hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
a5e4666915212b8f6b0b15dc2449a686ce496e42
5,633
py
Python
stackdriver/restapi.py
MarkMarine/stackdriver-client-python
7e5e5806d02fcf4b8633d19adbce6d64f3082083
[ "Apache-2.0" ]
null
null
null
stackdriver/restapi.py
MarkMarine/stackdriver-client-python
7e5e5806d02fcf4b8633d19adbce6d64f3082083
[ "Apache-2.0" ]
null
null
null
stackdriver/restapi.py
MarkMarine/stackdriver-client-python
7e5e5806d02fcf4b8633d19adbce6d64f3082083
[ "Apache-2.0" ]
null
null
null
""" restapi - base for calling rest resources Stackdriver Public API, Copyright Stackdriver 2014 Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import requests import copy import types import json import logging logger = logging.getLogger(__name__) def _wrap_transport_decorator(transport_func, wrapper, userdata): def inner(*args, **kwargs): return wrapper(transport_func, userdata=userdata, func_args=args, func_kwargs=kwargs) return inner def transport_func(func): """ Decorates each of the transport functions that can get wrapped by a transport_controller """ func._is_transport_func = True return func class RestApi(object): def __init__(self, entrypoint_uri, version=None, apikey=None, username=None, password=None, useragent=None, transport_controller=None, transport_userdata=None): """ Base class for accessing REST services :param entrypoint_path: The http or https uri to the api :param version: version of the api we support :param apikey: the stackdriver apikey to use for authentication :param username: username for basic auth - this is here for completeness but for the stackdriver apis auth should be done using the apikey :param password: password for basic auth - this is here for completeness but for the stackdriver apis auth should be done using the apikey :param transport_controller: if defined run this function before each network call :param transport_userdata: data to send to the transport_controller """ # always end with a slash entrypoint_uri = entrypoint_uri.strip() if entrypoint_uri[-1] != '/': entrypoint_uri += '/' self._entrypoint_uri = entrypoint_uri self._apikey = apikey self._username = username self._password = password self._version = version self._useragent = useragent if transport_controller: self._decorate_transport_funcs(transport_controller, transport_userdata) def _decorate_transport_funcs(self, controller, userdata): """ decorate all methods that have an attribute of _is_transport_func set to True skip any methods that start with an underscore (_) SEE @transport_func decorator """ for method_name in dir(self): if method_name.startswith('_'): continue method = getattr(self, method_name, None) if isinstance(method, types.MethodType): setattr(self, method_name, _wrap_transport_decorator(method, controller, userdata)) def _merge_headers(self, extra, is_post=False): headers = {} if extra is not None: headers = copy.copy(extra) if self._apikey: headers['x-stackdriver-apikey'] = self._apikey headers['x-stackdriver-version'] = self._version if is_post: headers['accept'] = 'application/json, text/plain, */*' headers['content-type'] = 'application/json' if self._useragent: headers['user-agent'] = self._useragent return headers def _gen_full_endpoint(self, endpoint_path): if endpoint_path.startswith('/'): endpoint_path = endpoint_path[1:] return '%s%s' % (self._entrypoint_uri, endpoint_path) @transport_func def get(self, endpoint, params=None, headers=None): headers = self._merge_headers(headers) uri = self._gen_full_endpoint(endpoint) logger.debug('GET %s', uri, extra={'params': params}) r = requests.get(uri, params=params, headers=headers) r.raise_for_status() return r.json() @transport_func def post(self, endpoint, data=None, headers=None): headers = self._merge_headers(headers, is_post=True) uri = self._gen_full_endpoint(endpoint) logger.debug('POST %s', uri, extra={'data': data}) r = requests.post(uri, data=json.dumps(data), headers=headers) r.raise_for_status() return r.json() @transport_func def put(self, endpoint, data=None, headers=None): headers = self._merge_headers(headers, is_post=True) uri = self._gen_full_endpoint(endpoint) logger.debug('PUT %s', uri, extra={'data': data}) r = requests.put(uri, data=json.dumps(data), headers=headers) r.raise_for_status() return r.json() @transport_func def delete(self, endpoint, headers=None): headers = self._merge_headers(headers, is_post=True) uri = self._gen_full_endpoint(endpoint) logger.debug('DELETE %s', uri) r = requests.delete(uri, headers=headers) r.raise_for_status() return r.json() @property def api_version(self): return self._version @property def entrypoint(self): return self._entrypoint_uri
35.427673
164
0.680987
4,275
0.758921
0
0
1,516
0.269128
0
0
2,098
0.372448
a5e7acf2b322f72151a720e8d6b6a7577bf377de
13,896
py
Python
ventana_perceptron.py
musicbiker/ANNT
301f1090925c8937f0fd3b4955ec68ff772022ce
[ "MIT" ]
null
null
null
ventana_perceptron.py
musicbiker/ANNT
301f1090925c8937f0fd3b4955ec68ff772022ce
[ "MIT" ]
null
null
null
ventana_perceptron.py
musicbiker/ANNT
301f1090925c8937f0fd3b4955ec68ff772022ce
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Dec 11 15:05:41 2019 @author: jrodriguez119 """ import tkinter as tk from tkinter import ttk import crearcapas import perceptron_multicapa from threading import Thread import sys from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure from tkinter import filedialog as fd from tkinter import messagebox as mb import menu import sklearn class Display(tk.Frame): def __init__(self,parent=0): tk.Frame.__init__(self,parent) self.output = tk.Text(self, width=80, height=15) self.output.pack(padx = 30, pady = 5,) sys.stdout = self self.pack() def flush(self): pass def write(self, txt): self.output.insert(tk.END,str(txt)) self.output.see("end") self.update_idletasks() #Función que genera la ventana de parámetros del Perceptron multicapa def Ventana_perceptron(ventana_seleccion,X_train,Y_train,X_test,Y_test,ventana_inicio): #Crear ventana ventana_perceptron = tk.Toplevel(ventana_seleccion) ventana_perceptron.geometry('725x600+500+200') #Insertar menu menu.menu(ventana_perceptron,ventana_inicio) #Esconder ventana previa ventana_seleccion.withdraw() #Título labeltitulo = ttk.Label(ventana_perceptron,text = "Parámetros necesarios para el Perceptrón", foreground = "#054FAA",font=("Arial Bold", 15)) labeltitulo.pack(pady=10) #Frame donde alojar los widget de entrada lframe = ttk.Frame(ventana_perceptron) lframe.pack() #------------------------ entrada de datos --------------------------------- #Tamaño de lote tamlot = tk.IntVar() lbtamlote = ttk.Label(lframe,text = "Tamaño lote: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbtamlote.grid(column=0, row=0 ,pady=5,sticky=tk.W) etamlot = ttk.Entry(lframe,width=5, textvariable = tamlot) etamlot.grid(column=1, row=0,pady=5,sticky=tk.E) #Optimizador opt =tk.StringVar() lbopt = ttk.Label(lframe, text="Optimizador: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbopt.grid(column=0, row=1,pady=5,sticky=tk.W) cbopt=ttk.Combobox(lframe,width=9,state="readonly",textvariable = opt) cbopt["values"] = ["SGD", "RMSProp","Adam","Adagrad"] cbopt.grid(column = 1 ,row = 1,pady=5,columnspan=2) cbopt.current(0) #Proporción de validación pv = tk.DoubleVar() pv.set(0.2) lbpv = ttk.Label(lframe,text = "Proporción de Validación :", foreground = "#054FAA",font=("Arial Bold", 12)) lbpv.grid(column=0, row=2 ,pady=5,sticky=tk.W) epv = ttk.Entry(lframe,width=5, textvariable = pv) epv.grid(column=1, row=2,pady=5,sticky=tk.E) #Número de capas ocultas nco = tk.IntVar() lbnco = ttk.Label(lframe,text = "Número capas ocultas :", foreground = "#054FAA",font=("Arial Bold", 12)) lbnco.grid(column=0, row=3 ,pady=5,sticky=tk.W) enco = ttk.Entry(lframe,width=5, textvariable = nco) enco.grid(column=1, row=3,pady=5,sticky=tk.E) #Función Loss fl =tk.StringVar() lbfl = ttk.Label(lframe, text="Función Loss: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbfl.grid(column=0, row=4,pady=5,sticky=tk.W) cbfl=ttk.Combobox(lframe,width=21,state="readonly",textvariable = fl) cbfl["values"] = ["kullback_leibler_divergence","mean_squared_error", "categorical_hinge", "categorical_crossentropy","binary_crossentropy","poisson","cosine_proximity"] cbfl.grid(column = 1 ,row = 4,pady=5,columnspan=2,sticky=tk.E) cbfl.current(3) #Método de parada labeltitulo1 = ttk.Label(ventana_perceptron,text = "Método de parada", foreground = "#054FAA",font=("Arial Bold", 15)) labeltitulo1.pack(pady=10) lframe1 = ttk.Frame(ventana_perceptron) lframe1.pack() #Tipo de parada #Parada por número de iteraciones mp=tk.IntVar() bat1= ttk.Radiobutton(lframe1, value=0,variable=mp) bat1.grid(column=0, row=0) nui=tk.IntVar() lbnui = ttk.Label(lframe1, text="Número de iteraciones: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbnui.grid(column=1, row=0,pady=5,sticky=tk.W) enui = ttk.Entry(lframe1,width=5, textvariable = nui) enui.grid(column=2, row=0,pady=5,sticky=tk.E) #Parada por control de un parámetro bat2 = ttk.Radiobutton(lframe1, value=1,variable=mp) bat2.grid(column=0, row=1) lbparada = ttk.Label(lframe1, text="Parada temprana: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbparada.grid(column = 1, row = 1,sticky=tk.W ) #Parámetro a controlar lbcon = ttk.Label(lframe1, text=" Parámetro a controlar: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbcon.grid(column = 1, row = 2,pady=5,sticky=tk.W ) con =tk.StringVar() cbcon=ttk.Combobox(lframe1,width=9,state="readonly",textvariable = con) cbcon["values"] = ["loss","val_loss", "acc","val_acc"] cbcon.grid(column = 2 ,row = 2,pady=5,sticky=tk.E) cbcon.current(0) #Delta mínima de evolución delt =tk.DoubleVar() delt.set(0.001) lbdelt = ttk.Label(lframe1, text=" Delta min: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbdelt.grid(column=1, row=3,pady=5,sticky=tk.W) edelt = ttk.Entry(lframe1,width=5, textvariable = delt) edelt.grid(column=2, row=3,pady=5,sticky=tk.E) #Paciencia para realizar la parada pat =tk.IntVar() pat.set(3) lbpat = ttk.Label(lframe1, text=" Paciencia: ", foreground = "#054FAA",font=("Arial Bold", 12)) lbpat.grid(column=1, row=4,pady=5,sticky=tk.W) epat = ttk.Entry(lframe1,width=5, textvariable = pat) epat.grid(column=2, row=4,pady=5,sticky=tk.E) #Función que abre una ventana externa y nos permite crear nuestro modelo editando las capas ocultas def crearmodelo(): global NO,AC,BA,DR,numero_capas numero_capas = int(nco.get()) NO,AC,BA,DR = crearcapas.capas(numero_capas, ventana_perceptron) btnmodelo = ttk.Button(ventana_perceptron, text = "Crear modelo",style='my.TButton', command=crearmodelo) btnmodelo.pack(pady=50) lframe2 = ttk.Frame(ventana_perceptron) lframe2.pack(side= "bottom") def entrenar(): lote = tamlot.get() optimizador = opt.get() prop_val = pv.get() numero_capas_ocultas = int(nco.get()) loss = fl.get() parada = mp.get() iteraciones = nui.get() control = con.get() delta = delt.get() paciencia = pat.get() #Excepciones if lote == 0: mb.showerror("Error", "Variable tamaño del lote = 0 ") return if prop_val == 0: mb.showerror("Error", "El algoritmo necesita una parte del conjunto de entrenamiento para su validación ") return if prop_val > 1: mb.showerror("Error", "Proporción de validación no válida ") return if numero_capas_ocultas == 0: mb.showerror("Error", "Variable numero de capas ocultas = 0 ") return if parada == 0 and iteraciones==0: mb.showerror("Error", "No se ha indicado el número de iteraciones requeridas ") return if parada == 1 and delta==0.0: mb.showerror("Error", "No se ha indicado el mínimo delta para controlar la evolución ") return while True: try: NO break except NameError: mb.showerror("Error", "No se ha creado el modelo, haga click en crear modelo ") return for i in range(numero_capas_ocultas) : if NO[i].get()==0: mb.showerror("Error", "No es posible tener capas con 0 neuronas, asegurese de haber creado el modelo correctamente ") return for i in range(numero_capas_ocultas) : if DR[i].get() > 1: mb.showerror("Error", "Valor Dropout no válido ") return #Ventana donde aparece el proceso y los botones para guardar el modelo ventana_display = tk.Toplevel(ventana_perceptron) labeltitulo1 = ttk.Label(ventana_display,text = "Entrenamiento", foreground = "#054FAA",font=("Arial Bold", 15)) labeltitulo1.pack(pady=5) #Funcion que representa la evolución del entrenamiento def plot(): ventana_plot = tk.Toplevel(ventana_perceptron) ventana_plot.geometry('900x600') f = Figure(figsize = (5,5),dpi = 100) a = f.add_subplot(121) b = f.add_subplot(122) #Resumimos e imprimimos esos datos a.plot(entrenamiento.history['acc']) a.plot(entrenamiento.history['val_acc']) a.set_title('Precisión del modelo') a.set_ylabel('Precisión') a.set_xlabel('Iteraciones') a.legend(['Entrenamiento', 'Validación'], loc='upper left') # summarize history for loss b.plot(entrenamiento.history['loss']) b.plot(entrenamiento.history['val_loss']) b.set_title('Loss del modelo') b.set_ylabel('Loss') b.set_xlabel('Iteraciones') b.legend(['Entrenamiento', 'Validación'], loc='upper left') canvas1 = FigureCanvasTkAgg(f,ventana_plot) canvas1.get_tk_widget().pack(side = tk.TOP,fill = tk.BOTH, expand = True) toolbar = NavigationToolbar2Tk(canvas1,ventana_plot) toolbar.update() canvas1._tkcanvas.pack(side = tk.TOP,fill = tk.BOTH, expand = True) def guardarcompl(): nombrearch=fd.asksaveasfilename(initialdir = "/",title = "Guardar como",defaultextension = 'h5') model.save(nombrearch) mb.showinfo("Información", "Los datos fueron guardados.") def guardarpesos(): nombrearch=fd.asksaveasfilename(initialdir = "/",title = "Guardar como",defaultextension = 'h5') model.save_weights(nombrearch) mb.showinfo("Información", "Los datos fueron guardados.") def atras(): ventana_display.destroy() framebotones = ttk.Frame(ventana_display) framebotones.pack(side= "bottom") btnguardarcompl = ttk.Button(framebotones, text="Modelo completo", command=guardarcompl,style='my.TButton',width = 15) btnguardarcompl.grid(row = 0, column = 0, padx = 10, pady = 5,sticky=tk.W) btnguardarpesos = ttk.Button(framebotones, text="Pesos", command=guardarpesos,style='my.TButton',width = 15) btnguardarpesos.grid(row = 0, column = 1, padx = 10, pady = 5,sticky=tk.W) btnplot = ttk.Button(framebotones, text="Plot", command=plot,style='my.TButton',width = 15) btnplot.grid(row = 1, column = 0, padx = 10, pady = 5,sticky=tk.W) btnatras = ttk.Button(framebotones, text="Atrás", command=atras,style='my.TButton',width = 15) btnatras.grid(row = 1, column = 1, padx = 10, pady = 5,sticky=tk.W) def pantalla(): global Display Display(ventana_display) def run(): global model, entrenamiento while True: try: model, entrenamiento = perceptron_multicapa.Perceptron_multicapa(ventana_perceptron,ventana_display,X_train,Y_train,X_test,Y_test, lote,optimizador,prop_val,numero_capas_ocultas,loss, parada,iteraciones,control,delta,paciencia,NO,AC,BA,DR) break except tk.TclError: mb.showerror("Error desconocido", "Por favor vuelva a intentarlo ") ventana_display.destroy() return except RuntimeError: mb.showerror("Error desconocido", "Por favor reinicie la aplicación ") ventana_display.destroy() return except sklearn.metrics.classification.UndefinedMetricWarning: mb.showerror("Error ", "Algo salió mal con los datos, reinicie la aplicación y vuelva a intentarlo ") ventana_display.destroy() return t1=Thread(target=pantalla) t2=Thread(target=run) t1.start() t2.start() btntrain = ttk.Button(lframe2, text = "Entrenar",style='my.TButton', command=entrenar) btntrain.grid(row = 0, column = 1, padx = 20, pady=15) def atras(): ventana_perceptron.destroy() ventana_seleccion.deiconify() btnatras = ttk.Button(lframe2, text = "Atras",style='my.TButton', command=atras) btnatras.grid(row=0,column=0, padx = 20, pady=15)
40.750733
151
0.573258
441
0.031633
0
0
0
0
0
0
3,049
0.218707
a5e93ad8745db2b82f7503c050a79a9fd3c06143
419
py
Python
tests/search/test_search_onedrive.py
theodoriss/Office365-REST-Python-Client
3bd7a62dadcd3f0a0aceeaff7584fff3fd44886e
[ "MIT" ]
544
2016-08-04T17:10:16.000Z
2022-03-31T07:17:20.000Z
tests/search/test_search_onedrive.py
theodoriss/Office365-REST-Python-Client
3bd7a62dadcd3f0a0aceeaff7584fff3fd44886e
[ "MIT" ]
438
2016-10-11T12:24:22.000Z
2022-03-31T19:30:35.000Z
tests/search/test_search_onedrive.py
theodoriss/Office365-REST-Python-Client
3bd7a62dadcd3f0a0aceeaff7584fff3fd44886e
[ "MIT" ]
202
2016-08-22T19:29:40.000Z
2022-03-30T20:26:15.000Z
from tests.graph_case import GraphTestCase class TestSearchOneDrive(GraphTestCase): @classmethod def setUpClass(cls): super(TestSearchOneDrive, cls).setUpClass() @classmethod def tearDownClass(cls): pass def test1_search_files(self): result = self.client.search.query("Guide.docx", entity_types=["driveItem"]).execute_query() self.assertIsNotNone(result.value)
23.277778
99
0.706444
372
0.887828
0
0
142
0.338902
0
0
23
0.054893
a5ea06e0a07718613f62378639588110228f7035
728
py
Python
secu/tests/user_post_test.py
wancy86/tornado-seed
bea842f4ba6b23dda53ec9ae9f1349e1d2b54fd3
[ "MIT" ]
null
null
null
secu/tests/user_post_test.py
wancy86/tornado-seed
bea842f4ba6b23dda53ec9ae9f1349e1d2b54fd3
[ "MIT" ]
null
null
null
secu/tests/user_post_test.py
wancy86/tornado-seed
bea842f4ba6b23dda53ec9ae9f1349e1d2b54fd3
[ "MIT" ]
null
null
null
import requests from ..base.test import BaseTestCase, AuthorizedTestCase import uuid import common class T(AuthorizedTestCase): @property def path(self): return '/service/secu/user' def setUp(self): super().setUp() self.data = { 'username': 'myao', 'email': '[email protected]', 'mobile': '18665369920', 'pwd': '123456', 'fullname': '姚贯伟', 'roles': '' } def test_by_correct_info(self): response = requests.post(self.url, json=self.data) self.assertNotEqual(response.text, '', '返回值为空!') resp = response.json() self.assertEqual('000', resp['code'])
26.962963
59
0.542582
641
0.859249
0
0
67
0.089812
0
0
159
0.213137
a5ea9efb676efad8c603777a80d368a57ffbe7ba
2,204
py
Python
arbeitsplan/management/commands/meldungConsistent.py
hkarl/svpb
29aab0065ff69c7c4d52812508167514d635cab9
[ "Apache-2.0" ]
3
2015-02-20T14:53:17.000Z
2020-12-01T19:29:14.000Z
arbeitsplan/management/commands/meldungConsistent.py
hkarl/svpb
29aab0065ff69c7c4d52812508167514d635cab9
[ "Apache-2.0" ]
67
2015-01-06T19:48:59.000Z
2022-03-20T16:56:22.000Z
arbeitsplan/management/commands/meldungConsistent.py
hkarl/svpb
29aab0065ff69c7c4d52812508167514d635cab9
[ "Apache-2.0" ]
2
2015-12-07T09:21:10.000Z
2015-12-30T18:36:53.000Z
""" Define a command that should be run from a crontab. This one should check consistency of Meldungen: at most one Meldung per Aufgabe, per User. """ from django.core.management.base import BaseCommand, CommandError from django.core.management import call_command from django.utils import translation from django.conf import settings from django.core.mail import send_mail import arbeitsplan.models as models import datetime import pprint from collections import defaultdict class Command(BaseCommand): """Go through all Users and Aufgaben. Check whether at most one Meldung exist. """ args = "" help = "Check Meldung consistency, send out warning emails" emailTemplate = "upcomingJob" def handle(self, *args, **options): # set the locale right, to get the dates represented correctly translation.activate(settings.LANGUAGE_CODE) self.stdout.write('meldungConsistent: Checking on ' + str(datetime.date.today())) inconsistent_users = defaultdict(list) for u in models.User.objects.all(): for a in models.Aufgabe.objects.all(): mqs = models.Meldung.objects.filter(melder=u, aufgabe=a) c = mqs.count() if c > 1: inconsistent_users[u].append(a) print inconsistent_users if inconsistent_users: subject = "SVPB: PROBLEM with Meldungenkonsistenz" body = pprint.pformat(inconsistent_users) else: subject = "SVPB: Meldungen all good" body = "rechoice" send_mail(subject, body, "[email protected]", ['[email protected]'], fail_silently=False) ## for kontakt, liste in kontaktKontext.iteritems(): ## if kontakt.email: ## mail.send( ## [kontakt.email], ## template="upcomingJob-Kontakt", ## context={'liste': liste, ## 'verantwortlich': kontakt, ## }, ## ) translation.deactivate()
29.783784
72
0.587114
1,720
0.780399
0
0
0
0
0
0
828
0.375681
a5ece29e8598f0696a2017f159b9027891f278ea
1,215
py
Python
app/migrations/0013_auto_20200907_1056.py
mapoetto/group2_CTFLab
5b492ce46875ea37a57701686897bd9613e2dd13
[ "MIT" ]
1
2021-10-15T14:37:33.000Z
2021-10-15T14:37:33.000Z
app/migrations/0013_auto_20200907_1056.py
mapoetto/group2_CTFLab
5b492ce46875ea37a57701686897bd9613e2dd13
[ "MIT" ]
null
null
null
app/migrations/0013_auto_20200907_1056.py
mapoetto/group2_CTFLab
5b492ce46875ea37a57701686897bd9613e2dd13
[ "MIT" ]
null
null
null
# Generated by Django 2.1.15 on 2020-09-07 10:56 import app.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0012_user_id_ctfd'), ] operations = [ migrations.CreateModel( name='CTFd_configs', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('url_API', models.CharField(max_length=220)), ('token_API', models.CharField(max_length=64)), ('port_API', models.IntegerField(default=8000, validators=[app.models.validate_flag])), ], ), migrations.AddField( model_name='lab', name='categoria', field=models.CharField(default='', max_length=120), ), migrations.AddField( model_name='lab', name='flag', field=models.CharField(default='', max_length=220), ), migrations.AddField( model_name='lab', name='valore_flag', field=models.IntegerField(default=10, validators=[app.models.validate_flag]), ), ]
31.153846
114
0.568724
1,103
0.907819
0
0
0
0
0
0
173
0.142387
a5ef7047358651b5620e1896751f01c69ce61941
6,404
py
Python
products_and_services_client/models/monthly_price.py
pitzer42/opbk-br-quickstart
b3f86b2e5f82a6090aaefb563614e174a452383c
[ "MIT" ]
2
2021-02-07T23:58:36.000Z
2021-02-08T01:03:25.000Z
products_and_services_client/models/monthly_price.py
pitzer42/opbk-br-quickstart
b3f86b2e5f82a6090aaefb563614e174a452383c
[ "MIT" ]
null
null
null
products_and_services_client/models/monthly_price.py
pitzer42/opbk-br-quickstart
b3f86b2e5f82a6090aaefb563614e174a452383c
[ "MIT" ]
null
null
null
# coding: utf-8 """ API's OpenData do Open Banking Brasil As API's descritas neste documento são referentes as API's da fase OpenData do Open Banking Brasil. # noqa: E501 OpenAPI spec version: 1.0.0-rc5.2 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class MonthlyPrice(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'interval': 'PriceIntervals', 'monthly_fee': 'str', 'currency': 'Currency', 'customers': 'Customer' } attribute_map = { 'interval': 'interval', 'monthly_fee': 'monthlyFee', 'currency': 'currency', 'customers': 'customers' } def __init__(self, interval=None, monthly_fee=None, currency=None, customers=None): # noqa: E501 """MonthlyPrice - a model defined in Swagger""" # noqa: E501 self._interval = None self._monthly_fee = None self._currency = None self._customers = None self.discriminator = None self.interval = interval self.monthly_fee = monthly_fee self.currency = currency self.customers = customers @property def interval(self): """Gets the interval of this MonthlyPrice. # noqa: E501 :return: The interval of this MonthlyPrice. # noqa: E501 :rtype: PriceIntervals """ return self._interval @interval.setter def interval(self, interval): """Sets the interval of this MonthlyPrice. :param interval: The interval of this MonthlyPrice. # noqa: E501 :type: PriceIntervals """ if interval is None: raise ValueError("Invalid value for `interval`, must not be `None`") # noqa: E501 self._interval = interval @property def monthly_fee(self): """Gets the monthly_fee of this MonthlyPrice. # noqa: E501 Valor da mediana de cada faixa relativa ao serviço ofertado, informado no período, conforme Res nº 32 BCB, 2020. p.ex. ''45.00'' (representa um valor monetário. p.ex: 1547368.92. Este valor, considerando que a moeda seja BRL, significa R$ 1.547.368,92. O único separador presente deve ser o ''.'' (ponto) para indicar a casa decimal. Não deve haver separador de milhar) # noqa: E501 :return: The monthly_fee of this MonthlyPrice. # noqa: E501 :rtype: str """ return self._monthly_fee @monthly_fee.setter def monthly_fee(self, monthly_fee): """Sets the monthly_fee of this MonthlyPrice. Valor da mediana de cada faixa relativa ao serviço ofertado, informado no período, conforme Res nº 32 BCB, 2020. p.ex. ''45.00'' (representa um valor monetário. p.ex: 1547368.92. Este valor, considerando que a moeda seja BRL, significa R$ 1.547.368,92. O único separador presente deve ser o ''.'' (ponto) para indicar a casa decimal. Não deve haver separador de milhar) # noqa: E501 :param monthly_fee: The monthly_fee of this MonthlyPrice. # noqa: E501 :type: str """ if monthly_fee is None: raise ValueError("Invalid value for `monthly_fee`, must not be `None`") # noqa: E501 self._monthly_fee = monthly_fee @property def currency(self): """Gets the currency of this MonthlyPrice. # noqa: E501 :return: The currency of this MonthlyPrice. # noqa: E501 :rtype: Currency """ return self._currency @currency.setter def currency(self, currency): """Sets the currency of this MonthlyPrice. :param currency: The currency of this MonthlyPrice. # noqa: E501 :type: Currency """ if currency is None: raise ValueError("Invalid value for `currency`, must not be `None`") # noqa: E501 self._currency = currency @property def customers(self): """Gets the customers of this MonthlyPrice. # noqa: E501 :return: The customers of this MonthlyPrice. # noqa: E501 :rtype: Customer """ return self._customers @customers.setter def customers(self, customers): """Sets the customers of this MonthlyPrice. :param customers: The customers of this MonthlyPrice. # noqa: E501 :type: Customer """ if customers is None: raise ValueError("Invalid value for `customers`, must not be `None`") # noqa: E501 self._customers = customers def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(MonthlyPrice, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MonthlyPrice): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
32.841026
392
0.600562
6,037
0.940782
0
0
3,276
0.510519
0
0
3,542
0.551971
a5f29eaf88394cd5b49f0dfad22427d8e4654b7c
481
py
Python
sqlalchemy_i18n/expressions.py
EdwardBetts/sqlalchemy-i18n
9cf515be75be6e319416579b32528e1a096c03cf
[ "BSD-3-Clause" ]
31
2015-02-26T11:08:43.000Z
2022-03-18T11:53:30.000Z
sqlalchemy_i18n/expressions.py
EdwardBetts/sqlalchemy-i18n
9cf515be75be6e319416579b32528e1a096c03cf
[ "BSD-3-Clause" ]
13
2015-01-05T09:40:59.000Z
2022-01-18T23:57:28.000Z
sqlalchemy_i18n/expressions.py
EdwardBetts/sqlalchemy-i18n
9cf515be75be6e319416579b32528e1a096c03cf
[ "BSD-3-Clause" ]
13
2015-01-08T08:24:15.000Z
2022-02-05T01:59:41.000Z
import sqlalchemy as sa from sqlalchemy.ext.compiler import compiles from sqlalchemy.sql.functions import GenericFunction class current_locale(GenericFunction): type = sa.types.String() @compiles(current_locale) def compile_current_locale(element, compiler, **kw): # Lazy import get_locale so that it can be overridden from sqlalchemy_utils.i18n import get_locale return '%s' % compiler.process( sa.bindparam('current_locale', str(get_locale())) )
26.722222
57
0.756757
67
0.139293
0
0
286
0.594595
0
0
73
0.151767
a5f2ce8d23f3ea07c4d73928966352c760c23c7e
47
py
Python
scripts/portal/OutElfKingRoom.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
54
2019-04-16T23:24:48.000Z
2021-12-18T11:41:50.000Z
scripts/portal/OutElfKingRoom.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
3
2019-05-19T15:19:41.000Z
2020-04-27T16:29:16.000Z
scripts/portal/OutElfKingRoom.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
49
2020-11-25T23:29:16.000Z
2022-03-26T16:20:24.000Z
# 101050010 sm.warp(101050000, 7) sm.dispose()
11.75
21
0.723404
0
0
0
0
0
0
0
0
11
0.234043
a5f31b512ae3b988c292e1211f6d15cfb61624fc
839
py
Python
suppy/simulator/atomics/divergence_atomic.py
bmaris98/suppy
8450c6d25ffa492cdedfbbb4c111d22e7f2788a7
[ "BSD-3-Clause" ]
null
null
null
suppy/simulator/atomics/divergence_atomic.py
bmaris98/suppy
8450c6d25ffa492cdedfbbb4c111d22e7f2788a7
[ "BSD-3-Clause" ]
null
null
null
suppy/simulator/atomics/divergence_atomic.py
bmaris98/suppy
8450c6d25ffa492cdedfbbb4c111d22e7f2788a7
[ "BSD-3-Clause" ]
null
null
null
from suppy.utils.stats_constants import DIVERGENCE, TYPE from typing import Any, Dict from suppy.simulator.atomics.atomic import Atomic class DivergenceAtomic(Atomic): def __init__(self, uid: str, seh, name: str): Atomic.__init__(self, uid, seh, name, 0, 0) def get_stats(self) -> Dict[str, Any]: stats = Atomic.get_stats(self) stats[TYPE] = DIVERGENCE return stats def _all_output_clear(self) -> bool: for output_stream in self._output_streams: if not output_stream.has_input: return True return False def _do_process(self) -> None: resource = self._loaded_input[0] for output_stream in self._output_streams: if not output_stream.has_input: output_stream.try_load(resource) return
31.074074
56
0.647199
701
0.835518
0
0
0
0
0
0
0
0
a5f71728f2d90dfa8913ba58e0714da23be50b98
2,673
py
Python
train/compute/python/pytorch_benchmark.py
sazanovd/param
595b81ceb64d8d106d05ab67d2c73e8465d06921
[ "MIT" ]
null
null
null
train/compute/python/pytorch_benchmark.py
sazanovd/param
595b81ceb64d8d106d05ab67d2c73e8465d06921
[ "MIT" ]
null
null
null
train/compute/python/pytorch_benchmark.py
sazanovd/param
595b81ceb64d8d106d05ab67d2c73e8465d06921
[ "MIT" ]
null
null
null
import logging from .lib.init_helper import init_logging, load_modules # Initialize logging format before loading all other modules logger = init_logging(logging.INFO) import argparse from .lib import pytorch as lib_pytorch from .lib.config import BenchmarkConfig from .lib.pytorch.benchmark import ( make_default_benchmark, ExecutionPass, get_benchmark_options, ) from .workloads import pytorch as workloads_pytorch def main(): parser = argparse.ArgumentParser(description="Microbenchmarks") parser.add_argument( "-c", "--config", type=str, required=True, help="The benchmark config file." ) parser.add_argument( "-w", "--warmup", type=int, default=5, help="Number of warm up iterations." ) parser.add_argument( "-i", "--iteration", type=int, default=1, help="Number of benchmark iterations." ) parser.add_argument( "-b", "--backward", action="store_true", help="Include backward pass." ) parser.add_argument( "-d", "--device", type=str, default="cpu", help="Target device for benchmark." ) parser.add_argument( "-o", "--output-prefix", type=str, default="benchmark_result", help="File name prefix to write benchmark results.", ) parser.add_argument( "-a", "--append", action="store_true", help="Append to output file, rather than overwrite." ) parser.add_argument( "-v", "--verbose", action="store_true", help="Increase log output verbosity." ) args = parser.parse_args() if args.verbose: init_logging(logging.DEBUG) # Load PyTorch implementations for data generator and operators. load_modules(lib_pytorch) # Load PyTorch operator workloads. load_modules(workloads_pytorch) run_options = get_benchmark_options() run_options["warmup"] = args.warmup run_options["iteration"] = args.iteration run_options["device"] = args.device if args.backward: run_options["pass_type"] = ExecutionPass.BACKWARD logger.info("Pass: FORWARD and BACKWARD") else: run_options["pass_type"] = ExecutionPass.FORWARD logger.info("Pass: FORWARD") out_file_name = f"{args.output_prefix}.json" write_option = "a" if args.append else "w" with open(out_file_name, write_option) as out_file: run_options["out_stream"] = out_file bench_config = BenchmarkConfig(run_options) bench_config.load_json_file(args.config) benchmark = make_default_benchmark(bench_config) benchmark.run() logger.info(f"Log written to {out_file_name}") if __name__ == "__main__": main()
29.7
99
0.674523
0
0
0
0
0
0
0
0
811
0.303404
a5f7a4ecfa05bf78a585981771c76de8e093cf7a
5,180
py
Python
database/BuildDatabase.py
chanzuckerberg/scoreboard
7ebf783819d0f5b4dd54092201f709b8644c85a4
[ "MIT" ]
8
2017-11-28T22:36:37.000Z
2020-10-20T06:46:19.000Z
database/BuildDatabase.py
chanzuckerberg/scoreboard
7ebf783819d0f5b4dd54092201f709b8644c85a4
[ "MIT" ]
25
2017-12-27T19:05:41.000Z
2022-03-15T18:35:22.000Z
database/BuildDatabase.py
chanzuckerberg/scoreboard
7ebf783819d0f5b4dd54092201f709b8644c85a4
[ "MIT" ]
1
2018-04-23T11:16:41.000Z
2018-04-23T11:16:41.000Z
from sqlalchemy import create_engine from sqlalchemy import Column, Integer, Boolean, String, DateTime, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.orm import sessionmaker from sqlalchemy.sql import func import datetime import os import json database = { 'pg_user': os.environ['SCOREBOARD_PG_USERNAME'], 'pg_pass': os.environ['SCOREBOARD_PG_PASSWORD'], 'pg_host': os.environ.get('SCOREBOARD_PG_HOST', 'localhost'), 'pg_port': os.environ.get('SCOREBOARD_PG_PORT', 5432), 'pg_database': os.environ.get('SCOREBOARD_PG_DATABASE', 'scoreboard') } # Build database engine = create_engine( "postgresql://{pg_user}:{pg_pass}@{pg_host}:{pg_port}/{pg_database}".format(**database)) Base = declarative_base() class User(Base): __tablename__ = 'users' __table_args__ = {'extend_existing': True} id = Column(Integer, primary_key=True, nullable=False) github_username = Column(String, nullable=False) name = Column(String) email = Column(String) is_admin = Column(Boolean, nullable=False) create_date = Column(DateTime, nullable=False, server_default=func.now()) class Challenge(Base): __tablename__ = 'challenges' __table_args__ = {'extend_existing': True} id = Column(Integer, primary_key=True, nullable=False) name = Column(String, nullable=False) description = Column(String) docker_container = Column(String, nullable=False) image = Column(String) data_path = Column(String) data_size = Column(String) color = Column(String) about = Column(String) example_file = Column(String) submission_header = Column(JSONB) submission_separator = Column(String, default=",") scores = Column(JSONB) subscores = Column(JSONB) start_date = Column(DateTime, nullable=False, server_default=func.now()) end_date = Column(DateTime) is_open = Column(Boolean, nullable=False, default=True) create_date = Column(DateTime, nullable=False, server_default=func.now()) class Dataset(Base): __tablename__ = 'datasets' __table_args__ = {'extend_existing': True} id = Column(Integer, primary_key=True, nullable=False) name = Column(String, nullable=False) description = Column(String) tree = Column(JSONB) challenge_id = Column(Integer, ForeignKey("challenges.id", onupdate="CASCADE", ondelete="CASCADE"), nullable=False) create_date = Column(DateTime, nullable=False, server_default=func.now()) class Submission(Base): __tablename__ = 'submissions' __table_args__ = {'extend_existing': True} id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey("users.id", onupdate="CASCADE", ondelete="CASCADE"), nullable=False) challenge_id = Column(Integer, ForeignKey("challenges.id", onupdate="CASCADE", ondelete="CASCADE"), nullable=False) name = Column(String, nullable=False) repository = Column(String, nullable=False) is_private = Column(Boolean, nullable=False) institution = Column(String) publication = Column(String) is_accepted = Column(Boolean, nullable=False) create_date = Column(DateTime, nullable=False, server_default=func.now()) class Result(Base): __tablename__ = 'results' __table_args__ = {'extend_existing': True} id = Column(Integer, primary_key=True) submission_id = Column(Integer, ForeignKey("submissions.id", onupdate="CASCADE", ondelete="CASCADE"), nullable=False) results_path = Column(String, nullable=False) score_data = Column(JSONB) is_current = Column(Boolean, nullable=False) submission_date = Column(DateTime, nullable=False, server_default=func.now()) create_date = Column(DateTime, nullable=False, server_default=func.now()) class AdminEmailSettings(Base): __tablename__ = 'email_settings' __table_args__ = {'extend_existing': True} id = Column(Integer, primary_key=True, nullable=False) email_provider = Column(String, nullable=False) email_address = Column(String, nullable=False) email_pass = Column(String, nullable=False) Base.metadata.create_all(engine) # Load Data Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() with open("initialize.json") as fh: initialize_data = json.load(fh) for challenge in initialize_data["challenges"]: datasets = challenge.pop('datasets', []) new_challenge = Challenge(**challenge) session.add(new_challenge) session.flush() session.refresh(new_challenge) challenge_id = new_challenge.id for dataset in datasets: dataset["challenge_id"] = challenge_id new_dataset = Dataset(**dataset) session.add(new_dataset) for admin in initialize_data["admins"]: new_user = User(github_username=admin, is_admin=True) session.add(new_user) email_settings = initialize_data["email_settings"] settings = AdminEmailSettings(email_provider=email_settings["email_provider"], email_address= email_settings["admin_email"], email_pass=email_settings["admin_pass"]) session.add(settings) session.commit()
37
121
0.72471
3,287
0.634556
0
0
0
0
0
0
697
0.134556
a5f7a9890ad3c832bc0b2c81569f369cddac6df1
6,767
py
Python
docs/tutorials_source/generate_images_tutorial.py
XavierXinweiWang/UnrealCV_Ubuntu
4fdbb32f2096a4c95c0912d018ff4adb4801fb8b
[ "MIT" ]
null
null
null
docs/tutorials_source/generate_images_tutorial.py
XavierXinweiWang/UnrealCV_Ubuntu
4fdbb32f2096a4c95c0912d018ff4adb4801fb8b
[ "MIT" ]
null
null
null
docs/tutorials_source/generate_images_tutorial.py
XavierXinweiWang/UnrealCV_Ubuntu
4fdbb32f2096a4c95c0912d018ff4adb4801fb8b
[ "MIT" ]
null
null
null
# Need at least 20 # characters """ =============== Generate Images =============== This ipython notebook demonstrates how to generate an image dataset with rich ground truth from a virtual environment. """ #################### import time; print(time.strftime("The last update of this file: %Y-%m-%d %H:%M:%S", time.gmtime())) #################### # Load some python libraries # The dependencies for this tutorials are # PIL, Numpy, Matplotlib from __future__ import division, absolute_import, print_function import os, sys, time, re, json import numpy as np import matplotlib.pyplot as plt imread = plt.imread def imread8(im_file): ''' Read image as a 8-bit numpy array ''' im = np.asarray(Image.open(im_file)) return im def read_png(res): import StringIO, PIL.Image img = PIL.Image.open(StringIO.StringIO(res)) return np.asarray(img) def read_npy(res): import StringIO return np.load(StringIO.StringIO(res)) ############################### # Connect to the game # =================== # Load unrealcv python client, do :code:`pip install unrealcv` first. from unrealcv import client client.connect() if not client.isconnected(): print('UnrealCV server is not running. Run the game downloaded from http://unrealcv.github.io first.') sys.exit(-1) ############################### # Make sure the connection works well res = client.request('vget /unrealcv/status') # The image resolution and port is configured in the config file. print(res) ############################## # Load a camera trajectory # ======================== traj_file = './camera_traj.json' # Relative to this python script import json; camera_trajectory = json.load(open(traj_file)) # We will show how to record a camera trajectory in another tutorial ############################## # Render an image # =============== idx = 1 loc, rot = camera_trajectory[idx] # Set position of the first camera client.request('vset /camera/0/location {x} {y} {z}'.format(**loc)) client.request('vset /camera/0/rotation {pitch} {yaw} {roll}'.format(**rot)) # Get image res = client.request('vget /camera/0/lit lit.png') print('The image is saved to %s' % res) # It is also possible to get the png directly without saving to a file res = client.request('vget /camera/0/lit png') im = read_png(res) print(im.shape) # Visualize the image we just captured plt.imshow(im) ############################## # Ground truth generation # ======================= # Generate ground truth from this virtual scene res = client.request('vget /camera/0/object_mask png') object_mask = read_png(res) res = client.request('vget /camera/0/normal png') normal = read_png(res) # Visualize the captured ground truth plt.imshow(object_mask) plt.figure() plt.imshow(normal) ############################### # Depth is retrieved as a numpy array # For UnrealCV < v0.3.8, the depth is saved as an exr file, but this has two issues. 1. Exr is not well supported in Linux 2. It depends on OpenCV to read exr file, which is hard to install res = client.request('vget /camera/0/depth npy') depth = read_npy(res) plt.imshow(depth) ############################## # Get object information # ====================== # List all the objects of this virtual scene scene_objects = client.request('vget /objects').split(' ') print('Number of objects in this scene:', len(scene_objects)) # TODO: replace this with a better implementation class Color(object): ''' A utility class to parse color value ''' regexp = re.compile('\(R=(.*),G=(.*),B=(.*),A=(.*)\)') def __init__(self, color_str): self.color_str = color_str match = self.regexp.match(color_str) (self.R, self.G, self.B, self.A) = [int(match.group(i)) for i in range(1,5)] def __repr__(self): return self.color_str id2color = {} # Map from object id to the labeling color for obj_id in scene_objects: color = Color(client.request('vget /object/%s/color' % obj_id)) id2color[obj_id] = color # print('%s : %s' % (obj_id, str(color))) ############################# # Parse the segmentation mask def match_color(object_mask, target_color, tolerance=3): match_region = np.ones(object_mask.shape[0:2], dtype=bool) for c in range(3): # r,g,b min_val = target_color[c] - tolerance max_val = target_color[c] + tolerance channel_region = (object_mask[:,:,c] >= min_val) & (object_mask[:,:,c] <= max_val) match_region &= channel_region if match_region.sum() != 0: return match_region else: return None id2mask = {} for obj_id in scene_objects: color = id2color[obj_id] mask = match_color(object_mask, [color.R, color.G, color.B], tolerance = 3) if mask is not None: id2mask[obj_id] = mask # This may take a while # TODO: Need to find a faster implementation for this ############################## # Print statistics of this virtual scene and this image # ===================================================== # Load information of this scene with open('object_category.json') as f: id2category = json.load(f) categories = set(id2category.values()) # Show statistics of this frame image_objects = id2mask.keys() print('Number of objects in this image:', len(image_objects)) print('%20s : %s' % ('Category name', 'Object name')) for category in categories: objects = [v for v in image_objects if id2category.get(v) == category] if len(objects) > 6: # Trim the list if too long objects[6:] = ['...'] if len(objects) != 0: print('%20s : %s' % (category, objects)) ############################## # Show the annotation color of some objects ids = ['SM_Couch_1seat_5', 'SM_Vase_17', 'SM_Shelving_6', 'SM_Plant_8'] # for obj_id in ids: obj_id = ids[0] color = id2color[obj_id] print('%s : %s' % (obj_id, str(color))) # color_block = np.zeros((100,100, 3)) + np.array([color.R, color.G, color.B]) / 255.0 # plt.figure(); plt.imshow(color_block); plt.title(obj_id) ############################## # Plot only one object mask = id2mask['SM_Plant_8'] plt.figure(); plt.imshow(mask) ############################## # Show all sofas in this image couch_instance = [v for v in image_objects if id2category.get(v) == 'Couch'] mask = sum(id2mask[v] for v in couch_instance) plt.figure(); plt.imshow(mask) ############################## # Change the annotation color, fixed in v0.3.9 # You can use this to make objects you don't care the same color client.request('vset /object/SM_Couch_1seat_5/color 255 0 0') # Change to pure red client.request('vget /object/SM_Couch_1seat_5/color') res = client.request('vget /camera/0/object_mask png') object_mask = read_png(res) plt.imshow(object_mask) ############################## # Clean up resources # ================== client.disconnect()
33.171569
189
0.632186
383
0.056598
0
0
0
0
0
0
3,574
0.528151
a5f94be0d65ac72db51e3348feb82e21a6da2f05
458
py
Python
blogs/migrations/0003_auto_20161006_1654.py
fenglb/mysite
a5b68ebdb23f4d5c55c5490ffebaa97780a5d6ab
[ "CC0-1.0" ]
null
null
null
blogs/migrations/0003_auto_20161006_1654.py
fenglb/mysite
a5b68ebdb23f4d5c55c5490ffebaa97780a5d6ab
[ "CC0-1.0" ]
null
null
null
blogs/migrations/0003_auto_20161006_1654.py
fenglb/mysite
a5b68ebdb23f4d5c55c5490ffebaa97780a5d6ab
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-10-06 08:54 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blogs', '0002_auto_20161006_1652'), ] operations = [ migrations.AlterField( model_name='blogpost', name='md5', field=models.CharField(blank=True, max_length=32), ), ]
21.809524
62
0.617904
302
0.659389
0
0
0
0
0
0
116
0.253275
a5fa4568c42ee2ffd61fc83bd38a5e610ae98af1
1,660
py
Python
examples/ieffileupdate.py
duncan-r/SHIP
2c4c22c77f9c18ea545d3bce70a36aebbd18256a
[ "MIT" ]
6
2016-04-10T17:32:44.000Z
2022-03-13T18:41:21.000Z
examples/ieffileupdate.py
duncan-r/SHIP
2c4c22c77f9c18ea545d3bce70a36aebbd18256a
[ "MIT" ]
19
2017-06-23T08:21:53.000Z
2017-07-26T08:23:03.000Z
examples/ieffileupdate.py
duncan-r/SHIP
2c4c22c77f9c18ea545d3bce70a36aebbd18256a
[ "MIT" ]
6
2016-10-26T16:04:38.000Z
2019-04-25T23:55:06.000Z
""" Summary: Example use of the fmp package to update file paths in an .ief file and save the ief file under a new name. Author: Duncan Runnacles Created: 01 Apr 2016 Copyright: Duncan Runnacles 2016 TODO: Updates: """ import os from ship.utils.fileloaders import fileloader as fl # Contains functions for updating file paths and reading/writing files from ship.utils import filetools def iefExample(): """update some key file paths in an ief file. Updates the .dat file, .tcf file, and results file paths referenced by the ief file and save it under a new ief file name. """ # Load the tuflow model with a tcf file ief_file = r'C:\path\to\an\isis\ieffile.ief' loader = fl.FileLoader() ief = loader.loadFile(ief_file) # Get the referenced fmp .dat and .tcf files dat_path = ief.getValue('Datafile') tcf_path = ief.getValue('2DFile') results_path = ief.getValue('Results') # Update the dat, results and tcf file names root, ext = os.path.splitext(dat_path) new_dat = root + '_Updated' + ext root, ext = os.path.splitext(results_path) new_results = root + '_Updated' + ext root, ext = os.path.splitext(tcf_path) new_tcf = root + '_Updated' + ext ief.setValue('Datafile', new_dat) ief.setValue('Results', new_results) ief.setValue('2DFile', new_tcf) # Update the filename and write contents to disk ief.path_holder.filename += '_Updated' ief_path = ief.path_holder.absolutePath() ief.write(ief_path) if __name__ == '__main__': iefExample()
26.349206
75
0.654217
0
0
0
0
0
0
0
0
870
0.524096
a5fbd11dbc9a0e80007cdb92a40b5c8dd7191ce7
8,387
py
Python
packages/w3af/w3af/core/data/url/HTTPRequest.py
ZooAtmosphereGroup/HelloPackages
0ccffd33bf927b13d28c8f715ed35004c33465d9
[ "Apache-2.0" ]
null
null
null
packages/w3af/w3af/core/data/url/HTTPRequest.py
ZooAtmosphereGroup/HelloPackages
0ccffd33bf927b13d28c8f715ed35004c33465d9
[ "Apache-2.0" ]
null
null
null
packages/w3af/w3af/core/data/url/HTTPRequest.py
ZooAtmosphereGroup/HelloPackages
0ccffd33bf927b13d28c8f715ed35004c33465d9
[ "Apache-2.0" ]
null
null
null
