hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
8d58501cd2a4cf7d4be038ee750ddd345cd594fc
196
py
Python
src/main.py
C4theBomb/python-calendar-app
6776403f7f2440c6497d9a53be5e8d617a2ee817
[ "MIT" ]
null
null
null
src/main.py
C4theBomb/python-calendar-app
6776403f7f2440c6497d9a53be5e8d617a2ee817
[ "MIT" ]
null
null
null
src/main.py
C4theBomb/python-calendar-app
6776403f7f2440c6497d9a53be5e8d617a2ee817
[ "MIT" ]
null
null
null
from calendarApp import shell, models import os def main(): os.system("clear") calendar = models.Calendar("main") shell.main_screen(calendar) if __name__ == "__main__": main()
15.076923
38
0.673469
0
0
0
0
0
0
0
0
23
0.117347
8d5852ea5b1463bc9be5da885619fc756c5bd1fc
4,329
py
Python
personal/Ervin/Word2Vec_recommender.py
edervishaj/spotify-recsys-challenge
4077201ac7e4ed9da433bd10a92c183614182437
[ "Apache-2.0" ]
3
2018-10-12T20:19:57.000Z
2019-12-11T01:11:38.000Z
personal/Ervin/Word2Vec_recommender.py
kiminh/spotify-recsys-challenge
5e7844a77ce3c26658400f161d2d74d682f30e69
[ "Apache-2.0" ]
null
null
null
personal/Ervin/Word2Vec_recommender.py
kiminh/spotify-recsys-challenge
5e7844a77ce3c26658400f161d2d74d682f30e69
[ "Apache-2.0" ]
4
2018-10-27T20:30:18.000Z
2020-10-14T07:43:27.000Z
import time import numpy as np import scipy.sparse as sps from gensim.models import Word2Vec from tqdm import tqdm from recommenders.recommender import Recommender from utils.datareader import Datareader from utils.evaluator import Evaluator from utils.post_processing import eurm_to_recommendation_list from recommenders.similarity.s_plus import dot_product class W2VRecommender(Recommender): """ Requires gensim package: pip install gensim """ RECOMMENDER_NAME = "W2VRecommender" def __init__(self): super() def compute_model(self, negative=5, sg=1, size=50, min_count=1, workers=64, iter=1, window=None, verbose=False): sentences = [] for row in tqdm(range(self.urm.shape[0]), desc='Generating sentences'): words = self.urm.indices[self.urm.indptr[row]:self.urm.indptr[row+1]] words = words.astype(np.str) if len(words) > 0: sentences.append(words.tolist()) if verbose: print('[ Building Word2Vec model ]') start_time = time.time() if window is None: window = np.max(self.urm.sum(axis=1).A1) w2v = Word2Vec(sentences=sentences, sg=sg, size=size, min_count=min_count, workers=workers, iter=iter, seed=123, negative=negative, window=window) w2v.init_sims(replace=True) self.kv = w2v.wv # if verbose: # print('[ Building Similarity Matrix ]') # # syn0norm = sps.csr_matrix(self.kv.syn0norm) # self.model = dot_product(syn0norm, syn0norm.T, k=850) if verbose: print("time: " + str(int(time.time() - start_time) / 60)) def compute_rating(self, verbose=False, small=False, mode="offline", top_k=750): if small: self.urm = sps.csr_matrix(self.urm)[self.pid] self.eurm = sps.lil_matrix(self.urm.shape, dtype=np.float32) if verbose: print('[ Computing ratings ]') start_time = time.time() for row in tqdm(range(1000, self.urm.shape[0]), desc='Calculating similarities'): test_words = self.urm.indices[self.urm.indptr[row]:self.urm.indptr[row+1]] test_words = test_words.astype(np.str) most_sim = self.kv.most_similar(positive=test_words, topn=top_k) tracks = [tup[0] for tup in most_sim] sim = [tup[1] for tup in most_sim] self.eurm[row, tracks] = sim self.eurm = self.eurm.tocsr() self.eurm.eliminate_zeros() if verbose: print("time: " + str(int(time.time() - start_time) / 60)) # def compute_rating2(self, verbose=False, small=False, mode="offline", remove_seed=True): # if small: # self.urm = sps.csr_matrix(self.urm)[self.pid] # self.eurm = sps.lil_matrix(self.urm.shape, dtype=np.float32) # # if verbose: # print('[ Computing ratings ]') # start_time = time.time() # # for row in tqdm(range(1000, self.urm.shape[0]), desc='Calculating similarities'): # test_words = self.urm.indices[self.urm.indptr[row]:self.urm.indptr[row+1]] # test_words = test_words.astype(np.str) # for w in test_words: # most_sim = self.kv.most_similar(positive=w, topn=500) # tracks = [tup[0] for tup in most_sim] # sim = [tup[1] for tup in most_sim] # self.eurm[row, tracks] = self.eurm[row, tracks].toarray() + sim # # print(self.eurm.shape) # self.eurm = self.eurm.tocsr() # self.eurm.eliminate_zeros() # # if verbose: # print("time: " + str(int(time.time() - start_time) / 60)) if __name__ == '__main__': dr = Datareader(only_load=True, mode='offline', test_num='1', verbose=False) pid = dr.get_test_playlists().transpose()[0] urm = dr.get_urm() urm.data = np.ones(urm.data.shape[0]) ev = Evaluator(datareader=dr) model = W2VRecommender() model.fit(urm, pid) model.compute_model(verbose=True, size=50) model.compute_rating(verbose=True, small=True, top_k=750) ev.evaluate(recommendation_list=eurm_to_recommendation_list(model.eurm, remove_seed=True, datareader=dr), name="W2V", old_mode=False)
37.973684
116
0.613075
3,392
0.783553
0
0
0
0
0
0
1,383
0.319473
8d58f2b0959a8386b4c708d7cc38bd2e9f103bb6
1,321
py
Python
pyesasky/__init__.py
pierfra-ro/pyesasky
a9342efcaa5cca088ed9a5afa2c98d3e9aa4bd0f
[ "BSD-3-Clause" ]
13
2019-05-30T19:57:37.000Z
2021-09-10T09:43:49.000Z
pyesasky/__init__.py
pierfra-ro/pyesasky
a9342efcaa5cca088ed9a5afa2c98d3e9aa4bd0f
[ "BSD-3-Clause" ]
21
2019-06-21T18:55:25.000Z
2022-02-27T14:48:13.000Z
pyesasky/__init__.py
pierfra-ro/pyesasky
a9342efcaa5cca088ed9a5afa2c98d3e9aa4bd0f
[ "BSD-3-Clause" ]
8
2019-05-30T12:20:48.000Z
2022-03-04T04:01:20.000Z
from ._version import __version__ # noqa from .pyesasky import ESASkyWidget # noqa from .catalogue import Catalogue # noqa from .catalogueDescriptor import CatalogueDescriptor # noqa from .cooFrame import CooFrame # noqa from .footprintSet import FootprintSet # noqa from .footprintSetDescriptor import FootprintSetDescriptor # noqa from .HiPS import HiPS # noqa from .imgFormat import ImgFormat # noqa from .jupyter_server import load_jupyter_server_extension # noqa from .metadataDescriptor import MetadataDescriptor # noqa from .metadataType import MetadataType # noqa import json from pathlib import Path HERE = Path(__file__).parent.resolve() with (HERE / "labextension" / "package.json").open() as fid: data = json.load(fid) # Jupyter Extension points def _jupyter_nbextension_paths(): return [{'section': 'notebook', # the path is relative to the `pyesasky` directory 'src': 'nbextension/static', # directory in the `nbextension/` namespace 'dest': 'pyesasky', # _also_ in the `nbextension/` namespace 'require': 'pyesasky/extension'}] def _jupyter_server_extension_paths(): return [{"module": "pyesasky"}] def _jupyter_labextension_paths(): return [{ "src": "labextension", "dest": data["name"] }]
33.025
65
0.711582
0
0
0
0
0
0
0
0
397
0.30053
8d5933b202fa0260d94c68bc7edbd14a32abb844
2,930
py
Python
visualize.py
jcamstan3370/MachineLearningPerovskites
d7bc433bac349bf53473dc6d636954cae996b8d2
[ "MIT" ]
6
2020-05-09T17:18:00.000Z
2021-09-22T09:37:40.000Z
visualize.py
jstanai/ml_perovskites
d7bc433bac349bf53473dc6d636954cae996b8d2
[ "MIT" ]
null
null
null
visualize.py
jstanai/ml_perovskites
d7bc433bac349bf53473dc6d636954cae996b8d2
[ "MIT" ]
1
2021-03-24T04:21:31.000Z
2021-03-24T04:21:31.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Jared """ import numpy as np import pandas as pd import myConfig import matplotlib.pyplot as plt from ast import literal_eval from plotter import getTrendPlot1 from matplotlib.pyplot import figure df = pd.read_csv(myConfig.extOutput) dffExt = pd.read_csv(myConfig.featurePathExt) dffExt = dffExt.copy().dropna(axis=0, how='any').reset_index() y_predict_ext = df['yhat_ext'] print('Num dummy crystals: {}'.format(len(y_predict_ext))) print([n for n in dffExt.columns if 'p_' not in n]) s = 'fracCl' dffExt['yhat_ext'] = df['yhat_ext'] ylabel = '$E_{g}$ (eV)' getTrendPlot1(dffExt, y_predict_ext, s, ylabel = ylabel, xlabel = s, title = 'Trend') plt.show() ''' s = 'volume' g = dffExt.groupby('fracCl') for i, group in g: getTrendPlot1(group, y_predict_ext, s, ylabel = ylabel, xlabel = s, title = 'Trend', scatter = False) plt.show() ''' s = 'fracCs' g = dffExt.groupby('fracSn') for i, group in g: getTrendPlot1(group, y_predict_ext, s, ylabel = ylabel, xlabel = s, title = 'Trend', scatter = False) plt.show() ''' print(dffExt[['fracCs', 'fracRb', 'fracK', 'fracNa', 'fracSn' , 'fracGe', 'fracCl', 'fracI', 'fracBr', 'yhat_ext']].head(10)) ''' g = dffExt.groupby([ 'fracCs', 'fracRb', 'fracK', 'fracNa', 'fracSn' , 'fracGe', 'fracCl', 'fracI', 'fracBr']) x = [] y = [] x_all = [] y_all = [] for (gr, gi) in g: labels = ['Cs', 'Rb', 'K', 'Na', 'Sn', 'Ge', 'Cl', 'I', 'Br'] #print(gr) sarr = [] for i, n in enumerate(gr): if i < 6: m = 1 else: m = 3 if n != 0: #if n == 1.0: sarr.append(labels[i] + '$_{' + str(int(4*m*n)) + '}$') #else: #sarr.append(labels[i] + '$_{' + str(4*m*n) + '}$') #print(sarr, gr) x += [''.join(sarr)] y.append(gi['yhat_ext'].mean()) x_all += [''.join(sarr)]*len(gi) y_all += gi['yhat_ext'].tolist() print(len(x_all), len(x)) fig = plt.figure(figsize=(13, 4), dpi=200) #(Atomic 3%, Lattice 10%) #plt.title('Stability Trends') plt.title('Direct Bandgap Trends') #plt.ylabel('$\Delta E_{hull}$ (meV/atom)') plt.ylabel('$E_{g}$ (eV)') plt.xticks(rotation=90) plt.scatter(x, y) #figure(num=None, figsize=(8, 6), dpi=200, facecolor='w', edgecolor='k') plt.savefig('/Users/Jared/Documents/test.png', bbox_inches='tight') plt.show() ''' plt.title('Bandgap Trends (Atomic 5%, Lattice 5%)') plt.ylabel('E$_{g}$ (eV)') plt.xticks(rotation=90) plt.scatter(x_all, y_all) figure(num=None, figsize=(8, 6), dpi=200, facecolor='w', edgecolor='k') '''
23.821138
72
0.531058
0
0
0
0
0
0
0
0
1,289
0.439932
8d5938563047da10af2e319b379482b6a7545552
237
py
Python
11-if-elif-else-condition.py
GunarakulanGunaretnam/python-basic-fundamentals
c62bf939fbaef8895d28f85af9ef6ced70801f96
[ "Apache-2.0" ]
null
null
null
11-if-elif-else-condition.py
GunarakulanGunaretnam/python-basic-fundamentals
c62bf939fbaef8895d28f85af9ef6ced70801f96
[ "Apache-2.0" ]
null
null
null
11-if-elif-else-condition.py
GunarakulanGunaretnam/python-basic-fundamentals
c62bf939fbaef8895d28f85af9ef6ced70801f96
[ "Apache-2.0" ]
null
null
null
name = input("Enter your name? ") if name == "guna": print("1234567890") elif name == "david": print("0987654321") elif name == "rakulan": print("12345") elif name == "raj": print("1234455667") else: print("No contacts found")
13.941176
33
0.632911
0
0
0
0
0
0
0
0
108
0.455696
8d595677f62dbebf986ab917f4b41f5f89af2fea
13,409
py
Python
InstagramCrawler.py
Bagas8015/Instagram-Posts-Crawler-Users-v1
82d5da12f7f6caf8c085085135134f58affb1ec7
[ "MIT" ]
null
null
null
InstagramCrawler.py
Bagas8015/Instagram-Posts-Crawler-Users-v1
82d5da12f7f6caf8c085085135134f58affb1ec7
[ "MIT" ]
null
null
null
InstagramCrawler.py
Bagas8015/Instagram-Posts-Crawler-Users-v1
82d5da12f7f6caf8c085085135134f58affb1ec7
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import emoji import string import csv import os def getFileSize(nameFile): return os.stat(nameFile).st_size browser = webdriver.Chrome() def loginInstagram(url, username, password): browser.get(url) #Masuk ke url. time.sleep(2) #Memberi kesempatan untuk loading page. browser.find_element_by_xpath('/html/body/span/section/main/article/div[2]/div[2]/p/a').click() #Click untuk ke halaman login. #3 baris ke bawah berfungsi untuk mengisi form dan login. print("Mengisi form login ....") time.sleep(2) browser.find_element_by_xpath('/html/body/span/section/main/div/article/div/div[1]/div/form/div[2]/div/label/input').send_keys(username) browser.find_element_by_xpath('/html/body/span/section/main/div/article/div/div[1]/div/form/div[3]/div/label/input').send_keys(password) browser.find_element_by_xpath('/html/body/span/section/main/div/article/div/div[1]/div/form/div[4]/button').click() time.sleep(3) #Memberi kesempatan untuk loading page. browser.find_element_by_xpath('/html/body/div[3]/div/div/div[3]/button[2]').click() #Menutup pop-up yang muncul. browser.find_element_by_xpath('/html/body/span/section/nav/div[2]/div/div/div[3]/div/div[3]/a/span').click() #Menuju ke halaman profile user. def getListFollowers(username, jml_followers = 0): print("Sedang mengload data daftar followers " + username + " ....") time.sleep(3) #Untuk menunggu page profile home selesai diload if jml_followers == 0: jml_followers = browser.find_element_by_xpath('/html/body/span/section/main/div/header/section/ul/li[2]/a/span').get_attribute('title') #Untuk mendapatkan jumlah followers users di dalam list jml_followers.replace(',','') browser.find_element_by_xpath('/html/body/span/section/main/div/header/section/ul/li[2]/a').click() #Meng-click href untuk melihat tampilan followersnya time.sleep(2) followersList = browser.find_element_by_xpath('/html/body/div[3]/div/div[2]/ul') lengthListFollowers = len(followersList.find_elements_by_css_selector('li')) #Untuk mendapatkan panjang list followers yang sudah ditampilkan time.sleep(2) followersList.click()#klik bar kosong akun pertama actionChain = webdriver.ActionChains(browser) #Mengambil ActionChains daftar = [] nilai_berulang = 0 batas_berulang = 0 while lengthListFollowers < int(jml_followers) and lengthListFollowers < 200: time.sleep(1) browser.find_element_by_xpath('/html/body/div[3]/div/div[2]/ul/div/li[' + str(lengthListFollowers-2) + ']').click() #Supaya bisa ngescroll sampai batas yang ditentukan actionChain.key_down(Keys.SPACE).key_up(Keys.SPACE).perform() if nilai_berulang == lengthListFollowers: batas_berulang += 1 if batas_berulang == 4: break else: batas_berulang = 0 nilai_berulang = lengthListFollowers lengthListFollowers = len(browser.find_elements_by_xpath('/html/body/div[3]/div/div[2]/ul/div/li')) for i in range(1,lengthListFollowers+1): if int(jml_followers) > 12: daftar.append(browser.find_element_by_xpath('/html/body/div[3]/div/div[2]/ul/div/li['+str(i)+']/div/div[1]/div[2]/div[1]/a').get_attribute('title')) else: daftar.append(browser.find_element_by_xpath('/html/body/div[3]/div/div[2]/ul/div/li['+str(i)+']/div/div[2]/div[1]/div/div/a').get_attribute('title')) return daftar def writeToCSVandGTF(index, username, namafile): #GTF = Get Total Followers from target, GTF berguna untuk penentuan target selanjutnya. print('Sedang Crawling target ' + username + ' ....') try: browser.find_element_by_xpath('/html/body/span/section/main/div/div/article/div[1]/div/h2') #Ngecek private atau ngga, kalau ngga private lanjut ke except return 0, index except: time.sleep(2) translator = str.maketrans('', '', string.punctuation) #Untuk ngebuat teksnya rapih def give_emoji_free_text(text): #Untuk membuang semua emoji allchars = [str for str in text.encode('ascii', 'ignore').decode('utf-8')] emoji_list = [c for c in allchars if c in emoji.UNICODE_EMOJI] clean_text = ' '.join([str for str in text.encode('ascii', 'ignore').decode('utf-8').split() if not any(i in str for i in emoji_list)]) return clean_text def hashtag(text): #Untuk mendapatkan tag char = text.encode('ascii', 'ignore').decode('utf-8').replace('\n',' ') tag = [] teks = '' tulis = 0 for i in range(len(char)): if tulis == 1: teks = teks + char[i] if char[i] == '#': tulis = 1 elif (char[i] == ' ' or i == len(char)-1) and teks != '': teks = '#' + teks tag.append(teks) tulis = 0 teks = '' return tag jml_followers = browser.find_element_by_xpath('/html/body/span/section/main/div/header/section/ul/li[2]/a/span').get_attribute('title') #Untuk mendapatkan total followers target jml_posts = browser.find_element_by_xpath('/html/body/span/section/main/div/header/section/ul/li[1]/span/span').text #Untuk mendapatkan total posts target jml_followers = jml_followers.replace(',','') jml_posts = jml_posts.replace(',','') if int(jml_posts) == 0: return int(jml_followers), index tes = 0 galat = 0 benar = 1 while benar == 1 and int(jml_posts) != 0: try: browser.find_element_by_xpath('/html/body/span/section/main/div/div['+str(tes)+']/article/div[1]/div/div[1]/div[1]').click() benar = 0 except: tes += 1 galat += 1 if galat == 10: break continue time.sleep(1) #Crawling post limit = 0 while limit < int(jml_posts)-1 and int(jml_posts) != 0 and galat != 11: #print("Sedang crawling data posts target " + username + " ....") loading = False kanan = False kiri = False try: time.sleep(3) browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/div/div/svg') if limit > 0: browser.find_element_by_xpath('/html/body/div[3]/div[1]/div/div/a').click() loading = True kanan = True else: browser.find_element_by_xpath('/html/body/div[3]/div[1]/div/div/a').click() loading = True kiri = True except: try: ### Ini jika ada bulet-buletan loading if loading: if kiri: time.sleep(2) browser.find_element_by_xpath('/html/body/div[3]/div[1]/div/div/a').click() loading = False kiri = False continue elif kanan: time.sleep(2) browser.find_element_by_xpath('/html/body/div[3]/div[1]/div/div/a[2]').click() loading = False kanan = False continue ### Sampai sini lalu hasilnya akan dikontinue ke awal, untuk ngambil pos yang sebelumnya muter-muter teks = browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/div[1]/ul/div/li/div/div/div[2]/span').text #Mengambil captionnya dan menyimpannya dalam variabel teks tag = hashtag(teks) #Meyimpan kumpulan tag if len(tag) == 0: tag = '' teks = give_emoji_free_text(teks) #Menyingkirkan emoji dari teks teks = teks.translate(translator).lower() #Membuat huruf menjadi kecil except: teks = '' tag = '' try: try: likes = browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/section[2]/div/div/button/span').text #Untuk mengambil like yang punya banyak likes. except: likes = browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/section[2]/div/div/button').text #Untuk likes-nya sedikit likes = likes.replace('like this','').replace('like','')#Untuk me-replace 'like this' atau 'like' except: likes = browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/section[2]/div/span/span').text #Untuk mendapatkan likes dari video #print(teks, likes, tag) try: commentlist = len(browser.find_elements_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/div[1]/ul/ul')) #panjang dari banyak komen comment = [] ##print(commentlist) for i in range(1,commentlist+1): morecomment = [] commentter = browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/div[1]/ul/ul['+str(i)+']/div/li/div/div[1]/div[2]/h3/a').text teksc = browser.find_element_by_xpath('/html/body/div[3]/div[2]/div/article/div[2]/div[1]/ul/ul['+str(i)+']/div/li/div/div[1]/div[2]/span').text teksc = give_emoji_free_text(teksc) teksc = teksc.translate(translator).lower() morecomment.append(commentter) morecomment.append(teksc) comment.append(morecomment) #print(commentter,teks) if len(comment) == 0: comment = '' except: comment = '' if index == 0: with open(namafile,'a',newline='') as csvfile: #Membuka dan membuat file '.csv' writer = csv.writer(csvfile) writer.writerow(['username','post','tag','likes','comment']) writer.writerow([username, teks, tag, likes, comment]) index += 1 else: with open(namafile, 'a', newline = '') as csvfile: #Menambahkan file '.csv' dengan data baru writer = csv.writer(csvfile) #print(username, teks, tag, likes, comment) writer.writerow([username, teks, tag, likes, comment]) index += 1 if limit == 0: browser.find_element_by_xpath('/html/body/div[3]/div[1]/div/div/a').click() else: browser.find_element_by_xpath('/html/body/div[3]/div[1]/div/div/a[2]').click() #print() time.sleep(2) limit += 1 return int(jml_followers), index def mulaiProgram(url, username, password): loginInstagram(url, username, password) hitung = 0 sizeOfFile = 0 namafile = input("Masukkan nama file: ") namafix = namafile+'.csv' while sizeOfFile < 1024*1024*100: tertinggi = 0 indekss = 0 try: listTotalFollowersFromTarget = [] listFollowers = [] listFollowers = getListFollowers(username, tertinggi) #print(listFollowers) for usertarget in listFollowers: browser.get(url+'/'+usertarget) time.sleep(3) totalFollowers, indekss = writeToCSVandGTF(indekss, usertarget,namafix) listTotalFollowersFromTarget.append(totalFollowers) hitung += 1 #print( listTotalFollowersFromTarget ) tertinggi = max(listTotalFollowersFromTarget) #print(tertinggi) indeks = listTotalFollowersFromTarget.index(tertinggi) #print(indeks) browser.get(url+'/'+username) time.sleep(2) username = listFollowers[indeks] #print(username) browser.get(url+'/'+username) except: continue sizeOfFile = getFileSize(namafix) user = input('Masukkan username akun anda: ') passwo = input('Masukkan password akun anda: ') url = 'https://www.instagram.com' username = user password = passwo mulaiProgram(url, username, password) browser.quit()
50.220974
205
0.548736
0
0
0
0
0
0
0
0
4,070
0.303527
8d596a354fbcf53937f22d7c7dc7a505553f0379
5,310
py
Python
pages/process.py
nchibana/dash-app-template
a51ad0ac92e719b2ef60739b6c1126aebb920d47
[ "MIT" ]
null
null
null
pages/process.py
nchibana/dash-app-template
a51ad0ac92e719b2ef60739b6c1126aebb920d47
[ "MIT" ]
4
2020-03-24T17:36:39.000Z
2021-08-23T20:13:16.000Z
pages/process.py
nchibana/dash-app-template
a51ad0ac92e719b2ef60739b6c1126aebb920d47
[ "MIT" ]
null
null
null
import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff from sklearn.metrics import roc_curve import pandas as pd from joblib import load from app import app column1 = dbc.Col( [ dcc.Markdown( """ ## Process ******** To build this model, two datasets with similar labels were combined to form a dataset with 102,840 observations. I would like to thank the research team behind [this study](https://arxiv.org/pdf/1802.00393.pdf), as they promptly gave me access to their data, which was labeled through Crowdflower. This model builds largely on their work, as well as that of [this previous study](https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15665). After gaining access to both datasets, I proceeded to retrieve the corresponding tweet text for all IDs in the second set (as it was not provided) via Twitter's API. This was [the code](https://stackoverflow.com/questions/44581647/retrieving-a-list-of-tweets-using-tweet-id-in-tweepy) I used to retrieve the text, without exceeding the rate limit. """ ), html.Iframe(src='data:text/html;charset=utf-8,%3Cbody%3E%3Cscript%20src%3D%22https%3A%2F%2Fgist.github.com%2Fnchibana%2F20d6d9f8ae62a6cc36b773d37dd7dc70.js%22%3E%3C%2Fscript%3E%3C%2Fbody%3E', style=dict(border=0, padding=40), height=780, width=1000), dcc.Markdown( """ After that, I proceeded to combine the datasets and eliminate all duplicate tweets. I also defined a baseline accuracy score of 56%, which is the percent accuracy the model would achieve if it predicted the majority class for all tweets. Using some of the processes followed by the studies mentioned above, I also continued to preprocess the data by eliminating excess spaces, removing punctuation and retrieving the stem words of terms used in tweets. Next, I used Scikit-learn's [TfidVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) to convert tweet text into a matrix of TF-IDF features, which is a statistic that calculates how important a word is to a document or collection of words. """ ), html.Iframe(src='data:text/html;charset=utf-8,%3Cbody%3E%3Cscript%20src%3D%22https://gist.github.com/nchibana/c15cbc4a1d97af02fa62fff5868bc36e.js%22%3E%3C%2Fscript%3E%3C%2Fbody%3E', style=dict(border=0, padding=40), height=460, width=1000), dcc.Markdown( """ To increase the accuracy of the model, additional features were engineered, such as the number of syllables per word, the total number of characters, the number of words, the number of unique terms, as well as readability and sentiment scores for each tweet. Additionally, the number of mentions, hashtags and links in each tweet were also counted. For this study, images or any other type of media content were not analyzed. """ ), html.Iframe(src='data:text/html;charset=utf-8,%3Cbody%3E%3Cscript%20src%3D%22https%3A%2F%2Fgist.github.com%2Fnchibana%2F5cebfbfa700974edcd9f5fa6e43cc513.js%22%3E%3C%2Fscript%3E%3C%2Fbody%3E', style=dict(border=0, padding=40), height=600, width=1000), dcc.Markdown( """ After testing several models such as Linear SVC, I finally settled on a logistic regression model which I trained on the data and used for the final model and app. I also used grid search to find the optimal parameters for this logistic regression model. Finally, I computed all accuracy scores and proceeded to plot visualizations to help me get a deeper understanding of the model, such as a confusion matrix to visualize misclassified tweets. """ ), html.Iframe(src='data:text/html;charset=utf-8,%3Cbody%3E%3Cscript%20src%3D%22https%3A%2F%2Fgist.github.com%2Fnchibana%2F0cc0c44c9b5a991adbc2690c97023d0c.js%22%3E%3C%2Fscript%3E%3C%2Fbody%3E', style=dict(border=0, padding=40), height=300, width=1000), dcc.Markdown( """ ## Sources ******** 1. Automated Hate Speech Detection and the Problem of Offensive Language Davidson, Thomas and Warmsley, Dana and Macy, Michael and Weber, Ingmar Proceedings of the 11th International AAAI Conference on Web and Social Media p. 512-515. 2017 2. Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior Founta, Antigoni-Maria and Djouvas, Constantinos and Chatzakou, Despoina and Leontiadis, Ilias and Blackburn, Jeremy and Stringhini, Gianluca and Vakali, Athena and Sirivianos, Michael and Kourtellis, Nicolas 11th International Conference on Web and Social Media, ICWSM 2018 2018 """ ), ], md=12, ) layout = dbc.Row([column1])
50.09434
259
0.688512
0
0
0
0
0
0
0
0
4,287
0.807345
8d597279dcdef01055e59ebc350f3cf1d766f1a3
599
py
Python
tests/sdk/test_service.py
kusanagi/katana-sdk-python3
cd089409ec0d822f4d7bd6b4bebd527e003089ee
[ "MIT" ]
2
2017-03-21T20:02:47.000Z
2017-05-02T19:32:01.000Z
tests/sdk/test_service.py
kusanagi/katana-sdk-python3
cd089409ec0d822f4d7bd6b4bebd527e003089ee
[ "MIT" ]
19
2017-03-10T12:09:34.000Z
2018-06-01T18:10:06.000Z
tests/sdk/test_service.py
kusanagi/katana-sdk-python3
cd089409ec0d822f4d7bd6b4bebd527e003089ee
[ "MIT" ]
5
2017-03-10T11:40:50.000Z
2019-03-26T06:28:33.000Z
from katana.sdk.service import get_component from katana.sdk.service import Service def test_service_component(): # Check service component singleton creation assert get_component() is None service = Service() assert get_component() == service def action_callback(): pass assert service._callbacks == {} # Set an action callback action_name = 'foo' assert action_name not in service._callbacks service.action(action_name, action_callback) assert action_name in service._callbacks assert service._callbacks[action_name] == action_callback
27.227273
61
0.736227
0
0
0
0
0
0
0
0
73
0.12187
8d5b40af3f077c2c14c5035c4efe391b9a38cc70
527
py
Python
DesignPatterns/MVC/server/controllers/index.py
TigranGit/CodeBase
d58e30b1d83fab4b388ec2cdcb868fa751c62188
[ "Apache-2.0" ]
1
2020-08-13T19:09:27.000Z
2020-08-13T19:09:27.000Z
DesignPatterns/MVC/server/controllers/index.py
TigranGit/CodeBase
d58e30b1d83fab4b388ec2cdcb868fa751c62188
[ "Apache-2.0" ]
null
null
null
DesignPatterns/MVC/server/controllers/index.py
TigranGit/CodeBase
d58e30b1d83fab4b388ec2cdcb868fa751c62188
[ "Apache-2.0" ]
null
null
null
from .base_controller import BaseController from ..helper.utils import render_template from ..helper.constants import STATUS_OK class IndexController(BaseController): def __init__(self, client_address): self.user_ip = client_address[0] self.user_port = str(client_address[1]) self.title = "Home" def get(self): return STATUS_OK, render_template( "index.html", title=self.title, user_ip=self.user_ip, user_port=self.user_port, )
27.736842
47
0.654649
396
0.751423
0
0
0
0
0
0
18
0.034156
8d5bd4af92a66ece14d4931534ffa3416cb4b661
3,919
py
Python
plugins/tff_backend/bizz/payment.py
threefoldfoundation/app_backend
b3cea2a3ff9e10efcc90d3d6e5e8e46b9e84312a
[ "Apache-2.0" ]
null
null
null
plugins/tff_backend/bizz/payment.py
threefoldfoundation/app_backend
b3cea2a3ff9e10efcc90d3d6e5e8e46b9e84312a
[ "Apache-2.0" ]
178
2017-08-02T12:58:06.000Z
2017-12-20T15:01:12.000Z
plugins/tff_backend/bizz/payment.py
threefoldfoundation/app_backend
b3cea2a3ff9e10efcc90d3d6e5e8e46b9e84312a
[ "Apache-2.0" ]
2
2018-01-10T10:43:12.000Z
2018-03-18T10:42:23.000Z
# -*- coding: utf-8 -*- # Copyright 2017 GIG Technology NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.3@@ import time from google.appengine.api import users from google.appengine.ext import ndb from framework.utils import now from mcfw.rpc import returns, arguments from plugins.rogerthat_api.exceptions import BusinessException from plugins.tff_backend.models.payment import ThreeFoldTransaction, ThreeFoldPendingTransaction from plugins.tff_backend.to.payment import WalletBalanceTO def _get_balance_from_transactions(transactions, token): # type: (list[ThreeFoldTransaction], unicode) -> WalletBalanceTO available_balance = 0 total_balance = 0 total_description_details = [] # TODO set to minimum precision of all transactions when transactions have the 'precision' property # (and multiply available / total amount depending on precision) precision = 2 # for transaction in transactions: # precision = max(transaction.precision, precision) for transaction in transactions: if transaction.token != token: raise BusinessException('Invalid transaction supplied to _get_balance_from_transactions. ' 'All transactions must have %s as token', token) amount_spent = transaction.amount - transaction.amount_left unlocked_amount = 0 now_ = now() for unlock_timestamp, unlock_amount in zip(transaction.unlock_timestamps, transaction.unlock_amounts): if unlock_timestamp <= now_: unlocked_amount += unlock_amount else: total_description_details.append((unlock_timestamp, unlock_amount)) spendable_amount = unlocked_amount - amount_spent available_balance += spendable_amount total_balance += transaction.amount_left if total_description_details: total_description = u"""## %(token)s Unlock times' |Date|#%(token)s| |---|---:| """ % {'token': token} for unlock_timestamp, unlock_amount in sorted(total_description_details, key=lambda tup: tup[0]): date = time.strftime('%a %d %b %Y %H:%M:%S GMT', time.localtime(unlock_timestamp)) amount = u'{:0,.2f}'.format(unlock_amount / 100.0) total_description += u'\n|%s|%s|' % (date, amount) else: total_description = None return WalletBalanceTO(available=available_balance, total=total_balance, description=total_description, token=token, precision=precision) @returns([WalletBalanceTO]) @arguments(username=unicode) def get_all_balances(username): transactions = ThreeFoldTransaction.list_with_amount_left(username) token_types = set(map(lambda transaction: transaction.token, transactions)) results = [] for token in token_types: transactions_per_token = [trans for trans in transactions if trans.token == token] results.append(_get_balance_from_transactions(transactions_per_token, token)) return results @returns(tuple) @arguments(username=unicode, page_size=(int, long), cursor=unicode) def get_pending_transactions(username, page_size, cursor): # type: (users.User, long, unicode) -> tuple[list[ThreeFoldPendingTransaction], ndb.Cursor, bool] return ThreeFoldPendingTransaction.list_by_user(username) \ .fetch_page(page_size, start_cursor=ndb.Cursor(urlsafe=cursor))
42.597826
120
0.720082
0
0
0
0
863
0.220209
0
0
1,265
0.322786
8d5f94f57caf92571a35ef22a1aa7566e2df0d65
1,582
py
Python
tasks/tests/ui/conftest.py
MisterLenivec/django_simple_todo_app
8e694a67df43de7feaae785c0b3205534c701923
[ "MIT" ]
null
null
null
tasks/tests/ui/conftest.py
MisterLenivec/django_simple_todo_app
8e694a67df43de7feaae785c0b3205534c701923
[ "MIT" ]
4
2020-06-07T01:25:14.000Z
2021-06-10T18:34:10.000Z
tasks/tests/ui/conftest.py
MisterLenivec/django_simple_todo_app
8e694a67df43de7feaae785c0b3205534c701923
[ "MIT" ]
null
null
null
from django.conf import settings from selenium import webdriver from selenium.webdriver.chrome.options import Options import pytest import os @pytest.fixture(scope='session') def django_db_setup(): settings.DATABASES['default'] = { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.environ.get('simple_todo_db_name'), 'USER': os.environ.get('simple_todo_db_user'), 'PASSWORD': os.environ.get('simple_todo_db_password'), 'HOST': '127.0.0.1', 'PORT': '5432', } def pytest_addoption(parser): parser.addoption('--browser_name', action='store', default="chrome", help="Choose browser: chrome or firefox") def chrome_options(): options = Options() options.add_argument("--headless") # No open browser options.add_argument("--window-size=1920x1080") return options def firefox_options(): fp = webdriver.FirefoxProfile() return fp @pytest.fixture(scope="session") def browser(request): browser_name = request.config.getoption("browser_name") browser = None if browser_name == "chrome": print("\nstart chrome browser for test..") browser = webdriver.Chrome( options=chrome_options() ) elif browser_name == "firefox": print("\nstart firefox browser for test..") browser = webdriver.Firefox( firefox_profile=firefox_options() ) else: raise pytest.UsageError("--browser_name should be chrome or firefox") yield browser print("\nquit browser..") browser.quit()
27.275862
77
0.653603
0
0
605
0.382427
1,014
0.640961
0
0
468
0.295828
8d606a3efd5feb490b057183d05dc39513b2525a
3,519
py
Python
erp/migrations/0026_auto_20200205_0950.py
Foohx/acceslibre
55135e096f2ec4e413ff991f01c17f5e0d5925c0
[ "MIT" ]
8
2020-07-23T08:17:28.000Z
2022-03-09T22:31:36.000Z
erp/migrations/0026_auto_20200205_0950.py
Foohx/acceslibre
55135e096f2ec4e413ff991f01c17f5e0d5925c0
[ "MIT" ]
37
2020-07-01T08:47:33.000Z
2022-02-03T19:50:58.000Z
erp/migrations/0026_auto_20200205_0950.py
Foohx/acceslibre
55135e096f2ec4e413ff991f01c17f5e0d5925c0
[ "MIT" ]
4
2021-04-08T10:57:18.000Z
2022-01-31T13:16:31.000Z
# Generated by Django 3.0.3 on 2020-02-05 08:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('erp', '0025_auto_20200205_0839'), ] operations = [ migrations.AddField( model_name='cheminement', name='aide_humaine', field=models.BooleanField(blank=True, help_text="Présence ou possibilité d'une aide humaine au déplacement", null=True), ), migrations.AlterField( model_name='accessibilite', name='accueil_personnels', field=models.CharField(blank=True, choices=[(None, 'Inconnu'), ('aucun', 'Aucun personnel'), ('formés', 'Personnels sensibilisés et formés'), ('non-formés', 'Personnels non non-formés')], help_text="Présence et type de personnel d'accueil", max_length=255, null=True, verbose_name="Personnel d'accueil"), ), migrations.AlterField( model_name='accessibilite', name='accueil_visibilite', field=models.BooleanField(blank=True, help_text="La zone d'accueil est-elle visible depuis l'entrée ?", null=True, verbose_name="Visibilité de la zone d'accueil"), ), migrations.AlterField( model_name='accessibilite', name='entree_reperage', field=models.BooleanField(blank=True, help_text="Présence d'éléments de répérage de l'entrée", null=True, verbose_name="Repérage de l'entrée"), ), migrations.AlterField( model_name='cheminement', name='devers', field=models.CharField(blank=True, choices=[(None, 'Inconnu'), ('aucun', 'Aucun'), ('léger', 'Léger'), ('important', 'Important')], help_text='Inclinaison transversale du cheminement', max_length=15, null=True, verbose_name='Dévers'), ), migrations.AlterField( model_name='cheminement', name='escalier_reperage', field=models.BooleanField(blank=True, help_text='Si marches contrastées, bande d’éveil ou nez de marche contrastés, indiquez “Oui”', null=True, verbose_name="Repérage de l'escalier"), ), migrations.AlterField( model_name='cheminement', name='pente', field=models.CharField(blank=True, choices=[(None, 'Inconnu'), ('aucune', 'Aucune'), ('légère', 'Légère'), ('importante', 'Importante')], help_text='Présence et type de pente', max_length=15, null=True), ), migrations.AlterField( model_name='cheminement', name='rampe', field=models.CharField(blank=True, choices=[(None, 'Inconnu'), ('aucune', 'Aucune'), ('fixe', 'Fixe'), ('amovible', 'Amovible')], help_text='Présence et type de rampe', max_length=20, null=True), ), migrations.AlterField( model_name='cheminement', name='type', field=models.CharField(choices=[('stationnement_vers_erp', "Cheminement depuis le stationnement de l'ERP"), ('stationnement_ext_vers_erp', "Cheminement depuis le stationnement extérieur à l'ERP"), ('stationnement_vers_entree', "Cheminement du stationnement à l'entrée du bâtiment"), ('parcelle_vers_entree', "Cheminement depuis l'entrée de la parcelle de terrain à l'entrée du bâtiment"), ('entree_vers_accueil', "Cheminement de l'entrée du bâtiment à la zone d'accueil"), ('entree', "Cheminement autour de l'entrée")], default='entree', help_text='Type de cheminement', max_length=100, verbose_name='Cheminement'), ), ]
59.644068
627
0.651321
3,477
0.97395
0
0
0
0
0
0
1,643
0.460224
8d60c377538ddae6447654f6c37f24bae517225c
3,629
py
Python
convert.py
Ellen7ions/bin2mem
51e3216cbf5e78547751968ef1619a925f2f55ef
[ "MIT" ]
3
2021-05-18T13:07:39.000Z
2021-05-24T12:46:43.000Z
convert.py
Ellen7ions/bin2mem
51e3216cbf5e78547751968ef1619a925f2f55ef
[ "MIT" ]
null
null
null
convert.py
Ellen7ions/bin2mem
51e3216cbf5e78547751968ef1619a925f2f55ef
[ "MIT" ]
null
null
null
import os, sys import json class Config: def __init__(self, config_path='./config.json'): super(Config, self).__init__() self.config_path = config_path self.bin2mem_path = None self.init_configs(json.load(open(config_path))) def init_configs(self, json_data): self.bin2mem_path = json_data['bin2mem.path'] Config.check_file_exists(self.bin2mem_path) @staticmethod def check_file_exists(file_name): if not os.path.exists(file_name): raise Exception(f'{file_name} not found!') class Convert: def __init__(self): super(Convert, self).__init__() self.config = Config() self.FLAG_SAVE_FILES = False self.FLAG_FILE_NAME = '' self.FLAG_CLEAN_ALL = False self.workspace_name = '' self.file_name = '' self.o_file_path = '' self.bin_file_path = '' self.coe_file_path = '' self.init_flags() self.make_workspace() self.set_files_path() def init_flags(self): for i in sys.argv: if i == '-s': self.FLAG_SAVE_FILES = True if i.endswith('.s'): self.FLAG_FILE_NAME = i if i == 'clean': self.FLAG_CLEAN_ALL = True if self.FLAG_FILE_NAME == '': if os.path.exists('main.s'): self.FLAG_FILE_NAME = 'main.s' else: raise Exception('Where is your input file :(') self.workspace_name = self.FLAG_FILE_NAME[:-2] self.file_name = self.FLAG_FILE_NAME[:-2] def make_workspace(self): if not os.path.exists(self.workspace_name): os.mkdir(self.workspace_name) def set_files_path(self): self.o_file_path = f'.\\{self.workspace_name}\\{self.file_name}.o' self.bin_file_path = f'.\\{self.workspace_name}\\{self.file_name}.bin' self.coe_file_path = f'.\\{self.workspace_name}\\{self.file_name}.txt' def mips_gcc_c(self): os.system(f'mips-sde-elf-gcc -c {self.FLAG_FILE_NAME} -o {self.o_file_path}') def mips_objcopy(self): os.system(f'mips-sde-elf-objcopy -O binary {self.o_file_path} {self.bin_file_path}') def mips_bin2mem(self): os.system(f'{self.config.bin2mem_path} {self.bin_file_path} {self.coe_file_path}') def clean_process_files(self): try: Config.check_file_exists(self.o_file_path) os.system(f'del {self.o_file_path}') except Exception as e: pass try: Config.check_file_exists(self.bin_file_path) os.system(f'del {self.bin_file_path}') except Exception as e: pass def run(self): self.mips_gcc_c() self.mips_objcopy() self.mips_bin2mem() def clean(self): self.clean_process_files() try: Config.check_file_exists(self.coe_file_path) os.system(f'del {self.coe_file_path}') except Exception as e: pass os.removedirs(self.workspace_name) def mips_objdump(self): if os.path.exists(self.o_file_path): os.system(f'mips-sde-elf-objdump -d {self.o_file_path}') def apply(self): if self.FLAG_CLEAN_ALL: self.clean() return self.run() if not self.FLAG_SAVE_FILES: self.clean_process_files() return self.mips_objdump() if __name__ == '__main__': c = Convert() c.apply() # c.mips_gcc_c() # c.mips_objcopy() # c.mips_bin2mem() # config = Config()
28.801587
92
0.590245
3,444
0.949022
0
0
148
0.040783
0
0
688
0.189584
8d61a4b35ddf035024fe7d951c745cb83a2a9d4d
3,161
py
Python
stats.py
DisinfoResearch/TwitterCollector
183b6761cca54b5db5b98a2f9f86bd8bcc98a7cb
[ "MIT" ]
null
null
null
stats.py
DisinfoResearch/TwitterCollector
183b6761cca54b5db5b98a2f9f86bd8bcc98a7cb
[ "MIT" ]
null
null
null
stats.py
DisinfoResearch/TwitterCollector
183b6761cca54b5db5b98a2f9f86bd8bcc98a7cb
[ "MIT" ]
null
null
null
#!/bin/python3 # Copyright (C) 2021, Michigan State University. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import csv import json import argparse import sys import datetime from dateutil.parser import parse def calc_row(u): created_date = parse(u['created_at']) t = today - created_date.date() # Prevent divide by zero ff_ratio = 0 if int(u['friends_count']) != 0: ff_ratio = int(u['followers_count'])/int(u['friends_count']) # Force conversions to int, as you never know with Twitter return {'Twitter_ID':u['id'], 'Handle':u['screen_name'], 'Followed':u['friends_count'], 'Followers':u['followers_count'], 'Followers/Followed':ff_ratio, 'Tweets':u['statuses_count'], 'Days_old':int(t.days), 'Tweets/Days_old':int(u['statuses_count'])/int(t.days), 'Followers/Days_old':int(u['followers_count'])/int(t.days)} def process_csv(inp, out): # Uses a Tuple to ensure a specific column order csv_writer = csv.DictWriter(out, fieldnames=('Twitter_ID', 'Handle', 'Followed', 'Followers', 'Followers/Followed', 'Tweets', 'Days_old', 'Tweets/Days_old', 'Followers/Days_old')) csv_writer.writeheader() for line in inp: csv_writer.writerow(calc_row(json.loads(line))) def process_json(inp, out): for line in inp: j = json.loads(line) out.write(json.dumps(calc_row(j))+"\n") parser = argparse.ArgumentParser(description='Convert JSON to CSV', epilog='P.S. Trust The Plan') parser.add_argument('--format', help='either JSON or CSV', required=True) parser.add_argument('input', help='JSON File, or stdin if not specified', type=argparse.FileType('r', encoding='utf-8'), default=sys.stdin) parser.add_argument('output', help='output to File, or stdout if not specified', type=argparse.FileType('w', encoding='utf-8'), default=sys.stdout) args = parser.parse_args() today = datetime.date.today() if args.format.upper() == 'CSV': process_csv(args.input, args.output) elif args.format.upper() == 'JSON': process_json(args.input, args.output) else: print(f"Error: '{args.format}' is an invalid format, must be CSV or JSON.", end="\n\n") parser.print_help() exit(-1)
45.157143
326
0.726669
0
0
0
0
0
0
0
0
1,898
0.600443
8d61d1b5d6b0de975b9d576cfadcd886cc44204a
10,970
py
Python
Scratch/lstm.py
imadtoubal/MultimodalDeepfakeDetection
46539e16c988ee9fdfb714893788bbbf72836595
[ "MIT" ]
2
2022-03-12T09:18:13.000Z
2022-03-23T08:29:10.000Z
Scratch/lstm.py
imadtoubal/MultimodalDeepfakeDetection
46539e16c988ee9fdfb714893788bbbf72836595
[ "MIT" ]
null
null
null
Scratch/lstm.py
imadtoubal/MultimodalDeepfakeDetection
46539e16c988ee9fdfb714893788bbbf72836595
[ "MIT" ]
null
null
null
import torch from torch import nn import torch.nn.functional as F import torch.optim as optim from preprocess import * from torch.utils.data import Dataset, DataLoader from blazeface import BlazeFace import os import cv2 import numpy as np from matplotlib import pyplot as plt import random import pickle DATA_FOLDER = '../input/deepfake-detection-challenge' TRAIN_SAMPLE_FOLDER = 'train_sample_videos' TEST_FOLDER = 'test_videos' device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") NET = BlazeFace().to(device) NET.load_weights("../input/blazeface.pth") NET.load_anchors("../input/anchors.npy") class MyLSTM(nn.Module): def __init__(self, num_layers=2, num_hidden_nodes=512): super(MyLSTM, self).__init__() self.num_layers = num_layers self.num_hidden_nodes = num_hidden_nodes # input dim is 167, output 200 self.lstm = nn.LSTM(167, num_hidden_nodes, batch_first=True, num_layers=num_layers) # fully connected self.fc1 = nn.Linear(num_hidden_nodes, num_hidden_nodes) self.act = nn.Sigmoid() self.fc2 = nn.Linear(num_hidden_nodes, 2) self.softmax = nn.Softmax() def forward(self, x, hidden): y, hidden = self.lstm(x, hidden) # returns the two outputs y = y[:, -1, :] # get only the last output y = self.fc1(y) y = self.fc2(y) y = F.softmax(y, dim=1) return y, hidden def init_hidden(self, batch_size): weight = next(self.parameters()).data hidden = (weight.new(self.num_layers, batch_size, self.num_hidden_nodes).zero_(), weight.new(self.num_layers, batch_size, self.num_hidden_nodes).zero_()) return hidden class FourierDataset(Dataset): def __init__(self, data): """ data: a list of (label: string, fourier_data: numpy array, name: string) """ self.data = [] for elt in data: label, spects, name = elt label = torch.tensor(0 if label == 'FAKE' else 1) # Moving window sequence generation without overalap # other ideas: 1. Random sampling, 2. Moving qindow with overlap # this data will be shuffled for i in range(0, 24 * (spects.shape[0] // 24), 24): spect = torch.tensor(spects[i:i+24, :]) self.data.append((spect, label)) def __getitem__(self, idx): return self.data[idx] # spect (24, 167), label (2) def __len__(self): return len(self.data) sequence = 24 # 1 sec of video feature_size = 167 # length of spatial frequency def read_video(filename): vidcap = cv2.VideoCapture(filename) success, image = vidcap.read() count = 0 images = [] while success: tiles, resize_info = stride_search(image) detections = NET.predict_on_image(tiles[1]) blazeface_endpoints = get_face_endpoints(tiles[1], detections)[ 0] # take the first face only # we need to resize them on the original image and get the amount shifted to prevent negative values # in this case it will be 1080 split_size = 128 * resize_info[1] # determine how much we shifted for this tile x_shift = (image.shape[1] - split_size) // 2 face_endpoints = (int(blazeface_endpoints[0] * resize_info[0]), int(blazeface_endpoints[1] * resize_info[0] + x_shift), int(blazeface_endpoints[2] * resize_info[0]), int(blazeface_endpoints[3] * resize_info[0] + x_shift)) # next we need to expand the rectangle to be 240, 240 pixels (for this training example) # we can do this equally in each direction, kind of face_width = face_endpoints[3] - face_endpoints[1] face_height = face_endpoints[2] - face_endpoints[0] buffer = 20 face_box = image[max(0, face_endpoints[0] - buffer): min(face_endpoints[2] + buffer, image.shape[0]), max(0, face_endpoints[1] - buffer): min(face_endpoints[3] + buffer, image.shape[1])] # print(face_box.shape) # almost a square or very close to it face = cv2.resize(face_box, (240, 240)) images.append(face) # cv2.imshow("face", face) success, image = vidcap.read() count += 1 if cv2.waitKey(1) & 0xFF == ord('q'): break if images: return np.stack(images) def get_spects(vid): spects = [] for i in range(vid.shape[0]): img = vid[i] spects.append(fourier_tranform(img, '')) return np.stack(spects) def get_face_endpoints(img, detections, with_keypoints=False): if isinstance(detections, torch.Tensor): detections = detections.cpu().numpy() if detections.ndim == 1: detections = np.expand_dims(detections, axis=0) detected_faces_endpoints = [] for i in range(detections.shape[0]): # dependent on number of faces found ymin = detections[i, 0] * img.shape[0] xmin = detections[i, 1] * img.shape[1] ymax = detections[i, 2] * img.shape[0] xmax = detections[i, 3] * img.shape[1] detected_faces_endpoints.append((ymin, xmin, ymax, xmax)) cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 0, 255), 2) if with_keypoints: for k in range(6): kp_x = detections[i, 4 + k*2] * img.shape[1] kp_y = detections[i, 4 + k*2 + 1] * img.shape[0] circle = patches.Circle((kp_x, kp_y), radius=0.5, linewidth=1, edgecolor="lightskyblue", facecolor="none", alpha=detections[i, 16]) return detected_faces_endpoints def prepare_data(): # Here we check the train data files extensions. train_list = list(os.listdir( os.path.join(DATA_FOLDER, TRAIN_SAMPLE_FOLDER))) ext_dict = [] for file in train_list: file_ext = file.split('.')[1] if (file_ext not in ext_dict): ext_dict.append(file_ext) print(f"Extensions: {ext_dict}") # Let's count how many files with each extensions there are. for file_ext in ext_dict: print( f"Files with extension `{file_ext}`: {len([file for file in train_list if file.endswith(file_ext)])}") test_list = list(os.listdir(os.path.join(DATA_FOLDER, TEST_FOLDER))) ext_dict = [] for file in test_list: file_ext = file.split('.')[1] if (file_ext not in ext_dict): ext_dict.append(file_ext) print(f"Extensions: {ext_dict}") for file_ext in ext_dict: print( f"Files with extension `{file_ext}`: {len([file for file in train_list if file.endswith(file_ext)])}") json_file = [file for file in train_list if file.endswith('json')][0] print(f"JSON file: {json_file}") meta_train_df = get_meta_from_json(TRAIN_SAMPLE_FOLDER, json_file) meta_train_df.head() fake_train_sample_video = list( meta_train_df.loc[meta_train_df.label == 'FAKE'].sample(90).index) real_train_sample_video = list( meta_train_df.loc[meta_train_df.label == 'REAL'].index) training_data = [] for video_file in fake_train_sample_video: try: data = process_video_data(os.path.join( DATA_FOLDER, TRAIN_SAMPLE_FOLDER, video_file)) training_data.append(('FAKE', data, video_file)) # (X, 24, 167) except: continue for video_file in real_train_sample_video: try: data = process_video_data(os.path.join( DATA_FOLDER, TRAIN_SAMPLE_FOLDER, video_file)) training_data.append(('REAL', data, video_file)) except: continue random.shuffle(training_data) with open('train_data.txt', 'wb') as fp: # pickling pickle.dump(training_data, fp) return training_data def read_data(): with open("train_data.txt", "rb") as fp: # Unpickling training_data = pickle.load(fp) return training_data def process_video_data(video_file): stack = read_video(video_file) stack = stack.mean(axis=-1) / 255 return get_spects(stack) def prepare_spect(spect): return torch.tensor(spect) def convert_scores(label): return torch.tensor([1, 0]) if label == 'FAKE' else torch.tensor([0, 1]) def train(training_data): batch_size = 69 model = MyLSTM() loss_function = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) training_data = FourierDataset(training_data) trainloader = DataLoader( training_data, batch_size=batch_size, shuffle=True) hidden = model.init_hidden(batch_size) print_every = 10 for epoch in range(100): # again, normally you would NOT do 100 epochs, it is toy data running_loss = 0.0 running_acc = 0.0 i = 0 for inp, labels in trainloader: # renamed sequence to inp because inp is a batch of sequences # Step 1. Remember that Pytorch accumulates gradients. # We need to clear them out before each instance model.zero_grad() inp = inp.float() # Step 2. Run our forward pass. tag_scores, h = model(inp, hidden) # Step 3. Compute the loss, gradients, and update the parameters by # calling optimizer.step() loss = loss_function(tag_scores, labels) loss.backward() optimizer.step() running_acc += torch.mean((tag_scores.argmax(dim=1) == labels).float()).item() # print statistics running_loss += loss.item() if i % print_every == print_every-1: print('[%d, %5d] loss: %.3f - acc: %.3f' % (epoch + 1, i + 1, running_loss / print_every, running_acc * 100 / print_every)) running_loss = 0.0 running_acc = 0.0 i += 1 def main(): # prepare_data() ''' stack = read_video(os.path.join(DATA_FOLDER, TRAIN_SAMPLE_FOLDER, 'aagfhgtpmv.mp4')) print(stack.shape) stack = stack.mean(axis=-1) / 255 spects = get_spects(stack) # print(spects.shape) print(spects[0]) plt.plot(spects[0]) plt.xlabel('Spatial Frequency') plt.ylabel('Power Spectrum') plt.show() ''' training_data = read_data() train(training_data) if __name__ == '__main__': main()
34.388715
116
0.591978
1,994
0.181768
0
0
0
0
0
0
2,369
0.215953
8d63217e5fdc8f7f711034a43dd2b7d398591281
18,373
py
Python
analysis/plot/python/plot_groups/estimator.py
leozz37/makani
c94d5c2b600b98002f932e80a313a06b9285cc1b
[ "Apache-2.0" ]
1,178
2020-09-10T17:15:42.000Z
2022-03-31T14:59:35.000Z
analysis/plot/python/plot_groups/estimator.py
leozz37/makani
c94d5c2b600b98002f932e80a313a06b9285cc1b
[ "Apache-2.0" ]
1
2020-05-22T05:22:35.000Z
2020-05-22T05:22:35.000Z
analysis/plot/python/plot_groups/estimator.py
leozz37/makani
c94d5c2b600b98002f932e80a313a06b9285cc1b
[ "Apache-2.0" ]
107
2020-09-10T17:29:30.000Z
2022-03-18T09:00:14.000Z
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plots relating to the estimator.""" from makani.analysis.plot.python import mplot from makani.avionics.common import plc_messages from makani.control import control_types from makani.lib.python import c_helpers from makani.lib.python.h5_utils import numpy_utils from matplotlib.pyplot import plot from matplotlib.pyplot import yticks import numpy as np from scipy import interpolate MFig = mplot.PlotGroup.MFig # pylint: disable=invalid-name _WING_GPS_RECEIVER_HELPER = c_helpers.EnumHelper( 'WingGpsReceiver', control_types) _GROUND_STATION_MODE_HELPER = c_helpers.EnumHelper( 'GroundStationMode', plc_messages) def _QuatToVec(q): dims = ['q0', 'q1', 'q2', 'q3'] return np.array([q[d] for d in dims]) class Plots(mplot.PlotGroup): """Plots of the estimator.""" @MFig(title='Filtered Velocity', ylabel='Velocity [m/s]', xlabel='Time [s]') def PlotFilteredVelocity(self, e, c, s, params): mplot.PlotVec3(c['time'], c['state_est']['Vg'], label='Vg', linestyle='-') mplot.PlotVec3(c['time'], c['state_est']['Vg_f'], label='Vg_f', linestyle='-.') if s is not None: mplot.PlotVec3(s['time'], s['wing']['Vg'], label='sim', linestyle=':') @MFig(title='Acc Norm f', ylabel='Acc. [m/s^2]', xlabel='Time [s]') def PlotAccNormF(self, e, c, s, params, imu_index=0): plot(c['time'], c['state_est']['acc_norm_f']) @MFig(title='Gyros', ylabel='Rate [rad/s]', xlabel='Time [s]') def PlotGyros(self, e, c, s, params, imu_index=0): mplot.PlotVec3(c['time'], c['control_input']['imus']['gyro'][:, imu_index]) @MFig(title='Filtered Body Rates', ylabel='Rate [rad/s]', xlabel='Time [s]') def PlotBodyRates(self, e, c, s, params): mplot.PlotVec3(c['time'], c['state_est']['pqr_f']) @MFig(title='Attitude Error', ylabel='Error [deg]', xlabel='Time [s]') def PlotAttitudeError(self, e, c, s, params): for imu_index in range(3): if s is not None: dims = ['q0', 'q1', 'q2', 'q3'] q_s = {d: np.zeros(c['time'].shape) for d in dims} for d in dims: q_s[d] = interpolate.interp1d(s['time'], s['wing']['q'][d], bounds_error=False)(c['time']) q_s = _QuatToVec(q_s) if 'q_g2b' in e.dtype.names: q_c = e['q_g2b'][:, imu_index] q_c = _QuatToVec(q_c) plot(c['time'], np.rad2deg( np.arccos(1.0 - 2.0 * (1.0 - np.sum(q_c * q_s, axis=0)**2.0))), label='Imu %d' % imu_index) if 'mahony_states' in e.dtype.names: q_c = e['mahony_states']['q'][:, imu_index] q_c = _QuatToVec(q_c) plot(c['time'], np.rad2deg( np.arccos(1.0 - 2.0 * (1.0 - np.sum(q_c * q_s, axis=0)**2.0))), label='Imu %d' % imu_index) @MFig(title='Gyro Biases', ylabel='Biases [rad/s]', xlabel='Time [s]') def PlotGyroBiases(self, e, c, s, params, imu_index=0): mplot.PlotVec3(c['time'], e['gyro_biases'][:, imu_index], label='IMU %d' % imu_index) if s is not None: mplot.PlotVec3(s['time'], s['imus']['gyro_bias_b'][:, imu_index], linestyle=':') @MFig(title='Acc Biases', ylabel='Biases [m/s^1]', xlabel='Time [s]') def PlotAccBiases(self, e, c, s, params, imu_index=0): mplot.PlotVec3(c['time'], e['acc_b_estimates'][:, imu_index], label='IMU %d' % imu_index) @MFig(title='Air Speed', ylabel='Speed [m/s]', xlabel='Time [s]') def PlotAirspeed(self, e, c, s, params): plot(c['time'], c['state_est']['apparent_wind']['sph']['v'], 'b', label='est') plot(c['time'], c['state_est']['apparent_wind']['sph_f']['v'], 'g', label='filt') if s is not None: plot(s['time'], s['wing']['apparent_wind_b']['v'], 'b:', label='sim') @MFig(title='Magnetometer', ylabel='Field [Gauss]', xlabel='Time [s]') def PlotMagnetometer(self, e, c, s, params): mplot.PlotVec3(c['time'], c['control_input']['imus']['mag'][:, 0], linestyle='-', label='A') mplot.PlotVec3(c['time'], c['control_input']['imus']['mag'][:, 1], linestyle=':', label='B') mplot.PlotVec3(c['time'], c['control_input']['imus']['mag'][:, 2], linestyle='-.', label='C') @MFig(title='Specific Force', ylabel='Specific Force [m/s^2]', xlabel='Time [s]') def PlotAccelerometer(self, e, c, s, params): mplot.PlotVec3(c['time'], c['control_input']['imus']['acc'][:, 0], linestyle='-', label='A') mplot.PlotVec3(c['time'], c['control_input']['imus']['acc'][:, 1], linestyle=':', label='B') mplot.PlotVec3(c['time'], c['control_input']['imus']['acc'][:, 2], linestyle='-.', label='C') @MFig(title='Accel.', ylabel='Specific Force [m/s^2]', xlabel='Time [s]') def PlotSpecificForce(self, e, c, s, params): mplot.PlotVec3(c['time'], c['estimator']['acc_b_estimates'][:, 0], linestyle='-', label='A') mplot.PlotVec3(c['time'], c['estimator']['acc_b_estimates'][:, 1], linestyle=':', label='B') mplot.PlotVec3(c['time'], c['estimator']['acc_b_estimates'][:, 2], linestyle='-.', label='C') @MFig(title='Magnetometer Diff', ylabel='Field [Gauss]', xlabel='Time [s]') def PlotMagnetometerDiff(self, e, c, s, params, dimension='x'): plot(c['time'], c['control_input']['imus']['mag'][dimension][:, 0] - c['control_input']['imus']['mag'][dimension][:, 1], 'b', label='A-B ' + dimension) plot(c['time'], c['control_input']['imus']['mag'][dimension][:, 1] - c['control_input']['imus']['mag'][dimension][:, 2], 'g', label='B-C ' + dimension) plot(c['time'], c['control_input']['imus']['mag'][dimension][:, 2] - c['control_input']['imus']['mag'][dimension][:, 0], 'r', label='C-A ' + dimension) @MFig(title='Current GPS', ylabel='GPS Receiver', xlabel='Time [s]') def PlotGpsReceiver(self, e, c, s, params): plot(c['time'], e['current_gps_receiver'], label='current_receiver') yticks(_WING_GPS_RECEIVER_HELPER.Values(), _WING_GPS_RECEIVER_HELPER.ShortNames()) def _PlotGpsPositionEcefChannel(self, c, d): sigma = c['control_input']['wing_gps']['pos_sigma'][d] wing_gps_pos = np.array(c['control_input']['wing_gps']['pos'][d]) wing_gps_pos[wing_gps_pos == 0] = float('nan') plot(c['time'], wing_gps_pos[:, 0], 'b', label='0:%s ECEF' % d) plot(c['time'], wing_gps_pos[:, 0] + sigma[:, 0], 'b:') plot(c['time'], wing_gps_pos[:, 0] - sigma[:, 0], 'b:') plot(c['time'], wing_gps_pos[:, 1], 'g', label='1:%s ECEF' % d) plot(c['time'], wing_gps_pos[:, 1] + sigma[:, 1], 'g:') plot(c['time'], wing_gps_pos[:, 1] - sigma[:, 1], 'g:') @MFig(title='GPS Position ECEF', ylabel='Position [m]', xlabel='Time [s]') def PlotGpsPositionEcefX(self, e, c, s, params): self._PlotGpsPositionEcefChannel(c, 'x') @MFig(title='GPS Position ECEF', ylabel='Position [m]', xlabel='Time [s]') def PlotGpsPositionEcefY(self, e, c, s, params): self._PlotGpsPositionEcefChannel(c, 'y') @MFig(title='GPS Position ECEF', ylabel='Position [m]', xlabel='Time [s]') def PlotGpsPositionEcefZ(self, e, c, s, params): self._PlotGpsPositionEcefChannel(c, 'z') @MFig(title='Kite Velocity Sigma', ylabel='Sigma Velocity [m/s]', xlabel='Time [s]') def PlotVelocitySigmas(self, e, c, s, params, plot_glas=True): if 'cov_vel_g' in e.dtype.names: plot(c['time'], e['cov_vel_g']['x']**0.5, 'b', label='Vg_x est') plot(c['time'], e['cov_vel_g']['y']**0.5, 'g', label='Vg_y est') plot(c['time'], e['cov_vel_g']['z']**0.5, 'r', label='Vg_z est') if 'gps' in e.dtype.names: aux_indices = np.argwhere(e['current_gps_receiver'] == 1) vg = e['gps']['sigma_Vg'][:, 0] vg[aux_indices] = e['gps']['sigma_Vg'][aux_indices, 1] plot(c['time'], vg['x'], 'b-.', label='Vg_x gps') plot(c['time'], vg['y'], 'g-.', label='Vg_y gps') plot(c['time'], vg['z'], 'r-.', label='Vg_z gps') @MFig(title='Kite Position Sigma', ylabel='Sigma Position [m]', xlabel='Time [s]') def PlotPositionSigmas(self, e, c, s, params, plot_glas=True): if 'cov_vel_g' in e.dtype.names: plot(c['time'], e['cov_pos_g']['x']**0.5, 'b', label='Xg_x est') plot(c['time'], e['cov_pos_g']['y']**0.5, 'g', label='Xg_y est') plot(c['time'], e['cov_pos_g']['z']**0.5, 'r', label='Xg_z est') if 'gps' in e.dtype.names: aux_indices = np.argwhere(e['current_gps_receiver'] == 1) xg = e['gps']['sigma_Xg'][:, 0] xg[aux_indices] = e['gps']['sigma_Xg'][aux_indices, 1] plot(c['time'], xg['x'], 'b-.', label='Xg_x gps') plot(c['time'], xg['y'], 'g-.', label='Xg_y gps') plot(c['time'], xg['z'], 'r-.', label='Xg_z gps') @MFig(title='Kite Velocity', ylabel='Velocity [m/s]', xlabel='Time [s]') def PlotVelocity(self, e, c, s, params, plot_glas=True): plot(c['time'], c['state_est']['Vg']['x'], 'b', label='Vg_x est') plot(c['time'], c['state_est']['Vg']['y'], 'g', label='Vg_y est') plot(c['time'], c['state_est']['Vg']['z'], 'r', label='Vg_z est') if 'Vg_gps' in e.dtype.names: plot(c['time'], e['Vg_gps']['x'], 'b-.', label='Vg_x gps') plot(c['time'], e['Vg_gps']['y'], 'g-.', label='Vg_y gps') plot(c['time'], e['Vg_gps']['z'], 'r-.', label='Vg_z gps') if 'gps' in e.dtype.names: aux_indices = np.argwhere(e['current_gps_receiver'] == 1) vg = e['gps']['Vg'][:, 0] vg[aux_indices] = e['gps']['Vg'][aux_indices, 1] plot(c['time'], vg['x'], 'b-.', label='Vg_x gps') plot(c['time'], vg['y'], 'g-.', label='Vg_y gps') plot(c['time'], vg['z'], 'r-.', label='Vg_z gps') if plot_glas and 'Vg_glas' in e.dtype.names: plot(c['time'], e['Vg_glas']['x'], 'b:', label='Vg_x glas') plot(c['time'], e['Vg_glas']['y'], 'g:', label='Vg_y glas') plot(c['time'], e['Vg_glas']['z'], 'r:', label='Vg_z glas') if s is not None: plot(s['time'], s['wing']['Vg']['x'], 'b-o', label='Vg_x sim') plot(s['time'], s['wing']['Vg']['y'], 'g-o', label='Vg_y sim') plot(s['time'], s['wing']['Vg']['z'], 'r-o', label='Vg_z sim') @MFig(title='Payout', ylabel='Payout [m]', xlabel='Time [s]') def PlotPayout(self, e, c, s, params): plot(c['time'], c['state_est']['winch']['payout'], label='Payout') @MFig(title='Tension', ylabel='Tension [N]', xlabel='Time [s]') def PlotTension(self, e, c, s, params): plot(c['time'], c['state_est']['tether_force_b']['sph']['tension'], label='Tension est') @MFig(title='Tether Angles', ylabel='Angles [deg]', xlabel='Time [s]') def PlotTetherAngles(self, e, c, s, params): plot(c['time'], np.rad2deg(c['state_est']['tether_force_b']['sph']['roll']), label='Tether Roll') plot(c['time'], np.rad2deg(c['state_est']['tether_force_b']['sph']['pitch']), label='Tether Pitch') @MFig(title='Kite Position', ylabel='Position [m]', xlabel='Time [s]') def PlotPosition(self, e, c, s, params, plot_glas=True): for (d, clr) in [('x', 'b'), ('y', 'g'), ('z', 'r')]: plot(c['time'], c['state_est']['Xg'][d], clr, label='Xg_%s est' % d) plot(c['time'], c['state_est']['Xg'][d] + c['estimator']['cov_pos_g'][d]**0.5, clr+':', label='Xg_%s est' % d) plot(c['time'], c['state_est']['Xg'][d] - c['estimator']['cov_pos_g'][d]**0.5, clr+':', label='Xg_%s est' % d) plot(c['time'], e['gps']['Xg'][d][:], clr+'--', label='Xg_%s gps' % d) plot(c['time'], e['gps']['Xg'][d][:] + e['gps']['sigma_Xg'][d][:], clr+':', label='Xg_%s gps' % d) plot(c['time'], e['gps']['Xg'][d][:] - e['gps']['sigma_Xg'][d][:], clr+':', label='Xg_%s gps' % d) if plot_glas: plot(c['time'], e['glas']['Xg'][d][:], clr+'-.', label='Xg_%s glas' % d) plot(c['time'], e['glas']['Xg'][d][:] + e['glas']['sigma_Xg'][d][:], clr+':', label='Xg_%s glas' % d) plot(c['time'], e['glas']['Xg'][d][:] - e['glas']['sigma_Xg'][d][:], clr+':', label='Xg_%s glas' % d) clr = 'r' # z-color from above loop plot(c['time'], e['baro']['Xg_z'], clr+'-*', label='Xg_z baro') if s is not None: plot(s['time'], s['wing']['Xg']['x'], 'b-o', label='Xg_x sim') plot(s['time'], s['wing']['Xg']['y'], 'g-o', label='Xg_y sim') plot(s['time'], s['wing']['Xg']['z'], 'r-o', label='Xg_z sim') @MFig(title='GSG Biases', ylabel='Angles [deg]', xlabel='Time [s]') def PlotGsgBias(self, e, c, s, params): plot(c['time'], np.rad2deg(e['gsg_bias']['azi']), 'b', label='Azi Bias') plot(c['time'], np.rad2deg(e['gsg_bias']['ele']), 'g', label='Ele Bias') @MFig(title='GPS Bias', ylabel='Position [m]', xlabel='Time [s]') def PlotGpsBias(self, e, c, s, params): mplot.PlotVec3(c['time'], e['Xg_gps_biases'][:, 0], label='GPS A bias') mplot.PlotVec3(c['time'], e['Xg_gps_biases'][:, 1], label='GPS B bias') @MFig(title='Wind Speed', ylabel='Wind Speed [m/s]', xlabel='Time [s]') def PlotWindSpeed(self, e, c, s, params): if s is not None: wind_g = s['wind_sensor']['wind_g'] plot(s['time'], numpy_utils.Vec3Norm(wind_g), 'C1--', label='wind speed at wind sensor [sim]') wind_g = s['wing']['wind_g'] plot(s['time'], numpy_utils.Vec3Norm(wind_g), 'C2:', label='wind speed at kite [sim]') # Plot the estimated wind speed last so that it will be on top. plot(c['time'], c['state_est']['wind_g']['speed_f'], 'C0-', linewidth=2, label='wind speed [est]') @MFig(title='Kite Azimuth', ylabel='Azimuth [deg]', xlabel='Time [s]') def PlotKiteAzimuth(self, e, c, s, params): xg = c['state_est']['Xg'] plot(c['time'], np.rad2deg(np.arctan2(xg['y'], xg['x'])), 'b') @MFig(title='Wind Direction (FROM)', ylabel='Direction [deg]', xlabel='Time [s]') def PlotWindDir(self, e, c, s, params): if s is not None: wind_g = s['wind_sensor']['wind_g'] plot(s['time'], np.rad2deg(np.arctan2(-wind_g['y'], -wind_g['x'])), 'C1--', label='wind direction at wind sensor [sim]') wind_g = s['wing']['wind_g'] plot(s['time'], np.rad2deg(np.arctan2(-wind_g['y'], -wind_g['x'])), 'C1--', label='wind direction at kite [sim]') # The estimator's "dir_f" is the TO direction. Here we convert to a # FROM direction. dir_f = np.rad2deg(c['state_est']['wind_g']['dir_f']) + 180.0 dir_f[dir_f > 360.0] -= 360.0 # Plot the estimated wind speed last so that it will be on top. plot(c['time'], dir_f, 'C0-', linewidth=2, label='wind direction [est]') @MFig(title='Tether Elevation', ylabel='[deg]', xlabel='Time [s]') def PlotTetherElevation(self, e, c, s, params): elevation = c['state_est']['tether_ground_angles']['elevation'] elevation[np.logical_not( c['state_est']['tether_ground_angles']['elevation_valid'] )] = float('nan') plot(c['time'], np.rad2deg(elevation), label='Est') if s is not None: plot(s['time'], np.rad2deg(s['tether']['Xv_start_elevation']), '--', label='Sim') @MFig(title='Ground Station Mode', ylabel='Mode [enum]', xlabel='Time [s]') def PlotGroundStationMode(self, e, c, s, params): plot(c['time'], c['control_input']['gs_sensors']['mode'], label='ci') plot(c['time'], c['state_est']['gs_mode'], label='est') if s is not None: plot(s['time'], s['gs02']['mode'], '-.', label='Sim') yticks(_GROUND_STATION_MODE_HELPER.Values(), _GROUND_STATION_MODE_HELPER.ShortNames()) @MFig(title='Ground Station Transform Stage', ylabel='Stage [#]', xlabel='Time [s]') def PlotGroundStationTransformStage(self, e, c, s, params): plot(c['time'], c['control_input']['gs_sensors']['transform_stage'], label='ci') plot(c['time'], c['state_est']['gs_transform_stage'], label='est') if s is not None: # This value is not yet in simulator telemetry. pass # TODO: Create separate 'simulator' plot group. @MFig(title='Moments', ylabel='Nm', xlabel='Time [s]') def PlotKiteMoments(self, e, c, s, params, axis='y'): for what in ['aero', 'gravity', 'tether', 'rotors', 'disturb', 'blown_wing', 'total']: plot(s['time'], s['wing']['fm_'+what]['moment'][axis], label='fm_'+what) @MFig(title='Kite Azimuth and Elevation', ylabel='Angle [deg]', xlabel='Time [s]') def PlotKiteAzimuthAndElevation(self, e, c, s, params): wing_pos_g = s['wing']['Xg'] plot(s['time'], np.rad2deg(np.arctan2(wing_pos_g['y'], wing_pos_g['x'])), label='kite azimuth') plot(s['time'], np.rad2deg(np.arctan2(-wing_pos_g['z'], np.hypot(wing_pos_g['x'], wing_pos_g['y']))), label='kite elevation') @MFig(title='Air Density (Measured at Ground Station)', ylabel='Density [kg/m^3]', xlabel='Time [s]') def PlotDensity(self, e, c, s, params): plot(c['time'], c['state_est']['rho'], label='state_est.rho') plot(c['time'], np.full_like(c['time'], params['system_params']['phys']['rho']), label='hard-coded value') @MFig(title='Tether Anchor Point', ylabel='[m]', xlabel='Time [s]') def PlotTetherAnchorPoint(self, e, c, s, params): mplot.PlotVec3(c['time'], c['state_est']['tether_anchor']['pos_g'], label='pos_g [est]', linestyle='-') mplot.PlotVec3(c['time'], c['state_est']['tether_anchor']['pos_g_f'], label='pos_g_f [est]', linestyle='--')
