
Python
training/data/sampler.py
jpjuvo/PANDA-challenge-raehmae
5748cd23f18e2dd36d56918dcee495b822d2a5cd
[ "MIT" ]
null
null
null
training/data/sampler.py
jpjuvo/PANDA-challenge-raehmae
5748cd23f18e2dd36d56918dcee495b822d2a5cd
[ "MIT" ]
null
null
null
training/data/sampler.py
jpjuvo/PANDA-challenge-raehmae
5748cd23f18e2dd36d56918dcee495b822d2a5cd
[ "MIT" ]
1
2021-04-20T04:37:47.000Z
2021-04-20T04:37:47.000Z
import torch import os import numpy as np import random import pandas as pd from sklearn.model_selection import StratifiedKFold from data.tileimages import * from data.multitask import * import fastai from fastai.vision import * class FoldSampler: def __init__(self, TRAIN, LABELS, mean, std, N, tfms=[], sz=128,bs=16, n_folds=4, uniform_augmentations=False, shuffle_nonempty_imgs=False, model_name=None, is_train=True, is_ordinal=False, SEED=2020, num_workers=4): self._seed_everything(SEED) self.SEED = SEED self.tfms = tfms self.mean = mean self.std = std self.N = N self.nfolds = n_folds self.TRAIN = TRAIN self.sz = sz self.bs = bs self.is_ordinal = is_ordinal self.is_train=is_train self.num_workers=num_workers self.model_name = model_name self.uniform_augmentations = uniform_augmentations self.shuffle_nonempty_imgs = shuffle_nonempty_imgs self._prepare_data(TRAIN, LABELS) self.df.head() def _seed_everything(self, seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def _cats4slide(self, image_id): fn_cats = os.path.join(self.TRAIN, f'{image_id}_mask.txt') if os.path.isfile(fn_cats): with open(fn_cats) as f: return [int(int(l)>1) for l in f.readlines()] else: raise Exception("File not found", str(fn_cats)) def _findAllReplicates(self, pairs, seed): replicates = [seed] nodes = [seed] def addReplicate(n): if n not in replicates: replicates.append(n) nodes.append(n) # while there are nodes left while len(nodes) > 0: this_node = nodes[0] for i,j in pairs: if i==this_node: # match - add j to replicates addReplicate(j) elif j==this_node: # match - add i to replicates addReplicate(i) nodes.pop(0) return replicates def _pairs2sameFolds(self, df,pairs): replicate_indices = np.unique(pairs) split_values = df.split.values for ind in replicate_indices: allReps = self._findAllReplicates(list(pairs), ind) # set all to the same fold as the minimum index min_rep = min(allReps) target_fold = split_values[min_rep] for rep in allReps: split_values[rep] = target_fold df.split = split_values return df def _prepare_data(self, TRAIN, LABELS): df = pd.read_csv(LABELS).set_index('image_id') files = set([p[:32] for p in os.listdir(TRAIN)]) df = df.loc[files] df = df.reset_index() df['stratify'] = df.data_provider.map(str) + '-' + df.isup_grade.map(str) splits = StratifiedKFold(n_splits=self.nfolds, random_state=self.SEED, shuffle=True) splits = list(splits.split(df,df.stratify)) folds_splits = np.zeros(len(df)).astype(np.int) for i in range(self.nfolds): folds_splits[splits[i][1]] = i df['split'] = folds_splits if self.is_ordinal: def _transform_ordinal(label): #return ','.join([str(i) for i in range(int(label) + 1)]) return ','.join([str(i) for i in range(int(label))]) df.isup_grade = df.isup_grade.apply(_transform_ordinal) # add tile cancer categories if present in train data if self.model_name in ["multihead_tilecat", "multihead_tilecat_attention"]: cancer_labels = np.array([np.array(self._cats4slide(image_id)) for image_id in df.image_id.values]) for i in range(cancer_labels.shape[1]): df[f'cancer_status_{i}'] = list(cancer_labels[:,i]) # set serial section replicates to same folds pairs_fn = os.path.join('../','pair_indices.npy') if os.path.exists(pairs_fn): pairs = np.load(pairs_fn) print(f'Setting {np.array(pairs).shape[0]} serial section replicates to same folds') df = self._pairs2sameFolds(df, pairs) self.df = df def get_data(self,fold=0, **kwargs): model_name = "iafoss" if self.model_name is None else self.model_name regr = "regr" in model_name def __MImageItemList(): """ This returns MImageItemList with specified defaults """ return MImageItemList.from_df(self.df, path='.', folder=self.TRAIN, cols='image_id', sz=self.sz, N=self.N, mean=self.mean, std=self.std, uniform_augmentations=self.uniform_augmentations, shuffle_nonempty_imgs=self.shuffle_nonempty_imgs ) if model_name in ["multihead_tilecat", "multihead_tilecat_attention"] and self.is_train: # create isup LabelItemList isup_labels = ( (__MImageItemList() .split_by_idx(self.df.index[self.df.split == fold].tolist()) .label_from_df(cols=['isup_grade'])) ) # create the dict to hold all LabelItemLists multitask_project = { 'isup': { 'label_lists': isup_labels, } } # add tile cancer categories to the dict for i in range(self.N): tilecat = (__MImageItemList() .split_by_idx(self.df.index[self.df.split == fold].tolist()) .label_from_df(cols=[f'cancer_status_{i}'])) multitask_project[f'tilecat_{i}'] = { 'label_lists': tilecat, } ItemLists.label_from_mt_project = label_from_mt_project return (__MImageItemList() .split_by_idx(self.df.index[self.df.split == fold].tolist()) .label_from_mt_project(multitask_project) .transform(self.tfms, size=self.sz, padding_mode='zeros') .databunch(bs=self.bs, num_workers=self.num_workers) ) else: # Defaults to Iafoss if self.is_ordinal: return (__MImageItemList() .split_by_idx(self.df.index[self.df.split == fold].tolist()) .label_from_df(cols=['isup_grade'], label_cls=None, label_delim=',') .transform(self.tfms, size=self.sz, padding_mode='zeros') .databunch(bs=self.bs, num_workers=self.num_workers) ) else: return (__MImageItemList() .split_by_idx(self.df.index[self.df.split == fold].tolist()) .label_from_df(cols=['isup_grade'], label_cls=FloatList if regr==True else None) .transform(self.tfms, size=self.sz, padding_mode='zeros') .databunch(bs=self.bs, num_workers=self.num_workers) )
40.819095
111
0.519266
7,892
0.971562
0
0
0
0
0
0
934
0.114982
7b0127f18652a5554693ea5f44876da7eca25e09
281
py
Python
ABC/194/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/194/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/194/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
def main(): # input A, B = map(int, input().split()) # compute # output if A+B>=15 and B >= 8: print(1) elif A+B>=10 and B>=3: print(2) elif A+B >= 3: print(3) else: print(4) if __name__ == '__main__': main()
14.05
36
0.441281
0
0
0
0
0
0
0
0
34
0.120996
7b0281efeed9226063f79960fa17b68b47603613
2,578
py
Python
test/graph/test_from_ase.py
yhtang/GraphDot
3d5ed4fbb2f6912052baa42780b436da76979691
[ "BSD-3-Clause-LBNL" ]
9
2020-02-14T18:07:39.000Z
2021-12-15T12:07:31.000Z
test/graph/test_from_ase.py
yhtang/graphdot
3d5ed4fbb2f6912052baa42780b436da76979691
[ "BSD-3-Clause-LBNL" ]
3
2020-03-19T19:07:26.000Z
2021-02-24T06:08:51.000Z
test/graph/test_from_ase.py
yhtang/graphdot
3d5ed4fbb2f6912052baa42780b436da76979691
[ "BSD-3-Clause-LBNL" ]
3
2019-10-17T06:11:18.000Z
2021-05-07T11:56:33.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest from ase.build import molecule from ase.lattice.cubic import SimpleCubic from graphdot.graph import Graph from graphdot.graph.adjacency import AtomicAdjacency adjacencies = [ AtomicAdjacency(shape='tent1', length_scale=1.0, zoom=1), AtomicAdjacency(shape='tent2', length_scale='vdw_radius', zoom=1), AtomicAdjacency( shape='gaussian', length_scale='covalent_radius_pyykko', zoom=1.5 ), AtomicAdjacency(shape='compactbell3,2'), ] def test_ase_one(): atoms = molecule('H2') graph = Graph.from_ase(atoms) assert(len(graph.nodes) == 2) assert(len(graph.edges) == 1) @pytest.mark.parametrize('atoms', [ SimpleCubic(latticeconstant=2, size=(2, 1, 1), symbol='Cu', pbc=(1, 0, 0)), SimpleCubic(latticeconstant=2, size=(1, 2, 1), symbol='Cu', pbc=(0, 1, 0)), SimpleCubic(latticeconstant=2, size=(1, 1, 2), symbol='Cu', pbc=(0, 0, 1)), ]) @pytest.mark.parametrize('adj', adjacencies) def test_ase_pbc1(atoms, adj): graph_pbc = Graph.from_ase(atoms, use_pbc=True, adjacency=adj) graph_nopbc = Graph.from_ase(atoms, use_pbc=False, adjacency=adj) assert(len(graph_pbc.edges) == len(graph_nopbc.edges)) @pytest.mark.parametrize('atoms', [ SimpleCubic(latticeconstant=2, size=(3, 1, 1), symbol='Cu', pbc=(1, 0, 0)), SimpleCubic(latticeconstant=2, size=(4, 1, 1), symbol='Cu', pbc=(1, 0, 0)), SimpleCubic(latticeconstant=2, size=(7, 1, 1), symbol='Cu', pbc=(1, 0, 0)), SimpleCubic(latticeconstant=2, size=(1, 3, 1), symbol='Cu', pbc=(0, 1, 0)), SimpleCubic(latticeconstant=2, size=(1, 4, 1), symbol='Cu', pbc=(0, 1, 0)), SimpleCubic(latticeconstant=2, size=(1, 7, 1), symbol='Cu', pbc=(0, 1, 0)), SimpleCubic(latticeconstant=2, size=(1, 1, 3), symbol='Cu', pbc=(0, 0, 1)), SimpleCubic(latticeconstant=2, size=(1, 1, 4), symbol='Cu', pbc=(0, 0, 1)), SimpleCubic(latticeconstant=2, size=(1, 1, 7), symbol='Cu', pbc=(0, 0, 1)), ]) def test_ase_pbc2(atoms): adj = AtomicAdjacency(shape='tent1', length_scale=1.0, zoom=1) graph_pbc = Graph.from_ase(atoms, use_pbc=True, adjacency=adj) graph_nopbc = Graph.from_ase(atoms, use_pbc=False, adjacency=adj) assert(len(graph_pbc.edges) > len(graph_nopbc.edges)) @pytest.mark.parametrize('atoms', [ molecule('H2'), molecule('CH4'), molecule('CH3COOH'), SimpleCubic(latticeconstant=1, size=(3, 3, 1), symbol='Cu', pbc=(1, 1, 0)), ]) def test_ase(atoms): g = Graph.from_ase(atoms) assert(len(g.nodes) == len(atoms)) assert(len(g.edges) > 0)
38.477612
79
0.660978
0
0
0
0
1,899
0.736618
0
0
227
0.088053
7b02e549c87583bcf554b71f024544d0bb0dac0a
2,735
py
Python
FEM/src/FemIo.py
BartSiwek/Neurotransmitter2D
200c1b7e74de0786b1bb52d456e227f9d64cebc6
[ "MIT" ]
null
null
null
FEM/src/FemIo.py
BartSiwek/Neurotransmitter2D
200c1b7e74de0786b1bb52d456e227f9d64cebc6
[ "MIT" ]
null
null
null
FEM/src/FemIo.py
BartSiwek/Neurotransmitter2D
200c1b7e74de0786b1bb52d456e227f9d64cebc6
[ "MIT" ]
null
null
null
import string import scipy import PslgIo, ElementAwarePslg def loadEle(filename): pslg = ElementAwarePslg.ElementAwarePslg() file = open(filename, "r") try: PslgIo.readFromFile(file, pslg, filename) finally: file.close() return pslg def saveFem(filename, femResults): #Open the file file = open(filename, "w") #Header line = saveHeader(file, len(femResults), femResults[0][1].shape[0]) #Actual contents try: for solutionDesc in femResults: saveResult(file, solutionDesc) finally: file.close() return def saveResult(file, solutionDesc): file.write(str(solutionDesc[0]) + "\n") for i in range(0, solutionDesc[1].shape[0]): line = "%.12f" % solutionDesc[1][i,0] file.write(line + "\n") file.flush() def saveRelease(file, releaseDesc): file.write(str(releaseDesc[0]) + "\t" + str(releaseDesc[1]) + "\n") file.flush() def saveHeader(file, timeSteps, variableNumber): line = str(timeSteps) + " " + str(variableNumber) + "\n" file.write(line) file.flush() def loadFem(filename): results = [] file = open(filename, "r") try: resultNumber, n = readHeader(file) for i in range(0, resultNumber): time = float(getLine(file)) z = [] for j in range(0, n): currentZ = float(getLine(file)) z.append(currentZ) results.append((time, z)) finally: file.close() return results def loadLastFemresult(filename): result = None file = open(filename, "r") try: #Skip header resultNumber, n = readHeader(file) currentLine = getLine(file) while len(currentLine) > 0: #Get the current record time = float(currentLine) z = [] for j in range(0, n): currentZ = float(getLine(file)) z.append(currentZ) result = (time, z) #Get next line currentLine = getLine(file) except: pass finally: file.close() if(result is not None): return (result[0], scipy.array([result[1]]).transpose()) else: return None def readHeader(file): headerLine = getLine(file) if len(headerLine) > 0: tokens = string.split(headerLine) if len(tokens) != 2: raise IOError("Invalid file format (header should contain exactly two positive integers)") return (int(tokens[0]), int(tokens[1])) else: raise IOError("Invalid file format (header not found)") def getLine(file): return string.strip(file.readline())
27.35
102
0.571115
0
0
0
0
0
0
0
0
243
0.088848
7b04376d12aae979563b6b36b34ff0b76d2dcff0
3,466
py
Python
dianna/__init__.py
cffbots/dianna
21e272dce2862747a5109341b622798f667d9248
[ "Apache-2.0" ]
null
null
null
dianna/__init__.py
cffbots/dianna
21e272dce2862747a5109341b622798f667d9248
[ "Apache-2.0" ]
null
null
null
dianna/__init__.py
cffbots/dianna
21e272dce2862747a5109341b622798f667d9248
[ "Apache-2.0" ]
null
null
null