""" HTTPRequest.py Copyright 2010 Andres Riancho This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import copy import socket import urllib2 from w3af.core.data.dc.headers import Headers from w3af.core.data.dc.utils.token import DataToken from w3af.core.data.parsers.doc.url import URL from w3af.core.data.request.request_mixin import RequestMixIn from w3af.core.data.url.constants import MAX_HTTP_RETRIES class HTTPRequest(RequestMixIn, urllib2.Request): def __init__(self, url, data=None, headers=None, origin_req_host=None, unverifiable=False, cookies=True, session=None, cache=False, method=None, error_handling=True, retries=MAX_HTTP_RETRIES, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, new_connection=False, follow_redirects=False, use_basic_auth=True, use_proxy=True, debugging_id=None, binary_response=False): """ This is a simple wrapper around a urllib2 request object which helps with some common tasks like serialization, cache, etc. :param method: None means choose the default (POST if data is not None) :param data: The post_data as a string """ headers = headers or Headers() # # Save some information for later access in an easier way # self.url_object = url self.cookies = cookies self.session = session self.get_from_cache = cache self.error_handling = error_handling self.retries_left = retries self.timeout = timeout self.new_connection = new_connection self.follow_redirects = follow_redirects self.use_basic_auth = use_basic_auth self.use_proxy = use_proxy self.debugging_id = debugging_id self._binary_response = binary_response self.method = method if self.method is None: self.method = 'POST' if data else 'GET' if isinstance(headers, Headers): headers.tokens_to_value() headers = dict(headers) # Call the base class constructor urllib2.Request.__init__(self, url.url_encode(), data, headers, origin_req_host, unverifiable) RequestMixIn.__init__(self) def __eq__(self, other): return (self.get_method() == other.get_method() and self.get_uri() == other.get_uri() and self.get_headers() == other.get_headers() and self.get_data() == other.get_data() and self.get_timeout() == other.get_timeout()) def with_binary_response(self): return self._binary_response def set_data(self, data): self.data = data def add_header(self, key, val): """ Override mostly to avoid having header values of DataToken type :param key: The header name as a string :param val: The header value (a string of a DataToken) :return: None """ if isinstance(val, DataToken): val = val.get_value() self.headers[key.capitalize()] = val def get_method(self): return self.method def set_method(self, method): self.method = method def get_netloc(self): uri = self.get_uri() return '%s:%s' % (uri.get_domain(), uri.get_port()) def get_domain(self): return self.get_uri().get_domain() def get_uri(self): return self.url_object def set_uri(self, url_object): self.url_object = url_object def get_headers(self): headers = Headers(self.headers.items()) headers.update(self.unredirected_hdrs.items()) return headers def set_headers(self, headers): self.headers = dict(headers) def get_timeout(self): return self.timeout def set_timeout(self, timeout): self.timeout = timeout def set_new_connection(self, new_connection): self.new_connection = new_connection def get_new_connection(self): return self.new_connection def to_dict(self): serializable_dict = {} sdict = serializable_dict sdict['method'] = self.get_method() sdict['uri'] = self.get_uri().url_string sdict['headers'] = dict(self.get_headers()) sdict['data'] = self.get_data() sdict['cookies'] = self.cookies sdict['session'] = self.session sdict['cache'] = self.get_from_cache sdict['timeout'] = None if self.timeout is socket._GLOBAL_DEFAULT_TIMEOUT else self.timeout sdict['new_connection'] = self.new_connection sdict['follow_redirects'] = self.follow_redirects sdict['use_basic_auth'] = self.use_basic_auth sdict['use_proxy'] = self.use_proxy sdict['debugging_id'] = self.debugging_id sdict['binary_response'] = self._binary_response return serializable_dict @classmethod def from_fuzzable_request(cls, fuzzable_request): """ :param fuzzable_request: The FuzzableRequest :return: An instance of HTTPRequest with all the information contained in the FuzzableRequest passed as parameter """ host = fuzzable_request.get_url().get_domain() data = fuzzable_request.get_data() headers = fuzzable_request.get_headers() headers.tokens_to_value() return cls(fuzzable_request.get_uri(), data=data, headers=headers, origin_req_host=host) @classmethod def from_dict(cls, unserialized_dict): """ * msgpack is MUCH faster than cPickle, * msgpack can't serialize python objects, * I have to create a dict representation of HTTPRequest to serialize it, * and a from_dict to have the object back :param unserialized_dict: A dict just as returned by to_dict() """ udict = unserialized_dict method, uri = udict['method'], udict['uri'] headers, data = udict['headers'], udict['data'] cookies = udict['cookies'] session = udict['session'] cache = udict['cache'] timeout = socket.getdefaulttimeout() if udict['timeout'] is None else udict['timeout'] new_connection = udict['new_connection'] follow_redirects = udict['follow_redirects'] use_basic_auth = udict['use_basic_auth'] use_proxy = udict['use_proxy'] debugging_id = udict['debugging_id'] binary_response = udict['binary_response'] headers_inst = Headers(headers.items()) url = URL(uri) return cls(url, data=data, headers=headers_inst, cookies=cookies, session=session, cache=cache, method=method, timeout=timeout, new_connection=new_connection, follow_redirects=follow_redirects, use_basic_auth=use_basic_auth, use_proxy=use_proxy, debugging_id=debugging_id, binary_response=binary_response) def copy(self): return copy.deepcopy(self) def __repr__(self): fmt = '<HTTPRequest "%s" (cookies:%s, cache:%s, did:%s, timeout:%.2f, new_connection:%s)>' timeout = 3 if self.timeout is socket._GLOBAL_DEFAULT_TIMEOUT else self.timeout return fmt % (self.url_object.url_string, self.cookies, self.get_from_cache, self.debugging_id, timeout, self.new_connection)
34.514403
99
0.623465
7,368
0.878502
0
0
2,113
0.251938
0
0
2,253
0.26863
a5ff1935416c4a799dc3631e3b180db7559793bf
817
py
Python
moldesign/_notebooks/nbscripts/gen_toc.py
Autodesk/molecular-design-toolkit
5f45a47fea21d3603899a6366cb163024f0e2ec4
[ "Apache-2.0" ]
147
2016-07-15T18:53:55.000Z
2022-01-30T04:36:39.000Z
moldesign/_notebooks/nbscripts/gen_toc.py
cherishyli/molecular-design-toolkit
5f45a47fea21d3603899a6366cb163024f0e2ec4
[ "Apache-2.0" ]
151
2016-07-15T21:35:11.000Z
2019-10-10T08:57:29.000Z
moldesign/_notebooks/nbscripts/gen_toc.py
cherishyli/molecular-design-toolkit
5f45a47fea21d3603899a6366cb163024f0e2ec4
[ "Apache-2.0" ]
33
2016-08-02T00:04:51.000Z
2021-09-02T10:05:04.000Z
#!/usr/bin/env python from __future__ import print_function import sys, os from nbformat import v4 def parse_line(line): if not line.startswith('#'): return None ilevel = 0 for char in line: if char == '#': ilevel += 1 else: break name = line[ilevel:].strip() return ilevel, name if __name__ == '__main__': with open(sys.argv[1], 'r') as nbfile: nb = v4.reads(nbfile.read()) print('Contents\n=======\n---') for cell in nb.cells: if cell['cell_type'] == 'markdown': for line in cell['source'].splitlines(): header = parse_line(line) if header is None: continue ilevel, name = header print(' '*(ilevel-1) + ' - [%s](#%s)'%(name, name.replace(' ','-')))
19.452381
85
0.532436
0
0
0
0
0
0
0
0
117
0.143207
570013af797984af8b152ded17b276b76de011a7
1,102
py
Python
server/gaiaApi/gaia/serializer.py
JawaBaliIBM/Gaia
12572330c637cec559f8f122ecc2bd3af3dcf64e
[ "Apache-2.0" ]
6
2021-07-31T10:52:36.000Z
2022-03-19T17:10:55.000Z
server/gaiaApi/gaia/serializer.py
JawaBaliIBM/Gaia
12572330c637cec559f8f122ecc2bd3af3dcf64e
[ "Apache-2.0" ]
3
2021-07-24T08:17:53.000Z
2021-08-10T14:41:46.000Z
server/gaiaApi/gaia/serializer.py
JawaBaliIBM/Gaia
12572330c637cec559f8f122ecc2bd3af3dcf64e
[ "Apache-2.0" ]
1
2021-07-31T10:15:45.000Z
2021-07-31T10:15:45.000Z
from rest_framework import serializers class ArticleSerializer(serializers.Serializer): date = serializers.CharField(allow_blank=False) sentiment = serializers.CharField(allow_blank=False) title = serializers.CharField(allow_blank=False) description = serializers.CharField(allow_blank=False) article_id = serializers.CharField(allow_blank=False) url = serializers.URLField(allow_blank=False) brand = serializers.CharField(allow_blank=False) class ArticlesSerializer(serializers.Serializer): prev = serializers.URLField() next = serializers.URLField() results = serializers.ListField(child=ArticleSerializer()) class ArticlesWithIndexSerializer(serializers.Serializer): total = serializers.IntegerField() prev = serializers.URLField() next = serializers.URLField() results = serializers.ListField(child=ArticleSerializer()) class BrandSerializer(serializers.Serializer): name = serializers.CharField(allow_blank=False) score = serializers.FloatField(max_value=1.0, min_value=0) sentiment = serializers.CharField(allow_blank=False)
42.384615
62
0.784029
1,056
0.958258
0
0
0
0
0
0
0
0
5701301232a4492ca4d517aea40acc01301fe2f8
329
py
Python
aoc2020/d01_report_repair/methods.py
sflis/aoc2020
ef6ee81c18b6ec8332b150638b3d78772fe8327a
[ "Unlicense" ]
null
null
null
aoc2020/d01_report_repair/methods.py
sflis/aoc2020
ef6ee81c18b6ec8332b150638b3d78772fe8327a
[ "Unlicense" ]
null
null
null
aoc2020/d01_report_repair/methods.py
sflis/aoc2020
ef6ee81c18b6ec8332b150638b3d78772fe8327a
[ "Unlicense" ]
null
null
null
import numpy as np def sum_pair_equals(values, val_eq): values = np.array(values) return np.where(values + values[:, None] == val_eq)[0] def sum_triad_equals(values, val_eq): values = np.array(values) sum_ = values + values[:, None] + values[:, None, None] return np.array(np.where(sum_ == val_eq))[:, 0]
25.307692
59
0.653495
0
0
0
0
0
0
0
0
0
0
570168b655cd4c5fe01f67c0408794d1cfd928aa
2,306
py
Python
tests/test_persona.py
holnburger/persine
cb26d1e275f7ed7e1048bc1e6b66b71386c3e602
[ "MIT" ]
84
2020-12-20T20:39:19.000Z
2022-02-02T01:01:12.000Z
tests/test_persona.py
holnburger/persine
cb26d1e275f7ed7e1048bc1e6b66b71386c3e602
[ "MIT" ]
1
2020-12-25T01:07:09.000Z
2020-12-25T04:05:19.000Z
tests/test_persona.py
holnburger/persine
cb26d1e275f7ed7e1048bc1e6b66b71386c3e602
[ "MIT" ]
9
2020-12-23T03:10:35.000Z
2021-09-08T14:44:18.000Z
import pytest from persine import Persona from selenium import webdriver from selenium.webdriver.chrome.options import Options from unittest.mock import Mock @pytest.fixture def engine(): def launch_chrome(user_data_dir): options = Options() options.add_argument("--headless") return webdriver.Chrome(options=options) eng = Mock() eng.data_dir = "/tmp/data_dir" eng.history_path = "/tmp/history.json" eng.launch = launch_chrome eng.run = lambda driver, action: { 'action': action } return eng def test_context(engine): with Persona(engine=engine) as persona: assert persona.driver is not None assert persona.driver is None def test_history(engine): persona = Persona(engine=engine) assert len(persona.history) == 0 persona.update_history( { "key": "test-key-1", "url": "sample", "action": "test:sample", "recommendations": [{"number": 1}, {"number": 2}, {"number": 3}], } ) persona.update_history( { "key": "test-key-2", "url": "sample2", "action": "test:sample", "recommendations": [{"number": 3}, {"number": 2}, {"number": 1}], } ) assert len(persona.history) == 2 assert len(persona.recommendations) == 6 def test_history_notes(engine): persona = Persona(engine=engine) assert len(persona.history) == 0 persona.update_history( { "key": "test-key-1", "url": "sample", "action": "test:sample", "recommendations": [{"number": 1}, {"number": 2}, {"number": 3}], }, { "note_key": "note_value" } ) assert persona.history[-1]['note_key'] == 'note_value' def test_run_notes(engine): with Persona(engine=engine) as persona: persona.run('http://jonathansoma.com', {'note_key': 'note_value'}) assert persona.history[-1]['action'] == 'http://jonathansoma.com' assert persona.history[-1]['note_key'] == 'note_value' def test_startup_shutdown(engine): persona = Persona(engine=engine) assert persona.driver is None persona.launch() assert persona.driver is not None persona.quit() assert persona.driver is None
26.204545
77
0.598439
0
0
0
0
388
0.168257
0
0
477
0.206852
57018df18d3cbc94d73679782950464b4f793c17
26,556
py
Python
inference.py
QuPengfei/learnable-triangulation-pytorch
861d9ccf8b06bd2f130697cd40b7ac57d7f7d9f2
[ "MIT" ]
null
null
null
inference.py
QuPengfei/learnable-triangulation-pytorch
861d9ccf8b06bd2f130697cd40b7ac57d7f7d9f2
[ "MIT" ]
null
null
null
inference.py
QuPengfei/learnable-triangulation-pytorch
861d9ccf8b06bd2f130697cd40b7ac57d7f7d9f2
[ "MIT" ]
null
null
null
import torch import numpy as np import cv2 import os import h5py from collections import defaultdict from mvn.models.triangulation import RANSACTriangulationNet, AlgebraicTriangulationNet, VolumetricTriangulationNet from mvn.models.loss import KeypointsMSELoss, KeypointsMSESmoothLoss, KeypointsMAELoss, KeypointsL2Loss, VolumetricCELoss from mvn.utils import img, multiview, op, vis, misc, cfg from mvn.utils.img import get_square_bbox, resize_image, crop_image, normalize_image, scale_bbox from mvn.utils.multiview import Camera from mvn.utils.multiview import project_3d_points_to_image_plane_without_distortion as project from mvn.datasets import utils as dataset_utils from mvn.utils.img import image_batch_to_torch retval = { 'subject_names': ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11'], 'camera_names': ['54138969', '55011271', '58860488', '60457274'], 'action_names': [ 'Directions-1', 'Directions-2', 'Discussion-1', 'Discussion-2', 'Eating-1', 'Eating-2', 'Greeting-1', 'Greeting-2', 'Phoning-1', 'Phoning-2', 'Posing-1', 'Posing-2', 'Purchases-1', 'Purchases-2', 'Sitting-1', 'Sitting-2', 'SittingDown-1', 'SittingDown-2', 'Smoking-1', 'Smoking-2', 'TakingPhoto-1', 'TakingPhoto-2', 'Waiting-1', 'Waiting-2', 'Walking-1', 'Walking-2', 'WalkingDog-1', 'WalkingDog-2', 'WalkingTogether-1', 'WalkingTogether-2'] } h5_file="data/human36m/extra/una-dinosauria-data/h36m/cameras.h5" bbox_file="data/human36m/extra/bboxes-Human36M-GT.npy" def square_the_bbox(bbox): top, left, bottom, right = bbox width = right - left height = bottom - top if height < width: center = (top + bottom) * 0.5 top = int(round(center - width * 0.5)) bottom = top + width else: center = (left + right) * 0.5 left = int(round(center - height * 0.5)) right = left + height return top, left, bottom, right def fill_bbox(bb_file): # Fill bounding boxes TLBR bboxes = np.load(bb_file, allow_pickle=True).item() for subject in bboxes.keys(): for action in bboxes[subject].keys(): for camera, bbox_array in bboxes[subject][action].items(): for frame_idx, bbox in enumerate(bbox_array): bbox[:] = square_the_bbox(bbox) return bboxes def fill_bbox_subject_action(bb_file, subject, action): # Fill bounding boxes TLBR bboxes = np.load(bb_file, allow_pickle=True).item() bboxes_subject_action = bboxes[subject][action] for camera, bbox_array in bboxes_subject_action.items(): for frame_idx, bbox in enumerate(bbox_array): bbox[:] = square_the_bbox(bbox) return bboxes_subject_action def get_bbox_subject_action(bboxes, idx): bbox = {} for (camera_idx, camera) in enumerate(retval['camera_names']): bbox[camera] = bboxes[camera][idx] return bbox def fill_cameras(h5_cameras): info = np.empty( (len(retval['subject_names']), len(retval['camera_names'])), dtype=[ ('R', np.float32, (3,3)), ('t', np.float32, (3,1)), ('K', np.float32, (3,3)), ('dist', np.float32, 5) ] ) cameras_params = h5py.File(h5_cameras, 'r') # Fill retval['cameras'] for subject_idx, subject in enumerate(retval['subject_names']): for camera_idx, camera in enumerate(retval['camera_names']): assert len(cameras_params[subject.replace('S', 'subject')]) == 4 camera_params = cameras_params[subject.replace('S', 'subject')]['camera%d' % (camera_idx+1)] camera_retval = info[subject_idx][camera_idx] def camera_array_to_name(array): return ''.join(chr(int(x[0])) for x in array) assert camera_array_to_name(camera_params['Name']) == camera camera_retval['R'] = np.array(camera_params['R']).T camera_retval['t'] = -camera_retval['R'] @ camera_params['T'] camera_retval['K'] = 0 camera_retval['K'][:2, 2] = camera_params['c'][:, 0] camera_retval['K'][0, 0] = camera_params['f'][0] camera_retval['K'][1, 1] = camera_params['f'][1] camera_retval['K'][2, 2] = 1.0 camera_retval['dist'][:2] = camera_params['k'][:2, 0] camera_retval['dist'][2:4] = camera_params['p'][:, 0] camera_retval['dist'][4] = camera_params['k'][2, 0] return info def fill_cameras_subject(h5_cameras,subject): info = np.empty( len(retval['camera_names']), dtype=[ ('R', np.float32, (3,3)), ('t', np.float32, (3,1)), ('K', np.float32, (3,3)), ('dist', np.float32, 5) ] ) cameras = {} subject_idx = retval['subject_names'].index(subject) cameras_params = h5py.File(h5_cameras, 'r') # Fill retval['cameras'] for camera_idx, camera in enumerate(retval['camera_names']): assert len(cameras_params[subject.replace('S', 'subject')]) == 4 camera_params = cameras_params[subject.replace('S', 'subject')]['camera%d' % (camera_idx+1)] camera_retval = info[camera_idx] def camera_array_to_name(array): return ''.join(chr(int(x[0])) for x in array) assert camera_array_to_name(camera_params['Name']) == camera camera_retval['R'] = np.array(camera_params['R']).T camera_retval['t'] = -camera_retval['R'] @ camera_params['T'] camera_retval['K'] = 0 camera_retval['K'][:2, 2] = camera_params['c'][:, 0] camera_retval['K'][0, 0] = camera_params['f'][0] camera_retval['K'][1, 1] = camera_params['f'][1] camera_retval['K'][2, 2] = 1.0 camera_retval['dist'][:2] = camera_params['k'][:2, 0] camera_retval['dist'][2:4] = camera_params['p'][:, 0] camera_retval['dist'][4] = camera_params['k'][2, 0] cameras[camera] = camera_retval return cameras #retval['bboxes'] = fill_bbox(bbox_file) #retval['cameras'] = fill_cameras(h5_file) class Detector: def __init__(self, config, device = "cuda:0"): super().__init__() self.model = { "ransac": RANSACTriangulationNet, "alg": AlgebraicTriangulationNet, "vol": VolumetricTriangulationNet }[config.model.name](config, device=device).to(device) if config.model.init_weights: state_dict = torch.load(config.model.checkpoint) for key in list(state_dict.keys()): new_key = key.replace("module.", "") state_dict[new_key] = state_dict.pop(key) state_dict = torch.load(config.model.checkpoint) self.model.load_state_dict(state_dict, strict=True) print("Successfully loaded pretrained weights for whole model") def infer(self, batch, model_type, device, config): """ For a single image inference """ outputBatch = {} inputBatch = {} images_batch = [] image_batch = image_batch_to_torch(batch['images']) image_batch = image_batch.to(device) images_batch.append(image_batch) images_batch = torch.stack(images_batch, dim=0) #proj_matricies_batch = [torch.from_numpy(camera.projection).float().to(device) for camera in batch['cameras']] proj_matricies_batch = torch.stack([torch.from_numpy(camera.projection) for camera in batch['cameras']], dim=0) proj_matricies_batch = proj_matricies_batch.float().to(device) proj_matricies_batchs = [] # shape (batch_size, n_views, 3, 4) proj_matricies_batchs.append(proj_matricies_batch) proj_matricies_batchs = torch.stack(proj_matricies_batchs,dim=0) #print(proj_matricies_batchs,proj_matricies_batchs.shape,len(batch),images_batch.shape) keypoints_2d_pred, cuboids_pred, base_points_pred, volumes_pred, coord_volumes_pred = None, None, None, None, None if model_type == "alg" or model_type == "ransac": keypoints_3d_pred, keypoints_2d_pred, heatmaps_pred, confidences_pred = self.model(images_batch, proj_matricies_batchs, batch) elif model_type == "vol": keypoints_3d_pred, heatmaps_pred, volumes_pred, confidences_pred, cuboids_pred, coord_volumes_pred, base_points_pred = self.model(images_batch, proj_matricies_batchs, batch) outputBatch["keypoints_3d_pred"] = keypoints_3d_pred outputBatch["heatmaps_pred"] = heatmaps_pred outputBatch["volumes_pred"] = volumes_pred outputBatch["confidences_pred"] = confidences_pred outputBatch["cuboids_pred"] = confidences_pred outputBatch["coord_volumes_pred"] = coord_volumes_pred outputBatch["base_points_pred"] = base_points_pred inputBatch["images_batch"] = images_batch return outputBatch, inputBatch def inferHuman36Data(self, batch, model_type, device, config, randomize_n_views, min_n_views, max_n_views): """ For batch inferences """ outputBatch = {} inputBatch = {} collatFunction = dataset_utils.make_collate_fn(randomize_n_views, min_n_views, max_n_views) batch = collatFunction(batch) images_batch, keypoints_3d_gt, keypoints_3d_validity_gt, proj_matricies_batch = dataset_utils.prepare_batch(batch, device, config) #print(proj_matricies_batch,proj_matricies_batch.shape,len(batch),images_batch.shape) keypoints_2d_pred, cuboids_pred, base_points_pred, volumes_pred, coord_volumes_pred = None, None, None, None, None if model_type == "alg" or model_type == "ransac": keypoints_3d_pred, keypoints_2d_pred, heatmaps_pred, confidences_pred = self.model(images_batch, proj_matricies_batch, batch) elif model_type == "vol": keypoints_3d_pred, heatmaps_pred, volumes_pred, confidences_pred, cuboids_pred, coord_volumes_pred, base_points_pred = self.model(images_batch, proj_matricies_batch, batch) outputBatch["keypoints_3d_pred"] = keypoints_3d_pred outputBatch["heatmaps_pred"] = heatmaps_pred outputBatch["volumes_pred"] = volumes_pred outputBatch["confidences_pred"] = confidences_pred outputBatch["cuboids_pred"] = confidences_pred outputBatch["coord_volumes_pred"] = coord_volumes_pred outputBatch["base_points_pred"] = base_points_pred inputBatch["images_batch"] = images_batch inputBatch["proj_matricies_batch"] = proj_matricies_batch return outputBatch, inputBatch def viewSample(sample,idx=0): camera_idx = 0 image = sample['images'][camera_idx] camera = sample['cameras'][camera_idx] subject = sample['subject'][camera_idx] action = sample['action'][camera_idx] display = image.copy() keypoints_2d = project(camera.projection, sample['keypoints_3d'][:, :3]) for i,(x,y) in enumerate(keypoints_2d): cv2.circle(display, (int(x), int(y)), 3, (0,0,255), -1) file = f"./result/{subject}-{action}-{camera.name}-{idx}.png" cv2.imwrite(file, display) def viewHeatmaps(sample,idx,prediction,config): # TODO get the visualization done images_batch = [] for image_batch in sample['images']: images_batch.append(image_batch) heatmaps_vis = vis.visualize_heatmaps( inputBatch["images_batch"], prediction["heatmaps_pred"], kind=config.kind, batch_index=0, size=5, max_n_rows=10, max_n_cols=10) heatmaps_vis = heatmaps_vis.transpose(2, 0, 1) for i in range(0,4): cv2.imwrite(f"./result/heatmaps_test_{idx}_{i}.png", heatmaps_vis[i,:,:]) def viewVideo(sample): displays = [] # Project and draw keypoints on images for camera_idx in range(len(sample['cameras'])): #camera_indexes_to_show: # import ipdb; ipdb.set_trace() display = sample['images'][camera_idx] cv2.putText(display, f"Cam {camera_idx:02}", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) displays.append(display) # Fancy stacked images for j, display in enumerate(displays): if j == 0: combined = display else: combined = np.concatenate((combined, display), axis=1) return combined def viewVideoResult(sample,idx, prediction,config,size=(384,384)): displays = [] keypoints3d_pred = prediction['keypoints_3d_pred'].cpu() keypoints_3d_pred = keypoints3d_pred[0,:, :3].detach().numpy() # Project and draw keypoints on images for camera_idx in range(len(sample['cameras'])): #camera_indexes_to_show: camera = sample['cameras'][camera_idx] keypoints_2d_pred = project(camera.projection, keypoints_3d_pred) # import ipdb; ipdb.set_trace() img = sample['images'][camera_idx] pred_kind = config.pred_kind if hasattr(config, "pred_kind") else config.kind display = vis.draw_2d_pose_cv2(keypoints_2d_pred, img, kind=pred_kind) cv2.putText(display, f"Cam {camera_idx:02}", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) displays.append(display) display3 = vis.draw_3d_pose_image(keypoints_3d_pred,kind=pred_kind,radius=450) display3 = cv2.cvtColor(display3,cv2.COLOR_RGBA2RGB) display3 = cv2.resize(display3, size, interpolation=cv2.INTER_AREA) cv2.putText(display3, f"3D prediction", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) displays.append(display3) # Fancy stacked images for j, display in enumerate(displays): if j == 0: combined = display else: combined = np.concatenate((combined, display), axis=1) return combined def viewResult(sample,idx,prediction,config,save_images_instead=1,size=(384,384)): displays = [] camera_idx = 0 camera = sample['cameras'][camera_idx] subject = sample['subject'][camera_idx] action = sample['action'][camera_idx] keypoints3d_pred = prediction['keypoints_3d_pred'].cpu() keypoints_3d_pred = keypoints3d_pred[0,:, :3].detach().numpy() keypoints_3d_gt = sample['keypoints_3d'][:, :3] # Project and draw keypoints on images for camera_idx in range(len(sample['cameras'])): #camera_indexes_to_show: camera = sample['cameras'][camera_idx] keypoints_2d_pred = project(camera.projection, keypoints_3d_pred) keypoints_2d_gt = project(camera.projection, keypoints_3d_gt) # import ipdb; ipdb.set_trace() img = sample['images'][camera_idx] pred_kind = config.pred_kind if hasattr(config, "pred_kind") else config.kind display = vis.draw_2d_pose_cv2(keypoints_2d_pred, img, kind=pred_kind) #display = vis.draw_2d_pose_cv2(keypoints_2d_gt, img, kind=config.kind) cv2.putText(display, f"Cam {camera_idx:02}", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) displays.append(display) display3 = vis.draw_3d_pose_image(keypoints_3d_pred,kind=pred_kind,radius=450) display3 = cv2.cvtColor(display3,cv2.COLOR_RGBA2RGB) display3 = cv2.resize(display3, size, interpolation=cv2.INTER_AREA) cv2.putText(display3, f"3D prediction", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) displays.append(display3) display3_gt = vis.draw_3d_pose_image(sample['keypoints_3d'][:, :3],kind=pred_kind,radius=450) display3_gt = cv2.cvtColor(display3_gt,cv2.COLOR_RGBA2RGB) display3_gt = cv2.resize(display3_gt, size, interpolation=cv2.INTER_AREA) cv2.putText(display3_gt, f"3D GT", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) displays.append(display3_gt) # Fancy stacked images for j, display in enumerate(displays): if j == 0: combined = display else: combined = np.concatenate((combined, display), axis=1) # Load if save_images_instead: file = f"./result/result-{subject}-{action}-{camera.name}-{idx}.png" cv2.imwrite(file, combined) else: cv2.imshow('w', combined) cv2.setWindowTitle('w', f"Index {idx}") c = cv2.waitKey(0) % 256 if c == ord('q') or c == 27: print('Quitting...') cv2.destroyAllWindows() def prepareSample(idx, labels, human36mRoot, keyPoint3d = None , imageShape = None, scaleBox = 1.0, crop = True, normImage = False): sample = defaultdict(list) # return value shot = labels['table'][idx] subject = labels['subject_names'][shot['subject_idx']] action = labels['action_names'][shot['action_idx']] frame_idx = shot['frame_idx'] for camera_idx, camera_name in enumerate(labels['camera_names']): bbox = shot['bbox_by_camera_tlbr'][camera_idx][[1,0,3,2]] # TLBR to LTRB bbox_height = bbox[2] - bbox[0] if bbox_height == 0: # convention: if the bbox is empty, then this view is missing continue # scale the bounding box bbox = scale_bbox(bbox, scaleBox) # load image image_path = os.path.join(human36mRoot, subject, action, 'imageSequence', camera_name, 'img_%06d.jpg' % (frame_idx+1)) assert os.path.isfile(image_path), '%s doesn\'t exist' % image_path image = cv2.imread(image_path) # load camera shot_camera = labels['cameras'][shot['subject_idx'], camera_idx] #print(shot_camera) retval_camera = Camera(shot_camera['R'], shot_camera['t'], shot_camera['K'], shot_camera['dist'], camera_name) if crop: # crop image image = crop_image(image, bbox) retval_camera.update_after_crop(bbox) if imageShape is not None: # resize image_shape_before_resize = image.shape[:2] image = resize_image(image, imageShape) retval_camera.update_after_resize(image_shape_before_resize, imageShape) sample['image_shapes_before_resize'].append(image_shape_before_resize) if normImage: image = normalize_image(image) sample['images'].append(image) sample['detections'].append(bbox + (1.0,)) # TODO add real confidences sample['cameras'].append(retval_camera) sample['proj_matrices'].append(retval_camera.projection) sample["action"].append(action) sample["subject"].append(subject) sample["frameId"].append(frame_idx) # 3D keypoints # add dummy confidences sample['keypoints_3d'] = np.pad( shot['keypoints'][:17], ((0,0), (0,1)), 'constant', constant_values=1.0) # build cuboid # base_point = sample['keypoints_3d'][6, :3] # sides = np.array([self.cuboid_side, self.cuboid_side, self.cuboid_side]) # position = base_point - sides / 2 # sample['cuboids'] = volumetric.Cuboid3D(position, sides) # save sample's index sample['indexes'] = idx if keyPoint3d is not None: sample['pred_keypoints_3d'] = keyPoint3d[idx] sample.default_factory = None return sample def prepareVideoSample(info, images, cameras, bboxes, subject = 'S1', imageShape = [384, 384], scaleBox = 1.0, crop = True, normImage = False): sample = defaultdict(list) # return value subject_idx = info['subject_names'].index(subject) for camera_idx, camera_name in enumerate(info['camera_names']): bbox = bboxes[camera_name][[1,0,3,2]] # TLBR to LTRB bbox_height = bbox[2] - bbox[0] if bbox_height == 0: # convention: if the bbox is empty, then this view is missing continue # scale the bounding box bbox = scale_bbox(bbox, scaleBox) # load camera shot_camera = cameras[camera_name] image = images[camera_name] #print(shot_camera) retval_camera = Camera(shot_camera['R'], shot_camera['t'], shot_camera['K'], shot_camera['dist'], camera_name) if crop: # crop image image = crop_image(image, bbox) retval_camera.update_after_crop(bbox) if imageShape is not None: # resize image_shape_before_resize = image.shape[:2] image = resize_image(image, imageShape) retval_camera.update_after_resize(image_shape_before_resize, imageShape) sample['images'].append(image) sample['cameras'].append(retval_camera) sample['proj_matrices'].append(retval_camera.projection) # projection matricies #print(sample['proj_matrices']) sample.default_factory = None return sample def loadHuman36mLabel(path,train = True, withDamageAction=True, retain_every_n_frames_in_test=1): """ this load the label, including bouding box, camera matrices """ test = not train labels = np.load(path, allow_pickle=True).item() train_subjects = ['S1', 'S5', 'S6', 'S7', 'S8'] test_subjects = ['S9', 'S11'] train_subjects = list(labels['subject_names'].index(x) for x in train_subjects) test_subjects = list(labels['subject_names'].index(x) for x in test_subjects) indices = [] if train: mask = np.isin(labels['table']['subject_idx'], train_subjects, assume_unique=True) indices.append(np.nonzero(mask)[0]) if test: mask = np.isin(labels['table']['subject_idx'], test_subjects, assume_unique=True) if not withDamageAction: mask_S9 = labels['table']['subject_idx'] == labels['subject_names'].index('S9') damaged_actions = 'Greeting-2', 'SittingDown-2', 'Waiting-1' damaged_actions = [labels['action_names'].index(x) for x in damaged_actions] mask_damaged_actions = np.isin(labels['table']['action_idx'], damaged_actions) mask &= ~(mask_S9 & mask_damaged_actions) indices.append(np.nonzero(mask)[0][::retain_every_n_frames_in_test]) labels['table'] = labels['table'][np.concatenate(indices)] return labels def loadPrePelvis(path): pred_results = np.load(path, allow_pickle=True) keypoints_3d_pred = pred_results['keypoints_3d'][np.argsort(pred_results['indexes'])] return keypoints_3d_pred def infer(model_type="alg",max_num=5, save_images_instead=1, crop=True): if model_type == "alg": config = cfg.load_config("./experiments/human36m/train/human36m_alg.yaml") elif model_type == "vol": config = cfg.load_config("./experiments/human36m/train/human36m_vol_softmax.yaml") pelvis3d = loadPrePelvis(config.dataset.train.pred_results_path) device = torch.device(0) labels = loadHuman36mLabel(config.dataset.train.labels_path) detector = Detector(config, device=device) for idx in range(max_num): sample = [prepareSample(100+idx, labels, config.dataset.train.h36m_root, keyPoint3d=None, crop=crop, imageShape=config.image_shape)] viewSample(sample[0],idx) prediction, inputBatch = detector.inferHuman36Data(sample, model_type, device, config, randomize_n_views=config.dataset.val.randomize_n_views, min_n_views=config.dataset.val.min_n_views, max_n_views=config.dataset.val.max_n_views) viewResult(sample[0],idx,prediction,config,save_images_instead=save_images_instead) def infer_videos(model_type="alg",subject="S1", action="Sitting-1", max_num=5, save_images_instead=True, crop=True): if model_type == "alg": config = cfg.load_config("./experiments/human36m/train/human36m_alg.yaml") elif model_type == "vol": config = cfg.load_config("./experiments/human36m/train/human36m_vol_softmax.yaml") pelvis3d = loadPrePelvis(config.dataset.train.pred_results_path) device = torch.device(0) detector = Detector(config, device=device) bboxes = fill_bbox_subject_action(bbox_file, subject, action) cameras = fill_cameras_subject(h5_file,subject) cap = {} wri = None human36mRoot = "/dataset/experiment-dataset/extracted/" video_path = os.path.join(human36mRoot, subject, 'Videos') for (camera_idx, camera) in enumerate(retval['camera_names']): video_name = video_path+'/'+action.replace("-"," ")+'.'+camera+'.mp4' assert os.path.isfile(video_name), '%s doesn\'t exist' % video_name cap[camera] = cv2.VideoCapture(video_name) size = (int(cap[camera].get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap[camera].get(cv2.CAP_PROP_FRAME_HEIGHT))) if save_images_instead: wri = cv2.VideoWriter( f'./result/result-{subject}-{action}.mp4',cv2.VideoWriter_fourcc('m','p','4','v'), 30,(1920,384)) idx = 0 #while True: while True: frames = {} for (camera_idx, camera) in enumerate(retval['camera_names']): success,frames[camera] = cap[camera].read() if success != True: break bbox = get_bbox_subject_action(bboxes,idx) sample = prepareVideoSample(info=retval, images=frames, cameras=cameras, bboxes=bbox, subject = subject, imageShape = [384, 384], scaleBox = 1.0, crop = True, normImage = False) prediction, inputBatch = detector.infer(sample, model_type, device, config) combined = viewVideoResult(sample,idx, prediction,config) #combined = viewVideo(sample) idx = idx + 1 if save_images_instead: if idx < max_num: #file = f"./result/result-video-{subject}-{action}-{camera}-{idx}.png" #cv2.imwrite(file, combined) wri.write(combined) else: break else: cv2.imshow('w', combined) cv2.setWindowTitle('w', f"Index {idx}") c = cv2.waitKey(0) % 256 if c == ord('q') or c == 27: print('Quitting...') break; cv2.destroyAllWindows() for (camera_idx, camera) in enumerate(retval['camera_names']): cap[camera].release() if save_images_instead: wri.release() if __name__ == "__main__": #infer("alg",max_num=2, crop=True) infer_videos("alg",max_num=1000, save_images_instead=False, crop=True)
42.018987
185
0.640496
4,653
0.175215
0
0
0
0
0
0
5,126
0.193026
57028ca06deb47d996805621dce315dc63a9dc8f
4,846
py
Python
survol/sources_types/Linux/tcp_sockets.py
AugustinMascarelli/survol
7a822900e82d1e6f016dba014af5741558b78f15
[ "BSD-3-Clause" ]
null
null
null
survol/sources_types/Linux/tcp_sockets.py
AugustinMascarelli/survol
7a822900e82d1e6f016dba014af5741558b78f15
[ "BSD-3-Clause" ]
null
null
null
survol/sources_types/Linux/tcp_sockets.py
AugustinMascarelli/survol
7a822900e82d1e6f016dba014af5741558b78f15
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ TCP Linux sockets with netstat """ import re import sys import socket import lib_util import lib_common from lib_properties import pc from sources_types import addr as survol_addr # Many advantages compared to psutil: # The Python module psutil is not needed # psutil gives only sockets if the process is accessible. # It is much faster. # On the other it is necessary to run netstat in the shell. # $ netstat -aptn # (Not all processes could be identified, non-owned process info # will not be shown, you would have to be root to see it all.) # Active Internet connections (servers and established) # Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name # tcp 0 0 192.168.0.17:8000 0.0.0.0:* LISTEN 25865/python # tcp 0 0 127.0.0.1:427 0.0.0.0:* LISTEN - # tcp 0 0 0.0.0.0:5900 0.0.0.0:* LISTEN 4119/vino-server # tcp 0 0 192.168.122.1:53 0.0.0.0:* LISTEN - # tcp 0 0 192.168.0.17:44634 192.168.0.14:60685 ESTABLISHED 4118/rygel # tcp 0 0 192.168.0.17:22 192.168.0.14:60371 ESTABLISHED - # tcp 0 0 192.168.0.17:44634 192.168.0.14:58478 ESTABLISHED 4118/rygel # tcp 0 0 192.168.0.17:44634 192.168.0.15:38960 TIME_WAIT - # tcp 0 0 192.168.0.17:44634 192.168.0.14:58658 ESTABLISHED 4118/rygel # tcp 0 0 192.168.0.17:44634 192.168.0.14:59694 ESTABLISHED 4118/rygel # tcp 0 0 fedora22:44634 192.168.0.14:58690 ESTABLISHED 4118/rygel # tcp 0 0 fedora22:ssh 192.168.0.14:63599 ESTABLISHED - # tcp 0 0 fedora22:42042 176.103.:universe_suite ESTABLISHED 23512/amule # tcp6 0 0 [::]:wbem-http [::]:* LISTEN - # tcp6 0 0 [::]:wbem-https [::]:* LISTEN - # tcp6 0 0 [::]:mysql [::]:* LISTEN - # tcp6 0 0 [::]:rfb [::]:* LISTEN 4119/vino-server # tcp6 0 0 [::]:50000 [::]:* LISTEN 23512/amule # tcp6 0 0 [::]:43056 [::]:* LISTEN 4125/httpd # tcp6 0 0 [::]:http [::]:* LISTEN - # tcp6 0 0 [::]:ssh [::]:* LISTEN - # tcp6 0 0 localhost:ipp [::]:* LISTEN - # tcp6 0 0 [::]:telnet [::]:* LISTEN - # def Main(): cgiEnv = lib_common.CgiEnv() args = ["netstat", '-aptn', ] p = lib_common.SubProcPOpen(args) grph = cgiEnv.GetGraph() (netstat_last_output, netstat_err) = p.communicate() # Converts to string for Python3. netstat_str = netstat_last_output.decode("utf-8") netstat_lines = netstat_str.split('\n') seenHeader = False for lin in netstat_lines: # By default, consecutive spaces are treated as one. linSplit = lin.split() if len(linSplit) == 0: continue if not seenHeader: if linSplit[0] == "Proto": seenHeader = True continue # TODO: "tcp6" if linSplit[0] != "tcp": continue # sys.stderr.write("tcp_sockets.py lin=%s\n"%lin) sockStatus = linSplit[5] if sockStatus not in ["ESTABLISHED","TIME_WAIT"]: continue addrLocal = linSplit[3] ipLocal, portLocal = survol_addr.SplitAddrPort(addrLocal) # It does not use survol_addr.PsutilAddSocketToGraphOne(node_process,cnt,grph) # because sometimes we do not have the process id. localSocketNode = lib_common.gUriGen.AddrUri( ipLocal, portLocal ) grph.add( ( localSocketNode, pc.property_information, lib_common.NodeLiteral(sockStatus) ) ) addrRemot = linSplit[4] # This is different for IPV6 if addrRemot != "0.0.0.0:*": ipRemot, portRemot = survol_addr.SplitAddrPort(addrRemot) remotSocketNode = lib_common.gUriGen.AddrUri( ipRemot, portRemot ) grph.add( ( localSocketNode, pc.property_socket_end, remotSocketNode ) ) pidCommand = linSplit[6] if pidCommand != "-": procPid, procNam = pidCommand.split("/") procNode = lib_common.gUriGen.PidUri(procPid) grph.add( ( procNode, pc.property_host, lib_common.nodeMachine ) ) grph.add( ( procNode, pc.property_pid, lib_common.NodeLiteral(procPid) ) ) grph.add( ( procNode, pc.property_has_socket, localSocketNode ) ) else: # If the local process is not known, just link the local socket to the local machine. grph.add( ( lib_common.nodeMachine, pc.property_host, localSocketNode ) ) cgiEnv.OutCgiRdf() if __name__ == '__main__': Main()
38.460317
98
0.577383
0
0
0
0
0
0
0
0
3,079
0.635369
57033e68edf1bc714421c03684cc8349a3a89d3f
5,832
py
Python
models.py
JiaMingLin/residual_adapters
a3d32b4fb6c3c252f5adc1ad178b026a111c1a08
[ "Apache-2.0" ]
137
2018-03-22T15:45:30.000Z
2022-03-17T09:39:07.000Z
models.py
JiaMingLin/residual_adapters
a3d32b4fb6c3c252f5adc1ad178b026a111c1a08
[ "Apache-2.0" ]
5
2018-09-25T19:44:34.000Z
2020-12-19T11:26:41.000Z
models.py
JiaMingLin/residual_adapters
a3d32b4fb6c3c252f5adc1ad178b026a111c1a08
[ "Apache-2.0" ]
40
2018-04-04T12:36:54.000Z
2022-02-19T05:46:36.000Z
# models.py # created by Sylvestre-Alvise Rebuffi [[email protected]] # Copyright © The University of Oxford, 2017-2020 # This code is made available under the Apache v2.0 licence, see LICENSE.txt for details import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.nn.parameter import Parameter import config_task import math def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1_fonc(in_planes, out_planes=None, stride=1, bias=False): if out_planes is None: return nn.Conv2d(in_planes, in_planes, kernel_size=1, stride=stride, padding=0, bias=bias) else: return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=bias) class conv1x1(nn.Module): def __init__(self, planes, out_planes=None, stride=1): super(conv1x1, self).__init__() if config_task.mode == 'series_adapters': self.conv = nn.Sequential(nn.BatchNorm2d(planes), conv1x1_fonc(planes)) elif config_task.mode == 'parallel_adapters': self.conv = conv1x1_fonc(planes, out_planes, stride) else: self.conv = conv1x1_fonc(planes) def forward(self, x): y = self.conv(x) if config_task.mode == 'series_adapters': y += x return y class conv_task(nn.Module): def __init__(self, in_planes, planes, stride=1, nb_tasks=1, is_proj=1, second=0): super(conv_task, self).__init__() self.is_proj = is_proj self.second = second self.conv = conv3x3(in_planes, planes, stride) if config_task.mode == 'series_adapters' and is_proj: self.bns = nn.ModuleList([nn.Sequential(conv1x1(planes), nn.BatchNorm2d(planes)) for i in range(nb_tasks)]) elif config_task.mode == 'parallel_adapters' and is_proj: self.parallel_conv = nn.ModuleList([conv1x1(in_planes, planes, stride) for i in range(nb_tasks)]) self.bns = nn.ModuleList([nn.BatchNorm2d(planes) for i in range(nb_tasks)]) else: self.bns = nn.ModuleList([nn.BatchNorm2d(planes) for i in range(nb_tasks)]) def forward(self, x): task = config_task.task y = self.conv(x) if self.second == 0: if config_task.isdropout1: x = F.dropout2d(x, p=0.5, training = self.training) else: if config_task.isdropout2: x = F.dropout2d(x, p=0.5, training = self.training) if config_task.mode == 'parallel_adapters' and self.is_proj: y = y + self.parallel_conv[task](x) y = self.bns[task](y) return y # No projection: identity shortcut class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, shortcut=0, nb_tasks=1): super(BasicBlock, self).__init__() self.conv1 = conv_task(in_planes, planes, stride, nb_tasks, is_proj=int(config_task.proj[0])) self.conv2 = nn.Sequential(nn.ReLU(True), conv_task(planes, planes, 1, nb_tasks, is_proj=int(config_task.proj[1]), second=1)) self.shortcut = shortcut if self.shortcut == 1: self.avgpool = nn.AvgPool2d(2) def forward(self, x): residual = x y = self.conv1(x) y = self.conv2(y) if self.shortcut == 1: residual = self.avgpool(x) residual = torch.cat((residual, residual*0),1) y += residual y = F.relu(y) return y class ResNet(nn.Module): def __init__(self, block, nblocks, num_classes=[10]): super(ResNet, self).__init__() nb_tasks = len(num_classes) blocks = [block, block, block] factor = config_task.factor self.in_planes = int(32*factor) self.pre_layers_conv = conv_task(3,int(32*factor), 1, nb_tasks) self.layer1 = self._make_layer(blocks[0], int(64*factor), nblocks[0], stride=2, nb_tasks=nb_tasks) self.layer2 = self._make_layer(blocks[1], int(128*factor), nblocks[1], stride=2, nb_tasks=nb_tasks) self.layer3 = self._make_layer(blocks[2], int(256*factor), nblocks[2], stride=2, nb_tasks=nb_tasks) self.end_bns = nn.ModuleList([nn.Sequential(nn.BatchNorm2d(int(256*factor)),nn.ReLU(True)) for i in range(nb_tasks)]) self.avgpool = nn.AdaptiveAvgPool2d(1) self.linears = nn.ModuleList([nn.Linear(int(256*factor), num_classes[i]) for i in range(nb_tasks)]) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, nblocks, stride=1, nb_tasks=1): shortcut = 0 if stride != 1 or self.in_planes != planes * block.expansion: shortcut = 1 layers = [] layers.append(block(self.in_planes, planes, stride, shortcut, nb_tasks=nb_tasks)) self.in_planes = planes * block.expansion for i in range(1, nblocks): layers.append(block(self.in_planes, planes, nb_tasks=nb_tasks)) return nn.Sequential(*layers) def forward(self, x): x = self.pre_layers_conv(x) task = config_task.task x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.end_bns[task](x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.linears[task](x) return x def resnet26(num_classes=10, blocks=BasicBlock): return ResNet(blocks, [4,4,4],num_classes)
39.945205
133
0.627743
4,844
0.830447
0
0
0
0
0
0
355
0.060861
5703b571d61c82b1ad4a982fd9b8632e8dd15fd8
1,028
py
Python
Parte 02/Projeto 01.py
andrewyamagata/Python
ac9baf16cd142156829ec6e977ecfcac8a4e3965
[ "MIT" ]
null
null
null
Parte 02/Projeto 01.py
andrewyamagata/Python
ac9baf16cd142156829ec6e977ecfcac8a4e3965
[ "MIT" ]
null
null
null
Parte 02/Projeto 01.py
andrewyamagata/Python
ac9baf16cd142156829ec6e977ecfcac8a4e3965
[ "MIT" ]
null
null
null
#Condições Aninhadas #if -> elif -> elif -> else # pode usar quantos elif quiser #Aprovando Empréstimo casa = float(input('Qual o valor da casa: R$ ')) salario = float(input('Qual o valor do salário: R$ ')) tempo = int(input('Quanto anos para pagar? ')) salario30 = salario * 0.30 prestacao = casa / (tempo * 12) if salario30 >= prestacao and tempo >= 15: print('Empréstimo não excede 30 % do seu sálario') print('-='*30) print('EMPRÉSTIMO APROVADO COM RESTRIÇÕES') print('-='*30) elif salario30 >= prestacao and tempo < 15: print('Empréstimo não excede 30 % e pagará em ',tempo) print('-='*30) print('EMPRÉSTIMO APROVADO SEM RESTRIÇÕES') print('-='*30) else: print('Empréstimo excede 30% do seu salário') print('-='*30) print('EMPRÉSTIMO NEGADO') print('-='*30) print('Para pagar a casa de R$ {:.2f}.\nCom o salário que recebe de R$ {:.2f}.\nEm {} anos, você deve pagar mensalmente R$ {:.2f}'.format(casa,salario,tempo,prestacao)) #\n quebra linha #end=' ' puxa a linha de baixo
38.074074
168
0.657588
0
0
0
0
0
0
0
0
611
0.582459
57053e08159134b657dc6dde4b49efc028c6a0a2
2,196
py
Python
main.py
GauravP2001/courseSniperBot
c3e05d2890f10177ee847a961b957d5e63e7d0ec
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
main.py
GauravP2001/courseSniperBot
c3e05d2890f10177ee847a961b957d5e63e7d0ec
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
main.py
GauravP2001/courseSniperBot
c3e05d2890f10177ee847a961b957d5e63e7d0ec
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
import discord import os import requests import asyncio import psycopg2 import logging from apscheduler.schedulers.asyncio import AsyncIOScheduler from discord.ext import commands logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt=f"%m/%d/%Y %H:%M:%S %Z") logger = logging.getLogger("Snipe Bot") client = commands.Bot(command_prefix=".") scheduler = AsyncIOScheduler() DATABASE_URL = os.environ.get("DATABASE_URL") conn = psycopg2.connect(DATABASE_URL, sslmode="require") cur = conn.cursor() # with conn: # cur.execute("CREATE TABLE coursesToBeFound (index VARCHAR primary key);") # cur.execute("INSERT INTO coursesToBeFound (index) VALUES (%s)", ("00150",)) # cur.execute("DELETE FROM coursesToBeFound where index = %s", ("00150",)) # cur.execute("SELECT * from coursesToBeFound;") # for row in cur: # print(row[0]) sectionsFound = [] @client.event async def on_ready(): logger.info("Bot is ready") @client.command() async def addCourse(ctx, arg): logger.info(arg) await ctx.send("Successfully Added the Course to Snipe!") with conn: cur.execute("INSERT INTO coursesToBeFound (index) VALUES (%s)", (arg,)) async def check_courses(): logger.info("Searching") url = "https://sis.rutgers.edu/soc/api/openSections.json?year=2022&term=1&campus=NB" try: dataJSON = requests.get(url).json() except Exception as e: logger.error(e) return cur.execute("SELECT * from coursesToBeFound;") for row in cur: logger.info(row) for index in dataJSON: if row[0] == index: sectionsFound.append(index) logger.info(f"Found index: {row[0]}") await client.get_channel(int(os.environ.get("CHANNEL_ID"))).send(f"Found Index: {index}") for index in sectionsFound: cur.execute("DELETE FROM coursesToBeFound where index = %s", (index,)) conn.commit() if __name__ == "__main__": logger.info("Starting") scheduler.add_job(check_courses, "interval", seconds=10) scheduler.start() client.run(os.environ.get("token"))
28.519481
105
0.658015
0
0
0
0
294
0.13388
1,027
0.467668
806
0.367031
57071627a3f7ead2f2e5161d076288e623b02921
160
py
Python
src/utilities/grammar.py
sonishreyas/news_scraper
7cd1bd9eb14fb903fc7b190b04191237da0a1d23
[ "MIT" ]
null
null
null
src/utilities/grammar.py
sonishreyas/news_scraper
7cd1bd9eb14fb903fc7b190b04191237da0a1d23
[ "MIT" ]
null
null
null
src/utilities/grammar.py
sonishreyas/news_scraper
7cd1bd9eb14fb903fc7b190b04191237da0a1d23
[ "MIT" ]
null
null
null
from gingerit.gingerit import GingerIt def check_grammar(text): parser = GingerIt() correct_text = parser.parse(text) return correct_text['result']
26.666667
38
0.74375
0
0
0
0
0
0
0
0
8
0.05
57075fadbef4087df6eac236abcbc48b853a6d54
619
py
Python
Python_Exercicios/Mundo2/Condições em Python (if..elif)/python_038.py
jbauermanncode/Curso_Em_Video_Python
330c207d7bed4e663fe1b9ab433ab57a9828b7f1
[ "MIT" ]
null
null
null
Python_Exercicios/Mundo2/Condições em Python (if..elif)/python_038.py
jbauermanncode/Curso_Em_Video_Python
330c207d7bed4e663fe1b9ab433ab57a9828b7f1
[ "MIT" ]
null
null
null
Python_Exercicios/Mundo2/Condições em Python (if..elif)/python_038.py
jbauermanncode/Curso_Em_Video_Python
330c207d7bed4e663fe1b9ab433ab57a9828b7f1
[ "MIT" ]
null
null
null
''' Escreva um programa que leia dois números inteiros e compare- os, mostrando na tela uma mensagem: - O primeiro valor é maior - O segundo valor é maior - não existe valor maior, os dois são iguais ''' # Ler dois números inteiros n1 = int(input('Informe o primeiro número: ')) n2 = int(input('Informe o segundo número: ')) # Operadores Lógicos n1_maior = n1 > n2 n2_maior = n2 > n1 # Estrutura Condicional if, elif, else. if n1_maior: print('O número {} é o maior!'.format(n1)) elif n2_maior: print('O número {} é o maior!'.format(n2)) else: print('Os números são iguais!')