46.047619
80
0.56828
17,057
0.928373
0
0
16,202
0.881837
0
0
6,807
0.370489
8d633804dd70bc9958af00b42a11e0de38e402fd
4,122
py
Python
scripts/old/modbus_server.py
SamKaiYang/ros_modbus_nex
b698cc73df65853866112f7501432a8509a2545c
[ "BSD-2-Clause" ]
null
null
null
scripts/old/modbus_server.py
SamKaiYang/ros_modbus_nex
b698cc73df65853866112f7501432a8509a2545c
[ "BSD-2-Clause" ]
null
null
null
scripts/old/modbus_server.py
SamKaiYang/ros_modbus_nex
b698cc73df65853866112f7501432a8509a2545c
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python ########################################################################### # This software is graciously provided by HumaRobotics # under the Simplified BSD License on # github: [email protected]:baxter_tasker # HumaRobotics is a trademark of Generation Robots. # www.humarobotics.com # Copyright (c) 2013, Generation Robots. # All rights reserved. # www.generationrobots.com # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of the FreeBSD Project. import rospy from modbus.modbus_wrapper_server import ModbusWrapperServer from std_msgs.msg import Int32MultiArray as HoldingRegister if __name__=="__main__": rospy.init_node("modbus_server") port = 1234 # custom modbus port without requirement of sudo rights # port = 502 # default modbus port if rospy.has_param("~port"): port = rospy.get_param("~port") else: rospy.loginfo("For not using the default port %d, add an arg e.g.: '_port:=1234'",port) # Init modbus server with specific port mws = ModbusWrapperServer(port) # Stop the server if ros is shutdown. This should show that the server is stoppable rospy.on_shutdown(mws.stopServer) # Starts the server in a non blocking call mws.startServer() print "Server started" ############### # Example 1 # write to the Discrete Input mws.setDigitalInput(0,1) # args: address , value. sets address to value # Example 2 # read from clients coil output print "waiting for line 0 to be set to True" result = mws.waitForCoilOutput(0,5) # args: address,timeout in sec. timeout of 0 is infinite. waits until address is true if result: print "got line 0 is True from baxter" else: print "timeout waiting for signal on line 0" ############### # Example 3 # Listen for the writeable modbus registers in any node def callback(msg): rospy.loginfo("Modbus register have been written: %s",str(msg.data)) rospy.sleep(2) sub = rospy.Subscriber("modbus_server/read_from_registers",HoldingRegister,callback,queue_size=500) ############### ############### # Example 4 # Publisher to write first 20 modbus registers from any node pub = rospy.Publisher("modbus_server/write_to_registers",HoldingRegister,queue_size=500) rospy.sleep(1) msg = HoldingRegister() msg.data = range(20) msg2 = HoldingRegister() msg2.data = range(20,0,-1) while not rospy.is_shutdown(): pub.publish(msg) rospy.sleep(1) pub.publish(msg2) rospy.sleep(1) ################ rospy.spin() mws.stopServer()
40.411765
125
0.694081
0
0
0
0
0
0
0
0
2,916
0.707424
8d638991d71730377e930b6afff8fce13cde7b4a
4,453
py
Python
siptrackdlib/objectregistry.py
sii/siptrackd
f124f750c5c826156c31ae8699e90ff95a964a02
[ "Apache-2.0" ]
null
null
null
siptrackdlib/objectregistry.py
sii/siptrackd
f124f750c5c826156c31ae8699e90ff95a964a02
[ "Apache-2.0" ]
14
2016-03-18T13:28:16.000Z
2019-06-02T21:11:29.000Z
siptrackdlib/objectregistry.py
sii/siptrackd
f124f750c5c826156c31ae8699e90ff95a964a02
[ "Apache-2.0" ]
7
2016-03-18T13:04:54.000Z
2021-06-22T10:39:04.000Z
from siptrackdlib import errors from siptrackdlib import log class ObjectClass(object): """A class definition in the object registry. Stores a reference to the class itself and also a list of valid child classes (class_ids). """ def __init__(self, class_reference): self.class_reference = class_reference self.valid_children = {} def registerChild(self, class_reference): """Register a class as a valid child class.""" self.valid_children[class_reference.class_id] = None class ObjectRegistry(object): """Keeps track of registered classes and their valid children. The object registry is used to keep track of valid classes and what classes are valid children of a class. It also allocates object ids and can be used to create new objects based on the registry. """ def __init__(self): self.object_classes = {} self.object_classes_by_name = {} self.next_oid = 0 def registerClass(self, class_reference): """Register a new class. This creates a new ObjectClass and stores it in the registry, enabling creation of objects of the given class. The returned ObjectClass object can be used to register valid children of the class. """ object_class = ObjectClass(class_reference) self.object_classes[class_reference.class_id] = \ object_class self.object_classes_by_name[class_reference.class_name] = \ object_class return object_class def isValidChild(self, parent_id, child_id): """Check if a class is a valid child of another class.""" if not parent_id in self.object_classes: return False parent = self.object_classes[parent_id] if child_id not in parent.valid_children: return False return True def getClass(self, class_name): """Returns the class reference for class registered with class_name.""" if class_name in self.object_classes_by_name: return self.object_classes_by_name[class_name].class_reference return None def getClassById(self, class_id): """Returns the class reference for class registered with class_name.""" if class_id in self.object_classes: return self.object_classes[class_id].class_reference return None def getIDByName(self, class_name): """Return a classes id given it's name.""" if class_name in self.object_classes_by_name: object_class = self.object_classes_by_name[class_name] return object_class.class_reference.class_id return None def allocateOID(self): """Allocate a new oid.""" ret = str(self.next_oid) self.next_oid += 1 return ret def revertOID(self): """Revert an oid allocation.""" self.next_oid -= 1 def createObject(self, class_id, parent_branch, *args, **kwargs): """Try to create a new object based on a registered class. This will try to create a new object of 'class_id' type, allocating it it's own oid. A new branch will also be created in the object tree to hold the object. """ if class_id not in self.object_classes: raise errors.SiptrackError( 'trying to create object with invalid class id \'%s\'' % (class_id)) object_class = self.object_classes[class_id] oid = self.allocateOID() branch = parent_branch.add(oid) try: obj = object_class.class_reference(oid, branch, *args, **kwargs) except Exception as e: branch.remove(recursive = False, callback_data = None) self.revertOID() raise branch.ext_data = obj return obj def _createObject(self, class_id, branch): """Try to create _only_ a new object based on an oid and class id. Similar to createObject, but takes a class id and an oid and only creates a new object, no branch etc. """ if class_id not in self.object_classes: raise errors.SiptrackError( 'trying to create object with invalid class id \'%s\'' % (class_id)) object_class = self.object_classes[class_id] obj = object_class.class_reference(branch.oid, branch) return obj object_registry = ObjectRegistry()
37.108333
88
0.650348
4,352
0.977319
0
0
0
0
0
0
1,604
0.360207
8d66576529e5704ad9e6b2d90cc87687907b8c91
1,139
py
Python
src/kol/request/CombatRequest.py
ZJ/pykol
c0523a4a4d09bcdf16f8c86c78da96914e961076
[ "BSD-3-Clause" ]
1
2016-05-08T13:26:56.000Z
2016-05-08T13:26:56.000Z
src/kol/request/CombatRequest.py
ZJ/pykol
c0523a4a4d09bcdf16f8c86c78da96914e961076
[ "BSD-3-Clause" ]
null
null
null
src/kol/request/CombatRequest.py
ZJ/pykol
c0523a4a4d09bcdf16f8c86c78da96914e961076
[ "BSD-3-Clause" ]
null
null
null
from GenericAdventuringRequest import GenericAdventuringRequest class CombatRequest(GenericAdventuringRequest): """ A request used for a single round of combat. The user may attack, use an item or skill, or attempt to run away. """ # What follows are a list of available actions. ATTACK = 0 USE_ITEM = 1 USE_SKILL = 2 RUN_AWAY = 3 def __init__(self, session, action, param=None): """ In this constructor, action should be set to CombatRequest.ATTACK, CombatRequest.USE_ITEM, CombatRequest.USE_SKILL, or CombatRequest.RUN_AWAY. If a skill or item is to be used, the caller should also specify param to be the number of the item or skill the user wishes to use. """ super(CombatRequest, self).__init__(session) self.url = session.serverURL + "fight.php" if action == ATTACK: self.requestData["action"] = "attack" elif action == USE_ITEM: self.requestData["action"] = "useitem" self.requestData["whichitem"] = param elif action == USE_SKILL: self.requestData["action"] = "skill" self.requestData["whichskill"] = param elif action == RUN_AWAY: self.requestData["action"] = "runaway"
32.542857
92
0.72432
1,073
0.942054
0
0
0
0
0
0
561
0.492537
8d683b8c02d8d22cc3724afc4a6f8b486b4fd023
325
py
Python
OLD.dir/myclient1.py
romchegue/Python
444476088e64d5da66cb00174f3d1d30ebbe38f6
[ "bzip2-1.0.6" ]
null
null
null
OLD.dir/myclient1.py
romchegue/Python
444476088e64d5da66cb00174f3d1d30ebbe38f6
[ "bzip2-1.0.6" ]
null
null
null
OLD.dir/myclient1.py
romchegue/Python
444476088e64d5da66cb00174f3d1d30ebbe38f6
[ "bzip2-1.0.6" ]
null
null
null
''' myclient1.py - imports mymod.py and check its operation. ''' from mymod import test, countChars, countChars1, countLines, countLines1 text = 'test.txt' file = open(text) print(test(text), test(file)) print(countChars(text), countChars1(file)) print(countLines(text), countLines1(file)) print('\nedited again version')
23.214286
72
0.744615
0
0
0
0
0
0
0
0
98
0.301538
8d6a85cb3cf62644daa8bec049af6d5de6f147e2
632
py
Python
src/modules/dates/searchDates.py
leonardoleyva/api-agenda-uas
697740a0a3feebb2ada01133db020fcf5127e1de
[ "MIT" ]
1
2022-03-13T02:28:29.000Z
2022-03-13T02:28:29.000Z
src/modules/dates/searchDates.py
leonardoleyva/api-agenda-uas
697740a0a3feebb2ada01133db020fcf5127e1de
[ "MIT" ]
null
null
null
src/modules/dates/searchDates.py
leonardoleyva/api-agenda-uas
697740a0a3feebb2ada01133db020fcf5127e1de
[ "MIT" ]
null
null
null
from .date import Date from ..response import handleResponse from datetime import datetime def searchDates(): req = Date().searchAll() message = "Listado de citas" if req['status'] == True else "No se pudo conseguir el listado de citas, inténtelo más tarde" dateToday = datetime.now().isoformat().split('T')[0] dates = [] for date in req['dates']: dateDict = date.to_dict() dateYYMMDD = dateDict['date'].split('T')[0] if dateYYMMDD >= dateToday: dates.append({**dateDict, 'id': date.id}) response = handleResponse(req['status'], message, dates) return response
27.478261
126
0.643987
0
0
0
0
0
0
0
0
122
0.192429
8d6c38dd172b4fa935c4b931081b7a40d9bc40a8
6,045
py
Python
Spark/spark_media_localidad.py
Dielam/Dielam.github.io
19f01d693ef2c590f3ac35a3a143ae3dedf8594e
[ "MIT" ]
null
null
null
Spark/spark_media_localidad.py
Dielam/Dielam.github.io
19f01d693ef2c590f3ac35a3a143ae3dedf8594e
[ "MIT" ]
null
null
null
Spark/spark_media_localidad.py
Dielam/Dielam.github.io
19f01d693ef2c590f3ac35a3a143ae3dedf8594e
[ "MIT" ]
1
2020-12-23T16:45:20.000Z
2020-12-23T16:45:20.000Z
#!/usr/bin/python import sys from pyspark import SparkContext from shutil import rmtree import os.path as path def generar(line): array = [] array.append(line[0]) array.append(line[1]) aux = line[2] ini = 2 fin = 18 if aux != "I" and aux != "D" and aux != "N": aux = line[3] ini = 3 fin = 19 array.append(aux) ini+=1 for i in range(ini, fin): if line[i] == '': array.append("0") else: array.append(line[i]) return array if len(sys.argv) > 1: if path.exists("output"): rmtree("output") sc = SparkContext() localidad = sys.argv[1] localidadRDD = sc.textFile("Gasolineras.csv") localidadRDD = localidadRDD.map(lambda line: line.encode("ascii", "ignore")) localidadRDD = localidadRDD.map(lambda rows: rows.split(",")) localidadRDD = localidadRDD.filter(lambda rows: localidad == rows[5]) localidadRDD = localidadRDD.map(lambda rows: (rows[5], rows[7], rows[8], rows[9],rows[10], rows[11], rows[12], rows[13], rows[14], rows[15], rows[16], rows[17], rows[18], rows[19], rows[20], rows[21], rows[22], rows[23], rows[24])) datosRDD = localidadRDD.map(generar) if datosRDD.isEmpty(): result = sc.parallelize("0") result.saveAsTextFile("output") else: precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[5])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasolina_95.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[6])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasoleo_a.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[7])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasoleo_b.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[8])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_bioetanol.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[9])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_nuevo_gasoleo_a.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[10])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_biodiesel.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[11])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_ester_metilico.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[12])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_bioalcohol.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[13])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasolina_98.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[14])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gas_natural_comprimido.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[15])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gas_natural_licuado.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[16])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gas_licuados_del_petr.txt") else: print "Error no ha introducido localidad."
45.451128
235
0.643176
0
0
0
0
0
0
0
0
636
0.105211
8d6cc5852312640c236532b7026c1ac08efbc30f
13,148
py
Python
core/views/misc.py
ditttu/gymkhana-Nominations
2a0e993c1b8362c456a9369b0b549d1c809a21df
[ "MIT" ]
3
2018-02-27T13:48:28.000Z
2018-03-03T21:57:50.000Z
core/views/misc.py
ditttu/gymkhana-Nominations
2a0e993c1b8362c456a9369b0b549d1c809a21df
[ "MIT" ]
6
2020-02-12T00:07:46.000Z
2022-03-11T23:25:59.000Z
core/views/misc.py
ditttu/gymkhana-Nominations
2a0e993c1b8362c456a9369b0b549d1c809a21df
[ "MIT" ]
1
2019-03-26T20:19:57.000Z
2019-03-26T20:19:57.000Z
from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.core.urlresolvers import reverse, reverse_lazy from django.http import HttpResponseRedirect from django.shortcuts import render,HttpResponse from django.views.generic.edit import CreateView, UpdateView, DeleteView import csv, json from datetime import date,datetime from itertools import chain from operator import attrgetter from forms.models import Questionnaire from forms.views import replicate from core.models import * from core.forms import * from .nomi_cr import get_access_and_post_for_result, get_access_and_post @login_required def ratify(request, nomi_pk): nomi = Nomination.objects.get(pk=nomi_pk) access, view_post = get_access_and_post_for_result(request,nomi_pk) if access: if view_post.perms == "can ratify the post": nomi.append() return HttpResponseRedirect(reverse('applicants', kwargs={'pk': nomi_pk})) else: return render(request, 'no_access.html') else: return render(request, 'no_access.html') @login_required def request_ratify(request, nomi_pk): nomi = Nomination.objects.get(pk=nomi_pk) access, view_post = get_access_and_post_for_result(request,nomi_pk) if access: if view_post.parent: to_add = view_post.parent nomi.result_approvals.add(to_add) nomi.nomi_approvals.add(to_add) nomi.status = 'Sent for ratification' nomi.save() return HttpResponseRedirect(reverse('applicants', kwargs={'pk': nomi_pk})) else: return render(request, 'no_access.html') @login_required def cancel_ratify(request, nomi_pk): nomi = Nomination.objects.get(pk=nomi_pk) access, view_post = get_access_and_post_for_result(request,nomi_pk) if access: if view_post.parent: to_remove = view_post.parent nomi.result_approvals.remove(to_remove) nomi.nomi_approvals.remove(to_remove) nomi.status = 'Interview period' nomi.save() return HttpResponseRedirect(reverse('applicants', kwargs={'pk': nomi_pk})) else: return render(request, 'no_access.html') @login_required def cancel_result_approval(request, nomi_pk): nomi = Nomination.objects.get(pk=nomi_pk) access, view_post = get_access_and_post_for_result(request,nomi_pk) if access: to_remove = view_post.parent if to_remove.parent not in nomi.result_approvals.all(): nomi.result_approvals.remove(to_remove) return HttpResponseRedirect(reverse('applicants', kwargs={'pk': nomi_pk})) else: return render(request, 'no_access.html') @login_required def result_approval(request, nomi_pk): nomi = Nomination.objects.get(pk=nomi_pk) access, view_post = get_access_and_post_for_result(request,nomi_pk) if access: if view_post == nomi.nomi_post.parent: nomi.show_result = True to_add = view_post.parent nomi.result_approvals.add(to_add) return HttpResponseRedirect(reverse('applicants', kwargs={'pk': nomi_pk})) else: return render(request, 'no_access.html') @login_required def create_deratification_request(request, post_pk, user_pk ,type): post = Post.objects.get(pk=post_pk) user =User.objects.get(pk=user_pk) if request.user in post.parent.post_holders.all(): Deratification.objects.create(name=user, post=post,status = type, deratify_approval=post.parent) return HttpResponseRedirect(reverse('child_post', kwargs={'pk': post_pk})) @login_required def approve_deratification_request(request,pk): to_deratify = Deratification.objects.get(pk = pk) view = to_deratify.deratify_approval if request.user in view.post_holders.all(): if view.perms == "can ratify the post": to_deratify.post.post_holders.remove(to_deratify.name) history=PostHistory.objects.filter(user=to_deratify.name).filter(post = to_deratify.post).first() if to_deratify.status=='remove from post': history.delete() to_deratify.status = 'removed' else: history.end = date.today() history.save() to_deratify.status = 'deratified' to_deratify.save() else: to_deratify.deratify_approval = view.parent to_deratify.save() return HttpResponseRedirect(reverse('post_view', kwargs={'pk':view.pk})) else: return render(request, 'no_access.html') @login_required def reject_deratification_request(request, pk): to_deratify = Deratification.objects.get(pk=pk) view = to_deratify.deratify_approval if request.user in view.post_holders.all(): to_deratify.delete() return HttpResponseRedirect(reverse('post_view', kwargs={'pk':view.pk})) else: return render(request, 'no_access.html') ''' mark_as_interviewed, reject_nomination, accept_nomination: Changes the interview status/ nomination_instance status of the applicant ''' def get_access_and_post_for_selection(request, nomi_pk): nomi =Nomination.objects.get(pk=nomi_pk) access = False view_post = None for post in nomi.result_approvals.all(): if request.user in post.post_holders.all(): access = True view_post = post break return access, view_post @login_required def mark_as_interviewed(request, pk): application = NominationInstance.objects.get(pk=pk) id_nomi = application.nomination.pk nomination = Nomination.objects.get(pk=id_nomi) access, view_post = get_access_and_post_for_selection(request,id_nomi) if access or request.user in nomination.interview_panel.all(): application.interview_status = 'Interview Done' application.save() return HttpResponseRedirect(reverse('nomi_answer', kwargs={'pk': pk})) else: return render(request, 'no_access.html') @login_required def accept_nomination(request, pk): application = NominationInstance.objects.get(pk=pk) id_accept = application.nomination.pk nomination = Nomination.objects.get(pk=id_accept) access, view_post = get_access_and_post_for_selection(request, id_accept) if access or request.user in nomination.interview_panel.all(): application.status = 'Accepted' application.save() comment = '<strong>' + str(request.user.userprofile.name) + '</strong>' + ' Accepted '\ + '<strong>' + str(application.user.userprofile.name) + '</strong>' status = Commment.objects.create(comments=comment, nomi_instance=application) return HttpResponseRedirect(reverse('applicants', kwargs={'pk': id_accept})) else: return render(request, 'no_access.html') @login_required def reject_nomination(request, pk): application = NominationInstance.objects.get(pk=pk) id_reject = application.nomination.pk nomination = Nomination.objects.get(pk=id_reject) access, view_post = get_access_and_post_for_selection(request, id_reject) if access or request.user in nomination.interview_panel.all(): application.status = 'Rejected' application.save() comment = '<strong>' + str(request.user.userprofile.name) + '</strong>' + ' Rejected ' \ + '<strong>' + str(application.user.userprofile.name) + '</strong>' status = Commment.objects.create(comments=comment, nomi_instance=application) return HttpResponseRedirect(reverse('applicants', kwargs={'pk': id_reject})) else: return render(request, 'no_access.html') ''' append_user, replace_user: Adds and Removes the current post-holders according to their selection status ''' @login_required def append_user(request, pk): posts = request.user.posts.all() access = False for post in posts: if post.perms == "can ratify the post": access = True break if access: nomi = Nomination.objects.get(pk=pk) nomi.append() return HttpResponseRedirect(reverse('applicants', kwargs={'pk': pk})) else: return render(request, 'no_access.html') @login_required def end_tenure(request): posts = request.user.posts.all() access = False for post in posts: if post.perms == "can ratify the post": access = True break if access: posts = Post.objects.all() for post in posts: for holder in post.post_holders.all(): try: history = PostHistory.objects.get(post=post, user=holder) if history.end: if date.today() >= history.end: post.post_holders.remove(holder) except ObjectDoesNotExist: pass return HttpResponseRedirect(reverse('index')) else: return render(request, 'no_access.html') # Import all posts of all clubs # Check if their session has expired (31-3-2018 has passed) # Remove them from the post # Create the post history (No need, its already created) ## ------------------------------------------------------------------------------------------------------------------ ## ############################################ PROFILE VIEWS ################################################## ## ------------------------------------------------------------------------------------------------------------------ ## @login_required def profile_view(request): pk = request.user.pk my_posts = Post.objects.filter(post_holders=request.user) history = PostHistory.objects.filter(user=request.user).order_by('start') pending_nomi = NominationInstance.objects.filter(user=request.user).filter(nomination__status='Nomination out') pending_re_nomi = NominationInstance.objects.filter(user=request.user).\ filter(nomination__status='Interview period and Nomination reopened') pending_nomi = pending_nomi | pending_re_nomi # show the instances that user finally submitted.. not the saved one interview_re_nomi = NominationInstance.objects.filter(user=request.user).filter(submission_status = True).filter(nomination__status='Interview period and Reopening initiated') interview_nomi = NominationInstance.objects.filter(user=request.user).filter(submission_status = True).filter(nomination__status='Interview period') interview_nomi = interview_nomi | interview_re_nomi declared_nomi = NominationInstance.objects.filter(user=request.user).filter(submission_status = True).filter(nomination__status='Sent for ratification') try: user_profile = UserProfile.objects.get(user__id=pk) post_exclude_history = [] # In case a post is not registered in history post_history = [] for his in history: post_history.append(his.post) for post in my_posts: if post not in post_history: post_exclude_history.append(post) return render(request, 'profile.html', context={'user_profile': user_profile, 'history': history, 'pending_nomi': pending_nomi, 'declared_nomi': declared_nomi, 'interview_nomi': interview_nomi, 'my_posts': my_posts, 'excluded_posts': post_exclude_history}) except ObjectDoesNotExist: return HttpResponseRedirect('create') @login_required def public_profile(request, pk): student = UserProfile.objects.get(pk=pk) student_user = student.user history = PostHistory.objects.filter(user=student_user) my_posts = Post.objects.filter(post_holders=student_user) return render(request, 'public_profile.html', context={'student': student, 'history': history, 'my_posts': my_posts}) def UserProfileUpdate(request,pk): profile = UserProfile.objects.get(pk = pk) if profile.user == request.user: form = ProfileForm(request.POST or None, instance=profile) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('profile')) return render(request, 'nomi/userprofile_form.html', context={'form': form}) else: return render(request, 'no_access.html') class CommentUpdate(UpdateView): model = Commment fields = ['comments'] def get_success_url(self): form_pk = self.kwargs['form_pk'] return reverse('nomi_answer', kwargs={'pk': form_pk}) class CommentDelete(DeleteView): model = Commment def get_success_url(self): form_pk = self.kwargs['form_pk'] return reverse('nomi_answer', kwargs={'pk': form_pk}) def all_nominations(request): all_nomi = Nomination.objects.all().exclude(status='Nomination created') return render(request, 'all_nominations.html', context={'all_nomi': all_nomi})
34.783069
179
0.6601
402
0.030575
0
0
10,435
0.793657
0
0
2,098
0.159568
8d6deeb2db5e44e12af11dde00260d1e8aae607e
29,706
py
Python
make_paper_plots.py
mjbasso/asymptotic_formulae_examples
a1ba177426bf82e2a58e7b54e1874b088a86595f
[ "MIT" ]
1
2021-08-06T14:58:51.000Z
2021-08-06T14:58:51.000Z
make_paper_plots.py
mjbasso/asymptotic_formulae_examples
a1ba177426bf82e2a58e7b54e1874b088a86595f
[ "MIT" ]
null
null
null
make_paper_plots.py
mjbasso/asymptotic_formulae_examples
a1ba177426bf82e2a58e7b54e1874b088a86595f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import logging import os import pickle import time from os.path import join as pjoin import matplotlib.pyplot as plt import numpy as np import scipy from matplotlib import rc from scipy.optimize import least_squares import asymptotic_formulae from asymptotic_formulae import GaussZ0 from asymptotic_formulae import GaussZ0_MC from asymptotic_formulae import nCRZ0 from asymptotic_formulae import nCRZ0_MC from asymptotic_formulae import nSRZ0 from asymptotic_formulae import nSRZ0_MC rc('font', **{'family': 'sans-serif','sans-serif': ['Helvetica']}) rc('text', usetex = True) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('%(asctime)s : %(name)s : %(levelname)s : %(message)s')) logger.addHandler(sh) # For creating a set of uniformly-spaced points on a log scale def logVector(low, high, n): low = np.log(low) / np.log(10) high = np.log(high) / np.log(10) step = (high - low) / n vec = np.array([low + step * i for i in range(n + 1)]) return np.exp(np.log(10) * vec) # As described in Section 2.1.4 def nCRZ0_DiagTau(s, b, tau): ''' Calculate the asymptotic significance for a 1 SR + N CRs, diagonal tau measurement s := expected signal yield in SR (float) b := expected background yields in SR (vector of floats, size N) tau := transfer coefficients, tau[i] carries background i yield in SR to CR i (vector of floats, size N) Returns Z0 (float) ''' # Argument checking b, tau = np.array(b), np.array(tau) s, b, tau = float(s), b.astype(float), tau.astype(float) assert b.ndim == 1 # b should be a vector assert tau.ndim == 1 # tau should be a vector assert len(b) == len(tau) assert (tau >= 0.).all() # Assert tau contains transfer factors (i.e., all positive) n = s + np.sum(b) # System of equations def func(bhh): eqns = [] for k in range(len(b)): eqns.append(n / np.sum(bhh) - 1. + tau[k] * (b[k] / bhh[k] - 1.)) return eqns # Perform our minimization res = least_squares(func, x0 = b, bounds = [tuple(len(b) * [0.]), tuple(len(b) * [np.inf])]) if not res.success: raise RuntimeError('Minimization failed: status = %s, message = \'%s\'' % (res.status, res.message)) bhh = np.array(res.x) # Calculate our significance Z0 = np.sqrt(-2. * np.log((np.sum(bhh) / n) ** n * np.prod([(bhh[k] / b[k]) ** (tau[k] * b[k]) for k in range(len(b))]))) return Z0 # As described in Section 2.4.2 def GaussZ0_Decorr(s, b, sigma): ''' Calculate the asymptotic significance for a 1 SR + N CRs, diagonal tau measurement s := expected signal yield in SR (float) b := expected background yields in SR (vector of floats, size N) sigma := width of Gaussian constraint ("absolute uncertainty") for each background yield (vector of floats, size N) Returns Z0 (float) ''' # Argument checking b, sigma = np.array(b), np.array(sigma) s, b, sigma = float(s), b.astype(float), sigma.astype(float) assert b.ndim == 1 # b should be a vector assert sigma.ndim == 1 # sigma should be a vector assert len(b) == len(sigma) assert (sigma >= 0.).all() # Assert sigma contains widths (i.e., all positive) n = s + np.sum(b) # System of equations def func(bhh): eqns = [] for k in range(len(b)): eqns.append(sigma[k] * (n / np.sum(bhh) - 1.) - (bhh[k] - b[k]) / sigma[k]) return eqns # Perform our minimization res = least_squares(func, x0 = b, bounds = [tuple(len(b) * [0.]), tuple(len(b) * [np.inf])]) if not res.success: raise RuntimeError('Minimization failed: status = %s, message = \'%s\'' % (res.status, res.message)) bhh = np.array(res.x) # Calculate our significance Z0 = np.sqrt(-2. * (n * np.log(np.sum(bhh) / n) + n - np.sum(bhh + 0.5 * ((b - bhh) / sigma) ** 2))) return Z0 def makedir(path): if not os.path.exists(path): os.makedirs(path) return path def load_data_from_pickle(path): if os.path.exists(path): with open(path, 'rb') as f: data = pickle.load(f) else: data = {} return data def dump_data_to_pickle(data, path): if not os.path.exists(path): with open(path, 'wb') as f: data = pickle.dump(data, f) pass pass def main(): basedir = os.path.dirname(os.path.abspath(__file__)) pickledir = makedir(pjoin(basedir, 'pickles/')) plotdir = makedir(pjoin(basedir, 'plots/')) ##################### ### SECTION 2.1.1 ### ##################### def Section2p1p1(): s = 50. b1 = 100. b2 = 50. tau11 = 60. tau22 = 40. tau12 = np.linspace(0., b1 * tau11 / b2, 100) tau21 = np.linspace(0., b2 * tau22 / b1, 100) z0 = np.empty((len(tau12), len(tau21))) for i in range(len(tau12)): for j in range(len(tau21)): z0[i, j] = nCRZ0(s, [b1, b2], [[tau11, tau12[i]], [tau21[j], tau22]]) fig = plt.figure() ax = fig.add_subplot(111) pcm = ax.pcolormesh(tau12 * b2 / (tau11 * b1), tau21 * b1 / (tau22 * b2), z0, cmap = 'magma', shading = 'nearest') pcm.set_edgecolor('face') cbar = plt.colorbar(pcm) ax.set_xlabel('($b_2$ in CR 1) / ($b_1$ in CR 1) [a.u.]') ax.set_ylabel('($b_1$ in CR 2) / ($b_2$ in CR 2) [a.u.]') cbar.set_label('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]', rotation = 270, labelpad = 20) # ax.set_title('Asymptotic significance for CRs with mixed background processes', pad = 10) plt.savefig(pjoin(plotdir, '1SRNCR_mixed_processes.eps'), format = 'eps', dpi = 1200) plt.close() multi = logVector(1, 1000, 100) z0 = np.empty((len(multi), len(multi))) for i in range(len(multi)): for j in range(len(multi)): z0[i, j] = nCRZ0(s, [b1, b2], [[multi[i], 0.1 * multi[i] * b1 / b2], [0.1 * multi[j] * b2 / b1, multi[j]]]) fig = plt.figure() ax = fig.add_subplot(111) pcm = ax.pcolormesh(multi, multi, z0, cmap = 'magma', shading = 'nearest') pcm.set_edgecolor('face') cbar = plt.colorbar(pcm) ax.set_xlabel('($b_1$ in CR 1) / ($b_1$ in SR) [a.u.]') ax.set_ylabel('($b_2$ in CR 2) / ($b_2$ in SR) [a.u.]') ax.set_xscale('log') ax.set_yscale('log') cbar.set_label('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]', rotation = 270, labelpad = 20) # ax.set_title('Asymptotic significance for CRs varying transfer factors', pad = 10) plt.savefig(pjoin(plotdir, '1SRNCR_varying_tau.eps'), format = 'eps', dpi = 1200) plt.close() ##################### ### SECTION 2.1.2 ### ##################### def Section2p1p2(): # Set the seed np.random.seed(43) datapath = pjoin(pickledir, 'Section2p1p2.pkl') s = 10. b1 = [round(n) for n in logVector(1., 1000., 10)] b2 = [5., 25., 150.] tau1 = 8. tau2 = 5. colours = ['g', 'b', 'r'] data = load_data_from_pickle(datapath) for _b2, c in zip(b2, colours): k = str(int(_b2)) if not data.get(k, {}): data[k] = {'z0': [], 't0': [], 't1': []} for _b1 in b1: logger.info('On (b1, b2) = (%s, %s).' % (int(_b1), int(_b2))) z0, t0, t1 = nCRZ0_MC(s, [_b1, _b2], [[tau1, 0.], [0., tau2]], return_t0_and_t1 = True, sleep = 0.001, ntoys = 50000) data[k]['z0'].append(z0) data[k]['t0'].append(t0) data[k]['t1'].append(t1) plt.plot(b1, data[k]['z0'], marker = 'o', color = c, linewidth = 0, label = 'Numerical: $b_2 = %s$' % int(_b2)) b1Fine = logVector(b1[0], b1[-1], 1000) plt.plot(b1Fine, [nCRZ0_DiagTau(s, [_b1, _b2], [tau1, tau2]) for _b1 in b1Fine], linestyle = '-', markersize = 0, color = c, label = 'Asymptotic: $b_2 = %s$' % int(_b2)) plt.plot(b1Fine, s / np.sqrt(s + b1Fine + _b2), linestyle = '--', markersize = 0, color = c, label = 'Simple: $b_2 = %s$' % int(_b2)) plt.xlim((b1[0], b1[-1])) plt.ylim((0., 3.5)) plt.xlabel('Background 1 yield in SR $b_1$ [a.u.]') plt.ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') plt.xscale('log') # plt.title('1 SR + 2 CRs Asymptotic Significance: $s = %s$, $\\tau_1 = %s$, $\\tau_2 = %s$' % (int(s), int(tau1), int(tau2))) plt.legend(loc = 'upper right') plt.savefig(pjoin(plotdir, '1SRplus2CR.eps'), format = 'eps', dpi = 1200) plt.close() axrange = (0., 25.) bins = 100 for _b1 in [1., 1000.]: t0, t1 = data['5']['t0'][b1.index(_b1)], data['5']['t1'][b1.index(_b1)] plt.hist(t0, weights = len(t0) * [1. / len(t0)], range = axrange, bins = bins, histtype = 'step', color = 'b', label = '$f(t_0|\\mu^\\prime = 0)$') plt.hist(t1, weights = len(t1) * [1. / len(t1)], range = axrange, bins = bins, histtype = 'step', color = 'r', label = '$f(t_0|\\mu^\\prime = 1)$') plt.xlim(axrange) plt.xlabel('Test statistic $t_0$ [a.u.]') plt.ylabel('Normalized counts [a.u.]') plt.yscale('log') plt.legend() plt.savefig(pjoin(plotdir, '1SRplus2CR_b1eq%s.eps' % int(_b1)), format = 'eps', dpi = 1200) plt.close() dump_data_to_pickle(data, datapath) ##################### ### SECTION 2.2.1 ### ##################### def Section2p2p1(): # Set the seed np.random.seed(44) datapath = pjoin(pickledir, 'Section2p2p1.pkl') s1 = [round(n) for n in logVector(1., 100., 10)] s2 = [25., 10., 10.] s3 = 12. b = [1000., 1000., 3000.] tau1 = 2. tau2 = 10. tau3 = 20. colours = ['g', 'b', 'r'] data = load_data_from_pickle(datapath) for _s2, _b, c in zip(s2, b, colours): k = str(int(_s2)) + '_' + str(int(_b)) if not data.get(k, {}): data[k] = {'z0': [], 't0': [], 't1': []} for _s1 in s1: logger.info('On (s1, s2, b) = (%s, %s, %s).' % (int(_s1), int(_s2), int(_b))) ntoys = 100000 if (_s1 > 75.) else 50000 logger.info('Using %s toys.' % ntoys) z0, t0, t1 = nSRZ0_MC([_s1, _s2, s3], _b, [tau1, tau2, tau3], return_t0_and_t1 = True, sleep = 0.001, ntoys = ntoys) data[k]['z0'].append(z0) data[k]['t0'].append(t0) data[k]['t1'].append(t1) plt.plot(s1, data[k]['z0'], marker = 'o', color = c, linewidth = 0, label = 'Numerical: $(s_2, b) = (%s, %s)$' % (int(_s2), int(_b))) s1Fine = logVector(s1[0], s1[-1], 1000) plt.plot(s1Fine, [nSRZ0([_s1, _s2, s3], _b, [tau1, tau2, tau3]) for _s1 in s1Fine], linestyle = '-', markersize = 0, color = c, label = 'Asymptotic: $(s_2, b) = (%s, %s)$' % (int(_s2), int(_b))) plt.plot(s1Fine, np.sqrt((s1Fine / np.sqrt(s1Fine + _b / tau1)) ** 2 + (_s2 / np.sqrt(_s2 + _b / tau2)) ** 2 + (s3 / np.sqrt(s3 + _b / tau3)) ** 2), linestyle = '--', markersize = 0, color = c, label = 'Simple: $(s_2, b) = (%s, %s)$' % (int(_s2), int(_b))) plt.xlim((s1[0], s1[-1])) plt.ylim((0., 5.0)) plt.xlabel('Signal yield in SR 1 $s_1$ [a.u.]') plt.ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') plt.xscale('log') # plt.title('3 SRs + 1 CR Asymptotic Significance: $s_3 = %s$, $\\tau_1 = %s$, $\\tau_2 = %s$, $\\tau_3 = %s$' % (int(s3), int(tau1), int(tau2), int(tau3))) plt.legend(loc = 'upper left', bbox_to_anchor = (1.0, 1.02)) plt.savefig(pjoin(plotdir, '3SRplus1CR.eps'), format = 'eps', dpi = 1200, bbox_inches = 'tight') plt.close() dump_data_to_pickle(data, datapath) ##################### ### SECTION 2.4.2 ### ##################### def Section2p4p2_vsB1(): # Set the seed np.random.seed(45) datapath = pjoin(pickledir, 'Section2p4p2_vsB1.pkl') sigma1 = 5. sigma2 = 10. s = 10. b1 = [round(n) for n in logVector(1., 1000., 10)] b2 = [5., 25., 150.] R = [[lambda th: 1. + sigma1 / 100. * th, lambda th: 1.], [lambda th: 1., lambda th: 1. + sigma2 / 100. * th]] S = [[1., 0.], [0., 1.]] colours = ['g', 'b', 'r'] data = load_data_from_pickle(datapath) for _b2, c in zip(b2, colours): k = str(int(_b2)) if not data.get(k, {}): data[k] = {'z0': [], 't0': [], 't1': []} for _b1 in b1: logger.info('On (b1, b2) = (%s, %s).' % (int(_b1), int(_b2))) z0, t0, t1 = GaussZ0_MC(s, [_b1, _b2], R, S, return_t0_and_t1 = True, sleep = 0.001, ntoys = 50000) data[k]['z0'].append(z0) data[k]['t0'].append(t0) data[k]['t1'].append(t1) plt.plot(b1, data[k]['z0'], marker = 'o', color = c, linewidth = 0, label = 'Numerical: $b_2 = %s$' % int(_b2)) b1Fine = logVector(b1[0], b1[-1], 1000) plt.plot(b1Fine, [GaussZ0_Decorr(s, [_b1, _b2], [_b1 * sigma1 / 100., _b2 * sigma2 / 100.]) for _b1 in b1Fine], linestyle = '-', markersize = 0, color = c, label = 'Asymptotic: $b_2 = %s$' % int(_b2)) plt.plot(b1Fine, s / np.sqrt(s + b1Fine + _b2 + (sigma1 / 100. * b1Fine) ** 2 + (sigma2 / 100. * _b2) ** 2), linestyle = '--', markersize = 0, color = c, label = 'Simple: $b_2 = %s$' % int(_b2)) plt.xlim((b1[0], b1[-1])) plt.ylim((0., 3.5)) plt.xlabel('Background 1 yield in SR $b_1$ [a.u.]') plt.ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') plt.xscale('log') # plt.title('1 SR + 2 Gaussian Decorrelated Constraints Asymptotic Significance:\n$s = {}$, $\\sigma_1 = {}\\%$, $\\sigma_2 = {}\\%$'.format(int(s), int(sigma1), int(sigma2))) plt.legend(loc = 'upper right') plt.savefig(pjoin(plotdir, '1SRplus2GaussConst.eps'), format = 'eps', dpi = 1200) plt.close() dump_data_to_pickle(data, datapath) def Section2p4p2_vsSigma(): sigma1 = np.hstack([logVector(0.1, 100., 15), logVector(100., 400., 3)[1:]]) sigma2 = [1., 10., 100.] s = 10. b1 = [25., 50., 50., 150.] b2 = [25., 50., 150., 50.] colours = ['gold', 'g', 'b', 'r'] fig, axs = plt.subplots(nrows = 2, ncols = 2, sharex = 'col', sharey = 'row', figsize = [2 * 6.0, 2 * 4.0]) axs[1, 1].axis('off') for i, _sigma2 in enumerate(sigma2): # Set the seed - let's use a fresh seed on each loop iteration, as we are saving separate pickles # (this allows us to cleanly reproduce the results, per pickle, without throwing all of the toys in previous) np.random.seed(60 + i) # Dump a pickle for each sigma2 loop datapath = pjoin(pickledir, 'Section2p4p2_vsSigma_sigma2eq%s.pkl' % int(_sigma2)) data = load_data_from_pickle(datapath) if i == 0: ax = axs[0, 0] elif i == 1: ax = axs[0, 1] elif i == 2: ax = axs[1, 0] elif i == 3: continue else: ax = None for _b1, _b2, c in zip(b1, b2, colours): k = str(int(_b1)) + '_' + str(int(_b2)) if not data.get(k, {}): data[k] = {'z0': [], 't0': [], 't1': []} for _sigma1 in sigma1: logger.info('On (sigma1, sigma2, b1, b2) = (%s, %s, %s, %s).' % (round(_sigma1, 5), round(_sigma2, 5), int(_b1), int(_b2))) z0, t0, t1 = GaussZ0_MC(s, [_b1, _b2], R(_sigma1, _sigma2), S, return_t0_and_t1 = True, sleep = 0.001, ntoys = 50000, retry_first = False, skip_failed_toys = True) data[k]['z0'].append(z0) data[k]['t0'].append(t0) data[k]['t1'].append(t1) ax.plot(sigma1, data[k]['z0'], marker = 'o', color = c, linewidth = 0, label = 'Numerical: $(b_1, b_2) = (%s, %s)$' % (int(_b1), int(_b2)) if i == 0 else '') sigma1Fine = logVector(sigma1[0], sigma1[-1] if sigma1[-1] > 1000. else 1000., 1000) ax.plot(sigma1Fine, [GaussZ0_Decorr(s, [_b1, _b2], [_b1 * _sigma1 / 100., _b2 * _sigma2 / 100.]) for _sigma1 in sigma1Fine], linestyle = '-', markersize = 0, color = c, label = 'Asymptotic: $(b_1, b_2) = (%s, %s)$' % (int(_b1), int(_b2)) if i == 0 else '') ax.plot(sigma1Fine, s / np.sqrt(s + _b1 + _b2 + (sigma1Fine / 100. * _b1) ** 2 + (_sigma2 / 100. * _b2) ** 2), linestyle = '--', markersize = 0, color = c, label = 'Simple: $(b_1, b_2) = (%s, %s)$' % (int(_b1), int(_b2)) if i == 0 else '') ax.set_ylim((0., 1.4)) if i != 1: ax.set_ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') ax.text(40, 1.2, '$s = {}$, $\\sigma_2 = {}\\%$'.format(int(s), int(_sigma2)), fontsize = 12, bbox = {'facecolor': 'white', 'pad': 10}) if i != 0: ax.set_xlim((sigma1[0], sigma1[-1] if sigma1[-1] > 1000. else 1000.)) ax.set_xlabel('Background 1 yield uncertainty in SR $\\sigma_1$ [\\%]') ax.set_xscale('log') if i == 1: ax.xaxis.set_tick_params(labelbottom = True) dump_data_to_pickle(data, datapath) # fig.suptitle('1 SR + 2 Decorrelated Gaussian Constraints Asymptotic Significance') axs[0, 0].legend(loc = 'upper left', bbox_to_anchor = (1.05, -0.15)) plt.subplots_adjust(hspace = 0.05, wspace = 0.05) # , top = 0.95, bottom = 0.05) plt.savefig(pjoin(plotdir, '1SRplus2GaussConst_err.eps'), format = 'eps', dpi = 1200, bbox_inches = 'tight') plt.close() ##################### ### SECTION 2.4.4 ### ##################### def Section2p4p4_Corr(): # Set the seed np.random.seed(47) datapath = pjoin(pickledir, 'Section2p4p4_Corr.pkl') s = 10. b1 = [round(n) for n in logVector(1., 1000., 10)] b2 = 5. sigma1 = 35. sigma2 = 70. R = [[lambda th: 1. + sigma1 / 100. * th, lambda th: 1.], [lambda th: 1., lambda th: 1. + sigma2 / 100. * th]] S = [[1., 0.75], [0.75, 1.]] data = load_data_from_pickle(datapath) if not all(data.get(k, []) for k in ['z0', 't0', 't1']): data.update({'z0': [], 't0': [], 't1': []}) for _b1 in b1: logger.info('On b1 = %s.' % int(_b1)) z0, t0, t1 = GaussZ0_MC(s, [_b1, b2], R, S, return_t0_and_t1 = True, sleep = 0.002, ntoys = 50000) data['z0'].append(z0) data['t0'].append(t0) data['t1'].append(t1) plt.plot(b1, data['z0'], marker = 'o', color = 'r', linewidth = 0, label = 'Numerical') b1Fine = logVector(b1[0], b1[-1], 1000) plt.plot(b1Fine, [GaussZ0(s = s, b = [_b1, b2], R = R, S = S) for _b1 in b1Fine], linestyle = '-', markersize = 0, color = 'r', label = 'Asymptotic (corr.)') plt.plot(b1Fine, [GaussZ0(s = s, b = [_b1, b2], R = R, S = [[1., 0.], [0., 1.]]) for _b1 in b1Fine], linestyle = ':', markersize = 0, color = 'darkred', label = 'Asymptotic (decorr.)') plt.plot(b1Fine, s / np.sqrt(s + b1Fine + b2 + (sigma1 / 100. * b1Fine) ** 2 + (sigma2 / 100. * b2) ** 2), linestyle = '--', markersize = 0, color = 'lightcoral', label = 'Simple') plt.xlim((b1[0], b1[-1])) plt.ylim((0., 2.)) plt.xlabel('Background 1 yield in SR $b_1$ [a.u.]') plt.ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') plt.xscale('log') # plt.title('1 SR + 2 Gaussian Correlated Constraints Asymptotic Significance:\n$s = {}$, $b_2 = {}$, $\\sigma_1 = {}\\%$, $\\sigma_2 = {}\\%$'.format(int(s), int(b2), int(sigma1), int(sigma2))) plt.legend(loc = 'upper right') plt.savefig(pjoin(plotdir, '1SRplus2GaussConst_corr.eps'), format = 'eps', dpi = 1200) plt.close() dump_data_to_pickle(data, datapath) ##################### ### SECTION 2.4.5 ### ##################### def Section2p4p5_Response(): # Set the seed np.random.seed(49) def smooth_interpolate(th, func1, func2, weight): return weight(th) * func1(th) + (1. - weight(th)) * func2(th) def heaviside(th, sigma_lo, sigma_hi): return smooth_interpolate(th, lambda th: 1. + sigma_lo * th, lambda th: 1. + sigma_hi * th, lambda th: 1. - np.heaviside(th, 1.)) def arctan(th, sigma_lo, sigma_hi, k = 10.): return smooth_interpolate(th, lambda th: 1. + sigma_lo * th, lambda th: 1. + sigma_hi * th, lambda th: (1. - 2. / np.pi * np.arctan(np.pi / 2. * k * th)) / 2.) def tanh(th, sigma_lo, sigma_hi, k = 10.): return smooth_interpolate(th, lambda th: 1. + sigma_lo * th, lambda th: 1. + sigma_hi * th, lambda th: (1. - np.tanh(k * th)) / 2.) def erf(th, sigma_lo, sigma_hi, k = 10.): return smooth_interpolate(th, lambda th: 1. + sigma_lo * th, lambda th: 1. + sigma_hi * th, lambda th: (1. - scipy.special.erf(k * th)) / 2.) def sigmoid(th, sigma_lo, sigma_hi, k = 10.): return smooth_interpolate(th, lambda th: 1. + sigma_lo * th, lambda th: 1. + sigma_hi * th, lambda th: 1. - 1. / (1. + np.exp(-k * th))) response_functions = {'Heaviside': (heaviside, 'k', '-'), 'arctan': (arctan, 'g', '--'), 'tanh': (tanh, 'b', ':'), 'erf': (erf, 'r', '-.'), 'sigmoid': (sigmoid, 'gold', '-')} sigma_lo = 0.20 sigma_hi = 0.35 th = np.linspace(-1., +1., 1000) for l, (f, c, ls) in response_functions.items(): plt.plot(th, f(th, sigma_lo, sigma_hi), color = c, label = l, linestyle = ls) plt.xlim((th[0], th[-1])) plt.ylim((1. - sigma_lo, 1. + sigma_hi)) plt.xlabel('Nuisance parameter $\\theta$ [a.u.]') plt.ylabel('Response function $R(\\theta)$ [a.u.]') # plt.title('Different Response Functions') plt.legend(loc = 'upper left') plt.savefig(pjoin(plotdir, 'response_functions.eps'), format = 'eps', dpi = 1200) plt.xlim((-0.2, +0.2)) plt.ylim((0.95, 1.075)) plt.savefig(pjoin(plotdir, 'response_functions_zoomed.eps'), format = 'eps', dpi = 1200) plt.close() # 1st derivatives: th = np.linspace(-1., +1., 1000) for l, (f, c, ls) in response_functions.items(): plt.plot(th, scipy.misc.derivative(lambda th: f(th, sigma_lo, sigma_hi), th, dx = 1e-6), color = c, label = l, linestyle = ls) plt.xlim((th[0], th[-1])) plt.ylim((0.15, 0.40)) plt.xlabel('Nuisance parameter $\\theta$ [a.u.]') plt.ylabel('Derivative of response function $dR(\\theta)/d\\theta$ [a.u.]') # plt.title('Dervatives of Different Response Functions') plt.legend(loc = 'upper left') plt.savefig(pjoin(plotdir, 'response_functions_derivatives.eps'), format = 'eps', dpi = 1200) plt.close() s = 10. b1 = logVector(1., 10000., 100) b2 = 5. sigma1_lo = 20. / 100. sigma1_hi = 35. / 100. sigma2_lo = 70. / 100. sigma2_hi = 90. / 100. R = lambda sigma1_lo, sigma1_hi, sigma2_lo, sigma2_hi: [[lambda th: f(th, sigma1_lo, sigma1_hi), lambda th: 1.], [lambda th: 1., lambda th: f(th, sigma2_lo, sigma2_hi)]] S = [[1., 0.75], [0.75, 1.]] for l, (f, c, ls) in response_functions.items(): plt.plot(b1, [GaussZ0(s = s, b = [_b1, b2], R = R(sigma1_lo, sigma1_hi, sigma2_lo, sigma2_hi), S = S) for _b1 in b1], linestyle = ls, markersize = 0, color = c, label = l) plt.xlim((b1[0], b1[-1])) plt.ylim((0.001, 10.)) plt.xlabel('Background 1 yield in SR $b_1$ [a.u.]') plt.ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') plt.xscale('log') plt.yscale('log') # plt.title('Sensitivities for Different Response Functions:\n$s = {}$, $b_2 = {}$'.format(int(s), int(b2))) plt.legend(loc = 'upper right') plt.savefig(pjoin(plotdir, 'response_functions_z0_b2eq%s.eps' % int(b2)), format = 'eps', dpi = 1200, bbox_inches = 'tight') plt.close() s = 100. b2 = 10000. for l, (f, c, ls) in response_functions.items(): plt.plot(b1, [GaussZ0(s = s, b = [_b1, b2], R = R(sigma1_lo, sigma1_hi, sigma2_lo, sigma2_hi), S = S) for _b1 in b1], linestyle = ls, markersize = 0, color = c, label = l) plt.xlim((b1[0], b1[-1])) plt.ylim((0.008, 0.02)) plt.xlabel('Background 1 yield in SR $b_1$ [a.u.]') plt.ylabel('Significance of discovery $\\textrm{med}[Z_0|\\mu^\\prime=1]$ [a.u.]') plt.xscale('log') plt.yscale('log') # plt.title('Sensitivities for Different Response Functions:\n$s = {}$, $b_2 = {}$'.format(int(s), int(b2))) plt.legend(loc = 'upper right') plt.savefig(pjoin(plotdir, 'response_functions_z0_b2eq%s.eps' % int(b2)), format = 'eps', dpi = 1200, bbox_inches = 'tight') plt.close() ##################### ### SECTION 2.4.6 ### ##################### def Section2p4p6_CPU(): # Set the seed np.random.seed(48) datapath = pjoin(pickledir, 'Section2p4p6_CPU.pkl') s = 10. b1 = 10. b2 = 5. sigma1 = 35. sigma2 = 70. R = [[lambda th: 1. + sigma1 / 100. * th, lambda th: 1.], [lambda th: 1., lambda th: 1. + sigma2 / 100. * th]] S = [[1., 0.75], [0.75, 1.]] ntoys = [round(n) for n in logVector(1000, 1000000, 40)] data = load_data_from_pickle(datapath) if not all(data.get(k, []) for k in ['z0', 't0', 't1', 'cpu']): data.update({'z0': [], 't0': [], 't1': [], 'cpu': []}) for _ntoys in ntoys: logger.info('On ntoys = %s.' % int(_ntoys)) logging.getLogger(asymptotic_formulae.__name__).setLevel(level = logging.WARNING) start = time.clock() z0, t0, t1 = GaussZ0_MC(s, [b1, b2], R, S, return_t0_and_t1 = True, sleep = 0.001, ntoys = _ntoys, retry_first = False, skip_failed_toys = True) stop = time.clock() logging.getLogger(asymptotic_formulae.__name__).setLevel(level = logging.DEBUG) data['z0'].append(z0) data['t0'].append(t0) data['t1'].append(t1) delta = stop - start logger.info('Z0 = %s, CPU time = %s s.' % (z0, delta)) data['cpu'].append(delta) if not all(data.get(k, []) for k in ['cpu_asymptotic', 'z0_asymptotic']): data['cpu_asymptotic'] = [] data['z0_asymptotic'] = [] for i in range(len(ntoys)): logger.info('On iteration %s.' % i) logging.getLogger(asymptotic_formulae.__name__).setLevel(level = logging.WARNING) start = time.clock() z0 = GaussZ0(s = s, b = [b1, b2], R = R, S = S) stop = time.clock() logging.getLogger(asymptotic_formulae.__name__).setLevel(level = logging.DEBUG) delta = stop - start logger.info('CPU time = %s s.' % delta) data['cpu_asymptotic'].append(delta) data['z0_asymptotic'].append(z0) z0 = GaussZ0(s = s, b = [b1, b2], R = R, S = S) fig = plt.figure() fig, axs = plt.subplots(2, 1, sharex = True) fig.subplots_adjust(hspace = 0.1) # fig.suptitle('CPU Comparisons: Numerical vs. Asymptotic for Gaussian Constraints') axs[0].plot(ntoys, data['z0'], color = 'darkorange', label = 'Numerical') axs[0].plot(ntoys, data['z0_asymptotic'], color = 'navy', label = 'Asymptotic') axs[0].set_ylabel('Significance of discovery [a.u.]') axs[0].set_ylim((1.15, 1.30)) axs[0].legend(loc = 'upper right') axs[1].plot(ntoys, data['cpu'], color = 'darkorange', label = 'Numerical') axs[1].plot(ntoys, data['cpu_asymptotic'], color = 'navy', label = 'Asymptotic') axs[1].set_xlabel('Number of toys [a.u.]') axs[1].set_ylabel('CPU time [s]') axs[1].set_xlim((ntoys[0], ntoys[-1])) axs[1].set_ylim((1e-3, 1e4)) axs[1].set_xscale('log') axs[1].set_yscale('log') plt.savefig(pjoin(plotdir, 'Section2p4p2_CPU.eps'), format = 'eps', dpi = 1200) plt.close() dump_data_to_pickle(data, datapath) Section2p1p1() Section2p1p2() Section2p2p1() Section2p4p2_vsB1() Section2p4p2_vsSigma() Section2p4p4_Corr() Section2p4p5_Response() Section2p4p6_CPU() if __name__ == '__main__': main()
46.85489
272
0.523564
0
0
0
0
0
0
0
0
7,290
0.245405
8d6e5ae82deb7b5311529c66cb9a669824faeec2
2,645
py
Python
tests/test_compliance.py
simongarisch/pytrade
6245c0a47017a880299fa7704a49580f394fa87b
[ "MIT" ]
2
2020-10-19T02:44:57.000Z
2021-11-08T10:45:25.000Z
tests/test_compliance.py
simongarisch/pytrade
6245c0a47017a880299fa7704a49580f394fa87b
[ "MIT" ]
1
2020-12-24T02:59:58.000Z
2020-12-24T02:59:58.000Z
tests/test_compliance.py
simongarisch/pytrade
6245c0a47017a880299fa7704a49580f394fa87b
[ "MIT" ]
null
null
null
import pytest from pxtrade.assets import reset, Stock, Portfolio from pxtrade.compliance import ( Compliance, UnitLimit, WeightLimit, ) class TestCompliance(object): def setup_method(self, *args): reset() stock1 = self.stock1 = Stock("BBB US", 2.00, currency_code="USD") stock2 = self.stock2 = Stock("CCC US", 2.00, currency_code="USD") portfolio = self.portfolio = Portfolio("USD") portfolio.transfer(stock1, 200) portfolio.transfer(stock2, 200) self.compliance = Compliance() def test_compliance(self): with pytest.raises(TypeError): # Requires a ComplianceRule instance. self.compliance.add_rule("ZZZ") with pytest.raises(TypeError): # Requires a Portfolio instance. self.compliance.passes("ZZZ") def teardown_method(self, *args): del self.stock1 del self.stock2 del self.portfolio del self.compliance def test_unit_limit(self): with pytest.raises(TypeError): # Requires an Asset instance UnitLimit("ABC US", 100) with pytest.raises(TypeError): # Limit must be an integer. UnitLimit(self.stock1, "100") rule = UnitLimit(self.stock1, 200) compliance = self.compliance portfolio = self.portfolio compliance.add_rule(rule) assert compliance.passes(portfolio) portfolio.transfer(self.stock1, 1) assert not compliance.passes(portfolio) compliance.remove_rule(rule) assert compliance.passes(portfolio) def test_unit_limit_str(self): rule = UnitLimit(self.stock1, 200) assert str(rule) == "UnitLimit('BBB US', 200)" rule = UnitLimit(self.stock1, 1000) assert str(rule) == "UnitLimit('BBB US', 1,000)" def test_weight_limit(self): with pytest.raises(TypeError): # Requires an Asset instance WeightLimit("ABC US", 0.5) with pytest.raises(TypeError): # Limit must be an integer. WeightLimit(self.stock2, "0.5") rule = WeightLimit(self.stock2, 0.50) compliance = self.compliance portfolio = self.portfolio compliance.add_rule(rule) assert compliance.passes(portfolio) portfolio.transfer(self.stock2, 1) assert not compliance.passes(portfolio) compliance.remove_rule(rule) assert compliance.passes(portfolio) def test_weight_limit_str(self): rule = WeightLimit(self.stock2, 0.50) assert str(rule) == "WeightLimit('CCC US', 0.50)"
32.654321
73
0.625331
2,494
0.942911
0
0
0
0
0
0
329
0.124386
8d7113f4a3fa2caf2cf878a899bd18ce82a24a1b
103
py
Python
article/serializers/__init__.py
mentix02/medialist-backend
397b1a382b12bab273360dadb0b3c32de43747cd
[ "MIT" ]
1
2019-11-22T19:29:39.000Z
2019-11-22T19:29:39.000Z
article/serializers/__init__.py
mentix02/medialist-backend
397b1a382b12bab273360dadb0b3c32de43747cd
[ "MIT" ]
1
2019-11-25T09:50:07.000Z
2021-07-15T07:05:28.000Z
article/serializers/__init__.py
mentix02/medialist-backend
397b1a382b12bab273360dadb0b3c32de43747cd
[ "MIT" ]
null
null
null
from article.serializers.serializers import ( ArticleListSerializer, ArticleDetailSerializer )
20.6
45
0.805825
0
0
0
0
0
0
0
0
0
0
8d73a34deeb4110e24d2f659a64dcdc60d79219a
1,447
py
Python
delong_functions/initialization.py
braddelong/22-jupyter-ps01
95e8714e1723fb8328380a5d14aafabe2ee0795a
[ "MIT" ]
null
null
null
delong_functions/initialization.py
braddelong/22-jupyter-ps01
95e8714e1723fb8328380a5d14aafabe2ee0795a
[ "MIT" ]
null
null
null
delong_functions/initialization.py
braddelong/22-jupyter-ps01
95e8714e1723fb8328380a5d14aafabe2ee0795a
[ "MIT" ]
null
null
null
# set up the environment by reading in libraries: # os... graphics... data manipulation... time... math... statistics... import sys import os from urllib.request import urlretrieve import matplotlib as mpl import matplotlib.pyplot as plt import PIL as pil from IPython.display import Image import pandas as pd from pandas import DataFrame, Series import pandas_datareader from datetime import datetime import scipy as sp import numpy as np import math import random import seaborn as sns import statsmodels import statsmodels.api as sm import statsmodels.formula.api as smf # graphics setup: seaborn-darkgrid and figure size... plt.style.use('seaborn-darkgrid') figure_size = plt.rcParams["figure.figsize"] figure_size[0] = 7 figure_size[1] = 7 plt.rcParams["figure.figsize"] = figure_size # import delong functions from delong_functions.data_functions import getdata_read_or_download # get or download data file from delong_functions.stat_functions import initialize_basic_figure # initialize graphics from delong_functions.data_functions import data_FREDseries # construct a useful dict with source # and notes info from a previously # downloaded FRED csv file # check to see if functions successfully created... # NOW COMMENTED OUT: getdata_read_or_download? initialize_basic_figure?