""" DIANNA: Deep Insight And Neural Network Analysis. Modern scientific challenges are often tackled with (Deep) Neural Networks (DNN). Despite their high predictive accuracy, DNNs lack inherent explainability. Many DNN users, especially scientists, do not harvest DNNs power because of lack of trust and understanding of their working. Meanwhile, the eXplainable AI (XAI) methods offer some post-hoc interpretability and insight into the DNN reasoning. This is done by quantifying the relevance of individual features (image pixels, words in text, etc.) with respect to the prediction. These "relevance heatmaps" indicate how the network has reached its decision directly in the input modality (images, text, speech etc.) of the data. There are many Open Source Software (OSS) implementations of these methods, alas, supporting a single DNN format and the libraries are known mostly by the AI experts. The DIANNA library supports the best XAI methods in the context of scientific usage providing their OSS implementation based on the ONNX standard and demonstrations on benchmark datasets. Representing visually the captured knowledge by the AI system can become a source of (scientific) insights. See https://github.com/dianna-ai/dianna """ import logging from onnx_tf.backend import prepare # To avoid Access Violation on Windows with SHAP from . import methods from . import utils logging.getLogger(__name__).addHandler(logging.NullHandler()) __author__ = "DIANNA Team" __email__ = "[email protected]" __version__ = "0.2.1" def explain_image(model_or_function, input_data, method, labels=(1,), **kwargs): """ Explain an image (input_data) given a model and a chosen method. Args: model_or_function (callable or str): The function that runs the model to be explained _or_ the path to a ONNX model on disk. input_data (np.ndarray): Image data to be explained method (string): One of the supported methods: RISE, LIME or KernelSHAP labels (tuple): Labels to be explained Returns: One heatmap (2D array) per class. """ explainer = _get_explainer(method, kwargs) explain_image_kwargs = utils.get_kwargs_applicable_to_function(explainer.explain_image, kwargs) return explainer.explain_image(model_or_function, input_data, labels, **explain_image_kwargs) def explain_text(model_or_function, input_data, method, labels=(1,), **kwargs): """ Explain text (input_data) given a model and a chosen method. Args: model_or_function (callable or str): The function that runs the model to be explained _or_ the path to a ONNX model on disk. input_data (string): Text to be explained method (string): One of the supported methods: RISE or LIME labels (tuple): Labels to be explained Returns: List of (word, index of word in raw text, importance for target class) tuples. """ explainer = _get_explainer(method, kwargs) explain_text_kwargs = utils.get_kwargs_applicable_to_function(explainer.explain_text, kwargs) return explainer.explain_text(model_or_function, input_data, labels, **explain_text_kwargs) def _get_explainer(method, kwargs): method_class = getattr(methods, method) method_kwargs = utils.get_kwargs_applicable_to_function(method_class.__init__, kwargs) return method_class(**method_kwargs)
42.790123
99
0.742643
0
0
0
0
0
0
0
0
2,388
0.688979
7b0494a9e41efc09a0891a5e4ffe2bfd4e84d0d3
2,925
py
Python
printer/gpio.py
3DRPP/printer
7826c7c82a5331d916d8ea038bd3a44aff6e35b5
[ "MIT" ]
null
null
null
printer/gpio.py
3DRPP/printer
7826c7c82a5331d916d8ea038bd3a44aff6e35b5
[ "MIT" ]
null
null
null
printer/gpio.py
3DRPP/printer
7826c7c82a5331d916d8ea038bd3a44aff6e35b5
[ "MIT" ]
null
null
null
try: import RPi.GPIO as GPIO except RuntimeError: print("Error importing RPi.GPIO! This is probably because you need " "superuser privileges. You can achieve this by using 'sudo' to run " "your script") gpios = [7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24, 26, 29, 31, 32, 33, 35, 36, 37, 38, 40] class Pin: def __init__(self, number, value): self.number = number self.value = value self.mode = 'out' def set_value(self, value): try: GPIO.output(self.number, GPIO.HIGH if value else GPIO.LOW) except: pass self.value = value def set_mode(self, mode): if mode == 'in' or mode == 'out': self.mode = mode try: if mode == 'in': GPIO.setup(self.number, GPIO.IN) self.value = bool(GPIO.input(self.number)) print("set mode to in (value=" + str(self.value) + ")") return self.value else: GPIO.setup(self.number, GPIO.OUT) self.value = bool(GPIO.input(self.number)) print("set mode to out (value=" + str(self.value) + ")") return self.value except: return self.value def switch_value(self): try: GPIO.output(self.number, GPIO.LOW if self.value else GPIO.HIGH) except: pass self.value = not self.value def switch_mode(self): if self.mode == 'out': return 'in', self.set_mode('in') else: return 'out', self.set_mode('out') class Header: def __init__(self): self.left_pins = [] self.right_pins = [] for x in gpios: if x % 2 == 1: self.left_pins.append(Pin(x, False)) else: self.right_pins.append(Pin(x, False)) def get_value(self, number): for pin in self.left_pins + self.right_pins: if pin.number == number: return pin.value def set_value(self, number, value): for pin in self.left_pins + self.right_pins: if pin.number == number: pin.set_value(value) break def switch_value(self, number): for pin in self.left_pins + self.right_pins: if pin.number == number: pin.switch_value() break def switch_mode(self, number): for pin in self.left_pins + self.right_pins: if pin.number == number: return pin.switch_mode() header = Header() try: GPIO.setmode(GPIO.BOARD) for id in gpios: print('Initializing gpio ' + str(id)) GPIO.setup(id, GPIO.OUT, initial=GPIO.LOW) print('Initialized GPIOs') except: print('Could not set GPIO mode to BOARD.')
29.545455
79
0.523419
2,318
0.792479
0
0
0
0
0
0
315
0.107692
7b04e005435865593cbdccc3f6d9e91235157df4
1,395
py
Python
simple_joint_subscriber/scripts/joint_subscriber.py
itk-thrivaldi/thrivaldi_examples
7c00ad4e1b4fa4b0f27c88e8c0147f8105b042fd
[ "Apache-2.0" ]
null
null
null
simple_joint_subscriber/scripts/joint_subscriber.py
itk-thrivaldi/thrivaldi_examples
7c00ad4e1b4fa4b0f27c88e8c0147f8105b042fd
[ "Apache-2.0" ]
1
2017-12-14T14:04:24.000Z
2017-12-14T16:58:05.000Z
simple_joint_subscriber/scripts/joint_subscriber.py
itk-thrivaldi/thrivaldi_examples
7c00ad4e1b4fa4b0f27c88e8c0147f8105b042fd
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import rospy # For all things ros with python # JointState is defined in sensor_msgs.msg # If you know a message but not where it is # call rosmsg info MSGNAME from the terminal from sensor_msgs.msg import JointState # This tutorial takes heavily from # http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python) # In this example we make a simple subscriber that listens for JointState # messages, and prints them. Uses a functional approach. def message_callback(msg): """This function is called on the message every time a message arrives.""" rospy.loginfo("Joint position received:"+str(msg.position)) def joint_listener(): """Blocking function that sets up node, subscription and waits for messages.""" # Start ros node rospy.init_node("joint_listener", anonymous=True) # Tell the central command we want to hear about /joint_states rospy.Subscriber("/joint_states", # Topic we subscribe to JointState, # message type that topic has message_callback) # function to call when message arrives rospy.spin() # If this script is run alone, not just imported: if __name__ == "__main__": joint_listener() # Ensure that the python script is executable by running: # chmod +x joint_subscriber.py # Call this script by running: # rosrun joint_subscriber joint_subscriber.py
34.875
79
0.7319
0
0
0
0
0
0
0
0
1,019
0.730466
7b0521366a87b5722240ee07005b1b01f21cf17a
1,291
py
Python
src/lab4_cam/src/sawyercam.py
citronella3alain/baxterDraw
c050254e8b4b8d4f5087e8743a34289844138e0c
[ "MIT" ]
null
null
null
src/lab4_cam/src/sawyercam.py
citronella3alain/baxterDraw
c050254e8b4b8d4f5087e8743a34289844138e0c
[ "MIT" ]
null
null
null
src/lab4_cam/src/sawyercam.py
citronella3alain/baxterDraw
c050254e8b4b8d4f5087e8743a34289844138e0c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Aran Sena 2018 # # Code example only, provided without guarantees # # Example for how to get both cameras streaming together # #### import rospy from intera_core_msgs.srv._IOComponentCommandSrv import IOComponentCommandSrv from intera_core_msgs.msg._IOComponentCommand import IOComponentCommand def camera_command_client(camera, status, timeout=0.0): rospy.wait_for_service('/io/internal_camera/' + camera + '/command') try: cam_control = rospy.ServiceProxy('/io/internal_camera/' + camera + '/command', IOComponentCommandSrv) cmd = IOComponentCommand() cmd.time = rospy.Time.now() cmd.op = 'set' if status: cmd.args = '{"signals": {"camera_streaming": {"data": [true], "format": {"type": "bool"}}}}' else: cmd.args = '{"signals": {"camera_streaming": {"data": [false], "format": {"type": "bool"}}}}' resp = cam_control(cmd, timeout) print resp except rospy.ServiceException, e: print "Service call failed: %s"%e if __name__ == '__main__': rospy.init_node('camera_command_client') camera_command_client(camera='head_camera', status=True) camera_command_client(camera='right_hand_camera', status=True)
33.102564
110
0.655306
0
0
0
0
0
0
0
0
478
0.370256
7b061600468274d3cebd155c75fff8f1303d7256
12,279
py
Python
citydata/crime.py
JackKirbyCook82/neighborhood
3805fa11890e121ffadcaaf8f02323434cb68519
[ "MIT" ]
null
null
null
citydata/crime.py
JackKirbyCook82/neighborhood
3805fa11890e121ffadcaaf8f02323434cb68519
[ "MIT" ]
null
null
null
citydata/crime.py
JackKirbyCook82/neighborhood
3805fa11890e121ffadcaaf8f02323434cb68519
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun May 2 2021 @name: CityData CensusTract Download Application @author: Jack Kirby Cook """ import sys import os.path import warnings import logging import regex as re MAIN_DIR = os.path.dirname(os.path.realpath(__file__)) MODULE_DIR = os.path.abspath(os.path.join(MAIN_DIR, os.pardir)) ROOT_DIR = os.path.abspath(os.path.join(MODULE_DIR, os.pardir)) RESOURCE_DIR = os.path.join(ROOT_DIR, "resources") SAVE_DIR = os.path.join(ROOT_DIR, "save") DRIVER_FILE = os.path.join(RESOURCE_DIR, "chromedriver.exe") REPOSITORY_DIR = os.path.join(SAVE_DIR, "citydata") QUEUE_FILE = os.path.join(RESOURCE_DIR, "zipcodes.zip.csv") REPORT_FILE = os.path.join(SAVE_DIR, "citydata", "censustracts.csv") if ROOT_DIR not in sys.path: sys.path.append(ROOT_DIR) from utilities.iostream import InputParser from utilities.dataframes import dataframe_parser from webscraping.webtimers import WebDelayer from webscraping.webdrivers import WebDriver from webscraping.weburl import WebURL from webscraping.webpages import WebBrowserPage from webscraping.webpages import BadRequestError from webscraping.webpages import WebContents from webscraping.webloaders import WebLoader from webscraping.webquerys import WebQuery, WebDatasets from webscraping.webqueues import WebScheduler from webscraping.webdownloaders import WebDownloader, CacheMixin, AttemptsMixin from webscraping.webdata import WebClickable, WebText, WebInput, WebSelect from webscraping.webactions import WebScroll, WebMoveTo, WebMoveToClick, WebMoveToClickSelect, WebMoveToClickFillSend __version__ = "1.0.0" __author__ = "Jack Kirby Cook" __all__ = ["CityData_WebDelayer", "CityData_WebDownloader", "CityData_WebScheduler"] __copyright__ = "Copyright 2021, Jack Kirby Cook" __license__ = "" LOGGER = logging.getLogger(__name__) warnings.filterwarnings("ignore") DATASETS = {"violentcrime": "Crime - Violent crime index", "propertycrime": "Crime - Property crime index", "airpollution": "Air pollution - Air Quality Index (AQI)"} GEOGRAPHYS = ("state", "county", "tract", "blockgroup") dataset_select_xpath = r"//select[contains(@id, 'selmapOSM')]" zipcode_click_xpath = r"//div[@id='searchOSM']//div[contains(@id, 'sboxOuter')]//b" zipcode_input_xpath = r"//div[@id='searchOSM']//div[contains(@id, 'sboxOuter')]//input[contains(@id, 's2id')]" zipcode_xpath = r"//div[@id='searchOSM']//div[contains(@id, 'sboxOuter')]//span[@class='select2-chosen']" geography_xpath = r"//div[@id='legendBOX']/div[@id='mapOSM_legend']" canvas_xpath = r"//div[@id='mapOSM']//canvas" fullscreen_xpath = r"//div[@id='mapOSM']//a[@title='Full Screen']" zoomin_xpath = r"//div[@id='mapOSM']//a[@title='Zoom in']" zoomout_xpath = r"//div[@id='mapOSM']//a[@title='Zoom out']" dataset_select_webloader = WebLoader(xpath=dataset_select_xpath) zipcode_click_webloader = WebLoader(xpath=zipcode_click_xpath) zipcode_input_webloader = WebLoader(xpath=zipcode_input_xpath) zipcode_webloader = WebLoader(xpath=zipcode_xpath) geography_webloader = WebLoader(xpath=geography_xpath) canvas_webloader = WebLoader(xpath=canvas_xpath) fullscreen_webloader = WebLoader(xpath=fullscreen_xpath) zoomin_webloader = WebLoader(xpath=zoomin_xpath) zoomout_webloader = WebLoader(xpath=zoomout_xpath) zipcode_parser = lambda x: re.findall("^\d{5}(?=\, [A-Z]{2}$)", str(x).strip())[0] state_parser = lambda x: re.findall("(?<=^\d{5}\, )[A-Z]{2}$", str(x).strip())[0] geography_parser = lambda x: {"block groups": "blockgroup", "tracts": "tract", "counties": "county", "states": "state"}[re.findall("(?<=Displaying\: )[a-z ]+(?=\.)", str(x).strip())[0]] geography_pattern = "(?P<blockgroup>(?<=Census Block Group )[\.0-9]+)|(?P<tract>(?<=Census Tract )[\.0-9]+)|(?P<state>(?<=\, )[A-Z]{2}|(?<=\()[A-Z]{2}(?=\)))|(?P<county>[a-zA-Z ]+ County(?