22.925926
101
0.663974
0
0
0
0
0
0
0
0
456
0.719243
57088093d1d0b3cfd26c3d3201f0bca2db2decb3
324
py
Python
ABS/ABC085C.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABS/ABC085C.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABS/ABC085C.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
def main(): # input N, Y = map(int, input().split()) # compute for i in range(N+1): for j in range(N+1): if 10000*i+5000*j+1000*(N-i-j)==Y and N-i-j>=0: print(i, j, N-i-j) exit() # output print(-1, -1, -1) if __name__ == '__main__': main()
18
59
0.435185
0
0
0
0
0
0
0
0
34
0.104938
5708b5548cafd7c9ca9620325b1633201ca209f8
1,127
py
Python
mail_open_xchange/__openerp__.py
OdooCommunityWidgets/IDEAS-FOR-MODULES
74c588f6b6058119b8953650b6cb325fe5506cfd
[ "MIT" ]
1
2015-05-27T19:56:29.000Z
2015-05-27T19:56:29.000Z
mail_open_xchange/__openerp__.py
OdooCommunityWidgets/IDEAS-FOR-MODULES
74c588f6b6058119b8953650b6cb325fe5506cfd
[ "MIT" ]
null
null
null
mail_open_xchange/__openerp__.py
OdooCommunityWidgets/IDEAS-FOR-MODULES
74c588f6b6058119b8953650b6cb325fe5506cfd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- { 'name': 'Open-Xchange Odoo', 'version': '1.0', 'category': 'Social Network', 'sequence': 2, 'summary': 'Discussions, Mailing Lists, News', 'description': """ Open-Xchange Integration ========================= This module is designed to be a standard open-xchange inbox inside Odoo to allow for the use of email inside the Odoo framework as an option alongside Odoo's own mail module. I would like to slowly add features to this to further integrate Open-Xchange inside Odoo to allow for easier migration to Odoo for those that are not interested in using Odoo's default mail module to completely replace their emails. Main Features ------------- * Open-Xchange webmail interface inside Odoo. * Multi-inbox handling by Open-Xchange. * More features to be added later to further integrate Open-Xchange with Odoo. """, 'author': 'Luke Branch', 'website': 'https://github.com/OdooCommunityWidgets/IDEAS-FOR-MODULES/mail_open_xchange', 'depends': ['base', 'base_setup', 'mail'], 'data': [ '', ], 'installable': False, 'application': True, }
38.862069
233
0.674357
0
0
0
0
0
0
0
0
993
0.8811
5708df6ade016849aefe1a0044ec7ee2d375c82f
10,853
py
Python
testing/test_pulse_prop.py
ibegleris/w-fopo
e44b83b8ec54d01bb34b89805378a2b0659dfe6f
[ "BSD-3-Clause" ]
null
null
null
testing/test_pulse_prop.py
ibegleris/w-fopo
e44b83b8ec54d01bb34b89805378a2b0659dfe6f
[ "BSD-3-Clause" ]
null
null
null
testing/test_pulse_prop.py
ibegleris/w-fopo
e44b83b8ec54d01bb34b89805378a2b0659dfe6f
[ "BSD-3-Clause" ]
null
null
null
import sys sys.path.append('src') from functions import * import numpy as np from numpy.testing import assert_allclose "-----------------------Full soliton--------------------------------------------" def get_Qs(nm, gama,fv, a_vec, dnerr, index, master_index,lamda, n2): if nm == 1: D = loadmat('loading_data/M1_M2_1m_new.mat') M1_temp, M2 = D['M1'], D['M2'] M2[:, :] -= 1 M1 = np.empty([np.shape(M1_temp)[0]-2, np.shape(M1_temp)[1]], dtype=np.int64) M1[:4] = M1_temp[:4] - 1 Q_large = M1_temp[np.newaxis, 4:6, :] M1[-1] = M1_temp[6, :] - 1 Q_large[:,:,:] = gama / (3*n2*(2*pi/lamda)) else: M1, M2, dump, Q_large = \ fibre_parameter_loader(fv, a_vec, dnerr, index, master_index, filename='step_index_2m', filepath='testing/testing_data/step_index/') print(Q_large.shape) Q_large[0,0,:] = gama / (3*n2*(2*pi/lamda)) * np.array([1,1,0,0,0,0,1,1]) Q_large[0,1,:] = gama / (3*n2*(2*pi/lamda)) * np.array([1,0,0,1,1,0,0,1]) return Q_large, M1, M2 def pulse_propagations(ram, ss, nm, N_sol=1, cython = True, u = None): "SOLITON TEST. IF THIS FAILS GOD HELP YOU!" n2 = 2.5e-20 # n2 for silica [m/W] # 0.0011666666666666668 # loss [dB/m] alphadB = np.array([0 for i in range(nm)]) gama = 1e-3 # w/m "-----------------------------General options------------------------------" maxerr = 1e-13 # maximum tolerable error per step "----------------------------Simulation parameters-------------------------" N = 10 z = np.array([0,70]) # total distance [m] nplot = 10 # number of plots nt = 2**N # number of grid points #dzstep = z/nplot # distance per step dz_less = 1 dz = 1 # starting guess value of the step lam_p1 = 1550 lamda_c = 1550e-9 lamda = lam_p1*1e-9 beta2 = -1e-3 P0_p1 = 1 betas = np.array([0, 0, beta2]) T0 = (N_sol**2 * np.abs(beta2) / (gama * P0_p1))**0.5 TFWHM = (2*np.log(1+2**0.5)) * T0 int_fwm = sim_parameters(n2, nm, alphadB) int_fwm.general_options(maxerr, raman_object, ss, ram) int_fwm.propagation_parameters(N, z, nplot, dz_less, 1) int_fwm.woble_propagate(0) fv, where = fv_creator(lam_p1,lam_p1 + 25,0, 100, int_fwm) #fv, where = fv_creator(lam_p1, , int_fwm, prot_casc=0) sim_wind = sim_window(fv, lamda, lamda_c, int_fwm, fv_idler_int=1) loss = Loss(int_fwm, sim_wind, amax=int_fwm.alphadB) alpha_func = loss.atten_func_full(sim_wind.fv, int_fwm) int_fwm.alphadB = alpha_func int_fwm.alpha = int_fwm.alphadB dnerr = [0] index = 1 master_index = 0 a_vec = [2.2e-6] Q_large,M1,M2 = get_Qs(nm, gama, fv, a_vec, dnerr, index, master_index, lamda, n2) if nm ==1: M1, M2, Q_large= np.array([1]), np.array([1]), Q_large[:,0,0] betas = betas[np.newaxis, :] # sys.exit() Dop = dispersion_operator(betas, int_fwm, sim_wind) print(Dop.shape) integrator = Integrator(int_fwm) integrand = Integrand(int_fwm.nm,ram, ss, cython = False, timing = False) dAdzmm = integrand.dAdzmm RK = integrator.RK45mm dAdzmm = integrand.dAdzmm pulse_pos_dict_or = ('after propagation', "pass WDM2", "pass WDM1 on port2 (remove pump)", 'add more pump', 'out') #M1, M2, Q = Q_matrixes(1, n2, lamda, gama=gama) raman = raman_object(int_fwm.ram, int_fwm.how) raman.raman_load(sim_wind.t, sim_wind.dt, M2, nm) if raman.on == 'on': hf = raman.hf else: hf = None u = np.empty( [ int_fwm.nm, len(sim_wind.t)], dtype='complex128') U = np.empty([int_fwm.nm, len(sim_wind.t)], dtype='complex128') sim_wind.w_tiled = np.tile(sim_wind.w + sim_wind.woffset, (int_fwm.nm, 1)) u[:, :] = ((P0_p1)**0.5 / np.cosh(sim_wind.t/T0)) * \ np.exp(-1j*(sim_wind.woffset)*sim_wind.t) U[:, :] = fftshift(sim_wind.dt*fft(u[:, :])) gam_no_aeff = -1j*int_fwm.n2*2*pi/sim_wind.lamda u, U = pulse_propagation(u, U, int_fwm, M1, M2.astype(np.int64), Q_large[0].astype(np.complex128), sim_wind, hf, Dop[0], dAdzmm, gam_no_aeff,RK) U_start = np.abs(U[ :, :])**2 u[:, :] = u[:, :] * \ np.exp(1j*z[-1]/2)*np.exp(-1j*(sim_wind.woffset)*sim_wind.t) """ fig1 = plt.figure() plt.plot(sim_wind.fv,np.abs(U[1,:])**2) plt.savefig('1.png') fig2 = plt.figure() plt.plot(sim_wind.fv,np.abs(U[1,:])**2) plt.savefig('2.png') fig3 = plt.figure() plt.plot(sim_wind.t,np.abs(u[1,:])**2) plt.xlim(-10*T0, 10*T0) plt.savefig('3.png') fig4 = plt.figure() plt.plot(sim_wind.t,np.abs(u[1,:])**2) plt.xlim(-10*T0, 10*T0) plt.savefig('4.png') fig5 = plt.figure() plt.plot(fftshift(sim_wind.w),(np.abs(U[1,:])**2 - np.abs(U[1,:])**2 )) plt.savefig('error.png') fig6 = plt.figure() plt.plot(sim_wind.t,np.abs(u[1,:])**2 - np.abs(u[1,:])**2) plt.xlim(-10*T0, 10*T0) plt.savefig('error2.png') plt.show() """ return u, U, maxerr class Test_cython_nm2(object): def test_ramoff_s0_nm2(self): u_c, U_c, maxerr = pulse_propagations('off', 0, nm=2, cython = True) u_p, U_p, maxerr = pulse_propagations('off', 0, nm=2, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) def test_ramon_s0_nm2(self): u_c, U_c, maxerr = pulse_propagations('on', 0, nm=2, cython = True) u_p, U_p, maxerr = pulse_propagations('on', 0, nm=2, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) def test_ramoff_s1_nm2(self): u_c, U_c, maxerr = pulse_propagations('off', 1, nm=2, cython = True) u_p, U_p, maxerr = pulse_propagations('off', 1, nm=2, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) def test_ramon_s1_nm2(self): u_c, U_c, maxerr = pulse_propagations('on', 1, nm=2, cython = True) u_p, U_p, maxerr = pulse_propagations('on', 1, nm=2, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) class Test_cython_nm1(object): def test_ramoff_s0_nm2(self): u_c, U_c, maxerr = pulse_propagations('off', 0, nm=1, cython = True) u_p, U_p, maxerr = pulse_propagations('off', 0, nm=1, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) def test_ramon_s0_nm2(self): u_c, U_c, maxerr = pulse_propagations('on', 0, nm=1, cython = True) u_p, U_p, maxerr = pulse_propagations('on', 0, nm=1, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) def test_ramoff_s1_nm2(self): u_c, U_c, maxerr = pulse_propagations('off', 1, nm=1, cython = True) u_p, U_p, maxerr = pulse_propagations('off', 1, nm=1, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) def test_ramon_s1_nm2(self): u_c, U_c, maxerr = pulse_propagations('on', 1, nm=1, cython = True) u_p, U_p, maxerr = pulse_propagations('on', 1, nm=1, cython = False) a,b = np.sum(np.abs(u_c)**2), np.sum(np.abs(u_p)**2) assert np.allclose(a,b) class Test_pulse_prop(object): def test_solit_r0_ss0(self): u, U, maxerr = pulse_propagations('off', 0, nm=1) assert_allclose(np.abs(u[:, :])**2, np.abs(u[:, :])**2, atol=9e-4) def test_solit_r0_ss0_2(self): u, U, maxerr = pulse_propagations('off', 0, nm=2) #print(np.linalg.norm(np.abs(u[:, 0])**2 - np.abs(u[:, -1])**2, 2)) assert_allclose(np.abs(u[:, :])**2, np.abs(u[:, :])**2, atol=9e-3) def test_energy_r0_ss0(self): u, U, maxerr = pulse_propagations( 'off', 0, nm=1, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r0_ss1(self): u, U, maxerr = pulse_propagations( 'off', 1, nm=1, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r1_ss0(self): u, U, maxerr = pulse_propagations( 'on', 0, nm=1, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r1_ss1(self): u, U, maxerr = pulse_propagations( 'on', 1, nm=1, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r0_ss0_2(self): u, U, maxerr = pulse_propagations( 'off', 0, nm=2, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r0_ss1_2(self): u, U, maxerr = pulse_propagations( 'off', 1, nm=2, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r1_ss0_2(self): u, U, maxerr = pulse_propagations( 'on', 0, nm=2, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_energy_r1_ss1_2(self): u, U, maxerr = pulse_propagations( 'on', 1, nm=2, N_sol=np.abs(10*np.random.randn())) E = [] for i in range(np.shape(u)[1]): E.append(np.linalg.norm(u[:, i], 2)**2) assert np.all(x == E[0] for x in E) def test_bire_pass(): Da = np.random.uniform(0, 2*pi, 100) b = birfeg_variation(Da,2) u = np.random.randn(2, 2**14) + 1j * np.random.randn(2, 2**14) u *= 10 for i in range(100): ut = b.bire_pass(u,i) assert_allclose(np.abs(u)**2, np.abs(ut)**2) u = 1 * ut
36.056478
105
0.540404
5,177
0.477011
0
0
0
0
0
0
1,790
0.164931
570a3a32cbbdc85ab026871552208d720276a1d7
1,089
py
Python
download.py
wujushan/AndroidHeatMap
1d6ecff8d810ffd63ba84f56c1a44ee5e7770c59
[ "Apache-2.0" ]
1
2019-06-13T16:05:36.000Z
2019-06-13T16:05:36.000Z
download.py
wujushan/AndroidHeatMap
1d6ecff8d810ffd63ba84f56c1a44ee5e7770c59
[ "Apache-2.0" ]
null
null
null
download.py
wujushan/AndroidHeatMap
1d6ecff8d810ffd63ba84f56c1a44ee5e7770c59
[ "Apache-2.0" ]
null
null
null
import os import requests def download(url): download_path = '/root/AndroidHeatMap/download/' if not os.path.exists(download_path): os.mkdir(download_path) all_content = requests.get(url).text file_line = all_content.split("\n") if file_line[0] != "#EXTM3U": raise BaseException(u"not M3U8link") else: unknow = True for index, line in enumerate(file_line): if "EXTINF" in line: unknow = False pd_url = url.rsplit("/", 1)[0] + "/" + file_line[index + 1] res = requests.get(pd_url) c_fule_name = str(file_line[index + 1]) with open(download_path + "/" + c_fule_name, 'ab') as f: f.write(res.content) f.flush() if unknow: raise BaseException("cannot find link") else: print("finish downloading") if __name__ == '__main__': url = 'https://jjdong5.com/get_file/4/1fa69b06c6276768e95cc0c04d85feec693488a588/13000/13287/13287_360p.m3u8' download(url)
34.03125
113
0.575758
0
0
0
0
0
0
0
0
232
0.213039
570a7fbde091be0d15c77144e4caa11f184860d3
4,945
py
Python
tests/watermarks_test.py
yujialuo/erdos
7a631b55895f1a473b0f4d38a0d6053851e65b5d
[ "Apache-2.0" ]
null
null
null
tests/watermarks_test.py
yujialuo/erdos
7a631b55895f1a473b0f4d38a0d6053851e65b5d
[ "Apache-2.0" ]
null
null
null
tests/watermarks_test.py
yujialuo/erdos
7a631b55895f1a473b0f4d38a0d6053851e65b5d
[ "Apache-2.0" ]
null
null
null
from collections import defaultdict from time import sleep from absl import app from absl import flags import erdos.graph from erdos.op import Op from erdos.utils import frequency from erdos.message import Message from erdos.data_stream import DataStream from erdos.timestamp import Timestamp from erdos.message import WatermarkMessage INTEGER_FREQUENCY = 10 # The frequency at which to send the integers. class FirstOperator(Op): """ Source operator that publishes increasing integers at a fixed frequency. The operator also inserts a watermark after a fixed number of messages. """ def __init__(self, name, batch_size): """ Initializes the attributes to be used by the source operator.""" super(FirstOperator, self).__init__(name) self.batch_size = batch_size self.counter = 1 self.batch_number = 1 @staticmethod def setup_streams(input_streams): """ Outputs a single stream where the messages are sent. """ return [DataStream(data_type = int, name = "integer_out")] @frequency(INTEGER_FREQUENCY) def publish_numbers(self): """ Sends an increasing count of numbers to the downstream operators. """ output_msg = Message(self.counter, Timestamp(coordinates = [self.batch_number])) self.get_output_stream("integer_out").send(output_msg) # Decide if the watermark needs to be sent. if self.counter % self.batch_size == 0: # The batch has completed. We need to send a watermark now. watermark_msg = WatermarkMessage(Timestamp(coordinates = [self.batch_number])) self.batch_number += 1 self.get_output_stream("integer_out").send(watermark_msg) # Update the counters. self.counter += 1 def execute(self): """ Execute the publish number loop. """ self.publish_numbers() self.spin() class SecondOperator(Op): """ Second operator that listens in on the numbers and reports their sum when the watermark is received. """ def __init__(self, name): """ Initializes the attributes to be used.""" super(SecondOperator, self).__init__(name) self.windows = defaultdict(list) @staticmethod def setup_streams(input_streams): """ Subscribes all the input streams to the save numbers callback. """ input_streams.add_callback(SecondOperator.save_numbers) input_streams.add_completion_callback(SecondOperator.execute_sum) return [DataStream(data_type = int, name = "sum_out")] def save_numbers(self, message): """ Save all the numbers corresponding to a window. """ batch_number = message.timestamp.coordinates[0] self.windows[batch_number].append(message.data) def execute_sum(self, message): """ Sum all the numbers in this window and send out the aggregate. """ batch_number = message.timestamp.coordinates[0] window_data = self.windows.pop(batch_number, None) #print("Received a watermark for the timestamp: {}".format(batch_number)) #print("The sum of the window {} is {}".format( # window_data, sum(window_data))) output_msg = Message(sum(window_data), Timestamp(coordinates = [batch_number])) self.get_output_stream("sum_out").send(output_msg) def execute(self): """ Execute the spin() loop to continue processing messages. """ self.spin() class ThirdOperator(Op): """ Third operator that listens in on the sum and verifies correctness.""" def __init__(self, name): """Initializes the attributes to be used.""" super(ThirdOperator, self).__init__(name) @staticmethod def setup_streams(input_streams): """ Subscribes all the input streams to the assert callback.""" input_streams.add_callback(ThirdOperator.assert_correctness) return [] def assert_correctness(self, message): """ Assert the correctness of the results.""" batch_number = message.timestamp.coordinates[0] sum_data = sum(range((batch_number - 1) * 10 + 1, batch_number * 10 + 1)) print("Received sum: {} for the batch_number {}, expected {}".format( message.data, batch_number, sum_data)) def main(argv): # Set up the graph. graph = erdos.graph.get_current_graph() # Add the operators. source_op = graph.add(FirstOperator, name = "gen_op", init_args = {'batch_size' : 10}) sum_op = graph.add(SecondOperator, name = "sum_op") assert_op = graph.add(ThirdOperator, name = "assert_op") # Connect the operators. graph.connect([source_op], [sum_op]) graph.connect([sum_op], [assert_op]) # Execute the graph. graph.execute('ray') if __name__ == "__main__": app.run(main)
37.462121
90
0.658038
3,999
0.808696
0
0
1,545
0.312437
0
0
1,640
0.331648
570a9547e24dbd1a28701e76c97396c34016c792
1,436
py
Python
test/test_shop/views.py
blakelockley/django-base-shop
455a2f4465e90cde57719ac29dc090b14f0bd324
[ "MIT" ]
1
2020-01-12T04:05:42.000Z
2020-01-12T04:05:42.000Z
test/test_shop/views.py
blakelockley/django-base-shop
455a2f4465e90cde57719ac29dc090b14f0bd324
[ "MIT" ]
14
2020-03-24T18:11:07.000Z
2022-03-12T00:15:20.000Z
test/test_shop/views.py
blakelockley/django-base-shop
455a2f4465e90cde57719ac29dc090b14f0bd324
[ "MIT" ]
null
null
null
from django.http import HttpResponse from django_base_shop.models import ShippingTag from .models import ConcreteCart, ConcreteProduct def index(request): return HttpResponse(b"Hello world") def check_cart(request): cart = request.cart if not cart.is_persisted: return HttpResponse(b"None") return HttpResponse(cart.cart_token.encode("utf-8")) def check_cart_items(request): cart = request.cart if not cart.is_persisted: return HttpResponse(b"None") body = f"{cart.cart_token}<br /><br />" for item in cart.items.all(): body += f"{item.product.name} {item.quantity}<br />" return HttpResponse(body.encode("utf-8")) def add_cart_item(request, pk): cart = request.cart if ConcreteProduct.objects.count() == 0: ConcreteProduct.objects.create( handle="ANV-001", name="Anvil", price=100.0, shipping_tag=ShippingTag.objects.create( name="Medium", category="Size", order=1 ), ) product = ConcreteProduct.objects.get(pk=pk) cart.add_item(product) return HttpResponse(b"Item added! <a href='/check_cart_items'>Check items</a>") def remove_cart_item(request, pk): cart = request.cart product = ConcreteProduct.objects.get(pk=pk) cart.remove_item(product) return HttpResponse(b"Item removed! <a href='/check_cart_items'>Check items</a>")
24.338983
85
0.660167
0
0
0
0
0
0
0
0
266
0.185237
570cfc314b92388cc92855fea7600f5e8b1e443e
11,600
py
Python
q3/q3/drivers/ui/pyqt5.py
virtimus/makaronLab
10b9be7d7d65d3da6219f929ea7070dd5fed3a81
[ "0BSD" ]
2
2021-03-16T05:48:36.000Z
2021-10-11T01:55:48.000Z
q3/q3/drivers/ui/pyqt5.py
virtimus/makaronLab
10b9be7d7d65d3da6219f929ea7070dd5fed3a81
[ "0BSD" ]
null
null
null
q3/q3/drivers/ui/pyqt5.py
virtimus/makaronLab
10b9be7d7d65d3da6219f929ea7070dd5fed3a81
[ "0BSD" ]
1
2021-03-16T05:48:39.000Z
2021-03-16T05:48:39.000Z
# PYQT import sys #from ...TabPanel import TabPanel import sip from q3.ui.engine import qtw,qtc,qtg from ... import consts, prop, direction from ...ui import orientation, colors from ...moduletype import ModuleType from ...nodeiotype import NodeIoType from ...q3vector import Q3Vector from ...EventSignal import EventProps from ..driverBase import Q3DriverBase from enum import Enum from ...valuetype import ValueType from .IoLinkView import IoLinkView from .IoNodeView import IoNodeView from .ModuleViewImpl import ModuleViewImpl from .GraphViewImpl import GraphViewImpl #class IoNode: # pass class Q3Scene(qtw.QGraphicsScene): def __init__(self,*args, **kwargs): super(Q3Scene,self).__init__(*args, **kwargs) def contextMenuEvent(self, event): # Check it item exists on event position item = self.itemAt(event.scenePos(),qtg.QTransform()) #.toPoint(),qtg.QTransform.TxNone) if item: # Try run items context if it has one try: item.contextMenuEvent(event) return except: pass menu = qtw.QMenu() action = menu.addAction('ACTION') class DetailWindowBaseImpl(qtw.QWidget): def __init__(self,parent): self._parent=parent super(qtw.QWidget, self).__init__() def resizeEvent(self, event): self._parent.parent().events().detailWindowResized.emit(EventProps({'event':event})) #print(f'WinResizeEV{dir(event)}') def closeEvent(self, event): evs = self._parent.parent().events() if evs.callDetailWindowCloseReq.hasHandlers(): evs.callDetailWindowCloseReq.sync() event.accept() # .checkSyncHandler() #windowDidResize class Q3Driver(Q3DriverBase): def doModuleView_Init(self): if self.s().isRoot():#@s:PackageView::PackageView #sc = qtw.QGraphicsScene(self.pimpl()) sc = Q3Scene(self.pimpl()) #result = qtw.QGraphicsView(sc,self.pimpl()) package = self.s().module().impl() result = GraphViewImpl(sc,self.pimpl(),self.p(), package) #'''EditorFrame''' result._self = self.s() result._scene = sc ''' wheelEvent = getattr(self.s(), "wheelEvent", None) if callable(wheelEvent): result.wheelEvent = wheelEvent drawBackground = getattr(self.s(), "drawBackground", None) if callable(drawBackground): result.drawBackground = drawBackground ''' else: if isinstance(self.pimpl(), qtw.QGraphicsView): #//MODULES FIRST LEVEL result = ModuleViewImpl(None) result._self = self.s() self.pimpl()._scene.addItem(result) el = self.s().module().impl() result.setElement(el) else: result = ModuleViewImpl(self.pimpl()) # next levels result._self = self.s() result._self = self.s() return result; def doModuleView_AfterInit(self): tImpl = self.impl() #tImpl._self = self.s() #tImpl._element = self.s().module().impl() tImpl.setElement(self.s().module().impl()) if self.s().isRoot():#@s:PackageView::PackageView #self.s()._inputsView = self.s().addModuleView('moduleInputs', type=ModuleType.INPUTS) #self.s()._outputsView = self.s().addModuleView('moduleOutputs', type=ModuleType.OUTPUTS) #vec2d m_inputsPosition{ -400.0, 0.0 }; self.s()._inputsView.setProp(prop.PositionX,-400.0) self.s()._inputsView.setProp(prop.PositionY,0.0) self.s()._outputsView.setProp(prop.PositionX,400.0) self.s()._outputsView.setProp(prop.PositionY,0.0) else: #Node::Node tImpl._nameFont.setFamily("Consolas") tImpl._nameFont.setPointSize(8) tImpl.setFlags(qtw.QGraphicsItem.ItemIsMovable | qtw.QGraphicsItem.ItemIsSelectable | qtw.QGraphicsItem.ItemSendsGeometryChanges) tImpl.collapse() tImpl.setGraphView(self.pimpl()) pass #nop self.callAfterInit(tImpl) #if iscallable(tImpl) def doApp_Init(self): result = qtw.QApplication(sys.argv) app = result app.setStyle(qtw.QStyleFactory.create("Fusion")); darkPalette=qtg.QPalette() c1 = qtg.QColor(55, 55, 55); c2 = qtg.QColor(25, 25, 25); c3 = qtg.QColor(45, 130, 220); darkPalette.setColor(qtg.QPalette.Window, c1); darkPalette.setColor(qtg.QPalette.WindowText, qtc.Qt.white); darkPalette.setColor(qtg.QPalette.Base, c2); darkPalette.setColor(qtg.QPalette.AlternateBase, c1); darkPalette.setColor(qtg.QPalette.ToolTipBase, qtc.Qt.white); darkPalette.setColor(qtg.QPalette.ToolTipText, qtc.Qt.white); darkPalette.setColor(qtg.QPalette.Text, qtc.Qt.white); darkPalette.setColor(qtg.QPalette.Button, c1); darkPalette.setColor(qtg.QPalette.ButtonText, qtc.Qt.white); darkPalette.setColor(qtg.QPalette.BrightText, qtc.Qt.red); darkPalette.setColor(qtg.QPalette.Link, c3); darkPalette.setColor(qtg.QPalette.Highlight, c3); darkPalette.setColor(qtg.QPalette.HighlightedText, qtc.Qt.white); app.setPalette(darkPalette); app.setStyleSheet("QToolTip { color: #ffffff; background-color: #2b8bdb; border: 1px solid white; }"); ''' palette = app.palette() palette.setColor(QPalette.Window, QColor(239, 240, 241)) palette.setColor(QPalette.WindowText, QColor(49, 54, 59)) palette.setColor(QPalette.Base, QColor(252, 252, 252)) palette.setColor(QPalette.AlternateBase, QColor(239, 240, 241)) palette.setColor(QPalette.ToolTipBase, QColor(239, 240, 241)) palette.setColor(QPalette.ToolTipText, QColor(49, 54, 59)) palette.setColor(QPalette.Text, QColor(49, 54, 59)) palette.setColor(QPalette.Button, QColor(239, 240, 241)) palette.setColor(QPalette.ButtonText, QColor(49, 54, 59)) palette.setColor(QPalette.BrightText, QColor(255, 255, 255)) palette.setColor(QPalette.Link, QColor(41, 128, 185)) # palette.setColor(QPalette.Highlight, QColor(126, 71, 130)) # palette.setColor(QPalette.HighlightedText, Qt.white) palette.setColor(QPalette.Disabled, QPalette.Light, Qt.white) palette.setColor(QPalette.Disabled, QPalette.Shadow, QColor(234, 234, 234)) app.setPalette(palette) ''' return result def doMainWindow_Init(self): result = qtw.QMainWindow() if 'title' in self._self._kwargs: result.setWindowTitle(self._self._kwargs['title']) #result = qtw.QFrame() result.resize(1400, 980) ''' sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(result.sizePolicy().hasHeightForWidth()) result.setSizePolicy(sizePolicy) ''' showEvent = getattr(self._self, "showEvent", None) if callable(showEvent): result.showEvent = showEvent return result def doMainWindow_Show(self): result = self.impl().show() return result def doMenu_Init(self): if self._impl == None: self._self._qtMenu = qtw.QMenu(self._parent.implObject()) self.s()._menu = self._self._qtMenu pass else: self.s()._menu = self._impl return self._self._menu def doMenu_AddSeparator(self): result = self._self.implObject().addSeparator() return result def doMenu_addAction(self, label,id,helpStr,onClick): if (label == None and consts.ID_EXIT == id): exitAct = qtw.QAction(qtg.QIcon('exit.png'), '&Exit', self._self.implObject()) exitAct.setShortcut('Ctrl+Q') exitAct.setStatusTip('Exit application') exitAct.triggered.connect(qtw.qApp.quit) result = self._self.implObject().addAction(exitAct) else: result = self._self.implObject().addAction(label, onClick) if onClick != None: result.triggered.connect(onClick) #!TODO!result.onClick = onClick return result def doMenuBar_Init(self): return self.pimpl().menuBar() def doMenuBar_AddMenu(self,menuTitle): return self.impl().addMenu(menuTitle) ''' else: result = Menu(self._parent) self._wxMenuBar.Append(result.implObject(),menuTitle) return result ''' def doMdiPanel_Init(self): result = qtw.QMdiArea(self._parent.impl()) return result def doTabPanel_Init(self): result = qtw.QTabWidget(self._parent.impl()) ''' sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(10) sizePolicy.setVerticalStretch(10) sizePolicy.setHeightForWidth(result.sizePolicy().hasHeightForWidth()) result.setSizePolicy(sizePolicy) ''' #result.setMinimumSize(QtCore.QSize(2080, 1630)) result.setTabsClosable(True) return result def doTabPanel_AddTab(self, obj, title): return self.impl().addTab(obj.impl(),title) def doTabPanel_CurrentIndex(self): return self.impl().currentIndex() def doTab_Init(self): result = qtw.QWidget() self._parent.impl().addTab(result,"test") return result def doLayout_Init(self): orient = self.s()._kwargs['orient'] if 'orient' in self.s()._kwargs else None result = qtw.QVBoxLayout() if orient == orientation.VERTICAL else qtw.QHBoxLayout() return result def doLayout_AddElement(self, element): result = self.impl().addWidget(element.impl()) return result def doLayout_Add(self,label, sizerFlags): result = self.impl().addWidget(label.inpl()) return result def doElement_Init(self): result = qtw.QWidget(self.pimpl()) return result def doElement_Resize(self,w,h): result = self.impl().resize(w,h) return result def doElement_SizePolicy(self): result = self.impl().sizePolicy() return result def doElement_SetSizePolicy(self, sizePolicy): result = self.impl().setSizePolicy(sizePolicy) return result def doPanel_Init(self): result = qtw.QFrame(self.pimpl()) return result def doLabel_Init(self): result = qtw.QLabel(self.pimpl()) if 'label' in self.s()._kwargs: result.setText(self.s()._kwargs['label']) return result def doLabel_GetFont(self): result = self.impl.font() return result def doLabel_SetFont(self, font): result = self.impl().setFont(font) return result def doDetailWindow_Init(self): result = DetailWindowBaseImpl(self.s()) result._self = self.s() return result def doDetailWindow_Show(self): result = self.impl().show() return result
34.017595
141
0.617931
10,978
0.946379
0
0
0
0
0
0
3,326
0.286724
570eadcaa613e66d764e81bda74fc4c5ac38c715
2,538
py
Python
2. ExaminingBivariateandMultivariateRelationships/2. scatter_plots.py
michaelbwalker/Data-Cleaning-and-Exploration-with-Machine-Learning
9de44e5ad2e8d197b0a3c1b362b0377339278bd2
[ "MIT" ]
7
2021-10-02T03:19:59.000Z
2022-03-21T21:24:14.000Z
2. ExaminingBivariateandMultivariateRelationships/2. scatter_plots.py
michaelbwalker/Data-Cleaning-and-Exploration-with-Machine-Learning
9de44e5ad2e8d197b0a3c1b362b0377339278bd2
[ "MIT" ]
null
null
null
2. ExaminingBivariateandMultivariateRelationships/2. scatter_plots.py
michaelbwalker/Data-Cleaning-and-Exploration-with-Machine-Learning
9de44e5ad2e8d197b0a3c1b362b0377339278bd2
[ "MIT" ]
6
2021-08-30T02:58:02.000Z
2022-02-01T07:46:49.000Z
# import pandas, matplotlib, and seaborn import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.width', 53) pd.set_option('display.max_columns', 5) pd.set_option('display.max_rows', 200) pd.options.display.float_format = '{:,.0f}'.format covidtotals = pd.read_csv("data/covidtotals.csv") covidtotals.set_index("iso_code", inplace=True) landtemps = pd.read_csv("data/landtemps2019avgs.csv") # do a scatterplot of total_cases by total_deaths ax = sns.regplot(x="total_cases_mill", y="total_deaths_mill", data=covidtotals) ax.set(xlabel="Cases Per Million", ylabel="Deaths Per Million", title="Total Covid Cases and Deaths by Country") plt.show() fig, axes = plt.subplots(1,2, sharey=True) sns.regplot(x=covidtotals.aged_65_older, y=covidtotals.total_cases_mill, ax=axes[0]) sns.regplot(x=covidtotals.gdp_per_capita, y=covidtotals.total_cases_mill, ax=axes[1]) axes[0].set_xlabel("Aged 65 or Older") axes[0].set_ylabel("Cases Per Million") axes[1].set_xlabel("GDP Per Capita") axes[1].set_ylabel("") plt.suptitle("Age 65 Plus and GDP with Cases Per Million") plt.tight_layout() fig.subplots_adjust(top=0.92) plt.show() # show the high elevation points in a different color low, high = landtemps.loc[landtemps.elevation<=1000], landtemps.loc[landtemps.elevation>1000] low.shape[0], low.avgtemp.mean() high.shape[0], high.avgtemp.mean() plt.scatter(x="latabs", y="avgtemp", c="blue", data=low) plt.scatter(x="latabs", y="avgtemp", c="red", data=high) plt.legend(('low elevation', 'high elevation')) plt.xlabel("Latitude (N or S)") plt.ylabel("Average Temperature (Celsius)") plt.title("Latitude and Average Temperature in 2019") plt.show() # show scatter plot with different regression lines by elevation group landtemps['elevation_group'] = np.where(landtemps.elevation<=1000,'low','high') sns.lmplot(x="latabs", y="avgtemp", hue="elevation_group", palette=dict(low="blue", high="red"), legend_out=False, data=landtemps) plt.xlabel("Latitude (N or S)") plt.ylabel("Average Temperature") plt.legend(('low elevation', 'high elevation'), loc='lower left') plt.yticks(np.arange(-60, 40, step=20)) plt.title("Latitude and Average Temperature in 2019") plt.tight_layout() plt.show() # show this as a 3D plot fig = plt.figure() plt.suptitle("Latitude, Temperature, and Elevation in 2019") ax = plt.axes(projection='3d') ax.set_xlabel("Elevation") ax.set_ylabel("Latitude") ax.set_zlabel("Avg Temp") ax.scatter3D(landtemps.elevation, landtemps.latabs, landtemps.avgtemp) plt.show()
39.046154
130
0.754137
0
0
0
0
0
0
0
0
1,022
0.402679
570ee5f940cb42c1bdadbd336c5d3471836f1133
7,359
py
Python
tests/test/base/test_map_set.py
Eve-ning/reamber_base_py
6d19c84f2c110b60e633b82b73e0516396466f56
[ "MIT" ]
10
2020-06-28T11:16:36.000Z
2021-08-09T21:41:43.000Z
tests/test/base/test_map_set.py
Eve-ning/reamberPy
6d19c84f2c110b60e633b82b73e0516396466f56
[ "MIT" ]
35
2020-06-18T13:05:50.000Z
2022-02-18T10:13:35.000Z
tests/test/base/test_map_set.py
Eve-ning/reamber_base_py
6d19c84f2c110b60e633b82b73e0516396466f56
[ "MIT" ]
2
2021-05-26T17:05:06.000Z
2021-06-12T18:42:13.000Z
import unittest import numpy as np from reamber.base import Bpm, Hit, Hold, Map, MapSet from reamber.base.lists import BpmList from reamber.base.lists.notes import HitList, HoldList # noinspection PyTypeChecker,DuplicatedCode class TestMapSet(unittest.TestCase): """ Not much to test here since Bpm is basically Note. """ def setUp(self) -> None: """ BPM 300: 200ms/beat BPM 200: 300ms/beat BPM 300 300 200 200 OFF 0 200 400 600 800 1000 1200 1400 1600 1900 2200 2500 BEAT 0 1 2 3 0 1 2 3 0 1 2 3 HIT 0 1 2 3 0 1 2 3 0 1 2 3 HOLD 2-----2 0--0 1--------1 0--------------------0 3--3 3--------3 """ self.bpm_offsets = np.asarray([0, 800, 1600, 2500]) self.bpm_bpms = np.asarray([300, 300, 200, 200]) self.bpm_metronomes = np.asarray([4, 4, 3, 5]) self.hit_offsets = np.asarray([0, 200, 300, 400, 500, 600, 900, 1000, 1400, 1600, 2200, 2350]) self.hit_columns = np.asarray([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]) self.hold_offsets = np.asarray([0, 100, 300, 600, 1000, 1500]) self.hold_columns = np.asarray([2, 3, 0, 3, 1, 0]) self.hold_lengths = np.asarray([200, 100, 100, 300, 300, 1000]) self.bpms = [Bpm(offset=o, bpm=b, metronome=m) for o, b, m in zip(self.bpm_offsets, self.bpm_bpms, self.bpm_metronomes)] self.hits = [Hit(offset=o, column=c) for o, c in zip(self.hit_offsets, self.hit_columns)] self.holds = [Hold(offset=o, column=c, length=l) for o, c, l in zip(self.hold_offsets, self.hold_columns, self.hold_lengths)] self.map1 = Map() self.map1.hits = HitList(self.hits) self.map1.holds = HoldList(self.holds) self.map1.bpms = BpmList(self.bpms) self.map2 = self.map1.deepcopy() self.map_set = MapSet([self.map1, self.map2]) def test_type(self): self.assertIsInstance(self.map_set.maps, list) def test_stack(self): s = self.map_set.stack() self.assertListEqual(self.hit_offsets.tolist(), self.map_set.maps[0][HitList][0].offset.tolist()) self.assertListEqual(self.hold_offsets.tolist(), self.map_set.maps[0][HoldList][0].offset.tolist()) self.assertListEqual(self.hit_offsets.tolist(), self.map_set.maps[1][HitList][0].offset.tolist()) self.assertListEqual(self.hold_offsets.tolist(), self.map_set.maps[1][HoldList][0].offset.tolist()) s.offset += 1000 self.assertListEqual((self.hit_offsets + 1000).tolist(), self.map_set.maps[0][HitList][0].offset.tolist()) self.assertListEqual((self.hold_offsets + 1000).tolist(), self.map_set.maps[0][HoldList][0].offset.tolist()) self.assertListEqual((self.hit_offsets + 1000).tolist(), self.map_set.maps[1][HitList][0].offset.tolist()) self.assertListEqual((self.hold_offsets + 1000).tolist(), self.map_set.maps[1][HoldList][0].offset.tolist()) def test_stack_loop(self): for m in self.map_set: stack = m.stack(['hits']) stack.loc[stack.offset < 1000, 'column'] += 1 self.assertEqual(self.hit_columns[0] + 1, self.map_set[0].hits.column[0]) self.assertEqual(self.hold_columns[0], self.map_set[0].holds.column[0]) self.assertEqual(self.hit_columns[-1], self.map_set[0].hits.column.tolist()[-1]) self.assertEqual(self.hold_columns[-1], self.map_set[0].holds.column.tolist()[-1]) def test_stack_offset(self): s = self.map_set.stack() s.offset *= 2 self.assertListEqual((self.hit_offsets*2).tolist(), self.map_set.maps[0][HitList][0].offset.tolist()) self.assertListEqual((self.hold_offsets*2).tolist(), self.map_set.maps[0][HoldList][0].offset.tolist()) self.assertListEqual(((self.hold_offsets*2) + self.hold_lengths).tolist(), self.map_set.maps[0][HoldList][0].tail_offset.tolist()) self.assertListEqual((self.hit_offsets*2).tolist(), self.map_set.maps[1][HitList][0].offset.tolist()) self.assertListEqual((self.hold_offsets*2).tolist(), self.map_set.maps[1][HoldList][0].offset.tolist()) self.assertListEqual(((self.hold_offsets*2) + self.hold_lengths).tolist(), self.map_set.maps[1][HoldList][0].tail_offset.tolist()) def test_stack_column(self): s = self.map_set.stack() s.column *= 2 self.assertListEqual((self.hit_columns*2).tolist() ,self.map_set.maps[0][HitList][0].column.tolist()) self.assertListEqual((self.hold_columns*2).tolist(), self.map_set.maps[0][HoldList][0].column.tolist()) self.assertListEqual((self.hit_columns*2).tolist() ,self.map_set.maps[1][HitList][0].column.tolist()) self.assertListEqual((self.hold_columns*2).tolist(), self.map_set.maps[1][HoldList][0].column.tolist()) def test_stack_inline(self): """ Checks if inline stacking works """ self.map_set.stack().column *= 2 self.assertListEqual((self.hit_columns * 2).tolist(), self.map_set[0][HitList][0].column.tolist()) self.assertListEqual((self.hold_columns * 2).tolist(), self.map_set[0][HoldList][0].column.tolist()) self.assertListEqual((self.hit_columns * 2).tolist(), self.map_set[1][HitList][0].column.tolist()) self.assertListEqual((self.hold_columns * 2).tolist(), self.map_set[1][HoldList][0].column.tolist()) def test_rate(self): ms = self.map_set.rate(0.5) self.assertListEqual((self.hit_offsets*2).tolist(), ms[0][HitList][0].offset.tolist()) self.assertListEqual((self.hold_offsets*2).tolist(), ms[0][HoldList][0].offset.tolist()) self.assertListEqual((self.hold_offsets * 2 + self.hold_lengths * 2).tolist(), ms[0][HoldList][0].tail_offset.tolist()) self.assertListEqual((self.hit_offsets*2).tolist(), ms[1][HitList][0].offset.tolist()) self.assertListEqual((self.hold_offsets*2).tolist(), ms[1][HoldList][0].offset.tolist()) self.assertListEqual((self.hold_offsets * 2 + self.hold_lengths * 2).tolist(), ms[1][HoldList][0].tail_offset.tolist()) def test_deepcopy(self): ms = self.map_set.deepcopy() ms.stack().column *= 2 self.assertListEqual((self.hit_columns*2).tolist(), ms[0][HitList][0].column.tolist()) self.assertListEqual((self.hold_columns*2).tolist(), ms[0][HoldList][0].column.tolist()) self.assertListEqual((self.hit_columns*2).tolist(), ms[1][HitList][0].column.tolist()) self.assertListEqual((self.hold_columns*2).tolist(), ms[1][HoldList][0].column.tolist()) self.assertListEqual(self.hit_columns.tolist(), self.map_set[0][HitList][0].column.tolist()) self.assertListEqual(self.hold_columns.tolist(), self.map_set[0][HoldList][0].column.tolist()) self.assertListEqual(self.hit_columns.tolist(), self.map_set[1][HitList][0].column.tolist()) self.assertListEqual(self.hold_columns.tolist(), self.map_set[1][HoldList][0].column.tolist()) if __name__ == '__main__': unittest.main()
54.110294
116
0.621552
7,079
0.961951
0
0
0
0
0
0
686
0.093219
570f7be4fc6a73c331b26ffda6ddfc47a075df88
1,252
py
Python
minifyoperation.py
seece/cbpp
b6771c7933fa07444e660eafda6f06cf60edce01
[ "MIT" ]
null
null
null
minifyoperation.py
seece/cbpp
b6771c7933fa07444e660eafda6f06cf60edce01
[ "MIT" ]
null
null
null
minifyoperation.py
seece/cbpp
b6771c7933fa07444e660eafda6f06cf60edce01
[ "MIT" ]
null
null
null
import re from util import * from operation import Operation, OperationResult class Replacement: def __init__(self, regex, substitution): self.regex = regex self.substitution = substitution class MinifyOperation(Operation): def __init__(self): self.inMultilineComment = False pass def apply(self, line, state): result = OperationResult(line, False) if not state.args.minify: return result l = stripComments(line) strings = scanForStrings(l) commentStart = len(l) stringRegex = r'(("[^"]+")|(|[^"]*?)([^\s]*?))?' comments = r'(?P<comment>(|(\'|//)*$))' def string(s): if not s: return "" return s def replace(m, group): if checkIfInsideString(m.start(group), strings): return string(m.group(0)) return string(m.group(1)) + string(m.group(group)) ops = [] ops.append(Replacement(re.compile(r'' + stringRegex + '\s*(?P<op>[=+\-*/\><,\^]{1,2})\s*'), lambda m: replace(m, "op"))) ops.append(Replacement(re.compile(r'' + stringRegex + r'(?<=\D)(0)(?P<digit>\.\d+)'), lambda m: replace(m, "digit") )) #l = l.lstrip("\t") for o in ops: l = o.regex.sub(o.substitution, l) l = l.rstrip("\r\n") result.line = strInsert(result.line, 0, commentStart-1, l) return result
24.076923
122
0.626997
1,169
0.933706
0
0
0
0
0
0
170
0.135783
570f8d367a6c727fc6ef795d72a90ef7bea75141
2,024
py
Python
graph.py
mrpatiwi/k-walk-py
a800f64079024716b26c0ebb9c3a2c5b6a935b78
[ "MIT" ]
null
null
null
graph.py
mrpatiwi/k-walk-py
a800f64079024716b26c0ebb9c3a2c5b6a935b78
[ "MIT" ]
null
null
null
graph.py
mrpatiwi/k-walk-py
a800f64079024716b26c0ebb9c3a2c5b6a935b78
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from index_matrix import Matrix __author__ = 'Patricio Lopez Juri' class Graph: def __init__(self, V, E, K): self.V = V self.E = E self.K = K self.A = Matrix.square(items=V) for a, b in self.E: self.A[a, b] = 1 @property def order(self): return len(self.V) @property def n(self): return self.order @property def k(self): return len(self.K) def d(self, i): return self.A.row(i).sum() def D(self): D = Matrix.square(items=self.V) for item in self.V: D[item, item] = self.d(item) return D def p(self, i, j): return self.A[i, j] / self.d(i) def p_star(self, start, i, j): absorbents = [k for k in self.K if k != start] if i in absorbents and i == j: return 1 elif i in absorbents and i != j: return 0 else: return self.p(i, j) def P(self): return self.D().inverse() * self.A def P_star(self, start): def function(i, j): return self.p_star(start, i, j) P_star = self.A.map(function=function) absorbents = [k for k in self.K if k != start] for i, absorbent in enumerate(absorbents): P_star.swap_columns(P_star.horizontal_items[-(1 + i)], absorbent) return P_star def Q_star(self, start): size = self.n - self.k + 1 return self.P_star(start)[0:size, 0:size] def R_star(self, start): size = self.n - self.k + 1 return self.P_star(start)[0:size, size:(size + self.k - 1)] def Zero_star(self, start): pass def I_star(self, start): size = self.n - self.k + 1 range = size + self.k - 1 return self.P_star(start)[size:range, size:range] def N_star(self, start): Q_star = self.Q_star(start) identity = Q_star.clone_identity() return (identity - Q_star).inverse()