32.155556
106
0.724948
0
0
0
0
0
0
0
0
517
0.357291
8d74d9562cd8858adb9b65b43c92263f531590a9
608
py
Python
sdk/bento/graph/value.py
bentobox-dev/bento-box
3e10c62f586c1251529e059b6af515d4d03c60e9
[ "MIT" ]
1
2021-01-02T02:50:15.000Z
2021-01-02T02:50:15.000Z
sdk/bento/graph/value.py
joeltio/bento-box
3e10c62f586c1251529e059b6af515d4d03c60e9
[ "MIT" ]
48
2020-10-21T07:42:30.000Z
2021-02-15T19:34:55.000Z
sdk/bento/graph/value.py
joeltio/bento-box
3e10c62f586c1251529e059b6af515d4d03c60e9
[ "MIT" ]
null
null
null
# # Bentobox # SDK - Graph # Graph Value # from typing import Any from bento.value import wrap from bento.protos.graph_pb2 import Node def wrap_const(val: Any): """Wrap the given native value as a Constant graph node. If val is a Constant node, returns value as is. Args: val: Native value to wrap. Returns: The given value wrapped as a constant graph node. """ # check if already constant node, return as is if true. if isinstance(val, Node) and val.WhichOneof("op") == "const_op": return val return Node(const_op=Node.Const(held_value=wrap(val)))
25.333333
68
0.677632
0
0
0
0
0
0
0
0
339
0.557566
8d76f8f9957c274ab98fcb861cac123b90567879
771
py
Python
app/validators/user_validator.py
allanzi/truck-challenge
7734a011de899184b673e99fd1c2ff92a6af65b9
[ "CECILL-B" ]
null
null
null
app/validators/user_validator.py
allanzi/truck-challenge
7734a011de899184b673e99fd1c2ff92a6af65b9
[ "CECILL-B" ]
null
null
null
app/validators/user_validator.py
allanzi/truck-challenge
7734a011de899184b673e99fd1c2ff92a6af65b9
[ "CECILL-B" ]
null
null
null
from marshmallow import Schema, fields from marshmallow.validate import Length, Range class UserCreateValidator(Schema): name = fields.Str(required=True, validate=Length(max=60)) age = fields.Integer(required=True, validate=Range(min=18, max=100)) driver_license_type = fields.Str(required=True, validate=Length(max=5)) is_busy = fields.Bool(required=True) has_vehicle = fields.Bool(required=True) vehicle_type_id = fields.Integer(required=True) class UserUpdateValidator(Schema): name = fields.Str(validate=Length(max=60)) age = fields.Integer(validate=Range(min=18, max=100)) driver_license_type = fields.Str(validate=Length(max=5)) is_busy = fields.Bool() has_vehicle = fields.Bool() vehicle_type_id = fields.Integer()
42.833333
75
0.743191
682
0.884565
0
0
0
0
0
0
0
0
8d783ab1b46b55a24509d554110a68bdbb340935
11,660
py
Python
montecarlo/mcpy/monte_carlo.py
v-asatha/EconML
eb9ac829e93abbc8a163ab09d905b40370b21b1a
[ "MIT" ]
null
null
null
montecarlo/mcpy/monte_carlo.py
v-asatha/EconML
eb9ac829e93abbc8a163ab09d905b40370b21b1a
[ "MIT" ]
null
null
null
montecarlo/mcpy/monte_carlo.py
v-asatha/EconML
eb9ac829e93abbc8a163ab09d905b40370b21b1a
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import os import sys import numpy as np from joblib import Parallel, delayed import joblib import argparse import importlib from itertools import product import collections from copy import deepcopy from mcpy.utils import filesafe from mcpy import plotting def check_valid_config(config): """ Performs a basic check of the config file, checking if the necessary subsections are present. If multiple config files are being made that use the same dgps and/or methods, it may be helpful to tailor the config check to those dgps and methods. That way, one can check that the correct parameters are being provided for those dgps and methods. This is specific to one's implementation, however. """ assert 'type' in config, "config dict must specify config type" assert 'dgps' in config, "config dict must contain dgps" assert 'dgp_opts' in config, "config dict must contain dgp_opts" assert 'method_opts' in config, "config dict must contain method_opts" assert 'mc_opts' in config, "config dict must contain mc_opts" assert 'metrics' in config, "config dict must contain metrics" assert 'methods' in config, "config dict must contain methods" assert 'plots' in config, "config dict must contain plots" assert 'single_summary_metrics' in config, "config dict must specify which metrics are plotted in a y-x plot vs. as a single value per dgp and method" assert 'target_dir' in config, "config must contain target_dir" assert 'reload_results' in config, "config must contain reload_results" assert 'n_experiments' in config['mc_opts'], "config[mc_opts] must contain n_experiments" assert 'seed' in config['mc_opts'], "config[mc_opts] must contain seed" class MonteCarlo: """ This class contains methods to run (multiple) monte carlo experiments Experiments are constructed from a config file, which mainly consists of references to the implementations of four different kinds of items, in addition to various parameters for the experiment. See the README for a descriptoin of the config file, or look at an example in the configs directory. The four main items are: - data generating processes (dgps): functions that generate data according to some assumed underlying model - methods: functions that take in data and produce other data. In our case, they train on data produced by DGPs and then produce counterfactual estimates - metrics: functions that take in the results of estimators and calculate metrics - plots: functions that take in the metric results, etc. and generate plots """ def __init__(self, config): self.config = config check_valid_config(self.config) # these param strings are for properly naming results saved to disk config['param_str'] = '_'.join(['{}_{}'.format(filesafe(k), v) for k,v in self.config['mc_opts'].items()]) config['param_str'] += '_' + '_'.join(['{}_{}'.format(filesafe(k), v) for k,v in self.config['dgp_opts'].items()]) config['param_str'] += '_' + '_'.join(['{}_{}'.format(filesafe(k), v) for k,v in self.config['method_opts'].items()]) def experiment(self, instance_params, seed): """ Given instance parameters to pass on to the data generating processes, runs an experiment on a single randomly generated instance of data and returns the parameter estimates for each method and the evaluated metrics for each method. Parameters ---------- instance_params : dictionary instance paramaters that DGP functions may use seed : int random seed for random data generation Returns ------- experiment_results : dictionary results of the experiment, depending on what the methods return. These are stored by dgp_name and then by method_name. true_params : dictionary true parameters of the DGP, indexed by dgp_name, used for metrics calculation downstream """ np.random.seed(seed) experiment_results = {} true_params = {} for dgp_name, dgp_fn in self.config['dgps'].items(): data, true_param = dgp_fn(self.config['dgp_opts'][dgp_name], instance_params[dgp_name], seed) true_params[dgp_name] = true_param experiment_results[dgp_name] = {} for method_name, method in self.config['methods'].items(): experiment_results[dgp_name][method_name] = method(data, self.config['method_opts'][method_name], seed) return experiment_results, true_params def run(self): """ Runs multiple experiments in parallel on randomly generated instances and samples and returns the results for each method and the evaluated metrics for each method across all experiments. Returns ------- simulation_results : dictionary dictionary indexed by [dgp_name][method_name] for individual experiment results metric_results : dictionary dictionary indexed by [dgp_name][method_name][metric_name] true_param : dictinoary dictionary indexed by [dgp_name] """ random_seed = self.config['mc_opts']['seed'] if not os.path.exists(self.config['target_dir']): os.makedirs(self.config['target_dir']) instance_params = {} for dgp_name in self.config['dgps']: instance_params[dgp_name] = self.config['dgp_instance_fns'][dgp_name](self.config['dgp_opts'][dgp_name], random_seed) # results_file = os.path.join(self.config['target_dir'], 'results_{}.jbl'.format(self.config['param_str'])) results_file = os.path.join(self.config['target_dir'], 'results_seed{}.jbl'.format(random_seed)) if self.config['reload_results'] and os.path.exists(results_file): results = joblib.load(results_file) else: results = Parallel(n_jobs=-1, verbose=1)( delayed(self.experiment)(instance_params, random_seed + exp_id) for exp_id in range(self.config['mc_opts']['n_experiments'])) joblib.dump(results, results_file) simulation_results = {} # note that simulation_results is a vector of individual experiment_results. from experiment() metric_results = {} true_params = {} for dgp_name in self.config['dgps'].keys(): simulation_results[dgp_name] = {} metric_results[dgp_name] = {} for method_name in self.config['methods'].keys(): simulation_results[dgp_name][method_name] = [results[i][0][dgp_name][method_name] for i in range(self.config['mc_opts']['n_experiments'])] true_params[dgp_name] = [results[i][1][dgp_name] for i in range(self.config['mc_opts']['n_experiments'])] metric_results[dgp_name][method_name] = {} for metric_name, metric_fn in self.config['metrics'].items(): # for metric_name, metric_fn in self.config['metrics'][method_name].items(): # for method specific parameters metric_results[dgp_name][method_name][metric_name] = metric_fn(simulation_results[dgp_name][method_name], true_params[dgp_name]) for plot_name, plot_fn in self.config['plots'].items(): # for plot_name, plot_fn in self.config['plots'][method_name].items(): # for method specific plots if isinstance(plot_fn, dict): plotting.instance_plot(plot_name, simulation_results, metric_results, self.config, plot_fn) else: plot_fn(plot_name, simulation_results, metric_results, true_params, self.config) return simulation_results, metric_results, true_params class MonteCarloSweep: """ This class contains methods to run sets of multiple monte carlo experiments where each set of experiments has different parameters (for the dgps and methods, etc.). This enables sweeping through parameter values to generate results for each permutation of parameters. For example, running a simulation when the number of samples a specific DGP generates is 100, 1000, or 10000. """ def __init__(self, config): self.config = config check_valid_config(self.config) config['param_str'] = '_'.join(['{}_{}'.format(filesafe(k), self.stringify_param(v)) for k,v in self.config['mc_opts'].items()]) config['param_str'] += '_' + '_'.join(['{}_{}'.format(filesafe(k), self.stringify_param(v)) for k,v in self.config['dgp_opts'].items()]) config['param_str'] += '_' + '_'.join(['{}_{}'.format(filesafe(k), self.stringify_param(v)) for k,v in self.config['method_opts'].items()]) def stringify_param(self, param): """ Parameters ---------- param : list list denoting the various values a parameter should take Returns ------- A string representation of the range of the values that parameter will take """ if hasattr(param, "__len__"): return '{}_to_{}'.format(np.min(param), np.max(param)) else: return param def run(self): """ Runs many monte carlo simulations for all the permutations of parameters specified in the config file. Returns ------- sweep_keys : list list of all the permutations of parameters for each dgp sweep_sim_results : list list of simulation results for each permutation of parameters for each dgp sweep_metrics : list list of metric results for each permutation of parameters for each dgp sweep_true_params : list list of true parameters for each permutation of parameters for each dgp """ # currently duplicates computation for the dgps because all only one dgp param changed each config # need to make it so that every inst_config is different for each dgp for dgp_name in self.config['dgp_opts'].keys(): dgp_sweep_params = [] dgp_sweep_param_vals = [] for dgp_key, dgp_val in self.config['dgp_opts'][dgp_name].items(): if hasattr(dgp_val, "__len__"): dgp_sweep_params.append(dgp_key) dgp_sweep_param_vals.append(dgp_val) sweep_keys = [] sweep_sim_results = [] sweep_metrics = [] sweep_true_params = [] inst_config = deepcopy(self.config) for vec in product(*dgp_sweep_param_vals): setting = list(zip(dgp_sweep_params, vec)) for k,v in setting: inst_config['dgp_opts'][dgp_name][k] = v simulation_results, metrics, true_params = MonteCarlo(inst_config).run() sweep_keys.append(setting) sweep_sim_results.append(simulation_results) sweep_metrics.append(metrics) sweep_true_params.append(true_params) for plot_name, plot_fn in self.config['sweep_plots'].items(): if isinstance(plot_fn, dict): plotting.sweep_plot(plot_key, sweep_keys, sweep_sim_results, sweep_metrics, self.config, plot_fn) else: plot_fn(plot_name, sweep_keys, sweep_sim_results, sweep_metrics, sweep_true_params, self.config) return sweep_keys, sweep_sim_results, sweep_metrics, sweep_true_params
48.786611
154
0.660806
9,828
0.842882
0
0
0
0
0
0
5,962
0.511321
8d7ad5ef06de97e8b617443c00cdb60123831b97
5,845
py
Python
MusicGame.py
kfparri/MusicGame
f2914cae7a68585ca1a569c78ac13f68c1adb827
[ "MIT" ]
null
null
null
MusicGame.py
kfparri/MusicGame
f2914cae7a68585ca1a569c78ac13f68c1adb827
[ "MIT" ]
null
null
null
MusicGame.py
kfparri/MusicGame
f2914cae7a68585ca1a569c78ac13f68c1adb827
[ "MIT" ]
null
null
null
#------------------------------------------------------------------------------------------------------ # File Name: MusicGame.py # Author: Kyle Parrish # Date: 7/4/2014 # Description: This is a simple program that I wrote for the raspberry pi so that my daughter can # play with. It is a simple program that plays a different sound with every keystroke. It also # displays a simple shape pattern on the screen with each keypress. The pi can also be setup to # allow users to change the sounds by uploading them to a web form on the pi itself. This code # will be included when it is finished. # Change log: # 4.30.15 - Updated the header to test out Visual Studio Code git integration # 9.18.15 - Started making some changes to the application. Natalie is starting to enjoy # the application so I'm starting to make it do more: # - Updated the code to put circles as well as squares on the screen. #------------------------------------------------------------------------------------------------------ # Basic imports for the game import os,sys,datetime, sqlite3 import pygame # I don't believe that I need the time references anymore, to be removed with next commit #from time import strftime, localtime from random import randint from pygame.locals import * # Setup basic constants test = 640 # Screen height and width SCREEN_WIDTH = test SCREEN_HEIGHT = 480 #CENTER_POINT = (SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2) #LOWER_CENTER = (SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4) #CENTER_RECT_HEIGHT = 40 #CLOCK_TEXT_FONT = 48 # Colors, any of these can be used in the program WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) MATRIX_GREEN = (0, 255, 21) # Code taken from: http://code.activestate.com/recipes/521884-play-sound-files-with-pygame-in-a-cross-platform-m/ # global constants FREQ = 44100 # same as audio CD BITSIZE = -16 # unsigned 16 bit CHANNELS = 2 # 1 == mono, 2 == stereo BUFFER = 1024 # audio buffer size in no. of samples FRAMERATE = 30 # how often to check if playback has finished sounds = ["Typewrit-Intermed-538_hifi.ogg", "Typewrit-Bell-Patrick-8344_hifi.ogg", "Arcade_S-wwwbeat-8528_hifi.ogg", "Arcade_S-wwwbeat-8529_hifi.ogg", "Arcade_S-wwwbeat-8530_hifi.ogg", "Arcade_S-wwwbeat-8531_hifi.ogg", "PowerUp-Mark_E_B-8070_hifi.ogg", "PulseGun-Mark_E_B-7843_hifi.ogg", "PulseSho-Mark_E_B-8071_hifi.ogg", "SineySpa-Mark_E_B-7844_hifi.ogg", "ToySpace-Mark_E_B-7846_hifi.ogg", "ZipUp-Mark_E_B-8079_hifi.ogg"] soundFiles = [] def playsound(soundfile): """Play sound through default mixer channel in blocking manner. This will load the whole sound into memory before playback """ soundfile.play() #sound = pygame.mixer.Sound(soundfile) #clock = pygame.time.Clock() #sound.play() #while pygame.mixer.get_busy(): #clock.tick(FRAMERATE) def drawMyRect(surface): #pygame.draw.rect(screen, color, (x,y,width,height), thickness) pygame.draw.rect(surface, RED, (randint(0,600), randint(0,440), 40,40), 5) return surface def drawMyCircle(surface): pygame.draw.circle(surface, GREEN, (randint(0,600), randint(0,440)), 20, 5) return surface def main(): pygame.mixer.pre_init(44100,-16,2, 1024) pygame.init() screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) pygame.display.set_caption('Music Game') drawCircle = True # create background background = pygame.Surface(screen.get_size()) background = background.convert() #allocate all the sound files, this should make it work better... for file in sounds: tempsound = pygame.mixer.Sound(file) soundFiles.append(tempsound) # hide the mouse # not used while developing #pygame.mouse.set_visible(False) #pygame.draw.rect(screen, color, (x,y,width,height), thickness) #pygame.draw.rect(background, RED, (10,10,40,40), 5) #drawMyRect(background) screen.blit(background, (0,0)) pygame.display.update() soundfile = "Typewrit-Intermed-538_hifi.ogg" soundfile3 = "Typewrit-Bell-Patrick-8344_hifi.ogg" # main loop while 1: # This needs to change to match the new way of checking that I found on the web # http://stackoverflow.com/questions/12556535/programming-pygame-so-that-i-can-press-multiple-keys-at-once-to-get-my-character updateScreen = False resetScreen = False for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() return elif event.type == KEYDOWN: keys = pygame.key.get_pressed() #print(len(keys)) if keys[K_ESCAPE] and keys[K_LCTRL]: pygame.quit() sys.exit() elif keys[K_ESCAPE]: resetScreen = True; soundFiles[1].play() #playsound(soundFiles[1]) else: updateScreen = True soundFiles[0].play() #playsound(soundFiles[0]) if resetScreen: background = pygame.Surface(screen.get_size()) background = background.convert() screen.blit(background, (0,0)) pygame.display.update() if updateScreen: if drawCircle: drawMyCircle(background) else: drawMyRect(background) drawCircle = not drawCircle screen.blit(background, (0,0)) pygame.display.update() if __name__ == '__main__': main()
34.791667
134
0.609239
0
0
0
0
0
0
0
0
3,129
0.535329
8d7d0cccfbda47460eb1aeba6470425e3ed12174
243
py
Python
tests/utils/img_processing_utils_test.py
venkatakolagotla/robin
4497bf8ffcd03182f68f9a6d7c806bfdaa4791cb
[ "MIT" ]
4
2019-12-20T05:37:51.000Z
2020-03-18T16:32:59.000Z
tests/utils/img_processing_utils_test.py
venkatakolagotla/robin
4497bf8ffcd03182f68f9a6d7c806bfdaa4791cb
[ "MIT" ]
null
null
null
tests/utils/img_processing_utils_test.py
venkatakolagotla/robin
4497bf8ffcd03182f68f9a6d7c806bfdaa4791cb
[ "MIT" ]
null
null
null
from __future__ import print_function from robin.utils import img_processing_utils import numpy as np def test_normalize_gt(in_img_array): out_img = img_processing_utils.normalize_gt(in_img_array) assert type(out_img) == np.ndarray
24.3
61
0.814815
0
0
0
0
0
0
0
0
0
0
8d7e6b625734d32d6eb3ec106401a004caa7962c
5,763
py
Python
DeepLearning/DeepLearning/07_Deep_LeeYS/Week_1/4. Single-Layer NN/4) Neural Network.py
ghost9023/DeepLearningPythonStudy
4d319c8729472cc5f490935854441a2d4b4e8818
[ "MIT" ]
1
2019-06-27T04:05:59.000Z
2019-06-27T04:05:59.000Z
DeepLearning/DeepLearning/07_Deep_LeeYS/Week_1/4. Single-Layer NN/4) Neural Network.py
ghost9023/DeepLearningPythonStudy
4d319c8729472cc5f490935854441a2d4b4e8818
[ "MIT" ]
null
null
null
DeepLearning/DeepLearning/07_Deep_LeeYS/Week_1/4. Single-Layer NN/4) Neural Network.py
ghost9023/DeepLearningPythonStudy
4d319c8729472cc5f490935854441a2d4b4e8818
[ "MIT" ]
null
null
null
#4) 신경망 구현하기 ##########KEYWORD############### ################################ #신경망은 입력층에서 출력층으로 기본적으로 한 방향으로 흐른다. 한 싸이클이 끝나면 역전파 알고리즘을 통해 #계속 학습으 진행하지만 역전파 알고리즘과 같은 고급 알고리즘은 다음장에서.. #한 방향으로만 정보가 전방으로 전달되는 신경망을 피드포워드 신경망(Feed Forward NN)이라고 한다. #기본적으로 신경망은 입력층에서 데이터 입력을 받은 뒤 은닉층에서 데이터를 학습하고 출력층으로 결과를 내보낸다. #입력층의 역할은 입력 데이터를 받아들이는 것이고 이를 위해서 입력층의 노드(뉴런) 개수는 입력데이터의 특성 갯수와 일치해야 한다. #은닉층은 학습을 진행하는 층으로 은닉층의 노드 수와 은닉층 Layer 수는 설계자가 경험으로 얻어내야 한다. #뉴런의 수가 너무 많으면 오버피팅이 발생하고 너무 적으면 언더피팅이 발생하여 학습이 되지 않음. #또한 은닉층의 개수가 지나치게 많은 경우 비효율적이다. #단순히 은닉층의 개수를 2배 늘리면 연산에 걸리는 시간은 400% 증가하지만 학습효율은 10%만 증가하기도 한다. #출력층은 은닉층을 거쳐서 얻어낸 결과를 해결하고자 하는 문제에 맞게 만들어 준다. #필기체 숫자 0부터 9까지를 인식하는 신경망이면 출력층이 10개가 될 것이고 개와 고양이를 분류하는 신경망이라면 3개의 출력층이 된다. #다차원 배열을 이용하여 층이 3개인 다층 신경망을 간단하게 구현하자.행렬곱과 각 행렬의 원소의 위치를 잘 확인하면 어렵지 않다. #그림25 P35 # #Layer Node 수 Node Shape Weight Shape Bias Shape 계산식 #입력층 2 2차원 벡터 2 X 3 Matrix 3차원 Vector 은닉층(1) = 활성화함수((입력층*가중치1) + 편향1) #은닉층(1) 3 3차원 벡터 3 X 2 Matrix 2차원 Vector 은닉층(2) = 활성화함수((은닉층1) * 가중치2 + 편향2) #은닉층(2) 2 2차원 벡터 2 X 2 Matrix 2차원 Vector 출력층 = 활성화함수((은닉층2) * 가중치3 + 편향3) #출력층 2 2차원 벡터 #그림을 확인해보면 3층 신경망이 어떻게 구성되어 있는지 확인할 수 있다. #입력층은 2개이며 각 층마다 편향이 존재한다. 은닉층은 2개 층으로 구성되어 있고 출력층의 출력값은 2개이다. #위 그림을 확인해보면 #w12^(1), a2(1) 와 같은 형식으로 표기되어 있는 것을 확인 할 수 있다. 우측 상단의 (1)은 1층의 가중치를 의미한다. #우측 하단의 12에서 1은 다음층의 뉴런번호 2는 앞층의 뉴런 번호를 의미한다. 따라서 w12^(!)은 앞의 1번 뉴런에서 2번 뉴런으로 이동하는 신경망 1층의 가중치 #를 의미한다. #예제 3층 신경망의 구조를 보면 입력층은 2개로 구성되어 있고 1층에서 편향이 1로 존재한다. 여기서 가중치에 의해 #입력 값은 a1(1) ... 에 입력된다. 이 입력값을 수식으로 나타내면 #a1(1) = w11^(1)x1 + w12^(1)x2 + b1^(1) 으로 표현할 수 있다. #이를 행렬 내적으로 표현하면 1층의 노드를 A^(1) = (a1^(1),a2^(1),a3^(1)), 1층의 가중치를 #W^(1) ... #이를 이용해서 numpy의 다차원 배열을 이용하면 신경망 1층을 파이선 코드로 짤 수 있다. #마찬가지로 1층의 출력값을 다시 2층의 입력값으로 넣고 똑같은 방식으로 입력노드 행렬(1층의 출력노드 행렬), 가중치 행렬, 편향 행렬의 #행렬 연산을 통해 2층의 출력 노드 행렬을 구할 수 있게 된다. #마찬가지로 신경망 1층에서 행렬 연산식을 통해 출력값을 구했던 것처럼 1층의 출력값을 2층의 입력값으로 연결해주고 2층의 가중치와 2층의 편향을 #더해주면 2층의 출력값이 완성된다. #마지막으로 그림30 처럼 2층의 출력값을 동일한 방법으로 출력층의 입력값으로 넣고 출력층 사이의 가중치와 편향을 더해준 동일한 방법으로 #식을 계산하면 최정적인 출력값이 뽑히게 된다. 한가지 위 과정과 다른 점이 있다면 출력층의 활성함수는 풀고자하는 문제의 성질에 맞게 정한다. #회귀가 목적인 신경망은 출력층에 항등함수를 사용하고 이중클래스 분류에는 시그모이드 함수를 다중 클래스에는 소프트맥스 함수를 일반적으로 사용. #그럼 출력층에 사용하는 활성함수를 알아보자. #회귀에는 항등함수, 분류에는 소프트맥스 함수를 보통 사용한다. 회귀는 입력데이터의 연속적인 수치를 예측하는 것을 의미하고 분류는 각 데이터가 어떤 #범주에 속하는지 나누는 것을 의미한다. 항등함수는 입력값이 그대로 출력되는 함수로 흔히 알고 있는 f(x) = x 를 의미한다. #파이선 코드로는 def identity_function(x): return x #소프트맥스 함수는 자연상수를 밑수로 하는 지수함수로 이루어진 하나의 함수이다. #소프트맥스 함수가 가지는 의미는 바로 시그모이드 함수를 일반화 한 것. #이를 통해 각 클래스에 대한 확률을 계산 할 수도 있게 됨. #시그모이드 함수를 일반화해서 각 클래스에 대한 확률을 계산 할 수 있다는 것은 모든 소프트맥스 함수의 출력값을 더하면 1이 나온다는 의미이다. #소프트맥스 함수 출력값은 0과 1사이의 값이고 각각의 출력 값은 개별 출력 값에 대한 확률 값이기 때문에 전체 소프트맥스 함수의 합은 항상 #1이 되는 특별한 성질을 가진다. #때문에 소프트 맥스 함수를 출력층의 활성함수로 사용하면 출력결과를 확률적으로 결론낼 수 있다. #예를 들어 #y[0] = 0.018, y[1] = 0.245, y[2] = 0.737로 결과가 출력되었다면 1.8%의 확률로 0번 클래스, 24.5%의 확률로 1번 클래스, 73.7%의 확률로 2번 #클래스일 것이므로 2번 클래스일 확률이 가장 높고 따라서 답은 2번 클래스다. 라는 결과를 도출 할 수 있다. #소프트맥스 함수를 이용해서 통계적(확률적)으로 문제를 대응할 수 있게 되는 것이다. \ #소프트맥스 함수는 단조 증가 함수인 지수함수 exp()를 기반으로 하므로 소프트맥스 함수의 출력값의 대소관계가 그대로 입력된 원소의 대소관계를 이어받는다. #따라서 역으로 소프트맥스 함수를 통해 나온 출력값의 대소관계를 입력값의 대소관계로 판단해도 된다. #그래서 신경망 학습과정에선 출력층의 활성함수로 소프트맥스 함수를 사용하고 학습된 모델을 이용해서 추론(분류 및 회귀)하는 과정에선 소프트맥스 함수를 #활성함수에서 생략해도 된다. 이러한 소프트맥스 함수의 구현엔 주의사항이 있다. #지수함수는 입력값이 커지면 급격하게 무한히 증가한다. 이를 오버플로우(Overflow)라고 한다. #입력값이 100인 exp(100)은 10의 40승이 넘는 수이다. 오버플로를 해결하기 위해선 해당 값을 전체 데이터 셋에서의 최대값으로 뺀 값으로 치환하는 방법을 사용한다. #위 과정을 수식으로 나타낼 수 있다. [수식 13] P40 #소프트맥스 함수의 분모 분자에 C라는 상수를 곱해준다. 같은 상수값을 곱해주었으므로 전체 값엔 변화가 없다. #그리고 여기에 지수함수와 로그함수의 성질 중 하나인 x = a ^ log(a,x)를 이용하여 상수 C를 exp() 함수 안으로 넣는다. #그럼 상수 C는 exp() 함수 내에서 log(e,C) = ln C 로 변화되고 ln C를 상수 C` 로 받게 되면 아래의 수식으로 변형된다. #파이선 코드 import numpy as np a = np.array([1010,1000,990]) np.exp(a) / np.sum(np.exp(a)) #오버플로 발생 #변경된 softmax 함수식 c = np.max(a) np.exp(a-c) / np.sum(np.exp(a-c)) #정상적으로 계산됨 #이처럼 같은 스케일의 변화는 아무런 결과값에 아무런 영향을 주지 않는 점을 이용해서 소프트맥스 함수의 오버플로 현상을 해결할 수 있다. #이를 이용하여 소프트맥스 함수를 파이썬으로 구현하면 아래와 같다. def softmax(a): c=np.max(a) exp_a = np.exp(a-c) sum_exp_a = np.sum(exp_a) y = exp_a / sum_exp_a return y #마지막으로 출력층의 노드 개수를 정하는 방법은 간단하다. 입력한 데이터의 클래스 갯수만큼 출력층의 노드 갯수를 정해주면 된다. #다른 예로 개와 고양이를 분류하고 싶다면 개, 고양이 총 2개의 출력 노드를 만들면 된다. #은닉층이 2개인 다층 신경망(보통 입력층을 제외한 층수로 신경망을 부른다. 따라서 이 경우는 3층 신경망) #을 간단하게 파이선으로 코딩. #이 신경망 모델은 출력층의 활성 함수로 항등함수로 정의한다. #결과적으로 위 과정을 모두 합한 전체적인 은닉층이 2층인 다층 신경망의 파이썬 구현코드는 아래와 같다. import numpy as np #시그모이드 함수 def sigmoid(x): return 1 / (1 + np.exp(-x)) #identify function 항등함수 사용 def identify_function(x): return x #신경망을 초기화. 여기서 가중치와 편향의 다차원 배열을 선언해준다. def init_network(): network = {} network['w1'] = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]]) network['b1'] = np.array([0.1,0.2,0.3]) network['w2'] = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]]) network['b2'] = np.array([0.1,0.2]) network['w3'] = np.array([[0.1,0.3],[0.2,0.4]]) network['b3'] = np.array([0.1,0.2]) return network #순전파 신경망 함수. 가중치와 편향을 입력받아 입력층과 은닉층의 활성함수는 시그모이드 함수로, #출력층의 활성함수는 항등함수를 사용하는 3층 신경망을 함수로 구현 def forward(network,x): w1,w2,w3 = network['w1'],network['w2'],network['w3'] b1,b2,b3 = network['b1'],network['bw'],network['b3'] a1 = np.dot(x,w1) + b1 z1 = sigmoid(a1) a2 = np.dot(z1,w2) + b2 z2 = sigmoid(a2) a3 = np.dot(z2,w3) + b3 y = identify_function(a3) return y network = init_network() #신경망의 가중치와 편향값 인스턴스화 x = np.array([1.0,0.5]) y = forward(network ,x) print(y) #단순한 신경망을 설계하는 것은 어렵지 않다. 다차원 배열을 잘 사용해서 가중치와 입력값 그리고 편향을 잘 도출해서 어떤 활성함수를 사용할지 정해서 #구현한 다음 구현한 활성함수에 값을 잘 넣어준 다음 이전 층의 출력값으로 잘 연결해서 원하는 층만큼 이어주면 된다.