=\, ))" class CityData_DatasetSelect(WebSelect, webloader=dataset_select_webloader, mapping=DATASETS): pass class CityData_ZipcodeClick(WebClickable, webloader=zipcode_click_webloader): pass class CityData_ZipcodeInput(WebInput, webloader=zipcode_input_webloader): pass class CityData_Zipcode(WebText, webloader=zipcode_webloader, parsers={"data": zipcode_parser}): pass class CityData_Geography(WebText, webloader=geography_webloader, parsers={"data": geography_parser}): pass class CityData_Canvas(WebClickable, webloader=canvas_webloader): pass class CityData_FullScreen(WebClickable, webloader=fullscreen_webloader): pass class CityData_ZoomIn(WebClickable, webloader=zoomin_webloader): pass class CityData_ZoomOut(WebClickable, webloader=zoomout_webloader): pass class CityData_Scroll_WebAction(WebScroll): pass class CityData_DatasetSelect_MoveToClickSelect_WebAction(WebMoveToClickSelect, on=CityData_DatasetSelect, wait=3): pass class CityData_ZipcodeClick_MoveToClick_WebAction(WebMoveToClick, on=CityData_ZipcodeClick, wait=1): pass class CityData_ZipcodeInput_MoveToClick_WebAction(WebMoveToClickFillSend, on=CityData_ZipcodeInput, wait=1): pass class CityData_Canvas_MoveTo_WebAction(WebMoveTo, on=CityData_Canvas): pass class CityData_FullScreen_MoveToClick_WebAction(WebMoveToClick, on=CityData_FullScreen): pass class CityData_ZoomIn_MoveToClick_WebAction(WebMoveToClick, on=CityData_ZoomIn): pass class CityData_ZoomOut_MoveToClick_WebAction(WebMoveToClick, on=CityData_ZoomOut): pass class CityData_WebDelayer(WebDelayer): pass class CityData_WebDriver(WebDriver, options={"headless": False, "images": True, "incognito": False}): pass class CityData_WebURL(WebURL, protocol="https", domain="www.city-data.com"): pass class CityData_WebQuery(WebQuery, querys=["zipcode", "geography"]): pass class CityData_WebDatasets(WebDatasets, fields=list(DATASETS.keys())): pass class CityData_WebScheduler(WebScheduler, querys=["zipcode"], geography=list(GEOGRAPHYS[1:])): def zipcode(self, *args, state=None, county=None, countys=[], city=None, citys=[], **kwargs): dataframe = self.load(QUEUE_FILE) assert all([isinstance(item, (str, type(None))) for item in (county, city)]) assert all([isinstance(item, list) for item in (countys, citys)]) countys = list(set([item for item in [county, *countys] if item])) citys = list(set([item for item in [city, *citys] if item])) dataframe = dataframe_parser(dataframe, parsers={"zipcode": lambda x: "{:05.0f}".format(int(x))}, defaultparser=str) dataframe = dataframe[["zipcode", "type", "city", "state", "county"]] dataframe = dataframe[dataframe["type"] == "standard"][["zipcode", "city", "state", "county"]].reset_index(drop=True) dataframe = dataframe[(dataframe["city"].isin(list(citys)) | dataframe["county"].isin(list(countys)))] dataframe = dataframe[dataframe["state"] == state] return list(dataframe["zipcode"].to_numpy()) @staticmethod def execute(querys, *args, **kwargs): return [CityData_WebQuery(query) for query in querys] class CityData_WebContents(WebContents): SCROLL = CityData_Scroll_WebAction ZIPCODE = CityData_Zipcode GEOGRAPHY = CityData_Geography SELECT = CityData_DatasetSelect_MoveToClickSelect_WebAction CLICK = CityData_ZipcodeClick_MoveToClick_WebAction INPUT = CityData_ZipcodeInput_MoveToClick_WebAction CANVAS = CityData_Canvas_MoveTo_WebAction FULLSCREEN = CityData_FullScreen_MoveToClick_WebAction ZOOMIN = CityData_ZoomIn_MoveToClick_WebAction ZOOMOUT = CityData_ZoomOut_MoveToClick_WebAction class CityData_WebPage(WebBrowserPage, contents=CityData_WebContents): def search(self, *args, dataset, zipcode, **kwargs): assert dataset in DATASETS self.load[CityData_WebContents.SCROLL](*args, **kwargs) self[CityData_WebContents.SCROLL](*args, commands={"pagedown": 1}, **kwargs) LOGGER.info("Search: {}|{}|{}".format(str(self), str(dataset).title(), str(zipcode))) self.load[CityData_WebContents.SELECT](*args, **kwargs) self[CityData_WebContents.SELECT](*args, select=str(dataset), **kwargs) self.load[CityData_WebContents.CLICK](*args, **kwargs) self.load[CityData_WebContents.INPUT](*args, **kwargs) self[CityData_WebContents.CLICK](*args, **kwargs) self[CityData_WebContents.INPUT](*args, fill=str(zipcode), **kwargs) self[CityData_WebContents.CLICK](*args, offset=(0, 1), **kwargs) def setup(self, *args, geography, **kwargs): assert geography in GEOGRAPHYS self.load[CityData_WebContents.CANVAS](*args, **kwargs) self.load[CityData_WebContents.FULLSCREEN](*args, **kwargs) self.load[CityData_WebContents.ZOOMIN](*args, **kwargs) self.load[CityData_WebContents.ZOOMOUT](*args, **kwargs) self[CityData_WebContents.FULLSCREEN](*args, **kwargs) self.load[CityData_WebContents.GEOGRAPHY](*args, **kwargs) while self[CityData_WebContents.GEOGRAPHY].data() != geography: if GEOGRAPHYS.index(self[CityData_WebContents.GEOGRAPHY].data()) < GEOGRAPHYS.index(geography): self[CityData_WebContents.ZOOMIN](*args, **kwargs) elif GEOGRAPHYS.index(self[CityData_WebContents.GEOGRAPHY].data()) > GEOGRAPHYS.index(geography): self[CityData_WebContents.ZOOMOUT](*args, **kwargs) elif GEOGRAPHYS.index(self[CityData_WebContents.GEOGRAPHY].data()) == GEOGRAPHYS.index(geography): break else: pass self.sleep(5) self.load[CityData_WebContents.GEOGRAPHY](*args, **kwargs) self.load[CityData_WebContents.CANVAS](*args, **kwargs) self.load[CityData_WebContents.ZIPCODE](*args, **kwargs) self.load[CityData_WebContents.GEOGRAPHY](*args, **kwargs) @property def query(self): return {"zipcode": str(self[CityData_WebContents.ZIPCODE].data()), "geography": str(self[CityData_WebContents.GEOGRAPHY].data())} def execute(self, *args, dataset, **kwargs): # print(self.source.execute_script("return window.GetPolyStats()")) # print(self.source.execute_script("return window.getCurrentLevel()")) # x = list(self.source.execute_script("return window.polyFIPS")) # y = list(dict(self.source.execute_script("return window.pv"))["pv"]) # raise Exception() yield dataset, data class CityData_WebDownloader(WebDownloader + (CacheMixin, AttemptsMixin), attempts=3, delay=30): @staticmethod def execute(*args, queue, delayer, **kwargs): with CityData_WebDriver(DRIVER_FILE, browser="chrome", loadtime=50) as driver: page = CityData_WebPage(driver, delayer=delayer) with queue: for query in iter(queue): with query: url = CityData_WebURL(**query.todict()) page.load(url, referer=None) try: page.search(*args, **query.todict(), **kwargs) except BadRequestError: yield query, CityData_WebDatasets({}) continue page.setup(*args, **query.todict(), **kwargs) for dataset, dataframe in page(*args, **query.todict(), **kwargs): yield query, CityData_WebDatasets({dataset: dataframe}) def main(*args, **kwargs): delayer = CityData_WebDelayer("constant", wait=3) scheduler = CityData_WebScheduler(*args, file=REPORT_FILE, **kwargs) downloader = CityData_WebDownloader(*args, repository=REPOSITORY_DIR, **kwargs) queue = scheduler(*args, **kwargs) downloader(*args, queue=queue, delayer=delayer, **kwargs) LOGGER.info(str(downloader)) for results in downloader.results: LOGGER.info(str(results)) if not bool(downloader): raise downloader.error if __name__ == "__main__": sys.argv += ["state=CA", "city=Bakersfield", "dataset=violentcrime", "geography=tract"] logging.basicConfig(level="INFO", format="[%(levelname)s, %(threadName)s]: %(message)s") inputparser = InputParser(proxys={"assign": "=", "space": "_"}, parsers={}, default=str) inputparser(*sys.argv[1:]) main(*inputparser.arguments, **inputparser.parameters)
47.964844
197
0.710807
7,480
0.60917
1,318
0.107338
1,187
0.096669
0
0
2,145
0.174688
7b072a958ac36c49b32339e29f7e4de28848fadd
3,644
py
Python
apportionpy/experimental/boundary.py
btror/apportionpy
5b70dbeee4b197e41794bed061ea4a11f128d1c8
[ "MIT" ]
null
null
null
apportionpy/experimental/boundary.py
btror/apportionpy
5b70dbeee4b197e41794bed061ea4a11f128d1c8
[ "MIT" ]
null
null
null
apportionpy/experimental/boundary.py
btror/apportionpy
5b70dbeee4b197e41794bed061ea4a11f128d1c8
[ "MIT" ]
null
null
null
import math def estimate_lowest_divisor(method, divisor, populations, seats): """ Calculates the estimated lowest possible divisor. :param method: The method used. :type method: str :param divisor: A working divisor in calculating fair shares. :type divisor: float :param populations: The populations for each state respectively. :type populations: [float] :param seats: The amount of seats to apportion. :type seats: int :return: An estimation of the lowest possible divisor. """ # The number of states to apportion to. states = sum(populations) # Initialize lists for fair shares and quotas. quotas = [0] * states fair_shares = [0] * states # Keep track of the previous divisor calculated and lowest of them. prev_divisor = 0 lowest_divisor = 0 # Estimator to use in predicting divisors. estimator = 1000000000 counter = 0 while counter < 1000: for i, population in enumerate(populations): if divisor is None or population is None: return None quotas[i] = population / divisor if method.upper() == "ADAM": fair_shares[i] = math.ceil(quotas[i]) elif method.upper() == "WEBSTER": fair_shares[i] = round(quotas[i]) elif method.upper() == "JEFFERSON": fair_shares[i] = math.floor(quotas[i]) if sum(fair_shares) != seats: estimator = estimator / 10 prev_divisor = divisor divisor = lowest_divisor - estimator else: lowest_divisor = divisor divisor = prev_divisor - estimator if lowest_divisor == divisor: break counter += 1 return math.ceil(lowest_divisor * 1000) / 1000 def estimate_highest_divisor(method, divisor, populations, seats): """ Calculates the estimated highest possible divisor. :param method: The method used. :type method: str :param divisor: A working divisor in calculating fair shares. :type divisor: float :param populations: The populations for each state respectively. :type populations: [float] :param seats: The amount of seats to apportion. :type seats: int :return: An estimation of the lowest possible divisor. """ # The number of states to apportion to. states = sum(populations) # Initialize lists for fair shares and quotas. quotas = [0] * states fair_shares = [0] * states # Keep track of the previous divisor calculated and highest of them. prev_divisor = 0 highest_divisor = 0 # Estimator to use in predicting divisors. estimator = 1000000000 counter = 0 while counter < 1000: for i, population in enumerate(populations): if divisor is None or population is None: return None quotas[i] = population / divisor if method.upper() == "ADAM": fair_shares[i] = math.ceil(quotas[i]) elif method.upper() == "WEBSTER": fair_shares[i] = round(quotas[i]) elif method.upper() == "JEFFERSON": fair_shares[i] = math.floor(quotas[i]) if sum(fair_shares) != seats: estimator = estimator / 10 prev_divisor = divisor divisor = highest_divisor + estimator else: highest_divisor = divisor divisor = prev_divisor - estimator if highest_divisor == divisor: break counter += 1 return math.ceil(highest_divisor * 1000) / 1000
30.881356
72
0.611416
0
0
0
0
0
0
0
0
1,344
0.368825
7b0bcb46e200df6f78d9fe78eb07f700564fadd3
4,084
py
Python
csv_to_table.py
canary-for-cognition/multimodal-ml-framework
379963e2815165b28a28c983d32dd17656fba9a9
[ "MIT" ]
1
2021-11-10T10:28:01.000Z
2021-11-10T10:28:01.000Z
csv_to_table.py
canary-for-cognition/multimodal-ml-framework
379963e2815165b28a28c983d32dd17656fba9a9
[ "MIT" ]
null
null
null
csv_to_table.py
canary-for-cognition/multimodal-ml-framework
379963e2815165b28a28c983d32dd17656fba9a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np # import pylatex from pylatex import Document, Section, Tabular, Math, Axis, Subsection import pandas as pd import sys import os def main(): pm = u"\u00B1" filename = sys.argv[1] results = pd.read_csv(filename+'.csv') cols = results.columns task_fusion = ((results.loc[results['settings']=='overall']).loc[results['model']!='DummyClassifier']).sort_values('model') reading = ((results.loc[results['settings']=='Reading']).loc[results['model']!='DummyClassifier']).sort_values('model') cookie = ((results.loc[results['settings']=='CookieTheft']).loc[results['model']!='DummyClassifier']).sort_values('model') memory = ((results.loc[results['settings']=='Memory']).loc[results['model']!='DummyClassifier']).sort_values('model') pupil = ((results.loc[results['settings']=='PupilCalib']).loc[results['model']!='DummyClassifier']).sort_values('model') ET_basic = ((results.loc[results['settings']=='ET_basic']).loc[results['model']!='DummyClassifier']).sort_values('model') Eye = ((results.loc[results['settings']=='Eye']).loc[results['model']!='DummyClassifier']).sort_values('model') Language = ((results.loc[results['settings']=='Language']).loc[results['model']!='DummyClassifier']).sort_values('model') Eye_Reading = ((results.loc[results['settings']=='Eye_Reading']).loc[results['model']!='DummyClassifier']).sort_values('model') NLP_Reading = ((results.loc[results['settings']=='NLP_Reading']).loc[results['model']!='DummyClassifier']).sort_values('model') TextAudio = ((results.loc[results['settings']=='Text+Audio']).loc[results['model']!='DummyClassifier']).sort_values('model') task_fusion = np.array(task_fusion.dropna()).astype('str') reading = np.array(reading.dropna()).astype('str') cookie = np.array(cookie.dropna()).astype('str') memory = np.array(memory.dropna()).astype('str') pupil = np.array(pupil.dropna()).astype('str') ET_basic = np.array(ET_basic.dropna()).astype('str') Eye = np.array(Eye.dropna()).astype('str') Language = np.array(Language.dropna()).astype('str') Eye_Reading = np.array(Eye_Reading.dropna()).astype('str') NLP_Reading = np.array(NLP_Reading.dropna()).astype('str') TextAudio = np.array(TextAudio.dropna()).astype('str') abc = np.array((task_fusion, reading, cookie, memory, pupil, ET_basic, Eye, Language, Eye_Reading, NLP_Reading, TextAudio)) for i in range(len(abc)): for j in range(len(abc[i])): if abc[i][j][1] == 'RandomForest': abc[i][j][1] = 'RF' elif abc[i][j][1] == 'GausNaiveBayes': abc[i][j][1] = 'GNB' elif abc[i][j][1] == 'LogReg': abc[i][j][1] = 'LR' geometry_options = {"tmargin": "1cm", "lmargin": "1cm"} doc = Document(geometry_options=geometry_options) # for overall task_fusion_result with doc.create(Section('Results')): for i in range(len(abc)): overall = abc[i] with doc.create(Subsection(overall[0][0])): with doc.create(Tabular('c c c c c c c c')) as table: table.add_hline() table.add_row(('Algo', 'N', 'AUC', 'F1', 'Accuracy', 'Precision', 'Recall', 'Specificity')) table.add_hline() for i in range(len(overall)): table.add_row((overall[i][1], '162', overall[i][3] + pm + overall[i][12], # roc overall[i][4] + pm + overall[i][9], # f1 overall[i][2] + pm + overall[i][8], # acc overall[i][5] + pm + overall[i][10], # prec overall[i][6] + pm + overall[i][11], # rec overall[i][7] + pm + overall[i][13])) # spec doc.generate_pdf(filename, clean_tex=False, compiler='pdflatex') main()
51.696203
131
0.578355
0
0
0
0
0
0
0
0
938
0.229677
7b0d0466817dc17050d1085421ef9276feb2fb86
2,803
py
Python
torch_audioset/vggish/model.py
Guillaume-oso/torch_audioset
e8852c53becef811784754a2de9c4617d8db2156
[ "MIT" ]
26
2020-03-25T21:19:33.000Z
2022-02-01T15:14:29.000Z
torch_audioset/vggish/model.py
Guillaume-oso/torch_audioset
e8852c53becef811784754a2de9c4617d8db2156
[ "MIT" ]
7
2020-05-31T07:57:05.000Z
2021-12-23T10:16:55.000Z
torch_audioset/vggish/model.py
Guillaume-oso/torch_audioset
e8852c53becef811784754a2de9c4617d8db2156
[ "MIT" ]
8
2020-10-27T16:22:55.000Z
2022-03-28T22:48:07.000Z