23.264368
77
0.535079
1,928
0.952569
0
0
162
0.08004
0
0
44
0.021739
570fe23611397bcc46c1ab733771a0e34fdc4ba4
1,302
py
Python
ep004_helper.py
jpch89/effectivepython
97ba297bf987f346219bf8de5198c0817f5146e0
[ "MIT" ]
null
null
null
ep004_helper.py
jpch89/effectivepython
97ba297bf987f346219bf8de5198c0817f5146e0
[ "MIT" ]
null
null
null
ep004_helper.py
jpch89/effectivepython
97ba297bf987f346219bf8de5198c0817f5146e0
[ "MIT" ]
null
null
null
from urllib.parse import parse_qs # 解析查询字符串 query string my_values = parse_qs('red=5&blue=0&green=', keep_blank_values=True) # print(repr(my_values)) # 原书写法 print(my_values) # 返回的是字典,直接这样写就行了 # >>> # {'red': ['5'], 'blue': ['0'], 'green': ['']} # 查询字符串中的参数可能有:多个值和空白 blank 值。 # 有些参数则没有出现。 # 使用 get 方法可以不报错的从字典中取值。 print('Red: ', my_values.get('red')) print('Green: ', my_values.get('green')) print('Opacity: ', my_values.get('opacity')) print('-' * 50) # 需求:当查询的参数没有出现在查询字符串中 # 或者参数的值为空白的时候 # 可以返回 0 # 思路:空值和零值都是 False red = my_values.get('red', [''])[0] or 0 green = my_values.get('green', [''])[0] or 0 opacity = my_values.get('opacity', [''])[0] or 0 print('Red: %r' % red) print('Green: %r' % green) print('Opacity: %r' % opacity) print('-' * 50) # 需求:最后要用到的是整数类型 # 思路:类型转换 red = int(my_values.get('red', [''])[0] or 0) # 这种长表达式的写法看上去很乱! # 改进1:使用 Python 2.5 添加的三元表达式 red = my_values.get('red', ['']) red = int(red[0]) if red[0] else 0 # 改进2:使用跨行的 if/else 语句 green = my_values.get('green', ['']) if green[0]: green = int(green[0]) else: green = 0 # 改进3:频繁使用的逻辑,需要封装成辅助函数 def get_first_value(values, key, default=0): found = values.get(key, ['']) if found[0]: found = int(found[0]) else: found = default return found
23.25
48
0.609831
0
0
0
0
0
0
0
0
935
0.55
570febe7fa7b5748adbff547439e5061a41d7ecb
2,643
py
Python
Piece_class_stuff.py
krystianpietryka/Chess
e65afbe3ac51441327a5057b3677334ceb54d916
[ "MIT" ]
null
null
null
Piece_class_stuff.py
krystianpietryka/Chess
e65afbe3ac51441327a5057b3677334ceb54d916
[ "MIT" ]
null
null
null
Piece_class_stuff.py
krystianpietryka/Chess
e65afbe3ac51441327a5057b3677334ceb54d916
[ "MIT" ]
null
null
null
from enum import Enum import pygame class Colour(Enum): WHITE = 0 BLACK = 1 class Piece: def __init__(self, column, row, model, colour): self.row = row self.column = column self.model = model self.colour = colour # Load sprites into pygame class Sprites: board_image = pygame.image.load(r'Sprites/Board.png') WB = pygame.image.load(r'Sprites/WB.png') WH = pygame.image.load(r'Sprites/WH.png') WP = pygame.image.load(r'Sprites/WP.png') WR = pygame.image.load(r'Sprites/WR.png') WQ = pygame.image.load(r'Sprites/WQ.png') WK = pygame.image.load(r'Sprites/WK.png') BB = pygame.image.load(r'Sprites/BB.png') BH = pygame.image.load(r'Sprites/BH.png') BP = pygame.image.load(r'Sprites/BP.png') BR = pygame.image.load(r'Sprites/BR.png') BQ = pygame.image.load(r'Sprites/BQ.png') BK = pygame.image.load(r'Sprites/BK.png') Red_cell = pygame.image.load(r'Sprites/Red_cell.png') # Piece class Objects class Piece_Objects: Pawn1 = Piece(0, 6, Sprites.WP, Colour.WHITE) Pawn2 = Piece(1, 6, Sprites.WP, Colour.WHITE) Pawn3 = Piece(2, 6, Sprites.WP, Colour.WHITE) Pawn4 = Piece(3, 6, Sprites.WP, Colour.WHITE) Pawn5 = Piece(4, 6, Sprites.WP, Colour.WHITE) Pawn6 = Piece(5, 6, Sprites.WP, Colour.WHITE) Pawn7 = Piece(6, 6, Sprites.WP, Colour.WHITE) Pawn8 = Piece(7, 6, Sprites.WP, Colour.WHITE) Pawn9 = Piece(0, 0, Sprites.BP, Colour.BLACK) Pawn10 = Piece(1, 1, Sprites.BP, Colour.BLACK) Pawn11 = Piece(2, 1, Sprites.BP, Colour.BLACK) Pawn12 = Piece(3, 1, Sprites.BP, Colour.BLACK) Pawn13 = Piece(4, 1, Sprites.BP, Colour.BLACK) Pawn14 = Piece(5, 1, Sprites.BP, Colour.BLACK) Pawn15 = Piece(6, 1, Sprites.BP, Colour.BLACK) Pawn16 = Piece(7, 1, Sprites.BP, Colour.BLACK) Knight1 = Piece(1, 7, Sprites.WH, Colour.WHITE) Knight2 = Piece(6, 7, Sprites.WH, Colour.WHITE) Knight3 = Piece(1, 0, Sprites.BH, Colour.BLACK) Knight4 = Piece(6, 0, Sprites.BH, Colour.BLACK) Rook1 = Piece(0, 7, Sprites.WR, Colour.WHITE) Rook2 = Piece(7, 7, Sprites.WR, Colour.WHITE) Rook3 = Piece(0, 0, Sprites.BR, Colour.BLACK) Rook4 = Piece(7, 0, Sprites.BR, Colour.BLACK) Bishop1 = Piece(2, 7, Sprites.WB, Colour.WHITE) Bishop2 = Piece(5, 7, Sprites.WB, Colour.WHITE) Bishop3 = Piece(2, 0, Sprites.BB, Colour.BLACK) Bishop4 = Piece(5, 0, Sprites.BB, Colour.BLACK) King1 = Piece(4, 7, Sprites.WK, Colour.WHITE) King2 = Piece(4, 0, Sprites.BK, Colour.BLACK) Queen1 = Piece(3, 7, Sprites.WQ, Colour.WHITE) Queen2 = Piece(3, 0, Sprites.BQ, Colour.BLACK)
37.757143
57
0.650397
2,546
0.963299
0
0
0
0
0
0
294
0.111237
5710d9d404ac2b132ecaaa64415a70da05239921
656
py
Python
pubsub.py
basecue/micropython-pubsub
fcb6189d648515f1a7106ed5f54e332ba069793d
[ "Apache-2.0" ]
null
null
null
pubsub.py
basecue/micropython-pubsub
fcb6189d648515f1a7106ed5f54e332ba069793d
[ "Apache-2.0" ]
null
null
null
pubsub.py
basecue/micropython-pubsub
fcb6189d648515f1a7106ed5f54e332ba069793d
[ "Apache-2.0" ]
null
null
null
from micropython import schedule _subscribers = {} def publisher(topic): def _publish(func): def _wrapper(*args, **kwargs): value = func(*args, **kwargs) publish(topic, value) return value return _wrapper return _publish def publish(topic, value) -> None: if topic not in _subscribers: return for subscriber_func in _subscribers[topic]: schedule(subscriber_func, value) def subscriber(topic): def _wrapper(func): try: _subscribers[topic].append(func) except KeyError: _subscribers[topic] = [func] return _wrapper
19.294118
47
0.609756
0
0
0
0
0
0
0
0
0
0
5712c5f2bba3745161134c95e4c1fe8d35033684
5,808
py
Python
sc_cost_meter/utils.py
zaro0508/lambda-sc-cost-meter
2e10fa102af983f61a352ae633651fc3eaf64b19
[ "Apache-2.0" ]
null
null
null
sc_cost_meter/utils.py
zaro0508/lambda-sc-cost-meter
2e10fa102af983f61a352ae633651fc3eaf64b19
[ "Apache-2.0" ]
null
null
null
sc_cost_meter/utils.py
zaro0508/lambda-sc-cost-meter
2e10fa102af983f61a352ae633651fc3eaf64b19
[ "Apache-2.0" ]
null
null
null
import boto3 import logging import os from datetime import datetime log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) def get_ec2_client(): return boto3.client('ec2') def get_ssm_client(): return boto3.client('ssm') def get_ce_client(): return boto3.client('ce') def get_meteringmarketplace_client(): return boto3.client('meteringmarketplace') def get_dynamo_client(): return boto3.client('dynamodb') def get_env_var_value(env_var): '''Get the value of an environment variable :param env_var: the environment variable :returns: the environment variable's value, None if env var is not found ''' value = os.getenv(env_var) if not value: log.warning(f'cannot get environment variable: {env_var}') return value def get_marketplace_synapse_ids(): '''Get Synapse IDs from the Marketplace Dynamo DB, these are the Marketplace customers. Assumes that there is a Dynamo DB with a table containing a mapping of Synapse IDs to SC subscriber data :return a list of synapse IDs, otherwise return empty list if no customers are in DB ''' synapse_ids = [] ddb_marketplace_table_name = get_env_var_value('MARKETPLACE_ID_DYNAMO_TABLE_NAME') ddb_marketplace_synapse_user_id_attribute = "SynapseUserId" if ddb_marketplace_table_name: client = get_dynamo_client() response = client.scan( TableName=ddb_marketplace_table_name, ProjectionExpression=ddb_marketplace_synapse_user_id_attribute, ) if "Items" in response.keys(): for item in response["Items"]: synapse_ids.append(item[ddb_marketplace_synapse_user_id_attribute]["S"]) return synapse_ids def get_marketplace_customer_id(synapse_id): '''Get the Service Catalog customer ID from the Marketplace Dynamo DB. Assumes that there is a Dynamo DB with a table containing a mapping of Synapse IDs to SC subscriber data :param synapse_id: synapse user id :return the Marketplace customer ID, otherwise return None if cannot find an associated customer ID ''' customer_id = None ddb_marketplace_table_name = get_env_var_value('MARKETPLACE_ID_DYNAMO_TABLE_NAME') if ddb_marketplace_table_name: ddb_customer_id_attribute = 'MarketplaceCustomerId' client = get_dynamo_client() response = client.get_item( Key={ 'SynapseUserId': { 'S': synapse_id, } }, TableName=ddb_marketplace_table_name, ConsistentRead=True, AttributesToGet=[ ddb_customer_id_attribute ] ) if "Item" in response.keys(): customer_id = response["Item"][ddb_customer_id_attribute]["S"] else: log.info(f'cannot find registration for synapse user: {synapse_id}') return customer_id def get_marketplace_product_code(synapse_id): '''Get the registered Service Catalog customer product code. Assumes that there is a Dynamo DB with a table containing a mapping of Synapse IDs to SC subscriber data :param synapse_id: synapse user id :return the Marketplace product code, None if cannot find customer ID ''' product_code = None ddb_marketplace_table_name = get_env_var_value('MARKETPLACE_ID_DYNAMO_TABLE_NAME') if ddb_marketplace_table_name: ddb_product_code_attribute = 'ProductCode' client = get_dynamo_client() response = client.get_item( Key={ 'SynapseUserId': { 'S': synapse_id, } }, TableName=ddb_marketplace_table_name, ConsistentRead=True, AttributesToGet=[ ddb_product_code_attribute ] ) if "Item" in response.keys(): product_code = response["Item"][ddb_product_code_attribute]["S"] else: log.info(f'cannot find registration for synapse user: {synapse_id}') return product_code def get_customer_cost(customer_id, time_period, granularity): ''' Get the total cost of all resources tagged with the customer_id for a given time_period. The time_period and time granularity must match. :param customer_id: the Marketplace customer ID :param time_period: the cost time period :param granularity: the granularity of time HOURLY|DAILY|MONTHLY :return: the total cost of all resources and the currency unit ''' client = get_ce_client() response = client.get_cost_and_usage( TimePeriod=time_period, Granularity=granularity, Filter={ "Tags": { "Key": "marketplace:customerId", "Values": [ customer_id ] } }, Metrics=["UnblendedCost"] ) results_by_time = response['ResultsByTime'] cost = results_by_time[0]["Total"]["UnblendedCost"]["Amount"] unit = results_by_time[0]["Total"]["UnblendedCost"]["Unit"] return float(cost), unit def report_cost(cost, customer_id, product_code): ''' Report the incurred cost of the customer's resources to the AWS Marketplace :param cost: the cost (as a float value) :param customer_id: the Marketplace customer ID :param product_code: the Marketplace product code ''' cost_accrued_rate = 0.001 # TODO: use mareketplace get_dimension API to get this info quantity = int(cost / cost_accrued_rate) mrktpl_client = get_meteringmarketplace_client() response = mrktpl_client.batch_meter_usage( UsageRecords=[ { 'Timestamp': datetime.utcnow(), 'CustomerIdentifier': customer_id, 'Dimension': 'costs_accrued', 'Quantity': quantity } ], ProductCode=product_code ) log.debug(f'batch_meter_usage response: {response}') results = response["Results"][0] status = results["Status"] if status == 'Success': log.info(f'usage record: {results}') else: # TODO: need to add a retry mechanism for failed reports unprocessed_records = response["UnprocessedRecords"][0] log.error(f'unprocessed record: {unprocessed_records}')
31.394595
89
0.719697
0
0
0
0
0
0
0
0
2,595
0.446798
5714de071955ec101c9d0bd2f8b9cad2f55c7b5c
8,000
py
Python
source/metadata.py
sanmik/brain-network-viz
9c881e49c14c94e3f7ef4b7776d98c930716ee91
[ "MIT" ]
5
2017-09-01T14:05:03.000Z
2019-07-13T07:52:49.000Z
source/metadata.py
sanmik/brain-network-viz
9c881e49c14c94e3f7ef4b7776d98c930716ee91
[ "MIT" ]
null
null
null
source/metadata.py
sanmik/brain-network-viz
9c881e49c14c94e3f7ef4b7776d98c930716ee91
[ "MIT" ]
1
2017-09-01T14:05:03.000Z
2017-09-01T14:05:03.000Z
# Library Imports from itertools import islice import csv # Local Module Imports import config class Metadata(object): """ Base class for maintaining metadata (properties and their attributes) about Node and Edge objects. This base class handles parsing and storing the CSV data, and providing accessor methods. The NodeMetadata and EdgeMetadata add some specific methods. The top rows of an input CSV file define metadata and should look like the following example. +-------------+-----------+-----------+-----------+ | Primary Key | Property1 | Property2 | Property3 | ... +-------------------------------------------------+ <-+ | Attribute1 | | | | | +-------------------------------------------------+ | | Attribute2 | | | | | Metadata +-------------------------------------------------+ | | Attribute3 | | | | | +-------------------------------------------------+ <-+ | Item1 | | | | | +-------------------------------------------------+ | | Item2 | | | | | Data +-------------------------------------------------+ | | Item3 | | | | | +-------------+-----------+-----------+-----------+ <-+ Class usage example: m = NodeMetadata('sample_nodes.csv', 3, 'Id') m.get('X', 'MIN_VAL') """ def __init__(self, in_file, num_rows, prime_key): """ Construct a Metadata object Args: in_file: A file handle for an input csv file num_rows: The number of rows of the csv file defining metadata prime_key: The name of the column of primary keys. EG: Attribute names or Item (Node, Edge) IDs. """ # 'data' will contain the property name row + all metadata rows as lists self.data = [] # Lookup table mapping property names to column indices self.prop_indices = {} # Lookup table mapping attribute names to row indices self.attr_indices = {} # Detect and use correct delimiter. Commas and Tabs are supported. dialect = csv.Sniffer().sniff(in_file.read(1024), delimiters=",\t") in_file.seek(0) reader = csv.reader(in_file, dialect) # Populate data structs while reader.line_num < num_rows + 1: row = next(reader) if reader.line_num == 1: for i, name in enumerate(row): self.prop_indices[name] = i self.attr_indices[row[0]] = reader.line_num - 1 self.data.append(row) def get(self, prop, attr): """ Gets the value of a specific property attribute. Treats the CSV matrix shown up top as a 2D array, using prop to lookup the column, and attr to lookup the row. EG: To get the minimum value of a node's x coordinate. m = Metadata('sample_nodes.csv', 3, 'Name') m.get('X', 'MIN_VAL') Args: prop: The metadata property attr: The attribute of that given property Return: The string value of the specified metadata property attribute """ # Get indices into 2D data array j = self.getPropIdx(prop) i = self.getAttrIdx(attr) # Get value return self.data[i][j] def getPropIdx(self, prop): """ Gets the index of a metadata property (Column index). Args: prop: The name of the metadata property Return: Integer column index """ return self.prop_indices[prop] def getAttrIdx(self, attr): """ Gets the index of a metadata attribute (Row index). Args: attr: The name of the metadata attribute Return: Integer row index """ return self.attr_indices[attr] class NodeMetadata(Metadata): """ Subclass to implement Node specific Metadata functionality """ def __init__(self, in_file, num_rows, prime_key): super(NodeMetadata, self).__init__(in_file, num_rows, prime_key) """ A list of dicts for looking up Property names by layer: self.layers[0] => { 'C': (Property Name, CSV column index, min val, max val), 'D': (Property Name, CSV column index, min val, max val), ... }. And to get the property name used for color in layer 2 you would access as: self.layers[0]['C'][0] In the value tuples, Property Name and CSV column index will be None if no such property is specified in the input file. """ self.layers = [{k: None for k in config.NODE_USE_AS_KEYS}] # Populate self.layers row_i = self.attr_indices['USE_AS'] for col_i in range(config.NODE_LAYER_COLS_BEGIN, len(self.data[0])): prop_use_as = self.data[row_i][col_i] assert prop_use_as in config.NODE_USE_AS_KEYS # Find or create the destination layer object and property dest_layer = None for layer in self.layers: if not layer[prop_use_as]: dest_layer = layer break if not dest_layer: dest_layer = {k: None for k in config.NODE_USE_AS_KEYS} self.layers.append(dest_layer) #min_val = self.data[self.getAttrIdx('MIN_VAL')][col_i] min_val = self.data[self.getAttrIdx('MIN_VAL')][col_i] max_val = self.data[self.getAttrIdx('MAX_VAL')][col_i] prop_name = self.data[self.getAttrIdx(prime_key)][col_i] dest_layer[prop_use_as] = (prop_name, col_i, min_val, max_val) """ Fill in any gaps in self.layers. If a layer didn't have property metadata explicitly set - it takes on default metadata values """ for layer_i, layer in enumerate(self.layers): for use_as_key, v in layer.items(): if not v: layer[use_as_key] = config.NODE_DEFAULT_META[use_as_key] def getPropertyName(self, use_as, layer_i): """ Get the Property name associated with the given USE_AS string for the given layer. Args: use_as: A USE_AS value. EG: C, D, etc. layer_i: The layer index Return: The string name of the associated property. None if that property wasn't set in the input file. """ return self.layers[layer_i][use_as][0] def getPropertyIdx(self, use_as, layer_i): """ Get the CSV column of the Property associated with the given USE_AS value for every node's layer i. Return Numeric index of the CSV colum. None that property was not set in the input file. """ return self.layers[layer_i][use_as][1] def getPropertyMinVal(self, use_as, layer_i): """ Get the minimum value of the Property associated with the given USE_AS value for every node's layer i. Return: String minimum value for the property. """ return self.layers[layer_i][use_as][2] def getPropertyMaxVal(self, use_as, layer_i): """ Get the maximum value of the Property associated with the given USE_AS value for every node's layer i. Return String maximum value for the property. """ return self.layers[layer_i][use_as][3] def numLabeledLayers(self): """ Return the number of node layers that a label property explicitly set. """ return len(filter(lambda l: l['L'][0] != None, self.layers)) # TODO: Write Unit Test class EdgeMetadata(Metadata): """ Subclass to implement Node specific Metadata functionality TODO: Consider constructing a lookup table in the same way NodeMetadata does. """ def getPropertyName(self, use_as): """ Get the Property name associated with the given USE_AS string. Args: use_as: A USE_AS value. EG: C, D, etc. Return: The string name of the associated property """ row_i = self.getAttrIdx('USE_AS') use_as_row = self.data[row_i] col_i = 0 for val in use_as_row: if val == use_as: return self.data[0][col_i] col_i += 1
33.057851
79
0.58775
7,897
0.987125
0
0
0
0
0
0
5,212
0.6515
571574f8dd7e9bd961d512815c9fd6535e05f1d8
20,165
py
Python
src/src_python/antares_xpansion/driver.py
pelefebvre/antares-xpansion
c62ed1a982e970325dec6007eb57a9c6288ef0c7
[ "Apache-2.0" ]
null
null
null
src/src_python/antares_xpansion/driver.py
pelefebvre/antares-xpansion
c62ed1a982e970325dec6007eb57a9c6288ef0c7
[ "Apache-2.0" ]
null
null
null
src/src_python/antares_xpansion/driver.py
pelefebvre/antares-xpansion
c62ed1a982e970325dec6007eb57a9c6288ef0c7
[ "Apache-2.0" ]
1
2021-05-27T13:06:26.000Z
2021-05-27T13:06:26.000Z
""" Class to control the execution of the optimization session """ import shutil import configparser import glob import os import subprocess import sys from pathlib import Path from antares_xpansion.input_checker import check_candidates_file from antares_xpansion.input_checker import check_settings_file from antares_xpansion.xpansion_utils import read_and_write_mps class XpansionDriver(): """ Class to control the execution of the optimization session """ def __init__(self, config): """ Initialise driver with a given antaresXpansion configuration, the system platform and parses the arguments :param config: configuration to use for the optimization :type config: XpansionConfig object """ self.platform = sys.platform self.config = config self.candidates_list = [] self.check_candidates() self.check_settings() print(self.candidates_list) def exe_path(self, exe): """ prefixes the input exe with the install direcectory containing the binaries :param exe: executable name :return: path to specified executable """ return os.path.normpath(os.path.join(self.config.installDir, exe)) def solver_cmd(self, solver): """ returns a list consisting of the path to the required solver and its launching options """ assert solver in [self.config.MERGE_MPS, self.config.BENDERS_MPI, self.config.BENDERS_SEQUENTIAL] if solver == self.config.MERGE_MPS: return self.exe_path(solver) +" "+ self.config.OPTIONS_TXT elif solver == self.config.BENDERS_MPI: return self.config.MPI_LAUNCHER +" "+\ self.config.MPI_N +" "+ str(self.config.n_mpi)+\ " "+ self.exe_path(solver) +" "+ self.config.OPTIONS_TXT #solver == self.config.BENDERS_SEQUENTIAL: return self.exe_path(solver) +" "+ self.config.OPTIONS_TXT def antares(self): """ returns antares binaries location """ return os.path.normpath(os.path.join(self.config.installDir, self.config.ANTARES)) def general_data(self): """ returns path to general data ini file """ return os.path.normpath(os.path.join(self.data_dir(), self.config.SETTINGS, self.config.GENERAL_DATA_INI)) def settings(self): """ returns path to setting ini file """ return os.path.normpath(os.path.join(self.data_dir(), self.config.USER, self.config.EXPANSION, self.config.SETTINGS_INI)) def candidates(self): """ returns path to candidates ini file """ return os.path.normpath(os.path.join(self.data_dir(), self.config.USER, self.config.EXPANSION, self.config.CANDIDATES_INI)) def capacity_file(self, filename): """ returns path to input capacity file """ return os.path.normpath(os.path.join(self.data_dir(), self.config.USER, self.config.EXPANSION, self.config.CAPADIR, filename)) def weights_file(self, filename): """ returns the path to a yearly-weights file :param filename: name of the yearly-weights file :return: path to input yearly-weights file """ return os.path.normpath(os.path.join(self.data_dir(), self.config.USER, self.config.EXPANSION, filename)) def antares_output(self): """ returns path to antares output data directory """ return os.path.normpath(os.path.join(self.data_dir(), self.config.OUTPUT)) def data_dir(self): """ returns path to the data directory """ return self.config.dataDir def is_accurate(self): """ indicates if method to use is accurate by reading the uc_type in the settings file """ with open(self.settings(), 'r') as file_l: options = dict( {line.strip().split('=')[0].strip(): line.strip().split('=')[1].strip() for line in file_l.readlines()}) uc_type = options.get(self.config.UC_TYPE, self.config.settings_default[self.config.UC_TYPE]) assert uc_type in [self.config.EXPANSION_ACCURATE, self.config.EXPANSION_FAST] return uc_type == self.config.EXPANSION_ACCURATE assert False def is_relaxed(self): """ indicates if method to use is relaxed by reading the relaxation_type from the settings file """ with open(self.settings(), 'r') as file_l: options = dict( {line.strip().split('=')[0].strip(): line.strip().split('=')[1].strip() for line in file_l.readlines()}) relaxation_type = options.get('master', self.config.settings_default["master"]) assert relaxation_type in ['integer', 'relaxed', 'full_integer'] return relaxation_type == 'relaxed' assert False def optimality_gap(self): """ prints and returns the optimality gap read from the settings file :return: gap value or 0 if the gap is set to -Inf """ with open(self.settings(), 'r') as file_l: options = dict( {line.strip().split('=')[0].strip(): line.strip().split('=')[1].strip() for line in file_l.readlines()}) optimality_gap_str = options.get('optimality_gap', self.config.settings_default["optimality_gap"]) assert not '%' in optimality_gap_str print('optimality_gap_str :', optimality_gap_str) return float(optimality_gap_str) if optimality_gap_str != '-Inf' else 0 assert False def max_iterations(self): """ prints and returns the maximum iterations read from the settings file :return: max iterations value or -1 if the parameter is is set to +Inf """ with open(self.settings(), 'r') as file_l: options = dict( {line.strip().split('=')[0].strip(): line.strip().split('=')[1].strip() for line in file_l.readlines()}) max_iterations_str = options.get('max_iteration', self.config.settings_default["max_iteration"]) assert not '%' in max_iterations_str print('max_iterations_str :', max_iterations_str) return float(max_iterations_str) if ( (max_iterations_str != '+Inf') and (max_iterations_str != '+infini') ) else -1 assert False def additional_constraints(self): """ returns path to additional constraints file """ with open(self.settings(), 'r') as file_l: options = dict( {line.strip().split('=')[0].strip(): line.strip().split('=')[1].strip() for line in file_l.readlines()}) additional_constraints_filename = options.get("additional-constraints", self.config.settings_default["additional-constraints"]) if additional_constraints_filename == "" : return "" return os.path.normpath(os.path.join(self.data_dir(), self.config.USER, self.config.EXPANSION, additional_constraints_filename)) def nb_years(self): """ returns the nubyears parameter value read from the general data file """ ini_file = configparser.ConfigParser() ini_file.read(self.general_data()) return float(ini_file['general']['nbyears']) def launch(self): """ launch antares xpansion steps """ self.clear_old_log() if self.config.step == "full": lp_path = self.generate_mps_files() self.launch_optimization(lp_path) elif self.config.step == "antares": self.pre_antares() self.launch_antares() elif self.config.step == "getnames": if self.config.simulationName: self.get_names(self.config.simulationName) else: print("Missing argument simulationName") sys.exit(1) elif self.config.step == "lp": if self.config.simulationName: self.lp_step(self.config.simulationName) output_path = os.path.normpath(os.path.join(self.antares_output(), self.config.simulationName)) self.set_options(output_path) else: print("Missing argument simulationName") sys.exit(1) elif self.config.step == "optim": if self.config.simulationName: lp_path = os.path.normpath(os.path.join(self.antares_output(), self.config.simulationName, 'lp')) self.launch_optimization(lp_path) else: print("Missing argument simulationName") sys.exit(1) else: print("Launching failed") sys.exit(1) def clear_old_log(self): """ clears old log files for antares and the lp_namer """ if (self.config.step in ["full", "antares"]) and (os.path.isfile(self.antares() + '.log')): os.remove(self.antares() + '.log') if (self.config.step in ["full", "lp"])\ and (os.path.isfile(self.exe_path(self.config.LP_NAMER) + '.log')): os.remove(self.exe_path(self.config.LP_NAMER) + '.log') def check_candidates(self): """ checks that candidates file has correct format """ #check file existence if not os.path.isfile(self.candidates()): print('Missing file : %s was not retrieved.' % self.candidates()) sys.exit(1) check_candidates_file(self) def check_settings(self): """ checks that settings file has correct format """ #check file existence if not os.path.isfile(self.settings()): print('Missing file : %s was not retrieved.' % self.settings()) sys.exit(1) check_settings_file(self) def pre_antares(self): """ modifies the general data file to configure antares execution """ ini_file = configparser.ConfigParser() ini_file.read(self.general_data()) ini_file[self.config.OPTIMIZATION][self.config.EXPORT_MPS] = "true" ini_file[self.config.OPTIMIZATION][self.config.EXPORT_STRUCTURE] = "true" ini_file[self.config.OPTIMIZATION][self.config.USE_XPRS] = "false" ini_file.remove_option(self.config.OPTIMIZATION, self.config.USE_XPRS) ini_file.remove_option(self.config.OPTIMIZATION, self.config.INBASIS) ini_file.remove_option(self.config.OPTIMIZATION, self.config.OUTBASIS) if self.is_accurate(): ini_file['general']['mode'] = 'expansion' ini_file['other preferences']['unit-commitment-mode'] = 'accurate' ini_file[self.config.OPTIMIZATION]['include-tc-minstablepower'] = 'true' ini_file[self.config.OPTIMIZATION]['include-tc-min-ud-time'] = 'true' ini_file[self.config.OPTIMIZATION]['include-dayahead'] = 'true' else: ini_file['general']['mode'] = 'Economy' ini_file['other preferences']['unit-commitment-mode'] = 'fast' ini_file[self.config.OPTIMIZATION]['include-tc-minstablepower'] = 'false' ini_file[self.config.OPTIMIZATION]['include-tc-min-ud-time'] = 'false' ini_file[self.config.OPTIMIZATION]['include-dayahead'] = 'false' with open(self.general_data(), 'w') as out_file: ini_file.write(out_file) def launch_antares(self): """ launch antares :return: name of the new simulation's directory """ # if not os.path.isdir(driver.antares_output()): # os.mkdir(driver.antares_output(), ) old_output = os.listdir(self.antares_output()) print([self.antares(), self.data_dir()]) with open(self.antares() + '.log', 'w') as output_file: returned_l = subprocess.call(self.antares() +" "+ self.data_dir(), shell=True, stdout=output_file, stderr=output_file) if returned_l != 0: print("WARNING: exited antares with status %d" % returned_l) new_output = os.listdir(self.antares_output()) print(old_output) print(new_output) assert len(old_output) + 1 == len(new_output) diff = list(set(new_output) - set(old_output)) return diff[0] def post_antares(self, antares_output_name): """ creates necessary files for simulation using the antares simulation output files, the existing configuration files, get_names and the lpnamer executable :param antares_output_name: name of the antares simulation output directory :return: path to the lp output directory """ output_path = os.path.normpath(os.path.join(self.antares_output(), antares_output_name)) self.get_names(antares_output_name) lp_path = self.lp_step(antares_output_name) self.set_options(output_path) return lp_path def get_names(self, antares_output_name): """ produces a .txt file describing the weekly problems: each line of the file contains : - mps file name - variables file name - constraints file name :param antares_output_name: name of the antares simulation output directory produces a file named with xpansionConfig.MPS_TXT """ output_path = os.path.normpath(os.path.join(self.antares_output(), antares_output_name)) mps_txt = read_and_write_mps(output_path) # print(mps_txt) with open(os.path.normpath(os.path.join(output_path, self.config.MPS_TXT)), 'w') as file_l: for line in mps_txt.items(): file_l.write(line[1][0] + ' ' + line[1][1] + ' ' + line[1][2] + '\n') glob_path= Path(output_path) area_files = [str(pp) for pp in glob_path.glob("area*.txt")] interco_files = [str(pp) for pp in glob_path.glob("interco*.txt")] assert len(area_files) == 1 assert len(interco_files) == 1 shutil.copy(area_files[0], os.path.normpath(os.path.join(output_path, 'area.txt'))) shutil.copy(interco_files[0], os.path.normpath(os.path.join(output_path, 'interco.txt'))) def lp_step(self, antares_output_name): """ copies area and interco files and launches the lp_namer :param output_path: path to the antares simulation output directory produces a file named with xpansionConfig.MPS_TXT """ output_path = os.path.normpath(os.path.join(self.antares_output(), antares_output_name)) lp_path = os.path.normpath(os.path.join(output_path, 'lp')) if os.path.isdir(lp_path): shutil.rmtree(lp_path) os.makedirs(lp_path) is_relaxed = 'relaxed' if self.is_relaxed() else 'integer' with open(self.exe_path(self.config.LP_NAMER) + '.log', 'w') as output_file: lp_cmd = self.exe_path(self.config.LP_NAMER) +" "+ output_path +" "+ is_relaxed +" "+ self.additional_constraints() returned_l = subprocess.call(lp_cmd, shell=True, stdout=output_file, stderr=output_file) if returned_l != 0: print("ERROR: exited lpnamer with status %d" % returned_l) sys.exit(1) return lp_path def launch_optimization(self, lp_path): """ launch the optimization of the antaresXpansion problem using the specified solver :param lp_path: path to the lp directory containing input files (c.f. generate_mps_files) :param solver: name of the solver to be used :type solver: value in [XpansionConfig.MERGE_MPS, XpansionConfig.BENDERS_MPI, XpansionConfig.BENDERS_SEQUENTIAL] """ old_cwd = os.getcwd() os.chdir(lp_path) print('Current directory is now : ', os.getcwd()) solver = None if self.config.method == "mpibenders": solver = self.config.BENDERS_MPI elif self.config.method == "mergeMPS": solver = self.config.MERGE_MPS mergemps_lp_log = "log_merged.lp" if os.path.isfile(mergemps_lp_log): os.remove(mergemps_lp_log) mergemps_mps_log = "log_merged.mps" if os.path.isfile(mergemps_mps_log): os.remove(mergemps_lp_log) elif self.config.method == "sequential": solver = self.config.BENDERS_SEQUENTIAL elif self.config.method == "both": print("metod both is not handled yet") sys.exit(1) else: print("Illegal optim method") sys.exit(1) #delete execution logs logfile_list = glob.glob('./' +solver + 'Log*') for file_path in logfile_list: try: os.remove(file_path) except OSError: print("Error while deleting file : ", file_path) if os.path.isfile(solver + '.log'): os.remove(solver + '.log') print('Launching {}, logs will be saved to {}.log'.format(solver, os.path.normpath(os.path.join( os.getcwd(), solver)))) with open(solver + '.log', 'w') as output_file: returned_l = subprocess.call(self.solver_cmd(solver), shell=True, stdout=output_file, stderr=output_file) if returned_l != 0: print("ERROR: exited solver with status %d" % returned_l) sys.exit(1) os.chdir(old_cwd) def set_options(self, output_path): """ generates a default option file for the solver """ # computing the weight of slaves options_values = self.config.options_default options_values["SLAVE_WEIGHT_VALUE"] = str(self.nb_years()) print('Number of years is {}, setting SLAVE_WEIGHT_VALUE to {} '. format(self.nb_years(), options_values["SLAVE_WEIGHT_VALUE"])) options_values["GAP"] = self.optimality_gap() options_values["MAX_ITERATIONS"] = self.max_iterations() # generate options file for the solver options_path = os.path.normpath(os.path.join(output_path, 'lp', self.config.OPTIONS_TXT)) with open(options_path, 'w') as options_file: options_file.writelines(["%30s%30s\n" % (kvp[0], kvp[1]) for kvp in options_values.items()]) def generate_mps_files(self): """ launches antares to produce mps files """ print("starting mps generation") # setting antares options print("-- pre antares") self.pre_antares() # launching antares print("-- launching antares") antares_output_name = self.launch_antares() # writting things print("-- post antares") lp_path = self.post_antares(antares_output_name) return lp_path
41.069246
129
0.579965
19,788
0.981304
0
0
0
0
0
0
6,066
0.300818
571589111619e9fd5ae98d9e183ad96ef4ec5ca8
1,186
py
Python
CRASHLACMA/slistener.py
carlynorama/CRASHLACMA
d59890a5a0702940a0d678b600230f0f53384710
[ "CC0-1.0" ]
null
null
null
CRASHLACMA/slistener.py
carlynorama/CRASHLACMA
d59890a5a0702940a0d678b600230f0f53384710
[ "CC0-1.0" ]
null
null
null
CRASHLACMA/slistener.py
carlynorama/CRASHLACMA
d59890a5a0702940a0d678b600230f0f53384710
[ "CC0-1.0" ]
null
null
null
from tweepy import StreamListener import json, time, sys class SListener(StreamListener): def __init__(self, api = None, fprefix = 'streamer'): self.api = api or API() self.filecounter = 1 self.fprefix = fprefix def on_data(self, data): if 'in_reply_to_status' in data: self.on_status(data) elif 'delete' in data: delete = json.loads(data)['delete']['status'] if self.on_delete(delete['id'], delete['user_id']) is False: return False elif 'limit' in data: if self.on_limit(json.loads(data)['limit']['track']) is False: return False elif 'warning' in data: warning = json.loads(data)['warnings'] print warning['message'] return false def on_status(self, status): filename = self.fprefix + '.' + time.strftime('%Y%m%d-%H%M') + '_' + str(self.filecounter) + '.json' self.output = open(filename, 'wb') print('Writing to file %s') % filename self.output.write(status + "\n") self.filecounter += 1 self.output.close() return
29.65
108
0.555649
1,126
0.94941
0
0
0
0
0
0
170
0.143339
5715f8e7099f46fd56b68c4c665702f7dc7e68e3
379
py
Python
Curso-em-video-Python/PycharmProjects/pythonExercicios/Ex052.py
sartinicj/curso-em-video-python
8cb4ca05a88351c44aa4a7befc59c9596a50f268
[ "MIT" ]
null
null
null
Curso-em-video-Python/PycharmProjects/pythonExercicios/Ex052.py
sartinicj/curso-em-video-python
8cb4ca05a88351c44aa4a7befc59c9596a50f268
[ "MIT" ]
null
null
null
Curso-em-video-Python/PycharmProjects/pythonExercicios/Ex052.py
sartinicj/curso-em-video-python
8cb4ca05a88351c44aa4a7befc59c9596a50f268
[ "MIT" ]
null
null
null
''' N = int(input('Digite um NÚMERO: ')) tot = 0 for c in range(1, n+1): if n%c == 0: print('\033[33m', end=' ') tot+=1 else: print('\033[31m', end=' ') print('{}'.format(c), end=' ') print('\n\033[mO numero {} foi divisivel {} vezes'.format(n, tot)) if tot == 2: print('E POR ISSO É PRIMO') else: print('E POR ISSO NÃO É PRIMO') '''
21.055556
66
0.506596
0
0
0
0
0
0
0
0
382
0.997389
57167335582e22b6c5a86bb8546c9e43ffff5640
158
py
Python
core/views.py
TonyLuque/marketing_website
2ebbbf7788c439afc8192926fa3dc3e231b1e69e
[ "MIT" ]
null
null
null
core/views.py
TonyLuque/marketing_website
2ebbbf7788c439afc8192926fa3dc3e231b1e69e
[ "MIT" ]
null
null
null
core/views.py
TonyLuque/marketing_website
2ebbbf7788c439afc8192926fa3dc3e231b1e69e
[ "MIT" ]
null
null
null
from django.shortcuts import render # Create your views here. def home(request): return render(request,'core/index.html') def detail(request): pass
17.555556
44
0.734177
0
0
0
0
0
0
0
0
42
0.265823
57172ba3fed738751a65af00ff67b7037fd96b96
206
py
Python
qclib/qclab.py
hagne/qclib
c90e06cb22708d610126710715a5d66bd4dc0898
[ "MIT" ]
null
null
null
qclib/qclab.py
hagne/qclib
c90e06cb22708d610126710715a5d66bd4dc0898
[ "MIT" ]
null
null
null
qclib/qclab.py
hagne/qclib
c90e06cb22708d610126710715a5d66bd4dc0898
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import qclib.tag_times def qc_by_tagging_times(path2data, path2database): out = qclib.tag_times.Controller(path2data=path2data, path2database=path2database) return out
25.75
86
0.747573
0
0
0
0
0
0
0
0
23
0.11165
57179805f172aec6d932cd77e1ce3e7e6d275877
317
py
Python
t_server.py
iloghyr/easy_python
b750f6817d54562b23630e2419bace19da0abf8b
[ "Apache-2.0" ]
1
2018-03-01T02:42:52.000Z
2018-03-01T02:42:52.000Z
t_server.py
iloghyr/easy_python
b750f6817d54562b23630e2419bace19da0abf8b
[ "Apache-2.0" ]
null
null
null
t_server.py
iloghyr/easy_python
b750f6817d54562b23630e2419bace19da0abf8b
[ "Apache-2.0" ]
null
null
null
import socket address = ('127.0.0.1', 31500) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # s = socket.socket() s.bind(address) s.listen(5) ss, addr = s.accept() print 'got connected from',addr ss.send('hihi') ra = ss.recv(512) print ra ss.close() s.close()
19.8125
78
0.583596
0
0
0
0
0
0
0
0
61
0.192429
5717a38a4849d391d82607edadcfd400d7080783
1,906
py
Python
py_solutions_71-80/Euler_77.py
tijko/Project-Euler
d953a2bf6932c2c4e1235409fedf760add65a0ba
[ "MIT" ]
null
null
null
py_solutions_71-80/Euler_77.py
tijko/Project-Euler
d953a2bf6932c2c4e1235409fedf760add65a0ba
[ "MIT" ]
1
2022-03-15T02:49:09.000Z
2022-03-15T02:49:09.000Z
py_solutions_71-80/Euler_77.py
tijko/Project-Euler
d953a2bf6932c2c4e1235409fedf760add65a0ba
[ "MIT" ]
null
null
null
# what is the first number to have 5000 different ways to sum with prime numbers? import math import timeit start = timeit.default_timer() def is_prime(x): if x == 2: return True if x % 2 == 0 or x == 1: return False for i in range(3,int(math.sqrt(x))+1,2): if x % i == 0: return False return True def prime_sum(lim): lim += 1 o_set = [i for i in xrange(lim - 1) if is_prime(i)][::-1] s_set = [0] * len(o_set) ways, pos, flag = 0, -2, 0 while True: for n in xrange(0, lim, o_set[-1]): if sum(s_set[:-1] + [n]) == (lim - 1): ways += 1 s_set = s_set[:-1] + [n] flag = 1 break if sum(s_set[:-1] + [n]) > (lim - 1): s_set = s_set[:-1] + [n] flag = 1 break if pos < -(len(o_set)): return ways if flag == 1 and pos < -2: for i, v in enumerate(s_set[pos:][::-1], 1): if v != 0: s_set[-i] = 0 s_set[-i - 1] += o_set[-i - 1] flag = 0 if s_set[pos] >= (lim - 1): pos -= 1 break elif s_set[pos] <= (lim - 1): if s_set[pos] == (lim - 1): pos -= 1 for i, v in enumerate(s_set[pos:-1][::-1], 2): if v < (lim - 1): s_set[-i] += o_set[-i] break if v >= (lim - 1): s_set[-i] = 0 elif s_set[pos] >= (lim - 1) and pos == -2: pos -= 1 def euler_77(): start, ways = 10, 0 while ways < 5000: start += 1 ways = prime_sum(start) return start print "Answer: %s" % euler_77() stop = timeit.default_timer() print "Time: %f" % (stop - start)
28.029412
82
0.407135
0
0
0
0
0
0
0
0
104
0.054565
57199578121fb89b3db3e976c4737dd3dcc14bf5
2,258
py
Python
lambdas/get_users.py
charvi-a/320-S20-Track1
ac97504fc1fdedb1c311773b015570eeea8a8663
[ "BSD-3-Clause" ]
9
2019-12-30T16:32:22.000Z
2020-03-03T20:14:47.000Z
lambdas/get_users.py
charvi-a/320-S20-Track1
ac97504fc1fdedb1c311773b015570eeea8a8663
[ "BSD-3-Clause" ]
283
2020-02-03T15:16:03.000Z
2020-05-05T03:18:59.000Z
lambdas/get_users.py
charvi-a/320-S20-Track1
ac97504fc1fdedb1c311773b015570eeea8a8663
[ "BSD-3-Clause" ]
3
2020-04-16T15:23:29.000Z
2020-05-12T00:38:41.000Z