36.707006
120
0.640986
0
0
0
0
0
0
0
0
9,944
0.891599
8d7eb5aaefc17250eb9787e23ab1f5200d2d65f8
466
py
Python
label_gen.py
avasid/gaze_detection
dbb76a2b3f3eedff5801b53bc95b3a95bc715bc5
[ "MIT" ]
1
2020-02-07T21:34:10.000Z
2020-02-07T21:34:10.000Z
label_gen.py
avasid/gaze_detection
dbb76a2b3f3eedff5801b53bc95b3a95bc715bc5
[ "MIT" ]
8
2020-11-13T18:37:12.000Z
2022-03-12T00:14:04.000Z
label_gen.py
avasid/gaze_detection
dbb76a2b3f3eedff5801b53bc95b3a95bc715bc5
[ "MIT" ]
null
null
null
import os import pandas as pd dictt = {} i = 0 for label in ['down', 'up', 'left', 'right']: img_lst = os.listdir("./data/img_data/" + label + "/") temp_label = [0] * 4 temp_label[i] = 1 for img in img_lst: print(label + " " + img) dictt[img] = temp_label i += 1 label_df = pd.DataFrame(data=dictt, index=['down', 'up', 'left', 'right']).transpose() label_df = label_df.sample(frac=1) label_df.to_csv("./data/label_data.csv")
23.3
86
0.592275
0
0
0
0
0
0
0
0
93
0.199571
8d7fb31d8d0c397a081d7685e96fa1bf8414f9a6
2,398
py
Python
rubik_race/rubiks_race/solver_test.py
ZengLawrence/rubiks_race
3d78484f0a68c7e483953cea68130f1edde2739a
[ "MIT" ]
null
null
null
rubik_race/rubiks_race/solver_test.py
ZengLawrence/rubiks_race
3d78484f0a68c7e483953cea68130f1edde2739a
[ "MIT" ]
null
null
null
rubik_race/rubiks_race/solver_test.py
ZengLawrence/rubiks_race
3d78484f0a68c7e483953cea68130f1edde2739a
[ "MIT" ]
null
null
null
''' Created on Jun 27, 2017 @author: lawrencezeng ''' import unittest from rubiks_race import solver class Test(unittest.TestCase): def setUp(self): self.initial_position = [ ['g', 'g', 'y', 'r', 'r' ], ['w', 'g', 'w', 'w', 'y' ], ['g', 'o', ' ', 'r', 'o' ], ['o', 'b', 'b', 'y', 'y' ], ['b', 'o', 'w', 'r', 'b' ] ] self.pattern = [ ['g', 'w', 'w'], ['g', 'o', 'r'], ['b', 'b', 'y'] ] final_positions = [ ['g', 'g', 'y', 'r', 'r' ], ['w', 'g', 'w', 'w', 'y' ], [' ', 'g', 'o', 'r', 'o' ], ['o', 'b', 'b', 'y', 'y' ], ['b', 'o', 'w', 'r', 'b' ] ] moves = [ [[2, 1], [2, 2]], [[2, 0], [2, 1]], ] self.result = [final_positions, moves] def tearDown(self): return unittest.TestCase.tearDown(self) def test_solve(self): initial_position = [ ['g', 'g', 'y', 'r', 'r' ], ['w', 'g', 'w', 'w', 'y' ], ['g', 'o', ' ', 'r', 'o' ], ['o', 'b', 'b', 'y', 'y' ], ['b', 'o', 'w', 'r', 'b' ] ] pattern = [ ['g', 'w', 'w'], ['g', 'o', 'r'], ['b', 'b', 'y'] ] final_positions = [ ['g', 'g', 'y', 'r', 'r' ], ['w', 'g', 'w', 'w', 'y' ], [' ', 'g', 'o', 'r', 'o' ], ['o', 'b', 'b', 'y', 'y' ], ['b', 'o', 'w', 'r', 'b' ] ] moves = [ [[2, 1], [2, 2]], [[2, 0], [2, 1]], ] self.assertItemsEqual([final_positions, moves], solver.solve(initial_position, pattern)) def test_solve_pq(self): self.assertItemsEqual(self.result, solver.solve_pq(self.initial_position, self.pattern)) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.test_solve'] unittest.main()
31.142857
96
0.27648
2,183
0.910342
0
0
0
0
0
0
464
0.193495
8d80488b5bce65f6332a7212b2c16986023812ef
1,625
py
Python
wagtail_translation/migrations/0001_initial.py
patroqueeet/wagtail2-translation
6a7ad4eea5d900c8640f965ebf7a442dd7bc7e74
[ "MIT" ]
null
null
null
wagtail_translation/migrations/0001_initial.py
patroqueeet/wagtail2-translation
6a7ad4eea5d900c8640f965ebf7a442dd7bc7e74
[ "MIT" ]
null
null
null
wagtail_translation/migrations/0001_initial.py
patroqueeet/wagtail2-translation
6a7ad4eea5d900c8640f965ebf7a442dd7bc7e74
[ "MIT" ]
1
2021-01-08T19:25:46.000Z
2021-01-08T19:25:46.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from modeltranslation import settings as mt_settings from modeltranslation.utils import build_localized_fieldname, get_translation_fields from django.db import migrations, models def url_path_fix(apps, schema_editor): # cannot use apps.get_model here # because Page instances wouldn't have set_url_path method from wagtail.core.models import Page url_path_fields = get_translation_fields('url_path') for page in Page.objects.order_by('path').iterator(): page.set_url_path(page.get_parent()) # make sure descendant page url paths are not updated at this point # because it would fail page.save(update_fields=url_path_fields) class Migration(migrations.Migration): """ This migration fixes whatever pages you already have in DB so that their titles and slugs in default language are not empty and url_path field translations are updated accordingly. """ dependencies = [ ('wagtailtranslation', '9999_wagtail_translation'), ] operations = [ # 1. copy slugs and titles to corresponding default language fields migrations.RunSQL( ['UPDATE wagtailcore_page SET {}=slug, {}=title'.format( build_localized_fieldname('slug', mt_settings.DEFAULT_LANGUAGE), build_localized_fieldname('title', mt_settings.DEFAULT_LANGUAGE))], migrations.RunSQL.noop), # 2. update url_path in all existing pages for all translations migrations.RunPython(url_path_fix, migrations.RunPython.noop), ]
37.790698
84
0.715692
878
0.540308
0
0
0
0
0
0
659
0.405538
8d8293dd05c195d7acdf3af64d74eb27c71ed3fc
99,195
py
Python
WORC/WORC.py
MStarmans91/WORC
b6b8fc2ccb7d443a69b5ca20b1d6efb65b3f0fc7
[ "ECL-2.0", "Apache-2.0" ]
47
2018-01-28T14:08:15.000Z
2022-03-24T16:10:07.000Z
WORC/WORC.py
JZK00/WORC
14e8099835eccb35d49b52b97c0be64ecca3809c
[ "ECL-2.0", "Apache-2.0" ]
13
2018-08-28T13:32:57.000Z
2020-10-26T16:35:59.000Z
WORC/WORC.py
JZK00/WORC
14e8099835eccb35d49b52b97c0be64ecca3809c
[ "ECL-2.0", "Apache-2.0" ]
16
2017-11-13T10:53:36.000Z
2022-03-18T17:02:04.000Z
#!/usr/bin/env python # Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import fastr import graphviz import configparser from pathlib import Path from random import randint import WORC.IOparser.file_io as io from fastr.api import ResourceLimit from WORC.tools.Slicer import Slicer from WORC.tools.Elastix import Elastix from WORC.tools.Evaluate import Evaluate import WORC.addexceptions as WORCexceptions import WORC.IOparser.config_WORC as config_io from WORC.detectors.detectors import DebugDetector from WORC.export.hyper_params_exporter import export_hyper_params_to_latex from urllib.parse import urlparse from urllib.request import url2pathname class WORC(object): """Workflow for Optimal Radiomics Classification. A Workflow for Optimal Radiomics Classification (WORC) object that serves as a pipeline spawner and manager for optimizating radiomics studies. Depending on the attributes set, the object will spawn an appropriate pipeline and manage it. Note that many attributes are lists and can therefore contain multiple instances. For example, when providing two sequences per patient, the "images" list contains two items. The type of items in the lists is described below. All objects that serve as source for your network, i.e. refer to actual files to be used, should be formatted as fastr sources suited for one of the fastr plugings, see also http://fastr.readthedocs.io/en/stable/fastr.reference.html#ioplugin-reference The objects should be lists of these fastr sources or dictionaries with the sample ID's, e.g. images_train = [{'Patient001': vfs://input/CT001.nii.gz, 'Patient002': vfs://input/CT002.nii.gz}, {'Patient001': vfs://input/MR001.nii.gz, 'Patient002': vfs://input/MR002.nii.gz}] Attributes ------------------ name: String, default 'WORC' name of the network. configs: list, required Configuration parameters, either ConfigParser objects created through the defaultconfig function or paths of config .ini files. (list, required) labels: list, required Paths to files containing patient labels (.txt files). network: automatically generated The FASTR network generated through the "build" function. images: list, optional Paths refering to the images used for Radiomics computation. Images should be of the ITK Image type. segmentations: list, optional Paths refering to the segmentations used for Radiomics computation. Segmentations should be of the ITK Image type. semantics: semantic features per image type (list, optional) masks: state which pixels of images are valid (list, optional) features: input Radiomics features for classification (list, optional) metadata: DICOM headers belonging to images (list, optional) Elastix_Para: parameter files for Elastix (list, optional) fastr_plugin: plugin to use for FASTR execution fastr_tempdir: temporary directory to use for FASTR execution additions: additional inputs for your network (dict, optional) source_data: data to use as sources for FASTR (dict) sink_data: data to use as sinks for FASTR (dict) CopyMetadata: Boolean, default True when using elastix, copy metadata from image to segmentation or not """ def __init__(self, name='test'): """Initialize WORC object. Set the initial variables all to None, except for some defaults. Arguments: name: name of the nework (string, optional) """ self.name = 'WORC_' + name # Initialize several objects self.configs = list() self.fastrconfigs = list() self.images_train = list() self.segmentations_train = list() self.semantics_train = list() self.labels_train = list() self.masks_train = list() self.masks_normalize_train = list() self.features_train = list() self.metadata_train = list() self.images_test = list() self.segmentations_test = list() self.semantics_test = list() self.labels_test = list() self.masks_test = list() self.masks_normalize_test = list() self.features_test = list() self.metadata_test = list() self.Elastix_Para = list() self.label_names = 'Label1, Label2' self.fixedsplits = list() # Set some defaults, name self.fastr_plugin = 'LinearExecution' if name == '': name = [randint(0, 9) for p in range(0, 5)] self.fastr_tmpdir = os.path.join(fastr.config.mounts['tmp'], self.name) self.additions = dict() self.CopyMetadata = True self.segmode = [] self._add_evaluation = False self.TrainTest = False # Memory settings for all fastr nodes self.fastr_memory_parameters = dict() self.fastr_memory_parameters['FeatureCalculator'] = '14G' self.fastr_memory_parameters['Classification'] = '6G' self.fastr_memory_parameters['WORCCastConvert'] = '4G' self.fastr_memory_parameters['Preprocessing'] = '4G' self.fastr_memory_parameters['Elastix'] = '4G' self.fastr_memory_parameters['Transformix'] = '4G' self.fastr_memory_parameters['Segmentix'] = '6G' self.fastr_memory_parameters['ComBat'] = '12G' self.fastr_memory_parameters['PlotEstimator'] = '12G' if DebugDetector().do_detection(): print(fastr.config) def defaultconfig(self): """Generate a configparser object holding all default configuration values. Returns: config: configparser configuration file """ config = configparser.ConfigParser() config.optionxform = str # General configuration of WORC config['General'] = dict() config['General']['cross_validation'] = 'True' config['General']['Segmentix'] = 'True' config['General']['FeatureCalculators'] = '[predict/CalcFeatures:1.0, pyradiomics/Pyradiomics:1.0]' config['General']['Preprocessing'] = 'worc/PreProcess:1.0' config['General']['RegistrationNode'] = "elastix4.8/Elastix:4.8" config['General']['TransformationNode'] = "elastix4.8/Transformix:4.8" config['General']['Joblib_ncores'] = '1' config['General']['Joblib_backend'] = 'threading' config['General']['tempsave'] = 'False' config['General']['AssumeSameImageAndMaskMetadata'] = 'False' config['General']['ComBat'] = 'False' # Options for the object/patient labels that are used config['Labels'] = dict() config['Labels']['label_names'] = 'Label1, Label2' config['Labels']['modus'] = 'singlelabel' config['Labels']['url'] = 'WIP' config['Labels']['projectID'] = 'WIP' # Preprocessing config['Preprocessing'] = dict() config['Preprocessing']['CheckSpacing'] = 'False' config['Preprocessing']['Clipping'] = 'False' config['Preprocessing']['Clipping_Range'] = '-1000.0, 3000.0' config['Preprocessing']['Normalize'] = 'True' config['Preprocessing']['Normalize_ROI'] = 'Full' config['Preprocessing']['Method'] = 'z_score' config['Preprocessing']['ROIDetermine'] = 'Provided' config['Preprocessing']['ROIdilate'] = 'False' config['Preprocessing']['ROIdilateradius'] = '10' config['Preprocessing']['Resampling'] = 'False' config['Preprocessing']['Resampling_spacing'] = '1, 1, 1' config['Preprocessing']['BiasCorrection'] = 'False' config['Preprocessing']['BiasCorrection_Mask'] = 'False' config['Preprocessing']['CheckOrientation'] = 'False' config['Preprocessing']['OrientationPrimaryAxis'] = 'axial' # Segmentix config['Segmentix'] = dict() config['Segmentix']['mask'] = 'subtract' config['Segmentix']['segtype'] = 'None' config['Segmentix']['segradius'] = '5' config['Segmentix']['N_blobs'] = '1' config['Segmentix']['fillholes'] = 'True' config['Segmentix']['remove_small_objects'] = 'False' config['Segmentix']['min_object_size'] = '2' # PREDICT - Feature calculation # Determine which features are calculated config['ImageFeatures'] = dict() config['ImageFeatures']['shape'] = 'True' config['ImageFeatures']['histogram'] = 'True' config['ImageFeatures']['orientation'] = 'True' config['ImageFeatures']['texture_Gabor'] = 'True' config['ImageFeatures']['texture_LBP'] = 'True' config['ImageFeatures']['texture_GLCM'] = 'True' config['ImageFeatures']['texture_GLCMMS'] = 'True' config['ImageFeatures']['texture_GLRLM'] = 'False' config['ImageFeatures']['texture_GLSZM'] = 'False' config['ImageFeatures']['texture_NGTDM'] = 'False' config['ImageFeatures']['coliage'] = 'False' config['ImageFeatures']['vessel'] = 'True' config['ImageFeatures']['log'] = 'True' config['ImageFeatures']['phase'] = 'True' # Parameter settings for PREDICT feature calculation # Defines only naming of modalities config['ImageFeatures']['image_type'] = 'CT' # Define frequencies for gabor filter in pixels config['ImageFeatures']['gabor_frequencies'] = '0.05, 0.2, 0.5' # Gabor, GLCM angles in degrees and radians, respectively config['ImageFeatures']['gabor_angles'] = '0, 45, 90, 135' config['ImageFeatures']['GLCM_angles'] = '0, 0.79, 1.57, 2.36' # GLCM discretization levels, distances in pixels config['ImageFeatures']['GLCM_levels'] = '16' config['ImageFeatures']['GLCM_distances'] = '1, 3' # LBP radius, number of points in pixels config['ImageFeatures']['LBP_radius'] = '3, 8, 15' config['ImageFeatures']['LBP_npoints'] = '12, 24, 36' # Phase features minimal wavelength and number of scales config['ImageFeatures']['phase_minwavelength'] = '3' config['ImageFeatures']['phase_nscale'] = '5' # Log features sigma of Gaussian in pixels config['ImageFeatures']['log_sigma'] = '1, 5, 10' # Vessel features scale range, steps for the range config['ImageFeatures']['vessel_scale_range'] = '1, 10' config['ImageFeatures']['vessel_scale_step'] = '2' # Vessel features radius for erosion to determine boudnary config['ImageFeatures']['vessel_radius'] = '5' # Tags from which to extract features, and how to name them config['ImageFeatures']['dicom_feature_tags'] = '0010 1010, 0010 0040' config['ImageFeatures']['dicom_feature_labels'] = 'age, sex' # PyRadiomics - Feature calculation # Addition to the above, specifically for PyRadiomics # Mostly based on specific MR Settings: see https://github.com/Radiomics/pyradiomics/blob/master/examples/exampleSettings/exampleMR_NoResampling.yaml config['PyRadiomics'] = dict() config['PyRadiomics']['geometryTolerance'] = '0.0001' config['PyRadiomics']['normalize'] = 'False' config['PyRadiomics']['normalizeScale'] = '100' config['PyRadiomics']['resampledPixelSpacing'] = 'None' config['PyRadiomics']['interpolator'] = 'sitkBSpline' config['PyRadiomics']['preCrop'] = 'True' config['PyRadiomics']['binCount'] = config['ImageFeatures']['GLCM_levels'] # BinWidth to sensitive for normalization, thus use binCount config['PyRadiomics']['binWidth'] = 'None' config['PyRadiomics']['force2D'] = 'False' config['PyRadiomics']['force2Ddimension'] = '0' # axial slices, for coronal slices, use dimension 1 and for sagittal, dimension 2. config['PyRadiomics']['voxelArrayShift'] = '300' config['PyRadiomics']['Original'] = 'True' config['PyRadiomics']['Wavelet'] = 'False' config['PyRadiomics']['LoG'] = 'False' if config['General']['Segmentix'] == 'True': config['PyRadiomics']['label'] = '1' else: config['PyRadiomics']['label'] = '255' # Enabled PyRadiomics features config['PyRadiomics']['extract_firstorder'] = 'False' config['PyRadiomics']['extract_shape'] = 'True' config['PyRadiomics']['texture_GLCM'] = 'False' config['PyRadiomics']['texture_GLRLM'] = 'True' config['PyRadiomics']['texture_GLSZM'] = 'True' config['PyRadiomics']['texture_GLDM'] = 'True' config['PyRadiomics']['texture_NGTDM'] = 'True' # ComBat Feature Harmonization config['ComBat'] = dict() config['ComBat']['language'] = 'python' config['ComBat']['batch'] = 'Hospital' config['ComBat']['mod'] = '[]' config['ComBat']['par'] = '1' config['ComBat']['eb'] = '1' config['ComBat']['per_feature'] = '0' config['ComBat']['excluded_features'] = 'sf_, of_, semf_, pf_' config['ComBat']['matlab'] = 'C:\\Program Files\\MATLAB\\R2015b\\bin\\matlab.exe' # Feature OneHotEncoding config['OneHotEncoding'] = dict() config['OneHotEncoding']['Use'] = 'False' config['OneHotEncoding']['feature_labels_tofit'] = '' # Feature imputation config['Imputation'] = dict() config['Imputation']['use'] = 'True' config['Imputation']['strategy'] = 'mean, median, most_frequent, constant, knn' config['Imputation']['n_neighbors'] = '5, 5' # Feature scaling options config['FeatureScaling'] = dict() config['FeatureScaling']['scaling_method'] = 'robust_z_score' config['FeatureScaling']['skip_features'] = 'semf_, pf_' # Feature preprocessing before the whole HyperOptimization config['FeatPreProcess'] = dict() config['FeatPreProcess']['Use'] = 'False' config['FeatPreProcess']['Combine'] = 'False' config['FeatPreProcess']['Combine_method'] = 'mean' # Feature selection config['Featsel'] = dict() config['Featsel']['Variance'] = '1.0' config['Featsel']['GroupwiseSearch'] = 'True' config['Featsel']['SelectFromModel'] = '0.275' config['Featsel']['SelectFromModel_estimator'] = 'Lasso, LR, RF' config['Featsel']['SelectFromModel_lasso_alpha'] = '0.1, 1.4' config['Featsel']['SelectFromModel_n_trees'] = '10, 90' config['Featsel']['UsePCA'] = '0.275' config['Featsel']['PCAType'] = '95variance, 10, 50, 100' config['Featsel']['StatisticalTestUse'] = '0.275' config['Featsel']['StatisticalTestMetric'] = 'MannWhitneyU' config['Featsel']['StatisticalTestThreshold'] = '-3, 2.5' config['Featsel']['ReliefUse'] = '0.275' config['Featsel']['ReliefNN'] = '2, 4' config['Featsel']['ReliefSampleSize'] = '0.75, 0.2' config['Featsel']['ReliefDistanceP'] = '1, 3' config['Featsel']['ReliefNumFeatures'] = '10, 40' # Groupwise Featureselection options config['SelectFeatGroup'] = dict() config['SelectFeatGroup']['shape_features'] = 'True, False' config['SelectFeatGroup']['histogram_features'] = 'True, False' config['SelectFeatGroup']['orientation_features'] = 'True, False' config['SelectFeatGroup']['texture_Gabor_features'] = 'True, False' config['SelectFeatGroup']['texture_GLCM_features'] = 'True, False' config['SelectFeatGroup']['texture_GLDM_features'] = 'True, False' config['SelectFeatGroup']['texture_GLCMMS_features'] = 'True, False' config['SelectFeatGroup']['texture_GLRLM_features'] = 'True, False' config['SelectFeatGroup']['texture_GLSZM_features'] = 'True, False' config['SelectFeatGroup']['texture_GLDZM_features'] = 'True, False' config['SelectFeatGroup']['texture_NGTDM_features'] = 'True, False' config['SelectFeatGroup']['texture_NGLDM_features'] = 'True, False' config['SelectFeatGroup']['texture_LBP_features'] = 'True, False' config['SelectFeatGroup']['dicom_features'] = 'False' config['SelectFeatGroup']['semantic_features'] = 'False' config['SelectFeatGroup']['coliage_features'] = 'False' config['SelectFeatGroup']['vessel_features'] = 'True, False' config['SelectFeatGroup']['phase_features'] = 'True, False' config['SelectFeatGroup']['fractal_features'] = 'True, False' config['SelectFeatGroup']['location_features'] = 'True, False' config['SelectFeatGroup']['rgrd_features'] = 'True, False' # Select features per toolbox, or simply all config['SelectFeatGroup']['toolbox'] = 'All, PREDICT, PyRadiomics' # Select original features, or after transformation of feature space config['SelectFeatGroup']['original_features'] = 'True' config['SelectFeatGroup']['wavelet_features'] = 'True, False' config['SelectFeatGroup']['log_features'] = 'True, False' # Resampling options config['Resampling'] = dict() config['Resampling']['Use'] = '0.20' config['Resampling']['Method'] =\ 'RandomUnderSampling, RandomOverSampling, NearMiss, ' +\ 'NeighbourhoodCleaningRule, ADASYN, BorderlineSMOTE, SMOTE, ' +\ 'SMOTEENN, SMOTETomek' config['Resampling']['sampling_strategy'] = 'auto, majority, minority, not minority, not majority, all' config['Resampling']['n_neighbors'] = '3, 12' config['Resampling']['k_neighbors'] = '5, 15' config['Resampling']['threshold_cleaning'] = '0.25, 0.5' # Classification config['Classification'] = dict() config['Classification']['fastr'] = 'True' config['Classification']['fastr_plugin'] = self.fastr_plugin config['Classification']['classifiers'] =\ 'SVM, RF, LR, LDA, QDA, GaussianNB, ' +\ 'AdaBoostClassifier, ' +\ 'XGBClassifier' config['Classification']['max_iter'] = '100000' config['Classification']['SVMKernel'] = 'linear, poly, rbf' config['Classification']['SVMC'] = '0, 6' config['Classification']['SVMdegree'] = '1, 6' config['Classification']['SVMcoef0'] = '0, 1' config['Classification']['SVMgamma'] = '-5, 5' config['Classification']['RFn_estimators'] = '10, 90' config['Classification']['RFmin_samples_split'] = '2, 3' config['Classification']['RFmax_depth'] = '5, 5' config['Classification']['LRpenalty'] = 'l1, l2, elasticnet' config['Classification']['LRC'] = '0.01, 0.99' config['Classification']['LR_solver'] = 'lbfgs, saga' config['Classification']['LR_l1_ratio'] = '0, 1' config['Classification']['LDA_solver'] = 'svd, lsqr, eigen' config['Classification']['LDA_shrinkage'] = '-5, 5' config['Classification']['QDA_reg_param'] = '-5, 5' config['Classification']['ElasticNet_alpha'] = '-5, 5' config['Classification']['ElasticNet_l1_ratio'] = '0, 1' config['Classification']['SGD_alpha'] = '-5, 5' config['Classification']['SGD_l1_ratio'] = '0, 1' config['Classification']['SGD_loss'] = 'squared_loss, huber, epsilon_insensitive, squared_epsilon_insensitive' config['Classification']['SGD_penalty'] = 'none, l2, l1' config['Classification']['CNB_alpha'] = '0, 1' config['Classification']['AdaBoost_n_estimators'] = config['Classification']['RFn_estimators'] config['Classification']['AdaBoost_learning_rate'] = '0.01, 0.99' # Based on https://towardsdatascience.com/doing-xgboost-hyper-parameter-tuning-the-smart-way-part-1-of-2-f6d255a45dde # and https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ # and https://medium.com/data-design/xgboost-hi-im-gamma-what-can-i-do-for-you-and-the-tuning-of-regularization-a42ea17e6ab6 config['Classification']['XGB_boosting_rounds'] = config['Classification']['RFn_estimators'] config['Classification']['XGB_max_depth'] = '3, 12' config['Classification']['XGB_learning_rate'] = config['Classification']['AdaBoost_learning_rate'] config['Classification']['XGB_gamma'] = '0.01, 9.99' config['Classification']['XGB_min_child_weight'] = '1, 6' config['Classification']['XGB_colsample_bytree'] = '0.3, 0.7' # CrossValidation config['CrossValidation'] = dict() config['CrossValidation']['Type'] = 'random_split' config['CrossValidation']['N_iterations'] = '100' config['CrossValidation']['test_size'] = '0.2' config['CrossValidation']['fixed_seed'] = 'False' # Hyperparameter optimization options config['HyperOptimization'] = dict() config['HyperOptimization']['scoring_method'] = 'f1_weighted' config['HyperOptimization']['test_size'] = '0.2' config['HyperOptimization']['n_splits'] = '5' config['HyperOptimization']['N_iterations'] = '1000' config['HyperOptimization']['n_jobspercore'] = '200' # only relevant when using fastr in classification config['HyperOptimization']['maxlen'] = '100' config['HyperOptimization']['ranking_score'] = 'test_score' config['HyperOptimization']['memory'] = '3G' config['HyperOptimization']['refit_workflows'] = 'False' # Ensemble options config['Ensemble'] = dict() config['Ensemble']['Use'] = '100' config['Ensemble']['Metric'] = 'Default' # Evaluation options config['Evaluation'] = dict() config['Evaluation']['OverfitScaler'] = 'False' # Bootstrap options config['Bootstrap'] = dict() config['Bootstrap']['Use'] = 'False' config['Bootstrap']['N_iterations'] = '1000' return config def add_tools(self): """Add several tools to the WORC object.""" self.Tools = Tools() def build(self, wtype='training'): """Build the network based on the given attributes. Parameters ---------- wtype: string, default 'training' Specify the WORC execution type. - testing: use if you have a trained classifier and want to train it on some new images. - training: use if you want to train a classifier from a dataset. """ self.wtype = wtype if wtype == 'training': self.build_training() elif wtype == 'testing': self.build_testing() def build_training(self): """Build the training network based on the given attributes.""" # We either need images or features for Radiomics if self.images_test or self.features_test: self.TrainTest = True if self.images_train or self.features_train: print('Building training network...') # We currently require labels for supervised learning if self.labels_train: if not self.configs: print("No configuration given, assuming default") if self.images_train: self.configs = [self.defaultconfig()] * len(self.images_train) else: self.configs = [self.defaultconfig()] * len(self.features_train) self.network = fastr.create_network(self.name) # BUG: We currently use the first configuration as general config image_types = list() for c in range(len(self.configs)): if type(self.configs[c]) == str: # Probably, c is a configuration file self.configs[c] = config_io.load_config(self.configs[c]) image_types.append(self.configs[c]['ImageFeatures']['image_type']) # Create config source self.source_class_config = self.network.create_source('ParameterFile', id='config_classification_source', node_group='conf', step_id='general_sources') # Classification tool and label source self.source_patientclass_train = self.network.create_source('PatientInfoFile', id='patientclass_train', node_group='pctrain', step_id='train_sources') if self.labels_test: self.source_patientclass_test = self.network.create_source('PatientInfoFile', id='patientclass_test', node_group='pctest', step_id='test_sources') memory = self.fastr_memory_parameters['Classification'] self.classify = self.network.create_node('worc/TrainClassifier:1.0', tool_version='1.0', id='classify', resources=ResourceLimit(memory=memory), step_id='WorkflowOptimization') if self.fixedsplits: self.fixedsplits_node = self.network.create_source('CSVFile', id='fixedsplits_source', node_group='conf', step_id='general_sources') self.classify.inputs['fixedsplits'] = self.fixedsplits_node.output self.source_Ensemble =\ self.network.create_constant('String', [self.configs[0]['Ensemble']['Use']], id='Ensemble', step_id='Evaluation') self.source_LabelType =\ self.network.create_constant('String', [self.configs[0]['Labels']['label_names']], id='LabelType', step_id='Evaluation') memory = self.fastr_memory_parameters['PlotEstimator'] self.plot_estimator =\ self.network.create_node('worc/PlotEstimator:1.0', tool_version='1.0', id='plot_Estimator', resources=ResourceLimit(memory=memory), step_id='Evaluation') # Outputs self.sink_classification = self.network.create_sink('HDF5', id='classification', step_id='general_sinks') self.sink_performance = self.network.create_sink('JsonFile', id='performance', step_id='general_sinks') self.sink_class_config = self.network.create_sink('ParameterFile', id='config_classification_sink', node_group='conf', step_id='general_sinks') # Links self.sink_class_config.input = self.source_class_config.output self.link_class_1 = self.network.create_link(self.source_class_config.output, self.classify.inputs['config']) self.link_class_2 = self.network.create_link(self.source_patientclass_train.output, self.classify.inputs['patientclass_train']) self.link_class_1.collapse = 'conf' self.link_class_2.collapse = 'pctrain' self.plot_estimator.inputs['ensemble'] = self.source_Ensemble.output self.plot_estimator.inputs['label_type'] = self.source_LabelType.output if self.labels_test: pinfo = self.source_patientclass_test.output else: pinfo = self.source_patientclass_train.output self.plot_estimator.inputs['prediction'] = self.classify.outputs['classification'] self.plot_estimator.inputs['pinfo'] = pinfo if self.TrainTest: # FIXME: the naming here is ugly self.link_class_3 = self.network.create_link(self.source_patientclass_test.output, self.classify.inputs['patientclass_test']) self.link_class_3.collapse = 'pctest' self.sink_classification.input = self.classify.outputs['classification'] self.sink_performance.input = self.plot_estimator.outputs['output_json'] if self.masks_normalize_train: self.sources_masks_normalize_train = dict() if self.masks_normalize_test: self.sources_masks_normalize_test = dict() # ----------------------------------------------------- # Optionally, add ComBat Harmonization. Currently done # on full dataset, not in a cross-validation if self.configs[0]['General']['ComBat'] == 'True': self.add_ComBat() if not self.features_train: # Create nodes to compute features # General self.sources_parameters = dict() self.source_config_pyradiomics = dict() self.source_toolbox_name = dict() # Training only self.calcfeatures_train = dict() self.featureconverter_train = dict() self.preprocessing_train = dict() self.sources_images_train = dict() self.sinks_features_train = dict() self.converters_im_train = dict() self.converters_seg_train = dict() self.links_C1_train = dict() self.featurecalculators = dict() if self.TrainTest: # A test set is supplied, for which nodes also need to be created self.calcfeatures_test = dict() self.featureconverter_test = dict() self.preprocessing_test = dict() self.sources_images_test = dict() self.sinks_features_test = dict() self.converters_im_test = dict() self.converters_seg_test = dict() self.links_C1_test = dict() # Check which nodes are necessary if not self.segmentations_train: message = "No automatic segmentation method is yet implemented." raise WORCexceptions.WORCNotImplementedError(message) elif len(self.segmentations_train) == len(image_types): # Segmentations provided self.sources_segmentations_train = dict() self.sources_segmentations_test = dict() self.segmode = 'Provided' elif len(self.segmentations_train) == 1: # Assume segmentations need to be registered to other modalities print('\t - Adding Elastix node for image registration.') self.add_elastix_sourcesandsinks() pass else: nseg = len(self.segmentations_train) nim = len(image_types) m = f'Length of segmentations for training is ' +\ f'{nseg}: should be equal to number of images' +\ f' ({nim}) or 1 when using registration.' raise WORCexceptions.WORCValueError(m) # BUG: We assume that first type defines if we use segmentix if self.configs[0]['General']['Segmentix'] == 'True': # Use the segmentix toolbox for segmentation processing print('\t - Adding segmentix node for segmentation preprocessing.') self.sinks_segmentations_segmentix_train = dict() self.sources_masks_train = dict() self.converters_masks_train = dict() self.nodes_segmentix_train = dict() if self.TrainTest: # Also use segmentix on the tes set self.sinks_segmentations_segmentix_test = dict() self.sources_masks_test = dict() self.converters_masks_test = dict() self.nodes_segmentix_test = dict() if self.semantics_train: # Semantic features are supplied self.sources_semantics_train = dict() if self.metadata_train: # Metadata to extract patient features from is supplied self.sources_metadata_train = dict() if self.semantics_test: # Semantic features are supplied self.sources_semantics_test = dict() if self.metadata_test: # Metadata to extract patient features from is supplied self.sources_metadata_test = dict() # Create a part of the pipeline for each modality self.modlabels = list() for nmod, mod in enumerate(image_types): # Create label for each modality/image num = 0 label = mod + '_' + str(num) while label in self.calcfeatures_train.keys(): # if label already exists, add number to label num += 1 label = mod + '_' + str(num) self.modlabels.append(label) # Create required sources and sinks self.sources_parameters[label] = self.network.create_source('ParameterFile', id='config_' + label, step_id='general_sources') self.sources_images_train[label] = self.network.create_source('ITKImageFile', id='images_train_' + label, node_group='train', step_id='train_sources') if self.TrainTest: self.sources_images_test[label] = self.network.create_source('ITKImageFile', id='images_test_' + label, node_group='test', step_id='test_sources') if self.metadata_train and len(self.metadata_train) >= nmod + 1: self.sources_metadata_train[label] = self.network.create_source('DicomImageFile', id='metadata_train_' + label, node_group='train', step_id='train_sources') if self.metadata_test and len(self.metadata_test) >= nmod + 1: self.sources_metadata_test[label] = self.network.create_source('DicomImageFile', id='metadata_test_' + label, node_group='test', step_id='test_sources') if self.masks_train and len(self.masks_train) >= nmod + 1: # Create mask source and convert self.sources_masks_train[label] = self.network.create_source('ITKImageFile', id='mask_train_' + label, node_group='train', step_id='train_sources') memory = self.fastr_memory_parameters['WORCCastConvert'] self.converters_masks_train[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_mask_train_' + label, node_group='train', resources=ResourceLimit(memory=memory), step_id='FileConversion') self.converters_masks_train[label].inputs['image'] = self.sources_masks_train[label].output if self.masks_test and len(self.masks_test) >= nmod + 1: # Create mask source and convert self.sources_masks_test[label] = self.network.create_source('ITKImageFile', id='mask_test_' + label, node_group='test', step_id='test_sources') memory = self.fastr_memory_parameters['WORCCastConvert'] self.converters_masks_test[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_mask_test_' + label, node_group='test', resources=ResourceLimit(memory=memory), step_id='FileConversion') self.converters_masks_test[label].inputs['image'] = self.sources_masks_test[label].output # First convert the images if any(modality in mod for modality in ['MR', 'CT', 'MG', 'PET']): # Use WORC PXCastConvet for converting image formats memory = self.fastr_memory_parameters['WORCCastConvert'] self.converters_im_train[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_im_train_' + label, resources=ResourceLimit(memory=memory), step_id='FileConversion') if self.TrainTest: self.converters_im_test[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_im_test_' + label, resources=ResourceLimit(memory=memory), step_id='FileConversion') else: raise WORCexceptions.WORCTypeError(('No valid image type for modality {}: {} provided.').format(str(nmod), mod)) # Create required links self.converters_im_train[label].inputs['image'] = self.sources_images_train[label].output if self.TrainTest: self.converters_im_test[label].inputs['image'] = self.sources_images_test[label].output # ----------------------------------------------------- # Preprocessing preprocess_node = str(self.configs[nmod]['General']['Preprocessing']) print('\t - Adding preprocessing node for image preprocessing.') self.add_preprocessing(preprocess_node, label, nmod) # ----------------------------------------------------- # Feature calculation feature_calculators =\ self.configs[nmod]['General']['FeatureCalculators'] feature_calculators = feature_calculators.strip('][').split(', ') self.featurecalculators[label] = [f.split('/')[0] for f in feature_calculators] # Add lists for feature calculation and converter objects self.calcfeatures_train[label] = list() self.featureconverter_train[label] = list() if self.TrainTest: self.calcfeatures_test[label] = list() self.featureconverter_test[label] = list() for f in feature_calculators: print(f'\t - Adding feature calculation node: {f}.') self.add_feature_calculator(f, label, nmod) # ----------------------------------------------------- # Create the neccesary nodes for the segmentation if self.segmode == 'Provided': # Segmentation ---------------------------------------------------- # Use the provided segmantions for each modality memory = self.fastr_memory_parameters['WORCCastConvert'] self.sources_segmentations_train[label] =\ self.network.create_source('ITKImageFile', id='segmentations_train_' + label, node_group='train', step_id='train_sources') self.converters_seg_train[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_seg_train_' + label, resources=ResourceLimit(memory=memory), step_id='FileConversion') self.converters_seg_train[label].inputs['image'] =\ self.sources_segmentations_train[label].output if self.TrainTest: self.sources_segmentations_test[label] =\ self.network.create_source('ITKImageFile', id='segmentations_test_' + label, node_group='test', step_id='test_sources') self.converters_seg_test[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_seg_test_' + label, resources=ResourceLimit(memory=memory), step_id='FileConversion') self.converters_seg_test[label].inputs['image'] =\ self.sources_segmentations_test[label].output elif self.segmode == 'Register': # --------------------------------------------- # Registration nodes: Align segmentation of first # modality to others using registration ith Elastix self.add_elastix(label, nmod) # ----------------------------------------------------- # Optionally, add segmentix, the in-house segmentation # processor of WORC if self.configs[nmod]['General']['Segmentix'] == 'True': self.add_segmentix(label, nmod) elif self.configs[nmod]['Preprocessing']['Resampling'] == 'True': raise WORCexceptions.WORCValueError('If you use resampling, ' + 'have to use segmentix to ' + ' make sure the mask is ' + 'also resampled. Please ' + 'set ' + 'config["General"]["Segmentix"]' + 'to "True".') else: # Provide source or elastix segmentations to # feature calculator for i_node in range(len(self.calcfeatures_train[label])): if self.segmode == 'Provided': self.calcfeatures_train[label][i_node].inputs['segmentation'] =\ self.converters_seg_train[label].outputs['image'] elif self.segmode == 'Register': if nmod > 0: self.calcfeatures_train[label][i_node].inputs['segmentation'] =\ self.transformix_seg_nodes_train[label].outputs['image'] else: self.calcfeatures_train[label][i_node].inputs['segmentation'] =\ self.converters_seg_train[label].outputs['image'] if self.TrainTest: if self.segmode == 'Provided': self.calcfeatures_test[label][i_node].inputs['segmentation'] =\ self.converters_seg_test[label].outputs['image'] elif self.segmode == 'Register': if nmod > 0: self.calcfeatures_test[label][i_node].inputs['segmentation'] =\ self.transformix_seg_nodes_test[label].outputs['image'] else: self.calcfeatures_test[label][i_node].inputs['segmentation'] =\ self.converters_seg_test[label].outputs['image'] # ----------------------------------------------------- # Optionally, add ComBat Harmonization if self.configs[0]['General']['ComBat'] == 'True': # Link features to ComBat self.links_Combat1_train[label] = list() for i_node, fname in enumerate(self.featurecalculators[label]): self.links_Combat1_train[label].append(self.ComBat.inputs['features_train'][f'{label}_{self.featurecalculators[label][i_node]}'] << self.featureconverter_train[label][i_node].outputs['feat_out']) self.links_Combat1_train[label][i_node].collapse = 'train' if self.TrainTest: self.links_Combat1_test[label] = list() for i_node, fname in enumerate(self.featurecalculators[label]): self.links_Combat1_test[label].append(self.ComBat.inputs['features_test'][f'{label}_{self.featurecalculators[label][i_node]}'] << self.featureconverter_test[label][i_node].outputs['feat_out']) self.links_Combat1_test[label][i_node].collapse = 'test' # ----------------------------------------------------- # Classification nodes # Add the features from this modality to the classifier node input self.links_C1_train[label] = list() self.sinks_features_train[label] = list() if self.TrainTest: self.links_C1_test[label] = list() self.sinks_features_test[label] = list() for i_node, fname in enumerate(self.featurecalculators[label]): # Create sink for feature outputs self.sinks_features_train[label].append(self.network.create_sink('HDF5', id='features_train_' + label + '_' + fname, step_id='train_sinks')) # Append features to the classification if not self.configs[0]['General']['ComBat'] == 'True': self.links_C1_train[label].append(self.classify.inputs['features_train'][f'{label}_{self.featurecalculators[label][i_node]}'] << self.featureconverter_train[label][i_node].outputs['feat_out']) self.links_C1_train[label][i_node].collapse = 'train' # Save output self.sinks_features_train[label][i_node].input = self.featureconverter_train[label][i_node].outputs['feat_out'] # Similar for testing workflow if self.TrainTest: # Create sink for feature outputs self.sinks_features_test[label].append(self.network.create_sink('HDF5', id='features_test_' + label + '_' + fname, step_id='test_sinks')) # Append features to the classification if not self.configs[0]['General']['ComBat'] == 'True': self.links_C1_test[label].append(self.classify.inputs['features_test'][f'{label}_{self.featurecalculators[label][i_node]}'] << self.featureconverter_test[label][i_node].outputs['feat_out']) self.links_C1_test[label][i_node].collapse = 'test' # Save output self.sinks_features_test[label][i_node].input = self.featureconverter_test[label][i_node].outputs['feat_out'] else: # Features already provided: hence we can skip numerous nodes self.sources_features_train = dict() self.links_C1_train = dict() if self.features_test: self.sources_features_test = dict() self.links_C1_test = dict() # Create label for each modality/image self.modlabels = list() for num, mod in enumerate(image_types): num = 0 label = mod + str(num) while label in self.sources_features_train.keys(): # if label exists, add number to label num += 1 label = mod + str(num) self.modlabels.append(label) # Create a node for the feature computation self.sources_features_train[label] = self.network.create_source('HDF5', id='features_train_' + label, node_group='train', step_id='train_sources') # Add the features from this modality to the classifier node input self.links_C1_train[label] = self.classify.inputs['features_train'][str(label)] << self.sources_features_train[label].output self.links_C1_train[label].collapse = 'train' if self.features_test: # Create a node for the feature computation self.sources_features_test[label] = self.network.create_source('HDF5', id='features_test_' + label, node_group='test', step_id='test_sources') # Add the features from this modality to the classifier node input self.links_C1_test[label] = self.classify.inputs['features_test'][str(label)] << self.sources_features_test[label].output self.links_C1_test[label].collapse = 'test' else: raise WORCexceptions.WORCIOError("Please provide labels.") else: raise WORCexceptions.WORCIOError("Please provide either images or features.") def add_ComBat(self): """Add ComBat harmonization to the network. Note: applied on all objects, not in a train-test or cross-val setting. """ memory = self.fastr_memory_parameters['ComBat'] self.ComBat =\ self.network.create_node('combat/ComBat:1.0', tool_version='1.0', id='ComBat', resources=ResourceLimit(memory=memory), step_id='ComBat') # Create sink for ComBat output self.sinks_features_train_ComBat = self.network.create_sink('HDF5', id='features_train_ComBat', step_id='ComBat') # Create links for inputs self.link_combat_1 = self.network.create_link(self.source_class_config.output, self.ComBat.inputs['config']) self.link_combat_2 = self.network.create_link(self.source_patientclass_train.output, self.ComBat.inputs['patientclass_train']) self.link_combat_1.collapse = 'conf' self.link_combat_2.collapse = 'pctrain' self.links_Combat1_train = dict() self.links_Combat1_test = dict() # Link Combat output to both sink and classify node self.links_Combat_out_train = self.network.create_link(self.ComBat.outputs['features_train_out'], self.classify.inputs['features_train']) self.links_Combat_out_train.collapse = 'ComBat' self.sinks_features_train_ComBat.input = self.ComBat.outputs['features_train_out'] if self.TrainTest: # Create sink for ComBat output self.sinks_features_test_ComBat = self.network.create_sink('HDF5', id='features_test_ComBat', step_id='ComBat') # Create links for inputs self.link_combat_3 = self.network.create_link(self.source_patientclass_test.output, self.ComBat.inputs['patientclass_test']) self.link_combat_3.collapse = 'pctest' # Link Combat output to both sink and classify node self.links_Combat_out_test = self.network.create_link(self.ComBat.outputs['features_test_out'], self.classify.inputs['features_test']) self.links_Combat_out_test.collapse = 'ComBat' self.sinks_features_test_ComBat.input = self.ComBat.outputs['features_test_out'] def add_preprocessing(self, preprocess_node, label, nmod): """Add nodes required for preprocessing of images.""" memory = self.fastr_memory_parameters['Preprocessing'] self.preprocessing_train[label] = self.network.create_node(preprocess_node, tool_version='1.0', id='preprocessing_train_' + label, resources=ResourceLimit(memory=memory), step_id='Preprocessing') if self.TrainTest: self.preprocessing_test[label] = self.network.create_node(preprocess_node, tool_version='1.0', id='preprocessing_test_' + label, resources=ResourceLimit(memory=memory), step_id='Preprocessing') # Create required links self.preprocessing_train[label].inputs['parameters'] = self.sources_parameters[label].output self.preprocessing_train[label].inputs['image'] = self.converters_im_train[label].outputs['image'] if self.TrainTest: self.preprocessing_test[label].inputs['parameters'] = self.sources_parameters[label].output self.preprocessing_test[label].inputs['image'] = self.converters_im_test[label].outputs['image'] if self.metadata_train and len(self.metadata_train) >= nmod + 1: self.preprocessing_train[label].inputs['metadata'] = self.sources_metadata_train[label].output if self.metadata_test and len(self.metadata_test) >= nmod + 1: self.preprocessing_test[label].inputs['metadata'] = self.sources_metadata_test[label].output # If there are masks to use in normalization, add them here if self.masks_normalize_train: self.sources_masks_normalize_train[label] = self.network.create_source('ITKImageFile', id='masks_normalize_train_' + label, node_group='train', step_id='Preprocessing') self.preprocessing_train[label].inputs['mask'] = self.sources_masks_normalize_train[label].output if self.masks_normalize_test: self.sources_masks_normalize_test[label] = self.network.create_source('ITKImageFile', id='masks_normalize_test_' + label, node_group='test', step_id='Preprocessing') self.preprocessing_test[label].inputs['mask'] = self.sources_masks_normalize_test[label].output def add_feature_calculator(self, calcfeat_node, label, nmod): """Add a feature calculation node to the network.""" # Name of fastr node has to exclude some specific symbols, which # are used in the node name node_ID = '_'.join([calcfeat_node.replace(':', '_').replace('.', '_').replace('/', '_'), label]) memory = self.fastr_memory_parameters['FeatureCalculator'] node_train =\ self.network.create_node(calcfeat_node, tool_version='1.0', id='calcfeatures_train_' + node_ID, resources=ResourceLimit(memory=memory), step_id='Feature_Extraction') if self.TrainTest: node_test =\ self.network.create_node(calcfeat_node, tool_version='1.0', id='calcfeatures_test_' + node_ID, resources=ResourceLimit(memory=memory), step_id='Feature_Extraction') # Check if we need to add pyradiomics specific sources if 'pyradiomics' in calcfeat_node.lower(): # Add a config source self.source_config_pyradiomics[label] =\ self.network.create_source('YamlFile', id='config_pyradiomics_' + label, node_group='train', step_id='Feature_Extraction') # Add a format source, which we are going to set to a constant # And attach to the tool node self.source_format_pyradiomics =\ self.network.create_constant('String', 'csv', id='format_pyradiomics_' + label, node_group='train', step_id='Feature_Extraction') node_train.inputs['format'] =\ self.source_format_pyradiomics.output if self.TrainTest: node_test.inputs['format'] =\ self.source_format_pyradiomics.output # Create required links # We can have a different config for different tools if 'pyradiomics' in calcfeat_node.lower(): node_train.inputs['parameters'] =\ self.source_config_pyradiomics[label].output else: node_train.inputs['parameters'] =\ self.sources_parameters[label].output node_train.inputs['image'] =\ self.preprocessing_train[label].outputs['image'] if self.TrainTest: if 'pyradiomics' in calcfeat_node.lower(): node_test.inputs['parameters'] =\ self.source_config_pyradiomics[label].output else: node_test.inputs['parameters'] =\ self.sources_parameters[label].output node_test.inputs['image'] =\ self.preprocessing_test[label].outputs['image'] # PREDICT can extract semantic and metadata features if 'predict' in calcfeat_node.lower(): if self.metadata_train and len(self.metadata_train) >= nmod + 1: node_train.inputs['metadata'] =\ self.sources_metadata_train[label].output if self.metadata_test and len(self.metadata_test) >= nmod + 1: node_test.inputs['metadata'] =\ self.sources_metadata_test[label].output # If a semantics file is provided, connect to feature extraction tool if self.semantics_train and len(self.semantics_train) >= nmod + 1: self.sources_semantics_train[label] =\ self.network.create_source('CSVFile', id='semantics_train_' + label, step_id='train_sources') node_train.inputs['semantics'] =\ self.sources_semantics_train[label].output if self.semantics_test and len(self.semantics_test) >= nmod + 1: self.sources_semantics_test[label] =\ self.network.create_source('CSVFile', id='semantics_test_' + label, step_id='test_sources') node_test.inputs['semantics'] =\ self.sources_semantics_test[label].output # Add feature converter to make features WORC compatible conv_train =\ self.network.create_node('worc/FeatureConverter:1.0', tool_version='1.0', id='featureconverter_train_' + node_ID, resources=ResourceLimit(memory='4G'), step_id='Feature_Extraction') conv_train.inputs['feat_in'] = node_train.outputs['features'] # Add source to tell converter which toolbox we use if 'pyradiomics' in calcfeat_node.lower(): toolbox = 'PyRadiomics' elif 'predict' in calcfeat_node.lower(): toolbox = 'PREDICT' else: message = f'Toolbox {calcfeat_node} not recognized!' raise WORCexceptions.WORCKeyError(message) self.source_toolbox_name[label] =\ self.network.create_constant('String', toolbox, id=f'toolbox_name_{toolbox}_{label}', step_id='Feature_Extraction') conv_train.inputs['toolbox'] = self.source_toolbox_name[label].output conv_train.inputs['config'] = self.sources_parameters[label].output if self.TrainTest: conv_test =\ self.network.create_node('worc/FeatureConverter:1.0', tool_version='1.0', id='featureconverter_test_' + node_ID, resources=ResourceLimit(memory='4G'), step_id='Feature_Extraction') conv_test.inputs['feat_in'] = node_test.outputs['features'] conv_test.inputs['toolbox'] = self.source_toolbox_name[label].output conv_test.inputs['config'] = self.sources_parameters[label].output # Append to nodes to list self.calcfeatures_train[label].append(node_train) self.featureconverter_train[label].append(conv_train) if self.TrainTest: self.calcfeatures_test[label].append(node_test) self.featureconverter_test[label].append(conv_test) def add_elastix_sourcesandsinks(self): """Add sources and sinks required for image registration.""" self.sources_segmentation = dict() self.segmode = 'Register' self.source_Elastix_Parameters = dict() self.elastix_nodes_train = dict() self.transformix_seg_nodes_train = dict() self.sources_segmentations_train = dict() self.sinks_transformations_train = dict() self.sinks_segmentations_elastix_train = dict() self.sinks_images_elastix_train = dict() self.converters_seg_train = dict() self.edittransformfile_nodes_train = dict() self.transformix_im_nodes_train = dict() self.elastix_nodes_test = dict() self.transformix_seg_nodes_test = dict() self.sources_segmentations_test = dict() self.sinks_transformations_test = dict() self.sinks_segmentations_elastix_test = dict() self.sinks_images_elastix_test = dict() self.converters_seg_test = dict() self.edittransformfile_nodes_test = dict() self.transformix_im_nodes_test = dict() def add_elastix(self, label, nmod): """ Add image registration through elastix to network.""" # Create sources and converter for only for the given segmentation, # which should be on the first modality if nmod == 0: memory = self.fastr_memory_parameters['WORCCastConvert'] self.sources_segmentations_train[label] =\ self.network.create_source('ITKImageFile', id='segmentations_train_' + label, node_group='input', step_id='train_sources') self.converters_seg_train[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_seg_train_' + label, resources=ResourceLimit(memory=memory), step_id='FileConversion') self.converters_seg_train[label].inputs['image'] =\ self.sources_segmentations_train[label].output if self.TrainTest: self.sources_segmentations_test[label] =\ self.network.create_source('ITKImageFile', id='segmentations_test_' + label, node_group='input', step_id='test_sources') self.converters_seg_test[label] =\ self.network.create_node('worc/WORCCastConvert:0.3.2', tool_version='0.1', id='convert_seg_test_' + label, resources=ResourceLimit(memory=memory), step_id='FileConversion') self.converters_seg_test[label].inputs['image'] =\ self.sources_segmentations_test[label].output # Assume provided segmentation is on first modality if nmod > 0: # Use elastix and transformix for registration # NOTE: Assume elastix node type is on first configuration elastix_node =\ str(self.configs[0]['General']['RegistrationNode']) transformix_node =\ str(self.configs[0]['General']['TransformationNode']) memory_elastix = self.fastr_memory_parameters['Elastix'] self.elastix_nodes_train[label] =\ self.network.create_node(elastix_node, tool_version='0.2', id='elastix_train_' + label, resources=ResourceLimit(memory=memory_elastix), step_id='Image_Registration') memory_transformix = self.fastr_memory_parameters['Elastix'] self.transformix_seg_nodes_train[label] =\ self.network.create_node(transformix_node, tool_version='0.2', id='transformix_seg_train_' + label, resources=ResourceLimit(memory=memory_transformix), step_id='Image_Registration') self.transformix_im_nodes_train[label] =\ self.network.create_node(transformix_node, tool_version='0.2', id='transformix_im_train_' + label, resources=ResourceLimit(memory=memory_transformix), step_id='Image_Registration') if self.TrainTest: self.elastix_nodes_test[label] =\ self.network.create_node(elastix_node, tool_version='0.2', id='elastix_test_' + label, resources=ResourceLimit(memory=memory_elastix), step_id='Image_Registration') self.transformix_seg_nodes_test[label] =\ self.network.create_node(transformix_node, tool_version='0.2', id='transformix_seg_test_' + label, resources=ResourceLimit(memory=memory_transformix), step_id='Image_Registration') self.transformix_im_nodes_test[label] =\ self.network.create_node(transformix_node, tool_version='0.2', id='transformix_im_test_' + label, resources=ResourceLimit(memory=memory_transformix), step_id='Image_Registration') # Create sources_segmentation # M1 = moving, others = fixed self.elastix_nodes_train[label].inputs['fixed_image'] =\ self.converters_im_train[label].outputs['image'] self.elastix_nodes_train[label].inputs['moving_image'] =\ self.converters_im_train[self.modlabels[0]].outputs['image'] # Add node that copies metadata from the image to the # segmentation if required if self.CopyMetadata: # Copy metadata from the image which was registered to # the segmentation, if it is not created yet if not hasattr(self, "copymetadata_nodes_train"): # NOTE: Do this for first modality, as we assume # the segmentation is on that one self.copymetadata_nodes_train = dict() self.copymetadata_nodes_train[self.modlabels[0]] =\ self.network.create_node('itktools/0.3.2/CopyMetadata:1.0', tool_version='1.0', id='CopyMetadata_train_' + self.modlabels[0], step_id='Image_Registration') self.copymetadata_nodes_train[self.modlabels[0]].inputs["source"] =\ self.converters_im_train[self.modlabels[0]].outputs['image'] self.copymetadata_nodes_train[self.modlabels[0]].inputs["destination"] =\ self.converters_seg_train[self.modlabels[0]].outputs['image'] self.transformix_seg_nodes_train[label].inputs['image'] =\ self.copymetadata_nodes_train[self.modlabels[0]].outputs['output'] else: self.transformix_seg_nodes_train[label].inputs['image'] =\ self.converters_seg_train[self.modlabels[0]].outputs['image'] if self.TrainTest: self.elastix_nodes_test[label].inputs['fixed_image'] =\ self.converters_im_test[label].outputs['image'] self.elastix_nodes_test[label].inputs['moving_image'] =\ self.converters_im_test[self.modlabels[0]].outputs['image'] if self.CopyMetadata: # Copy metadata from the image which was registered # to the segmentation if not hasattr(self, "copymetadata_nodes_test"): # NOTE: Do this for first modality, as we assume # the segmentation is on that one self.copymetadata_nodes_test = dict() self.copymetadata_nodes_test[self.modlabels[0]] =\ self.network.create_node('itktools/0.3.2/CopyMetadata:1.0', tool_version='1.0', id='CopyMetadata_test_' + self.modlabels[0], step_id='Image_Registration') self.copymetadata_nodes_test[self.modlabels[0]].inputs["source"] =\ self.converters_im_test[self.modlabels[0]].outputs['image'] self.copymetadata_nodes_test[self.modlabels[0]].inputs["destination"] =\ self.converters_seg_test[self.modlabels[0]].outputs['image'] self.transformix_seg_nodes_test[label].inputs['image'] =\ self.copymetadata_nodes_test[self.modlabels[0]].outputs['output'] else: self.transformix_seg_nodes_test[label].inputs['image'] =\ self.converters_seg_test[self.modlabels[0]].outputs['image'] # Apply registration to input modalities self.source_Elastix_Parameters[label] =\ self.network.create_source('ElastixParameterFile', id='Elastix_Para_' + label, node_group='elpara', step_id='Image_Registration') self.link_elparam_train =\ self.network.create_link(self.source_Elastix_Parameters[label].output, self.elastix_nodes_train[label].inputs['parameters']) self.link_elparam_train.collapse = 'elpara' if self.TrainTest: self.link_elparam_test =\ self.network.create_link(self.source_Elastix_Parameters[label].output, self.elastix_nodes_test[label].inputs['parameters']) self.link_elparam_test.collapse = 'elpara' if self.masks_train: self.elastix_nodes_train[label].inputs['fixed_mask'] =\ self.converters_masks_train[label].outputs['image'] self.elastix_nodes_train[label].inputs['moving_mask'] =\ self.converters_masks_train[self.modlabels[0]].outputs['image'] if self.TrainTest: if self.masks_test: self.elastix_nodes_test[label].inputs['fixed_mask'] =\ self.converters_masks_test[label].outputs['image'] self.elastix_nodes_test[label].inputs['moving_mask'] =\ self.converters_masks_test[self.modlabels[0]].outputs['image'] # Change the FinalBSpline Interpolation order to 0 as required for binarie images: see https://github.com/SuperElastix/elastix/wiki/FAQ self.edittransformfile_nodes_train[label] =\ self.network.create_node('elastixtools/EditElastixTransformFile:0.1', tool_version='0.1', id='EditElastixTransformFile_train_' + label, step_id='Image_Registration') self.edittransformfile_nodes_train[label].inputs['set'] =\ ["FinalBSplineInterpolationOrder=0"] self.edittransformfile_nodes_train[label].inputs['transform'] =\ self.elastix_nodes_train[label].outputs['transform'][-1] if self.TrainTest: self.edittransformfile_nodes_test[label] =\ self.network.create_node('elastixtools/EditElastixTransformFile:0.1', tool_version='0.1', id='EditElastixTransformFile_test_' + label, step_id='Image_Registration') self.edittransformfile_nodes_test[label].inputs['set'] =\ ["FinalBSplineInterpolationOrder=0"] self.edittransformfile_nodes_test[label].inputs['transform'] =\ self.elastix_nodes_test[label].outputs['transform'][-1] # Link data and transformation to transformix and source self.transformix_seg_nodes_train[label].inputs['transform'] =\ self.edittransformfile_nodes_train[label].outputs['transform'] self.transformix_im_nodes_train[label].inputs['transform'] =\ self.elastix_nodes_train[label].outputs['transform'][-1] self.transformix_im_nodes_train[label].inputs['image'] =\ self.converters_im_train[self.modlabels[0]].outputs['image'] if self.TrainTest: self.transformix_seg_nodes_test[label].inputs['transform'] =\ self.edittransformfile_nodes_test[label].outputs['transform'] self.transformix_im_nodes_test[label].inputs['transform'] =\ self.elastix_nodes_test[label].outputs['transform'][-1] self.transformix_im_nodes_test[label].inputs['image'] =\ self.converters_im_test[self.modlabels[0]].outputs['image'] if self.configs[nmod]['General']['Segmentix'] != 'True': # These segmentations serve as input for the feature calculation for i_node in range(len(self.calcfeatures_train[label])): self.calcfeatures_train[label][i_node].inputs['segmentation'] =\ self.transformix_seg_nodes_train[label].outputs['image'] if self.TrainTest: self.calcfeatures_test[label][i_node].inputs['segmentation'] =\ self.transformix_seg_nodes_test[label].outputs['image'] # Save outputfor the training set self.sinks_transformations_train[label] =\ self.network.create_sink('ElastixTransformFile', id='transformations_train_' + label, step_id='train_sinks') self.sinks_segmentations_elastix_train[label] =\ self.network.create_sink('ITKImageFile', id='segmentations_out_elastix_train_' + label, step_id='train_sinks') self.sinks_images_elastix_train[label] =\ self.network.create_sink('ITKImageFile', id='images_out_elastix_train_' + label, step_id='train_sinks') self.sinks_transformations_train[label].input =\ self.elastix_nodes_train[label].outputs['transform'] self.sinks_segmentations_elastix_train[label].input =\ self.transformix_seg_nodes_train[label].outputs['image'] self.sinks_images_elastix_train[label].input =\ self.transformix_im_nodes_train[label].outputs['image'] # Save output for the test set if self.TrainTest: self.sinks_transformations_test[label] =\ self.network.create_sink('ElastixTransformFile', id='transformations_test_' + label, step_id='test_sinks') self.sinks_segmentations_elastix_test[label] =\ self.network.create_sink('ITKImageFile', id='segmentations_out_elastix_test_' + label, step_id='test_sinks') self.sinks_images_elastix_test[label] =\ self.network.create_sink('ITKImageFile', id='images_out_elastix_test_' + label, step_id='test_sinks') self.sinks_transformations_test[label].input =\ self.elastix_nodes_test[label].outputs['transform'] self.sinks_segmentations_elastix_test[label].input =\ self.transformix_seg_nodes_test[label].outputs['image'] self.sinks_images_elastix_test[label].input =\ self.transformix_im_nodes_test[label].outputs['image'] def add_segmentix(self, label, nmod): """Add segmentix to the network.""" # Segmentix nodes ------------------------------------------------- # Use segmentix node to convert input segmentation into # correct contour if label not in self.sinks_segmentations_segmentix_train: self.sinks_segmentations_segmentix_train[label] =\ self.network.create_sink('ITKImageFile', id='segmentations_out_segmentix_train_' + label, step_id='train_sinks') memory = self.fastr_memory_parameters['Segmentix'] self.nodes_segmentix_train[label] =\ self.network.create_node('segmentix/Segmentix:1.0', tool_version='1.0', id='segmentix_train_' + label, resources=ResourceLimit(memory=memory), step_id='Preprocessing') # Input the image self.nodes_segmentix_train[label].inputs['image'] =\ self.converters_im_train[label].outputs['image'] # Input the metadata if self.metadata_train and len(self.metadata_train) >= nmod + 1: self.nodes_segmentix_train[label].inputs['metadata'] = self.sources_metadata_train[label].output # Input the segmentation if hasattr(self, 'transformix_seg_nodes_train'): if label in self.transformix_seg_nodes_train.keys(): # Use output of registration in segmentix self.nodes_segmentix_train[label].inputs['segmentation_in'] =\ self.transformix_seg_nodes_train[label].outputs['image'] else: # Use original segmentation self.nodes_segmentix_train[label].inputs['segmentation_in'] =\ self.converters_seg_train[label].outputs['image'] else: # Use original segmentation self.nodes_segmentix_train[label].inputs['segmentation_in'] =\ self.converters_seg_train[label].outputs['image'] # Input the parameters self.nodes_segmentix_train[label].inputs['parameters'] =\ self.sources_parameters[label].output self.sinks_segmentations_segmentix_train[label].input =\ self.nodes_segmentix_train[label].outputs['segmentation_out'] if self.TrainTest: self.sinks_segmentations_segmentix_test[label] =\ self.network.create_sink('ITKImageFile', id='segmentations_out_segmentix_test_' + label, step_id='test_sinks') self.nodes_segmentix_test[label] =\ self.network.create_node('segmentix/Segmentix:1.0', tool_version='1.0', id='segmentix_test_' + label, resources=ResourceLimit(memory=memory), step_id='Preprocessing') # Input the image self.nodes_segmentix_test[label].inputs['image'] =\ self.converters_im_test[label].outputs['image'] # Input the metadata if self.metadata_test and len(self.metadata_test) >= nmod + 1: self.nodes_segmentix_test[label].inputs['metadata'] = self.sources_metadata_test[label].output if hasattr(self, 'transformix_seg_nodes_test'): if label in self.transformix_seg_nodes_test.keys(): # Use output of registration in segmentix self.nodes_segmentix_test[label].inputs['segmentation_in'] =\ self.transformix_seg_nodes_test[label].outputs['image'] else: # Use original segmentation self.nodes_segmentix_test[label].inputs['segmentation_in'] =\ self.converters_seg_test[label].outputs['image'] else: # Use original segmentation self.nodes_segmentix_test[label].inputs['segmentation_in'] =\ self.converters_seg_test[label].outputs['image'] self.nodes_segmentix_test[label].inputs['parameters'] =\ self.sources_parameters[label].output self.sinks_segmentations_segmentix_test[label].input =\ self.nodes_segmentix_test[label].outputs['segmentation_out'] for i_node in range(len(self.calcfeatures_train[label])): self.calcfeatures_train[label][i_node].inputs['segmentation'] =\ self.nodes_segmentix_train[label].outputs['segmentation_out'] if self.TrainTest: self.calcfeatures_test[label][i_node].inputs['segmentation'] =\ self.nodes_segmentix_test[label].outputs['segmentation_out'] if self.masks_train and len(self.masks_train) >= nmod + 1: # Use masks self.nodes_segmentix_train[label].inputs['mask'] =\ self.converters_masks_train[label].outputs['image'] if self.masks_test and len(self.masks_test) >= nmod + 1: # Use masks self.nodes_segmentix_test[label].inputs['mask'] =\ self.converters_masks_test[label].outputs['image'] def set(self): """Set the FASTR source and sink data based on the given attributes.""" self.fastrconfigs = list() self.source_data = dict() self.sink_data = dict() # Save the configurations as files self.save_config() # fixed splits if self.fixedsplits: self.source_data['fixedsplits_source'] = self.fixedsplits # Generate gridsearch parameter files if required self.source_data['config_classification_source'] = self.fastrconfigs[0] # Set source and sink data self.source_data['patientclass_train'] = self.labels_train self.source_data['patientclass_test'] = self.labels_test self.sink_data['classification'] = ("vfs://output/{}/estimator_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name) self.sink_data['performance'] = ("vfs://output/{}/performance_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name) self.sink_data['config_classification_sink'] = ("vfs://output/{}/config_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name) self.sink_data['features_train_ComBat'] = ("vfs://output/{}/ComBat/features_ComBat_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name) self.sink_data['features_test_ComBat'] = ("vfs://output/{}/ComBat/features_ComBat_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name) # Set the source data from the WORC objects you created for num, label in enumerate(self.modlabels): self.source_data['config_' + label] = self.fastrconfigs[num] if self.pyradiomics_configs: self.source_data['config_pyradiomics_' + label] = self.pyradiomics_configs[num] # Add train data sources if self.images_train and len(self.images_train) - 1 >= num: self.source_data['images_train_' + label] = self.images_train[num] if self.masks_train and len(self.masks_train) - 1 >= num: self.source_data['mask_train_' + label] = self.masks_train[num] if self.masks_normalize_train and len(self.masks_normalize_train) - 1 >= num: self.source_data['masks_normalize_train_' + label] = self.masks_normalize_train[num] if self.metadata_train and len(self.metadata_train) - 1 >= num: self.source_data['metadata_train_' + label] = self.metadata_train[num] if self.segmentations_train and len(self.segmentations_train) - 1 >= num: self.source_data['segmentations_train_' + label] = self.segmentations_train[num] if self.semantics_train and len(self.semantics_train) - 1 >= num: self.source_data['semantics_train_' + label] = self.semantics_train[num] if self.features_train and len(self.features_train) - 1 >= num: self.source_data['features_train_' + label] = self.features_train[num] if self.Elastix_Para: # First modality does not need to be registered if num > 0: if len(self.Elastix_Para) > 1: # Each modality has its own registration parameters self.source_data['Elastix_Para_' + label] = self.Elastix_Para[num] else: # Use one fileset for all modalities self.source_data['Elastix_Para_' + label] = self.Elastix_Para[0] # Add test data sources if self.images_test and len(self.images_test) - 1 >= num: self.source_data['images_test_' + label] = self.images_test[num] if self.masks_test and len(self.masks_test) - 1 >= num: self.source_data['mask_test_' + label] = self.masks_test[num] if self.masks_normalize_test and len(self.masks_normalize_test) - 1 >= num: self.source_data['masks_normalize_test_' + label] = self.masks_normalize_test[num] if self.metadata_test and len(self.metadata_test) - 1 >= num: self.source_data['metadata_test_' + label] = self.metadata_test[num] if self.segmentations_test and len(self.segmentations_test) - 1 >= num: self.source_data['segmentations_test_' + label] = self.segmentations_test[num] if self.semantics_test and len(self.semantics_test) - 1 >= num: self.source_data['semantics_test_' + label] = self.semantics_test[num] if self.features_test and len(self.features_test) - 1 >= num: self.source_data['features_test_' + label] = self.features_test[num] self.sink_data['segmentations_out_segmentix_train_' + label] = ("vfs://output/{}/Segmentations/seg_{}_segmentix_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) self.sink_data['segmentations_out_elastix_train_' + label] = ("vfs://output/{}/Elastix/seg_{}_elastix_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) self.sink_data['images_out_elastix_train_' + label] = ("vfs://output/{}/Elastix/im_{}_elastix_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) if hasattr(self, 'featurecalculators'): for f in self.featurecalculators[label]: self.sink_data['features_train_' + label + '_' + f] = ("vfs://output/{}/Features/features_{}_{}_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, f, label) if self.labels_test: self.sink_data['segmentations_out_segmentix_test_' + label] = ("vfs://output/{}/Segmentations/seg_{}_segmentix_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) self.sink_data['segmentations_out_elastix_test_' + label] = ("vfs://output/{}/Elastix/seg_{}_elastix_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) self.sink_data['images_out_elastix_test_' + label] = ("vfs://output/{}/Images/im_{}_elastix_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) if hasattr(self, 'featurecalculators'): for f in self.featurecalculators[label]: self.sink_data['features_test_' + label + '_' + f] = ("vfs://output/{}/Features/features_{}_{}_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, f, label) # Add elastix sinks if used if self.segmode: # Segmode is only non-empty if segmentations are provided if self.segmode == 'Register': self.sink_data['transformations_train_' + label] = ("vfs://output/{}/Elastix/transformation_{}_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) if self.TrainTest: self.sink_data['transformations_test_' + label] = ("vfs://output/{}/Elastix/transformation_{}_{{sample_id}}_{{cardinality}}{{ext}}").format(self.name, label) if self._add_evaluation: self.Evaluate.set() def execute(self): """Execute the network through the fastr.network.execute command.""" # Draw and execute nwtwork try: self.network.draw(file_path=self.network.id + '.svg', draw_dimensions=True) except graphviz.backend.ExecutableNotFound: print('[WORC WARNING] Graphviz executable not found: not drawing network diagram. Make sure the Graphviz executables are on your systems PATH.') except graphviz.backend.CalledProcessError as e: print(f'[WORC WARNING] Graphviz executable gave an error: not drawing network diagram. Original error: {e}') # export hyper param. search space to LaTeX table for config in self.fastrconfigs: config_path = Path(url2pathname(urlparse(config).path)) tex_path = f'{config_path.parent.absolute() / config_path.stem}_hyperparams_space.tex' export_hyper_params_to_latex(config_path, tex_path) if DebugDetector().do_detection(): print("Source Data:") for k in self.source_data.keys(): print(f"\t {k}: {self.source_data[k]}.") print("\n Sink Data:") for k in self.sink_data.keys(): print(f"\t {k}: {self.sink_data[k]}.") # When debugging, set the tempdir to the default of fastr + name self.fastr_tmpdir = os.path.join(fastr.config.mounts['tmp'], self.name) self.network.execute(self.source_data, self.sink_data, execution_plugin=self.fastr_plugin, tmpdir=self.fastr_tmpdir) def add_evaluation(self, label_type, modus='binary_classification'): """Add branch for evaluation of performance to network. Note: should be done after build, before set: WORC.build() WORC.add_evaluation(label_type) WORC.set() WORC.execute() """ self.Evaluate =\ Evaluate(label_type=label_type, parent=self, modus=modus) self._add_evaluation = True def save_config(self): """Save the config files to physical files and add to network.""" # If the configuration files are confiparse objects, write to file self.pyradiomics_configs = list() # Make sure we can dump blank values for PyRadiomics yaml.SafeDumper.add_representer(type(None), lambda dumper, value: dumper.represent_scalar(u'tag:yaml.org,2002:null', '')) for num, c in enumerate(self.configs): if type(c) != configparser.ConfigParser: # A filepath (not a fastr source) is provided. Hence we read # the config file and convert it to a configparser object config = configparser.ConfigParser() config.read(c) c = config cfile = os.path.join(self.fastr_tmpdir, f"config_{self.name}_{num}.ini") if not os.path.exists(os.path.dirname(cfile)): os.makedirs(os.path.dirname(cfile)) with open(cfile, 'w') as configfile: c.write(configfile) # If PyRadiomics is used, also write a config for PyRadiomics if 'pyradiomics' in c['General']['FeatureCalculators']: cfile_pyradiomics = os.path.join(self.fastr_tmpdir, f"config_pyradiomics_{self.name}_{num}.yaml") config_pyradiomics = io.convert_config_pyradiomics(c) with open(cfile_pyradiomics, 'w') as file: yaml.safe_dump(config_pyradiomics, file) cfile_pyradiomics = Path(self.fastr_tmpdir) / f"config_pyradiomics_{self.name}_{num}.yaml" self.pyradiomics_configs.append(cfile_pyradiomics.as_uri().replace('%20', ' ')) # BUG: Make path with pathlib to create windows double slashes cfile = Path(self.fastr_tmpdir) / f"config_{self.name}_{num}.ini" self.fastrconfigs.append(cfile.as_uri().replace('%20', ' ')) class Tools(object): """ Create other pipelines besides the default radiomics executions. Currently includes: 1. Registration pipeline 2. Evaluation pipeline 3. Slicer pipeline, to create pngs of middle slice of images. """ def __init__(self): """Initialize object with all pipelines.""" self.Elastix = Elastix() self.Evaluate = Evaluate() self.Slicer = Slicer()
53.822572
228
0.559897
97,869
0.986632
0
0
0
0
0
0
33,134
0.334029
8d832e77f438b0dd65c0dff2da0ca039538bc5cd
2,019
py
Python
utils/tweets_to_txt.py
magsol/datascibun
bb118eac59dc238c42f659871e25619d994f8575
[ "Apache-2.0" ]
null
null
null
utils/tweets_to_txt.py
magsol/datascibun
bb118eac59dc238c42f659871e25619d994f8575
[ "Apache-2.0" ]
null
null
null
utils/tweets_to_txt.py
magsol/datascibun
bb118eac59dc238c42f659871e25619d994f8575
[ "Apache-2.0" ]
1
2022-03-01T01:45:47.000Z
2022-03-01T01:45:47.000Z
import argparse import json import re def remove_urls(tweet): return re.sub(r"http\S+", "", tweet) def fix_amp(tweet): return tweet.replace("&amp;", "&") def remove_hashtags(tweet): return re.sub(r"#\w+\s*", "", tweet) def remove_mentions(tweet): return re.sub(r"@\w+\s*", "", tweet) def remove_rt(tweet): return tweet[2:] if tweet[:2] == 'RT' else tweet def remove_emojis(tweet): return re.sub(r"[^\x00-\x7F]+", "", tweet) if __name__ == "__main__": parser = argparse.ArgumentParser(description = 'JSON tweet converter', epilog = 'lol tw33tz', add_help = 'How to use', prog = 'python json_to_txt.py <options>') # Required arguments. parser.add_argument("-i", "--input", required = True, help = "JSON file to convert.") # Optional arguments. parser.add_argument("-o", "--output", default = "output.txt", help = "Output file containing tweet content, one per line. [DEFAULT: output.txt]") # Parse out the arguments. args = vars(parser.parse_args()) content = json.load(open(args['input'], "r")) fp = open(args['output'], "w") item = 0 for obj in content: tweet = obj['tweet']['full_text'] # STEP 1: Strip out RT. tweet = remove_rt(tweet) # STEP 2: Remove URLs, mentions, hashtags, emojis. tweet = remove_urls(tweet) tweet = remove_mentions(tweet) tweet = remove_hashtags(tweet) tweet = remove_emojis(tweet) # STEP 3: Other random fixes. tweet = tweet.strip() tweet = fix_amp(tweet) if len(tweet) == 0 or len(tweet) == 1: continue tweet = tweet.replace("\"\"", "") if tweet[0] == ":": tweet = tweet[1:] tweet = tweet.replace("\n", " ") tweet = tweet.strip() # Write out! fp.write(f"{tweet}\n") item += 1 if item % 1000 == 0: print(f"{item} of {len(content)} done.") fp.close() print(f"{item} tweets processed!")