import os.path as osp import yaml import torch.nn as nn from torch import hub __all__ = ['get_vggish', 'vggish_category_metadata'] model_urls = { 'vggish': "https://github.com/w-hc/vggish/releases/download/v0.1/vggish_orig.pth", 'vggish_with_classifier': "https://github.com/w-hc/vggish/releases/download/v0.1/vggish_with_classifier.pth" } def vggish_category_metadata(): cat_meta_file = osp.join( osp.dirname(osp.realpath(__file__)), 'classifier_category.yml' ) with open(cat_meta_file) as f: cat_meta = yaml.safe_load(f) # [ [cat_name, mid], ... ] cat_meta = [ {'name': e[0], 'id': e[1]} for e in cat_meta ] return cat_meta class VGGish(nn.Module): def __init__(self): super().__init__() self.features = self.make_layers() self.embeddings = nn.Sequential( nn.Linear(512 * 4 * 6, 4096), nn.ReLU(True), nn.Linear(4096, 4096), nn.ReLU(True), nn.Linear(4096, 128), nn.ReLU(True), ) @staticmethod def make_layers(): layer_config = [64, "M", 128, "M", 256, 256, "M", 512, 512, "M"] in_channels = 1 layers = [] for curr in layer_config: if curr == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, curr, kernel_size=3, padding=1) layers += [conv2d, nn.ReLU(inplace=True)] in_channels = curr return nn.Sequential(*layers) def forward(self, x): ''' x: [N, C, T] ''' # It's regrattable tensorflow authors of this model treats audio signal as 2d # [N, C, T] -> [N, C, T, 1] x = self.features(x) x = x.permute(0, 2, 3, 1) # to tf's [N, H, W, C] order x = x.reshape(x.shape[0], -1) x = self.embeddings(x) return x class VGGishClassify(VGGish): ''' Beware that this is a multi-label, not multi-class classifer. ''' def __init__(self, num_hidden_units=100, num_classes=527): super().__init__() self.classifier = nn.Sequential( nn.Linear(128, num_hidden_units), nn.ReLU(True), nn.Linear(num_hidden_units, num_classes), ) def forward(self, x): x = super().forward(x) x = self.classifier(x) return x def get_vggish(with_classifier=False, pretrained=True): if with_classifier: model = VGGishClassify() url = model_urls['vggish_with_classifier'] else: model = VGGish() url = model_urls['vggish'] if pretrained: state_dict = hub.load_state_dict_from_url(url, progress=True) model.load_state_dict(state_dict) return model
29.197917
112
0.576882
1,735
0.61898
0
0
510
0.181948
0
0
576
0.205494
7b0d272861a3704f10e9a92801a2d879819c1a06
12,584
py
Python
common/cuchemcommon/data/helper/chembldata.py
dorukozturk/cheminformatics
c0fa66dd4f4e6650d7286ae2be533c66b7a2b270
[ "Apache-2.0" ]
null
null
null
common/cuchemcommon/data/helper/chembldata.py
dorukozturk/cheminformatics
c0fa66dd4f4e6650d7286ae2be533c66b7a2b270
[ "Apache-2.0" ]
null
null
null
common/cuchemcommon/data/helper/chembldata.py
dorukozturk/cheminformatics
c0fa66dd4f4e6650d7286ae2be533c66b7a2b270
[ "Apache-2.0" ]
null
null
null
import os import warnings import pandas import sqlite3 import logging from typing import List from dask import delayed, dataframe from contextlib import closing from cuchemcommon.utils.singleton import Singleton from cuchemcommon.context import Context warnings.filterwarnings("ignore", message=r"deprecated", category=FutureWarning) logger = logging.getLogger(__name__) BATCH_SIZE = 100000 ADDITIONAL_FEILD = ['canonical_smiles', 'transformed_smiles'] IMP_PROPS = [ 'alogp', 'aromatic_rings', 'full_mwt', 'psa', 'rtb'] IMP_PROPS_TYPE = [pandas.Series([], dtype='float64'), pandas.Series([], dtype='int64'), pandas.Series([], dtype='float64'), pandas.Series([], dtype='float64'), pandas.Series([], dtype='int64')] ADDITIONAL_FEILD_TYPE = [pandas.Series([], dtype='object'), pandas.Series([], dtype='object')] SQL_MOLECULAR_PROP = """ SELECT md.molregno as molregno, md.chembl_id, cp.*, cs.* FROM compound_properties cp, compound_structures cs, molecule_dictionary md WHERE cp.molregno = md.molregno AND md.molregno = cs.molregno AND md.molregno in (%s) """ # DEPRECATED. Please add code to DAO classes. class ChEmblData(object, metaclass=Singleton): def __init__(self, fp_type): context = Context() db_file = context.get_config('data_mount_path', default='/data') db_file = os.path.join(db_file, 'db/chembl_27.db') if not os.path.exists(db_file): logger.error('%s not found', db_file) raise Exception('{} not found'.format(db_file)) self.fp_type = fp_type self.chembl_db = 'file:%s?mode=ro' % db_file logger.info('ChEMBL database: %s...' % self.chembl_db) def fetch_props_by_molregno(self, molregnos): """ Returns compound properties and structure filtered by ChEMBL IDs along with a list of columns. """ with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = SQL_MOLECULAR_PROP % " ,".join(list(map(str, molregnos))) cur.execute(select_stmt) cols = list(map(lambda x: x[0], cur.description)) return cols, cur.fetchall() def fetch_props_by_chemble(self, chemble_ids): """ Returns compound properties and structure filtered by ChEMBL IDs along with a list of columns. """ sql_stml = """ SELECT md.molregno as molregno, md.chembl_id, cp.*, cs.* FROM compound_properties cp, compound_structures cs, molecule_dictionary md WHERE cp.molregno = md.molregno AND md.molregno = cs.molregno AND md.chembl_id in (%s) """ with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = sql_stml % "'%s'" % "','".join([x.strip().upper() for x in chemble_ids]) cur.execute(select_stmt) cols = list(map(lambda x: x[0], cur.description)) return cols, cur.fetchall() def fetch_molregno_by_chemblId(self, chemblIds): logger.debug('Fetch ChEMBL ID using molregno...') with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = ''' SELECT md.molregno as molregno FROM compound_properties cp, compound_structures cs, molecule_dictionary md WHERE cp.molregno = md.molregno AND md.molregno = cs.molregno AND md.chembl_id in (%s) ''' % "'%s'" % "','".join(chemblIds) cur.execute(select_stmt) return cur.fetchall() def fetch_id_from_chembl(self, new_molecules: List): logger.debug('Fetch ChEMBL ID using molregno...') with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = ''' SELECT cs.molregno as molregno, md.chembl_id as chembl_id, cs.canonical_smiles as smiles FROM compound_structures cs, molecule_dictionary md WHERE md.molregno = cs.molregno AND md.chembl_id in (%s) ''' % "'%s'" % "','".join([x.strip().upper() for x in new_molecules]) cur.execute(select_stmt) return cur.fetchall() def fetch_chemblId_by_molregno(self, molregnos): logger.debug('Fetch ChEMBL ID using molregno...') with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = ''' SELECT md.chembl_id as chembl_id FROM molecule_dictionary md WHERE md.molregno in (%s) ''' % ", ".join(list(map(str, molregnos))) cur.execute(select_stmt) return cur.fetchall() def fetch_approved_drugs(self): """Fetch approved drugs with phase >=3 as dataframe Args: chembl_db_path (string): path to chembl sqlite database Returns: pd.DataFrame: dataframe containing SMILES strings and molecule index """ logger.debug('Fetching ChEMBL approved drugs...') with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = """SELECT di.molregno, cs.canonical_smiles, di.max_phase_for_ind FROM drug_indication AS di LEFT JOIN compound_structures AS cs ON di.molregno = cs.molregno WHERE di.max_phase_for_ind >= 3 AND cs.canonical_smiles IS NOT NULL;""" cur.execute(select_stmt) return cur.fetchall() def fetch_random_samples(self, num_samples, max_len): """Fetch random samples from ChEMBL as dataframe Args: num_samples (int): number of samples to select chembl_db_path (string): path to chembl sqlite database Returns: pd.DataFrame: dataframe containing SMILES strings and molecule index """ logger.debug('Fetching ChEMBL random samples...') with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = """SELECT cs.molregno, cs.canonical_smiles, LENGTH(cs.canonical_smiles) as len FROM compound_structures AS cs WHERE cs.canonical_smiles IS NOT NULL AND len <= """ + f'{max_len}' + """ ORDER BY RANDOM() LIMIT """ + f'{num_samples};' cur.execute(select_stmt) return cur.fetchall() def fetch_molecule_cnt(self): logger.debug('Finding number of molecules...') with closing(sqlite3.connect(self.chembl_db, uri=True)) as con, con, \ closing(con.cursor()) as cur: select_stmt = ''' SELECT count(*) FROM compound_properties cp, molecule_dictionary md, compound_structures cs WHERE cp.molregno = md.molregno AND md.molregno = cs.molregno ''' cur.execute(select_stmt) return cur.fetchone()[0] def _meta_df(self, **transformation_kwargs): transformation = self.fp_type(**transformation_kwargs) prop_meta = {'id': pandas.Series([], dtype='int64')} prop_meta.update(dict(zip(IMP_PROPS + ADDITIONAL_FEILD, IMP_PROPS_TYPE + ADDITIONAL_FEILD_TYPE))) prop_meta.update({i: pandas.Series([], dtype='float32') for i in range(len(transformation))}) return pandas.DataFrame(prop_meta) def _fetch_mol_embedding(self, start=0, batch_size=BATCH_SIZE, molregnos=None, **transformation_kwargs): """ Returns compound properties and structure for the first N number of records in a dataframe. """ logger.info('Fetching %d records starting %d...' % (batch_size, start)) imp_cols = ['cp.' + col for col in IMP_PROPS] if molregnos is None: select_stmt = ''' SELECT md.molregno, %s, cs.canonical_smiles FROM compound_properties cp, molecule_dictionary md, compound_structures cs WHERE cp.molregno = md.molregno AND md.molregno = cs.molregno LIMIT %d, %d ''' % (', '.join(imp_cols), start, batch_size) else: select_stmt = ''' SELECT md.molregno, %s, cs.canonical_smiles FROM compound_properties cp, molecule_dictionary md, compound_structures cs WHERE cp.molregno = md.molregno AND md.molregno = cs.molregno AND md.molregno in (%s) LIMIT %d, %d ''' % (', '.join(imp_cols), " ,".join(list(map(str, molregnos))), start, batch_size) df = pandas.read_sql(select_stmt, sqlite3.connect(self.chembl_db, uri=True)) # Smiles -> Smiles transformation and filtering # TODO: Discuss internally to find use or refactor this code to remove # model specific filtering df['transformed_smiles'] = df['canonical_smiles'] # if smiles_transforms is not None: # if len(smiles_transforms) > 0: # for xf in smiles_transforms: # df['transformed_smiles'] = df['transformed_smiles'].map(xf.transform) # df.dropna(subset=['transformed_smiles'], axis=0, inplace=True) # Conversion to fingerprints or embeddings # transformed_smiles = df['transformed_smiles'] transformation = self.fp_type(**transformation_kwargs) cache_data = transformation.transform(df) return_df = pandas.DataFrame(cache_data) return_df = pandas.DataFrame( return_df, columns=pandas.RangeIndex(start=0, stop=len(transformation))).astype('float32') return_df = df.merge(return_df, left_index=True, right_index=True) return_df.rename(columns={'molregno': 'id'}, inplace=True) return return_df def fetch_mol_embedding(self, num_recs=None, batch_size=BATCH_SIZE, molregnos=None, **transformation_kwargs): """ Returns compound properties and structure for the first N number of records in a dataframe. """ logger.debug('Fetching properties for all molecules...') if num_recs is None or num_recs < 0: num_recs = self.fetch_molecule_cnt() logger.info('num_recs %d', num_recs) logger.info('batch_size %d', batch_size) meta_df = self._meta_df(**transformation_kwargs) dls = [] for start in range(0, num_recs, batch_size): bsize = min(num_recs - start, batch_size) dl_data = delayed(self._fetch_mol_embedding)(start=start, batch_size=bsize, molregnos=molregnos, **transformation_kwargs) dls.append(dl_data) return dataframe.from_delayed(dls, meta=meta_df) def save_fingerprints(self, hdf_path='data/filter_*.h5', num_recs=None, batch_size=5000): """ Generates fingerprints for all ChEMBL ID's in the database """ logger.debug('Fetching molecules from database for fingerprints...') mol_df = self.fetch_mol_embedding(num_recs=num_recs, batch_size=batch_size) mol_df.to_hdf(hdf_path, 'fingerprints')
39.202492
101
0.565559
11,324
0.899873
0
0
0
0
0
0
5,663
0.450016
7b0dd834a233f033a4537593bd1c545e5c4ea02a
769
py
Python
tests/app/users/migrations/0001_initial.py
silverlogic/djangorestframework-timed-auth-token
0884559c6b5e4021d7a8830ec5dd60f2799d0ee4
[ "MIT" ]
34
2015-05-22T00:02:49.000Z
2021-12-29T11:42:31.000Z
tests/app/users/migrations/0001_initial.py
silverlogic/djangorestframework-timed-auth-token
0884559c6b5e4021d7a8830ec5dd60f2799d0ee4
[ "MIT" ]
6
2015-05-22T00:04:50.000Z
2021-06-10T17:49:38.000Z
tests/app/users/migrations/0001_initial.py
silverlogic/djangorestframework-timed-auth-token
0884559c6b5e4021d7a8830ec5dd60f2799d0ee4
[ "MIT" ]
6
2015-05-25T17:44:50.000Z
2020-12-05T14:48:53.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', auto_created=True, primary_key=True)), ('password', models.CharField(verbose_name='password', max_length=128)), ('last_login', models.DateTimeField(verbose_name='last login', null=True, blank=True)), ('identifier', models.CharField(unique=True, max_length=40)), ], options={ 'abstract': False, }, ), ]
29.576923
114
0.574772
660
0.858257
0
0
0
0
0
0
109
0.141743
7b0e27fa7adc3752fa6c840a8e64f5d20d45801c
370
py
Python
PyObjCTest/test_nsmachport.py
Khan/pyobjc-framework-Cocoa
f8b015ea2a72d8d78be6084fb12925c4785b8f1f
[ "MIT" ]
132
2015-01-01T10:02:42.000Z
2022-03-09T12:51:01.000Z
mac/pyobjc-framework-Cocoa/PyObjCTest/test_nsmachport.py
mba811/music-player
7998986b34cfda2244ef622adefb839331b81a81
[ "BSD-2-Clause" ]
6
2015-01-06T08:23:19.000Z
2019-03-14T12:22:06.000Z
mac/pyobjc-framework-Cocoa/PyObjCTest/test_nsmachport.py
mba811/music-player
7998986b34cfda2244ef622adefb839331b81a81
[ "BSD-2-Clause" ]
27
2015-02-23T11:51:43.000Z
2022-03-07T02:34:18.000Z
from PyObjCTools.TestSupport import * import objc import Foundation if hasattr(Foundation, 'NSMachPort'): class TestNSMachPort(TestCase): def testAlloc(self): obj = Foundation.NSMachPort.alloc() self.assertIsNot(obj, None) obj = obj.init() self.assertIsNot(obj, None) if __name__ == '__main__': main( )
23.125
47
0.632432
218
0.589189
0
0
0
0
0
0
22
0.059459
7b13d630c689e01a72a9bc979b93bb26fb000d70
7,125
py
Python
harmony.py
cyrushadavi/home_automation
dcf1dcc688b5021a0c16e68e372e38a28d819f3d
[ "MIT" ]
null
null
null
harmony.py
cyrushadavi/home_automation
dcf1dcc688b5021a0c16e68e372e38a28d819f3d
[ "MIT" ]
null
null
null
harmony.py
cyrushadavi/home_automation
dcf1dcc688b5021a0c16e68e372e38a28d819f3d