from package.query_db import query from package.lambda_exception import LambdaException def handler(event, context): is_admin = event['is_admin'] is_supporter = event['is_supporter'] is_student = event['is_student'] if is_admin == "" and is_supporter == "" and is_student == "": get_users_sql = "SELECT id, first_name, last_name, email FROM users;" params = [] else: if is_admin != "": is_admin = event['is_admin'].lower() if is_admin == "true": is_admin = True else: is_admin = False else: is_admin = False if is_supporter != "": is_supporter = event['is_supporter'].lower() if is_supporter == "true": is_supporter = True else: is_supporter = False else: is_supporter = False if is_student != "": is_student = event['is_student'].lower() if is_student == "true": is_student = True else: is_student = False else: is_student = True is_admin_param = {'name' : 'is_admin', 'value' : {'booleanValue' : is_admin}} is_supporter_param = {'name' : 'is_supporter', 'value' : {'booleanValue' : is_supporter}} is_student_param = {'name' : 'is_student', 'value' : {'booleanValue' : is_student}} get_users_sql = "SELECT id, first_name, last_name, email FROM users WHERE is_admin = :is_admin AND is_supporter = :is_supporter AND is_student = :is_student;" params = [is_admin_param, is_supporter_param, is_student_param] try: users = query(get_users_sql, params)['records'] except Exception as e: raise LambdaException("500: Failed to get users, " + str(e)) response = { 'users' : [] } for u_id, f_name, l_name, email in users: current_users = response['users'] next_user = {'user_id' : u_id["longValue"], 'first_name' : f_name["stringValue"], 'last_name' : l_name["stringValue"], 'email' : email["stringValue"]} current_users.append(next_user) response['users'] = current_users return response
34.738462
171
0.574402
0
0
0
0
0
0
0
0
561
0.24845
571ab14954af261729cb1d3fc0d5e206657e96fa
705
py
Python
leetCode/swap_nodes_in_pairs.py
yskang/AlgorithmPracticeWithPython
f7129bd1924a7961489198f0ee052d2cd1e9cf40
[ "MIT" ]
null
null
null
leetCode/swap_nodes_in_pairs.py
yskang/AlgorithmPracticeWithPython
f7129bd1924a7961489198f0ee052d2cd1e9cf40
[ "MIT" ]
1
2019-11-04T06:44:04.000Z
2019-11-04T06:46:55.000Z
leetCode/swap_nodes_in_pairs.py
yskang/AlgorithmPractice
31b76e38b4c2f1e3e29fb029587662a745437912
[ "MIT" ]
null
null
null
# Title: Swap Nodes in Pairs # Link: https://leetcode.com/problems/swap-nodes-in-pairs class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Problem: def swap_pairs(self, head: ListNode) -> ListNode: pre, pre.next = self, head while pre.next and pre.next.next: a = pre.next b = a.next pre.next, b.next, a.next = b, a, b.next pre = a return self.next def solution(): head = ListNode(1, ListNode(2, ListNode(3, ListNode(4)))) problem = Problem() return problem.swap_pairs(head) def main(): print(solution()) if __name__ == '__main__': main()
22.741935
61
0.58156
395
0.560284
0
0
0
0
0
0
95
0.134752
571ac253ee844d994243e9c2e1443c9c4aa20002
16,967
py
Python
detect_actions.py
CTewan/ACAM_Demo
b76cf4ce1289b8c311dbad1588f299ff67f7eaf3
[ "MIT" ]
null
null
null
detect_actions.py
CTewan/ACAM_Demo
b76cf4ce1289b8c311dbad1588f299ff67f7eaf3
[ "MIT" ]
null
null
null
detect_actions.py
CTewan/ACAM_Demo
b76cf4ce1289b8c311dbad1588f299ff67f7eaf3
[ "MIT" ]
null
null
null
import numpy as np import cv2 import imageio import tensorflow as tf import json import csv import os import sys sys.path.append("object_detection") sys.path.append("object_detection/deep_sort") sys.path.append("action_detection") import argparse import object_detection.object_detector as obj import action_detection.action_detector as act import time DISPLAY = False SHOW_CAMS = False def main(): parser = argparse.ArgumentParser() parser.add_argument('-v', '--video_path', type=str, required=False, default="") parser.add_argument('-d', '--display', type=str, required=False, default="True") args = parser.parse_args() display = (args.display == "True" or args.display == "true") #actor_to_display = 6 # for cams video_path = args.video_path basename = os.path.basename(video_path).split('.')[0] out_vid_path = "./output_videos/%s_output.mp4" % (basename if not SHOW_CAMS else basename+'_cams_actor_%.2d' % actor_to_display) clf_out_path = "./clf_output/{}_output.csv".format(basename if not SHOW_CAMS else basename+'_cams_actor_{}'.format(actor_to_display)) #out_vid_path = './output_videos/testing.mp4' # video_path = "./tests/chase1Person1View3Point0.mp4" # out_vid_path = 'output.mp4' main_folder = './' # NAS obj_detection_model = 'ssd_mobilenet_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03' obj_detection_graph = os.path.join("object_detection", "weights", obj_detection_model, "frozen_inference_graph.pb") print("Loading object detection model at %s" % obj_detection_graph) obj_detector = obj.Object_Detector(obj_detection_graph) tracker = obj.Tracker() print("Reading video file %s" % video_path) reader = imageio.get_reader(video_path, 'ffmpeg') action_freq = 8 # fps_divider = 1 print('Running actions every %i frame' % action_freq) fps = reader.get_meta_data()['fps'] #// fps_divider print("FPS: {}".format(fps)) W, H = reader.get_meta_data()['size'] T = tracker.timesteps #if not display: writer = imageio.get_writer(out_vid_path, fps=fps) csv_file = open(clf_out_path, 'w', newline='') csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_writer.writerow(['Time', 'Person', 'Action', 'Probability']) print("Writing output to %s" % out_vid_path) # act_detector = act.Action_Detector('i3d_tail') # ckpt_name = 'model_ckpt_RGB_i3d_pooled_tail-4' act_detector = act.Action_Detector('soft_attn') #ckpt_name = 'model_ckpt_RGB_soft_attn-16' #ckpt_name = 'model_ckpt_soft_attn_ava-23' ckpt_name = 'model_ckpt_soft_attn_pooled_cosine_drop_ava-130' #input_frames, temporal_rois, temporal_roi_batch_indices, cropped_frames = act_detector.crop_tubes_in_tf([T,H,W,3]) memory_size = act_detector.timesteps - action_freq updated_frames, temporal_rois, temporal_roi_batch_indices, cropped_frames = act_detector.crop_tubes_in_tf_with_memory([T,H,W,3], memory_size) rois, roi_batch_indices, pred_probs = act_detector.define_inference_with_placeholders_noinput(cropped_frames) ckpt_path = os.path.join(main_folder, 'action_detection', 'weights', ckpt_name) act_detector.restore_model(ckpt_path) prob_dict = {} frame_cnt = 0 # Tewan min_teacher_features = 3 teacher_identified = 0 #missed_frame_cnt = 0 #max_age = 120 #frame_skips = 60 #next_frame = 0 teacher_ids = [] matched_id = None # Tewan for cur_img in reader: frame_cnt += 1 #if frame_cnt < next_frame: # continue # Detect objects and make predictions every 8 frames (0.3 seconds) #if frame_cnt % action_freq == 0: # Object Detection expanded_img = np.expand_dims(cur_img, axis=0) detection_list = obj_detector.detect_objects_in_np(expanded_img) detection_info = [info[0] for info in detection_list] # Updates active actors in tracker tracker.update_tracker(detection_info, cur_img) no_actors = len(tracker.active_actors) """ if no_actors == 0: missed_frame_cnt += 1 if missed_frame_cnt >= max_age: tracker.update_tracker(detection_info, cur_img) no_actors = len(tracker.active_actors) teacher_identified = False tracker.set_invalid_track() missed_frame_cnt = 0 print("Reset active actors. Current number: {}".format(no_actors)) """ if frame_cnt % action_freq == 0 and frame_cnt > 16: if no_actors == 0: print("No actor found.") continue video_time = round(frame_cnt / fps, 1) valid_actor_ids = [actor["actor_id"] for actor in tracker.active_actors] print("frame count: {}, video time: {}s".format(frame_cnt, video_time)) probs = [] cur_input_sequence = np.expand_dims(np.stack(tracker.frame_history[-action_freq:], axis=0), axis=0) rois_np, temporal_rois_np = tracker.generate_all_rois() if teacher_identified < min_teacher_features: prompt_img = visualize_detection_results(img_np=tracker.frame_history[-16], active_actors=tracker.active_actors, prob_dict=None) cv2.imshow('prompt_img', prompt_img[:,:,::-1]) cv2.waitKey(500) teacher_present = False teacher_id = _prompt_user_input() if not _check_teacher_in_frame(teacher_id=teacher_id): print("Teacher not in this frame. Continuing.") cv2.destroyWindow("prompt_img") pass else: if _check_valid_teacher_id(teacher_id=teacher_id, valid_actor_ids=valid_actor_ids): teacher_id = int(teacher_id) teacher_identified += 1 teacher_present = True else: while not teacher_present: print("Invalid ID.") teacher_id = _prompt_user_input() if not _check_teacher_in_frame(teacher_id=teacher_id): print("Teacher not in this frame. Continuing.") cv2.destroyWindow("prompt_img") break else: if _check_valid_teacher_id(teacher_id=teacher_id, valid_actor_ids=valid_actor_ids): teacher_id = int(teacher_id) teacher_identified += 1 teacher_present = True else: pass # Move on to next frame if teacher not in current frame if not teacher_present: continue cv2.destroyWindow("prompt_img") if teacher_id not in teacher_ids: teacher_ids.append(teacher_id) tracker.update_teacher_candidate_ids(teacher_candidate_id=teacher_id) else: tracker.set_valid_track() # Identify idx of teacher for ROI selection roi_idx = None found_id = False for idx, actor_info in enumerate(tracker.active_actors): actor_id = actor_info["actor_id"] for i in range(len(teacher_ids)-1, -1, -1): if actor_id == teacher_ids[i]: roi_idx = idx matched_id = actor_info["actor_id"] found_id = True break if found_id: break # Identify ROI and temporal ROI using ROI idx if roi_idx is not None: rois_np = rois_np[roi_idx] temporal_rois_np = temporal_rois_np[roi_idx] rois_np = np.expand_dims(rois_np, axis=0) temporal_rois_np = np.expand_dims(temporal_rois_np, axis=0) no_actors = 1 # If teacher not found (i.e. roi_idx is None) in current frame, move on to next frame else: continue #max_actors = 5 #if no_actors > max_actors: # no_actors = max_actors # rois_np = rois_np[:max_actors] # temporal_rois_np = temporal_rois_np[:max_actors] # Might have issue of not using attention map because only predict action for 1 actor (memory issue) feed_dict = {updated_frames:cur_input_sequence, # only update last #action_freq frames temporal_rois: temporal_rois_np, temporal_roi_batch_indices: np.zeros(no_actors), rois:rois_np, roi_batch_indices:np.arange(no_actors)} run_dict = {'pred_probs': pred_probs} if SHOW_CAMS: run_dict['cropped_frames'] = cropped_frames run_dict['final_i3d_feats'] = act_detector.act_graph.get_collection('final_i3d_feats')[0] run_dict['cls_weights'] = act_detector.act_graph.get_collection('variables')[-2] # this is the kernel out_dict = act_detector.session.run(run_dict, feed_dict=feed_dict) probs = out_dict['pred_probs'] # associate probs with actor ids print_top_k = 5 for bb in range(no_actors): #act_probs = probs[bb] #order = np.argsort(act_probs)[::-1] #cur_actor_id = tracker.active_actors[bb]['actor_id'] act_probs = probs[bb] order = np.argsort(act_probs)[::-1] cur_actor_id = tracker.active_actors[roi_idx]["actor_id"] #print(cur_actor_id == actor_id) #print("Person %i" % cur_actor_id) #print("act_probs: {}".format(act_probs)) #print("order: {}".format(order)) #print("tracker.active_actors[bb]: {}".format(tracker.active_actors[bb])) cur_results = [] for pp in range(print_top_k): #print('\t %s: %.3f' % (act.ACTION_STRINGS[order[pp]], act_probs[order[pp]])) cur_results.append((act.ACTION_STRINGS[order[pp]], act_probs[order[pp]])) csv_writer.writerow([video_time, cur_actor_id, act.ACTION_STRINGS[order[pp]], act_probs[order[pp]]]) prob_dict[cur_actor_id] = cur_results if frame_cnt > 16: out_img = visualize_detection_results(tracker.frame_history[-16], tracker.active_actors, prob_dict=prob_dict, teacher_id=matched_id) if SHOW_CAMS: if tracker.active_actors: actor_indices = [ii for ii in range(no_actors) if tracker.active_actors[ii]['actor_id'] == actor_to_display] if actor_indices: out_img = visualize_cams(out_img, cur_input_sequence, out_dict, actor_indices[0]) else: continue else: continue if display: cv2.imshow('results', out_img[:,:,::-1]) cv2.waitKey(10) writer.append_data(out_img) #if not display: writer.close() csv_file.close() def _prompt_user_input(): teacher_id = input("Enter the id of the teacher (type None if teacher is not present in this frame): ") return teacher_id def _check_teacher_in_frame(teacher_id): if teacher_id == "None" or teacher_id == "none": return False return True def _check_valid_teacher_id(teacher_id, valid_actor_ids): try: teacher_id = int(teacher_id) if teacher_id in valid_actor_ids: return True else: return False except: return False np.random.seed(10) COLORS = np.random.randint(0, 255, [1000, 3]) def visualize_detection_results(img_np, active_actors, prob_dict=None, teacher_id=None): score_th = 0.30 action_th = 0.20 # copy the original image first disp_img = np.copy(img_np) H, W, C = img_np.shape #for ii in range(len(active_actors)): for ii in range(len(active_actors)): cur_actor = active_actors[ii] actor_id = cur_actor['actor_id'] if teacher_id is not None: if actor_id != teacher_id: continue if prob_dict: cur_act_results = prob_dict[actor_id] if actor_id in prob_dict else [] try: if len(cur_actor["all_boxes"]) > 0: cur_box, cur_score, cur_class = cur_actor['all_boxes'][-16], cur_actor['all_scores'][0], 1 else: cur_box, cur_score, cur_class = cur_actor['all_boxes'][0], cur_actor['all_scores'][0], 1 except IndexError: continue if cur_score < score_th: continue top, left, bottom, right = cur_box left = int(W * left) right = int(W * right) top = int(H * top) bottom = int(H * bottom) conf = cur_score label = obj.OBJECT_STRINGS[cur_class]['name'] message = '%s_%i: %% %.2f' % (label, actor_id,conf) if prob_dict: action_message_list = ["%s:%.3f" % (actres[0][0:7], actres[1]) for actres in cur_act_results if actres[1]>action_th] color = COLORS[actor_id] color = (int(color[0]), int(color[1]), int(color[2])) cv2.rectangle(disp_img, (left,top), (right,bottom), color, 3) font_size = max(0.5,(right - left)/50.0/float(len(message))) cv2.rectangle(disp_img, (left, top-int(font_size*40)), (right,top), color, -1) cv2.putText(disp_img, message, (left, top-12), 0, font_size, (255-color[0], 255-color[1], 255-color[2]), 1) if prob_dict: #action message writing cv2.rectangle(disp_img, (left, top), (right,top+10*len(action_message_list)), color, -1) for aa, action_message in enumerate(action_message_list): offset = aa*10 cv2.putText(disp_img, action_message, (left, top+5+offset), 0, 0.5, (255-color[0], 255-color[1], 255-color[2]), 1) return disp_img def visualize_cams(image, input_frames, out_dict, actor_idx): #classes = ["walk", "bend", "carry"] #classes = ["sit", "ride"] classes = ["talk to", "watch (a", "listen to"] action_classes = [cc for cc in range(60) if any([cname in act.ACTION_STRINGS[cc] for cname in classes])] feature_activations = out_dict['final_i3d_feats'] cls_weights = out_dict['cls_weights'] input_frames = out_dict['cropped_frames'].astype(np.uint8) probs = out_dict["pred_probs"] class_maps = np.matmul(feature_activations, cls_weights) min_val = np.min(class_maps[:,:, :, :, :]) max_val = np.max(class_maps[:,:, :, :, :]) - min_val normalized_cmaps = np.uint8((class_maps-min_val)/max_val * 255.) t_feats = feature_activations.shape[1] t_input = input_frames.shape[1] index_diff = (t_input) // (t_feats+1) img_new_height = 400 img_new_width = int(image.shape[1] / float(image.shape[0]) * img_new_height) img_to_show = cv2.resize(image.copy(), (img_new_width,img_new_height))[:,:,::-1] #img_to_concat = np.zeros((400, 800, 3), np.uint8) img_to_concat = np.zeros((400, 400, 3), np.uint8) for cc in range(len(action_classes)): cur_cls_idx = action_classes[cc] act_str = act.ACTION_STRINGS[action_classes[cc]] message = "%s:%%%.2d" % (act_str[:20], 100*probs[actor_idx, cur_cls_idx]) for tt in range(t_feats): cur_cam = normalized_cmaps[actor_idx, tt,:,:, cur_cls_idx] cur_frame = input_frames[actor_idx, (tt+1) * index_diff, :,:,::-1] resized_cam = cv2.resize(cur_cam, (100,100)) colored_cam = cv2.applyColorMap(resized_cam, cv2.COLORMAP_JET) overlay = cv2.resize(cur_frame.copy(), (100,100)) overlay = cv2.addWeighted(overlay, 0.5, colored_cam, 0.5, 0) img_to_concat[cc*125:cc*125+100, tt*100:(tt+1)*100, :] = overlay cv2.putText(img_to_concat, message, (20, 13+100+125*cc), 0, 0.5, (255,255,255), 1) final_image = np.concatenate([img_to_show, img_to_concat], axis=1) return final_image[:,:,::-1] if __name__ == '__main__': main()
38.386878
145
0.590263
0
0
0
0
0
0
0
0
3,712
0.218778
571af6febfc1dc4cb09b37f0fb44cc848ccf1059
5,556
py
Python
tests/test_parametric_shapes/test_SweepMixedShape.py
RemDelaporteMathurin/paramak
10552f1b89820dd0f7a08e4a126834877e3106b4
[ "MIT" ]
null
null
null
tests/test_parametric_shapes/test_SweepMixedShape.py
RemDelaporteMathurin/paramak
10552f1b89820dd0f7a08e4a126834877e3106b4
[ "MIT" ]
null
null
null
tests/test_parametric_shapes/test_SweepMixedShape.py
RemDelaporteMathurin/paramak
10552f1b89820dd0f7a08e4a126834877e3106b4
[ "MIT" ]
null
null
null
import os import unittest from pathlib import Path import pytest from paramak import SweepMixedShape class test_object_properties(unittest.TestCase): def test_solid_construction(self): """checks that a SweepMixedShape solid can be created""" test_shape = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[ (50, 0), (20, 50), (50, 100) ] ) test_shape.create_solid() assert test_shape.solid is not None def test_solid_construction(self): """checks that a SweepMixedShape solid can be created with workplane YZ""" test_shape = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[ (50, 0), (20, 50), (50, 100) ], workplane='YZ', path_workplane="YX" ) assert test_shape.solid is not None def test_solid_construction_workplane_XZ(self): """checks that a SweepMixedShape solid can be created with workplane XZ""" test_shape = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[ (50, 0), (20, 50), (50, 100) ], workplane='XZ', path_workplane="XY" ) assert test_shape.solid is not None def test_relative_shape_volume(self): """creates two SweepMixedShapes and checks that their relative volumes are correct""" test_shape_1 = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[ (50, 0), (30, 50), (50, 100) ] ) test_shape_1.create_solid() test_shape_2 = SweepMixedShape( points=[ (-20, -20, "straight"), (-20, 20, "spline"), (0, 40, "spline"), (20, 20, "circle"), (0, 0, "circle"), (20, -20, "straight") ], path_points=[ (50, 0), (30, 50), (50, 100) ] ) test_shape_2.create_solid() assert test_shape_1.volume == pytest.approx( test_shape_2.volume * 0.25, rel=0.01) def test_iterable_azimuthal_placement(self): """checks that swept solids can be placed at multiple azimuth placement angles""" test_shape = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[ (50, 0), (30, 50), (60, 100), (50, 150) ] ) test_shape.create_solid() test_volume = test_shape.volume test_shape.azimuth_placement_angle = [0, 90, 180, 270] assert test_shape.volume == pytest.approx(test_volume * 4, rel=0.01) def test_workplane_path_workplane_error_raises(self): """checks that errors are raised when disallowed workplane and path_workplane combinations are used""" def workplane_and_path_workplane_equal(): test_shape = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[(50, 0), (30, 50), (60, 100), (50, 150)], workplane="XZ", path_workplane="XZ" ) def invalid_relative_workplane_and_path_workplane(): test_shape = SweepMixedShape( points=[ (-10, -10, "straight"), (-10, 10, "spline"), (0, 20, "spline"), (10, 10, "circle"), (0, 0, "circle"), (10, -10, "straight") ], path_points=[(50, 0), (30, 50), (60, 100), (50, 150)], workplane="XZ", path_workplane="YZ" ) self.assertRaises(ValueError, workplane_and_path_workplane_equal) self.assertRaises( ValueError, invalid_relative_workplane_and_path_workplane) if __name__ == "__main__": unittest.main()
29.089005
89
0.430166
5,401
0.972102
0
0
0
0
0
0
962
0.173146
571d88262578b13c16efd4393da7b28acd2cd972
458
py
Python
upload.py
newkisoft/newki-sql-backup
82690b25cfa57dc770210e5a3398954949271c0e
[ "MIT" ]
null
null
null
upload.py
newkisoft/newki-sql-backup
82690b25cfa57dc770210e5a3398954949271c0e
[ "MIT" ]
null
null
null
upload.py
newkisoft/newki-sql-backup
82690b25cfa57dc770210e5a3398954949271c0e
[ "MIT" ]
null
null
null
from boto3.s3.transfer import S3Transfer import boto3 import glob import os def upload_to_aws(local_file, bucket, s3_file): client = boto3.client('s3', aws_access_key_id='###',aws_secret_access_key='###') transfer = S3Transfer(client) transfer.upload_file(local_file, bucket, local_file) files = glob.glob("*.bak") for file in files: print(file) uploaded = upload_to_aws(file, 'newki-backup', file) os.remove(file)
28.625
84
0.69869
0
0
0
0
0
0
0
0
35
0.076419
571dbed119712d82f6343f841d5c39a1d78ee427
996
py
Python
run_rnn.py
iqbaalmuhmd/CNNnumpyTest
eaecf5bc53a7b5c932a82d38cc6ca2a40430af4b
[ "MIT" ]
332
2017-06-13T10:40:05.000Z
2022-03-11T15:10:02.000Z
run_rnn.py
iqbaalmuhmd/CNNnumpyTest
eaecf5bc53a7b5c932a82d38cc6ca2a40430af4b
[ "MIT" ]
9
2017-06-16T02:36:06.000Z
2021-05-09T06:01:34.000Z
run_rnn.py
iqbaalmuhmd/CNNnumpyTest
eaecf5bc53a7b5c932a82d38cc6ca2a40430af4b
[ "MIT" ]
105
2017-06-15T06:40:44.000Z
2022-03-09T06:38:59.000Z
import numpy as np from deepnet.nnet import RNN from deepnet.solver import sgd_rnn def text_to_inputs(path): """ Converts the given text into X and y vectors X : contains the index of all the characters in the text vocab y : y[i] contains the index of next character for X[i] in the text vocab """ with open(path) as f: txt = f.read() X, y = [], [] char_to_idx = {char: i for i, char in enumerate(set(txt))} idx_to_char = {i: char for i, char in enumerate(set(txt))} X = np.array([char_to_idx[i] for i in txt]) y = [char_to_idx[i] for i in txt[1:]] y.append(char_to_idx['.']) y = np.array(y) vocab_size = len(char_to_idx) return X, y, vocab_size, char_to_idx, idx_to_char if __name__ == "__main__": X, y, vocab_size, char_to_idx, idx_to_char = text_to_inputs('data/Rnn.txt') rnn = RNN(vocab_size,vocab_size,char_to_idx,idx_to_char) rnn = sgd_rnn(rnn,X,y,10,10,0.1)
27.666667
79
0.625502
0
0
0
0
0
0
0
0
231
0.231928
571ddbe314e19b402b88195037ee31e371ecdddf
5,421
py
Python
lcclassifier/experiments/attnstats.py
oscarpimentel/astro-lightcurves-classifier
f697b43e22bd8c92c1b9df514be8565c736dd7cc
[ "MIT" ]
1
2021-12-31T18:00:08.000Z
2021-12-31T18:00:08.000Z
lcclassifier/experiments/attnstats.py
oscarpimentel/astro-lightcurves-classifier
f697b43e22bd8c92c1b9df514be8565c736dd7cc
[ "MIT" ]
null
null
null
lcclassifier/experiments/attnstats.py
oscarpimentel/astro-lightcurves-classifier
f697b43e22bd8c92c1b9df514be8565c736dd7cc
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import division from . import _C import torch from fuzzytorch.utils import TDictHolder, tensor_to_numpy, minibatch_dict_collate import numpy as np from fuzzytools.progress_bars import ProgressBar, ProgressBarMulti import fuzzytools.files as files import fuzzytools.datascience.metrics as fcm from fuzzytools.matplotlib.utils import save_fig import matplotlib.pyplot as plt import fuzzytorch.models.seq_utils as seq_utils from scipy.optimize import curve_fit from lchandler import _C as _Clchandler from lchandler.plots.lc import plot_lightcurve from .utils import check_attn_scores EPS = _C.EPS ################################################################################################################################################### def local_slope_f(time, m, n): return time*m+n def get_local_slope(days, obs, j, dj, p0=[0,0], ): assert not dj%2==0 assert dj>=3 ji = max(0, j-dj//2) jf = min(j+dj//2+1, len(obs)) sub_days = days[ji:jf] # sequence steps sub_obs = obs[ji:jf] # sequence steps popt, pcov = curve_fit(local_slope_f, sub_days, sub_obs, p0=p0) local_slope_m, local_slope_n = popt return local_slope_m, local_slope_n, sub_days, sub_obs ################################################################################################################################################### def save_attnstats(train_handler, data_loader, save_rootdir, eps:float=EPS, dj=3, min_len=3, **kwargs): train_handler.load_model() # important, refresh to best model train_handler.model.eval() # important, model eval mode dataset = data_loader.dataset # get dataset is_parallel = 'Parallel' in train_handler.model.get_name() if not is_parallel: return attn_scores_collection = {b:[] for kb,b in enumerate(dataset.band_names)} with torch.no_grad(): tdicts = [] for ki,in_tdict in enumerate(data_loader): train_handler.model.autoencoder['encoder'].add_extra_return = True _tdict = train_handler.model(TDictHolder(in_tdict).to(train_handler.device)) train_handler.model.autoencoder['encoder'].add_extra_return = False tdicts += [_tdict] tdict = minibatch_dict_collate(tdicts) for kb,b in enumerate(dataset.band_names): p_onehot = tdict[f'input/onehot.{b}'][...,0] # (n,t) #p_rtime = tdict[f'input/rtime.{b}'][...,0] # (n,t) #p_dtime = tdict[f'input/dtime.{b}'][...,0] # (n,t) #p_x = tdict[f'input/x.{b}'] # (n,t,i) #p_rerror = tdict[f'target/rerror.{b}'] # (n,t,1) #p_rx = tdict[f'target/recx.{b}'] # (n,t,1) # print(tdict.keys()) uses_attn = any([f'attn_scores' in k for k in tdict.keys()]) if not uses_attn: return ### attn scores attn_scores = tdict[f'model/attn_scores/encz.{b}'] # (n,h,qt) assert check_attn_scores(attn_scores) attn_scores_mean = attn_scores.mean(dim=1)[...,None] # (n,h,qt)>(n,qt)>(n,qt,1) # mean attention score among the heads: not a distribution attn_scores_min_max = seq_utils.seq_min_max_norm(attn_scores_mean, p_onehot) # (n,qt,1) ### stats lcobj_names = dataset.get_lcobj_names() bar = ProgressBar(len(lcobj_names)) for k,lcobj_name in enumerate(lcobj_names): lcobj = dataset.lcset[lcobj_name] lcobjb = lcobj.get_b(b) # complete lc p_onehot_k = tensor_to_numpy(p_onehot[k]) # (n,t)>(t) b_len = p_onehot_k.sum() assert b_len<=len(lcobjb), f'{b_len}<={len(lcobjb)}' if not b_len>=min_len: continue attn_scores_k = tensor_to_numpy(attn_scores_mean[k,:b_len,0]) # (n,qt,1)>(t) attn_scores_min_max_k = tensor_to_numpy(attn_scores_min_max[k,:b_len,0]) # (n,qt,1)>(t) days = lcobjb.days[:b_len] # (t) obs = lcobjb.obs[:b_len] # (t) obse = lcobjb.obse[:b_len] # (t) snr = lcobjb.get_snr(max_len=b_len) max_obs = np.max(obs) peak_day = days[np.argmax(obs)] duration = days[-1]-days[0] bar(f'b={b}; lcobj_name={lcobj_name}; b_len={b_len}; snr={snr}; max_obs={max_obs}') lc_features = [] for j in range(0, b_len): j_features = { f'j':j, f'attn_scores_k.j':attn_scores_k[j], f'attn_scores_min_max_k.j':attn_scores_min_max_k[j], f'days.j':days[j], f'obs.j':obs[j], f'obse.j':obse[j], } local_slope_m, local_slope_n, sub_days, sub_obs = get_local_slope(days, obs, j, dj) # get local slope j_features.update({ f'local_slope_m.j~dj={dj}':local_slope_m, f'local_slope_n.j~dj={dj}':local_slope_n, f'peak_distance.j~dj={dj}~mode=local':days[j]-peak_day, f'peak_distance.j~dj={dj}~mode=mean':np.mean(sub_days)-peak_day, f'peak_distance.j~dj={dj}~mode=median':np.median(sub_days)-peak_day, }) lc_features += [j_features] attn_scores_collection[b] += [{ f'c':dataset.class_names[lcobj.y], f'b_len':b_len, f'peak_day':peak_day, f'duration':duration, f'snr':snr, f'max_obs':max_obs, f'lc_features':lc_features, }] bar.done() results = { 'model_name':train_handler.model.get_name(), 'survey':dataset.survey, 'band_names':dataset.band_names, 'class_names':dataset.class_names, 'max_day':dataset.max_day, 'attn_scores_collection':attn_scores_collection, } ### save file save_filedir = f'{save_rootdir}/{dataset.lcset_name}/id={train_handler.id}.d' files.save_pickle(save_filedir, results) # save file dataset.reset_max_day() # very important!! dataset.calcule_precomputed() # very important!! return
35.431373
147
0.65855
0
0
0
0
0
0
0
0
1,568
0.289246
571ea096124b732422144c10209f4cc5cb3c06c7
1,473
py
Python
get_item_by_key.py
flyco2016/my_python_module_project
6e1ac7f074f7b57403d7b7c6adadab17a26fc27d
[ "Apache-2.0" ]
null
null
null
get_item_by_key.py
flyco2016/my_python_module_project
6e1ac7f074f7b57403d7b7c6adadab17a26fc27d
[ "Apache-2.0" ]
1
2019-01-04T06:37:06.000Z
2019-01-04T06:37:06.000Z
get_item_by_key.py
flyco2016/my_python_module_project
6e1ac7f074f7b57403d7b7c6adadab17a26fc27d
[ "Apache-2.0" ]
null
null
null
# 处理嵌套的根据键取值 def getItemByKey(obj, key, result=None): if isinstance(obj, dict): for k in obj: if key == k: if isinstance(result, list): if isinstance(obj[k], list): result.extend(obj[k]) else: result.append(obj[k]) elif result is None: result = obj[k] else: result = [result] result.append(obj[k]) else: if isinstance(obj[k], dict) or isinstance(obj[k], list): result = getItemByKey(obj[k], key, result) elif isinstance(obj, list): for i in obj: if isinstance(i, dict) or isinstance(i, list): result = getItemByKey(i, key, result) return result[0] if isinstance(result, list) and len(result) == 1 else result def getItemByKeyInMyMethod(dict_obj, key, default=None): import types for k ,v in dict_obj.items(): if k == key: return v else: if type(v) is dict: ret = getItemByKeyInMyMethod(v, key, default) if ret is not default: return ret return default if __name__ == "__main__": test_dic = {'a': 1, 'b': 2, 'c': {'a': 1, 'b': {'b': 4}}} r1 = getItemByKey(test_dic, 'b') r2 = getItemByKeyInMyMethod(test_dic, 'b') print(r1, r2, sep='\n')
33.477273
81
0.491514
0
0
0
0
0
0
0
0
70
0.046885
571ee3c5442f3448677cce9af4cb7b0165e2aa98
148
py
Python
tests/test_tail_chunks.py
moskytw/tacit
58286a71140be150438d10acf93028ef5f78f6d1
[ "MIT" ]
null
null
null
tests/test_tail_chunks.py
moskytw/tacit
58286a71140be150438d10acf93028ef5f78f6d1
[ "MIT" ]
null
null
null
tests/test_tail_chunks.py
moskytw/tacit
58286a71140be150438d10acf93028ef5f78f6d1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from tacit import tac_slices for chunk in tac_slices('data/ordered.list', 2): print repr(chunk)
18.5
48
0.675676
0
0
0
0
0
0
0
0
63
0.425676
571f77622a48c2fb03cc44698429e534d7932593
7,166
py
Python
calories.py
davidsvaughn/har-pytorch
334733a1e870637c9077d16fc15e0b1954a6dfc5
[ "MIT" ]
5
2020-09-17T12:17:13.000Z
2022-02-28T08:07:49.000Z
calories.py
davidsvaughn/har-pytorch
334733a1e870637c9077d16fc15e0b1954a6dfc5
[ "MIT" ]
null
null
null
calories.py
davidsvaughn/har-pytorch
334733a1e870637c9077d16fc15e0b1954a6dfc5
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import json from datetime import datetime import psycopg2 import functools import requests ############################################################## ## https://www.exrx.net/Calculators/WalkRunMETs ## https://www.cdc.gov/growthcharts/clinical_charts.htm ## https://help.fitbit.com/articles/en_US/Help_article/1141 ############################################################## URL = 'https://f73lzrw31i.execute-api.us-west-2.amazonaws.com/default/demo_data_server' HEADER = {'x-api-key': 'XXXXXX'} class adict(dict): def __init__(self, *av, **kav): dict.__init__(self, *av, **kav) self.__dict__ = self def tofloat(x): try: return float(x.strip()) except: return None @functools.lru_cache(maxsize=250) def request_demo_data(pid): payload = {'pid': pid} r = requests.post(URL, headers=HEADER, data=json.dumps(payload)) return adict((k.strip("' "), tofloat(v)) for k,v in (item.split(':') for item in r.text[2:-2].split(','))) ############################################################################################# ############################################################################################# revibe = adict() revibe.DBNAME = 'revibe' revibe.HOST = 'prd.c5fw7irdcxik.us-west-2.rds.amazonaws.com' #revibe.PORT = '5432' revibe.USER = 'dave' revibe.PASS = 'tnoiSLoHjEBZE6JKsFgY' revibe.SSLMODE = 'require' CONN = None def get_conn_string(creds): conn_str = 'host='+ creds.HOST \ +' dbname='+ creds.DBNAME +' user=' + creds.USER \ +' password='+ creds.PASS \ + (' sslmode='+ creds.SSLMODE if 'SSLMODE' in creds else '') \ + (' port='+ creds.PORT if 'PORT' in creds else '') return conn_str def get_conn(creds): conn_str = get_conn_string(creds) return psycopg2.connect(conn_str) def run_sql(sql, verbose=False): global CONN if CONN is None: CONN = get_conn(revibe) if verbose: print(sql) with CONN: data = pd.read_sql(sql, CONN) if verbose: print(data.shape) return (data) def get_pid_data(pid): table = 'private.person_demographic_view' sql_command = "SELECT * FROM {} WHERE (person_id={});".format(table, pid) df = run_sql(sql_command) if df.size==0: raise ValueError('SQL returned no records:\n\t{}'.format(sql_command)) data = adict() bday = df.birthday.values[0] sex = df.sex_id.values[0] grade = df.grade.values[0] ht = df.height.values[0] wt = df.weight.values[0] wrist = df.wrist_id.values[0] data.pid = pid data.age = None if bday is not None: data.bday = str(bday) bday = pd.Timestamp(str(bday)).to_pydatetime() data.age = np.round((datetime.now()-bday).total_seconds() / (60*60*2*365), 2) ## in months data.sex = None if sex==0 or sex>2 else sex data.grade = None if grade==0 else grade data.ht = None if ht==0 else ht data.wt = None if wt==0 else wt data.wrist = None if wrist==0 else wrist return data ## revised Harris-Benedict BMR equations... def bmr_hb(dd, sex=None): try: sex = dd.sex if sex is None else sex if sex==1: return 6.078*dd.wt + 12.192*dd.ht - 0.473*dd.age + 88.4 if sex==2: return 4.196*dd.wt + 7.874*dd.ht - 0.36*dd.age + 447.6 return None except ex: return None ## basal metabolic rate (kCals per day) def BMR(dd): try: if dd.sex is None: bmr = (bmr_hb(dd,1) + bmr_hb(dd,2))/2 else: bmr = bmr_hb(dd) return int(round(bmr)) except ex: return None ## find index j into y that minimizes abs(x-y[j]) def xminy(x, y): return abs(x-y).argmin(axis=-1) class GrowthChart(object): ## columns: age ht_boy ht_girl wt_boy wt_girl def __init__(self, fn='growth.tsv'):#, path=None): # if path is None: path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # fn = os.path.join(path, fn) df = pd.read_csv(fn, sep='\t') self.G = df.values self.S = np.array([[0.415, 0.413], [0.675, 0.57]]) def fill_data(self, d): if d.age is None: if d.ht is None or d.wt is None: raise ValueError('Either birthday, or both height and weight, must be non-null') else: row = xminy(d.age, self.G[:,0]) cols = np.array([d.sex] if d.sex is not None else [1, 2]) if d.ht is None: d.ht = self.G[row, cols].mean() if d.wt is None: d.wt = self.G[row, cols+2].mean() d.ws = np.round(d.ht * self.S[0, cols-1].mean(), 2) ## walk stride d.rs = np.round(d.ht * self.S[1, cols-1].mean(), 2) ## run stride #d.bmr = BMR(d) ## basal metabolic rate (kCals per day) GC = None @functools.lru_cache(maxsize=250) def get_demo_data(pid): data = get_pid_data(pid) global GC if GC is None: GC = GrowthChart() GC.fill_data(data) return data def fixnum(x, dtype=float): if x is None: return None x = dtype(x) if x==0: return None return x def validate_demo_data(data): data.ht = fixnum(data.ht) data.wt = fixnum(data.wt) data.sex = fixnum(data.sex, int) if data.sex is not None and data.sex>2: data.sex = None data.age = None if data.bday is None: if data.ht is None or data.wt is None: raise ValueError('Either birthday, or both height and weight, must be non-null') else: bday = pd.Timestamp(str(data.bday)).to_pydatetime() data.age = np.round((datetime.now()-bday).total_seconds() / (60*60*2*365), 2) ## in months # data.bday = data.bday.strftime('%Y-%m-%d') @functools.lru_cache(maxsize=250) def make_demo_data(bday=None, ht=None, wt=None, sex=None): data = adict() data.bday = bday or None data.ht = ht or None data.wt = wt or None data.sex = sex or None validate_demo_data(data) ######### global GC if GC is None: GC = GrowthChart() GC.fill_data(data) return data ## s : speed in mph... sec by second vector of speeds.... ## w : weight in lbs ## mode : 2=='walk', 3=='run' ## returns : calories summed across all seconds def calsum(s, w, mode=2): su, wu = 26.8, 2.2 s = s*su w = w/wu if mode==3:## run mode vo = 0.2*s else: ## walk mode == 2 fwvo = 21.11 - 0.3593*s + 0.003*s*s - 3.5 wvo = 0.1*s d = 30 a = np.clip((s-(100-d))/(2*d), 0, 1) vo = wvo*(1.-a) + fwvo*a ############################# return np.sum(vo*w) / 12000.0 ################################### if __name__ == "__main__": pid = 135 ## 135,"1974-05-28",1,0,74,196,1 pid = 169 ## 169,"1980-12-01",1,12,72,170,2 pid = 18947 ## 18947,"2010-08-28",0,0,0,0,0 pid = 10885 ## # dd = request_demo_data(pid) # print(dd) # dd = get_demo_data(pid) # print(dd) ############# dd = make_demo_data(bday='2010-08-28', ht='54.035', wt='69.69', sex='3') # dd = make_demo_data(ht='70', wt='120', sex='2') print(dd)
30.887931
110
0.558889
1,205
0.168155
0
0
813
0.113452
0
0
2,055
0.286771
5720538c6a907cf78b7908572f98d96063191e14
1,651
py
Python
pagelets/conf.py
rysdyk/django-pagelets
31669771b7ecf8ade3dae64465d3fa984d88d0f9
[ "BSD-3-Clause" ]
null
null
null
pagelets/conf.py
rysdyk/django-pagelets
31669771b7ecf8ade3dae64465d3fa984d88d0f9
[ "BSD-3-Clause" ]
null
null
null
pagelets/conf.py
rysdyk/django-pagelets
31669771b7ecf8ade3dae64465d3fa984d88d0f9
[ "BSD-3-Clause" ]
null
null
null
from django.conf import settings CONTENT_AREAS = getattr(settings, 'PAGELET_CONTENT_AREAS', ( ('main', 'Main'), )) CONTENT_AREA_DEFAULT = getattr(settings, 'PAGELET_CONTENT_AREA_DEFAULT', 'main') CONTENT_TYPES = getattr(settings, 'PAGELET_CONTENT_TYPES', ( ('html', 'HTML', (), {},), ('markdown', 'Markdown', (), {},), ('wymeditor', 'WYMeditor', ('wymeditor/jquery.wymeditor.js',), {},), ('textile', 'Textile', (), {},), )) + getattr(settings, 'PAGELET_CONTENT_TYPES_EXTRA', ()) CONTENT_TYPE_CHOICES = tuple((c[0], c[1]) for c in CONTENT_TYPES) CONTENT_TYPE_DEFAULT = getattr(settings, 'PAGELET_CONTENT_TYPE_DEFAULT', 'html') try: ATTACHMENT_PATH = settings.PAGELET_ATTACHMENT_PATH except AttributeError: ATTACHMENT_PATH = getattr(settings, 'PAGE_ATTACHMENT_PATH', 'attachments/pages/') # settings.PAGELET_TEMPLATE_TAGS is a list of template tag names that # will load before each pagelet is rendered, allowing custom template # tags to be included without including {% load <template_tag> %} tags = set(['pagelet_tags']) if hasattr(settings, 'PAGELET_TEMPLATE_TAGS'): for tag in settings.PAGELET_TEMPLATE_TAGS: tags.add(tag) AUTO_LOAD_TEMPLATE_TAGS = '{%% load %s %%}' % ' '.join(tags) BASE_TEMPLATES = getattr(settings, 'PAGELET_BASE_TEMPLATES', []) BASE_TEMPLATE_DEFAULT = getattr(settings, 'PAGELET_BASE_TEMPLATE_DEFAULT', None) INLINE_PAGELET_EXTRA = getattr(settings, 'PAGELET_INLINE_PAGELET_EXTRA', 0) INLINE_SHARED_EXTRA = getattr(settings, 'PAGELET_INLINE_SHARED_EXTRA', 0) INLINE_ATTACHMENT_EXTRA = getattr(settings, 'PAGELET_INLINE_ATTACHMENT_EXTRA', 0)
36.688889
85
0.723198
0
0
0
0
0
0
0
0
711
0.430648
5721e5bf810d647e593fd1d82e6a86cb2fa7e570
14,744
py
Python
alphad3m/alphad3m/metalearning/grammar_builder.py
VIDA-NYU/alphad3m
db40193a448300d87442c451f9da17fa5cb845fd
[ "Apache-2.0" ]
null
null
null
alphad3m/alphad3m/metalearning/grammar_builder.py
VIDA-NYU/alphad3m
db40193a448300d87442c451f9da17fa5cb845fd
[ "Apache-2.0" ]
null
null
null
alphad3m/alphad3m/metalearning/grammar_builder.py
VIDA-NYU/alphad3m
db40193a448300d87442c451f9da17fa5cb845fd
[ "Apache-2.0" ]
null
null
null