27.657534
91
0.574542
0
0
0
0
0
0
0
0
605
0.299653
8d85dffad6d22403418ce3ef5e06280cc317b3e4
528
py
Python
truechat/chat/migrations/0007_auto_20191026_2020.py
TrueChat/Backend
7d2bc73d5b7f157d7499a65af4157e1ddeb7a0ac
[ "MIT" ]
1
2019-12-19T19:04:33.000Z
2019-12-19T19:04:33.000Z
truechat/chat/migrations/0007_auto_20191026_2020.py
TrueChat/Backend
7d2bc73d5b7f157d7499a65af4157e1ddeb7a0ac
[ "MIT" ]
6
2020-06-05T23:42:41.000Z
2022-02-10T13:32:59.000Z
truechat/chat/migrations/0007_auto_20191026_2020.py
TrueChat/Backend
7d2bc73d5b7f157d7499a65af4157e1ddeb7a0ac
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2019-10-26 20:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('chat', '0006_auto_20191022_1218'), ] operations = [ migrations.RemoveField( model_name='membership', name='is_admin', ), migrations.AddField( model_name='membership', name='is_banned', field=models.BooleanField(default=False, verbose_name='Забанен ли?'), ), ]
22.956522
81
0.587121
444
0.826816
0
0
0
0
0
0
145
0.270019
8d86a97241dd9580e12d59014523e0d42f09b38e
354
py
Python
libs/baseclass/about_screen.py
wildscsi/ecopos
9922bb5160227777401eb33fa9a01cfba5730781
[ "MIT" ]
null
null
null
libs/baseclass/about_screen.py
wildscsi/ecopos
9922bb5160227777401eb33fa9a01cfba5730781
[ "MIT" ]
1
2021-11-04T20:43:03.000Z
2021-11-04T20:43:03.000Z
libs/baseclass/about_screen.py
wildscsi/ecopos
9922bb5160227777401eb33fa9a01cfba5730781
[ "MIT" ]
1
2021-11-04T19:43:53.000Z
2021-11-04T19:43:53.000Z
# -*- coding: utf-8 -*- # # Copyright (c) 2020 CPV.BY # # For suggestions and questions: # <[email protected]> # # LICENSE: Commercial import webbrowser from kivymd.theming import ThemableBehavior from kivymd.uix.screen import MDScreen class AboutScreen(ThemableBehavior, MDScreen): def open_url(self, instance, url): webbrowser.open(url)
19.666667
46
0.728814
114
0.322034
0
0
0
0
0
0
127
0.358757
8d86c9a6526d8d524710fa780972b087a3f46ac3
7,715
py
Python
causal_rl/environments/multi_typed.py
vluzko/causal_rl
92ee221bdf1932fa83955441baabb5e28b78ab9d
[ "MIT" ]
2
2021-04-02T12:06:13.000Z
2022-02-09T06:57:26.000Z
causal_rl/environments/multi_typed.py
vluzko/causal_rl
92ee221bdf1932fa83955441baabb5e28b78ab9d
[ "MIT" ]
11
2020-12-28T14:51:31.000Z
2021-03-29T19:53:24.000Z
causal_rl/environments/multi_typed.py
vluzko/causal_rl
92ee221bdf1932fa83955441baabb5e28b78ab9d
[ "MIT" ]
null
null
null
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from gym import Env from scipy.spatial import distance from typing import Optional, Tuple, Any from causal_rl.environments import CausalEnv class MultiTyped(CausalEnv): """A simulation of balls bouncing with gravity and elastic collisions. Attributes: num_obj (int): Number of balls in the simulation. obj_dim (int): The dimension of the balls. Will always be 2 * dimension_of_space masses (np.ndarray): The masses of the balls. radii (np.ndarray): The radii of the balls. space (pymunk.Space): The actual simulation space. """ cls_name = 'multi_typed' def __init__(self, num_obj: int=5, mass: float=10, radii: float=10, width: float=400): self.num_obj = 2 * num_obj self.obj_dim = 4 self.mass = mass self.radius = radii self.masses = mass * np.ones(self.num_obj) self.radii = radii * np.ones(self.num_obj) self.width = width self.location_indices = (0, 1) @property def name(self) -> str: return '{}_{}_{}_{}'.format(self.cls_name, self.mass, self.radius, self.width) def reset(self): import pymunk self.space = pymunk.Space() self.space.gravity = (0.0, 0.0) self.objects = [] x_pos = np.random.rand(self.num_obj, 1) * (self.width - 40) + 20 y_pos = np.random.rand(self.num_obj, 1) * (self.width - 40) + 20 x_vel = np.random.rand(self.num_obj, 1) * 300 - 150 y_vel = np.random.rand(self.num_obj, 1) * 300 - 150 # Create circles for i in range(self.num_obj): mass = self.masses[i] radius = self.radii[i] moment = pymunk.moment_for_circle(mass, 0, radius, (0, 0)) body = pymunk.Body(mass, moment) body.position = (x_pos[i], y_pos[i]) body.velocity = (x_vel[i], y_vel[i]) shape = pymunk.Circle(body, radius, (0, 0)) shape.elasticity = 1.0 self.space.add(body, shape) self.objects.append(body) # Create squares for i in range(self.num_obj): mass = self.masses[i] * 6 radius = self.radii[i] * 1.2 size = (radius, radius) moment = pymunk.moment_for_box(mass, size) body = pymunk.Body(mass, moment) body.position = (x_pos[i], y_pos[i]) body.velocity = (x_vel[i], y_vel[i]) shape = pymunk.Poly.create_box(body, size) shape.elasticity = 1.0 self.space.add(body, shape) self.objects.append(body) static_lines = [ pymunk.Segment(self.space.static_body, (0.0, 0.0), (0.0, self.width), 0), pymunk.Segment(self.space.static_body, (0.0, 0.0), (self.width, 0.0), 0), pymunk.Segment(self.space.static_body, (self.width, 0.0), (self.width, self.width), 0), pymunk.Segment(self.space.static_body, (0.0, self.width), (self.width, self.width), 0) ] for line in static_lines: line.elasticity = 1. self.space.add(static_lines) return self.get_state(), 0, False, None def get_state(self) -> np.ndarray: """Get the current state. Returns: A tensor representing the state. Each row is a single ball, columns are [*position, *velocity] """ state = np.zeros((self.num_obj, 4)) for i in range(self.num_obj): state[i, :2] = np.array([self.objects[i].position[0], self.objects[i].position[1]]) state[i, 2:] = np.array([self.objects[i].velocity[0], self.objects[i].velocity[1]]) return state def step(self, dt=0.01) -> Tuple[np.ndarray, float, bool, Any]: self.space.step(dt) return self.get_state(), 0, False, None def generate_data(self, epochs: int=10000, dt: float=0.01) -> Tuple[np.ndarray, np.ndarray]: states = np.zeros((epochs, self.num_obj, 4)) rewards = np.zeros((epochs, 1)) self.reset() for t in range(epochs): states[t] = self.get_state() if t > 0: states[t, :, 2:] = (states[t, :, :2] - states[t - 1, :, :2]) / dt self.step(dt=dt) return states, rewards def visualize(self, state: np.ndarray, save_path: Optional[str]=None): """Visualize a single state. Args: state: The full save_path: Path to save the image to. """ colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] pos = state[:, :2] momenta = state[:, 2:] fig, ax = plt.subplots(figsize=(6, 6)) box = plt.Rectangle((0, 0), self.width, self.width, linewidth=5, edgecolor='k', facecolor='none') ax.add_patch(box) for i in range(self.num_obj // 2): circle = plt.Circle((pos[i, 0], pos[i, 1]), radius=self.radii[i], edgecolor='b') label = ax.annotate('{}'.format(i), xy=(pos[i, 0], pos[i, 1]), fontsize=8, ha='center') # Plot the momentum plt.arrow(pos[i, 0], pos[i, 1], momenta[i, 0], momenta[i, 1]) ax.add_patch(circle) for i in range(self.num_obj // 2, self.num_obj): circle = plt.Rectangle((pos[i, 0], pos[i, 1]), self.radii[i], self.radii[i], edgecolor='b') label = ax.annotate('{}'.format(i), xy=(pos[i, 0], pos[i, 1]), fontsize=8, ha='center') # Plot the momentum plt.arrow(pos[i, 0], pos[i, 1], momenta[i, 0], momenta[i, 1]) ax.add_patch(circle) plt.axis([0, self.width, 0, self.width]) plt.axis('off') if save_path is not None: plt.savefig(save_path) else: plt.show() plt.close() def detect_collisions(self, trajectories: np.ndarray) -> np.ndarray: n = trajectories.shape[0] k = self.num_obj radii = np.copy(self.radii) radii[self.num_obj // 2:] = radii[self.num_obj // 2:] * np.sqrt(2) min_dist = radii.reshape(k, 1) + radii.reshape(1, k) np.fill_diagonal(min_dist, 0) collisions = np.zeros((n, k, k)) for i in range(1, n): # The (x, y) coordinates of all balls at t=i locs = trajectories[i, :, :2] distances = distance.squareform(distance.pdist(locs)) collided = np.nonzero(distances < min_dist) collisions[i-1][collided] = 1 collisions[i][collided] = 1 return collisions def wall_collisions(self, states: np.ndarray) -> np.ndarray: min_coord = 0 + self.radius max_coord = self.width - self.radius # Just the position coordinates locs = states[:, :, :2] has_collision = (locs < min_coord) | (locs > max_coord) return has_collision class WithTypes(MultiTyped): """Include the type of the object in the state.""" cls_name = 'with_types' def __init__(self, num_obj=5, mass: float=10, radii: float=10, width: float=400): super().__init__(num_obj, mass, radii, width) self.obj_dim = 5 self.location_indices = (0, 1) def generate_data(self, epochs: int=10000, dt: float=0.01) -> Tuple[np.ndarray, np.ndarray]: states, rewards = super().generate_data(epochs, dt) with_types = np.zeros((epochs, self.num_obj, self.obj_dim)) with_types[:, :, :-1] = states with_types[:, self.num_obj//2:, -1] = 1 return with_types, rewards def detect_collisions(self, trajectories: np.ndarray) -> np.ndarray: return super().detect_collisions(trajectories[:, :, :-1])
36.738095
106
0.568762
7,491
0.970966
0
0
123
0.015943
0
0
1,027
0.133117
8d86e19a0f7bf48d0eb61da351363ace81caa8fc
353
py
Python
greetings.py
ucsd-cse-spis-2016/spis16-lecture-0815
24e0a8ea9726f969eb357db33eb2925aabd25e43
[ "MIT" ]
null
null
null
greetings.py
ucsd-cse-spis-2016/spis16-lecture-0815
24e0a8ea9726f969eb357db33eb2925aabd25e43
[ "MIT" ]
null
null
null
greetings.py
ucsd-cse-spis-2016/spis16-lecture-0815
24e0a8ea9726f969eb357db33eb2925aabd25e43
[ "MIT" ]
null
null
null
from flask import Flask app = Flask(__name__) @app.route("/en") def hello(): return "Hello SPIS 2016!" @app.route("/cn") def ni_hao(): return "Ni Hao SPIS 2016!" @app.route("/es") def hola(): return "Hola SPIS 2016!" @app.route("/fa") def sobh_bx(): return "Sobh Bexair SPIS 2016!" if __name__ == "__main__": app.run(port=5000)
16.045455
35
0.628895
0
0
0
0
248
0.70255
0
0
108
0.305949
8d88e96d4a71ca08ce8d66eee14e65dd7c02396c
3,189
py
Python
bin/makeReport.py
oxfordmmm/SARS-CoV2_workflows
a84cb0a7142684414b2f285dd27cc2ea287eecb9
[ "MIT" ]
null
null
null
bin/makeReport.py
oxfordmmm/SARS-CoV2_workflows
a84cb0a7142684414b2f285dd27cc2ea287eecb9
[ "MIT" ]
null
null
null
bin/makeReport.py
oxfordmmm/SARS-CoV2_workflows
a84cb0a7142684414b2f285dd27cc2ea287eecb9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import pandas as pd import sys import json from Bio import SeqIO sample_name=sys.argv[1] pango=pd.read_csv('pango.csv') nextclade=pd.read_csv('nextclade.tsv', sep='\t') aln2type=pd.read_csv('aln2type.csv') pango['sampleName']=sample_name nextclade['sampleName']=sample_name aln2type['sampleName']=sample_name df=pango.merge(nextclade, on='sampleName', how='left', suffixes=("_pango","_nextclade")) df=df.merge(aln2type, on='sampleName', how='left', suffixes=(None,"_aln2type")) # versions wf=open('workflow_commit.txt').read() df['workflowCommit']=str(wf).strip() df['manifestVersion']=sys.argv[2] nextclade_version=open('nextclade_files/version.txt').read() df['nextcladeVersion']=str(nextclade_version).strip() aln2type_variant_commit=open('variant_definitions/aln2type_variant_git_commit.txt').read() aln2type_variant_version=open('variant_definitions/aln2type_variant_version.txt').read() aln2type_source_commit=open('variant_definitions/aln2type_commit.txt').read() df['aln2typeVariantCommit']=str(aln2type_variant_commit).strip() df['aln2typeVariantVersion']=str(aln2type_variant_version).strip() df['aln2typeSourceVommit']=str(aln2type_source_commit).strip() df.to_csv('{0}_report.tsv'.format(sys.argv[1]), sep='\t', index=False) ### convert to json pango['program']='pango' pango.set_index('program',inplace=True) p=pango.to_dict(orient='index') nextclade['program']='nextclade' nextclade['nextcladeVersion']=str(nextclade_version).strip() nextclade.set_index('program',inplace=True) n=nextclade.to_dict(orient='index') with open('nextclade.json','rt', encoding= 'utf-8') as inf: nj=json.load(inf) n['nextcladeOutputJson']=nj aln2type['program']='aln2type' aln2type['label']=aln2type['phe-label'] aln2type['aln2typeVariantCommit']=str(aln2type_variant_commit).strip() aln2type['aln2typeSourceCommit']=str(aln2type_source_commit).strip() aln2type.set_index(['program','phe-label'],inplace=True) a={level: aln2type.xs(level).to_dict('index') for level in aln2type.index.levels[0]} w={'WorkflowInformation':{}} w['WorkflowInformation']['workflowCommit']=str(wf).strip() w['WorkflowInformation']['manifestVersion']=sys.argv[2] w['WorkflowInformation']['sampleIdentifier']=sample_name # add fasta to json record = SeqIO.read('ref.fasta', "fasta") w['WorkflowInformation']['referenceIdentifier']=record.id #f={'FastaRecord':{'SeqId':record.id, # 'SeqDescription': record.description, # 'Sequence':str(record.seq), # 'sampleName':sample_name}} def completeness(nextcladeOutputJson): ref_len = 29903 total_missing = nextcladeOutputJson['results'][0]['qc']['missingData']['totalMissing'] completeness_prop = (ref_len - total_missing) / ref_len completeness_pc = round(completeness_prop * 100, 1) return completeness_pc s={'summary':{}} s['summary']['completeness']=completeness(n['nextcladeOutputJson']) d={sample_name:{}} d[sample_name].update(p) d[sample_name].update(n) d[sample_name].update(a) d[sample_name].update(w) #d[sample_name].update(f) d[sample_name].update(s) with open('{0}_report.json'.format(sample_name), 'w', encoding='utf-8') as f: json.dump(d, f, indent=4, sort_keys=True, ensure_ascii=False)
35.831461
90
0.756977
0
0
0
0
0
0
0
0
1,276
0.400125
8d8a5d72d65e690dc4c82341ed975187662e4c48
1,484
py
Python
webhooks/statuscake/alerta_statuscake.py
frekel/alerta-contrib
d8f5c93a4ea735085b3689c2c852ecae94924d08
[ "MIT" ]
114
2015-02-05T00:22:16.000Z
2021-11-25T13:02:44.000Z
webhooks/statuscake/alerta_statuscake.py
NeilOrley/alerta-contrib
69d271ef9fe6542727ec4aa39fc8e0f797f1e8b1
[ "MIT" ]
245
2016-01-09T22:29:09.000Z
2022-03-16T10:37:02.000Z
webhooks/statuscake/alerta_statuscake.py
NeilOrley/alerta-contrib
69d271ef9fe6542727ec4aa39fc8e0f797f1e8b1
[ "MIT" ]
193
2015-01-30T21:22:49.000Z
2022-03-28T05:37:14.000Z
from alerta.models.alert import Alert from alerta.webhooks import WebhookBase from alerta.exceptions import RejectException import os import hashlib class StatusCakeWebhook(WebhookBase): def incoming(self, query_string, payload): alert_severity = os.environ.get('STATUSCAKE_DEFAULT_ALERT_SEVERITY', 'major') # If the statuscake username and apikey are provided # We can validate that the webhook call is valid statuscake_username = os.environ.get('STATUSCAKE_USERNAME') statuscake_apikey = os.environ.get('STATUSCAKE_APIKEY') if statuscake_username and statuscake_apikey: decoded_token = statuscake_username + statuscake_apikey statuscake_token = hashlib.md5(decoded_token.encode()).hexdigest() if statuscake_token != payload['Token']: raise RejectException("Provided Token couldn't be verified") if payload['Status'] == 'UP': severity = 'normal' else: severity = alert_severity return Alert( resource=payload['Name'], event='AppDown', environment='Production', severity=severity, service=['StatusCake'], group='Application', value=payload['StatusCode'], text="%s is down" % payload['URL'], tags=payload['Tags'].split(','), origin='statuscake', raw_data=str(payload) )
35.333333
85
0.624663
1,334
0.898316
0
0
0
0
0
0
349
0.235017
8d8b51eaca246cacfde939fcbc4a16b39dba720e
3,738
py
Python
ironic_discoverd/main.py
enovance/ironic-discoverd
d3df6178ca5c95943c93ff80723c86b7080bca0b
[ "Apache-2.0" ]
null
null
null
ironic_discoverd/main.py
enovance/ironic-discoverd
d3df6178ca5c95943c93ff80723c86b7080bca0b
[ "Apache-2.0" ]
null
null
null
ironic_discoverd/main.py
enovance/ironic-discoverd
d3df6178ca5c95943c93ff80723c86b7080bca0b
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import eventlet eventlet.monkey_patch(thread=False) import json import logging import sys from flask import Flask, request # noqa from keystoneclient import exceptions from ironic_discoverd import conf from ironic_discoverd import discoverd from ironic_discoverd import firewall from ironic_discoverd import node_cache from ironic_discoverd import utils app = Flask(__name__) LOG = discoverd.LOG @app.route('/v1/continue', methods=['POST']) def post_continue(): data = request.get_json(force=True) LOG.debug("Got JSON %s, going into processing thread", data) try: res = discoverd.process(data) except utils.DiscoveryFailed as exc: return str(exc), exc.http_code else: return json.dumps(res), 200, {'Content-Type': 'applications/json'} @app.route('/v1/discover', methods=['POST']) def post_discover(): if conf.getboolean('discoverd', 'authenticate'): if not request.headers.get('X-Auth-Token'): LOG.debug("No X-Auth-Token header, rejecting") return 'Authentication required', 401 try: utils.get_keystone(token=request.headers['X-Auth-Token']) except exceptions.Unauthorized: LOG.debug("Keystone denied access, rejecting") return 'Access denied', 403 # TODO(dtanstur): check for admin role data = request.get_json(force=True) LOG.debug("Got JSON %s", data) try: discoverd.discover(data) except utils.DiscoveryFailed as exc: return str(exc), exc.http_code else: return "", 202 def periodic_update(period): while True: LOG.debug('Running periodic update of filters') try: firewall.update_filters() except Exception: LOG.exception('Periodic update failed') eventlet.greenthread.sleep(period) def periodic_clean_up(period): while True: LOG.debug('Running periodic clean up of timed out nodes') try: if node_cache.clean_up(): firewall.update_filters() except Exception: LOG.exception('Periodic clean up failed') eventlet.greenthread.sleep(period) def main(): if len(sys.argv) < 2: sys.exit("Usage: %s config-file" % sys.argv[0]) conf.read(sys.argv[1]) debug = conf.getboolean('discoverd', 'debug') logging.basicConfig(level=logging.DEBUG if debug else logging.INFO) logging.getLogger('urllib3.connectionpool').setLevel(logging.WARNING) logging.getLogger('requests.packages.urllib3.connectionpool').setLevel( logging.WARNING) if not conf.getboolean('discoverd', 'authenticate'): LOG.warning('Starting unauthenticated, please check configuration') node_cache.init() firewall.init() utils.check_ironic_available() period = conf.getint('discoverd', 'firewall_update_period') eventlet.greenthread.spawn_n(periodic_update, period) period = conf.getint('discoverd', 'clean_up_period') eventlet.greenthread.spawn_n(periodic_clean_up, period) app.run(debug=debug, host=conf.get('discoverd', 'listen_address'), port=conf.getint('discoverd', 'listen_port'))
31.411765
75
0.688604
0
0
0
0
1,161
0.310594
0
0
1,303
0.348582
8d8c7b2102958e3a921b5b5a1f32ed6750cd5ff4
964
py
Python
config_translator.py
Charahiro-tan/Jurubot_Translator
d0d0db137f3ddfe06d7cd9457d22c418bdeff94c
[ "MIT" ]
1
2021-07-26T11:14:05.000Z
2021-07-26T11:14:05.000Z
config_translator.py
Charahiro-tan/Jurubot_Translator
d0d0db137f3ddfe06d7cd9457d22c418bdeff94c
[ "MIT" ]
null
null
null
config_translator.py
Charahiro-tan/Jurubot_Translator
d0d0db137f3ddfe06d7cd9457d22c418bdeff94c
[ "MIT" ]
null
null
null
################################################## # 翻訳の設定 # 変更した設定は次回起動時から適用されます ################################################## # []でくくってある項目は""でくくって,で区切ることでいくつも設定できます。 # 無視するユーザー ignore_user = ["Nightbot","Streamelements","Moobot"] # 翻訳する前に削除するワード。正規表現対応。 # URLや同じ言葉の繰り返しなどはデフォルトで削除してますので足りなかったら追加してください。 del_word = ["88+","88+"] # 無視する言語。 # 言語コードは https://cloud.google.com/translate/docs/languages 参照 ignore_lang = ["",""] # 配信者が使用している言語。あらゆる言語がこの言語に翻訳されます。 home_lang = "ja" # 上のhome_langで投稿された時の翻訳先 default_to_lang = "en" # translate.googleのURLのサフィックス。日本の方ならこのままで。 url_suffix = "co.jp" # 翻訳結果に発言者の名前を入れる場合はTrue、入れない場合はFalse sender = True # 上がTrueの場合に表示する名前 # "displayname" でディスプレイネーム # "loginid" でログインID sender_name = "displayname" # 翻訳結果に言語情報(en ⇒ ja)を付ける場合はTrue、付けない場合はFalse language = True # Google Apps Scriptで作成したAPIを使用するときはTrue、しないときはFalse # Google Apps Scriptを使用するときは必ずReadmeを読んでください。 gas = False # Google Apps Scriptで作成したURL gas_url = ""
22.418605
61
0.692946
0
0
0
0
0
0
0
0
1,437
0.879437
8d8cd77924dc533eeabb54595050045f0fb725d3
1,489
py
Python
wxcloudrun/dao.py
lubupang/resume_flask1
1ea18e88c0b667e92710096f57973a77d19e8fc6
[ "MIT" ]
null
null
null
wxcloudrun/dao.py
lubupang/resume_flask1
1ea18e88c0b667e92710096f57973a77d19e8fc6
[ "MIT" ]
null
null
null
wxcloudrun/dao.py
lubupang/resume_flask1
1ea18e88c0b667e92710096f57973a77d19e8fc6
[ "MIT" ]
null
null
null
import logging from sqlalchemy.exc import OperationalError from wxcloudrun import db from wxcloudrun.model import Counters # 初始化日志 logger = logging.getLogger('log') logger.info("aaaaaaa") def query_counterbyid(id): """ 根据ID查询Counter实体 :param id: Counter的ID :return: Counter实体 """ logger.info("bbbbbbbbb") try: return Counters.query.filter(Counters.id == id).first() except OperationalError as e: logger.info("query_counterbyid errorMsg= {} ".format(e)) return None def delete_counterbyid(id): """ 根据ID删除Counter实体 :param id: Counter的ID """ try: counter = Counters.query.get(id) if counter is None: return db.session.delete(counter) db.session.commit() except OperationalError as e: logger.info("delete_counterbyid errorMsg= {} ".format(e)) def insert_counter(counter): """ 插入一个Counter实体 :param counter: Counters实体 """ try: db.session.add(counter) db.session.commit() except OperationalError as e: logger.info("insert_counter errorMsg= {} ".format(e)) def update_counterbyid(counter): """ 根据ID更新counter的值 :param counter实体 """ try: counter = query_counterbyid(counter.id) if counter is None: return db.session.flush() db.session.commit() except OperationalError as e: logger.info("update_counterbyid errorMsg= {} ".format(e))
22.560606
65
0.633983
0
0
0
0
0
0
0
0
486
0.31094
8d8db8eca4cacfeb8ce07aa8011f8a4b558400b4
7,411
py
Python
src/bpp/tests/tests_legacy/test_views/test_raporty.py
iplweb/django-bpp
85f183a99d8d5027ae4772efac1e4a9f21675849
[ "BSD-3-Clause" ]
1
2017-04-27T19:50:02.000Z
2017-04-27T19:50:02.000Z
src/bpp/tests/tests_legacy/test_views/test_raporty.py
mpasternak/django-bpp
434338821d5ad1aaee598f6327151aba0af66f5e
[ "BSD-3-Clause" ]
41
2019-11-07T00:07:02.000Z
2022-02-27T22:09:39.000Z
src/bpp/tests/tests_legacy/test_views/test_raporty.py
iplweb/bpp
f027415cc3faf1ca79082bf7bacd4be35b1a6fdf
[ "BSD-3-Clause" ]
null
null
null
# -*- encoding: utf-8 -*- import os import sys import uuid import pytest from django.apps import apps from django.contrib.auth.models import Group from django.core.files.base import ContentFile try: from django.core.urlresolvers import reverse except ImportError: from django.urls import reverse from django.db import transaction from django.http import Http404 from django.test.utils import override_settings from django.utils import timezone from model_mommy import mommy from bpp.models import Typ_KBN, Jezyk, Charakter_Formalny, Typ_Odpowiedzialnosci from bpp.tests.tests_legacy.testutil import UserTestCase, UserTransactionTestCase from bpp.tests.util import any_jednostka, any_autor, any_ciagle from bpp.util import rebuild_contenttypes from bpp.views.raporty import RaportSelector, PodgladRaportu, KasowanieRaportu from celeryui.models import Report class TestRaportSelector(UserTestCase): def test_raportselector(self): p = RaportSelector() p.request = self.factory.get('/') p.get_context_data() def test_raportselector_with_reports(self): for x, kiedy_ukonczono in enumerate([timezone.now(), None]): mommy.make( Report, arguments={}, file=None, finished_on=kiedy_ukonczono) self.client.get(reverse('bpp:raporty')) def test_tytuly_raportow_kronika_uczelni(self): any_ciagle(rok=2000) rep = Report.objects.create( ordered_by=self.user, function="kronika-uczelni", arguments={"rok": "2000"}) res = self.client.get(reverse('bpp:raporty')) self.assertContains( res, "Kronika Uczelni dla roku 2000", status_code=200) def test_tytuly_raportow_raport_dla_komisji_centralnej(self): a = any_autor("Kowalski", "Jan") rep = Report.objects.create( ordered_by=self.user, function="raport-dla-komisji-centralnej", arguments={"autor": a.pk}) res = self.client.get(reverse('bpp:raporty')) self.assertContains( res, "Raport dla Komisji Centralnej - %s" % str(a), status_code=200) class RaportMixin: def zrob_raport(self): r = mommy.make( Report, file=None, function="kronika-uczelni", arguments='{"rok":"2013"}') return r class TestPobranieRaportu(RaportMixin, UserTestCase): def setUp(self): UserTestCase.setUp(self) self.r = self.zrob_raport() error_class = OSError if sys.platform.startswith('win'): error_class = WindowsError try: os.unlink( os.path.join(settings.MEDIA_ROOT, 'raport', 'test_raport')) except error_class: pass self.r.file.save("test_raport", ContentFile("hej ho")) def test_pobranie_nginx(self): # Raport musi byc zakonczony, ineczej nie ma pobrania self.r.finished_on = timezone.now() self.r.save() with override_settings(SENDFILE_BACKEND='sendfile.backends.nginx'): url = reverse('bpp:pobranie-raportu', kwargs=dict(uid=self.r.uid)) resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn('x-accel-redirect', resp._headers) class TestPodgladRaportu(RaportMixin, UserTestCase): def setUp(self): UserTestCase.setUp(self) self.r = self.zrob_raport() def test_podgladraportu(self): p = PodgladRaportu() p.kwargs = {} p.kwargs['uid'] = self.r.uid self.assertEqual(p.get_object(), self.r) p.kwargs['uid'] = str(uuid.uuid4()) self.assertRaises(Http404, p.get_object) def test_podgladraportu_client(self): url = reverse('bpp:podglad-raportu', kwargs=dict(uid=self.r.uid)) resp = self.client.get(url) self.assertContains(resp, 'Kronika Uczelni', status_code=200) class KasowanieRaportuMixin: def setUp(self): self.r = self.zrob_raport() self.r.ordered_by = self.user self.r.save() class TestKasowanieRaportu(KasowanieRaportuMixin, RaportMixin, UserTestCase): def setUp(self): UserTestCase.setUp(self) KasowanieRaportuMixin.setUp(self) def test_kasowanieraportu(self): k = KasowanieRaportu() k.kwargs = dict(uid=self.r.uid) class FakeRequest: user = self.user k.request = FakeRequest() k.request.user = None self.assertRaises(Http404, k.get_object) k.request.user = self.user self.assertEqual(k.get_object(), self.r) def test_kasowanieraportu_client(self): self.assertEqual(Report.objects.count(), 1) url = reverse('bpp:kasowanie-raportu', kwargs=dict(uid=self.r.uid)) resp = self.client.get(url) self.assertRedirects(resp, reverse("bpp:raporty")) self.assertEqual(Report.objects.count(), 0) from django.conf import settings class TestWidokiRaportJednostek2012(UserTestCase): # fixtures = ['charakter_formalny.json', # 'jezyk.json', # 'typ_kbn.json', # 'typ_odpowiedzialnosci.json'] def setUp(self): UserTestCase.setUp(self) self.j = any_jednostka() Typ_KBN.objects.get_or_create(skrot="PW", nazwa="Praca wieloośrodkowa") Jezyk.objects.get_or_create(skrot='pol.', nazwa='polski') Charakter_Formalny.objects.get_or_create(skrot='KSZ', nazwa='Książka w języku obcym') Charakter_Formalny.objects.get_or_create(skrot='KSP', nazwa='Książka w języku polskim') Charakter_Formalny.objects.get_or_create(skrot='KS', nazwa='Książka') Charakter_Formalny.objects.get_or_create(skrot='ROZ', nazwa='Rozdział książki') Group.objects.get_or_create(name="wprowadzanie danych") def test_jeden_rok(self): url = reverse("bpp:raport-jednostek-rok-min-max", args=(self.j.pk, 2010, 2013)) res = self.client.get(url) self.assertContains( res, "Dane o publikacjach za okres 2010 - 2013", status_code=200) def test_zakres_lat(self): url = reverse("bpp:raport-jednostek", args=(self.j.pk, 2013)) res = self.client.get(url) self.assertContains( res, "Dane o publikacjach za rok 2013", status_code=200) class TestRankingAutorow(UserTestCase): def setUp(self): UserTestCase.setUp(self) rebuild_contenttypes() Typ_Odpowiedzialnosci.objects.get_or_create(skrot='aut.', nazwa='autor') Group.objects.get_or_create(name="wprowadzanie danych") j = any_jednostka() a = any_autor(nazwisko="Kowalski") c = any_ciagle(impact_factor=200, rok=2000) c.dodaj_autora(a, j) def test_renderowanie(self): url = reverse("bpp:ranking-autorow", args=(2000, 2000)) res = self.client.get(url) self.assertContains( res, "Ranking autorów", status_code=200) self.assertContains(res, "Kowalski") def test_renderowanie_csv(self): url = reverse("bpp:ranking-autorow", args=(2000, 2000)) res = self.client.get(url, data={"_export": "csv"}) self.assertContains( res, '"Kowalski Jan Maria, dr",Jednostka')
32.221739
95
0.643233
6,497
0.875135
0
0
0
0
0
0
1,100
0.148168
8d8dfcd12be52225c59666f19fa694cef189e9ea
1,373
py
Python
bot/utilities/api/helpers/score.py
AiratK/kaishnik-bot
c42351611a40a04d78c8ae481b97339adbd321e5
[ "MIT" ]
null
null
null
bot/utilities/api/helpers/score.py
AiratK/kaishnik-bot
c42351611a40a04d78c8ae481b97339adbd321e5
[ "MIT" ]
null
null
null
bot/utilities/api/helpers/score.py
AiratK/kaishnik-bot
c42351611a40a04d78c8ae481b97339adbd321e5
[ "MIT" ]
null
null
null
from typing import List from typing import Tuple from bot.utilities.api.constants import SCORE_TEMPLATE def beautify_score(raw_score_table_data: List[List[str]]) -> List[Tuple[str, str]]: # Slightly refining traditional assessment to be written starting with lower case letter for (subject_index, subject_score_data) in enumerate(raw_score_table_data): # Making traditional grade to be viewed in the lower case subject_score_data[16] = subject_score_data[16].lower() # Putting strikethrough text decoration on non-grade value if subject_score_data[16] == "ведомость не закрыта": subject_score_data[16] = f"~{subject_score_data[16]}~" # Finishing traditional grade processing raw_score_table_data[subject_index][16] = subject_score_data[16] score: List[Tuple[str, str]] = [] for subject_score_data in raw_score_table_data: formatted_subject_score_data: str = SCORE_TEMPLATE.format(*subject_score_data[1:]) # Preparing for parsing by Markdown Parser of Version 2 for reserved_character in [ "-", "(", ")", "." ]: formatted_subject_score_data = formatted_subject_score_data.replace(reserved_character, f"\{reserved_character}") # Enhancing some words' appearance formatted_subject_score_data = formatted_subject_score_data.replace("н/я", "неявка") score.append((subject_score_data[1], formatted_subject_score_data)) return score
39.228571
116
0.780772
0
0
0
0
0
0
0
0
458
0.327377
8d8ebb77655b687ce95045239bb38a91c19a2901
1,192
py
Python
manager_app/serializers/carousel_serializers.py
syz247179876/e_mall
f94e39e091e098242342f532ae371b8ff127542f
[ "Apache-2.0" ]
7
2021-04-10T13:20:56.000Z
2022-03-29T15:00:29.000Z
manager_app/serializers/carousel_serializers.py
syz247179876/E_mall
f94e39e091e098242342f532ae371b8ff127542f
[ "Apache-2.0" ]
9
2021-05-11T03:53:31.000Z
2022-03-12T00:58:03.000Z
manager_app/serializers/carousel_serializers.py
syz247179876/E_mall
f94e39e091e098242342f532ae371b8ff127542f
[ "Apache-2.0" ]
2
2020-11-24T08:59:22.000Z
2020-11-24T14:10:59.000Z
# -*- coding: utf-8 -*- # @Time : 2021/4/6 下午9:21 # @Author : 司云中 # @File : carousel_serializers.py # @Software: Pycharm from rest_framework import serializers from Emall.exceptions import DataFormatError from shop_app.models.commodity_models import Carousel class ManagerCarouselSerializer(serializers.ModelSerializer): """管理轮播图序列化器""" class Meta: model = Carousel fields = ('pk', 'picture', 'url', 'sort', 'type') read_only_fields = ('pk',) def add(self): """增加轮播图""" self.Meta.model.objects.create(**self.validated_data) def modify(self): """修改轮播图""" pk = self.context.get('request').data.get('pk') if not pk: raise DataFormatError('缺少数据') return self.Meta.model.objects.filter(pk=pk).update(**self.validated_data) class DeleteCarouselSerializer(serializers.ModelSerializer): pk_list = serializers.ListField(child=serializers.IntegerField(), allow_empty=False) class Meta: model = Carousel fields = ('pk_list',) def delete(self): """删除轮播图""" return self.Meta.model.objects.filter(pk__in=self.validated_data.pop('pk_list')).delete()
27.090909
97
0.654362
979
0.778219
0
0
0
0
0
0
302
0.240064
8d9135e1864bf2b1336ddc05e72617edb4057d7b
7,312
py
Python
xfbin/structure/nud.py
SutandoTsukai181/xfbin_lib
8e2c56f354bfd868f9162f816cc528e6f830cdbc
[ "MIT" ]
3
2021-07-20T09:13:13.000Z
2021-09-06T18:08:15.000Z
xfbin/structure/nud.py
SutandoTsukai181/xfbin_lib
8e2c56f354bfd868f9162f816cc528e6f830cdbc
[ "MIT" ]
1
2021-09-06T18:07:48.000Z
2021-09-06T18:07:48.000Z
xfbin/structure/nud.py
SutandoTsukai181/xfbin_lib
8e2c56f354bfd868f9162f816cc528e6f830cdbc
[ "MIT" ]
null
null
null
from itertools import chain from typing import List, Tuple from .br.br_nud import * class Nud: name: str # chunk name mesh_groups: List['NudMeshGroup'] def init_data(self, name, br_nud: BrNud): self.name = name self.bounding_sphere = br_nud.boundingSphere self.mesh_groups = list() for br_mesh_group in br_nud.meshGroups: mesh_group = NudMeshGroup() mesh_group.init_data(br_mesh_group) self.mesh_groups.append(mesh_group) def get_bone_range(self) -> Tuple[int, int]: if not (self.mesh_groups and self.mesh_groups[0].meshes and self.mesh_groups[0].meshes[0].bone_type != NudBoneType.NoBones): return (0, 0) lower = 0xFF_FF higher = 0 for mesh in [m for m in self.mesh_groups[0].meshes if m.vertices and m.vertices[0].bone_ids]: lower = min(lower, min(chain(*map(lambda x: x.bone_ids, mesh.vertices)))) higher = max(higher, max(chain(*map(lambda x: x.bone_ids, mesh.vertices)))) if lower > higher: return (0, 0) return (lower, higher) class NudMeshGroup: name: str meshes: List['NudMesh'] def init_data(self, br_mesh_group: BrNudMeshGroup): self.name = br_mesh_group.name self.bone_flags = br_mesh_group.boneFlags self.bounding_sphere = br_mesh_group.boundingSphere self.meshes = list() for br_mesh in br_mesh_group.meshes: mesh = NudMesh() mesh.init_data(br_mesh) self.meshes.append(mesh) class NudMesh: MAX_VERTICES = 32_767 MAX_FACES = 16_383 vertices: List['NudVertex'] faces: List[Tuple[int, int, int]] materials: List['NudMaterial'] vertex_type: NudVertexType bone_type: NudBoneType uv_type: NudUvType def init_data(self, br_mesh: BrNudMesh): self.add_vertices(br_mesh.vertices) self.add_faces(br_mesh.faces, br_mesh.faceSize) self.add_materials(br_mesh.materials) self.vertex_type = NudVertexType(br_mesh.vertexSize & 0x0F) self.bone_type = NudBoneType(br_mesh.vertexSize & 0xF0) self.uv_type = NudUvType(br_mesh.uvSize & 0x0F) self.face_flag = br_mesh.faceFlag def has_bones(self): return bool(self.vertices and self.vertices[0].bone_ids) def has_color(self): return bool(self.vertices and self.vertices[0].color) def get_uv_channel_count(self): return len(self.vertices[0].uv) if bool(self.vertices and self.vertices[0].uv) else 0 def add_vertices(self, vertices: List[BrNudVertex]): self.vertices = list() for br_vertex in vertices: vertex = NudVertex() vertex.init_data(br_vertex) self.vertices.append(vertex) def add_faces(self, faces: List[int], faceSize: int): faces = iter(faces) if faceSize & 0x40: # 0x40 format does not have -1 indices nor changing directions self.faces = zip(faces, faces, faces) return self.faces = list() start_dir = 1 f1 = next(faces) f2 = next(faces) face_dir = start_dir try: while True: f3 = next(faces) if f3 == -1: f1 = next(faces) f2 = next(faces) face_dir = start_dir else: face_dir = -face_dir if f1 != f2 != f3: if face_dir > 0: self.faces.append((f3, f2, f1)) else: self.faces.append((f2, f3, f1)) f1 = f2 f2 = f3 except StopIteration: pass def add_materials(self, materials: List[BrNudMaterial]): self.materials = list() for br_material in materials: material = NudMaterial() material.init_data(br_material) self.materials.append(material) class NudVertex: position: Tuple[float, float, float] normal: Tuple[float, float, float] bitangent: Tuple[float, float, float] tangent: Tuple[float, float, float] color: Tuple[int, int, int, int] uv: List[Tuple[float, float]] bone_ids: Tuple[int, int, int, int] bone_weights: Tuple[float, float, float, float] def init_data(self, br_vertex: BrNudVertex): self.position = br_vertex.position self.normal = br_vertex.normals self.bitangent = br_vertex.biTangents if br_vertex.biTangents else None self.tangent = br_vertex.tangents if br_vertex.tangents else None self.color = tuple(map(lambda x: int(x), br_vertex.color)) if br_vertex.color else None self.uv = br_vertex.uv self.bone_ids = br_vertex.boneIds self.bone_weights = br_vertex.boneWeights def __eq__(self, o: 'NudVertex') -> bool: return all(map(lambda x, y: x == y, self.position, o.position)) \ and all(map(lambda x, y: x == y, self.normal, o.normal)) \ and all(map(lambda x, y: all(map(lambda a, b: a == b, x, y)), self.uv, o.uv)) \ and all(map(lambda x, y: x == y, self.tangent, o.tangent)) \ and all(map(lambda x, y: x == y, self.bitangent, o.bitangent)) \ and all(map(lambda x, y: x == y, self.color, o.color)) \ and all(map(lambda x, y: x == y, self.bone_ids, o.bone_ids)) \ and all(map(lambda x, y: x == y, self.bone_weights, o.bone_weights)) def __hash__(self) -> int: return hash(tuple(self.position)) ^ hash(tuple(self.normal)) ^ hash(tuple(self.color)) ^ hash(tuple(self.uv)) class NudMaterial: def init_data(self, material: BrNudMaterial): self.flags = material.flags self.sourceFactor = material.sourceFactor self.destFactor = material.destFactor self.alphaTest = material.alphaTest self.alphaFunction = material.alphaFunction self.refAlpha = material.refAlpha self.cullMode = material.cullMode self.unk1 = material.unk1 self.unk2 = material.unk2 self.zBufferOffset = material.zBufferOffset self.textures = list() for br_texture in material.textures: texture = NudMaterialTexture() texture.init_data(br_texture) self.textures.append(texture) self.properties = list() for br_property in [p for p in material.properties if p.name]: property = NudMaterialProperty() property.init_data(br_property) self.properties.append(property) class NudMaterialTexture: def init_data(self, texture: BrNudMaterialTexture): self.unk0 = texture.unk0 self.mapMode = texture.mapMode self.wrapModeS = texture.wrapModeS self.wrapModeT = texture.wrapModeT self.minFilter = texture.minFilter self.magFilter = texture.magFilter self.mipDetail = texture.mipDetail self.unk1 = texture.unk1 self.unk2 = texture.unk2 class NudMaterialProperty: def init_data(self, property: BrNudMaterialProperty): self.name = property.name self.values: List[float] = property.values
32.642857
117
0.607358
7,206
0.985503
0
0
0
0
0
0
132
0.018053
8d92051bcbbae105ab8b259c257c80d404e8f4eb
2,389
py
Python
src/attack_surface_pypy/__main__.py
ccrvs/attack_surface_pypy
f2bc9998cf42f4764f1c495e6243d970e01bd176
[ "CC0-1.0" ]
null
null
null
src/attack_surface_pypy/__main__.py
ccrvs/attack_surface_pypy
f2bc9998cf42f4764f1c495e6243d970e01bd176
[ "CC0-1.0" ]
null
null
null
src/attack_surface_pypy/__main__.py
ccrvs/attack_surface_pypy
f2bc9998cf42f4764f1c495e6243d970e01bd176
[ "CC0-1.0" ]
null
null
null
import argparse import gc import pathlib import sys import typing import uvicorn # type: ignore from attack_surface_pypy import __service_name__, __version__, asgi from attack_surface_pypy import logging as app_logging from attack_surface_pypy import settings # logger = structlog.get_logger() gc.disable() parser = argparse.ArgumentParser(description="App initial arguments.", prog=__service_name__) parser.add_argument( "-f", "--file-path", help="provide path to a file with initial data.", type=pathlib.Path, metavar=".fixtures/xxx.json", required=True, choices=[ pathlib.Path(".fixtures/input-1.json"), pathlib.Path(".fixtures/input-2.json"), pathlib.Path(".fixtures/input-3.json"), pathlib.Path(".fixtures/input-4.json"), pathlib.Path(".fixtures/input-5.json"), ], ) parser.add_argument( "-n", "--host", help="set host for the service.", type=str, metavar="localhost", ) parser.add_argument( "-p", "--port", type=int, help="set port for the service.", ) parser.add_argument( "-v", "--version", action="version", version=f"%(prog)s {__version__}", ) def run_uvicorn(app_settings: settings.Settings, log_config: typing.Optional[dict] = None): uvicorn.run( asgi.create_app(app_settings), # loop='uvloop', http="httptools", host=app_settings.service.host, port=app_settings.service.port, log_config=log_config or {}, reload=app_settings.autoreload, debug=app_settings.debug, access_log=app_settings.debug, backlog=app_settings.backlog, factory=True, ) if __name__ == "__main__": ns = parser.parse_args() domain_settings = settings.Domain(file_path=ns.file_path) service_settings = settings.Service() if ns.host or ns.port: service_settings = settings.Service(host=ns.host, port=ns.port) app_settings = settings.Settings(domain=domain_settings, service=service_settings) log_config = app_logging.LoggingConfig( log_level=app_settings.log_level, traceback_depth=app_settings.traceback_depth ).prepare_logger() # context = types.Context(file_path=ns.file_path, host=ns.host, port=ns.port) # TODO: update settings from args? sys.exit(run_uvicorn(app_settings, log_config)) # TODO: hardcoded name, awry fabric
29.493827
117
0.686061
0
0
0
0
0
0
0
0
594
0.24864
8d92eb64df1700c877aeea998c716029d6df8ce0
391
py
Python
subscriptions/migrations/0004_auto_20200630_1157.py
Naveendata-ux/tor_redesign
e4b5135f8b4134527ad04a097bdffd9d956d9858
[ "BSD-2-Clause" ]
null
null
null
subscriptions/migrations/0004_auto_20200630_1157.py
Naveendata-ux/tor_redesign
e4b5135f8b4134527ad04a097bdffd9d956d9858
[ "BSD-2-Clause" ]
null
null
null
subscriptions/migrations/0004_auto_20200630_1157.py
Naveendata-ux/tor_redesign
e4b5135f8b4134527ad04a097bdffd9d956d9858
[ "BSD-2-Clause" ]
null
null
null
# Generated by Django 2.2.5 on 2020-06-30 11:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('subscriptions', '0003_auto_20200630_1156'), ] operations = [ migrations.RenameField( model_name='subscriptionplan', old_name='Account_type', new_name='account_type', ), ]
20.578947
53
0.613811
306
0.782609
0
0
0
0
0
0
133
0.340153
8d9365bf3bc3b96e70ffdbc229d46a96e3d6b3fd
545
py
Python
Random_Colored/main.py
usamaahsan93/mischief-managed
824022ecaeda46450ca1029bceb39f194c363138
[ "MIT" ]
null
null
null
Random_Colored/main.py
usamaahsan93/mischief-managed
824022ecaeda46450ca1029bceb39f194c363138
[ "MIT" ]
null
null
null
Random_Colored/main.py
usamaahsan93/mischief-managed
824022ecaeda46450ca1029bceb39f194c363138
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 2 16:54:10 2021 @author: sdn1 """ class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' import numpy as np import os i=0 while(i<1): 1/0 print(bcolors.OKGREEN + chr(np.random.randint(250,400)) + bcolors.ENDC, end='') os.system('python $(pwd)/main.py') i=i+1 print(i)
17.03125
83
0.552294
226
0.414679
0
0
0
0
0
0
215
0.394495
8d93c9fb2121a519402ceb1deef23ae520c7fdfe
1,717
py
Python
utils/event_store_rebuilder_for_segments.py
initialed85/eds-cctv-system
fcdb7e7e23327bf3a901d23d506b3915833027d1
[ "MIT" ]
null
null
null
utils/event_store_rebuilder_for_segments.py
initialed85/eds-cctv-system
fcdb7e7e23327bf3a901d23d506b3915833027d1
[ "MIT" ]
null
null
null
utils/event_store_rebuilder_for_segments.py
initialed85/eds-cctv-system
fcdb7e7e23327bf3a901d23d506b3915833027d1
[ "MIT" ]
null
null
null
import datetime from pathlib import Path from typing import Optional, Tuple from .common import _IMAGE_SUFFIXES, _PERMITTED_EXTENSIONS, PathDetails, rebuild_event_store def parse_path(path: Path, tzinfo: datetime.tzinfo) -> Optional[PathDetails]: if path.suffix.lower() not in _PERMITTED_EXTENSIONS: return None if path.name.lower().startswith("event"): raise ValueError("cannot process events; only segments") parts = path.name.split('_') timestamp = datetime.datetime.strptime(f'{parts[1]}_{parts[2]}', "%Y-%m-%d_%H-%M-%S") timestamp = timestamp.replace(tzinfo=tzinfo) camera_name = parts[3].split('.')[0] if camera_name.endswith('-lowres'): camera_name = camera_name.split('-lowres')[0] return PathDetails( path=path, event_id=None, camera_id=None, timestamp=timestamp, camera_name=camera_name, is_image=path.suffix.lower() in _IMAGE_SUFFIXES, is_lowres="-lowres" in path.name.lower(), ) def _get_key(path_details: PathDetails) -> Tuple[str, str]: return ( path_details.camera_name, path_details.timestamp.strftime("%Y-%m-%d %H:%M:%S") ) if __name__ == "__main__": import argparse from dateutil.tz import tzoffset parser = argparse.ArgumentParser() parser.add_argument("-r", "--root-path", type=str, required=True) parser.add_argument("-j", "--json-path", type=str, required=True) args = parser.parse_args() rebuild_event_store( root_path=args.root_path, tzinfo=tzoffset(name="WST-8", offset=8 * 60 * 60), json_path=args.json_path, parse_method=parse_path, get_key_methods=[_get_key] )
28.616667
92
0.663366
0
0
0
0
0
0
0
0
191
0.111241
8d9464e17bd59a5730ae1d8d76d451408c780a27
4,049
py
Python
python/src/main/python/common/threadctl.py
esnet/netshell
4cb010b63e72610cf81112b29587d3e980612333
[ "BSD-3-Clause-LBNL" ]
6
2016-02-17T16:31:55.000Z
2021-03-16T20:17:41.000Z
python/src/main/python/common/threadctl.py
esnet/netshell
4cb010b63e72610cf81112b29587d3e980612333
[ "BSD-3-Clause-LBNL" ]
27
2016-04-11T19:49:04.000Z
2016-07-14T06:05:52.000Z
python/src/main/python/common/threadctl.py
esnet/netshell
4cb010b63e72610cf81112b29587d3e980612333
[ "BSD-3-Clause-LBNL" ]
1
2017-07-31T19:30:50.000Z
2017-07-31T19:30:50.000Z
# ESnet Network Operating System (ENOS) Copyright (c) 2015, The Regents # of the University of California, through Lawrence Berkeley National # Laboratory (subject to receipt of any required approvals from the # U.S. Dept. of Energy). All rights reserved. # # If you have questions about your rights to use or distribute this # software, please contact Berkeley Lab's Innovation & Partnerships # Office at [email protected]. # # NOTICE. This Software was developed under funding from the # U.S. Department of Energy and the U.S. Government consequently retains # certain rights. As such, the U.S. Government has been granted for # itself and others acting on its behalf a paid-up, nonexclusive, # irrevocable, worldwide license in the Software to reproduce, # distribute copies to the public, prepare derivative works, and perform # publicly and display publicly, and to permit other to do so. from java.lang import Thread, ThreadGroup import jarray rootThreadGroup = None def getRootThreadGroup(): global rootThreadGroup if rootThreadGroup != None: return rootThreadGroup tg = Thread.currentThread().getThreadGroup() ptg = tg.getParent() while ptg != None: tg = ptg ptg = tg.getParent() return tg def getThreadGroup(name): groups = getAllThreadGroups() for group in groups: if group.getName().equals(name): return group; return None; def getAllThreadGroups(): root = getRootThreadGroup() nbGroups = root.activeGroupCount() groups = None while True: groups = jarray.zeros(nbGroups, ThreadGroup) n = root.enumerate(groups, True) if n == nbGroups: nbGroups *= 2 else: nbGroups = n break return groups[0:(len(groups) - nbGroups) * -1] def getAllThreads(match=None): root = getRootThreadGroup() nbThreads = root.activeGroupCount() threads = None while True: threads = jarray.zeros(nbThreads, Thread) n = root.enumerate(threads, True) if n == nbThreads: nbThreads *= 2 else: nbThreads = n break threads = threads[0:(len(threads) - nbThreads) * -1] if match != None: filtered = [] for thread in threads: if match in thread.getName(): filtered.append(thread) threads = filtered return threads def getThread(id): threads = getAllThreads() for thread in threads: if thread.getId() == id: return thread return None def displayThread(thread, stack=True): name = thread.getName() print "Thread id=",thread.getId(),name print " Stack Trace:\n" if stack: st = thread.getStackTrace() index = len(st) for trace in st: print " ",index, trace def print_syntax(): print print "threadctl <cmd> <cmds options>" print "Java Threads tool" print " Commands are:" print "\thelp" print "\tPrints this help." print "\tshow-thread <tid | all> [grep <string>] Displays a thread by its id or all threads" print "\t\tAn optional string to match can be provided." print "\tshow-threadgroup all [grep <string>] Displays all thread groups." print "\t\tAn optional string to match can be provided." if __name__ == '__main__': argv = sys.argv if len(argv) == 1: print_syntax() sys.exit() cmd = argv[1] if cmd == "help": print_syntax() elif cmd == "show-thread": gri = argv[2] if gri == 'all': match = None if 'grep' in argv: match = argv[4] threads = getAllThreads(match=match) if threads != None: for thread in threads: displayThread(thread=thread) print else: thread = getThread(long(argv[2])) if (thread == None): print "unknown",argv[2] sys.exit() displayThread(thread)
29.772059
96
0.613732
0
0
0
0
0
0
0
0
1,306
0.322549
8d94db8d2bb9acc8dbec349c6766ca408545196a
599
py
Python
python/distance/HaversineDistanceInMiles.py
jigneshoo7/AlgoBook
8aecc9698447c0ee561a1c90d5c5ab87c4a07b79
[ "MIT" ]
191
2020-09-28T10:00:20.000Z
2022-03-06T14:36:55.000Z
python/distance/HaversineDistanceInMiles.py
jigneshoo7/AlgoBook
8aecc9698447c0ee561a1c90d5c5ab87c4a07b79
[ "MIT" ]
210
2020-09-28T10:06:36.000Z
2022-03-05T03:44:24.000Z
python/distance/HaversineDistanceInMiles.py
jigneshoo7/AlgoBook
8aecc9698447c0ee561a1c90d5c5ab87c4a07b79
[ "MIT" ]
320
2020-09-28T09:56:14.000Z
2022-02-12T16:45:57.000Z
import math def distanceInMilesOrKilos(milesOrKilos,originLat,originLon,destinationLat,destinationLon): radius = 3959 if milesOrKilos == "miles" else 6371 lat1 = originLat lat2 = destinationLat lon1 = originLon lon2 = destinationLon dlat = math.radians(lat2 - lat1) dlon = math.radians(lon2 - lon1) a = (math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2)) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) distance = radius * c return distance
33.277778
153
0.651085
0
0
0
0
0
0
0
0
7
0.011686
8d95a5da0117840ab07b75457380a92375c5347d
8,837
py
Python
i2i/util.py
thorwhalen/i2i
f967aaba28793029e3fe643c5e17ae9bc7a77732
[ "Apache-2.0" ]
1
2019-08-29T01:35:12.000Z
2019-08-29T01:35:12.000Z
i2i/util.py
thorwhalen/i2i
f967aaba28793029e3fe643c5e17ae9bc7a77732
[ "Apache-2.0" ]
null
null
null
i2i/util.py
thorwhalen/i2i
f967aaba28793029e3fe643c5e17ae9bc7a77732
[ "Apache-2.0" ]
null
null
null
from __future__ import division import inspect import types from functools import wraps function_type = type(lambda x: x) # using this instead of callable() because classes are callable, for instance class NoDefault(object): def __repr__(self): return 'no_default' no_default = NoDefault() class imdict(dict): def __hash__(self): return id(self) def _immutable(self, *args, **kws): raise TypeError('object is immutable') __setitem__ = _immutable __delitem__ = _immutable clear = _immutable update = _immutable setdefault = _immutable pop = _immutable popitem = _immutable def inject_method(self, method_function, method_name=None): """ method_function could be: * a function * a {method_name: function, ...} dict (for multiple injections) * a list of functions or (function, method_name) pairs """ if isinstance(method_function, function_type): if method_name is None: method_name = method_function.__name__ setattr(self, method_name, types.MethodType(method_function, self)) else: if isinstance(method_function, dict): method_function = [(func, func_name) for func_name, func in method_function.items()] for method in method_function: if isinstance(method, tuple) and len(method) == 2: self = inject_method(self, method[0], method[1]) else: self = inject_method(self, method) return self def transform_args(**trans_func_for_arg): """ Make a decorator that transforms function arguments before calling the function. For example: * original argument: a relative path --> used argument: a full path * original argument: a pickle filepath --> used argument: the loaded object :param rootdir: rootdir to be used for all name arguments of target function :param name_arg: the position (int) or argument name of the argument containing the name :return: a decorator >>> def f(a, b, c): ... return "a={a}, b={b}, c={c}".format(a=a, b=b, c=c) >>> >>> print(f('foo', 'bar', 3)) a=foo, b=bar, c=3 >>> ff = transform_args()(f) >>> print(ff('foo', 'bar', 3)) a=foo, b=bar, c=3 >>> ff = transform_args(a=lambda x: 'ROOT/' + x)(f) >>> print(ff('foo', 'bar', 3)) a=ROOT/foo, b=bar, c=3 >>> ff = transform_args(b=lambda x: 'ROOT/' + x)(f) >>> print(ff('foo', 'bar', 3)) a=foo, b=ROOT/bar, c=3 >>> ff = transform_args(a=lambda x: 'ROOT/' + x, b=lambda x: 'ROOT/' + x)(f) >>> print(ff('foo', b='bar', c=3)) a=ROOT/foo, b=ROOT/bar, c=3 """ def transform_args_decorator(func): if len(trans_func_for_arg) == 0: # if no transformations were specified... return func # just return the function itself else: @wraps(func) def transform_args_wrapper(*args, **kwargs): # get a {argname: argval, ...} dict from *args and **kwargs # Note: Didn't really need an if/else here but... # Note: ... assuming getcallargs gives us an overhead that can be avoided if there's only keyword args. if len(args) > 0: val_of_argname = inspect.getcallargs(func, *args, **kwargs) else: val_of_argname = kwargs # apply transform functions to argument values for argname, trans_func in trans_func_for_arg.items(): val_of_argname[argname] = trans_func(val_of_argname[argname]) # call the function with transformed values return func(**val_of_argname) return transform_args_wrapper return transform_args_decorator def resolve_filepath_of_name(name_arg=None, rootdir=''): """ Make a decorator that applies a function to an argument before using it. For example: * original argument: a relative path --> used argument: a full path * original argument: a pickle filepath --> used argument: the loaded object :param rootdir: rootdir to be used for all name arguments of target function :param name_arg: the position (int) or argument name of the argument containing the name :return: a decorator >>> def f(a, b, c): ... return "a={a}, b={b}, c={c}".format(a=a, b=b, c=c) >>> >>> print(f('foo', 'bar', 3)) a=foo, b=bar, c=3 >>> ff = resolve_filepath_of_name()(f) >>> print(ff('foo', 'bar', 3)) a=foo, b=bar, c=3 >>> ff = resolve_filepath_of_name('a', 'ROOT')(f) >>> print(ff('foo', 'bar', 3)) a=ROOT/foo, b=bar, c=3 >>> ff = resolve_filepath_of_name('b', 'ROOT')(f) >>> print(ff('foo', 'bar', 3)) a=foo, b=ROOT/bar, c=3 """ if name_arg is not None: return transform_args(**{name_arg: lambda x: os.path.join(rootdir, x)}) else: return lambda x: x def arg_dflt_dict_of_callable(f): """ Get a {arg_name: default_val, ...} dict from a callable. See also :py:mint_of_callable: :param f: A callable (function, method, ...) :return: """ argspec = inspect.getfullargspec(f) args = argspec.args or [] defaults = argspec.defaults or [] return {arg: dflt for arg, dflt in zip(args, [no_default] * (len(args) - len(defaults)) + list(defaults))} def add_self_as_first_argument(func): @wraps(func) def wrapped_func(self, *args, **kwargs): return func(*args, **kwargs) return wrapped_func def add_cls_as_first_argument(func): @wraps(func) def wrapped_func(cls, *args, **kwargs): return func(*args, **kwargs) return wrapped_func def infer_if_function_might_be_intended_as_a_classmethod_or_staticmethod(func): """ Tries to infer if the input function is a 'classmethod' or 'staticmethod' (or just 'normal') When is that? When: * the function's first argument is called 'cls' and has no default: 'classmethod' * the function's first argument is called 'self' and has no default: 'staticmethod' * otherwise: 'normal' >>> def a_normal_func(x, y=None): ... pass >>> def a_func_that_is_probably_a_classmethod(cls, y=None): ... pass >>> def a_func_that_is_probably_a_staticmethod(self, y=None): ... pass >>> def a_func_that_is_probably_a_classmethod_but_is_not(cls=3, y=None): ... pass >>> def a_func_that_is_probably_a_staticmethod_but_is_not(self=None, y=None): ... pass >>> list_of_functions = [ ... a_normal_func, ... a_func_that_is_probably_a_classmethod, ... a_func_that_is_probably_a_staticmethod, ... a_func_that_is_probably_a_classmethod_but_is_not, ... a_func_that_is_probably_a_staticmethod_but_is_not, ... ] >>> >>> for func in list_of_functions: ... print("{}: {}".format(func.__name__, ... infer_if_function_might_be_intended_as_a_classmethod_or_staticmethod(func))) ... a_normal_func: normal a_func_that_is_probably_a_classmethod: classmethod a_func_that_is_probably_a_staticmethod: staticmethod a_func_that_is_probably_a_classmethod_but_is_not: normal_with_cls a_func_that_is_probably_a_staticmethod_but_is_not: normal_with_self """ argsspec = inspect.getfullargspec(func) if len(argsspec.args) > 0: first_element_has_no_defaults = bool(len(argsspec.args) > len(argsspec.defaults)) if argsspec.args[0] == 'cls': if first_element_has_no_defaults: return 'classmethod' else: return 'normal_with_cls' elif argsspec.args[0] == 'self': if first_element_has_no_defaults: return 'staticmethod' else: return 'normal_with_self' return 'normal' def decorate_as_staticmethod_or_classmethod_if_needed(func): type_of_func = infer_if_function_might_be_intended_as_a_classmethod_or_staticmethod(func) if type_of_func == 'classmethod': return classmethod(func) elif type_of_func == 'staticmethod': return staticmethod(func) elif type_of_func == 'normal': return func if __name__ == '__main__': import os import re key_file_re = re.compile('setup.py') def dir_is_a_pip_installable_dir(dirpath): return any(filter(key_file_re.match, os.listdir(dirpath))) rootdir = '/D/Dropbox/dev/py/proj' cumul = list() for f in filter(lambda x: not x.startswith('.'), os.listdir(rootdir)): filepath = os.path.join(rootdir, f) if os.path.isdir(filepath): if dir_is_a_pip_installable_dir(filepath): cumul.append(filepath) for f in cumul: print(f)