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 """Command line utility for querying the Logitech Harmony.""" import argparse import logging import json import sys import auth import client as harmony_client LOGGER = logging.getLogger(__name__) def login_to_logitech(args): """Logs in to the Logitech service. Args: args: argparse arguments needed to login. Returns: Session token that can be used to log in to the Harmony device. """ token = auth.login(args.email, args.password) if not token: sys.exit('Could not get token from Logitech server.') session_token = auth.swap_auth_token( args.harmony_ip, args.harmony_port, token) if not session_token: sys.exit('Could not swap login token for session token.') return session_token def pprint(obj): """Pretty JSON dump of an object.""" print(json.dumps(obj, sort_keys=True, indent=4, separators=(',', ': '))) def get_client(args): """Connect to the Harmony and return a Client instance.""" token = login_to_logitech(args) client = harmony_client.create_and_connect_client( args.harmony_ip, args.harmony_port, token) return client def show_config(args): """Connects to the Harmony and prints its configuration.""" client = get_client(args) pprint(client.get_config()) client.disconnect(send_close=True) return 0 def show_current_activity(args): """Connects to the Harmony and prints the current activity block from the config.""" client = get_client(args) config = client.get_config() current_activity_id = client.get_current_activity() activity = [x for x in config['activity'] if int(x['id']) == current_activity_id][0] pprint(activity) client.disconnect(send_close=True) return 0 def sync(args): """Connects to the Harmony and syncs it. """ client = get_client(args) client.sync() client.disconnect(send_close=True) return 0 def turn_off(args): """Sends a 'turn off' command to the harmony, which is the activity '-1'.""" args.activity = '-1' start_activity(args) def start_activity(args): """Connects to the Harmony and switches to a different activity, specified as an id or label.""" client = get_client(args) config = client.get_config() print args activity_off = False activity_numeric = False activity_id = None activity_label = None try: activity_off = float(args.activity) == -1 activity_id = int(float(args.activity)) activity_numeric = True except ValueError: activity_off = args.activity.lower() == 'turn off' activity_label = str(args.activity) if activity_off: activity = [{'id': -1, 'label': 'Turn Off'}] else: activity = [x for x in config['activity'] if (activity_numeric and int(x['id']) == activity_id) or x['label'].lower() == activity_label ] if not activity: LOGGER.error('could not find activity: ' + args.activity) client.disconnect(send_close=True) return 1 activity = activity[0] client.start_activity(int(activity['id'])) LOGGER.info("started activity: '%s' of id: '%s'" % (activity['label'], activity['id'])) client.disconnect(send_close=True) return 0 def send_command(args): """Connects to the Harmony and send a simple command.""" client = get_client(args) config = client.get_config() device = args.device if args.device_id is None else args.device_id device_numeric = None try: device_numeric = int(float(device)) except ValueError: pass device_config = [x for x in config['device'] if device.lower() == x['label'].lower() or ((device_numeric is not None) and device_numeric == int(x['id']))] if not device_config: LOGGER.error('could not find device: ' + device) client.disconnect(send_close=True) return 1 device_id = int(device_config[0]['id']) client.send_command(device_id, args.command) client.disconnect(send_close=True) return 0 def main(): """Main method for the script.""" parser = argparse.ArgumentParser( description='pyharmony utility script', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Required flags go here. required_flags = parser.add_argument_group('required arguments') required_flags.add_argument('--email', required=True, help=( 'Logitech username in the form of an email address.')) required_flags.add_argument( '--password', required=True, help='Logitech password.') required_flags.add_argument( '--harmony_ip', required=True, help='IP Address of the Harmony device.') # Flags with defaults go here. parser.add_argument('--harmony_port', default=5222, type=int, help=( 'Network port that the Harmony is listening on.')) loglevels = dict((logging.getLevelName(level), level) for level in [10, 20, 30, 40, 50]) parser.add_argument('--loglevel', default='INFO', choices=loglevels.keys(), help='Logging level to print to the console.') subparsers = parser.add_subparsers() show_config_parser = subparsers.add_parser( 'show_config', help='Print the Harmony device configuration.') show_config_parser.set_defaults(func=show_config) show_activity_parser = subparsers.add_parser( 'show_current_activity', help='Print the current activity config.') show_activity_parser.set_defaults(func=show_current_activity) start_activity_parser = subparsers.add_parser( 'start_activity', help='Switch to a different activity.') start_activity_parser.add_argument( 'activity', help='Activity to switch to, id or label.') start_activity_parser.set_defaults(func=start_activity) sync_parser = subparsers.add_parser( 'sync', help='Sync the harmony.') sync_parser.set_defaults(func=sync) turn_off_parser = subparsers.add_parser( 'turn_off', help='Send a turn off command to the harmony.') turn_off_parser.set_defaults(func=turn_off) command_parser = subparsers.add_parser( 'send_command', help='Send a simple command.') command_parser.add_argument('--command', help='IR Command to send to the device.', required=True) device_arg_group = command_parser.add_mutually_exclusive_group(required=True) device_arg_group.add_argument('--device_id', help='Specify the device id to which we will send the command.') device_arg_group.add_argument('--device', help='Specify the device id or label to which we will send the command.') command_parser.set_defaults(func=send_command) args = parser.parse_args() logging.basicConfig( level=loglevels[args.loglevel], format='%(levelname)s:\t%(name)s\t%(message)s') sys.exit(args.func(args)) if __name__ == '__main__': main()
29.442149
107
0.663719
0
0
0
0
0
0
0
0
2,051
0.28786
7b15f666dd8b6c5e2030f1efa5c2aa16458ac78c
14,567
py
Python
workshop/static/Reliability/300_Testing_for_Resiliency_of_EC2_RDS_and_S3/Code/Python/WebAppLambda/deploy_web_lambda.py
sykang808/aws-well-architected-labs-kor
da021a9f7501088f871b08560673deac4488eef4
[ "Apache-2.0" ]
null
null
null
workshop/static/Reliability/300_Testing_for_Resiliency_of_EC2_RDS_and_S3/Code/Python/WebAppLambda/deploy_web_lambda.py
sykang808/aws-well-architected-labs-kor
da021a9f7501088f871b08560673deac4488eef4
[ "Apache-2.0" ]
null
null
null
workshop/static/Reliability/300_Testing_for_Resiliency_of_EC2_RDS_and_S3/Code/Python/WebAppLambda/deploy_web_lambda.py
sykang808/aws-well-architected-labs-kor
da021a9f7501088f871b08560673deac4488eef4
[ "Apache-2.0" ]
null
null
null
# # MIT No Attribution # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from __future__ import print_function from botocore.exceptions import ClientError import os import sys import logging import traceback import boto3 import json LOG_LEVELS = {'CRITICAL': 50, 'ERROR': 40, 'WARNING': 30, 'INFO': 20, 'DEBUG': 10} stackname = 'WebServersForResiliencyTesting' AWS_REGION = 'us-east-2' ARCH_TO_AMI_NAME_PATTERN = { # Architecture: (pattern, owner) "PV64": ("amzn2-ami-pv*.x86_64-ebs", "amazon"), "HVM64": ("amzn2-ami-hvm-*-x86_64-gp2", "amazon"), "HVMG2": ("amzn2-ami-graphics-hvm-*x86_64-ebs*", "679593333241") } def init_logging(): # Setup loggin because debugging with print can get ugly. logger = logging.getLogger() logger.setLevel(logging.DEBUG) logging.getLogger("boto3").setLevel(logging.WARNING) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('nose').setLevel(logging.WARNING) return logger def setup_local_logging(logger, log_level='INFO'): # Set the Logger so if running locally, it will print out to the main screen. handler = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s %(name)-12s %(levelname)-8s %(message)s' ) handler.setFormatter(formatter) logger.addHandler(handler) if log_level in LOG_LEVELS: logger.setLevel(LOG_LEVELS[log_level]) else: logger.setLevel(LOG_LEVELS['INFO']) return logger def set_log_level(logger, log_level='INFO'): # There is some stuff that needs to go here. if log_level in LOG_LEVELS: logger.setLevel(LOG_LEVELS[log_level]) else: logger.setLevel(LOG_LEVELS['INFO']) return logger def process_global_vars(): logger.info("Processing variables from environment.") try: global stackname stackname = 'WebServersForResiliencyTesting' except SystemExit: sys.exit(1) except Exception: logger.error("Unexpected error!\n Stack Trace:", traceback.format_exc()) def find_latest_ami_name(region, arch): assert region, "Region is not defined" assert arch, "Architecture is not defined" assert arch in ARCH_TO_AMI_NAME_PATTERN, \ "Architecture must be one of {}".format( ARCH_TO_AMI_NAME_PATTERN.keys()) pattern, owner = ARCH_TO_AMI_NAME_PATTERN[arch] ec2 = boto3.client("ec2", region_name=region) images = ec2.describe_images( Filters=[dict( Name="name", Values=[pattern] )], Owners=[owner] ).get("Images", []) assert images, "No images were found" sorted_images = sorted( images, key=lambda image: image["CreationDate"], reverse=True ) latest_image = sorted_images[0] return latest_image["ImageId"] def find_in_outputs(outputs, key_to_find): output_string = None for output in outputs: if (output['OutputKey'] == key_to_find): output_string = output['OutputValue'] break return output_string def get_password_from_ssm(parameter_name, region): client = boto3.client('ssm', region_name=region) logger.debug("Getting pwd from SSM parameter store.") value = client.get_parameter( Name=parameter_name, WithDecryption=True ) return value['Parameter']['Value'] def deploy_web_servers(event): logger.debug("Running function deploy_web_servers") try: region = event['region_name'] cfn_region = event['cfn_region'] bucket = event['cfn_bucket'] key_prefix = event['folder'] except Exception: region = os.environ.get('AWS_REGION', AWS_REGION) cfn_region = os.environ.get('AWS_REGION', AWS_REGION) bucket = "arc327-well-architected-for-reliability", key_prefix = "/" # Create CloudFormation client client = boto3.client('cloudformation', region) # Get the S3 bucket the boot script is in, and the object to retrieve and the image to display boot_bucket = event['boot_bucket'] boot_prefix = event['boot_prefix'] if 'boot_object' in event: boot_object = event['boot_object'] else: boot_object = None websiteimage = event['websiteimage'] # Get the outputs of the VPC stack vpc_stack = event['vpc']['stackname'] try: stack_response = client.describe_stacks(StackName=vpc_stack) stack_list = stack_response['Stacks'] if (len(stack_list) < 1): logger.debug("Cannot find stack named " + vpc_stack + ", so cannot parse outputs as inputs") sys.exit(1) except Exception: logger.debug("Cannot find stack named " + vpc_stack + ", so cannot parse outputs as inputs") sys.exit(1) vpc_outputs = stack_list[0]['Outputs'] try: workshop_name = event['workshop'] except Exception: logger.debug("Unexpected error!\n Stack Trace:", traceback.format_exc()) workshop_name = 'UnknownWorkshop' # Create the list of subnets to pass igw_subnets = find_in_outputs(vpc_outputs, 'IGWSubnets') private_subnets = find_in_outputs(vpc_outputs, 'PrivateSubnets') # Get the VPC vpcid = find_in_outputs(vpc_outputs, 'VPC') # Get the list of security groups to pass elb_sg = find_in_outputs(vpc_outputs, 'WebELBSecurityGroup') web_sg = find_in_outputs(vpc_outputs, 'WebSecurityGroup') bastion_sg = find_in_outputs(vpc_outputs, 'BastionSecurityGroup') webserver_sg_list = web_sg + ',' + bastion_sg # Run in zones a, b, and c azs = region + "a," + region + "b," + region + "c" # Get the latest AMI latest_ami = find_latest_ami_name(region, "HVM64") # Get the outputs of the RDS stack rds_stack = event['rds']['stackname'] try: stack_response = client.describe_stacks(StackName=rds_stack) stack_list = stack_response['Stacks'] if (len(stack_list) < 1): logger.debug("Cannot find stack named " + rds_stack + ", so cannot parse outputs as inputs") sys.exit(1) except Exception: logger.debug("Cannot find stack named " + rds_stack + ", so cannot parse outputs as inputs") sys.exit(1) try: workshop_name = event['workshop'] except Exception: workshop_name = 'UnknownWorkshop' rds_outputs = stack_list[0]['Outputs'] # Get the hostname of the RDS host rds_host = find_in_outputs(rds_outputs, 'DBAddress') rds_password = get_password_from_ssm(workshop_name, region) # Prepare the stack parameters webserver_parameters = [] webserver_parameters.append({'ParameterKey': 'VPCID', 'ParameterValue': vpcid, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebServerSecurityGroups', 'ParameterValue': webserver_sg_list, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebLoadBalancerSG', 'ParameterValue': elb_sg, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebLoadBalancerSubnets', 'ParameterValue': igw_subnets, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebServerSubnets', 'ParameterValue': private_subnets, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebServerInstanceType', 'ParameterValue': 't2.micro', 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebServerAMI', 'ParameterValue': latest_ami, 'UsePreviousValue': False}) webserver_parameters.append({'ParameterKey': 'AvailabilityZones', 'ParameterValue': azs, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'BootBucketRegion', 'ParameterValue': cfn_region, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'BootBucket', 'ParameterValue': boot_bucket, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'BootPrefix', 'ParameterValue': boot_prefix, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'WebSiteImage', 