import logging import numpy as np from scipy import stats from collections import OrderedDict from alphad3m.metalearning.resource_builder import load_metalearningdb from alphad3m.metalearning.dataset_similarity import get_similar_datasets from alphad3m.primitive_loader import load_primitives_by_name, load_primitives_by_id logger = logging.getLogger(__name__) def load_related_pipelines(dataset_path, target_column, task_keywords): available_primitives = load_primitives_by_id() all_pipelines = load_metalearningdb() similar_datasets = get_similar_datasets('dataprofiles', dataset_path, target_column, task_keywords) task_pipelines = [] for similar_dataset in similar_datasets.keys(): if similar_dataset not in all_pipelines['pipeline_performances']: continue for pipeline_id, pipeline_performances in all_pipelines['pipeline_performances'][similar_dataset].items(): primitive_ids = all_pipelines['pipeline_structure'][pipeline_id] if is_available_primitive(primitive_ids, available_primitives): for index in range(len(pipeline_performances['score'])): primitives = [available_primitives[p] for p in primitive_ids] # Use the current names of primitives score = pipeline_performances['score'][index] metric = pipeline_performances['metric'][index] task_pipelines.append({'pipeline': primitives, 'score': score, 'metric': metric, 'dataset': similar_dataset, 'pipeline_repr': '_'.join(primitives)}) logger.info('Found %d related pipelines', len(task_pipelines)) return task_pipelines def create_metalearningdb_grammar(task_name, dataset_path, target_column, task_keywords): pipelines = load_related_pipelines(dataset_path, target_column, task_keywords) patterns, primitives = extract_patterns(pipelines) merged_patterns, empty_elements = merge_patterns(patterns) grammar = format_grammar(task_name, merged_patterns, empty_elements) return grammar, primitives def format_grammar(task_name, patterns, empty_elements): if len(patterns) == 0: logger.info('Empty patterns, no grammar have been generated') return None grammar = 'S -> %s\n' % task_name grammar += task_name + ' -> ' + ' | '.join([' '.join(p) for p in patterns]) for element in sorted(set([e for sublist in patterns for e in sublist])): # Sort to have a deterministic grammar production_rule = element + " -> 'primitive_terminal'" if element in empty_elements: production_rule += " | 'E'" grammar += '\n' + production_rule logger.info('Grammar obtained:\n%s', grammar) return grammar def extract_patterns(pipelines, max_nro_patterns=15, min_frequency=3, adtm_threshold=0.5, mean_score_threshold=0.5, ratio_datasets=0.2): available_primitives = load_primitives_by_name() pipelines = calculate_adtm(pipelines) patterns = {} for pipeline_data in pipelines: if pipeline_data['adtm'] > adtm_threshold: # Skip pipelines with average distance to the minimum higher than the threshold continue primitive_types = [available_primitives[p]['type'] for p in pipeline_data['pipeline']] pattern_id = ' '.join(primitive_types) if pattern_id not in patterns: patterns[pattern_id] = {'structure': primitive_types, 'primitives': set(), 'datasets': set(), 'pipelines': [], 'scores': [], 'adtms': [], 'frequency': 0} patterns[pattern_id]['primitives'].update(pipeline_data['pipeline']) patterns[pattern_id]['datasets'].add(pipeline_data['dataset']) patterns[pattern_id]['pipelines'].append(pipeline_data['pipeline']) patterns[pattern_id]['scores'].append(pipeline_data['score']) patterns[pattern_id]['adtms'].append(pipeline_data['adtm']) patterns[pattern_id]['frequency'] += 1 logger.info('Found %d different patterns, after creating the portfolio', len(patterns)) # TODO: Group these removing conditions into a single loop # Remove patterns with fewer elements than the minimum frequency patterns = {k: v for k, v in patterns.items() if v['frequency'] >= min_frequency} logger.info('Found %d different patterns, after removing uncommon patterns', len(patterns)) # Remove patterns with undesirable primitives (AlphaD3M doesn't have support to handle some of these primitives) blacklist_primitives = {'d3m.primitives.data_transformation.dataframe_to_ndarray.Common', 'd3m.primitives.data_transformation.list_to_dataframe.DistilListEncoder', 'd3m.primitives.data_transformation.ndarray_to_dataframe.Common', 'd3m.primitives.data_transformation.horizontal_concat.DSBOX', 'd3m.primitives.data_transformation.horizontal_concat.DataFrameCommon', 'd3m.primitives.data_transformation.multi_horizontal_concat.Common', 'd3m.primitives.data_transformation.conditioner.Conditioner', 'd3m.primitives.data_transformation.remove_semantic_types.Common', 'd3m.primitives.data_transformation.replace_semantic_types.Common', 'd3m.primitives.data_transformation.remove_columns.Common', 'd3m.primitives.operator.dataset_map.DataFrameCommon', 'd3m.primitives.data_transformation.i_vector_extractor.IVectorExtractor'} patterns = {k: v for k, v in patterns.items() if not blacklist_primitives & v['primitives']} logger.info('Found %d different patterns, after blacklisting primitives', len(patterns)) unique_datasets = set() for pattern_id in patterns: scores = patterns[pattern_id]['scores'] adtms = patterns[pattern_id]['adtms'] patterns[pattern_id]['mean_score'] = np.mean(scores) patterns[pattern_id]['mean_adtm'] = np.mean(adtms) unique_datasets.update(patterns[pattern_id]['datasets']) # Remove patterns with low performances patterns = {k: v for k, v in patterns.items() if v['mean_score'] >= mean_score_threshold} logger.info('Found %d different patterns, after removing low-performance patterns', len(patterns)) # Remove patterns with low variability patterns = {k: v for k, v in patterns.items() if len(v['datasets']) >= len(unique_datasets) * ratio_datasets} logger.info('Found %d different patterns, after removing low-variability patterns', len(patterns)) if len(patterns) > max_nro_patterns: logger.info('Found many patterns, selecting top %d (max_nro_patterns)' % max_nro_patterns) sorted_patterns = sorted(patterns.items(), key=lambda x: x[1]['mean_score'], reverse=True) patterns = {k: v for k, v in sorted_patterns[:max_nro_patterns]} primitive_hierarchy = {} all_pipelines = [] all_performances = [] all_primitives = [] local_probabilities = {} for pattern_id, pattern in patterns.items(): for primitive in pattern['primitives']: primitive_type = available_primitives[primitive]['type'] if primitive_type not in primitive_hierarchy: primitive_hierarchy[primitive_type] = set() primitive_hierarchy[primitive_type].add(primitive) performances = [1 - x for x in pattern['adtms']] # Use adtms as performances because their are scaled all_pipelines += pattern['pipelines'] all_primitives += pattern['primitives'] all_performances += performances correlations = calculate_correlations(pattern['primitives'], pattern['pipelines'], performances) local_probabilities[pattern_id] = {} for primitive, correlation in correlations.items(): primitive_type = available_primitives[primitive]['type'] if primitive_type not in local_probabilities[pattern_id]: local_probabilities[pattern_id][primitive_type] = {} local_probabilities[pattern_id][primitive_type][primitive] = correlation correlations = calculate_correlations(set(all_primitives), all_pipelines, all_performances) global_probabilities = {} for primitive, correlation in correlations.items(): primitive_type = available_primitives[primitive]['type'] if primitive_type not in global_probabilities: global_probabilities[primitive_type] = {} global_probabilities[primitive_type][primitive] = correlation # Make deterministic the order of the patterns and hierarchy patterns = sorted(patterns.values(), key=lambda x: x['mean_score'], reverse=True) primitive_hierarchy = OrderedDict({k: sorted(v) for k, v in sorted(primitive_hierarchy.items(), key=lambda x: x[0])}) logger.info('Patterns:\n%s', patterns_repr(patterns)) logger.info('Hierarchy:\n%s', '\n'.join(['%s:\n%s' % (k, ', '.join(v)) for k, v in primitive_hierarchy.items()])) patterns = [p['structure'] for p in patterns] primitive_probabilities = {'global': global_probabilities, 'local': local_probabilities, 'types': available_primitives} primitive_info = {'hierarchy': primitive_hierarchy, 'probabilities': primitive_probabilities} return patterns, primitive_info def calculate_correlations(primitives, pipelines, scores, normalize=True): correlations = {} for primitive in primitives: occurrences = [1 if primitive in pipeline else 0 for pipeline in pipelines] correlation_coefficient, p_value = stats.pointbiserialr(occurrences, scores) if np.isnan(correlation_coefficient): # Assign a positive correlation (1) to NaN values correlation_coefficient = 1 if normalize: # Normalize the Pearson values, from [-1, 1] to [0, 1] range correlation_coefficient = (correlation_coefficient - (-1)) / 2 # xi − min(x) / max(x) − min(x) correlations[primitive] = round(correlation_coefficient, 4) return correlations def calculate_adtm(pipelines): dataset_performaces = {} pipeline_performances = {} for pipeline_data in pipelines: # Even the same dataset can be run under different metrics. So, use the metric to create the id of the dataset id_dataset = pipeline_data['dataset'] + '_' + pipeline_data['metric'] if id_dataset not in dataset_performaces: dataset_performaces[id_dataset] = {'min': float('inf'), 'max': float('-inf')} performance = pipeline_data['score'] if performance > dataset_performaces[id_dataset]['max']: dataset_performaces[id_dataset]['max'] = performance if performance < dataset_performaces[id_dataset]['min']: dataset_performaces[id_dataset]['min'] = performance id_pipeline = pipeline_data['pipeline_repr'] if id_pipeline not in pipeline_performances: pipeline_performances[id_pipeline] = {} if id_dataset not in pipeline_performances[id_pipeline]: pipeline_performances[id_pipeline][id_dataset] = pipeline_data['score'] else: # A pipeline can have different performances for a given dataset, choose the best one if pipeline_data['score'] > pipeline_performances[id_pipeline][id_dataset]: pipeline_performances[id_pipeline][id_dataset] = pipeline_data['score'] for pipeline_data in pipelines: id_pipeline = pipeline_data['pipeline_repr'] id_dataset_pipeline = pipeline_data['dataset'] + '_' + pipeline_data['metric'] dtm = 0 for id_dataset in pipeline_performances[id_pipeline]: # Iterate over the datasets where the pipeline was used minimum = dataset_performaces[id_dataset]['min'] maximum = dataset_performaces[id_dataset]['max'] if id_dataset_pipeline == id_dataset: score = pipeline_data['score'] else: score = pipeline_performances[id_pipeline][id_dataset] if minimum != maximum: dtm += (maximum - score) / (maximum - minimum) adtm = dtm / len(pipeline_performances[id_pipeline]) pipeline_data['adtm'] = adtm return pipelines def merge_patterns(grammar_patterns): patterns = sorted(grammar_patterns, key=lambda x: len(x), reverse=True) empty_elements = set() skip_patterns = [] for pattern in patterns: for element in pattern: modified_pattern = [e for e in pattern if e != element] for current_pattern in patterns: if modified_pattern == current_pattern: empty_elements.add(element) skip_patterns.append(modified_pattern) for skip_pattern in skip_patterns: if skip_pattern in patterns: patterns.remove(skip_pattern) return patterns, empty_elements def is_available_primitive(pipeline_primitives, available_primitives, verbose=False): for primitive in pipeline_primitives: if primitive not in available_primitives: if verbose: logger.warning('Primitive %s is not longer available' % primitive) return False return True def patterns_repr(patterns): patterns_string = [] for pattern in patterns: pretty_string = '' pretty_string += 'structure: [%s]' % ', '.join([i for i in pattern['structure']]) pretty_string += ', frequency: %d' % pattern['frequency'] if 'mean_score' in pattern: pretty_string += ', mean_score: %.3f' % pattern['mean_score'] if 'mean_adtm' in pattern: pretty_string += ', mean_adtm: %.3f' % pattern['mean_adtm'] patterns_string.append(pretty_string) return '\n'.join(patterns_string) def test_dataset(dataset_id, task_name='TASK'): from os.path import join import json dataset_folder_path = join('/Users/rlopez/D3M/datasets/seed_datasets_current/', dataset_id) dataset_path = join(dataset_folder_path, 'TRAIN/dataset_TRAIN/tables/learningData.csv') problem_path = join(dataset_folder_path, 'TRAIN/problem_TRAIN/problemDoc.json') with open(problem_path) as fin: problem_doc = json.load(fin) task_keywords = problem_doc['about']['taskKeywords'] target_column = problem_doc['inputs']['data'][0]['targets'][0]['colName'] logger.info('Evaluating dataset %s with task keywords=%s' % (dataset_id, str(task_keywords))) create_metalearningdb_grammar(task_name, dataset_path, target_column, task_keywords) if __name__ == '__main__': test_dataset('185_baseball_MIN_METADATA')
48.983389
165
0.686788
0
0
0
0
0
0
0
0
3,566
0.241795
5723328e5cd271a82c8d25b908bc2b420246795d
4,512
py
Python
deap_learning.py
fzjcdt/Genetic-CNN
6bd53f3f429434557b7fbf1122020259d910f618
[ "Apache-2.0" ]
2
2019-10-08T08:27:41.000Z
2021-12-02T07:37:27.000Z
deap_learning.py
fzjcdt/Genetic-CNN
6bd53f3f429434557b7fbf1122020259d910f618
[ "Apache-2.0" ]
null
null
null
deap_learning.py
fzjcdt/Genetic-CNN
6bd53f3f429434557b7fbf1122020259d910f618
[ "Apache-2.0" ]
null
null
null
from deap import base, creator, tools import random """ 每个individual是一个list,包含10个元素,需要演化到元素和最小 """ # ****************************Types******************************** # def create(name, base, **kargs): # Creates a new class named *name* inheriting from *base* # A negative weight element corresponds to the minimization of # the associated objective and positive weight to the maximization. creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) # an Individual class that is derived from a list with a fitness attribute set # to the just created fitness """ create("Foo", list, bar=dict, spam=1) This above line is exactly the same as defining in the :mod:`creator` module something like the following. :: class Foo(list): spam = 1 def __init__(self): self.bar = dict() """ creator.create("Individual", list, fitness=creator.FitnessMin) # ****************************Initialization******************************** IND_SIZE = 10 toolbox = base.Toolbox() # def register(self, alias, function, *args, **kargs): # Register a *function* in the toolbox under the name *alias*. # *args当function被调用时自动作为function相应参数 """ >>> def func(a, b, c=3): ... print(a, b, c) ... >>> tools = Toolbox() >>> tools.register("myFunc", func, 2, c=4) >>> tools.myFunc(3) 2 3 4 """ toolbox.register("attribute", random.random) # def initRepeat(container, func, n): # Call the function *container* with a generator function corresponding # to the calling *n* times the function *func*. """ >>> initRepeat(list, random.random, 2) # doctest: +ELLIPSIS, ... # doctest: +NORMALIZE_WHITESPACE [0.6394..., 0.0250...] """ # 将IND_SIZE个 random.random()加入到Individual里,即初始化Individual,每个Individual list里共IND_SIZE个初始值 toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attribute, n=IND_SIZE) # 将individual加入到population里,n由初始化时指定 toolbox.register("population", tools.initRepeat, list, toolbox.individual) # ****************************Operators******************************** def evaluate(individual): # 评估函数为individual里IND_SIZE个值的和 # 这里,很重要,返回的是(a, ),以为weight是(fitness, ) # 也可以返回(sum(individual), ) return sum(individual), # def cxTwoPoint(ind1, ind2): # Executes a two-point crossover on the input :term:`sequence` individuals. toolbox.register("mate", tools.cxTwoPoint) # gaussian mutation with mu and sigma # The *indpb* argument is the probability of each attribute to be mutated. # 元素增减一个小的值 toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1) # def selTournament(individuals, k, tournsize, fit_attr="fitness"): # Select the best individual among *tournsize* randomly chosen # individuals, *k* times. The list returned contains # references to the input *individuals*. toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("evaluate", evaluate) def main(): pop = toolbox.population(n=50) CXPB, MUTPB, NGEN = 0.5, 0.2, 40 # map(func, *iterables) --> map object # Make an iterator that computes the function using arguments from # each of the iterables. # map 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。 fitnesses = map(toolbox.evaluate, pop) for ind, fit in zip(pop, fitnesses): ind.fitness.values = fit # ind.fitness = fit for g in range(NGEN): # 每次拿三个,选其中最好的,一直选到len(pop)个 offspring = toolbox.select(pop, len(pop)) # 什么的offspring还指向是pop里的同一个对象,需要克隆一下 # 担心的是一个对象/individual被选到了两次或多次 offspring = list(map(toolbox.clone, offspring)) for child1, child2 in zip(offspring[::2], offspring[1::2]): if random.random() < CXPB: toolbox.mate(child1, child2) del child1.fitness.values del child2.fitness.values for mutant in offspring: if random.random() < MUTPB: toolbox.mutate(mutant) del mutant.fitness.values # 上面删除了fitness,下面找出删除的individual,只需要重新评估这些就行,不用重新评估所有 invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit pop[:] = offspring return pop for ind in main(): print(evaluate(ind))
33.176471
89
0.629876
0
0
0
0
0
0
0
0
3,179
0.639381
57262781980201cf7735ba35e8965dd0cb76ade8
1,674
py
Python
pacman/utils/replay_buffer.py
i-rme/openai-pacman
4a80ed023ed2bdf031990147acbbeea904b9fc8e
[ "MIT" ]
2
2020-01-26T23:06:57.000Z
2021-04-12T08:36:55.000Z
pacman/utils/replay_buffer.py
i-rme/openai-pacman
4a80ed023ed2bdf031990147acbbeea904b9fc8e
[ "MIT" ]
null
null
null
pacman/utils/replay_buffer.py
i-rme/openai-pacman
4a80ed023ed2bdf031990147acbbeea904b9fc8e
[ "MIT" ]
null
null
null
from collections import deque import random import numpy as np class ReplayBuffer: ''' construct a buffer object that stores the past moves and samples a set of subsamples ''' def __init__(self, buffer_size): self.buffer_size = buffer_size self.count = 0 self.buffer = deque() def add(self, s, a, r, d, s2): ''' add an experience to the buffer s: current state, a: action, r: reward, d: done, s2: next state ''' experience = (s, a, r, d, s2) if self.count < self.buffer_size: self.buffer.append(experience) self.count += 1 else: self.buffer.popleft() self.buffer.append(experience) def size(self): return self.count def clear(self): self.buffer.clear() self.count = 0 def sample(self, batch_size): ''' sample a total of elements equal to batch_size from buffer if buffer contains enough elements; otherwise, return all elements list1 = [1, 2, 3, 4, 5, 6] random.sample(list1, 3) -- OUTPUT: [3, 1, 2] ''' batch = [] if self.count < batch_size: batch = random.sample(self.buffer, self.count) else: batch = random.sample(self.buffer, batch_size) # map each experience in batch in batches of # [array([s1, ..., sN]), ..., array([s21, ..., s2N])] s_batch, a_batch, r_batch, d_batch, s2_batch = list(map(np.array, list(zip(*batch)))) return s_batch, a_batch, r_batch, d_batch, s2_batch
27.442623
93
0.548387
1,610
0.961768
0
0
0
0
0
0
641
0.382915
5726ab8f943f02dfa0eee1936447786383a1ce72
9,126
py
Python
tests/entities/test_creature.py
Flame753/ARPG
f931d3437a83995b43bdddc68cb5ba89922dc259
[ "MIT" ]
null
null
null
tests/entities/test_creature.py
Flame753/ARPG
f931d3437a83995b43bdddc68cb5ba89922dc259
[ "MIT" ]
null
null
null
tests/entities/test_creature.py
Flame753/ARPG
f931d3437a83995b43bdddc68cb5ba89922dc259
[ "MIT" ]
null
null
null
# Standard library imports from pprint import pprint import unittest # Local application imports from context import entities from entities import creatures from entities import items from entities import currency from entities import slots class TestCreature(unittest.TestCase): def setUp(self): self.dagger = items.Dagger() self.copper_coin = currency.CopperCoin() self.bread = items.Bread() def equipment_slot_helper(self, creature_obj, answer): list_of_slots = [slots.Head, slots.Body, slots.Legs, slots.Boots, slots.OneHanded, slots.TwoHanded] for slot in list_of_slots: creature_obj.equippable_slots.slots.get(slot)._ensure_inventory() self.assertDictEqual(creature_obj.equippable_slots.slots.get(slot).inventory, answer) def test_class_initializer(self): creature_A = creatures.Creature() creature_B = creatures.Creature() self.assertFalse(creature_A is creature_B) self.assertFalse(creature_A.equippable_slots is creature_B.equippable_slots) self.assertEqual(creature_A.inventory, creature_B.inventory) self.assertFalse(creature_A.inventory is creature_B.inventory) self.assertEqual(creature_A.coin_pouch, creature_B.coin_pouch) self.assertFalse(creature_A.coin_pouch is creature_B.coin_pouch) def test_add_item(self): creature = creatures.Creature() creature.add_item(self.dagger) self.assertDictEqual(creature.inventory.inventory, {self.dagger: {'amount': 1}}) creature.add_item(self.copper_coin, 2) self.assertDictEqual(creature.coin_pouch.inventory, {self.copper_coin: {'amount': 2}}) creature.add_item(self.bread, 6) self.assertDictEqual(creature.inventory.inventory, {self.bread: {'amount': 6}, self.dagger: {'amount': 1}}) creature.add_item(self.dagger, 3) self.assertDictEqual(creature.inventory.inventory, {self.bread: {'amount': 6}, self.dagger: {'amount': 4}}) def test_remove_item(self): creature = creatures.Creature() # Testing when removing an item from a empty dict result = creature.remove_item(self.dagger) self.assertFalse(result) creature.add_item(self.dagger) creature.remove_item(self.dagger) self.assertDictEqual(creature.inventory.inventory, {}) creature.add_item(self.copper_coin, 8) creature.remove_item(self.copper_coin, 3) self.assertDictEqual(creature.coin_pouch.inventory, {self.copper_coin: {'amount': 5}}) def test_equip(self): creature = creatures.Creature() # Equipping dagger that is not in creature result = creature.equip(self.dagger) self.assertFalse(result) # Verifying that there is no inventory was added answer = {} self.equipment_slot_helper(creature, answer) result = creature.inventory.inventory self.assertDictEqual(result, answer) self.assertFalse(hasattr(creature.coin_pouch, 'inventory')) # Equipping non equipable item creature.add_item(self.copper_coin) result = creature.equip(self.copper_coin) self.assertFalse(result) # Verifying that there is no inventory was added answer = {self.copper_coin: {'amount': 1}} result = creature.coin_pouch.inventory self.assertDictEqual(result, answer) answer = {} self.equipment_slot_helper(creature, answer) result = creature.inventory.inventory self.assertDictEqual(result, answer) # Equipping a dagger creature.add_item(self.dagger) result = creature.equip(self.dagger) self.assertTrue(result) answer = {self.dagger: {'amount': 1}} result = creature.inventory.inventory self.assertDictEqual(result, answer) answer = {self.dagger: {'amount': 1}} result = creature.equippable_slots.slots.get(slots.OneHanded).inventory self.assertDictEqual(result, answer) # equipping a non equipable item creature.add_item(self.bread) result = creature.equip(self.bread) self.assertFalse(result) def test_unequip(self): creature = creatures.Creature() # Unequipping a item that doesn't exist result = creature.unequip(self.dagger) self.assertFalse(result) # Verifying that there is no inventory was added answer = {} self.equipment_slot_helper(creature, answer) self.assertFalse(hasattr(creature.inventory, 'inventory')) creature.add_item(self.copper_coin) result = creature.unequip(self.copper_coin) self.assertFalse(result) # Verifying that there is no inventory was added answer = {} self.equipment_slot_helper(creature, answer) self.assertFalse(hasattr(creature.inventory, 'inventory')) answer = {self.copper_coin: {'amount': 1}} result = creature.coin_pouch.inventory self.assertDictEqual(result, answer) # Preparing for next test case creature.remove_item(self.copper_coin) # Actually tesing the removal of a item creature.add_item(self.dagger) creature.equip(self.dagger) result = creature.unequip(self.dagger) self.assertTrue(result) answer = {} self.equipment_slot_helper(creature, answer) result = creature.coin_pouch.inventory self.assertDictEqual(result, answer) answer = {self.dagger: {'amount': 1}} result = creature.inventory.inventory self.assertDictEqual(result, answer) def test_calculate_item_worth(self): creature = creatures.Creature() copper_amount = 10 bread_amount = 5 dagger_amount = 5 creature.add_item(self.copper_coin, copper_amount) creature.add_item(self.bread, bread_amount) creature.add_item(self.dagger, dagger_amount) creature.equip(self.dagger) result = creature.calculate_item_worth(self.copper_coin) self.assertEqual(result, copper_amount*self.copper_coin.worth) result = creature.calculate_item_worth(self.dagger) self.assertEqual(result, dagger_amount*self.dagger.worth) result = creature.calculate_item_worth(self.bread) self.assertEqual(result, bread_amount*self.bread.worth) def test_calculate_total_worth(self): creature = creatures.Creature() copper_amount = 10 bread_amount = 5 dagger_amount = 5 creature.add_item(self.copper_coin, copper_amount) creature.add_item(self.bread, bread_amount) creature.add_item(self.dagger, dagger_amount) creature.equip(self.dagger) result = creature.calculate_total_worth() answer = (self.copper_coin.worth * copper_amount) + \ (self.dagger.worth * dagger_amount) + \ (self.bread.worth * bread_amount) self.assertEqual(result, answer) def test_type_error(self): creature = creatures.Creature() test_num = 2 test_string = 'Test' test_list = [7] test_dict = {"s":2} test_tuple = (2, "2") test_case = [test_num, test_string, test_list, test_dict, test_tuple, [], {}, ()] for case in test_case: func = creature.add_item self.assertRaises(TypeError, func, case) self.assertRaises(TypeError, func, (self.dagger, case)) func = creature.remove_item self.assertRaises(TypeError, func, case) self.assertRaises(TypeError, func, (self.dagger, case)) func = creature.equip self.assertRaises(TypeError, func, case) func = creature.unequip self.assertRaises(TypeError, func, case) func = creature.calculate_item_worth self.assertRaises(TypeError, func, case) func = creature.calculate_total_worth self.assertRaises(TypeError, func, case) def test_value_error(self): creature = creatures.Creature() test_case = -32 func = creature.add_item self.assertRaises(TypeError, func, (self.dagger, test_case)) func = creature.remove_item self.assertRaises(TypeError, func, (self.dagger, test_case)) def test_EquippedItemRemovealError(self): creature = creatures.Creature() # Tesing after removing item from inventory item should not exist in equipment slot creature.add_item(self.dagger) creature.equip(self.dagger) self.assertRaises(creatures.EquippedItemRemovealError, creature.remove_item, self.dagger) def suite(): suite = unittest.TestSuite() suite.addTest(TestCreature('test_addItem')) return suite if __name__ == '__main__': unittest.main() # runner = unittest.TextTestRunner() # runner.run(suite())
36.504
107
0.655928
8,651
0.947951
0
0
0
0
0
0
833
0.091278
5727029dde1ffe2dc5b477e3ae9e9d629cfe867a
729
py
Python
tile/io.py
ViliamV/tile
a2b105143341f250690b8034076ba9214e9ed787
[ "MIT" ]
null
null
null
tile/io.py
ViliamV/tile
a2b105143341f250690b8034076ba9214e9ed787
[ "MIT" ]
null
null
null
tile/io.py
ViliamV/tile
a2b105143341f250690b8034076ba9214e9ed787
[ "MIT" ]
null
null
null
import collections import re from typing import Iterator, TextIO from .constants import TILE_END, TILE_START, TILE_WARNING def from_file(file: TextIO) -> Iterator[str]: with file as f: yield from f def to_file(file: TextIO, lines: Iterator[str]): with file as f: f.write("\n".join(lines)) def to_nowhere(lines: Iterator[str]): collections.deque(lines, 0) def to_config(config_file: TextIO, lines: Iterator[str]): with config_file as f: text = f.read() f.seek(0) f.truncate() text = re.sub(fr"^{TILE_START}\n.*{TILE_END}\n?", r"", text, flags=re.MULTILINE | re.DOTALL) f.write("\n".join((text.strip(), TILE_START, TILE_WARNING, *lines, TILE_END)))
24.3
100
0.650206
0
0
86
0.11797
0
0
0
0
45
0.061728
572995aff10ad23755f80a0359fa3ca259ee111e
199
py
Python
testfiles/benchmarks/send_multiple.py
marcolamartina/PASTEL
8e1e0fd086a26b7c50f15fe87ffe5dbd007cf925
[ "MIT" ]
null
null
null
testfiles/benchmarks/send_multiple.py
marcolamartina/PASTEL
8e1e0fd086a26b7c50f15fe87ffe5dbd007cf925
[ "MIT" ]
null
null
null
testfiles/benchmarks/send_multiple.py
marcolamartina/PASTEL
8e1e0fd086a26b7c50f15fe87ffe5dbd007cf925
[ "MIT" ]
1
2020-07-08T11:23:22.000Z
2020-07-08T11:23:22.000Z
import binascii from pwn import * def send(r,num): r.sendline(str(num)) port = 1234 server = '127.0.0.1' sleep(1) for i in range(10000): r = remote(server, port) send(r,i) r.close()
15.307692
28
0.623116
0
0
0
0
0
0
0
0
11
0.055276
572a6ba98328eb8f0c8ea9e03989e22fca55780e
271
py
Python
backend/users/serializers.py
rmisiarek/django_vue_base
440459fdd73209e47567fb3572c056a05dc1c45a
[ "MIT" ]
2
2019-04-28T20:26:13.000Z
2020-05-04T03:18:23.000Z
backend/users/serializers.py
rmisiarek/django_vue_base
440459fdd73209e47567fb3572c056a05dc1c45a
[ "MIT" ]
22
2019-12-04T22:34:42.000Z
2022-02-12T07:12:29.000Z
backend/users/serializers.py
shrekdev/Django_Vue_Base
4f200358724bce137f9c5e723036b280e4fd81e2
[ "MIT" ]
null
null
null
from djoser.serializers import UserCreateSerializer from .models import CustomUser class CustomUserRegistrationSerializer(UserCreateSerializer): class Meta(UserCreateSerializer.Meta): model = CustomUser fields = ('first_name', 'email', 'password')
27.1
61
0.763838
185
0.682657
0
0
0
0
0
0
29
0.107011
572d902af0ded1f19ce7ceba83a724a3db7dd67b
30
py
Python
flaskslack/__init__.py
Jamiewu2/flask-slack-template
8a2168aaab03ed080a3eab186c20a488cdf2055e
[ "MIT" ]
null
null
null
flaskslack/__init__.py
Jamiewu2/flask-slack-template
8a2168aaab03ed080a3eab186c20a488cdf2055e
[ "MIT" ]
null
null
null
flaskslack/__init__.py
Jamiewu2/flask-slack-template
8a2168aaab03ed080a3eab186c20a488cdf2055e
[ "MIT" ]
null
null
null
name = "flask_slack_template"
15
29
0.8
0
0
0
0
0
0
0
0
22
0.733333
572e21eca46eed4b2a282d7364cf1c249e13c730
6,704
py
Python
cpu.py
fernandozanutto/PyNES
cb8d589ceb55cd7df0e114e726c6b6bbbc556172
[ "Apache-2.0" ]
null
null
null
cpu.py
fernandozanutto/PyNES
cb8d589ceb55cd7df0e114e726c6b6bbbc556172
[ "Apache-2.0" ]
null
null
null
cpu.py
fernandozanutto/PyNES
cb8d589ceb55cd7df0e114e726c6b6bbbc556172
[ "Apache-2.0" ]
null
null
null
from typing import Dict from time import time_ns from bus import Bus from instructions.generic_instructions import Instruction from rom import ROM from status import Status import instructions.instructions as i_file import instructions.jump_instructions as j_file import instructions.load_instructions as l_file import instructions.store_instructions as s_file import instructions.stack_instructions as t_file import instructions.arithmetic_instructions as a_file import instructions.logical_instructions as log_file import instructions.nop_instructions as n_file import instructions.unofficial_instructions as u_file class CPU: def __init__(self, bus: Bus, debug: bool = False): self.rom = None self.bus = bus self.debug = debug self.cycle = 7 # TODO check it, starting in 7 cause nestes.log # status registers: store a single byte self.status_reg: Status = None # counter registers: store a single byte self.pc_reg: int = None # program counter self.sp_reg: int = None # stack pointer # data registers: store a single byte self.x_reg: int = None # x register self.y_reg: int = None # y register self.a_reg: int = None # a register # program counter stores current execution point self.running: bool = True # create the instructions that the cpu can interpret instructions_list = self.find_instructions(Instruction) self.instructions: Dict[bytes, Instruction] = {} for instruction in instructions_list: if instruction.identifier_byte in self.instructions.keys(): raise Exception('Duplicate instruction identifier bytes ' + instruction.identifier_byte.hex()) self.instructions[instruction.identifier_byte] = instruction def start_up(self, callback): """ set the initial values of cpu registers status reg: 000100 (irqs disabled) x, y, a regs: 0 stack pointer: $FD $4017: 0 (frame irq disabled) $4015: 0 (sound channels disabled) $4000-$400F: 0 (sound registers) """ self.callback = callback self.pc_reg = 0 self.status_reg = Status() # know as 'P' on NesDev Wiki self.sp_reg = 0xFD self.x_reg = 0 self.y_reg = 0 self.a_reg = 0 # TODO implement memory sets self.bus.write_memory(0x4015, 0, num_bytes=2) self.bus.write_memory(0x4017, 0, num_bytes=2) def push_to_stack(self, value, size): for i in range(size): self.bus.write_memory(0x0100 + self.sp_reg, (value >> (8 * (size - i - 1))) & 255, num_bytes=1) self.sp_reg -= 1 def pull_from_stack(self, size): value = 0 for i in range(size): self.sp_reg += 1 value += self.bus.read_memory(0x0100 + self.sp_reg) << (8 * i) return value def find_instructions(self, cls) -> list[Instruction]: """ find all available instructions """ subclasses = [subc for subc in cls.__subclasses__() if subc.identifier_byte is not None] return subclasses + [g for s in cls.__subclasses__() for g in self.find_instructions(s)] def run_rom(self, rom: ROM): # load rom self.rom = rom self.pc_reg = 0xC000 # first rom address if rom.is_snake_rom: self.pc_reg = 0x0600 self.rom.memory_start_location = 0 for i in range(len(rom.get_memory())): self.bus.write_memory(0x0600 + i, int.from_bytes(rom.get(i), 'little')) # run program self.running = True i = 0 last_time = time_ns() while self.running: i += 1 if self.bus.get_nmi_status(): self.push_to_stack(self.pc, 2) status_reg_copy = self.status_reg.copy() status_reg_copy.bits[Status.StatusTypes.break1] = 0 status_reg_copy.bits[Status.StatusTypes.break2] = 1 self.push_to_stack(status_reg_copy.to_int(), 1) self.status_reg.bits[Status.StatusTypes.interrupt] = 1 self.bus.tick(2) self.pc = self.bus.read_memory(0xFFFA) continue # get the current byte at pc identifier_byte = self.bus.read_memory(self.pc_reg) if type(identifier_byte) == int: identifier_byte = bytes([identifier_byte]) # turn the byte into an Instruction instruction = self.instructions.get(identifier_byte) if instruction is None: raise Exception('PC: {} Instruction not found: {}'.format(hex(self.pc_reg), identifier_byte)) # get the data bytes data_bytes = self.bus.read_memory_bytes(self.pc_reg + 1, instruction.data_length) if self.debug: self.debug_print(self.pc_reg, identifier_byte, data_bytes, instruction) self.pc_reg += instruction.get_instruction_length() value = instruction.execute(self, data_bytes) instr_cycles = instruction.get_cycles() self.cycle += instr_cycles self.status_reg.update(instruction, value) cur_time = time_ns() if self.debug and cur_time - last_time > 0: print('time for running instruction', cur_time - last_time, identifier_byte) last_time = cur_time self.bus.tick(instr_cycles) self.callback() cur_time = time_ns() if self.debug and cur_time - last_time > 0: print('time for running ui', cur_time - last_time) last_time = cur_time def debug_print(self, pc_reg: int, identifier_byte, data_bytes, instruction): # print out diagnostic information # example: C000 4C F5 C5 JMP $C5F5 A:00 X:00 Y:00 P:24 SP:FD PPU: 0, 0 CYC: registers_state = [ hex(self.a_reg)[2:].upper(), hex(self.x_reg)[2:].upper(), hex(self.y_reg)[2:].upper(), hex(self.status_reg.to_int())[2:].upper(), hex(self.sp_reg)[2:].upper() ] inst_bytes = (identifier_byte + data_bytes).hex().upper() rng = range(0, len(inst_bytes), 2) inst_hexes = [inst_bytes[i:i + 2] for i in rng] print("{:0>4} {:<8} {:<31} A:{:0>2} X:{:0>2} Y:{:0>2} P:{:0>2} SP:{} CYC:{}".format( hex(pc_reg)[2:].upper(), ' '.join(inst_hexes), instruction.__name__[0:3].upper(), *registers_state, self.cycle ))
33.688442
110
0.604117
6,082
0.90722
0
0
0
0
0
0
1,173
0.17497
572f76ae3e95b7728b1969e8e8e8f04344ee7dae
227
py
Python
solution.py
t-pastore/gamesolver
39b0ba45350f0b558c53c40e7cc659577059d369
[ "Apache-2.0" ]
1
2021-01-27T03:14:07.000Z
2021-01-27T03:14:07.000Z
solution.py
t-pastore/gamesolver
39b0ba45350f0b558c53c40e7cc659577059d369
[ "Apache-2.0" ]
null
null
null
solution.py
t-pastore/gamesolver
39b0ba45350f0b558c53c40e7cc659577059d369
[ "Apache-2.0" ]
null
null
null
class Solution(): def __init__(self): self.pureNE = [] self.mixedNE = [] def appendPureNE(self, tup): self.pureNE.append(tup) def appendMixedNE(self, tup): self.mixedNE.append(tup)
20.636364
33
0.585903
227
1
0
0
0
0
0
0
0
0
57301fb1a81fd60d2a17effeed4478182c84a5a9
2,622
py
Python
timeouts/aa.py
kapsitis/ddgatve-stat
684fac54b9d0b8e7891f58bf1fb32605a2d87a3c
[ "Apache-2.0" ]
null
null
null
timeouts/aa.py
kapsitis/ddgatve-stat
684fac54b9d0b8e7891f58bf1fb32605a2d87a3c
[ "Apache-2.0" ]
null
null
null
timeouts/aa.py
kapsitis/ddgatve-stat
684fac54b9d0b8e7891f58bf1fb32605a2d87a3c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import datetime import os import subprocess import re import urllib2 import math #################################################################### ## TODO: Replace this function by another one, which simply reads all lines from a file #################################################################### def readLines(fPath): if not os.path.isfile(fPath): open(fPath, 'a').close() with open(fPath) as ff: lines = ff.read().splitlines() return lines def currentUser(): #pattern = re.compile(r"^(anna|eduards|kalvis|laima|marta|nelda).*$",re.MULTILINE) pattern = re.compile(r"^(anna|eduards|kalvis|laima|marta|nelda)+\s.*$",re.MULTILINE) m = pattern.match(subprocess.check_output("who")) if m: return m.group(1) else: return "nobody" def getStatus(): url = 'http://85.254.250.28/downloads1/timeouts/index.html' try: response=urllib2.urlopen(url,timeout=1) webFile = response.read() pattern2 = re.compile(r"^green",re.MULTILINE) m2 = pattern2.match(webFile) if m2: return "green" else: return "yellow" except urllib2.URLError as err: pass return "offline" def getYellowCount(theLog): yellowCount = 0 grayCount = 0 ll = readLines(theLog) for theLine in ll: if (theLine.find("yellow") >= 0) or (theLine.find("red") >= 0): yellowCount = yellowCount + 1 if (theLine.find("green") >= 0): yellowCount = 0 if (theLine.find("offline") >= 0): grayCount = grayCount + 1 yellowCount = yellowCount + (grayCount//12) return(yellowCount) ##################################################################### ## Find the right logfile; logfiles are different for different days ##################################################################### ddat = datetime.datetime.now() theLog = '/home/kalvis/.timeouts/access-{yyyy}-{mm}-{dd}.log'.format( \ yyyy = ddat.year, mm=ddat.month, dd=ddat.day) yellowCount = getYellowCount(theLog) status = getStatus() if yellowCount >= 5: status = "red" if yellowCount > 1: os.system("/home/kalvis/.timeouts/msg.py") logline = '{user}:{time}:{status}({yellowCount})\n'.format(user=currentUser(), \ time=ddat,status=getStatus(),yellowCount=yellowCount) if not os.path.isfile(theLog): open(theLog, 'a').close() with open(theLog, "a") as myfile: myfile.write(logline) if yellowCount >= 5: from subprocess import call call(["pkill","-KILL","-u","marta"])
27.030928
88
0.558734
0
0
0
0
0
0
0
0
873
0.332952
5731a1d1075f24d7e3e476ce3662c03caca1f970
1,786
py
Python
files_to_html_md5.py
jasonivey/scripts
09f9702e5ce62abbb7699aae16b45b33711fe856
[ "MIT" ]
null
null
null
files_to_html_md5.py
jasonivey/scripts
09f9702e5ce62abbb7699aae16b45b33711fe856
[ "MIT" ]
null
null
null
files_to_html_md5.py
jasonivey/scripts
09f9702e5ce62abbb7699aae16b45b33711fe856
[ "MIT" ]
null
null
null
import os import sys import hash_utils def StartIndexPhp(outfile): outfile.write( '<?php $rootdirectory = \'../../\' ?>\n\n' ) outfile.write( '<html>\n' ) outfile.write( '<head>\n' ) outfile.write( '\t<meta http-equiv="Content-Type" content="text/html; charset=utf-8">\n' ) outfile.write( '\t<title>TV Episodes Downloads</title>\n' ) outfile.write( '</head>\n\n' ) outfile.write( '<?php include( \'../../header.php\' ); ?>\n' ) outfile.write( '<table align="center" width="600"><tr><td>\n\n' ) outfile.write( '<h1 align=center>TV Episodes Downloads</h1>\n' ) outfile.write( '<hr>\n\n' ) outfile.write( '<table align="center" width="600">\n' ) outfile.write( '\t<tr>\n' ) outfile.write( '\t\t<th align=center>Episode Name</th>\n' ) outfile.write( '\t\t<th align=center>MD5SUM</th>\n' ) outfile.write( '\t</tr>\n' ) def CloseIndexPhp(outfile): outfile.write( '</table>\n\n' ) outfile.write( '<?php include( \'../../footer.php\' ); ?>\n' ) outfile.write( '</html>\n' ) if __name__ == '__main__': with open('index.php', 'w') as outfile: StartIndexPhp() for f in os.listdir('.'): if f == 'index.php' or f.find( '?' ) != -1 or f.find( 'System Volume Information' ) != -1 or f.find( 'RECYCLER' ) != -1: continue if os.path.isdir(f): md5str = hash_utils.md5sum(f) print(f + ' - ' + md5str) outfile.write( '\t<tr>\n' ) outfile.write( '\t\t<td align=center><a href="' + f + '">' + f + '</a></td>\n' ) outfile.write( '\t\t<td align=center>' + md5str + '</td>\n' ) outfile.write( '\t</tr>\n' ) CloseIndexPhp( outfile )
43.560976
133
0.526316
0
0
0
0
0
0
0
0
732
0.409854
573671e14e06512a6056d7ef96ce655d220e4a19
2,857
py
Python
Run_exphydro_distributed_type1_pso.py
sopanpatil/exp-hydro
7295dddc4df1028f669a223e1b631a4a91669515
[ "MIT" ]
11
2016-11-25T13:05:26.000Z
2022-03-25T03:24:16.000Z
Run_exphydro_distributed_type1_pso.py
sopanpatil/exp-hydro
7295dddc4df1028f669a223e1b631a4a91669515
[ "MIT" ]
null
null
null
Run_exphydro_distributed_type1_pso.py
sopanpatil/exp-hydro
7295dddc4df1028f669a223e1b631a4a91669515
[ "MIT" ]
6
2017-03-28T12:06:00.000Z
2021-09-16T17:50:34.000Z
#!/usr/bin/env python # Programmer(s): Sopan Patil. """ MAIN PROGRAM FILE Run this file to optimise the model parameters of the spatially distributed version of EXP-HYDRO model using Particle Swarm Optimisation (PSO) algorithm. Type 1 Model: - This type of distributed model is pixel based (i.e., all sub-components have the same drainage area). - All pixels receive the same meteorological inputs. - Channel routing is ignored and it is assumed that streamflow generated from each pixel reaches the catchment outlet on same day. """ import numpy import os import time import matplotlib.pyplot as plt from exphydro.distributed import ExphydroDistrParameters from exphydro.distributed.type1 import ExphydroDistrModel from hydroutils import Calibration, ObjectiveFunction start_time = time.time() ###################################################################### # SET WORKING DIRECTORY # Getting current directory, i.e., directory containing this file dir1 = os.path.dirname(os.path.abspath('__file__')) # Setting to current directory os.chdir(dir1) ###################################################################### # MAIN PROGRAM # Load meteorological and observed flow data P = numpy.genfromtxt('SampleData/P_test.txt') # Observed rainfall (mm/day) T = numpy.genfromtxt('SampleData/T_test.txt') # Observed air temperature (deg C) PET = numpy.genfromtxt('SampleData/PET_test.txt') # Potential evapotranspiration (mm/day) Qobs = numpy.genfromtxt('SampleData/Q_test.txt') # Observed streamflow (mm/day) # Specify the number of pixels in the catchment npixels = 5 # Specify the no. of parameter sets (particles) in a PSO swarm npart = 10 # Generate 'npart' initial EXP-HYDRO model parameters params = [ExphydroDistrParameters(npixels) for j in range(npart)] # Initialise the model by loading its climate inputs model = ExphydroDistrModel(P, PET, T, npixels) # Specify the start and end day numbers of the calibration period. # This is done separately for the observed and simulated data # because they might not be of the same length in some cases. calperiods_obs = [365, 2557] calperiods_sim = [365, 2557] # Calibrate the model to identify optimal parameter set paramsmax = Calibration.pso_maximise(model, params, Qobs, ObjectiveFunction.klinggupta, calperiods_obs, calperiods_sim) print ('Calibration run KGE value = ', paramsmax.objval) # Run the optimised model for validation period Qsim = model.simulate(paramsmax) kge = ObjectiveFunction.klinggupta(Qobs[calperiods_obs[1]:], Qsim[calperiods_sim[1]:]) print ('Independent run KGE value = ', kge) print("Total runtime: %s seconds" % (time.time() - start_time)) # Plot the observed and simulated hydrographs plt.plot(Qobs[calperiods_obs[0]:], 'b-') plt.plot(Qsim[calperiods_sim[0]:], 'r-') plt.show() ######################################################################
35.7125
119
0.716136
0
0
0
0
0
0
0
0
1,797
0.628981
5738d01ad1ed866e8e47c9a1f5dadbf2cfce3611
11,104
py
Python
multi_input_multi_output/train.py
alt113/CS591-Multimodal-Spring2021
f28bade729818aa51fd131e86f1ba2271cca8947
[ "MIT" ]
null
null
null
multi_input_multi_output/train.py
alt113/CS591-Multimodal-Spring2021
f28bade729818aa51fd131e86f1ba2271cca8947
[ "MIT" ]
1
2021-05-03T18:59:43.000Z
2021-05-03T19:04:19.000Z
multi_input_multi_output/train.py
alt113/CS591-Multimodal-Spring2021
f28bade729818aa51fd131e86f1ba2271cca8947
[ "MIT" ]
null
null
null