34.928854
119
0.629965
411
0.046509
0
0
1,020
0.115424
0
0
4,598
0.520312
8d97b86230f6560f3cd37b723cba275b3f968cb2
1,635
py
Python
setup.py
robflintham/mippy
e642c697202acc5b96b42f62204786bf5e705c9a
[ "BSD-3-Clause" ]
null
null
null
setup.py
robflintham/mippy
e642c697202acc5b96b42f62204786bf5e705c9a
[ "BSD-3-Clause" ]
null
null
null
setup.py
robflintham/mippy
e642c697202acc5b96b42f62204786bf5e705c9a
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) def get_version(): import mippy return mippy.__version__ def test_version(): version = get_version() import datetime import os # Get timestamp for __init__.pyc version_time = datetime.datetime.fromtimestamp(os.path.getmtime(r'mippy\__init__.pyc')) other_times = [] for root, dirs, files in os.walk('mippy'): for f in files: fpath = os.path.join(root,f) lastdir = os.path.split(os.path.split(fpath)[0])[1] if os.path.splitext(fpath)[1]=='.py' or lastdir=='resources': other_times.append(datetime.datetime.fromtimestamp(os.path.getmtime(fpath))) code_changed = False for tstamp in other_times: ## print tstamp, version_time, tstamp>version_time if tstamp>version_time: code_changed = True break if code_changed: print "CANNOT COMPILE - VERSION NUMBER OUTDATED" import sys sys.exit() return # Test version numbering before running setup test_version() setup( name='MIPPY', version=get_version(), description='Modular Image Processing in Python', author='Robert Flintham', author_email='[email protected]', install_requires=['numpy','scipy','dicom','pillow','nibabel','matplotlib'], license='BSD-3-Clause', classifiers=[ 'Programming Language :: Python :: 2.7', ], packages=['mippy','mippy.mdicom','mippy.mviewer'], package_data={'':['resources/*','mviewer/config']} )
29.727273
92
0.666055
0
0
0
0
0
0
0
0
499
0.305199
8d98eec2f752514e211b3f9e607274f2de78ffd9
3,543
py
Python
physprog/tests/test_sample_problem.py
partofthething/physprog
8bbeb8d84697469417577c76c924dcb3a855cd2d
[ "Apache-2.0" ]
3
2018-03-25T16:13:53.000Z
2021-06-29T14:30:20.000Z
physprog/tests/test_sample_problem.py
partofthething/physprog
8bbeb8d84697469417577c76c924dcb3a855cd2d
[ "Apache-2.0" ]
null
null
null
physprog/tests/test_sample_problem.py
partofthething/physprog
8bbeb8d84697469417577c76c924dcb3a855cd2d
[ "Apache-2.0" ]
2
2021-09-18T08:38:32.000Z
2022-03-01T07:43:52.000Z
"""Run a sample problem to test full system.""" # pylint: disable=invalid-name,missing-docstring import unittest from collections import namedtuple import math import os from physprog import classfunctions from physprog import optimize THIS_DIR = os.path.dirname(__file__) SAMPLE_INPUT = os.path.join(THIS_DIR, 'sample-input.yaml') class TestInput(unittest.TestCase): """Test that input can be read.""" def test_read_class_functions(self): functions = classfunctions.from_input(SAMPLE_INPUT) self.assertTrue('frequency' in functions) class Test_Sample_Problem(unittest.TestCase): """Test by optimizing a beam problem from the literature.""" def test_optimization(self): beam = SampleProblemBeam() # check initial conditions self.assertAlmostEqual(beam.frequency(), 113.0, delta=0.5) self.assertAlmostEqual(beam.cost(), 1060.0) self.assertAlmostEqual(beam.mass(), 2230.0) prefs = classfunctions.from_input(SAMPLE_INPUT) optimize.optimize(beam, prefs, plot=False) # not rigorous, but happens in this problem self.assertLess(beam.cost(), 1060.0) SampleDesign = namedtuple('SampleDesign', ['d1', 'd2', 'd3', 'b', 'L']) class SampleProblemBeam(object): """Sample beam design problem from Messac, 1996.""" E1 = 1.6e9 C1 = 500.0 RHO1 = 100.0 E2 = 70e9 C2 = 1500.0 RHO2 = 2770.0 E3 = 200e9 C3 = 800.0 RHO3 = 7780.0 def __init__(self): self._design = SampleDesign(0.3, 0.35, 0.40, 0.40, 5.0) # initial def evaluate(self, x=None): """Convert input design into output design parameters.""" if x is not None: self.design = x return [self.frequency(), self.cost(), self.width(), self.length(), self.mass(), self.semiheight(), self.width_layer1(), self.width_layer2(), self.width_layer3()] @property def design(self): return self._design @design.setter def design(self, val): self._design = SampleDesign(*val) @property def ei(self): ds = self.design return 2.0 / 3.0 * ds.b * (self.E1 * ds.d1 ** 3 + self.E2 * (ds.d2 ** 3 - ds.d1 ** 3) + self.E3 * (ds.d3 ** 3 - ds.d2 ** 3)) @property def mu(self): ds = self.design return 2 * ds.b * (self.RHO1 * ds.d1 + self.RHO2 * (ds.d2 - ds.d1) + self.RHO3 * (ds.d3 - ds.d2)) def frequency(self): return math.pi / (2 * self.design.L ** 2) * math.sqrt(self.ei / self.mu) def cost(self): ds = self.design # cost in the paper says 1060 but I'm getting 212, exactly a # factor of 5 off. But why?? Ah, because cost should have L in it! # That's a typo in the paper. return 2 * ds.b * ds.L * (self.C1 * ds.d1 + self.C2 * (ds.d2 - ds.d1) + self.C3 * (ds.d3 - ds.d2)) def width(self): return self.design.b def length(self): return self.design.L def mass(self): return self.mu * self.design.L def semiheight(self): return self.design.d3 def width_layer1(self): return self.design.d1 def width_layer2(self): return self.design.d2 - self.design.d1 def width_layer3(self): return self.design.d3 - self.design.d2 if __name__ == '__main__': unittest.main()
28.804878
80
0.582275
3,075
0.867909
0
0
609
0.171888
0
0
602
0.169913
8d99f51b98aee394d6e4b4f62dcc6cdca1b6db1f
10,131
py
Python
tutorials/seq2seq_sated/seq2seq_sated_meminf.py
rizwandel/ml_privacy_meter
5dc4c300eadccceadd0e664a7e46099f65728628
[ "MIT" ]
294
2020-04-13T18:32:45.000Z
2022-03-31T10:32:34.000Z
tutorials/seq2seq_sated/seq2seq_sated_meminf.py
kypomon/ml_privacy_meter
c0324e8f74cbd0cde0643a7854fa66eab47bbe53
[ "MIT" ]
26
2020-04-29T19:56:21.000Z
2022-03-31T10:42:24.000Z
tutorials/seq2seq_sated/seq2seq_sated_meminf.py
kypomon/ml_privacy_meter
c0324e8f74cbd0cde0643a7854fa66eab47bbe53
[ "MIT" ]
50
2020-04-16T02:16:24.000Z
2022-03-16T00:37:40.000Z
import os import sys from collections import defaultdict import tensorflow as tf import tensorflow.keras.backend as K import numpy as np import scipy.stats as ss import matplotlib.pyplot as plt from sklearn.metrics import roc_curve from sklearn.linear_model import LogisticRegression from utils import process_texts, load_texts, load_users, load_sated_data_by_user, \ build_nmt_model, words_to_indices, \ SATED_TRAIN_USER, SATED_TRAIN_FR, SATED_TRAIN_ENG MODEL_PATH = 'checkpoints/model/' OUTPUT_PATH = 'checkpoints/output/' tf.compat.v1.disable_eager_execution() # ================================ GENERATE RANKS ================================ # # Code adapted from https://github.com/csong27/auditing-text-generation def load_train_users_heldout_data(train_users, src_vocabs, trg_vocabs, user_data_ratio=0.5): src_users = load_users(SATED_TRAIN_USER) train_src_texts = load_texts(SATED_TRAIN_ENG) train_trg_texts = load_texts(SATED_TRAIN_FR) user_src_texts = defaultdict(list) user_trg_texts = defaultdict(list) for u, s, t in zip(src_users, train_src_texts, train_trg_texts): if u in train_users: user_src_texts[u].append(s) user_trg_texts[u].append(t) assert 0. < user_data_ratio < 1. # Hold out some fraction of data for testing for u in user_src_texts: l = len(user_src_texts[u]) l = int(l * user_data_ratio) user_src_texts[u] = user_src_texts[u][l:] user_trg_texts[u] = user_trg_texts[u][l:] for u in train_users: process_texts(user_src_texts[u], src_vocabs) process_texts(user_trg_texts[u], trg_vocabs) return user_src_texts, user_trg_texts def rank_lists(lists): ranks = np.empty_like(lists) for i, l in enumerate(lists): ranks[i] = ss.rankdata(l, method='min') - 1 return ranks def get_ranks(user_src_data, user_trg_data, pred_fn, save_probs=False): indices = np.arange(len(user_src_data)) """ Get ranks from prediction vectors. """ ranks = [] labels = [] probs = [] for idx in indices: src_text = np.asarray(user_src_data[idx], dtype=np.float32).reshape(1, -1) trg_text = np.asarray(user_trg_data[idx], dtype=np.float32) trg_input = trg_text[:-1].reshape(1, -1) trg_label = trg_text[1:].reshape(1, -1) prob = pred_fn([src_text, trg_input, trg_label, 0])[0][0] if save_probs: probs.append(prob) all_ranks = rank_lists(-prob) sent_ranks = all_ranks[np.arange(len(all_ranks)), trg_label.flatten().astype(int)] ranks.append(sent_ranks) labels.append(trg_label.flatten()) if save_probs: return probs return ranks, labels def save_users_rank_results(users, user_src_texts, user_trg_texts, src_vocabs, trg_vocabs, prob_fn, save_dir, member_label=1, cross_domain=False, save_probs=False, mask=False, rerun=False): """ Save user ranks in the appropriate format for attacks. """ for i, u in enumerate(users): save_path = save_dir + 'rank_u{}_y{}{}.npz'.format(i, member_label, '_cd' if cross_domain else '') prob_path = save_dir + 'prob_u{}_y{}{}.npz'.format(i, member_label, '_cd' if cross_domain else '') if os.path.exists(save_path) and not save_probs and not rerun: continue user_src_data = words_to_indices(user_src_texts[u], src_vocabs, mask=mask) user_trg_data = words_to_indices(user_trg_texts[u], trg_vocabs, mask=mask) rtn = get_ranks(user_src_data, user_trg_data, prob_fn, save_probs=save_probs) if save_probs: probs = rtn np.savez(prob_path, probs) else: ranks, labels = rtn[0], rtn[1] np.savez(save_path, ranks, labels) if (i + 1) % 500 == 0: sys.stderr.write('Finishing saving ranks for {} users'.format(i + 1)) def get_target_ranks(num_users=200, num_words=5000, mask=False, h=128, emb_h=128, user_data_ratio=0., tied=False, save_probs=False): """ Get ranks of target machine translation model. """ user_src_texts, user_trg_texts, test_user_src_texts, test_user_trg_texts, src_vocabs, trg_vocabs \ = load_sated_data_by_user(num_users, num_words, test_on_user=True, user_data_ratio=user_data_ratio) train_users = sorted(user_src_texts.keys()) test_users = sorted(test_user_src_texts.keys()) # Get model save_dir = OUTPUT_PATH + 'target_{}{}/'.format(num_users, '_dr' if 0. < user_data_ratio < 1. else '') if not os.path.exists(save_dir): os.mkdir(save_dir) model_path = 'sated_nmt'.format(num_users) if 0. < user_data_ratio < 1.: model_path += '_dr{}'.format(user_data_ratio) heldout_src_texts, heldout_trg_texts = load_train_users_heldout_data(train_users, src_vocabs, trg_vocabs) for u in train_users: user_src_texts[u] += heldout_src_texts[u] user_trg_texts[u] += heldout_trg_texts[u] model = build_nmt_model(Vs=num_words, Vt=num_words, mask=mask, drop_p=0., h=h, demb=emb_h, tied=tied) model.load_weights(MODEL_PATH + '{}_{}.h5'.format(model_path, num_users)) src_input_var, trg_input_var = model.inputs prediction = model.output trg_label_var = K.placeholder((None, None), dtype='float32') # Get predictions prediction = K.softmax(prediction) prob_fn = K.function([src_input_var, trg_input_var, trg_label_var, K.learning_phase()], [prediction]) # Save user ranks for train and test dataset save_users_rank_results(users=train_users, save_probs=save_probs, user_src_texts=user_src_texts, user_trg_texts=user_trg_texts, src_vocabs=src_vocabs, trg_vocabs=trg_vocabs, cross_domain=False, prob_fn=prob_fn, save_dir=save_dir, member_label=1) save_users_rank_results(users=test_users, save_probs=save_probs, user_src_texts=test_user_src_texts, user_trg_texts=test_user_trg_texts, src_vocabs=src_vocabs, trg_vocabs=trg_vocabs, cross_domain=False, prob_fn=prob_fn, save_dir=save_dir, member_label=0) # ================================ ATTACK ================================ # def avg_rank_feats(ranks): """ Averages ranks to get features for deciding the threshold for membership inference. """ avg_ranks = [] for r in ranks: avg = np.mean(np.concatenate(r)) avg_ranks.append(avg) return avg_ranks def load_ranks_by_label(save_dir, num_users=300, cross_domain=False, label=1): """ Helper method to load ranks by train/test dataset. If label = 1, train set ranks are loaded. If label = 0, test set ranks are loaded. Ranks are generated by running sated_nmt_ranks.py. """ ranks = [] labels = [] y = [] for i in range(num_users): save_path = save_dir + 'rank_u{}_y{}{}.npz'.format(i, label, '_cd' if cross_domain else '') if os.path.exists(save_path): f = np.load(save_path, allow_pickle=True) train_rs, train_ls = f['arr_0'], f['arr_1'] ranks.append(train_rs) labels.append(train_ls) y.append(label) return ranks, labels, y def load_all_ranks(save_dir, num_users=5000, cross_domain=False): """ Loads all ranks generated by the target model. Ranks are generated by running sated_nmt_ranks.py. """ ranks = [] labels = [] y = [] # Load train ranks train_label = 1 train_ranks, train_labels, train_y = load_ranks_by_label(save_dir, num_users, cross_domain, train_label) ranks = ranks + train_ranks labels = labels + train_labels y = y + train_y # Load test ranks test_label = 0 test_ranks, test_labels, test_y = load_ranks_by_label(save_dir, num_users, cross_domain, test_label) ranks = ranks + test_ranks labels = labels + test_labels y = y + test_y return ranks, labels, np.asarray(y) def run_average_rank_thresholding(num_users=300, dim=100, prop=1.0, user_data_ratio=0., top_words=5000, cross_domain=False, rerun=False): """ Runs average rank thresholding attack on the target model. """ result_path = OUTPUT_PATH if dim > top_words: dim = top_words attack1_results_save_path = result_path + 'mi_data_dim{}_prop{}_{}{}_attack1.npz'.format( dim, prop, num_users, '_cd' if cross_domain else '') if not rerun and os.path.exists(attack1_results_save_path): f = np.load(attack1_results_save_path) X, y = [f['arr_{}'.format(i)] for i in range(4)] else: save_dir = result_path + 'target_{}{}/'.format(num_users, '_dr' if 0. < user_data_ratio < 1. else '') # Load ranks train_ranks, _, train_y = load_ranks_by_label(save_dir, num_users, label=1) test_ranks, _, test_y = load_ranks_by_label(save_dir, num_users, label=0) # Convert to average rank features train_feat = avg_rank_feats(train_ranks) test_feat = avg_rank_feats(test_ranks) # Create dataset X, y = np.concatenate([train_feat, test_feat]), np.concatenate([train_y, test_y]) np.savez(attack1_results_save_path, X, y) # print(X.shape, y.shape) # Find threshold using ROC clf = LogisticRegression() clf.fit(X.reshape(-1, 1), y) probs = clf.predict_proba(X.reshape(-1, 1)) fpr, tpr, thresholds = roc_curve(y, probs[:, 1]) plt.figure(1) plt.plot(fpr, tpr, label='Attack 1') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.savefig('sateduser_attack1_roc_curve.png') if __name__ == '__main__': num_users = 300 save_probs = False rerun = True print("Getting target ranks...") get_target_ranks(num_users=num_users, save_probs=save_probs) print("Running average rank thresholding attack...") run_average_rank_thresholding(num_users=num_users, rerun=True)
35.672535
113
0.660251
0
0
0
0
0
0
0
0
1,661
0.163952
8d9d264830cab7159205ed06b41898abec3b84f4
2,685
py
Python
app/recipe/tests/test_tags_api.py
MohamedAbdelmagid/django-recipe-api
229d3a7cff483b3cad76c70aefde6a51250b9bc8
[ "MIT" ]
null
null
null
app/recipe/tests/test_tags_api.py
MohamedAbdelmagid/django-recipe-api
229d3a7cff483b3cad76c70aefde6a51250b9bc8
[ "MIT" ]
null
null
null
app/recipe/tests/test_tags_api.py
MohamedAbdelmagid/django-recipe-api
229d3a7cff483b3cad76c70aefde6a51250b9bc8
[ "MIT" ]
null
null
null
from django.test import TestCase from django.urls import reverse from django.contrib.auth import get_user_model from rest_framework.test import APIClient from rest_framework import status from core.models import Tag from recipe.serializers import TagSerializer TAGS_URL = reverse("recipe:tag-list") class PublicTagsApiTests(TestCase): """ Test the publicly available tags API """ def setUp(self): self.client = APIClient() def test_login_required(self): """ Test that login is required for retrieving tags """ response = self.client.get(TAGS_URL) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateTagsApiTests(TestCase): """ Test the authorized user tags API """ def setUp(self): self.user = get_user_model().objects.create_user( "[email protected]", "testpassword" ) self.client = APIClient() self.client.force_authenticate(self.user) def test_retrieve_tags(self): """ Test retrieving tags """ Tag.objects.create(user=self.user, name="Dessert") Tag.objects.create(user=self.user, name="Salad") response = self.client.get(TAGS_URL) tags = Tag.objects.all().order_by("-name") serializer = TagSerializer(tags, many=True) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data, serializer.data) def test_tags_limited_to_user(self): """ Test that tags returned are for the authenticated user """ user2 = get_user_model().objects.create_user( "[email protected]", "test2password" ) Tag.objects.create(user=user2, name="Candied Yams") tag = Tag.objects.create(user=self.user, name="Soul Food") response = self.client.get(TAGS_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) self.assertEqual(response.data[0]["name"], tag.name) def test_create_tag_successful(self): """ Test creating a new tag """ payload = {'name': 'Test Tag Name'} notExists = Tag.objects.filter(user=self.user, name=payload['name']).exists() self.client.post(TAGS_URL, payload) exists = Tag.objects.filter(user=self.user, name=payload['name']).exists() self.assertTrue(exists) self.assertFalse(notExists) def test_create_tag_invalid(self): """ Test creating a new tag with invalid payload """ payload = {'name': ''} response = self.client.post(TAGS_URL, payload) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
32.349398
85
0.672998
2,376
0.884916
0
0
0
0
0
0
487
0.181378
8d9d7d5c7ee0f28e0c8877291fb904e2d8ace2db
5,736
py
Python
dtlpy/entities/annotation_definitions/cube_3d.py
dataloop-ai/dtlpy
2c73831da54686e047ab6aefd8f12a8e53ea97c2
[ "Apache-2.0" ]
10
2020-05-21T06:25:35.000Z
2022-01-07T20:34:03.000Z
dtlpy/entities/annotation_definitions/cube_3d.py
dataloop-ai/dtlpy
2c73831da54686e047ab6aefd8f12a8e53ea97c2
[ "Apache-2.0" ]
22
2019-11-17T17:25:16.000Z
2022-03-10T15:14:28.000Z
dtlpy/entities/annotation_definitions/cube_3d.py
dataloop-ai/dtlpy
2c73831da54686e047ab6aefd8f12a8e53ea97c2
[ "Apache-2.0" ]
8
2020-03-05T16:23:55.000Z
2021-12-27T11:10:42.000Z
import numpy as np # import open3d as o3d from . import BaseAnnotationDefinition # from scipy.spatial.transform import Rotation as R import logging logger = logging.getLogger(name=__name__) class Cube3d(BaseAnnotationDefinition): """ Cube annotation object """ type = "cube_3d" def __init__(self, label, position, scale, rotation, attributes=None, description=None): """ :param label: :param position: the XYZ position of the ‘center’ of the annotation. :param scale: the scale of the object by each axis (XYZ). :param rotation: an euler representation of the object rotation on each axis (with rotation order ‘XYZ’). (rotation in radians) :param attributes: :param description: """ super().__init__(description=description, attributes=attributes) self.position = position self.scale = scale self.rotation = rotation self.label = label def _translate(self, points, translate_x, translate_y, translate_z): translation_matrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [translate_x, translate_y, translate_z, 1]]) matrix = [(list(i) + [1]) for i in points] pts2 = np.dot(matrix, translation_matrix) return [pt[:3] for pt in pts2] # def make_points(self): # simple = [ # [self.scale[0] / 2, self.scale[1] / 2, self.scale[2] / 2], # [-self.scale[0] / 2, self.scale[1] / 2, self.scale[2] / 2], # [self.scale[0] / 2, -self.scale[1] / 2, self.scale[2] / 2], # [self.scale[0] / 2, self.scale[1] / 2, -self.scale[2] / 2], # [-self.scale[0] / 2, -self.scale[1] / 2, self.scale[2] / 2], # [self.scale[0] / 2, -self.scale[1] / 2, -self.scale[2] / 2], # [-self.scale[0] / 2, self.scale[1] / 2, -self.scale[2] / 2], # [-self.scale[0] / 2, -self.scale[1] / 2, -self.scale[2] / 2], # ] # # # matrix = R.from_euler('xyz', self.rotation, degrees=False) # # vecs = [np.array(p) for p in simple] # rotated = matrix.apply(vecs) # translation = np.array(self.position) # dX = translation[0] # dY = translation[1] # dZ = translation[2] # points = self._translate(rotated, dX, dY, dZ) # return points @property def geo(self): return np.asarray([ list(self.position), list(self.scale), list(self.rotation) ]) def show(self, image, thickness, with_text, height, width, annotation_format, color): """ Show annotation as ndarray :param image: empty or image to draw on :param thickness: :param with_text: not required :param height: item height :param width: item width :param annotation_format: options: list(dl.ViewAnnotationOptions) :param color: color :return: ndarray """ try: import cv2 except (ImportError, ModuleNotFoundError): self.logger.error( 'Import Error! Cant import cv2. Annotations operations will be limited. import manually and fix errors') raise points = self.make_points() front_bl = points[0] front_br = points[1] front_tr = points[2] front_tl = points[3] back_bl = points[4] back_br = points[5] back_tr = points[6] back_tl = points[7] logger.warning('the show for 3d_cube is not supported.') return image # image = np.zeros((100, 100, 100), dtype=np.uint8) # pcd = o3d.io.read_point_cloud(r"C:\Users\97250\PycharmProjects\tt\qw\3D\D34049418_0000635.las.pcd") # # o3d.visualization.draw_geometries([pcd]) # # points = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], # # [0, 1, 1], [1, 1, 1]] # lines = [[0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6], [5, 7], [6, 7], # [0, 4], [1, 5], [2, 6], [3, 7]] # colors = [[1, 0, 0] for i in range(len(lines))] # points = [back_bl, back_br, back_tl, back_tr, front_bl, front_br, front_tl, front_tr] # line_set = o3d.geometry.LineSet() # line_set.points = o3d.utility.Vector3dVector(points) # line_set.lines = o3d.utility.Vector2iVector(lines) # line_set.colors = o3d.utility.Vector3dVector(colors) # o3d.visualization.draw_geometries([line_set]) # return image def to_coordinates(self, color=None): keys = ["position", "scale", "rotation"] coordinates = {keys[idx]: {"x": float(x), "y": float(y), "z": float(z)} for idx, [x, y, z] in enumerate(self.geo)} return coordinates @staticmethod def from_coordinates(coordinates): geo = list() for key, pt in coordinates.items(): geo.append([pt["x"], pt["y"], pt["z"]]) return np.asarray(geo) @classmethod def from_json(cls, _json): if "coordinates" in _json: key = "coordinates" elif "data" in _json: key = "data" else: raise ValueError('can not find "coordinates" or "data" in annotation. id: {}'.format(_json["id"])) return cls( position=list(_json[key]['position'].values()), scale=list(_json[key]['scale'].values()), rotation=list(_json[key]['rotation'].values()), label=_json["label"], attributes=_json.get("attributes", None) )
38.496644
135
0.544107
5,550
0.966226
0
0
944
0.164345
0
0
2,950
0.513579
8d9e1079bef17b6514de9131ede3ab7099ea53a4
3,702
py
Python
my_module/tools.py
roki18d/sphinx_autogen-apidoc
67ad9c716c909d89bcd813a5fa871df8850e4fd5
[ "Apache-2.0" ]
null
null
null
my_module/tools.py
roki18d/sphinx_autogen-apidoc
67ad9c716c909d89bcd813a5fa871df8850e4fd5
[ "Apache-2.0" ]
null
null
null
my_module/tools.py
roki18d/sphinx_autogen-apidoc
67ad9c716c909d89bcd813a5fa871df8850e4fd5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 from my_module.exceptions import InvalidArgumentsError class SimpleCalculator(object): """SimpleCalculator SimpleCalculator is a simple calculator. Attributes: operator (str): String that represents operation type. Acceptable values are: {"add": addition, "sub": subtraction "mul": multiplication, "div": divide} response (dict): Response for API execution. This contains conditions (such as operands) and execution results. """ def __init__(self, operator: str) -> None: """Initialize instance Args: operator (str): """ valid_operators = ["add", "sub", "mul", "div"] if operator not in valid_operators: msg = f"Invalid operator '{operator}' was given, choose from {valid_operators}." raise InvalidArgumentsError(msg) else: self.operator = operator self.response = dict() def __add(self, num1: int, num2: int) -> None: self.response['results'] = {"sum": num1 + num2} return None def __sub(self, num1: int, num2: int) -> None: self.response['results'] = {"difference": num1 - num2} return None def __mul(self, num1: int, num2: int) -> None: self.response['results'] = {"product": num1 * num2} return None def __div(self, num1: int, num2: int) -> None: self.response['results'] = {"quotient": num1//num2, "remainder": num1%num2} return None def __handle_exceptions(self, e) -> None: self.response['results'] = {"error_message": e} return None def execute(self, num1: int, num2: int): """ Interface to execute caluculation. Args: num1 (int): 1st operand. num2 (int): 2nd operand. Returns: dict: self.response Raises: InvalidArgumentsError: Examples: >>> my_adder = SimpleCalculator(operator="add") >>> my_adder.execute(4, 2) {'operands': {'num1': 4, 'num2': 2}, 'results': {'sum': 6}} """ try: operands = {"num1": num1, "num2": num2} self.response['operands'] = operands if (not isinstance(num1, int)) or (not isinstance(num2, int)): msg = f"All operands should be integer, given: {operands}." raise InvalidArgumentsError(msg) except Exception as e: _ = self.__handle_exceptions(e) try: if self.operator == "add": _ = self.__add(num1, num2) elif self.operator == "sub": _ = self.__sub(num1, num2) elif self.operator == "mul": _ = self.__mul(num1, num2) elif self.operator == "div": _ = self.__div(num1, num2) except Exception as e: _ = self.__handle_exceptions(e) return self.response if __name__ == "__main__": my_adder = SimpleCalculator(operator="add") print('Case01:', my_adder.execute(4, 2)) print('Case02:', my_adder.execute(5, "a")) my_subtractor = SimpleCalculator(operator="sub") print('Case03:', my_subtractor.execute(3, 5)) my_multiplier = SimpleCalculator(operator="mul") print('Case04:', my_multiplier.execute(2, 7)) my_divider = SimpleCalculator(operator="div") print('Case05:', my_divider.execute(17, 5)) print('Case06:', my_divider.execute(6, 0)) print('Case07:') my_unknown = SimpleCalculator(operator="unknown") import sys; sys.exit(0)
30.85
92
0.562939
2,973
0.803079
0
0
0
0
0
0
1,400
0.378174
8da38969800ff2540723920b2ba94670badb3561
12,114
py
Python
PCA_ResNet50.py
liuyingbin19222/HSI_svm_pca_resNet50
cd95d21c81e93f8b873183f10f52416f71a93d07
[ "Apache-2.0" ]
12
2020-03-13T02:39:53.000Z
2022-02-21T03:28:33.000Z
PCA_ResNet50.py
liuyingbin19222/HSI_svm_pca_resNet50
cd95d21c81e93f8b873183f10f52416f71a93d07
[ "Apache-2.0" ]
14
2020-02-17T12:31:08.000Z
2022-02-10T01:07:05.000Z
PCA_ResNet50.py
liuyingbin19222/HSI_svm_pca_resNet50
cd95d21c81e93f8b873183f10f52416f71a93d07
[ "Apache-2.0" ]
3
2020-09-06T08:19:15.000Z
2021-03-08T10:15:40.000Z
import keras from keras.layers import Conv2D, Conv3D, Flatten, Dense, Reshape, BatchNormalization from keras.layers import Dropout, Input from keras.models import Model from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from keras.utils import np_utils from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score from operator import truediv from plotly.offline import init_notebook_mode import numpy as np import tensorflow as tf from keras import layers from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D from keras.models import Model, load_model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from keras.initializers import glorot_uniform import pydot from IPython.display import SVG import scipy.misc from matplotlib.pyplot import imshow import keras.backend as K K.set_image_data_format('channels_last') K.set_learning_phase(1) from keras.utils import to_categorical import numpy as np import matplotlib.pyplot as plt import scipy.io as sio import os import spectral ## GLOBAL VARIABLES dataset = 'IP' test_ratio = 0.8 windowSize = 25 def loadData(name): data_path = os.path.join(os.getcwd(),'data') if name == 'IP': data = sio.loadmat(os.path.join(data_path, 'Indian_pines_corrected.mat'))['indian_pines_corrected'] labels = sio.loadmat(os.path.join(data_path, 'Indian_pines_gt.mat'))['indian_pines_gt'] elif name == 'SA': data = sio.loadmat(os.path.join(data_path, 'Salinas_corrected.mat'))['salinas_corrected'] labels = sio.loadmat(os.path.join(data_path, 'Salinas_gt.mat'))['salinas_gt'] elif name == 'PU': data = sio.loadmat(os.path.join(data_path, 'PaviaU.mat'))['paviaU'] labels = sio.loadmat(os.path.join(data_path, 'PaviaU_gt.mat'))['paviaU_gt'] return data, labels def splitTrainTestSet(X, y, testRatio, randomState=345): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y) return X_train, X_test, y_train, y_test def applyPCA(X, numComponents=75): newX = np.reshape(X, (-1, X.shape[2])) pca = PCA(n_components=numComponents, whiten=True) newX = pca.fit_transform(newX) newX = np.reshape(newX, (X.shape[0],X.shape[1], numComponents)) return newX, pca def padWithZeros(X, margin=2): newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2])) x_offset = margin y_offset = margin newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X return newX # 去零 def createImageCubes(X, y, windowSize=5, removeZeroLabels = True): margin = int((windowSize - 1) / 2) zeroPaddedX = padWithZeros(X, margin=margin) # split patches patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2])) patchesLabels = np.zeros((X.shape[0] * X.shape[1])) patchIndex = 0 for r in range(margin, zeroPaddedX.shape[0] - margin): for c in range(margin, zeroPaddedX.shape[1] - margin): patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1] patchesData[patchIndex, :, :, :] = patch patchesLabels[patchIndex] = y[r-margin, c-margin] patchIndex = patchIndex + 1 if removeZeroLabels: patchesData = patchesData[patchesLabels>0,:,:,:] patchesLabels = patchesLabels[patchesLabels>0] patchesLabels -= 1 return patchesData, patchesLabels X, y = loadData(dataset) K = 30 if dataset == 'IP' else 15 X,pca = applyPCA(X,numComponents=K) X, y = createImageCubes(X, y, windowSize=windowSize) ## Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X, y, test_ratio) # print("Xtrain.shape:",Xtrain.shape) # print("ytrain.shape:",ytrain.shape) # print("ytrain:",ytrain) def convert_one_hot(labels,classes=16): return to_categorical(labels,num_classes=classes) ytrain = convert_one_hot(ytrain,16) ytest = convert_one_hot(ytest,16) # print("ytrain.shape:",ytrain.shape) # ResNet50 网络; def identity_block(X, f, filters, stage, block): """ 实现图3的恒等块 参数: X - 输入的tensor类型的数据,维度为( m, n_H_prev, n_W_prev, n_H_prev ) f - 整数,指定主路径中间的CONV窗口的维度 filters - 整数列表,定义了主路径每层的卷积层的过滤器数量 stage - 整数,根据每层的位置来命名每一层,与block参数一起使用。 block - 字符串,据每层的位置来命名每一层,与stage参数一起使用。 返回: X - 恒等块的输出,tensor类型,维度为(n_H, n_W, n_C) """ #定义命名规则 conv_name_base = "res" + str(stage) + block + "_branch" bn_name_base = "bn" + str(stage) + block + "_branch" #获取过滤器 F1, F2, F3 = filters #保存输入数据,将会用于为主路径添加捷径 X_shortcut = X #主路径的第一部分 ##卷积层 X = Conv2D(filters=F1, kernel_size=(1,1), strides=(1,1) ,padding="valid", name=conv_name_base+"2a", kernel_initializer=glorot_uniform(seed=0))(X) ##归一化 X = BatchNormalization(axis=3,name=bn_name_base+"2a")(X) ##使用ReLU激活函数 X = Activation("relu")(X) #主路径的第二部分 ##卷积层 X = Conv2D(filters=F2, kernel_size=(f,f),strides=(1,1), padding="same", name=conv_name_base+"2b", kernel_initializer=glorot_uniform(seed=0))(X) ##归一化 X = BatchNormalization(axis=3,name=bn_name_base+"2b")(X) ##使用ReLU激活函数 X = Activation("relu")(X) #主路径的第三部分 ##卷积层 X = Conv2D(filters=F3, kernel_size=(1,1), strides=(1,1), padding="valid", name=conv_name_base+"2c", kernel_initializer=glorot_uniform(seed=0))(X) ##归一化 X = BatchNormalization(axis=3,name=bn_name_base+"2c")(X) ##没有ReLU激活函数 #最后一步: ##将捷径与输入加在一起 X = Add()([X,X_shortcut]) ##使用ReLU激活函数 X = Activation("relu")(X) return X def convolutional_block(X, f, filters, stage, block, s=2): """ 实现图5的卷积块 参数: X - 输入的tensor类型的变量,维度为( m, n_H_prev, n_W_prev, n_C_prev) f - 整数,指定主路径中间的CONV窗口的维度 filters - 整数列表,定义了主路径每层的卷积层的过滤器数量 stage - 整数,根据每层的位置来命名每一层,与block参数一起使用。 block - 字符串,据每层的位置来命名每一层,与stage参数一起使用。 s - 整数,指定要使用的步幅 返回: X - 卷积块的输出,tensor类型,维度为(n_H, n_W, n_C) """ #定义命名规则 conv_name_base = "res" + str(stage) + block + "_branch" bn_name_base = "bn" + str(stage) + block + "_branch" #获取过滤器数量 F1, F2, F3 = filters #保存输入数据 X_shortcut = X #主路径 ##主路径第一部分 X = Conv2D(filters=F1, kernel_size=(1,1), strides=(s,s), padding="valid", name=conv_name_base+"2a", kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3,name=bn_name_base+"2a")(X) X = Activation("relu")(X) ##主路径第二部分 X = Conv2D(filters=F2, kernel_size=(f,f), strides=(1,1), padding="same", name=conv_name_base+"2b", kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3,name=bn_name_base+"2b")(X) X = Activation("relu")(X) ##主路径第三部分 X = Conv2D(filters=F3, kernel_size=(1,1), strides=(1,1), padding="valid", name=conv_name_base+"2c", kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3,name=bn_name_base+"2c")(X) #捷径 X_shortcut = Conv2D(filters=F3, kernel_size=(1,1), strides=(s,s), padding="valid", name=conv_name_base+"1", kernel_initializer=glorot_uniform(seed=0))(X_shortcut) X_shortcut = BatchNormalization(axis=3,name=bn_name_base+"1")(X_shortcut) #最后一步 X = Add()([X,X_shortcut]) X = Activation("relu")(X) return X def ResNet50(input_shape=(25,25,30),classes=16): """ 实现ResNet50 CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3 -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER 参数: input_shape - 图像数据集的维度 classes - 整数,分类数 返回: model - Keras框架的模型 """ #定义tensor类型的输入数据 X_input = Input(input_shape) #0填充 X = ZeroPadding2D((3,3))(X_input) #stage1 X = Conv2D(filters=64, kernel_size=(7,7), strides=(2,2), name="conv1", kernel_initializer=glorot_uniform(seed=0))(X) X = BatchNormalization(axis=3, name="bn_conv1")(X) X = Activation("relu")(X) X = MaxPooling2D(pool_size=(3,3), strides=(2,2))(X) #stage2 X = convolutional_block(X, f=3, filters=[64,64,256], stage=2, block="a", s=1) X = identity_block(X, f=3, filters=[64,64,256], stage=2, block="b") X = identity_block(X, f=3, filters=[64,64,256], stage=2, block="c") #stage3 X = convolutional_block(X, f=3, filters=[128,128,512], stage=3, block="a", s=2) X = identity_block(X, f=3, filters=[128,128,512], stage=3, block="b") X = identity_block(X, f=3, filters=[128,128,512], stage=3, block="c") X = identity_block(X, f=3, filters=[128,128,512], stage=3, block="d") #stage4 X = convolutional_block(X, f=3, filters=[256,256,1024], stage=4, block="a", s=2) X = identity_block(X, f=3, filters=[256,256,1024], stage=4, block="b") X = identity_block(X, f=3, filters=[256,256,1024], stage=4, block="c") X = identity_block(X, f=3, filters=[256,256,1024], stage=4, block="d") X = identity_block(X, f=3, filters=[256,256,1024], stage=4, block="e") X = identity_block(X, f=3, filters=[256,256,1024], stage=4, block="f") #stage5 X = convolutional_block(X, f=3, filters=[512,512,2048], stage=5, block="a", s=2) X = identity_block(X, f=3, filters=[512,512,2048], stage=5, block="b") X = identity_block(X, f=3, filters=[512,512,2048], stage=5, block="c") #均值池化层 X = AveragePooling2D(pool_size=(2,2),padding="same")(X) #输出层 X = Flatten()(X) X = Dense(classes, activation="softmax", name="fc"+str(classes), kernel_initializer=glorot_uniform(seed=0))(X) #创建模型 model = Model(inputs=X_input, outputs=X, name="ResNet50") return model # # x_train : (3074,25,25,30) y_train: (3074) # model = ResNet50(input_shape=(25,25,30),classes=16) # model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # # # model.fit(Xtrain,ytrain,epochs=2,batch_size=25) # preds = model.evaluate(Xtest,ytest) # # print("误差率:",str(preds[0])) # print("准确率:",str(preds[1])) def main(): # x_train : (3074,25,25,30) y_train: (3074) model = ResNet50(input_shape=(25, 25, 30), classes=16) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) history = model.fit(Xtrain, ytrain, epochs=100, batch_size=25) preds = model.evaluate(Xtest, ytest) plt.figure(figsize=(5,5)) plt.ylim(0,1.1) plt.grid() plt.plot(history.history['accuracy']) #plt.plot(history.history['val_acc']) plt.ylabel( dataset+' _Accuracy') plt.xlabel('Epochs') plt.legend(['Training','Validation']) plt.savefig("acc_curve.jpg") plt.show() plt.figure(figsize=(7,7)) plt.grid() plt.plot(history.history['loss']) #plt.plot(history.history['val_loss']) plt.ylabel(dataset+' _Loss') plt.xlabel('Epochs') plt.legend(['Training','Validation'], loc='upper right') plt.savefig("loss_curve.jpg") plt.show() print("误差率:", str(preds[0])) print("准确率:", str(preds[1])) if __name__ == "__main__": main()
34.123944
159
0.630097
0
0
0
0
0
0
0
0
3,773
0.288103
8da4e24daba79cfc5a237fbfd0bd61228b6bdc1d
754
py
Python
tests/test_data/utest/setup.py
gordonmessmer/pyp2rpm
60145ba6fa49ad5bb29eeffa5765e10ba8417f03
[ "MIT" ]
114
2015-07-13T12:38:27.000Z
2022-03-23T15:05:11.000Z
tests/test_data/utest/setup.py
gordonmessmer/pyp2rpm
60145ba6fa49ad5bb29eeffa5765e10ba8417f03
[ "MIT" ]
426
2015-07-13T12:09:38.000Z
2022-01-07T16:41:32.000Z
tests/test_data/utest/setup.py
Mattlk13/pyp2rpm
f9ced95877d88c96b77b2b8c510dc4ceaa10504a
[ "MIT" ]
51
2015-07-14T13:11:29.000Z
2022-03-31T07:27:32.000Z
#!/usr/bin/env python3 from setuptools import setup, find_packages requirements = ["pyp2rpm~=3.3.1"] setup( name="utest", version="0.1.0", description="Micro test module", license="GPLv2+", author="pyp2rpm Developers", author_email='[email protected], [email protected], [email protected], [email protected]', url='https://github.com/fedora-python/pyp2rpm', install_requires=requirements, include_package_data=True, packages=find_packages(exclude=["test"]), classifiers=( "License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)", "Operating System :: POSIX :: Linux", "Programming Language :: Python", "Programming Language :: Python :: 3", ), )
30.16
99
0.66313
0
0
0
0
0
0
0
0
409
0.54244
8da621c7d046b3bbba97fe0075833d24a4276a49
4,235
py
Python
abstract_nas/train/preprocess.py
dumpmemory/google-research
bc87d010ab9086b6e92c3f075410fa6e1f27251b
[ "Apache-2.0" ]
null
null
null
abstract_nas/train/preprocess.py
dumpmemory/google-research
bc87d010ab9086b6e92c3f075410fa6e1f27251b
[ "Apache-2.0" ]
null
null
null
abstract_nas/train/preprocess.py
dumpmemory/google-research
bc87d010ab9086b6e92c3f075410fa6e1f27251b
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data preprocessing for ImageNet2012 and CIFAR-10.""" from typing import Any, Callable # pylint: disable=unused-import from big_vision.pp import ops_general from big_vision.pp import ops_image # pylint: enable=unused-import from big_vision.pp import utils from big_vision.pp.builder import get_preprocess_fn as _get_preprocess_fn from big_vision.pp.registry import Registry import tensorflow as tf CIFAR_MEAN = [0.4914, 0.4822, 0.4465] CIFAR_STD = [0.247, 0.243, 0.261] @Registry.register("preprocess_ops.random_crop_with_pad") @utils.InKeyOutKey() def get_random_crop_with_pad(crop_size, padding): """Makes a random crop of a given size. Args: crop_size: either an integer H, where H is both the height and width of the random crop, or a list or tuple [H, W] of integers, where H and W are height and width of the random crop respectively. padding: how much to pad before cropping. Returns: A function, that applies random crop. """ crop_size = utils.maybe_repeat(crop_size, 2) padding = utils.maybe_repeat(padding, 2) def _crop(image): image = tf.image.resize_with_crop_or_pad(image, crop_size[0] + padding[0], crop_size[1] + padding[1]) return tf.image.random_crop(image, [crop_size[0], crop_size[1], image.shape[-1]]) return _crop def preprocess_cifar(split, **_): """Preprocessing functions for CIFAR-10 training.""" mean_str = ",".join([str(m) for m in CIFAR_MEAN]) std_str = ",".join([str(m) for m in CIFAR_STD]) if split == "train": pp = ("decode|" "value_range(0,1)|" "random_crop_with_pad(32,4)|" "flip_lr|" f"vgg_value_range(({mean_str}),({std_str}))|" "onehot(10, key='label', key_result='labels')|" "keep('image', 'labels')") else: pp = ("decode|" "value_range(0,1)|" "central_crop(32)|" f"vgg_value_range(({mean_str}),({std_str}))|" "onehot(10, key='label', key_result='labels')|" "keep('image', 'labels')") return _get_preprocess_fn(pp) def preprocess_imagenet(split, autoaugment = False, label_smoothing = 0.0, **_): """Preprocessing functions for ImageNet training.""" if split == "train": pp = ("decode_jpeg_and_inception_crop(224)|" "flip_lr|") if autoaugment: pp += "randaug(2,10)|" pp += "value_range(-1,1)|" if label_smoothing: confidence = 1.0 - label_smoothing low_confidence = (1.0 - confidence) / (1000 - 1) pp += ("onehot(1000, key='label', key_result='labels', " f"on_value={confidence}, off_value={low_confidence})|") else: pp += "onehot(1000, key='label', key_result='labels')|" pp += "keep('image', 'labels')" else: pp = ("decode|" "resize_small(256)|" "central_crop(224)|" "value_range(-1,1)|" "onehot(1000, key='label', key_result='labels')|" "keep('image', 'labels')") return _get_preprocess_fn(pp) PREPROCESS = { "cifar10": preprocess_cifar, "imagenet2012": preprocess_imagenet, } def get_preprocess_fn(dataset, split, **preprocess_kwargs): """Makes a preprocessing function.""" preprocess_fn_by_split = PREPROCESS.get(dataset, lambda _: (lambda x: x)) split = "train" if "train" in split else "val" preprocess_fn = preprocess_fn_by_split(split, **preprocess_kwargs) return preprocess_fn
32.576923
79
0.633058
0
0
0
0
967
0.228335
0
0
2,067
0.488076
8da6f40241c238cd5d1aecce8bbe81273d1e484a
5,570
py
Python
Decission_Tree/mytree.py
luoshao23/ML_algorithm
6e94fdd0718cd892118fd036c7c5851cf3e6d796
[ "MIT" ]
4
2017-06-19T06:33:38.000Z
2019-01-31T12:07:12.000Z
Decission_Tree/mytree.py
luoshao23/ML_algorithm
6e94fdd0718cd892118fd036c7c5851cf3e6d796
[ "MIT" ]
null
null
null
Decission_Tree/mytree.py
luoshao23/ML_algorithm
6e94fdd0718cd892118fd036c7c5851cf3e6d796
[ "MIT" ]
1
2017-12-06T08:41:06.000Z
2017-12-06T08:41:06.000Z
from math import log from PIL import Image, ImageDraw from collections import Counter import numpy as np from pandas import DataFrame # my_data = [['slashdot', 'USA', 'yes', 18, 213.2, 'None'], # ['google', 'France', 'yes', 23, 121.2, 'Premium'], # ['digg', 'USA', 'yes', 24, 21.32, 'Basic'], # ['kiwitobes', 'France', 'yes', 23, 1.2, 'Basic'], # ['google', 'UK', 'no', 21, .2, 'Premium'], # ['(direct)', 'New Zealand', 'no', 12, 71.2, 'None'], # ['(direct)', 'UK', 'no', 21, -21.2, 'Basic'], # ['google', 'USA', 'no', 24, 241.2, 'Premium'], # ['slashdot', 'France', 'yes', 19, 20, 'None'], # ['digg', 'USA', 'no', 18, 1.0, 'None'], # ['google', 'UK', 'no', 18, 2, 'None'], # ['kiwitobes', 'UK', 'no', 19, 44, 'None'], # ['digg', 'New Zealand', 'yes', 12, 27, 'Basic'], # ['slashdot', 'UK', 'no', 21, 86, 'None'], # ['google', 'UK', 'yes', 18, 2, 'Basic'], # ['kiwitobes', 'France', 'yes', 19, 0.0, 'Basic']] my_data = [[213.2, 'None'], [121.2, 'Premium'], [21.32, 'Basic'], [1.2, 'Basic'], [.2, 'Premium'], [71.2, 'None'], [-21.2, 'Basic'], [241.2, 'Premium'], [20, 'None'], [1.0, 'None'], [2, 'None'], [44, 'None'], [27, 'Basic'], [86, 'None'], [2, 'Basic'], [0.0, 'Basic']] data = np.array(DataFrame(my_data)) # my_data = [['slashdot', 'USA', 'yes', 18, 'None'], # ['google', 'France', 'yes', 23, 'None'], # ['digg', 'USA', 'yes', 24, 'None'], # ['kiwitobes', 'France', 'yes', 23, 'None'], # ['google', 'UK', 'no', 21, 'None'], # ['(direct)', 'New Zealand', 'no', 12, 'None'], # ['(direct)', 'UK', 'no', 21, 'None'], # ['google', 'USA', 'no', 24, 'None'], # ['slashdot', 'France', 'yes', 19, 'None'], # ['digg', 'USA', 'no', 18, 'None'], # ['google', 'UK', 'no', 18, 'None'], # ['kiwitobes', 'UK', 'no', 19, 'None'], # ['digg', 'New Zealand', 'yes', 12, 'None'], # ['slashdot', 'UK', 'no', 21, 'None'], # ['google', 'UK', 'yes', 18, 'None'], # ['kiwitobes', 'France', 'yes', 19, 'None']] class decisionnode(object): """docstring for decisionnode""" def __init__(self, col=-1, value=None, tb=None, fb=None, results=None): self.col = col self.value = value self.tb = tb self.fb = fb self.results = results def divideset(rows, column, value): split_func = None if isinstance(value, int) or isinstance(value, float): split_func = lambda x: x[column] >= value else: split_func = lambda x: x[column] == value set1 = [row for row in rows if split_func(row)] set2 = [row for row in rows if not split_func(row)] return (set1, set2) def uniquecounts(rows, col=-1): results = {} for row in rows: r = row[col] results.setdefault(r, 0) results[r] += 1 return results def entropy(rows): ent = 0.0 log2 = lambda x: log(x) / log(2) res = uniquecounts(rows) for k, v in res.items(): p = float(v) / len(rows) ent -= p * log2(p) return ent def variance(rows, col=-1): if len(rows) == 0: return 0 data = [float(row[col]) for row in rows] mean = sum(data) / len(data) variance = sum([(d - mean)**2 for d in data]) / len(data) return variance def buildtree(rows, scoref=entropy, min_len=2): if len(rows) <= min_len: return decisionnode(results=uniquecounts(rows)) current_score = scoref(rows) if current_score <= 0.0: return decisionnode(results=uniquecounts(rows)) best_gain = 0.0 best_criteria = None best_set = None for col in xrange(len(rows[0]) - 1): if isinstance(rows[0][col], float): uniq_value = split_float(rows, col) else: uniq_value = uniquecounts(rows, col) for val in uniq_value.keys(): set1, set2 = divideset(rows, col, val) p = float(len(set1)) / len(rows) gain = current_score - (p * scoref(set1) + (1 - p) * scoref(set2)) if gain > best_gain and len(set1) > 0 and len(set2) > 0: best_gain = gain best_criteria = (col, val) best_set = (set1, set2) if best_gain > 0: tbr = buildtree(best_set[0]) fbr = buildtree(best_set[1]) return decisionnode(col=best_criteria[0], value=best_criteria[1], tb=tbr, fb=fbr) else: return decisionnode(results=uniquecounts(rows)) def printtree(tree, indent='|', depth=0): if tree.results is not None: print str(tree.results) + '##' else: if isinstance(tree.value, int) or isinstance(tree.value, float): print 'depth %s ~ %s>=%s?' % (str(depth), str(tree.col), str(tree.value)) else: print 'depth %s ~ %s is %s?' % (str(depth), str(tree.col), str(tree.value)) print indent + 'T->' printtree(tree.tb, indent + ' |', depth + 1) print indent + 'F->' printtree(tree.fb, indent + ' |', depth + 1) def split_float(rows, column): col = [row[column] for row in rows] val = np.median(col) return {val: 1} def classify(obs, tree): pass def prune(tree, mingain): pass def mdclassify(obs, tree): pass
31.828571
89
0.498025
264
0.047397
0
0
0
0
0
0
1,961
0.352065
8da70610f3402c8b44d3fbdf21a05f4f563b016b
488
py
Python
hidb/wrapper.py
sk-ip/hidb
1394000992c016607e7af15095f058cd9cce007b
[ "MIT" ]
null
null
null
hidb/wrapper.py
sk-ip/hidb
1394000992c016607e7af15095f058cd9cce007b
[ "MIT" ]
null
null
null
hidb/wrapper.py
sk-ip/hidb
1394000992c016607e7af15095f058cd9cce007b
[ "MIT" ]
null
null
null
from datetime import datetime class fileWrapper(object): def __init__(self): self.data = {} self.keys = set() # JSON data size 16KB in Bytes self.max_data_size = 16384 # Max database size 1GB in Bytes self.max_database_size = 1073741824 self.current_database_size = 0 class dataWrapper: def __init__(self, data, ttl): self.data = data self.timestamp = datetime.today().timestamp() self.ttl = ttl
24.4
53
0.622951
452
0.92623
0
0
0
0
0
0
62
0.127049
8da8f86888f2ee041a3f2312c9709ef180e420d0
4,504
py
Python
ion-channel-models/compare.py
sanmitraghosh/fickleheart-method-tutorials
d5ee910258a2656951201d4ada2a412804013bd5
[ "BSD-3-Clause" ]
null
null
null
ion-channel-models/compare.py
sanmitraghosh/fickleheart-method-tutorials
d5ee910258a2656951201d4ada2a412804013bd5
[ "BSD-3-Clause" ]
null
null
null
ion-channel-models/compare.py
sanmitraghosh/fickleheart-method-tutorials
d5ee910258a2656951201d4ada2a412804013bd5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 from __future__ import print_function import sys sys.path.append('./method') import os import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import model as m """ Run fit. """ predict_list = ['sinewave', 'staircase', 'activation', 'ap'] try: which_predict = sys.argv[1] except: print('Usage: python %s [str:which_predict]' % os.path.basename(__file__)) sys.exit() if which_predict not in predict_list: raise ValueError('Input data %s is not available in the predict list' \ % which_predict) # Get all input variables import importlib sys.path.append('./mmt-model-files') info_id_a = 'model_A' info_a = importlib.import_module(info_id_a) info_id_b = 'model_B' info_b = importlib.import_module(info_id_b) data_dir = './data' savedir = './fig/compare' if not os.path.isdir(savedir): os.makedirs(savedir) data_file_name = 'data-%s.csv' % which_predict print('Predicting ', data_file_name) saveas = 'compare-sinewave-' + which_predict # Protocol protocol = np.loadtxt('./protocol-time-series/%s.csv' % which_predict, skiprows=1, delimiter=',') protocol_times = protocol[:, 0] protocol = protocol[:, 1] # Load data data = np.loadtxt(data_dir + '/' + data_file_name, delimiter=',', skiprows=1) # headers times = data[:, 0] data = data[:, 1] # Model model_a = m.Model(info_a.model_file, variables=info_a.parameters, current_readout=info_a.current_list, set_ion=info_a.ions_conc, transform=None, temperature=273.15 + info_a.temperature, # K ) model_b = m.Model(info_b.model_file, variables=info_b.parameters, current_readout=info_b.current_list, set_ion=info_b.ions_conc, transform=None, temperature=273.15 + info_b.temperature, # K ) # Update protocol model_a.set_fixed_form_voltage_protocol(protocol, protocol_times) model_b.set_fixed_form_voltage_protocol(protocol, protocol_times) # Load calibrated parameters load_seed = 542811797 fix_idx = [1] calloaddir_a = './out/' + info_id_a calloaddir_b = './out/' + info_id_b cal_params_a = [] cal_params_b = [] for i in fix_idx: cal_params_a.append(np.loadtxt('%s/%s-solution-%s-%s.txt' % \ (calloaddir_a, 'sinewave', load_seed, i))) cal_params_b.append(np.loadtxt('%s/%s-solution-%s-%s.txt' % \ (calloaddir_b, 'sinewave', load_seed, i))) # Predict predictions_a = [] for p in cal_params_a: predictions_a.append(model_a.simulate(p, times)) predictions_b = [] for p in cal_params_b: predictions_b.append(model_b.simulate(p, times)) # Plot fig, axes = plt.subplots(2, 1, sharex=True, figsize=(10, 4), gridspec_kw={'height_ratios': [1, 3]}) is_predict = ' prediction' if which_predict != 'sinewave' else '' sim_protocol = model_a.voltage(times) # model_b should give the same thing axes[0].plot(times, sim_protocol, c='#7f7f7f') axes[0].set_ylabel('Voltage\n(mV)', fontsize=16) axes[1].plot(times, data, alpha=0.5, label='Data') for i, p in zip(fix_idx, predictions_a): axes[1].plot(times, p, label='Model A' + is_predict) for i, p in zip(fix_idx, predictions_b): axes[1].plot(times, p, label='Model B' + is_predict) # Zooms from mpl_toolkits.axes_grid1.inset_locator import inset_axes, mark_inset sys.path.append('./protocol-time-series') zoom = importlib.import_module(which_predict + '_to_zoom') axes[1].set_ylim(zoom.set_ylim) for i_zoom, (w, h, loc) in enumerate(zoom.inset_setup): axins = inset_axes(axes[1], width=w, height=h, loc=loc, axes_kwargs={"facecolor" : "#f0f0f0"}) axins.plot(times, data, alpha=0.5) for i, p in zip(fix_idx, predictions_a): axins.plot(times, p) for i, p in zip(fix_idx, predictions_b): axins.plot(times, p) axins.set_xlim(zoom.set_xlim_ins[i_zoom]) axins.set_ylim(zoom.set_ylim_ins[i_zoom]) #axins.yaxis.get_major_locator().set_params(nbins=3) #axins.xaxis.get_major_locator().set_params(nbins=3) axins.set_xticklabels([]) axins.set_yticklabels([]) pp, p1, p2 = mark_inset(axes[1], axins, loc1=zoom.mark_setup[i_zoom][0], loc2=zoom.mark_setup[i_zoom][1], fc="none", lw=0.75, ec='k') pp.set_fill(True); pp.set_facecolor("#f0f0f0") axes[1].legend() axes[1].set_ylabel('Current (pA)', fontsize=16) axes[1].set_xlabel('Time (ms)', fontsize=16) plt.subplots_adjust(hspace=0) plt.savefig('%s/%s' % (savedir, saveas), bbox_inches='tight', dpi=200) plt.close()
31.277778
78
0.690941
0
0
0
0
0
0
0
0
887
0.196936
8da906c8ad76ecde7a1bd94e5017709b02a7ce8e
7,752
py
Python
examples/services/classifier_service.py
bbbdragon/python-pype
f0618150cb4d2fae1f959127453fb6eca8db84e5
[ "MIT" ]
8
2019-07-12T03:28:10.000Z
2019-07-19T20:34:45.000Z
examples/services/classifier_service.py
bbbdragon/python-pype
f0618150cb4d2fae1f959127453fb6eca8db84e5
[ "MIT" ]
null
null
null
examples/services/classifier_service.py
bbbdragon/python-pype
f0618150cb4d2fae1f959127453fb6eca8db84e5
[ "MIT" ]
null
null
null