'ParameterValue': websiteimage, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'RDSHostName', 'ParameterValue': rds_host, 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'RDSUser', 'ParameterValue': 'admin', 'UsePreviousValue': True}) webserver_parameters.append({'ParameterKey': 'RDSPassword', 'ParameterValue': rds_password, 'UsePreviousValue': False}) # If Boot Object is supplied then use it, otherwise CloudFormation template will use Parameter default if boot_object is not None: webserver_parameters.append({'ParameterKey': 'BootObject', 'ParameterValue': boot_object, 'UsePreviousValue': True}) stack_tags = [] stack_tags.append({'Key': 'Workshop', 'Value': 'AWSWellArchitectedReliability' + workshop_name}) capabilities = [] capabilities.append('CAPABILITY_NAMED_IAM') web_template_s3_url = "https://s3." + cfn_region + ".amazonaws.com/" + bucket + "/" + key_prefix + "web_server_autoscaling.json" client.create_stack( StackName=stackname, TemplateURL=web_template_s3_url, Parameters=webserver_parameters, DisableRollback=False, TimeoutInMinutes=10, Capabilities=capabilities, Tags=stack_tags ) return_dict = {'stackname': stackname} return return_dict def check_stack(region, stack_name): # Create CloudFormation client logger.debug("Running function check_stack in region " + region) logger.debug("Running function check_stack on stack " + stack_name) client = boto3.client('cloudformation', region) # See if you can retrieve the stack try: stack_response = client.describe_stacks(StackName=stack_name) stack_list = stack_response['Stacks'] if (len(stack_list) < 1): logger.debug("No Stack named " + stack_name) return False logger.debug("Found stack named " + stack_name) logger.debug("Status: " + stack_list[0]['StackStatus']) return True except ClientError as e: # If the exception is that it doesn't exist, then check the client error before returning a value if (e.response['Error']['Code'] == 'ValidationError'): return False else: logger.debug("Stack will not be created: Unexpected exception found looking for stack named " + stack_name) logger.debug("Client error:" + str(e.response)) return True except Exception: logger.debug("Stack will not be created: Unexpected exception found looking for stack named " + stack_name) print("Stack Trace:", traceback.format_exc()) return True def status_complete(status): return status == 'UPDATE_COMPLETE' or status == 'CREATE_COMPLETE' or status == 'UPDATE_ROLLBACK_COMPLETE' def lambda_handler(event, context): try: global logger logger = init_logging() logger = set_log_level(logger, os.environ.get('log_level', event['log_level'])) logger.debug("Running function lambda_handler") logger.info('event:') logger.info(json.dumps(event)) if (context != 0): logger.info('context.log_stream_name:' + context.log_stream_name) logger.info('context.log_group_name:' + context.log_group_name) logger.info('context.aws_request_id:' + context.aws_request_id) else: logger.info("No Context Object!") process_global_vars() # Check to see if the previous stack was actually created vpc_stack_status = event['vpc']['status'] if (status_complete(vpc_stack_status)): rds_stack_status = event['rds']['status'] if (status_complete(rds_stack_status)): if not check_stack(event['region_name'], stackname): logger.debug("Stack " + stackname + " doesn't exist; creating") return deploy_web_servers(event) else: logger.debug("Stack " + stackname + " exists") return_dict = {'stackname': stackname} return return_dict else: logger.debug("RDS Stack was not completely created: status = " + rds_stack_status) sys.exit(1) else: logger.debug("VPC Stack was not completely created: status = " + vpc_stack_status) sys.exit(1) except SystemExit: logger.error("Exiting") sys.exit(1) except ValueError: exit(1) except Exception: print("Unexpected error!\n Stack Trace:", traceback.format_exc()) exit(0) if __name__ == "__main__": logger = init_logging() event = { 'vpc': { 'stackname': 'ResiliencyVPC', 'status': 'CREATE_COMPLETE' }, 'rds': { 'stackname': 'MySQLforResiliencyTesting', 'status': 'CREATE_COMPLETE' }, 'log_level': 'DEBUG', 'region_name': 'ap-northeast-2', 'cfn_region': 'us-east-2', 'cfn_bucket': 'aws-well-architected-labs-ohio', 'folder': 'Reliability/', 'boot_bucket': 'aws-well-architected-labs-ohio', 'boot_prefix': 'Reliability/', 'boot_object': 'bootstrapARC327.sh', 'websiteimage': 'https://s3.us-east-2.amazonaws.com/arc327-well-architected-for-reliability/Cirque_of_the_Towers.jpg', 'workshop': 'LondonSummit' } os.environ['log_level'] = os.environ.get('log_level', event['log_level']) logger = setup_local_logging(logger, os.environ['log_level']) # Add default level of debug for local execution lambda_handler(event, 0)
39.800546
139
0.674126
0
0
0
0
0
0
0
0
5,878
0.403515
7b16d187420b13711f7fff210fdd319f14807224
483
py
Python
URI/1024.py
leilaapsilva/BabySteps
32b1e6439fa3be49c93a3cae0b4fbd0f03a713be
[ "MIT" ]
37
2020-10-01T03:50:42.000Z
2021-11-23T00:49:51.000Z
URI/1024.py
leilaapsilva/BabySteps
32b1e6439fa3be49c93a3cae0b4fbd0f03a713be
[ "MIT" ]
27
2020-10-03T23:16:13.000Z
2021-11-19T19:53:01.000Z
URI/1024.py
leilaapsilva/BabySteps
32b1e6439fa3be49c93a3cae0b4fbd0f03a713be
[ "MIT" ]
97
2020-10-01T11:39:01.000Z
2021-11-01T00:30:53.000Z
alpha = "abcdefghijklmnopqrstuvwxyz" n = int(raw_input()) for i in xrange(n): word = raw_input() aux_word = "" first_part = "" second_part = "" for j in xrange(len(word)-1, -1, -1): if(word[j].lower() in alpha): aux_word += chr(ord(word[j]) + 3) else: aux_word += word[j] middle = (len(word)/2) first_part = aux_word[0:middle] for k in xrange((len(aux_word)/2), len(aux_word)): second_part += chr(ord(aux_word[k]) -1) print first_part + second_part
21
51
0.6294
0
0
0
0
0
0
0
0
34
0.070393
7b17163e98fca69e6d9d2a2ecd44f5b5e78cfd5c
6,095
py
Python
Coursework 2/nn_preprocess.py
martinferianc/Pattern-Recognition-EIE4
412d437582b236dadd81c0621935f6b3bd5dbad5
[ "MIT" ]
1
2019-08-20T11:17:56.000Z
2019-08-20T11:17:56.000Z
Coursework 2/nn_preprocess.py
martinferianc/Pattern-Recognition-EIE4
412d437582b236dadd81c0621935f6b3bd5dbad5
[ "MIT" ]
null
null
null
Coursework 2/nn_preprocess.py
martinferianc/Pattern-Recognition-EIE4
412d437582b236dadd81c0621935f6b3bd5dbad5
[ "MIT" ]
null
null
null
import numpy as np # For file manipulation and locating import os # For the progress bar from tqdm import tqdm # To create a deep copy of the data import copy # To load the pre-processed and split data from pre_process import load_data as ld # For normalization of the samples from sklearn.preprocessing import normalize # We define some constant that we reuse PROCESSED_DIR = "data/processed/" def save_data(data, file_path, name): """ Saves the data given the name and the file path Parameters ---------- data: numpy matrix Data matrix with features file_path: str File path where the file should be saved name: str Specific name of the given file """ np.save(file_path + "{}.npy".format(name),data) def preprocess(X, Y, size = 100000,lower_bound=0, upper_bound = 7368,samples = 10, same_class=0.4, different = 0.5, penalty = 10, same_class_penalty=1): """ Preprocessed the dataset It creates two lists X,Y It randomly chooses a sample from the input list and then that sample is repeated in total * samples time For each repeated sample it finds a portion of images corresponding to different labels, images corresponding to the same class and a certain portion of identities based on the class membership a penalty is applied or not Parameters ---------- X: numpy array of features Numpy array of features from which the pairs are created Y: numpy array Numpy array of corresponding labels Returns ------- X_selected: numpy array Numpy array of the first input in the pairs Y_selected: numpy array Numpy array of the second input in the pairs values: numpy array Artificially determined distances """ X = normalize(X, axis=1) N,F = X.shape X_selected = [] Y_selected = [] values = [] C = int(samples*same_class) D = int(samples*different) selected_i = [] for i in tqdm(range(int(size/samples))): # Randomly select a sample but do not repeat it with respect ot previous samples random_i = np.random.randint(lower_bound,upper_bound) while random_i in selected_i: random_i = np.random.randint(lower_bound,upper_bound) selected_i.append(random_i) C_counter = 0 D_counter = 0 offset = 0 # Add samples which correspond to different label than the original image selected_j = [] while D_counter<D: random_j = np.random.randint(lower_bound,upper_bound) while random_j in selected_j: random_j = np.random.randint(lower_bound,upper_bound) if Y[random_i] != Y[random_j]: D_counter+=1 offset+=1 X_selected.append(copy.deepcopy(X[random_i])) Y_selected.append(copy.deepcopy(X[random_j])) values.append(penalty) selected_j.append(random_j) # Add samples which correspond to the same class selected_j = [] while C_counter<C: low = 0 high = N if random_i-10>lower_bound: low = random_i-10 if random_i+10<upper_bound: high = random_i+10 random_j = np.random.randint(lower_bound,upper_bound) while random_j in selected_j: random_j = np.random.randint(lower_bound,upper_bound) if Y[random_i] == Y[random_j] and random_i!=random_j: C_counter+=1 offset +=1 X_selected.append(copy.deepcopy(X[random_i])) Y_selected.append(copy.deepcopy(X[random_j])) values.append(same_class_penalty) selected_j.append(random_j) # Fill in the rest with identities while offset < samples: X_selected.append(copy.deepcopy(X[random_i])) Y_selected.append(copy.deepcopy(X[random_i])) offset+=1 values.append(0) indeces = np.random.choice(size, size=size, replace=False) X_selected = np.array(X_selected) Y_selected = np.array(Y_selected) values = np.array(values) return [X_selected[indeces], Y_selected[indeces], values[indeces]] def load_data(retrain=False): """ Load the cached data or call preprocess() to generate new data Parameters ---------- None Returns ------- all_data: list * All the data split into lists of [features, labels] """ all_data = ld(False) training_data = all_data[0] Y = training_data[1] X = training_data[0] if retrain is True: print("Generating new data...") X_train, Y_train, values_train = preprocess(X,Y, 40000, 0, 6379,samples = 10, same_class=0.4, different = 0.5, penalty = 1,same_class_penalty=0) X_validation, Y_validation, values_validation = preprocess(X,Y, 7500, 6380,samples = 10, same_class=0.2, different = 0.7, penalty = 1, same_class_penalty=0) save_data(X_train,PROCESSED_DIR,"training_nn_X") save_data(Y_train,PROCESSED_DIR,"training_nn_Y") save_data(values_train,PROCESSED_DIR,"training_nn_values") save_data(X_validation,PROCESSED_DIR,"validation_nn_X") save_data(Y_validation,PROCESSED_DIR,"validation_nn_Y") save_data(values_validation,PROCESSED_DIR,"validation_nn_values") return [X_train, Y_train, values_train, X_validation, Y_validation, values_validation] else: print("Loading data...") data = [] data.append(np.load(PROCESSED_DIR + "training_nn_X.npy")) data.append(np.load(PROCESSED_DIR + "training_nn_Y.npy")) data.append(np.load(PROCESSED_DIR + "training_nn_values.npy")) data.append(np.load(PROCESSED_DIR + "validation_nn_X.npy")) data.append(np.load(PROCESSED_DIR + "validation_nn_Y.npy")) data.append(np.load(PROCESSED_DIR + "validation_nn_values.npy")) return data if __name__ == '__main__': load_data(retrain=True)
33.674033
164
0.642986
0
0
0
0
0
0
0
0
2,136
0.350451
7b180f7965af3a7127ae86b77bf7384badafe436
776
py
Python
src/main.py
M10han/image-scores
509e2e9f9d3a484631a97a2e025849c266f71c43
[ "MIT" ]
null
null
null
src/main.py
M10han/image-scores
509e2e9f9d3a484631a97a2e025849c266f71c43
[ "MIT" ]
1
2021-06-08T21:41:19.000Z
2021-06-08T21:41:19.000Z
src/main.py
M10han/image-scores
509e2e9f9d3a484631a97a2e025849c266f71c43
[ "MIT" ]
null
null
null
import pandas as pd import time from image_matcher import read_image, bjorn_score def main(data_location='../data/', data_file='input.csv'): df = pd.read_csv(data_location + data_file) score_list, runtime_list = [], [] for idx, row in df.iterrows(): image1_file, image2_file = data_location + \ row.image1, data_location + row.image2 image1 = read_image(image1_file) image2 = read_image(image2_file) start = time.time() score = bjorn_score(image1, image2) end = time.time() score_list.append(score) runtime_list.append(f"{end-start:9f}") df['similar'] = score_list df['elapsed'] = runtime_list df.to_csv('output.csv', index=False) if __name__ == "__main__": main()
26.758621
58
0.643041
0
0
0
0
0
0
0
0
78
0.100515
7b1892266415333934744e874665f21d627beb7f
2,006
py
Python
build/lib.linux-x86_64-2.7/biograder/Encryptor.py
PayneLab/GenericDataAPI
9469328c4f845fbf8d97b5d80ad2077c9f927022
[ "MIT" ]
2
2021-04-25T18:36:29.000Z
2021-05-14T15:34:59.000Z
build/lib.linux-x86_64-2.7/biograder/Encryptor.py
PayneLab/GenericDataAPI
9469328c4f845fbf8d97b5d80ad2077c9f927022
[ "MIT" ]
null
null
null
build/lib.linux-x86_64-2.7/biograder/Encryptor.py
PayneLab/GenericDataAPI
9469328c4f845fbf8d97b5d80ad2077c9f927022
[ "MIT" ]
2
2020-11-23T02:09:57.000Z
2021-08-13T21:57:03.000Z
from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives import serialization class Encryptor: def __init__(self): #Todo: read key from file self.public_key = self.getKey() pass def getKey(self): with open("public_key.pem", "rb") as key_file: public_key = serialization.load_pem_public_key( key_file.read(), backend=default_backend() ) return public_key def uploadToBox(self, raw_file): #need to parse out answers and encrypt them #create new file and push the encrypted answers (and hints to separate file unencrypted) pass def encrypt(self, raw_data): print(raw_data) #below posed as a possible alternative #pow(message, public.e, public.n) encrypted = self.public_key.encrypt( raw_data, padding.OAEP( #mgf=padding.MGF1(algorithm=hashes.SHA256()), mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) return encrypted #only called once ever! don't want more than one set of keys def saveKey(self, public_key, private_key): pem = public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) with open('public_key.pem', 'wb') as f: f.write(pem) pem = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption() ) with open('private_key.pem', 'wb') as f: f.write(pem)