import os from multi_input_multi_output.models import MultiNet from shared_weights.helpers import config, utils from shared_weights.helpers.siamese_network import create_encoder from data.data_tf import fat_dataset import tensorflow as tf from tensorflow import keras # ---------------------- def flatten_model(model_nested): layers_flat = [] for layer in model_nested.layers: try: layers_flat.extend(layer.layers) except AttributeError: layers_flat.append(layer) model_flat = keras.models.Sequential(layers_flat) return model_flat """ Data augmentation""" augmentation_input = keras.layers.Input(shape=config.IMG_SHAPE) data_augmentation = keras.layers.experimental.preprocessing.RandomTranslation( height_factor=(-0.2, 0.2), width_factor=(-0.2, 0.2), fill_mode="constant" )(augmentation_input) data_augmentation = keras.layers.experimental.preprocessing.RandomFlip(mode="horizontal")(data_augmentation) data_augmentation = keras.layers.experimental.preprocessing.RandomRotation(factor=0.15, fill_mode="constant")(data_augmentation) augmentation_output = keras.layers.experimental.preprocessing.RandomZoom(height_factor=(-0.3, 0.1), width_factor=(-0.3, 0.1), fill_mode="constant")(data_augmentation) data_augmentation = keras.Model(augmentation_input, augmentation_output) """ Unsupervised contrastive loss""" class RepresentationLearner(keras.Model): def __init__( self, encoder, projection_units, num_augmentations, temperature=1.0, dropout_rate=0.1, l2_normalize=False, **kwargs ): super(RepresentationLearner, self).__init__(**kwargs) self.encoder = encoder # Create projection head. self.projector = keras.Sequential( [ keras.layers.Dropout(dropout_rate), keras.layers.Dense(units=projection_units, use_bias=False), keras.layers.BatchNormalization(), keras.layers.ReLU(), ] ) self.num_augmentations = num_augmentations self.temperature = temperature self.l2_normalize = l2_normalize self.loss_tracker = keras.metrics.Mean(name="loss") @property def metrics(self): return [self.loss_tracker] def compute_contrastive_loss(self, feature_vectors, batch_size): num_augmentations = tf.shape(feature_vectors)[0] // batch_size if self.l2_normalize: feature_vectors = tf.math.l2_normalize(feature_vectors, -1) # The logits shape is [num_augmentations * batch_size, num_augmentations * batch_size]. logits = ( tf.linalg.matmul(feature_vectors, feature_vectors, transpose_b=True) / self.temperature ) # Apply log-max trick for numerical stability. logits_max = tf.math.reduce_max(logits, axis=1) logits = logits - logits_max # The shape of targets is [num_augmentations * batch_size, num_augmentations * batch_size]. # targets is a matrix consits of num_augmentations submatrices of shape [batch_size * batch_size]. # Each [batch_size * batch_size] submatrix is an identity matrix (diagonal entries are ones). targets = tf.tile(tf.eye(batch_size), [num_augmentations, num_augmentations]) # Compute cross entropy loss return keras.losses.categorical_crossentropy( y_true=targets, y_pred=logits, from_logits=True ) def call(self, inputs): # Create augmented versions of the images. augmented = [] for _ in range(self.num_augmentations): x = data_augmentation(inputs) augmented.append(x) augmented = keras.layers.Concatenate(axis=0)(augmented) # Generate embedding representations of the images. features = self.encoder(augmented) # Apply projection head. return self.projector(features) def train_step(self, data):#inputs): inputs = data[0] batch_size = tf.shape(inputs)[0] # Run the forward pass and compute the contrastive loss with tf.GradientTape() as tape: feature_vectors = self(inputs, training=True) loss = self.compute_contrastive_loss(feature_vectors, batch_size) # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update loss tracker metric self.loss_tracker.update_state(loss) # Return a dict mapping metric names to current value return {m.name: m.result() for m in self.metrics} def test_step(self, data):#inputs): inputs = data[0] batch_size = tf.shape(inputs)[0] feature_vectors = self(inputs, training=False) loss = self.compute_contrastive_loss(feature_vectors, batch_size) self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()} """ Train the model""" network_input = keras.layers.Input(shape=config.IMG_SHAPE) # Load RGB vision encoder. r_encoder = create_encoder(base='resnet50', pretrained=True)(network_input) encoder_output = keras.layers.Dense(config.HIDDEN_UNITS)(r_encoder) r_encoder = keras.Model(network_input, encoder_output) # Create representation learner. r_representation_learner = RepresentationLearner( r_encoder, config.PROJECTION_UNITS, num_augmentations=2, temperature=0.1 ) r_representation_learner.build((None, 128, 128, 3)) # base_path = os.environ['PYTHONPATH'].split(os.pathsep)[1] # representation_learner.load_weights(base_path + '/multi_input_multi_output/simclr/weights/simclr_resnet50_rgb_scratch_weights.h5') r_representation_learner.load_weights(config.RGB_MODALITY_WEIGHT_PATH) functional_model = flatten_model(r_representation_learner.layers[0]) rgb_encoder = functional_model.layers[1] # Load Depth vision encoder. d_encoder = create_encoder(base='resnet50', pretrained=True)(network_input) encoder_output = keras.layers.Dense(config.HIDDEN_UNITS)(d_encoder) d_encoder = keras.Model(network_input, encoder_output) # Create representation learner. d_representation_learner = RepresentationLearner( d_encoder, config.PROJECTION_UNITS, num_augmentations=2, temperature=0.1 ) d_representation_learner.build((None, 128, 128, 3)) # base_path = os.environ['PYTHONPATH'].split(os.pathsep)[1] # representation_learner.load_weights(base_path + '/multi_input_multi_output/simclr/weights/simclr_resnet50_rgb_scratch_weights.h5') d_representation_learner.load_weights(config.DEPTH_MODALITY_WEIGHT_PATH) functional_model = flatten_model(d_representation_learner.layers[0]) depth_encoder = functional_model.layers[1] # ---------------------- # RGB rgb_input = keras.layers.Input(shape=config.IMG_SHAPE) # rgb_encoder = keras.applications.ResNet50V2(include_top=False, # weights=None, # input_shape=config.IMG_SHAPE, # pooling="avg") rgb = rgb_encoder(rgb_input) rgb = keras.layers.Dropout(config.DROPOUT_RATE)(rgb) rgb = keras.layers.Dense(config.HIDDEN_UNITS, activation="relu")(rgb) rgb = keras.layers.Dropout(config.DROPOUT_RATE)(rgb) rgb = keras.layers.Flatten()(rgb) rgb = keras.layers.Dense(config.NUM_OF_CLASSES, activation="softmax")(rgb) rgb_classifier = keras.models.Model(inputs=rgb_input, outputs=rgb, name='rgb_classifier') for layer in rgb_classifier.layers: layer._name += '_rgb' layer.trainable = True print('[INFO] built rgb classifier') print(rgb_classifier.summary()) # Depth depth_input = keras.layers.Input(shape=config.IMG_SHAPE) # depth_encoder = keras.applications.ResNet50V2(include_top=False, # weights=None, # input_shape=config.IMG_SHAPE, # pooling="avg") depth = depth_encoder(depth_input) depth = keras.layers.Dropout(config.DROPOUT_RATE)(depth) depth = keras.layers.Dense(config.HIDDEN_UNITS, activation="relu")(depth) depth = keras.layers.Dropout(config.DROPOUT_RATE)(depth) depth = keras.layers.Flatten()(depth) depth = keras.layers.Dense(config.NUM_OF_CLASSES, activation="softmax")(depth) depth_classifier = keras.models.Model(inputs=depth_input, outputs=depth, name='depth_classifier') for layer in depth_classifier.layers: layer._name += '_depth' layer.trainable = True print('[INFO] built depth classifier') print(depth_classifier.summary()) # Build and compile MultiNet multinet_class = MultiNet(rgb_classifier=rgb_classifier, rgb_output_branch=rgb, depth_classifier=depth_classifier, depth_output_branch=depth) multinet_class.compile() multinet_model = multinet_class.model print('[INFO] built MultiNet classifier') # train the network to perform multi-output classification train_ds = fat_dataset(split='train', data_type='all', batch_size=config.BATCH_SIZE, shuffle=True, pairs=False) val_ds = fat_dataset(split='validation', data_type='all', batch_size=config.BATCH_SIZE, shuffle=True, pairs=False) print("[INFO] training MultiNet...") counter = 0 history = None toCSV = [] while counter <= config.EPOCHS: counter += 1 print(f'* Epoch: {counter}') data_batch = 0 for imgs, labels in train_ds: data_batch += 1 history = multinet_model.train_on_batch(x=[imgs[:, 0], imgs[:, 1]], y={'dense_5_rgb': labels[:], 'dense_7_depth': labels[:]}, reset_metrics=False, return_dict=True) print(f'* Data Batch: {data_batch}') print(f'\t{history}') break if counter % 10 == 0: print("[VALUE] Testing model on batch") for val_data, val_labels in val_ds: val_results = multinet_model.test_on_batch(x=[val_data[:, 0], val_data[:, 1]], y={'dense_5_rgb': val_labels[:], 'dense_7_depth': val_labels[:]}) print(val_results) toCSV.append(val_results) print('Saving MultiNet validation results as CSV file') utils.save_model_history(H=toCSV, path_to_csv=config.FROZEN_SIAMESE_TRAINING_HISTORY_CSV_PATH) rgb_classifier.save_weights(config.MIMO_RGB_WEIGHTS) print("Saved RGB model weights to disk") # serialize weights to HDF5 depth_classifier.save_weights(config.MIMO_DEPTH_WEIGHTS) print("Saved Depth model weights to disk")
40.525547
132
0.665616
3,696
0.332853
0
0
67
0.006034
0
0
2,625
0.236401
573a1fa313f96c01ab6df0ada017abeca301701e
856
py
Python
tools/rebuild_caches.py
newbdoc/lookyloo
53a8952fccaf9ae42fa582d3475283babd55d08a
[ "BSD-3-Clause" ]
148
2020-06-14T06:55:42.000Z
2022-03-19T05:37:02.000Z
tools/rebuild_caches.py
newbdoc/lookyloo
53a8952fccaf9ae42fa582d3475283babd55d08a
[ "BSD-3-Clause" ]
261
2020-06-16T22:29:27.000Z
2022-03-31T10:40:52.000Z
tools/rebuild_caches.py
newbdoc/lookyloo
53a8952fccaf9ae42fa582d3475283babd55d08a
[ "BSD-3-Clause" ]
27
2020-06-08T12:28:33.000Z
2022-02-15T18:50:50.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import logging from lookyloo.lookyloo import Indexing, Lookyloo logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s:%(message)s', level=logging.INFO) def main(): parser = argparse.ArgumentParser(description='Rebuild the redis cache.') parser.add_argument('--rebuild_pickles', default=False, action='store_true', help='Delete and rebuild the pickles. Count 20s/pickle, it can take a very long time.') args = parser.parse_args() lookyloo = Lookyloo() if args.rebuild_pickles: lookyloo.rebuild_all() else: lookyloo.rebuild_cache() indexing = Indexing() indexing.clear_indexes() # This call will rebuild all the caches as needed. lookyloo.sorted_capture_cache() if __name__ == '__main__': main()
25.939394
168
0.684579
0
0
0
0
0
0
0
0
291
0.339953
573ad54818708562c075e93c746dc4448d743b12
740
py
Python
save_restore_model/tf1/restore1_1.py
zlpmichelle/crackingtensorflow
66c3517b60c3793ef06f904e5d58e4d044628182
[ "Apache-2.0" ]
3
2017-10-19T23:41:26.000Z
2019-10-22T08:59:35.000Z
save_restore_model/tf1/restore1_1.py
zlpmichelle/crackingtensorflow
66c3517b60c3793ef06f904e5d58e4d044628182
[ "Apache-2.0" ]
null
null
null
save_restore_model/tf1/restore1_1.py
zlpmichelle/crackingtensorflow
66c3517b60c3793ef06f904e5d58e4d044628182
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf sess=tf.Session() #First let's load meta graph and restore weights saver = tf.train.import_meta_graph('/Users/lipingzhang/Downloads/model/my_tf_model-1000.meta') saver.restore(sess,tf.train.latest_checkpoint('/Users/lipingzhang/Downloads/model/')) # Now, let's access and create placeholders variables and # create feed-dict to feed new data graph = tf.get_default_graph() w1 = graph.get_tensor_by_name("w1:0") w2 = graph.get_tensor_by_name("w2:0") feed_dict ={w1:13.0,w2:17.0} #Now, access the op that you want to run. op_to_restore = graph.get_tensor_by_name("op_to_restore:0") #Add more to the current graph add_on_op = tf.multiply(op_to_restore,2) print sess.run(add_on_op,feed_dict) #This will print 120.
30.833333
94
0.777027
0
0
0
0
0
0
0
0
356
0.481081
573b50d93fdcd613c5e4eb9cd5d3608413327c07
633
py
Python
src/game.py
LuisMarques99/Number-Guesser-Terminal
6abfac23268022f7ce3776a20d1d6f550955d6c8
[ "MIT" ]
null
null
null
src/game.py
LuisMarques99/Number-Guesser-Terminal
6abfac23268022f7ce3776a20d1d6f550955d6c8
[ "MIT" ]
null
null
null
src/game.py
LuisMarques99/Number-Guesser-Terminal
6abfac23268022f7ce3776a20d1d6f550955d6c8
[ "MIT" ]
null
null
null
from random import randrange def main(): MIN = 1 MAX = 100 NUMBER = randrange(MIN, MAX + 1) guesses = 9 print(f"Guess a number from {MIN} to {MAX}.\nYou have {guesses} chances. Start now!\n") while guesses > 0: guess = input(f"Guess ({guesses}): ") guesses -= 1 try: guess = int(guess) if guess == NUMBER: print("You won!") break if guesses == 0: print(f"\nYou ran out of guesses... Best luck next time.\nThe number was [{NUMBER}].") else: print("Smaller\n" if (guess > NUMBER) else "Bigger\n") except ValueError: print("Enter just the number.\n") if __name__ == "__main__": main()
21.827586
90
0.624013
0
0
0
0
0
0
0
0
248
0.391785
573b7032640a85abec559a72d8a9edcb24834621
378
py
Python
Data Structures and Algorithms/HackerRank Algo Solutions/EASY PROBLEMS/Arrays.py
akkik04/Python-DataStructures-and-Algorithms
8db63173218e5a9205dbb325935c71fec93b695c
[ "MIT" ]
1
2022-01-22T18:19:07.000Z
2022-01-22T18:19:07.000Z
Data Structures and Algorithms/HackerRank Algo Solutions/EASY PROBLEMS/Arrays.py
akkik04/Python-DataStructures-and-Algorithms
8db63173218e5a9205dbb325935c71fec93b695c
[ "MIT" ]
null
null
null
Data Structures and Algorithms/HackerRank Algo Solutions/EASY PROBLEMS/Arrays.py
akkik04/Python-DataStructures-and-Algorithms
8db63173218e5a9205dbb325935c71fec93b695c
[ "MIT" ]
null
null
null
# ARRAYS-DS HACKERANK SOLUTION: # creating a function to reverse the array. def reverseArray(arr): # reversing the array. reversed = arr[::-1] # returning the reversed array. return reversed # receiving input. arr_count = int(input().strip()) arr = list(map(int, input().rstrip().split())) # printing the output. print(reverseArray(arr))
22.235294
47
0.653439
0
0
0
0
0
0
0
0
173
0.457672
573eb0d44cfa9120f4cdede91149047e20c421a4
1,456
py
Python
bmds_server/analysis/admin.py
shapiromatron/bmds-server
0b2b79b521728582fa66100621e9ea03e251f9f1
[ "MIT" ]
1
2019-07-09T16:42:15.000Z
2019-07-09T16:42:15.000Z
bmds_server/analysis/admin.py
shapiromatron/bmds-server
0b2b79b521728582fa66100621e9ea03e251f9f1
[ "MIT" ]
103
2016-11-14T15:58:53.000Z
2022-03-07T21:01:03.000Z
bmds_server/analysis/admin.py
shapiromatron/bmds-server
0b2b79b521728582fa66100621e9ea03e251f9f1
[ "MIT" ]
2
2017-03-17T20:43:22.000Z
2018-01-04T19:15:18.000Z
from django.contrib import admin from django.contrib.admin import SimpleListFilter from django.db.models import TextChoices from django.utils.html import format_html from . import models class CustomQuerysetsFilter(SimpleListFilter): title = "custom" parameter_name = "custom" class CustomQuerysetChoices(TextChoices): MAYBE_HANGING = "hanging" def lookups(self, request, model_admin): return self.CustomQuerysetChoices.choices def queryset(self, request, queryset): value = self.value() if value == self.CustomQuerysetChoices.MAYBE_HANGING: return models.Analysis.maybe_hanging(queryset) @admin.register(models.Analysis) class AnalysisAdmin(admin.ModelAdmin): list_display = ("__str__", "view_url", "edit_url", "created", "is_finished", "deletion_date") readonly_fields = ("password",) list_filter = ( CustomQuerysetsFilter, "started", "ended", "deletion_date", ) def view_url(self, obj): return format_html(f"<a href='{obj.get_absolute_url()}'>View</a>") view_url.short_description = "View" def edit_url(self, obj): return format_html(f"<a href='{obj.get_edit_url()}'>Edit</a>") edit_url.short_description = "Edit" @admin.register(models.Content) class Content(admin.ModelAdmin): list_display = ("id", "content_type", "subject", "created", "last_updated") list_filter = ("content_type",)
28.54902
97
0.691621
1,194
0.820055
0
0
791
0.543269
0
0
296
0.203297
573ec927838cc2f17f74c48d89acf3a9486bfe1d
96
py
Python
venv/lib/python3.8/site-packages/numpy/distutils/fcompiler/pg.py
Retraces/UkraineBot
3d5d7f8aaa58fa0cb8b98733b8808e5dfbdb8b71
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/numpy/distutils/fcompiler/pg.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/numpy/distutils/fcompiler/pg.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/34/e0/75/b2dceb8ef40c652edb20f4e059370015eddc8cdbde039f92ced519a83d
96
96
0.895833
0
0
0
0
0
0
0
0
0
0
5742d249cea7cefa19d4a4ea9010a2450f58aa8b
552
py
Python
03/00/0.py
pylangstudy/201801
eee9cfd2b370153359183d3c8f7fe117f4392142
[ "CC0-1.0" ]
null
null
null
03/00/0.py
pylangstudy/201801
eee9cfd2b370153359183d3c8f7fe117f4392142
[ "CC0-1.0" ]
null
null
null
03/00/0.py
pylangstudy/201801
eee9cfd2b370153359183d3c8f7fe117f4392142
[ "CC0-1.0" ]
null
null
null
#https://qiita.com/stkdev/items/a44976fb81ae90a66381 #import imaplib, re, email, six, dateutil.parser import imaplib, re, email email_default_encoding = 'iso-2022-jp' def main(): gmail = imaplib.IMAP4_SSL("imap.gmail.com") username = 'user' password = 'pass' gmail.login(username, password)#imaplib.error: b'[ALERT] Please log in via your web browser: https://support.google.com/mail/accounts/answer/78754 (Failure)' gmail.select('INBOX') #受信ボックスを指定する gmail.select('register') #ラベルを指定する if __name__ == '__main__': main()
32.470588
161
0.71558
0
0
0
0
0
0
0
0
353
0.598305
57452ea96aff7c8f3e31ad97f424bdd254f5bb63
5,468
py
Python
sql/filewalk.py
kylef-lab41/Redwood
c4e1c8284444b91246e52c165ea150eea23b26b9
[ "Apache-2.0" ]
null
null
null
sql/filewalk.py
kylef-lab41/Redwood
c4e1c8284444b91246e52c165ea150eea23b26b9
[ "Apache-2.0" ]
null
null
null
sql/filewalk.py
kylef-lab41/Redwood
c4e1c8284444b91246e52c165ea150eea23b26b9
[ "Apache-2.0" ]
null
null
null
import binascii import datetime import hashlib import mimetypes import os import re import struct import subprocess import sys import time import urllib import csv from Queue import Queue # 8 byte unique ID generator give a path. # - first five bytes are first five from sha1 of path name # - last 3 are the first three from the current time # Returns a long def generateUniqueId(path): m = hashlib.md5() m.update(path) first_five = m.digest()[:5] last_three = struct.pack("I", int(time.time()))[:3] combined = first_five + last_three return long(binascii.hexlify(combined), 16) def write_stat_info(basename, dirname, file_id, parent_id, dirname_digest, csv_writer): #need to escape commas from base name and dirname since we are creating a csv path = os.path.join(dirname, basename) try: stat_obj = os.stat(path) except Exception: # print "Error trying to stat {}".format(path) return url = urllib.pathname2url(path) file_type = mimetypes.guess_type(url)[0] hash_val = hash_file(path, file_type) #file_id, parent_id,dirname,basename,hash,fs_id,device,permissions,uid,gid,size,create_time,access_time,mod_time,metadata_change_time,user_flags,links,disk_offset,entropy,file_content_status,extensions,file_type csv_writer.writerow([file_id, parent_id, dirname, basename, hash_val, dirname_digest, stat_obj.st_ino, stat_obj.st_dev, str(oct(stat_obj.st_mode)), stat_obj.st_uid, stat_obj.st_gid, stat_obj.st_size, long(os.path.getctime(path)), long(stat_obj.st_atime), long(stat_obj.st_mtime), long(stat_obj.st_ctime), "", stat_obj.st_nlink, "", "", "", os.path.splitext(basename)[1], file_type]) BUFFER = 4096 def hash_file(path, file_type): ret = "" # some files you can't hash if(file_type == 'inode/chardevice' \ or file_type == 'inode/symlink' \ or file_type == 'inode/socket' \ or file_type == 'inode/blockdevice' \ or file_type == 'inode/x-empty' \ or file_type == 'application/x-coredump' \ or file_type == 'inode/directory'): ret = "0" return ret fd = None try: h = hashlib.sha1() fd = os.open(path, os.O_RDONLY | os.O_NONBLOCK) data = os.read(fd, BUFFER) while(len(data)>0): h.update(data) data = os.read(fd, BUFFER) ret = h.hexdigest() except Exception, err: # print "Hash Error: {} on file {} with type {}".format(err, path, # file_type) pass finally: if(fd != None): os.close(fd) return ret omitted_dirs = ['/dev', '/proc', '/sys', '/Volumes', '/mnt', '/net'] def main(argv): if(len(argv) != 5): print "filewalk.py <directory> <os> <source> <output_dir>" return #make sure output dir exists if os.path.exists(argv[4]) is False: print "Output dir {} does not exist".format(argv[4]) return today = datetime.date.today() str_date = today.strftime('%Y-%m-%d') out_file = os.path.join(argv[4], "{}--{}--{}".format(str_date, argv[2], argv[3])) start_dir = argv[1] stack = list() with open(out_file, "w") as file_handle: csv_writer = csv.writer(file_handle) csv_writer.writerow(["file_id","parent_id","dirname","basename","contents_hash", "dirname_hash", "fs_id","device","permissions", "uid","gid","size","create_time","access_time","mod_time","metadata_change_time", "user_flags","links","disk_offset","entropy","file_content_status","extensions","file_type"]) # start the queue with a 0 value stack.append(0L) for root, dirs, files in os.walk(start_dir): # We want to have a nice, dynamic output that doesn't flood the # terminal with lines of text. So we'll write a line, then flush it # with '\r'. In order to do this properly, we need to first measure # the width of the terminal. # We're also going to put it inside the loop in case the window # gets resized while it's running rows,columns = os.popen('stty size', 'r').read().split() rows = int(rows) columns = int(columns) parent_id = stack.pop() #some directories we will ignore as so if root in omitted_dirs: del dirs[:] continue sys.stdout.write('\r') sys.stdout.write(' ' * columns) sys.stdout.write('\r') sys.stdout.write('processing {}'.format(root[:columns-12])) sys.stdout.flush() new_parent_id = generateUniqueId(root) # for each of the child dirs, add the parent id. This assumes a BFS # search for d in dirs: stack.append(new_parent_id) h = hashlib.sha1() h.update(root) root_digest = h.hexdigest() # write the parent directory write_stat_info("/", root, new_parent_id, parent_id, root_digest,csv_writer) for f in files: _id = generateUniqueId(os.path.join(root, f)) write_stat_info(f, root, _id, new_parent_id, root_digest, csv_writer) file_handle.flush() if __name__=="__main__": main(sys.argv)
32.939759
211
0.602597
0
0
0
0
0
0
0
0
1,726
0.315655
574587d505f7c19dabd0452d40b6544e75b9a682
10,136
py
Python
processing_scripts/database_update/pokedex_entry.py
CorentG/Pokecube-Issues-and-Wiki
690af5d8499561f65f761fd49fbf5fc2bc85c4c3
[ "MIT" ]
24
2019-02-02T20:37:53.000Z
2022-02-09T13:51:41.000Z
processing_scripts/database_update/pokedex_entry.py
CorentG/Pokecube-Issues-and-Wiki
690af5d8499561f65f761fd49fbf5fc2bc85c4c3
[ "MIT" ]
671
2018-08-20T08:46:35.000Z
2022-03-26T00:11:43.000Z
processing_scripts/database_update/pokedex_entry.py
CorentG/Pokecube-Issues-and-Wiki
690af5d8499561f65f761fd49fbf5fc2bc85c4c3
[ "MIT" ]
68
2018-09-25T21:03:40.000Z
2022-02-25T19:59:51.000Z
import csv_loader import moves_names def getSingle(name, data, file, value): return data.get_info(name,value, expected_file=file, use_names_map=True)[file][0] def getExpYield(name, data): return int(getSingle(name, data,"pokemon" ,"base_experience")) def getHeight(name, data): return int(getSingle(name, data,"pokemon" ,"height")) / 10.0 def getWeight(name, data): return int(getSingle(name, data,"pokemon" ,"weight")) / 10.0 def getGenderRatio(name, data): rates = {} val = int(getSingle(name, data,"pokemon_species" ,"gender_rate")) rates[-1] = 255 rates[0] = 0 rates[1] = 30 rates[2] = 62 rates[4] = 127 rates[6] = 191 rates[7] = 225 rates[8] = 254 return rates[val] def getCaptureRate(name, data): return int(getSingle(name, data,"pokemon_species" ,"capture_rate")) def getBaseFriendship(name, data): return int(getSingle(name, data,"pokemon_species" ,"base_happiness")) def getExpMode(name, data): stats = data.get_info(name,"growth_rate_id", expected_file="pokemon_species", use_names_map=True)["pokemon_species"] _id = stats[0] stats = data.get_entry(_id, expected_file="growth_rate_prose", use_names_map=True)["growth_rate_prose"] for row in stats: _id = row[1] if _id == '9': return row[2] return None def getLevelMoves(name, data): moves = {} names = [] try: moves_entries = data.get_entry(name, expected_file="pokemon_moves", use_names_map=True)["pokemon_moves"] version = 1 # First, locate the most recent version that has lvl up moves for entry in moves_entries: if entry[4] == "0": continue vers = int(entry[1]) if vers > version: version = vers version = str(version) # Now we can actually parse the moves for entry in moves_entries: # TODO figure out if a move is an evolution move, is that info here? if entry[4] == "0": continue if entry[1] != version: continue level = entry[4] move_id = entry[2] move = data.get_info(move_id,"identifier", expected_file="moves")["moves"][0] move_, conf = csv_loader.match_name(move, moves_names.moves) if(conf < 80): print("{} -> {} ({})".format(move, move_, conf)) else: move = move_ if level in moves.keys(): moves[level] = moves[level]+","+move else: moves[level] = move if not move in names: names.append(move) except: # print("No moves found for {}".format(name)) pass return moves, names def getAllMoves(name, data, exclude=[]): names = [] try: moves_entries = data.get_entry(name, expected_file="pokemon_moves", use_names_map=True)["pokemon_moves"] for entry in moves_entries: move_id = entry[2] move = data.get_info(move_id,"identifier", expected_file="moves")["moves"][0] move_, conf = csv_loader.match_name(move, moves_names.moves) if(conf < 80): print("{} -> {} ({})??".format(move, move_, conf)) else: move = move_ if move in exclude or move in names: continue names.append(move) except: # print("No moves found for {}".format(name)) pass return names def getTypes(name, data): types_nums = data.get_info(name,"type_id", expected_file="pokemon_types", use_names_map=True)["pokemon_types"] types = [] for num in types_nums: names = data.get_info(num,"identifier", expected_file="types")["types"] types.append(names[0]) return types def getStats(name, data): stats = [] # TODO maybe validate that these are in the correct order, the index is also stored # in the csv file, so that validation can be done if needed! stats = data.get_info(name,"base_stat", expected_file="pokemon_stats", use_names_map=True)["pokemon_stats"] return stats def getEVs(name, data): stats = [] # TODO maybe validate that these are in the correct order, the index is also stored # in the csv file, so that validation can be done if needed! stats = data.get_info(name,"effort", expected_file="pokemon_stats", use_names_map=True)["pokemon_stats"] return stats def getAbilities(name, data): hidden = [] abilities = ["",""] rows = data.get_entry(name, expected_file="pokemon_abilities", use_names_map=True)["pokemon_abilities"] for row in rows: ability_id = row[1] isHidden = row[2] slot = int(row[3]) - 1 ability_name = data.get_info(ability_id,"identifier", expected_file="abilities")["abilities"][0] if ability_name == '': continue if isHidden == "1": hidden.append(ability_name) elif slot < len(abilities): abilities[slot] = ability_name return abilities, hidden def sorter(e): return int(e) class Pokedex(object): def __init__(self, names, data, originals, do_moves, do_stats): self.pokemon = [] for name in names: defaults = None if name in originals: defaults = originals[name] try: entry = PokedexEntry(name, data, defaults, do_moves, do_stats) if do_moves and not "moves" in entry.map: continue self.pokemon.append(entry.map) except Exception as err: print("Error with {} {}, Using default if present? {}".format(name, err, defaults is not None)) if defaults is not None and do_stats: self.pokemon.append(defaults) class PokedexEntry(object): def __init__(self, name, data, defaults, do_moves, do_stats): _map = self.map = {} _map["name"] = name if do_stats: _map["number"] = int(getSingle(name, data, "pokemon", "species_id")) id = int(getSingle(name, data, "pokemon", "id")) is_default = id == _map["number"] if(is_default): _map["base"] = True _map["stats"] = {} statsOrder = ["hp", "atk", "def", "spatk", "spdef", "spd"] # Do the base stats stats = getStats(name, data) _map["stats"]["stats"] = {} values = _map["stats"]["stats"]["values"] = {} for i in range(len(statsOrder)): values[statsOrder[i]] = stats[i] if defaults is not None: _map["stats"]["sizes"] = defaults["stats"]["sizes"] else: print("Cannot copy sizes for {}".format(name)) # Do the evs stats = getEVs(name, data) _map["stats"]["evs"] = {} values = _map["stats"]["evs"]["values"] = {} for i in range(len(statsOrder)): if stats[i] == "0": continue values[statsOrder[i]] = stats[i] # Get the types types = getTypes(name,data) _map["stats"]["types"] = {} values = _map["stats"]["types"]["values"] = {} for i in range(len(types)): ident = "type{}".format(i+1) values[ident] = types[i] # Get Abilities abilities, hidden = getAbilities(name, data) _map["stats"]["abilities"] = {} values = _map["stats"]["abilities"]["values"] = {} if len(abilities) > 0: normals = abilities[0] if len(abilities) > 1: for i in range(1, len(abilities)): if abilities[i] != "": normals = normals +", "+abilities[i] values["normal"] = normals if len(hidden) > 0: hiddens = hidden[0] if len(hidden) > 1: for i in range(1, len(hidden)): if hidden[i] != "": hiddens = hiddens +", "+hidden[i] values["hidden"] = hiddens # Get the simple values _map["stats"]["mass"] = getWeight(name, data) _map["stats"]["baseExp"] = getExpYield(name, data) # This set is not defined for all targets, so try/except them try: _map["stats"]["captureRate"] = getCaptureRate(name, data) except: pass try: _map["stats"]["baseFriendship"] = getBaseFriendship(name, data) except: pass try: _map["stats"]["genderRatio"] = getGenderRatio(name, data) except: pass try: _map["stats"]["expMode"] = getExpMode(name, data) except: pass if do_moves: # Do the moves # First lvl up moves moves, names = getLevelMoves(name, data) moves_list = getAllMoves(name, data, exclude=names) if len(moves) != 0 or len(moves_list) != 0: _map["moves"] = {} elif defaults is not None: _map["moves"] = defaults["moves"] print("Not Updating moves for {}".format(name)) if len(moves) > 0: lvlMoves = _map["moves"]["lvlupMoves"] = {} levels = [x for x in moves.keys()] levels.sort(key=sorter) for level in levels: lvlMoves[level] = moves[level] # Then remainder moves = "" if len(moves_list)>0: moves = moves_list[0] for i in range(1, len(moves_list)): moves = moves +", "+moves_list[i] misc = _map["moves"]["misc"] = {} misc["moves"] = moves
37.128205
120
0.530979
4,976
0.490923
0
0
0
0
0
0
1,959
0.193272
5746c4fc2776ee414b40d5372100f22e8a3258f4
25,539
py
Python
tests/test_add.py
open-contracting/kingfisher-views
7887610a144493f2ccd0d9a22cf43157dc180479
[ "BSD-3-Clause" ]
2
2019-02-19T16:15:19.000Z
2020-07-25T04:05:45.000Z
tests/test_add.py
open-contracting/kingfisher-views
7887610a144493f2ccd0d9a22cf43157dc180479
[ "BSD-3-Clause" ]
142
2019-03-11T15:14:22.000Z
2020-11-11T19:26:09.000Z
tests/test_add.py
open-contracting/kingfisher-views
7887610a144493f2ccd0d9a22cf43157dc180479
[ "BSD-3-Clause" ]
5
2019-04-11T14:11:10.000Z
2020-07-30T22:45:59.000Z
import datetime import decimal from unittest.mock import patch import pytest from click.testing import CliRunner from psycopg2 import sql from manage import SUMMARIES, cli, construct_where_fragment from tests import assert_bad_argument, assert_log_records, assert_log_running, fixture, noop command = 'add' TABLES = { 'note', } SUMMARY_TABLES = set() SUMMARY_VIEWS = set() FIELD_LIST_TABLES = set() NO_FIELD_LIST_TABLES = set() NO_FIELD_LIST_VIEWS = set() for table_name, table in SUMMARIES.items(): FIELD_LIST_TABLES.add(f'{table_name}_field_list') if table.is_table: SUMMARY_TABLES.add(table_name) NO_FIELD_LIST_TABLES.add(f'{table_name}_no_field_list') else: SUMMARY_VIEWS.add(table_name) NO_FIELD_LIST_VIEWS.add(f'{table_name}_no_field_list') TABLES.add(f'{table_name}_no_data') def test_construct_where_fragment(db): assert construct_where_fragment(db.cursor, 'a', 'z') == " AND d.data->>'a' = 'z'" assert construct_where_fragment(db.cursor, 'a.b', 'z') == " AND d.data->'a'->>'b' = 'z'" assert construct_where_fragment(db.cursor, 'a.b.c', 'z') == " AND d.data->'a'->'b'->>'c' = 'z'" assert construct_where_fragment(db.cursor, 'a.b.c.d', 'z') == " AND d.data->'a'->'b'->'c'->>'d' = 'z'" assert construct_where_fragment(db.cursor, 'a.b.c', '') == " AND d.data->'a'->'b'->>'c' = ''" assert construct_where_fragment(db.cursor, '', 'z') == " AND d.data->>'' = 'z'" @pytest.mark.parametrize('collections, message', [ ('a', 'Collection IDs must be integers'), ('1,10,100', 'Collection IDs {10, 100} not found'), ]) def test_validate_collections(collections, message, caplog): runner = CliRunner() result = runner.invoke(cli, [command, collections]) assert result.exit_code == 2 assert_bad_argument(result, 'COLLECTIONS', message) assert_log_running(caplog, command) def test_validate_name(caplog): runner = CliRunner() result = runner.invoke(cli, [command, '1', '--name', 'camelCase']) assert result.exit_code == 2 assert_bad_argument(result, '--name', 'value must be lowercase') assert_log_running(caplog, command) @patch('manage.summary_tables', noop) @patch('manage.field_counts', noop) @patch('manage.field_lists', noop) @pytest.mark.parametrize('kwargs, name, collections', [ ({}, 'collection_1', (1,)), ({'collections': '1,2'}, 'collection_1_2', (1, 2)), ({'name': 'custom'}, 'custom', (1,)), ]) def test_command_name(kwargs, name, collections, db, caplog): schema = f'view_data_{name}' identifier = sql.Identifier(schema) with fixture(db, **kwargs) as result: assert db.schema_exists(schema) assert db.all('SELECT collection_id, schema FROM summaries.selected_collections WHERE schema=%(schema)s', {'schema': schema}) == [(collection, schema,) for collection in collections] assert db.all(sql.SQL('SELECT id, note FROM {schema}.note').format(schema=identifier)) == [ (1, 'Default'), ] assert result.exit_code == 0 assert result.output == '' assert_log_records(caplog, command, [ f'Arguments: collections={collections!r} note=Default name={kwargs.get("name")} tables_only=False ' 'filters=()', f'Added {name}', 'Running summary-tables routine', 'Running field-counts routine', 'Running field-lists routine', ]) @pytest.mark.parametrize('filters', [(), (('ocid', 'dolore'),)]) @pytest.mark.parametrize('tables_only, field_counts, field_lists, tables, views', [ (False, True, False, TABLES | SUMMARY_TABLES, SUMMARY_VIEWS), (True, True, False, TABLES | SUMMARY_TABLES | SUMMARY_VIEWS, set()), (False, False, True, TABLES | FIELD_LIST_TABLES | NO_FIELD_LIST_TABLES, SUMMARY_TABLES | SUMMARY_VIEWS | NO_FIELD_LIST_VIEWS), (True, False, True, TABLES | FIELD_LIST_TABLES | NO_FIELD_LIST_TABLES | SUMMARY_TABLES | SUMMARY_VIEWS | NO_FIELD_LIST_VIEWS, set()), ]) def test_command(db, tables_only, field_counts, field_lists, tables, views, filters, caplog): # Load collection 2 first, to check that existing collections aren't included when we load collection 1. with fixture(db, collections='2', tables_only=tables_only, field_counts=field_counts, field_lists=field_lists, filters=filters), fixture(db, tables_only=tables_only, field_counts=field_counts, field_lists=field_lists, filters=filters) as result: # Check existence of schema, tables and views. if field_counts: tables.add('field_counts') assert db.schema_exists('view_data_collection_1') assert db.schema_exists('view_data_collection_2') assert set(db.pluck("SELECT table_name FROM information_schema.tables WHERE table_schema = %(schema)s " "AND table_type = 'BASE TABLE'", {'schema': 'view_data_collection_1'})) == tables assert set(db.pluck("SELECT table_name FROM information_schema.tables WHERE table_schema = %(schema)s " "AND table_type = 'VIEW'", {'schema': 'view_data_collection_1'})) == views # Check contents of summary relations. rows = db.all(""" SELECT award_index, release_type, collection_id, ocid, release_id, award_id, title, status, description, value_amount, value_currency, date, contractperiod_startdate, contractperiod_enddate, contractperiod_maxextentdate, contractperiod_durationindays, total_suppliers, total_documents, document_documenttype_counts, total_items FROM view_data_collection_1.awards_summary ORDER BY id, award_index """) assert rows[0] == ( 0, # award_index 'release', # release_type 1, # collection_id 'dolore', # ocid 'ex laborumsit autein magna veniam', # release_id 'reprehenderit magna cillum eu nisi', # award_id 'laborum aute nisi eiusmod', # award_title 'pending', # award_status 'ullamco in voluptate', # award_description decimal.Decimal('-95099396'), # award_value_amount 'AMD', # award_value_currency datetime.datetime(3263, 12, 5, 21, 24, 19, 161000), # award_date datetime.datetime(4097, 9, 16, 5, 55, 19, 125000), # award_contractperiod_startdate datetime.datetime(4591, 4, 29, 6, 34, 28, 472000), # award_contractperiod_enddate datetime.datetime(3714, 8, 9, 7, 21, 37, 544000), # award_contractperiod_maxextentdate decimal.Decimal('72802012'), # award_contractperiod_durationindays 2, # total_suppliers 4, # total_documents { 'Excepteur nisi et': 1, 'proident exercitation in': 1, 'ut magna dolore velit aute': 1, 'veniam enim aliqua d': 1, }, # document_documenttype_counts 5, # total_items ) if filters: assert len(rows) == 4 else: assert len(rows) == 301 rows = db.all(""" SELECT party_index, release_type, collection_id, ocid, release_id, party_id, roles, identifier, unique_identifier_attempt, additionalidentifiers_ids, total_additionalidentifiers FROM view_data_collection_1.parties_summary ORDER BY id, party_index """) assert rows[0] == ( 0, # party_index 'release', # release_type 1, # collection_id 'dolore', # ocid 'ex laborumsit autein magna veniam', # release_id 'voluptate officia tempor dolor', # party_id [ 'ex ', 'in est exercitation nulla Excepteur', 'ipsum do', ], # roles 'ad proident dolor reprehenderit veniam-in quis exercitation reprehenderit', # identifier 'voluptate officia tempor dolor', # unique_identifier_attempt [ 'exercitation proident voluptate-sed culpa eamollit consectetur dolor l', 'magna-dolor ut indolorein in tempor magna mollit', 'ad occaecat amet anim-laboris ea Duisdeserunt quis sed pariatur mollit', 'elit mollit-officia proidentmagna', 'ex-minim Ut consectetur', ], # additionalidentifiers_ids 5, # total_additionalidentifiers ) if filters: assert len(rows) == 4 else: assert len(rows) == 296 if field_counts: # Check contents of field_counts table. rows = db.all('SELECT * FROM view_data_collection_1.field_counts') if filters: assert len(rows) == 1046 assert rows[0] == (1, 'release', 'awards', 1, 4, 1) else: assert len(rows) == 65235 assert rows[0] == (1, 'release', 'awards', 100, 301, 100) if field_lists: # Check the count of keys in the field_list field for the lowest primary keys in each summary relation. statement = """ SELECT count(*) FROM (SELECT jsonb_each(field_list) FROM ( SELECT field_list FROM view_data_collection_1.{table} ORDER BY {primary_keys} LIMIT 1) AS field_list ) AS each """ expected = { 'award_documents_summary': 11, 'award_items_summary': 26, 'award_suppliers_summary': 28, 'awards_summary': 469, 'buyer_summary': 28, 'contract_documents_summary': 11, 'contract_implementation_documents_summary': 11, 'contract_implementation_milestones_summary': 29, 'contract_implementation_transactions_summary': 83, 'contract_items_summary': 26, 'contract_milestones_summary': 27, 'contracts_summary': 469, 'parties_summary': 34, 'planning_documents_summary': 11, 'planning_milestones_summary': 29, 'planning_summary': 61, 'procuringentity_summary': 32, 'relatedprocesses_summary': 6, 'release_summary': 1046, 'tender_documents_summary': 15, 'tender_items_summary': 25, 'tender_milestones_summary': 23, 'tender_summary': 228, 'tenderers_summary': 31, } for table_name, table in SUMMARIES.items(): count = db.one(db.format(statement, table=table_name, primary_keys=table.primary_keys))[0] assert count == expected[table_name], f'{table_name}: {count} != {expected[table_name]}' def result_dict(statement): result = db.one(statement) return {column.name: result for column, result in zip(db.cursor.description, result)} statement = """ SELECT count(*) total, sum(coalesce((field_list ->> 'contracts')::int, 0)) contracts, sum(coalesce((field_list ->> 'awards')::int, 0)) awards, sum(coalesce((field_list ->> 'awards/id')::int, 0)) awards_id, sum(coalesce((field_list ->> 'awards/value/amount')::int, 0)) awards_amount FROM view_data_collection_1.contracts_summary """ if filters: assert result_dict(statement) == { 'awards': 1, 'awards_amount': 1, 'awards_id': 1, 'contracts': 0, 'total': 1, } else: assert result_dict(statement) == { 'awards': 213, 'awards_amount': 213, 'awards_id': 213, 'contracts': 0, 'total': 285, } statement = """ SELECT count(*) total, sum(coalesce((field_list ->> 'awards')::int, 0)) awards, sum(coalesce((field_list ->> 'contracts')::int, 0)) contracts, sum(coalesce((field_list ->> 'contracts/id')::int, 0)) contracts_id, sum(coalesce((field_list ->> 'contracts/value/amount')::int, 0)) contracts_amount FROM view_data_collection_1.awards_summary """ if filters: assert result_dict(statement) == { 'contracts': 1, 'contracts_amount': 1, 'contracts_id': 1, 'awards': 0, 'total': 4, } else: assert result_dict(statement) == { 'contracts': 213, 'contracts_amount': 213, 'contracts_id': 213, 'awards': 0, 'total': 301, } # All columns have comments. assert not db.all(""" SELECT isc.table_name, isc.column_name, isc.data_type FROM information_schema.columns isc WHERE isc.table_schema = %(schema)s AND LOWER(isc.table_name) NOT IN ('selected_collections', 'note') AND LOWER(isc.table_name) NOT LIKE '%%_no_data' AND LOWER(isc.table_name) NOT LIKE '%%_field_list' AND pg_catalog.col_description(format('%%s.