''' python3 classifier_service.py data.csv This service runs a scikit-learn classifier on data provided by the csv file data.csv. The idea of this is a simple spam detector. In the file, you will see a number, 1 or -1, followed by a pipe, followed by a piece of text. The text is designed to be a subject email, and the number its label: 1 for spam and -1 for not spam. The service loads the csv file, trains the classifier, and then waits for you to send it a list of texts via the 'classify' route. This service can be tested using: ./test_classifier_service.sh ''' from flask import Flask,request,jsonify from pype import pype as p from pype import _,_0,_1,_p from pype import _assoc as _a from pype import _dissoc as _d from pype import _do from statistics import mean,stdev from pype.vals import lenf from sklearn.ensemble import RandomForestClassifier as Classifier from sklearn.feature_extraction.text import TfidfVectorizer as Vectorizer import sys import csv ''' We have to use lambda to define the read function because pype functions can't yet deal with keyword args. ''' read=lambda f: csv.reader(f,delimiter='|') def train_classifier(texts,y): ''' Here is a perfect example of the "feel it ... func it" philosophy: The pype call uses the function arguments and function body to specify three variables, texts, a list of strings, y, a list of floats, and vectorizer, a scikit-learn object that vectorizes text. This reiterates the adivce that you should use the function body and function arguments to declare your scope, whenever you can. Line-by-line, here we go: {'vectorizer':vectorizer.fit, 'X':vectorizer.transform}, We build a dict, the first element of which is the fit vectorizer. Luckily, the 'fit' function returns an instance of the trained vectorizer, so we do not need to use _do. This vectorizer is then assigned to 'vectorizer'. Because iterating through dictionaries in Python3.6 preserves the order of the keys in which they were declared, we can apply the fit function to the vectorizer on the texts, assign that to the 'vectorizer' key. We need this instance of the vectorizer to run the classifier for unknown texts. After this, we apply the 'transform' to convert the texts into a training matrix keyed by 'X', whose rows are texts and whose columns are words. _a('classifier',(Classifier().fit,_['X'],y)), Finally, we can build a classifier. _a, or _assoc, means we are adding a key-value pair to the previous dictionary. This will be a new instance of our Classifier, which is trained through the fit function on the text-word matrix 'X' and the labels vector y. _d('X'), Since we don't need the X matrix anymore, we delete it from the returned JSON, which now only contains 'vectorizer' and 'classifier', the two things we will need to classify unknown texts. ''' vectorizer=Vectorizer() return p( texts, {'vectorizer':vectorizer.fit, 'X':vectorizer.transform}, _a('classifier',(Classifier().fit,_['X'],y)), _d('X'), ) ''' We train the model in a global variable containing our vectorizer and classifier. This use of global variables is only used for microservices, by the way. Here is a line-by-line description: sys.argv[1], open, Open the file. read, We build a csv reader with the above-defined 'read' function, which builds a csv reader with a '|' delimiter. I chose this delimeter because the texts often have commas. list, Because csv.reader is a generator, it cannot be accessed twice, so I cast it to a list. This list is a list of 2-element lists, of the form [label,text], where label is a string for the label ('1' or '-1'), and text is a string for the training text. So an example of this would be ['1','free herbal viagra buy now']. (train,[_1],[(float,[_0])]) This is a lambda which calls the 'train' function on two arguments, the first being a list of texts, the second being a list of numerical labels. We know that the incoming argument is a list of 2-element lists, so [_1] is a map, which goes through this list - [] - and builds a new list containing only the second element of each 2-element list, referenced by _1. With the first elements of the 2-element lists, we must extract the first element and cast it to a float. In [(float,[_0])], the [] specifies a map over the list of 2-element lists. (float,_0) specifies we are accessing the first element of the 2-element list ('1' or '-1'), and calls the float function on it, to cast it to a float. If we do not cast it to a float, sklearn will not be able to process it as a label. ''' MODEL=p( sys.argv[1], open, read, list, (train_classifier,[_1],[(float,_0)]), ) app = Flask(__name__) @app.route('/classify',methods=['POST']) def classify(): ''' This is the function that is run on a JSON containing one field, 'texts', which is a list of strings. This function will return a list of JSON's containing the label for that text given by the classifier (1 or -1), and the original text. Notice that, in this routing, we need access to 'texts' in (zip,_,texts). Line-by-line: global MODEL We need this to refer to the model we trained at the initialization of the microservice. texts=request.get_json(force=True)['texts'] This extracts the 'texts' list from the json embedded in the request. MODEL['vectorizer'].transform, This uses the vectorizer to convert the list of strings in texts to a text-word matrix that can be fed into the classifier. MODEL['classifier'].predict, This runs the prediction on the text-word matrix, producing an array of 1's and -1's, where 1 indicates that the classification is positive (it is spam), and -1 indicates that the classification is negative (it is not spam). (zip,_,texts), We know that the n-th label produced by the classifier is for the n-th string in texts, so we zip them together to produce an iterable of tuples (label,text). [{'label':_0, 'text':_1, 'description':{_0 == 1: 'not spam', 'else':'spam'}}], Here, we are performing a mapping over the (label,text) tuples produced by the zip. For each tuple, we build a dictionary with three items. The first is the label, which is numberic, either 1.0 or -1.0. The second is the actual text string. However, to help the user, we also include a description of what the label means: 'description':{_0 == 1: 'not spam', 'else':'spam'} The value is a switch dict. Since _0 is a Getter object, it overrides the == operator to produce a LamTup, which Python will accept, but which the pype interpreter will run as an expression. _0 == 1 simply means, "the first element of the (label,text) tuple, label, is 1. If this is true, 'description is set to 'not spam'. Otherwise, it is set to 'spam'. jsonify This just turns the resulting JSON, a list of dicitonaries, into something that can be returned to the client over HTTP. ''' global MODEL texts=request.get_json(force=True)['texts'] return p( texts, MODEL['vectorizer'].transform, MODEL['classifier'].predict, (zip,_,texts), [{'label':_0, 'text':_1, 'description':{_0 == 1: 'not spam', 'else':'spam'}}], jsonify) if __name__=='__main__': app.run(host='0.0.0.0',port=10004,debug=True)
36.739336
172
0.68434
0
0
0
0
2,754
0.355263
0
0
6,512
0.840041
8da9192128d87d058ba7b763d377c653bfe2eb10
2,657
py
Python
ida_plugin/uefi_analyser.py
fengjixuchui/UEFI_RETool
72c5d54c1dab9f58a48294196bca5ce957f6fb24
[ "MIT" ]
240
2019-03-12T21:28:06.000Z
2021-02-09T16:20:09.000Z
ida_plugin/uefi_analyser.py
fengjixuchui/UEFI_RETool
72c5d54c1dab9f58a48294196bca5ce957f6fb24
[ "MIT" ]
10
2019-09-09T08:38:35.000Z
2020-11-30T15:19:30.000Z
ida_plugin/uefi_analyser.py
fengjixuchui/UEFI_RETool
72c5d54c1dab9f58a48294196bca5ce957f6fb24
[ "MIT" ]
53
2019-03-16T06:54:18.000Z
2020-12-23T06:16:38.000Z
# SPDX-License-Identifier: MIT import os import idaapi import idautils from PyQt5 import QtWidgets from uefi_analyser import dep_browser, dep_graph, prot_explorer, ui AUTHOR = "yeggor" VERSION = "1.2.0" NAME = "UEFI_RETool" WANTED_HOTKEY = "Ctrl+Alt+U" HELP = "This plugin performs automatic analysis of the input UEFI module" class UefiAnalyserPlugin(idaapi.plugin_t): flags = idaapi.PLUGIN_MOD | idaapi.PLUGIN_PROC | idaapi.PLUGIN_FIX comment = HELP help = HELP wanted_name = NAME wanted_hotkey = WANTED_HOTKEY def init(self): self._last_directory = idautils.GetIdbDir() ui.init_menu(MenuHandler(self)) self._welcome() return idaapi.PLUGIN_KEEP def run(self, arg): try: self._analyse_all() except Exception as err: import traceback print(f"[{NAME} error] {str(err)}\n{traceback.format_exc()}") def term(self): pass def load_json_log(self): print(f"[{NAME}] try to parse JSON log file") log_name = self._select_log() print(f"[{NAME}] log name: {log_name}") dep_browser.run(log_name) dep_graph.run(log_name) def _select_log(self): file_dialog = QtWidgets.QFileDialog() file_dialog.setFileMode(QtWidgets.QFileDialog.ExistingFiles) filename = None try: filename, _ = file_dialog.getOpenFileName( file_dialog, f"Select the {NAME} log file", self._last_directory, "Results files (*.json)", ) except Exception as e: print(f"[{NAME} error] {str(e)}") if filename: self._last_directory = os.path.dirname(filename) return filename @staticmethod def _welcome(): print(f"\n{NAME} plugin by {AUTHOR} ({VERSION})") print(f"{NAME} shortcut key is {WANTED_HOTKEY}\n") @staticmethod def _analyse_all(): prot_explorer.run() class MenuHandler(idaapi.action_handler_t): def __init__(self, plugin): idaapi.action_handler_t.__init__(self) self.plugin = plugin def activate(self, ctx): try: self.plugin.load_json_log() except Exception as err: import traceback print(f"[{NAME} error] {str(err)}\n{traceback.format_exc()}") return True def update(self, ctx): return idaapi.AST_ENABLE_ALWAYS def PLUGIN_ENTRY(): try: return UefiAnalyserPlugin() except Exception as err: import traceback print(f"[{NAME} error] {str(err)}\n{traceback.format_exc()}")
26.04902
73
0.616861
2,128
0.800903
0
0
215
0.080918
0
0
532
0.200226
8da9e0178f00d72e18dd60857fa82ec6eecb27f0
10,063
py
Python
examples/exchange_demag/test_exchange_demag.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
10
2018-03-24T07:43:17.000Z
2022-03-26T10:42:27.000Z
examples/exchange_demag/test_exchange_demag.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
21
2018-03-26T15:08:53.000Z
2021-07-10T16:11:14.000Z
examples/exchange_demag/test_exchange_demag.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
7
2018-04-09T11:50:48.000Z
2021-06-10T09:23:25.000Z
import os import logging import matplotlib matplotlib.use('Agg') import pylab as p import numpy as np import dolfin as df from finmag import Simulation as Sim from finmag.energies import Exchange, Demag from finmag.util.meshes import from_geofile, mesh_volume import pytest logger = logging.getLogger(name='finmag') MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) REL_TOLERANCE = 5e-4 Ms = 0.86e6 unit_length = 1e-9 mesh = from_geofile(os.path.join(MODULE_DIR, "bar30_30_100.geo")) def run_finmag(): """Run the finmag simulation and store data in averages.txt.""" sim = Sim(mesh, Ms, unit_length=unit_length) sim.alpha = 0.5 sim.set_m((1, 0, 1)) exchange = Exchange(13.0e-12) sim.add(exchange) demag = Demag(solver="FK") sim.add(demag) fh = open(os.path.join(MODULE_DIR, "averages.txt"), "w") fe = open(os.path.join(MODULE_DIR, "energies.txt"), "w") logger.info("Time integration") times = np.linspace(0, 3.0e-10, 61) for counter, t in enumerate(times): # Integrate sim.run_until(t) # Save averages to file mx, my, mz = sim.m_average fh.write(str(t) + " " + str(mx) + " " + str(my) + " " + str(mz) + "\n") # Energies E_e = exchange.compute_energy() E_d = demag.compute_energy() fe.write(str(E_e) + " " + str(E_d) + "\n") # Energy densities if counter == 10: exch_energy = exchange.energy_density_function() demag_energy = demag.energy_density_function() finmag_exch, finmag_demag = [], [] R = range(100) for i in R: finmag_exch.append(exch_energy([15, 15, i])) finmag_demag.append(demag_energy([15, 15, i])) # Store data np.save(os.path.join(MODULE_DIR, "finmag_exch_density.npy"), np.array(finmag_exch)) np.save(os.path.join(MODULE_DIR, "finmag_demag_density.npy"), np.array(finmag_demag)) fh.close() fe.close() @pytest.mark.slow def test_compare_averages(): ref = np.loadtxt(os.path.join(MODULE_DIR, "averages_ref.txt")) if not os.path.isfile(os.path.join(MODULE_DIR, "averages.txt")) \ or (os.path.getctime(os.path.join(MODULE_DIR, "averages.txt")) < os.path.getctime(os.path.abspath(__file__))): run_finmag() computed = np.loadtxt(os.path.join(MODULE_DIR, "averages.txt")) dt = ref[:,0] - computed[:,0] assert np.max(dt) < 1e-15, "Compare timesteps." ref1, computed1 = np.delete(ref, [0], 1), np.delete(computed, [0], 1) diff = ref1 - computed1 print "max difference: %g" % np.max(diff) rel_diff = np.abs(diff / np.sqrt(ref1[0]**2 + ref1[1]**2 + ref1[2]**2)) print "test_averages, max. relative difference per axis:" print np.nanmax(rel_diff, axis=0) err = np.nanmax(rel_diff) if err > 1e-2: print "nmag:\n", ref1 print "finmag:\n", computed1 assert err < REL_TOLERANCE, "Relative error = {} is larger " \ "than tolerance (= {})".format(err, REL_TOLERANCE) # Plot nmag data nmagt = list(ref[:,0])*3 nmagy = list(ref[:,1]) + list(ref[:,2]) + list(ref[:,3]) p.plot(nmagt, nmagy, 'o', mfc='w', label='nmag') # Plot finmag data t = computed[:, 0] x = computed[:, 1] y = computed[:, 2] z = computed[:, 3] p.plot(t, x, 'k', label='$m_\mathrm{x}$ finmag') p.plot(t, y, 'b-.', label='$m_\mathrm{y}$') p.plot(t, z, 'r', label='$m_\mathrm{z}$') p.axis([0, max(t), -0.2, 1.1]) p.xlabel("time (s)") p.ylabel("$m$") p.legend(loc='center right') p.savefig(os.path.join(MODULE_DIR, "exchange_demag.pdf")) p.savefig(os.path.join(MODULE_DIR, "exchange_demag.png")) #p.show p.close() print "Comparison of development written to exchange_demag.pdf" @pytest.mark.slow def test_compare_energies(): ref = np.loadtxt(os.path.join(MODULE_DIR, "energies_ref.txt")) if not os.path.isfile(os.path.join(MODULE_DIR, "energies.txt")) \ or (os.path.getctime(os.path.join(MODULE_DIR, "energies.txt")) < os.path.getctime(os.path.abspath(__file__))): run_finmag() computed = np.loadtxt(os.path.join(MODULE_DIR, "energies.txt")) assert np.size(ref) == np.size(computed), "Compare number of energies." vol = mesh_volume(mesh)*unit_length**mesh.topology().dim() #30x30x100nm^3 = 30x30x100=9000 # Compare exchange energy... exch = computed[:, 0]/vol # <-- ... density! exch_nmag = ref[:, 0] diff = abs(exch - exch_nmag) rel_diff = np.abs(diff / max(exch)) print "Exchange energy, max relative error:", max(rel_diff) assert max(rel_diff) < 0.002, \ "Max relative error in exchange energy = {} is larger than " \ "tolerance (= {})".format(max(rel_diff), REL_TOLERANCE) # Compare demag energy demag = computed[:, 1]/vol demag_nmag = ref[:, 1] diff = abs(demag - demag_nmag) rel_diff = np.abs(diff / max(demag)) print "Demag energy, max relative error:", max(rel_diff) # Don't really know why this is ten times higher than everyting else. assert max(rel_diff) < REL_TOLERANCE*10, \ "Max relative error in demag energy = {} is larger than " \ "tolerance (= {})".format(max(rel_diff), REL_TOLERANCE) # Plot p.plot(exch_nmag, 'o', mfc='w', label='nmag') p.plot(exch, label='finmag') p.xlabel("time step") p.ylabel("$e_\mathrm{exch}\, (\mathrm{Jm^{-3}})$") p.legend() p.savefig(os.path.join(MODULE_DIR, "exchange_energy.pdf")) p.savefig(os.path.join(MODULE_DIR, "exchange_energy.png")) p.close() p.plot(demag_nmag, 'o', mfc='w', label='nmag') p.plot(demag, label='finmag') p.xlabel("time step") p.ylabel("$e_\mathrm{demag}\, (\mathrm{Jm^{-3}})$") p.legend() p.savefig(os.path.join(MODULE_DIR, "demag_energy.pdf")) p.savefig(os.path.join(MODULE_DIR, "demag_energy.png")) #p.show() p.close() print "Energy plots written to exchange_energy.pdf and demag_energy.pdf" @pytest.mark.slow def test_compare_energy_density(): """ After ten time steps, compute the energy density through the center of the bar (seen from x and y) from z=0 to z=100, and compare the results with nmag and oomf. """ R = range(100) # Run simulation only if not run before or changed since last time. if not (os.path.isfile(os.path.join(MODULE_DIR, "finmag_exch_density.npy"))): run_finmag() elif (os.path.getctime(os.path.join(MODULE_DIR, "finmag_exch_density.npy")) < os.path.getctime(os.path.abspath(__file__))): run_finmag() if not (os.path.isfile(os.path.join(MODULE_DIR, "finmag_demag_density.npy"))): run_finmag() elif (os.path.getctime(os.path.join(MODULE_DIR, "finmag_demag_density.npy")) < os.path.getctime(os.path.abspath(__file__))): run_finmag() # Read finmag data finmag_exch = np.load(os.path.join(MODULE_DIR, "finmag_exch_density.npy")) finmag_demag = np.load(os.path.join(MODULE_DIR, "finmag_demag_density.npy")) # Read nmag data nmag_exch = [float(i) for i in open(os.path.join(MODULE_DIR, "nmag_exch_Edensity.txt"), "r").read().split()] nmag_demag = [float(i) for i in open(os.path.join(MODULE_DIR, "nmag_demag_Edensity.txt"), "r").read().split()] # Compare with nmag nmag_exch = np.array(nmag_exch) nmag_demag = np.array(nmag_demag) rel_error_exch_nmag = np.abs(finmag_exch - nmag_exch)/np.linalg.norm(nmag_exch) rel_error_demag_nmag = np.abs(finmag_demag - nmag_demag)/np.linalg.norm(nmag_demag) print "Exchange energy density, max relative error from nmag:", max(rel_error_exch_nmag) print "Demag energy density, max relative error from nmag:", max(rel_error_demag_nmag) TOL_EXCH = 3e-2 TOL_DEMAG = 1e-2 assert max(rel_error_exch_nmag) < TOL_EXCH, \ "Exchange energy density, max relative error from nmag = {} is " \ "larger than tolerance (= {})".format(max(rel_error_exch_nmag), TOL_EXCH) assert max(rel_error_demag_nmag) < TOL_DEMAG, \ "Demag energy density, max relative error from nmag = {} is larger " \ "than tolarance (= {})".format(max(rel_error_demag_nmag), TOL_DEMAG) # Read oommf data oommf_exch = np.genfromtxt(os.path.join(MODULE_DIR, "oommf_exch_Edensity.txt")) oommf_demag = np.genfromtxt(os.path.join(MODULE_DIR, "oommf_demag_Edensity.txt")) oommf_coords = np.genfromtxt(os.path.join(MODULE_DIR, "oommf_coords_z_axis.txt")) * 1e9 # Compare with oomf - FIXME: doesn't work at the moment #rel_error_exch_oomf = np.abs(finmag_exch - oommf_exch)/np.linalg.norm(oommf_exch) #rel_error_demag_oomf = np.abs(finmag_demag - oommf_demag)/np.linalg.norm(oommf_demag) #print "Rel error exch, oommf:", max(rel_error_exch_oommf) #print "Rel error demag, oommf:", max(rel_error_demag_oommf) # Plot exchange energy density p.plot(R, finmag_exch, 'k-') p.plot(R, nmag_exch, 'r^:', alpha=0.5) p.plot(oommf_coords, oommf_exch, "bv:", alpha=0.5) p.xlabel("$x\, (\mathrm{nm})$") p.ylabel("$e_\mathrm{exch}\, (\mathrm{Jm^{-3}})$") p.legend(["finmag", "nmag", "oommf"], loc="upper center") p.savefig(os.path.join(MODULE_DIR, "exchange_density.pdf")) p.savefig(os.path.join(MODULE_DIR, "exchange_density.png")) p.close() # Plot demag energy density p.plot(R, finmag_demag, 'k-') p.plot(R, nmag_demag, 'r^:', alpha=0.5) p.plot(oommf_coords, oommf_demag, "bv:", alpha=0.5) p.xlabel("$x\, (\mathrm{nm})$") p.ylabel("$e_\mathrm{demag}\, (\mathrm{Jm^{-3}})$") p.legend(["finmag", "nmag", "oommf"], loc="upper center") p.savefig(os.path.join(MODULE_DIR, "demag_density.pdf")) p.savefig(os.path.join(MODULE_DIR, "demag_density.png")) #p.show() p.close() print "Energy density plots written to exchange_density.pdf and demag_density.pdf" if __name__ == '__main__': run_finmag() test_compare_averages() test_compare_energies() test_compare_energy_density()
37.408922
114
0.644241
0
0
0
0
7,910
0.786048
0
0
3,248
0.322767
8daa3414a09b9f3c7c95225a1a7fdf929b8d3dfe
440
py
Python
BPt/default/options/samplers.py
sahahn/ABCD_ML
a8b1c48c33f3fdc046c8922964f1c456273238da
[ "MIT" ]
1
2019-09-25T23:23:49.000Z
2019-09-25T23:23:49.000Z
BPt/default/options/samplers.py
sahahn/ABCD_ML
a8b1c48c33f3fdc046c8922964f1c456273238da
[ "MIT" ]
1
2020-04-20T20:53:27.000Z
2020-04-20T20:53:27.000Z
BPt/default/options/samplers.py
sahahn/ABCD_ML
a8b1c48c33f3fdc046c8922964f1c456273238da
[ "MIT" ]
1
2019-06-21T14:44:40.000Z
2019-06-21T14:44:40.000Z
from ..helpers import get_obj_and_params, all_from_objects from ...extensions.samplers import OverSampler SAMPLERS = { 'oversample': (OverSampler, ['default']), } def get_sampler_and_params(obj_str, extra_params, params, **kwargs): obj, extra_obj_params, obj_params =\ get_obj_and_params(obj_str, SAMPLERS, extra_params, params) return obj(**extra_obj_params), obj_params all_obj_keys = all_from_objects(SAMPLERS)
25.882353
68
0.756818
0
0
0
0
0
0
0
0
21
0.047727
a5c09a3f2e4a0708c742cfe5829c7e01efbe2a70
300
py
Python
ABC151-200/ABC192/abc192_c.py
billyio/atcoder
9d16765f91f28deeb7328fcc6c19541ee790941f
[ "MIT" ]
1
2021-02-01T08:48:07.000Z
2021-02-01T08:48:07.000Z
ABC151-200/ABC192/abc192_c.py
billyio/atcoder
9d16765f91f28deeb7328fcc6c19541ee790941f
[ "MIT" ]
null
null
null
ABC151-200/ABC192/abc192_c.py
billyio/atcoder
9d16765f91f28deeb7328fcc6c19541ee790941f
[ "MIT" ]
null
null
null
N, K = map(int, input().split()) ans = N for i in range(K): num_list = [int(n) for n in str(ans)] g1 = sorted(num_list, reverse=True) g1 = ''.join((str(g) for g in g1)) g2 = sorted(num_list, reverse=False) g2 = ''.join((str(g) for g in g2)) ans = int(g1) - int(g2) print(ans)
27.272727
41
0.566667
0
0
0
0
0
0
0
0
4
0.013333
a5c0fa60cac177d2865547e53143112bdfdc7111
1,008
py
Python
testing.py
madjabal/morphine
2c76b10a7276936042913d609ad773fbc08b0887
[ "MIT" ]
15
2017-03-11T18:25:04.000Z
2022-03-31T19:54:31.000Z
testing.py
madjabal/morphine
2c76b10a7276936042913d609ad773fbc08b0887
[ "MIT" ]
2
2018-10-17T15:08:36.000Z
2021-06-08T13:34:56.000Z
testing.py
madjabal/morphine
2c76b10a7276936042913d609ad773fbc08b0887
[ "MIT" ]
2
2018-07-25T15:15:54.000Z
2019-06-14T11:16:41.000Z
# Python modules import time from datetime import timedelta def consistency(func, args, expected, n=10**4): """Analyze and report on the consistency of a function.""" print('\n[CONSISTENCY TEST] {0}'.format(func.__doc__.format(*args))) def show(num, den, t, p, end='\r'): print('{3}|{4:.3f}: {0}/{1} = {2}'.format(num, den, num/den, str(timedelta(seconds=t)), p), end=end) start = time.time() interval = start tally = 0 for i in range(n): isCorrect = func(*args) == expected tally += (1 if isCorrect else 0) diff = time.time() - interval if diff > 0.01: interval = time.time() show(tally, (i+1), time.time() - start, (i+1)/n) show(tally, n, time.time() - start, (i+1)/n, '\n') def max_over(n, func, args=None): """Compute the maximum value returned by func(args) in n runs.""" m = 0 for i in range(n): v = func(*args) if args else func() if v > m: m = v return m
30.545455
108
0.558532
0
0
0
0
0
0
0
0
201
0.199405
a5c112fb1800922ae32e15c8c2c3119937a66895
520
py
Python
misc/python/fibonacci.py
saranshbht/codes-and-more-codes
0bd2e46ca613b3b81e1196d393902e86a43aa353
[ "MIT" ]
null
null
null
misc/python/fibonacci.py
saranshbht/codes-and-more-codes
0bd2e46ca613b3b81e1196d393902e86a43aa353
[ "MIT" ]
null
null
null
misc/python/fibonacci.py
saranshbht/codes-and-more-codes
0bd2e46ca613b3b81e1196d393902e86a43aa353
[ "MIT" ]
null
null
null
from itertools import permutations from collections import Counter import time print(time.time()) s=["dgajkhdjkjfkl","ahfjkh","jfskoj","hfakljfio","fjfjir","jiosj","jiojf","jriosj","jiorjf","jhhhhaskgasjdfljjriof"] t=10 while t>0: S=s[10-t] c=dict(Counter(S)) Cperm=list(permutations(c.values())) flag= False for i in Cperm: for j in range(2,len(i)): if i[j]==i[j-1]+i[j-2]: print("Dynamic") flag= True break if flag==True: break else: print("Not") t=t-1 print(time.time())
18.571429
117
0.646154
0
0
0
0
0
0
0
0
117
0.225
a5c55462952f35e96e4d815b3891933e684d12b8
784
py
Python
rhasspy/speech.py
Wil-Peters/HomeAutomation
ab4f78d9fad42093435732233e99003f12dca5e7
[ "MIT" ]
2
2020-04-09T20:29:15.000Z
2021-01-20T09:21:02.000Z
rhasspy/speech.py
Wil-Peters/HomeAutomation
ab4f78d9fad42093435732233e99003f12dca5e7
[ "MIT" ]
null
null
null
rhasspy/speech.py
Wil-Peters/HomeAutomation
ab4f78d9fad42093435732233e99003f12dca5e7
[ "MIT" ]
null
null
null
import configparser import os from typing import ByteString import requests from core.speaker import Speaker from core.texttospeech import TextToSpeechGenerator class RhasspySpeech(Speaker, TextToSpeechGenerator): def __init__(self): Speaker.__init__(self) TextToSpeechGenerator.__init__(self) config = configparser.ConfigParser() config_file = os.path.dirname(os.path.abspath(__file__)) + "/config.ini" config.read(config_file) self._api_url = config["Rhasspy"]["Speaker"] def speak_text(self, text: str): requests.post(self._api_url + "/text-to-speech", text) def generate_speech_file(self, text: str) -> ByteString: return requests.post(self._api_url + "/text-to-speech?play=false", text).content
29.037037
88
0.715561
617
0.78699
0
0
0
0
0
0
76
0.096939
a5c6922a61844f38e222e52aacc04701fb1c3022
4,953
py
Python
main.py
rodrigobercinimartins/export-import-por-mesorregiao-brasil
73b8126e593eec63ae29eb81a2967f566ec93bc9
[ "MIT" ]
1
2020-04-06T17:55:04.000Z
2020-04-06T17:55:04.000Z
main.py
rodrigobercini/export-import-por-mesorregiao-brasil
73b8126e593eec63ae29eb81a2967f566ec93bc9
[ "MIT" ]
null
null
null
main.py
rodrigobercini/export-import-por-mesorregiao-brasil
73b8126e593eec63ae29eb81a2967f566ec93bc9
[ "MIT" ]
null
null
null
import pandas as pd import os import ssl # I'm getting SSL certificates issues when downloading files from MDIC. # The code below is a hack to get around this issue. try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context class ExportsByMesoregion: def __init__(self , start_year:int , end_year:int = None , transaction_type:str='exports'): self.start_year = start_year if end_year is not None: self.end_year = end_year else: self.end_year = start_year self.TRANSACTION_TYPES = { 'exports':'EXP' , 'imports':'IMP' } if transaction_type in self.TRANSACTION_TYPES: self.transaction_type = transaction_type else: raise ValueError(f"Invalid transaction type. Valid values are: {''.join(self.TRANSACTION_TYPES)}") self.BASE_URL = 'https://balanca.economia.gov.br/balanca/bd/comexstat-bd/mun/' self.REPO_FOLDER_PATH = os.path.dirname(os.path.abspath(__file__)) self.MUN_FOLDER_PATH = os.path.join(self.REPO_FOLDER_PATH, 'data', 'municipalities',"") self.MESO_FOLDER_PATH = os.path.join(self.REPO_FOLDER_PATH, 'data', 'mesoregions',"") self.MUN_LOOKUP_FILENAME = os.path.join(self.REPO_FOLDER_PATH, 'municipalities_lookup.xlsx') def create_folder_if_not_exists(self, folder_path): if not os.path.exists(folder_path): os.makedirs(folder_path) def get_file_name(self, transaction_type, year, division_type): return f'{self.TRANSACTION_TYPES[transaction_type]}_{year}_{division_type}.csv' def download_mun_data(self): self.create_folder_if_not_exists(self.MUN_FOLDER_PATH) for year in range(self.start_year, self.end_year+1): file_name = self.get_file_name(self.transaction_type, year, 'MUN') file_path = f'{self.MUN_FOLDER_PATH}{file_name}' if os.path.isfile(file_path): print(f'{year} - Mun {self.transaction_type} already exists. Skipping download...') continue url = f'{self.BASE_URL}{file_name}' pd.read_csv(url, sep=';', encoding='UTF-8').to_csv(file_path, sep=';', encoding='UTF-8') print(f'{year} - Municipalities {self.transaction_type} finished downloading') def add_meso_to_mun_data(self, year): mun_exp_filename = self.get_file_name(self.transaction_type, year, 'MUN') mun_exports = pd.read_csv(f'{self.MUN_FOLDER_PATH}{mun_exp_filename}', sep=';') municip_codes = pd.read_excel(self.MUN_LOOKUP_FILENAME) mun_with_meso = mun_exports.merge(municip_codes, left_on= 'CO_MUN', right_on='Código Município Completo (MDIC)') mun_with_meso.drop(['Município', 'CO_MUN', 'Nome_Microrregião', 'Microrregião Geográfica', 'Código Município Completo (MDIC)'], axis=1, inplace=True) print(f'{year} - Mesoregions info added to municipalities data') return mun_with_meso def aggregate_by_mesoregion(self, year, mun_with_meso): meso_aggregated = mun_with_meso.groupby(['CO_ANO','Nome_Mesorregião','CD_GEOCME', 'CO_MES', 'CO_PAIS', 'SH4'],as_index=False).sum() # Consolida dados por mesorregião meso_aggregated.drop(['UF', 'Mesorregião Geográfica', 'Código Município Completo (IBGE)'], axis=1, inplace=True) print(f'{year} - Mesoregions data aggregated') return meso_aggregated def download_data_and_aggregate_by_meso(self): self.create_folder_if_not_exists(self.MESO_FOLDER_PATH) self.download_mun_data() for year in (range(self.start_year, self.end_year+1)): mun_with_meso = self.add_meso_to_mun_data(year) meso_aggregated = self.aggregate_by_mesoregion(year, mun_with_meso) meso_exp_filename = self.get_file_name(self.transaction_type, year, 'MESO') meso_aggregated.to_csv(f'{self.MESO_FOLDER_PATH}{meso_exp_filename}', encoding='UTF-8') print(f'{year} - Mesoregions data saved') def download_data_and_add_meso_info(self): self.create_folder_if_not_exists(self.MUN_FOLDER_PATH) self.download_mun_data() final_df = pd.DataFrame() for year in (range(self.start_year, self.end_year+1)): mun_with_meso = self.add_meso_to_mun_data(year) final_df = final_df.append(mun_with_meso) return final_df if __name__ == '__main__': ExportsObject = ExportsByMesoregion(start_year=2020, end_year=2020, transaction_type='imports') ExportsObject.download_data_and_aggregate_by_meso()
43.447368
173
0.657985
4,419
0.889672
0
0
0
0
0
0
1,249
0.25146
a5c927734733b551301c1522c13b6095afdcc07d
903
py
Python
backend/customers/migrations/0001_initial.py
cbreezy623/modabella
b68bcc8aca903887d31489baae609ed70fe3dba7
[ "Apache-2.0" ]
null
null
null
backend/customers/migrations/0001_initial.py
cbreezy623/modabella
b68bcc8aca903887d31489baae609ed70fe3dba7
[ "Apache-2.0" ]
null
null
null
backend/customers/migrations/0001_initial.py
cbreezy623/modabella
b68bcc8aca903887d31489baae609ed70fe3dba7
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.1.1 on 2020-10-02 01:11 from django.db import migrations, models import phonenumber_field.modelfields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(default='', max_length=120)), ('last_name', models.CharField(default='', max_length=120)), ('phone', phonenumber_field.modelfields.PhoneNumberField(blank=True, default='', max_length=128, region=None)), ('email', models.EmailField(blank=True, default='', max_length=254)), ('notes', models.TextField(blank=True, default='')), ], ), ]
33.444444
127
0.604651
773
0.856035
0
0
0
0
0
0
119
0.131783
a5ca6ea7872c55e908f6afc4233961e95a90159a
1,366
py
Python
sendUAV/recevier.py
RobEn-AAST/AI-UAVC
732683fd5821d492b772cc5f966e86aed164a68c
[ "MIT" ]
16
2022-02-05T15:51:13.000Z
2022-02-05T17:38:54.000Z
sendUAV/recevier.py
RobEn-AAST/AI-UAVC
732683fd5821d492b772cc5f966e86aed164a68c
[ "MIT" ]
null
null
null
sendUAV/recevier.py
RobEn-AAST/AI-UAVC
732683fd5821d492b772cc5f966e86aed164a68c
[ "MIT" ]
null
null
null
from socket import socket, AF_INET, SOCK_STREAM, IPPROTO_TCP import struct import pickle class ServerSock(socket): def __init__(self, PORT): super().__init__(AF_INET, SOCK_STREAM, IPPROTO_TCP) self.bind(("", PORT)) self.listen() def getMessage(self): payload_size = struct.calcsize(">L") conn, _ = self.accept() conn.settimeout(5) while True: try: string = b"" while len(string) < payload_size: bits = conn.recv(4096) string += bits packed_msg_size = string[:payload_size] data = string[payload_size:] msg_size = struct.unpack(">L", packed_msg_size)[0] while len(data) < msg_size: bits = conn.recv(4096) data += bits frame_data = data[:msg_size] data = data[msg_size:] msg = pickle.loads(frame_data, fix_imports=True, encoding="bytes") # if msg start then get it's len from the header return msg except Exception: conn.close() return self.getMessage() if __name__ == "__main__": server = ServerSock(5500) while True: print(server.getMessage())
29.695652
82
0.51757
1,148
0.84041
0
0
0
0
0
0
78
0.057101
a5cabad6e15a3e94d18ccf5c8c5a2de2396af9ef
3,867
py
Python
graphdot/minipandas/dataframe.py
yhtang/GraphDot
3d5ed4fbb2f6912052baa42780b436da76979691
[ "BSD-3-Clause-LBNL" ]
9
2020-02-14T18:07:39.000Z
2021-12-15T12:07:31.000Z
graphdot/minipandas/dataframe.py
yhtang/graphdot
3d5ed4fbb2f6912052baa42780b436da76979691
[ "BSD-3-Clause-LBNL" ]
3
2020-03-19T19:07:26.000Z
2021-02-24T06:08:51.000Z
graphdot/minipandas/dataframe.py
yhtang/graphdot
3d5ed4fbb2f6912052baa42780b436da76979691
[ "BSD-3-Clause-LBNL" ]
3
2019-10-17T06:11:18.000Z
2021-05-07T11:56:33.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from collections import namedtuple import numpy as np import pandas as pd from .series import Series class DataFrame: def __init__(self, data=None): self._data = {} if isinstance(data, dict): for key, value in data.items(): self[key] = value def __getitem__(self, key): if isinstance(key, str): return self._data[key] elif hasattr(key, '__iter__'): i = np.array(key) if np.issubsctype(i.dtype, np.bool_): return self.__class__({k: v[i] for k, v in self._data.items()}) else: return self.__class__({k: self._data[k] for k in key}) else: raise TypeError(f'Invalid column index {key}') def __setitem__(self, key, value): self._data[key] = Series(value) def __getattr__(self, name): if '_data' in self.__dict__ and name in self._data.keys(): return self._data[name] else: raise AttributeError(f'Dataframe has no column {name}.') def __repr__(self): return repr(self._data) def __len__(self): return max([0] + [len(array) for array in self._data.values()]) def __contains__(self, item): return item in self._data def __iter__(self): for key in self._data: yield key @property def columns(self): return list(self._data.keys()) def rowtype(self, pack=True): cols = np.array(list(self.columns)) ctypes = {key: np.dtype(self[key].concrete_type) for key in cols} if pack is True: perm = np.argsort([-ctypes[key].itemsize for key in self.columns]) cols = cols[perm] packed_dtype = np.dtype([(key, ctypes[key].newbyteorder('=')) for key in cols], align=True) return packed_dtype def rows(self, rowname='row'): '''Iterate over rows in the form of named tuples while skipping columns that do not have valid field names.''' visible = [key for key in self._data if key.isidentifier()] class RowTuple(namedtuple(rowname, visible)): def __getitem__(self, key): '''To support both member access and index access.''' if isinstance(key, str): return getattr(self, key) else: return super().__getitem__(key) RowTuple.__name__ = rowname # for row in zip(*[self[key] for key in visible]): # yield RowTuple(row) for i in range(len(self)): yield RowTuple(*[self[key][i] for key in visible]) def itertuples(self, tuplename='tuple'): '''Alias of `rows()` for API compatibility with pandas.''' yield from self.rows(rowname=tuplename) def iterrows(self, rowname='row'): '''Iterate in (row_id, row_content) tuples.''' yield from enumerate(self.rows(rowname=rowname)) def iterstates(self, pack=True): '''Iterate over rows, use the .state attribute if element is not scalar.''' cols = np.array(list(self.rowtype(pack=pack).fields.keys())) for row in zip(*[self[key] for key in cols]): yield tuple(i if np.isscalar(i) else i.state for i in row) def to_pandas(self): return pd.DataFrame(self._data) def copy(self, deep=False): if deep: return self.__class__({ key: np.copy(value) for key, value in self._data.items() }) else: return self.__class__(self._data) def drop(self, keys, inplace=False): if inplace is True: for key in keys: del self._data[key] else: return self[[k for k in self.columns if k not in keys]]
32.495798
79
0.573054
3,717
0.96121
1,473
0.380915
71
0.01836
0
0
577
0.149211
a5cb7a30978758aaea2edade994cdb342894093c
21,620
py
Python
pedal/questions/loader.py
acbart/python-analysis
3cd2cc22d50a414ae6b62c74d2643be4742238d4
[ "MIT" ]
14
2019-08-22T03:40:23.000Z
2022-03-13T00:30:53.000Z
pedal/questions/loader.py
pedal-edu/pedal
3cd2cc22d50a414ae6b62c74d2643be4742238d4
[ "MIT" ]
74
2019-09-12T04:35:56.000Z
2022-01-26T19:21:32.000Z
pedal/questions/loader.py
acbart/python-analysis
3cd2cc22d50a414ae6b62c74d2643be4742238d4
[ "MIT" ]
2
2021-01-11T06:34:00.000Z
2021-07-21T12:48:07.000Z
""" instructions: blah blah blah settings: tifa: enabled: True unit test by function (bool): Whether to test each function entirely before moving onto the next one, or to first check that all functions have been defined, and then checking their parameters, etc. Defaults to True. show case details (bool): Whether to show the specific args/inputs that caused a test case to fail. rubric: functions: total: 100 definition: 10 signature: 10 cases: 80 global: variables: name: type: value: inputs: prints: # Sandbox, type checking functions: documentation: "any" or "google" coverage: 100% tests: int name: do_complicated_stuff arity: int signature: int, int -> float signature: int, int, list[int], (int->str), dict[str:list[int]] -> list[int] parameters: name: banana exactly: regex: includes: within: type: int cases: - arguments (list): 5, 4 inputs (list): returns (Any): equals: 27.3 is: is not: _1 name (str): Meaningful name for tracking purposes? Or possibly separate into label/id/code hint (str): Message to display to user prints: exactly: regex: startswith: endswith: plots: # Cait syntax: prevent: ___ + ___ # Override any of our default feedback messages messages: FUNCTION_NOT_DEFINED: "Oops you missed a function" """ from pedal.core.commands import set_success, give_partial from pedal.core.feedback_category import FeedbackCategory from pedal.questions.constants import TOOL_NAME from pedal.sandbox.commands import get_sandbox from pedal.utilities.comparisons import equality_test SETTING_SHOW_CASE_DETAILS = "show case details" DEFAULT_SETTINGS = { SETTING_SHOW_CASE_DETAILS: True } EXAMPLE_DATA = { 'functions': [{ 'name': 'do_complicated_stuff', 'signature': 'int, int, [int] -> list[int]', 'cases': [ {'arguments': "5, 4, 3", 'returns': "12"}, ] }] } class FeedbackException(Exception): """ """ def __init__(self, category, label, **fields): self.category = category self.label = label self.fields = fields def as_message(self): """ Returns: """ return FEEDBACK_MESSAGES[self.category][self.label].format(**self.fields) def check_function_defined(function, function_definitions, settings=None): """ Args: function: function_definitions: settings: Returns: """ # 1. Is the function defined syntactically? # 1.1. With the right name? function_name = function['name'] if function_name not in function_definitions: raise FeedbackException(FeedbackCategory.SPECIFICATION, 'missing_function', function_name=function_name) definition = function_definitions[function_name] return definition def check_function_signature(function, definition, settings=None): """ Args: function: definition: settings: Returns: """ function_name = function['name'] # 1.2. With the right parameters and return type? # 1.2.1 'arity' style - simply checks number of parameters if 'arity' in function or 'parameters' in function: expected_arity = function['arity'] if 'arity' in function else len(function['parameters']) actual_arity = len(definition.args.args) if actual_arity < expected_arity: raise FeedbackException(FeedbackCategory.SPECIFICATION, 'insufficient_args', function_name=function_name, expected_arity=expected_arity, actual_arity=actual_arity) elif actual_arity > expected_arity: raise FeedbackException(FeedbackCategory.SPECIFICATION, 'excessive_args', function_name=function_name, expected_arity=expected_arity, actual_arity=actual_arity) # 1.2.2 'parameters' style - checks each parameter's name and type if 'parameters' in function: expected_parameters = function['parameters'] actual_parameters = definition.args.args for expected_parameter, actual_parameter in zip(expected_parameters, actual_parameters): actual_parameter_name = get_arg_name(actual_parameter) if 'name' in expected_parameter: if actual_parameter_name != expected_parameter['name']: raise FeedbackException(FeedbackCategory.SPECIFICATION, 'wrong_parameter_name', function_name=function_name, expected_parameter_name=expected_parameter['name'], actual_parameter_name=actual_parameter_name ) if 'type' in expected_parameter: actual_parameter_type = parse_type(actual_parameter) # TODO: Handle non-string expected_parameter types (dict) expected_parameter_type = parse_type_value(expected_parameter['type'], True) if not type_check(expected_parameter_type, actual_parameter_type): raise FeedbackException(FeedbackCategory.SPECIFICATION, 'wrong_parameter_type', function_name=function_name, parameter_name=actual_parameter_name, expected_parameter_type=expected_parameter_type, actual_parameter_type=actual_parameter_type) # 1.2.3. 'returns' style - checks the return type explicitly if 'returns' in function: expected_returns = parse_type_value(function['returns'], True) actual_returns = parse_type(definition.returns) if actual_returns != "None": if not type_check(expected_returns, actual_returns): raise FeedbackException(FeedbackCategory.SPECIFICATION, "wrong_returns", function_name=function_name, expected_returns=expected_returns, actual_returns=actual_returns) elif expected_returns != "None": raise FeedbackException(FeedbackCategory.SPECIFICATION, "missing_returns", function_name=function_name, expected_returns=expected_returns) # 1.2.4. 'signature' style - shortcut for specifying the types if 'signature' in function: expected_signature = function['signature'] actual_returns = parse_type(definition.returns) actual_parameters = ", ".join(parse_type(actual_parameter.annotation) for actual_parameter in definition.args.args) actual_signature = "{} -> {}".format(actual_parameters, actual_returns) if not type_check(expected_signature, actual_signature): raise FeedbackException(FeedbackCategory.SPECIFICATION, "wrong_signature", function_name=function_name, expected_signature=expected_signature, actual_signature=actual_signature) # All good here! return True def check_function_value(function, values, settings): """ 2. Does the function exist in the data? :param function: :param values: :param settings: :return: """ function_name = function['name'] # 2.1. Does the name exist in the values? if function_name not in values: raise FeedbackException(FeedbackCategory.SPECIFICATION, "function_not_available", function_name=function_name) function_value = values[function_name] # 2.2. Is the name bound to a callable? if not callable(function_value): raise FeedbackException(FeedbackCategory.SPECIFICATION, "name_is_not_function", function_name=function_name) # All good here return function_value class TestCase: """ """ CASE_COUNT = 0 def __init__(self, function_name, case_name): self.function_name = function_name if case_name is None: self.case_name = str(TestCase.CASE_COUNT) TestCase.CASE_COUNT += 1 else: self.case_name = case_name self.arguments, self.has_arguments = [], False self.inputs, self.has_inputs = [], False self.error, self.has_error = None, False self.message, self.has_message = None, False self.expected_prints, self.has_expected_prints = None, False self.expected_returns, self.has_expected_returns = None, False self.prints = [] self.returns = None self.success = True def add_message(self, message): """ Args: message: """ self.message = message self.has_message = True def add_inputs(self, inputs): """ Args: inputs: """ if not isinstance(inputs, list): inputs = [inputs] self.inputs = inputs self.has_inputs = True def add_arguments(self, arguments): """ Args: arguments: """ if not isinstance(arguments, list): arguments = [arguments] self.arguments = arguments self.has_arguments = True def add_error(self, error): """ Args: error: """ self.error = error self.has_error = True self.success = False def add_expected_prints(self, prints): """ Args: prints: """ self.expected_prints = prints self.has_expected_prints = True def add_expected_returns(self, returns): """ Args: returns: """ self.expected_returns = returns self.has_expected_returns = True def add_prints_returns(self, prints, returns): """ Args: prints: returns: """ self.prints = prints self.returns = returns def fail(self): """ """ self.success = False def check_case(function, case, student_function): """ :param function: :param case: :param student_function: :return: status, arg, input, error, output, return, message """ function_name = function['name'] test_case = TestCase(function_name, case.get('name')) # Get callable sandbox = get_sandbox(MAIN_REPORT) sandbox.clear_output() # Potential bonus message if 'message' in case: test_case.add_message(case['message']) # Queue up the the inputs if 'inputs' in case: test_case.add_inputs(case['inputs']) sandbox.set_input(test_case.inputs) else: sandbox.clear_input() # Pass in the arguments and call the function if 'arguments' in case: test_case.add_arguments(case['arguments']) result = sandbox.call(function_name, *test_case.arguments) # Store actual values test_case.add_prints_returns(sandbox.output, result) # Check for errors if sandbox.exception: test_case.add_error(sandbox.exception) # 4. Check out the output if 'prints' in case: test_case.add_expected_prints(case['prints']) if not output_test(sandbox.output, case['prints'], False, .0001): test_case.fail() # 5. Check the return value if 'returns' in case: test_case.add_expected_returns(case['returns']) if not equality_test(result, case['returns'], True, .0001): test_case.fail() # TODO: Check the plots # Return results return test_case # TODO: blockpy-feedback-unit => pedal-test-cases in BlockPy Client TEST_TABLE_TEMPLATE = """<table class='pedal-test-cases table table-sm table-bordered table-hover'> <tr class='table-active'> <th></th> <th>Arguments</th> <th>Expected</th> <th>Returned</th> </tr> {body} </table>""" TEST_TABLE_FOOTER = "</table>" TEST_TABLE_ROW_HEADER = "<tr class='table-active'>" TEST_TABLE_ROW_NORMAL = "<tr>" TEST_TABLE_ROW_FOOTER = "</tr>" TEST_TABLE_ROW_INFO = "<tr class='table-info'>" GREEN_CHECK = " <td class='green-check-mark'>&#10004;</td>" RED_X = " <td>&#10060;</td>" CODE_CELL = " <td><code>{}</code></td>" COLUMN_TITLES = ["", "Arguments", "Inputs", "Errors", "Expected", "Expected", "Returned", "Printed"] def make_table(cases): """ Args: cases: Returns: """ body = [] for case in cases: body.append(" <tr>") body.append(GREEN_CHECK if case.success else RED_X) body.append(CODE_CELL.format(", ".join(repr(arg) for arg in case.arguments))) if case.has_error: body.append(" <td colspan='2'>Error: <code>{}</code></td>".format(str(case.error))) else: body.append(CODE_CELL.format(repr(case.expected_returns))) body.append(CODE_CELL.format(repr(case.returns))) if not case.success and case.has_message: body.append(" </tr><tr><td colspan='4'>{}</td>".format(case.message)) body.append(" </tr>") body = "\n".join(body) return TEST_TABLE_TEMPLATE.format(body=body) #if ((any(args) and any(inputs)) or # (any(expected_outputs) and any(expected_returns)) or # (any(actual_outputs) and any(actual_returns))): # # Complex cells # pass #else: # Simple table # Make header # row_mask = [True, any(args), any(inputs), False, # any("returns" in reason for reason in reasons), # any("prints" in reason for reason in reasons), # any("returns" in reason for reason in reasons), # any("prints" in reason for reason in reasons)] # header_cells = "".join("<th>{}</th>".format(title) for use, title in zip(row_mask, COLUMN_TITLES) if use) # body = [TEST_TABLE_ROW_HEADER.format(header_cells)] # for case in zip( # statuses, args, inputs, errors, actual_outputs, actual_returns, # expected_outputs, expected_returns): # status, case = case[0], case[1:] # print(row_mask[1:], case) # def make_code(values): # if values == None: # return "<code>None</code>" # elif isinstance(values, int): # return "<code>{!r}</code>".format(values) # else: # return ", ".join("<code>{}</code>".format(repr(value)) for value in values) # body.append( # TEST_TABLE_ROW_NORMAL+ # (GREEN_CHECK if case[0] else RED_X)+ # "\n".join(" <td>{}</td>".format(make_code(values)) # for use, values in zip(row_mask[1:], case) if use)+ # "</tr>\n" # ) # # Make each row # table = "{}\n{}\n{}".format(TEST_TABLE_HEADER, "\n ".join(body), TEST_TABLE_FOOTER) # return table def check_cases(function, student_function, settings): """ Args: function: student_function: settings: """ function_name = function['name'] if 'cases' in function: cases = function['cases'] test_cases = [check_case(function, case, student_function) for case in cases] success_cases = sum(test.success for test in test_cases) if success_cases < len(cases): if settings[SETTING_SHOW_CASE_DETAILS]: table = make_table(test_cases) raise FeedbackException(FeedbackCategory.SPECIFICATION, "failed_test_cases", function_name=function_name, cases_count=len(cases), failure_count=len(cases)-success_cases, table=table) else: raise FeedbackException(FeedbackCategory.SPECIFICATION, "failed_test_cases_count", function_name=function_name, cases_count=len(cases), failure_count=len(cases) - success_cases) def get_arg_name(node): """ Args: node: Returns: """ name = node.id if name is None: return node.arg else: return name def load_question(data): """ :param data: :return: """ ast = parse_program() student_data = commands.get_student_data() # Check that there aren't any invalid syntactical structures # Get all of the function ASTs in a dictionary function_definitions = {definition._name: definition for definition in ast.find_all("FunctionDef")} settings = DEFAULT_SETTINGS.copy() settings.update(data.get('settings', {})) rubric = settings.get('rubric', {}) function_points = 0 if 'functions' in data: function_rubric = rubric.get('functions', {}) successes = [] for function in data['functions']: success = False try: definition = check_function_defined(function, function_definitions, settings) function_points += function_rubric.get('definition', 10) check_function_signature(function, definition, settings) function_points += function_rubric.get('signature', 10) student_function = check_function_value(function, student_data, settings) function_points += function_rubric.get('value', 0) except FeedbackException as fe: yield fe.as_message(), fe.label else: try: check_cases(function, student_function, settings) except FeedbackException as fe: success_ratio = (1.0 - fe.fields['failure_count'] / fe.fields['cases_count']) function_points += function_rubric.get('cases', 80*success_ratio) yield fe.as_message(), fe.label else: function_points += function_rubric.get('cases', 80) success = True successes.append(success) function_points /= len(data['functions']) if all(successes): set_success() else: give_partial(function_points, tool=TOOL_NAME, justification="Passed some but not all unit tests") def check_question(data): """ Args: data: """ results = list(load_question(data)) if results: message, label = results[0] gently(message, label=label) def check_pool(questions): """ Args: questions: """ pass def load_file(filename): """ Args: filename: """ pass FEEDBACK_MESSAGES = { FeedbackCategory.SPECIFICATION: { "missing_function": "No function named `{function_name}` was found.", "insufficient_args": ("The function named `{function_name}` " "has fewer parameters ({actual_arity}) " "than expected ({expected_arity})."), "excessive_args": ("The function named `{function_name}` " "has more parameters ({actual_arity}) " "than expected ({expected_arity})."), # TODO: missing_parameter that checks if parameter name exists, but is in the wrong place "wrong_parameter_name": ("Error in definition of `{function_name}`. " "Expected a parameter named `{expected_parameter_name}`, " "instead found `{actual_parameter_name}`."), "wrong_parameter_type": ("Error in definition of function `{function_name}` " "parameter `{parameter_name}`. Expected `{expected_parameter_type}`, " "instead found `{actual_parameter_type}`."), "missing_returns": ("Error in definition of function `{function_name}` return type. " "Expected `{expected_returns}`, but there was no return type specified."), "wrong_returns": ("Error in definition of function `{function_name}` return type. " "Expected `{expected_returns}`, instead found `{actual_returns}`."), "wrong_signature": ("Error in definition of function `{function_name}` signature. " "Expected `{expected_signature}`, instead found `{actual_signature}`."), "name_is_not_function": "You defined `{function_name}`, but did not define it as a function.", "function_not_available": ("You defined `{function_name}` somewhere in your code, " "but it was not available in the top-level scope to be called. " "Perhaps you defined it inside another function or scope?"), "failed_test_cases": ("I ran your function <code>{function_name}</code> on my own test cases. " "It failed {failure_count}/{cases_count} of my tests.\n{table}"), "failed_test_cases_count": ("I ran your function <code>{function_name}</code> on my own test cases. " "It failed {failure_count}/{cases_count} of my tests."), } }
35.913621
118
0.592091
2,538
0.117391
2,107
0.097456
0
0
0
0
8,675
0.401249
a5cc7ebfb0f671bb1d1aeac6021cc68675439a1a
8,732
py
Python
VM/fetchLoop.py
djtech-dev/PyVM
1edda436ce7073d0cecbf16f5cab2509895d953c
[ "MIT" ]
75
2017-09-22T22:36:13.000Z
2022-03-20T16:18:27.000Z
VM/fetchLoop.py
djtech-dev/PyVM
1edda436ce7073d0cecbf16f5cab2509895d953c
[ "MIT" ]
7
2019-05-10T19:15:08.000Z
2021-08-24T16:03:34.000Z
VM/fetchLoop.py
djtech-dev/PyVM
1edda436ce7073d0cecbf16f5cab2509895d953c
[ "MIT" ]
14
2018-07-02T02:49:46.000Z
2022-02-22T15:24:47.000Z
import enum from .ELF import ELF32, enums from .util import SegmentRegs, MissingOpcodeError from .CPU import CPU32 import logging logger = logging.getLogger(__name__) class FetchLoopMixin: _attrs_ = 'eip', 'mem', 'reg.ebx', 'fmt', 'instr', 'sizes', 'default_mode' def execute_opcode(self: CPU32) -> None: self.eip += 1 off = 1 if self.opcode == 0x0F: op = self.mem.get_eip(self.eip, 1) self.eip += 1 self.opcode = (self.opcode << 8) | op off += 1 if __debug__: logger.debug(self.fmt, self.eip - off, self.opcode) try: impls = self.instr[self.opcode] except KeyError: ... # could not find opcode else: for impl in impls: if impl(): return # opcode executed # could not find suitable implementation # read one more byte op = self.mem.get_eip(self.eip, 1) self.eip += 1 self.opcode = (self.opcode << 8) | op try: impls = self.instr[self.opcode] except KeyError: raise MissingOpcodeError(f'Opcode {self.opcode:x} is not recognized yet (at 0x{self.eip - off - 1:08x})') else: for impl in impls: if impl(): return # opcode executed # could not find suitable implementation raise NotImplementedError(f'No suitable implementation found for opcode {self.opcode:x} (@0x{self.eip - off - 1:02x})') def run(self: CPU32) -> int: """ Implements the basic CPU instruction cycle (https://en.wikipedia.org/wiki/Instruction_cycle) :param self: passed implicitly :param offset: location of the first opcode :return: None """ # opcode perfixes pref_segments = { 0x2E: SegmentRegs.CS, 0x36: SegmentRegs.SS, 0x3E: SegmentRegs.DS, 0x26: SegmentRegs.ES, 0x64: SegmentRegs.FS, 0x65: SegmentRegs.GS } pref_op_size_override = {0x66, 0x67} pref_lock = {0xf0} rep = {0xf3} prefixes = set(pref_segments) | pref_op_size_override | pref_lock | rep self.running = True while self.running and self.eip + 1 < self.mem.size: overrides = [] self.opcode = self.mem.get(self.eip, 1) while self.opcode in prefixes: overrides.append(self.opcode) self.eip += 1 self.opcode = self.mem.get(self.eip, 1) # apply overrides size_override_active = False for ov in overrides: if ov == 0x66: if not size_override_active: self.current_mode = not self.current_mode size_override_active = True old_operand_size = self.operand_size self.operand_size = self.sizes[self.current_mode] logger.debug( 'Operand size override: %d -> %d', old_operand_size, self.operand_size ) elif ov == 0x67: if not size_override_active: self.current_mode = not self.current_mode size_override_active = True old_address_size = self.address_size self.address_size = self.sizes[self.current_mode] logger.debug( 'Address size override: %d -> %d', old_address_size, self.address_size ) elif ov in pref_segments: is_special = ov >> 6 if is_special: sreg_number = 4 + (ov & 1) # FS or GS else: sreg_number = (ov >> 3) & 0b11 self.mem.segment_override = sreg_number logger.debug('Segment override: %s', self.mem.segment_override) elif ov == 0xf0: # LOCK prefix logger.debug('LOCK prefix') # do nothing; all operations are atomic anyway. Right? elif ov == 0xf3: # REP prefix self.opcode = ov self.eip -= 1 # repeat the previous opcode self.execute_opcode() # undo all overrides for ov in overrides: if ov == 0x66: self.current_mode = self.default_mode self.operand_size = self.sizes[self.current_mode] elif ov == 0x67: self.current_mode = self.default_mode self.address_size = self.sizes[self.current_mode] elif ov in pref_segments: self.mem.segment_override = SegmentRegs.DS return self.reg.eax class ExecutionStrategy(enum.Enum): BYTES = 1 FLAT = 2 ELF = 3 class ExecutionMixin(FetchLoopMixin): def execute(self, *args, **kwargs): return NotImplemented class ExecuteBytes(ExecutionMixin): _attrs_ = 'eip', 'mem', 'code_segment_end' _funcs_ = 'run', def execute(self: CPU32, data: bytes, offset=0): l = len(data) self.mem.set_bytes(offset, l, data) self.eip = offset self.code_segment_end = self.eip + l - 1 self.mem.program_break = self.code_segment_end return self.run() class ExecuteFlat(ExecutionMixin): _attrs_ = 'eip', 'mem', 'code_segment_end' _funcs_ = 'run', def execute(self: CPU32, fname: str, offset=0): with open(fname, 'rb') as f: data = f.read() l = len(data) self.mem.set_bytes(offset, l, data) self.eip = offset self.code_segment_end = self.eip + l - 1 self.mem.program_break = self.code_segment_end return self.run() class ExecuteELF(ExecutionMixin): _attrs_ = 'eip', 'mem', 'reg', 'code_segment_end' _funcs_ = 'run', 'stack_init', 'stack_push' def execute(self: CPU32, fname: str, args=()): with ELF32(fname) as elf: if elf.hdr.e_type != enums.e_type.ET_EXEC: raise ValueError(f'ELF file {elf.fname!r} is not executable (type: {elf.hdr.e_type})') max_memsz = max( phdr.p_vaddr + phdr.p_memsz for phdr in elf.phdrs if phdr.p_type == enums.p_type.PT_LOAD ) if self.mem.size < max_memsz * 2: self.mem.size = max_memsz * 2 self.stack_init() for phdr in elf.phdrs: if phdr.p_type not in (enums.p_type.PT_LOAD, enums.p_type.PT_GNU_EH_FRAME): continue logger.info(f'LOAD {phdr.p_memsz:10,d} bytes at address 0x{phdr.p_vaddr:09_x}') elf.file.seek(phdr.p_offset) data = elf.file.read(phdr.p_filesz) self.mem.set_bytes(phdr.p_vaddr, len(data), data) self.mem.set_bytes(phdr.p_vaddr + phdr.p_filesz, phdr.p_memsz - phdr.p_filesz, bytearray(phdr.p_memsz - phdr.p_filesz)) self.eip = elf.hdr.e_entry self.code_segment_end = self.eip + max_memsz - 1 self.mem.program_break = self.code_segment_end # INITIALIZE STACK LAYOUT: # http://asm.sourceforge.net/articles/startup.html # https://lwn.net/Articles/631631/ environment = ["USER=ForceBru"] args = [fname] + list(args) arg_addresses, env_addresses = [], [] for arg in args: arg = arg.encode() + b'\0' l = len(arg) self.mem.set_bytes(self.reg.esp - l, l, arg) self.reg.esp -= l arg_addresses.append(self.reg.esp) for env in environment: env = env.encode() + b'\0' l = len(env) self.mem.set_bytes(self.reg.esp - l, l, env) self.reg.esp -= l env_addresses.append(self.reg.esp) # auxiliary vector (just NULL) self.stack_push(0) # environment (array of pointers + NULL) self.stack_push(0) for addr in env_addresses[::-1]: self.stack_push(addr) # argv self.stack_push(0) # end of argv for addr in arg_addresses[::-1]: self.stack_push(addr) # argc self.stack_push(len(args)) logger.info(f'EXEC at 0x{self.eip:09_x}') # logger.debug(f'Stack start at 0x{self.reg.esp:08x}') # logger.debug(f'Stack end at 0x{self.reg.ebp:08x}') return self.run()