31.84127
97
0.602193
1,766
0.880359
0
0
0
0
0
0
400
0.199402
7b190c0f4573cd290b14012b9fc7b11615f31516
218
py
Python
elif_bayindir/phase_1/python_basic_1/day_6/q7.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
6
2020-05-23T19:53:25.000Z
2021-05-08T20:21:30.000Z
elif_bayindir/phase_1/python_basic_1/day_6/q7.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
8
2020-05-14T18:53:12.000Z
2020-07-03T00:06:20.000Z
elif_bayindir/phase_1/python_basic_1/day_6/q7.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
39
2020-05-10T20:55:02.000Z
2020-09-12T17:40:59.000Z
# Question 7 # Find out the number of CPUs using import os print("Number of CPUs using:", os.cpu_count()) # Alternative, """ import multiprocessing print("Number of CPUs using:", multiprocessing.cpu_count()) """
18.166667
63
0.711009
0
0
0
0
0
0
0
0
175
0.802752
7b1bfc88d4da28ede06e1a7e0dc3ba09c6ec9cb9
3,081
py
Python
openstates/openstates-master/openstates/ia/__init__.py
Jgorsick/Advocacy_Angular
8906af3ba729b2303880f319d52bce0d6595764c
[ "CC-BY-4.0" ]
null
null
null
openstates/openstates-master/openstates/ia/__init__.py
Jgorsick/Advocacy_Angular
8906af3ba729b2303880f319d52bce0d6595764c
[ "CC-BY-4.0" ]
null
null
null
openstates/openstates-master/openstates/ia/__init__.py
Jgorsick/Advocacy_Angular
8906af3ba729b2303880f319d52bce0d6595764c
[ "CC-BY-4.0" ]
null
null
null
import re import datetime import lxml.html import requests from billy.utils.fulltext import text_after_line_numbers from .bills import IABillScraper from .legislators import IALegislatorScraper from .events import IAEventScraper from .votes import IAVoteScraper # Silencing unverified HTTPS request warnings. requests.packages.urllib3.disable_warnings() settings = dict(SCRAPELIB_TIMEOUT=240) metadata = dict( name = 'Iowa', abbreviation = 'ia', capitol_timezone = 'America/Chicago', legislature_name = 'Iowa General Assembly', legislature_url = 'https://www.legis.iowa.gov/', chambers = { 'upper': {'name': 'Senate', 'title': 'Senator'}, 'lower': {'name': 'House', 'title': 'Representative'}, }, terms = [ { 'name': '2011-2012', 'start_year': 2011, 'end_year': 2012, 'sessions': ['2011-2012'], }, { 'name': '2013-2014', 'start_year': 2013, 'end_year': 2014, 'sessions': ['2013-2014'], }, { 'name': '2015-2016', 'start_year': 2015, 'end_year': 2016, 'sessions': ['2015-2016'], }, ], session_details = { '2011-2012': { 'display_name': '2011-2012 Regular Session', '_scraped_name': 'General Assembly: 84', 'number': '84', 'start_date': datetime.date(2011, 1, 10), 'end_date': datetime.date(2013, 1, 13), }, '2013-2014': { 'display_name': '2013-2014 Regular Session', '_scraped_name': 'General Assembly: 85', 'number': '85', }, '2015-2016': { 'display_name': '2015-2016 Regular Session', '_scraped_name': 'General Assembly: 86', 'number': '86', }, }, feature_flags = ['events', 'influenceexplorer'], _ignored_scraped_sessions = [ 'Legislative Assembly: 86', 'General Assembly: 83', 'General Assembly: 82', 'General Assembly: 81', 'General Assembly: 80', 'General Assembly: 79', 'General Assembly: 79', 'General Assembly: 78', 'General Assembly: 78', 'General Assembly: 77', 'General Assembly: 77', 'General Assembly: 76', ] ) def session_list(): def url_xpath(url, path): doc = lxml.html.fromstring(requests.get(url, verify=False).text) return doc.xpath(path) sessions = url_xpath( 'https://www.legis.iowa.gov/legislation/findLegislation', "//section[@class='grid_6']//li/a/text()[normalize-space()]" ) sessions = [x[0] for x in filter(lambda x: x != [], [ re.findall(r'^.*Assembly: [0-9]+', session) for session in sessions ])] return sessions def extract_text(doc, data): doc = lxml.html.fromstring(data) text = doc.xpath('//pre')[0].text_content() # strip two sets of line numbers return text_after_line_numbers(text_after_line_numbers(text))
29.066038
72
0.563778
0
0
0
0
0
0
0
0
1,182
0.383642
7b1e18b2a4656893e78e78b318983823f4f03309
2,965
py
Python
dp_excel/ExcelFile.py
DmitryPaschenko/python_excel_writer
d23acbe44e3e7e786fd8fd8deb1f47263326199f
[ "MIT" ]
null
null
null
dp_excel/ExcelFile.py
DmitryPaschenko/python_excel_writer
d23acbe44e3e7e786fd8fd8deb1f47263326199f
[ "MIT" ]
null
null
null
dp_excel/ExcelFile.py
DmitryPaschenko/python_excel_writer
d23acbe44e3e7e786fd8fd8deb1f47263326199f
[ "MIT" ]
null
null
null
from openpyxl import Workbook from openpyxl.utils import get_column_letter from openpyxl.writer.excel import save_virtual_workbook class ExcelFile: def __init__(self, file_name): self.file_name = file_name self.workbook = Workbook() self.active_worksheet = self.workbook.active self.current_position = {'col': 1, 'row': 1} @staticmethod def get_idx(column_number, row_number): return '{column}{row}'.format(column=get_column_letter(column_number), row=row_number) def add_worksheet(self, title=None, index=None, set_is_active=True): worksheet = self.workbook.create_sheet(title=title, index=index) if set_is_active: self.set_active_worksheet(worksheet) def get_worksheet_by_title(self, title): for sheet in self.workbook: if sheet.title == title: return sheet raise ValueError('Worksheet with title {0} Not Found'.format(title)) def set_active_worksheet(self, worksheet): self.active_worksheet = worksheet def set_active_worksheet_by_title(self, title): self.active_worksheet = self.get_worksheet_by_title(title=title) def set_position(self, column_number, row_number): """ Set active excel cell :param column_number: integer :param row_number: integer :return: """ self.current_position = {'col': column_number, 'row': row_number} return self def render_row_by_template(self, template): """ Render row by template :param template: ExcelRowTemplate object :return: """ start_col_idx = self.current_position['col'] for row in template.get_rows(): self.current_position['col'] = start_col_idx template.get_row_options(row).apply_row_options(self.active_worksheet, self.current_position['row']) for cell in template.get_columns(row): if not cell.is_empty: col_idx = get_column_letter(self.current_position['col']) row_idx = self.current_position['row'] cell_idx = '{column}{row}'.format(column=col_idx, row=row_idx) self.active_worksheet[cell_idx] = cell.value cell.options.apply_cell_options(self.active_worksheet, self.current_position['col'], row_idx) self.current_position['col'] += 1 self.current_position['row'] += 1 self.current_position['col'] = start_col_idx def save(self, path=None): self.workbook.save('{0}{1}.xlsx'.format(path if path else '', self.file_name)) def get_virtual_workbook(self): """ EXAMPLE USING return HttpResponse(excel_file.get_virtual_workbook(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') :return: """ return save_virtual_workbook(self.workbook)
36.158537
158
0.651602
2,831
0.954806
0
0
152
0.051265
0
0
588
0.198314
7b1ea6dc53dbed446cf8e4fe80ef8e9dd14dbdfd
435
py
Python
test/test_flow.py
williford/vipy
d7ce90cfa3c11363ca9e9fcb1fcea9371aa1b74d
[ "MIT" ]
13
2020-07-23T12:15:24.000Z
2022-03-18T13:58:31.000Z
test/test_flow.py
williford/vipy
d7ce90cfa3c11363ca9e9fcb1fcea9371aa1b74d
[ "MIT" ]
2
2020-02-26T00:58:40.000Z
2021-04-26T12:34:41.000Z
test/test_flow.py
williford/vipy
d7ce90cfa3c11363ca9e9fcb1fcea9371aa1b74d
[ "MIT" ]
2
2020-05-11T15:31:06.000Z
2021-09-16T14:01:33.000Z
import vipy from vipy.flow import Flow import numpy as np def test_flow(): imfrom = vipy.image.RandomScene(num_objects=1) imto = imfrom.clone().zeropad(5, 10).cornercrop(imfrom.height(), imfrom.width()) imf = Flow().imageflow(imfrom, imto) assert np.abs(np.median(imf.dx()) - 5) < 1 and np.abs(np.median(imf.dy()) - 10) < 1 print('[test_flow.imageflow]: PASSED') if __name__ == "__main__": test_flow()
25.588235
87
0.65977
0
0
0
0
0
0
0
0
41
0.094253
7b204556097cfdfd3ff88e8d7bc8bf1337b3e12c
660
py
Python
server/main.py
DarthBenro008/gh-release-paniker
757845b1eebef9d2219c88706fd4277f4261391f
[ "MIT" ]
5
2021-12-08T06:37:33.000Z
2021-12-20T17:17:18.000Z
server/main.py
DarthBenro008/gh-release-paniker
757845b1eebef9d2219c88706fd4277f4261391f
[ "MIT" ]
null
null
null
server/main.py
DarthBenro008/gh-release-paniker
757845b1eebef9d2219c88706fd4277f4261391f
[ "MIT" ]
null
null
null
from typing import Optional from fastapi import FastAPI app = FastAPI() import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) LED=21 BUZZER=23 GPIO.setup(LED,GPIO.OUT) def panikMode(): print("Entering PanikMode") GPIO.output(LED,GPIO.HIGH) GPIO.output(BUZZER,GPIO.HIGH) def stopPanikMode(): print("Exiting PanikMode") GPIO.output(LED,GPIO.LOW) GPIO.output(BUZZER,GPIO.LOW) @app.get("/") def read_root(): return {"ping": "pong"} @app.get("/stop") def stopPanik(): stopPanik() return {"paniking": "false"} @app.get("/panik") def panik(): panikMode() return {"paniking": True}
16.5
33
0.672727
0
0
0
0
218
0.330303
0
0
96
0.145455
7b20674499d7148c6a6ca240f5128fad607757fd
8,656
py
Python
virtual/lib/python3.10/site-packages/bootstrap_py/tests/test_package.py
alex-mu/Moringa-blog
430ab9c1f43f2f0066369433ac3f60c41a51a01c
[ "MIT" ]
null
null
null
virtual/lib/python3.10/site-packages/bootstrap_py/tests/test_package.py
alex-mu/Moringa-blog
430ab9c1f43f2f0066369433ac3f60c41a51a01c
[ "MIT" ]
7
2021-03-30T14:10:56.000Z
2022-03-12T00:43:13.000Z
virtual/lib/python3.6/site-packages/bootstrap_py/tests/test_package.py
sarahsindet/pitch
c7a4256e19c9a250b6d88d085699a34f508eb86b
[ "Unlicense", "MIT" ]
1
2021-08-19T06:07:23.000Z
2021-08-19T06:07:23.000Z
# -*- coding: utf-8 -*- """bootstrap_py.tests.test_package.""" import unittest import os import shutil import tempfile from glob import glob from datetime import datetime from mock import patch from bootstrap_py import package from bootstrap_py.tests.stub import stub_request_metadata # pylint: disable=too-few-public-methods class Dummy: """Dummy class.""" class PackageDataTests(unittest.TestCase): """bootstrap_py.package.PackageData tests.""" def setUp(self): """Prepare test data.""" self.params = Dummy() setattr(self.params, 'foo', 'hoge') setattr(self.params, 'bar', 'moge') setattr(self.params, 'baz', 'fuga') self.default_params = Dummy() setattr(self.default_params, 'date', '2016-01-29') setattr(self.default_params, 'version', '1.0.0') setattr(self.default_params, 'description', 'dummy description.') self.metadata = stub_request_metadata() def test_provides_params(self): """provides params without default params.""" pkg_data = package.PackageData(self.params) # pylint: disable=no-member self.assertEqual(pkg_data.foo, 'hoge') self.assertEqual(pkg_data.bar, 'moge') self.assertEqual(pkg_data.baz, 'fuga') self.assertEqual(pkg_data.date, datetime.utcnow().strftime('%Y-%m-%d')) self.assertEqual(pkg_data.version, '0.1.0') # pylint: disable=fixme self.assertEqual(pkg_data.description, '##### ToDo: Rewrite me #####') def test_provides_default_params(self): """provides params without default params.""" pkg_data = package.PackageData(self.default_params) # pylint: disable=no-member self.assertEqual(pkg_data.date, '2016-01-29') self.assertEqual(pkg_data.version, '1.0.0') self.assertEqual(pkg_data.description, 'dummy description.') def test_convert_to_dict(self): """convert PackageData to dict.""" dict_data = package.PackageData(self.default_params).to_dict() # pylint: disable=no-member self.assertEqual(dict_data.get('date'), '2016-01-29') self.assertEqual(dict_data.get('version'), '1.0.0') self.assertEqual(dict_data.get('description'), 'dummy description.') class PackageTreeTests(unittest.TestCase): """bootstrap.package.PackageTree tests.""" def setUp(self): """Prepare test data.""" self.cwd = os.getcwd() self.testdir = tempfile.mkdtemp(suffix='-bootstrap-py-test') params = Dummy() setattr(params, 'name', 'foo') setattr(params, 'author', 'Alice') setattr(params, 'email', '[email protected]') setattr(params, 'url', 'https://example.org/foo') setattr(params, 'license', 'gplv3') setattr(params, 'outdir', self.testdir) setattr(params, 'with_samples', True) stub_request_metadata() self.pkg_data = package.PackageData(params) self.pkg_tree = package.PackageTree(self.pkg_data) def tearDown(self): os.chdir(self.cwd) shutil.rmtree(self.testdir) if os.path.isdir(self.pkg_tree.tmpdir): self.pkg_tree.clean() def test_initialize(self): """initialize PackageTree.""" self.assertEqual(self.pkg_tree.name, 'foo') self.assertEqual(self.pkg_tree.outdir, self.testdir) self.assertTrue(os.path.isdir(self.pkg_tree.tmpdir)) self.assertEqual(len(self.pkg_tree.templates.list_templates()), 18) self.assertEqual(self.pkg_tree.pkg_data, self.pkg_data) def test_init_py(self): """convert __init__.py path.""" self.assertEqual(getattr(self.pkg_tree, '_init_py')('foo/bar'), os.path.join(self.pkg_tree.tmpdir, 'foo/bar/__init__.py')) def test_tmpl_path(self): """convert tmplate path.""" self.assertEqual(getattr(self.pkg_tree, '_tmpl_path')('foo.py.j2'), os.path.join(self.pkg_tree.tmpdir, 'foo.py')) def test_generate_dirs(self): """generate directories.""" getattr(self.pkg_tree, '_generate_dirs')() os.chdir(self.pkg_tree.tmpdir) self.assertTrue(os.path.isdir(self.pkg_tree.pkg_data.module_name)) self.assertTrue(os.path.isdir( os.path.join(self.pkg_tree.pkg_data.module_name, 'tests'))) self.assertTrue(os.path.isdir('utils')) self.assertTrue(os.path.isdir('docs/source/modules')) def test_list_module_dirs(self): """list module directories.""" self.assertEqual(getattr(self.pkg_tree, '_list_module_dirs')(), ['{module_name}', '{module_name}/tests']) def test_generate_init(self): """generate __init__.py.""" getattr(self.pkg_tree, '_generate_dirs')() getattr(self.pkg_tree, '_generate_init')() os.chdir(self.pkg_tree.tmpdir) self.assertTrue(os.path.isfile('foo/__init__.py')) self.assertTrue(os.path.isfile('foo/tests/__init__.py')) def test_generate_files(self): """generate files.""" getattr(self.pkg_tree, '_generate_dirs')() getattr(self.pkg_tree, '_generate_files')() os.chdir(self.pkg_tree.tmpdir) self.assertEqual(len([i for i in glob('./*') if os.path.isfile(i)]), 6) self.assertEqual(len([i for i in glob('./.