%%s',isc.table_schema,isc.table_name)::regclass::oid, isc.ordinal_position) IS NULL """, {'schema': 'view_data_collection_1'}) expected = [] for collection_id in [2, 1]: expected.extend([ f'Arguments: collections=({collection_id},) note=Default name=None tables_only={tables_only!r} ' f'filters={filters!r}', f'Added collection_{collection_id}', 'Running summary-tables routine', ]) if field_counts: expected.append('Running field-counts routine') if field_lists: expected.append('Running field-lists routine') assert result.exit_code == 0 assert result.output == '' assert_log_records(caplog, command, expected) @pytest.mark.parametrize('filters', [ (('tender.procurementMethod', 'direct'),), (('tender.procurementMethod', 'direct'), ('tender.status', 'planned'),), ]) @pytest.mark.parametrize('tables_only, field_counts, field_lists, tables, views', [ (False, True, False, TABLES | SUMMARY_TABLES, SUMMARY_VIEWS), (True, True, False, TABLES | SUMMARY_TABLES | SUMMARY_VIEWS, set()), (False, False, True, TABLES | FIELD_LIST_TABLES | NO_FIELD_LIST_TABLES, SUMMARY_TABLES | SUMMARY_VIEWS | NO_FIELD_LIST_VIEWS), (True, False, True, TABLES | FIELD_LIST_TABLES | NO_FIELD_LIST_TABLES | SUMMARY_TABLES | SUMMARY_VIEWS | NO_FIELD_LIST_VIEWS, set()), ]) def test_command_filter(db, tables_only, field_counts, field_lists, tables, views, filters, caplog): # Load collection 2 first, to check that existing collections aren't included when we load collection 1. with fixture(db, collections='2', tables_only=tables_only, field_counts=field_counts, field_lists=field_lists, filters=filters), fixture(db, tables_only=tables_only, field_counts=field_counts, field_lists=field_lists, filters=filters) as result: # Check existence of schema, tables and views. if field_counts: tables.add('field_counts') assert db.schema_exists('view_data_collection_1') assert db.schema_exists('view_data_collection_2') assert set(db.pluck("SELECT table_name FROM information_schema.tables WHERE table_schema = %(schema)s " "AND table_type = 'BASE TABLE'", {'schema': 'view_data_collection_1'})) == tables assert set(db.pluck("SELECT table_name FROM information_schema.tables WHERE table_schema = %(schema)s " "AND table_type = 'VIEW'", {'schema': 'view_data_collection_1'})) == views # Check that the tender_summary table only has correctly filtered items rows = db.all(""" SELECT procurementmethod FROM view_data_collection_1.tender_summary """) for row in rows: assert row[0] == 'direct' if len(filters) > 1: assert len(rows) == 2 else: assert len(rows) == 19 # Check data_id's in the summary against the data table # This allows us to check that missing data doesn't have the filtered value rows = db.all(""" SELECT data_id FROM view_data_collection_1.release_summary """) if len(filters) > 1: assert len(rows) == 2 else: assert len(rows) == 19 data_ids = [row[0] for row in rows] rows = db.all(""" SELECT data.id, data.data->'tender'->'procurementMethod', data.data->'tender'->'status' FROM data JOIN release ON release.data_id=data.id WHERE release.collection_id=1 """) for row in rows: if row[1] == 'direct' and (len(filters) == 1 or row[2] == 'planned'): assert row[0] in data_ids else: assert row[0] not in data_ids # Check contents of summary relations. rows = db.all(""" SELECT award_index, release_type, collection_id, ocid, release_id, award_id, title, status, description, value_amount, value_currency, date, contractperiod_startdate, contractperiod_enddate, contractperiod_maxextentdate, contractperiod_durationindays, total_suppliers, total_documents, document_documenttype_counts, total_items FROM view_data_collection_1.awards_summary ORDER BY id, award_index """) assert rows[0] == ( 0, # award_index 'release', # release_type 1, # collection_id 'officia dolore non', # ocid 'laborum irure consectetur fugiat', # release_id 'dolorLorem fugiat ut', # award_id 'et', # award_title 'pending', # award_status 'adipisicing ame', # award_description decimal.Decimal('-7139109'), # award_value_amount 'AUD', # award_value_currency datetime.datetime(3672, 10, 26, 4, 38, 28, 786000), # award_date datetime.datetime(2192, 8, 27, 0, 9, 1, 626000), # award_contractperiod_startdate datetime.datetime(4204, 1, 22, 22, 4, 18, 268000), # award_contractperiod_enddate datetime.datetime(5117, 12, 26, 11, 33, 27, 496000), # award_contractperiod_maxextentdate decimal.Decimal('-30383739'), # award_contractperiod_durationindays 5, # total_suppliers 4, # total_documents { 'in sint enim labore': 1, 'mollit labore Lorem': 1, 'minim incididunt sed ipsum': 1, 'ad reprehenderit sit dolor enim': 1 }, # document_documenttype_counts 5, # total_items ) if len(filters) > 1: assert len(rows) == 7 else: assert len(rows) == 55 rows = db.all(""" SELECT party_index, release_type, collection_id, ocid, release_id, party_id, roles, identifier, unique_identifier_attempt, additionalidentifiers_ids, total_additionalidentifiers FROM view_data_collection_1.parties_summary ORDER BY id, party_index """) assert rows[0] == ( 0, # party_index 'release', # release_type 1, # collection_id 'officia dolore non', # ocid 'laborum irure consectetur fugiat', # release_id 'eu voluptateeiusmod ipsum ea', # party_id [ 'laborum', 'tempor', ], # roles 'cupidatat consequat in ullamco-in incididunt commodo elit', # identifier 'eu voluptateeiusmod ipsum ea', # unique_identifier_attempt [ 'non ei-commododolor laborum', ], # additionalidentifiers_ids 1, # total_additionalidentifiers ) if len(filters) > 1: assert len(rows) == 5 else: assert len(rows) == 56 if field_counts: # Check contents of field_counts table. rows = db.all('SELECT * FROM view_data_collection_1.field_counts') if len(filters) > 1: assert len(rows) == 1515 assert rows[0] == (1, 'release', 'awards', 2, 7, 2) else: assert len(rows) == 13077 assert rows[0] == (1, 'release', 'awards', 19, 55, 19) if field_lists: # Check the count of keys in the field_list field for the lowest primary keys in each summary relation. statement = """ SELECT count(*) FROM (SELECT jsonb_each(field_list) FROM ( SELECT field_list FROM view_data_collection_1.{table} ORDER BY {primary_keys} LIMIT 1) AS field_list ) AS each """ expected = { 'award_documents_summary': 11, 'award_items_summary': 29, 'award_suppliers_summary': 30, 'awards_summary': 492, 'buyer_summary': 31, 'contract_documents_summary': 11, 'contract_implementation_documents_summary': 11, 'contract_implementation_milestones_summary': 23, 'contract_implementation_transactions_summary': 83, 'contract_items_summary': 26, 'contract_milestones_summary': 26, 'contracts_summary': 492, 'parties_summary': 30, 'planning_documents_summary': 11, 'planning_milestones_summary': 27, 'planning_summary': 99, 'procuringentity_summary': 30, 'relatedprocesses_summary': 6, 'release_summary': 987, 'tender_documents_summary': 13, 'tender_items_summary': 28, 'tender_milestones_summary': 27, 'tender_summary': 265, 'tenderers_summary': 32, } for table_name, table in SUMMARIES.items(): count = db.one(db.format(statement, table=table_name, primary_keys=table.primary_keys))[0] assert count == expected[table_name], f'{table_name}: {count} != {expected[table_name]}' expected = [] for collection_id in [2, 1]: expected.extend([ f'Arguments: collections=({collection_id},) note=Default name=None tables_only={tables_only!r} ' f'filters={filters!r}', f'Added collection_{collection_id}', 'Running summary-tables routine', ]) if field_counts: expected.append('Running field-counts routine') if field_lists: expected.append('Running field-lists routine') assert result.exit_code == 0 assert result.output == '' assert_log_records(caplog, command, expected)
40.092622
118
0.539958
0
0
0
0
23,799
0.931869
0
0
13,163
0.515408
57476587984e17ece720d64d289aa21890dba64a
3,520
py
Python
ReportGenerator.py
taarruunnnn/VAPT-Report-Generator-Vulnerability
8d618c7ddac4f6fe0cedd9fa39ff61805e06fa38
[ "MIT" ]
1
2020-11-30T18:09:40.000Z
2020-11-30T18:09:40.000Z
ReportGenerator.py
taarruunnnn/VAPT-Report-Generator-Vulnerability
8d618c7ddac4f6fe0cedd9fa39ff61805e06fa38
[ "MIT" ]
null
null
null
ReportGenerator.py
taarruunnnn/VAPT-Report-Generator-Vulnerability
8d618c7ddac4f6fe0cedd9fa39ff61805e06fa38
[ "MIT" ]
1
2020-09-16T20:51:18.000Z
2020-09-16T20:51:18.000Z
import os from docx import Document from docx.shared import Inches from docx import section from docx.enum.text import WD_ALIGN_PARAGRAPH from docx.shared import Pt from docx.shared import Cm from docx.shared import RGBColor import docx class Print_document(): def start_doc(self): self.document = Document() def reinitialize_doc(self): self.document = Document('Temp.docx') def initialize_doc(self): sections = self.document.sections for section in sections: section.top_margin = Cm(2.54) section.bottom_margin = Cm(2.54) section.left_margin = Cm(2.54) section.right_margin = Cm(2.54) style = self.document.styles['Normal'] font = style.font font.name = 'Times New Roman' font.size = Pt(14) style = self.document.styles['Heading 2'] font1 = style.font font1.name = 'TimesNewRoman' font1.size = Pt(16) header = self.document.sections[0].header ht0=header.add_paragraph() kh=ht0.add_run() kh.add_picture('Pristine.png', width=Inches(2)) kh.alignment = WD_ALIGN_PARAGRAPH.LEFT footer = self.document.sections[0].footer f = footer.add_paragraph('All Rights Reserved by Pristine InfoSolutions Pvt. Ltd.') f.alignment = WD_ALIGN_PARAGRAPH.CENTER f.style = self.document.styles['Normal'] f.bold = True f.size = Pt(16) def setVname(self,Vname): self.document.add_heading('Vulnerability Name:', 2) p = self.document.add_paragraph(Vname) p.style = self.document.styles['Normal'] def setTitle(self): self.documeny.add_paragraph("Network") def setVSeverity(self,severity): p = self.document.add_heading('Severity', 2) p.style = self.document.styles['Heading 2'] p.bold = True p.size = Pt(16) p.name = 'TimesNewRoman' p = self.document.add_paragraph(severity) p.style = self.document.styles['Normal'] def SetVdesc(self,VDesc): vuldesh = self.document.add_heading('Vulnerability Description:', 2) p = self.document.add_paragraph(VDesc) def setVurl(self,Vurl): self.document.add_heading('Vulnerable URL: ', 2) p = self.document.add_paragraph(Vurl) p.style = self.document.styles['Normal'] def setImg(self,Img): self.document.add_heading('Proof of Concept: ',2) if (Img): lengthImg = len(Img[0]) for i in range (0,lengthImg): self.document.add_picture(Img[0][i], width=Cm(15.95)) def setImpact(self,VImpact): self.document.add_heading('Impact: ',2) p = self.document.add_paragraph(VImpact) p.style = self.document.styles['Normal'] def setVremed(self,Vrem): self.document.add_heading('Remediation', 2 ) p = self.document.add_paragraph(Vrem) p.style = self.document.styles['Normal'] def setConclusion(self,Conclusion): self.document.add_heading('Conclusion', 2 ) p = self.document.add_paragraph(Conclusion) p.style = self.document.styles['Normal'] def pageBreak(self): self.document.add_page_break() def Savedoc(self,name): self.document.save(name[0] + '.docx') def Savereport(self): self.document.save('Temp.docx')
31.711712
92
0.609091
3,272
0.929545
0
0
0
0
0
0
374
0.10625
5750825ae1de9236544f8dff0657979e541dfed6
764
py
Python
Season 06 - Files in Python/Episode 02 - Copying Files.py/Episode 02 - Copying Files.py
Pythobit/Python-tutorial
b0743eaa9c237c3578131ead1b3f2c295f11b7ee
[ "MIT" ]
3
2021-02-19T18:33:00.000Z
2021-08-03T14:56:50.000Z
Season 06 - Files in Python/Episode 02 - Copying Files.py/Episode 02 - Copying Files.py
barawalojas/Python-tutorial
3f4b2b073e421888b3d62ff634658317d9abcb9b
[ "MIT" ]
1
2021-07-10T14:37:57.000Z
2021-07-20T09:51:39.000Z
Season 06 - Files in Python/Episode 02 - Copying Files.py/Episode 02 - Copying Files.py
barawalojas/Python-tutorial
3f4b2b073e421888b3d62ff634658317d9abcb9b
[ "MIT" ]
1
2021-08-02T05:39:38.000Z
2021-08-02T05:39:38.000Z
# Copying files # Ask user for a list of 3 friends. # for each friend, we'll tell user whether they're nearby. # for each nearby friend, we'll save their name to `nearby_friends.txt`. friends = input('Enter three friends name(separated by commas): ').split(',') people = open('people.txt', 'r') people_nearby = [line.strip() for line in people.readlines()] people.close() # Making set of friends and peoples friends_set = set(friends) people_nearby_set = set(people_nearby) friends_nearby_set = friends_set.intersection(people_nearby_set) nearby_friends_file = open('nearby_friends.txt', 'w') for friend in friends_nearby_set: print(f'{friend} is nearby.! Meet up with them.') nearby_friends_file.write(f'{friend}\n') nearby_friends_file.close()
27.285714
77
0.743455
0
0
0
0
0
0
0
0
360
0.471204
5750d5afb4b68c06b08670b53610fc887297a148
722
py
Python
beginner_contest/167/C.py
FGtatsuro/myatcoder
25a3123be6a6311e7d1c25394987de3e35575ff4
[ "MIT" ]
null
null
null
beginner_contest/167/C.py
FGtatsuro/myatcoder
25a3123be6a6311e7d1c25394987de3e35575ff4
[ "MIT" ]
null
null
null
beginner_contest/167/C.py
FGtatsuro/myatcoder
25a3123be6a6311e7d1c25394987de3e35575ff4
[ "MIT" ]
null
null
null
import sys input = sys.stdin.readline sys.setrecursionlimit(10 ** 7) n, m, x = map(int, input().split()) ca = [0] * n ca_sum = [0] * (m+1) for i in range(n): ca[i] = list(map(int, input().split())) for j in range(m+1): ca_sum[j] += ca[i][j] ans = 10 ** 10 for i in range(2 ** n): tmp = 0 tmp_ca_sum = ca_sum.copy() for j, v in enumerate(format(i, r'0{}b'.format(n))): if v == '0': continue for k in range(m+1): tmp_ca_sum[k] -= ca[j][k] flag = True for v2 in tmp_ca_sum[1:]: if v2 < x: flag = False break if flag: ans = min(ans, tmp_ca_sum[0]) if ans == 10 ** 10: print(-1) else: print(ans)
21.235294
56
0.49723
0
0
0
0
0
0
0
0
10
0.01385
5752dc5277d06864407fc67287bd73391b57e2b0
923
py
Python
src/ProjectHeart/forms.py
LokotamaTheMastermind/secret-password-saver
e97f139b2cad9e1b0e9283079252d9a76764e3c1
[ "Unlicense" ]
null
null
null
src/ProjectHeart/forms.py
LokotamaTheMastermind/secret-password-saver
e97f139b2cad9e1b0e9283079252d9a76764e3c1
[ "Unlicense" ]
null
null
null
src/ProjectHeart/forms.py
LokotamaTheMastermind/secret-password-saver
e97f139b2cad9e1b0e9283079252d9a76764e3c1
[ "Unlicense" ]
null
null
null
from django import forms from .models import Passwords class PasswordsForm(forms.ModelForm): username = forms.CharField(widget=forms.TextInput( attrs={'class': 'uk-form-width-large uk-input uk-width-expand'}), required=False) email = forms.EmailField(widget=forms.TextInput( attrs={'class': 'uk-form-width-large uk-input uk-width-expand'}), required=False) password = forms.CharField(widget=forms.PasswordInput( attrs={'class': 'uk-form-width-large uk-input uk-width-expand'})) website_url = forms.CharField(widget=forms.URLInput( attrs={'class': 'uk-form-width-large uk-input uk-width-expand'})) website_name = forms.CharField(widget=forms.TextInput( attrs={'class': 'uk-form-width-large uk-input uk-width-expand'})) class Meta: model = Passwords fields = ['username', 'password', 'email', 'website_name', 'website_url']
43.952381
89
0.67714
865
0.937161
0
0
0
0
0
0
319
0.345612
57550dfdc85fef1e9e1bc0066478d7d691371d64
184
py
Python
data_relay/src/plugins/AzureBlob.py
phil-d-wilson/connectorV2
7077aa1c74276e8e334a8046793e942eec8d9975
[ "Apache-2.0" ]
null
null
null
data_relay/src/plugins/AzureBlob.py
phil-d-wilson/connectorV2
7077aa1c74276e8e334a8046793e942eec8d9975
[ "Apache-2.0" ]
49
2021-04-09T14:41:50.000Z
2021-07-28T10:54:48.000Z
data_relay/src/plugins/AzureBlob.py
phil-d-wilson/connectorV2
7077aa1c74276e8e334a8046793e942eec8d9975
[ "Apache-2.0" ]
2
2021-04-24T10:47:57.000Z
2021-07-17T07:13:00.000Z
NAME = "Azure BLOB storage" TYPE = "remote" FILE = "AzureBlob.yaml" VARS = [ "AZURE_BLOB_STORAGE_ACCOUNT", "AZURE_BLOB_STORAGE_ACCOUNT_KEY", "AZURE_BLOB_CONTAINER_NAME", ]
20.444444
37
0.717391
0
0
0
0
0
0
0
0
131
0.711957
5755b24aeb6ff531368ac2aba89c8fd019b3b452
8,965
py
Python
tests/application/test_helpers.py
alphagov-mirror/performanceplatform-admin
b63ae42b1276699623ef208b7d6edd3e0ce4ca59
[ "MIT" ]
1
2017-05-14T21:31:33.000Z
2017-05-14T21:31:33.000Z
tests/application/test_helpers.py
alphagov-mirror/performanceplatform-admin
b63ae42b1276699623ef208b7d6edd3e0ce4ca59
[ "MIT" ]
33
2015-01-05T12:23:45.000Z
2021-03-24T10:59:47.000Z
tests/application/test_helpers.py
alphagov-mirror/performanceplatform-admin
b63ae42b1276699623ef208b7d6edd3e0ce4ca59
[ "MIT" ]
4
2017-03-16T15:52:33.000Z
2021-04-10T20:14:53.000Z
import unittest from application import app from application.helpers import( requires_authentication, requires_feature, signed_in, group_by_group, signed_in_no_access, no_access, has_user_with_token, view_helpers, user_has_feature, ) from hamcrest import assert_that, equal_to, is_ from mock import patch class HelpersTestCase(unittest.TestCase): def setUp(self): app.config['TESTING'] = True self.app = app.test_client() def test_view_helper_user_has_feature(self): user_has_feature = view_helpers()['user_has_feature'] assert_that(user_has_feature('edit-dashboards', {}), is_(False)) assert_that(user_has_feature('edit-dashboards', {'permissions': ['signin']}), is_(False)) assert_that(user_has_feature('edit-dashboards', {'permissions': ['dashboard-editor']}), is_(True)) @patch('application.helpers.signed_in') def test_requires_login_redirects_when_no_user(self, signed_in_mock): signed_in_mock.return_value = False func = lambda x: x wrapped_app_method = requires_authentication(func) with app.test_request_context('/protected-resource', method='GET'): response = wrapped_app_method() assert_that(response.status_code, equal_to(302)) assert_that(response.headers['Location'], equal_to('/')) @patch('application.helpers.signed_in') def test_requires_feature_allows_access(self, signed_in_mock): signed_in_mock.return_value = True func = lambda: 'Decorator exited successfully' wrapped_app_method = requires_feature('big-edit') with app.test_request_context('/protected', method='GET') as context: context.session.update({ 'oauth_user': {'permissions': ['admin']}, }) response = wrapped_app_method(func)() assert_that(response, is_('Decorator exited successfully')) @patch('application.helpers.signed_in') def test_requires_feature_redirects_when_not_signed_in( self, signed_in_mock): signed_in_mock.return_value = False func = lambda: 'Decorator exited successfully' wrapped_app_method = requires_feature('some-feature') with app.test_request_context('/protected', method='GET') as context: response = wrapped_app_method(func)() assert_that(response.status_code, is_(302)) assert_that(response.headers['Location'], is_('/')) @patch('application.helpers.signed_in') def test_requires_feature_redirects_for_bad_permissions( self, signed_in_mock): signed_in_mock.return_value = True func = lambda: 'Decorator exited successfully' wrapped_app_method = requires_feature('some-feature') with app.test_request_context('/protected', method='GET') as context: context.session.update({ 'oauth_user': {'permissions': ['normal-permission']}, }) response = wrapped_app_method(func)() assert_that(response.status_code, is_(302)) assert_that(response.headers['Location'], is_('/')) def test_has_user_with_token_returns_true_when_session_has_token_and_user( self): assert_that(has_user_with_token({ 'oauth_token': { 'access_token': 'token' }, 'oauth_user': "bleep_bloop_blarp" }), equal_to(True)) def test_has_user_with_token_false_when_session_has_no_token(self): assert_that(has_user_with_token({ 'oauth_user': "bleep_bloop_blarp" }), equal_to(False)) def test_has_user_with_token_false_when_session_token_has_no_access_token( self): assert_that(has_user_with_token({ 'oauth_token': { }, 'oauth_user': "bleep_bloop_blarp" }), equal_to(False)) def test_has_user_with_token_is_false_when_session_has_no_user(self): assert_that(has_user_with_token({ 'oauth_token': { 'access_token': 'token' } }), equal_to(False)) def test_has_user_with_token_is_false_when_empty_session(self): assert_that(has_user_with_token({}), equal_to(False)) def test_no_access_true_if_session_user_has_no_permissions(self): assert_that(no_access({}), equal_to(True)) def test_no_access_true_if_session_user_hasnt_signin_permission(self): assert_that(no_access({ 'permissions': [] }), equal_to(True)) def test_no_access_false_if_session_user_has_signin_permission( self): assert_that(no_access({ 'permissions': ['signin'] }), equal_to(False)) @patch('application.helpers.has_user_with_token') @patch('application.helpers.no_access') def test_signed_in_true_when_has_user_with_token_and_not_no_access( self, no_access_patch, has_user_with_token_patch): has_user_with_token_patch.return_value = True no_access_patch.return_value = False assert_that(signed_in({'oauth_user': 'user'}), equal_to(True)) @patch('application.helpers.has_user_with_token') def test_signed_in_false_when_hasnt_user_with_token( self, has_user_with_token_patch): has_user_with_token_patch.return_value = False assert_that(signed_in({'oauth_user': 'user'}), equal_to(False)) @patch('application.helpers.has_user_with_token') @patch('application.helpers.no_access') def test_signed_in_false_when_has_user_with_token_and_no_access( self, no_access_patch, has_user_with_token_patch): has_user_with_token_patch.return_value = True no_access_patch.return_value = True assert_that(signed_in({'oauth_user': 'user'}), equal_to(False)) @patch('application.helpers.has_user_with_token') @patch('application.helpers.no_access') def test_signed_in_no_access_false_if_signed_in_and_not_no_access( self, no_access_patch, has_user_with_token_patch): has_user_with_token_patch.return_value = True no_access_patch.return_value = False assert_that(signed_in_no_access( {'oauth_user': 'user'}), equal_to(False)) @patch('application.helpers.has_user_with_token') def test_signed_in_no_access_false_when_hasnt_user_with_token( self, has_user_with_token_patch): has_user_with_token_patch.return_value = False assert_that(signed_in_no_access( {'oauth_user': 'user'}), equal_to(False)) @patch('application.helpers.has_user_with_token') @patch('application.helpers.no_access') def test_signed_in_no_access_true_when_has_user_with_token_and_no_access( self, no_access_patch, has_user_with_token_patch): has_user_with_token_patch.return_value = True no_access_patch.return_value = True assert_that(signed_in_no_access( {'oauth_user': 'user'}), equal_to(True)) def test_group_by_group_groups_datasets_by_group(self): data_sets = [ { 'data_group': "group_1", 'data_type': "type1" }, { 'data_group': "group_1", 'data_type': "type2" }, { 'data_group': "group_2", 'data_type': "type3" } ] grouped_data_sets = { "group_1": [ { 'data_group': "group_1", 'data_type': "type1" }, { 'data_group': "group_1", 'data_type': "type2" } ], "group_2": [ { 'data_group': "group_2", 'data_type': "type3" } ] } assert_that(group_by_group(data_sets), equal_to(grouped_data_sets)) def test_admin_user_has_bigedit_feature(self): user = {'permissions': ['admin']} assert_that(user_has_feature('big-edit', user), equal_to(True)) def test_dashboard_editor_user_does_not_have_bigedit_feature(self): user = {'permissions': ['dashboard-editor']} assert_that(user_has_feature('big-edit', user), equal_to(False)) def test_dashboard_editor_and_admin_user_does_have_bigedit_feature(self): user = {'permissions': ['dashboard-editor', 'admin']} assert_that(user_has_feature('big-edit', user), equal_to(True)) def test_user_with_permissions_not_in_list_features(self): user = {'permissions': ['signin']} assert_that(user_has_feature('big-edit', user), equal_to(False))
37.19917
78
0.636587
8,621
0.961629
0
0
4,603
0.513441
0
0
1,696
0.18918
575730cc1be427336b55d40ef3a3e2821b465a72
1,210
py
Python
Unit 7/Ai bot/test bots/SlightlySmartSue.py
KevinBoxuGao/ICS3UI
2091a7c0276b888dd88f2063e6acd6e7ff7fb6fa
[ "MIT" ]
null
null
null
Unit 7/Ai bot/test bots/SlightlySmartSue.py
KevinBoxuGao/ICS3UI
2091a7c0276b888dd88f2063e6acd6e7ff7fb6fa
[ "MIT" ]
null
null
null
Unit 7/Ai bot/test bots/SlightlySmartSue.py
KevinBoxuGao/ICS3UI
2091a7c0276b888dd88f2063e6acd6e7ff7fb6fa
[ "MIT" ]
1
2020-03-09T16:22:33.000Z
2020-03-09T16:22:33.000Z
from random import * #STRATEGY SUMMARY: DON'T DUCK IF THE OPPONENT HAS NO SNOWBALLS. OTHERWISE, PICK RANDOMLY. def getMove( myScore, mySnowballs, myDucksUsed, myMovesSoFar, oppScore, oppSnowballs, oppDucksUsed, oppMovesSoFar ): if mySnowballs == 10: #I have 10 snowballs, so I must throw return "THROW" elif oppSnowballs > 0: #If opponent does have snowballs... if mySnowballs == 0: #...and if I have no snowballs left if myDucksUsed == 5: #...and if I have no ducks left either, then must RELOAD return "RELOAD" else: #...otherwise, pick between DUCK and RELOAD return choice([ "DUCK", "RELOAD" ]) elif myDucksUsed == 5: #If my opponent and I both have snowballs left, but I'm out of ducks return choice([ "THROW", "RELOAD" ]) else: #I have no restrictions return choice([ "THROW", "DUCK", "RELOAD" ]) else: #If my opponent is out of snowballs, then don't duck! if mySnowballs == 0: return "RELOAD" else: return choice([ "RELOAD", "THROW" ])
31.842105
99
0.565289
0
0
0
0
0
0
0
0
528
0.436364
5757a45f92b96ddd746ba5a5bd686085a734073c
298
py
Python
customers/views/customers.py
chorna/taxi24
09e174a0cb3b9543ca4987e60cd0d37ecda6ac3c
[ "MIT" ]
null
null
null
customers/views/customers.py
chorna/taxi24
09e174a0cb3b9543ca4987e60cd0d37ecda6ac3c
[ "MIT" ]
null
null
null
customers/views/customers.py
chorna/taxi24
09e174a0cb3b9543ca4987e60cd0d37ecda6ac3c
[ "MIT" ]
null
null
null
from rest_framework import viewsets from customers.models import Customer from customers.serializers.customers import CustomerSerializer # Create your views here. class CustomerList(viewsets.ReadOnlyModelViewSet): queryset = Customer.objects.all() serializer_class = CustomerSerializer
24.833333
62
0.825503
130
0.436242
0
0
0
0
0
0
25
0.083893
57580cabba2c7dce9e5d8666af96b5e694af9738
5,370
py
Python
pysoa/test/plan/grammar/directives/expects_values.py
zetahernandez/pysoa
006e55ba877196a42c64f2ff453583d366082d55
[ "Apache-2.0" ]
91
2017-05-08T22:41:33.000Z
2022-02-09T11:37:07.000Z
pysoa/test/plan/grammar/directives/expects_values.py
zetahernandez/pysoa
006e55ba877196a42c64f2ff453583d366082d55
[ "Apache-2.0" ]
63
2017-06-14T20:08:49.000Z
2021-06-16T23:08:25.000Z
pysoa/test/plan/grammar/directives/expects_values.py
zetahernandez/pysoa
006e55ba877196a42c64f2ff453583d366082d55
[ "Apache-2.0" ]
26
2017-10-13T23:23:13.000Z
2022-01-11T16:58:17.000Z
""" Expect action directives """ from __future__ import ( absolute_import, unicode_literals, ) from pyparsing import ( CaselessLiteral, LineEnd, Literal, Optional, Suppress, ) from pysoa.test.plan.grammar.assertions import ( assert_not_expected, assert_not_present, assert_subset_structure, ) from pysoa.test.plan.grammar.data_types import ( DataTypeGrammar, get_parsed_data_type_value, ) from pysoa.test.plan.grammar.directive import ( ActionDirective, VarNameGrammar, VarValueGrammar, register_directive, ) from pysoa.test.plan.grammar.tools import path_put class ActionExpectsFieldValueDirective(ActionDirective): """ Set expectations for values to be in the service call response. Using the ``not`` qualifier in the test will check to make sure that the field has any value other than the one specified. """ @classmethod def name(cls): return 'expect_value' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsFieldValueDirective, cls).get_full_grammar() + Literal('expect') + Optional(DataTypeGrammar) + ':' + Optional(Literal('not')('not')) + Literal('attribute value') + ':' + VarNameGrammar + ':' + VarValueGrammar ) def ingest_from_parsed_test_fixture(self, action_case, test_case, parse_results, file_name, line_number): variable_name = parse_results.variable_name path = 'expects' if getattr(parse_results, 'not', None): path = 'not_expects' path_put( action_case, '{}.{}'.format(path, variable_name), get_parsed_data_type_value(parse_results, parse_results.value), ) def assert_test_case_action_results( self, action_name, action_case, test_case, test_fixture, action_response, job_response, msg=None, **kwargs ): if 'expects' in action_case: assert_subset_structure( action_case.get('expects', {}), action_response.body, False, msg, ) if 'not_expects' in action_case: assert_not_expected( action_case['not_expects'], action_response.body, msg, ) class ActionExpectsAnyDirective(ActionExpectsFieldValueDirective): """ Set expectations for values to be in the service call response where any value for the given data type will be accepted. """ @classmethod def name(cls): return 'expect_any_value' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsFieldValueDirective, cls).get_full_grammar() + Literal('expect') + Literal('any')('any') + Optional(DataTypeGrammar) + ':' + Literal('attribute value') + ':' + VarNameGrammar + Optional(~Suppress(LineEnd()) + ':') ) class ActionExpectsNoneDirective(ActionExpectsFieldValueDirective): """ Set expectations for values to be in the service call response where ``None`` value is expected. """ @classmethod def name(cls): return 'expect_none' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsFieldValueDirective, cls).get_full_grammar() + Literal('expect') + CaselessLiteral('None')('data_type') + ':' + Literal('attribute value') + ':' + VarNameGrammar + Optional(~Suppress(LineEnd()) + ':') ) class ActionExpectsNotPresentDirective(ActionDirective): """ Set expectation that the given field will not be present (even as a key) in the response. """ @classmethod def name(cls): return 'expect_not_present' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsNotPresentDirective, cls).get_full_grammar() + Literal('expect not present') + ':' + Literal('attribute value') + ':' + VarNameGrammar + Optional(~Suppress(LineEnd()) + ':') ) def ingest_from_parsed_test_fixture(self, action_case, test_case, parse_results, file_name, line_number): path_put( action_case, 'expects_not_present.{}'.format(parse_results.variable_name), get_parsed_data_type_value(parse_results, parse_results.value), ) def assert_test_case_action_results( self, action_name, action_case, test_case, test_fixture, action_response, job_response, msg=None, **kwargs ): if 'expects_not_present' in action_case: assert_not_present( action_case['expects_not_present'], action_response.body, msg, ) register_directive(ActionExpectsFieldValueDirective) register_directive(ActionExpectsAnyDirective) register_directive(ActionExpectsNoneDirective) register_directive(ActionExpectsNotPresentDirective)
26.716418
115
0.60298
4,531
0.843762
0
0
1,815
0.337989
0
0
994
0.185102
575871e8030b4782c2b2ff33f329031a54131855
454
py
Python
src/manual/add_uuid_col.py
lshtm-gis/WHO_PHSM_Cleaning
5892673922fc555fb86d6e0be548b48c7dc66814
[ "MIT" ]
null
null
null
src/manual/add_uuid_col.py
lshtm-gis/WHO_PHSM_Cleaning
5892673922fc555fb86d6e0be548b48c7dc66814
[ "MIT" ]
123
2020-10-12T11:06:27.000Z
2021-04-28T15:32:29.000Z
src/manual/add_uuid_col.py
lshtm-gis/WHO_PHSM_Cleaning
5892673922fc555fb86d6e0be548b48c7dc66814
[ "MIT" ]
null
null
null
''' Script to add uuid to existing records Also shifts who_code values to original_who_code ''' import uuid import pandas as pd manually_cleaned = pd.read_csv('data/cleansed/mistress_latest_old.csv', low_memory=False) manually_cleaned['uuid'] = [str(uuid.uuid4()) for x in manually_cleaned.iloc[:, 1]] manually_cleaned['original_who_code'] = manually_cleaned['who_code'] manually_cleaned.to_csv('data/cleansed/mistress_latest.csv', index = False)
25.222222
89
0.779736
0
0
0
0
0
0
0
0
207
0.455947
575a4a3127b8298acd5fe22aa043d391fe755667
1,821
py
Python
tests/test_qml.py
phil65/PrettyQt
26327670c46caa039c9bd15cb17a35ef5ad72e6c
[ "MIT" ]
7
2019-05-01T01:34:36.000Z
2022-03-08T02:24:14.000Z
tests/test_qml.py
phil65/PrettyQt
26327670c46caa039c9bd15cb17a35ef5ad72e6c
[ "MIT" ]
141
2019-04-16T11:22:01.000Z
2021-04-14T15:12:36.000Z
tests/test_qml.py
phil65/PrettyQt
26327670c46caa039c9bd15cb17a35ef5ad72e6c
[ "MIT" ]
5
2019-04-17T11:48:19.000Z
2021-11-21T10:30:19.000Z
"""Tests for `prettyqt` package.""" import pathlib import pytest from prettyqt import core, qml from prettyqt.utils import InvalidParamError # def test_jsvalue(): # val = qml.JSValue(2) # val["test"] = 1 # assert val["test"].toInt() == 1 # assert "test" in val # assert val.get_value() == 2 def test_jsengine(): engine = qml.JSEngine() engine.install_extensions("translation") engine.eval("") def test_qmlengine(): engine = qml.QmlEngine() obj = core.Object() engine.set_object_ownership(obj, "javascript") with pytest.raises(InvalidParamError): engine.set_object_ownership(obj, "test") assert engine.get_object_ownership(obj) == "javascript" engine.add_plugin_path("") engine.add_import_path("") engine.get_plugin_paths() engine.get_import_paths() def test_qmlapplicationengine(qtlog): with qtlog.disabled(): engine = qml.QmlApplicationEngine() for item in engine: pass path = pathlib.Path.cwd() / "tests" / "qmltest.qml" engine.load_data(path.read_text()) def test_qmlcomponent(): comp = qml.QmlComponent() assert comp.get_status() == "null" # comp.load_url("", mode="asynchronous") comp.get_url() def test_jsvalue(): val = qml.JSValue(1) assert val.get_error_type() is None assert val.get_value() == 1 repr(val) engine = qml.JSEngine() val = engine.new_array(2) val["test1"] = 1 val["test2"] = 2 assert val["test1"] == 1 assert "test2" in val assert len(val) == 2 del val["test2"] for n, v in val: pass val = qml.JSValue.from_object(None, engine) val = qml.JSValue.from_object(1, engine) val = qml.JSValue.from_object(["test"], engine) val = qml.JSValue.from_object(dict(a="b"), engine)
24.945205
59
0.641406
0
0
0
0
0
0
0
0
358
0.196595
9386838c937de37405273fac5771d31ccf1a0479
2,550
py
Python
demo.py
HsienYu/tree_demo
aa2fa6c016b3ea5c1e768baa8ce4ea319c727bfc
[ "Artistic-2.0" ]
null
null
null
demo.py
HsienYu/tree_demo
aa2fa6c016b3ea5c1e768baa8ce4ea319c727bfc
[ "Artistic-2.0" ]
null
null
null
demo.py
HsienYu/tree_demo
aa2fa6c016b3ea5c1e768baa8ce4ea319c727bfc
[ "Artistic-2.0" ]
null
null
null
# Simple test for NeoPixels on Raspberry Pi import time import board import neopixel # Choose an open pin connected to the Data In of the NeoPixel strip, i.e. board.D18 # NeoPixels must be connected to D10, D12, D18 or D21 to work. pixel_pin = board.D18 # The number of NeoPixels num_pixels = 30 # The order of the pixel colors - RGB or GRB. Some NeoPixels have red and green reversed! # For RGBW NeoPixels, simply change the ORDER to RGBW or GRBW. ORDER = neopixel.GRB pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2, auto_write=False, pixel_order=ORDER) def wheel(pos): # Input a value 0 to 255 to get a color value. # The colours are a transition r - g - b - back to r. if pos < 0 or pos > 255: r = g = b = 0 elif pos < 85: r = int(pos*2) g = int(255 - pos*2) b = 0 elif pos < 170: pos -= 85 r = int(255 - pos*2) g = 0 b = int(pos*2) else: pos -= 170 r = 0 g = int(pos*2) b = int(255 - pos*2) return (255, 155, b) if ORDER == neopixel.RGB or ORDER == neopixel.GRB else (r, g, b, 0) def rainbow_cycle(wait): for j in range(255): for i in range(num_pixels): pixel_index = (i * 256 // num_pixels) + j pixels[i] = wheel(pixel_index & 255) pixels.show() time.sleep(wait) def white_breath(): x = 0 interval_time = 0.007 time.sleep(1) while x == 0: for i in range(255): x = i pixels.fill((x, x, x)) pixels.show() time.sleep(interval_time) while x == 254: for i in range(255, 0, -1): x = i pixels.fill((i, i, i)) pixels.show() time.sleep(interval_time) def repeat_fun(times, f, *args): for i in range(times): f(*args) try: while True: print("light start") repeat_fun(5, white_breath) # rainbow cycle with 1ms delay per step repeat_fun(3, rainbow_cycle, 0.01) # white_breath() # for i in range(num_pixels): # for r in range(255): # pixels[i] = (r, 0, 0) # pixels.show() # time.sleep(0.001) # j = i - 1 # for y in range(255): # pixels[j] = (y, y, y) # pixels.show() # time.sleep(0.001) # time.sleep(0.01) except KeyboardInterrupt: print("KeyboardInterrupt has been caught.")
25.757576
92
0.533333
0
0
0
0
0
0
0
0
847
0.332157
93880a88a41dae3cf1a05e55925780f80609dbdb
1,774
py
Python
fsm.py
yusun1997/Chatbot
ee49d4a64857889ce1d1a8659a1de15cf062bd77
[ "MIT" ]
null
null
null
fsm.py
yusun1997/Chatbot
ee49d4a64857889ce1d1a8659a1de15cf062bd77
[ "MIT" ]
null
null
null
fsm.py
yusun1997/Chatbot
ee49d4a64857889ce1d1a8659a1de15cf062bd77
[ "MIT" ]
null
null
null
from transitions.extensions import GraphMachine class TocMachine(GraphMachine): def __init__(self, **machine_configs): self.machine = GraphMachine( model = self, **machine_configs ) def is_going_to_state1(self, update): text = update.message.text return text.lower() == 'hi' def is_going_to_state2(self, update): text = update.message.text return text.lower() == 'i want to play a game' def is_going_to_state3(self, update): text = update.message.text return text.lower() == 'you idiot' def is_going_to_state4(self, update): text = update.message.text return text.lower() == 'bye' def is_going_to_statedefault(self, update): return True def on_enter_statedefault(self, update): update.message.reply_text("-Hi \n -I want to play a geme \n -you idiot \n -bye ") self.go_back(update) def on_exit_statedefault(self, update): print('Leaving state default') def on_enter_state1(self, update): update.message.reply_text("Hi") self.go_back(update) def on_exit_state1(self, update): print('Leaving state1') def on_enter_state2(self, update): update.message.reply_text("But I don't want to") self.go_back(update) def on_exit_state2(self, update): print('Leaving state2') def on_enter_state3(self, update): update.message.reply_text("fuck you") self.go_back(update) def on_exit_state3(self, update): print('Leaving state3') def on_enter_state4(self, update): update.message.reply_text("Bye~") self.go_back(update) def on_exit_state4(self, update): print('Leaving state4')
27.71875
89
0.638106
1,723
0.971251
0
0
0
0
0
0
225
0.126832
93881978c162edde4ca5dd970ae7fc5d1d4dfecc
1,861
py
Python
rptk/query/__init__.py
wolcomm/rptk
fe6c1b597741ff14e4c89519458bb0950f0aa955
[ "Apache-2.0" ]
15
2017-11-30T01:28:11.000Z
2021-08-12T09:17:36.000Z
rptk/query/__init__.py
wolcomm/rptk
fe6c1b597741ff14e4c89519458bb0950f0aa955
[ "Apache-2.0" ]
71
2018-06-22T09:54:50.000Z
2020-10-21T07:10:54.000Z
rptk/query/__init__.py
wolcomm/rptk
fe6c1b597741ff14e4c89519458bb0950f0aa955
[ "Apache-2.0" ]
2
2019-08-31T20:45:19.000Z
2019-10-02T18:26:58.000Z
# Copyright (c) 2018 Workonline Communications (Pty) Ltd. All rights reserved. # # The contents of this file are licensed under the Apache License version 2.0 # (the "License"); you may not use this file except in compliance with the # License. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """rptk module.query module.""" from __future__ import print_function from __future__ import unicode_literals from rptk.base import BaseObject try: basestring except NameError: basestring = str try: unicode except NameError: unicode = str class BaseQuery(BaseObject): """Base class for the definition of query execution classes.""" posix_only = False def __init__(self, **opts): """Initialise new object.""" super(BaseQuery, self).__init__() self.log_init() self._opts = opts self.log_init_done() def query(self, *objects): """Check the object name type.""" self.log_method_enter(method=self.current_method) for obj in objects: if not isinstance(obj, basestring): self.raise_type_error(arg=obj, cls=basestring) obj = unicode(obj) yield obj @property def host(self): """Get the configured IRR server hostname.""" return self.opts["host"] @property def port(self): """Get the configured IRR server port.""" return int(self.opts["port"]) @property def target(self): """Construct a hostname:port pair for the IRR server.""" return "{}:{}".format(self.host, self.port)
27.776119
79
0.667383
1,034
0.555615
318
0.170876
381
0.204729
0
0
868
0.466416
93888830e4d4bc95cb50e37baa9660d706afdc8a
1,697
py
Python
test/__main__.py
harisekhon/pylib
1d8fcfc0a26251a832536a5ff6bf0ef618b8508e
[ "MIT" ]
1
2015-12-17T21:08:22.000Z
2015-12-17T21:08:22.000Z
test/__main__.py
harisekhon/pylib
1d8fcfc0a26251a832536a5ff6bf0ef618b8508e
[ "MIT" ]
null
null
null
test/__main__.py
harisekhon/pylib
1d8fcfc0a26251a832536a5ff6bf0ef618b8508e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # vim:ts=4:sts=4:sw=4:et # # Author: Hari Sekhon # Date: 2015-11-14 12:21:54 +0000 (Sat, 14 Nov 2015) # # https://github.com/HariSekhon/pylib # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn # and optionally send me feedback to help improve or steer this or other code I publish # # http://www.linkedin.com/in/harisekhon # from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os #import glob #import inspect #import subprocess #import sys ## using optparse rather than argparse for servers still on Python 2.6 #from optparse import OptionParser # libdir = os.path.join(os.path.dirname(inspect.getfile(inspect.currentframe())), '..') libdir = os.path.join(os.path.dirname(__file__), '..') # sys.path.append(libdir) # try: # from harisekhon.utils import * # except ImportError, e: # print('module import failed: %s' % e) # sys.exit(4) __author__ = 'Hari Sekhon' __version__ = '0.1' def main(): print('running unit tests') # this doesn't allow coverage to follow the code and see what's been covered # for x in glob.glob(libdir + "/test/test_*.py"): # if subprocess.call(['python', x]): # sys.exit(2) # subprocess.check_call(['python', x]) # pylint: disable=redefined-outer-name,reimported from test.test_utils import main main() from test.test_cli import main main() from test.test_nagiosplugin import main main() from test.test_threshold import main main() if __name__ == '__main__': main()
28.283333
88
0.700648
0
0
0
0
0
0
0
0
1,130
0.665881