33.328244
135
0.535502
8,541
0.978126
0
0
0
0
0
0
1,515
0.1735
a5cdc723644cccdf87dcd59c16c72ac9871189a8
2,753
py
Python
polecat/deploy/aws/deployment.py
furious-luke/polecat
7be5110f76dc42b15c922c1bb7d49220e916246d
[ "MIT" ]
4
2019-08-10T12:56:12.000Z
2020-01-21T09:51:20.000Z
polecat/deploy/aws/deployment.py
furious-luke/polecat
7be5110f76dc42b15c922c1bb7d49220e916246d
[ "MIT" ]
71
2019-04-09T05:39:21.000Z
2020-05-16T23:09:24.000Z
polecat/deploy/aws/deployment.py
furious-luke/polecat
7be5110f76dc42b15c922c1bb7d49220e916246d
[ "MIT" ]
null
null
null
from termcolor import colored from ...utils.feedback import feedback from .constants import DEPLOYMENT_PREFIX, DEPLOYMENT_REGISTRY from .exceptions import EntityDoesNotExist, EntityExists from .operations import delete_parameter, get_parameter, set_parameter from .project import assert_project_exists from .utils import aws_client @feedback def create_deployment(project, deployment, feedback): ssm = aws_client('ssm') with feedback(f'Create deployment {colored(project, "cyan")}/{colored(deployment, "green")}'): assert_project_exists(project, ssm=ssm) name = DEPLOYMENT_REGISTRY.format(project) deployments = get_parameter(name, default=[], ssm=ssm) if deployment in deployments: raise EntityExists try: deployments.remove('_') except ValueError: pass deployments.append(deployment) set_parameter(name, deployments, ssm=ssm) # The active flag is here really only to ensure when # deployments are carried out for deployments without secrets # etc, they are still used. name = DEPLOYMENT_PREFIX.format(project, deployment) + 'active' set_parameter(name, '1', ssm=ssm) @feedback def list_deployments(project, feedback): ssm = aws_client('ssm') with feedback(f'List deployments for {colored(project, "cyan")}'): assert_project_exists(project, ssm=ssm) name = DEPLOYMENT_REGISTRY.format(project) deployments = get_parameter(name, default=[], ssm=ssm) return [d for d in deployments if d != '_'] @feedback def delete_deployment(project, deployment, feedback): ssm = aws_client('ssm') with feedback(f'Delete deployment {colored(project, "cyan")}/{colored(deployment, "green")}'): assert_project_exists(project, ssm=ssm) assert_deployment_exists(project, deployment, ssm=ssm) # TODO: Check for related entities? name = DEPLOYMENT_REGISTRY.format(project) deployments = get_parameter(name, default=[], ssm=ssm) deployments.remove(deployment) if not deployments: deployments.append('_') set_parameter(name, deployments, ssm=ssm) # TODO: Need to fetch the path, then delete all of them. name = DEPLOYMENT_PREFIX.format(project, deployment) delete_parameter(name, ssm=ssm) def deployment_exists(project, deployment, ssm=None): registry = get_parameter(DEPLOYMENT_REGISTRY.format(project), ssm=ssm) return deployment in registry def assert_deployment_exists(project, deployment, ssm=None): if not deployment_exists(project, deployment, ssm=ssm): raise EntityDoesNotExist( f'deployment {deployment} does not exist' )
38.774648
98
0.698147
0
0
0
0
2,025
0.735561
0
0
513
0.186342
a5cef8d918f7406a1dd78059cb13a600f918323a
5,897
py
Python
mlpy/regression/logistic_regression.py
SNUDerek/MLPy
0d47a8ef8522a663716cda6a831855e6482069ba
[ "MIT" ]
1
2019-05-10T10:39:12.000Z
2019-05-10T10:39:12.000Z
mlpy/regression/logistic_regression.py
SNUDerek/MLPy
0d47a8ef8522a663716cda6a831855e6482069ba
[ "MIT" ]
null
null
null
mlpy/regression/logistic_regression.py
SNUDerek/MLPy
0d47a8ef8522a663716cda6a831855e6482069ba
[ "MIT" ]
null
null
null
import numpy as np from ..tools import batchGenerator # LOGISTIC REGRESSION # for (binary) categorical data class LogisticRegression(): ''' Logistic regression with Gradient Descent binary Logistic regression Parameters ---------- epochs : int maximum epochs of gradient descent lr : float learning rate lmb : float (L2) regularization parameter lambda sgd : int batch size for stochastic gradient descent (0 = gradient descent) tol : float tolerance for convergence weights : array weights (coefficients) of linear model Attributes ------- ''' def __init__(self, epochs=1000, intercept=False, lmb=0.0, lr=0.01, sgd=0, tol=1e-5): self.epochs = epochs self.intercept = intercept self.lmb=lmb self.lr = lr self.sgd = sgd self.tol = tol self.weights = np.array([]) self.costs = [] # internal function for sigmoid def _sigmoid(self, estimates): sigmoid = 1 / (1 + np.exp(-estimates)) return sigmoid # internal function for making hypothesis and getting cost def _getestimate(self, x_data, y_data, weights): # get hypothesis 'scores' (features by weights) scores = x_data.dot(weights).flatten() # sigmoid these scores for predictions (0~1) y_hat = self._sigmoid(scores) # get the difference between the trues and the hypothesis difference = y_data.flatten() - y_hat # calculate cost function J (log-likelihood) # loglik = sum y_i theta.T x_i - log( 1 + e^b.T x_i ) nloglik = -np.sum(y_data*scores - np.log(1 + np.exp(scores))) return y_hat, difference, nloglik # fit ("train") the function to the training data # inputs : x and y data as np.arrays (x is array of x-dim arrays where x = features) # params : verbose : Boolean - whether to print out detailed information # outputs : none def fit(self, x_data, y_data, verbose=False, print_iters=100): # STEP 1: ADD X_0 TERM FOR BIAS (IF INTERCEPT==TRUE) # add an 'x0' = 1.0 to our x data so we can treat intercept as a weight # use numpy.hstack (horizontal stack) to add a column of ones: if self.intercept: x_data = np.hstack((np.ones((x_data.shape[0], 1)), x_data)) # STEP 2: INIT WEIGHT COEFFICIENTS # one weight per feature (+ intercept) # you can init the weights randomly: # weights = np.random.randn(x_data.shape[1]) # or you can use zeroes with np.zeros(): weights = np.zeros(x_data.shape[1]) # STEP 3: INIT REGULARIZATION TERM LAMBDA # make as array with bias = 0 so don't regularize bias # then we can element-wise multiply with weights # this is the second term in the ( 1 - lambda/m ) lmbda = np.array([self.lmb/x_data.shape[0] for i in range(x_data.shape[1])]) if self.intercept: lmbda[0] = 0.0 iters = 0 # choose between iterations of sgd and epochs if self.sgd==0: maxiters = self.epochs else: maxiters = self.epochs * int(len(y_data)/self.sgd) minibatch = batchGenerator(x_data, y_data, self.sgd) for epoch in range(maxiters): # make an estimate, calculate the difference and the cost # gradient_ll = X.T(y - y_hat) # GRADIENT DESCENT: # get gradient over ~all~ training instances each iteration if self.sgd==0: y_hat, difference, cost = self._getestimate(x_data, y_data, weights) gradient = -np.dot(x_data.T, difference) # STOCHASTIC (minibatch) GRADIENT DESCENT # get gradient over random minibatch each iteration # for "true" sgd, this should be sgd=1 # though minibatches of power of 2 are more efficient (2, 4, 8, 16, 32, etc) else: x_batch, y_batch = next(minibatch) y_hat, difference, cost = self._getestimate(x_batch, y_batch, weights) gradient = -np.dot(x_data.T, difference) # get new predicted weights by stepping "backwards' along gradient # use lambda parameter for regularization (calculated above) new_weights = (weights - lmbda) - gradient * self.lr # check stopping condition if np.sum(abs(new_weights - weights)) < self.tol: if verbose: print("converged after {0} iterations".format(iters)) break # update weight values, save cost weights = new_weights self.costs.append(cost) iters += 1 # print diagnostics if verbose and iters % print_iters == 0: print("iteration {0}: cost: {1}".format(iters, cost)) # update final weights self.weights = weights return self.costs # predict probas on the test data # inputs : x data as np.array # outputs : y probabilities as list def predict_proba(self, x_data): # STEP 1: ADD X_0 TERM FOR BIAS (IF INTERCEPT==TRUE) if self.intercept: x_data = np.hstack((np.ones((x_data.shape[0], 1)), x_data)) # STEP 2: PREDICT USING THE y_hat EQN scores = x_data.dot(self.weights).flatten() y_hat = self._sigmoid(scores) return y_hat # predict on the test data # inputs : x data as np.array # outputs : y preds as list def predict(self, x_data): y_hat = self.predict_proba(x_data) # ROUND TO 0, 1 preds = [] for p in y_hat: if p > 0.5: preds.append(1.0) else: preds.append(0.0) return preds
32.944134
89
0.587248
5,787
0.981346
0
0
0
0
0
0
2,672
0.453112
a5d00dc3b88e76c00327d591e70ffe150f4013d2
1,946
py
Python
esercizio_1/untitled1.py
navyzigz420/python_lab
a3496d8b170e334abfb5099bf6ee03df5e226b78
[ "Apache-2.0" ]
null
null
null
esercizio_1/untitled1.py
navyzigz420/python_lab
a3496d8b170e334abfb5099bf6ee03df5e226b78
[ "Apache-2.0" ]
null
null
null
esercizio_1/untitled1.py
navyzigz420/python_lab
a3496d8b170e334abfb5099bf6ee03df5e226b78
[ "Apache-2.0" ]
null
null
null
bits = '110' def turnBitsIntoInteger(listOfBits): valore = 0 lunghezza = len(listOfBits) for x in range(lunghezza): if listOfBits[x] != '0' and listOfBits[x] != '1': raise Exception('Not a combinations of bits!') valore = valore + 2**(lunghezza -1 - x) * int(listOfBits[x]) if valore != int(listOfBits,2): raise Exception('Porca l\'oca. {} diverso da {}!'.format(valore, int(listOfBits,2))) return valore #print(str(valore)) print(turnBitsIntoInteger(bits))
1.3637
92
0.167009
0
0
0
0
0
0
0
0
92
0.047276
a5d187baa7ec34c04b159476ef8dc6d77a915eac
4,175
py
Python
generated/azure-cli/aro/custom.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
generated/azure-cli/aro/custom.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
generated/azure-cli/aro/custom.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long # pylint: disable=too-many-statements # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=unused-argument import json # module equivalent: azure_rm_openshiftmanagedcluster # URL: /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ContainerService/openShiftManagedClusters/{{ open_shift_managed_cluster_name }} def create_aro(cmd, client, resource_group, name, location, open_shift_version, tags=None, plan=None, network_profile=None, router_profiles=None, master_pool_profile=None, agent_pool_profiles=None, auth_profile=None): body = {} body['location'] = location # str body['tags'] = tags # dictionary body['plan'] = json.loads(plan) if isinstance(plan, str) else plan body['open_shift_version'] = open_shift_version # str body['network_profile'] = json.loads(network_profile) if isinstance(network_profile, str) else network_profile body['router_profiles'] = json.loads(router_profiles) if isinstance(router_profiles, str) else router_profiles body['master_pool_profile'] = json.loads(master_pool_profile) if isinstance(master_pool_profile, str) else master_pool_profile body['agent_pool_profiles'] = json.loads(agent_pool_profiles) if isinstance(agent_pool_profiles, str) else agent_pool_profiles body['auth_profile'] = json.loads(auth_profile) if isinstance(auth_profile, str) else auth_profile return client.create_or_update(resource_group_name=resource_group, resource_name=name, parameters=body) # module equivalent: azure_rm_openshiftmanagedcluster # URL: /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ContainerService/openShiftManagedClusters/{{ open_shift_managed_cluster_name }} def update_aro(cmd, client, body, resource_group, name, location, open_shift_version, tags=None, plan=None, network_profile=None, router_profiles=None, master_pool_profile=None, agent_pool_profiles=None, auth_profile=None): body = client.get(resource_group_name=resource_group, resource_name=name).as_dict() body.location = location # str body.tags = tags # dictionary body.plan = json.loads(plan) if isinstance(plan, str) else plan body.open_shift_version = open_shift_version # str body.network_profile = json.loads(network_profile) if isinstance(network_profile, str) else network_profile body.router_profiles = json.loads(router_profiles) if isinstance(router_profiles, str) else router_profiles body.master_pool_profile = json.loads(master_pool_profile) if isinstance(master_pool_profile, str) else master_pool_profile body.agent_pool_profiles = json.loads(agent_pool_profiles) if isinstance(agent_pool_profiles, str) else agent_pool_profiles body.auth_profile = json.loads(auth_profile) if isinstance(auth_profile, str) else auth_profile return client.create_or_update(resource_group_name=resource_group, resource_name=name, parameters=body) # module equivalent: azure_rm_openshiftmanagedcluster # URL: /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ContainerService/openShiftManagedClusters/{{ open_shift_managed_cluster_name }} def list_aro(cmd, client, resource_group): if resource_group is not None: return client.list_by_resource_group(resource_group_name=resource_group) return client.list()
55.666667
180
0.683353
0
0
0
0
0
0
0
0
1,400
0.335329
a5d2df25221764ec5395b74a6c3cb30a216ee3ff
12,269
py
Python
server.py
satriabw/Tugas_Sisdis
b1e152f35834e52806071b9b1424b114dce65148
[ "MIT" ]
null
null
null
server.py
satriabw/Tugas_Sisdis
b1e152f35834e52806071b9b1424b114dce65148
[ "MIT" ]
null
null
null
server.py
satriabw/Tugas_Sisdis
b1e152f35834e52806071b9b1424b114dce65148
[ "MIT" ]
null
null
null
# coding: utf-8 from random import randint from urllib.parse import parse_qs import socket import sys import json import traceback import os import base64 import yaml import datetime import requests import re class Route: def __init__(self): self._route = [] def route(self, method, path, handler): self._route.append({"method": method, "path": path, "handler": handler}) def dispatch(self, path, method): pattern = re.compile(r'/api/plusone/[0-9]*[0-9]$') match = re.match(pattern, path) if match != None: path = "/api/plusone/<:digit>" for item in self._route: if item["path"] == path and item["method"] == method: return item["handler"] return None def findPath(self, path): for item in self._route: if item["path"] == path: return True return False route = Route() class HTTPRequest: def __init__(self, request): self._raw_request = request self._build_header() self._build_body() def _build_header(self): raw_head = self._split_request()[0] head = raw_head.split("\n") # Get method, path, and http version temp = head[0].split(" ") self.header = { "method" : temp[0], "path" : temp[1], "http_version" : temp[2], } # Get Content-type and Content-length for info in head: if "Content-Type" in info: self.header["content_type"] = info.split(" ")[1] continue if "Content-Length" in info: self.header["content_length"] = info.split(" ")[1] def _build_body(self): self._raw_body = self._split_request()[1] def _split_request(self): return self._raw_request.decode( "utf-8").replace("\r", "").split("\n\n") def body_json(self): return json.loads('[{}]'.format(self._raw_body)) def body_query(self, query): return parse_qs(self._raw_body)[query] def validation(func): def func_wrapper(conn, request): if (request.header["http_version"] not in "HTTP/1.0") and (request.header["http_version"] not in "HTTP/1.1"): badRequest(conn, request) else: func(conn, request) return func_wrapper @validation def getRoot(conn, request): debugger = "Hooray getRoot end point is hitted\n" print(debugger) status = "302 Found" loc = "/hello-world" c_type = "text/plain; charset=UTF-8" data = '302 Found: Location: /hello-world' msgSuccess = renderMessage(status, str(21+len(loc)), loc, None, c_type, data) writeResponse(conn, msgSuccess) @validation def getHelloWorld(conn, request): with open("./hello-world.html", "r") as f: html = f.read() data = html.replace("__HELLO__", "World") status = "200 OK" c_type = "text/html" msgSuccess = renderMessage(status, str(len(data)), None, None, c_type, data) writeResponse(conn, msgSuccess) @validation def getStyle(conn, request): with open("./style.css", "r") as f: css = f.read() status = "200 OK" c_type = "text/css" msgSuccess = renderMessage(status, str(len(css)), None, None, c_type, css) writeResponse(conn, msgSuccess) @validation def getBackground(conn, request): with open("./background.jpg", "rb") as f: img = f.read() status = "200 OK" c_type = "image/jpeg" enc = "base64" msgSuccess = renderMessage(status, str(len(img)), None, enc, c_type, "") msgSuccess = msgSuccess + img writeResponse(conn, msgSuccess) @validation def getSpesifikasi(conn, request): with open("./spesifikasi.yaml", "r") as f: yaml = f.read() status = "200 OK" c_type = "text/plain; charset=UTF-8" msgSuccess = renderMessage(status, str(len(yaml)), None, None, c_type, yaml) writeResponse(conn, msgSuccess) @validation def getInfo(conn, request): query = request.header["path"].split("?") data = "No Data" try: tipe = exctractUrl(query[1], "type") if tipe == "time": data = "{}".format(datetime.datetime.now()) elif tipe == "random": data = "{}".format(randint(111111,999999)) except (IndexError, ValueError) as e: pass status = "200 OK" c_type = "text/plain; charset=UTF-8" msgSuccess = renderMessage(status, str(len(data)), None, None, c_type, data) writeResponse(conn, msgSuccess) def notFound(conn, request): if "/api" in request.header["path"]: notFoundJson(conn) status = "404 Not Found" c_type = "text/plain; charset=UTF-8" msgErr = renderMessage(status, str(len(status)), None, None, c_type, status) writeResponse(conn, msgErr) def notImplemented(conn, request): status = "501 Not Implemented" c_type = "text/plain; charset=UTF-8" msgErr = renderMessage(status, str(len(status)), None, None, c_type, status) writeResponse(conn, msgErr) def badRequest(conn, request): if "/api" in request.header["path"]: badRequestJson(conn, "Please use proper http version") status = "400 Bad Request" c_type = "text/plain; charset=UTF-8" msgErr = renderMessage(status, str(len(status)), None, None, c_type, status) writeResponse(conn, msgErr) @validation def postHelloWorld(conn, request): debugger = "Hooray postHelloWorld end point is hitted\n" print(debugger) try: if request.header["content_type"] == "application/x-www-form-urlencoded": name = request.body_query("name")[0] with open("./hello-world.html", "r") as f: html = f.read() data = html.replace("__HELLO__", str(name)) status = "200 OK" c_type = "text/html; charset=UTF-8" msgSuccess = renderMessage(status, str(len(data)), None, None, c_type, data) writeResponse(conn, msgSuccess) else: raise ValueError("Cannot parse the request") except (IndexError, KeyError, ValueError) as e: badRequest(conn, request) def validateHelloAPI(func): def func_wrapper(conn, request): if (request.header["http_version"] not in "HTTP/1.0") and (request.header["http_version"] not in "HTTP/1.1"): badRequestJson(conn, "Please use proper http version") elif request.header["method"] != "POST": methodNotAllowedJson(conn, "Method is not allowed, please use POST method") elif request.header["content_type"] != "application/json": methodNotAllowedJson(conn, "please use application/json") else: func(conn, request) return func_wrapper @validateHelloAPI def helloAPI(conn, request): req = requests.get(url='http://172.22.0.222:5000') data = req.json() current_visit = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%fZ") try: name = request.body_json()[0]["request"] count = getCounter() + 1 writeCounter(count) res = "Good {}, {}".format(data["state"], name) json_http_ok(conn, count=count, currentvisit=current_visit, response=res) except KeyError: badRequestJson(conn, "'request' is a required property") @validation def plusOneAPI(conn, request): val = int(request.header["path"].split("/")[-1]) json_http_ok(conn, plusoneret=val+1) def getTime(t_raw): t = datetime.datetime.strptime(t_raw, "%Y-%m-%d %H:%M:%S") return t.strftime("%Y-%m-%dT%H:%M:%S.%fZ") def getCounter(): with open('counter.json', 'r') as json_file: data = json.load(json_file) return data["count"] def writeCounter(c): count = {"count": c} with open('counter.json', 'w') as json_file: data = json.dump(count, json_file) def getApiVersion(): with open('./spesifikasi.yaml', 'r') as f: doc = yaml.load(f) return doc["info"]["version"] def notFoundJson(conn): detail = "The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again." status = "404" title = "Not Found" json_http_error(conn, detail, status, title) def methodNotAllowedJson(conn, d): detail = d status = "405" title = "Method Not Allowed" json_http_error(conn, detail, status, title) def badRequestJson(conn, d): detail = d status = "400" title = "Bad Request" json_http_error(conn, detail, status, title) def json_http_ok(conn, **kwargs): res_dict = {'apiversion': getApiVersion()} for key, value in kwargs.items(): res_dict[key] = value data = json.dumps(res_dict) # Build Response status = "200 OK" c_type = "application/json; charset=UTF-8" msgErr = renderMessage(status, str(len(data)), None, None, c_type, data) writeResponse(conn, msgErr) def json_http_error(conn, detail, status, title): res_dict = {'detail': detail, 'status': status, 'title': title} data = json.dumps(res_dict) status = "{} {}".format(status, title) c_type = "application/json; charset=UTF-8" msgErr = renderMessage(status, str(len(data)), None, None, c_type, data) writeResponse(conn, msgErr) def main(): # HOST = socket.gethostbyname(socket.gethostname()) HOST = "0.0.0.0" PORT = int(sys.argv[1]) #Get method route.route("GET", "/", getRoot) route.route("GET", "/hello-world", getHelloWorld) route.route("GET", "/style", getStyle) route.route("GET", "/background", getBackground) route.route("GET", "/info", getInfo) route.route("GET", "/api/hello", helloAPI) route.route("GET", "/api/plusone/<:digit>", plusOneAPI) route.route("GET", "/api/spesifikasi.yaml", getSpesifikasi) #Post Method route.route("POST", "/api/hello", helloAPI) route.route("POST", "/hello-world", postHelloWorld) # PUT route.route("PUT", "/api/hello", helloAPI) #PATCH route.route("PATCH", "/api/hello", helloAPI) #DELETE route.route("DELETE", "/api/hello", helloAPI) #HEAD route.route("HEAD", "/api/hello", helloAPI) # Serve the connection connect(HOST, PORT) def handler(conn, req): try: debugger = "=== Got Request ===\n{}\n===Got Header====\n{}\n".format(req._raw_request, req.header) print(debugger) route.dispatch(cleanURL(req.header["path"]), req.header["method"])(conn, req) except TypeError as e: print(traceback.format_exc()) if route.findPath(cleanURL(req.header["path"])): notImplemented(conn, req) return notFound(conn, req) return def cleanURL(url): return url.split("?")[0] def writeResponse(conn, message): debugger = "=== Got Message ===\n{}\n".format(message) print(debugger) conn.sendall(message) def renderMessage(stat, c_length, location, encoding, c_type, data): msg = "" if stat != None: status = "HTTP/1.1 {}\r\n".format(stat) msg = msg + status msg = msg + "Connection: close\r\n" if c_length != None: content_length = "Content-Length: {}\r\n".format(c_length) msg = msg + content_length if location != None: loc = "Location: {}\r\n".format(location) msg = msg + loc if encoding != None: enc = "Content-Transfer-Encoding: {}\r\n".format(encoding) msg = msg + enc if c_type != None: content_type = "Content-Type: {}\r\n".format(c_type) msg = msg + content_type if data != None: msg = msg + "\r\n" + data return bytes(msg, "utf-8") def exctractUrl(url, query): return parse_qs(url)[query][0] def connect(host, port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((host, port)) s.listen() while True: try: conn, addr = s.accept() data = conn.recv(1024) req = HTTPRequest(data) handler(conn, req) conn.shutdown(socket.SHUT_WR) conn.close() except Exception: print(traceback.format_exc()) continue main()
31.060759
136
0.605102
1,895
0.154454
0
0
3,666
0.298802
0
0
2,561
0.208737
a5d51824f01f43c1a1f7165def53773a506fe72b
656
py
Python
glia/widgets/editor/tabs.py
gliahq/Glia
4951569f2759ea886bad165b6d74a569c14bbd2a
[ "Apache-2.0" ]
1
2020-08-20T08:22:33.000Z
2020-08-20T08:22:33.000Z
glia/widgets/editor/tabs.py
gliahq/Glia
4951569f2759ea886bad165b6d74a569c14bbd2a
[ "Apache-2.0" ]
3
2021-04-20T18:20:45.000Z
2021-06-01T23:56:13.000Z
glia/widgets/editor/tabs.py
gliahq/Glia
4951569f2759ea886bad165b6d74a569c14bbd2a
[ "Apache-2.0" ]
null
null
null
from PyQt5.QtWidgets import QTabWidget from glia.widgets.editor import Editor class EditorTabs(QTabWidget): def __init__(self, parent=None): """ Generates tab with editor depending on the file and it's type selected. """ super(EditorTabs, self).__init__(parent) # Tab Properties self.setTabsClosable(True) self.setMovable(True) # Default Editor self.editor = Editor(self) self.addTab(self.editor, "main.py") # Slots self.tabCloseRequested.connect(self.handle_tab_closed) def handle_tab_closed(self, index): self.removeTab(index)
24.296296
69
0.643293
574
0.875
0
0
0
0
0
0
151
0.230183
a5d8c45707967ee83846553d1837407bb63fcb57
2,296
py
Python
tests/test_aws_tdd.py
Fauxsys/offprem
9fe4764b24578b1ada43cfab600379b55fed038d
[ "MIT" ]
null
null
null
tests/test_aws_tdd.py
Fauxsys/offprem
9fe4764b24578b1ada43cfab600379b55fed038d
[ "MIT" ]
null
null
null
tests/test_aws_tdd.py
Fauxsys/offprem
9fe4764b24578b1ada43cfab600379b55fed038d
[ "MIT" ]
null
null
null
""" Test Driven Development. """ import pytest @pytest.fixture def profiles() -> dict: production = 'production' staging = 'staging' qa = 'qa' return {'production': production, 'staging': staging, 'qa': qa} @pytest.mark.skip(reason='Method not yet implemented.') def test_add_profile(environment, profiles): production = profiles['production'] environment.add_profile(production) assert environment.profile == [production] @pytest.mark.skip(reason='Method not yet implemented.') def test_add_profiles(environment, profiles): add_profiles = list(profiles.values()) environment.add_profiles(add_profiles) assert environment.profile == add_profiles @pytest.mark.skip(reason='Method not yet implemented.') def test_primary_profile(environment, profiles): add_profiles = list(profiles.values()) environment.add_profiles(add_profiles) assert environment.primary_profile == add_profiles[0] @pytest.mark.skip(reason='Method not yet implemented.') def test_no_primary_profile(environment): assert environment.primary_profile is None @pytest.mark.skip(reason='Method not yet implemented.') def test_no_primary_profile(environment): with pytest.raises(IndexError) as error: environment.primary_profile assert 'list index out of range' == f'{error.value!s}' @pytest.mark.skip(reason='Method not yet implemented.') def test_compare_environments_with_configuration_file(api, environments_file): api = api(configuration_file=configure_vpc) api.compare('vpc name 1', 'vpc name 2', 'vpc name 3') @pytest.mark.skip(reason='Method not yet implemented.') def test_compare_environments_with_Environment_objects(api, environment): # WHEN I compare multiple environments api.compare(environment, environment, environment) # THEN @pytest.mark.skip(reason='Method not yet implemented.') def test_firewall_rules(api, environment): api.security_groups(environment=environment) @pytest.mark.skip(reason='Method not yet implemented.') def test_inventory_output(api, environment): api.inventory(environment=environment, detailed=False) @pytest.mark.skip(reason='Method not yet implemented.') def test_inventory_detailed_output(api, environment): api.inventory(environment=environment, detailed=True)
31.888889
78
0.761324
0
0
0
0
2,216
0.965157
0
0
507
0.220819
a5d993daf62319705e260124c70d45da91cc0c68
1,743
py
Python
CursoPython/dia 2/copia de clase.py
hamfree/PYTHON
2df83c1da393f05cadf0fe3f8d3173d4420eda60
[ "Apache-2.0" ]
null
null
null
CursoPython/dia 2/copia de clase.py
hamfree/PYTHON
2df83c1da393f05cadf0fe3f8d3173d4420eda60
[ "Apache-2.0" ]
null
null
null
CursoPython/dia 2/copia de clase.py
hamfree/PYTHON
2df83c1da393f05cadf0fe3f8d3173d4420eda60
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- # pylint: disable=E1601 """ 17/02/2018 Profesores: Álvaro Sánchez de Cruz / ??? - Se hace un repaso de lo que se impartió el día anterior. - Subprogramas o funciones: - Viene de la programación estructurada. - Sintaxis: def nombreFuncion([parametro1,][parametro2,]...) (codigo de la funcion) [return valor] Los valores se pasan siempre por valor a las funciones. Ahora vamos a ver un ejemplo: def saludo() print "Hola Mundo" - Se explican los ejercicios propuestos del día 1. - Ficheros var = open('ruta al fichero','a'|'r'|'w') - JSON Es un formato de datos originario de JavaScript, que hablando en terminologia de python es una lista de diccionarios, de la siguiente forma: [ {},{},... ] En python los JSON se pueden pasar a un diccionario muy facilmente. """ # modo 'r' read, que lee el fichero si existe y si no dara un error def leerFichero(): f = open('clase.py','r') print "Contenido de 'clase.py'" print "-----------------------" for l in f: print l # modo 'a' append, que añade al fichero si existe y si no lo crea def sobreescribirFichero(): f = open('prueba.txt','a') for i in [1,3,5,7,9,21,12,32,23]: f.write('Hola' + str(i) + '\n') f.close() # modo 'w' write, que escribe en el fichero si existe, sobreescribiendo lo que tuviera, y si no lo crea. def leerEscribirFichero(): fr = open('clase.py','r') fw = open('copia de clase.py','w') for l in fr: fw.write(l) fr.close() fw.close() leerFichero() sobreescribirFichero() leerEscribirFichero()
24.549296
104
0.596672
0
0
0
0
0
0
0
0
1,332
0.761143
a5d9baaf2337daeafdfe9b9a22db73d38a684f6f
576
py
Python
functions-and-keda/src/python-function-publisher/QueueTrigger/__init__.py
emctl/samples
569f81035a6c214d4cda3687173e24003f17f95e
[ "MIT" ]
3
2021-11-16T11:24:27.000Z
2021-11-21T17:11:24.000Z
functions-and-keda/src/python-function-publisher/QueueTrigger/__init__.py
emctl/samples
569f81035a6c214d4cda3687173e24003f17f95e
[ "MIT" ]
7
2021-09-01T06:50:41.000Z
2021-09-03T23:12:07.000Z
functions-and-keda/src/python-function-publisher/QueueTrigger/__init__.py
emctl/samples
569f81035a6c214d4cda3687173e24003f17f95e
[ "MIT" ]
4
2021-02-05T17:30:28.000Z
2021-08-16T21:26:55.000Z
import logging import requests import json import azure.functions as func dapr_url = "http://localhost:3500/v1.0" def main(msg: func.QueueMessage): logging.info(f"Python queue-triggered function received a message!") message = msg.get_body().decode('utf-8') logging.info(f"Message: {message}") # Publish an event url = f'{dapr_url}/publish/myTopic' content = { "message": message } logging.info(f'POST to {url} with content {json.dumps(content)}') p = requests.post(url, json=content) logging.info(f'Got response code {p.status_code}')
28.8
72
0.697917
0
0
0
0
0
0
0
0
253
0.439236
a5da4714ac6a7f9235bc1e8123d0bcfaf76ea57c
260
py
Python
CH_10_testing_and_logging/T_26_logging_json_config.py
mastering-python/code_2
441af8b67402c8216c482cca7c002e1d7f0f1baa
[ "MIT" ]
null
null
null
CH_10_testing_and_logging/T_26_logging_json_config.py
mastering-python/code_2
441af8b67402c8216c482cca7c002e1d7f0f1baa
[ "MIT" ]
null
null
null
CH_10_testing_and_logging/T_26_logging_json_config.py
mastering-python/code_2
441af8b67402c8216c482cca7c002e1d7f0f1baa
[ "MIT" ]
null
null
null
import os import json from logging import config name = os.path.splitext(__file__)[0] json_filename = os.path.join(os.path.dirname(__file__), f'{name}.json') with open(json_filename) as fh: config.dictConfig(json.load(fh))
20
55
0.661538
0
0
0
0
0
0
0
0
14
0.053846
a5dac3d6ca2b3d760f8736d068bcd1c838b5581c
2,618
py
Python
tests/unit/test_upstream_dataset.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
9
2019-08-13T11:07:06.000Z
2022-01-14T18:15:13.000Z
tests/unit/test_upstream_dataset.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
166
2019-08-09T18:51:05.000Z
2021-12-02T15:24:15.000Z
tests/unit/test_upstream_dataset.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
21
2019-08-12T15:37:31.000Z
2021-06-15T14:06:23.000Z
import responses from tamr_unify_client import Client from tamr_unify_client.auth import UsernamePasswordAuth @responses.activate def test_upstream_dataset(): dataset_json = { "id": "unify://unified-data/v1/datasets/12", "name": "Project_1_unified_dataset_dedup_features", "description": "Features for all the rows and values in the source dataset. Used in Dedup Workflow.", "version": "543", "keyAttributeNames": ["entityId"], "tags": [], "created": { "username": "admin", "time": "2019-06-05T18:31:59.327Z", "version": "212", }, "lastModified": { "username": "admin", "time": "2019-07-18T14:19:28.133Z", "version": "22225", }, "relativeId": "datasets/12", "upstreamDatasetIds": ["unify://unified-data/v1/datasets/8"], "externalId": "Project_1_unified_dataset_dedup_features", } upstream_json = ["unify://unified-data/v1/datasets/8"] upstream_ds_json = { "id": "unify://unified-data/v1/datasets/8", "name": "Project_1_unified_dataset", "description": "", "version": "529", "keyAttributeNames": ["tamr_id"], "tags": [], "created": { "username": "admin", "time": "2019-06-05T16:28:11.639Z", "version": "83", }, "lastModified": { "username": "admin", "time": "2019-07-22T20:31:23.968Z", "version": "23146", }, "relativeId": "datasets/8", "upstreamDatasetIds": ["unify://unified-data/v1/datasets/6"], "externalId": "Project_1_unified_dataset", "resourceId": "8", } tamr = Client(UsernamePasswordAuth("username", "password")) url_prefix = "http://localhost:9100/api/versioned/v1/" dataset_url = url_prefix + "datasets/12" upstream_url = url_prefix + "datasets/12/upstreamDatasets" upstream_ds_url = url_prefix + "datasets/8" responses.add(responses.GET, dataset_url, json=dataset_json) responses.add(responses.GET, upstream_url, json=upstream_json) responses.add(responses.GET, upstream_ds_url, json=upstream_ds_json) project_ds = tamr.datasets.by_relative_id("datasets/12") actual_upstream_ds = project_ds.upstream_datasets() uri_dataset = actual_upstream_ds[0].dataset() assert actual_upstream_ds[0].relative_id == upstream_ds_json["relativeId"] assert actual_upstream_ds[0].resource_id == upstream_ds_json["resourceId"] assert uri_dataset.name == upstream_ds_json["name"]
34.906667
109
0.615737
0
0
0
0
2,504
0.956455
0
0
1,137
0.434301
a5daeaca530d32aa4078eb1a40a959857dd7e442
14,531
py
Python
pmaf/sequence/_multiple/_multiple.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
1
2021-07-02T06:24:17.000Z
2021-07-02T06:24:17.000Z
pmaf/sequence/_multiple/_multiple.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
1
2021-06-28T12:02:46.000Z
2021-06-28T12:02:46.000Z
pmaf/sequence/_multiple/_multiple.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
null
null
null
import warnings warnings.simplefilter("ignore", category=FutureWarning) from skbio import TabularMSA from skbio.sequence import GrammaredSequence from io import StringIO, IOBase from shutil import copyfileobj import copy import numpy as np from pmaf.internal.io._seq import SequenceIO from pmaf.sequence._sequence._nucleotide import Nucleotide from pmaf.sequence._metakit import MultiSequenceMetabase, NucleotideMetabase from pmaf.sequence._shared import validate_seq_mode from typing import Union, Optional, Any, Sequence, Generator from pmaf.internal._typing import AnyGenericIdentifier class MultiSequence(MultiSequenceMetabase): """Class responsible for handling multiple sequences.""" def __init__( self, sequences: Any, name: Optional[str] = None, mode: Optional[str] = None, metadata: Optional[dict] = None, aligned: bool = False, **kwargs: Any ): """Constructor for :class:`.MultiSequence` Parameters ---------- sequences Anything that can be parsed as multiple sequences. name Name of the multi-sequence instance mode Mode of the sequences. All sequences must have same mode/type. Otherwise error will be raised metadata Metadata of the multi-sequence instance aligned True if sequences are aligned. Default is False kwargs Compatibility """ if name is None or np.isscalar(name): tmp_name = name else: raise TypeError("`name` can be any scalar") if isinstance(metadata, dict): tmp_metadata = metadata elif metadata is None: tmp_metadata = {} else: raise TypeError("`metadata` can be dict or None") if mode is not None: if validate_seq_mode(mode): tmp_mode = mode.lower() else: raise ValueError("`mode` is invalid.") else: tmp_mode = mode tmp_sequences = [] if isinstance(sequences, list): if all( [isinstance(sequence, NucleotideMetabase) for sequence in sequences] ): tmp_sequences = sequences elif all( [isinstance(sequence, GrammaredSequence) for sequence in sequences] ): tmp_sequences = [ Nucleotide(skbio_seq, mode=None, **kwargs) for skbio_seq in sequences ] else: raise ValueError( "`sequences` must have same type when provided as list." ) else: if tmp_mode is not None: seq_gen = SequenceIO(sequences, upper=True).pull_parser( parser="simple", id=True, description=True, sequence=True ) for sid, desc, seq_str in seq_gen: tmp_sequences.append( Nucleotide( seq_str, name=sid, mode=tmp_mode, metadata={"description": desc}, **kwargs ) ) else: raise ValueError("`mode` cannot be None if raw read is performed.") if aligned: if len(set([sequence.length for sequence in tmp_sequences])) != 1: raise ValueError("`sequences` must be all of the length if aligned.") tmp_indices = [sequence.name for sequence in tmp_sequences] if len(tmp_indices) != len(set(tmp_indices)): raise ValueError("`sequences` must have unique names.") tmp_modes = set([sequence.mode for sequence in tmp_sequences]) if len(tmp_modes) > 1: raise ValueError("`sequences` cannot have different modes.") if tmp_mode is not None: if tmp_mode not in tmp_modes: raise ValueError("`mode` must match modes of sequences.") else: tmp_mode = tmp_modes.pop() tmp_internal_id = kwargs.get("internal_id", None) if tmp_internal_id is not None: for sequence in tmp_sequences: if tmp_internal_id not in sequence.metadata.keys(): raise ValueError( "Metadata of all sequences must contain same internal_id." ) self.__indices = np.asarray([seq.name for seq in tmp_sequences]) self.__sequences = tmp_sequences self.__metadata = tmp_metadata self.__aligned = bool(aligned) self.__internal_id = tmp_internal_id self.__skbio_mode = tmp_sequences[0].skbio_mode self.__mode = tmp_mode self.__name = tmp_name self.__buckled = bool(kwargs.get("buckled", None)) def __repr__(self): class_name = self.__class__.__name__ name = self.__name if self.__name is not None else "N/A" count = len(self.__sequences) metadata_state = "Present" if len(self.__metadata) > 0 else "N/A" aligned = "Yes" if self.__aligned else "No" mode = self.__mode.upper() if self.__mode is not None else "N/A" repr_str = ( "<{}:[{}], Name:[{}], Mode:[{}], Aligned: [{}], Metadata:[{}]>".format( class_name, count, name, mode, aligned, metadata_state ) ) return repr_str def to_skbio_msa( self, indices: Optional[AnyGenericIdentifier] = None ) -> TabularMSA: """Convert to :mod:`skbio` :class:`~skbio.alignment.TabularMSA` instance. Parameters ---------- indices List of target sequences to select. Default is None for all sequences. Returns ------- Instance of :class:`skbio.alignment.TabularMSA` """ if self.__aligned: tmp_sequences = self.__get_seqs_by_index(indices) return TabularMSA([sequence.skbio for sequence in tmp_sequences]) else: raise RuntimeError("TabularMSA can only be retrieved for alignment.") def __get_seqs_by_index(self, ids: Optional[AnyGenericIdentifier]): """Get sequences by indices/ids.""" if ids is not None: target_ids = np.asarray(ids) else: target_ids = self.__indices if np.isin(self.__indices, target_ids).sum() == len(target_ids): return [seq for seq in self.__sequences if seq.name in target_ids] else: raise ValueError("Invalid indices are provided.") def get_consensus( self, indices: Optional[AnyGenericIdentifier] = None ) -> Nucleotide: """If sequence are aligned, estimate consensus sequence from the :term:`MSA` Parameters ---------- indices List of target sequences to select. Default is None for all sequences. Returns ------- Consensus sequence. """ if self.__aligned: tmp_msa = self.to_skbio_msa(indices) return Nucleotide( tmp_msa.consensus(), name=self.__name, metadata=self.__metadata, mode=self.__mode, ) else: raise RuntimeError("Consensus can be retrieved only from alignment.") def get_subset( self, indices: Optional[AnyGenericIdentifier] = None ) -> "MultiSequence": """Get subset of the mutli-sequence instance. Parameters ---------- indices Indices to subset for. Returns ------- Subset instance of :class:`.MultiSequence` """ return type(self)( self.__get_seqs_by_index(indices), name=self.__name, metadata=self.__metadata, mode=self.__mode, aligned=self.__aligned, ) def buckle_for_alignment(self) -> dict: """Buckle individual sequences for alignment. Returns ------ Packed metadata of all sequences. """ if not self.__buckled: from collections import defaultdict from random import random if self.__internal_id is None: self.__internal_id = round(random() * 100000, None) packed_metadata = { "master-metadata": self.__metadata, "__name": self.__name, "__internal_id": self.__internal_id, } children_metadata = defaultdict(dict) for tmp_uid, sequence in enumerate(self.__sequences): tmp_uid_str = "TMP_ID_{}".format(str(tmp_uid)) children_metadata[tmp_uid_str] = sequence.buckle_by_uid(tmp_uid_str) packed_metadata.update({"children-metadata": dict(children_metadata)}) self.__buckled = True return packed_metadata else: raise RuntimeError("MultiSequence instance is already buckled.") def restore_buckle(self, buckled_pack: dict) -> None: """Restore the buckled :class:`MultiSequence` instance. Parameters ---------- buckled_pack Backed up packed metadata of all individual sequences Returns ------- None if success or raise error """ if self.__buckled: self.__metadata = buckled_pack["master-metadata"] self.__name = buckled_pack["__name"] self.__internal_id = buckled_pack["__internal_id"] for sequence in self.__sequences: tmp_uid = sequence.unbuckle_uid() child_packed_metadata = buckled_pack["children-metadata"][tmp_uid] sequence.restore_buckle(child_packed_metadata) self.__indices = np.asarray([seq.name for seq in self.__sequences]) else: raise RuntimeError("MultiSequence instance is not buckled.") def get_iter(self, method: str = "asis") -> Generator: """Get generator for the idividual sequences. Parameters ---------- method Method indicate how generator must yield the sequence data Returns ------- Generator for the sequences. Depending on `method` result can yield on of following: - 'asis' - (name[str], sequence[Instance]) - 'string' - (name[str], sequence[str]) - 'skbio' - (name[str], sequence[skbio]) """ def make_generator(): for sequence in self.__sequences: if method == "asis": yield sequence.name, sequence elif method == "string": yield sequence.name, sequence.text elif method == "skbio": yield sequence.name, sequence.skbio else: raise ValueError("`method` is invalid.") return make_generator() def copy(self): """Copy current instance.""" return copy.deepcopy(self) def write(self, file: Union[str, IOBase], mode: str = "w", **kwargs: Any) -> None: """Write the sequence data into the file. Parameters ---------- file File path or IO stream to write into mode File write mode such as "w" or "a" or "w+" kwargs Compatibility. """ buffer_io = self.__make_fasta_io(**kwargs) if isinstance(file, IOBase): file_handle = file elif isinstance(file, str): file_handle = open(file, mode=mode) else: raise TypeError("`file` has invalid type.") copyfileobj(buffer_io, file_handle) buffer_io.close() def get_string_as(self, **kwargs): """Get string of all sequences. Parameters ---------- kwargs Compatibility. Will be passed to :meth:`pmaf.sequence.Nucleotide.write` method. Returns ------- String with formatted sequence data """ buffer_io = self.__make_fasta_io(**kwargs) ret = buffer_io.getvalue() buffer_io.close() return ret def __make_fasta_io(self, **kwargs): """Make a FASTA file IO stream.""" buffer_io = StringIO() for sequence in self.__sequences: sequence.write(buffer_io, mode="a", **kwargs) buffer_io.seek(0) return buffer_io @classmethod def from_buckled( cls, sequences: Any, buckled_pack: dict, **kwargs: Any ) -> "MultiSequence": """Factory method to create :class:`.MultiSequence` using packed metadata from buckling. Parameters ---------- sequences Sequences that will be passed to constructor buckled_pack Packed metadata produced during buckling kwargs Compatibility Returns ------- New instance of :class:`.MultiSequence` """ if not isinstance(buckled_pack, dict): raise TypeError("`buckled_pack` must have dict type.") tmp_multiseq = cls(sequences, buckled=True, **kwargs) tmp_multiseq.restore_buckle(buckled_pack) return tmp_multiseq @property def count(self): """Total number of sequences.""" return len(self.__sequences) @property def metadata(self): """Instance metadata.""" return self.__metadata @property def mode(self): """Mode/type of the sequences.""" return self.__mode @property def skbio_mode(self): """The :mod:`skbio` mode of the sequence.""" return self.__skbio_mode @property def sequences(self): """List of individual sequence instances.""" return self.__sequences @property def name(self): """Name of the instance.""" return self.__name @property def is_alignment(self): """Is mutli-sequence is aligned or not.""" return self.__aligned @property def is_buckled(self): """Is mulit-sequence instance is buckled or not.""" return self.__buckled @property def index(self): """Indices of the internals sequences.""" return self.__indices
33.871795
91
0.566719
13,938
0.959191
1,019
0.070126
1,797
0.123667
0
0
4,793
0.329847
a5db8882e50338e2cfe3830ff393ba99f5232ba1
1,498
py
Python
arvore_derivacao.py
rjribeiro/trabalho-formais
358de668cc256c696fdc4b426a69cf5a3d17b511
[ "MIT" ]
3
2018-04-28T15:55:50.000Z
2018-05-11T22:57:20.000Z
arvore_derivacao.py
rjribeiro/trabalho-formais
358de668cc256c696fdc4b426a69cf5a3d17b511
[ "MIT" ]
null
null
null
arvore_derivacao.py
rjribeiro/trabalho-formais
358de668cc256c696fdc4b426a69cf5a3d17b511
[ "MIT" ]
null
null
null
class ArvoreDerivacao: def __init__(self, conteudo, esquerda=None, direita=None): self._conteudo = conteudo self._esquerda = esquerda self._direita = direita self.children = [self._esquerda, self._direita] @property def conteudo(self): return self._conteudo def print_arvore(self, nivel=1): """ Objetivo: imprimir toda a árvore, cuja raíz tem o nivel fornecido. :param nivel: :type nivel: int :rtype: None """ print("Nível {espacos}: {:>{espacos}}".format(self._conteudo, espacos=nivel)) if self._direita: self._direita.print_arvore(nivel + 1) if self._esquerda: self._esquerda.print_arvore(nivel + 1) def palavra_gerada(self): """ Objetivo: Obter a palavra gerada pela árvore de derivação. :return: Palavra derivada. :rtype: str """ if not self._esquerda and not self._direita: return self._conteudo if self._esquerda: prefixo = self._esquerda.palavra_gerada() else: prefixo = "" if self._direita: sufixo = self._direita.palavra_gerada() else: sufixo = "" return prefixo + sufixo if __name__ == '__main__': a = ArvoreDerivacao('a') b = ArvoreDerivacao('b') A = ArvoreDerivacao('A', a) B = ArvoreDerivacao('B', b) S = ArvoreDerivacao('S', A, B) S.print_arvore()
27.740741
85
0.579439
1,296
0.861702
0
0
63
0.041888
0
0
362
0.240691
a5dca4db049c83c9e0aaf82c2743e38347886e01
1,404
py
Python
src/test.py
biqar/hypergraph-study
04b54117eb8f684a72259b27b03162efb4c18cd0
[ "MIT" ]
2
2021-12-24T12:02:48.000Z
2021-12-25T00:00:22.000Z
src/test.py
biqar/hypergraph-study
04b54117eb8f684a72259b27b03162efb4c18cd0
[ "MIT" ]
null
null
null
src/test.py
biqar/hypergraph-study
04b54117eb8f684a72259b27b03162efb4c18cd0
[ "MIT" ]
1
2021-07-19T02:05:13.000Z
2021-07-19T02:05:13.000Z
import re import sys from operator import add from pyspark.sql import SparkSession def computeContribs(urls, rank): """Calculates URL contributions to the rank of other URLs.""" num_urls = len(urls) for url in urls: yield (url, rank / num_urls) def parseNeighbors(urls): """Parses a urls pair string into urls pair.""" parts = re.split(r'\s+', urls) for i in range(len(parts)): for j in range(i,len(parts)): if i!=j: yield parts[i],parts[j] if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: pagerank <file> <iterations>", file=sys.stderr) sys.exit(-1) print("WARN: This is a naive implementation of PageRank and is given as an example!\n" + "Please refer to PageRank implementation provided by graphx", file=sys.stderr) # Initialize the spark context. spark = SparkSession\ .builder\ .appName("PythonPageRank")\ .getOrCreate() # Loads in input file. It should be in format of: # URL neighbor URL # URL neighbor URL # URL neighbor URL # ... lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0]) print("ALL LINKS",lines.collect()) links = lines.flatMap(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache() print("ALL LINKS",links.collect())
29.25
92
0.608262
0
0
424
0.301994
0
0
0
0
518
0.368946
a5df0a5e25ad5c8a611b093330f6ecc81a28362f
1,312
py
Python
wagtail_lightadmin/wagtail_hooks.py
leukeleu/wagtail_lightadmin
6aa465e2673f4eb8865f7b4dc6cd2c7c41ed71a5
[ "MIT" ]
4
2019-02-22T14:07:26.000Z
2020-04-20T05:33:39.000Z
wagtail_lightadmin/wagtail_hooks.py
leukeleu/wagtail_lightadmin
6aa465e2673f4eb8865f7b4dc6cd2c7c41ed71a5
[ "MIT" ]
1
2019-05-18T08:04:32.000Z
2019-05-20T13:39:14.000Z
wagtail_lightadmin/wagtail_hooks.py
leukeleu/wagtail_lightadmin
6aa465e2673f4eb8865f7b4dc6cd2c7c41ed71a5
[ "MIT" ]
2
2017-06-06T09:34:53.000Z
2019-09-10T16:16:12.000Z
from __future__ import absolute_import, unicode_literals from django.conf import settings from django.templatetags.static import static from django.utils.html import format_html from django.utils.module_loading import import_string from wagtail.core import hooks @hooks.register('insert_editor_css') def editor_css(): return format_html( '<link rel="stylesheet" href="{}">', static('css/admin_editor.css') ) @hooks.register('insert_editor_js') def editor_js(): return format_html( """ <script type="text/javascript" src="{0}"></script> <script type="text/javascript" src="{1}"></script> """, static('js/wagtailadmin/admin_link_widget.js'), static('wagtailadmin/js/page-chooser-modal.js'), ) @hooks.register('insert_editor_js') def editor_js_hallo(): """ We need an extra JS file for Wagtail<1.12.x """ import wagtail _, version, _, = wagtail.__version__.split('.') if int(version) < 12: # Use our custom hallo-bootstrap js = static('js/wagtailadmin/lighter-hallo-bootstrap.js') else: js = static('wagtailadmin/js/hallo-bootstrap.js') return format_html( """ <script type="text/javascript" src="{0}"></script> """, js )
26.24
65
0.641768
0
0
0
0
1,038
0.791159
0
0
582
0.443598
a5df58684b3949214fa0f306fa78ff1bd3a232de
3,333
py
Python
examples/datamining/page_rank.py
pooya/disco
e03a337b3b20e191459c74a367b9e89e873f71ff
[ "BSD-3-Clause" ]
786
2015-01-01T12:35:40.000Z
2022-03-19T04:39:22.000Z
examples/datamining/page_rank.py
pooya/disco
e03a337b3b20e191459c74a367b9e89e873f71ff
[ "BSD-3-Clause" ]
51
2015-01-19T20:07:01.000Z
2019-10-19T21:03:06.000Z
examples/datamining/page_rank.py
pooya/disco
e03a337b3b20e191459c74a367b9e89e873f71ff
[ "BSD-3-Clause" ]
122
2015-01-05T18:16:03.000Z
2021-07-10T12:35:22.000Z
# Copyright 2009-2010 Yelp # Copyright 2013 David Marin # Copyright 2014 Disco Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Iterative implementation of the PageRank algorithm: This example has been ported from the mrjob project. http://en.wikipedia.org/wiki/PageRank The format of the input should be of the form: node_id initial_score neighbor_1 weight_1 neighbor_2 weight_2 ... For example, the following input is derieved from wikipedia: $ cat input 0 1 1 1 2 1 2 1 1 1 3 1 0 0.5 1 0.5 4 1 1 0.33 3 0.33 5 0.33 5 1 1 0.5 4 0.5 6 1 1 0.5 4 0.5 7 1 1 0.5 4 0.5 8 1 1 0.5 4 0.5 9 1 4 1 10 1 4 1 $ cat input | ddfs chunk pages - $ python page_rank.py --iterations 10 pages The results are: 0 : 0.303085470793 1 : 3.32372143585 2 : 3.39335760361 3 : 0.360345571947 4 : 0.749335470793 5 : 0.360345571947 6 : 0.15 7 : 0.15 8 : 0.15 9 : 0.15 10 : 0.15 """ from optparse import OptionParser from disco.core import Job, result_iterator from disco.worker.classic.worker import Params from disco.worker.task_io import chain_reader def send_score(line, params): """Mapper: send score from a single node to other nodes. Input: ``node_id, node`` Output: ``node_id, ('n', node)`` OR ``node_id, ('s', score)`` """ if not isinstance(line, str): line = line[1] fields = line.split() node_id = int(fields[0]) score = float(fields[1]) yield node_id, ("n", " ".join(fields[2:])) for i in range(2, len(fields), 2): dest_id = int(fields[i]) weight = float(fields[i+1]) yield dest_id, ("s", score * weight) def receive_score(iter, params): from disco.util import kvgroup d = params.damping_factor for node_id, vals in kvgroup(sorted(iter)): sum_v = 0 neighbors = None for t, v in vals: if t == "s": sum_v += v else: neighbors = v score = 1 - d + d * sum_v yield node_id, str(node_id) + " " + str(score) + " " + neighbors if __name__ == '__main__': parser = OptionParser(usage='%prog [options] inputs') parser.add_option('--iterations', default=10, help='Numbers of iteration') parser.add_option('--damping-factor', default=0.85, help='probability a web surfer will continue clicking on links') (options, input) = parser.parse_args() results = input params = Params(damping_factor=float(options.damping_factor)) for j in range(int(options.iterations)): job = Job().run(input=results, map=send_score, map_reader = chain_reader, reduce=receive_score, params = params) results = job.wait() for _, node in result_iterator(results): fields = node.split() print fields[0], ":", fields[1]
26.452381
120
0.645965
0
0
970
0.291029
0
0
0
0
1,690
0.507051