*') if os.path.isfile(i)]), 5) self.assertEqual(len([i for i in glob('utils/*') if os.path.isfile(i)]), 1) self.assertEqual(len([i for i in glob('docs/source/*') if os.path.isfile(i)]), 3) self.assertEqual(len([i for i in glob('docs/source/modules/*') if os.path.isfile(i)]), 1) def test_generate_files_samples(self): """generate files.""" self.pkg_data.with_samples = True getattr(self.pkg_tree, '_generate_dirs')() getattr(self.pkg_tree, '_generate_files')() os.chdir(self.pkg_tree.tmpdir) self.assertEqual(len([i for i in glob('./*') if os.path.isfile(i)]), 6) self.assertEqual(len([i for i in glob('./.*') if os.path.isfile(i)]), 5) self.assertEqual(len([i for i in glob('foo/*') if os.path.isfile(i)]), 2) self.assertEqual(len([i for i in glob('foo/tests/*') if os.path.isfile(i)]), 2) self.assertEqual(len([i for i in glob('utils/*') if os.path.isfile(i)]), 1) self.assertEqual(len([i for i in glob('docs/source/*') if os.path.isfile(i)]), 3) self.assertEqual(len([i for i in glob('docs/source/modules/*') if os.path.isfile(i)]), 1) def test_move(self): """move source directory to destination directory.""" self.pkg_tree.move() self.assertFalse(os.path.isdir(self.pkg_tree.tmpdir)) self.assertTrue(os.path.isdir(self.testdir)) @patch('subprocess.call') def test_generate(self, _mock): """generate directories, and files.""" popen_mock = _mock.return_value popen_mock.wait = None popen_mock.call = None self.pkg_tree.generate() os.chdir(self.pkg_tree.tmpdir) self.assertTrue(os.path.isdir(self.pkg_tree.name)) self.assertTrue(os.path.isdir(os.path.join(self.pkg_tree.name, 'tests'))) self.assertTrue(os.path.isdir('utils')) self.assertTrue(os.path.isdir('docs/source/modules')) self.assertTrue(os.path.isfile('foo/__init__.py')) self.assertTrue(os.path.isfile('foo/tests/__init__.py')) self.assertEqual(len([i for i in glob('./*') if os.path.isfile(i)]), 6) self.assertEqual(len([i for i in glob('./.*') if os.path.isfile(i)]), 5) self.assertEqual(len([i for i in glob('utils/*') if os.path.isfile(i)]), 1) self.assertEqual(len([i for i in glob('docs/source/*') if os.path.isfile(i)]), 3) self.assertEqual(len([i for i in glob('docs/source/modules/*') if os.path.isfile(i)]), 1) def test_clean(self): """clean up.""" self.pkg_tree.clean() self.assertFalse(os.path.isdir(self.pkg_tree.tmpdir))
42.019417
79
0.586992
8,321
0.961299
0
0
1,291
0.149145
0
0
1,818
0.210028
7b2072a69cb5c6d86996ccfc0e3130c0fc1d1caa
383
py
Python
news_bl/main/migrations/0005_alter_article_urltoimage.py
noddy09/news_search
7bee6a3aeb6c8a5e9e01109635fbd53f5d808722
[ "MIT" ]
null
null
null
news_bl/main/migrations/0005_alter_article_urltoimage.py
noddy09/news_search
7bee6a3aeb6c8a5e9e01109635fbd53f5d808722
[ "MIT" ]
null
null
null
news_bl/main/migrations/0005_alter_article_urltoimage.py
noddy09/news_search
7bee6a3aeb6c8a5e9e01109635fbd53f5d808722
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-08-30 13:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0004_auto_20210830_0359'), ] operations = [ migrations.AlterField( model_name='article', name='urlToImage', field=models.URLField(null=True), ), ]
20.157895
47
0.5953
290
0.75718
0
0
0
0
0
0
99
0.258486
7b20cd11ee3f48070fe24a5a912f30b91ada5d46
1,175
py
Python
utils/migrate_cmds_idx_32bit.py
jzuhone/kadi
de4885327d256e156cfe42b2b1700775f5b4d6cf
[ "BSD-3-Clause" ]
1
2015-07-30T18:33:14.000Z
2015-07-30T18:33:14.000Z
utils/migrate_cmds_idx_32bit.py
jzuhone/kadi
de4885327d256e156cfe42b2b1700775f5b4d6cf
[ "BSD-3-Clause" ]
104
2015-01-20T18:44:36.000Z
2022-03-29T18:51:55.000Z
utils/migrate_cmds_idx_32bit.py
jzuhone/kadi
de4885327d256e156cfe42b2b1700775f5b4d6cf
[ "BSD-3-Clause" ]
2
2018-08-23T02:36:08.000Z
2020-03-13T19:24:36.000Z
from pathlib import Path import numpy as np import tables # Use snapshot from aug08 before the last update that broke things. with tables.open_file('cmds_aug08.h5') as h5: cmds = h5.root.data[:] print(cmds.dtype) # [('idx', '<u2'), ('date', 'S21'), ('type', 'S12'), ('tlmsid', 'S10'), # ('scs', 'u1'), ('step', '<u2'), ('timeline_id', '<u4'), ('vcdu', '<i4')] new_dtype = [('idx', '<i4'), ('date', 'S21'), ('type', 'S12'), ('tlmsid', 'S10'), ('scs', 'u1'), ('step', '<u2'), ('timeline_id', '<u4'), ('vcdu', '<i4')] new_cmds = cmds.astype(new_dtype) for name in cmds.dtype.names: assert np.all(cmds[name] == new_cmds[name]) cmds_h5 = Path('cmds.h5') if cmds_h5.exists(): cmds_h5.unlink() with tables.open_file('cmds.h5', mode='a') as h5: h5.create_table(h5.root, 'data', new_cmds, "cmds", expectedrows=2e6) # Make sure the new file is really the same except the dtype with tables.open_file('cmds.h5') as h5: new_cmds = h5.root.data[:] for name in cmds.dtype.names: assert np.all(cmds[name] == new_cmds[name]) if name != 'idx': assert cmds[name].dtype == new_cmds[name].dtype assert new_cmds['idx'].dtype.str == '<i4'
31.756757
85
0.613617
0
0
0
0
0
0
0
0
439
0.373617
7b21a08900385c33387348bb5cf7b32f2eca5c0f
579
py
Python
1_estrutura_sequencial/18_velocidade_download.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
1_estrutura_sequencial/18_velocidade_download.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
1_estrutura_sequencial/18_velocidade_download.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
""" 18. Faça um programa que peça o tamanho de um arquivo para download (em MB) e a velocidade de um link de Internet (em Mbps), calcule e informe o tempo aproximado de download do arquivo usando este link (em minutos). """ mb_arquivo = float(input('Informe o tamanho de um arquivo para download (em MB): ')) mbps_link = float(input('Informe a velocidade do link de Internet (em Mbps): ')) velocidade_segundos = mb_arquivo / mbps_link velocidade_minutos = velocidade_segundos / 60 print('O tempo aproximado para download do arquivo é de %d minuto(s).' %velocidade_minutos)
38.6
91
0.753022
0
0
0
0
0
0
0
0
403
0.69244
7b2304794deb520b2f5f87d0e37dcca35db22896
4,802
py
Python
src/rte_pac/train_pyramid.py
UKPLab/conll2019-snopes-experiments
102f4a05cfba781036bd3a7b06022246e53765ad
[ "Apache-2.0" ]
5
2019-11-08T09:17:07.000Z
2022-01-25T19:37:06.000Z
src/rte_pac/train_pyramid.py
UKPLab/conll2019-snopes-experiments
102f4a05cfba781036bd3a7b06022246e53765ad
[ "Apache-2.0" ]
18
2020-01-28T22:17:34.000Z
2022-03-11T23:57:22.000Z
src/rte_pac/train_pyramid.py
UKPLab/conll2019-snopes-experiments
102f4a05cfba781036bd3a7b06022246e53765ad
[ "Apache-2.0" ]
1
2021-03-08T12:02:24.000Z
2021-03-08T12:02:24.000Z
import argparse import pickle import os import json from sklearn.metrics import confusion_matrix from utils.data_reader import embed_data_sets_with_glove, embed_data_set_given_vocab, prediction_2_label from utils.text_processing import vocab_map from common.util.log_helper import LogHelper from deep_models.MatchPyramid import MatchPyramid def _instantiate_model(param): return MatchPyramid(random_state=55, tensorboard_logdir="logdir/", dropout_rate=0.15, learning_rate=0.0001, batch_size=32, num_sents=param['max_sent'], embedding=param['embeddings'], show_progress=1, h_max_length=param['max_sent_size'], s_max_length=param['max_sent_size'], word_dict=param['vocab']) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mode', help='\'train\' or \'test\'', required=True) parser.add_argument('--train', help='/path/to/training/set') parser.add_argument('--valid', help='/path/to/validation/set') parser.add_argument('--test', help='/path/to/test/set') parser.add_argument('--model', help='/path/to/model/file', required=True) parser.add_argument( '--save-data', help='/path/to/save/data', default="data/rte/train/") parser.add_argument('--load-data', help='/path/to/load/data/file') parser.add_argument('--db', help='/path/to/data/base', required=True) parser.add_argument( '--max-sent', type=int, help='Maximal number of sentences per claim', default=5) parser.add_argument('--embed', help='/path/to/embedding') parser.add_argument( '--save-result', help='/path/to/save/result', default="data/rte/result/") args = parser.parse_args() LogHelper.setup() logger = LogHelper.get_logger(args.mode) if args.mode == 'train': assert args.train is not None or args.load_data is not None, "--train training set or --load-data should be provided in train mode" assert args.embed is not None, "--embed should be provided in train mode" # training mode if args.load_data: # load pre-processed training data with open(args.load_data, "rb") as file: param = pickle.load(file) else: # process training JSONL file paths = [args.train, args.valid] dataset_list, vocab, embeddings, b_max_sent_num, b_max_sent_size = embed_data_sets_with_glove( paths, args.db, args.embed, threshold_b_sent_num=args.max_sent) vocab = vocab_map(vocab) param = { 'dataset_list': dataset_list, 'vocab': vocab, 'embeddings': embeddings, 'max_sent_size': b_max_sent_size, 'max_sent': args.max_sent } # save processed training data os.makedirs(args.save_data, exist_ok=True) train_data_path = os.path.join( args.save_data, "train.{}.s{}.p".format("matchpyramid", str(args.max_sent))) with open(train_data_path, "wb") as file: pickle.dump(param, file, protocol=pickle.HIGHEST_PROTOCOL) pyramid = _instantiate_model(param) pyramid.fit(param['dataset_list'][0]['data'], param['dataset_list'][0]['label'], param['dataset_list'][1]['data'], param['dataset_list'][1]['label']) pyramid.save(args.model) else: # testing mode assert args.load_data is not None, "--load_data should be provided in test mode" assert args.test is not None, "--test test set should be provided in test mode" with open(args.load_data, "rb") as file: param = pickle.load(file) pyramid = _instantiate_model(param) pyramid.restore_model(args.model) data_set = embed_data_set_given_vocab(args.test, args.db, param['vocab'], threshold_b_sent_num=param['max_sent'], threshold_b_sent_size=param['max_sent_size'], threshold_h_sent_size=param['max_sent_size']) os.makedirs(args.save_result, exist_ok=True) test_result_path = os.path.join( args.save_result, "predicted.pyramid.s{}.jsonl".format(param['max_sent'])) with open(test_result_path, "w") as result_file: predictions = pyramid.predict(data_set['data']) for i, prediction in enumerate(predictions): data = {'predicted': prediction_2_label(prediction)} if 'label' in data_set: data['label'] = prediction_2_label(data_set['label'][i]) result_file.write(json.dumps(data) + "\n") if 'label' in data_set: logger.info("Confusion Matrix:") logger.info(confusion_matrix(data_set['label'], predictions))
52.195652
139
0.641399
0
0
0
0
0
0
0
0
1,162
0.241983
7b2354c08ba6d3f70427aa659e1ba9d3a3e03c13
854
py
Python
annotation/helpers/helpers/extract_noise.py
jim-schwoebel/allie
d85db041b91c81dfb3fd1a4d719b5aaaf3b6697e
[ "Apache-2.0" ]
87
2020-08-07T09:05:11.000Z
2022-01-24T00:48:22.000Z
annotation/helpers/helpers/extract_noise.py
jim-schwoebel/allie
d85db041b91c81dfb3fd1a4d719b5aaaf3b6697e
[ "Apache-2.0" ]
87
2020-08-07T19:12:10.000Z
2022-02-08T14:46:34.000Z
annotation/helpers/helpers/extract_noise.py
jim-schwoebel/allie
d85db041b91c81dfb3fd1a4d719b5aaaf3b6697e
[ "Apache-2.0" ]
25
2020-08-07T20:03:08.000Z
2022-03-16T07:33:25.000Z
import shutil, os, random from pydub import AudioSegment try: os.mkdir('noise') except: shutil.rmtree('noise') os.mkdir('noise') def extract_noise(filename, length): song = AudioSegment.from_mp3(filename) first = song[100:100+length] first.export(filename[0:-4]+'_noise.mp3') shutil.move(os.getcwd()+'/'+filename[0:-4]+'_noise.mp3', os.getcwd()+'/noise/'+filename[0:-4]+'_noise.mp3') listdir=os.listdir() mp3files=list() for i in range(len(listdir)): if listdir[i][-4:]=='.mp3': mp3files.append(listdir[i]) random.shuffle(mp3files) for i in range(len(mp3files)): extract_noise(mp3files[i],300) if i == 100: break os.chdir('noise') listdir=os.listdir() for i in range(len(listdir)): if listdir[i][-4:]=='.mp3': os.system('play %s'%(listdir[i])) remove=input('should remove? type y to remove') if remove=='y': os.remove(listdir[i])
27.548387
108
0.688525
0
0
0
0
0
0
0
0
133
0.155738
7b248b5ee36bb65d830c7b56e66b0b390aa45baa
1,030
py
Python
ARMODServers/Apps/Apiv2/urls.py
Phantomxm2021/ARMOD-Dashboard
383cf0a5e72dc5a2651f43e693f06773d5b88bbd
[ "Apache-2.0" ]
1
2021-11-04T09:03:27.000Z
2021-11-04T09:03:27.000Z
ARMODServers/Apps/Apiv2/urls.py
Phantomxm2021/ARMOD-Dashboard
383cf0a5e72dc5a2651f43e693f06773d5b88bbd
[ "Apache-2.0" ]
null
null
null
ARMODServers/Apps/Apiv2/urls.py
Phantomxm2021/ARMOD-Dashboard
383cf0a5e72dc5a2651f43e693f06773d5b88bbd
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import url from Apps.Apiv2.views import GetARResourcesView, GetARExperienceDetailView from Apps.Apiv2.views import GetTagListView,GetARExperienceRecommendList,GetARExperiencePublicListView,GetARExperiencesView from Apps.Apiv2.views import GetARexperienceByTagsListView app_name = 'Apps.Users' urlpatterns = [ url(r'^getarresources$', GetARResourcesView.as_view(), name='getarresources'), url(r'^getarexperience$', GetARExperienceDetailView.as_view(), name='getarexperience'), url(r'^getarexperiencelist$', GetARExperiencesView.as_view(), name='getarexperience'), url(r'^gettaglist$', GetTagListView.as_view(), name='getshowcasetags'), url(r'^getrecommendslist$', GetARExperienceRecommendList.as_view(), name='getshowcaserecommends'), url(r'^getarexperiencepubliclist$', GetARExperiencePublicListView.as_view(), name='getarexperiencepubliclist'), url(r'^getarexperiencebytagslist$', GetARexperienceByTagsListView.as_view(), name='getarexperiencebytagslist'), # api/v2/ ]
60.588235
123
0.794175
0
0
0
0
0
0
0
0
325
0.315534